path
stringlengths
7
265
concatenated_notebook
stringlengths
46
17M
NASH_realExample.ipynb
###Markdown 1. simulation(check)2. 0.5 (check)3. nonlinear (wait for code) (check) Linear combination Choose first var to be anchor ###Code [roc_auc_score(dat_1.NASH, dat_1.iloc[:,i]) for i in range(4)] #[0.4643326758711374, # 0.4276791584483892, # 0.7143326758711374, # 0.4819197896120973] [NonpAUC(X0.iloc[:,i],X1.iloc[:,i]) for i in range(4)] def indicator(s0,s1): """Indicator function s0: scalar s1:scalar return scalar """ if s0 == s1: return 0.5 elif s1 > s0: return 1 else: return 0 def NonpAUC(s0,s1): """compute the nonparametruc AUC. s1: array of composite scores for class '1'. s0: array of composite scores for class '0' return scalar auc """ n1 = len(s1) n0 = len(s0) ans = 0 for x1 in s1: for x0 in s0: ans += indicator(x0,x1) return ans/(n1*n0) ####. AUC ### method1, more convient in suliu #def NonpAUC(s0, s1): # """ # compute the nonparametruc AUC. # s1: array of composite scores for class '1'. # s0: array of composite scores for class '0' # return scalar auc # """ # n1 = len(s1) # n0 = len(s0) # return sum([sum(x> s0) for x in s1])/ (n1*n0) # method 2 ## actually does not need that function, # roc_auc_score(y, y_pred) directly get nonpAUC # method 3, can plot ROC curve #fpr, tpr, thresholds = roc_curve(y, y_pred, pos_label=1) #metrics.auc(fpr, tpr) # method I: plt #plt.title('Receiver Operating Characteristic') #plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc) #plt.legend(loc = 'lower right') #plt.plot([0, 1], [0, 1],'r--') #plt.xlim([0, 1]) #plt.ylim([0, 1]) #plt.ylabel('True Positive Rate') #plt.xlabel('False Positive Rate') #plt.show() NonpAUC(np.array([10]),np.array([11]) ) ### anchor var def anchor_est_coef(coef): """ set the first var as anchor var, which has coef 1. coef: array(cannot be list) return coef_, array. """ # if anchor coef <0 coef_ = np.array(coef) return coef_/abs(coef_[0]) # abs guarantee it is increasing transformation ###Output _____no_output_____ ###Markdown Su and Liu's method ###Code def suliu(X0, X1, bool = True): """ X0: df or array, design matrix for class '0' X1: df or array, design matrix for class '1' """ a = np.cov(X0, rowvar= False) + np.cov(X1, rowvar= False) b = X1.mean().to_numpy() - X0.mean().to_numpy() est_coef = np.matmul(inv(a),b) if bool: est_coef = anchor_est_coef(est_coef) # Y0 = np.matmul(X0.to_numpy(), est_coef); Y1 = np.matmul(X1.to_numpy(), est_coef) auc = NonpAUC(Y0, Y1) if auc >=0.5: return est_coef, auc else: return -est_coef, 1-auc coef, auc = suliu(X0,X1, bool =False) print('estimated coef is %s' % coef) print('empirical AUC is %s' % auc) coef, auc = suliu(X0,X1) print('estimated coef is %s' % coef) print('empirical AUC is %s' % auc) ###Output estimated coef is [1. 0.66034715 0.37643963 1.02659137] empirical AUC is 0.6620644312952005 ###Markdown random forest ###Code def randomforst(X0,X1): n0 = X0.shape[0] n1 = X1.shape[0] X = pd.concat([X0,X1]) y = [0] * n0 y.extend([1]*n1); y = np.array(y) rf =RandomForestClassifier(max_depth=2, random_state=43).fit(X,y) ## y_pred = rf.predict_proba(X)[:,1] auc = roc_auc_score(y, y_pred) #print(NonpAUC(y_pred[:n0], y_pred[n0:])) #feature_importances = rf.feature_importances_ return rf, auc ## return model, for future prediction mod_rf, auc = randomforst(X0,X1) #print('estimated feature_importances_ is %s' % coef) print('empirical AUC is %s' % auc) ###Output 0.7943786982248521 empirical AUC is 0.7943786982248521 ###Markdown SVM_r ###Code def svm_r(X0,X1): """svm with rbf kernel X0: df, design matrix for class '0' X1: df, design matrix for class '1' """ n0 = X0.shape[0] n1 = X1.shape[0] X = pd.concat([X0,X1]) y = [0] * n0 y.extend([1]*n1); y = np.array(y) mod = SVC(kernel = 'rbf',random_state=42, probability= True).fit(X,y) ## y_pred = mod.predict_proba(X)[:,1] auc = roc_auc_score(y, y_pred) return mod, auc ## cannot return estimates, so return mod for future prediction mod_svm,auc = svm_r(X0,X1) print('empirical AUC is %s' % auc) ###Output empirical AUC is 0.723044049967127 ###Markdown SVM_l ###Code def svm_l(X0,X1): """svm with linear kernel X0: df, design matrix for class '0' X1: df, design matrix for class '1' """ n0 = X0.shape[0] n1 = X1.shape[0] X = pd.concat([X0,X1]) y = [0] * n0 y.extend([1]*n1); y = np.array(y) mod = SVC(kernel = 'linear',random_state=0, probability= True).fit(X,y) ## y_pred = mod.predict_proba(X)[:,1] auc = roc_auc_score(y, y_pred) return mod, auc ## cannot return estimates, so return mod for future prediction mod_svm,auc = svm_l(X0,X1) print('empirical AUC is %s' % auc) ###Output empirical AUC is 0.7140861275476659 ###Markdown Logistic regression ###Code def logistic(X0,X1, bool = True): n0 = X0.shape[0] n1 = X1.shape[0] X = pd.concat([X0,X1]) y = [0] * n0 y.extend([1]*n1); y = np.array(y) lr = LR(random_state=0).fit(X,y) ## y_pred = lr.predict_proba(X)[:,1] auc = roc_auc_score(y, y_pred) est_coef = lr.coef_[0] if bool: est_coef = anchor_est_coef(est_coef) if auc >=0.5: return est_coef, auc else: return -est_coef, 1-auc coef, auc = logistic(X0,X1,bool = False) print('estimated coef is %s' % coef) print('empirical AUC is %s' % auc) coef, auc = logistic(X0,X1) print('estimated coef is %s' % coef) print('empirical AUC is %s' % auc) ###Output estimated coef is [ 1. 1.70201691 3.71633799 -4.83960459] empirical AUC is 0.7140039447731755 ###Markdown Pepe method ###Code def nonp_combine2_auc(l1,l2, X0, X1): """ compute nonparametric AUC when X0 and X1 has two cols for given coef (l1,l2) l1: first coef l2: second coef X0: df, design matrix for class '0' X1: df, design matrix for class '1' """ n0 = X0.shape[0] n1 = X1.shape[0] s0 = np.matmul(X0.to_numpy(), np.array([l1,l2])) s1 = np.matmul(X1.to_numpy(), np.array([l1,l2])) return NonpAUC(s0,s1) def pepe(X0,X1, evalnum = 201, bool = True): """ compute the coef that has max nonparametric AUC, X0 and X1 has two cols. X0: df, design matrix for class '0' X1: df, design matrix for class '1' """ l = np.linspace(start=-1, stop=1, num=evalnum) #l2 = np.linspace(start=-1, stop=1, num=evalnum) auc_l1 = [nonp_combine2_auc(e,1,X0,X1) for e in l] auc_l2 = [nonp_combine2_auc(1,e,X0,X1) for e in l] if max(auc_l1) > max(auc_l2): ind = auc_l1.index(max(auc_l1)) est_coef = np.array([l[ind],1]) if bool: est_coef = anchor_est_coef(est_coef) return est_coef, max(auc_l1) else: ind = auc_l2.index(max(auc_l2)) est_coef = np.array([1,l[ind]]) if bool: est_coef = anchor_est_coef(est_coef) return est_coef, max(auc_l2) X0_2 = X0.loc[:,['FIB4','LSVR']]; X1_2 = X1.loc[:,['FIB4','LSVR']] coef, auc = pepe(X0_2,X1_2, bool = False) print('estimated coef is %s' % coef) print('empirical AUC is %s' % auc) ###Output estimated coef is [ 1. -0.76] empirical AUC is 0.7164694280078896 ###Markdown Min-max ###Code def liu(X0, X1, bool = True): """ X0: df, design matrix for class '0' X1: df, design matrix for class '1' """ # get min max row-wise max_min_X0 = np.concatenate( ( np.amax(X0.to_numpy(), axis=1).reshape(-1,1) , np.amin(X0.to_numpy(), axis=1).reshape(-1,1) ), axis =1 ) max_min_X1 = np.concatenate( ( np.amax(X1.to_numpy(), axis=1).reshape(-1,1) , np.amin(X1.to_numpy(), axis=1).reshape(-1,1) ), axis =1 ) max_min_X0 = pd.DataFrame(data = max_min_X0); max_min_X1 = pd.DataFrame(data = max_min_X1) return pepe(max_min_X0, max_min_X1, bool = bool) coef, auc = liu(X0,X1, bool = False) print('estimated coef is %s' % coef) print('empirical AUC is %s' % auc) ###Output estimated coef is [ 1. -0.94] empirical AUC is 0.6338757396449705 ###Markdown stepwise ###Code def auc_check(X0, X1): """calculate AUC for every var X0: df, design matrix for class '0' X1: df, design matrix for class '1' """ p = X0.shape[1] auc_list = [] for i in list(X0.columns): auc_list.append(NonpAUC(X0.loc[:,i], X1.loc[:,i] ) ) return auc_list auc_check(X0,X1) def stepwise(X0, X1, bool = True): n0 = X0.shape[0] n1 = X1.shape[0] varnum = X0.shape[1] combcoef = [] ## step down auc_order = np.array(auc_check(X0,X1)) sort_index = np.argsort(auc_order); sort_index= sort_index[::-1] ## auc_order[sort_index[0]] largest, auc_order[sort_index[len()]] smallest combmarker0 = X0.iloc[:,[sort_index[0]]].copy() # pd combmarker1 = X1.iloc[:,[sort_index[0]]].copy() # pd nal_coef = [1] for i in range(1,varnum): #combmarker0 = pd.concat([combmarker0, X0.iloc[:, [sort_index[i]] ] ], axis= 1,ignore_index = True) #combmarker1 = pd.concat([combmarker1, X1.iloc[:, [sort_index[i]] ] ], axis= 1,ignore_index = True) combmarker0['new'] = X0.iloc[:, [ sort_index[i] ] ].to_numpy() combmarker1['new'] = X1.iloc[:, [ sort_index[i] ] ].to_numpy() temp_inf , _ = pepe(combmarker0,combmarker1, bool= False) #print(temp_inf) combcoef.append(temp_inf) nal_coef = temp_inf[0]*np.array(nal_coef); nal_coef = list(nal_coef); nal_coef.append(temp_inf[1]) combmarker0 = pd.DataFrame(data = np.matmul( combmarker0.to_numpy(), temp_inf)) combmarker1 = pd.DataFrame(data = np.matmul( combmarker1.to_numpy(), temp_inf)) est_coef = np.array([0.]*varnum) ## None has dtype problem, 0. makes float dtype. for i in range(varnum): est_coef[sort_index[i]] = nal_coef[i] auc = NonpAUC( np.matmul(X0.to_numpy() ,est_coef ) , np.matmul(X1.to_numpy() ,est_coef )) if auc >=0.5: return est_coef, auc else: return -est_coef, 1-auc coef, auc = stepwise(X0,X1) print('estimated coef is %s' % coef) print('empirical AUC is %s' % auc) coef ###Output _____no_output_____ ###Markdown Resubstitution ###Code class AllMethod: def __init__(self, method, bool_trans = True): """ method: a string, specify which linear combination method to use. ['suliu', 'pepe', 'min-max','stepwise', 'rf', 'svml', 'svmr', 'logistic'] bool_trans: whether to perform log transformation """ self.method = method self.bool_trans = bool_trans def fit(self, X0, X1): """Train the model X0: df, design matrix for class '0' X1: df, design matrix for class '1' return: self, obtain self.coef_ or self.mod, and self.fitted_auc """ if self.bool_trans: X0 = np.log(X0); X1 = np.log(X1) if self.method == 'suliu': self.coef_, self.fiited_auc_ = suliu(X0,X1,bool=False) elif self.method == 'logistic': self.coef_, self.fiited_auc_ = logistic(X0,X1,bool=False) elif self.method == 'min-max': self.coef_, self.fiited_auc_ = liu(X0,X1,bool=False) elif self.method == 'stepwise': self.coef_, self.fiited_auc_ = stepwise(X0,X1,bool=False) elif self.method == 'pepe': if X0.shape[1] != 2: raise ValueError("Passed array is not of the right shape") self.coef_, self.fiited_auc_ = pepe(X0,X1,bool=False) elif self.method == 'svml': self.mod_, self.fiited_auc_ = svm_l(X0,X1) elif self.method == 'svmr': self.mod_, self.fiited_auc_ = svm_r(X0,X1) elif self.method == 'rf': self.mod_, self.fiited_auc_ = randomforst(X0,X1) return self def predict(self, X0, X1): """predict X0: df, design matrix for class '0' X1: df, design matrix for class '1' return: y0, y1 """ if self.bool_trans: X0 = np.log(X0); X1 = np.log(X1) if self.method in ['rf', 'svml', 'svmr']: ## no self.coef_ , self.mod_ y0 = self.mod_.predict_proba(X0)[:,1] y1 = self.mod_.predict_proba(X1)[:,1] auc = NonpAUC(y0, y1) return y0, y1, auc else: ## other methods, which return self.coef_ if self.method == 'min-max': max_min_X0 = np.concatenate( ( np.amax(X0.to_numpy(), axis=1).reshape(-1,1) , np.amin(X0.to_numpy(), axis=1).reshape(-1,1) ), axis =1 ) max_min_X1 = np.concatenate( ( np.amax(X1.to_numpy(), axis=1).reshape(-1,1) , np.amin(X1.to_numpy(), axis=1).reshape(-1,1) ), axis =1 ) X0 = pd.DataFrame(data = max_min_X0); X1 = pd.DataFrame(data = max_min_X1) y0 = np.matmul(X0.to_numpy(), self.coef_ ) y1 = np.matmul(X1.to_numpy(), self.coef_ ) auc = NonpAUC(y0, y1) return y0, y1, auc def roc_plot(self, X0, X1): #if self.bool_trans: # X0 = np.log(X0); X1 = np.log(X1) ## in self.predict, already did the transformation! n0 = X0.shape[0]; n1 = X1.shape[0] y0, y1, auc = self.predict(X0,X1); #print(y0); print(y1) y = [0] * n0 y.extend([1]*n1); y = np.array(y); #print(y) y_pred = np.concatenate((y0,y1)); #print(y_pred) fpr, tpr, thresholds = roc_curve(y, y_pred, pos_label=1) plt.title('Receiver Operating Characteristic, Method: % s' % self.method) plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % auc) plt.legend(loc = 'lower right') plt.plot([0, 1], [0, 1],'r--') plt.xlim([0, 1]) plt.ylim([0, 1]) plt.ylabel('True Positive Rate') plt.xlabel('False Positive Rate') plt.show() lc = AllMethod(method= 'suliu') lc.fit(X0,X1) print('estimated coef is %s' % lc.coef_) print('fitted AUC is %s' % lc.fiited_auc_) lc.roc_plot(X0,X1) lc = AllMethod(method= 'logistic') lc.fit(X0,X1) print('estimated coef is %s' % lc.coef_) print('fitted AUC is %s' % lc.fiited_auc_) lc.roc_plot(X0,X1) lc = AllMethod(method= 'rf') lc.fit(X0,X1) #print('estimated coef is %s' % lc.coef_) print('fitted AUC is %s' % lc.fiited_auc_) lc.roc_plot(X0,X1) lc = AllMethod(method= 'svml') lc.fit(X0,X1) #print('estimated coef is %s' % lc.coef_) print('fitted AUC is %s' % lc.fiited_auc_) lc.roc_plot(X0,X1) lc = AllMethod(method= 'svmr') lc.fit(X0,X1) #print('estimated coef is %s' % lc.coef_) print('fitted AUC is %s' % lc.fiited_auc_) lc.roc_plot(X0,X1) lc = AllMethod(method= 'stepwise') lc.fit(X0,X1) print('estimated coef is %s' % lc.coef_) print('fitted AUC is %s' % lc.fiited_auc_) lc.roc_plot(X0,X1) lc = AllMethod(method= 'min-max') lc.fit(X0,X1) print('estimated coef is %s' % lc.coef_) print('fitted AUC is %s' % lc.fiited_auc_) lc.roc_plot(X0,X1) lc = AllMethod(method= 'pepe') lc.fit(X0_2,X1_2) print('estimated coef is %s' % lc.coef_) print('fitted AUC is %s' % lc.fiited_auc_) lc.roc_plot(X0_2,X1_2) ###Output estimated coef is [ 1. -0.09] fitted AUC is 0.7159763313609467 ###Markdown LOOPV $\hat{AUC}^{cv} = \frac{1}{n_1 n_2} \sum_i \sum_j I(X_i \hat{c}^{-ij} < Y_j \hat{c}^{-ij})$, 10-fold CV can be applied instead of LOPO CV to gain efficiency ###Code X = dat_1.loc[:, ['R1-NASH', 'R2-NASH', 'FIB4','LSVR']] Y = dat_1.loc[:,'NASH'] def helper(X, Y): """Take X, Y, return X0 and X1 X: df/array Y: df.series return X0, X1 """ #try: X0 = X.loc[Y == 0].copy() #except: # X0 = X[Y == 0] #try: X1 = X.loc[Y == 1].copy() #except: #X1 = X[Y == 1] return X0,X1 def get_cv(method,bool_trans,X,Y,n_splits=10,cv_type = "StratifiedKFold",verbose = True): """Cross validation to get AUC. method: str, ['suliu', 'pepe', 'min-max','stepwise', 'logistic'] X: design matrix Y: labels bool_trans: whether applied log transformation of X """ if cv_type == "StratifiedKFold": cv = StratifiedKFold(n_splits= n_splits, shuffle=True, random_state=42) # The folds are made by preserving the percentage of samples for each class. else: cv = KFold(n_splits=n_splits, shuffle=True, random_state=42) model = AllMethod(method= method, bool_trans= bool_trans) #training_time = [] AUC = [] for folder, (train_index, val_index) in enumerate(cv.split(X, Y)): X_train,X_val = X.iloc[train_index],X.iloc[val_index] y_train,y_val = Y.iloc[train_index],Y.iloc[val_index] # X0_train, X1_train = helper(X_train, y_train); X0_val, X1_val = helper(X_val, y_val) model.fit(X0_train,X1_train) _,_, auc = model.predict(X0_val,X1_val) AUC.append(auc) if verbose: #print('estimated coef is %s' % model.coef_) print('fitted AUC is %s' % model.fiited_auc_) print("test auc in %s fold is %s" % (folder+1,auc) ) print('____'*10) return AUC AUC = get_cv('svml',True,X,Y, 10) print("%s +/- %s" % (np.mean(AUC), np.std(AUC) ) ) AUC = get_cv('svmr',True,X,Y, 10) print("%s +/- %s" % (np.mean(AUC), np.std(AUC) ) ) AUC = get_cv('rf',True,X,Y, 10) print("%s +/- %s" % (np.mean(AUC), np.std(AUC) ) ) AUC = get_cv('suliu',True,X,Y, 10) print("%s +/- %s" % (np.mean(AUC), np.std(AUC) ) ) AUC = get_cv('logistic',True,X,Y, 10) print("%s +/- %s" % (np.mean(AUC), np.std(AUC) ) ) AUC = get_cv('min-max',True,X,Y, 10) print("%s +/- %s" % (np.mean(AUC), np.std(AUC) ) ) AUC = get_cv('stepwise',True,X,Y, 10) print("%s +/- %s" % (np.mean(AUC), np.std(AUC) ) ) X_2 = X.loc[:,['FIB4','LSVR']] AUC = get_cv('pepe',True,X_2,Y, 10) print("%s +/- %s" % (np.mean(AUC), np.std(AUC) ) ) ###Output estimated coef is [1. 0.15] fitted AUC is 0.7171428571428572 test auc in 1 fold is 0.703125 ________________________________________ estimated coef is [1. 0.15] fitted AUC is 0.716530612244898 test auc in 2 fold is 0.6875 ________________________________________ estimated coef is [ 1. -0.09] fitted AUC is 0.7446938775510205 test auc in 3 fold is 0.5 ________________________________________ estimated coef is [ 1. -0.23] fitted AUC is 0.7073469387755102 test auc in 4 fold is 0.703125 ________________________________________ estimated coef is [ 1. -1.] fitted AUC is 0.6989795918367347 test auc in 5 fold is 0.734375 ________________________________________ estimated coef is [1. 0.15] fitted AUC is 0.71 test auc in 6 fold is 0.796875 ________________________________________ estimated coef is [1. 0.14] fitted AUC is 0.7259557344064387 test auc in 7 fold is 0.5892857142857143 ________________________________________ estimated coef is [ 1. -0.23] fitted AUC is 0.7209255533199195 test auc in 8 fold is 0.7142857142857143 ________________________________________ estimated coef is [1. 0.15] fitted AUC is 0.7116700201207243 test auc in 9 fold is 0.6964285714285714 ________________________________________ estimated coef is [1. 0.15] fitted AUC is 0.7189134808853118 test auc in 10 fold is 0.7321428571428571 ________________________________________ 0.6857142857142857 +/- 0.07887269757951346 ###Markdown Simulation Multivariate normal with equal variance ###Code _ = MonteCarlo_1(10, 20, 20, u0, u1, sigma, sigma) u0 = [0.1,0.1,0.1, 0.1]; u1 = [0.6, 0.8, 1, 1.2] sigma = [[1,0.5,0.5,0.5], [0.5,1,0.5,0.5], [0.5,0.5,1,0.5], [0.5,0.5,0.5,1]] def MonteCarlo_1(T, n0, n1, u0, u1, sigma0, sigma1, log_bool = False): """simulation for first scenario: multivarite normal with equal variance T: number of simulation n0: sample size of class 0 n1: sample size of class 1 """ AUC = {'suliu':[], 'logistic':[], 'stepwise':[],'min-max':[], 'rf':[], 'svml':[], 'svmr':[]} ## same num as simulation time methods = ['suliu', 'logistic', 'stepwise','min-max', 'rf', 'svml', 'svmr'] for i in range(T): ### one monto carlo simulation of size n0 + n1 #i = 10 np.random.seed(seed= 100*i+ 4*i) X0 = multivariate_normal(u0, sigma0, size = n0) X1 = multivariate_normal(u1, sigma1, size = n1) if log_bool: X0 = np.exp(X0) X1 = np.exp(X1) # X = np.concatenate([X0,X1]) y = [0] * n0 y.extend([1]*n1); y = np.array(y) ## X,y is one simulation X = pd.DataFrame(data = X); y = pd.Series(y) ## within that particular MC simulation, do 10 folds CV cv = StratifiedKFold(n_splits= 10, shuffle=True, random_state=42) AUC_folds = {'suliu':[], 'logistic':[], 'stepwise':[],'min-max':[], 'rf':[], 'svml':[], 'svmr':[]} # same number as folders # for folder, (train_index, val_index) in enumerate(cv.split(X, y)): X_train,X_val = X.iloc[train_index],X.iloc[val_index] y_train,y_val = y.iloc[train_index],y.iloc[val_index] # X0_train, X1_train = helper(X_train, y_train); X0_val, X1_val = helper(X_val, y_val) for method in methods: model = AllMethod(method= method, bool_trans= False).fit(X0_train,X1_train) _,_, auc = model.predict(X0_val,X1_val) AUC_folds[method].append(auc) #print(AUC_folds) for key, val in AUC_folds.items(): AUC[key].append( np.mean(np.array(val) )) print({key: (np.mean(np.array(val)) ,np.std(np.array(val))) for key,val in AUC.items()}) return AUC ###Output _____no_output_____ ###Markdown Setting A ###Code _ = MonteCarlo_1(1000, 20, 20, u0, u1, sigma, sigma) _ = MonteCarlo_1(1000, 20, 30, u0, u1, sigma, sigma) _ = MonteCarlo_1(1000, 50, 50, u0, u1, sigma, sigma) ###Output {'suliu': (0.786708, 0.054775274860104556), 'logistic': (0.7880280000000001, 0.054243149023632496), 'stepwise': (0.780832, 0.057442108039312094), 'min-max': (0.753992, 0.0542533311051036), 'rf': (0.770222, 0.056831986732825045), 'svml': (0.7854140000000001, 0.05588384922318793), 'svmr': (0.7533920000000001, 0.07719796847067935)} ###Markdown Setting B ###Code u0 = [0.1,0.1,0.1, 0.1]; u1 = [1.1, 1.4, 1.7, 2] sigma = [[1,0.5,0.5,0.5], [0.5,1,0.5,0.5], [0.5,0.5,1,0.5], [0.5,0.5,0.5,1]] _ = MonteCarlo_1(1000, 20, 20, u0, u1, sigma, sigma) _ = MonteCarlo_1(1000, 20, 30, u0, u1, sigma, sigma) _ = MonteCarlo_1(1000, 50, 50, u0, u1, sigma, sigma) ###Output {'suliu': (0.921284, 0.030369974382603606), 'logistic': (0.9227240000000001, 0.0301360220334403), 'stepwise': (0.9190799999999999, 0.03145767950755426), 'min-max': (0.8989040000000001, 0.03385543950386702), 'rf': (0.912004, 0.03285239692929573), 'svml': (0.920322, 0.030783442237670555), 'svmr': (0.906374, 0.035153038616882036)} ###Markdown Multivariate with uneual variance ###Code u0 = [0.1,0.1,0.1, 0.1]; u1 = [0.6, 0.8, 1, 1.2] sigma0 = [[1,0.3,0.3,0.3], [0.3,1,0.3,0.3], [0.3,0.3,1,0.3], [0.3,0.3,0.3,1]] sigma1 = [[1,0.7,0.7,0.7], [0.7,1,0.7,0.7], [0.7,0.7,1,0.7], [0.7,0.7,0.7,1]] ###Output _____no_output_____ ###Markdown setting A ###Code _ = MonteCarlo_1(1000, 20, 20, u0, u1, sigma0, sigma1) _ = MonteCarlo_1(1000, 20, 30, u0, u1, sigma0, sigma1) _ = MonteCarlo_1(1000, 50, 50, u0, u1, sigma0, sigma1) ###Output {'suliu': (0.787756, 0.05329184237760975), 'logistic': (0.789188, 0.053226879074392504), 'stepwise': (0.781864, 0.0563947293991203), 'min-max': (0.803432, 0.048606803803582906), 'rf': (0.786126, 0.05288731534120447), 'svml': (0.78617, 0.05482575216082314), 'svmr': (0.806996, 0.053146664843619316)} ###Markdown Setting B ###Code u0 = [0.1,0.1,0.1, 0.1]; u1 = [1.1, 1.4, 1.7, 2] sigma0 = [[1,0.3,0.3,0.3], [0.3,1,0.3,0.3], [0.3,0.3,1,0.3], [0.3,0.3,0.3,1]] sigma1 = [[1,0.7,0.7,0.7], [0.7,1,0.7,0.7], [0.7,0.7,1,0.7], [0.7,0.7,0.7,1]] _ = MonteCarlo_1(1000, 20, 20, u0, u1, sigma0, sigma1) _ = MonteCarlo_1(1000, 20, 30, u0, u1, sigma0, sigma1) _ = MonteCarlo_1(1000, 50, 50, u0, u1, sigma0, sigma1) ###Output {'suliu': (0.9217560000000001, 0.0310952804135933), 'logistic': (0.9230640000000001, 0.030761857941288252), 'stepwise': (0.919452, 0.03167995732320356), 'min-max': (0.9034880000000001, 0.03422738459187321), 'rf': (0.913842, 0.03188797635473282), 'svml': (0.9209820000000001, 0.031100862946227062), 'svmr': (0.918258, 0.03170024346909656)} ###Markdown Log normal with unequal variance Setting A ###Code _ = MonteCarlo_1(1000, 20, 20, u0, u1, sigma0, sigma1, True) _ = MonteCarlo_1(1000, 20, 30, u0, u1, sigma0, sigma1, True) _ = MonteCarlo_1(1000, 50, 50, u0, u1, sigma0, sigma1, True) ###Output {'suliu': (0.748332, 0.058799470881973105), 'logistic': (0.7629, 0.05759741313635538), 'stepwise': (0.76634, 0.060471583409069114), 'min-max': (0.804064, 0.04958995769306526), 'rf': (0.7860839999999999, 0.05273314843625405), 'svml': (0.766008, 0.06104083826423096), 'svmr': (0.749634, 0.0873703270223936)} ###Markdown Setting B ###Code u0 = [0.1,0.1,0.1, 0.1]; u1 = [1.1, 1.4, 1.7, 2] sigma0 = [[1,0.3,0.3,0.3], [0.3,1,0.3,0.3], [0.3,0.3,1,0.3], [0.3,0.3,0.3,1]] sigma1 = [[1,0.7,0.7,0.7], [0.7,1,0.7,0.7], [0.7,0.7,1,0.7], [0.7,0.7,0.7,1]] _ = MonteCarlo_1(1000, 20, 20, u0, u1, sigma0, sigma1, True) _ = MonteCarlo_1(1000, 20, 30, u0, u1, sigma0, sigma1, True) _ = MonteCarlo_1(1000, 50, 50, u0, u1, sigma0, sigma1, True) ###Output {'suliu': (0.877152, 0.04465889492587114), 'logistic': (0.905796, 0.035051824260657234), 'stepwise': (0.9061400000000001, 0.03596682360175832), 'min-max': (0.9016600000000001, 0.034587113207089126), 'rf': (0.913792, 0.03194189624928363), 'svml': (0.906382, 0.03500437224119294), 'svmr': (0.9034099999999999, 0.037322163656465575)} ###Markdown normal distribution, with logit(P(Y|X)) = x1 - x2 - x3 + (x1-x2)^2 - x4^4 ###Code def MonteCarlo_3(T, n, u, sigma): """simulation for last scenario: generate X first from normal, then generate y via logit(Y|X) = 10* ((sinpi*x1) + ... ) T: number of simulation n: sample size """ AUC = {'suliu':[], 'logistic':[], 'stepwise':[],'min-max':[], 'rf':[], 'svml':[], 'svmr':[]} ## same num as simulation time methods = ['suliu', 'logistic', 'stepwise','min-max', 'rf', 'svml', 'svmr'] for i in range(T): ### one monto carlo simulation of size n0 + n1 np.random.seed(seed= 100*i+ 4*i) X = multivariate_normal(u, sigma, size = n); #X = np.exp(X) X_trans = [ele[0] - ele[1] - ele[2]+ (ele[0] - ele[1])**2 - ele[3]**4 for ele in X] ## x1 - x2 - x3 + (x1-x2)^2 - x4^4 p = list(map(lambda x: 1 / (1 + np.exp(-x)), X_trans)) y = bernoulli.rvs(p, size= n) X = pd.DataFrame(data = X); y = pd.Series(y) ## within that particular MC simulation, do 10 folds CV cv = StratifiedKFold(n_splits= 10, shuffle=True, random_state=42) AUC_folds = {'suliu':[], 'logistic':[], 'stepwise':[],'min-max':[], 'rf':[], 'svml':[], 'svmr':[]} # same number as folders # for folder, (train_index, val_index) in enumerate(cv.split(X, y)): X_train,X_val = X.iloc[train_index],X.iloc[val_index] y_train,y_val = y.iloc[train_index],y.iloc[val_index] # X0_train, X1_train = helper(X_train, y_train); X0_val, X1_val = helper(X_val, y_val) for method in methods: model = AllMethod(method= method, bool_trans= False).fit(X0_train,X1_train) _,_, auc = model.predict(X0_val,X1_val) AUC_folds[method].append(auc) #print(AUC_folds) for key, val in AUC_folds.items(): AUC[key].append( np.mean(np.array(val) )) print({key: (np.mean(np.array(val)) ,np.std(np.array(val))) for key,val in AUC.items()}) return AUC u = [0]*4; ## p1 = p0 sigma = [[1,0,0,0], [0,1,0,0], [0,0,1,0], [0,0,0,1]] _ = MonteCarlo_3(200, 40, u, sigma) _ = MonteCarlo_3(200, 50, u, sigma) _ = MonteCarlo_3(200, 100, u, sigma) ###Output {'suliu': (0.6505657142857143, 0.07721729948158654), 'logistic': (0.6498232142857142, 0.07729269143892227), 'stepwise': (0.6385311904761904, 0.08472136458251457), 'min-max': (0.49920630952380945, 0.09037241979134311), 'rf': (0.7742550595238095, 0.05250776260554239), 'svml': (0.6032980357142858, 0.130584319585125), 'svmr': (0.8117191666666667, 0.05666287572591112)} ###Markdown Normal-distribution, with logit(P(Y|X)) = 10*(sin(pix1) + sin(pix2) + ... ) ###Code def MonteCarlo_2(T, n, u, sigma): """simulation for last scenario: generate X first from normal, then generate y via logit(Y|X) = 10* ((sinpi*x1) + ... ) T: number of simulation n: sample size u: mean for X sigma: variance for X """ AUC = {'suliu':[], 'logistic':[], 'stepwise':[],'min-max':[], 'rf':[], 'svml':[], 'svmr':[]} ## same num as simulation time methods = ['suliu', 'logistic', 'stepwise','min-max', 'rf', 'svml', 'svmr'] for i in range(T): ### one monto carlo simulation of size n0 + n1 #i = 10 print(i) np.random.seed(seed= 100*i+ 4*i) X = multivariate_normal(u, sigma, size = n) X_trans = [ 10*sum(list(map(lambda x: np.sin(np.pi*x) , ele))) for ele in X] p = list(map(lambda x: 1 / (1 + np.exp(-x)), X_trans)) y = bernoulli.rvs(p, size= n) X = pd.DataFrame(data = X); y = pd.Series(y) ## within that particular MC simulation, do 10 folds CV cv = StratifiedKFold(n_splits= 10, shuffle=True, random_state=42) AUC_folds = {'suliu':[], 'logistic':[], 'stepwise':[],'min-max':[], 'rf':[], 'svml':[], 'svmr':[]} # same number as folders # for folder, (train_index, val_index) in enumerate(cv.split(X, y)): X_train,X_val = X.iloc[train_index],X.iloc[val_index] y_train,y_val = y.iloc[train_index],y.iloc[val_index] # X0_train, X1_train = helper(X_train, y_train); X0_val, X1_val = helper(X_val, y_val) for method in methods: model = AllMethod(method= method, bool_trans= False).fit(X0_train,X1_train) _,_, auc = model.predict(X0_val,X1_val) AUC_folds[method].append(auc) #print(AUC_folds) for key, val in AUC_folds.items(): AUC[key].append( np.mean(np.array(val) )) print({key: (np.mean(np.array(val)) ,np.std(np.array(val))) for key,val in AUC.items()}) return AUC u = [0]*4; ## p1 = p0 sigma = [[1,0,0,0], [0,1,0,0], [0,0,1,0], [0,0,0,1]] _ = MonteCarlo_2(200, 40, u, sigma) #{'suliu': (0.5052916666666666, 0.13708314969592564), 'logistic': (0.5051666666666667, 0.13665030389851152), #'stepwise': (0.5091249999999999, 0.14328147681128298), 'min-max': (0.468375, 0.17256097452945598), #'rf': (0.6886249999999999, 0.11789878397968695), 'svml': (0.5011875, 0.15691158686900722), #'svmr': (0.46789583333333334, 0.15933825693011638)} _ = MonteCarlo_2(200, 50, u, sigma) #{'suliu': (0.5173333333333333, 0.13585725760681483), 'logistic': (0.5172916666666666, 0.13500498318992196), #'stepwise': (0.524125, 0.13767261261372535), 'min-max': (0.48166666666666663, 0.13600194034563545), #'rf': (0.7029583333333334, 0.10525728234241616), 'svml': (0.4928333333333333, 0.14566189923548606), #'svmr': (0.5115833333333333, 0.14704683210913908)} _ = MonteCarlo_2(200, 100, u, sigma) #{'suliu': (0.49881416666666667, 0.08754259033751344), 'logistic': (0.49831380952380955, 0.08802945503232416), #'stepwise': (0.5085010714285714, 0.0858479995823942), 'min-max': (0.49105797619047614, 0.08602643655714516), #'rf': (0.7383856547619047, 0.05699929043270678), 'svml': (0.4985396428571429, 0.09117177144911412), #'svmr': (0.4884030357142857, 0.09638591813416322)} _ = MonteCarlo_2(200, 200, u, sigma) #{'suliu': (0.507084393939394, 0.058765174060825494), 'logistic': (0.5072064772727274, 0.05873872834045124), #'stepwise': (0.5150096590909091, 0.0588409026415971), 'min-max': (0.4989740404040404, 0.059580195428004294), #'rf': (0.7751914930555555, 0.03231156644512223), 'svml': (0.4987640025252525, 0.06576031881412701), #'svmr': (0.5489882828282827, 0.08695929270601069)} ###Output _____no_output_____
9 google customer revenue prediction/google-predictions.ipynb
###Markdown ![]() ###Code import pandas as pd import numpy as np # DRAGONS import xgboost as xgb import lightgbm as lgb import catboost as cat # plots import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline # pandas / plt options pd.options.display.max_columns = 999 plt.rcParams['figure.figsize'] = (14, 7) font = {'family' : 'verdana', 'weight' : 'bold', 'size' : 14} plt.rc('font', **font) # remove warnings import warnings warnings.simplefilter("ignore") # garbage collector import gc gc.enable() ###Output _____no_output_____ ###Markdown Loading data ###Code train = pd.read_csv('../input/create-extracted-json-fields-dataset/extracted_fields_train.gz', dtype={'date': str, 'fullVisitorId': str, 'sessionId':str, 'visitId': np.int64}) test = pd.read_csv('../input/create-extracted-json-fields-dataset/extracted_fields_test.gz', dtype={'date': str, 'fullVisitorId': str, 'sessionId':str, 'visitId': np.int64}) train.shape, test.shape train.head() train.columns # Getting data from leak train_store_1 = pd.read_csv('../input/exported-google-analytics-data/Train_external_data.csv', low_memory=False, skiprows=6, dtype={"Client Id":'str'}) train_store_2 = pd.read_csv('../input/exported-google-analytics-data/Train_external_data_2.csv', low_memory=False, skiprows=6, dtype={"Client Id":'str'}) test_store_1 = pd.read_csv('../input/exported-google-analytics-data/Test_external_data.csv', low_memory=False, skiprows=6, dtype={"Client Id":'str'}) test_store_2 = pd.read_csv('../input/exported-google-analytics-data/Test_external_data_2.csv', low_memory=False, skiprows=6, dtype={"Client Id":'str'}) # Getting VisitId from Google Analytics... for df in [train_store_1, train_store_2, test_store_1, test_store_2]: df["visitId"] = df["Client Id"].apply(lambda x: x.split('.', 1)[1]).astype(np.int64) # Merge with train/test data train = train.merge(pd.concat([train_store_1, train_store_2], sort=False), how="left", on="visitId") test = test.merge(pd.concat([test_store_1, test_store_2], sort=False), how="left", on="visitId") # Drop Client Id for df in [train, test]: df.drop("Client Id", 1, inplace=True) train.columns # Cleaning Revenue for df in [train, test]: df["Revenue"].fillna('$', inplace=True) df["Revenue"] = df["Revenue"].apply(lambda x: x.replace('$', '').replace(',', '')) df["Revenue"] = pd.to_numeric(df["Revenue"], errors="coerce") df["Revenue"].fillna(0.0, inplace=True) for df in [train_store_1, train_store_2, test_store_1, test_store_2]: del df gc.collect() ###Output _____no_output_____ ###Markdown Looking around Some pictures to have in mind: target distribution ###Code target_sums = train.groupby("fullVisitorId")["totals.transactionRevenue"].sum().reset_index() plt.scatter(range(target_sums.shape[0]), np.sort(np.log1p(target_sums["totals.transactionRevenue"].values))) plt.xlabel('index') plt.ylabel('TransactionRevenue') plt.show() ###Output _____no_output_____ ###Markdown Key problem: ###Code train.date = pd.to_datetime(train.date, format="%Y%m%d") test.date = pd.to_datetime(test.date, format="%Y%m%d") train.date.value_counts().sort_index().plot(label="train") test.date.value_counts().sort_index().plot(label="test") plt.legend() ###Output _____no_output_____ ###Markdown Comparing categories in train and test: ###Code def drawBars(columnname): sns.barplot(x="count", y="index", hue="dataset", data=pd.melt(pd.concat([train[columnname].value_counts().rename("train"), test[columnname].value_counts().rename("test")], axis=1, sort="False").reset_index(), id_vars="index", var_name="dataset", value_name="count")) drawBars("channelGrouping") drawBars("geoNetwork.continent") ids_train = set(train.fullVisitorId.unique()) ids_test = set(test.fullVisitorId.unique()) print("Unique visitor ids in train:", len(ids_train)) print("Unique visitor ids in test:", len(ids_test)) print("Common visitors in train and test:", len(ids_train & ids_test)) ###Output _____no_output_____ ###Markdown Weird "double" sessions: ###Code problem = train[train.sessionId.map(train.sessionId.value_counts() == 2)].sort_values(["sessionId", 'visitStartTime']) problem.head(10) ###Output _____no_output_____ ###Markdown VisitStartTime seems to be same thing as visitId... yet not always! ###Code (train.visitStartTime == train.visitId).value_counts() ###Output _____no_output_____ ###Markdown Suspicious simultaneous visitors with same visitorId and same visitStartTime: ###Code train.loc[pd.to_datetime(train.visitStartTime, unit='s') == "2017-04-25 18:49:35"].head(8) ###Output _____no_output_____ ###Markdown Seems to be a serious problem: ###Code print("Train: ", np.bincount(train.visitId.value_counts())) print("test: ", np.bincount(test.visitId.value_counts())) ###Output _____no_output_____ ###Markdown Preprocessing Setting time as index and saving time as feature (for FE purposes only) ###Code train.visitStartTime = pd.to_datetime(train.visitStartTime, unit='s') test.visitStartTime = pd.to_datetime(test.visitStartTime, unit='s') train["date"] = train.visitStartTime test["date"] = test.visitStartTime train.set_index("visitStartTime", inplace=True) test.set_index("visitStartTime", inplace=True) train.sort_index(inplace=True) test.sort_index(inplace=True) ###Output _____no_output_____ ###Markdown Clearing rare categories and setting 0 to NaNs: ###Code def clearRare(columnname, limit = 1000): # you may search for rare categories in train, train&test, or just test #vc = pd.concat([train[columnname], test[columnname]], sort=False).value_counts() vc = test[columnname].value_counts() common = vc > limit common = set(common.index[common].values) print("Set", sum(vc <= limit), columnname, "categories to 'other';", end=" ") train.loc[train[columnname].map(lambda x: x not in common), columnname] = 'other' test.loc[test[columnname].map(lambda x: x not in common), columnname] = 'other' print("now there are", train[columnname].nunique(), "categories in train") train.fillna(0, inplace=True) test.fillna(0, inplace=True) clearRare("device.browser") clearRare("device.operatingSystem") clearRare("geoNetwork.country") clearRare("geoNetwork.city") clearRare("geoNetwork.metro") clearRare("geoNetwork.networkDomain") clearRare("geoNetwork.region") clearRare("geoNetwork.subContinent") clearRare("trafficSource.adContent") clearRare("trafficSource.campaign") clearRare("trafficSource.keyword") clearRare("trafficSource.medium") clearRare("trafficSource.referralPath") clearRare("trafficSource.source") # Clearing leaked data: for df in [train, test]: df["Avg. Session Duration"][df["Avg. Session Duration"] == 0] = "00:00:00" df["Avg. Session Duration"] = df["Avg. Session Duration"].str.split(':').apply(lambda x: int(x[0]) * 60 + int(x[1])) df["Bounce Rate"] = df["Bounce Rate"].astype(str).apply(lambda x: x.replace('%', '')).astype(float) df["Goal Conversion Rate"] = df["Goal Conversion Rate"].astype(str).apply(lambda x: x.replace('%', '')).astype(float) ###Output _____no_output_____ ###Markdown Features Based on strange things in dataset: ###Code for df in [train, test]: # remember these features were equal, but not always? May be it means something... df["id_incoherence"] = pd.to_datetime(df.visitId, unit='s') != df.date # remember visitId dublicates? df["visitId_dublicates"] = df.visitId.map(df.visitId.value_counts()) # remember session dublicates? df["session_dublicates"] = df.sessionId.map(df.sessionId.value_counts()) ###Output _____no_output_____ ###Markdown Basic time features: ###Code for df in [train, test]: df['weekday'] = df['date'].dt.dayofweek.astype(object) df['time'] = df['date'].dt.second + df['date'].dt.minute*60 + df['date'].dt.hour*3600 #df['month'] = df['date'].dt.month # it must not be included in features during learning! df['day'] = df['date'].dt.date # it must not be included in features during learning! ###Output _____no_output_____ ###Markdown Looking to future features (from https://www.kaggle.com/ashishpatel26/future-is-here): ###Code df = pd.concat([train, test]) df.sort_values(['fullVisitorId', 'date'], ascending=True, inplace=True) df['prev_session'] = (df['date'] - df[['fullVisitorId', 'date']].groupby('fullVisitorId')['date'].shift(1)).astype(np.int64) // 1e9 // 60 // 60 df['next_session'] = (df['date'] - df[['fullVisitorId', 'date']].groupby('fullVisitorId')['date'].shift(-1)).astype(np.int64) // 1e9 // 60 // 60 df.sort_index(inplace=True) train = df[:len(train)] test = df[len(train):] ###Output _____no_output_____ ###Markdown Paired categories from "teach-lightgbm-to-sum-predictions" kernel ###Code for df in [train, test]: df['source.country'] = df['trafficSource.source'] + '_' + df['geoNetwork.country'] df['campaign.medium'] = df['trafficSource.campaign'] + '_' + df['trafficSource.medium'] df['browser.category'] = df['device.browser'] + '_' + df['device.deviceCategory'] df['browser.os'] = df['device.browser'] + '_' + df['device.operatingSystem'] for df in [train, test]: df['device_deviceCategory_channelGrouping'] = df['device.deviceCategory'] + "_" + df['channelGrouping'] df['channelGrouping_browser'] = df['device.browser'] + "_" + df['channelGrouping'] df['channelGrouping_OS'] = df['device.operatingSystem'] + "_" + df['channelGrouping'] for i in ['geoNetwork.city', 'geoNetwork.continent', 'geoNetwork.country','geoNetwork.metro', 'geoNetwork.networkDomain', 'geoNetwork.region','geoNetwork.subContinent']: for j in ['device.browser','device.deviceCategory', 'device.operatingSystem', 'trafficSource.source']: df[i + "_" + j] = df[i] + "_" + df[j] df['content.source'] = df['trafficSource.adContent'].astype(str) + "_" + df['source.country'] df['medium.source'] = df['trafficSource.medium'] + "_" + df['source.country'] ###Output _____no_output_____ ###Markdown User-aggregating features: ###Code for feature in ["totals.hits", "totals.pageviews"]: info = pd.concat([train, test], sort=False).groupby("fullVisitorId")[feature].mean() train["usermean_" + feature] = train.fullVisitorId.map(info) test["usermean_" + feature] = test.fullVisitorId.map(info) for feature in ["visitNumber"]: info = pd.concat([train, test], sort=False).groupby("fullVisitorId")[feature].max() train["usermax_" + feature] = train.fullVisitorId.map(info) test["usermax_" + feature] = test.fullVisitorId.map(info) ###Output _____no_output_____ ###Markdown Encoding features ###Code excluded = ['date', 'fullVisitorId', 'sessionId', 'totals.transactionRevenue', 'visitId', 'visitStartTime', 'month', 'day', 'help'] cat_cols = [f for f in train.columns if (train[f].dtype == 'object' and f not in excluded)] real_cols = [f for f in train.columns if (not f in cat_cols and f not in excluded)] train[cat_cols].nunique() from sklearn.preprocessing import LabelEncoder for col in cat_cols: lbl = LabelEncoder() lbl.fit(list(train[col].values.astype('str')) + list(test[col].values.astype('str'))) train[col] = lbl.transform(list(train[col].values.astype('str'))) test[col] = lbl.transform(list(test[col].values.astype('str'))) for col in real_cols: train[col] = train[col].astype(float) test[col] = test[col].astype(float) train[real_cols + cat_cols].head() for to_del in ["date", "sessionId", "visitId", "day"]: del train[to_del] del test[to_del] ###Output _____no_output_____ ###Markdown Preparing validation ###Code excluded = ['date', 'fullVisitorId', 'sessionId', 'totals.transactionRevenue', 'visitId', 'visitStartTime', "month", "help"] cat_cols = [f for f in train.columns if (train[f].dtype == 'int64' and f not in excluded)] real_cols = [f for f in train.columns if (not f in cat_cols and f not in excluded)] ###Output _____no_output_____ ###Markdown Function to tell us the score using the metric we actually care about ###Code from sklearn.metrics import mean_squared_error def score(data, y): validation_res = pd.DataFrame( {"fullVisitorId": data["fullVisitorId"].values, "transactionRevenue": data["totals.transactionRevenue"].values, "predictedRevenue": np.expm1(y)}) validation_res = validation_res.groupby("fullVisitorId")["transactionRevenue", "predictedRevenue"].sum().reset_index() return np.sqrt(mean_squared_error(np.log1p(validation_res["transactionRevenue"].values), np.log1p(validation_res["predictedRevenue"].values))) ###Output _____no_output_____ ###Markdown Cute function to validate and prepare stacking ###Code from sklearn.model_selection import GroupKFold class KFoldValidation(): def __init__(self, data, n_splits=5): unique_vis = np.array(sorted(data['fullVisitorId'].astype(str).unique())) folds = GroupKFold(n_splits) ids = np.arange(data.shape[0]) self.fold_ids = [] for trn_vis, val_vis in folds.split(X=unique_vis, y=unique_vis, groups=unique_vis): self.fold_ids.append([ ids[data['fullVisitorId'].astype(str).isin(unique_vis[trn_vis])], ids[data['fullVisitorId'].astype(str).isin(unique_vis[val_vis])] ]) def validate(self, train, test, features, model, name="", prepare_stacking=False, fit_params={"early_stopping_rounds": 50, "verbose": 100, "eval_metric": "rmse"}): model.FI = pd.DataFrame(index=features) full_score = 0 if prepare_stacking: test[name] = 0 train[name] = np.NaN for fold_id, (trn, val) in enumerate(self.fold_ids): devel = train[features].iloc[trn] y_devel = np.log1p(train["totals.transactionRevenue"].iloc[trn]) valid = train[features].iloc[val] y_valid = np.log1p(train["totals.transactionRevenue"].iloc[val]) print("Fold ", fold_id, ":") model.fit(devel, y_devel, eval_set=[(valid, y_valid)], **fit_params) if len(model.feature_importances_) == len(features): # some bugs in catboost? model.FI['fold' + str(fold_id)] = model.feature_importances_ / model.feature_importances_.sum() predictions = model.predict(valid) predictions[predictions < 0] = 0 print("Fold ", fold_id, " error: ", mean_squared_error(y_valid, predictions)**0.5) fold_score = score(train.iloc[val], predictions) full_score += fold_score / len(self.fold_ids) print("Fold ", fold_id, " score: ", fold_score) if prepare_stacking: train[name].iloc[val] = predictions test_predictions = model.predict(test[features]) test_predictions[test_predictions < 0] = 0 test[name] += test_predictions / len(self.fold_ids) print("Final score: ", full_score) return full_score Kfolder = KFoldValidation(train) lgbmodel = lgb.LGBMRegressor(n_estimators=1000, objective="regression", metric="rmse", num_leaves=31, min_child_samples=100, learning_rate=0.03, bagging_fraction=0.7, feature_fraction=0.5, bagging_frequency=5, bagging_seed=2019, subsample=.9, colsample_bytree=.9, use_best_model=True) Kfolder.validate(train, test, real_cols + cat_cols, lgbmodel, "lgbpred", prepare_stacking=True) lgbmodel.FI.mean(axis=1).sort_values()[:30].plot(kind="barh") ###Output _____no_output_____ ###Markdown User-level Make one user one object:* all features are averaged* we hope, that categorical features do not change for one user (that's not true :/ )* categoricals labels are averaged (!!!) and are treated as numerical features (o_O)* predictions are averaged in multiple ways... ###Code def create_user_df(df): agg_data = df[real_cols + cat_cols + ['fullVisitorId']].groupby('fullVisitorId').mean() pred_list = df[['fullVisitorId', 'lgbpred']].groupby('fullVisitorId').apply(lambda visitor_df: list(visitor_df.lgbpred))\ .apply(lambda x: {'pred_'+str(i): pred for i, pred in enumerate(x)}) all_predictions = pd.DataFrame(list(pred_list.values), index=agg_data.index) feats = all_predictions.columns all_predictions['t_mean'] = all_predictions.mean(axis=1) all_predictions['t_median'] = all_predictions.median(axis=1) # including t_mean as one of the elements? well, ok all_predictions['t_sum_log'] = all_predictions.sum(axis=1) all_predictions['t_sum_act'] = all_predictions.fillna(0).sum(axis=1) all_predictions['t_nb_sess'] = all_predictions.isnull().sum(axis=1) full_data = pd.concat([agg_data, all_predictions], axis=1).astype(float) full_data['fullVisitorId'] = full_data.index del agg_data, all_predictions gc.collect() return full_data user_train = create_user_df(train) user_test = create_user_df(test) features = list(user_train.columns)[:-1] # don't include "fullVisitorId" user_train["totals.transactionRevenue"] = train[['fullVisitorId', 'totals.transactionRevenue']].groupby('fullVisitorId').sum() for f in features: if f not in user_test.columns: user_test[f] = np.nan ###Output _____no_output_____ ###Markdown Meta-models ###Code Kfolder = KFoldValidation(user_train) lgbmodel = lgb.LGBMRegressor(n_estimators=1000, objective="regression", metric="rmse", num_leaves=31, min_child_samples=100, learning_rate=0.03, bagging_fraction=0.7, feature_fraction=0.5, bagging_frequency=5, bagging_seed=2019, subsample=.9, colsample_bytree=.9, use_best_model=True) Kfolder.validate(user_train, user_test, features, lgbmodel, name="lgbfinal", prepare_stacking=True) xgbmodel = xgb.XGBRegressor(max_depth=22, learning_rate=0.02, n_estimators=1000, objective='reg:linear', gamma=1.45, seed=2019, silent=False, subsample=0.67, colsample_bytree=0.054, colsample_bylevel=0.50) Kfolder.validate(user_train, user_test, features, xgbmodel, name="xgbfinal", prepare_stacking=True) catmodel = cat.CatBoostRegressor(iterations=500, learning_rate=0.2, depth=5, random_seed=2019) Kfolder.validate(user_train, user_test, features, catmodel, name="catfinal", prepare_stacking=True, fit_params={"use_best_model": True, "verbose": 100}) ###Output _____no_output_____ ###Markdown Ensembling dragons ###Code user_train['PredictedLogRevenue'] = 0.4 * user_train["lgbfinal"] + \ 0.2 * user_train["xgbfinal"] + \ 0.4 * user_train["catfinal"] score(user_train, user_train.PredictedLogRevenue) user_test['PredictedLogRevenue'] = 0.4 * user_test["lgbfinal"] + 0.4 * user_test["catfinal"] + 0.2 * user_test["xgbfinal"] user_test[['PredictedLogRevenue']].to_csv('leaky submission.csv', index=True) ###Output _____no_output_____
workshop/nipype_tutorial/notebooks/basic_execution_configuration.ipynb
###Markdown Execution Configuration OptionsNipype gives you many liberties on how to create workflows, but the execution of them uses a lot of default parameters. But you have of course all the freedom to change them as you like.Nipype looks for the configuration options in the local folder under the name ``nipype.cfg`` and in ``~/.nipype/nipype.cfg`` (in this order). It can be divided into **Logging** and **Execution** options. A few of the possible options are the following: Logging- **`workflow_level`**: How detailed the logs regarding workflow should be (possible values: ``INFO`` and ``DEBUG``; default value: ``INFO``)- **`utils_level`**: How detailed the logs regarding nipype utils, like file operations (for example overwriting warning) or the resource profiler, should be (possible values: ``INFO`` and ``DEBUG``; default value: ``INFO``)- **`interface_level`**: How detailed the logs regarding interface execution should be (possible values: ``INFO`` and ``DEBUG``; default value: ``INFO``)- **`filemanip_level`** (deprecated as of 1.0): How detailed the logs regarding file operations (for example overwriting warning) should be (possible values: ``INFO`` and ``DEBUG``)- **`log_to_file`**: Indicates whether logging should also send the output to a file (possible values: ``true`` and ``false``; default value: ``false``)- **`log_directory`**: Where to store logs. (string, default value: home directory)- **`log_size`**: Size of a single log file. (integer, default value: 254000)- **`log_rotate`**: How many rotations should the log file make. (integer, default value: 4) Execution- **`plugin`**: This defines which execution plugin to use. (possible values: ``Linear``, ``MultiProc``, ``SGE``, ``IPython``; default value: ``Linear``)- **`stop_on_first_crash`**: Should the workflow stop upon the first node crashing or try to execute as many nodes as possible? (possible values: ``true`` and ``false``; default value: ``false``)- **`stop_on_first_rerun`**: Should the workflow stop upon the first node trying to recompute (by that we mean rerunning a node that has been run before - this can happen due changed inputs and/or hash_method since the last run). (possible values: ``true`` and ``false``; default value: ``false``)- **`hash_method`**: Should the input files be checked for changes using their content (slow, but 100% accurate) or just their size and modification date (fast, but potentially prone to errors)? (possible values: ``content`` and ``timestamp``; default value: ``timestamp``)- **`keep_inputs`**: Ensures that all inputs that are created in the nodes working directory are kept after node execution (possible values: ``true`` and ``false``; default value: ``false``)- **`single_thread_matlab`**: Should all of the Matlab interfaces (including SPM) use only one thread? This is useful if you are parallelizing your workflow using MultiProc or IPython on a single multicore machine. (possible values: ``true`` and ``false``; default value: ``true``)- **`display_variable`**: Override the ``$DISPLAY`` environment variable for interfaces that require an X server. This option is useful if there is a running X server, but ``$DISPLAY`` was not defined in nipype's environment. For example, if an X server is listening on the default port of 6000, set ``display_variable = :0`` to enable nipype interfaces to use it. It may also point to displays provided by VNC, [xnest](http://www.x.org/archive/X11R7.5/doc/man/man1/Xnest.1.html) or [Xvfb](http://www.x.org/archive/X11R6.8.1/doc/Xvfb.1.html). If neither ``display_variable`` nor the ``$DISPLAY`` environment variable is set, nipype will try to configure a new virtual server using Xvfb. (possible values: any X server address; default value: not set)- **`remove_unnecessary_outputs`**: This will remove any interface outputs not needed by the workflow. If the required outputs from a node changes, rerunning the workflow will rerun the node. Outputs of leaf nodes (nodes whose outputs are not connected to any other nodes) will never be deleted independent of this parameter. (possible values: ``true`` and ``false``; default value: ``true``)- **`try_hard_link_datasink`**: When the DataSink is used to produce an organized output file outside of nipypes internal cache structure, a file system hard link will be attempted first. A hard link allows multiple file paths to point to the same physical storage location on disk if the conditions allow. By referring to the same physical file on disk (instead of copying files byte-by-byte) we can avoid unnecessary data duplication. If hard links are not supported for the source or destination paths specified, then a standard byte-by-byte copy is used. (possible values: ``true`` and ``false``; default value: ``true``)- **`use_relative_paths`**: Should the paths stored in results (and used to look for inputs) be relative or absolute. Relative paths allow moving the whole working directory around but may cause problems with symlinks. (possible values: ``true`` and ``false``; default value: ``false``)- **`local_hash_check`**: Perform the hash check on the job submission machine. This option minimizes the number of jobs submitted to a cluster engine or a multiprocessing pool to only those that need to be rerun. (possible values: ``true`` and ``false``; default value: ``true``)- **`job_finished_timeout`**: When batch jobs are submitted through, SGE/PBS/Condor they could be killed externally. Nipype checks to see if a results file exists to determine if the node has completed. This timeout determines for how long this check is done after a job finish is detected. (float in seconds; default value: 5)- **`remove_node_directories`** (EXPERIMENTAL): Removes directories whose outputs have already been used up. Doesn't work with IdentiInterface or any node that patches data through (without copying) (possible values: ``true`` and ``false``; default value: ``false``)- **`stop_on_unknown_version`**: If this is set to True, an underlying interface will raise an error, when no version information is available. Please notify developers or submit a patch.- **`parameterize_dirs`**: If this is set to True, the node's output directory will contain full parameterization of any iterable, otherwise parameterizations over 32 characters will be replaced by their hash. (possible values: ``true`` and ``false``; default value: ``true``)- **`poll_sleep_duration`**: This controls how long the job submission loop will sleep between submitting all pending jobs and checking for job completion. To be nice to cluster schedulers the default is set to 2 seconds.- **`xvfb_max_wait`**: Maximum time (in seconds) to wait for Xvfb to start, if the _redirect_x parameter of an Interface is True.- **`crashfile_format`**: This option controls the file type of any crashfile generated. Pklz crashfiles allow interactive debugging and rerunning of nodes, while text crashfiles allow portability across machines and shorter load time. (possible values: ``pklz`` and ``txt``; default value: ``pklz``) Resource Monitor- **`enabled`**: Enables monitoring the resources occupation (possible values: ``true`` and ``false``; default value: ``false``). All the following options will be dismissed if the resource monitor is not enabled.- **`sample_frequency`**: Sampling period (in seconds) between measurements of resources (memory, cpus) being used by an interface (default value: ``1``)- **`summary_file`**: Indicates where the summary file collecting all profiling information from the resource monitor should be stored after execution of a workflow. The ``summary_file`` does not apply to interfaces run independently. (unset by default, in which case the summary file will be written out to ``/resource_monitor.json`` of the top-level workflow).- **`summary_append`**: Append to an existing summary file (only applies to workflows). (default value: ``true``, possible values: ``true`` or ``false``). Example [logging] workflow_level = DEBUG [execution] stop_on_first_crash = true hash_method = timestamp display_variable = :1 [monitoring] enabled = false `Workflow.config` property has a form of a nested dictionary reflecting the structure of the `.cfg` file. ###Code from nipype import Workflow myworkflow = Workflow(name='myworkflow') myworkflow.config['execution'] = {'stop_on_first_rerun': 'True', 'hash_method': 'timestamp'} ###Output _____no_output_____ ###Markdown You can also directly set global config options in your workflow script. Anexample is shown below. This needs to be called before you import thepipeline or the logger. Otherwise, logging level will not be reset. ###Code from nipype import config cfg = dict(logging=dict(workflow_level = 'DEBUG'), execution={'stop_on_first_crash': False, 'hash_method': 'content'}) config.update_config(cfg) ###Output _____no_output_____ ###Markdown Enabling logging to fileBy default, logging to file is disabled. One can enable and write the file toa location of choice as in the example below. ###Code import os from nipype import config, logging config.update_config({'logging': {'log_directory': os.getcwd(), 'log_to_file': True}}) logging.update_logging(config) ###Output _____no_output_____ ###Markdown The logging update line is necessary to change the behavior of logging such asoutput directory, logging level, etc. Debug configurationTo enable debug mode, one can insert the following lines: ###Code from nipype import config config.enable_debug_mode() ###Output _____no_output_____ ###Markdown In this mode the following variables are set: ###Code config.set('execution', 'stop_on_first_crash', 'true') config.set('execution', 'remove_unnecessary_outputs', 'false') config.set('execution', 'keep_inputs', 'true') config.set('logging', 'workflow_level', 'DEBUG') config.set('logging', 'interface_level', 'DEBUG') config.set('logging', 'utils_level', 'DEBUG') ###Output _____no_output_____ ###Markdown The primary loggers (`workflow`, `interface` and `utils`) are also reset to level `DEBUG`.You may wish to adjust these manually using:```pythonfrom nipype import logginglogging.getLogger().setLevel()``` Global, workflow & node levelThe configuration options can be changed globally (i.e. for all workflows), for just a workflow, or for just a node. The implementations look as follows (note that you should first create directories if you want to change `crashdump_dir` and `log_directory`): At the global level: ###Code from nipype import config, logging import os os.makedirs('/output/log_folder', exist_ok=True) os.makedirs('/output/crash_folder', exist_ok=True) config_dict={'execution': {'remove_unnecessary_outputs': 'true', 'keep_inputs': 'false', 'poll_sleep_duration': '60', 'stop_on_first_rerun': 'false', 'hash_method': 'timestamp', 'local_hash_check': 'true', 'create_report': 'true', 'crashdump_dir': '/output/crash_folder', 'use_relative_paths': 'false', 'job_finished_timeout': '5'}, 'logging': {'workflow_level': 'INFO', 'filemanip_level': 'INFO', 'interface_level': 'INFO', 'log_directory': '/output/log_folder', 'log_to_file': 'true'}} config.update_config(config_dict) logging.update_logging(config) ###Output _____no_output_____ ###Markdown At the workflow level: ###Code from nipype import Workflow wf = Workflow(name="config_test") # Change execution parameters wf.config['execution']['stop_on_first_crash'] = 'true' # Change logging parameters wf.config['logging'] = {'workflow_level' : 'DEBUG', 'filemanip_level' : 'DEBUG', 'interface_level' : 'DEBUG', 'log_to_file' : 'True', 'log_directory' : '/output/log_folder'} ###Output _____no_output_____ ###Markdown At the node level: ###Code from nipype import Node from nipype.interfaces.fsl import BET bet = Node(BET(), name="config_test") bet.config = {'execution': {'keep_unnecessary_outputs': 'false'}} ###Output _____no_output_____
notebook/2020.02.05_IGfromDist-rndmSeed-proteinsOnly-adenoContrastive.ipynb
###Markdown Sample Prep ###Code samples = pd.read_csv('../data/TCGA/rna-seq_adeno/meta/gdc_sample_sheet.2020-01-27.tsv', sep="\t") # get file type samples['data'] = [val[1] for i,val in samples['File Name'].str.split(".").items()] samples['Project ID'].value_counts() ###Output _____no_output_____ ###Markdown Samples with RNAseq adjacent normal tissue ###Code samples['Sample Type'].value_counts() samples.loc[samples['Sample Type']=='Primary Tumor, Primary Tumor', 'Sample Type'] = 'Primary Tumor' samples.loc[samples['Sample Type']=='Solid Tissue Normal, Solid Tissue Normal', 'Sample Type'] = 'Solid Tissue Normal' samples['Sample Type'].value_counts() # all cases with adjacent normal tissue cases = samples[samples['Sample Type']=='Solid Tissue Normal']['Case ID'] # disparity in cases samples[(samples['Case ID'].isin(cases)) & (samples['Sample Type']=='Primary Tumor') & (samples['data']=='FPKM')]['Case ID'].nunique() samples[(samples['Case ID'].isin(cases)) & (samples['Sample Type']=='Solid Tissue Normal') & (samples['data']=='FPKM')]['Case ID'].nunique() # divide, join, subset case_tumor = samples[(samples['Case ID'].isin(cases)) & (samples['Sample Type']=='Primary Tumor') & (samples['data']=='FPKM')] case_norm = samples[(samples['Case ID'].isin(cases)) & (samples['Sample Type']=='Solid Tissue Normal') & (samples['data']=='FPKM')] cases = pd.merge(case_tumor['Case ID'], case_norm['Case ID'])['Case ID'] cases.shape case_tumor = case_tumor[case_tumor['Case ID'].isin(cases)] case_norm = case_norm[case_norm['Case ID'].isin(cases)] cases = pd.concat([case_tumor, case_norm]) case_tumor.shape case_norm.shape cases.shape ###Output _____no_output_____ ###Markdown Map Ensembl genes to Proteins ###Code id_map = pd.read_csv("/srv/home/wconnell/keiser/data/uniprot_mapping_ids/map_ensembl_uniprot.csv") reviewed_proteins = pd.read_csv("/srv/home/wconnell/keiser/data/uniprot_mapping_ids/TCGA_rnaseq_uniprot_features.tab.gz", sep="\t") proteins = pd.merge(id_map, reviewed_proteins, left_on='UNIPROT_ID', right_on='Entry name') proteins['hgnc'] = [gene.split(";")[0] for gene in proteins['Gene names (primary )']] proteins.shape ###Output _____no_output_____ ###Markdown Dataset Prep ###Code from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler target = 'Sample Type' cases[target] = cases[target].astype('category') train, test = train_test_split(cases) train[target].value_counts() test[target].value_counts() import torch from torch.optim import lr_scheduler import torch.optim as optim from torch.autograd import Variable #torch.manual_seed(123) from trainer import fit import visualization as vis import numpy as np cuda = torch.cuda.is_available() print("Cuda is available: {}".format(cuda)) classes = {key:val for val,key in enumerate(train[target].cat.categories.values)} classes from tcga_datasets import TCGA, SiameseTCGA root_dir = "../data/TCGA/rna-seq_adeno/" batch_size = 1 train_dataset = TCGA(root_dir, samples=train, train=True, target=target, norm=False) test_dataset = TCGA(root_dir, samples=test, train=False, target=target, norm=False) scaler = StandardScaler() train_dataset.data = pd.DataFrame(scaler.fit_transform(train_dataset.data), index=train_dataset.data.index, columns=train_dataset.data.columns) test_dataset.data = pd.DataFrame(scaler.transform(test_dataset.data), index=test_dataset.data.index, columns=test_dataset.data.columns) kwargs = {'num_workers': 10, 'pin_memory': True} if cuda else {'num_workers': 10} train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, **kwargs) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False, **kwargs) ###Output _____no_output_____ ###Markdown Subset gene data to annotated proteins ###Code assert np.array_equal(train_dataset.data.columns, test_dataset.data.columns) parsed_cols = [ens[0] for ens in train_dataset.data.columns.str.split(".")] train_dataset.data.columns, test_dataset.data.columns = parsed_cols, parsed_cols protein_overlap_idx = np.isin(train_dataset.data.columns, proteins['ENSEMBL_ID'].values) train_dataset.data = train_dataset.data.loc[:,protein_overlap_idx] test_dataset.data = test_dataset.data.loc[:,protein_overlap_idx] ###Output _____no_output_____ ###Markdown Write out test set for DE analysis ###Code pd.to_pickle(test_dataset.data, "../data/tmp/test_dataset.pkl.gz") map_cond = [] for label in test_dataset.labels: if label == test_dataset.labels_dict['Primary Tumor']: map_cond.append('Primary Tumor') elif label == test_dataset.labels_dict['Solid Tissue Normal']: map_cond.append('Solid Tissue Normal') meta = pd.DataFrame({'label':test_dataset.labels, 'condition':map_cond}, index=test_dataset.data.index) meta.to_pickle("../data/tmp/test_dataset_meta.pkl.gz") ###Output _____no_output_____ ###Markdown Siamese Network ###Code # Step 1 set up dataloader root_dir = "../data/TCGA" siamese_train_dataset = SiameseTCGA(train_dataset) # Returns pairs of images and target same/different siamese_test_dataset = SiameseTCGA(test_dataset) batch_size = 8 kwargs = {'num_workers': 10, 'pin_memory': True} if cuda else {} siamese_train_loader = torch.utils.data.DataLoader(siamese_train_dataset, batch_size=batch_size, shuffle=True, **kwargs) siamese_test_loader = torch.utils.data.DataLoader(siamese_test_dataset, batch_size=batch_size, shuffle=False, **kwargs) # Set up the network and training parameters from tcga_networks import EmbeddingNet, SiameseNet from losses import ContrastiveLoss from metrics import AccumulatedAccuracyMetric # Step 2 n_samples, n_features = siamese_train_dataset.data.shape embedding_net = EmbeddingNet(n_features) # Step 3 model = SiameseNet(embedding_net) if cuda: model.cuda() # Step 4 margin = 1. loss_fn = ContrastiveLoss(margin) lr = 1e-3 optimizer = optim.Adam(model.parameters(), lr=lr) scheduler = lr_scheduler.StepLR(optimizer, 8, gamma=0.1, last_epoch=-1) n_epochs = 20 # print training metrics every log_interval * batch_size log_interval = 30 train_loss, val_loss = fit(siamese_train_loader, siamese_test_loader, model, loss_fn, optimizer, scheduler, n_epochs, cuda, log_interval) plt.plot(range(0, n_epochs), train_loss, 'rx-') plt.plot(range(0, n_epochs), val_loss, 'bx-') train_embeddings_cl, train_labels_cl = vis.extract_embeddings(train_loader, model) vis.plot_embeddings(train_embeddings_cl, train_labels_cl, siamese_train_dataset.labels_dict) val_embeddings_baseline, val_labels_baseline = vis.extract_embeddings(test_loader, model) vis.plot_embeddings(val_embeddings_baseline, val_labels_baseline, siamese_test_dataset.labels_dict) ###Output _____no_output_____ ###Markdown Integrated GradientsTest completeness axiom through comparison of different baselines"Integrated gradients satisfy anaxiom called completeness that the attributions add up tothe difference between the output of F at the input x andthe baseline x'." ###Code import copy from captum.attr import LayerActivation from captum.attr import IntegratedGradients def attribution_pairs(SiameseTCGA, exp, ctrl): # subset different samples negative_pairs = np.array(SiameseTCGA.test_pairs) negative_pairs = negative_pairs[negative_pairs[:,2] == 0] # map labels to integers ctrl = siamese_test_dataset.labels_dict[ctrl] exp = siamese_test_dataset.labels_dict[exp] # ordered indices of samples ctrl_data = [idx for pair in negative_pairs[:, :2] for idx in pair if np.isin(idx, SiameseTCGA.label_to_indices[ctrl])] exp_data = [idx for pair in negative_pairs[:, :2] for idx in pair if np.isin(idx, SiameseTCGA.label_to_indices[exp])] # data ctrl_data = Variable(SiameseTCGA.test_data[ctrl_data], requires_grad=True) exp_data = Variable(SiameseTCGA.test_data[exp_data], requires_grad=True) return ctrl_data, exp_data ###Output _____no_output_____ ###Markdown IG with Control vector ###Code ctrl_data, exp_data = attribution_pairs(siamese_test_dataset, exp='Primary Tumor', ctrl='Solid Tissue Normal') from torch.nn import PairwiseDistance pdist = PairwiseDistance(p=2) pdist ig = IntegratedGradients(model.get_dist) torch.cuda.empty_cache() ###Output _____no_output_____ ###Markdown Healthy as baseline ###Code attr, delta = ig.attribute(exp_data.cuda(), ctrl_data.cuda(), target=None, n_steps=50, return_convergence_delta=True, additional_forward_args=(ctrl_data.cuda(), pdist)) attr = attr.cpu().detach().numpy() delta feat_imp = pd.DataFrame(data=attr.mean(axis=0), index=train_dataset.data.columns, columns=['Attribution']) feat_imp.shape feat_imp.describe() feat_imp.nlargest(10, columns='Attribution') ###Output _____no_output_____ ###Markdown Protein Feature Attributions only ###Code proteins['ENSEMBL_ID'].values.shape attr.shape[1] feat_imp = pd.DataFrame(data=attr.mean(axis=0), index=train_dataset.data.columns, columns=['Attribution']) feat_imp.shape feat_imp = pd.merge(feat_imp, proteins.drop_duplicates(subset='ENSEMBL_ID'), left_index=True, right_on='ENSEMBL_ID', how='left').sort_values(by='Attribution', ascending=False).reset_index(drop=True) feat_imp.shape feat_imp.to_pickle("../data/tmp/attr_avg.pkl.gz") ###Output _____no_output_____ ###Markdown Now go to /srv/home/wconnell/github/diffxpy/notebook/2020.02.05_test_DE_analysis and run ###Code feat_imp.columns feat_imp.head() feat_imp[['Attribution', 'hgnc', 'Protein names', 'Gene ontology (biological process)', 'Gene ontology (molecular function)']] ###Output _____no_output_____
Lorenz/FigS_Markovianity.ipynb
###Markdown Coarse-grained estimate ###Code f = h5py.File(dir_path+'Lorenz/kinetic_analysis/combined_coarse_tscales_results_3162_clusters.h5','r') delay_range = np.array(f['delay_range']) all_timps = np.array(f['timps']) f.close() dt=.01 all_tims = ma.masked_invalid(all_timps) all_timps[all_timps==0]=ma.masked mean = all_timps.mean(axis=0) cil = np.percentile(all_timps,2.5,axis=0) ciu = np.percentile(all_timps,97.5,axis=0) plt.figure(figsize=(5,5)) plt.plot(delay_range*dt,mean) plt.fill_between(delay_range*dt,cil,ciu,alpha=.6) plt.xscale('log') plt.xlim(2*dt,50) plt.ylim(0,20) # plt.savefig('coarse_tscales_Lorenz_log_ylim_95_ci.pdf') plt.show() mean = np.diff(all_timps,axis=1).mean(axis=0) cil = np.percentile(np.diff(all_timps,axis=1),2.5,axis=0) ciu = np.percentile(np.diff(all_timps,axis=1),97.5,axis=0) plt.plot(delay_range[:-1]*dt,mean) plt.fill_between(delay_range[:-1]*dt,cil,ciu,alpha=.5) plt.xscale('log') plt.xlim(2*dt,50) plt.axhline(0,ls='--',c='k') plt.show() ###Output _____no_output_____ ###Markdown Full estimate ###Code n_clusters=3162 f = h5py.File(dir_path+'/Lorenz/kinetic_analysis/combined_kinetic_results_{}_clusters_simpler.h5'.format(n_clusters),'r') idx_range = np.sort(np.array(list(f.keys()),dtype=int)) delay_range = np.arange(2,6000,2) all_timps = np.zeros((len(idx_range)-2,len(delay_range),2)) kidx=0 for idx in idx_range: if len(list(f[str(idx)].keys()))>0: if np.array(f[str(idx)]['timps']).sum()>0: all_timps[kidx] = np.array(f[str(idx)]['timps']) kidx+=1 f.close() all_timps = ma.masked_invalid(all_timps) all_timps[all_timps==0] = ma.masked plt.figure(figsize=(5,5)) Lambda2 = 1/all_timps[:,:,0]+ 1/all_timps[:,:,1] mean = ma.mean(2/Lambda2,axis=0) cil = np.nanpercentile(ma.filled(2/Lambda2,np.nan),0.5,axis=0) ciu = np.nanpercentile(ma.filled(2/Lambda2,np.nan),99.5,axis=0) plt.plot(delay_range*dt,mean) plt.fill_between(delay_range*dt,cil,ciu,alpha=.5) plt.xscale('log') # plt.yscale('log') plt.xlim(0.02,50) plt.ylim(0,20) plt.show() ###Output _____no_output_____
src/SMOTE_TrainingOnTwoYearsData_Price-Volume_GADF_CNN5.ipynb
###Markdown Training main loop ###Code fileIndex = 0 encodedFeatures = ['Price', 'Volume'] encoded_feature_count = len(encodedFeatures) minVicinity = 20 X_data=[] Y_data=[] NUMBER_OF_FILES_USEDTO_TRAIN = 20 for file_name in csvFileList[:NUMBER_OF_FILES_USEDTO_TRAIN]: print(file_name) coin_name = file_name.split('/')[-1].split('_')[1] fileIndex +=1 obj = s3Client.get_object(Bucket = BUCKET_NAME, Key = file_name) df = pd.read_csv(obj['Body'], index_col='0', parse_dates=True) anomalyIndexes = df[df.Label==1].index for i in anomalyIndexes: mat = np.zeros((DATA_POINTS_PER_WINDOW, DATA_POINTS_PER_WINDOW, encoded_feature_count), 'float32') try: price = getGAFMatrix(df, 'Price', i, method='difference', span=10) vol = getGAFMatrix(df, 'Volume', i, method='difference', span=10) except: print("Anomaly case={} exception occurred for coin when GADF {}".format(i.strftime('%Y-%m-%d_%H%M%S'), coin_name)) continue mat[:,:,0]=price[0] mat[:,:,1]=vol[0] y=1 X_data.append(mat) Y_data.append(y) if ( len(df[df.Label==0].index) > int(len(anomalyIndexes)/2) ): nonAnomalousIndexes = df[df.Label==0].sample(int(len(anomalyIndexes)/2), random_state=79).index else: # take a half from non anomalous indexes nonAnomalousIndexes = df[df.Label==0].sample(int(len(df[df.Label==0])/2), random_state=79).index surroundingIndexesToPosIndexes = getSurroundingIndexesToPosIndex(anomalyIndexes, df) nonAnomalousIndexes = nonAnomalousIndexes.union(surroundingIndexesToPosIndexes[:int(len(surroundingIndexesToPosIndexes)/2)]) print("number of non anom cases={}".format(len(nonAnomalousIndexes))) print("number of non anom cases={}".format(len(anomalyIndexes))) for i in nonAnomalousIndexes: mat = np.zeros((DATA_POINTS_PER_WINDOW, DATA_POINTS_PER_WINDOW, encoded_feature_count), 'float32') try: price = getGAFMatrix(df, 'Price', i, method='difference', span=10) vol = getGAFMatrix(df, 'Volume', i, method='difference', span=10) except: print("NonAnomaly case={} exception occurred for coin when GADF {}".format(i.strftime('%Y-%m-%d_%H%M%S'), coin_name)) continue mat[:,:,0]=price[0] mat[:,:,1]=vol[0] y=0 X_data.append(mat) Y_data.append(y) print('-------------- processed files %d' %fileIndex) print(psutil.virtual_memory()) Y_dataArr = np.array(Y_data) X_dataArr = np.array(X_data) ax = sns.countplot(x=Y_dataArr, palette="Set3") def create_gadfcnn5_model(): cnn=Sequential() cnn.add(Conv2D(filters=64, kernel_size=(2,2), padding='same', activation='relu', input_shape=(INPUT_MATRIX_WIDTH, INPUT_MATRIX_WIDTH, ENCODED_FEATURES))) cnn.add(Conv2D(filters=64, kernel_size=(2,2), padding='same', activation='relu')) cnn.add(Dropout(0.25)) cnn.add(Flatten()) cnn.add(Dense(256, activation='relu')) cnn.add(Dropout(0.5)) cnn.add(Dense(1, activation='sigmoid')) cnn.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) return cnn kf = StratifiedKFold(n_splits=10) history = [] confusions= [] classifReports= [] fold = 0 for train, test in kf.split(X_dataArr, Y_dataArr): print('Running fold [%d]'.ljust(100,'*') %fold) fold +=1 cnn=create_gadfcnn5_model() x_train, x_test = X_dataArr[train], X_dataArr[test] y_train, y_test = Y_dataArr[train], Y_dataArr[test] hist = cnn.fit(x=x_train, y=y_train, validation_split=0.2, epochs=20, batch_size=500, verbose=0) history.append(hist) y_pred = cnn.predict(x_test) y_pred_R = np.round(y_pred) conf = confusion_matrix(y_test, y_pred_R) confusions.append(conf) clfr = classification_report(y_test, y_pred_R, output_dict=True) print(clfr) classifReports.append(clfr) import statistics f1s = [rep['macro avg']['f1-score'] for rep in classifReports] recalls = [rep['macro avg']['recall'] for rep in classifReports] precisions = [rep['macro avg']['precision'] for rep in classifReports] print(statistics.variance(f1s)) print(statistics.variance(recalls)) print(statistics.variance(precisions)) print(statistics.stdev(f1s)) print(statistics.stdev(recalls)) print(statistics.stdev(precisions)) np.where(y_pred_R==1) j=9 plt.plot(history[j].history['acc']) plt.plot(history[j].history['val_acc']) plt.legend(['acc','val_acc']) j=9 plt.plot(history[j].history['loss']) plt.plot(history[j].history['val_loss']) plt.legend(['loss','val_loss']) import seaborn as sns finConf=np.zeros((2,2), dtype=int) for elem in confusions: for i in range(2): for j in range(2): finConf[i][j] += elem[i][j] labels = ['True Neg','False Pos','False Neg','True Pos'] labels = np.asarray(labels).reshape(2,2) sns.heatmap(finConf/np.sum(finConf), annot=True, fmt='.2%', cmap='Blues') macroPrec=[] macroRecall=[] macrof1=[] for elem in classifReports: macroPrec.append(elem['macro avg']['precision']) macroRecall.append(elem['macro avg']['recall']) macrof1.append(elem['macro avg']['f1-score']) print(np.mean(macroPrec)) print(np.mean(macroRecall)) print(np.mean(macrof1)) weighPrec=[] weighRecall=[] weighf1=[] for elem in classifReports: weighPrec.append(elem['weighted avg']['precision']) weighRecall.append(elem['weighted avg']['recall']) weighf1.append(elem['weighted avg']['f1-score']) print(np.mean(weighPrec)) print(np.mean(weighRecall)) print(np.mean(weighf1)) ###Output _____no_output_____ ###Markdown Do a model train using X and Y created from first 20 files ###Code gadfCnn5 = create_gadfcnn5_model() hist = gadfCnn5.fit(x=X_dataArr, y=Y_dataArr, validation_split=0.2, epochs=10, batch_size=500, verbose=0) plt.plot(hist.history['acc']) plt.plot(hist.history['val_acc']) plt.legend(['acc','val_acc']) plt.plot(hist.history['loss']) plt.plot(hist.history['val_loss']) plt.legend(['loss','val_loss']) modelSaveLocOnDisk = '<path>/GADF_CNN5.h5' gadfCnn5.save(modelSaveLocOnDisk) print("Saved model to disk at {}".format(modelSaveLocOnDisk)) from numpy import loadtxt from keras.models import load_model model = load_model(modelSaveLocOnDisk) model.summary() # evaluate the model score = model.evaluate(X_dataArr, Y_dataArr, verbose=0) print("%s: %.2f%%" % (model.metrics_names[1], score[1]*100)) ###Output _____no_output_____
4_ANN/5_artificial_neural_network_answers.ipynb
###Markdown Artificial Neural Networks In this workshop we are going to implement a simple feed-forward artificial neural network (ANN) from scratch. The aim of this exercise is to give you a deeper understanding of how ANNs work "under the hood". Moreover, in this workshop, we are going to train an ANN for a classification task. Note that we do not have to come up with a particularly efficient ANN implementation (i.e., the one that works fast on large datasets). Rather our priority is to *develop code that works*, and is *easy to understand*. Also this exercise is not all about coding, but includes doing some simple maths too. ###Code %pylab inline import numpy as np import matplotlib.pyplot as plt ###Output Populating the interactive namespace from numpy and matplotlib ###Markdown The Dataset We start with generating the data for binary classification. We are going to re-use a slightly modified dataset generation funciton from last week. The difference is that now the two classes are encoded as $0$ and $1$. In addition, we are not going to use collections any more. ###Code def generate_s_shaped_data(gap=3): X = np.random.randn(80, 2) X[10:20] += np.array([3, 4]) X[20:30] += np.array([0, 8]) X[30:40] += np.array([3, 12]) X[40:50] += np.array([gap, 0]) X[50:60] += np.array([3 + gap, 4]) X[60:70] += np.array([gap, 8]) X[70:80] += np.array([3 + gap, 12]) y = np.hstack([np.zeros(40), np.ones(40)]) return X, y ###Output _____no_output_____ ###Markdown We will use this function to generate data that is in general separable, but requires a non-linear separation boundary. ###Code X,y = generate_s_shaped_data(5) plt.plot(X[y==0,0], X[y==0,1], "o") plt.plot(X[y==1,0], X[y==1,1], "o") ###Output _____no_output_____ ###Markdown The Model Next, we define a particular ANN configuration that we are going to implement (see the figure below). We are working with two-dimensional input, hence two input units. Furthermore, we are going to do binary classification, for which one output unit would be sufficient. However, just to try backpropagation with multidimensional output, we are going to use two output units and their values will be indicative of conditional probabilities of each class $P(y=class_i|\bf{x},\bf{v},\bf{w})$. Finally, the number of hidden units $p$ will be provided by the user. ![](http://www.andreykan.com/stuff/workshop5-ann.png) The equations define how the model is computed. Here $\sigma$ denotes logistic function. The derivatives are not used during model computation (forward computation), but we are going to need the soon during training. We are going to implement this ANN. Note that you can use *tanh* funciton from numpy, but we need to implement the logistic function. ###Code def logistic(s): if (s > 100): return 1 # to prevent overflow return 1 / (1 + np.math.exp(-s)) ###Output _____no_output_____ ###Markdown First, let's implement the forward computation for a single instance given some parameter values. Note that this function returns the output layer values. ###Code # x is a 2 element input representing a single training instance; # # V is a matrix with 3 rows and p columns, where the three rows # correspond to the bias and weights for the two inputs, # and columns correspond to hidden units; # # W is a matrix with (p+1) rows and 2 columns, where the rows # correspond to the bias and p hidden units, and columns # correspond to output elements; # # returns: a two element output layer, and a vector of hidden # node values with (p+1) elements, where the first # element is constant 1 # def compute_forward(x,V,W): # append input, so that the bias can be handled naturally x_ext = np.append(1, x) # get the number of hidden units p = V.shape[1] u = np.zeros((p)) # iterate over hidden units for i in range(p): r = x_ext.dot(V[:,i]) u[i] = np.tanh(r) # append hidden layer, so that the bias can be handled naturally u_ext = np.append(1, u) # set the outputs z = np.zeros((2)) z[0] = logistic(u_ext.dot(W[:,0])) z[1] = logistic(u_ext.dot(W[:,1])) return z, u_ext ###Output _____no_output_____ ###Markdown Next, let's implement a function that makes predictions based on the output layer values. This function is going to make predictions for the entire dataset. After implementing these two functions, you might like to play with toy data and manually picked parameter values just to validate the implementation. ###Code # X is a matrix with N rows and 2 columns, where # rows represent training instances # # V and W have the same interpretation as in compute_forward() # # returns: an N element vector with predictions (0 or 1 each) # def ann_predict(X,V,W): num_examples = X.shape[0] y_pred = np.zeros(num_examples) for i in range(num_examples): curr_x = X[i,:] z,_ = compute_forward(curr_x, V, W) if (z[0] < z[1]): y_pred[i] = 1 return y_pred ###Output _____no_output_____ ###Markdown Training the ANN Loss Function Now that we have a model, we need to develop a training algorithm. Recall that the idea is to define a loss function and then find parameter values that minimise the loss. Each training example comes with a true label which is either $0$ or $1$. For convenicence, we are going to encode the label as a two-component vector $\bf{y}$, such that only one of the components is one and another one is zero. Moreover, we will make a simplifying assumption that the two components are independent to get $$P\left(\bf{y}|\bf{x},\bf{V},\bf{W}\right)=\prod\limits_{k=1,2}z_k\left(\bf{x},\bf{V},\bf{W}\right)^{y_k}\left(1 - z_k\left(\bf{x},\bf{V},\bf{W}\right)\right)^{1-y_k}$$ This is clearly a wrong assumption, but it is going to be good enough for us to get an ANN working. This assumption can be dropped by using an additional special layer called *soft-max layer*, but this is beyond the scope of this tutorial. Taking the algorithm of this probability and inverting the sign, so that maximising probability leads to minimising the loss, gives us cross-entropy loss (for a single training example) $$l\left(\bf{V},\bf{W}\right)=-\sum\limits_{k=1,2}y_kln(z_k)+(1-y_k)ln\left(1 - z_k\right)$$ Implement a function that computes the loss for a single training example and true label encoded as vector $\bf{y}$. ###Code # x, V and W have the same interpretation as in compute_forward() # # y is a two element encoding of a binary label, either t[0] = 1 # and t[1] = 0, or the other way around # # returns: loss for a given training example and parameters # def compute_loss(x,y,V,W): z,_ = compute_forward(x,V,W) z_off = 0.000001 # to prevent taking log of zero l1 = -y[0]*np.log(z[0] + z_off) - (1 - y[0])*np.log(1 - z[0] + z_off) l2 = -y[1]*np.log(z[1] + z_off) - (1 - y[1])*np.log(1 - z[1] + z_off) l = l1 + l2 return l ###Output _____no_output_____ ###Markdown Backpropagation We are going to use stochastic gradient descent, and in each iteration of this algorithm we need to compute parameter updates. The updates are based on partial derivatives $\frac{\partial l}{\partial v_{ij}}$ and $\frac{\partial l}{\partial w_{jk}}$. We are going to compute these derivatives using auxiliary quantities $\delta_k$ and $\varepsilon_{jk}$. Note that the multidimensional output, $\varepsilon_{jk}$, has two indices. Also note that the equations below assume that $x$ is a three-dimensional vector, after appending with a constant one to capture the bias, and, similarly, that $u$ is a $(p+1)$-dimensional vector with the first element constant one. Let $l_k=-y_kln(z_k)-(1-y_k)ln\left(1 - z_k\right)$. The auxiliary quantities are $\delta_k=\frac{\partial l}{\partial s_k}$ and $\varepsilon_{jk}=\frac{\partial l_k}{\partial r_j}$. Use the identities provided in the ANN figure above to verify that $\delta_k=\frac{\partial l_k}{\partial z_k}\frac{\partial z_k}{\partial s_k}=(z_k-y_k)$ $\frac{\partial l}{\partial w_{jk}}=\delta_ku_{j}$ $\varepsilon_{jk}=\frac{\partial l_k}{\partial z_k}\frac{\partial z_k}{\partial s_k}\frac{\partial s_k}{\partial u_j}\frac{\partial u_j}{\partial r_j}=\delta_k(1-u^2_j)w_{jk}$ $\frac{\partial l}{\partial v_{ij}}=\frac{\partial l_1}{\partial v_{ij}}+\frac{\partial l_2}{\partial v_{ij}}=\varepsilon_{j1}x_i+\varepsilon_{j2}x_i$ Now use these equations to implement a single update step. ###Code # x, V and W have the same interpretation as in compute_forward() # # y has the same interpretation as in compute_loss() # # returns: updated estimates of V and W # def update_params(x,y,V,W,eta): ### forward computation z, u_ext = compute_forward(x,V,W) ### backward computation d = z - y dW = np.zeros((W.shape)) dW[:,0] = d[0]*u_ext dW[:,1] = d[1]*u_ext e = np.zeros((W.shape)) e[:,0] = d[0]*W[:,0]*(1-np.square(u_ext)) e[:,1] = d[1]*W[:,1]*(1-np.square(u_ext)) # append input, so that the bias can be handled naturally x_ext = np.append(1, x) dV = np.zeros((V.shape)) for i in range(x_ext.shape[0]): v = e[:,0].T*x_ext[i] + e[:,1].T*x_ext[i] dV[i,:] = v[1:] V += -eta*dV W += -eta*dW return V,W ###Output _____no_output_____ ###Markdown And finally use the single update step in a function that performs training. ###Code # X is a matrix with N rows and 2 columns, where # rows represent training instances # # V0 and W0 are starting parameter values # as before, V0 is a matrix with 3 rows and p columns, where # the three rows correspond to the bias and weights for # the two inputs, and columns correspond to hidden units; # # W0 is a matrix with (p+1) rows and 2 columns, where the rows # correspond to the bias and p hidden units, and columns # correspond to output elements; # # y is an N element array of true labels # # returns: trained values for V and W, as well as total loss # after each training epoch # def ann_train(X,y,V0,W0): # use starting values V = V0 W = W0 # step scale; note that this is usually changed (decreased) # between iterations, but we won't bother here eta = 0.01 # number of rounds over the data num_epochs = 50 # number of training examples num_examples = X.shape[0] # calculate total loss in each epoch l_total = np.zeros(num_epochs) # make several rounds over the data for j in range(num_epochs): # iterate trough each training example l_total[j] = 0 for i in range(num_examples): curr_x = X[i,:] curr_y = np.zeros(2) curr_y[0] = (y[i] == 0) curr_y[1] = 1 - curr_y[0] V,W = update_params(curr_x,curr_y,V,W,eta) l_total[j] += compute_loss(curr_x,curr_y,V,W) return V,W,l_total ###Output _____no_output_____ ###Markdown Let's try everything in action! We will start from some randomly generated parameters, perform training and compare the accuracy before and after the training. *Why not start with all parameters equal to zero?* ###Code # number of hidden units p = 7 # initialisation V0 = np.random.randn(2 + 1, p) W0 = np.random.randn(p + 1, 2) y_pred = ann_predict(X,V0,W0) print('Proportion misclassified:') prop = 1 - (np.sum(y_pred == y) / float(y.shape[0])) #if prop > 0.5: # prop = 1 - prop print(prop) V,W,l_total = ann_train(X,y,V0,W0) plt.figure() plt.plot(range(l_total.shape[0]), l_total, '.-') y_pred = ann_predict(X,V,W) print('Proportion misclassified:') prop = 1 - (np.sum(y_pred == y) / float(y.shape[0])) #if prop > 0.5: # prop = 1 - prop print(prop) ###Output Proportion misclassified: 0.4625 Proportion misclassified: 0.1375
doc/3_basic_dataframe_operations.ipynb
###Markdown Basic dataframe operationsIn this chapter we will explore some of the basic operations you can perform on dataframes.The first task is to read some data into a dataframe. ###Code import pandas as pd from audiolabel import read_label flist = ['resource/two_plus_two_1.tg', 'resource/three_plus_five_1.tg'] [phdf, wddf] = read_label(flist, 'praat', addcols=['fidx']) wddf ###Output _____no_output_____ ###Markdown Viewing dataframesHere are a few ways to explore ways to interact with the contents of a dataframe. Let's starting with a dataframe object. The dot `'.'` following the dataframe's name is how we access its methods. Try clicking after the dot in the following cell and then press the `Tab` key.You'll see a list of available methods. Scroll through the list with the arrow keys to review the possible actions you can perform on a dataframe. ###Code phdf. ###Output _____no_output_____ ###Markdown Chapter 1 introduced the `head()` method to show the first few rows of a dataframe. The `tail()` method shows the last few rows. ###Code wddf.head() wddf.tail() ###Output _____no_output_____ ###Markdown Getting basic dataframe infoA number dataframe attributes give detailed information about its contents.The `shape` attribute tells you how many rows and columns are present. ###Code wddf.shape # rows, columns ###Output _____no_output_____ ###Markdown The `len()` function returns the number of dataframe rows. Note that `len()` is not a dataframe method. ###Code len(wddf) # not wddf.len() wddf.shape[0] == len(wddf) ###Output _____no_output_____ ###Markdown The column labels are accessible through the `columns` attribute ###Code wddf.columns ###Output _____no_output_____ ###Markdown The length of the `columns` is the number of columns. ###Code len(wddf.columns) wddf.shape[1] == len(wddf.columns) ###Output _____no_output_____ ###Markdown To find out what kinds of values are stored in your columns, use the `dtypes` attribute. ###Code wddf.dtypes ###Output _____no_output_____ ###Markdown You can also view the dataframe's index, which is used in row selection and combining operations. ###Code wddf.index#.values ###Output _____no_output_____ ###Markdown Renaming columnsSometimes you need to assign names to your columns, perhaps because you read a headerless text file with `read_csv()` and didn't assign column names with the `names` parameter. You can add names to an existing dataframe by assigning to the `columns` attribute. ###Code nhdf = pd.read_csv('resource/two_plus_two_1.nohead.ifc', sep='\t', header=None) nhdf.tail() nhdf.columns = ['sec', 'rms', 'f1', 'f2', 'f3', 'f4', 'f0'] nhdf.tail() ###Output _____no_output_____ ###Markdown You can overwrite existing column names. The next cell converts all the column names to upper case. Execute the cell, then try converting back to lower case with `lower()`. ###Code phdf.columns = [c.upper() for c in phdf.columns] phdf.tail() ###Output _____no_output_____ ###Markdown If you want to rename only some of the columns, you can use `rename()` with a dict that maps old names to new names. ###Code nhdf = nhdf.rename(columns={'sec': 'seconds', 'rms': 'rootmnsq'}) nhdf.tail() ###Output _____no_output_____ ###Markdown Notice that dataframe methods do not generally modify an existing dataframe unless you ask for modification. These methods usually return a copy of the modified dataframe, and you can assign that to a variable of the same name as the input. Alternatively, you can use `inplace=True` as a paramter to modify a dataframe directly. Getting summary informationYou can get a quick summary of your dataframe with `describe()`. ###Code nhdf.describe() ###Output _____no_output_____ ###Markdown Many other descriptive statistics are available as dataframe methods. See the pandas docs for a [convenient list of available methods](https://pandas.pydata.org/pandas-docs/stable/basics.htmldescriptive-statistics). ###Code nhdf.mean() nhdf.std() ###Output _____no_output_____
docs/_static/notebooks/data_parallel.ipynb
###Markdown Using Torchbearer with PyTorch DataParallelPyTorch offers a very simple way to take advantage of multiple GPUs when training large models on lots of data through [DataParallel](https://pytorch.org/docs/stable/nn.html?highlight=data%20paralleltorch.nn.DataParallel). They have a very good tutorial on how to use this for base PyTorch models [here](https://pytorch.org/tutorials/beginner/blitz/data_parallel_tutorial.html) and we recommend you familiarise yourself with it before moving on with this tutorial. **Note**: If your model doesn't require state then Torchbearer works immediately with DataParallel without needing any of the steps in this tutorial. Unfortunately, DataParallel cannot directly pass the main Torchbearer state dictionary to models running on multiple GPUs, which leads to problems with Torchbearer models needing to access and manipulate state on the forward pass. In this tutorial we demonstrate a callback that allows us to use such models across multiple devices without loss of functionality. **Note**: The easiest way to use this tutorial is as a colab notebook, which allows you to dive in with no setup. We recommend you enable a free GPU with> **Runtime**   →   **Change runtime type**   →   **Hardware Accelerator: GPU** Install TorchbearerFirst we install torchbearer if needed. ###Code try: import torchbearer except: !pip install -q torchbearer import torchbearer # If problems arise, try # !pip install git+https://github.com/pytorchbearer/torchbearer # import torchbearer print(torchbearer.__version__) # Create some state keys for this example A_KEY = torchbearer.state_key('a_key') NEW_KEY = torchbearer.state_key('new_key') ###Output 0.4.0.dev ###Markdown UnpackState CallbackThe callback that we will be using throughout this example to interface with state in DataParallel is called the [UnpackState callback](https://torchbearer.readthedocs.io/en/latest/code/callbacks.htmlmodule-torchbearer.callbacks.unpack_state). This callback takes a list of keys which are the items in state that you wish to access and packs them as a dictionary (under the same keys) which gets passed to the model forward. For a quick example, we build a very simple model that just prints the input. Then we create an unpacker callback that asks for the keys torchbearer.X and a newly defined key A_KEY, which we populate before the run. We then run a Trial with this callback and model and observe that the model gets passed a dictionary with these two keys and their values. ###Code import torch import torch.nn as nn from torchbearer.callbacks import UnpackState from torchbearer import Trial class TestModel(nn.Module): def forward(self, x): print(str(x).replace('\n', '')) return x unpacker = UnpackState(keys=[torchbearer.X, A_KEY]) t = Trial(TestModel(), callbacks=[unpacker]) t.state[A_KEY] = 'test' _ = t.with_train_data(torch.ones(10, 1), torch.ones(10, 1), batch_size=1, steps=1).run() ###Output _____no_output_____ ###Markdown Often when models interact with state they want to interact with it in some way, by adding values or modifying existing ones. The UnpackState callback allows this by updating the main state based on the model output. When a model returns a dictionary which includes a torchbearer.Y_PRED key, the the state dictionary will be automatically updated based on this output. We demonstrate this below by printing a previously unpopulated value in state after a model forward pass. ###Code class TestModel2(nn.Module): def forward(self, x): return {torchbearer.Y_PRED: x, NEW_KEY: 'New Key is here'} unpacker = UnpackState(output_to_state=True) @torchbearer.callbacks.on_step_training def print_state(state): print(state[NEW_KEY]) t = Trial(TestModel2(), callbacks=[unpacker, print_state]) _ = t.with_train_data(torch.ones(10, 1), torch.ones(10, 1), batch_size=1, steps=1).run() ###Output _____no_output_____ ###Markdown Building a more Advanced ModelOne type of model that often needs to access state is a VAE. In this example we will take the same model from the VAE example notebook [here](https://torchbearer.readthedocs.io/en/latest/examples/notebooks.htmldeep-learning) and run it with DataParallel across all available GPUs. We define a very similar model, but modified to utilise the UnpackState callback method rather than the full state dictionary. ###Code import torch.nn as nn import torch.nn.functional as F MU, LOGVAR = torchbearer.state_key('mu'), torchbearer.state_key('logvar') class VAE(nn.Module): def __init__(self): super(VAE, self).__init__() self.fc1 = nn.Linear(784, 400) self.fc21 = nn.Linear(400, 20) self.fc22 = nn.Linear(400, 20) self.fc3 = nn.Linear(20, 400) self.fc4 = nn.Linear(400, 784) def encode(self, x): h1 = F.relu(self.fc1(x)) return self.fc21(h1), self.fc22(h1) def reparameterize(self, mu, logvar): if self.training: std = torch.exp(0.5*logvar) eps = torch.randn_like(std) return eps.mul(std).add_(mu) else: return mu def decode(self, z): h3 = F.relu(self.fc3(z)) return torch.sigmoid(self.fc4(h3)).view(-1, 1, 28, 28) def forward(self, x): mu, logvar = self.encode(x.view(-1, 784)) z = self.reparameterize(mu, logvar) return {torchbearer.Y_PRED: self.decode(z), MU: mu, LOGVAR: logvar} ###Output _____no_output_____ ###Markdown We now copy the loss functions and data related methods from the VAE example. ###Code # LOSSES def binary_cross_entropy(y_pred, y_true): BCE = F.binary_cross_entropy(y_pred.view(-1, 784), y_true.view(-1, 784), reduction='sum').view(1) # DataParallel doesnt like size([]) tensors return BCE def kld(mu, logvar): KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp()) return KLD main_loss = binary_cross_entropy @torchbearer.callbacks.add_to_loss def add_kld_loss_callback(state): KLD = kld(state[MU], state[LOGVAR]) return KLD # DATA from torch.utils.data.dataset import Dataset import torchvision from torchvision import transforms from torchbearer.cv_utils import DatasetValidationSplitter class AutoEncoderMNIST(Dataset): def __init__(self, mnist_dataset): super().__init__() self.mnist_dataset = mnist_dataset def __getitem__(self, index): character, label = self.mnist_dataset.__getitem__(index) return character, character def __len__(self): return len(self.mnist_dataset) BATCH_SIZE = 128 transform = transforms.Compose([transforms.ToTensor()]) # Define standard classification mnist dataset with random validation set dataset = torchvision.datasets.MNIST('./data/mnist', train=True, download=True, transform=transform) splitter = DatasetValidationSplitter(len(dataset), 0.1) basetrainset = splitter.get_train_dataset(dataset) basevalset = splitter.get_val_dataset(dataset) basetestset = torchvision.datasets.MNIST('./data/mnist', train=False, download=True, transform=transform) # Wrap base classification mnist dataset to return the image as the target trainset = AutoEncoderMNIST(basetrainset) valset = AutoEncoderMNIST(basevalset) testset = AutoEncoderMNIST(basetestset) traingen = torch.utils.data.DataLoader(trainset, batch_size=BATCH_SIZE, shuffle=True, num_workers=8) valgen = torch.utils.data.DataLoader(valset, batch_size=BATCH_SIZE, shuffle=True, num_workers=8) testgen = torch.utils.data.DataLoader(testset, batch_size=BATCH_SIZE, shuffle=False, num_workers=8) # IMAGING from torchbearer.callbacks import imaging targets = imaging.MakeGrid(torchbearer.TARGET, num_images=64, nrow=8) targets = targets.on_test().to_pyplot().to_file('targets.png') predictions = imaging.MakeGrid(torchbearer.PREDICTION, num_images=64, nrow=8) predictions = predictions.on_test().to_pyplot().to_file('predictions.png') ###Output _____no_output_____ ###Markdown Finally we can create the UnpackState callback and the Trial. We run with DataParallel across all the GPUs, which for this particular model is slower than just running on a single GPU, but for a very large model, this might be the only feasible way to run. ###Code import torch.optim as optim device = 'cuda' if torch.cuda.is_available() else 'cpu' num_devices = torch.cuda.device_count() model = VAE() try: model = nn.DataParallel(model.to('cuda'), device_ids=list(range(num_devices))) print("Running on devices: {}".format(list(range(num_devices)))) except Exception as e: print("Cannot initialise DataParallel model.") optimizer = optim.Adam(model.parameters(), lr=0.001) loss = binary_cross_entropy trial = Trial(model, optimizer, main_loss, metrics=['acc', 'loss'], callbacks=[UnpackState(output_to_state=True), add_kld_loss_callback, predictions, targets]).to(device) trial.with_generators(train_generator=traingen, val_generator=valgen, test_generator=testgen) _ = trial.run(epochs=10, verbose=1) trial.evaluate(data_key=torchbearer.TEST_DATA) ###Output Running on devices: [0, 1]
pandas/07_Visualization/Chipotle/Solutions.ipynb
###Markdown Visualizing Chipotle's Data This time we are going to pull data directly from the internet.Special thanks to: https://github.com/justmarkham for sharing the dataset and materials. Step 1. Import the necessary libraries ###Code import pandas as pd import collections import matplotlib.pyplot as plt # set this so the %matplotlib inline ###Output _____no_output_____
notebooks/indicator_demo.ipynb
###Markdown Demonstrates how to load simulation results in an h5 and then pull them from orca. ###Code import gc import pandas as pd import orca from smartpy_sim_indicators import * # location of the h5 containing sim results # change this to wherever you have downloaded the results h5 to sim_h5 = r'\\azsmart\AZSmartData\proj18_19\for_indicators.h5' # output h5 containing indicator/aggregation results out_h5 = r'D:\temp\indicators_results.h5' # years present w/in the h5 results list_store_years(sim_h5) # tables present in the base year # of these, most commonly used are buildings list_store_tables(sim_h5, 'base') # tables present in simulated years list_store_tables(sim_h5, '2020') # note: the parcels are not modified, so they only exist in the base # and do not need to be loaded for simualted years list_store_years(sim_h5, 'parcels') # load all base year tables load_tables(sim_h5, 'base') orca.list_tables() ###Output _____no_output_____ ###Markdown __data model overview__See variables.py for additional orca computed columns available. ___parcels___- Mostly contain geographic identifiers that are broadcast to other tables- Only need to be loaded from the base ###Code orca.get_table('parcels').local.head() ###Output _____no_output_____ ###Markdown ___buildings___- Need to be loaded every year--even if not pulling attributes explicitly--otherwise the parcel broadcast to downstream tables (e.g. households) will fail.- Links to parcels via parcel_id column- Typical summary attributes: residential_units, building_type_name, non_residential_sqft, job_spaces ###Code orca.get_table('buildings').local ###Output _____no_output_____ ###Markdown ___households___- Links to building via building_id column.- Has a downstream dependency on persons, so if pulling person attributes need to always load households aslo. - Typical summary attributes: persons, income_quintile, workers ###Code orca.get_table('households').to_frame(['persons', 'income', 'income_quintile', 'workers']) ###Output _____no_output_____ ###Markdown ___persons___- Only contains persons in households- Links to households via household_id column- Note: if you only need a simple pop count, can just pull persons attribute from households table- Typical summary attributes: age, race_ethnicity, education level ###Code orca.get_table('persons').local ###Output _____no_output_____ ###Markdown ___gq_persons___- Only contains persons in group quarters- Links directly to buildings via building_id column- Mostly just used to get total persons- Typical summary attributes: gq_type ###Code orca.get_table('gq_persons').local ###Output _____no_output_____ ###Markdown ___seaonal_households___- Seasonal households and persons- Links directly to buildings via building_id column- Since we have no information on the attributes of seasonal persons, no need for additional table- Typical summary attributes: persons ###Code orca.get_table('seasonal_households').local ###Output _____no_output_____ ###Markdown __example indicator generation__Typically we: - Define a simple function that acts on the provided geography- Write a loop that iterates through the desired years: 1.) Load tables for the given year 2.) Get the summary for that year - Compile the results in some way 1.) Compile as columns, e.g. pop_2020, pop_2030, ... 2.) Compile as rows, 1 row for each year ###Code def get_summary(by): """ Simple aggregation function. Parameters: ---------- by: str or list of str The columns to groupby. Returns: -------- pandas.DataFrame """ if not isinstance(by, list): by = [by] # pull tables pers = orca.get_table('persons').to_frame() j = orca.get_table('jobs').to_frame(by) gq = orca.get_table('gq_persons').to_frame(by) seas = orca.get_table('seasonal_households').to_frame(by + ['persons']) # groupbys sum_tab = pd.concat([ pers.groupby(by).size().to_frame('hh_pop'), gq.groupby(by).size().to_frame('gq_pop'), seas.groupby(by)['persons'].sum().to_frame('seas_persons'), j.groupby(by).size().to_frame('jobs') ], axis=1).fillna(0) # get the total resident pop (hh pop + gq pop) sum_tab['total_pop'] = sum_tab['hh_pop'] + sum_tab['gq_pop'] return sum_tab # tables we need to process for the aggregation tabs_to_process = [ 'buildings', 'households', 'persons', 'seasonal_households', 'jobs' ] # generate year-based indicators by mpa (Municpal Planning Area) and county mpa_sums = get_indicators( sim_h5, [2020, 2030, 2040], tabs_to_process, ['county', 'mpa'], get_summary ) mpa_sums.keys() # indicators compiled as columns compile_to_cols(mpa_sums, collapse_row_idx=False).head() # indicators compiled as temporal rows compile_to_rows(mpa_sums, collapse_row_idx=False).head() ###Output _____no_output_____ ###Markdown ___compute indicators across several groupings___ ###Code # things we want to aggregate by by_items = { 'mpa': ['mpa', 'county'], 'city': ['city', 'county'], 'mazes': 'maz', 'tazes': 'taz', 'sections': 'section_id', 'hex': 'hex_id', } # get the sums many_sums = get_indicators( sim_h5, [2018] + list(range(2020, 2056, 5)), tabs_to_process, by_items, get_summary ) many_sums.keys() # compile as columns as_cols = {} for k, v in many_sums.items(): as_cols[k] = compile_to_cols(v) as_cols['tazes'] # compile as rows as_rows = {} for k, v in many_sums.items(): as_rows[k] = compile_to_rows(v) as_rows['hex'] # write result to h5 with pd.HDFStore(out_h5, mode='w', complevel=1) as s: for k in many_sums.keys(): s['by_col/{}'.format(k)] = as_cols[k] s['by_row/{}'.format(k)] = as_rows[k] s = pd.HDFStore(out_h5, mode='r') s.keys() s['/by_col/tazes'] list(s['/by_col/tazes'].columns) s['/by_row/sections'] s.close() ###Output _____no_output_____
Cat vs Dog-2.ipynb
###Markdown Cat vs Dog part-2(Binary class classification)Data AugmentationImageDataGenerator In part-1, the training accuracy is close to 100%, and the validation accuracy is in the 70%-80% range. That was a great example of overfitting -- which in short means that it can do very well with images it has seen before, but not so well with images it hasn't. Let's see if we can do better to avoid overfitting -- and one simple method is to augment the images a bit. If you think about it, most pictures of a cat are very similar -- the ears are at the top, then the eyes, then the mouth etc. Things like the distance between the eyes and ears will always be quite similar too. What if we tweak with the images to change this up a bit -- rotate the image, squash it, etc. That's what image augementation is all about. And there's an API that makes it easy...Now take a look at the ImageGenerator. There are properties on it that you can use to augment the image. ``` Updated to do image augmentationtrain_datagen = ImageDataGenerator( rotation_range=40, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, fill_mode='nearest')```These are just a few of the options available (for more, see the Keras documentation. Let's quickly go over what we just wrote:* rotation_range is a value in degrees (0–180), a range within which to randomly rotate pictures.* width_shift and height_shift are ranges (as a fraction of total width or height) within which to randomly translate pictures vertically or horizontally.* shear_range is for randomly applying shearing transformations.* zoom_range is for randomly zooming inside pictures.* horizontal_flip is for randomly flipping half of the images horizontally. This is relevant when there are no assumptions of horizontal assymmetry (e.g. real-world pictures).* fill_mode is the strategy used for filling in newly created pixels, which can appear after a rotation or a width/height shift.Here's some code. Run it to see the impact. ###Code !wget --no-check-certificate \ https://storage.googleapis.com/mledu-datasets/cats_and_dogs_filtered.zip \ -O /tmp/cats_and_dogs_filtered.zip #importing libraries import os import zipfile import tensorflow as tf from tensorflow.keras.optimizers import RMSprop from tensorflow.keras.preprocessing.image import ImageDataGenerator #unzip local_zip = '/tmp/cats_and_dogs_filtered.zip' zip_ref = zipfile.ZipFile(local_zip, 'r') zip_ref.extractall('/tmp') zip_ref.close() base_dir = '/tmp/cats_and_dogs_filtered' train_dir = os.path.join(base_dir, 'train') validation_dir = os.path.join(base_dir, 'validation') # Directory with our training cat pictures train_cats_dir = os.path.join(train_dir, 'cats') # Directory with our training dog pictures train_dogs_dir = os.path.join(train_dir, 'dogs') # Directory with our validation cat pictures validation_cats_dir = os.path.join(validation_dir, 'cats') # Directory with our validation dog pictures validation_dogs_dir = os.path.join(validation_dir, 'dogs') INPUT_SHAPE = (150, 150) MODEL_INPUT_SHAPE = INPUT_SHAPE + (3,) #HYPERPARAMETERS LEARNING_RATE = 1e-4 BATCH_SIZE = 20 EPOCHS = 50 #model architecture model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(32, (3,3), activation='relu', input_shape = MODEL_INPUT_SHAPE), tf.keras.layers.MaxPooling2D(2, 2), tf.keras.layers.Conv2D(64, (3,3), activation='relu'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Conv2D(128, (3,3), activation='relu'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Conv2D(128, (3,3), activation='relu'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Flatten(), tf.keras.layers.Dense(512, activation='relu'), tf.keras.layers.Dense(1, activation='sigmoid') ]) model.compile(loss='binary_crossentropy', optimizer=RMSprop(lr=LEARNING_RATE), metrics=['accuracy']) #summary of model (including type of layer, Ouput shape and number of parameters) model.summary() #plotting model and saving it architecture picture dot_img_file = '/tmp/model_1.png' tf.keras.utils.plot_model(model, to_file=dot_img_file, show_shapes=True) ''' This code has changed. Now instead of the ImageGenerator just rescaling the image, we also rotate and do other operations. ''' train_datagen = ImageDataGenerator( rescale=1./255, rotation_range=40, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, fill_mode='nearest') test_datagen = ImageDataGenerator(rescale=1./255) # Flow training images in batches of 20 using train_datagen generator train_generator = train_datagen.flow_from_directory( train_dir, # This is the source directory for training images target_size=INPUT_SHAPE, # All images will be resized to 150x150 batch_size=BATCH_SIZE, # Since we use binary_crossentropy loss, we need binary labels class_mode='binary') # Flow validation images in batches of 20 using test_datagen generator validation_generator = test_datagen.flow_from_directory( validation_dir, target_size=INPUT_SHAPE, batch_size=BATCH_SIZE, class_mode='binary') #Fitting data into model -> training model history = model.fit( train_generator, steps_per_epoch=100, # steps = 2000 images / batch_size epochs=EPOCHS, validation_data=validation_generator, validation_steps=50, # steps = 1000 images / batch_size verbose=1) #PLOTTING model performance import matplotlib.pyplot as plt acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs = range(len(acc)) plt.plot(epochs, acc, 'bo', label='Training accuracy') plt.plot(epochs, val_acc, 'b', label='Validation accuracy') plt.title('Training and validation accuracy') plt.figure() plt.plot(epochs, loss, 'ro', label='Training Loss') plt.plot(epochs, val_loss, 'r', label='Validation Loss') plt.title('Training and validation loss') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown I got :- accuracy: 0.7985 and val_accuracy: 0.7680You can see that now the accuracy is close to validation accuracy ~76%. Hence solved the overfitting. Notice that the accuracy is lower than the accuracy we get in part-1. But this model is much better than that model. ###Code ###Output _____no_output_____
docs/_static/demos/io/WriteMmtfCustomSubsetDemo.ipynb
###Markdown Write MMTF Subset DemoSimple example writting a subset of mmtf files Imports ###Code from pyspark import SparkConf, SparkContext from mmtfPyspark.io import mmtfReader, mmtfWriter from mmtfPyspark.filters import ExperimentalMethods, Resolution, RFree from mmtfPyspark.structureViewer import view_structure ###Output _____no_output_____ ###Markdown Configure Spark ###Code conf = SparkConf().setMaster("local[*]") \ .setAppName("WriteMMTFCustomSubset") sc = SparkContext(conf = conf) ###Output _____no_output_____ ###Markdown Read in a fractions of entries from a local Hadoop Sequence File ###Code path = "../../resources/mmtf_full_sample/" fraction= 0.5 seed = 123 pdb = mmtfReader.read_sequence_file(path, sc, fraction = fraction, seed = seed) count = pdb.count() print(f'number of pdb entries read : {count}') ###Output number of pdb entries read : 2215 ###Markdown Retain high resolution X-ray structures ###Code pdb = pdb.filter(ExperimentalMethods(ExperimentalMethods.X_RAY_DIFFRACTION)) \ .filter(Resolution(0,2.0)) \ .filter(RFree(0,2.0)) print(f'number of pdb entries left : {pdb.count()}') ###Output number of pdb entries left : 510 ###Markdown Visualize Structures ###Code structures = pdb.keys().collect() view_structure(structures) ###Output _____no_output_____ ###Markdown Save this subset in a Hadoop Sequence File ###Code write_path = "./mmtf_subset_xray" # Reduce RDD to 8 partitiions pdb = pdb.coalesce(8) mmtfWriter.write_sequence_file(write_path, sc, pdb) ###Output _____no_output_____ ###Markdown Terminate Spark ###Code sc.stop() ###Output _____no_output_____
Udacity Course/recurrent-neural-networks/char-rnn/Character_Level_RNN_Exercise.ipynb
###Markdown Character-Level LSTM in PyTorchIn this notebook, I'll construct a character-level LSTM with PyTorch. The network will train character by character on some text, then generate new text character by character. As an example, I will train on Anna Karenina. **This model will be able to generate new text based on the text from the book!**This network is based off of Andrej Karpathy's [post on RNNs](http://karpathy.github.io/2015/05/21/rnn-effectiveness/) and [implementation in Torch](https://github.com/karpathy/char-rnn). Below is the general architecture of the character-wise RNN. First let's load in our required resources for data loading and model creation. ###Code import numpy as np import torch from torch import nn import torch.nn.functional as F ###Output _____no_output_____ ###Markdown Load in DataThen, we'll load the Anna Karenina text file and convert it into integers for our network to use. ###Code # open text file and read in data as `text` with open('data/anna.txt', 'r') as f: text = f.read() ###Output _____no_output_____ ###Markdown Let's check out the first 100 characters, make sure everything is peachy. According to the [American Book Review](http://americanbookreview.org/100bestlines.asp), this is the 6th best first line of a book ever. ###Code text[:100] ###Output _____no_output_____ ###Markdown TokenizationIn the cells, below, I'm creating a couple **dictionaries** to convert the characters to and from integers. Encoding the characters as integers makes it easier to use as input in the network. ###Code # encode the text and map each character to an integer and vice versa # we create two dictionaries: # 1. int2char, which maps integers to characters # 2. char2int, which maps characters to unique integers chars = tuple(set(text)) int2char = dict(enumerate(chars)) char2int = {ch: ii for ii, ch in int2char.items()} # encode the text encoded = np.array([char2int[ch] for ch in text]) ###Output _____no_output_____ ###Markdown And we can see those same characters from above, encoded as integers. ###Code encoded[:100] ###Output _____no_output_____ ###Markdown Pre-processing the dataAs you can see in our char-RNN image above, our LSTM expects an input that is **one-hot encoded** meaning that each character is converted into an integer (via our created dictionary) and *then* converted into a column vector where only it's corresponding integer index will have the value of 1 and the rest of the vector will be filled with 0's. Since we're one-hot encoding the data, let's make a function to do that! ###Code def one_hot_encode(arr, n_labels): # Initialize the the encoded array one_hot = np.zeros((arr.size, n_labels), dtype=np.float32) # Fill the appropriate elements with ones one_hot[np.arange(one_hot.shape[0]), arr.flatten()] = 1. # Finally reshape it to get back to the original array one_hot = one_hot.reshape((*arr.shape, n_labels)) return one_hot # check that the function works as expected test_seq = np.array([[3, 5, 1]]) one_hot = one_hot_encode(test_seq, 8) print(one_hot) ###Output _____no_output_____ ###Markdown Making training mini-batchesTo train on this data, we also want to create mini-batches for training. Remember that we want our batches to be multiple sequences of some desired number of sequence steps. Considering a simple example, our batches would look like this:In this example, we'll take the encoded characters (passed in as the `arr` parameter) and split them into multiple sequences, given by `batch_size`. Each of our sequences will be `seq_length` long. Creating Batches**1. The first thing we need to do is discard some of the text so we only have completely full mini-batches. **Each batch contains $N \times M$ characters, where $N$ is the batch size (the number of sequences in a batch) and $M$ is the seq_length or number of time steps in a sequence. Then, to get the total number of batches, $K$, that we can make from the array `arr`, you divide the length of `arr` by the number of characters per batch. Once you know the number of batches, you can get the total number of characters to keep from `arr`, $N * M * K$.**2. After that, we need to split `arr` into $N$ batches. ** You can do this using `arr.reshape(size)` where `size` is a tuple containing the dimensions sizes of the reshaped array. We know we want $N$ sequences in a batch, so let's make that the size of the first dimension. For the second dimension, you can use `-1` as a placeholder in the size, it'll fill up the array with the appropriate data for you. After this, you should have an array that is $N \times (M * K)$.**3. Now that we have this array, we can iterate through it to get our mini-batches. **The idea is each batch is a $N \times M$ window on the $N \times (M * K)$ array. For each subsequent batch, the window moves over by `seq_length`. We also want to create both the input and target arrays. Remember that the targets are just the inputs shifted over by one character. The way I like to do this window is use `range` to take steps of size `n_steps` from $0$ to `arr.shape[1]`, the total number of tokens in each sequence. That way, the integers you get from `range` always point to the start of a batch, and each window is `seq_length` wide.> **TODO:** Write the code for creating batches in the function below. The exercises in this notebook _will not be easy_. I've provided a notebook with solutions alongside this notebook. If you get stuck, checkout the solutions. The most important thing is that you don't copy and paste the code into here, **type out the solution code yourself.** ###Code def get_batches(arr, batch_size, seq_length): '''Create a generator that returns batches of size batch_size x seq_length from arr. Arguments --------- arr: Array you want to make batches from batch_size: Batch size, the number of sequences per batch seq_length: Number of encoded chars in a sequence ''' ## TODO: Get the number of batches we can make n_batches = len(arr)//batch_size_total ## TODO: Keep only enough characters to make full batches arr = arr[:n_batches*batch_size_total] ## TODO: Reshape into batch_size rows arr = arr.reshape((batch_size-1)) ## TODO: Iterate over the batches using a window of size seq_length for n in range(0, arr.shape[1], seq_length): # The features x = arr[:, n:n+seq_length] # The targets, shifted by one y = np-zeros_like(x) try: y[:,:-1], y[:,-1]=x[:,1:], arr[:, n+seq_length] except IndexError: y[:,:-1], y[:,-1]=x[:,1:], arr[:,0] yield x, y ###Output _____no_output_____ ###Markdown Test Your ImplementationNow I'll make some data sets and we can check out what's going on as we batch data. Here, as an example, I'm going to use a batch size of 8 and 50 sequence steps. ###Code batches = get_batches(encoded, 8, 50) x, y = next(batches) # printing out the first 10 items in a sequence print('x\n', x[:10, :10]) print('\ny\n', y[:10, :10]) ###Output _____no_output_____ ###Markdown If you implemented `get_batches` correctly, the above output should look something like ```x [[25 8 60 11 45 27 28 73 1 2] [17 7 20 73 45 8 60 45 73 60] [27 20 80 73 7 28 73 60 73 65] [17 73 45 8 27 73 66 8 46 27] [73 17 60 12 73 8 27 28 73 45] [66 64 17 17 46 7 20 73 60 20] [73 76 20 20 60 73 8 60 80 73] [47 35 43 7 20 17 24 50 37 73]]y [[ 8 60 11 45 27 28 73 1 2 2] [ 7 20 73 45 8 60 45 73 60 45] [20 80 73 7 28 73 60 73 65 7] [73 45 8 27 73 66 8 46 27 65] [17 60 12 73 8 27 28 73 45 27] [64 17 17 46 7 20 73 60 20 80] [76 20 20 60 73 8 60 80 73 17] [35 43 7 20 17 24 50 37 73 36]] ``` although the exact numbers may be different. Check to make sure the data is shifted over one step for `y`. --- Defining the network with PyTorchBelow is where you'll define the network.Next, you'll use PyTorch to define the architecture of the network. We start by defining the layers and operations we want. Then, define a method for the forward pass. You've also been given a method for predicting characters. Model StructureIn `__init__` the suggested structure is as follows:* Create and store the necessary dictionaries (this has been done for you)* Define an LSTM layer that takes as params: an input size (the number of characters), a hidden layer size `n_hidden`, a number of layers `n_layers`, a dropout probability `drop_prob`, and a batch_first boolean (True, since we are batching)* Define a dropout layer with `drop_prob`* Define a fully-connected layer with params: input size `n_hidden` and output size (the number of characters)* Finally, initialize the weights (again, this has been given)Note that some parameters have been named and given in the `__init__` function, and we use them and store them by doing something like `self.drop_prob = drop_prob`. --- LSTM Inputs/OutputsYou can create a basic [LSTM layer](https://pytorch.org/docs/stable/nn.htmllstm) as follows```pythonself.lstm = nn.LSTM(input_size, n_hidden, n_layers, dropout=drop_prob, batch_first=True)```where `input_size` is the number of characters this cell expects to see as sequential input, and `n_hidden` is the number of units in the hidden layers in the cell. And we can add dropout by adding a dropout parameter with a specified probability; this will automatically add dropout to the inputs or outputs. Finally, in the `forward` function, we can stack up the LSTM cells into layers using `.view`. With this, you pass in a list of cells and it will send the output of one cell into the next cell.We also need to create an initial hidden state of all zeros. This is done like so```pythonself.init_hidden()``` ###Code # check if GPU is available train_on_gpu = torch.cuda.is_available() if(train_on_gpu): print('Training on GPU!') else: print('No GPU available, training on CPU; consider making n_epochs very small.') class CharRNN(nn.Module): def __init__(self, tokens, n_hidden=256, n_layers=2, drop_prob=0.5, lr=0.001): super().__init__() self.drop_prob = drop_prob self.n_layers = n_layers self.n_hidden = n_hidden self.lr = lr # creating character dictionaries self.chars = tokens self.int2char = dict(enumerate(self.chars)) self.char2int = {ch: ii for ii, ch in self.int2char.items()} ## TODO: define the layers of the model self.lstm=nn.LSTM(len(self.chars), n_hidden, n_layers, dropout=drop_prob, batch_first=True) self.dropout=nn.Dropout(drop_prob) self.fc=nn.Linear(n_hidden, len(self.chars)) def forward(self, x, hidden): ''' Forward pass through the network. These inputs are x, and the hidden/cell state `hidden`. ''' ## TODO: Get the outputs and the new hidden state from the lstm r_output, hidden = self.lstm(x,hidden) out=self.dropout(r_output) out=out.contigous().view(-1, self.n_hidden) out=self.fc(out) # return the final output and the hidden state return out, hidden def init_hidden(self, batch_size): ''' Initializes hidden state ''' # Create two new tensors with sizes n_layers x batch_size x n_hidden, # initialized to zero, for hidden state and cell state of LSTM weight = next(self.parameters()).data if (train_on_gpu): hidden = (weight.new(self.n_layers, batch_size, self.n_hidden).zero_().cuda(), weight.new(self.n_layers, batch_size, self.n_hidden).zero_().cuda()) else: hidden = (weight.new(self.n_layers, batch_size, self.n_hidden).zero_(), weight.new(self.n_layers, batch_size, self.n_hidden).zero_()) return hidden ###Output _____no_output_____ ###Markdown Time to trainThe train function gives us the ability to set the number of epochs, the learning rate, and other parameters.Below we're using an Adam optimizer and cross entropy loss since we are looking at character class scores as output. We calculate the loss and perform backpropagation, as usual!A couple of details about training: >* Within the batch loop, we detach the hidden state from its history; this time setting it equal to a new *tuple* variable because an LSTM has a hidden state that is a tuple of the hidden and cell states.* We use [`clip_grad_norm_`](https://pytorch.org/docs/stable/_modules/torch/nn/utils/clip_grad.html) to help prevent exploding gradients. ###Code def train(net, data, epochs=10, batch_size=10, seq_length=50, lr=0.001, clip=5, val_frac=0.1, print_every=10): ''' Training a network Arguments --------- net: CharRNN network data: text data to train the network epochs: Number of epochs to train batch_size: Number of mini-sequences per mini-batch, aka batch size seq_length: Number of character steps per mini-batch lr: learning rate clip: gradient clipping val_frac: Fraction of data to hold out for validation print_every: Number of steps for printing training and validation loss ''' net.train() opt = torch.optim.Adam(net.parameters(), lr=lr) criterion = nn.CrossEntropyLoss() # create training and validation data val_idx = int(len(data)*(1-val_frac)) data, val_data = data[:val_idx], data[val_idx:] if(train_on_gpu): net.cuda() counter = 0 n_chars = len(net.chars) for e in range(epochs): # initialize hidden state h = net.init_hidden(batch_size) for x, y in get_batches(data, batch_size, seq_length): counter += 1 # One-hot encode our data and make them Torch tensors x = one_hot_encode(x, n_chars) inputs, targets = torch.from_numpy(x), torch.from_numpy(y) if(train_on_gpu): inputs, targets = inputs.cuda(), targets.cuda() # Creating new variables for the hidden state, otherwise # we'd backprop through the entire training history h = tuple([each.data for each in h]) # zero accumulated gradients net.zero_grad() # get the output from the model output, h = net(inputs, h) # calculate the loss and perform backprop loss = criterion(output, targets.view(batch_size*seq_length).long()) loss.backward() # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs. nn.utils.clip_grad_norm_(net.parameters(), clip) opt.step() # loss stats if counter % print_every == 0: # Get validation loss val_h = net.init_hidden(batch_size) val_losses = [] net.eval() for x, y in get_batches(val_data, batch_size, seq_length): # One-hot encode our data and make them Torch tensors x = one_hot_encode(x, n_chars) x, y = torch.from_numpy(x), torch.from_numpy(y) # Creating new variables for the hidden state, otherwise # we'd backprop through the entire training history val_h = tuple([each.data for each in val_h]) inputs, targets = x, y if(train_on_gpu): inputs, targets = inputs.cuda(), targets.cuda() output, val_h = net(inputs, val_h) val_loss = criterion(output, targets.view(batch_size*seq_length).long()) val_losses.append(val_loss.item()) net.train() # reset to train mode after iterationg through validation data print("Epoch: {}/{}...".format(e+1, epochs), "Step: {}...".format(counter), "Loss: {:.4f}...".format(loss.item()), "Val Loss: {:.4f}".format(np.mean(val_losses))) ###Output _____no_output_____ ###Markdown Instantiating the modelNow we can actually train the network. First we'll create the network itself, with some given hyperparameters. Then, define the mini-batches sizes, and start training! ###Code ## TODO: set your model hyperparameters # define and print the net n_hidden=512 n_layers=2 net = CharRNN(chars, n_hidden, n_layers) print(net) ###Output _____no_output_____ ###Markdown Set your training hyperparameters! ###Code batch_size = 128 seq_length = 100 n_epochs = 20 # start small if you are just testing initial behavior # train the model train(net, encoded, epochs=n_epochs, batch_size=batch_size, seq_length=seq_length, lr=0.001, print_every=10) ###Output _____no_output_____ ###Markdown Getting the best modelTo set your hyperparameters to get the best performance, you'll want to watch the training and validation losses. If your training loss is much lower than the validation loss, you're overfitting. Increase regularization (more dropout) or use a smaller network. If the training and validation losses are close, you're underfitting so you can increase the size of the network. HyperparametersHere are the hyperparameters for the network.In defining the model:* `n_hidden` - The number of units in the hidden layers.* `n_layers` - Number of hidden LSTM layers to use.We assume that dropout probability and learning rate will be kept at the default, in this example.And in training:* `batch_size` - Number of sequences running through the network in one pass.* `seq_length` - Number of characters in the sequence the network is trained on. Larger is better typically, the network will learn more long range dependencies. But it takes longer to train. 100 is typically a good number here.* `lr` - Learning rate for trainingHere's some good advice from Andrej Karpathy on training the network. I'm going to copy it in here for your benefit, but also link to [where it originally came from](https://github.com/karpathy/char-rnntips-and-tricks).> Tips and Tricks> Monitoring Validation Loss vs. Training Loss>If you're somewhat new to Machine Learning or Neural Networks it can take a bit of expertise to get good models. The most important quantity to keep track of is the difference between your training loss (printed during training) and the validation loss (printed once in a while when the RNN is run on the validation data (by default every 1000 iterations)). In particular:> - If your training loss is much lower than validation loss then this means the network might be **overfitting**. Solutions to this are to decrease your network size, or to increase dropout. For example you could try dropout of 0.5 and so on.> - If your training/validation loss are about equal then your model is **underfitting**. Increase the size of your model (either number of layers or the raw number of neurons per layer)> Approximate number of parameters> The two most important parameters that control the model are `n_hidden` and `n_layers`. I would advise that you always use `n_layers` of either 2/3. The `n_hidden` can be adjusted based on how much data you have. The two important quantities to keep track of here are:> - The number of parameters in your model. This is printed when you start training.> - The size of your dataset. 1MB file is approximately 1 million characters.>These two should be about the same order of magnitude. It's a little tricky to tell. Here are some examples:> - I have a 100MB dataset and I'm using the default parameter settings (which currently print 150K parameters). My data size is significantly larger (100 mil >> 0.15 mil), so I expect to heavily underfit. I am thinking I can comfortably afford to make `n_hidden` larger.> - I have a 10MB dataset and running a 10 million parameter model. I'm slightly nervous and I'm carefully monitoring my validation loss. If it's larger than my training loss then I may want to try to increase dropout a bit and see if that helps the validation loss.> Best models strategy>The winning strategy to obtaining very good models (if you have the compute time) is to always err on making the network larger (as large as you're willing to wait for it to compute) and then try different dropout values (between 0,1). Whatever model has the best validation performance (the loss, written in the checkpoint filename, low is good) is the one you should use in the end.>It is very common in deep learning to run many different models with many different hyperparameter settings, and in the end take whatever checkpoint gave the best validation performance.>By the way, the size of your training and validation splits are also parameters. Make sure you have a decent amount of data in your validation set or otherwise the validation performance will be noisy and not very informative. CheckpointAfter training, we'll save the model so we can load it again later if we need too. Here I'm saving the parameters needed to create the same architecture, the hidden layer hyperparameters and the text characters. ###Code # change the name, for saving multiple files model_name = 'rnn_x_epoch.net' checkpoint = {'n_hidden': net.n_hidden, 'n_layers': net.n_layers, 'state_dict': net.state_dict(), 'tokens': net.chars} with open(model_name, 'wb') as f: torch.save(checkpoint, f) ###Output _____no_output_____ ###Markdown --- Making PredictionsNow that the model is trained, we'll want to sample from it and make predictions about next characters! To sample, we pass in a character and have the network predict the next character. Then we take that character, pass it back in, and get another predicted character. Just keep doing this and you'll generate a bunch of text! A note on the `predict` functionThe output of our RNN is from a fully-connected layer and it outputs a **distribution of next-character scores**.> To actually get the next character, we apply a softmax function, which gives us a *probability* distribution that we can then sample to predict the next character. Top K samplingOur predictions come from a categorical probability distribution over all the possible characters. We can make the sample text and make it more reasonable to handle (with less variables) by only considering some $K$ most probable characters. This will prevent the network from giving us completely absurd characters while allowing it to introduce some noise and randomness into the sampled text. Read more about [topk, here](https://pytorch.org/docs/stable/torch.htmltorch.topk). ###Code def predict(net, char, h=None, top_k=None): ''' Given a character, predict the next character. Returns the predicted character and the hidden state. ''' # tensor inputs x = np.array([[net.char2int[char]]]) x = one_hot_encode(x, len(net.chars)) inputs = torch.from_numpy(x) if(train_on_gpu): inputs = inputs.cuda() # detach hidden state from history h = tuple([each.data for each in h]) # get the output of the model out, h = net(inputs, h) # get the character probabilities p = F.softmax(out, dim=1).data if(train_on_gpu): p = p.cpu() # move to cpu # get top characters if top_k is None: top_ch = np.arange(len(net.chars)) else: p, top_ch = p.topk(top_k) top_ch = top_ch.numpy().squeeze() # select the likely next character with some element of randomness p = p.numpy().squeeze() char = np.random.choice(top_ch, p=p/p.sum()) # return the encoded value of the predicted char and the hidden state return net.int2char[char], h ###Output _____no_output_____ ###Markdown Priming and generating text Typically you'll want to prime the network so you can build up a hidden state. Otherwise the network will start out generating characters at random. In general the first bunch of characters will be a little rough since it hasn't built up a long history of characters to predict from. ###Code def sample(net, size, prime='The', top_k=None): if(train_on_gpu): net.cuda() else: net.cpu() net.eval() # eval mode # First off, run through the prime characters chars = [ch for ch in prime] h = net.init_hidden(1) for ch in prime: char, h = predict(net, ch, h, top_k=top_k) chars.append(char) # Now pass in the previous character and get a new one for ii in range(size): char, h = predict(net, chars[-1], h, top_k=top_k) chars.append(char) return ''.join(chars) print(sample(net, 1000, prime='Anna', top_k=5)) ###Output _____no_output_____ ###Markdown Loading a checkpoint ###Code # Here we have loaded in a model that trained over 20 epochs `rnn_20_epoch.net` with open('rnn_x_epoch.net', 'rb') as f: checkpoint = torch.load(f) loaded = CharRNN(checkpoint['tokens'], n_hidden=checkpoint['n_hidden'], n_layers=checkpoint['n_layers']) loaded.load_state_dict(checkpoint['state_dict']) # Sample using a loaded model print(sample(loaded, 2000, top_k=5, prime="And Levin said")) ###Output _____no_output_____
Nanostring/heatmap.ipynb
###Markdown Nanostring heatmap **Goal:**Make a publication style figure from normalized Nanostring data + calculate average pseudotimeSteps: 1) Read in Nanostring normalized raw .csv file 2) Make new file where calculate average 3) Subset with selected gene list (selected_genes_curated.csv) 4) Hierarchical clustering on the rows + plotting row z-score using seaborn.clustermap function 5) read in list of pseudotimes and calculate avg and stdvran this notebook with the docker container866995796105.dkr.ecr.us-east-2.amazonaws.com/scrna:python-3.7-20191025 ###Code import numpy as np import pandas as pd %matplotlib inline import matplotlib.pyplot as plt import seaborn as sns; sns.set() from gprofiler import GProfiler import re from tempfile import NamedTemporaryFile #import urllib3 import urllib import matplotlib.font_manager as fm import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown 1) Read in Nanostring normalized raw .csv file ###Code raw_df = pd.read_csv('NormalizedData_cleaned_including_invivo_humanKidney.csv', index_col = 0) raw_df.head() ###Output _____no_output_____ ###Markdown 2) manually calculate the average of the replicates ###Code col_names = ['D0', 'D7', 'D10', 'D12', 'D14', 'D24', 'D26', 'D28', 'D10_2w', 'D12_2w', 'D14_2w', 'D10_4w', 'D12_4w', 'D14_4w', 'Fetal_Kidney', 'Adult_Kidney'] avg_df = pd.DataFrame(columns = col_names) avg_df['D0'] = raw_df[['D0_1','D0_2']].mean(axis=1, skipna=True) avg_df['D7'] = raw_df[['D7_1','D7_2','D7_3']].mean(axis=1, skipna=True) avg_df['D10'] = raw_df[['D10_1','D10_2','D10_3','D10_4']].mean(axis=1, skipna=True) avg_df['D12'] = raw_df[['D12_1','D12_2','D12_3','D12_4']].mean(axis=1, skipna=True) avg_df['D14'] = raw_df[['D14_1','D14_2','D14_3']].mean(axis=1, skipna=True) avg_df['D24'] = raw_df[['D24_1','D24_2','D24_3']].mean(axis=1, skipna=True) avg_df['D26'] = raw_df[['D26_1','D26_2','D26_3','D26_4']].mean(axis=1, skipna=True) avg_df['D28'] = raw_df[['D28_1','D28_2','D28_3']].mean(axis=1, skipna=True) avg_df['D10_2w'] = raw_df[['D10_2w_1','D10_2w_2']].mean(axis=1, skipna=True) avg_df['D12_2w'] = raw_df[['D12_2w_1','D12_2w_2', 'D12_2w_3']].mean(axis=1, skipna=True) avg_df['D14_2w'] = raw_df[['D14_2w_1','D14_2w_2', 'D14_2w_3', 'D14_2w_4', 'D14_2w_5','D14_2w_6', 'D14_2w_7', 'D14_2w_8', 'D14_2w_9']].mean(axis=1, skipna=True) avg_df['D10_4w'] = raw_df[['D10_4w_1','D10_4w_2', 'D10_4w_3']].mean(axis=1, skipna=True) avg_df['D12_4w'] = raw_df[['D12_4w_1','D12_4w_2', 'D12_4w_3', 'D12_4w_4']].mean(axis=1, skipna=True) avg_df['D14_4w'] = raw_df[['D14_4w_1','D14_4w_2', 'D14_4w_3']].mean(axis=1, skipna=True) avg_df['Fetal_Kidney'] = raw_df[['fetal Kidney_0']] avg_df['Adult_Kidney'] = raw_df[['adult Kidney_1','adult Kidney_2']].mean(axis=1, skipna=True) avg_df.head() ###Output _____no_output_____ ###Markdown 3) Plot full heatmap ###Code outfile = "./figures_nov20/" ###Output _____no_output_____ ###Markdown **generate ordered list to split clustered heatmap** ###Code # Averaged sns_plot = sns.clustermap(avg_df.iloc[:,0:8], col_cluster=False, row_cluster=True, cmap = 'seismic', figsize= (12, 8), z_score=0, annot=False, yticklabels=False, center = 0, cbar=True) sns_plot.ax_row_dendrogram.set_visible(False) # moves the color bar and changes the font size #[distance horizontal, distance vertical, width horizontal, width vertical] sns_plot.cax.set_position([.92, .54, .05, .20]) plt.setp(sns_plot.cax.yaxis.get_majorticklabels(), fontsize=15) plt.setp(sns_plot.ax_heatmap.get_yticklabels(), fontsize = 16 ,style ="italic", rotation=45) # For y axis plt.setp(sns_plot.ax_heatmap.get_xticklabels(), fontsize = 20) # For x axis plt.show() # this generates a list of genes ordered by the clustering genes_df = pd.DataFrame(avg_df.index.tolist()) genes_df['index1'] = genes_df.index neworder_df = pd.DataFrame(sns_plot.dendrogram_row.reordered_ind, columns = ['index1']) orderedbycluster = pd.merge(neworder_df, genes_df, how='inner', on='index1') orderedbycluster = orderedbycluster.rename(columns={0: 'gene'}) # make a new df with the genes ordered with this clustering (so does not need to be clustered before plotting) avg_df_neworder = pd.merge(avg_df, orderedbycluster, how='right', left_index= True, right_on='gene') avg_df_neworder = avg_df_neworder.set_index(['gene']) avg_df_neworder = avg_df_neworder.drop(['index1'], axis=1) #delete index header del avg_df_neworder.index.name # plot first part of the heatmap sns_plot = sns.clustermap(avg_df_neworder.iloc[0:114,0:8], col_cluster=False, row_cluster=False, cmap = 'seismic', figsize= (10, 40), z_score=0, center = 0, annot=False, yticklabels=True) sns_plot.ax_row_dendrogram.set_visible(False) #sns_plot.cax.set_visible(False) # moves the color bar and changes the font size #[distance horizontal, distance vertical, width horizontal, width vertical] sns_plot.cax.set_position([1.1, .645, .05, .08]) plt.setp(sns_plot.cax.yaxis.get_majorticklabels(), fontsize=14) plt.setp(sns_plot.ax_heatmap.get_yticklabels(), fontsize = 14 ,style ="italic") # For y axis plt.setp(sns_plot.ax_heatmap.get_xticklabels(), fontsize = 20) # For y axis plt.show() sns_plot.savefig("all_genes_long_part1.pdf", dpi=300) sns_plot = sns.clustermap(avg_df_neworder.iloc[115:,0:8], col_cluster=False, row_cluster=False, cmap = 'seismic', figsize= (10, 40), z_score=0, center = 0, annot=False, yticklabels=True) sns_plot.ax_row_dendrogram.set_visible(False) # moves the color bar and changes the font size #[distance horizontal, distance vertical, width horizontal, width vertical] sns_plot.cax.set_position([1.1, .645, .05, .08]) plt.setp(sns_plot.cax.yaxis.get_majorticklabels(), fontsize=14) plt.setp(sns_plot.ax_heatmap.get_yticklabels(), fontsize = 14 ,style ="italic") # For y axis plt.setp(sns_plot.ax_heatmap.get_xticklabels(), fontsize = 20) # For y axis plt.show() sns_plot.savefig("all_genes_long_part2.pdf", dpi=300) ###Output _____no_output_____ ###Markdown with different fonts ###Code # font normal github_url = 'https://github.com/google/fonts/blob/9409aff0417ff2e6e66c40c673339214185251d4/apache/roboto/Roboto%5Bwdth%2Cwght%5D.ttf' url = github_url + '?raw=true' # You want the actual file, not some html #response = urllib3.request.urlopen(url) response = urllib.request.urlopen(url) f = NamedTemporaryFile(delete=False, suffix='.ttf') f.write(response.read()) f.close() # font italic github_url = 'https://github.com/google/fonts/blob/9409aff0417ff2e6e66c40c673339214185251d4/apache/roboto/Roboto-Italic%5Bwdth%2Cwght%5D.ttf' url = github_url + '?raw=true' # You want the actual file, not some html #response = urllib3.request.urlopen(url) response = urllib.request.urlopen(url) g = NamedTemporaryFile(delete=False, suffix='.ttf') g.write(response.read()) g.close() prop_g = fm.FontProperties(fname=g.name, size = 14) prop_l = fm.FontProperties(fname=f.name, size = 14) prop_f = fm.FontProperties(fname=f.name, size = 20) sns_plot = sns.clustermap(avg_df_neworder.iloc[0:114,0:8], col_cluster=False, row_cluster=False, cmap = 'seismic', figsize= (10, 40), z_score=0, center = 0, #annot=False, yticklabels=True) sns_plot.ax_row_dendrogram.set_visible(False) #sns_plot.cax.set_visible(False) # moves the color bar and changes the font size #[distance horizontal, distance vertical, width horizontal, width vertical] sns_plot.cax.set_position([1.1, .645, .05, .08]) plt.setp(sns_plot.cax.yaxis.get_majorticklabels(), fontproperties=prop_l) plt.setp(sns_plot.ax_heatmap.get_yticklabels(), fontproperties=prop_g) # For y axis plt.setp(sns_plot.ax_heatmap.get_xticklabels(), fontproperties=prop_f) # For y axis plt.show() sns_plot.savefig("all_genes_long_part1_roboto.pdf", dpi=300) sns_plot = sns.clustermap(avg_df_neworder.iloc[115:,0:8], col_cluster=False, row_cluster=False, cmap = 'seismic', figsize= (10, 40), z_score=0, center = 0, #annot=False, yticklabels=True) sns_plot.ax_row_dendrogram.set_visible(False) #sns_plot.cax.set_visible(False) # moves the color bar and changes the font size #[distance horizontal, distance vertical, width horizontal, width vertical] sns_plot.cax.set_position([1.1, .645, .05, .08]) plt.setp(sns_plot.cax.yaxis.get_majorticklabels(), fontproperties=prop_l) plt.setp(sns_plot.ax_heatmap.get_yticklabels(), fontproperties=prop_g) # For y axis plt.setp(sns_plot.ax_heatmap.get_xticklabels(), fontproperties=prop_f) # For y axis plt.show() sns_plot.savefig("all_genes_long_part2_roboto.pdf", dpi=300) ###Output _____no_output_____ ###Markdown 4) Subset with selected gene list ###Code select_genes = pd.read_csv('selected_genes_oct20.csv', index_col = 0) avg_df_select = pd.merge(avg_df, select_genes, how='right', left_index= True, right_on='gene') #delete index header del avg_df_select.index.name sns_plot = sns.clustermap(avg_df_select.iloc[:,0:8], col_cluster=False, row_cluster=False, cmap = 'seismic', figsize= (10, 8), z_score=0, center = 0, #annot=False, yticklabels=True) sns_plot.ax_row_dendrogram.set_visible(False) #sns_plot.cax.set_visible(False) # moves the color bar and changes the font size #[distance horizontal, distance vertical, width horizontal, width vertical] sns_plot.cax.set_position([1.05, .63, .04, .1]) plt.setp(sns_plot.cax.yaxis.get_majorticklabels(), fontsize=14) plt.setp(sns_plot.ax_heatmap.get_yticklabels(), fontsize = 14 , style ="italic") # For y axis plt.setp(sns_plot.ax_heatmap.get_xticklabels(), fontsize = 20) # For y axis plt.show() sns_plot.savefig("selected_genes.pdf", dpi=300) # font normal github_url = 'https://github.com/google/fonts/blob/9409aff0417ff2e6e66c40c673339214185251d4/apache/roboto/Roboto%5Bwdth%2Cwght%5D.ttf' url = github_url + '?raw=true' # You want the actual file, not some html #response = urllib3.request.urlopen(url) response = urllib.request.urlopen(url) f = NamedTemporaryFile(delete=False, suffix='.ttf') f.write(response.read()) f.close() # font italic github_url = 'https://github.com/google/fonts/blob/9409aff0417ff2e6e66c40c673339214185251d4/apache/roboto/Roboto-Italic%5Bwdth%2Cwght%5D.ttf' url = github_url + '?raw=true' # You want the actual file, not some html #response = urllib3.request.urlopen(url) response = urllib.request.urlopen(url) g = NamedTemporaryFile(delete=False, suffix='.ttf') g.write(response.read()) g.close() prop_g = fm.FontProperties(fname=g.name, size = 14) prop_l = fm.FontProperties(fname=f.name, size = 14) prop_f = fm.FontProperties(fname=f.name, size = 20) sns_plot = sns.clustermap(avg_df_select.iloc[:,0:8], col_cluster=False, row_cluster=False, cmap = 'seismic', figsize= (10, 8), z_score=0, center = 0, #annot=False, yticklabels=True) sns_plot.ax_row_dendrogram.set_visible(False) #sns_plot.cax.set_visible(False) # moves the color bar and changes the font size #[distance horizontal, distance vertical, width horizontal, width vertical] sns_plot.cax.set_position([1.05, .63, .04, .1]) plt.setp(sns_plot.cax.yaxis.get_majorticklabels(), fontsize=14, fontproperties=prop_l) plt.setp(sns_plot.ax_heatmap.get_yticklabels(), fontsize = 14 , style ="italic", fontproperties=prop_g) # For y axis plt.setp(sns_plot.ax_heatmap.get_xticklabels(), fontsize = 14, fontproperties=prop_f) # For y axis plt.show() sns_plot.savefig("selected_genes_roboto.pdf", dpi=300) ###Output _____no_output_____ ###Markdown 5) Calculate Pseudotime ###Code # to annotate by week and day def annotate_df(df): # extract conditions week_list = [] day_list = [] for index, row in df.iterrows(): week = 0 day = 0 if len(index.split('-'))> 1: week = str(index.split('-')[1]) if len(index.split('-'))> 1: day = str(index.split('-')[0]) week_list.append(week) day_list.append(day) df['week'] = week_list df['day'] = day_list return df podo = pd.read_csv('pseudotime_podocytes.csv', index_col = 0) podo['stage']=podo.index podo = annotate_df(podo) podo.head() podo['stage'].value_counts() podo.groupby(['stage']).mean() podo.groupby(['stage']).std() podo.groupby(['week']).mean() podo.groupby(['week']).std() podo.groupby(['day']).mean() podo.groupby(['day']).std() ###Output _____no_output_____
outline/.ipynb_checkpoints/Dynamic Programming-checkpoint.ipynb
###Markdown 1. Longest Palindromic SubstringGiven a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000. ###Code # one solution is to reverse the string and find the longest common string # which has the correpsonding index # this attempt starts from the left of the str and add one character each time # and check if it is a new palindrome with 1 or 2 more characters def longestPalindrome(s): if len(s) == 0: return "" maxL = 0 start = 0 for i in range(len(s)): if i - maxL >= 1 and s[i-maxL-1:i+1] == s[i-maxL-1:i+1][::-1]: start = i-maxL-1 maxL += 2 continue if i - maxL >= 0 and s[i-maxL:i+1] == s[i-maxL:i+1][::-1]: start = i-maxL maxL += 1 return s[start:start+maxL] s = 'ababakk' longestPalindrome(s) ###Output _____no_output_____ ###Markdown 2. Minimum Path SumGiven a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path. ###Code def minPathSum(grid): m, n = len(grid), len(grid[0]) for i in range(1,n): grid[0][i] += grid[0][i-1] for i in range(1,m): grid[i][0] += grid[i-1][0] for i in range(1,m): for j in range(1,n): grid[i][j] += min(grid[i-1][j], grid[i][j-1]) return grid[-1][-1] grid = [[1,3,1], [1,1,1], [4,2,1]] minPathSum(grid) ###Output _____no_output_____ ###Markdown 3. Edit DistanceGiven two words word1 and word2, find the minimum number of operations required to convert word1 to word2.You have the following 3 operations permitted on a word:Insert a characterDelete a characterReplace a character ###Code def minDistance(word1, word2): m = len(word1) n = len(word2) table = [[0] * (n + 1) for _ in range(m + 1)] for i in range(m + 1): table[i][0] = i for j in range(n + 1): table[0][j] = j for i in range(1, m + 1): for j in range(1, n + 1): if word1[i - 1] == word2[j - 1]: table[i][j] = table[i - 1][j - 1] else: table[i][j] = 1 + min(table[i - 1][j], table[i][j - 1], table[i - 1][j - 1]) return table[-1][-1] word1 = 'horse' word2 = 'rossdgfa' minDistance(word1, word2) ###Output _____no_output_____ ###Markdown Consider the DP and recursive solutions:https://leetcode.com/problems/edit-distance/discuss/159295/Python-solutions-and-intuition 4. Maximal RectangleGiven a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing only 1's and return its area. ###Code # failed attempt that computes areas of all rectangles def maximalRectangle(matrix): if not matrix: return 0 m, n = len(matrix), len(matrix[0]) areaM = matrix maxA = 0 if matrix[0][0] == 1: areaM[0][0] = [1,1] maxA = 0 elif matrix[0][0] == 0: areaM[0][0] = [0,0] for i in range(1,n): if matrix[0][i] == 1: areaM[0][i] == [1,1+areaM[0][i-1][0]] maxA = max(maxA, 1+areaM[0][i-1][0]) elif matrix[0][i] == 0: areaM[0][i] == [0,0] for j in range(1,m): if matrix[j][0] == 1: areaM[j][0] == [1+areaM[j-1][0][1],1] maxA = max(maxA, 1+areaM[j-1][0][1]) elif matrix[j][0] == 0: areaM[j][0] == [0,0] for j in range(1,m): for i in range(1,n): if matrix[j][i] == 1: areaM[j][i] = [1+areaM[j][i-1][0], 1+areaM[j-1][i][1]] maxA = max(maxA, areaM[j][i][0] * areaM[j][i][1]) return maxA # largest rectangle in histogram def maximalRectangle(matrix): if not matrix or not matrix[0]: return 0 n = len(matrix[0]) height = [0] * (n+1) ans = 0 for row in matrix: for i in range(n): height[i] = height[i] + 1 if row[i] == '1' else 0 stack = [-1] for i in range(n+1): while height[i] < height[stack[-1]]: h = height[stack.pop()] w = i - 1 - stack[-1] ans = max(ans, h * w) stack.append(i) return ans matrix = [ ["1","0","1","0","0"], ["1","0","1","1","1"], ["1","1","1","1","1"], ["1","0","0","1","0"] ] maximalRectangle(matrix) ###Output _____no_output_____ ###Markdown About stack https://www.cnblogs.com/2Bthebest1/category/1452000.html 5. Decode WaysA message containing letters from A-Z is being encoded to numbers using the following mapping:'A' -> 1'B' -> 2...'Z' -> 26Given a non-empty string containing only digits, determine the total number of ways to decode it. ###Code # first attempt, fix 0 # false with str somparasion def numDecodings(s): if s[0] == '0': s = s[1::] if len(s) == 0 or (len(s)==1 and s[0] == '0'): return 0 count = 1 pre = s[0] for num in s[1::]: if num == '0': continue if '0'< pre+num <= '26': count += 1 pre = num return count s = '01' numDecodings(s) # second attempt accoding to test results def numDecodings(s): if not s: return 0 dp = [0 for x in range(len(s)+1)] dp[0] = 1 dp[1] = 0 if s[0] == '0' else 1 for i in range(2, len(s)+1): if int(s[i-1]) != 0: dp[i] += dp[i-1] if 10 <= int(s[i-2:i]) <= 26: dp[i] += dp[i-2] return dp[len(s)] s = '001' numDecodings(s) s = '1201' numDecodings(s) s = '12001' numDecodings(s) s = '1234' s[0:2] ###Output _____no_output_____ ###Markdown 6. TriangleGiven a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.For example, given the following triangle[[2], [3,4], [6,5,7], [4,1,8,3]]The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11). ###Code def minimumTotal(triangle): n = len(triangle) if n==1: return triangle[0][0] for i in range(1,n): triangle[i][0] += triangle[i-1][0] triangle[i][-1] += triangle[i-1][-1] for j in range(2,n): row = triangle[j] for i in range(1,len(row)-1): triangle[j][i] += min(triangle[j-1][i-1], triangle[j-1][i]) return min(triangle[-1]) triangle = [ [2], [3,4], [6,5,7], [4,1,8,3] ] minimumTotal(triangle) ###Output _____no_output_____ ###Markdown 7. Maximum SubarrayGiven an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum. ###Code def maxSubArray(nums): for i in range(1,len(nums)): if nums[i-1] > 0: nums[i] += nums[i-1] return max(nums) nums = [-2,1,-3,4,-1,2,1,-5,4] maxSubArray(nums) ###Output _____no_output_____ ###Markdown 8. Word BreakGiven a non-empty string s and a dictionary wordDict containing a list of non-empty words, determine if s can be segmented into a space-separated sequence of one or more dictionary words. ###Code def wordBreak(s,wordDict): inside = [True] for i in range(1, len(s)+1): inside += any(inside[j] and s[j:i] in wordDict for j in range(i)), return inside[-1] s = "applepenapple" wordDict = ["apple", "pen"] wordBreak(s,wordDict) s = "catsandog" wordDict = ["cats", "dog", "sand", "and", "cat"] wordBreak(s,wordDict) ## optimize def wordBreak(s,wordDict): inside = [True] maxL = max(map(len, wordDict+[''])) wordDict = set(wordDict) for i in range(1, len(s)+1): inside += any(inside[j] and s[j:i] in wordDict for j in range(max(0, i-maxL), i)), return inside[-1] s = "applepenapple" wordDict = ["apple", "pen"] wordBreak(s,wordDict) s = "catsandog" wordDict = ["cats", "dog", "sand", "and", "cat"] wordBreak(s,wordDict) ###Output _____no_output_____ ###Markdown 9. Dungeon GameThe demons had captured the princess (P) and imprisoned her in the bottom-right corner of a dungeon. The dungeon consists of M x N rooms laid out in a 2D grid. Our valiant knight (K) was initially positioned in the top-left room and must fight his way through the dungeon to rescue the princess.The knight has an initial health point represented by a positive integer. If at any point his health point drops to 0 or below, he dies immediately.Some of the rooms are guarded by demons, so the knight loses health (negative integers) upon entering these rooms; other rooms are either empty (0's) or contain magic orbs that increase the knight's health (positive integers).In order to reach the princess as quickly as possible, the knight decides to move only rightward or downward in each step. ###Code # first attempt # let M[i][j] be the minimum health needed for the ij-th position # C[i][j] is the current health at ii-th position with min health strategy def calculateMinimumHP(dungeon): m, n = len(dungeon), len(dungeon[0]) M = dungeon C = dungeon # compute min health needed on boundary M[0][0] = -dungeon[0][0] if dungeon[0][0]<0 else 0 cur = dungeon[0][0] + M[0][0] for i in range(1,n): if dungeon[0][i]+C[0][i-1] >= 0: M[0][i] = M[0][i-1] C[0][i] = dungeon[0][i]+C[0][i-1] else: M[0][i] = M[0][i-1]-dungeon[0][i]-C[0][i-1] C[0][i] = 0 for j in range(1,m): if dungeon[j][0]+C[j-1][0] >= 0: M[j][0] = M[j-1][0] C[j][0] = dungeon[j][0]+C[j-1][0] else: M[j][0] = M[j-1][0]-dungeon[j][0]-C[j-1][0] C[j][0] = 0 for j in range(1,m): for i in range(1,n): left = M[j][i-1] if dungeon[j][i]+C[j][i-1] >= 0 else M[j][i-1]-dungeon[j][i]-C[j][i-1] up = M[j-1][i] if dungeon[j][i]+C[j-1][i] >= 0 else M[j-1][i]-dungeon[j][i]-C[j-1][i] # could be right but it is overly complicated # second attempt # dp[i][j] is the min health needed when enter ij-th position def calculateMinimumHP(dungeon): m, n = len(dungeon), len(dungeon[0]) dp = [[float('inf') for _ in range(n+1)] for _ in range(m+1)] dp[m-1][n] = dp[m][n-1] = 0 for i in range(m-1, -1, -1): for j in range(n-1, -1, -1): dp[i][j] = max(min(dp[i+1][j], dp[i][j+1])-dungeon[i][j], 0) return dp[0][0]+1 dungeon = [[-2,-3,3],[-5,-10,1],[10,30,-5]] calculateMinimumHP(dungeon) ###Output _____no_output_____ ###Markdown 10. Unique Binary Search TreesGiven n, how many structurally unique BST's (binary search trees) that store values 1 ... n? ###Code # dp[i] is the number of UBNTs with i elts def numTrees(n): dp = [0] * (n+1) dp[0] = 1 for i in range(1,n+1): for j in range(i): dp[i] += dp[j] * dp[i-j-1] return dp[n] n=3 numTrees(n) ###Output _____no_output_____ ###Markdown 11. Best Time to Buy and Sell StockSay you have an array for which the ith element is the price of a given stock on day i.If you were only permitted to complete at most one transaction (i.e., buy one and sell one share of the stock), design an algorithm to find the maximum profit.Note that you cannot sell a stock before you buy one. ###Code # use stack def maxProfit(prices): mprof, min_price = 0, float('inf') for price in prices: min_price = min(min_price, price) mprof = max(price - min_price, mprof) return mprof prices = [7,1,5,3,6,4] maxProfit(prices) ###Output _____no_output_____
notebooks/hmm_poisson_changepoint_tfp.ipynb
###Markdown HMM with Poisson observations for detecting changepoints in the rate of a signalCode is fromhttps://www.tensorflow.org/probability/examples/Multiple_changepoint_detection_and_Bayesian_model_selection ###Code import numpy as np import tensorflow.compat.v2 as tf tf.enable_v2_behavior() import tensorflow_probability as tfp from tensorflow_probability import distributions as tfd from matplotlib import pylab as plt %matplotlib inline import scipy.stats ###Output _____no_output_____ ###Markdown DataThe synthetic data corresponds to a single time series of counts, where the rate of the underlying generative process changes at certain points in time. ###Code true_rates = [40, 3, 20, 50] true_durations = [10, 20, 5, 35] np.random.seed(42) observed_counts = np.concatenate([ scipy.stats.poisson(rate).rvs(num_steps) for (rate, num_steps) in zip(true_rates, true_durations) ]).astype(np.float32) plt.plot(observed_counts) plt.savefig('hmm_poisson_data.pdf') ###Output _____no_output_____ ###Markdown Model with fixed $K$To model the changing Poisson rate, we use an HMM.We initially assume the number of states is known to be $K=4$.Later we will try comparing HMMs with different $K$.We fix the initial state distribution to be uniform,and fix the transition matrix to be the following, where we set $p=0.05$:$$\begin{align*}z_1 &\sim \text{Categorical}\left(\left\{\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right\}\right)\\z_t | z_{t-1} &\sim \text{Categorical}\left(\left\{\begin{array}{cc}p & \text{if } z_t = z_{t-1} \\ \frac{1-p}{4-1} & \text{otherwise}\end{array}\right\}\right)\end{align*}$$ ###Code num_states = 4 initial_state_logits = np.zeros([num_states], dtype=np.float32) # uniform distribution daily_change_prob = 0.05 transition_probs = daily_change_prob / (num_states-1) * np.ones( [num_states, num_states], dtype=np.float32) np.fill_diagonal(transition_probs, 1-daily_change_prob) print("Initial state logits:\n{}".format(initial_state_logits)) print("Transition matrix:\n{}".format(transition_probs)) ###Output Initial state logits: [0. 0. 0. 0.] Transition matrix: [[0.95 0.01666667 0.01666667 0.01666667] [0.01666667 0.95 0.01666667 0.01666667] [0.01666667 0.01666667 0.95 0.01666667] [0.01666667 0.01666667 0.01666667 0.95 ]] ###Markdown Now we create an HMM where the observation distribution is a Poisson with learnable parameters. We specify the parameters in log space and initialize them to random values around the log of the overall mean count (to set the scale). ###Code # Define variable to represent the unknown log rates. np.random.seed(1) trainable_log_rates = tf.Variable( np.log(np.mean(observed_counts)) + tf.random.normal([num_states]), name='log_rates') hmm = tfd.HiddenMarkovModel( initial_distribution=tfd.Categorical( logits=initial_state_logits), transition_distribution=tfd.Categorical(probs=transition_probs), observation_distribution=tfd.Poisson(log_rate=trainable_log_rates), num_steps=len(observed_counts)) ###Output _____no_output_____ ###Markdown Model fitting using gradient descent.We compute a MAP estimate of the Poisson rates $\lambda$ using batch gradient descent, using the Adam optimizer applied to the log likelihood (from the HMM) plus the log prior for $p(\lambda)$. ###Code rate_prior = tfd.LogNormal(5, 5) def log_prob(): return (tf.reduce_sum(rate_prior.log_prob(tf.math.exp(trainable_log_rates))) + hmm.log_prob(observed_counts)) losses = tfp.math.minimize( lambda: -log_prob(), optimizer=tf.optimizers.Adam(learning_rate=0.1), num_steps=100) plt.plot(losses) plt.ylabel('Negative log marginal likelihood') rates = tf.exp(trainable_log_rates) print("Inferred rates: {}".format(rates)) print("True rates: {}".format(true_rates)) ###Output Inferred rates: [ 2.6820226 18.98235 38.94888 50.867588 ] True rates: [40, 3, 20, 50] ###Markdown We see that the method learned a good approximation to the true (generating) parameters, up to a permutation of the states (since the labels are unidentifiable). However, results can vary with different random seeds. We may find that the rates are the same for some states, which means those states are being treated as identical, and are therefore redundant. Plotting the posterior over states ###Code # Runs forward-backward algorithm to compute marginal posteriors. posterior_dists = hmm.posterior_marginals(observed_counts) posterior_probs = posterior_dists.probs_parameter().numpy() def plot_state_posterior(ax, state_posterior_probs, title): ln1 = ax.plot(state_posterior_probs, c='blue', lw=3, label='p(state | counts)') ax.set_ylim(0., 1.1) ax.set_ylabel('posterior probability') ax2 = ax.twinx() ln2 = ax2.plot(observed_counts, c='black', alpha=0.3, label='observed counts') ax2.set_title(title) ax2.set_xlabel("time") lns = ln1+ln2 labs = [l.get_label() for l in lns] ax.legend(lns, labs, loc=4) ax.grid(True, color='white') ax2.grid(False) fig = plt.figure(figsize=(10, 10)) plot_state_posterior(fig.add_subplot(2, 2, 1), posterior_probs[:, 0], title="state 0 (rate {:.2f})".format(rates[0])) plot_state_posterior(fig.add_subplot(2, 2, 2), posterior_probs[:, 1], title="state 1 (rate {:.2f})".format(rates[1])) plot_state_posterior(fig.add_subplot(2, 2, 3), posterior_probs[:, 2], title="state 2 (rate {:.2f})".format(rates[2])) plot_state_posterior(fig.add_subplot(2, 2, 4), posterior_probs[:, 3], title="state 3 (rate {:.2f})".format(rates[3])) plt.tight_layout() print(rates) rates_np = rates.numpy() print(rates_np) # max marginals most_probable_states = np.argmax(posterior_probs, axis=1) most_probable_rates = rates_np[most_probable_states] fig = plt.figure(figsize=(10, 4)) ax = fig.add_subplot(1, 1, 1) ax.plot(most_probable_rates, c='green', lw=3, label='inferred rate') ax.plot(observed_counts, c='black', alpha=0.3, label='observed counts') ax.set_ylabel("latent rate") ax.set_xlabel("time") ax.set_title("Inferred latent rate over time") ax.legend(loc=4) # max probaility trajectory (Viterbi) most_probable_states = hmm.posterior_mode(observed_counts) most_probable_rates = rates_np[most_probable_states] fig = plt.figure(figsize=(10, 4)) ax = fig.add_subplot(1, 1, 1) color_list = np.array(['r', 'g', 'b', 'k']) colors = color_list[most_probable_states] for i in range(len(colors)): ax.plot(i, most_probable_rates[i], '-o', c=colors[i], lw=3) ax.plot(observed_counts, c='black', alpha=0.3, label='observed counts') ax.set_ylabel("latent rate") ax.set_xlabel("time") ax.set_title("Inferred latent rate over time") plt.savefig('hmm_poisson_4states_segmentation.pdf') ###Output _____no_output_____ ###Markdown Model with unknown $K$In general we don't know the true number of states. One way to select the 'best' model is to compute the one with the maximum marginal likelihood. Rather than summing over both discrete latent states and integrating over the unknown parameters $\lambda$, we just maximuze over the parameters (empirical Bayes approximation).$$p(x_{1:T}|K) \approx \max_\lambda \int p(x_{1:T}, z_{1:T} | \lambda, K) dz$$We can do this by fitting a bank of separate HMMs in parallel, one for each value of $K$. We need to make them all the same size so we can batch them efficiently. To do this, we pad the transition matrices (and other paraemeter vectors) so they all have the same shape, and then use masking. ###Code max_num_states = 6 def build_latent_state(num_states, max_num_states, daily_change_prob=0.05): # Give probability exp(-100) ~= 0 to states outside of the current model. initial_state_logits = -100. * np.ones([max_num_states], dtype=np.float32) initial_state_logits[:num_states] = 0. # Build a transition matrix that transitions only within the current # `num_states` states. transition_probs = np.eye(max_num_states, dtype=np.float32) if num_states > 1: transition_probs[:num_states, :num_states] = ( daily_change_prob / (num_states-1)) np.fill_diagonal(transition_probs[:num_states, :num_states], 1-daily_change_prob) return initial_state_logits, transition_probs # For each candidate model, build the initial state prior and transition matrix. batch_initial_state_logits = [] batch_transition_probs = [] for num_states in range(1, max_num_states+1): initial_state_logits, transition_probs = build_latent_state( num_states=num_states, max_num_states=max_num_states) batch_initial_state_logits.append(initial_state_logits) batch_transition_probs.append(transition_probs) batch_initial_state_logits = np.array(batch_initial_state_logits) batch_transition_probs = np.array(batch_transition_probs) print("Shape of initial_state_logits: {}".format(batch_initial_state_logits.shape)) print("Shape of transition probs: {}".format(batch_transition_probs.shape)) print("Example initial state logits for num_states==3:\n{}".format(batch_initial_state_logits[2, :])) print("Example transition_probs for num_states==3:\n{}".format(batch_transition_probs[2, :, :])) trainable_log_rates = tf.Variable( tf.fill([batch_initial_state_logits.shape[0], max_num_states], tf.math.log(tf.reduce_mean(observed_counts))) + tf.random.stateless_normal([1, max_num_states], seed=(42, 42)), name='log_rates') hmm = tfd.HiddenMarkovModel( initial_distribution=tfd.Categorical( logits=batch_initial_state_logits), transition_distribution=tfd.Categorical(probs=batch_transition_probs), observation_distribution=tfd.Poisson(log_rate=trainable_log_rates), num_steps=len(observed_counts)) print("Defined HMM with batch shape: {}".format(hmm.batch_shape)) rate_prior = tfd.LogNormal(5, 5) def log_prob(): prior_lps = rate_prior.log_prob(tf.math.exp(trainable_log_rates)) prior_lp = tf.stack( [tf.reduce_sum(prior_lps[i, :i+1]) for i in range(max_num_states)]) return prior_lp + hmm.log_prob(observed_counts) ###Output _____no_output_____ ###Markdown Model fitting with gradient descent ###Code losses = tfp.math.minimize( lambda: -log_prob(), optimizer=tf.optimizers.Adam(0.1), num_steps=100) plt.plot(losses) plt.ylabel('Negative log marginal likelihood') ###Output _____no_output_____ ###Markdown Plot marginal likelihood of each model ###Code num_states = np.arange(1, max_num_states+1) plt.plot(num_states, -losses[-1]) plt.ylim([-400, -200]) plt.ylabel("marginal likelihood $\\tilde{p}(x)$") plt.xlabel("number of latent states") plt.title("Model selection on latent states") plt.savefig('poisson_hmm_marglik_vs_k.pdf') !ls ###Output hmm_poisson_4states_segmentation.pdf hmm_poisson_segmentation_1to6.pdf hmm_poisson_data.pdf sample_data hmm_poisson_marglik_vs_k.pdf ###Markdown Plot posteriors ###Code rates = tf.exp(trainable_log_rates).numpy() for i, learned_model_rates in enumerate(rates): print("rates for {}-state model: {}".format(i+1, learned_model_rates[:i+1])) posterior_probs = hmm.posterior_marginals( observed_counts).probs_parameter().numpy() most_probable_states = np.argmax(posterior_probs, axis=-1) !ls fig = plt.figure(figsize=(12, 6)) for i, learned_model_rates in enumerate(rates): ax = fig.add_subplot(2, 3, i+1) ax.plot(learned_model_rates[most_probable_states[i]], c='green', lw=3, label='inferred rate') ax.plot(observed_counts, c='black', alpha=0.3, label='observed counts') ax.set_ylabel("latent rate") ax.set_xlabel("time") ax.set_title("{}-state model".format(i+1)) ax.legend(loc=4) plt.tight_layout() plt.savefig('hmm_poisson_segmentation_1to6.pdf') ###Output _____no_output_____
tf0/Demo_Tensorflow_Tensors.ipynb
###Markdown Python Doesn't Have Good Numeric Support* Python integers are actually an object with header and typing information* access to Python integers requires a level of indirection* In C, integers are directly accessible in memory without indirection The Problem is Even Worse for Python Lists * Python lists are immensely flexible * no fixed size * OK to have heterogeneous data* ...but as a result they are not likely to be contiguous in memory* and even if they are, there is still a lot of indirection required* so they aren't good for fast number crunching ###Code pylist = list(range(1_000_000)) %timeit [i + 1 for i in pylist] ###Output _____no_output_____ ###Markdown One solution is to use Tensorflow tensors* written in C++* allows for vectorized operations ###Code #!pip install --upgrade -q tensorflow==2.4.0 import tensorflow as tf tf.__version__ ###Output _____no_output_____ ###Markdown TensorFlow Scalars ###Code tf.constant(42) tf.constant(42).dtype tf.constant(42).shape len(tf.constant(42).shape) == 0 tf.constant(3.14).dtype float(tf.constant(3.14).numpy()) float(tf.constant(3.14).numpy()) == 3.14 ###Output _____no_output_____ ###Markdown IEEE Standard for Floating-Point Arithmetic (IEEE 754) * a refresher on floating point precision issues ###Code x = 0.3 x 3 * 0.1 == x 3 * 0.1 x = tf.constant(3.14) tf.cast(x, dtype=tf.uint8).numpy() tf.cast(x, dtype=tf.int8) tf.cast(tf.cast(x, dtype=tf.int8), dtype=tf.float32) ###Output _____no_output_____ ###Markdown Numerical Truncation* nearest integer __`i`__ which is closer to zero than __`x`__ is ###Code # remove fractional component trunc_x = x-tf.truncatemod(x, tf.constant(1.)) trunc_x trunc_x.dtype ###Output _____no_output_____ ###Markdown `tf.math.floor()`* the largest integer __`i`__, such that __`i <= x`__ ###Code tf.math.floor(x) tf.math.floor(tf.constant(2.01)) tf.math.floor(tf.constant(2.)) tf.math.floor(tf.constant(-3.14)) ###Output _____no_output_____ ###Markdown `tf.math.ceil()`* the smallest integer __`i`__, such that __`i >= x`__ ###Code tf.math.ceil(x) tf.math.ceil(tf.constant(2.01)) tf.math.ceil(tf.constant(2.)) ###Output _____no_output_____ ###Markdown * can __pt.ceil()__ be used in place of __pt.floor()__ ? ###Code tf.math.ceil(x) - 1 tf.math.ceil(tf.constant(2.01)) - 1 tf.math.ceil(tf.constant(2.)) - 1 ###Output _____no_output_____ ###Markdown PyTorch arrays* data is stored contiguously in memory ###Code # tensorflow will infer the data type a = tf.constant([1, 4, 2, 5, 3]) a, a.dtype a = tf.constant([3.14, 4, 2, 3]) a, a.dtype # ...or you can be explicit a = tf.constant([1, 2, 3, 4], dtype=tf.float32) a tf.constant([range(i, i + 3) for i in [2, 4, 6]]) tf.zeros(10, dtype=tf.int32) tf.ones((3, 5), dtype=tf.float64) tf.eye(5) tf.fill((3, 5), 42) tf.range(0, 20, 2) tf.linspace(0, 1, 5) ###Output _____no_output_____ ###Markdown Pseudo-Random Numbers ###Code tf.random.set_seed(1) tf.random.normal((3, 3)) tf.random.normal((3, 3), mean=0, stddev=1) tf.random.uniform((3, 3), minval=0, maxval=10, dtype=tf.int32) ###Output _____no_output_____ ###Markdown Converting array types ###Code x = tf.linspace(0, 10, 50) x tf.cast(x,dtype=tf.int32) ###Output _____no_output_____ ###Markdown Multi-dimensional Arrays ###Code x2 = tf.random.uniform((3, 4), minval=0, maxval=10, dtype=tf.int32) x2 ###Output _____no_output_____ ###Markdown True "matrix-style" indexing ###Code x2[0, 0] x2[2, 0] x2[2, -1] # remember, tensorflow tensors are not mutable; we need to create a variable from it v2 = tf.Variable(x2) v2[0,0].assign(0) v2 tf.reshape(tf.range(0, 9), shape=(3,3)) ###Output _____no_output_____ ###Markdown Array Slicing ###Code x = tf.range(0, 10) x[:5] x[5:] x[4:7] x[::2] x[1::2] x[::-1] tf.reverse(x, axis=[0]) tf.reverse(x, axis=[0])[5::2] ###Output _____no_output_____ ###Markdown Filtering 1-dimensional data ###Code x = tf.constant([ 1, 0, 5, 2, 1, 0, 8, 0, 0 ]) tf.where(x != 0) x != 0 x[ x != 0 ] x[ x < 3 ] ###Output _____no_output_____ ###Markdown Filtering 2-dimensional data ###Code x = tf.constant([[1, 0, 0], [0, 5, 0], [7, 8, 0]]) x # produces two arrays, one with x coords, one with y coords nz_idx = tf.where( x != 0 ) nz_idx x[x != 0] y = tf.reshape(tf.range(1, 10), shape=(3,3)) y tf.gather(y, axis=0, indices=tf.constant([0,2])) tf.gather(y, axis=1, indices=tf.constant([0,2])) tf.experimental.numpy.triu(y) tf.experimental.numpy.tril(y) tf.experimental.numpy.tril(y).T #transpose ###Output _____no_output_____ ###Markdown Multi-dimensional subarrays ###Code x2 x2[:2, :3] x2[:3, ::2] x2[::-1, ::-1] # reverse on the row axis only tf.reverse(x2, axis=[0]) indices = tf.range(tf.size(x2) - 1, limit=-1, delta=-1) indices tf.experimental.numpy.take(x2, indices).reshape(x2.shape) #x2[::-1, ::-1] ###Output _____no_output_____ ###Markdown Subarray Views ###Code x2, id(x2) v2_sub = tf.Variable(x2[:2, :2]) v2_sub, id(v2_sub) v2_sub[0,0].assign(99) v2_sub v2_sub # changes v2 as well, since the subarray has references to the original ###Output _____no_output_____ ###Markdown TensorFlow C++ Functions* operate on tensors as on contiguous blobs of data in memory* _vectorized_ wrapper for a function that takes a fixed number of specific inputs and produces a fixed number of specific outputs | Operator | C++ | Description ||----------|-----------------------------|-------------------------------------|| + | tensorflow::ops::Add | Addition (e.g., 1 + 1 = 2) || - | tensorflow::ops::Subtract | Subtraction (e.g., 3 - 2 = 1) || - | tensorflow::ops::Negate | Unary negation (e.g., -2) || * | tensorflow::ops::Multiply | Multiplication (e.g., 2 * 3 = 6) || / | tensorflow::ops::Div | Division (e.g., 3 / 2 = 1.5) || // | tensorflow::ops::FloorDiv | Floor division (e.g., 3 // 2 = 1) || ** | tensorflow::ops::Exp | Exponentiation (e.g., 2 ** 3 = 8) || % | tensorflow::ops::Mod | Modulus/remainder (e.g., 9 % 4 = 1) | Vectorized Operations ###Code tensorflo = tf.range(1, limit=1_000_000) %timeit 1 / tensorflo x = tf.reshape(tf.range(0, limit=9),(3, 3)) 2 ** x x = tf.range(0, limit=4,dtype=tf.float32) -(0.5 * x + 1) ** 2 ###Output _____no_output_____ ###Markdown Exponents and Logarithms ###Code x = tf.constant([1., 2., 3.]) tf.math.exp(x) tf.pow(3, x) tf.math.log(x) tf.experimental.numpy.log2(tf.constant([1., 256., 65536.])) tf.experimental.numpy.log10(tf.constant([1_000., 1_000_000., 10. ** 10])) ###Output _____no_output_____ ###Markdown Aggregations ###Code x = tf.reshape(tf.range(0, 15), (3, 5)) x tf.math.reduce_sum(x) tf.math.reduce_sum(x, axis=0) tf.math.reduce_sum(x, axis=1, keepdims=True) tf.math.reduce_sum(x, axis=1) x = tf.cast(x, dtype=tf.float64) tf.math.reduce_mean(x), tf.math.reduce_std(x) ###Output _____no_output_____
9-symbolic-manipulation.ipynb
###Markdown Symbolic ManipulationMost computer mathematical work directly manipulates numbers. Symbolic manipulation or computer algebra is using a computer to manipulate algebraic equations.You can do many algebraic and calculus operations.You can learn more [here](http://docs.sympy.org/dev/tutorial/). ###Code import sympy # this makes for mathematical typesetting sympy.init_printing() # defines symbols x = sympy.symbols('x') y = sympy.symbols('y') ###Output _____no_output_____ ###Markdown We can define a polynomial. ###Code expr = x**2 + 2*x + 1 expr ###Output _____no_output_____ ###Markdown We can do some algebraic manipulations. ###Code expr.factor() ###Output _____no_output_____ ###Markdown Here is an example of integration ###Code expr.integrate(x) ###Output _____no_output_____ ###Markdown Here is a substitution ###Code expr.subs(x, y**2) ###Output _____no_output_____ ###Markdown You can also make numerical substitutions for a variable. ###Code expr.subs(x, 1) ###Output _____no_output_____
wksp-notebooks/generic.ipynb
###Markdown **Generic** ###Code # Imports import sqlite3 from impulse_sqlite3 import create_tag_table sqlitedb_path = "C:/Users/zhixian/Documents/PowerShell/impulse.sqlite3" from impulse_sqlite3 import create_tag_table create_tag_table(sqlitedb_path) def create_table(): conn = sqlite3.connect(sqlitedb_path) c = conn.cursor() # Create table c.execute('''CREATE TABLE stocks (date text, trans text, symbol text, qty real, price real)''') # Save (commit) the changes conn.commit() # We can also close the connection if we are done with it. # Just be sure any changes have been committed or they will be lost. conn.close() def exec(): conn = sqlite3.connect(sqlitedb_path) c = conn.cursor() # Create table c.execute('''CREATE TABLE stocks (date text, trans text, symbol text, qty real, price real)''') # Insert a row of data c.execute("INSERT INTO stocks VALUES ('2006-01-05','BUY','RHAT',100,35.14)") # Save (commit) the changes conn.commit() # We can also close the connection if we are done with it. # Just be sure any changes have been committed or they will be lost. conn.close() exec() ###Output _____no_output_____
old/Dipper detection integrated.ipynb
###Markdown Setup spark ###Code def spark_start(local_dir): from pyspark.sql import SparkSession spark = ( SparkSession.builder .appName("LSD2") .config("spark.sql.warehouse.dir", local_dir) #.config('spark.master', "local[6]") .config("spark.master", "local[32]") # yolo mode .config('spark.driver.memory', '8G') # 128 .config('spark.local.dir', local_dir) .config('spark.memory.offHeap.enabled', 'true') .config('spark.memory.offHeap.size', '4G') # 256 .config("spark.sql.execution.arrow.enabled", "true") .config("spark.driver.maxResultSize", "6G") .config("spark.driver.extraJavaOptions", f"-Dderby.system.home={local_dir}") .enableHiveSupport() .getOrCreate() ) return spark spark_session = spark_start("/epyc/users/kyboone/spark-tmp/") catalog = axs.AxsCatalog(spark_session) ###Output _____no_output_____ ###Markdown Load ZTF data ###Code ztf = catalog.load('ztf_oct19') ###Output _____no_output_____ ###Markdown Load the saved axs table ###Code wtf = catalog.load('wtf_full_oct19_4') wtf.count() # Recalculate the scores rescored_wtf = ( wtf.select( '*', dipper.detect_dippers_udf( wtf['mjd_g'], wtf['mag_g'], wtf['magerr_g'], wtf['xpos_g'], wtf['ypos_g'], wtf['catflags_g'], wtf['mjd_r'], wtf['mag_r'], wtf['magerr_r'], wtf['xpos_r'], wtf['ypos_r'], wtf['catflags_r'] ).alias('rescored_dipper'), ) ) wtf.where(sparkfunc.col("dipper.significance") > 20.).count() ztf.count() %%time # Get the best entries res = rescored_wtf.sort(rescored_wtf['rescored_dipper.intmag'].desc()).head(1000) %matplotlib inline from ipywidgets import interact, IntSlider def interact_lightcurve(idx, zoom=False): show_lightcurve(res[idx], zoom=zoom) interact(interact_lightcurve, idx=IntSlider(0, 0, len(res) - 1)) for idx in range(10): show_lightcurve(res[idx], verbose=False) ###Output _____no_output_____ ###Markdown Label how the dip detection works ###Code detect_dippers_row(res[0]) band_colors = { 'g': 'tab:green', 'r': 'tab:red', 'i': 'tab:purple' } def label_dip(row): plt.figure(figsize=(8, 6), dpi=100) for band in ['g', 'r', 'i']: mjd, mag, magerr = parse_observations( row[f'mjd_{band}'], row[f'mag_{band}'], row[f'magerr_{band}'], row[f'xpos_{band}'], row[f'ypos_{band}'], row[f'catflags_{band}'], ) plt.errorbar(mjd, mag, magerr, fmt='o', c=band_colors[band], label=f'ZTF-{band}') plt.xlabel('MJD') if parsed: plt.ylabel('Magnitude + offset') else: plt.ylabel('Magnitude') plt.legend() plt.title('objid %d' % row['objid']) plt.gca().invert_yaxis() ###Output _____no_output_____ ###Markdown Joining ###Code gaia = catalog.load('gaia_dr2_1am_dup') wtf_df = rescored_wtf.crossmatch(gaia.select('ra', 'dec', 'zone', 'dup', 'parallax', 'parallax_over_error', 'phot_g_mean_mag', 'bp_rp')).toPandas() plt.figure() abs_mag = wtf_df['phot_g_mean_mag'] - 5 * np.log10(1000 / wtf_df['parallax']) + 5 cut = (wtf_df['parallax_over_error'] > 5) plt.scatter(wtf_df['bp_rp'][cut], abs_mag[cut], s=1, alpha=0.1) cut = (wtf_df['parallax_over_error'] > 5) & (wtf_df['new_score'] > 2.5) plt.scatter(wtf_df['bp_rp'][cut], abs_mag[cut], s=10) plt.gca().invert_yaxis() def print_links(row): print("http://simbad.u-strasbg.fr/simbad/sim-coo?Coord=%.6f%+.6f&CooFrame=FK5&CooEpoch=2000&CooEqui=2000&CooDefinedFrames=none&Radius=20&Radius.unit=arcsec&submit=submit+query&CoordList=" % (row['ra'], row['dec'])) print("RA+Dec: %.6f%+.6f" % (row['ra'], row['dec'])) print("RA: %.6f" % row['ra']) print("Dec: %.6f" % row['dec']) def show_lightcurve(idx): row = wtf_df.iloc[idx] #print_links(row) plot_lightcurve(row) plt.title(idx) print("Score: %.3f" % detect_dippers_row(row)) a = np.where(cut & (df['bp_rp'] > 0.5) & (df['bp_rp'] < 2) & (abs_mag < 1000) & (abs_mag > 5.)) for i in a[0]: show_lightcurve(i) ###Output Score: 2.566 Score: 2.795 Score: 2.650 Score: 2.909 Score: 2.530 Score: 2.687 Score: 2.845 Score: 2.584 Score: 2.648 Score: 3.264 Score: 3.082 ###Markdown Run the spark query Run and save the query ###Code %%time # Run on spark res = ( ztf .exclude_duplicates() #.region(ra1=295, ra2=296, dec1=20, dec2=21) .where( (sparkfunc.col("nobs_g") >= 10) | (sparkfunc.col("nobs_r") >= 10) | (sparkfunc.col("nobs_i") >= 10) ) .select( '*', detect_dippers_udf( ztf['mjd_g'], ztf['mag_g'], ztf['magerr_g'], ztf['xpos_g'], ztf['ypos_g'], ztf['catflags_g'], ztf['mjd_r'], ztf['mag_r'], ztf['magerr_r'], ztf['xpos_r'], ztf['ypos_r'], ztf['catflags_r'] ).alias('dipper'), ) .where( (sparkfunc.col("dipper.significance") > 10.) ) #.write.parquet('./query_test_23.parquet') .write.parquet('./query_full_4.parquet') ) ###Output _____no_output_____ ###Markdown Convert to an axs table ###Code wtf = spark_session.read.parquet('./query_full_4.parquet') %matplotlib inline from ipywidgets import interact, IntSlider def interact_lightcurve(idx, zoom=False): show_lightcurve(res[idx], zoom=zoom) interact(interact_lightcurve, idx=IntSlider(0, 0, len(res) - 1)) catalog.save_axs_table(wtf, 'wtf_full_oct19_4', repartition=True) ###Output _____no_output_____
notebooks/gold standard/3. recon price.ipynb
###Markdown Read IRSM FORM ###Code irsmform = xml_parser.get_files('irsmform xml', folder = 'linear TSR logs') irsmout = xml_parser.get_files('out xml', folder = 'linear TSR logs') csv = xml_parser.get_files('CMS 10y csv', folder = 'linear TSR logs') replic_basket = csv_parser.parse_csv(csv) cal_basket = list(xml_parser.get_calib_basket(irsmform)) settings = xml_parser.get_model_settings(irsmform) main_curve, sprds = xml_parser.get_rate_curves(irsmform) dsc_curve = main_curve try: estim_curve = sprds[0] except TypeError: estim_curve = main_curve n = settings.SpotIterations dsc_adj_cms_flows = [] mean_rev = xml_parser.get_tsr_params(irsmform).meanRevTSRSwapRate for swo in cal_basket: pmnt_date = swo.payment_dates[0] mr = mean_rev(swo.start_date) adj_cms_flow = tsr.cmsflow(swo, dsc_curve, estim_curve, n, mr, pmnt_date).adjCMSrate dsc_adj_cms_flows.append(adj_cms_flow * dsc_curve(pmnt_date)) dsc_adj_cms_flows = array(dsc_adj_cms_flows) xml_parser.get_tsr_params(irsmform).meanRevTSRSwapRate ###Output _____no_output_____
Big-Data-Clusters/CU8/Public/content/cert-management/cer025-upload-management-service-proxy-cert.ipynb
###Markdown CER025 - Upload existing Management Proxy certificate=====================================================Use this notebook to upload an externally generated Management Proxycertificate to a cluster.Steps----- Parameters ###Code local_certificate_dir = "mssql-cluster-certificates" certificate_file_name = "service-proxy-certificate.pem" private_key_file_name = "service-proxy-privatekey.pem" test_cert_store_root = "/var/opt/secrets/test-certificates" app_name = "mgmtproxy" prefix_keyfile_name = "service-proxy" ###Output _____no_output_____ ###Markdown Common functionsDefine helper functions used in this notebook. ###Code # Define `run` function for transient fault handling, suggestions on error, and scrolling updates on Windows import sys import os import re import json import platform import shlex import shutil import datetime from subprocess import Popen, PIPE from IPython.display import Markdown retry_hints = {} # Output in stderr known to be transient, therefore automatically retry error_hints = {} # Output in stderr where a known SOP/TSG exists which will be HINTed for further help install_hint = {} # The SOP to help install the executable if it cannot be found first_run = True rules = None debug_logging = False def run(cmd, return_output=False, no_output=False, retry_count=0, base64_decode=False, return_as_json=False): """Run shell command, stream stdout, print stderr and optionally return output NOTES: 1. Commands that need this kind of ' quoting on Windows e.g.: kubectl get nodes -o jsonpath={.items[?(@.metadata.annotations.pv-candidate=='data-pool')].metadata.name} Need to actually pass in as '"': kubectl get nodes -o jsonpath={.items[?(@.metadata.annotations.pv-candidate=='"'data-pool'"')].metadata.name} The ' quote approach, although correct when pasting into Windows cmd, will hang at the line: `iter(p.stdout.readline, b'')` The shlex.split call does the right thing for each platform, just use the '"' pattern for a ' """ MAX_RETRIES = 5 output = "" retry = False global first_run global rules if first_run: first_run = False rules = load_rules() # When running `azdata sql query` on Windows, replace any \n in """ strings, with " ", otherwise we see: # # ('HY090', '[HY090] [Microsoft][ODBC Driver Manager] Invalid string or buffer length (0) (SQLExecDirectW)') # if platform.system() == "Windows" and cmd.startswith("azdata sql query"): cmd = cmd.replace("\n", " ") # shlex.split is required on bash and for Windows paths with spaces # cmd_actual = shlex.split(cmd) # Store this (i.e. kubectl, python etc.) to support binary context aware error_hints and retries # user_provided_exe_name = cmd_actual[0].lower() # When running python, use the python in the ADS sandbox ({sys.executable}) # if cmd.startswith("python "): cmd_actual[0] = cmd_actual[0].replace("python", sys.executable) # On Mac, when ADS is not launched from terminal, LC_ALL may not be set, which causes pip installs to fail # with: # # UnicodeDecodeError: 'ascii' codec can't decode byte 0xc5 in position 4969: ordinal not in range(128) # # Setting it to a default value of "en_US.UTF-8" enables pip install to complete # if platform.system() == "Darwin" and "LC_ALL" not in os.environ: os.environ["LC_ALL"] = "en_US.UTF-8" # When running `kubectl`, if AZDATA_OPENSHIFT is set, use `oc` # if cmd.startswith("kubectl ") and "AZDATA_OPENSHIFT" in os.environ: cmd_actual[0] = cmd_actual[0].replace("kubectl", "oc") # To aid supportability, determine which binary file will actually be executed on the machine # which_binary = None # Special case for CURL on Windows. The version of CURL in Windows System32 does not work to # get JWT tokens, it returns "(56) Failure when receiving data from the peer". If another instance # of CURL exists on the machine use that one. (Unfortunately the curl.exe in System32 is almost # always the first curl.exe in the path, and it can't be uninstalled from System32, so here we # look for the 2nd installation of CURL in the path) if platform.system() == "Windows" and cmd.startswith("curl "): path = os.getenv('PATH') for p in path.split(os.path.pathsep): p = os.path.join(p, "curl.exe") if os.path.exists(p) and os.access(p, os.X_OK): if p.lower().find("system32") == -1: cmd_actual[0] = p which_binary = p break # Find the path based location (shutil.which) of the executable that will be run (and display it to aid supportability), this # seems to be required for .msi installs of azdata.cmd/az.cmd. (otherwise Popen returns FileNotFound) # # NOTE: Bash needs cmd to be the list of the space separated values hence shlex.split. # if which_binary == None: which_binary = shutil.which(cmd_actual[0]) # Display an install HINT, so the user can click on a SOP to install the missing binary # if which_binary == None: if user_provided_exe_name in install_hint and install_hint[user_provided_exe_name] is not None: display(Markdown(f'HINT: Use [{install_hint[user_provided_exe_name][0]}]({install_hint[user_provided_exe_name][1]}) to resolve this issue.')) raise FileNotFoundError(f"Executable '{cmd_actual[0]}' not found in path (where/which)") else: cmd_actual[0] = which_binary start_time = datetime.datetime.now().replace(microsecond=0) print(f"START: {cmd} @ {start_time} ({datetime.datetime.utcnow().replace(microsecond=0)} UTC)") print(f" using: {which_binary} ({platform.system()} {platform.release()} on {platform.machine()})") print(f" cwd: {os.getcwd()}") # Command-line tools such as CURL and AZDATA HDFS commands output # scrolling progress bars, which causes Jupyter to hang forever, to # workaround this, use no_output=True # # Work around a infinite hang when a notebook generates a non-zero return code, break out, and do not wait # wait = True try: if no_output: p = Popen(cmd_actual) else: p = Popen(cmd_actual, stdout=PIPE, stderr=PIPE, bufsize=1) with p.stdout: for line in iter(p.stdout.readline, b''): line = line.decode() if return_output: output = output + line else: if cmd.startswith("azdata notebook run"): # Hyperlink the .ipynb file regex = re.compile(' "(.*)"\: "(.*)"') match = regex.match(line) if match: if match.group(1).find("HTML") != -1: display(Markdown(f' - "{match.group(1)}": "{match.group(2)}"')) else: display(Markdown(f' - "{match.group(1)}": "[{match.group(2)}]({match.group(2)})"')) wait = False break # otherwise infinite hang, have not worked out why yet. else: print(line, end='') if rules is not None: apply_expert_rules(line) if wait: p.wait() except FileNotFoundError as e: if install_hint is not None: display(Markdown(f'HINT: Use {install_hint} to resolve this issue.')) raise FileNotFoundError(f"Executable '{cmd_actual[0]}' not found in path (where/which)") from e exit_code_workaround = 0 # WORKAROUND: azdata hangs on exception from notebook on p.wait() if not no_output: for line in iter(p.stderr.readline, b''): try: line_decoded = line.decode() except UnicodeDecodeError: # NOTE: Sometimes we get characters back that cannot be decoded(), e.g. # # \xa0 # # For example see this in the response from `az group create`: # # ERROR: Get Token request returned http error: 400 and server # response: {"error":"invalid_grant",# "error_description":"AADSTS700082: # The refresh token has expired due to inactivity.\xa0The token was # issued on 2018-10-25T23:35:11.9832872Z # # which generates the exception: # # UnicodeDecodeError: 'utf-8' codec can't decode byte 0xa0 in position 179: invalid start byte # print("WARNING: Unable to decode stderr line, printing raw bytes:") print(line) line_decoded = "" pass else: # azdata emits a single empty line to stderr when doing an hdfs cp, don't # print this empty "ERR:" as it confuses. # if line_decoded == "": continue print(f"STDERR: {line_decoded}", end='') if line_decoded.startswith("An exception has occurred") or line_decoded.startswith("ERROR: An error occurred while executing the following cell"): exit_code_workaround = 1 # inject HINTs to next TSG/SOP based on output in stderr # if user_provided_exe_name in error_hints: for error_hint in error_hints[user_provided_exe_name]: if line_decoded.find(error_hint[0]) != -1: display(Markdown(f'HINT: Use [{error_hint[1]}]({error_hint[2]}) to resolve this issue.')) # apply expert rules (to run follow-on notebooks), based on output # if rules is not None: apply_expert_rules(line_decoded) # Verify if a transient error, if so automatically retry (recursive) # if user_provided_exe_name in retry_hints: for retry_hint in retry_hints[user_provided_exe_name]: if line_decoded.find(retry_hint) != -1: if retry_count < MAX_RETRIES: print(f"RETRY: {retry_count} (due to: {retry_hint})") retry_count = retry_count + 1 output = run(cmd, return_output=return_output, retry_count=retry_count) if return_output: if base64_decode: import base64 return base64.b64decode(output).decode('utf-8') else: return output elapsed = datetime.datetime.now().replace(microsecond=0) - start_time # WORKAROUND: We avoid infinite hang above in the `azdata notebook run` failure case, by inferring success (from stdout output), so # don't wait here, if success known above # if wait: if p.returncode != 0: raise SystemExit(f'Shell command:\n\n\t{cmd} ({elapsed}s elapsed)\n\nreturned non-zero exit code: {str(p.returncode)}.\n') else: if exit_code_workaround !=0 : raise SystemExit(f'Shell command:\n\n\t{cmd} ({elapsed}s elapsed)\n\nreturned non-zero exit code: {str(exit_code_workaround)}.\n') print(f'\nSUCCESS: {elapsed}s elapsed.\n') if return_output: if base64_decode: import base64 return base64.b64decode(output).decode('utf-8') else: return output def load_json(filename): """Load a json file from disk and return the contents""" with open(filename, encoding="utf8") as json_file: return json.load(json_file) def load_rules(): """Load any 'expert rules' from the metadata of this notebook (.ipynb) that should be applied to the stderr of the running executable""" # Load this notebook as json to get access to the expert rules in the notebook metadata. # try: j = load_json("cer025-upload-management-service-proxy-cert.ipynb") except: pass # If the user has renamed the book, we can't load ourself. NOTE: Is there a way in Jupyter, to know your own filename? else: if "metadata" in j and \ "azdata" in j["metadata"] and \ "expert" in j["metadata"]["azdata"] and \ "expanded_rules" in j["metadata"]["azdata"]["expert"]: rules = j["metadata"]["azdata"]["expert"]["expanded_rules"] rules.sort() # Sort rules, so they run in priority order (the [0] element). Lowest value first. # print (f"EXPERT: There are {len(rules)} rules to evaluate.") return rules def apply_expert_rules(line): """Determine if the stderr line passed in, matches the regular expressions for any of the 'expert rules', if so inject a 'HINT' to the follow-on SOP/TSG to run""" global rules for rule in rules: notebook = rule[1] cell_type = rule[2] output_type = rule[3] # i.e. stream or error output_type_name = rule[4] # i.e. ename or name output_type_value = rule[5] # i.e. SystemExit or stdout details_name = rule[6] # i.e. evalue or text expression = rule[7].replace("\\*", "*") # Something escaped *, and put a \ in front of it! if debug_logging: print(f"EXPERT: If rule '{expression}' satisfied', run '{notebook}'.") if re.match(expression, line, re.DOTALL): if debug_logging: print("EXPERT: MATCH: name = value: '{0}' = '{1}' matched expression '{2}', therefore HINT '{4}'".format(output_type_name, output_type_value, expression, notebook)) match_found = True display(Markdown(f'HINT: Use [{notebook}]({notebook}) to resolve this issue.')) print('Common functions defined successfully.') # Hints for binary (transient fault) retry, (known) error and install guide # retry_hints = {'kubectl': ['A connection attempt failed because the connected party did not properly respond after a period of time, or established connection failed because connected host has failed to respond']} error_hints = {'kubectl': [['no such host', 'TSG010 - Get configuration contexts', '../monitor-k8s/tsg010-get-kubernetes-contexts.ipynb'], ['No connection could be made because the target machine actively refused it', 'TSG056 - Kubectl fails with No connection could be made because the target machine actively refused it', '../repair/tsg056-kubectl-no-connection-could-be-made.ipynb']]} install_hint = {'kubectl': ['SOP036 - Install kubectl command line interface', '../install/sop036-install-kubectl.ipynb']} ###Output _____no_output_____ ###Markdown Get the Kubernetes namespace for the big data clusterGet the namespace of the Big Data Cluster use the kubectl command lineinterface .**NOTE:**If there is more than one Big Data Cluster in the target Kubernetescluster, then either:- set \[0\] to the correct value for the big data cluster.- set the environment variable AZDATA\_NAMESPACE, before starting Azure Data Studio. ###Code # Place Kubernetes namespace name for BDC into 'namespace' variable if "AZDATA_NAMESPACE" in os.environ: namespace = os.environ["AZDATA_NAMESPACE"] else: try: namespace = run(f'kubectl get namespace --selector=MSSQL_CLUSTER -o jsonpath={{.items[0].metadata.name}}', return_output=True) except: from IPython.display import Markdown print(f"ERROR: Unable to find a Kubernetes namespace with label 'MSSQL_CLUSTER'. SQL Server Big Data Cluster Kubernetes namespaces contain the label 'MSSQL_CLUSTER'.") display(Markdown(f'HINT: Use [TSG081 - Get namespaces (Kubernetes)](../monitor-k8s/tsg081-get-kubernetes-namespaces.ipynb) to resolve this issue.')) display(Markdown(f'HINT: Use [TSG010 - Get configuration contexts](../monitor-k8s/tsg010-get-kubernetes-contexts.ipynb) to resolve this issue.')) display(Markdown(f'HINT: Use [SOP011 - Set kubernetes configuration context](../common/sop011-set-kubernetes-context.ipynb) to resolve this issue.')) raise print(f'The SQL Server Big Data Cluster Kubernetes namespace is: {namespace}') ###Output _____no_output_____ ###Markdown Get name of the ‘Running’ `controller` `pod` ###Code # Place the name of the 'Running' controller pod in variable `controller` controller = run(f'kubectl get pod --selector=app=controller -n {namespace} -o jsonpath={{.items[0].metadata.name}} --field-selector=status.phase=Running', return_output=True) print(f"Controller pod name: {controller}") ###Output _____no_output_____ ###Markdown Create folder on `controller` to hold the certificate ###Code run(f'kubectl exec {controller} -n {namespace} -c controller -- bash -c "mkdir -p {test_cert_store_root}/" ') ###Output _____no_output_____ ###Markdown Get name of the ‘Running’ `controller` `pod` ###Code # Place the name of the 'Running' controller pod in variable `controller` controller = run(f'kubectl get pod --selector=app=controller -n {namespace} -o jsonpath={{.items[0].metadata.name}} --field-selector=status.phase=Running', return_output=True) print(f"Controller pod name: {controller}") ###Output _____no_output_____ ###Markdown Copy certificates to `controller` `pod` ###Code import os import tempfile path = os.path.join(tempfile.gettempdir(), local_certificate_dir) os.chdir(path) run(f'kubectl exec {controller} -c controller -n {namespace} -- bash -c "mkdir -p {test_cert_store_root}/{app_name}"') run(f'kubectl cp {certificate_file_name} {controller}:{test_cert_store_root}/{app_name}/{prefix_keyfile_name}-certificate.pem -c controller -n {namespace}') run(f'kubectl cp {private_key_file_name} {controller}:{test_cert_store_root}/{app_name}/{prefix_keyfile_name}-privatekey.pem -c controller -n {namespace}') print('Notebook execution complete.') ###Output _____no_output_____
AutoEncoder_Reconstruction.ipynb
###Markdown Importing Datasets ###Code path = 'drive/My Drive//Colab Notebooks//datasets//jets//' df_train = pd.read_csv(path+'train_export_jets.csv',delimiter=',') df_test = pd.read_csv(path+'test_export_jets.csv',delimiter=',') df_validation = pd.read_csv(path+'val_export_jets.csv',delimiter=',') df_train.drop(labels=['Unnamed: 0'],axis=1,inplace=True) df_test.drop(labels=['Unnamed: 0'],axis=1,inplace=True) df_validation.drop(labels=['Unnamed: 0'],axis=1,inplace=True) def remove_zero_padded_features(df,padding = 5): df_feature_description = df.describe() df_filtered = pd.DataFrame() indexes = np.array(range(0,df_feature_description.shape[1],padding)) for ii in indexes: cols = df.columns[ii:ii+padding] if np.all(df_feature_description.loc['max',cols] == 0)\ and np.all(df_feature_description.loc['min',cols] == 0): continue df_filtered[cols] = df[cols] return df_filtered X_train = remove_zero_padded_features(df_train.drop(labels=['class','njets'],axis=1)) selected_columns = X_train.columns X_test = df_test[selected_columns] X_val = df_validation[selected_columns] y_train = df_train['class'].astype(int).values y_test = df_test['class'].astype(int).values y_val = df_validation['class'].astype(int).values X_train.shape ###Output _____no_output_____ ###Markdown Separating sets and Pre-processing ###Code X_train_no_anomaly = df_train[df_train['class'] < 1.0][selected_columns].copy() X_train_anomaly = df_train[df_train['class'] == 1.0][selected_columns].copy() X_val_no_anomaly = df_validation[df_validation['class'] < 1.0][selected_columns].copy() X_val_anomaly = df_validation[df_validation['class'] == 1.0][selected_columns].copy() X_test_no_anomaly = df_test[df_test['class'] < 1.0][selected_columns].copy() X_test_anomaly = df_test[df_test['class'] == 1.0][selected_columns].copy() scaler1 = MinMaxScaler(feature_range=(-1,1)).fit(X_train) X_train_norm_no_anomaly = scaler1.transform(X_train_no_anomaly) X_val_norm_no_anomaly = scaler1.transform(X_val_no_anomaly) X_test_norm_no_anomaly = scaler1.transform(X_test_no_anomaly) # scaler2 = StandardScaler().fit(X_train_anomaly) # X_train_norm_anomaly = scaler2.transform(X_train_anomaly) # X_val_norm_anomaly = scaler2.transform(X_val_anomaly) # X_test_norm_anomaly = scaler2.transform(X_test_anomaly) X_train_norm = scaler1.transform(X_train) X_val_norm = scaler1.transform(X_val) X_test_norm = scaler1.transform(X_test) ###Output _____no_output_____ ###Markdown Configuring AE ###Code def build_simple_autoencoder(): nb_epoch = 500 batch_size = 32 input_dim = X_train_norm_no_anomaly.shape[1] encoding_dim = 55 hidden_dim = int(encoding_dim / 2) learning_rate = 1e-1 input_layer = Input(shape=(input_dim, )) #encoder encoder = Dense(encoding_dim)(input_layer) encoder = BatchNormalization()(encoder) encoder = Activation(activation='relu')(encoder) encoder = Dense(hidden_dim)(encoder) encoder = BatchNormalization()(encoder) encoder = Activation(activation='relu')(encoder) encoder = Dense(int(hidden_dim/2))(encoder) encoder = BatchNormalization()(encoder) encoder = Activation(activation='relu')(encoder) #decoder decoder = Dense(hidden_dim)(encoder) decoder = BatchNormalization()(decoder) decoder = Activation(activation='relu')(decoder) decoder = Dense(encoding_dim)(decoder) decoder = BatchNormalization()(decoder) decoder = Activation(activation='relu')(decoder) decoder = Dense(input_dim)(decoder) decoder = BatchNormalization()(decoder) decoder = Activation(activation='tanh')(decoder) autoencoder = Model(inputs=input_layer, outputs=decoder) autoencoder.summary() return autoencoder autoencoder = build_simple_autoencoder() autoencoder.compile(metrics=['accuracy'], loss='mean_squared_error', optimizer='adam') cp = ModelCheckpoint(filepath="autoencoder_classifier_reconstruction.h5", save_best_only=True, verbose=0) earlyStopping = EarlyStopping(monitor = 'val_loss', patience = 30, mode = 'auto') start_time = time.time() print('Starting Training for AutoEncoder...') history = autoencoder.fit(X_train_norm_no_anomaly, X_train_norm_no_anomaly, epochs=nb_epoch, batch_size=batch_size, shuffle=True, validation_data=(X_val_norm_no_anomaly, X_val_norm_no_anomaly), verbose=1, callbacks=[cp,earlyStopping]).history print('Total elapsed time:' ,(time.time() - start_time), 'seconds') plt.style.use('seaborn-whitegrid') plt.figure(figsize=(12, 8)) plt.plot(history['loss'], linewidth=2, label='Train') plt.plot(history['val_loss'], linewidth=2, label='Valid') plt.legend(loc='upper right') plt.title('Model loss - AutoEncoder for Reconstruction') plt.ylabel('Loss') plt.xlabel('Epoch') plt.grid(True) plt.savefig('Model_loss_AutoEncoder_reconstruction.png') plt.show() def mean_squared_error(real,prediction): return np.mean(((real - prediction)**2), axis=1) def rmse(real,prediction): return np.mean(((real - prediction)**2)**0.5, axis=1) X_train_no_anomaly_pred = autoencoder.predict(X_train_norm_no_anomaly) X_train_rmse_array = rmse(X_train_no_anomaly_pred,X_train_norm_no_anomaly) X_train_rmse = np.mean(X_train_rmse_array) print('rmse = ',X_train_rmse) df_train_no_anomaly = pd.DataFrame(X_train_norm_no_anomaly,columns=selected_columns) display(pd.DataFrame(X_train_norm_no_anomaly,columns=selected_columns).head()) display(pd.DataFrame(X_train_no_anomaly_pred,columns=selected_columns).head()) X_train_rmse_array.min() X_predictions = autoencoder.predict(X_val_norm) mse = mean_squared_error(X_val_norm, X_predictions) error_df = pd.DataFrame({'Reconstruction_error': mse, 'True_class': y_val}) # 'True_class': y_train[y_train < 1.0]}) precision_rt, recall_rt, threshold_rt = precision_recall_curve(error_df.True_class, error_df.Reconstruction_error) plt.style.use('seaborn-whitegrid') plt.figure(figsize=(14,8)) plt.plot(threshold_rt[:-1], precision_rt[1:-1], label="Precision",linewidth=5) plt.plot(threshold_rt[:-1], recall_rt[1:-1], label="Recall",linewidth=5) plt.title('Precision and recall for different MSE threshold values') plt.xlabel('MSE Threshold') plt.ylabel('Precision/Recall') plt.legend() plt.xlim(0,0.05) plt.grid(True) # plt.savefig('Precision_Recall_AutoEncoder_reconstruction.png') X_test_pred = autoencoder.predict(X_test_norm) y_pred_class = mean_squared_error(X_test_pred, X_test_norm).ravel() threshold = 0.005 y_pred_class[y_pred_class > threshold] = 1 y_pred_class[y_pred_class <= threshold] = 0 ###Output _____no_output_____ ###Markdown Results ###Code df_prediction = pd.DataFrame({'Predicted': y_pred_class.ravel(), 'True_class': y_test.ravel()}) LABELS = ["Background","Signal"] conf_matrix = confusion_matrix(df_prediction.True_class, df_prediction.Predicted) plt.figure(figsize=(8, 8)) sns.heatmap(conf_matrix, xticklabels=LABELS, yticklabels=LABELS, annot=True, fmt="d"); plt.title("Confusion matrix") plt.xlabel('True class') plt.ylabel('Predicted class') plt.show() target_names = ["Background","Signal"] c = classification_report(df_prediction.True_class, df_prediction.Predicted,target_names = target_names) print(c) ###Output _____no_output_____
Notebooks/pyro/2-stochastic-variational-inference.ipynb
###Markdown Introduction to stochastic variational inference in pyro Inferring coin bias with the beta-binomial model ###Code import numpy as np import pyro.distributions as dist import pyro from torch.distributions import constraints from pyro.optim import Adam from pyro.infer import SVI, Trace_ELBO import torch from tqdm import tqdm import arviz as az import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Specify the joint density ###Code def model(data): alpha0 = torch.tensor(10.0) beta0 = torch.tensor(10.0) f = pyro.sample("latent_fairness", dist.Beta(alpha0, beta0)) for i in range(len(data)): pyro.sample("obs_{}".format(i), dist.Bernoulli(f), obs=data[i]) # Don't worry, we will vectorize this later ###Output _____no_output_____ ###Markdown Specify the variational family ###Code def guide(data): # guide and model must have the same signature, despite us not actually using the data in this case alpha_q = pyro.param("alpha_q", torch.tensor(15.0), # optimization initialization constraint=constraints.positive, # constrained optimization ) # requires_grad is automatically set to True beta_q = pyro.param("beta_q", torch.tensor(15.0), constraint=constraints.positive) pyro.sample("latent_fairness", dist.Beta(alpha_q, beta_q)) ###Output _____no_output_____ ###Markdown Specify optimizer ###Code adam_params = {"lr": 0.0005, "betas": (0.90, 0.999)} optimizer = Adam(adam_params) svi = SVI(model, guide, optimizer, loss=Trace_ELBO()) d = torch.tensor(np.random.binomial(n=1, p=0.55, size=10), dtype=float) n_steps = 1000 for step in tqdm(range(n_steps)): svi.step(d) ###Output 100%|██████████| 1000/1000 [00:04<00:00, 222.70it/s] ###Markdown Grab the learned variational parameters ###Code alpha_q = pyro.param("alpha_q").item() beta_q = pyro.param("beta_q").item() def summarize_beta(alpha, beta): inferred_mean = alpha / (alpha + beta) factor = beta / (alpha * (1.0 + alpha + beta)) inferred_std = inferred_mean * np.sqrt(factor) return inferred_mean, inferred_std summarize_beta(alpha_q, beta_q) ###Output _____no_output_____ ###Markdown Conditional independence and subsampling The objective is to not have to touch every data point during inference, but rather approximate the log likelihood with mini-batches. Let $\boldsymbol{x}$ denote a data vector of observations, and $\boldsymbol{z}$ denote a vector of latent random variables $$\sum_{i=1}^N \log p(\boldsymbol{x}_i | \boldsymbol{z}) \approx \frac{N}{M} \sum_{i \in \mathcal{I}_M}^N \log p(\boldsymbol{x}_i | \boldsymbol{z})$$ where $\mathcal{I}_M$ is a mini-batch of indices of size $M$. To do this, we require the variational family to be a **conditionally conjugate model**, see [Blei's review](https://arxiv.org/pdf/1601.00670.pdf). The `pyro.plate` allows us to encode conditional independence in the model. Let's do that: ###Code def model_vec(data): alpha0 = torch.tensor(10.0) beta0 = torch.tensor(10.0) f = pyro.sample("latent_fairness", dist.Beta(alpha0, beta0)) for i in pyro.plate("data_loop", len(data)): pyro.sample("obs_{}".format(i), dist.Bernoulli(f), obs=data[i]) # this allows us to leverage conditional independence of the observations given the latent variables ###Output _____no_output_____ ###Markdown Let's make this more efficient by:- Vectorizing - Subsampling, so we can mini-batch ###Code def model_vec_subsampled(data): alpha0 = torch.tensor(10.0) beta0 = torch.tensor(10.0) f = pyro.sample("latent_fairness", dist.Beta(alpha0, beta0)) with pyro.plate("observe_data", # Size is required so that the correct scaling factor can be computed size=len(data), # We only evaluate the log likelihood for 5 randomly chosen datapoints in the data, # and the log likelihood will automatically get scaled by N/M subsample_size=5, # set the device to use a GPU # device = # A stateful subsampling scheme may be necessary -- it is possible to never touch # some data points if the dataset is sufficiently large # subsample = ) as ind: pyro.sample("obs", dist.Bernoulli(f), obs=data.index_select(0, ind)) # this will be a tensor of length 5 svi = SVI(model_vec_subsampled, guide, optimizer, loss=Trace_ELBO()) n_steps = 1000 for step in tqdm(range(n_steps)): svi.step(d) alpha_q = pyro.param("alpha_q").item() beta_q = pyro.param("beta_q").item() summarize_beta(alpha_q, beta_q) ###Output _____no_output_____ ###Markdown Conditionally conjugate models We may also have conditional independence in the variational distribution (the `guide`) too. Let $\beta$ be a vector of global latent variables, which potentially govern any of the data. Let $z$ be a vector of local latent variables, whose $i$th component only governs data in the $i$th "context". The joint density of a conditionally conjugate model is:$$p(\beta, \boldsymbol{z}, \boldsymbol{x}) = p(\beta) \prod_{i=1}^n p(z_i, x_i | \beta)$$ The variational family (according to the pyro docs, though I don't yet get how this gels with the review) should factorize like$$p(\beta, \boldsymbol{z}) = p(\beta) \prod_{i=1}^n p(z_i | \beta, \lambda_i)$$where $\lambda_i$ are local variational parameters (other variational parameters are left implicit). To achieve this in `pyro`, a `plate` should be used in both the model and the guide, ensuring that the guide's conditional independence structure respects that of the model. MAP estimation Consider a mixture of Gaussians model$$\mu_k \sim N(0, \sigma^2), k=1,...,K$$$$c_i \sim \text{Cat}(1/K, ..., 1/K), i=1,...,n$$$$x_i|c_i,\mu \sim \mathcal{N}(c_i^T \mu, 1), i=1,...,n$$ We will train a MAP estimator of $\mu_k$ by constructing a Dirac-distribution guide using `AutoDelta`.See the example in [the docs](https://pyro.ai/examples/gmm.html) also [these notes](https://bookdown.org/robertness/causalml/docs/tutorial-on-deep-probabilitic-modeling-with-pyro.htmlgaussian-mixture-model-1). ###Code from collections import defaultdict import numpy as np import matplotlib.pyplot as plt from pyro.infer import config_enumerate from pyro import poutine from pyro.contrib.autoguide import AutoDelta from pyro.infer import TraceEnum_ELBO, config_enumerate np.random.seed(42) K = 2 n = 100 sigma_mu = 10. mu_k = np.random.normal(0, sigma_mu, size=K) ci = np.random.choice(K, size=n) sigma = 1 d = [] for i, c in enumerate(ci): d.append(np.random.normal(mu_k[c], sigma)) d = np.hstack(d) mu_k plt.hist(d, bins=int(sigma_mu)*2); pyro.enable_validation(True) data = torch.tensor(d, dtype=torch.float) @config_enumerate def model_mixture_of_gaussians(data): weights = torch.ones(K, dtype=torch.float)/K with pyro.plate("mu", K): locs = pyro.sample("locs", dist.Normal(0., sigma_mu)) with pyro.plate("data", len(data)): assignment = pyro.sample('assignment', dist.Categorical(weights)) pyro.sample('obs', dist.Normal(locs[assignment], 1.), obs=data) # Let pyro make a guide automatically for us, using Delta distributions to find the parameters of interest (the component locations) auto_guide = AutoDelta(poutine.block(model_mixture_of_gaussians, expose=['locs'])) # automatically makes a variational distribution from the model for MAP estimation optim = pyro.optim.Adam({'lr': 0.1, 'betas': [0.8, 0.99]}) elbo = TraceEnum_ELBO(max_plate_nesting=1) svi = SVI(model_mixture_of_gaussians, auto_guide, optim, loss=elbo) def initialize(seed, guide): pyro.set_rng_seed(seed) pyro.clear_param_store() # Initialize means from a subsample of data. pyro.param('auto_locs', data[torch.multinomial(torch.ones(len(data)) / len(data), K)]); loss = svi.loss(model_mixture_of_gaussians, guide, data) return loss # Choose the best among 100 random initializations. loss, seed = min((initialize(seed, auto_guide), seed) for seed in range(100)) initialize(seed, auto_guide) print('seed = {}, initial_loss = {}'.format(seed, loss)) losses = [] for i in tqdm(range(200)): loss = svi.step(data) losses.append(loss) plt.figure(figsize=(10,3), dpi=100).set_facecolor('white') plt.plot(losses) plt.xlabel('iters') plt.ylabel('loss') plt.yscale('log') plt.title('Convergence of SVI'); map_estimates = auto_guide(data) locs = map_estimates['locs'] locs mu_k ###Output _____no_output_____
notebooks/PopulationGrowth.ipynb
###Markdown We use a population growth model $$Pa = P * (1+r)^{-T}$$where: P = initial population valueT = Time span (years)r = Growth ratePa = Adjusted populationOur growth rates come from a UN spreadsheet, found here: http://esa.un.org/unpd/wpp/Download/Standard/Population/The spreadsheet has growth rates per country, in half-decade increments. The basic function *adjust_pop* is available through the public interface. ###Code tpop = 2015 tevent = 2016 ccode = 841 #US pop = 1e6 rate = 0.01 #1% growth rate newpop = adjust_pop(pop,tpop,tevent,rate) print('Adjusted population is: %s' % (format(int(newpop),",d"))) ###Output Adjusted population is: 1,010,000 ###Markdown We can have negative population growth... ###Code tpop = 2016 tevent = 2015 pop = 1e6 rate = 0.01 #1% growth rate newpop = adjust_pop(pop,tpop,tevent,rate) print('Adjusted population is: %s' % (format(int(newpop),",d"))) ###Output Adjusted population is: 990,099 ###Markdown Normally we will use the PopulationGrowth class, created from the UN spreadsheet. ###Code excelfile = os.path.join(os.getcwd(),'..','test','data','WPP2015_POP_F02_POPULATION_GROWTH_RATE.xls') pg = PopulationGrowth.loadFromUNSpreadsheet(excelfile) ###Output _____no_output_____ ###Markdown We can get all the rates for a given (ISO numeric) country code. ###Code years,rates = pg.getRates(840) for year,rate in zip(years,rates): print('%i: %.5f' % (year,rate)) plt.plot(years,rates); plt.xlabel('Year'); plt.ylabel('Population Growth Rate'); plt.title('United States Growth Rates'); ###Output 1950: 0.01581 1955: 0.01724 1960: 0.01373 1965: 0.00987 1970: 0.00885 1975: 0.00948 1980: 0.00945 1985: 0.00985 1990: 0.01035 1995: 0.01211 2000: 0.00915 2005: 0.00907 2010: 0.00754 ###Markdown We can also just get a single year. ###Code rate = pg.getRate(840,1963) print(rate) ###Output 0.01373 ###Markdown Finally, and perhaps most usefully, we can use this class to apply the population growth rates for a country to a population data set (scalar or array). ###Code population = 1e6 startyear = 1993 endyear = 2016 newpop = pg.adjustPopulation(population,'US',startyear,endyear) print(format(int(newpop),",d")) ###Output 1,306,742
mavenn/development/20.08.26_load_models_for_JBK/.ipynb_checkpoints/mavenn_load_model_MPSA-checkpoint.ipynb
###Markdown Imports and set path to local mavenn ###Code import pandas as pd import matplotlib.pyplot as plt import numpy as np from sklearn.model_selection import train_test_split from numpy.random import default_rng import warnings warnings.filterwarnings('ignore') import sys path_to_mavenn_local = '/Users/tareen/Desktop/Research_Projects/2020_mavenn_github/mavenn' sys.path.insert(0,path_to_mavenn_local) import mavenn from mavenn.src.utils import get_example_dataset from mavenn.src.utils import ge_plots_for_mavenn_demo from mavenn.src.utils import onehot_encode_array, _generate_nbr_features_from_sequences, _generate_all_pair_features_from_sequences from mavenn.src.utils import _center_matrix import tensorflow as tf import tensorflow.keras.backend as K # Path being used: mavenn.__path__ ###Output _____no_output_____ ###Markdown Load data, and estimate instrinsic information ###Code # Load these data so that we may use test data for predictions. MPSA_data = pd.read_csv('20.08.16_mpsa_data/brca2_lib1_rep1.csv') MPSA_data.head() X = MPSA_data['ss'].values y = MPSA_data['log_psi'].values dy = MPSA_data['dlog_psi'].values ix = (y > 0) & (dy > 0) mavenn.estimate_instrinsic_information(y[ix],dy[ix],True) # split data into test, we only need test data here, the loaded # model will already contain the training data it was trained on x_train, x_test, y_train, y_test = train_test_split(X, y, random_state = 0) ###Output _____no_output_____ ###Markdown Load model from file ###Code # GER_additive = mavenn.load('model_files/gaussian_mpsa_model_additive') # GER_pairwise = mavenn.load('model_files/gaussian_mpsa_model') GER_additive = mavenn.load('model_files/skewT_mpsa_model_additive') GER_pairwise = mavenn.load('model_files/skewT_mpsa_model_pairwise') # load_config = pd.read_csv('model_files/skewT_mpsa_model_pairwise.csv', index_col=[0]) # #len(load_config) #type(load_config['ge_nonlinearity_monotonic'].loc[0]) GER_additive.gpmap_type, GER_pairwise.gpmap_type ###Output _____no_output_____ ###Markdown Make predictions and compute latent phenotype values ###Code # predictions yhat_additive = GER_additive.x_to_yhat(x_test) # evaluate phi for sequences phi_additive = GER_additive.x_to_phi(x_test) # equalate g(phi) for continuous phi phi_range_additive = np.linspace(min(phi_additive),max(phi_additive),1000) y_hat_GE_additive = GER_additive.phi_to_yhat(phi_range_additive) # noise model that is used to get eta parameters qs_additive = GER_additive.yhat_to_yq(y_hat_GE_additive,q=np.array([0.16,0.84])) # predictions yhat_pairwise = GER_pairwise.x_to_yhat(x_test) # evaluate phi for sequences phi_pairwise = GER_pairwise.x_to_phi(x_test) # equalate g(phi) for continuous phi phi_range_pairwise = np.linspace(min(phi_pairwise),max(phi_pairwise),1000) y_hat_GE_pairwise = GER_pairwise.phi_to_yhat(phi_range_pairwise) # noise model that is used to get eta parameters qs_pairwise = GER_pairwise.yhat_to_yq(y_hat_GE_pairwise,q=np.array([0.16,0.84])) SH_train = pd.read_excel('Sailer_Harms_Spline_fit_MPSA_data.xlsx',sheet_name='train') SH_test = pd.read_excel('Sailer_Harms_Spline_fit_MPSA_data.xlsx',sheet_name='test') SH_line = pd.read_excel('Sailer_Harms_Spline_fit_MPSA_data.xlsx',sheet_name='line') qs_pairwise.shape ###Output _____no_output_____ ###Markdown Show plots ###Code fig, ax = plt.subplots(3,2,figsize=(8,12)) Rsq = np.corrcoef(yhat_additive.ravel(),y_test)[0][1]**2 ax[0,0].scatter(yhat_additive,y_test,s=5,alpha=0.4) ax[0,0].set_xlabel('Predictions (test)') ax[0,0].set_ylabel('Observations (test)') ax[0,0].set_title('$R^2$: '+str(Rsq)[0:5]+' (additive)') ax[0,1].plot(phi_range_additive,GER_additive.phi_to_yhat(phi_range_additive)) ax[0,1].scatter(phi_additive,y_test,s=0.25, alpha=0.4, label='Observations') ax[0,1].plot(phi_range_additive,GER_additive.phi_to_yhat(phi_range_additive),lw=2,label='$\hat{y}$',alpha=1.0,color='black') for q_index in range(qs_additive.shape[1]): ax[0,1].plot(phi_range_additive,qs_additive[:,q_index].ravel(),color='orange',lw=2,alpha=0.85,label='$\hat{y} \pm \sigma(\hat{y})$') ax[0,1].set_ylabel('Observations') ax[0,1].set_xlabel('Latent phenotype ($\phi$)') ax[0,1].set_title(GER_additive.ge_noise_model_type+' Likelihood, (additive)') Rsq = np.corrcoef(yhat_pairwise.ravel(),y_test)[0][1]**2 ax[1,0].scatter(yhat_pairwise,y_test,s=5,alpha=0.4) ax[1,0].set_xlabel('Predictions (test)') ax[1,0].set_ylabel('Observations (test)') ax[1,0].set_title('$R^2$: '+str(Rsq)[0:5]+' (pairwise)') ax[1,1].plot(phi_range_pairwise,GER_pairwise.phi_to_yhat(phi_range_pairwise)) ax[1,1].scatter(phi_pairwise,y_test,s=0.25, alpha=0.4, label='Observations') ax[1,1].plot(phi_range_pairwise,GER_pairwise.phi_to_yhat(phi_range_pairwise),lw=2,label='$\hat{y}$',alpha=1.0,color='black') for q_index in range(qs_pairwise.shape[1]): ax[1,1].plot(phi_range_pairwise,qs_pairwise[:,q_index].ravel(),color='orange',lw=2,alpha=0.85,label='$\hat{y} \pm \sigma(\hat{y})$') ax[1,1].set_ylabel('Observations') ax[1,1].set_xlabel('Latent phenotype ($\phi$)') ax[1,1].set_title(GER_pairwise.ge_noise_model_type+' Likelihood, (pairwise)') ax[2,1].scatter(SH_train['y_add'].values,SH_train['y_obs'].values,s=0.25,alpha=0.25) ax[2,1].plot(SH_line['y_add_line'].values,SH_line['y_obs_line'].values,color='black',lw=2) ax[2,1].set_xlabel('Latent phenotype ($\phi$)') ax[2,1].set_ylabel('Observations') ax[2,1].set_title('Sailer-Harms Spline Epistasis (additive)') Rsq = np.corrcoef(SH_test['yhat_test'].values,SH_test['y_test'].values)[0][1]**2 ax[2,0].scatter(SH_test['yhat_test'].values,SH_test['y_test'].values,s=5,alpha=0.4) ax[2,0].set_xlabel('Predictions (test)') ax[2,0].set_ylabel('Observations (test)') ax[2,0].set_title('$R^2$: '+str(Rsq)[0:5]+' (Spline Epistasis 5th Order)') plt.tight_layout() plt.show() GER_additive.x_to_phi('TAGGCTTCA'),GER_pairwise.x_to_phi('TAGGCTTCA') ###Output _____no_output_____
1.Study/2. with computer/4.Programming/2.Python/9. Numpy/ch1/summary_ch1.ipynb
###Markdown - Making ndarray- Information About ndarray : shape, size/itemsize, dtype- ndarray Indexing and Slicing- Reshape Resize and Vectorization Quiz ```[ch1]1. making ndarray 방법 5가지(entry가 무엇이든)2. ndarray의 information 중, entry 당 소비하는 memory 크기를 반환하는 함수는?3. ndarray의 information 중, entry 갯수를 반환하는 함수는?4. a가 3x4의 list type일 때, (1,1) entry를 인덱싱하는 방법은? / a가 ndarray라면?5. ndarray.resize((3,4)) / ndarray.reshape((3,4)) 의 차이점은?``` **Chapter1 ndarray_Notebook1 Making ndarray1-2**```1. np.array( [ ] )2. np.zeros( shape )3. np.ones( shape )4. np.empty( shape )5. np.full( shape, fill_value )``````1. np.zeros_like( ndarray )2. np.ones_like( ndarray )3. np.empty_like( ndarray )4. np.full_like( ndarray, fill_value )``` **Chapter1 ndarray: Notebook3 Information About ndarray**```1. shape np.array.shape => return ( , ) 2. size np.array.size => return "entry 갯수" ex) np.ones((2,3)).size => return 6 np.array.itemsize => return "entry 당 소비하는 memory 크기" ex) np.ones((2,3), dtype=np.int) => return 64 np.ones((2,3), dtype=np.int8) => return 8 *numpy는 기본적으로 64bit를 할당함. image데이터는 entry당 8bit이므로, default 64비트를 할당할 경우, entry당 (64-8)bit의 memory loss가 발생하는 것. 따라서, 주의해서 dtype을 설정해야 함.3. dtype np.array.dtype ``` **Chapter1 ndarray: Notebook4-5 ndarray Indexing and Slicing**```1. list 타입의 matrix indexing / slicing a = list([[1,2],[2,3],[3,4]]) a[1][1] => 32. ndarray 타입의 matrix indexing / slicing b = np.array(a) b[1,1] => 3 3. list / ndarray의 indexing/slicing 차이 list => 인덱싱/슬라이싱 시, 복사본을 만들어 return. ndarray => 인덱싱/슬라이싱 시, 원본을 그대로 참조해 return. (따라서, 원본 값이 바뀌면, 인덱싱/슬라이싱한 주머니 값도 바뀜) *따라서, ndarray를 인덱싱/슬라이싱 시, np.array[1:,].copy()로 list처럼 복사본을 만들어 저장하도록 하기도 함. *ndarray는 워낙 큰 데이터를 다루므로, memory consumption 최소화하기 위한 철학이 깔려있는 것.``` **Chapter1 ndarray: Notebook6 Reshape Resize and Vectorization** **reshape, resize는 같은 역할**```1.numpy.reshape2.numpy.resize3.ndarray.reshape4.ndarray.resize```[차이점]1. resize => in_place 연산이라는 점이 차이2. reshape => return 값이 본 데이터의 참조값. 따라서, 원본이 바뀌면 reshape한 데이터도 바뀜 *원본 바뀌어도 reshape 데이터 영향 받길 원치 않으면, np.array.reshape( () ).copy() 로 '.copy()'활용 ex) a = np.full((2,6), fill_value=2) b = a.reshape((4,3)) a[1] = 10 => b(reshape된)도 바뀜 ###Code a = np.full((3,4), fill_value=3) a b = a.reshape((2,6)) c = a.reshape((2,6)).copy() b a[0] = 10 b c ###Output _____no_output_____
.ipynb_checkpoints/Pharma Procurement System-checkpoint.ipynb
###Markdown Input universe of discourse for input variables ###Code x_stock = x_budget = x_demand = np.arange(0, 11) #x_budget = np.arange(0, 1.1, 0.1) ###Output _____no_output_____ ###Markdown membership functions Stock ###Code low_stock = fuzz.trimf(x_stock, [0, 0, 3]) medium_stock = fuzz.trimf(x_stock, [2, 5, 8]) high_stock = fuzz.trimf(x_stock, [7, 10, 10]) ###Output _____no_output_____ ###Markdown Budget ###Code low_budget = fuzz.sigmf(x_budget, 2, -4) medium_budget = fuzz.gaussmf(x_budget, 5, 1) high_budget = fuzz.sigmf(x_budget, 8, 4) ###Output _____no_output_____ ###Markdown Demand ###Code low_demand = fuzz.trimf(x_demand, [0, 0, 3]) medium_demand = fuzz.trimf(x_demand, [2, 5, 8]) high_demand = fuzz.trimf(x_demand, [7, 10, 10]) ###Output _____no_output_____ ###Markdown Creating figures to show membership functions ###Code _, (stock_axis, budget_axis, demand_axis) = plt.subplots(nrows=3, figsize=(8, 9)) # adding title to axes stock_axis.set_title('Stock') budget_axis.set_title('Budget') demand_axis.set_title('Demand') # adding membership functions to their respective axes ## stock axis stock_axis.plot(x_stock, low_stock, 'g', label='Low') stock_axis.plot(x_stock, medium_stock, 'r', label='Medium') stock_axis.plot(x_stock, high_stock, 'b', label='High') ## budget axis budget_axis.plot(x_budget, low_budget, 'g', label='Low') budget_axis.plot(x_budget, medium_budget, 'r', label='Medium') budget_axis.plot(x_budget, high_budget, 'b', label='High') ## demand axis demand_axis.plot(x_demand, low_demand, 'g', label='Low') demand_axis.plot(x_demand, medium_demand, 'r', label='Medium') demand_axis.plot(x_demand, high_demand, 'b', label='High') # adding legends to axes stock_axis.legend() budget_axis.legend() demand_axis.legend() plt.tight_layout() ###Output _____no_output_____ ###Markdown Output universe of discourse for output ###Code x_order = np.arange(0, 11) ###Output _____no_output_____ ###Markdown membership function ###Code #order_none = fuzz.trapmf(x_order, [0, 0, 10, 10]) order_none = fuzz.trimf(x_stock, [0, 0, 2]) order_some = fuzz.trimf(x_stock, [1, 3, 5]) order_half = fuzz.trimf(x_stock, [4, 5, 6]) order_more_than_half = fuzz.trimf(x_stock, [5, 7, 9]) order_all = fuzz.trimf(x_stock, [8, 10, 10]) #order_all = fuzz.trimf(x_order, [0, 0.1, 0.2]) _, (order_axis) = plt.subplots(nrows=1, figsize=(8, 3)) order_axis.plot(x_order, order_none, 'r', label='None') order_axis.plot(x_order, order_some, 'b', label='Some') order_axis.plot(x_order, order_half, 'g', label='Half') order_axis.plot(x_order, order_more_than_half, 'y', label='> half') order_axis.plot(x_order, order_all, color='pink', label='All') order_axis.legend() plt.tight_layout() ###Output _____no_output_____ ###Markdown User inputs for inferencing ###Code stock_input = 1 budget_input = 9 demand_input = 8 stock_level_low = fuzz.interp_membership(x_stock, low_stock, stock_input) stock_level_medium = fuzz.interp_membership(x_stock, medium_stock, stock_input) stock_level_high = fuzz.interp_membership(x_stock, high_stock, stock_input) print(stock_level_low, stock_level_medium, stock_level_high) budget_level_low = fuzz.interp_membership(x_budget, low_budget, budget_input) budget_level_medium = fuzz.interp_membership(x_budget, medium_budget, budget_input) budget_level_high = fuzz.interp_membership(x_budget, high_budget, budget_input) print(budget_level_low, budget_level_medium, budget_level_high) demand_level_low = fuzz.interp_membership(x_demand, low_demand, demand_input) demand_level_medium = fuzz.interp_membership(x_demand, medium_demand, demand_input) demand_level_high = fuzz.interp_membership(x_demand, high_demand, demand_input) print(demand_level_low, demand_level_medium, demand_level_high) ###Output 0.6666666666666666 0.0 0.0 6.914400106935423e-13 0.00033546262790251185 0.9820137900379085 0.0 0.0 0.3333333333333333 ###Markdown Rule base ###Code rule_1 = np.fmin(stock_level_low, np.fmin(demand_level_low, budget_level_low)) rule_2 = np.fmin(stock_level_low, np.fmin(demand_level_low, budget_level_medium)) rule_3 = np.fmin(stock_level_low, np.fmin(demand_level_low, budget_level_high)) rule_4 = np.fmin(stock_level_low, np.fmin(demand_level_medium, budget_level_low)) rule_5 = np.fmin(stock_level_low, np.fmin(demand_level_medium, budget_level_medium)) rule_6 = np.fmin(stock_level_low, np.fmin(demand_level_medium, budget_level_high)) rule_7 = np.fmin(stock_level_low, np.fmin(demand_level_high, budget_level_low)) rule_8 = np.fmin(stock_level_low, np.fmin(demand_level_high, budget_level_medium)) rule_9 = np.fmin(stock_level_low, np.fmin(demand_level_high, budget_level_high)) rule_10 = np.fmin(stock_level_medium, np.fmin(demand_level_low, budget_level_low)) rule_11 = np.fmin(stock_level_medium, np.fmin(demand_level_low, budget_level_medium)) rule_12 = np.fmin(stock_level_medium, np.fmin(demand_level_low, budget_level_high)) rule_13 = np.fmin(stock_level_medium, np.fmin(demand_level_medium, budget_level_low)) rule_14 = np.fmin(stock_level_medium, np.fmin(demand_level_medium, budget_level_medium)) rule_15 = np.fmin(stock_level_medium, np.fmin(demand_level_medium, budget_level_high)) rule_16 = np.fmin(stock_level_medium, np.fmin(demand_level_high, budget_level_low)) rule_17 = np.fmin(stock_level_medium, np.fmin(demand_level_high, budget_level_medium)) rule_18 = np.fmin(stock_level_medium, np.fmin(demand_level_high, budget_level_high)) rule_19 = stock_level_high # none as output activation_none = np.fmin(rule_1, np.fmin(rule_10, np.fmin(rule_11, np.fmin(rule_13, np.fmin(rule_19, order_none))))) # some as output activation_some = np.fmin(rule_2, np.fmin(rule_4, np.fmin(rule_7,np.fmin(rule_12,np.fmin(rule_14,np.fmin(rule_16, order_half)))))) # half as output activation_half = np.fmin(rule_3, np.fmin(rule_5, np.fmin(rule_6, np.fmin(rule_8, order_half)))) # more_than_half as output activation_more_than_half = np.fmin(rule_6, np.fmin(rule_16, np.fmin(rule_18, order_more_than_half))) # all as output activation_all = np.fmin(rule_9, np.fmin(rule_18, order_all)) print(activation_none, activation_some, activation_half, activation_more_than_half, activation_all) order0 = np.zeros_like(x_order) fig, ax0 = plt.subplots(figsize=(8, 3)) ax0.fill_between(x_order, order0, activation_none, facecolor='b', alpha=0.7) ax0.plot(x_order, order_none, 'b', linewidth=0.5, linestyle='--', ) ax0.fill_between(x_order, order0, activation_some, facecolor='g', alpha=0.7) ax0.plot(x_order, order_some, 'g', linewidth=0.5, linestyle='--') ax0.fill_between(x_order, order0, activation_half, facecolor='r', alpha=0.7) ax0.plot(x_order, order_half, 'r', linewidth=0.5, linestyle='--') ax0.fill_between(x_order, order0, activation_more_than_half, facecolor='Orange', alpha=0.7) ax0.plot(x_order, order_more_than_half, 'o', linewidth=0.5, linestyle='--') ax0.fill_between(x_order, order0, activation_all, facecolor='Yellow', alpha=0.7) ax0.plot(x_order, order_all, 'y', linewidth=0.5, linestyle='--') ax0.set_title('Output membership activity') plt.tight_layout() aggregated = np.fmax(activation_none, np.fmax(activation_some, np.fmax(activation_half, np.fmax(activation_more_than_half, activation_all)))) print(aggregated) # Calculate defuzzified result output_order = fuzz.defuzz(x_order, aggregated, 'centroid') output_order_activation = fuzz.interp_membership(x_order, aggregated, output_order) # Visualize this fig, ax0 = plt.subplots(figsize=(8, 3)) ax0.plot(x_order, activation_none, 'b', linewidth=0.5, linestyle='--', ) ax0.plot(x_order, activation_some, 'b', linewidth=0.5, linestyle='--', ) ax0.plot(x_order, activation_half, 'b', linewidth=0.5, linestyle='--', ) ax0.plot(x_order, activation_more_than_half, 'b', linewidth=0.5, linestyle='--', ) ax0.plot(x_order, activation_all, 'b', linewidth=0.5, linestyle='--', ) ax0.fill_between(x_order, order0, aggregated, facecolor='Purple', alpha=0.7) ax0.plot([output_order, output_order], [0, output_order_activation], 'k', linewidth=1.5, alpha=0.9) ax0.set_title('Aggregated membership and result (line)') ###Output [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
src/triage/component/audition/example_audition_notebook.ipynb
###Markdown Setting up the Auditioner instanceCurrently you need to specify the set of `model_group_id`s and `train_end_time`s you want to use manually, so here we're reading a few sets out of the database.Additionally, you need to specify a name for the best distance table when creating the `Auditioner` and should ensure it doesn't already exist.For simplicity, we'll just look at precision@300_abs here. ###Code conn = catwalk.db.connect() sel = """ SELECT model_group_id FROM results.model_groups WHERE model_config->>'label_definition' = 'any_serious_violation' ORDER BY RANDOM() ; """ model_groups = list(pd.read_sql(sel,conn)['model_group_id']) sel = """ SELECT DISTINCT train_end_time FROM results.models WHERE model_group_id IN ({}) AND EXTRACT(MONTH FROM train_end_time) IN (1,4,7,10) AND train_end_time >= '2012-01-01' ORDER BY train_end_time ; """.format(', '.join(map(str, model_groups))) end_times = list(pd.read_sql(sel, conn)['train_end_time']) aud = Auditioner( db_engine = conn, model_group_ids = model_groups, train_end_times = end_times, initial_metric_filters = [{'metric': 'precision@', 'parameter': '300_abs', 'max_from_best': 1.0, 'threshold_value': 0.0}], models_table = 'models', distance_table = 'kr_test_dist' ) ###Output _____no_output_____ ###Markdown Plotting the best distance metric and groups over timeThis is done with the `plot_model_groups` method and may take a minute to generate. ###Code aud.plot_model_groups() ###Output _____no_output_____ ###Markdown Applying thresholds to weed out bad modelsHere we use the `update_metric_filters` to apply a set of filters to the model groups we're considering in order to elminate poorly performing ones. The model groups will be plotted again after updating the filters. ###Code aud.update_metric_filters( [{ 'metric': 'precision@', 'parameter': '300_abs', 'max_from_best': 0.2, 'threshold_value': 0.0 }] ) ###Output _____no_output_____ ###Markdown Apply a round of filtering, starting with no threshold_value and a fairly wide margin on max_from_best ###Code # how many model groups are left after the first round of filtering? len(aud.thresholded_model_group_ids) ###Output _____no_output_____ ###Markdown That didn't thin things out too much, so let's get a bit more agressive with both parameters: ###Code aud.update_metric_filters([{ 'metric': 'precision@', 'parameter': '300_abs', 'max_from_best': 0.1, 'threshold_value': 0.5 }]) len(aud.thresholded_model_group_ids) ###Output _____no_output_____ ###Markdown That's starting to look better, but we can probably narrow even a bit more... ###Code aud.update_metric_filters([{ 'metric': 'precision@', 'parameter': '300_abs', 'max_from_best': 0.05, 'threshold_value': 0.65 }]) len(aud.thresholded_model_group_ids) ###Output _____no_output_____ ###Markdown This looks like a better set of prospective models to consider. Could potentially even back off a little bit, but certainly seems like we've cleared out most of the worst models. Applying selection rules and calculating regrets for the narrowed set of modelsThe goal of audition is to narrow a very large number of model groups to a small number of best candidates, ideally making use of the full time series of information. There are several ways one could consider doing so, using over-time averages of the metrics of interest, weighted averages to balance between metrics, the distance from best metrics, and balancing metric average values and stability. Audition formalizes this idea through "selection rules" that take in the data up to a given point in time, apply some rule to choose a model group, and evaluate the performance of that chosen model in the subsequent time window, the `regret`. You can register, evaluate, and update selection rules associated with the `Auditioner` object as shown below. ###Code seln_rules = [{ 'shared_parameters': [ {'metric': 'precision@', 'parameter': '300_abs'} ], 'selection_rules': [ {'name': 'best_current_value'}, {'name': 'best_average_value'}, {'name': 'most_frequent_best_dist', 'dist_from_best_case': [0.01, 0.05, 0.1, 0.15]} ] }, { 'shared_parameters': [ {'metric': 'precision@', 'parameter': '300_abs'} ], 'selection_rules': [ {'name': 'best_avg_recency_weight', 'curr_weight': [1.5, 2.0, 5.0], 'decay_type': ['linear']} ] }, { 'shared_parameters': [{}], 'selection_rules': [{'name': 'random_model_group'}] }] aud.register_selection_rule_grid(seln_rules) ###Output _____no_output_____ ###Markdown Finally, when you have a selection rule grid you're happy with, the `selection_rule_model_group_ids` parameter of the `Auditioner` will give you the model groups chosen by the selection rules in the grid when applied to the most recent end time for use in application: ###Code aud.selection_rule_model_group_ids ###Output _____no_output_____
A3 - Bird Classification Challenge/Mask R-CNN/demo/Mask_R-CNN_demo.ipynb
###Markdown Mask R-CNN demoThis notebook illustrates one possible way of using `maskrcnn_benchmark` for computing predictions on images from an arbitrary URL.Let's start with a few standard imports ###Code import matplotlib.pyplot as plt import matplotlib.pylab as pylab import requests from io import BytesIO from PIL import Image import numpy as np import os, sys import cv2 sys.path.append(os.path.dirname(os.getcwd())) # this makes our figures bigger pylab.rcParams['figure.figsize'] = 20, 12 import torch print(torch.__version__) ###Output _____no_output_____ ###Markdown Those are the relevant imports for the detection model ###Code from maskrcnn_benchmark.config import cfg from predictor import COCODemo ###Output _____no_output_____ ###Markdown We provide a helper class `COCODemo`, which loads a model from the config file, and performs pre-processing, model prediction and post-processing for us.We can configure several model options by overriding the config options.In here, we make the model run on the CPU ###Code config_file = "../configs/caffe2/e2e_mask_rcnn_R_50_FPN_1x_caffe2.yaml" # update the config options with the config file cfg.merge_from_file(config_file) # manual override some options cfg.merge_from_list(["MODEL.DEVICE", "cpu"]) ###Output _____no_output_____ ###Markdown Now we create the `COCODemo` object. It contains a few extra options for conveniency, such as the confidence threshold for detections to be shown. ###Code coco_demo = COCODemo( cfg, min_image_size=800, confidence_threshold=0.6, ) ###Output _____no_output_____ ###Markdown Let's define a few helper functions for loading images from a URL ###Code def load(url): """ Given an url of an image, downloads the image and returns a PIL image """ response = requests.get(url) pil_image = Image.open(BytesIO(response.content)).convert("RGB") # convert to BGR format image = np.array(pil_image)[:, :, [2, 1, 0]] return image def imshow(img): plt.imshow(img[:, :, [2, 1, 0]]) plt.axis("off") ###Output _____no_output_____ ###Markdown Let's now load an image from the COCO dataset. It's reference is in the comment ###Code # from http://cocodataset.org/#explore?id=345434 path = "/home/amine/Documents/3A MVA/Semestre 1/Object Recognition and Computer Vision/HW3/bird_dataset/train_images/021.Eastern_Towhee" # image = load("http://farm3.staticflickr.com/2469/3915380994_2e611b1779_z.jpg") image = cv2.imread(path+"/Eastern_Towhee_0117_22741.jpg") # cv2.imshow('Bird example',image) # cv2.waitKey(0) # cv2.destroyAllWindows() ###Output _____no_output_____ ###Markdown Computing the predictionsWe provide a `run_on_opencv_image` function, which takes an image as it was loaded by OpenCV (in `BGR` format), and computes the predictions on them, returning an image with the predictions overlayed on the image. ###Code # compute predictions coco_demo = COCODemo( cfg, min_image_size=800, confidence_threshold=0.7, ) # predictions = coco_demo.run_on_opencv_image(image) # imshow(predictions) # plt.show() cropImage(image, coco_demo) def cropImage(image, cocomodel): predictions = cocomodel.compute_prediction(image) top_predictions = cocomodel.select_top_predictions(predictions) result = image.copy() masks = top_predictions.get_field("mask").numpy() labels = top_predictions.get_field("labels") colors = cocomodel.compute_colors_for_labels(labels).tolist() contours = None for mask, color in zip(masks, colors): thresh = mask[0, :, :, None] _, contours, hierarchy = cv2.findContours( thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE ) image = cv2.drawContours(result, contours, -1, color, 3) idx=0 if contours==None: return None for i,c in enumerate(contours): x,y,w,h = cv2.boundingRect(c) if w>50 and h>50: idx+=1 new_img=image[y:y+h,x:x+w] cv2.imshow('Mask R-CNN example',new_img) cv2.waitKey(0) cv2.destroyAllWindows() return new_img # cv2.imshow('image', new_img) # cv2.waitKey(0) # cv2.destroyAllWindows() # from http://cocodataset.org/#explore?id=345434 # path = "/home/amine/Documents/3A MVA/Semestre 1/Object Recognition and Computer Vision/HW3/bird_dataset/train_images/021.Eastern_Towhee" # # image = load("http://farm3.staticflickr.com/2469/3915380994_2e611b1779_z.jpg") # image = cv2.imread(path+"/Eastern_Towhee_0117_22741.jpg") # # imshow(image) # # plt.show() # cropImage(image, coco_demo) import os rootDir = "../../../bird_dataset/" def list_files(dir): r = [] for root, dirs, files in os.walk(dir): for name in files: r.append(os.path.join(root, name)) return r directories = list_files(rootDir) # Generating cropped images for each image in directories for i,p in enumerate(directories): if i%100==0: print(i*100/len(directories)) image = cv2.imread(p) new_img = cropImage(image, coco_demo) if new_img != None: cv2.imwrite(p[:len(p)-4]+'_cropped.jpg',new_img) # print(p[:len(p)-4]+'Z.jpg') # imshow(image) # plt.show() # predictions = coco_demo.compute_prediction(image) # top_predictions = coco_demo.select_top_predictions(predictions) # result = image.copy() # # if self.show_mask_heatmaps: # # return self.create_mask_montage(result, top_predictions) # # result = self.overlay_boxes(result, top_predictions) # if coco_demo.cfg.MODEL.MASK_ON: # image = result # predictions = top_predictions # masks = predictions.get_field("mask").numpy() # labels = predictions.get_field("labels") # colors = coco_demo.compute_colors_for_labels(labels).tolist() # for mask, color in zip(masks, colors): # thresh = mask[0, :, :, None] # _, contours, hierarchy = cv2.findContours( # thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE # ) # # image = cv2.drawContours(image, contours, -1, color, 3) # composite = image # plt.imshow(composite) # plt.show() # cv2.imwrite(p[:len(p)-4]+'Z.jpg',composite) # print(p[:len(p)-4]+'Z.jpg') # result = self.overlay_class_names(result, top_predictions) ###Output _____no_output_____
Step 2 - Data Preprocessing/5. RSG_Oversample with DCGAN.ipynb
###Markdown Ready, Steady, Go AI (*Tutorial*) This tutorial is a supplement to the paper, **Ready, Steady, Go AI: A Practical Tutorial on Fundamentals of Artificial Intelligence and Its Applications in Phenomics Image Analysis** (*Patterns, 2021*) by Farid Nakhle and Antoine HarfoucheRead the accompanying paper [here](https://doi.org/10.1016/j.patter.2021.100323). Table of contents * **1. Background*** **2. Downloading Segmented Images*** **3. Balancing the Healthy Class with DCGAN** 1. Background **Why do we need to balance a dataset?**Data imbalance refers to an unequal distribution of classes within a dataset. In such scenario, a classification model could become biased, inaccurate and might produce unsatisfactory results. Therefore, we balance the dataset either by oversampling the minority class or undersampling the majority classes. To demonstrate the two scenarios, both oversampling and undersampling will be applied. Here, we will oversample the healthy class in the training set using the deep convolutional generative adversarial network (DCGAN) algorithm.**What is DCGAN?**Generative adversial network (GAN) algorithm was designed to generate new data instances that resemble training data. The idea was to pair two learning models, typically two ANNs, named generator and discriminator where the former learns to produce synthetic data, while the latter learns to distinguish true data from the output of the generator. During training, the generator tries to deceive the discriminator by synthesizing better data, while the discriminator becomes a better classifier. The equilibrium of this zero-sum game is reached when the discriminator can no longer distinguish real images from fakes.DCGAN is very similar to GAN, except that it uses convolutional and convolutional-transpose layers in the discriminator and generator, respectively, making it more suitable for synthesizing imaging data.Here, we provided the DCGAN algorithm with the healthy class of the training set (1272 images) to train it on generating synthetic leaves, and thus, oversampling the set to 1500 images 2. Downloading Segmented Images As a reminder, we are working with the PlantVillage dataset, originally obtained from [here](http://dx.doi.org/10.17632/tywbtsjrjv.1).For this tutorial, we will be working with a subset of PlantVillage, where we will choose the tomato classes only. We have made the subset available [here](http://dx.doi.org/10.17632/4g7k9wptyd.1). The next code will automatically download the dataset segmented with SegNet.**It is important to note that Colab deletes all unsaved data once the instance is recycled. Therefore, remember to download your results once you run the code.** ###Code import requests import os import zipfile ## FEEL FREE TO CHANGE THESE PARAMETERS dataset_url = "http://faridnakhle.com/pv/tomato-split-cropped-segmented.zip" save_data_to = "/content/dataset/tomato-segmented/" dataset_file_name = "tomato-segmented.zip" ####################################### if not os.path.exists(save_data_to): os.makedirs(save_data_to) r = requests.get(dataset_url, stream = True, headers={"User-Agent": "Ready, Steady, Go AI"}) print("Downloading dataset...") with open(save_data_to + dataset_file_name, "wb") as file: for block in r.iter_content(chunk_size = 1024): if block: file.write(block) ## Extract downloaded zip dataset file print("Dataset downloaded") print("Extracting files...") with zipfile.ZipFile(save_data_to + dataset_file_name, 'r') as zip_dataset: zip_dataset.extractall(save_data_to) ## Delete the zip file as we no longer need it os.remove(save_data_to + dataset_file_name) print("All done!") ###Output Downloading dataset... Dataset downloaded Extracting files... All done! ###Markdown 3. Balancing the Healthy Class with DCGAN We will import PyTorch as we will use it for the implementation of DCGAN ###Code import argparse import os import numpy as np import math import torchvision.transforms as transforms from torchvision.utils import save_image from torch.utils.data import DataLoader from torchvision import datasets from torch.autograd import Variable import torch.nn as nn import torch.nn.functional as F import torch ## YOU CAN CHANGE THESE VARIABLES n_epochs = 500 batch_size = 50 lr = 0.0002 b1 = 0.7 #adam: decay of first order momentum of gradient b2 = 0.999 #adam: decay of first order momentum of gradient n_cpu = 1 latent_dim = 100 #dimensionality of the latent space img_size = 224 channels = 3 #R, G, and B sample_interval = 400 #interval between image sampling ###################################################### class Generator(nn.Module): def __init__(self): super(Generator, self).__init__() self.init_size = img_size // 4 self.l1 = nn.Sequential(nn.Linear(latent_dim, 128 * self.init_size ** 2)) self.conv_blocks = nn.Sequential( nn.BatchNorm2d(128), nn.Upsample(scale_factor=2), nn.Conv2d(128, 128, 3, stride=1, padding=1), nn.BatchNorm2d(128, 0.8), nn.LeakyReLU(0.2, inplace=True), nn.Upsample(scale_factor=2), nn.Conv2d(128, 64, 3, stride=1, padding=1), nn.BatchNorm2d(64, 0.8), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(64, channels, 3, stride=1, padding=1), nn.Tanh(), ) def forward(self, z): out = self.l1(z) out = out.view(out.shape[0], 128, self.init_size, self.init_size) img = self.conv_blocks(out) return img class Discriminator(nn.Module): def __init__(self): super(Discriminator, self).__init__() def discriminator_block(in_filters, out_filters, bn=True): block = [nn.Conv2d(in_filters, out_filters, 3, 2, 1), nn.LeakyReLU(0.2, inplace=True), nn.Dropout2d(0.25)] if bn: block.append(nn.BatchNorm2d(out_filters, 0.8)) return block self.model = nn.Sequential( *discriminator_block(channels, 16, bn=False), *discriminator_block(16, 32), *discriminator_block(32, 64), *discriminator_block(64, 128), ) # The height and width of downsampled image ds_size = img_size // 2 ** 4 self.adv_layer = nn.Sequential(nn.Linear(128 * ds_size ** 2, 1), nn.Sigmoid()) def forward(self, img): out = self.model(img) out = out.view(out.shape[0], -1) validity = self.adv_layer(out) return validity def trainDCGAN(): def weights_init_normal(m): classname = m.__class__.__name__ if classname.find("Conv") != -1: torch.nn.init.normal_(m.weight.data, 0.0, 0.02) elif classname.find("BatchNorm2d") != -1: torch.nn.init.normal_(m.weight.data, 1.0, 0.02) torch.nn.init.constant_(m.bias.data, 0.0) os.makedirs("images", exist_ok=True) cuda = True if torch.cuda.is_available() else False load_from_checkpoint = False # Loss function adversarial_loss = torch.nn.BCELoss() # Initialize generator and discriminator generator = Generator() discriminator = Discriminator() if cuda: generator.cuda() discriminator.cuda() adversarial_loss.cuda() # Initialize weights generator.apply(weights_init_normal) discriminator.apply(weights_init_normal) # train set data_path = '/content/dataset/tomato-segmented/' train_dir = data_path + 'train/' train_dataset = datasets.ImageFolder( train_dir, transforms.Compose([ transforms.Resize(size=(img_size, img_size)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ])) dataloader = torch.utils.data.DataLoader( train_dataset, batch_size=batch_size, shuffle=True, num_workers=n_cpu, pin_memory=True) # Optimizers optimizer_G = torch.optim.Adam(generator.parameters(), lr=lr, betas=(b1, b2)) optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=lr, betas=(b1, b2)) Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor # ---------- # Load from Checkpoint # ---------- if (load_from_checkpoint): checkpointName = "./images/checkpoint_epoch_1000.pth" checkpoint = torch.load(checkpointName) generator.load_state_dict(checkpoint['G_state_dict']) discriminator.load_state_dict(checkpoint['D_state_dict']) optimizer_G.load_state_dict(checkpoint['G_optimizer']) optimizer_D.load_state_dict(checkpoint['D_optimizer']) print("Loaded CheckPoint: " + checkpointName) if cuda: generator.cuda() discriminator.cuda() # ---------- # Training # ---------- for epoch in range(n_epochs): for i, (imgs, _) in enumerate(dataloader): # Adversarial ground truths valid = Variable(Tensor(imgs.shape[0], 1).fill_(1.0), requires_grad=False) fake = Variable(Tensor(imgs.shape[0], 1).fill_(0.0), requires_grad=False) # Configure input real_imgs = Variable(imgs.type(Tensor)) # ----------------- # Train Generator # ----------------- optimizer_G.zero_grad() # Sample noise as generator input z = Variable(Tensor(np.random.normal(0, 1, (imgs.shape[0], latent_dim)))) # Generate a batch of images gen_imgs = generator(z) # Loss measures generator's ability to fool the discriminator g_loss = adversarial_loss(discriminator(gen_imgs), valid) g_loss.backward() optimizer_G.step() # --------------------- # Train Discriminator # --------------------- optimizer_D.zero_grad() # Measure discriminator's ability to classify real from generated samples real_loss = adversarial_loss(discriminator(real_imgs), valid) fake_loss = adversarial_loss(discriminator(gen_imgs.detach()), fake) d_loss = (real_loss + fake_loss) / 2 d_loss.backward() optimizer_D.step() print( "[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]" % ((epoch + 1), n_epochs, (i + 1), len(dataloader), d_loss.item(), g_loss.item()) ) batches_done = epoch * len(dataloader) + i if batches_done % sample_interval == 0: save_image(gen_imgs.data[:25], "images/%d.png" % batches_done, nrow=5, normalize=True) if epoch % 500 == 0: torch.save({ 'G_state_dict': generator.state_dict(), 'D_state_dict': discriminator.state_dict(), 'G_optimizer': optimizer_G.state_dict(), 'D_optimizer': optimizer_D.state_dict(), }, "images/checkpoint_epoch_" + str(epoch) +".pth") torch.save({ 'G_state_dict': generator.state_dict(), 'D_state_dict': discriminator.state_dict(), 'G_optimizer': optimizer_G.state_dict(), 'D_optimizer': optimizer_D.state_dict(), }, "images/checkpoint_final.pth") print("Training complete") ###Output _____no_output_____ ###Markdown **NB: To make running this notebook faster and our results easily reproducable, we made our trained model available and we will load it after this section. Thus, you might skip this next code block** ###Code trainDCGAN() ###Output _____no_output_____ ###Markdown **In the next section, we will load our trained model to make our results reproducable. You can change the loading path to use your own instead** ###Code ########################## ### DOWNLOAD THE MODEL ### ########################## ## FEEL FREE TO CHANGE THESE PARAMETERS model_URL = "http://faridnakhle.com/pv/models/RSGAI_DCGAN.zip" save_data_to = "/content/models/" model_file_name = "dcgan.zip" ####################################### if not os.path.exists(save_data_to): os.makedirs(save_data_to) print("Downloading model...") r = requests.get(model_URL, stream = True, headers={"User-Agent": "Ready, Steady, Go AI"}) with open(save_data_to + model_file_name, "wb") as file: for block in r.iter_content(chunk_size = 1024): if block: file.write(block) ## Extract downloaded zip dataset file print("Model downloaded") print("Extracting files...") with zipfile.ZipFile(save_data_to + model_file_name, 'r') as zip_dataset: zip_dataset.extractall(save_data_to) print("All done!") ###Output Downloading model... Model downloaded Extracting files... All done! ###Markdown Now that we have a trained DCGAN model, we can use it to generate healthy tomato leaf images ###Code def GenerateImages(modelPath, outPutFolder, IMGS2GENERATE): if not os.path.exists(outPutFolder): os.makedirs(outPutFolder) ## YOU CAN CHANGE THESE VARIABLES n_epochs = 1 batch_size = 50 lr = 0.0002 b1 = 0.7 #adam: decay of first order momentum of gradient b2 = 0.999 #adam: decay of first order momentum of gradient n_cpu = 1 latent_dim = 100 #dimensionality of the latent space img_size = 224 channels = 3 #R, G, and B sample_interval = 400 #interval between image sampling ###################################################### def weights_init_normal(m): classname = m.__class__.__name__ if classname.find("Conv") != -1: torch.nn.init.normal_(m.weight.data, 0.0, 0.02) elif classname.find("BatchNorm2d") != -1: torch.nn.init.normal_(m.weight.data, 1.0, 0.02) torch.nn.init.constant_(m.bias.data, 0.0) cuda = True if torch.cuda.is_available() else False load_from_checkpoint = True # Loss function adversarial_loss = torch.nn.BCELoss() # Initialize generator and discriminator generator = Generator() discriminator = Discriminator() if cuda: generator.cuda() discriminator.cuda() adversarial_loss.cuda() # Initialize weights generator.apply(weights_init_normal) discriminator.apply(weights_init_normal) # Optimizers optimizer_G = torch.optim.Adam(generator.parameters(), lr=lr, betas=(b1, b2)) optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=lr, betas=(b1, b2)) Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor # ---------- # Load from Checkpoint # ---------- if (load_from_checkpoint): checkpointName = modelPath checkpoint = torch.load(checkpointName) generator.load_state_dict(checkpoint['G_state_dict']) discriminator.load_state_dict(checkpoint['D_state_dict']) optimizer_G.load_state_dict(checkpoint['G_optimizer']) optimizer_D.load_state_dict(checkpoint['D_optimizer']) print("Loaded CheckPoint: " + checkpointName) if cuda: generator.cuda() discriminator.cuda() # ---------- # Generating images # ---------- for i in range (0, IMGS2GENERATE): z = Variable(Tensor(np.random.normal(0, 1, (1, latent_dim)))) # Generate a batch of images gen_imgs = generator(z) save_image(gen_imgs.data, outPutFolder + "/DCGAN_%d.png" % (i + 1), nrow=0, normalize=True) GenerateImages('/content/models/RSGAI_DCGAN.pth', '/content/output/', IMGS2GENERATE = 228) print("Data Generated") ###Output Loaded CheckPoint: /content/models/RSGAI_DCGAN.pth Data Generated ###Markdown Let's preview some of the generated data ###Code import matplotlib.pyplot as plt import matplotlib.image as mpimg imgPath = '/content/output/DCGAN_' imageOne = mpimg.imread(imgPath + "1.png") imageTen = mpimg.imread(imgPath + "10.png") plt.axis('off') plt.imshow(imageOne) plt.show() plt.axis('off') plt.imshow(imageTen) plt.show() ###Output _____no_output_____
Dance_Form.ipynb
###Markdown ###Code import os import zipfile local_zip='/content/0664343c9a8f11ea.zip' zip_ref=zipfile.ZipFile(local_zip,'r') zip_ref.extractall("/content") zip_ref.close() os.mkdir("/content/train") #!cp normal ~/.train #!chmod 600 ~/.train/normal import pandas as pd train=pd.read_csv('/content/dataset/train.csv') train.head() test=pd.read_csv('/content/dataset/test.csv') test.head() from sklearn.model_selection import train_test_split from keras.utils import to_categorical from tqdm import tqdm from keras.preprocessing import image train_images=os.listdir('/content/dataset/train') from sklearn.preprocessing import OneHotEncoder from sklearn.impute import SimpleImputer from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer ###Output _____no_output_____ ###Markdown Pipelining the images ###Code categorical_transformer = Pipeline(steps=[ ('imputer', SimpleImputer(strategy='most_frequent')), ('onehot', OneHotEncoder(handle_unknown='ignore')) ]) preprocessor = ColumnTransformer( transformers=[ ('cat', categorical_transformer, train['target']) ]) import tensorflow as tf ###Output _____no_output_____ ###Markdown Building the model ###Code model=tf.keras.models.Sequential([ tf.keras.layers.Conv2D(16,(3,3),activation='relu',input_shape=(150,150,3)), tf.keras.layers.MaxPool2D(2,2), tf.keras.layers.Conv2D(32,(3,3),activation='relu'), tf.keras.layers.MaxPool2D(2,2), tf.keras.layers.Conv2D(64,(3,3),activation='relu'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Flatten(), tf.keras.layers.Dense(512,activation='relu'), tf.keras.layers.Dense(1,activation='sigmoid') ]) model.summary() import numpy as np y = np.array(train['target']) y.shape X_train, X_test, y_train, y_test = train_test_split(train_images, y, random_state=42, test_size=0.1) from tensorflow.keras.optimizers import RMSprop model.compile(optimizer=RMSprop(lr=0.001), loss='categorical_crossentropy', metrics=['acc']) from tensorflow.keras.preprocessing.image import ImageDataGenerator train_datagen=ImageDataGenerator( rescale=1./255, width_shift_range=0.2, height_shift_range=0.2, rotation_range=40, zoom_range=0.2, horizontal_flip=True, shear_range=0.2, fill_mode='nearest' ) train_generator=train_datagen.flow_from_dataframe(train_images, target_size=(150,150), class_mode='categorical', batch_size=20, ) model.fit(X_train, train[''], steps_per_epoch=50, epochs=25) ###Output _____no_output_____
python/zlib-binascii/py-zlib-binascii.ipynb
###Markdown Py-file-zlib-binascii Python对文件的处理,可以压缩和解压缩操作,这里以bin文件形式对进行讲解。 通过rb模式打开bin文件,读取出来的为bytes类型,详情可见: https://docs.python.org/3/tutorial/inputoutput.htmlreading-and-writing-files。 Python库简单说明: 1、zlib库用于对文件的压缩和解压缩操作。 2、binascii库用于二进制和ASCII之间的转化。 ###Code import zlib help(zlib) import binascii help(binascii) import zlib import binascii with open('hello_world.bin', 'rb') as f: # Step1: compress file data tmp = zlib.compress(f.read()) data = binascii.hexlify(tmp) # Step2: decompress file data data = binascii.unhexlify(data) zlib.decompress(data) ###Output _____no_output_____
7-3-exercise-build-regression-model.ipynb
###Markdown Exercise: Build a simple logistic regression modelIn this exercise, we'll fit a simple logistic regression model that will try to predict the chance of an avalanche. Recall that logistic regression fits an s-shaped curve to data, rather than a straight line, and we can use this to calculate a probability of a binary outcome. Data visualizationLet's start this exercise by loading in and having a look at our data: ###Code import pandas !pip install statsmodels !wget https://raw.githubusercontent.com/MicrosoftDocs/mslearn-introduction-to-machine-learning/main/graphing.py !wget https://raw.githubusercontent.com/MicrosoftDocs/mslearn-introduction-to-machine-learning/main/Data/avalanche.csv #Import the data from the .csv file dataset = pandas.read_csv('avalanche.csv', delimiter="\t") #Let's have a look at the data dataset ###Output Requirement already satisfied: statsmodels in /anaconda/envs/py37_default/lib/python3.7/site-packages (0.12.2) Requirement already satisfied: scipy>=1.1 in /anaconda/envs/py37_default/lib/python3.7/site-packages (from statsmodels) (1.5.2) Requirement already satisfied: numpy>=1.15 in /anaconda/envs/py37_default/lib/python3.7/site-packages (from statsmodels) (1.19.2) Requirement already satisfied: patsy>=0.5 in /anaconda/envs/py37_default/lib/python3.7/site-packages (from statsmodels) (0.5.1) Requirement already satisfied: pandas>=0.21 in /anaconda/envs/py37_default/lib/python3.7/site-packages (from statsmodels) (1.2.0) Requirement already satisfied: python-dateutil>=2.7.3 in /anaconda/envs/py37_default/lib/python3.7/site-packages (from pandas>=0.21->statsmodels) (2.8.1) Requirement already satisfied: pytz>=2017.3 in /anaconda/envs/py37_default/lib/python3.7/site-packages (from pandas>=0.21->statsmodels) (2020.5) Requirement already satisfied: six in /anaconda/envs/py37_default/lib/python3.7/site-packages (from patsy>=0.5->statsmodels) (1.15.0) --2021-08-27 02:15:31-- https://raw.githubusercontent.com/MicrosoftDocs/mslearn-introduction-to-machine-learning/main/graphing.py Resolving raw.githubusercontent.com... 185.199.108.133, 185.199.110.133, 185.199.109.133, ... Connecting to raw.githubusercontent.com|185.199.108.133|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 21511 (21K) [text/plain] Saving to: ‘graphing.py.1’ graphing.py.1 100%[===================>] 21.01K --.-KB/s in 0s 2021-08-27 02:15:31 (110 MB/s) - ‘graphing.py.1’ saved [21511/21511] --2021-08-27 02:15:32-- https://raw.githubusercontent.com/MicrosoftDocs/mslearn-introduction-to-machine-learning/main/Data/avalanche.csv Resolving raw.githubusercontent.com... 185.199.108.133, 185.199.110.133, 185.199.109.133, ... Connecting to raw.githubusercontent.com|185.199.108.133|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 56578 (55K) [text/plain] Saving to: ‘avalanche.csv.1’ avalanche.csv.1 100%[===================>] 55.25K --.-KB/s in 0.001s 2021-08-27 02:15:32 (84.1 MB/s) - ‘avalanche.csv.1’ saved [56578/56578] ###Markdown Data ExplorationThe `avalanche` field is our target. A value of `1` means that an avalanche did occur at the conditions described by the features, whereas a value of `0` means no avalanche hapenned. Since our targets can only be `0` or `1` we call this a *binary classification* model.Now let's plot the relationships between each feature and the target values. That helps us understand which features are more likely to influence the results: ###Code import graphing # custom graphing code. See our GitHub repo for details graphing.box_and_whisker(dataset, label_x="avalanche", label_y="surface_hoar", show=True) graphing.box_and_whisker(dataset, label_x="avalanche", label_y="fresh_thickness", show=True) graphing.box_and_whisker(dataset, label_x="avalanche", label_y="weak_layers", show=True) graphing.box_and_whisker(dataset, label_x="avalanche", label_y="no_visitors") ###Output _____no_output_____ ###Markdown We can notice that:- For `fresh_thickness` the outcomes are very similar. This means that variations in their values aren't strongly correlated with the results.- Variations in values for `weak_layers` and `no_visitors`, seem to correlate with a larger number of `avalanche` results, and thus we should assign more importance to these features.The differences between avalanche and non-avalanche days are small and there isn't one clear driver of issues. Weak layers looks like a good starting point as it is related to the widest variation in results. Building a simple logistic regression modelWe will now built and train a model to predict the chance of an avalanche happening based __solely__ on the number of weak layers of snow: ###Code # Here we import a function that splits datasets according to a given ratio from sklearn.model_selection import train_test_split # Split the dataset in an 70/30 train/test ratio. train, test = train_test_split(dataset, test_size=0.3, random_state=2) print(train.shape) print(test.shape) ###Output (766, 8) (329, 8) ###Markdown OK, lets train our model, using the `train` dataset we've just created (notice that `weak_layers` will be the only feature used to determine the outcome): ###Code import statsmodels.formula.api as smf import graphing # custom graphing code. See our GitHub repo for details # Perform logistic regression. model = smf.logit("avalanche ~ weak_layers", train).fit() print("Model trained") ###Output Optimization terminated successfully. Current function value: 0.631451 Iterations 5 Model trained ###Markdown After training, we can print a model summary with very detailed information: ###Code print(model.summary()) ###Output Logit Regression Results ============================================================================== Dep. Variable: avalanche No. Observations: 766 Model: Logit Df Residuals: 764 Method: MLE Df Model: 1 Date: Fri, 27 Aug 2021 Pseudo R-squ.: 0.07898 Time: 02:15:33 Log-Likelihood: -483.69 converged: True LL-Null: -525.17 Covariance Type: nonrobust LLR p-value: 8.395e-20 =============================================================================== coef std err z P>|z| [0.025 0.975] ------------------------------------------------------------------------------- Intercept -0.8586 0.147 -5.856 0.000 -1.146 -0.571 weak_layers 0.2241 0.026 8.648 0.000 0.173 0.275 =============================================================================== ###Markdown Notice that the positive coefficient for `weak_layers` means that a higher value means a higher likelihood for an avalanche. Using our modelWe can now use our trained model to make predictions and estimate probabilities.Let's pick the first four occurrences in our `test` set and print the probability of an avalanche for each one of them: ###Code # predict to get a probability # get first 3 samples from dataset samples = test["weak_layers"][:4] # use the model to get predictions as possibilities estimated_probabilities = model.predict(samples) # Print results for each sample for sample, pred in zip(samples,estimated_probabilities): print(f"A weak_layer with value {sample} yields a {pred * 100:.2f}% chance of an avalanche.") ###Output A weak_layer with value 5 yields a 56.51% chance of an avalanche. A weak_layer with value 4 yields a 50.95% chance of an avalanche. A weak_layer with value 7 yields a 67.05% chance of an avalanche. A weak_layer with value 0 yields a 29.76% chance of an avalanche. ###Markdown Let's plot out model to understand this: ###Code # plot the model # Show a graph of the result predict = lambda x: model.predict(pandas.DataFrame({"weak_layers": x})) graphing.line_2D([("Model", predict)], x_range=[-20,40], label_x="weak_layers", label_y="estimated probability of an avalanche") ###Output _____no_output_____ ###Markdown The line plots the function of the __probability__ of an avalanche over the number of weak layers; Notice that the more weak layers, the more likely an avalanche will happen. This plot can look a bit confusing for two reasons.Firstly, the curve can make predictions from negative to positive infinity, but we only have data for 0 - 10 layers: ###Code print("Minimum number of weak layers:", min(train.weak_layers)) print("Maximum number of weak layers:", max(train.weak_layers)) ###Output Minimum number of weak layers: 0 Maximum number of weak layers: 10 ###Markdown This is because logistic regression models allow predictions outside the range of values they have seen, and sometimes do so quite well.The second reason the plot is confusing is that at 0 layers, there's still _some_ risk of an avalanche. Similarly, at 10 layers, there isn't a 100% risk of an avalanche. This is actually in line with the data: ###Code import numpy as np # Get actual rates of avalanches at 0 years avalanche_outcomes_for_0_layers = train[train.weak_layers == 0].avalanche print("Average rate of avalanches for 0 weak layers of snow", np.average(avalanche_outcomes_for_0_layers)) # Get actual rates of avalanches at 10 years avalanche_outcomes_for_10_layers = train[train.weak_layers == 10].avalanche print("Average rate of avalanches for 10 weak layers of snow", np.average(avalanche_outcomes_for_10_layers)) ###Output Average rate of avalanches for 0 weak layers of snow 0.3880597014925373 Average rate of avalanches for 10 weak layers of snow 0.7761194029850746 ###Markdown Our model is actually doing a good job! It's just that avalanches aren't _only_ caused by weak layers of snow. If we want to do better, we probably need to think about including other information in the model. Classification or decision thresholdsTo return a binary category (`True` = "avalanche", `False` = "no avalanche") we need to define a *Classification Threshold* value. Any probability above that threshold is returned as the positive category, whereas values below it will be returned as the negative category.Let's see what happens if set our threshold to `0.5` (meaning that our model will return `True` whenever it calculates a chance above 50% of an avalanche happening): ###Code # threshold to get an absolute value threshold = 0.5 # Add classification to the samples we used before for sample, pred in list(zip(samples,estimated_probabilities)): print(f"A weak_layer with value {sample} yields a chance of {pred * 100:.2f}% of an avalanche. Classification = {pred > threshold}") ###Output A weak_layer with value 5 yields a chance of 56.51% of an avalanche. Classification = True A weak_layer with value 4 yields a chance of 50.95% of an avalanche. Classification = True A weak_layer with value 7 yields a chance of 67.05% of an avalanche. Classification = True A weak_layer with value 0 yields a chance of 29.76% of an avalanche. Classification = False ###Markdown Note that a `0.5` threshold is just a starting point that needs to be tuned depending on the data we're trying to classify. Performance on test setNow let's use our `test` dataset to perform a quick evaluation on how the model did. For now, we'll just look at how often we correctly predicted if there would be an avalanche or not ###Code # Classify the mdel predictions using the threshold predictions = model.predict(test) > threshold # Compare the predictions to the actual outcomes in the dataset accuracy = np.average(predictions == test.avalanche) # Print the evaluation print(f"The model correctly predicted outcomes {accuracy * 100:.2f}% of time.") ###Output The model correctly predicted outcomes 65.05% of time.
Modulo3/Tarea6_DuartePablo.ipynb
###Markdown Tarea 6. Distribución óptima de capital y selección de portafolios.**Resumen.**> En esta tarea, tendrás la oportunidad de aplicar los conceptos y las herramientas que aprendimos en el módulo 3. Específicamente, utilizarás técnicas de optimización media-varianza para construir la frontera de mínima varianza, encontrar el mejor portafolio sobre la frontera mínima varianza, y finalmente, identificar la asignación óptima de capital para un inversionista dado su nivel de averisón al riesgo.**Criterio de revisión.**> Se te calificará de acuerdo a los resultados finales que reportes, basados en tu análisis.**Antes de comenzar.**> Por favor, copiar y pegar este archivo en otra ubicación. Antes de comenzar, nombrarlo *Tarea6_ApellidoNombre*, sin acentos y sin espacios; por ejemplo, en mi caso el archivo se llamaría *Tarea6_JimenezEsteban*. Resolver todos los puntos en dicho archivo y subir en este espacio. 1. Datos (10 puntos)Considere los siguientes datos de bonos, índice de acciones, mercados desarrollados, mercados emergentes, fondos privados, activos reales y activos libres de riesgo: ###Code # Importamos pandas y numpy import pandas as pd import numpy as np import matplotlib.pyplot as plt # Resumen en base anual de rendimientos esperados y volatilidades annual_ret_summ = pd.DataFrame(columns=['Bonos', 'Acciones', 'Desarrollado', 'Emergente', 'Privados', 'Real', 'Libre_riesgo'], index=['Media', 'Volatilidad']) annual_ret_summ.loc['Media'] = np.array([0.0400, 0.1060, 0.0830, 0.1190, 0.1280, 0.0620, 0.0300]) annual_ret_summ.loc['Volatilidad'] = np.array([0.0680, 0.2240, 0.2210, 0.3000, 0.2310, 0.0680, None]) annual_ret_summ.round(4) # Matriz de correlación corr = pd.DataFrame(data= np.array([[1.0000, 0.4000, 0.2500, 0.2000, 0.1500, 0.2000], [0.4000, 1.0000, 0.7000, 0.6000, 0.7000, 0.2000], [0.2500, 0.7000, 1.0000, 0.7500, 0.6000, 0.1000], [0.2000, 0.6000, 0.7500, 1.0000, 0.2500, 0.1500], [0.1500, 0.7000, 0.6000, 0.2500, 1.0000, 0.3000], [0.2000, 0.2000, 0.1000, 0.1500, 0.3000, 1.0000]]), columns=annual_ret_summ.columns[:-1], index=annual_ret_summ.columns[:-1]) corr.round(4) ###Output _____no_output_____ ###Markdown 1. Graficar en el espacio de rendimiento esperado contra volatilidad cada uno de los activos (10 puntos). ###Code # Activos E1 = annual_ret_summ.loc['Media','Bonos'] E2 = annual_ret_summ.loc['Media','Acciones'] E3 = annual_ret_summ.loc['Media','Desarrollado'] E4 = annual_ret_summ.loc['Media','Emergente'] E5 = annual_ret_summ.loc['Media','Privados'] E6 = annual_ret_summ.loc['Media','Real'] E7 = annual_ret_summ.iloc[0,6] # Volatilidades individuales s1 = annual_ret_summ.loc['Volatilidad','Bonos'] s2 = annual_ret_summ.loc['Volatilidad','Acciones'] s3 = annual_ret_summ.loc['Volatilidad','Desarrollado'] s4 = annual_ret_summ.loc['Volatilidad','Emergente'] s5 = annual_ret_summ.loc['Volatilidad','Privados'] s6 = annual_ret_summ.loc['Volatilidad','Real'] s7 = 0 plt.plot(s1, E1, 'ob', ms=5, label='Índice Bonos') plt.plot(s2, E2, 'or', ms=5, label='Índice Acciones') plt.plot(s3, E3, 'oc', ms=5, label='Índice Desarrollado') plt.plot(s4, E4, 'ok', ms=5, label='Índice Emergente') plt.plot(s5, E5, 'om', ms=5, label='Índice Privados') plt.plot(s6, E6, 'oy', ms=5, label='Índice Real') plt.plot(s7, E7, 'og', ms=5, label='Índice Libre riesgo') plt.grid() plt.legend(loc='best') plt.title('Rendimiento contra Volatilidad') plt.xlabel('Volatilidad $\sigma') plt.ylabel('Rendimiento Esperado $\E[r]') ###Output _____no_output_____ ###Markdown 2. Hallando portafolios sobre la frontera de mínima varianza (35 puntos)Usando los datos del punto anterior:1. Halle los pesos del portafolio de mínima varianza considerando todos los activos riesgosos. También reportar claramente el rendimiento esperado, volatilidad y cociente de Sharpe para dicho portafolio (15 puntos).2. Halle los pesos del portafolio EMV considerando todos los activos riesgosos. También reportar claramente el rendimiento esperado, volatilidad y cociente de Sharpe para dicho portafolio (15 puntos).3. Halle la covarianza y la correlación entre los dos portafolios hallados (5 puntos) 1. Halle los pesos del portafolio de mínima varianza considerando todos los activos riesgosos. También reportar claramente el rendimiento esperado, volatilidad y cociente de Sharpe para dicho portafolio (15 puntos). ###Code # Importamos funcion minimize del modulo optimize de scipy from scipy.optimize import minimize rf = 0.03 annual_ret_summ = annual_ret_summ.drop(columns=['Libre_riesgo']) ## Construcción de parámetros # 1. Sigma: matriz de varianza-covarianza Sigma = S.dot(corr).dot(S) S = np.diag(annual_ret_summ.loc['Volatilidad'].values) Sigma = S.dot(corr).dot(S) # 2. Eind: rendimientos esperados activos individuales Eind = annual_ret_summ.loc['Media'].values # Función objetivo def var(w, Sigma): return w.T.dot(Sigma).dot(w) # Número de activos N = len(Eind) # Dato inicial w0 = np.ones(N)/N # Cotas de las variables bnds = ((0, 1), ) * N # Restricciones cons = {'type': 'eq', 'fun': lambda w: w.sum() - 1} # Portafolio de mínima varianza minvar = minimize(fun=var, x0=w0, args=(Sigma,), bounds=bnds, constraints=cons) minvar # Pesos, rendimiento y riesgo del portafolio de mínima varianza w_minvar = minvar.x E_minvar = Eind.T.dot(w_minvar) s_minvar = var(w_minvar, Sigma)**0.5 RS_minvar = (E_minvar - rf) / s_minvar w_minvar, E_minvar, s_minvar, RS_minvar ###Output _____no_output_____ ###Markdown 2. Halle los pesos del portafolio EMV considerando todos los activos riesgosos. También reportar claramente el rendimiento esperado, volatilidad y cociente de Sharpe para dicho portafolio (15 puntos). ###Code # Función objetivo def menos_RS(w, Eind, rf, Sigma): E_port = Eind.T.dot(w) s_port = var(w, Sigma)**0.5 RS = (E_port - rf) / s_port return - RS # Número de activos N = len(Eind) # Dato inicial w0 = np.ones(N)/N # Cotas de las variables bnds = ((0, 1), ) * N # Restricciones cons = {'type': 'eq', 'fun': lambda w: w.sum() - 1} # Portafolio EMV emv = minimize(fun=menos_RS, x0=w0, args=(Eind, rf, Sigma), bounds=bnds, constraints=cons) emv # Pesos, rendimiento y riesgo del portafolio EMV w_emv = emv.x E_emv = Eind.T.dot(w_emv) s_emv = var(w_emv, Sigma)**0.5 RS_emv = (E_emv - rf) / s_emv w_emv, E_emv, s_emv, RS_emv w_minvar, E_minvar, s_minvar, RS_minvar annual_ret_summ.columns ###Output _____no_output_____ ###Markdown 3. Halle la covarianza y la correlación entre los dos portafolios hallados (5 puntos) ###Code # Covarianza entre los portafolios cov_emv_minvar = w_emv.T.dot(Sigma).dot(w_minvar) cov_emv_minvar # Correlación entre los portafolios corr_emv_minvar = cov_emv_minvar / (s_emv * s_minvar) corr_emv_minvar ###Output _____no_output_____ ###Markdown 3. Frontera de mínima varianza y LAC (30 puntos)Con los portafolios que se encontraron en el punto anterior (de mínima varianza y EMV):1. Construya la frontera de mínima varianza calculando el rendimiento esperado y volatilidad para varias combinaciones de los anteriores portafolios. Reportar dichas combinaciones en un DataFrame incluyendo pesos, rendimiento, volatilidad y cociente de Sharpe (15 puntos).2. También construya la línea de asignación de capital entre el activo libre de riesgo y el portafolio EMV. Reportar las combinaciones de estos activos en un DataFrame incluyendo pesos, rendimiento, volatilidad y cociente de Sharpe (15 puntos). ###Code # Vector de w w_p = np.linspace(0, 4) # DataFrame de portafolios: # 1. Índice: i # 2. Columnas 1-2: w, 1-w # 3. Columnas 3-4: E[r], sigma # 4. Columna 5: Sharpe ratio frontera = pd.DataFrame(data={'W': w_p, 'Media': w_p * E_emv + (1 - w_p) * E_minvar, 'Vol': ((w_p * s_emv)**2 + ((1 - w_p) * s_minvar)**2 + 2 * w_p * (1 - w_p) * cov_emv_minvar)**0.5}) frontera['RS'] = (frontera['Media'] - rf) /frontera['Vol'] frontera.head() sp = np.linspace(0, 0.2) LAC = pd.DataFrame(data={'Vol': sp, 'Media': RS_emv * sp + rf}) LAC['RS'] = (LAC['Media'] - rf) /LAC['Vol'] LAC.head() ###Output _____no_output_____ ###Markdown 4. Gráficos y conclusiones (25 puntos)1. Usando todos los datos obtenidos, grafique: - los activos individuales, - portafolio de mínima varianza, - portafolio eficiente en media-varianza (EMV), - frontera de mínima varianza, y - línea de asignación de capital,en el espacio de rendimiento (eje $y$) vs. volatilidad (eje $x$). Asegúrese de etiquetar todo y poner distintos colores para diferenciar los distintos elementos en su gráfico (15 puntos).2. Suponga que usted está aconsejando a un cliente cuyo coeficiente de aversión al riesgo resultó ser 4. ¿Qué asignación de capital le sugeriría?, ¿qué significa su resultado?(10 puntos) ###Code from matplotlib import pyplot as plt %matplotlib inline # Gráfica de dispersión de puntos coloreando # de acuerdo a SR, los activos individuales # y los portafolios hallados plt.figure(figsize=(10, 6)) # Frontera ax = plt.subplot(121) # plt.scatter(frontera['Vol'], frontera['Media'], c = frontera['RS'], cmap='RdYlBu', label = 'Frontera de minima varianza') plt.colorbar() # Port. óptimos plt.plot(s_minvar, E_minvar, '*g', ms=10, label='Portafolio de mínima varianza') plt.plot(s_emv, E_emv, '*r', ms=10, label='Portafolio eficiente en media varianza') plt.plot(LAC['Vol'], LAC['Media'], label = 'LAC') plt.plot(s1, E1, 'ob', ms=5, label='Índice Bonos') plt.plot(s2, E2, 'or', ms=5, label='Índice Acciones') plt.plot(s3, E3, 'oc', ms=5, label='Índice Desarrollado') plt.plot(s4, E4, 'ok', ms=5, label='Índice Emergente') plt.plot(s5, E5, 'om', ms=5, label='Índice Privados') plt.plot(s6, E6, 'oy', ms=5, label='Índice Real') plt.plot(0, rf, 'og', ms=5, label='Índice Libre riesgo') plt.xlabel('Volatilidad $\sigma$') plt.ylabel('Rendimiento esperado $E[r]$') plt.grid() ax.legend(bbox_to_anchor=(1.5, 1), loc=2, borderaxespad=0.) # Para gamma=4 g = 4 w_opt = (E_emv - rf) / (g * s_emv**2) w_opt ###Output _____no_output_____
RYRZ/RYRZ_VQE_LiH.ipynb
###Markdown Variational Quantum Eigensolver - Ground State Energy for $H2$ Molecule using the RYRZ ansatz¶ ###Code import numpy as np import matplotlib.pyplot as plt # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, IBMQ from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * from qiskit.providers.aer import QasmSimulator, StatevectorSimulator from qiskit.utils import QuantumInstance # Loading your IBM Quantum account(s) provider = IBMQ.load_account() # Chemistry Drivers from qiskit_nature.drivers.second_quantization.pyscfd import PySCFDriver from qiskit_nature.transformers.second_quantization.electronic import FreezeCoreTransformer from qiskit.opflow.primitive_ops import Z2Symmetries # Electroinic structure problem from qiskit_nature.problems.second_quantization.electronic import ElectronicStructureProblem # Qubit converter from qiskit_nature.converters.second_quantization.qubit_converter import QubitConverter # Mappers from qiskit_nature.mappers.second_quantization import ParityMapper, BravyiKitaevMapper, JordanWignerMapper # Initial state from qiskit_nature.circuit.library import HartreeFock # Variational form - circuit from qiskit.circuit.library import TwoLocal # Optimizer from qiskit.algorithms.optimizers import COBYLA, SLSQP, SPSA # Algorithms and Factories from qiskit_nature.algorithms import ExcitedStatesEigensolver, NumPyEigensolverFactory # Eigen Solvers # NumPy Minimum Eigen Solver from qiskit_nature.algorithms.ground_state_solvers.minimum_eigensolver_factories import NumPyMinimumEigensolverFactory # ground state from qiskit_nature.algorithms.ground_state_solvers import GroundStateEigensolver # VQE Solver from qiskit.algorithms import VQE ###Output _____no_output_____ ###Markdown Backend ###Code qasm_sim = QasmSimulator() state_sim = StatevectorSimulator() ###Output _____no_output_____ ###Markdown DriversBelow we set up a PySCF driver for $H2$ molecule at equilibrium bond length 0.735 Angstrom ###Code def exact_diagonalizer(es_problem, qubit_converter): solver = NumPyMinimumEigensolverFactory() calc = GroundStateEigensolver(qubit_converter, solver) result = calc.solve(es_problem) return result def get_mapper(mapper_str: str): if mapper_str == "jw": mapper = JordanWignerMapper() elif mapper_str == "pa": mapper = ParityMapper() elif mapper_str == "bk": mapper = BravyiKitaevMapper() return mapper def initial_state_preparation(mapper_str: str = "jw"): molecule = "Li 0.0 0.0 0.0; H 0.0 0.0 1.5474" driver = PySCFDriver(atom=molecule) qmolecule = driver.run() transformer = FreezeCoreTransformer() qmolecule = transformer.transform(qmolecule) es_problem = ElectronicStructureProblem(driver) # generating second_quzntized operators second_q_ops = es_problem.second_q_ops() # Hamiltonian main_op = second_q_ops[0] # return tuple of number of particles if available num_particles = es_problem.num_particles # return the number of spin orbitals num_spin_orbitals = es_problem.num_spin_orbitals mapper = get_mapper(mapper_str) qubit_converter = QubitConverter(mapper=mapper, two_qubit_reduction=True)#, z2symmetry_reduction=[1, 1]) # Qubit Hamiltonian qubit_op = qubit_converter.convert(main_op, num_particles=num_particles) return (qubit_op, num_particles, num_spin_orbitals, qubit_converter, es_problem) qubit_op, num_particles, num_spin_orbitals, qubit_converter, es_problem = initial_state_preparation("pa") init_state = HartreeFock(num_spin_orbitals, num_particles, qubit_converter) init_state.barrier() init_state.draw("mpl", initial_state=True).savefig("ryrz_vqe_lih_init_state.png", dpi=300) init_state.draw("mpl", initial_state=True) # Setting up TwoLocal for our ansatz ansatz_type = "RY" # Single qubit rotations that are placed on all qubits with independent parameters rotation_blocks = ["ry", "rz"] # Entangling gates entanglement_blocks = "cx" # How the qubits are entangled? entanglement = 'linear' # Repetitions of rotation_blocks + entanglement_blocks with independent parameters repetitions = 1 # Skipoing the final rotation_blocks layer skip_final_rotation_layer = False ansatz = TwoLocal( qubit_op.num_qubits, rotation_blocks, entanglement_blocks, reps=repetitions, entanglement=entanglement, skip_final_rotation_layer=skip_final_rotation_layer, # insert_barriers=True ) # Add the initial state ansatz.compose(init_state, front=True, inplace=True) ansatz.draw(output="mpl", initial_state=True).savefig("ryrz_vqe_lih_ansatz.png", dpi=300) ansatz.draw(output="mpl", initial_state=True) ansatz.decompose().draw(output="mpl", initial_state=True).savefig("ryrz_vqe_lih_ansatz_decomposed.png", dpi=300) ansatz.decompose().draw(output="mpl", initial_state=True) optimizer = COBYLA(maxiter=10000) ###Output _____no_output_____ ###Markdown SolverExact Eigensolver using NumPyMinimumEigensolver ###Code result_exact = exact_diagonalizer(es_problem, qubit_converter) exact_energy = np.real(result_exact.eigenenergies[0]) print("Exact Electronic Energy: {:.4f} Eh\n\n".format(exact_energy)) print("Results:\n\n", result_exact) ###Output Exact Electronic Energy: -8.9087 Eh Results: === GROUND STATE ENERGY === * Electronic ground state energy (Hartree): -8.908697116424 - computed part: -8.908697116424 ~ Nuclear repulsion energy (Hartree): 1.025934879643 > Total ground state energy (Hartree): -7.882762236781 === MEASURED OBSERVABLES === 0: # Particles: 4.000 S: 0.000 S^2: 0.000 M: 0.000 === DIPOLE MOMENTS === ~ Nuclear dipole moment (a.u.): [0.0 0.0 2.92416221] 0: * Electronic dipole moment (a.u.): [0.0 0.0 4.74455828] - computed part: [0.0 0.0 4.74455828] > Dipole moment (a.u.): [0.0 0.0 -1.82039607] Total: 1.82039607 (debye): [0.0 0.0 -4.62698485] Total: 4.62698485 ###Markdown VQE Solver ###Code from IPython.display import display, clear_output def callback(eval_count, parameters, mean, std): # overwrites same line when printing display("Evaluation: {},\tEnergy: {},\tStd: {}".format(eval_count, mean, std)) clear_output(wait=True) counts.append(eval_count) values.append(mean) params.append(parameters) deviation.append(std) counts = [] values = [] params = [] deviation = [] # Set initial parameters of the ansatz # we choose a fixed small displacement try: initial_point = [0.01] * len(ansatz.ordered_parameters) except: initial_point = [0.01] * ansatz.num_parameters algorithm = VQE( ansatz, optimizer=optimizer, quantum_instance=state_sim, callback=callback, initial_point=initial_point ) result = algorithm.compute_minimum_eigenvalue(qubit_op) print(result) # Storing results in a dictionary from qiskit.transpiler import PassManager from qiskit.transpiler.passes import Unroller # Unroller transpile our circuit into CNOTs and U gates pass_ = Unroller(['u', 'cx']) pm = PassManager(pass_) ansatz_tp = pm.run(ansatz) cnots = ansatz_tp.count_ops()['cx'] score = cnots accuracy_threshold = 4.0 # in mHa energy = result.optimal_value # if ansatz_type == "TwoLocal": result_dict = { 'optimizer': optimizer.__class__.__name__, 'mapping': qubit_converter.mapper.__class__.__name__, 'ansatz': ansatz.__class__.__name__, 'rotation blocks': rotation_blocks, 'entanglement_blocks': entanglement_blocks, 'entanglement': entanglement, 'repetitions': repetitions, 'skip_final_rotation_layer': skip_final_rotation_layer, 'energy (Ha)': energy, 'error (mHa)': (energy-exact_energy)*1000, 'pass': (energy-exact_energy)*1000 <= accuracy_threshold, '# of parameters': len(result.optimal_point), 'final parameters': result.optimal_point, '# of evaluations': result.optimizer_evals, 'optimizer time': result.optimizer_time, '# of qubits': int(qubit_op.num_qubits), '# of CNOTs': cnots, 'score': score} # Plotting the results import matplotlib.pyplot as plt fig, ax = plt.subplots(1, 1, figsize=(19.20, 10.80)) plt.rc('font', size=14) plt.rc('axes', labelsize=14) plt.rc('xtick', labelsize=14) plt.rc('ytick', labelsize=14) plt.rc('legend', fontsize=14) # ax.set_facecolor("#293952") ax.set_xlabel('Iterations') ax.set_ylabel('Energy (Eh)') ax.grid() fig.text(0.7, 0.75, f'VQE Energy: {result.optimal_value:.4f} Eh\nExact Energy: {exact_energy:.4f} Eh\nScore: {score:.0f}') plt.title(f"Ground State Energy of LiH using RYRZ VQE Ansatz\nOptimizer: {result_dict['optimizer']} \n Mapper: {result_dict['mapping']}\nVariational Form: {result_dict['ansatz']} - RY") ax.plot(counts, values) ax.axhline(exact_energy, linestyle='--') # fig_title = f"\ # {result_dict['optimizer']}-\ # {result_dict['mapping']}-\ # {result_dict['ansatz']}-\ # Energy({result_dict['energy (Ha)']:.3f})-\ # Score({result_dict['score']:.0f})\ # .png" fig.savefig("ryrz_vqe_lih_fig.png", dpi=300) # Displaying and saving the data import pandas as pd result_df = pd.DataFrame.from_dict([result_dict]) result_df[['optimizer','ansatz', '# of qubits', 'error (mHa)', 'pass', 'score','# of parameters','rotation blocks', 'entanglement_blocks', 'entanglement', 'repetitions']] ###Output _____no_output_____
CourseContent/12-Computer.Vision/Week 1/Practice Exercise/CV- practice_exercise_answers.ipynb
###Markdown **Import necessary Libraries** ###Code import numpy as np from skimage import data, io import matplotlib.pyplot as plt import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import warnings # Suppress warnings warnings.filterwarnings('ignore') ###Output _____no_output_____ ###Markdown **Load any image** ###Code # skimage.data has a lot of sample images to play around with #image = data.coins() #plt.imshow(image, cmap='gray') ###Output _____no_output_____ ###Markdown **Import utilities needed for convolution** ###Code from scipy.signal import convolve2d ###Output _____no_output_____ ###Markdown **Find the 5X5 Guassian Blur kernel with sigma = 1.0 and convolve the above image with that kernel***Hint: You can create various Guassian kernel at http://dev.theomader.com/gaussian-kernel-calculator/* ###Code kernel = np.array([[0.003765,0.015019,0.023792,0.015019,0.003765], [0.015019,0.059912,0.094907,0.059912,0.015019], [0.023792,0.094907,0.150342,0.094907,0.023792], [0.015019,0.059912,0.094907,0.059912,0.015019], [0.003765,0.015019,0.023792,0.015019,0.003765]]) ###Output _____no_output_____ ###Markdown **Convole the guassian kernel with the image and use 'valid' convolution and show the result side by side** ###Code blurred_image = convolve2d(image, kernel, mode = 'valid') plt.imshow(blurred_image,cmap='gray') plt.show() plt.imshow(image,cmap='gray') ###Output _____no_output_____ ###Markdown Build a CNN to classify 10 monkey species **Mounting Google Drive on to the Google Colab instance** ###Code from google.colab import drive drive.mount('/content/drive') ###Output _____no_output_____ ###Markdown **Set the appropriate path for the datsaet zip provided** ###Code images_path = "/content/drive/My Drive/Colab Notebooks/tutorials/zips/monkeys_dataset.zip" ###Output _____no_output_____ ###Markdown **Extracting the dataset.zip to the present working directory** ###Code from zipfile import ZipFile with ZipFile(images_path, 'r') as zip: zip.extractall() ###Output _____no_output_____ ###Markdown *Check the list of files in the pwd(present working directory) by running command 'ls' and ensure 'dataset' folder has been generated* ###Code !ls ###Output _____no_output_____ ###Markdown **Importing required Keras modules** ###Code from keras.models import Sequential from keras.layers import Conv2D from keras.layers import MaxPooling2D from keras.layers import Flatten from keras.layers import Dense, Dropout ###Output _____no_output_____ ###Markdown **Build a Sequential CNN classifier with input shape as 64X64 and using three sets of Convoltutional + Pooling layers. You can additionally use Dropout in the fully connected layers. Make sure the final layer shape matches with the number of classes** ###Code # Initialising the CNN classifier classifier = Sequential() # Add a Convolution layer with 32 kernels of 3X3 shape with activation function ReLU classifier.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation = 'relu', padding = 'same')) # Add a Max Pooling layer of size 2X2 classifier.add(MaxPooling2D(pool_size = (2, 2))) # Add another Convolution layer with 32 kernels of 3X3 shape with activation function ReLU classifier.add(Conv2D(32, (3, 3), activation = 'relu', padding = 'same')) # Adding another pooling layer classifier.add(MaxPooling2D(pool_size = (2, 2))) # Add another Convolution layer with 32 kernels of 3X3 shape with activation function ReLU classifier.add(Conv2D(32, (3, 3), activation = 'relu', padding = 'valid')) # Adding another pooling layer classifier.add(MaxPooling2D(pool_size = (2, 2))) # Flattening the layer before fully connected layers classifier.add(Flatten()) # Adding a fully connected layer with 512 neurons classifier.add(Dense(units = 512, activation = 'relu')) # Adding dropout with probability 0.5 classifier.add(Dropout(0.5)) # Adding a fully connected layer with 128 neurons classifier.add(Dense(units = 128, activation = 'relu')) # The final output layer with 10 neurons to predict the categorical classifcation classifier.add(Dense(units = 10, activation = 'softmax')) ###Output _____no_output_____ ###Markdown **Compile the CNN classifier with Adam optimizer (default Learning rate and other parameters)and Categorical Crossentropy as loss function and Accuracy as the metric to monitor** *Optionally you can use an optimizer with custom learning rate and passing it to the optimizer parameter of compile**Eg: keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False)* ###Code classifier.compile(optimizer = 'adam', loss = 'categorical_crossentropy', metrics = ['accuracy']) ###Output _____no_output_____ ###Markdown **Use ImageDataGenerator to create a test and training set data generators and use fit_generator() function to train the model** *ImageDataGenerator is a powerful preprocessing utility to generate training and testing data with common data augmentation techniques. It can also be used to generate training data from Images stored in hierarchical directory structuresFor more options of ImageDataGenerator go to https://keras.io/preprocessing/image/* ###Code from keras.preprocessing.image import ImageDataGenerator # Create data generator for training data with data augmentation and normalizing all # values by 255 train_datagen = ImageDataGenerator(rescale = 1./255, shear_range = 0.2, zoom_range = 0.2, horizontal_flip = True) test_datagen = ImageDataGenerator(rescale = 1./255) # Setting training data generator's source directory # Setting the target size to resize all the images to (64,64) as the model input layer expects 64X64 images training_set = train_datagen.flow_from_directory('./dataset/train', target_size = (64, 64), batch_size = 32, class_mode = 'categorical') # Setting testing data generator's source directory test_set = test_datagen.flow_from_directory('./dataset/test', target_size = (64, 64), batch_size = 32, class_mode = 'categorical') # There are 1098 training images and 272 test images in total classifier.fit_generator(training_set, steps_per_epoch = int(1098/32), epochs = 10, validation_data = test_set, validation_steps = int(272/32)) ###Output _____no_output_____ ###Markdown **save the model and its weights** ###Code classifier.save('./classifier.h5') classifier.save_weights('./classifier_weights.h5') ###Output _____no_output_____ ###Markdown *Check the current directory if the weights have been saved* ###Code !ls ###Output _____no_output_____ ###Markdown Testing the model **Load the pre-trained saved model and load the weights** ###Code from keras.models import load_model import numpy as np from keras.preprocessing import image # Load the pre trained model from the HDF5 file saved previously pretrained_model = load_model('./classifier.h5') pretrained_model.load_weights('./classifier_weights.h5') ###Output _____no_output_____ ###Markdown **Test the model on one single image from the test folders** ###Code import cv2 test_image = cv2.imread('./cifar10/test/airplane/0001.png') # Check if the size of the Image array is compatible with Keras model print(test_image.shape) # If not compatible expand the dimensions to match with the Keras Input test_image = np.expand_dims(test_image, axis = 0) test_image =test_image*1/255.0 #Check the size of the Image array again print('After expand_dims: '+ str(test_image.shape)) #Predict the result of the test image result = classifier.predict(test_image) # Check the indices Image Data Generator has allotted to each folder classes_dict = training_set.class_indices print(classes_dict) # Creating a list of classes in test set for showing the result as the folder name prediction_class = [] for class_name,index in classes_dict.items(): prediction_class.append(class_name) print(result[0]) # Index of the class with maximum probability predicted_index = np.argmax(result[0]) # Print the name of the class print(prediction_class[predicted_index]) ###Output _____no_output_____ ###Markdown **Generating a report on the test data** ###Code # Re-initalizing the test data generator with shuffle=False to create the confusion matrix test_set = test_datagen.flow_from_directory('./dataset/test', target_size = (32, 32), batch_size = 32, shuffle=False, class_mode = 'categorical') # Predict the whole generator to get predictions Y_pred = classifier.predict_generator(test_set, int(10000/32+1)) # Find out the predictions classes with maximum probability y_pred = np.argmax(Y_pred, axis=1) # Utilities for confusion matrix from sklearn.metrics import classification_report, confusion_matrix # Printing the confusion matrix based on the actual data vs predicted data. print(confusion_matrix(test_set.classes, y_pred)) # Printing the classification report print(classification_report(test_set.classes, y_pred, target_names=prediction_class)) ###Output _____no_output_____
src/datacleaning/Chapter 8/1_combine_vertically.ipynb
###Markdown Table of Contents1&nbsp;&nbsp;Import pandas and NumPy, as well as the os module2&nbsp;&nbsp;Load the data from Cameroon and Poland3&nbsp;&nbsp;Concatenate the Cameroon and Poland data4&nbsp;&nbsp;Concatenate all the country data files5&nbsp;&nbsp;Show some of the combined data6&nbsp;&nbsp;Check the values in the concatenated data7&nbsp;&nbsp;Fix the missing values Import pandas and NumPy, as well as the os module ###Code import pandas as pd import numpy as np import os # pd.set_option('display.width', 200) # pd.set_option('display.max_columns', 35) # pd.set_option('display.max_rows', 50) # pd.options.display.float_format = '{:,.0f}'.format import watermark %load_ext watermark %watermark -n -i -iv ###Output pandas : 1.2.1 json : 2.0.9 numpy : 1.19.2 watermark: 2.1.0 ###Markdown Load the data from Cameroon and Poland ###Code ltcameroon = pd.read_csv('data/ltcountry/ltcameroon.csv') ltpoland = pd.read_csv('data/ltcountry/ltpoland.csv') ###Output _____no_output_____ ###Markdown Concatenate the Cameroon and Poland data ###Code ltcameroon.shape ltpoland.shape ltpoland.columns ltcameroon.columns ltall = pd.concat([ltcameroon, ltpoland]) ltall['country'].value_counts() ###Output _____no_output_____ ###Markdown Concatenate all the country data files ###Code directory = 'data/ltcountry' ltall = pd.DataFrame() for filename in os.listdir(directory): if filename.endswith('.csv'): fileloc = os.path.join(directory, filename) # open the next file with open(fileloc) as file: ltnew = pd.read_csv(fileloc) print(filename + ' has ' + str(ltnew.shape[0]) + ' rows.') ltall = pd.concat([ltall, ltnew]) # check for differences in columns columndiff = ltall.columns.symmetric_difference(ltnew.columns) if (not columndiff.empty): print('', 'Different column names for: ', filename, columndiff, sep='\n') ###Output ltbrazil.csv has 1104 rows. ltcameroon.csv has 48 rows. ltindia.csv has 1056 rows. ltjapan.csv has 1800 rows. ltmexico.csv has 852 rows. ltoman.csv has 288 rows. Different column names for: ltoman.csv Index(['latabs'], dtype='object') ltpoland.csv has 120 rows. ###Markdown Show some of the combined data ###Code ltall[['country', 'station', 'month', 'temperature', 'latitude']].sample(5, random_state=1) ###Output _____no_output_____ ###Markdown Check the values in the concatenated data ###Code ltall['country'].value_counts().sort_index() ltall.groupby(['country']).agg({ 'temperature': ['min', 'mean', 'max', 'count'], 'latabs': ['min', 'mean', 'max', 'count'] }) ###Output _____no_output_____ ###Markdown Fix the missing values ###Code ltall['latabs'] = np.where(ltall['country'] == 'Oman', ltall['latitude'], ltall['latabs']) ltall.groupby(['country']).agg({ 'temperature': ['min', 'mean', 'max', 'count'], 'latabs': ['min', 'mean', 'max', 'count'] }) ###Output _____no_output_____
pandaScript/.ipynb_checkpoints/Untitled-checkpoint.ipynb
###Markdown Welcome to our test notebook.We can use markdown ###Code import pandas as pd import matplotlib.pyplot as plt plt.rcParams.update({'font.size':20, 'figure.figsize':(10,8)}) # set font and plot size to be larger print("this is a test") x=5 x data = { 'apples': [3, 2, 0, 1], 'oranges': [0, 3, 7, 2], 'five':5, 'six':'seven' } purchases = pd.DataFrame(data, index=['June','July','August','September']) import pandas as pd import matplotlib.pyplot as plt df = pd.DataFrame({ 'name':['john','mary','peter','jeff','bill','lisa','jose'], 'age':[23,78,22,19,45,33,20], 'gender':['M','F','M','M','M','F','M'], 'state':['california','dc','california','dc','california','texas','texas'], 'num_children':[2,0,0,3,2,1,4], 'num_pets':[5,1,0,5,2,2,3] }) print (df) df df.plot(kind='scatter', x='num_children', y='num_pets', color='red') ###Output _____no_output_____
algoExpert/find_three_largest_numbers/solution.ipynb
###Markdown Find Three Largest Number[link](https://www.algoexpert.io/questions/Find%20Three%20Largest%20Numbers) My Solution ###Code def findThreeLargestNumbers(array): # Write your code here. maxThree = [None, None, None] # maxThree[2] is the largest for x in array: if maxThree[0] == None: maxThree[0] = x continue if maxThree[1] == None: if x >= maxThree[0]: maxThree[1] = x else: maxThree[1], maxThree[0] = maxThree[0], x continue if maxThree[2] == None: if x >= maxThree[1]: maxThree[2] = x elif x < maxThree[1] and x >= maxThree[0]: maxThree[2], maxThree[1]= maxThree[1], x else: maxThree = [maxThree[1], maxThree[0], x] continue if x > maxThree[0]: maxThree[0] = x if maxThree[0] > maxThree[1]: maxThree[1], maxThree[0] = maxThree[0], maxThree[1] if maxThree[1] > maxThree[2]: maxThree[2], maxThree[1] = maxThree[1], maxThree[2] return maxThree def findThreeLargestNumbers(array): # Write your code here. maxThree = array[:3] # maxThree[2] is the largest for i in range(len(array)): if i >=3 and array[i] > maxThree[0]: maxThree[0] = array[i] if maxThree[0] > maxThree[1]: maxThree[1], maxThree[0] = maxThree[0], maxThree[1] if maxThree[1] > maxThree[2]: maxThree[2], maxThree[1] = maxThree[1], maxThree[2] return maxThree ###Output _____no_output_____ ###Markdown Expert Solution ###Code def findThreeLargestNumbers(array): threeLargest = [None, None, None] for num in array: updateLargest(threeLargest, num) return threeLargest def updateLargest(threeLargest, num): if threeLargest[2] is None or num > threeLargest[2]: shiftAndUpdate(threeLargest, num, 2) elif threeLargest[1] is None or num > threeLargest[1]: shiftAndUpdate(threeLargest, num, 1) elif threeLargest[0] is None or num > threeLargest[0]: shiftAndUpdate(threeLargest, num, 0) def shiftAndUpdate(array, num, idx): for i in range(idx + 1): if i == idx: array[i] = num else: array[i] = array[i + 1] ###Output _____no_output_____
.ipynb_checkpoints/Logistic Regression-Copy2-checkpoint.ipynb
###Markdown Logistic regression In this notebook we will study **Logistic Regression**.We will make some interactive graphs that let us see how it works.We will use interactive Jupyter widgets and the libraries **matplotlib** and **bqplot** for visualizationsTo obtain more info you can read these posts [SPANISH]:**Author**: Pablo González Carrizo ([unmonoqueteclea](https://twitter.com/unmonoqueteclea))**Web**: https://unmonoqueteclea.github.io Importing dependencies ###Code import math import numpy as np from bqplot import ( LinearScale, Axis, Scatter, Lines, Label, Figure) from ipywidgets import HBox, VBox, Layout import pandas as pd from scipy import special from sklearn import preprocessing ###Output _____no_output_____ ###Markdown Defining sigmoid function ###Code def sigmoid(z): return(1 / (1 + np.exp(-z))) x_values = np.arange(-8,8) test_sigmoid=[sigmoid(z) for z in x_values ] ###Output _____no_output_____ ###Markdown Plotting the sigmoid function with bqplot ###Code #Scalers sc_x = LinearScale() sc_y = LinearScale() #Axis ax_x = Axis(scale=sc_x, label='') ax_y = Axis(scale=sc_y, orientation='vertical', tick_format='0.2f', label='') #Creating the graph line = Lines(x=x_values,y=test_sigmoid,scales={'x': sc_x, 'y': sc_y},colors=['blue']) fig = Figure(marks=[line], axes=[ax_x, ax_y],layout=Layout(width='100%'), title="Sigmoid function") #Displaying the graph VBox([fig]) ###Output _____no_output_____ ###Markdown Creating points ###Code #(CLASS Y = 1) Positions of points with y = 1 posX1 = np.array([10,45,23,12,3 ,18,30,35, 5,32]) posY1 = np.array([12,16,20,60,80,99,54, 9,40,65]) #Creating matrix from positions X1 = np.c_[np.ones(posX1.shape[0]),posX1,posY1] #(CLASS Y = 0) Positions of points with y = 0 posX2 = np.array([67,53,90,87,71,59,95,80,65,80]) posY2 = np.array([34,67,54,8, 78,87,80,50,60,90]) #Creating matrix from positions X2 = np.c_[np.ones(posX2.shape[0]),posX2,posY2] X=np.concatenate([X1,X2]) #Classes (1 or 0) y=np.concatenate([np.ones(posX1.shape[0]),np.zeros(posX2.shape[0])]) m = y.size # Number of training examples ###Output _____no_output_____ ###Markdown Plot function ###Code def plot_points(x1,x2,y1,y2,title="",boundary=None): #Scalers sc_x = LinearScale(min=0,max=100) sc_y = LinearScale(min=0,max=100) #Axis ax_x = Axis(scale=sc_x, label='') ax_y = Axis(scale=sc_y, orientation='vertical', tick_format='0.2f', label='') #Creating plot scatt = Scatter(x=x1, y=y1, scales={'x': sc_x, 'y': sc_y}, colors=['red']) scatt2 = Scatter(x=x2, y=y2, scales={'x': sc_x, 'y': sc_y}, colors=['blue']) if(boundary is None): fig = Figure(marks=[scatt,scatt2], axes=[ax_x, ax_y],layout=Layout(width='100%'), title=title) else: lines = Lines(x=boundary[0],y=boundary[1],scales={'x': sc_x, 'y': sc_y},colors=['green']) fig = Figure(marks=[scatt,scatt2,lines], axes=[ax_x, ax_y],layout=Layout(width='100%'), title=title) return fig ###Output _____no_output_____ ###Markdown Displying plot with all the points ###Code fig = plot_points(posX1,posX2,posY1,posY2,title="") HBox([fig]) ###Output _____no_output_____ ###Markdown Hypotesis and Cost function ###Code def h(mytheta,myX): #The expit function, also known as the logistic function, #is defined as expit(x) = 1/(1+exp(-x)). #It is the inverse of the logit function. return special.expit(np.dot(myX,mytheta)) #Cost function def computeCost(mytheta,myX,myy,regularization = 0): term1 = np.dot( -np.array(myy).T , np.log(h(mytheta,myX)) ) term2 = np.dot( (1-np.array(myy)).T , np.log(1-h(mytheta,myX)) ) regterm = (regularization/2) * np.sum(np.dot(mytheta[1:].T,mytheta[1:])) #Skip theta0 return float( (1./m) * ( np.sum(term1 - term2) + regterm ) ) initial_theta = np.zeros((X.shape[1],1)) computeCost(initial_theta,X,y) #Computing initial cost ###Output _____no_output_____ ###Markdown Representing cost function ###Code h = np.arange(0.0001,1,0.001) y=0 # Computing cost cost1 = [-math.log(h_value,10) for h_value in h] cost2=[-math.log(1-h_value,10) for h_value in h] #Scalers sc_x = LinearScale() sc_y = LinearScale() #Axis ax_x = Axis(scale=sc_x, label='h(x)') ax_y = Axis(scale=sc_y, orientation='vertical', tick_format='0.2f', label='Cost') #Creating the graph line1 = Lines(x=h,y=cost1,scales={'x': sc_x, 'y': sc_y},colors=['blue']) fig1 = Figure(marks=[line1], axes=[ax_x, ax_y],layout=Layout(width='100%'), title="y=1") line2 = Lines(x=h,y=cost2,scales={'x': sc_x, 'y': sc_y},colors=['blue']) fig2 = Figure(marks=[line2], axes=[ax_x, ax_y],layout=Layout(width='100%'), title="y=0") #Displaying the graph HBox([fig1,fig2]) ###Output _____no_output_____ ###Markdown Obtaining theta ###Code #This function minimizes our cost function using the "downhill simplex algorithm." #http://docs.scipy.org/doc/scipy-0.16.0/reference/generated/scipy.optimize.fmin.html from scipy import optimize def optimizeTheta(mytheta,myX,myy,mylambda=0.): result = optimize.fmin(computeCost, x0=mytheta, args=(myX, myy, mylambda), maxiter=400, full_output=True) return result[0], result[1] theta, mincost = optimizeTheta(initial_theta,X,y) def makePrediction(mytheta, myx): return h(mytheta,myx) >= 0.5 #Compute the percentage of samples I got correct: pos_correct = float(np.sum(makePrediction(theta,X1))) neg_correct = float(np.sum(np.invert(makePrediction(theta,X2)))) tot = len(X1)+len(X2) prcnt_correct = float(pos_correct+neg_correct)/tot print("Fraction of training samples correctly predicted: %f." % prcnt_correct) def decission_boundary(mytheta): boundary_xs = np.array([np.min(X[:,1]), np.max(X[:,1])]) boundary_ys = (-1./theta[2])*(theta[0] + theta[1]*boundary_xs) return (boundary_xs,boundary_ys) fig = plot_points(posX1,posX2,posY1,posY2,title="",boundary=decission_boundary(theta)) HBox([fig]) ###Output _____no_output_____
Train Word Embedding.ipynb
###Markdown Pre-processing Functions ###Code def remove_stop_words(contents): stop_words = list(stopwords.words('english')) for w in stop_words: contents = contents.replace(w, '') return contents ###Output _____no_output_____ ###Markdown Tokenize and remove unnecessary characters ###Code def remove_unnecessary_characters(contents): contents = contents.replace('\n', ' ') contents = contents.replace('..', '') contents = contents.replace('--', '') contents = contents.replace('==', '') contents = contents.replace('///', '') contents = contents.replace('\\\\', '') contents = ' '.join(contents.split()) contents = contents.strip().lower() # contents = remove_stop_words(contents) tokenizer = RegexpTokenizer('[A-Za-z0-9\@\.\&\/\:\$\-\_]+') tokens = tokenizer.tokenize(contents) tokens = ' '.join( [i for i in tokens if len(i) > 1]) return tokens def replace_email(content): pattern = re.compile('[\w\/\.\-]+\@[\w\/\.\-]+\.[\w]+') replaced_content = re.sub(pattern, 'this_is_email', content) return replaced_content def replace_link(content): pattern = re.compile('(http[s]?:\/\/|www\.)?[\w\/\.\-]+\.(com|html|php)([\/][\w\/\.\-]*)*') replaced_content = re.sub(pattern, 'this_is_link', content) return replaced_content ###Output _____no_output_____ ###Markdown Main program Read CSV data for train data and test data ###Code train_data = pd.read_csv('dataset/train_data.csv') test_data = pd.read_csv('dataset/test_data.csv') ###Output _____no_output_____ ###Markdown Tokenize remove unnecessary characters for train data and test data ###Code preproc_train_data = train_data['content'].copy().apply(remove_unnecessary_characters).apply(replace_email).apply(replace_link) print('Train data') preproc_train_data.head() preproc_test_data = test_data['content'].copy().apply(remove_unnecessary_characters).apply(replace_email).apply(replace_link) print('Test data') preproc_test_data.head() corpus = [] for row in preproc_train_data.iteritems(): corpus.append(row[1].split()) for row in preproc_test_data.iteritems(): corpus.append(row[1].split()) import gensim model_cbow = gensim.models.Word2Vec( corpus, size=50, sg=0, window=2, min_count=5, workers=4 ) model_cbow.train(corpus, total_examples=len(corpus), epochs=50) w2v_cbow = dict(zip(model_cbow.wv.index2word, model_cbow.wv.syn0)) model_sg = gensim.models.Word2Vec( corpus, size=50, sg=1, window=2, min_count=5, workers=4 ) model_sg.train(corpus, total_examples=len(corpus), epochs=50) w2v_sg = dict(zip(model_sg.wv.index2word, model_sg.wv.syn0)) len(w2v_sg.items()) class MeanEmbeddingVectorizer(object): def __init__(self, word2vec): self.word2vec = word2vec # if a text is empty we should return a vector of zeros # with the same dimensionality as all the other vectors self.dim = 50 def fit(self, X, y): return self def transform(self, X): return np.array([ np.max([self.word2vec[w] for w in words if w in self.word2vec] or [np.zeros(self.dim)], axis=0) for words in X ]) from sklearn.pipeline import Pipeline from sklearn.ensemble import ExtraTreesClassifier from sklearn.svm import SVC etree_w2v_cbow = Pipeline([ ("word2vec vectorizer", MeanEmbeddingVectorizer(w2v_cbow)), ("svc", SVC(kernel='sigmoid', gamma=1.0))]) etree_w2v_sg = Pipeline([ ("word2vec vectorizer", MeanEmbeddingVectorizer(w2v_sg)), ("svc", SVC(kernel='sigmoid', gamma=1.0))]) features_train, features_test, labels_train, labels_test = train_test_split(preproc_train_data, train_data['prediction'], test_size=0.2, random_state=24) etree_w2v_cbow.fit(features_train, labels_train) etree_w2v_sg.fit(features_train, labels_train) ###Output _____no_output_____ ###Markdown CBOW ###Code prediction = etree_w2v_cbow.predict(features_test) accuracy_score(labels_test, prediction) ###Output _____no_output_____ ###Markdown SG ###Code prediction = etree_w2v_sg.predict(features_test) accuracy_score(labels_test, prediction) ###Output _____no_output_____
drlim.ipynb
###Markdown Dr LIM - Dimensionality reduction by Learning Invariant Mapping- This paper (similar to TSNE) proposes an alternative method to achieve dimensionality reduction ###Code from __future__ import print_function from functools import reduce import numpy as np import torch import torch.nn as nn import torchvision import torch.nn.functional as F import torch.optim as optim from ipywidgets import interact, interactive, fixed, interact_manual import ipywidgets as widgets from matplotlib import pyplot as plt from image_utilities import plot_images ###Output _____no_output_____ ###Markdown CNN used in the paper ![CNN architecture](./images/cnn.png) Torch implementation Forward ###Code class DrlimCNN(nn.Module): def __init__(self, n_lower_dim=2): super(DrlimCNN, self).__init__() # Layer 1: # n_input_channel = 1 # n_output_channel = 15 # Kernel Size = 5 for padding = 0, stride = 1 k_size = 5 in_channels = 1 out_channels = 15 self.layer_1 = nn.Conv2d(in_channels, out_channels, k_size) # Layer 2: Subsampling - Maxpooling # Kernel Size = 15 for padding=0 and stride = 1 k_size = 15 self.max_pooling = nn.MaxPool2d(k_size, stride=1) # Layer 3: Conv layer # n_input_channel = 15 # n_output_channel = 30 # Kernel size = 10 in_channels = 15 out_channels = 30 k_size = 10 self.layer_3 = nn.Conv2d(in_channels, out_channels, k_size) # Layer 4: Fully connected self.output_layer = nn.Linear(30, n_lower_dim) # Relu self.relu = nn.ReLU() def forward(self, x): # Add relu on top of conv layer x = self.layer_1(x) x = self.relu(x) # Maxpool x = self.max_pooling(x) # Another conv x = self.layer_3(x) # Get the size except for batch num_flat_features = reduce(lambda x, y: x * y, x.shape[1:]) # Flatten x = x.reshape(-1, num_flat_features) # Fully connected x = self.output_layer(x) return x device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(device) net = DrlimCNN() # Enable GPU net.to(device) net.cuda() ###Output cuda:0 ###Markdown Backward Define contrastive loss function ###Code def contrastive_loss(output_1, output_2, target_1, target_2): # TODO: # if target_1 == target_2: # y = torch.zeros_like(output_1, requires_grad=True) # else: # y = torch.ones_like(output_1, requires_grad=True) y = 1 - torch.eq(target_1, target_2).int() distance = torch.norm(output_1 - output_2, dim=1) # Similar loss ls = torch.pow(distance, 2) # Dissimilar loss m = 10 ld = torch.max(torch.zeros_like(distance), m - distance) ld = torch.pow(ld, 2) loss = torch.mean((1 - y) * ls + y * ld) return loss ###Output _____no_output_____ ###Markdown Test the network once ###Code test = False if test: # Test Code input_1 = torch.randn(1, 1, 28, 28) input_2 = torch.randn(1, 1, 28, 28) out_1 = net(input_1.cuda()) out_2 = net(input_2.cuda()) out_1 = out_1.requires_grad_(True) out_2 = out_2.requires_grad_(True) print("Before:") print(net.output_layer.weight.grad) loss = contrastive_loss(out_1, out_2, 0, 0) print(loss) loss.backward() print("After:") print(net.output_layer.weight.grad) ###Output _____no_output_____ ###Markdown Load Data ###Code n_epochs = 3 batch_size_train = 64 batch_size_test = 1000 learning_rate = 0.01 momentum = 0.5 log_interval = 10 train_loader = torch.utils.data.DataLoader( torchvision.datasets.MNIST('./files/', train=True, download=True, transform=torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize( (0.1307,), (0.3081,)) ])), batch_size=batch_size_train, shuffle=True) ###Output _____no_output_____ ###Markdown Train ###Code target_1 = 9 target_2 = 4 n_epochs = 100 n_random_repeat = 2 optimizer = optim.Adam(net.parameters(), lr=3.e-4) all_data = [] all_target = [] for batch_idx, (data, target) in enumerate(train_loader): # Choose only either `target_1` or `target_2` filter_index = ((target == target_1) | (target == target_2)) all_data += data[filter_index].numpy().tolist() all_target += target[filter_index].numpy().tolist() all_data.pop() all_target.pop() batch_size = 30 all_data = np.array(all_data).reshape(11790, 1, 28, 28) all_target = np.array(all_target).reshape(11790, 1) all_data = np.array(all_data).reshape(-1, 30, 28, 28) all_target = np.array(all_target).reshape(-1, 30) loss_cache = [] for epoch in range(n_epochs): # loop over the dataset multiple times running_loss = 0.0 for i, data in enumerate(all_data): target = torch.tensor(all_target[i], dtype=torch.float32) data = torch.tensor(data, dtype=torch.float32) data = torch.unsqueeze(data, 1).to(device) input_data, label = data, target for r in range(n_random_repeat): # Split this batch into two groups and compute contrast loss between them out = net(input_data) sample = np.random.randint(0, 30, 15).tolist() out_1, label_1 = out[sample, :], target[sample] sample = np.random.randint(0, 30, 15).tolist() out_2, label_2 = out[sample, :], target[sample] # Loss - against target_1 and target_2 loss = contrastive_loss(out_1.to('cpu'), out_2.to('cpu'), label_1, label_2) # Back prop loss.backward() optimizer.step() loss_cache.append(loss.detach()) # print statistics running_loss += loss.item() if i % 20 == 0: # print every 2000 mini-batches print('[{}, {}] loss: {} \r'.format(epoch + 1, i + 1, running_loss / 2000), end="") running_loss = 0.0 optimizer.zero_grad() print("") print('Finished Training') plt.plot(list(range(len(loss_cache))), loss_cache) plt.title("Epoch vs Loss") plt.ylabel('Loss') plt.xlabel('Steps') test_loader = torch.utils.data.DataLoader( torchvision.datasets.MNIST('./files/', train=False, download=True, transform=torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize( (0.1307,), (0.3081,)) ])), batch_size=batch_size_test, shuffle=True) data_x = [] data_y = [] data_manifold = [] for i in range(10): filter_index = (target == i) temp_data = data[filter_index].numpy().squeeze() # Get manifold output temp_data = torch.tensor(temp_data).unsqueeze(1).to(device) out = net(temp_data) out = out.clone() out = out.cpu().detach().numpy().squeeze() # Prepare data to plot data_x.append(out[:, 0]) data_y.append(out[:, 1]) def plot_graphs(one=False, two=False, three=False, four=True, five=False, six=False, seven=False, eight=False, nine=True, zero=False): global data_x, data_y plt.figure(figsize=(14, 10)) mapping = {0: "zero", 1: "one", 2: "two", 3: "three", 4: "four", 5: "five", 6: "six", 7: "seven", 8: "eight", 9: "nine"} for k in mapping: if locals()[mapping[k]]: plt.scatter(data_x[k], data_y[k], label="Number {}".format(k), alpha=0.5) plt.title("Lower dimensional map - Number 9 and Number 4") plt.xlabel("x") plt.ylabel("y") plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Simple Plot ###Code plot_graphs(nine=True, four=True) ###Output _____no_output_____ ###Markdown Interactive Graph ###Code w = interactive(plot_graphs) display(w) ###Output _____no_output_____
Jupyter_notebooks/Notebook_3_CNN_Predictions_of_Native_UTR_HIS3_data.ipynb
###Markdown Set plotting style ###Code plt.rcParams["patch.force_edgecolor"] = True sns.set_style('whitegrid', {'axes.grid': True, 'grid.linestyle': u'--', 'axes.edgecolor': '0.1', 'axes.labelcolor': '0', 'axes.labelsize': 15, 'axes.titlesize': 15, 'legend.fontsize': 15, 'xtick.labelsize': 15, 'ytick.labelsize': 15, }) ###Output _____no_output_____ ###Markdown The directory that contains information about the model parameters ###Code model_name = 'Random_UTR_CNN' model_params_dir = '../Results/{0}.Hyperparam.Opt/'.format(model_name) ###Output _____no_output_____ ###Markdown Create a directory to save results:(if it doesn't already exist) ###Code results_dir = '../Results/{0}.ModelPredictions/'.format(model_name) if not os.path.exists(model_params_dir): os.mkdir(model_params_dir) ###Output _____no_output_____ ###Markdown Load the cleaned up data.The csv should be tab-separated. The read counts are log2. ###Code data_dir = '../Data/' native_data = pd.read_csv(data_dir + 'Native_UTRs.csv', index_col = 0) ###Output _____no_output_____ ###Markdown One-hot encoding of the sequences.i.e. we're converting the sequences from being represented as a 50 character string of bases to a 4x50 matrix of 1's and 0's, with each row corresponding to a base and every column a position in the UTR.Note that we're doing the indexing a little differently than in Notebook 1 -- see comments in function ###Code # one hot encoding of UTRs # X = one hot encoding matrix # Y = growth rates def one_hot_encoding(df, seq_column, expression): bases = ['A','C','G','T'] base_dict = dict(zip(bases,range(4))) # {'A' : 0, 'C' : 1, 'G' : 2, 'T' : 3} n = len(df) # length of the UTR sequence # we also add 10 empty spaces to either side total_width = df[seq_column].str.len().max() + 20 # initialize an empty numpy ndarray of the appropriate size X = np.zeros((n, 1, 4, total_width)) # an array with the sequences that we will one-hot encode seqs = df[seq_column].values # loop through the array of sequences to create an array that keras will actually read for i in range(n): seq = seqs[i] # loop through each individual sequence, from the 5' to 3' end for b in range(len(seq)): # this will assign a 1 to the appropriate base and position for this UTR sequence # Note that this is different than the same function in Notebook #1 (since we're dealing # with sequences with nonuniform lengths) X[i, 0, base_dict[seq[b]], b + 10 + 50 - len(seq)] = 1. # keep track of where we are if (i%10000)==0: print i, X = X.astype(theano.config.floatX) Y = np.asarray(df[expression].values, dtype = theano.config.floatX)[:, np.newaxis] return X, Y, total_width X, Y, total_width = one_hot_encoding(native_data, 'UTR', 'growth_rate') ###Output 0 10000 ###Markdown Record indexes for UTRs with >100 reads in the input If we have more reads for a given UTR at the outset, we can be more confident that we have made an accurate measurement. For this reason, we use those UTRs with the most reads to test our model on, because these should have the least experimental noise. ###Code # a numpy array of the indexes of UTRs with > 100 reads test_inds = native_data.loc[native_data.t0 > 100].index.values ###Output _____no_output_____ ###Markdown Load model trained on random 5' UTRs ###Code !ls {model_params_dir} model = keras.models.model_from_json(open(model_params_dir + 'model_arch.json').read()) model.load_weights(model_params_dir + 'model_weights.hdf5') model.compile(loss='mean_squared_error', optimizer='adam') Y_pred = model.predict(X, verbose=1) ###Output 11840/11856 [============================>.] - ETA: 0s ###Markdown Plot results ###Code # data x = Y_pred[test_inds].flatten() y = Y[test_inds].flatten() # calculate R^2 r2 = scipy.stats.pearsonr(x, y)[0]**2 g = sns.jointplot(x, y, stat_func = None, kind = 'scatter', s = 5, alpha = 0.25, size = 5) g.ax_joint.set_xlabel('Predicted log$_2$ Growth Rate') g.ax_joint.set_ylabel('Measured log$_2$ Growth Rate') text = "R$^2$ = {:0.2}".format(r2) plt.annotate(text, xy=(-5.5, 0.95), xycoords='axes fraction') plt.title("CNN predictions of native 5' UTR HIS3 data", x = -3, y = 1.25) ###Output _____no_output_____ ###Markdown Save data and predictions to csv ###Code native_data['pred_growth_rate'] = Y_pred native_data.to_csv(results_dir + 'Random_UTRs_with_predictions.csv') ###Output _____no_output_____
tutorial-ja/155_four_ja.ipynb
###Markdown たし算量子コンピュータには従来のコンピュータと同じ計算もできるという特徴があります。たし算の回路を確認します。 今回学ぶこと1. 量子ゲートを使って二進数のたし算を実装2. 量子の重ね合わせを使って1つの回路で複数のたし算 BlueqatのインストールpipからBlueqatをインストールします。 ###Code !pip install blueqat ###Output Requirement already satisfied: blueqat in /home/ec2-user/anaconda3/envs/python3/lib/python3.6/site-packages (0.3.13) Requirement already satisfied: numpy~=1.12 in /home/ec2-user/anaconda3/envs/python3/lib/python3.6/site-packages (from blueqat) (1.18.3) Requirement already satisfied: scipy>=1.1.0 in /home/ec2-user/anaconda3/envs/python3/lib/python3.6/site-packages (from blueqat) (1.1.0) WARNING: You are using pip version 20.0.2; however, version 20.1 is available. You should consider upgrading via the '/home/ec2-user/anaconda3/envs/python3/bin/python -m pip install --upgrade pip' command. ###Markdown 二進数のたし算たし算は桁上がりを実行するccxゲートと、位の足し合わせを実行するcxゲートを使います。今回はa+b=cdという二進数のたし算の量子回路を行います。今回はaとbの値によって4種類のたし算を実装します。それぞれのたし算は、0+0 = 00 => 0000 0+1 = 01 => 0101 1+0 = 01 => 1001 1+1 = 10 => 1110 となります。4量子ビットのビット列で表現し、前半の2量子ビットが入力値aとbで、後半の2量子ビットが出力値cとdです。aとbを入力する回路と、実際にたし合わせを実現する回路を別に作り、何度か使い回します。1のようなデータの入力はXゲートを使って0を反転させて実装します。 たし算の回路部分はこのようになります。*はコントロールビットです。```a ---*---*------- ab ---*---|---*--- b0 ---X---|---|--- c0 -------X---X--- d```aとbにXゲートを使ってデータを入れると、ccx回路で桁上がり、cx回路で位のたし合わせを行います。 ###Code #ツールの読み込み from blueqat import Circuit #たし算部分を実現します。 adder = Circuit().ccx[0,1,2].cx[0,3].cx[1,3] #0+0 (Circuit() + adder).m[:].run(shots=100) #0+1 (Circuit().x[1] + adder).m[:].run(shots=100) #1+0 (Circuit().x[0] + adder).m[:].run(shots=100) #1+1 (Circuit().x[0,1] + adder).m[:].run(shots=100) ###Output _____no_output_____ ###Markdown このように、たし算が実装できました。 重ね合わせを利用したたし算ここで、Xゲートでデータを一つ一つ入れる代わりに、Hゲートを使ってたし算をしてみます。 ###Code #Xゲートの代わりにHゲートを入力に使う (Circuit().h[0,1] + adder).m[:].run(shots=100) ###Output _____no_output_____ ###Markdown アダマールゲートを利用すると4つのたし算が大体1/4ずつ答えとして出てきました。このように汎用たし算回路を作ると、重ね合わせ状態を利用した計算を実行できます。 もつれを利用したたし算次にHゲートの代わりにa+b=1となるたし算を量子のもつれを使って行ってみます。 ###Code #01と10のもつれを作る (Circuit().h[0].cx[0,1].x[0] + adder).m[:].run(shots=100) ###Output _____no_output_____ ###Markdown このように、入力値が01と10がもつれているので、この2つのたし算が約1/2ずつ出てきます。 -------- 解説:回路の作成(1桁目)まずは上の1桁目から作成します。1桁目を見ると、0, 0, 0, 1 の順になっています。表で表すと以下になります。|X|Y|X+Yの2桁目||:-:|:-:|:-:||0|0|0||0|1|0||1|0|0||1|1|1|これを見ると CCXゲートと同じことがわかります。(CCXは入力の頭2つのビットが1ならば3番目のビットを反転させる)このことから入力が 11 の場合は以下の回路を考えることができます。上から2ビットを入力、残りの1ビットを出力だと考えると上の回路から 1 が出力されるのがわかります。 解説:回路の作成(2桁目)次にもう一つのくらいを作成します。2桁目を見ると、0, 1, 1, 0 の順になっています。表で表すと以下になります。|X|Y|X+Yの1桁目||:-:|:-:|:-:||0|0|0||0|1|1||1|0|1||1|1|0|これを見ると CXゲートと同じことがわかります。(左辺がCXの入力で右辺が出力の2番目のビット)このことから入力が 10 の場合は以下の回路を考えることができます。上から2ビットを入力、残りの1ビットを出力だと考えると上の回路から 1 が出力されるのがわかります。 解説:回路の作成(全体)最後に上の二つの回路をまとめます。入力を 00 としてまとめた回路を以下に示します。上2ビットを入力、残りの2ビットが出力です。始めの CCX は1桁目の部分で残りの 2つの CX は2桁目の部分です。 解説:重ね合わせ回路の実装量子の重ね合わせを用いると4パターンを一気に操作することができます。式としては以下の物を考えます。見てわかる通り右辺に入力の4パターンが出てきました。この性質を用いて実装します。回路は以下のようになります。今まで Xゲートを施していた部分を Hゲートにして 4パターンを作っています。 (応用) 一般の足し算一般の10進数同士で足し算を実装します。 $a, b$ の和を考えることとします。$a, b$ は $a = a_n ... a_0$, $b = b_n ... b_0$ と2進数で表示できます。 (ここで n は数が大きい方の位を基準とします。)回路は以下のようになります。$c_i$ を carry ビットと言って繰り上がった数を表します。 足し算回路は carry と呼ばれる繰り上がりの部分と sum の合計の部分にわかれています。まずはこの2つの部分を考察します。 繰り上がり回路は以下のようになります。回路を上から $c_i, a_i, b_i, c_{i+1}$ とすると $c_{i+1}$ に繰り上がりの部分が現れます。 合計各位の和を考えます。回路は以下のようになります。回路を上から $c_i, a_i, b_i$ とすると $b_i$ に3つの数の和の繰り上がりを除いた部分が現れます。 実装足し算回路を実装します。流れは以下のようになります。 1. carry 回路で各位の繰り上がりを求める。 2. CXゲートで最後のcarryの部分を元に戻す。 3. sum 回路で $b_n$ に各位の和を出力する。 4. carry の逆回路でその位の値を元に戻す。 5. sum 回路で $b_i$ に各位の和を出力する。 6. 4,5の繰り返し。以上の流れから $a+b$ は $b_{n+1} ... b_0$ の部分に出力されることが分かります。足し算回路を実装するために下準備をします。 まずは carry とその逆回路, sum 回路を作ります。 ###Code from blueqat import Circuit def carry(i): return Circuit().ccx[i+1,i+2,i+3].cx[i+1,i+2].ccx[i,i+2,i+3] def carry_reverse(i): return Circuit().ccx[i,i+2,i+3].cx[i+1,i+2].ccx[i+1,i+2,i+3] def sum(i): return Circuit().cx[i+1,i+2].cx[i,i+2] ###Output _____no_output_____ ###Markdown 10進数を2進数にする関数も作っておきます。 ###Code def tobinary(A): return bin(A)[2:] tobinary(10) ###Output _____no_output_____ ###Markdown 数を回路にマッピングする関数を作ります。 ###Code def digits(a,b): # 2進数に変換 aa = tobinary(a) bb = tobinary(b) alen = len(aa) blen = len(bb) # nを決めて大きい方にビット数を合わせる maxlen = max(alen,blen) if alen>blen: bb = bb.zfill(alen) elif blen>alen: aa = aa.zfill(blen) # マッピング str = '' for i in range(maxlen): str += '0' + aa[maxlen-i-1] + bb[maxlen-i-1] str += '0' return str digits(2,2) ###Output _____no_output_____ ###Markdown 回路の初期状態は全て0なので、マッピングした値に合うようにXゲートを施す必要があります。 この関数を作ります。 ###Code def toX(a): cir = Circuit(len(a)) for i in range(len(a)): if a[i] == "1": cir += Circuit().x[i] return cir toX("101").m[:].run(shots=100) ###Output _____no_output_____ ###Markdown 最後に出力の部分を考えます。 まずは出力は2進数なので10進数に変換する関数を考えます。 ###Code def todecimal(A): return int(str(A),2) todecimal(1001) ###Output _____no_output_____ ###Markdown 回路では $a_i, b_i, c_i$ が混ざった値が出力されるのでその中で $b_i$ のみ取り出します。 ###Code def getb(result): str = result[-1] digi = int((len(result)-1)/3) for i in range(digi): str += result[-2-i*3] return todecimal(str) getb("0000110") ###Output _____no_output_____ ###Markdown 一般化回路以上で全ての準備が整ったので足し算回路を作ります。 ###Code def plus(a,b): # 2進数表示のマッピング qubits = len(digits(a,b)) cir1 = toX(digits(a,b)) digi = int((len(digits(a,b))-1)/3) # 前半のcarry回路 cir2 = Circuit(qubits) for i in range(digi): cir2 += carry(i*3) # 最後の桁の処理 cir3 = Circuit(qubits).cx[-3,-2] + sum((digi-1)*3) # carryの逆回路とsum回路でbiに和を出力 cir4 = Circuit(qubits) for i in range(digi-1): cir4 += carry_reverse((digi-i-2)*3) cir4 += sum((digi-i-2)*3) result = (cir1 + cir2 + cir3 + cir4).m[:].run(shots=1) return getb(result.most_common()[0][0]) ###Output _____no_output_____ ###Markdown 実際に計算してみます。 ###Code plus(2,2) plus(13,15) plus(70,90) ###Output _____no_output_____ ###Markdown 最後の計算は時間かかりますが、一般の加算器を実装できました。 参考文献V. Vedral, A. Barenco, A. Ekert, "Quantum Networks for Elementary Arithmetic Operations", (Submitted on 16 Nov 1995) https://arxiv.org/pdf/quant-ph/9511018.pdf ひき算量子コンピュータには従来のコンピュータと同じ計算もできるという特徴があります。ひき算の回路を確認します。 今回学ぶこと1. 量子ゲートを使って二進数のひき算を実装2. 量子の重ね合わせを使って1つの回路で複数のひき算 二進数のひき算たし算は符号を判定するccxゲートと、位の足し合わせを実行するcxゲートを使います。今回はa-b=cdという二進数のひき算の量子回路を行います。今回はaとbの値によって4種類のひき算を実装します。それぞれのひき算は、0-0 = 00 => 0000 0-1 = 11 => 0111 1-0 = 01 => 1001 1-1 = 00 => 1100 となります。4量子ビットのビット列で表現し、前半の2量子ビットが入力値aとbで、後半の2量子ビットが出力値cとdです。aとbを入力する回路と、実際に引き算を実現する回路を別に作り、何度か使い回します。1のようなデータの入力はXゲートを使って0を反転させて実装します。 ひき算の回路部分はこのようになります。*はコントロールビットです。```a ---X---*---X---*------- ab -------*-------|---*--- b0 -------X-------|---|--- c0 ---------------X---X--- d```aとbにXゲートを使ってデータを入れると、ccx回路で符号の判定、cx回路で位の引き算を行います。 ###Code #ツールの読み込み from blueqat import Circuit #ひき算部分を実現します。 substractor = Circuit().x[0].ccx[0,1,2].x[0].cx[0,3].cx[1,3] #0-0 (Circuit() + substractor).m[:].run(shots=100) #0-1 (Circuit().x[1] + substractor).m[:].run(shots=100) #1-0 (Circuit().x[0] + substractor).m[:].run(shots=100) #1-1 (Circuit().x[0,1] + substractor).m[:].run(shots=100) ###Output _____no_output_____ ###Markdown このように、ひき算が実装できました。 重ね合わせを利用したひき算ここで、Xゲートでデータを一つ一つ入れる代わりに、Hゲートを使ってひき算をしてみます。 ###Code #Xゲートの代わりにHゲートを入力に使う (Circuit().h[0,1] + substractor).m[:].run(shots=100) ###Output _____no_output_____ ###Markdown アダマールゲートを利用すると4つのひき算が大体1/4ずつ答えとして出てきました。このように汎用ひき算回路を作ると、重ね合わせ状態を利用した計算を実行できます。 もつれを利用したひき算次にHゲートの代わりにa-b=0となるたし算を量子のもつれを使って行ってみます。 ###Code #00と11のもつれを作る (Circuit().h[0].cx[0,1] + substractor).m[:].run(shots=100) ###Output _____no_output_____ ###Markdown このように、入力値が00と11がもつれているので、この2つのひき算が約1/2ずつ出てきます。 -------- 解説:回路の作成(符号)まずは上の符号から作成します。符号は、0, 1, 0, 0 の順になっています。表で表すと以下になります。|X|Y|符号||:-:|:-:|:-:||0|0|0||0|1|1||1|0|0||1|1|0|次にXの桁を反転させると|X|Y|符号||:-:|:-:|:-:||1|0|0||1|1|1||0|0|0||0|1|0|これを見ると CCXゲートと同じことがわかります。(CCXは入力の頭2つのビットが1ならば3番目のビットを反転させる)このことから入力が 11 の場合は以下の回路を考えることができます。上から2ビットを入力、残りの1ビットを出力だと考えると上の回路から 1 が出力されるのがわかります。 解説:回路の作成(2桁目)次にもう一つのくらいを作成します。2桁目を見ると、0, 1, 1, 0 の順になっています。表で表すと以下になります。|X|Y|X+Yの1桁目||:-:|:-:|:-:||0|0|0||0|1|1||1|0|1||1|1|0|これを見ると CXゲートと同じことがわかります。(左辺がCXの入力で右辺が出力の2番目のビット)このことから入力が 10 の場合は以下の回路を考えることができます。上から2ビットを入力、残りの1ビットを出力だと考えると上の回路から 1 が出力されるのがわかります。 解説:回路の作成(全体)最後に上の二つの回路をまとめます。入力を 00 としてまとめた回路を以下に示します。上2ビットを入力、残りの2ビットが出力です。始めの CCX は符号の部分で残りの 2つの CX は引き算の部分です。 符号を検知するためにXゲートを施したのでCCXした後は再びXをして戻しています。 解説:重ね合わせ回路の実装量子の重ね合わせを用いると4パターンを一気に操作することができます。式としては以下の物を考えます。見てわかる通り右辺に入力の4パターンが出てきました。この性質を用いて実装します。回路は以下のようになります。今まで Xゲートを施していた部分を Hゲートにして 4パターンを作っています。 (応用) 一般の引き算一般の10進数同士で引き算を実装します。 引き算回路は足し算回路を逆にすることで実装できます。足し算回路は以下のようになります。右から回路を考えます。$a, a+b$ を入力して $b$ を出力します。 $a = a_n ... a_0$, $(a+b) = b_n ... b_0$ と2進数で表示できます。 (ここで n は数が大きい方の位を基準とします。)$c_i$ は繰り下がりを表します。 この回路は carry と呼ばれる繰り上がりの部分と sum の合計の部分にわかれています。まずはこの2つの部分を考察します。 繰り下がりcarry, sum は以下のようになります。回路の始めの部分はこれらを組み合わせて繰り下がりを求めています。 オバーフロービット$a < a+b$ の場合でしか引き算はできません。 判別を $b_{n+1}$ で行います。これをオーバーフロービットと言います。$a < a+b$ のとき $b_{n+1}$ = 0 $a > a+b$ のとき $b_{n+1}$ = 1 になります。$a > a+b$ のときは $2^{n+1} - b$ が出力されます。 実装引き算回路を実装します。流れは以下のようになります。 1. carry の逆回路と sum 回路で各位の繰り下がりを求める。 2. オーバーフローを判別して $b_{n+1}$ に格納する。 3. carry 回路で差を出力する。 以上の流れから $b$ は $b_n ... b_0$ の部分に出力されることが分かります。$b_{n+1}$ はオーバーフロービットです。実装するために下準備をします。 これは足し算回路と同じなので説明は省略します。 ###Code from blueqat import Circuit def carry(i): return Circuit().ccx[i+1,i+2,i+3].cx[i+1,i+2].ccx[i,i+2,i+3] def carry_reverse(i): return Circuit().ccx[i,i+2,i+3].cx[i+1,i+2].ccx[i+1,i+2,i+3] def sum_reverse(a): return Circuit().cx[a,a+2].cx[a+1,a+2] def tobinary(A): return bin(A)[2:] def digits(a,b): # 2進数に変換 aa = tobinary(a) bb = tobinary(b) alen = len(aa) blen = len(bb) # nを決めて大きい方にビット数を合わせる maxlen = max(alen,blen) if alen>blen: bb = bb.zfill(alen) elif blen>alen: aa = aa.zfill(blen) # マッピング str = '' for i in range(maxlen): str += '0' + aa[maxlen-i-1] + bb[maxlen-i-1] str += '0' return str def toX(a): cir = Circuit(len(a)) for i in range(len(a)): if a[i] == "1": cir += Circuit().x[i] return cir def todecimal(A): return int(str(A),2) def getb(result): str = result[-1] digi = int((len(result)-1)/3) for i in range(digi): str += result[-2-i*3] return todecimal(str) def minus(a,ab): # 入れ替え c = ab ab = a a = c # 2進数表示のマッピング qubits = len(digits(a,ab)) cir1 = toX(digits(a,ab)) digi = int((len(digits(a,ab))-1)/3) # 前半のcarry回路とsum逆回路 cir4 = Circuit(qubits) for i in range(digi-1): cir4 += sum_reverse(i*3) cir4 += carry(i*3) # 最後の桁の処理 cir3 = sum_reverse((digi-1)*3) + Circuit(qubits).cx[-3,-2] # carryの逆回路でbiに差を出力 cir2 = Circuit(qubits) for i in range(digi): cir2 += carry_reverse((digi-1-i)*3) result = (cir1 + cir4 + cir3 + cir2).m[:].run(shots=1) return getb(result.most_common()[0][0]) minus(8,2) minus(4,2) minus(50,24) ###Output _____no_output_____ ###Markdown 計算できました。ちなみに $a > a + b$ のときは ###Code minus(2,4) ###Output _____no_output_____ ###Markdown こちらもきちんと計算されています。 参考文献https://arxiv.org/pdf/quant-ph/9511018.pdf かけ算今回は二進数同士のかけ算を見てみましょう。 今回学ぶこと1. 二進数のかけ算について2. 回路を作成 二進数の掛け算について2つの数をくらいごとにかけてずらして足し合わせます。その際に量子ビットを利用して桁上がりを考慮します。0 * 0 = 0 0 * 1 = 0 1 * 0 = 0 1 * 1 = 1 これはccxゲートの挙動に対応しています。ccxゲートを利用してかけ算を行い、その後各位を足し合わせます。 例題まずは例題を行います。01 * 10 = ?をときます。答えは、01 * 10 = 0010 となります。これを量子回路を利用して解きます。``` 01 a* 10 b------- 00 c 01 c------- 0 z 0 z------- 0010 x```では、早速実装へ。まずは2進数の数を2つ用意します。a * bを考えますが、aの0のくらいとaの2の位を用意して、それぞれa0とa2とします。bも同様です。今回最終的に実現するのは|a,b,x> => |a, b, a * b >とします。求めたいのはx0,x2,x4,x8です。cは途中の計算用のビット。zは桁上がりビットを想定します。 ###Code from blueqat import Circuit C1 = Circuit().ccx[0,1,2].ccx[1,3,5].ccx[0,4,6].ccx[3,4,7].ccx[5,6,8].ccx[7,8,9].cx[2,10].cx[5,11].cx[6,11].cx[7,12].cx[8,12].cx[9,13] #00 * 00 = 0000 (Circuit() + C1).m[:].run(shots=100) #01 * 01 = 0001 (Circuit().x[0,1] + C1).m[:].run(shots=100) #10 * 01 = 0010 (Circuit().x[3,1] + C1).m[:].run(shots=100) #01 * 10 = 0010 (Circuit().x[0,4] + C1).m[:].run(shots=100) #10 * 10 = 0100 (Circuit().x[3,4] + C1).m[:].run(shots=100) #11 * 10 = 0110 (Circuit().x[0,3,4] + C1).m[:].run(shots=100) #10 * 11 = 0110 (Circuit().x[1,3,4] + C1).m[:].run(shots=100) #11 * 11 = 1001 (Circuit().x[0,1,3,4] + C1).m[:].run(shots=100) ###Output _____no_output_____ ###Markdown このように全ての掛け算のパターンが量子回路で実現できました。試しに入力を重ね合わせにしてみます。アダマールゲートをXゲートの代わりに入れると、 ###Code (Circuit().h[0,1,3,4] + C1).m[:].run(shots=100) ###Output _____no_output_____ ###Markdown 上手い感じに 00 * 00 から 11 * 11 までを計算することができました。 概要 乗算器ビットは 0, 1 をとるので 二進数のかけ算を考えます。組み合わせは0×0=0, 0×1=0, 1×0=0, 1×1=1となります。これは加算器の1桁目と同じccxゲートで表せます。 乗算器 (2桁×2桁)次は応用で2桁×2桁の乗算を考えてみます。組み合わせは01×00=0000, 01×01=0001, 01×10=0010, 01×11=0011 11×00=0000, 11×01=0011, 11×10=0110, 11×11=1001 01×00=0000, 01×01=0001, 01×10=0010, 01×11=0011 11×00=0000, 11×01=0011, 11×10=0110, 11×11=1001の16通りとなります。 考え方まず試しに 11 × 10 を筆算で考えてみます。1 と 2 の行を合わせた4回の計算をそれぞれ考えます。 1行目 は 11 × 0 , 2行目は 11 × 1 となります。 各項4つの計算はそれぞれ 1桁の積でできるので全て CCXで実装できます。行目1 と 2 の和に関しては繰り上がりを考えないといけないので加算器で実装します。 回路の作成(1、2行目)今回は 1 行目だけ考えます。11 × 0 を CCX ゲートを用いて以下の回路を考えます。上から 2 つのビットは 11 の部分で次の 1 ビットは 0 の部分となります。 出力_1 ,出力_2 は 1 × 0 を表しています。これで 1 行目が出力されました。2 行目も同様にしてできます。 回路の作成(全体)11 × 10 を計算します。上の2つの回路を組み合わせて以下の回路を作ります。左上の操作は 1, 2 行目を計算しています。右下は 1, 2 行目の和を計算しています。 乗除演算一般の足し算と引き算の仕組みを利用してあまりを求めようと思います。回路は以下のようになります。ここで $0 < a,b < N$ とします。最後のビットは overflow を確認するもので temporary bit と呼ばれます。 実装手順$a+b \mod N$ を求めるためには $a+b$ と $N$ の大小を比較する必要があります。$a+b>N$ のとき $0<a,b<N$ より $0<a+b<2N$ よって $0<a+b-N<N$ より $a+b-N = (a+b) \mod N$$a+b<N$ のとき $a+b = (a+b) \mod N$これを量子回路で行います。$a+b>N$$a+b<N$余剰の量子ビットと加算器の最上位の量子ビットの値を使ってうまく場合分けをしています。a+b<N の場合には余剰ビットを使わず余計な操作もありません。 例題簡単な例題を見てみます。$3 + 5 < 7$ のとき $(3 + 5) \mod 7 = 1$$3 + 5 > 11$ のとき $(3 + 5) \mod 11 = 8$これを量子回路を使って実現しようというのが今回の剰余演算です。 実装実装するために下準備をします。今回は上の回路に N をもう1つ加えて temporary bit と N を対応させます。 初期状態を以下のようにします。```c0 --a0 --b0 --c1 --..n0 --n1 --..t --n0 --n1 --..```また各桁は $0<a,b<N$ より $N$ に統一します。 ###Code from blueqat import Circuit #ビットのキャリー回路 def carry(a): return Circuit().ccx[a+1,a+2,a+3].cx[a+1,a+2].ccx[a,a+2,a+3] #ビットのキャリー回路の逆 def carry_reverse(a): return Circuit().ccx[a,a+2,a+3].cx[a+1,a+2].ccx[a+1,a+2,a+3] #ビットの合計 def sum(a): return Circuit().cx[a+1,a+2].cx[a,a+2] #ビットの合計の逆 def sum_reverse(a): return Circuit().cx[a,a+2].cx[a+1,a+2] #10進数を2進数に def tobinary(A): return bin(A)[2:] #3つの10進数を2進数に直して、桁を揃えてモジュロ回路の順にビットを並べ替える。一番下に判定用のビットを1つ加える。 def digits2(a,b,n): aa = tobinary(a) bb = tobinary(b) nn = tobinary(n) nlen = len(nn) aa = aa.zfill(nlen) bb = bb.zfill(nlen) str = '' for i in range(nlen): str += '0' + aa[nlen-i-1] + bb[nlen-i-1] str += '0' for i in range(nlen): str += nn[nlen-i-1] str += '0' for i in range(nlen): str += nn[nlen-i-1] return str #ビット文字列をXゲートを使ったデータ入力回路に変換 def toX(a): cir = Circuit(len(a)) for i in range(len(a)): if a[i] == "1": cir += Circuit().x[i] return cir #足し算回路 def plus(a,b,n): qubits = len(digits2(a,b,n)) digi = len(tobinary(n)) cir2 = Circuit(qubits) for i in range(digi): cir2 += carry(i*3) cir3 = Circuit(qubits).cx[(digi-1)*3+1,(digi-1)*3+2] + sum((digi-1)*3) cir4 = Circuit(qubits) for i in range(digi-1): cir4 += carry_reverse((digi-i-2)*3) cir4 += sum((digi-i-2)*3) cir_plus = cir2 + cir3 + cir4 return cir_plus #引き算回路 def minus(a,ab,n): qubits = len(digits2(a,ab,n)) digi = len(tobinary(n)) cir4 = Circuit(qubits) for i in range(digi-1): cir4 += sum_reverse(i*3) cir4 += carry(i*3) cir3 = sum_reverse((digi-1)*3) + Circuit(qubits).cx[(digi-1)*3+1,(digi-1)*3+2] cir2 = Circuit(qubits) for i in range(digi): cir2 += carry_reverse((digi-1-i)*3) cir_minus = cir4 + cir3 + cir2 return cir_minus #aとNを交換 def swap(n): digi = len(tobinary(n)) cir = Circuit(5*digi+2) for i in range(digi): cir += Circuit(5*digi+2).swap[3*i+1,3*digi+1+i] return cir #2進数を10進数に def todecimal(A): return int(str(A),2) #回路から解だけを抜き出す def getb(result,n): str = "" digi = len(tobinary(n)) for i in range(digi): str += result[3*(digi-i)-1] return todecimal(str) ###Output _____no_output_____ ###Markdown 一般化回路以上で全ての準備が整ったので剰余演算回路を作ります。 ###Code def adder_mod(a,b,n): digi = len(tobinary(n)) # 最初の部分 part1 = toX(digits2(a,b,n)) + plus(a,b,n) + swap(n) + minus(a,b,n) # overflow を temporary bit に格納 part2 = Circuit(5*digi+2).x[digi*3].cx[digi*3,digi*4+1].x[digi*3] # temporary bit で N を返す part3 = Circuit(5*digi+2) for i in range(digi): part3 += Circuit(5*digi+2).ccx[4*digi+2+i,4*digi+1,3*i+1] # 最後の部分 part4 = minus(a,b,n)+Circuit(5*digi+2).cx[digi*3,digi*4+1]+plus(a,b,n) result = (part1+part2+part3+plus(a,b,n)+part3+swap(n)+part4).m[:].run(shots=1) return getb(result.most_common()[0][0],n) ###Output _____no_output_____ ###Markdown 実際に計算してみます。 ###Code adder_mod(4,3,5) adder_mod(4,4,5) adder_mod(1,5,6) ###Output _____no_output_____
m04/data-prep/tree-census.ipynb
###Markdown Prep ###Code import pandas as pd import numpy as np import plotly.express as px tree = pd.read_csv('../tree-census-2015.csv') tree.shape tree.columns # tree.loc[:, 'genus'] = tree.spc_latin.str.extract('^([^ ]*)') tree.loc[:, 'count'] = 1 ###Output _____no_output_____ ###Markdown Question 1 ###Code tree['health'].value_counts(dropna = False) tree.head() tree['borough'].value_counts(dropna = False) tree_q1 = tree[['borough', 'spc_common', 'health', 'count', 'steward']] tree.head() tree_q1.head() tree_q1.columns tree_q1.index agg_q1 = tree_q1.groupby(['borough', 'spc_common', 'health', 'steward']).sum().reset_index() agg_q1 agg_q1.shape agg_q1.to_csv('agg.csv') tree['steward'].value_counts() tree['spc_common'].value_counts().shape tree.iloc[1] (tree['spc_common'].isna() | tree['health'].isna() | tree['borough'].isna() | tree['steward'].isna()).sum() tree['count'].sum() tree.shape agg_q1.spc_common.to_dict() c2 = ['spc_common', 'spc_latin'] spc_map = tree[c2].groupby(c2).count().reset_index() spc_map.to_clipboard() def series2dropdown(s): l = list() for v in s.unique(): l.append({'label': v, 'value': v}) return(l) series2dropdown(agg_q1.borough) series2dropdown(agg_q1.health) df = pd.read_csv('../agg-post.csv') df.Health = pd.Categorical(df.Health, categories = ['Poor', 'Fair', 'Good']) dff = df[df['Species Common'] == 'Schubert Chokecherry'] dffa = dff.groupby(['Borough', 'Health']).sum() dffb = dff.groupby(['Borough']).sum() dffp = (dffa / dffb).reset_index() fig = px.bar(dffp, x = "Borough", y = "Count", color = "Health", title="Wide-Form Input") fig.show() pd.Categorical(df['Species Common']) ###Output _____no_output_____
docs/notebooks/user-output.ipynb
###Markdown UserOutput `UserOutput` is as generic class which can export scrapped users.Under the hood it has abstract method `export_users(users: List[User])`. There are few implementations of `UserOutput` ###Code import stweet as st ###Output _____no_output_____ ###Markdown PrintUserOutput `PrintUserOutput` prints all scrapper user. ###Code st.PrintUserOutput(); ###Output _____no_output_____ ###Markdown CollectorUserOutput `CollectorUserOutput` collect users in memory. This is the best option when sbd need to process small part of tweets.To get all tweets you need to run `get_scrapped_users()`. ###Code st.CollectorUserOutput(); ###Output _____no_output_____ ###Markdown CsvUserOutput `CsvUserOutput` stores users in csv file. It has two parameters `file_location` and `add_header_on_start`.When `add_header_on_start` is `True` header is adding only when file is empty. It is possible to continue storing the users in file in next tasks. ###Code st.CsvUserOutput( file_location='my_csv_file.csv', add_header_on_start=True ); ###Output _____no_output_____ ###Markdown JsonLineFileUserOutput `JsonLineFileUserOutput` stores users in file in json lines. This solution is better because it can be problem with fast saving new user in large files, also it can be problem with reading. Using json lines it is possible to read line by line, without read whole document into memory.Class have only one property – `file_name`, this is the file to store users in json line format. ###Code st.JsonLineFileUserOutput( file_name='my_jl_file.jl' ); ###Output _____no_output_____ ###Markdown PrintEveryNUserOutput `PrintEveryNUserOutput` print event N-th scrapped user. This is best solution to track that new users are scrapping.Class have only one parameter – `each_n`, this is the N value described above. ###Code st.PrintEveryNUserOutput( each_n=100 ); ###Output _____no_output_____
examples/notebooks/tf_2_2/keras_mnist_fashion_save_model/keras_mnist_fashion_save_model.ipynb
###Markdown Keras MNIST Fashion Save Model ExampleSingle fully connected hidden layer exported for prediction on device with tensor/io. Exported using the keras `model.save` api.Based on https://www.tensorflow.org/tutorials/keras/classification ###Code import os import numpy as np import tensorflow as tf import tensorflow_hub as hub from tensorflow.keras import layers import PIL.Image as Image import matplotlib.pylab as plt %matplotlib inline def enable_memory_growth(): physical_devices = tf.config.experimental.list_physical_devices('GPU') try: tf.config.experimental.set_memory_growth(physical_devices[0], True) # tf.config.gpu.set_per_process_memory_growth(True) # tf.config.gpu.set_per_process_memory_fraction(0.75) except: print('Invalid device or cannot modify virtual devices once initialized.') if "TF_GPU_GROWTH" in os.environ: print("Enabling GPU memory growth") enable_memory_growth() ###Output Enabling GPU memory growth Invalid device or cannot modify virtual devices once initialized. ###Markdown Fashion MNIST ###Code fashion_mnist = tf.keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() class_names = [ 'T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot' ] plt.figure() plt.imshow(train_images[0]) plt.colorbar() plt.grid(False) plt.show() train_images = train_images / 255.0 test_images = test_images / 255.0 plt.figure(figsize=(10,10)) for i in range(25): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(train_images[i], cmap=plt.cm.binary) plt.xlabel(class_names[train_labels[i]]) plt.show() ###Output _____no_output_____ ###Markdown Model ###Code def make_model(): model = tf.keras.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dense(10) ]) return model model = make_model() model.summary() model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) model.fit(train_images, train_labels, epochs=10) test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2) print('\nTest accuracy:', test_acc) probability_model = tf.keras.Sequential([ model, tf.keras.layers.Softmax() ]) predictions = probability_model.predict(test_images) predictions[0] np.argmax(predictions[0]) def plot_image(i, predictions_array, true_label, img): predictions_array, true_label, img = predictions_array, true_label[i], img[i] plt.grid(False) plt.xticks([]) plt.yticks([]) plt.imshow(img, cmap=plt.cm.binary) predicted_label = np.argmax(predictions_array) if predicted_label == true_label: color = 'blue' else: color = 'red' plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label], 100*np.max(predictions_array), class_names[true_label]), color=color) def plot_value_array(i, predictions_array, true_label): predictions_array, true_label = predictions_array, true_label[i] plt.grid(False) plt.xticks(range(10)) plt.yticks([]) thisplot = plt.bar(range(10), predictions_array, color="#777777") plt.ylim([0, 1]) predicted_label = np.argmax(predictions_array) thisplot[predicted_label].set_color('red') thisplot[true_label].set_color('blue') i = 0 plt.figure(figsize=(6,3)) plt.subplot(1,2,1) plot_image(i, predictions[i], test_labels, test_images) plt.subplot(1,2,2) plot_value_array(i, predictions[i], test_labels) plt.show() # Plot the first X test images, their predicted labels, and the true labels. # Color correct predictions in blue and incorrect predictions in red. num_rows = 5 num_cols = 3 num_images = num_rows*num_cols plt.figure(figsize=(2*2*num_cols, 2*num_rows)) for i in range(num_images): plt.subplot(num_rows, 2*num_cols, 2*i+1) plot_image(i, predictions[i], test_labels, test_images) plt.subplot(num_rows, 2*num_cols, 2*i+2) plot_value_array(i, predictions[i], test_labels) plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown Export with model.save ###Code PATH = 'tmp/keras-mnist-fashion-save-model' ! rm -r 'tmp/keras-mnist-fashion-save-model' model.save(PATH, save_format='tf') ###Output WARNING:tensorflow:From /home/phildow/virtualenvs/tf22/lib/python3.6/site-packages/tensorflow/python/ops/resource_variable_ops.py:1817: calling BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops) with constraint is deprecated and will be removed in a future version. Instructions for updating: If using Keras pass *_constraint arguments to layers. INFO:tensorflow:Assets written to: tmp/keras-mnist-fashion-save-model/assets ###Markdown Results ###Code ! saved_model_cli show --all --dir tmp/keras-mnist-fashion-save-model/ ###Output MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs: signature_def['__saved_model_init_op']: The given SavedModel SignatureDef contains the following input(s): The given SavedModel SignatureDef contains the following output(s): outputs['__saved_model_init_op'] tensor_info: dtype: DT_INVALID shape: unknown_rank name: NoOp Method name is: signature_def['serving_default']: The given SavedModel SignatureDef contains the following input(s): inputs['flatten_input'] tensor_info: dtype: DT_FLOAT shape: (-1, 28, 28) name: serving_default_flatten_input:0 The given SavedModel SignatureDef contains the following output(s): outputs['dense_1'] tensor_info: dtype: DT_FLOAT shape: (-1, 10) name: StatefulPartitionedCall:0 Method name is: tensorflow/serving/predict WARNING:tensorflow:From /home/phildow/virtualenvs/tf22/lib/python3.6/site-packages/tensorflow/python/ops/resource_variable_ops.py:1817: calling BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops) with constraint is deprecated and will be removed in a future version. Instructions for updating: If using Keras pass *_constraint arguments to layers. Defined Functions: Function Name: '__call__' Option #1 Callable with: Argument #1 inputs: TensorSpec(shape=(None, 28, 28), dtype=tf.float32, name='inputs') Argument #2 DType: bool Value: False Argument #3 DType: NoneType Value: None Option #2 Callable with: Argument #1 flatten_input: TensorSpec(shape=(None, 28, 28), dtype=tf.float32, name='flatten_input') Argument #2 DType: bool Value: False Argument #3 DType: NoneType Value: None Option #3 Callable with: Argument #1 flatten_input: TensorSpec(shape=(None, 28, 28), dtype=tf.float32, name='flatten_input') Argument #2 DType: bool Value: True Argument #3 DType: NoneType Value: None Option #4 Callable with: Argument #1 inputs: TensorSpec(shape=(None, 28, 28), dtype=tf.float32, name='inputs') Argument #2 DType: bool Value: True Argument #3 DType: NoneType Value: None Function Name: '_default_save_signature' Option #1 Callable with: Argument #1 flatten_input: TensorSpec(shape=(None, 28, 28), dtype=tf.float32, name='flatten_input') Function Name: 'call_and_return_all_conditional_losses' Option #1 Callable with: Argument #1 flatten_input: TensorSpec(shape=(None, 28, 28), dtype=tf.float32, name='flatten_input') Argument #2 DType: bool Value: False Argument #3 DType: NoneType Value: None Option #2 Callable with: Argument #1 flatten_input: TensorSpec(shape=(None, 28, 28), dtype=tf.float32, name='flatten_input') Argument #2 DType: bool Value: True Argument #3 DType: NoneType Value: None Option #3 Callable with: Argument #1 inputs: TensorSpec(shape=(None, 28, 28), dtype=tf.float32, name='inputs') Argument #2 DType: bool Value: False Argument #3 DType: NoneType Value: None Option #4 Callable with: Argument #1 inputs: TensorSpec(shape=(None, 28, 28), dtype=tf.float32, name='inputs') Argument #2 DType: bool Value: True Argument #3 DType: NoneType Value: None ###Markdown Tensor/IONote in the corresponding model.json that the name and shape of the inputs and outputs matches the values you see in the signature definition. Take special care to note that the name is taken from the layer's name and not from the key in the inputs or outputs dictionary:```inputs['flatten_input'] tensor_info: dtype: DT_FLOAT shape: (-1, 28, 28) name: serving_default_flatten_input:0outputs['dense_1'] tensor_info: dtype: DT_FLOAT shape: (-1, 10) name: StatefulPartitionedCall:0``` ###Code ! cat model.json ###Output { "name": "Keras MNIST Fashion Save Model Example", "details": "Basic Keras Model for Fashion MNSIT dataset exported for prediction using the keras model.save api", "id": "keras-mnist-clothing-save-model", "version": "1", "author": "doc.ai", "license": "Apache License. Version 2.0 http://www.apache.org/licenses/LICENSE-2.0", "model": { "file": "predict", "quantized": false, "type": "mnist.fashion.keras", "backend": "tensorflow", "modes": ["predict"] }, "inputs": [ { "name": "serving_default_flatten_input", "type": "array", "shape": [-1,28,28] } ], "outputs": [ { "name": "StatefulPartitionedCall", "type": "array", "shape": [-1,10] } ] }
Euler 017 - Number letter counts.ipynb
###Markdown Euler Problem 17================If the numbers 1 to 5 are written out in words: one, two, three, four, five, then there are 3 + 3 + 5 + 4 + 4 = 19 letters used in total.If all the numbers from 1 to 1000 (one thousand) inclusive were written out in words, how many letters would be used?**NOTE:** Do not count spaces or hyphens. For example, 342 (three hundred and forty-two) contains 23 letters and 115 (one hundred and fifteen) contains 20 letters. The use of "and" when writing out numbers is in compliance with British usage. ###Code def spellout(n): small = [3, 3, 5, 4, 4, 3, 5, 5, 4] # 1 - 9 teens = [6, 6, 8, 8, 7, 7, 9, 8, 8] # 11 - 19 tens = [3, 6, 6, 5, 5, 5, 7, 6, 6] # 10, 20, ..., 90 if n >= 1000: s = spellout(n//1000) + 8 r = n % 1000 if r > 99: s = s + spellout(n%1000) elif r > 0: s = s + 3 + spellout(n%1000) return s if n > 99: s = spellout(n//100) + 7 r = n % 100 if r: s = s + 3 + spellout(n % 100) return s if n < 10: return small[n-1] elif n > 10 and n < 20: return teens[n-11] else: s = tens[n//10-1] if (n % 10): s = s + small[(n % 10) - 1] return s print(sum(spellout(i) for i in range(1, 1001))) ###Output 21124
nbs/02_template.filters.ipynb
###Markdown Filters> Filters are used to define pass/fail criteria for screening molecules OverviewA core concept in MRL is using molecular templates, expressed with the `Template` class, to define chemical spaces. A template contains a set of filters that define desirable property ranges, such as ```Molecular weight: 250-450Rotatable bonds: Less than 8PAINS Filter: Pass```These property specifications are expressed through the `Filter` class. The primary function of a filter is to define some pass/fail criteria for a molecule. This is done through the `property_function` and `criteria_function` methods. `property_function` computes some value based on the input molecule. `criteria_function` converts the output of `property_function` to a single boolean value.Filters follow the convention that `True` means the input `Mol` has passed the `criteria_function` function, while `False` means the `Mol` has failed the `criteria_function`.We can also use filters to express a soft preference for chemical properties by adding a score. If a score is provided, the output of `property_function` and `criteria_function` are sent to a `ScoreFunction` subclass, which returns a numeric value.This allows us to use filters to define both the __must-have__ chemical properties as well as __nice-to-have__ properties. For example:```Must Have:Molecular weight: 250-450, Rotatable bonds: Less than 8PAINS Filter: PassNice To Have:Molecular weight: 350-400 (+1), TPSA: Less than 80 (+1)Substructure Match: '[6]1:[6]:[7]:[6]:[6]:[6]:1' (+3)Substructure Match: '[6]1:[6]:[7]:[7]:[7]:[6]:1' (-1)``` ###Code #hide from nbdev.showdoc import * %load_ext autoreload %autoreload 2 # export from mrl.imports import * from mrl.core import * from mrl.chem import * ###Output /home/dmai/miniconda3/envs/mrl/lib/python3.7/importlib/_bootstrap.py:219: RuntimeWarning: to-Python converter for boost::shared_ptr<RDKit::FilterCatalogEntry const> already registered; second conversion method ignored. return f(*args, **kwds) ###Markdown Score Functions`ScoreFunction` classes take the outputs of a filter (both `property_function` and `criteria_function`, see `Filter` for more details) and return a numeric score. This can be used to incentivise a generative model to produce molecules with specific properties without making those properties must-have constraints.`ConstantScore` returns a standard value based on if the `criteria_output` is `True` or `False`. For more sophisticated scores like those seen in MPO functions, something like `LinearDecayScore` can be used, which returns a constant score within a certain range, but decays the score outside that range.`ScoreFunction` can be subclassed with any variant that takes as input `property_output` and `criteria_output` and returns a numeric value ###Code # export class ScoreFunction(): "Base score function" def __call__(self, property_output, criteria_output): pass class NoScore(ScoreFunction): "Pass through for no score" def __call__(self, property_output, criteria_output): return 0. class PassThroughScore(ScoreFunction): "Pass through for property_output" def __call__(self, property_output, criteria_output): return property_output class ModifiedScore(ScoreFunction): "Base class for scores where property_output is modified by some function" def __init__(self, fail_score=0.): self.fail_score = float(fail_score) def __call__(self, property_output, criteria_output): if not criteria_output and self.fail_score is not None: output = self.fail_score else: output = self.compute_score(property_output) return output def compute_score(self, property_output): raise NotImplementedError class ConstantScore(ModifiedScore): "Returns pass_score if criteria_output, else fail_score" def __init__(self, pass_score, fail_score): super().__init__(fail_score) self.pass_score = float(pass_score) def compute_score(self, property_output): return self.pass_score class WeightedPropertyScore(ModifiedScore): "Returns weight*property_output if criteria_output, else fail_score" def __init__(self, weight, fail_score=0.): super().__init__(fail_score) self.weight = weight def compute_score(self, property_output): return property_output*self.weight class PropertyFunctionScore(ModifiedScore): "Returns output `function(property_output)`" def __init__(self, function, fail_score=0.): super().__init__(fail_score) self.function = function def compute_score(self, property_output): return self.function(property_output) class LinearDecayScore(ScoreFunction): ''' LinearDecayScore - score with linear decay. `low_start<low_end<high_start<high_end` Returns `pass_score` if `criteria_output=True` and `low_end<=property_output<=high_start`. If `low_start<=property_output<=low_end` or `high_start<=property_output<=high_end`, the score is a linear interpolation between `pass_score` and `fail_score`. Otherwise, returns `fail_score`. One of `low_end`, `high_start` must be not None. If one of `low_end`, `high_start` is None, the corresponding bound is ignored if `low_start` or `high_end` is None, the score immediately drops to `fail_score` ''' # low_start < low_end < high_start < high_end def __init__(self, pass_score, low_start, low_end, high_start, high_end, fail_score=0.): self.pass_score = float(pass_score) self.fail_score = float(fail_score) self.low_start = low_start self.high_start = high_start self.low_end = low_end self.high_end = high_end assert (self.low_end is not None) or (self.high_start is not None), ("One of (low_end, high_start) " "must not be None") def check_bound(self, property_output, bound, boundtype): if bound is None: output = True else: if boundtype=='low': output = property_output>=bound else: output = property_output<=bound return output def __call__(self, property_output, criteria_output): if criteria_output: low_bound = self.check_bound(property_output, self.low_end, 'low') high_bound = self.check_bound(property_output, self.high_start, 'high') if low_bound and high_bound: # in main range output = self.pass_score elif low_bound: # above high start: high_end = self.check_bound(property_output, self.high_end, 'high') if high_end: # between high_start and high_end if (self.high_start is not None) and (self.high_end is not None): fraction = (property_output - self.high_start)/(self.high_end - self.high_start) output = self.pass_score*(1-fraction) + self.fail_score*fraction else: output = self.fail_score else: output = self.fail_score else: # below low end low_start = self.check_bound(property_output, self.low_start, 'low') if low_start: # between low_start and low_end if (self.low_start is not None) and (self.low_end is not None): fraction = (property_output - self.low_start)/(self.low_end - self.low_start) output = self.pass_score*fraction + self.fail_score*(1-fraction) else: output = self.fail_score else: output = self.fail_score else: output = self.fail_score return output score = LinearDecayScore(1, 1,5,10,15, fail_score=-1) plt.plot(np.linspace(0,16),[score(i, True) for i in np.linspace(0,16)]) score = LinearDecayScore(1, 1,5,None, None, fail_score=-1) plt.plot(np.linspace(0,16),[score(i, True) for i in np.linspace(0,16)]) ###Output _____no_output_____ ###Markdown FiltersAs described before, Filters serve the function of defining some pass/fail criteria for a given molecule. Filters contain a `property_function`, which computes some property of a molecule, and a `criteria_function` which converts the output of the property function to a boolean value, following the convention where `True` denotes a pass.Filters can optionally contain a score, which can be any of `(None, int, float, ScoreFunction)`. A score of `None` is converted to `NoScore`, while a numeric score (int or float) is converted to `ConstantScore`. The `eval_mol` function evaluates the filter on a given input. If `with_score=True` is passed, the output of `self.score_function` is returned, while if `with_score=False` is passed, the boolean output of `criteria_function` is returned ###Code set(['protein', 'dna']) # export class Filter(): ''' Filter - base filter function class Inputs: - `score [None, int, float, ScoreFunction]`: see `Filter.set_score` - `name Optional[str]`: filter name used for repr - `fail_score [float, int]`: used in `Filter.set_score` if `score_function` is (int, float) - `mode str['smile', 'protein', 'dna', 'rna']`: determines how inputs are converted to Mol objects ''' def __init__(self, score=None, name=None, fail_score=0., mode='smile'): self.score_function = self.set_score(score, fail_score) self.name = name self.priority = 0 self.mode = mode def set_score(self, score_function, fail_score): if score_function is None: score = NoScore() elif type(score_function) in (int, float): score = ConstantScore(score_function, fail_score=fail_score) elif isinstance(score_function, ScoreFunction): score = score_function else: raise ValueError('Invalid score_function input, must be one of (None, int, float, ScoreFunction)') return score def __call__(self, mol, with_score=False): output = maybe_parallel(self.eval_mol, mol, with_score=with_score) return output def to_mol(self, input): if self.mode=='smile': mol = to_mol(input) elif self.mode=='protein': mol = to_protein(input) elif self.mode=='dna': mol = to_dna(input) elif self.mode=='rna': mol = to_rna(input) else: raise ValueError("`self.mode` must be one of `['smile', 'protein', 'dna', 'rna']`") return mol def to_string(self, input): if self.mode=='smile': string = to_smile(input) elif self.mode in set(['protein', 'dna', 'rna']): string = to_sequence(input) else: raise ValueError("`self.mode` must be one of `['smile', 'protein', 'dna', 'rna']`") return string def eval_mol(self, mol, with_score=False): ''' eval_mol - evaluates `Mol` based on `property_function`. if `with_score=True`, returns the output of `score_function`, else returns the output of `property_function ''' mol = self.to_mol(mol) property_output = self.property_function(mol) criteria_output = self.criteria_function(property_output) if with_score: output = self.score_function(property_output, criteria_output) else: output = criteria_output return output def property_function(self, mol): raise NotImplementedError def criteria_function(self, property_output): raise NotImplementedError def __repr__(self): if self.name is not None: output = f'{self.name}' else: output = 'Unnamed Filter' return output ###Output _____no_output_____ ###Markdown `ValidityFilter` and `SingleCompoundFilter` are general molecule quantity filters. Generative models may produce invalid structures or multiple compounds when a single compound is desired. These filters can be used to eliminate those outputs ###Code # export class ValidityFilter(Filter): ''' ValidityFilter - checks to see if a given `Mol` is a valid compound Inputs: - `score [None, int, float, ScoreFunction]`: see `Filter.set_score` - `name Optional[str]`: filter name used for repr - `fail_score [float, int]`: used in `Filter.set_score` if `score_function` is (int, float) - `mode str['smile', 'protein', 'dna', 'rna']`: determines how inputs are converted to Mol objects ''' def __init__(self, score=None, name=None, fail_score=0., mode='smile'): if name is None: name = 'Vaidity Filter' super().__init__(score=score, name=name, fail_score=fail_score, mode=mode) self.priority=2 def property_function(self, mol): mol = self.to_mol(mol) return mol def criteria_function(self, property_output): return property_output is not None and property_output.GetNumAtoms() > 0 class SingleCompoundFilter(Filter): ''' SingleCompoundFilter - checks to see if a given `Mol` is a single compound Inputs: - `score [None, int, float, ScoreFunction]`: see `Filter.set_score` - `name Optional[str]`: filter name used for repr - `fail_score [float, int]`: used in `Filter.set_score` if `score_function` is (int, float) - `mode str['smile', 'protein', 'dna', 'rna']`: determines how inputs are converted to Mol objects ''' def __init__(self, score=None, name=None, fail_score=0., mode='smile'): if name is None: name = 'Single Compound Filter' super().__init__(score, name, fail_score=fail_score, mode=mode) self.priority=1 def property_function(self, mol): smile = self.to_string(mol) return smile def criteria_function(self, property_output): return not '.' in property_output f = ValidityFilter() assert f('CC') assert not f('cc') # invalid smiles f = ValidityFilter(mode='protein') assert f('MAARG') assert not f('MXRA') f = SingleCompoundFilter() assert f('CC') assert not f('CC.CC') # export class CharacterCountFilter(Filter): ''' CharacterCountFilter - validates `Mol` based on the count of the specified character Inputs: - `chars list[str]`: character to count - `min_val Optional[float, int]`: min value for count - `max_val Optional[float, int]`: max value for count ` `per_length bool`: if True, counts are normalized by string length - `score [None, int, float, ScoreFunction]`: see `Filter.set_score` - `name Optional[str]`: filter name used for repr - `fail_score [float, int]`: used in `Filter.set_score` if `score_function` is (int, float) - `mode str['smile', 'protein', 'dna', 'rna']`: determines how inputs are converted to Mol objects ''' def __init__(self, chars, min_val=None, max_val=None, per_length=False, score=None, name=None, fail_score=0., mode='smile'): if name is None: name = f"Character Filter {''.join(chars)}" super().__init__(score, name, fail_score=fail_score, mode=mode) self.priority = 1 self.chars = chars self.min_val = min_val self.max_val = max_val self.per_length = per_length def property_function(self, mol): smile = self.to_string(mol) return smile def criteria_function(self, property_output): values = [property_output.count(i) for i in self.chars] if self.per_length: values = [i/len(property_output) for i in values] lower_bound = (min(values)>=self.min_val) if self.min_val is not None else True upper_bound = (max(values)<=self.max_val) if self.max_val is not None else True output = lower_bound and upper_bound return output def __repr__(self): output = f'{self.name}' + f' ({self.min_val}, {self.max_val})' return output class AttachmentFilter(CharacterCountFilter): ''' AttachmentFilter - validates `Mol` based on the number of `*` attachment points Inputs: - `min_val Optional[float, int]`: min attachment value - `max_val Optional[float, int]`: max attachment value ` `per_length bool`: if True, counts are normalized by string length - `score [None, int, float, ScoreFunction]`: see `Filter.set_score` - `name Optional[str]`: filter name used for repr - `fail_score [float, int]`: used in `Filter.set_score` if `score_function` is (int, float) - `mode str['smile', 'protein', 'dna', 'rna']`: determines how inputs are converted to Mol objects ''' def __init__(self, min_val=None, max_val=None, per_length=False, score=None, name=None, fail_score=0., mode='smile'): super().__init__(chars=['*'], min_val=min_val, max_val=max_val, per_length=per_length, score=score, name=name, fail_score=fail_score, mode=mode ) f = CharacterCountFilter(['C'], min_val=1, max_val=3) assert f('CC') assert not f('N') f = CharacterCountFilter(['A'], min_val=0, max_val=3, mode='protein') assert f('MMM') assert not f('MAMAMAMA') f = CharacterCountFilter(['C'], min_val=0.1, max_val=0.4, per_length=True) assert f('CCNNN') assert not f('N') f = CharacterCountFilter(['D', 'A', 'M'], min_val=0, max_val=2, mode='protein') assert f('D') assert f('DAM') assert not f('DDDAM') f = AttachmentFilter(2, 2) assert f('*CC*') assert not f('*CC') ###Output _____no_output_____ ###Markdown The most common type of filter used is one that determines if a specific molecular property is within a certain range. This is implemented with the `PropertyFilter` class. `PropertyFilter` will work for any `mol_function` that takes in a `Mol` object and returns a numeric output. The numeric output is then compared to `min_val` and `max_val`. Unspecified bounds (ie `max_val=None`) are ignored.For convenience, a number of `PropertyFilter` named after specific properties are provided ###Code # export class PropertyFilter(Filter): ''' PropertyFilter - filters mols based on `mol_function` Inputs: - `mol_function Callable`: any function that takes as input a `Mol` object and returns a single numeric value - `min_val Optional[float, int]`: inclusive lower bound for filter (ignored if None) - `max_val Optional[float, int]`: inclusive upper bound for filter (ignored if None) - `score [None, int, float, ScoreFunction]`: see `Filter.set_score` - `name Optional[str]`: filter name used for repr - `fail_score [float, int]`: used in `Filter.set_score` if `score_function` is (int, float) - `mode str['smile', 'protein', 'dna', 'rna']`: determines how inputs are converted to Mol objects ''' def __init__(self, mol_function, min_val=None, max_val=None, score=None, fail_score=0., name=None, mode='smile'): self.mol_function = mol_function self.min_val = min_val self.max_val = max_val if name is None: name = mol_function.__name__ super().__init__(score, name, fail_score=fail_score, mode=mode) def property_function(self, mol): return self.mol_function(mol) def criteria_function(self, property_output): lower_bound = (property_output>=self.min_val) if self.min_val is not None else True upper_bound = (property_output<=self.max_val) if self.max_val is not None else True output = lower_bound and upper_bound return output def __repr__(self): output = f'{self.name}' + f' ({self.min_val}, {self.max_val})' return output class MolWtFilter(PropertyFilter): "Molecular weight filter" def __init__(self, min_val, max_val, score=None, name=None, **kwargs): super().__init__(molwt, min_val=min_val, max_val=max_val, score=score, name=name, **kwargs) class HBDFilter(PropertyFilter): "Hydrogen bond donor filter" def __init__(self, min_val, max_val, score=None, name=None, **kwargs): super().__init__(hbd, min_val=min_val, max_val=max_val, score=score, name=name, **kwargs) class HBAFilter(PropertyFilter): "Hydrogen bond acceptor filter" def __init__(self, min_val, max_val, score=None, name=None, **kwargs): super().__init__(hba, min_val=min_val, max_val=max_val, score=score, name=name, **kwargs) class TPSAFilter(PropertyFilter): "TPSA filter" def __init__(self, min_val, max_val, score=None, name=None, **kwargs): super().__init__(tpsa, min_val=min_val, max_val=max_val, score=score, name=name, **kwargs) class RotBondFilter(PropertyFilter): "Rotatable bond filter" def __init__(self, min_val, max_val, score=None, name=None, **kwargs): super().__init__(rotbond, min_val=min_val, max_val=max_val, score=score, name=name, **kwargs) class SP3Filter(PropertyFilter): "Fractioon sp3 filter" def __init__(self, min_val, max_val, score=None, name=None, **kwargs): super().__init__(fsp3, min_val=min_val, max_val=max_val, score=score, name=name, **kwargs) class LogPFilter(PropertyFilter): "LogP filter" def __init__(self, min_val, max_val, score=None, name=None, **kwargs): super().__init__(logp, min_val=min_val, max_val=max_val, score=score, name=name, **kwargs) class PenalizedLogPFilter(PropertyFilter): "Penalized LogP filter" def __init__(self, min_val, max_val, score=None, name=None, **kwargs): super().__init__(penalized_logp, min_val=min_val, max_val=max_val, score=score, name=name, **kwargs) class RingFilter(PropertyFilter): "Ring filter" def __init__(self, min_val, max_val, score=None, name=None, **kwargs): super().__init__(rings, min_val=min_val, max_val=max_val, score=score, name=name, **kwargs) class HeteroatomFilter(PropertyFilter): "Heteroatom filter" def __init__(self, min_val, max_val, score=None, name=None, **kwargs): super().__init__(heteroatoms, min_val=min_val, max_val=max_val, score=score, name=name, **kwargs) class AromaticRingFilter(PropertyFilter): "Aromatic ring filter" def __init__(self, min_val, max_val, score=None, name=None, **kwargs): super().__init__(aromaticrings, min_val=min_val, max_val=max_val, score=score, name=name, **kwargs) class HeavyAtomsFilter(PropertyFilter): "Number of heavy atoms filter" def __init__(self, min_val, max_val, score=None, name=None, **kwargs): super().__init__(heavy_atoms, min_val=min_val, max_val=max_val, score=score, name=name, **kwargs) class MRFilter(PropertyFilter): "Molar refractivity of atoms filter" def __init__(self, min_val, max_val, score=None, name=None, **kwargs): super().__init__(molar_refractivity, min_val=min_val, max_val=max_val, score=score, name=name, **kwargs) class ChargeFilter(PropertyFilter): "Formal charge of atoms filter" def __init__(self, min_val, max_val, score=None, name=None, **kwargs): super().__init__(formal_charge, min_val=min_val, max_val=max_val, score=score, name=name, **kwargs) class TotalAtomFilter(PropertyFilter): "Total number of atoms filter (incudes H)" def __init__(self, min_val, max_val, score=None, name=None, **kwargs): super().__init__(all_atoms, min_val=min_val, max_val=max_val, score=score, name=name, **kwargs) class QEDFilter(PropertyFilter): "Total number of atoms filter (incudes H)" def __init__(self, min_val, max_val, score=None, name=None, **kwargs): super().__init__(qed, min_val=min_val, max_val=max_val, score=score, name=name, **kwargs) class SAFilter(PropertyFilter): "SA Score fillter" def __init__(self, min_val, max_val, score=None, name=None, **kwargs): super().__init__(sa_score, min_val=min_val, max_val=max_val, score=score, name=name, **kwargs) class LooseRotBondFilter(PropertyFilter): "Loose Rotatable bond filter" def __init__(self, min_val, max_val, score=None, name=None, **kwargs): super().__init__(loose_rotbond, min_val=min_val, max_val=max_val, score=score, name=name, **kwargs) class MaxRingFilter(PropertyFilter): "Max ring size filter" def __init__(self, min_val, max_val, score=None, name=None, **kwargs): super().__init__(max_ring_size, min_val=min_val, max_val=max_val, score=score, name=name, **kwargs) class MinRingFilter(PropertyFilter): "Min ring size filter" def __init__(self, min_val, max_val, score=None, name=None, **kwargs): super().__init__(min_ring_size, min_val=min_val, max_val=max_val, score=score, name=name, **kwargs) class BridgeheadFilter(PropertyFilter): "Number of bridgehead carbons filter" def __init__(self, min_val, max_val, score=None, name=None, **kwargs): super().__init__(num_bridgeheads, min_val=min_val, max_val=max_val, score=score, name=name, **kwargs) class SpiroFilter(PropertyFilter): "Spiro carbon filter" def __init__(self, min_val, max_val, score=None, name=None, **kwargs): super().__init__(num_spiro, min_val=min_val, max_val=max_val, score=score, name=name, **kwargs) class ChiralFilter(PropertyFilter): "Chiral center filter" def __init__(self, min_val, max_val, score=None, name=None, **kwargs): super().__init__(min_ring_size, min_val=min_val, max_val=max_val, score=score, name=name, **kwargs) class RotChainFilter(PropertyFilter): "Longest rotatable bond chain filter" def __init__(self, min_val, max_val, score=None, name=None, **kwargs): super().__init__(rot_chain_length, min_val=min_val, max_val=max_val, score=score, name=name, **kwargs) f = PropertyFilter(molwt, 100, 300) assert f('O=C(C)Oc1ccccc1C(=O)O') f = PropertyFilter(molwt, None, None, score=5) assert f('O=C(C)Oc1ccccc1C(=O)O', with_score=True) == 5 f = MolWtFilter(100, 500, score=WeightedPropertyScore(2.)) assert f('O=C(C)Oc1ccccc1C(=O)O', with_score=True) == 2*molwt(to_mol('O=C(C)Oc1ccccc1C(=O)O')) f = MolWtFilter(100, 500, mode='protein') assert f('MAAR') f = MolWtFilter(400, 500) assert f('O=C(C)Oc1ccccc1C(=O)O') == False f = HeteroatomFilter(2, 4) assert f('O=C(C)Oc1ccccc1C(=O)O') ###Output _____no_output_____ ###Markdown Another common filter is based on substructure matching. Substructure filtering is typically done in a hard filter fashion used to remove compounds (ie exclude all compounds with PAINS structures). Substructure filters can also be used in a soft filter fashion to express a preference for molecular substructures. For example, if you would like (but not require) your compound to have a 3-ring scaffold system, that can be implemented through structural filtering as well.Structure filters take in a list of SMARTS to filter against (or any subclass of `Catalog`), as well as a `criteria` (any, all, float).If `citeria=any`, `property_function` will return `True` if any filters are matched.If `citeria=all`, `property_function` will return `True` if all filters are matched.If `citeria=float`, `property_function` will return `True` if `float` percent of filters (inclusive) are matched.If `criteria=int`, `property_function` will return `True` if more than `int` filters (inclusive) are matched.`criteria_function` will then evaluate the `property_function` output based on `criteria`.The `exclude` parameter defines how the filter treats structure matches. Substructure matching returns `True` when a match is found. If `exclude=True`, the filter will return `False` when a match is found. If `exclude=False`, the filter will return `True` when a match is found.To make this more explicit, the `ExclusionFilter` class always has the exclusion behavior and the `KeepFilter` class always has the inclusion behavior. ###Code # export def criteria_check(criteria): criteria_check1 = (criteria in ('any', 'all')) criteria_check2 = (type(criteria)==float and 0<=criteria<=1) criteria_check3 = (type(criteria)==int) return any([criteria_check1, criteria_check2, criteria_check3]) class StructureFilter(Filter): ''' StructureFilter - filters mols based on structures in `smarts` Inputs: - `smarts [list, SmartsCatalog]`: list of smarts strings for filtering or `SmartsCatalog` - `exclude bool`: if True, filter returns `False` when a structure match is found - `criteria ['any', 'all', float, int]`: match criteria. (match any filter, match all filters, match float percent of filters, match int number of filters) - `score [None, int, float, ScoreFunction]`: see `Filter.set_score` - `name Optional[str]`: filter name used for repr - `fail_score [float, int]`: used in `Filter.set_score` if `score_function` is (int, float) ''' def __init__(self, smarts, exclude=True, criteria='any', score=None, name=None, fail_score=0.): self.catalog = self.get_catalog(smarts) self.exclude = exclude if not criteria_check(criteria): raise ValueError('`criteria` must be `any`, `all`, a float between 0 and 1, or an int') self.criteria = criteria if name is None: name = f'Structure filter, criteria: {criteria}, exclude: {exclude}' super().__init__(score, name, fail_score=fail_score) def property_function(self, mol): return self.catalog(mol, criteria=self.criteria) def criteria_function(self, property_output): if not is_container(property_output): property_output = [property_output] if self.criteria=='any': output = any(property_output) else: output = all(property_output) if self.exclude: output = not output return output def get_catalog(self, smarts): if isinstance(smarts, Catalog): smarts = smarts else: smarts = SmartsCatalog(smarts) return smarts class ExclusionFilter(StructureFilter): ''' ExclusionFilter - excludes mols with substructure matches to `smarts` Inputs: - `smarts [list, SmartsCatalog]`: list of smarts strings for filtering or `SmartsCatalog` - `criteria ['any', 'all', float, int]`: match criteria. (match any filter, match all filters, match float percent of filters, match int number of filters) - `score [None, int, float, ScoreFunction]`: see `Filter.set_score` - `name Optional[str]`: filter name used for repr - `fail_score [float, int]`: used in `Filter.set_score` if `score_function` is (int, float) ''' def __init__(self, smarts, criteria='any', score=None, name=None, fail_score=0.): if name is None: name = f'Excusion filter, criteria: {criteria}' super().__init__(smarts, exclude=True, criteria=criteria, score=score, name=name, fail_score=fail_score) class KeepFilter(StructureFilter): ''' KeepFilter - keeps mols with substructure matches to `smarts` Inputs: - `smarts [list, SmartsCatalog]`: list of smarts strings for filtering or `SmartsCatalog` - `criteria ['any', 'all', float, int]`: match criteria. (match any filter, match all filters, match float percent of filters, match int number of filters) - `score [None, int, float, ScoreFunction]`: see `Filter.set_score` - `name Optional[str]`: filter name used for repr - `fail_score [float, int]`: used in `Filter.set_score` if `score_function` is (int, float) ''' def __init__(self, smarts, criteria='any', score=None, name=None, fail_score=0.): if name is None: name = f'Excusion filter, criteria: {criteria}' super().__init__(smarts, exclude=False, criteria=criteria, score=score, name=name, fail_score=fail_score) smarts = [ '[*]-[#6]1:[#6]:[#6](-[#0]):[#6]:[#6](-[*]):[#6]:1', '[*]-[#6]1:[#6]:[#6](-[*]):[#6]:[#6]:[#6]:1', '[*]-[#6]1:[#6]:[#6]:[#6]:[#6]:[#6]:1', '[*]-[#6]1:[#6]:[#6](-[#7]-[*]):[#6]:[#6]:[#6]:1', '[#6]1:[#6]:[#7]:[#6]:[#6]:[#6]:1' ] smiles = [ 'c1ccccc1', 'Cc1cc(NC)ccc1', 'Cc1cc(NC)cnc1', 'Cc1cccc(NCc2ccccc2)c1' ] mols = [to_mol(i) for i in smiles] f = StructureFilter(smarts, exclude=False, criteria='any') assert f(mols[1]) == True catalog = SmartsCatalog(smarts) f = StructureFilter(catalog, exclude=False, criteria='all') assert f(mols[1]) == False f = StructureFilter(smarts, exclude=True, criteria='any') assert f(mols[1]) == False f = StructureFilter(smarts, exclude=False, criteria=0.3) assert f(mols[1]) == True f = StructureFilter(smarts, exclude=False, criteria=3) assert f(mols[1]) == True f = StructureFilter(smarts, exclude=False, criteria=4) assert f(mols[1]) == False try: StructureFilter(smarts, exclude=False, criteria='bla') output=False except: output=True assert output ###Output _____no_output_____ ###Markdown Some wrappers for PAINS filters ###Code # export class PAINSFilter(ExclusionFilter): ''' PAINSFilter - excludes mols with substructure matches to PAINS filters Inputs: - `criteria ['any', 'all', float, int]`: match criteria. (match any filter, match all filters, match float percent of filters, match int number of filters) - `score [None, int, float, ScoreFunction]`: see `Filter.set_score` - `name Optional[str]`: filter name used for repr - `fail_score [float, int]`: used in `Filter.set_score` if `score_function` is (int, float) ''' def __init__(self, criteria='any', score=None, name=None, fail_score=0.): super().__init__(PAINSCatalog(), criteria, score, name, fail_score) class PAINSAFilter(ExclusionFilter): ''' PAINSAFilter - excludes mols with substructure matches to PAINS_A filters Inputs: - `criteria ['any', 'all', float, int]`: match criteria. (match any filter, match all filters, match float percent of filters, match int number of filters) - `score [None, int, float, ScoreFunction]`: see `Filter.set_score` - `name Optional[str]`: filter name used for repr - `fail_score [float, int]`: used in `Filter.set_score` if `score_function` is (int, float) ''' def __init__(self, criteria='any', score=None, name=None, fail_score=0.): super().__init__(PAINSACatalog(), criteria, score, name, fail_score) class PAINSBFilter(ExclusionFilter): ''' PAINSBFilter - excludes mols with substructure matches to PAINS_B filters Inputs: - `criteria ['any', 'all', float, int]`: match criteria. (match any filter, match all filters, match float percent of filters, match int number of filters) - `score [None, int, float, ScoreFunction]`: see `Filter.set_score` - `name Optional[str]`: filter name used for repr - `fail_score [float, int]`: used in `Filter.set_score` if `score_function` is (int, float) ''' def __init__(self, criteria='any', score=None, name=None, fail_score=0.): super().__init__(PAINSBCatalog(), criteria, score, name, fail_score) class PAINSCFilter(ExclusionFilter): ''' PAINSCFilter - excludes mols with substructure matches to PAINS_C filters Inputs: - `criteria ['any', 'all', float, int]`: match criteria. (match any filter, match all filters, match float percent of filters, match int number of filters) - `score [None, int, float, ScoreFunction]`: see `Filter.set_score` - `name Optional[str]`: filter name used for repr - `fail_score [float, int]`: used in `Filter.set_score` if `score_function` is (int, float) ''' def __init__(self, criteria='any', score=None, name=None, fail_score=0.): super().__init__(PAINSCCatalog(), criteria, score, name, fail_score) filt = PAINSAFilter(criteria=5) assert all(filt(mols)) ###Output _____no_output_____ ###Markdown `FPFilter` allows for filtering based on fingerprint similarity. For a given molecule, a fingerprint of `fp_type` is generated and compared to `reference_fps` based on `fp_metric`. Fingerprint similarity scores greater than `fp_thresh` evaluate to `True`.See `FP` for fingerprint types and similarity metrics. ###Code # export class FPFilter(Filter): ''' FPFilter - filters mols based on fingerprint similarity to `reference_smiles` Inputs: - `reference_smiles list`list of smiles or `Mol` objects for comparison - `fp_type str`: fingerprint function. see `FP` for available functions - `fp_metric str`: fingerprint similarity metric. see `FP` for available metrics - `criteria ['any', 'all', float, int]`: match criteria. (match any filter, match all filters, match float percent of filters, match int number of filters) - `fp_thresh float`: fingerprint similarity cutoff for defining a match - `name Optional[str]`: filter name used for repr - `fail_score [float, int]`: used in `Filter.set_score` if `score_function` is (int, float) - `score [None, int, float, ScoreFunction]`: see `Filter.set_score` ''' def __init__(self, reference_fps, fp_type, fp_metric, criteria='any', fp_thresh=0., score=None, name=None, fail_score=0.): self.reference_fps = reference_fps self.fp = FP() self.fp_type = fp_type self.fp_metric = fp_metric self.array_type = self.fp._np_or_rd(reference_fps) self.get_fp = partial(self.fp.get_fingerprint, fp_type=self.fp_type, output_type=self.array_type) self.get_similaity = partial(self.fp.fingerprint_similarity, fps2=self.reference_fps, metric=fp_metric) if not criteria_check(criteria): raise ValueError('`criteria` must be `any`, `all`, a float between 0 and 1, or an int') self.criteria = criteria self.fp_thresh = fp_thresh if name is None: name = f'Fingerprint Filter, {fp_type}, {fp_metric}, {len(reference_fps)} references' super().__init__(score, name, fail_score=fail_score) def property_function(self, mol): fp = self.get_fp(mol) similarity = self.get_similaity(fp) return similarity def criteria_function(self, property_output): property_output = property_output>=self.fp_thresh if not is_container(property_output): property_output = [property_output] if self.criteria=='any': output = any(property_output) elif self.criteria=='all': output = all(property_output) elif type(self.criteria)==float: output = (sum(property_output)/len(property_output))>=self.criteria else: output = sum(property_output)>=self.criteria return output @classmethod def from_smiles(cls, reference_smiles, fp_type='ECFP6', fp_metric='tanimoto', criteria='any', fp_thresh=0., score=None, name=None, fail_score=0,): ''' creates FPFilter from `reference_smiles` `reference_smiles` can be a list of smiles or a list of `Mols` ''' reference_fps = get_fingerprint(reference_smiles, fp_type=fp_type) return cls(reference_fps, fp_type, fp_metric, criteria=criteria, fp_thresh=fp_thresh, score=score, name=name, fail_score=fail_score) show_doc(FPFilter.from_smiles) f = FPFilter.from_smiles(smiles, fp_thresh=0.6) assert f(mols) == [True, True, True, True] f = FPFilter.from_smiles(smiles, fp_thresh=0.6, criteria='all') assert f(mols) == [False, False, False, False] f = FPFilter.from_smiles(smiles[:1], fp_thresh=0.6) assert f(mols)==[True, False, False, False] f = FPFilter.from_smiles(smiles[:2], fp_thresh=0.38, criteria=0.3) assert f(mols) == [True, True, False, True] f = FPFilter.from_smiles(smiles[:2], fp_thresh=0.07, criteria=2) assert f(mols) == [True, True, False, True] # hide from nbdev.export import notebook2script; notebook2script() ###Output Converted 00_core.ipynb. Converted 01_chem.ipynb. Converted 02_template.filters.ipynb. Converted 03_template.template.ipynb. Converted 04_template.blocks.ipynb. Converted index.ipynb. Converted template.overview.ipynb. Converted tutorials.ipynb. Converted tutorials.structure_enumeration.ipynb. Converted tutorials.template.advanced.ipynb. Converted tutorials.template.beginner.ipynb. Converted tutorials.template.intermediate.ipynb.
WIX3001_soft_comp_face_recognition_with_masks.ipynb
###Markdown [**Broutonlab**](https://broutonlab.com/) face recognition with masks pipeline [**github repo**](https://github.com/broutonlab/face-id-with-medical-masks) with solution ###Code #@title <b><font color="red" size="+3">←</font><font color="black" size="+3"> Check GPU resources</font></b> !nvidia-smi #@title <b><font color="red" size="+3">←</font><font color="black" size="+3"> Import requirements</font></b> import os import sys import cv2 from matplotlib import pyplot as plt import sys import numpy as np import torch from torch import nn from tqdm.notebook import tqdm from torch.utils.data import DataLoader %matplotlib inline #@title <b><font color="red" size="+3">←</font><font color="black" size="+3"> Clone and build face-alignment git repo</font></b> !git clone https://github.com/1adrianb/face-alignment %cd face-alignment !pip install -r requirements.txt !python setup.py install import face_alignment #@title <b><font color="red" size="+3">←</font><font color="black" size="+3"> Download and import face mask SDK</font></b> !git clone https://github.com/broutonlab/face-id-with-medical-masks.git %cd face-id-with-medical-masks from masked_face_sdk.mask_generation_utils import end2end_mask_generation from masked_face_sdk.pipeline_dataset_loader import PipelineFacesDatasetGenerator from masked_face_sdk.pipeline_dataset_loader \ import PipelineFacesDatasetGenerator from masked_face_sdk.neural_network_modules \ import Backbone, ArcFaceLayer, FaceRecognitionModel, resnet18 from masked_face_sdk.training_utils import default_acc_function, test_embedding_net !gdown --id 1b64prOr4_E8gcD1Q_cVZkFnSzNVfGwU_ !unzip face_recognition_with_masks_dataset.zip !ls # Pathes to datasets for face recognition in Keras-like format root_train_dataset_path = 'test_large/' root_test_dataset_path = 'test_small/' #@title <b><font color="red" size="+3">←</font><font color="black" size="+3"> Generate masks database</font></b> # Generate masks database !python3 generate_masks_database.py \ --masks-folder=data/masked_faces/ \ --database-file=data/masks_base.json \ --verbose --skip-warnings #@title <b><font color="red" size="+3">←</font><font color="black" size="+3"> Prepare training dataset</font></b> # Prepare training dataset !python3 apply_masks_to_face_recognition_dataset.py \ --face-dataset-folder={root_train_dataset_path} \ --masks-database=data/masks_base.json \ --verbose \ --use-cuda #@title <b><font color="red" size="+3">←</font><font color="black" size="+3"> Prepare test dataset</font></b> # Prepare test dataset !python3 apply_masks_to_face_recognition_dataset.py \ --face-dataset-folder={root_test_dataset_path} \ --masks-database=data/masks_base.json \ --verbose \ --use-cuda #@title <b><font color="red" size="+3">←</font><font color="black" size="+3"> Initialize constants</font></b> # Init constants batch_size = 100 n_jobs = 4 epochs = 3000 image_shape = (112, 112) embedding_size = 256 device = 'cuda:0' #@title <b><font color="red" size="+3">←</font><font color="black" size="+3"> Initialize base variables for training</font></b> # Init base variables for training generator_train_dataset = PipelineFacesDatasetGenerator( root_train_dataset_path, image_shape ) train_loader = DataLoader( generator_train_dataset, batch_size=batch_size, num_workers=n_jobs, shuffle=True, drop_last=True ) model = FaceRecognitionModel( backbone=Backbone( backbone=resnet18(pretrained=True), embedding_size=embedding_size, input_shape=(3, image_shape[0], image_shape[1]) ), head=ArcFaceLayer( embedding_size=embedding_size, num_classes=generator_train_dataset.num_classes ) ) model = model.to(device) loss_function = torch.nn.CrossEntropyLoss() optimizer = torch.optim.SGD(params=model.parameters(), lr=0.00001) #@title <b><font color="red" size="+3">←</font><font color="black" size="+3"> Run test for embedding net</font></b> print( 'Start accuracy rate = {:.5f}'.format( test_embedding_net(root_test_dataset_path, image_shape, model, device) ) ) #@title <b><font color="red" size="+3">←</font><font color="black" size="+3"> Perform training process</font></b> # Training process epoch_loss = [] epoch_test_acc = [] for epoch in range(1, epochs + 1): model.train() batches_count = len(train_loader) avg_epoch_loss = 0 avg_epoch_acc = 0 with tqdm(total=batches_count) as pbar: for i, (_img, _y_true) in enumerate(train_loader): img = _img.to(device) y_true = _y_true.to(device) optimizer.zero_grad() y_pred = model(img, y_true) loss = loss_function( y_pred, y_true ) loss.backward() optimizer.step() acc = default_acc_function( y_pred, torch.nn.functional.one_hot( y_true, num_classes=y_pred.size(-1) ).to(y_pred.dtype).to(device) ).numpy() pbar.postfix = \ 'Epoch: {}/{}, loss: {:.8f}, ' \ 'avg acc: {:.8f}'.format( epoch, epochs, loss.item(), acc ) avg_epoch_loss += \ loss.item() / y_true.size(0) / batches_count avg_epoch_acc += acc / batches_count pbar.update(1) test_acc = test_embedding_net(root_test_dataset_path, image_shape, model, device) print('Test accuracy rate: {:.5f}'.format(test_acc)) epoch_loss.append(avg_epoch_loss) epoch_test_acc.append(test_acc) #@title <b><font color="red" size="+3">←</font><font color="black" size="+3"> Plot the results</font></b> plt.figure(figsize=(8, 8)) plt.title('Train loss per epoch') plt.xlabel('Epoch number') plt.ylabel('Binary crossentropy value') plt.plot(list(range(1, len(epoch_loss) + 1)), epoch_loss) plt.figure(figsize=(8, 8)) plt.title('Test accuracy rate per epoch') plt.xlabel('Epoch number') plt.ylabel('Accuracy rate') plt.plot(list(range(1, len(epoch_test_acc) + 1)), epoch_test_acc, color='orange') plt.show() ###Output _____no_output_____
Position-specificFeaturesLbCpf1.ipynb
###Markdown Position-specific feature importance analysis for LbCpf1 Calculation of frequency of nucleotides at each location ###Code import pandas as pd OT_data=pd.read_csv("D://PhD_related/manuscript_obj1/seq_encoding_map/LbCpf1/LbCpf1_dataset_features_clean2.csv", encoding="cp1252") df = pd.DataFrame(OT_data) POT = df[(df['Y'] == 1)] NOT = df[(df['Y'] == 0)] print(len(POT), len(NOT)) l1=['A_OTSeqPosition1', 'A_OTSeqPosition2', 'A_OTSeqPosition3', 'A_OTSeqPosition4', 'A_OTSeqPosition5', 'A_OTSeqPosition6', 'A_OTSeqPosition7', 'A_OTSeqPosition8', 'A_OTSeqPosition9', 'A_OTSeqPosition10', 'A_OTSeqPosition11', 'A_OTSeqPosition12', 'A_OTSeqPosition13', 'A_OTSeqPosition14', 'A_OTSeqPosition15', 'A_OTSeqPosition16', 'A_OTSeqPosition17', 'A_OTSeqPosition18', 'A_OTSeqPosition19', 'A_OTSeqPosition20', 'A_OTSeqPosition21', 'A_OTSeqPosition22', 'A_OTSeqPosition23', 'A_OTSeqPosition24', 'A_OTSeqPosition25', 'A_OTSeqPosition26', 'A_OTSeqPosition27'] l2=['T_OTSeqPosition1', 'T_OTSeqPosition2', 'T_OTSeqPosition3', 'T_OTSeqPosition4', 'T_OTSeqPosition5', 'T_OTSeqPosition6', 'T_OTSeqPosition7', 'T_OTSeqPosition8', 'T_OTSeqPosition9', 'T_OTSeqPosition10', 'T_OTSeqPosition11', 'T_OTSeqPosition12', 'T_OTSeqPosition13', 'T_OTSeqPosition14', 'T_OTSeqPosition15', 'T_OTSeqPosition16', 'T_OTSeqPosition17', 'T_OTSeqPosition18', 'T_OTSeqPosition19', 'T_OTSeqPosition20', 'T_OTSeqPosition21', 'T_OTSeqPosition22', 'T_OTSeqPosition23', 'T_OTSeqPosition24', 'T_OTSeqPosition25', 'T_OTSeqPosition26', 'T_OTSeqPosition27'] l3=['G_OTSeqPosition1', 'G_OTSeqPosition2', 'G_OTSeqPosition3', 'G_OTSeqPosition4', 'G_OTSeqPosition5', 'G_OTSeqPosition6', 'G_OTSeqPosition7', 'G_OTSeqPosition8', 'G_OTSeqPosition9', 'G_OTSeqPosition10', 'G_OTSeqPosition11', 'G_OTSeqPosition12', 'G_OTSeqPosition13', 'G_OTSeqPosition14', 'G_OTSeqPosition15', 'G_OTSeqPosition16', 'G_OTSeqPosition17', 'G_OTSeqPosition18', 'G_OTSeqPosition19', 'G_OTSeqPosition20', 'G_OTSeqPosition21', 'G_OTSeqPosition22', 'G_OTSeqPosition23', 'G_OTSeqPosition24', 'G_OTSeqPosition25', 'G_OTSeqPosition26', 'G_OTSeqPosition27'] l4=['C_OTSeqPosition1', 'C_OTSeqPosition2', 'C_OTSeqPosition3', 'C_OTSeqPosition4', 'C_OTSeqPosition5', 'C_OTSeqPosition6', 'C_OTSeqPosition7', 'C_OTSeqPosition8', 'C_OTSeqPosition9', 'C_OTSeqPosition10', 'C_OTSeqPosition11', 'C_OTSeqPosition12', 'C_OTSeqPosition13', 'C_OTSeqPosition14', 'C_OTSeqPosition15', 'C_OTSeqPosition16', 'C_OTSeqPosition17', 'C_OTSeqPosition18', 'C_OTSeqPosition19', 'C_OTSeqPosition20', 'C_OTSeqPosition21', 'C_OTSeqPosition22', 'C_OTSeqPosition23', 'C_OTSeqPosition24', 'C_OTSeqPosition25', 'C_OTSeqPosition26', 'C_OTSeqPosition27'] print("positive off-targets") POT_l1=[] POT_l2=[] POT_l3=[] POT_l4=[] for i, j, k, l in zip(l1, l2, l3, l4): t0=POT[i].sum() t1=POT[j].sum() t2=POT[k].sum() t3=POT[l].sum() POT_A=t0/481 POT_T=t1/481 POT_G=t2/481 POT_C=t3/481 POT_l1.append(POT_A) POT_l2.append(POT_T) POT_l3.append(POT_G) POT_l4.append(POT_C) print("Position-wise frequency of A in positive off-targets \n", POT_l1, "\n") print("Position-wise frequency of T in positive off-targets \n", POT_l2, "\n") print("Position-wise frequency of G in positive off-targets \n", POT_l3, "\n") print("Position-wise frequency of C in positive off-targets \n", POT_l4, "\n") print("negative off-targets") NOT_l1=[] NOT_l2=[] NOT_l3=[] NOT_l4=[] for i, j, k, l in zip(l1, l2, l3, l4): t0=NOT[i].sum() t1=NOT[j].sum() t2=NOT[k].sum() t3=NOT[l].sum() NOT_A=t0/58474 NOT_T=t1/58474 NOT_G=t2/58474 NOT_C=t3/58474 NOT_l1.append(NOT_A) NOT_l2.append(NOT_T) NOT_l3.append(NOT_G) NOT_l4.append(NOT_C) print("Position-wise frequency of A in negative off-targets \n", POT_l1, "\n") print("Position-wise frequency of T in negative off-targets \n", POT_l2, "\n") print("Position-wise frequency of G in negative off-targets \n", POT_l3, "\n") print("Position-wise frequency of C in negative off-targets \n", POT_l4, "\n") ###Output 524 80304 positive off-targets Position-wise frequency of A in positive off-targets [0.02079002079002079, 0.0, 0.002079002079002079, 0.21621621621621623, 0.04365904365904366, 0.07692307692307693, 0.07068607068607069, 0.42203742203742206, 0.07276507276507277, 0.49480249480249483, 0.1600831600831601, 0.1683991683991684, 0.4407484407484408, 0.17255717255717257, 0.7505197505197505, 0.18087318087318088, 0.3762993762993763, 0.14137214137214138, 0.5550935550935551, 0.5509355509355509, 0.1787941787941788, 0.5343035343035343, 0.27442827442827444, 0.32224532224532226, 0.6943866943866944, 0.25363825363825365, 0.2203742203742204] Position-wise frequency of T in positive off-targets [0.7193347193347194, 1.0727650727650728, 1.0602910602910602, 0.12681912681912683, 0.1101871101871102, 0.3596673596673597, 0.15384615384615385, 0.5280665280665281, 0.340956340956341, 0.04781704781704782, 0.4885654885654886, 0.340956340956341, 0.15176715176715178, 0.19334719334719336, 0.08316008316008316, 0.2494802494802495, 0.08316008316008316, 0.1496881496881497, 0.13305613305613306, 0.288981288981289, 0.08523908523908524, 0.35550935550935553, 0.28482328482328484, 0.13097713097713098, 0.1995841995841996, 0.21205821205821207, 0.17255717255717257] Position-wise frequency of G in positive off-targets [0.3180873180873181, 0.0, 0.004158004158004158, 0.49064449064449067, 0.6486486486486487, 0.5426195426195426, 0.6632016632016632, 0.018711018711018712, 0.4864864864864865, 0.3700623700623701, 0.3201663201663202, 0.14553014553014554, 0.158004158004158, 0.44490644490644493, 0.14553014553014554, 0.0893970893970894, 0.16632016632016633, 0.1787941787941788, 0.15384615384615385, 0.20582120582120583, 0.2993762993762994, 0.08316008316008316, 0.12681912681912683, 0.15592515592515593, 0.16632016632016633, 0.6237006237006237, 0.6216216216216216] Position-wise frequency of C in positive off-targets [0.031185031185031187, 0.016632016632016633, 0.02286902286902287, 0.25571725571725573, 0.2869022869022869, 0.1101871101871102, 0.20166320166320167, 0.12058212058212059, 0.1891891891891892, 0.17671517671517672, 0.12058212058212059, 0.43451143451143454, 0.3388773388773389, 0.2785862785862786, 0.1101871101871102, 0.5675675675675675, 0.46361746361746364, 0.6195426195426196, 0.24740124740124741, 0.04365904365904366, 0.525987525987526, 0.11642411642411643, 0.40124740124740127, 0.4781704781704782, 0.2598752598752599, 0.23076923076923078, 0.30561330561330563] negative off-targets Position-wise frequency of A in negative off-targets [0.02079002079002079, 0.0, 0.002079002079002079, 0.21621621621621623, 0.04365904365904366, 0.07692307692307693, 0.07068607068607069, 0.42203742203742206, 0.07276507276507277, 0.49480249480249483, 0.1600831600831601, 0.1683991683991684, 0.4407484407484408, 0.17255717255717257, 0.7505197505197505, 0.18087318087318088, 0.3762993762993763, 0.14137214137214138, 0.5550935550935551, 0.5509355509355509, 0.1787941787941788, 0.5343035343035343, 0.27442827442827444, 0.32224532224532226, 0.6943866943866944, 0.25363825363825365, 0.2203742203742204] Position-wise frequency of T in negative off-targets [0.7193347193347194, 1.0727650727650728, 1.0602910602910602, 0.12681912681912683, 0.1101871101871102, 0.3596673596673597, 0.15384615384615385, 0.5280665280665281, 0.340956340956341, 0.04781704781704782, 0.4885654885654886, 0.340956340956341, 0.15176715176715178, 0.19334719334719336, 0.08316008316008316, 0.2494802494802495, 0.08316008316008316, 0.1496881496881497, 0.13305613305613306, 0.288981288981289, 0.08523908523908524, 0.35550935550935553, 0.28482328482328484, 0.13097713097713098, 0.1995841995841996, 0.21205821205821207, 0.17255717255717257] Position-wise frequency of G in negative off-targets [0.3180873180873181, 0.0, 0.004158004158004158, 0.49064449064449067, 0.6486486486486487, 0.5426195426195426, 0.6632016632016632, 0.018711018711018712, 0.4864864864864865, 0.3700623700623701, 0.3201663201663202, 0.14553014553014554, 0.158004158004158, 0.44490644490644493, 0.14553014553014554, 0.0893970893970894, 0.16632016632016633, 0.1787941787941788, 0.15384615384615385, 0.20582120582120583, 0.2993762993762994, 0.08316008316008316, 0.12681912681912683, 0.15592515592515593, 0.16632016632016633, 0.6237006237006237, 0.6216216216216216] Position-wise frequency of C in negative off-targets [0.031185031185031187, 0.016632016632016633, 0.02286902286902287, 0.25571725571725573, 0.2869022869022869, 0.1101871101871102, 0.20166320166320167, 0.12058212058212059, 0.1891891891891892, 0.17671517671517672, 0.12058212058212059, 0.43451143451143454, 0.3388773388773389, 0.2785862785862786, 0.1101871101871102, 0.5675675675675675, 0.46361746361746364, 0.6195426195426196, 0.24740124740124741, 0.04365904365904366, 0.525987525987526, 0.11642411642411643, 0.40124740124740127, 0.4781704781704782, 0.2598752598752599, 0.23076923076923078, 0.30561330561330563] ###Markdown Enrichment analysis to study the position-specific favour and disfavour of Nucleotides ###Code import pandas as pd l1=['C_OTSeqPosition1','G_OTSeqPosition1', 'T_OTSeqPosition1', 'A_OTSeqPosition1', 'C_OTSeqPosition2', 'G_OTSeqPosition2', 'T_OTSeqPosition2', 'A_OTSeqPosition2', 'C_OTSeqPosition3', 'G_OTSeqPosition3', 'T_OTSeqPosition3', 'A_OTSeqPosition3', 'C_OTSeqPosition4', 'G_OTSeqPosition4', 'T_OTSeqPosition4', 'A_OTSeqPosition4', 'C_OTSeqPosition5', 'G_OTSeqPosition5', 'T_OTSeqPosition5', 'A_OTSeqPosition5', 'C_OTSeqPosition6', 'G_OTSeqPosition6', 'T_OTSeqPosition6', 'A_OTSeqPosition6', 'C_OTSeqPosition7', 'G_OTSeqPosition7', 'T_OTSeqPosition7', 'A_OTSeqPosition7', 'C_OTSeqPosition8', 'G_OTSeqPosition8', 'T_OTSeqPosition8', 'A_OTSeqPosition8', 'C_OTSeqPosition9', 'G_OTSeqPosition9', 'T_OTSeqPosition9', 'A_OTSeqPosition9', 'C_OTSeqPosition10', 'G_OTSeqPosition10', 'T_OTSeqPosition10', 'A_OTSeqPosition10', 'C_OTSeqPosition11', 'G_OTSeqPosition11', 'T_OTSeqPosition11', 'A_OTSeqPosition11', 'C_OTSeqPosition12', 'G_OTSeqPosition12', 'T_OTSeqPosition12', 'A_OTSeqPosition12', 'C_OTSeqPosition13', 'G_OTSeqPosition13', 'T_OTSeqPosition13', 'A_OTSeqPosition13', 'C_OTSeqPosition14', 'G_OTSeqPosition14', 'T_OTSeqPosition14', 'A_OTSeqPosition14', 'C_OTSeqPosition15', 'G_OTSeqPosition15', 'T_OTSeqPosition15', 'A_OTSeqPosition15', 'C_OTSeqPosition16', 'G_OTSeqPosition16', 'T_OTSeqPosition16', 'A_OTSeqPosition16', 'C_OTSeqPosition17', 'G_OTSeqPosition17', 'T_OTSeqPosition17', 'A_OTSeqPosition17', 'C_OTSeqPosition18', 'G_OTSeqPosition18', 'T_OTSeqPosition18', 'A_OTSeqPosition18', 'C_OTSeqPosition19', 'G_OTSeqPosition19', 'T_OTSeqPosition19', 'A_OTSeqPosition19', 'C_OTSeqPosition20', 'G_OTSeqPosition20', 'T_OTSeqPosition20', 'A_OTSeqPosition20', 'C_OTSeqPosition21', 'G_OTSeqPosition21', 'T_OTSeqPosition21', 'A_OTSeqPosition21', 'C_OTSeqPosition22', 'G_OTSeqPosition22', 'T_OTSeqPosition22', 'A_OTSeqPosition22', 'C_OTSeqPosition23', 'G_OTSeqPosition23', 'T_OTSeqPosition23', 'A_OTSeqPosition23', 'C_OTSeqPosition24', 'G_OTSeqPosition24', 'T_OTSeqPosition24', 'A_OTSeqPosition24', 'C_OTSeqPosition25', 'G_OTSeqPosition25', 'T_OTSeqPosition25', 'A_OTSeqPosition25', 'C_OTSeqPosition26', 'G_OTSeqPosition26', 'T_OTSeqPosition26', 'A_OTSeqPosition26', 'C_OTSeqPosition27', 'G_OTSeqPosition27', 'T_OTSeqPosition27', 'A_OTSeqPosition27'] df= pd.read_csv("D://PhD_related/manuscript_obj1/seq_encoding_map/LbCpf1/LbCpf1_dataset-sampled-525PN.csv") for i in l1: #print(df.groupby("Y")[i].describe()) POT = df[(df['Y'] == 1)] NOT = df[(df['Y'] == 0)] from scipy import stats print(i) print(stats.shapiro(POT[i])) print(stats.shapiro(NOT[i])) print(stats.ttest_ind(POT[i], NOT[i], equal_var = False)) print("\n") import pandas as pd OT_data=pd.read_csv("D://PhD_related/manuscript_obj1/seq_encoding_map/LbCpf1/LbCpf1_dataset-sampled-525PN.csv", encoding="cp1252") df = pd.DataFrame(OT_data) POT = df[(df['Y'] == 1)] NOT = df[(df['Y'] == 0)] print(len(df)) l1=['C_OTSeqPosition1','G_OTSeqPosition1', 'T_OTSeqPosition1', 'A_OTSeqPosition1', 'C_OTSeqPosition2', 'G_OTSeqPosition2', 'T_OTSeqPosition2', 'A_OTSeqPosition2', 'C_OTSeqPosition3', 'G_OTSeqPosition3', 'T_OTSeqPosition3', 'A_OTSeqPosition3', 'C_OTSeqPosition4', 'G_OTSeqPosition4', 'T_OTSeqPosition4', 'A_OTSeqPosition4', 'C_OTSeqPosition5', 'G_OTSeqPosition5', 'T_OTSeqPosition5', 'A_OTSeqPosition5', 'C_OTSeqPosition6', 'G_OTSeqPosition6', 'T_OTSeqPosition6', 'A_OTSeqPosition6', 'C_OTSeqPosition7', 'G_OTSeqPosition7', 'T_OTSeqPosition7', 'A_OTSeqPosition7', 'C_OTSeqPosition8', 'G_OTSeqPosition8', 'T_OTSeqPosition8', 'A_OTSeqPosition8', 'C_OTSeqPosition9', 'G_OTSeqPosition9', 'T_OTSeqPosition9', 'A_OTSeqPosition9', 'C_OTSeqPosition10', 'G_OTSeqPosition10', 'T_OTSeqPosition10', 'A_OTSeqPosition10', 'C_OTSeqPosition11', 'G_OTSeqPosition11', 'T_OTSeqPosition11', 'A_OTSeqPosition11', 'C_OTSeqPosition12', 'G_OTSeqPosition12', 'T_OTSeqPosition12', 'A_OTSeqPosition12', 'C_OTSeqPosition13', 'G_OTSeqPosition13', 'T_OTSeqPosition13', 'A_OTSeqPosition13', 'C_OTSeqPosition14', 'G_OTSeqPosition14', 'T_OTSeqPosition14', 'A_OTSeqPosition14', 'C_OTSeqPosition15', 'G_OTSeqPosition15', 'T_OTSeqPosition15', 'A_OTSeqPosition15', 'C_OTSeqPosition16', 'G_OTSeqPosition16', 'T_OTSeqPosition16', 'A_OTSeqPosition16', 'C_OTSeqPosition17', 'G_OTSeqPosition17', 'T_OTSeqPosition17', 'A_OTSeqPosition17', 'C_OTSeqPosition18', 'G_OTSeqPosition18', 'T_OTSeqPosition18', 'A_OTSeqPosition18', 'C_OTSeqPosition19', 'G_OTSeqPosition19', 'T_OTSeqPosition19', 'A_OTSeqPosition19', 'C_OTSeqPosition20', 'G_OTSeqPosition20', 'T_OTSeqPosition20', 'A_OTSeqPosition20', 'C_OTSeqPosition21', 'G_OTSeqPosition21', 'T_OTSeqPosition21', 'A_OTSeqPosition21', 'C_OTSeqPosition22', 'G_OTSeqPosition22', 'T_OTSeqPosition22', 'A_OTSeqPosition22', 'C_OTSeqPosition23', 'G_OTSeqPosition23', 'T_OTSeqPosition23', 'A_OTSeqPosition23', 'C_OTSeqPosition24', 'G_OTSeqPosition24', 'T_OTSeqPosition24', 'A_OTSeqPosition24', 'C_OTSeqPosition25', 'G_OTSeqPosition25', 'T_OTSeqPosition25', 'A_OTSeqPosition25', 'C_OTSeqPosition26', 'G_OTSeqPosition26', 'T_OTSeqPosition26', 'A_OTSeqPosition26', 'C_OTSeqPosition27', 'G_OTSeqPosition27', 'T_OTSeqPosition27', 'A_OTSeqPosition27'] print("positive off-targets") POT_l1=[] for i in l1: total = POT[i].sum() POT_ratio=total/524 POT_l1.append(POT_ratio) print(POT_l1) print("negative off-targets") NOT_l1=[] for i in l1: total = NOT[i].sum() NOT_ratio=total/525 NOT_l1.append(NOT_ratio) print(NOT_l1) enrichment_ratio=[] for i, j in zip(POT_l1, NOT_l1): enrichment_ratio1=i/j enrichment_ratio.append(enrichment_ratio1) print(enrichment_ratio) ###Output [0.16335462993693992, 3.193583015267176, 1.1555343511450382, 0.11787157611136058, 0.07220961419434702, 0.0, 1.752490619743822, 0.0, 0.2160978895374944, 0.027449545121823692, 1.8249045801526718, 0.0082802346855088, 1.559933326891487, 1.5353920888272032, 0.34143247046782377, 0.9387249845265112, 1.3555231252806466, 2.2984957341715315, 0.3382238537462926, 0.17830573165998187, 0.5900127226463104, 1.5203377418782176, 1.1182590494951983, 0.3599088416215816, 0.9255725190839694, 3.591109872201733, 0.333969465648855, 0.3372760940216159, 0.3631917938931298, 0.15028625954198474, 1.8308254160030755, 1.2711712786259541, 0.6606787255227349, 2.416974895726765, 0.9553080063909107, 0.3130963740458015, 0.6923757214671383, 1.748428378985182, 0.1578348844504862, 1.5791668773065062, 0.5929661941112323, 1.5585241730279897, 1.2590827448258972, 0.5590358446730833, 2.7552480916030535, 0.6679389312977099, 0.9898372114411846, 0.4718289543759986, 1.1665076335877862, 0.6190653509588531, 0.45999567910125305, 2.145500809622947, 1.0094415427882681, 1.7290999753755232, 0.6515907756365771, 0.6872594788972304, 0.40535225219975524, 0.41013794027052364, 0.4660039055565418, 2.699171129087387, 3.1439194524874967, 0.43082061068702293, 0.7467640225688683, 0.5009541984732825, 2.4285388317291736, 1.1132315521628497, 0.28831896315009065, 0.8356931790199458, 3.245311981413873, 0.7121001829537569, 0.4425607642954152, 0.483189865194088, 1.3548534004163775, 0.5148695928753181, 0.5129770992366413, 1.6512934690415606, 0.3049286425489545, 0.6122773536895675, 0.9222865375865731, 1.9239545303684038, 2.460998295412436, 1.1825804029533225, 0.47765400319545537, 0.41425058719906044, 0.36197980792908147, 0.4714863044454423, 1.6162861875270058, 1.488384150377267, 1.5106900047709924, 0.6643088284102223, 1.2828172932867234, 0.6782149148561362, 1.814479773997716, 1.295571202948144, 0.601145038167939, 0.663657271481699, 0.9487768910478834, 0.6463925141590741, 0.5937234944868534, 1.007943989699255, 1.020292037257511, 1.5180430256766133, 0.7514312977099237, 0.3981525225650844, 1.2171944987697938, 1.7621800628648405, 0.5774888676844783, 0.33715012722646315] ###Markdown mismatch distribution analysis LbCpf1 ###Code import pandas as pd OT_data=pd.read_csv("D://PhD_related/manuscript_obj1/seq_encoding_map/LbCpf1/LbCpf1_dataset_features_POT.csv", index_col=[0], encoding="cp1252") df = pd.DataFrame(OT_data) print(len(df)) l1=['mismatch_POS1', 'mismatch_POS2', 'mismatch_POS3', 'mismatch_POS4', 'mismatch_POS5', 'mismatch_POS6', 'mismatch_POS7', 'mismatch_POS8', 'mismatch_POS9', 'mismatch_POS10', 'mismatch_POS11', 'mismatch_POS12', 'mismatch_POS13', 'mismatch_POS14', 'mismatch_POS15', 'mismatch_POS16', 'mismatch_POS17', 'mismatch_POS18', 'mismatch_POS19', 'mismatch_POS20', 'mismatch_POS21', 'mismatch_POS22', 'mismatch_POS23', 'mismatch_POS24', 'mismatch_POS25', 'mismatch_POS26', 'mismatch_POS27'] for i in l1: total = df[i].sum() print(total/524) import pandas as pd from scipy import stats from scipy.stats import sem OT_data1=pd.read_csv("D://PhD_related/manuscript_obj1/seq_encoding_map/LbCpf1/LbCpf1_dataset-sampled-525PN.csv", index_col=[0], encoding="cp1252") l2=[] l3=[] df = pd.DataFrame(OT_data1) POT = df[(df['Y'] == 1)] NOT = df[(df['Y'] == 0)] #print(len(df)) l1=['mismatch_POS1', 'mismatch_POS2', 'mismatch_POS3', 'mismatch_POS4', 'mismatch_POS5', 'mismatch_POS6', 'mismatch_POS7', 'mismatch_POS8', 'mismatch_POS9', 'mismatch_POS10', 'mismatch_POS11', 'mismatch_POS12', 'mismatch_POS13', 'mismatch_POS14', 'mismatch_POS15', 'mismatch_POS16', 'mismatch_POS17', 'mismatch_POS18', 'mismatch_POS19', 'mismatch_POS20', 'mismatch_POS21', 'mismatch_POS22', 'mismatch_POS23', 'mismatch_POS24', 'mismatch_POS25', 'mismatch_POS26', 'mismatch_POS27'] for i in l1: total = POT[i].sum() l2.append(total/481) l3.append(sem(POT[i])) print("\n Positive off-target \n") print(l2) print(l3) l2=[] l3=[] for i in l1: total = NOT[i].sum() l2.append(total/481) l3.append(sem(NOT[i])) print("\n Negative off-targets \n") print(l2) print(l3) import pandas as pd l1=['mismatch_POS1', 'mismatch_POS2', 'mismatch_POS3', 'mismatch_POS4', 'mismatch_POS5', 'mismatch_POS6', 'mismatch_POS7', 'mismatch_POS8', 'mismatch_POS9', 'mismatch_POS10', 'mismatch_POS11', 'mismatch_POS12', 'mismatch_POS13', 'mismatch_POS14', 'mismatch_POS15', 'mismatch_POS16', 'mismatch_POS17', 'mismatch_POS18', 'mismatch_POS19', 'mismatch_POS20', 'mismatch_POS21', 'mismatch_POS22', 'mismatch_POS23', 'mismatch_POS24', 'mismatch_POS25', 'mismatch_POS26', 'mismatch_POS27'] df= pd.read_csv("D://PhD_related/manuscript_obj1/seq_encoding_map/LbCpf1/LbCpf1_dataset-sampled-525PN.csv") for i in l1: #print(df.groupby("Y")[i].describe()) POT = df[(df['Y'] == 1)] NOT = df[(df['Y'] == 0)] from scipy import stats print(i) print(stats.shapiro(POT[i])) print(stats.shapiro(NOT[i])) print(stats.ttest_ind(POT[i], NOT[i], equal_var = False)) print("\n") ###Output mismatch_POS1 ShapiroResult(statistic=0.5980409979820251, pvalue=4.545464738580978e-33) ShapiroResult(statistic=1.0, pvalue=1.0) Ttest_indResult(statistic=16.402981542030954, pvalue=4.351230827635782e-49) mismatch_POS2 ShapiroResult(statistic=0.09859353303909302, pvalue=5.044674471569341e-44) ShapiroResult(statistic=0.4875909090042114, pvalue=3.2086766322371485e-36) Ttest_indResult(statistic=-10.035483354033676, pvalue=4.5529833387280975e-22) mismatch_POS3 ShapiroResult(statistic=0.14687281847000122, pvalue=3.1389085600875902e-43) ShapiroResult(statistic=0.5262457132339478, pvalue=3.4030871401104757e-35) Ttest_indResult(statistic=-10.553042470709938, pvalue=3.39721425597659e-24) mismatch_POS4 ShapiroResult(statistic=0.5715742111206055, pvalue=7.106134724611875e-34) ShapiroResult(statistic=0.6336241960525513, pvalue=6.090118094428014e-32) Ttest_indResult(statistic=8.50493910900247, pvalue=6.257747926648364e-17) mismatch_POS5 ShapiroResult(statistic=0.21142542362213135, pvalue=4.2235135714749987e-42) ShapiroResult(statistic=0.5363994836807251, pvalue=6.492892982317941e-35) Ttest_indResult(statistic=-9.631069985687448, pvalue=8.665821859206207e-21) mismatch_POS6 ShapiroResult(statistic=0.3047347068786621, pvalue=2.5119255881947373e-40) ShapiroResult(statistic=0.5646729469299316, pvalue=4.174961041487286e-34) Ttest_indResult(statistic=-8.747457808363327, pvalue=1.1241583873424401e-17) mismatch_POS7 ShapiroResult(statistic=0.27826154232025146, pvalue=7.544590931924815e-41) ShapiroResult(statistic=0.5591868162155151, pvalue=2.8879660005372157e-34) Ttest_indResult(statistic=-9.13026344067856, pvalue=5.045535120311492e-19) mismatch_POS8 ShapiroResult(statistic=0.1996554136276245, pvalue=2.596606054393886e-42) ShapiroResult(statistic=0.51545250415802, pvalue=1.7334300022649944e-35) Ttest_indResult(statistic=-9.032968817012472, pvalue=1.3796949292208198e-18) mismatch_POS9 ShapiroResult(statistic=0.3405500650405884, pvalue=1.3592511026042866e-39) ShapiroResult(statistic=0.590776801109314, pvalue=2.5422603669645774e-33) Ttest_indResult(statistic=-9.323573141114457, pvalue=8.648976315000489e-20) mismatch_POS10 ShapiroResult(statistic=0.3725109100341797, pvalue=6.542375263747384e-39) ShapiroResult(statistic=0.5428290367126465, pvalue=9.8325832095713e-35) Ttest_indResult(statistic=-5.869378290806184, pvalue=6.014383584634025e-09) mismatch_POS11 ShapiroResult(statistic=0.27361589670181274, pvalue=6.1320820798854e-41) ShapiroResult(statistic=0.5428290367126465, pvalue=9.8325832095713e-35) Ttest_indResult(statistic=-8.469217668230023, pvalue=1.0939947136399377e-16) mismatch_POS12 ShapiroResult(statistic=0.3171526789665222, pvalue=4.473743438249481e-40) ShapiroResult(statistic=0.5809038877487183, pvalue=1.2702350629012368e-33) Ttest_indResult(statistic=-9.327523518456834, pvalue=8.759124113192768e-20) mismatch_POS13 ShapiroResult(statistic=0.321181058883667, pvalue=5.404906267793322e-40) ShapiroResult(statistic=0.520932137966156, pvalue=2.437697194243621e-35) Ttest_indResult(statistic=-6.330313332930041, pvalue=3.8145906685106407e-10) mismatch_POS14 ShapiroResult(statistic=0.19358372688293457, pvalue=2.0248762809493607e-42) ShapiroResult(statistic=0.49595433473587036, pvalue=5.281638391517101e-36) Ttest_indResult(statistic=-8.43751656169058, pvalue=1.6349457805699556e-16) mismatch_POS15 ShapiroResult(statistic=0.2171357274055481, pvalue=5.359966626042425e-42) ShapiroResult(statistic=0.5078887939453125, pvalue=1.0882608174725509e-35) Ttest_indResult(statistic=-8.354632422271393, pvalue=2.9601823599821803e-16) mismatch_POS16 ShapiroResult(statistic=0.4509754776954651, pvalue=4.1692965491631315e-37) ShapiroResult(statistic=0.5646729469299316, pvalue=4.174961041487286e-34) Ttest_indResult(statistic=-4.527146500512257, pvalue=6.687957066430591e-06) mismatch_POS17 ShapiroResult(statistic=0.49637508392333984, pvalue=5.782361031078749e-36) ShapiroResult(statistic=0.5474821329116821, pvalue=1.331623648251748e-34) Ttest_indResult(statistic=-2.1018261208607583, pvalue=0.03580847323366071) mismatch_POS18 ShapiroResult(statistic=0.4837043285369873, pvalue=2.72418771028346e-36) ShapiroResult(statistic=0.5712023973464966, pvalue=6.505468131601225e-34) Ttest_indResult(statistic=-3.742132355753197, pvalue=0.00019256762206707883) mismatch_POS19 ShapiroResult(statistic=0.3004802465438843, pvalue=2.065219663737272e-40) ShapiroResult(statistic=0.5865209102630615, pvalue=1.8819875778305986e-33) Ttest_indResult(statistic=-10.100796710561255, pvalue=1.0092202052116592e-22) mismatch_POS20 ShapiroResult(statistic=0.1873791217803955, pvalue=1.5722568769724448e-42) ShapiroResult(statistic=0.5577765703201294, pvalue=2.62844899029931e-34) Ttest_indResult(statistic=-11.12988680747007, pvalue=1.2288527626529785e-26) mismatch_POS21 ShapiroResult(statistic=0.2828368544578552, pvalue=9.2637038879585e-41) ShapiroResult(statistic=0.5633245706558228, pvalue=3.8120583847395983e-34) Ttest_indResult(statistic=-9.227265600274352, pvalue=2.2107992264025876e-19) mismatch_POS22 ShapiroResult(statistic=0.29616451263427734, pvalue=1.6948704926008662e-40) ShapiroResult(statistic=0.5619610548019409, pvalue=3.4779959767941067e-34) Ttest_indResult(statistic=-8.825253760110444, pvalue=6.056382020360444e-18) mismatch_POS23 ShapiroResult(statistic=0.6271321773529053, pvalue=3.926711254804607e-32) ShapiroResult(statistic=0.5135911703109741, pvalue=1.5449841381206474e-35) Ttest_indResult(statistic=6.981051599065322, pvalue=5.279226264671945e-12) mismatch_POS24 ShapiroResult(statistic=0.4748212695121765, pvalue=1.6215818654518646e-36) ShapiroResult(statistic=0.624015212059021, pvalue=2.9139499909214554e-32) Ttest_indResult(statistic=-8.046827851845908, pvalue=2.4033858315139698e-15) mismatch_POS25 ShapiroResult(statistic=0.4217395782470703, pvalue=8.406314938406276e-38) ShapiroResult(statistic=0.49799227714538574, pvalue=5.9697370116928556e-36) Ttest_indResult(statistic=-2.578569291799921, pvalue=0.010059068535439693) mismatch_POS26 ShapiroResult(statistic=0.5447965860366821, pvalue=1.1910701101481636e-34) ShapiroResult(statistic=0.4480331540107727, pvalue=3.309488510045973e-37) Ttest_indResult(statistic=3.663499698735858, pvalue=0.00026158808574389564) mismatch_POS27 ShapiroResult(statistic=0.4608069062232971, pvalue=7.255901027498474e-37) ShapiroResult(statistic=1.0, pvalue=1.0) Ttest_indResult(statistic=10.553654799624137, pvalue=9.779578124412288e-24) ###Markdown Position specific mismatch type analysis LbCpf1 mismatch at position 4 ###Code import pandas as pd from scipy import stats from scipy.stats import sem OT_data1=pd.read_csv("D://PhD_related/manuscript_obj1/seq_encoding_map/LbCpf1/LbCpf1_dataset-sampled-525PN.csv", index_col=[0], encoding="cp1252") l2=[] l3=[] df = pd.DataFrame(OT_data1) POT = df[(df['Y'] == 1)] NOT = df[(df['Y'] == 0)] print(len(POT)) print(len(NOT)) #print(len(df)) l1=['MM_type_A–T_POS4', 'MM_type_A–C_POS4', 'MM_type_A–G_POS4', 'MM_type_T–C_POS4', 'MM_type_T–G_POS4', 'MM_type_T–A_POS4', 'MM_type_G–A_POS4', 'MM_type_G–T_POS4', 'MM_type_G–C_POS4', 'MM_type_C–A_POS4', 'MM_type_C–T_POS4', 'MM_type_C–G_POS4', 'MM_type_other_POS4'] for i in l1: total = POT[i].sum() l2.append(total/524) l3.append(sem(POT[i])) print("\n Positive off-target \n") print(l2) print(l3) l2=[] l3=[] for i in l1: total = NOT[i].sum() l2.append(total/525) l3.append(sem(NOT[i])) print("\n Negative off-targets \n") print(l2) print(l3) import pandas as pd df= pd.read_csv("D://PhD_related/manuscript_obj1/seq_encoding_map/LbCpf1/LbCpf1_dataset-sampled-525PN.csv", index_col=[0], encoding="cp1252") l1=['MM_type_A–T_POS4', 'MM_type_A–C_POS4', 'MM_type_A–G_POS4', 'MM_type_T–C_POS4', 'MM_type_T–G_POS4', 'MM_type_T–A_POS4', 'MM_type_G–A_POS4', 'MM_type_G–T_POS4', 'MM_type_G–C_POS4', 'MM_type_C–A_POS4', 'MM_type_C–T_POS4', 'MM_type_C–G_POS4', 'MM_type_other_POS4'] for i in l1: #print(df.groupby("Y")[i].describe()) POT = df[(df['Y'] == 1)] NOT = df[(df['Y'] == 0)] from scipy import stats print(i) print(stats.shapiro(POT[i])) print(stats.shapiro(NOT[i])) print(stats.ttest_ind(POT[i], NOT[i], equal_var = False)) print("\n") ###Output MM_type_A–T_POS4 ShapiroResult(statistic=0.02032226324081421, pvalue=2.802596928649634e-45) ShapiroResult(statistic=0.1538635492324829, pvalue=3.839557792249999e-43) Ttest_indResult(statistic=-3.543757395791489, pvalue=0.0004253816268768453) MM_type_A–C_POS4 ShapiroResult(statistic=0.04745042324066162, pvalue=8.407790785948902e-45) ShapiroResult(statistic=0.05888634920120239, pvalue=1.1210387714598537e-44) Ttest_indResult(statistic=-0.3764182676987785, pvalue=0.7066837079381533) MM_type_A–G_POS4 ShapiroResult(statistic=0.20560038089752197, pvalue=3.316873465056842e-42) ShapiroResult(statistic=0.05888634920120239, pvalue=1.1210387714598537e-44) Ttest_indResult(statistic=3.728097448371174, pvalue=0.0002083999243724627) MM_type_T–C_POS4 ShapiroResult(statistic=0.13947057723999023, pvalue=2.3541814200656927e-43) ShapiroResult(statistic=0.08930468559265137, pvalue=3.2229864679470793e-44) Ttest_indResult(statistic=1.3584387895808356, pvalue=0.1746429721256183) MM_type_T–G_POS4 ShapiroResult(statistic=0.16106730699539185, pvalue=5.479076995510035e-43) ShapiroResult(statistic=0.27329450845718384, pvalue=5.63125800873571e-41) Ttest_indResult(statistic=-2.8470951223060843, pvalue=0.004509761193404014) MM_type_T–A_POS4 ShapiroResult(statistic=0.12396728992462158, pvalue=1.3032075718220799e-43) ShapiroResult(statistic=0.11566287279129028, pvalue=8.828180325246348e-44) Ttest_indResult(statistic=0.22462928282862302, pvalue=0.8223116195471276) MM_type_G–A_POS4 ShapiroResult(statistic=0.10737556219100952, pvalue=6.866362475191604e-44) ShapiroResult(statistic=0.08930468559265137, pvalue=3.2229864679470793e-44) Ttest_indResult(statistic=0.5072182256589852, pvalue=0.612110215111503) MM_type_G–T_POS4 ShapiroResult(statistic=1.0, pvalue=1.0) ShapiroResult(statistic=0.07971543073654175, pvalue=2.2420775429197073e-44) Ttest_indResult(statistic=-2.461260544560062, pvalue=0.014166175898024254) MM_type_G–C_POS4 ShapiroResult(statistic=0.04745042324066162, pvalue=8.407790785948902e-45) ShapiroResult(statistic=0.05888634920120239, pvalue=1.1210387714598537e-44) Ttest_indResult(statistic=-0.3764182676987785, pvalue=0.7066837079381533) MM_type_C–A_POS4 ShapiroResult(statistic=0.11582159996032715, pvalue=9.528829557408756e-44) ShapiroResult(statistic=0.06961178779602051, pvalue=1.5414283107572988e-44) Ttest_indResult(statistic=1.3034473682309973, pvalue=0.19274012913393337) MM_type_C–T_POS4 ShapiroResult(statistic=1.0, pvalue=1.0) ShapiroResult(statistic=0.06961178779602051, pvalue=1.5414283107572988e-44) Ttest_indResult(statistic=-2.2446517632945957, pvalue=0.025206931337515046) MM_type_C–G_POS4 ShapiroResult(statistic=0.13947057723999023, pvalue=2.3541814200656927e-43) ShapiroResult(statistic=0.047379910945892334, pvalue=7.006492321624085e-45) Ttest_indResult(statistic=2.5269133673501614, pvalue=0.0117100154511772) MM_type_other_POS4 ShapiroResult(statistic=0.6363593339920044, pvalue=8.002644464479999e-32) ShapiroResult(statistic=0.5412482023239136, pvalue=8.874937578903894e-35) Ttest_indResult(statistic=8.912546412252281, pvalue=2.231506398656497e-18) ###Markdown mismatch at position 16 ###Code import pandas as pd from scipy import stats from scipy.stats import sem OT_data1=pd.read_csv("D://PhD_related/manuscript_obj1/seq_encoding_map/LbCpf1/LbCpf1_dataset-sampled-525PN.csv", index_col=[0], encoding="cp1252") l2=[] l3=[] df = pd.DataFrame(OT_data1) POT = df[(df['Y'] == 1)] NOT = df[(df['Y'] == 0)] print(len(POT)) print(len(NOT)) #print(len(df)) l1=['MM_type_A–T_POS16', 'MM_type_A–C_POS16', 'MM_type_A–G_POS16', 'MM_type_T–C_POS16', 'MM_type_T–G_POS16', 'MM_type_T–A_POS16', 'MM_type_G–A_POS16', 'MM_type_G–T_POS16', 'MM_type_G–C_POS16', 'MM_type_C–A_POS16', 'MM_type_C–T_POS16', 'MM_type_C–G_POS16', 'MM_type_other_POS16'] for i in l1: total = POT[i].sum() l2.append(total/524) l3.append(sem(POT[i])) print("\n Positive off-target \n") print(l2) print(l3) l2=[] l3=[] for i in l1: total = NOT[i].sum() l2.append(total/525) l3.append(sem(NOT[i])) print("\n Negative off-targets \n") print(l2) print(l3) import pandas as pd df= pd.read_csv("D://PhD_related/manuscript_obj1/seq_encoding_map/LbCpf1/LbCpf1_dataset-sampled-525PN.csv", index_col=[0], encoding="cp1252") l1=['MM_type_A–T_POS16', 'MM_type_A–C_POS16', 'MM_type_A–G_POS16', 'MM_type_T–C_POS16', 'MM_type_T–G_POS16', 'MM_type_T–A_POS16', 'MM_type_G–A_POS16', 'MM_type_G–T_POS16', 'MM_type_G–C_POS16', 'MM_type_C–A_POS16', 'MM_type_C–T_POS16', 'MM_type_C–G_POS16', 'MM_type_other_POS16'] for i in l1: #print(df.groupby("Y")[i].describe()) POT = df[(df['Y'] == 1)] NOT = df[(df['Y'] == 0)] from scipy import stats print(i) print(stats.shapiro(POT[i])) print(stats.shapiro(NOT[i])) print(stats.ttest_ind(POT[i], NOT[i], equal_var = False)) print("\n") ###Output MM_type_A–T_POS16 ShapiroResult(statistic=0.06971222162246704, pvalue=1.6815581571897805e-44) ShapiroResult(statistic=0.06961178779602051, pvalue=1.5414283107572988e-44) Ttest_indResult(statistic=0.0030261460617221144, pvalue=0.9975860649340222) MM_type_A–C_POS16 ShapiroResult(statistic=0.03488314151763916, pvalue=5.605193857299268e-45) ShapiroResult(statistic=0.12379896640777588, pvalue=1.2051166793193427e-43) Ttest_indResult(statistic=-2.5151111358066585, pvalue=0.012118598686519414) MM_type_A–G_POS16 ShapiroResult(statistic=0.02032226324081421, pvalue=2.802596928649634e-45) ShapiroResult(statistic=0.13166457414627075, pvalue=1.6255062186167878e-43) Ttest_indResult(statistic=-3.0798508023492346, pvalue=0.002163754324073748) MM_type_T–C_POS16 ShapiroResult(statistic=0.05897265672683716, pvalue=1.1210387714598537e-44) ShapiroResult(statistic=0.09845596551895142, pvalue=4.624284932271896e-44) Ttest_indResult(statistic=-1.1580408251249505, pvalue=0.24713974068479352) MM_type_T–G_POS16 ShapiroResult(statistic=0.03488314151763916, pvalue=5.605193857299268e-45) ShapiroResult(statistic=0.2870124578475952, pvalue=1.0420335640412205e-40) Ttest_indResult(statistic=-5.98775779985798, pvalue=3.7251696993034566e-09) MM_type_T–A_POS16 ShapiroResult(statistic=0.02032226324081421, pvalue=2.802596928649634e-45) ShapiroResult(statistic=0.09845596551895142, pvalue=4.624284932271896e-44) Ttest_indResult(statistic=-2.3461676539794296, pvalue=0.01926468583281722) MM_type_G–A_POS16 ShapiroResult(statistic=0.02032226324081421, pvalue=2.802596928649634e-45) ShapiroResult(statistic=0.13166457414627075, pvalue=1.6255062186167878e-43) Ttest_indResult(statistic=-3.0798508023492346, pvalue=0.002163754324073748) MM_type_G–T_POS16 ShapiroResult(statistic=0.03488314151763916, pvalue=5.605193857299268e-45) ShapiroResult(statistic=0.10722720623016357, pvalue=6.445972935894159e-44) Ttest_indResult(statistic=-2.1223567063704074, pvalue=0.03413518700340471) MM_type_G–C_POS16 ShapiroResult(statistic=0.04745042324066162, pvalue=8.407790785948902e-45) ShapiroResult(statistic=0.09845596551895142, pvalue=4.624284932271896e-44) Ttest_indResult(statistic=-1.513202984791976, pvalue=0.13059051449306164) MM_type_C–A_POS16 ShapiroResult(statistic=1.0, pvalue=1.0) ShapiroResult(statistic=0.10722720623016357, pvalue=6.445972935894159e-44) Ttest_indResult(statistic=-3.0231663671920095, pvalue=0.0026239106331308205) MM_type_C–T_POS16 ShapiroResult(statistic=0.3824275732040405, pvalue=1.0795737893810966e-38) ShapiroResult(statistic=0.10722720623016357, pvalue=6.445972935894159e-44) Ttest_indResult(statistic=6.81777267838023, pvalue=2.035566040283443e-11) MM_type_C–G_POS16 ShapiroResult(statistic=0.03488314151763916, pvalue=5.605193857299268e-45) ShapiroResult(statistic=0.13166457414627075, pvalue=1.6255062186167878e-43) Ttest_indResult(statistic=-2.695584513439305, pvalue=0.007195834172495926) MM_type_other_POS16 ShapiroResult(statistic=0.02032226324081421, pvalue=2.802596928649634e-45) ShapiroResult(statistic=0.08930468559265137, pvalue=3.2229864679470793e-44) Ttest_indResult(statistic=-2.130835704701895, pvalue=0.03346461683666276) ###Markdown mismatch at position 17 ###Code import pandas as pd from scipy import stats from scipy.stats import sem OT_data1=pd.read_csv("D://PhD_related/manuscript_obj1/seq_encoding_map/LbCpf1/LbCpf1_dataset-sampled-525PN.csv", index_col=[0], encoding="cp1252") l2=[] l3=[] df = pd.DataFrame(OT_data1) POT = df[(df['Y'] == 1)] NOT = df[(df['Y'] == 0)] print(len(POT)) print(len(NOT)) #print(len(df)) l1=['MM_type_A–T_POS17', 'MM_type_A–C_POS17', 'MM_type_A–G_POS17', 'MM_type_T–C_POS17', 'MM_type_T–G_POS17', 'MM_type_T–A_POS17', 'MM_type_G–A_POS17', 'MM_type_G–T_POS17', 'MM_type_G–C_POS17', 'MM_type_C–A_POS17', 'MM_type_C–T_POS17', 'MM_type_C–G_POS17', 'MM_type_other_POS17'] for i in l1: total = POT[i].sum() l2.append(total/524) l3.append(sem(POT[i])) print("\n Positive off-target \n") print(l2) print(l3) l2=[] l3=[] for i in l1: total = NOT[i].sum() l2.append(total/525) l3.append(sem(NOT[i])) print("\n Negative off-targets \n") print(l2) print(l3) import pandas as pd df= pd.read_csv("D://PhD_related/manuscript_obj1/seq_encoding_map/LbCpf1/LbCpf1_dataset-sampled-525PN.csv", index_col=[0], encoding="cp1252") l1=['MM_type_A–T_POS17', 'MM_type_A–C_POS17', 'MM_type_A–G_POS17', 'MM_type_T–C_POS17', 'MM_type_T–G_POS17', 'MM_type_T–A_POS17', 'MM_type_G–A_POS17', 'MM_type_G–T_POS17', 'MM_type_G–C_POS17', 'MM_type_C–A_POS17', 'MM_type_C–T_POS17', 'MM_type_C–G_POS17', 'MM_type_other_POS17'] for i in l1: #print(df.groupby("Y")[i].describe()) POT = df[(df['Y'] == 1)] NOT = df[(df['Y'] == 0)] from scipy import stats print(i) print(stats.shapiro(POT[i])) print(stats.shapiro(NOT[i])) print(stats.ttest_ind(POT[i], NOT[i], equal_var = False)) print("\n") ###Output MM_type_A–T_POS17 ShapiroResult(statistic=0.02032226324081421, pvalue=2.802596928649634e-45) ShapiroResult(statistic=0.13928401470184326, pvalue=2.1720126197034665e-43) Ttest_indResult(statistic=-3.2408211076048796, pvalue=0.0012571431699250233) MM_type_A–C_POS17 ShapiroResult(statistic=0.03488314151763916, pvalue=5.605193857299268e-45) ShapiroResult(statistic=0.13928401470184326, pvalue=2.1720126197034665e-43) Ttest_indResult(statistic=-2.8674332971783785, pvalue=0.004265274533808534) MM_type_A–G_POS17 ShapiroResult(statistic=0.4217395782470703, pvalue=8.406314938406276e-38) ShapiroResult(statistic=0.11566287279129028, pvalue=8.828180325246348e-44) Ttest_indResult(statistic=7.707843928945487, pvalue=4.586963680171943e-14) MM_type_T–C_POS17 ShapiroResult(statistic=0.02032226324081421, pvalue=2.802596928649634e-45) ShapiroResult(statistic=0.13928401470184326, pvalue=2.1720126197034665e-43) Ttest_indResult(statistic=-3.2408211076048796, pvalue=0.0012571431699250233) MM_type_T–G_POS17 ShapiroResult(statistic=0.06971222162246704, pvalue=1.6815581571897805e-44) ShapiroResult(statistic=0.13928401470184326, pvalue=2.1720126197034665e-43) Ttest_indResult(statistic=-1.9001751582391653, pvalue=0.05773677236895585) MM_type_T–A_POS17 ShapiroResult(statistic=0.04745042324066162, pvalue=8.407790785948902e-45) ShapiroResult(statistic=0.1933377981185913, pvalue=1.8637269575520067e-42) Ttest_indResult(statistic=-3.7359853062104422, pvalue=0.00020276261208925026) MM_type_G–A_POS17 ShapiroResult(statistic=0.08943074941635132, pvalue=3.5032461608120427e-44) ShapiroResult(statistic=0.08930468559265137, pvalue=3.2229864679470793e-44) Ttest_indResult(statistic=0.003587496657737334, pvalue=0.9971382813515856) MM_type_G–T_POS17 ShapiroResult(statistic=0.03488314151763916, pvalue=5.605193857299268e-45) ShapiroResult(statistic=0.10722720623016357, pvalue=6.445972935894159e-44) Ttest_indResult(statistic=-2.1223567063704074, pvalue=0.03413518700340471) MM_type_G–C_POS17 ShapiroResult(statistic=0.04745042324066162, pvalue=8.407790785948902e-45) ShapiroResult(statistic=0.05888634920120239, pvalue=1.1210387714598537e-44) Ttest_indResult(statistic=-0.3764182676987786, pvalue=0.7066837079381533) MM_type_C–A_POS17 ShapiroResult(statistic=0.03488314151763916, pvalue=5.605193857299268e-45) ShapiroResult(statistic=0.10722720623016357, pvalue=6.445972935894159e-44) Ttest_indResult(statistic=-2.1223567063704074, pvalue=0.03413518700340471) MM_type_C–T_POS17 ShapiroResult(statistic=0.03488314151763916, pvalue=5.605193857299268e-45) ShapiroResult(statistic=0.05888634920120239, pvalue=1.1210387714598537e-44) Ttest_indResult(statistic=-0.8162385006882964, pvalue=0.41456949370750174) MM_type_C–G_POS17 ShapiroResult(statistic=0.04745042324066162, pvalue=8.407790785948902e-45) ShapiroResult(statistic=0.10722720623016357, pvalue=6.445972935894159e-44) Ttest_indResult(statistic=-1.7403948643345135, pvalue=0.08215498613319558) MM_type_other_POS17 ShapiroResult(statistic=1.0, pvalue=1.0) ShapiroResult(statistic=0.13166457414627075, pvalue=1.6255062186167878e-43) Ttest_indResult(statistic=-3.5010441216186448, pvalue=0.0005029722612375902) ###Markdown mismatch at position 18 ###Code import pandas as pd from scipy import stats from scipy.stats import sem OT_data1=pd.read_csv("D://PhD_related/manuscript_obj1/seq_encoding_map/LbCpf1/LbCpf1_dataset-sampled-525PN.csv", index_col=[0], encoding="cp1252") l2=[] l3=[] df = pd.DataFrame(OT_data1) POT = df[(df['Y'] == 1)] NOT = df[(df['Y'] == 0)] print(len(POT)) print(len(NOT)) #print(len(df)) l1=['MM_type_A–T_POS18', 'MM_type_A–C_POS18', 'MM_type_A–G_POS18', 'MM_type_T–C_POS18', 'MM_type_T–G_POS18', 'MM_type_T–A_POS18', 'MM_type_G–A_POS18', 'MM_type_G–T_POS18', 'MM_type_G–C_POS18', 'MM_type_C–A_POS18', 'MM_type_C–T_POS18', 'MM_type_C–G_POS18', 'MM_type_other_POS18'] for i in l1: total = POT[i].sum() l2.append(total/524) l3.append(sem(POT[i])) print("\n Positive off-target \n") print(l2) print(l3) l2=[] l3=[] for i in l1: total = NOT[i].sum() l2.append(total/525) l3.append(sem(NOT[i])) print("\n Negative off-targets \n") print(l2) print(l3) import pandas as pd df= pd.read_csv("D://PhD_related/manuscript_obj1/seq_encoding_map/LbCpf1/LbCpf1_dataset-sampled-525PN.csv", index_col=[0], encoding="cp1252") l1=['MM_type_A–T_POS18', 'MM_type_A–C_POS18', 'MM_type_A–G_POS18', 'MM_type_T–C_POS18', 'MM_type_T–G_POS18', 'MM_type_T–A_POS18', 'MM_type_G–A_POS18', 'MM_type_G–T_POS18', 'MM_type_G–C_POS18', 'MM_type_C–A_POS18', 'MM_type_C–T_POS18', 'MM_type_C–G_POS18', 'MM_type_other_POS18'] for i in l1: #print(df.groupby("Y")[i].describe()) POT = df[(df['Y'] == 1)] NOT = df[(df['Y'] == 0)] from scipy import stats print(i) print(stats.shapiro(POT[i])) print(stats.shapiro(NOT[i])) print(stats.ttest_ind(POT[i], NOT[i], equal_var = False)) print("\n") ###Output MM_type_A–T_POS18 ShapiroResult(statistic=0.02032226324081421, pvalue=2.802596928649634e-45) ShapiroResult(statistic=0.1608561873435974, pvalue=5.05868745621259e-43) Ttest_indResult(statistic=-3.687160552099762, pvalue=0.0002476444065083602) MM_type_A–C_POS18 ShapiroResult(statistic=0.02032226324081421, pvalue=2.802596928649634e-45) ShapiroResult(statistic=0.1608561873435974, pvalue=5.05868745621259e-43) Ttest_indResult(statistic=-3.687160552099762, pvalue=0.0002476444065083602) MM_type_A–G_POS18 ShapiroResult(statistic=0.03488314151763916, pvalue=5.605193857299268e-45) ShapiroResult(statistic=0.13166457414627075, pvalue=1.6255062186167878e-43) Ttest_indResult(statistic=-2.6955845134393046, pvalue=0.007195834172495933) MM_type_T–C_POS18 ShapiroResult(statistic=0.02032226324081421, pvalue=2.802596928649634e-45) ShapiroResult(statistic=0.1608561873435974, pvalue=5.05868745621259e-43) Ttest_indResult(statistic=-3.687160552099762, pvalue=0.0002476444065083602) MM_type_T–G_POS18 ShapiroResult(statistic=0.02032226324081421, pvalue=2.802596928649634e-45) ShapiroResult(statistic=0.11566287279129028, pvalue=8.828180325246348e-44) Ttest_indResult(statistic=-2.7339765624870176, pvalue=0.006433316357317949) MM_type_T–A_POS18 ShapiroResult(statistic=0.03488314151763916, pvalue=5.605193857299268e-45) ShapiroResult(statistic=0.18080121278762817, pvalue=1.1210387714598537e-42) Ttest_indResult(statistic=-3.767533608344902, pvalue=0.00018015617058038242) MM_type_G–A_POS18 ShapiroResult(statistic=0.14687281847000122, pvalue=3.1389085600875902e-43) ShapiroResult(statistic=0.1608561873435974, pvalue=5.05868745621259e-43) Ttest_indResult(statistic=-0.36488407349485835, pvalue=0.7152719146486024) MM_type_G–T_POS18 ShapiroResult(statistic=0.05897265672683716, pvalue=1.1210387714598537e-44) ShapiroResult(statistic=0.05888634920120239, pvalue=1.1210387714598537e-44) Ttest_indResult(statistic=0.0027040659996857503, pvalue=0.9978429852313967) MM_type_G–C_POS18 ShapiroResult(statistic=1.0, pvalue=1.0) ShapiroResult(statistic=0.10722720623016357, pvalue=6.445972935894159e-44) Ttest_indResult(statistic=-3.0231663671920095, pvalue=0.0026239106331308205) MM_type_C–A_POS18 ShapiroResult(statistic=1.0, pvalue=1.0) ShapiroResult(statistic=0.06961178779602051, pvalue=1.5414283107572988e-44) Ttest_indResult(statistic=-2.2446517632945957, pvalue=0.025206931337515046) MM_type_C–T_POS18 ShapiroResult(statistic=0.41604894399642944, pvalue=6.202659317820198e-38) ShapiroResult(statistic=0.11566287279129028, pvalue=8.828180325246348e-44) Ttest_indResult(statistic=7.549186637628393, pvalue=1.4163882532781699e-13) MM_type_C–G_POS18 ShapiroResult(statistic=0.02032226324081421, pvalue=2.802596928649634e-45) ShapiroResult(statistic=0.06961178779602051, pvalue=1.5414283107572988e-44) Ttest_indResult(statistic=-1.6369060897558205, pvalue=0.10208248787025376) MM_type_other_POS18 ShapiroResult(statistic=1.0, pvalue=1.0) ShapiroResult(statistic=0.1608561873435974, pvalue=5.05868745621259e-43) Ttest_indResult(statistic=-4.058511151905034, pvalue=5.6918917422593785e-05) ###Markdown mismatch at position 23 ###Code import pandas as pd from scipy import stats from scipy.stats import sem OT_data1=pd.read_csv("D://PhD_related/manuscript_obj1/seq_encoding_map/LbCpf1/LbCpf1_dataset-sampled-525PN.csv", index_col=[0], encoding="cp1252") l2=[] l3=[] df = pd.DataFrame(OT_data1) POT = df[(df['Y'] == 1)] NOT = df[(df['Y'] == 0)] print(len(POT)) print(len(NOT)) #print(len(df)) l1=['MM_type_A–T_POS23', 'MM_type_A–C_POS23', 'MM_type_A–G_POS23', 'MM_type_T–C_POS23', 'MM_type_T–G_POS23', 'MM_type_T–A_POS23', 'MM_type_G–A_POS23', 'MM_type_G–T_POS23', 'MM_type_G–C_POS23', 'MM_type_C–A_POS23', 'MM_type_C–T_POS23', 'MM_type_C–G_POS23', 'MM_type_other_POS23'] for i in l1: total = POT[i].sum() l2.append(total/524) l3.append(sem(POT[i])) print("\n Positive off-target \n") print(l2) print(l3) l2=[] l3=[] for i in l1: total = NOT[i].sum() l2.append(total/525) l3.append(sem(NOT[i])) print("\n Negative off-targets \n") print(l2) print(l3) import pandas as pd df= pd.read_csv("D://PhD_related/manuscript_obj1/seq_encoding_map/LbCpf1/LbCpf1_dataset-sampled-525PN.csv", index_col=[0], encoding="cp1252") l1=['MM_type_A–T_POS23', 'MM_type_A–C_POS23', 'MM_type_A–G_POS23', 'MM_type_T–C_POS23', 'MM_type_T–G_POS23', 'MM_type_T–A_POS23', 'MM_type_G–A_POS23', 'MM_type_G–T_POS23', 'MM_type_G–C_POS23', 'MM_type_C–A_POS23', 'MM_type_C–T_POS23', 'MM_type_C–G_POS23', 'MM_type_other_POS23'] for i in l1: #print(df.groupby("Y")[i].describe()) POT = df[(df['Y'] == 1)] NOT = df[(df['Y'] == 0)] from scipy import stats print(i) print(stats.shapiro(POT[i])) print(stats.shapiro(NOT[i])) print(stats.ttest_ind(POT[i], NOT[i], equal_var = False)) print("\n") ###Output MM_type_A–T_POS23 ShapiroResult(statistic=0.06971222162246704, pvalue=1.6815581571897805e-44) ShapiroResult(statistic=0.08930468559265137, pvalue=3.2229864679470793e-44) Ttest_indResult(statistic=-0.576991315927017, pvalue=0.5640726112881687) MM_type_A–C_POS23 ShapiroResult(statistic=1.0, pvalue=1.0) ShapiroResult(statistic=0.1608561873435974, pvalue=5.05868745621259e-43) Ttest_indResult(statistic=-4.058511151905034, pvalue=5.6918917422593785e-05) MM_type_A–G_POS23 ShapiroResult(statistic=0.07982927560806274, pvalue=2.5223372357846707e-44) ShapiroResult(statistic=0.07971543073654175, pvalue=2.2420775429197073e-44) Ttest_indResult(statistic=0.003318172088653855, pvalue=0.997353118679428) MM_type_T–C_POS23 ShapiroResult(statistic=1.0, pvalue=1.0) ShapiroResult(statistic=0.10722720623016357, pvalue=6.445972935894159e-44) Ttest_indResult(statistic=-3.0231663671920095, pvalue=0.0026239106331308205) MM_type_T–G_POS23 ShapiroResult(statistic=0.11582159996032715, pvalue=9.528829557408756e-44) ShapiroResult(statistic=0.09845596551895142, pvalue=4.624284932271896e-44) Ttest_indResult(statistic=0.47912640860437583, pvalue=0.6319500099689651) MM_type_T–A_POS23 ShapiroResult(statistic=0.09859353303909302, pvalue=5.044674471569341e-44) ShapiroResult(statistic=0.14667779207229614, pvalue=2.9006878211523713e-43) Ttest_indResult(statistic=-1.2884328831611422, pvalue=0.1978998842713464) MM_type_G–A_POS23 ShapiroResult(statistic=0.08943074941635132, pvalue=3.5032461608120427e-44) ShapiroResult(statistic=0.12379896640777588, pvalue=1.2051166793193427e-43) Ttest_indResult(statistic=-0.9466224126596177, pvalue=0.3440598024197635) MM_type_G–T_POS23 ShapiroResult(statistic=0.04745042324066162, pvalue=8.407790785948902e-45) ShapiroResult(statistic=0.047379910945892334, pvalue=7.006492321624085e-45) Ttest_indResult(statistic=0.002339543521356175, pvalue=0.9981337617218948) MM_type_G–C_POS23 ShapiroResult(statistic=1.0, pvalue=1.0) ShapiroResult(statistic=0.10722720623016357, pvalue=6.445972935894159e-44) Ttest_indResult(statistic=-3.0231663671920095, pvalue=0.0026239106331308205) MM_type_C–A_POS23 ShapiroResult(statistic=0.05897265672683716, pvalue=1.1210387714598537e-44) ShapiroResult(statistic=0.11566287279129028, pvalue=8.828180325246348e-44) Ttest_indResult(statistic=-1.6118943785985171, pvalue=0.10733979321129199) MM_type_C–T_POS23 ShapiroResult(statistic=0.07982927560806274, pvalue=2.5223372357846707e-44) ShapiroResult(statistic=0.0202905535697937, pvalue=2.802596928649634e-45) Ttest_indResult(statistic=1.8988567784294825, pvalue=0.05799803780775564) MM_type_C–G_POS23 ShapiroResult(statistic=0.5900723934173584, pvalue=2.5736897798277037e-33) ShapiroResult(statistic=0.13166457414627075, pvalue=1.6255062186167878e-43) Ttest_indResult(statistic=14.03495901459156, pvalue=4.030746023101553e-39) MM_type_other_POS23 ShapiroResult(statistic=0.02032226324081421, pvalue=2.802596928649634e-45) ShapiroResult(statistic=0.12379896640777588, pvalue=1.2051166793193427e-43) Ttest_indResult(statistic=-2.911309988101577, pvalue=0.003728338150254819)
random forest.ipynb
###Markdown Random Forest ###Code from sklearn import tree import pandas as pd from sklearn.model_selection import train_test_split #X_train, X_test, y_train, y_test = train_test_split(data, target, random_state=42) dff = pd.read_csv("output.csv.txt") dff.columns dff df_drop = dff.drop(columns=['Unnamed: 0', 'Customer ID','Dealer codes from where customer has purchased the Two wheeler']) df_drop target = df_drop["Target variable ( 1: Defaulters / 0: Non-Defaulters)"] target_names = ["Not Defaulted","Defaulted"] data = df_drop.drop("Target variable ( 1: Defaulters / 0: Non-Defaulters)", axis=1) feature_names = data.columns from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(data, target, random_state=42) clf = tree.DecisionTreeClassifier() clf = clf.fit(X_train, y_train) clf.score(X_test, y_test) from sklearn.ensemble import RandomForestClassifier rf = RandomForestClassifier(n_estimators=200) rf = rf.fit(X_train, y_train) rf.score(X_test, y_test) sorted(zip(rf.feature_importances_, feature_names), reverse=True) ###Output _____no_output_____
tutorial_pytorch_book/01_pytorch.ipynb
###Markdown PytorchComo dijimos anteriormente, PyTorch es un paquete de Python diseñado para realizar cálculos numéricos haciendo uso de la programación de tensores. Además permite su ejecución en GPU para acelerar los cálculos.En la práctica es un sustituto bastante potente de Numpy, una librería casi estándar para trabajar con arrays en python. ¿Cómo funciona pytorch? Vamos a ver un tutorial rápido del tipo de datos de pytorch y cómo trabaja internamente esta librería. Para esto tendrás que haber seguido correctamente todos los pasos anteriores. Para esto necesitas la **versión interactiva del notebook**. Para esta sección: * **Abre Jupyter** (consultar arriba)* Navega hasta el notebook `00 Práctica Deep Learning - Introducción.ipynb` y ábrelo.* Baja hasta esta sección. Pero antes de nada os cuento algunas diferencias entre matlab y python: * Python es un **lenguaje de propósito general** mientras que matlab es un lenguaje **específico para ciencia e ingeniería**. Esto no es ni bueno ni malo; matlab es más fácil de utilizar para ingeniería sin preparación, pero python es más versátil. * Debido a ello, **Matlab carga automáticamente todas las funciones** mientras que en Python, **hay que cargar las librerías que vamos a utilizar**. Esto hace que usar funciones en matlab sea más sencillo (dos letras menos que escribir), pero a costa de que es más difícil gestionar la memoria, y los nombres de funciones se puden superponer. Supon que `A` es una matriz. Para hacer la pseudoinversa, en matlab hacemos: ```matlabpinv(A)```* en python tenemos que cargar la librería:```pythonimport scipy as spsp.pinv(A)```* Esto genera una cosa llamada **espacio de nombres**, en el que las funciones de cada librería van precedidas por su abreviatura (si importamos con `import x as y`) o el propio nombre si usamos `import torch`, `torch.tensor()`, mientras que en matlab basta con llamar a la función. Por ejemplo, cuando en matlab escribimos: - `vector = [1, 2, 3]`* en python+pytorch necesitamos especificar que es un tensor (un array multidimensional): - `vector = torch.tensor([1,2,3])`Vamos a cargar la librería con `import torch` y ver que podemos, por ejemplo, construir una matriz de 5x3 aleatoria. Para ejecutar una celda, basta con seleccionarla (bien con las flechas del teclado, bien con el ratón) y pulsando `Ctrl+Enter` (o bien pulsando "Run" en la barra superior). ###Code import torch x = torch.rand(5, 3) print(x) ###Output tensor([[0.2472, 0.7132, 0.1375], [0.7200, 0.2924, 0.3832], [0.4341, 0.3518, 0.9204], [0.3709, 0.2253, 0.6080], [0.9817, 0.5234, 0.2136]]) ###Markdown O una matriz de ceros: ###Code x = torch.zeros(5, 3, dtype=torch.long) print(x) ###Output tensor([[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]) ###Markdown O a partir de unos datos dados, y podemos mostrarla con `print`, pero también acceder a sus características, como el tamaño de la matriz: ###Code x = torch.tensor([[5.5, 3, 3],[2,1, 5], [3,4,2],[7,6,5],[2,1,2]]) print(x) print(x.shape) ###Output tensor([[5.5000, 3.0000, 3.0000], [2.0000, 1.0000, 5.0000], [3.0000, 4.0000, 2.0000], [7.0000, 6.0000, 5.0000], [2.0000, 1.0000, 2.0000]]) torch.Size([5, 3]) ###Markdown Con tensores se puede operar de forma normal: ###Code y = torch.rand(5, 3) print(x + y) ###Output tensor([[6.3343, 3.7080, 3.9404], [2.3815, 1.0040, 5.7915], [3.0152, 4.8507, 2.5595], [7.2281, 6.1131, 5.3825], [2.3290, 1.9387, 2.1796]]) ###Markdown Pero OJO CUIDAO, tienen que ser del mismo tamaño, si no, va a dar error: ###Code y = torch.rand(2,3) print(x+y) ###Output _____no_output_____ ###Markdown Se puede hacer *slicing* como en numpy o Matlab. Por ejemplo, para extraer la primera columna: ###Code print(x[:, 1]) ###Output tensor([3., 1., 4., 6., 1.]) ###Markdown Otra característica que nos será de mucha utilidad es cambiar la forma de la matriz, que en otros lenguajes se conoce como `reshape`, y aquí es un método del objeto tensor llamado `view()`: ###Code x = torch.randn(4, 4) y = x.view(16) z = x.view(-1, 8) # the size -1 is inferred from other dimensions print(x.size(), y.size(), z.size()) ###Output torch.Size([4, 4]) torch.Size([16]) torch.Size([2, 8]) ###Markdown Podemos operar con tensores y valores escalares: ###Code y = x + 2 print(y) ###Output tensor([[2.9619, 1.8762, 2.1108, 2.6227], [2.4012, 2.8760, 0.8042, 1.2621], [1.2319, 2.2896, 1.6425, 3.2375], [3.3435, 2.0807, 3.2948, 0.7555]]) ###Markdown Y también podemos definir funciones que realicen estas operaciones que apliquemos a los diferentes tensores: ###Code def modulo(x,y): aux = x**2 + y**2 salida = torch.sqrt(aux) return salida print(modulo(x,y)) ###Output tensor([[3.1142, 1.8803, 2.1137, 2.6956], [2.4345, 3.0064, 1.4411, 1.4620], [1.4517, 2.3079, 1.6809, 3.4660], [3.6033, 2.0823, 3.5401, 1.4559]]) ###Markdown Y, una parte fundamental es que pytorch conserva memoria de las operaciones realizadas en un vector: ###Code x = torch.ones(2, 2, requires_grad=True) y = x + 2 print(y) ###Output tensor([[3., 3.], [3., 3.]], grad_fn=<AddBackward0>) ###Markdown La propiedad `grad_fn` será fundamental en el entrenamiento de redes neuronales, ya que guarda el gradiente de la operación o función que se haya aplicado a los datos. Esto se conserva a traves de todas las operaciones: ###Code z = y * y * 3 out = z.mean() print(z, out) ###Output tensor([[27., 27.], [27., 27.]], grad_fn=<MulBackward0>) tensor(27., grad_fn=<MeanBackward0>) ###Markdown O incluso llevan cuenta de las operaciones realizadas con funciones: ###Code print(modulo(x,y)) ###Output tensor([[3.1623, 3.1623], [3.1623, 3.1623]], grad_fn=<SqrtBackward>) ###Markdown Para calcular el gradiente a lo largo de estas operaciones se utiliza la función `.backward()`, que realiza la propagación del gradiente hacia atrás. Podemos mostrar el gradiente $\frac{\partial out}{\partial x}$ con la propiedad `x.grad`, así que lo vemos: ###Code out.backward() print(x.grad) ###Output tensor([[4.5000, 4.5000], [4.5000, 4.5000]]) ###Markdown Habrá aquí una matriz de 2x2 con valores 4.5. Si llamamos el tensor de salida $o$, tenemos que:$$ o = \frac{1}{4} \sum_iz_i, \quad z_i = 3(x_i + 2)^2$$Así que $z_i|_{x_i=1} = 27$. Entonces, la $\frac{\partial o}{\partial x_i} = \frac{3}{2}(x_i+2)$ y $\frac{\partial o}{\partial x_i} |_{x_i=1} = \frac{9}{2} = 4.5$Gracias a esto, y a las matemáticas del algoritmo de propagación hacia atrás (*backpropagation*, ver video de introducción a la práctica), se pueden actualizar los pesos en función de una función de pérdida en las redes neuronales. Se puede activar y desactivar el cálculo del gradiente con la expresión `torch.no_grad()`. ###Code print(x.requires_grad) print((x ** 2).requires_grad) with torch.no_grad(): print((x ** 2).requires_grad) ###Output True True False
analysis-poe2015.ipynb
###Markdown Gender representation at specialized astronomy conferences *Nick Cox* Following the recent study by Kyle Willett on gender representation at specialized astronomy conferences I have gathered similar data at another specialised astrophysics meeting, "Physics of Evolved Stars" (henceforth, POE2015). POE2015 was held in Nice, France from [8-12 June, 2015](http://poe2015.sciencesconf.org). The analysis strategy (ipyton notebook) has been cloned from Kyle Willet's github respository.Briefly, recapitulating, the goal of these surveys is to track participation at conferences as a function of gender, particularly relating to question/answer sessions after oral presentations. This is intended to address some basic questions about behavior at conferences, such as:* How equal are the allotments of talks among men and women?* Are men and women asking questions at the same rate?* Does it matter if the speaker/session chair is a man or a woman?* Are women/men more likely to ask the ***first*** question in a session? Does this affect the gender balance of remaining questions?These questions were first addressed with data-gathering efforts first led by James Davenport at the [223rd American Astronomical Society (AAS) meeting in 2014](http://www.ifweassume.com/2014/03/report-gender-in-aas-talks.html), and repeated at the [225th AAS meeting in 2015](http://nbviewer.ipython.org/github/jradavenport/aas225-gender/blob/master/analysis.ipynb) and the [National Astronomy Meeting (NAM) in the UK in 2014](http://arxiv.org/abs/1412.4571). These focus on question/answer sessions since these are public, quantifiable, and one of the main ways in which professional interaction takes place. These studies found that men ask disproportionally more questions than women, and that the gender of the session chair has a strong impact on the gender ratio of questioners. Following the gender representation at the above mentioned large, thematically broad meetings, Kyle Willett addressed the issue whether smaller, more specialized meetings follow the same trends. He tracked this data for a recent conference on "Unveiling the AGN-Galaxy Evolution Connection" (Puerto Varas, Chile from [9-13 March 2015](http://www.astro-udec.cl/agn15/)). There were a total of 200 people on the list of participants and the gender of speakers, chairs, and questioners for all 72 talks were tracked.For POE215 there were 133 registered participants (97 male / 36 female) and a total of 42 oral presentation (excluding the intial two "review" talks (MM) and conference summary (F)). In addition to the gender of speakers, chairs and questioners, I also attempted to track the identity of the (most frequent) questioners. The discussion sessions are excluded for pratical reasons. Questioners were tracked for 39 talks. What are the overall demographics of the conference? ###Code %pylab inline ''' Note: this notebook requires the following, fairly standard Python packages: numpy scipy matplotlib pandas And one not-as-common package (also available through PyPI): sexmachine ''' from __future__ import division from matplotlib import pyplot as plt import numpy as np import pandas as pd gencolors =('purple','orange') #urlbase = 'https://raw.githubusercontent.com/kalaschsoyuz/poe2015-gender/master' #urlbase = 'http://localhost:8888/edit/Downloads/chile2015-gender-master/' q = pd.read_csv('%s/question_data.csv' % urlbase) c = pd.read_csv('%s/chair_data.csv' % urlbase) fig = plt.figure(1,(6,6)) # Speakers vc_speakers = q['speaker'].value_counts() # People asking questions of the speakers qa=list(q['questions']) qa.remove(' ') vc_questioners = pd.value_counts(list(''.join(qa))) # Chairs of the sessions vc_chairs = c['gender'].value_counts() # Attendees number_attendees = 133 number_f = 36 number_m = 97 #countrydata = pd.read_csv('%s/map/countries.csv' % urlbase) #names = countrydata['name'] #firstnames = [x.split(' ')[0] for x in names] # Guess (based on first names) what gender the attendees are #from sexmachine import detector as gender #d = gender.Detector(case_sensitive=False) #from collections import Counter #genders = [d.get_gender(fn) for fn in firstnames] #cg = Counter(genders) #attendees = list('M'*(cg['male'] + cg['mostly_male'])+'F'*(cg['female'] + cg['mostly_female'])) # Ignores users whose gender cannot be reliably determined from first name #vc_genderdata = pd.read_csv('%s/.csv' % urlbase) #vc_attendees = pd.value_counts(attendees) # People who asked the first question of the speakers first = [x[1]['questions'][0] for x in q.iterrows()] first.remove(' ') vc_firstquestion = pd.value_counts(first) vc_personidentifier = pd.read_csv('%s/.csv' % urlbase) # Load everything into a single dataframe data = [vc_speakers,vc_chairs,vc_attendees,vc_questioners,vc_firstquestion][::-1] labels = ['Speakers','Chairs','Attendees','Questioners','First question'][::-1] normdata = [x/x.sum() for x in data] # Plot stacked bar chart ax1 = fig.add_subplot(111) df = pd.DataFrame(normdata,index=labels) dfplot = df.plot(kind='barh',stacked=True,ax=ax1,color=gencolors,legend=True) print df # Plot the 50-50 split for guidance ylims1 = ax1.get_ylim() ax1.vlines(0.5,ylims1[0],ylims1[1],color='k',linestyle='-') ax1.set_xlabel('Fraction of participants',fontsize=20) ax1.set_title('Overall demographics at the POE2015 meeting') ###Output Populating the interactive namespace from numpy and matplotlib ###Markdown Analysis of overall demographics: As in the previous survey (Willett 2015) I tracked gender participation for five aspects of the question/answer sessions. In addition I tracked the identify of the question askers:**** speakers* chairs of the sessions* all attendees of the conference* people who asked questions of the speaker* people who asked the **first** question of the speaker for any given talk* people who asked the **most** questions ***The gender ratio of the speakers closely matched that of the attendees as a whole (XX% and XX%, respectively). Overall demographics for POE2015 compared to other conferences ###Code # Plot stacked bar chart fig = plt.figure(1,(18,6)) ax1 = fig.add_subplot(131) df = pd.DataFrame(normdata,index=labels) dfplot = df.plot(kind='barh',stacked=True,ax=ax1,color=gencolors,legend=False) print df # Find data positions of the plots patches = dfplot.patches yc = [p.get_y() for p in patches] yc = yc[:int(len(yc)/2)] height = p.get_height() ylims1 = ax1.get_ylim() ax1.vlines(0.5,ylims1[0],ylims1[1],color='k',linestyle='-') def getfrac(m,f): return m/(f+m) # Speaker/questioner data from 225th AAS Meeting (Seattle, WA) # Data from https://github.com/jradavenport/aas225-gender aas225_speakers = getfrac(83,51) aas225_questionaskers = getfrac(305,73) aas225_firstquestion = getfrac(102,32) ax1.vlines(aas225_speakers,yc[-1],yc[-1]+height,color='g',linestyle='--') ax1.vlines(aas225_questionaskers,yc[-4],yc[-4]+height,color='g',linestyle='--') ax1.vlines(aas225_firstquestion,yc[-5],yc[-5]+height,color='g',linestyle='--') ax1.text(aas225_speakers,yc[-1]+height,'AAS',ha='center',va='bottom',fontsize=14,color='g') ax1.set_xlabel('Fraction of participants',fontsize=20) p,l = ax1.get_legend_handles_labels() ax1.legend(p,l,loc='upper left') ax1.set_title('AGN2015 vs. speakers at AAS 2015 Winter') # Speaker/questioner data from National Astronomy Meeting 2014 (Portsmouth, UK) # Data from Pritchard et al. (2014) http://arXiv.org/abs/1412.4571 ax2 = fig.add_subplot(132) dfblank = pd.DataFrame(normdata,index=[' ']*5) dfplot2 = dfblank.plot(kind='barh',stacked=True,ax=ax2,color=gencolors,legend=False) nam_speakers = getfrac(181,81) nam_chairs = getfrac(188,75) nam_attendees = getfrac(452,172) nam_questionaskers = getfrac(476,101) nam_firstquestion = getfrac(216,35) ylims2 = ax2.get_ylim() ax2.vlines(0.5,ylims2[0],ylims2[1],color='k',linestyle='-') ax2.vlines(nam_speakers,yc[-1],yc[-1]+height,color='g',linestyle='--') ax2.vlines(nam_chairs,yc[-2],yc[-2]+height,color='g',linestyle='--') ax2.vlines(nam_attendees,yc[-3],yc[-3]+height,color='g',linestyle='--') ax2.vlines(nam_questionaskers,yc[-4],yc[-4]+height,color='g',linestyle='--') ax2.vlines(nam_firstquestion,yc[-5],yc[-5]+height,color='g',linestyle='--') ax2.text(nam_speakers,yc[-1]+height,'NAM',ha='center',va='bottom',fontsize=14,color='g') ax2.set_xlabel('Fraction of participants',fontsize=20) ax2.set_title('AGN2015 vs. NAM 2014') # IAU individual members (as of Apr 2015) # Data from http://www.iau.org/administration/membership/individual/distribution/ ax3 = fig.add_subplot(133) dfplot3 = dfblank.plot(kind='barh',stacked=True,ax=ax3,color=gencolors,legend=False) iau_frac = getfrac(9546,1803) ylims3 = ax3.get_ylim() ax3.vlines(0.5,ylims3[0],ylims3[1],color='k',linestyle='-') ax3.vlines(iau_frac,ylims3[0],yc[-1]+height,color='g',linestyle='--') ax3.text(iau_frac*1.02,yc[-1]+height,'IAU',ha='center',va='bottom',fontsize=14,color='g') ax3.set_xlabel('Fraction of participants',fontsize=20) ax3.set_title('AGN2015 vs. IAU individual members') # Speaker/questioner data from AGN2015 Meeting (Chile) # Data from xxxxx. #agn2015_speakers = getfrac(x,x) #agn2015_questionaskers = getfrac(x,x) #agn2015_firstquestion = getfrac(x,x) agn2015_firstquestion =0.614286 agn2015_questionaskers = 0.641509 agn2015_attendees = 0.564246 agn2015_chairs = 0.785714 agn2015_speakers = 0.549296 ax4.vlines(agn2015_speakers,yc[-1],yc[-1]+height,color='g',linestyle='--') ax4.vlines(agn2015_questionaskers,yc[-4],yc[-4]+height,color='g',linestyle='--') ax4.vlines(agn2015_firstquestion,yc[-5],yc[-5]+height,color='g',linestyle='--') ax4.text(agn2015_speakers,yc[-1]+height,'AGN2015',ha='center',va='bottom',fontsize=14,color='g') ax4.set_xlabel('Fraction of participants',fontsize=20) p,l = ax4.get_legend_handles_labels() ax4.legend(p,l,loc='upper left') ax4.set_title('POE2015 vs. AGN2015') ###Output _____no_output_____ ###Markdown Analysis of the demographics compared to other meetings/organizations: Smaller sample size. Frequent-questioners. How many questions per talk were there? Was this affected by the gender of the speaker? ###Code # How many questions were there per talk? Did the gender of the speaker affect it? fig2 = plt.figure(2,(12,6)) ax4 = fig2.add_subplot(121) qpt = [len(x) for x in q['questions']] ax4.hist(qpt,bins=range(0,8),histtype='step',range=(0,8),linewidth=3, color='k') ylims4 = ax4.get_ylim() ax4.vlines(np.mean(qpt),ylims4[0],ylims4[1],linestyle='--',color='black') ax4.set_xlabel('Questions per talk',fontsize=16) ax4.set_ylabel('Count') ax5 = fig2.add_subplot(122) mq = [len(x[1]['questions']) for x in q.iterrows() if x[1]['speaker'] == 'M'] fq = [len(x[1]['questions']) for x in q.iterrows() if x[1]['speaker'] == 'F'] ax5.hist(mq,bins=range(0,8),histtype='step',range=(0,8),linewidth=3, color='purple',label='Male speaker') ax5.hist(fq,bins=range(0,8),histtype='step',range=(0,8),linewidth=3, color='orange',label='Female speaker') ax5.set_ylim(ax4.get_ylim()) ylims5 = ax5.get_ylim() ax5.vlines(np.mean(mq),ylims5[0],ylims5[1],linestyle='--',color='purple') ax5.vlines(np.mean(fq),ylims5[0],ylims5[1],linestyle='--',color='orange') ax5.set_xlabel('Questions per talk',fontsize=16) ax5.legend(loc='upper right') plt.show() # Test to see if the distribution is different for male vs. female speakers from scipy.stats import ks_2samp D,p = ks_2samp(mq,fq) print 'There are %.1f +- %.1f total questions per talk' % (np.mean(qpt),np.std(qpt)) print 'There are %.1f questions per talk when the speaker is male' % np.mean(mq) print 'There are %.1f questions per talk when the speaker is female ' % np.mean(fq) print 'There is a %.1f percent chance that the questions are drawn from the same distribution for male and female speakers.' % (p*100) ###Output _____no_output_____ ###Markdown A difference in the number of questions per talk depending on the speaker might be interpreted as either a positive or negative effect (preferentially ignoring speakers of certain genders, overaggressively questioning/harassing them, paying attention and engaging with them, etc). More analysis on this data set would be pure speculation from me as to which was responsible at this conference. Did the gender of people of asking questions depend on the speaker's gender? ###Code fig3 = plt.figure(3,(6,6)) malefirst_maleafter = ['M'*x[1]['questions'].count('M') for x in q.iterrows() if x[1]['speaker'] == 'M'] malefirst_femaleafter = ['F'*x[1]['questions'].count('F') for x in q.iterrows() if x[1]['speaker'] == 'M'] femalefirst_maleafter = ['M'*x[1]['questions'].count('M') for x in q.iterrows() if x[1]['speaker'] == 'F'] femalefirst_femaleafter = ["F"*x[1]['questions'].count('F') for x in q.iterrows() if x[1]['speaker'] == 'F'] vc_malefirst = pd.value_counts(list(''.join(malefirst_maleafter+malefirst_femaleafter))) vc_femalefirst = pd.value_counts(list(''.join(femalefirst_maleafter+femalefirst_femaleafter))) # Load everything into a single dataframe firstdata = [vc_malefirst,vc_femalefirst] firstlabels = ['Male asks 1st question','Female asks 1st question'] firstnormdata = [x/x.sum() for x in firstdata] df = pd.DataFrame(firstnormdata,index=firstlabels) print df # Plot stacked bar chart ax = fig3.add_subplot(111) dfplot = df.plot(kind='barh',stacked=True,ax=ax,color=gencolors,legend=True) ax.set_xlabel('Fraction of total questions',fontsize=20) ###Output M F Male asks 1st question 0.694444 0.305556 Female asks 1st question 0.586538 0.413462 [2 rows x 2 columns] ###Markdown When women ask the **first** question in a session, women ask on average 40% of the total number of questions in such sessions. However, when men ask the first question in a session, women only ask 31% of the total questions in the session.But this is clearly affected by the fact that the gender of the first question is fixed. To isolate that effect, let's look at the *remaining* questions in the session. ###Code malefirst_maleafter = ['M'*x[1]['questions'][1:].count('M') for x in q.iterrows() if x[1]['questions'][0] == 'M'] malefirst_femaleafter = ['F'*x[1]['questions'][1:].count('F') for x in q.iterrows() if x[1]['questions'][0] == 'M'] vc_malefirst_remaining = pd.value_counts(list(''.join(malefirst_maleafter+malefirst_femaleafter))) femalefirst_maleafter = ['M'*x[1]['questions'][1:].count('M') for x in q.iterrows() if x[1]['questions'][0] == 'F'] femalefirst_femaleafter = ["F"*x[1]['questions'][1:].count('F') for x in q.iterrows() if x[1]['questions'][0] == 'F'] vc_femalefirst_remaining = pd.value_counts(list(''.join(femalefirst_maleafter+femalefirst_femaleafter))) # Load everything into a single dataframe firstrdata = [vc_malefirst_remaining,vc_femalefirst_remaining] firstrlabels = ['Male asks 1st question','Female asks 1st question'] firstrnormdata = [x/x.sum() for x in firstrdata] #print firstrnormdata dfr = pd.DataFrame(firstrnormdata,index=firstrlabels) print dfr # Plot stacked bar chart fig = plt.figure(4,(6,6)) ax8 = fig.add_subplot(111) dfplot = dfr.plot(kind='barh',stacked=True,ax=ax8,color=gencolors,legend=True) ax8.set_xlabel('Fraction of remaining questions',fontsize=16) ax8.set_xlim(0,1) # Check statistical significance # http://stats.stackexchange.com/questions/113602/test-if-two-binomial-distributions-are-statistically-different-from-each-other def ztest(p1,p2,n1,n2): pexp = (n1*p1exp + n2*p2exp) / (n1+n2) z = (p1exp-p2exp) / np.sqrt(pexp*(1. - pexp)*(1/n1 + 1/n2)) return z p1exp,p2exp = dfr['M'] n1 = len(list(''.join(malefirst_maleafter+malefirst_femaleafter))) n2 = len(list(''.join(femalefirst_maleafter+femalefirst_femaleafter))) z = ztest(p1exp,p2exp,n1,n2) print 'z = %.3f' % z ###Output M F Male asks 1st question 0.666667 0.333333 Female asks 1st question 0.637931 0.362069 [2 rows x 2 columns] z = 0.354 ###Markdown When the first question is eliminated from the data, the fraction of questions asked by females are nearly identical for females and males (33% and 36%, respectively). A two-proportion $z$-test indicates the distributions cannot reject the null hypothesis at $<1\sigma$ level. This result differs from the AAS meeting data, who found an extremely strong difference between the two. If the first question was asked by a male, then only 10% of the remaining questions were asked by a female. If the first question was asked by a female, 49% of the remaining questions were asked by a female. Does the gender of the session chair affect the distribution of the questioners' gender? ###Code cdict = {} for k,v in zip(c['block'].values,c['gender'].values): cdict[k]=v malechair_maleafter = ['M'*x[1]['questions'].count('M') for x in q.iterrows() if cdict[int(str(x[1]['session']).split('.')[0])] == 'M'] malechair_femaleafter = ['F'*x[1]['questions'].count('F') for x in q.iterrows() if cdict[int(str(x[1]['session']).split('.')[0])] == 'M'] femalechair_maleafter = ['M'*x[1]['questions'].count('M') for x in q.iterrows() if cdict[int(str(x[1]['session']).split('.')[0])] == 'F'] femalechair_femaleafter = ["F"*x[1]['questions'].count('F') for x in q.iterrows() if cdict[int(str(x[1]['session']).split('.')[0])] == 'F'] vc_malechair = pd.value_counts(list(''.join(malechair_maleafter+malechair_femaleafter))) vc_femalechair = pd.value_counts(list(''.join(femalechair_maleafter+femalechair_femaleafter))) # Load everything into a single dataframe chairdata = [vc_malechair,vc_femalechair] chairlabels = ['Male chair','Female chair'] chairnormdata = [x/x.sum() for x in chairdata] df = pd.DataFrame(chairnormdata,index=chairlabels) print df # Plot stacked bar chart fig5 = plt.figure(3,(6,6)) ax = fig5.add_subplot(111) dfplot = df.plot(kind='barh',stacked=True,ax=ax,color=gencolors,legend=True) ax.set_xlabel('Fraction of total questions',fontsize=20) # Check statistical significance p1exp,p2exp = df['M'] n1 = len(list(''.join(malechair_maleafter+malechair_femaleafter))) n2 = len(list(''.join(femalechair_maleafter+femalechair_femaleafter))) z = ztest(p1exp,p2exp,n1,n2) ###Output M F Male chair 0.640000 0.360000 Female chair 0.648649 0.351351 [2 rows x 2 columns] ###Markdown When looking at the gender of the session chair (who might have selection biases when there are more questions than time permits), there is no difference in the gender distribution of questioners. In this case the data are nearly identical for male vs. female chairs, at 36% and 35% females respectively. This null result differs from the NAM data, who saw a small but significant decrease in the fraction of females asking questions when the chair was male (16%) as opposed to a female chair (22%). Is there a bias due to frequent questioners? ###Code ## sort on number of questions per unique personal identifier ## what happens is we exclude the X outliers? ###Output _____no_output_____
equilibrium/equilibrium.ipynb
###Markdown ![MOSEK ApS](https://www.mosek.com/static/images/branding/webgraphmoseklogocolor.png ) Equilibrium of a system of weights connected by strings/springsIn this notebook we show how to solve the following problem: Find the equlibrium of a system of masses connected by a system of strings, with some masses being assigned fixed coordinates (attached to the wall, say). See the next picture.![](basic.png)Suppose we have $n$ masses with weights $w_1,\ldots,w_n$, and the length of the string between $i$ and $j$ is $\ell_{ij}$ for some set $L$ of pairs of indices $(i,j)$ (we assume $\ell_{ij}$ is not defined if there is no connection). The strings themselves have no mass. We also have a set $F$ of indices such that the $i$-th point is fixed to have coordinates $f_i$ if $i\in F$. The equilibrium of the system is a configuration which minimizes potential energy. With this setup we can write our problem as:\begin{equation}\begin{array}{ll}minimize & g\cdot \sum_i w_ix_i^{(2)} \\s.t. & \|x_i-x_j\|\leq \ell_{ij},\ ij\in L \\ & x_i = f_i,\ i\in F\end{array}\end{equation}where $x\in (\mathbf{R}^n)^2$, $x_i^{(2)}$ denotes the second (vertical) coordinate of $x_i$ and $g$ is the gravitational constant.Here is a sample problem description. ###Code w = [0.0, 1.1, 2.2, 0.0, 2.1, 2.2, 0.2] l = {(0,1): 1.0, (1,2): 1.0, (2,3): 1.0, (1,4): 1.0, (4,5): 0.3, (5,2): 1.0, (5,6): 0.5, (1,3): 8.0} f = {0: (0.0,1.0), 3: (2.0,1.0)} g = 9.81 ###Output _____no_output_____ ###Markdown Now we can formulate the problem using Mosek Fusion: ###Code from mosek.fusion import * # w - masses of points # l - lengths of strings # f - coordinates of fixed points # g - gravitational constant def stringModel(w, l, f, g): n, m = len(w), len(l) starts = [ lKey[0] for lKey in l.keys() ] ends = [ lKey[1] for lKey in l.keys() ] M = Model("strings") # Coordinates of points x = M.variable("x", [n, 2]) # A is the signed incidence matrix of points and strings A = Matrix.sparse(m, n, list(range(m))+list(range(m)), starts+ends, [1.0]*m+[-1.0]*m) # ||x_i-x_j|| <= l_{i,j} c = M.constraint("c", Expr.hstack(Expr.constTerm(list(l.values())), Expr.mul(A, x)), Domain.inQCone() ) # x_i = f_i for fixed points for i in f: M.constraint(x.slice([i,0], [i+1,2]), Domain.equalsTo(list(f[i])).withShape([1,2])) # sum (g w_i x_i_2) M.objective(ObjectiveSense.Minimize, Expr.mul(g, Expr.dot(w, x.slice([0,1], [n,2])))) # Solve M.solve() if M.getProblemStatus(SolutionType.Interior) == ProblemStatus.PrimalAndDualFeasible: return x.level().reshape([n,2]), c.dual().reshape([m,3]) else: return None, None ###Output _____no_output_____ ###Markdown Here is a quick description of how we use vectorization to deal with all the conic constraints in one go. The matrix $A$ is the incidence matrix between the masses and the strings, with coefficients $+1, -1$ for the two endpoints of each string. It is chosen so that the product $Ax$ has rows of the form$$(x_i^{(1)} - x_j^{(1)}, x_i^{(2)} - x_j^{(2)})$$for all pairs $i,j$ for which $\ell_{ij}$ is bounded. Stacking the values of $\ell$ in the left column produces a matrix with each row of the form$$(\ell_{ij}, x_i^{(1)} - x_j^{(1)}, x_i^{(2)} - x_j^{(2)})$$and a conic constraint is imposed on all the rows, as required.The objective and linear constraints show examples of slicing the variable $x$.The function returns the coordinates of the masses and the values of the dual conic variables. A zero dual value indicates that a particular string is hanging loose, and a nonzero value means it is fully stretched. All we need now is to define a display function and we can look at some plots. ###Code %matplotlib inline # x - coordinates of the points # c - dual values of string length constraints # d - pairs of points to connect def display(x, c, d): import matplotlib.pyplot as plt fig, ax = plt.subplots() # Plot points ax.scatter(x[:,0], x[:,1], color="r") # Plot fully stretched strings (nonzero dual value) as solid lines, else dotted lines for i in range(len(c)): col = "b" if c[i][0] > 1e-4 else "b--" ax.plot([x[d[i][0]][0], x[d[i][1]][0]], [x[d[i][0]][1], x[d[i][1]][1]], col) ax.axis("equal") plt.show() x,c = stringModel(w, l, f, g) if x is not None: display(x, c, list(l.keys())) ###Output _____no_output_____ ###Markdown How about we find a discrete approximation to the [catenary](https://en.wikipedia.org/wiki/Catenary): ###Code n = 1000 w = [1.0]*n l = {(i,i+1): 1.0/n for i in range(n-1)} f = {0: (0.0,1.0), n-1: (0.7,1.0)} g = 9.81 x,c = stringModel(w, l, f, g) if x is not None: display(x, c, list(l.keys())) ###Output _____no_output_____ ###Markdown We can also have more suspension points and more complicated shapes: ###Code n = 20 w = [1.0]*n l = {(i,i+1): 0.09 for i in range(n-1)} l.update({(5,14): 0.3}) f = {0: (0.0,1.0), 13: (0.5,0.9), 17: (0.7,1.1)} g = 9.81 x,c = stringModel(w, l, f, g) if x is not None: display(x, c, list(l.keys())) ###Output _____no_output_____ ###Markdown Duality and feasibilityThe dual problem is as follows:\begin{equation}\begin{array}{ll}maximize & -\sum_{ij\in L}\ell_{ij}y_{ij} - \sum_{i\in F}f_i\circ z_i\\s.t. & y_{ij}\geq \|v_{ij}\|,\ ij\in L \\ & \sum_{j~:~ij\in L} v_{ij}\mathrm{sgn}_{ij} + \left(\begin{array}{c}0\\ gw_i\end{array}\right) +z_i = 0, \ i=1,\ldots,n\end{array}\end{equation}where $\mathrm{sgn}_{ij}=+1$ if $i>j$ and $-1$ otherwise and $\circ$ is the dot product. The variables are $(y_{ij},v_{ij})\in \mathbf{R}\times\mathbf{R}^2$ for $ij\in L$ and $z_i\in\mathbf{R}^2$ for $i\in F$ (we assume $z_i=0$ for $i\not\in F$).Obviously (!) the linear constraints describe the equilibrium of forces at every mass. The ingredients are: the vectors of forces applied through adjacent strings ($v_{ij}$), gravity, and the attaching force holding a fixed point in its position. By proper use of vectorization this is much easier to express in Fusion than it looks: ###Code def dualStringModel(w, l, f, g): n, m = len(w), len(l) starts = [ lKey[0] for lKey in l.keys() ] ends = [ lKey[1] for lKey in l.keys() ] M = Model("dual strings") x = M.variable(Domain.inQCone(m,3)) #(y,v) y = x.slice([0,0],[m,1]) v = x.slice([0,1],[m,3]) z = M.variable([n,2]) # z_i = 0 if i is not fixed for i in range(n): if i not in f: M.constraint(z.slice([i,0], [i+1,2]), Domain.equalsTo(0.0)) B = Matrix.sparse(m, n, list(range(m))+list(range(m)), starts+ends, [1.0]*m+[-1.0]*m).transpose() w2 = Matrix.sparse(n, 2, range(n), [1]*n, [-wT*g for wT in w]) # sum(v_ij *sgn(ij)) + z_i = -(0, gw_i) for all vertices i M.constraint(Expr.add( Expr.mul(B, v), z ), Domain.equalsTo(w2)) # Objective -l*y -fM*z fM = Matrix.sparse(n, 2, list(f.keys())+list(f.keys()), [0]*len(f)+[1]*len(f), [pt[0] for pt in f.values()] + [pt[1] for pt in f.values()]) M.objective(ObjectiveSense.Maximize, Expr.neg(Expr.add(Expr.dot(list(l.values()), y),Expr.dot(fM, z)))) M.solve() ###Output _____no_output_____ ###Markdown Let us quickly discuss the possible situations regarding feasibility:* The system has an equilibrium --- the problem is **primal feasible** and **dual feasible**.* The strings are too short and it is impossible to stretch the required distance between fixed points --- the problem is **primal infeasible**.* The system has a component that is not connected to any fixed point, hence some masses can keep falling down indefinitely, causing the problem **primal unbounded**. Clearly the forces within such component cannot be balanced, so the problem is **dual infeasible**. SpringsWe can extend this to consider infinitely strechable springs instead of fixed-length strings connecting the masses. The next model appears in [Applications of SOCP](http://stanford.edu/~boyd/papers/pdf/socp.pdf) by Lobo, Boyd, Vandenberghe, Lebret. We will now interpret $\ell_{ij}$ as the base length of the spring and assume that the elastic potential energy stored in the spring at length $x$ is $$E_{ij}=\left\{\begin{array}{ll}0 & x\leq \ell_{ij}\\ \frac{k}{2}(x-\ell_{ij})^2 & x>\ell_{ij}\end{array}\right.$$That leads us to consider the following second order cone program minimizing the total potential energy:\begin{equation}\begin{array}{ll}minimize & g\cdot \sum_i w_ix_i^{(2)} + \frac{k}{2}\sum_{ij\in L} t_{ij}^2 \\s.t. & \|x_i-x_j\|\leq \ell_{ij}+t_{ij},\ ij\in L \\ & 0\leq t_{ij},\ ij\in L \\ & x_i = f_i,\ i\in F\end{array}\end{equation}If $t$ denotes the vector of $t_{ij}$ then using a rotated quadratic cone for $(1,T,t)$:$$2\cdot 1\cdot T\geq \|t\|^2$$will place a bound on $\frac12\sum t_{ij}^2$. We now have a simple extension of the first model. ###Code # w - masses of points # l - lengths of strings # f - coordinates of fixed points # g - gravitational constant # k - stiffness coefficient def elasticModel(w, l, f, g, k): n, m = len(w), len(l) starts = [ lKey[0] for lKey in l.keys() ] ends = [ lKey[1] for lKey in l.keys() ] M = Model("strings") x = M.variable("x", [n, 2]) # Coordinates t = M.variable(m, Domain.greaterThan(0.0)) # Streching T = M.variable(1) # Upper bound M.constraint(Expr.vstack(T, Expr.constTerm(1.0), t), Domain.inRotatedQCone()) # A is the signed incidence matrix of points and strings A = Matrix.sparse(m, n, list(range(m))+list(range(m)), starts+ends, [1.0]*m+[-1.0]*m) # ||x_i-x_j|| <= l_{i,j} + t_{i,j} c = M.constraint("c", Expr.hstack(Expr.add(t, Expr.constTerm(list(l.values()))), Expr.mul(A, x)), Domain.inQCone() ) # x_i = f_i for fixed points for i in f: M.constraint(x.slice([i,0], [i+1,2]), Domain.equalsTo(list(f[i])).withShape([1,2])) # sum (g w_i x_i_2) + k*T M.objective(ObjectiveSense.Minimize, Expr.add(Expr.mul(k,T), Expr.mul(g, Expr.dot(w, x.slice([0,1], [n,2]))))) # Solve M.solve() if M.getProblemStatus(SolutionType.Interior) == ProblemStatus.PrimalAndDualFeasible: return x.level().reshape([n,2]), c.dual().reshape([m,3]) else: return None, None n = 20 w = [1.0]*n l = {(i,i+1): 0.09 for i in range(n-1)} l.update({(5,14): 0.3}) f = {0: (0.0,1.0), 13: (0.5,0.9), 17: (0.7,1.1)} g = 9.81 k = 800 x, c = elasticModel(w, l, f, g, k) if x is not None: display(x, c, list(l.keys())) ###Output _____no_output_____
homeworks/group2/HW_2/HW2-part3_group2.ipynb
###Markdown ASTR 598 Astrostatistics HW2 Part 3 Hayden Smotherman, Chris Suberlack, Winnie Wang To run this Notebook:The Galfast data must be extracted from the projects/ directory as a .txt file and this notebook must be run in the homeworks/group2/HW_2/ directory. ###Code # Imports %matplotlib inline from astropy.table import Table from astropy.coordinates import SkyCoord from astropy import units as u from astropy.table import hstack from astropy.table import vstack import matplotlib.pyplot as plt import matplotlib.pyplot as plt from matplotlib.patches import Circle import os import numpy as np from astropy.io import fits import pandas as pd from scipy.stats import binned_statistic_2d as bs2d from scipy.stats import binned_statistic as bs1d import seaborn as sns GalFastData = np.loadtxt('../../../project/Galfast-Stripe82.txt',usecols=(0,1,4,5,12,13,14)) GalFastTable = Table(rows=GalFastData, names=('ra','dec','pmra','pmdec','gmag','rmag','imag')) # Generate the magnitude mask used in the Hess diagram data analysis def Hess_r_v_gminusi(aptable,total_mask): constant = 3 # This is a fudge parameter in determining number of bins nObjects = np.sum(total_mask) num_bins = int(constant * nObjects ** (1.0 / 4.0)) # Now calculate the binned proper motions proper_motion = np.sqrt(aptable['pmra']**2+aptable['pmdec']**2) total_mask = proper_motion<100*total_mask Binned_PM = bs2d(aptable['ra'][total_mask],aptable['rmag'][total_mask],proper_motion[total_mask], bins = num_bins) #cmin = min(np.log10(Binned_PM.statistic.T[Binned_PM.statistic.T > 0])) #cmax = max(np.log10(Binned_PM.statistic.T[Binned_PM.statistic.T > 0])) # Define custom colormaps: Set pixels with no sources to white cmap = plt.cm.viridis cmap.set_bad('w', 1.) plt.figure(figsize=[8,8]) plt.imshow(Binned_PM.statistic.T, origin='lower', extent=[Binned_PM.x_edge[0], Binned_PM.x_edge[-1], Binned_PM.y_edge[0], Binned_PM.y_edge[-1]], aspect='auto', interpolation='nearest', cmap=cmap) cb = plt.colorbar(orientation='horizontal') cb.set_label(r'Proper Motion [mas/yr]',fontsize=16) #plt.clim(0, 30) # This was set by hand to draw out as much detail as possible plt.xlabel(r'RA [degree]',fontsize=16) plt.ylabel(r'r',fontsize=16) plt.gca().invert_yaxis() plt.gca().invert_xaxis() # Make the color masks r_mask = (GalFastTable['rmag']>20.5) & (GalFastTable['rmag']<21) gminusi_mask = ((GalFastTable['gmag']-GalFastTable['imag']) > 0.3) & ((GalFastTable['gmag']-GalFastTable['imag']) < 0.4) mag_mask = r_mask * gminusi_mask # Make the RA Masks RA_mask_25to40 = (GalFastTable['ra'] > 25) & (GalFastTable['ra'] < 40) RA_mask_0to15 = (GalFastTable['ra'] > 0) & (GalFastTable['ra'] < 15) # Make the net masks mask_25to40 = mag_mask * RA_mask_25to40 mask_0to15 = mag_mask * RA_mask_0to15 # Make the Hess diagram for 25 < RA < 40 Hess_r_v_gminusi(GalFastTable,mask_25to40) plt.title(r'Proper Motion for $25^\circ < \mathrm{RA} < 40^\circ$',fontsize=20) plt.savefig('hw2_3_GalFast_pm_Hess_Diagram_RA25to40') # Save the figure # Make the Hess diagram for 0 < RA < 15 Hess_r_v_gminusi(GalFastTable,mask_0to15) plt.title(r'Proper Motion for $0^\circ < \mathrm{RA} < 15^\circ$',fontsize=20) plt.savefig('hw2_3_GalFast_pm_Hess_Diagram_RA0to15') # Save the figure ###Output _____no_output_____ ###Markdown The Galfast data is consistent with the NSC data in the stripe 82 region. The Galfast data shows a slight proper motion bimoodaility for stars in $25^\circ < \mathrm{RA} < 40^\circ$ while it shows little to no bimodality for stars in $0^\circ < \mathrm{RA} < 15^\circ$. Note that the color bar scale is different for each image. This mirrors what we saw in the NSC data in the same region, although the NSC dataset is too sparse to fully flesh-out the diagram. ###Code def ProperMotionHist(aptable,mask_noRAcuts,xmin=-5,xmax=5,normed='True'): # This function makes two histograms of RA and DEC Proper motions for two different RA cuts # Calculate the RA Proper Motion mask_noRAcuts *= aptable['pmra']<50 # Make two masks that have the RA cuts included RA_mask_0to15 = (aptable['ra'] > 0) & (aptable['ra'] < 15) RA_mask_25to40 = (aptable['ra'] > 25) & (aptable['ra'] < 40) # Mask things outside the range of the histogram mask_pm = (xmin < aptable['pmra'])*(aptable['pmra'] < xmax) # Combine masks mask_0to15 = mask_noRAcuts * RA_mask_0to15 * mask_pm mask_25to40 = mask_noRAcuts * RA_mask_25to40 * mask_pm #Plot the two distributions with different RA cuts plt.figure(figsize=[12,8]) plt.hist(aptable['pmra'][mask_0to15],alpha=0.5,bins=30, normed=normed,linewidth=3,color='r') plt.hist(aptable['pmra'][mask_25to40],alpha=0.5,bins=30, normed=normed,linewidth=3,color='b') plt.legend([r'$0^\circ < \mathrm{RA} < 15^\circ$', r'$25^\circ < \mathrm{RA} < 40^\circ$'],fontsize=16) plt.title('Distribution of RA Proper Motions for different RA cuts',fontsize=20) plt.xlabel('RA Proper Motion [mas/yr]',fontsize=16) plt.ylabel('Normed number density',fontsize=16) plt.xlim([xmin,xmax]) #plt.ylim([1,200]) plt.savefig('hw2_3_pm_hist_ra.png', bbox_inches='tight') # Calculate the DEC Proper Motion mask_noRAcuts *= aptable['pmdec']<50 # Make two masks that have the RA cuts included RA_mask_0to15 = (aptable['ra'] > 0) & (aptable['ra'] < 15) RA_mask_25to40 = (aptable['ra'] > 25) & (aptable['ra'] < 40) # Mask things outside the range of the histogram mask_pm = (xmin < aptable['pmdec'])*(aptable['pmdec'] < xmax) # Combine masks mask_0to15 = mask_noRAcuts * RA_mask_0to15 * mask_pm mask_25to40 = mask_noRAcuts * RA_mask_25to40 * mask_pm #Plot the two distributions with different RA cuts plt.figure(figsize=[12,8]) plt.hist(aptable['pmdec'][mask_0to15],alpha=0.5,bins=30, normed=normed,linewidth=3,color='r') plt.hist(aptable['pmdec'][mask_25to40],alpha=0.5,bins=30, normed=normed,linewidth=3,color='b') plt.legend([r'$0^\circ < \mathrm{RA} < 15^\circ$', r'$25^\circ < \mathrm{RA} < 40^\circ$'],fontsize=16) plt.title('Distribution of DEC Proper Motions for different RA cuts',fontsize=20) plt.xlabel('DEC Proper Motion [mas/yr]',fontsize=16) plt.ylabel('Normed number density',fontsize=16) plt.xlim([xmin,xmax]) #plt.ylim([1,200]) plt.savefig('hw2_3_pm_hist_dec.png', bbox_inches='tight') # Make some universal cuts r_mask = (GalFastTable['rmag']>20.5) & (GalFastTable['rmag']<21) gminusi_mask = ((GalFastTable['gmag']-GalFastTable['imag']) > 0.3) &\ ((GalFastTable['gmag']-GalFastTable['imag']) < 0.4) mag_mask = r_mask * gminusi_mask ProperMotionHist(GalFastTable,mag_mask, -5,5) ###Output _____no_output_____
notebooks/thesis/xcmove_joint_sanity_checking.ipynb
###Markdown Current alignment from wave node ###Code pred_full = wn.tssm.mean_obs(wn.npts) actual_full = wn.get_value() plt.figure(figsize=(14, 4)) lg_idx = time_to_index(pred_atime-5.0, wn.st, wn.srate) plt.plot(actual_full[lg_idx:lg_idx + 300]) plt.plot(pred_full[lg_idx:lg_idx + 300]) ###Output _____no_output_____ ###Markdown Current alignment in template xc move ###Code pred_signal = pred_wavelet * env plt.figure(figsize=(14, 4)) plt.plot(relevant_signal[backwards_idx:backwards_idx + len(pred_signal)]) plt.plot(pred_signal) ###Output _____no_output_____ ###Markdown Proposed alignment in template xc move ###Code pred_signal = pred_wavelet * env plt.figure(figsize=(14, 4)) plt.plot(relevant_signal[proposed_idx:proposed_idx + len(pred_signal)]) plt.plot(pred_signal) n_atime.set_value(current_atime) wn._parent_values() pred_full = wn.tssm.mean_obs(wn.npts) actual_full = wn.get_value() plt.figure(figsize=(14, 4)) lg_idx = time_to_index(pred_atime-5.0, wn.st, wn.srate) plt.plot(actual_full[lg_idx:lg_idx + 300]) plt.plot(pred_full[lg_idx:lg_idx + 300]) for (eeid, pphase, scale, sidx, npts, component_type) in wn.tssm_components: if eeid != eid or pphase != phase: continue if component_type != "wavelet": continue print sidx, npts print 807-relevant_sidx print backwards_idx print time_to_index(relevant_stime, wn.st, wn.srate) print relevant_sidx #time_to_index(current_atime, wn.st, wn.srate) print (current_atime - wn.st) * wn.srate print (current_atime - relevant_stime) * wn.srate ###Output 807.311899662 180.826158524
docs/tutorial/T4-Characteristics.ipynb
###Markdown T4 - CharacteristicsCharacteristics can be conceptually difficult to define, but are fairly simple in practice. They are essentially special parameters, that are specific to working with compartments and groups of compartments. We will motivate their design with a worked example that builds on the multi-population framework from T3, and then conclude by discussing other aspects of their design that differ from parameters.The key functionality provided by characteristics is this - the example in T3 had users initialize the compartment sizes by directly entering values for the number of people in the 'Susceptible' and 'Infected' compartments, both of which appeared on the 'Stocks' sheet in the databook.![t4-framework1](assets/T4/t4_framework_1.png)However, typically country data does not correspond directly to the compartments in the databook. For example, suppose we know - The total number of people alive- The number of people who have ever been infected- The proportion of infections that have now been resolvedWe could use this data to work out what the corresponding compartment sizes should be. For example, if we know that there are 1000 people in total, of whom 400 have ever been infected, and of which 75% of infections have been resolved, then the corresponding initial compartment sizes would be- `sus = 600`- `inf = 100`- `rec = 300`which satisfies that `sus+inf+rec=1000`, and `inf+rec=400`, and `rec/(inf+rec)=300`. The motivation for characteristics is that we want the databook to contain data entry for the total number of people, the number ever infected, and the proportion resolved, because those are the values corresponding to the available data. We would like Atomica to work out the corresponding compartment sizes, rather than having to do the calculation manually. To do this, we need to store the information in the framework that we have quantities- `alive = sus+inf+rec`- `ever_inf = inf+rec`- `prop_resolved = rec/ever_inf` and have these quantities appear in the databook instead of the compartments themselves. We could achieve the required data entry using parameters. However, we can't use the parameters to initialize compartments. This is why there is a separate system, 'characteristics', that allows expressions of groups of compartments to be used for initialization. We can set up the three characteristics defined above in a fairly straightforward way on the 'Characteristics' sheet. Rather than writing the formulas above with '+' and '/' operations, we instead provide a comma separated list of compartments (or other characteristics) to sum (in the 'components' column) and we provide the denominator separately in the 'denominator' column. So the corresponding characteristics sheet is![t4-framework2](assets/T4/t4_framework_2.png)We will also remove the 'Databook page' for the compartments on the the compartments sheet, since we want to initialize the model using characteristics only. If we create a databook from the framework as usual, we will have updated data entry tables on the 'Stocks' sheet. We can then go ahead and fill them out with the initialization described above:![t4-databook1](assets/T4/t4_databook_1.png)The framework and databook are available in the Atomica repository under `atomica/docs/tutorial/assets/t4_framework_1.xlsx` and `atomica/docs/tutorial/assets/t4_databook_1.xlsx`, respectively. We can now load these files in and run a simulation: ###Code import atomica as at P = at.Project(framework='assets/T4/t4_framework_1.xlsx',databook='assets/T4/t4_databook_1.xlsx') result = P.results[0] ###Output _____no_output_____ ###Markdown We now want to check that the initialization has been performed correctly. In the `result` we can retrieve the variables for the compartment sizes and inspect their values at the first timestep ###Code print('sus = %.2f' % (result.get_variable('sus')[0].vals[0])) print('inf = %.2f' % (result.get_variable('inf')[0].vals[0])) print('rec = %.2f' % (result.get_variable('rec')[0].vals[0])) ###Output _____no_output_____ ###Markdown So we have successfully used characteristics to have Atomica automatically convert from the aggregated data values to the underlying compartment values. Under the hood, we are solving a system of simultaneous equations. What happens if there are more unknowns than there are equations? This corresponds to the system being 'underdetermined'. An example would be, suppose we know that there are 1000 people in total, of whom 400 have ever been infected, but we don't know the proportion of people whose infections have been resolved. How do we then decide whether we have 100 infected and 300 recovered, or 300 infected and 100 recovered? Atomica uses the 'minimum norm' solution which means that the inputs are distributed equally across groups of compartments that are nonzero, and is zero if no information is available. We will see this with two examples. First, consider the case above where we only know the total population size and number ever infected. This corresponds to the framework and databook containing![t4-framework-3](assets/T4/t4_framework_3.png)![t4-databook-2](assets/T4/t4_databook_2.png)The minimum norm solution would see the 400 people uniformly distributed across `inf` and `rec`, so there will be 200 people in each compartment. If we run the model with these spreadsheets, we obtain ###Code import atomica as at P = at.Project(framework='assets/T4/t4_framework_2.xlsx',databook='assets/T4/t4_databook_2.xlsx') result = P.results[0] print('sus = %.2f' % (result.get_variable('sus')[0].vals[0])) print('inf = %.2f' % (result.get_variable('inf')[0].vals[0])) print('rec = %.2f' % (result.get_variable('rec')[0].vals[0])) ###Output _____no_output_____ ###Markdown We also now recieve a warning that 'Initialization characteristics are underdetermined' which reflects the fact that we had to rely on the minimum norm solution to infer the value of some of the compartments. For compartments that are missing entirely, we can remove the 'alive' characteristic entirely, leaving us with:![t4-framework-4](assets/T4/t4_framework_4.png)![t4-databook-3](assets/T4/t4_databook_3.png)Now, we expect that the 400 people will be assigned to `inf` and `rec` in equal proportions, but since we have no information at all about `sus`, it will be initialized with a value of zero: ###Code import atomica as at P = at.Project(framework='assets/T4/t4_framework_3.xlsx',databook='assets/T4/t4_databook_3.xlsx') result = P.results[0] print('sus = %.2f' % (result.get_variable('sus')[0].vals[0])) print('inf = %.2f' % (result.get_variable('inf')[0].vals[0])) print('rec = %.2f' % (result.get_variable('rec')[0].vals[0])) ###Output _____no_output_____
Simple2DRegression/Simple2DRegression.ipynb
###Markdown Inspecting calculate_z by plotting x and y projections ###Code # z function data_non_zero = np.random.rand(100) * 100 data_zero = np.zeros(100) plt.plot( data_non_zero, calculate_z(data_non_zero, data_zero, smearing=True), linestyle='none', marker='o', markersize=3 ) plt.plot( data_non_zero, calculate_z(data_zero, data_non_zero, smearing=True), linestyle='none', marker='o', markersize=3 ) ax = plt.gca() ylim = ax.get_ylim() ax.set_ylim(0, ylim[1]) ###Output _____no_output_____ ###Markdown Creating a large dataset ###Code def create_dataset(size): data_x = np.random.rand(size) * 100 data_y = np.random.rand(size) * 100 data_z = calculate_z(data_x, data_y, smearing=True) df = pd.DataFrame({'x': data_x, 'y': data_y, 'z': data_z}) return df # Creating dataset for plotting data = create_dataset(100_000) data ###Output _____no_output_____ ###Markdown Plotting data ###Code fig = plt.figure() ax = plt.axes(projection='3d') ax.scatter3D(data['x'], data['y'], data['z'], c='g', s=0.001) ###Output _____no_output_____ ###Markdown Scaling and splitting data ###Code from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split # Splitting data features = np.array(data[['x', 'y']]) target = np.array(data[['z']]) # target = np.ravel(target) features_train, features_test, target_train, target_test = train_test_split( features, target, random_state=1 ) # Scaling data scaler_features = StandardScaler() scaler_features.fit(features_train) features_train_scaled = scaler_features.transform(features_train) features_test_scaled = scaler_features.transform(features_test) scaler_target = StandardScaler() scaler_target.fit(target_train) target_train_scaled = scaler_target.transform(target_train) ###Output _____no_output_____ ###Markdown MLP Regression ###Code from sklearn.neural_network import MLPRegressor from sklearn.metrics import r2_score reg = MLPRegressor( hidden_layer_sizes=(6, 6), activation="relu", random_state=1, max_iter=2000 ).fit(features_train_scaled, np.ravel(target_train_scaled)) pred_test = reg.predict(features_test_scaled) pred_test = scaler_target.inverse_transform(pred_test) print(pred_test.shape) abs_deviation = (pred_test - np.ravel(target_test)) rel_deviation = abs_deviation / np.ravel(target_test) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4)) ax1.hist(rel_deviation, bins=20) ax2.hist(abs_deviation, bins=20) mean_abs = np.mean(abs_deviation) std_abs = np.std(abs_deviation) print('Abs: {:.3} +/- {:.3}'.format(mean_abs, std_abs)) mean_rel = np.mean(rel_deviation) std_rel = np.std(rel_deviation) print('Rel: {:.3} +/- {:.3}'.format(mean_rel, std_rel)) fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(12, 8)) ms = 2 mm = 'o' ax1.plot( features_test[:,0], rel_deviation, linestyle='none', marker=mm, markersize=ms ) ax1.set_ylabel('relative deviation') ax1.set_xlabel('x') ax2.plot( features_test[:,1], rel_deviation, linestyle='none', marker=mm, markersize=ms ) ax2.set_ylabel('relative deviation') ax2.set_xlabel('y') ax3.plot( features_test[:,0], abs_deviation, linestyle='none', marker=mm, markersize=ms ) ax3.set_ylabel('absolute deviation') ax3.set_xlabel('x') ax4.plot( features_test[:,1], abs_deviation, linestyle='none', marker=mm, markersize=ms ) ax4.set_ylabel('absolute deviation') ax4.set_xlabel('y') features_test[:,0] fig = plt.figure() ax = plt.axes(projection='3d') ax.scatter3D(features_test[:,0], features_test[:,1], abs_deviation, c='g', s=0.001) score = reg.score(features_test, target_test) score ###Output _____no_output_____
notebooks/Seasonality_Trends_Week_1_Lesson_2.ipynb
###Markdown ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Lesson 2In the screencast for this lesson I go through a few scenarios for time series. This notebook contains the code for that with a few little extras! :) Setup ###Code !pip install -U tf-nightly-2.0-preview import numpy as np import matplotlib.pyplot as plt import tensorflow as tf from tensorflow import keras def plot_series(time, series, format="-", start=0, end=None, label=None): plt.plot(time[start:end], series[start:end], format, label=label) plt.xlabel("Time") plt.ylabel("Value") if label: plt.legend(fontsize=14) plt.grid(True) ###Output _____no_output_____ ###Markdown Trend and Seasonality ###Code def trend(time, slope=0): return slope * time ###Output _____no_output_____ ###Markdown Let's create a time series that just trends upward: ###Code time = np.arange(4 * 365 + 1) baseline = 10 series = trend(time, 0.1) plt.figure(figsize=(10, 6)) plot_series(time, series) plt.show() ###Output _____no_output_____ ###Markdown Now let's generate a time series with a seasonal pattern: ###Code def seasonal_pattern(season_time): """Just an arbitrary pattern, you can change it if you wish""" return np.where(season_time < 0.4, np.cos(season_time * 2 * np.pi), 1 / np.exp(3 * season_time)) def seasonality(time, period, amplitude=1, phase=0): """Repeats the same pattern at each period""" season_time = ((time + phase) % period) / period return amplitude * seasonal_pattern(season_time) baseline = 10 amplitude = 40 series = seasonality(time, period=365, amplitude=amplitude) plt.figure(figsize=(10, 6)) plot_series(time, series) plt.show() ###Output _____no_output_____ ###Markdown Now let's create a time series with both trend and seasonality: ###Code slope = 0.05 series = baseline + trend(time, slope) + seasonality(time, period=365, amplitude=amplitude) plt.figure(figsize=(10, 6)) plot_series(time, series) plt.show() ###Output _____no_output_____ ###Markdown Noise In practice few real-life time series have such a smooth signal. They usually have some noise, and the signal-to-noise ratio can sometimes be very low. Let's generate some white noise: ###Code def white_noise(time, noise_level=1, seed=None): rnd = np.random.RandomState(seed) return rnd.randn(len(time)) * noise_level noise_level = 5 noise = white_noise(time, noise_level, seed=42) plt.figure(figsize=(10, 6)) plot_series(time, noise) plt.show() ###Output _____no_output_____ ###Markdown Now let's add this white noise to the time series: ###Code series += noise plt.figure(figsize=(10, 6)) plot_series(time, series) plt.show() ###Output _____no_output_____ ###Markdown All right, this looks realistic enough for now. Let's try to forecast it. We will split it into two periods: the training period and the validation period (in many cases, you would also want to have a test period). The split will be at time step 1000. ###Code split_time = 1000 time_train = time[:split_time] x_train = series[:split_time] time_valid = time[split_time:] x_valid = series[split_time:] def autocorrelation(time, amplitude, seed=None): rnd = np.random.RandomState(seed) φ1 = 0.5 φ2 = -0.1 ar = rnd.randn(len(time) + 50) ar[:50] = 100 for step in range(50, len(time) + 50): ar[step] += φ1 * ar[step - 50] ar[step] += φ2 * ar[step - 33] return ar[50:] * amplitude def autocorrelation(time, amplitude, seed=None): rnd = np.random.RandomState(seed) φ = 0.8 ar = rnd.randn(len(time) + 1) for step in range(1, len(time) + 1): ar[step] += φ * ar[step - 1] return ar[1:] * amplitude series = autocorrelation(time, 10, seed=42) plot_series(time[:200], series[:200]) plt.show() series = autocorrelation(time, 10, seed=42) + trend(time, 2) plot_series(time[:200], series[:200]) plt.show() series = autocorrelation(time, 10, seed=42) + seasonality(time, period=50, amplitude=150) + trend(time, 2) plot_series(time[:200], series[:200]) plt.show() series = autocorrelation(time, 10, seed=42) + seasonality(time, period=50, amplitude=150) + trend(time, 2) series2 = autocorrelation(time, 5, seed=42) + seasonality(time, period=50, amplitude=2) + trend(time, -1) + 550 series[200:] = series2[200:] #series += noise(time, 30) plot_series(time[:300], series[:300]) plt.show() def impulses(time, num_impulses, amplitude=1, seed=None): rnd = np.random.RandomState(seed) impulse_indices = rnd.randint(len(time), size=10) series = np.zeros(len(time)) for index in impulse_indices: series[index] += rnd.rand() * amplitude return series series = impulses(time, 10, seed=42) plot_series(time, series) plt.show() def autocorrelation(source, φs): ar = source.copy() max_lag = len(φs) for step, value in enumerate(source): for lag, φ in φs.items(): if step - lag > 0: ar[step] += φ * ar[step - lag] return ar signal = impulses(time, 10, seed=42) series = autocorrelation(signal, {1: 0.99}) plot_series(time, series) plt.plot(time, signal, "k-") plt.show() signal = impulses(time, 10, seed=42) series = autocorrelation(signal, {1: 0.70, 50: 0.2}) plot_series(time, series) plt.plot(time, signal, "k-") plt.show() series_diff1 = series[1:] - series[:-1] plot_series(time[1:], series_diff1) from pandas.plotting import autocorrelation_plot autocorrelation_plot(series) from statsmodels.tsa.arima_model import ARIMA model = ARIMA(series, order=(5, 1, 0)) model_fit = model.fit(disp=0) print(model_fit.summary()) df = pd.read_csv("sunspots.csv", parse_dates=["Date"], index_col="Date") series = df["Monthly Mean Total Sunspot Number"].asfreq("1M") series.head() series.plot(figsize=(12, 5)) series["1995-01-01":].plot() series.diff(1).plot() plt.axis([0, 100, -50, 50]) from pandas.plotting import autocorrelation_plot autocorrelation_plot(series) autocorrelation_plot(series.diff(1)[1:]) autocorrelation_plot(series.diff(1)[1:].diff(11 * 12)[11*12+1:]) plt.axis([0, 500, -0.1, 0.1]) autocorrelation_plot(series.diff(1)[1:]) plt.axis([0, 50, -0.1, 0.1]) 116.7 - 104.3 [series.autocorr(lag) for lag in range(1, 50)] pd.read_csv(filepath_or_buffer, sep=',', delimiter=None, header='infer', names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, skipfooter=0, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, parse_dates=False, infer_datetime_format=False, keep_date_col=False, date_parser=None, dayfirst=False, iterator=False, chunksize=None, compression='infer', thousands=None, decimal=b'.', lineterminator=None, quotechar='"', quoting=0, doublequote=True, escapechar=None, comment=None, encoding=None, dialect=None, tupleize_cols=None, error_bad_lines=True, warn_bad_lines=True, delim_whitespace=False, low_memory=True, memory_map=False, float_precision=None) Read a comma-separated values (csv) file into DataFrame. from pandas.plotting import autocorrelation_plot series_diff = series for lag in range(50): series_diff = series_diff[1:] - series_diff[:-1] autocorrelation_plot(series_diff) import pandas as pd series_diff1 = pd.Series(series[1:] - series[:-1]) autocorrs = [series_diff1.autocorr(lag) for lag in range(1, 60)] plt.plot(autocorrs) plt.show() ###Output _____no_output_____
exp/mnist-compare/notebooks/1011 - quantitative evaluation (barplot).ipynb
###Markdown Quatitative EvaluationFlipping the top pixels and see how much logodds drop in terms of the top-1 classification error. ###Code %matplotlib inline import torch import os import pandas as pd import seaborn as sns ###Output _____no_output_____ ###Markdown Take out all the files end with 'records.th' ###Code def get_file_names(directory): directory = os.path.join('../result', directory) result = [] for filename in os.listdir(directory): if filename.endswith("records.th"): result.append(filename) return result arr = [] identifiers = ['1013-vbd_l1_opposite-0.1'] for directory in identifiers: filenames = get_file_names(directory) arr.append(filenames) import matplotlib.pyplot as plt import numpy as np def plot_given_file(ax, filepath, name): orig_log_odds, all_log_odds, unnormalized_img, imp_vector, rodds = \ torch.load(filepath) x_flip = np.array([0] + all_log_odds.keys()) y_flip = np.array([orig_log_odds] + all_log_odds.values()) ax.plot(x_flip, y_flip, label='{} flip'.format(name)) if 'p_b' not in name: x = [k for k, v in rodds] y = np.array([v for k, v in rodds]) ax.scatter(x, y, label='{} random'.format(name)) return unnormalized_img for idx in xrange(10): fig, ax = plt.subplots() for name in [ # '1013-vbd_l1_opposite-0.1/8_{}_records.th'.format(idx), # '1013-vbd_l1_opposite-1E-3/8_{}_records.th',.format(idx) # '1013-vbd_l1_opposite-1E-4', '1013-vbd_l1_opposite-1E-5', # '1013-vbd_l1_opposite-1E-6/8_{}_records.th',.format(idx) '1013-vbd_l1_opposite-0/8_{}_records.th'.format(idx), '1018-vbd_l1-0/8_{}_records.th'.format(idx), '1013-vbd_opposite-0.5-0.1/8_{}_records.th'.format(idx), # '1013-vbd_opposite-0.5-1.0/8_{}_records.th'.format(idx), '1013-p_b/8_3_{}_records.th'.format(idx) ]: path = '../result/{}'.format(name) thereal_name = name.split('/')[0] unnormalized_img = plot_given_file(ax, path, name=thereal_name) # plot_given_file(ax, '../imgs/val_benchmark/0927_ae_hole_p_b_val/{}'.format(arr[0][idx]), name='p_b') plt.ylabel('Log odds') plt.legend(bbox_to_anchor=(1, 1)) plt.show() identifiers = [ '1005-p_b', '1005-vbd-p0.5-0.001', '1005-vbd-p0.5-0.01', '1005-vbd-p0.5-0.1', '1005-vbd-p0.999-1E-4', '1005-vbd-p0.999-1E-5', '1005-vbd-p0.999-1E-6', '1005-vbdl1-1E-3', '1005-vbdl1-1E-4', '1005-vbdl1-1E-5', ] arr = [get_file_names('../result/{}'.format(i)) for i in identifiers] def prepare_pd_table(arr, identifiers): result = [] for i in xrange(len(identifiers)): identifier = identifiers[i] for j in xrange(len(arr[i])): orig_log_odds, all_log_odds_dict, unnormalized_img, imp_vector = \ torch.load(os.path.join('../result', '%s' % identifier, arr[i][j])) for key in all_log_odds_dict: log_odds_drop = orig_log_odds - all_log_odds_dict[key] result.append([identifier + '(n = %d)' % (len(arr[i])), j, key, log_odds_drop]) result = pd.DataFrame(result) result.columns = ['method', 'img_index', 'num_flippings', 'odds_diff'] return result ###Output _____no_output_____ ###Markdown Old ###Code orig_log_odds, all_log_odds, unnormalized_img, imp_vector, rodds = \ torch.load('../result/1007-vbd_l1_opposite-0.1/' + arr[0][0]) ###Output _____no_output_____ ###Markdown Compare btw vbd, vbdf1, vbd 0.999Notice only 20 images here ###Code table = prepare_pd_table(arr, identifiers) ax = sns.boxplot(x="num_flippings", y="odds_diff", hue="method", data=table) ax.legend(bbox_to_anchor=(1, 1)) ###Output _____no_output_____
podcast-builder/podcast_builder.ipynb
###Markdown Podcast Builder In this example, we will be using Amazon Polly text to speech service to convert pain text into an audio file. Installing pre-requisite libraries ###Code %pip install boto3 ###Output _____no_output_____ ###Markdown Reading the text for your podcast script ###Code f = open("script.txt", "r", encoding = "utf8") text_to_convert = f.read() print(text_to_convert) f.close() ###Output _____no_output_____ ###Markdown Setting up account to access Amazon Polly text to speech serviceCreate a new user from AWS console for programmatic access and assign the policy `AmazonPollyFullAccess` to this user. ``` json{ "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "polly:*" ], "Resource": [ "*" ] } ]}```Now download or copy the `access key ID` and `secret access key` for the newly created user. Store these credential information at this location (`~/.aws/credentials`) in INI format. ``` INI[api_user]aws_access_key_id = aws_secret_access_key = region = ``` Calling Polly client to create audio file for your text ###Code import boto3 boto3_session = boto3.Session(profile_name = 'api_user') polly_client = boto3_session.client('polly') response = polly_client.synthesize_speech( VoiceId = 'Brian', OutputFormat = 'mp3', Engine = "neural", Text = text_to_convert) file = open('podcast.mp3', 'wb') file.write(response['AudioStream'].read()) file.close() ###Output _____no_output_____
analysis/figure_nbs/FIGURE_bad_ranks.ipynb
###Markdown Select incongruous models ###Code # Select observables and vamp scores ranking_k = 2 # rank by this VAMp2 score timescale_k = 2 # Select the timescale to judge the ranking by plotting_k = 7 # plot up to this process top_vamps = vamps.loc[(vamps.process==ranking_k) & (vamps.lag==lag), :].copy() top_timescales = timescales.loc[(timescales.lag == lag), :].copy() # rank models rank_by_ix = top_performers(vamps, k=ranking_k, lag=lag) # add ranks to observables/vamps top_vamps[f'rank'] = top_vamps['hp_ix'].apply(lambda x: rank_by_ix.get(x)) top_timescales[f'rank'] = top_timescales['hp_ix'].apply(lambda x: rank_by_ix.get(x)) ts_df = top_timescales.sort_values(by=['rank'], inplace=False) ts_df = ts_df.loc[ts_df.process == timescale_k, :] bad_ix = [] for i, row1 in ts_df.iterrows(): ts = row1['median'] rank = row1['rank'] ix = row1['hp_ix'] tmp = [] for j, row2 in ts_df.loc[ts_df['rank']>rank, :].iterrows(): if row2['median'] > ts: tmp.append(row2['hp_ix']) ts = row2['median'] if len(tmp)>0: tmp.append(ix) tmp = [tmp[-1]] + tmp[:-1] bad_ix.append(tuple(tmp)) sort_ix = np.argsort([len(x) for x in bad_ix])[::-1] bad_ix_sorted = [bad_ix[i] for i in sort_ix] with sns.plotting_context('paper', font_scale=1): width =0.4 offset = 0.5 fig, axes = plt.subplots(2, 2, figsize=(8, 8), sharex='col', sharey='row') cols = sns.color_palette('colorblind', timescales.process.max()) for col_ix, bad_set in enumerate([bad_ix[0], bad_ix_sorted[1]]): use_ts = top_timescales.loc[top_timescales.hp_ix.isin(bad_set), :] use_ts = use_ts.loc[use_ts.process < plotting_k, :] use_vamps = top_vamps.loc[top_vamps.hp_ix.isin(bad_set), :] # Plot VAMPS vamp_ax = axes[0, col_ix] plot_val_by_mod_proc(vamp_ax, use_vamps, color='k') vamp_ax.yaxis.set_major_locator(mpl.ticker.MultipleLocator(0.01)) # Plot timescales time_ax = axes[1, col_ix] plot_val_by_mod_proc(time_ax, use_ts) time_ax.set_yscale('log') # MD timescle xlim = time_ax.get_xlim() time_ax.hlines(md_t2[protein], *xlim, color='k',ls='dashed', label='MD estimate') time_ax.set_xlim(xlim) # labels if col_ix == 0: time_ax.set_ylabel('Timescale (ns)') vamp_ax.set_ylabel(f'VAMP-2(k={k})') axes[-1, col_ix].set_xlabel(f'VAMP2(k={k}) rank.') # Legend h, l = axes[-1, -1].get_legend_handles_labels() axes[-1, -1].legend(h, l, bbox_to_anchor=(1, 1), loc='upper left', title='Timescale') # Grid axes[0, col_ix].grid() axes[1, col_ix].grid() letters = list('abcd') for i, ax in enumerate(axes.flatten()): ax.xaxis.set_major_locator(mpl.ticker.MultipleLocator(1)) ax.annotate(text=f"({letters[i]})", xy=(0.05, 0.95), xycoords='axes fraction', ha='left',va='top') plt.tight_layout() plt.savefig(f'{protein}/bad_vamp_ranks.pdf', bbox_inches='tight') ###Output _____no_output_____
model_scoring/agg_vs_best_comparison.ipynb
###Markdown Greater than the sum of its parts?*How does the aggregate model compare to the best individual classification?*In this notebook we will optimized both the aggregate model for a galaxy, as well as its best individual classification. We'll then compare the residuals and mean squared errors of the two, and see how they stack up!**Warning:** The fitting step here takes a long time (~15 minutes) to complete. Which sucks. First, define some useful magic commands and import needed modules ###Code %load_ext autoreload %autoreload 2 %matplotlib inline import os import json from copy import deepcopy import numpy as np import matplotlib.pyplot as plt from scipy.interpolate import splprep, splev import lib.galaxy_utilities as gu import lib.python_model_renderer.parse_annotation as pa import lib.python_model_renderer.render_galaxy as rg from model_fitting import Model, ModelFitter from sklearn.metrics import mean_squared_error import warnings from astropy.utils.exceptions import AstropyWarning warnings.simplefilter('ignore', category=AstropyWarning) ###Output _____no_output_____ ###Markdown Define the subject id of the galaxy we'll be working on ###Code subject_id = 20902040 ###Output _____no_output_____ ###Markdown Load all the required metadata for plotting etc... ###Code gal, angle = gu.get_galaxy_and_angle(subject_id) pic_array, deprojected_image = gu.get_image(gal, subject_id, angle) psf = gu.get_psf(subject_id) diff_data = gu.get_image_data(subject_id) pixel_mask = 1 - np.array(diff_data['mask'])[::-1] galaxy_data = np.array(diff_data['imageData'])[::-1] size_diff = diff_data['width'] / diff_data['imageWidth'] # arcseconds per pixel for zooniverse image pix_size = pic_array.shape[0] / (gal['PETRO_THETA'].iloc[0] * 4) # arcseconds per pixel for galaxy data pix_size2 = galaxy_data.shape[0] / (gal['PETRO_THETA'].iloc[0] * 4) imshow_kwargs = { 'cmap': 'gray_r', 'origin': 'lower', 'extent': ( # left of image in arcseconds from centre -pic_array.shape[0]/2 / pix_size, pic_array.shape[0]/2 / pix_size, # right... -pic_array.shape[1]/2 / pix_size, # bottom... pic_array.shape[1]/2 / pix_size # top... ), } plt.imshow(pic_array, **imshow_kwargs) ###Output _____no_output_____ ###Markdown Grab the aggregate model ###Code with open( '../component-clustering/cluster-output/{}.json'.format(subject_id) ) as f: aggregate_model = json.load(f) agg_model = pa.parse_aggregate_model(aggregate_model, size_diff=size_diff) ###Output _____no_output_____ ###Markdown And the best individual classification ###Code with open('lib/best-classifications.json') as f: all_best_cls = json.load(f) best_cls = gu.classifications[ gu.classifications.classification_id == all_best_cls.get(str(subject_id)) ].iloc[0] best_model = pa.parse_annotation(json.loads(best_cls['annotations']), size_diff) ###Output _____no_output_____ ###Markdown Define a helper function that will perform the model optimization ###Code def fit_model(model, n=100): m = deepcopy(model) m['spiral'] = [] mf = ModelFitter(m, galaxy_data, psf, pixel_mask) new_model, res = mf.fit(options={'maxiter': n}) print('{}, {}, N steps: {}'.format(res['success'], str(res['message']), res['nit'])) return new_model ###Output _____no_output_____ ###Markdown Perform the optimization, warning: this takes a while. ###Code %time fitted_best_model = fit_model(best_model) %time fitted_agg_model = fit_model(agg_model) ###Output b'CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL', N steps: 34 CPU times: user 2min 16s, sys: 4.56 s, total: 2min 21s Wall time: 2min 21s ###Markdown Define a helper function that will do the post-processing of the models for plotting ###Code conv = lambda arr: rg.convolve2d(arr, psf, mode='same', boundary='symm') ###Output _____no_output_____ ###Markdown Calculate the rendered models and residuals to be plotted ###Code fitted_best_rendered = rg.calculate_model(fitted_best_model, diff_data['width']) fitted_agg_rendered = rg.calculate_model(fitted_agg_model, diff_data['width']) fitted_best_comparison = rg.compare_to_galaxy(fitted_best_rendered, psf, galaxy_data, pixel_mask=pixel_mask, stretch=False) fitted_agg_comparison = rg.compare_to_galaxy(fitted_agg_rendered, psf, galaxy_data, pixel_mask=pixel_mask, stretch=False) ###Output _____no_output_____ ###Markdown Grab a value to use for limits on the residuals plot ###Code l = max(fitted_best_comparison.max(), fitted_agg_comparison.max()) from sklearn.metrics import mean_squared_error def make_suptitle(arr, pre=None): s = mean_squared_error(0.8 * galaxy_data, arr) plt.suptitle((pre + ' ' if pre else '') + 'Mean Squared Error: {:.8f}'.format(s)) fig, ax = plt.subplots(ncols=3, sharey=True, figsize=(15, 6)) ax[0].imshow(0.8 * galaxy_data, **imshow_kwargs, vmin=(0.8 * galaxy_data).min(), vmax=(0.8 * galaxy_data).max()) ax[1].imshow(conv(fitted_best_rendered), **imshow_kwargs, vmin=(0.8 * galaxy_data).min(), vmax=(0.8 * galaxy_data).max()) ax[2].imshow( fitted_best_comparison, **{**imshow_kwargs, 'cmap': 'RdGy'}, vmin=-l, vmax=l ) make_suptitle(fitted_best_comparison, 'Best individual model:') plt.tight_layout() fig, ax = plt.subplots(ncols=3, sharey=True, figsize=(15, 6)) ax[0].imshow(0.8 * galaxy_data, **imshow_kwargs, vmin=(0.8 * galaxy_data).min(), vmax=(0.8 * galaxy_data).max()) ax[1].imshow(conv(fitted_agg_rendered), **imshow_kwargs, vmin=(0.8 * galaxy_data).min(), vmax=(0.8 * galaxy_data).max()) ax[2].imshow( fitted_agg_comparison, **{**imshow_kwargs, 'cmap': 'RdGy'}, vmin=-l, vmax=l ) make_suptitle(fitted_agg_comparison, 'Aggregate model:') plt.tight_layout(); fig, ax = plt.subplots(ncols=3, sharey=True, figsize=(15, 6)) ax[0].imshow(0.8 * galaxy_data, **imshow_kwargs, vmin=(0.8 * galaxy_data).min(), vmax=(0.8 * galaxy_data).max()) ax[1].imshow(conv(fitted_agg_rendered), **imshow_kwargs, vmin=(0.8 * galaxy_data).min(), vmax=(0.8 * galaxy_data).max()) ax[2].imshow( fitted_agg_comparison, **{**imshow_kwargs, 'cmap': 'RdGy'}, vmin=-l, vmax=l ) make_suptitle(fitted_agg_comparison) plt.tight_layout(); Model(fitted_best_model, galaxy_data, psf, pixel_mask) Model(fitted_agg_model, galaxy_data, psf, pixel_mask) ###Output _____no_output_____
Synsets, wordnet and Yelp reviews.ipynb
###Markdown Synsets, wordnet and Yelp reviews Here we use the `en_core_web_sm` spacy language model. If you haven't already, install it by running `python -m spacy download en_core_web_sm` in a terminal.Also, run nltk.download('sentiwordnet') if you never ran it. ###Code import sys import json import spacy import numpy as np import pandas as pd import matplotlib.pyplot as plt import nltk from tqdm import tqdm_notebook from nltk.corpus import sentiwordnet as swn from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import classification_report, confusion_matrix ###Output _____no_output_____ ###Markdown `ConfusionMatrixDisplay` requires `scikit-learn`'s version to be $>0.20$. You can check if by running `!conda list scikit-learn` in a cell below here. Otherwise, you need to update it by running `conda update scikit-learn` in a terminal. Be aware that if you have `textacy` version $0.8$ also installed in the same environment, then scikit-learn will not update.**IF YOU DO NOT HAVE THIS MODULE AND YOU DON'T WANT TO INSTALL IT, THEN DO NOT RUN THE CELL BELOW!**. You'll just see the confusion matrix in textual format and not graphical. ###Code from sklearn.metrics import ConfusionMatrixDisplay ###Output _____no_output_____ ###Markdown Pre-processing class ###Code class SpacyTokenizer(object): def __init__(self, model='en_core_web_sm', lemma=True, pos_filter=None): self.pos = pos_filter self.lemma = lemma self.nlp = spacy.load(model) def tokenize(self, text): tokens = [] for token in self.nlp(text): if self.lemma: tk = token.lemma_ else: tk = token.text if self.pos is None or token.pos_ in self.pos: tokens.append((tk, token.pos_)) else: pass return tokens ###Output _____no_output_____ ###Markdown Scoring class ###Code class SentiWn(object): def __init__(self, strategy='sum', use_pos=False): self.strategy = strategy self.pos = use_pos self.pos_map = { 'NOUN': 'n', 'ADJ': 'a', 'VERB': 'v', 'ADV': 'r' } self.strategy_map = { 'sum': self._simple_sum, 'weighted_sum': self.weighted_sum, 'average_score': self.average_score, 'weighted_average': self.weighted_average} # Simplest solution. # Double-sum: we sum the score for each synset for each word def _simple_sum(self, text): s = np.zeros(3) for token, pos in text: if self.pos: try: synsets = list(swn.senti_synsets(token, self.pos_map[pos])) except KeyError: pass else: synsets = list(swn.senti_synsets(token)) for syn in synsets: p, n, o = syn.pos_score(), syn.neg_score(), syn.obj_score() s[0] += p s[1] += n s[2] += o return s # We weight the scores considering how many synsets each word has: # the more syns a word has, the lower its importance. def weighted_sum(self, text): s = np.zeros(3) all_s = [] if self.pos: all_s = [list(swn.senti_synsets(token, self.pos_map[pos])) for token, pos in text] else: all_s = [list(swn.senti_synsets(token)) for token, pos in text] for i, (token, pos) in enumerate(text): try: synsets = all_s[i] sidf = np.log(max([len(l) for l in all_s]) / len(synsets)) for syn in synsets: p, n, o = syn.pos_score(), syn.neg_score(), syn.obj_score() s[0] += p * sidf s[1] += n * sidf s[2] += o * sidf # this is neutral except ZeroDivisionError: pass return s # We just average each score, so that we have an averaged positive, average negative # and average neutral def average_score(self, text): counter = 0 s = np.zeros(3) for token, pos in text: if self.pos: try: synsets = list(swn.senti_synsets(token, self.pos_map[pos])) except KeyError: pass else: synsets = list(swn.senti_synsets(token)) for syn in synsets: p, n, o = syn.pos_score(), syn.neg_score(), syn.obj_score() s[0] += p s[1] += n s[2] += o counter += 1 s[0] = s[0]/counter s[1] = s[1]/counter s[2] = s[2]/counter return s # We average the weighted sum def weighted_average(self, text): s = np.zeros(3) all_s = [] if self.pos: all_s = [list(swn.senti_synsets(token, self.pos_map[pos])) for token, pos in text] else: all_s = [list(swn.senti_synsets(token)) for token, pos in text] counter = 0 for i, (token, pos) in enumerate(text): try: synsets = all_s[i] sidf = np.log(max([len(l) for l in all_s]) / len(synsets)) for syn in synsets: p, n, o = syn.pos_score(), syn.neg_score(), syn.obj_score() s[0] += p * sidf s[1] += n * sidf s[2] += o * sidf # this is neutral counter += sidf except ZeroDivisionError: pass s[0] = s[0]/counter s[1] = s[1]/counter s[2] = s[2]/counter return s def predict(self, docs): try: score_function = self.strategy_map[self.strategy] except KeyError: raise Exception('{} strategy not yet available'.format(self.strategy)) self.doc_scores = np.array([score_function(doc) for doc in docs]) # we scale data bc the "objective" (=neutral) scores are always higher than pos and neg scores. Thus, if # we just took the max, then every document would have been considered neutral self.S = MinMaxScaler().fit_transform(self.doc_scores) # returns the index of the column with the highest val for each row # Thus: 0 = positive (first column), 1 = negative (second column), 2 = neutral pred = self.S.argmax(axis=1) y_pred = [1 if p == 0 else -1 if p == 1 else 0 for i, p in enumerate(pred)] return y_pred def custom_plots(self, y_true): fig, ax = plt.subplots(figsize=(14, 4), nrows=2, ncols=2) ax[0,0].boxplot(self.doc_scores) ax[0,1].scatter(self.doc_scores[:,0], self.doc_scores[:,1], alpha=0.4, c=y_true) ax[1,0].boxplot(self.S) ax[1,1].scatter(self.S[:,0], self.S[:,1], alpha=0.4, c=y_true) return plt ###Output _____no_output_____ ###Markdown Pre-processing ###Code yelp = pd.read_csv('data/yelp_example_1_small.tsv', sep='\t') tokenizer = SpacyTokenizer(lemma=True, pos_filter=['NOUN', 'ADV', 'ADJ', 'VERB']) tokenizer.tokenize(yelp.iloc[0].content) docs, titles, scores = [], [], [] data = tqdm_notebook(list(yelp.iterrows())) for i, row in data: tokens = tokenizer.tokenize(row.content) docs.append(tokens) titles.append(row.business) scores.append(row.score) with open('data/yelp_example_1.json', 'w') as out: json.dump({'docs': docs, 'titles': titles, 'scores': scores}, out) ###Output _____no_output_____ ###Markdown Wordnet and synsets examples ###Code synsets = list(swn.senti_synsets('happy')) for syn in synsets: print(syn) for syn in synsets: print(syn.synset.definition()) synsets = list(swn.senti_synsets('play', 'v')) for syn in synsets: print(syn) for syn in synsets: print(syn.synset.definition()) ###Output participate in games or sport act or have an effect in a specified way or with a specific effect or outcome play on an instrument play a role or part be at play; be engaged in playful activity; amuse oneself in a way characteristic of children replay (as a melody) perform music on (a musical instrument) pretend to have certain qualities or state of mind move or seem to move quickly, lightly, or irregularly bet or wager (money) engage in recreational activities rather than work; occupy oneself in a diversion pretend to be somebody in the framework of a game or playful activity emit recorded sound perform on a certain location put (a card or piece) into play during a game, or act strategically as if in a card game engage in an activity as if it were a game rather than take it seriously behave in a certain way cause to emit recorded audio or video manipulate manually or in one's mind or imagination use to one's advantage consider not very seriously be received or accepted or interpreted in a specific way behave carelessly or indifferently cause to move or operate freely within a bounded space perform on a stage or theater be performed or presented for public viewing cause to happen or to occur as a consequence discharge or direct or be discharged or directed as if in a continuous stream make bets stake on the outcome of an issue shoot or hit in a particular manner use or move employ in a game or in a specific position contend against an opponent in a sport, game, or battle exhaust by allowing to pull on the line ###Markdown Application on the Yelp reviews ###Code with open('data/yelp_example_1.json', 'r') as infile: data = json.load(infile) docs = data['docs'] titles = data['titles'] scores = data['scores'] ''' The Num argument indicates the value of the review (i.e: 3 stars). If the review has more the num stars, then it is postive (=1); otherwise, negative (=-1). 0 for neutral. We can also get only positive and negative, without neutral, by setting the use_neutral argument to False ''' def get_true_label_from_score(num, use_neutral = True): if use_neutral: return [1 if score > num else -1 if score < num else 0 for i, score in enumerate(scores)] else: return [1 if score >= num else -1 for i, score in enumerate(scores)] y_true = get_true_label_from_score(3) ###Output _____no_output_____ ###Markdown 01. Simple sum ###Code wn = SentiWn(strategy='sum', use_pos=True) y_pred = wn.predict(docs) wn.custom_plots(y_true).show() def print_report_plot_cf(y_true, y_pred): report = classification_report(y_true, y_pred) cm = confusion_matrix(y_true, y_pred) print(report) if 'sklearn.metrics._plot.confusion_matrix' in sys.modules: fig, ax = plt.subplots(figsize=(8, 8)) d = ConfusionMatrixDisplay(cm, [-1, 0, 1]) d.plot(cmap=plt.cm.Blues, ax=ax, values_format='10.0f') plt.show() else: print(cm) print_report_plot_cf(y_true, y_pred) ###Output precision recall f1-score support -1 0.35 0.39 0.37 1016 0 0.13 0.43 0.20 642 1 0.82 0.42 0.56 3342 accuracy 0.42 5000 macro avg 0.43 0.41 0.37 5000 weighted avg 0.63 0.42 0.47 5000 ###Markdown 02. Weighted sum ###Code wn_w = SentiWn(strategy='weighted_sum') y_w_pred = wn_w.predict(docs) wn_w.custom_plots(y_true).show() print_report_plot_cf(y_true, y_w_pred) ###Output precision recall f1-score support -1 0.61 0.28 0.38 1016 0 0.14 0.27 0.19 642 1 0.78 0.77 0.77 3342 accuracy 0.60 5000 macro avg 0.51 0.44 0.45 5000 weighted avg 0.66 0.60 0.62 5000 ###Markdown 03. Average score ###Code wn_a = SentiWn(strategy='average_score') y_a_pred = wn_a.predict(docs) wn_a.custom_plots(y_true).show() print_report_plot_cf(y_true, y_a_pred) ###Output precision recall f1-score support -1 0.56 0.01 0.03 1016 0 0.13 0.98 0.23 642 1 0.86 0.04 0.07 3342 accuracy 0.15 5000 macro avg 0.52 0.34 0.11 5000 weighted avg 0.70 0.15 0.08 5000 ###Markdown 04. Weighted average ###Code wn_wa = SentiWn(strategy='weighted_average') y_wa_pred = wn_wa.predict(docs) wn_wa.custom_plots(y_true).show() print_report_plot_cf(y_true, y_wa_pred) ###Output precision recall f1-score support -1 0.61 0.01 0.02 1016 0 0.13 1.00 0.23 642 1 0.89 0.00 0.00 3342 accuracy 0.13 5000 macro avg 0.54 0.34 0.08 5000 weighted avg 0.73 0.13 0.04 5000
spot-oa/oa/proxy/ipynb_templates/Advanced_Mode_master.ipynb
###Markdown Apache Spot's Ipython Advanced Mode ProxyThis guide provides examples about how to request data, show data with some cool libraries like pandas and more. **Import Libraries**The next cell will import the necessary libraries to execute the functions. Do not remove ###Code import datetime import pandas as pd import numpy as np import linecache, bisect import os spath = os.getcwd() path = spath.split("/") date = path[len(path)-1] ###Output _____no_output_____ ###Markdown **Request Data**In order to request data we are using Graphql (a query language for APIs, more info at: http://graphql.org/).We provide the function to make a data request, all you need is a query and variables ###Code def makeGraphqlRequest(query, variables): return GraphQLClient.request(query, variables) ###Output _____no_output_____ ###Markdown Now that we have a function, we can run a query like this:*Note: There's no need to manually set the date for the query, by default the code will read the date from the current path ###Code suspicious_query = """query($date:SpotDateType) { proxy { suspicious(date:$date) { clientIp clientToServerBytes datetime duration host networkContext referer requestMethod responseCode responseCodeLabel responseContentType score serverIp serverToClientBytes uri uriPath uriPort uriQuery uriRep userAgent username webCategory } } }""" ##If you want to use a different date for your query, switch the ##commented/uncommented following lines variables={ 'date': datetime.datetime.strptime(date, '%Y%m%d').strftime('%Y-%m-%d') # 'date': "2016-10-08" } suspicious_request = makeGraphqlRequest(suspicious_query,variables) ##The variable suspicious_request will contain the resulting data from the query. results = suspicious_request['data']['proxy']['suspicious'] ###Output _____no_output_____ ###Markdown Pandas DataframesThe following cell loads the results into a pandas dataframeFor more information on how to use pandas, you can learn more here: https://pandas.pydata.org/pandas-docs/stable/10min.html ###Code df = pd.read_json(json.dumps(results)) ##Printing only the selected column list from the dataframe ##Unless specified otherwise, print df[['clientIp','uriQuery','datetime','clientToServerBytes','serverToClientBytes', 'host']] ###Output _____no_output_____ ###Markdown Additional operations Additional operations can be performed on the dataframe like sorting the data, filtering it and grouping it**Filtering the data** ###Code ##Filter results where the destination port = 3389 ##The resulting data will be stored in df2 df2 = df[df['clientIp'].isin(['10.173.202.136'])] print df2[['clientIp','uriQuery','datetime','host']] ###Output _____no_output_____ ###Markdown **Ordering the data** ###Code srtd = df.sort_values(by="host") print srtd[['host','clientIp','uriQuery','datetime']] ###Output _____no_output_____ ###Markdown **Grouping the data** ###Code ## This command will group the results by pairs of source-destination IP ## summarizing all other columns grpd = df.groupby(['clientIp','host']).sum() ## This will print the resulting dataframe displaying the input and output bytes columnns print grpd[["clientToServerBytes","serverToClientBytes"]] ###Output _____no_output_____ ###Markdown **Reset Scored Connections**Uncomment and execute the following cell to reset all scored connections for this day ###Code # reset_scores = """mutation($date:SpotDateType!) { # proxy{ # resetScoredConnections(date:$date){ # success # } # } # }""" # variables={ # 'date': datetime.datetime.strptime(date, '%Y%m%d').strftime('%Y-%m-%d') # } # request = makeGraphqlRequest(reset_scores,variables) # print request['data']['proxy']['resetScoredConnections']['success'] ###Output _____no_output_____ ###Markdown SandboxAt this point you can perform your own analysis using the previously provided functions as a guide.Happy threat hunting! ###Code #Your code here ###Output _____no_output_____
_build/html/_sources/KDP-2_operands_aberrations.ipynb
###Markdown Aberrations ###Code import pandas as pd import itables from itables import init_notebook_mode, show import itables.options as opt init_notebook_mode(all_interactive=True) opt.lengthMenu = [50, 100, 200, 500] #opt.classes = ["display", "cell-border"] #opt.classes = ["display", "nowrap"] opt.columnDefs = [{"className": "dt-left", "targets": "_all"}, {"width": "500px", "targets": 4}] #opt.maxBytes = 0 #pd.get_option('display.max_columns') #pd.get_option('display.max_rows') #filename = r'C:\Work\Tools\OpticalDesign_Doku\KDP-2_optimization_operands.xlsx' import os cwd = os.getcwd() filename = os.path.join(cwd, os.path.join('Excel','KDP-2_optimization_operands.xlsx')) df_aberrations = pd.read_excel(filename, sheet_name = "aberrations", header = 1, index_col = 0) df_aberrations = df_aberrations.dropna() # drop nan values ###Output _____no_output_____ ###Markdown KDP-2 has operands for 3rd order, 5th order and 7th order aberrations:(click on "Order" to sort them in original order) ###Code df_aberrations ###Output _____no_output_____
surge_updates.ipynb
###Markdown Text provided under a Creative Commons Attribution license, CC-BY. All code is made available under the FSF-approved MIT license. (c) Kyle T. Mandli GeoClaw Storm Surge Modeling: Updates and New Features Thank You to Contributors Storm Object> This object contains a time series of time data that describe a particular storm. This includes the attributes below and the ability to read from multiple sources for data such as the U.S. National Hurricane Center (NHC), the Japanese Meterological Agency (JMA), and the Indian Meteorlogical Department (IMD). This class can then write out in any of these formats, construct the wind and pressure fields using a supported parameterized model, or output the GeoClaw supported storm format used for running storm surge simulations.**Important Point** - Python data container for time series description of a storm Core Capabilities - `read` in lots of storm formats (e.g. *ATCF*, *HURDAT*, *JMA*) - `write` out in some storm formats (e.g. *GeoClaw*, *ATCF*, *HURDAT*) - `plot` storm track and intensity - `category` of storm given a categorization scheme Utilities - `construct_fields` of a storm given a parameterization (e.g. Holland 1980, CLE 2015) - Others Example Use```python Storm parameters - Parameterized storm (Holland 1980)data.storm_specification_type = 'holland80' (type 1)data.storm_file = os.path.expandvars(os.path.join(os.getcwd(), 'ike.storm'))``````python Convert ATCF data to GeoClaw formatclawutil.data.get_remote_file( "http://ftp.nhc.noaa.gov/atcf/archive/2008/bal092008.dat.gz")atcf_path = os.path.join(scratch_dir, "bal092008.dat") Note that the get_remote_file function does not support gzip files which are not also tar files. The following code handles thiswith gzip.open(".".join((atcf_path, 'gz')), 'rb') as atcf_file, \ open(atcf_path, 'w') as atcf_unzipped_file: atcf_unzipped_file.write(atcf_file.read().decode('ascii'))``````python Read in unzipped fileike = Storm(path=atcf_path, file_format="ATCF")``````python Calculate landfall time - Need to specify as the file above does not include this info (9/13/2008 ~ 7 UTC)ike.time_offset = datetime.datetime(2008, 9, 13, 7)``````python Write storm data to GeoClaw formatike.write(data.storm_file, file_format='geoclaw')``` **GeoClaw Storm Format**```bash532008-09-13T07:00:00 -1.04040000e+06 -3.70000000e+01 1.72000000e+01 1.54333332e+01 1.66680000e+05 1.00600000e+05 4.63000000e+05 -1.01880000e+06 -3.84000000e+01 1.73000000e+01 1.80055554e+01 1.66680000e+05 1.00500000e+05 4.63000000e+05 -9.97200000e+05 -3.99000000e+01 1.75000000e+01 2.31499998e+01 1.66680000e+05 1.00300000e+05 4.63000000e+05 -9.75600000e+05 -4.13000000e+01 1.78000000e+01 2.31499998e+01 3.70400000e+04 1.00200000e+05 4.63000000e+05 -9.54000000e+05 -4.28000000e+01 1.82000000e+01 2.31499998e+01 3.70400000e+04 1.00000000e+05 5.09300000e+05 -9.32400000e+05 -4.43000000e+01 1.87000000e+01 2.57222220e+01 1.66680000e+05 9.99000000e+04 4.63000000e+05...``` ###Code import os import gzip import datetime import matplotlib.pyplot as plt from clawpack.geoclaw.surge.storm import Storm import clawpack.clawutil as clawutil # Scratch directory for storing topo and dtopo files: scratch_dir = os.path.join(os.environ["CLAW"], 'geoclaw', 'scratch') # Convert ATCF data to GeoClaw format clawutil.data.get_remote_file("http://ftp.nhc.noaa.gov/atcf/archive/2008/bal092008.dat.gz") atcf_path = os.path.join(scratch_dir, "bal092008.dat") # Note that the get_remote_file function does not support gzip files which # are not also tar files. The following code handles this with gzip.open(".".join((atcf_path, 'gz')), 'rb') as atcf_file, \ open(atcf_path, 'w') as atcf_unzipped_file: atcf_unzipped_file.write(atcf_file.read().decode('ascii')) # Uncomment/comment out to use the old version of the Ike storm file # ike = Storm(path="old_ike.storm", file_format="ATCF") ike = Storm(path=atcf_path, file_format="ATCF") # Calculate landfall time - Need to specify as the file above does not # include this info (9/13/2008 ~ 7 UTC) ike.time_offset = datetime.datetime(2008, 9, 13, 7) # Plot - Incorporated into the head branch fig = plt.figure() axes = fig.add_subplot(1, 1, 1) category_color = {5: 'red', 4: 'yellow', 3: 'orange', 2: 'green', 1: 'blue', 0: 'gray'} category = ike.category(categorization="NHC") longitude = ike.eye_location[:, 0] latitude = ike.eye_location[:, 1] for i in range(len(longitude)): color = category_color[category[i]] axes.plot(longitude[i:i + 2], latitude[i:i + 2], color=color) axes.set_title("Hurricane Ike Track") axes.set_xlabel("Longitude") axes.set_ylabel("Latitude") plt.show() ###Output _____no_output_____ ###Markdown Paramaterized Wind Models**Parameterizations:** Holland 1980, Holland 2010, CLE, SLOSH, Rankine, Modified Rankine, deMaria, WilloughbyAdded to both the Python and Fortran code. ###Code import numpy import matplotlib.pyplot as plt # Parameters N = 1000 radius = 100e3 Pn = 1005 Pc = 950 A = 23.0 B = 1.5 rho_air = 1.15 OMEGA = 7.2722052166430395e-5 THETA_0 = 0.52359877559829882 f = 2.0 * OMEGA * numpy.sin(THETA_0) f = 0.0 # Evaluate profiles x = numpy.concatenate((numpy.linspace(-radius, -0.01, N), numpy.linspace(0.01, radius, N)), axis=0) r = numpy.abs(x) * 1e-3 p = Pc + (Pn - Pc) * numpy.exp(-A/(r)**B) C = 1e1**2 *A * B * (Pn - Pc) / (rho_air) v = numpy.sqrt(C * numpy.exp(-A / r**B) / r**B + r**2 * f**2 / 4.0) - r * f / 2.0 fig = plt.figure() fig.set_figwidth(fig.get_figwidth() * 2) # Convert to kms x /= 1e3 axes = fig.add_subplot(1, 2, 1) axes.plot(x, v) axes.set_title("Wind Velocity Profile") axes.set_xlabel('km') axes.set_ylabel('m/s') axes.set_xlim([numpy.min(x), numpy.max(x)]) axes.set_ylim([0.0, numpy.max(v) + 5]) axes = fig.add_subplot(1, 2, 2) axes.plot(x, p) axes.set_title("Pressure Profile") axes.set_xlabel('km') axes.set_ylabel('mb') axes.set_xlim([numpy.min(x), numpy.max(x)]) axes.set_ylim([Pc - 5, Pn + 5]) plt.show() ###Output _____no_output_____
data_pulling/LinkExtraction.ipynb
###Markdown Link Extraction===Extracts links from journals, comments, and guestbook entries.Currently written up with pseudo-code to operate on the journals.This notebook is written with a workflow that made sense to Zach, but it can definitely be changed and updated: new functions can be written, old functions can be deleted or merged, etc. ###Code %reload_ext autoreload %autoreload 2 %matplotlib inline import os import re import pandas as pd import numpy as np from collections import Counter, defaultdict import sqlite3 from html.parser import HTMLParser from tqdm import tqdm, tqdm_notebook from datetime import datetime import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Load the site dataThis provides the list of site URL 'names'. ###Code site_metadata_working_dir = "/home/srivbane/shared/caringbridge/data/derived/site_metadata" site_metadata_filepath = os.path.join(site_metadata_working_dir, "site_metadata_with_text.feather") site_df = pd.read_feather(site_metadata_filepath) len(site_df) site_df.head() # note there are a very small number of duplicate sites duplicate_sites = site_df[site_df.duplicated(subset='name', keep=False)][['site_id', 'name', 'title', 'created_at', 'visits']] len(duplicate_sites) # read valid sites being included in this study valid_site_ids = set() data_selection_dir = "/home/srivbane/shared/caringbridge/data/projects/sna-social-support/data_selection" with open(os.path.join(data_selection_dir, "valid_site_ids.txt"), 'r') as infile: for line in infile: site_id = line.strip() if site_id == "": continue else: valid_site_ids.add(int(site_id)) len(valid_site_ids) # note that 5 of the 'duplicate name' site ids exist in the sample for this study len(set(site_df.site_id[site_df.duplicated(subset='name', keep=False)]) & set(valid_site_ids)) # take a look at the duplicate sites, noting different creation dates and different titles # in one case, we include one site but not the other in the SNA sample # these sites need to be investigated more specifically duplicate_sites['Human-readable creation date'] = duplicate_sites.created_at.apply(lambda created_at: str(datetime.utcfromtimestamp(created_at / 1000))) duplicate_sites['In SNA sample?'] = duplicate_sites.site_id.apply(lambda site_id: site_id in valid_site_ids) duplicate_sites.sort_values(by='name') # random selection of CaringBridge site URLs # these are what we need to match textual links to in order to build a network! np.random.choice(site_df.name, 10, replace=False).tolist() # 'site_names' is a set containing all of the valid CaringBridge site names # notably including both sites in our sample and all other sites as well site_names = set(site_df.name) len(site_names) ###Output _____no_output_____ ###Markdown Iterature through the journal data looking for links ###Code # this returns the sqlite database connection that contains the journal update texts def get_journal_text_db(): journal_text_filepath = "/home/srivbane/shared/caringbridge/data/projects/caringbridge_core/journal.sqlite" db = sqlite3.connect( journal_text_filepath, detect_types=sqlite3.PARSE_DECLTYPES ) db.row_factory = sqlite3.Row return db # this function connects to the database, makes a query, and passes the cursor to iterate_cursor def connect_and_iterate(): try: db = get_journal_text_db() cursor = db.cursor() cursor.execute("SELECT * FROM journalText") # TODO Remove this limit to get all of the sites! iterate_cursor(cursor) finally: # always do this with these databases!! db.close() # given a database cursor, this function extracts the text and passes it to get_link_texts def iterate_cursor(cursor, total=19137078): for row in tqdm(cursor, total=total): body_text = str(row['body']) site_id = row['site_id'] journal_oid = row['journal_oid'] link_texts = get_link_texts(body_text) for txt in link_texts: # TODO From each text link, should extract the URL slug and verify if it is in the set of site_names if 'caringbridge' not in txt: #every valid link we care about must be a caringbridge link spam.append(txt) continue words = txt.split('/') #Check if one slug of the URL contains a valid site name for item in words: if 'caringbridge' in item or 'visit' in item: continue if 'al' in item or 'www2' in item or 'europe' in item: spam.append(txt) break if item in site_names: name = item link = { 'site_id': site_id, 'journal_oid': journal_oid, 'link': txt, 'site_name': name } links.append(link) # this returns a list of string objects that correspond to the links in the text # I'll note that what we really want is the site 'name' in the URL, but this implementation makes no attempt to extract that name def get_link_texts(text): # TODO Implement me to find all links in the text, whether they are explicit links or just link mentions # e.g. should match both an HTML hyperlink or a plain-text copy-pasted link. # The existing implementation is a very simple one, and likely misses lots of links. extracted_links = re.findall('http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+',text) links = [] for item in extracted_links: #strip href of formatting if '>' in item: item = item[:item.find('>')-1] links.append(item) return links links = [] spam = [] connect_and_iterate() print("Valid links: ",len(links)) print("Invalid links: ",len(spam)) print("Percentage of valid links: ",(len(links)/ (len(links) + len(spam)))) links[:10] links_df = pd.DataFrame(links) links_df.head() # Write the resulting links dataframe to a CSV file working_dir = "/home/srivbane/shared/caringbridge/data/projects/sna-social-support/data_pulling" links_df.to_csv(os.path.join(working_dir, 'journal_intersite_links.csv')) print("Finished.") ###Output Finished.
ICCT_en/examples/04/SS-37-Quadrotor_longitudinal_velocity_control.ipynb
###Markdown Quadrotor longitudinal velocity controlThe quadrotor (or quadcopter) longitudinal velocity $v$ may be controlled by tilting the vehicle by the pitch angle. The angle $\theta$ is controlled by applying the torque $T$ using the propellers. The vehicle moment of inertia is $J= 1.3e-2$. When the vehicle is tilted by the angle $\theta$, the propellers produce a forward force approximately equal to $F_v = F\theta = mg\theta$ and the aerodynamic drag is $F_c=-cv=-0.9v$, where $m=2000$ g is vehicle mass, and $g = 9.81$ m/s^2 gravity acceleration. Maximum torque equals $5000$ mNm. Pitch angle $\theta$ must be limited to $\pm30$ degrees during all operations and maximum velocity to 2 m/s. The pitch angle is estimated by an appropriate sensor and velocity is measured with GPS. The design procedure follows the following two-step procedure:1. Write the system equations in state space form for the rotational dynamics (torque $T$ to pitch angle $\theta$) and the longitudinal dynamics (pitch angle to forward velocity $v$).2. Design a regulator for $v$ in order to satisfy the following specifications: - Settling time for 5% tolerance band of less than 2.5 seconds. - No Overshoot. - No steady-state error in response to a step velocity request. System equationsThe system equations are equal to:\begin{cases} m\dot{v} = F_v + F_c = mg\theta -cv \\ J\ddot{\theta} = T.\end{cases}By defining the state vector as $x = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^T = \begin{bmatrix} v & \theta & \dot{\theta} \end{bmatrix}^T$ and the input $u=T$, system equations in state space form become:\begin{cases}\dot{x} = \begin{bmatrix} -c/m & g & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}x + \begin{bmatrix} 0 \\ 0 \\ 1/J \end{bmatrix}u \\y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}x\end{cases}The dynamics from $u$ to $\theta$ is a double integrator while that from $\theta$ to $v$ is a first order dynamics with a pole in $-c/m$. The system has two outputs: velocity and tilt angle. The controllability matrix $\mathcal{C}$ is ###Code A = numpy.matrix('-0.45 9.81 0; 0 0 1; 0 0 0') B = numpy.matrix([[0],[0],[1/1.3E-02]]) C = numpy.matrix('1 0 0; 0 1 0') D = numpy.matrix('0; 0') CM = control.ctrb(A,B) display(Markdown(bmatrix(CM))) # print(numpy.linalg.matrix_rank(CM)) ###Output _____no_output_____ ###Markdown and has rank equal to 3 so the system is controllable.The observability matrix $\mathcal{O}$ is ###Code OM = control.obsv(A,C) display(Markdown(bmatrix(OM))) # print(numpy.linalg.matrix_rank(OM)) ###Output _____no_output_____ ###Markdown and has rank equal to 3 so the system is observable. Regulator design Observer designSince we have the direct measurements of $x_1$ and $x_2$ we are only interested in estimating $x_3$. If we look at the subsystem $(x_2, \, x_3)$ we note that it is observable, so it is possible to design an observer by considering only this subsystem. The structure of our estimator is therefore:$$\begin{bmatrix} \dot{\hat{x}_2} \\ \dot{\hat{x}_3} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\begin{bmatrix} \hat{x}_2 \\ \hat{x}_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 1/J \end{bmatrix}u + \begin{bmatrix} l_1 \\ l_2 \end{bmatrix}\left( y - C\begin{bmatrix} \hat{x}_2 \\ \hat{x}_3 \end{bmatrix} \right) = \begin{bmatrix} -l_1 & 1 \\ -l_2 & 0 \end{bmatrix}\begin{bmatrix} \hat{x}_2 \\ \hat{x}_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 1/J \end{bmatrix}u + \begin{bmatrix} l_1 \\ l_2 \end{bmatrix}y$$applying the Laplace transform and solving for $\hat{x}_3(s)$ we arrive at$$\hat{x}_3(s) = \frac{l_2s}{s^2+l_1s+l_2}y_2(s) + \frac{s+l_1}{s^2+l_1s+l_2}\frac{u(s)}{J}.$$We now have a simple linear estimator for $x_3$ that is asymptotically stable for any $l_1>0$ and $l_2>0$. It is interesting to note that if $l_2\rightarrow \infty$, the estimator transfer function simplifies to $\hat{x}_3(s) = s y_2(s)$ and the result equals $\hat{x}_3 = \dot{\theta}$; it is obtained by differentiating the measured $y_2 = \theta$.Selecting $l_1 = 20$ and $l_2 = 100$ places both observer eigenvalues in $-10$. Controller designFor the requirement on settling time, the frequency of the poles must be greater than $3/T_S$ for real poles and greater than $3/\zeta Ts$ for complex poles, where $T_s$ is the settling time (5%) and $\zeta$ the damping. Good poles locations, in terms of response and input energy, for a double integrator system, should lay within a range of $\pm 45°$ w.r.t. the real negative axis. By first considering these facts and then proceeding iteratively, dominant poles were chosen in $-2.8\pm1.0i$, whereas the third pole was chosen at much higher frequency: $-15$.For the requirement of zero steady-state error the reference input is scaled by a gain equal to the inverse of the steady-state gain of the closed-loop system, yielding total closed-loop gain of $1.0$. How to use this notebook?- Verify the requested specifications in case of initial error in the estimate of $x_3$ for both positive and negative error.- Watch the changed response and, by having a physical system in your mind, try to understand why it changed the way it did. ###Code # Preparatory cell X0 = 0.0 K = numpy.matrix([8/15,-4.4,-4]) L = numpy.matrix([[66],[107/3]]) Aw = matrixWidget(3,3) Aw.setM(A) Bw = matrixWidget(3,1) Bw.setM(B) Cw = matrixWidget(1,3) Cw.setM(C) X0w = widgets.FloatText( value=X0, description='', disabled=False ) Kw = matrixWidget(1,3) Kw.setM(K) Lw = matrixWidget(2,1) Lw.setM(L) eig1c = matrixWidget(1,1) eig2c = matrixWidget(2,1) eig3c = matrixWidget(1,1) eig1c.setM(numpy.matrix([-15.])) eig2c.setM(numpy.matrix([[-2.8],[-1.0]])) eig3c.setM(numpy.matrix([-15.])) eig2o = matrixWidget(2,1) eig3o = matrixWidget(1,1) eig2o.setM(numpy.matrix([[-10.],[0.]])) eig3o.setM(numpy.matrix([-10.])) # Misc #create dummy widget DW = widgets.FloatText(layout=widgets.Layout(width='0px', height='0px')) #create button widget START = widgets.Button( description='Test', disabled=False, button_style='', # 'success', 'info', 'warning', 'danger' or '' tooltip='Test', icon='check' ) def on_start_button_clicked(b): #This is a workaround to have intreactive_output call the callback: # force the value of the dummy widget to change if DW.value> 0 : DW.value = -1 else: DW.value = 1 pass START.on_click(on_start_button_clicked) # Define type of method selm = widgets.Dropdown( options= ['Set K and L', 'Set the eigenvalues'], value= 'Set the eigenvalues', description='', disabled=False ) # Define the number of complex eigenvalues sele = widgets.Dropdown( options= ['0 complex eigenvalues', '2 complex eigenvalues'], value= '2 complex eigenvalues', description='Complex eigenvalues:', style = {'description_width': 'initial'}, disabled=False ) #define type of ipout selu = widgets.Dropdown( options=['impulse', 'step', 'sinusoid', 'square wave'], value='step', description='Type of reference:', style = {'description_width': 'initial'}, disabled=False ) # Define the values of the input u = widgets.FloatSlider( value=2, min=0, max=4, step=0.1, description='Reference:', disabled=False, continuous_update=False, orientation='horizontal', readout=True, readout_format='.1f', ) period = widgets.FloatSlider( value=0.5, min=0.001, max=10, step=0.001, description='Period: ', disabled=False, continuous_update=False, orientation='horizontal', readout=True, readout_format='.2f', ) gain_w2 = widgets.FloatText( value=1., description='', disabled=True ) simTime = widgets.FloatText( value=3, description='', disabled=False ) # Support functions def eigen_choice(sele): if sele == '0 complex eigenvalues': eig1c.children[0].children[0].disabled = False eig2c.children[1].children[0].disabled = True eig2o.children[1].children[0].disabled = True eig = 0 if sele == '2 complex eigenvalues': eig1c.children[0].children[0].disabled = True eig2c.children[1].children[0].disabled = False eig2o.children[1].children[0].disabled = False eig = 2 return eig def method_choice(selm): if selm == 'Set K and L': method = 1 sele.disabled = True if selm == 'Set the eigenvalues': method = 2 sele.disabled = False return method # Reduced system Ar = numpy.matrix('0 1; 0 0') Br = numpy.matrix([[0],[1/1.3E-02]]) Cr = numpy.matrix('1 0') Dr = numpy.matrix('0') def main_callback2(Aw, Bw, X0w, K, L, eig1c, eig2c, eig3c, eig2o, eig3o, u, period, selm, sele, selu, simTime, DW): eige = eigen_choice(sele) method = method_choice(selm) if method == 1: solc = numpy.linalg.eig(A-B*K) solo = numpy.linalg.eig(Ar-L*Cr) if method == 2: if eige == 0: K = control.acker(A, B, [eig1c[0,0], eig2c[0,0], eig3c[0,0]]) Kw.setM(K) L = control.acker(Ar.T, Cr.T, [eig2o[0,0], eig3o[0,0]]).T Lw.setM(L) if eige == 2: K = control.acker(A, B, [eig3c[0,0], numpy.complex(eig2c[0,0],eig2c[1,0]), numpy.complex(eig2c[0,0],-eig2c[1,0])]) Kw.setM(K) L = control.acker(Ar.T, Cr.T, [numpy.complex(eig2o[0,0],eig2o[1,0]), numpy.complex(eig2o[0,0],-eig2o[1,0])]).T Lw.setM(L) sys = control.ss(A,B,numpy.vstack((C,numpy.zeros((B.shape[1],C.shape[1])))),numpy.vstack((D,numpy.eye(B.shape[1])))) sysC = control.ss(numpy.zeros((1,1)), numpy.zeros((1,numpy.shape(A)[0])), numpy.zeros((numpy.shape(B)[1],1)), -K) sysE = control.ss(Ar-L*Cr, numpy.hstack((L,Br-L*Dr)), numpy.matrix('0 1'), numpy.zeros((1,2))) sys_append = control.append(sys, sysE, sysC, control.ss(A,B,numpy.eye(A.shape[0]),numpy.zeros((A.shape[0],B.shape[1])))) Q = [] # y in ingresso a sysE for i in range(1): Q.append([B.shape[1]+i+1, i+2]) # u in ingresso a sysE for i in range(B.shape[1]): Q.append([B.shape[1]+1+i+1, C.shape[0]+i+1]) # u in ingresso a sys for i in range(B.shape[1]): Q.append([i+1, C.shape[0]+B.shape[1]+1+i+1]) # u in ingresso al sistema che ha come uscite gli stati reali for i in range(B.shape[1]): Q.append([2*B.shape[1]+1+A.shape[0]+i+1, C.shape[0]+i+1]) # xe in ingresso a sysC Q.append([2*B.shape[1]+1+1, 1]) Q.append([2*B.shape[1]+1+1+1, 1+1]) Q.append([2*B.shape[1]+1+2+1, C.shape[0]+B.shape[1]+1]) inputv = [i+1 for i in range(B.shape[1])] outputv = [i+1 for i in range(numpy.shape(sys_append.C)[0])] sys_CL = control.connect(sys_append, Q, inputv, outputv) t = numpy.linspace(0, 100000, 2) t, yout = control.step_response(sys_CL[0,0],T=t) dcgain = yout[-1] gain_w2.value = dcgain if dcgain != 0: u1 = u/gain_w2.value else: print('The feedforward gain is set to 0 and it changed to 1.') u1 = u/1 print('The static gain of the closed-loop system (from the reference to the output) is: %.5f' %dcgain) X0w1 = numpy.zeros((2*A.shape[0]+2,1)) X0w1[A.shape[0]+1,0] = X0w if simTime != 0: T = numpy.linspace(0, simTime, 10000) else: T = numpy.linspace(0, 1, 10000) if selu == 'impulse': #selu U = [0 for t in range(0,len(T))] U[0] = u U1 = [0 for t in range(0,len(T))] U1[0] = u1 T, yout, xout = control.forced_response(sys_CL,T,U1,X0w1) if selu == 'step': U = [u for t in range(0,len(T))] U1 = [u1 for t in range(0,len(T))] T, yout, xout = control.forced_response(sys_CL,T,U1,X0w1) if selu == 'sinusoid': U = u*numpy.sin(2*numpy.pi/period*T) U1 = u1*numpy.sin(2*numpy.pi/period*T) T, yout, xout = control.forced_response(sys_CL,T,U1,X0w1) if selu == 'square wave': U = u*numpy.sign(numpy.sin(2*numpy.pi/period*T)) U1 = u1*numpy.sign(numpy.sin(2*numpy.pi/period*T)) T, yout, xout = control.forced_response(sys_CL,T,U1,X0w1) # N.B. i primi 3 stati di xout sono quelli del sistema, mentre gli ultimi 3 sono quelli dell'osservatore step_info_dict = control.step_info(sys_CL[0,0],SettlingTimeThreshold=0.05,T=T) print('Step info: \n\tRise time =',step_info_dict['RiseTime'],'\n\tSettling time (5%) =',step_info_dict['SettlingTime'],'\n\tOvershoot (%)=',step_info_dict['Overshoot']) print('Max x2 value (%)=', max(abs(yout[C.shape[0]+2*B.shape[1]+1+1]))/(numpy.pi/180*30)*100) fig = plt.figure(num='Simulation1', figsize=(14,12)) fig.add_subplot(221) plt.title('Output response') plt.ylabel('Output') plt.plot(T,yout[0],T,U,'r--') plt.xlabel('$t$ [s]') plt.axvline(x=0,color='black',linewidth=0.8) plt.axhline(y=0,color='black',linewidth=0.8) plt.legend(['$y$','Reference']) plt.grid() fig.add_subplot(222) plt.title('Input') plt.ylabel('$u$') plt.plot(T,yout[C.shape[0]]) plt.xlabel('$t$ [s]') plt.axvline(x=0,color='black',linewidth=0.8) plt.axhline(y=0,color='black',linewidth=0.8) plt.grid() fig.add_subplot(223) plt.title('States response') plt.ylabel('States') plt.plot(T,yout[C.shape[0]+2*B.shape[1]+1], T,yout[C.shape[0]+2*B.shape[1]+1+1], T,yout[C.shape[0]+2*B.shape[1]+1+2], T,[numpy.pi/180*30 for i in range(len(T))],'r--', T,[-numpy.pi/180*30 for i in range(len(T))],'r--') plt.xlabel('$t$ [s]') plt.legend(['$x_{1}$','$x_{2}$','$x_{3}$','limit +$x_{2}$','limit -$x_{2}$']) plt.axvline(x=0,color='black',linewidth=0.8) plt.axhline(y=0,color='black',linewidth=0.8) plt.grid() fig.add_subplot(224) plt.title('Estimation error') plt.ylabel('Error') plt.plot(T,yout[C.shape[0]+2*B.shape[1]+1+2]-yout[C.shape[0]+B.shape[1]]) plt.xlabel('$t$ [s]') plt.legend(['$e_{3}$']) plt.axvline(x=0,color='black',linewidth=0.8) plt.axhline(y=0,color='black',linewidth=0.8) plt.grid() #plt.tight_layout() alltogether2 = widgets.VBox([widgets.HBox([selm, sele, selu]), widgets.Label(' ',border=3), widgets.HBox([widgets.Label('K:',border=3), Kw, widgets.Label(' ',border=3), widgets.Label(' ',border=3), widgets.Label('Eigenvalues:',border=3), eig1c, eig2c, eig3c, widgets.Label(' ',border=3), widgets.Label(' ',border=3)]), widgets.Label('X0 est.:',border=3), X0w, widgets.Label(' ',border=3), widgets.HBox([widgets.Label('L:',border=3), Lw, widgets.Label(' ',border=3), widgets.Label(' ',border=3), widgets.Label('Eigenvalues:',border=3), eig2o, eig3o, widgets.Label(' ',border=3), widgets.VBox([widgets.Label('Inverse reference gain:',border=3), widgets.Label('Simulation time (s):',border=3)]), widgets.VBox([gain_w2,simTime])]), widgets.Label(' ',border=3), widgets.HBox([u, period, START])]) out2 = widgets.interactive_output(main_callback2, {'Aw':Aw, 'Bw':Bw, 'X0w':X0w, 'K':Kw, 'L':Lw, 'eig1c':eig1c, 'eig2c':eig2c, 'eig3c':eig3c, 'eig2o':eig2o, 'eig3o':eig3o, 'u':u, 'period':period, 'selm':selm, 'sele':sele, 'selu':selu, 'simTime':simTime, 'DW':DW}) out2.layout.height = '870px' display(out2, alltogether2) ###Output _____no_output_____
analysis/long-fixations/long-fixations.ipynb
###Markdown Calculate mean length of active state saccades ###Code trange_active_len = np.zeros(len(traces)) for i in range(len(traces)): trange, data, pe_start_index, displacement_index, release_index, step_pos = fitting_functions.importActiveData('../../data/active/fixed/'+traces[i]+'.mat') trange_active_len[i] = trange[displacement_index]+0.5 # time 0 = 500 ms after saccade np.mean(trange_active_len) ###Output _____no_output_____ ###Markdown Compare extrapolations to "ground truth" ###Code def importLongFixation(filename): data_file = sio.loadmat(filename) trange = data_file['trange'][0] fixation = data_file['fixation'][0] # fixation = fixation[::72] return trange, fixation ###Output _____no_output_____ ###Markdown % change in MSE as a function of number of components ###Code trange_lens = np.zeros(len(traces)) for i in range(len(traces)): trange, fixation = importLongFixation('../../data/long-fixations/fixed/'+traces[i]+'_long.mat') trange_lens[i] = len(trange) fit_file = sio.loadmat('results/'+traces[i]+'_long.mat') # lls = fit_file['lls'] mse = fit_file['sses']/len(trange) mse_best = np.min(mse, axis=1) delta_mse = (mse_best[1:] - mse_best[:-1])/mse_best[:-1] plt.subplot(3,3,i+1) plt.plot(np.arange(5)+2, delta_mse*100,'.-') plt.title(traces[i],fontsize=10) plt.tight_layout() ###Output _____no_output_____ ###Markdown Above we plot the percent change in MSE when moving from $n-1$ to $n$ components (axis label is $n$). For all extrapolations, there was a negligible decrease in MSE after 2 components. ###Code Tmin = int(np.min(trange_lens)) print(trange[Tmin]) ###Output 15.26 ###Markdown The shortest long fixation recording we have ends at 15.26 s after saccade. We will use this time point as the end of a window over which we will evaluate the extrapolation quality, and as the point at which we will add to the cost functions for conservative extrapolations of real active state data. ###Code eye_pos_averages = np.zeros(len(traces)) relative_errors = np.zeros(len(traces)) for i in range(len(traces)): trace = traces[i] trange, fixation = importLongFixation('../../data/long-fixations/fixed/'+trace+'_long.mat') eye_pos_averages[i] = np.mean(fixation[Tmin-16:Tmin]) # Average calculated over a window of 16 elements = 230 ms fit_file = sio.loadmat('results/'+trace+'_long.mat') lls = fit_file['lls'] fits = fit_file['fits'] best_fit_ind = np.argmin(lls[1, :]) # Evaluate extrapolation at time corresponding to middle of window model_val = fitting_functions.exponentialModel(trange[Tmin-8]-trange[0], fits[1,0][best_fit_ind, :]) relative_errors[i] = (eye_pos_averages[i]-model_val)/model_val ###Output _____no_output_____ ###Markdown We use a window of 16 elements, from $t =$ 15.03 to 15.26 s after the saccade time, and calculate the average eye position. Then, we compare this to the value of the extrapolated eye position (using the first 0.5-4.8 s) at $t =$ 15.14 s, the middle of the window, by calculating the percent deviation between the extrapolation and the average eye position, with respect to the extrapolation. ###Code np.mean(relative_errors), np.std(relative_errors) ###Output _____no_output_____ ###Markdown Figure 2D, right ###Code plt.scatter(np.ones(len(traces)), relative_errors) sio.savemat('all_relative_errors.mat', {'errs':relative_errors}) sio.savemat('relative_errors.mat', {'t':trange[Tmin-8], 'delta':np.min(relative_errors)}) ###Output _____no_output_____
examples/Dumbbells/BCC_Calculations/Fe-Mn/FeMn_simulation.ipynb
###Markdown Mn Thermodynamic data ###Code # Jump rates and energy barriers set. Now, let's set the calculations up. vu0 = 4.4447 vu2 = 5.9297 Dconv=1e-2 predb0, enedb0 = np.ones(1)*np.exp(0.050), np.array([E_f_pdb]) # We'll measure every formation energy relative to the solute formation energy. preS, eneS = np.ones(1), np.array([0.0]) # Next, interaction or the excess energies and pre-factors for solutes and dumbbells. preSdb, eneSdb = np.ones(onsagercalculator.thermo.mixedstartindex), \ np.zeros(onsagercalculator.thermo.mixedstartindex) # Now, we go over the necessary stars and assign interaction energies for (key, index) in name_to_themo_star.items(): eneSdb[index] = name_to_Ef[key] - E_f_pdb predb2, enedb2 = np.ones(1), np.array([E_f_mdb]) # Transition state energies - For omega0, omega2 and omega43, the first type is the Johnson jump, # and the second one is the Rigid jump. # Omega0 TS eneriges # taken directly from the paper preT0, eneT0 = Dconv*vu0*np.ones(1), np.array([E_f_pdb + 0.33541396, E_f_pdb + 0.61091396, E_f_pdb + 0.784315123]) # Omega2 TS energies Nj2 = len(onsagercalculator.jnet2) preT2, eneT2 = Dconv*vu2*np.ones(Nj2), np.array([ef_ts_2, ef_ts_2_rigid, ef_ts_2_rot]) # Omega43 TS energies preT43, eneT43 = Dconv*vu0*np.ones(1), np.array([ef_ts_43]) # Omega1 TS energies preT1 = Dconv*vu0*np.ones(len(onsagercalculator.jnet1)) eneT1 = np.array([eneT0[i] for i in onsagercalculator.om1types]) # Now, we go over the jumps that are provided and make the necessary changes for (key, index) in jmpdict.items(): eneT1[index] = Jname_2_ef_ts[key] eneT1[0] = 0.0 # print(eneT1) data_Mn = {"puredb_data":(predb0, enedb0), "mixed_db_data":(predb2, enedb2), "omega0_data":(preT0, eneT0), "omega2_data":(preT2, eneT2),"omega43_data":(preT43, eneT43), "omega1_data":(preT1, eneT1), "S-db_interaction_data":(preSdb, eneSdb)} from tqdm import tqdm # Then we calculate the transport coefficients diff_aa_Mn = np.zeros(len(temp)) diff_ab_Mn = np.zeros(len(temp)) diff_bb = np.zeros(len(temp)) diff_bb_non_loc = np.zeros(len(temp)) start = time.time() for i in tqdm(range(len(temp)), position=0, leave=True): T = temp[i] kT = kB*T bFdb0, bFdb2, bFS, bFSdb, bFT0, bFT1, bFT2, bFT3, bFT4 = \ onsagercalculator.preene2betafree(kT, predb0, enedb0, preS, eneS, preSdb, eneSdb, predb2, enedb2, preT0, eneT0, preT2, eneT2, preT1, eneT1, preT43, eneT43) # get the probabilities and other data from L_ij L0bb, (L_uc_aa,L_c_aa), (L_uc_bb,L_c_bb), (L_uc_ab,L_c_ab)=\ onsagercalculator.L_ij(bFdb0, bFT0, bFdb2, bFT2, bFS, bFSdb, bFT1, bFT3, bFT4) L_aa = L_uc_aa + L_c_aa L_bb = L_uc_bb + L_c_bb L_ab = L_uc_ab + L_c_ab diff_aa_Mn[i] = L_aa[0][0] diff_ab_Mn[i] = L_ab[0][0] diff_bb[i] = L_bb[0][0] diff_bb_non_loc[i] = L0bb[0][0] print(time.time() - start) import h5py with h5py.File("Mn_data.h5","w") as fl: fl.create_dataset("diff_aa", data=diff_aa_Mn) fl.create_dataset("diff_ab", data=diff_ab_Mn) fl.create_dataset("diff_bb_nl", data=diff_bb_non_loc) fl.create_dataset("diff_bb", data=diff_bb) fl.create_dataset("Temp", data=temp) # Now let's do the infinite temeperature limit kT = np.inf bFdb0, bFdb2, bFS, bFSdb, bFT0, bFT1, bFT2, bFT3, bFT4 = \ onsagercalculator.preene2betafree(kT, predb0, enedb0, preS, eneS, preSdb, eneSdb, predb2, enedb2, preT0, eneT0, preT2, eneT2, preT1, eneT1, preT43, eneT43) # bFdicts[i] = [bFdb0, bFdb2, bFS, bFSdb, bFT0, bFT1, bFT2, bFT3, bFT4] # get the probabilities and other data from L_ij L0bb, (L_uc_aa,L_c_aa), (L_uc_bb,L_c_bb), (L_uc_ab,L_c_ab)=\ onsagercalculator.L_ij(bFdb0, bFT0, bFdb2, bFT2, bFS, bFSdb, bFT1, bFT3, bFT4) L_aa = L_uc_aa + L_c_aa L_bb = L_uc_bb + L_c_bb L_ab = L_uc_ab + L_c_ab L_ab[0][0]/L_aa[0][0] ###Output _____no_output_____
src/KDD_Cup_Data_analysis.ipynb
###Markdown Get the data and do some prepocessing ###Code import sys sys.executable import numpy as np import pandas as pd # use version==1.2.5 incase you want to run pandas profiling import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import StandardScaler # Data is available at: https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html # description of column names at: https://kdd.ics.uci.edu/databases/kddcup99/kddcup.names col_names = ['duration', 'protocol_type', 'service', 'flag', 'src_bytes', 'dst_bytes', 'land', 'wrong_fragment', 'urgent', 'hot', 'num_failed_logins', 'logged_in', 'num_compromised', 'root_shell', 'su_attempted', 'num_root', 'num_file_creations', 'num_shells', 'num_access_files', 'num_outbound_cmds', 'is_host_login', 'is_guest_login', 'count', 'srv_count', 'serror_rate', 'srv_serror_rate', 'rerror_rate', 'srv_rerror_rate', 'same_srv_rate', 'diff_srv_rate', 'srv_diff_host_rate', 'dst_host_count', 'dst_host_srv_count', 'dst_host_same_srv_rate', 'dst_host_diff_srv_rate', 'dst_host_same_src_port_rate', 'dst_host_srv_diff_host_rate', 'dst_host_serror_rate', 'dst_host_srv_serror_rate', 'dst_host_rerror_rate', 'dst_host_srv_rerror_rate'] num_col = ['duration', 'src_bytes', 'dst_bytes', 'wrong_fragment', 'urgent', 'hot', 'num_failed_logins', 'num_compromised', 'root_shell', 'su_attempted', 'num_root', 'num_file_creations', 'num_shells', 'num_access_files', 'num_outbound_cmds', 'count', 'srv_count', 'serror_rate', 'srv_serror_rate', 'rerror_rate', 'srv_rerror_rate', 'same_srv_rate', 'diff_srv_rate', 'srv_diff_host_rate', 'dst_host_count', 'dst_host_srv_count', 'dst_host_same_srv_rate', 'dst_host_diff_srv_rate', 'dst_host_same_src_port_rate', 'dst_host_srv_diff_host_rate', 'dst_host_serror_rate', 'dst_host_srv_serror_rate', 'dst_host_rerror_rate', 'dst_host_srv_rerror_rate'] data_path = "../data/kddcup_data" df = pd.read_csv(data_path, names=col_names+["threat_type"]) # threat type is the target # do some preprocessing # print(' ') df['threat_type'] = df['threat_type'].str.replace('.', '', regex=True) df['threat_type'].unique() df['threat_type'].value_counts() indexNames = df[(df['threat_type'] == 'spy') | (df['threat_type'] == 'perl') | (df['threat_type'] == 'phf') | (df['threat_type'] == 'multihop') | (df['threat_type'] == 'ftp_write') | (df['threat_type'] == 'loadmodule') | (df['threat_type'] == 'rootkit') | (df['threat_type'] == 'imap') | (df['threat_type'] == 'warezmaster') | (df['threat_type'] == 'land') | (df['threat_type'] == 'buffer_overflow') | (df['threat_type'] == 'guess_passwd') | (df['threat_type'] == 'pod') | (df['threat_type'] == 'teardrop')| (df['threat_type'] == 'warezclient') | (df['threat_type'] == 'back') | (df['threat_type'] == 'nmap')].index df.drop(indexNames , inplace=True) df['threat_type'].value_counts() ###Output _____no_output_____ ###Markdown https://towardsdatascience.com/how-to-deal-with-imbalanced-multiclass-datasets-in-python-fe0bb3f2b669 ###Code count = df['threat_type'].value_counts() count.plot.bar() plt.ylabel('Number of records') plt.xlabel('Target Class') plt.show() n_samples = count.median()#.astype(np.int64) n_samples # 34 numerical columns are considered for training num_df = df[num_col] # Lets remove the numerical columns with constant value X = num_df.loc[:, (num_df != num_df.iloc[0]).any()].values # labelencode the target variable threat_types = df["threat_type"].values encoder = LabelEncoder() # encoder = OneHotEncoder() # use LabelEncoder to encode the threat types in numeric values y = encoder.fit_transform(threat_types) # print(' ') # print("Shape of target vector is... : ",y.shape) X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=13, stratify=y) scaler = StandardScaler() a = scaler.fit(X_train) X_train = a.transform(X_train) X_test = scaler.transform(X_test) # print(y_test) print(len(np.unique(y_train)), len(np.unique(y_test))) # unique, counts = np.unique(y_train, return_counts=True) # unique1, counts1 = np.unique(y_test, return_counts=True) unknwn1 = (np.array(np.unique(y_train, return_counts=True)).T) unknwn2 = (np.array(np.unique(y_test, return_counts=True)).T) print(unknwn1) print(unknwn2) # Export as a csv #num_df.to_csv('processed_KDD_cup.csv', index=False) ###Output _____no_output_____
docs/_static/notebooks/serialization.ipynb
###Markdown Serializing a TrialThis guide will explain the two different ways to how to save and reload your results from a Trial.**Note**: The easiest way to use this tutorial is as a colab notebook, which allows you to dive in with no setup. Install TorchbearerFirst we install torchbearer if needed. ###Code try: import torchbearer except: !pip install -q torchbearer import torchbearer print(torchbearer.__version__) ###Output 0.4.0.dev ###Markdown Setting up a Mock ExampleLet's assume we have a basic binary classification task where we have 100-dimensional samples as input and a binary label as output.Let's also assume that we would like to solve this problem with a 2-layer neural network.Finally, we also want to keep track of the sum of hidden outputs for some arbitrary reason. Therefore we use the state functionality of Torchbearer.We create a state key for the mock sum we wanted to track using state. ###Code MOCK = torchbearer.state_key('mock') ###Output _____no_output_____ ###Markdown Here is our basic 2-layer neural network. ###Code import torch import torch.nn as nn class BasicModel(nn.Module): def __init__(self): super(BasicModel, self).__init__() self.linear1 = nn.Linear(100, 25) self.linear2 = nn.Linear(25, 1) def forward(self, x, state): x = self.linear1(x) # The following step is here to showcase a useless but simple of example a forward method that uses state state[MOCK] = torch.sum(x) x = self.linear2(x) return torch.sigmoid(x) ###Output _____no_output_____ ###Markdown We create some random training dataset and put them in a DataLoader. ###Code from torch.utils.data import TensorDataset, DataLoader n_sample = 100 X = torch.rand(n_sample, 100) y = torch.randint(0, 2, [n_sample, 1]).float() traingen = DataLoader(TensorDataset(X, y)) ###Output _____no_output_____ ###Markdown Let's say we would like to save the model every time we get a better training loss. Torchbearer's [`Best` checkpoint callback](https://torchbearer.readthedocs.io/en/latest/code/callbacks.html?highlight=besttorchbearer.callbacks.checkpointers.Best) is perfect for this job. We then run the model for 3 epochs. ###Code import torch.optim as optim import torch.nn.functional as F from torchbearer import Trial model = BasicModel() # Create a checkpointer that track val_loss and saves a model.pt whenever we get a better loss checkpointer = torchbearer.callbacks.checkpointers.Best(filepath='model.pt', monitor='loss') optimizer = optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=0.001) torchbearer_trial = Trial(model, optimizer=optimizer, criterion=F.binary_cross_entropy, metrics=['loss'], callbacks=[checkpointer]) torchbearer_trial.with_train_generator(traingen) _ = torchbearer_trial.run(epochs=3) ###Output _____no_output_____ ###Markdown Reloading the Trial for More EpochsGiven we recreate the exact same Trial structure, we can easily resume our run from the last checkpoint. The following code block shows how it's done. Remember here that the ``epochs`` parameter we pass to Trial acts cumulative. In other words, the following run will complement the entire training to a total of 6 epochs. ###Code state_dict = torch.load('model.pt') model = BasicModel() trial_reloaded = Trial(model, optimizer=optimizer, criterion=F.binary_cross_entropy, metrics=['loss'], callbacks=[checkpointer]) trial_reloaded.load_state_dict(state_dict) trial_reloaded.with_train_generator(traingen) _ = trial_reloaded.run(epochs=6) ###Output _____no_output_____ ###Markdown Trying to Reload to a PyTorch ModuleWe try to load the ``state_dict`` to a regular PyTorch Module, as described in PyTorch's own documentation [here](https://pytorch.org/docs/stable/notes/serialization.html) ###Code model = BasicModel() try: model.load_state_dict(state_dict) except AttributeError as e: print("\n") print(e) ###Output 'StateKey' object has no attribute 'startswith' ###Markdown This gives an error. The reason is that the `state_dict` has Trial related attributes that are unknown to a native PyTorch model. This is why we have the `save_model_params_only`option for our checkpointers. We try again with that option ###Code model = BasicModel() checkpointer = torchbearer.callbacks.checkpointers.Best(filepath='model.pt', monitor='loss', save_model_params_only=True) optimizer = optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=0.001) torchbearer_trial = Trial(model, optimizer=optimizer, criterion=F.binary_cross_entropy, metrics=['loss'], callbacks=[checkpointer]) torchbearer_trial.with_train_generator(traingen) torchbearer_trial.run(epochs=3) # Try once again to load the module, forward another random sample for testing state_dict = torch.load('model.pt') model = BasicModel() _ = model.load_state_dict(state_dict) ###Output _____no_output_____ ###Markdown No errors this time, but we still have to test. Here is a test sample and we run it through the model. ###Code X_test = torch.rand(5, 100) try: model(X_test) except TypeError as e: print("\n") print(e) ###Output forward() missing 1 required positional argument: 'state' ###Markdown Now we get a different error, stating that we should also be passing ``state`` as an argument to module's forward. This should not be a surprise as we defined ``state`` parameter in the forward method of ``BasicModule`` as a required argument. Robust Signature for ModuleWe define the model with a better signature this time, so it gracefully handles the problem above. ###Code class BetterSignatureModel(nn.Module): def __init__(self): super(BetterSignatureModel, self).__init__() self.linear1 = nn.Linear(100, 25) self.linear2 = nn.Linear(25, 1) def forward(self, x, **state): x = self.linear1(x) # Using kwargs instead of state is safer from a serialization perspective if state is not None: state = state state[MOCK] = torch.sum(x) x = self.linear2(x) return torch.sigmoid(x) ###Output _____no_output_____ ###Markdown Finally, we wrap it up once again to test the new definition of the model. ###Code model = BetterSignatureModel() checkpointer = torchbearer.callbacks.checkpointers.Best(filepath='model.pt', monitor='loss', save_model_params_only=True) optimizer = optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=0.001) torchbearer_trial = Trial(model, optimizer=optimizer, criterion=F.binary_cross_entropy, metrics=['loss'], callbacks=[checkpointer]) torchbearer_trial.with_train_generator(traingen) torchbearer_trial.run(epochs=3) # This time, the forward function should work without the need for a state argument state_dict = torch.load('model.pt') model = BetterSignatureModel() model.load_state_dict(state_dict) X_test = torch.rand(5, 100) model(X_test) ###Output _____no_output_____
11_JSON/11_JSON.ipynb
###Markdown JSON Convertion from a Python Object to a JSON Data ###Code import json person = {'name': 'John', 'age': 30, 'city': 'New York', 'hasChildren': False, 'titles': ['engineer', 'programmer']} personJSON = json.dumps(person) # dumps, s stands for a string print(personJSON) personJSON = json.dumps(person, indent=4) print(personJSON) personJSON = json.dumps(person, indent=4, separators=('; ', '= ')) # not recommended using different separators print(personJSON) personJSON = json.dumps(person, indent=4, sort_keys=True)# our keys are sorted alphabetically print(personJSON) with open('person.json', 'w') as file: json.dump(person, file) # not dumps because we want to open it in a file not a string with open('person.json', 'w') as file: json.dump(person, file, indent=4) ###Output _____no_output_____ ###Markdown Convertion from a JSON Data to a Python Object (deserialization/ decoding) ###Code personJSON = json.dumps(person, indent=4, sort_keys=True) person = json.loads(personJSON)# loads, s stands for a string print(person) with open ('person.json', 'r') as file: person = json.load(file) print(person) ###Output {'name': 'John', 'age': 30, 'city': 'New York', 'hasChildren': False, 'titles': ['engineer', 'programmer']} ###Markdown Encode custom object ###Code class User: def __init__(self, name, age): self.name = name self.age = age user = User('Szymon', 19) # encode custom object # custom encoding method def encode_user(object): if isinstance (object, User): # checks if our object is an instance of a class return {'name': object.name, 'age': object.age, object.__class__.__name__: True} else: raise TypeError('Object of type User is not JSON serializable') userJSON = json.dumps(user, default=encode_user) print(userJSON) # second way to do the thing above from json import JSONEncoder class UserEncoder(JSONEncoder): def default(self, object): if isinstance (object, User): # checks if our object is an instance of a class return {'name': object.name, 'age': object.age, object.__class__.__name__: True} return JSONEncoder.default(self,o) userJSON = json.dumps(user, cls=UserEncoder) print(userJSON) # third way to do the thing above userJSON = UserEncoder().encode(user) # user was implemented 2 cells above print(userJSON) ###Output {"name": "Szymon", "age": 19, "User": true} ###Markdown Decode custom object (decode object back) ###Code user = json.loads(userJSON) print(user) # it's not a user object print(type(user)) user = json.loads(userJSON) # custom decoding method def decode_user(dictionarry): if User.__name__ in dictionarry: return User(name=dictionarry['name'], age=dictionarry['age']) return dictionarry user = json.loads(userJSON, object_hook=decode_user) print(user.name) print(user.age) print(type(user)) ###Output Szymon 19 <class '__main__.User'>
Copy_of_Copy_of_LS_DSPT3_111_A_First_Look_at_Data.ipynb
###Markdown Lambda School Data Science - A First Look at Data Lecture - let's explore Python DS libraries and examples!The Python Data Science ecosystem is huge. You've seen some of the big pieces - pandas, scikit-learn, matplotlib. What parts do you want to see more of? ###Code #Importing dependcies import numpy as np import pandas as pd import matplotlib.pyplot as plt #create a list of 50 random numbers between 0 and 20 np.random.randint(0, 20, size=50) #created two variables and printed them test1 = np.random.randint(0, 20, size=10) test2 = np.random.randint(0, 30, size=10) print(test1 ,test2) #plotting our two variables plt.scatter(test1, test2) plt.xlabel('test1') plt.ylabel('test2') plt.title('test1 vs test2') plt.show() ###Output _____no_output_____ ###Markdown Using the power of Matplotlib, i plotted a scatter graph of the two variables we created in the previous cell ###Code #creating a dataframe from scratch with python lists our our random number list generator function d = ["Hamilton", "Vettel", "Le Clerc", "Verstappen", "Raikonnen", "Bottas", "Ocon", "Hulkenberg", "Senna", "Alonso"] f = ["Mercedes", "Ferrari", "Ferrari", "Red Bull", "Alfa", "Mercedes", "Renault", "Racing Point", "Mclaren", "Jordan"] z = ["Monza", "Silverstone", "Yas Marina", "Hungaroring", "Baku", "Monaco", "Imola", "Spa", "Interlagos", "Albert Park" ] w = np.random.randint(0, 15, size=10) l = np.random.randint(0, 70, size=10) df = pd.DataFrame({ "Driver": d,"F1 Team": f, "Track": z, "Laps-Led": l, "Wins": w}) df #show the driver column df['Driver'] #finding the number of columns and rows df.shape #finding the types of data we have in our columns df.dtypes #printing all the attributes of a particular row df['Driver'].iloc[0] df.iloc[0] df #using describe function to get some statistical view about our dataframe df.describe() ###Output _____no_output_____ ###Markdown This method gives us a general statistical view of our dataframe. ###Code df #tried to find the number teams that have won more than 10 races #Save a boolean into the team df["F1 Team"] = df['Wins'] > 10 df df['Laps-Led'] > 10 ###Output _____no_output_____ ###Markdown Assignment - now it's your turnPick at least one Python DS library, and using documentation/examples reproduce in this notebook something cool. It's OK if you don't fully understand it or get it 100% working, but do put in effort and look things up. ###Code # TODO - your code here # Use what we did live in lecture as an example ###Output _____no_output_____
week 2/02-insurance-linear.ipynb
###Markdown Insurance cost prediction using linear regressionIn this assignment we're going to use information like a person's age, sex, BMI, no. of children and smoking habit to predict the price of yearly medical bills. This kind of model is useful for insurance companies to determine the yearly insurance premium for a person. The dataset for this problem is taken from: https://www.kaggle.com/mirichoi0218/insuranceWe will create a model with the following steps:1. Download and explore the dataset2. Prepare the dataset for training3. Create a linear regression model4. Train the model to fit the data5. Make predictions using the trained modelThis assignment builds upon the concepts from the first 2 lectures. It will help to review these Jupyter notebooks:- PyTorch basics: https://jovian.ml/aakashns/01-pytorch-basics- Linear Regression: https://jovian.ml/aakashns/02-linear-regression- Logistic Regression: https://jovian.ml/aakashns/03-logistic-regression- Linear regression (minimal): https://jovian.ml/aakashns/housing-linear-minimal- Logistic regression (minimal): https://jovian.ml/aakashns/mnist-logistic-minimalAs you go through this notebook, you will find a **???** in certain places. Your job is to replace the **???** with appropriate code or values, to ensure that the notebook runs properly end-to-end . In some cases, you'll be required to choose some hyperparameters (learning rate, batch size etc.). Try to experiment with the hypeparameters to get the lowest loss. ###Code # Uncomment and run the commands below if imports fail !conda install numpy pytorch torchvision cpuonly -c pytorch -y !pip install matplotlib --upgrade --quiet !pip install jovian --upgrade --quiet import torch import jovian import torchvision import torch.nn as nn !pip install pandas import pandas as pd import matplotlib.pyplot as plt import torch.nn.functional as F from torchvision.datasets.utils import download_url from torch.utils.data import DataLoader, TensorDataset, random_split project_name='02-insurance-linear-regression' # will be used by jovian.commit ###Output _____no_output_____ ###Markdown Step 1: Download and explore the dataLet us begin by downloading the data. We'll use the `download_url` function from PyTorch to get the data as a CSV (comma-separated values) file. ###Code DATASET_URL = "https://hub.jovian.ml/wp-content/uploads/2020/05/insurance.csv" DATA_FILENAME = "insurance.csv" download_url(DATASET_URL, '.') ###Output Using downloaded and verified file: ./insurance.csv ###Markdown To load the dataset into memory, we'll use the `read_csv` function from the `pandas` library. The data will be loaded as a Pandas dataframe. See this short tutorial to learn more: https://data36.com/pandas-tutorial-1-basics-reading-data-files-dataframes-data-selection/ ###Code dataframe_raw = pd.read_csv(DATA_FILENAME) dataframe_raw.head() ###Output _____no_output_____ ###Markdown We're going to do a slight customization of the data, so that you every participant receives a slightly different version of the dataset. Fill in your name below as a string (enter at least 5 characters) ###Code your_name = 'Anurag' # at least 5 characters ###Output _____no_output_____ ###Markdown The `customize_dataset` function will customize the dataset slightly using your name as a source of random numbers. ###Code def customize_dataset(dataframe_raw, rand_str): dataframe = dataframe_raw.copy(deep=True) # drop some rows dataframe = dataframe.sample(int(0.95*len(dataframe)), random_state=int(ord(rand_str[0]))) # scale input dataframe.bmi = dataframe.bmi * ord(rand_str[1])/100. # scale target dataframe.charges = dataframe.charges * ord(rand_str[2])/100. # drop column if ord(rand_str[3]) % 2 == 1: dataframe = dataframe.drop(['region'], axis=1) return dataframe dataframe = customize_dataset(dataframe_raw, your_name) dataframe.head() ###Output _____no_output_____ ###Markdown Let us answer some basic questions about the dataset. **Q: How many rows does the dataset have?** ###Code num_rows = dataframe.shape[0] print(num_rows) ###Output 1271 ###Markdown **Q: How many columns doe the dataset have** ###Code num_cols = dataframe.shape[1] print(num_cols) ###Output 7 ###Markdown **Q: What are the column titles of the input variables?** ###Code input_cols = ['age','sex','bmi','children','smoker','region','charges'] ###Output _____no_output_____ ###Markdown **Q: Which of the input columns are non-numeric or categorial variables ?**Hint: `sex` is one of them. List the columns that are not numbers. ###Code categorical_cols = ['sex','smoker','region'] ###Output _____no_output_____ ###Markdown **Q: What are the column titles of output/target variable(s)?** ###Code output_cols = ['charges'] ###Output _____no_output_____ ###Markdown **Q: (Optional) What is the minimum, maximum and average value of the `charges` column? Can you show the distribution of values in a graph?**Use this data visualization cheatsheet for referece: https://jovian.ml/aakashns/dataviz-cheatsheet ###Code # Write your answer here #Min charges MinC=dataframe['charges'].min() #Max charge MaxC=dataframe['charges'].max() #Average charge AvgC=dataframe['charges'].mean() print('Min charges : ',MinC) print('Max charges :',MaxC) print('Average charges :',AvgC) plt.hist(dataframe['charges']) plt.xlabel('Charges') plt.ylabel('Frequency') plt.show() ###Output Min charges : 1312.592463 Max charges : 74611.4007717 Average charges : 15553.094681738734 ###Markdown Remember to commit your notebook to Jovian after every step, so that you don't lose your work. ###Code jovian.commit(project=project_name, environment=None) ###Output _____no_output_____ ###Markdown Step 2: Prepare the dataset for trainingWe need to convert the data from the Pandas dataframe into a PyTorch tensors for training. To do this, the first step is to convert it numpy arrays. If you've filled out `input_cols`, `categorial_cols` and `output_cols` correctly, this following function will perform the conversion to numpy arrays. ###Code def dataframe_to_arrays(dataframe): # Make a copy of the original dataframe dataframe1 = dataframe.copy(deep=True) # Convert non-numeric categorical columns to numbers for col in categorical_cols: dataframe1[col] = dataframe1[col].astype('category').cat.codes # Extract input & outupts as numpy arrays inputs_array = dataframe1[input_cols].to_numpy() targets_array = dataframe1[output_cols].to_numpy() return inputs_array, targets_array ###Output _____no_output_____ ###Markdown Read through the [Pandas documentation](https://pandas.pydata.org/pandas-docs/stable/user_guide/categorical.html) to understand how we're converting categorical variables into numbers. ###Code inputs_array, targets_array = dataframe_to_arrays(dataframe) inputs_array, targets_array ###Output _____no_output_____ ###Markdown **Q: Convert the numpy arrays `inputs_array` and `targets_array` into PyTorch tensors. Make sure that the data type is `torch.float32`.** ###Code inputs = torch.from_numpy(inputs_array).type (torch.float32) targets = torch.from_numpy(targets_array). type(torch.float32) inputs.dtype, targets.dtype ###Output _____no_output_____ ###Markdown Next, we need to create PyTorch datasets & data loaders for training & validation. We'll start by creating a `TensorDataset`. ###Code dataset = TensorDataset(inputs, targets) ###Output _____no_output_____ ###Markdown **Q: Pick a number between `0.1` and `0.2` to determine the fraction of data that will be used for creating the validation set. Then use `random_split` to create training & validation datasets. ** ###Code val_percent = 0.2 # between 0.1 and 0.2 val_size = int(num_rows * val_percent) train_size = num_rows - val_size train_ds, val_ds = random_split(dataset,[train_size,val_size])# Use the random_split function to split dataset into 2 parts of the desired length ###Output _____no_output_____ ###Markdown Finally, we can create data loaders for training & validation.**Q: Pick a batch size for the data loader.** ###Code batch_size = 32 train_loader = DataLoader(train_ds, batch_size, shuffle=True) val_loader = DataLoader(val_ds, batch_size) ###Output _____no_output_____ ###Markdown Let's look at a batch of data to verify everything is working fine so far. ###Code for xb, yb in train_loader: print("inputs:", xb) print("targets:", yb) break ###Output inputs: tensor([[5.8000e+01, 1.0000e+00, 4.1800e+01, 0.0000e+00, 0.0000e+00, 3.0000e+00, 1.3298e+04], [4.1000e+01, 0.0000e+00, 3.0855e+01, 1.0000e+00, 0.0000e+00, 2.0000e+00, 7.9211e+03], [5.0000e+01, 1.0000e+00, 2.9051e+01, 0.0000e+00, 0.0000e+00, 1.0000e+00, 1.0328e+04], [3.5000e+01, 0.0000e+00, 2.8737e+01, 0.0000e+00, 0.0000e+00, 0.0000e+00, 6.1167e+03], [2.8000e+01, 0.0000e+00, 2.9161e+01, 2.0000e+00, 0.0000e+00, 2.0000e+00, 5.0783e+03], [1.8000e+01, 0.0000e+00, 4.4286e+01, 0.0000e+00, 0.0000e+00, 2.0000e+00, 1.9125e+03], [5.6000e+01, 0.0000e+00, 3.9380e+01, 1.0000e+00, 0.0000e+00, 3.0000e+00, 1.3659e+04], [3.9000e+01, 0.0000e+00, 2.5603e+01, 3.0000e+00, 0.0000e+00, 0.0000e+00, 9.3442e+03], [1.9000e+01, 0.0000e+00, 2.2660e+01, 0.0000e+00, 0.0000e+00, 3.0000e+00, 2.0261e+03], [3.3000e+01, 0.0000e+00, 2.9365e+01, 0.0000e+00, 0.0000e+00, 1.0000e+00, 5.3486e+03], [1.9000e+01, 1.0000e+00, 4.9368e+01, 0.0000e+00, 1.0000e+00, 2.0000e+00, 4.6476e+04], [4.3000e+01, 1.0000e+00, 3.0096e+01, 3.0000e+00, 0.0000e+00, 0.0000e+00, 1.0069e+04], [3.8000e+01, 1.0000e+00, 4.0755e+01, 1.0000e+00, 0.0000e+00, 0.0000e+00, 7.1132e+03], [4.1000e+01, 1.0000e+00, 3.7631e+01, 1.0000e+00, 0.0000e+00, 2.0000e+00, 7.3590e+03], [3.0000e+01, 0.0000e+00, 3.6663e+01, 1.0000e+00, 0.0000e+00, 2.0000e+00, 4.8567e+03], [1.9000e+01, 0.0000e+00, 3.3022e+01, 0.0000e+00, 1.0000e+00, 1.0000e+00, 3.8970e+04], [3.5000e+01, 1.0000e+00, 2.9810e+01, 1.0000e+00, 0.0000e+00, 3.0000e+00, 5.5532e+03], [4.9000e+01, 0.0000e+00, 2.6229e+01, 3.0000e+00, 1.0000e+00, 0.0000e+00, 2.8205e+04], [1.8000e+01, 0.0000e+00, 3.2082e+01, 0.0000e+00, 0.0000e+00, 0.0000e+00, 8.5688e+03], [6.2000e+01, 0.0000e+00, 4.1904e+01, 2.0000e+00, 0.0000e+00, 0.0000e+00, 1.7819e+04], [6.1000e+01, 1.0000e+00, 3.9930e+01, 1.0000e+00, 1.0000e+00, 3.0000e+00, 5.5463e+04], [3.9000e+01, 0.0000e+00, 3.5112e+01, 2.0000e+00, 0.0000e+00, 1.0000e+00, 8.4351e+03], [5.0000e+01, 0.0000e+00, 3.0976e+01, 3.0000e+00, 0.0000e+00, 2.0000e+00, 1.2522e+04], [1.8000e+01, 0.0000e+00, 3.6471e+01, 0.0000e+00, 0.0000e+00, 0.0000e+00, 2.5830e+03], [2.8000e+01, 0.0000e+00, 3.6421e+01, 0.0000e+00, 0.0000e+00, 2.0000e+00, 3.7108e+03], [1.8000e+01, 1.0000e+00, 3.7510e+01, 0.0000e+00, 0.0000e+00, 2.0000e+00, 1.3303e+03], [3.3000e+01, 1.0000e+00, 2.4976e+01, 0.0000e+00, 0.0000e+00, 1.0000e+00, 2.5722e+04], [4.3000e+01, 1.0000e+00, 2.8072e+01, 5.0000e+00, 0.0000e+00, 2.0000e+00, 1.6940e+04], [3.7000e+01, 0.0000e+00, 3.3880e+01, 2.0000e+00, 0.0000e+00, 2.0000e+00, 7.3871e+03], [4.5000e+01, 1.0000e+00, 3.3544e+01, 2.0000e+00, 0.0000e+00, 1.0000e+00, 9.8438e+03], [4.8000e+01, 1.0000e+00, 4.4621e+01, 2.0000e+00, 1.0000e+00, 1.0000e+00, 5.3471e+04], [3.0000e+01, 0.0000e+00, 2.4139e+01, 1.0000e+00, 0.0000e+00, 0.0000e+00, 5.5203e+03]]) targets: tensor([[13298.1641], [ 7921.1250], [10327.8359], [ 6116.7471], [ 5078.3159], [ 1912.4509], [13658.7324], [ 9344.1758], [ 2026.0621], [ 5348.5532], [46475.6133], [10069.2744], [ 7113.2158], [ 7359.0132], [ 4856.7036], [38969.8359], [ 5553.2227], [28205.0879], [ 8568.7695], [17819.4785], [55462.5391], [ 8435.1055], [12522.0918], [ 2583.0061], [ 3710.7896], [ 1330.3029], [25721.8301], [16939.6465], [ 7387.0981], [ 9843.7520], [53471.3672], [ 5520.2983]]) ###Markdown Let's save our work by committing to Jovian. ###Code jovian.commit(project=project_name, environment=None) ###Output _____no_output_____ ###Markdown Step 3: Create a Linear Regression ModelOur model itself is a fairly straightforward linear regression (we'll build more complex models in the next assignment). ###Code input_size = len(input_cols) output_size = len(output_cols) ###Output _____no_output_____ ###Markdown **Q: Complete the class definition below by filling out the constructor (`__init__`), `forward`, `training_step` and `validation_step` methods.**Hint: Think carefully about picking a good loss fuction (it's not cross entropy). Maybe try 2-3 of them and see which one works best. See https://pytorch.org/docs/stable/nn.functional.htmlloss-functions ###Code class InsuranceModel(nn.Module): def __init__(self): super().__init__() self.linear = nn.Linear(input_size,output_size) # fill this (hint: use input_size & output_size defined above) def forward(self, xb): out = self.linear(xb) # fill this return out def training_step(self, batch): inputs, targets = batch # Generate predictions out = self(inputs) # Calcuate loss loss = F.l1_loss(out,targets) # fill this return loss def validation_step(self, batch): inputs, targets = batch # Generate predictions out = self(inputs) # Calculate loss loss = F.l1_loss(out,targets) # fill this return {'val_loss': loss.detach()} def validation_epoch_end(self, outputs): batch_losses = [x['val_loss'] for x in outputs] epoch_loss = torch.stack(batch_losses).mean() # Combine losses return {'val_loss': epoch_loss.item()} def epoch_end(self, epoch, result, num_epochs): # Print result every 20th epoch if (epoch+1) % 20 == 0 or epoch == num_epochs-1: print("Epoch [{}], val_loss: {:.4f}".format(epoch+1, result['val_loss'])) ###Output _____no_output_____ ###Markdown Let us create a model using the `InsuranceModel` class. You may need to come back later and re-run the next cell to reinitialize the model, in case the loss becomes `nan` or `infinity`. ###Code model = InsuranceModel() ###Output _____no_output_____ ###Markdown Let's check out the weights and biases of the model using `model.parameters`. ###Code list(model.parameters()) ###Output _____no_output_____ ###Markdown One final commit before we train the model. ###Code jovian.commit(project=project_name, environment=None) ###Output _____no_output_____ ###Markdown Step 4: Train the model to fit the dataTo train our model, we'll use the same `fit` function explained in the lecture. That's the benefit of defining a generic training loop - you can use it for any problem. ###Code def evaluate(model, val_loader): outputs = [model.validation_step(batch) for batch in val_loader] return model.validation_epoch_end(outputs) def fit(epochs, lr, model, train_loader, val_loader, opt_func=torch.optim.SGD): history = [] optimizer = opt_func(model.parameters(), lr) for epoch in range(epochs): # Training Phase for batch in train_loader: loss = model.training_step(batch) loss.backward() optimizer.step() optimizer.zero_grad() # Validation phase result = evaluate(model, val_loader) model.epoch_end(epoch, result, epochs) history.append(result) return history ###Output _____no_output_____ ###Markdown **Q: Use the `evaluate` function to calculate the loss on the validation set before training.** ###Code result = evaluate(model,val_loader) # Use the the evaluate function print(result) ###Output {'val_loss': 19663.75390625} ###Markdown We are now ready to train the model. You may need to run the training loop many times, for different number of epochs and with different learning rates, to get a good result. Also, if your loss becomes too large (or `nan`), you may have to re-initialize the model by running the cell `model = InsuranceModel()`. Experiment with this for a while, and try to get to as low a loss as possible. **Q: Train the model 4-5 times with different learning rates & for different number of epochs.**Hint: Vary learning rates by orders of 10 (e.g. `1e-2`, `1e-3`, `1e-4`, `1e-5`, `1e-6`) to figure out what works. ###Code epochs =100 lr = 1e-5 history1 = fit(epochs, lr, model, train_loader, val_loader) epochs = 50 lr = 1e-5 history2 = fit(epochs, lr, model, train_loader, val_loader) epochs = 50 lr = 1e-4 history3 = fit(epochs, lr, model, train_loader, val_loader) epochs = 150 lr = 1e-6 history4 = fit(epochs, lr, model, train_loader, val_loader) epochs = 150 lr = 1e-5 history5 = fit(epochs, lr, model, train_loader, val_loader) losses = [r['val_loss'] for r in [result] + history4] plt.plot(losses, '-x') plt.xlabel('epoch') plt.ylabel('val_loss') plt.title('val_loss vs. epochs'); ###Output _____no_output_____ ###Markdown **Q: What is the final validation loss of your model?** ###Code val_loss = 91.2261 ###Output _____no_output_____ ###Markdown Let's log the final validation loss to Jovian and commit the notebook ###Code jovian.log_metrics(val_loss=val_loss) jovian.commit(project=project_name, environment=None) ###Output _____no_output_____ ###Markdown Now scroll back up, re-initialize the model, and try different set of values for batch size, number of epochs, learning rate etc. Commit each experiment and use the "Compare" and "View Diff" options on Jovian to compare the different results. Step 5: Make predictions using the trained model**Q: Complete the following function definition to make predictions on a single input** ###Code def predict_single(input, target, model): inputs = input.unsqueeze(0) predictions = model(inputs) # fill this prediction = predictions[0].detach() print("Input:", input) print("Target:", target) print("Prediction:", prediction) input, target = val_ds[0] predict_single(input, target, model) input, target = val_ds[10] predict_single(input, target, model) input, target = val_ds[23] predict_single(input, target, model) ###Output Input: tensor([5.9000e+01, 1.0000e+00, 3.2813e+01, 3.0000e+00, 1.0000e+00, 0.0000e+00, 3.5316e+04]) Target: tensor([35316.3750]) Prediction: tensor([41018.1133]) ###Markdown Are you happy with your model's predictions? Try to improve them further. (Optional) Step 6: Try another dataset & blog about itWhile this last step is optional for the submission of your assignment, we highly recommend that you do it. Try to clean up & replicate this notebook (or [this one](https://jovian.ml/aakashns/housing-linear-minimal), or [this one](https://jovian.ml/aakashns/mnist-logistic-minimal) ) for a different linear regression or logistic regression problem. This will help solidify your understanding, and give you a chance to differentiate the generic patters in machine learning from problem-specific details.Here are some sources to find good datasets:- https://lionbridge.ai/datasets/10-open-datasets-for-linear-regression/- https://www.kaggle.com/rtatman/datasets-for-regression-analysis- https://archive.ics.uci.edu/ml/datasets.php?format=&task=reg&att=&area=&numAtt=&numIns=&type=&sort=nameUp&view=table- https://people.sc.fsu.edu/~jburkardt/datasets/regression/regression.html- https://archive.ics.uci.edu/ml/datasets/wine+quality- https://pytorch.org/docs/stable/torchvision/datasets.htmlWe also recommend that you write a blog about your approach to the problem. Here is a suggested structure for your post (feel free to experiment with it):- Interesting title & subtitle- Overview of what the blog covers (which dataset, linear regression or logistic regression, intro to PyTorch)- Downloading & exploring the data- Preparing the data for training- Creating a model using PyTorch- Training the model to fit the data- Your thoughts on how to experiment with different hyperparmeters to reduce loss- Making predictions using the modelAs with the previous assignment, you can [embed Juptyer notebook cells & outputs from Jovian](https://medium.com/jovianml/share-and-embed-jupyter-notebooks-online-with-jovian-ml-df709a03064e) into your blog. Don't forget to share your work on the forum: https://jovian.ml/forum/t/share-your-work-here-assignment-2/4931 ###Code jovian.commit(project=project_name, environment=None) jovian.commit(project=project_name, environment=None) # try again, kaggle fails sometimes ###Output _____no_output_____
book/_build/jupyter_execute/pandas/06-Renaming Columns and Replace Value.ipynb
###Markdown Renaming Columns ###Code import pandas as pd # read a dataset of UFO reports into a DataFrame ufo = pd.read_csv('http://bit.ly/uforeports') # examine the first 5 rows ufo.head() # examine the column names ufo.columns # rename two of the columns by useing `rename` method ufo.rename(columns={'Colors Reported': 'Colors_Reported', 'Shape Reported': 'Shape_Reported'}, inplace=True) ufo.head() # replace all of the column names by overwritting the 'colums' attribute ufo_cols = ['city', 'colors reported', 'shape reported', 'state', 'time'] ufo.columns = ufo_cols # see modified columns ufo.columns # replace the column names during the file reading process by using the 'names' parameter ufo = pd.read_csv('http://bit.ly/uforeports', names=ufo_cols) # examine the 5 rows ufo.head() # replace all spaces with underscores in the column names by using the 'str.replace' method ufo.columns = ufo.columns.str.replace(' ', '_') ufo.columns # let's look at DataFrame ufo.head() ###Output _____no_output_____ ###Markdown Replace ###Code # read another dataset fm = pd.read_csv("../data/framingham.csv") # examine first few rows fm.head() # first rename `male` to `sex` fm.rename(columns={"male": "sex"}, inplace=True) # Now take a look at dataset fm.head() ###Output _____no_output_____ ###Markdown Replace Value for Better Understanding of Dataset__sex__* 1 = Male * 0 = Female __diabetes__* 1 = Yes * 0 = No ###Code # replace sex column value fm['sex'].replace({1: "male", 0: "female"}, inplace=True) # replace diabetes column value fm['diabetes'].replace({1: "yes", 0: "no"}, inplace=True) # Examine dataset fm.head() ###Output _____no_output_____
midterm/.ipynb_checkpoints/Midterm-checkpoint.ipynb
###Markdown Midterm 2 - MNIST Classification![front_page.png](attachment:front_page.png) Preparing environment and dataset:* pip install python-mnist* create folder midterm/data* download from https://drive.google.com/open?id=1AQwyy3xP7rjDWMPkWBW4kKOfpkIyAWt8 - 4 files* extract all files to ./data The error of your classifier on test dataset must be better then 12.0% LeCun et al. 1998 Enter your error at https://goo.gl/forms/JRDKcotcXf5LZM3I3 Commit your code to github/bitbucket into folder midterm ###Code from mnist import MNIST import random mndata = MNIST('.\\data') trimages, trlabels = mndata.load_training() teimages, telabels = mndata.load_testing() index = random.randrange(0, len(trimages)) # choose an index ;-) print('The amount of train images',len(trimages)) print('The amount of test images',len(trimages)) print('The label of random image',trlabels[index],'The random image is',mndata.display(trimages[index])) print('Images are binary with 28*28 = ',len(trimages[index])) y = to_categorical(trlabels) X = np.array(trimages) model = Sequential() model.add(Dense(128, input_dim=784, init='uniform', activation='relu')) model.add(Dense(64, init='uniform', activation='relu')) model.add(Dense(y.shape[1], init='uniform', activation='sigmoid')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # Fit the model model.fit(X, y, epochs=100, batch_size=2000, verbose=1) from sklearn.metrics import accuracy_score teX = np.array(teimages) accuracy_score(model.predict_classes(teX), np.array(telabels)) accuracy_score(model.predict_classes(X), np.array(trlabels)) ###Output _____no_output_____
Code/hw1.ipynb
###Markdown 共118列:+ 0:id+ 1~37: State+ 38~41: COVID-like illness (5天)+ 42~49: Behavior Indicators (5天)+ 50~52: Medical Health Indicators (5天)+ 53: Tested Positive Cases (5天)$$1 + 37 + 3\times 5 + 8\times 5 + 3\times 5 + 1\times 5 = 118$$ Dataset+ 统计信息+ 缺失值+ 特征相关性+ 特征规约 ###Code # 去掉'id'列 coulmns = train_csv.columns train_dataset = train_csv[coulmns[1:]] coulmns = test_csv.columns test_dataset = test_csv[coulmns[1:]] # 查看每一列Nan值的个数 nacount = train_dataset.isna().sum() print(f"Nan元素总数:{nacount.sum()}") print(nacount) import csv def save_pred(preds, save_path): with open(save_path, 'w') as f: writer = csv.writer(f) writer.writerow(['id', 'tested_positive']) for i, p in enumerate(preds): writer.writerow([i, p]) ###Output _____no_output_____ ###Markdown Baseline**All original features, linear regression** ###Code from sklearn.linear_model import LinearRegression from sklearn.model_selection import cross_val_score def cross_val(model, x, y): scores = cross_val_score(model, x, y, scoring='neg_mean_squared_error', cv=10) print(np.mean(np.sqrt(-scores))) lin_reg = LinearRegression() # 使用全部原始特征 cross_val(lin_reg, train_dataset.iloc[:, :-1], train_dataset.iloc[:, -1]) # save test result lin_reg = LinearRegression() lin_reg.fit(train_dataset.iloc[:, :-1], train_dataset.iloc[:, -1]) preds = lin_reg.predict(test_dataset) save_pred(preds, './plain_line_reg.txt') ###Output _____no_output_____ ###Markdown **All original features, decision tree** ###Code from sklearn.tree import DecisionTreeRegressor tree_reg = DecisionTreeRegressor() # 使用全部原始特征 cross_val(tree_reg, train_dataset.iloc[:, :-1], train_dataset.iloc[:, -1]) # save test results tree_reg = DecisionTreeRegressor() tree_reg.fit(train_dataset.iloc[:, :-1], train_dataset.iloc[:, -1]) preds = tree_reg.predict(test_dataset) save_pred(preds, './plain_tree_reg.txt') ###Output _____no_output_____ ###Markdown Feature Selection ###Code # 特征与特征之间的相关性矩阵 corr_matrix = train_dataset.corr() # 查看与test_positive.4与其他特征之间的相关性 positive4_coor = corr_matrix['tested_positive.4'].sort_values(ascending=False) mask = positive4_coor > 0.5 print(f'相关性大于0.5的特征数:{sum(mask)}') # print(positive4_coor[mask]) ###Output 相关性大于0.5的特征数:35 ###Markdown **Selected Original features, linear regression** ###Code lin_reg = LinearRegression() # 使用相关性较大的若干原始特征 selcted_columns = list(positive4_coor.index[mask]) cross_val(lin_reg, train_dataset[selcted_columns[1:]], train_dataset[selcted_columns[0]]) # save test result lin_reg = LinearRegression() lin_reg.fit(train_dataset[selcted_columns[1:]], train_dataset[selcted_columns[0]]) preds = lin_reg.predict(test_dataset[selcted_columns[1:]]) save_pred(preds, './plain_line_reg_with_feature_selction.txt') ###Output _____no_output_____ ###Markdown **Selected Original features, Decision Tree** ###Code from sklearn.tree import DecisionTreeRegressor tree_reg = DecisionTreeRegressor() # 使用相关性较大的若干原始特征 selcted_columns = list(positive4_coor.index[mask]) cross_val(tree_reg, train_dataset[selcted_columns[1:]], train_dataset[selcted_columns[0]]) # save test result tree_reg = LinearRegression() tree_reg.fit(train_dataset[selcted_columns[1:]], train_dataset[selcted_columns[0]]) preds = tree_reg.predict(test_dataset[selcted_columns[1:]]) save_pred(preds, './plain_tree_reg_with_feature_selction.txt') ###Output _____no_output_____ ###Markdown **Feature Scaling** ###Code from sklearn.base import BaseEstimator, TransformerMixin class NormalScaler(BaseEstimator, TransformerMixin): def __init__(self, skip=None): self.skip = skip def fit(self, x, y=None): return self def transform(self, x): for col in x.columns: if self.skip not in col and x[col].max() > 1: mean = x[col].mean() std = x[col].std() x[col] = x[col].map(lambda i: (i - mean) / std) return x class MaxminScaler(BaseEstimator, TransformerMixin): def __init__(self, skip=None): self.skip = skip def fit(self, x, y=None): return self def transform(self, x): for col in x.columns: if self.skip not in col and x[col].max() > 1: max_v = x[col].max() min_v = x[col].min() x[col] = x[col].map(lambda i: (i - min_v) / (max_v - min_v)) return x from sklearn.pipeline import Pipeline normal_scaled_pipeline = Pipeline([('std_scaler', NormalScaler('tested_positive'))]) train_dataset_normal_scaled = normal_scaled_pipeline.transform(train_dataset.copy()) test_dataset_normal_scaled = normal_scaled_pipeline.transform(test_dataset.copy()) maxmin_scaled_pipeline = Pipeline([('maxmin_scaler', MaxminScaler('tested_positive'))]) train_dataset_maxmin_scaled = maxmin_scaled_pipeline.transform(train_dataset.copy()) test_dataset_maxmin_scaled = maxmin_scaled_pipeline.transform(test_dataset.copy()) train_dataset_normal_scaled.head() train_dataset_maxmin_scaled.head() lin_reg = LinearRegression() cross_val(lin_reg, train_dataset_normal_scaled.iloc[:, :-1], train_dataset_normal_scaled.iloc[:, -1]) lin_reg = LinearRegression() cross_val(lin_reg, train_dataset_maxmin_scaled.iloc[:, :-1], train_dataset_maxmin_scaled.iloc[:, -1]) # save test result lin_reg = LinearRegression() lin_reg.fit(train_dataset_normal_scaled.iloc[:, :-1], train_dataset_normal_scaled.iloc[:, -1]) preds = lin_reg.predict(test_dataset_normal_scaled) save_pred(preds, './line_reg_with_normal_scaled_features.txt') # save test result lin_reg = LinearRegression() lin_reg.fit(train_dataset_maxmin_scaled.iloc[:, :-1], train_dataset_maxmin_scaled.iloc[:, -1]) preds = lin_reg.predict(test_dataset_maxmin_scaled) save_pred(preds, './tree_reg_with_normal_scaled_features.txt') # 特征与特征之间的相关性矩阵 corr_matrix = train_dataset_normal_scaled.corr() # 查看与test_positive.4与其他特征之间的相关性 positive4_coor = corr_matrix['tested_positive.4'].sort_values(ascending=False) scores = [] thrs = [] for thr in np.linspace(0.1, 0.9, num=100): mask = positive4_coor > thr # print(f'相关性大于{thr}的特征数:{sum(mask)}') thrs.append(thr) lin_reg = LinearRegression() # 使用相关性较大的若干原始特征 selcted_columns = list(positive4_coor.index[mask]) x, y = train_dataset_normal_scaled[selcted_columns[1:]], train_dataset_normal_scaled[selcted_columns[0]] score_list = cross_val_score(lin_reg, x, y, scoring='neg_mean_squared_error', cv=10) scores.append(np.mean(np.sqrt(-score_list))) print(f"minimal score: {min(scores)}, index {np.argmin(scores)}, thr: {thrs[np.argmin(scores)]}") # save test result # 特征与特征之间的相关性矩阵 corr_matrix = train_dataset_normal_scaled.corr() # 查看与test_positive.4与其他特征之间的相关性 positive4_coor = corr_matrix['tested_positive.4'].sort_values(ascending=False) mask = positive4_coor > thrs[np.argmin(scores)] # 使用相关性较大的若干原始特征 selcted_columns = list(positive4_coor.index[mask]) x = train_dataset_normal_scaled[selcted_columns[1:]] y = train_dataset_normal_scaled[selcted_columns[0]] lin_reg = LinearRegression() lin_reg.fit(x, y) preds = lin_reg.predict(test_dataset_normal_scaled[selcted_columns[1:]]) save_pred(preds, './line_reg_with_selected_normal_scaled_features.txt') ###Output _____no_output_____ ###Markdown Deep Learning ###Code from torch.utils.data import Dataset, DataLoader, random_split import numpy as np import pandas as pd import sklearn import torch from tqdm import tqdm from pathlib import Path from sklearn.base import BaseEstimator, TransformerMixin from sklearn.pipeline import Pipeline from sklearn.model_selection import train_test_split def same_seed(seed): torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False np.random.seed(seed) torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed) def train_valid_split(dataset, valid_ratio, seed): valid_set_size = int(valid_ratio * len(dataset)) train_set_size = len(dataset) - valid_set_size train_set, valid_set = random_split(dataset, [train_set_size, valid_set_size], generator=torch.Generator().manual_seed(seed)) return np.array(train_set), np.array(valid_set) class COVID19Dataset(Dataset): def __init__(self, x, y=None): if y is not None: self.y = torch.from_numpy(y) else: self.y = y self.x = torch.from_numpy(x) def __len__(self): return len(self.x) def __getitem__(self, item): if self.y is None: return self.x[item] else: return self.x[item], self.y[item] class Model(torch.nn.Module): def __init__(self, input_channel): super(Model, self).__init__() self.linear1 = torch.nn.Linear(input_channel, 32) self.linear2 = torch.nn.Linear(32, 16) self.act = torch.nn.ReLU(inplace=True) self.linear3 = torch.nn.Linear(16, 1) def forward(self, x): x = self.act(self.linear1(x)) # x = self.dropout(x) x = self.act(self.linear2(x)) x = self.linear3(x) # x = self.linear4(x) return x ###Output _____no_output_____ ###Markdown Training ###Code from sklearn.model_selection import train_test_split same_seed(77) dataset = pd.read_csv(train_data_path) dataset = dataset[dataset.columns[1:]] # remove 'id' column corr_matrix = dataset.corr() target_coor = corr_matrix['tested_positive.4'].sort_values(ascending=False) mask = target_coor > 0.5 print(f"selected features num: {np.sum(mask)}") selected_feature_idx = list(target_coor.index[mask]) x_dataset = dataset[selected_feature_idx[1:]] y_dataset = dataset.iloc[:, -1] x_train, x_val, y_train, y_val = train_test_split(x_dataset, y_dataset, test_size=0.2, random_state=77) print(x_train.shape, x_val.shape, y_train.shape, y_val.shape) train_loader = DataLoader(COVID19Dataset(x_train.values, y_train.values), batch_size=16, shuffle=True, num_workers=0, drop_last=True) val_loader = DataLoader(COVID19Dataset(x_val.values, y_val.values), batch_size=8, shuffle=False) device = 'cuda' if torch.cuda.is_available() else 'cpu' model = Model(input_channel=len(selected_feature_idx[1:])).to(device=device) loss_fcn = torch.nn.MSELoss(reduction='mean') optimizer = torch.optim.SGD(model.parameters(), lr=0.00001, momentum=0.9, weight_decay=1e-4, nesterov=True) optimizer = torch.optim.AdamW(model.parameters(), lr=1e-4, weight_decay=1e-4) total_epoch = 600 for epoch in range(total_epoch): with tqdm(train_loader, total=len(train_loader)) as tbar: tbar.set_description(f"epoch {epoch+1}/{total_epoch}") for i, (x, y) in enumerate(train_loader): # print(x, y) model.train() x = x.float().to(device) preds = model(x).squeeze(dim=1) loss = loss_fcn(y.float().to(device), preds) optimizer.zero_grad() loss.backward() optimizer.step() if i % len(train_loader) == 0: tot_mse = [] for j, (x, y) in enumerate(val_loader): model.eval() preds = model(x.float().to(device)).squeeze(dim=1) tot_mse.append(loss_fcn(y.float().to(device), preds).detach().cpu().numpy()) tbar.set_postfix_str(f'train loss {loss.item():.3f} ; val loss {np.mean(tot_mse):.3f}') tbar.update(1) # for j, (x, y) in enumerate(val_loader): # model.eval() # preds = model(x.float().to(device)).squeeze(dim=1) # print(preds, y, sep='\n') # print(f"{'=' * 80}") test_dataset = pd.read_csv(test_data_path) test_dataset = test_dataset[test_dataset.columns[1:]] test_dataset = test_dataset[selected_feature_idx[1:]] test_loader = DataLoader(COVID19Dataset(test_dataset.values, None), batch_size=16, shuffle=False) model.eval() preds_all = [] for x in test_loader: x = x.float().to(device) preds = model(x).detach().cpu().numpy().squeeze() # print(preds) preds_all.extend(preds) save_pred(preds_all, "./dl_selected_original_feature_adamw.txt") ###Output _____no_output_____ ###Markdown 使用所有训练数据进行训练 ###Code same_seed(77) dataset = pd.read_csv(train_data_path) dataset = dataset[dataset.columns[1:]] # remove 'id' column feature_process_pipeline = Pipeline([('maxmin_scaler', MaxminScaler('tested_positive.4'))]) # 对除了target column之外的feature值进行规约化 dataset = feature_process_pipeline.transform(dataset.copy()) corr_matrix = dataset.corr() target_coor = corr_matrix['tested_positive.4'].sort_values(ascending=False) mask = target_coor > 0.5 # 选择与target相关性大于0.5的feature参与训练 selected_feature_idx = list(target_coor.index[mask]) x_dataset = dataset[selected_feature_idx[1:]] y_dataset = dataset.iloc[:, -1] x_train, x_val, y_train, y_val = train_test_split(x_dataset, y_dataset, test_size=0.2, random_state=77) # 划分测试集和验证集 print(x_train.shape, x_val.shape, y_train.shape, y_val.shape) x_train.head() train_loader = DataLoader(COVID19Dataset(x_dataset.values, y_dataset.values), # 使用全部的训练数据 batch_size=16, shuffle=True, num_workers=0, drop_last=True) val_loader = DataLoader(COVID19Dataset(x_val.values, y_val.values), # 从训练数据中拿出一部分测试(其实这部分数据也参加了训练) batch_size=8, shuffle=False) device = 'cuda' if torch.cuda.is_available() else 'cpu' model = Model(input_channel=len(selected_feature_idx[1:])).to(device=device) loss_fcn = torch.nn.MSELoss(reduction='mean') optimizer = torch.optim.SGD(model.parameters(), lr=0.0001, momentum=0.9, weight_decay=1e-4, nesterov=True) lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[50, 100, 250, 300, 400], gamma=0.1) total_epoch = 500 for epoch in range(total_epoch): with tqdm(train_loader, total=len(train_loader)) as tbar: tbar.set_description(f"{epoch+1}/{total_epoch}") for i, (x, y) in enumerate(train_loader): # print(x, y) model.train() x = x.float().to(device) preds = model(x).squeeze(dim=1) loss = loss_fcn(y.float().to(device), preds) optimizer.zero_grad() loss.backward() optimizer.step() if i % 100 == 0: tot_mse = [] for j, (x, y) in enumerate(val_loader): model.eval() preds = model(x.float().to(device)).squeeze(dim=1) tot_mse.append(loss_fcn(y.float().to(device), preds).detach().cpu().numpy()) tbar.set_postfix_str(f'train loss {loss.item():.3f} ; val loss {np.mean(tot_mse):.3f}; lr {lr_scheduler.get_last_lr()[0]:.2e}') tbar.update(1) lr_scheduler.step() ###Output 1/500: 100%|██████████| 168/168 [00:00<00:00, 838.06it/s, train loss 7.519 ; val loss 9.416; lr 1.00e-04] 2/500: 100%|██████████| 168/168 [00:00<00:00, 1039.66it/s, train loss 2.924 ; val loss 5.910; lr 1.00e-04] 3/500: 100%|██████████| 168/168 [00:00<00:00, 1020.91it/s, train loss 9.121 ; val loss 5.261; lr 1.00e-04] 4/500: 100%|██████████| 168/168 [00:00<00:00, 1033.44it/s, train loss 1.112 ; val loss 4.151; lr 1.00e-04] 5/500: 100%|██████████| 168/168 [00:00<00:00, 979.52it/s, train loss 2.098 ; val loss 3.442; lr 1.00e-04] 6/500: 100%|██████████| 168/168 [00:00<00:00, 1039.81it/s, train loss 2.406 ; val loss 2.882; lr 1.00e-04] 7/500: 100%|██████████| 168/168 [00:00<00:00, 1046.28it/s, train loss 3.055 ; val loss 2.804; lr 1.00e-04] 8/500: 100%|██████████| 168/168 [00:00<00:00, 1008.86it/s, train loss 1.529 ; val loss 2.255; lr 1.00e-04] 9/500: 100%|██████████| 168/168 [00:00<00:00, 973.86it/s, train loss 1.171 ; val loss 2.098; lr 1.00e-04] 10/500: 100%|██████████| 168/168 [00:00<00:00, 1033.44it/s, train loss 2.313 ; val loss 1.987; lr 1.00e-04] 11/500: 100%|██████████| 168/168 [00:00<00:00, 1046.28it/s, train loss 1.487 ; val loss 1.914; lr 1.00e-04] 12/500: 100%|██████████| 168/168 [00:00<00:00, 1026.96it/s, train loss 1.320 ; val loss 1.829; lr 1.00e-04] 13/500: 100%|██████████| 168/168 [00:00<00:00, 1052.82it/s, train loss 1.534 ; val loss 1.856; lr 1.00e-04] 14/500: 100%|██████████| 168/168 [00:00<00:00, 1027.14it/s, train loss 1.687 ; val loss 1.724; lr 1.00e-04] 15/500: 100%|██████████| 168/168 [00:00<00:00, 985.10it/s, train loss 2.093 ; val loss 1.676; lr 1.00e-04] 16/500: 100%|██████████| 168/168 [00:00<00:00, 910.40it/s, train loss 3.668 ; val loss 1.667; lr 1.00e-04] 17/500: 100%|██████████| 168/168 [00:00<00:00, 1039.83it/s, train loss 1.658 ; val loss 1.661; lr 1.00e-04] 18/500: 100%|██████████| 168/168 [00:00<00:00, 1020.96it/s, train loss 1.289 ; val loss 1.561; lr 1.00e-04] 19/500: 100%|██████████| 168/168 [00:00<00:00, 1033.69it/s, train loss 1.156 ; val loss 1.599; lr 1.00e-04] 20/500: 100%|██████████| 168/168 [00:00<00:00, 962.73it/s, train loss 2.639 ; val loss 1.490; lr 1.00e-04] 21/500: 100%|██████████| 168/168 [00:00<00:00, 979.19it/s, train loss 1.517 ; val loss 1.495; lr 1.00e-04] 22/500: 100%|██████████| 168/168 [00:00<00:00, 1021.04it/s, train loss 0.918 ; val loss 1.468; lr 1.00e-04] 23/500: 100%|██████████| 168/168 [00:00<00:00, 1027.14it/s, train loss 1.806 ; val loss 1.413; lr 1.00e-04] 24/500: 100%|██████████| 168/168 [00:00<00:00, 1052.80it/s, train loss 1.001 ; val loss 1.393; lr 1.00e-04] 25/500: 100%|██████████| 168/168 [00:00<00:00, 1008.87it/s, train loss 1.355 ; val loss 1.383; lr 1.00e-04] 26/500: 100%|██████████| 168/168 [00:00<00:00, 1002.69it/s, train loss 1.535 ; val loss 1.349; lr 1.00e-04] 27/500: 100%|██████████| 168/168 [00:00<00:00, 1033.44it/s, train loss 2.887 ; val loss 1.329; lr 1.00e-04] 28/500: 100%|██████████| 168/168 [00:00<00:00, 1020.73it/s, train loss 1.399 ; val loss 1.305; lr 1.00e-04] 29/500: 100%|██████████| 168/168 [00:00<00:00, 1033.22it/s, train loss 1.428 ; val loss 1.314; lr 1.00e-04] 30/500: 100%|██████████| 168/168 [00:00<00:00, 1039.74it/s, train loss 0.856 ; val loss 1.315; lr 1.00e-04] 31/500: 100%|██████████| 168/168 [00:00<00:00, 1066.19it/s, train loss 5.311 ; val loss 1.320; lr 1.00e-04] 32/500: 100%|██████████| 168/168 [00:00<00:00, 1033.44it/s, train loss 0.532 ; val loss 1.242; lr 1.00e-04] 33/500: 100%|██████████| 168/168 [00:00<00:00, 1052.82it/s, train loss 0.770 ; val loss 1.398; lr 1.00e-04] 34/500: 100%|██████████| 168/168 [00:00<00:00, 973.70it/s, train loss 0.957 ; val loss 1.224; lr 1.00e-04] 35/500: 100%|██████████| 168/168 [00:00<00:00, 1046.09it/s, train loss 1.769 ; val loss 1.210; lr 1.00e-04] 36/500: 100%|██████████| 168/168 [00:00<00:00, 1052.82it/s, train loss 1.728 ; val loss 1.213; lr 1.00e-04] 37/500: 100%|██████████| 168/168 [00:00<00:00, 1066.33it/s, train loss 3.686 ; val loss 1.212; lr 1.00e-04] 38/500: 100%|██████████| 168/168 [00:00<00:00, 1059.71it/s, train loss 0.601 ; val loss 1.178; lr 1.00e-04] 39/500: 100%|██████████| 168/168 [00:00<00:00, 1027.13it/s, train loss 1.844 ; val loss 1.198; lr 1.00e-04] 40/500: 100%|██████████| 168/168 [00:00<00:00, 996.75it/s, train loss 1.703 ; val loss 1.175; lr 1.00e-04] 41/500: 100%|██████████| 168/168 [00:00<00:00, 1052.82it/s, train loss 1.267 ; val loss 1.185; lr 1.00e-04] 42/500: 100%|██████████| 168/168 [00:00<00:00, 1079.59it/s, train loss 1.554 ; val loss 1.155; lr 1.00e-04] 43/500: 100%|██████████| 168/168 [00:00<00:00, 1079.81it/s, train loss 1.409 ; val loss 1.154; lr 1.00e-04] 44/500: 100%|██████████| 168/168 [00:00<00:00, 1039.81it/s, train loss 0.402 ; val loss 1.169; lr 1.00e-04] 45/500: 100%|██████████| 168/168 [00:00<00:00, 1033.44it/s, train loss 1.932 ; val loss 1.143; lr 1.00e-04] 46/500: 100%|██████████| 168/168 [00:00<00:00, 1046.09it/s, train loss 0.365 ; val loss 1.134; lr 1.00e-04] 47/500: 100%|██████████| 168/168 [00:00<00:00, 1039.83it/s, train loss 0.503 ; val loss 1.214; lr 1.00e-04] 48/500: 100%|██████████| 168/168 [00:00<00:00, 1066.24it/s, train loss 2.356 ; val loss 1.145; lr 1.00e-04] 49/500: 100%|██████████| 168/168 [00:00<00:00, 1059.44it/s, train loss 0.623 ; val loss 1.156; lr 1.00e-04] 50/500: 100%|██████████| 168/168 [00:00<00:00, 1073.13it/s, train loss 1.483 ; val loss 1.180; lr 1.00e-04] 51/500: 100%|██████████| 168/168 [00:00<00:00, 1046.28it/s, train loss 0.413 ; val loss 1.134; lr 1.00e-05] 52/500: 100%|██████████| 168/168 [00:00<00:00, 1046.29it/s, train loss 1.589 ; val loss 1.129; lr 1.00e-05] 53/500: 100%|██████████| 168/168 [00:00<00:00, 1053.00it/s, train loss 1.684 ; val loss 1.137; lr 1.00e-05] 54/500: 100%|██████████| 168/168 [00:00<00:00, 973.90it/s, train loss 1.027 ; val loss 1.131; lr 1.00e-05] 55/500: 100%|██████████| 168/168 [00:00<00:00, 1052.78it/s, train loss 1.757 ; val loss 1.129; lr 1.00e-05] 56/500: 100%|██████████| 168/168 [00:00<00:00, 1066.16it/s, train loss 0.483 ; val loss 1.135; lr 1.00e-05] 57/500: 100%|██████████| 168/168 [00:00<00:00, 1059.44it/s, train loss 1.074 ; val loss 1.139; lr 1.00e-05] 58/500: 100%|██████████| 168/168 [00:00<00:00, 1046.28it/s, train loss 1.611 ; val loss 1.134; lr 1.00e-05] 59/500: 100%|██████████| 168/168 [00:00<00:00, 1046.29it/s, train loss 1.148 ; val loss 1.130; lr 1.00e-05] 60/500: 100%|██████████| 168/168 [00:00<00:00, 1027.15it/s, train loss 1.103 ; val loss 1.127; lr 1.00e-05] 61/500: 100%|██████████| 168/168 [00:00<00:00, 1065.94it/s, train loss 2.395 ; val loss 1.126; lr 1.00e-05] 62/500: 100%|██████████| 168/168 [00:00<00:00, 1066.10it/s, train loss 3.181 ; val loss 1.127; lr 1.00e-05] 63/500: 100%|██████████| 168/168 [00:00<00:00, 1052.97it/s, train loss 0.554 ; val loss 1.128; lr 1.00e-05] 64/500: 100%|██████████| 168/168 [00:00<00:00, 1059.63it/s, train loss 1.110 ; val loss 1.131; lr 1.00e-05] 65/500: 100%|██████████| 168/168 [00:00<00:00, 1059.63it/s, train loss 0.655 ; val loss 1.136; lr 1.00e-05] 66/500: 100%|██████████| 168/168 [00:00<00:00, 1046.05it/s, train loss 0.460 ; val loss 1.128; lr 1.00e-05] 67/500: 100%|██████████| 168/168 [00:00<00:00, 1033.27it/s, train loss 1.695 ; val loss 1.130; lr 1.00e-05] 68/500: 100%|██████████| 168/168 [00:00<00:00, 1072.97it/s, train loss 0.743 ; val loss 1.126; lr 1.00e-05] 69/500: 100%|██████████| 168/168 [00:00<00:00, 1066.14it/s, train loss 0.684 ; val loss 1.126; lr 1.00e-05] 70/500: 100%|██████████| 168/168 [00:00<00:00, 1046.48it/s, train loss 0.747 ; val loss 1.129; lr 1.00e-05] 71/500: 100%|██████████| 168/168 [00:00<00:00, 1072.73it/s, train loss 1.287 ; val loss 1.130; lr 1.00e-05] 72/500: 100%|██████████| 168/168 [00:00<00:00, 1059.45it/s, train loss 0.853 ; val loss 1.128; lr 1.00e-05] 73/500: 100%|██████████| 168/168 [00:00<00:00, 1059.43it/s, train loss 0.722 ; val loss 1.126; lr 1.00e-05] 74/500: 100%|██████████| 168/168 [00:00<00:00, 1046.27it/s, train loss 0.745 ; val loss 1.134; lr 1.00e-05] 75/500: 100%|██████████| 168/168 [00:00<00:00, 1039.81it/s, train loss 1.248 ; val loss 1.124; lr 1.00e-05] 76/500: 100%|██████████| 168/168 [00:00<00:00, 1052.80it/s, train loss 1.923 ; val loss 1.127; lr 1.00e-05] 77/500: 100%|██████████| 168/168 [00:00<00:00, 1046.28it/s, train loss 0.888 ; val loss 1.125; lr 1.00e-05] 78/500: 100%|██████████| 168/168 [00:00<00:00, 1046.09it/s, train loss 2.015 ; val loss 1.124; lr 1.00e-05] 79/500: 100%|██████████| 168/168 [00:00<00:00, 1086.77it/s, train loss 1.849 ; val loss 1.124; lr 1.00e-05] 80/500: 100%|██████████| 168/168 [00:00<00:00, 957.10it/s, train loss 2.059 ; val loss 1.125; lr 1.00e-05] 81/500: 100%|██████████| 168/168 [00:00<00:00, 915.50it/s, train loss 0.609 ; val loss 1.124; lr 1.00e-05] 82/500: 100%|██████████| 168/168 [00:00<00:00, 1014.76it/s, train loss 2.854 ; val loss 1.127; lr 1.00e-05] 83/500: 100%|██████████| 168/168 [00:00<00:00, 1066.29it/s, train loss 1.323 ; val loss 1.134; lr 1.00e-05] 84/500: 100%|██████████| 168/168 [00:00<00:00, 1066.17it/s, train loss 1.589 ; val loss 1.125; lr 1.00e-05] 85/500: 100%|██████████| 168/168 [00:00<00:00, 896.15it/s, train loss 0.801 ; val loss 1.124; lr 1.00e-05] 86/500: 100%|██████████| 168/168 [00:00<00:00, 1052.62it/s, train loss 0.912 ; val loss 1.123; lr 1.00e-05] 87/500: 100%|██████████| 168/168 [00:00<00:00, 1026.96it/s, train loss 0.842 ; val loss 1.123; lr 1.00e-05] 88/500: 100%|██████████| 168/168 [00:00<00:00, 1053.02it/s, train loss 0.760 ; val loss 1.122; lr 1.00e-05] 89/500: 100%|██████████| 168/168 [00:00<00:00, 1072.72it/s, train loss 1.342 ; val loss 1.123; lr 1.00e-05] 90/500: 100%|██████████| 168/168 [00:00<00:00, 1059.42it/s, train loss 1.337 ; val loss 1.123; lr 1.00e-05] 91/500: 100%|██████████| 168/168 [00:00<00:00, 1052.63it/s, train loss 0.815 ; val loss 1.129; lr 1.00e-05] 92/500: 100%|██████████| 168/168 [00:00<00:00, 1046.10it/s, train loss 1.393 ; val loss 1.121; lr 1.00e-05] 93/500: 100%|██████████| 168/168 [00:00<00:00, 1039.81it/s, train loss 1.744 ; val loss 1.129; lr 1.00e-05] 94/500: 100%|██████████| 168/168 [00:00<00:00, 1014.58it/s, train loss 0.997 ; val loss 1.130; lr 1.00e-05] 95/500: 100%|██████████| 168/168 [00:00<00:00, 1046.23it/s, train loss 0.716 ; val loss 1.127; lr 1.00e-05] 96/500: 100%|██████████| 168/168 [00:00<00:00, 1052.82it/s, train loss 0.622 ; val loss 1.121; lr 1.00e-05] 97/500: 100%|██████████| 168/168 [00:00<00:00, 1046.47it/s, train loss 0.947 ; val loss 1.121; lr 1.00e-05] 98/500: 100%|██████████| 168/168 [00:00<00:00, 1046.28it/s, train loss 2.001 ; val loss 1.124; lr 1.00e-05] 99/500: 100%|██████████| 168/168 [00:00<00:00, 1059.44it/s, train loss 2.089 ; val loss 1.120; lr 1.00e-05] 100/500: 100%|██████████| 168/168 [00:00<00:00, 1020.91it/s, train loss 1.154 ; val loss 1.125; lr 1.00e-05] 101/500: 100%|██████████| 168/168 [00:00<00:00, 967.95it/s, train loss 0.688 ; val loss 1.120; lr 1.00e-06] 102/500: 100%|██████████| 168/168 [00:00<00:00, 1066.15it/s, train loss 0.604 ; val loss 1.121; lr 1.00e-06] 103/500: 100%|██████████| 168/168 [00:00<00:00, 1059.25it/s, train loss 0.724 ; val loss 1.120; lr 1.00e-06] 104/500: 100%|██████████| 168/168 [00:00<00:00, 1072.99it/s, train loss 0.795 ; val loss 1.121; lr 1.00e-06] 105/500: 100%|██████████| 168/168 [00:00<00:00, 1059.25it/s, train loss 0.733 ; val loss 1.120; lr 1.00e-06] 106/500: 100%|██████████| 168/168 [00:00<00:00, 1066.14it/s, train loss 1.738 ; val loss 1.120; lr 1.00e-06] 107/500: 100%|██████████| 168/168 [00:00<00:00, 1046.09it/s, train loss 0.408 ; val loss 1.121; lr 1.00e-06] 108/500: 100%|██████████| 168/168 [00:00<00:00, 1059.24it/s, train loss 1.127 ; val loss 1.120; lr 1.00e-06] 109/500: 100%|██████████| 168/168 [00:00<00:00, 1052.83it/s, train loss 1.139 ; val loss 1.120; lr 1.00e-06] 110/500: 100%|██████████| 168/168 [00:00<00:00, 1059.45it/s, train loss 1.203 ; val loss 1.121; lr 1.00e-06] 111/500: 100%|██████████| 168/168 [00:00<00:00, 1072.99it/s, train loss 1.314 ; val loss 1.120; lr 1.00e-06] 112/500: 100%|██████████| 168/168 [00:00<00:00, 1066.14it/s, train loss 1.605 ; val loss 1.121; lr 1.00e-06] 113/500: 100%|██████████| 168/168 [00:00<00:00, 1046.10it/s, train loss 0.952 ; val loss 1.120; lr 1.00e-06] 114/500: 100%|██████████| 168/168 [00:00<00:00, 1039.83it/s, train loss 1.404 ; val loss 1.121; lr 1.00e-06] 115/500: 100%|██████████| 168/168 [00:00<00:00, 905.64it/s, train loss 0.668 ; val loss 1.121; lr 1.00e-06] 116/500: 100%|██████████| 168/168 [00:00<00:00, 1039.64it/s, train loss 2.154 ; val loss 1.120; lr 1.00e-06] 117/500: 100%|██████████| 168/168 [00:00<00:00, 1052.85it/s, train loss 0.952 ; val loss 1.120; lr 1.00e-06] 118/500: 100%|██████████| 168/168 [00:00<00:00, 1072.72it/s, train loss 0.456 ; val loss 1.121; lr 1.00e-06] 119/500: 100%|██████████| 168/168 [00:00<00:00, 1033.26it/s, train loss 1.846 ; val loss 1.120; lr 1.00e-06] 120/500: 100%|██████████| 168/168 [00:00<00:00, 1059.63it/s, train loss 0.808 ; val loss 1.120; lr 1.00e-06] 121/500: 100%|██████████| 168/168 [00:00<00:00, 1046.27it/s, train loss 0.849 ; val loss 1.120; lr 1.00e-06] 122/500: 100%|██████████| 168/168 [00:00<00:00, 1039.85it/s, train loss 0.992 ; val loss 1.121; lr 1.00e-06] 123/500: 100%|██████████| 168/168 [00:00<00:00, 1052.99it/s, train loss 0.407 ; val loss 1.120; lr 1.00e-06] 124/500: 100%|██████████| 168/168 [00:00<00:00, 1072.72it/s, train loss 0.530 ; val loss 1.120; lr 1.00e-06] 125/500: 100%|██████████| 168/168 [00:00<00:00, 1052.63it/s, train loss 0.775 ; val loss 1.120; lr 1.00e-06] 126/500: 100%|██████████| 168/168 [00:00<00:00, 1065.89it/s, train loss 0.919 ; val loss 1.121; lr 1.00e-06] 127/500: 100%|██████████| 168/168 [00:00<00:00, 1066.14it/s, train loss 0.772 ; val loss 1.120; lr 1.00e-06] 128/500: 100%|██████████| 168/168 [00:00<00:00, 1014.76it/s, train loss 1.036 ; val loss 1.120; lr 1.00e-06] 129/500: 100%|██████████| 168/168 [00:00<00:00, 1039.82it/s, train loss 0.743 ; val loss 1.120; lr 1.00e-06] 130/500: 100%|██████████| 168/168 [00:00<00:00, 1039.81it/s, train loss 0.485 ; val loss 1.120; lr 1.00e-06] 131/500: 100%|██████████| 168/168 [00:00<00:00, 1014.97it/s, train loss 0.546 ; val loss 1.120; lr 1.00e-06] 132/500: 100%|██████████| 168/168 [00:00<00:00, 1008.68it/s, train loss 0.868 ; val loss 1.120; lr 1.00e-06] 133/500: 100%|██████████| 168/168 [00:00<00:00, 1052.82it/s, train loss 1.445 ; val loss 1.120; lr 1.00e-06] 134/500: 100%|██████████| 168/168 [00:00<00:00, 962.74it/s, train loss 0.522 ; val loss 1.120; lr 1.00e-06] 135/500: 100%|██████████| 168/168 [00:00<00:00, 973.71it/s, train loss 1.930 ; val loss 1.120; lr 1.00e-06] 136/500: 100%|██████████| 168/168 [00:00<00:00, 1008.69it/s, train loss 1.226 ; val loss 1.120; lr 1.00e-06] 137/500: 100%|██████████| 168/168 [00:00<00:00, 962.57it/s, train loss 0.694 ; val loss 1.120; lr 1.00e-06] 138/500: 100%|██████████| 168/168 [00:00<00:00, 1046.28it/s, train loss 1.159 ; val loss 1.120; lr 1.00e-06] 139/500: 100%|██████████| 168/168 [00:00<00:00, 968.11it/s, train loss 1.368 ; val loss 1.120; lr 1.00e-06] 140/500: 100%|██████████| 168/168 [00:00<00:00, 979.36it/s, train loss 0.690 ; val loss 1.120; lr 1.00e-06] 141/500: 100%|██████████| 168/168 [00:00<00:00, 1027.14it/s, train loss 1.174 ; val loss 1.120; lr 1.00e-06] 142/500: 100%|██████████| 168/168 [00:00<00:00, 1052.82it/s, train loss 1.315 ; val loss 1.120; lr 1.00e-06] 143/500: 100%|██████████| 168/168 [00:00<00:00, 1033.45it/s, train loss 0.612 ; val loss 1.120; lr 1.00e-06] 144/500: 100%|██████████| 168/168 [00:00<00:00, 957.10it/s, train loss 0.904 ; val loss 1.121; lr 1.00e-06] 145/500: 100%|██████████| 168/168 [00:00<00:00, 1033.45it/s, train loss 0.593 ; val loss 1.120; lr 1.00e-06] 146/500: 100%|██████████| 168/168 [00:00<00:00, 1020.91it/s, train loss 1.028 ; val loss 1.120; lr 1.00e-06] 147/500: 100%|██████████| 168/168 [00:00<00:00, 1039.81it/s, train loss 0.692 ; val loss 1.120; lr 1.00e-06] 148/500: 100%|██████████| 168/168 [00:00<00:00, 1033.44it/s, train loss 0.721 ; val loss 1.120; lr 1.00e-06] 149/500: 100%|██████████| 168/168 [00:00<00:00, 1065.95it/s, train loss 1.313 ; val loss 1.120; lr 1.00e-06] 150/500: 100%|██████████| 168/168 [00:00<00:00, 1066.14it/s, train loss 0.945 ; val loss 1.120; lr 1.00e-06] 151/500: 100%|██████████| 168/168 [00:00<00:00, 1073.12it/s, train loss 1.776 ; val loss 1.120; lr 1.00e-06] 152/500: 100%|██████████| 168/168 [00:00<00:00, 1033.44it/s, train loss 1.566 ; val loss 1.120; lr 1.00e-06] 153/500: 100%|██████████| 168/168 [00:00<00:00, 1065.93it/s, train loss 1.788 ; val loss 1.120; lr 1.00e-06] 154/500: 100%|██████████| 168/168 [00:00<00:00, 1086.78it/s, train loss 0.296 ; val loss 1.120; lr 1.00e-06] 155/500: 100%|██████████| 168/168 [00:00<00:00, 1033.44it/s, train loss 1.199 ; val loss 1.119; lr 1.00e-06] 156/500: 100%|██████████| 168/168 [00:00<00:00, 1079.59it/s, train loss 1.339 ; val loss 1.120; lr 1.00e-06] 157/500: 100%|██████████| 168/168 [00:00<00:00, 1066.16it/s, train loss 0.170 ; val loss 1.120; lr 1.00e-06] 158/500: 100%|██████████| 168/168 [00:00<00:00, 1059.25it/s, train loss 1.396 ; val loss 1.120; lr 1.00e-06] 159/500: 100%|██████████| 168/168 [00:00<00:00, 1073.15it/s, train loss 0.858 ; val loss 1.120; lr 1.00e-06] 160/500: 100%|██████████| 168/168 [00:00<00:00, 1066.06it/s, train loss 2.059 ; val loss 1.120; lr 1.00e-06] 161/500: 100%|██████████| 168/168 [00:00<00:00, 1066.33it/s, train loss 0.920 ; val loss 1.120; lr 1.00e-06] 162/500: 100%|██████████| 168/168 [00:00<00:00, 1020.91it/s, train loss 0.723 ; val loss 1.119; lr 1.00e-06] 163/500: 100%|██████████| 168/168 [00:00<00:00, 1072.79it/s, train loss 0.630 ; val loss 1.120; lr 1.00e-06] 164/500: 100%|██████████| 168/168 [00:00<00:00, 1072.93it/s, train loss 2.161 ; val loss 1.119; lr 1.00e-06] 165/500: 100%|██████████| 168/168 [00:00<00:00, 1065.95it/s, train loss 1.006 ; val loss 1.120; lr 1.00e-06] 166/500: 100%|██████████| 168/168 [00:00<00:00, 1079.61it/s, train loss 1.243 ; val loss 1.119; lr 1.00e-06] 167/500: 100%|██████████| 168/168 [00:00<00:00, 1072.72it/s, train loss 1.056 ; val loss 1.120; lr 1.00e-06] 168/500: 100%|██████████| 168/168 [00:00<00:00, 1052.81it/s, train loss 1.081 ; val loss 1.120; lr 1.00e-06] 169/500: 100%|██████████| 168/168 [00:00<00:00, 1059.23it/s, train loss 0.393 ; val loss 1.120; lr 1.00e-06] 170/500: 100%|██████████| 168/168 [00:00<00:00, 1066.34it/s, train loss 1.364 ; val loss 1.120; lr 1.00e-06] 171/500: 100%|██████████| 168/168 [00:00<00:00, 1072.75it/s, train loss 0.387 ; val loss 1.120; lr 1.00e-06] 172/500: 100%|██████████| 168/168 [00:00<00:00, 1065.95it/s, train loss 0.536 ; val loss 1.119; lr 1.00e-06] 173/500: 100%|██████████| 168/168 [00:00<00:00, 1072.93it/s, train loss 2.274 ; val loss 1.120; lr 1.00e-06] 174/500: 100%|██████████| 168/168 [00:00<00:00, 1052.82it/s, train loss 2.897 ; val loss 1.119; lr 1.00e-06] 175/500: 100%|██████████| 168/168 [00:00<00:00, 1046.09it/s, train loss 1.433 ; val loss 1.119; lr 1.00e-06] 176/500: 100%|██████████| 168/168 [00:00<00:00, 1066.22it/s, train loss 1.394 ; val loss 1.120; lr 1.00e-06] 177/500: 100%|██████████| 168/168 [00:00<00:00, 1072.99it/s, train loss 1.445 ; val loss 1.119; lr 1.00e-06] 178/500: 100%|██████████| 168/168 [00:00<00:00, 1059.44it/s, train loss 0.975 ; val loss 1.120; lr 1.00e-06] 179/500: 100%|██████████| 168/168 [00:00<00:00, 1079.51it/s, train loss 2.924 ; val loss 1.120; lr 1.00e-06] 180/500: 100%|██████████| 168/168 [00:00<00:00, 1059.25it/s, train loss 0.841 ; val loss 1.119; lr 1.00e-06] 181/500: 100%|██████████| 168/168 [00:00<00:00, 1066.13it/s, train loss 0.318 ; val loss 1.119; lr 1.00e-06] 182/500: 100%|██████████| 168/168 [00:00<00:00, 996.75it/s, train loss 0.997 ; val loss 1.119; lr 1.00e-06] 183/500: 100%|██████████| 168/168 [00:00<00:00, 1065.95it/s, train loss 0.716 ; val loss 1.119; lr 1.00e-06] 184/500: 100%|██████████| 168/168 [00:00<00:00, 1072.94it/s, train loss 1.190 ; val loss 1.119; lr 1.00e-06] 185/500: 100%|██████████| 168/168 [00:00<00:00, 1072.93it/s, train loss 1.260 ; val loss 1.119; lr 1.00e-06] 186/500: 100%|██████████| 168/168 [00:00<00:00, 1073.18it/s, train loss 0.924 ; val loss 1.121; lr 1.00e-06] 187/500: 100%|██████████| 168/168 [00:00<00:00, 1072.93it/s, train loss 1.646 ; val loss 1.119; lr 1.00e-06] 188/500: 100%|██████████| 168/168 [00:00<00:00, 1066.35it/s, train loss 1.291 ; val loss 1.119; lr 1.00e-06] 189/500: 100%|██████████| 168/168 [00:00<00:00, 1052.81it/s, train loss 0.445 ; val loss 1.119; lr 1.00e-06] 190/500: 100%|██████████| 168/168 [00:00<00:00, 1066.14it/s, train loss 1.815 ; val loss 1.119; lr 1.00e-06] 191/500: 100%|██████████| 168/168 [00:00<00:00, 1065.94it/s, train loss 0.895 ; val loss 1.120; lr 1.00e-06] 192/500: 100%|██████████| 168/168 [00:00<00:00, 1065.95it/s, train loss 1.103 ; val loss 1.119; lr 1.00e-06] 193/500: 100%|██████████| 168/168 [00:00<00:00, 1046.56it/s, train loss 1.217 ; val loss 1.119; lr 1.00e-06] 194/500: 100%|██████████| 168/168 [00:00<00:00, 1072.93it/s, train loss 2.194 ; val loss 1.119; lr 1.00e-06] 195/500: 100%|██████████| 168/168 [00:00<00:00, 1079.60it/s, train loss 1.587 ; val loss 1.119; lr 1.00e-06] 196/500: 100%|██████████| 168/168 [00:00<00:00, 1066.14it/s, train loss 0.642 ; val loss 1.120; lr 1.00e-06] 197/500: 100%|██████████| 168/168 [00:00<00:00, 1040.01it/s, train loss 1.214 ; val loss 1.119; lr 1.00e-06] 198/500: 100%|██████████| 168/168 [00:00<00:00, 1066.38it/s, train loss 2.006 ; val loss 1.119; lr 1.00e-06] 199/500: 100%|██████████| 168/168 [00:00<00:00, 1053.01it/s, train loss 0.873 ; val loss 1.120; lr 1.00e-06] 200/500: 100%|██████████| 168/168 [00:00<00:00, 1052.62it/s, train loss 1.203 ; val loss 1.119; lr 1.00e-06] 201/500: 100%|██████████| 168/168 [00:00<00:00, 1066.35it/s, train loss 0.545 ; val loss 1.119; lr 1.00e-06] 202/500: 100%|██████████| 168/168 [00:00<00:00, 1072.93it/s, train loss 1.647 ; val loss 1.120; lr 1.00e-06] 203/500: 100%|██████████| 168/168 [00:00<00:00, 1027.32it/s, train loss 2.205 ; val loss 1.119; lr 1.00e-06] 204/500: 100%|██████████| 168/168 [00:00<00:00, 1020.76it/s, train loss 0.819 ; val loss 1.119; lr 1.00e-06] 205/500: 100%|██████████| 168/168 [00:00<00:00, 1073.14it/s, train loss 1.714 ; val loss 1.120; lr 1.00e-06] 206/500: 100%|██████████| 168/168 [00:00<00:00, 1039.82it/s, train loss 0.698 ; val loss 1.119; lr 1.00e-06] 207/500: 100%|██████████| 168/168 [00:00<00:00, 1052.81it/s, train loss 0.925 ; val loss 1.120; lr 1.00e-06] 208/500: 100%|██████████| 168/168 [00:00<00:00, 1059.48it/s, train loss 1.204 ; val loss 1.119; lr 1.00e-06] 209/500: 100%|██████████| 168/168 [00:00<00:00, 1046.09it/s, train loss 0.600 ; val loss 1.119; lr 1.00e-06] 210/500: 100%|██████████| 168/168 [00:00<00:00, 1040.01it/s, train loss 1.593 ; val loss 1.119; lr 1.00e-06] 211/500: 100%|██████████| 168/168 [00:00<00:00, 1039.82it/s, train loss 1.334 ; val loss 1.119; lr 1.00e-06] 212/500: 100%|██████████| 168/168 [00:00<00:00, 1046.09it/s, train loss 0.481 ; val loss 1.119; lr 1.00e-06] 213/500: 100%|██████████| 168/168 [00:00<00:00, 1046.27it/s, train loss 1.061 ; val loss 1.119; lr 1.00e-06] 214/500: 100%|██████████| 168/168 [00:00<00:00, 951.70it/s, train loss 0.762 ; val loss 1.119; lr 1.00e-06] 215/500: 100%|██████████| 168/168 [00:00<00:00, 1059.44it/s, train loss 1.434 ; val loss 1.119; lr 1.00e-06] 216/500: 100%|██████████| 168/168 [00:00<00:00, 1039.82it/s, train loss 0.680 ; val loss 1.119; lr 1.00e-06] 217/500: 100%|██████████| 168/168 [00:00<00:00, 1033.44it/s, train loss 2.090 ; val loss 1.119; lr 1.00e-06] 218/500: 100%|██████████| 168/168 [00:00<00:00, 1033.44it/s, train loss 1.149 ; val loss 1.119; lr 1.00e-06] 219/500: 100%|██████████| 168/168 [00:00<00:00, 1040.04it/s, train loss 0.313 ; val loss 1.119; lr 1.00e-06] 220/500: 100%|██████████| 168/168 [00:00<00:00, 1052.81it/s, train loss 0.501 ; val loss 1.119; lr 1.00e-06] 221/500: 100%|██████████| 168/168 [00:00<00:00, 1046.09it/s, train loss 0.960 ; val loss 1.119; lr 1.00e-06] 222/500: 100%|██████████| 168/168 [00:00<00:00, 1066.15it/s, train loss 1.152 ; val loss 1.119; lr 1.00e-06] 223/500: 100%|██████████| 168/168 [00:00<00:00, 1046.09it/s, train loss 0.920 ; val loss 1.119; lr 1.00e-06] 224/500: 100%|██████████| 168/168 [00:00<00:00, 1033.66it/s, train loss 1.518 ; val loss 1.119; lr 1.00e-06] 225/500: 100%|██████████| 168/168 [00:00<00:00, 1065.93it/s, train loss 1.465 ; val loss 1.119; lr 1.00e-06] 226/500: 100%|██████████| 168/168 [00:00<00:00, 1046.52it/s, train loss 0.326 ; val loss 1.119; lr 1.00e-06] 227/500: 100%|██████████| 168/168 [00:00<00:00, 1059.25it/s, train loss 1.099 ; val loss 1.120; lr 1.00e-06] 228/500: 100%|██████████| 168/168 [00:00<00:00, 1053.02it/s, train loss 1.143 ; val loss 1.119; lr 1.00e-06] 229/500: 100%|██████████| 168/168 [00:00<00:00, 1027.13it/s, train loss 0.606 ; val loss 1.119; lr 1.00e-06] 230/500: 100%|██████████| 168/168 [00:00<00:00, 1059.44it/s, train loss 1.000 ; val loss 1.119; lr 1.00e-06] 231/500: 100%|██████████| 168/168 [00:00<00:00, 1002.68it/s, train loss 1.695 ; val loss 1.119; lr 1.00e-06] 232/500: 100%|██████████| 168/168 [00:00<00:00, 1072.74it/s, train loss 1.169 ; val loss 1.120; lr 1.00e-06] 233/500: 100%|██████████| 168/168 [00:00<00:00, 1066.35it/s, train loss 1.140 ; val loss 1.119; lr 1.00e-06] 234/500: 100%|██████████| 168/168 [00:00<00:00, 1072.73it/s, train loss 3.537 ; val loss 1.119; lr 1.00e-06] 235/500: 100%|██████████| 168/168 [00:00<00:00, 1059.62it/s, train loss 0.435 ; val loss 1.119; lr 1.00e-06] 236/500: 100%|██████████| 168/168 [00:00<00:00, 1066.23it/s, train loss 0.922 ; val loss 1.119; lr 1.00e-06] 237/500: 100%|██████████| 168/168 [00:00<00:00, 1046.11it/s, train loss 0.809 ; val loss 1.119; lr 1.00e-06] 238/500: 100%|██████████| 168/168 [00:00<00:00, 1052.82it/s, train loss 1.882 ; val loss 1.119; lr 1.00e-06] 239/500: 100%|██████████| 168/168 [00:00<00:00, 1079.61it/s, train loss 0.738 ; val loss 1.119; lr 1.00e-06] 240/500: 100%|██████████| 168/168 [00:00<00:00, 1079.60it/s, train loss 0.877 ; val loss 1.119; lr 1.00e-06] 241/500: 100%|██████████| 168/168 [00:00<00:00, 1014.76it/s, train loss 1.014 ; val loss 1.119; lr 1.00e-06] 242/500: 100%|██████████| 168/168 [00:00<00:00, 941.06it/s, train loss 0.771 ; val loss 1.119; lr 1.00e-06] 243/500: 100%|██████████| 168/168 [00:00<00:00, 941.06it/s, train loss 1.279 ; val loss 1.119; lr 1.00e-06] 244/500: 100%|██████████| 168/168 [00:00<00:00, 1014.76it/s, train loss 0.650 ; val loss 1.120; lr 1.00e-06] 245/500: 100%|██████████| 168/168 [00:00<00:00, 990.89it/s, train loss 0.856 ; val loss 1.118; lr 1.00e-06] 246/500: 100%|██████████| 168/168 [00:00<00:00, 1066.14it/s, train loss 1.377 ; val loss 1.119; lr 1.00e-06] 247/500: 100%|██████████| 168/168 [00:00<00:00, 1072.72it/s, train loss 0.645 ; val loss 1.119; lr 1.00e-06] 248/500: 100%|██████████| 168/168 [00:00<00:00, 1052.61it/s, train loss 1.047 ; val loss 1.119; lr 1.00e-06] 249/500: 100%|██████████| 168/168 [00:00<00:00, 1059.43it/s, train loss 0.915 ; val loss 1.119; lr 1.00e-06] 250/500: 100%|██████████| 168/168 [00:00<00:00, 1066.17it/s, train loss 0.964 ; val loss 1.119; lr 1.00e-06] 251/500: 100%|██████████| 168/168 [00:00<00:00, 1059.63it/s, train loss 1.385 ; val loss 1.119; lr 1.00e-07] 252/500: 100%|██████████| 168/168 [00:00<00:00, 1072.74it/s, train loss 1.005 ; val loss 1.119; lr 1.00e-07] 253/500: 100%|██████████| 168/168 [00:00<00:00, 1065.95it/s, train loss 0.733 ; val loss 1.118; lr 1.00e-07] 254/500: 100%|██████████| 168/168 [00:00<00:00, 1059.26it/s, train loss 0.948 ; val loss 1.119; lr 1.00e-07] 255/500: 100%|██████████| 168/168 [00:00<00:00, 1059.44it/s, train loss 1.246 ; val loss 1.118; lr 1.00e-07] 256/500: 100%|██████████| 168/168 [00:00<00:00, 1072.94it/s, train loss 1.026 ; val loss 1.119; lr 1.00e-07] 257/500: 100%|██████████| 168/168 [00:00<00:00, 1086.78it/s, train loss 1.251 ; val loss 1.119; lr 1.00e-07] 258/500: 100%|██████████| 168/168 [00:00<00:00, 1052.82it/s, train loss 1.299 ; val loss 1.119; lr 1.00e-07] 259/500: 100%|██████████| 168/168 [00:00<00:00, 1059.44it/s, train loss 0.831 ; val loss 1.119; lr 1.00e-07] 260/500: 100%|██████████| 168/168 [00:00<00:00, 1072.72it/s, train loss 0.582 ; val loss 1.119; lr 1.00e-07] 261/500: 100%|██████████| 168/168 [00:00<00:00, 1052.82it/s, train loss 1.308 ; val loss 1.119; lr 1.00e-07] 262/500: 100%|██████████| 168/168 [00:00<00:00, 1065.95it/s, train loss 1.619 ; val loss 1.119; lr 1.00e-07] 263/500: 100%|██████████| 168/168 [00:00<00:00, 1059.69it/s, train loss 1.132 ; val loss 1.119; lr 1.00e-07] 264/500: 100%|██████████| 168/168 [00:00<00:00, 1072.74it/s, train loss 1.373 ; val loss 1.119; lr 1.00e-07] 265/500: 100%|██████████| 168/168 [00:00<00:00, 1046.51it/s, train loss 1.783 ; val loss 1.119; lr 1.00e-07] 266/500: 100%|██████████| 168/168 [00:00<00:00, 1059.25it/s, train loss 0.836 ; val loss 1.119; lr 1.00e-07] 267/500: 100%|██████████| 168/168 [00:00<00:00, 1072.94it/s, train loss 0.806 ; val loss 1.119; lr 1.00e-07] 268/500: 100%|██████████| 168/168 [00:00<00:00, 1059.25it/s, train loss 0.460 ; val loss 1.119; lr 1.00e-07] 269/500: 100%|██████████| 168/168 [00:00<00:00, 1080.10it/s, train loss 1.897 ; val loss 1.119; lr 1.00e-07] 270/500: 100%|██████████| 168/168 [00:00<00:00, 1066.11it/s, train loss 0.601 ; val loss 1.119; lr 1.00e-07] 271/500: 100%|██████████| 168/168 [00:00<00:00, 1072.95it/s, train loss 1.583 ; val loss 1.118; lr 1.00e-07] 272/500: 100%|██████████| 168/168 [00:00<00:00, 1059.26it/s, train loss 0.811 ; val loss 1.119; lr 1.00e-07] 273/500: 100%|██████████| 168/168 [00:00<00:00, 1066.35it/s, train loss 1.564 ; val loss 1.119; lr 1.00e-07] 274/500: 100%|██████████| 168/168 [00:00<00:00, 1059.24it/s, train loss 1.591 ; val loss 1.119; lr 1.00e-07] 275/500: 100%|██████████| 168/168 [00:00<00:00, 1072.94it/s, train loss 3.323 ; val loss 1.119; lr 1.00e-07] 276/500: 100%|██████████| 168/168 [00:00<00:00, 1052.82it/s, train loss 1.089 ; val loss 1.119; lr 1.00e-07] 277/500: 100%|██████████| 168/168 [00:00<00:00, 1079.81it/s, train loss 1.225 ; val loss 1.119; lr 1.00e-07] 278/500: 100%|██████████| 168/168 [00:00<00:00, 1059.44it/s, train loss 0.823 ; val loss 1.119; lr 1.00e-07] 279/500: 100%|██████████| 168/168 [00:00<00:00, 1039.81it/s, train loss 1.183 ; val loss 1.119; lr 1.00e-07] 280/500: 100%|██████████| 168/168 [00:00<00:00, 1059.63it/s, train loss 2.012 ; val loss 1.119; lr 1.00e-07] 281/500: 100%|██████████| 168/168 [00:00<00:00, 905.64it/s, train loss 0.515 ; val loss 1.119; lr 1.00e-07] 282/500: 100%|██████████| 168/168 [00:00<00:00, 1065.95it/s, train loss 0.755 ; val loss 1.119; lr 1.00e-07] 283/500: 100%|██████████| 168/168 [00:00<00:00, 1053.00it/s, train loss 1.214 ; val loss 1.119; lr 1.00e-07] 284/500: 100%|██████████| 168/168 [00:00<00:00, 1065.95it/s, train loss 1.343 ; val loss 1.118; lr 1.00e-07] 285/500: 100%|██████████| 168/168 [00:00<00:00, 1079.61it/s, train loss 0.676 ; val loss 1.119; lr 1.00e-07] 286/500: 100%|██████████| 168/168 [00:00<00:00, 1027.15it/s, train loss 1.344 ; val loss 1.119; lr 1.00e-07] 287/500: 100%|██████████| 168/168 [00:00<00:00, 1039.64it/s, train loss 0.422 ; val loss 1.119; lr 1.00e-07] 288/500: 100%|██████████| 168/168 [00:00<00:00, 1039.64it/s, train loss 2.647 ; val loss 1.118; lr 1.00e-07] 289/500: 100%|██████████| 168/168 [00:00<00:00, 1066.16it/s, train loss 0.428 ; val loss 1.119; lr 1.00e-07] 290/500: 100%|██████████| 168/168 [00:00<00:00, 1072.74it/s, train loss 0.393 ; val loss 1.119; lr 1.00e-07] 291/500: 100%|██████████| 168/168 [00:00<00:00, 1079.82it/s, train loss 2.518 ; val loss 1.119; lr 1.00e-07] 292/500: 100%|██████████| 168/168 [00:00<00:00, 1046.09it/s, train loss 0.979 ; val loss 1.119; lr 1.00e-07] 293/500: 100%|██████████| 168/168 [00:00<00:00, 1033.45it/s, train loss 1.049 ; val loss 1.119; lr 1.00e-07] 294/500: 100%|██████████| 168/168 [00:00<00:00, 1072.73it/s, train loss 1.930 ; val loss 1.119; lr 1.00e-07] 295/500: 100%|██████████| 168/168 [00:00<00:00, 1072.74it/s, train loss 1.325 ; val loss 1.119; lr 1.00e-07] 296/500: 100%|██████████| 168/168 [00:00<00:00, 1072.75it/s, train loss 0.393 ; val loss 1.119; lr 1.00e-07] 297/500: 100%|██████████| 168/168 [00:00<00:00, 1066.15it/s, train loss 0.961 ; val loss 1.118; lr 1.00e-07] 298/500: 100%|██████████| 168/168 [00:00<00:00, 1066.15it/s, train loss 0.825 ; val loss 1.118; lr 1.00e-07] 299/500: 100%|██████████| 168/168 [00:00<00:00, 1039.64it/s, train loss 1.140 ; val loss 1.118; lr 1.00e-07] 300/500: 100%|██████████| 168/168 [00:00<00:00, 1046.48it/s, train loss 0.741 ; val loss 1.119; lr 1.00e-07] 301/500: 100%|██████████| 168/168 [00:00<00:00, 1072.74it/s, train loss 1.126 ; val loss 1.118; lr 1.00e-08] 302/500: 100%|██████████| 168/168 [00:00<00:00, 1059.25it/s, train loss 3.281 ; val loss 1.118; lr 1.00e-08] 303/500: 100%|██████████| 168/168 [00:00<00:00, 1066.35it/s, train loss 1.027 ; val loss 1.118; lr 1.00e-08] 304/500: 100%|██████████| 168/168 [00:00<00:00, 1059.51it/s, train loss 0.849 ; val loss 1.118; lr 1.00e-08] 305/500: 100%|██████████| 168/168 [00:00<00:00, 1039.82it/s, train loss 1.064 ; val loss 1.118; lr 1.00e-08] 306/500: 100%|██████████| 168/168 [00:00<00:00, 1066.12it/s, train loss 0.818 ; val loss 1.118; lr 1.00e-08] 307/500: 100%|██████████| 168/168 [00:00<00:00, 1046.10it/s, train loss 0.626 ; val loss 1.118; lr 1.00e-08] 308/500: 100%|██████████| 168/168 [00:00<00:00, 1046.28it/s, train loss 1.236 ; val loss 1.118; lr 1.00e-08] 309/500: 100%|██████████| 168/168 [00:00<00:00, 1072.95it/s, train loss 0.708 ; val loss 1.118; lr 1.00e-08] 310/500: 100%|██████████| 168/168 [00:00<00:00, 1066.16it/s, train loss 0.645 ; val loss 1.118; lr 1.00e-08] 311/500: 100%|██████████| 168/168 [00:00<00:00, 1066.14it/s, train loss 0.445 ; val loss 1.118; lr 1.00e-08] 312/500: 100%|██████████| 168/168 [00:00<00:00, 1059.25it/s, train loss 0.967 ; val loss 1.118; lr 1.00e-08] 313/500: 100%|██████████| 168/168 [00:00<00:00, 1052.82it/s, train loss 0.909 ; val loss 1.118; lr 1.00e-08] 314/500: 100%|██████████| 168/168 [00:00<00:00, 1046.10it/s, train loss 0.569 ; val loss 1.118; lr 1.00e-08] 315/500: 100%|██████████| 168/168 [00:00<00:00, 1053.05it/s, train loss 2.166 ; val loss 1.118; lr 1.00e-08] 316/500: 100%|██████████| 168/168 [00:00<00:00, 1072.72it/s, train loss 0.725 ; val loss 1.118; lr 1.00e-08] 317/500: 100%|██████████| 168/168 [00:00<00:00, 1014.94it/s, train loss 1.236 ; val loss 1.118; lr 1.00e-08] 318/500: 100%|██████████| 168/168 [00:00<00:00, 1033.26it/s, train loss 0.938 ; val loss 1.118; lr 1.00e-08] 319/500: 100%|██████████| 168/168 [00:00<00:00, 891.14it/s, train loss 0.512 ; val loss 1.118; lr 1.00e-08] 320/500: 100%|██████████| 168/168 [00:00<00:00, 1059.43it/s, train loss 1.135 ; val loss 1.118; lr 1.00e-08] 321/500: 100%|██████████| 168/168 [00:00<00:00, 1066.14it/s, train loss 1.003 ; val loss 1.118; lr 1.00e-08] 322/500: 100%|██████████| 168/168 [00:00<00:00, 1059.25it/s, train loss 0.593 ; val loss 1.118; lr 1.00e-08] 323/500: 100%|██████████| 168/168 [00:00<00:00, 1065.93it/s, train loss 1.023 ; val loss 1.118; lr 1.00e-08] 324/500: 100%|██████████| 168/168 [00:00<00:00, 1066.38it/s, train loss 0.717 ; val loss 1.118; lr 1.00e-08] 325/500: 100%|██████████| 168/168 [00:00<00:00, 1093.84it/s, train loss 3.444 ; val loss 1.118; lr 1.00e-08] 326/500: 100%|██████████| 168/168 [00:00<00:00, 1052.63it/s, train loss 0.823 ; val loss 1.118; lr 1.00e-08] 327/500: 100%|██████████| 168/168 [00:00<00:00, 1059.44it/s, train loss 0.759 ; val loss 1.118; lr 1.00e-08] 328/500: 100%|██████████| 168/168 [00:00<00:00, 1072.74it/s, train loss 0.241 ; val loss 1.118; lr 1.00e-08] 329/500: 100%|██████████| 168/168 [00:00<00:00, 1066.35it/s, train loss 0.548 ; val loss 1.118; lr 1.00e-08] 330/500: 100%|██████████| 168/168 [00:00<00:00, 1052.63it/s, train loss 0.843 ; val loss 1.118; lr 1.00e-08] 331/500: 100%|██████████| 168/168 [00:00<00:00, 1059.64it/s, train loss 1.762 ; val loss 1.118; lr 1.00e-08] 332/500: 100%|██████████| 168/168 [00:00<00:00, 1065.94it/s, train loss 0.683 ; val loss 1.118; lr 1.00e-08] 333/500: 100%|██████████| 168/168 [00:00<00:00, 1072.94it/s, train loss 0.637 ; val loss 1.118; lr 1.00e-08] 334/500: 100%|██████████| 168/168 [00:00<00:00, 1053.00it/s, train loss 1.549 ; val loss 1.118; lr 1.00e-08] 335/500: 100%|██████████| 168/168 [00:00<00:00, 1065.96it/s, train loss 1.201 ; val loss 1.118; lr 1.00e-08] 336/500: 100%|██████████| 168/168 [00:00<00:00, 1066.14it/s, train loss 1.057 ; val loss 1.118; lr 1.00e-08] 337/500: 100%|██████████| 168/168 [00:00<00:00, 1065.98it/s, train loss 0.774 ; val loss 1.118; lr 1.00e-08] 338/500: 100%|██████████| 168/168 [00:00<00:00, 1080.03it/s, train loss 0.622 ; val loss 1.118; lr 1.00e-08] 339/500: 100%|██████████| 168/168 [00:00<00:00, 1066.35it/s, train loss 0.908 ; val loss 1.118; lr 1.00e-08] 340/500: 100%|██████████| 168/168 [00:00<00:00, 1086.58it/s, train loss 1.526 ; val loss 1.118; lr 1.00e-08] 341/500: 100%|██████████| 168/168 [00:00<00:00, 1046.29it/s, train loss 0.882 ; val loss 1.118; lr 1.00e-08] 342/500: 100%|██████████| 168/168 [00:00<00:00, 1072.93it/s, train loss 3.584 ; val loss 1.118; lr 1.00e-08] 343/500: 100%|██████████| 168/168 [00:00<00:00, 1046.09it/s, train loss 0.809 ; val loss 1.118; lr 1.00e-08] 344/500: 100%|██████████| 168/168 [00:00<00:00, 1072.92it/s, train loss 0.731 ; val loss 1.118; lr 1.00e-08] 345/500: 100%|██████████| 168/168 [00:00<00:00, 1086.58it/s, train loss 1.040 ; val loss 1.118; lr 1.00e-08] 346/500: 100%|██████████| 168/168 [00:00<00:00, 1079.81it/s, train loss 0.681 ; val loss 1.118; lr 1.00e-08] 347/500: 100%|██████████| 168/168 [00:00<00:00, 1046.28it/s, train loss 1.399 ; val loss 1.118; lr 1.00e-08] 348/500: 100%|██████████| 168/168 [00:00<00:00, 1027.14it/s, train loss 1.515 ; val loss 1.118; lr 1.00e-08] 349/500: 100%|██████████| 168/168 [00:00<00:00, 1059.42it/s, train loss 0.801 ; val loss 1.118; lr 1.00e-08] 350/500: 100%|██████████| 168/168 [00:00<00:00, 1072.75it/s, train loss 1.517 ; val loss 1.118; lr 1.00e-08] 351/500: 100%|██████████| 168/168 [00:00<00:00, 1079.83it/s, train loss 2.065 ; val loss 1.118; lr 1.00e-08] 352/500: 100%|██████████| 168/168 [00:00<00:00, 1072.93it/s, train loss 0.446 ; val loss 1.118; lr 1.00e-08] 353/500: 100%|██████████| 168/168 [00:00<00:00, 1072.72it/s, train loss 0.514 ; val loss 1.118; lr 1.00e-08] 354/500: 100%|██████████| 168/168 [00:00<00:00, 872.95it/s, train loss 1.603 ; val loss 1.118; lr 1.00e-08] 355/500: 100%|██████████| 168/168 [00:00<00:00, 920.49it/s, train loss 1.895 ; val loss 1.118; lr 1.00e-08] 356/500: 100%|██████████| 168/168 [00:00<00:00, 1002.68it/s, train loss 0.643 ; val loss 1.118; lr 1.00e-08] 357/500: 100%|██████████| 168/168 [00:00<00:00, 996.57it/s, train loss 1.155 ; val loss 1.118; lr 1.00e-08] 358/500: 100%|██████████| 168/168 [00:00<00:00, 979.20it/s, train loss 0.623 ; val loss 1.118; lr 1.00e-08] 359/500: 100%|██████████| 168/168 [00:00<00:00, 951.89it/s, train loss 1.522 ; val loss 1.118; lr 1.00e-08] 360/500: 100%|██████████| 168/168 [00:00<00:00, 1039.82it/s, train loss 1.112 ; val loss 1.118; lr 1.00e-08] 361/500: 100%|██████████| 168/168 [00:00<00:00, 1033.43it/s, train loss 0.508 ; val loss 1.118; lr 1.00e-08] 362/500: 100%|██████████| 168/168 [00:00<00:00, 765.69it/s, train loss 0.831 ; val loss 1.118; lr 1.00e-08] 363/500: 100%|██████████| 168/168 [00:00<00:00, 957.11it/s, train loss 1.090 ; val loss 1.118; lr 1.00e-08] 364/500: 100%|██████████| 168/168 [00:00<00:00, 990.89it/s, train loss 1.418 ; val loss 1.118; lr 1.00e-08] 365/500: 100%|██████████| 168/168 [00:00<00:00, 1065.95it/s, train loss 0.653 ; val loss 1.118; lr 1.00e-08] 366/500: 100%|██████████| 168/168 [00:00<00:00, 1039.83it/s, train loss 1.886 ; val loss 1.118; lr 1.00e-08] 367/500: 100%|██████████| 168/168 [00:00<00:00, 956.75it/s, train loss 1.268 ; val loss 1.118; lr 1.00e-08] 368/500: 100%|██████████| 168/168 [00:00<00:00, 1002.65it/s, train loss 0.897 ; val loss 1.118; lr 1.00e-08] 369/500: 100%|██████████| 168/168 [00:00<00:00, 924.64it/s, train loss 1.249 ; val loss 1.118; lr 1.00e-08] 370/500: 100%|██████████| 168/168 [00:00<00:00, 1035.79it/s, train loss 0.434 ; val loss 1.118; lr 1.00e-08] 371/500: 100%|██████████| 168/168 [00:00<00:00, 1053.01it/s, train loss 1.027 ; val loss 1.118; lr 1.00e-08] 372/500: 100%|██████████| 168/168 [00:00<00:00, 1052.82it/s, train loss 0.316 ; val loss 1.118; lr 1.00e-08] 373/500: 100%|██████████| 168/168 [00:00<00:00, 853.76it/s, train loss 0.879 ; val loss 1.118; lr 1.00e-08] 374/500: 100%|██████████| 168/168 [00:00<00:00, 634.19it/s, train loss 0.793 ; val loss 1.118; lr 1.00e-08] 375/500: 100%|██████████| 168/168 [00:00<00:00, 1032.36it/s, train loss 1.373 ; val loss 1.118; lr 1.00e-08] 376/500: 100%|██████████| 168/168 [00:00<00:00, 1027.17it/s, train loss 1.175 ; val loss 1.118; lr 1.00e-08] 377/500: 100%|██████████| 168/168 [00:00<00:00, 1066.36it/s, train loss 0.870 ; val loss 1.118; lr 1.00e-08] 378/500: 100%|██████████| 168/168 [00:00<00:00, 1072.74it/s, train loss 0.812 ; val loss 1.118; lr 1.00e-08] 379/500: 100%|██████████| 168/168 [00:00<00:00, 1100.95it/s, train loss 0.742 ; val loss 1.118; lr 1.00e-08] 380/500: 100%|██████████| 168/168 [00:00<00:00, 996.93it/s, train loss 1.447 ; val loss 1.118; lr 1.00e-08] 381/500: 100%|██████████| 168/168 [00:00<00:00, 1079.62it/s, train loss 0.728 ; val loss 1.118; lr 1.00e-08] 382/500: 100%|██████████| 168/168 [00:00<00:00, 1059.25it/s, train loss 0.794 ; val loss 1.118; lr 1.00e-08] 383/500: 100%|██████████| 168/168 [00:00<00:00, 1052.82it/s, train loss 0.969 ; val loss 1.118; lr 1.00e-08] 384/500: 100%|██████████| 168/168 [00:00<00:00, 1079.81it/s, train loss 2.862 ; val loss 1.118; lr 1.00e-08] 385/500: 100%|██████████| 168/168 [00:00<00:00, 1072.74it/s, train loss 1.419 ; val loss 1.118; lr 1.00e-08] 386/500: 100%|██████████| 168/168 [00:00<00:00, 1039.95it/s, train loss 0.282 ; val loss 1.118; lr 1.00e-08] 387/500: 100%|██████████| 168/168 [00:00<00:00, 1086.77it/s, train loss 1.187 ; val loss 1.118; lr 1.00e-08] 388/500: 100%|██████████| 168/168 [00:00<00:00, 1079.79it/s, train loss 0.925 ; val loss 1.118; lr 1.00e-08] 389/500: 100%|██████████| 168/168 [00:00<00:00, 1039.88it/s, train loss 1.632 ; val loss 1.118; lr 1.00e-08] 390/500: 100%|██████████| 168/168 [00:00<00:00, 1014.59it/s, train loss 2.953 ; val loss 1.118; lr 1.00e-08] 391/500: 100%|██████████| 168/168 [00:00<00:00, 1065.95it/s, train loss 1.268 ; val loss 1.118; lr 1.00e-08] 392/500: 100%|██████████| 168/168 [00:00<00:00, 1100.78it/s, train loss 0.629 ; val loss 1.118; lr 1.00e-08] 393/500: 100%|██████████| 168/168 [00:00<00:00, 1093.84it/s, train loss 0.761 ; val loss 1.118; lr 1.00e-08] 394/500: 100%|██████████| 168/168 [00:00<00:00, 1101.20it/s, train loss 0.890 ; val loss 1.118; lr 1.00e-08] 395/500: 100%|██████████| 168/168 [00:00<00:00, 1066.12it/s, train loss 1.595 ; val loss 1.118; lr 1.00e-08] 396/500: 100%|██████████| 168/168 [00:00<00:00, 1027.36it/s, train loss 1.024 ; val loss 1.118; lr 1.00e-08] 397/500: 100%|██████████| 168/168 [00:00<00:00, 1086.78it/s, train loss 0.753 ; val loss 1.118; lr 1.00e-08] 398/500: 100%|██████████| 168/168 [00:00<00:00, 1072.74it/s, train loss 1.287 ; val loss 1.118; lr 1.00e-08] 399/500: 100%|██████████| 168/168 [00:00<00:00, 1100.78it/s, train loss 0.733 ; val loss 1.118; lr 1.00e-08] 400/500: 100%|██████████| 168/168 [00:00<00:00, 1115.35it/s, train loss 0.874 ; val loss 1.118; lr 1.00e-08] 401/500: 100%|██████████| 168/168 [00:00<00:00, 1093.61it/s, train loss 1.655 ; val loss 1.118; lr 1.00e-09] 402/500: 100%|██████████| 168/168 [00:00<00:00, 1086.78it/s, train loss 1.020 ; val loss 1.118; lr 1.00e-09] 403/500: 100%|██████████| 168/168 [00:00<00:00, 1066.34it/s, train loss 0.484 ; val loss 1.118; lr 1.00e-09] 404/500: 100%|██████████| 168/168 [00:00<00:00, 1072.93it/s, train loss 1.317 ; val loss 1.118; lr 1.00e-09] 405/500: 100%|██████████| 168/168 [00:00<00:00, 1100.98it/s, train loss 0.501 ; val loss 1.118; lr 1.00e-09] 406/500: 100%|██████████| 168/168 [00:00<00:00, 1100.78it/s, train loss 1.020 ; val loss 1.118; lr 1.00e-09] 407/500: 100%|██████████| 168/168 [00:00<00:00, 1073.17it/s, train loss 0.751 ; val loss 1.118; lr 1.00e-09] 408/500: 100%|██████████| 168/168 [00:00<00:00, 1100.99it/s, train loss 1.314 ; val loss 1.118; lr 1.00e-09] 409/500: 100%|██████████| 168/168 [00:00<00:00, 1046.37it/s, train loss 0.938 ; val loss 1.118; lr 1.00e-09] 410/500: 100%|██████████| 168/168 [00:00<00:00, 1052.82it/s, train loss 1.758 ; val loss 1.118; lr 1.00e-09] 411/500: 100%|██████████| 168/168 [00:00<00:00, 1033.44it/s, train loss 0.469 ; val loss 1.118; lr 1.00e-09] 412/500: 100%|██████████| 168/168 [00:00<00:00, 1086.77it/s, train loss 0.898 ; val loss 1.118; lr 1.00e-09] 413/500: 100%|██████████| 168/168 [00:00<00:00, 1086.55it/s, train loss 0.618 ; val loss 1.118; lr 1.00e-09] 414/500: 100%|██████████| 168/168 [00:00<00:00, 1093.64it/s, train loss 1.185 ; val loss 1.118; lr 1.00e-09] 415/500: 100%|██████████| 168/168 [00:00<00:00, 1108.23it/s, train loss 0.712 ; val loss 1.118; lr 1.00e-09] 416/500: 100%|██████████| 168/168 [00:00<00:00, 1059.43it/s, train loss 1.075 ; val loss 1.118; lr 1.00e-09] 417/500: 100%|██████████| 168/168 [00:00<00:00, 1094.04it/s, train loss 0.864 ; val loss 1.118; lr 1.00e-09] 418/500: 100%|██████████| 168/168 [00:00<00:00, 1100.78it/s, train loss 1.811 ; val loss 1.118; lr 1.00e-09] 419/500: 100%|██████████| 168/168 [00:00<00:00, 1039.64it/s, train loss 0.468 ; val loss 1.118; lr 1.00e-09] 420/500: 100%|██████████| 168/168 [00:00<00:00, 1014.77it/s, train loss 0.824 ; val loss 1.118; lr 1.00e-09] 421/500: 100%|██████████| 168/168 [00:00<00:00, 1100.78it/s, train loss 0.924 ; val loss 1.118; lr 1.00e-09] 422/500: 100%|██████████| 168/168 [00:00<00:00, 1093.64it/s, train loss 1.315 ; val loss 1.118; lr 1.00e-09] 423/500: 100%|██████████| 168/168 [00:00<00:00, 1086.78it/s, train loss 2.346 ; val loss 1.118; lr 1.00e-09] 424/500: 100%|██████████| 168/168 [00:00<00:00, 1093.63it/s, train loss 0.635 ; val loss 1.118; lr 1.00e-09] 425/500: 100%|██████████| 168/168 [00:00<00:00, 1086.77it/s, train loss 1.348 ; val loss 1.118; lr 1.00e-09] 426/500: 100%|██████████| 168/168 [00:00<00:00, 1066.16it/s, train loss 0.662 ; val loss 1.118; lr 1.00e-09] 427/500: 100%|██████████| 168/168 [00:00<00:00, 1079.62it/s, train loss 0.578 ; val loss 1.118; lr 1.00e-09] 428/500: 100%|██████████| 168/168 [00:00<00:00, 1065.95it/s, train loss 0.773 ; val loss 1.118; lr 1.00e-09] 429/500: 100%|██████████| 168/168 [00:00<00:00, 1080.01it/s, train loss 0.494 ; val loss 1.118; lr 1.00e-09] 430/500: 100%|██████████| 168/168 [00:00<00:00, 1046.31it/s, train loss 1.609 ; val loss 1.118; lr 1.00e-09] 431/500: 100%|██████████| 168/168 [00:00<00:00, 1100.79it/s, train loss 1.516 ; val loss 1.118; lr 1.00e-09] 432/500: 100%|██████████| 168/168 [00:00<00:00, 1108.26it/s, train loss 1.455 ; val loss 1.118; lr 1.00e-09] 433/500: 100%|██████████| 168/168 [00:00<00:00, 1108.23it/s, train loss 1.888 ; val loss 1.118; lr 1.00e-09] 434/500: 100%|██████████| 168/168 [00:00<00:00, 1093.69it/s, train loss 0.832 ; val loss 1.118; lr 1.00e-09] 435/500: 100%|██████████| 168/168 [00:00<00:00, 1100.98it/s, train loss 1.104 ; val loss 1.118; lr 1.00e-09] 436/500: 100%|██████████| 168/168 [00:00<00:00, 1080.01it/s, train loss 0.735 ; val loss 1.118; lr 1.00e-09] 437/500: 100%|██████████| 168/168 [00:00<00:00, 1059.43it/s, train loss 0.382 ; val loss 1.118; lr 1.00e-09] 438/500: 100%|██████████| 168/168 [00:00<00:00, 1072.74it/s, train loss 0.684 ; val loss 1.118; lr 1.00e-09] 439/500: 100%|██████████| 168/168 [00:00<00:00, 1086.81it/s, train loss 1.310 ; val loss 1.118; lr 1.00e-09] 440/500: 100%|██████████| 168/168 [00:00<00:00, 1093.63it/s, train loss 1.597 ; val loss 1.118; lr 1.00e-09] 441/500: 100%|██████████| 168/168 [00:00<00:00, 1059.69it/s, train loss 0.746 ; val loss 1.118; lr 1.00e-09] 442/500: 100%|██████████| 168/168 [00:00<00:00, 1100.98it/s, train loss 0.563 ; val loss 1.118; lr 1.00e-09] 443/500: 100%|██████████| 168/168 [00:00<00:00, 1066.33it/s, train loss 1.315 ; val loss 1.118; lr 1.00e-09] 444/500: 100%|██████████| 168/168 [00:00<00:00, 1093.62it/s, train loss 1.328 ; val loss 1.118; lr 1.00e-09] 445/500: 100%|██████████| 168/168 [00:00<00:00, 1093.72it/s, train loss 0.932 ; val loss 1.118; lr 1.00e-09] 446/500: 100%|██████████| 168/168 [00:00<00:00, 1086.85it/s, train loss 1.554 ; val loss 1.118; lr 1.00e-09] 447/500: 100%|██████████| 168/168 [00:00<00:00, 1093.83it/s, train loss 1.116 ; val loss 1.118; lr 1.00e-09] 448/500: 100%|██████████| 168/168 [00:00<00:00, 1086.78it/s, train loss 1.375 ; val loss 1.118; lr 1.00e-09] 449/500: 100%|██████████| 168/168 [00:00<00:00, 1014.76it/s, train loss 0.939 ; val loss 1.118; lr 1.00e-09] 450/500: 100%|██████████| 168/168 [00:00<00:00, 1033.26it/s, train loss 0.911 ; val loss 1.118; lr 1.00e-09] 451/500: 100%|██████████| 168/168 [00:00<00:00, 1002.68it/s, train loss 1.935 ; val loss 1.118; lr 1.00e-09] 452/500: 100%|██████████| 168/168 [00:00<00:00, 1086.57it/s, train loss 0.674 ; val loss 1.118; lr 1.00e-09] 453/500: 100%|██████████| 168/168 [00:00<00:00, 1086.99it/s, train loss 1.045 ; val loss 1.118; lr 1.00e-09] 454/500: 100%|██████████| 168/168 [00:00<00:00, 979.36it/s, train loss 1.306 ; val loss 1.118; lr 1.00e-09] 455/500: 100%|██████████| 168/168 [00:00<00:00, 1079.62it/s, train loss 0.511 ; val loss 1.118; lr 1.00e-09] 456/500: 100%|██████████| 168/168 [00:00<00:00, 1079.81it/s, train loss 0.432 ; val loss 1.118; lr 1.00e-09] 457/500: 100%|██████████| 168/168 [00:00<00:00, 1072.94it/s, train loss 0.943 ; val loss 1.118; lr 1.00e-09] 458/500: 100%|██████████| 168/168 [00:00<00:00, 1059.25it/s, train loss 0.923 ; val loss 1.118; lr 1.00e-09] 459/500: 100%|██████████| 168/168 [00:00<00:00, 1059.44it/s, train loss 1.164 ; val loss 1.118; lr 1.00e-09] 460/500: 100%|██████████| 168/168 [00:00<00:00, 1021.12it/s, train loss 1.862 ; val loss 1.118; lr 1.00e-09] 461/500: 100%|██████████| 168/168 [00:00<00:00, 1046.10it/s, train loss 1.972 ; val loss 1.118; lr 1.00e-09] 462/500: 100%|██████████| 168/168 [00:00<00:00, 1039.82it/s, train loss 0.966 ; val loss 1.118; lr 1.00e-09] 463/500: 100%|██████████| 168/168 [00:00<00:00, 1093.64it/s, train loss 3.646 ; val loss 1.118; lr 1.00e-09] 464/500: 100%|██████████| 168/168 [00:00<00:00, 1086.58it/s, train loss 1.100 ; val loss 1.118; lr 1.00e-09] 465/500: 100%|██████████| 168/168 [00:00<00:00, 1093.83it/s, train loss 0.469 ; val loss 1.118; lr 1.00e-09] 466/500: 100%|██████████| 168/168 [00:00<00:00, 1080.01it/s, train loss 0.655 ; val loss 1.118; lr 1.00e-09] 467/500: 100%|██████████| 168/168 [00:00<00:00, 1079.62it/s, train loss 1.105 ; val loss 1.118; lr 1.00e-09] 468/500: 100%|██████████| 168/168 [00:00<00:00, 1086.58it/s, train loss 0.285 ; val loss 1.118; lr 1.00e-09] 469/500: 100%|██████████| 168/168 [00:00<00:00, 1065.94it/s, train loss 0.760 ; val loss 1.118; lr 1.00e-09] 470/500: 100%|██████████| 168/168 [00:00<00:00, 1079.62it/s, train loss 1.269 ; val loss 1.118; lr 1.00e-09] 471/500: 100%|██████████| 168/168 [00:00<00:00, 1059.43it/s, train loss 1.044 ; val loss 1.118; lr 1.00e-09] 472/500: 100%|██████████| 168/168 [00:00<00:00, 1039.83it/s, train loss 1.008 ; val loss 1.118; lr 1.00e-09] 473/500: 100%|██████████| 168/168 [00:00<00:00, 1072.93it/s, train loss 1.140 ; val loss 1.118; lr 1.00e-09] 474/500: 100%|██████████| 168/168 [00:00<00:00, 1093.83it/s, train loss 1.439 ; val loss 1.118; lr 1.00e-09] 475/500: 100%|██████████| 168/168 [00:00<00:00, 1108.45it/s, train loss 1.405 ; val loss 1.118; lr 1.00e-09] 476/500: 100%|██████████| 168/168 [00:00<00:00, 1108.02it/s, train loss 1.051 ; val loss 1.118; lr 1.00e-09] 477/500: 100%|██████████| 168/168 [00:00<00:00, 1101.02it/s, train loss 1.042 ; val loss 1.118; lr 1.00e-09] 478/500: 100%|██████████| 168/168 [00:00<00:00, 1108.23it/s, train loss 1.073 ; val loss 1.118; lr 1.00e-09] 479/500: 100%|██████████| 168/168 [00:00<00:00, 1052.62it/s, train loss 3.545 ; val loss 1.118; lr 1.00e-09] 480/500: 100%|██████████| 168/168 [00:00<00:00, 1100.98it/s, train loss 0.645 ; val loss 1.118; lr 1.00e-09] 481/500: 100%|██████████| 168/168 [00:00<00:00, 1093.64it/s, train loss 0.803 ; val loss 1.118; lr 1.00e-09] 482/500: 100%|██████████| 168/168 [00:00<00:00, 1100.78it/s, train loss 0.653 ; val loss 1.118; lr 1.00e-09] 483/500: 100%|██████████| 168/168 [00:00<00:00, 1115.56it/s, train loss 0.492 ; val loss 1.118; lr 1.00e-09] 484/500: 100%|██████████| 168/168 [00:00<00:00, 1093.62it/s, train loss 0.341 ; val loss 1.118; lr 1.00e-09] 485/500: 100%|██████████| 168/168 [00:00<00:00, 1115.57it/s, train loss 0.854 ; val loss 1.118; lr 1.00e-09] 486/500: 100%|██████████| 168/168 [00:00<00:00, 1086.57it/s, train loss 0.811 ; val loss 1.118; lr 1.00e-09] 487/500: 100%|██████████| 168/168 [00:00<00:00, 1094.03it/s, train loss 0.789 ; val loss 1.118; lr 1.00e-09] 488/500: 100%|██████████| 168/168 [00:00<00:00, 1072.93it/s, train loss 0.436 ; val loss 1.118; lr 1.00e-09] 489/500: 100%|██████████| 168/168 [00:00<00:00, 1086.58it/s, train loss 0.661 ; val loss 1.118; lr 1.00e-09] 490/500: 100%|██████████| 168/168 [00:00<00:00, 1052.84it/s, train loss 0.891 ; val loss 1.118; lr 1.00e-09] 491/500: 100%|██████████| 168/168 [00:00<00:00, 1046.28it/s, train loss 1.715 ; val loss 1.118; lr 1.00e-09] 492/500: 100%|██████████| 168/168 [00:00<00:00, 1059.51it/s, train loss 1.187 ; val loss 1.118; lr 1.00e-09] 493/500: 100%|██████████| 168/168 [00:00<00:00, 1052.90it/s, train loss 0.863 ; val loss 1.118; lr 1.00e-09] 494/500: 100%|██████████| 168/168 [00:00<00:00, 1080.01it/s, train loss 0.900 ; val loss 1.118; lr 1.00e-09] 495/500: 100%|██████████| 168/168 [00:00<00:00, 1108.23it/s, train loss 1.039 ; val loss 1.118; lr 1.00e-09] 496/500: 100%|██████████| 168/168 [00:00<00:00, 1073.01it/s, train loss 1.252 ; val loss 1.118; lr 1.00e-09] 497/500: 100%|██████████| 168/168 [00:00<00:00, 1086.77it/s, train loss 1.066 ; val loss 1.118; lr 1.00e-09] 498/500: 100%|██████████| 168/168 [00:00<00:00, 1080.08it/s, train loss 1.151 ; val loss 1.118; lr 1.00e-09] 499/500: 100%|██████████| 168/168 [00:00<00:00, 1072.74it/s, train loss 0.700 ; val loss 1.118; lr 1.00e-09] 500/500: 100%|██████████| 168/168 [00:00<00:00, 1072.81it/s, train loss 1.337 ; val loss 1.118; lr 1.00e-09] ###Markdown Testing ###Code # for j, (x, y) in enumerate(val_loader): # model.eval() # preds = model(x.float().to(device)).squeeze(dim=1) # print(preds, y, sep='\n') # print(f"{'=' * 80}") test_dataset = pd.read_csv(test_data_path) test_dataset = test_dataset[test_dataset.columns[1:]] test_dataset = feature_process_pipeline.transform(test_dataset.copy()) test_dataset = test_dataset[selected_feature_idx[1:]] test_loader = DataLoader(COVID19Dataset(test_dataset.values, None), batch_size=16, shuffle=False) model.eval() preds_all = [] for x in test_loader: x = x.float().to(device) preds = model(x).detach().cpu().numpy().squeeze() preds_all.extend(preds) save_pred(preds_all, "./dl_selected_maxmin_normalized_feature.txt") ###Output _____no_output_____
Big-Data-Clusters/CU9/public/content/monitor-k8s/tsg098-get-replicasets.ipynb
###Markdown TSG098 - Get BDC replicasets (Kubernetes) Description Steps Common functionsDefine helper functions used in this notebook. ###Code # Define `run` function for transient fault handling, suggestions on error, and scrolling updates on Windows import sys import os import re import platform import shlex import shutil import datetime from subprocess import Popen, PIPE from IPython.display import Markdown retry_hints = {} # Output in stderr known to be transient, therefore automatically retry error_hints = {} # Output in stderr where a known SOP/TSG exists which will be HINTed for further help install_hint = {} # The SOP to help install the executable if it cannot be found def run(cmd, return_output=False, no_output=False, retry_count=0, base64_decode=False, return_as_json=False): """Run shell command, stream stdout, print stderr and optionally return output NOTES: 1. Commands that need this kind of ' quoting on Windows e.g.: kubectl get nodes -o jsonpath={.items[?(@.metadata.annotations.pv-candidate=='data-pool')].metadata.name} Need to actually pass in as '"': kubectl get nodes -o jsonpath={.items[?(@.metadata.annotations.pv-candidate=='"'data-pool'"')].metadata.name} The ' quote approach, although correct when pasting into Windows cmd, will hang at the line: `iter(p.stdout.readline, b'')` The shlex.split call does the right thing for each platform, just use the '"' pattern for a ' """ MAX_RETRIES = 5 output = "" retry = False # When running `azdata sql query` on Windows, replace any \n in """ strings, with " ", otherwise we see: # # ('HY090', '[HY090] [Microsoft][ODBC Driver Manager] Invalid string or buffer length (0) (SQLExecDirectW)') # if platform.system() == "Windows" and cmd.startswith("azdata sql query"): cmd = cmd.replace("\n", " ") # shlex.split is required on bash and for Windows paths with spaces # cmd_actual = shlex.split(cmd) # Store this (i.e. kubectl, python etc.) to support binary context aware error_hints and retries # user_provided_exe_name = cmd_actual[0].lower() # When running python, use the python in the ADS sandbox ({sys.executable}) # if cmd.startswith("python "): cmd_actual[0] = cmd_actual[0].replace("python", sys.executable) # On Mac, when ADS is not launched from terminal, LC_ALL may not be set, which causes pip installs to fail # with: # # UnicodeDecodeError: 'ascii' codec can't decode byte 0xc5 in position 4969: ordinal not in range(128) # # Setting it to a default value of "en_US.UTF-8" enables pip install to complete # if platform.system() == "Darwin" and "LC_ALL" not in os.environ: os.environ["LC_ALL"] = "en_US.UTF-8" # When running `kubectl`, if AZDATA_OPENSHIFT is set, use `oc` # if cmd.startswith("kubectl ") and "AZDATA_OPENSHIFT" in os.environ: cmd_actual[0] = cmd_actual[0].replace("kubectl", "oc") # To aid supportability, determine which binary file will actually be executed on the machine # which_binary = None # Special case for CURL on Windows. The version of CURL in Windows System32 does not work to # get JWT tokens, it returns "(56) Failure when receiving data from the peer". If another instance # of CURL exists on the machine use that one. (Unfortunately the curl.exe in System32 is almost # always the first curl.exe in the path, and it can't be uninstalled from System32, so here we # look for the 2nd installation of CURL in the path) if platform.system() == "Windows" and cmd.startswith("curl "): path = os.getenv('PATH') for p in path.split(os.path.pathsep): p = os.path.join(p, "curl.exe") if os.path.exists(p) and os.access(p, os.X_OK): if p.lower().find("system32") == -1: cmd_actual[0] = p which_binary = p break # Find the path based location (shutil.which) of the executable that will be run (and display it to aid supportability), this # seems to be required for .msi installs of azdata.cmd/az.cmd. (otherwise Popen returns FileNotFound) # # NOTE: Bash needs cmd to be the list of the space separated values hence shlex.split. # if which_binary == None: which_binary = shutil.which(cmd_actual[0]) # Display an install HINT, so the user can click on a SOP to install the missing binary # if which_binary == None: print(f"The path used to search for '{cmd_actual[0]}' was:") print(sys.path) if user_provided_exe_name in install_hint and install_hint[user_provided_exe_name] is not None: display(Markdown(f'HINT: Use [{install_hint[user_provided_exe_name][0]}]({install_hint[user_provided_exe_name][1]}) to resolve this issue.')) raise FileNotFoundError(f"Executable '{cmd_actual[0]}' not found in path (where/which)") else: cmd_actual[0] = which_binary start_time = datetime.datetime.now().replace(microsecond=0) print(f"START: {cmd} @ {start_time} ({datetime.datetime.utcnow().replace(microsecond=0)} UTC)") print(f" using: {which_binary} ({platform.system()} {platform.release()} on {platform.machine()})") print(f" cwd: {os.getcwd()}") # Command-line tools such as CURL and AZDATA HDFS commands output # scrolling progress bars, which causes Jupyter to hang forever, to # workaround this, use no_output=True # # Work around a infinite hang when a notebook generates a non-zero return code, break out, and do not wait # wait = True try: if no_output: p = Popen(cmd_actual) else: p = Popen(cmd_actual, stdout=PIPE, stderr=PIPE, bufsize=1) with p.stdout: for line in iter(p.stdout.readline, b''): line = line.decode() if return_output: output = output + line else: if cmd.startswith("azdata notebook run"): # Hyperlink the .ipynb file regex = re.compile(' "(.*)"\: "(.*)"') match = regex.match(line) if match: if match.group(1).find("HTML") != -1: display(Markdown(f' - "{match.group(1)}": "{match.group(2)}"')) else: display(Markdown(f' - "{match.group(1)}": "[{match.group(2)}]({match.group(2)})"')) wait = False break # otherwise infinite hang, have not worked out why yet. else: print(line, end='') if wait: p.wait() except FileNotFoundError as e: if install_hint is not None: display(Markdown(f'HINT: Use {install_hint} to resolve this issue.')) raise FileNotFoundError(f"Executable '{cmd_actual[0]}' not found in path (where/which)") from e exit_code_workaround = 0 # WORKAROUND: azdata hangs on exception from notebook on p.wait() if not no_output: for line in iter(p.stderr.readline, b''): try: line_decoded = line.decode() except UnicodeDecodeError: # NOTE: Sometimes we get characters back that cannot be decoded(), e.g. # # \xa0 # # For example see this in the response from `az group create`: # # ERROR: Get Token request returned http error: 400 and server # response: {"error":"invalid_grant",# "error_description":"AADSTS700082: # The refresh token has expired due to inactivity.\xa0The token was # issued on 2018-10-25T23:35:11.9832872Z # # which generates the exception: # # UnicodeDecodeError: 'utf-8' codec can't decode byte 0xa0 in position 179: invalid start byte # print("WARNING: Unable to decode stderr line, printing raw bytes:") print(line) line_decoded = "" pass else: # azdata emits a single empty line to stderr when doing an hdfs cp, don't # print this empty "ERR:" as it confuses. # if line_decoded == "": continue print(f"STDERR: {line_decoded}", end='') if line_decoded.startswith("An exception has occurred") or line_decoded.startswith("ERROR: An error occurred while executing the following cell"): exit_code_workaround = 1 # inject HINTs to next TSG/SOP based on output in stderr # if user_provided_exe_name in error_hints: for error_hint in error_hints[user_provided_exe_name]: if line_decoded.find(error_hint[0]) != -1: display(Markdown(f'HINT: Use [{error_hint[1]}]({error_hint[2]}) to resolve this issue.')) # Verify if a transient error, if so automatically retry (recursive) # if user_provided_exe_name in retry_hints: for retry_hint in retry_hints[user_provided_exe_name]: if line_decoded.find(retry_hint) != -1: if retry_count < MAX_RETRIES: print(f"RETRY: {retry_count} (due to: {retry_hint})") retry_count = retry_count + 1 output = run(cmd, return_output=return_output, retry_count=retry_count) if return_output: if base64_decode: import base64 return base64.b64decode(output).decode('utf-8') else: return output elapsed = datetime.datetime.now().replace(microsecond=0) - start_time # WORKAROUND: We avoid infinite hang above in the `azdata notebook run` failure case, by inferring success (from stdout output), so # don't wait here, if success known above # if wait: if p.returncode != 0: raise SystemExit(f'Shell command:\n\n\t{cmd} ({elapsed}s elapsed)\n\nreturned non-zero exit code: {str(p.returncode)}.\n') else: if exit_code_workaround !=0 : raise SystemExit(f'Shell command:\n\n\t{cmd} ({elapsed}s elapsed)\n\nreturned non-zero exit code: {str(exit_code_workaround)}.\n') print(f'\nSUCCESS: {elapsed}s elapsed.\n') if return_output: if base64_decode: import base64 return base64.b64decode(output).decode('utf-8') else: return output # Hints for tool retry (on transient fault), known errors and install guide # retry_hints = {'azdata': ['Endpoint sql-server-master does not exist', 'Endpoint livy does not exist', 'Failed to get state for cluster', 'Endpoint webhdfs does not exist', 'Adaptive Server is unavailable or does not exist', 'Error: Address already in use', 'Login timeout expired (0) (SQLDriverConnect)', 'SSPI Provider: No Kerberos credentials available', ], 'kubectl': ['A connection attempt failed because the connected party did not properly respond after a period of time, or established connection failed because connected host has failed to respond', ], 'python': [ ], } error_hints = {'azdata': [['Please run \'azdata login\' to first authenticate', 'SOP028 - azdata login', '../common/sop028-azdata-login.ipynb'], ['The token is expired', 'SOP028 - azdata login', '../common/sop028-azdata-login.ipynb'], ['Reason: Unauthorized', 'SOP028 - azdata login', '../common/sop028-azdata-login.ipynb'], ['Max retries exceeded with url: /api/v1/bdc/endpoints', 'SOP028 - azdata login', '../common/sop028-azdata-login.ipynb'], ['Look at the controller logs for more details', 'TSG027 - Observe cluster deployment', '../diagnose/tsg027-observe-bdc-create.ipynb'], ['provided port is already allocated', 'TSG062 - Get tail of all previous container logs for pods in BDC namespace', '../log-files/tsg062-tail-bdc-previous-container-logs.ipynb'], ['Create cluster failed since the existing namespace', 'SOP061 - Delete a big data cluster', '../install/sop061-delete-bdc.ipynb'], ['Failed to complete kube config setup', 'TSG067 - Failed to complete kube config setup', '../repair/tsg067-failed-to-complete-kube-config-setup.ipynb'], ['Data source name not found and no default driver specified', 'SOP069 - Install ODBC for SQL Server', '../install/sop069-install-odbc-driver-for-sql-server.ipynb'], ['Can\'t open lib \'ODBC Driver 17 for SQL Server', 'SOP069 - Install ODBC for SQL Server', '../install/sop069-install-odbc-driver-for-sql-server.ipynb'], ['Control plane upgrade failed. Failed to upgrade controller.', 'TSG108 - View the controller upgrade config map', '../diagnose/tsg108-controller-failed-to-upgrade.ipynb'], ['NameError: name \'azdata_login_secret_name\' is not defined', 'SOP013 - Create secret for azdata login (inside cluster)', '../common/sop013-create-secret-for-azdata-login.ipynb'], ['ERROR: No credentials were supplied, or the credentials were unavailable or inaccessible.', 'TSG124 - \'No credentials were supplied\' error from azdata login', '../repair/tsg124-no-credentials-were-supplied.ipynb'], ['Please accept the license terms to use this product through', 'TSG126 - azdata fails with \'accept the license terms to use this product\'', '../repair/tsg126-accept-license-terms.ipynb'], ], 'kubectl': [['no such host', 'TSG010 - Get configuration contexts', '../monitor-k8s/tsg010-get-kubernetes-contexts.ipynb'], ['No connection could be made because the target machine actively refused it', 'TSG056 - Kubectl fails with No connection could be made because the target machine actively refused it', '../repair/tsg056-kubectl-no-connection-could-be-made.ipynb'], ], 'python': [['Library not loaded: /usr/local/opt/unixodbc', 'SOP012 - Install unixodbc for Mac', '../install/sop012-brew-install-odbc-for-sql-server.ipynb'], ['WARNING: You are using pip version', 'SOP040 - Upgrade pip in ADS Python sandbox', '../install/sop040-upgrade-pip.ipynb'], ], } install_hint = {'azdata': [ 'SOP063 - Install azdata CLI (using package manager)', '../install/sop063-packman-install-azdata.ipynb' ], 'kubectl': [ 'SOP036 - Install kubectl command line interface', '../install/sop036-install-kubectl.ipynb' ], } print('Common functions defined successfully.') ###Output _____no_output_____ ###Markdown Get the Kubernetes namespace for the big data clusterGet the namespace of the Big Data Cluster use the kubectl command lineinterface .**NOTE:**If there is more than one Big Data Cluster in the target Kubernetescluster, then either:- set \[0\] to the correct value for the big data cluster.- set the environment variable AZDATA_NAMESPACE, before starting Azure Data Studio. ###Code # Place Kubernetes namespace name for BDC into 'namespace' variable if "AZDATA_NAMESPACE" in os.environ: namespace = os.environ["AZDATA_NAMESPACE"] else: try: namespace = run(f'kubectl get namespace --selector=MSSQL_CLUSTER -o jsonpath={{.items[0].metadata.name}}', return_output=True) except: from IPython.display import Markdown print(f"ERROR: Unable to find a Kubernetes namespace with label 'MSSQL_CLUSTER'. SQL Server Big Data Cluster Kubernetes namespaces contain the label 'MSSQL_CLUSTER'.") display(Markdown(f'HINT: Use [TSG081 - Get namespaces (Kubernetes)](../monitor-k8s/tsg081-get-kubernetes-namespaces.ipynb) to resolve this issue.')) display(Markdown(f'HINT: Use [TSG010 - Get configuration contexts](../monitor-k8s/tsg010-get-kubernetes-contexts.ipynb) to resolve this issue.')) display(Markdown(f'HINT: Use [SOP011 - Set kubernetes configuration context](../common/sop011-set-kubernetes-context.ipynb) to resolve this issue.')) raise print(f'The SQL Server Big Data Cluster Kubernetes namespace is: {namespace}') ###Output _____no_output_____ ###Markdown Run kubectl to display the replica sets ###Code run(f"kubectl get replicaset -n {namespace} -o wide") print("Notebook execution is complete.") ###Output _____no_output_____
Practical_NLP_in_PyTorch-master/allennlp/elmo_text_classification.ipynb
###Markdown Set random seed manually to replicate results ###Code torch.manual_seed(config.seed) ###Output _____no_output_____ ###Markdown Load Data ###Code from allennlp.data.vocabulary import Vocabulary from allennlp.data.dataset_readers import DatasetReader ###Output _____no_output_____ ###Markdown Prepare dataset ###Code label_cols = ["toxic", "severe_toxic", "obscene", "threat", "insult", "identity_hate"] from allennlp.data.fields import TextField, MetadataField, ArrayField class JigsawDatasetReader(DatasetReader): def __init__(self, tokenizer: Callable[[str], List[str]]=lambda x: x.split(), token_indexers: Dict[str, TokenIndexer] = None, max_seq_len: Optional[int]=config.max_seq_len) -> None: super().__init__(lazy=False) self.tokenizer = tokenizer self.token_indexers = token_indexers or {"tokens": SingleIdTokenIndexer()} self.max_seq_len = max_seq_len @overrides def text_to_instance(self, tokens: List[Token], id: str=None, labels: np.ndarray=None) -> Instance: sentence_field = TextField(tokens, self.token_indexers) fields = {"tokens": sentence_field} id_field = MetadataField(id) fields["id"] = id_field if labels is None: labels = np.zeros(len(label_cols)) label_field = ArrayField(array=labels) fields["label"] = label_field return Instance(fields) @overrides def _read(self, file_path: str) -> Iterator[Instance]: df = pd.read_csv(file_path) if config.testing: df = df.head(1000) for i, row in df.iterrows(): yield self.text_to_instance( [Token(x) for x in self.tokenizer(row["comment_text"])], row["id"], row[label_cols].values, ) ###Output _____no_output_____ ###Markdown Prepare token handlers We will use the spacy tokenizer here ###Code from allennlp.data.tokenizers.word_splitter import SpacyWordSplitter from allennlp.data.token_indexers.elmo_indexer import ELMoCharacterMapper, ELMoTokenCharactersIndexer # the token indexer is responsible for mapping tokens to integers token_indexer = ELMoTokenCharactersIndexer() def tokenizer(x: str): return [w.text for w in SpacyWordSplitter(language='en_core_web_sm', pos_tags=False).split_words(x)[:config.max_seq_len]] reader = JigsawDatasetReader( tokenizer=tokenizer, token_indexers={"tokens": token_indexer} ) train_ds, test_ds = (reader.read(DATA_ROOT / fname) for fname in ["train.csv", "test_proced.csv"]) val_ds = None len(train_ds) train_ds[:10] vars(train_ds[0].fields["tokens"]) ###Output _____no_output_____ ###Markdown Prepare vocabulary We don't need to build the vocab: all that is handled by the token indexer ###Code vocab = Vocabulary() ###Output _____no_output_____ ###Markdown Prepare iterator The iterator is responsible for batching the data and preparing it for input into the model. We'll use the BucketIterator that batches text sequences of smilar lengths together. ###Code from allennlp.data.iterators import BucketIterator iterator = BucketIterator(batch_size=config.batch_size, sorting_keys=[("tokens", "num_tokens")], ) ###Output _____no_output_____ ###Markdown We need to tell the iterator how to numericalize the text data. We do this by passing the vocabulary to the iterator. This step is easy to forget so be careful! ###Code iterator.index_with(vocab) ###Output _____no_output_____ ###Markdown Read sample ###Code batch = next(iter(iterator(train_ds))) batch batch["tokens"]["tokens"] batch["tokens"]["tokens"].shape ###Output _____no_output_____ ###Markdown Prepare Model ###Code import torch import torch.nn as nn import torch.optim as optim from allennlp.modules.seq2vec_encoders import Seq2VecEncoder, PytorchSeq2VecWrapper from allennlp.nn.util import get_text_field_mask from allennlp.models import Model from allennlp.modules.text_field_embedders import TextFieldEmbedder class BaselineModel(Model): def __init__(self, word_embeddings: TextFieldEmbedder, encoder: Seq2VecEncoder, out_sz: int=len(label_cols)): super().__init__(vocab) self.word_embeddings = word_embeddings self.encoder = encoder self.projection = nn.Linear(self.encoder.get_output_dim(), out_sz) self.loss = nn.BCEWithLogitsLoss() def forward(self, tokens: Dict[str, torch.Tensor], id: Any, label: torch.Tensor) -> torch.Tensor: mask = get_text_field_mask(tokens) embeddings = self.word_embeddings(tokens) state = self.encoder(embeddings, mask) class_logits = self.projection(state) output = {"class_logits": class_logits} output["loss"] = self.loss(class_logits, label) return output ###Output _____no_output_____ ###Markdown Prepare embeddings ###Code from allennlp.modules.text_field_embedders import BasicTextFieldEmbedder from allennlp.modules.token_embedders import ElmoTokenEmbedder options_file = 'https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/2x1024_128_2048cnn_1xhighway/elmo_2x1024_128_2048cnn_1xhighway_options.json' weight_file = 'https://s3-us-west-2.amazonaws.com/allennlp/models/elmo/2x1024_128_2048cnn_1xhighway/elmo_2x1024_128_2048cnn_1xhighway_weights.hdf5' elmo_embedder = ElmoTokenEmbedder(options_file, weight_file) word_embeddings = BasicTextFieldEmbedder({"tokens": elmo_embedder}) from allennlp.modules.seq2vec_encoders import PytorchSeq2VecWrapper encoder: Seq2VecEncoder = PytorchSeq2VecWrapper(nn.LSTM(word_embeddings.get_output_dim(), config.hidden_sz, bidirectional=True, batch_first=True)) ###Output _____no_output_____ ###Markdown Notice how simple and modular the code for initializing the model is. All the complexity is delegated to each component. ###Code model = BaselineModel( word_embeddings, encoder, ) if USE_GPU: model.cuda() else: model ###Output _____no_output_____ ###Markdown Basic sanity checks ###Code batch = nn_util.move_to_device(batch, 0 if USE_GPU else -1) tokens = batch["tokens"] labels = batch tokens mask = get_text_field_mask(tokens) mask embeddings = model.word_embeddings(tokens) state = model.encoder(embeddings, mask) class_logits = model.projection(state) class_logits model(**batch) loss = model(**batch)["loss"] loss loss.backward() [x.grad for x in list(model.encoder.parameters())] ###Output _____no_output_____ ###Markdown Train ###Code optimizer = optim.Adam(model.parameters(), lr=config.lr) from allennlp.training.trainer import Trainer trainer = Trainer( model=model, optimizer=optimizer, iterator=iterator, train_dataset=train_ds, cuda_device=0 if USE_GPU else -1, num_epochs=config.epochs, ) metrics = trainer.train() ###Output 02/07/2019 17:36:24 - INFO - allennlp.training.trainer - Beginning training. 02/07/2019 17:36:24 - INFO - allennlp.training.trainer - Epoch 0/1 02/07/2019 17:36:24 - INFO - allennlp.training.trainer - Peak CPU memory usage MB: 1255.145472 02/07/2019 17:36:24 - INFO - allennlp.training.trainer - Training loss: 0.6855 ||: 100%|██████████| 5/5 [00:36<00:00, 8.01s/it] 02/07/2019 17:37:01 - INFO - allennlp.training.trainer - Training | Validation 02/07/2019 17:37:01 - INFO - allennlp.training.trainer - loss | 0.686 | N/A 02/07/2019 17:37:01 - INFO - allennlp.training.trainer - cpu_memory_MB | 1255.145 | N/A 02/07/2019 17:37:01 - INFO - allennlp.training.trainer - Epoch duration: 00:00:36 02/07/2019 17:37:01 - INFO - allennlp.training.trainer - Estimated training time remaining: 0:00:36 02/07/2019 17:37:01 - INFO - allennlp.training.trainer - Epoch 1/1 02/07/2019 17:37:01 - INFO - allennlp.training.trainer - Peak CPU memory usage MB: 3154.649088 02/07/2019 17:37:01 - INFO - allennlp.training.trainer - Training loss: 0.6464 ||: 100%|██████████| 5/5 [00:51<00:00, 11.81s/it] 02/07/2019 17:37:52 - INFO - allennlp.training.trainer - Training | Validation 02/07/2019 17:37:52 - INFO - allennlp.training.trainer - loss | 0.646 | N/A 02/07/2019 17:37:52 - INFO - allennlp.training.trainer - cpu_memory_MB | 3154.649 | N/A 02/07/2019 17:37:52 - INFO - allennlp.training.trainer - Epoch duration: 00:00:51 ###Markdown Generating Predictions ###Code from allennlp.data.iterators import DataIterator from tqdm import tqdm from scipy.special import expit # the sigmoid function def tonp(tsr): return tsr.detach().cpu().numpy() class Predictor: def __init__(self, model: Model, iterator: DataIterator, cuda_device: int=-1) -> None: self.model = model self.iterator = iterator self.cuda_device = cuda_device def _extract_data(self, batch) -> np.ndarray: out_dict = self.model(**batch) return expit(tonp(out_dict["class_logits"])) def predict(self, ds: Iterable[Instance]) -> np.ndarray: pred_generator = self.iterator(ds, num_epochs=1, shuffle=False) self.model.eval() pred_generator_tqdm = tqdm(pred_generator, total=self.iterator.get_num_batches(ds)) preds = [] with torch.no_grad(): for batch in pred_generator_tqdm: batch = nn_util.move_to_device(batch, self.cuda_device) preds.append(self._extract_data(batch)) return np.concatenate(preds, axis=0) from allennlp.data.iterators import BasicIterator # iterate over the dataset without changing its order seq_iterator = BasicIterator(batch_size=64) seq_iterator.index_with(vocab) predictor = Predictor(model, seq_iterator, cuda_device=0 if USE_GPU else -1) train_preds = predictor.predict(train_ds) test_preds = predictor.predict(test_ds) ###Output 100%|██████████| 5/5 [01:44<00:00, 18.25s/it] 100%|██████████| 4/4 [00:50<00:00, 13.33s/it]
examples/example_cylinder_models.ipynb
###Markdown Cylinder Models In this section, we describe models of intra-axonal diffusion.In all cases, the intra-axonal diffusion is represented using axially symmetric cylinder models with $\boldsymbol{\mu}\in\mathbb{S}^2$ the orientation parallel to the cylinder axis.The three-dimensional diffusion signal in these models is given as the separable product of (free) parallel and restricted perpendicular diffusion *(Assaf et al. 2004)*.This means that the three-dimensional signal is given by\begin{equation} E_{\textrm{intra}}(\textbf{q},\Delta,\delta,\lambda_\parallel,R) = E_\parallel(q_\parallel,\Delta,\delta,\lambda_\parallel)\times E_\perp(q_\perp,\Delta,\delta,R)\end{equation}with parallel q-value $q_\parallel=\textbf{q}^T\boldsymbol{\mu}$, perpendicular q-value $q_\perp=(\textbf{q}^T\textbf{q}-(\textbf{q}^T\boldsymbol{\mu})^2))^{1/2}$, parallel diffusivity $\lambda_\parallel>0$ and cylinder radius $R>0$[mm]. The parallel signal is usually given by Gaussian diffusion as\begin{equation}E_\parallel(q_\parallel,\Delta,\delta,\lambda_\parallel)=\exp(-4\pi^2q_\parallel^2\lambda_\parallel(\Delta-\delta/3)).\end{equation}The perpendicular signal $E_\perp$ is described using various cylinder models.In the rest of this section, we start with describing the simplest, having the strongest tissue assumptions (C1), and more towards more general models (C4). Stick: C1The simplest model for intra-axonal diffusion is the ``Stick'' -- a cylinder with zero radius *(Behrens et al. 2003)*.The Stick model assumes that, because axon diameters are very small, the perpendicular diffusion attenuation inside these axons is negligible compared to the overall signal attenuation.The perpendicular diffusion coefficient is therefore be approximated by zero, so the perpendicular signal attenuation is always equal to one as $E_\perp=1$.Inserting this definition into the equation above leads to the simple signal representation\begin{equation}E_{\textrm{Stick}}(b,\textbf{n},\boldsymbol{\mu},\lambda_\parallel)=\exp(-b\lambda_\parallel(\textbf{n}^T\boldsymbol{\mu})^2),\end{equation}which is the same as a DTI Tensor with $\lambda_\parallel=\lambda_1$ and $\lambda_\perp=\lambda_2=\lambda_3=0$.Despite its simplicity, it turns out approximating axons as Sticks is quite reasonable at clinical gradient strengths *(Burcaw et al. 2015)*.In fact, the Stick is used in the most state-of-the-art microstructure models modeling axonal dispersion *(Tariq et al. 2016, Kaden et al. 2016)*. ###Code from dmipy.signal_models import cylinder_models from dmipy.core.acquisition_scheme import acquisition_scheme_from_bvalues import numpy as np stick = cylinder_models.C1Stick(mu=[0, 0], lambda_par=1.7e-9) Nsamples = 100 bvecs_parallel = np.tile(np.r_[0., 0., 1.], (Nsamples, 1)) bvecs_perpendicular = np.tile(np.r_[0., 1., 0.], (Nsamples, 1)) bvals = np.linspace(0, 2e9, Nsamples) delta = 0.01 Delta = 0.03 scheme_parallel = acquisition_scheme_from_bvalues(bvals, bvecs_parallel, delta, Delta) scheme_perpendicular = acquisition_scheme_from_bvalues(bvals, bvecs_perpendicular, delta, Delta) Estick_parallel = stick(scheme_parallel) Estick_perpendicular = stick(scheme_perpendicular) import matplotlib.pyplot as plt %matplotlib inline plt.plot(bvals, Estick_parallel, label="Stick $E_\parallel$") plt.plot(bvals, Estick_perpendicular, label="Stick $E_\perp$") plt.legend(fontsize=12) plt.title("Signal attenuation Stick", fontsize=17) plt.xlabel("b-value [s/m$^2$]", fontsize=15) plt.ylabel("Signal Attenuation", fontsize=15); ###Output _____no_output_____ ###Markdown Stejskal-Tanner Cylinder: C2In reality, axons have a non-zero radius.To account for this, different cylinder models for perpendicular diffusion have been proposed for different combinations of PGSE acquisition parameters.The simplest is the Stejskal-Tanner approximation of the cylinder *(Soderman and Johnson 1995)*, which has the hardest assumptions on the PGSE protocol.First, it assumes that pulse length $\delta$ is so short that no diffusion occurs during the application of the gradient pulse ($\delta\rightarrow0$).Second, it assumes that pulse separation $\Delta$ is long enough for diffusion with intra-cylindrical diffusion coefficient $D$ to be restricted inside a cylinder of radius $R$ ($\Delta\gg R^2/D$).Within these assumptions, the perpendicular, intra-cylindrical signal attenuation is given as\begin{equation} E_\perp(q,R|\delta\rightarrow0,\Delta\gg R^2/D)=\left(\frac{J_1(2\pi q R)}{\pi q R}\right)^2,\end{equation}where we use the ``$|$'' to separate function parameters from model assumptions, and $J_1$ is a Bessel function of the first kind. Taking $\lim_{R\rightarrow0}$ of this equation simplifies the three-dimensional Soderman model to the Stick model. ###Code from dmipy.core.acquisition_scheme import acquisition_scheme_from_qvalues stesjskal_tanner = cylinder_models.C2CylinderStejskalTannerApproximation(mu=[0, 0], lambda_par=1.7e-9) Nsamples = 100 bvecs_perpendicular = np.tile(np.r_[0., 1., 0.], (Nsamples, 1)) qvals = np.linspace(0, 3e5, Nsamples) delta = 0.01 Delta = 0.03 scheme_perpendicular = acquisition_scheme_from_qvalues(qvals, bvecs_perpendicular, delta, Delta) for diameter in np.linspace(1e-6, 1e-5, 5): plt.plot(qvals, stesjskal_tanner(scheme_perpendicular, diameter=diameter), label="Diameter="+str(1e6 * diameter)+"$\mu m$") plt.legend(fontsize=12) plt.title("Stesjkal-Tanner attenuation over cylinder diameter", fontsize=17) plt.xlabel("perpendicular q-value [1/m]", fontsize=15) plt.ylabel("E(q$_\perp$)", fontsize=15); ###Output _____no_output_____ ###Markdown Callaghan Cylinder: C3The ``Callaghan'' model relaxes Soderman's $\Delta\gg R^2/D$ assumption to allow for unrestricted diffusion at shorter pulse separation $\Delta$ *(Callaghan 1995)*. In this case, the perpendicular signal attenuation is given as\begin{align} E_\perp(q,\Delta,R|\delta\rightarrow0)&=\sum^\infty_k4\exp(-\beta^2_{0k}D\Delta/R^2)\times \frac{\left((2\pi qR)J_0^{'}(2\pi qR)\right)^2}{\left((2\pi qR)^2-\beta_{0k}^2\right)^2}\nonumber\\ &+\sum^\infty_{nk}8\exp(-\beta^2_{nk}D\Delta/R^2)\times \frac{\beta^2_{nk}}{\left(\beta_{nk}^2-n^2\right)}\times\frac{\left((2\pi qR)J_n^{'}(2\pi qR)\right)^2}{\left((2\pi qR)^2-\beta_{nk}^2\right)^2}\end{align}where $J_n^{'}$ are the derivatives of the $n^{th}$-order Bessel function and $\beta_{nk}$ are the arguments that result in zero-crossings. Taking $\lim_{\Delta\rightarrow\infty}$ of this equation simplifies the Callaghan model to the Soderman model. The Callaghan model has been used to estimate the axon diameter distribution in the multi-compartment AxCaliber approach *(Assaf et al. 2008)*. However, the authors also mention that the perpendicular diffusion is likely already restricted for realistic axon diameters ($<2\mu$m) *(Aboitiz et al. 1992)* for the shortest possible $\Delta$ in PGSE protocols (${\sim}10$ms). This limits the added value of the Callaghan model over the Soderman model in axon diameter estimation. ###Code callaghan = cylinder_models.C3CylinderCallaghanApproximation(mu=[0, 0], lambda_par=1e-7) Nsamples = 100 bvecs_perpendicular = np.tile(np.r_[0., 1., 0.], (Nsamples, 1)) qvals = np.linspace(0, 3e5, Nsamples) delta = 0.001 Delta = 0.001 scheme_perpendicular = acquisition_scheme_from_qvalues(qvals, bvecs_perpendicular, delta, Delta) plt.plot(qvals, np.exp(-scheme_perpendicular.bvalues * 1.7e-9), label="Free Diffusion", c='r', ls='--') for Delta in [0.001, 0.0025, 0.015]: scheme_perpendicular = acquisition_scheme_from_qvalues(qvals, bvecs_perpendicular, delta, Delta) plt.plot(qvals, callaghan(scheme_perpendicular, diameter=10e-6), label='Callaghan Delta='+str(1e3 * Delta)+'ms') plt.plot(qvals, stesjskal_tanner(scheme_perpendicular, diameter=10e-6), label="Soderman", c='blue', ls='--') plt.legend() ###Output _____no_output_____ ###Markdown For a big cylinder of 10$\mu$ diameter, it can be seen that free diffusion and the Callaghan model are very similar for an extremely short pulse separation of 1ms. The signal is already becoming significantly restricted at 2.5ms, and at 15ms the Callaghan and Soderman approximations have converged (completely restricted).This shows the problem of using the Callaghan model for axon diameter estimation - for axons of diameter 0.1-2 $\mu$m the diffusion is already restricted around 1 or 2 ms, meaning there is no signal contrast for intra-axonal diffusion when Delta varies. Gaussian Phase Cylinder: C4The last cylinder model generalization we discuss is the "Van Gelderen" model *(VanGelderen et al. 1994)*, which relaxes the last $\delta\rightarrow0$ assumption to allow for finite pulse length $\delta$. This model is based on the ``Neuman'' model *(Neuman 1974)*, which assumes Gaussian diffusion during the gradient pulse. In this case, the signal attenuation is given as\begin{equation} E_\perp(q,\Delta,\delta,R)=-8\pi^2q^2\sum^\infty_{m=1}\dfrac{\left[2Da_m^2\delta-2 + 2e^{-Da_m^2\delta} + 2e^{-Da_m^2\Delta}-e^{-Da_m^2(\Delta-\delta)}-e^{-Da_m^2(\Delta-\delta)}\right]}{\delta^2D^2a_m^6(R^2a_m^2-1)}\end{equation}where $a_m$ are roots of the equation $J_1^{'}(a_mR)=0$, with $J_1^{'}$ again the derivative of the Bessel function of the first kind, and $D$ is the intra-axonal diffusivity.According to *(Neuman 1974)*, taking the double $\lim_{(\delta,\Delta)\rightarrow(0,\infty)}$ of the equation above should simplify the Van Gelderen model to the Soderman Model, although he does not show this explicitly.For its generality, the Van Gelderen model has been used in most recent studies regarding in-vivo axon diameter estimation *(Huang et al. 2015, Ferizi et al. 2015, De Santis et al. 2016 )*. ###Code vangelderen = cylinder_models.C4CylinderGaussianPhaseApproximation() ###Output _____no_output_____
notebooks/Upwelling/ATW_relaxation_Susan.ipynb
###Markdown ATW relaxation notebook ###Code import numpy as np import matplotlib.pyplot as plt import warnings from copy import deepcopy # Global constants f = 1e-4 # [s-1] g = 9.81 # [m s-2] %matplotlib inline plt.rcParams['font.size'] = 14 warnings.simplefilter('ignore') ###Output _____no_output_____ ###Markdown Analytical solutionStart with the linearized, steady state shallow water equations with linear friction and longshore windstress. Assume cross-shore geostrophic balance.\begin{align}f\mathbf{k}\times\mathbf{u} & = -g\nabla\eta + \frac{1}{h}\left(\tau_y - \mu v\right)\hat{\jmath} \tag{1a} \\0 & = \nabla\cdot h\mathbf{u} \tag{1b}\end{align}Taking the curl of (1a) and solving for $\eta$ gives the the Arrested Topography Wave (ATW) of Csanady (1978 *JPO*). I have oriented the problem to $x\to-\infty$ offshore such that $\frac{\partial h}{\partial x} = -s$.$$\frac{\partial^2\eta}{\partial x^2} - \frac{1}{\kappa}\frac{\partial\eta}{\partial y} = 0, \hspace{0.5cm} \frac{1}{\kappa} = \frac{fs}{\mu}\tag{2}$$The coastal boundary condition (obtained from 1a) requires $u \to 0$ and $h \to 0$$$\frac{\partial\eta}{\partial x}(0, y) = \frac{\tau_yf}{\mu g} = q_0 \tag{3}$$Equation (2) is analogous to a constant heat flux boundary condition. The solution is given by Carslaw and Jaeger 1959 (p. 112)$$\eta(x, y) = \frac{\kappa q_0y}{L} + q_0L\left\{\frac{3(x + L)^2 - L^2}{6L^2} - \frac{2}{\pi^2}\sum_{n=1}^\infty\frac{(-1)^n}{n^2}\exp\left(\frac{-\kappa n^2\pi^2y}{L^2}\right)\cos\left(\frac{n\pi(x + L)}{L}\right)\right\} \tag{4}$$which, as $y\to\infty$, reduces to$$\eta(x, y) = \frac{\kappa q_0y}{L} + q_0L\frac{3(x + L)^2 - L^2}{6L^2} \tag{5}$$ Calculate $\eta$ according to equation (5) ###Code def calc_eta(x, y, L, kappa, q_0): """Calculate eta according to equation 5 """ return kappa * q_0 * y / L + q_0 * L * (3 * (x + L)**2 - L**2) / (6 * L**2) ###Output _____no_output_____ ###Markdown Find $\eta$ given problem parameters ###Code # Constants L = 1e3 # Slope width [m] tau_y = -1e-4 # Kinematic wind stress [m2 s-2] mu = 1e-2 # Linear friction coefficient [s-1] s = 1 # Shelf slope [dimensionless] # Terms (heat equation analogues) kappa = mu / (f * s) # 'Diffusivity' of eta q_0 = tau_y * f / (mu * g) # 'Flux' of eta through boundary print(q_0) print(kappa) # Coordinates dL = L * 1e-2 xi = np.arange(-L, 0, dL) # x-direction, second coordinate yi = np.arange(0, L, dL) # y-direction, first coordinate x, y = np.meshgrid(xi, yi) # Solution eta = calc_eta(x, y, L, kappa, q_0) ###Output -1.0193679918450561e-07 100.0 ###Markdown Plot $\eta$ solution ###Code # Plot eta fig, ax = plt.subplots(1, 1, figsize=(10, 10)) ax.contour(xi/L, yi/L, eta, colors='k') for tick in np.arange(0, 1, 0.015): ax.plot([0, 0.005], [tick, tick+0.005], 'k-', clip_on=False) ax.set_xlabel('$\longleftarrow$ $X/L$') ax.set_ylabel('$\longleftarrow$ $Y/L$') ax.xaxis.set_ticks([-1, 0]) ax.yaxis.set_ticks([0, 1]) ax.xaxis.set_ticklabels(['$-L$', 0]) ax.yaxis.set_ticklabels([0, '$L$']) ax.tick_params(direction='out', pad=8) ax.set_xlim([0, -1]) ax.set_ylim([1, 0]) ax.text(0.02, 0.05, 'Low $\eta$', transform=ax.transAxes) ax.text(0.85, 0.9, 'High $\eta$', transform=ax.transAxes) ax.text(0.03, 0.46, '$\\tau_y$', transform=ax.transAxes) ax.arrow(0.04, 0.5, 0, 0.1, transform=ax.transAxes, head_width=0.01, facecolor='k') ax.set_title('Cross-shelf bottom slope (ATW) solution') plt.show() ###Output _____no_output_____ ###Markdown Relaxation solutionThree schemes:Centered difference$$r_{i, j}^{(n)} = \frac{\eta_{i, j+1}^{(n)} - \eta_{i, j-1}^{(n)}}{2\Delta y} - \kappa\frac{\eta_{i+1, j}^{(n)} - 2\eta_{i, j}^{(n)} + \eta_{i-1, j}^{(n)}}{\Delta x^2}$$$$\eta_{i, j}^{(n+1)} = \eta_{i, j}^{(n)} - \frac{\mu\Delta x^2}{2\kappa}r_{i, j}^{(n)}$$Upstream Euler$$r_{i, j}^{(n)} = \frac{\eta_{i, j+1}^{(n)} - \eta_{i, j}^{(n)}}{\Delta y} - \kappa\frac{\eta_{i+1, j}^{(n)} - 2\eta_{i, j}^{(n)} + \eta_{i-1, j}^{(n)}}{\Delta x^2}$$$$\eta_{i, j}^{(n+1)} = \eta_{i, j}^{(n)} - \frac{\mu}{\left(\frac{2\kappa}{\Delta x} - 1\right)}r_{i, j}^{(n)}$$Downstream Euler$$r_{i, j}^{(n)} = \frac{\eta_{i, j}^{(n)} - \eta_{i, j-1}^{(n)}}{\Delta y} - \kappa\frac{\eta_{i+1, j}^{(n)} - 2\eta_{i, j}^{(n)} + \eta_{i-1, j}^{(n)}}{\Delta x^2}$$$$\eta_{i, j}^{(n+1)} = \eta_{i, j}^{(n)} - \frac{\mu}{\left(\frac{2\kappa}{\Delta x} + 1\right)}r_{i, j}^{(n)}$$Only the downstream Euler is stable. Find $\eta$ by relaxation ###Code # Find phi by relaxation # Parameters M = eta.shape[0] # matrix size mu = 1 # SOR convergence parameter TOL = 1e-4 # Convergence tolerance dissipation = 0. # Allocate arrays # Solution eta_soln = calc_eta(x, y, L, kappa, q_0) eta_next = np.copy(eta_soln) # getting the boundary conditions correct here eta = np.zeros(eta.shape) # start from zero to show this is working res = np.zeros(eta.shape) # Make figure array fig, axs = plt.subplots(1, 3, figsize=(17, 6)) N=100 # Relaxation loop for n in range(N): for i in range(1, M-1): # Longshore step for j in range(2, M-1): # Cross-shore step : start from 2 to preserve gradient boundary condition #Downstream Euler : note the switch in i and j, i is dy, j is dx res[i, j] = (eta[i, j] - eta[i-1, j]) / (dL) - kappa * (eta[i, j+1] - 2 * eta[i, j] + eta[i, j-1]) / dL**2 eta_next[i, j] = eta[i, j] - mu / (2 * kappa / dL + 1) * res[i, j] eta = eta_next # move this into the loop for faster convergence if dL**2 * np.max(abs(res)) / np.max(abs(eta)) < TOL and n > 5: # n > 5 just because I'm starting from 0. print('done', n) break # Plot results mesh = axs[0].pcolormesh(xi/L, yi/L, eta_soln) fig.colorbar(mesh, ax=axs[0]) mesh = axs[1].contour(xi/L, yi/L, res, colors='b') fig.colorbar(mesh, ax=axs[1]) mesh=axs[2].pcolormesh(xi/L, yi/L, eta_next) fig.colorbar(mesh, ax=axs[2]) for ax in axs: ax.set_xlim([0, -1]) ax.set_ylim([1, 0]) ###Output _____no_output_____
notebooks/lecture_6.ipynb
###Markdown Data Loading and Storage Accessing data is a necessary first step for using most of the tools in this book. I’mgoing to be focused on data input and output using pandas, though there are numeroustools in other libraries to help with reading and writing data in various formats.Input and output typically falls into a few main categories: reading text files and othermore efficient on-disk formats, loading data from databases, and interacting with networksources like web APIs. ###Code import numpy as np import pandas as pd np.random.seed(12345) import matplotlib.pyplot as plt plt.rc('figure', figsize=(10, 6)) np.set_printoptions(precision=4, suppress=True) ###Output _____no_output_____ ###Markdown Reading and Writing Data in Text Formatpandas features a number of functions for reading tabular data as a DataFrameobject. read_csv and read_table are typically used the most. ###Code !cat examples/ex1.csv ###Output a,b,c,d,message 1,2,3,4,hello 5,6,7,8,world 9,10,11,12,foo ###Markdown Because of how messy data in the real world can be, some of the data loading functions(especially read_csv) have grown very complex in their options over time. It’snormal to feel overwhelmed by the number of different parameters (read_csv hasover 50 as of this writing). The online pandas documentation has many examplesabout how each of them works, so if you’re struggling to read a particular file, theremight be a similar enough example to help you find the right parameters.Handling dates and other custom types can require extra effort. Let’s start with asmall comma-separated (CSV) text file: ###Code df = pd.read_csv('examples/ex1.csv') df ###Output _____no_output_____ ###Markdown We could also have used read_table and specified the delimiter: ###Code pd.read_table('examples/ex1.csv', sep=',') ###Output _____no_output_____ ###Markdown A file will not always have a header row. ###Code !cat examples/ex2.csv ###Output _____no_output_____ ###Markdown To read this file, you have a couple of options. You can allow pandas to assign defaultcolumn names, or you can specify names yourself: ###Code pd.read_csv('examples/ex2.csv', header=None) pd.read_csv('examples/ex2.csv', names=['a', 'b', 'c', 'd', 'message']) ###Output _____no_output_____ ###Markdown Suppose you wanted the message column to be the index of the returned DataFrame.You can either indicate you want the column at index 4 or named 'message' usingthe index_col argument: ###Code names = ['a', 'b', 'c', 'd', 'message'] pd.read_csv('examples/ex2.csv', names=names, index_col='message') ###Output _____no_output_____ ###Markdown In the event that you want to form a hierarchical index from multiple columns, pass alist of column numbers or names: ###Code !cat examples/csv_mindex.csv parsed = pd.read_csv('examples/csv_mindex.csv', index_col=['key1', 'key2']) parsed ###Output key1,key2,value1,value2 one,a,1,2 one,b,3,4 one,c,5,6 one,d,7,8 two,a,9,10 two,b,11,12 two,c,13,14 two,d,15,16 ###Markdown In some cases, a table might not have a fixed delimiter, using whitespace or someother pattern to separate fields. Consider a text file that looks like this: ###Code list(open('examples/ex3.txt')) ###Output _____no_output_____ ###Markdown While you could do some munging by hand, the fields here are separated by a variableamount of whitespace. In these cases, you can pass a regular expression as adelimiter for read_table. This can be expressed by the regular expression \s+, so wehave then: ###Code result = pd.read_table('examples/ex3.txt', sep='\s+') result ###Output _____no_output_____ ###Markdown Because there was one fewer column name than the number of data rows,read_table infers that the first column should be the DataFrame’s index in this specialcase.The parser functions have many additional arguments to help you handle the widevariety of exception file formats that occur (see a partial listing in Table 6-2). Forexample, you can skip the first, third, and fourth rows of a file with skiprows: ###Code !cat examples/ex4.csv pd.read_csv('examples/ex4.csv', skiprows=[0, 2, 3]) ###Output # hey! a,b,c,d,message # just wanted to make things more difficult for you # who reads CSV files with computers, anyway? 1,2,3,4,hello 5,6,7,8,world 9,10,11,12,foo ###Markdown Handling missing values is an important and frequently nuanced part of the file parsingprocess. Missing data is usually either not present (empty string) or marked bysome sentinel value. By default, pandas uses a set of commonly occurring sentinels,such as NA and NULL: ###Code !cat examples/ex5.csv result = pd.read_csv('examples/ex5.csv') result pd.isnull(result) ###Output _____no_output_____ ###Markdown The na_values option can take either a list or set of strings to consider missingvalues: ###Code result = pd.read_csv('examples/ex5.csv', na_values=['NULL']) result ###Output _____no_output_____ ###Markdown Different NA sentinels can be specified for each column in a dict: ###Code sentinels = {'message': ['foo', 'NA'], 'something': ['two']} pd.read_csv('examples/ex5.csv', na_values=sentinels) ###Output _____no_output_____ ###Markdown Reading Text Files in PiecesWhen processing very large files or figuring out the right set of arguments to correctlyprocess a large file, you may only want to read in a small piece of a file or iteratethrough smaller chunks of the file.Before we look at a large file, we make the pandas display settings more compact: ###Code pd.options.display.max_rows = 10 result = pd.read_csv('examples/ex6.csv') result ###Output _____no_output_____ ###Markdown If we want to only read a small number of rows (avoiding reading the entire file),specify that with nrows: ###Code pd.read_csv('examples/ex6.csv', nrows=5) ###Output _____no_output_____ ###Markdown To read a file in pieces, specify a chunksize as a number of rows: ###Code chunker = pd.read_csv('examples/ex6.csv', chunksize=1000) chunker ###Output _____no_output_____ ###Markdown The TextParser object returned by read_csv allows you to iterate over the parts ofthe file according to the chunksize. For example, we can iterate over ex6.csv, aggregatingthe value counts in the 'key' column like so: ###Code chunker = pd.read_csv('examples/ex6.csv', chunksize=1000) tot = pd.Series([]) for piece in chunker: tot = tot.add(piece['key'].value_counts(), fill_value=0) tot = tot.sort_values(ascending=False) tot[:10] ###Output _____no_output_____ ###Markdown Writing Data to Text FormatData can also be exported to a delimited format. Let’s consider one of the CSV filesread before: ###Code data = pd.read_csv('examples/ex5.csv') data ###Output _____no_output_____ ###Markdown Using DataFrame’s to_csv method, we can write the data out to a comma-separatedfile: ###Code data.to_csv('examples/out.csv') !cat examples/out.csv ###Output ,something,a,b,c,d,message 0,one,1,2,3.0,4, 1,two,5,6,,8,world 2,three,9,10,11.0,12,foo ###Markdown Other delimiters can be used, of course (writing to sys.stdout so it prints the textresult to the console): ###Code import sys data.to_csv(sys.stdout, sep='|') ###Output |something|a|b|c|d|message 0|one|1|2|3.0|4| 1|two|5|6||8|world 2|three|9|10|11.0|12|foo ###Markdown Missing values appear as empty strings in the output. You might want to denote themby some other sentinel value: ###Code data.to_csv(sys.stdout, na_rep='NULL') ###Output ,something,a,b,c,d,message 0,one,1,2,3.0,4,NULL 1,two,5,6,NULL,8,world 2,three,9,10,11.0,12,foo ###Markdown With no other options specified, both the row and column labels are written. Both ofthese can be disabled: ###Code data.to_csv(sys.stdout, index=False, header=False) ###Output one,1,2,3.0,4, two,5,6,,8,world three,9,10,11.0,12,foo ###Markdown You can also write only a subset of the columns, and in an order of your choosing: ###Code data.to_csv(sys.stdout, index=False, columns=['a', 'b', 'c']) ###Output a,b,c 1,2,3.0 5,6, 9,10,11.0 ###Markdown Series also has a to_csv method: ###Code dates = pd.date_range('1/1/2000', periods=7) ts = pd.Series(np.arange(7), index=dates) ts.to_csv('examples/tseries.csv') !cat examples/tseries.csv ###Output 2000-01-01,0 2000-01-02,1 2000-01-03,2 2000-01-04,3 2000-01-05,4 2000-01-06,5 2000-01-07,6 ###Markdown Working with Delimited FormatsIt’s possible to load most forms of tabular data from disk using functions like pandas.read_table. In some cases, however, some manual processing may be necessary.It’s not uncommon to receive a file with one or more malformed lines that trip upread_table. To illustrate the basic tools, consider a small CSV file: ###Code !cat examples/ex7.csv ###Output "a","b","c" "1","2","3" "1","2","3" ###Markdown For any file with a single-character delimiter, you can use Python’s built-in csv module.To use it, pass any open file or file-like object to csv.reader: ###Code import csv f = open('examples/ex7.csv') reader = csv.reader(f) ###Output _____no_output_____ ###Markdown Iterating through the reader like a file yields tuples of values with any quote charactersremoved: ###Code for line in reader: print(line) ###Output ['a', 'b', 'c'] ['1', '2', '3'] ['1', '2', '3'] ###Markdown From there, it’s up to you to do the wrangling necessary to put the data in the formthat you need it. Let’s take this step by step. First, we read the file into a list of lines: ###Code with open('examples/ex7.csv') as f: lines = list(csv.reader(f)) ###Output _____no_output_____ ###Markdown Then, we split the lines into the header line and the data lines: ###Code header, values = lines[0], lines[1:] ###Output _____no_output_____ ###Markdown Then we can create a dictionary of data columns using a dictionary comprehensionand the expression zip(*values), which transposes rows to columns: ###Code data_dict = {h: v for h, v in zip(header, zip(*values))} data_dict class my_dialect(csv.Dialect): lineterminator = '\n' delimiter = ';' quotechar = '"' quoting = csv.QUOTE_MINIMAL ###Output _____no_output_____ ###Markdown We can also give individual CSV dialect parameters as keywords to csv.reader: ###Code with open('examples/ex7.csv') as f: reader = csv.reader(f, delimiter='|') ###Output _____no_output_____ ###Markdown To write delimited files manually, you can use csv.writer. It accepts an open, writablefile object and the same dialect and format options as csv.reader: ###Code with open('mydata.csv', 'w') as f: writer = csv.writer(f, dialect=my_dialect) writer.writerow(('one', 'two', 'three')) writer.writerow(('1', '2', '3')) writer.writerow(('4', '5', '6')) writer.writerow(('7', '8', '9')) !cat mydata.csv ###Output one;two;three 1;2;3 4;5;6 7;8;9 ###Markdown JSON DataJSON (short for JavaScript Object Notation) has become one of the standard formatsfor sending data by HTTP request between web browsers and other applications. It isa much more free-form data format than a tabular text form like CSV. Here is anexample: ###Code obj = """ {"name": "Wes", "places_lived": ["United States", "Spain", "Germany"], "pet": null, "siblings": [{"name": "Scott", "age": 30, "pets": ["Zeus", "Zuko"]}, {"name": "Katie", "age": 38, "pets": ["Sixes", "Stache", "Cisco"]}] } """ import json result = json.loads(obj) result asjson = json.dumps(result) siblings = pd.DataFrame(result['siblings'], columns=['name', 'age']) siblings !cat examples/example.json data = pd.read_json('examples/example.json') data print(data.to_json()) print(data.to_json(orient='records')) ###Output _____no_output_____ ###Markdown XML and HTML: Web Scraping conda install lxmlpip install beautifulsoup4 html5lib ###Code tables = pd.read_html('examples/fdic_failed_bank_list.html') len(tables) failures = tables[0] failures.head() close_timestamps = pd.to_datetime(failures['Closing Date']) close_timestamps.dt.year.value_counts() ###Output _____no_output_____ ###Markdown Parsing XML with lxml.objectify 373889 Metro-North Railroad Escalator Availability Percent of the time that escalators are operational systemwide. The availability rate is based on physical observations performed the morning of regular business days only. This is a new indicator the agency began reporting in 2009. 2011 12 Service Indicators M U % 1 97.00 97.00 ###Code from lxml import objectify path = 'datasets/mta_perf/Performance_MNR.xml' parsed = objectify.parse(open(path)) root = parsed.getroot() data = [] skip_fields = ['PARENT_SEQ', 'INDICATOR_SEQ', 'DESIRED_CHANGE', 'DECIMAL_PLACES'] for elt in root.INDICATOR: el_data = {} for child in elt.getchildren(): if child.tag in skip_fields: continue el_data[child.tag] = child.pyval data.append(el_data) perf = pd.DataFrame(data) perf.head() from io import StringIO tag = '<a href="http://www.google.com">Google</a>' root = objectify.parse(StringIO(tag)).getroot() root root.get('href') root.text ###Output _____no_output_____ ###Markdown Binary Data Formats ###Code frame = pd.read_csv('examples/ex1.csv') frame frame.to_pickle('examples/frame_pickle') pd.read_pickle('examples/frame_pickle') !rm examples/frame_pickle ###Output _____no_output_____ ###Markdown Using HDF5 Format ###Code frame = pd.DataFrame({'a': np.random.randn(100)}) store = pd.HDFStore('mydata.h5') store['obj1'] = frame store['obj1_col'] = frame['a'] store store['obj1'] store.put('obj2', frame, format='table') store.select('obj2', where=['index >= 10 and index <= 15']) store.close() frame.to_hdf('mydata.h5', 'obj3', format='table') pd.read_hdf('mydata.h5', 'obj3', where=['index < 5']) os.remove('mydata.h5') ###Output _____no_output_____ ###Markdown Reading Microsoft Excel Files ###Code xlsx = pd.ExcelFile('examples/ex1.xlsx') pd.read_excel(xlsx, 'Sheet1') frame = pd.read_excel('examples/ex1.xlsx', 'Sheet1') frame writer = pd.ExcelWriter('examples/ex2.xlsx') frame.to_excel(writer, 'Sheet1') writer.save() frame.to_excel('examples/ex2.xlsx') !rm examples/ex2.xlsx ###Output _____no_output_____ ###Markdown Interacting with Web APIs ###Code import requests url = 'https://api.github.com/repos/pandas-dev/pandas/issues' resp = requests.get(url) resp data = resp.json() data[0]['title'] issues = pd.DataFrame(data, columns=['number', 'title', 'labels', 'state']) issues ###Output _____no_output_____ ###Markdown Interacting with Databases ###Code import sqlite3 query = """ CREATE TABLE test (a VARCHAR(20), b VARCHAR(20), c REAL, d INTEGER );""" con = sqlite3.connect('mydata.sqlite') con.execute(query) con.commit() data = [('Atlanta', 'Georgia', 1.25, 6), ('Tallahassee', 'Florida', 2.6, 3), ('Sacramento', 'California', 1.7, 5)] stmt = "INSERT INTO test VALUES(?, ?, ?, ?)" con.executemany(stmt, data) con.commit() cursor = con.execute('select * from test') rows = cursor.fetchall() rows cursor.description pd.DataFrame(rows, columns=[x[0] for x in cursor.description]) import sqlalchemy as sqla db = sqla.create_engine('sqlite:///mydata.sqlite') pd.read_sql('select * from test', db) !rm mydata.sqlite ###Output _____no_output_____
checking-revoked-merged-single-cell-fastqs.ipynb
###Markdown Introduction Jessica revoked the merged experiments on test and I wanted to double check they were correct. ###Code import pandas import os import sys HTSW=os.path.expanduser('~/proj/htsworkflow') if HTSW not in sys.path: sys.path.append(HTSW) from htsworkflow.submission import encoded test = encoded.ENCODED('test.encodedcc.org') revoked = [['/files/ENCFF710CRO/', 'released', 'revoked'], ['/replicates/85436d7f-2d97-4da1-8e55-92a5193bea7b/', 'released', 'revoked'], ['/experiments/ENCSR881ZYX/', 'released', 'revoked'], ['/replicates/320f110c-db6e-4642-9d8a-b7d9164a9d91/', 'released', 'revoked'], ['/experiments/ENCSR559CDN/', 'released', 'revoked'], ['/files/ENCFF949JJP/', 'released', 'revoked'], ['/replicates/c1f60632-78d5-4f01-94a1-8d3b54091296/', 'released', 'revoked'], ['/experiments/ENCSR062KGY/', 'released', 'revoked'], ['/files/ENCFF688OVJ/', 'released', 'revoked'], ['/experiments/ENCSR311IKT/', 'released', 'revoked'], ['/files/ENCFF138HWE/', 'released', 'revoked'], ['/replicates/2ff52213-39a4-4b01-87b7-285a3afce51b/', 'released', 'revoked'], ['/experiments/ENCSR839DYB/', 'released', 'revoked'], ['/replicates/d7d375ec-44f8-49e9-aebe-91cf9482aa18/', 'released', 'revoked'], ['/files/ENCFF738JJC/', 'released', 'revoked'], ['/replicates/f607afde-79e9-42c6-934b-c8c20f3b7bd7/', 'released', 'revoked'], ['/experiments/ENCSR652JLT/', 'released', 'revoked'], ['/files/ENCFF255BRR/', 'released', 'revoked'], ['/experiments/ENCSR182LFI/', 'released', 'revoked'], ['/files/ENCFF653CRU/', 'released', 'revoked'], ['/replicates/44f6db89-7ab7-421f-ba0c-d0debf5f20dd/', 'released', 'revoked'], ['/files/ENCFF033UGC/', 'released', 'revoked'], ['/replicates/d8338392-2454-41e9-b194-7cd6b7c6a914/', 'released', 'revoked'], ['/experiments/ENCSR723FBU/', 'released', 'revoked'], ] for r in revoked: accession = r[0] if r[0].startswith('/experiments'): obj = test.get_json(r[0]) print(obj['accession'], obj['description']) for r in revoked: accession = r[0] if r[0].startswith('/files'): obj = test.get_json(r[0]) print(obj['accession'], obj['submitted_file_name']) ###Output _____no_output_____
content/Chapter_14/05_Confidence_Intervals.ipynb
###Markdown Confidence Intervals Suppose you have a large i.i.d. sample $X_1, X_2, \ldots, X_n$, and let $\bar{X}_n$ be the sample mean. The CLT implies that with chance about 95%, the sample mean is within 2 SDs of the population mean:$$P\big{(}\bar{X}_n \in (\mu - 2\frac{\sigma}{\sqrt{n}}, ~~~ \mu + 2\frac{\sigma}{\sqrt{n}}) \big{)} ~ \approx ~~ 0.95$$ ###Code # NO CODE Plot_norm(x_limits=(-4, 4), mu=0, sigma=1, left_end=-2, right_end=2) plt.yticks(np.arange(0, 0.401, 0.05), np.array(7*[''])) plt.xticks(np.arange(-4, 4.1),['','','$\mu - 2\sigma/\sqrt{n}$', '', '$\mu$', '', '$\mu+2\sigma/\sqrt{n}$','']) plt.xlabel('Sample Mean') plt.title('Gold Area: Approximately 95%'); ###Output _____no_output_____ ###Markdown This can be expressed in a different way:$$P\big{(}\vert \bar{X}_n - \mu \vert < 2\frac{\sigma}{\sqrt{n}}\big{)} ~ \approx ~~ 0.95$$Distance is symmetric, so this is the same as saying:$$P\big{(}\mu \in (\bar{X}_n - 2\frac{\sigma}{\sqrt{n}}, ~~~ \bar{X}_n + 2\frac{\sigma}{\sqrt{n}})\big{)} ~ \approx ~~ 0.95$$That is why the interval "sample mean $\pm$ 2 measures of spread" is used as an interval of estimates of $\mu$. Inverse of the Standard Normal CDF The interval $\bar{X}_n \pm ~ 2 \sigma/\sqrt{n}$ is called *an approximate 95% confidence interval for the parameter $\mu$*, the population mean. The interval has a *confidence level* of 95%. The level determines the use of $z = 2$ as the multiplier of the SD of the sample mean.You could choose a different confidence level, say 80%. With that choice you would expect the interval to be narrower. To find out exactly how many SDs you have to go on either side of the center to pick up a central area of about 80%, you have to find the corresponding $z$ on the standard normal curve, as shown below. ###Code # NO CODE Plot_norm(x_limits=(-4, 4), mu=0, sigma=1, left_end=-1.28, right_end=1.28) plt.yticks(np.arange(0, 0.401, 0.05), np.array(7*[''])) plt.xticks(make_array(-1.28, 0, 1.28),['$-z$', '0', '$z$']) plt.title('Gold Area: Approximately 80%'); ###Output _____no_output_____ ###Markdown As you know from Data 8 and can see in the figure, the interval runs from the 10th to the 90th percentile of the distribution. So $z$ is the 90th percentile of the standard normal curve, also known as the "90 percent point" of the curve. The `scipy` method is therefore called `ppf` and takes a decimal value as its argument. ###Code stats.norm.ppf(.9) ###Output _____no_output_____ ###Markdown Therefore an approximate 80% confidence interval for the population mean $\mu$ is given by "sample mean $\pm ~ 1.28\sigma/\sqrt{n}$".Let's double check that 2 is a good choice of $z$ for a 95% interval. The $z$ that we need is the 97.5 percent point: ###Code stats.norm.ppf(.975) ###Output _____no_output_____ ###Markdown That's $z = 1.96$, which we have been calling 2. It's good enough, but $z = 1.96$ is also commonly used for constructing 95% confidence intervals.The `ppf` and `cdf` functions are inverses of each other. ###Code stats.norm.cdf(1.96), stats.norm.ppf(0.975) ###Output _____no_output_____ ###Markdown In math notation,$$\Phi(z) ~ = ~ p ~~ \iff ~~ \Phi^{-1}(p) = z$$ Confidence Interval for Population Mean Let $\lambda$% be any confidence level. Let $z_\lambda$ be the point such that the interval $(-z_\lambda, ~ z_\lambda)$ contains $\lambda$% of the area under the standard normal curve. In our example above, $\lambda$ was 80 and $z_\lambda$ was 1.28. Let $p = \lambda/100$ be the value of $\lambda$ converted into a proportion. For example if $\lambda = 80$ then $p = 0.8$. Then$$z_\lambda ~ = ~ \Phi^{-1}(p + 0.5(1-p))$$because all of the area to the left of $z_\lambda$ is the area $p$ between $z_\lambda$ and $-z_\lambda$ plus the tail to the left of $-z_\lambda$. If $n$ is large,$$p ~ \approx ~ P\big{(}\mu \in (\bar{X}_{n} - z_{\lambda} \frac{\sigma}{\sqrt{n}}, ~~~ \bar{X}_n + z_\lambda \frac{\sigma}{\sqrt{n}})\big{)}$$The random interval $\bar{X}\_{n} ~ \pm ~ z\_{\lambda} \sigma/\sqrt{n}$ is called *an approximate $\lambda$% confidence interval for the population mean $\mu$*. There is about a $\lambda$% chance that this random interval contains the parameter $\mu$.The only difference between confidence intervals of different levels is the choice of $z_\lambda$ which depends on the level $\lambda$. The other two components are the sample mean and its SD. A Data 8 Example Revisited Let's return to an example very familiar from Data 8: a random sample of 1,174 pairs of mothers and their newborns. ###Code baby = Table.read_table('baby.csv') baby ###Output _____no_output_____ ###Markdown The third column consists of the ages of the mothers. Let's construct an approximate 95% confidence interval for the mean age of mothers in the population. We did this in Data 8 using the bootstrap, so we will be able to compare results.We can apply the methods of this section because our data come from a large random sample. ###Code ages = baby.column('Maternal Age') samp_mean = np.mean(ages) samp_mean n = baby.num_rows n ###Output _____no_output_____ ###Markdown The observed value of $\bar{X}_n$ in the sample is 27.23 years. We know that $n = 1174$, so all we need is the population SD $\sigma$ and then we can complete our calculation.But of course we don't know the population SD $\sigma$. We only have a sample.As data scientists, we are used to lifting ourselves by our own bootstraps. Notice that the SD of the sample mean is $\sigma/\sqrt{n}$. If we estimate $\sigma$ by the SD of the data, there will be some error in the estimate but the error will be divided by $\sqrt{n}$ and therefore won't have much effect. That means we can use "sample SD divided by $\sqrt{n}$" as an estimate of $\sigma/\sqrt{n}$. The sample SD, our estimate of $\sigma$, is about 5.82 years. ###Code sigma_estimate = np.std(ages) sigma_estimate ###Output _____no_output_____ ###Markdown An approximate 95% confidence interval for the mean birth weight of babies in the population is $(26.89, 27.57)$ years. ###Code sd_sample_mean = sigma_estimate/(n ** 0.5) ci_95_pop_mean = samp_mean + 1.96 * make_array(-1, 1) * sd_sample_mean ci_95_pop_mean ###Output _____no_output_____ ###Markdown No bootstrapping required! Now let's compare our interval to the interval we got in Data 8 by using the bootstrap percentile method. Here is the function `bootstrap_mean` from Data 8. ###Code def bootstrap_mean(original_sample, label, replications): """Displays approximate 95% confidence interval for population mean. original_sample: table containing the original sample label: label of column containing the variable replications: number of bootstrap samples """ just_one_column = original_sample.select(label) n = just_one_column.num_rows means = make_array() for i in np.arange(replications): bootstrap_sample = just_one_column.sample() resampled_mean = np.mean(bootstrap_sample.column(0)) means = np.append(means, resampled_mean) left = percentile(2.5, means) right = percentile(97.5, means) resampled_means = Table().with_column( 'Bootstrap Sample Mean', means ) resampled_means.hist(bins=15) print('Approximate 95% confidence interval for population mean:') print(np.round(left, 2), 'to', np.round(right, 2)) plt.plot(make_array(left, right), make_array(0, 0), color='yellow', lw=8); ###Output _____no_output_____ ###Markdown Let's construct a bootstrap 95% confidence interval for the population mean. We will use 5000 bootstrap samples as we did in Data 8. ###Code bootstrap_mean(baby, 'Maternal Age', 5000) ###Output Approximate 95% confidence interval for population mean: 26.89 to 27.56 ###Markdown The bootstrap confidence interval is essentially identical to the interval (26.89, 27.57) that we got by using the normal approximation. As we did in Data 8, let's observe that the distribution of maternal ages in the sample is far from normal: ###Code baby.select('Maternal Age').hist() ###Output _____no_output_____
BioPy(trial).ipynb
###Markdown Kak perwyj szag my dolzny prowerit naszu sekwencju na prawilnost wczitywania, to jest wse li w naszem liste otweczaet normam wpisywania ###Code # Check the sequance to make sure it is a DNA String def validateSeq(dna_seq): tmpseq = dna_seq for nuc in tmpseq:#compare all elements in list if nuc not in nucleotides: #In case DNA seq is not good, will be return bool value return False return tmpseq nucleotides = ['A','C','G','T'] #test var print(validateSeq(rndDNASer)) #Validation of DNA seq, in case False on output, DNA seq is not valid randDNAStr = ''.join([random.choice(nucleotides) #lets create our random seq for nuc in range(20)]) print(validateSeq(randDNAStr)) #create a function,which will count nucleotides number in DNA seq def counrNucFrequency(seq): '''DNA seq nucleotides counter ''' tmpFreqDict = {"A":0,"C":0,"G":0,'T':0} for nuc in seq: tmpFreqDict[nuc] += 1 return tmpFreqDict DNAStr = validateSeq(randDNAStr) print(counrNucFrequency(DNAStr)) randDNAStr = ''.join([random.choice(nucleotides) #postrokenie randomnoj sekwencji for nuc in range(20)]) DNAStr = validateSeq(randDNAStr) print(counrNucFrequency(DNAStr)) def CounrNucFrequency(seq): return dict(collections.Counter(seq)) print(CounrNucFrequency(DNAStr)) def trancription(seq): """the function is responsible for transription process, in.oth.h. DNA to RNA""" return seq.replace('T','U') print(trancription(DNAStr)) print(f'\nSequance : {DNAStr}\n') print(f'[1]) + Sequance Length: {len(DNAStr)}\n') print(f'[2]) + Nucleotide Frequaency: {counrNucFrequency(DNAStr)}\n') print(f'[3] + DNA/RNA Transcription : {trancription(DNAStr)}\n') DNA_ReverseComplement = { 'A':'T', 'T':'A', 'G':'C', 'C':'G' } #Function for complamentetion principo def reverse_complement(seq): """Swaping adenine with thymine and guanine with ctosine. Reversubg newly generated string""" return ''.join([DNA_ReverseComplement[nuc] for nuc in seq])[::-1]#[::-1] for reversing of the tempStr = 'Test' #reversing our str print(tempStr[::-1]) print(reverse_complement(DNAStr)) print(f"[4] + DNA string + Reverse Complement:\n5' {DNAStr} 3'") print(f" {''.join(['|' for c in range(len(DNAStr))])}") print(f"3' {reverse_complement(DNAStr)} 5'\n") print(f'\nSequance : {DNAStr}\n') print(f'[1]) + Sequance Length: {len(DNAStr)}\n') print(f'[2]) + Nucleotide Frequaency: {counrNucFrequency(DNAStr)}\n') print(f'[3] + DNA/RNA Transcription : {trancription(DNAStr)}\n') print(f"[4] + DNA string + Reverse Complement:\n5' {DNAStr} 3'") print(f" {''.join(['|' for c in range(len(DNAStr))])}") print(f"3' {reverse_complement(DNAStr)} 5'\n") from struct import * print(f'\nSequance : {DNAStr}\n') print(f'[1]) + Sequance Length: {len(DNAStr)}\n') print(f'[2]) + Nucleotide Frequaency: {counrNucFrequency(DNAStr)}\n') print(f'[3] + DNA/RNA Transcription : {trancription(DNAStr)}\n') print(f"[4] + DNA string + Reverse Complement:\n5' {DNAStr} 3'") print(f" {''.join(['|' for c in range(len(DNAStr))])}") print(f"3' {reverse_complement(DNAStr)} 5'\n") nucleotides = ['A','C','G','T'] DNA_ReverseComplement = { 'A':'T', 'T':'A', 'G':'C', 'C':'G' } #utilites def colored(seq): bcolors = { "A": '\033[92m', 'C': '\033[94m', 'G': '\033[93m', 'T': '\033[91m', 'U': '\033[91m', 'reset': '\033[0;0m' } tmpStr = "" for nuc in seq: if nuc in bcolors: tmpStr +=bcolors[nuc] + nuc else: tmpStr +=bcolors['reset'] + nuc return tmpStr + '\033[0;0m' print(f'\nSequance : {colored(DNAStr)}\n') print(f'[1]) + Sequance Length: {len(DNAStr)}\n') print(f'[2]) + Nucleotide Frequaency: {colored(counrNucFrequency(DNAStr))}\n') print(f'[3] + DNA/RNA Transcription : {colored(trancription(DNAStr))}\n') print(f"[4] + DNA string + Reverse Complement:\n5' {colored(DNAStr)} 3'") print(f" {''.join(['|' for c in range(len(DNAStr))])}") print(f"3' {colored(reverse_complement(DNAStr))} 5'\n") def gc_content(seq): """GC content in DNA/RNA sequance""" return round((seq.count('C')+seq.count('G'))/len(seq)*100) print(gc_content(DNAStr)) print(f'[5] +GC content: {gc_content(DNAStr)} % \n') print(f'\nSequance : {colored(DNAStr)}\n') print(f'[1]) + Sequance Length: {len(DNAStr)}\n') print(f'[2]) + Nucleotide Frequaency: {colored(counrNucFrequency(DNAStr))}\n') print(f'[3] + DNA/RNA Transcription : {colored(trancription(DNAStr))}\n') print(f"[4] + DNA string + Reverse Complement:\n5' {colored(DNAStr)} 3'") print(f" {''.join(['|' for c in range(len(DNAStr))])}") print(f"3' {colored(reverse_complement(DNAStr))} 5'\n") print(f'[5] + GC content: {gc_content(DNAStr)} % \n') def gc_content_subsec(seq, k =20): """GC content in a DNA/RNA sub-sequance lenght k. K = 20 by defolt""" res = [] for i in range(0,len(seq) - k + 1, k): subseq = seq[i:i + k] res.append(gc_content(subseq)) return res print(f'[6] + GC Content in Subsection k=5: {gc_content_subsec(DNAStr,k =5)}\n') # from collections import Counter from collections import Counter def translate_seq(seq, init_pos=0): """Translates a DNA sequence into an aminoacid sequence""" return [DNA_Codons[seq[pos:pos + 3]] for pos in range(init_pos, len(seq) - 2, 3)] def codon_usage(seq, aminoacid): """Provides the frequency of each codon encoding a given aminoacid in a DNA sequence""" tmpList = [] for i in range(0, len(seq) - 2, 3): if DNA_Codons[seq[i:i + 3]] == aminoacid: tmpList.append(seq[i:i + 3]) freqDict = dict(Counter(tmpList)) totalWight = sum(freqDict.values()) for seq in freqDict: freqDict[seq] = round(freqDict[seq] / totalWight, 2) return freqDict DNA_Codons = { # 'M' - START, '_' - STOP "GCT": "A", "GCC": "A", "GCA": "A", "GCG": "A", "TGT": "C", "TGC": "C", "GAT": "D", "GAC": "D", "GAA": "E", "GAG": "E", "TTT": "F", "TTC": "F", "GGT": "G", "GGC": "G", "GGA": "G", "GGG": "G", "CAT": "H", "CAC": "H", "ATA": "I", "ATT": "I", "ATC": "I", "AAA": "K", "AAG": "K", "TTA": "L", "TTG": "L", "CTT": "L", "CTC": "L", "CTA": "L", "CTG": "L", "ATG": "M", "AAT": "N", "AAC": "N", "CCT": "P", "CCC": "P", "CCA": "P", "CCG": "P", "CAA": "Q", "CAG": "Q", "CGT": "R", "CGC": "R", "CGA": "R", "CGG": "R", "AGA": "R", "AGG": "R", "TCT": "S", "TCC": "S", "TCA": "S", "TCG": "S", "AGT": "S", "AGC": "S", "ACT": "T", "ACC": "T", "ACA": "T", "ACG": "T", "GTT": "V", "GTC": "V", "GTA": "V", "GTG": "V", "TGG": "W", "TAT": "Y", "TAC": "Y", "TAA": "_", "TAG": "_", "TGA": "_" } print(f'[5] + GC Content: {gc_content(DNAStr)}%\n') print( f'[6] + GC Content in Subsection k=5: {gc_content_subsec(DNAStr, k=5)}\n') print( f'[7] + Aminoacids Sequence from DNA: {translate_seq(DNAStr, 0)}\n') print( f'[8] + Codon frequency (L): {codon_usage(DNAStr, "L")}\n') from Bio.Seq import Seq from Bio.SeqUtils import GC import pandas as pd def readFile(filePath): '''Reading the file and ruturn list of lines''' with open(filePath,'r') as f: return[l.strip() for l in f.readlines()] def gc_content(seq): '''Retur GC content in aa DNA/RNA sequance''' return ((seq.count('C')+seq.count('G')/len(seq)*100)) #=== Clean/Prepara the data (Format for ease of you with our GC_content func) #Converting FASTA/List file data into a dictionary for line in FASTAFile: if '@' in line: FASTALabel = line FASTADict[FASTALabel] = '' else: FASTADict[FASTALabel] += line for line in FASTADict: if '+' in FASTADict[()]: ###Output _____no_output_____
archived/programming/python/Python_Algorithms.ipynb
###Markdown ref- https://github.com/keon/algorithms 1) Array 1-1) flatten ###Code # given [2, 1, [3, [4, 5], 6], 7, [8]] # output [2, 1, 3, 4, 5, 6, 7, 8] def list_flatten(l, a=None): print ('a = ', a) a = list(a) if isinstance(a, (list, tuple)) else [] for i in l: #print ('i = ', i) if isinstance(i, (list, tuple)): a = list_flatten(i, a) else: a.append(i) return a given = [2, 1, [3, [4, 5], 6], 7, [8]] list_flatten(given) ###Output a = None a = [2, 1] a = [2, 1, 3] a = [2, 1, 3, 4, 5, 6, 7] ###Markdown 1-2) garage ###Code # https://github.com/keon/algorithms/blob/master/array/garage.py # The goal is to "find out the least movement needed to rearrange # the parking lot from the initial state to the final state." #Each step we are only allowed tomove a car # Say the initial state is an array: # [1,2,3,0,4], # where 1,2,3,4 are different cars, and 0 is the empty spot. # And the final state is # [0,3,2,1,4]. # We can swap 1 with 0 in the initial array to get [0,2,3,1,4] and so on. # Each step swap with 0 only. # credit by cyberking-saga def garage(initial, final): steps = 0 while initial != final: zero = initial.index(0) if zero != final.index(0): car_to_move = final[zero] pos = initial.index(car_to_move) initial[zero], initial[pos] = initial[pos], initial[zero] else: for i in range(len(initial)): if initial[i] != final[i]: initial[zero], initial[i] = initial[i], initial[zero] break steps += 1 return steps initial = [4, 2, 3, 1, 0] final = [0, 3, 2, 1, 4] print("initial:", initial) print("final:", final) print(garage(initial, final)) ###Output initial: [4, 2, 3, 1, 0] final: [0, 3, 2, 1, 4] 4 ###Markdown 1-3) longest_non_repeat ###Code def longest_non_repeat(s): start, maxlen = 0, 0 used_char = {} for i, char in enumerate(s): if char in used_char and start <= used_char[char]: start = used_char[char] + 1 else: maxlen = max(maxlen, i-start+1) used_char[char] = i output = ''.join( str(x) for x in list(used_char.keys()) ) return maxlen, output a = "abcabcdefzb" b = "qweeioplkj" c = "eeerfevg4e" longest_non_repeat(a) ###Output _____no_output_____ ###Markdown 1-4) merge_intervals ###Code # Definition for an interval. class Interval(object): def __init__(self, s=0, e=0): self.start = s self.end = e def merge(intervals): """ :type intervals: List[Interval] :rtype: List[Interval] """ out = [] for i in sorted(intervals, key=lambda i: i.start): if out and i.start <= out[-1].end: out[-1].end = max(out[-1].end, i.end) else: out += i, return out def print_intervals(intervals): res = [] for i in intervals: res.append('['+str(i.start)+','+str(i.end)+']') print("".join(res)) given = [[1,99],[2,6],[8,10],[15,18]] intervals = [] for l, r in given: intervals.append(Interval(l,r)) print_intervals(intervals) print_intervals(merge(intervals)) ###Output [1,99][2,6][8,10][15,18] [1,99] ###Markdown 1-5) missing_ranges ###Code ## find missing ranges between low and high in the given array. # ex) [3, 5] lo=1 hi=10 => answer: [1->2, 4, 6->10] def missing_ranges(nums, lo, hi): res = [] start = lo for num in nums: if num < start: # if countinue, neglect following code in this loop, countiune next loop continue if num == start: start += 1 continue res.append(get_range(start, num-1)) start = num + 1 #print (start) if start <= hi: res.append(get_range(start, hi)) return res def get_range(n1, n2): if n1 == n2: return str(n1) else: return str(n1) + "->" + str(n2) nums = [3, 5, 10, 11, 12, 15, 19] print("original:", nums) print("missing range: ", missing_ranges(nums,0,200)) ###Output original: [3, 5, 10, 11, 12, 15, 19] missing range: ['0->2', '4', '6->9', '13->14', '16->18', '20->200'] ###Markdown 1-6) plus_one 1-7) rotate_array ###Code # example : rotate([1,2,3,4,5,6,7],3) -> def rotate(nums, k): """ :type nums: List[int] :type k: int :rtype: void Do not return anything, modify nums in-place instead. """ n = len(nums) k = k % n reverse(nums, 0, n - k - 1) reverse(nums, n - k, n - 1) reverse(nums, 0, n - 1) return nums def reverse(array, a, b): while a < b: array[a], array[b] = array[b], array[a] a += 1 b -= 1 a = [1, 2, 3, 4, 10, 11, 20, 101021, 1423, 0] rotate(a, 5) def my_rotate(array,n): if n == 0: return array else: length = len(array) array_ = array[-n:] array_sub = array[:length- n] array_rotate = array_+ array_sub return array_rotate a = [1, 2, 3, 4, 10, 11, 20, 101021, 1423, 0] my_rotate(a,5) ###Output _____no_output_____
QC Programming/QFT of simple QPU signal.ipynb
###Markdown **QFT of simple QPU signal** ###Code import numpy as np # Importing standard Qiskit libraries from qiskit import QuantumCircuit, transpile, Aer, IBMQ, QuantumRegister, ClassicalRegister, execute, BasicAer from qiskit.tools.jupyter import * from qiskit.visualization import * from ibm_quantum_widgets import * from qiskit.providers.aer import QasmSimulator # Loading your IBM Quantum account(s) provider = IBMQ.load_account() import math %matplotlib inline # Set up the program signal = QuantumRegister(4, name='signal') qc = QuantumCircuit(signal) def main(): ## prepare the signal qc.h(signal); qc.rz(math.radians(45), signal[0]); qc.rz(math.radians(90), signal[1]); qc.rz(math.radians(180), signal[2]); qc.barrier() QFT(signal) def QFT(qreg): ## This QFT implementation is adapted from IBM's sample: ## https://github.com/Qiskit/qiskit-terra/blob/master/examples/python/qft.py ## ...with a few adjustments to match the book QFT implementation exactly n = len(qreg) for j in range(n): for k in range(j): qc.cu1(-math.pi/float(2**(j-k)), qreg[n-j-1], qreg[n-k-1]) qc.h(qreg[n-j-1]) # Now finish the QFT by reversing the order of the qubits for j in range(n//2): qc.swap(qreg[j], qreg[n-j-1]) main() backend = BasicAer.get_backend('statevector_simulator') job = execute(qc, backend) result = job.result() outputstate = result.get_statevector(qc, decimals=3) for i,amp in enumerate(outputstate): if abs(amp) > 0.000001: prob = abs(amp) * abs(amp) print('|{}> {} probability = {}%'.format(i, amp, round(prob * 100, 5))) qc.draw() # draw the circuit ###Output |2> (-0.924-0.383j) probability = 100.0465%
.ipynb_checkpoints/y_label generation-checkpoint.ipynb
###Markdown Producing y labels ###Code import csv import pandas as pd with open('labels.csv', newline='') as csvfile: spamreader = csv.reader(csvfile, delimiter=' ', quotechar='|') for row in spamreader: print(', '.join(row)) ###Output 3,pulmonary_fibrosis,0 7,tuberculosis,2 8,pulmonary_fibrosis,0 12,pneumocystis_pneumonia,2 13,pneumocystis_pneumonia,2 14,sarcoidosis,2 15,tuberculosis,2 17,hypersensitivity_pneumonitis,1 18,hypersensitivity_pneumonitis,1 19,hypersensitivity_pneumonitis,1 21,hypersensitivity_pneumonitis,1 23,acute_interstitial_pneumonia,2 25,cryptogenic_organizing_pneumonia,2 26,cryptogenic_organizing_pneumonia,2 27,cryptogenic_organizing_pneumonia,2 30,cryptogenic_organizing_pneumonia,2 32,tuberculosis,2 34,tuberculosis,2 35,tuberculosis,2 36,tuberculosis,2 37,tuberculosis,2 38,tuberculosis,2 39,tuberculosis,2 40,tuberculosis,2 41,tuberculosis,2 42,hypersensitivity_pneumonitis,1 44,hypersensitivity_pneumonitis,1 45,hypersensitivity_pneumonitis,1 46,hypersensitivity_pneumonitis,1 47,hypersensitivity_pneumonitis,1 48,hypersensitivity_pneumonitis,1 49,hypersensitivity_pneumonitis,1 50,hypersensitivity_pneumonitis,1 51,hypersensitivity_pneumonitis,1 53,pulmonary_fibrosis,0 56,pulmonary_fibrosis,0 57,pulmonary_fibrosis,0 60,pneumocystis_pneumonia,2 62,pulmonary_fibrosis,0 65,pneumocystis_pneumonia,2 66,pneumocystis_pneumonia,2 67,pneumocystis_pneumonia,2 68,pneumocystis_pneumonia,2 70,pneumocystis_pneumonia,2 73,pulmonary_fibrosis,0 74,pulmonary_fibrosis,0 76,pulmonary_fibrosis,0 77,pulmonary_fibrosis,0 78,pulmonary_fibrosis,0 80,pulmonary_fibrosis,0 81,pulmonary_fibrosis,0 82,pulmonary_fibrosis,0 83,desquamative_interstitial_pneumonia,2 84,pulmonary_fibrosis,0 86,pulmonary_fibrosis,0 87,pulmonary_fibrosis,0 89,pulmonary_fibrosis,0 90,pulmonary_fibrosis,0 91,pulmonary_fibrosis,0 92,pulmonary_fibrosis,0 93,pulmonary_fibrosis,0 94,pulmonary_fibrosis,0 101,pulmonary_fibrosis,0 105,cryptogenic_organizing_pneumonia,2 107,sarcoidosis,2 108,nonspecific_interstitial_pneumonia,2 109,respiratory_bronchiolitis_associated_ILD,2 112,hypersensitivity_pneumonitis,1 116,acute_interstitial_pneumonia,2 118,pulmonary_fibrosis,0 119,sarcoidosis,2 120,pulmonary_fibrosis,0 121,pulmonary_fibrosis,0 122,sarcoidosis,2 123,langerhans_cell_histiocytosis,2 124,sarcoidosis,2 126,sarcoidosis,2 127,nonspecific_interstitial_pneumonia,2 128,pulmonary_fibrosis,0 129,sarcoidosis,2 130,sarcoidosis,2 131,sarcoidosis,2 132,sarcoidosis,2 134,cryptogenic_organizing_pneumonia,2 135,cryptogenic_organizing_pneumonia,2 136,pulmonary_fibrosis,0 137,sarcoidosis,2 138,healthy,2 140,tuberculosis,2 142,pulmonary_fibrosis,0 143,acute_interstitial_pneumonia,2 144,pulmonary_fibrosis,0 147,tuberculosis,2 149,sarcoidosis,2 150,eosinophilic_pneumonia,2 152,hypersensitivity_pneumonitis,1 153,hypersensitivity_pneumonitis,1 154,hypersensitivity_pneumonitis,1 155,hypersensitivity_pneumonitis,1 157,hypersensitivity_pneumonitis,1 158,sarcoidosis,2 159,sarcoidosis,2 160,pulmonary_fibrosis,0 162,acute_interstitial_pneumonia,2 163,hypersensitivity_pneumonitis,1 164,hypersensitivity_pneumonitis,1 165,pulmonary_fibrosis,0 166,hypersensitivity_pneumonitis,1 167,pulmonary_fibrosis,0 168,pulmonary_fibrosis,0 169,healthy,2 171,tuberculosis,2 172,lymphocytic_interstitial_pneumonia,2 173,tuberculosis,2 174,sarcoidosis,2 175,pulmonary_fibrosis,0 177,sarcoidosis,2 179,sarcoidosis,2 180,hypersensitivity_pneumonitis,1 181,pulmonary_fibrosis,0 182,sarcoidosis,2 183,sarcoidosis,2 184,pulmonary_fibrosis,0 185,pulmonary_fibrosis,0
DEPORTED/API query April deported.ipynb
###Markdown > This notebook gathers data from http://memoria.gencat.cat/ca/que-fem/banc-memoria-democratica/fons/deportats-catalans-i-espanyols-als-camps-nazis/ which holds 9_187 entries as of April 1, 2021. ###Code import requests import json # this is the url that's called when we look up a single record url2 = 'https://dedalo4.bancmemorial.extranet.gencat.cat/dedalo/lib/dedalo/publication/server_api/v1/json/records?code=85df5s$4Kue%C3%B1wQw5O2p4J1G9&lang=lg-cat&table=deportats&count=true&section_id=1&resolve_portal=true&resolve_portals_custom={%22deportat%22:%22informant%22,%22deportat.biography%22:%22biografia%22,%22exercit_frances%22:%22deportats_treballs_exercit_frances%22,%22camps_francesos%22:%22deportats_camps_francesos%22,%22camps_concentracio%22:%22deportats_camps_concentracio%22,%22consultes_arxius%22:%22deportats_consultes_arxius%22,%22kommando_extern%22:%22deportats_kommando_extern%22,%22publicacions%22:%22referencia_bibliografica%22,%22publicacio_web%22:%22referencia_bibliografica%22,%22empresonament%22:%22deportats_empresonament%22,%22tren_salida%22:%22deportats_trens%22,%22organizacio_todt%22:%22deportats_todt%22,%22indemnitzacions%22:%22deportats_indemnitzacions%22}&ar_fields=section_id,data_mod,deportat,exercit_frances,camps_francesos,camps_concentracio,consultes_arxius,kommando_extern,publicacions,publicacio_web,situacio_deportat,data_situacio,ref_lloc_situacio,unitat_militar,frontera,destinacio,graduacio_militar,data_pas_per_frontera,resistencia,lloc_lluita,cut_lloc_lluita,lloc_lluita_original,lloc_detencio,ref_lloc_detencio,lloc_detencio_original,data_detencio,empresonament,tren_salida,organizacio_todt,ref_observacions,ref_repatriacio_franca,data_repatriacio_franca,data_tornarda_espanya,ref_lloc_residencia_posterior,ref_emigracio,indemnitzacions,obs_deportacio' req = requests.get(url2) req # this is the above url, shortened to request the whole table as an API call url = 'https://dedalo4.bancmemorial.extranet.gencat.cat/dedalo/lib/dedalo/publication/server_api/v1/json/records?code=85df5s$4Kue%C3%B1wQw5O2p4J1G9&lang=lg-cat&table=deportats' req = requests.get(url) req # assign our data d = req.json() # the result key has a list as its value: this is a list of 9187 dictionaries len(d['result']) # for example d['result'][7823] # save dict (including list of dicts), as json, locally (47MB) with open ('api_call_01042021.json', 'w') as f: json.dump(d, f) ###Output _____no_output_____ ###Markdown Reimport to work locally ###Code ## Reimport locally with open('api_call_01042021.json') as json_data: d = json.load(json_data) # how many items in our data? len(d) # what are the keys in our data? d.keys() # the result list is the one we want len(d['result']) # assign to 'files' files = d['result'] # look at one files[8023] ###Output _____no_output_____
lessons/20180529_Machine_Learning_Zsofia_Stefania_Marc/StudyGroup_MachineLearning_Class.ipynb
###Markdown Machine Learning applications to a cancer dataset Set-up ###Code # Import all the necessary packages import numpy as np import pandas as pd # for dataframe manipulation from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split # to split the dataset into one train & one test sets from sklearn.metrics import confusion_matrix # to calculate metrics on the trained classifier and see how well it perfoms on the test dataset from sklearn.metrics import accuracy_score,precision_score,recall_score # to calculate the accuracy of the trained classifier from sklearn.metrics import classification_report import matplotlib.pyplot as plt # for plots import seaborn as sns; # for plots ###Output _____no_output_____ ###Markdown We have now installed and loaded the modules necessary for our analyses. Importation of the datasetsThe breast cancer dataset (`breast-cancer-wisconsin.csv`) has 11 columns and 699 rows.Column descriptions: | n° | attribute |Domain||------|------|------|| 1 | Sample number|id number || 2 | Clump thickness|1-10|| 3 | Uniformity of Cell Size|1-10 || 4 | Uniformity of Cell Shape|1-10 || 5 | Marginal Adhesion |1-10 || 6 | Single Epithelial Cell Size|1-10 || 7 | Bare Nuclei |1-10 || 8 | Bland Chromatin |1-10 || 9 | Normal Nucleoli |1-10 || 10 | Mitoses |1-10 || 11 | Class|2,4 |For the cancer class (column "Class"):- 2: benign cancer- 4: malignant cancer ###Code # import dataset df = pd.read_csv(filepath_or_buffer="breast-cancer-wisconsin.csv",header=None) # rename columns col_names = ["CodeNumber", "ClumpThickness", "UniformityCellSize", "UniformityCellShape", "MarginalAdhesion", "SingleEpithelialCellSize", "BareNuclei","BlandChromatin", "NormalNucleoli", "Mitoses", "CancerType"] df.columns= col_names df.head() # drop the BareNuclei column (since it contains missing values coded as "?") del df["BareNuclei"] df.head() ###Output _____no_output_____ ###Markdown Split the original data into a train and a test datasetWe are now going to use our original dataset to:- train a Random Forest (RF) model- test our RF model on a test dataset.We are going to split our dataset (`breast-cancer-wisconsin`) into a train and a test dataset. ###Code # specify the label (=y) variable (cancer class) label = df.CancerType # specify the features (=x) variables (measured variables) features = df.iloc[:,1:9] # Split dataset into a random train and test subsets # We need to indicate which subset corresponds to the features/variables and which column corresponds to the class we are trying to predict. # Finally, we also indicate the percentage of the dataset to include into the train split (proportion of samples used to train the model) train_x, test_x, train_y, test_y = train_test_split(features,label,train_size=0.7,test_size=0.3) # Let's do some "sanity checks" print("We have " + str(train_x.shape[0]) + " samples in the train dataset ") print("We have " + str(test_x.shape[0]) + " samples in the test dataset ") sum_samples = train_x.shape[0] + test_x.shape[0] print("We have in total " + str(sum_samples) + " in both train and test datasets") ###Output We have 489 samples in the train dataset We have 210 samples in the test dataset We have in total 699 in both train and test datasets ###Markdown Random Forest classifier Training the classifier ###Code # Set Random Forest parameters n_estimators=30 criterion='gini' max_depth=30 min_samples_split=5 min_samples_leaf=5 max_features='auto' max_leaf_nodes=None bootstrap=True oob_score=True n_jobs=1 random_state=None verbose=0 class_weight='balanced' # build the Random Forest classifier forest = RandomForestClassifier(n_estimators=n_estimators, criterion=criterion, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, max_features=max_features, max_leaf_nodes=max_leaf_nodes, bootstrap=bootstrap, oob_score=oob_score, n_jobs=n_jobs, random_state=random_state, verbose=verbose,class_weight=class_weight) # train the Random Forest classifier on our dataset RF_classifier = forest.fit(train_x, train_y) ###Output _____no_output_____ ###Markdown Benchmarking the performance of the trained RF classifier on the test dataset ###Code # Validation mypredtest=RF_classifier.predict(test_x) print(classification_report(test_y, mypredtest)) # Calculation and graphical representation of the confusion matrix # definition of a helper function (taken from # http://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html) # get the target labels (it is an output from the classifier) target_names=RF_classifier.classes_ def plot_confusion_matrix(cm, title='Confusion matrix', cmap=plt.cm.Blues): plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(target_names)) plt.xticks(tick_marks, target_names, rotation=45) plt.yticks(tick_marks, target_names) plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') # Compute confusion matrix cm = confusion_matrix(test_y, mypredtest) np.set_printoptions(precision=2) print('Confusion matrix, without normalization') print(cm) plt.figure() plot_confusion_matrix(cm) cm_normalized = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print('Normalized confusion matrix') print(cm_normalized) plt.figure() plot_confusion_matrix(cm_normalized, title='Normalized confusion matrix') plt.show() ###Output Confusion matrix, without normalization [[126 8] [ 3 73]] Normalized confusion matrix [[ 0.94 0.06] [ 0.04 0.96]] ###Markdown Getting the best predictors of the cancer class (benign=2/malign=4) ###Code # Get feature importance importances=RF_classifier.feature_importances_ indices = np.argsort(importances)[::-1] # Get the name of each features feature_list=np.array(features.columns[0:9]) # Visualize plt.figure() plt.title("Feature importances") plt.bar(range(train_x.shape[1]), importances[indices], color="r", align="center") plt.xticks(range(train_x.shape[1]), feature_list[indices],rotation=45,horizontalalignment='right') plt.xlim([-1, train_x.shape[1]]) plt.tight_layout() plt.show() ###Output _____no_output_____
code/metr-select-parameters.ipynb
###Markdown Step 1: Create dataframes of all vars ###Code # CHNAGE THE BELOW REFORM JSON and YEAR TO DESIRED ANALYSIS FRAMEWORK cyr = 2030 rec = Records() pol = Policy() pol.implement_reform(Policy.read_json_reform('../reforms/biden-iitax-reforms.json')) calc= Calculator(pol, rec) calc.advance_to_year(cyr) calc.calc_all() df = calc.dataframe([], all_vars=True) # create variables needed in tau_nc construction outside of loop df['net_bus_inc'] = (df['e02000'] - df['e26270']) + df['e00900p'] df['mtrC'] = np.where((df['c04800'] > 0) & (df['net_bus_inc'] > 0), calc.mtr(variable_str='e00900p', wrt_full_compensation=False)[1], 0) df['mtrE1'] = np.where((df['c04800'] > 0) & (df['net_bus_inc'] > 0), calc.mtr(variable_str='e02000', wrt_full_compensation=False)[1], 0) df['mtrE2'] = np.where((df['c04800'] > 0) & (df['net_bus_inc'] > 0), calc.mtr(variable_str='e26270', wrt_full_compensation=False)[1], 0) df['mtrE'] = df['mtrE1'] - df['mtrE2'] df['mtr_net_bus_inc'] = df['mtrE'] + df['mtrC'] df['weight_net_bus_inc'] = np.where((df['c04800'] > 0) & (df['net_bus_inc']>0), df['net_bus_inc']/(df['net_bus_inc'].sum()),0) df['w_net_bus_inc'] = np.where((df['c04800'] > 0) & (df['net_bus_inc']>0), df['mtr_net_bus_inc'] * df['weight_net_bus_inc'],0) # loop for rest of variables def make_mtrs(df, var): df['mtr_' + var] = np.where((df['c04800'] > 0) & (df[var]>0), calc.mtr(variable_str=var, wrt_full_compensation=False)[1], 0) df['weight_' + var] = np.where((df['c04800'] > 0) & (df[var]>0), df[var]/(df[var].sum()),0) df['w_' + var] = np.where((df['c04800'] > 0) & (df[var]>0), df['mtr_' + var] * df['weight_' + var],0) return df for var in ['e00650', 'e00300', 'p22250', 'p23250', 'e01700','e00200p']: make_mtrs(df, var) ###Output _____no_output_____ ###Markdown Step 2: Create tau parameters from dataframe ###Code # create weights df = df.assign(wage_weight = (df['e00200p'] * df['s006']) / sum(df['e00200p'] * df['s006'])) df = df.assign(interest_weight = (df['e00300'] * df['s006']) / sum(df['e00300'] * df['s006'])) df = df.assign(dividend_weight = (df['e00650'] * df['s006']) / sum(df['e00650'] * df['s006'])) df = df.assign(ltgains_weight = (df['p23250'] * df['s006']) / sum(df['p23250'] * df['s006'])) df = df.assign(stgains_weight = (df['p22250'] * df['s006']) / sum(df['p22250'] * df['s006'])) df = df.assign(pension_weight = (df['e01700'] * df['s006']) / sum(df['e01700'] * df['s006'])) df = df.assign(business_weight = (df['net_bus_inc'] * df['s006']) / sum(df['net_bus_inc'] * df['s006'])) # df.loc[(df['e00200p'] > 0) & (df['c04800'] > 0), 'wage_weight'] = (df.loc[(df['e00200p'] > 0) & (df['c04800'] > 0), 'e00200p'] * df.loc[(df['e00200p'] > 0) & (df['c04800'] > 0), 's006']) \ / sum(df.loc[(df['e00200p'] > 0) & (df['c04800'] > 0), 'e00200p'] * df.loc[(df['e00200p'] > 0) & (df['c04800'] > 0), 's006']) df.loc[(df['e00300'] > 0) & (df['c04800'] > 0), 'interest_weight'] = (df.loc[(df['e00300'] > 0) & (df['c04800'] > 0), 'e00300'] * df.loc[(df['e00300'] > 0) & (df['c04800'] > 0), 's006']) \ / sum(df.loc[(df['e00300'] > 0) & (df['c04800'] > 0), 'e00300'] * df.loc[(df['e00300'] > 0) & (df['c04800'] > 0), 's006']) df.loc[(df['e00650'] > 0) & (df['c04800'] > 0), 'dividend_weight'] = (df.loc[(df['e00650'] > 0) & (df['c04800'] > 0), 'e00650'] * df.loc[(df['e00650'] > 0) & (df['c04800'] > 0), 's006']) \ / sum(df.loc[(df['e00650'] > 0) & (df['c04800'] > 0), 'e00650'] * df.loc[(df['e00650'] > 0) & (df['c04800'] > 0), 's006']) df.loc[(df['p23250'] > 0) & (df['c04800'] > 0), 'ltgains_weight'] = (df.loc[(df['p23250'] > 0) & (df['c04800'] > 0), 'p23250'] * df.loc[(df['p23250'] > 0) & (df['c04800'] > 0), 's006']) \ / sum(df.loc[(df['p23250'] > 0) & (df['c04800'] > 0), 'p23250'] * df.loc[(df['p23250'] > 0) & (df['c04800'] > 0), 's006']) df.loc[(df['p22250'] > 0) & (df['c04800'] > 0), 'stgains_weight'] = (df.loc[(df['p22250'] > 0) & (df['c04800'] > 0), 'p22250'] * df.loc[(df['p22250'] > 0) & (df['c04800'] > 0), 's006']) \ / sum(df.loc[(df['p22250'] > 0) & (df['c04800'] > 0), 'p22250'] * df.loc[(df['p22250'] > 0) & (df['c04800'] > 0), 's006']) df.loc[(df['e01700'] > 0) & (df['c04800'] > 0), 'pension_weight'] = (df.loc[(df['e01700'] > 0) & (df['c04800'] > 0), 'e01700'] * df.loc[(df['e01700'] > 0) & (df['c04800'] > 0), 's006']) \ / sum(df.loc[(df['e01700'] > 0) & (df['c04800'] > 0), 'e01700'] * df.loc[(df['e01700'] > 0) & (df['c04800'] > 0), 's006']) df.loc[(df['net_bus_inc'] > 0) & (df['c04800'] > 0), 'business_weight'] = (df.loc[(df['net_bus_inc'] > 0) & (df['c04800'] > 0), 'net_bus_inc'] * df.loc[(df['net_bus_inc'] > 0) & (df['c04800'] > 0), 's006']) \ / sum(df.loc[(df['net_bus_inc'] > 0) & (df['c04800'] > 0), 'net_bus_inc'] * df.loc[(df['net_bus_inc'] > 0) & (df['c04800'] > 0), 's006']) # sum of (weight x mtr) results = { 'tau_wages': sum(df.loc[(df['e00200p'] > 0) & (df['c04800'] > 0), 'mtr_e00200p'] * df.loc[(df['e00200p'] > 0) & (df['c04800'] > 0), 'wage_weight']), 'tau_interest': sum(df.loc[(df['e00300'] > 0) & (df['c04800'] > 0), 'mtr_e00300'] * df.loc[(df['e00300'] > 0) & (df['c04800'] > 0), 'interest_weight']), 'tau_dividends': sum(df.loc[(df['e00650'] > 0) & (df['c04800'] > 0), 'mtr_e00650'] * df.loc[(df['e00650'] > 0) & (df['c04800'] > 0), 'dividend_weight']), 'tau_ltcapgain' : sum(df.loc[(df['p23250'] > 0) & (df['c04800'] > 0), 'mtr_p23250'] * df.loc[(df['p23250'] > 0) & (df['c04800'] > 0), 'ltgains_weight']), 'tau_stcapgain': sum(df.loc[(df['p22250'] > 0) & (df['c04800'] > 0), 'mtr_p22250'] * df.loc[(df['p22250'] > 0) & (df['c04800'] > 0), 'stgains_weight']), 'tau_taxdef': sum(df.loc[(df['e01700'] > 0) & (df['c04800'] > 0), 'mtr_e01700'] * df.loc[(df['e01700'] > 0) & (df['c04800'] > 0), 'pension_weight']), 'tau_businc': sum(df.loc[(df['net_bus_inc'] > 0) & (df['c04800'] > 0), 'mtr_net_bus_inc'] * df.loc[(df['net_bus_inc'] > 0) & (df['c04800'] > 0), 'business_weight']) } results # AS OF 10/01 # 2021 Output -- Biden { 'tau_wages': 0.22579741535205383, 'tau_businc': 0.23688645926320534 'tau_dividends': 0.22154782524778652, 'tau_interest': 0.32587731116122715, 'tau_stcapgain': 0.35316762250245715, 'tau_ltcapgain': 0.30317417181222733, 'tau_taxdef': 0.20557529276761868, # 2030 Output -- Biden {'tau_wages': 0.2615570975722658, 'tau_businc': 0.28690800605154393} 'tau_dividends': 0.23576880808217743, 'tau_interest': 0.3501197033722555, 'tau_stcapgain': 0.360018242929579, 'tau_ltcapgain': 0.302696552046099, 'tau_taxdef': 0.2519422134315737, # 2021 Output - Current Law {'tau_wages': 0.22055633310698056, 'tau_businc': 0.21212348629625527} 'tau_dividends': 0.18144637902683441, 'tau_interest': 0.3045090753423554, 'tau_stcapgain': 0.33172716752431924, 'tau_ltcapgain': 0.21411727367834893, 'tau_taxdef': 0.20432708930036364, # 2030 Output - Current Law {'tau_wages': 0.26270810021063296, 'tau_businc': 0.2826226943704139} 'tau_dividends': 0.19913431879864069, 'tau_interest': 0.34051886072557286, 'tau_stcapgain': 0.3519825834480394, 'tau_ltcapgain': 0.21957756590835306, 'tau_taxdef': 0.2517037725957203, ###Output _____no_output_____
Sessions/Session03/Day3/MapReduce.ipynb
###Markdown Data Management Part 2: Map Reduce**Version 0.1**Problem 2 has been adapted from a homework developed by Bill Howe at the University of Washington department of Computer Science and Engineering. He says:> In this assignment, you will be designing and implementing MapReduce algorithms for a variety of common data processing tasks. The MapReduce programming model (and a corresponding system) was proposed in a 2004 paper from a team at Google as a simpler abstraction for processing very large datasets in parallel. The goal of this assignment is to give you experience “thinking in MapReduce.” We will be using small datasets that you can inspect directly to determine the correctness of your results and to internalize how MapReduce works.On Friday, we'll do a demo of a MapReduce-based system to process the large datasets for which it was designed.* * * Problem 1: python builtins, map, reduce, and filterRecall yesterday's challenge problem, we define a function that returned true if a triangle was smaller than some threshold and False otherwise. We filtered the triangles as follows:```idx = [isTriangleLargerThan(triangle) for triangle in triangles]onlySmallTriangles = triangles[idx]```You could also do this with the `map` function:```idx = map(isTriangleLargerThan, triangles)onlySmallTriangles = triangles[idx]```or `filter`:```onlySmallTriangles = filter(isTriangleLargerThan, triangles)```The following code example is how we'd use them to compute a sum of 3 partitions. Pretend that the 3 lists are on different nodes. :) _ Note 1) this is operating on a set of values rather than key/value pairs (which we'll introduce in Problem 2).__Note 2) Yes, this is contrived. In real life, you wouldn't go through this trouble to compute a simple sum, but it is a warm up for Problem 2_ ###Code import numpy as np def mapper(arr): return np.sum(arr) def reducer(x, y): return x + y a = [1, 12, 3] b = [4, 12, 6, 3] c = [8, 1, 12, 11, 12, 2] inputData = [a, b, c] # Find the sum of all the numbers: intermediate = map(mapper, inputData) reduce(reducer, intermediate) ###Output _____no_output_____ ###Markdown **Problem 1a**) Re-write the mapper and reducer to return the **maximum** number in all 3 lists. ###Code def mapper(arr): # COMPLETE def reducer(x, y): # COMPLETE intermediate = map(mapper, inputData) reduce(reducer, intermediate) ###Output _____no_output_____ ###Markdown **Problem 1b)**How would you use this to compute the MEAN of the input data. **Problem 1c)**Think about how you would adapt this this to compute the MEDIAN of the input data. Do not implement it today! If it seems hard, it is because it is.What special properties do SUM, MAX, MEAN have that make it trivial to represent in MapReduce? Problem 2) Let's go through a more complete example. The following MapReduce class faithfully implements the MapReduce programming model, but it executes entirely on one processor -- it does not involve parallel computation. **Setup**First, download the data:```$ curl -O https://lsst-web.ncsa.illinois.edu/~yusra/escience_mr/books.json$ curl -O https://lsst-web.ncsa.illinois.edu/~yusra/escience_mr/records.json``` ###Code DATA_DIR = './data' # Set your path to the data files import json import sys class MapReduce: def __init__(self): self.intermediate = {} self.result = [] def emit_intermediate(self, key, value): self.intermediate.setdefault(key, []) self.intermediate[key].append(value) def emit(self, value): self.result.append(value) def execute(self, data, mapper, reducer): for line in data: record = json.loads(line) mapper(record) for key in self.intermediate: reducer(key, self.intermediate[key]) jenc = json.JSONEncoder() for item in self.result: print(jenc.encode(item)) ###Output _____no_output_____ ###Markdown Here is the word count example discussed in class implemented as a MapReduce program using the framework: ###Code # Part 1 mr = MapReduce() # Part 2 def mapper(record): # key: document identifier # value: document contents key = record[0] value = record[1] words = value.split() for w in words: mr.emit_intermediate(w, 1) # Part 3 def reducer(key, list_of_values): # key: word # value: list of occurrence counts total = 0 for v in list_of_values: total += v mr.emit((key, total)) # Part 4 inputdata = open(os.path.join(DATA_DIR, "books.json")) mr.execute(inputdata, mapper, reducer) ###Output _____no_output_____ ###Markdown Probelm 2a)Create an Inverted index. Given a set of documents, an inverted index is a dictionary where each word is associated with a list of the document identifiers in which that word appears.**Mapper Input**The input is a 2 element list: [document_id, text], where document_id is a string representing a document identifier and text is a string representing the text of the document. The document text may have words in upper or lower case and may contain punctuation. You should treat each token as if it was a valid word; that is, you can just use value.split() to tokenize the string.**Reducer Output**The output should be a (word, document ID list) tuple where word is a String and document ID list is a list of Strings like:```["all", ["milton-paradise.txt", "blake-poems.txt", "melville-moby_dick.txt"]]["Rossmore", ["edgeworth-parents.txt"]]["Consumptive", ["melville-moby_dick.txt"]]["forbidden", ["milton-paradise.txt"]]["child", ["blake-poems.txt"]]["eldest", ["edgeworth-parents.txt"]]["four", ["edgeworth-parents.txt"]]["Caesar", ["shakespeare-caesar.txt"]]["winds", ["whitman-leaves.txt"]]["Moses", ["bible-kjv.txt"]]["children", ["edgeworth-parents.txt"]]["seemed", ["chesterton-ball.txt", "austen-emma.txt"]]etc...``` ###Code mr = MapReduce() def mapper(record): # COMPELTE def reducer(key, list_of_values): # COMPLETE inputdata = open(os.path.join(DATA_DIR, "books.json")) mr.execute(inputdata, mapper, reducer) ###Output _____no_output_____ ###Markdown Challenge ProblemImplement a relational join as a MapReduce queryConsider the following query:```SELECT * FROM Orders, LineItem WHERE Order.order_id = LineItem.order_id```Your MapReduce query should produce the same result as this SQL query executed against an appropriate database. You can consider the two input tables, Order and LineItem, as one big concatenated bag of records that will be processed by the map function record by record.**Map Input**Each input record is a list of strings representing a tuple in the database. Each list element corresponds to a different attribute of the tableThe first item (index 0) in each record is a string that identifies the table the record originates from. This field has two possible values:"line_item" indicates that the record is a line item."order" indicates that the record is an order.* **The second element (index 1) in each record is the `order_id.`** <--- JOIN ON THIS ELEMENTLineItem records have 17 attributes including the identifier string.Order records have 10 elements including the identifier string.**Reduce Output**The output should be a joined record: a single list of length 27 that contains the attributes from the order record followed by the fields from the line item record. Each list element should be a string like ```["order", "32", "130057", "O", "208660.75", "1995-07-16", "2-HIGH", "Clerk000000616", "0", "ise blithely bold, regular requests. quickly unusual dep", "line_item", "32", "82704", "7721", "1", "28", "47227.60", "0.05", "0.08", "N", "O", "1995-10-23", "1995-08-27", "1995-10-26", "TAKE BACK RETURN", "TRUCK", "sleep quickly. req"]["order", "32", "130057", "O", "208660.75", "1995-07-16", "2-HIGH", "Clerk000000616", "0", "ise blithely bold, regular requests. quickly unusual dep", "line_item", "32", "197921", "441", "2", "32", "64605.44", "0.02", "0.00", "N", "O", "1995-08-14", "1995-10-07", "1995-08-27", "COLLECT COD", "AIR", "lithely regular deposits. fluffily "]["order", "32", "130057", "O", "208660.75", "1995-07-16", "2-HIGH", "Clerk000000616", "0", "ise blithely bold, regular requests. quickly unusual dep", "line_item", "32", "44161", "6666", "3", "2", "2210.32", "0.09", "0.02", "N", "O", "1995-08-07", "1995-10-07", "1995-08-23", "DELIVER IN PERSON", "AIR", " express accounts wake according to the"]["order", "32", "130057", "O", "208660.75", "1995-07-16", "2-HIGH", "Clerk000000616", "0", "ise blithely bold, regular requests. quickly unusual dep", "line_item", "32", "2743", "7744", "4", "4", "6582.96", "0.09", "0.03", "N", "O", "1995-08-04", "1995-10-01", "1995-09-03", "NONE", "REG AIR", "e slyly final pac"]``` ###Code mr = MapReduce() def mapper(record): # COMPLETE def reducer(key, list_of_values): # COMPLETE inputdata = open(os.path.join(DATA_DIR, "records.json")) mr.execute(inputdata, mapper, reducer) ###Output _____no_output_____
Inspect_Data/Combine_Seperate_Classification_Files.ipynb
###Markdown Combine classification dataThe classification process used to label the drone footage in this project resulted in ~1000 individual classification json files. To perform pre-processing (including validating that the images classified by multiple users were classified in a simlar method), the files are all combined into a single dataframe.This takes a long time (approximately 1 hour on a desktop machine), therefore the resulting dataframe is picked to a file to allow for resumption of validation and inspection work without the need to rerun this time-consuming process ###Code import pandas as pd import json from os import listdir from os.path import isfile, join # Function to read the json file and convert the dictionary object in the 'classifiedData' column # into seperate columns def load_classification_file(file_name): data = pd.read_json(file_name) map_to_dict = data['classifiedData'].map(lambda x : dict(x)) expanded_cols = map_to_dict.apply(pd.Series) return pd.concat([data, expanded_cols], axis=1).drop('classifiedData', axis=1) frames = None # Read all files in the classified sibling folder filenames = [f for f in listdir('../../Texture_Repo/Donegal_Rural_Terrain_Textures/classified') if isfile(join('../../Texture_Repo/Donegal_Rural_Terrain_Textures/classified', f))] for f in filenames: print('Processing ' + f) frame = load_classification_file(join('../../Texture_Repo/Donegal_Rural_Terrain_Textures/classified', f)) frames = pd.concat([frames, frame]) # Pickle the combined data frames into the classified folder frames.to_pickle('../../Texture_Repo/Donegal_Rural_Terrain_Textures/classified/all_data.pkl') ###Output _____no_output_____
examples/99-advanced/osmnx-example.ipynb
###Markdown Plot Open Street Map Data {open_street_map_example}=========================This was originally posted to[pyvista/pyvista-support\486](https://github.com/pyvista/pyvista-support/issues/486).Be sure to check out [osmnx](https://github.com/gboeing/osmnx)Start by generating a graph from an address. ###Code import numpy as np import osmnx as ox import pyvista as pv # Alternatively, use the pickeled graph included in our examples. from pyvista import examples ###Output _____no_output_____ ###Markdown Read in the graph directly from the Open Street Map server. ###Code # address = 'Holzgerlingen DE' # graph = ox.graph_from_address(address, dist=500, network_type='drive') # pickle.dump(graph, open('/tmp/tmp.p', 'wb')) graph = examples.download_osmnx_graph() ###Output _____no_output_____ ###Markdown Next, convert the edges into pyvista lines using`pyvista.lines_from_points`{.interpreted-text role="func"}. ###Code nodes, edges = ox.graph_to_gdfs(graph) lines = [] # convert each edge into a line for _, row in edges.iterrows(): x_pts = row['geometry'].xy[0] y_pts = row['geometry'].xy[1] z_pts = np.zeros(len(x_pts)) pts = np.column_stack((x_pts, y_pts, z_pts)) line = pv.lines_from_points(pts) lines.append(line) ###Output _____no_output_____ ###Markdown Finally, merge the lines and plot ###Code combined_lines = lines[0].merge(lines[1:]) combined_lines.plot(line_width=3, cpos='xy') ###Output _____no_output_____
Over Sampling And Under Sampling.ipynb
###Markdown Credit Card Kaggle- Fixing Imbalanced Dataset Over Sampling ###Code import numpy as np import pandas as pd import sklearn import scipy import matplotlib.pyplot as plt import seaborn as sns from sklearn.metrics import classification_report,accuracy_score from sklearn.ensemble import IsolationForest from sklearn.neighbors import LocalOutlierFactor from sklearn.svm import OneClassSVM from pylab import rcParams rcParams['figure.figsize'] = 14, 8 RANDOM_SEED = 42 LABELS = ["Normal", "Fraud"] data = pd.read_csv('creditcard.csv',sep=',') data.head() data.info() #Create independent and Dependent Features columns = data.columns.tolist() # Filter the columns to remove data we do not want columns = [c for c in columns if c not in ["Class"]] # Store the variable we are predicting target = "Class" # Define a random state state = np.random.RandomState(42) X = data[columns] Y = data[target] # Print the shapes of X & Y print(X.shape) print(Y.shape) ###Output (284807, 30) (284807,) ###Markdown Exploratory Data Analysis ###Code data.isnull().values.any() count_classes = pd.value_counts(data['Class'], sort = True) count_classes.plot(kind = 'bar', rot=0) plt.title("Transaction Class Distribution") plt.xticks(range(2), LABELS) plt.xlabel("Class") plt.ylabel("Frequency") ## Get the Fraud and the normal dataset fraud = data[data['Class']==1] normal = data[data['Class']==0] print(fraud.shape,normal.shape) from imblearn.combine import SMOTETomek from imblearn.under_sampling import NearMiss smk = SMOTETomek(random_state=42) X_res,y_res=smk.fit_sample(X,Y) X_res.shape,y_res.shape from collections import Counter print('Original dataset shape {}'.format(Counter(Y))) print('Resampled dataset shape {}'.format(Counter(y_res))) ## RandomOverSampler to handle imbalanced data from imblearn.over_sampling import RandomOverSampler os = RandomOverSampler(ratio=0.5) X_train_res, y_train_res = os.fit_sample(X, Y) X_train_res.shape,y_train_res.shape print('Original dataset shape {}'.format(Counter(Y))) print('Resampled dataset shape {}'.format(Counter(y_train_res))) os_us = SMOTETomek(ratio=0.5) X_train_res1, y_train_res1 = os_us.fit_sample(X, Y) X_train_res1.shape,y_train_res1.shape print('Original dataset shape {}'.format(Counter(Y))) print('Resampled dataset shape {}'.format(Counter(y_train_res1))) ###Output Original dataset shape Counter({0: 284315, 1: 492}) Resampled dataset shape Counter({0: 283480, 1: 141322}) ###Markdown Under Sampling ###Code import numpy as np import pandas as pd import sklearn import scipy import matplotlib.pyplot as plt import seaborn as sns from sklearn.metrics import classification_report,accuracy_score from sklearn.ensemble import IsolationForest from sklearn.neighbors import LocalOutlierFactor from sklearn.svm import OneClassSVM from pylab import rcParams rcParams['figure.figsize'] = 14, 8 RANDOM_SEED = 42 LABELS = ["Normal", "Fraud"] data = pd.read_csv('creditcard.csv',sep=',') data.head() data.info() #Create independent and Dependent Features columns = data.columns.tolist() # Filter the columns to remove data we do not want columns = [c for c in columns if c not in ["Class"]] # Store the variable we are predicting target = "Class" # Define a random state state = np.random.RandomState(42) X = data[columns] Y = data[target] X_outliers = state.uniform(low=0, high=1, size=(X.shape[0], X.shape[1])) # Print the shapes of X & Y print(X.shape) print(Y.shape) ###Output (284807, 30) (284807,) ###Markdown Exploratory Data Analysis ###Code data.isnull().values.any() count_classes = pd.value_counts(data['Class'], sort = True) count_classes.plot(kind = 'bar', rot=0) plt.title("Transaction Class Distribution") plt.xticks(range(2), LABELS) plt.xlabel("Class") plt.ylabel("Frequency") ## Get the Fraud and the normal dataset fraud = data[data['Class']==1] normal = data[data['Class']==0] print(fraud.shape,normal.shape) from imblearn.under_sampling import NearMiss nm = NearMiss(random_state=42) X_res,y_res=nm.fit_sample(X,Y) X_res.shape,y_res.shape from collections import Counter print('Original dataset shape {}'.format(Counter(Y))) print('Resampled dataset shape {}'.format(Counter(y_res))) ###Output Original dataset shape Counter({0: 284315, 1: 492}) Resampled dataset shape Counter({0: 492, 1: 492})