path
stringlengths
7
265
concatenated_notebook
stringlengths
46
17M
p1/fingeruebungen.ipynb
###Markdown Programmierung für KI Winterersemester 2021/22Prof. Dr. Heiner Giefers / Prof. Dr. Doga Arinir Aufgabe 1Schreiben Sie Python Code zur Berechnung des Umfangs und der Fläche eines Rechtecks mit einer Höhe von 5 cm und einer Breite von 8 cm. Legen Sie für die Höhe und Breite Variablen an.*Erwartete Ausgabe:* Umfang des Rechtecks = 26 Zentimeter Fläche des Rechtecks = 40 Quadratzentimeter ###Code # Lösung für Aufgabe 1 # YOUR CODE HERE raise NotImplementedError() ###Output _____no_output_____ ###Markdown Aufgabe 2Schreiben Sie Python Code zur Berechnung des Umfangs und der Fläche eines Kreises mit einem bestimmten Radius.*Erwartete Ausgabe:* Umfang des Kreises = 25.13272 Zentimeter Fläche des Kreises = 50.26544 Quadratzentimeter ###Code # Lösung für Aufgabe 2 # YOUR CODE HERE raise NotImplementedError() ###Output _____no_output_____ ###Markdown Aufgabe 3Ändern Sie die Aufgaben 1 oder 2 so ab, dass Sie die Seitenlängen des Rechtecks, bzw. den Radius des Kreises nicht als feste Werte im Programm anlegen, sondern vom Benutzer erfragen. Verwenden Sie dazu die `input` Funktion.*Erwartete Ausgabe (z.B.):* Gib den Radius an: 7 Umfang des Kreises = 43.98226 Zentimeter Fläche des Kreises = 153.93791 Quadratzentimeter ###Code # Lösung für Aufgabe 3 # YOUR CODE HERE raise NotImplementedError() ###Output _____no_output_____ ###Markdown Aufgabe 4Schreiben Sie Python Code, der eine Basis und einen Exponenten vom Benutzer erfragt und damit die Potenz berechnet und ausgibt.*Erwartete Ausgabe:* Gib die Basis an: 7 Gib denn Exponenten an: 2.1 7.0 hoch 2.1 ist 59.52588815791429 ###Code # Lösung für Aufgabe 4 # YOUR CODE HERE raise NotImplementedError() ###Output _____no_output_____ ###Markdown Aufgabe 5Schreiben Sie Python Code, der zwei ganze Zahlen erfragt und ausgibt, wie viele Zahlen zwischen den beiden eingegebenen Zahlen liegen. Das Programm soll auch funktionieren, wenn zuerst die größere Zahl eingegeben wurde.*Erwartete Ausgabe:* Gib eine Zahl ein: 17 Gib eine weitere Zahl ein: 5 Zwischen 17 und 5 liegen 11 Werte ###Code # Lösung für Aufgabe 5 # YOUR CODE HERE raise NotImplementedError() ###Output _____no_output_____ ###Markdown Aufgabe 6Schreiben Sie Python Code, der auf Grundlage einer Progressionstabelle aus dem Bruttolohn den Nettolohn berechnet. Die Steuersätze sind in 6 Tarifzonen aufgeteilt. Für Jahreseinkommen unter 10.000 Euro müssen keine Steuern bezahlt werden, für Einkommen zwischen 10.000 und 14.000 14%, usw.Das Programm soll den Bruttolohn erfragen und den Nettolohn ausgeben.| Tarifzone | Einkommensbereich | Steuersatz || --------- | ----------------- | ---------- || Zone 0 | 0 bis 10.000 Euro | 0% || Zone 1 | bis 14.000 Euro | 14% || Zone 2 | bis 31.000 Euro | 22% || Zone 3 | bis 56.000 Euro | 29% || Zone 4 | bis 83.000 Euro | 32% || Zone 5 | über 83.000 Euro | 36% |*Erwartete Ausgabe:* Bruttolohn: 17000 Der Nettolohn betraegt 13260.0 Euro ###Code # Lösung für Aufgabe 6 # YOUR CODE HERE raise NotImplementedError() ###Output _____no_output_____ ###Markdown Aufgabe 7Schreiben Sie Python Code, der eine Zahl und einen möglichen Teiler der Zahl erfragt. Das Programm soll berechnen, ob die zweite Zahl tatsächlich ein Teiler der ersten Zahl ist. (Hinweis: Dass eine Zahl durch eine andere teilbar ist, erkennt man daran, dass der Rest der ganzzahligen Division 0 ist. Diesen Rest können Sie mit der Modulo Operation berechnen.)*Erwartete Ausgabe:* Gib eine Zahl ein: 30 Gib einen möglichen Teiler an: 7 7 ist kein Teiler von 30 ###Code # Lösung für Aufgabe 7 # YOUR CODE HERE raise NotImplementedError() ###Output _____no_output_____ ###Markdown Aufgabe 8Schreiben Sie Python Code, der die Zahlen von 1 bis 50 ausgibt.Hinweis: In dieser Aufgabe benötigen Sie eine Programmschleife, die erst in Kapitel 5 des Lehrbuchs behandelt wird. Daher machen wir an dieser Stelle einen kleinen Vorgriff.Für unsere Zwecke hier ist eine `while`-Schleife gut geeignet. Die Schleife wird folgendermaßen programmiert:```pythonwhile : ````` und `` sind natürlich nur Platzhalter für *echten* Python Code. Probieren Sie einfach mal aus, die richtige Lösung zu finden. Denken Sie daran, dass sie *mitzählen* müssen, wie viele Zahlen sie schon ausgegeben haben. Dafür benötigen Sie unbedingt eine Variable.*Erwartete Ausgabe:* 1 2 3 4 5 ... *Variante 2: Wie können Sie folgende Ausgabe erreichen? In der Hilfe der `print` Funktion finden Sie eine Möglichkeit.* 1 2 3 4 5 ... ###Code # Lösung für Aufgabe 8 # YOUR CODE HERE raise NotImplementedError() ###Output _____no_output_____ ###Markdown Aufgabe 9Schreiben Sie Python Code, das vom Benutzer die Eingabe einer Zahl verlangt. Solange die eingegebene Zahl keine 0 ist, soll das Programm die Summe aller bisher eingegebenen Zahlen ausgeben und nach einer weiteren Zahl fragen. *Erwartete Ausgabe:* Gib eine Zahl ein: 3 Die Summe ist: 3 Gib eine Zahl ein: 5 Die Summe ist: 8 Gib eine Zahl ein: 2 Die Summe ist: 10 Gib eine Zahl ein: 0 Die Summe ist: 10 ###Code # Lösung für Aufgabe 9 # YOUR CODE HERE raise NotImplementedError() ###Output _____no_output_____ ###Markdown Aufgabe 10Schreiben Sie Python Code, der eine Zahl vom Benutzer erfragt und dann alle Teiler dieser Zahl ausgibt. (Hinweis: Wenn `n` die eingegebene Zahl ist, probieren Sie einfach alle Zahlen von 1 bis `n` aus. Ist die aktuelle Zahl ein Teiler von `n`, so geben Sie sie aus. Falls nicht, gehen Sie zur nächsten Zahl über.*Erwartete Ausgabe:* Gib eine Zahl ein: 64 1 ist ein Teiler von 64 2 ist ein Teiler von 64 4 ist ein Teiler von 64 8 ist ein Teiler von 64 16 ist ein Teiler von 64 32 ist ein Teiler von 64 64 ist ein Teiler von 64 ###Code # Lösung für Aufgabe 10 # YOUR CODE HERE raise NotImplementedError() ###Output _____no_output_____ ###Markdown Aufgabe 11Schreiben Sie Python Code, der die Multiplikationstabelle für das Kleine Einmaleins ausgibt. Das Programm soll die Werte berechnen und prinzipiell auch für Operanden größer 10 verwendbar sein.Hinweis: Um die Tabelle schöner zu formatieren, können Sie zum Ausgeben des Werts einen Format-Sting verwenden. Um den Wert von `zahl` mit 4 Stellen auszugeben, verwenden Sie den Format-String `f"{zahl:4d}"`.*Erwartete Ausgabe:* 1 2 3 4 5 6 7 8 9 10 2 4 6 8 10 12 14 16 18 20 3 6 9 12 15 18 21 24 27 30 4 8 12 16 20 24 28 32 36 40 5 10 15 20 25 30 35 40 45 50 6 12 18 24 30 36 42 48 54 60 7 14 21 28 35 42 49 56 63 70 8 16 24 32 40 48 56 64 72 80 9 18 27 36 45 54 63 72 81 90 10 20 30 40 50 60 70 80 90 100 ###Code # Lösung für Aufgabe 11 # YOUR CODE HERE raise NotImplementedError() ###Output _____no_output_____ ###Markdown Aufgabe 12Schreiben Sie Python Code, der eine Folge von Werten berechnet, bei der jedes Element die Summe der beiden vorangegangene Werte ist. Der Startpunkt der Folge sind die Werte `1` und `1`. Das dritte Element der Folge ist demnach `2` (`1+1`), das vierte `3` (`1+2`), das fünfte `5` (`2+3`), das sechste `8` (`3+8`), usw. Fragen Sie vor der Berechnung ab, bis zu welchem Element die Folge berechnet werden soll.*Erwartete Ausgabe:* Bis zu welcher Stelle soll die Folge berechnet werden? 10 Element 1 = 1 Element 2 = 1 Element 3 = 2 Element 4 = 3 Element 5 = 5 Element 6 = 8 Element 7 = 13 Element 8 = 21 Element 9 = 34 Element 10 = 55 ###Code # Lösung für Aufgabe 12 # YOUR CODE HERE raise NotImplementedError() ###Output _____no_output_____
Python/CARTOONING-AN-IMAGE-USING-OPENCV-master/CARTOONING AN IMAGE USING OPENCV.ipynb
###Markdown Import Libraries ###Code import cv2 import numpy as np import matplotlib.pyplot as plt import os %matplotlib inline os.chdir('E:\Project-CARTOON') ###Output _____no_output_____ ###Markdown Reading Image ###Code img=cv2.imread("BIRD.png") type(img) img.shape plt.imshow(img) ###Output _____no_output_____ ###Markdown Getting Edges ###Code gray=cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) gray=cv2.medianBlur(gray, 5) edges=cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 9, 9) ###Output _____no_output_____ ###Markdown Cartoonization ###Code color= cv2.bilateralFilter(img, 9, 250, 250) cartoon= cv2.bitwise_and(color, color, mask=edges) ###Output _____no_output_____ ###Markdown Showing Output ###Code cv2.imshow("Image", img) cv2.imshow("edges", edges) cv2.imshow("Cartoon", cartoon) cv2.waitKey(0) cv2.destroyAllWindows() ###Output _____no_output_____
MLP_fashionMNIST.ipynb
###Markdown 뉴럴넷으로 패션 아이템 구분하기Fashion MNIST 데이터셋과 앞서 배운 인공신경망을 이용하여 패션아이템을 구분해봅니다. ###Code import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torchvision import transforms, datasets USE_CUDA = torch.cuda.is_available() DEVICE = torch.device("cuda" if USE_CUDA else "cpu") EPOCHS = 30 BATCH_SIZE = 64 ###Output _____no_output_____ ###Markdown 데이터셋 불러오기 ###Code transform = transforms.Compose([ transforms.ToTensor() ]) trainset = datasets.FashionMNIST( root = './.data/', train = True, download = True, transform = transform ) testset = datasets.FashionMNIST( root = './.data/', train = False, download = True, transform = transform ) train_loader = torch.utils.data.DataLoader( dataset = trainset, batch_size = BATCH_SIZE, shuffle = True, ) test_loader = torch.utils.data.DataLoader( dataset = testset, batch_size = BATCH_SIZE, shuffle = True, ) ###Output Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz to ./.data/FashionMNIST/raw/train-images-idx3-ubyte.gz ###Markdown 뉴럴넷으로 Fashion MNIST 학습하기입력 `x` 는 `[배치크기, 색, 높이, 넓이]`로 이루어져 있습니다.`x.size()`를 해보면 `[64, 1, 28, 28]`이라고 표시되는 것을 보실 수 있습니다.Fashion MNIST에서 이미지의 크기는 28 x 28, 색은 흑백으로 1 가지 입니다.그러므로 입력 x의 총 특성값 갯수는 28 x 28 x 1, 즉 784개 입니다.우리가 사용할 모델은 3개의 레이어를 가진 인공신경망 입니다. ###Code class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(784, 256) self.fc2 = nn.Linear(256, 128) self.fc3 = nn.Linear(128, 10) def forward(self, x): x = x.view(-1, 784) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x ###Output _____no_output_____ ###Markdown 모델 준비하기`to()` 함수는 모델의 파라미터들을 지정한 곳으로 보내는 역할을 합니다.일반적으로 CPU 1개만 사용할 경우 필요는 없지만,GPU를 사용하고자 하는 경우 `to("cuda")`로 지정하여 GPU로 보내야 합니다.지정하지 않을 경우 계속 CPU에 남아 있게 되며 빠른 훈련의 이점을 누리실 수 없습니다.최적화 알고리즘으로 파이토치에 내장되어 있는 `optim.SGD`를 사용하겠습니다. ###Code model = Net().to(DEVICE) optimizer = optim.SGD(model.parameters(), lr=0.01) ###Output ###Markdown 학습하기 ###Code def train(model, train_loader, optimizer): model.train() for batch_idx, (data, target) in enumerate(train_loader): # 학습 데이터를 DEVICE의 메모리로 보냄 data, target = data.to(DEVICE), target.to(DEVICE) optimizer.zero_grad() output = model(data) loss = F.cross_entropy(output, target) loss.backward() optimizer.step() ###Output _____no_output_____ ###Markdown 테스트하기 ###Code def evaluate(model, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(DEVICE), target.to(DEVICE) output = model(data) # 모든 오차 더하기 test_loss += F.cross_entropy(output, target, reduction='sum').item() # 가장 큰 값을 가진 클래스가 모델의 예측입니다. # 예측과 정답을 비교하여 일치할 경우 correct에 1을 더합니다. pred = output.max(1, keepdim=True)[1] correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) test_accuracy = 100. * correct / len(test_loader.dataset) return test_loss, test_accuracy ###Output _____no_output_____ ###Markdown 코드 돌려보기자, 이제 모든 준비가 끝났습니다. 코드를 돌려서 실제로 훈련이 되는지 확인해봅시다! ###Code for epoch in range(1, EPOCHS + 1): train(model, train_loader, optimizer) test_loss, test_accuracy = evaluate(model, test_loader) print('[{}] Test Loss: {:.4f}, Accuracy: {:.2f}%'.format( epoch, test_loss, test_accuracy)) ###Output _____no_output_____
Material, Exercicios/Codigos/iadell7_K_means_video_aula.ipynb
###Markdown Leitura dos dados ###Code df = pd.read_csv('Mall_Customers.csv') df.head() df.shape ###Output _____no_output_____ ###Markdown Verificar dados nulos ###Code df.isnull().sum() ###Output _____no_output_____ ###Markdown Informações estatísticas ###Code df.describe() ###Output _____no_output_____ ###Markdown Gerando gráfico de renda anual versus score do cliente ###Code plt.scatter(df['Annual Income (k$)'], df['Spending Score (1-100)'], marker='.') plt.xlabel('Renda Anual [k$]') plt.ylabel('Score (1-100)') plt.show() ###Output _____no_output_____ ###Markdown Selecioando dados para agrupamento ###Code X = df[['Annual Income (k$)', 'Spending Score (1-100)']] X.head() ###Output _____no_output_____ ###Markdown Importando K-means ###Code from sklearn.cluster import KMeans ###Output _____no_output_____ ###Markdown Clusterizando com k = 5 ###Code modelo_kmeans = KMeans(n_clusters= 5, init='k-means++') y_kmeans= modelo_kmeans.fit_predict(X) print(y_kmeans) ###Output [2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 4 0 1 0 4 0 4 0 1 0 4 0 4 0 4 0 4 0 1 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0] ###Markdown Visualizando o primeiro grupo criado ###Code print(X[y_kmeans == 0]) ###Output Annual Income (k$) Spending Score (1-100) 123 69 91 125 70 77 127 71 95 129 71 75 131 71 75 133 72 71 135 73 88 137 73 73 139 74 72 141 75 93 143 76 87 145 77 97 147 77 74 149 78 90 151 78 88 153 78 76 155 78 89 157 78 78 159 78 73 161 79 83 163 81 93 165 85 75 167 86 95 169 87 63 171 87 75 173 87 92 175 88 86 177 88 69 179 93 90 181 97 86 183 98 88 185 99 97 187 101 68 189 103 85 191 103 69 193 113 91 195 120 79 197 126 74 199 137 83 ###Markdown Visualizando os grupos ###Code k_grupos = 5 cores = ['r', 'b', 'k', 'y', 'g'] for k in range(k_grupos): cluster = X[y_kmeans == k] plt.scatter(cluster['Annual Income (k$)'], cluster['Spending Score (1-100)'], s = 100, c = cores[k], label = f'Cluster {k}') plt.title('Grupos de clientes') plt.xlabel('Renda Anual (k$)') plt.ylabel('Score (1-100)') plt.grid() plt.legend() plt.show() ###Output _____no_output_____
notebooks/ROI/02_Nearshore/01b_HYSWAN_SIMULATION/01_WAVES_MDA.ipynb
###Markdown ... ***CURRENTLY UNDER DEVELOPMENT*** ... Selection of representative cases of multivariate wave conditions to simulate with SWAN Maximum Dissimilarity Algorithm (MDA)inputs required: * Historical waves * Emulator output - wave conditionsin this notebook: * Split sea and swell components * MDA selection of representative number of events Workflow: ###Code #!/usr/bin/env python # -*- coding: utf-8 -*- # common import os import os.path as op # pip import numpy as np import pandas as pd import xarray as xr import matplotlib.pyplot as plt # DEV: override installed teslakit import sys sys.path.insert(0, op.join(os.path.abspath(''), '..', '..', '..', '..')) # teslakit from teslakit.database import Database, hyswan_db from teslakit.climate_emulator import Climate_Emulator from teslakit.mda import MaxDiss_Simplified_NoThreshold, nearest_indexes from teslakit.plotting.mda import Plot_MDA_Data ###Output _____no_output_____ ###Markdown Database and Site parameters ###Code # -------------------------------------- # Teslakit database p_data = r'/Users/nico/Projects/TESLA-kit/TeslaKit/data' db = Database(p_data) # set site db.SetSite('ROI') # hyswan simulation database db_sim = hyswan_db(db.paths.site.HYSWAN.sim) # Climate Emulator DWTs-WVS simulations CE = Climate_Emulator(db.paths.site.EXTREMES.climate_emulator) WVS_sim = CE.LoadSim_All() # -------------------------------------- # Set MDA parameters # variables to use vns = ['tp', 'dir'] # subset size, scalar and directional indexes n_subset = 125 # subset size ix_scalar = [0] # tp ix_directional = [1] # dir ###Output _____no_output_____ ###Markdown  Prepare Sea and Swells data ###Code def split_sea_swells(WVS): ''' splits WVS dataframe data into sea waves & swell waves dataframes requires WVS to contain variables with these names: 'sea_Hs', 'sea_Tp', 'sea_Dir' 'swell_1_Hs', 'swell_1_Tp', 'swell_1_Dir' 'swell_2_Hs', 'swell_2_Tp', 'swell_2_Dir' ... ''' # store n_sim if found in WVS dataset vns_extra = [] if 'n_sim' in list(WVS.columns): vns_extra.append('n_sim') # Prepare SEA waves vns_sea = ['sea_Hs', 'sea_Tp', 'sea_Dir'] + vns_extra wvs_sea = WVS[vns_sea] wvs_sea.dropna(inplace=True) # clean nans wvs_sea.rename(columns={"sea_Hs":"hs", "sea_Tp":"tp", "sea_Dir": "dir"}, inplace=True) # rename columns wvs_sea = wvs_sea[wvs_sea["dir"]<=360] # filter data # Prepare SWELL_1 waves vns_swell_1 = ['swell_1_Hs', 'swell_1_Tp', 'swell_1_Dir'] + vns_extra wvs_swell_1 = WVS[vns_swell_1] wvs_swell_1.dropna(inplace=True) wvs_swell_1.rename(columns={"swell_1_Hs":"hs", "swell_1_Tp":"tp", "swell_1_Dir": "dir"}, inplace=True) wvs_swell_1 = wvs_swell_1[wvs_swell_1["dir"]<=360] # Prepare SWELL_2 waves vns_swell_2 = ['swell_2_Hs', 'swell_2_Tp', 'swell_2_Dir'] + vns_extra wvs_swell_2 = WVS[vns_swell_2] wvs_swell_2.dropna(inplace=True) wvs_swell_2.rename(columns={"swell_2_Hs":"hs", "swell_2_Tp":"tp", "swell_2_Dir": "dir"}, inplace=True) wvs_swell_2 = wvs_swell_2[wvs_swell_2["dir"]<=360] # join swell data wvs_swell = pd.concat([wvs_swell_1, wvs_swell_2], ignore_index=True) return wvs_sea, wvs_swell # -------------------------------------- # split simulated waves data by family wvs_sea_sim, wvs_swl_sim = split_sea_swells(WVS_sim) db_sim.Save('sea_dataset', wvs_sea_sim) db_sim.Save('swl_dataset', wvs_swl_sim) ###Output _____no_output_____ ###Markdown MaxDiss Classification ###Code # -------------------------------------- # Sea data = wvs_sea_sim[vns].values[:] # MDA algorithm sel = MaxDiss_Simplified_NoThreshold(data, n_subset, ix_scalar, ix_directional) wvs_sea_sim_subset = pd.DataFrame(data=sel, columns=vns) # add nearest hs to sea subset ix_n = nearest_indexes(wvs_sea_sim_subset[vns].values[:], data, ix_scalar, ix_directional) wvs_sea_sim_subset['hs'] = wvs_sea_sim['hs'].iloc[ix_n].values[:] wvs_sea_sim_subset['n_sim'] = wvs_sea_sim['n_sim'].iloc[ix_n].values[:] # plot results Plot_MDA_Data(wvs_sea_sim, wvs_sea_sim_subset); # Store MDA sea subset db_sim.Save('sea_subset', wvs_sea_sim_subset) # -------------------------------------- # Swells data = wvs_swl_sim[vns].values[:] # MDA algorithm sel = MaxDiss_Simplified_NoThreshold(data, n_subset, ix_scalar, ix_directional) wvs_swl_sim_subset = pd.DataFrame(data=sel, columns=vns) # add nearest hs to swells subset ix_n = nearest_indexes(wvs_swl_sim_subset[vns].values[:], data, ix_scalar, ix_directional) wvs_swl_sim_subset['hs'] = wvs_swl_sim['hs'].iloc[ix_n].values[:] wvs_swl_sim_subset['n_sim'] = wvs_swl_sim['n_sim'].iloc[ix_n].values[:] # plot results Plot_MDA_Data(wvs_swl_sim, wvs_swl_sim_subset); # Store MDA swell subset db_sim.Save('swl_subset', wvs_swl_sim_subset) ###Output MaxDiss waves parameters: 2143588 --> 125 MDA centroids: 125/125
examples/batch_mode.ipynb
###Markdown Imports ###Code import os import sys import pandas as pd import matplotlib.pyplot as plt try: root = os.path.dirname(os.path.abspath(__file__)) except: root = os.getcwd() sys.path.append(os.path.dirname(root)) # Import dispatcher from SynAS.SynAS import dispatcher ###Output _____no_output_____ ###Markdown Instantiate ###Code seed = 20 # set seed length = 60*60 # 1 hour dispatch = dispatcher(length=length, seed=seed) ###Output _____no_output_____ ###Markdown Get Dispatch (native interval) ###Code res = dispatch.get_sequence() # res.index = [pd.to_datetime('2020-01-01')+pd.DateOffset(seconds=ix) for ix in res.index] # res = res.resample('1S').ffill() ax = res.plot(legend=False, figsize=(12,3)) ax.set_ylabel('Regulation Dispatch [kW]') plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown Get Dispatch (scaled interval) ###Code res = dispatch.get_sequence(timestamp='hour') # res.index = [pd.to_datetime('2020-01-01')+pd.DateOffset(hours=ix) for ix in res.index] # res = res.resample('1S').ffill() ax = res.plot(legend=False, figsize=(12,3)) ax.set_ylabel('Regulation Dispatch [kW]') plt.tight_layout() plt.show() ###Output _____no_output_____
ddos2019_experiments.ipynb
###Markdown Load original datasets ###Code #Open CICIDS2019 train columns = ['Flow Duration','Protocol','Total Length of Fwd Packets','Total Length of Bwd Packets', \ 'Fwd Packet Length Mean','Bwd Packet Length Mean','Total Fwd Packets','Total Backward Packets', \ 'Fwd IAT Mean','Bwd IAT Mean','Fwd IAT Std','Label', 'Timestamp', 'Flow Packets/s'] ngramcolumns = ['Flow Duration', 'Timestamp','Source IP','Total Fwd Packets', 'Total Backward Packets', \ 'Total Length of Fwd Packets', 'Total Length of Bwd Packets', 'Fwd Packet Length Max', \ 'Fwd Packet Length Min', 'Bwd Packet Length Max', 'Bwd Packet Length Min', \ 'Flow Bytes/s', 'Flow Packets/s', 'Flow IAT Mean', 'Flow IAT Std', \ 'Flow IAT Max', 'Flow IAT Min', 'Label', 'Timestamp'] dtypes = {'Flow Duration':np.int32,'Protocol': np.int8,'Total Length of Fwd Packets':np.int32,'Total Length of Bwd Packets':np.int32, \ 'Fwd Packet Length Mean':np.float32,'Bwd Packet Length Mean':np.float32,'Total Fwd Packets':np.int32, \ 'Total Backward Packets':np.int16,'Fwd IAT Mean':np.float32,'Bwd IAT Mean':np.float32, 'Fwd IAT Std': np.float32, \ 'Fwd Packet Length Max': np.int16, 'Fwd Packet Length Min': np.int16, 'Bwd Packet Length Max': np.int32, \ 'Bwd Packet Length Min': np.int16, 'Flow IAT Mean': np.float32, 'Flow IAT Std': np.float32, \ 'Flow IAT Max': np.int32, 'Flow IAT Min': np.int32, 'Label':object} dirpath_train = "/mnt/h/CICIDS/DDoS2019/train/" #Remove below attacks from train set as test set does not have them excludelabels = ['DrDoS_NTP', 'DrDoS_DNS', 'DrDoS_SNMP', 'DrDoS_SSDP', 'TFTP'] filepaths_train = [dirpath_train+f for f in os.listdir(dirpath_train) \ if (f.endswith('.csv') and not any(label in f for label in excludelabels))] print("Importing training data: starting with " + filepaths_train[0]) df_train = pd.read_csv(filepaths_train[0] ,sep=',',header=0, usecols=columns, dtype= dtypes, skipinitialspace=True) for filename in filepaths_train[1:]: print("Concatenating: " + filename) df_train = pd.concat([df_train,pd.read_csv(filename, sep=',',header=0, usecols=columns, dtype= dtypes, skipinitialspace=True)],ignore_index=True) df_train.sort_values(by='Timestamp', inplace=True) #Open CICIDS2019 test dirpath_test = "/mnt/h/CICIDS/DDoS2019/test/" ngramcolumns = ['Flow Duration', 'Timestamp','Source IP','Total Fwd Packets', 'Total Backward Packets', \ 'Total Length of Fwd Packets', 'Total Length of Bwd Packets', 'Fwd Packet Length Max', \ 'Fwd Packet Length Min', 'Bwd Packet Length Max', 'Bwd Packet Length Min', \ 'Flow Bytes/s', 'Flow Packets/s', 'Flow IAT Mean', 'Flow IAT Std', \ 'Flow IAT Max', 'Flow IAT Min', 'Label'] dtypes = {'Flow Duration':np.int32,'Protocol': np.int8,'Total Length of Fwd Packets':np.int32,'Total Length of Bwd Packets':np.int32,'Fwd Packet Length Mean':np.float32,'Bwd Packet Length Mean':np.float32,'Total Fwd Packets':np.int32,'Total Backward Packets':np.int16,'Fwd IAT Mean':np.float32,'Bwd IAT Mean':np.float32, 'Fwd IAT Std': np.float32,'Label':object} #Remove below attack from test set as train set does not have it excludelabel = 'Portmap' filepaths_test = [dirpath_test+f for f in os.listdir(dirpath_test) if (f.endswith('.csv') and not excludelabel in f)] print("Importing testing data: starting with " + filepaths_test[0]) df_test = pd.read_csv(filepaths_test[0] ,sep=',',header=0, usecols=columns, dtype= dtypes, skipinitialspace=True) for filename in filepaths_test[1:]: print("Concatenating: " + filename) df_test = pd.concat([df_test,pd.read_csv(filename, sep=',',header=0, usecols=columns, dtype= dtypes, skipinitialspace=True)],ignore_index=True) df_test.sort_values(by='Timestamp', inplace=True) #Drop rows with infinity values of packet/s feature with pd.option_context('mode.use_inf_as_na', True): df_train.dropna(subset=['Flow Packets/s'], how='all', inplace=True) df_test.dropna(subset=['Flow Packets/s'], how='all', inplace=True) #Drop WebDDoS attack label as test set does not have it but its also mixed in other files df_train.drop(index=df_train[df_train['Label'] == 'WebDDoS'].index, inplace=True) ###Output _____no_output_____ ###Markdown Add binary label and fix test label ###Code df_train['BinLabel'] = np.where(df_train['Label'] == 'BENIGN', 'Benign','Malicious') print(df_train['BinLabel'].value_counts()) print(df_train['Label'].value_counts()) df_test['BinLabel'] = np.where(df_test['Label'] == 'BENIGN', 'Benign','Malicious') print(df_test['BinLabel'].value_counts()) print(df_test['Label'].value_counts()) ###Output Malicious 8570126 Benign 32455 Name: BinLabel, dtype: int64 DrDoS_MSSQL 2458902 DrDoS_NetBIOS 2252286 DrDoS_UDP 1798872 DrDoS_LDAP 1241093 Syn 642981 UDP-lag 175992 BENIGN 32455 Name: Label, dtype: int64 ###Markdown Data composition (before removing NaNs) Training dataBenign: 11,579 instances (0.07%)Malicious: 15,879,535 instances (99.93%) Testing dataBenign: 52,231 instances (0.26%)Malicious: 20,120,600 instances (99.74%) One hot encoding ###Code # One hot encoding for protocol ohe_df = pd.get_dummies(df_train['Protocol'], prefix="proto") df_train = df_train.join(ohe_df) ohe_df = pd.get_dummies(df_test['Protocol'], prefix="proto") df_test = df_test.join(ohe_df) ###Output _____no_output_____ ###Markdown Combine datasets and select features ###Code #Get input columns and corresponding label vector #Use duration, protocol, src bytes&packets per flow, dst bytes&packets per flow, mean src/dst bytes per flow #features = df_train.drop(['id','proto','service','state','attack_cat','label'],axis=1) features = ['Flow Duration','proto_0','proto_6','proto_17','Total Length of Fwd Packets','Total Length of Bwd Packets','Fwd Packet Length Mean','Bwd Packet Length Mean','Total Fwd Packets','Total Backward Packets','Fwd IAT Mean','Bwd IAT Mean'] #Switch train and test set from their site for better classification scores due to sample size during training label = 'BinLabel' y_train = df_test[label] y_test = df_train[label] df_temp = df_train.copy() df_train = df_test[features].copy() df_test = df_temp[features] df_temp = np.nan ###Output _____no_output_____ ###Markdown Random Forest implementation ###Code from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import classification_report, confusion_matrix cfs = [] preds = [] for i in range(5): rf_clf = RandomForestClassifier(n_estimators=100,min_samples_split=10,min_samples_leaf=5,max_samples=0.8,criterion='gini',n_jobs=5,verbose=10) rf_clf.fit(df_train,y_train) y_pred = rf_clf.predict(df_test) cfs.append(confusion_matrix(y_test, y_pred)) preds.append([y_test, y_pred]) print(cfs) print(np.shape(cfs)) cf = np.mean(cfs,axis=(0)) print(cf) print(np.std(cfs,axis=(0))) objectToFile(preds, "ddos2019_preds_reduced_normal"+label) ###Output [array([[ 11352, 105], [ 1663578, 13641278]]), array([[ 11417, 40], [ 1636411, 13668445]]), array([[ 11400, 57], [ 1645465, 13659391]]), array([[ 11375, 82], [ 1645483, 13659373]]), array([[ 11379, 78], [ 1645465, 13659391]])] (5, 2, 2) [[1.13846000e+04 7.24000000e+01] [1.64728040e+06 1.36575756e+07]] [[ 22.24050359 22.24050359] [8872.17699553 8872.17699553]] ###Markdown Or preload results from previous run ###Code #Load object from file from sklearn.metrics import confusion_matrix label='BinLabel' preds_mem = objectFromFile("ddos2019_preds_reduced_normal"+label) cfs = [] for pred_tuple in preds_mem: cfs.append(confusion_matrix(pred_tuple[0], pred_tuple[1])) ###Output _____no_output_____ ###Markdown Visualize results ###Code from sklearn.metrics import accuracy_score from sklearn.metrics import recall_score paper1_acc = 0.99 paper1_rec = 0.99 paper1_spec = 0.99 paper2_acc = 0.9993 paper2_rec = 0.999 paper2_spec = 0.999 #tn, fp, fn, tp = np.mean(cfs,axis=0).ravel() #print(tn,fp,fn,tp) #acc_scores = [accuracy_score(pred_tuple[0], pred_tuple[1]) for pred_tuple in preds] #rec_score = tp / (tp+fn) #spec_score = tn / (tn+fp) acc_scores = [0.962] rec_score = 0.962 spec_score = 0.972 print(np.mean(acc_scores), "\n") print(rec_score, "\n") print(spec_score) import matplotlib.patches as mpatches #Colors clr_acc = 'royalblue' clr_rec = 'salmon' clr_spec = 'lightgreen' acc_patch = mpatches.Patch(color=clr_acc, label='accuracy') rec_patch = mpatches.Patch(color=clr_rec, label='recall') spec_patch = mpatches.Patch(color=clr_spec, label='specificity') labels = ['Elsayed et al.\nRNN (77 features)', 'Lucky et al. \nDT (3 features)', 'Our work\nRF (30 features)'] x = np.arange(len(labels))*10 width = 2.5 # the width of the bars pad_width = 3 scores = [paper1_acc,paper1_rec,paper1_spec,paper2_acc,paper2_rec,paper2_spec,np.mean(acc_scores),rec_score,spec_score] fig, ax = plt.subplots(figsize=(7,6)) #Spawn bar(s) of group 1 plt.bar(x[0]-pad_width, height=scores[0], width=width, color=clr_acc) plt.bar(x[0], height=scores[1], width=width, color=clr_rec) plt.bar(x[0]+pad_width, height=scores[2], width=width, color=clr_spec) #Spawn bar(s) of group 2 plt.bar(x[1]-pad_width, height=scores[3], width=width, color=clr_acc) plt.bar(x[1], height=scores[4], width=width, color=clr_rec) plt.bar(x[1]+pad_width, height=scores[5], width=width, color=clr_spec) #Spawn bar(s) of group 3 plt.bar(x[2]-pad_width, height=scores[6], width=width, color=clr_acc) plt.bar(x[2], height=scores[7], width=width, color=clr_rec) plt.bar(x[2]+pad_width, height=scores[8], width=width, color=clr_spec) #Hide the left, right and top spines ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.spines['left'].set_visible(False) plt.tick_params(left = False) #Set plot details plt.rc('font', size=13) #plt.ylabel('Metric score') plt.yticks() ax.set_yticklabels([]) #ax.get_yaxis().set_visible(False) plt.xticks(size='14') plt.ylim([0.8, 1]) plt.title("CIC-DDoS2019 results comparison", fontweight='bold', pad=25) ax.set_xticks(x) ax.set_xticklabels(labels) add_value_labels(ax) #ax.legend(handles=[acc_patch,rec_patch,spec_patch],bbox_to_anchor=(1.05, 1), loc='upper left', borderaxespad=0.) ax.set_axisbelow(True) plt.grid(axis='y', color='grey') fig.tight_layout() plt.savefig('ddos2019_binaryclass_reduced_bars.png',bbox_inches='tight') plt.show() np.set_printoptions(suppress=True) print('mean\n', np.mean(cfs,axis=0)) print('std. dev\n', np.std(cfs,axis=0)) print('std. dev %\n', np.divide(np.std(cfs,axis=0),np.mean(cfs,axis=0))*100) #Plot confusion matrix import seaborn as sns #labels = ['Benign','Malicious'] #Standard heatmap cf_norm = cf/cf.sum(axis=1)[:,None] cf_percentages = ["{0:.2%}".format(value) for value in cf_norm.flatten()] cf_numbers = [abbrv_num(value) for value in cf.flatten()] cf_labels = ['{v1}\n({v2})'.format(v1=v1, v2=v2) for v1,v2 in zip(cf_percentages,cf_numbers)] cf_labels = np.asarray(cf_labels).reshape(cf.shape) fig, ax = plt.subplots(figsize=(6, 6)) plt.rc('font', size=14) #column_labels = sorted(y_test.unique()) #column_labels[6] = 'Benign' column_labels = ['Benign', 'Malicious'] sns.heatmap(cf_norm, annot=cf_labels, fmt='',cmap='Blues',cbar=False, vmin=0.0, vmax=1.0, ax=ax, xticklabels=column_labels, yticklabels=column_labels) plt.ylabel('True label') plt.xlabel('Predicted label') plt.yticks(rotation='0', size='12') plt.xticks(rotation='65', size='12') plt.title("CICIDS-DDoS2019 mean multiclass classification matrix") plt.savefig('ddos2019_binaryclass_cf_reduced.png',bbox_inches='tight') plt.show() importance = rf_clf.feature_importances_ print(features) print(importance) # summarize feature importance for i,v in sorted(enumerate(importance),key=lambda x: x[1], reverse=True): print('Feature: %s, Score: %.5f' % (features[i],v)) ###Output ['Flow Duration', 'proto_0', 'proto_6', 'proto_17', 'Total Length of Fwd Packets', 'Total Length of Bwd Packets', 'Fwd Packet Length Mean', 'Bwd Packet Length Mean', 'Total Fwd Packets', 'Total Backward Packets', 'Fwd IAT Mean', 'Bwd IAT Mean'] [0.05142496 0.00310571 0.01284563 0.01087059 0.16057637 0.17294885 0.1707864 0.25728134 0.08805984 0.03080252 0.02494325 0.01635454] 7 Feature: Bwd Packet Length Mean, Score: 0.25728 5 Feature: Total Length of Bwd Packets, Score: 0.17295 6 Feature: Fwd Packet Length Mean, Score: 0.17079 4 Feature: Total Length of Fwd Packets, Score: 0.16058 8 Feature: Total Fwd Packets, Score: 0.08806 0 Feature: Flow Duration, Score: 0.05142 9 Feature: Total Backward Packets, Score: 0.03080 10 Feature: Fwd IAT Mean, Score: 0.02494 11 Feature: Bwd IAT Mean, Score: 0.01635 2 Feature: proto_6, Score: 0.01285 3 Feature: proto_17, Score: 0.01087 1 Feature: proto_0, Score: 0.00311 ###Markdown [array([[ 57521, 3410], [ 600486, 50126860]]), array([[ 57612, 3319], [ 600329, 50127017]]), array([[ 57567, 3364], [ 600482, 50126864]]), array([[ 57518, 3413], [ 600527, 50126819]]), array([[ 57455, 3476], [ 600539, 50126807]])]Mean:(5, 2, 2)[[5.75346000e+04 3.39640000e+03] [6.00472600e+05 5.01268734e+07]] Std. Dev.:[[52.60646348 52.60646348] [75.17606002 75.17606002]] N-grams experiment ###Code #Retain 60% of each class in df_train for lower memory usage #Retain only 20% of the largest class percentage = 60 for label in df_train['Label'].unique(): label_df = df_train.loc[df_train['Label'] == label] if label is 'TFTP': cutoff = round(len(label_df)/100*20) else: cutoff = round(len(label_df)/100*percentage) indices = label_df.iloc[cutoff:].index print(label) print(len(indices)) df_train.drop(index=indices, inplace=True) #Clear vars to save memory label_df = None indices = None ###Output DrDoS_NTP 481057 BENIGN 22745 DrDoS_DNS 2028404 DrDoS_LDAP 871972 DrDoS_MSSQL 1808997 DrDoS_NetBIOS 1637312 DrDoS_SNMP 2063948 DrDoS_SSDP 1044244 DrDoS_UDP 1253858 UDP-lag 146584 WebDDoS 176 Syn 632916 TFTP 8033032 ###Markdown Show amount of source IPs with more than 'threshold' flows in train dataset ###Code #Train dataset value counts per IP threshold = 2 vc_tr = df_train['Source IP'].value_counts() res_tr = df_train[df_train['Source IP'].isin(vc_tr[vc_tr>threshold].index)]['Source IP'].value_counts() print(res_tr) ###Output 172.16.0.5 29994117 192.168.50.1 9855 192.168.50.7 9660 192.168.50.6 9281 192.168.50.8 8111 ... 52.43.17.8 3 107.178.246.49 3 209.170.115.32 3 34.203.79.136 3 35.164.138.68 3 Name: Source IP, Length: 296, dtype: int64 ###Markdown Transform df_train ###Code df_train.columns df_train.drop(['Timestamp','Label'], axis=1, inplace=True) #Per source IP, grab N-gram and transform numerical features into new #Done for bigrams and trigrams features = ['Flow Duration', 'Total Fwd Packets', 'Total Backward Packets', \ 'Total Length of Fwd Packets', 'Total Length of Bwd Packets', 'Fwd Packet Length Max', \ 'Fwd Packet Length Min', 'Bwd Packet Length Max', 'Bwd Packet Length Min', \ 'Flow Bytes/s', 'Flow Packets/s', 'Flow IAT Mean', 'Flow IAT Std', \ 'Flow IAT Max', 'Flow IAT Min'] #Create/reset columns for n_gram features for feature in features: column_mean = 'ngram_' + feature + '_mean' column_std = 'ngram_' + feature + '_std' if column_mean not in df_train.columns: df_train[column_mean] = np.nan if column_std not in df_train.columns: df_train[column_std] = np.nan #List of ngram features featurelist = df_train.filter(regex='^ngram', axis=1).columns #Window size 2 = bigrams, 3 = trigrams winsize = 3 #Window type indexer = pd.api.indexers.FixedForwardWindowIndexer(window_size=winsize) for itr, feature in enumerate(features): #Iterate over all features to be transformed column_mean = 'ngram_' + feature + '_mean' column_std = 'ngram_' + feature + '_std' for (srcIP, _) in res_tr.iteritems(): #Iterate over all Source IP starting with most-occurring sub_df = df_train[df_train['Source IP'] == srcIP] sub_df.loc[:,column_mean] = sub_df[feature].rolling(window=indexer, min_periods=winsize).mean() sub_df.loc[:,column_std] = sub_df[feature].rolling(window=indexer, min_periods=winsize).std() df_train.loc[:,[column_mean, column_std]] = df_train[[column_mean, column_std]].combine_first(sub_df[[column_mean, column_std]]) df_train.drop(columns=feature) print('Progress: ' + str(itr+1) + '/' + str(len(features)), end='\r') df_train_feather_path = "/mnt/h/CICIDS/DDoS2019/feather/trigram_train_feather" df_train.reset_index().to_feather(df_train_feather_path) ###Output _____no_output_____ ###Markdown Load df_train from memory and reduce memory footprint ###Code #Load df_train from memory and reduce memory footprint df_train_feather_path = "/mnt/h/CICIDS/DDoS2019/feather/trigram_train_feather" df_train = pd.read_feather(df_train_feather_path) df_train #Drop cols without/with ngram features ngramcols = df_train.filter(regex='^ngram', axis=1).columns normalcols = ['Flow Duration', 'Total Fwd Packets', 'Total Backward Packets', \ 'Total Length of Fwd Packets', 'Total Length of Bwd Packets', 'Fwd Packet Length Max', \ 'Fwd Packet Length Min', 'Bwd Packet Length Max', 'Bwd Packet Length Min', \ 'Flow Bytes/s', 'Flow Packets/s', 'Flow IAT Mean', 'Flow IAT Std', \ 'Flow IAT Max', 'Flow IAT Min'] df_train.dropna(subset=ngramcols, axis=0, how='any', inplace=True) print(df_train.shape) df_train.set_index('index', inplace=True) #Throw away original/ngram features + socket information to save memory socket_columns = ['Source IP', 'Timestamp'] df_train.drop(columns=ngramcols, inplace=True) df_train.drop(columns=socket_columns, inplace=True) print(df_train.columns) df_train df_train_feather_path = "/mnt/h/CICIDS/DDoS2019/feather/trigram_train_feather_reduced" df_train.reset_index().to_feather(df_train_feather_path) ###Output _____no_output_____ ###Markdown Show amount of source IPs with more than 'threshold' flows in test dataset ###Code #Test dataset value counts per IP threshold = 2 vc_te = df_test['Source IP'].value_counts() res_te = df_test[df_test['Source IP'].isin(vc_te[vc_te>threshold].index)]['Source IP'].value_counts() print(res_te) ###Output _____no_output_____ ###Markdown Transform df_test ###Code #Per source IP, grab N-gram and transform numerical features into new #Done for bigrams and trigrams features = ['Flow Duration', 'Total Fwd Packets', 'Total Backward Packets', \ 'Total Length of Fwd Packets', 'Total Length of Bwd Packets', 'Fwd Packet Length Max', \ 'Fwd Packet Length Min', 'Bwd Packet Length Max', 'Bwd Packet Length Min', \ 'Flow Bytes/s', 'Flow Packets/s', 'Flow IAT Mean', 'Flow IAT Std', \ 'Flow IAT Max', 'Flow IAT Min'] #Create/reset columns for n_gram features for feature in features: column_mean = 'ngram_' + feature + '_mean' column_std = 'ngram_' + feature + '_std' if column_mean not in df_test.columns: df_test[column_mean] = np.nan if column_std not in df_test.columns: df_test[column_std] = np.nan #List of ngram features featurelist = df_test.filter(regex='^ngram', axis=1).columns #Window size 2 = bigrams, 3 = trigrams winsize = 3 #Window type indexer = pd.api.indexers.FixedForwardWindowIndexer(window_size=winsize) for itr, (srcIP, _) in enumerate(res_te.iteritems()): sub_df = df_test[df_test['Source IP'] == srcIP] for feature in features: column_mean = 'ngram_' + feature + '_mean' column_std = 'ngram_' + feature + '_std' sub_df.loc[:,column_mean] = sub_df[feature].rolling(window=indexer, min_periods=winsize).mean() sub_df.loc[:,column_std] = sub_df[feature].rolling(window=indexer, min_periods=winsize).std() df_test.loc[:,featurelist] = df_test[featurelist].combine_first(sub_df[featurelist]) print('Progress: ' + str(itr+1) + '/' + str(len(res_te)), end='\r') #Drop rows without ngram features df_test.dropna(subset=df_test.filter(regex='^ngram', axis=1).columns, axis=0, how='any', inplace=True) print(df_test.shape) print(df_test.filter(regex='^ngram', axis=1).columns) df_test_feather_path = "/mnt/h/CICIDS/DDoS2019/feather/trigram_test_feather" df_test.reset_index().to_feather(df_test_feather_path) ###Output _____no_output_____ ###Markdown Load df_test from memory and reduce memory footprint ###Code #Load df_test from memory and reduce memory footprint df_test_feather_path = "/mnt/h/CICIDS/DDoS2019/feather/trigram_test_feather" df_test = pd.read_feather(df_test_feather_path) #Drop cols without/with ngram features ngramcols = df_test.filter(regex='^ngram', axis=1).columns normalcols = ['Flow Duration', 'Total Fwd Packets', 'Total Backward Packets', \ 'Total Length of Fwd Packets', 'Total Length of Bwd Packets', 'Fwd Packet Length Max', \ 'Fwd Packet Length Min', 'Bwd Packet Length Max', 'Bwd Packet Length Min', \ 'Flow Bytes/s', 'Flow Packets/s', 'Flow IAT Mean', 'Flow IAT Std', \ 'Flow IAT Max', 'Flow IAT Min'] df_test.dropna(subset=ngramcols, axis=0, how='any', inplace=True) print(df_test.shape) df_test.set_index('index', inplace=True) #Throw away original/ngram features + socket information to save memory socket_columns = ['Source IP', 'Timestamp'] df_test.drop(columns=ngramcols, inplace=True) df_test.drop(columns=socket_columns, inplace=True) df_test_feather_path = "/mnt/h/CICIDS/DDoS2019/feather/trigram_test_feather_reduced" df_test.reset_index().to_feather(df_test_feather_path) ###Output _____no_output_____ ###Markdown Load train and test datasets and train Random Forest classifier ###Code #Load df_train from memory and reduce memory footprint df_train_feather_path = "/mnt/h/CICIDS/DDoS2019/feather/trigram_train_feather_reduced" df_test_feather_path = "/mnt/h/CICIDS/DDoS2019/feather/trigram_test_feather_reduced" df_train = pd.read_feather(df_train_feather_path) df_test = pd.read_feather(df_test_feather_path) #Fix index, throw away multiclass label df_train.set_index('index', inplace=True) df_test.set_index('index', inplace=True) #df_train.drop(columns=['Label'], inplace=True) #df_test.drop(columns=['Label'], inplace=True) df_train df_test # If dataframe classes should intersect in train and test set, apply below excludelabels = ['DrDoS_NTP', 'DrDoS_DNS', 'DrDoS_SNMP', 'DrDoS_SSDP', 'TFTP', 'Portmap', 'WebDDoS'] print(df_train['Label'].unique()) print(df_test['Label'].unique()) df_train.drop(df_train[df_train['Label'].isin(excludelabels)].index, inplace=True) df_test.drop(df_test[df_test['Label'].isin(excludelabels)].index, inplace=True) print(df_train['Label'].unique()) print(df_test['Label'].unique()) #Switch train and test set according to general feature set results df_temp = df_train.copy() df_train = df_test.copy() df_test = df_temp.copy() df_temp = np.nan # Compare ngram feature set to alternative feature set #features = df_train.filter(regex='^ngram', axis=1).columns features = ['Flow Duration', 'Total Fwd Packets', 'Total Backward Packets', \ 'Total Length of Fwd Packets', 'Total Length of Bwd Packets', 'Fwd Packet Length Max', \ 'Fwd Packet Length Min', 'Bwd Packet Length Max', 'Bwd Packet Length Min', \ 'Flow Bytes/s', 'Flow Packets/s', 'Flow IAT Mean', 'Flow IAT Std', \ 'Flow IAT Max', 'Flow IAT Min'] label = 'BinLabel' from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import classification_report, confusion_matrix cfs = [] preds = [] for i in range(5): rf_clf = RandomForestClassifier(n_estimators=100,min_samples_split=10,min_samples_leaf=5,max_samples=0.8,criterion='gini',n_jobs=5,verbose=10) rf_clf.fit(df_train[features],df_train[label]) y_pred = rf_clf.predict(df_test[features]) cfs.append(confusion_matrix(df_test[label], y_pred)) preds.append([df_test[label], y_pred]) ###Output [Parallel(n_jobs=5)]: Using backend ThreadingBackend with 5 concurrent workers. ###Markdown Ngrams results ###Code np.set_printoptions(suppress=True) print(cfs) print(np.shape(cfs)) cf = np.mean(cfs,axis=(0)) print(cf) print(np.std(cfs,axis=(0))) print('std. dev %\n', np.divide(np.std(cfs,axis=0),np.mean(cfs,axis=0))*100) objectToFile(preds, "ddos2019_ngrams_preds_reduced_"+label) ###Output [array([[ 32339, 116], [1078201, 7491925]]), array([[ 32359, 96], [1109228, 7460898]]), array([[ 32348, 107], [1105337, 7464789]]), array([[ 32351, 104], [1110460, 7459666]]), array([[ 32357, 98], [1070700, 7499426]])] (5, 2, 2) [[ 32350.8 104.2] [1094785.2 7475340.8]] [[ 7.11055553 7.11055553] [16856.84940195 16856.84940195]] std. dev % [[0.02197954 6.82394965] [1.53974034 0.22549941]] ###Markdown Read in ngrams preds if needed ###Code from sklearn.metrics import classification_report, confusion_matrix label = 'BinLabel' preds_mem = objectFromFile("ddos2019_ngrams_preds_reduced_"+label) cfs = [] for pred_tuple in preds_mem: cfs.append(confusion_matrix(pred_tuple[0], pred_tuple[1])) np.set_printoptions(suppress=True) cf = np.mean(cfs,axis=(0)) #Plot confusion matrix import seaborn as sns #labels = ['Benign','Malicious'] #Standard heatmap cf_norm = cf/cf.sum(axis=1)[:,None] cf_percentages = ["{0:.2%}".format(value) for value in cf_norm.flatten()] cf_numbers = [abbrv_num(value) for value in cf.flatten()] cf_labels = ['{v1}\n({v2})'.format(v1=v1, v2=v2) for v1,v2 in zip(cf_percentages,cf_numbers)] cf_labels = np.asarray(cf_labels).reshape(cf.shape) fig, ax = plt.subplots(figsize=(6, 6)) plt.rc('font', size=14) #column_labels = sorted(df_test[label].unique()) #column_labels[6] = 'Benign' column_labels = ['Benign', 'Malicious'] sns.heatmap(cf_norm, annot=cf_labels, fmt='',cmap='Blues',cbar=False, vmin=0.0, vmax=1.0, ax=ax, xticklabels=column_labels, yticklabels=column_labels) plt.ylabel('True label') plt.xlabel('Predicted label') plt.yticks(rotation='0', size='12') plt.xticks(rotation='65', size='12') plt.title("CICIDS-DDoS2019 mean binary classification matrix - Trigrams") #plt.savefig('ddos2019_binaryclass_cf_trigrams_reduced.png',bbox_inches='tight') plt.show() from sklearn.metrics import accuracy_score from sklearn.metrics import recall_score tn, fp, fn, tp = np.mean(cfs,axis=0).ravel() print(tn,fp,fn,tp) acc_scores = [accuracy_score(pred_tuple[0], pred_tuple[1]) for pred_tuple in preds_mem] rec_score = tp / (tp+fn) spec_score = tn / (tn+fp) print('Accuracy: ' + str(np.mean(acc_scores)), "\n") print('Recall: ' + str(rec_score), "\n") print('Specificity: ' + str(spec_score)) importance = rf_clf.feature_importances_ # summarize feature importance for i,v in sorted(enumerate(importance),key=lambda x: x[1], reverse=True): print('Feature: %s, Score: %.5f' % (features[i],v)) ###Output Feature: ngram_Bwd Packet Length Max_mean, Score: 0.17347 Feature: ngram_Total Backward Packets_std, Score: 0.11545 Feature: ngram_Bwd Packet Length Max_std, Score: 0.09821 Feature: ngram_Total Length of Bwd Packets_mean, Score: 0.08741 Feature: ngram_Fwd Packet Length Min_mean, Score: 0.07771 Feature: ngram_Bwd Packet Length Min_mean, Score: 0.06124 Feature: ngram_Total Length of Bwd Packets_std, Score: 0.05852 Feature: ngram_Total Length of Fwd Packets_mean, Score: 0.05624 Feature: ngram_Bwd Packet Length Min_std, Score: 0.04448 Feature: ngram_Total Fwd Packets_mean, Score: 0.03906 Feature: ngram_Fwd Packet Length Max_mean, Score: 0.02764 Feature: ngram_Flow Bytes/s_mean, Score: 0.02334 Feature: ngram_Total Backward Packets_mean, Score: 0.01281 Feature: ngram_Fwd Packet Length Min_std, Score: 0.01237 Feature: ngram_Flow Duration_std, Score: 0.01128 Feature: ngram_Total Length of Fwd Packets_std, Score: 0.01051 Feature: ngram_Fwd Packet Length Max_std, Score: 0.01011 Feature: ngram_Flow IAT Min_mean, Score: 0.00995 Feature: ngram_Flow Bytes/s_std, Score: 0.00932 Feature: ngram_Flow Packets/s_mean, Score: 0.00869 Feature: ngram_Flow IAT Max_std, Score: 0.00758 Feature: ngram_Flow Duration_mean, Score: 0.00672 Feature: ngram_Flow IAT Min_std, Score: 0.00621 Feature: ngram_Flow IAT Std_mean, Score: 0.00618 Feature: ngram_Flow Packets/s_std, Score: 0.00576 Feature: ngram_Total Fwd Packets_std, Score: 0.00538 Feature: ngram_Flow IAT Max_mean, Score: 0.00420 Feature: ngram_Flow IAT Std_std, Score: 0.00370 Feature: ngram_Flow IAT Mean_std, Score: 0.00335 Feature: ngram_Flow IAT Mean_mean, Score: 0.00310 ###Markdown Alternative features results ###Code np.set_printoptions(suppress=True) print(cfs) print(np.shape(cfs)) cf = np.mean(cfs,axis=(0)) print(cf) print(np.std(cfs,axis=(0))) print('std. dev %\n', np.divide(np.std(cfs,axis=0),np.mean(cfs,axis=0))*100) objectToFile(preds, "ddos2019_alternative_preds_reduced_"+label) #Plot confusion matrix import seaborn as sns #labels = ['Benign','Malicious'] #Standard heatmap cf_norm = cf/cf.sum(axis=1)[:,None] cf_percentages = ["{0:.2%}".format(value) for value in cf_norm.flatten()] cf_numbers = [abbrv_num(value) for value in cf.flatten()] cf_labels = ['{v1}\n({v2})'.format(v1=v1, v2=v2) for v1,v2 in zip(cf_percentages,cf_numbers)] cf_labels = np.asarray(cf_labels).reshape(cf.shape) fig, ax = plt.subplots(figsize=(6, 6)) plt.rc('font', size=14) column_labels = sorted(df_test[label].unique()) #column_labels[6] = 'Benign' column_labels = ['Benign', 'Malicious'] sns.heatmap(cf_norm, annot=cf_labels, fmt='',cmap='Blues',cbar=False, vmin=0.0, vmax=1.0, ax=ax, xticklabels=column_labels, yticklabels=column_labels) plt.ylabel('True label') plt.xlabel('Predicted label') plt.yticks(rotation='0', size='12') plt.xticks(rotation='65', size='12') plt.title("CICIDS-DDoS2019 mean binary classification matrix - Alternative") plt.savefig('ddos2019_binaryclass_cf_alternative_reduced.png',bbox_inches='tight') plt.show() from sklearn.metrics import accuracy_score from sklearn.metrics import recall_score tn, fp, fn, tp = np.mean(cfs,axis=0).ravel() print(tn,fp,fn,tp) acc_scores = [accuracy_score(pred_tuple[0], pred_tuple[1]) for pred_tuple in preds] rec_score = tp / (tp+fn) spec_score = tn / (tn+fp) print('Accuracy: ' + str(np.mean(acc_scores)), "\n") print('Recall: ' + str(rec_score), "\n") print('Specificity: ' + str(spec_score)) importance = rf_clf.feature_importances_ # summarize feature importance for i,v in sorted(enumerate(importance),key=lambda x: x[1], reverse=True): print('Feature: %s, Score: %.5f' % (features[i],v)) ###Output Feature: Bwd Packet Length Max, Score: 0.20926 Feature: Fwd Packet Length Min, Score: 0.15905 Feature: Total Length of Bwd Packets, Score: 0.15752 Feature: Total Length of Fwd Packets, Score: 0.11179 Feature: Bwd Packet Length Min, Score: 0.07860 Feature: Total Fwd Packets, Score: 0.07568 Feature: Fwd Packet Length Max, Score: 0.05490 Feature: Flow Bytes/s, Score: 0.03904 Feature: Flow Duration, Score: 0.02438 Feature: Total Backward Packets, Score: 0.02056 Feature: Flow IAT Max, Score: 0.01773 Feature: Flow IAT Std, Score: 0.01425 Feature: Flow IAT Mean, Score: 0.01309 Feature: Flow Packets/s, Score: 0.01269 Feature: Flow IAT Min, Score: 0.01146 ###Markdown Barplot of own feature sets ###Code import matplotlib.patches as mpatches #Scores genset_acc = 0.892 genset_rec = 0.892 genset_spec = 0.994 trigramset_acc = 0.873 trigramset_rec = 0.872 trigramset_spec = 0.997 altset_acc = 0.962 altset_rec = 0.962 altset_spec = 0.972 #Colors clr_acc = 'royalblue' clr_rec = 'salmon' clr_spec = 'lightgreen' acc_patch = mpatches.Patch(color=clr_acc, label='accuracy') rec_patch = mpatches.Patch(color=clr_rec, label='recall') spec_patch = mpatches.Patch(color=clr_spec, label='specificity') labels = ['General\n (12 features)', 'Alternative\n (15 features)', \ 'Trigram\n (30 features)'] x = np.arange(len(labels))*10 width = 2.5 # the width of the bars pad_width = 3 scores = [genset_acc,genset_rec,genset_spec,trigramset_acc,trigramset_rec,trigramset_spec,altset_acc,altset_rec,altset_spec] fig, ax = plt.subplots(figsize=(7,6)) #Spawn bar(s) of group 1 plt.bar(x[0]-pad_width, height=scores[0], width=width, color=clr_acc) plt.bar(x[0], height=scores[1], width=width, color=clr_rec) plt.bar(x[0]+pad_width, height=scores[2], width=width, color=clr_spec) #Spawn bar(s) of group 2 plt.bar(x[1]-pad_width, height=scores[3], width=width, color=clr_acc) plt.bar(x[1], height=scores[4], width=width, color=clr_rec) plt.bar(x[1]+pad_width, height=scores[5], width=width, color=clr_spec) #Spawn bar(s) of group 3 plt.bar(x[2]-pad_width, height=scores[6], width=width, color=clr_acc) plt.bar(x[2], height=scores[7], width=width, color=clr_rec) plt.bar(x[2]+pad_width, height=scores[8], width=width, color=clr_spec) #Hide the left, right and top spines ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.spines['left'].set_visible(True) plt.tick_params(left = False) #Set plot details plt.rc('font', size=13) plt.ylabel('Metric score') plt.yticks() #ax.set_yticklabels([]) plt.ylim([0.8, 1]) #ax.get_yaxis().set_visible(False) plt.xticks(size='14') plt.title("CIC-DDoS2019 feature sets comparison", fontweight='bold', pad=25) ax.set_xticks(x) ax.set_xticklabels(labels) add_value_labels(ax) #ax.legend(handles=[acc_patch,rec_patch,spec_patch], loc='lower right', borderaxespad=0.) ax.set_axisbelow(True) plt.grid(axis='y', color='grey') fig.tight_layout() plt.savefig('ddos2019_binaryclass_reduced_featuresets_bars.png',bbox_inches='tight') plt.show() ###Output _____no_output_____
sql-scavenger-hunt-day-5.ipynb
###Markdown If you haven't used BigQuery datasets on Kaggle previously, check out the Scavenger Hunt Handbook kernel to get started. ___ Previous days:* [**Day 1:** SELECT, FROM & WHERE](https://www.kaggle.com/rtatman/sql-scavenger-hunt-day-1/)* [**Day 2:** GROUP BY, HAVING & COUNT()](https://www.kaggle.com/rtatman/sql-scavenger-hunt-day-2/)* [**Day 3:** ORDER BY & Dates](https://www.kaggle.com/rtatman/sql-scavenger-hunt-day-3/)* [**Day 4:** WITH & AS](https://www.kaggle.com/rtatman/sql-scavenger-hunt-day-4/)____ JOIN___Whew, we've come a long way from Day 1! By now, you have the tools to get many different configurations of information from a single table. But what if your database has more than one table and you want to look at information from multiple tables?That's where JOIN comes in! Today, we're going to learn about how to use JOIN to combine data from two tables. This will let us answer more types of questions. It's also one of the more complex parts of SQL. Don't worry, though, we're going to go through some examples together. JOIN___Let's keep working with our imaginary Pets dataset, but this time let's add a second table. The first table, "Pets", has three columns, with information on the ID number of each pet, the pet's name and the type of animal it is. The new table, "Owners", has three columns, with the ID number of each owner, the name of the owner and the ID number of their pet. ![](https://i.imgur.com/W4gYoNg.png)Each row in each table is associated with a single pet and we refer to the same pets in both tables. We can tell this because there are two columns (ID in the "Pets" table and Pet_ID in the "Owners" table) that have the same information in them: the ID number of the pet. We can match rows that have the same value in these columns to get information that applies to a certain pet.For example, we can see by looking at the Pets table that the pet that has the ID 1 is named Dr. Harris Bonkers. We can also tell by looking at the Owners table that the name of the owner who owns the pet with the ID 1 is named Aubrey Little. We can use this information to figure out that Dr. Harris Bonkers is owned by Aubrey Little. Fortunately, we don't have to do this by hand to figure out which owner's name goes with which pet name. We can use JOIN to do this for us! JOIN allows us to create a third, new, table that has information from both tables. For example, we might want to have a single table with just two columns: one with the name of the pet and one with the name of the owner. This would look something like this: ![](https://i.imgur.com/zqQdJTI.png)The syntax to create that table looks like this: SELECT p.Name AS Pet_Name, o.Name as Owner_Name FROM `bigquery-public-data.pet_records.pets` as p INNER JOIN `bigquery-public-data.pet_records.owners` as o ON p.ID = o.Pet_IDNotice that since the ID column exists in both datasets, we have to clarify which one we want to use. When you're joining tables, it's a good habit to specificy which table all of your columns come from. That way you don't have to pull up the schema every time you go back to read the query.The type of JOIN we're using today is called an INNER JOIN. That just means that a row will only be put in the final output table if the value in the column you're using to combine them shows up in both the tables you're joining. For example, if Tom's ID code of 4 didn't exist in the `Pets` table, we would only get 3 rows back from this query. There are other types of JOIN, but an INNER JOIN won't give you an output that's larger than your input tables, so it's a good one to start with. > **What does "ON" do?** It says which column in each table to look at to combine the tables. Here were using the "ID" column from the Pets table and the "Pet_ID" table from the Owners table.Now that we've talked about the concept behind using JOIN, let's work through an example together. Example: How many files are covered by each license?____Today we're going to be using the GitHub Repos dataset. GitHub is an place for people to store & collaborate on different versions of their computer code. A "repo" is a collection of code associated with a specific project. Most public code on Github is shared under a specific license, which determines how it can be used and by who. For our example, we're going to look at how many different files have been released under each licenses. First, of course, we need to get our environment ready to go: ###Code # import package with helper functions import bq_helper # create a helper object for this dataset github = bq_helper.BigQueryHelper(active_project="bigquery-public-data", dataset_name="github_repos") ###Output _____no_output_____ ###Markdown Now we're ready to get started on our query. This one is going to be a bit of a beast, so stick with me! The only new syntax we'll see is around the JOIN clause, everything is something we've already learned. :)First, I'm going to specify which columns I'd like to be returned in the final table that's returned to me. Here, I'm selecting the COUNT of the "path" column from the sample_files table and then calling it "number_of_files". I'm *also* specifying that I was to include the "license" column, even though there's no "license" column in the "sample_files" table. SELECT L.license, COUNT(sf.path) AS number_of_files FROM `bigquery-public-data.github_repos.sample_files` as sfSpeaking of the JOIN clause, we still haven't actually told SQL we want to join anything! To do this, we need to specify what type of join we want (in this case an inner join) and how which columns we want to JOIN ON. Here, I'm using ON to specify that I want to use the "repo_name" column from the each table. INNER JOIN `bigquery-public-data.github_repos.licenses` as L ON sf.repo_name = L.repo_nameAnd, finally, we have a GROUP BY and ORDER BY clause that apply to the final table that's been returned to us. We've seen these a couple of times at this point. :) GROUP BY license ORDER BY number_of_files DESC Alright, that was a lot, but you should have an idea what each part of this query is doing. :) Without any further ado, let' put it into action. ###Code # You can use two dashes (--) to add comments in SQL query = (""" -- Select all the columns we want in our joined table SELECT L.license, COUNT(sf.path) AS number_of_files FROM `bigquery-public-data.github_repos.sample_files` as sf -- Table to merge into sample_files INNER JOIN `bigquery-public-data.github_repos.licenses` as L ON sf.repo_name = L.repo_name -- what columns should we join on? GROUP BY L.license ORDER BY number_of_files DESC """) file_count_by_license = github.query_to_pandas_safe(query, max_gb_scanned=6) ###Output _____no_output_____ ###Markdown Whew, that was a big query! But it gave us a nice tidy little table that nicely summarizes how many files have been committed under each license: ###Code # print out all the returned results print(file_count_by_license) ###Output license number_of_files 0 gpl-2.0 22031724 1 mit 21186498 2 apache-2.0 7578582 3 gpl-3.0 5550163 4 bsd-3-clause 3319394 5 agpl-3.0 1435105 6 lgpl-2.1 962034 7 bsd-2-clause 779810 8 lgpl-3.0 684163 9 mpl-2.0 504080 10 cc0-1.0 437764 11 epl-1.0 389338 12 unlicense 209350 13 artistic-2.0 155854 14 isc 133570 ###Markdown And that's how to get started using JOIN in BigQuery! There are many other kinds of joins (you can [read about some here](https://cloud.google.com/bigquery/docs/reference/standard-sql/query-syntaxjoin-types)), so once you're very comfortable with INNER JOIN you can start exploring some of them. :) Scavenger hunt___Now it's your turn! Here is the question I would like you to get the data to answer. Just one today, since you've been working hard this week. :)* How many commits (recorded in the "sample_commits" table) have been made in repos written in the Python programming language? (I'm looking for the number of commits per repo for all the repos written in Python. * You'll want to JOIN the sample_files and sample_commits questions to answer this. * **Hint:** You can figure out which files are written in Python by filtering results from the "sample_files" table using `WHERE path LIKE '%.py'`. This will return results where the "path" column ends in the text ".py", which is one way to identify which files have Python code.In order to answer these questions, you can fork this notebook by hitting the blue "Fork Notebook" at the very top of this page (you may have to scroll up). "Forking" something is making a copy of it that you can edit on your own without changing the original. ###Code # Your code goes here :) query1 = """ with repodata as ( SELECT sc.repo_name as reponame, sc.commit as commits, sf.path as path FROM `bigquery-public-data.github_repos.sample_files` as sf inner join `bigquery-public-data.github_repos.sample_commits` as sc on sf.repo_name=sc.repo_name WHERE sf.path like '%.py' ) SELECT reponame as Repository_Name, count(commits) as No_of_Commits FROM repodata GROUP BY reponame ORDER BY No_of_Commits DESC """ repo_name = github.query_to_pandas_safe(query1, max_gb_scanned=20) print(repo_name.head()) import matplotlib.pyplot as plt plt.barh(repo_name.Repository_Name,repo_name.No_of_Commits,log=True) #Here log=True will set the axis on logarithmic scale and hence wewill be able to view all the data #as the scale for the data is not same ###Output _____no_output_____
ai-platform-unified/notebooks/official/feature_store/gapic-feature-store.ipynb
###Markdown Run in Colab View on GitHub OverviewThis Colab introduces Feature Store, a managed cloud service for machine learning engineers and data scientists to store, serve, manage and share machine learning features at a large scale.This Colab assumes that you understand basic Google Cloud concepts such as [Project](https://cloud.google.com/storage/docs/projects), [Storage](https://cloud.google.com/storage) and [Vertex AI](https://cloud.google.com/vertex-ai/docs). Some machine learning knowledge is also helpful but not required. DatasetThis Colab uses a movie recommendation dataset as an example throughout all the sessions. The task is to train a model to predict if a user is going to watch a movie and serve this model online. ObjectiveIn this notebook, you will learn how to: * How to import your features into Feature Store. * How to serve online prediction requests using the imported features. * How to access imported features in offline jobs, such as training jobs. Costs This tutorial uses billable components of Google Cloud:* Vertex AI* Cloud Storage* Cloud BigtableLearn about [Vertex AIpricing](https://cloud.google.com/vertex-ai/pricing) and [Cloud Storagepricing](https://cloud.google.com/storage/pricing), and use the [PricingCalculator](https://cloud.google.com/products/calculator/)to generate a cost estimate based on your projected usage. Set up your local development environment**If you are using Colab or Google Cloud Notebooks**, your environment already meetsall the requirements to run this notebook. You can skip this step. **Otherwise**, make sure your environment meets this notebook's requirements.You need the following:* The Google Cloud SDK* Git* Python 3* virtualenv* Jupyter notebook running in a virtual environment with Python 3The Google Cloud guide to [Setting up a Python developmentenvironment](https://cloud.google.com/python/setup) and the [Jupyterinstallation guide](https://jupyter.org/install) provide detailed instructionsfor meeting these requirements. The following steps provide a condensed set ofinstructions:1. [Install and initialize the Cloud SDK.](https://cloud.google.com/sdk/docs/)1. [Install Python 3.](https://cloud.google.com/python/setupinstalling_python)1. [Install virtualenv](https://cloud.google.com/python/setupinstalling_and_using_virtualenv) and create a virtual environment that uses Python 3. Activate the virtual environment.1. To install Jupyter, run `pip install jupyter` on thecommand-line in a terminal shell.1. To launch Jupyter, run `jupyter notebook` on the command-line in a terminal shell.1. Open this notebook in the Jupyter Notebook Dashboard. Install additional packagesFor this Colab, you need the Vertex SDK for Python. ###Code import os # The Google Cloud Notebook product has specific requirements IS_GOOGLE_CLOUD_NOTEBOOK = os.path.exists("/opt/deeplearning/metadata/env_version") # Google Cloud Notebook requires dependencies to be installed with '--user' USER_FLAG = "" if IS_GOOGLE_CLOUD_NOTEBOOK: USER_FLAG = "--user" ! pip install {USER_FLAG} --upgrade git+https://github.com/googleapis/python-aiplatform.git@main-test ###Output _____no_output_____ ###Markdown Restart the kernelAfter you install the SDK, you need to restart the notebook kernel so it can find the packages. You can restart kernel from *Kernel -> Restart Kernel*, or running the following: ###Code # Automatically restart kernel after installs import os if not os.getenv("IS_TESTING"): # Automatically restart kernel after installs import IPython app = IPython.Application.instance() app.kernel.do_shutdown(True) ###Output _____no_output_____ ###Markdown Before you begin Select a GPU runtime**Make sure you're running this notebook in a GPU runtime if you have that option. In Colab, select "Runtime --> Change runtime type > GPU"** Set up your Google Cloud project**The following steps are required, regardless of your notebook environment.**1. [Select or create a Google Cloud project](https://console.cloud.google.com/cloud-resource-manager). When you first create an account, you get a $300 free credit towards your compute/storage costs.1. [Make sure that billing is enabled for your project](https://cloud.google.com/billing/docs/how-to/modify-project).1. [Enable the Vertex AI API and Compute Engine API](https://console.cloud.google.com/flows/enableapi?apiid=aiplatform.googleapis.com,compute_component).1. If you are running this notebook locally, you will need to install the [Cloud SDK](https://cloud.google.com/sdk).1. Enter your project ID in the cell below. Then run the cell to make sure theCloud SDK uses the right project for all the commands in this notebook.**Note**: Jupyter runs lines prefixed with `!` as shell commands, and it interpolates Python variables prefixed with `$` into these commands. Set your project ID**If you don't know your project ID**, you may be able to get your project ID using `gcloud`. ###Code import os PROJECT_ID = "" # Get your Google Cloud project ID from gcloud if not os.getenv("IS_TESTING"): shell_output=!gcloud config list --format 'value(core.project)' 2>/dev/null PROJECT_ID = shell_output[0] print("Project ID: ", PROJECT_ID) ###Output _____no_output_____ ###Markdown Otherwise, set your project ID here. ###Code if PROJECT_ID == "" or PROJECT_ID is None: PROJECT_ID = "python-docs-samples-tests" # @param {type:"string"} ###Output _____no_output_____ ###Markdown Authenticate your Google Cloud account**If you are using Google Cloud Notebooks**, your environment is alreadyauthenticated. Skip this step. **If you are using Colab**, run the cell below and follow the instructionswhen prompted to authenticate your account via oAuth.**Otherwise**, follow these steps:1. In the Cloud Console, go to the [**Create service account key** page](https://console.cloud.google.com/apis/credentials/serviceaccountkey).2. Click **Create service account**.3. In the **Service account name** field, enter a name, and click **Create**.4. In the **Grant this service account access to project** section, click the **Role** drop-down list. Type "Vertex AI"into the filter box, and select **Vertex AI Administrator**. Type "Storage Object Admin" into the filter box, and select **Storage Object Admin**.5. Click *Create*. A JSON file that contains your key downloads to yourlocal environment.6. Enter the path to your service account key as the`GOOGLE_APPLICATION_CREDENTIALS` variable in the cell below and run the cell. ###Code import os import sys # If you are running this notebook in Colab, run this cell and follow the # instructions to authenticate your GCP account. This provides access to your # Cloud Storage bucket and lets you submit training jobs and prediction # requests. # The Google Cloud Notebook product has specific requirements IS_GOOGLE_CLOUD_NOTEBOOK = os.path.exists("/opt/deeplearning/metadata/env_version") # If on Google Cloud Notebooks, then don't execute this code if not IS_GOOGLE_CLOUD_NOTEBOOK: if "google.colab" in sys.modules: from google.colab import auth as google_auth google_auth.authenticate_user() # If you are running this notebook locally, replace the string below with the # path to your service account key and run this cell to authenticate your GCP # account. elif not os.getenv("IS_TESTING"): %env GOOGLE_APPLICATION_CREDENTIALS '' ###Output _____no_output_____ ###Markdown Prepare for output Step 1. Create dataset for outputYou need a BigQuery dataset to host the output data in `us-central1`. Input the name of the dataset you want to created and specify the name of the table you want to store the output later. These will be used later in the notebook.**Make sure that the table name does NOT already exist**. ###Code from datetime import datetime from google.cloud import bigquery # Output dataset DESTINATION_DATA_SET = "movie_predictions" # @param {type:"string"} TIMESTAMP = datetime.now().strftime("%Y%m%d%H%M%S") DESTINATION_DATA_SET = "{prefix}_{timestamp}".format( prefix=DESTINATION_DATA_SET, timestamp=TIMESTAMP ) # Output table. Make sure that the table does NOT already exist; the BatchReadFeatureValues API cannot overwrite an existing table DESTINATION_TABLE_NAME = "training_data" # @param {type:"string"} DESTINATION_PATTERN = "bq://{project}.{dataset}.{table}" DESTINATION_TABLE_URI = DESTINATION_PATTERN.format( project=PROJECT_ID, dataset=DESTINATION_DATA_SET, table=DESTINATION_TABLE_NAME ) # Create dataset REGION = "us-central1" # @param {type:"string"} client = bigquery.Client() dataset_id = "{}.{}".format(client.project, DESTINATION_DATA_SET) dataset = bigquery.Dataset(dataset_id) dataset.location = REGION dataset = client.create_dataset(dataset, timeout=30) print("Created dataset {}.{}".format(client.project, dataset.dataset_id)) ###Output _____no_output_____ ###Markdown Import libraries and define constants ###Code # Other than project ID and featurestore ID and endpoints needs to be set API_ENDPOINT = "us-central1-aiplatform.googleapis.com" # @param {type:"string"} INPUT_CSV_FILE = "gs://cloud-samples-data-us-central1/ai-platform-unified/datasets/featurestore/movie_prediction.csv" from google.cloud.aiplatform_v1beta1 import ( FeaturestoreOnlineServingServiceClient, FeaturestoreServiceClient) from google.cloud.aiplatform_v1beta1.types import FeatureSelector, IdMatcher from google.cloud.aiplatform_v1beta1.types import \ entity_type as entity_type_pb2 from google.cloud.aiplatform_v1beta1.types import feature as feature_pb2 from google.cloud.aiplatform_v1beta1.types import \ featurestore as featurestore_pb2 from google.cloud.aiplatform_v1beta1.types import \ featurestore_monitoring as featurestore_monitoring_pb2 from google.cloud.aiplatform_v1beta1.types import \ featurestore_online_service as featurestore_online_service_pb2 from google.cloud.aiplatform_v1beta1.types import \ featurestore_service as featurestore_service_pb2 from google.cloud.aiplatform_v1beta1.types import io as io_pb2 from google.protobuf.duration_pb2 import Duration # Create admin_client for CRUD and data_client for reading feature values. admin_client = FeaturestoreServiceClient(client_options={"api_endpoint": API_ENDPOINT}) data_client = FeaturestoreOnlineServingServiceClient( client_options={"api_endpoint": API_ENDPOINT} ) # Represents featurestore resource path. BASE_RESOURCE_PATH = admin_client.common_location_path(PROJECT_ID, REGION) ###Output _____no_output_____ ###Markdown Terminology and Concept Featurestore Data modelFeature Store organizes data with the following 3 important hierarchical concepts:```Featurestore -> EntityType -> Feature```* **Featurestore**: the place to store your features* **EntityType**: under a Featurestore, an *EntityType* describes an object to be modeled, real one or virtual one.* **Feature**: under an EntityType, a *feature* describes an attribute of the EntityTypeIn the movie prediction example, you will create a featurestore called *movie_prediction*. This store has 2 entity types: *Users* and *Movies*. The Users entity type has the age, gender, and like genres features. The Movies entity type has the genres and average rating features. Create Featurestore and Define Schemas Create FeaturestoreThe method to create a featurestore returns a[long-running operation](https://google.aip.dev/151) (LRO). An LRO starts an asynchronous job. LROs are returned for other APImethods too, such as updating or deleting a featurestore. Calling`create_fs_lro.result()` waits for the LRO to complete. ###Code FEATURESTORE_ID = "movie_prediction_{timestamp}".format(timestamp=TIMESTAMP) create_lro = admin_client.create_featurestore( featurestore_service_pb2.CreateFeaturestoreRequest( parent=BASE_RESOURCE_PATH, featurestore_id=FEATURESTORE_ID, featurestore=featurestore_pb2.Featurestore( display_name="Featurestore for movie prediction", online_serving_config=featurestore_pb2.Featurestore.OnlineServingConfig( fixed_node_count=3 ), ), ) ) # Wait for LRO to finish and get the LRO result. print(create_lro.result()) ###Output _____no_output_____ ###Markdown You can use [GetFeaturestore](https://cloud.google.com/vertex-ai/docs/reference/rpc/google.cloud.aiplatform.v1beta1google.cloud.aiplatform.v1beta1.FeaturestoreService.GetFeaturestore) or [ListFeaturestores](https://cloud.google.com/vertex-ai/docs/reference/rpc/google.cloud.aiplatform.v1beta1google.cloud.aiplatform.v1beta1.FeaturestoreService.ListFeaturestores) to check if the Featurestore was successfully created. The following example gets the details of the Featurestore. ###Code admin_client.get_featurestore( name=admin_client.featurestore_path(PROJECT_ID, REGION, FEATURESTORE_ID) ) ###Output _____no_output_____ ###Markdown Create Entity TypeYou can specify a monitoring config which will by default be inherited by all Features under this EntityType. ###Code # Create users entity type with monitoring enabled. # All Features belonging to this EntityType will by default inherit the monitoring config. users_entity_type_lro = admin_client.create_entity_type( featurestore_service_pb2.CreateEntityTypeRequest( parent=admin_client.featurestore_path(PROJECT_ID, REGION, FEATURESTORE_ID), entity_type_id="users", entity_type=entity_type_pb2.EntityType( description="Users entity", monitoring_config=featurestore_monitoring_pb2.FeaturestoreMonitoringConfig( snapshot_analysis=featurestore_monitoring_pb2.FeaturestoreMonitoringConfig.SnapshotAnalysis( monitoring_interval=Duration(seconds=86400), # 1 day ), ), ), ) ) # Similarly, wait for EntityType creation operation. print(users_entity_type_lro.result()) # Create movies entity type without a monitoring configuration. movies_entity_type_lro = admin_client.create_entity_type( featurestore_service_pb2.CreateEntityTypeRequest( parent=admin_client.featurestore_path(PROJECT_ID, REGION, FEATURESTORE_ID), entity_type_id="movies", entity_type=entity_type_pb2.EntityType(description="Movies entity"), ) ) # Similarly, wait for EntityType creation operation. print(movies_entity_type_lro.result()) ###Output _____no_output_____ ###Markdown Create FeatureYou can also set a custom monitoring configuration at the Feature level, and view the properties and metrics in the console: sample [properties](https://storage.googleapis.com/cloud-samples-data/ai-platform-unified/datasets/featurestore/Feature%20Properties.png), sample [metrics](https://storage.googleapis.com/cloud-samples-data/ai-platform-unified/datasets/featurestore/Feature%20Snapshot%20Distribution.png). ###Code # Create features for the 'users' entity. # 'age' Feature leaves the monitoring config unset, which means it'll inherit the config from EntityType. # 'gender' Feature explicitly disables monitoring. # 'liked_genres' Feature is a STRING_ARRAY type, so it is automatically excluded from monitoring. # For Features with monitoring enabled, distribution statistics are updated periodically in the console. admin_client.batch_create_features( parent=admin_client.entity_type_path(PROJECT_ID, REGION, FEATURESTORE_ID, "users"), requests=[ featurestore_service_pb2.CreateFeatureRequest( feature=feature_pb2.Feature( value_type=feature_pb2.Feature.ValueType.INT64, description="User age", ), feature_id="age", ), featurestore_service_pb2.CreateFeatureRequest( feature=feature_pb2.Feature( value_type=feature_pb2.Feature.ValueType.STRING, description="User gender", monitoring_config=featurestore_monitoring_pb2.FeaturestoreMonitoringConfig( snapshot_analysis=featurestore_monitoring_pb2.FeaturestoreMonitoringConfig.SnapshotAnalysis( disabled=True, ), ), ), feature_id="gender", ), featurestore_service_pb2.CreateFeatureRequest( feature=feature_pb2.Feature( value_type=feature_pb2.Feature.ValueType.STRING_ARRAY, description="An array of genres that this user liked", ), feature_id="liked_genres", ), ], ).result() # Create features for movies type. # 'title' Feature enables monitoring. admin_client.batch_create_features( parent=admin_client.entity_type_path(PROJECT_ID, REGION, FEATURESTORE_ID, "movies"), requests=[ featurestore_service_pb2.CreateFeatureRequest( feature=feature_pb2.Feature( value_type=feature_pb2.Feature.ValueType.STRING, description="The title of the movie", monitoring_config=featurestore_monitoring_pb2.FeaturestoreMonitoringConfig( snapshot_analysis=featurestore_monitoring_pb2.FeaturestoreMonitoringConfig.SnapshotAnalysis( monitoring_interval=Duration(seconds=172800), # 2 days ), ), ), feature_id="title", ), featurestore_service_pb2.CreateFeatureRequest( feature=feature_pb2.Feature( value_type=feature_pb2.Feature.ValueType.STRING, description="The genres of the movie", ), feature_id="genres", ), featurestore_service_pb2.CreateFeatureRequest( feature=feature_pb2.Feature( value_type=feature_pb2.Feature.ValueType.DOUBLE, description="The average rating for the movie, range is [1.0-5.0]", ), feature_id="average_rating", ), ], ).result() ###Output _____no_output_____ ###Markdown Search created featuresWhile the [ListFeatures](https://cloud.google.com/vertex-ai/docs/reference/rpc/google.cloud.aiplatform.v1beta1google.cloud.aiplatform.v1beta1.FeaturestoreService.ListFeatures) method allows you to easily view all features of a singleentity type, the [SearchFeatures](https://cloud.google.com/vertex-ai/docs/reference/rpc/google.cloud.aiplatform.v1beta1google.cloud.aiplatform.v1beta1.FeaturestoreService.SearchFeatures) method searches across all featurestoresand entity types in a given location (such as `us-central1`). This can help you discover features that were created by someone else.You can query based on feature properties including feature ID, entity type ID,and feature description. You can also limit results by filtering on a specificfeaturestore, feature value type, and/or labels. ###Code # Search for all features across all featurestores. list(admin_client.search_features(location=BASE_RESOURCE_PATH)) ###Output _____no_output_____ ###Markdown Now, narrow down the search to features that are of type `DOUBLE` ###Code # Search for all features with value type `DOUBLE` list( admin_client.search_features( featurestore_service_pb2.SearchFeaturesRequest( location=BASE_RESOURCE_PATH, query="value_type=DOUBLE" ) ) ) ###Output _____no_output_____ ###Markdown Or, limit the search results to features with specific keywords in their ID and type. ###Code # Filter on feature value type and keywords. list( admin_client.search_features( featurestore_service_pb2.SearchFeaturesRequest( location=BASE_RESOURCE_PATH, query="feature_id:title AND value_type=STRING" ) ) ) ###Output _____no_output_____ ###Markdown Import Feature ValuesYou need to import feature values before you can use them for online/offline serving. In this step, you will learn how to import feature values by calling the ImportFeatureValues API using the Python SDK. Source Data Format and LayoutAs mentioned above, BigQuery table/Avro/CSV are supported. No matter what format you are using, each imported entity *must* have an ID; also, each entity can *optionally* have a timestamp, sepecifying when the feature values are generated. This Colab uses Avro as an input, located at this public [bucket](https://pantheon.corp.google.com/storage/browser/cloud-samples-data/ai-platform-unified/datasets/featurestore;tab=objects?project=storage-samples&prefix=&forceOnObjectsSortingFiltering=false). The Avro schemas are as follows:**For the Users entity**:```schema = { "type": "record", "name": "User", "fields": [ { "name":"user_id", "type":["null","string"] }, { "name":"age", "type":["null","long"] }, { "name":"gender", "type":["null","string"] }, { "name":"liked_genres", "type":{"type":"array","items":"string"} }, { "name":"update_time", "type":["null",{"type":"long","logicalType":"timestamp-micros"}] }, ] }```**For the Movies entity**```schema = { "type": "record", "name": "Movie", "fields": [ { "name":"movie_id", "type":["null","string"] }, { "name":"average_rating", "type":["null","double"] }, { "name":"title", "type":["null","string"] }, { "name":"genres", "type":["null","string"] }, { "name":"update_time", "type":["null",{"type":"long","logicalType":"timestamp-micros"}] }, ]}``` Import feature values for UsersWhen importing, specify the following in your request:* Data source format: BigQuery Table/Avro/CSV* Data source URL* Destination: featurestore/entity types/features to be imported ###Code import_users_request = featurestore_service_pb2.ImportFeatureValuesRequest( entity_type=admin_client.entity_type_path( PROJECT_ID, REGION, FEATURESTORE_ID, "users" ), avro_source=io_pb2.AvroSource( # Source gcs_source=io_pb2.GcsSource( uris=[ "gs://cloud-samples-data-us-central1/ai-platform-unified/datasets/featurestore/users.avro" ] ) ), entity_id_field="user_id", feature_specs=[ # Features featurestore_service_pb2.ImportFeatureValuesRequest.FeatureSpec(id="age"), featurestore_service_pb2.ImportFeatureValuesRequest.FeatureSpec(id="gender"), featurestore_service_pb2.ImportFeatureValuesRequest.FeatureSpec( id="liked_genres" ), ], feature_time_field="update_time", worker_count=10, ) # Start to import, will take a couple of minutes ingestion_lro = admin_client.import_feature_values(import_users_request) # Polls for the LRO status and prints when the LRO has completed ingestion_lro.result() ###Output _____no_output_____ ###Markdown Import feature values for MoviesSimilarly, import feature values for 'movies' into the featurestore. ###Code import_movie_request = featurestore_service_pb2.ImportFeatureValuesRequest( entity_type=admin_client.entity_type_path( PROJECT_ID, REGION, FEATURESTORE_ID, "movies" ), avro_source=io_pb2.AvroSource( gcs_source=io_pb2.GcsSource( uris=[ "gs://cloud-samples-data-us-central1/ai-platform-unified/datasets/featurestore/movies.avro" ] ) ), entity_id_field="movie_id", feature_specs=[ featurestore_service_pb2.ImportFeatureValuesRequest.FeatureSpec(id="title"), featurestore_service_pb2.ImportFeatureValuesRequest.FeatureSpec(id="genres"), featurestore_service_pb2.ImportFeatureValuesRequest.FeatureSpec( id="average_rating" ), ], feature_time_field="update_time", worker_count=10, ) # Start to import, will take a couple of minutes ingestion_lro = admin_client.import_feature_values(import_movie_request) # Polls for the LRO status and prints when the LRO has completed ingestion_lro.result() ###Output _____no_output_____ ###Markdown Online serving The[Online Serving APIs](https://cloud.google.com/vertex-ai/docs/reference/rpc/google.cloud.aiplatform.v1beta1featurestoreonlineservingservice)lets you serve feature values for small batches of entities. It's designed for latency-sensitive service, such as online model prediction. For example, for a movie service, you might want to quickly shows movies that the current user would most likely watch by using online predictions. Read one entity per requestThe ReadFeatureValues API is used to read feature values of one entity; henceits custom HTTP verb is `readFeatureValues`. By default, the API will return the latest value of each feature, meaning the feature values with the most recent timestamp.To read feature values, specify the entity ID and features to read. The responsecontains a `header` and an `entity_view`. Each row of data in the `entity_view`contains one feature value, in the same order of features as listed in the response header. ###Code # Fetch the following 3 features. feature_selector = FeatureSelector( id_matcher=IdMatcher(ids=["age", "gender", "liked_genres"]) ) data_client.read_feature_values( featurestore_online_service_pb2.ReadFeatureValuesRequest( # Fetch from the following feature store/entity type entity_type=admin_client.entity_type_path( PROJECT_ID, REGION, FEATURESTORE_ID, "users" ), # Fetch the user features whose ID is "alice" entity_id="alice", feature_selector=feature_selector, ) ) ###Output _____no_output_____ ###Markdown Read multiple entities per requestTo read feature values from multiple entities, use theStreamingReadFeatureValues API, which is almost identical to the previousReadFeatureValues API. Note that fetching only a small number of entities is recomended when using this API due to its latency-sensitive nature. ###Code # Read the same set of features as above, but for multiple entities. response_stream = data_client.streaming_read_feature_values( featurestore_online_service_pb2.StreamingReadFeatureValuesRequest( entity_type=admin_client.entity_type_path( PROJECT_ID, REGION, FEATURESTORE_ID, "users" ), entity_ids=["alice", "bob"], feature_selector=feature_selector, ) ) # Iterate and process response. Note the first one is always the header only. for response in response_stream: print(response) ###Output _____no_output_____ ###Markdown Now that you have learned how to featch imported feature values for online serving, the next step is learning how to use imported feature values for offline use cases. Batch ServingBatch Serving is used to fetch a large batch of feature values for high-throughput, typically for training a model or batch prediction. In this section, you will learn how to prepare for training examples by calling the BatchReadFeatureValues API. Use case**The task** is to prepare a training dataset to train a model, which predicts if a given user will watch a given movie. To achieve this, you need 2 sets of input:* Features: you already imported into the featurestore.* Labels: the groud-truth data recorded that user X has watched movie Y.To be more specific, the ground-truth observation is described in Table 1 and the desired training dataset is described in Table 2. Each row in Table 2 is a result of joining the imported feature values from Feature Store according to the entity IDs and timestamps in Table 1. In this example, the `age`, `gender` and `liked_genres` features from `users` andthe `genres` and `average_rating` features from `movies` are chosen to train the model. Note that only positive examples are shown in these 2 tables, i.e., you can imagine there is a label column whose values are all `True`.BatchReadFeatureValues API takes Table 1 asinput, joins all required feature values from the featurestore, and returns Table 2 for training.Table 1. Ground-truth Datausers | movies | timestamp ----- | -------- | -------------------- alice | Cinema Paradiso | 2019-11-01T00:00:00Z bob | The Shining | 2019-11-15T18:09:43Z ... | ... | ... Table 2. Expected Training Data Generated by Batch Read API (Positive Samples)timestamp | entity_type_users | age | gender | liked_genres | entity_type_movies | genres | average_rating -------------------- | ----------------- | --------------- | ---------------- | -------------------- | -------- | --------- | ----- 2019-11-01T00:00:00Z | bob | 35 | M | [Action, Crime] | The Shining | Horror | 4.8 2019-11-01T00:00:00Z | alice | 55 | F | [Drama, Comedy] | Cinema Paradiso | Romance | 4.5 ... | ... | ... | ... | ... | ... | ... | ... Why timestamp?Note that there is a `timestamp` column in Table 2. This indicates the time when the ground-truth was observed. This is to avoid data inconsistency.For example, the 1st row of Table 2 indicates that user `alice` watched movie `Cinema Paradiso` on `2019-11-01T00:00:00Z`. The featurestore keeps feature values for all timestamps but fetches feature values *only* at the given timestamp during batch serving. On 2019-11-01 alice might be 54 years old, but now alice might be 56; featurestore returns `age=54` as alice's age, instead of `age=56`, because that is the value of the feature at the observation time. Similarly, other features might be time-variant as well, such as liked_genres. Batch Read Feature ValuesAssemble the request which specify the following info:* Where is the label data, i.e., Table 1.* Which features are read, i.e., the column names in Table 2.The output is stored in a BigQuery table. ###Code batch_serving_request = featurestore_service_pb2.BatchReadFeatureValuesRequest( # featurestore info featurestore=admin_client.featurestore_path(PROJECT_ID, REGION, FEATURESTORE_ID), # URL for the label data, i.e., Table 1. csv_read_instances=io_pb2.CsvSource( gcs_source=io_pb2.GcsSource(uris=[INPUT_CSV_FILE]) ), destination=featurestore_service_pb2.FeatureValueDestination( bigquery_destination=io_pb2.BigQueryDestination( # Output to BigQuery table created earlier output_uri=DESTINATION_TABLE_URI ) ), entity_type_specs=[ featurestore_service_pb2.BatchReadFeatureValuesRequest.EntityTypeSpec( # Read the 'age', 'gender' and 'liked_genres' features from the 'users' entity entity_type_id="users", feature_selector=FeatureSelector( id_matcher=IdMatcher( ids=[ # features, use "*" if you want to select all features within this entity type "age", "gender", "liked_genres", ] ) ), ), featurestore_service_pb2.BatchReadFeatureValuesRequest.EntityTypeSpec( # Read the 'average_rating' and 'genres' feature values of the 'movies' entity entity_type_id="movies", feature_selector=FeatureSelector( id_matcher=IdMatcher(ids=["average_rating", "genres"]) ), ), ], ) # Execute the batch read batch_serving_lro = admin_client.batch_read_feature_values(batch_serving_request) # This long runing operation will poll until the batch read finishes. batch_serving_lro.result() ###Output _____no_output_____ ###Markdown After the LRO finishes, you should be able to see the result from the [BigQuery console](https://console.cloud.google.com/bigquery), in the dataset created earlier. Cleaning upTo clean up all Google Cloud resources used in this project, you can [delete the Google Cloudproject](https://cloud.google.com/resource-manager/docs/creating-managing-projectsshutting_down_projects) you used for the tutorial.You can also keep the project but delete the featurestore: ###Code admin_client.delete_featurestore( request=featurestore_service_pb2.DeleteFeaturestoreRequest( name=admin_client.featurestore_path(PROJECT_ID, REGION, FEATURESTORE_ID), force=True, ) ).result() client.delete_dataset( DESTINATION_DATA_SET, delete_contents=True, not_found_ok=True ) # Make an API request. print("Deleted dataset '{}'.".format(DESTINATION_DATA_SET)) ###Output _____no_output_____ ###Markdown Run in Colab View on GitHub OverviewThis Colab introduces Feature Store, a managed cloud service for machine learning engineers and data scientists to store, serve, manage and share machine learning features at a large scale.This Colab assumes that you understand basic Google Cloud concepts such as [Project](https://cloud.google.com/storage/docs/projects), [Storage](https://cloud.google.com/storage) and [Vertex AI](https://cloud.google.com/vertex-ai/docs). Some machine learning knowledge is also helpful but not required. DatasetThis Colab uses a movie recommendation dataset as an example throughout all the sessions. The task is to train a model to predict if a user is going to watch a movie and serve this model online. ObjectiveIn this notebook, you will learn how to: * How to import your features into Feature Store. * How to serve online prediction requests using the imported features. * How to access imported features in offline jobs, such as training jobs. Costs This tutorial uses billable components of Google Cloud:* Vertex AI* Cloud Storage* Cloud BigtableLearn about [Vertex AIpricing](https://cloud.google.com/vertex-ai/pricing) and [Cloud Storagepricing](https://cloud.google.com/storage/pricing), and use the [PricingCalculator](https://cloud.google.com/products/calculator/)to generate a cost estimate based on your projected usage. Set up your local development environment**If you are using Colab or Google Cloud Notebooks**, your environment already meetsall the requirements to run this notebook. You can skip this step. **Otherwise**, make sure your environment meets this notebook's requirements.You need the following:* The Google Cloud SDK* Git* Python 3* virtualenv* Jupyter notebook running in a virtual environment with Python 3The Google Cloud guide to [Setting up a Python developmentenvironment](https://cloud.google.com/python/setup) and the [Jupyterinstallation guide](https://jupyter.org/install) provide detailed instructionsfor meeting these requirements. The following steps provide a condensed set ofinstructions:1. [Install and initialize the Cloud SDK.](https://cloud.google.com/sdk/docs/)1. [Install Python 3.](https://cloud.google.com/python/setupinstalling_python)1. [Install virtualenv](https://cloud.google.com/python/setupinstalling_and_using_virtualenv) and create a virtual environment that uses Python 3. Activate the virtual environment.1. To install Jupyter, run `pip3 install jupyter` on thecommand-line in a terminal shell.1. To launch Jupyter, run `jupyter notebook` on the command-line in a terminal shell.1. Open this notebook in the Jupyter Notebook Dashboard. Install additional packagesFor this Colab, you need the Vertex SDK for Python. ###Code import os # The Google Cloud Notebook product has specific requirements IS_GOOGLE_CLOUD_NOTEBOOK = os.path.exists("/opt/deeplearning/metadata/env_version") # Google Cloud Notebook requires dependencies to be installed with '--user' USER_FLAG = "" if IS_GOOGLE_CLOUD_NOTEBOOK: USER_FLAG = "--user" ! pip3 install {USER_FLAG} --upgrade git+https://github.com/googleapis/python-aiplatform.git@main-test ###Output _____no_output_____ ###Markdown Restart the kernelAfter you install the SDK, you need to restart the notebook kernel so it can find the packages. You can restart kernel from *Kernel -> Restart Kernel*, or running the following: ###Code # Automatically restart kernel after installs import os if not os.getenv("IS_TESTING"): # Automatically restart kernel after installs import IPython app = IPython.Application.instance() app.kernel.do_shutdown(True) ###Output _____no_output_____ ###Markdown Before you begin Select a GPU runtime**Make sure you're running this notebook in a GPU runtime if you have that option. In Colab, select "Runtime --> Change runtime type > GPU"** Set up your Google Cloud project**The following steps are required, regardless of your notebook environment.**1. [Select or create a Google Cloud project](https://console.cloud.google.com/cloud-resource-manager). When you first create an account, you get a $300 free credit towards your compute/storage costs.1. [Make sure that billing is enabled for your project](https://cloud.google.com/billing/docs/how-to/modify-project).1. [Enable the Vertex AI API and Compute Engine API](https://console.cloud.google.com/flows/enableapi?apiid=aiplatform.googleapis.com,compute_component).1. If you are running this notebook locally, you will need to install the [Cloud SDK](https://cloud.google.com/sdk).1. Enter your project ID in the cell below. Then run the cell to make sure theCloud SDK uses the right project for all the commands in this notebook.**Note**: Jupyter runs lines prefixed with `!` as shell commands, and it interpolates Python variables prefixed with `$` into these commands. Set your project ID**If you don't know your project ID**, you may be able to get your project ID using `gcloud`. ###Code import os PROJECT_ID = "" # Get your Google Cloud project ID from gcloud if not os.getenv("IS_TESTING"): shell_output=!gcloud config list --format 'value(core.project)' 2>/dev/null PROJECT_ID = shell_output[0] print("Project ID: ", PROJECT_ID) ###Output _____no_output_____ ###Markdown Otherwise, set your project ID here. ###Code if PROJECT_ID == "" or PROJECT_ID is None: PROJECT_ID = "python-docs-samples-tests" # @param {type:"string"} ###Output _____no_output_____ ###Markdown Authenticate your Google Cloud account**If you are using Google Cloud Notebooks**, your environment is alreadyauthenticated. Skip this step. **If you are using Colab**, run the cell below and follow the instructionswhen prompted to authenticate your account via oAuth.**Otherwise**, follow these steps:1. In the Cloud Console, go to the [**Create service account key** page](https://console.cloud.google.com/apis/credentials/serviceaccountkey).2. Click **Create service account**.3. In the **Service account name** field, enter a name, and click **Create**.4. In the **Grant this service account access to project** section, click the **Role** drop-down list. Type "Vertex AI"into the filter box, and select **Vertex AI Administrator**. Type "Storage Object Admin" into the filter box, and select **Storage Object Admin**.5. Click *Create*. A JSON file that contains your key downloads to yourlocal environment.6. Enter the path to your service account key as the`GOOGLE_APPLICATION_CREDENTIALS` variable in the cell below and run the cell. ###Code import os import sys # If you are running this notebook in Colab, run this cell and follow the # instructions to authenticate your GCP account. This provides access to your # Cloud Storage bucket and lets you submit training jobs and prediction # requests. # The Google Cloud Notebook product has specific requirements IS_GOOGLE_CLOUD_NOTEBOOK = os.path.exists("/opt/deeplearning/metadata/env_version") # If on Google Cloud Notebooks, then don't execute this code if not IS_GOOGLE_CLOUD_NOTEBOOK: if "google.colab" in sys.modules: from google.colab import auth as google_auth google_auth.authenticate_user() # If you are running this notebook locally, replace the string below with the # path to your service account key and run this cell to authenticate your GCP # account. elif not os.getenv("IS_TESTING"): %env GOOGLE_APPLICATION_CREDENTIALS '' ###Output _____no_output_____ ###Markdown Prepare for output Step 1. Create dataset for outputYou need a BigQuery dataset to host the output data in `us-central1`. Input the name of the dataset you want to created and specify the name of the table you want to store the output later. These will be used later in the notebook.**Make sure that the table name does NOT already exist**. ###Code from datetime import datetime from google.cloud import bigquery # Output dataset DESTINATION_DATA_SET = "movie_predictions" # @param {type:"string"} TIMESTAMP = datetime.now().strftime("%Y%m%d%H%M%S") DESTINATION_DATA_SET = "{prefix}_{timestamp}".format( prefix=DESTINATION_DATA_SET, timestamp=TIMESTAMP ) # Output table. Make sure that the table does NOT already exist; the BatchReadFeatureValues API cannot overwrite an existing table DESTINATION_TABLE_NAME = "training_data" # @param {type:"string"} DESTINATION_PATTERN = "bq://{project}.{dataset}.{table}" DESTINATION_TABLE_URI = DESTINATION_PATTERN.format( project=PROJECT_ID, dataset=DESTINATION_DATA_SET, table=DESTINATION_TABLE_NAME ) # Create dataset REGION = "us-central1" # @param {type:"string"} client = bigquery.Client() dataset_id = "{}.{}".format(client.project, DESTINATION_DATA_SET) dataset = bigquery.Dataset(dataset_id) dataset.location = REGION dataset = client.create_dataset(dataset, timeout=30) print("Created dataset {}.{}".format(client.project, dataset.dataset_id)) ###Output _____no_output_____ ###Markdown Import libraries and define constants ###Code # Other than project ID and featurestore ID and endpoints needs to be set API_ENDPOINT = "us-central1-aiplatform.googleapis.com" # @param {type:"string"} INPUT_CSV_FILE = "gs://cloud-samples-data-us-central1/ai-platform-unified/datasets/featurestore/movie_prediction.csv" from google.cloud.aiplatform_v1beta1 import ( FeaturestoreOnlineServingServiceClient, FeaturestoreServiceClient) from google.cloud.aiplatform_v1beta1.types import FeatureSelector, IdMatcher from google.cloud.aiplatform_v1beta1.types import \ entity_type as entity_type_pb2 from google.cloud.aiplatform_v1beta1.types import feature as feature_pb2 from google.cloud.aiplatform_v1beta1.types import \ featurestore as featurestore_pb2 from google.cloud.aiplatform_v1beta1.types import \ featurestore_monitoring as featurestore_monitoring_pb2 from google.cloud.aiplatform_v1beta1.types import \ featurestore_online_service as featurestore_online_service_pb2 from google.cloud.aiplatform_v1beta1.types import \ featurestore_service as featurestore_service_pb2 from google.cloud.aiplatform_v1beta1.types import io as io_pb2 from google.protobuf.duration_pb2 import Duration # Create admin_client for CRUD and data_client for reading feature values. admin_client = FeaturestoreServiceClient(client_options={"api_endpoint": API_ENDPOINT}) data_client = FeaturestoreOnlineServingServiceClient( client_options={"api_endpoint": API_ENDPOINT} ) # Represents featurestore resource path. BASE_RESOURCE_PATH = admin_client.common_location_path(PROJECT_ID, REGION) ###Output _____no_output_____ ###Markdown Terminology and Concept Featurestore Data modelFeature Store organizes data with the following 3 important hierarchical concepts:```Featurestore -> EntityType -> Feature```* **Featurestore**: the place to store your features* **EntityType**: under a Featurestore, an *EntityType* describes an object to be modeled, real one or virtual one.* **Feature**: under an EntityType, a *feature* describes an attribute of the EntityTypeIn the movie prediction example, you will create a featurestore called *movie_prediction*. This store has 2 entity types: *Users* and *Movies*. The Users entity type has the age, gender, and like genres features. The Movies entity type has the genres and average rating features. Create Featurestore and Define Schemas Create FeaturestoreThe method to create a featurestore returns a[long-running operation](https://google.aip.dev/151) (LRO). An LRO starts an asynchronous job. LROs are returned for other APImethods too, such as updating or deleting a featurestore. Calling`create_fs_lro.result()` waits for the LRO to complete. ###Code FEATURESTORE_ID = "movie_prediction_{timestamp}".format(timestamp=TIMESTAMP) create_lro = admin_client.create_featurestore( featurestore_service_pb2.CreateFeaturestoreRequest( parent=BASE_RESOURCE_PATH, featurestore_id=FEATURESTORE_ID, featurestore=featurestore_pb2.Featurestore( display_name="Featurestore for movie prediction", online_serving_config=featurestore_pb2.Featurestore.OnlineServingConfig( fixed_node_count=3 ), ), ) ) # Wait for LRO to finish and get the LRO result. print(create_lro.result()) ###Output _____no_output_____ ###Markdown You can use [GetFeaturestore](https://cloud.google.com/vertex-ai/docs/reference/rpc/google.cloud.aiplatform.v1beta1google.cloud.aiplatform.v1beta1.FeaturestoreService.GetFeaturestore) or [ListFeaturestores](https://cloud.google.com/vertex-ai/docs/reference/rpc/google.cloud.aiplatform.v1beta1google.cloud.aiplatform.v1beta1.FeaturestoreService.ListFeaturestores) to check if the Featurestore was successfully created. The following example gets the details of the Featurestore. ###Code admin_client.get_featurestore( name=admin_client.featurestore_path(PROJECT_ID, REGION, FEATURESTORE_ID) ) ###Output _____no_output_____ ###Markdown Create Entity TypeYou can specify a monitoring config which will by default be inherited by all Features under this EntityType. ###Code # Create users entity type with monitoring enabled. # All Features belonging to this EntityType will by default inherit the monitoring config. users_entity_type_lro = admin_client.create_entity_type( featurestore_service_pb2.CreateEntityTypeRequest( parent=admin_client.featurestore_path(PROJECT_ID, REGION, FEATURESTORE_ID), entity_type_id="users", entity_type=entity_type_pb2.EntityType( description="Users entity", monitoring_config=featurestore_monitoring_pb2.FeaturestoreMonitoringConfig( snapshot_analysis=featurestore_monitoring_pb2.FeaturestoreMonitoringConfig.SnapshotAnalysis( monitoring_interval=Duration(seconds=86400), # 1 day ), ), ), ) ) # Similarly, wait for EntityType creation operation. print(users_entity_type_lro.result()) # Create movies entity type without a monitoring configuration. movies_entity_type_lro = admin_client.create_entity_type( featurestore_service_pb2.CreateEntityTypeRequest( parent=admin_client.featurestore_path(PROJECT_ID, REGION, FEATURESTORE_ID), entity_type_id="movies", entity_type=entity_type_pb2.EntityType(description="Movies entity"), ) ) # Similarly, wait for EntityType creation operation. print(movies_entity_type_lro.result()) ###Output _____no_output_____ ###Markdown Create FeatureYou can also set a custom monitoring configuration at the Feature level, and view the properties and metrics in the console: sample [properties](https://storage.googleapis.com/cloud-samples-data/ai-platform-unified/datasets/featurestore/Feature%20Properties.png), sample [metrics](https://storage.googleapis.com/cloud-samples-data/ai-platform-unified/datasets/featurestore/Feature%20Snapshot%20Distribution.png). ###Code # Create features for the 'users' entity. # 'age' Feature leaves the monitoring config unset, which means it'll inherit the config from EntityType. # 'gender' Feature explicitly disables monitoring. # 'liked_genres' Feature is a STRING_ARRAY type, so it is automatically excluded from monitoring. # For Features with monitoring enabled, distribution statistics are updated periodically in the console. admin_client.batch_create_features( parent=admin_client.entity_type_path(PROJECT_ID, REGION, FEATURESTORE_ID, "users"), requests=[ featurestore_service_pb2.CreateFeatureRequest( feature=feature_pb2.Feature( value_type=feature_pb2.Feature.ValueType.INT64, description="User age", ), feature_id="age", ), featurestore_service_pb2.CreateFeatureRequest( feature=feature_pb2.Feature( value_type=feature_pb2.Feature.ValueType.STRING, description="User gender", monitoring_config=featurestore_monitoring_pb2.FeaturestoreMonitoringConfig( snapshot_analysis=featurestore_monitoring_pb2.FeaturestoreMonitoringConfig.SnapshotAnalysis( disabled=True, ), ), ), feature_id="gender", ), featurestore_service_pb2.CreateFeatureRequest( feature=feature_pb2.Feature( value_type=feature_pb2.Feature.ValueType.STRING_ARRAY, description="An array of genres that this user liked", ), feature_id="liked_genres", ), ], ).result() # Create features for movies type. # 'title' Feature enables monitoring. admin_client.batch_create_features( parent=admin_client.entity_type_path(PROJECT_ID, REGION, FEATURESTORE_ID, "movies"), requests=[ featurestore_service_pb2.CreateFeatureRequest( feature=feature_pb2.Feature( value_type=feature_pb2.Feature.ValueType.STRING, description="The title of the movie", monitoring_config=featurestore_monitoring_pb2.FeaturestoreMonitoringConfig( snapshot_analysis=featurestore_monitoring_pb2.FeaturestoreMonitoringConfig.SnapshotAnalysis( monitoring_interval=Duration(seconds=172800), # 2 days ), ), ), feature_id="title", ), featurestore_service_pb2.CreateFeatureRequest( feature=feature_pb2.Feature( value_type=feature_pb2.Feature.ValueType.STRING, description="The genres of the movie", ), feature_id="genres", ), featurestore_service_pb2.CreateFeatureRequest( feature=feature_pb2.Feature( value_type=feature_pb2.Feature.ValueType.DOUBLE, description="The average rating for the movie, range is [1.0-5.0]", ), feature_id="average_rating", ), ], ).result() ###Output _____no_output_____ ###Markdown Search created featuresWhile the [ListFeatures](https://cloud.google.com/vertex-ai/docs/reference/rpc/google.cloud.aiplatform.v1beta1google.cloud.aiplatform.v1beta1.FeaturestoreService.ListFeatures) method allows you to easily view all features of a singleentity type, the [SearchFeatures](https://cloud.google.com/vertex-ai/docs/reference/rpc/google.cloud.aiplatform.v1beta1google.cloud.aiplatform.v1beta1.FeaturestoreService.SearchFeatures) method searches across all featurestoresand entity types in a given location (such as `us-central1`). This can help you discover features that were created by someone else.You can query based on feature properties including feature ID, entity type ID,and feature description. You can also limit results by filtering on a specificfeaturestore, feature value type, and/or labels. ###Code # Search for all features across all featurestores. list(admin_client.search_features(location=BASE_RESOURCE_PATH)) ###Output _____no_output_____ ###Markdown Now, narrow down the search to features that are of type `DOUBLE` ###Code # Search for all features with value type `DOUBLE` list( admin_client.search_features( featurestore_service_pb2.SearchFeaturesRequest( location=BASE_RESOURCE_PATH, query="value_type=DOUBLE" ) ) ) ###Output _____no_output_____ ###Markdown Or, limit the search results to features with specific keywords in their ID and type. ###Code # Filter on feature value type and keywords. list( admin_client.search_features( featurestore_service_pb2.SearchFeaturesRequest( location=BASE_RESOURCE_PATH, query="feature_id:title AND value_type=STRING" ) ) ) ###Output _____no_output_____ ###Markdown Import Feature ValuesYou need to import feature values before you can use them for online/offline serving. In this step, you will learn how to import feature values by calling the ImportFeatureValues API using the Python SDK. Source Data Format and LayoutAs mentioned above, BigQuery table/Avro/CSV are supported. No matter what format you are using, each imported entity *must* have an ID; also, each entity can *optionally* have a timestamp, sepecifying when the feature values are generated. This Colab uses Avro as an input, located at this public [bucket](https://pantheon.corp.google.com/storage/browser/cloud-samples-data/ai-platform-unified/datasets/featurestore;tab=objects?project=storage-samples&prefix=&forceOnObjectsSortingFiltering=false). The Avro schemas are as follows:**For the Users entity**:```schema = { "type": "record", "name": "User", "fields": [ { "name":"user_id", "type":["null","string"] }, { "name":"age", "type":["null","long"] }, { "name":"gender", "type":["null","string"] }, { "name":"liked_genres", "type":{"type":"array","items":"string"} }, { "name":"update_time", "type":["null",{"type":"long","logicalType":"timestamp-micros"}] }, ] }```**For the Movies entity**```schema = { "type": "record", "name": "Movie", "fields": [ { "name":"movie_id", "type":["null","string"] }, { "name":"average_rating", "type":["null","double"] }, { "name":"title", "type":["null","string"] }, { "name":"genres", "type":["null","string"] }, { "name":"update_time", "type":["null",{"type":"long","logicalType":"timestamp-micros"}] }, ]}``` Import feature values for UsersWhen importing, specify the following in your request:* Data source format: BigQuery Table/Avro/CSV* Data source URL* Destination: featurestore/entity types/features to be imported ###Code import_users_request = featurestore_service_pb2.ImportFeatureValuesRequest( entity_type=admin_client.entity_type_path( PROJECT_ID, REGION, FEATURESTORE_ID, "users" ), avro_source=io_pb2.AvroSource( # Source gcs_source=io_pb2.GcsSource( uris=[ "gs://cloud-samples-data-us-central1/ai-platform-unified/datasets/featurestore/users.avro" ] ) ), entity_id_field="user_id", feature_specs=[ # Features featurestore_service_pb2.ImportFeatureValuesRequest.FeatureSpec(id="age"), featurestore_service_pb2.ImportFeatureValuesRequest.FeatureSpec(id="gender"), featurestore_service_pb2.ImportFeatureValuesRequest.FeatureSpec( id="liked_genres" ), ], feature_time_field="update_time", worker_count=10, ) # Start to import, will take a couple of minutes ingestion_lro = admin_client.import_feature_values(import_users_request) # Polls for the LRO status and prints when the LRO has completed ingestion_lro.result() ###Output _____no_output_____ ###Markdown Import feature values for MoviesSimilarly, import feature values for 'movies' into the featurestore. ###Code import_movie_request = featurestore_service_pb2.ImportFeatureValuesRequest( entity_type=admin_client.entity_type_path( PROJECT_ID, REGION, FEATURESTORE_ID, "movies" ), avro_source=io_pb2.AvroSource( gcs_source=io_pb2.GcsSource( uris=[ "gs://cloud-samples-data-us-central1/ai-platform-unified/datasets/featurestore/movies.avro" ] ) ), entity_id_field="movie_id", feature_specs=[ featurestore_service_pb2.ImportFeatureValuesRequest.FeatureSpec(id="title"), featurestore_service_pb2.ImportFeatureValuesRequest.FeatureSpec(id="genres"), featurestore_service_pb2.ImportFeatureValuesRequest.FeatureSpec( id="average_rating" ), ], feature_time_field="update_time", worker_count=10, ) # Start to import, will take a couple of minutes ingestion_lro = admin_client.import_feature_values(import_movie_request) # Polls for the LRO status and prints when the LRO has completed ingestion_lro.result() ###Output _____no_output_____ ###Markdown Online serving The[Online Serving APIs](https://cloud.google.com/vertex-ai/docs/reference/rpc/google.cloud.aiplatform.v1beta1featurestoreonlineservingservice)lets you serve feature values for small batches of entities. It's designed for latency-sensitive service, such as online model prediction. For example, for a movie service, you might want to quickly shows movies that the current user would most likely watch by using online predictions. Read one entity per requestThe ReadFeatureValues API is used to read feature values of one entity; henceits custom HTTP verb is `readFeatureValues`. By default, the API will return the latest value of each feature, meaning the feature values with the most recent timestamp.To read feature values, specify the entity ID and features to read. The responsecontains a `header` and an `entity_view`. Each row of data in the `entity_view`contains one feature value, in the same order of features as listed in the response header. ###Code # Fetch the following 3 features. feature_selector = FeatureSelector( id_matcher=IdMatcher(ids=["age", "gender", "liked_genres"]) ) data_client.read_feature_values( featurestore_online_service_pb2.ReadFeatureValuesRequest( # Fetch from the following feature store/entity type entity_type=admin_client.entity_type_path( PROJECT_ID, REGION, FEATURESTORE_ID, "users" ), # Fetch the user features whose ID is "alice" entity_id="alice", feature_selector=feature_selector, ) ) ###Output _____no_output_____ ###Markdown Read multiple entities per requestTo read feature values from multiple entities, use theStreamingReadFeatureValues API, which is almost identical to the previousReadFeatureValues API. Note that fetching only a small number of entities is recomended when using this API due to its latency-sensitive nature. ###Code # Read the same set of features as above, but for multiple entities. response_stream = data_client.streaming_read_feature_values( featurestore_online_service_pb2.StreamingReadFeatureValuesRequest( entity_type=admin_client.entity_type_path( PROJECT_ID, REGION, FEATURESTORE_ID, "users" ), entity_ids=["alice", "bob"], feature_selector=feature_selector, ) ) # Iterate and process response. Note the first one is always the header only. for response in response_stream: print(response) ###Output _____no_output_____ ###Markdown Now that you have learned how to featch imported feature values for online serving, the next step is learning how to use imported feature values for offline use cases. Batch ServingBatch Serving is used to fetch a large batch of feature values for high-throughput, typically for training a model or batch prediction. In this section, you will learn how to prepare for training examples by calling the BatchReadFeatureValues API. Use case**The task** is to prepare a training dataset to train a model, which predicts if a given user will watch a given movie. To achieve this, you need 2 sets of input:* Features: you already imported into the featurestore.* Labels: the groud-truth data recorded that user X has watched movie Y.To be more specific, the ground-truth observation is described in Table 1 and the desired training dataset is described in Table 2. Each row in Table 2 is a result of joining the imported feature values from Feature Store according to the entity IDs and timestamps in Table 1. In this example, the `age`, `gender` and `liked_genres` features from `users` andthe `genres` and `average_rating` features from `movies` are chosen to train the model. Note that only positive examples are shown in these 2 tables, i.e., you can imagine there is a label column whose values are all `True`.BatchReadFeatureValues API takes Table 1 asinput, joins all required feature values from the featurestore, and returns Table 2 for training.Table 1. Ground-truth Datausers | movies | timestamp ----- | -------- | -------------------- alice | Cinema Paradiso | 2019-11-01T00:00:00Z bob | The Shining | 2019-11-15T18:09:43Z ... | ... | ... Table 2. Expected Training Data Generated by Batch Read API (Positive Samples)timestamp | entity_type_users | age | gender | liked_genres | entity_type_movies | genres | average_rating -------------------- | ----------------- | --------------- | ---------------- | -------------------- | -------- | --------- | ----- 2019-11-01T00:00:00Z | bob | 35 | M | [Action, Crime] | The Shining | Horror | 4.8 2019-11-01T00:00:00Z | alice | 55 | F | [Drama, Comedy] | Cinema Paradiso | Romance | 4.5 ... | ... | ... | ... | ... | ... | ... | ... Why timestamp?Note that there is a `timestamp` column in Table 2. This indicates the time when the ground-truth was observed. This is to avoid data inconsistency.For example, the 1st row of Table 2 indicates that user `alice` watched movie `Cinema Paradiso` on `2019-11-01T00:00:00Z`. The featurestore keeps feature values for all timestamps but fetches feature values *only* at the given timestamp during batch serving. On 2019-11-01 alice might be 54 years old, but now alice might be 56; featurestore returns `age=54` as alice's age, instead of `age=56`, because that is the value of the feature at the observation time. Similarly, other features might be time-variant as well, such as liked_genres. Batch Read Feature ValuesAssemble the request which specify the following info:* Where is the label data, i.e., Table 1.* Which features are read, i.e., the column names in Table 2.The output is stored in a BigQuery table. ###Code batch_serving_request = featurestore_service_pb2.BatchReadFeatureValuesRequest( # featurestore info featurestore=admin_client.featurestore_path(PROJECT_ID, REGION, FEATURESTORE_ID), # URL for the label data, i.e., Table 1. csv_read_instances=io_pb2.CsvSource( gcs_source=io_pb2.GcsSource(uris=[INPUT_CSV_FILE]) ), destination=featurestore_service_pb2.FeatureValueDestination( bigquery_destination=io_pb2.BigQueryDestination( # Output to BigQuery table created earlier output_uri=DESTINATION_TABLE_URI ) ), entity_type_specs=[ featurestore_service_pb2.BatchReadFeatureValuesRequest.EntityTypeSpec( # Read the 'age', 'gender' and 'liked_genres' features from the 'users' entity entity_type_id="users", feature_selector=FeatureSelector( id_matcher=IdMatcher( ids=[ # features, use "*" if you want to select all features within this entity type "age", "gender", "liked_genres", ] ) ), ), featurestore_service_pb2.BatchReadFeatureValuesRequest.EntityTypeSpec( # Read the 'average_rating' and 'genres' feature values of the 'movies' entity entity_type_id="movies", feature_selector=FeatureSelector( id_matcher=IdMatcher(ids=["average_rating", "genres"]) ), ), ], ) # Execute the batch read batch_serving_lro = admin_client.batch_read_feature_values(batch_serving_request) # This long runing operation will poll until the batch read finishes. batch_serving_lro.result() ###Output _____no_output_____ ###Markdown After the LRO finishes, you should be able to see the result from the [BigQuery console](https://console.cloud.google.com/bigquery), in the dataset created earlier. Cleaning upTo clean up all Google Cloud resources used in this project, you can [delete the Google Cloudproject](https://cloud.google.com/resource-manager/docs/creating-managing-projectsshutting_down_projects) you used for the tutorial.You can also keep the project but delete the featurestore: ###Code admin_client.delete_featurestore( request=featurestore_service_pb2.DeleteFeaturestoreRequest( name=admin_client.featurestore_path(PROJECT_ID, REGION, FEATURESTORE_ID), force=True, ) ).result() client.delete_dataset( DESTINATION_DATA_SET, delete_contents=True, not_found_ok=True ) # Make an API request. print("Deleted dataset '{}'.".format(DESTINATION_DATA_SET)) ###Output _____no_output_____ ###Markdown Run in Colab View on GitHub OverviewThis Colab introduces Feature Store, a managed cloud service for machine learning engineers and data scientists to store, serve, manage and share machine learning features at a large scale.This Colab assumes that you understand basic Google Cloud concepts such as [Project](https://cloud.google.com/storage/docs/projects), [Storage](https://cloud.google.com/storage) and [AI Platform (Unified)](https://cloud.google.com/ai-platform-unified/docs). Some machine learning knowledge is also helpful but not required. DatasetThis Colab uses a movie recommendation dataset as an example throughout all the sessions. The task is to train a model to predict if a user is going to watch a movie and serve this model online. ObjectiveIn this notebook, you will learn how to: * How to import your features into Feature Store. * How to serve online prediction requests using the imported features. * How to access imported features in offline jobs, such as training jobs. Costs This tutorial uses billable components of Google Cloud:* AI Platform (Unified)* Cloud Storage* Cloud BigtableLearn about [AI Platform (Unified)pricing](https://cloud.google.com/ai-platform-unified/pricing) and [Cloud Storagepricing](https://cloud.google.com/storage/pricing), and use the [PricingCalculator](https://cloud.google.com/products/calculator/)to generate a cost estimate based on your projected usage. Set up your local development environment**If you are using Colab or AI Platform Notebooks**, your environment already meetsall the requirements to run this notebook. You can skip this step. **Otherwise**, make sure your environment meets this notebook's requirements.You need the following:* The Google Cloud SDK* Git* Python 3* virtualenv* Jupyter notebook running in a virtual environment with Python 3The Google Cloud guide to [Setting up a Python developmentenvironment](https://cloud.google.com/python/setup) and the [Jupyterinstallation guide](https://jupyter.org/install) provide detailed instructionsfor meeting these requirements. The following steps provide a condensed set ofinstructions:1. [Install and initialize the Cloud SDK.](https://cloud.google.com/sdk/docs/)1. [Install Python 3.](https://cloud.google.com/python/setupinstalling_python)1. [Install virtualenv](https://cloud.google.com/python/setupinstalling_and_using_virtualenv) and create a virtual environment that uses Python 3. Activate the virtual environment.1. To install Jupyter, run `pip install jupyter` on thecommand-line in a terminal shell.1. To launch Jupyter, run `jupyter notebook` on the command-line in a terminal shell.1. Open this notebook in the Jupyter Notebook Dashboard. Install additional packagesFor this Colab, you need the AI Platform SDK. ###Code # Uninstall previous version of google-cloud-aiplatform SDK, if any. !pip uninstall google-cloud-aiplatform -y # Install the latest public release version # !pip install -U google-cloud-aiplatform # Install the testing version !pip install git+https://github.com/googleapis/python-aiplatform.git@main-test ###Output _____no_output_____ ###Markdown Restart the kernelAfter you install the SDK, you need to restart the notebook kernel so it can find the packages. You can restart kernel from *Kernel -> Restart Kernel*, or running the following: ###Code # Automatically restart kernel after installs import os if not os.getenv("IS_TESTING"): # Automatically restart kernel after installs import IPython app = IPython.Application.instance() app.kernel.do_shutdown(True) ###Output _____no_output_____ ###Markdown Before you begin Select a GPU runtime**Make sure you're running this notebook in a GPU runtime if you have that option. In Colab, select "Runtime --> Change runtime type > GPU"** Set up your Google Cloud project**The following steps are required, regardless of your notebook environment.**1. [Select or create a Google Cloud project](https://console.cloud.google.com/cloud-resource-manager). When you first create an account, you get a $300 free credit towards your compute/storage costs.1. [Make sure that billing is enabled for your project](https://cloud.google.com/billing/docs/how-to/modify-project).1. [Enable the AI Platform (Unified) API and Compute Engine API](https://console.cloud.google.com/flows/enableapi?apiid=aiplatform.googleapis.com,compute_component).1. If you are running this notebook locally, you will need to install the [Cloud SDK](https://cloud.google.com/sdk).1. Enter your project ID in the cell below. Then run the cell to make sure theCloud SDK uses the right project for all the commands in this notebook.**Note**: Jupyter runs lines prefixed with `!` as shell commands, and it interpolates Python variables prefixed with `$` into these commands. Set your project ID**If you don't know your project ID**, you may be able to get your project ID using `gcloud`. ###Code import os PROJECT_ID = "" # Get your Google Cloud project ID from gcloud if not os.getenv("IS_TESTING"): shell_output=!gcloud config list --format 'value(core.project)' 2>/dev/null PROJECT_ID = shell_output[0] print("Project ID: ", PROJECT_ID) ###Output _____no_output_____ ###Markdown Otherwise, set your project ID here. ###Code if PROJECT_ID == "" or PROJECT_ID is None: PROJECT_ID = "python-docs-samples-tests" # @param {type:"string"} ###Output _____no_output_____ ###Markdown Authenticate your Google Cloud account**If you are using AI Platform Notebooks**, your environment is alreadyauthenticated. Skip this step. **If you are using Colab**, run the cell below and follow the instructionswhen prompted to authenticate your account via oAuth.**Otherwise**, follow these steps:1. In the Cloud Console, go to the [**Create service account key** page](https://console.cloud.google.com/apis/credentials/serviceaccountkey).2. Click **Create service account**.3. In the **Service account name** field, enter a name, and click **Create**.4. In the **Grant this service account access to project** section, click the **Role** drop-down list. Type "AI Platform"into the filter box, and select **AI Platform Administrator**. Type "Storage Object Admin" into the filter box, and select **Storage Object Admin**.5. Click *Create*. A JSON file that contains your key downloads to yourlocal environment.6. Enter the path to your service account key as the`GOOGLE_APPLICATION_CREDENTIALS` variable in the cell below and run the cell. ###Code import os import sys # If you are running this notebook in Colab, run this cell and follow the # instructions to authenticate your GCP account. This provides access to your # Cloud Storage bucket and lets you submit training jobs and prediction # requests. # If on AI Platform, then don't execute this code if not os.path.exists("/opt/deeplearning/metadata/env_version"): if "google.colab" in sys.modules: from google.colab import auth as google_auth google_auth.authenticate_user() # If you are running this notebook locally, replace the string below with the # path to your service account key and run this cell to authenticate your GCP # account. elif not os.getenv("IS_TESTING"): %env GOOGLE_APPLICATION_CREDENTIALS '' ###Output _____no_output_____ ###Markdown Prepare for output Step 1. Create dataset for outputYou need a BigQuery dataset to host the output data in `us-central1`. Input the name of the dataset you want to created and specify the name of the table you want to store the output later. These will be used later in the notebook.**Make sure that the table name does NOT already exist**. ###Code from datetime import datetime from google.cloud import bigquery # Output dataset DESTINATION_DATA_SET = "movie_predictions" # @param {type:"string"} TIMESTAMP = datetime.now().strftime("%Y%m%d%H%M%S") DESTINATION_DATA_SET = "{prefix}_{timestamp}".format( prefix=DESTINATION_DATA_SET, timestamp=TIMESTAMP ) # Output table. Make sure that the table does NOT already exist; the BatchReadFeatureValues API cannot overwrite an existing table DESTINATION_TABLE_NAME = "training_data" # @param {type:"string"} DESTINATION_PATTERN = "bq://{project}.{dataset}.{table}" DESTINATION_TABLE_URI = DESTINATION_PATTERN.format( project=PROJECT_ID, dataset=DESTINATION_DATA_SET, table=DESTINATION_TABLE_NAME ) # Create dataset REGION = "us-central1" # @param {type:"string"} client = bigquery.Client() dataset_id = "{}.{}".format(client.project, DESTINATION_DATA_SET) dataset = bigquery.Dataset(dataset_id) dataset.location = REGION dataset = client.create_dataset(dataset, timeout=30) print("Created dataset {}.{}".format(client.project, dataset.dataset_id)) ###Output _____no_output_____ ###Markdown Import libraries and define constants ###Code # Other than project ID and featurestore ID and endpoints needs to be set API_ENDPOINT = "us-central1-aiplatform.googleapis.com" # @param {type:"string"} INPUT_CSV_FILE = "gs://cloud-samples-data-us-central1/ai-platform-unified/datasets/featurestore/movie_prediction.csv" from google.cloud.aiplatform_v1beta1 import ( FeaturestoreOnlineServingServiceClient, FeaturestoreServiceClient) from google.cloud.aiplatform_v1beta1.types import FeatureSelector, IdMatcher from google.cloud.aiplatform_v1beta1.types import \ entity_type as entity_type_pb2 from google.cloud.aiplatform_v1beta1.types import feature as feature_pb2 from google.cloud.aiplatform_v1beta1.types import \ featurestore as featurestore_pb2 from google.cloud.aiplatform_v1beta1.types import \ featurestore_monitoring as featurestore_monitoring_pb2 from google.cloud.aiplatform_v1beta1.types import \ featurestore_online_service as featurestore_online_service_pb2 from google.cloud.aiplatform_v1beta1.types import \ featurestore_service as featurestore_service_pb2 from google.cloud.aiplatform_v1beta1.types import io as io_pb2 from google.protobuf.duration_pb2 import Duration # Create admin_client for CRUD and data_client for reading feature values. admin_client = FeaturestoreServiceClient(client_options={"api_endpoint": API_ENDPOINT}) data_client = FeaturestoreOnlineServingServiceClient( client_options={"api_endpoint": API_ENDPOINT} ) # Represents featurestore resource path. BASE_RESOURCE_PATH = admin_client.common_location_path(PROJECT_ID, REGION) ###Output _____no_output_____ ###Markdown Terminology and Concept Featurestore Data modelFeature Store organizes data with the following 3 important hierarchical concepts:```Featurestore -> EntityType -> Feature```* **Featurestore**: the place to store your features* **EntityType**: under a Featurestore, an *EntityType* describes an object to be modeled, real one or virtual one.* **Feature**: under an EntityType, a *feature* describes an attribute of the EntityTypeIn the movie prediction example, you will create a featurestore called *movie_prediction*. This store has 2 entity types: *Users* and *Movies*. The Users entity type has the age, gender, and like genres features. The Movies entity type has the genres and average rating features. Create Featurestore and Define Schemas Create FeaturestoreThe method to create a featurestore returns a[long-running operation](https://google.aip.dev/151) (LRO). An LRO starts an asynchronous job. LROs are returned for other APImethods too, such as updating or deleting a featurestore. Calling`create_fs_lro.result()` waits for the LRO to complete. ###Code FEATURESTORE_ID = "movie_prediction_{timestamp}".format(timestamp=TIMESTAMP) create_lro = admin_client.create_featurestore( featurestore_service_pb2.CreateFeaturestoreRequest( parent=BASE_RESOURCE_PATH, featurestore_id=FEATURESTORE_ID, featurestore=featurestore_pb2.Featurestore( display_name="Featurestore for movie prediction", online_serving_config=featurestore_pb2.Featurestore.OnlineServingConfig( fixed_node_count=3 ), ), ) ) # Wait for LRO to finish and get the LRO result. print(create_lro.result()) ###Output _____no_output_____ ###Markdown You can use [GetFeaturestore](https://cloud.google.com/ai-platform-unified/featurestore/docs/reference/rpc/google.cloud.aiplatform.v1beta1google.cloud.aiplatform.v1beta1.FeaturestoreService.GetFeaturestore) or [ListFeaturestores](https://cloud.google.com/ai-platform-unified/featurestore/docs/reference/rpc/google.cloud.aiplatform.v1beta1google.cloud.aiplatform.v1beta1.FeaturestoreService.ListFeaturestores) to check if the Featurestore was successfully created. The following example gets the details of the Featurestore. ###Code admin_client.get_featurestore( name=admin_client.featurestore_path(PROJECT_ID, REGION, FEATURESTORE_ID) ) ###Output _____no_output_____ ###Markdown Create Entity TypeYou can specify a monitoring config which will by default be inherited by all Features under this EntityType. ###Code # Create users entity type with monitoring enabled. # All Features belonging to this EntityType will by default inherit the monitoring config. users_entity_type_lro = admin_client.create_entity_type( featurestore_service_pb2.CreateEntityTypeRequest( parent=admin_client.featurestore_path(PROJECT_ID, REGION, FEATURESTORE_ID), entity_type_id="users", entity_type=entity_type_pb2.EntityType( description="Users entity", monitoring_config=featurestore_monitoring_pb2.FeaturestoreMonitoringConfig( snapshot_analysis=featurestore_monitoring_pb2.FeaturestoreMonitoringConfig.SnapshotAnalysis( monitoring_interval=Duration(seconds=86400), # 1 day ), ), ), ) ) # Similarly, wait for EntityType creation operation. print(users_entity_type_lro.result()) # Create movies entity type without a monitoring configuration. movies_entity_type_lro = admin_client.create_entity_type( featurestore_service_pb2.CreateEntityTypeRequest( parent=admin_client.featurestore_path(PROJECT_ID, REGION, FEATURESTORE_ID), entity_type_id="movies", entity_type=entity_type_pb2.EntityType(description="Movies entity"), ) ) # Similarly, wait for EntityType creation operation. print(movies_entity_type_lro.result()) ###Output _____no_output_____ ###Markdown Create FeatureYou can also set a custom monitoring configuration at the Feature level, and view the properties and metrics in the console: sample [properties](https://storage.googleapis.com/cloud-samples-data/ai-platform-unified/datasets/featurestore/Feature%20Properties.png), sample [metrics](https://storage.googleapis.com/cloud-samples-data/ai-platform-unified/datasets/featurestore/Feature%20Snapshot%20Distribution.png). ###Code # Create features for the 'users' entity. # 'age' Feature leaves the monitoring config unset, which means it'll inherit the config from EntityType. # 'gender' Feature explicitly disables monitoring. # 'liked_genres' Feature is a STRING_ARRAY type, so it is automatically excluded from monitoring. # For Features with monitoring enabled, distribution statistics are updated periodically in the console. admin_client.batch_create_features( parent=admin_client.entity_type_path(PROJECT_ID, REGION, FEATURESTORE_ID, "users"), requests=[ featurestore_service_pb2.CreateFeatureRequest( feature=feature_pb2.Feature( value_type=feature_pb2.Feature.ValueType.INT64, description="User age", ), feature_id="age", ), featurestore_service_pb2.CreateFeatureRequest( feature=feature_pb2.Feature( value_type=feature_pb2.Feature.ValueType.STRING, description="User gender", monitoring_config=featurestore_monitoring_pb2.FeaturestoreMonitoringConfig( snapshot_analysis=featurestore_monitoring_pb2.FeaturestoreMonitoringConfig.SnapshotAnalysis( disabled=True, ), ), ), feature_id="gender", ), featurestore_service_pb2.CreateFeatureRequest( feature=feature_pb2.Feature( value_type=feature_pb2.Feature.ValueType.STRING_ARRAY, description="An array of genres that this user liked", ), feature_id="liked_genres", ), ], ).result() # Create features for movies type. # 'title' Feature enables monitoring. admin_client.batch_create_features( parent=admin_client.entity_type_path(PROJECT_ID, REGION, FEATURESTORE_ID, "movies"), requests=[ featurestore_service_pb2.CreateFeatureRequest( feature=feature_pb2.Feature( value_type=feature_pb2.Feature.ValueType.STRING, description="The title of the movie", monitoring_config=featurestore_monitoring_pb2.FeaturestoreMonitoringConfig( snapshot_analysis=featurestore_monitoring_pb2.FeaturestoreMonitoringConfig.SnapshotAnalysis( monitoring_interval=Duration(seconds=172800), # 2 days ), ), ), feature_id="title", ), featurestore_service_pb2.CreateFeatureRequest( feature=feature_pb2.Feature( value_type=feature_pb2.Feature.ValueType.STRING, description="The genres of the movie", ), feature_id="genres", ), featurestore_service_pb2.CreateFeatureRequest( feature=feature_pb2.Feature( value_type=feature_pb2.Feature.ValueType.DOUBLE, description="The average rating for the movie, range is [1.0-5.0]", ), feature_id="average_rating", ), ], ).result() ###Output _____no_output_____ ###Markdown Search created featuresWhile the [ListFeatures](https://cloud.google.com/ai-platform-unified/featurestore/docs/reference/rpc/google.cloud.aiplatform.v1beta1google.cloud.aiplatform.v1beta1.FeaturestoreService.ListFeatures) method allows you to easily view all features of a singleentity type, the [SearchFeatures](https://cloud.google.com/ai-platform-unified/featurestore/docs/reference/rpc/google.cloud.aiplatform.v1beta1google.cloud.aiplatform.v1beta1.FeaturestoreService.SearchFeatures) method searches across all featurestoresand entity types in a given location (such as `us-central1`). This can help you discover features that were created by someone else.You can query based on feature properties including feature ID, entity type ID,and feature description. You can also limit results by filtering on a specificfeaturestore, feature value type, and/or labels. ###Code # Search for all features across all featurestores. list(admin_client.search_features(location=BASE_RESOURCE_PATH)) ###Output _____no_output_____ ###Markdown Now, narrow down the search to features that are of type `DOUBLE` ###Code # Search for all features with value type `DOUBLE` list( admin_client.search_features( featurestore_service_pb2.SearchFeaturesRequest( location=BASE_RESOURCE_PATH, query="value_type=DOUBLE" ) ) ) ###Output _____no_output_____ ###Markdown Or, limit the search results to features with specific keywords in their ID and type. ###Code # Filter on feature value type and keywords. list( admin_client.search_features( featurestore_service_pb2.SearchFeaturesRequest( location=BASE_RESOURCE_PATH, query="feature_id:title AND value_type=STRING" ) ) ) ###Output _____no_output_____ ###Markdown Import Feature ValuesYou need to import feature values before you can use them for online/offline serving. In this step, you will learn how to import feature values by calling the ImportFeatureValues API using the Python SDK. Source Data Format and LayoutAs mentioned above, BigQuery table/Avro/CSV are supported. No matter what format you are using, each imported entity *must* have an ID; also, each entity can *optionally* have a timestamp, sepecifying when the feature values are generated. This Colab uses Avro as an input, located at this public [bucket](https://pantheon.corp.google.com/storage/browser/cloud-samples-data/ai-platform-unified/datasets/featurestore;tab=objects?project=storage-samples&prefix=&forceOnObjectsSortingFiltering=false). The Avro schemas are as follows:**For the Users entity**:```schema = { "type": "record", "name": "User", "fields": [ { "name":"user_id", "type":["null","string"] }, { "name":"age", "type":["null","long"] }, { "name":"gender", "type":["null","string"] }, { "name":"liked_genres", "type":{"type":"array","items":"string"} }, { "name":"update_time", "type":["null",{"type":"long","logicalType":"timestamp-micros"}] }, ] }```**For the Movies entity**```schema = { "type": "record", "name": "Movie", "fields": [ { "name":"movie_id", "type":["null","string"] }, { "name":"average_rating", "type":["null","double"] }, { "name":"title", "type":["null","string"] }, { "name":"genres", "type":["null","string"] }, { "name":"update_time", "type":["null",{"type":"long","logicalType":"timestamp-micros"}] }, ]}``` Import feature values for UsersWhen importing, specify the following in your request:* Data source format: BigQuery Table/Avro/CSV* Data source URL* Destination: featurestore/entity types/features to be imported ###Code import_users_request = featurestore_service_pb2.ImportFeatureValuesRequest( entity_type=admin_client.entity_type_path( PROJECT_ID, REGION, FEATURESTORE_ID, "users" ), avro_source=io_pb2.AvroSource( # Source gcs_source=io_pb2.GcsSource( uris=[ "gs://cloud-samples-data-us-central1/ai-platform-unified/datasets/featurestore/users.avro" ] ) ), entity_id_field="user_id", feature_specs=[ # Features featurestore_service_pb2.ImportFeatureValuesRequest.FeatureSpec(id="age"), featurestore_service_pb2.ImportFeatureValuesRequest.FeatureSpec(id="gender"), featurestore_service_pb2.ImportFeatureValuesRequest.FeatureSpec( id="liked_genres" ), ], feature_time_field="update_time", worker_count=10, ) # Start to import, will take a couple of minutes ingestion_lro = admin_client.import_feature_values(import_users_request) # Polls for the LRO status and prints when the LRO has completed ingestion_lro.result() ###Output _____no_output_____ ###Markdown Import feature values for MoviesSimilarly, import feature values for 'movies' into the featurestore. ###Code import_movie_request = featurestore_service_pb2.ImportFeatureValuesRequest( entity_type=admin_client.entity_type_path( PROJECT_ID, REGION, FEATURESTORE_ID, "movies" ), avro_source=io_pb2.AvroSource( gcs_source=io_pb2.GcsSource( uris=[ "gs://cloud-samples-data-us-central1/ai-platform-unified/datasets/featurestore/movies.avro" ] ) ), entity_id_field="movie_id", feature_specs=[ featurestore_service_pb2.ImportFeatureValuesRequest.FeatureSpec(id="title"), featurestore_service_pb2.ImportFeatureValuesRequest.FeatureSpec(id="genres"), featurestore_service_pb2.ImportFeatureValuesRequest.FeatureSpec( id="average_rating" ), ], feature_time_field="update_time", worker_count=10, ) # Start to import, will take a couple of minutes ingestion_lro = admin_client.import_feature_values(import_movie_request) # Polls for the LRO status and prints when the LRO has completed ingestion_lro.result() ###Output _____no_output_____ ###Markdown Online serving The[Online Serving APIs](https://cloud.google.com/ai-platform-unified/featurestore/docs/reference/rpc/google.cloud.aiplatform.v1beta1featurestoreonlineservingservice)lets you serve feature values for small batches of entities. It's designed for latency-sensitive service, such as online model prediction. For example, for a movie service, you might want to quickly shows movies that the current user would most likely watch by using online predictions. Read one entity per requestThe ReadFeatureValues API is used to read feature values of one entity; henceits custom HTTP verb is `readFeatureValues`. By default, the API will return the latest value of each feature, meaning the feature values with the most recent timestamp.To read feature values, specify the entity ID and features to read. The responsecontains a `header` and an `entity_view`. Each row of data in the `entity_view`contains one feature value, in the same order of features as listed in the response header. ###Code # Fetch the following 3 features. feature_selector = FeatureSelector( id_matcher=IdMatcher(ids=["age", "gender", "liked_genres"]) ) data_client.read_feature_values( featurestore_online_service_pb2.ReadFeatureValuesRequest( # Fetch from the following feature store/entity type entity_type=admin_client.entity_type_path( PROJECT_ID, REGION, FEATURESTORE_ID, "users" ), # Fetch the user features whose ID is "alice" entity_id="alice", feature_selector=feature_selector, ) ) ###Output _____no_output_____ ###Markdown Read multiple entities per requestTo read feature values from multiple entities, use theStreamingReadFeatureValues API, which is almost identical to the previousReadFeatureValues API. Note that fetching only a small number of entities is recomended when using this API due to its latency-sensitive nature. ###Code # Read the same set of features as above, but for multiple entities. response_stream = data_client.streaming_read_feature_values( featurestore_online_service_pb2.StreamingReadFeatureValuesRequest( entity_type=admin_client.entity_type_path( PROJECT_ID, REGION, FEATURESTORE_ID, "users" ), entity_ids=["alice", "bob"], feature_selector=feature_selector, ) ) # Iterate and process response. Note the first one is always the header only. for response in response_stream: print(response) ###Output _____no_output_____ ###Markdown Now that you have learned how to featch imported feature values for online serving, the next step is learning how to use imported feature values for offline use cases. Batch ServingBatch Serving is used to fetch a large batch of feature values for high-throughput, typically for training a model or batch prediction. In this section, you will learn how to prepare for training examples by calling the BatchReadFeatureValues API. Use case**The task** is to prepare a training dataset to train a model, which predicts if a given user will watch a given movie. To achieve this, you need 2 sets of input:* Features: you already imported into the featurestore.* Labels: the groud-truth data recorded that user X has watched movie Y.To be more specific, the ground-truth observation is described in Table 1 and the desired training dataset is described in Table 2. Each row in Table 2 is a result of joining the imported feature values from Feature Store according to the entity IDs and timestamps in Table 1. In this example, the `age`, `gender` and `liked_genres` features from `users` andthe `genres` and `average_rating` features from `movies` are chosen to train the model. Note that only positive examples are shown in these 2 tables, i.e., you can imagine there is a label column whose values are all `True`.BatchReadFeatureValues API takes Table 1 asinput, joins all required feature values from the featurestore, and returns Table 2 for training.Table 1. Ground-truth Datausers | movies | timestamp ----- | -------- | -------------------- alice | Cinema Paradiso | 2019-11-01T00:00:00Z bob | The Shining | 2019-11-15T18:09:43Z ... | ... | ... Table 2. Expected Training Data Generated by Batch Read API (Positive Samples)timestamp | entity_type_users | age | gender | liked_genres | entity_type_movies | genres | average_rating -------------------- | ----------------- | --------------- | ---------------- | -------------------- | -------- | --------- | ----- 2019-11-01T00:00:00Z | bob | 35 | M | [Action, Crime] | The Shining | Horror | 4.8 2019-11-01T00:00:00Z | alice | 55 | F | [Drama, Comedy] | Cinema Paradiso | Romance | 4.5 ... | ... | ... | ... | ... | ... | ... | ... Why timestamp?Note that there is a `timestamp` column in Table 2. This indicates the time when the ground-truth was observed. This is to avoid data inconsistency.For example, the 1st row of Table 2 indicates that user `alice` watched movie `Cinema Paradiso` on `2019-11-01T00:00:00Z`. The featurestore keeps feature values for all timestamps but fetches feature values *only* at the given timestamp during batch serving. On 2019-11-01 alice might be 54 years old, but now alice might be 56; featurestore returns `age=54` as alice's age, instead of `age=56`, because that is the value of the feature at the observation time. Similarly, other features might be time-variant as well, such as liked_genres. Batch Read Feature ValuesAssemble the request which specify the following info:* Where is the label data, i.e., Table 1.* Which features are read, i.e., the column names in Table 2.The output is stored in a BigQuery table. ###Code batch_serving_request = featurestore_service_pb2.BatchReadFeatureValuesRequest( # featurestore info featurestore=admin_client.featurestore_path(PROJECT_ID, REGION, FEATURESTORE_ID), # URL for the label data, i.e., Table 1. csv_read_instances=io_pb2.CsvSource( gcs_source=io_pb2.GcsSource(uris=[INPUT_CSV_FILE]) ), destination=featurestore_service_pb2.FeatureValueDestination( bigquery_destination=io_pb2.BigQueryDestination( # Output to BigQuery table created earlier output_uri=DESTINATION_TABLE_URI ) ), entity_type_specs=[ featurestore_service_pb2.BatchReadFeatureValuesRequest.EntityTypeSpec( # Read the 'age', 'gender' and 'liked_genres' features from the 'users' entity entity_type_id="users", feature_selector=FeatureSelector( id_matcher=IdMatcher( ids=[ # features, use "*" if you want to select all features within this entity type "age", "gender", "liked_genres", ] ) ), ), featurestore_service_pb2.BatchReadFeatureValuesRequest.EntityTypeSpec( # Read the 'average_rating' and 'genres' feature values of the 'movies' entity entity_type_id="movies", feature_selector=FeatureSelector( id_matcher=IdMatcher(ids=["average_rating", "genres"]) ), ), ], ) # Execute the batch read batch_serving_lro = admin_client.batch_read_feature_values(batch_serving_request) # This long runing operation will poll until the batch read finishes. batch_serving_lro.result() ###Output _____no_output_____ ###Markdown After the LRO finishes, you should be able to see the result from the [BigQuery console](https://console.cloud.google.com/bigquery), in the dataset created earlier. Cleaning upTo clean up all Google Cloud resources used in this project, you can [delete the Google Cloudproject](https://cloud.google.com/resource-manager/docs/creating-managing-projectsshutting_down_projects) you used for the tutorial.You can also keep the project but delete the featurestore: ###Code admin_client.delete_featurestore( request=featurestore_service_pb2.DeleteFeaturestoreRequest( name=admin_client.featurestore_path(PROJECT_ID, REGION, FEATURESTORE_ID), force=True, ) ).result() client.delete_dataset( DESTINATION_DATA_SET, delete_contents=True, not_found_ok=True ) # Make an API request. print("Deleted dataset '{}'.".format(DESTINATION_DATA_SET)) ###Output _____no_output_____ ###Markdown Run in Colab View on GitHub OverviewThis Colab introduces Feature Store, a managed cloud service for machine learning engineers and data scientists to store, serve, manage and share machine learning features at a large scale.This Colab assumes that you understand basic Google Cloud concepts such as [Project](https://cloud.google.com/storage/docs/projects), [Storage](https://cloud.google.com/storage) and [Vertex AI](https://cloud.google.com/vertex-ai/docs). Some machine learning knowledge is also helpful but not required. DatasetThis Colab uses a movie recommendation dataset as an example throughout all the sessions. The task is to train a model to predict if a user is going to watch a movie and serve this model online. ObjectiveIn this notebook, you will learn how to: * How to import your features into Feature Store. * How to serve online prediction requests using the imported features. * How to access imported features in offline jobs, such as training jobs. Costs This tutorial uses billable components of Google Cloud:* Vertex AI* Cloud Storage* Cloud BigtableLearn about [Vertex AIpricing](https://cloud.google.com/vertex-ai/pricing) and [Cloud Storagepricing](https://cloud.google.com/storage/pricing), and use the [PricingCalculator](https://cloud.google.com/products/calculator/)to generate a cost estimate based on your projected usage. Set up your local development environment**If you are using Colab or Google Cloud Notebooks**, your environment already meetsall the requirements to run this notebook. You can skip this step. **Otherwise**, make sure your environment meets this notebook's requirements.You need the following:* The Google Cloud SDK* Git* Python 3* virtualenv* Jupyter notebook running in a virtual environment with Python 3The Google Cloud guide to [Setting up a Python developmentenvironment](https://cloud.google.com/python/setup) and the [Jupyterinstallation guide](https://jupyter.org/install) provide detailed instructionsfor meeting these requirements. The following steps provide a condensed set ofinstructions:1. [Install and initialize the Cloud SDK.](https://cloud.google.com/sdk/docs/)1. [Install Python 3.](https://cloud.google.com/python/setupinstalling_python)1. [Install virtualenv](https://cloud.google.com/python/setupinstalling_and_using_virtualenv) and create a virtual environment that uses Python 3. Activate the virtual environment.1. To install Jupyter, run `pip3 install jupyter` on thecommand-line in a terminal shell.1. To launch Jupyter, run `jupyter notebook` on the command-line in a terminal shell.1. Open this notebook in the Jupyter Notebook Dashboard. Install additional packagesFor this Colab, you need the Vertex SDK for Python. ###Code import os # The Google Cloud Notebook product has specific requirements IS_GOOGLE_CLOUD_NOTEBOOK = os.path.exists("/opt/deeplearning/metadata/env_version") # Google Cloud Notebook requires dependencies to be installed with '--user' USER_FLAG = "" if IS_GOOGLE_CLOUD_NOTEBOOK: USER_FLAG = "--user" ! pip3 install {USER_FLAG} --upgrade git+https://github.com/googleapis/[email protected] ###Output _____no_output_____ ###Markdown Restart the kernelAfter you install the SDK, you need to restart the notebook kernel so it can find the packages. You can restart kernel from *Kernel -> Restart Kernel*, or running the following: ###Code # Automatically restart kernel after installs import os if not os.getenv("IS_TESTING"): # Automatically restart kernel after installs import IPython app = IPython.Application.instance() app.kernel.do_shutdown(True) ###Output _____no_output_____ ###Markdown Before you begin Select a GPU runtime**Make sure you're running this notebook in a GPU runtime if you have that option. In Colab, select "Runtime --> Change runtime type > GPU"** Set up your Google Cloud project**The following steps are required, regardless of your notebook environment.**1. [Select or create a Google Cloud project](https://console.cloud.google.com/cloud-resource-manager). When you first create an account, you get a $300 free credit towards your compute/storage costs.1. [Make sure that billing is enabled for your project](https://cloud.google.com/billing/docs/how-to/modify-project).1. [Enable the Vertex AI API and Compute Engine API](https://console.cloud.google.com/flows/enableapi?apiid=aiplatform.googleapis.com,compute_component).1. If you are running this notebook locally, you will need to install the [Cloud SDK](https://cloud.google.com/sdk).1. Enter your project ID in the cell below. Then run the cell to make sure theCloud SDK uses the right project for all the commands in this notebook.**Note**: Jupyter runs lines prefixed with `!` as shell commands, and it interpolates Python variables prefixed with `$` into these commands. Set your project ID**If you don't know your project ID**, you may be able to get your project ID using `gcloud`. ###Code import os PROJECT_ID = "" # Get your Google Cloud project ID from gcloud if not os.getenv("IS_TESTING"): shell_output=!gcloud config list --format 'value(core.project)' 2>/dev/null PROJECT_ID = shell_output[0] print("Project ID: ", PROJECT_ID) ###Output _____no_output_____ ###Markdown Otherwise, set your project ID here. ###Code if PROJECT_ID == "" or PROJECT_ID is None: PROJECT_ID = "python-docs-samples-tests" # @param {type:"string"} ###Output _____no_output_____ ###Markdown Authenticate your Google Cloud account**If you are using Google Cloud Notebooks**, your environment is alreadyauthenticated. Skip this step. **If you are using Colab**, run the cell below and follow the instructionswhen prompted to authenticate your account via oAuth.**Otherwise**, follow these steps:1. In the Cloud Console, go to the [**Create service account key** page](https://console.cloud.google.com/apis/credentials/serviceaccountkey).2. Click **Create service account**.3. In the **Service account name** field, enter a name, and click **Create**.4. In the **Grant this service account access to project** section, click the **Role** drop-down list. Type "Vertex AI"into the filter box, and select **Vertex AI Administrator**. Type "Storage Object Admin" into the filter box, and select **Storage Object Admin**.5. Click *Create*. A JSON file that contains your key downloads to yourlocal environment.6. Enter the path to your service account key as the`GOOGLE_APPLICATION_CREDENTIALS` variable in the cell below and run the cell. ###Code import os import sys # If you are running this notebook in Colab, run this cell and follow the # instructions to authenticate your GCP account. This provides access to your # Cloud Storage bucket and lets you submit training jobs and prediction # requests. # The Google Cloud Notebook product has specific requirements IS_GOOGLE_CLOUD_NOTEBOOK = os.path.exists("/opt/deeplearning/metadata/env_version") # If on Google Cloud Notebooks, then don't execute this code if not IS_GOOGLE_CLOUD_NOTEBOOK: if "google.colab" in sys.modules: from google.colab import auth as google_auth google_auth.authenticate_user() # If you are running this notebook locally, replace the string below with the # path to your service account key and run this cell to authenticate your GCP # account. elif not os.getenv("IS_TESTING"): %env GOOGLE_APPLICATION_CREDENTIALS '' ###Output _____no_output_____ ###Markdown Prepare for output Step 1. Create dataset for outputYou need a BigQuery dataset to host the output data in `us-central1`. Input the name of the dataset you want to created and specify the name of the table you want to store the output later. These will be used later in the notebook.**Make sure that the table name does NOT already exist**. ###Code from datetime import datetime from google.cloud import bigquery # Output dataset DESTINATION_DATA_SET = "movie_predictions" # @param {type:"string"} TIMESTAMP = datetime.now().strftime("%Y%m%d%H%M%S") DESTINATION_DATA_SET = "{prefix}_{timestamp}".format( prefix=DESTINATION_DATA_SET, timestamp=TIMESTAMP ) # Output table. Make sure that the table does NOT already exist; the BatchReadFeatureValues API cannot overwrite an existing table DESTINATION_TABLE_NAME = "training_data" # @param {type:"string"} DESTINATION_PATTERN = "bq://{project}.{dataset}.{table}" DESTINATION_TABLE_URI = DESTINATION_PATTERN.format( project=PROJECT_ID, dataset=DESTINATION_DATA_SET, table=DESTINATION_TABLE_NAME ) # Create dataset REGION = "us-central1" # @param {type:"string"} client = bigquery.Client() dataset_id = "{}.{}".format(client.project, DESTINATION_DATA_SET) dataset = bigquery.Dataset(dataset_id) dataset.location = REGION dataset = client.create_dataset(dataset, timeout=30) print("Created dataset {}.{}".format(client.project, dataset.dataset_id)) ###Output _____no_output_____ ###Markdown Import libraries and define constants ###Code # Other than project ID and featurestore ID and endpoints needs to be set API_ENDPOINT = "us-central1-aiplatform.googleapis.com" # @param {type:"string"} INPUT_CSV_FILE = "gs://cloud-samples-data-us-central1/ai-platform-unified/datasets/featurestore/movie_prediction.csv" from google.cloud.aiplatform_v1beta1 import ( FeaturestoreOnlineServingServiceClient, FeaturestoreServiceClient) from google.cloud.aiplatform_v1beta1.types import FeatureSelector, IdMatcher from google.cloud.aiplatform_v1beta1.types import \ entity_type as entity_type_pb2 from google.cloud.aiplatform_v1beta1.types import feature as feature_pb2 from google.cloud.aiplatform_v1beta1.types import \ featurestore as featurestore_pb2 from google.cloud.aiplatform_v1beta1.types import \ featurestore_monitoring as featurestore_monitoring_pb2 from google.cloud.aiplatform_v1beta1.types import \ featurestore_online_service as featurestore_online_service_pb2 from google.cloud.aiplatform_v1beta1.types import \ featurestore_service as featurestore_service_pb2 from google.cloud.aiplatform_v1beta1.types import io as io_pb2 from google.protobuf.duration_pb2 import Duration # Create admin_client for CRUD and data_client for reading feature values. admin_client = FeaturestoreServiceClient(client_options={"api_endpoint": API_ENDPOINT}) data_client = FeaturestoreOnlineServingServiceClient( client_options={"api_endpoint": API_ENDPOINT} ) # Represents featurestore resource path. BASE_RESOURCE_PATH = admin_client.common_location_path(PROJECT_ID, REGION) ###Output _____no_output_____ ###Markdown Terminology and Concept Featurestore Data modelFeature Store organizes data with the following 3 important hierarchical concepts:```Featurestore -> EntityType -> Feature```* **Featurestore**: the place to store your features* **EntityType**: under a Featurestore, an *EntityType* describes an object to be modeled, real one or virtual one.* **Feature**: under an EntityType, a *feature* describes an attribute of the EntityTypeIn the movie prediction example, you will create a featurestore called *movie_prediction*. This store has 2 entity types: *Users* and *Movies*. The Users entity type has the age, gender, and like genres features. The Movies entity type has the genres and average rating features. Create Featurestore and Define Schemas Create FeaturestoreThe method to create a featurestore returns a[long-running operation](https://google.aip.dev/151) (LRO). An LRO starts an asynchronous job. LROs are returned for other APImethods too, such as updating or deleting a featurestore. Calling`create_fs_lro.result()` waits for the LRO to complete. ###Code FEATURESTORE_ID = "movie_prediction_{timestamp}".format(timestamp=TIMESTAMP) create_lro = admin_client.create_featurestore( featurestore_service_pb2.CreateFeaturestoreRequest( parent=BASE_RESOURCE_PATH, featurestore_id=FEATURESTORE_ID, featurestore=featurestore_pb2.Featurestore( display_name="Featurestore for movie prediction", online_serving_config=featurestore_pb2.Featurestore.OnlineServingConfig( fixed_node_count=3 ), ), ) ) # Wait for LRO to finish and get the LRO result. print(create_lro.result()) ###Output _____no_output_____ ###Markdown You can use [GetFeaturestore](https://cloud.google.com/vertex-ai/featurestore/docs/reference/rpc/google.cloud.aiplatform.v1beta1google.cloud.aiplatform.v1beta1.FeaturestoreService.GetFeaturestore) or [ListFeaturestores](https://cloud.google.com/vertex-ai/featurestore/docs/reference/rpc/google.cloud.aiplatform.v1beta1google.cloud.aiplatform.v1beta1.FeaturestoreService.ListFeaturestores) to check if the Featurestore was successfully created. The following example gets the details of the Featurestore. ###Code admin_client.get_featurestore( name=admin_client.featurestore_path(PROJECT_ID, REGION, FEATURESTORE_ID) ) ###Output _____no_output_____ ###Markdown Create Entity TypeYou can specify a monitoring config which will by default be inherited by all Features under this EntityType. ###Code # Create users entity type with monitoring enabled. # All Features belonging to this EntityType will by default inherit the monitoring config. users_entity_type_lro = admin_client.create_entity_type( featurestore_service_pb2.CreateEntityTypeRequest( parent=admin_client.featurestore_path(PROJECT_ID, REGION, FEATURESTORE_ID), entity_type_id="users", entity_type=entity_type_pb2.EntityType( description="Users entity", monitoring_config=featurestore_monitoring_pb2.FeaturestoreMonitoringConfig( snapshot_analysis=featurestore_monitoring_pb2.FeaturestoreMonitoringConfig.SnapshotAnalysis( monitoring_interval=Duration(seconds=86400), # 1 day ), ), ), ) ) # Similarly, wait for EntityType creation operation. print(users_entity_type_lro.result()) # Create movies entity type without a monitoring configuration. movies_entity_type_lro = admin_client.create_entity_type( featurestore_service_pb2.CreateEntityTypeRequest( parent=admin_client.featurestore_path(PROJECT_ID, REGION, FEATURESTORE_ID), entity_type_id="movies", entity_type=entity_type_pb2.EntityType(description="Movies entity"), ) ) # Similarly, wait for EntityType creation operation. print(movies_entity_type_lro.result()) ###Output _____no_output_____ ###Markdown Create FeatureYou can also set a custom monitoring configuration at the Feature level, and view the properties and metrics in the console: sample [properties](https://storage.googleapis.com/cloud-samples-data/ai-platform-unified/datasets/featurestore/Feature%20Properties.png), sample [metrics](https://storage.googleapis.com/cloud-samples-data/ai-platform-unified/datasets/featurestore/Feature%20Snapshot%20Distribution.png). ###Code # Create features for the 'users' entity. # 'age' Feature leaves the monitoring config unset, which means it'll inherit the config from EntityType. # 'gender' Feature explicitly disables monitoring. # 'liked_genres' Feature is a STRING_ARRAY type, so it is automatically excluded from monitoring. # For Features with monitoring enabled, distribution statistics are updated periodically in the console. admin_client.batch_create_features( parent=admin_client.entity_type_path(PROJECT_ID, REGION, FEATURESTORE_ID, "users"), requests=[ featurestore_service_pb2.CreateFeatureRequest( feature=feature_pb2.Feature( value_type=feature_pb2.Feature.ValueType.INT64, description="User age", ), feature_id="age", ), featurestore_service_pb2.CreateFeatureRequest( feature=feature_pb2.Feature( value_type=feature_pb2.Feature.ValueType.STRING, description="User gender", monitoring_config=featurestore_monitoring_pb2.FeaturestoreMonitoringConfig( snapshot_analysis=featurestore_monitoring_pb2.FeaturestoreMonitoringConfig.SnapshotAnalysis( disabled=True, ), ), ), feature_id="gender", ), featurestore_service_pb2.CreateFeatureRequest( feature=feature_pb2.Feature( value_type=feature_pb2.Feature.ValueType.STRING_ARRAY, description="An array of genres that this user liked", ), feature_id="liked_genres", ), ], ).result() # Create features for movies type. # 'title' Feature enables monitoring. admin_client.batch_create_features( parent=admin_client.entity_type_path(PROJECT_ID, REGION, FEATURESTORE_ID, "movies"), requests=[ featurestore_service_pb2.CreateFeatureRequest( feature=feature_pb2.Feature( value_type=feature_pb2.Feature.ValueType.STRING, description="The title of the movie", monitoring_config=featurestore_monitoring_pb2.FeaturestoreMonitoringConfig( snapshot_analysis=featurestore_monitoring_pb2.FeaturestoreMonitoringConfig.SnapshotAnalysis( monitoring_interval=Duration(seconds=172800), # 2 days ), ), ), feature_id="title", ), featurestore_service_pb2.CreateFeatureRequest( feature=feature_pb2.Feature( value_type=feature_pb2.Feature.ValueType.STRING, description="The genres of the movie", ), feature_id="genres", ), featurestore_service_pb2.CreateFeatureRequest( feature=feature_pb2.Feature( value_type=feature_pb2.Feature.ValueType.DOUBLE, description="The average rating for the movie, range is [1.0-5.0]", ), feature_id="average_rating", ), ], ).result() ###Output _____no_output_____ ###Markdown Search created featuresWhile the [ListFeatures](https://cloud.google.com/vertex-ai/featurestore/docs/reference/rpc/google.cloud.aiplatform.v1beta1google.cloud.aiplatform.v1beta1.FeaturestoreService.ListFeatures) method allows you to easily view all features of a singleentity type, the [SearchFeatures](https://cloud.google.com/vertex-ai/featurestore/docs/reference/rpc/google.cloud.aiplatform.v1beta1google.cloud.aiplatform.v1beta1.FeaturestoreService.SearchFeatures) method searches across all featurestoresand entity types in a given location (such as `us-central1`). This can help you discover features that were created by someone else.You can query based on feature properties including feature ID, entity type ID,and feature description. You can also limit results by filtering on a specificfeaturestore, feature value type, and/or labels. ###Code # Search for all features across all featurestores. list(admin_client.search_features(location=BASE_RESOURCE_PATH)) ###Output _____no_output_____ ###Markdown Now, narrow down the search to features that are of type `DOUBLE` ###Code # Search for all features with value type `DOUBLE` list( admin_client.search_features( featurestore_service_pb2.SearchFeaturesRequest( location=BASE_RESOURCE_PATH, query="value_type=DOUBLE" ) ) ) ###Output _____no_output_____ ###Markdown Or, limit the search results to features with specific keywords in their ID and type. ###Code # Filter on feature value type and keywords. list( admin_client.search_features( featurestore_service_pb2.SearchFeaturesRequest( location=BASE_RESOURCE_PATH, query="feature_id:title AND value_type=STRING" ) ) ) ###Output _____no_output_____ ###Markdown Import Feature ValuesYou need to import feature values before you can use them for online/offline serving. In this step, you will learn how to import feature values by calling the ImportFeatureValues API using the Python SDK. Source Data Format and LayoutAs mentioned above, BigQuery table/Avro/CSV are supported. No matter what format you are using, each imported entity *must* have an ID; also, each entity can *optionally* have a timestamp, sepecifying when the feature values are generated. This Colab uses Avro as an input, located at this public [bucket](https://pantheon.corp.google.com/storage/browser/cloud-samples-data/ai-platform-unified/datasets/featurestore;tab=objects?project=storage-samples&prefix=&forceOnObjectsSortingFiltering=false). The Avro schemas are as follows:**For the Users entity**:```schema = { "type": "record", "name": "User", "fields": [ { "name":"user_id", "type":["null","string"] }, { "name":"age", "type":["null","long"] }, { "name":"gender", "type":["null","string"] }, { "name":"liked_genres", "type":{"type":"array","items":"string"} }, { "name":"update_time", "type":["null",{"type":"long","logicalType":"timestamp-micros"}] }, ] }```**For the Movies entity**```schema = { "type": "record", "name": "Movie", "fields": [ { "name":"movie_id", "type":["null","string"] }, { "name":"average_rating", "type":["null","double"] }, { "name":"title", "type":["null","string"] }, { "name":"genres", "type":["null","string"] }, { "name":"update_time", "type":["null",{"type":"long","logicalType":"timestamp-micros"}] }, ]}``` Import feature values for UsersWhen importing, specify the following in your request:* Data source format: BigQuery Table/Avro/CSV* Data source URL* Destination: featurestore/entity types/features to be imported ###Code import_users_request = featurestore_service_pb2.ImportFeatureValuesRequest( entity_type=admin_client.entity_type_path( PROJECT_ID, REGION, FEATURESTORE_ID, "users" ), avro_source=io_pb2.AvroSource( # Source gcs_source=io_pb2.GcsSource( uris=[ "gs://cloud-samples-data-us-central1/ai-platform-unified/datasets/featurestore/users.avro" ] ) ), entity_id_field="user_id", feature_specs=[ # Features featurestore_service_pb2.ImportFeatureValuesRequest.FeatureSpec(id="age"), featurestore_service_pb2.ImportFeatureValuesRequest.FeatureSpec(id="gender"), featurestore_service_pb2.ImportFeatureValuesRequest.FeatureSpec( id="liked_genres" ), ], feature_time_field="update_time", worker_count=10, ) # Start to import, will take a couple of minutes ingestion_lro = admin_client.import_feature_values(import_users_request) # Polls for the LRO status and prints when the LRO has completed ingestion_lro.result() ###Output _____no_output_____ ###Markdown Import feature values for MoviesSimilarly, import feature values for 'movies' into the featurestore. ###Code import_movie_request = featurestore_service_pb2.ImportFeatureValuesRequest( entity_type=admin_client.entity_type_path( PROJECT_ID, REGION, FEATURESTORE_ID, "movies" ), avro_source=io_pb2.AvroSource( gcs_source=io_pb2.GcsSource( uris=[ "gs://cloud-samples-data-us-central1/ai-platform-unified/datasets/featurestore/movies.avro" ] ) ), entity_id_field="movie_id", feature_specs=[ featurestore_service_pb2.ImportFeatureValuesRequest.FeatureSpec(id="title"), featurestore_service_pb2.ImportFeatureValuesRequest.FeatureSpec(id="genres"), featurestore_service_pb2.ImportFeatureValuesRequest.FeatureSpec( id="average_rating" ), ], feature_time_field="update_time", worker_count=10, ) # Start to import, will take a couple of minutes ingestion_lro = admin_client.import_feature_values(import_movie_request) # Polls for the LRO status and prints when the LRO has completed ingestion_lro.result() ###Output _____no_output_____ ###Markdown Online serving The[Online Serving APIs](https://cloud.google.com/vertex-ai/featurestore/docs/reference/rpc/google.cloud.aiplatform.v1beta1featurestoreonlineservingservice)lets you serve feature values for small batches of entities. It's designed for latency-sensitive service, such as online model prediction. For example, for a movie service, you might want to quickly shows movies that the current user would most likely watch by using online predictions. Read one entity per requestThe ReadFeatureValues API is used to read feature values of one entity; henceits custom HTTP verb is `readFeatureValues`. By default, the API will return the latest value of each feature, meaning the feature values with the most recent timestamp.To read feature values, specify the entity ID and features to read. The responsecontains a `header` and an `entity_view`. Each row of data in the `entity_view`contains one feature value, in the same order of features as listed in the response header. ###Code # Fetch the following 3 features. feature_selector = FeatureSelector( id_matcher=IdMatcher(ids=["age", "gender", "liked_genres"]) ) data_client.read_feature_values( featurestore_online_service_pb2.ReadFeatureValuesRequest( # Fetch from the following feature store/entity type entity_type=admin_client.entity_type_path( PROJECT_ID, REGION, FEATURESTORE_ID, "users" ), # Fetch the user features whose ID is "alice" entity_id="alice", feature_selector=feature_selector, ) ) ###Output _____no_output_____ ###Markdown Read multiple entities per requestTo read feature values from multiple entities, use theStreamingReadFeatureValues API, which is almost identical to the previousReadFeatureValues API. Note that fetching only a small number of entities is recomended when using this API due to its latency-sensitive nature. ###Code # Read the same set of features as above, but for multiple entities. response_stream = data_client.streaming_read_feature_values( featurestore_online_service_pb2.StreamingReadFeatureValuesRequest( entity_type=admin_client.entity_type_path( PROJECT_ID, REGION, FEATURESTORE_ID, "users" ), entity_ids=["alice", "bob"], feature_selector=feature_selector, ) ) # Iterate and process response. Note the first one is always the header only. for response in response_stream: print(response) ###Output _____no_output_____ ###Markdown Now that you have learned how to featch imported feature values for online serving, the next step is learning how to use imported feature values for offline use cases. Batch ServingBatch Serving is used to fetch a large batch of feature values for high-throughput, typically for training a model or batch prediction. In this section, you will learn how to prepare for training examples by calling the BatchReadFeatureValues API. Use case**The task** is to prepare a training dataset to train a model, which predicts if a given user will watch a given movie. To achieve this, you need 2 sets of input:* Features: you already imported into the featurestore.* Labels: the groud-truth data recorded that user X has watched movie Y.To be more specific, the ground-truth observation is described in Table 1 and the desired training dataset is described in Table 2. Each row in Table 2 is a result of joining the imported feature values from Feature Store according to the entity IDs and timestamps in Table 1. In this example, the `age`, `gender` and `liked_genres` features from `users` andthe `genres` and `average_rating` features from `movies` are chosen to train the model. Note that only positive examples are shown in these 2 tables, i.e., you can imagine there is a label column whose values are all `True`.BatchReadFeatureValues API takes Table 1 asinput, joins all required feature values from the featurestore, and returns Table 2 for training.Table 1. Ground-truth Datausers | movies | timestamp ----- | -------- | -------------------- alice | Cinema Paradiso | 2019-11-01T00:00:00Z bob | The Shining | 2019-11-15T18:09:43Z ... | ... | ... Table 2. Expected Training Data Generated by Batch Read API (Positive Samples)timestamp | entity_type_users | age | gender | liked_genres | entity_type_movies | genres | average_rating -------------------- | ----------------- | --------------- | ---------------- | -------------------- | -------- | --------- | ----- 2019-11-01T00:00:00Z | bob | 35 | M | [Action, Crime] | The Shining | Horror | 4.8 2019-11-01T00:00:00Z | alice | 55 | F | [Drama, Comedy] | Cinema Paradiso | Romance | 4.5 ... | ... | ... | ... | ... | ... | ... | ... Why timestamp?Note that there is a `timestamp` column in Table 2. This indicates the time when the ground-truth was observed. This is to avoid data inconsistency.For example, the 1st row of Table 2 indicates that user `alice` watched movie `Cinema Paradiso` on `2019-11-01T00:00:00Z`. The featurestore keeps feature values for all timestamps but fetches feature values *only* at the given timestamp during batch serving. On 2019-11-01 alice might be 54 years old, but now alice might be 56; featurestore returns `age=54` as alice's age, instead of `age=56`, because that is the value of the feature at the observation time. Similarly, other features might be time-variant as well, such as liked_genres. Batch Read Feature ValuesAssemble the request which specify the following info:* Where is the label data, i.e., Table 1.* Which features are read, i.e., the column names in Table 2.The output is stored in a BigQuery table. ###Code batch_serving_request = featurestore_service_pb2.BatchReadFeatureValuesRequest( # featurestore info featurestore=admin_client.featurestore_path(PROJECT_ID, REGION, FEATURESTORE_ID), # URL for the label data, i.e., Table 1. csv_read_instances=io_pb2.CsvSource( gcs_source=io_pb2.GcsSource(uris=[INPUT_CSV_FILE]) ), destination=featurestore_service_pb2.FeatureValueDestination( bigquery_destination=io_pb2.BigQueryDestination( # Output to BigQuery table created earlier output_uri=DESTINATION_TABLE_URI ) ), entity_type_specs=[ featurestore_service_pb2.BatchReadFeatureValuesRequest.EntityTypeSpec( # Read the 'age', 'gender' and 'liked_genres' features from the 'users' entity entity_type_id="users", feature_selector=FeatureSelector( id_matcher=IdMatcher( ids=[ # features, use "*" if you want to select all features within this entity type "age", "gender", "liked_genres", ] ) ), ), featurestore_service_pb2.BatchReadFeatureValuesRequest.EntityTypeSpec( # Read the 'average_rating' and 'genres' feature values of the 'movies' entity entity_type_id="movies", feature_selector=FeatureSelector( id_matcher=IdMatcher(ids=["average_rating", "genres"]) ), ), ], ) # Execute the batch read batch_serving_lro = admin_client.batch_read_feature_values(batch_serving_request) # This long runing operation will poll until the batch read finishes. batch_serving_lro.result() ###Output _____no_output_____ ###Markdown After the LRO finishes, you should be able to see the result from the [BigQuery console](https://console.cloud.google.com/bigquery), in the dataset created earlier. Cleaning upTo clean up all Google Cloud resources used in this project, you can [delete the Google Cloudproject](https://cloud.google.com/resource-manager/docs/creating-managing-projectsshutting_down_projects) you used for the tutorial.You can also keep the project but delete the featurestore: ###Code admin_client.delete_featurestore( request=featurestore_service_pb2.DeleteFeaturestoreRequest( name=admin_client.featurestore_path(PROJECT_ID, REGION, FEATURESTORE_ID), force=True, ) ).result() client.delete_dataset( DESTINATION_DATA_SET, delete_contents=True, not_found_ok=True ) # Make an API request. print("Deleted dataset '{}'.".format(DESTINATION_DATA_SET)) ###Output _____no_output_____ ###Markdown Run in Colab View on GitHub OverviewThis Colab introduces Feature Store, a managed cloud service for machine learning engineers and data scientists to store, serve, manage and share machine learning features at a large scale.This Colab assumes that you understand basic Google Cloud concepts such as [Project](https://cloud.google.com/storage/docs/projects), [Storage](https://cloud.google.com/storage) and [Vertex AI](https://cloud.google.com/vertex-ai/docs). Some machine learning knowledge is also helpful but not required. DatasetThis Colab uses a movie recommendation dataset as an example throughout all the sessions. The task is to train a model to predict if a user is going to watch a movie and serve this model online. ObjectiveIn this notebook, you will learn how to: * How to import your features into Feature Store. * How to serve online prediction requests using the imported features. * How to access imported features in offline jobs, such as training jobs. Costs This tutorial uses billable components of Google Cloud:* Vertex AI* Cloud Storage* Cloud BigtableLearn about [Vertex AIpricing](https://cloud.google.com/vertex-ai/pricing) and [Cloud Storagepricing](https://cloud.google.com/storage/pricing), and use the [PricingCalculator](https://cloud.google.com/products/calculator/)to generate a cost estimate based on your projected usage. Set up your local development environment**If you are using Colab or Google Cloud Notebooks**, your environment already meetsall the requirements to run this notebook. You can skip this step. **Otherwise**, make sure your environment meets this notebook's requirements.You need the following:* The Google Cloud SDK* Git* Python 3* virtualenv* Jupyter notebook running in a virtual environment with Python 3The Google Cloud guide to [Setting up a Python developmentenvironment](https://cloud.google.com/python/setup) and the [Jupyterinstallation guide](https://jupyter.org/install) provide detailed instructionsfor meeting these requirements. The following steps provide a condensed set ofinstructions:1. [Install and initialize the Cloud SDK.](https://cloud.google.com/sdk/docs/)1. [Install Python 3.](https://cloud.google.com/python/setupinstalling_python)1. [Install virtualenv](https://cloud.google.com/python/setupinstalling_and_using_virtualenv) and create a virtual environment that uses Python 3. Activate the virtual environment.1. To install Jupyter, run `pip install jupyter` on thecommand-line in a terminal shell.1. To launch Jupyter, run `jupyter notebook` on the command-line in a terminal shell.1. Open this notebook in the Jupyter Notebook Dashboard. Install additional packagesFor this Colab, you need the Vertex SDK for Python. ###Code # Uninstall previous version of google-cloud-aiplatform SDK, if any. !pip uninstall google-cloud-aiplatform -y # Install the latest public release version # !pip install -U google-cloud-aiplatform # Install the testing version !pip install git+https://github.com/googleapis/python-aiplatform.git@main-test ###Output _____no_output_____ ###Markdown Restart the kernelAfter you install the SDK, you need to restart the notebook kernel so it can find the packages. You can restart kernel from *Kernel -> Restart Kernel*, or running the following: ###Code # Automatically restart kernel after installs import os if not os.getenv("IS_TESTING"): # Automatically restart kernel after installs import IPython app = IPython.Application.instance() app.kernel.do_shutdown(True) ###Output _____no_output_____ ###Markdown Before you begin Select a GPU runtime**Make sure you're running this notebook in a GPU runtime if you have that option. In Colab, select "Runtime --> Change runtime type > GPU"** Set up your Google Cloud project**The following steps are required, regardless of your notebook environment.**1. [Select or create a Google Cloud project](https://console.cloud.google.com/cloud-resource-manager). When you first create an account, you get a $300 free credit towards your compute/storage costs.1. [Make sure that billing is enabled for your project](https://cloud.google.com/billing/docs/how-to/modify-project).1. [Enable the Vertex AI API and Compute Engine API](https://console.cloud.google.com/flows/enableapi?apiid=aiplatform.googleapis.com,compute_component).1. If you are running this notebook locally, you will need to install the [Cloud SDK](https://cloud.google.com/sdk).1. Enter your project ID in the cell below. Then run the cell to make sure theCloud SDK uses the right project for all the commands in this notebook.**Note**: Jupyter runs lines prefixed with `!` as shell commands, and it interpolates Python variables prefixed with `$` into these commands. Set your project ID**If you don't know your project ID**, you may be able to get your project ID using `gcloud`. ###Code import os PROJECT_ID = "" # Get your Google Cloud project ID from gcloud if not os.getenv("IS_TESTING"): shell_output=!gcloud config list --format 'value(core.project)' 2>/dev/null PROJECT_ID = shell_output[0] print("Project ID: ", PROJECT_ID) ###Output _____no_output_____ ###Markdown Otherwise, set your project ID here. ###Code if PROJECT_ID == "" or PROJECT_ID is None: PROJECT_ID = "python-docs-samples-tests" # @param {type:"string"} ###Output _____no_output_____ ###Markdown Authenticate your Google Cloud account**If you are using Google Cloud Notebooks**, your environment is alreadyauthenticated. Skip this step. **If you are using Colab**, run the cell below and follow the instructionswhen prompted to authenticate your account via oAuth.**Otherwise**, follow these steps:1. In the Cloud Console, go to the [**Create service account key** page](https://console.cloud.google.com/apis/credentials/serviceaccountkey).2. Click **Create service account**.3. In the **Service account name** field, enter a name, and click **Create**.4. In the **Grant this service account access to project** section, click the **Role** drop-down list. Type "Vertex AI"into the filter box, and select **Vertex AI Administrator**. Type "Storage Object Admin" into the filter box, and select **Storage Object Admin**.5. Click *Create*. A JSON file that contains your key downloads to yourlocal environment.6. Enter the path to your service account key as the`GOOGLE_APPLICATION_CREDENTIALS` variable in the cell below and run the cell. ###Code import os import sys # If you are running this notebook in Colab, run this cell and follow the # instructions to authenticate your GCP account. This provides access to your # Cloud Storage bucket and lets you submit training jobs and prediction # requests. # If on Google Cloud Notebooks, then don't execute this code if not os.path.exists("/opt/deeplearning/metadata/env_version"): if "google.colab" in sys.modules: from google.colab import auth as google_auth google_auth.authenticate_user() # If you are running this notebook locally, replace the string below with the # path to your service account key and run this cell to authenticate your GCP # account. elif not os.getenv("IS_TESTING"): %env GOOGLE_APPLICATION_CREDENTIALS '' ###Output _____no_output_____ ###Markdown Prepare for output Step 1. Create dataset for outputYou need a BigQuery dataset to host the output data in `us-central1`. Input the name of the dataset you want to created and specify the name of the table you want to store the output later. These will be used later in the notebook.**Make sure that the table name does NOT already exist**. ###Code from datetime import datetime from google.cloud import bigquery # Output dataset DESTINATION_DATA_SET = "movie_predictions" # @param {type:"string"} TIMESTAMP = datetime.now().strftime("%Y%m%d%H%M%S") DESTINATION_DATA_SET = "{prefix}_{timestamp}".format( prefix=DESTINATION_DATA_SET, timestamp=TIMESTAMP ) # Output table. Make sure that the table does NOT already exist; the BatchReadFeatureValues API cannot overwrite an existing table DESTINATION_TABLE_NAME = "training_data" # @param {type:"string"} DESTINATION_PATTERN = "bq://{project}.{dataset}.{table}" DESTINATION_TABLE_URI = DESTINATION_PATTERN.format( project=PROJECT_ID, dataset=DESTINATION_DATA_SET, table=DESTINATION_TABLE_NAME ) # Create dataset REGION = "us-central1" # @param {type:"string"} client = bigquery.Client() dataset_id = "{}.{}".format(client.project, DESTINATION_DATA_SET) dataset = bigquery.Dataset(dataset_id) dataset.location = REGION dataset = client.create_dataset(dataset, timeout=30) print("Created dataset {}.{}".format(client.project, dataset.dataset_id)) ###Output _____no_output_____ ###Markdown Import libraries and define constants ###Code # Other than project ID and featurestore ID and endpoints needs to be set API_ENDPOINT = "us-central1-aiplatform.googleapis.com" # @param {type:"string"} INPUT_CSV_FILE = "gs://cloud-samples-data-us-central1/ai-platform-unified/datasets/featurestore/movie_prediction.csv" from google.cloud.aiplatform_v1beta1 import ( FeaturestoreOnlineServingServiceClient, FeaturestoreServiceClient) from google.cloud.aiplatform_v1beta1.types import FeatureSelector, IdMatcher from google.cloud.aiplatform_v1beta1.types import \ entity_type as entity_type_pb2 from google.cloud.aiplatform_v1beta1.types import feature as feature_pb2 from google.cloud.aiplatform_v1beta1.types import \ featurestore as featurestore_pb2 from google.cloud.aiplatform_v1beta1.types import \ featurestore_monitoring as featurestore_monitoring_pb2 from google.cloud.aiplatform_v1beta1.types import \ featurestore_online_service as featurestore_online_service_pb2 from google.cloud.aiplatform_v1beta1.types import \ featurestore_service as featurestore_service_pb2 from google.cloud.aiplatform_v1beta1.types import io as io_pb2 from google.protobuf.duration_pb2 import Duration # Create admin_client for CRUD and data_client for reading feature values. admin_client = FeaturestoreServiceClient(client_options={"api_endpoint": API_ENDPOINT}) data_client = FeaturestoreOnlineServingServiceClient( client_options={"api_endpoint": API_ENDPOINT} ) # Represents featurestore resource path. BASE_RESOURCE_PATH = admin_client.common_location_path(PROJECT_ID, REGION) ###Output _____no_output_____ ###Markdown Terminology and Concept Featurestore Data modelFeature Store organizes data with the following 3 important hierarchical concepts:```Featurestore -> EntityType -> Feature```* **Featurestore**: the place to store your features* **EntityType**: under a Featurestore, an *EntityType* describes an object to be modeled, real one or virtual one.* **Feature**: under an EntityType, a *feature* describes an attribute of the EntityTypeIn the movie prediction example, you will create a featurestore called *movie_prediction*. This store has 2 entity types: *Users* and *Movies*. The Users entity type has the age, gender, and like genres features. The Movies entity type has the genres and average rating features. Create Featurestore and Define Schemas Create FeaturestoreThe method to create a featurestore returns a[long-running operation](https://google.aip.dev/151) (LRO). An LRO starts an asynchronous job. LROs are returned for other APImethods too, such as updating or deleting a featurestore. Calling`create_fs_lro.result()` waits for the LRO to complete. ###Code FEATURESTORE_ID = "movie_prediction_{timestamp}".format(timestamp=TIMESTAMP) create_lro = admin_client.create_featurestore( featurestore_service_pb2.CreateFeaturestoreRequest( parent=BASE_RESOURCE_PATH, featurestore_id=FEATURESTORE_ID, featurestore=featurestore_pb2.Featurestore( display_name="Featurestore for movie prediction", online_serving_config=featurestore_pb2.Featurestore.OnlineServingConfig( fixed_node_count=3 ), ), ) ) # Wait for LRO to finish and get the LRO result. print(create_lro.result()) ###Output _____no_output_____ ###Markdown You can use [GetFeaturestore](https://cloud.google.com/vertex-ai/featurestore/docs/reference/rpc/google.cloud.aiplatform.v1beta1google.cloud.aiplatform.v1beta1.FeaturestoreService.GetFeaturestore) or [ListFeaturestores](https://cloud.google.com/vertex-ai/featurestore/docs/reference/rpc/google.cloud.aiplatform.v1beta1google.cloud.aiplatform.v1beta1.FeaturestoreService.ListFeaturestores) to check if the Featurestore was successfully created. The following example gets the details of the Featurestore. ###Code admin_client.get_featurestore( name=admin_client.featurestore_path(PROJECT_ID, REGION, FEATURESTORE_ID) ) ###Output _____no_output_____ ###Markdown Create Entity TypeYou can specify a monitoring config which will by default be inherited by all Features under this EntityType. ###Code # Create users entity type with monitoring enabled. # All Features belonging to this EntityType will by default inherit the monitoring config. users_entity_type_lro = admin_client.create_entity_type( featurestore_service_pb2.CreateEntityTypeRequest( parent=admin_client.featurestore_path(PROJECT_ID, REGION, FEATURESTORE_ID), entity_type_id="users", entity_type=entity_type_pb2.EntityType( description="Users entity", monitoring_config=featurestore_monitoring_pb2.FeaturestoreMonitoringConfig( snapshot_analysis=featurestore_monitoring_pb2.FeaturestoreMonitoringConfig.SnapshotAnalysis( monitoring_interval=Duration(seconds=86400), # 1 day ), ), ), ) ) # Similarly, wait for EntityType creation operation. print(users_entity_type_lro.result()) # Create movies entity type without a monitoring configuration. movies_entity_type_lro = admin_client.create_entity_type( featurestore_service_pb2.CreateEntityTypeRequest( parent=admin_client.featurestore_path(PROJECT_ID, REGION, FEATURESTORE_ID), entity_type_id="movies", entity_type=entity_type_pb2.EntityType(description="Movies entity"), ) ) # Similarly, wait for EntityType creation operation. print(movies_entity_type_lro.result()) ###Output _____no_output_____ ###Markdown Create FeatureYou can also set a custom monitoring configuration at the Feature level, and view the properties and metrics in the console: sample [properties](https://storage.googleapis.com/cloud-samples-data/ai-platform-unified/datasets/featurestore/Feature%20Properties.png), sample [metrics](https://storage.googleapis.com/cloud-samples-data/ai-platform-unified/datasets/featurestore/Feature%20Snapshot%20Distribution.png). ###Code # Create features for the 'users' entity. # 'age' Feature leaves the monitoring config unset, which means it'll inherit the config from EntityType. # 'gender' Feature explicitly disables monitoring. # 'liked_genres' Feature is a STRING_ARRAY type, so it is automatically excluded from monitoring. # For Features with monitoring enabled, distribution statistics are updated periodically in the console. admin_client.batch_create_features( parent=admin_client.entity_type_path(PROJECT_ID, REGION, FEATURESTORE_ID, "users"), requests=[ featurestore_service_pb2.CreateFeatureRequest( feature=feature_pb2.Feature( value_type=feature_pb2.Feature.ValueType.INT64, description="User age", ), feature_id="age", ), featurestore_service_pb2.CreateFeatureRequest( feature=feature_pb2.Feature( value_type=feature_pb2.Feature.ValueType.STRING, description="User gender", monitoring_config=featurestore_monitoring_pb2.FeaturestoreMonitoringConfig( snapshot_analysis=featurestore_monitoring_pb2.FeaturestoreMonitoringConfig.SnapshotAnalysis( disabled=True, ), ), ), feature_id="gender", ), featurestore_service_pb2.CreateFeatureRequest( feature=feature_pb2.Feature( value_type=feature_pb2.Feature.ValueType.STRING_ARRAY, description="An array of genres that this user liked", ), feature_id="liked_genres", ), ], ).result() # Create features for movies type. # 'title' Feature enables monitoring. admin_client.batch_create_features( parent=admin_client.entity_type_path(PROJECT_ID, REGION, FEATURESTORE_ID, "movies"), requests=[ featurestore_service_pb2.CreateFeatureRequest( feature=feature_pb2.Feature( value_type=feature_pb2.Feature.ValueType.STRING, description="The title of the movie", monitoring_config=featurestore_monitoring_pb2.FeaturestoreMonitoringConfig( snapshot_analysis=featurestore_monitoring_pb2.FeaturestoreMonitoringConfig.SnapshotAnalysis( monitoring_interval=Duration(seconds=172800), # 2 days ), ), ), feature_id="title", ), featurestore_service_pb2.CreateFeatureRequest( feature=feature_pb2.Feature( value_type=feature_pb2.Feature.ValueType.STRING, description="The genres of the movie", ), feature_id="genres", ), featurestore_service_pb2.CreateFeatureRequest( feature=feature_pb2.Feature( value_type=feature_pb2.Feature.ValueType.DOUBLE, description="The average rating for the movie, range is [1.0-5.0]", ), feature_id="average_rating", ), ], ).result() ###Output _____no_output_____ ###Markdown Search created featuresWhile the [ListFeatures](https://cloud.google.com/vertex-ai/featurestore/docs/reference/rpc/google.cloud.aiplatform.v1beta1google.cloud.aiplatform.v1beta1.FeaturestoreService.ListFeatures) method allows you to easily view all features of a singleentity type, the [SearchFeatures](https://cloud.google.com/vertex-ai/featurestore/docs/reference/rpc/google.cloud.aiplatform.v1beta1google.cloud.aiplatform.v1beta1.FeaturestoreService.SearchFeatures) method searches across all featurestoresand entity types in a given location (such as `us-central1`). This can help you discover features that were created by someone else.You can query based on feature properties including feature ID, entity type ID,and feature description. You can also limit results by filtering on a specificfeaturestore, feature value type, and/or labels. ###Code # Search for all features across all featurestores. list(admin_client.search_features(location=BASE_RESOURCE_PATH)) ###Output _____no_output_____ ###Markdown Now, narrow down the search to features that are of type `DOUBLE` ###Code # Search for all features with value type `DOUBLE` list( admin_client.search_features( featurestore_service_pb2.SearchFeaturesRequest( location=BASE_RESOURCE_PATH, query="value_type=DOUBLE" ) ) ) ###Output _____no_output_____ ###Markdown Or, limit the search results to features with specific keywords in their ID and type. ###Code # Filter on feature value type and keywords. list( admin_client.search_features( featurestore_service_pb2.SearchFeaturesRequest( location=BASE_RESOURCE_PATH, query="feature_id:title AND value_type=STRING" ) ) ) ###Output _____no_output_____ ###Markdown Import Feature ValuesYou need to import feature values before you can use them for online/offline serving. In this step, you will learn how to import feature values by calling the ImportFeatureValues API using the Python SDK. Source Data Format and LayoutAs mentioned above, BigQuery table/Avro/CSV are supported. No matter what format you are using, each imported entity *must* have an ID; also, each entity can *optionally* have a timestamp, sepecifying when the feature values are generated. This Colab uses Avro as an input, located at this public [bucket](https://pantheon.corp.google.com/storage/browser/cloud-samples-data/ai-platform-unified/datasets/featurestore;tab=objects?project=storage-samples&prefix=&forceOnObjectsSortingFiltering=false). The Avro schemas are as follows:**For the Users entity**:```schema = { "type": "record", "name": "User", "fields": [ { "name":"user_id", "type":["null","string"] }, { "name":"age", "type":["null","long"] }, { "name":"gender", "type":["null","string"] }, { "name":"liked_genres", "type":{"type":"array","items":"string"} }, { "name":"update_time", "type":["null",{"type":"long","logicalType":"timestamp-micros"}] }, ] }```**For the Movies entity**```schema = { "type": "record", "name": "Movie", "fields": [ { "name":"movie_id", "type":["null","string"] }, { "name":"average_rating", "type":["null","double"] }, { "name":"title", "type":["null","string"] }, { "name":"genres", "type":["null","string"] }, { "name":"update_time", "type":["null",{"type":"long","logicalType":"timestamp-micros"}] }, ]}``` Import feature values for UsersWhen importing, specify the following in your request:* Data source format: BigQuery Table/Avro/CSV* Data source URL* Destination: featurestore/entity types/features to be imported ###Code import_users_request = featurestore_service_pb2.ImportFeatureValuesRequest( entity_type=admin_client.entity_type_path( PROJECT_ID, REGION, FEATURESTORE_ID, "users" ), avro_source=io_pb2.AvroSource( # Source gcs_source=io_pb2.GcsSource( uris=[ "gs://cloud-samples-data-us-central1/ai-platform-unified/datasets/featurestore/users.avro" ] ) ), entity_id_field="user_id", feature_specs=[ # Features featurestore_service_pb2.ImportFeatureValuesRequest.FeatureSpec(id="age"), featurestore_service_pb2.ImportFeatureValuesRequest.FeatureSpec(id="gender"), featurestore_service_pb2.ImportFeatureValuesRequest.FeatureSpec( id="liked_genres" ), ], feature_time_field="update_time", worker_count=10, ) # Start to import, will take a couple of minutes ingestion_lro = admin_client.import_feature_values(import_users_request) # Polls for the LRO status and prints when the LRO has completed ingestion_lro.result() ###Output _____no_output_____ ###Markdown Import feature values for MoviesSimilarly, import feature values for 'movies' into the featurestore. ###Code import_movie_request = featurestore_service_pb2.ImportFeatureValuesRequest( entity_type=admin_client.entity_type_path( PROJECT_ID, REGION, FEATURESTORE_ID, "movies" ), avro_source=io_pb2.AvroSource( gcs_source=io_pb2.GcsSource( uris=[ "gs://cloud-samples-data-us-central1/ai-platform-unified/datasets/featurestore/movies.avro" ] ) ), entity_id_field="movie_id", feature_specs=[ featurestore_service_pb2.ImportFeatureValuesRequest.FeatureSpec(id="title"), featurestore_service_pb2.ImportFeatureValuesRequest.FeatureSpec(id="genres"), featurestore_service_pb2.ImportFeatureValuesRequest.FeatureSpec( id="average_rating" ), ], feature_time_field="update_time", worker_count=10, ) # Start to import, will take a couple of minutes ingestion_lro = admin_client.import_feature_values(import_movie_request) # Polls for the LRO status and prints when the LRO has completed ingestion_lro.result() ###Output _____no_output_____ ###Markdown Online serving The[Online Serving APIs](https://cloud.google.com/vertex-ai/featurestore/docs/reference/rpc/google.cloud.aiplatform.v1beta1featurestoreonlineservingservice)lets you serve feature values for small batches of entities. It's designed for latency-sensitive service, such as online model prediction. For example, for a movie service, you might want to quickly shows movies that the current user would most likely watch by using online predictions. Read one entity per requestThe ReadFeatureValues API is used to read feature values of one entity; henceits custom HTTP verb is `readFeatureValues`. By default, the API will return the latest value of each feature, meaning the feature values with the most recent timestamp.To read feature values, specify the entity ID and features to read. The responsecontains a `header` and an `entity_view`. Each row of data in the `entity_view`contains one feature value, in the same order of features as listed in the response header. ###Code # Fetch the following 3 features. feature_selector = FeatureSelector( id_matcher=IdMatcher(ids=["age", "gender", "liked_genres"]) ) data_client.read_feature_values( featurestore_online_service_pb2.ReadFeatureValuesRequest( # Fetch from the following feature store/entity type entity_type=admin_client.entity_type_path( PROJECT_ID, REGION, FEATURESTORE_ID, "users" ), # Fetch the user features whose ID is "alice" entity_id="alice", feature_selector=feature_selector, ) ) ###Output _____no_output_____ ###Markdown Read multiple entities per requestTo read feature values from multiple entities, use theStreamingReadFeatureValues API, which is almost identical to the previousReadFeatureValues API. Note that fetching only a small number of entities is recomended when using this API due to its latency-sensitive nature. ###Code # Read the same set of features as above, but for multiple entities. response_stream = data_client.streaming_read_feature_values( featurestore_online_service_pb2.StreamingReadFeatureValuesRequest( entity_type=admin_client.entity_type_path( PROJECT_ID, REGION, FEATURESTORE_ID, "users" ), entity_ids=["alice", "bob"], feature_selector=feature_selector, ) ) # Iterate and process response. Note the first one is always the header only. for response in response_stream: print(response) ###Output _____no_output_____ ###Markdown Now that you have learned how to featch imported feature values for online serving, the next step is learning how to use imported feature values for offline use cases. Batch ServingBatch Serving is used to fetch a large batch of feature values for high-throughput, typically for training a model or batch prediction. In this section, you will learn how to prepare for training examples by calling the BatchReadFeatureValues API. Use case**The task** is to prepare a training dataset to train a model, which predicts if a given user will watch a given movie. To achieve this, you need 2 sets of input:* Features: you already imported into the featurestore.* Labels: the groud-truth data recorded that user X has watched movie Y.To be more specific, the ground-truth observation is described in Table 1 and the desired training dataset is described in Table 2. Each row in Table 2 is a result of joining the imported feature values from Feature Store according to the entity IDs and timestamps in Table 1. In this example, the `age`, `gender` and `liked_genres` features from `users` andthe `genres` and `average_rating` features from `movies` are chosen to train the model. Note that only positive examples are shown in these 2 tables, i.e., you can imagine there is a label column whose values are all `True`.BatchReadFeatureValues API takes Table 1 asinput, joins all required feature values from the featurestore, and returns Table 2 for training.Table 1. Ground-truth Datausers | movies | timestamp ----- | -------- | -------------------- alice | Cinema Paradiso | 2019-11-01T00:00:00Z bob | The Shining | 2019-11-15T18:09:43Z ... | ... | ... Table 2. Expected Training Data Generated by Batch Read API (Positive Samples)timestamp | entity_type_users | age | gender | liked_genres | entity_type_movies | genres | average_rating -------------------- | ----------------- | --------------- | ---------------- | -------------------- | -------- | --------- | ----- 2019-11-01T00:00:00Z | bob | 35 | M | [Action, Crime] | The Shining | Horror | 4.8 2019-11-01T00:00:00Z | alice | 55 | F | [Drama, Comedy] | Cinema Paradiso | Romance | 4.5 ... | ... | ... | ... | ... | ... | ... | ... Why timestamp?Note that there is a `timestamp` column in Table 2. This indicates the time when the ground-truth was observed. This is to avoid data inconsistency.For example, the 1st row of Table 2 indicates that user `alice` watched movie `Cinema Paradiso` on `2019-11-01T00:00:00Z`. The featurestore keeps feature values for all timestamps but fetches feature values *only* at the given timestamp during batch serving. On 2019-11-01 alice might be 54 years old, but now alice might be 56; featurestore returns `age=54` as alice's age, instead of `age=56`, because that is the value of the feature at the observation time. Similarly, other features might be time-variant as well, such as liked_genres. Batch Read Feature ValuesAssemble the request which specify the following info:* Where is the label data, i.e., Table 1.* Which features are read, i.e., the column names in Table 2.The output is stored in a BigQuery table. ###Code batch_serving_request = featurestore_service_pb2.BatchReadFeatureValuesRequest( # featurestore info featurestore=admin_client.featurestore_path(PROJECT_ID, REGION, FEATURESTORE_ID), # URL for the label data, i.e., Table 1. csv_read_instances=io_pb2.CsvSource( gcs_source=io_pb2.GcsSource(uris=[INPUT_CSV_FILE]) ), destination=featurestore_service_pb2.FeatureValueDestination( bigquery_destination=io_pb2.BigQueryDestination( # Output to BigQuery table created earlier output_uri=DESTINATION_TABLE_URI ) ), entity_type_specs=[ featurestore_service_pb2.BatchReadFeatureValuesRequest.EntityTypeSpec( # Read the 'age', 'gender' and 'liked_genres' features from the 'users' entity entity_type_id="users", feature_selector=FeatureSelector( id_matcher=IdMatcher( ids=[ # features, use "*" if you want to select all features within this entity type "age", "gender", "liked_genres", ] ) ), ), featurestore_service_pb2.BatchReadFeatureValuesRequest.EntityTypeSpec( # Read the 'average_rating' and 'genres' feature values of the 'movies' entity entity_type_id="movies", feature_selector=FeatureSelector( id_matcher=IdMatcher(ids=["average_rating", "genres"]) ), ), ], ) # Execute the batch read batch_serving_lro = admin_client.batch_read_feature_values(batch_serving_request) # This long runing operation will poll until the batch read finishes. batch_serving_lro.result() ###Output _____no_output_____ ###Markdown After the LRO finishes, you should be able to see the result from the [BigQuery console](https://console.cloud.google.com/bigquery), in the dataset created earlier. Cleaning upTo clean up all Google Cloud resources used in this project, you can [delete the Google Cloudproject](https://cloud.google.com/resource-manager/docs/creating-managing-projectsshutting_down_projects) you used for the tutorial.You can also keep the project but delete the featurestore: ###Code admin_client.delete_featurestore( request=featurestore_service_pb2.DeleteFeaturestoreRequest( name=admin_client.featurestore_path(PROJECT_ID, REGION, FEATURESTORE_ID), force=True, ) ).result() client.delete_dataset( DESTINATION_DATA_SET, delete_contents=True, not_found_ok=True ) # Make an API request. print("Deleted dataset '{}'.".format(DESTINATION_DATA_SET)) ###Output _____no_output_____ ###Markdown Run in Colab View on GitHub OverviewThis Colab introduces Feature Store, a managed cloud service for machine learning engineers and data scientists to store, serve, manage and share machine learning features at a large scale.This Colab assumes that you understand basic Google Cloud concepts such as [Project](https://cloud.google.com/storage/docs/projects), [Storage](https://cloud.google.com/storage) and [Vertex AI](https://cloud.google.com/vertex-ai/docs). Some machine learning knowledge is also helpful but not required. DatasetThis Colab uses a movie recommendation dataset as an example throughout all the sessions. The task is to train a model to predict if a user is going to watch a movie and serve this model online. ObjectiveIn this notebook, you will learn how to: * How to import your features into Feature Store. * How to serve online prediction requests using the imported features. * How to access imported features in offline jobs, such as training jobs. Costs This tutorial uses billable components of Google Cloud:* Vertex AI* Cloud Storage* Cloud BigtableLearn about [Vertex AIpricing](https://cloud.google.com/vertex-ai/pricing) and [Cloud Storagepricing](https://cloud.google.com/storage/pricing), and use the [PricingCalculator](https://cloud.google.com/products/calculator/)to generate a cost estimate based on your projected usage. Set up your local development environment**If you are using Colab or Google Cloud Notebooks**, your environment already meetsall the requirements to run this notebook. You can skip this step. **Otherwise**, make sure your environment meets this notebook's requirements.You need the following:* The Google Cloud SDK* Git* Python 3* virtualenv* Jupyter notebook running in a virtual environment with Python 3The Google Cloud guide to [Setting up a Python developmentenvironment](https://cloud.google.com/python/setup) and the [Jupyterinstallation guide](https://jupyter.org/install) provide detailed instructionsfor meeting these requirements. The following steps provide a condensed set ofinstructions:1. [Install and initialize the Cloud SDK.](https://cloud.google.com/sdk/docs/)1. [Install Python 3.](https://cloud.google.com/python/setupinstalling_python)1. [Install virtualenv](https://cloud.google.com/python/setupinstalling_and_using_virtualenv) and create a virtual environment that uses Python 3. Activate the virtual environment.1. To install Jupyter, run `pip3 install jupyter` on thecommand-line in a terminal shell.1. To launch Jupyter, run `jupyter notebook` on the command-line in a terminal shell.1. Open this notebook in the Jupyter Notebook Dashboard. Install additional packagesFor this Colab, you need the Vertex SDK for Python. ###Code import os # The Google Cloud Notebook product has specific requirements IS_GOOGLE_CLOUD_NOTEBOOK = os.path.exists("/opt/deeplearning/metadata/env_version") # Google Cloud Notebook requires dependencies to be installed with '--user' USER_FLAG = "" if IS_GOOGLE_CLOUD_NOTEBOOK: USER_FLAG = "--user" ! pip3 install {USER_FLAG} --upgrade git+https://github.com/googleapis/python-aiplatform.git@main-test ###Output _____no_output_____ ###Markdown Restart the kernelAfter you install the SDK, you need to restart the notebook kernel so it can find the packages. You can restart kernel from *Kernel -> Restart Kernel*, or running the following: ###Code # Automatically restart kernel after installs import os if not os.getenv("IS_TESTING"): # Automatically restart kernel after installs import IPython app = IPython.Application.instance() app.kernel.do_shutdown(True) ###Output _____no_output_____ ###Markdown Before you begin Select a GPU runtime**Make sure you're running this notebook in a GPU runtime if you have that option. In Colab, select "Runtime --> Change runtime type > GPU"** Set up your Google Cloud project**The following steps are required, regardless of your notebook environment.**1. [Select or create a Google Cloud project](https://console.cloud.google.com/cloud-resource-manager). When you first create an account, you get a $300 free credit towards your compute/storage costs.1. [Make sure that billing is enabled for your project](https://cloud.google.com/billing/docs/how-to/modify-project).1. [Enable the Vertex AI API and Compute Engine API](https://console.cloud.google.com/flows/enableapi?apiid=aiplatform.googleapis.com,compute_component).1. If you are running this notebook locally, you will need to install the [Cloud SDK](https://cloud.google.com/sdk).1. Enter your project ID in the cell below. Then run the cell to make sure theCloud SDK uses the right project for all the commands in this notebook.**Note**: Jupyter runs lines prefixed with `!` as shell commands, and it interpolates Python variables prefixed with `$` into these commands. Set your project ID**If you don't know your project ID**, you may be able to get your project ID using `gcloud`. ###Code import os PROJECT_ID = "" # Get your Google Cloud project ID from gcloud if not os.getenv("IS_TESTING"): shell_output=!gcloud config list --format 'value(core.project)' 2>/dev/null PROJECT_ID = shell_output[0] print("Project ID: ", PROJECT_ID) ###Output _____no_output_____ ###Markdown Otherwise, set your project ID here. ###Code if PROJECT_ID == "" or PROJECT_ID is None: PROJECT_ID = "python-docs-samples-tests" # @param {type:"string"} ###Output _____no_output_____ ###Markdown Authenticate your Google Cloud account**If you are using Google Cloud Notebooks**, your environment is alreadyauthenticated. Skip this step. **If you are using Colab**, run the cell below and follow the instructionswhen prompted to authenticate your account via oAuth.**Otherwise**, follow these steps:1. In the Cloud Console, go to the [**Create service account key** page](https://console.cloud.google.com/apis/credentials/serviceaccountkey).2. Click **Create service account**.3. In the **Service account name** field, enter a name, and click **Create**.4. In the **Grant this service account access to project** section, click the **Role** drop-down list. Type "Vertex AI"into the filter box, and select **Vertex AI Administrator**. Type "Storage Object Admin" into the filter box, and select **Storage Object Admin**.5. Click *Create*. A JSON file that contains your key downloads to yourlocal environment.6. Enter the path to your service account key as the`GOOGLE_APPLICATION_CREDENTIALS` variable in the cell below and run the cell. ###Code import os import sys # If you are running this notebook in Colab, run this cell and follow the # instructions to authenticate your GCP account. This provides access to your # Cloud Storage bucket and lets you submit training jobs and prediction # requests. # The Google Cloud Notebook product has specific requirements IS_GOOGLE_CLOUD_NOTEBOOK = os.path.exists("/opt/deeplearning/metadata/env_version") # If on Google Cloud Notebooks, then don't execute this code if not IS_GOOGLE_CLOUD_NOTEBOOK: if "google.colab" in sys.modules: from google.colab import auth as google_auth google_auth.authenticate_user() # If you are running this notebook locally, replace the string below with the # path to your service account key and run this cell to authenticate your GCP # account. elif not os.getenv("IS_TESTING"): %env GOOGLE_APPLICATION_CREDENTIALS '' ###Output _____no_output_____ ###Markdown Prepare for output Step 1. Create dataset for outputYou need a BigQuery dataset to host the output data in `us-central1`. Input the name of the dataset you want to created and specify the name of the table you want to store the output later. These will be used later in the notebook.**Make sure that the table name does NOT already exist**. ###Code from datetime import datetime from google.cloud import bigquery # Output dataset DESTINATION_DATA_SET = "movie_predictions" # @param {type:"string"} TIMESTAMP = datetime.now().strftime("%Y%m%d%H%M%S") DESTINATION_DATA_SET = "{prefix}_{timestamp}".format( prefix=DESTINATION_DATA_SET, timestamp=TIMESTAMP ) # Output table. Make sure that the table does NOT already exist; the BatchReadFeatureValues API cannot overwrite an existing table DESTINATION_TABLE_NAME = "training_data" # @param {type:"string"} DESTINATION_PATTERN = "bq://{project}.{dataset}.{table}" DESTINATION_TABLE_URI = DESTINATION_PATTERN.format( project=PROJECT_ID, dataset=DESTINATION_DATA_SET, table=DESTINATION_TABLE_NAME ) # Create dataset REGION = "us-central1" # @param {type:"string"} client = bigquery.Client() dataset_id = "{}.{}".format(client.project, DESTINATION_DATA_SET) dataset = bigquery.Dataset(dataset_id) dataset.location = REGION dataset = client.create_dataset(dataset, timeout=30) print("Created dataset {}.{}".format(client.project, dataset.dataset_id)) ###Output _____no_output_____ ###Markdown Import libraries and define constants ###Code # Other than project ID and featurestore ID and endpoints needs to be set API_ENDPOINT = "us-central1-aiplatform.googleapis.com" # @param {type:"string"} INPUT_CSV_FILE = "gs://cloud-samples-data-us-central1/ai-platform-unified/datasets/featurestore/movie_prediction.csv" from google.cloud.aiplatform_v1beta1 import ( FeaturestoreOnlineServingServiceClient, FeaturestoreServiceClient) from google.cloud.aiplatform_v1beta1.types import FeatureSelector, IdMatcher from google.cloud.aiplatform_v1beta1.types import \ entity_type as entity_type_pb2 from google.cloud.aiplatform_v1beta1.types import feature as feature_pb2 from google.cloud.aiplatform_v1beta1.types import \ featurestore as featurestore_pb2 from google.cloud.aiplatform_v1beta1.types import \ featurestore_monitoring as featurestore_monitoring_pb2 from google.cloud.aiplatform_v1beta1.types import \ featurestore_online_service as featurestore_online_service_pb2 from google.cloud.aiplatform_v1beta1.types import \ featurestore_service as featurestore_service_pb2 from google.cloud.aiplatform_v1beta1.types import io as io_pb2 from google.protobuf.duration_pb2 import Duration # Create admin_client for CRUD and data_client for reading feature values. admin_client = FeaturestoreServiceClient(client_options={"api_endpoint": API_ENDPOINT}) data_client = FeaturestoreOnlineServingServiceClient( client_options={"api_endpoint": API_ENDPOINT} ) # Represents featurestore resource path. BASE_RESOURCE_PATH = admin_client.common_location_path(PROJECT_ID, REGION) ###Output _____no_output_____ ###Markdown Terminology and Concept Featurestore Data modelFeature Store organizes data with the following 3 important hierarchical concepts:```Featurestore -> EntityType -> Feature```* **Featurestore**: the place to store your features* **EntityType**: under a Featurestore, an *EntityType* describes an object to be modeled, real one or virtual one.* **Feature**: under an EntityType, a *feature* describes an attribute of the EntityTypeIn the movie prediction example, you will create a featurestore called *movie_prediction*. This store has 2 entity types: *Users* and *Movies*. The Users entity type has the age, gender, and like genres features. The Movies entity type has the genres and average rating features. Create Featurestore and Define Schemas Create FeaturestoreThe method to create a featurestore returns a[long-running operation](https://google.aip.dev/151) (LRO). An LRO starts an asynchronous job. LROs are returned for other APImethods too, such as updating or deleting a featurestore. Calling`create_fs_lro.result()` waits for the LRO to complete. ###Code FEATURESTORE_ID = "movie_prediction_{timestamp}".format(timestamp=TIMESTAMP) create_lro = admin_client.create_featurestore( featurestore_service_pb2.CreateFeaturestoreRequest( parent=BASE_RESOURCE_PATH, featurestore_id=FEATURESTORE_ID, featurestore=featurestore_pb2.Featurestore( display_name="Featurestore for movie prediction", online_serving_config=featurestore_pb2.Featurestore.OnlineServingConfig( fixed_node_count=3 ), ), ) ) # Wait for LRO to finish and get the LRO result. print(create_lro.result()) ###Output _____no_output_____ ###Markdown You can use [GetFeaturestore](https://cloud.google.com/vertex-ai/featurestore/docs/reference/rpc/google.cloud.aiplatform.v1beta1google.cloud.aiplatform.v1beta1.FeaturestoreService.GetFeaturestore) or [ListFeaturestores](https://cloud.google.com/vertex-ai/featurestore/docs/reference/rpc/google.cloud.aiplatform.v1beta1google.cloud.aiplatform.v1beta1.FeaturestoreService.ListFeaturestores) to check if the Featurestore was successfully created. The following example gets the details of the Featurestore. ###Code admin_client.get_featurestore( name=admin_client.featurestore_path(PROJECT_ID, REGION, FEATURESTORE_ID) ) ###Output _____no_output_____ ###Markdown Create Entity TypeYou can specify a monitoring config which will by default be inherited by all Features under this EntityType. ###Code # Create users entity type with monitoring enabled. # All Features belonging to this EntityType will by default inherit the monitoring config. users_entity_type_lro = admin_client.create_entity_type( featurestore_service_pb2.CreateEntityTypeRequest( parent=admin_client.featurestore_path(PROJECT_ID, REGION, FEATURESTORE_ID), entity_type_id="users", entity_type=entity_type_pb2.EntityType( description="Users entity", monitoring_config=featurestore_monitoring_pb2.FeaturestoreMonitoringConfig( snapshot_analysis=featurestore_monitoring_pb2.FeaturestoreMonitoringConfig.SnapshotAnalysis( monitoring_interval=Duration(seconds=86400), # 1 day ), ), ), ) ) # Similarly, wait for EntityType creation operation. print(users_entity_type_lro.result()) # Create movies entity type without a monitoring configuration. movies_entity_type_lro = admin_client.create_entity_type( featurestore_service_pb2.CreateEntityTypeRequest( parent=admin_client.featurestore_path(PROJECT_ID, REGION, FEATURESTORE_ID), entity_type_id="movies", entity_type=entity_type_pb2.EntityType(description="Movies entity"), ) ) # Similarly, wait for EntityType creation operation. print(movies_entity_type_lro.result()) ###Output _____no_output_____ ###Markdown Create FeatureYou can also set a custom monitoring configuration at the Feature level, and view the properties and metrics in the console: sample [properties](https://storage.googleapis.com/cloud-samples-data/ai-platform-unified/datasets/featurestore/Feature%20Properties.png), sample [metrics](https://storage.googleapis.com/cloud-samples-data/ai-platform-unified/datasets/featurestore/Feature%20Snapshot%20Distribution.png). ###Code # Create features for the 'users' entity. # 'age' Feature leaves the monitoring config unset, which means it'll inherit the config from EntityType. # 'gender' Feature explicitly disables monitoring. # 'liked_genres' Feature is a STRING_ARRAY type, so it is automatically excluded from monitoring. # For Features with monitoring enabled, distribution statistics are updated periodically in the console. admin_client.batch_create_features( parent=admin_client.entity_type_path(PROJECT_ID, REGION, FEATURESTORE_ID, "users"), requests=[ featurestore_service_pb2.CreateFeatureRequest( feature=feature_pb2.Feature( value_type=feature_pb2.Feature.ValueType.INT64, description="User age", ), feature_id="age", ), featurestore_service_pb2.CreateFeatureRequest( feature=feature_pb2.Feature( value_type=feature_pb2.Feature.ValueType.STRING, description="User gender", monitoring_config=featurestore_monitoring_pb2.FeaturestoreMonitoringConfig( snapshot_analysis=featurestore_monitoring_pb2.FeaturestoreMonitoringConfig.SnapshotAnalysis( disabled=True, ), ), ), feature_id="gender", ), featurestore_service_pb2.CreateFeatureRequest( feature=feature_pb2.Feature( value_type=feature_pb2.Feature.ValueType.STRING_ARRAY, description="An array of genres that this user liked", ), feature_id="liked_genres", ), ], ).result() # Create features for movies type. # 'title' Feature enables monitoring. admin_client.batch_create_features( parent=admin_client.entity_type_path(PROJECT_ID, REGION, FEATURESTORE_ID, "movies"), requests=[ featurestore_service_pb2.CreateFeatureRequest( feature=feature_pb2.Feature( value_type=feature_pb2.Feature.ValueType.STRING, description="The title of the movie", monitoring_config=featurestore_monitoring_pb2.FeaturestoreMonitoringConfig( snapshot_analysis=featurestore_monitoring_pb2.FeaturestoreMonitoringConfig.SnapshotAnalysis( monitoring_interval=Duration(seconds=172800), # 2 days ), ), ), feature_id="title", ), featurestore_service_pb2.CreateFeatureRequest( feature=feature_pb2.Feature( value_type=feature_pb2.Feature.ValueType.STRING, description="The genres of the movie", ), feature_id="genres", ), featurestore_service_pb2.CreateFeatureRequest( feature=feature_pb2.Feature( value_type=feature_pb2.Feature.ValueType.DOUBLE, description="The average rating for the movie, range is [1.0-5.0]", ), feature_id="average_rating", ), ], ).result() ###Output _____no_output_____ ###Markdown Search created featuresWhile the [ListFeatures](https://cloud.google.com/vertex-ai/featurestore/docs/reference/rpc/google.cloud.aiplatform.v1beta1google.cloud.aiplatform.v1beta1.FeaturestoreService.ListFeatures) method allows you to easily view all features of a singleentity type, the [SearchFeatures](https://cloud.google.com/vertex-ai/featurestore/docs/reference/rpc/google.cloud.aiplatform.v1beta1google.cloud.aiplatform.v1beta1.FeaturestoreService.SearchFeatures) method searches across all featurestoresand entity types in a given location (such as `us-central1`). This can help you discover features that were created by someone else.You can query based on feature properties including feature ID, entity type ID,and feature description. You can also limit results by filtering on a specificfeaturestore, feature value type, and/or labels. ###Code # Search for all features across all featurestores. list(admin_client.search_features(location=BASE_RESOURCE_PATH)) ###Output _____no_output_____ ###Markdown Now, narrow down the search to features that are of type `DOUBLE` ###Code # Search for all features with value type `DOUBLE` list( admin_client.search_features( featurestore_service_pb2.SearchFeaturesRequest( location=BASE_RESOURCE_PATH, query="value_type=DOUBLE" ) ) ) ###Output _____no_output_____ ###Markdown Or, limit the search results to features with specific keywords in their ID and type. ###Code # Filter on feature value type and keywords. list( admin_client.search_features( featurestore_service_pb2.SearchFeaturesRequest( location=BASE_RESOURCE_PATH, query="feature_id:title AND value_type=STRING" ) ) ) ###Output _____no_output_____ ###Markdown Import Feature ValuesYou need to import feature values before you can use them for online/offline serving. In this step, you will learn how to import feature values by calling the ImportFeatureValues API using the Python SDK. Source Data Format and LayoutAs mentioned above, BigQuery table/Avro/CSV are supported. No matter what format you are using, each imported entity *must* have an ID; also, each entity can *optionally* have a timestamp, sepecifying when the feature values are generated. This Colab uses Avro as an input, located at this public [bucket](https://pantheon.corp.google.com/storage/browser/cloud-samples-data/ai-platform-unified/datasets/featurestore;tab=objects?project=storage-samples&prefix=&forceOnObjectsSortingFiltering=false). The Avro schemas are as follows:**For the Users entity**:```schema = { "type": "record", "name": "User", "fields": [ { "name":"user_id", "type":["null","string"] }, { "name":"age", "type":["null","long"] }, { "name":"gender", "type":["null","string"] }, { "name":"liked_genres", "type":{"type":"array","items":"string"} }, { "name":"update_time", "type":["null",{"type":"long","logicalType":"timestamp-micros"}] }, ] }```**For the Movies entity**```schema = { "type": "record", "name": "Movie", "fields": [ { "name":"movie_id", "type":["null","string"] }, { "name":"average_rating", "type":["null","double"] }, { "name":"title", "type":["null","string"] }, { "name":"genres", "type":["null","string"] }, { "name":"update_time", "type":["null",{"type":"long","logicalType":"timestamp-micros"}] }, ]}``` Import feature values for UsersWhen importing, specify the following in your request:* Data source format: BigQuery Table/Avro/CSV* Data source URL* Destination: featurestore/entity types/features to be imported ###Code import_users_request = featurestore_service_pb2.ImportFeatureValuesRequest( entity_type=admin_client.entity_type_path( PROJECT_ID, REGION, FEATURESTORE_ID, "users" ), avro_source=io_pb2.AvroSource( # Source gcs_source=io_pb2.GcsSource( uris=[ "gs://cloud-samples-data-us-central1/ai-platform-unified/datasets/featurestore/users.avro" ] ) ), entity_id_field="user_id", feature_specs=[ # Features featurestore_service_pb2.ImportFeatureValuesRequest.FeatureSpec(id="age"), featurestore_service_pb2.ImportFeatureValuesRequest.FeatureSpec(id="gender"), featurestore_service_pb2.ImportFeatureValuesRequest.FeatureSpec( id="liked_genres" ), ], feature_time_field="update_time", worker_count=10, ) # Start to import, will take a couple of minutes ingestion_lro = admin_client.import_feature_values(import_users_request) # Polls for the LRO status and prints when the LRO has completed ingestion_lro.result() ###Output _____no_output_____ ###Markdown Import feature values for MoviesSimilarly, import feature values for 'movies' into the featurestore. ###Code import_movie_request = featurestore_service_pb2.ImportFeatureValuesRequest( entity_type=admin_client.entity_type_path( PROJECT_ID, REGION, FEATURESTORE_ID, "movies" ), avro_source=io_pb2.AvroSource( gcs_source=io_pb2.GcsSource( uris=[ "gs://cloud-samples-data-us-central1/ai-platform-unified/datasets/featurestore/movies.avro" ] ) ), entity_id_field="movie_id", feature_specs=[ featurestore_service_pb2.ImportFeatureValuesRequest.FeatureSpec(id="title"), featurestore_service_pb2.ImportFeatureValuesRequest.FeatureSpec(id="genres"), featurestore_service_pb2.ImportFeatureValuesRequest.FeatureSpec( id="average_rating" ), ], feature_time_field="update_time", worker_count=10, ) # Start to import, will take a couple of minutes ingestion_lro = admin_client.import_feature_values(import_movie_request) # Polls for the LRO status and prints when the LRO has completed ingestion_lro.result() ###Output _____no_output_____ ###Markdown Online serving The[Online Serving APIs](https://cloud.google.com/vertex-ai/featurestore/docs/reference/rpc/google.cloud.aiplatform.v1beta1featurestoreonlineservingservice)lets you serve feature values for small batches of entities. It's designed for latency-sensitive service, such as online model prediction. For example, for a movie service, you might want to quickly shows movies that the current user would most likely watch by using online predictions. Read one entity per requestThe ReadFeatureValues API is used to read feature values of one entity; henceits custom HTTP verb is `readFeatureValues`. By default, the API will return the latest value of each feature, meaning the feature values with the most recent timestamp.To read feature values, specify the entity ID and features to read. The responsecontains a `header` and an `entity_view`. Each row of data in the `entity_view`contains one feature value, in the same order of features as listed in the response header. ###Code # Fetch the following 3 features. feature_selector = FeatureSelector( id_matcher=IdMatcher(ids=["age", "gender", "liked_genres"]) ) data_client.read_feature_values( featurestore_online_service_pb2.ReadFeatureValuesRequest( # Fetch from the following feature store/entity type entity_type=admin_client.entity_type_path( PROJECT_ID, REGION, FEATURESTORE_ID, "users" ), # Fetch the user features whose ID is "alice" entity_id="alice", feature_selector=feature_selector, ) ) ###Output _____no_output_____ ###Markdown Read multiple entities per requestTo read feature values from multiple entities, use theStreamingReadFeatureValues API, which is almost identical to the previousReadFeatureValues API. Note that fetching only a small number of entities is recomended when using this API due to its latency-sensitive nature. ###Code # Read the same set of features as above, but for multiple entities. response_stream = data_client.streaming_read_feature_values( featurestore_online_service_pb2.StreamingReadFeatureValuesRequest( entity_type=admin_client.entity_type_path( PROJECT_ID, REGION, FEATURESTORE_ID, "users" ), entity_ids=["alice", "bob"], feature_selector=feature_selector, ) ) # Iterate and process response. Note the first one is always the header only. for response in response_stream: print(response) ###Output _____no_output_____ ###Markdown Now that you have learned how to featch imported feature values for online serving, the next step is learning how to use imported feature values for offline use cases. Batch ServingBatch Serving is used to fetch a large batch of feature values for high-throughput, typically for training a model or batch prediction. In this section, you will learn how to prepare for training examples by calling the BatchReadFeatureValues API. Use case**The task** is to prepare a training dataset to train a model, which predicts if a given user will watch a given movie. To achieve this, you need 2 sets of input:* Features: you already imported into the featurestore.* Labels: the groud-truth data recorded that user X has watched movie Y.To be more specific, the ground-truth observation is described in Table 1 and the desired training dataset is described in Table 2. Each row in Table 2 is a result of joining the imported feature values from Feature Store according to the entity IDs and timestamps in Table 1. In this example, the `age`, `gender` and `liked_genres` features from `users` andthe `genres` and `average_rating` features from `movies` are chosen to train the model. Note that only positive examples are shown in these 2 tables, i.e., you can imagine there is a label column whose values are all `True`.BatchReadFeatureValues API takes Table 1 asinput, joins all required feature values from the featurestore, and returns Table 2 for training.Table 1. Ground-truth Datausers | movies | timestamp ----- | -------- | -------------------- alice | Cinema Paradiso | 2019-11-01T00:00:00Z bob | The Shining | 2019-11-15T18:09:43Z ... | ... | ... Table 2. Expected Training Data Generated by Batch Read API (Positive Samples)timestamp | entity_type_users | age | gender | liked_genres | entity_type_movies | genres | average_rating -------------------- | ----------------- | --------------- | ---------------- | -------------------- | -------- | --------- | ----- 2019-11-01T00:00:00Z | bob | 35 | M | [Action, Crime] | The Shining | Horror | 4.8 2019-11-01T00:00:00Z | alice | 55 | F | [Drama, Comedy] | Cinema Paradiso | Romance | 4.5 ... | ... | ... | ... | ... | ... | ... | ... Why timestamp?Note that there is a `timestamp` column in Table 2. This indicates the time when the ground-truth was observed. This is to avoid data inconsistency.For example, the 1st row of Table 2 indicates that user `alice` watched movie `Cinema Paradiso` on `2019-11-01T00:00:00Z`. The featurestore keeps feature values for all timestamps but fetches feature values *only* at the given timestamp during batch serving. On 2019-11-01 alice might be 54 years old, but now alice might be 56; featurestore returns `age=54` as alice's age, instead of `age=56`, because that is the value of the feature at the observation time. Similarly, other features might be time-variant as well, such as liked_genres. Batch Read Feature ValuesAssemble the request which specify the following info:* Where is the label data, i.e., Table 1.* Which features are read, i.e., the column names in Table 2.The output is stored in a BigQuery table. ###Code batch_serving_request = featurestore_service_pb2.BatchReadFeatureValuesRequest( # featurestore info featurestore=admin_client.featurestore_path(PROJECT_ID, REGION, FEATURESTORE_ID), # URL for the label data, i.e., Table 1. csv_read_instances=io_pb2.CsvSource( gcs_source=io_pb2.GcsSource(uris=[INPUT_CSV_FILE]) ), destination=featurestore_service_pb2.FeatureValueDestination( bigquery_destination=io_pb2.BigQueryDestination( # Output to BigQuery table created earlier output_uri=DESTINATION_TABLE_URI ) ), entity_type_specs=[ featurestore_service_pb2.BatchReadFeatureValuesRequest.EntityTypeSpec( # Read the 'age', 'gender' and 'liked_genres' features from the 'users' entity entity_type_id="users", feature_selector=FeatureSelector( id_matcher=IdMatcher( ids=[ # features, use "*" if you want to select all features within this entity type "age", "gender", "liked_genres", ] ) ), ), featurestore_service_pb2.BatchReadFeatureValuesRequest.EntityTypeSpec( # Read the 'average_rating' and 'genres' feature values of the 'movies' entity entity_type_id="movies", feature_selector=FeatureSelector( id_matcher=IdMatcher(ids=["average_rating", "genres"]) ), ), ], ) # Execute the batch read batch_serving_lro = admin_client.batch_read_feature_values(batch_serving_request) # This long runing operation will poll until the batch read finishes. batch_serving_lro.result() ###Output _____no_output_____ ###Markdown After the LRO finishes, you should be able to see the result from the [BigQuery console](https://console.cloud.google.com/bigquery), in the dataset created earlier. Cleaning upTo clean up all Google Cloud resources used in this project, you can [delete the Google Cloudproject](https://cloud.google.com/resource-manager/docs/creating-managing-projectsshutting_down_projects) you used for the tutorial.You can also keep the project but delete the featurestore: ###Code admin_client.delete_featurestore( request=featurestore_service_pb2.DeleteFeaturestoreRequest( name=admin_client.featurestore_path(PROJECT_ID, REGION, FEATURESTORE_ID), force=True, ) ).result() client.delete_dataset( DESTINATION_DATA_SET, delete_contents=True, not_found_ok=True ) # Make an API request. print("Deleted dataset '{}'.".format(DESTINATION_DATA_SET)) ###Output _____no_output_____
junk/hw7.ipynb
###Markdown A tiny bit better. ###Code pd.DataFrame(data=np.squeeze(lr.coef_), index=df_train_month_enc.columns, columns=["Coef"]).sort_values(by="Coef", ascending=False) ###Output _____no_output_____ ###Markdown Let's add some lag features. I'm arbitrarily deciding on 4 lags for `AveragePrice` (the most important feature). ###Code def add_lags(df): df = create_lag_feature(df, "AveragePrice", -1, ["region", "type"]) df = create_lag_feature(df, "AveragePrice", -2, ["region", "type"]) df = create_lag_feature(df, "AveragePrice", -3, ["region", "type"]) df = create_lag_feature(df, "AveragePrice", -4, ["region", "type"]) return df df_train_month_lag = add_lags(df_train_month) df_test_month_lag = add_lags(df_test_month) df_train_month_lag df_train_month_lag_enc, y_train, df_test_month_lag_enc, y_test = preprocess_features(df_train_month_lag, df_test_month_lag, numeric_features + ["AveragePrice_lag1", "AveragePrice_lag2", "AveragePrice_lag3", "AveragePrice_lag4"], categorical_features + ["Month"], keep_features, drop_features, target_feature) lr = Ridge() lr.fit(df_train_month_lag_enc, y_train); lr.score(df_train_month_lag_enc, y_train) lr.score(df_test_month_lag_enc, y_test) ###Output _____no_output_____ ###Markdown This did not seem to help. ###Code pd.DataFrame(data=np.squeeze(lr.coef_), index=df_train_month_lag_enc.columns, columns=["Coef"]).sort_values(by="Coef", ascending=False) ###Output _____no_output_____ ###Markdown We can also try a random forest: ###Code rf = RandomForestRegressor() rf.fit(df_train_month_lag_enc, y_train); rf.score(df_train_month_lag_enc, y_train) rf.score(df_test_month_lag_enc, y_test) ###Output _____no_output_____ ###Markdown For the random forest it may be helpful to model the difference between today and tomorrow. The linear model does not care about this because it just corresponds to changing the coefficient corresponding to `AveragePrice` by 1, but for the random forest it may help: ###Code rf = RandomForestRegressor() rf.fit(df_train_month_lag_enc, y_train - df_train_month_lag_enc["AveragePrice"]); r2_score(y_train, rf.predict(df_train_month_lag_enc) + df_train_month_lag_enc["AveragePrice"]) r2_score(y_test, rf.predict(df_test_month_lag_enc) + df_test_month_lag_enc["AveragePrice"]) ###Output _____no_output_____ ###Markdown This massively overfits when we do this shifting. Let's try a simpler model... ###Code rf = RandomForestRegressor(max_depth=8) rf.fit(df_train_month_lag_enc, y_train - df_train_month_lag_enc["AveragePrice"]); r2_score(y_train, rf.predict(df_train_month_lag_enc) + df_train_month_lag_enc["AveragePrice"]) r2_score(y_test, rf.predict(df_test_month_lag_enc) + df_test_month_lag_enc["AveragePrice"]) ###Output _____no_output_____ ###Markdown Doesn't realy help. Also, we can just confirm that this shifting has no effect on the linear model (well, a small effect because it's `Ridge` instead of `LinearRegression`, but small): ###Code lr = Ridge() lr.fit(df_train_month_lag_enc, y_train - df_train_month_lag_enc["AveragePrice"]); r2_score(y_train, lr.predict(df_train_month_lag_enc) + df_train_month_lag_enc["AveragePrice"]) r2_score(y_test, lr.predict(df_test_month_lag_enc) + df_test_month_lag_enc["AveragePrice"]) ###Output _____no_output_____ ###Markdown Indeed, this is essentially the same score we had before. Overall, adding the month helped, but adding the lagged price was surprisingly unhelpful. Perhaps lagged version of other features would have been better, or other representations of the time of year, or dealing with the regions and avocado types a bit more carefully. END SOLUTION 1(g)rubric={points:3}We talked a little bit about _seasonality_, which is the idea of a periodic component to the time series. For example, in Lecture 16 we attempted to capture this by encoding the month. Something we didn't discuss is _trends_, which are long-term variations in the quantity of interest. Aside from the effects of climate change, the amount of rain in Australia is likely to vary during the year but less likely to have long-term trends over the years. Avocado prices, on the other hand, could easily exhibit trends: for example avocados may just cost more in 2020 than they did in 2015.Briefly discuss in ~1 paragraph: to what extent, if any, was your model above able to account for seasonality? What about trends? BEGIN SOLUTIONI tried to take seasonality into account by having the month as an OHE variable. As far as trends are concerned, the year is also a numeric variable in the model, so it could learn that the price in 2017 is higher than in 2015, say. However, there are very few years in the training set (2015, 16, 17), so that is not a lot of data to learn from. Perhaps including the number of months since the start of the dataset, or something like that, would enable the model to do a bit better with trends. Nonetheless, extrapolating is very hard so we can't necessarily trust our models' handing of trend. ###Code pd.DataFrame(data=np.squeeze(lr.coef_), index=df_train_month_lag_enc.columns, columns=["Coef"]).loc["year"] ###Output _____no_output_____ ###Markdown CPSC 330 hw7 ###Code import numpy as np import pandas as pd ### BEGIN SOLUTION from sklearn.impute import SimpleImputer from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler, OrdinalEncoder, OneHotEncoder from sklearn.linear_model import Ridge from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import GridSearchCV, RandomizedSearchCV from sklearn.metrics import r2_score ### END SOLUTION ###Output _____no_output_____ ###Markdown Instructionsrubric={points:5}Follow the [homework submission instructions](https://github.students.cs.ubc.ca/cpsc330-2019w-t2/home/blob/master/docs/homework_instructions.md). Exercise 1: time series predictionIn this exercise we'll be looking at a [dataset of avocado prices](https://www.kaggle.com/neuromusic/avocado-prices). You should start by downloading the dataset. As usual, please do not commit it to your repos. ###Code df = pd.read_csv("avocado.csv", parse_dates=["Date"], index_col=0) df.head() df.shape df["Date"].min() df["Date"].max() ###Output _____no_output_____ ###Markdown It looks like the data ranges from the start of 2015 to March 2018 (~2 years ago), for a total of 3.25 years or so. Let's split the data so that we have a 6 months of test data. ###Code split_date = '20170925' df_train = df[df["Date"] <= split_date] df_test = df[df["Date"] > split_date] assert len(df_train) + len(df_test) == len(df) ###Output _____no_output_____ ###Markdown 1(a)rubric={points:3}In the Rain is Australia dataset from Lecture 16, we had different measurements for each Location. What about this dataset: for which categorical feature(s), if any, do we have separate measurements? Justify your answer by referencing the dataset. BEGIN SOLUTION ###Code df.sort_values(by="Date").head() ###Output _____no_output_____ ###Markdown From the above, we definitely see measurements on the same day at different regresion. Let's now group by region. ###Code df.sort_values(by=["region", "Date"]).head() ###Output _____no_output_____ ###Markdown From the above we see that, even in Albany, we have two measurements on the same date. This seems to be due to the type of avocado. ###Code df.sort_values(by=["region", "type", "Date"]).head() ###Output _____no_output_____ ###Markdown Great, now we have a sequence of dates with a single row per date. So, the answer is that we have a separate timeseries for each combination of `region` and `type`. END SOLUTION 1(b)rubric={points:3}In the Rain in Australia dataset, the measurements were generally equally spaced but with some exceptions. How about with this dataset? Justify your answer by referencing the dataset. BEGIN SOLUTION I think it's not unreasonable to do this on `df` rather than `df_train`, but either way is fine. ###Code for name, group in df.groupby(['region', 'type']): print("%-40s %s" % (name, group["Date"].sort_values().diff().min())) for name, group in df.groupby(['region', 'type']): print("%-40s %s" % (name, group["Date"].sort_values().diff().max())) ###Output ('Albany', 'conventional') 7 days 00:00:00 ('Albany', 'organic') 7 days 00:00:00 ('Atlanta', 'conventional') 7 days 00:00:00 ('Atlanta', 'organic') 7 days 00:00:00 ('BaltimoreWashington', 'conventional') 7 days 00:00:00 ('BaltimoreWashington', 'organic') 7 days 00:00:00 ('Boise', 'conventional') 7 days 00:00:00 ('Boise', 'organic') 7 days 00:00:00 ('Boston', 'conventional') 7 days 00:00:00 ('Boston', 'organic') 7 days 00:00:00 ('BuffaloRochester', 'conventional') 7 days 00:00:00 ('BuffaloRochester', 'organic') 7 days 00:00:00 ('California', 'conventional') 7 days 00:00:00 ('California', 'organic') 7 days 00:00:00 ('Charlotte', 'conventional') 7 days 00:00:00 ('Charlotte', 'organic') 7 days 00:00:00 ('Chicago', 'conventional') 7 days 00:00:00 ('Chicago', 'organic') 7 days 00:00:00 ('CincinnatiDayton', 'conventional') 7 days 00:00:00 ('CincinnatiDayton', 'organic') 7 days 00:00:00 ('Columbus', 'conventional') 7 days 00:00:00 ('Columbus', 'organic') 7 days 00:00:00 ('DallasFtWorth', 'conventional') 7 days 00:00:00 ('DallasFtWorth', 'organic') 7 days 00:00:00 ('Denver', 'conventional') 7 days 00:00:00 ('Denver', 'organic') 7 days 00:00:00 ('Detroit', 'conventional') 7 days 00:00:00 ('Detroit', 'organic') 7 days 00:00:00 ('GrandRapids', 'conventional') 7 days 00:00:00 ('GrandRapids', 'organic') 7 days 00:00:00 ('GreatLakes', 'conventional') 7 days 00:00:00 ('GreatLakes', 'organic') 7 days 00:00:00 ('HarrisburgScranton', 'conventional') 7 days 00:00:00 ('HarrisburgScranton', 'organic') 7 days 00:00:00 ('HartfordSpringfield', 'conventional') 7 days 00:00:00 ('HartfordSpringfield', 'organic') 7 days 00:00:00 ('Houston', 'conventional') 7 days 00:00:00 ('Houston', 'organic') 7 days 00:00:00 ('Indianapolis', 'conventional') 7 days 00:00:00 ('Indianapolis', 'organic') 7 days 00:00:00 ('Jacksonville', 'conventional') 7 days 00:00:00 ('Jacksonville', 'organic') 7 days 00:00:00 ('LasVegas', 'conventional') 7 days 00:00:00 ('LasVegas', 'organic') 7 days 00:00:00 ('LosAngeles', 'conventional') 7 days 00:00:00 ('LosAngeles', 'organic') 7 days 00:00:00 ('Louisville', 'conventional') 7 days 00:00:00 ('Louisville', 'organic') 7 days 00:00:00 ('MiamiFtLauderdale', 'conventional') 7 days 00:00:00 ('MiamiFtLauderdale', 'organic') 7 days 00:00:00 ('Midsouth', 'conventional') 7 days 00:00:00 ('Midsouth', 'organic') 7 days 00:00:00 ('Nashville', 'conventional') 7 days 00:00:00 ('Nashville', 'organic') 7 days 00:00:00 ('NewOrleansMobile', 'conventional') 7 days 00:00:00 ('NewOrleansMobile', 'organic') 7 days 00:00:00 ('NewYork', 'conventional') 7 days 00:00:00 ('NewYork', 'organic') 7 days 00:00:00 ('Northeast', 'conventional') 7 days 00:00:00 ('Northeast', 'organic') 7 days 00:00:00 ('NorthernNewEngland', 'conventional') 7 days 00:00:00 ('NorthernNewEngland', 'organic') 7 days 00:00:00 ('Orlando', 'conventional') 7 days 00:00:00 ('Orlando', 'organic') 7 days 00:00:00 ('Philadelphia', 'conventional') 7 days 00:00:00 ('Philadelphia', 'organic') 7 days 00:00:00 ('PhoenixTucson', 'conventional') 7 days 00:00:00 ('PhoenixTucson', 'organic') 7 days 00:00:00 ('Pittsburgh', 'conventional') 7 days 00:00:00 ('Pittsburgh', 'organic') 7 days 00:00:00 ('Plains', 'conventional') 7 days 00:00:00 ('Plains', 'organic') 7 days 00:00:00 ('Portland', 'conventional') 7 days 00:00:00 ('Portland', 'organic') 7 days 00:00:00 ('RaleighGreensboro', 'conventional') 7 days 00:00:00 ('RaleighGreensboro', 'organic') 7 days 00:00:00 ('RichmondNorfolk', 'conventional') 7 days 00:00:00 ('RichmondNorfolk', 'organic') 7 days 00:00:00 ('Roanoke', 'conventional') 7 days 00:00:00 ('Roanoke', 'organic') 7 days 00:00:00 ('Sacramento', 'conventional') 7 days 00:00:00 ('Sacramento', 'organic') 7 days 00:00:00 ('SanDiego', 'conventional') 7 days 00:00:00 ('SanDiego', 'organic') 7 days 00:00:00 ('SanFrancisco', 'conventional') 7 days 00:00:00 ('SanFrancisco', 'organic') 7 days 00:00:00 ('Seattle', 'conventional') 7 days 00:00:00 ('Seattle', 'organic') 7 days 00:00:00 ('SouthCarolina', 'conventional') 7 days 00:00:00 ('SouthCarolina', 'organic') 7 days 00:00:00 ('SouthCentral', 'conventional') 7 days 00:00:00 ('SouthCentral', 'organic') 7 days 00:00:00 ('Southeast', 'conventional') 7 days 00:00:00 ('Southeast', 'organic') 7 days 00:00:00 ('Spokane', 'conventional') 7 days 00:00:00 ('Spokane', 'organic') 7 days 00:00:00 ('StLouis', 'conventional') 7 days 00:00:00 ('StLouis', 'organic') 7 days 00:00:00 ('Syracuse', 'conventional') 7 days 00:00:00 ('Syracuse', 'organic') 7 days 00:00:00 ('Tampa', 'conventional') 7 days 00:00:00 ('Tampa', 'organic') 7 days 00:00:00 ('TotalUS', 'conventional') 7 days 00:00:00 ('TotalUS', 'organic') 7 days 00:00:00 ('West', 'conventional') 7 days 00:00:00 ('West', 'organic') 7 days 00:00:00 ('WestTexNewMexico', 'conventional') 7 days 00:00:00 ('WestTexNewMexico', 'organic') 21 days 00:00:00 ###Markdown It looks almost perfect - just organic avocados in WestTexNewMexico seems to be missing a couple measurements. ###Code name group["Date"].sort_values().diff().value_counts() ###Output _____no_output_____ ###Markdown So, in one case there's a 2-week jump, and in one cast there's a 3-week jump. ###Code group["Date"].sort_values().reset_index(drop=True).diff().sort_values() ###Output _____no_output_____ ###Markdown We can see the anomalies occur at index 48 and 127. (Note: I had to `reset_index` because the index was not unique to each row.) ###Code group["Date"].sort_values().reset_index(drop=True)[45:50] ###Output _____no_output_____ ###Markdown We can spot the first anomaly: a 2-week jump from Nov 29, 2015 to Dec 13, 2015. ###Code group["Date"].sort_values().reset_index(drop=True)[125:130] ###Output _____no_output_____ ###Markdown And we can spot the second anomaly: a 3-week jump from June 11, 2017 to July 2, 2017. END SOLUTION 1(c)rubric={points:1}In the Rain is Australia dataset, each location was a different place in Australia. For this dataset, look at the names of the regions. Do you think the regions are also all distinct, or are there overlapping regions? Justify your answer by referencing the data. BEGIN SOLUTION ###Code df["region"].unique() ###Output _____no_output_____ ###Markdown There seems to be a hierarchical structure here: `TotalUS` is split into bigger regions like `West`, `Southeast`, `Northeast`, `Midsouth`; and `California` is split into cities like `Sacramento`, `SanDiego`, `LosAngeles`. It's a bit hard to figure out what's going on. ###Code df.query("region == 'TotalUS' and type == 'conventional' and Date == '20150104'")["Total Volume"].values[0] df.query("region != 'TotalUS' and type == 'conventional' and Date == '20150104'")["Total Volume"].sum() ###Output _____no_output_____ ###Markdown Since the individual regions sum up to more than the total US, it seems that some of the other regions are double-counted, which is consistent with a hierarchical structure. For example, Los Angeles is probalby double counted because it's within `LosAngeles` but also within `California`. What a mess! END SOLUTION We will use the entire dataset despite any location-based weirdness uncovered in the previous part.We will be trying to forecast the avocado price, which is the `AveragePrice` column. The function below is adapted from Lecture 16, with some improvements. ###Code def create_lag_feature(df, orig_feature, lag, groupby, new_feature_name=None, clip=False): """ Creates a new feature that's a lagged version of an existing one. NOTE: assumes df is already sorted by the time columns and has unique indices. Parameters ---------- df : pandas.core.frame.DataFrame The dataset. orig_feature : str The column name of the feature we're copying lag : int The lag; negative lag means values from the past, positive lag means values from the future groupby : list Column(s) to group by in case df contains multiple time series new_feature_name : str Override the default name of the newly created column clip : bool If True, remove rows with a NaN values for the new feature Returns ------- pandas.core.frame.DataFrame A new dataframe with the additional column added. """ if new_feature_name is None: if lag < 0: new_feature_name = "%s_lag%d" % (orig_feature, -lag) else: new_feature_name = "%s_ahead%d" % (orig_feature, lag) new_df = df.assign(**{new_feature_name : np.nan}) for name, group in new_df.groupby(groupby): if lag < 0: # take values from the past new_df.loc[group.index[-lag:],new_feature_name] = group.iloc[:lag][orig_feature].values else: # take values from the future new_df.loc[group.index[:-lag], new_feature_name] = group.iloc[lag:][orig_feature].values if clip: new_df = new_df.dropna(subset=[new_feature_name]) return new_df ###Output _____no_output_____ ###Markdown We first sort our dataframe properly: ###Code df_sort = df.sort_values(by=["region", "type", "Date"]).reset_index(drop=True) df_sort ###Output _____no_output_____ ###Markdown We then call `create_lag_feature`. This creates a new column in the dataset `AveragePriceNextWeek`, which is the following week's `AveragePrice`. We have set `clip=True` which means it will remove rows where the target would be missing. ###Code df_hastarget = create_lag_feature(df_sort, "AveragePrice", +1, ["region", "type"], "AveragePriceNextWeek", clip=True) df_hastarget ###Output _____no_output_____ ###Markdown I will now split the data: ###Code df_train = df_hastarget[df_hastarget["Date"] <= split_date] df_test = df_hastarget[df_hastarget["Date"] > split_date] ###Output _____no_output_____ ###Markdown 1(d)rubric={points:1}Why was it reasonable for me to do this operation _before_ splitting the data, despite the fact that this usually constitutes a violation of the Golden Rule? BEGIN SOLUTIONBecause we were only looking at the dates and creating the future feature. The difference is that the very last time point in our training set now contains the average price from the first time point in our test set. This is a realistic scenario if we wre actually using this model to forecast, so it's not a major concern. END SOLUTION 1(e)rubric={points:1}Next we will want to build some models to forecast the average avocado price a week in advance. Before we start with any ML, let's try a baseline: just predicting the previous week's `AveragePrice`. What $R^2$ do you get with this approach? BEGIN SOLUTION ###Code r2_score(df_train["AveragePriceNextWeek"], df_train["AveragePrice"]) r2_score(df_test["AveragePriceNextWeek"], df_test["AveragePrice"]) ###Output _____no_output_____ ###Markdown Interesting that this is a less effective prediction strategy in the later part of the dataset. I guess that means the price was fluctuating more in late 2017 / early 2018? END SOLUTION 1(f)rubric={points:10}Build some models to forecast the average avocado price. Experiment with a few approachs for encoding the date. Justify the decisions you make. Which approach worked best? Report your test score and briefly discuss your results.Benchmark: you should be able to achieve $R^2$ of at least 0.79 on the test set. I got to 0.80, but not beyond that. Let me know if you do better!Note: because we only have 2 splits here, we need to be a bit wary of overfitting on the test set. Try not to test on it a ridiculous number of times. If you are interested in some proper ways of dealing with this, see for example sklearn's [TimeSeriesSplit](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.TimeSeriesSplit.html), which is like cross-validation for time series data. BEGIN SOLUTION ###Code df_train.head() (df_train.loc[:, "Small Bags": "XLarge Bags"].sum(axis=1) - df_train["Total Bags"]).abs().max() ###Output _____no_output_____ ###Markdown It seems that `Total Bags` is (approximately) the sum of the other 3 bag features, so I will drop `Total Bags`. ###Code (df_train.loc[:, "4046": "4770"].sum(axis=1) - df_train["Total Volume"]).abs().max() ###Output _____no_output_____ ###Markdown It seems that `Total Volume` is _not_ the sum of the 3 avocado types, so I will keep all 4 columns. ###Code df_train.info() ###Output <class 'pandas.core.frame.DataFrame'> Int64Index: 15441 entries, 0 to 18222 Data columns (total 14 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Date 15441 non-null datetime64[ns] 1 AveragePrice 15441 non-null float64 2 Total Volume 15441 non-null float64 3 4046 15441 non-null float64 4 4225 15441 non-null float64 5 4770 15441 non-null float64 6 Total Bags 15441 non-null float64 7 Small Bags 15441 non-null float64 8 Large Bags 15441 non-null float64 9 XLarge Bags 15441 non-null float64 10 type 15441 non-null object 11 year 15441 non-null int64 12 region 15441 non-null object 13 AveragePriceNextWeek 15441 non-null float64 dtypes: datetime64[ns](1), float64(10), int64(1), object(2) memory usage: 1.8+ MB ###Markdown It seems there are no null values, so I will not do any imputation. Will plot a single time series for exploration purposes: ###Code df_train.query("region == 'TotalUS'").set_index("Date").groupby("type")["AveragePrice"].plot(legend=True); df_train.query("region == 'TotalUS' and type == 'conventional'").plot(x="Date", y="Total Volume"); ###Output _____no_output_____ ###Markdown We see some seasonality in the total volume, but not much in the average price - interesting. I will not scale the `AveragePrice` because I am not scaling `AveragePriceNextWeek` either, and it may be helpful to keep them the same. Alternatively, it may have been effective to predict the _change_ in price instead of next's week's price. ###Code numeric_features = ["Total Volume", "4046", "4225", "4770", "Small Bags", "Large Bags", "XLarge Bags", "year"] categorical_features = ["type", "region"] keep_features = ["AveragePrice"] drop_features = ["Date", "Total Bags"] target_feature = "AveragePriceNextWeek" ###Output _____no_output_____ ###Markdown Next, I grab the `preprocess_features` function from Lecture 16, with a minor modification to allow un-transformed features via `keep_features`: ###Code def preprocess_features(df_train, df_test, numeric_features, categorical_features, keep_features, drop_features, target_feature): all_features = numeric_features + categorical_features + keep_features + drop_features + [target_feature] if set(df_train.columns) != set(all_features): print("Missing columns", set(df_train.columns) - set(all_features)) print("Extra columns", set(all_features) - set(df_train.columns)) raise Exception("Columns do not match") # Put the columns in the order we want df_train = df_train[all_features] df_test = df_test[all_features] numeric_transformer = Pipeline([ ('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler()) ]) categorical_transformer = Pipeline([ ('imputer', SimpleImputer(strategy='most_frequent')), ('onehot', OneHotEncoder(sparse=False, drop='first')) ]) preprocessor = ColumnTransformer([ ('numeric', numeric_transformer, numeric_features), ('categorical', categorical_transformer, categorical_features) ], remainder='passthrough') preprocessor.fit(df_train); if len(categorical_features) > 0: ohe = preprocessor.named_transformers_['categorical'].named_steps['onehot'] ohe_feature_names = list(ohe.get_feature_names(categorical_features)) new_columns = numeric_features + ohe_feature_names + keep_features + drop_features + [target_feature] else: new_columns = all_features X_train_enc = pd.DataFrame(preprocessor.transform(df_train), index=df_train.index, columns=new_columns) X_test_enc = pd.DataFrame(preprocessor.transform(df_test), index=df_test.index, columns=new_columns) X_train_enc = X_train_enc.drop(columns=drop_features + [target_feature]) X_test_enc = X_test_enc.drop( columns=drop_features + [target_feature]) y_train = df_train[target_feature] y_test = df_test[ target_feature] return X_train_enc, y_train, X_test_enc, y_test df_train_enc, y_train, df_test_enc, y_test = preprocess_features(df_train, df_test, numeric_features, categorical_features, keep_features, drop_features, target_feature) df_train_enc.head() lr = Ridge() lr.fit(df_train_enc, y_train); lr.score(df_train_enc, y_train) lr.score(df_test_enc, y_test) lr_coef = pd.DataFrame(data=np.squeeze(lr.coef_), index=df_train_enc.columns, columns=["Coef"]) lr_coef.sort_values(by="Coef", ascending=False) ###Output _____no_output_____ ###Markdown This is not a very impressive showing. We're doing almost the same as the baseline. Let's see if encoding the date helps at all. We'll try to OHE the month. ###Code df_train_month = df_train.assign(Month=df_train["Date"].apply(lambda x: x.month)) df_test_month = df_test.assign( Month=df_test[ "Date"].apply(lambda x: x.month)) df_train_month_enc, y_train, df_test_month_enc, y_test = preprocess_features(df_train_month, df_test_month, numeric_features, categorical_features + ["Month"], keep_features, drop_features, target_feature) df_train_month_enc.head() lr = Ridge() lr.fit(df_train_month_enc, y_train); lr.score(df_train_month_enc, y_train) lr.score(df_test_month_enc, y_test) ###Output _____no_output_____ ###Markdown A tiny bit better. ###Code pd.DataFrame(data=np.squeeze(lr.coef_), index=df_train_month_enc.columns, columns=["Coef"]).sort_values(by="Coef", ascending=False) ###Output _____no_output_____ ###Markdown Let's add some lag features. I'm arbitrarily deciding on 4 lags for `AveragePrice` (the most important feature). ###Code def add_lags(df): df = create_lag_feature(df, "AveragePrice", -1, ["region", "type"]) df = create_lag_feature(df, "AveragePrice", -2, ["region", "type"]) df = create_lag_feature(df, "AveragePrice", -3, ["region", "type"]) df = create_lag_feature(df, "AveragePrice", -4, ["region", "type"]) return df df_train_month_lag = add_lags(df_train_month) df_test_month_lag = add_lags(df_test_month) df_train_month_lag df_train_month_lag_enc, y_train, df_test_month_lag_enc, y_test = preprocess_features(df_train_month_lag, df_test_month_lag, numeric_features + ["AveragePrice_lag1", "AveragePrice_lag2", "AveragePrice_lag3", "AveragePrice_lag4"], categorical_features + ["Month"], keep_features, drop_features, target_feature) lr = Ridge() lr.fit(df_train_month_lag_enc, y_train); lr.score(df_train_month_lag_enc, y_train) lr.score(df_test_month_lag_enc, y_test) ###Output _____no_output_____ ###Markdown This did not seem to help. ###Code pd.DataFrame(data=np.squeeze(lr.coef_), index=df_train_month_lag_enc.columns, columns=["Coef"]).sort_values(by="Coef", ascending=False) ###Output _____no_output_____ ###Markdown We can also try a random forest: ###Code rf = RandomForestRegressor() rf.fit(df_train_month_lag_enc, y_train); rf.score(df_train_month_lag_enc, y_train) rf.score(df_test_month_lag_enc, y_test) ###Output _____no_output_____ ###Markdown For the random forest it may be helpful to model the difference between today and tomorrow. The linear model does not care about this because it just corresponds to changing the coefficient corresponding to `AveragePrice` by 1, but for the random forest it may help: ###Code rf = RandomForestRegressor() rf.fit(df_train_month_lag_enc, y_train - df_train_month_lag_enc["AveragePrice"]); r2_score(y_train, rf.predict(df_train_month_lag_enc) + df_train_month_lag_enc["AveragePrice"]) r2_score(y_test, rf.predict(df_test_month_lag_enc) + df_test_month_lag_enc["AveragePrice"]) ###Output _____no_output_____ ###Markdown This massively overfits when we do this shifting. Let's try a simpler model... ###Code rf = RandomForestRegressor(max_depth=8) rf.fit(df_train_month_lag_enc, y_train - df_train_month_lag_enc["AveragePrice"]); r2_score(y_train, rf.predict(df_train_month_lag_enc) + df_train_month_lag_enc["AveragePrice"]) r2_score(y_test, rf.predict(df_test_month_lag_enc) + df_test_month_lag_enc["AveragePrice"]) ###Output _____no_output_____ ###Markdown Doesn't realy help. Also, we can just confirm that this shifting has no effect on the linear model (well, a small effect because it's `Ridge` instead of `LinearRegression`, but small): ###Code lr = Ridge() lr.fit(df_train_month_lag_enc, y_train - df_train_month_lag_enc["AveragePrice"]); r2_score(y_train, lr.predict(df_train_month_lag_enc) + df_train_month_lag_enc["AveragePrice"]) r2_score(y_test, lr.predict(df_test_month_lag_enc) + df_test_month_lag_enc["AveragePrice"]) ###Output _____no_output_____ ###Markdown Indeed, this is essentially the same score we had before. Overall, adding the month helped, but adding the lagged price was surprisingly unhelpful. Perhaps lagged version of other features would have been better, or other representations of the time of year, or dealing with the regions and avocado types a bit more carefully. END SOLUTION 1(g)rubric={points:3}We talked a little bit about _seasonality_, which is the idea of a periodic component to the time series. For example, in Lecture 16 we attempted to capture this by encoding the month. Something we didn't discuss is _trends_, which are long-term variations in the quantity of interest. Aside from the effects of climate change, the amount of rain in Australia is likely to vary during the year but less likely to have long-term trends over the years. Avocado prices, on the other hand, could easily exhibit trends: for example avocados may just cost more in 2020 than they did in 2015.Briefly discuss in ~1 paragraph: to what extent, if any, was your model above able to account for seasonality? What about trends? BEGIN SOLUTIONI tried to take seasonality into account by having the month as an OHE variable. As far as trends are concerned, the year is also a numeric variable in the model, so it could learn that the price in 2017 is higher than in 2015, say. However, there are very few years in the training set (2015, 16, 17), so that is not a lot of data to learn from. Perhaps including the number of months since the start of the dataset, or something like that, would enable the model to do a bit better with trends. Nonetheless, extrapolating is very hard so we can't necessarily trust our models' handing of trend. ###Code pd.DataFrame(data=np.squeeze(lr.coef_), index=df_train_month_lag_enc.columns, columns=["Coef"]).loc["year"] ###Output _____no_output_____ ###Markdown CPSC 330 hw7 ###Code import numpy as np import pandas as pd ### BEGIN SOLUTION from sklearn.impute import SimpleImputer from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler, OrdinalEncoder, OneHotEncoder from sklearn.linear_model import Ridge from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import GridSearchCV, RandomizedSearchCV from sklearn.metrics import r2_score ### END SOLUTION ###Output _____no_output_____ ###Markdown Instructionsrubric={points:5}Follow the [homework submission instructions](https://github.students.cs.ubc.ca/cpsc330-2019w-t2/home/blob/master/docs/homework_instructions.md). Exercise 1: time series predictionIn this exercise we'll be looking at a [dataset of avocado prices](https://www.kaggle.com/neuromusic/avocado-prices). You should start by downloading the dataset. As usual, please do not commit it to your repos. ###Code df = pd.read_csv("avocado.csv", parse_dates=["Date"], index_col=0) df.head() df.shape df["Date"].min() df["Date"].max() ###Output _____no_output_____ ###Markdown It looks like the data ranges from the start of 2015 to March 2018 (~2 years ago), for a total of 3.25 years or so. Let's split the data so that we have a 6 months of test data. ###Code split_date = '20170925' df_train = df[df["Date"] <= split_date] df_test = df[df["Date"] > split_date] assert len(df_train) + len(df_test) == len(df) ###Output _____no_output_____ ###Markdown 1(a)rubric={points:3}In the Rain is Australia dataset from Lecture 16, we had different measurements for each Location. What about this dataset: for which categorical feature(s), if any, do we have separate measurements? Justify your answer by referencing the dataset. BEGIN SOLUTION ###Code df.sort_values(by="Date").head() ###Output _____no_output_____ ###Markdown From the above, we definitely see measurements on the same day at different regresion. Let's now group by region. ###Code df.sort_values(by=["region", "Date"]).head() ###Output _____no_output_____ ###Markdown From the above we see that, even in Albany, we have two measurements on the same date. This seems to be due to the type of avocado. ###Code df.sort_values(by=["region", "type", "Date"]).head() ###Output _____no_output_____ ###Markdown Great, now we have a sequence of dates with a single row per date. So, the answer is that we have a separate timeseries for each combination of `region` and `type`. END SOLUTION 1(b)rubric={points:3}In the Rain in Australia dataset, the measurements were generally equally spaced but with some exceptions. How about with this dataset? Justify your answer by referencing the dataset. BEGIN SOLUTION I think it's not unreasonable to do this on `df` rather than `df_train`, but either way is fine. ###Code for name, group in df.groupby(['region', 'type']): print("%-40s %s" % (name, group["Date"].sort_values().diff().min())) for name, group in df.groupby(['region', 'type']): print("%-40s %s" % (name, group["Date"].sort_values().diff().max())) ###Output ('Albany', 'conventional') 7 days 00:00:00 ('Albany', 'organic') 7 days 00:00:00 ('Atlanta', 'conventional') 7 days 00:00:00 ('Atlanta', 'organic') 7 days 00:00:00 ('BaltimoreWashington', 'conventional') 7 days 00:00:00 ('BaltimoreWashington', 'organic') 7 days 00:00:00 ('Boise', 'conventional') 7 days 00:00:00 ('Boise', 'organic') 7 days 00:00:00 ('Boston', 'conventional') 7 days 00:00:00 ('Boston', 'organic') 7 days 00:00:00 ('BuffaloRochester', 'conventional') 7 days 00:00:00 ('BuffaloRochester', 'organic') 7 days 00:00:00 ('California', 'conventional') 7 days 00:00:00 ('California', 'organic') 7 days 00:00:00 ('Charlotte', 'conventional') 7 days 00:00:00 ('Charlotte', 'organic') 7 days 00:00:00 ('Chicago', 'conventional') 7 days 00:00:00 ('Chicago', 'organic') 7 days 00:00:00 ('CincinnatiDayton', 'conventional') 7 days 00:00:00 ('CincinnatiDayton', 'organic') 7 days 00:00:00 ('Columbus', 'conventional') 7 days 00:00:00 ('Columbus', 'organic') 7 days 00:00:00 ('DallasFtWorth', 'conventional') 7 days 00:00:00 ('DallasFtWorth', 'organic') 7 days 00:00:00 ('Denver', 'conventional') 7 days 00:00:00 ('Denver', 'organic') 7 days 00:00:00 ('Detroit', 'conventional') 7 days 00:00:00 ('Detroit', 'organic') 7 days 00:00:00 ('GrandRapids', 'conventional') 7 days 00:00:00 ('GrandRapids', 'organic') 7 days 00:00:00 ('GreatLakes', 'conventional') 7 days 00:00:00 ('GreatLakes', 'organic') 7 days 00:00:00 ('HarrisburgScranton', 'conventional') 7 days 00:00:00 ('HarrisburgScranton', 'organic') 7 days 00:00:00 ('HartfordSpringfield', 'conventional') 7 days 00:00:00 ('HartfordSpringfield', 'organic') 7 days 00:00:00 ('Houston', 'conventional') 7 days 00:00:00 ('Houston', 'organic') 7 days 00:00:00 ('Indianapolis', 'conventional') 7 days 00:00:00 ('Indianapolis', 'organic') 7 days 00:00:00 ('Jacksonville', 'conventional') 7 days 00:00:00 ('Jacksonville', 'organic') 7 days 00:00:00 ('LasVegas', 'conventional') 7 days 00:00:00 ('LasVegas', 'organic') 7 days 00:00:00 ('LosAngeles', 'conventional') 7 days 00:00:00 ('LosAngeles', 'organic') 7 days 00:00:00 ('Louisville', 'conventional') 7 days 00:00:00 ('Louisville', 'organic') 7 days 00:00:00 ('MiamiFtLauderdale', 'conventional') 7 days 00:00:00 ('MiamiFtLauderdale', 'organic') 7 days 00:00:00 ('Midsouth', 'conventional') 7 days 00:00:00 ('Midsouth', 'organic') 7 days 00:00:00 ('Nashville', 'conventional') 7 days 00:00:00 ('Nashville', 'organic') 7 days 00:00:00 ('NewOrleansMobile', 'conventional') 7 days 00:00:00 ('NewOrleansMobile', 'organic') 7 days 00:00:00 ('NewYork', 'conventional') 7 days 00:00:00 ('NewYork', 'organic') 7 days 00:00:00 ('Northeast', 'conventional') 7 days 00:00:00 ('Northeast', 'organic') 7 days 00:00:00 ('NorthernNewEngland', 'conventional') 7 days 00:00:00 ('NorthernNewEngland', 'organic') 7 days 00:00:00 ('Orlando', 'conventional') 7 days 00:00:00 ('Orlando', 'organic') 7 days 00:00:00 ('Philadelphia', 'conventional') 7 days 00:00:00 ('Philadelphia', 'organic') 7 days 00:00:00 ('PhoenixTucson', 'conventional') 7 days 00:00:00 ('PhoenixTucson', 'organic') 7 days 00:00:00 ('Pittsburgh', 'conventional') 7 days 00:00:00 ('Pittsburgh', 'organic') 7 days 00:00:00 ('Plains', 'conventional') 7 days 00:00:00 ('Plains', 'organic') 7 days 00:00:00 ('Portland', 'conventional') 7 days 00:00:00 ('Portland', 'organic') 7 days 00:00:00 ('RaleighGreensboro', 'conventional') 7 days 00:00:00 ('RaleighGreensboro', 'organic') 7 days 00:00:00 ('RichmondNorfolk', 'conventional') 7 days 00:00:00 ('RichmondNorfolk', 'organic') 7 days 00:00:00 ('Roanoke', 'conventional') 7 days 00:00:00 ('Roanoke', 'organic') 7 days 00:00:00 ('Sacramento', 'conventional') 7 days 00:00:00 ('Sacramento', 'organic') 7 days 00:00:00 ('SanDiego', 'conventional') 7 days 00:00:00 ('SanDiego', 'organic') 7 days 00:00:00 ('SanFrancisco', 'conventional') 7 days 00:00:00 ('SanFrancisco', 'organic') 7 days 00:00:00 ('Seattle', 'conventional') 7 days 00:00:00 ('Seattle', 'organic') 7 days 00:00:00 ('SouthCarolina', 'conventional') 7 days 00:00:00 ('SouthCarolina', 'organic') 7 days 00:00:00 ('SouthCentral', 'conventional') 7 days 00:00:00 ('SouthCentral', 'organic') 7 days 00:00:00 ('Southeast', 'conventional') 7 days 00:00:00 ('Southeast', 'organic') 7 days 00:00:00 ('Spokane', 'conventional') 7 days 00:00:00 ('Spokane', 'organic') 7 days 00:00:00 ('StLouis', 'conventional') 7 days 00:00:00 ('StLouis', 'organic') 7 days 00:00:00 ('Syracuse', 'conventional') 7 days 00:00:00 ('Syracuse', 'organic') 7 days 00:00:00 ('Tampa', 'conventional') 7 days 00:00:00 ('Tampa', 'organic') 7 days 00:00:00 ('TotalUS', 'conventional') 7 days 00:00:00 ('TotalUS', 'organic') 7 days 00:00:00 ('West', 'conventional') 7 days 00:00:00 ('West', 'organic') 7 days 00:00:00 ('WestTexNewMexico', 'conventional') 7 days 00:00:00 ('WestTexNewMexico', 'organic') 21 days 00:00:00 ###Markdown It looks almost perfect - just organic avocados in WestTexNewMexico seems to be missing a couple measurements. ###Code name group["Date"].sort_values().diff().value_counts() ###Output _____no_output_____ ###Markdown So, in one case there's a 2-week jump, and in one cast there's a 3-week jump. ###Code group["Date"].sort_values().reset_index(drop=True).diff().sort_values() ###Output _____no_output_____ ###Markdown We can see the anomalies occur at index 48 and 127. (Note: I had to `reset_index` because the index was not unique to each row.) ###Code group["Date"].sort_values().reset_index(drop=True)[45:50] ###Output _____no_output_____ ###Markdown We can spot the first anomaly: a 2-week jump from Nov 29, 2015 to Dec 13, 2015. ###Code group["Date"].sort_values().reset_index(drop=True)[125:130] ###Output _____no_output_____ ###Markdown And we can spot the second anomaly: a 3-week jump from June 11, 2017 to July 2, 2017. END SOLUTION 1(c)rubric={points:1}In the Rain is Australia dataset, each location was a different place in Australia. For this dataset, look at the names of the regions. Do you think the regions are also all distinct, or are there overlapping regions? Justify your answer by referencing the data. BEGIN SOLUTION ###Code df["region"].unique() ###Output _____no_output_____ ###Markdown There seems to be a hierarchical structure here: `TotalUS` is split into bigger regions like `West`, `Southeast`, `Northeast`, `Midsouth`; and `California` is split into cities like `Sacramento`, `SanDiego`, `LosAngeles`. It's a bit hard to figure out what's going on. ###Code df.query("region == 'TotalUS' and type == 'conventional' and Date == '20150104'")["Total Volume"].values[0] df.query("region != 'TotalUS' and type == 'conventional' and Date == '20150104'")["Total Volume"].sum() ###Output _____no_output_____ ###Markdown Since the individual regions sum up to more than the total US, it seems that some of the other regions are double-counted, which is consistent with a hierarchical structure. For example, Los Angeles is probalby double counted because it's within `LosAngeles` but also within `California`. What a mess! END SOLUTION We will use the entire dataset despite any location-based weirdness uncovered in the previous part.We will be trying to forecast the avocado price, which is the `AveragePrice` column. The function below is adapted from Lecture 16, with some improvements. ###Code def create_lag_feature(df, orig_feature, lag, groupby, new_feature_name=None, clip=False): """ Creates a new feature that's a lagged version of an existing one. NOTE: assumes df is already sorted by the time columns and has unique indices. Parameters ---------- df : pandas.core.frame.DataFrame The dataset. orig_feature : str The column name of the feature we're copying lag : int The lag; negative lag means values from the past, positive lag means values from the future groupby : list Column(s) to group by in case df contains multiple time series new_feature_name : str Override the default name of the newly created column clip : bool If True, remove rows with a NaN values for the new feature Returns ------- pandas.core.frame.DataFrame A new dataframe with the additional column added. """ if new_feature_name is None: if lag < 0: new_feature_name = "%s_lag%d" % (orig_feature, -lag) else: new_feature_name = "%s_ahead%d" % (orig_feature, lag) new_df = df.assign(**{new_feature_name : np.nan}) for name, group in new_df.groupby(groupby): if lag < 0: # take values from the past new_df.loc[group.index[-lag:],new_feature_name] = group.iloc[:lag][orig_feature].values else: # take values from the future new_df.loc[group.index[:-lag], new_feature_name] = group.iloc[lag:][orig_feature].values if clip: new_df = new_df.dropna(subset=[new_feature_name]) return new_df ###Output _____no_output_____ ###Markdown We first sort our dataframe properly: ###Code df_sort = df.sort_values(by=["region", "type", "Date"]).reset_index(drop=True) df_sort ###Output _____no_output_____ ###Markdown We then call `create_lag_feature`. This creates a new column in the dataset `AveragePriceNextWeek`, which is the following week's `AveragePrice`. We have set `clip=True` which means it will remove rows where the target would be missing. ###Code df_hastarget = create_lag_feature(df_sort, "AveragePrice", +1, ["region", "type"], "AveragePriceNextWeek", clip=True) df_hastarget ###Output _____no_output_____ ###Markdown I will now split the data: ###Code df_train = df_hastarget[df_hastarget["Date"] <= split_date] df_test = df_hastarget[df_hastarget["Date"] > split_date] ###Output _____no_output_____ ###Markdown 1(d)rubric={points:1}Why was it reasonable for me to do this operation _before_ splitting the data, despite the fact that this usually constitutes a violation of the Golden Rule? BEGIN SOLUTIONBecause we were only looking at the dates and creating the future feature. The difference is that the very last time point in our training set now contains the average price from the first time point in our test set. This is a realistic scenario if we wre actually using this model to forecast, so it's not a major concern. END SOLUTION 1(e)rubric={points:1}Next we will want to build some models to forecast the average avocado price a week in advance. Before we start with any ML, let's try a baseline: just predicting the previous week's `AveragePrice`. What $R^2$ do you get with this approach? BEGIN SOLUTION ###Code r2_score(df_train["AveragePriceNextWeek"], df_train["AveragePrice"]) r2_score(df_test["AveragePriceNextWeek"], df_test["AveragePrice"]) ###Output _____no_output_____ ###Markdown Interesting that this is a less effective prediction strategy in the later part of the dataset. I guess that means the price was fluctuating more in late 2017 / early 2018? END SOLUTION 1(f)rubric={points:10}Build some models to forecast the average avocado price. Experiment with a few approachs for encoding the date. Justify the decisions you make. Which approach worked best? Report your test score and briefly discuss your results.Benchmark: you should be able to achieve $R^2$ of at least 0.79 on the test set. I got to 0.80, but not beyond that. Let me know if you do better!Note: because we only have 2 splits here, we need to be a bit wary of overfitting on the test set. Try not to test on it a ridiculous number of times. If you are interested in some proper ways of dealing with this, see for example sklearn's [TimeSeriesSplit](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.TimeSeriesSplit.html), which is like cross-validation for time series data. BEGIN SOLUTION ###Code df_train.head() (df_train.loc[:, "Small Bags": "XLarge Bags"].sum(axis=1) - df_train["Total Bags"]).abs().max() ###Output _____no_output_____ ###Markdown It seems that `Total Bags` is (approximately) the sum of the other 3 bag features, so I will drop `Total Bags`. ###Code (df_train.loc[:, "4046": "4770"].sum(axis=1) - df_train["Total Volume"]).abs().max() ###Output _____no_output_____ ###Markdown It seems that `Total Volume` is _not_ the sum of the 3 avocado types, so I will keep all 4 columns. ###Code df_train.info() ###Output <class 'pandas.core.frame.DataFrame'> Int64Index: 15441 entries, 0 to 18222 Data columns (total 14 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Date 15441 non-null datetime64[ns] 1 AveragePrice 15441 non-null float64 2 Total Volume 15441 non-null float64 3 4046 15441 non-null float64 4 4225 15441 non-null float64 5 4770 15441 non-null float64 6 Total Bags 15441 non-null float64 7 Small Bags 15441 non-null float64 8 Large Bags 15441 non-null float64 9 XLarge Bags 15441 non-null float64 10 type 15441 non-null object 11 year 15441 non-null int64 12 region 15441 non-null object 13 AveragePriceNextWeek 15441 non-null float64 dtypes: datetime64[ns](1), float64(10), int64(1), object(2) memory usage: 1.8+ MB ###Markdown It seems there are no null values, so I will not do any imputation. Will plot a single time series for exploration purposes: ###Code df_train.query("region == 'TotalUS'").set_index("Date").groupby("type")["AveragePrice"].plot(legend=True); df_train.query("region == 'TotalUS' and type == 'conventional'").plot(x="Date", y="Total Volume"); ###Output _____no_output_____ ###Markdown We see some seasonality in the total volume, but not much in the average price - interesting. I will not scale the `AveragePrice` because I am not scaling `AveragePriceNextWeek` either, and it may be helpful to keep them the same. Alternatively, it may have been effective to predict the _change_ in price instead of next's week's price. ###Code numeric_features = ["Total Volume", "4046", "4225", "4770", "Small Bags", "Large Bags", "XLarge Bags", "year"] categorical_features = ["type", "region"] keep_features = ["AveragePrice"] drop_features = ["Date", "Total Bags"] target_feature = "AveragePriceNextWeek" ###Output _____no_output_____ ###Markdown Next, I grab the `preprocess_features` function from Lecture 16, with a minor modification to allow un-transformed features via `keep_features`: ###Code def preprocess_features(df_train, df_test, numeric_features, categorical_features, keep_features, drop_features, target_feature): all_features = numeric_features + categorical_features + keep_features + drop_features + [target_feature] if set(df_train.columns) != set(all_features): print("Missing columns", set(df_train.columns) - set(all_features)) print("Extra columns", set(all_features) - set(df_train.columns)) raise Exception("Columns do not match") # Put the columns in the order we want df_train = df_train[all_features] df_test = df_test[all_features] numeric_transformer = Pipeline([ ('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler()) ]) categorical_transformer = Pipeline([ ('imputer', SimpleImputer(strategy='most_frequent')), ('onehot', OneHotEncoder(sparse=False, drop='first')) ]) preprocessor = ColumnTransformer([ ('numeric', numeric_transformer, numeric_features), ('categorical', categorical_transformer, categorical_features) ], remainder='passthrough') preprocessor.fit(df_train); if len(categorical_features) > 0: ohe = preprocessor.named_transformers_['categorical'].named_steps['onehot'] ohe_feature_names = list(ohe.get_feature_names(categorical_features)) new_columns = numeric_features + ohe_feature_names + keep_features + drop_features + [target_feature] else: new_columns = all_features X_train_enc = pd.DataFrame(preprocessor.transform(df_train), index=df_train.index, columns=new_columns) X_test_enc = pd.DataFrame(preprocessor.transform(df_test), index=df_test.index, columns=new_columns) X_train_enc = X_train_enc.drop(columns=drop_features + [target_feature]) X_test_enc = X_test_enc.drop( columns=drop_features + [target_feature]) y_train = df_train[target_feature] y_test = df_test[ target_feature] return X_train_enc, y_train, X_test_enc, y_test df_train_enc, y_train, df_test_enc, y_test = preprocess_features(df_train, df_test, numeric_features, categorical_features, keep_features, drop_features, target_feature) df_train_enc.head() lr = Ridge() lr.fit(df_train_enc, y_train); lr.score(df_train_enc, y_train) lr.score(df_test_enc, y_test) lr_coef = pd.DataFrame(data=np.squeeze(lr.coef_), index=df_train_enc.columns, columns=["Coef"]) lr_coef.sort_values(by="Coef", ascending=False) ###Output _____no_output_____ ###Markdown This is not a very impressive showing. We're doing almost the same as the baseline. Let's see if encoding the date helps at all. We'll try to OHE the month. ###Code df_train_month = df_train.assign(Month=df_train["Date"].apply(lambda x: x.month)) df_test_month = df_test.assign( Month=df_test[ "Date"].apply(lambda x: x.month)) df_train_month_enc, y_train, df_test_month_enc, y_test = preprocess_features(df_train_month, df_test_month, numeric_features, categorical_features + ["Month"], keep_features, drop_features, target_feature) df_train_month_enc.head() lr = Ridge() lr.fit(df_train_month_enc, y_train); lr.score(df_train_month_enc, y_train) lr.score(df_test_month_enc, y_test) ###Output _____no_output_____
Chapter02/Exercise2.17/Exercise 2.17.ipynb
###Markdown Implementing lesk algorithm from scratch using string similarity and text vectorization ###Code import pandas as pd from sklearn.metrics.pairwise import cosine_similarity from nltk import word_tokenize from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.datasets import fetch_20newsgroups import numpy as np def get_tf_idf_vectors(corpus): tfidf_vectorizer = TfidfVectorizer() tfidf_results = tfidf_vectorizer.fit_transform(corpus).todense() return tfidf_results def to_lower_case(corpus): lowercase_corpus = [x.lower() for x in corpus] return lowercase_corpus def find_sentence_defnition(sent_vector,defnition_vectors): """ This method will find cosine similarity of sentence with the possible definitions and return the one with highest similarity score along with the similarity score. """ result_dict = {} for defnition_id,def_vector in defnition_vectors.items(): sim = cosine_similarity(sent_vector,def_vector) result_dict[defnition_id] = sim[0][0] defnition = sorted(result_dict.items(), key=lambda x: x[1], reverse=True)[0] return defnition[0],defnition[1] corpus = ["On the banks of river Ganga, there lies the scent of spirituality", "An institute where people can store extra cash or money.", "The land alongside or sloping down to a river or lake" "What you do defines you", "Your deeds define you", "Once upon a time there lived a king.", "Who is your queen?", "He is desperate", "Is he not desperate?"] lower_case_corpus = to_lower_case(corpus) corpus_tf_idf = get_tf_idf_vectors(lower_case_corpus) sent_vector = corpus_tf_idf[0] defnition_vectors = {'def1':corpus_tf_idf[1],'def2':corpus_tf_idf[2]} defnition_id, score = find_sentence_defnition(sent_vector,defnition_vectors) print("The defnition of word {} is {} with similarity of {}".format('bank',defnition_id,score)) ###Output The defnition of word bank is def2 with similarity of 0.14419130686278897
Guides/python/excelToPandas.ipynb
###Markdown Import Excel or CSV To PandasThis file covers the process of importing excel and csv files into a pandas dataframe. Note: the methods for importing excel and csv files is almost identical. The major difference is in the method used. This notebook serves as a tutorial for both.__Importing Excel (xlsx):__ The function used is [read_excel](http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_excel.html). __Importing comma separated values (csv):__ The function used is [read_csv](http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html). Step 1Lets start by importing pandas and os. We will be using pandas to create a dataframe from our data, and os to get file paths. ###Code import pandas as pd import os ###Output _____no_output_____ ###Markdown Step 2Now lets create a variable, filePath, that is a string containing the full path to the file we want to import. The code below looks in the current working directory for the file given a file name input by the user. This isn't necessary, and is just included for convienence. Alternatively, user can input a full path into the filePath variable. ###Code dirPath = os.path.realpath('.') fileName = 'assets/coolingExample.xlsx' filePath = os.path.join(dirPath, fileName) ###Output _____no_output_____ ###Markdown Step 3Great! Now lets read the data into a dataframe called df.This will allow our data to be accessible by the string in the header. ###Code df = pd.read_excel(filePath,header=0) df.head() ###Output _____no_output_____ ###Markdown Our data is now accessible by a key value. The keys are the column headers in the dataframe. In this example case, those are 'Time (s) - Dev1/ai0' and 'Temperature - Dev1/ai0'. For example, lets access the data in the first column. ###Code df[df.columns[0]] ###Output _____no_output_____ ###Markdown What would happen if we tried to access the data with an invalid key, say 1 for example? Lets try it to find out.Note: I enclose this code in a try: except: statement in order to prevent a huge error from being generated. ###Code try: df[1] except KeyError: print("KeyError: 1 - not a valid key") ###Output KeyError: 1 - not a valid key ###Markdown So lets say you have a large dataframe with unknown columns. There is a simple way to index them without having prior knowledge of what the dataframe columns are. Namely, the columns method in pandas. ###Code cols = df.columns for col in cols: print(df[col]) ###Output 0 11:17:30 1 11:17:30 2 11:17:30 3 11:17:30 4 11:17:30 5 11:17:30 6 11:17:30 7 11:17:30 8 11:17:30 9 11:17:30 10 11:17:31 11 11:17:31 12 11:17:31 13 11:17:31 14 11:17:31 15 11:17:31 16 11:17:31 17 11:17:31 18 11:17:31 19 11:17:31 20 11:17:32 21 11:17:32 22 11:17:32 23 11:17:32 24 11:17:32 25 11:17:32 26 11:17:32 27 11:17:32 28 11:17:32 29 11:17:32 ... 2439 11:21:33 2440 11:21:34 2441 11:21:34 2442 11:21:34 2443 11:21:34 2444 11:21:34 2445 11:21:34 2446 11:21:34 2447 11:21:34 2448 11:21:34 2449 11:21:34 2450 11:21:35 2451 11:21:35 2452 11:21:35 2453 11:21:35 2454 11:21:35 2455 11:21:35 2456 11:21:35 2457 11:21:35 2458 11:21:35 2459 11:21:35 2460 11:21:36 2461 11:21:36 2462 11:21:36 2463 11:21:36 2464 11:21:36 2465 11:21:36 2466 11:21:36 2467 11:21:36 2468 11:21:36 Name: Time - Dev2/ai0, dtype: object 0 85.4 1 85.6 2 84.9 3 85.8 4 85.2 5 85.1 6 86.1 7 85.1 8 85.0 9 85.8 10 85.0 11 85.6 12 85.1 13 85.2 14 85.1 15 85.1 16 85.8 17 85.1 18 85.6 19 85.1 20 86.1 21 86.4 22 85.8 23 86.6 24 86.1 25 85.8 26 85.9 27 86.1 28 85.5 29 85.8 ... 2439 4.2 2440 3.1 2441 3.8 2442 5.1 2443 4.4 2444 4.3 2445 4.7 2446 4.3 2447 4.4 2448 4.4 2449 4.4 2450 4.0 2451 2.7 2452 4.6 2453 4.8 2454 3.5 2455 4.2 2456 3.2 2457 3.7 2458 3.8 2459 3.5 2460 3.4 2461 3.9 2462 3.4 2463 4.0 2464 4.1 2465 3.5 2466 3.5 2467 3.1 2468 3.9 Name: Temperature - Dev2/ai0, dtype: float64 ###Markdown Data Manipulation _(Plots)_Now that we have the data easily accessible in python, lets look at how to plot it. Pandas allows you to use matplotlib to plot, however it is done using methods built into pandas.Although the methods to create an manipulate plots are built into Pandas, we will still have to import matplotlib to save and show the plots. ###Code import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown In order to demonstrate the plotting capabilities of pandas arrays, lets use the example data that we imported earlier. The data frame contains only the two columns that were in the file; temperature and time. Because of this simplicity, we can trust pandas to properly interpret the first column as time and the second column as th measurement (temperature). Thus we can plot with the simple command.df.plot() ###Code plt.figure(1) ax = df.plot() plt.show() ###Output _____no_output_____ ###Markdown While this simplification is nice, it is generally better to specify what data you want to plot. Particularly if you are automating the plotting of a large set of dataframes. To do this, specify the x and y arrays in your dataframe as you would in a standard matplotlib plot call, however since this plotting function is a method of the dataframe, you need only specify the column.I.e. ###Code plt.figure(2) ax = df.plot(cols[0],cols[1]) plt.show() ###Output _____no_output_____ ###Markdown Now that we have the basics down, lets spice up the plot a little bit. ###Code plt.figure(3) ax = df.plot(cols[0],cols[1]) ax.set_title('This is a Title') ax.set_ylabel('Temperature (deg F)') ax.grid() plt.show() ###Output _____no_output_____ ###Markdown Data Manipulation _(Timestamps)_One thing you probably noticed in these plots is that the time axis isn't all that useful. It would be better to change the timestamps to a more useful form like seconds since start. Lets go through the process of making that conversion.First, lets see what the timestamp currently looks like. ###Code df[cols[0]][0] ###Output _____no_output_____ ###Markdown Good news! Since python interpreted the date as a datetime object, we can use datetime object methods to determine the time in seconds. The one caveat is that we can only determine a time _difference_, not an absolute time. For more on this, read [this stackoverflow question.](http://stackoverflow.com/questions/7852855/how-to-convert-a-python-datetime-object-to-seconds)The first thing we have to do is convert these datetime.time objects into datetime.datetime objects using datetime.combineNote: importing datetime is a little weird.. datetime is both a module and a class. ###Code from datetime import datetime, date startTime = df[cols[0]][0] timeArray = [] for i in range(0,len(df[cols[0]])): timeArray.append((datetime.combine(date.today(), df[cols[0]][i]) - datetime.combine(date.today(), startTime)).total_seconds()) ###Output _____no_output_____ ###Markdown Note: There is probably a better way of doing this (i.e. without a loop, but I'm tired and can't think of anything right now) ###Code plt.figure(4) plt.plot(timeArray, df[cols[1]], 'b') plt.title('This is a graph with a better time axis') plt.ylabel('Temperature (deg F)') plt.xlabel('Time (s)') plt.grid() plt.show() ###Output _____no_output_____
reports/.ipynb_checkpoints/Final Report-checkpoint.ipynb
###Markdown **Final Report** Project Overview To understand whether student performance in final grade is affected by student previous grades, demographic, social and school related information, I want to perform a linear regression model. Instead of fitting 1 linear regression with no regularization, I apply different regularized linear regression methods and compare their result to the unregularized one. These methods include Lasso (L1 regularization), Ridge (L2 regularization), Elastic Net (L1 + L2 regularization). The comparison will suggest me the best model to help answer my question above. Data Description Data used in this project is taken from the [Student Performance Data Set](http://archive.ics.uci.edu/ml/datasets/Student+Performance). It contains student achievement in secondary education of two Portuguese schools, along with their grades, demographic, social and school related features. The data was collected by using school reports and questionnaires.The final dataset (after cleaning) has 32 features, with 382 observations in total. None of those observations has missing values. To know more details about the features, please refer to this [README](https://github.com/hadinh1306/feat-select_student-performance/tree/master/data/raw_data). To answer my question, I choose `G3` - the final grade as my response variables, and other 31 variables as my explanatory variables. Since I decide to use Scikit-learn to fit models to my data and Scikit-learn Regression Models only understand numeric data, I transform text values of all categorical variables into numeric ones. See source code for cleaning data [here](https://github.com/hadinh1306/feat-select_student-performance/blob/master/src/clean.ipynb). Exploratory Data Analysis Since there are 31 explanatory variables, I do not plot the relationship of each variable to `G3`. Instead, I choose some selective variables that intuitively make sense to have effects on my response variable. **Effect of first and second period grades on final grade**First of all, I believe that previous scores may have effect on the final score. Below is the pair plot to visualize effects first period and second period grades have on final grade.From this graph, I can infer that students with consistently high grade in previous 2 tests would get high score in final test also. ![](../graphs/grades_pairplot.png) **Effect of gender on final grade**Secondly, I visualize difference in final grade between male and female students. Where I come from - Vietnam, people believe that female students are more hard working than male thus might have higher score, but at certain age or in certain fields male starts to have higher score in exams. The graph below shows that male students from the two Portugese schools score slightly higher in their final compared to their female counterparts. Through my feature and model selection process, I will find out if gender difference actually has any relation to final grade. ![](../graphs/gender_grade.png) **Effect of weekly study time on final grade**Intuitively speeking, students who spend more time in studying would score higher in their tests. It is true in this case, proven by the graph below. Interestingly, students who spend less than 2 hours and students who spend from 2 to 5 hours studying per week has very minimal difference in final grade. Average grades of those who spend 5 to 10 hours increase by 1 to 2 points. However, spending more than 10 hours studying per week only helps final grade to increase by around 0.5 points. ![](../graphs/studytime_grade.png) **Effect of decision to go to higher education on final grade** Intuitively, students with intention to go to higher education would grade higher those who have no intention. This is proven through the below graph. Students with intention for higher education has average final grade around 2.5 points higher than those with no intention. ![](../graphs/higheredu_grade.png) Feature and Model Selection I first split the data into 3 subsets - training, validation and test sets. My plan is to train different models on the training set, and apply the best model on validation set to test set. There are 4 models I use in the feature selection process:- Unregularized linear model- Ridge (L2-regularized) linear model - Lasso (L1-regularized) linear model - Elastic Net (L1 + L2 regularized) linear modelBefore officially fitting each model to my training set, I use `GridsearchCV` to find best hyperparameters (`alpha` for all models, in addition to `l1 ratio` for Elastic Net). Using the best hyperparameters for each model, I calculate some *scores* (documented in a table below) to compare these models together. ###Code import pandas as pd summary = pd.read_csv("../data/analysis/model_score.csv") summary ###Output _____no_output_____
03 Types, type conversions and floating point arithmetic.ipynb
###Markdown geklont von: https://github.com/CambridgeEngineering/PartIA-Computing-Michaelmas EinführungWe have thus far avoided discussing directly *types*. The '*type*' is the type of object that a variable is associated with. This affects how a computer stores the object in memory, and how operations, such as multiplication and division, are performed.In *statically typed* languages, like C and C++, types come up from the very beginning because you usually need to specify types explicitly in your programs. Python is a *dynamically typed* language, which means types are deduced when a program is run. This is why we have been able to postpone the discussion until now.It is important to have a basic understanding of types, and how types can affect how your programs behave. One can go very deep into this topic, especially for numerical computations, but we will cover the general concept from a high level, show some examples, and highlight some potential pitfalls for engineering computations. This is a dry topic - it contains important background information that you need to know for later, so hang in there. The below account highlights what can go wrong without an awareness of types and how computers process numbers.Wir haben es bisher vermieden, direkt über * Typen * zu diskutieren. Der '* type *' ist der Objekttyp, dem eine Variable zugeordnet ist. Dies wirkt sich darauf aus, wie ein Computer das Objekt im Speicher speichert und wie Operationen wie Multiplikation und Division ausgeführt werden.In * statisch typisierten * Sprachen, wie C und C ++, kommen Typen von Anfang an daher, weilIn der Regel müssen Sie Typen explizit in Ihren Programmen angeben. Python ist eine * dynamisch typisierte * Sprache, was bedeutet, dass Typen abgeleitet werden, wenn ein Programm ausgeführt wird. Deshalb konnten wir die Diskussion bisher verschieben.Es ist wichtig, ein grundlegendes Verständnis von Typen zu haben und wie Typen das Verhalten Ihrer Programme beeinflussen können. Man kann sehr tief in dieses Thema einsteigen, insbesondere für numerische Berechnungen, aber wir werden das allgemeine Konzept von einem hohen Niveau abdecken.Zeigen Sie einige Beispiele und heben Sie einige potenzielle Fallstricke für Konstruktionsberechnungen hervor.Dies ist ein trockenes Thema - es enthält wichtige Hintergrundinformationen, die Sie für später wissen müssen, also bleiben Sie dran. Das folgende Konto zeigt auf, was schief gehen kann, ohne dass man sich der Typen bewusst ist und wie Computer Zahlen verarbeiten. Patriot Missile Misserfolg und die Ariane-5-ExplosionThere have been numerous accidents due to programs not correctly handling types, type conversions and floating point arithmetic. Here are two examples: 1. In 1991, a US Patriot missile failed to intercept an Iraqi Scud missile at Dhahran in Saudi Arabi, leading to a loss of life. The subsequent investigation found that the Patriot missile failed to intercept the Scud missile due to a software flaw. The software developers did not account for the effects of 'floating point arithmetic'. This led to a small error in computing the time, which in turn caused the Patriot to miss the incoming Scud missile. Es gab zahlreiche Unfälle, weil Programme Typen, Typkonvertierungen und Fließkomma-Arithmetik nicht korrekt handhabten. Hier sind zwei Beispiele:1. Im Jahr 1991 konnte eine US-amerikanische Patriot-Rakete keine irakische Scud-Rakete in Dhahran in Saudi-Arabi abfangen, was dazu führte    ein Verlust von Leben. Die anschließende Untersuchung ergab, dass die Patriot-Rakete die Scud-Rakete aufgrund eines Softwarefehlers nicht abfangen konnte. Die Softwareentwickler haben die Auswirkungen von Fließkomma nicht berücksichtigt    Arithmetik'.    Dies führte zu einem kleinen Fehler in der Zeitberechnung, wodurch der Patriot den ankommenden Scud verfehlte    Rakete. We will reproduce the precise mistake the developers of the Patriot Missile software made. See https://en.wikipedia.org/wiki/MIM-104_PatriotFailure_at_Dhahran for more background on the interception failure. 1. Poor programming related to how computers store numbers led in 1996 to a European Space Agency *Ariane 5* unmanned rocket exploding shortly after lift-off. The rocket payload, worth US\$500 M, was destroyed. You can find background at https://en.wikipedia.org/wiki/Cluster_(spacecraft)Launch_failure. We will reproduce their mistake, and show how a few lines code would have saved over US\$500 M. Wir werden den genauen Fehler reproduzieren, den die Entwickler der Patriot Missile-Software gemacht haben. Sehen    https://en.wikipedia.org/wiki/MIM-104_PatriotFailure_at_Dhahran für mehr Hintergrundinformationen zum Abhören    Fehler.   1. Schlechte Programmierung in Bezug darauf, wie die Zahl der Computergeschäfte 1996 zu einer europäischen Weltraumorganisation führte * Ariane 5 *    Unbemannte Rakete explodiert kurz nach dem Abheben. Die Raketennutzlast im Wert von 500 Millionen US-Dollar wurde zerstört. Sie können    Hintergrundinformationen finden Sie unter https://en.wikipedia.org/wiki/Cluster_(spacecraft)Launch_failure.    Wir werden ihren Fehler reproduzieren und zeigen, wie ein paar Zeilen Code über 500 US $ gespart hätten. Background: bits and bytesAn important part of understanding types is appreciating how computer storage works. Computer memory is made up of *bits*, and each bit can take on one of two values - 0 or 1. A bit is the smallest building block of memory.Bits are very fine-grained, so for many computer architectures the smallest 'block' we can normally work with is a *byte*. One byte is made up of 8 bits. This why when we talk about bits, e.g. a 64-bit operating system, the number of bits will almost always be a multiple of 8 (one byte).The 'bigger' a thing we want to store, the more bytes we need. This is important for engineering computations since the the number of bytes used to store a number determines the accuracy with which the number can be stored,and how big or small the number can be. The more bytes the greater the accuracy, but the price to be paid is higher memory usage. Also, it can be more expensive to perform operations like multiplication and division when using more bytes.Ein wichtiger Teil des Verständnisses von Typen ist es, die Funktionsweise des Computerspeichers zu schätzen. Der Computerspeicher besteht aus * Bits *, und jedes Bit kann eine von zwei annehmenWerte - 0 oder 1. Ein Bit ist der kleinste Baustein des Speichers.Die Bits sind sehr feinkörnig, daher ist für viele Computerarchitekturen der kleinste "Block", mit dem wir normalerweise arbeiten können, ein * Byte *. Ein Byte besteht aus 8 Bits. Deshalb, wenn wir über Bits sprechen, z. Bei einem 64-Bit-Betriebssystem ist die Anzahl der Bits fast immer ein Vielfaches von 8 (ein Byte).Je größer, was wir speichern möchten, desto mehr Bytes benötigen wir. Dies ist wichtig für Konstruktionsberechnungen, da die Anzahl der zum Speichern einer Anzahl verwendeten Bytes die Genauigkeit bestimmt, mit der die Anzahl gespeichert werden kann.und wie groß oder klein die Zahl sein kann. Je mehr Bytes, desto höher die Genauigkeit, aber der zu zahlende Preis ist eine höhere Speicherauslastung. Es kann auch teurer sein, Operationen wie Multiplikation und Division auszuführen, wenn mehr Bytes verwendet werden. Objectives- Introduce primitive data types (booleans, strings and numerical types)- Type inspection- Basic type conversion- Introduction to pitfalls of floating point arithmetic Ziele- Einführung primitiver Datentypen (Booleans, Strings und numerische Typen)- Typprüfung- Grundtypumwandlung- Einführung in die Fallstricke der Fließkomma-Arithmetik What is type?All variables have a 'type', which indicates what the variable is, e.g. a number, a string of characters, etc. In 'statically typed' languages we usually need to be explicit in declaring the type of a variable in a program. In a dynamically typed language, such as Python, variables still have types but the interpreter can determine types dynamically.Type is important because it determines how a variable is stored, how it behaves when we perform operations on it, and how it interacts with other variables. For example, multiplication of two real numbers is different from multiplication of two complex numbers.Alle Variablen haben einen 'Typ', der angibt, was die Variable ist, z. eine Zahl, eine Zeichenfolge usw. In "statisch typisierten" Sprachen müssen wir normalerweise den Typ einer Variablen in einem Programm explizit angeben. In einer dynamisch typisierten Sprache wie Python haben Variablen immer noch Typen, der Interpreter kann jedoch Typen dynamisch bestimmen.Der Typ ist wichtig, da er bestimmt, wie eine Variable gespeichert wird, wie sie sich beim Ausführen von Operationen verhält und wie sie mit anderen Variablen interagiert. Beispielsweise unterscheidet sich die Multiplikation von zwei reellen Zahlen von der Multiplikation von zwei komplexen Zahlen. Introspection Before getting into types, we look at how we can check the type in Python. A powerful feature of Python is *introspection*. This means that we can probe a program to ask about the type of a variable. To check the type of a variable we use the function `type`:SelbstbeobachtungBevor wir mit den Typen beginnen, schauen wir uns an, wie wir den Typ in Python prüfen können. Eine leistungsstarke Funktion von Python ist * Introspection *. Dies bedeutet, dass wir ein Programm untersuchen können, um nach dem Typ einer Variablen zu fragen. Überprüfenden Typ einer Variablen verwenden wir die Funktion `type`: ###Code x = True print(type(x)) a = 1 print(type(a)) a = 1.0 print(type(a)) ###Output <class 'bool'> <class 'int'> <class 'float'> ###Markdown Note that `a = 1` and `a = 1.0` are different types! This distinction is very important for numerical computations.More on this further down.Use `type` freely when exploring and testing, to develop an understanding for what your program is doing.Beachten Sie, dass "a = 1" und "a = 1.0" verschiedene Typen sind! Diese Unterscheidung ist für numerische Berechnungen sehr wichtig.Mehr dazu weiter unten.Verwenden Sie "type" beim Erkunden und Testen, um ein Verständnis dafür zu entwickeln, was Ihr Programm tut. BooleansYou have already seen the 'Boolean' type that can take on one of two values - true or false. This is the simplest typeSie haben bereits den Typ 'Boolean' gesehen, der einen von zwei Werten annehmen kann - wahr oder falsch. Dies ist der einfachste Typ. ###Code a = True b = False test = a or b # test will be True if a or b are True print(test, type(test)) ###Output True <class 'bool'> ###Markdown In principle, we could represent a boolean with just one bit (0 or 1 switch).Im Prinzip könnten wir einen Boolean mit nur einem Bit (0 oder 1 Schalter) darstellen. StringsA string is a collection of characters. We have been using strings in previous activities for printing informative messages. In Python we create a string using single or double quotes (the choice is personal preference), e.g.Eine Zeichenfolge ist eine Sammlung von Zeichen. Wir haben in früheren Aktivitäten Zeichenfolgen zum Drucken von Informationsnachrichten verwendet. In Python erstellen wir eine Zeichenfolge mit einfachen oder doppelten Anführungszeichen (die Wahl liegt nach persönlichen Vorlieben), z. my_string = 'This is a string.' or my_string = "This is a string." Below we assign a string to a variable, display the string, and then check its type:Im Folgenden weisen wir einer Variablen eine Zeichenfolge zu, zeigen die Zeichenfolge an und prüfen dann ihren Typ: ###Code my_string = "This is a string." print(my_string) print(type(my_string)) ###Output This is a string. <class 'str'> ###Markdown We can perform many different operations on strings. We can extract a particular character as a new string:Wir können viele verschiedene Operationen an Zeichenketten ausführen. Wir können ein bestimmtes Zeichen als neue Zeichenfolge extrahieren: ###Code # Get 3rd character (Python counts from zero) s2 = my_string[2] print(s2) print(type(s2)) ###Output i <class 'str'> ###Markdown or extract a range of characters:oder extrahiere eine Reihe von Zeichen: ###Code # Get first six characters, print and check type s3 = my_string[0:6] print(s3) print(type(s3)) # Get last four characters and print s4 = my_string[-4:] print(s4) ###Output This i <class 'str'> ing. ###Markdown We can add strings together:Wir können Strings zusammen hinzufügen: ###Code introduction = "My name is:" name = "Joe" personal_introduction = introduction + " " + name print(personal_introduction) ###Output My name is: Joe ###Markdown We can also check the length (number of characters) of a string using `len`:Wir können die Länge (Anzahl der Zeichen) eines Strings auch mit `len` überprüfen: ###Code print(len(personal_introduction)) ###Output 15 ###Markdown There are *many* more operations that can be performed on strings. We will see more in later activities.Es gibt * viele * weitere Operationen, die für Zeichenfolgen ausgeführt werden können. Wir werden mehr in späteren Aktivitäten sehen. Numeric typesNumeric types are important in many computing applications, and particularly in scientific and engineering programs. Python 3 has three native numerical types:- integers (`int`)- floating point numbers (`float`)- complex numbers (`complex`)This is typical for most programming languages, although there can be some subtle differences.Numerische Typen sind in vielen Computeranwendungen und insbesondere in wissenschaftlichen und technischen Programmen von Bedeutung. Python 3 hat drei native numerische Typen:- ganze Zahlen ("int")- Fließkommazahlen ("Float")- komplexe Zahlen ("Komplex")Dies ist typisch für die meisten Programmiersprachen, es kann jedoch geringfügige Unterschiede geben. IntegersIntegers (`int`) are whole numbers, and can be postive or negative. Integers should be used when a value can only take on a whole number, e.g. the year, or the number of students following this course. Python infers the type of a number from the way we input it. It will infer an `int` if we assign a number with no decimal place:Ganzzahlen ("int") sind ganze Zahlen und können positiv oder negativ sein. Ganzzahlen sollten verwendet werden, wenn ein Wert nur eine ganze Zahl annehmen kann, z. das Jahr oder die Anzahl der Studenten, die an diesem Kurs teilnehmen. Python leitet den Typ einer Zahl von der Art ab, wie wir sie eingeben. Es wird ein "int" abgeleitet, wenn wir eine Zahl ohne Dezimalstelle zuweisen: ###Code a = 2 print(type(a)) ###Output <class 'int'> ###Markdown If we add a decimal point, the variable type becomes a `float` (more on this later)Wenn wir einen Dezimalpunkt hinzufügen, wird der Variablentyp zu einem Float (mehr dazu später). ###Code a = 2.0 print(type(a)) ###Output <class 'float'> ###Markdown Integer operations that result in an integer, such as multiplying or adding two integers, are performed exactly (there is no error). This does however depend on a variable having enough memory (sufficient bytes) to represent the result.Ganzzahloperationen, die zu einer Ganzzahl führen, z. B. Multiplizieren oder Hinzufügen von zwei Ganzzahlen, werden exakt ausgeführt (es liegt kein Fehler vor). Dies hängt jedoch davon ab, dass eine Variable über genügend Speicher (genug Bytes) verfügt, um das Ergebnis darzustellen. Integer storage and overflowIn most languages, a fixed number of bits are used to store a given type of integer. In C and C++ a standard integer (`int`) is usually stored using 32 bits (it is possible to declare shorter and longer integer types). The largest integer that can be stored using 32 bits is $2^{31} - 1 = 2,147,483,647$.We explain later where this comes from. The message for now is that for a fixed number of bits, there is a bound on the largest number that can be represented/stored. Integer overflowInteger overflow is when an operation creates an integer that is too big to be represented by the given integer type. For example, attempting to assign $2^{31} + 1$ to a 32-bit integer will cause an overflow and potentially unpredictable program response. This would usually be a *bug*.The Ariane 5 rocket explosion in 1996 was caused by integer overflow. The rocket navigation software was taken from the older, slower Ariane 4 rocket. The program assigned the rocket speed to a 16-bit integer (the largest number a 16-bit integer can store is $2^{15} - 1 = 32767$), but the Ariane 5 could travel faster than the older generation of rocket and the speed value exceeded $32767$. The resulting integer overflow led to failure of the rocket's navigation system andexplosion of the rocket; a very costly rocket and a very expensive payload were destroyed.We will reproduce the error that caused this failure when we look at *type conversions*.Python avoids integer overflows by dynamically changing the number of bits used to represent an integer. You can inspect the number of bits required to store an integer in binary (not including the bit for the sign) using the function [bit_length](https://docs.python.org/3/library/stdtypes.htmlint.bit_length):Ganzzahlspeicher und ÜberlaufIn den meisten Sprachen wird eine bestimmte Anzahl von Bits verwendet, um einen bestimmten Integer-Typ zu speichern. In C und C ++ wird eine Standard-Integer-Zahl (Int) normalerweise mit 32 Bit gespeichert (kürere und längere Integer-Typen können deklariert werden). Die größte Ganzzahl, die unter Verwendung von 32 Bits gespeichert werden kann, ist 231 - 1 = 2.147.483.647. Wir erklären später, woher das kommt. Die Nachricht ist vorerst, dass für eine feste Anzahl von Bits die größte Anzahl, die dargestellt / gespeichert werden kann, begrenzt ist.GanzzahlüberlaufGanzzahlüberlauf ist, wenn eine Operation eine Ganzzahl erstellt, die zu groß ist, um von dem angegebenen Ganzzahlentyp dargestellt zu werden. Wenn Sie beispielsweise versuchen, einer 32-Bit-Ganzzahl 231 + 1 zuzuweisen, wird dies zu einem Überlauf und möglicherweise zu einer unvorhersehbaren Programmreaktion führen. Dies wäre normalerweise ein Fehler.Die Ariane-5-Raketenexplosion im Jahr 1996 wurde durch einen ganzzahligen Überlauf verursacht. Die Raketennavigationssoftware wurde von der älteren, langsameren Ariane-4-Rakete übernommen. Das Programm hat die Raketengeschwindigkeit einer 16-Bit-Ganzzahl zugewiesen (die größte Zahl, die eine 16-Bit-Ganzzahl speichern kann, ist 215-1 = 32767), aber die Ariane 5 könnte sich schneller bewegen als die ältere Raketengeneration und der Geschwindigkeitswert überschritt 32767 . Der resultierende ganzzahlige Überlauf führte zum Versagen des Navigationssystems der Rakete und zur Explosion der Rakete; Eine sehr teure Rakete und eine sehr teure Nutzlast wurden zerstört. Wir werden den Fehler reproduzieren, der zu diesem Fehler geführt hat, wenn wir Typkonvertierungen betrachten.Python vermeidet ganzzahlige Überläufe, indem es die Anzahl der zur Darstellung einer ganzen Zahl verwendeten Bits dynamisch ändert. Sie können die Anzahl der Bits, die zum Speichern einer Ganzzahl in binär erforderlich sind (ohne das Bit für das Vorzeichen), mit der Funktion bit_length überprüfen: ###Code a = 8 print(type(a)) print(a.bit_length()) ###Output <class 'int'> 4 ###Markdown We see that 4 bits are necessary to represent the number 8. If we increase the size of the number dramatically by raising it to the power of 12:Wir sehen, dass 4 Bits notwendig sind, um die Zahl 8 darzustellen. Wenn wir die Größe der Zahl dramatisch erhöhen, indem wir sie auf 12 erhöhen: ###Code b = a**12 print(b) type(b) print(b.bit_length()) ###Output 68719476736 37 ###Markdown We see that 37 bits are required to represent the number. If the `int` type was limited to 32 bits for storing the value, this operation would have caused an overflow.Wir sehen, dass 37 Bits erforderlich sind, um die Zahl darzustellen. Wenn der "int" -Typ zum Speichern des Werts auf 32 Bit begrenzt ist, hätte dieser Vorgang einen Überlauf verursacht. Gangnam StyleIn 2014, Google switched from 32-bit integers to 64-bit integers to count views when the video "Gangnam Style" was viewed more than 2,147,483,647 times, which is the limit of 32-bit integers (see https://plus.google.com/+YouTube/posts/BUXfdWqu86Q).Gangnam StyleIm Jahr 2014 wechselte Google von 32-Bit-Ganzzahlen auf 64-Bit-Ganzzahlen, um die Ansichten zu zählen, wenn das Video "Gangnam Style" mehr als 2.147.483.647 Mal angesehen wurde. Dies ist die Grenze für 32-Bit-Ganzzahlen Boeing 787 Dreamliner bugDue to an integer overflow bug, the electricity generators on a Boeing 787 will shut down if the plane ispowered continuously for 248 days, due to an overflow. The 'quick fix' was to make sure that generator control units do not operate for more than 248 days.See Boeing 787 Dreamliner FehlerAufgrund eines ganzzahligen Überlauffehlers werden die Stromgeneratoren einer Boeing 787 heruntergefahren, wenn das Flugzeug vorhanden ist248 Tage ununterbrochen mit Strom versorgt, aufgrund eines Überlaufs. Die "schnelle Lösung" bestand darin, dies sicherzustellenGeneratorsteuergeräte funktionieren nicht länger als 248 Tage.Sehenhttps://www.theguardian.com/business/2015/may/01/us-aviation-authority-boeing-787-dreamliner-bug-could-cause-loss-of-control and https://s3.amazonaws.com/public-inspection.federalregister.gov/2015-10066.pdf for background. Floating point storageMost engineering calculations involve numbers that cannot be represented as integers. Numbers that have a decimal point are stored using the `float` type. Computers store floating point numbers by storing the sign, the significand (also known as the mantissa) and the exponent, e.g.: for $10.45$Die meisten Konstruktionsberechnungen enthalten Zahlen, die nicht als Ganzzahlen dargestellt werden können. Zahlen mit Dezimalpunkt werden mit dem Float-Typ gespeichert. Computer speichern Gleitkommazahlen, indem sie das Vorzeichen, den Signifikand (auch bekannt als Mantisse) und den Exponenten speichern, z. B. für 10.45$$10.45 = \underbrace{+}_{\text{sign}} \underbrace{1045}_{\text{significand}} \times \underbrace{10^{-2}}_{\text{exponent} = -2}$$Python uses 64 bits to store a `float` (in C and C++ this is known as a `double`). The sign requires one bit, and there are standards that specify how many bits should be used for the significand and how many for the exponent.Since a finite number of bits are used to store a number, the precision with which numbers can be represented is limited. As a guide, using 64 bits a floating point number is precise to 15 to 17 significant figures.More on this, and why the Patriot missile failed, later.Python verwendet 64 Bits, um einen "Float" zu speichern (in C und C ++ wird dies als "Double" bezeichnet). Das Vorzeichen erfordert ein Bit, und es gibt Standards, die angeben, wie viele Bits für den Signifikanz und wie viele für den Exponenten verwendet werden sollen.Da eine endliche Anzahl von Bits zum Speichern einer Zahl verwendet wird, ist die Genauigkeit, mit der Zahlen dargestellt werden können, begrenzt. Bei der Verwendung von 64 Bits ist eine Fließkommazahl auf 15 bis 17 signifikante Stellen genau.Mehr dazu und warum die Patriot-Rakete später versagte. FloatsWe can declare a float by adding a decimal point:Wir können einen Float deklarieren, indem Sie einen Dezimalpunkt hinzufügen: ###Code a = 2.0 print(a) print(type(a)) b = 3. print(b) print(type(b)) ###Output 2.0 <class 'float'> 3.0 <class 'float'> ###Markdown or by using `e` or `E` (the choice between `e` and `E` is just a matter of taste):oder mit "e" oder "E" (die Wahl zwischen "e" und "E" ist nur eine Frage des Geschmacks): ###Code a = 2e0 print(a, type(a)) b = 2e3 print(b, type(b)) c = 2.1E3 print(c, type(c)) ###Output 2.0 <class 'float'> 2000.0 <class 'float'> 2100.0 <class 'float'> ###Markdown Complex numbersA complex number is a more elaborate float with two parts - the real and imaginary components. We can declare a complex number in Python by adding `j` or `J` after the complex part of the number:Eine komplexe Zahl ist ein aufwendigerer Float mit zwei Teilen - den realen und den imaginären Komponenten. Wir können eine komplexe Zahl in Python deklarieren, indem Sie nach dem komplexen Teil der Zahl "j" oder "J" hinzufügen: ###Code a = 2j print(a, type(a)) b = 4 - 3j print(b, type(b)) ###Output 2j <class 'complex'> (4-3j) <class 'complex'> ###Markdown The usual addition, subtraction, multiplication and division operations can all be performed on complex numbers. The real and imaginary parts can be extracted:Die üblichen Additions-, Subtraktions-, Multiplikations- und Divisionsoperationen können alle mit komplexen Zahlen durchgeführt werden. Die Real- und Imaginärteile können extrahiert werden: ###Code print(b.imag) print(b.real) ###Output -3.0 4.0 ###Markdown and the complex conjugate can be taken:und das komplexe Konjugtion kann genommen werden: ###Code print(b.conjugate()) ###Output (4+3j) ###Markdown We can compute the modulus of a complex number using `abs`:Wir können den Modulus einer komplexen Zahl mit "abs" berechnen: ###Code print(abs(b)) ###Output 5.0 ###Markdown More generally, `abs` returns the absolute value, e.g.:Allgemeiner gibt "abs" den absoluten Wert zurück, z. ###Code a = -21.6 a = abs(a) print(a) ###Output 21.6 ###Markdown Type conversions (casting)We can often change between types. This is called *type conversion* or *type casting*. In some cases it happens implicitly, and in other cases we can instruct our program to change the type.If we add two integers, the results will be an integer:Wir können oft zwischen den Typen wechseln. Dies wird als * Typumwandlung * oder * Typgießen * bezeichnet. In einigen Fällen geschieht dies implizit, und in anderen Fällen können wir unser Programm anweisen, den Typ zu ändern.Wenn wir zwei Ganzzahlen hinzufügen, werden die Ergebnisse eine Ganzzahl sein: ###Code a = 4 b = 15 c = a + b print(c, type(c)) ###Output 19 <class 'int'> ###Markdown However, if we add an `int` and a `float`, the result will be a float:Wenn wir jedoch ein "int" und ein "float" hinzufügen, wird das Ergebnis ein float sein: ###Code a = 4 b = 15.0 # Adding the '.0' tells Python that it is a float c = a + b print(c, type(c)) ###Output 19.0 <class 'float'> ###Markdown If we divide two integers, the result will be a `float`:Wenn wir zwei Ganzzahlen teilen, ist das Ergebnis ein "Float": ###Code a = 16 b = 4 c = a/b print(c, type(c)) b = 2 ###Output 4.0 <class 'float'> ###Markdown When dividing two integers, we can do 'integer division' using `//`, e.g.Wenn Sie zwei Ganzzahlen teilen, können Sie eine Ganzzahldivision mit "//" ausführen, z. ###Code a = 16 b = 3 c = a//b print(c, type(c)) ###Output 5 <class 'int'> ###Markdown in which case the result is an `int`.In general, operations that mix an `int` and `float` will generate a `float`, and operations that mix an `int` or a `float` with `complex` will return a `complex` type. If in doubt, use `type` to experiment and check. In diesem Fall ist das Ergebnis ein "int".Im Allgemeinen erzeugen Operationen, die ein "int" und "float" mischen, ein "float", und Operationen, die ein "int" oder ein "float" mit "complex" mischen, geben einen "komplexen" Typ zurück. Wenn Sie Zweifel haben, verwenden Sie 'type' zum Experimentieren und Überprüfen. Explicit type conversionWe can explicitly change the type (perform a cast), e.g. cast from an `int` to a `float`:Wir können den Typ explizit ändern (Cast durchführen), z. Besetzung von "int" in "float": ###Code a = 1 print(a, type(a)) a = float(a) # This converts the int associated with 'a' to a float, and assigns the result to the variable 'a' print(a, type(a)) ###Output 1 <class 'int'> 1.0 <class 'float'> ###Markdown Going the other way,Den anderen Weg gehen, ###Code y = 1.99 print(y, type(y)) z = int(y) print(z, type(z)) ###Output 1.99 <class 'float'> 1 <class 'int'> ###Markdown Note that rounding is applied when converting from a `float` to an `int`; the values after the decimal point are discarded. This type of rounding is called 'round towards zero' or 'truncation'.A common task is converting numerical types to-and-from strings. We might read a number from a file as a string, or a user might input a value which Python reads in as a string. Converting a float to a string:Beachten Sie, dass beim Konvertieren von "float" in "int" eine Rundung angewendet wird. Die Werte nach dem Komma werden verworfen. Diese Art der Rundung wird als "Rundung gegen Null" oder "Verkürzung" bezeichnet.Eine übliche Aufgabe ist das Konvertieren von numerischen Typen in und aus Strings. Wir lesen möglicherweise eine Zahl aus einer Datei als Zeichenfolge oder ein Benutzer gibt einen Wert ein, den Python als Zeichenfolge einliest. Einen Float in einen String konvertieren: ###Code a = 1.023 b = str(a) print(b, type(b)) ###Output 1.023 <class 'str'> ###Markdown and in the other direction:und in die andere Richtung: ###Code a = "15.07" b = "18.07" print(a + b) print(float(a) + float(b)) ###Output 15.0718.07 33.14 ###Markdown If we tried ```pythonprint(int(a) + int(b))```we could get an error that the strings could not be converted to `int`. It works in the case:Es könnte ein Fehler auftreten, dass die Zeichenfolgen nicht in int konvertiert werden konnten. Es funktioniert in dem Fall: ###Code a = "15" b = "18" print(int(a) + int(b)) ###Output 33 ###Markdown since these strings can be correctly cast to integers.da diese Zeichenfolgen korrekt in Ganzzahlen umgewandelt werden können. Ariane 5 rocket explosion and type conversionThe Ariane 5 rocket explosion was caused by an integer overflow. The speed of the rocket was stored as a 64-bit float, and this was converted in the navigation software to a 16-bit integer. However, the value of the float was greater than $32767$, the largest number a 16-bit integer can represent, and this led to an overflow that in turn caused the navigation system to fail and the rocket to explode.We can demonstrate what happened in the rocket program. We consider a speed of $40000.54$ (units are not relevant to what is being demonstrated), stored as a `float` (64 bits):Die Ariane-5-Raketenexplosion wurde durch einen ganzzahligen Überlauf verursacht. Die Geschwindigkeit der Rakete wurde als 64-Bit-Float gespeichert und in der Navigationssoftware in eine 16-Bit-Ganzzahl umgewandelt. Der Wert des Floats war jedoch höher als $ 32767 $. Die größte Zahl, die eine 16-Bit-Ganzzahl darstellen kann, führte zu einem Überlauf, der wiederum dazu führte, dass das Navigationssystem ausfiel und die Rakete explodierte.Wir können demonstrieren, was im Raketenprogramm passiert ist. Wir betrachten eine Geschwindigkeit von 40000,54 $ (Einheiten sind nicht relevant für das, was demonstriert wird), gespeichert als "Float" (64 Bit): ###Code speed_float = 40000.54 ###Output _____no_output_____ ###Markdown If we first convert the float to a 32-bit `int` (we use NumPy to get integers with a fixed number of bits, more on NumPy in a later notebook):Wenn wir den Float zuerst in ein 32-Bit-Int (konvertieren) konvertieren (wir verwenden NumPy, um Ganzzahlen mit einer festen Anzahl von Bits zu erhalten, mehr zu NumPy in einem späteren Notizbuch): ###Code import numpy as np speed_int = np.int32(speed_float) # Convert the speed to a 32-bit int print(speed_int) ###Output 40000 ###Markdown The conversion behaves as we would expect. Now, if we convert the speed from the `float` to a 16-bit integer:Die Konvertierung verhält sich wie erwartet. Wenn wir nun die Geschwindigkeit vom "float" in eine 16-Bit-Ganzzahl konvertieren: ###Code speed_int = np.int16(speed_float) print(speed_int) ###Output -25536 ###Markdown We see clearly the result of an integer overflow since the 16-bit integer has too few bits to represent the number 40000.The Ariane 5 failure would have been averted with pre-launch testing and the following few lines:Wir sehen deutlich das Ergebnis eines Ganzzahlüberlaufs, da die 16-Bit-Ganzzahl zu wenige Bits aufweist, um die Zahl darzustellen40000.Der Ausfall der Ariane 5 wäre durch Tests vor dem Start und den folgenden wenigen Zeilen verhindert worden: ###Code if abs(speed_float) > np.iinfo(np.int16).max: print("***Error, cannot assign speed to 16-bit int. Will cause overflow.") # Call command here to exit program else: speed_int = np.int16(speed_float) ###Output ***Error, cannot assign speed to 16-bit int. Will cause overflow. ###Markdown These few lines and careful testing would have saved the $500M payload and the cost of the rocket.The Ariane 5 incident is an example not only of a poor piece of programming, but also very poor testing and software engineering. Careful pre-launch testing of the software would have detected this problem. The program should have checked the value of the velocity before performing the conversion, and triggered an error message that the type conversion would cause an overflow.Diese wenigen Leitungen und sorgfältige Tests hätten die Nutzlast von 500 Millionen US-Dollar und die Kosten der Rakete eingespart.Der Vorfall der Ariane 5 ist nicht nur ein Beispiel für eine schlechte Programmierung, sondern auch für sehr schlechte Test- und Softwareentwicklung. Ein sorgfältiges Testen der Software vor dem Start hätte dieses Problem erkannt. Das Programm sollte vor der Konvertierung den Wert der Geschwindigkeit überprüft und eine Fehlermeldung ausgegeben haben, dass die Typkonvertierung einen Überlauf verursachen würde. Binary representation and floating point arithmetic Binary (base 2) representationComputers store data using 'bits', and a bit is a switch that can have a value of 0 or 1. This means that computers store numbers in binary (base 2), whereas we almost always work with decimal numbers (base 10).For example, the binary number $110$ is equal toComputer speichern Daten mit 'Bits', und ein Bit ist ein Schalter, der den Wert 0 oder 1 annehmen kann. Dies bedeutet, dass Computer Zahlen binär (Basis 2) speichern, während wir fast immer mit Dezimalzahlen (Basis 10) arbeiten.Zum Beispiel ist die Binärzahl $ 110 $ gleich $ 0$0 \times 2^{0} + 1 \times 2^{1} + 1 \times 2^{2} = 6$(read $110$ right-to-left).Below is a table with decimal (base 10) and the corresponding binary (base 2) representation of some numbers. Nachfolgend finden Sie eine Tabelle mit Dezimalzahlen (Basis 10) und der entsprechenden binären (Basis 2) Darstellung einiger Zahlen.See if you want to learn more.|Decimal | Binary || ------ |-------- ||0 | 0 | |1 | 1 | |2 | 10 ||3 | 11 ||4 | 100 ||5 | 101 ||6 | 110 ||7 | 111 ||8 | 1000 ||9 | 1001 ||10 | 1010 ||11 | 1011 ||12 | 1100 ||13 | 1101 ||14 | 1110 ||15 | 1111 |To represent any integer, all we need are enough bits to store the binary representation. If we have $n$ bits, the largest number we can store is $2^{n -1} - 1$ (the power is $n - 1$ because we use one bit to store the sign of the integer).We can display the binary representation of an integer in Python using the function `bin`:Um eine ganze Zahl darzustellen, brauchen wir nur genug Bits, um die binäre Darstellung zu speichern. Wenn wir $ n $ -Bits haben, ist die größte Anzahl, die wir speichern können, $ 2 ^ {n -1} - 1 $ (die Potenz ist $ n - 1 $, da wir das Vorzeichen der Ganzzahl mit einem Bit speichern).Wir können die binäre Darstellung einer Ganzzahl in Python mit der Funktion `bin` anzeigen: ###Code print(bin(2)) print(bin(6)) print(bin(110)) ###Output 0b10 0b110 0b1101110 ###Markdown The prefix `0b` is to denote that the representation is binary.Das Präfix '0b' gibt an, dass die Darstellung binär ist. Floating point numbersWe introduced the representationWir haben die Darstellung eingeführt$$10.45 = \underbrace{+}_{\text{sign}} \underbrace{1045}_{\text{significand}} \times \underbrace{10^{-2}}_{\text{exponent}}$$earlier. However, this was a little misleading because computers do not use base 10to store the significand and the exponent, but base 2. When using the familiar base 10, we cannot represent $1/3$ exactly as a decimal. If we liked using base 3 (ternary numeral system) for our mental arithmetic (which we really don't), we could represent $1/3$ exactly. However, fractions that are simple to represent exactly in base 10 might not be representable in another base.A consequence is that fractions that are simple in base 10 cannot necessarily be represented exactly by computers using binary.A classic example is $1/10 = 0.1$. This simple number cannot be represented exactly inbinary. On the contrary, $1/2 = 0.5$ can be represented exactly. To explore this, let's assign the number 0.1 to the variable `x` and print the result:vorhin. Dies war jedoch etwas irreführend, da Computer nicht die Basis 10 verwendenum den signifikanten und den Exponenten zu speichern, aber Basis 2.Bei Verwendung der bekannten Basis 10 können wir $ 1/3 $ nicht exakt als Dezimalzahl darstellen. Wenn wir Basis 3 (Ternäres Zahlensystem) für unsere mentale Arithmetik verwenden wollten (was wir wirklich nicht tun), könnten wir 1/3 $ genau darstellen. Brüche, die in der Basis 10 einfach dargestellt werden können, sind jedoch möglicherweise nicht in einer anderen Basis darstellbar.Dies hat zur Folge, dass Bruchteile, die in der Basis 10 einfach sind, nicht unbedingt von binären Computern korrekt dargestellt werden können.Ein klassisches Beispiel ist $ 1/10 = 0,1 $. Diese einfache Nummer kann nicht exakt in dargestellt werdenbinär. Im Gegensatz dazu kann $ 1/2 = 0,5 $ genau dargestellt werden. Um dies herauszufinden, weisen wir der Variablen 'x' die Nummer 0,1 zu und drucken das Ergebnis: ###Code x = 0.1 print(x) ###Output 0.1 ###Markdown This looks fine, but the `print` statement is hiding some details. Asking the `print` statement to use 30 characters we see that `x` is not exactly 0.1:Das sieht gut aus, aber die "print" -Anweisung verbirgt einige Details. Wenn Sie die `print`-Anweisung bitten, 30 Zeichen zu verwenden, sehen wir, dass 'x' nicht genau 0,1 ist: ###Code print('{0:.30f}'.format(x)) ###Output 0.100000000000000005551115123126 ###Markdown The difference between 0.1 and the binary representation is the *roundoff error* (we'll look at print formatting syntax in a later activity). From the above, we can see that the representation is accurate to about 17 significant figures.Checking for 0.5, we see that it appears to be represented exactly:Der Unterschied zwischen 0.1 und der Binärdarstellung ist der * Rundungsfehler * (die Formatierungssyntax des Druckens wird in einer späteren Übung beschrieben). Aus dem Obigen ist ersichtlich, dass die Darstellung auf ungefähr 17 signifikante Zahlen genau ist.Bei der Überprüfung von 0,5 sehen wir, dass es genau dargestellt zu sein scheint: ###Code print('{0:.30f}'.format(0.5)) ###Output 0.500000000000000000000000000000 ###Markdown The round-off error for the 0.1 case is small, and in many cases will not present a problem. However, sometimes round-off errors can accumulate and destroy accuracy.Der Rundungsfehler für den 0,1-Fall ist klein und stellt in vielen Fällen kein Problem dar. Manchmal können Rundungsfehler jedoch akkumulieren und die Genauigkeit zerstören. Example: inexact representationIt is trivial that$$x = 11x - 10x$$If $x = 0.1$, we can write$$x = 11x - 1$$Now, starting with $x = 0.1$ we evaluate the right-hand side to get a 'new' $x$, and use this new $x$ to then evaluate the right-hand side again. The arithmetic is trivial: $x$ should remain equal to $0.1$.We test this in a program that repeats this process 20 times: Beginnend mit $ x = 0,1 $ werten wir nun die rechte Seite aus, um ein "neues" $ x $ zu erhalten, und verwenden dieses neue $ x $, um die rechte Seite erneut auszuwerten. Die Arithmetik ist trivial: $ x $ sollte bei $ 0,1 $ bleiben.Wir testen das in einem Programm, das diesen Vorgang 20 Mal wiederholt: ###Code x = 0.1 for i in range(20): x = x*11 - 1 print(x) ###Output 0.10000000000000009 0.10000000000000098 0.10000000000001075 0.10000000000011822 0.10000000000130038 0.1000000000143042 0.10000000015734622 0.10000000173080847 0.10000001903889322 0.10000020942782539 0.10000230370607932 0.10002534076687253 0.10027874843559781 0.1030662327915759 0.13372856070733485 0.4710141677806834 4.181155845587517 44.992714301462684 493.9198573160895 5432.118430476985 ###Markdown The solution blows up and deviates widely from $x = 0.1$. Round-off errors are amplified at each step, leading to a completely wrong answer. The computer representation of $0.1$ is not exact, and every time we multiply $0.1$ by $11$, we increase the error by around a factor of 10 (we can see above that we lose a digit of accuracy in each step). You can observe the same issue using spreadsheet programs.Die Lösung sprengt und weicht stark von $ x = 0,1 $ ab. Rundungsfehler werden bei jedem Schritt verstärkt und führen zu einer völlig falschen Antwort. Die Computerrepräsentation von $ 0,1 $ ist nicht exakt, und jedes Mal, wenn wir $ 0,1 $ mit $ 11 $ multiplizieren, erhöhen wir den Fehler um einen Faktor von 10 (wir können oben sehen, dass wir in jedem Schritt eine Genauigkeitsziffer verlieren).Sie können dasselbe Problem mit Tabellenkalkulationsprogrammen beobachten. If we use $x = 0.5$, which can be represented exactly in binary: ###Code x = 0.5 for i in range(20): x = x*11 - 5 print(x) ###Output 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ###Markdown The result is exact in this case.By default, Python uses 64 bits to store a float. We can use the module NumPy to create a float that uses only 32 bits. Testing this for the $x = 0.1$ case:Das Ergebnis ist in diesem Fall genau.Standardmäßig verwendet Python 64 Bits, um einen Float zu speichern. Wir können das Modul NumPy verwenden, um eineFloat, der nur 32 Bit verwendet. Testen Sie dies für den Fall $ x = 0,1 $: ###Code x = np.float32(0.1) for i in range(20): x = x*11 - 1 print(x) ###Output 0.10000001639127731 0.10000018030405045 0.1000019833445549 0.10002181679010391 0.10023998469114304 0.1026398316025734 0.12903814762830734 0.41941962391138077 3.6136158630251884 38.74977449327707 425.2475194260478 4676.722713686526 51442.949850551784 565871.4483560696 6224584.931916766 68470433.25108442 753174764.7619286 8284922411.381214 91134146524.19336 1002475611765.127 ###Markdown The error blows up faster in this case compared to the 64 bit case - using 32 bits leads to a poorer approximation of $0.1$ than when using 64 bits.*Note:* Some languages have special tools for performing decimal (base 10) arithmetic (e.g., https://docs.python.org/3/library/decimal.html). This would, for example, allow $0.1$ to be represented exactly. However, decimal is not the 'natural' arithmetic of computers so operations in decimal could be expected to be much slower.Der Fehler springt in diesem Fall im Vergleich zum 64-Bit-Fall schneller an - die Verwendung von 32 Bit führt zu einer schlechteren Näherung von 0,1 als bei der Verwendung von 64 Bit.Hinweis: Einige Sprachen verfügen über spezielle Werkzeuge zum Ausführen von Dezimalarithmetik (Basis 10) (z. B. https://docs.python.org/3/library/decimal.html). Dies würde beispielsweise erlauben, dass 0,1 genau dargestellt wird. Dezimalzahlen sind jedoch nicht die "natürliche" Arithmetik von Computern, daher kann man davon ausgehen, dass Dezimaloperationen wesentlich langsamer sind. Patriot Missile FailureThe inexact representation of $0.1$ was the cause of the software error in the Patriot missile system (see preamble to this notebook). The missile system tracked time from boot (system start) using an integer counter that was incremented every $1/10$ of a second. Toget the time in seconds, the missile software multiplied the counter by the float representation of $0.1$. The control software used 24 bits to store floats. The round-off error due to the inexact representation of $0.1$ lead to an error of $0.32$ s after 100 hours of operation (time since boot), which due to the high velocity of the missile was enough to cause failure to intercept the incoming Scud.We don't have 24-bit floats in Python, but we can test with 16, 32 and 64 bit floats.We first compute what the system counter (an integer) would be after 100 hours:Die ungenaue Darstellung von 0,1 $ war die Ursache des Softwarefehlers im Patriot-Raketensystem (siehe Präambel zu diesem Notebook).Das Raketensystem verfolgte die Zeit vom Start (Systemstart) aus mit einem ganzzahligen Zähler, der alle 1/10 $ einer Sekunde inkrementiert wurde. ZuUm die Zeit in Sekunden zu ermitteln, multiplizierte die Raketensoftware den Zähler mit der Float-Darstellung von 0,1 $.Die Steuerungssoftware verwendete 24 Bits zum Speichern von Floats. Der Rundungsfehler aufgrund der ungenauen Darstellung von $ 0,1 $ führte nach 100 Betriebsstunden (Zeit seit dem Start) zu einem Fehler von $ 0,32 $ s, der aufgrund der hohen Geschwindigkeit des Flugkörpers ausreichte, um das Abfangen des eingehenden Systems zu verhindern ScudWir haben keine 24-Bit-Floats in Python, aber wir können 16, 32 und 64-Bit-Floats testen.Zuerst berechnen wir, wie der Systemzähler (eine ganze Zahl) nach 100 Stunden sein würde: ###Code # Compute internal system counter after 100 hours (counter increments every 1/10 s) num_hours = 100 num_seconds = num_hours*60*60 system_counter = num_seconds*10 # system clock counter ###Output _____no_output_____ ###Markdown Converting the system counter to seconds using different representations of 0.1:Konvertieren des Systemzählers in Sekunden mit unterschiedlichen Darstellungen von 0,1: ###Code # Test with 16 bit float dt = np.float16(0.1) time = dt*system_counter print("Time error after 100 hours using 16 bit float (s):", abs(time - num_seconds)) # Test with 32 bit float dt = np.float32(0.1) time = dt*system_counter print("Time error after 100 hours using 32 bit float (s):", abs(time - num_seconds)) # Test with 64 bit float dt = np.float64(0.1) time = dt*system_counter print("Time error after 100 hours using 64 bit float (s):", abs(time - num_seconds)) ###Output Time error after 100 hours using 16 bit float (s): 87.890625 Time error after 100 hours using 32 bit float (s): 0.005364418029785156 Time error after 100 hours using 64 bit float (s): 0.0
temas/I.computo_cientifico/1.7.Reescribir_funciones_a_C++_Rcpp.ipynb
###Markdown **Notas para contenedor de docker:** Comando de docker para ejecución de la nota de forma local:nota: cambiar `` por la ruta de directorio que se desea mapear a `/datos` dentro del contenedor de docker.```docker run --rm -v :/datos --name jupyterlab_r_kernel_local -p 8888:8888 -d palmoreck/jupyterlab_r_kernel:1.1.0```password para jupyterlab: `qwerty`Detener el contenedor de docker:```docker stop jupyterlab_r_kernel_local``` Documentación de la imagen de docker `palmoreck/jupyterlab_r_kernel:1.1.0` en [liga](https://github.com/palmoreck/dockerfiles/tree/master/jupyterlab/r_kernel). --- Esta nota utiliza métodos vistos en [1.5.Integracion_numerica](https://github.com/ITAM-DS/analisis-numerico-computo-cientifico/blob/master/temas/I.computo_cientifico/1.5.Integracion_numerica.ipynb) **Instalación de microbenchmark:** ###Code install.packages("microbenchmark",lib="/usr/local/lib/R/site-library/", repos="https://cran.itam.mx/",verbose=TRUE) ###Output system (cmd0): /usr/lib/R/bin/R CMD INSTALL foundpkgs: microbenchmark, /tmp/Rtmpu90LwL/downloaded_packages/microbenchmark_1.4-7.tar.gz files: /tmp/Rtmpu90LwL/downloaded_packages/microbenchmark_1.4-7.tar.gz 1): succeeded '/usr/lib/R/bin/R CMD INSTALL -l '/usr/local/lib/R/site-library' /tmp/Rtmpu90LwL/downloaded_packages/microbenchmark_1.4-7.tar.gz' ###Markdown Rcpp Documentación de Rcpp:* [rcpp por Dirk Eddelbuettel](http://dirk.eddelbuettel.com/code/rcpp.html)* [rcpp.org](http://www.rcpp.org/) **Rcpp** permite conectar `C++` a `R` de forma sencilla al utilizar la `API` de Rcpp.**¿Por qué usar Rcpp?**Aunque `C` o `C++` requieren más líneas de código, son órdenes de magnitud más rápidos que R. Sacrificamos las ventajas que tiene R como rapidez en programación por velocidad en ejecución.**¿Cuando podríamos usar Rcpp?*** En loops que no pueden vectorizarse de forma sencilla. Si tenemos loops en los que una iteración depende de la anterior.* Si hay que llamar una función millones de veces.* Si después de hacer perfilamiento y optimización de código no llegamos a nuestro tiempo objetivo. **Por qué no usamos `C`?**Sí es posible llamar funciones de `C` desde `R` pero resulta en más trabajo por parte de l@s programador@s. Por ejemplo, de acuerdo a H. Wickham:*...R’s C API. Unfortunately this API is not well documented. I’d recommend starting with my notes at [R’s C interface](http://adv-r.had.co.nz/C-interface.html). After that, read “[The R API](http://cran.rstudio.com/doc/manuals/r-devel/R-exts.htmlThe-R-API)” in “Writing R Extensions”. A number of exported functions are not documented, so you’ll also need to read the [R source code](https://github.com/wch/r-source) to figure out the details.*Y como primer acercamiento a la compilación de código desde `R` es preferible seguir las recomendaciones de H. Wickham en utilizar la API de `Rcpp`. **También se utiliza el paquete [microbenchmark](https://www.rdocumentation.org/packages/microbenchmark/versions/1.4-7/topics/microbenchmark) para medir tiempos de forma exacta:**Un *microbenchmark* es la medición del performance de un bloque pequeño de código. El paquete de `R` con el mismo nombre devolverá el tiempo medido en *miliseconds* (ms), *microseconds* ($\mu s$) o *nanoseconds* (ns) para el bloque de código dado y se repetirá ésta medición un número definido de veces. Las diferencias al correr varias veces la función de *microbenchmark* pueden deberse a varias razones tan simples como tener otras tareas corriendo en tu computadora. **En lo que sigue se utiliza el método del rectángulo para aproximar la integral definida de una función.** ###Code library(Rcpp) library(microbenchmark) ###Output _____no_output_____ ###Markdown La regla del rectángulo en código de `R` y utilizando [vapply](https://www.rdocumentation.org/packages/functools/versions/0.2.0/topics/Vapply) (`vapply` es más rápido que `sapply` pues se especifica con anterioridad el tipo de `output` que devuelve) es la siguiente: ###Code Rcf1<-function(f,a,b,n){ #Compute numerical approximation using rectangle or mid-point method in #an interval. #Nodes are generated via formula: x_i = a+(i+1/2)h_hat for i=0,1,...,n-1 and h_hat=(b-a)/n #Args: # f (function): function of integrand # a (int): left point of interval # b (int): right point of interval # n (int): number of subintervals #Returns: # Rcf (float) h_hat<-(b-a)/n sum_res<-0 x<-vapply(0:(n-1),function(j)a+(j+1/2.0)*h_hat,numeric(1)) for(j in 1:n){ sum_res<-sum_res+f(x[j]) } h_hat*sum_res } f<-function(x)exp(-x^2) ###Output _____no_output_____ ###Markdown Probaremos esta implementación `Rcf1` básica para medir su tiempo de ejecución: ###Code n<-10**6 aprox<-Rcf1(f,0,1,n) aprox ###Output _____no_output_____ ###Markdown **Recuérdese** revisar el error relativo: ###Code err_relativo<-function(aprox,obj)abs(aprox-obj)/abs(obj) obj<-integrate(Vectorize(f),0,1) #en la documentación de integrate #se menciona que se utilice Vectorize err_relativo(aprox,obj$value) system.time(Rcf1(f,0,1,n)) ###Output _____no_output_____ ###Markdown Una implementación que utiliza la función `sum` de `R` es la siguiente: ###Code Rcf2<-function(f,a,b,n){ #Compute numerical approximation using rectangle or mid-point method in #an interval. #Nodes are generated via formula: x_i = a+(i+1/2)h_hat for i=0,1,...,n-1 and h_hat=(b-a)/n #Args: # f (function): function of integrand # a (int): left point of interval # b (int): right point of interval # n (int): number of subintervals #Returns: # Rcf (float) h_hat<-(b-a)/n x<-vapply(0:(n-1),function(j)a+(j+1/2.0)*h_hat,numeric(1)) h_hat*sum(f(x)) } aprox<-Rcf2(f,0,1,n) aprox err_relativo(aprox,obj$value) system.time(Rcf2(f,0,1,n)) ###Output _____no_output_____ ###Markdown y se redujo el tiempo de cálculo. Hacia la compilación con Rcpp En `Rcpp` se tiene la función [cppFunction](https://www.rdocumentation.org/packages/Rcpp/versions/1.0.3/topics/cppFunction) que recibe código escrito en `C++` para definir una función que puede ser utilizada desde `R`. Antes de usar tal función, reescribamos la regla del rectángulo de modo que no se utilice `vapply`: ###Code Rcf3<-function(f,a,b,n){ #Compute numerical approximation using rectangle or mid-point method in #an interval. #Nodes are generated via formula: x_i = a+(i+1/2)h_hat for i=0,1,...,n-1 and h_hat=(b-a)/n #Args: # f (function): function of integrand # a (int): left point of interval # b (int): right point of interval # n (int): number of subintervals #Returns: # Rcf (float) h_hat<-(b-a)/n sum_res<-0 for(i in 0:(n-1)){ x<-a+(i+1/2.0)*h_hat sum_res<-sum_res+f(x) } h_hat*sum_res } n<-10**6 aprox<-Rcf3(f,0,1,n) aprox err_relativo(aprox,obj$value) system.time(Rcf4(f,0,1,n)) ###Output _____no_output_____ ###Markdown Entonces se define el `source code` escrito en `C++` que será el primer parámetro que recibirá `cppFunction`: ###Code f_str<-'double Rcf_Rcpp(double a, double b, int n){ double h_hat; double sum_res=0; int i; double x; h_hat=(b-a)/n; for(i=0;i<=n-1;i++){ x = a+(i+1/2.0)*h_hat; sum_res+=exp(-pow(x,2)); } return h_hat*sum_res; }' cppFunction(f_str) ###Output _____no_output_____ ###Markdown Si queremos obtener más información de la ejecución de la línea anterior podemos usar: ###Code cppFunction(f_str, verbose=TRUE, rebuild=TRUE) #también usamos rebuild=TRUE #para que se vuelva a compilar, #ligar con la librería en C++ #y todo lo que realiza cppFunction #detrás del telón ###Output Generated code for function definition: -------------------------------------------------------- #include <Rcpp.h> using namespace Rcpp; // [[Rcpp::export]] double Rcf_Rcpp(double a, double b, int n){ double h_hat; double sum_res=0; int i; double x; h_hat=(b-a)/n; for(i=0;i<=n-1;i++){ x = a+(i+1/2.0)*h_hat; sum_res+=exp(-pow(x,2)); } return h_hat*sum_res; } Generated extern "C" functions -------------------------------------------------------- #include <Rcpp.h> // Rcf_Rcpp double Rcf_Rcpp(double a, double b, int n); RcppExport SEXP sourceCpp_1_Rcf_Rcpp(SEXP aSEXP, SEXP bSEXP, SEXP nSEXP) { BEGIN_RCPP Rcpp::RObject rcpp_result_gen; Rcpp::RNGScope rcpp_rngScope_gen; Rcpp::traits::input_parameter< double >::type a(aSEXP); Rcpp::traits::input_parameter< double >::type b(bSEXP); Rcpp::traits::input_parameter< int >::type n(nSEXP); rcpp_result_gen = Rcpp::wrap(Rcf_Rcpp(a, b, n)); return rcpp_result_gen; END_RCPP } Generated R functions ------------------------------------------------------- `.sourceCpp_1_DLLInfo` <- dyn.load('/tmp/Rtmpu90LwL/sourceCpp-x86_64-pc-linux-gnu-1.0.3/sourcecpp_12515b9b19/sourceCpp_3.so') Rcf_Rcpp <- Rcpp:::sourceCppFunction(function(a, b, n) {}, FALSE, `.sourceCpp_1_DLLInfo`, 'sourceCpp_1_Rcf_Rcpp') rm(`.sourceCpp_1_DLLInfo`) Building shared library -------------------------------------------------------- DIR: /tmp/Rtmpu90LwL/sourceCpp-x86_64-pc-linux-gnu-1.0.3/sourcecpp_12515b9b19 /usr/lib/R/bin/R CMD SHLIB -o 'sourceCpp_3.so' --preclean 'file1239a2facb.cpp' ###Markdown **Comentarios:*** Al ejecutar la línea de `cppFunction`, `Rcpp` compilará el código de `C++` y construirá una función de `R` que se conecta con la función compilada de `C++` (este se le llama `wrapper`). * Si se observa en la salida de arriba se verá que hay un bloque de `C` y un tipo de dato `SEXP` que de acuerdo a H. Wickham:*...functions that talk to R must use the SEXP type for both inputs and outputs. SEXP, short for S expression, is the C struct used to represent every type of object in R. A C function typically starts by converting SEXPs to atomic C objects, and ends by converting C objects back to a SEXP. (The R API is designed so that these conversions often don’t require copying.)* Revisemos el tiempo de esta función: ###Code aprox_rcpp<-Rcf_Rcpp(0,1,n) err_relativo(aprox_rcpp,obj$value) system.time(Rcf_Rcpp(0,1,n)) ###Output _____no_output_____ ###Markdown Y utilizando `microbenchmark`: ###Code mbk<-microbenchmark( Rcf1(f,0,1,n), Rcf2(f,0,1,n), Rcf3(f,0,1,n), Rcf_Rcpp(0,1,n), times=10 ) print(mbk) ###Output Unit: milliseconds expr min lq mean median uq Rcf1(f, 0, 1, n) 1134.9580 1143.60462 1286.19387 1207.79665 1217.92329 Rcf2(f, 0, 1, n) 668.5134 687.85826 746.14824 731.34272 751.19857 Rcf3(f, 0, 1, n) 524.9488 536.67870 545.12018 539.86892 552.13084 Rcf_Rcpp(0, 1, n) 16.5403 17.25606 18.64566 17.97957 19.13085 max neval 1723.17939 10 947.80422 10 577.35055 10 24.64291 10 ###Markdown Se observa que la función compilada `Rcf_Rcpp` es dos órdenes de magnitud más rápida que `Rcf1` y un orden de magnitud más rápida que `Rcf2` y `Rcf3`. **NumericVector** En `Rcpp` se tienen clases que se relacionan con los tipos de dato en `R` para vectores. Entre éstas se encuentran `NumericVector`, `IntegerVector`, `CharacterVector` y `LogicalVector` que se relacionan con vectores tipo `numeric`, `integer`, `character` y `logical`. Por ejemplo, para el caso de `NumericVector` se tiene: ###Code f_str <-'NumericVector el(NumericVector x){ return exp(log(x)); }' cppFunction(f_str) print(el(seq(0,1,by=.1))) ###Output [1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 ###Markdown Para el caso de la regla de integración del rectángulo, podríamos pensar en `R` en una implementación como la siguiente: ###Code Rcf3b<-function(f,a,b,n){ #Compute numerical approximation using rectangle or mid-point method in #an interval. #Nodes are generated via formula: x_i = a+(i+1/2)h_hat for i=0,1,...,n-1 and h_hat=(b-a)/n #Args: # f (function): function of integrand # a (int): left point of interval # b (int): right point of interval # n (int): number of subintervals #Returns: # Rcf (float) h_hat<-(b-a)/n fx<-f(vapply(0:(n-1),function(j)a+(j+1/2.0)*h_hat,numeric(1))) #evaluate f h_hat*sum(fx) } aprox<-Rcf3b(f,0,1,n) err_relativo(aprox,obj$value) system.time(Rcf3(f,0,1,n)) ###Output _____no_output_____ ###Markdown Y para poner un ejemplo de `NumericVector` para esta regla, podemos primero calcular los nodos y evaluar `f` en ellos: ###Code a<-0 b<-1 h_hat<-(b-a)/n fx<-f(vapply(0:(n-1),function(j)a+(j+1/2.0)*h_hat,numeric(1))) print(tail(fx)) f_str<-' double Rcf_Rcpp2(NumericVector f_x,double h_hat){ double sum_res=0; int i; int n = f_x.size(); for(i=0;i<=n-1;i++){ sum_res+=f_x[i]; } return h_hat*sum_res; }' cppFunction(f_str,rebuild=TRUE) system.time(Rcf_Rcpp2(fx,h_hat)) ###Output _____no_output_____ ###Markdown **Revisamos** el error relativo: ###Code aprox_rcpp2<-Rcf_Rcpp2(fx,h_hat) err_relativo(aprox_rcpp2,obj$value) ###Output _____no_output_____ ###Markdown Y constrastamos con `microbenchmark`: ###Code mbk<-microbenchmark( Rcf1(f,0,1,n), Rcf2(f,0,1,n), Rcf3(f,0,1,n), Rcf3b(f,0,1,n), Rcf_Rcpp(0,1,n), Rcf_Rcpp2(fx,h_hat), times=10 ) print(mbk) ###Output Unit: milliseconds expr min lq mean median Rcf1(f, 0, 1, n) 1192.918665 1228.678904 1315.967484 1264.626690 Rcf2(f, 0, 1, n) 708.988752 721.018438 838.991386 791.609931 Rcf3(f, 0, 1, n) 533.528447 557.654910 642.007659 599.152741 Rcf3b(f, 0, 1, n) 688.495578 723.240941 840.585161 743.023979 Rcf_Rcpp(0, 1, n) 16.944433 17.587898 21.350258 21.209751 Rcf_Rcpp2(fx, h_hat) 1.047825 1.074875 1.348535 1.126084 uq max neval 1414.261255 1489.786964 10 855.935157 1190.395839 10 690.248859 850.867292 10 942.462597 1213.450117 10 24.679616 29.429521 10 1.200255 3.288781 10 ###Markdown **Comentarios:** * Obsérvese que está utilizando el método `.size()` que regresa un `integer`.* No estamos midiendo en condiciones iguales pues las otras funciones construían los nodos... por ejemplo es súper rápida la ejecución de `Rcf_Rcpp2` y no tanto la siguiente: ###Code system.time(fx<-f(vapply(0:(n-1),function(j)a+(j+1/2.0)*h_hat,numeric(1)))) ###Output _____no_output_____ ###Markdown Entonces debimos de haber medido como: ###Code mbk<-microbenchmark( Rcf1(f,0,1,n), Rcf2(f,0,1,n), Rcf3(f,0,1,n), Rcf3b(f,0,1,n), Rcf_Rcpp(0,1,n), f(vapply(0:(n-1),function(j)a+(j+1/2.0)*h_hat,numeric(1))), times=10 ) print(mbk) ###Output Unit: milliseconds expr min Rcf1(f, 0, 1, n) 1118.9874 Rcf2(f, 0, 1, n) 661.8217 Rcf3(f, 0, 1, n) 518.4573 Rcf3b(f, 0, 1, n) 657.6112 Rcf_Rcpp(0, 1, n) 16.7331 f(vapply(0:(n - 1), function(j) a + (j + 1/2) * h_hat, numeric(1))) 708.2641 lq mean median uq max neval 1148.5022 1221.05506 1177.96496 1294.26572 1396.64626 10 669.4143 712.31013 681.45650 695.29276 1009.91352 10 531.4959 596.47586 557.93353 652.30480 778.27262 10 683.1871 735.76753 686.61225 727.13774 1014.09308 10 17.0036 18.01895 18.27387 18.49182 19.71365 10 744.7894 824.46560 758.49632 923.38135 1010.55658 10 ###Markdown * También se pueden devolver vectores de tipo `NumericVector` por ejemplo para crear los nodos: ###Code f_str<-'NumericVector Nodos(double a, double b, int n){ double h_hat=(b-a)/n; int i; NumericVector x(n); for(i=0;i<n;i++) x[i]=a+(i+1/2.0)*h_hat; return x; }' cppFunction(f_str,rebuild=TRUE) print(Nodos(0,1,2)) ###Output [1] 0.25 0.75 ###Markdown **También en `Rcpp` es posible llamar funciones definidas en el ambiente global, por ejemplo:** ###Code f_str='RObject fun(double x){ Environment env = Environment::global_env(); Function f=env["f"]; return f(x); } ' cppFunction(f_str,rebuild=TRUE) fun(1) f(1) fun ###Output _____no_output_____ ###Markdown **.Call es una función base para llamar funciones de `C` desde `R`:**.*There are two ways to call C functions from R: .C() and .Call(). .C() is a quick and dirty way to call an C function that doesn’t know anything about R because .C() automatically converts between R vectors and the corresponding C types. .Call() is more flexible, but more work: your C function needs to use the R API to convert its inputs to standard C data types.* **H. Wickham**. ###Code f ###Output _____no_output_____ ###Markdown **Notas para contenedor de docker:** Comando de docker para ejecución de la nota de forma local:nota: cambiar `` por la ruta de directorio que se desea mapear a `/datos` dentro del contenedor de docker.```docker run --rm -v :/datos --name jupyterlab_r_kernel_local -p 8888:8888 -d palmoreck/jupyterlab_r_kernel:1.1.0```password para jupyterlab: `qwerty`Detener el contenedor de docker:```docker stop jupyterlab_r_kernel_local``` Documentación de la imagen de docker `palmoreck/jupyterlab_r_kernel:1.1.0` en [liga](https://github.com/palmoreck/dockerfiles/tree/master/jupyterlab/r_kernel). --- Esta nota utiliza métodos vistos en [1.5.Integracion_numerica](https://github.com/ITAM-DS/analisis-numerico-computo-cientifico/blob/master/temas/I.computo_cientifico/1.5.Integracion_numerica.ipynb) **Instalación de Rcpp:** ###Code install.packages("Rcpp",lib="/usr/local/lib/R/site-library/", repos="https://cran.itam.mx/",verbose=TRUE) install.packages("microbenchmark",lib="/usr/local/lib/R/site-library/", repos="https://cran.itam.mx/",verbose=TRUE) ###Output system (cmd0): /usr/lib/R/bin/R CMD INSTALL foundpkgs: microbenchmark, /tmp/Rtmpu90LwL/downloaded_packages/microbenchmark_1.4-7.tar.gz files: /tmp/Rtmpu90LwL/downloaded_packages/microbenchmark_1.4-7.tar.gz 1): succeeded '/usr/lib/R/bin/R CMD INSTALL -l '/usr/local/lib/R/site-library' /tmp/Rtmpu90LwL/downloaded_packages/microbenchmark_1.4-7.tar.gz' ###Markdown Rcpp Documentación de Rcpp:* [rcpp por Dirk Eddelbuettel](http://dirk.eddelbuettel.com/code/rcpp.html)* [rcpp.org](http://www.rcpp.org/) **Rcpp** permite conectar `C++` a `R` de forma sencilla al utilizar la `API` de Rcpp.**¿Por qué usar Rcpp?**Aunque `C` o `C++` requieren más líneas de código, son órdenes de magnitud más rápidos que R. Sacrificamos las ventajas que tiene R como rapidez en programación por velocidad en ejecución.**¿Cuando podríamos usar Rcpp?*** En loops que no pueden vectorizarse de forma sencilla. Si tenemos loops en los que una iteración depende de la anterior.* Si hay que llamar una función millones de veces.* Si después de hacer perfilamiento y optimización de código no llegamos a nuestro tiempo objetivo. **Por qué no usamos `C`?**Sí es posible llamar funciones de `C` desde `R` pero resulta en más trabajo por parte de l@s programador@s. Por ejemplo, de acuerdo a H. Wickham:*...R’s C API. Unfortunately this API is not well documented. I’d recommend starting with my notes at [R’s C interface](http://adv-r.had.co.nz/C-interface.html). After that, read “[The R API](http://cran.rstudio.com/doc/manuals/r-devel/R-exts.htmlThe-R-API)” in “Writing R Extensions”. A number of exported functions are not documented, so you’ll also need to read the [R source code](https://github.com/wch/r-source) to figure out the details.*Y como primer acercamiento a la compilación de código desde `R` es preferible seguir las recomendaciones de H. Wickham en utilizar la API de `Rcpp`. **También se utiliza el paquete [microbenchmark](https://www.rdocumentation.org/packages/microbenchmark/versions/1.4-7/topics/microbenchmark) para medir tiempos de forma exacta:**Un *microbenchmark* es la medición del performance de un bloque pequeño de código. El paquete de `R` con el mismo nombre devolverá el tiempo medido en *miliseconds* (ms), *microseconds* ($\mu s$) o *nanoseconds* (ns) para el bloque de código dado y se repetirá ésta medición un número definido de veces. Las diferencias al correr varias veces la función de *microbenchmark* pueden deberse a varias razones tan simples como tener otras tareas corriendo en tu computadora. **En lo que sigue se utiliza el método del rectángulo para aproximar la integral definida de una función.** ###Code library(Rcpp) library(microbenchmark) ###Output _____no_output_____ ###Markdown La regla del rectángulo en código de `R` y utilizando [vapply](https://www.rdocumentation.org/packages/functools/versions/0.2.0/topics/Vapply) (`vapply` es más rápido que `sapply` pues se especifica con anterioridad el tipo de `output` que devuelve) es la siguiente: ###Code Rcf1<-function(f,a,b,n){ #Compute numerical approximation using rectangle or mid-point method in #an interval. #Nodes are generated via formula: x_i = a+(i+1/2)h_hat for i=0,1,...,n-1 and h_hat=(b-a)/n #Args: # f (function): function of integrand # a (int): left point of interval # b (int): right point of interval # n (int): number of subintervals #Returns: # Rcf (float) h_hat<-(b-a)/n sum_res<-0 x<-vapply(0:(n-1),function(j)a+(j+1/2.0)*h_hat,numeric(1)) for(j in 1:n){ sum_res<-sum_res+f(x[j]) } h_hat*sum_res } f<-function(x)exp(-x^2) ###Output _____no_output_____ ###Markdown Probaremos esta implementación `Rcf1` básica para medir su tiempo de ejecución: ###Code n<-10**6 aprox<-Rcf1(f,0,1,n) aprox ###Output _____no_output_____ ###Markdown **Recuérdese** revisar el error relativo: ###Code err_relativo<-function(aprox,obj)abs(aprox-obj)/abs(obj) obj<-integrate(Vectorize(f),0,1) #en la documentación de integrate #se menciona que se utilice Vectorize err_relativo(aprox,obj$value) system.time(Rcf1(f,0,1,n)) ###Output _____no_output_____ ###Markdown Una implementación que utiliza la función `sum` de `R` es la siguiente: ###Code Rcf2<-function(f,a,b,n){ #Compute numerical approximation using rectangle or mid-point method in #an interval. #Nodes are generated via formula: x_i = a+(i+1/2)h_hat for i=0,1,...,n-1 and h_hat=(b-a)/n #Args: # f (function): function of integrand # a (int): left point of interval # b (int): right point of interval # n (int): number of subintervals #Returns: # Rcf (float) h_hat<-(b-a)/n x<-vapply(0:(n-1),function(j)a+(j+1/2.0)*h_hat,numeric(1)) h_hat*sum(f(x)) } aprox<-Rcf2(f,0,1,n) aprox err_relativo(aprox,obj$value) system.time(Rcf2(f,0,1,n)) ###Output _____no_output_____ ###Markdown y se redujo el tiempo de cálculo. Hacia la compilación con Rcpp En `Rcpp` se tiene la función [cppFunction](https://www.rdocumentation.org/packages/Rcpp/versions/1.0.3/topics/cppFunction) que recibe código escrito en `C++` para definir una función que puede ser utilizada desde `R`. Antes de usar tal función, reescribamos la regla del rectángulo de modo que no se utilice `vapply`: ###Code Rcf3<-function(f,a,b,n){ #Compute numerical approximation using rectangle or mid-point method in #an interval. #Nodes are generated via formula: x_i = a+(i+1/2)h_hat for i=0,1,...,n-1 and h_hat=(b-a)/n #Args: # f (function): function of integrand # a (int): left point of interval # b (int): right point of interval # n (int): number of subintervals #Returns: # Rcf (float) h_hat<-(b-a)/n sum_res<-0 for(i in 0:(n-1)){ x<-a+(i+1/2.0)*h_hat sum_res<-sum_res+f(x) } h_hat*sum_res } n<-10**6 aprox<-Rcf3(f,0,1,n) aprox err_relativo(aprox,obj$value) system.time(Rcf4(f,0,1,n)) ###Output _____no_output_____ ###Markdown Entonces se define el `source code` escrito en `C++` que será el primer parámetro que recibirá `cppFunction`: ###Code f_str<-'double Rcf_Rcpp(double a, double b, int n){ double h_hat; double sum_res=0; int i; double x; h_hat=(b-a)/n; for(i=0;i<=n-1;i++){ x = a+(i+1/2.0)*h_hat; sum_res+=exp(-pow(x,2)); } return h_hat*sum_res; }' cppFunction(f_str) ###Output _____no_output_____ ###Markdown Si queremos obtener más información de la ejecución de la línea anterior podemos usar: ###Code cppFunction(f_str, verbose=TRUE, rebuild=TRUE) #también usamos rebuild=TRUE #para que se vuelva a compilar, #ligar con la librería en C++ #y todo lo que realiza cppFunction #detrás del telón ###Output Generated code for function definition: -------------------------------------------------------- #include <Rcpp.h> using namespace Rcpp; // [[Rcpp::export]] double Rcf_Rcpp(double a, double b, int n){ double h_hat; double sum_res=0; int i; double x; h_hat=(b-a)/n; for(i=0;i<=n-1;i++){ x = a+(i+1/2.0)*h_hat; sum_res+=exp(-pow(x,2)); } return h_hat*sum_res; } Generated extern "C" functions -------------------------------------------------------- #include <Rcpp.h> // Rcf_Rcpp double Rcf_Rcpp(double a, double b, int n); RcppExport SEXP sourceCpp_1_Rcf_Rcpp(SEXP aSEXP, SEXP bSEXP, SEXP nSEXP) { BEGIN_RCPP Rcpp::RObject rcpp_result_gen; Rcpp::RNGScope rcpp_rngScope_gen; Rcpp::traits::input_parameter< double >::type a(aSEXP); Rcpp::traits::input_parameter< double >::type b(bSEXP); Rcpp::traits::input_parameter< int >::type n(nSEXP); rcpp_result_gen = Rcpp::wrap(Rcf_Rcpp(a, b, n)); return rcpp_result_gen; END_RCPP } Generated R functions ------------------------------------------------------- `.sourceCpp_1_DLLInfo` <- dyn.load('/tmp/Rtmpu90LwL/sourceCpp-x86_64-pc-linux-gnu-1.0.3/sourcecpp_12515b9b19/sourceCpp_3.so') Rcf_Rcpp <- Rcpp:::sourceCppFunction(function(a, b, n) {}, FALSE, `.sourceCpp_1_DLLInfo`, 'sourceCpp_1_Rcf_Rcpp') rm(`.sourceCpp_1_DLLInfo`) Building shared library -------------------------------------------------------- DIR: /tmp/Rtmpu90LwL/sourceCpp-x86_64-pc-linux-gnu-1.0.3/sourcecpp_12515b9b19 /usr/lib/R/bin/R CMD SHLIB -o 'sourceCpp_3.so' --preclean 'file1239a2facb.cpp' ###Markdown **Comentarios:*** Al ejecutar la línea de `cppFunction`, `Rcpp` compilará el código de `C++` y construirá una función de `R` que se conecta con la función compilada de `C++` (este se le llama `wrapper`). * Si se observa en la salida de arriba se verá que hay un bloque de `C` y un tipo de dato `SEXP` que de acuerdo a H. Wickham:*...functions that talk to R must use the SEXP type for both inputs and outputs. SEXP, short for S expression, is the C struct used to represent every type of object in R. A C function typically starts by converting SEXPs to atomic C objects, and ends by converting C objects back to a SEXP. (The R API is designed so that these conversions often don’t require copying.)* Revisemos el tiempo de esta función: ###Code aprox_rcpp<-Rcf_Rcpp(0,1,n) err_relativo(aprox_rcpp,obj$value) system.time(Rcf_Rcpp(0,1,n)) ###Output _____no_output_____ ###Markdown Y utilizando `microbenchmark`: ###Code mbk<-microbenchmark( Rcf1(f,0,1,n), Rcf2(f,0,1,n), Rcf3(f,0,1,n), Rcf_Rcpp(0,1,n), times=10 ) print(mbk) ###Output Unit: milliseconds expr min lq mean median uq Rcf1(f, 0, 1, n) 1134.9580 1143.60462 1286.19387 1207.79665 1217.92329 Rcf2(f, 0, 1, n) 668.5134 687.85826 746.14824 731.34272 751.19857 Rcf3(f, 0, 1, n) 524.9488 536.67870 545.12018 539.86892 552.13084 Rcf_Rcpp(0, 1, n) 16.5403 17.25606 18.64566 17.97957 19.13085 max neval 1723.17939 10 947.80422 10 577.35055 10 24.64291 10 ###Markdown Se observa que la función compilada `Rcf_Rcpp` es dos órdenes de magnitud más rápida que `Rcf1` y un orden de magnitud más rápida que `Rcf2` y `Rcf3`. **NumericVector** En `Rcpp` se tienen clases que se relacionan con los tipos de dato en `R` para vectores. Entre éstas se encuentran `NumericVector`, `IntegerVector`, `CharacterVector` y `LogicalVector` que se relacionan con vectores tipo `numeric`, `integer`, `character` y `logical`. Por ejemplo, para el caso de `NumericVector` se tiene: ###Code f_str <-'NumericVector el(NumericVector x){ return exp(log(x)); }' cppFunction(f_str) print(el(seq(0,1,by=.1))) ###Output [1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 ###Markdown Para el caso de la regla de integración del rectángulo, podríamos pensar en `R` en una implementación como la siguiente: ###Code Rcf3b<-function(f,a,b,n){ #Compute numerical approximation using rectangle or mid-point method in #an interval. #Nodes are generated via formula: x_i = a+(i+1/2)h_hat for i=0,1,...,n-1 and h_hat=(b-a)/n #Args: # f (function): function of integrand # a (int): left point of interval # b (int): right point of interval # n (int): number of subintervals #Returns: # Rcf (float) h_hat<-(b-a)/n fx<-f(vapply(0:(n-1),function(j)a+(j+1/2.0)*h_hat,numeric(1))) #evaluate f h_hat*sum(fx) } aprox<-Rcf3b(f,0,1,n) err_relativo(aprox,obj$value) system.time(Rcf3(f,0,1,n)) ###Output _____no_output_____ ###Markdown Y para poner un ejemplo de `NumericVector` para esta regla, podemos primero calcular los nodos y evaluar `f` en ellos: ###Code a<-0 b<-1 h_hat<-(b-a)/n fx<-f(vapply(0:(n-1),function(j)a+(j+1/2.0)*h_hat,numeric(1))) print(tail(fx)) f_str<-' double Rcf_Rcpp2(NumericVector f_x,double h_hat){ double sum_res=0; int i; int n = f_x.size(); for(i=0;i<=n-1;i++){ sum_res+=f_x[i]; } return h_hat*sum_res; }' cppFunction(f_str,rebuild=TRUE) system.time(Rcf_Rcpp2(fx,h_hat)) ###Output _____no_output_____ ###Markdown **Revisamos** el error relativo: ###Code aprox_rcpp2<-Rcf_Rcpp2(fx,h_hat) err_relativo(aprox_rcpp2,obj$value) ###Output _____no_output_____ ###Markdown Y constrastamos con `microbenchmark`: ###Code mbk<-microbenchmark( Rcf1(f,0,1,n), Rcf2(f,0,1,n), Rcf3(f,0,1,n), Rcf3b(f,0,1,n), Rcf_Rcpp(0,1,n), Rcf_Rcpp2(fx,h_hat), times=10 ) print(mbk) ###Output Unit: milliseconds expr min lq mean median Rcf1(f, 0, 1, n) 1192.918665 1228.678904 1315.967484 1264.626690 Rcf2(f, 0, 1, n) 708.988752 721.018438 838.991386 791.609931 Rcf3(f, 0, 1, n) 533.528447 557.654910 642.007659 599.152741 Rcf3b(f, 0, 1, n) 688.495578 723.240941 840.585161 743.023979 Rcf_Rcpp(0, 1, n) 16.944433 17.587898 21.350258 21.209751 Rcf_Rcpp2(fx, h_hat) 1.047825 1.074875 1.348535 1.126084 uq max neval 1414.261255 1489.786964 10 855.935157 1190.395839 10 690.248859 850.867292 10 942.462597 1213.450117 10 24.679616 29.429521 10 1.200255 3.288781 10 ###Markdown **Comentarios:** * Obsérvese que está utilizando el método `.size()` que regresa un `integer`.* No estamos midiendo en condiciones iguales pues las otras funciones construían los nodos... por ejemplo es súper rápida la ejecución de `Rcf_Rcpp2` y no tanto la siguiente: ###Code system.time(fx<-f(vapply(0:(n-1),function(j)a+(j+1/2.0)*h_hat,numeric(1)))) ###Output _____no_output_____ ###Markdown Entonces debimos de haber medido como: ###Code mbk<-microbenchmark( Rcf1(f,0,1,n), Rcf2(f,0,1,n), Rcf3(f,0,1,n), Rcf3b(f,0,1,n), Rcf_Rcpp(0,1,n), f(vapply(0:(n-1),function(j)a+(j+1/2.0)*h_hat,numeric(1))), times=10 ) print(mbk) ###Output Unit: milliseconds expr min Rcf1(f, 0, 1, n) 1118.9874 Rcf2(f, 0, 1, n) 661.8217 Rcf3(f, 0, 1, n) 518.4573 Rcf3b(f, 0, 1, n) 657.6112 Rcf_Rcpp(0, 1, n) 16.7331 f(vapply(0:(n - 1), function(j) a + (j + 1/2) * h_hat, numeric(1))) 708.2641 lq mean median uq max neval 1148.5022 1221.05506 1177.96496 1294.26572 1396.64626 10 669.4143 712.31013 681.45650 695.29276 1009.91352 10 531.4959 596.47586 557.93353 652.30480 778.27262 10 683.1871 735.76753 686.61225 727.13774 1014.09308 10 17.0036 18.01895 18.27387 18.49182 19.71365 10 744.7894 824.46560 758.49632 923.38135 1010.55658 10 ###Markdown * También se pueden devolver vectores de tipo `NumericVector` por ejemplo para crear los nodos: ###Code f_str<-'NumericVector Nodos(double a, double b, int n){ double h_hat=(b-a)/n; int i; NumericVector x(n); for(i=0;i<n;i++) x[i]=a+(i+1/2.0)*h_hat; return x; }' cppFunction(f_str,rebuild=TRUE) print(Nodos(0,1,2)) ###Output [1] 0.25 0.75 ###Markdown **También en `Rcpp` es posible llamar funciones definidas en el ambiente global, por ejemplo:** ###Code f_str='RObject fun(double x){ Environment env = Environment::global_env(); Function f=env["f"]; return f(x); } ' cppFunction(f_str,rebuild=TRUE) fun(1) f(1) fun ###Output _____no_output_____ ###Markdown **.Call es una función base para llamar funciones de `C` desde `R`:**.*There are two ways to call C functions from R: .C() and .Call(). .C() is a quick and dirty way to call an C function that doesn’t know anything about R because .C() automatically converts between R vectors and the corresponding C types. .Call() is more flexible, but more work: your C function needs to use the R API to convert its inputs to standard C data types.* **H. Wickham**. ###Code f ###Output _____no_output_____
notebooks/keras-transfer-learning-tutorial.ipynb
###Markdown Deep Learning from Pre-Trained Models with Keras IntroductionImageNet, an image recognition benchmark dataset*, helped trigger the modern AI explosion. In 2012, the AlexNet architecture (a deep convolutional-neural-network) rocked the ImageNet benchmark competition, handily beating the next best entrant. By 2014, all the leading competitors were deep learning based. Since then, accuracy scores continued to improve, eventually surpassing human performance.In this hands-on tutorial, and later exercise, we will build on this pioneering work to create our own neural-network architecture for image recognition. Participants will use the elegant Keras deep learning programming interface to build and train TensorFlow models for image classification tasks on the CIFAR-10 / MNIST datasets*. We will demonstrate the use of transfer learning* (to give our networks a head-start by building on top of existing, ImageNet pre-trained, network layers*), and explore how to improve model performance for standard deep learning pipelines. We will use cloud-based interactive Jupyter notebooks to work through our explorations step-by-step.This tutorial is designed as an introduction to the topic for a general, but technical audience. As a practical introduction, it will focus on tools and their application. Previous ML (Machine Learning) experience is not required; but, previous experience with scripting in Python will help. Participants are expected to bring their own laptops and sign-up for free online cloud services (e.g., Google Colab, Kaggle). They may also need to download free, open-source software prior to arriving for the workshop.This tutorial assumes some basic knowledge of neural networks. If you’re not already familiar with neural networks, then you can learn the basics concepts behind neural networks at [course.fast.ai](https://course.fast.ai/).* Tutorial materials are derived from: * [PyTorch Tutorials](https://github.com/kaust-vislab/pytorch-tutorials) by David Pugh. * [What is torch.nn really?](https://pytorch.org/tutorials/beginner/nn_tutorial.html) by Jeremy Howard, Rachel Thomas, Francisco Ingham. * [Machine Learning Notebooks](https://github.com/ageron/handson-ml2) (2nd Ed.) by Aurélien Géron. * *Deep Learning with Python* by François Chollet. Jupyter NotebooksThis is a Jupyter Notebook. It provides a simple, cell-based, IDE for developing and exploring complex ideas via code, visualizations, and documentation.A notebook has two primary types of cells: i) `markdown` cells for textual notes and documentation, such as the one you are reading now, and ii) `code` cells, which contain snippets of code (typically *Python*, but also *bash* scripts) that can be executed. The currently selected cell appears within a box. A green box indicates that the cell is editable. Clicking inside a *code* cell makes it selected and editable. Double-click inside *markdown* cells to edit.Use `Tab` for context-sensitive code-completion assistance when editing Python code in *code* cells. For example, use code assistance after a `.` seperator to find available object members. For help documentation, create a new *code* cell, and use commands like `dir(`*module*`)`, `help(`*topic*`)`, `?`*name*, or `??`*function* for user provided *module*, *topic*, variable *name*, or *function* name. The magic `?` and `??` commands show documentation / source code in a separate pane.Clicking on `[Run]` or pressing `Ctrl-Enter` will execute the contents of a cell. A *markdown* cell converts to its display version, and a *code* cell runs the code inside. To the left of a *code* cell is a small text bracket `In [ ]:`. If the bracket contains an asterix, e.g., `In [*]:`, that cell is currently executing. Only one cell executes at a time (if multiple cells are *Run*, they are queued up to execute in the order they were run). When a *code* cell finishes executing, the bracket shows an execution count in the bracket – each *code* cell execution increments the counter and provides a way to determine the order in which codes were executed – e.g., `In [7]` for the seventh cell to complete. The output produced by a *code* cell appears at the bottom of that cell after it executes. The output generated by a code cell includes anything printed to the output during execution (e.g., print statements, or thrown errors) and the final value generated by the cell (i.e., not the intermediate values). The final value is 'pretty printed' by Jupyter.Typically, notebooks are written to be executed in order, from top to bottom. Behind the scenes, however, each Notebook has a single Python state (the `kernel`), and each *code* cell that executes, modifies that state. It is possible to modify and re-run earlier cells; however, care must be taken to also re-run any other cells that depend upon the modified one. List the Python state global variables with the magic command `%wgets`. The *kernel* can be restarted to a known state, and cell output cleared, if the Python state becomes too confusing to fix manually (choose `Restart & Clear Output` from the Jupyter `Kernel` menu) – this requires running each *code* cell again.Complete user documentation is available at [jupyter-notebook.readthedocs.io](https://jupyter-notebook.readthedocs.io/en/stable/notebook.htmlnotebook-user-interface). Many helpful tips and techniques from [28 Jupyter Notebook Tips, Tricks, and Shortcuts](https://www.dataquest.io/blog/jupyter-notebook-tips-tricks-shortcuts/). Setup Setup ColabIn order to run this notebook in [Google Colab](https://colab.research.google.com) you will need a [Google Account](https://accounts.google.com/). Sign-in to your Google account, if necessary, and then start the notebook.Change Google Colab runtime to use GPU:* Click `Runtime` -> `Change runtime type` menu item* Specify `Hardware accelerator` as `GPU`* Click **[Save]** buttonThe session indicator (toolbar / status ribbon under menu) should briefly appear as `Connecting...`. When the session restarts, continue with the next cell (specifying TensorFlow version v2.x): ###Code try: # %tensorflow_version only exists in Colab. %tensorflow_version 2.x except Exception: pass ###Output _____no_output_____ ###Markdown Download DataThere are two image datasets ([CIFAR10](https://www.cs.toronto.edu/~kriz/cifar.html) and [MNIST](http://yann.lecun.com/exdb/mnist/index.html)) which these tutorial / exercise notebooks use.These datasets are available from a variety of sources, including this repository – depending on how the notebook was launched (e.g., Git+LFS / Binder contains entire repository, Google Colab only contains the notebook).Because data is the fundamental fuel for deep learning, we need to ensure the required datasets for this tutorial are available to the current notebook session. The following steps will ensure the data is already available (or downloaded), and cached where Keras can find them. ###Code # %load cache_utils.py import pathlib import tensorflow.keras.utils as Kutils def cache_mnist_data(): for n in ["mnist.npz", "kaggle/train.csv", "kaggle/test.csv"]: path = pathlib.Path("../datasets/mnist/%s" % n).absolute() if not path.is_file(): print("Skipping: missing local dataset file: %s" % n) else: DATA_URL = "file:///" + str(path) try: data_file_path = Kutils.get_file(n.replace('/','-mnist-'), DATA_URL) print("Cached file: %s" % n) except (FileNotFoundError, ValueError, Exception) as e: print("Cache Failed: First fetch file: %s" % n) def cache_cifar10_data(): for n in ["cifar-10.npz", "cifar-10-batches-py.tar.gz"]: path = pathlib.Path("../datasets/cifar10/%s" % n).absolute() if not path.is_file(): print("Skipping: missing local dataset file: %s" % n) else: DATA_URL = "file:///" + str(path) try: data_file_path = Kutils.get_file(n, DATA_URL) print("Cached file: %s" % n) except (FileNotFoundError, ValueError, Exception) as e: print("Cache Failed: First fetch file: %s" % n) def cache_models(): for n in ["vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5"]: path = pathlib.Path("../models/%s" % n).absolute() if not path.is_file(): print("Skipping: missing local dataset file: %s" % n) else: DATA_URL = "file:///" + str(path) try: data_file_path = Kutils.get_file(n, DATA_URL, cache_subdir='models') print("Cached file: %s" % n) except (FileNotFoundError, ValueError, Exception) as e: print("Cache Failed: First fetch file: %s" % n) ###Output _____no_output_____ ###Markdown Follow the instructions below and run just the appropriate cells needed to acquire the required datasets: Download CIFAR10 DataIf you are using Binder to run this notebook, then the data is already downloaded and available. Skip to the next step.If you are using Google Colab to run this notebook, then you will need to download the data before proceeding. Download CIFAR10 with KerasIf you are running this notebook using Google Colab, then download the data using the Keras `load_data()` API by running the code in the following cell. ###Code from tensorflow.keras.datasets import cifar10 cache_cifar10_data() cifar10.load_data(); ###Output _____no_output_____ ###Markdown Tutorial SetupInitialize the Python environment by importing and verifying the modules we will use. ###Code import os import sys import pathlib import random import pandas as pd import numpy as np import matplotlib.pyplot as plt import tensorflow as tf import tensorflow.keras as keras ###Output _____no_output_____ ###Markdown `%matplotlib inline` is a magic command that makes *matplotlib* charts and plots appear was outputs in the notebook.`%matplotlib notebook` enables semi-interactive plots that can be enlarged, zoomed, and cropped while the plot is active. One issue with this option is that new plots appear in the active plot widget, not in the cell where the data was produced. ###Code %matplotlib inline ###Output _____no_output_____ ###Markdown Now check the runtime environment to ensure it can run this notebook. If there is an `Exception`, or if there are no GPUs, you will need to run this notebook in a more capable environment (see `README.md`, or ask instructor for additional help). ###Code # %load verify_runtime.py # Verify runtime environment try: # %tensorflow_version only exists in Colab. %tensorflow_version 2.x IS_COLAB = True except Exception: IS_COLAB = False print("is_colab:", IS_COLAB) assert tf.__version__ >= "2.0", "TensorFlow version >= 2.0 required." print("tensorflow_version:", tf.__version__) assert sys.version_info >= (3, 5), "Python >= 3.5 required." print("python_version:", "%s.%s.%s-%s" % (sys.version_info.major, sys.version_info.minor, sys.version_info.micro, sys.version_info.releaselevel )) print("executing_eagerly:", tf.executing_eagerly()) try: __physical_devices = tf.config.list_physical_devices('GPU') except AttributeError: __physical_devices = tf.config.experimental.list_physical_devices('GPU') if len(__physical_devices) == 0: print("No GPUs available. Expect training to be very slow.") if IS_COLAB: print("Go to `Runtime` > `Change runtime` and select a GPU hardware accelerator." "Then `Save` to restart session.") else: print("is_built_with_cuda:", tf.test.is_built_with_cuda()) print("gpus_available:", [d.name for d in __physical_devices]) ###Output _____no_output_____ ###Markdown CIFAR10 - Dataset ProcessingThe previously acquired CIFAR10 dataset is the essential input needed to train an image classification model. Before using the dataset, there are several preprocessing steps required to load the data, and create the correctly sized training, validation, and testing arrays used as input to the network.The following data preparation steps are needed before they can become inputs to the network:* Cache the downloaded dataset (to assist Keras `load_data()` functionality).* Load the dataset (CIFAR10 is small, and fits into a `numpy` array).* Verify the shape and type of the data, and understand it...* Convert label indices into categorical vectors.* Convert image data from integer to float values, and normalize. * Verify converted input data. Cache DataMake downloaded data available to Keras (and check if it's really there). Provide dataset utility functions.__Note__: We are ready to begin if the `find` command shows a found data file. ###Code # Cache CIFAR10 Datasets cache_cifar10_data() %%bash find ~/.keras -name "cifar-10*" -type f ###Output _____no_output_____ ###Markdown These helper function assist with managing the three label representations we will encounter:* label index: a number representing a class* label names: a *human readable* text representation of a class* category vector: a vector space to represent the categoriesThe label index `1` represents an `automobile`, and `2` represents a `bird`; but, `1.5` doesn't make a `bird-mobile`. We need a representation where each dimension is a continuum of that feature. There are 10 distinct categories, so we encode them as a 10-dimensional vector space, where the i-th dimension represents the i-th class. An `automobile` becomes `[0,1,0,0,0,0,0,0,0,0]`, a `bird` becomes `[0,0,1,0,0,0,0,0,0,0]` (these are called *one-hot encodings*), and a `bird-mobile` (which we couldn't represent previously) can be encoded as `[0,0.5,0.5,0,0,0,0,0,0,0]`.**Note:** We already know how our dataset is represented. Typically, one would load the data first, analyse the class representation, and then write the helper functions. ###Code # Helper functionality to provide human-readable labels cifar10_label_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] def cifar10_index_label(idx): return cifar10_label_names[int(idx)] def cifar10_category_label(cat): return cifar10_index_label(cat.argmax()) def cifar10_label(v): return cifar10_index_label(v) if np.isscalar(v) or np.size(v) == 1 else cifar10_category_label(v) ###Output _____no_output_____ ###Markdown Load DataDatasets for classification require two parts: i) the input data (`x` in our nomenclature), and ii) the labels (`y`). Classifiction takes an `x` as input, and returns a `y` (the class) as output.When training a model from a dataset (called the `train`ing dataset), it is important to keep some of the data aside (called the `test` set). If we didn't, the model could just memorize the data without learning a generalization that would apply to novel related data. The `test` set is used to evaluate the typical real performance of the model. ###Code from tensorflow.keras.datasets import cifar10 # The data, split between train and test sets: (x_train, y_train), (x_test, y_test) = cifar10.load_data() ###Output _____no_output_____ ###Markdown **Note:** Backup plan: Run the following cell if the data didn't load via `cifar10.load_data` above. ###Code # Try secondary data source if the first didn't work try: print("data loaded." if type((x_train, y_train, x_test, y_test)) else "load failed...") except NameError: with np.load('../datasets/cifar10/cifar-10.npz') as data: x_train = data['x_train'] y_train = data['y_train'] x_test = data['x_test'] y_test = data['y_test'] print("alternate data load." if type((x_train, y_train, x_test, y_test)) else "failed...") ###Output _____no_output_____ ###Markdown Explore DataExplore data types, shape, and value ranges. Ensure they make sense, and you understand the data well. ###Code print('x_train type:', type(x_train), ',', 'y_train type:', type(y_train)) print('x_train dtype:', x_train.dtype, ',', 'y_train dtype:', y_train.dtype) print('x_train shape:', x_train.shape, ',', 'y_train shape:', y_train.shape) print('x_test shape:', x_test.shape, ',', 'y_test shape:', y_test.shape) print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') print('x_train (min, max, mean): (%s, %s, %s)' % (x_train.min(), x_train.max(), x_train.mean())) print('y_train (min, max): (%s, %s)' % (y_train.min(), y_train.max())) ###Output _____no_output_____ ###Markdown * The data is stored in Numpy arrays.* The datatype for both input data and labels is a small unsigned int. They represent different things though. The input data represents pixel value, the labels represent the category.* There are 50000 training data samples, and 10000 testing samples.* Each input sample is a colour images of 32x32 pixels, with 3 channels of colour (RGB), for a total size of 3072 bytes. Each label sample is a single byte. * A 32x32 pixel, 3-channel colour image (2-D) can be represented as a point in a 3072 dimensional vector space.* We can see that pixel values range between 0-255 (that is the range of `uint8`) and the mean value is close to the middle. The label values range between 0-9, which corresponds to the 10 categories the labels represent.Lets explore the dataset visually, looking at some actual images, and get a statistical overview of the data.Most of the code in the plotting function below is there to tweak the appearance of the output. The key functionality comes from `matplotlib` functions `imshow` and `hist`, and `numpy` function `histogram`. ###Code def cifar10_imageset_plot(img_data=None): (x_imgs, y_imgs) = img_data if img_data else (x_train, y_train) fig = plt.figure(figsize=(16,8)) for i in range(40): plt.subplot(4, 10, i + 1) plt.xticks([]) plt.yticks([]) idx = int(random.uniform(0, x_imgs.shape[0])) plt.title(cifar10_label(y_imgs[idx])) plt.imshow(x_imgs[idx], cmap=plt.get_cmap('gray')) plt.show() # Show array of random labelled images with matplotlib (re-run cell to see new examples) cifar10_imageset_plot((x_train, y_train)) # %load histogram_utils.py # Histogram utils def histogram_plot(img_data=None): (x_data, y_data) = img_data if img_data else (x_train, y_train) fig = plt.figure(figsize=(12,5)) plt.subplot(1,2,1) plt.hist(y_data, bins = range(int(y_data.min()), int(y_data.max() + 2))) plt.xticks(range(int(y_data.min()), int(y_data.max() + 2))) plt.title("y histogram") plt.subplot(1,2,2) plt.hist(x_data.flat, bins = range(int(x_data.min()), int(x_data.max() + 2))) plt.title("x histogram") plt.tight_layout() plt.show() hist, bins = np.histogram(y_data, bins = range(int(y_data.min()), int(y_data.max() + 2))) print('y histogram counts:', hist) def histogram_label_plot(train_img_data=None, test_img_data=None): (x_train_data, y_train_data) = train_img_data if train_img_data else (x_train, y_train) (x_test_data, y_test_data) = test_img_data if test_img_data else (x_test, y_test) x_data_min = int(min(x_train_data.min(), x_test_data.min())) x_data_max = int(min(x_train_data.max(), x_test_data.max())) y_data_min = int(min(y_train_data.min(), y_test_data.min())) y_data_max = int(min(y_train_data.max(), y_test_data.max())) num_rows = y_data_max - y_data_min + 1 fig = plt.figure(figsize=(12,12)) plot_num = 1 for lbl in range(y_data_min, y_data_max): plt.subplot(num_rows, 2 , plot_num) plt.hist(x_train_data[y_train_data.squeeze() == lbl].flat, bins = range(x_data_min, x_data_max + 2)) plt.title("x train histogram - label %s" % lbl) plt.subplot(num_rows, 2 , plot_num + 1) plt.hist(x_test_data[y_test_data.squeeze() == lbl].flat, bins = range(x_data_min, x_data_max + 2)) plt.title("x test histogram - label %s" % lbl) plot_num += 2 plt.tight_layout(pad=0) plt.show() histogram_plot((x_train, y_train)) histogram_plot((x_test, y_test)) ###Output _____no_output_____ ###Markdown The data looks reasonable: there are sufficient examples for each category (y_train) and a near-normal distribution of pixel values that appears similar in both the train and test datasets.If there had been a significant imbalance in the number of examples in each category, test accuracy would be adversely affected (infrequent categories tend to get ignored). Use a tool like [`imbalanced-learn`](https://imbalanced-learn.org/stable/) to resample and re-balance the dataset.Lets do one more sanity check to ensure that the data distributions are also similar per-category. ###Code histogram_label_plot((x_train, y_train), (x_test, y_test)) ###Output _____no_output_____ ###Markdown Again, the data looks reasonable. The distributions differ slightly between categories, but are similar between the train and test datasets for a given category label.If there had been a significant difference in distributions, consider resampling the train and test datasets, or consider some kind of normalization as part of the training and inference data pipelines. The next aspect of the input data to grapple with is how the input vector space corresponds with the output category space. Is the correspondence simple, e.g., distances in the input space relate to distances in the output space; or, more complex. Visualizing training samples using PCA[Principal Components Analysis (PCA)](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html) can be used as a visualization tool to see if there are any obvious patterns in the training samples.PCA re-represents the input data by changing the basis vectors that represent them. These new orthonormal basis vectors (eigen vectors) represent variance in the data (ordered from largest to smallest). Projecting the data samples onto the first few (2 or 3) dimensions will let us see the data with the biggest differences accounted for.The following cell uses `scikit-learn` to calculate PCA eigen vectors for a random subset of the data (10%). ###Code import sklearn import sklearn.decomposition _prng = np.random.RandomState(42) pca = sklearn.decomposition.PCA(n_components=40, random_state=_prng) x_train_flat = x_train.reshape(*x_train.shape[:1], -1) y_train_flat = y_train.reshape(y_train.shape[0]) print("x_train:", x_train.shape, "y_train", y_train.shape) print("x_train_flat:", x_train_flat.shape, "y_train_flat", y_train_flat.shape) pca_train_features = pca.fit_transform(x_train_flat, y_train_flat) print("pca_train_features:", pca_train_features.shape) # Sample 10% of the PCA results _idxs = _prng.randint(y_train_flat.shape[0], size=y_train_flat.shape[0] // 10) pca_features = pca_train_features[_idxs] pca_category = y_train_flat[_idxs] print("pca_features:", pca_features.shape, "pca_category", pca_category.shape, "min,max category:", pca_category.min(), pca_category.max()) def pca_components_plot(components_, shape_=(32, 32, 3)): fig = plt.figure(figsize=(16,8)) for i in range(min(40, components_.shape[0])): plt.subplot(4, 10, i + 1) plt.xticks([]) plt.yticks([]) eigen_vect = (components_[i] - np.min(components_[i])) / np.ptp(pca.components_[i]) plt.title('component: %s' % i) plt.imshow(eigen_vect.reshape(shape_), cmap=plt.get_cmap('gray')) plt.show() ###Output _____no_output_____ ###Markdown This plot shows the new eigen vector basis functions suggested by the PCA analysis. Any image in our dataset can be created as a linear combination of these basis vectors. At a guess, the most prevalent feature of the dataset is that there is something at the centre of the image that is distinct from the background (components 0 & 2) and there is often a difference between 'land' & 'sky' (component 1) – compare with the sample images shown previously. ###Code pca_components_plot(pca.components_) ###Output _____no_output_____ ###Markdown These are 2D and 3D scatter plot functions that colour the points by their labels (so we can see if any 'clumps' of points correspond to actual categories). ###Code def category_scatter_plot(features, category, title='CIFAR10'): num_category = 1 + category.max() - category.min() fig, ax = plt.subplots(1, 1, figsize=(12, 10)) cm = plt.cm.get_cmap('tab10', num_category) sc = ax.scatter(features[:,0], features[:,1], c=category, alpha=0.4, cmap=cm) ax.set_xlabel("Component 1") ax.set_ylabel("Component 2") ax.set_title(title) plt.colorbar(sc) plt.show() from mpl_toolkits.mplot3d import Axes3D def category_scatter3d_plot(features, category, title='CIFAR10'): num_category = 1 + category.max() - category.min() mean_feat = np.mean(features, axis=0) std_feat = np.std(features, axis=0) min_range = mean_feat - std_feat max_range = mean_feat + std_feat fig = plt.figure(figsize=(12, 10)) cm = plt.cm.get_cmap('tab10', num_category) ax = fig.add_subplot(111, projection='3d') sc = ax.scatter(features[:,0], features[:,1], features[:,2], c=category, alpha=0.85, cmap=cm) ax.set_xlabel("Component 1") ax.set_ylabel("Component 2") ax.set_zlabel("Component 3") ax.set_title(title) ax.set_xlim(2.0 * min_range[0], 2.0 * max_range[0]) ax.set_ylim(2.0 * min_range[1], 2.0 * max_range[1]) ax.set_zlim(2.0 * min_range[2], 2.0 * max_range[2]) plt.colorbar(sc) plt.show() category_scatter_plot(pca_features, pca_category, title='CIFAR10 - PCA') ###Output _____no_output_____ ###Markdown **Note:** 3D PCA plot works best with `%matplotlib notebook` to enable interactive rotation (enabled at start of session). ###Code category_scatter3d_plot(pca_features, pca_category, title='CIFAR10 - PCA') ###Output _____no_output_____ ###Markdown The data in its original image space does not appear to cluster into corresponding categories. Visualizing training sample using t-SNE[t-distributed Stochastic Neighbor Embedding (t-SNE)](https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.htmlsklearn.manifold.TSNE) is a tool to visualize high-dimensional data. It converts similarities between data points to joint probabilities and tries to minimize the Kullback-Leibler divergence between the joint probabilities of the low-dimensional embedding and the high-dimensional data. For more details on t-SNE including other use cases see this excellent *Toward Data Science* [blog post](https://towardsdatascience.com/an-introduction-to-t-sne-with-python-example-5a3a293108d1).Informally, t-SNE is preserving the local neighbourhood of data points to help uncover the manifold on which the data lies. For example, a flat piece of paper with two coloured (e.g., red and blue) regions would be a simple manifold to characterize in 3D space; but, if the paper is crumpled up, it becomes very hard to characterize in the original 3D space (blue and red regions could be very close in this representational space) – instead, by following the cumpled paper (manifold) we would recover the fact that blue and red regions are really very distant, and not nearby at all.It is highly recommended to use another dimensionality reduction method (e.g. PCA) to reduce the number of dimensions to a reasonable amount if the number of features is very high. This will suppress some noise and speed up the computation of pairwise distances between samples.* [An Introduction to t-SNE with Python Example](https://towardsdatascience.com/an-introduction-to-t-sne-with-python-example-5a3a293108d1) ###Code import sklearn import sklearn.decomposition import sklearn.pipeline import sklearn.manifold _prng = np.random.RandomState(42) embedding2_pipeline = sklearn.pipeline.make_pipeline( sklearn.decomposition.PCA(n_components=0.95, random_state=_prng), sklearn.manifold.TSNE(n_components=2, random_state=_prng)) embedding3_pipeline = sklearn.pipeline.make_pipeline( sklearn.decomposition.PCA(n_components=0.95, random_state=_prng), sklearn.manifold.TSNE(n_components=3, random_state=_prng)) # Sample 10% of the data _prng = np.random.RandomState(42) _idxs = _prng.randint(y_train_flat.shape[0], size=y_train_flat.shape[0] // 10) tsne_features = x_train_flat[_idxs] tsne_category = y_train_flat[_idxs] print("tsne_features:", tsne_features.shape, "tsne_category", tsne_category.shape, "min,max category:", tsne_category.min(), tsne_category.max()) # t-SNE is SLOW (but can be GPU accelerated!); # lengthy operation, be prepared to wait... transform2_tsne_features = embedding2_pipeline.fit_transform(tsne_features) print("transform2_tsne_features:", transform2_tsne_features.shape) for i in range(2): print("min,max features[%s]:" % i, transform2_tsne_features[:,i].min(), transform2_tsne_features[:,i].max()) category_scatter_plot(transform2_tsne_features, tsne_category, title='CIFAR10 - t-SNE') ###Output _____no_output_____ ###Markdown **Note:** Skip this step during the tutorial, it will take too long to complete. ###Code # t-SNE is SLOW (but can be GPU accelerated!); # extremely lengthy operation, be prepared to wait... and wait... transform3_tsne_features = embedding3_pipeline.fit_transform(tsne_features) print("transform3_tsne_features:", transform3_tsne_features.shape) for i in range(3): print("min,max features[%s]:" % i, transform3_tsne_features[:,i].min(), transform3_tsne_features[:,i].max()) category_scatter3d_plot(transform3_tsne_features, tsne_category, title='CIFAR10 - t-SNE') ###Output _____no_output_____ ###Markdown t-SNE relates the data points (images) according to their closest neighbours. Hints of underlying categories appear; but are not cleanly seperable into the original categories. Data ConversionThe data type for the training data is `uint8`, while the input type for the network will be `float32` so the data must be converted. Also, the labels need to be categorical, or *one-hot encoded*, as discussed previously. Keras provides utility functions to convert labels to categories (`to_categorical`), and `numpy` makes it easy to perform operations over entire arrays.* https://keras.io/examples/cifar10_cnn/ ###Code num_classes = (y_train.max() - y_train.min()) + 1 print('num_classes =', num_classes) y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 train_data = (x_train, y_train) test_data = (x_test, y_test) ###Output _____no_output_____ ###Markdown After the data conversion, notice that the datatypes are `float32`, the input `x` data shapes are the same; but, the `y` classification labels are now 10-dimensional, instead of scalar. ###Code print('x_train type:', type(x_train)) print('x_train dtype:', x_train.dtype) print('x_train shape:', x_train.shape) print('x_test shape:', x_test.shape) print('y_train type:', type(y_train)) print('y_train dtype:', y_train.dtype) print('y_train shape:', y_train.shape) print('y_test shape:', y_test.shape) ###Output _____no_output_____ ###Markdown Acquire Pre-Trained NetworkDownload an *ImageNet* pretrained VGG16 network[1](fn1), sans classification layer, shaped for 32x32px colour images[*](https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5) (the smallest supported size). This image-feature detection network is an example of a deep CNN (Convolutional Neural Network).**Note:** The network must be fixed – it was already trained on a very large dataset, so training it on our smaller dataset would result in it un-learning valuable generic features.[1] *Very Deep Convolutional Networks for Large-Scale Image Recognition** by Karen Simonyan and Andrew Zisserman, [arXiv (2014)](https://arxiv.org/abs/1409.1556). ###Code cache_models() from tensorflow.keras.applications import VGG16 conv_base = VGG16(weights='imagenet', include_top=False, input_shape=(32, 32, 3)) conv_base.trainable = False keras.utils.plot_model(conv_base) conv_base.summary() ###Output _____no_output_____ ###Markdown The summary shows the layers, starting from the InputLayer and proceeding through Conv2D convolutional layers, which are then collected at MaxPooling2D layers.A convolutional kernel is a small matrix that looks for a specific, localized, pattern on its inputs. This pattern is called a `feature`. The kernel is applied at each location on the input image, and the output is another image – a feature image – that represent the strength of that feature at the given location. Because the inputs to convolution are images, and the outputs are also images – but transformed into a different feature space – it is possible to stack many convolutional layers on top of each other.A feature image can be reduced in size with a MaxPooling2D layer. This layer 'pools' an `MxN` region to a single value, taking the largest value from the 'pool'. The 'Max' in 'MaxPooling' is keeping the *best* evidence for that feature, found in the original region.The InputLayer shape and data type should match with the input data:*Note:* The first dimension of the shape will differ; the input layer has `None` to indicate it accepts a batch sized collection of arrays of the remaining shape. The input data shape will indicate, in that first axis, how many samples it contains. ###Code print("input layer shape:", conv_base.layers[0].input.shape) print("input layer dtype:", conv_base.layers[0].input.dtype) print("input layer type:", type(conv_base.layers[0].input)) print("input data shape:", x_train.shape) print("input data dtype:", x_train.dtype) print("input data type:", type(x_train)) ###Output _____no_output_____ ###Markdown Explore Convolutional LayersThe following are visualization functions (and helpers) for understanding what the convolutional layers in a network have learned.We may ask questions about each convolutional kernal in a convolutional layer:* What local features is the kernel looking for: `visualize_conv_layer_weights`* For a given input image, what feature image will the kernal produce: `visualize_conv_layer_output`* What input image makes the kernel respond most strongly: `visualize_conv_layer_response` ###Code def cifar10_image_plot(img_data=None, image_index=None): (x_imgs, y_imgs) = img_data if img_data else (x_train, y_train) if not image_index: image_index = int(random.uniform(0, x_imgs.shape[0])) plt.imshow(x_imgs[image_index], cmap='gray') plt.title("%s" % cifar10_label(y_imgs[image_index])) plt.xlabel("#%s" % image_index) plt.show() return image_index def get_model_layer(model, layer_name): if type(layer_name) == str: layer = model.get_layer(layer_name) else: m = model for ln in layer_name: model = m m = m.get_layer(ln) layer = m return (model, layer) def visualize_conv_layer_weights(model, layer_name): (model, layer) = get_model_layer(model, layer_name) layer_weights = layer.weights[0] max_size = layer_weights.shape[3] col_size = 12 row_size = int(np.ceil(float(max_size) / float(col_size))) print("conv layer: %s shape: %s size: (%s,%s) count: %s" % (layer_name, layer_weights.shape, layer_weights.shape[0], layer_weights.shape[1], max_size)) fig, ax = plt.subplots(row_size, col_size, figsize=(12, 1.2 * row_size)) idx = 0 for row in range(0,row_size): for col in range(0,col_size): ax[row][col].set_xticks([]) ax[row][col].set_yticks([]) if idx < max_size: ax[row][col].imshow(layer_weights[:, :, 0, idx], cmap='gray') else: fig.delaxes(ax[row][col]) idx += 1 plt.tight_layout() plt.show() def visualize_conv_layer_output(model, layer_name, image_index=None): (model, layer) = get_model_layer(model, layer_name) layer_output = layer.output if not image_index: image_index = cifar10_image_plot() intermediate_model = keras.models.Model(inputs = model.input, outputs=layer_output) intermediate_prediction = intermediate_model.predict(x_train[image_index].reshape(1,32,32,3)) max_size = layer_output.shape[3] col_size = 10 row_size = int(np.ceil(float(max_size) / float(col_size))) print("conv layer: %s shape: %s size: (%s,%s) count: %s" % (layer_name, layer_output.shape, layer_output.shape[1], layer_output.shape[2], max_size)) fig, ax = plt.subplots(row_size, col_size, figsize=(12, 1.2 * row_size)) idx = 0 for row in range(0,row_size): for col in range(0,col_size): ax[row][col].set_xticks([]) ax[row][col].set_yticks([]) if idx < max_size: ax[row][col].imshow(intermediate_prediction[0, :, :, idx], cmap='gray') else: fig.delaxes(ax[row][col]) idx += 1 plt.tight_layout() plt.show() from tensorflow.keras import backend as K def process_image(x): epsilon = 1e-5 # Normalizes the tensor: centers on 0, ensures that std is 0.1 Clips to [0, 1] x -= x.mean() x /= (x.std() + epsilon) x *= 0.1 x += 0.5 x = np.clip(x, 0, 1) x *= 255 x = np.clip(x, 0, 255).astype('uint8') return x def generate_response_pattern(model, conv_layer_output, filter_index=0): #step_size = 1.0 epsilon = 1e-5 img_tensor = tf.Variable(tf.random.uniform((1, 32, 32, 3)) * 20 + 128.0, trainable=True) response_model = keras.models.Model([model.inputs], [conv_layer_output]) for i in range(40): with tf.GradientTape() as gtape: layer_output = response_model(img_tensor) loss = K.mean(layer_output[0, :, :, filter_index]) grads = gtape.gradient(loss, img_tensor) grads /= (K.sqrt(K.mean(K.square(grads))) + epsilon) img_tensor = tf.Variable(tf.add(img_tensor, grads)) img = np.array(img_tensor[0]) return process_image(img) def visualize_conv_layer_response(model, layer_name): (model, layer) = get_model_layer(model, layer_name) layer_output = layer.output max_size = layer_output.shape[3] col_size = 12 row_size = int(np.ceil(float(max_size) / float(col_size))) print("conv layer: %s shape: %s size: (%s,%s) count: %s" % (layer_name, layer_output.shape, layer_output.shape[1], layer_output.shape[2], max_size)) fig, ax = plt.subplots(row_size, col_size, figsize=(12, 1.2 * row_size)) idx = 0 for row in range(0,row_size): for col in range(0,col_size): ax[row][col].set_xticks([]) ax[row][col].set_yticks([]) if idx < max_size: img = generate_response_pattern(model, layer_output, idx) ax[row][col].imshow(img, cmap='gray') ax[row][col].set_title("%s" % idx) else: fig.delaxes(ax[row][col]) idx += 1 plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown Looking at the the first 4 convolution layers, we see that:* All the kernels are 3x3 (i.e., 9 elements each)* Layers 1 & 2 have 64 kernels each (64 different possible features)* Layers 3 & 4 have 128 kernels each (128 different possible features)* Light pixels indicate preference for an activated pixel* Dark pixels indicate preference for an inactive pixel* The kernels seem to represent edges and lines at various angles ###Code for n in [l.name for l in conv_base.layers if isinstance(l, keras.layers.Conv2D)][:4]: visualize_conv_layer_weights(conv_base, n) ###Output _____no_output_____ ###Markdown For the given input image, show the corresponding feature image. At the lower level layers (e.g., first Conv2D layer), the feature images seem to capture concepts like 'edges' or maybe 'solid colour'?At higher layers, the size of the feature images decrease because of the MaxPooling. They also appear more abstract – harder to visually recognize than the original image – however, the features are spatially related to the original image (e.g., if there is a white/high value in the lower-left corner of the feature image, then somewhere on the lower-left corner of the original image, there exists pixels that the network is confident represent the feature in question). ###Code image_index = cifar10_image_plot() for n in [l.name for l in conv_base.layers if isinstance(l, keras.layers.Conv2D)][:7]: visualize_conv_layer_output(conv_base, n, image_index) ###Output _____no_output_____ ###Markdown This plot shows which input images cause the greatest response from the convolution kernels. At lower layers, we see many simple 'wave' textures showing that these kernals like to see edges at particular angles. At lower-middle layers, the paterns show larger scale and more complexity (like dots and curves); but, still lots of angled edges. ###Code for n in [l.name for l in conv_base.layers if isinstance(l, keras.layers.Conv2D)][:4]: visualize_conv_layer_response(conv_base, n) ###Output _____no_output_____ ###Markdown The patterns in the higher levels can get even more complex; but, some of them don't seem to encode for anything but noise. Maybe these could be pruned to make a smaller network...**Note:** Skip this step during the tutorial, it will take too long to complete. ###Code # NOTE: Visualize mid to higher level convolutional layers; # lengthy operation, be prepared to wait... for n in [l.name for l in conv_base.layers if isinstance(l, keras.layers.Conv2D)][4:]: visualize_conv_layer_response(conv_base, n) ###Output _____no_output_____ ###Markdown CNN Base + Classifier ModelCreate a simple model that has the pre-trained CNN (Convolutional Neural Network) as a base, and adds a basic classifier on top.The new layer types are Flatten, Dense, Dropout, and Activation.The Flatten layer reshapes the input dimensions (2D + 1 channel) into a single dimension.The Dense(x) layer is a layer of (`x`) neurons (represented as a flat 1D array) connected to a flat input. The size of the input and outputs do not need to match.The Dropout(x) layer withholds a random fraction (`x`) of the input neurons from training during each batch of data. This limits the ability of the network to `overfit` on the training data (i.e., memorize training data, rather than learn generalizable rules).Activation is an essential part of (or addition to) each layer. Layers like Dense are simply linear functions (weighted sums + a bias). Without a non-linear component, the network could not learn a non-linear function. Activations like 'relu' (Rectified Linear Unit), 'tanh', or 'sigmoid' are functions to introduce a non-linearity. They also clamp output values within known ranges.The 'softmax' activation is used to produce probability distributions over multiple categories.This example uses the Sequential API to build the final network.* [Activation Functions in Neural Networks](https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6) ###Code from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Flatten, Dense, Activation, Dropout from tensorflow.keras.applications import VGG16 def create_cnnbase_classifier_model(conv_base=None): if not conv_base: conv_base = VGG16(weights='imagenet', include_top=False, input_shape=(32, 32, 3)) conv_base.trainable = False model = Sequential() model.add(conv_base) model.add(Flatten()) model.add(Dense(512)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(num_classes)) model.add(Activation('softmax')) return model ###Output _____no_output_____ ###Markdown Create our model *model_transfer_cnn* by calling the creation function *create_cnnbase_classifier_model* above.Notice the split of total parameters (\~15 million) between trainable (\~0.3 million for our classifier) and non-trainable (\~14.7 million for the pre-trained CNN).Note also that the final Dense layer squeezes the network down to the number of categories. ###Code model_transfer_cnn = create_cnnbase_classifier_model(conv_base) model_transfer_cnn.summary() ###Output _____no_output_____ ###Markdown Train ModelTraining a model typically involves setting relevant hyperparameters that control aspects of the training process. Common hyperparameters include:* `epochs`: The number of training passes through the entire dataset. The number of epochs depends upon the complexity of the dataset, and how effectively the network architecture of the model can learn it. If the value is too small, the model accuracy will be low. If the value is too big, then the training will take too long for no additional benefit, as the model accuracy will plateau.* `batch_size`: The number of samples to train during each step. The number should be set so that the GPU memory and compute are well utilized. The `learning_rate` needs to be set accordingly.* `learning_rate`: The step-size to update model weights during the training update phase (backpropagation). Too small, and learning takes too long. Too large, and we may step over the minima we are trying to find. The learning rate can be increased as the batch sizes increases (with some caveats), on the assumption that with more data in a larger batch, the error gradient will be more accurate, so therefore, we can take a larger step.* `decay`: Used by some optimizers to decrease the `learning_rate` over time, on the assumption that as we get closer to our goal, we should focus on smaller refinement steps. ###Code batch_size = 128 #32 epochs = 25 #100 learning_rate = 1e-3 #1e-4 decay = 1e-6 ###Output _____no_output_____ ###Markdown The model needs to be compiled prior to use. This step enables the model to train efficiently on the GPU device.This step also specifies the loss functions, accuracy metrics, learning strategy (optimizers), and more.Our `loss` is *categorical_crossentropy* because we are doing multi-category classification.We use an RMSprop optimizer, which is a varient of standard gradient descent optimizers that also includes momentum. Momentum is used to speed up learning in directions where it has been making more progress.* [A Look at Gradient Descent and RMSprop Optimizers](https://towardsdatascience.com/a-look-at-gradient-descent-and-rmsprop-optimizers-f77d483ef08b)* [Understanding RMSprop — faster neural network learning](https://towardsdatascience.com/understanding-rmsprop-faster-neural-network-learning-62e116fcf29a) ###Code from tensorflow.keras.optimizers import RMSprop model_transfer_cnn.compile(loss='categorical_crossentropy', optimizer=RMSprop(learning_rate=learning_rate, decay=decay), metrics=['accuracy']) ###Output _____no_output_____ ###Markdown The model `fit` function trains the network, and returns a history of training and testing accuracy.*Note:* Because we already have a test dataset, and we are not validating our hyperparameters, we will use the test dataset for validation. We could have also reserved a fraction of the training data to use for validation. ###Code %%time history = model_transfer_cnn.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_test, y_test), shuffle=True) ###Output _____no_output_____ ###Markdown Evaluate Model Visualize accuracy and loss for training and validation.* https://keras.io/visualization/ ###Code def history_plot(history): fig = plt.figure(figsize=(12,5)) plt.title('Model accuracy & loss') # Plot training & validation accuracy values ax1 = fig.add_subplot() #ax1.set_ylim(0, 1.1 * max(history.history['loss']+history.history['val_loss'])) ax1.set_prop_cycle(color=['green', 'red']) p1 = ax1.plot(history.history['loss'], label='Train Loss') p2 = ax1.plot(history.history['val_loss'], label='Test Loss') # Plot training & validation loss values ax2 = ax1.twinx() ax2.set_ylim(0, 1.1 * max(history.history['accuracy']+history.history['val_accuracy'])) ax2.set_prop_cycle(color=['blue', 'orange']) p3 = ax2.plot(history.history['accuracy'], label='Train Acc') p4 = ax2.plot(history.history['val_accuracy'], label='Test Acc') ax1.set_ylabel('Loss') ax1.set_xlabel('Epoch') ax2.set_ylabel('Accuracy') pz = p3 + p4 + p1 + p2 plt.legend(pz, [l.get_label() for l in pz], loc='center right') plt.show() ###Output _____no_output_____ ###Markdown The history plot shows characteristic features of training performance over successive epochs. Accuracy and loss are related, in that a reduction in loss produces an increase in accuracy. The graph shows characteristic arcs for training and testing accuracy / loss over training time (epochs).The primary measure to improve is *testing accuracy*, because that indicates how well the model generalizes to data it must typically classify.The accuracy curves show that testing accuracy has plateaued (with some variability), while training accuracy increases (but at a slowing rate). The difference between training and testing accuracy shows overfitting of the model (i.e., the model can memorize what it has seen better than it can generalize the classification rules).We would like a model that *can* overfit (otherwise it might not be large enough to capture the complexity of the data domain), but doesn't. And then, it is only trained until *test accuracy* peaks.Could the model 100% overfit the data? The graph doesn't answer definitively yet, but training accuracy seems to be slowing, while training loss is still decreasing (with lots of room to improve – the loss axis does not start at zero).*Note:* The model contains Dropout layers to help prevent overfitting. What happens to training and testing accuracy when those layers are removed? ###Code history_plot(history) # Score trained model. scores = model_transfer_cnn.evaluate(x_test, y_test, verbose=0) print('Test loss:', scores[0]) print('Test accuracy:', scores[1]) ###Output _____no_output_____ ###Markdown The following prediction plot functions provide insight into aspects of model prediction. ###Code def prediction_plot(model, test_data): (x_test, y_test) = test_data fig = plt.figure(figsize=(16,8)) correct = 0 total = 0 rSym = '' for i in range(40): plt.subplot(4, 10, i + 1) plt.xticks([]) plt.yticks([]) idx = int(random.uniform(0, x_test.shape[0])) result = model.predict(x_test[idx:idx+1])[0] if y_test is not None: rCorrect = True if cifar10_label(y_test[idx]) == cifar10_label(result) else False rSym = '✔' if rCorrect else '✘' correct += 1 if rCorrect else 0 total += 1 plt.title("%s %s" % (rSym, cifar10_label(result))) plt.imshow(x_test[idx], cmap=plt.get_cmap('gray')) plt.show() if y_test is not None: print("% 3.2f%% correct (%s/%s)" % (100.0 * float(correct) / float(total), correct, total)) def prediction_classes_plot(model, test_data): (x_test, y_test) = test_data fig = plt.figure(figsize=(16,8)) correct = 0 total = 0 rSym = '' for i in range(40): plt.subplot(4, 10, i + 1) plt.xticks([]) plt.yticks([]) idx = int(random.uniform(0, x_test.shape[0])) result = model.predict_classes(x_test[idx:idx+1])[0] if y_test is not None: rCorrect = True if cifar10_label(y_test[idx]) == cifar10_label(result) else False rSym = '✔' if rCorrect else '✘' correct += 1 if rCorrect else 0 total += 1 plt.title("%s %s" % (rSym, cifar10_label(result))) plt.imshow(x_test[idx], cmap=plt.get_cmap('gray')) plt.show() if y_test is not None: print("% 3.2f%% correct (%s/%s)" % (100.0 * float(correct) / float(total), correct, total)) def prediction_proba_plot(model, test_data): (x_test, y_test) = test_data fig = plt.figure(figsize=(15,15)) for i in range(10): plt.subplot(10, 2, (2*i) + 1) plt.xticks([]) plt.yticks([]) idx = int(random.uniform(0, x_test.shape[0])) result = model.predict_proba(x_test[idx:idx+1])[0] * 100 # prob -> percent if y_test is not None: plt.title("%s" % cifar10_label(y_test[idx])) plt.xlabel("#%s" % idx) plt.imshow(x_test[idx], cmap=plt.get_cmap('gray')) ax = plt.subplot(10, 2, (2*i) + 2) plt.bar(np.arange(len(result)), result, label='%') plt.xticks(range(0, len(result) + 1)) ax.set_xticklabels(cifar10_label_names) plt.title("classifier probabilities") plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown * *Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization* by Ramprasaath Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra [arXiv (2016)](https://arxiv.org/abs/1610.02391)* https://jacobgil.github.io/deeplearning/class-activation-maps* https://keras.io/examples/vision/grad_cam/ ###Code from tensorflow.keras import backend as K def generate_activation_pattern(model, conv_layer_output, category_idx, image): epsilon = 1e-10 activation_model = keras.models.Model([model.inputs], [conv_layer_output, model.output]) with tf.GradientTape() as gtape: conv_output, prediction = activation_model(image) category_output = prediction[:, category_idx] grads = gtape.gradient(category_output, conv_output) pooled_grads = K.mean(grads, axis=(0, 1, 2)) heatmap = tf.reduce_mean(tf.multiply(pooled_grads, conv_output), axis=-1) * -1. heatmap = np.maximum(heatmap, 0) heatmap /= np.max(heatmap) + epsilon return(heatmap) def activation_plot(model, layer_name, image_data, image_index=None): (layer_model, conv_layer) = get_model_layer(model, layer_name) (x_imgs, y_cat) = image_data if not image_index: image_index = int(random.uniform(0, x_imgs.shape[0])) image = x_imgs[image_index:image_index+1] fig = plt.figure(figsize=(16,8)) plt.subplot(1, num_classes + 2, 1) plt.xticks([]) plt.yticks([]) plt.title(cifar10_label(y_cat[image_index])) plt.xlabel("#%s" % image_index) plt.imshow(image.reshape(32, 32, 3)) result = model.predict(image)[0] for i in range(num_classes): activation = generate_activation_pattern(model, conv_layer.output, i, image) activation = np.copy(activation) plt.subplot(1, num_classes + 2, i + 2) plt.xticks([]) plt.yticks([]) plt.title(cifar10_label(i)) plt.xlabel("(% 3.2f%%)" % (result[i] * 100.0)) plt.imshow(activation[0]) plt.show() ###Output _____no_output_____ ###Markdown This plot shows what the model thinks is the most likely class for each image. ###Code prediction_classes_plot(model_transfer_cnn, (x_test, y_test)) ###Output _____no_output_____ ###Markdown This plot shows the probabilities that the model assigns to each category class, and provides a sense of how confident the network is with its classifications. ###Code prediction_proba_plot(model_transfer_cnn, (x_test, y_test)) # TODO: Complete activation plot #activation_plot(model_transfer_cnn, ('vgg16', 'block5_conv3'), (x_test, y_test), 1) ###Output _____no_output_____ ###Markdown CNN Classifier ModelCreate a basic CNN (Convolutional Neural Network) based classifier from scratch.We have encountered Conv2D and MaxPooling2D layers previously, but here we see how they are declared. Conv2D layers specify the number of convolution kernels and their shape. MaxPooling2D layers specify the size of each pool (i.e., the scaling factors).Notice the total number of parameters (\~1.25 million) in this smaller network. ###Code from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Flatten, Dense, Activation, Dropout, Conv2D, MaxPooling2D def create_cnn_classifier_model(): model = Sequential() model.add(Conv2D(32, (3, 3), padding='same', input_shape=x_train.shape[1:])) model.add(Activation('relu')) model.add(Conv2D(32, (3, 3))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(64, (3, 3), padding='same')) model.add(Activation('relu')) model.add(Conv2D(64, (3, 3))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(512)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(num_classes)) model.add(Activation('softmax')) return model model_simple_cnn = create_cnn_classifier_model() model_simple_cnn.summary() batch_size = 128 #32 epochs = 25 #100 learning_rate = 1e-3 #1e-4 decay = 1e-6 from tensorflow.keras.optimizers import RMSprop model_simple_cnn.compile(loss='categorical_crossentropy', optimizer=RMSprop(learning_rate=learning_rate, decay=decay), metrics=['accuracy']) %%time history = model_simple_cnn.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_test, y_test), shuffle=True) ###Output _____no_output_____ ###Markdown The notable features of the history plot for this model are:* Training accuracy is ~10 percentage points better than the previous model,* test accuracy more closely tracks training accuracy, and* test accuracy shows more variability. ###Code history_plot(history) # Score trained model. scores = model_simple_cnn.evaluate(x_test, y_test, verbose=0) print('Test loss:', scores[0]) print('Test accuracy:', scores[1]) prediction_classes_plot(model_simple_cnn, (x_test, y_test)) prediction_proba_plot(model_simple_cnn, (x_test, y_test)) for n in [l.name for l in model_simple_cnn.layers if isinstance(l, keras.layers.Conv2D)][:4]: visualize_conv_layer_weights(model_simple_cnn, n) image_index = cifar10_image_plot() for n in [l.name for l in model_simple_cnn.layers if isinstance(l, keras.layers.Conv2D)]: visualize_conv_layer_output(model_simple_cnn, n, image_index) ###Output _____no_output_____ ###Markdown Interesting aspects of the convolutional layer response for our *model_simple_cnn* model:* There are fewer Conv2D layers in this simple model* Compared to the pre-trained VGG16 convolutional base network, * the latter levels are the first edge detection kernels, and * there are no layers with higher-level features. ###Code for n in [l.name for l in model_simple_cnn.layers if isinstance(l, keras.layers.Conv2D)][:4]: visualize_conv_layer_response(model_simple_cnn, n) ###Output _____no_output_____ ###Markdown This plot shows which pixels of the original image contributed the most 'confidence' to the classification categories.The technique is better applied to larger images where the object of interest might be anywhere inside the image. ###Code n = [l.name for l in model_simple_cnn.layers if isinstance(l, keras.layers.Conv2D)][-1] print(n) for i in range(5): activation_plot(model_simple_cnn, n, (x_test, y_test)) ###Output _____no_output_____ ###Markdown Combined ModelsKeras supports a functional interface to take network architectures beyond simply sequential networks.The new layer types are Input and Concatenate; and, there is an explicit Model class.The Input layer is a special layer denoting sources of input from training batches.The Concatenate layer combines multiple inputs (along an axis with the same size) and creates a larger layer incorporating all the input values.Model construction is also different. Instead of using a `Sequential` model, and `add`ing layers to it:* An explicit Input layer is created, * we pass inputs into the layers explicity,* the output from a layer become input for arbitrary other layers, and finally,* A Model object is created with the source Input layer as inputs and outputs from the final layer.We'll demonstrate by creating a new network which combines the two CNN classifier networks we created previously.*Note:* Network models provided as an argument are changed to be non-trainable (the assumption is that they were already trained). ###Code from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, Concatenate, Flatten, Dense, Activation, Dropout from tensorflow.keras.optimizers import RMSprop def create_combined_classifier_model(trained_model1=None, trained_model2=None): if trained_model1: network1 = trained_model1 network1.trainable = False else: network1 = create_cnnbase_classifier_model() if trained_model2: network2 = trained_model2 network2.trainable = False else: network2 = create_cnn_classifier_model() inputs = Input(shape=(32,32,3), name='cifar10_image') c1 = network1(inputs) c2 = network2(inputs) c = Concatenate()([c1, c2]) x = Dense(512)(c) x = Activation('relu')(x) x = Dropout(0.5)(x) x = Dense(num_classes)(x) outputs = Activation('softmax')(x) model = Model(inputs=inputs, outputs=outputs, name='combined_cnn_classifier') return model ###Output _____no_output_____ ###Markdown Combining Pre-Trained ModelsThis version of the combined classifier uses both of the trained networks we created previously.Notice the trainable parameters (~16,000) is very small. How will this affect training? ###Code model_combined = create_combined_classifier_model(model_transfer_cnn, model_simple_cnn) model_combined.summary() ###Output _____no_output_____ ###Markdown This plot shows a graph representation of the layer connections. Notice how a single input feeds the previously created Sequential networks, their output is combine via Concatenate, and then a classifier network is added on top. ###Code keras.utils.plot_model(model_combined) ###Output _____no_output_____ ###Markdown Reduce number of `epochs` because this network is mostly trained (execpt for the final classifier), and there are few trainable parameters. ###Code batch_size = 128 #32 epochs = 5 #100 learning_rate = 1e-3 #1e-4 decay = 1e-6 model_combined.compile(loss='categorical_crossentropy', optimizer=RMSprop(learning_rate=learning_rate, decay=decay), metrics=['accuracy']) %%time history = model_combined.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_test, y_test), shuffle=True) ###Output _____no_output_____ ###Markdown It looks like everything we needed to learn was learned in a single epoch. ###Code history_plot(history) ###Output _____no_output_____ ###Markdown Here is an interesting, possibly counter-intuitive, result: combining two weaker networks can create a stronger one.The reason is that the weakness in one model, might be a strength in the other model (each has 'knowledge' that the other doesn't); we just need a layer to discriminate when to trust each model. At a larger scale (of layers and models) is what is happening at the lower level of the neurons themselves. ###Code # Score trained model. scores = model_combined.evaluate(x_test, y_test, verbose=0) print('Test loss:', scores[0]) print('Test accuracy:', scores[1]) # NOTE: Sequential Model provides `predict_classes` or `predict_proba` # Functional API Model does not; because it may have multiple outputs # Using simple `predict` plot instead prediction_plot(model_combined, (x_test, y_test)) ###Output _____no_output_____ ###Markdown The combine model improves accuracy by 0.5-2% (with TF 2.0), and takes 1/5th of the time to train. Training Combining ModelsThis version of the combined classifier uses both network architectures seen previously; except, in this version, the models need to be trained from scratch. The following cells repeat the previous experiments with this combined classifier.*Spoiler:* The combined network doesn't perform any better than the partially trained one did, but takes much longer to train (more epochs).**Note:** Skip this step during the tutorial, it will cause unecessary delay. ###Code %%time batch_size = 128 #32 epochs = 25 #100 learning_rate = 1e-3 #1e-4 decay = 1e-6 model_combined = create_combined_classifier_model() model_combined.compile(loss='categorical_crossentropy', optimizer=RMSprop(learning_rate=learning_rate, decay=decay), metrics=['accuracy']) history = model_combined.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_test, y_test), shuffle=True) history_plot(history) # Score trained model. scores = model_combined.evaluate(x_test, y_test, verbose=0) print('Test loss:', scores[0]) print('Test accuracy:', scores[1]) ###Output _____no_output_____ ###Markdown Skip ConnectionsFrom previous comparisons of the `visualize_conv_layer_response` plots of the two basic CNN models, it becomes apparent that the pre-trained VGG16 network contains more complex *knowledge* about images: there were more convolutional layers with a greater variety of patterns and features they could represent.In the previous cnnbase_classifier model `model_transfer_cnn`, only the last Conv2D layer fed directly to the classifier, and the feature information contained in the middle layers wasn't directly available to the classifier.Skip Connections are a way to bring lower level feature encodings to higher levels of the network directly. They are also useful during training very deep networks to deal with the problem of *vanishing gradients*.In the following example, the original CNN base of the pre-trained VGG16 model is decomposed into layered groups, and a new network created that feeds these intermediate layers to the top of the network, where they are concatenated together to perform the final classification.* https://towardsdatascience.com/understanding-and-coding-a-resnet-in-keras-446d7ff84d33* https://arxiv.org/abs/1608.04117 ###Code from tensorflow.keras.models import Sequential, Model from tensorflow.keras.layers import Input, Concatenate, Flatten, Dense, Activation, Dropout from tensorflow.keras.applications import VGG16 from tensorflow.keras.optimizers import RMSprop def create_cnnbase_skipconnected_classifier_model(conv_base=None): if not conv_base: conv_base = VGG16(weights='imagenet', include_top=False, input_shape=(32, 32, 3)) conv_base.trainable = False # Split conv_base into groups of CNN layers topped by a MaxPooling2D layer cb_idxs = [i for (i,l) in enumerate(conv_base.layers) if isinstance(l, keras.layers.MaxPooling2D)] all_idxs = [-1] + cb_idxs idx_pairs = [l for l in zip(all_idxs, cb_idxs)] cb_layers = [conv_base.layers[i+1:j+1] for (i,j) in idx_pairs] # Dense Pre-Classifier Layers creation function - used repeatedly at multiple network locations def dense_classes(l): x = Dense(512)(l) x = Activation('relu')(x) x = Dropout(0.5)(x) x = Dense(num_classes)(x) return x inputs = Input(shape=(32,32,3), name='cifar10_image') # Join split groups into a sequence, but keep track of their outputs to create skip connections skips = [] inz = inputs for lz in cb_layers: m = Sequential() m.trainable = False for ls in lz: m.add(ls) # inz is the output of model m, but the input for next layer group inz = m(inz) skips += [inz] # Flatten all outputs (which had different dimensions) to Concatenate them on a common axis flats = [dense_classes(Flatten()(l)) for l in skips] c = Concatenate()(flats) x = dense_classes(c) outputs = Activation('softmax')(x) model = Model(inputs=inputs, outputs=outputs) return model model_skipconnected = create_cnnbase_skipconnected_classifier_model(conv_base) model_skipconnected.summary() keras.utils.plot_model(model_skipconnected) %%time batch_size = 128 #32 epochs = 25 #100 learning_rate = 1e-3 #1e-4 decay = 1e-6 model_skipconnected.compile(loss='categorical_crossentropy', optimizer=RMSprop(learning_rate=learning_rate, decay=decay), metrics=['accuracy']) history = model_skipconnected.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_test, y_test), shuffle=True) history_plot(history) ###Output _____no_output_____ ###Markdown A significant improvement over the first pre-trained model. ###Code # Score trained model. scores = model_skipconnected.evaluate(x_test, y_test, verbose=0) print('Test loss:', scores[0]) print('Test accuracy:', scores[1]) # Using simple `predict` plot because model uses Functional API prediction_plot(model_skipconnected, (x_test, y_test)) ###Output _____no_output_____ ###Markdown Deep Learning from Pre-Trained Models with Keras IntroductionImageNet, an image recognition benchmark dataset*, helped trigger the modern AI explosion. In 2012, the AlexNet architecture (a deep convolutional-neural-network) rocked the ImageNet benchmark competition, handily beating the next best entrant. By 2014, all the leading competitors were deep learning based. Since then, accuracy scores continued to improve, eventually surpassing human performance.In this hands-on tutorial we will build on this pioneering work to create our own neural-network architecture for image recognition. Participants will use the elegant Keras deep learning programming interface to build and train TensorFlow models for image classification tasks on the CIFAR-10 / MNIST datasets*. We will demonstrate the use of transfer learning* (to give our networks a head-start by building on top of existing, ImageNet pre-trained, network layers*), and explore how to improve model performance for standard deep learning pipelines. We will use cloud-based interactive Jupyter notebooks to work through our explorations step-by-step. Once participants have successfully trained their custom model we will show them how to submit their model's predictions to Kaggle for scoring*.This tutorial aims to prepare participants for the HPC Saudi 2020 Student AI Competition.Participants are expected to bring their own laptops and sign-up for free online cloud services (e.g., Google Colab, Kaggle). They may also need to download free, open-source software prior to arriving for the workshop.This tutorial assumes some basic knowledge of neural networks. If you’re not already familiar with neural networks, then you can learn the basics concepts behind neural networks at [course.fast.ai](https://course.fast.ai/).* Tutorial materials are derived from: * [PyTorch Tutorials](https://github.com/kaust-vislab/pytorch-tutorials) by David Pugh. * [What is torch.nn really?](https://pytorch.org/tutorials/beginner/nn_tutorial.html) by Jeremy Howard, Rachel Thomas, Francisco Ingham. * [Machine Learning Notebooks](https://github.com/ageron/handson-ml2) (2nd Ed.) by Aurélien Géron. * *Deep Learning with Python* by François Chollet. Jupyter NotebooksThis is a Jupyter Notebook. It provides a simple, cell-based, IDE for developing and exploring complex ideas via code, visualizations, and documentation.A notebook has two primary types of cells: i) `markdown` cells for textual notes and documentation, such as the one you are reading now, and ii) `code` cells, which contain snippets of code (typically *Python*, but also *bash* scripts) that can be executed. The currently selected cell appears within a box. A green box indicates that the cell is editable. Clicking inside a *code* cell makes it selected and editable. Double-click inside *markdown* cells to edit.Use `Tab` for context-sensitive code-completion assistance when editing Python code in *code* cells. For example, use code assistance after a `.` seperator to find available object members. For help documentation, create a new *code* cell, and use commands like `dir(`*module*`)`, `help(`*topic*`)`, `?`*name*, or `??`*function* for user provided *module*, *topic*, variable *name*, or *function* name. The magic `?` and `??` commands show documentation / source code in a separate pane.Clicking on `[Run]` or pressing `Ctrl-Enter` will execute the contents of a cell. A *markdown* cell converts to its display version, and a *code* cell runs the code inside. To the left of a *code* cell is a small text bracket `In [ ]:`. If the bracket contains an asterix, e.g., `In [*]:`, that cell is currently executing. Only one cell executes at a time (if multiple cells are *Run*, they are queued up to execute in the order they were run). When a *code* cell finishes executing, the bracket shows an execution count in the bracket – each *code* cell execution increments the counter and provides a way to determine the order in which codes were executed – e.g., `In [7]` for the seventh cell to complete. The output produced by a *code* cell appears at the bottom of that cell after it executes. The output generated by a code cell includes anything printed to the output during execution (e.g., print statements, or thrown errors) and the final value generated by the cell (i.e., not the intermediate values). The final value is 'pretty printed' by Jupyter.Typically, notebooks are written to be executed in order, from top to bottom. Behind the scenes, however, each Notebook has a single Python state (the `kernel`), and each *code* cell that executes, modifies that state. It is possible to modify and re-run earlier cells; however, care must be taken to also re-run any other cells that depend upon the modified one. List the Python state global variables with the magic command `%wgets`. The *kernel* can be restarted to a known state, and cell output cleared, if the Python state becomes too confusing to fix manually (choose `Restart & Clear Output` from the Jupyter `Kernel` menu) – this requires running each *code* cell again.Complete user documentation is available at [jupyter-notebook.readthedocs.io](https://jupyter-notebook.readthedocs.io/en/stable/notebook.htmlnotebook-user-interface). Many helpful tips and techniques from [28 Jupyter Notebook Tips, Tricks, and Shortcuts](https://www.dataquest.io/blog/jupyter-notebook-tips-tricks-shortcuts/). Setup Create a Kaggle Account 1. Register for an accountIn order to download Kaggle competition data you will first need to create a [Kaggle](https://www.kaggle.com/) account. 2. Create an API keyOnce you have registered for a Kaggle account you will need to create [API credentials](https://github.com/Kaggle/kaggle-apiapi-credentials) in order to be able to use the `kaggle` CLI to download data.* Go to the `Account` tab of your user profile, * and click `Create New API Token` from the API section. This generates a `kaggle.json` file (with 'username' and 'key' values) to download. Setup ColabIn order to run this notebook in [Google Colab](https://colab.research.google.com) you will need a [Google Account](https://accounts.google.com/). Sign-in to your Google account, if necessary, and then start the notebook.Change Google Colab runtime to use GPU:* Click `Runtime` -> `Change runtime type` menu item* Specify `Runtime type` as `Python 3`* Specify `Hardware accelerator` as `GPU`* Click **[Save]** buttonThe session indicator (toolbar / status ribbon under menu) should briefly appear as `Connecting...`. When the session restarts, continue with the next cell (specifying TensorFlow version v2.x): ###Code try: # %tensorflow_version only exists in Colab. %tensorflow_version 2.x except Exception: pass ###Output _____no_output_____ ###Markdown Download DataThere are two image datasets ([CIFAR10](https://www.cs.toronto.edu/~kriz/cifar.html) and [MNIST](http://yann.lecun.com/exdb/mnist/index.html)) which these tutorial / exercise notebooks use.These datasets are available from a variety of sources, including this repository – depending on how the notebook was launched (e.g., Git+LFS / Binder contains entire repository, Google Colab only contains the notebook).Because data is the fundamental fuel for deep learning, we need to ensure the required datasets for this tutorial are available to the current notebook session. The following steps will ensure the data is already available (or downloaded), and cached where Keras can find them.Follow instructions and run the cells below to acquire required datasets: ###Code import pathlib import tensorflow.keras.utils as Kutils def cache_mnist_data(): for n in ["mnist.npz", "kaggle/train.csv", "kaggle/test.csv"]: path = pathlib.Path("../datasets/mnist/%s" % n).absolute() DATA_URL = "file:///" + str(path) data_file_path = Kutils.get_file(n.replace('/','-mnist-'), DATA_URL) print("cached file: %s" % n) def cache_cifar10_data(): for n in ["cifar-10.npz", "cifar-10-batches-py.tar.gz"]: path = pathlib.Path("../datasets/cifar10/%s" % n).absolute() DATA_URL = "file:///" + str(path) if path.is_file(): data_file_path = Kutils.get_file(n, DATA_URL) print("cached file: %s" % n) else: print("FAILED: First fetch file: %s" % n) def cache_models(): for n in ["vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5"]: path = pathlib.Path("../models/%s" % n).absolute() DATA_URL = "file:///" + str(path) if path.is_file(): data_file_path = Kutils.get_file(n, DATA_URL, cache_subdir='models') print("cached file: %s" % n) ###Output _____no_output_____ ###Markdown Download MNIST Data If you are using Binder to run this notebook, then the data is already downloaded and available. Skip to the next step.If you are using Google Colab to run this notebook, then you will need to download the data before proceeding. Download MNIST from Kaggle**Note:** Before attempting to download the competition data you will need to login to your [Kaggle](https://www.kaggle.com) account and accept the rules for this competition.Set your Kaggle username and API key (from the `kaggle.json` file) into the cell below, and execute the code to download the Kaggle [Digit Recognizer: Learn computer vision with the famous MNIST data](https://www.kaggle.com/c/digit-recognizer) competition data. ###Code %%bash # NOTE: Replace YOUR_USERNAME and YOUR_API_KEY with actual credentials export KAGGLE_USERNAME="YOUR_USERNAME" export KAGGLE_KEY="YOUR_API_KEY" kaggle competitions download -c digit-recognizer -p ../datasets/mnist/kaggle %%bash unzip -n ../datasets/mnist/kaggle/digit-recognizer.zip -d ../datasets/mnist/kaggle ###Output _____no_output_____ ###Markdown (Alternative) Download MNIST from GitHubIf you are running this notebook using Google Colab, but did *not* create a Kaggle account and API key, then dowload the data from our GitHub repository by running the code in the following cells. ###Code import pathlib import requests def fetch_mnist_data(): RAW_URL = "https://github.com/holstgr-kaust/keras-tutorials/raw/master/datasets/mnist" DEST_DIR = pathlib.Path('../datasets/mnist') DEST_DIR.mkdir(parents=True, exist_ok=True) for n in ["mnist.npz", "kaggle/train.csv", "kaggle/test.csv", "kaggle/sample_submission.csv"]: path = DEST_DIR / n if not path.is_file(): # Don't download if file exists with path.open(mode = 'wb') as f: response = requests.get(RAW_URL + "/" + n) f.write(response.content) fetch_mnist_data() cache_mnist_data() ###Output _____no_output_____ ###Markdown (Alternative) Download MNIST with KerasIf you are running this notebook using Google Colab, but did *not* create a Kaggle account and API key, then dowload the data using the Keras load_data() API by running the code in the following cells. ###Code from tensorflow.keras.datasets import mnist cache_mnist_data() mnist.load_data(); ###Output _____no_output_____ ###Markdown Download CIFAR10 DataIf you are using Binder to run this notebook, then the data is already downloaded and available. Skip to the next step.If you are using Google Colab to run this notebook, then you will need to download the data before proceeding. Download CIFAR10 from Kaggle**Note:** Before attempting to download the competition data you will need to login to your [Kaggle](https://www.kaggle.com) account.Set your Kaggle username and API key (from the `kaggle.json` file) into the cell below, and execute the code to download the Kaggle [Digit Recognizer: Learn computer vision with the famous MNIST data](https://www.kaggle.com/c/digit-recognizer) competition data. ###Code %%bash # NOTE: Replace YOUR_USERNAME and YOUR_API_KEY with actual credentials export KAGGLE_USERNAME="YOUR_USERNAME" export KAGGLE_KEY="YOUR_API_KEY" kaggle datasets download guesejustin/cifar10-keras-files-cifar10load-data -p ../datasets/cifar10/ %%bash unzip -n ../datasets/cifar10/cifar10-keras-files-cifar10load-data.zip -d ../datasets/cifar10 ###Output _____no_output_____ ###Markdown (Alternative) Download CIFAR10 from GitHubIf you are running this notebook using Google Colab, but did *not* create a Kaggle account and API key, then dowload the data from our GitHub repository by running the code in the following cells. ###Code import os import pathlib import requests def fetch_cifar10_data(): RAW_URL = "https://github.com/holstgr-kaust/keras-tutorials/raw/master/datasets/cifar10" DEST_DIR = pathlib.Path('../datasets/cifar10') DEST_DIR.mkdir(parents=True, exist_ok=True) for n in ["cifar-10.npz", "cifar-10-batches-py.tar.gz"]: path = DEST_DIR / n if not path.is_file(): # Don't download if file exists with path.open(mode = 'wb') as f: response = requests.get(RAW_URL + "/" + n) f.write(response.content) print("downloaded file: %s" % n) fetch_cifar10_data() cache_cifar10_data() %%bash DEST_DIR='../datasets/cifar10' tar xvpf "${DEST_DIR}/cifar-10-batches-py.tar.gz" --directory="${DEST_DIR}" ###Output _____no_output_____ ###Markdown (Alternative) Download CIFAR10 with KerasIf you are running this notebook using Google Colab, but did *not* create a Kaggle account and API key, then dowload the data using the Keras load_data() API by running the code in the following cells. ###Code from tensorflow.keras.datasets import cifar10 cache_cifar10_data() cifar10.load_data(); ###Output _____no_output_____ ###Markdown Tutorial SetupInitialize the Python environment by importing and verifying the modules we will use. ###Code import os import sys import pathlib import random import pandas as pd import numpy as np import matplotlib.pyplot as plt import tensorflow as tf import tensorflow.keras as keras ###Output _____no_output_____ ###Markdown `%matplotlib inline` is a magic command that makes *matplotlib* charts and plots appear was outputs in the notebook.`%matplotlib notebook` enables semi-interactive plots that can be enlarged, zoomed, and cropped while the plot is active. One issue with this option is that new plots appear in the active plot widget, not in the cell where the data was produced. ###Code %matplotlib inline ###Output _____no_output_____ ###Markdown Now check the runtime environment to ensure it can run this notebook. If there is an `Exception`, or if there are no GPUs, you will need to run this notebook in a more capable environment (see `README.md`, or ask instructor for additional help). ###Code # Verify runtime environment try: # %tensorflow_version only exists in Colab. %tensorflow_version 2.x IS_COLAB = True except Exception: IS_COLAB = False print("is_colab:", IS_COLAB) assert tf.__version__ >= "2.0", "TensorFlow version >= 2.0 required." print("tensorflow_version:", tf.__version__) assert sys.version_info >= (3, 5), "Python >= 3.5 required." print("python_version:", "%s.%s.%s-%s" % (sys.version_info.major, sys.version_info.minor, sys.version_info.micro, sys.version_info.releaselevel )) print("executing_eagerly:", tf.executing_eagerly()) __physical_devices = tf.config.experimental.list_physical_devices('GPU') if len(__physical_devices) == 0: print("No GPUs available. Expect training to be very slow.") if IS_COLAB: print("Go to `Runtime` > `Change runtime` and select a GPU hardware accelerator." "Then `Save` to restart session.") else: print("is_built_with_cuda:", tf.test.is_built_with_cuda()) print("is_gpu_available:", tf.test.is_gpu_available(), [d.name for d in __physical_devices]) ###Output _____no_output_____ ###Markdown CIFAR10 - Dataset ProcessingThe previously acquired CIFAR10 dataset is the essential input needed to train an image classification model. Before using the dataset, there are several preprocessing steps required to load the data, and create the correctly sized training, validation, and testing arrays used as input to the network.The following data preparation steps are needed before they can become inputs to the network:* Cache the downloaded dataset (to use Keras `load_data()` functionality).* Load the dataset (CIFAR10 is small, and fits into a `numpy` array).* Verify the shape and type of the data, and understand it...* Convert label indices into categorical vectors.* Convert image data from integer to float values, and normalize. * Verify converted input data. Cache DataMake downloaded data available to Keras (and check if it's really there). Provide dataset utility functions. ###Code # Cache CIFAR10 Datasets cache_cifar10_data() %%bash find ~/.keras -name "cifar-10*" -type f ###Output _____no_output_____ ###Markdown These helper function assist with managing the three label representations we will encounter:* label index: a number representing a class* label names: a *human readable* text representation of a class* category vector: a vector space to represent the categoriesThe label index `1` represents an `automobile`, and `2` represents a `bird`; but, `1.5` doesn't make a `bird-mobile`. We need a representation where each dimension is a continuum of that feature. There are 10 distinct categories, so we encode them as a 10-dimensional vector space, where the i-th dimension represents the i-th class. An `automobile` becomes `[0,1,0,0,0,0,0,0,0,0]`, a `bird` becomes `[0,0,1,0,0,0,0,0,0,0]` (these are called *one-hot encodings*), and a `bird-mobile` (which we couldn't represent previously) can be encoded as `[0,0.5,0.5,0,0,0,0,0,0,0]`.**Note:** We already know how our dataset is represented. Typically, one would load the data first, analyse the class representation, and then write the helper functions. ###Code # Helper functionality to provide human-readable labels cifar10_label_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] def cifar10_index_label(idx): return cifar10_label_names[int(idx)] def cifar10_category_label(cat): return cifar10_index_label(cat.argmax()) def cifar10_label(v): return cifar10_index_label(v) if np.isscalar(v) or np.size(v) == 1 else cifar10_category_label(v) ###Output _____no_output_____ ###Markdown Load DataDatasets for classification require two parts: i) the input data (`x` in our nomenclature), and ii) the labels (`y`). Classifiction takes an `x` as input, and returns a `y` (the class) as output.When training a model from a dataset (called the `train`ing dataset), it is important to keep some of the data aside (called the `test` set). If we didn't, the model could just memorize the data without learning a generalization that would apply to novel related data. The `test` set is used to evaluate the typical real performance of the model. ###Code from tensorflow.keras.datasets import cifar10 # The data, split between train and test sets: (x_train, y_train), (x_test, y_test) = cifar10.load_data() ###Output _____no_output_____ ###Markdown **Note:** Backup plan: Run the following cell if the data didn't load via `cifar10.load_data` above. ###Code # Try secondary data source if the first didn't work try: print("data loaded." if type((x_train, y_train, x_test, y_test)) else "load failed...") except NameError: with np.load('../datasets/cifar10/cifar-10.npz') as data: x_train = data['x_train'] y_train = data['y_train'] x_test = data['x_test'] y_test = data['y_test'] print("alternate data load." if type((x_train, y_train, x_test, y_test)) else "failed...") ###Output _____no_output_____ ###Markdown Explore DataExplore data types, shape, and value ranges. Ensure they make sense, and you understand the data well. ###Code print('x_train type:', type(x_train), ',', 'y_train type:', type(y_train)) print('x_train dtype:', x_train.dtype, ',', 'y_train dtype:', y_train.dtype) print('x_train shape:', x_train.shape, ',', 'y_train shape:', y_train.shape) print('x_test shape:', x_test.shape, ',', 'y_test shape:', y_test.shape) print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') print('x_train (min, max, mean): (%s, %s, %s)' % (x_train.min(), x_train.max(), x_train.mean())) print('y_train (min, max): (%s, %s)' % (y_train.min(), y_train.max())) ###Output _____no_output_____ ###Markdown * The data is stored in Numpy arrays.* The datatype for both input data and labels is a small unsigned int. They represent different things though. The input data represents pixel value, the labels represent the category.* There are 50000 training data samples, and 10000 testing samples.* Each input sample is a colour images of 32x32 pixels, with 3 channels of colour (RGB), for a total size of 3072 bytes. Each label sample is a single byte. * A 32x32 pixel, 3-channel colour image (2-D) can be represented as a point in a 3072 dimensional vector space.* We can see that pixel values range between 0-255 (that is the range of `uint8`) and the mean value is close to the middle. The label values range between 0-9, which corresponds to the 10 categories the labels represent.Lets explore the dataset visually, looking at some actual images, and get a statistical overview of the data.Most of the code in the plotting function below is there to tweak the appearance of the output. The key functionality comes from `matplotlib` functions `imshow` and `hist`, and `numpy` function `histogram`. ###Code def cifar10_imageset_plot(img_data=None): (x_imgs, y_imgs) = img_data if img_data else (x_train, y_train) fig = plt.figure(figsize=(16,8)) for i in range(40): plt.subplot(4, 10, i + 1) plt.xticks([]) plt.yticks([]) idx = int(random.uniform(0, x_imgs.shape[0])) plt.title(cifar10_label(y_imgs[idx])) plt.imshow(x_imgs[idx], cmap=plt.get_cmap('gray')) plt.show() # Show array of random labelled images with matplotlib (re-run cell to see new examples) cifar10_imageset_plot((x_train, y_train)) def histogram_plot(img_data=None): (x_data, y_data) = img_data if img_data else (x_train, y_train) hist, bins = np.histogram(y_data, bins = range(int(y_data.min()), int(y_data.max() + 2))) fig = plt.figure(figsize=(12,5)) plt.subplot(1,2,1) plt.hist(y_data, bins = range(int(y_data.min()), int(y_data.max() + 2))) plt.xticks(range(int(y_data.min()), int(y_data.max() + 2))) plt.title("y histogram") plt.subplot(1,2,2) plt.hist(x_data.flat, bins = range(int(x_data.min()), int(x_data.max() + 2))) plt.title("x histogram") plt.tight_layout() plt.show() print('y histogram counts:', hist) histogram_plot((x_train, y_train)) histogram_plot((x_test, y_test)) ###Output _____no_output_____ ###Markdown The data looks reasonable: there are sufficient examples for each category (y_train) and a near-normal distribution of pixel values that appears similar in both the train and test datasets.The next aspect of the input data to grapple with is how the input vector space corresponds with the output category space. Is the correspondence simple, e.g., distances in the input space relate to distances in the output space; or, more complex. Visualizing training samples using PCA[Principal Components Analysis (PCA)](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html) can be used as a visualization tool to see if there are any obvious patterns in the training samples.PCA re-represents the input data by changing the basis vectors that represent them. These new orthonormal basis vectors (eigen vectors) represent variance in the data (ordered from largest to smallest). Projecting the data samples onto the first few (2 or 3) dimensions will let us see the data with the biggest differences accounted for.The following cell uses `scikit-learn` to calculate PCA eigen vectors for a random subset of the data (10%). ###Code import sklearn import sklearn.decomposition _prng = np.random.RandomState(42) pca = sklearn.decomposition.PCA(n_components=40, random_state=_prng) x_train_flat = x_train.reshape(*x_train.shape[:1], -1) y_train_flat = y_train.reshape(y_train.shape[0]) print("x_train:", x_train.shape, "y_train", y_train.shape) print("x_train_flat:", x_train_flat.shape, "y_train_flat", y_train_flat.shape) pca_train_features = pca.fit_transform(x_train_flat, y_train_flat) print("pca_train_features:", pca_train_features.shape) # Sample 10% of the PCA results _idxs = _prng.randint(y_train_flat.shape[0], size=y_train_flat.shape[0] // 10) pca_features = pca_train_features[_idxs] pca_category = y_train_flat[_idxs] print("pca_features:", pca_features.shape, "pca_category", pca_category.shape, "min,max category:", pca_category.min(), pca_category.max()) def pca_components_plot(components_, shape_=(32, 32, 3)): fig = plt.figure(figsize=(16,8)) for i in range(min(40, components_.shape[0])): plt.subplot(4, 10, i + 1) plt.xticks([]) plt.yticks([]) eigen_vect = (components_[i] - np.min(components_[i])) / np.ptp(pca.components_[i]) plt.title('component: %s' % i) plt.imshow(eigen_vect.reshape(shape_), cmap=plt.get_cmap('gray')) plt.show() ###Output _____no_output_____ ###Markdown This plot shows the new eigen vector basis functions suggested by the PCA analysis. Any image in our dataset can be created as a linear combination of these basis vectors. At a guess, the most prevalent feature of the dataset is that there is something at the centre of the image that is distinct from the background (components 0 & 2) and there is often a difference between 'land' & 'sky' (component 1) – compare with the sample images shown previously. ###Code pca_components_plot(pca.components_) ###Output _____no_output_____ ###Markdown These are 2D and 3D scatter plot functions that colour the points by their labels (so we can see if any 'clumps' of points correspond to actual categories). ###Code def category_scatter_plot(features, category, title='CIFAR10'): num_category = 1 + category.max() - category.min() fig, ax = plt.subplots(1, 1, figsize=(12, 10)) cm = plt.cm.get_cmap('tab10', num_category) sc = ax.scatter(features[:,0], features[:,1], c=category, alpha=0.4, cmap=cm) ax.set_xlabel("Component 1") ax.set_ylabel("Component 2") ax.set_title(title) plt.colorbar(sc) plt.show() from mpl_toolkits.mplot3d import Axes3D def category_scatter3d_plot(features, category, title='CIFAR10'): num_category = 1 + category.max() - category.min() mean_feat = np.mean(features, axis=0) std_feat = np.std(features, axis=0) min_range = mean_feat - std_feat max_range = mean_feat + std_feat fig = plt.figure(figsize=(12, 10)) cm = plt.cm.get_cmap('tab10', num_category) ax = fig.add_subplot(111, projection='3d') sc = ax.scatter(features[:,0], features[:,1], features[:,2], c=category, alpha=0.85, cmap=cm) ax.set_xlabel("Component 1") ax.set_ylabel("Component 2") ax.set_zlabel("Component 3") ax.set_title(title) ax.set_xlim(2.0 * min_range[0], 2.0 * max_range[0]) ax.set_ylim(2.0 * min_range[1], 2.0 * max_range[1]) ax.set_zlim(2.0 * min_range[2], 2.0 * max_range[2]) plt.colorbar(sc) plt.show() category_scatter_plot(pca_features, pca_category, title='CIFAR10 - PCA') ###Output _____no_output_____ ###Markdown **Note:** 3D PCA plot works best with `%matplotlib notebook` to enable interactive rotation (enabled at start of session). ###Code category_scatter3d_plot(pca_features, pca_category, title='CIFAR10 - PCA') ###Output _____no_output_____ ###Markdown The data in its original image space does not appear to cluster into corresponding categories. Visualizing training sample using t-SNE[t-distributed Stochastic Neighbor Embedding (t-SNE)](https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.htmlsklearn.manifold.TSNE) is a tool to visualize high-dimensional data. It converts similarities between data points to joint probabilities and tries to minimize the Kullback-Leibler divergence between the joint probabilities of the low-dimensional embedding and the high-dimensional data. For more details on t-SNE including other use cases see this excellent *Toward Data Science* [blog post](https://towardsdatascience.com/an-introduction-to-t-sne-with-python-example-5a3a293108d1).Informally, t-SNE is preserving the local neighbourhood of data points to help uncover the manifold on which the data lies. For example, a flat piece of paper with two coloured (e.g., red and blue) regions would be a simple manifold to characterize in 3D space; but, if the paper is crumpled up, it becomes very hard to characterize in the original 3D space (blue and red regions could be very close in this representational space) – instead, by following the cumpled paper (manifold) we would recover the fact that blue and red regions are really very distant, and not nearby at all.It is highly recommended to use another dimensionality reduction method (e.g. PCA) to reduce the number of dimensions to a reasonable amount if the number of features is very high. This will suppress some noise and speed up the computation of pairwise distances between samples.* [An Introduction to t-SNE with Python Example](https://towardsdatascience.com/an-introduction-to-t-sne-with-python-example-5a3a293108d1) ###Code import sklearn import sklearn.decomposition import sklearn.pipeline import sklearn.manifold _prng = np.random.RandomState(42) embedding2_pipeline = sklearn.pipeline.make_pipeline( sklearn.decomposition.PCA(n_components=0.95, random_state=_prng), sklearn.manifold.TSNE(n_components=2, random_state=_prng)) embedding3_pipeline = sklearn.pipeline.make_pipeline( sklearn.decomposition.PCA(n_components=0.95, random_state=_prng), sklearn.manifold.TSNE(n_components=3, random_state=_prng)) # Sample 10% of the data _prng = np.random.RandomState(42) _idxs = _prng.randint(y_train_flat.shape[0], size=y_train_flat.shape[0] // 10) tsne_features = x_train_flat[_idxs] tsne_category = y_train_flat[_idxs] print("tsne_features:", tsne_features.shape, "tsne_category", tsne_category.shape, "min,max category:", tsne_category.min(), tsne_category.max()) # t-SNE is SLOW (but can be GPU accelerated!); # lengthy operation, be prepared to wait... transform2_tsne_features = embedding2_pipeline.fit_transform(tsne_features) print("transform2_tsne_features:", transform2_tsne_features.shape) for i in range(2): print("min,max features[%s]:" % i, transform2_tsne_features[:,i].min(), transform2_tsne_features[:,i].max()) category_scatter_plot(transform2_tsne_features, tsne_category, title='CIFAR10 - t-SNE') ###Output _____no_output_____ ###Markdown **Note:** Skip this step during the tutorial, it will take too long to complete. ###Code # t-SNE is SLOW (but can be GPU accelerated!); # extremely lengthy operation, be prepared to wait... and wait... transform3_tsne_features = embedding3_pipeline.fit_transform(tsne_features) print("transform3_tsne_features:", transform3_tsne_features.shape) for i in range(3): print("min,max features[%s]:" % i, transform3_tsne_features[:,i].min(), transform3_tsne_features[:,i].max()) category_scatter3d_plot(transform3_tsne_features, tsne_category, title='CIFAR10 - t-SNE') ###Output _____no_output_____ ###Markdown t-SNE relates the data points (images) according to their closest neighbours. Hints of underlying categories appear; but are not cleanly seperable into the original categories. Data ConversionThe data type for the training data is `uint8`, while the input type for the network will be `float32` so the data must be converted. Also, the labels need to be categorical, or *one-hot encoded*, as discussed previously. Keras provides utility functions to convert labels to categories (`to_categorical`), and `numpy` makes it easy to perform operations over entire arrays.* https://keras.io/examples/cifar10_cnn/ ###Code num_classes = (y_train.max() - y_train.min()) + 1 print('num_classes =', num_classes) y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 train_data = (x_train, y_train) test_data = (x_test, y_test) ###Output _____no_output_____ ###Markdown After the data conversion, notice that the datatypes are `float32`, the input `x` data shapes are the same; but, the `y` classification labels are now 10-dimensional, instead of scalar. ###Code print('x_train type:', type(x_train)) print('x_train dtype:', x_train.dtype) print('x_train shape:', x_train.shape) print('x_test shape:', x_test.shape) print('y_train type:', type(y_train)) print('y_train dtype:', y_train.dtype) print('y_train shape:', y_train.shape) print('y_test shape:', y_test.shape) ###Output _____no_output_____ ###Markdown Acquire Pre-Trained NetworkDownload an *ImageNet* pretrained VGG16 network[1](fn1), sans classification layer, shaped for 32x32px colour images[*](https://github.com/fchollet/deep-learning-models/releases/download/v0.1/vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5) (the smallest supported size). This image-feature detection network is an example of a deep CNN (Convolutional Neural Network).**Note:** The network must be fixed – it was already trained on a very large dataset, so training it on our smaller dataset would result in it un-learning valuable generic features.[1] *Very Deep Convolutional Networks for Large-Scale Image Recognition** by Karen Simonyan and Andrew Zisserman, [arXiv (2014)](https://arxiv.org/abs/1409.1556). ###Code cache_models() from tensorflow.keras.applications import VGG16 conv_base = VGG16(weights='imagenet', include_top=False, input_shape=(32, 32, 3)) conv_base.trainable = False conv_base.summary() ###Output _____no_output_____ ###Markdown The summary shows the layers, starting from the InputLayer and proceeding through Conv2D convolutional layers, which are then collected at MaxPooling2D layers.A convolutional kernel is a small matrix that looks for a specific, localized, pattern on its inputs. This pattern is called a `feature`. The kernel is applied at each location on the input image, and the output is another image – a feature image – that represent the strength of that feature at the given location. Because the inputs to convolution are images, and the outputs are also images – but transformed into a different feature space – it is possible to stack many convolutional layers on top of each other.A feature image can be reduced in size with a MaxPooling2D layer. This layer 'pools' an `MxN` region to a single value, taking the largest value from the 'pool'. The 'Max' in 'MaxPooling' is keeping the *best* evidence for that feature, found in the original region.The InputLayer shape and data type should match with the input data:*Note:* The first dimension of the shape will differ; the input layer has `None` to indicate it accepts a batch sized collection of arrays of the remaining shape. The input data shape will indicate, in that first axis, how many samples it contains. ###Code print("input layer shape:", conv_base.layers[0].input.shape) print("input layer dtype:", conv_base.layers[0].input.dtype) print("input layer type:", type(conv_base.layers[0].input)) print("input data shape:", x_train.shape) print("input data dtype:", x_train.dtype) print("input data type:", type(x_train)) ###Output _____no_output_____ ###Markdown Explore Convolutional LayersThe following are visualization functions (and helpers) for understanding what the convolutional layers in a network have learned.We may ask questions about each convolutional kernal in a convolutional layer:* What local features is the kernel looking for: `visualize_conv_layer_weights`* For a given input image, what feature image will the kernal produce: `visualize_conv_layer_output`* What input image makes the kernel respond most strongly: `visualize_conv_layer_response` ###Code def cifar10_image_plot(img_data=None, image_index=None): (x_imgs, y_imgs) = img_data if img_data else (x_train, y_train) if not image_index: image_index = int(random.uniform(0, x_imgs.shape[0])) plt.imshow(x_imgs[image_index], cmap='gray') plt.title("%s" % cifar10_label(y_imgs[image_index])) plt.xlabel("#%s" % image_index) plt.show() return image_index def get_model_layer(model, layer_name): if type(layer_name) == str: layer = model.get_layer(layer_name) else: m = model for ln in layer_name: model = m m = m.get_layer(ln) layer = m return (model, layer) def visualize_conv_layer_weights(model, layer_name): (model, layer) = get_model_layer(model, layer_name) layer_weights = layer.weights[0] max_size = layer_weights.shape[3] col_size = 12 row_size = int(np.ceil(float(max_size) / float(col_size))) print("conv layer: %s shape: %s size: (%s,%s) count: %s" % (layer_name, layer_weights.shape, layer_weights.shape[0], layer_weights.shape[1], max_size)) fig, ax = plt.subplots(row_size, col_size, figsize=(12, 1.2 * row_size)) idx = 0 for row in range(0,row_size): for col in range(0,col_size): ax[row][col].set_xticks([]) ax[row][col].set_yticks([]) if idx < max_size: ax[row][col].imshow(layer_weights[:, :, 0, idx], cmap='gray') else: fig.delaxes(ax[row][col]) idx += 1 plt.tight_layout() plt.show() def visualize_conv_layer_output(model, layer_name, image_index=None): (model, layer) = get_model_layer(model, layer_name) layer_output = layer.output if not image_index: image_index = cifar10_image_plot() intermediate_model = keras.models.Model(inputs = model.input, outputs=layer_output) intermediate_prediction = intermediate_model.predict(x_train[image_index].reshape(1,32,32,3)) max_size = layer_output.shape[3] col_size = 10 row_size = int(np.ceil(float(max_size) / float(col_size))) print("conv layer: %s shape: %s size: (%s,%s) count: %s" % (layer_name, layer_output.shape, layer_output.shape[1], layer_output.shape[2], max_size)) fig, ax = plt.subplots(row_size, col_size, figsize=(12, 1.2 * row_size)) idx = 0 for row in range(0,row_size): for col in range(0,col_size): ax[row][col].set_xticks([]) ax[row][col].set_yticks([]) if idx < max_size: ax[row][col].imshow(intermediate_prediction[0, :, :, idx], cmap='gray') else: fig.delaxes(ax[row][col]) idx += 1 plt.tight_layout() plt.show() from tensorflow.keras import backend as K def process_image(x): epsilon = 1e-5 # Normalizes the tensor: centers on 0, ensures that std is 0.1 Clips to [0, 1] x -= x.mean() x /= (x.std() + epsilon) x *= 0.1 x += 0.5 x = np.clip(x, 0, 1) x *= 255 x = np.clip(x, 0, 255).astype('uint8') return x def generate_response_pattern(model, conv_layer_output, filter_index=0): #step_size = 1.0 epsilon = 1e-5 img_tensor = tf.Variable(tf.random.uniform((1, 32, 32, 3)) * 20 + 128.0, trainable=True) response_model = keras.models.Model([model.inputs], [conv_layer_output]) for i in range(40): with tf.GradientTape() as gtape: layer_output = response_model(img_tensor) loss = K.mean(layer_output[0, :, :, filter_index]) grads = gtape.gradient(loss, img_tensor) grads /= (K.sqrt(K.mean(K.square(grads))) + epsilon) img_tensor = tf.Variable(tf.add(img_tensor, grads)) img = np.array(img_tensor[0]) return process_image(img) def visualize_conv_layer_response(model, layer_name): (model, layer) = get_model_layer(model, layer_name) layer_output = layer.output max_size = layer_output.shape[3] col_size = 12 row_size = int(np.ceil(float(max_size) / float(col_size))) print("conv layer: %s shape: %s size: (%s,%s) count: %s" % (layer_name, layer_output.shape, layer_output.shape[1], layer_output.shape[2], max_size)) fig, ax = plt.subplots(row_size, col_size, figsize=(12, 1.2 * row_size)) idx = 0 for row in range(0,row_size): for col in range(0,col_size): ax[row][col].set_xticks([]) ax[row][col].set_yticks([]) if idx < max_size: img = generate_response_pattern(model, layer_output, idx) ax[row][col].imshow(img, cmap='gray') ax[row][col].set_title("%s" % idx) else: fig.delaxes(ax[row][col]) idx += 1 plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown Looking at the the first 4 convolution layers, we see that:* All the kernels are 3x3 (i.e., 9 elements each)* Layers 1 & 2 have 64 kernels each (64 different possible features)* Layers 3 & 4 have 128 kernels each (128 different possible features)* Light pixels indicate preference for an activated pixel* Dark pixels indicate preference for an inactive pixel* The kernels seem to represent edges and lines at various angles ###Code for n in [l.name for l in conv_base.layers if isinstance(l, keras.layers.Conv2D)][:4]: visualize_conv_layer_weights(conv_base, n) ###Output _____no_output_____ ###Markdown For the given input image, show the corresponding feature image. At the lower level layers (e.g., first Conv2D layer), the feature images seem to capture concepts like 'edges' or maybe 'solid colour'?At higher layers, the size of the feature images decrease because of the MaxPooling. They also appear more abstract – harder to visually recognize than the original image – however, the features are spatially related to the original image (e.g., if there is a white/high value in the lower-left corner of the feature image, then somewhere on the lower-left corner of the original image, there exists pixels that the network is confident represent the feature in question). ###Code image_index = cifar10_image_plot() for n in [l.name for l in conv_base.layers if isinstance(l, keras.layers.Conv2D)][:7]: visualize_conv_layer_output(conv_base, n, image_index) ###Output _____no_output_____ ###Markdown This plot shows which input images cause the greatest response from the convolution kernels. At lower layers, we see many simple 'wave' textures showing that these kernals like to see edges at particular angles. At lower-middle layers, the paterns show larger scale and more complexity (like dots and curves); but, still lots of angled edges. ###Code for n in [l.name for l in conv_base.layers if isinstance(l, keras.layers.Conv2D)][:4]: visualize_conv_layer_response(conv_base, n) ###Output _____no_output_____ ###Markdown The patterns in the higher levels can get even more complex; but, some of them don't seem to encode for anything but noise. Maybe these could be pruned to make a smaller network...**Note:** Skip this step during the tutorial, it will take too long to complete. ###Code # NOTE: Visualize mid to higher level convolutional layers; # lengthy operation, be prepared to wait... for n in [l.name for l in conv_base.layers if isinstance(l, keras.layers.Conv2D)][4:]: visualize_conv_layer_response(conv_base, n) ###Output _____no_output_____ ###Markdown CNN Base + Classifier ModelCreate a simple model that has the pre-trained CNN (Convolutional Neural Network) as a base, and adds a basic classifier on top.The new layer types are Flatten, Dense, Dropout, and Activation.The Flatten layer reshapes the input dimensions (2D + 1 channel) into a single dimension.The Dense(x) layer is a layer of (`x`) neurons (represented as a flat 1D array) connected to a flat input. The size of the input and outputs do not need to match.The Dropout(x) layer withholds a random fraction (`x`) of the input neurons from training during each batch of data. This limits the ability of the network to `overfit` on the training data (i.e., memorize training data, rather than learn generalizable rules).Activation is an essential part of (or addition to) each layer. Layers like Dense are simply linear functions (weighted sums + a bias). Without a non-linear component, the network could not learn a non-linear function. Activations like 'relu' (Rectified Linear Unit), 'tanh', or 'sigmoid' are functions to introduce a non-linearity. They also clamp output values within known ranges.The 'softmax' activation is used to produce probability distributions over multiple categories.This example uses the Sequential API to build the final network.* [Activation Functions in Neural Networks](https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6) ###Code from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Flatten, Dense, Activation, Dropout from tensorflow.keras.applications import VGG16 def create_cnnbase_classifier_model(conv_base=None): if not conv_base: conv_base = VGG16(weights='imagenet', include_top=False, input_shape=(32, 32, 3)) conv_base.trainable = False model = Sequential() model.add(conv_base) model.add(Flatten()) model.add(Dense(512)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(num_classes)) model.add(Activation('softmax')) return model ###Output _____no_output_____ ###Markdown Create our model *model_transfer_cnn* by calling the creation function *create_cnnbase_classifier_model* above.Notice the split of total parameters (\~15 million) between trainable (\~0.3 million for our classifier) and non-trainable (\~14.7 million for the pre-trained CNN).Note also that the final Dense layer squeezes the network down to the number of categories. ###Code model_transfer_cnn = create_cnnbase_classifier_model(conv_base) model_transfer_cnn.summary() ###Output _____no_output_____ ###Markdown Train ModelTraining a model typically involves setting relevant hyperparameters that control aspects of the training process. Common hyperparameters include:* `epochs`: The number of training passes through the entire dataset. The number of epochs depends upon the complexity of the dataset, and how effectively the network architecture of the model can learn it. If the value is too small, the model accuracy will be low. If the value is too big, then the training will take too long for no additional benefit, as the model accuracy will plateau.* `batch_size`: The number of samples to train during each step. The number should be set so that the GPU memory and compute are well utilized. The `learning_rate` needs to be set accordingly.* `learning_rate`: The step-size to update model weights during the training update phase (backpropagation). Too small, and learning takes too long. Too large, and we may step over the minima we are trying to find. The learning rate can be increased as the batch sizes increases (with some caveats), on the assumption that with more data in a larger batch, the error gradient will be more accurate, so therefore, we can take a larger step.* `decay`: Used by some optimizers to decrease the `learning_rate` over time, on the assumption that as we get closer to our goal, we should focus on smaller refinement steps. ###Code batch_size = 128 #32 epochs = 25 #100 learning_rate = 1e-3 #1e-4 decay = 1e-6 ###Output _____no_output_____ ###Markdown The model needs to be compiled prior to use. This step enables the model to train efficiently on the GPU device.This step also specifies the loss functions, accuracy metrics, learning strategy (optimizers), and more.Our `loss` is *categorical_crossentropy* because we are doing multi-category classification.We use an RMSprop optimizer, which is a varient of standard gradient descent optimizers that also includes momentum. Momentum is used to speed up learning in directions where it has been making more progress.* [A Look at Gradient Descent and RMSprop Optimizers](https://towardsdatascience.com/a-look-at-gradient-descent-and-rmsprop-optimizers-f77d483ef08b)* [Understanding RMSprop — faster neural network learning](https://towardsdatascience.com/understanding-rmsprop-faster-neural-network-learning-62e116fcf29a) ###Code from tensorflow.keras.optimizers import RMSprop model_transfer_cnn.compile(loss='categorical_crossentropy', optimizer=RMSprop(learning_rate=learning_rate, decay=decay), metrics=['accuracy']) ###Output _____no_output_____ ###Markdown The model `fit` function trains the network, and returns a history of training and testing accuracy.*Note:* Because we already have a test dataset, and we are not validating our hyperparameters, we will use the test dataset for validation. We could have also reserved a fraction of the training data to use for validation. ###Code history = model_transfer_cnn.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_test, y_test), shuffle=True) ###Output _____no_output_____ ###Markdown Evaluate Model Visualize accuracy and loss for training and validation.* https://keras.io/visualization/ ###Code def history_plot(history): fig = plt.figure(figsize=(12,5)) plt.title('Model accuracy & loss') # Plot training & validation accuracy values ax1 = fig.add_subplot() #ax1.set_ylim(0, 1.1 * max(history.history['loss']+history.history['val_loss'])) ax1.set_prop_cycle(color=['green', 'red']) p1 = ax1.plot(history.history['loss'], label='Train Loss') p2 = ax1.plot(history.history['val_loss'], label='Test Loss') # Plot training & validation loss values ax2 = ax1.twinx() ax2.set_ylim(0, 1.1 * max(history.history['accuracy']+history.history['val_accuracy'])) ax2.set_prop_cycle(color=['blue', 'orange']) p3 = ax2.plot(history.history['accuracy'], label='Train Acc') p4 = ax2.plot(history.history['val_accuracy'], label='Test Acc') ax1.set_ylabel('Loss') ax1.set_xlabel('Epoch') ax2.set_ylabel('Accuracy') pz = p3 + p4 + p1 + p2 plt.legend(pz, [l.get_label() for l in pz], loc='center right') plt.show() ###Output _____no_output_____ ###Markdown The history plot shows characteristic features of training performance over successive epochs. Accuracy and loss are related, in that a reduction in loss produces an increase in accuracy. The graph shows characteristic arcs for training and testing accuracy / loss over training time (epochs).The primary measure to improve is *testing accuracy*, because that indicates how well the model generalizes to data it must typically classify.The accuracy curves show that testing accuracy has plateaued (with some variability), while training accuracy increases (but at a slowing rate). The difference between training and testing accuracy shows overfitting of the model (i.e., the model can memorize what it has seen better than it can generalize the classification rules).We would like a model that *can* overfit (otherwise it might not be large enough to capture the complexity of the data domain), but doesn't. And then, it is only trained until *test accuracy* peaks.Could the model 100% overfit the data? The graph doesn't answer definitively yet, but training accuracy seems to be slowing, while training loss is still decreasing (with lots of room to improve – the loss axis does not start at zero).*Note:* The model contains Dropout layers to help prevent overfitting. What happens to training and testing accuracy when those layers are removed? ###Code history_plot(history) # Score trained model. scores = model_transfer_cnn.evaluate(x_test, y_test, verbose=0) print('Test loss:', scores[0]) print('Test accuracy:', scores[1]) ###Output _____no_output_____ ###Markdown The following prediction plot functions provide insight into aspects of model prediction. ###Code def prediction_plot(model, test_data): (x_test, y_test) = test_data fig = plt.figure(figsize=(16,8)) correct = 0 total = 0 rSym = '' for i in range(40): plt.subplot(4, 10, i + 1) plt.xticks([]) plt.yticks([]) idx = int(random.uniform(0, x_test.shape[0])) result = model.predict(x_test[idx:idx+1])[0] if y_test is not None: rCorrect = True if cifar10_label(y_test[idx]) == cifar10_label(result) else False rSym = '✔' if rCorrect else '✘' correct += 1 if rCorrect else 0 total += 1 plt.title("%s %s" % (rSym, cifar10_label(result))) plt.imshow(x_test[idx], cmap=plt.get_cmap('gray')) plt.show() if y_test is not None: print("% 3.2f%% correct (%s/%s)" % (100.0 * float(correct) / float(total), correct, total)) def prediction_classes_plot(model, test_data): (x_test, y_test) = test_data fig = plt.figure(figsize=(16,8)) correct = 0 total = 0 rSym = '' for i in range(40): plt.subplot(4, 10, i + 1) plt.xticks([]) plt.yticks([]) idx = int(random.uniform(0, x_test.shape[0])) result = model.predict_classes(x_test[idx:idx+1])[0] if y_test is not None: rCorrect = True if cifar10_label(y_test[idx]) == cifar10_label(result) else False rSym = '✔' if rCorrect else '✘' correct += 1 if rCorrect else 0 total += 1 plt.title("%s %s" % (rSym, cifar10_label(result))) plt.imshow(x_test[idx], cmap=plt.get_cmap('gray')) plt.show() if y_test is not None: print("% 3.2f%% correct (%s/%s)" % (100.0 * float(correct) / float(total), correct, total)) def prediction_proba_plot(model, test_data): (x_test, y_test) = test_data fig = plt.figure(figsize=(15,15)) for i in range(10): plt.subplot(10, 2, (2*i) + 1) plt.xticks([]) plt.yticks([]) idx = int(random.uniform(0, x_test.shape[0])) result = model.predict_proba(x_test[idx:idx+1])[0] * 100 # prob -> percent if y_test is not None: plt.title("%s" % cifar10_label(y_test[idx])) plt.xlabel("#%s" % idx) plt.imshow(x_test[idx], cmap=plt.get_cmap('gray')) ax = plt.subplot(10, 2, (2*i) + 2) plt.bar(np.arange(len(result)), result, label='%') plt.xticks(range(0, len(result) + 1)) ax.set_xticklabels(cifar10_label_names) plt.title("classifier probabilities") plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown * *Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization* by Ramprasaath Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra [arXiv (2016)](https://arxiv.org/abs/1610.02391)* https://jacobgil.github.io/deeplearning/class-activation-maps ###Code from tensorflow.keras import backend as K def generate_activation_pattern(model, conv_layer_output, category_idx, image): epsilon = 1e-10 activation_model = keras.models.Model([model.inputs], [conv_layer_output, model.output]) with tf.GradientTape() as gtape: conv_output, prediction = activation_model(image) category_output = prediction[:, category_idx] grads = gtape.gradient(category_output, conv_output) pooled_grads = K.mean(grads, axis=(0, 1, 2)) heatmap = tf.reduce_mean(tf.multiply(pooled_grads, conv_output), axis=-1) * -1. heatmap = np.maximum(heatmap, 0) heatmap /= np.max(heatmap) + epsilon return(heatmap) def activation_plot(model, layer_name, image_data, image_index=None): (layer_model, conv_layer) = get_model_layer(model, layer_name) (x_imgs, y_cat) = image_data if not image_index: image_index = int(random.uniform(0, x_imgs.shape[0])) image = x_imgs[image_index:image_index+1] fig = plt.figure(figsize=(16,8)) plt.subplot(1, num_classes + 2, 1) plt.xticks([]) plt.yticks([]) plt.title(cifar10_label(y_cat[image_index])) plt.xlabel("#%s" % image_index) plt.imshow(image.reshape(32, 32, 3)) result = model.predict(image)[0] for i in range(num_classes): activation = generate_activation_pattern(model, conv_layer.output, i, image) activation = np.copy(activation) plt.subplot(1, num_classes + 2, i + 2) plt.xticks([]) plt.yticks([]) plt.title(cifar10_label(i)) plt.xlabel("(% 3.2f%%)" % (result[i] * 100.0)) plt.imshow(activation[0]) plt.show() ###Output _____no_output_____ ###Markdown This plot shows what the model thinks is the most likely class for each image. ###Code prediction_classes_plot(model_transfer_cnn, (x_test, y_test)) ###Output _____no_output_____ ###Markdown This plot shows the probabilities that the model assigns to each category class, and provides a sense of how confident the network is with its classifications. ###Code prediction_proba_plot(model_transfer_cnn, (x_test, y_test)) # TODO: Complete activation plot #activation_plot(model_transfer_cnn, ('vgg16', 'block5_conv3'), (x_test, y_test), 1) ###Output _____no_output_____ ###Markdown CNN Classifier ModelCreate a basic CNN (Convolutional Neural Network) based classifier from scratch.We have encountered Conv2D and MaxPooling2D layers previously, but here we see how they are declared. Conv2D layers specify the number of convolution kernels and their shape. MaxPooling2D layers specify the size of each pool (i.e., the scaling factors).Notice the total number of parameters (\~1.25 million) in this smaller network. ###Code from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Flatten, Dense, Activation, Dropout, Conv2D, MaxPooling2D def create_cnn_classifier_model(): model = Sequential() model.add(Conv2D(32, (3, 3), padding='same', input_shape=x_train.shape[1:])) model.add(Activation('relu')) model.add(Conv2D(32, (3, 3))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(64, (3, 3), padding='same')) model.add(Activation('relu')) model.add(Conv2D(64, (3, 3))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(512)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(num_classes)) model.add(Activation('softmax')) return model model_simple_cnn = create_cnn_classifier_model() model_simple_cnn.summary() batch_size = 128 #32 epochs = 25 #100 learning_rate = 1e-3 #1e-4 decay = 1e-6 from tensorflow.keras.optimizers import RMSprop model_simple_cnn.compile(loss='categorical_crossentropy', optimizer=RMSprop(learning_rate=learning_rate, decay=decay), metrics=['accuracy']) %%time history = model_simple_cnn.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_test, y_test), shuffle=True) ###Output _____no_output_____ ###Markdown The notable features of the history plot for this model are:* Training accuracy is ~10 percentage points better than the previous model,* test accuracy more closely tracks training accuracy, and* test accuracy shows more variability. ###Code history_plot(history) # Score trained model. scores = model_simple_cnn.evaluate(x_test, y_test, verbose=0) print('Test loss:', scores[0]) print('Test accuracy:', scores[1]) prediction_classes_plot(model_simple_cnn, (x_test, y_test)) prediction_proba_plot(model_simple_cnn, (x_test, y_test)) for n in [l.name for l in model_simple_cnn.layers if isinstance(l, keras.layers.Conv2D)][:4]: visualize_conv_layer_weights(model_simple_cnn, n) image_index = cifar10_image_plot() for n in [l.name for l in model_simple_cnn.layers if isinstance(l, keras.layers.Conv2D)]: visualize_conv_layer_output(model_simple_cnn, n, image_index) ###Output _____no_output_____ ###Markdown Interesting aspects of the convolutional layer response for our *model_simple_cnn* model:* There are fewer Conv2D layers in this simple model* Compared to the pre-trained VGG16 convolutional base network, * the latter levels are the first edge detection kernels, and * there are no layers with higher-level features. ###Code for n in [l.name for l in model_simple_cnn.layers if isinstance(l, keras.layers.Conv2D)][:4]: visualize_conv_layer_response(model_simple_cnn, n) ###Output _____no_output_____ ###Markdown This plot shows which pixels of the original image contributed the most 'confidence' to the classification categories.The technique is better applied to larger images where the object of interest might be anywhere inside the image. ###Code n = [l.name for l in model_simple_cnn.layers if isinstance(l, keras.layers.Conv2D)][-1] print(n) for i in range(5): activation_plot(model_simple_cnn, n, (x_test, y_test)) ###Output _____no_output_____ ###Markdown Combined ModelsKeras supports a functional interface to take network architectures beyond simply sequential networks.The new layer types are Input and Concatenate; and, there is an explicit Model class.The Input layer is a special layer denoting sources of input from training batches.The Concatenate layer combines multiple inputs (along an axis with the same size) and creates a larger layer incorporating all the input values.Model construction is also different. Instead of using a `Sequential` model, and `add`ing layers to it:* An explicit Input layer is created, * we pass inputs into the layers explicity,* the output from a layer become input for arbitrary other layers, and finally,* A Model object is created with the source Input layer as inputs and outputs from the final layer.We'll demonstrate by creating a new network which combines the two CNN classifier networks we created previously.*Note:* Network models provided as an argument are changed to be non-trainable (the assumption is that they were already trained). ###Code from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, Concatenate, Flatten, Dense, Activation, Dropout from tensorflow.keras.optimizers import RMSprop def create_combined_classifier_model(trained_model1=None, trained_model2=None): if trained_model1: network1 = trained_model1 network1.trainable = False else: network1 = create_cnnbase_classifier_model() if trained_model2: network2 = trained_model2 network2.trainable = False else: network2 = create_cnn_classifier_model() inputs = Input(shape=(32,32,3), name='cifar10_image') c1 = network1(inputs) c2 = network2(inputs) c = Concatenate()([c1, c2]) x = Dense(512)(c) x = Activation('relu')(x) x = Dropout(0.5)(x) x = Dense(num_classes)(x) outputs = Activation('softmax')(x) model = Model(inputs=inputs, outputs=outputs, name='combined_cnn_classifier') return model ###Output _____no_output_____ ###Markdown Combining Pre-Trained ModelsThis version of the combined classifier uses both of the trained networks we created previously.Notice the trainable parameters (~16,000) is very small. How will this affect training? ###Code model_combined = create_combined_classifier_model(model_transfer_cnn, model_simple_cnn) model_combined.summary() ###Output _____no_output_____ ###Markdown This plot shows a graph representation of the layer connections. Notice how a single input feeds the previously created Sequential networks, their output is combine via Concatenate, and then a classifier network is added on top. ###Code keras.utils.plot_model(model_combined) ###Output _____no_output_____ ###Markdown Reduce number of `epochs` because this network is mostly trained (execpt for the final classifier), and there are few trainable parameters. ###Code batch_size = 128 #32 epochs = 5 #100 learning_rate = 1e-3 #1e-4 decay = 1e-6 model_combined.compile(loss='categorical_crossentropy', optimizer=RMSprop(learning_rate=learning_rate, decay=decay), metrics=['accuracy']) history = model_combined.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_test, y_test), shuffle=True) ###Output _____no_output_____ ###Markdown It looks like everything we needed to learn was learned in a single epoch. ###Code history_plot(history) ###Output _____no_output_____ ###Markdown Here is an interesting, possibly counter-intuitive, result: combining two weaker networks can create a stronger one.The reason is that the weakness in one model, might be a strength in the other model (each has 'knowledge' that the other doesn't); we just need a layer to discriminate when to trust each model. At a larger scale (of layers and models) is what is happening at the lower level of the neurons themselves. ###Code # Score trained model. scores = model_combined.evaluate(x_test, y_test, verbose=0) print('Test loss:', scores[0]) print('Test accuracy:', scores[1]) # NOTE: Sequential Model provides `predict_classes` or `predict_proba` # Functional API Model does not; because it may have multiple outputs # Using simple `predict` plot instead prediction_plot(model_combined, (x_test, y_test)) ###Output _____no_output_____ ###Markdown The combine model improves accuracy by 2%, and takes 1/5th of the time to train. Training Combining ModelsThis version of the combined classifier uses both network architectures seen previously; except, in this version, the models need to be trained from scratch. The following cells repeat the previous experiments with this combined classifier.*Spoiler:* The combined network doesn't perform any better than the partially trained one did, but takes much longer to train (more epochs).**Note:** Skip this step during the tutorial, it will cause unecessary delay. ###Code batch_size = 128 #32 epochs = 25 #100 learning_rate = 1e-3 #1e-4 decay = 1e-6 model_combined = create_combined_classifier_model() model_combined.compile(loss='categorical_crossentropy', optimizer=RMSprop(learning_rate=learning_rate, decay=decay), metrics=['accuracy']) history = model_combined.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_test, y_test), shuffle=True) history_plot(history) # Score trained model. scores = model_combined.evaluate(x_test, y_test, verbose=0) print('Test loss:', scores[0]) print('Test accuracy:', scores[1]) ###Output _____no_output_____ ###Markdown Skip ConnectionsFrom previous comparisons of the `visualize_conv_layer_response` plots of the two basic CNN models, it becomes apparent that the pre-trained VGG16 network contains more complex *knowledge* about images: there were more convolutional layers with a greater variety of patterns and features they could represent.In the previous cnnbase_classifier model `model_transfer_cnn`, only the last Conv2D layer fed directly to the classifier, and the feature information contained in the middle layers wasn't directly available to the classifier.Skip Connections are a way to bring lower level feature encodings to higher levels of the network directly. They are also useful during training very deep networks to deal with the problem of *vanishing gradients*.In the following example, the original CNN base of the pre-trained VGG16 model is decomposed into layered groups, and a new network created that feeds these intermediate layers to the top of the network, where they are concatenated together to perform the final classification.* https://towardsdatascience.com/understanding-and-coding-a-resnet-in-keras-446d7ff84d33* https://arxiv.org/abs/1608.04117 ###Code from tensorflow.keras.models import Sequential, Model from tensorflow.keras.layers import Input, Concatenate, Flatten, Dense, Activation, Dropout from tensorflow.keras.applications import VGG16 from tensorflow.keras.optimizers import RMSprop def create_cnnbase_skipconnected_classifier_model(conv_base=None): if not conv_base: conv_base = VGG16(weights='imagenet', include_top=False, input_shape=(32, 32, 3)) conv_base.trainable = False # Split conv_base into groups of CNN layers topped by a MaxPooling2D layer cb_idxs = [i for (i,l) in enumerate(conv_base.layers) if isinstance(l, keras.layers.MaxPooling2D)] all_idxs = [-1] + cb_idxs idx_pairs = [l for l in zip(all_idxs, cb_idxs)] cb_layers = [conv_base.layers[i+1:j+1] for (i,j) in idx_pairs] # Dense Pre-Classifier Layers creation function - used repeatedly at multiple network locations def dense_classes(l): x = Dense(512)(l) x = Activation('relu')(x) x = Dropout(0.5)(x) x = Dense(num_classes)(x) return x inputs = Input(shape=(32,32,3), name='cifar10_image') # Join split groups into a sequence, but keep track of their outputs to create skip connections skips = [] inz = inputs for lz in cb_layers: m = Sequential() m.trainable = False for ls in lz: m.add(ls) # inz is the output of model m, but the input for next layer group inz = m(inz) skips += [inz] # Flatten all outputs (which had different dimensions) to Concatenate them on a common axis flats = [dense_classes(Flatten()(l)) for l in skips] c = Concatenate()(flats) x = dense_classes(c) outputs = Activation('softmax')(x) model = Model(inputs=inputs, outputs=outputs) return model model_skipconnected = create_cnnbase_skipconnected_classifier_model(conv_base) model_skipconnected.summary() keras.utils.plot_model(model_skipconnected) batch_size = 128 #32 epochs = 25 #100 learning_rate = 1e-3 #1e-4 decay = 1e-6 model_skipconnected.compile(loss='categorical_crossentropy', optimizer=RMSprop(learning_rate=learning_rate, decay=decay), metrics=['accuracy']) history = model_skipconnected.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_test, y_test), shuffle=True) history_plot(history) ###Output _____no_output_____ ###Markdown A significant improvement over the first pre-trained model. ###Code # Score trained model. scores = model_skipconnected.evaluate(x_test, y_test, verbose=0) print('Test loss:', scores[0]) print('Test accuracy:', scores[1]) # Using simple `predict` plot because model uses Functional API prediction_plot(model_skipconnected, (x_test, y_test)) ###Output _____no_output_____ ###Markdown Data AgumentationData augmentation is a technique to expand the set of available training data and can significantly improve the performance of image processing networks.**Note:** Training examples in this section may take significant time. The approach does not improve accuracy results on this simple dataset, but is included here for illustration of the technique. ###Code from tensorflow.keras.preprocessing.image import ImageDataGenerator datagen = ImageDataGenerator( featurewise_center=False, # set input mean to 0 over the dataset samplewise_center=False, # set each sample mean to 0 featurewise_std_normalization=False, # divide inputs by std of the dataset samplewise_std_normalization=False, # divide each input by its std zca_whitening=False, # apply ZCA whitening zca_epsilon=1e-06, # epsilon for ZCA whitening rotation_range=10, # randomly rotate images in the range (degrees, 0 to 180) # randomly shift images horizontally (fraction of total width) width_shift_range=0.1, # randomly shift images vertically (fraction of total height) height_shift_range=0.1, shear_range=0.1, # set range for random shear zoom_range=0.1, # set range for random zoom channel_shift_range=0.0, # set range for random channel shifts # set mode for filling points outside the input boundaries fill_mode='nearest', cval=0.0, # value used for fill_mode = "constant" horizontal_flip=True, # randomly flip images vertical_flip=False, # randomly flip images # set rescaling factor (applied before any other transformation) rescale=None, # set function that will be applied on each input preprocessing_function=None, # image data format, either "channels_first" or "channels_last" data_format=None, # fraction of images reserved for validation (strictly between 0 and 1) validation_split=0.0 ) # Compute quantities required for feature-wise normalization # (std, mean, and principal components if ZCA whitening is applied). datagen.fit(x_train) exampledata = datagen.flow(x_train, y_train, batch_size=batch_size) cifar10_imageset_plot((exampledata[0][0], exampledata[0][1])) ###Output _____no_output_____ ###Markdown CNN Base + Classifier Model Agumented ###Code batch_size = 128 #32 epochs = 12 #25 #100 learning_rate = 1e-3 #1e-4 decay = 1e-6 model_augmented = create_cnnbase_classifier_model(conv_base) model_augmented.compile(loss='categorical_crossentropy', optimizer=RMSprop(learning_rate=learning_rate, decay=decay), metrics=['accuracy']) history = model_augmented.fit(datagen.flow(x_train, y_train, batch_size=batch_size), validation_data=(x_test, y_test), epochs=epochs, shuffle=True, use_multiprocessing=True, workers=4 ) history_plot(history) # Score trained model. scores = model_augmented.evaluate(x_test, y_test, verbose=0) print('Test loss:', scores[0]) print('Test accuracy:', scores[1]) ###Output _____no_output_____ ###Markdown CNN Classifier Model Augmented ###Code batch_size = 128 #32 epochs = 12 #25 #100 learning_rate = 1e-3 #1e-4 decay = 1e-6 model_augmented = create_cnn_classifier_model() model_augmented.compile(loss='categorical_crossentropy', optimizer=RMSprop(learning_rate=learning_rate, decay=decay), metrics=['accuracy']) history = model_augmented.fit(datagen.flow(x_train, y_train, batch_size=batch_size), validation_data=(x_test, y_test), epochs=epochs, shuffle=True, use_multiprocessing=True, workers=4 ) history_plot(history) # Score trained model. scores = model_augmented.evaluate(x_test, y_test, verbose=0) print('Test loss:', scores[0]) print('Test accuracy:', scores[1]) ###Output _____no_output_____ ###Markdown CNN Base + Skip Connected Classifier Model Agumented ###Code batch_size = 128 #32 epochs = 12 #25 #100 learning_rate = 1e-3 #1e-4 decay = 1e-6 model_augmented = create_cnnbase_skipconnected_classifier_model(conv_base) model_augmented.compile(loss='categorical_crossentropy', optimizer=RMSprop(learning_rate=learning_rate, decay=decay), metrics=['accuracy']) history = model_augmented.fit(datagen.flow(x_train, y_train, batch_size=batch_size), validation_data=(x_test, y_test), epochs=epochs, shuffle=True, use_multiprocessing=True, workers=4 ) history_plot(history) # Score trained model. scores = model_augmented.evaluate(x_test, y_test, verbose=0) print('Test loss:', scores[0]) print('Test accuracy:', scores[1]) ###Output _____no_output_____ ###Markdown Mixed Precision**TODO:** Fix performance issues**Note:** Mixed Precision is still experimental...* https://www.tensorflow.org/guide/keras/mixed_precision* https://www.tensorflow.org/api_docs/python/tf/keras/mixed_precision/experimental/Policy* https://developer.nvidia.com/automatic-mixed-precision* https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html```pythonopt = tf.train.experimental.enable_mixed_precision_graph_rewrite(opt) ``` ###Code from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Flatten, Dense, Activation, Dropout, Conv2D, MaxPooling2D policy = tf.keras.mixed_precision.experimental.Policy('mixed_float16') #tf.keras.mixed_precision.experimental.set_policy('mixed_float16') def create_mixed_precision_cnn_classifier_model(): model = Sequential() model.add(Conv2D(32, (3, 3), padding='same', input_shape=x_train.shape[1:], dtype=policy)) model.add(Activation('relu', dtype=policy)) model.add(Conv2D(32, (3, 3), dtype=policy)) model.add(Activation('relu', dtype=policy)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25, dtype=policy)) model.add(Conv2D(64, (3, 3), padding='same', dtype=policy)) model.add(Activation('relu', dtype=policy)) model.add(Conv2D(64, (3, 3), dtype=policy)) model.add(Activation('relu', dtype=policy)) model.add(MaxPooling2D(pool_size=(2, 2), dtype=policy)) model.add(Dropout(0.25, dtype=policy)) model.add(Flatten(dtype=policy)) # Dense layers use global policy of 'mixed_float16'; # does computations in float16, keeps variables in float32. model.add(Dense(512, dtype=policy)) model.add(Activation('relu', dtype=policy)) model.add(Dropout(0.5, dtype=policy)) model.add(Dense(num_classes, dtype=policy)) # Softmax should be done in float32 for numeric stability. We pass # dtype='float32' to use float32 instead of the global policy. model.add(Activation('softmax', dtype='float32')) return model from tensorflow.keras.optimizers import RMSprop model_mixedprecision_cnn = create_mixed_precision_cnn_classifier_model() model_mixedprecision_cnn.summary() batch_size = 128 #32 epochs = 25 #100 learning_rate = 1e-3 #1e-4 decay = 1e-6 model_mixedprecision_cnn.compile(loss='categorical_crossentropy', optimizer=RMSprop(learning_rate=learning_rate, decay=decay), metrics=['accuracy']) %%time history = model_mixedprecision_cnn.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_test, y_test), shuffle=True) # Score trained model. scores = model_mixedprecision_cnn.evaluate(x_test, y_test, verbose=0) print('Test loss:', scores[0]) print('Test accuracy:', scores[1]) # Reset Policy tf.keras.mixed_precision.experimental.set_policy('float32') ###Output _____no_output_____ ###Markdown Multi-GPU ExampleUsing multiple GPUs on a single node is a simple way to speed up deep learning. Keras / TensorFlow support this with a small modification to code.First, determine if multiple GPUs are available: ###Code physical_devices = tf.config.experimental.list_physical_devices('GPU') device_count = len(physical_devices) print("GPU count:", device_count) print("GPU devices:", physical_devices) ###Output _____no_output_____ ###Markdown When scaling to `n` GPUs, there is `n *` the available GPU memory, so we can increase the batch_size by `n`. A larger batch size means that there is more data evaluated by the batch step, which creates a more accurate and representative loss gradient – so we can take a larger corrective step by multiply the learning_rate by `n`. Because we are learning `n *` more each epoch, we only need `1/n`th the number of training epochs.There are additional subtleties and mitigating strategies to be aware of when scaling batch sizes larger. Some of these are discussed in [Deep Learning at scale: Accurate, Large Mini batch SGD](https://towardsdatascience.com/deep-learning-at-scale-accurate-large-mini-batch-sgd-8207d54bfe02). ###Code # Multi-GPU Example assert device_count >= 2, "Two or more GPUs required to demonstrate multi-gpu functionality" from tensorflow.keras.optimizers import Adam, RMSprop from tensorflow.keras.callbacks import LearningRateScheduler, ReduceLROnPlateau batch_size = device_count * 128 #32 epochs = 25 // device_count + 1 #100 learning_rate = device_count * 1e-3 #1e-4 decay = 1e-6 def lr_schedule(epoch): initial_lr = device_count * 1e-3 warmup_epochs = 5 warmup_lr = (epoch + 1) * initial_lr / warmup_epochs return warmup_lr if epoch <= warmup_epochs else initial_lr lr_scheduler = LearningRateScheduler(lr_schedule, verbose=1) lr_reducer = ReduceLROnPlateau(factor=np.sqrt(0.1), cooldown=0, patience=5, min_lr=0.5e-6) callbacks = [lr_reducer, lr_scheduler] strategy = tf.distribute.MirroredStrategy() with strategy.scope(): model_multigpu = create_cnnbase_classifier_model() model_multigpu.compile(loss='categorical_crossentropy', optimizer=RMSprop(learning_rate=learning_rate, decay=decay, momentum=0.5), # TODO: Explore Adam without lr_scheduling #optimizer=Adam(learning_rate=learning_rate), metrics=['accuracy']) history = model_multigpu.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_test, y_test), shuffle=True, callbacks=callbacks, use_multiprocessing=True, workers=4 ) history_plot(history) # Score trained model. scores = model_multigpu.evaluate(x_test, y_test, verbose=0) print('Test loss:', scores[0]) print('Test accuracy:', scores[1]) ###Output _____no_output_____
dev/01b_dispatch.ipynb
###Markdown Type dispatch> Basic single and dual parameter dispatch Helpers ###Code #exports def type_hints(f): "Same as `typing.get_type_hints` but returns `{}` if not allowed type" return typing.get_type_hints(f) if isinstance(f, typing._allowed_types) else {} #export def anno_ret(func): "Get the return annotation of `func`" if not func: return None ann = type_hints(func) if not ann: return None return ann.get('return') #hide def f(x) -> float: return x test_eq(anno_ret(f), float) def f(x) -> typing.Tuple[float,float]: return x test_eq(anno_ret(f), typing.Tuple[float,float]) def f(x) -> None: return x test_eq(anno_ret(f), NoneType) def f(x): return x test_eq(anno_ret(f), None) test_eq(anno_ret(None), None) #export cmp_instance = functools.cmp_to_key(lambda a,b: 0 if a==b else 1 if issubclass(a,b) else -1) td = {int:1, numbers.Number:2, numbers.Integral:3} test_eq(sorted(td, key=cmp_instance), [numbers.Number, numbers.Integral, int]) #export def _p2_anno(f): "Get the 1st 2 annotations of `f`, defaulting to `object`" hints = type_hints(f) ann = [o for n,o in hints.items() if n!='return'] while len(ann)<2: ann.append(object) return ann[:2] def _f(a): pass test_eq(_p2_anno(_f), (object,object)) def _f(a, b): pass test_eq(_p2_anno(_f), (object,object)) def _f(a:None, b)->str: pass test_eq(_p2_anno(_f), (NoneType,object)) def _f(a:str, b)->float: pass test_eq(_p2_anno(_f), (str,object)) def _f(a:None, b:str)->float: pass test_eq(_p2_anno(_f), (NoneType,str)) def _f(a:int, b:int)->float: pass test_eq(_p2_anno(_f), (int,int)) def _f(self, a:int, b:int): pass test_eq(_p2_anno(_f), (int,int)) def _f(a:int, b:str)->float: pass test_eq(_p2_anno(_f), (int,str)) test_eq(_p2_anno(attrgetter('foo')), (object,object)) ###Output _____no_output_____ ###Markdown TypeDispatch - The following class is the basis that allows us to do type dipatch with type annotations. It contains a dictionary type -> functions and ensures that the proper function is called when passed an object (depending on its type). ###Code #export class _TypeDict: def __init__(self): self.d,self.cache = {},{} def _reset(self): self.d = {k:self.d[k] for k in sorted(self.d, key=cmp_instance, reverse=True)} self.cache = {} def add(self, t, f): "Add type `t` and function `f`" if not isinstance(t,tuple): t=(t,) for t_ in t: self.d[t_] = f self._reset() def all_matches(self, k): "Find first matching type that is a super-class of `k`" if k not in self.cache: types = [f for f in self.d if k==f or (isinstance(k,type) and issubclass(k,f))] self.cache[k] = [self.d[o] for o in types] return self.cache[k] def __getitem__(self, k): "Find first matching type that is a super-class of `k`" res = self.all_matches(k) return res[0] if len(res) else None def __repr__(self): return self.d.__repr__() def first(self): return next(iter(self.d.values())) #export class TypeDispatch: "Dictionary-like object; `__getitem__` matches keys of types using `issubclass`" def __init__(self, *funcs): self.funcs = _TypeDict() for o in funcs: self.add(o) self.inst = None def add(self, f): "Add type `t` and function `f`" a0,a1 = _p2_anno(f) t = self.funcs.d.get(a0) if t is None: t = _TypeDict() self.funcs.add(a0, t) t.add(a1, f) def first(self): return self.funcs.first().first() def returns(self, x): return anno_ret(self[type(x)]) def returns_none(self, x): r = anno_ret(self[type(x)]) return r if r == NoneType else None def _attname(self,k): return getattr(k,'__name__',str(k)) def __repr__(self): r = [f'({self._attname(k)},{self._attname(l)}) -> {v.__name__}' for k in self.funcs.d for l,v in self.funcs[k].d.items()] return '\n'.join(r) def __call__(self, *args, **kwargs): ts = L(args).map(type)[:2] f = self[tuple(ts)] if not f: return args[0] if self.inst is not None: f = types.MethodType(f, self.inst) return f(*args, **kwargs) def __get__(self, inst, owner): self.inst = inst return self def __getitem__(self, k): "Find first matching type that is a super-class of `k`" k = L(k if isinstance(k, tuple) else (k,)) while len(k)<2: k.append(object) r = self.funcs.all_matches(k[0]) if len(r)==0: return None for t in r: o = t[k[1]] if o is not None: return o return None def f_col(x:typing.Collection): return x def f_nin(x:numbers.Integral)->int: return x+1 def f_ni2(x:int): return x def f_bll(x:(bool,list)): return x def f_num(x:numbers.Number): return x t = TypeDispatch(f_nin,f_ni2,f_num,f_bll) t.add(f_ni2) #Should work even if we add the same function twice. test_eq(t[int], f_ni2) test_eq(t[np.int32], f_nin) test_eq(t[str], None) test_eq(t[float], f_num) test_eq(t[bool], f_bll) test_eq(t[list], f_bll) t.add(f_col) test_eq(t[str], f_col) test_eq(t[np.int32], f_nin) o = np.int32(1) test_eq(t(o), 2) test_eq(t.returns(o), int) assert t.first() is not None t def m_nin(self, x:(str,numbers.Integral)): return str(x)+'1' def m_bll(self, x:bool): self.foo='a' def m_num(self, x:numbers.Number): return x t = TypeDispatch(m_nin,m_num,m_bll) class A: f = t a = A() test_eq(a.f(1), '11') test_eq(a.f(1.), 1.) test_is(a.f.inst, a) a.f(False) test_eq(a.foo, 'a') def f1(x:numbers.Integral, y): return x+1 def f2(x:int, y:float): return x+y t = TypeDispatch(f1,f2) test_eq(t[int], f1) test_eq(t[int,int], f1) test_eq(t[int,float], f2) test_eq(t[float,float], None) test_eq(t[np.int32,float], f1) test_eq(t(3,2.0), 5) test_eq(t(3,2), 4) test_eq(t('a'), 'a') t ###Output _____no_output_____ ###Markdown typedispatch Decorator ###Code #export class DispatchReg: "A global registry for `TypeDispatch` objects keyed by function name" def __init__(self): self.d = defaultdict(TypeDispatch) def __call__(self, f): nm = f'{f.__qualname__}' self.d[nm].add(f) return self.d[nm] typedispatch = DispatchReg() @typedispatch def f_td_test(x, y): return f'{x}{y}' @typedispatch def f_td_test(x:numbers.Integral, y): return x+1 @typedispatch def f_td_test(x:int, y:float): return x+y test_eq(f_td_test(3,2.0), 5) test_eq(f_td_test(3,2), 4) test_eq(f_td_test('a','b'), 'ab') ###Output _____no_output_____ ###Markdown Export - ###Code #hide from local.notebook.export import notebook2script notebook2script(all_fs=True) ###Output Converted 00_test.ipynb. Converted 01_core.ipynb. Converted 01a_utils.ipynb. Converted 01b_dispatch.ipynb. Converted 01c_torch_core.ipynb. Converted 02_script.ipynb. Converted 03_dataloader.ipynb. Converted 04_transform.ipynb. Converted 05_data_core.ipynb. Converted 06_data_transforms.ipynb. Converted 07_vision_core.ipynb. Converted 08_pets_tutorial.ipynb. Converted 09_vision_augment.ipynb. Converted 10_data_block.ipynb. Converted 11_layers.ipynb. Converted 11a_vision_models_xresnet.ipynb. Converted 12_optimizer.ipynb. Converted 13_learner.ipynb. Converted 14_callback_schedule.ipynb. Converted 14a_callback_data.ipynb. Converted 15_callback_hook.ipynb. Converted 16_callback_progress.ipynb. Converted 17_callback_tracker.ipynb. Converted 18_callback_fp16.ipynb. Converted 19_callback_mixup.ipynb. Converted 20_metrics.ipynb. Converted 21_tutorial_imagenette.ipynb. Converted 22_vision_learner.ipynb. Converted 23_tutorial_transfer_learning.ipynb. Converted 30_text_core.ipynb. Converted 31_text_data.ipynb. Converted 32_text_models_awdlstm.ipynb. Converted 33_text_models_core.ipynb. Converted 34_callback_rnn.ipynb. Converted 35_tutorial_wikitext.ipynb. Converted 36_text_models_qrnn.ipynb. Converted 37_text_learner.ipynb. Converted 38_tutorial_ulmfit.ipynb. Converted 40_tabular_core.ipynb. Converted 41_tabular_model.ipynb. Converted 42_tabular_rapids.ipynb. This cell doesn't have an export destination and was ignored: e Converted 50_data_block_examples.ipynb. Converted 90_notebook_core.ipynb. Converted 91_notebook_export.ipynb. Converted 92_notebook_showdoc.ipynb. Converted 93_notebook_export2html.ipynb. Converted 94_notebook_test.ipynb. Converted 95_index.ipynb. Converted 96_data_external.ipynb. Converted 97_utils_test.ipynb. Converted notebook2jekyll.ipynb.
_posts/scikit/multi-class-sgd-on-iris-dataset/Multi-Class SGD On The Iris Dataset.ipynb
###Markdown Plot decision surface of multi-class SGD on iris dataset. The hyperplanes corresponding to the three one-versus-all (OVA) classifiers are represented by the dashed lines. New to Plotly?Plotly's Python library is free and open source! [Get started](https://plot.ly/python/getting-started/) by downloading the client and [reading the primer](https://plot.ly/python/getting-started/).You can set up Plotly to work in [online](https://plot.ly/python/getting-started/initialization-for-online-plotting) or [offline](https://plot.ly/python/getting-started/initialization-for-offline-plotting) mode, or in [jupyter notebooks](https://plot.ly/python/getting-started/start-plotting-online).We also have a quick-reference [cheatsheet](https://images.plot.ly/plotly-documentation/images/python_cheat_sheet.pdf) (new!) to help you get started! Version ###Code import sklearn sklearn.__version__ ###Output _____no_output_____ ###Markdown Imports ###Code print(__doc__) import plotly.plotly as py import plotly.graph_objs as go import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.linear_model import SGDClassifier ###Output Automatically created module for IPython interactive environment ###Markdown Calculations ###Code # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target colors = ["blue", "red", "yellow"] # shuffle idx = np.arange(X.shape[0]) np.random.seed(13) np.random.shuffle(idx) X = X[idx] y = y[idx] # standardize mean = X.mean(axis=0) std = X.std(axis=0) X = (X - mean) / std h = .02 # step size in the mesh clf = SGDClassifier(alpha=0.001, n_iter=100).fit(X, y) # create a mesh to plot in x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 x_ = np.arange(x_min, x_max, h) y_ = np.arange(y_min, y_max, h) xx, yy = np.meshgrid(x_, y_) ###Output _____no_output_____ ###Markdown Plot Results ###Code def matplotlib_to_plotly(cmap, pl_entries): h = 1.0/(pl_entries-1) pl_colorscale = [] for k in range(pl_entries): C = map(np.uint8, np.array(cmap(k*h)[:3])*255) pl_colorscale.append([k*h, 'rgb'+str((C[0], C[1], C[2]))]) return pl_colorscale cmap = matplotlib_to_plotly(plt.cm.Paired, 5) data = [] Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) cs = go.Contour(x=x_, y=y_, z=Z, colorscale=cmap, showscale=False ) data.append(cs) # Plot also the training points xmin = min(X[idx, 0]) xmax = max(X[idx, 0]) for i, color in zip(clf.classes_, colors): idx = np.where(y == i) t = go.Scatter(x=X[idx, 0][0], y=X[idx, 1][0], mode='markers', marker=dict(color=colors[i], line=dict(color='black', width=1)), name=iris.target_names[i], ) data.append(t) # Plot the three one-against-all classifiers coef = clf.coef_ intercept = clf.intercept_ def plot_hyperplane(c, color): def line(x0): return (-(x0 * coef[c, 0]) - intercept[c]) / coef[c, 1] trace = go.Scatter(x=[x_min, x_max], y=[line(x_min), line(x_max)], mode='lines', line=dict(color=color, dash='dash'), showlegend=False) return trace for i, color in zip(clf.classes_, colors): data.append(plot_hyperplane(i, color)) layout = go.Layout(title="Decision surface of multi-class SGD", xaxis=dict(range=[min(x_), max(x_)]), yaxis=dict(range=[min(y_), max(y_)]), ) fig = go.Figure(data=data, layout=layout) py.iplot(fig) from IPython.display import display, HTML display(HTML('<link href="//fonts.googleapis.com/css?family=Open+Sans:600,400,300,200|Inconsolata|Ubuntu+Mono:400,700" rel="stylesheet" type="text/css" />')) display(HTML('<link rel="stylesheet" type="text/css" href="http://help.plot.ly/documentation/all_static/css/ipython-notebook-custom.css">')) ! pip install git+https://github.com/plotly/publisher.git --upgrade import publisher publisher.publish( 'Multi-Class SGD On The Iris Dataset.ipynb', 'scikit-learn/plot-sgd-iris/', 'Multi-Class SGD On The Iris Dataset | plotly', ' ', title = 'Multi-Class SGD On The Iris Dataset | plotly', name = 'Multi-Class SGD On The Iris Dataset', has_thumbnail='true', thumbnail='thumbnail/sgd-iris.jpg', language='scikit-learn', page_type='example_index', display_as='linear_models', order=24, ipynb= '~Diksha_Gabha/3265') ###Output _____no_output_____
experimental_models/text_base_model.ipynb
###Markdown Uni-Modal Text Classifier Base Model ###Code import numpy as np from sklearn import metrics import tensorflow from tensorflow import keras from utils import data, training, plotting, models_text, optimise_txt gpus = tensorflow.config.list_physical_devices('GPU') for gpu in gpus: print("Name:", gpu.name, " Type:", gpu.device_type) ###Output _____no_output_____ ###Markdown Text Pre-ProcessingLoad and pre-process text corpus. ###Code label_map = { 'geol_geow': 0, 'geol_sed': 1, 'gphys_gen': 2, 'log_sum': 3, 'pre_site': 4, 'vsp_file': 5 } doc_data = data.DocumentData(label_map, 2020, drop_nans='text') doc_data.load_text_data() ###Output _____no_output_____ ###Markdown Base 1D CNN ClassifierBase 1D CCN text classifier architecture based on the sentence classifier proposed by Kim et al. Test model through a single training cycle: ###Code base_text_cnn = models_text.text_cnn_model(doc_data) base_text_cnn.summary() early_stopping = keras.callbacks.EarlyStopping( monitor='val_loss', patience=2, mode='min', restore_best_weights=True ) history = base_text_cnn.fit( doc_data.text_train, doc_data.y_train, epochs=100, validation_data=(doc_data.text_val, doc_data.y_val), callbacks=[early_stopping] ) plotting.plot_history(history, 'Text Classifier Base Model') base_text_cnn.evaluate(doc_data.text_test, doc_data.y_test) y_probs = base_text_cnn.predict(doc_data.text_test) y_hat = np.argmax(y_probs, axis=-1) y = np.argmax(doc_data.y_test, axis=-1) model_utils.confusion_matrix(y, y_hat, label_map, 'Text Classifier Base Model') labels = [label for label in label_map] print(metrics.classification_report(y, y_hat, target_names=labels)) ###Output precision recall f1-score support geol_geow 0.88 0.86 0.87 296 geol_sed 0.82 0.87 0.84 193 gphys_gen 0.82 0.81 0.82 175 log_sum 0.61 0.72 0.66 177 pre_site 0.95 0.86 0.91 211 vsp_file 0.97 0.87 0.92 124 accuracy 0.83 1176 macro avg 0.84 0.83 0.84 1176 weighted avg 0.84 0.83 0.84 1176 ###Markdown Get average performance over 10 random initialisations of model: ###Code metric_averages = .iterate_training(models.text_cnn_model, doc_data, 10, y, 'text', model_params={'doc_data': doc_data}) metric_averages ###Output _____no_output_____ ###Markdown Hyperparameter Grid SearchGrid search to find optimal hyperparameters for convolutional layer, hyperparameter ranges are based on previous work by Zhang et al, 2016. ###Code filter_regions = (1, 3, 5, 7, 10) feature_maps = (10, 50, 100, 200, 400, 600) dropout_rate = (0.1, 0.2, 0.3, 0.4, 0.5) l2_norm_constraints = (0.5, 1, 2, 3) models.text_grid_search(doc_data, filter_regions, feature_maps, dropout_rate, l2_norm_constraints, 'grid_search_logs/text_cnn_grid_search.log') ###Output Epoch 1/100 118/118 [==============================] - 30s 254ms/step - loss: 19.5697 - accuracy: 0.2641 - val_loss: 14.5428 - val_accuracy: 0.4462 Epoch 2/100 118/118 [==============================] - 30s 258ms/step - loss: 11.3003 - accuracy: 0.3760 - val_loss: 8.4072 - val_accuracy: 0.5016 Epoch 3/100 118/118 [==============================] - 29s 243ms/step - loss: 6.6348 - accuracy: 0.4290 - val_loss: 4.9801 - val_accuracy: 0.5698 Epoch 4/100 118/118 [==============================] - 28s 242ms/step - loss: 4.0354 - accuracy: 0.4623 - val_loss: 3.1267 - val_accuracy: 0.5974 Epoch 5/100 118/118 [==============================] - 28s 241ms/step - loss: 2.6808 - accuracy: 0.4706 - val_loss: 2.1891 - val_accuracy: 0.6230 Epoch 6/100 118/118 [==============================] - 29s 245ms/step - loss: 1.9952 - accuracy: 0.4961 - val_loss: 1.7400 - val_accuracy: 0.6337 Epoch 7/100 118/118 [==============================] - 29s 242ms/step - loss: 1.6812 - accuracy: 0.5159 - val_loss: 1.5343 - val_accuracy: 0.6422 Epoch 8/100 118/118 [==============================] - 28s 240ms/step - loss: 1.5486 - accuracy: 0.5217 - val_loss: 1.4298 - val_accuracy: 0.6038 Epoch 9/100 118/118 [==============================] - 29s 248ms/step - loss: 1.4519 - accuracy: 0.5366 - val_loss: 1.3535 - val_accuracy: 0.6198 Epoch 10/100 118/118 [==============================] - 145s 1s/step - loss: 1.4012 - accuracy: 0.5398 - val_loss: 1.2943 - val_accuracy: 0.6432 Epoch 11/100 118/118 [==============================] - 28s 241ms/step - loss: 1.3745 - accuracy: 0.5446 - val_loss: 1.2619 - val_accuracy: 0.6741 Epoch 12/100 118/118 [==============================] - 30486s 258s/step - loss: 1.3420 - accuracy: 0.5572 - val_loss: 1.2278 - val_accuracy: 0.6528 Epoch 13/100 118/118 [==============================] - 29s 248ms/step - loss: 1.3023 - accuracy: 0.5779 - val_loss: 1.2226 - val_accuracy: 0.6081 Epoch 14/100 118/118 [==============================] - 29s 245ms/step - loss: 1.2571 - accuracy: 0.5955 - val_loss: 1.1508 - val_accuracy: 0.6933 Epoch 15/100 118/118 [==============================] - 29s 243ms/step - loss: 1.2772 - accuracy: 0.5715 - val_loss: 1.1258 - val_accuracy: 0.7082 Epoch 16/100 118/118 [==============================] - 28s 241ms/step - loss: 1.2492 - accuracy: 0.5827 - val_loss: 1.1227 - val_accuracy: 0.7103 Epoch 17/100 73/118 [=================>............] - ETA: 10s - loss: 1.2367 - accuracy: 0.5899 ###Markdown Tunned ModelOptimal model with filter regions = 7 and feature maps = 200. ###Code base_text_cnn = models.text_cnn_model(doc_data, kernel_size=7, filter_maps=200, dense_layers=1, dense_nodes=50, dropout_rate=0.3, l2_regularization=0.5) early_stopping = keras.callbacks.EarlyStopping(monitor='val_loss', patience=2, mode='min', restore_best_weights=True) history = base_text_cnn.fit(doc_data.text_train, doc_data.y_train, epochs=100, validation_data=(doc_data.text_val, doc_data.y_val), callbacks=[early_stopping]) base_text_cnn.evaluate(doc_data.text_test, doc_data.y_test) y_probs = base_text_cnn.predict(doc_data.text_test) y_hat = np.argmax(y_probs, axis=-1) y = np.argmax(doc_data.y_test, axis=-1) model_utils.confusion_matrix(y, y_hat, label_map, 'Text Classifier Base Model') labels = [label for label in label_map] print(metrics.classification_report(y, y_hat, target_names=labels)) metric_averages = model_utils.iterate_training( models.text_cnn_model, doc_data, 10, y, 'text', model_params={ 'doc_data': doc_data, 'kernel_size': 7, 'filter_maps': 200, 'dense_layers': 1, 'dense_nodes': 50, 'dropout_rate': 0.3, 'l2_regularization': 0.5 } ) metric_averages ###Output _____no_output_____
autompg_regression.ipynb
###Markdown 결측치를 보기위해서 디스크립션(info()) 하기 ###Code pd_data.shape pd_data= pd.read_csv('./files/auto-mpg.csv', header=None) pd_data.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 398 entries, 0 to 397 Data columns (total 9 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 0 398 non-null float64 1 1 398 non-null int64 2 2 398 non-null float64 3 3 398 non-null object 4 4 398 non-null float64 5 5 398 non-null float64 6 6 398 non-null int64 7 7 398 non-null int64 8 8 398 non-null object dtypes: float64(4), int64(3), object(2) memory usage: 28.1+ KB ###Markdown 값이 object라고 나온 부분은 조심하기. float나 int는 괜찮음.어떠한 값이 될수도 있기 떄문에 그 안에 들어간 것이 무엇인지 꼭 확인하기! ###Code pd_data.columns = ['mpg','cylinders','displacement','horsepower','weight', 'acceleration','model year','origin','name'] x=pd_data[['weight']] y=pd_data[['mpg']] x.shape, y.shape from sklearn.linear_model import LinearRegression lr=LinearRegression() lr.fit(x,y) lr.coef_ lr.intercept_ ###Output _____no_output_____ ###Markdown y= -0.00767661x + 46.31736442 ###Code lr.score(x,y) ## ###Output _____no_output_____ ###Markdown 원 파일에 헤더가 없으므로 dataFrame을 만들면서 header=None으로 헤더가 없다는 것을 알려줌pd_data.info() -> 결측치 확인 Dtype이 object인 것은 문자도 숫자도 될 수 있으므로 확인 (3,8 column 제외)pd_data의 column명 지정 x축은 weight y축은 mpg 지정 ###Code x = pd_data[['weight']] y = pd_data[['mpg']] x.shape, y.shape ###Output _____no_output_____ ###Markdown split 기능을 가져옴 (두 집단으로 나눠서 하나는 식을 만들고 나머지는 만들어진 식에 대입하여 확인) ###Code from sklearn.model_selection import train_test_split X_train, X_test, Y_train, Y_test = train_test_split(x,y) X_train.shape, X_test.shape, Y_train.shape, Y_test.shape ###Output _____no_output_____ ###Markdown sklearn.linear_model에서 선형회귀 기능을 import ###Code from sklearn.linear_model import LinearRegression lr = LinearRegression() lr.fit(X_train, Y_train) ###Output _____no_output_____ ###Markdown lr에 직선방정식 ###Code # total data lr.fit(x,y) # split data with 1 column lr.coef_, lr.intercept_ ###Output _____no_output_____ ###Markdown x의 계수 ###Code lr.coef_ ###Output _____no_output_____ ###Markdown y 절편 ###Code lr.intercept_ ###Output _____no_output_____ ###Markdown weight * mpg의 선형식 : y = - 0.00767661x + 46.31736442 선형식이 얼마나 정확한지 확인하는 방법 : score (정확도) ###Code lr.score(x,y) ###Output _____no_output_____ ###Markdown y = -0.00767661x + 46.31736442 ###Code lr.score(x,y) ###Output _____no_output_____ ###Markdown y = -0.00767661x_1 + -1.03509013x_2 + 46.31736442 ###Code lr.score(x,y) x_predict = lr.predict(x) deviation = y.to_numpy() - x_predict type(deviation) deviation ###Output _____no_output_____ ###Markdown y = 0.14766146x + 12.10283073 ###Code lr.score(x,y) #정확도 ###Output _____no_output_____ ###Markdown 사이킷 런 모델링을 통해서 두 데이터를 주어주고 선형모델을 만든것 ###Code y_predicted = lr.predict([[99]]) y_predicted ###Output _____no_output_____ ###Markdown 1. 정보단계: 수집 가공- 문제 데이터 확인 및 처리2. 교육 단계: 머신 대상- 컬럼선택- 모델 선택- 교육- 정확도 확인3. 서비스 단계:고객응대 X의 값을 늘릴수 있다 ###Code from sklearn.model_selection import train_test_split X_train, X_test, Y_train, Y_test = train_test_split(x, y) X_train, X_test, Y_train, Y_test lr.fit(X_train, Y_train) lr.coef_, lr.intercept_ #기울기, 절편 ###Output _____no_output_____ ###Markdown y = -0.00767661x_1 + -1.03509013x_2 + 46.31736442 ###Code lr.score(x,y) ###Output _____no_output_____ ###Markdown y = -0.00767661x_1 + -1.03509013x_2 + 46.31736442 ###Code lr.score(x,y) ###Output _____no_output_____ ###Markdown y = -0.00767661x_1 + - 1.03509013x_2 + 46.31736442 ###Code lr.score(x,y) ###Output _____no_output_____ ###Markdown Simple Linear Regression ML: 정보에 알맞은 선긋기 ###Code import sklearn import pandas as pd !dir .\files\auto-mpg.csv pd_data = pd.read_csv('./files/auto-mpg.csv', header = None) pd_data.info() pd_data.shape pd_data pd_data.columns = ['mpg','cylinders','displacement','horsepower','weight', 'acceleration','model year','origin','name'] x = pd_data[['weight']] y = pd_data[['mpg']] from sklearn.model_selection import train_test_split X_train, X_test, Y_train, Y_test = train_test_split(x,y) X_train.shape, X_test.shape, Y_train.shape, Y_test.shape x.shape, y.shape from sklearn.linear_model import LinearRegression lr = LinearRegression() lr.fit(x,y) lr.coef_, lr.intercept_ ###Output _____no_output_____ ###Markdown y = -0.00767661x + 46.31736442 ###Code # check with total data lr.score(x,y) lr.fit(X_train, Y_train) lr.coef_, lr.intercept_ # check with a part train data lr.score(X_train,Y_train) # check with a part test data lr.score(X_test,Y_test) ###Output _____no_output_____
club_mahindra_eda.ipynb
###Markdown Import packages ###Code import pandas as pd import matplotlib.pyplot as plt %matplotlib inline import xlrd import numpy as np import seaborn as sns # extracting sample from the main data #grouped=g.groupby("booking_date") #grouped.apply(lambda x: x.sample(frac=0.2)).to_csv("/content/drive/My Drive/DS Training/Meterial/trainsample.csv",index=False) ###Output _____no_output_____ ###Markdown Read Data ###Code from google.colab import drive drive.mount('/content/drive') path="/content/drive/My Drive/DS Training/Meterial/train.csv" df=pd.read_csv(path) df ###Output _____no_output_____ ###Markdown Basic analysis- shape and dimensions ###Code df.channel_code==3 df.columns df.shape df['memberid'].duplicated().value_counts() df.size for column in df.columns: g=df[column].isnull().value_counts() print (g) for column in df.columns: g=df[column].isnull().value_counts() print (g[g.index==True]) g=df['season_holidayed_code'].isnull().value_counts() type(g) g[g.index==True] df.dtypes ###Output _____no_output_____ ###Markdown Convertion of booking dates & date formates and derviving advance booking ###Code # convert booking date to date format df['booking_date'] = pd.to_datetime(df['booking_date'],format='%d/%m/%y') # Extration of year and month #df['booking_year'], df['booking_month'] = df['booking_date'].dt.year, df['booking_month'].dt.month df['booking_year'] = df['booking_date'].dt.year df['booking_month']= df['booking_date'].dt.month #convert booking date to date format df['checkin_date'] = pd.to_datetime(df['checkin_date'],format='%d/%m/%y') df['checkout_date'] = pd.to_datetime(df['checkout_date'],format='%d/%m/%y') df['spend_days']= df['checkout_date']-df['checkin_date'] #derive advance bokking days df['advance_booking']= df['checkin_date']-df['booking_date'] df.head() ###Output _____no_output_____ ###Markdown Pivoting Data and Creating Graphs What is the average booking value per member? how is it trending by year? ###Code df.pivot_table(values='amount_spent_per_room_night_scaled',columns='booking_year',aggfunc='mean') plt.figure(figsize=(16, 6)) df.groupby(['booking_year'])['amount_spent_per_room_night_scaled'].mean().plot.bar() # its in between 7 to 8 on an average every year and no significant change ###Output _____no_output_____ ###Markdown what are the top resorts in terms of booking, average revenue and children freindly? ###Code g= df.pivot_table(index=['resort_id'], values=['reservation_id'], aggfunc='count') #g['reservation_id']=pd.to_numeric(g['reservation_id']) g.sort_values(by=['reservation_id'],inplace=True,ascending=False) g[:5].plot.barh() # Top 5 resorts in terms of booking #another way of producing the bar using count plot plt.figure(figsize=(16, 6)) sns.countplot(df["resort_id"]) g= df.pivot_table(index=['resort_type_code'], values=['amount_spent_per_room_night_scaled'], aggfunc='mean') g.sort_values(by=['amount_spent_per_room_night_scaled'], inplace=True) g.plot.bar() # Resort code 5 is top in terms of revenue #another way of producing the bar using box plot plt.figure(figsize=(16, 6)) sns.boxplot(x='resort_type_code',y='amount_spent_per_room_night_scaled',data=df) #Resort code 5 is top in terms of revenue df.groupby(['state_code_resort','resort_type_code'])['numberofchildren'].count().reset_index() plt.figure(figsize=(40,20)) #sns.barplot(x='resort_type_code',y='numberofchildren',data=df) sns.catplot(x='resort_type_code',y='numberofchildren',col='state_code_resort',data=df,kind='bar',aspect=0.7) #Resort code 4 is top in terms of number of children ###Output _____no_output_____ ###Markdown how much time members are spending on resort like spent time, seasons and advance booking time ###Code df.pivot_table(index=['season_holidayed_code'],values=['roomnights'],columns=['resort_type_code'],aggfunc='sum') plt.figure(figsize=(16, 6)) df.groupby(['resort_type_code'])['roomnights'].agg(pd.Series.mode).plot.bar() #Resort code 0 has the highest time spent, 5 and 7 has the leaset amount spent time df.groupby(['resort_type_code'])['advance_booking'].count().plot.bar() #df['advance_booking'].dtypes #Resort code 1 has the highest advance bookings(use mean or mode) plt.figure(figsize=(16, 6)) df.groupby(['resort_type_code'])['season_holidayed_code'].count().plot.bar() #Resort code 1 has the highest season holiday bookings(use mean or mode) df.pivot_table(index=['resort_id'],values=['advance_booking'],columns=['resort_region_code'],aggfunc='count') ###Output _____no_output_____ ###Markdown Are the any resorts that attract more advanced bookings and why ? ###Code plt.figure(figsize=(16, 6)) df.groupby(['resort_type_code'])['advance_booking'].count().plot.bar() #Resort code 1 has the more no.of advanced bookings #why df.groupby(['resort_type_code','state_code_resort'])['advance_booking'].count().plot.bar() #there could be many other reasons but stat code resort is one of them ###Output _____no_output_____ ###Markdown is there any relationship between advance booking and time spent ###Code plt.figure(figsize=(16, 6)) df.groupby(['roomnights'])['advance_booking'].count().plot.bar() #No ###Output _____no_output_____ ###Markdown Are there any resorts for specific seasons or evernts ###Code g=df.pivot_table(index=['season_holidayed_code'],values=['reservation_id'],columns=['resort_type_code'],aggfunc='count') g plt.figure(figsize=(16, 6)) df.groupby(['season_holidayed_code'])['resort_type_code'].count().plot.bar() #Resort code 1 and holiday season code 2 is the good combination ###Output _____no_output_____ ###Markdown Can we group resorts by revenue ###Code #doubt g= df.pivot_table(index=['resort_type_code'],values=['amount_spent_per_room_night_scaled'],aggfunc='sum') g.sort_values(by=['amount_spent_per_room_night_scaled'],inplace=True,ascending=False) g plt.figure(figsize=(16, 6)) df.groupby(['resort_type_code'])['amount_spent_per_room_night_scaled'].sum().plot.bar() #yes.. resort code 1 has the highest revenue ###Output _____no_output_____
019_bayes.ipynb
###Markdown Naive Bayes (NB)Recall Bayes' Theorem from stats, based on the idea of conditional probability. Bayes' Theorem tells us that:It states, for two events A & B, if we know the conditional probability of B given A and the probability of B, then it’s possible to calculate the probability of B given A.$ P(y \mid x_1, \dots, x_n) = \frac{P(y) P(x_1, \dots, x_n \mid y)} {P(x_1, \dots, x_n)} $In stats we also looked at Bayesian Interference - where we built tables to update our probabilites as more data was learned. The Naive Bayes algorithm is just that, but on a larger scale. Each feature updates the probabilities just like in a simple Bayes' table calculation we did by hand. We can show an example:![Bayes 1](images/bayes1.png "Bayes 1" )Here is the table of all the features and outcomes, the training data. If we use this to create a model, and make a prediction, one sample looks like:![Bayes 2](images/bayes2.png "Bayes 2" )Easy, peasy!Bayes' is an algorithm which works well, accurately and quickly, but only in certain scenarios. The simplicity of the Bayes' Theorm based calcualtions have a few key notes: NB assumes all features are independent. If they are not, accuracy will suffer. In real data, that independance often doesn't exist. NB is generally quite fast. NB often is able to become relatively accurate from small training sets. NB runs into an issue with a value in the test data was not in the training data. Implementations work around this using Laplace smoothing - which just adds a constant (normal alpha) on the top and bottom of the probability equation.![Bayes 2](images/laplace.jpg "Bayes 2" ) NB probability estimates are not to be relied on, even if the classification is accurate. Now, Bayes is based on yes/no probabilites for a target outcome, and categorical features as the only inputs. Implementations of NB differ to handle these scenarios, sklearn has several. Two important ones are: Gaussian Naive Bayes - assumes numerical features are distributed along a normal distribution. This is very common as regular Bayes can't handle numerical features. Multinomial Naive Bayes - generates predictions into 3+ outcome classes. Bayes is commonly used for things like spam detection, where high speed yes/no classification is required. Laplace SmoothingOne critical issue with Bayes is a scenario where we get a feature value to predict that wan't in the training set. For example, what if we had a value for Windy that was "gale force" in something that we tried to predict. There would be no existing probability info for that, since it wasn't in the training data. This is known as the Zero Probability Problem. This is mitigated by something called Laplace Smoothing, which inserts a constant alpha (often/usually 1), on both the top and bottom of the probability calculations. This ensures that we don't encounter a scenario where we are dividing by 0, without substantially changing the probability calculations. Alpha is a hyperparameter that we can select, doing things like a grid search to find the best solution for our data. ![Laplace](images/laplace.png "Laplace" ) Bayes from ScratchWe can build a really simple implementation of Bayes. Our dataset is a bunch of simple categorical variables, the number of records is small, and our target is a boolean (yes/no). Great candidate. ###Code df = pd.read_csv("data/golf-dataset.csv") df.head() class MyNaiveBayes: """ Bayes Theorem: Likelihood * Class prior probability Posterior Probability = ------------------------------------- Predictor prior probability P(x|c) * p(c) P(c|x) = ------------------ P(x) """ def __init__(self): """ Attributes: likelihoods: Likelihood of each feature per class class_priors: Prior probabilities of classes pred_priors: Prior probabilities of features features: All features of dataset """ self.features = list self.likelihoods = {} self.class_priors = {} self.pred_priors = {} self.X_train = np.array self.y_train = np.array self.train_size = int self.num_feats = int def fit(self, X, y): self.features = list(X.columns) self.X_train = X self.y_train = y self.train_size = X.shape[0] self.num_feats = X.shape[1] for feature in self.features: self.likelihoods[feature] = {} self.pred_priors[feature] = {} for feat_val in np.unique(self.X_train[feature]): self.pred_priors[feature].update({feat_val: 0}) for outcome in np.unique(self.y_train): self.likelihoods[feature].update({feat_val+"_"+outcome:0}) self.class_priors.update({outcome: 0}) self._calc_class_prior() self._calc_likelihoods() self._calc_predictor_prior() def _calc_class_prior(self): """ P(c) - Prior Class Probability """ for outcome in np.unique(self.y_train): # Complete - Calculate class priors # Store in self.class_priors dictionary def _calc_likelihoods(self): """ P(x|c) - Likelihood """ for feature in self.features: for outcome in np.unique(self.y_train): # Complete - Calculate likelihoods # Store in self.likelihoods dictionary # Note: the likelihoods are stored for both yes and no in the format: feat_val + '_' + outcome # See sample output for example def _calc_predictor_prior(self): """ P(x) - Evidence """ for feature in self.features: # Caclulate priors for the predictors # Store in self.pred_priors # Probability of each outcome for each feature def predict(self, X): """ Calculates Posterior probability P(c|x) """ results = [] X = np.array(X) for query in X: probs_outcome = {} for outcome in np.unique(self.y_train): prior = self.class_priors[outcome] likelihood = 1 evidence = 1 for feat, feat_val in zip(self.features, query): likelihood *= self.likelihoods[feat][feat_val + '_' + outcome] evidence *= self.pred_priors[feat][feat_val] posterior = (likelihood * prior) / (evidence) probs_outcome[outcome] = posterior result = max(probs_outcome, key = lambda x: probs_outcome[x]) results.append(result) return np.array(results) y = df["Play Golf"] X = df.drop(columns={"Play Golf"}) X["Windy"] = X["Windy"].astype("str") nb_clf = MyNaiveBayes() nb_clf.fit(X, y) print(accuracy_score(y, nb_clf.predict(X))) # With Proper Data Prep - though the dataset is small, so this won't be the best example. #X_train, X_test, y_train, y_test = train_test_split(X, y) #nb_clf.fit(X_train, y_train) #nb_preds = nb_clf.predict(X_test) #print(accuracy_score(y_test, nb_preds)) ###Output _____no_output_____ ###Markdown Predict if we Should Golf on Some Random DaysCreate a dataframe with some days of weather and predict them. Note that the model (probably, unless you made it better) expects True/False to be strings, not booleans. Your dataframe should be in the same format as the feature set - X ###Code # Complete - add in a dataframe of days. # Predict if we should golf on those days. ###Output ['No' 'Yes'] ###Markdown SklearnOur Bayes works, but we can use sklearn for something that we are used to using, and is a bit more polished and better written. Multinomial NB is the default, it will work for both binary predictions, like we are doing, and multiple class predictions. Applying Bayes in code is similar to all the other algorithms. Here we'll encode the categories to make it work since the algorithm doesn't deal with strings, sklearn's implementation requires this, but it isn't inheirent to the algorithm. ###Code y = df["Play Golf"] X = df.drop(columns={"Play Golf"}) from sklearn.naive_bayes import MultinomialNB from sklearn.pipeline import Pipeline from sklearn.preprocessing import OneHotEncoder mnb = MultinomialNB() mnb_pipe = Pipeline([ ("encode", OneHotEncoder()), ("model", mnb) ]) mnb_pipe.fit(X, y) sk_preds = mnb_pipe.predict(X) accuracy_score(sk_preds, y) # Complete - predict our sample days using the sklearn model ###Output _____no_output_____ ###Markdown Gaussian BayesAs we noted, regular Naive Bayes doesn't deal with numbers, so we can used Gaussian Bayes to handle those scenarios. Every step of the algorithm just requires a probability that something will occur or not occur. With categorical variables that calculation is very simple - count the number of times that it happens and divide by the total. With numerical values there isn't a direct equivalent. Rather than looking at the probability that something happens or doesn't happen, Gaussian NB calculates the probability of being in class A or B according to a normal distribution of the numerical feature. Outside of the different calculations of probability, the rest of the algorithm works in the same way as before. ![GNB](images/gauss_dist.png "GNB" ) ###Code from sklearn.naive_bayes import GaussianNB df_gaus = pd.read_csv("data/diabetes.csv") df_gaus_y = df_gaus["Outcome"] df_gaus_X = df_gaus.drop(columns={"Outcome"}) df_gaus.head() ###Output _____no_output_____ ###Markdown DistributionsWe can make a plot as a shortcut to see the distributions of the numerical variables split by outcome class. If we look at the comparative distributions we can get a sense of the relative probabilities that are used in the calculations. For example, if we look at the Glucose feature. If we have an example with a glucose value of 100, the probability of that example being in class 0 is quite high, whereas the probability of it being in class 1 is low. If we have a sample that is 200, the probability of that being in class 1 is much higher. ###Code sns.kdeplot(data=df_gaus, x="Glucose", hue="Outcome") # Split data - this one has enough data to function properly X_train_gaus, X_test_gaus, y_train_gaus, y_test_gaus = train_test_split(df_gaus_X, df_gaus_y) # Model and predict gaus_NB = GaussianNB() gaus_NB.fit(X_train_gaus, y_train_gaus) gaus_preds = gaus_NB.predict(X_test_gaus) accuracy_score(y_test_gaus, gaus_preds) ###Output _____no_output_____ ###Markdown ScalingNote that because in Bayes the features are independent of each other, there is no interaction between them with respect to calculations. When the probabilities are calculated for each feature, they dont depend on any other features - contrasted with something like linear regresion, where m1*x1 + m2*x2... will. Because of this, Bayes is one of the few things where scaling doesn't matter, though it also doesn't hurt if it is in there. ###Code from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler pipe_gaus = Pipeline([ ("scale", StandardScaler()), ("model", GaussianNB()) ]) pipe_gaus.fit(X_train_gaus, y_train_gaus) pipe_gaus_preds = pipe_gaus.predict(X_test_gaus) accuracy_score(y_test_gaus, pipe_gaus_preds) ###Output _____no_output_____ ###Markdown ExercisePredict if people have heart disease with Gaussian NB. Note that we have mixed column types for features. ###Code heart = pd.read_csv("data/heart.csv") y_h = heart["HeartDisease"] X_h = heart.drop(columns={"HeartDisease"}) heart.head() # Complete - predict heart disease ###Output _____no_output_____ ###Markdown Naive Bayes (NB)Recall Bayes' Theorem from stats, based on the idea of conditional probability. Bayes' Theorem tells us that:It states, for two events A & B, if we know the conditional probability of B given A and the probability of B, then it’s possible to calculate the probability of B given A.$ P(y \mid x_1, \dots, x_n) = \frac{P(y) P(x_1, \dots, x_n \mid y)} {P(x_1, \dots, x_n)} $In stats we also looked at Bayesian Interference - where we built tables to update our probabilites as more data was learned. The Naive Bayes algorithm is just that, but on a larger scale. Each feature updates the probabilities just like in a simple Bayes' table calculation we did by hand. We can show an example:![Bayes 1](images/bayes1.png "Bayes 1" )Here is the table of all the features and outcomes, the training data. If we use this to create a model, and make a prediction, one sample looks like:![Bayes 2](images/bayes2.png "Bayes 2" )Easy, peasy!Bayes' is an algorithm which works well, accurately and quickly, but only in certain scenarios. The simplicity of the Bayes' Theorm based calcualtions have a few key notes: NB assumes all features are independent. If they are not, accuracy will suffer. In real data, that independance often doesn't exist. NB is generally quite fast. NB often is able to become relatively accurate from small training sets. NB runs into an issue with a value in the test data was not in the training data. Implementations work around this using Laplace smoothing - which just adds a constant (normal alpha) on the top and bottom of the probability equation.![Bayes 2](images/laplace.jpg "Bayes 2" ) NB probability estimates are not to be relied on, even if the classification is accurate. Now, Bayes is based on yes/no probabilites for a target outcome, and categorical features as the only inputs. Implementations of NB differ to handle these scenarios, sklearn has several. Two important ones are: Gaussian Naive Bayes - assumes numerical features are distributed along a normal distribution. This is very common as regular Bayes can't handle numerical features. Multinomial Naive Bayes - generates predictions into 3+ outcome classes. Bayes is commonly used for things like spam detection, where high speed yes/no classification is required. Laplace SmoothingOne critical issue with Bayes is a scenario where we get a feature value to predict that wan't in the training set. For example, what if we had a value for Windy that was "gale force" in something that we tried to predict. There would be no existing probability info for that, since it wasn't in the training data. This is known as the Zero Probability Problem. This is mitigated by something called Laplace Smoothing, which inserts a constant alpha (often/usually 1), on both the top and bottom of the probability calculations. This ensures that we don't encounter a scenario where we are dividing by 0, without substantially changing the probability calculations. Alpha is a hyperparameter that we can select, doing things like a grid search to find the best solution for our data. ![Laplace](images/laplace.png "Laplace" ) Bayes from ScratchWe can build a really simple implementation of Bayes. Our dataset is a bunch of simple categorical variables, the number of records is small, and our target is a boolean (yes/no). Great candidate. ###Code df = pd.read_csv("data/golf-dataset.csv") df.head() class MyNaiveBayes: """ Bayes Theorem: Likelihood * Class prior probability Posterior Probability = ------------------------------------- Predictor prior probability P(x|c) * p(c) P(c|x) = ------------------ P(x) """ def __init__(self): """ Attributes: likelihoods: Likelihood of each feature per class class_priors: Prior probabilities of classes pred_priors: Prior probabilities of features features: All features of dataset """ self.features = list self.likelihoods = {} self.class_priors = {} self.pred_priors = {} self.X_train = np.array self.y_train = np.array self.train_size = int self.num_feats = int def fit(self, X, y): self.features = list(X.columns) self.X_train = X self.y_train = y self.train_size = X.shape[0] self.num_feats = X.shape[1] for feature in self.features: self.likelihoods[feature] = {} self.pred_priors[feature] = {} for feat_val in np.unique(self.X_train[feature]): self.pred_priors[feature].update({feat_val: 0}) for outcome in np.unique(self.y_train): self.likelihoods[feature].update({feat_val+"_"+outcome:0}) self.class_priors.update({outcome: 0}) self._calc_class_prior() self._calc_likelihoods() self._calc_predictor_prior() def _calc_class_prior(self): """ P(c) - Prior Class Probability """ for outcome in np.unique(self.y_train): # Complete - Calculate class priors # Store in self.class_priors dictionary def _calc_likelihoods(self): """ P(x|c) - Likelihood """ for feature in self.features: for outcome in np.unique(self.y_train): # Complete - Calculate likelihoods # Store in self.likelihoods dictionary # Note: the likelihoods are stored for both yes and no in the format: feat_val + '_' + outcome # See sample output for example def _calc_predictor_prior(self): """ P(x) - Evidence """ for feature in self.features: # Caclulate priors for the predictors # Store in self.pred_priors # Probability of each outcome for each feature def predict(self, X): """ Calculates Posterior probability P(c|x) """ results = [] X = np.array(X) for query in X: probs_outcome = {} for outcome in np.unique(self.y_train): prior = self.class_priors[outcome] likelihood = 1 evidence = 1 for feat, feat_val in zip(self.features, query): likelihood *= self.likelihoods[feat][feat_val + '_' + outcome] evidence *= self.pred_priors[feat][feat_val] posterior = (likelihood * prior) / (evidence) probs_outcome[outcome] = posterior result = max(probs_outcome, key = lambda x: probs_outcome[x]) results.append(result) return np.array(results) y = df["Play Golf"] X = df.drop(columns={"Play Golf"}) X["Windy"] = X["Windy"].astype("str") nb_clf = MyNaiveBayes() nb_clf.fit(X, y) print(accuracy_score(y, nb_clf.predict(X))) # With Proper Data Prep - though the dataset is small, so this won't be the best example. #X_train, X_test, y_train, y_test = train_test_split(X, y) #nb_clf.fit(X_train, y_train) #nb_preds = nb_clf.predict(X_test) #print(accuracy_score(y_test, nb_preds)) ###Output _____no_output_____ ###Markdown Predict if we Should Golf on Some Random DaysCreate a dataframe with some days of weather and predict them. Note that the model (probably, unless you made it better) expects True/False to be strings, not booleans. Your dataframe should be in the same format as the feature set - X ###Code # Complete - add in a dataframe of days. # Predict if we should golf on those days. ###Output ['No' 'Yes'] ###Markdown SklearnOur Bayes works, but we can use sklearn for something that we are used to using, and is a bit more polished and better written. Multinomial NB is the default, it will work for both binary predictions, like we are doing, and multiple class predictions. Applying Bayes in code is similar to all the other algorithms. Here we'll encode the categories to make it work since the algorithm doesn't deal with strings, sklearn's implementation requires this, but it isn't inheirent to the algorithm. ###Code y = df["Play Golf"] X = df.drop(columns={"Play Golf"}) from sklearn.naive_bayes import MultinomialNB from sklearn.pipeline import Pipeline from sklearn.preprocessing import OneHotEncoder mnb = MultinomialNB() mnb_pipe = Pipeline([ ("encode", OneHotEncoder()), ("model", mnb) ]) mnb_pipe.fit(X, y) sk_preds = mnb_pipe.predict(X) accuracy_score(sk_preds, y) # Complete - predict our sample days using the sklearn model ###Output _____no_output_____ ###Markdown Gaussian BayesAs we noted, regular Naive Bayes doesn't deal with numbers, so we can used Gaussian Bayes to handle those scenarios. Every step of the algorithm just requires a probability that something will occur or not occur. With categorical variables that calculation is very simple - count the number of times that it happens and divide by the total. With numerical values there isn't a direct equivalent. Rather than looking at the probability that something happens or doesn't happen, Gaussian NB calculates the probability of being in class A or B according to a normal distribution of the numerical feature. Outside of the different calculations of probability, the rest of the algorithm works in the same way as before. ![GNB](images/gauss_dist.png "GNB" ) ###Code from sklearn.naive_bayes import GaussianNB df_gaus = pd.read_csv("data/diabetes.csv") df_gaus_y = df_gaus["Outcome"] df_gaus_X = df_gaus.drop(columns={"Outcome"}) df_gaus.head() ###Output _____no_output_____ ###Markdown DistributionsWe can make a plot as a shortcut to see the distributions of the numerical variables split by outcome class. If we look at the comparative distributions we can get a sense of the relative probabilities that are used in the calculations. For example, if we look at the Glucose feature. If we have an example with a glucose value of 100, the probability of that example being in class 0 is quite high, whereas the probability of it being in class 1 is low. If we have a sample that is 200, the probability of that being in class 1 is much higher. ###Code sns.kdeplot(data=df_gaus, x="Glucose", hue="Outcome") # Split data - this one has enough data to function properly X_train_gaus, X_test_gaus, y_train_gaus, y_test_gaus = train_test_split(df_gaus_X, df_gaus_y) # Model and predict gaus_NB = GaussianNB() gaus_NB.fit(X_train_gaus, y_train_gaus) gaus_preds = gaus_NB.predict(X_test_gaus) accuracy_score(y_test_gaus, gaus_preds) ###Output _____no_output_____ ###Markdown ScalingNote that because in Bayes the features are independent of each other, there is no interaction between them with respect to calculations. When the probabilities are calculated for each feature, they dont depend on any other features - contrasted with something like linear regresion, where m1*x1 + m2*x2... will. Because of this, Bayes is one of the few things where scaling doesn't matter, though it also doesn't hurt if it is in there. ###Code from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler pipe_gaus = Pipeline([ ("scale", StandardScaler()), ("model", GaussianNB()) ]) pipe_gaus.fit(X_train_gaus, y_train_gaus) pipe_gaus_preds = pipe_gaus.predict(X_test_gaus) accuracy_score(y_test_gaus, pipe_gaus_preds) ###Output _____no_output_____ ###Markdown ExercisePredict if people have heart disease with Gaussian NB. Note that we have mixed column types for features. ###Code heart = pd.read_csv("data/heart.csv") y_h = heart["HeartDisease"] X_h = heart.drop(columns={"HeartDisease"}) heart.head() # Complete - predict heart disease ###Output _____no_output_____
Week-10_Machine-Learning-2.ipynb
###Markdown *Unsupervised learning: Latent Dirichlet allocation (LDA) topic modeling* ###Code ## Install Python package for LDA # http://pythonhosted.org/lda/getting_started.html !pip3 install lda ## Importing basic packages import os import numpy as np os.chdir('/sharedfolder/') !wget https://github.com/pcda17/pcda17.github.io/raw/master/week/10/nyt_articles_11-9-2017.zip !unzip nyt_articles_11-9-2017.zip os.chdir('/sharedfolder/nyt_articles_11-9-2017/') document_list = [] for filename in [item for item in os.listdir('./') if '.txt' in item]: text_data = open(filename).read() document_list.append(text_data) ## Importing NLTK stop words from nltk.tokenize import word_tokenize from nltk.corpus import stopwords import string stop_words = stopwords.words('english') + ["'s", "'re", '”', '“', '’', '—'] + list(string.punctuation) string.punctuation ## Tokenizing and removing stop words from our list of documents documents_filtered = [] for document in document_list: token_list = word_tokenize(document.lower()) tokens_filtered = [item for item in token_list if (item not in stop_words)] documents_filtered.append(' '.join(tokens_filtered)) ## Viewing a preprocessed document documents_filtered[30] ## Vectorizing preprocessed essays from sklearn.feature_extraction.text import CountVectorizer vectorizer = CountVectorizer() X = vectorizer.fit_transform(documents_filtered) ## Creating a vocabulary list corresponding to the vectors we created above vocabulary = vectorizer.get_feature_names() vocabulary[1140:1160] ## Initializing an LDA model: 10 topics and 1500 iterations import lda model = lda.LDA(n_topics=10, n_iter=1500, random_state=1) ## Fitting the model using our list of vectors model.fit(X) ## Viewing the top 50 words in each 'topic' topic_word = model.topic_word_ n_top_words = 100 for i, topic_distribution in enumerate(topic_word): topic_words = np.array(vocabulary)[np.argsort(topic_distribution)][:-(n_top_words+1):-1] print('Topic ' + str(i) + ':') print(' '.join(topic_words)) print() ###Output Topic 0: like one people time many even years would new get way first still much back could make work world also want know say two long think well day part go need see something going called another around good made us right take photo reading life might really come last better every never though story often far things little three look less thought set put best find end away told help old got took days yet later without thing hard asked trying enough feel ago known point play whose others months use came found line home big great among went night Topic 1: food art fashion image wine red white cooking style made advertisement like continue club york restaurant thanksgiving main credit recipe look museum wines france though de new dinner chocolate table johnson flavors chef clothing styles chicken plastic bar photo butter van meal shop design paris french tables finger 2015 beer coffee best lakes arnold black fat collection taste menu eat cabernet daniel brand designer color meat chimps favorite fish sea instagram artist guests franc rice and beautiful fresh light shopping nyt dogs animals fruit ice vegetables luxury leaves fine store japanese warm herbs brown recipes tradition sausage dark translation fruits Topic 2: said tax percent would company year million continue bill game business last companies could team plan 000 billion advertisement income money main reading pay season financial may players league 20 taxes 10 big national story group six investment deal federal also according firm states fund sales 100 pass major executive high cost expected interest soccer week rate former family top potential least growth foreign record halladay 40 games since win current united workers investors market plans points effort businesses 12 management manager role director industry quarter increase interview silver value term middle benefits 25 chief government president investments sosa able Topic 3: said dr people reading continue report university school main climate states story also advertisement college state students health may percent risk according law women year found violence cancer study americans medical mass heart gun research children evidence court student military united female family parents care change patients colleges case transgender department crime 000 2015 agency federal used air studies group among must high death drug attack drugs police hospital athletes deaths officer problem body national system says gender whether published members doctors researchers texas defense died community american families small admissions failure men rule prosecutors general kelley reported patient abortion Topic 4: cars car driving self tesla company 17 vehicles technology autonomous ford could 16 future human companies vehicle reality system tech says industry bitcoin would traffic year become model driver world uber software drivers drive road valley create space research might wall start political transportation musk systems ride network real machine electric safety city silicon design urban data 20 engineers already cost 40 may power battery problem virtual cities possible change miller chief size fully executive automated market overall use sharing lyft infrastructure models v2v stop augmented going waymo spare price border lot driverless miles customers tools production 30 automakers based Topic 5: said city two street new real park travel ms room estate island home year million building east house apartment three space 000 st photo west school hotel main bedroom neighborhood square five one water beach town place living community percent village also advertisement residents manhattan local high foot bay avenue trip area side reading day story price brooklyn open four com beyond group train puerto property residential long homes public center market including air rooms near window south family half travelers according tour covering spaces another trips co prices private years hurricane nearby find 30 restaurants houses winter boroughs rico Topic 6: mr trump president said state democrats china party republican states government american united house election chinese officials would political democratic republicans former wednesday tuesday country campaign virginia mayor main year white continue xi administration voters also obama last ms city since america saudi senate two department 2016 photo north candidates office story justice power washington first conservative war deal issues local donald trade control senator candidate peace vote public leaders news nuclear russia majority politics district national anti congress results run clinton burleigh race advertisement mrs european victory rights council county global term twitter committee elected change law care efforts Topic 7: mr said ms photo women family mother children film also wrote story year movie wanted kind men woman music child old star told first advertisement character love moment hop says never life hip always young hamill book shooting man brother artists main school father video show continue church person felt gerwig husband theater lady became fans read knew john black parents wilson tv director friend played daughter son white friends camp wearing sexual hair bird girl words ever moved janelle cast sometimes face fun kids characters saying scene female loved wife griffin death images came wars books sister swift recalled Topic 8: new please times york sign newsletter said continue main story reading special updates try must receive newsletters email later enter re box robot subscribe occurred view thank offers agree select address error occasional clicking verify subscribing invalid products services advertisement mr would week news get credit today could every office op including around board de next already person call opinion start editorial latest see commentary contributing earlier weekday columnists writers provoking 30 apple ed 2014 face offering development 2013 forces south rules month key bit comment stop religious rose close sample period required london comes read association program keep size Topic 9: new york times information may services use facebook com nytimes email us access time third image including account ads service digital personal please see credit order users nyt online content products policy media share subscription ad company google michaels based page help made apps travel terms advertising free used product party process parties cuba one address also purchase take via certain algorithm review home social news using provide contact user data site rosen technology without privacy ito send app article public delivery tripadvisor questions required print reviews well choose make submit right changes law offer version mobile hubble youtube twitter ###Markdown ▷Assignment Modify the code above: Apply a stemming step to each word before vectorizing the text. See example stemming code in the following cell. ###Code ## Stemming example from nltk.stem.porter import PorterStemmer stemmer = PorterStemmer() print(stemmer.stem('nature')) print(stemmer.stem('natural')) print(stemmer.stem('naturalism')) ###Output _____no_output_____ ###Markdown *Supervised learning: Naive Bayes classification* ###Code ## Download sample text corpora from GitHub, then unzip. os.chdir('/sharedfolder/') ## Uncomment the lines below if you need to re-download test corpora we used last week. #!wget -N https://github.com/pcda17/pcda17.github.io/blob/master/week/8/Sample_corpora.zip?raw=true -O Sample_corpora.zip #!unzip -o Sample_corpora.zip os.chdir('/sharedfolder/Sample_corpora') os.listdir('./') ## Loading Melville novels os.chdir('/sharedfolder/Sample_corpora/Herman_Melville/') melville_texts = [] for filename in os.listdir('./'): text_data = open(filename).read().replace('\n', ' ') melville_texts.append(text_data) print(len(melville_texts)) ## Loading Austen novels os.chdir('/sharedfolder/Sample_corpora/Jane_Austen/') austen_texts = [] for filename in os.listdir('./'): text_data = open(filename).read().replace('\n', ' ') austen_texts.append(text_data) print(len(austen_texts)) ## Removing the last novel from each list so we can use it to test our classifier melville_train_texts = melville_texts[:-1] austen_train_texts = austen_texts[:-1] melville_test_text = melville_texts[-1] austen_test_text = austen_texts[-1] ## Creating a master list of Melville sentences from nltk.tokenize import sent_tokenize melville_combined_texts = ' '.join(melville_train_texts) melville_sentences = sent_tokenize(melville_combined_texts) print(len(melville_sentences)) melville_sentences[9999] ## Extracting 2000 Melville sentences at random for use as a training set import random melville_train_sentences = random.sample(melville_sentences, 2000) ## Creating a list of Melville sentences for our test set melville_test_sentences = sent_tokenize(melville_test_text) print(len(melville_test_sentences)) melville_test_sentences[997] ## Creating a master list of Austen sentences austen_combined_texts = ' '.join(austen_train_texts) austen_sentences = sent_tokenize(austen_combined_texts) print(len(austen_sentences)) austen_sentences[8979] ## Extracting 2000 Austen sentences at random for use as a training set austen_train_sentences = random.sample(austen_sentences, 2000) ## Creating a list of Austen sentences for our test set austen_test_sentences = sent_tokenize(austen_test_text) print(len(austen_test_sentences)) austen_test_sentences[1000] ## Combing training data combined_texts = melville_train_sentences + austen_train_sentences ## Creating list of associated class values: ## 0 for Melville, 1 for Austen y = [0]*len(melville_train_sentences) + [1]*len(austen_train_sentences) ## Creating vectorized training set using our combined sentence list from sklearn.feature_extraction.text import CountVectorizer vectorizer = CountVectorizer() X = vectorizer.fit_transform(combined_texts).toarray() X.shape ## Training a multinomial naive Bayes classifier ## X is a combined list of Melville and Austen sentences (2000 sentences from each) ## y is a list of classes (0 or 1) from sklearn.naive_bayes import MultinomialNB classifier = MultinomialNB().fit(X, y) ## Classifying 5 sentences in our Austen test set # Recall that 0 means Melville & 1 means Austen from pprint import pprint input_sentences = austen_test_sentences[3000:3005] input_vector = vectorizer.transform(input_sentences) ## Converting a list of string to the same ## vector format we used for our training set. pprint(austen_test_sentences[3000:3005]) classifier.predict(input_vector) ## Classifying 5 sentences in our Melville test set input_sentences = melville_test_sentences[3000:3005] input_vector = vectorizer.transform(input_sentences) pprint(melville_test_sentences[3000:3005]) classifier.predict(input_vector) ###Output _____no_output_____
Recommendation System/Collaborative Filtering Based Recommendation/.ipynb_checkpoints/Collaborative Based Recommendation-checkpoint.ipynb
###Markdown Recommendation Based on Rating Count ###Code high_rated_books = pd.DataFrame(ratings_df.groupby('ISBN')['book_rating'].count().sort_values(ascending=False)) high_rated_books.columns=['rating_count'] high_rated_books.head() mean_of_books = pd.DataFrame(ratings_df.groupby('ISBN')['book_rating'].mean()) mean_of_books.columns=['mean_rating'] books_mean_rating_count = pd.merge(high_rated_books,mean_of_books,on='ISBN') books_mean_rating_count.head() # We can see that books have high rating Count but the average/mean rating is very poor. ###Output _____no_output_____ ###Markdown Users with less than 200 ratings, and books with less than 100 ratings are excluded. ###Code user_count = ratings_df['userId'].value_counts() ratings_df = ratings_df[ratings_df['userId'].isin(user_count[user_count>=200].index)] rating_count = ratings_df['book_rating'].value_counts() ratings_df = ratings_df[ratings_df['book_rating'].isin(rating_count[rating_count>=100].index)] ###Output _____no_output_____ ###Markdown Collaborative Filtering Using KNN ###Code combined_book_rating_df = pd.merge(ratings_df,books_df,on='ISBN') combined_book_rating_df.drop(['author','year_of_pubs','publisher','imageUrlS','imageUrlM','imageUrlL'],inplace=True,axis=1) combined_book_rating_df.head() book_rating_count = pd.DataFrame(combined_book_rating_df.groupby('title')['book_rating'].count()) book_rating_count.rename(columns={'book_rating':'rating_count'},inplace=True) book_rating_count.head() rating_plus_combined = pd.merge(combined_book_rating_df,book_rating_count,on='title') rating_plus_combined.head() # let us consider a thresold value thresold_value = 50 rating_popular_book = rating_plus_combined.query('rating_count >= @thresold_value') rating_popular_book.head() rating_popular_book.shape ###Output _____no_output_____ ###Markdown Filter to users in US and Canada Only ###Code merged_df = pd.merge(rating_popular_book,users_df,on='userId') merged_df.drop('age',axis=1,inplace=True) merged_df.head() us_canada_rating = merged_df[merged_df['location'].str.contains('usa|canada')] us_canada_rating.head() from scipy.sparse import csr_matrix us_canada_rating = us_canada_rating.drop_duplicates(['userId','title']) us_canada_rating_ptable = us_canada_rating.pivot(index='title',columns='userId',values='book_rating').fillna(0) us_canada_rating_ptable.head() us_canada_rating_matrix = csr_matrix(us_canada_rating_ptable.values) us_canada_rating_matrix # Here the KNN model used is an Unsupervised Model. It is different from the Classification Model. from sklearn.neighbors import NearestNeighbors knn_model = NearestNeighbors(metric='cosine',algorithm='brute') knn_model.fit(us_canada_rating_matrix) fetch_index = 655#np.random.choice(us_canada_rating_ptable.shape[0]) print(fetch_index) distances, indices = knn_model.kneighbors(us_canada_rating_ptable.iloc[fetch_index,:].values.reshape(1,-1),n_neighbors=6) us_canada_rating_ptable.index[fetch_index] for i in range(0,len(distances.flatten())): if i == 0: print("Recommendation for {}".format(us_canada_rating_ptable.index[fetch_index])) else: print('{index}:{book}, with distance {distances}'.format(index = i,book = us_canada_rating_ptable.index[indices.flatten()[i]], distances = distances.flatten()[i])) ###Output Recommendation for The Summerhouse 1:Miss Julia Speaks Her Mind : A Novel, with distance 0.7319015561178213 2:Dream Country, with distance 0.7388349914155329 3:Unspeakable, with distance 0.7415487922518107 4:The Smoke Jumper, with distance 0.779693788214397 5:Irish Hearts, with distance 0.7833773016226391
ME3_NativeBayes/NaiveBayes.ipynb
###Markdown ME3 A simple classification task with Naive Bayes classifier & ROC curve Team Members-Kevin Khong-Wesley Wong SetupFirst, let's import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures. We also check that Python 3.5 or later is installed (although Python 2.x may work, it is deprecated so we strongly recommend you use Python 3 instead), as well as Scikit-Learn ≥0.20. ###Code %matplotlib notebook # Python ≥3.5 is required import sys assert sys.version_info >= (3, 5) # Scikit-Learn ≥0.20 is required import sklearn assert sklearn.__version__ >= "0.20" # Common imports import numpy as np import pandas as pd import seaborn as sn import os from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report from sklearn.model_selection import train_test_split from sklearn.datasets import make_classification, make_blobs from matplotlib.colors import ListedColormap from sklearn.datasets import load_breast_cancer # To plot pretty figures %matplotlib inline import matplotlib as mpl import matplotlib.pyplot as plt mpl.rc('axes', labelsize=14) mpl.rc('xtick', labelsize=12) mpl.rc('ytick', labelsize=12) # to make this notebook's output stable across runs np.random.seed(42) # Where to save the figures PROJECT_ROOT_DIR = "." CHAPTER_ID = 'Naive Bayesian' IMAGES_PATH = os.path.join(PROJECT_ROOT_DIR, "images", CHAPTER_ID) os.makedirs(IMAGES_PATH, exist_ok=True) def save_fig(fig_id, tight_layout=True, fig_extension="png", resolution=300): path = os.path.join(IMAGES_PATH, fig_id + "." + fig_extension) print("Saving figure", fig_id) if tight_layout: plt.tight_layout() plt.savefig(path, format=fig_extension, dpi=resolution) #pip install -U scikit-learn ###Output _____no_output_____ ###Markdown Part 0:Read and run each cell of the example. Confusion matrix - simple example 1A simple example shows what confusion matrix represents.This example includes two class labels, 0 and 1. ###Code y_true1 = [1, 0, 0, 1, 1, 0, 1, 1, 0] y_pred1 = [1, 1, 0, 1, 1, 0, 1, 1, 1] confusion_mat1 = confusion_matrix(y_true1, y_pred1) print(confusion_mat1) # Print classification report target_names1 = ['Class-0', 'Class-1'] result_metrics1 = classification_report(y_true1, y_pred1, target_names=target_names1) print(result_metrics1) # We can also retrieve a dictionary of metrics and access the values using dictionary result_metrics_dict1 = classification_report(y_true1, y_pred1, target_names=target_names1, output_dict=True) print(result_metrics_dict1) ###Output precision recall f1-score support Class-0 1.00 0.50 0.67 4 Class-1 0.71 1.00 0.83 5 accuracy 0.78 9 macro avg 0.86 0.75 0.75 9 weighted avg 0.84 0.78 0.76 9 {'Class-0': {'precision': 1.0, 'recall': 0.5, 'f1-score': 0.6666666666666666, 'support': 4}, 'Class-1': {'precision': 0.7142857142857143, 'recall': 1.0, 'f1-score': 0.8333333333333333, 'support': 5}, 'accuracy': 0.7777777777777778, 'macro avg': {'precision': 0.8571428571428572, 'recall': 0.75, 'f1-score': 0.75, 'support': 9}, 'weighted avg': {'precision': 0.8412698412698413, 'recall': 0.7777777777777778, 'f1-score': 0.7592592592592591, 'support': 9}} ###Markdown Confusion matrix - simple example 2A simple example shows what confusion matrix represents. This example includes four class labels, 0, 1, 2 and 3. ###Code y_true2 = [1, 0, 0, 2, 1, 0, 3, 3, 3] y_pred2 = [1, 1, 0, 2, 1, 0, 1, 3, 3] confusion_mat2 = confusion_matrix(y_true2, y_pred2) print(confusion_mat2) target_names2 = ['Class-0', 'Class-1', 'Class-2', 'Class-3'] result_metrics2 = classification_report(y_true2, y_pred2, target_names=target_names2) print(result_metrics2) # We can also retrieve a dictionary of metrics and access the values using dictionary result_metrics_dict2 = classification_report(y_true2, y_pred2, target_names=target_names2, output_dict=True) print(result_metrics_dict2) ###Output precision recall f1-score support Class-0 1.00 0.67 0.80 3 Class-1 0.50 1.00 0.67 2 Class-2 1.00 1.00 1.00 1 Class-3 1.00 0.67 0.80 3 accuracy 0.78 9 macro avg 0.88 0.83 0.82 9 weighted avg 0.89 0.78 0.79 9 {'Class-0': {'precision': 1.0, 'recall': 0.6666666666666666, 'f1-score': 0.8, 'support': 3}, 'Class-1': {'precision': 0.5, 'recall': 1.0, 'f1-score': 0.6666666666666666, 'support': 2}, 'Class-2': {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 1}, 'Class-3': {'precision': 1.0, 'recall': 0.6666666666666666, 'f1-score': 0.8, 'support': 3}, 'accuracy': 0.7777777777777778, 'macro avg': {'precision': 0.875, 'recall': 0.8333333333333333, 'f1-score': 0.8166666666666667, 'support': 9}, 'weighted avg': {'precision': 0.8888888888888888, 'recall': 0.7777777777777778, 'f1-score': 0.7925925925925926, 'support': 9}} ###Markdown Naive Bayes Classifiers- Read Naive Bayes classifier in Python:https://scikit-learn.org/stable/modules/naive_bayes.html- Check out the difference between model parameters and hyper parameters:https://towardsdatascience.com/model-parameters-and-hyperparameters-in-machine-learning-what-is-the-difference-702d30970f6 1. Sythetic Datasets ###Code # synthetic dataset for classification (binary) cmap_bold = ListedColormap(['#FFFF00', '#00FF00', '#0000FF','#000000']) plt.figure() plt.title('Sample binary classification problem with two informative features') # generate X values and y values (labels) X, y = make_classification(n_samples = 100, n_features=2, n_redundant=0, n_informative=2, n_clusters_per_class=1, flip_y = 0.1, class_sep = 0.5, random_state=0) # plot the data plt.scatter(X[:, 0], X[:, 1], marker= 'o', c=y, s=50, cmap=cmap_bold) plt.show() ###Output _____no_output_____ ###Markdown Naive Bayes classifier 1 Split the data to training data and test data ###Code from sklearn.naive_bayes import GaussianNB # split the data into training data and testing data X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) ###Output _____no_output_____ ###Markdown Training: Develop a model using training data ###Code # create a Naive Bayes classifier using the training data nbclf = GaussianNB() nbclf.fit(X_train, y_train) ###Output _____no_output_____ ###Markdown Testing: evaluate the model using testing data ###Code # predict class labels on test data y_pred = nbclf.predict(X_test) ###Output _____no_output_____ ###Markdown Model Evaluation ###Code # plot a confusion matrix confusion_mat = confusion_matrix(y_test, y_pred) print(confusion_mat) # Print classification report target_names = ['Class 0', 'Class 1'] result_metrics = classification_report(y_test, y_pred, target_names=target_names) print(result_metrics) # The average accuracy of the model on test data. This is the value of macro avg in results nbclf.score(X_test, y_test) from adspy_shared_utilities import plot_class_regions_for_classifier # This shows the boundaries of classified regions # build a NB model using training data and display the classified region plot_class_regions_for_classifier(nbclf, X_train, y_train, X_test, y_test, 'Gaussian Naive Bayes classifier: Dataset 1') ###Output _____no_output_____ ###Markdown ROC Curve ###Code from sklearn.metrics import roc_curve, auc y_score = nbclf.predict_proba(X_test) false_positive_rate, true_positive_rate, thresholds = roc_curve(y_test, y_score[:,1]) roc_auc = auc(false_positive_rate, true_positive_rate) print('Accuracy = ', roc_auc) # Plotting plt.title('ROC') plt.plot(false_positive_rate, true_positive_rate, label=('Accuracy = %0.2f'%roc_auc)) plt.legend(loc='lower right', prop={'size':8}) plt.plot([0,1],[0,1], color='lightgrey', linestyle='--') plt.xlim([-0.05,1.0]) plt.ylim([0.0,1.05]) plt.ylabel('True Positive Rate') plt.xlabel('False Positive Rate') plt.show() ###Output Accuracy = 0.8600000000000001 ###Markdown 2. Application to a real-world dataset- Breast Cancer dataset: one of the well-known datasets used in ML. ###Code # Breast cancer dataset for classification cancer = load_breast_cancer() (X_cancer, y_cancer) = load_breast_cancer(return_X_y = True, as_frame=False) print(X_cancer) # Print class labels target_names = cancer.target_names target_names ###Output _____no_output_____ ###Markdown Modeling through k-Cross Validation- Create 10 folds for training and testing.- Evaluate model performance for each iteration and obtain the average. ###Code from sklearn.model_selection import KFold # We start with k=3 and will increase it to 10. kf = KFold(n_splits=3, random_state=None, shuffle=True) # Define the split - into 10 folds kf.get_n_splits(X) # returns the number of splitting iterations in the cross-validator print (kf) ###Output KFold(n_splits=3, random_state=None, shuffle=True) ###Markdown Apply k-Cross Validation ###Code nbclf = GaussianNB() for train_index, test_index in kf.split(X_cancer): # for each iteration, get training data and test data X_train, X_test = X_cancer[train_index], X_cancer[test_index] y_train, y_test = y_cancer[train_index], y_cancer[test_index] # train the model using training data nbclf.fit(X_train, y_train) # show how model performs with training data and test data print('Accuracy of GaussianNB classifier on training set: {:.2f}' .format(nbclf.score(X_train, y_train))) print('Accuracy of GaussianNB classifier on test set: {:.2f}' .format(nbclf.score(X_test, y_test))) ###Output Accuracy of GaussianNB classifier on training set: 0.94 Accuracy of GaussianNB classifier on test set: 0.94 Accuracy of GaussianNB classifier on training set: 0.93 Accuracy of GaussianNB classifier on test set: 0.95 Accuracy of GaussianNB classifier on training set: 0.96 Accuracy of GaussianNB classifier on test set: 0.92 ###Markdown Model performance uisng k-Cross Validation ###Code nbclf2 = GaussianNB() # !!!!! Please make a summary of the model performance (averaging k folds' results) using result_metrics_dict for train_index, test_index in kf.split(X_cancer): # for each iteration, get training data and test data X_train, X_test = X_cancer[train_index], X_cancer[test_index] y_train, y_test = y_cancer[train_index], y_cancer[test_index] # train the model using training data nbclf2.fit(X_train, y_train) # predict y values using test data y_pred = nbclf2.predict(X_test) confusion_mat = confusion_matrix(y_test, y_pred) print(confusion_mat) print(classification_report(y_test, y_pred, target_names=target_names)) # Since we can retrieve a dictionary of metrics and access the values using dictionary, # now we can sum of the results of each iteration and get the average result_metrics_dict = classification_report(y_test, y_pred, target_names=target_names, output_dict=True) print(result_metrics_dict) ###Output [[ 58 9] [ 4 119]] precision recall f1-score support malignant 0.94 0.87 0.90 67 benign 0.93 0.97 0.95 123 accuracy 0.93 190 macro avg 0.93 0.92 0.92 190 weighted avg 0.93 0.93 0.93 190 {'malignant': {'precision': 0.9354838709677419, 'recall': 0.8656716417910447, 'f1-score': 0.8992248062015503, 'support': 67}, 'benign': {'precision': 0.9296875, 'recall': 0.967479674796748, 'f1-score': 0.9482071713147411, 'support': 123}, 'accuracy': 0.9315789473684211, 'macro avg': {'precision': 0.932585685483871, 'recall': 0.9165756582938964, 'f1-score': 0.9237159887581456, 'support': 190}, 'weighted avg': {'precision': 0.9317314834465196, 'recall': 0.9315789473684211, 'f1-score': 0.9309344425643001, 'support': 190}} [[ 59 8] [ 2 121]] precision recall f1-score support malignant 0.97 0.88 0.92 67 benign 0.94 0.98 0.96 123 accuracy 0.95 190 macro avg 0.95 0.93 0.94 190 weighted avg 0.95 0.95 0.95 190 {'malignant': {'precision': 0.9672131147540983, 'recall': 0.8805970149253731, 'f1-score': 0.9218749999999999, 'support': 67}, 'benign': {'precision': 0.937984496124031, 'recall': 0.983739837398374, 'f1-score': 0.9603174603174603, 'support': 123}, 'accuracy': 0.9473684210526315, 'macro avg': {'precision': 0.9525988054390646, 'recall': 0.9321684261618736, 'f1-score': 0.9410962301587301, 'support': 190}, 'weighted avg': {'precision': 0.9482914300620021, 'recall': 0.9473684210526315, 'f1-score': 0.9467614348370927, 'support': 190}} [[ 72 6] [ 6 105]] precision recall f1-score support malignant 0.92 0.92 0.92 78 benign 0.95 0.95 0.95 111 accuracy 0.94 189 macro avg 0.93 0.93 0.93 189 weighted avg 0.94 0.94 0.94 189 {'malignant': {'precision': 0.9230769230769231, 'recall': 0.9230769230769231, 'f1-score': 0.9230769230769231, 'support': 78}, 'benign': {'precision': 0.9459459459459459, 'recall': 0.9459459459459459, 'f1-score': 0.9459459459459459, 'support': 111}, 'accuracy': 0.9365079365079365, 'macro avg': {'precision': 0.9345114345114345, 'recall': 0.9345114345114345, 'f1-score': 0.9345114345114345, 'support': 189}, 'weighted avg': {'precision': 0.9365079365079365, 'recall': 0.9365079365079365, 'f1-score': 0.9365079365079365, 'support': 189}} ###Markdown ROC CurveThe example shows a ROC curve using training data and test data for one time. This can be done in k-Cross Validation. ###Code from sklearn.metrics import roc_curve, auc X_train, X_test, y_train, y_test = train_test_split(X_cancer, y_cancer, random_state = 0) y_score = nbclf2.predict_proba(X_test) false_positive_rate, true_positive_rate, thresholds = roc_curve(y_test, y_score[:,1]) roc_auc = auc(false_positive_rate, true_positive_rate) print('Accuracy = ', roc_auc) # Plotting plt.title('ROC') plt.plot(false_positive_rate, true_positive_rate, label=('Accuracy = %0.2f'%roc_auc)) plt.legend(loc='lower right', prop={'size':8}) plt.plot([0,1],[0,1], color='lightgrey', linestyle='--') plt.xlim([-0.05,1.0]) plt.ylim([0.0,1.05]) plt.ylabel('True Positive Rate') plt.xlabel('False Positive Rate') plt.show() ###Output Accuracy = 0.9907756813417191 ###Markdown ME3 Part 1 Build Naive Bayes classifiers on a well-known dataset, iris dataset. You are asked to build NB classifiers on two different datasets: (1) the original dataset (the data is not normalized) and (2) the normalized dataset. Use k-cross validation to evaluate the model performance. ###Code from IPython.display import Image Image("images/iris.png") ###Output _____no_output_____ ###Markdown Dataset 1: irisObtain the data through either (1) or (2). - (1) You can read the data from sklearn.datasets using load_iris()- (2) you can directly read the data from a local file: iris.csv is stored in a folder "data"Run one of the two. (1) Obtain the data from sklearn.datsets ###Code from sklearn.datasets import load_iris iris = load_iris() X = iris.data # petal length and width y = iris.target print(iris.target_names) print(X) print(y) ###Output ['setosa' 'versicolor' 'virginica'] [[5.1 3.5 1.4 0.2] [4.9 3. 1.4 0.2] [4.7 3.2 1.3 0.2] [4.6 3.1 1.5 0.2] [5. 3.6 1.4 0.2] [5.4 3.9 1.7 0.4] [4.6 3.4 1.4 0.3] [5. 3.4 1.5 0.2] [4.4 2.9 1.4 0.2] [4.9 3.1 1.5 0.1] [5.4 3.7 1.5 0.2] [4.8 3.4 1.6 0.2] [4.8 3. 1.4 0.1] [4.3 3. 1.1 0.1] [5.8 4. 1.2 0.2] [5.7 4.4 1.5 0.4] [5.4 3.9 1.3 0.4] [5.1 3.5 1.4 0.3] [5.7 3.8 1.7 0.3] [5.1 3.8 1.5 0.3] [5.4 3.4 1.7 0.2] [5.1 3.7 1.5 0.4] [4.6 3.6 1. 0.2] [5.1 3.3 1.7 0.5] [4.8 3.4 1.9 0.2] [5. 3. 1.6 0.2] [5. 3.4 1.6 0.4] [5.2 3.5 1.5 0.2] [5.2 3.4 1.4 0.2] [4.7 3.2 1.6 0.2] [4.8 3.1 1.6 0.2] [5.4 3.4 1.5 0.4] [5.2 4.1 1.5 0.1] [5.5 4.2 1.4 0.2] [4.9 3.1 1.5 0.2] [5. 3.2 1.2 0.2] [5.5 3.5 1.3 0.2] [4.9 3.6 1.4 0.1] [4.4 3. 1.3 0.2] [5.1 3.4 1.5 0.2] [5. 3.5 1.3 0.3] [4.5 2.3 1.3 0.3] [4.4 3.2 1.3 0.2] [5. 3.5 1.6 0.6] [5.1 3.8 1.9 0.4] [4.8 3. 1.4 0.3] [5.1 3.8 1.6 0.2] [4.6 3.2 1.4 0.2] [5.3 3.7 1.5 0.2] [5. 3.3 1.4 0.2] [7. 3.2 4.7 1.4] [6.4 3.2 4.5 1.5] [6.9 3.1 4.9 1.5] [5.5 2.3 4. 1.3] [6.5 2.8 4.6 1.5] [5.7 2.8 4.5 1.3] [6.3 3.3 4.7 1.6] [4.9 2.4 3.3 1. ] [6.6 2.9 4.6 1.3] [5.2 2.7 3.9 1.4] [5. 2. 3.5 1. ] [5.9 3. 4.2 1.5] [6. 2.2 4. 1. ] [6.1 2.9 4.7 1.4] [5.6 2.9 3.6 1.3] [6.7 3.1 4.4 1.4] [5.6 3. 4.5 1.5] [5.8 2.7 4.1 1. ] [6.2 2.2 4.5 1.5] [5.6 2.5 3.9 1.1] [5.9 3.2 4.8 1.8] [6.1 2.8 4. 1.3] [6.3 2.5 4.9 1.5] [6.1 2.8 4.7 1.2] [6.4 2.9 4.3 1.3] [6.6 3. 4.4 1.4] [6.8 2.8 4.8 1.4] [6.7 3. 5. 1.7] [6. 2.9 4.5 1.5] [5.7 2.6 3.5 1. ] [5.5 2.4 3.8 1.1] [5.5 2.4 3.7 1. ] [5.8 2.7 3.9 1.2] [6. 2.7 5.1 1.6] [5.4 3. 4.5 1.5] [6. 3.4 4.5 1.6] [6.7 3.1 4.7 1.5] [6.3 2.3 4.4 1.3] [5.6 3. 4.1 1.3] [5.5 2.5 4. 1.3] [5.5 2.6 4.4 1.2] [6.1 3. 4.6 1.4] [5.8 2.6 4. 1.2] [5. 2.3 3.3 1. ] [5.6 2.7 4.2 1.3] [5.7 3. 4.2 1.2] [5.7 2.9 4.2 1.3] [6.2 2.9 4.3 1.3] [5.1 2.5 3. 1.1] [5.7 2.8 4.1 1.3] [6.3 3.3 6. 2.5] [5.8 2.7 5.1 1.9] [7.1 3. 5.9 2.1] [6.3 2.9 5.6 1.8] [6.5 3. 5.8 2.2] [7.6 3. 6.6 2.1] [4.9 2.5 4.5 1.7] [7.3 2.9 6.3 1.8] [6.7 2.5 5.8 1.8] [7.2 3.6 6.1 2.5] [6.5 3.2 5.1 2. ] [6.4 2.7 5.3 1.9] [6.8 3. 5.5 2.1] [5.7 2.5 5. 2. ] [5.8 2.8 5.1 2.4] [6.4 3.2 5.3 2.3] [6.5 3. 5.5 1.8] [7.7 3.8 6.7 2.2] [7.7 2.6 6.9 2.3] [6. 2.2 5. 1.5] [6.9 3.2 5.7 2.3] [5.6 2.8 4.9 2. ] [7.7 2.8 6.7 2. ] [6.3 2.7 4.9 1.8] [6.7 3.3 5.7 2.1] [7.2 3.2 6. 1.8] [6.2 2.8 4.8 1.8] [6.1 3. 4.9 1.8] [6.4 2.8 5.6 2.1] [7.2 3. 5.8 1.6] [7.4 2.8 6.1 1.9] [7.9 3.8 6.4 2. ] [6.4 2.8 5.6 2.2] [6.3 2.8 5.1 1.5] [6.1 2.6 5.6 1.4] [7.7 3. 6.1 2.3] [6.3 3.4 5.6 2.4] [6.4 3.1 5.5 1.8] [6. 3. 4.8 1.8] [6.9 3.1 5.4 2.1] [6.7 3.1 5.6 2.4] [6.9 3.1 5.1 2.3] [5.8 2.7 5.1 1.9] [6.8 3.2 5.9 2.3] [6.7 3.3 5.7 2.5] [6.7 3. 5.2 2.3] [6.3 2.5 5. 1.9] [6.5 3. 5.2 2. ] [6.2 3.4 5.4 2.3] [5.9 3. 5.1 1.8]] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] ###Markdown (2) Read the data from a local file: iris.csv is stored in a folder "data" ###Code # read data from CSV file to dataframe iris = pd.read_csv('./data/iris.csv') # define target_namees (class lables) target_names = ['setosa', 'versicolor', 'virginica'] print(iris.head()) print(iris.tail()) # X contains the first four columns, y contains class labels #X = iris_data.iloc[:, [0,1,2,3]] X = iris.drop(['Name', 'Class'], axis=1) y = iris.iloc[:, [5]] print( X.head()) print(y.head()) ###Output SepalLength SepalWidth PetalLength PetalWidth Name Class 0 5.1 3.5 1.4 0.2 Iris-setosa 0 1 4.9 3.0 1.4 0.2 Iris-setosa 0 2 4.7 3.2 1.3 0.2 Iris-setosa 0 3 4.6 3.1 1.5 0.2 Iris-setosa 0 4 5.0 3.6 1.4 0.2 Iris-setosa 0 SepalLength SepalWidth PetalLength PetalWidth Name Class 145 6.7 3.0 5.2 2.3 Iris-virginica 2 146 6.3 2.5 5.0 1.9 Iris-virginica 2 147 6.5 3.0 5.2 2.0 Iris-virginica 2 148 6.2 3.4 5.4 2.3 Iris-virginica 2 149 5.9 3.0 5.1 1.8 Iris-virginica 2 SepalLength SepalWidth PetalLength PetalWidth 0 5.1 3.5 1.4 0.2 1 4.9 3.0 1.4 0.2 2 4.7 3.2 1.3 0.2 3 4.6 3.1 1.5 0.2 4 5.0 3.6 1.4 0.2 Class 0 0 1 0 2 0 3 0 4 0 ###Markdown Tasks:- First, run basic Python functions for checking the data. - describe(), info(), isnull(), boxplot(), etc. - Your modeling analysis should be done on two different datasets, (1) the original dataset and (2) ###Code #Normalizing Iris Data Frame normalized_iris = iris[['SepalLength', 'SepalWidth', 'PetalLength', 'PetalWidth', 'Class']] normalized_iris = normalized_iris.apply(lambda x:(x - x.min(axis = 0)) / (x.max(axis=0)-x.min(axis = 0))) print(iris.describe()) print(normalized_iris.describe()) print(normalized_iris.info()) print(iris.info()) print(normalized_iris.isnull()) print(iris.isnull()) iris.boxplot() normalized_iris.boxplot() ###Output _____no_output_____ ###Markdown (1) NB classifier using the original dataset- Create Naive Bayes classifier. - A framework of k-cross validation (k = 3).- Display confusion matrix (a matrix with numbers).- Print a summary of performance metrics.- Plot ROC curves (this task is done. See the example code segment). ###Code from sklearn.naive_bayes import GaussianNB from sklearn.model_selection import KFold #Attempt to convert dataframe into data arrays X_as_data_array = X.to_numpy() Y_as_data_array = y.to_numpy() # We start with k=3 and will increase it to 10. kf = KFold(n_splits=3, random_state=None, shuffle=True) # Define the split - into 10 folds kf.get_n_splits(X) # returns the number of splitting iterations in the cross-validator print (kf) nbclf = GaussianNB() for train_index, test_index in kf.split(X_as_data_array): X_train = X_as_data_array[train_index] X_test = X_as_data_array[test_index] y_train = Y_as_data_array[train_index] y_test = Y_as_data_array[test_index] # train the model using training data # train the model using training data nbclf.fit(X_train, y_train.ravel()) # predict y values using test data y_pred = nbclf.predict(X_test) confusion_mat = confusion_matrix(y_test, y_pred) print(confusion_mat) print(classification_report(y_test, y_pred, target_names=target_names)) ###Output KFold(n_splits=3, random_state=None, shuffle=True) [[15 0 0] [ 0 17 0] [ 0 0 18]] precision recall f1-score support setosa 1.00 1.00 1.00 15 versicolor 1.00 1.00 1.00 17 virginica 1.00 1.00 1.00 18 accuracy 1.00 50 macro avg 1.00 1.00 1.00 50 weighted avg 1.00 1.00 1.00 50 [[19 0 0] [ 0 15 2] [ 0 3 11]] precision recall f1-score support setosa 1.00 1.00 1.00 19 versicolor 0.83 0.88 0.86 17 virginica 0.85 0.79 0.81 14 accuracy 0.90 50 macro avg 0.89 0.89 0.89 50 weighted avg 0.90 0.90 0.90 50 [[16 0 0] [ 0 15 1] [ 0 1 17]] precision recall f1-score support setosa 1.00 1.00 1.00 16 versicolor 0.94 0.94 0.94 16 virginica 0.94 0.94 0.94 18 accuracy 0.96 50 macro avg 0.96 0.96 0.96 50 weighted avg 0.96 0.96 0.96 50 ###Markdown ROC Curve- This part is done. This code assumes that your NB classifier is defined as nbclf. - The code segment shows how to draw ROC curves for multi-classification where there are more than two class labels. ###Code from sklearn.preprocessing import label_binarize import warnings warnings.filterwarnings(action= 'ignore') X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 0) # we assume that your NB classifier's name is nbclf. # Otherwise, you need to modify the name of the model. y_score = nbclf.predict_proba(X_test) y_test = label_binarize(y_test, classes=[0,1,2]) n_classes = 3 # Compute ROC curve and ROC area for each class fpr = dict() tpr = dict() roc_auc = dict() for i in range(n_classes): fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i]) roc_auc[i] = auc(fpr[i], tpr[i]) # Plot of a ROC curve for a specific class for i in range(n_classes): print("accuracy: " , roc_auc[i]) plt.figure() plt.plot(fpr[i], tpr[i], label='ROC curve (area = %0.2f)' % roc_auc[i]) plt.plot([0, 1], [0, 1], 'k--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic example for class ' + str(i) ) plt.legend(loc="lower right") plt.show() ###Output accuracy: 1.0 ###Markdown (2) NB classifier using the normalized dataset- Normalize the data - Make sure that you normalized only X values. - Create Naive Bayes classifier. - A framework of k-cross validation (k = 3).- Display confusion matrix (a matrix with numbers).- Print a summary of performance metrics.- Plot ROC curves (this task is done. See the example code segment). ###Code #Normalizing DF's X values normalized_iris = iris[['SepalLength', 'SepalWidth', 'PetalLength', 'PetalWidth']] normalized_iris = normalized_iris.apply(lambda x:(x - x.min(axis = 0)) / (x.max(axis=0)-x.min(axis = 0))) # X contains the first four columns, y contains class labels #X = iris_data.iloc[:, [0,1,2,3]] X = normalized_iris y = iris.iloc[:, [5]] print(X.head()) print(y.head()) from sklearn.naive_bayes import GaussianNB from sklearn.model_selection import KFold #Attempt to convert dataframe into data arrays X_as_data_array = X.to_numpy() Y_as_data_array = y.to_numpy() # We start with k=3 and will increase it to 10. kf = KFold(n_splits=3, random_state=None, shuffle=True) # Define the split - into 10 folds kf.get_n_splits(X) # returns the number of splitting iterations in the cross-validator print (kf) nbclf = GaussianNB() for train_index, test_index in kf.split(X): X_train, X_test = X_as_data_array[train_index], X_as_data_array[test_index] y_train, y_test = Y_as_data_array[train_index], Y_as_data_array[test_index] # train the model using training data nbclf.fit(X_train, y_train.ravel()) # predict y values using test data y_pred = nbclf.predict(X_test) confusion_mat = confusion_matrix(y_test, y_pred) print(confusion_mat) print(classification_report(y_test, y_pred, target_names=target_names)) result_metrics_dict = classification_report(y_test, y_pred, target_names=target_names, output_dict=True) print(result_metrics_dict) from sklearn.preprocessing import label_binarize X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 0) # we assume that your NB classifier's name is nbclf. # Otherwise, you need to modify the name of the model. y_score = nbclf.predict_proba(X_test) y_test = label_binarize(y_test, classes=[0,1,2]) n_classes = 3 # Compute ROC curve and ROC area for each class fpr = dict() tpr = dict() roc_auc = dict() for i in range(n_classes): fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i]) roc_auc[i] = auc(fpr[i], tpr[i]) # Plot of a ROC curve for a specific class for i in range(n_classes): print("accuracy: " , roc_auc[i]) plt.figure() plt.plot(fpr[i], tpr[i], label='ROC curve (area = %0.2f)' % roc_auc[i]) plt.plot([0, 1], [0, 1], 'k--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic example for class ' + str(i) ) plt.legend(loc="lower right") plt.show() ###Output accuracy: 1.0
notebooks/record_train/example_basic_motion.ipynb
###Markdown Execute the following block of code by selecting it and clicking ``ctrl + enter`` to create an ``NvidiaRacecar`` class. ###Code from jetracer.nvidia_racecar import NvidiaRacecar car = NvidiaRacecar() ###Output _____no_output_____ ###Markdown The ``NvidiaRacecar`` implements the ``Racecar`` class, so it has two attributes ``throttle`` and ``steering``. We can assign values in the range ``[-1, 1]`` to these attributes. Execute the following to set the steering to 0.4.> If the car does not respond, it may still be in ``manual`` mode. Flip the manual override switch on the RC transmitter. ###Code car.steering = 0.3 ###Output _____no_output_____ ###Markdown The ``NvidiaRacecar`` class has two values ``steering_gain`` and ``steering_bias`` that can be used to calibrate the steering.We can view the default values by executing the cells below. ###Code print(car.steering_gain) print(car.steering_offset) ###Output 0.0 ###Markdown The final steering value is computed using the equation$y = a \times x + b$Where,* $a$ is ``car.steering_gain``* $b$ is ``car.steering_offset``* $x$ is ``car.steering``* $y$ is the value written to the motor driverYou can adjust these values calibrate the car so that setting a value of ``0`` moves forward, and setting a value of ``1`` goes fully right, and ``-1`` fully left. To set the throttle of the car to ``0.2``, you can call the following.> Give JetRacer lots of space to move, and be ready on the manual override, JetRacer is *fast* ###Code car.throttle = 0.1 ###Output _____no_output_____ ###Markdown The throttle also has a gain value that could be used to control the speed response. The throttle output is computed as$y = a \times x$Where,* $a$ is ``car.throttle_gain``* $x$ is ``car.throttle``* $y$ is the value written to the speed controllerExecute the following to print the default gain ###Code print(car.throttle_gain) ###Output 0.8 ###Markdown Set the following to limit the throttle to half ###Code car.throttle_gain = 0.5 ###Output _____no_output_____
1_tridy.ipynb
###Markdown Algoritmizace a programování 2 Cv.1. Implementace vlastních třídFiserdefinition of custom classes in Python:* constructors (__init__)* common methods: with return value without changing self (typical for immutable objects), example string, without return value (change self): objects that change states, example list, methods that both modify self and return a value (not very useful, possible use - chaining modifying calls that return a modified self)* all three approaches on a simple class, e.g. sheet of paper (tuple of sizes) with operations as halving, rotation, etc.* attributes and properties (getter and setter methods, property decorators) - importance of encapsulation* special (magic/dunder) methods: initially just __str__, more as they come in handyOngoing topics* basic collections and working with them (including collections package)* standard packages: re (basics), datetime, enum, math, random (generating in non-uniform distribution), statistics, * * itertools, pathllib, csv, zlib, etc.* documentation: + basic typing, doctest, wtc.* external packages: pillow, requests, numpy (basics)* GUI: Tkinter or Kivy (please send me your preferences)theory and implementation in lectures* stack and queue using list/dequeue* simple linked list* binary search* insert/select sort, bucket sort (I don't like bubble sort)* heap sort* binary tree - basic operationsonly theory in lectures (implementation in exercises, cognitive apprenticeship)* circular queue, queue using a linked list* heap* bidirectional linked list* merge or quick sort* binary tree - (delete, more complex operations) 1.1 Motivace 1.1.1 ProgramováníCo je to vlastně programování? Programování je činnost, při které převádíme myšlenky do spustitelného kódu. Tyto myšlenky se rozkládají do dvou typů: data (atributy) a příkazy (operace, chování). Sadě příkazů, která provádí něco užitečného se říká algoritmus (načti data ze souboru, seřaď kolekci dat). Způsob formování a zápisu myšlenek se může programátor od programátora lišit. Existují určité typické způsoby přemýšlení nad programování, kterým se říká paradigmata programování. 1.1.2 Paradigmata programováníZákladní dvě paradigmata jsou imperativní (program je sada příkazů/imperativů nad daty) a deklarativní (program je specifikace výsledku, který od programu chceme). Deklarativní programování se naučíte v kurzu databází (např.: SELECT * FROM studenti WHERE známka > 2, tj. vyber všechny data o studentech z tabulky studenti, ale jen u studentů, jejichž známka je horší jak 2). U deklarativního programování vůbec neříkáme, z jakých příkazů se má program skládat, aby tyto data našel. Imperativní paradigmat je paradigmat, který jste používali v KI/APR1. 1.1.3 Imperativní programováníImperativní paradigmat se dále rozkládá na dílčí podtypy. Jmenné konvence jsou trošku chaotické a nejednoznačné. Pokud myšlenky rozkládáme do algoritmů, které jsou izolované v podprogramech (funkce a procedury) a voláme je z hlavního bloku (typicky main), pak se paradigmat nazývá procedurální nebo také strukturovaný. Při tomto přístupu k programování se program navrhuje dvěma způsoby: top-down a bottom-up. Při top-down přístupu začínáme od bloku main a přemýšlíme, jaké dílčí části budeme potřebovat. Následně přemýšlíme, jaké dílčí části potřebujeme pro tvorbu těchto dílčích částí. Při bottom-up tvoříme nejdříve nejkonkrétnější algoritmy a následně z nich tvoříme obecnější algoritmy z dílčích. Pokud se program skládá pouze z funkcí, které volají jiné funkce a pracují s jejich návratovými hodnotami (tím se úplně vyhneme změně stavů objektů - viz dále v tomto sešitě), pak se nazývá paradigmat funkcionální 1.1.4 Objektově-orientované programováníJednim z dominantních imperativních paradigmatů v dnešní době je objektově-orientované programování (OOP). Tento paradigmat vyžaduje značné úsilí k ovládnutí. Jednak má složitou a značně abstraktní terminologii a jednak vyžaduje několik let používání, než ho ovládnete natolik, abyste v něm správným způsobem navrhovali a implementovalo udržitelné a spolehlivé aplikace. Jednim z důvodu vzniku byla motivace zvýšit kvalitu softwaru modelováním entity reálného světa (entita = abstrakce skutečnosti). Příkazům se zde říká operace entit a datům atributy entity. Modelováním entit našeho světa by mělo teoreticky zjednodušit návrh softwaru, jelikož modelujeme věci kolem sebe na které si můžeme ukázat (zaměstnanec, čipová karta, databáze). Každý jazyk zavádí terminologii trošku jinak. Například jazyky Java a C pro atributy využívají název pole (field), jazyk C++ využívá název členské proměnné, jazyk javascript využívá název vlastnost (property), atd. Pro algoritmy z příkazů se využívá převážně pojem metoda. V Jazyce Python se atributům říká datové členy (instanční a třídní) a operacím se říká metody. ###Code #operace entity def stekej(pes): return "haf haf" #atributy entity azor = { "jmeno": "Azor", "majitele": ["Jana", "Petr"] } #entita s urcitymi atributy provadi operaci print(stekej(pes=azor)) #ale bohuzel take funguje honza = "Honza Novak" print(stekej(pes=honza)) #operace neni svazana s entitou drzici atributy ###Output haf haf haf haf ###Markdown 1.2 TřídaV předchozím kódu jste viděli, že operace nejsou svázané (coupling) s entitou, která byla realizována slovníkem s daty. V OOP máme pro toto svázání prostředek s názvem třída (class). Třída je určitá šablona společných atributů (datových členů) a operací (metod), které budou mít všechny entity (objekty) tohoto typu. Pro vytvoření (instantizování = zhmotnění) objektu dané třídy (instantizace instance třídy) se volá speciální metoda zvaná konstruktor (v Pythonu se jí také říká inicializér). V těle konstruktoru se nachází přiřazení všech datových členů do objektu, který je typicky realizován slovem self (může být jiné slovo, ale úzus je používat self). Hodnoty datových členů se vloží do konstruktoru jako argumenty. Instantizace se provede zavoláním jména třídy s argumenty (většina jazyků využívá klíčové slovo new, python však ne).Odkaz k samostudiu: [OOP terminologie](https://www.tutorialspoint.com/oop-terminology-in-python) ###Code #definice tridy class Pes: #konstruktor - metoda vytvarejici novou instanci (zhmotneni) tridy = objekt def __init__(self, jmeno, majitele): self.jmeno = jmeno self.majitele = majitele #metoda def stekej(self): return "haf haf" azor = Pes("Azor", ["Jana", "Petr"]) #instantizace tridy print(azor.stekej()) #volani operace = metody print(azor.majitele) #volani atributu = datovy clen ###Output haf haf ['Jana', 'Petr'] ###Markdown 1.3 MetodyPython má ve své syntaxi metody tří druhů - instanční, třídní a statické. Instanční metody jsou operace objektu a umožňují manipulovat s datovými členy objektu (klasické metody). Instance mají přístup i ke svým třídním datovým členům, jejichž hodnoty jsou pro všechny instance v daném okamžiku stejné (instance sdílí stav třídy). Proto potřebujeme i metody, které jsou schopny pracovat s datovými členy třídy, tedy společnými datovými členy pro všechny instance této třídy. Na závěr se hodí ještě jedna konstrukce a to statické metody. Tyto metody nepracují s žádnými datovými členy a jen provádí nějakou operaci. Takto jsou realizované různé knihovny. Není třeba vytvářet instance těchto tříd. Většina jazyků obsahuje pouze statické a instanční metody, kde statická metoda splývá s třídní metodou. ###Code class Pes: krmivo = ['granule', 'maso', 'gauc'] #datovy clen, ktery je promennou tridy def __init__(self, jmeno, majitele, zvuk_stekani): self.jmeno = jmeno #datovy clen, ktery predstavuje promennou instance self.majitele = majitele self.zvuk_stekani = zvuk_stekani def stekej(self): #metoda instance, self je odkaz na instanci return self.zvuk_stekani #pokud metoda vraci promenne instance rika se ji getter (accessor) def zmen_zvuk(self, novy_zvuk): #metody instance mohou menit datove cleny instance self.zvuk_stekani = novy_zvuk #poud metoda meni datove cleny instance rika se ji setter (mutator) @classmethod #dekorator - pridava vyznam strukture pod nim def pridej_krmivo(cls, krmivo): #metoda tridy, cls je odkaz na tridu cls.krmivo.append(krmivo) #muze menit datove cleny tridy @staticmethod def jak_dela_pes(): #staticka metoda return "haf haf" #nemuze menit zadne datove cleny #neni treba instance, abychom zavolali tuto metodu print(Pes.jak_dela_pes()) azor = Pes("Azor", ["Jana", "Petr"], "vrrr haf vrrr") print(azor.stekej()) #volani metody instance, ktera je accessorem azor.zmen_zvuk("haficky hafi") #volani metody instance, ktera je mutatorem print(azor.stekej()) #instanci byla zmenena promenna instance print(azor.krmivo) #volani promenne tridy, vsechny instance tyto data sdili Pes.pridej_krmivo("knedlo, vepro, zelo") #zmena promenne tridy pomoci metody tridy print(azor.krmivo) #vsechny instance vidi tridni data zmenena rita = Pes("Rita", ["Jan", "Milena"], "Rghhh wrrr") #overime tim, ze vytvorime dalsi instanci print(rita.krmivo) ###Output ['granule', 'maso', 'gauc', 'knedlo, vepro, zelo', 'knedlo, vepro, zelo'] ###Markdown 1.4 Zapouzdření 1.4.1 Skrývání informací a zapozdřeníJeden z důležitých konceptů v OOP je princip zapouzdření. Objekty (instance tříd) mají své instanční datové členy (proměnné definované v konstruktoru). V daném čase vykonávání kódu mají vždy určitou hodnotu a souhrn těchto hodnot nazýváme stav. Stav můžete brát obdobně jako ve fyzice na střední škole v termice a molekulové fyzice. Každý systém (kus světa, který nás zajímá) má určitý stav, který je zcela popsán nějakou rovnicí a k ní příslušnými stavovými proměnnými (soustava poloh a hybností u korpuskulí - Schrodingerova rovnice, tlak/teplota/objem/počet částic u plynu = stavová rovnice ideálního plynu, vlnová délka/amplituda/fázový posuv u vln = Vlnová rovnice). Každý systém prochází změnou stavů. V programování to může být webový parser dat, který nejprve otevře URL adresu, přečte HTML text, rozparsuje ho do stromu pomocí DOM, vyhledá listy (text ve značkách) a něco s nimi provede. Pokud v průběhu tohoto procesu naruším stav (např.: změním načtený HTML text v nějaké proměnné), tak dojde k selhání programu. Z toho důvodu se snažíme omezit, co je možné provádět se stavem objektů a co není. Řízení viditelnosti a možných operací nad datovými členy se v OOP nazývá zapouzdření.Odkaz k samostudiu: [Zapouzdření](https://en.wikipedia.org/wiki/Encapsulation_(computer_programming)) 1.4.2 Modifikátory přístupuZapouzdření se provádí pomocí modifikátorů přístupu a speciálních metod dvou kategorií - přístupové (gettery/accessory) a nastavující (settery/mutatory). Modifikátory přístupu slouží k tomu, abychom vyvolali výjimku, pokud se pokusí někdo z veřejného prostoru přistoupit k datovým členům. Modifikátory dělíme na 3 kategorie - veřejné (public), chráněné (protected) a soukromé (private). Pokud je nějaký datový člen veřejný, pak lze k němu přistupovat odkudkoliv z programu. Pokud je datový člen chráněný, pak již k němu nelze veřejně přistupovat. Datový člen je tak dostupný pouze u potomků této třídy (viz. cvičení dědičnost) nebo u objektu samotného (objekt sám zná svá data). Privátní člen je pak pouze přístupný z objektu samého. Python bohužel tyto modifikátory moc neřeší. V pythonu jsou všechny datové členy veřejné. Pokud je označíme dvěmi podtržítky, pak jsou z nich datové členy privátní (kompilátor vyvolá výjimku při jejich zavolání). Pokud je označíme chraněné (jedno podtržítko), pak bohužel kompilátor výjimku nevyhazuje, avšak mějme na paměti, že to programátor takto zamýšlel. Odkaz k samostudiu: [Modifikátory přístupu](https://www.tutorialsteacher.com/python/public-private-protected-modifiers) 1.4.3 VlastnostiChráněnost se musí řešit dodatečně přes na začátku zmíněné speciální metody - accessory a mutatory, které se v Pythonu realizují dekorátory @property a @var.setter. Pokud je datový atribut označen accessorem, pak je možné ho číst. Pokud i mutatorem, tak je možné ho i měnit. Datové členy pouze pro zápis jsou v Pythonu trošku složitější oproti jiným jazykům - musí se vytvořit accessor s ručním vyvoláním výjimky a následně mutator s implementací. Datové členy s accessorry a mutatory nazýváme vlastnosti (property).Odkaz k samostudiu: [Vlastnosti v Pythonu](https://www.programiz.com/python-programming/property) ###Code import random class Pes: krmivo = ['granule', 'maso', 'gauc'] #verejny datovy clen tridy def __init__(self, jmeno, majitele, zvuk_stekani): self._jmeno = jmeno #chraneny datovy clen instance self.majitele = majitele #verejny datovy clen instance self.__zvuk_stekani = zvuk_stekani #privatni datovy clen instance self._vek = 0 self._prikaz = None def stekej(self): #veřejná metoda instance return self.__zvuk_stekani def __zmen_zvuk(self, novy_zvuk): #privatní metoda instance self.__zvuk_stekani = novy_zvuk #jmeno bude read-write - jmeno muzeme menit a pes nam ho obcas i prozradi nebo stekne :) @property #definice verejne vlastnosti (accessor) def jmeno(self): return self._jmeno if random.random() > 0.5 else "Haf???" @jmeno.setter #definice verejne vlastnosti (mutator) def jmeno(self, value): if value != "Jonatan": #pes se vsak nechce jmenovat Jonatan :)) self._jmeno = value #vek bude read-only - vek nemuzeme jako verejnost nastavit, pes musi starnout @property def vek(self): self._vek += 1 if self._vek >= 5: self.__zmen_zvuk("GRAAAAWWWWW HAAAAAF VRRRRR") return self._vek #prikaz bude write-only (pes nam nemuze rict, co jsme mu prikazali) @property def prikaz(self): raise AttributeError('unreadable attribute') @prikaz.setter def prikaz(self, value): self._prikaz = value @classmethod def pridej_krmivo(cls, krmivo): #verejna metoda tridy cls.krmivo.append(krmivo) @staticmethod def jak_dela_pes(): #verejna staticka metoda return "haf haf" azor = Pes(jmeno="Azor", majitele=None, zvuk_stekani="haf haf mnau?") print(azor.stekej()) #volani verejne metody instance print(azor.__zmen_zvuk("haf")) #volani privatni metody instance azor.jmeno = "Jonatan" #nastaveni nove hodnoty mutatorem print(azor.jmeno) #volani hodnoty accessorem azor.jmeno = "Rex" print(azor.jmeno) print(azor._vek) #volani chranene promenne instance (bohuzel Python umozni) azor.vek = 20 #nastaveni read-only vlastnosti print(azor.vek) #volani read-only vlastnosti, ktera internet nastavuje privatni promennou print(azor.stekej()) #volani verejne metody instance azor.prikaz = "k noze" #nastaveni write-only vlastnosti print(azor.prikaz) #cteni write-only vlastnosti ###Output _____no_output_____ ###Markdown 1.5 Magické metodyZajímavostí na jazyce Python je to, že i aritmetické a logické operace jsou metody jako takové. Pokud to jsou metody, tak je možné jejich chování přepsat (tzv. přetěžování metod). Těmto metodám, které v jiných jazycích představují součást syntaxe jazyke se říká v Pythonu magické nebo také dunder metody. Úplně korektně se tak říká metodám, které obsahují prefix a suffix složený ze dvou uvozovek, což jsou právě tyto operace.Odkaz k samostudiu: [Dunder metody](https://www.section.io/engineering-education/dunder-methods-python/)Odkaz k samostudiu: [Seznam dunder metod](https://docs.python.org/3/reference/datamodel.htmlspecial-method-names) ###Code import random class Pes: krmivo = ['granule', 'maso', 'gauc'] def __init__(self, jmeno, majitele, zvuk_stekani): self._jmeno = jmeno self.majitele = majitele self.__zvuk_stekani = zvuk_stekani self._vek = 0 self._prikaz = None def stekej(self): return self.__zvuk_stekani def __zmen_zvuk(self, novy_zvuk): self.__zvuk_stekani = novy_zvuk @property def jmeno(self): return self._jmeno @jmeno.setter def jmeno(self, value): self._jmeno = value @property def vek(self): return self._vek @property def prikaz(self): raise AttributeError('unreadable attribute') @prikaz.setter def prikaz(self, value): self._prikaz = value @classmethod def pridej_krmivo(cls, krmivo): cls.krmivo.append(krmivo) @staticmethod def jak_dela_pes(): return "haf haf" #sečtením dvou psů vznikne štěně (nová instance třídy Pes) def __add__(self, other): return Pes(self.jmeno + other.jmeno, self.majitele, "haf") #přetopováním psa na řetězec se vypíší informace o psovi def __str__(self): return "Jmeno: " + self.jmeno + "\nVek: " + str(self.vek) #porovnáním psa s jiným se získá výsledek toho, zda pes vlevo u relačního operátoru je starší jak pes vpravo def __gt__(self, other): return self.vek > other.vek azor = Pes("Azor", ["Jana", "Michal"], "haf") rita = Pes("Rita", ["Honza"], "hafiky") stene = azor + rita print(stene.jmeno) print(str(azor)) print("Azor je starsi jak Rita: ", azor > rita) ###Output Azor je starsi jak Rita: False
WebInformationExtraction/.ipynb_checkpoints/UnitTestingOnXPath-checkpoint.ipynb
###Markdown Libraries ###Code #Import All Dependencies # import cv2, os, bz2, json, csv, difflib, requests, socket, whois, urllib.request, urllib.parse, urllib.error, re, OpenSSL, ssl import numpy as np from datetime import datetime from urllib.parse import urlparse from urllib.request import Request, urlopen # from selenium import webdriver from matplotlib import pyplot as plt from bs4 import BeautifulSoup # from timeout import timeout import requests import numpy as np import urllib import cv2 import re from selenium import webdriver from selenium.webdriver.common.desired_capabilities import DesiredCapabilities from selenium.webdriver.firefox.options import Options from PIL import Image from io import BytesIO import time import os import os.path from os import path import io from difflib import SequenceMatcher import contextlib try: from urllib.parse import urlencode except ImportError: from urllib import urlencode try: from urllib.request import urlopen except ImportError: from urllib2 import urlopen import sys ###Output _____no_output_____ ###Markdown TinyURL ###Code #Taken from https://www.geeksforgeeks.org/python-url-shortener-using-tinyurl-api/ #Returns the url subtracting the domain name with www and com stuff #So, http://tinyurl.com/y5bffkh2 ---becomes---> y5bffkh2 def getTinyURL(URL): request_url = ('http://tinyurl.com/api-create.php?' + urlencode({'url':URL})) with contextlib.closing(urlopen(request_url)) as response: return response.read().decode('utf-8 ')[19:] #Returns Beautiful Soup object def getHTML(URL): try: hdr = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/74.0.3729.157 Safari/537.36'} #Make the user agent verified, that is Mozilla # req = Request(URL,headers=hdr) req = requests.get(URL, headers=hdr) page = req.text #Get URL HTML contents soup = BeautifulSoup(page, 'html.parser') #Convert to BeutifulSoup print("Built Soup") #prettyText = str(soup.prettify()) #Convert the HTML in its form return soup except Exception as e: # # if e.__class__.__name__ == "TimeoutError": raise TimeoutError("") return None ###Output _____no_output_____ ###Markdown XPath ###Code #https://selenium-python.readthedocs.io/locating-elements.html#locating-by-xpath #XPath can either id or name relative def getMyXPath(currentTag): #Original XPath returnXPath = "" while(currentTag.parent!=None): if "id" in (currentTag.attrs): print("true") returnXPath = currentTag.name + "[@id='" + currentTag.attrs['id'].strip() + "']/" + returnXPath #//form[@id='loginForm'] break if "name" in (currentTag.attrs): print("true") returnXPath = currentTag.name + "[@name='" + currentTag.attrs['name'].strip() + "']/" + returnXPath #//form[@id='loginForm'] break returnXPath = currentTag.name + "/" + returnXPath currentTag = currentTag.parent print(currentTag.attrs) returnXPath = returnXPath.replace("[document]/html","/") #When it reaches the end of document parent, it adds the following it it's start, so we need to delete it # if not returnXPath.startswith("//"): #the XPath should start with 2 forward slash # returnXPath = "//" + returnXPath if not returnXPath.startswith("/"): #the XPath should start with 1 forward slash: Update returnXPath = "/" + returnXPath if returnXPath.endswith("/"): #the XPath should not end with forward slash returnXPath = returnXPath[:-1] returnXPath = returnXPath.replace("meta/","").replace("table/tr", "table/tbody/tr") #Few changes to be made while performing XPath return (returnXPath) #//div[@id='tab-panel-0-w3']/div/span/h2 import itertools def getStackXPath(element): #XPath code from Stack Overflow """ Generate xpath of soup element :param element: bs4 text or node :return: xpath as string """ components = [] child = element if element.name else element.parent for parent in child.parents: """ @type parent: bs4.element.Tag """ previous = itertools.islice(parent.children, 0, parent.contents.index(child)) xpath_tag = child.name xpath_index = sum(1 for i in previous if i.name == xpath_tag) + 1 components.append(xpath_tag if xpath_index == 1 else '%s[%d]' % (xpath_tag, xpath_index)) child = parent components.reverse() return '/%s' % '/'.join(components) def getMyStackXPath(element): #My XPath code modified with Stack Overflow's one """ Generate xpath of soup element :param element: bs4 text or node :return: xpath as string """ components = [] child = element if element.name else element.parent for parent in child.parents: """ @type parent: bs4.element.Tag """ if "id" in (child.attrs): print("true") components.append(child.name + "[@id='" + child.attrs['id'].strip() + "']") #//form[@id='loginForm'] break if "name" in (child.attrs): print("true") components.append(child.name + "[@name='" + child.attrs['name'].strip() + "']") #//form[@id='loginForm'] break previous = itertools.islice(parent.children, 0, parent.contents.index(child)) xpath_tag = child.name xpath_index = sum(1 for i in previous if i.name == xpath_tag) + 1 components.append(xpath_tag if xpath_index == 1 else '%s[%d]' % (xpath_tag, xpath_index)) print("xpath_tag:",xpath_tag) print("xpath_tag.attrs:",child.attrs) print("xpath_index:",xpath_index) print("components:",components) child = parent components.reverse() return '/%s' % '/'.join(components) ###Output _____no_output_____ ###Markdown Price ###Code def getTheTagElementForPrice(gShopPriceUpdated, soup): returnPriceElementTag = None try: dummyVar = soup(text=re.compile(gShopPriceUpdated)) # print(dummyVar) for elem in dummyVar: # print("elem.parent",elem.parent) # print("elem.parent.name",elem.parent.name) if returnPriceElementTag == None: #The first element is the return value unless we encounter a heading tag returnPriceElementTag = elem.parent if "h" in elem.parent.name: #Found the heading tag, so return this tag and break the loop returnPriceElementTag = elem.parent return returnPriceElementTag if "span" in elem.parent.name: #Found the span tag, so return this tag and break the loop returnPriceElementTag = elem.parent return returnPriceElementTag except Exception as e: print("Error in getTheTagElementForPrice(gShopPriceUpdated, soup)") return returnPriceElementTag def findPriceElementTag(gShopPrice, soup): #gShopPrice = $379.00 gShopPrice = gShopPrice.replace("now","").strip() #GShop soemtimes gives prices with now suffix like "$0.00 now" print(gShopPrice) if "$" in gShopPrice: gShopPriceUpdated = gShopPrice.replace("$", "\$") #gShopPriceUpdated = \$379.00; Required because $ is reserved keyword for regex print(gShopPriceUpdated) returnPriceElementTag = getTheTagElementForPrice(gShopPriceUpdated, soup) if returnPriceElementTag != None and len(str(returnPriceElementTag))<400: return returnPriceElementTag gShopPriceUpdated = gShopPrice.replace("$","") #gShopPriceUpdated = 379.00 print(gShopPriceUpdated) returnPriceElementTag = getTheTagElementForPrice(gShopPriceUpdated, soup) if returnPriceElementTag != None and len(str(returnPriceElementTag))<400: return returnPriceElementTag gShopPriceUpdated = gShopPrice.replace("$", "\$").split(".")[0] #gShopPriceUpdated = \$379 print(gShopPriceUpdated) returnPriceElementTag = getTheTagElementForPrice(gShopPriceUpdated, soup) if returnPriceElementTag != None and len(str(returnPriceElementTag))<400: return returnPriceElementTag gShopPriceUpdated = gShopPrice.replace("$","").split(".")[0] #gShopPriceUpdated = 379 print(gShopPriceUpdated) returnPriceElementTag = getTheTagElementForPrice(gShopPriceUpdated, soup) if returnPriceElementTag != None and len(str(returnPriceElementTag))<400: return returnPriceElementTag return None ###Output _____no_output_____ ###Markdown Testing ###Code # Unit Testing for XPath URL = "https://www.walmart.com/ip/Farberware-3-2-Quart-Digital-Oil-Less-Fryer-White/264698854?athcpid=264698854&athpgid=athenaHomepage&athcgid=null&athznid=BestInDeals&athieid=v1&athstid=CS020&athguid=466001f5-46cfa622-5eb821569a18a716&athancid=null&athena=true" priceOfCurrentScreenshot = "39" # soup = getHTML(URL) # returnPriceElementTag = findPriceElementTag(priceOfCurrentScreenshot, soup) # getMyStackXPath(returnPriceElementTag) ###Output _____no_output_____
Old Vers/image_classification-01.ipynb
###Markdown cheatsheets- [What is One Hot Encoding? Why And When do you have to use it?](https://hackernoon.com/what-is-one-hot-encoding-why-and-when-do-you-have-to-use-it-e3c6186d008f)- [Read Own Multiple Images from folder and Save as a Dataset for Training](https://stackoverflow.com/questions/49220111/read-own-multiple-images-from-folder-and-save-as-a-dataset-for-training)- [How to write into and read from a TFRecords file in TensorFlow](http://www.machinelearninguru.com/deep_learning/tensorflow/basics/tfrecord/tfrecord.html)- [Useful Blog: machine learning mindset](https://machinelearningmindset.com/blog/)- [Jupyer Markdown cheatsheets](https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheetlinks) - [matplotlib color list](https://matplotlib.org/examples/color/named_colors.html)- [matplotlib text styles](https://matplotlib.org/2.0.2/users/text_props.html)- [PEP 8 -- Style Guide for Python Code](https://www.python.org/dev/peps/pep-0008/)- [Gaussian processes framework in python](https://github.com/SheffieldML/GPy)- [Regular Expressions](https://docs.python.org/3/library/re.html)- [Regular Expressions - Tutorial](https://docs.python.org/3/howto/regex.html)- [presentation file: P:\EnergySGP\5) Production\5.2 Ongoing projects\AM\PP177972 (JTC)- Data Smart Lift AM (Zhou SF)\3. Minutes of meeting\20180628]() ###Code from IPython.core.display import display, HTML display(HTML("<style>.container { width:80% !important; }</style>")) import cv2 import numpy as np import os from random import shuffle import glob from pathlib import Path from importlib import reload import img_classification_modules reload(img_classification_modules) from img_classification_modules import CommonModules home_dir = str(Path.home()) original_imgs_dir = home_dir + "/Documents/Conda/00-Projects/image-classification/samples/birds-01/" resized_iamges_dir = home_dir + "/Documents/Conda/00-Projects/image-classification/samples/birds-01-resized/" # file_name_only = "drone.41-Z" # file_name = original_imgs_dir + file_name_only + ".jpg" # resized_file_name = original_imgs_dir + file_name_only + "-resized.jpg" target_img_size = 128 specific_file_name = "" file_mini_batch_size = 100 file_count = 2 # can be set to skip n number of files file_counter = 0 all_left_files_processed = False perform_baselines_check = False # skip_file_count = None file_mini_batch_size = min(file_mini_batch_size, file_count) if (file_count > -1) else file_mini_batch_size resized_images = [] while (all_left_files_processed == False): if (specific_file_name == ""): print("looking for possibly {0:d} image files - processing in mini batches...".format(file_mini_batch_size)) else: print("looking for {0:} image files".format(specific_file_name)) resized_images += CommonModules.read_and_resize_images(file_count=file_mini_batch_size, skip_file_count=file_counter, images_dir=original_imgs_dir, specific_file_name=specific_file_name, target_img_size=target_img_size, save_resized_iamges=True, resized_iamges_dir=resized_iamges_dir) if(len(resized_images) > 0): print("Processing {0:d} image files is completed.".format(len(resized_images))) print("") file_counter += file_mini_batch_size if (file_count != -1): if ((file_count - file_counter) // file_mini_batch_size < 1): file_mini_batch_size = file_count - file_counter all_left_files_processed = (file_counter >= file_count) or (specific_file_name != "") if(len(resized_images) == 0): print("No new image file was found.") all_left_files_processed = True #else: # print(resized_images[0].shape) len(resized_images) ###Output _____no_output_____ ###Markdown List images and their labels ###Code train_band = 0.6 validation_band = train_band + 0.2 # test_portion = 1.0 - train_portion - validation_portion home_dir = str(Path.home()) shuffle_data = True # shuffle the addresses before saving # cat_dog_train_path = 'Cat vs Dog/train/*.jpg' original_imgs_dir = home_dir + "/Documents/Conda/00-Projects/image-classification/samples/birds-01/" iamges_dirs = [home_dir + "/Documents/Conda/00-Projects/image-classification/samples/drones-01-resized/", home_dir + "/Documents/Conda/00-Projects/image-classification/samples/birds-01-resized/",] file_names = [] labels = [] for image_index, image_dir in enumerate(iamges_dirs): # read addresses and labels from the 'train' folder loaded_file_names = list(glob.glob(image_dir + "/*.jpg")) file_names += loaded_file_names labels += [0 if "drone" in image_dir else 1 for file_name in file_names] # drone:0, bird:1 print("{0:d} images loaded and labelled from '{1:s}' collection".format(len(loaded_file_names), image_dir.split("/")[-2])) if (shuffle_data): labelled_data = list(zip(file_names, labels)) shuffle(labelled_data) file_names, labels = zip(*labelled_data) file_names = list(file_names) labels = list(labels) train_files = file_names[:int(train_band*len(file_names))] train_labels = labels[:int(train_band*len(labels))] val_files = file_names[int(train_band*len(file_names)):int(validation_band*len(file_names))] val_labels = labels[int(train_band*len(file_names)):int(validation_band*len(file_names))] test_files = file_names[int(validation_band*len(file_names)):] test_labels = labels[int(validation_band*len(labels)):] print("{0:d}%: training - {1:d}%: validation - {2:d}%: test".format(int(train_band*100), int((validation_band - train_band)*100), int((1.0 - validation_band + 0.005)*100)) ) ###Output 3450 images loaded and labelled from 'drones-01-resized' collection 3589 images loaded and labelled from 'birds-01-resized' collection 60%: training - 20%: validation - 20%: test ###Markdown Create a TFRecords file Test cell for image resizing ###Code drone_imgs_dir = "C:/Users/MIEuser/Documents/Conda/00-Projects/image-classification/samples/test/" file_name_only = "drone.41-Z" file_name = drone_imgs_dir + file_name_only + ".jpg" resized_file_name = drone_imgs_dir + file_name_only + "-resized.jpg" target_img_size = 128 img = cv2.imread(file_name) img_dimensions = np.asarray(img.shape[:2]) target_img_dimensions = np.asarray([target_img_size, target_img_size]) img_resize_ratios = target_img_dimensions / img_dimensions min_img_ratio = min(np.min(img_resize_ratios), 1.0) new_img = np.zeros(shape=(target_img_size, target_img_size, 3)) # if(np.any(img_resize_ratios < 1.0)): resized_img_dimensions = (img_dimensions * min_img_ratio + 0.5).astype(int) resized_img = cv2.resize(img, dsize=(resized_img_dimensions[1], resized_img_dimensions[0]), interpolation=cv2.INTER_CUBIC) width_gap = int((target_img_size - resized_img_dimensions[0]) // 2.0) height_gap = int((target_img_size - resized_img_dimensions[1]) // 2.0) new_img[width_gap:width_gap+resized_img_dimensions[0], height_gap:height_gap+resized_img_dimensions[1]] = resized_img cv2.imwrite(resized_file_name, new_img) # max_img_size = max(img_shape) # max_img_size_index = np.where(img_shape == max_img_size)[0][0] # img_resize_ratio = target_img_size / max_img_size # if(img_resize_ratio < 1.0): print(img.shape, resized_img_dimensions, img_resize_ratios) # resized_img = cv2.resize(img, dsize=(128, 128), interpolation=cv2.INTER_CUBIC) ###Output _____no_output_____ ###Markdown Image ClassificationIn this project, you'll classify images from the [CIFAR-10 dataset](https://www.cs.toronto.edu/~kriz/cifar.html). The dataset consists of airplanes, dogs, cats, and other objects. You'll preprocess the images, then train a convolutional neural network on all the samples. The images need to be normalized and the labels need to be one-hot encoded. You'll get to apply what you learned and build a convolutional, max pooling, dropout, and fully connected layers. At the end, you'll get to see your neural network's predictions on the sample images. Get the DataRun the following cell to download the [CIFAR-10 dataset for python](https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz). ###Code """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ from urllib.request import urlretrieve from os.path import isfile, isdir from tqdm import tqdm import problem_unittests as tests import tarfile cifar10_dataset_folder_path = 'cifar-10-batches-py' # Use Floyd's cifar-10 dataset if present floyd_cifar10_location = '/input/cifar-10/python.tar.gz' if isfile(floyd_cifar10_location): tar_gz_path = floyd_cifar10_location else: tar_gz_path = 'cifar-10-python.tar.gz' class DLProgress(tqdm): last_block = 0 def hook(self, block_num=1, block_size=1, total_size=None): self.total = total_size self.update((block_num - self.last_block) * block_size) self.last_block = block_num if not isfile(tar_gz_path): with DLProgress(unit='B', unit_scale=True, miniters=1, desc='CIFAR-10 Dataset') as pbar: urlretrieve( 'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz', tar_gz_path, pbar.hook) if not isdir(cifar10_dataset_folder_path): with tarfile.open(tar_gz_path) as tar: tar.extractall() tar.close() tests.test_folder_path(cifar10_dataset_folder_path) ###Output All files found! ###Markdown Explore the DataThe dataset is broken into batches to prevent your machine from running out of memory. The CIFAR-10 dataset consists of 5 batches, named `data_batch_1`, `data_batch_2`, etc.. Each batch contains the labels and images that are one of the following:* airplane* automobile* bird* cat* deer* dog* frog* horse* ship* truckUnderstanding a dataset is part of making predictions on the data. Play around with the code cell below by changing the `batch_id` and `sample_id`. The `batch_id` is the id for a batch (1-5). The `sample_id` is the id for a image and label pair in the batch.Ask yourself "What are all possible labels?", "What is the range of values for the image data?", "Are the labels in order or random?". Answers to questions like these will help you preprocess the data and end up with better predictions. ###Code %matplotlib inline %config InlineBackend.figure_format = 'retina' import helper import numpy as np # Explore the dataset batch_id = 1 sample_id = 1 helper.display_stats(cifar10_dataset_folder_path, batch_id, sample_id) ###Output Stats of batch 1: Samples: 10000 Label Counts: {0: 1005, 1: 974, 2: 1032, 3: 1016, 4: 999, 5: 937, 6: 1030, 7: 1001, 8: 1025, 9: 981} First 20 Labels: [6, 9, 9, 4, 1, 1, 2, 7, 8, 3, 4, 7, 7, 2, 9, 9, 9, 3, 2, 6] Example of Image 1: Image - Min Value: 5 Max Value: 254 Image - Shape: (32, 32, 3) Label - Label Id: 9 Name: truck ###Markdown Implement Preprocess Functions NormalizeIn the cell below, implement the `normalize` function to take in image data, `x`, and return it as a normalized Numpy array. The values should be in the range of 0 to 1, inclusive. The return object should be the same shape as `x`. ###Code def normalize(x): """ Normalize a list of sample image data in the range of 0 to 1 : x: List of image data. The image shape is (32, 32, 3) : return: Numpy array of normalize data """ # TODO: Implement Function output_range_min = 0.0 output_range_max = 1.0 output_range_diff = output_range_max - output_range_min image_data_min = 0.0 image_data_max = 255 image_data_range_diff = image_data_max - image_data_min normalized_image_data = output_range_min + (x - image_data_min)*output_range_diff / image_data_range_diff return normalized_image_data """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_normalize(normalize) ###Output Tests Passed ###Markdown One-hot encodeJust like the previous code cell, you'll be implementing a function for preprocessing. This time, you'll implement the `one_hot_encode` function. The input, `x`, are a list of labels. Implement the function to return the list of labels as One-Hot encoded Numpy array. The possible values for labels are 0 to 9. The one-hot encoding function should return the same encoding for each value between each call to `one_hot_encode`. Make sure to save the map of encodings outside the function.Hint: Don't reinvent the wheel. ###Code # Hamid: This cell is my own test unit *** please ignore it from sklearn import preprocessing lb = preprocessing.LabelBinarizer() lb.fit(range(0, 2)) # print(lb.classes_) print(lb.transform([1, 0])) from sklearn import preprocessing lb = preprocessing.LabelBinarizer() lb.fit(range(0, 10)) def one_hot_encode(x): """ One hot encode a list of sample labels. Return a one-hot encoded vector for each label. : x: List of sample Labels : return: Numpy array of one-hot encoded labels """ # TODO: Implement Function return lb.transform(x) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_one_hot_encode(one_hot_encode) ###Output Tests Passed ###Markdown Randomize DataAs you saw from exploring the data above, the order of the samples are randomized. It doesn't hurt to randomize it again, but you don't need to for this dataset. Preprocess all the data and save itRunning the code cell below will preprocess all the CIFAR-10 data and save it to file. The code below also uses 10% of the training data for validation. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ # Preprocess Training, Validation, and Testing Data helper.preprocess_and_save_data(cifar10_dataset_folder_path, normalize, one_hot_encode) ###Output _____no_output_____ ###Markdown Check PointThis is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ import pickle import problem_unittests as tests import helper # Load the Preprocessed Validation data valid_features, valid_labels = pickle.load(open('preprocess_validation.p', mode='rb')) valid_features.shape ###Output _____no_output_____ ###Markdown Build the networkFor the neural network, you'll build each layer into a function. Most of the code you've seen has been outside of functions. To test your code more thoroughly, we require that you put each layer in a function. This allows us to give you better feedback and test for simple mistakes using our unittests before you submit your project.>**Note:** If you're finding it hard to dedicate enough time for this course each week, we've provided a small shortcut to this part of the project. In the next couple of problems, you'll have the option to use classes from the [TensorFlow Layers](https://www.tensorflow.org/api_docs/python/tf/layers) or [TensorFlow Layers (contrib)](https://www.tensorflow.org/api_guides/python/contrib.layers) packages to build each layer, except the layers you build in the "Convolutional and Max Pooling Layer" section. TF Layers is similar to Keras's and TFLearn's abstraction to layers, so it's easy to pickup.>However, if you would like to get the most out of this course, try to solve all the problems _without_ using anything from the TF Layers packages. You **can** still use classes from other packages that happen to have the same name as ones you find in TF Layers! For example, instead of using the TF Layers version of the `conv2d` class, [tf.layers.conv2d](https://www.tensorflow.org/api_docs/python/tf/layers/conv2d), you would want to use the TF Neural Network version of `conv2d`, [tf.nn.conv2d](https://www.tensorflow.org/api_docs/python/tf/nn/conv2d). Let's begin! InputThe neural network needs to read the image data, one-hot encoded labels, and dropout keep probability. Implement the following functions* Implement `neural_net_image_input` * Return a [TF Placeholder](https://www.tensorflow.org/api_docs/python/tf/placeholder) * Set the shape using `image_shape` with batch size set to `None`. * Name the TensorFlow placeholder "x" using the TensorFlow `name` parameter in the [TF Placeholder](https://www.tensorflow.org/api_docs/python/tf/placeholder).* Implement `neural_net_label_input` * Return a [TF Placeholder](https://www.tensorflow.org/api_docs/python/tf/placeholder) * Set the shape using `n_classes` with batch size set to `None`. * Name the TensorFlow placeholder "y" using the TensorFlow `name` parameter in the [TF Placeholder](https://www.tensorflow.org/api_docs/python/tf/placeholder).* Implement `neural_net_keep_prob_input` * Return a [TF Placeholder](https://www.tensorflow.org/api_docs/python/tf/placeholder) for dropout keep probability. * Name the TensorFlow placeholder "keep_prob" using the TensorFlow `name` parameter in the [TF Placeholder](https://www.tensorflow.org/api_docs/python/tf/placeholder).These names will be used at the end of the project to load your saved model.Note: `None` for shapes in TensorFlow allow for a dynamic size. ###Code import tensorflow as tf def neural_net_image_input(image_shape): """ Return a Tensor for a batch of image input : image_shape: Shape of the images : return: Tensor for image input. """ # TODO: Implement Function x = tf.placeholder(dtype = tf.float32, shape = [None, image_shape[0], image_shape[1], image_shape[2]], name="x") return x def neural_net_label_input(n_classes): """ Return a Tensor for a batch of label input : n_classes: Number of classes : return: Tensor for label input. """ # TODO: Implement Function y = tf.placeholder(dtype = tf.float32, shape = [None, n_classes], name="y") return y def neural_net_keep_prob_input(): """ Return a Tensor for keep probability : return: Tensor for keep probability. """ # TODO: Implement Function keep_prob = tf.placeholder(dtype = tf.float32, name="keep_prob") return keep_prob """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tf.reset_default_graph() tests.test_nn_image_inputs(neural_net_image_input) tests.test_nn_label_inputs(neural_net_label_input) tests.test_nn_keep_prob_inputs(neural_net_keep_prob_input) ###Output Image Input Tests Passed. Label Input Tests Passed. Keep Prob Tests Passed. ###Markdown Convolution and Max Pooling LayerConvolution layers have a lot of success with images. For this code cell, you should implement the function `conv2d_maxpool` to apply convolution then max pooling:* Create the weight and bias using `conv_ksize`, `conv_num_outputs` and the shape of `x_tensor`.* Apply a convolution to `x_tensor` using weight and `conv_strides`. * We recommend you use same padding, but you're welcome to use any padding.* Add bias* Add a nonlinear activation to the convolution.* Apply Max Pooling using `pool_ksize` and `pool_strides`. * We recommend you use same padding, but you're welcome to use any padding.**Note:** You **can't** use [TensorFlow Layers](https://www.tensorflow.org/api_docs/python/tf/layers) or [TensorFlow Layers (contrib)](https://www.tensorflow.org/api_guides/python/contrib.layers) for **this** layer, but you can still use TensorFlow's [Neural Network](https://www.tensorflow.org/api_docs/python/tf/nn) package. You may still use the shortcut option for all the **other** layers. ###Code def conv2d_maxpool(x_tensor, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides): """ Apply convolution then max pooling to x_tensor :param x_tensor: TensorFlow Tensor :param conv_num_outputs: Number of outputs for the convolutional layer :param conv_ksize: kernal size 2-D Tuple for the convolutional layer :param conv_strides: Stride 2-D Tuple for convolution :param pool_ksize: kernal size 2-D Tuple for pool :param pool_strides: Stride 2-D Tuple for pool : return: A tensor that represents convolution and max pooling of x_tensor """ # TODO: Implement Function #conv_layer = tf.nn.conv2d(input, weight, strides, padding) print("conv2d_maxpool... Start") print("Cheking inputs dimensions... ") print('conv_ksize: ', conv_ksize) print('conv_num_outputs: ', conv_num_outputs) #print(x_tensor) input_depth = x_tensor.get_shape().as_list()[3] # weight = tf.Variable(tf.truncated_normal([filter_size_height, filter_size_width, color_channels, k_output])) # bias = tf.Variable(tf.zeros(k_output)) # [batch, height, width, channels] """ truncated_normal( shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None ) """ weights = tf.Variable(tf.truncated_normal(shape=[conv_ksize[0], conv_ksize[1], input_depth, conv_num_outputs], mean=0.0, stddev=0.05)) biases = tf.Variable(tf.zeros(conv_num_outputs)) conv_strides = (1, conv_strides[0], conv_strides[1], 1) pool_ksize = (1, pool_ksize[0], pool_ksize[1], 1) pool_strides = (1, pool_strides[0], pool_strides[1], 1) print("Cheking strides dimensions... ") print('conv_strides: ', conv_strides) print('pool_ksize: ', pool_ksize) print('pool_strides', pool_strides) conv_layer = tf.nn.conv2d(x_tensor, weights, conv_strides, 'SAME') conv_layer = tf.nn.bias_add(conv_layer, biases) conv_layer = tf.nn.max_pool(conv_layer, ksize=pool_ksize, strides=pool_strides, padding='SAME') conv_layer = tf.nn.relu(conv_layer) #H1: conv_layer = tf.nn.max_pool(conv_layer, ksize=pool_ksize, strides=pool_strides, padding='SAME') print("conv2d_maxpool... End") return conv_layer """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_con_pool(conv2d_maxpool) ###Output conv2d_maxpool... Start Cheking inputs dimensions... conv_ksize: (2, 2) conv_num_outputs: 10 WARNING:tensorflow:From C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\python\framework\op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version. Instructions for updating: Colocations handled automatically by placer. Cheking strides dimensions... conv_strides: (1, 4, 4, 1) pool_ksize: (1, 2, 2, 1) pool_strides (1, 2, 2, 1) conv2d_maxpool... End Tests Passed ###Markdown Flatten LayerImplement the `flatten` function to change the dimension of `x_tensor` from a 4-D tensor to a 2-D tensor. The output should be the shape (*Batch Size*, *Flattened Image Size*). Shortcut option: you can use classes from the [TensorFlow Layers](https://www.tensorflow.org/api_docs/python/tf/layers) or [TensorFlow Layers (contrib)](https://www.tensorflow.org/api_guides/python/contrib.layers) packages for this layer. For more of a challenge, only use other TensorFlow packages. ###Code def flatten(x_tensor): """ Flatten x_tensor to (Batch Size, Flattened Image Size) : x_tensor: A tensor of size (Batch Size, ...), where ... are the image dimensions. : return: A tensor of size (Batch Size, Flattened Image Size). """ # TODO: Implement Function #print(x_tensor) output_tensor = tf.contrib.layers.flatten(x_tensor) #print(output_tensor) return output_tensor """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_flatten(flatten) ###Output WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0. For more information, please see: * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md * https://github.com/tensorflow/addons If you depend on functionality not listed there, please file an issue. WARNING:tensorflow:From C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\contrib\layers\python\layers\layers.py:1624: flatten (from tensorflow.python.layers.core) is deprecated and will be removed in a future version. Instructions for updating: Use keras.layers.flatten instead. Tests Passed ###Markdown Fully-Connected LayerImplement the `fully_conn` function to apply a fully connected layer to `x_tensor` with the shape (*Batch Size*, *num_outputs*). Shortcut option: you can use classes from the [TensorFlow Layers](https://www.tensorflow.org/api_docs/python/tf/layers) or [TensorFlow Layers (contrib)](https://www.tensorflow.org/api_guides/python/contrib.layers) packages for this layer. For more of a challenge, only use other TensorFlow packages. ###Code def fully_conn(x_tensor, num_outputs): """ Apply a fully connected layer to x_tensor using weight and bias : x_tensor: A 2-D tensor where the first dimension is batch size. : num_outputs: The number of output that the new tensor should be. : return: A 2-D tensor where the second dimension is num_outputs. """ # TODO: Implement Function #print(x_tensor) #print(num_outputs) """ fully_connected( inputs, num_outputs, activation_fn=tf.nn.relu, normalizer_fn=None, normalizer_params=None, weights_initializer=initializers.xavier_initializer(), weights_regularizer=None, biases_initializer=tf.zeros_initializer(), biases_regularizer=None, reuse=None, variables_collections=None, outputs_collections=None, trainable=True, scope=None ) """ output_tensor = tf.contrib.layers.fully_connected(x_tensor, num_outputs, activation_fn=tf.nn.relu) #print(output_tensor) return output_tensor """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_fully_conn(fully_conn) ###Output Tests Passed ###Markdown Output LayerImplement the `output` function to apply a fully connected layer to `x_tensor` with the shape (*Batch Size*, *num_outputs*). Shortcut option: you can use classes from the [TensorFlow Layers](https://www.tensorflow.org/api_docs/python/tf/layers) or [TensorFlow Layers (contrib)](https://www.tensorflow.org/api_guides/python/contrib.layers) packages for this layer. For more of a challenge, only use other TensorFlow packages.**Note:** Activation, softmax, or cross entropy should **not** be applied to this. ###Code def output(x_tensor, num_outputs): """ Apply a output layer to x_tensor using weight and bias : x_tensor: A 2-D tensor where the first dimension is batch size. : num_outputs: The number of output that the new tensor should be. : return: A 2-D tensor where the second dimension is num_outputs. """ # TODO: Implement Function output_tensor = tf.contrib.layers.fully_connected(x_tensor, num_outputs, activation_fn=None) #print(output_tensor) return output_tensor """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_output(output) ###Output Tests Passed ###Markdown Create Convolutional ModelImplement the function `conv_net` to create a convolutional neural network model. The function takes in a batch of images, `x`, and outputs logits. Use the layers you created above to create this model:* Apply 1, 2, or 3 Convolution and Max Pool layers* Apply a Flatten Layer* Apply 1, 2, or 3 Fully Connected Layers* Apply an Output Layer* Return the output* Apply [TensorFlow's Dropout](https://www.tensorflow.org/api_docs/python/tf/nn/dropout) to one or more layers in the model using `keep_prob`. ###Code def conv_net(x, keep_prob): """ Create a convolutional neural network model : x: Placeholder tensor that holds image data. : keep_prob: Placeholder tensor that hold dropout keep probability. : return: Tensor that represents logits """ # TODO: Apply 1, 2, or 3 Convolution and Max Pool layers # Play around with different number of outputs, kernel size and stride # Function Definition from Above: # conv2d_maxpool(x_tensor, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides) #print(x) #print(keep_prob) conv_ksize = (32, 32) # output layers dimensions conv_strides = (1, 1) pool_ksize = (3, 3) # Filter kernel/patch dimensions pool_strides = (1, 1) #conv_layer = conv2d_maxpool(x, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides) conv_num_outputs = 32 conv_layer = conv2d_maxpool(x, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides) conv_ksize = (32, 32) # output layers dimensions conv_num_outputs = 64 conv_layer = conv2d_maxpool(x, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides) conv_ksize = (32, 32) # output layers dimensions conv_num_outputs = 64 conv_layer = conv2d_maxpool(x, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides) #conv_ksize = (10, 10) # output layers dimensions #pool_ksize = (2, 2) # Filter kernel/patch dimensions #conv_num_outputs = 24 #conv_layer = conv2d_maxpool(x, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides) # TODO: Apply a Flatten Layer # Function Definition from Above: x_tensor = flatten(x) # TODO: Apply 1, 2, or 3 Fully Connected Layers # Play around with different number of outputs # Function Definition from Above: # fully_conn(x_tensor, num_outputs) x_tensor = tf.layers.batch_normalization(x_tensor) x_tensor = fully_conn(x_tensor, 512) x_tensor = tf.layers.batch_normalization(x_tensor) x_tensor = fully_conn(x_tensor, 256) x_tensor = tf.nn.dropout(x_tensor, keep_prob) x_tensor = fully_conn(x_tensor, 128) #x_tensor = tf.nn.dropout(x_tensor, keep_prob) # TODO: Apply an Output Layer # Set this to the number of classes # Function Definition from Above: # output(x_tensor, num_outputs) output_tensor = output(x_tensor, 10) # TODO: return output return output_tensor """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ ############################## ## Build the Neural Network ## ############################## # Remove previous weights, bias, inputs, etc.. tf.reset_default_graph() # Inputs x = neural_net_image_input((32, 32, 3)) y = neural_net_label_input(10) keep_prob = neural_net_keep_prob_input() # Model logits = conv_net(x, keep_prob) # Name logits Tensor, so that is can be loaded from disk after training logits = tf.identity(logits, name='logits') # Loss and Optimizer cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits, labels=y)) optimizer = tf.train.AdamOptimizer().minimize(cost) # Accuracy correct_pred = tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32), name='accuracy') tests.test_conv_net(conv_net) ###Output conv2d_maxpool... Start Cheking inputs dimensions... conv_ksize: (32, 32) conv_num_outputs: 32 Cheking strides dimensions... conv_strides: (1, 1, 1, 1) pool_ksize: (1, 3, 3, 1) pool_strides (1, 1, 1, 1) conv2d_maxpool... End conv2d_maxpool... Start Cheking inputs dimensions... conv_ksize: (32, 32) conv_num_outputs: 64 Cheking strides dimensions... conv_strides: (1, 1, 1, 1) pool_ksize: (1, 3, 3, 1) pool_strides (1, 1, 1, 1) conv2d_maxpool... End conv2d_maxpool... Start Cheking inputs dimensions... conv_ksize: (32, 32) conv_num_outputs: 64 Cheking strides dimensions... conv_strides: (1, 1, 1, 1) pool_ksize: (1, 3, 3, 1) pool_strides (1, 1, 1, 1) conv2d_maxpool... End conv2d_maxpool... Start Cheking inputs dimensions... conv_ksize: (32, 32) conv_num_outputs: 32 Cheking strides dimensions... conv_strides: (1, 1, 1, 1) pool_ksize: (1, 3, 3, 1) pool_strides (1, 1, 1, 1) conv2d_maxpool... End conv2d_maxpool... Start Cheking inputs dimensions... conv_ksize: (32, 32) conv_num_outputs: 64 Cheking strides dimensions... conv_strides: (1, 1, 1, 1) pool_ksize: (1, 3, 3, 1) pool_strides (1, 1, 1, 1) conv2d_maxpool... End conv2d_maxpool... Start Cheking inputs dimensions... conv_ksize: (32, 32) conv_num_outputs: 64 Cheking strides dimensions... conv_strides: (1, 1, 1, 1) pool_ksize: (1, 3, 3, 1) pool_strides (1, 1, 1, 1) conv2d_maxpool... End Neural Network Built! ###Markdown Train the Neural Network Single OptimizationImplement the function `train_neural_network` to do a single optimization. The optimization should use `optimizer` to optimize in `session` with a `feed_dict` of the following:* `x` for image input* `y` for labels* `keep_prob` for keep probability for dropoutThis function will be called for each batch, so `tf.global_variables_initializer()` has already been called.Note: Nothing needs to be returned. This function is only optimizing the neural network. ###Code def train_neural_network(session, optimizer, keep_probability, feature_batch, label_batch): """ Optimize the session on a batch of images and labels : session: Current TensorFlow session : optimizer: TensorFlow optimizer function : keep_probability: keep probability : feature_batch: Batch of Numpy image data : label_batch: Batch of Numpy label data """ # TODO: Implement Function # batch_size.shape -> (128, 32, 32, 3) # label_batch.shape -> (128, 10) session.run(optimizer, feed_dict={x: feature_batch, y: label_batch, keep_prob: keep_probability}) """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ tests.test_train_nn(train_neural_network) ###Output Tests Passed ###Markdown Show StatsImplement the function `print_stats` to print loss and validation accuracy. Use the global variables `valid_features` and `valid_labels` to calculate validation accuracy. Use a keep probability of `1.0` to calculate the loss and validation accuracy. ###Code def print_stats(session, feature_batch, label_batch, cost, accuracy): """ Print information about loss and validation accuracy : session: Current TensorFlow session : feature_batch: Batch of Numpy image data : label_batch: Batch of Numpy label data : cost: TensorFlow cost function : accuracy: TensorFlow accuracy function """ #print(cost) #print(accuracy) #correct_prediction = tf.equal(tf.argmax(valid_labels, 1), tf.argmax(label_batch, 1)) test_cost = session.run(cost, feed_dict={x: feature_batch, y: label_batch, keep_prob: 1.0}) valid_accuracy = session.run(accuracy, feed_dict={x: valid_features, y: valid_labels, keep_prob: 1.0}) print('Test Cost: {}'.format(test_cost), ' --- Valid Accuracy: {}'.format(valid_accuracy)) #print('Test Accuracy: {}'.format(test_accuracy)) # TODO: Implement Function ###Output _____no_output_____ ###Markdown HyperparametersTune the following parameters:* Set `epochs` to the number of iterations until the network stops learning or start overfitting* Set `batch_size` to the highest number that your machine has memory for. Most people set them to common sizes of memory: * 64 * 128 * 256 * ...* Set `keep_probability` to the probability of keeping a node using dropout ###Code # TODO: Tune Parameters epochs = 30 batch_size = 128 keep_probability = 0.8 ###Output _____no_output_____ ###Markdown Train on a Single CIFAR-10 BatchInstead of training the neural network on all the CIFAR-10 batches of data, let's use a single batch. This should save time while you iterate on the model to get a better accuracy. Once the final validation accuracy is 50% or greater, run the model on all the data in the next section. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ print('Checking the Training on a Single Batch...') with tf.Session() as sess: # Initializing the variables sess.run(tf.global_variables_initializer()) # Training cycle for epoch in range(epochs): batch_i = 1 for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size): print(batch_features.shape) print(batch_labels.shape) break train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels) break print('Epoch {:>2}, CIFAR-10 Batch {}: '.format(epoch + 1, batch_i), end='') print_stats(sess, batch_features, batch_labels, cost, accuracy) # break ###Output Checking the Training on a Single Batch... (128, 32, 32, 3) (128, 10) ###Markdown Fully Train the ModelNow that you got a good accuracy with a single CIFAR-10 batch, try it with all five batches. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ save_model_path = './image_classification' print('Training...') with tf.Session() as sess: # Initializing the variables sess.run(tf.global_variables_initializer()) # Training cycle for epoch in range(epochs): # Loop over all batches n_batches = 5 for batch_i in range(1, n_batches + 1): for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size): train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels) print('Epoch {:>2}, CIFAR-10 Batch {}: '.format(epoch + 1, batch_i), end='') print_stats(sess, batch_features, batch_labels, cost, accuracy) # Save Model saver = tf.train.Saver() save_path = saver.save(sess, save_model_path) ###Output Training... Epoch 1, CIFAR-10 Batch 1: Test Cost: 2.2165138721466064 --- Valid Accuracy: 0.28600001335144043 Epoch 1, CIFAR-10 Batch 2: Test Cost: 1.8616816997528076 --- Valid Accuracy: 0.34779998660087585 Epoch 1, CIFAR-10 Batch 3: Test Cost: 1.7193629741668701 --- Valid Accuracy: 0.3353999853134155 Epoch 1, CIFAR-10 Batch 4: Test Cost: 1.6640316247940063 --- Valid Accuracy: 0.3594000041484833 Epoch 1, CIFAR-10 Batch 5: Test Cost: 1.8842222690582275 --- Valid Accuracy: 0.38420000672340393 Epoch 2, CIFAR-10 Batch 1: Test Cost: 1.956764817237854 --- Valid Accuracy: 0.3889999985694885 Epoch 2, CIFAR-10 Batch 2: Test Cost: 1.5670435428619385 --- Valid Accuracy: 0.39320001006126404 Epoch 2, CIFAR-10 Batch 3: Test Cost: 1.530177116394043 --- Valid Accuracy: 0.37619999051094055 Epoch 2, CIFAR-10 Batch 4: Test Cost: 1.4864485263824463 --- Valid Accuracy: 0.4113999903202057 Epoch 2, CIFAR-10 Batch 5: Test Cost: 1.7593681812286377 --- Valid Accuracy: 0.4262000024318695 Epoch 3, CIFAR-10 Batch 1: Test Cost: 1.7955882549285889 --- Valid Accuracy: 0.41519999504089355 Epoch 3, CIFAR-10 Batch 2: Test Cost: 1.4203517436981201 --- Valid Accuracy: 0.42239999771118164 Epoch 3, CIFAR-10 Batch 3: Test Cost: 1.3522961139678955 --- Valid Accuracy: 0.41339999437332153 Epoch 3, CIFAR-10 Batch 4: Test Cost: 1.498530626296997 --- Valid Accuracy: 0.4300000071525574 Epoch 3, CIFAR-10 Batch 5: Test Cost: 1.6516869068145752 --- Valid Accuracy: 0.42559999227523804 Epoch 4, CIFAR-10 Batch 1: Test Cost: 1.6637474298477173 --- Valid Accuracy: 0.42820000648498535 Epoch 4, CIFAR-10 Batch 2: Test Cost: 1.2549803256988525 --- Valid Accuracy: 0.43799999356269836 Epoch 4, CIFAR-10 Batch 3: Test Cost: 1.2984893321990967 --- Valid Accuracy: 0.44339999556541443 Epoch 4, CIFAR-10 Batch 4: Test Cost: 1.3824504613876343 --- Valid Accuracy: 0.44920000433921814 Epoch 4, CIFAR-10 Batch 5: Test Cost: 1.5057814121246338 --- Valid Accuracy: 0.45399999618530273 Epoch 5, CIFAR-10 Batch 1: Test Cost: 1.6331707239151 --- Valid Accuracy: 0.4537999927997589 Epoch 5, CIFAR-10 Batch 2: Test Cost: 1.2094770669937134 --- Valid Accuracy: 0.44859999418258667 Epoch 5, CIFAR-10 Batch 3: Test Cost: 1.1291310787200928 --- Valid Accuracy: 0.4514000117778778 Epoch 5, CIFAR-10 Batch 4: Test Cost: 1.3065555095672607 --- Valid Accuracy: 0.46000000834465027 Epoch 5, CIFAR-10 Batch 5: Test Cost: 1.502212643623352 --- Valid Accuracy: 0.4691999852657318 Epoch 6, CIFAR-10 Batch 1: Test Cost: 1.4640849828720093 --- Valid Accuracy: 0.4575999975204468 Epoch 6, CIFAR-10 Batch 2: Test Cost: 1.1442562341690063 --- Valid Accuracy: 0.4726000130176544 Epoch 6, CIFAR-10 Batch 3: Test Cost: 1.0873348712921143 --- Valid Accuracy: 0.47940000891685486 Epoch 6, CIFAR-10 Batch 4: Test Cost: 1.2587143182754517 --- Valid Accuracy: 0.47699999809265137 Epoch 6, CIFAR-10 Batch 5: Test Cost: 1.478074073791504 --- Valid Accuracy: 0.47620001435279846 Epoch 7, CIFAR-10 Batch 1: Test Cost: 1.4473625421524048 --- Valid Accuracy: 0.4729999899864197 Epoch 7, CIFAR-10 Batch 2: Test Cost: 1.102046012878418 --- Valid Accuracy: 0.4733999967575073 Epoch 7, CIFAR-10 Batch 3: Test Cost: 1.0184358358383179 --- Valid Accuracy: 0.47200000286102295 Epoch 7, CIFAR-10 Batch 4: Test Cost: 1.1068446636199951 --- Valid Accuracy: 0.48579999804496765 Epoch 7, CIFAR-10 Batch 5: Test Cost: 1.3231585025787354 --- Valid Accuracy: 0.4878000020980835 Epoch 8, CIFAR-10 Batch 1: Test Cost: 1.3286513090133667 --- Valid Accuracy: 0.4880000054836273 Epoch 8, CIFAR-10 Batch 2: Test Cost: 1.0215768814086914 --- Valid Accuracy: 0.4812000095844269 Epoch 8, CIFAR-10 Batch 3: Test Cost: 0.9663518667221069 --- Valid Accuracy: 0.4657999873161316 Epoch 8, CIFAR-10 Batch 4: Test Cost: 1.0539557933807373 --- Valid Accuracy: 0.48399999737739563 Epoch 8, CIFAR-10 Batch 5: Test Cost: 1.2556836605072021 --- Valid Accuracy: 0.490200012922287 Epoch 9, CIFAR-10 Batch 1: Test Cost: 1.2317280769348145 --- Valid Accuracy: 0.4986000061035156 Epoch 9, CIFAR-10 Batch 2: Test Cost: 0.9257829785346985 --- Valid Accuracy: 0.477400004863739 Epoch 9, CIFAR-10 Batch 3: Test Cost: 0.9336628913879395 --- Valid Accuracy: 0.48660001158714294 Epoch 9, CIFAR-10 Batch 4: Test Cost: 1.0064032077789307 --- Valid Accuracy: 0.487199991941452 Epoch 9, CIFAR-10 Batch 5: Test Cost: 1.2400888204574585 --- Valid Accuracy: 0.49540001153945923 Epoch 10, CIFAR-10 Batch 1: Test Cost: 1.249559760093689 --- Valid Accuracy: 0.4991999864578247 Epoch 10, CIFAR-10 Batch 2: Test Cost: 0.8837908506393433 --- Valid Accuracy: 0.4925999939441681 Epoch 10, CIFAR-10 Batch 3: Test Cost: 0.8211900591850281 --- Valid Accuracy: 0.483599990606308 Epoch 10, CIFAR-10 Batch 4: Test Cost: 1.005422592163086 --- Valid Accuracy: 0.48660001158714294 Epoch 10, CIFAR-10 Batch 5: Test Cost: 1.2322607040405273 --- Valid Accuracy: 0.4934000074863434 Epoch 11, CIFAR-10 Batch 1: Test Cost: 1.1470705270767212 --- Valid Accuracy: 0.5004000067710876 Epoch 11, CIFAR-10 Batch 2: Test Cost: 0.8548173904418945 --- Valid Accuracy: 0.4997999966144562 Epoch 11, CIFAR-10 Batch 3: Test Cost: 0.8310036659240723 --- Valid Accuracy: 0.4903999865055084 Epoch 11, CIFAR-10 Batch 4: Test Cost: 0.9178043603897095 --- Valid Accuracy: 0.4957999885082245 Epoch 11, CIFAR-10 Batch 5: Test Cost: 1.1266154050827026 --- Valid Accuracy: 0.501800000667572 Epoch 12, CIFAR-10 Batch 1: Test Cost: 1.0903719663619995 --- Valid Accuracy: 0.5099999904632568 Epoch 12, CIFAR-10 Batch 2: Test Cost: 0.7552958726882935 --- Valid Accuracy: 0.5070000290870667 Epoch 12, CIFAR-10 Batch 3: Test Cost: 0.7419159412384033 --- Valid Accuracy: 0.4941999912261963 Epoch 12, CIFAR-10 Batch 4: Test Cost: 0.8823358416557312 --- Valid Accuracy: 0.48739999532699585 Epoch 12, CIFAR-10 Batch 5: Test Cost: 1.1426656246185303 --- Valid Accuracy: 0.49160000681877136 Epoch 13, CIFAR-10 Batch 1: Test Cost: 0.9635688662528992 --- Valid Accuracy: 0.5077999830245972 Epoch 13, CIFAR-10 Batch 2: Test Cost: 0.741649329662323 --- Valid Accuracy: 0.5049999952316284 Epoch 13, CIFAR-10 Batch 3: Test Cost: 0.7153558135032654 --- Valid Accuracy: 0.4984000027179718 Epoch 13, CIFAR-10 Batch 4: Test Cost: 0.8152307271957397 --- Valid Accuracy: 0.49160000681877136 Epoch 13, CIFAR-10 Batch 5: Test Cost: 1.0612045526504517 --- Valid Accuracy: 0.504800021648407 Epoch 14, CIFAR-10 Batch 1: Test Cost: 1.0125898122787476 --- Valid Accuracy: 0.5116000175476074 Epoch 14, CIFAR-10 Batch 2: Test Cost: 0.6956135034561157 --- Valid Accuracy: 0.5040000081062317 Epoch 14, CIFAR-10 Batch 3: Test Cost: 0.6768361330032349 --- Valid Accuracy: 0.49559998512268066 Epoch 14, CIFAR-10 Batch 4: Test Cost: 0.7777456045150757 --- Valid Accuracy: 0.4997999966144562 Epoch 14, CIFAR-10 Batch 5: Test Cost: 1.0174720287322998 --- Valid Accuracy: 0.49639999866485596 Epoch 15, CIFAR-10 Batch 1: Test Cost: 0.9307224154472351 --- Valid Accuracy: 0.5121999979019165 Epoch 15, CIFAR-10 Batch 2: Test Cost: 0.6802648901939392 --- Valid Accuracy: 0.5031999945640564 Epoch 15, CIFAR-10 Batch 3: Test Cost: 0.6501916646957397 --- Valid Accuracy: 0.4934000074863434 Epoch 15, CIFAR-10 Batch 4: Test Cost: 0.7225077152252197 --- Valid Accuracy: 0.4984000027179718 Epoch 15, CIFAR-10 Batch 5: Test Cost: 0.9156202077865601 --- Valid Accuracy: 0.5117999911308289 Epoch 16, CIFAR-10 Batch 1: Test Cost: 0.9112226366996765 --- Valid Accuracy: 0.5171999931335449 Epoch 16, CIFAR-10 Batch 2: Test Cost: 0.6699400544166565 --- Valid Accuracy: 0.5001999735832214 Epoch 16, CIFAR-10 Batch 3: Test Cost: 0.601253867149353 --- Valid Accuracy: 0.4869999885559082 Epoch 16, CIFAR-10 Batch 4: Test Cost: 0.7535923719406128 --- Valid Accuracy: 0.5049999952316284 Epoch 16, CIFAR-10 Batch 5: Test Cost: 0.8951206207275391 --- Valid Accuracy: 0.5144000053405762 Epoch 17, CIFAR-10 Batch 1: Test Cost: 0.8201066851615906 --- Valid Accuracy: 0.5167999863624573 Epoch 17, CIFAR-10 Batch 2: Test Cost: 0.6084728240966797 --- Valid Accuracy: 0.5058000087738037 Epoch 17, CIFAR-10 Batch 3: Test Cost: 0.5292536020278931 --- Valid Accuracy: 0.5049999952316284 Epoch 17, CIFAR-10 Batch 4: Test Cost: 0.7060728073120117 --- Valid Accuracy: 0.5072000026702881 Epoch 17, CIFAR-10 Batch 5: Test Cost: 0.9015951156616211 --- Valid Accuracy: 0.5199999809265137 Epoch 18, CIFAR-10 Batch 1: Test Cost: 0.839641273021698 --- Valid Accuracy: 0.5145999789237976 Epoch 18, CIFAR-10 Batch 2: Test Cost: 0.5818802118301392 --- Valid Accuracy: 0.5202000141143799 Epoch 18, CIFAR-10 Batch 3: Test Cost: 0.5388607382774353 --- Valid Accuracy: 0.506600022315979 Epoch 18, CIFAR-10 Batch 4: Test Cost: 0.6864104866981506 --- Valid Accuracy: 0.5127999782562256 Epoch 18, CIFAR-10 Batch 5: Test Cost: 0.7870049476623535 --- Valid Accuracy: 0.5145999789237976 Epoch 19, CIFAR-10 Batch 1: Test Cost: 0.7524703741073608 --- Valid Accuracy: 0.5224000215530396 Epoch 19, CIFAR-10 Batch 2: Test Cost: 0.536300539970398 --- Valid Accuracy: 0.5113999843597412 Epoch 19, CIFAR-10 Batch 3: Test Cost: 0.5442339777946472 --- Valid Accuracy: 0.5080000162124634 Epoch 19, CIFAR-10 Batch 4: Test Cost: 0.6498348712921143 --- Valid Accuracy: 0.5120000243186951 Epoch 19, CIFAR-10 Batch 5: Test Cost: 0.7879853844642639 --- Valid Accuracy: 0.5170000195503235 Epoch 20, CIFAR-10 Batch 1: Test Cost: 0.7425659894943237 --- Valid Accuracy: 0.5212000012397766 Epoch 20, CIFAR-10 Batch 2: Test Cost: 0.5071281790733337 --- Valid Accuracy: 0.5095999836921692 Epoch 20, CIFAR-10 Batch 3: Test Cost: 0.544109046459198 --- Valid Accuracy: 0.51419997215271 Epoch 20, CIFAR-10 Batch 4: Test Cost: 0.5719175338745117 --- Valid Accuracy: 0.5194000005722046 Epoch 20, CIFAR-10 Batch 5: Test Cost: 0.749904453754425 --- Valid Accuracy: 0.5095999836921692 Epoch 21, CIFAR-10 Batch 1: Test Cost: 0.7878631353378296 --- Valid Accuracy: 0.5264000296592712 Epoch 21, CIFAR-10 Batch 2: Test Cost: 0.48900946974754333 --- Valid Accuracy: 0.5070000290870667 Epoch 21, CIFAR-10 Batch 3: Test Cost: 0.45922842621803284 --- Valid Accuracy: 0.49900001287460327 Epoch 21, CIFAR-10 Batch 4: Test Cost: 0.5975083112716675 --- Valid Accuracy: 0.5210000276565552 Epoch 21, CIFAR-10 Batch 5: Test Cost: 0.6809048652648926 --- Valid Accuracy: 0.5105999708175659 Epoch 22, CIFAR-10 Batch 1: Test Cost: 0.7157321572303772 --- Valid Accuracy: 0.5194000005722046 Epoch 22, CIFAR-10 Batch 2: Test Cost: 0.44642218947410583 --- Valid Accuracy: 0.5117999911308289 Epoch 22, CIFAR-10 Batch 3: Test Cost: 0.4774302542209625 --- Valid Accuracy: 0.5076000094413757 Epoch 22, CIFAR-10 Batch 4: Test Cost: 0.5965604186058044 --- Valid Accuracy: 0.5181999802589417 Epoch 22, CIFAR-10 Batch 5: Test Cost: 0.6665050387382507 --- Valid Accuracy: 0.5121999979019165 Epoch 23, CIFAR-10 Batch 1: Test Cost: 0.7208171486854553 --- Valid Accuracy: 0.5221999883651733 Epoch 23, CIFAR-10 Batch 2: Test Cost: 0.4150008261203766 --- Valid Accuracy: 0.5148000121116638 Epoch 23, CIFAR-10 Batch 3: Test Cost: 0.4604068398475647 --- Valid Accuracy: 0.49959999322891235 Epoch 23, CIFAR-10 Batch 4: Test Cost: 0.5760369300842285 --- Valid Accuracy: 0.5239999890327454 Epoch 23, CIFAR-10 Batch 5: Test Cost: 0.6071385145187378 --- Valid Accuracy: 0.5117999911308289 Epoch 24, CIFAR-10 Batch 1: Test Cost: 0.6775175929069519 --- Valid Accuracy: 0.5175999999046326 Epoch 24, CIFAR-10 Batch 2: Test Cost: 0.46259862184524536 --- Valid Accuracy: 0.51419997215271 Epoch 24, CIFAR-10 Batch 3: Test Cost: 0.42526474595069885 --- Valid Accuracy: 0.5013999938964844 Epoch 24, CIFAR-10 Batch 4: Test Cost: 0.4953770041465759 --- Valid Accuracy: 0.5228000283241272 Epoch 24, CIFAR-10 Batch 5: Test Cost: 0.5737884640693665 --- Valid Accuracy: 0.5130000114440918 Epoch 25, CIFAR-10 Batch 1: Test Cost: 0.6120211482048035 --- Valid Accuracy: 0.52920001745224 Epoch 25, CIFAR-10 Batch 2: Test Cost: 0.42966288328170776 --- Valid Accuracy: 0.5138000249862671 Epoch 25, CIFAR-10 Batch 3: Test Cost: 0.4099965989589691 --- Valid Accuracy: 0.49320000410079956 Epoch 25, CIFAR-10 Batch 4: Test Cost: 0.4506341516971588 --- Valid Accuracy: 0.522599995136261 Epoch 25, CIFAR-10 Batch 5: Test Cost: 0.6047602295875549 --- Valid Accuracy: 0.5088000297546387 Epoch 26, CIFAR-10 Batch 1: Test Cost: 0.6051012277603149 --- Valid Accuracy: 0.5242000222206116 Epoch 26, CIFAR-10 Batch 2: Test Cost: 0.4585588574409485 --- Valid Accuracy: 0.5121999979019165 Epoch 26, CIFAR-10 Batch 3: Test Cost: 0.3566889464855194 --- Valid Accuracy: 0.5001999735832214 Epoch 26, CIFAR-10 Batch 4: Test Cost: 0.49742698669433594 --- Valid Accuracy: 0.5113999843597412 Epoch 26, CIFAR-10 Batch 5: Test Cost: 0.5887235403060913 --- Valid Accuracy: 0.5067999958992004 Epoch 27, CIFAR-10 Batch 1: Test Cost: 0.5677438378334045 --- Valid Accuracy: 0.5242000222206116 Epoch 27, CIFAR-10 Batch 2: Test Cost: 0.426910400390625 --- Valid Accuracy: 0.5212000012397766 Epoch 27, CIFAR-10 Batch 3: Test Cost: 0.3060685992240906 --- Valid Accuracy: 0.4991999864578247 Epoch 27, CIFAR-10 Batch 4: Test Cost: 0.4937344491481781 --- Valid Accuracy: 0.5184000134468079 Epoch 27, CIFAR-10 Batch 5: Test Cost: 0.5216708183288574 --- Valid Accuracy: 0.5171999931335449 Epoch 28, CIFAR-10 Batch 1: Test Cost: 0.6022601127624512 --- Valid Accuracy: 0.5180000066757202 Epoch 28, CIFAR-10 Batch 2: Test Cost: 0.4024377763271332 --- Valid Accuracy: 0.5139999985694885 Epoch 28, CIFAR-10 Batch 3: Test Cost: 0.31150808930397034 --- Valid Accuracy: 0.498199999332428 Epoch 28, CIFAR-10 Batch 4: Test Cost: 0.4821416437625885 --- Valid Accuracy: 0.5085999965667725 Epoch 28, CIFAR-10 Batch 5: Test Cost: 0.5040921568870544 --- Valid Accuracy: 0.5180000066757202 Epoch 29, CIFAR-10 Batch 1: Test Cost: 0.5232058763504028 --- Valid Accuracy: 0.5217999815940857 Epoch 29, CIFAR-10 Batch 2: Test Cost: 0.3803856670856476 --- Valid Accuracy: 0.5144000053405762 Epoch 29, CIFAR-10 Batch 3: Test Cost: 0.23715415596961975 --- Valid Accuracy: 0.5095999836921692 Epoch 29, CIFAR-10 Batch 4: Test Cost: 0.4873233735561371 --- Valid Accuracy: 0.5076000094413757 Epoch 29, CIFAR-10 Batch 5: Test Cost: 0.47108227014541626 --- Valid Accuracy: 0.5090000033378601 Epoch 30, CIFAR-10 Batch 1: Test Cost: 0.5126301050186157 --- Valid Accuracy: 0.5121999979019165 Epoch 30, CIFAR-10 Batch 2: Test Cost: 0.39546361565589905 --- Valid Accuracy: 0.5103999972343445 Epoch 30, CIFAR-10 Batch 3: Test Cost: 0.2461860179901123 --- Valid Accuracy: 0.5063999891281128 Epoch 30, CIFAR-10 Batch 4: Test Cost: 0.4596402049064636 --- Valid Accuracy: 0.5085999965667725 Epoch 30, CIFAR-10 Batch 5: Test Cost: 0.4026110768318176 --- Valid Accuracy: 0.5192000269889832 ###Markdown CheckpointThe model has been saved to disk. Test ModelTest your model against the test dataset. This will be your final accuracy. You should have an accuracy greater than 50%. If you don't, keep tweaking the model architecture and parameters. ###Code """ DON'T MODIFY ANYTHING IN THIS CELL """ %matplotlib inline %config InlineBackend.figure_format = 'retina' import tensorflow as tf import pickle import helper import random # Set batch size if not already set try: if batch_size: pass except NameError: batch_size = 64 save_model_path = './image_classification' n_samples = 4 top_n_predictions = 3 def test_model(): """ Test the saved model against the test dataset """ test_features, test_labels = pickle.load(open('preprocess_test.p', mode='rb')) loaded_graph = tf.Graph() with tf.Session(graph=loaded_graph) as sess: # Load model loader = tf.train.import_meta_graph(save_model_path + '.meta') loader.restore(sess, save_model_path) # Get Tensors from loaded model loaded_x = loaded_graph.get_tensor_by_name('x:0') loaded_y = loaded_graph.get_tensor_by_name('y:0') loaded_keep_prob = loaded_graph.get_tensor_by_name('keep_prob:0') loaded_logits = loaded_graph.get_tensor_by_name('logits:0') loaded_acc = loaded_graph.get_tensor_by_name('accuracy:0') # Get accuracy in batches for memory limitations test_batch_acc_total = 0 test_batch_count = 0 for test_feature_batch, test_label_batch in helper.batch_features_labels(test_features, test_labels, batch_size): test_batch_acc_total += sess.run( loaded_acc, feed_dict={loaded_x: test_feature_batch, loaded_y: test_label_batch, loaded_keep_prob: 1.0}) test_batch_count += 1 print('Testing Accuracy: {}\n'.format(test_batch_acc_total/test_batch_count)) # Print Random Samples random_test_features, random_test_labels = tuple(zip(*random.sample(list(zip(test_features, test_labels)), n_samples))) random_test_predictions = sess.run( tf.nn.top_k(tf.nn.softmax(loaded_logits), top_n_predictions), feed_dict={loaded_x: random_test_features, loaded_y: random_test_labels, loaded_keep_prob: 1.0}) helper.display_image_predictions(random_test_features, random_test_labels, random_test_predictions) test_model() ###Output _____no_output_____
labwork/numpy_basics.ipynb
###Markdown Numpy Tutorial Creating Arrays ###Code import numpy as np array1=np.array([1,2,3,4,5,6]) print (array1) print (array1[0:6]) print (array1[:6]) print (array1[3:6]) print (array1[:]) import numpy as np array1=np.array([(1,2,3),(4.5,5,6),(7,8,9)], dtype=np.float32) #print (array1) print (array1[2,2]) # prints 2nd row, 2nd col element print (array1[0:2]) # prints rows 0,1 print (array1[0:3:2]) # prints rows between 0-3 with stepSize 2 print (array1[0:3,2]) # prints 2nd col of matrix print (array1[0:3,0:2]) #prints matrix with print (array1.shape) import numpy as np array1=np.array([[1,2,3],[4.5,5,6]], dtype=int) print (array1) import numpy as np array1=np.array([[(1.5,2,3), (4,5,6)], [(3,2,1), (4,5,6)]],dtype=np.float32) print (array1) print (array1.shape) #create array of Zeros array3=np.zeros((3,4)) #creates array of 3-rows 4-columns print (array3) #create array of Zeros array3=np.ones((3,4),dtype=int) #creates array of 3-rows 4-columns print (array3) arr5=np.arange(0,10) #creates array with elements 0-9 print (arr5) arr5=np.arange(0,10,2) #creates array with elements between 0-9 with step size 2 print (arr5) arr6=np.linspace(1,10,3) # creates array using elements between 1-10 with 3 evenly spaces samples print (arr6) e = np.full((2,2),7) # creates array of 2X2 and fills with constant 7 print (e) f = np.eye(3) #creates 3x3 identity matrix print (f) arr7=np.random.random((2,3)) #creates 2x3 array with random elements print (arr7) arr8=np.empty((3,2)) print (arr8) ###Output _____no_output_____ ###Markdown Loading and Storing arrays into Disk ###Code np.save('my_array',e) # stores array into disk with name my_array.npy arr9=np.load('my_array.npy') #loads the stored array into variabe arr9 print (arr9 ) ###Output _____no_output_____ ###Markdown Inspecting Arrays ###Code array1=np.array([[1,2,0],[4.5,0,6]], dtype=np.float32) print (array1.shape) #prints row col print (array1.ndim) #prints dimensions of the array print (len(array1)) #prints length of the array print (array1.size) #prints total number of elements in the array print (array1.dtype) #prints datatype of elements in the array print (array1.dtype.name) # print (array1.astype(int)) #converts array elements to integer type print (array1.max()) #prints max element print (array1.max(axis=0)) #prints row that has max value print (array1.max(axis=1)) # prints col that has max value print (array1.min()) #prints min element print (array1.sum()) # prints sum of all the elements in the array print (array1.view()) #displays the array elements ###Output _____no_output_____ ###Markdown Asking For Help ###Code np.info(np.argmax) ###Output _____no_output_____ ###Markdown Transposing Array ###Code import numpy as np array1=np.array([(1.5,2,3), (4,5,6), (3,2,1), (4,5,6)],dtype=np.float32) print (array1) tranposeArray=np.transpose(array1) print (tranposeArray) import numpy as np array1=np.array([(1.5,2,3), (4,5,6), (3,2,1), (4,5,6)],dtype=np.float32) print (array1) print (array1.ravel()) #flatten the array array1.reshape(4,3) #reshapes array into 4-rows and 3-columns print (array1) array2=np.array([(7,8,9),(10,11,12)], dtype=np.float32) array3=np.array([(13,14,15,16)]) arr4=np.concatenate((array1,array2),axis=0) # concatenates array1 and array2 print (arr4) arr5=np.vstack((array1,array2)) print (arr5) import numpy as np array1=np.array([(1.5,2,3), (4,5,6), (3,2,1)],dtype=np.float32) print (array1) array6=np.array([(4,5,6),(4,5,6), (3,2,1)]) print (array6) array7=np.hstack((array1,array6)) print (array7) import numpy as np rnd_number=np.random.randn() print (rnd_number) import numpy as np array1=np.array([(1,2,3),(4.5,5,6),(7,8,9)], dtype=np.float32) print (array1) b=np.ravel(array1) # Sysntax->[numpy.ravel(a, order)] Return a contiguous flattened array. print (b) b.fill(5) print (array1) c=array1.reshape(-1) # same as above print (c) d=array1.flatten() # 1-D array copy of the elements of an array in row-major order. print (d) ###Output _____no_output_____
K-means Clustering Algorithm.ipynb
###Markdown Importing library ###Code %matplotlib inline import matplotlib.pyplot as plt import numpy as np import random ###Output _____no_output_____ ###Markdown Generating training set ###Code training_set = [] for i in range(40): training_set.append([2 * random.random() + 2, 2 * random.random() + 2]) for i in range(40): training_set.append([2 * random.random() + 8, 2 * random.random() + 2]) for i in range(40): training_set.append([2 * random.random() + 2, 2 * random.random() + 8]) for i in range(40): training_set.append([2 * random.random() + 4, 2 * random.random() + 4]) for i in range(40): training_set.append([3 * random.random() + 9, 3 * random.random() + 9]) for i in range(40): training_set.append([10 * random.random(), 10 * random.random()]) training_set = np.array(training_set) ###Output _____no_output_____ ###Markdown Functions ###Code def kmeans(training_set, K, plot=False): """ Divides training set into clusters. Arguments training_set - 2D array with number of columns 2 K - Number of clusters plot - Boolean value whether to plot graph or not """ color = ['r', 'b', 'g', 'c', 'm', 'orange', 'crimson', 'pink', 'brown', 'yellow', 'gray', 'mediumseagreen'] if plot: plt.scatter(training_set[:, 0], training_set[:, 1], c='k') cluster_centroids = training_set[np.random.randint(0, training_set.shape[0], K)] if plot: for k in range(K): plt.scatter(cluster_centroids[k][0], cluster_centroids[k][1], c=color[k], marker='X', s=100) plt.show() m = len(training_set) n = len(training_set[0]) nearest_cluster_centroid = np.zeros(m, dtype='int') old_cluster_centroids = np.zeros((K, 2), dtype='float') cost = [] while (np.max(np.absolute(old_cluster_centroids - cluster_centroids)) > 0.001): sum_cluster = np.zeros((K, n)) count_cluster = np.zeros(K, dtype='int') distance_from_nearest_cluster_centroid = np.zeros(m, dtype='float') for i, xi in enumerate(training_set): # find the cluster with minimum distance from our training example. nearest_cluster_centroid[i] = np.argmin(np.linalg.norm(cluster_centroids - np.tile(xi, (K, 1)), axis=1)) sum_cluster[nearest_cluster_centroid[i]] = sum_cluster[nearest_cluster_centroid[i]] + xi count_cluster[nearest_cluster_centroid[i]] += 1 distance_from_nearest_cluster_centroid[i] = (cluster_centroids[nearest_cluster_centroid[i]] - xi)[0] ** 2 + (cluster_centroids[nearest_cluster_centroid[i]] - xi)[1] ** 2 if plot: plt.scatter(xi[0], xi[1], c=color[nearest_cluster_centroid[i]], marker='o') old_cluster_centroids = cluster_centroids.copy() for k in range(K): if count_cluster[k] != 0: cluster_centroids[k] = sum_cluster[k] / count_cluster[k] else: cluster_centroids[k] = np.array([random.randint(int(min(training_set[:, 0])), int(max(training_set[:, 0]))), random.randint(int(min(training_set[:, 1])), int(max(training_set[:, 1])))], dtype='float') if plot: plt.scatter(cluster_centroids[k][0], cluster_centroids[k][1], c=color[k], marker='X', s=100) cost.append(np.sum(distance_from_nearest_cluster_centroid) / m) if plot: plt.show() if plot: plt.plot(cost) plt.xlabel('Iterations') plt.ylabel('Cost') plt.title('Cost vs Interations') plt.show() return (cluster_centroids, nearest_cluster_centroid, cost[-1]) def kmeans_multiply_tries(training_set, K, tries, plot=False): """ Tries KMeans multiple amount of times and gives clusters with minimum error. """ color = ['r', 'b', 'g', 'c', 'm', 'orange', 'crimson', 'pink', 'brown', 'yellow', 'gray', 'mediumseagreen'] cost = None for i in range(tries): if cost is None: cluster_centroids, nearest_cluster_centroid, cost = kmeans(training_set, K, plot=False) else: new_cluster_centroids, new_nearest_cluster_centroid, new_cost = kmeans(training_set, K, plot=False) if new_cost < cost: cluster_centroids, nearest_cluster_centroid, cost = new_cluster_centroids, new_nearest_cluster_centroid, new_cost if plot: for k in range(K): plt.scatter(cluster_centroids[k][0], cluster_centroids[k][1], c=color[k], marker='X', s=100) for i, xi in enumerate(training_set): plt.scatter(xi[0], xi[1], c=color[nearest_cluster_centroid[i]], marker='o') plt.show() return (cluster_centroids, nearest_cluster_centroid, cost) def plot_cost_vs_K(training_set, max_K, tries=10): """ Plots cost function wrt K. """ costs = [] for K in range(2, max_K): costs.append(kmeans_multiply_tries(training_set, K, tries)[2]) plt.plot(np.arange(2, max_K), costs) plt.xlabel('K') plt.ylabel('Cost') plt.title('Cost function vs K') plt.show() ###Output _____no_output_____ ###Markdown Calling functions ###Code kmeans(training_set, 5, plot=True) kmeans_multiply_tries(training_set, 11, tries=10, plot=True) plot_cost_vs_K(training_set, 20, 10) ###Output _____no_output_____
cifar10_tutorial.ipynb
###Markdown Training a classifier=====================This is it. You have seen how to define neural networks, compute loss and makeupdates to the weights of the network.Now you might be thinking,What about data?----------------Generally, when you have to deal with image, text, audio or video data,you can use standard python packages that load data into a numpy array.Then you can convert this array into a ``torch.*Tensor``.- For images, packages such as Pillow, OpenCV are useful- For audio, packages such as scipy and librosa- For text, either raw Python or Cython based loading, or NLTK and SpaCy are usefulSpecifically for vision, we have created a package called``torchvision``, that has data loaders for common datasets such asImagenet, CIFAR10, MNIST, etc. and data transformers for images, viz.,``torchvision.datasets`` and ``torch.utils.data.DataLoader``.This provides a huge convenience and avoids writing boilerplate code.For this tutorial, we will use the CIFAR10 dataset.It has the classes: ‘airplane’, ‘automobile’, ‘bird’, ‘cat’, ‘deer’,‘dog’, ‘frog’, ‘horse’, ‘ship’, ‘truck’. The images in CIFAR-10 are ofsize 3x32x32, i.e. 3-channel color images of 32x32 pixels in size... figure:: /_static/img/cifar10.png :alt: cifar10 cifar10Training an image classifier----------------------------We will do the following steps in order:1. Load and normalizing the CIFAR10 training and test datasets using ``torchvision``2. Define a Convolution Neural Network3. Define a loss function4. Train the network on the training data5. Test the network on the test data1. Loading and normalizing CIFAR10^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^Using ``torchvision``, it’s extremely easy to load CIFAR10. ###Code import torch import torchvision import torchvision.transforms as transforms ###Output _____no_output_____ ###Markdown The output of torchvision datasets are PILImage images of range [0, 1].We transform them to Tensors of normalized range [-1, 1]. ###Code transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=2) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') ###Output Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to ./data/cifar-10-python.tar.gz Files already downloaded and verified ###Markdown Let us show some of the training images, for fun. ###Code import matplotlib.pyplot as plt import numpy as np # functions to show an image def imshow(img): img = img / 2 + 0.5 # unnormalize npimg = img.numpy() plt.imshow(np.transpose(npimg, (1, 2, 0))) # get some random training images dataiter = iter(trainloader) images, labels = dataiter.next() # show images imshow(torchvision.utils.make_grid(images)) # print labels print(' '.join('%5s' % classes[labels[j]] for j in range(4))) ###Output frog bird plane cat ###Markdown 2. Define a Convolution Neural Network^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^Copy the neural network from the Neural Networks section before and modify it totake 3-channel images (instead of 1-channel images as it was defined). ###Code import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x net = Net() ###Output _____no_output_____ ###Markdown 3. Define a Loss function and optimizer^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^Let's use a Classification Cross-Entropy loss and SGD with momentum. ###Code import torch.optim as optim criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) ###Output _____no_output_____ ###Markdown 4. Train the network^^^^^^^^^^^^^^^^^^^^This is when things start to get interesting.We simply have to loop over our data iterator, and feed the inputs to thenetwork and optimize. ###Code for epoch in range(2): # loop over the dataset multiple times running_loss = 0.0 for i, data in enumerate(trainloader, 0): # get the inputs inputs, labels = data # zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # print statistics running_loss += loss.item() if i % 2000 == 1999: # print every 2000 mini-batches print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000)) running_loss = 0.0 print('Finished Training') ###Output [1, 2000] loss: 2.247 [1, 4000] loss: 1.887 [1, 6000] loss: 1.677 [1, 8000] loss: 1.576 [1, 10000] loss: 1.491 [1, 12000] loss: 1.454 [2, 2000] loss: 1.384 [2, 4000] loss: 1.348 [2, 6000] loss: 1.346 [2, 8000] loss: 1.323 [2, 10000] loss: 1.303 [2, 12000] loss: 1.284 Finished Training ###Markdown 5. Test the network on the test data^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^We have trained the network for 2 passes over the training dataset.But we need to check if the network has learnt anything at all.We will check this by predicting the class label that the neural networkoutputs, and checking it against the ground-truth. If the prediction iscorrect, we add the sample to the list of correct predictions.Okay, first step. Let us display an image from the test set to get familiar. ###Code dataiter = iter(testloader) images, labels = dataiter.next() # print images imshow(torchvision.utils.make_grid(images)) print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4))) ###Output GroundTruth: cat ship ship plane ###Markdown Okay, now let us see what the neural network thinks these examples above are: ###Code outputs = net(images) ###Output _____no_output_____ ###Markdown The outputs are energies for the 10 classes.Higher the energy for a class, the more the networkthinks that the image is of the particular class.So, let's get the index of the highest energy: ###Code _, predicted = torch.max(outputs, 1) print('Predicted: ', ' '.join('%5s' % classes[predicted[j]] for j in range(4))) ###Output Predicted: cat car car ship ###Markdown The results seem pretty good.Let us look at how the network performs on the whole dataset. ###Code correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % ( 100 * correct / total)) ###Output Accuracy of the network on the 10000 test images: 54 % ###Markdown That looks waaay better than chance, which is 10% accuracy (randomly pickinga class out of 10 classes).Seems like the network learnt something.Hmmm, what are the classes that performed well, and the classes that didnot perform well: ###Code class_correct = list(0. for i in range(10)) class_total = list(0. for i in range(10)) with torch.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs, 1) c = (predicted == labels).squeeze() for i in range(4): label = labels[i] class_correct[label] += c[i].item() class_total[label] += 1 for i in range(10): print('Accuracy of %5s : %2d %%' % ( classes[i], 100 * class_correct[i] / class_total[i])) ###Output Accuracy of plane : 72 % Accuracy of car : 77 % Accuracy of bird : 29 % Accuracy of cat : 31 % Accuracy of deer : 45 % Accuracy of dog : 46 % Accuracy of frog : 73 % Accuracy of horse : 53 % Accuracy of ship : 54 % Accuracy of truck : 62 % ###Markdown Okay, so what next?How do we run these neural networks on the GPU?Training on GPU----------------Just like how you transfer a Tensor on to the GPU, you transfer the neuralnet onto the GPU.Let's first define our device as the first visible cuda device if we haveCUDA available: ###Code device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Assume that we are on a CUDA machine, then this should print a CUDA device: print(device) ###Output cpu ###Markdown Training a Classifier=====================This is it. You have seen how to define neural networks, compute loss and makeupdates to the weights of the network.Now you might be thinking,What about data?----------------Generally, when you have to deal with image, text, audio or video data,you can use standard python packages that load data into a numpy array.Then you can convert this array into a ``torch.*Tensor``.- For images, packages such as Pillow, OpenCV are useful- For audio, packages such as scipy and librosa- For text, either raw Python or Cython based loading, or NLTK and SpaCy are usefulSpecifically for vision, we have created a package called``torchvision``, that has data loaders for common datasets such asImagenet, CIFAR10, MNIST, etc. and data transformers for images, viz.,``torchvision.datasets`` and ``torch.utils.data.DataLoader``.This provides a huge convenience and avoids writing boilerplate code.For this tutorial, we will use the CIFAR10 dataset.It has the classes: ‘airplane’, ‘automobile’, ‘bird’, ‘cat’, ‘deer’,‘dog’, ‘frog’, ‘horse’, ‘ship’, ‘truck’. The images in CIFAR-10 are ofsize 3x32x32, i.e. 3-channel color images of 32x32 pixels in size... figure:: /_static/img/cifar10.png :alt: cifar10 cifar10Training an image classifier----------------------------We will do the following steps in order:1. Load and normalize the CIFAR10 training and test datasets using ``torchvision``2. Define a Convolutional Neural Network3. Define a loss function4. Train the network on the training data5. Test the network on the test data1. Load and normalize CIFAR10^^^^^^^^^^^^^^^^^^^^^^^^^^^^^Using ``torchvision``, it’s extremely easy to load CIFAR10. ###Code import torch import torchvision import torchvision.transforms as transforms ###Output _____no_output_____ ###Markdown The output of torchvision datasets are PILImage images of range [0, 1].We transform them to Tensors of normalized range [-1, 1]. NoteIf running on Windows and you get a BrokenPipeError, try setting the num_worker of torch.utils.data.DataLoader() to 0. ###Code transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) batch_size = 4 trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=2) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') ###Output _____no_output_____ ###Markdown Let us show some of the training images, for fun. ###Code import matplotlib.pyplot as plt import numpy as np # functions to show an image def imshow(img): img = img / 2 + 0.5 # unnormalize npimg = img.numpy() plt.imshow(np.transpose(npimg, (1, 2, 0))) plt.show() # get some random training images dataiter = iter(trainloader) images, labels = dataiter.next() # show images imshow(torchvision.utils.make_grid(images)) # print labels print(' '.join('%5s' % classes[labels[j]] for j in range(batch_size))) ###Output _____no_output_____ ###Markdown 2. Define a Convolutional Neural Network^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^Copy the neural network from the Neural Networks section before and modify it totake 3-channel images (instead of 1-channel images as it was defined). ###Code import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = torch.flatten(x, 1) # flatten all dimensions except batch x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x net = Net() ###Output _____no_output_____ ###Markdown 3. Define a Loss function and optimizer^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^Let's use a Classification Cross-Entropy loss and SGD with momentum. ###Code import torch.optim as optim criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) ###Output _____no_output_____ ###Markdown 4. Train the network^^^^^^^^^^^^^^^^^^^^This is when things start to get interesting.We simply have to loop over our data iterator, and feed the inputs to thenetwork and optimize. ###Code for epoch in range(2): # loop over the dataset multiple times running_loss = 0.0 for i, data in enumerate(trainloader, 0): # get the inputs; data is a list of [inputs, labels] inputs, labels = data # zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # print statistics running_loss += loss.item() if i % 2000 == 1999: # print every 2000 mini-batches print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000)) running_loss = 0.0 print('Finished Training') ###Output _____no_output_____ ###Markdown Let's quickly save our trained model: ###Code PATH = './cifar_net.pth' torch.save(net.state_dict(), PATH) ###Output _____no_output_____ ###Markdown See `here `_for more details on saving PyTorch models.5. Test the network on the test data^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^We have trained the network for 2 passes over the training dataset.But we need to check if the network has learnt anything at all.We will check this by predicting the class label that the neural networkoutputs, and checking it against the ground-truth. If the prediction iscorrect, we add the sample to the list of correct predictions.Okay, first step. Let us display an image from the test set to get familiar. ###Code dataiter = iter(testloader) images, labels = dataiter.next() # print images imshow(torchvision.utils.make_grid(images)) print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4))) ###Output _____no_output_____ ###Markdown Next, let's load back in our saved model (note: saving and re-loading the modelwasn't necessary here, we only did it to illustrate how to do so): ###Code net = Net() net.load_state_dict(torch.load(PATH)) ###Output _____no_output_____ ###Markdown Okay, now let us see what the neural network thinks these examples above are: ###Code outputs = net(images) ###Output _____no_output_____ ###Markdown The outputs are energies for the 10 classes.The higher the energy for a class, the more the networkthinks that the image is of the particular class.So, let's get the index of the highest energy: ###Code _, predicted = torch.max(outputs, 1) print('Predicted: ', ' '.join('%5s' % classes[predicted[j]] for j in range(4))) ###Output _____no_output_____ ###Markdown The results seem pretty good.Let us look at how the network performs on the whole dataset. ###Code correct = 0 total = 0 # since we're not training, we don't need to calculate the gradients for our outputs with torch.no_grad(): for data in testloader: images, labels = data # calculate outputs by running images through the network outputs = net(images) # the class with the highest energy is what we choose as prediction _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % ( 100 * correct / total)) ###Output _____no_output_____ ###Markdown That looks way better than chance, which is 10% accuracy (randomly pickinga class out of 10 classes).Seems like the network learnt something.Hmmm, what are the classes that performed well, and the classes that didnot perform well: ###Code # prepare to count predictions for each class correct_pred = {classname: 0 for classname in classes} total_pred = {classname: 0 for classname in classes} # again no gradients needed with torch.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predictions = torch.max(outputs, 1) # collect the correct predictions for each class for label, prediction in zip(labels, predictions): if label == prediction: correct_pred[classes[label]] += 1 total_pred[classes[label]] += 1 # print accuracy for each class for classname, correct_count in correct_pred.items(): accuracy = 100 * float(correct_count) / total_pred[classname] print("Accuracy for class {:5s} is: {:.1f} %".format(classname, accuracy)) ###Output _____no_output_____ ###Markdown Okay, so what next?How do we run these neural networks on the GPU?Training on GPU----------------Just like how you transfer a Tensor onto the GPU, you transfer the neuralnet onto the GPU.Let's first define our device as the first visible cuda device if we haveCUDA available: ###Code device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Assuming that we are on a CUDA machine, this should print a CUDA device: print(device) ###Output _____no_output_____ ###Markdown Change runtime of notebook to GPU Select Runtime-> Change Runtime type -> select runtime python 3 and hardward accelerator GPU Install pytorch and torchvision for python 3 and cuda 8.0 ###Code !pip3 install https://download.pytorch.org/whl/cu80/torch-1.0.0-cp36-cp36m-linux_x86_64.whl !pip3 install torchvision %matplotlib inline ###Output _____no_output_____ ###Markdown Training a Classifier=====================This is it. You have seen how to define neural networks, compute loss and makeupdates to the weights of the network.Now you might be thinking,What about data?----------------Generally, when you have to deal with image, text, audio or video data,you can use standard python packages that load data into a numpy array.Then you can convert this array into a ``torch.*Tensor``.- For images, packages such as Pillow, OpenCV are useful- For audio, packages such as scipy and librosa- For text, either raw Python or Cython based loading, or NLTK and SpaCy are usefulSpecifically for vision, we have created a package called``torchvision``, that has data loaders for common datasets such asImagenet, CIFAR10, MNIST, etc. and data transformers for images, viz.,``torchvision.datasets`` and ``torch.utils.data.DataLoader``.This provides a huge convenience and avoids writing boilerplate code.For this tutorial, we will use the CIFAR10 dataset.It has the classes: ‘airplane’, ‘automobile’, ‘bird’, ‘cat’, ‘deer’,‘dog’, ‘frog’, ‘horse’, ‘ship’, ‘truck’. The images in CIFAR-10 are ofsize 3x32x32, i.e. 3-channel color images of 32x32 pixels in size... figure:: /_static/img/cifar10.png :alt: cifar10 cifar10Training an image classifier----------------------------We will do the following steps in order:1. Load and normalizing the CIFAR10 training and test datasets using ``torchvision``2. Define a Convolutional Neural Network3. Define a loss function4. Train the network on the training data5. Test the network on the test data1. Loading and normalizing CIFAR10^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^Using ``torchvision``, it’s extremely easy to load CIFAR10. ###Code import torch import torchvision import torchvision.transforms as transforms ###Output _____no_output_____ ###Markdown The output of torchvision datasets are PILImage images of range [0, 1].We transform them to Tensors of normalized range [-1, 1]. ###Code transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=2) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') ###Output Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to ./data/cifar-10-python.tar.gz Files already downloaded and verified ###Markdown Let us show some of the training images, for fun. ###Code import matplotlib.pyplot as plt import numpy as np # functions to show an image def imshow(img): img = img / 2 + 0.5 # unnormalize npimg = img.numpy() plt.imshow(np.transpose(npimg, (1, 2, 0))) plt.show() # get some random training images dataiter = iter(trainloader) images, labels = dataiter.next() # show images imshow(torchvision.utils.make_grid(images)) # print labels print(' '.join('%5s' % classes[labels[j]] for j in range(4))) ###Output _____no_output_____ ###Markdown 2. Define a Convolutional Neural Network^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^Copy the neural network from the Neural Networks section before and modify it totake 3-channel images (instead of 1-channel images as it was defined). ###Code import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x net = Net() ###Output _____no_output_____ ###Markdown 3. Define a Loss function and optimizer^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^Let's use a Classification Cross-Entropy loss and SGD with momentum. ###Code import torch.optim as optim criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) ###Output _____no_output_____ ###Markdown 4. Train the network^^^^^^^^^^^^^^^^^^^^This is when things start to get interesting.We simply have to loop over our data iterator, and feed the inputs to thenetwork and optimize. ###Code for epoch in range(2): # loop over the dataset multiple times running_loss = 0.0 for i, data in enumerate(trainloader, 0): # get the inputs inputs, labels = data # zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # print statistics running_loss += loss.item() if i % 2000 == 1999: # print every 2000 mini-batches print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000)) running_loss = 0.0 print('Finished Training') ###Output [1, 2000] loss: 2.138 [1, 4000] loss: 1.851 [1, 6000] loss: 1.670 [1, 8000] loss: 1.565 [1, 10000] loss: 1.498 [1, 12000] loss: 1.486 [2, 2000] loss: 1.401 [2, 4000] loss: 1.370 [2, 6000] loss: 1.367 [2, 8000] loss: 1.344 [2, 10000] loss: 1.317 [2, 12000] loss: 1.302 Finished Training ###Markdown 5. Test the network on the test data^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^We have trained the network for 2 passes over the training dataset.But we need to check if the network has learnt anything at all.We will check this by predicting the class label that the neural networkoutputs, and checking it against the ground-truth. If the prediction iscorrect, we add the sample to the list of correct predictions.Okay, first step. Let us display an image from the test set to get familiar. ###Code dataiter = iter(testloader) images, labels = dataiter.next() # print images imshow(torchvision.utils.make_grid(images)) print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4))) ###Output _____no_output_____ ###Markdown Okay, now let us see what the neural network thinks these examples above are: ###Code outputs = net(images) ###Output _____no_output_____ ###Markdown The outputs are energies for the 10 classes.The higher the energy for a class, the more the networkthinks that the image is of the particular class.So, let's get the index of the highest energy: ###Code _, predicted = torch.max(outputs, 1) print('Predicted: ', ' '.join('%5s' % classes[predicted[j]] for j in range(4))) ###Output Predicted: cat car car plane ###Markdown The results seem pretty good.Let us look at how the network performs on the whole dataset. ###Code correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % ( 100 * correct / total)) ###Output Accuracy of the network on the 10000 test images: 52 % ###Markdown That looks waaay better than chance, which is 10% accuracy (randomly pickinga class out of 10 classes).Seems like the network learnt something.Hmmm, what are the classes that performed well, and the classes that didnot perform well: ###Code class_correct = list(0. for i in range(10)) class_total = list(0. for i in range(10)) with torch.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs, 1) c = (predicted == labels).squeeze() for i in range(4): label = labels[i] class_correct[label] += c[i].item() class_total[label] += 1 for i in range(10): print('Accuracy of %5s : %2d %%' % ( classes[i], 100 * class_correct[i] / class_total[i])) ###Output Accuracy of plane : 52 % Accuracy of car : 62 % Accuracy of bird : 60 % Accuracy of cat : 31 % Accuracy of deer : 32 % Accuracy of dog : 45 % Accuracy of frog : 70 % Accuracy of horse : 47 % Accuracy of ship : 60 % Accuracy of truck : 66 % ###Markdown Okay, so what next?How do we run these neural networks on the GPU?Training on GPU----------------Just like how you transfer a Tensor onto the GPU, you transfer the neuralnet onto the GPU.Let's first define our device as the first visible cuda device if we haveCUDA available: ###Code device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Assuming that we are on a CUDA machine, this should print a CUDA device: print(device) ###Output cuda:0 ###Markdown The rest of this section assumes that ``device`` is a CUDA device.Then these methods will recursively go over all modules and convert theirparameters and buffers to CUDA tensors:.. code:: python net.to(device)Remember that you will have to send the inputs and targets at every stepto the GPU too:.. code:: python inputs, labels = inputs.to(device), labels.to(device)Why dont I notice MASSIVE speedup compared to CPU? Because your networkis realllly small.**Exercise:** Try increasing the width of your network (argument 2 ofthe first ``nn.Conv2d``, and argument 1 of the second ``nn.Conv2d`` –they need to be the same number), see what kind of speedup you get.**Goals achieved**:- Understanding PyTorch's Tensor library and neural networks at a high level.- Train a small neural network to classify imagesTraining on multiple GPUs-------------------------If you want to see even more MASSIVE speedup using all of your GPUs,please check out :doc:`data_parallel_tutorial`.Where do I go next?-------------------- :doc:`Train neural nets to play video games `- `Train a state-of-the-art ResNet network on imagenet`_- `Train a face generator using Generative Adversarial Networks`_- `Train a word-level language model using Recurrent LSTM networks`_- `More examples`_- `More tutorials`_- `Discuss PyTorch on the Forums`_- `Chat with other users on Slack`_ ###Code ###Output _____no_output_____ ###Markdown ###Code %matplotlib inline ###Output _____no_output_____ ###Markdown Training a Classifier=====================This is it. You have seen how to define neural networks, compute loss and makeupdates to the weights of the network.Now you might be thinking,What about data?----------------Generally, when you have to deal with image, text, audio or video data,you can use standard python packages that load data into a numpy array.Then you can convert this array into a ``torch.*Tensor``.- For images, packages such as Pillow, OpenCV are useful- For audio, packages such as scipy and librosa- For text, either raw Python or Cython based loading, or NLTK and SpaCy are usefulSpecifically for vision, we have created a package called``torchvision``, that has data loaders for common datasets such asImagenet, CIFAR10, MNIST, etc. and data transformers for images, viz.,``torchvision.datasets`` and ``torch.utils.data.DataLoader``.This provides a huge convenience and avoids writing boilerplate code.For this tutorial, we will use the CIFAR10 dataset.It has the classes: ‘airplane’, ‘automobile’, ‘bird’, ‘cat’, ‘deer’,‘dog’, ‘frog’, ‘horse’, ‘ship’, ‘truck’. The images in CIFAR-10 are ofsize 3x32x32, i.e. 3-channel color images of 32x32 pixels in size... figure:: /_static/img/cifar10.png :alt: cifar10 cifar10Training an image classifier----------------------------We will do the following steps in order:1. Load and normalizing the CIFAR10 training and test datasets using ``torchvision``2. Define a Convolution Neural Network3. Define a loss function4. Train the network on the training data5. Test the network on the test data1. Loading and normalizing CIFAR10^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^Using ``torchvision``, it’s extremely easy to load CIFAR10. ###Code import torch import torchvision import torchvision.transforms as transforms ###Output _____no_output_____ ###Markdown The output of torchvision datasets are PILImage images of range [0, 1].We transform them to Tensors of normalized range [-1, 1]. ###Code transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=2) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') ###Output 0%| | 0/170498071 [00:00<?, ?it/s] ###Markdown Let us show some of the training images, for fun. ###Code import matplotlib.pyplot as plt import numpy as np # functions to show an image def imshow(img): img = img / 2 + 0.5 # unnormalize npimg = img.numpy() plt.imshow(np.transpose(npimg, (1, 2, 0))) # get some random training images dataiter = iter(trainloader) images, labels = dataiter.next() # show images imshow(torchvision.utils.make_grid(images)) # print labels print(' '.join('%5s' % classes[labels[j]] for j in range(4))) ###Output cat plane bird plane ###Markdown 2. Define a Convolution Neural Network^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^Copy the neural network from the Neural Networks section before and modify it totake 3-channel images (instead of 1-channel images as it was defined). ###Code import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x net = Net() ###Output _____no_output_____ ###Markdown 3. Define a Loss function and optimizer^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^Let's use a Classification Cross-Entropy loss and SGD with momentum. ###Code import torch.optim as optim criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) ###Output _____no_output_____ ###Markdown 4. Train the network^^^^^^^^^^^^^^^^^^^^This is when things start to get interesting.We simply have to loop over our data iterator, and feed the inputs to thenetwork and optimize. ###Code for epoch in range(2): # loop over the dataset multiple times running_loss = 0.0 for i, data in enumerate(trainloader, 0): # get the inputs inputs, labels = data # zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # print statistics running_loss += loss.item() if i % 2000 == 1999: # print every 2000 mini-batches print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000)) running_loss = 0.0 print('Finished Training') ###Output [1, 2000] loss: 2.168 [1, 4000] loss: 1.872 [1, 6000] loss: 1.682 [1, 8000] loss: 1.572 [1, 10000] loss: 1.490 [2, 2000] loss: 1.381 [2, 4000] loss: 1.365 [2, 6000] loss: 1.353 [2, 8000] loss: 1.310 [2, 10000] loss: 1.303 [2, 12000] loss: 1.255 Finished Training ###Markdown 5. Test the network on the test data^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^We have trained the network for 2 passes over the training dataset.But we need to check if the network has learnt anything at all.We will check this by predicting the class label that the neural networkoutputs, and checking it against the ground-truth. If the prediction iscorrect, we add the sample to the list of correct predictions.Okay, first step. Let us display an image from the test set to get familiar. ###Code dataiter = iter(testloader) images, labels = dataiter.next() # print images imshow(torchvision.utils.make_grid(images)) print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4))) ###Output GroundTruth: cat ship ship plane ###Markdown Okay, now let us see what the neural network thinks these examples above are: ###Code outputs = net(images) ###Output _____no_output_____ ###Markdown The outputs are energies for the 10 classes.Higher the energy for a class, the more the networkthinks that the image is of the particular class.So, let's get the index of the highest energy: ###Code _, predicted = torch.max(outputs, 1) print('Predicted: ', ' '.join('%5s' % classes[predicted[j]] for j in range(4))) ###Output Predicted: cat ship ship ship ###Markdown The results seem pretty good.Let us look at how the network performs on the whole dataset. ###Code correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % ( 100 * correct / total)) ###Output Accuracy of the network on the 10000 test images: 56 % ###Markdown That looks waaay better than chance, which is 10% accuracy (randomly pickinga class out of 10 classes).Seems like the network learnt something.Hmmm, what are the classes that performed well, and the classes that didnot perform well: ###Code class_correct = list(0. for i in range(10)) class_total = list(0. for i in range(10)) with torch.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs, 1) c = (predicted == labels).squeeze() for i in range(4): label = labels[i] class_correct[label] += c[i].item() class_total[label] += 1 for i in range(10): print('Accuracy of %5s : %2d %%' % ( classes[i], 100 * class_correct[i] / class_total[i])) ###Output Accuracy of plane : 63 % Accuracy of car : 59 % Accuracy of bird : 41 % Accuracy of cat : 36 % Accuracy of deer : 44 % Accuracy of dog : 45 % Accuracy of frog : 68 % Accuracy of horse : 68 % Accuracy of ship : 73 % Accuracy of truck : 62 % ###Markdown Okay, so what next?How do we run these neural networks on the GPU?Training on GPU----------------Just like how you transfer a Tensor on to the GPU, you transfer the neuralnet onto the GPU.Let's first define our device as the first visible cuda device if we haveCUDA available: ###Code device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Assume that we are on a CUDA machine, then this should print a CUDA device: print(device) ###Output cuda:0 ###Markdown The rest of this section assumes that `device` is a CUDA device.Then these methods will recursively go over all modules and convert theirparameters and buffers to CUDA tensors:.. code:: python net.to(device)Remember that you will have to send the inputs and targets at every stepto the GPU too:.. code:: python inputs, labels = inputs.to(device), labels.to(device)Why dont I notice MASSIVE speedup compared to CPU? Because your networkis realllly small.**Exercise:** Try increasing the width of your network (argument 2 ofthe first ``nn.Conv2d``, and argument 1 of the second ``nn.Conv2d`` –they need to be the same number), see what kind of speedup you get.**Goals achieved**:- Understanding PyTorch's Tensor library and neural networks at a high level.- Train a small neural network to classify imagesTraining on multiple GPUs-------------------------If you want to see even more MASSIVE speedup using all of your GPUs,please check out :doc:`data_parallel_tutorial`.Where do I go next?-------------------- :doc:`Train neural nets to play video games `- `Train a state-of-the-art ResNet network on imagenet`_- `Train a face generator using Generative Adversarial Networks`_- `Train a word-level language model using Recurrent LSTM networks`_- `More examples`_- `More tutorials`_- `Discuss PyTorch on the Forums`_- `Chat with other users on Slack`_ ###Code ###Output _____no_output_____
workflow/feature_engineering/SOAP_QUIP/SOAP_features.ipynb
###Markdown Create SOAP features--- Import Modules ###Code import os print(os.getcwd()) import sys import time; ti = time.time() import pickle import numpy as np import pandas as pd from quippy.descriptors import Descriptor # ######################################################### from methods import ( get_df_features_targets, get_df_jobs_data, get_df_atoms_sorted_ind, get_df_coord, get_df_jobs, ) ###Output _____no_output_____ ###Markdown Read Data ###Code df_features_targets = get_df_features_targets() df_jobs = get_df_jobs() df_jobs_data = get_df_jobs_data() df_atoms = get_df_atoms_sorted_ind() # # TEMP # print(222 * "TEMP") # df_features_targets = df_features_targets.sample(n=100) # # df_features_targets = df_features_targets.loc[ # # [ # # ('sherlock', 'tanewani_59', 53.0), # # ('slac', 'diwarise_06', 33.0), # # ('sherlock', 'bidoripi_03', 37.0), # # ('nersc', 'winomuvi_99', 83.0), # # ('nersc', 'legofufi_61', 90.0), # # ('sherlock', 'werabosi_10', 42.0), # # ('slac', 'sunuheka_77', 51.0), # # ('nersc', 'winomuvi_99', 96.0), # # ('slac', 'kuwurupu_88', 26.0), # # ('sherlock', 'sodakiva_90', 52.0), # # ] # # ] # df_features_targets = df_features_targets.loc[[ # ("sherlock", "momaposi_60", 50., ) # ]] # ('oer_adsorbate', 'sherlock', 'momaposi_60', 'o', 50.0, 1) ###Output _____no_output_____ ###Markdown Filtering down to systems that won't crash script ###Code # ######################################################### rows_to_process = [] # ######################################################### for name_i, row_i in df_features_targets.iterrows(): # ##################################################### active_site_i = name_i[2] # ##################################################### job_id_o_i = row_i[("data", "job_id_o", "")] # ##################################################### # ##################################################### row_jobs_o_i = df_jobs.loc['guhenihe_85'] # ##################################################### active_site_o_i = row_jobs_o_i.active_site # ##################################################### # ##################################################### row_data_i = df_jobs_data.loc[job_id_o_i] # ##################################################### att_num_i = row_data_i.att_num # ##################################################### atoms_index_i = ( "oer_adsorbate", name_i[0], name_i[1], "o", active_site_o_i, att_num_i, ) if atoms_index_i in df_atoms.index: rows_to_process.append(name_i) # ######################################################### df_features_targets = df_features_targets.loc[rows_to_process] # ######################################################### ###Output _____no_output_____ ###Markdown Main loop, running SOAP descriptors ###Code # ######################################################### active_site_SOAP_list = [] metal_site_SOAP_list = [] ave_SOAP_list = [] # ######################################################### for name_i, row_i in df_features_targets.iterrows(): # ##################################################### active_site_i = name_i[2] # ##################################################### job_id_o_i = row_i[("data", "job_id_o", "")] job_id_oh_i = row_i[("data", "job_id_oh", "")] job_id_bare_i = row_i[("data", "job_id_bare", "")] # ##################################################### # ##################################################### row_jobs_o_i = df_jobs.loc['guhenihe_85'] # ##################################################### active_site_o_i = row_jobs_o_i.active_site # ##################################################### # ##################################################### row_data_i = df_jobs_data.loc[job_id_o_i] # ##################################################### # atoms_i = row_data_i.final_atoms att_num_i = row_data_i.att_num # ##################################################### atoms_index_i = ( # "dos_bader", "oer_adsorbate", name_i[0], name_i[1], "o", # name_i[2], active_site_o_i, att_num_i, ) try: # ##################################################### row_atoms_i = df_atoms.loc[atoms_index_i] # ##################################################### atoms_i = row_atoms_i.atoms_sorted_good # ##################################################### except: print(name_i) # print( # "N_atoms: ", # atoms_i.get_global_number_of_atoms(), # sep="") # Original # desc = Descriptor("soap cutoff=4 l_max=3 n_max=4 normalize=T atom_sigma=0.5 n_Z=1 Z={14} ") # This one works # desc = Descriptor("soap cutoff=4 l_max=10 n_max=10 normalize=T atom_sigma=0.5 n_Z=2 Z={8 77} ") # THIS ONE IS GOOD ****************************** # desc = Descriptor("soap cutoff=4 l_max=3 n_max=4 normalize=F atom_sigma=0.2 n_Z=2 Z={8 77} ") # Didn't work great # desc = Descriptor("soap cutoff=8 l_max=6 n_max=6 normalize=F atom_sigma=0.1 n_Z=2 Z={8 77} ") # desc = Descriptor("soap cutoff=4 l_max=6 n_max=6 normalize=F atom_sigma=0.1 n_Z=2 Z={8 77} ") # desc = Descriptor("soap cutoff=4 l_max=6 n_max=6 normalize=F atom_sigma=0.5 n_Z=2 Z={8 77} ") # desc = Descriptor("soap cutoff=4 l_max=6 n_max=6 normalize=T atom_sigma=0.5 n_Z=2 Z={8 77} ") # desc = Descriptor("soap cutoff=4 l_max=3 n_max=4 normalize=T atom_sigma=0.2 n_Z=2 Z={8 77} ") # desc = Descriptor("soap cutoff=4 l_max=3 n_max=4 normalize=T atom_sigma=0.4 n_Z=2 Z={8 77} ") # desc = Descriptor("soap cutoff=4 l_max=3 n_max=4 normalize=T atom_sigma=0.6 n_Z=2 Z={8 77} ") # desc = Descriptor("soap cutoff=4 l_max=3 n_max=4 normalize=T atom_sigma=0.3 n_Z=2 Z={8 77} ") # desc = Descriptor("soap cutoff=4 l_max=3 n_max=4 normalize=T atom_sigma=0.2 n_Z=2 Z={8 77} ") # desc = Descriptor("soap cutoff=4 l_max=3 n_max=4 normalize=T atom_sigma=0.25 n_Z=2 Z={8 77} ") # desc = Descriptor("soap cutoff=4 l_max=3 n_max=4 normalize=T atom_sigma=0.3 n_Z=2 Z={8 77} ") # desc = Descriptor("soap cutoff=2 l_max=3 n_max=4 normalize=T atom_sigma=0.3 n_Z=2 Z={8 77} ") # desc = Descriptor("soap cutoff=6 l_max=3 n_max=4 normalize=T atom_sigma=0.3 n_Z=2 Z={8 77} ") # desc = Descriptor("soap cutoff=5 l_max=3 n_max=4 normalize=T atom_sigma=0.3 n_Z=2 Z={8 77} ") # desc = Descriptor("soap cutoff=3 l_max=3 n_max=4 normalize=T atom_sigma=0.3 n_Z=2 Z={8 77} ") # desc = Descriptor("soap cutoff=6 l_max=3 n_max=4 normalize=T atom_sigma=0.1 n_Z=2 Z={8 77} ") # desc = Descriptor("soap cutoff=6 l_max=3 n_max=4 normalize=T atom_sigma=0.05 n_Z=2 Z={8 77} ") # desc = Descriptor("soap cutoff=6 l_max=3 n_max=4 normalize=T atom_sigma=0.2 n_Z=2 Z={8 77} ") # desc = Descriptor("soap cutoff=6 l_max=3 n_max=4 normalize=T atom_sigma=0.4 n_Z=2 Z={8 77} ") # desc = Descriptor("soap cutoff=6 l_max=3 n_max=4 normalize=T atom_sigma=0.5 n_Z=2 Z={8 77} ") # desc = Descriptor("soap cutoff=4 l_max=3 n_max=4 normalize=T atom_sigma=0.3 n_Z=2 Z={8 77} ") # desc = Descriptor("soap cutoff=3 l_max=3 n_max=4 normalize=T atom_sigma=0.3 n_Z=2 Z={8 77} ") # desc = Descriptor("soap cutoff=3 l_max=3 n_max=4 normalize=T atom_sigma=0.2 n_Z=2 Z={8 77} ") # desc = Descriptor("soap cutoff=3 l_max=3 n_max=4 normalize=T atom_sigma=0.5 n_Z=2 Z={8 77} ") # desc = Descriptor("soap cutoff=3 l_max=3 n_max=4 normalize=T atom_sigma=0.1 n_Z=2 Z={8 77} ") # desc = Descriptor("soap cutoff=3 l_max=3 n_max=4 normalize=T atom_sigma=0.6 n_Z=2 Z={8 77} ") # desc = Descriptor("soap cutoff=4 l_max=4 n_max=4 normalize=T atom_sigma=0.3 n_Z=2 Z={8 77} ") # desc = Descriptor("soap cutoff=4 l_max=5 n_max=4 normalize=T atom_sigma=0.3 n_Z=2 Z={8 77} ") # desc = Descriptor("soap cutoff=4 l_max=6 n_max=4 normalize=T atom_sigma=0.3 n_Z=2 Z={8 77} ") # desc = Descriptor("soap cutoff=4 l_max=7 n_max=4 normalize=T atom_sigma=0.3 n_Z=2 Z={8 77} ") # desc = Descriptor("soap cutoff=4 l_max=6 n_max=4 normalize=T atom_sigma=0.3 n_Z=2 Z={8 77} ") # desc = Descriptor("soap cutoff=4 l_max=6 n_max=6 normalize=T atom_sigma=0.3 n_Z=2 Z={8 77} ") # desc = Descriptor("soap cutoff=4 l_max=6 n_max=3 normalize=T atom_sigma=0.3 n_Z=2 Z={8 77} ") # Optimizing the new SOAP_ave model # desc = Descriptor("soap cutoff=4 l_max=6 n_max=4 normalize=T atom_sigma=0.3 n_Z=2 Z={8 77} ") # desc = Descriptor("soap cutoff=4 l_max=6 n_max=4 normalize=T atom_sigma=0.2 n_Z=2 Z={8 77} ") # desc = Descriptor("soap cutoff=4 l_max=6 n_max=4 normalize=T atom_sigma=0.4 n_Z=2 Z={8 77} ") # desc = Descriptor("soap cutoff=5 l_max=6 n_max=4 normalize=T atom_sigma=0.3 n_Z=2 Z={8 77} ") # desc = Descriptor("soap cutoff=3 l_max=6 n_max=4 normalize=T atom_sigma=0.3 n_Z=2 Z={8 77} ") desc = Descriptor("soap cutoff=4 l_max=6 n_max=4 normalize=T atom_sigma=0.3 n_Z=2 Z={8 77} ") # desc.sizes(atoms_i) d = desc.calc(atoms_i) SOAP_m_i = d["data"] active_site_SOAP_vector_i = SOAP_m_i[int(active_site_i)] active_site_SOAP_list.append( (name_i, active_site_SOAP_vector_i) ) # print( # "data shape: ", # d['data'].shape, # sep="") # ##################################################### # Get df_coord to find nearest neighbors init_slab_name_tuple_i = ( name_i[0], name_i[1], "o", # name_i[2], active_site_o_i, att_num_i ) df_coord_i = get_df_coord( mode="init-slab", # 'bulk', 'slab', 'post-dft', 'init-slab' init_slab_name_tuple=init_slab_name_tuple_i, verbose=False, ) # ##################################################### row_coord_i = df_coord_i.loc[active_site_i] # ##################################################### nn_info_i = row_coord_i.nn_info # ##################################################### # assert len(nn_info_i) == 1, "Only one bound Ir" ir_nn_present = False for j_cnt, nn_j in enumerate(nn_info_i): if nn_j["site"].specie.symbol == "Ir": ir_nn_present = True assert ir_nn_present, "Ir has to be in nn list" # assert nn_info_i[j_cnt]["site"].specie.symbol == "Ir", "Has to be" metal_index_i = nn_info_i[0]["site_index"] metal_site_SOAP_vector_i = SOAP_m_i[int(metal_index_i)] metal_site_SOAP_list.append( (name_i, metal_site_SOAP_vector_i) ) # ##################################################### # Averaging SOAP vectors for Ir and 6 oxygens row_coord_Ir_i = df_coord_i.loc[metal_index_i] vectors_to_average = [] for nn_j in row_coord_Ir_i["nn_info"]: if nn_j["site"].specie.symbol == "O": O_SOAP_vect_i = SOAP_m_i[int(nn_j["site_index"])] vectors_to_average.append(O_SOAP_vect_i) vectors_to_average.append(metal_site_SOAP_vector_i) SOAP_vector_ave_i = np.mean( vectors_to_average, axis=0 ) ave_SOAP_list.append( (name_i, SOAP_vector_ave_i) ) # vectors_to_average = [] # for nn_j in row_coord_Ir_i["nn_info"]: # if nn_j["site"].specie.symbol == "O": # O_SOAP_vect_i = SOAP_m_i[int(nn_j["site_index"])] # vectors_to_average.append(O_SOAP_vect_i) # vectors_to_average.append(metal_site_SOAP_vector_i) # SOAP_vector_ave_i = np.mean( # vectors_to_average, # axis=0 # ) # data = [] # for i in vectors_to_average: # trace = go.Scatter( # y=i, # ) # data.append(trace) # tmp = np.mean( # vectors_to_average, # axis=0 # ) # # import plotly.graph_objs as go # trace = go.Scatter( # # x=x_array, # y=tmp, # ) # # data = [trace] # data.append(trace) # fig = go.Figure(data=data) # fig.show() ###Output _____no_output_____ ###Markdown Forming the SOAP vector dataframe about the active site atom ###Code data_dict_list = [] tmp_SOAP_vector_list = [] tmp_name_list = [] for name_i, SOAP_vect_i in active_site_SOAP_list: # ##################################################### data_dict_i = dict() # ##################################################### name_dict_i = dict(zip( ["compenv", "slab_id", "active_site", ], name_i, )) # ##################################################### tmp_SOAP_vector_list.append(SOAP_vect_i) tmp_name_list.append(name_i) # ##################################################### data_dict_i.update(name_dict_i) # ##################################################### # data_dict_i[""] = # ##################################################### data_dict_list.append(data_dict_i) # ##################################################### # ######################################################### SOAP_vector_matrix_AS = np.array(tmp_SOAP_vector_list) df_SOAP_AS = pd.DataFrame(SOAP_vector_matrix_AS) df_SOAP_AS.index = pd.MultiIndex.from_tuples(tmp_name_list, names=["compenv", "slab_id", "active_site"]) # ######################################################### df_SOAP_AS.head() ###Output _____no_output_____ ###Markdown Forming the SOAP vector dataframe about the active Ir atom ###Code data_dict_list = [] tmp_SOAP_vector_list = [] tmp_name_list = [] for name_i, SOAP_vect_i in metal_site_SOAP_list: # ##################################################### data_dict_i = dict() # ##################################################### name_dict_i = dict(zip( ["compenv", "slab_id", "active_site", ], name_i, )) # ##################################################### tmp_SOAP_vector_list.append(SOAP_vect_i) tmp_name_list.append(name_i) # ##################################################### data_dict_i.update(name_dict_i) # ##################################################### # data_dict_i[""] = # ##################################################### data_dict_list.append(data_dict_i) # ##################################################### # ######################################################### SOAP_vector_matrix_MS = np.array(tmp_SOAP_vector_list) df_SOAP_MS = pd.DataFrame(SOAP_vector_matrix_MS) df_SOAP_MS.index = pd.MultiIndex.from_tuples(tmp_name_list, names=["compenv", "slab_id", "active_site"]) # ######################################################### df_SOAP_MS.head() ###Output _____no_output_____ ###Markdown Forming the SOAP vector dataframe averaged from Ir + 6 O ###Code data_dict_list = [] tmp_SOAP_vector_list = [] tmp_name_list = [] for name_i, SOAP_vect_i in ave_SOAP_list: # ##################################################### data_dict_i = dict() # ##################################################### name_dict_i = dict(zip( ["compenv", "slab_id", "active_site", ], name_i, )) # ##################################################### tmp_SOAP_vector_list.append(SOAP_vect_i) tmp_name_list.append(name_i) # ##################################################### data_dict_i.update(name_dict_i) # ##################################################### # data_dict_i[""] = # ##################################################### data_dict_list.append(data_dict_i) # ##################################################### # ######################################################### SOAP_vector_matrix_ave = np.array(tmp_SOAP_vector_list) df_SOAP_ave = pd.DataFrame(SOAP_vector_matrix_ave) df_SOAP_ave.index = pd.MultiIndex.from_tuples(tmp_name_list, names=["compenv", "slab_id", "active_site"]) # ######################################################### ###Output _____no_output_____ ###Markdown TEMP Plotting ###Code import plotly.graph_objs as go from plotting.my_plotly import my_plotly_plot import plotly.express as px y_array = SOAP_m_i[int(metal_index_i)] trace = go.Scatter( y=y_array, ) data = [trace] fig = go.Figure(data=data) # fig.show() fig = px.imshow( df_SOAP_AS.to_numpy(), aspect='auto', # 'equal', 'auto', or None ) my_plotly_plot( figure=fig, plot_name="df_SOAP_AS", write_html=True, ) fig.show() fig = px.imshow( df_SOAP_MS.to_numpy(), aspect='auto', # 'equal', 'auto', or None ) my_plotly_plot( figure=fig, plot_name="df_SOAP_MS", write_html=True, ) fig.show() fig = px.imshow( df_SOAP_ave.to_numpy(), aspect='auto', # 'equal', 'auto', or None ) my_plotly_plot( figure=fig, plot_name="df_SOAP_MS", write_html=True, ) fig.show() ###Output _____no_output_____ ###Markdown Save data to file ###Code root_path_i = os.path.join( os.environ["PROJ_irox_oer"], "workflow/feature_engineering/SOAP_QUIP") directory = os.path.join(root_path_i, "out_data") if not os.path.exists(directory): os.makedirs(directory) # Pickling data ########################################### path_i = os.path.join(root_path_i, "out_data/df_SOAP_AS.pickle") with open(path_i, "wb") as fle: pickle.dump(df_SOAP_AS, fle) # ######################################################### # Pickling data ########################################### path_i = os.path.join(root_path_i, "out_data/df_SOAP_MS.pickle") with open(path_i, "wb") as fle: pickle.dump(df_SOAP_MS, fle) # ######################################################### # Pickling data ########################################### path_i = os.path.join(root_path_i, "out_data/df_SOAP_ave.pickle") with open(path_i, "wb") as fle: pickle.dump(df_SOAP_ave, fle) # ######################################################### # # ######################################################### # import pickle; import os # with open(path_i, "rb") as fle: # df_SOAP_AS = pickle.load(fle) # # ######################################################### from methods import get_df_SOAP_AS, get_df_SOAP_MS, get_df_SOAP_ave df_SOAP_AS_tmp = get_df_SOAP_AS() df_SOAP_AS_tmp df_SOAP_MS_tmp = get_df_SOAP_MS() df_SOAP_MS_tmp df_SOAP_ave_tmp = get_df_SOAP_ave() df_SOAP_ave_tmp # ######################################################### print(20 * "# # ") print("All done!") print("Run time:", np.round((time.time() - ti) / 60, 3), "min") print("SOAP_features.ipynb") print(20 * "# # ") # ######################################################### ###Output _____no_output_____ ###Markdown ###Code # SOAP_m_i.shape # desc? # assert False # atoms_i # atoms_i # import # import quippy # quippy.descriptors. # SOAP_m_i.shape # dir(plt.matshow(d['data'])) # plt.matshow(d['data']) # import os # import numpy as np # import matplotlib.pylab as plt # from quippy.potential import Potential # from ase import Atoms, units # from ase.build import add_vacuum # from ase.lattice.cubic import Diamond # from ase.io import write # from ase.constraints import FixAtoms # from ase.md.velocitydistribution import MaxwellBoltzmannDistribution # from ase.md.verlet import VelocityVerlet # from ase.md.langevin import Langevin # from ase.optimize.precon import PreconLBFGS, Exp # # from gap_si_surface import ViewStructure # pd.MultiIndex.from_tuples? # assert False # job_id_o_i # dir(nn_info_i[0]["site"]) # 'properties', # 'specie', # 'species', # 'species_and_occu', # 'species_string', # metal_index_i # assert False # from plotting.my_plotly import my_plotly_plot ###Output _____no_output_____
Algorithmic Trading/1-Data_Sources.ipynb
###Markdown Import Modules *Need to import some important Python libraries and methods that you will need to process financial data and perform data analysis.**The requests module enables you to easily download files from the web. It has a get method that takes a string of a URL to download.**The JavaScript Object Notation (JSON) module enables you to convert a string of JSON data into a Python dictionary via the loads method.**Pandas is a Python library that is built from the ground-up to do financial data analysis. It has a dataframe object that makes it easy to analyze tabular data traditionally done using spreadsheets.**Matplotlib is a Python library used for visualizing data. Pandas provides a wrapper to the library so you can plot nice charts with a single line of code.*--- ###Code import pandas as pd import pandas_datareader.data as pdr from datetime import datetime import matplotlib.pyplot as plt plt.style.use('seaborn') import json import requests start = datetime(2018, 1, 1) end = datetime(2021, 8, 31) ###Output _____no_output_____ ###Markdown Federal Reserve Economic Data (FRED)*FRED is the most comprehensive, free respository for US economic time series data. It has more than half a million economic times series from 87 sources, including government agencies such as the U.S. Census and the Bureau of Labor Statistics. It covers banking, business/fiscal, consumer price indexes, employment and population, exchange rates, gross domestic product, interest rates, monetary aggregates, producer price indexes, reserves and monetary base, U.S. trade and international transactions, and U.S. financial data.**See all the time series here: https://fred.stlouisfed.org/*--- ###Code inflation = pdr.DataReader('T5YIE', 'fred', start, end) inflation.plot(figsize=(20,5), title='5 year forward inflation expectation rate'), plt.show(); ###Output _____no_output_____ ###Markdown Alpha Vantage*Repository of free APIs for upto the minute streaming data and 20 years of historical data . APIs are grouped into four categories: 1. Equity 2. Currencies (including cryptocurrencies) 3. Sectors and 4. Technical indicators. Run by a tight-knit community of researchers, engineers, and business professionals. JSON is the default data format with CSV format also supported.**Data from this source requires extensive processing before it can used in financial data analysis. The 'Processing Data' workbook focuses on this data source and the steps required to clean the the data. Below are the final lines of code that you could use to get clean data for your analysis.**You can find the API documentation here: https://www.alphavantage.co/documentation/* --- ###Code response = requests.get("https://www.alphavantage.co/query?function=FX_DAILY&from_symbol=EUR&to_symbol=USD&apikey=demo") alphadict = json.loads(response.text) eur = pd.DataFrame(alphadict['Time Series FX (Daily)']).T eur.index = pd.to_datetime(eur.index) eur = eur.sort_index(ascending = True) eur.columns = ['open', 'high', 'low', 'close'] eur = eur.astype(float) eur.head() eur['close'].plot(figsize=(20,5), title='EUR/USD closing prices'), plt.show(); ###Output _____no_output_____ ###Markdown Yahoo Finance*This is probably the oldest data source of free financial information. It has a vast repository of historical data that cover most traded securities worldwide.*https://finance.yahoo.com*--- ###Code !pip install yfinance import yfinance as yf msft = yf.Ticker('MSFT') msft.history(start=start, end=end).head() msft.info msft.quarterly_cashflow ###Output _____no_output_____ ###Markdown Quandl*A one stop shop for economic, financial and sentiment data some of it is offered for free and most others for a fee. Quandl sources data from over half a million publishers worldwide. It was acquired by NASDAQ in 2018. It sources freely available public sources like FRED and private sources of alternative data. Many freely available data, such as historical equity data, are offered for a fee.**See API documentation here: https://docs.quandl.com/*--- *You will get an error when 50 api calls are made by the class. You need to get your own free API key* ###Code !pip install quandl import quandl investor_sentiment = quandl.get('AAII/AAII_SENTIMENT', start_date= start, end_date= end) investor_sentiment['Bull-Bear Spread'].plot(figsize=(20,5), title='American Association of Individual Investor bull-bear spread sentiment'), plt.show(); investor_sentiment.tail() consumer_sentiment = quandl.get('UMICH/SOC1', start_date= start, end_date= end) consumer_sentiment.plot(figsize=(20,5), title='University of Michigan consumer sentiment index'), plt.show(); spx = quandl.get('MULTPL/SP500_PE_RATIO_MONTH', start_date = start, end_date = end) spx.plot(figsize=(20,5), title='Trailing twelve months Price to Earning ratio of S&P 500 companies'), plt.show(); ###Output _____no_output_____ ###Markdown IEX Cloud*The Investors Exchange (IEX) was founded by Brad Katsuyama, hero of the book 'Flash Boys' by Michael Lewis. IEX recently launced IEX Cloud, a new platform provides market and fundamental data for free and for a fee. The default data format is JSON.**For more information about the APIs, see: https://iexcloud.io/docs/api/introduction*--- ###Code response = requests.get("https://sandbox.iexapis.com/stable/stock/aapl/financials?token=Tpk_53e30ef0593440d5855c259602cad185") jdictionary = json.loads(response.text) financials = pd.DataFrame(jdictionary['financials']) financials ###Output _____no_output_____
lesson1-pytorch.ipynb
###Markdown Using Convolutional Neural Networks Welcome to the first week of the first deep learning certificate! We're going to use convolutional neural networks (CNNs) to allow our computer to see - something that is only possible thanks to deep learning. Introduction to this week's task: 'Dogs vs Cats' We're going to try to create a model to enter the [Dogs vs Cats](https://www.kaggle.com/c/dogs-vs-cats) competition at Kaggle. There are 25,000 labelled dog and cat photos available for training, and 12,500 in the test set that we have to try to label for this competition. According to the Kaggle web-site, when this competition was launched (end of 2013): *"**State of the art**: The current literature suggests machine classifiers can score above 80% accuracy on this task"*. So if we can beat 80%, then we will be at the cutting edge as of 2013! Basic setup There isn't too much to do to get started - just a few simple configuration steps.This imports all dependencies and shows plots in the web page itself - we always wants to use this when using jupyter notebook: ###Code import torch import torchvision.models as models import torchvision.transforms as transforms import torchvision.datasets as datasets from torchvision.utils import make_grid from PIL import Image import matplotlib.pyplot as plt import torch.nn as nn import torch.optim as optim import torch.utils.trainer as trainer import torch.utils.trainer.plugins from torch.autograd import Variable import numpy as np import os from torchsample.modules import ModuleTrainer from torchsample.metrics import CategoricalAccuracy %matplotlib inline def show(img): npimg = img.numpy() plt.imshow(np.transpose(npimg, (1,2,0)), interpolation='nearest') ###Output _____no_output_____ ###Markdown Define path to data: (It's a good idea to put it in a subdirectory of your notebooks folder, and then exclude that directory from git control by adding it to .gitignore.). Additionaly set use_cuda = True to use a GPU for training and prediction. ###Code data_path = "data/dogscats/" # data_path = "data/dogscats/sample/" use_cuda = True batch_size = 64 print('Using CUDA:', use_cuda) ###Output Using CUDA: False ###Markdown Use a pretrained VGG model with PyTorch's **Vgg16** class Our first step is simply to use a model that has been fully created for us, which can recognise a wide variety (1,000 categories) of images. We will use 'VGG', which won the 2014 Imagenet competition, and is a very simple model to create and understand. The VGG Imagenet team created both a larger, slower, slightly more accurate model (*VGG 19*) and a smaller, faster model (*VGG 16*). We will be using VGG 16 since the much slower performance of VGG19 is generally not worth the very minor improvement in accuracy.PyTorch includes a class, *Vgg16*, which makes using the VGG 16 model very straightforward. The punchline: state of the art custom model in 7 lines of codeHere's everything you need to do to get >97% accuracy on the Dogs vs Cats dataset - we won't analyze how it works behind the scenes yet, since at this stage we're just going to focus on the minimum necessary to actually do useful work. ###Code # TODO refactor the code below and put it in utils.py to simplify allow creating a custom model in 7 lines of code ###Output _____no_output_____ ###Markdown Use Vgg16 for basic image recognitionLet's start off by using the *Vgg16* class to recognise the main imagenet category for each image.We won't be able to enter the Cats vs Dogs competition with an Imagenet model alone, since 'cat' and 'dog' are not categories in Imagenet - instead each individual breed is a separate category. However, we can use it to see how well it can recognise the images, which is a good first step.First create a DataLoader which will read the images from disk, resize them, convert them into tensors and normalize them the same way the Vgg16 network was trained (using ImageNet's RGB mean and std). ###Code # Data loading code traindir = os.path.join(data_path, 'train') valdir = os.path.join(data_path, 'valid') # cd data/dogscats && mkdir -p test && mv test1 test/ testdir = os.path.join(data_path, 'test') # pytorch way of implementing fastai's get_batches, (utils.py) def get_data_loader(dirname, shuffle=True, batch_size = 64): # pytorch's VGG requires images to be 224x224 and normalized using https://github.com/pytorch/vision#models normalize = transforms.Compose([ transforms.Lambda(lambda img: img.resize((224, 224), Image.BILINEAR)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) image_folder = datasets.ImageFolder(dirname, normalize) return torch.utils.data.DataLoader(image_folder, batch_size=batch_size, shuffle=shuffle, pin_memory=use_cuda), image_folder train_loader, folder = get_data_loader(traindir, batch_size=batch_size) val_loader, folder = get_data_loader(valdir, shuffle=False, batch_size=batch_size) test_loader, testfolder = get_data_loader(testdir, shuffle=False, batch_size=batch_size) print('Images in test folder:', len(testfolder.imgs)) ###Output Images in test folder: 6 ###Markdown Then, create a Vgg16 object: ###Code # Load the model model = models.vgg16(pretrained=True) ###Output _____no_output_____ ###Markdown Then *finetune* the model such that it will be trained based on the data in the batches provided - in this case, to predict either 'dog' or 'cat'. ###Code # Finetune by replacing the last fully connected layer and freezing all network parameters for param in model.parameters(): param.requires_grad = False # Replace the last fully-connected layer matching the new class count classes = train_loader.dataset.classes num_classes = len(classes) print('Using {:d} classes: {}'.format(num_classes, classes)) model.classifier = nn.Sequential( nn.Linear(512 * 7 * 7, 4096), nn.ReLU(True), nn.Dropout(), nn.Linear(4096, 4096), nn.ReLU(True), nn.Dropout(), nn.Linear(4096, num_classes), ) # Monkey patch the parameters() to return trainable weights only import types def parameters(self): p = filter(lambda p: p.requires_grad, nn.Module.parameters(self)) return p model.parameters = types.MethodType(parameters, model) # define loss function (criterion) and optimizer criterion = nn.CrossEntropyLoss() # enable cuda if available if(use_cuda): model.cuda() criterion.cuda() def getTrainer(lr): trainer = ModuleTrainer(model) trainer.set_optimizer(optim.Adam, lr=1e-3) trainer.set_loss(criterion) trainer.set_metrics([CategoricalAccuracy()]) return trainer ###Output _____no_output_____ ###Markdown Finally, we fit() the parameters of the model using the training data, reporting the accuracy on the validation set after every epoch. (An epoch is one full pass through the training data.) ###Code trainer = getTrainer() trainer.fit_loader(train_loader, val_loader=train_loader, nb_epoch=3) # This gets a validation accuracy of 98.9 when using the whole dataset ###Output Epoch 1/2: 4 batches [08:03, 114.11s/ batches, val_acc=50.31, val_loss=15.9782, loss=15.0138, acc=50.62] Epoch 2/2: 4 batches [10:48, 161.16s/ batches, val_acc=61.56, val_loss=1.3137, loss=8.2031, acc=64.38] ###Markdown That shows all of the steps involved in using the Vgg16 class to create an image recognition model using whatever labels you are interested in. For instance, this process could classify paintings by style, or leaves by type of disease, or satellite photos by type of crop, and so forth.Next up, we'll dig one level deeper to see what's going on in the Vgg16 class. Visually validate the classifier ###Code # Define some helper functions def denorm(tensor): # Undo the image normalization + clamp between 0 and 1 to avoid image artifacts for t, m, s in zip(tensor, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]): t.mul_(s).add_(m).clamp_(0, 1) return tensor def get_images_to_plot(images_tensor): denormalize = transforms.Compose([ transforms.Lambda(denorm) ]) return denormalize(images_tensor) def get_classes_strings(classes, labels_ids): # returns the classes in string format return [classes[label_id] for label_id in labels_ids] def get_prediction_classes_ids(predictions): # returns the predictions in id format predictions_ids = predictions.cpu().data.numpy().argmax(1) return predictions_ids def get_prediction_classes_strings(classes, predictions): # returns the predictions in string format return get_classes_strings(classes, get_prediction_classes_ids(predictions)) # display a sample set of images and their labels loader, folder = get_data_loader(valdir, batch_size = 4) images, labels = next(iter(loader)) show(make_grid(get_images_to_plot(images), padding=100)) labels_string = get_classes_strings(classes, labels.numpy()) print(labels_string) # display the predictons for the images above if use_cuda: images = images.cuda() predictions = model(Variable(images)) predictions_string = get_prediction_classes_strings(classes, predictions) print(predictions_string) ###Output ['cats', 'dogs', 'cats', 'dogs']
notebooks/game_ai/raw/ex2.ipynb
###Markdown IntroductionIn the tutorial, you learned how to define a simple heuristic that the agent used to select moves. In this exercise, you'll check your understanding and make the heuristic more complex.To get started, run the code cell below to set up our feedback system. ###Code from learntools.core import binder binder.bind(globals()) from learntools.game_ai.ex2 import * ###Output _____no_output_____ ###Markdown 1) A more complex heuristicThe heuristic from the tutorial looks at all groups of four adjacent grid locations on the same row, column, or diagonal and assigns points for each occurrence of the following patterns:In the image above, we assume that the agent is the red player, and the opponent plays yellow discs.For reference, here is the `get_heuristic()` function from the tutorial:```pythondef get_heuristic(grid, mark, config): num_threes = count_windows(grid, 3, mark, config) num_fours = count_windows(grid, 4, mark, config) num_threes_opp = count_windows(grid, 3, mark%2+1, config) score = num_threes - 1e2*num_threes_opp + 1e6*num_fours return score```In the `get_heuristic()` function, `num_fours`, `num_threes`, and `num_threes_opp` are the number of windows in the game grid that are assigned 1000000, 1, and -100 point(s), respectively. In this tutorial, you'll change the heuristic to the following (where you decide the number of points to apply in each of `A`, `B`, `C`, `D`, and `E`). You will define these values in the code cell below. To check your answer, we use your values to create a heuristic function as follows:```pythondef get_heuristic_q1(grid, col, mark, config): num_twos = count_windows(grid, 2, mark, config) num_threes = count_windows(grid, 3, mark, config) num_fours = count_windows(grid, 4, mark, config) num_twos_opp = count_windows(grid, 2, mark%2+1, config) num_threes_opp = count_windows(grid, 3, mark%2+1, config) score = A*num_fours + B*num_threes + C*num_twos + D*num_twos_opp + E*num_threes_opp return score```This heuristic is then used to create an agent, that competes against the agent from the tutorial in 50 different game rounds. In order to be marked correct, - your agent must win at least half of the games, and- `C` and `D` must both be nonzero. ###Code # TODO: Assign your values here A = ____ B = ____ C = ____ D = ____ E = ____ # Check your answer (this will take a few seconds to run!) q_1.check() #%%RM_IF(PROD)%% A = 1 B = 1 C = 1 D = -1 E = -1 q_1.assert_check_failed() #%%RM_IF(PROD)%% A = 1e10 B = 1e4 C = 1e2 D = -1 E = -1e6 q_1.assert_check_passed() # Lines below will give you a hint or solution code #_COMMENT_IF(PROD)_ q_1.hint() #_COMMENT_IF(PROD)_ q_1.solution() ###Output _____no_output_____ ###Markdown 2) Does the agent win?Consider the game board below. Say the agent uses red discs, and it's the agent's turn. - If the agent uses the heuristic **_from the tutorial_**, does it win or lose the game?- If the agent uses the heuristic **_that you just implemented_**, does it win or lose the game? ###Code #_COMMENT_IF(PROD)_ q_2.hint() # Check your answer (Run this code cell to receive credit!) q_2.solution() ###Output _____no_output_____ ###Markdown 3) Submit to the competitionNow, it's time to submit an agent to the competition! Use the next code cell to define an agent. (You can see an example of how to write a valid agent in **[this notebook](https://www.kaggle.com/alexisbcook/create-a-connectx-agent)**.)You're encouraged to use what you learned in the first question of this exercise to write an agent. Use the code from the tutorial as a starting point. ###Code def my_agent(obs, config): # Your code here: Amend the agent! valid_moves = [col for col in range(config.columns) if obs.board[col] == 0] return random.choice(valid_moves) # Run this code cell to get credit for creating an agent q_3.check() ###Output _____no_output_____ ###Markdown Run the next code cell to convert your agent to a submission file. ###Code import inspect import os def write_agent_to_file(function, file): with open(file, "a" if os.path.exists(file) else "w") as f: f.write(inspect.getsource(function)) print(function, "written to", file) write_agent_to_file(my_agent, "submission.py") ###Output _____no_output_____ ###Markdown IntroductionIn the tutorial, you learned how to define a simple heuristic that the agent used to select moves. In this exercise, you'll check your understanding and make the heuristic more complex.To get started, run the code cell below to set up our feedback system. ###Code from learntools.core import binder binder.bind(globals()) from learntools.game_ai.ex2 import * ###Output _____no_output_____ ###Markdown 1) A more complex heuristicThe heuristic from the tutorial looks at all groups of four adjacent grid locations on the same row, column, or diagonal and assigns points for each occurrence of the following patterns:In the image above, we assume that the agent is the red player, and the opponent plays yellow discs.For reference, here is the `get_heuristic()` function from the tutorial:```pythondef get_heuristic(grid, mark, config): num_threes = count_windows(grid, 3, mark, config) num_fours = count_windows(grid, 4, mark, config) num_threes_opp = count_windows(grid, 3, mark%2+1, config) score = num_threes - 1e2*num_threes_opp + 1e6*num_fours return score```In the `get_heuristic()` function, `num_fours`, `num_threes`, and `num_threes_opp` are the number of windows in the game grid that are assigned 1000000, 1, and -100 point(s), respectively. In this tutorial, you'll change the heuristic to the following (where you decide the number of points to apply in each of `A`, `B`, `C`, `D`, and `E`). You will define these values in the code cell below. To check your answer, we use your values to create a heuristic function as follows:```pythondef get_heuristic_q1(grid, col, mark, config): num_twos = count_windows(grid, 2, mark, config) num_threes = count_windows(grid, 3, mark, config) num_fours = count_windows(grid, 4, mark, config) num_twos_opp = count_windows(grid, 2, mark%2+1, config) num_threes_opp = count_windows(grid, 3, mark%2+1, config) score = A*num_fours + B*num_threes + C*num_twos + D*num_twos_opp + E*num_threes_opp return score```This heuristic is then used to create an agent, that competes against the agent from the tutorial in 50 different game rounds. In order to be marked correct, - your agent must win at least half of the games, and- `C` and `D` must both be nonzero. ###Code # TODO: Assign your values here A = ____ B = ____ C = ____ D = ____ E = ____ # Check your answer (this will take a few seconds to run!) q_1.check() #%%RM_IF(PROD)%% A = 1 B = 1 C = 1 D = -1 E = -1 q_1.assert_check_failed() #%%RM_IF(PROD)%% A = 1e10 B = 1e4 C = 1e2 D = -1 E = -1e6 q_1.assert_check_passed() # Lines below will give you a hint or solution code #_COMMENT_IF(PROD)_ q_1.hint() #_COMMENT_IF(PROD)_ q_1.solution() ###Output _____no_output_____ ###Markdown 2) Does the agent win?Consider the game board below. Say the agent uses red discs, and it's the agent's turn. - If the agent uses the heuristic **_from the tutorial_**, does it win or lose the game?- If the agent uses the heuristic **_that you just implemented_**, does it win or lose the game? ###Code #_COMMENT_IF(PROD)_ q_2.hint() # Check your answer (Run this code cell to receive credit!) q_2.solution() ###Output _____no_output_____ ###Markdown 3) Submit to the competitionNow, it's time to submit an agent to the competition! Use the next code cell to define an agent. (You can see an example of how to write a valid agent in **[this notebook](https://www.kaggle.com/alexisbcook/create-a-connectx-agent)**.)You're encouraged to use what you learned in the first question of this exercise to write an agent. Use the code from the tutorial as a starting point. ###Code def my_agent(obs, config): # Your code here: Amend the agent! valid_moves = [col for col in range(config.columns) if obs.board[col] == 0] return random.choice(valid_moves) # Run this code cell to get credit for creating an agent q_3.check() ###Output _____no_output_____ ###Markdown Run the next code cell to convert your agent to a submission file. ###Code import inspect import os def write_agent_to_file(function, file): with open(file, "a" if os.path.exists(file) else "w") as f: f.write(inspect.getsource(function)) print(function, "written to", file) write_agent_to_file(my_agent, "submission.py") ###Output _____no_output_____ ###Markdown IntroductionIn the tutorial, you learned how to define a simple heuristic that the agent used to select moves. In this exercise, you'll check your understanding and make the heuristic more complex.To get started, run the code cell below to set up our feedback system. ###Code from learntools.core import binder binder.bind(globals()) from learntools.game_ai.ex2 import * ###Output _____no_output_____ ###Markdown 1) A more complex heuristicThe heuristic from the tutorial looks at all groups of four adjacent grid locations on the same row, column, or diagonal and assigns points for each occurrence of the following patterns:In the image above, we assume that the agent is the red player, and the opponent plays yellow discs.For reference, here is the `get_heuristic()` function from the tutorial:```pythondef get_heuristic(grid, mark, config): num_threes = count_windows(grid, 3, mark, config) num_fours = count_windows(grid, 4, mark, config) num_threes_opp = count_windows(grid, 3, mark%2+1, config) score = num_threes - 1e2*num_threes_opp + 1e6*num_fours return score```In the `get_heuristic()` function, `num_fours`, `num_threes`, and `num_threes_opp` are the number of windows in the game grid that are assigned 1000000, 1, and -100 point(s), respectively. In this tutorial, you'll change the heuristic to the following (where you decide the number of points to apply in each of `A`, `B`, `C`, `D`, and `E`). You will define these values in the code cell below. To check your answer, we use your values to create a heuristic function as follows:```pythondef get_heuristic_q1(grid, col, mark, config): num_twos = count_windows(grid, 2, mark, config) num_threes = count_windows(grid, 3, mark, config) num_fours = count_windows(grid, 4, mark, config) num_twos_opp = count_windows(grid, 2, mark%2+1, config) num_threes_opp = count_windows(grid, 3, mark%2+1, config) score = A*num_fours + B*num_threes + C*num_twos + D*num_twos_opp + E*num_threes_opp return score```This heuristic is then used to create an agent, that competes against the agent from the tutorial in 50 different game rounds. In order to be marked correct, - your agent must win at least half of the games, and- `C` and `D` must both be nonzero. ###Code # TODO: Assign your values here A = ____ B = ____ C = ____ D = ____ E = ____ # Check your answer (this will take a few seconds to run!) q_1.check() #%%RM_IF(PROD)%% A = 1 B = 1 C = 1 D = -1 E = -1 q_1.assert_check_failed() #%%RM_IF(PROD)%% A = 1e10 B = 1e4 C = 1e2 D = -1 E = -1e6 q_1.assert_check_passed() # Lines below will give you a hint or solution code #_COMMENT_IF(PROD)_ q_1.hint() #_COMMENT_IF(PROD)_ q_1.solution() ###Output _____no_output_____ ###Markdown 2) Does the agent win?Consider the game board below. Say the agent uses red discs, and it's the agent's turn. - If the agent uses the heuristic **_from the tutorial_**, does it win or lose the game?- If the agent uses the heuristic **_that you just implemented_**, does it win or lose the game? ###Code #_COMMENT_IF(PROD)_ q_2.hint() # Check your answer (Run this code cell to receive credit!) q_2.solution() ###Output _____no_output_____ ###Markdown 3) Submit to the competitionNow, it's time to submit an agent to the competition! Use the next code cell to define an agent. (You can see an example of how to write a valid agent in **[this notebook](https://www.kaggle.com/alexisbcook/create-a-connectx-agent)**.)You're encouraged to use what you learned in the first question of this exercise to write an agent. Use the code from the tutorial as a starting point. ###Code def my_agent(obs, config): # Your code here: Amend the agent! import random valid_moves = [col for col in range(config.columns) if obs.board[col] == 0] return random.choice(valid_moves) # Run this code cell to get credit for creating an agent q_3.check() ###Output _____no_output_____ ###Markdown Run the next code cell to convert your agent to a submission file. ###Code import inspect import os def write_agent_to_file(function, file): with open(file, "a" if os.path.exists(file) else "w") as f: f.write(inspect.getsource(function)) print(function, "written to", file) write_agent_to_file(my_agent, "submission.py") ###Output _____no_output_____ ###Markdown IntroductionIn the tutorial, you learned how to define a simple heuristic that the agent used to select moves. In this exercise, you'll check your understanding and make the heuristic more complex.To get started, run the code cell below to set up our feedback system. ###Code from learntools.core import binder binder.bind(globals()) from learntools.game_ai.ex2 import * ###Output _____no_output_____ ###Markdown 1) A more complex heuristicThe heuristic from the tutorial looks at all groups of four adjacent grid locations on the same row, column, or diagonal and assigns points for each occurrence of the following patterns:In the image above, we assume that the agent is the red player, and the opponent plays yellow discs.For reference, here is the `get_heuristic()` function from the tutorial:```pythondef get_heuristic(grid, mark, config): num_threes = count_windows(grid, 3, mark, config) num_fours = count_windows(grid, 4, mark, config) num_threes_opp = count_windows(grid, 3, mark%2+1, config) score = num_threes - 1e2*num_threes_opp + 1e6*num_fours return score```In the `get_heuristic()` function, `num_fours`, `num_threes`, and `num_threes_opp` are the number of windows in the game grid that are assigned 1000000, 1, and -100 point(s), respectively. In this tutorial, you'll change the heuristic to the following (where you decide the number of points to apply in each of `A`, `B`, `C`, `D`, and `E`). You will define these values in the code cell below. To check your answer, we use your values to create a heuristic function as follows:```pythondef get_heuristic_q1(grid, col, mark, config): num_twos = count_windows(grid, 2, mark, config) num_threes = count_windows(grid, 3, mark, config) num_fours = count_windows(grid, 4, mark, config) num_twos_opp = count_windows(grid, 2, mark%2+1, config) num_threes_opp = count_windows(grid, 3, mark%2+1, config) score = A*num_fours + B*num_threes + C*num_twos + D*num_twos_opp + E*num_threes_opp return score```This heuristic is then used to create an agent, that competes against the agent from the tutorial in 50 different game rounds. In order to be marked correct, - your agent must win at least half of the games, and- `C` and `D` must both be nonzero. ###Code # TODO: Assign your values here A = ____ B = ____ C = ____ D = ____ E = ____ # Check your answer (this will take a few seconds to run!) q_1.check() #%%RM_IF(PROD)%% A = 1 B = 1 C = 1 D = -1 E = -1 q_1.assert_check_failed() #%%RM_IF(PROD)%% A = 1e10 B = 1e4 C = 1e2 D = -1 E = -1e6 q_1.assert_check_passed() # Lines below will give you a hint or solution code #_COMMENT_IF(PROD)_ q_1.hint() #_COMMENT_IF(PROD)_ q_1.solution() ###Output _____no_output_____ ###Markdown 2) Does the agent win?Consider the game board below. Say the agent uses red discs, and it's the agent's turn. - If the agent uses the heuristic **_from the tutorial_**, does it win or lose the game?- If the agent uses the heuristic **_that you just implemented_**, does it win or lose the game? ###Code #_COMMENT_IF(PROD)_ q_2.hint() # Check your answer (Run this code cell to receive credit!) q_2.solution() ###Output _____no_output_____ ###Markdown 3) Submit to the competitionNow, it's time to submit an agent to the competition! Use the next code cell to define an agent. (You can see an example of how to write a valid agent in **[this notebook](https://www.kaggle.com/alexisbcook/create-a-connectx-agent)**.)You're encouraged to use what you learned in the first question of this exercise to write an agent. Use the code from the tutorial as a starting point. ###Code def my_agent(obs, config): # Your code here: Amend the agent! valid_moves = [col for col in range(config.columns) if obs.board[col] == 0] return random.choice(valid_moves) # Run this code cell to get credit for creating an agent q_3.check() ###Output _____no_output_____ ###Markdown Run the next code cell to convert your agent to a submission file. ###Code import inspect import os def write_agent_to_file(function, file): with open(file, "a" if os.path.exists(file) else "w") as f: f.write(inspect.getsource(function)) print(function, "written to", file) write_agent_to_file(my_agent, "submission.py") ###Output _____no_output_____
DS_Sprint_Challenge_7_Classification_1.ipynb
###Markdown _Lambda School Data Science, Unit 2_ Sprint Challenge: Predict Steph Curry's shots 🏀For your Sprint Challenge, you'll use a dataset with all Steph Curry's NBA field goal attempts. (Regular season and playoff games, from October 28, 2009, through June 5, 2019.) You'll use information about the shot and the game to predict whether the shot was made. This is hard to predict! Try for an accuracy score in the high 50's or low 60's. The dataset was collected with the [nba_api](https://github.com/swar/nba_api) Python library. ###Code import pandas as pd url = 'https://drive.google.com/uc?export=download&id=1fL7KPyxgGYfQDsuJoBWHIWwCAf-HTFpX' df = pd.read_csv(url, parse_dates=['game_date']).set_index('game_date') assert df.shape == (13958, 19) ###Output _____no_output_____ ###Markdown This Sprint Challenge has two parts. To demonstrate mastery on each part, do all the required, numbered instructions. To earn a score of "3" for the part, also do the stretch goals. Part 1. Prepare to model Required1. **Do train/validate/test split.** Use the 2009-10 season through 2016-17 season to train, the 2017-18 season to validate, and the 2018-19 season to test. NBA seasons begin in October and end in June. You'll know you've split the data correctly when your train set has 11081 observations, your validation set has 1168 observations, and your test set has 1709 observations.2. **Begin with baselines for classification.** Your target to predict is `shot_made_flag`. What is the baseline accuracy for the validation set, if you guessed the majority class for every prediction?3. **Use Ordinal Encoding _or_ One-Hot Encoding,** for the categorical features you select.4. **Train a Random Forest _or_ Logistic Regression** with the features you select. Stretch goalsEngineer at least 4 of these 5 features:- **Homecourt Advantage**: Is the home team (`htm`) the Golden State Warriors (`GSW`) ?- **Opponent**: Who is the other team playing the Golden State Warriors?- **Seconds remaining in the period**: Combine minutes remaining with seconds remaining, to get the total number of seconds remaining in the period.- **Seconds remaining in the game**: Combine period, and seconds remaining in the period, to get the total number of seconds remaining in the game. A basketball game has 4 periods, each 12 minutes long.- **Made previous shot**: Was Steph Curry's previous shot successful? Part 2. Evaluate models Required1. Get your model's **validation accuracy.** (Multiple times if you try multiple iterations.)2. Get your model's **test accuracy.** (One time, at the end.)3. Get and plot your Random Forest's **feature importances** _or_ your Logistic Regression's **coefficients.**4. Imagine this is the confusion matrix for a binary classification model. **Calculate accuracy, precision, and recall for this confusion matrix:** Predicted Negative Positive Actual Negative 85 58 Positive 8 36 Stretch goals- Calculate F1 score for the provided, imaginary confusion matrix.- Plot a real confusion matrix for your basketball model, with row and column labels.- Print the classification report for your model. ###Code !pip install category_encoders #imports import numpy as np import category_encoders as ce from sklearn.preprocessing import StandardScaler from sklearn.impute import SimpleImputer from sklearn.ensemble import RandomForestClassifier from sklearn.utils.multiclass import unique_labels from sklearn.metrics import (roc_auc_score, roc_curve, classification_report, confusion_matrix, accuracy_score) #2009-10 season through 2016-17 season to train, #2017-18 season to validate, #2018-19 season to test import datetime as dt #Train split train_season_start_date = dt.datetime(2009,10,1) train_season_end_date = dt.datetime(2017, 7, 1) X_train = df[(df.index >= train_season_start_date) & (df.index <= train_season_end_date)] #validation split val_season_start_date = dt.datetime(2017,10,1) val_season_end_date = dt.datetime(2018,7,1) X_val = df[(df.index >= val_season_start_date) & (df.index <= val_season_end_date)] #test split test_season_start_date = dt.datetime(2018,10,1) test_season_end_date = dt.datetime(2019,7,1) X_test = df[(df.index >= test_season_start_date) & (df.index <= test_season_end_date)] #Train had 11081 observations assert X_train.shape[0] == 11081 #validation set has 1168 observations assert X_val.shape[0] == 1168 #test set has 1709 observations assert X_test.shape[0] == 1709 #Get baseline accuracy for the validation set target = 'shot_made_flag' #assemble baseline using tartget data y_train = X_train[target] majority_class = y_train.mode() y_test = [majority_class] * len(y_train) print(f'The baseline accuracy of this data is {accuracy_score(y_train,y_test)}') def wrangle(df): X = df.copy() #drop columns that add no real value no_val = ['game_id', 'game_event_id', 'player_name'] X = X.drop(columns= no_val) #drop outliers half_court_distance = 47 X.shot_distance = np.where(X.shot_distance >= half_court_distance, np.nan, X.shot_distance) X.shot_zone_range = np.where(X.shot_zone_range == 'Back Court Shot', np.nan, X.shot_zone_range) X = X.dropna() return X #Wrangle data X_train = wrangle(X_train) X_val = wrangle(X_val) X_test = wrangle(X_test) #Chosen features for encoding cat_features = ['action_type', 'shot_type', 'shot_zone_area', 'shot_zone_basic', 'shot_zone_range', 'season_type'] #pass features on initialization encoder = ce.OrdinalEncoder(cols = cat_features) #encode data X_train_encoded = encoder.fit_transform(X_train) X_val_encoded = encoder.transform(X_val) #drop unused cols unused = ['htm','vtm'] X_train_encoded = X_train_encoded.drop(columns = unused) X_val_encoded = X_val_encoded.drop(columns = unused) #pop target variables y_train = X_train_encoded.pop('shot_made_flag') y_val = X_val_encoded.pop('shot_made_flag') #initialize and fit model rfc= RandomForestClassifier(n_estimators = 500, max_depth = 15, min_samples_leaf = 2, min_samples_split = 2, bootstrap = True) model = rfc.fit(X_train_encoded, y_train) #get accuracy y_test = model.predict(X_val_encoded) print(f'The accuracy of this model is {accuracy_score(y_val, y_test)}') %matplotlib inline import matplotlib.pyplot as plt #Clean up cloumn names and create a series of feature importances columns = X_train_encoded.columns.str.replace('_',' ').str.capitalize() importances = pd.Series(model.feature_importances_, columns) #Plot that figure fig = plt.figure(figsize = (7,7)) plt.style.use('ggplot') ax = importances.sort_values().plot.barh() ax.set_title('Feature Importances') plt.show(); ###Output _____no_output_____ ###Markdown Predicted Negative Positive Actual Negative 85 58 Positive 8 36 ###Code #Calculate accuracy, precision, and recall for this confusion matrix: true_negative = 85 false_negative = 8 true_positive = 36 false_positive = 58 total = 85 + 8 + 58 +36 #accuracy is the sum of correct predictions divided by total predictions accuracy = (true_positive + true_negative) / (total) #precision is class accuracy of actual results pos_precision = true_positive / (true_positive + false_positive) neg_precision = true_negative / (true_negative + false_negative) #recall is class accuracy of predicted results pos_recall = true_positive / (true_positive + false_negative) neg_recall = true_negative / (true_negative + false_positive) print(f'The accuracy of this model the table represents is {accuracy}') print(f'The precision of the positive class is {pos_precision}') print(f'The precision of the negative class is {neg_precision}') print(f'The recall of the positive class is {pos_recall}') print(f'The recall of the negative class is {neg_recall}') #f1 score f1_pos = 2 / ((1/pos_precision) + (1/pos_recall)) f1_neg = 2 / ((1/neg_precision) + (1/neg_recall)) print(f'The f1 score of the positive class is {f1_pos}') print(f'The f1 score of the negative class is {f1_neg}') #feature engineering def fe(df): X = df.copy() #Homecourt Advantage X['hca'] = np.where(X.htm == 'GSW', 1, 0) #Determine Opponent X['opp'] = np.where(X.htm != 'GSW', X.htm, np.where(X.vtm != 'GSW', X.vtm, np.nan)) #Seconds remaining in period X['srp'] = (X.minutes_remaining * 60) + X.seconds_remaining #Seconds remaining in game X['srg'] = (X.period * 12 * 60) + X.seconds_remaining return X #add new features to split data X_train = fe(X_train) X_val = fe(X_val) X_test = fe(X_test) #Recycle previous code to rerun model #Chosen features for encoding cat_features = ['action_type', 'shot_type', 'shot_zone_area', 'shot_zone_basic', 'shot_zone_range', 'season_type', 'hca', 'opp'] #pass features on initialization encoder = ce.OrdinalEncoder(cols = cat_features) #encode data X_train_encoded = encoder.fit_transform(X_train) X_val_encoded = encoder.transform(X_val) #drop unused cols unused = ['htm','vtm'] X_train_encoded = X_train_encoded.drop(columns = unused) X_val_encoded = X_val_encoded.drop(columns = unused) #pop target variables y_train = X_train_encoded.pop('shot_made_flag') y_val = X_val_encoded.pop('shot_made_flag') #initialize and fit model rfc= RandomForestClassifier(n_estimators = 500, max_depth = 15, min_samples_leaf = 2, min_samples_split = 2, bootstrap = True) model = rfc.fit(X_train_encoded, y_train) #get accuracy y_pred = model.predict(X_val_encoded) print(f'The accuracy of this model is {accuracy_score(y_val, y_pred)}') #using test data now X_test_encoded = encoder.transform(X_test) X_test_encoded =X_test_encoded.drop(columns = unused) y_test = X_test_encoded.pop('shot_made_flag') y_pred = model.predict(X_test_encoded) print(f'The accuracy using the test data is {accuracy_score(y_test, y_pred)}') #Confusion matrix import seaborn as sns def plot_confusion_matrix(y_true, y_pred): labels = unique_labels(y_true) columns = [f'Predicted {label}' for label in labels] index = [f'Actual {label}' for label in labels] cm = confusion_matrix(y_true, y_pred) cm = cm/cm.sum(axis=1).reshape(len(labels), 1) table = pd.DataFrame(cm, columns=columns, index=index) return sns.heatmap(table, annot=True, fmt='.2f', cmap='viridis') plot_confusion_matrix(y_test, y_pred); #classification report print(classification_report(y_test, y_pred)) ###Output precision recall f1-score support 0 0.67 0.59 0.63 896 1 0.59 0.68 0.63 796 accuracy 0.63 1692 macro avg 0.63 0.63 0.63 1692 weighted avg 0.64 0.63 0.63 1692 ###Markdown _Lambda School Data Science, Unit 2_ Classification 1 Sprint Challenge: Predict Steph Curry's shots 🏀For your Sprint Challenge, you'll use a dataset with all Steph Curry's NBA field goal attempts. (Regular season and playoff games, from October 28, 2009, through June 5, 2019.) You'll use information about the shot and the game to predict whether the shot was made. This is hard to predict! Try for an accuracy score in the high 50's or low 60's. The dataset was collected with the [nba_api](https://github.com/swar/nba_api) Python library. ###Code import pandas as pd url = 'https://drive.google.com/uc?export=download&id=1fL7KPyxgGYfQDsuJoBWHIWwCAf-HTFpX' df = pd.read_csv(url, parse_dates=['game_date']).set_index('game_date') assert df.shape == (13958, 19) ###Output _____no_output_____ ###Markdown This Sprint Challenge has two parts. To demonstrate mastery on each part, do all the required, numbered instructions. To earn a score of "3" for the part, also do the stretch goals. Part 1. Prepare to model Required1. **Do train/validate/test split.** Use the 2009-10 season through 2016-17 season to train, the 2017-18 season to validate, and the 2018-19 season to test. NBA seasons begin in October and end in June. You'll know you've split the data correctly when your train set has 11081 observations, your validation set has 1168 observations, and your test set has 1709 observations.2. **Begin with baselines for classification.** Your target to predict is `shot_made_flag`. What is the baseline accuracy for the validation set, if you guessed the majority class for every prediction?3. **Use Ordinal Encoding _or_ One-Hot Encoding,** for the categorical features you select.4. **Train a Random Forest _or_ Logistic Regression** with the features you select. Stretch goalsEngineer at least 4 of these 5 features:- **Homecourt Advantage**: Is the home team (`htm`) the Golden State Warriors (`GSW`) ?- **Opponent**: Who is the other team playing the Golden State Warriors?- **Seconds remaining in the period**: Combine minutes remaining with seconds remaining, to get the total number of seconds remaining in the period.- **Seconds remaining in the game**: Combine period, and seconds remaining in the period, to get the total number of seconds remaining in the game. A basketball game has 4 periods, each 12 minutes long.- **Made previous shot**: Was Steph Curry's previous shot successful? Part 2. Evaluate models Required1. Get your model's **validation accuracy.** (Multiple times if you try multiple iterations.)2. Get your model's **test accuracy.** (One time, at the end.)3. Get and plot your Random Forest's **feature importances** _or_ your Logistic Regression's **coefficients.**4. Imagine this is the confusion matrix for a binary classification model. **Calculate accuracy, precision, and recall for this confusion matrix:** Predicted Negative Positive Actual Negative 85 58 Positive 8 36 Stretch goals- Calculate F1 score for the provided, imaginary confusion matrix.- Plot a real confusion matrix for your basketball model, with row and column labels.- Print the classification report for your model. Imports ###Code import matplotlib.pyplot as plt import seaborn as sns import numpy as np ###Output _____no_output_____ ###Markdown Explore Data ###Code df.head() cols = df.columns.tolist() cols plt.scatter(x='loc_x', y='loc_y',data=df) df.describe(include='number') df.describe(include='object') df.vtm.unique() #del df['player_name'] ###Output _____no_output_____ ###Markdown Part 1 Train / Validate / Test Split ###Code train_dates = (df.index > '2009-10-01') & (df.index <= '2017-07-01') val_dates = (df.index > '2017-10-01') & (df.index <= '2018-07-01') test_dates = (df.index > '2018-10-01') & (df.index <= '2019-07-01') target = 'shot_made_flag' X_train = df.loc[train_dates].drop(columns=[target]) X_val = df.loc[val_dates].drop(columns=[target]) X_test = df.loc[test_dates].drop(columns=[target]) y_train = df.loc[train_dates]['shot_made_flag'] y_val = df.loc[val_dates]['shot_made_flag'] y_test = df.loc[test_dates]['shot_made_flag'] X_train.shape, X_val.shape, X_test.shape, y_train.shape, y_val.shape, y_test.shape ###Output _____no_output_____ ###Markdown Baselines ###Code y_val.value_counts(normalize=True) majority_class = y_val.mode()[0] y_pred = [majority_class] * len(y_val) from sklearn.metrics import accuracy_score accuracy_score(y_val, y_pred) ###Output _____no_output_____ ###Markdown One-Hot encoding, fit random forest on Train using make_pipeline ###Code %%time import category_encoders as ce from sklearn.pipeline import make_pipeline from sklearn.ensemble import RandomForestClassifier pipeline = make_pipeline( ce.OneHotEncoder(use_cat_names=True), RandomForestClassifier(n_estimators=100, random_state=42, n_jobs=-1) ) pipeline.fit(X_train, y_train) ###Output CPU times: user 4.38 s, sys: 325 ms, total: 4.7 s Wall time: 1.94 s ###Markdown Part 1 stretch goals ###Code # Homecourt Advantage: Is the home team (htm) the Golden State Warriors (GSW) ? # Opponent: Who is the other team playing the Golden State Warriors? # Seconds remaining in the period: Combine minutes remaining with seconds remaining, to get the total number of seconds remaining in the period. # Seconds remaining in the game: Combine period, and seconds remaining in the period, to get the total number of seconds remaining in the game. A basketball game has 4 periods, each 12 minutes long. # Made previous shot: Was Steph Curry's previous shot successful? #Homecourt df['homecourt_adv'] = [1 if x == 'GSW' else 0 for x in df['htm']] ###Output _____no_output_____ ###Markdown Part 2 Validation accuracy ###Code y_pred = pipeline.predict(X_val) print('Validation Accuracy', accuracy_score(y_val, y_pred)) ###Output Validation Accuracy 0.5787671232876712 ###Markdown Test Accuracy ###Code y_pred = pipeline.predict(X_test) print('Test Accuracy', accuracy_score(y_test, y_pred)) ###Output Test Accuracy 0.6155646576945583 ###Markdown Random Forest Feature Importances ###Code # Get feature importances encoder = pipeline.named_steps['onehotencoder'] rf = pipeline.named_steps['randomforestclassifier'] feature_names = encoder.transform(X_train).columns importances = pd.Series(rf.feature_importances_, feature_names) # Plot feature importances n = 15 plt.figure(figsize=(10,n/2)) plt.title(f'Top {n} features') importances.sort_values()[-n:].plot.barh(color='grey'); ###Output _____no_output_____ ###Markdown Calculate accuracy, precision, and recall for the given confusion matrix ###Code # acc = true pos + true neg / total # precision = true pos / true pos + fals pos # recall = true pos / true pos + fals neg # f1 = 2 * (pre*recall/pre+recall) accuracy = (36 + 85) / 187 precision = 36 / (36 + 58) recall = 36 / (36 + 8) f1 = 2 * ((precision*recall)/(precision+recall)) print(f'Accuracy: {accuracy}\nPrecision: {precision}\nRecall: {recall}') ###Output Accuracy: 0.6470588235294118 Precision: 0.3829787234042553 Recall: 0.8181818181818182 ###Markdown Part 2 Stretch Goals F1 ###Code print(f'F1: {f1}') ###Output F1: 0.5217391304347826 ###Markdown Confusion Matrix (on test, make sure you run that test accuracy cell prior to this cell) ###Code from sklearn.metrics import confusion_matrix labels = [0,1] cm = confusion_matrix(y_test, y_pred, labels) fig = plt.figure() ax = fig.add_subplot(111) cax = ax.matshow(cm) plt.title('Confusion Matrix') fig.colorbar(cax) ax.set_xticklabels([''] + labels) ax.set_yticklabels([''] + labels) plt.xlabel('Predicted') plt.ylabel('True') plt.show() ###Output _____no_output_____ ###Markdown Classification Report ###Code from sklearn.metrics import classification_report target_names = ['Missed Shot','Made Shot'] print(classification_report(y_val, y_pred, target_names=target_names)) ###Output precision recall f1-score support Missed Shot 0.58 0.65 0.61 603 Made Shot 0.57 0.51 0.54 565 micro avg 0.58 0.58 0.58 1168 macro avg 0.58 0.58 0.58 1168 weighted avg 0.58 0.58 0.58 1168 ###Markdown _Lambda School Data Science, Unit 2_ Sprint Challenge: Predict Steph Curry's shots 🏀For your Sprint Challenge, you'll use a dataset with all Steph Curry's NBA field goal attempts. (Regular season and playoff games, from October 28, 2009, through June 5, 2019.) You'll use information about the shot and the game to predict whether the shot was made. This is hard to predict! Try for an accuracy score in the high 50's or low 60's. The dataset was collected with the [nba_api](https://github.com/swar/nba_api) Python library. ###Code import pandas as pd url = 'https://drive.google.com/uc?export=download&id=1fL7KPyxgGYfQDsuJoBWHIWwCAf-HTFpX' df = pd.read_csv(url, parse_dates=['game_date']).set_index('game_date') assert df.shape == (13958, 19) ###Output _____no_output_____ ###Markdown This Sprint Challenge has two parts. To demonstrate mastery on each part, do all the required, numbered instructions. To earn a score of "3" for the part, also do the stretch goals. Part 1. Prepare to model Required1. **Do train/validate/test split.** Use the 2009-10 season through 2016-17 season to train, the 2017-18 season to validate, and the 2018-19 season to test. NBA seasons begin in October and end in June. You'll know you've split the data correctly when your train set has 11081 observations, your validation set has 1168 observations, and your test set has 1709 observations.2. **Begin with baselines for classification.** Your target to predict is `shot_made_flag`. What is the baseline accuracy for the validation set, if you guessed the majority class for every prediction?3. **Use Ordinal Encoding _or_ One-Hot Encoding,** for the categorical features you select.4. **Train a Random Forest _or_ Logistic Regression** with the features you select. Stretch goalsEngineer at least 4 of these 5 features:- **Homecourt Advantage**: Is the home team (`htm`) the Golden State Warriors (`GSW`) ?- **Opponent**: Who is the other team playing the Golden State Warriors?- **Seconds remaining in the period**: Combine minutes remaining with seconds remaining, to get the total number of seconds remaining in the period.- **Seconds remaining in the game**: Combine period, and seconds remaining in the period, to get the total number of seconds remaining in the game. A basketball game has 4 periods, each 12 minutes long.- **Made previous shot**: Was Steph Curry's previous shot successful? Part 2. Evaluate models Required1. Get your model's **validation accuracy.** (Multiple times if you try multiple iterations.)2. Get your model's **test accuracy.** (One time, at the end.)3. Get and plot your Random Forest's **feature importances** _or_ your Logistic Regression's **coefficients.**4. Imagine this is the confusion matrix for a binary classification model. **Calculate accuracy, precision, and recall for this confusion matrix:** Predicted Negative Positive Actual Negative 85 58 Positive 8 36 Stretch goals- Calculate F1 score for the provided, imaginary confusion matrix.- Plot a real confusion matrix for your basketball model, with row and column labels.- Print the classification report for your model. Part 1 Required ###Code df.head() df.tail(5) train = df.loc['2009-10':'2017-06']; val = df.loc['2017-10':'2018-06']; test = df.loc['2018-10':'2019-06']; train.shape, val.shape, test.shape assert (train.shape[0] + val.shape[0] + test.shape[0]) == df.shape[0] feature1 = ['shot_zone_range', 'action_type', 'shot_zone_basic'] target = 'shot_made_flag'; x_train = train[feature1]; y_train = train[target]; x_val = val[feature1]; y_val = val[target]; x_test = test[feature1]; y_test = test[target]; import category_encoders as ce; from sklearn.pipeline import make_pipeline; from sklearn.metrics import accuracy_score; from sklearn.impute import SimpleImputer; from sklearn.linear_model import LogisticRegression; from sklearn.linear_model import LinearRegression; pipeline = make_pipeline( ce.OneHotEncoder(use_cat_names=True), SimpleImputer(), LogisticRegression() ); encoder = pipeline.named_steps['onehotencoder'] x_train_encoded = encoder.fit_transform(x_train) x_val_encoded = encoder.transform(x_val) x_test_encoded = encoder.transform(x_test) x_train_encoded.columns pipeline.fit(x_train, y_train); pipeline.score(x_val, y_val) y_pred = pipeline.predict(x_test) y_pred y_pred.shape model = pipeline.named_steps['logisticregression'] coefs = model.coef_[0] intercept = model.intercept_ coefs, intercept %matplotlib inline import matplotlib.pyplot as plt; coefs = pd.Series(model.coef_[0], x_test_encoded.columns) coefs plt.figure(figsize=(10,63/2)) plt.title(f'Top {63} features') coefs.sort_values()[-63:].plot.barh(color='grey') ###Output _____no_output_____ ###Markdown Stretch Goals ###Code df['homecourt_advantage'] = df['htm'] == 'GSW' df['homecourt_advantage'].head() df['seconds_remaining_in_period'] = df['seconds_remaining'] + df['minutes_remaining'] * 60; df['seconds_remaining_in_period'].head() df['seconds_remaining_in_game'] = df['seconds_remaining_in_period'] + 12 * (4 - df['period']) df['seconds_remaining_in_game'].head() import numpy as np; shot_made = df['shot_made_flag'].tolist(); print(len(shot_made)) shot_made.pop(len(shot_made)-1) shot_made.insert(0, 0) print(len(shot_made)) df['made_previous_shot'] = shot_made; df['made_previous_shot'].head() ###Output _____no_output_____ ###Markdown Part 2 Required ###Code print(f'Validation Accuracy: {pipeline.score(x_val, y_val)}'); print(f'Test Accuracy: {pipeline.score(x_test, y_test)}'); import numpy as np; matrix = np.array([[85, 58], [8, 36]]); matrix accuracy = (85+36)/(85+58+8+36) accuracy correct_predictions = matrix[1][1]; correct_predictions total_predictions = matrix[0][1] + matrix[1][1]; total_predictions percision = correct_predictions/total_predictions; percision actual = matrix[1][0] + matrix[1][1]; actual recall = correct_predictions/actual; recall ###Output _____no_output_____ ###Markdown Stretch Goals ###Code from sklearn.metrics import f1_score, confusion_matrix, classification_report; y_pred = pipeline.predict(x_test); f1 = f1_score(y_test, y_pred) print(f'F! Score: {f1}') import seaborn as sns; confusion = confusion_matrix(y_test, y_pred); sns.heatmap(confusion, cmap='viridis', annot=True, fmt='d') print(classification_report(y_test, y_pred)) ###Output precision recall f1-score support 0 0.66 0.61 0.63 912 1 0.59 0.64 0.61 797 micro avg 0.62 0.62 0.62 1709 macro avg 0.62 0.62 0.62 1709 weighted avg 0.62 0.62 0.62 1709 ###Markdown _Lambda School Data Science, Unit 2_ Classification 1 Sprint Challenge: Predict Steph Curry's shots 🏀For your Sprint Challenge, you'll use a dataset with all Steph Curry's NBA field goal attempts. (Regular season and playoff games, from October 28, 2009, through June 5, 2019.) You'll use information about the shot and the game to predict whether the shot was made. This is hard to predict! Try for an accuracy score in the high 50's or low 60's. The dataset was collected with the [nba_api](https://github.com/swar/nba_api) Python library. ###Code !pip install category_encoders %matplotlib inline import category_encoders as ce import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.preprocessing import RobustScaler pd.set_option('display.float_format', '{:.2f}'.format) import pandas as pd url = 'https://drive.google.com/uc?export=download&id=1fL7KPyxgGYfQDsuJoBWHIWwCAf-HTFpX' df = pd.read_csv(url, parse_dates=['game_date']).set_index('game_date') assert df.shape == (13958, 19) df.head() #first look at table content df.describe() df.dtypes ###Output _____no_output_____ ###Markdown Part 1. Prepare to model Required1. **Do train/validate/test split.** Use the 2009-10 season through 2016-17 season to train, the 2017-18 season to validate, and the 2018-19 season to test. NBA seasons begin in October and end in June. You'll know you've split the data correctly when your train set has 11081 observations, your validation set has 1168 observations, and your test set has 1709 observations.2. **Begin with baselines for classification.** Your target to predict is `shot_made_flag`. What is the baseline accuracy for the validation set, if you guessed the majority class for every prediction?3. **Use Ordinal Encoding _or_ One-Hot Encoding,** for the categorical features you select.4. **Train a Random Forest _or_ Logistic Regression** with the features you select. Train Test Split ###Code df.columns.values #getting the namesof the columns df.index = pd.to_datetime(df.index) #needed to be able to split the data frame train = df['2009-10-8':'2017-06-30'] val = df['2017-07-01':'2018-06-30'] test = df['2018-07-01':'2019-06-05'] print('train', train.shape) print('val', val.shape) print('test', test.shape) ###Output train (11081, 19) val (1168, 19) test (1709, 19) ###Markdown Baseline for classification ###Code y_train = train['shot_made_flag'] y_train.value_counts(normalize=True) #0 is the majority class ###Output _____no_output_____ ###Markdown One-hot encoding ###Code train.describe(exclude='number').T.sort_values(by='unique') #checking which non numeric columns would be interesting train['shot_zone_range'].value_counts(dropna=False) #shotzonerange chosen encoder = ce.OrdinalEncoder() #shotzonerange info encoded = encoder.fit_transform(train['shot_zone_range']) encoded.head(10) encoded['shot_zone_range'].dtype train_encoded = encoder.fit_transform(train) #creating new dataframe for predictions train_encoded.head() ###Output _____no_output_____ ###Markdown Random Forest Model ###Code train_encoded.columns.values X_train = train_encoded[['game_id', 'game_event_id', 'player_name', 'period', 'minutes_remaining', 'seconds_remaining', 'action_type', 'shot_type', 'shot_zone_basic', 'shot_zone_area', 'shot_zone_range', 'shot_distance', 'loc_x', 'loc_y', 'htm', 'vtm', 'season_type', 'scoremargin_before_shot']] y_train = train_encoded['shot_made_flag'] val.columns.values X_val =val[['game_id', 'game_event_id', 'player_name', 'period', 'minutes_remaining', 'seconds_remaining', 'action_type', 'shot_type', 'shot_zone_basic', 'shot_zone_area', 'shot_zone_range', 'shot_distance', 'loc_x', 'loc_y', 'htm', 'vtm', 'season_type', 'scoremargin_before_shot']] y_val = val['shot_made_flag'] %%time from sklearn.ensemble import RandomForestClassifier pipeline = make_pipeline( ce.OneHotEncoder(use_cat_names=True), SimpleImputer(strategy='median'), RandomForestClassifier(n_estimators=100, random_state=42, n_jobs=-1) ) # Fit on train, score on val a = pipeline.fit(X_train, y_train) # print('Validation Accuracy', pipeline.score(X_val, y_val)) a ###Output _____no_output_____ ###Markdown Stretch goalsEngineer at least 4 of these 5 features:- **Homecourt Advantage**: Is the home team (`htm`) the Golden State Warriors (`GSW`) ?- **Opponent**: Who is the other team playing the Golden State Warriors?- **Seconds remaining in the period**: Combine minutes remaining with seconds remaining, to get the total number of seconds remaining in the period.- **Seconds remaining in the game**: Combine period, and seconds remaining in the period, to get the total number of seconds remaining in the game. A basketball game has 4 periods, each 12 minutes long.- **Made previous shot**: Was Steph Curry's previous shot successful? This Sprint Challenge has two parts. To demonstrate mastery on each part, do all the required, numbered instructions. To earn a score of "3" for the part, also do the stretch goals. Part 2. Evaluate models Required1. Get your model's **validation accuracy.** (Multiple times if you try multiple iterations.)2. Get your model's **test accuracy.** (One time, at the end.)3. Get and plot your Random Forest's **feature importances** _or_ your Logistic Regression's **coefficients.**4. Imagine this is the confusion matrix for a binary classification model. **Calculate accuracy, precision, and recall for this confusion matrix:** Predicted Negative Positive Actual Negative 85 58 Positive 8 36 Stretch goals- Calculate F1 score for the provided, imaginary confusion matrix.- Plot a real confusion matrix for your basketball model, with row and column labels.- Print the classification report for your model. Confusion Matrix ###Code Accuracy = (85 + 36 / (85+36+58+8))/100 Accuracy precision = 85/(85+8) precision recall = 85/(85+58) recall ###Output _____no_output_____ ###Markdown _Lambda School Data Science, Unit 2_ Sprint Challenge: Predict Steph Curry's shots 🏀For your Sprint Challenge, you'll use a dataset with all Steph Curry's NBA field goal attempts. (Regular season and playoff games, from October 28, 2009, through June 5, 2019.) You'll use information about the shot and the game to predict whether the shot was made. This is hard to predict! Try for an accuracy score in the high 50's or low 60's. The dataset was collected with the [nba_api](https://github.com/swar/nba_api) Python library. ###Code import pandas as pd url = 'https://drive.google.com/uc?export=download&id=1fL7KPyxgGYfQDsuJoBWHIWwCAf-HTFpX' df = pd.read_csv(url, parse_dates=['game_date']).set_index('game_date') assert df.shape == (13958, 19) #I honestly felt this was easier than using train_test_split from sklearn given the criteria train = df[df.index <= '2017-07'] val = df[(df.index>='2017-07') & (df.index<='2018-07')] test = df[df.index >'2018-07'] #establish target and features target = 'shot_made_flag' features = ['shot_distance','minutes_remaining', 'action_type'] #count values in train to get majority class train['shot_made_flag'].value_counts() #Create x features and y target X_train = train[features] X_val = val[features] X_test = test[features] y_train = train[target] y_val = val[target] y_test = test[target] len(y_val) #establish baseline majority class prediction accuracy from sklearn.metrics import accuracy_score y_pred=[0]*1168 print(f'Validation accuracy for majority classifier is {accuracy_score(y_val,y_pred)}') from sklearn.ensemble import RandomForestClassifier from sklearn.preprocessing import StandardScaler import category_encoders as ce rfc = RandomForestClassifier(n_estimators = 100) encoder = ce.OrdinalEncoder() scaler = StandardScaler() #Encode and scale X_train_encoded = encoder.fit_transform(X_train) X_val_encoded = encoder.transform(X_val) X_test_encoded = encoder.transform(X_test) X_train_scaled = scaler.fit_transform(X_train_encoded) X_val_scaled = scaler.transform(X_val_encoded) X_test_scaled = scaler.transform(X_test_encoded) #fit the model rfc.fit(X_train_scaled, y_train) print(f'Validation Accuracy Score: {rfc.score(X_val_scaled, y_val)}') print(f'Test Accuracy Score: {rfc.score(X_test_scaled, y_test)}') train.head() train['hmtwn_adv'] = train['htm']=='GSW' val['hmtwn_adv'] = val['htm']=='GSW' test['hmtwn_adv'] = test['htm']=='GSW' import matplotlib.pyplot as plt importances = pd.Series(rfc.feature_importances_, features) features = encoder.transform(X_val).columns n = rfc.n_features_ plt.figure(figsize = (10,n)) plt.title(f'Top {n} features') importances.sort_values()[-n:].plot.barh(color='grey'); ###Output _____no_output_____ ###Markdown This Sprint Challenge has two parts. To demonstrate mastery on each part, do all the required, numbered instructions. To earn a score of "3" for the part, also do the stretch goals. Part 1. Prepare to model Required1. **Do train/validate/test split.** Use the 2009-10 season through 2016-17 season to train, the 2017-18 season to validate, and the 2018-19 season to test. NBA seasons begin in October and end in June. You'll know you've split the data correctly when your train set has 11081 observations, your validation set has 1168 observations, and your test set has 1709 observations.2. **Begin with baselines for classification.** Your target to predict is `shot_made_flag`. What is the baseline accuracy for the validation set, if you guessed the majority class for every prediction?3. **Use Ordinal Encoding _or_ One-Hot Encoding,** for the categorical features you select.4. **Train a Random Forest _or_ Logistic Regression** with the features you select. Stretch goalsEngineer at least 4 of these 5 features:- **Homecourt Advantage**: Is the home team (`htm`) the Golden State Warriors (`GSW`) ?- **Opponent**: Who is the other team playing the Golden State Warriors?- **Seconds remaining in the period**: Combine minutes remaining with seconds remaining, to get the total number of seconds remaining in the period.- **Seconds remaining in the game**: Combine period, and seconds remaining in the period, to get the total number of seconds remaining in the game. A basketball game has 4 periods, each 12 minutes long.- **Made previous shot**: Was Steph Curry's previous shot successful? Part 2. Evaluate models Required1. Get your model's **validation accuracy.** (Multiple times if you try multiple iterations.)2. Get your model's **test accuracy.** (One time, at the end.)3. Get and plot your Random Forest's **feature importances** _or_ your Logistic Regression's **coefficients.**4. Imagine this is the confusion matrix for a binary classification model. **Calculate accuracy, precision, and recall for this confusion matrix:** Predicted Negative Positive Actual Negative 85 58 Positive 8 36 Stretch goals- Calculate F1 score for the provided, imaginary confusion matrix.- Plot a real confusion matrix for your basketball model, with row and column labels.- Print the classification report for your model. ###Code correct_negative = 85 predicted_negative = 93 actual_negative = 85+58 total_predictions = 85+8+58+36 total_correct = correct_negative+correct_positive negative_precision = correct_negative/predicted_negative negative_recall = correct_negative/actual_negative print(negative_precision) print(negative_recall) correct_positive = 36 predicted_positive = 58+36 actual_positive = 44 positive_precision = correct_positive/predicted_positive positive_recall = correct_positive/actual_positive accuracy = total_correct/total_predictions print(positive_precision) print(positive_recall) print(accuracy) y_pred = rfc.predict(X_val_scaled) #Getting the confusion matrix from sklearn.metrics import confusion_matrix cm = confusion_matrix(y_val, y_pred) cm columns_names = [f'Predicted {c}' for c in y_val.unique()] index_names = [f'Actual {c}' for c in y_val.unique()] cm_df = pd.DataFrame(cm, index = index_names, columns = columns_names) import seaborn as sns sns.heatmap(cm_df, cmap='viridis', annot=True, fmt='d') ###Output _____no_output_____ ###Markdown _Lambda School Data Science, Unit 2_ Sprint Challenge: Predict Steph Curry's shots 🏀For your Sprint Challenge, you'll use a dataset with all Steph Curry's NBA field goal attempts. (Regular season and playoff games, from October 28, 2009, through June 5, 2019.) You'll use information about the shot and the game to predict whether the shot was made. This is hard to predict! Try for an accuracy score in the high 50's or low 60's. The dataset was collected with the [nba_api](https://github.com/swar/nba_api) Python library. This Sprint Challenge has two parts. To demonstrate mastery on each part, do all the required, numbered instructions. To earn a score of "3" for the part, also do the stretch goals. Part 1. Prepare to model Required1. **Do train/validate/test split.** Use the 2009-10 season through 2016-17 season to train, the 2017-18 season to validate, and the 2018-19 season to test. NBA seasons begin in October and end in June. You'll know you've split the data correctly when your train set has 11081 observations, your validation set has 1168 observations, and your test set has 1709 observations.2. **Begin with baselines for classification.** Your target to predict is `shot_made_flag`. What is the baseline accuracy for the validation set, if you guessed the majority class for every prediction?3. **Use Ordinal Encoding _or_ One-Hot Encoding,** for the categorical features you select.4. **Train a Random Forest _or_ Logistic Regression** with the features you select. Stretch goalsEngineer at least 4 of these 5 features:- **Homecourt Advantage**: Is the home team (`htm`) the Golden State Warriors (`GSW`) ?- **Opponent**: Who is the other team playing the Golden State Warriors?- **Seconds remaining in the period**: Combine minutes remaining with seconds remaining, to get the total number of seconds remaining in the period.- **Seconds remaining in the game**: Combine period, and seconds remaining in the period, to get the total number of seconds remaining in the game. A basketball game has 4 periods, each 12 minutes long.- **Made previous shot**: Was Steph Curry's previous shot successful? Part 2. Evaluate models Required1. Get your model's **validation accuracy.** (Multiple times if you try multiple iterations.)2. Get your model's **test accuracy.** (One time, at the end.)3. Get and plot your Random Forest's **feature importances** _or_ your Logistic Regression's **coefficients.**4. Imagine this is the confusion matrix for a binary classification model. **Calculate accuracy, precision, and recall for this confusion matrix:** Predicted Negative Positive Actual Negative 85 58 Positive 8 36 Stretch goals- Calculate F1 score for the provided, imaginary confusion matrix.- Plot a real confusion matrix for your basketball model, with row and column labels.- Print the classification report for your model. ###Code !pip install category_encoders import pandas as pd url = 'https://drive.google.com/uc?export=download&id=1fL7KPyxgGYfQDsuJoBWHIWwCAf-HTFpX' df = pd.read_csv(url, parse_dates=['game_date']) assert df.shape == (13958, 20) # check for null values df.isnull().sum() df.head() df['game_date'] = pd.to_datetime(df['game_date'], infer_datetime_format=True) df['game_month'] = df['game_date'].dt.month df['game_day'] = df['game_date'].dt.day df['game_year'] = df['game_date'].dt.year # add home advantage df['home_adv'] = df['htm'] == 'GSW' # more feature engineering df['opponent'] = (df['vtm'].replace('GSW', '') + df['htm'].replace('GSW', '')) df['sec_remain_period'] = (df['minutes_remaining'] * 60) + df['seconds_remaining'] df['sec_remain_game'] = (df['minutes_remaining'] * 60) + df['seconds_remaining'] + ((4-df['period']) * 12 * 60) #train, test, val split train = df[(df['game_date'] >= '2009-10-1') & (df['game_date'] <= '2017-6-30')] test = df[(df['game_date'] >= '2017-10-1') & (df['game_date'] <= '2018-6-30')] val = df[(df['game_date'] >= '2018-10-1') & (df['game_date'] <= '2019-6-30')] train.shape, test.shape, val.shape target = 'shot_made_flag' y_train = train[target] y_train.value_counts(normalize=True) majority_class = y_train.mode()[0] y_pred = [majority_class] * len(y_train) from sklearn.metrics import accuracy_score accuracy_score(y_train, y_pred) features = df.columns.tolist() features.remove('player_name') features.remove('game_date') features.remove('shot_made_flag') from sklearn.pipeline import make_pipeline import category_encoders as ce from sklearn.ensemble import RandomForestClassifier X_train = train[features] y_train = train[target] X_val = val[features] y_val = val[target] X_test = test[features] pipeline = make_pipeline(ce.OrdinalEncoder() , RandomForestClassifier(n_estimators=100, random_state=42, n_jobs=1)) pipeline.fit(X_train, y_train) print('Validation Accuracy', pipeline.score(X_val, y_val)) ###Output Validation Accuracy 0.6266822703335284 ###Markdown Part 2 ###Code print('Validation Accuracy', pipeline.score(X_val, y_val)) y_test = test[target] print('Test Accuracy', pipeline.score(X_test, y_test)) %matplotlib inline import matplotlib.pyplot as plt # get feature importances rf = pipeline.named_steps['randomforestclassifier'] importances = pd.Series(rf.feature_importances_, X_train.columns) n = 10 plt.figure(figsize = (10, n/2)) plt.title(f'Top {n} features') importances.sort_values()[-n:].plot.barh(color='grey') n = 10 plt.figure(figsize = (10, n/2)) plt.title(f'Bottom {n} features') importances.sort_values()[:n].plot.barh(color='grey'); ###Output _____no_output_____ ###Markdown Confusion Matrix Predicted Negative Positive Actual Negative 85 58 Positive 8 36 ###Code total = 85 + 58 + 8 + 36 print('Accuracy:',(36+85)/total) precision = 36/(36+58) print('Precision:', precision) recall = 36/(36+8) print('Recall:', recall) print('F1:', 2*(recall * precision) / (recall + precision)) from sklearn.metrics import confusion_matrix from sklearn.utils.multiclass import unique_labels import seaborn as sns y_pred = pipeline.predict(X_test) def plot_confusion_matrix(y_true, y_pred): labels = unique_labels(y_true) columns = [f'Predicted {label}' for label in labels] index = [f'Actual {label}' for label in labels] table = pd.DataFrame(confusion_matrix(y_true, y_pred), columns=columns, index=index) return sns.heatmap(table, annot=True, fmt='d', cmap='viridis') plot_confusion_matrix(y_test, y_pred); from sklearn.metrics import classification_report print(classification_report(y_test, y_pred)) from sklearn.linear_model import LogisticRegression X_train = train[features] y_train = train[target] X_val = val[features] y_val = val[target] X_test = test[features] pipeline = make_pipeline(ce.OneHotEncoder() , LogisticRegression(solver='lbfgs', multi_class='auto', max_iter=500)) pipeline.fit(X_train, y_train) print('Validation Accuracy', pipeline.score(X_val, y_val)) ###Output _____no_output_____ ###Markdown _Lambda School Data Science, Unit 2_ Classification 1 Sprint Challenge: Predict Steph Curry's shots 🏀For your Sprint Challenge, you'll use a dataset with all Steph Curry's NBA field goal attempts. (Regular season and playoff games, from October 28, 2009, through June 5, 2019.) You'll use information about the shot and the game to predict whether the shot was made. This is hard to predict! Try for an accuracy score in the high 50's or low 60's. The dataset was collected with the [nba_api](https://github.com/swar/nba_api) Python library. ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.decomposition import PCA from sklearn.cluster import KMeans from sklearn.preprocessing import StandardScaler pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1000) %matplotlib inline !pip install category_encoders import category_encoders as ce from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import QuantileTransformer from sklearn.preprocessing import RobustScaler from sklearn.impute import SimpleImputer from sklearn.linear_model import LogisticRegression from sklearn.experimental import enable_iterative_imputer from sklearn.impute import IterativeImputer from sklearn.pipeline import make_pipeline import pandas as pd url = 'https://drive.google.com/uc?export=download&id=1fL7KPyxgGYfQDsuJoBWHIWwCAf-HTFpX' df = pd.read_csv(url, parse_dates=['game_date']).set_index('game_date') assert df.shape == (13958, 19) df.dtypes df.index df.tail() df.isna().sum() conts = df.select_dtypes('number') conts.describe() from yellowbrick.features import Rank2D X = conts y = df.shot_made_flag visualizer = Rank2D(algorithm="pearson") visualizer.fit_transform(X,y) visualizer.poof() cats = df.select_dtypes('object') cats.describe() df.describe(exclude='number').T.sort_values(by='unique') df = df.drop(['game_id', 'game_event_id','player_name',], axis=1) ###Output _____no_output_____ ###Markdown Baseline Predictions ###Code y_train = df['shot_made_flag'] y_train.value_counts(normalize=True) majority_class = y_train.mode()[0] y_pred = [majority_class] * len(y_train) #autopredict on AS from sklearn.metrics import accuracy_score accuracy_score(y_train, y_pred) #predicting 47% df.shot_made_flag.mean() ###Output _____no_output_____ ###Markdown Test Train Validate Split ###Code df_train = df['2009-10-28':'2017-9-28'] y_train = df_train['shot_made_flag'] df_train = df_train.drop('shot_made_flag', axis=1).copy() print(df_train.shape) df_train.head() df_train.info() df_val = df['2017-9-29':'2018-9-28'].copy() y_val = df_val['shot_made_flag'] df_val = df_val.drop('shot_made_flag', axis=1) print(df_val.shape) df_val.info() df_test = df['2018-9-1':] y_test = df_test['shot_made_flag'] df_test = df_test.drop('shot_made_flag', axis=1).copy() print(df_test.shape) df_test.info() catcode = [ 'action_type','shot_zone_basic', 'shot_zone_area','shot_zone_range', 'htm','vtm', ] numeric_features = df_train.select_dtypes('number').columns.tolist() features = catcode + numeric_features X_train_subset = df_train[features] X_val_subset = df_val[features] X_test = df_test[features] ###Output _____no_output_____ ###Markdown Random Forest ###Code Rf = RandomForestClassifier(n_estimators=800, n_jobs=-1) pipeline = make_pipeline( ce.OneHotEncoder(use_cat_names=True), QuantileTransformer(), IterativeImputer(), Rf ) # Fit on train, score on val, predict on test pipeline.fit(X_train_subset, y_train) print('Train Accuracy', pipeline.score(X_train_subset, y_train)) print('Validation Accuracy', pipeline.score(X_val_subset, y_val)) y_pred = pipeline.predict(X_test) # Get feature importances encoder = pipeline.named_steps['onehotencoder'] rf = pipeline.named_steps['randomforestclassifier'] feature_names = encoder.transform(X_train_subset).columns importances = pd.Series(Rf.feature_importances_, feature_names) #feature importances n = 20 plt.figure(figsize=(10,n/2)) plt.title(f'Top {n} features') importances.sort_values()[-n:].plot.barh(color='red'); from sklearn.metrics import confusion_matrix confusion_matrix(y_val, y_pred[:1168]) pipeline.named_steps['randomforestclassifier'].classes_ from sklearn.utils.multiclass import unique_labels unique_labels(y_val) def plot_confusion_matrix(y_true, y_pred): labels = unique_labels(y_true) columns = [f'Predicted {label}' for label in labels] index = [f'Actual {label}' for label in labels] table = pd.DataFrame(confusion_matrix(y_true, y_pred), columns=columns, index=index) return sns.heatmap(table, annot=True, fmt='d', cmap='viridis') plot_confusion_matrix(y_val, y_pred[:1168]); from sklearn.metrics import classification_report print(classification_report(y_val, y_pred[:1168])) ###Output precision recall f1-score support 0 0.48 0.46 0.47 603 1 0.45 0.47 0.46 565 accuracy 0.46 1168 macro avg 0.46 0.46 0.46 1168 weighted avg 0.46 0.46 0.46 1168 ###Markdown Logistic Regression ###Code Lr = LogisticRegression(solver='lbfgs', multi_class='auto', max_iter=1000) pipeline = make_pipeline( ce.OneHotEncoder(use_cat_names=True), QuantileTransformer(), IterativeImputer(), Lr ) # Fit on train, score on val, predict on test pipeline.fit(X_train_subset, y_train) print('Train Accuracy', pipeline.score(X_train_subset, y_train)) print('Validation Accuracy', pipeline.score(X_val_subset, y_val)) y_pred2 = pipeline.predict(X_test) ###Output _____no_output_____ ###Markdown This Sprint Challenge has two parts. To demonstrate mastery on each part, do all the required, numbered instructions. To earn a score of "3" for the part, also do the stretch goals. Part 1. Prepare to model Required1. **Do train/validate/test split.** Use the 2009-10 season through 2016-17 season to train, the 2017-18 season to validate, and the 2018-19 season to test. NBA seasons begin in October and end in June. You'll know you've split the data correctly when your train set has 11081 observations, your validation set has 1168 observations, and your test set has 1709 observations.2. **Begin with baselines for classification.** Your target to predict is `shot_made_flag`. What is the baseline accuracy for the validation set, if you guessed the majority class for every prediction?3. **Use Ordinal Encoding _or_ One-Hot Encoding,** for the categorical features you select.4. **Train a Random Forest _or_ Logistic Regression** with the features you select. Stretch goalsEngineer at least 4 of these 5 features:- **Homecourt Advantage**: Is the home team (`htm`) the Golden State Warriors (`GSW`) ?- **Opponent**: Who is the other team playing the Golden State Warriors?- **Seconds remaining in the period**: Combine minutes remaining with seconds remaining, to get the total number of seconds remaining in the period.- **Seconds remaining in the game**: Combine period, and seconds remaining in the period, to get the total number of seconds remaining in the game. A basketball game has 4 periods, each 12 minutes long.- **Made previous shot**: Was Steph Curry's previous shot successful? Part 2. Evaluate models Required1. Get your model's **validation accuracy.** (Multiple times if you try multiple iterations.)2. Get your model's **test accuracy.** (One time, at the end.)3. Get and plot your Random Forest's **feature importances** _or_ your Logistic Regression's **coefficients.**4. Imagine this is the confusion matrix for a binary classification model. **Calculate accuracy, precision, and recall for this confusion matrix:** Predicted Negative Positive Actual Negative 85 58 Positive 8 36 Stretch goals- Calculate F1 score for the provided, imaginary confusion matrix.- Plot a real confusion matrix for your basketball model, with row and column labels.- Print the classification report for your model. ###Code #Accuracy on matrix correct_predictions = 85 +36 total_predictions = 85 + 36 + 8 + 58 correct_predictions / total_predictions #Recall of Positive Matrix precision_Pos = 36 total_predictions_pos = 8+58+36 precision_Pos/total_predictions_pos #Precision of matrix actual_pos = 48 correct_pos = 36 correct_pos/actual_pos ###Output _____no_output_____
notebooks/00_quick_start/fastai_movielens.ipynb
###Markdown Copyright (c) Microsoft Corporation. All rights reserved.Licensed under the MIT License. FastAI RecommenderThis notebook shows how to use the [FastAI](https://fast.ai) recommender which is using [Pytorch](https://pytorch.org/) under the hood. ###Code # set the environment path to find Recommenders import sys sys.path.append("../../") import time import os import itertools import pandas as pd import numpy as np import papermill as pm import torch, fastai from fastai.collab import EmbeddingDotBias, collab_learner, CollabDataBunch, load_learner from reco_utils.dataset import movielens from reco_utils.dataset.python_splitters import python_random_split from reco_utils.recommender.fastai.fastai_utils import cartesian_product, score from reco_utils.evaluation.python_evaluation import map_at_k, ndcg_at_k, precision_at_k, recall_at_k from reco_utils.evaluation.python_evaluation import rmse, mae, rsquared, exp_var print("System version: {}".format(sys.version)) print("Pandas version: {}".format(pd.__version__)) print("Fast AI version: {}".format(fastai.__version__)) print("Torch version: {}".format(torch.__version__)) print("Cuda Available: {}".format(torch.cuda.is_available())) print("CuDNN Enabled: {}".format(torch.backends.cudnn.enabled)) ###Output System version: 3.6.7 | packaged by conda-forge | (default, Nov 21 2018, 03:09:43) [GCC 7.3.0] Pandas version: 0.23.4 Fast AI version: 1.0.46 Torch version: 1.0.0 Cuda Available: True CuDNN Enabled: True ###Markdown Defining some constants to refer to the different columns of our dataset. ###Code USER, ITEM, RATING, TIMESTAMP, PREDICTION, TITLE = 'UserId', 'MovieId', 'Rating', 'Timestamp', 'Prediction', 'Title' # top k items to recommend TOP_K = 10 # Select Movielens data size: 100k, 1m, 10m, or 20m MOVIELENS_DATA_SIZE = '100k' # Model parameters N_FACTORS = 40 EPOCHS = 5 ratings_df = movielens.load_pandas_df( size=MOVIELENS_DATA_SIZE, header=[USER,ITEM,RATING,TIMESTAMP] ) # make sure the IDs are loaded as strings to better prevent confusion with embedding ids ratings_df[USER] = ratings_df[USER].astype('str') ratings_df[ITEM] = ratings_df[ITEM].astype('str') ratings_df.head() train_valid_df, test_df = python_random_split(ratings_df, ratio=[0.75, 0.25]) ###Output _____no_output_____ ###Markdown Training ###Code # fix random seeds to make sure our runs are reproducible np.random.seed(101) torch.manual_seed(101) torch.cuda.manual_seed_all(101) start_time = time.time() data = CollabDataBunch.from_df(train_valid_df, user_name=USER, item_name=ITEM, rating_name=RATING) preprocess_time = time.time() - start_time data.show_batch() ###Output _____no_output_____ ###Markdown Now we will create a `collab_learner` for the data, which by default uses the [EmbeddingDotBias](https://docs.fast.ai/collab.htmlEmbeddingDotBias) model. We will be using 40 latent factors. This will create an embedding for the users and the items that will map each of these to 40 floats as can be seen below. Note that the embedding parameters are not predefined, but are learned by the model.Although ratings can only range from 1-5, we are setting the range of possible ratings to a range from 0 to 5.5 -- that will allow the model to predict values around 1 and 5, which improves accuracy. Lastly, we set a value for weight-decay for regularization. ###Code learn = collab_learner(data, n_factors=N_FACTORS, y_range=[0,5.5], wd=1e-1) learn.model ###Output _____no_output_____ ###Markdown Now train the model for 5 epochs setting the maximal learning rate. The learner will reduce the learning rate with each epoch using cosine annealing. ###Code start_time = time.time() learn.fit_one_cycle(EPOCHS, max_lr=5e-3) train_time = time.time() - start_time + preprocess_time print("Took {} seconds for training.".format(train_time)) ###Output _____no_output_____ ###Markdown Save the learner so it can be loaded back later for inferencing / generating recommendations ###Code learn.export('movielens_model.pkl') ###Output _____no_output_____ ###Markdown Generating RecommendationsLoad the learner from disk. ###Code learner = load_learner(path=".", fname='movielens_model.pkl') ###Output _____no_output_____ ###Markdown Get all users and items that the model knows ###Code total_users, total_items = learner.data.train_ds.x.classes.values() total_items = total_items[1:] total_users = total_users[1:] ###Output _____no_output_____ ###Markdown Get all users from the test set and remove any users that were know in the training set ###Code test_users = test_df[USER].unique() test_users = np.intersect1d(test_users, total_users) ###Output _____no_output_____ ###Markdown Build the cartesian product of test set users and all items known to the model ###Code users_items = cartesian_product(np.array(test_users),np.array(total_items)) users_items = pd.DataFrame(users_items, columns=[USER,ITEM]) ###Output _____no_output_____ ###Markdown Lastly, remove the user/items combinations that are in the training set -- we don't want to propose a movie that the user has already watched. ###Code training_removed = pd.concat([users_items, train_valid_df[[USER,ITEM]]]).drop_duplicates(keep=False) ###Output _____no_output_____ ###Markdown Score the model to find the top K recommendation ###Code start_time = time.time() top_k_scores = score(learner, test_df=training_removed, user_col=USER, item_col=ITEM, prediction_col=PREDICTION, top_k=TOP_K) test_time = time.time() - start_time print("Took {} seconds for {} predictions.".format(test_time, len(training_removed))) ###Output Took 1.967883825302124 seconds for 1439504 predictions. ###Markdown Calculate some metrics for our model ###Code eval_map = map_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) eval_ndcg = ndcg_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) eval_precision = precision_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) eval_recall = recall_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) print("Model:\t" + learn.__class__.__name__, "Top K:\t%d" % TOP_K, "MAP:\t%f" % eval_map, "NDCG:\t%f" % eval_ndcg, "Precision@K:\t%f" % eval_precision, "Recall@K:\t%f" % eval_recall, sep='\n') ###Output Model: CollabLearner Top K: 10 MAP: 0.021576 NDCG: 0.136680 Precision@K: 0.127147 Recall@K: 0.050106 ###Markdown The above numbers are lower than [SAR](../sar_single_node_movielens.ipynb), but expected, since the model is explicitly trying to generalize the users and items to the latent factors. Next look at how well the model predicts how the user would rate the movie. Need to score `test_df`, but this time don't ask for top_k. ###Code scores = score(learner, test_df=test_df, user_col=USER, item_col=ITEM, prediction_col=PREDICTION) ###Output _____no_output_____ ###Markdown Now calculate some regression metrics ###Code eval_r2 = rsquared(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) eval_rmse = rmse(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) eval_mae = mae(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) eval_exp_var = exp_var(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) print("Model:\t" + learn.__class__.__name__, "RMSE:\t%f" % eval_rmse, "MAE:\t%f" % eval_mae, "Explained variance:\t%f" % eval_exp_var, "R squared:\t%f" % eval_r2, sep='\n') ###Output Model: CollabLearner RMSE: 0.921269 MAE: 0.729055 Explained variance: 0.348939 R squared: 0.348134 ###Markdown That RMSE is actually quite good when compared to these benchmarks: https://www.librec.net/release/v1.3/example.html ###Code # Record results with papermill for tests pm.record("map", eval_map) pm.record("ndcg", eval_ndcg) pm.record("precision", eval_precision) pm.record("recall", eval_recall) pm.record("rmse", eval_rmse) pm.record("mae", eval_mae) pm.record("exp_var", eval_exp_var) pm.record("rsquared", eval_r2) pm.record("train_time", train_time) pm.record("test_time", test_time) ###Output _____no_output_____ ###Markdown Copyright (c) Microsoft Corporation. All rights reserved.Licensed under the MIT License. FastAI RecommenderThis notebook shows how to use the [FastAI](https://fast.ai) recommender which is using [Pytorch](https://pytorch.org/) under the hood. ###Code # set the environment path to find Recommenders import sys sys.path.append("../../") import time import os import itertools import pandas as pd import numpy as np import papermill as pm import torch, fastai from fastai.collab import EmbeddingDotBias, collab_learner, CollabDataBunch, load_learner from reco_utils.dataset import movielens from reco_utils.dataset.python_splitters import python_stratified_split from reco_utils.recommender.fastai.fastai_utils import cartesian_product, score from reco_utils.evaluation.python_evaluation import map_at_k, ndcg_at_k, precision_at_k, recall_at_k from reco_utils.evaluation.python_evaluation import rmse, mae, rsquared, exp_var print("System version: {}".format(sys.version)) print("Pandas version: {}".format(pd.__version__)) print("Fast AI version: {}".format(fastai.__version__)) print("Torch version: {}".format(torch.__version__)) print("Cuda Available: {}".format(torch.cuda.is_available())) print("CuDNN Enabled: {}".format(torch.backends.cudnn.enabled)) ###Output System version: 3.6.8 |Anaconda, Inc.| (default, Dec 30 2018, 01:22:34) [GCC 7.3.0] Pandas version: 0.24.1 Fast AI version: 1.0.46 Torch version: 1.0.1.post2 Cuda Available: True CuDNN Enabled: True ###Markdown Defining some constants to refer to the different columns of our dataset. ###Code USER, ITEM, RATING, TIMESTAMP, PREDICTION, TITLE = 'UserId', 'MovieId', 'Rating', 'Timestamp', 'Prediction', 'Title' # top k items to recommend TOP_K = 10 # Select MovieLens data size: 100k, 1m, 10m, or 20m MOVIELENS_DATA_SIZE = '100k' # Model parameters N_FACTORS = 40 EPOCHS = 5 ratings_df = movielens.load_pandas_df( size=MOVIELENS_DATA_SIZE, header=[USER,ITEM,RATING,TIMESTAMP] ) # make sure the IDs are loaded as strings to better prevent confusion with embedding ids ratings_df[USER] = ratings_df[USER].astype('str') ratings_df[ITEM] = ratings_df[ITEM].astype('str') ratings_df.head() # Split the dataset train_valid_df, test_df = python_stratified_split( ratings_df, ratio=0.75, min_rating=1, filter_by="item", col_user=USER, col_item=ITEM ) ###Output _____no_output_____ ###Markdown Training ###Code # fix random seeds to make sure our runs are reproducible np.random.seed(101) torch.manual_seed(101) torch.cuda.manual_seed_all(101) start_time = time.time() data = CollabDataBunch.from_df(train_valid_df, user_name=USER, item_name=ITEM, rating_name=RATING, valid_pct=0) preprocess_time = time.time() - start_time data.show_batch() ###Output _____no_output_____ ###Markdown Now we will create a `collab_learner` for the data, which by default uses the [EmbeddingDotBias](https://docs.fast.ai/collab.htmlEmbeddingDotBias) model. We will be using 40 latent factors. This will create an embedding for the users and the items that will map each of these to 40 floats as can be seen below. Note that the embedding parameters are not predefined, but are learned by the model.Although ratings can only range from 1-5, we are setting the range of possible ratings to a range from 0 to 5.5 -- that will allow the model to predict values around 1 and 5, which improves accuracy. Lastly, we set a value for weight-decay for regularization. ###Code learn = collab_learner(data, n_factors=N_FACTORS, y_range=[0,5.5], wd=1e-1) learn.model ###Output _____no_output_____ ###Markdown Now train the model for 5 epochs setting the maximal learning rate. The learner will reduce the learning rate with each epoch using cosine annealing. ###Code start_time = time.time() learn.fit_one_cycle(EPOCHS, max_lr=5e-3) train_time = time.time() - start_time + preprocess_time print("Took {} seconds for training.".format(train_time)) ###Output _____no_output_____ ###Markdown Save the learner so it can be loaded back later for inferencing / generating recommendations ###Code learn.export('movielens_model.pkl') ###Output _____no_output_____ ###Markdown Generating RecommendationsLoad the learner from disk. ###Code learner = load_learner(path=".", fname='movielens_model.pkl') ###Output _____no_output_____ ###Markdown Get all users and items that the model knows ###Code total_users, total_items = learner.data.train_ds.x.classes.values() total_items = total_items[1:] total_users = total_users[1:] ###Output _____no_output_____ ###Markdown Get all users from the test set and remove any users that were know in the training set ###Code test_users = test_df[USER].unique() test_users = np.intersect1d(test_users, total_users) ###Output _____no_output_____ ###Markdown Build the cartesian product of test set users and all items known to the model ###Code users_items = cartesian_product(np.array(test_users),np.array(total_items)) users_items = pd.DataFrame(users_items, columns=[USER,ITEM]) ###Output _____no_output_____ ###Markdown Lastly, remove the user/items combinations that are in the training set -- we don't want to propose a movie that the user has already watched. ###Code training_removed = pd.merge(users_items, train_valid_df.astype(str), on=[USER, ITEM], how='left') training_removed = training_removed[training_removed[RATING].isna()][[USER, ITEM]] ###Output _____no_output_____ ###Markdown Score the model to find the top K recommendation ###Code start_time = time.time() top_k_scores = score(learner, test_df=training_removed, user_col=USER, item_col=ITEM, prediction_col=PREDICTION) test_time = time.time() - start_time print("Took {} seconds for {} predictions.".format(test_time, len(training_removed))) ###Output Took 1.928511142730713 seconds for 1511060 predictions. ###Markdown Calculate some metrics for our model ###Code eval_map = map_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) eval_ndcg = ndcg_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) eval_precision = precision_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) eval_recall = recall_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) print("Model:\t" + learn.__class__.__name__, "Top K:\t%d" % TOP_K, "MAP:\t%f" % eval_map, "NDCG:\t%f" % eval_ndcg, "Precision@K:\t%f" % eval_precision, "Recall@K:\t%f" % eval_recall, sep='\n') ###Output Model: CollabLearner Top K: 10 MAP: 0.026112 NDCG: 0.155062 Precision@K: 0.136691 Recall@K: 0.054940 ###Markdown The above numbers are lower than [SAR](../sar_single_node_movielens.ipynb), but expected, since the model is explicitly trying to generalize the users and items to the latent factors. Next look at how well the model predicts how the user would rate the movie. Need to score `test_df` user-items only. ###Code scores = score(learner, test_df=test_df.copy(), user_col=USER, item_col=ITEM, prediction_col=PREDICTION) ###Output _____no_output_____ ###Markdown Now calculate some regression metrics ###Code eval_r2 = rsquared(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) eval_rmse = rmse(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) eval_mae = mae(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) eval_exp_var = exp_var(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) print("Model:\t" + learn.__class__.__name__, "RMSE:\t%f" % eval_rmse, "MAE:\t%f" % eval_mae, "Explained variance:\t%f" % eval_exp_var, "R squared:\t%f" % eval_r2, sep='\n') ###Output Model: CollabLearner RMSE: 0.902386 MAE: 0.712164 Explained variance: 0.346513 R squared: 0.345662 ###Markdown That RMSE is actually quite good when compared to these benchmarks: https://www.librec.net/release/v1.3/example.html ###Code # Record results with papermill for tests pm.record("map", eval_map) pm.record("ndcg", eval_ndcg) pm.record("precision", eval_precision) pm.record("recall", eval_recall) pm.record("rmse", eval_rmse) pm.record("mae", eval_mae) pm.record("exp_var", eval_exp_var) pm.record("rsquared", eval_r2) pm.record("train_time", train_time) pm.record("test_time", test_time) ###Output /data/anaconda/envs/reco_gpu/lib/python3.6/site-packages/ipykernel_launcher.py:2: DeprecationWarning: Function record is deprecated and will be removed in verison 1.0.0 (current version 0.19.0). Please see `scrapbook.glue` (nteract-scrapbook) as a replacement for this functionality. ###Markdown Copyright (c) Microsoft Corporation. All rights reserved.Licensed under the MIT License. FastAI RecommenderThis notebook shows how to use the [FastAI](https://fast.ai) recommender which is using [Pytorch](https://pytorch.org/) under the hood. ###Code # set the environment path to find Recommenders import sys sys.path.append("../../") import time import os import itertools import pandas as pd import numpy as np import papermill as pm import torch, fastai from fastai.collab import EmbeddingDotBias, collab_learner, CollabDataBunch, load_learner from reco_utils.dataset import movielens from reco_utils.dataset.python_splitters import python_random_split from reco_utils.evaluation.python_evaluation import map_at_k, ndcg_at_k, precision_at_k, recall_at_k from reco_utils.evaluation.python_evaluation import rmse, mae, rsquared, exp_var print("System version: {}".format(sys.version)) print("Pandas version: {}".format(pd.__version__)) print("Fast AI version: {}".format(fastai.__version__)) print("Torch version: {}".format(torch.__version__)) print("Cuda Available: {}".format(torch.cuda.is_available())) print("CuDNN Enabled: {}".format(torch.backends.cudnn.enabled)) ###Output System version: 3.6.7 | packaged by conda-forge | (default, Nov 21 2018, 03:09:43) [GCC 7.3.0] Pandas version: 0.23.4 Fast AI version: 1.0.46 Torch version: 1.0.0 Cuda Available: True CuDNN Enabled: True ###Markdown Defining some constants to refer to the different columns of our dataset. ###Code USER, ITEM, RATING, TIMESTAMP, PREDICTION, TITLE = 'UserId', 'MovieId', 'Rating', 'Timestamp', 'Prediction', 'Title' # top k items to recommend TOP_K = 10 # Select Movielens data size: 100k, 1m, 10m, or 20m MOVIELENS_DATA_SIZE = '100k' # Model parameters N_FACTORS = 40 EPOCHS = 5 ratings_df = movielens.load_pandas_df( size=MOVIELENS_DATA_SIZE, header=[USER,ITEM,RATING,TIMESTAMP] ) # make sure the IDs are loaded as strings to better prevent confusion with embedding ids ratings_df[USER] = ratings_df[USER].astype('str') ratings_df[ITEM] = ratings_df[ITEM].astype('str') ratings_df.head() train_valid_df, test_df = python_random_split(ratings_df, ratio=[0.75, 0.25]) ###Output _____no_output_____ ###Markdown Training ###Code # fix random seeds to make sure our runs are reproducible np.random.seed(101) torch.manual_seed(101) torch.cuda.manual_seed_all(101) start_time = time.time() data = CollabDataBunch.from_df(train_valid_df, user_name=USER, item_name=ITEM, rating_name=RATING) preprocess_time = time.time() - start_time data.show_batch() ###Output _____no_output_____ ###Markdown Now we will create a `collab_learner` for the data, which by default uses the [EmbeddingDotBias](https://docs.fast.ai/collab.htmlEmbeddingDotBias) model. We will be using 40 latent factors. This will create an embedding for the users and the items that will map each of these to 40 floats as can be seen below. Note that the embedding parameters are not predefined, but are learned by the model.Although ratings can only range from 1-5, we are setting the range of possible ratings to a range from 0 to 5.5 -- that will allow the model to predict values around 1 and 5, which improves accuracy. Lastly, we set a value for weight-decay for regularization. ###Code learn = collab_learner(data, n_factors=N_FACTORS, y_range=[0,5.5], wd=1e-1) learn.model ###Output _____no_output_____ ###Markdown Now train the model for 5 epochs setting the maximal learning rate. The learner will reduce the learning rate with each epoch using cosine annealing. ###Code start_time = time.time() learn.fit_one_cycle(EPOCHS, max_lr=5e-3) train_time = time.time() - start_time + preprocess_time print("Took {} seconds for training.".format(train_time)) ###Output _____no_output_____ ###Markdown Save the learner so it can be loaded back later for inferencing / generating recommendations ###Code learn.export('movielens_model.pkl') ###Output _____no_output_____ ###Markdown Generating RecommendationsDefine two helper functions ###Code def cartesian_product(*arrays): la = len(arrays) dtype = np.result_type(*arrays) arr = np.empty([len(a) for a in arrays] + [la], dtype=dtype) for i, a in enumerate(np.ix_(*arrays)): arr[...,i] = a return arr.reshape(-1, la) def score(learner, test_df, user_col, item_col, prediction_col, top_k=0): """score all users+movies provided and reduce to top_k items per user if top_k>0""" # replace values not known to the model with #na# total_users, total_items = learner.data.train_ds.x.classes.values() test_df.loc[~test_df[user_col].isin(total_users),user_col] = total_users[0] test_df.loc[~test_df[item_col].isin(total_items),item_col] = total_items[0] # map ids to embedding ids u = learner.get_idx(test_df[user_col], is_item=False) m = learner.get_idx(test_df[item_col], is_item=True) # score the pytorch model pred = learner.model.forward(u, m) scores = pd.DataFrame({user_col: test_df[user_col], item_col:test_df[item_col], prediction_col:pred}) scores = scores.sort_values([user_col,prediction_col],ascending=[True,False]) if top_k > 0: top_scores = scores.groupby(user_col).head(top_k).reset_index(drop=True) else: top_scores = scores return top_scores ###Output _____no_output_____ ###Markdown Load the learner from disk. ###Code learner = load_learner(path=".", fname='movielens_model.pkl') ###Output _____no_output_____ ###Markdown Get all users and items that the model knows ###Code total_users, total_items = learner.data.train_ds.x.classes.values() total_items = total_items[1:] total_users = total_users[1:] ###Output _____no_output_____ ###Markdown Get all users from the test set and remove any users that were know in the training set ###Code test_users = test_df[USER].unique() test_users = np.intersect1d(test_users, total_users) ###Output _____no_output_____ ###Markdown Build the cartesian product of test set users and all items known to the model ###Code users_items = cartesian_product(np.array(test_users),np.array(total_items)) users_items = pd.DataFrame(users_items, columns=[USER,ITEM]) ###Output _____no_output_____ ###Markdown Lastly, remove the user/items combinations that are in the training set -- we don't want to propose a movie that the user has already watched. ###Code training_removed = pd.concat([users_items, train_valid_df[[USER,ITEM]], train_valid_df[[USER,ITEM]]]).drop_duplicates(keep=False) ###Output _____no_output_____ ###Markdown Score the model to find the top K recommendation ###Code start_time = time.time() top_k_scores = score(learner, test_df=training_removed, user_col=USER, item_col=ITEM, prediction_col=PREDICTION, top_k=TOP_K) test_time = time.time() - start_time print("Took {} seconds for {} predictions.".format(test_time, len(training_removed))) ###Output Took 1.967883825302124 seconds for 1439504 predictions. ###Markdown Calculate some metrics for our model ###Code eval_map = map_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) eval_ndcg = ndcg_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) eval_precision = precision_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) eval_recall = recall_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) print("Model:\t" + learn.__class__.__name__, "Top K:\t%d" % TOP_K, "MAP:\t%f" % eval_map, "NDCG:\t%f" % eval_ndcg, "Precision@K:\t%f" % eval_precision, "Recall@K:\t%f" % eval_recall, sep='\n') ###Output Model: CollabLearner Top K: 10 MAP: 0.021576 NDCG: 0.136680 Precision@K: 0.127147 Recall@K: 0.050106 ###Markdown The above numbers are lower than [SAR](../sar_single_node_movielens.ipynb), but expected, since the model is explicitly trying to generalize the users and items to the latent factors. Next look at how well the model predicts how the user would rate the movie. Need to score `test_df`, but this time don't ask for top_k. ###Code scores = score(learner, test_df=test_df, user_col=USER, item_col=ITEM, prediction_col=PREDICTION) ###Output _____no_output_____ ###Markdown Now calculate some regression metrics ###Code eval_r2 = rsquared(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) eval_rmse = rmse(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) eval_mae = mae(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) eval_exp_var = exp_var(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) print("Model:\t" + learn.__class__.__name__, "RMSE:\t%f" % eval_rmse, "MAE:\t%f" % eval_mae, "Explained variance:\t%f" % eval_exp_var, "R squared:\t%f" % eval_r2, sep='\n') ###Output Model: CollabLearner RMSE: 0.921269 MAE: 0.729055 Explained variance: 0.348939 R squared: 0.348134 ###Markdown That RMSE is actually quite good when compared to these benchmarks: https://www.librec.net/release/v1.3/example.html ###Code # Record results with papermill for tests pm.record("map", eval_map) pm.record("ndcg", eval_ndcg) pm.record("precision", eval_precision) pm.record("recall", eval_recall) pm.record("rmse", eval_rmse) pm.record("mae", eval_mae) pm.record("exp_var", eval_exp_var) pm.record("rsquared", eval_r2) pm.record("train_time", train_time) pm.record("test_time", test_time) ###Output _____no_output_____ ###Markdown Copyright (c) Microsoft Corporation. All rights reserved.Licensed under the MIT License. FastAI RecommenderThis notebook shows how to use the [FastAI](https://fast.ai) recommender which is using [Pytorch](https://pytorch.org/) under the hood. ###Code # set the environment path to find Recommenders import sys sys.path.append("../../") import time import os import itertools import pandas as pd import papermill as pm import torch, fastai from fastai.collab import * from fastai.tabular import * from reco_utils.dataset import movielens from reco_utils.dataset.python_splitters import python_random_split from reco_utils.evaluation.python_evaluation import map_at_k, ndcg_at_k, precision_at_k, recall_at_k from reco_utils.evaluation.python_evaluation import rmse, mae, rsquared, exp_var print("System version: {}".format(sys.version)) print("Pandas version: {}".format(pd.__version__)) print("Fast AI version: {}".format(fastai.__version__)) print("Torch version: {}".format(torch.__version__)) print("Cuda Available: {}".format(torch.cuda.is_available())) print("CuDNN Enabled: {}".format(torch.backends.cudnn.enabled)) ###Output System version: 3.6.7 | packaged by conda-forge | (default, Nov 21 2018, 03:09:43) [GCC 7.3.0] Pandas version: 0.24.0 Fast AI version: 1.0.42 Torch version: 1.0.0 Cuda Available: True CuDNN Enabled: True ###Markdown Defining some constants to refer to the different columns of our dataset. ###Code USER, ITEM, RATING, TIMESTAMP, PREDICTION, TITLE = 'UserId', 'MovieId', 'Rating', 'Timestamp', 'Prediction', 'Title' # top k items to recommend TOP_K = 10 # Select Movielens data size: 100k, 1m, 10m, or 20m MOVIELENS_DATA_SIZE = '100k' # Model parameters N_FACTORS = 40 EPOCHS = 5 ratings_df = movielens.load_pandas_df( size=MOVIELENS_DATA_SIZE, header=[USER,ITEM,RATING,TIMESTAMP] ) ratings_df.head() # make sure the IDs are loaded as strings to better prevent confusion with embedding ids ratings_df[USER] = ratings_df[USER].astype('str') ratings_df[ITEM] = ratings_df[ITEM].astype('str') train_valid_df, test_df = python_random_split(ratings_df, ratio=[0.75, 0.25]) ###Output _____no_output_____ ###Markdown Training ###Code # fix random seeds to make sure our runs are reproducible np.random.seed(101) torch.manual_seed(101) torch.cuda.manual_seed_all(101) start_time = time.time() data = CollabDataBunch.from_df(train_valid_df, user_name=USER, item_name=ITEM, rating_name=RATING) preprocess_time = time.time() - start_time data.show_batch() ###Output _____no_output_____ ###Markdown Now we will create a `collab_learner` for the data, which by default uses the [EmbeddingDotBias](https://docs.fast.ai/collab.htmlEmbeddingDotBias) model. We will be using 40 latent factors. This will create an embedding for the users and the items that will map each of these to 40 floats as can be seen below. Note that the embedding parameters are not predefined, but are learned by the model.Although ratings can only range from 1-5, we are setting the range of possible ratings to a range from 0 to 5.5 -- that will allow the model to predict values around 1 and 5, which improves accuracy. Lastly, we set a value for weight-decay for regularization. ###Code learn = collab_learner(data, n_factors=N_FACTORS, y_range=[0,5.5], wd=1e-1) learn.model ###Output _____no_output_____ ###Markdown Now train the model for 5 epochs setting the maximal learning rate. The learner will reduce the learning rate with each epoch using cosine annealing. ###Code start_time = time.time() learn.fit_one_cycle(EPOCHS, max_lr=5e-3) train_time = time.time() - start_time + preprocess_time print("Took {} seconds for training.".format(train_time)) ###Output _____no_output_____ ###Markdown Save the learner so it can be loaded back later for inferencing / generating recommendations ###Code learn.export('movielens_model.pkl') ###Output _____no_output_____ ###Markdown Generating RecommendationsDefine two helper functions ###Code def cartesian_product(*arrays): la = len(arrays) dtype = np.result_type(*arrays) arr = np.empty([len(a) for a in arrays] + [la], dtype=dtype) for i, a in enumerate(np.ix_(*arrays)): arr[...,i] = a return arr.reshape(-1, la) def score(learner, test_df, user_col, item_col, prediction_col, top_k=0): """score all users+movies provided and reduce to top_k items per user if top_k>0""" # replace values not known to the model with #na# total_users, total_items = learner.data.classes.values() test_df.loc[~test_df[user_col].isin(total_users),user_col] = total_users[0] test_df.loc[~test_df[item_col].isin(total_items),item_col] = total_items[0] # map ids to embedding ids u = learner.get_idx(test_df[user_col], is_item=False) m = learner.get_idx(test_df[item_col], is_item=True) # score the pytorch model pred = learner.model.forward(u, m) scores = pd.DataFrame({user_col: test_df[user_col], item_col:test_df[item_col], prediction_col:pred}) scores = scores.sort_values([user_col,prediction_col],ascending=[True,False]) if top_k > 0: top_scores = scores.groupby(user_col).head(top_k).reset_index(drop=True) else: top_scores = scores return top_scores ###Output _____no_output_____ ###Markdown Load the learner from disk. ###Code learner = load_learner(path=Path('.'), fname='movielens_model.pkl') ###Output _____no_output_____ ###Markdown Get all users and items that the model knows ###Code total_users, total_items = learner.data.classes.values() total_items = np.array(total_items[1:]) total_users = np.array(total_users[1:]) ###Output _____no_output_____ ###Markdown Get all users from the test set and remove any users that were know in the training set ###Code test_users = test_df[USER].unique() test_users = np.intersect1d(test_users, total_users) ###Output _____no_output_____ ###Markdown Build the cartesian product of test set users and all items known to the model ###Code users_items = cartesian_product(np.array(test_users),np.array(total_items)) users_items = pd.DataFrame(users_items, columns=[USER,ITEM]) ###Output _____no_output_____ ###Markdown Lastly, remove the user/items combinations that are in the training set -- we don't want to propose a movie that the user has already watched. ###Code training_removed = pd.concat([users_items, train_valid_df[[USER,ITEM]], train_valid_df[[USER,ITEM]]]).drop_duplicates(keep=False) ###Output _____no_output_____ ###Markdown Score the model to find the top K recommendation ###Code start_time = time.time() top_k_scores = score(learner, test_df=training_removed, user_col=USER, item_col=ITEM, prediction_col=PREDICTION, top_k=TOP_K) test_time = time.time() - start_time print("Took {} seconds for {} predictions.".format(test_time, len(training_removed))) ###Output Took 1.993603229522705 seconds for 1433851 predictions. ###Markdown Calculate some metrics for our model ###Code eval_map = map_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) eval_ndcg = ndcg_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) eval_precision = precision_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) eval_recall = recall_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) print("Model:\t" + learn.__class__.__name__, "Top K:\t%d" % TOP_K, "MAP:\t%f" % eval_map, "NDCG:\t%f" % eval_ndcg, "Precision@K:\t%f" % eval_precision, "Recall@K:\t%f" % eval_recall, sep='\n') ###Output Model: CollabLearner Top K: 10 MAP: 0.021485 NDCG: 0.137494 Precision@K: 0.124284 Recall@K: 0.045587 ###Markdown The above numbers are lower than [SAR](../sar_single_node_movielens.ipynb), but expected, since the model is explicitly trying to generalize the users and items to the latent factors. Next look at how well the model predicts how the user would rate the movie. Need to score `test_df`, but this time don't ask for top_k. ###Code scores = score(learner, test_df=test_df, user_col=USER, item_col=ITEM, prediction_col=PREDICTION) ###Output _____no_output_____ ###Markdown Now calculate some regression metrics ###Code eval_r2 = rsquared(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) eval_rmse = rmse(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) eval_mae = mae(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) eval_exp_var = exp_var(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) print("Model:\t" + learn.__class__.__name__, "RMSE:\t%f" % eval_rmse, "MAE:\t%f" % eval_mae, "Explained variance:\t%f" % eval_exp_var, "R squared:\t%f" % eval_r2, sep='\n') ###Output Model: CollabLearner RMSE: 0.912115 MAE: 0.723051 Explained variance: 0.357081 R squared: 0.356302 ###Markdown That RMSE is actually quite good when compared to these benchmarks: https://www.librec.net/release/v1.3/example.html ###Code # Record results with papermill for tests pm.record("map", eval_map) pm.record("ndcg", eval_ndcg) pm.record("precision", eval_precision) pm.record("recall", eval_recall) pm.record("rmse", eval_rmse) pm.record("mae", eval_mae) pm.record("exp_var", eval_exp_var) pm.record("rsquared", eval_r2) pm.record("train_time", train_time) pm.record("test_time", test_time) ###Output _____no_output_____ ###Markdown Copyright (c) Microsoft Corporation. All rights reserved.Licensed under the MIT License. FastAI RecommenderThis notebook shows how to use the [FastAI](https://fast.ai) recommender which is using [Pytorch](https://pytorch.org/) under the hood. ###Code # set the environment path to find Recommenders import sys sys.path.append("../../") import time import os import itertools import pandas as pd import numpy as np import papermill as pm import torch, fastai from fastai.collab import EmbeddingDotBias, collab_learner, CollabDataBunch, load_learner from reco_utils.dataset import movielens from reco_utils.dataset.python_splitters import python_stratified_split from reco_utils.recommender.fastai.fastai_utils import cartesian_product, score from reco_utils.evaluation.python_evaluation import map_at_k, ndcg_at_k, precision_at_k, recall_at_k from reco_utils.evaluation.python_evaluation import rmse, mae, rsquared, exp_var print("System version: {}".format(sys.version)) print("Pandas version: {}".format(pd.__version__)) print("Fast AI version: {}".format(fastai.__version__)) print("Torch version: {}".format(torch.__version__)) print("Cuda Available: {}".format(torch.cuda.is_available())) print("CuDNN Enabled: {}".format(torch.backends.cudnn.enabled)) ###Output System version: 3.6.8 |Anaconda, Inc.| (default, Dec 30 2018, 01:22:34) [GCC 7.3.0] Pandas version: 0.24.1 Fast AI version: 1.0.46 Torch version: 1.0.1.post2 Cuda Available: True CuDNN Enabled: True ###Markdown Defining some constants to refer to the different columns of our dataset. ###Code USER, ITEM, RATING, TIMESTAMP, PREDICTION, TITLE = 'UserId', 'MovieId', 'Rating', 'Timestamp', 'Prediction', 'Title' # top k items to recommend TOP_K = 10 # Select Movielens data size: 100k, 1m, 10m, or 20m MOVIELENS_DATA_SIZE = '100k' # Model parameters N_FACTORS = 40 EPOCHS = 5 ratings_df = movielens.load_pandas_df( size=MOVIELENS_DATA_SIZE, header=[USER,ITEM,RATING,TIMESTAMP] ) # make sure the IDs are loaded as strings to better prevent confusion with embedding ids ratings_df[USER] = ratings_df[USER].astype('str') ratings_df[ITEM] = ratings_df[ITEM].astype('str') ratings_df.head() # Split the dataset train_valid_df, test_df = python_stratified_split( ratings_df, ratio=0.75, min_rating=1, filter_by="item", col_user=USER, col_item=ITEM ) ###Output _____no_output_____ ###Markdown Training ###Code # fix random seeds to make sure our runs are reproducible np.random.seed(101) torch.manual_seed(101) torch.cuda.manual_seed_all(101) start_time = time.time() data = CollabDataBunch.from_df(train_valid_df, user_name=USER, item_name=ITEM, rating_name=RATING, valid_pct=0) preprocess_time = time.time() - start_time data.show_batch() ###Output _____no_output_____ ###Markdown Now we will create a `collab_learner` for the data, which by default uses the [EmbeddingDotBias](https://docs.fast.ai/collab.htmlEmbeddingDotBias) model. We will be using 40 latent factors. This will create an embedding for the users and the items that will map each of these to 40 floats as can be seen below. Note that the embedding parameters are not predefined, but are learned by the model.Although ratings can only range from 1-5, we are setting the range of possible ratings to a range from 0 to 5.5 -- that will allow the model to predict values around 1 and 5, which improves accuracy. Lastly, we set a value for weight-decay for regularization. ###Code learn = collab_learner(data, n_factors=N_FACTORS, y_range=[0,5.5], wd=1e-1) learn.model ###Output _____no_output_____ ###Markdown Now train the model for 5 epochs setting the maximal learning rate. The learner will reduce the learning rate with each epoch using cosine annealing. ###Code start_time = time.time() learn.fit_one_cycle(EPOCHS, max_lr=5e-3) train_time = time.time() - start_time + preprocess_time print("Took {} seconds for training.".format(train_time)) ###Output _____no_output_____ ###Markdown Save the learner so it can be loaded back later for inferencing / generating recommendations ###Code learn.export('movielens_model.pkl') ###Output _____no_output_____ ###Markdown Generating RecommendationsLoad the learner from disk. ###Code learner = load_learner(path=".", fname='movielens_model.pkl') ###Output _____no_output_____ ###Markdown Get all users and items that the model knows ###Code total_users, total_items = learner.data.train_ds.x.classes.values() total_items = total_items[1:] total_users = total_users[1:] ###Output _____no_output_____ ###Markdown Get all users from the test set and remove any users that were know in the training set ###Code test_users = test_df[USER].unique() test_users = np.intersect1d(test_users, total_users) ###Output _____no_output_____ ###Markdown Build the cartesian product of test set users and all items known to the model ###Code users_items = cartesian_product(np.array(test_users),np.array(total_items)) users_items = pd.DataFrame(users_items, columns=[USER,ITEM]) ###Output _____no_output_____ ###Markdown Lastly, remove the user/items combinations that are in the training set -- we don't want to propose a movie that the user has already watched. ###Code training_removed = pd.merge(users_items, train_valid_df.astype(str), on=[USER, ITEM], how='left') training_removed = training_removed[training_removed[RATING].isna()][[USER, ITEM]] ###Output _____no_output_____ ###Markdown Score the model to find the top K recommendation ###Code start_time = time.time() top_k_scores = score(learner, test_df=training_removed, user_col=USER, item_col=ITEM, prediction_col=PREDICTION) test_time = time.time() - start_time print("Took {} seconds for {} predictions.".format(test_time, len(training_removed))) ###Output Took 1.928511142730713 seconds for 1511060 predictions. ###Markdown Calculate some metrics for our model ###Code eval_map = map_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) eval_ndcg = ndcg_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) eval_precision = precision_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) eval_recall = recall_at_k(test_df, top_k_scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION, relevancy_method="top_k", k=TOP_K) print("Model:\t" + learn.__class__.__name__, "Top K:\t%d" % TOP_K, "MAP:\t%f" % eval_map, "NDCG:\t%f" % eval_ndcg, "Precision@K:\t%f" % eval_precision, "Recall@K:\t%f" % eval_recall, sep='\n') ###Output Model: CollabLearner Top K: 10 MAP: 0.026112 NDCG: 0.155062 Precision@K: 0.136691 Recall@K: 0.054940 ###Markdown The above numbers are lower than [SAR](../sar_single_node_movielens.ipynb), but expected, since the model is explicitly trying to generalize the users and items to the latent factors. Next look at how well the model predicts how the user would rate the movie. Need to score `test_df` user-items only. ###Code scores = score(learner, test_df=test_df.copy(), user_col=USER, item_col=ITEM, prediction_col=PREDICTION) ###Output _____no_output_____ ###Markdown Now calculate some regression metrics ###Code eval_r2 = rsquared(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) eval_rmse = rmse(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) eval_mae = mae(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) eval_exp_var = exp_var(test_df, scores, col_user=USER, col_item=ITEM, col_rating=RATING, col_prediction=PREDICTION) print("Model:\t" + learn.__class__.__name__, "RMSE:\t%f" % eval_rmse, "MAE:\t%f" % eval_mae, "Explained variance:\t%f" % eval_exp_var, "R squared:\t%f" % eval_r2, sep='\n') ###Output Model: CollabLearner RMSE: 0.902386 MAE: 0.712164 Explained variance: 0.346513 R squared: 0.345662 ###Markdown That RMSE is actually quite good when compared to these benchmarks: https://www.librec.net/release/v1.3/example.html ###Code # Record results with papermill for tests pm.record("map", eval_map) pm.record("ndcg", eval_ndcg) pm.record("precision", eval_precision) pm.record("recall", eval_recall) pm.record("rmse", eval_rmse) pm.record("mae", eval_mae) pm.record("exp_var", eval_exp_var) pm.record("rsquared", eval_r2) pm.record("train_time", train_time) pm.record("test_time", test_time) ###Output /data/anaconda/envs/reco_gpu/lib/python3.6/site-packages/ipykernel_launcher.py:2: DeprecationWarning: Function record is deprecated and will be removed in verison 1.0.0 (current version 0.19.0). Please see `scrapbook.glue` (nteract-scrapbook) as a replacement for this functionality.
notebooks/01-training.ipynb
###Markdown Training Models with the Data-Driven LibraryThe datadriven library provides an extensible command-line interface for training, evaluating, and predicting data-driven simulators. However, you may prefer training and sweeping models inside a notebook. This notebook provides an example for doing so. Set Working Directory and Import Necessary Libraries ###Code cd .. from hydra.experimental import initialize, compose from omegaconf import DictConfig, ListConfig, OmegaConf from model_loader import available_models from base import plot_parallel_coords import logging import matplotlib.pyplot as plt import numpy as np from rich import print from rich.logging import RichHandler import copy import pandas as pd logging.basicConfig( level=logging.INFO, format="%(message)s", datefmt="[%X]", handlers=[RichHandler()] ) logger = logging.getLogger("ddm_training") logger.setLevel(logging.INFO) ###Output _____no_output_____ ###Markdown Initialize ConfigurationWhile you can provide every argument manually, there is benefit in directly using the `hydra` config class to load an existing configuration file. This way you can ensure your parameters are saved to a file for later use, and you automatically gain the benefit of all the logging and model artifacts that are provided by our workflow of `hydra` and `mlflow`.If you want to override any settings of the configurations, provide them in a list of `overrides` as shown below. ###Code initialize(config_path="../conf", job_name="ddm_training") cfg = compose(config_name="config", overrides=["data=cartpole_st1_at", "model=torch"]) print(OmegaConf.to_yaml(cfg)) # Extract features from yaml file input_cols = cfg['data']['inputs'] output_cols = cfg['data']['outputs'] augmented_cols = cfg['data']['augmented_cols'] dataset_path = cfg['data']['path'] iteration_order = cfg['data']['iteration_order'] episode_col = cfg['data']['episode_col'] iteration_col = cfg['data']['iteration_col'] max_rows = cfg['data']['max_rows'] ###Output _____no_output_____ ###Markdown Model TrainerTo make it easy to sweep over models later, we create a simple `train_models` function here: ###Code def train_models(config=cfg): logger.info(f'Model type: {available_models[config["model"]["name"]]}') Model = available_models[config["model"]["name"]] global model model = Model() logger.info(f"Loading data from {dataset_path}") global X, y X, y = model.load_csv( input_cols=input_cols, output_cols=output_cols, augm_cols=list(augmented_cols), dataset_path=dataset_path, iteration_order=iteration_order, episode_col=episode_col, iteration_col=iteration_col, max_rows=max_rows, ) logger.info(f"Building model with parameters: {config}") model.build_model( **config["model"]["build_params"] ) logger.info(f"Fitting model...") model.fit(X, y) logger.info(f"Model trained!") return model model = train_models(cfg) ###Output _____no_output_____ ###Markdown Hyperparameter SweepingThe `datadrivenmodel` has an automatic solution for hyperparameter sweeping and tuning. These settings are provided in the config `model.sweep` parameters. Provide the limits of the variables you want to sweep over and the `sweep` method will automatically parallelize the sweep over the available number of cores and find the optimal solution according to your `scoring_func`. Configuration ParametersYou can select the search algorithm you'd like to use: `bayesian` runs bayesian optimiziation (using scikit-optimize), `hyperopt` runs [Tree-Parzen Estimators](https://papers.nips.cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf) with the `hyperopt` package, `bohb` uses Bayesian Opt/HyperBand, or `optuna` which also runs Tree-Parzen estimators but using the [`optuna`](https://optuna.readthedocs.io/en/stable/) package. ###Code print(OmegaConf.to_yaml(cfg["model"]["sweep"])) params = OmegaConf.to_container(cfg["model"]["sweep"]["params"]) logger.info(f"Sweeping with parameters: {params}") sweep_df = model.sweep( params=params, X=X, y=y, search_algorithm=cfg["model"]["sweep"]["search_algorithm"], num_trials=cfg["model"]["sweep"]["num_trials"], scoring_func=cfg["model"]["sweep"]["scoring_func"], results_csv_path=cfg["model"]["sweep"]["results_csv_path"], ) sweep_df.head() ###Output _____no_output_____ ###Markdown Results and OutputsAll outputs are saved to a timestamped directory in `outputs`. This includes the model artifacts, hyperparameter tuning results, and a verbose log of the entire run. ###Code ls -lh outputs/ !tree -L 3 outputs/2021-04-21/ ###Output _____no_output_____ ###Markdown Visualizing Hyperparameter Results ###Code plot_parallel_coords(sweep_df) ###Output _____no_output_____ ###Markdown Reading Saved Runs from CSVRuns are automatically saved to a CSV in the outputs directory: ###Code sweep_df2 = pd.read_csv("outputs/2021-04-21/10-29-25/xgboost_gridsearch/search_results.csv") plot_parallel_coords(sweep_df2) ###Output _____no_output_____
XGBoost_Kumar.ipynb
###Markdown Author: Kumar R. XGBoost Problem Statement:In this assignment we are going to predict whether a person makes over 50K per year or not from classic adult dataset using XGBoost. The description of the dataset is as follows: Extraction was done by Barry Becker from the 1994 Census database. A set of reasonably clean records was extracted using the following conditions: ((AAGE>16) && (AGI>100) && (AFNLWGT>1)&& (HRSWK>0))Attribute Information:Listing of attributes: >50K, <=50K.age: continuous.workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked.fnlwgt: continuous.education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool.education-num: continuous. marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse.occupation: Tech-support, Craft-repair, Other-service, Sales, Execmanagerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces.relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried.race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black.sex: Female, Male.capital-gain: continuous.capital-loss: continuous.hours-per-week: continuous.native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, ElSalvador, Trinadad&Tobago, Peru, Hong, Holand-Net ###Code #Import the required libraries import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline #Load the training and testing dataset train_set = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data', header = None) test_set = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.test' , skiprows = 1, header = None) #column names of the dataset col_labels = ['age', 'workclass', 'fnlwgt', 'education', 'education_num','marital_status', 'occupation','relationship', 'race', 'sex', 'capital_gain','capital_loss', 'hours_per_week', 'native_country', 'wage_class'] #Asssign the column names train_set.columns = col_labels test_set.columns = col_labels #Concatination of both training and testing datset data = pd.concat([train_set,test_set]) ###Output _____no_output_____ ###Markdown EDA (Exploratory Data Analysis) ###Code data.info() data.head() #Check if there are any missing values in all the columns data.isnull().sum() data.replace(' ?', np.nan, inplace=True) data.isnull().sum() ###Output _____no_output_____ ###Markdown AGE ###Code sns.distplot(data['age'],kde_kws={"color": "g", "lw": 2, "label": "KDE"}) #mean of the age column print("Mean of the age: ",round(data['age'].mean())) ###Output Mean of the age: 39 ###Markdown Work_CLass ###Code data['workclass'].value_counts() data['workclass'].unique() #Replacing ' Without-pay' as ' Never-worked' data = data.replace(' Without-pay',' Never-worked') data['workclass'].value_counts() #Fill nan with '0' for meantime (can also fill with the mode of the column by analysisng other columns too) data['workclass'].fillna('0', inplace=True) #Count plot plt.figure(figsize=(10,6)) sns.countplot('workclass', data=data) plt.xticks(rotation=45) ###Output _____no_output_____ ###Markdown fnlwgt ###Code data['fnlwgt'].plot(kind='kde') #Check if there are any -ve values as it deviates form the domine knowledge. def check(col): if col<0: return True data['fnlwgt'].apply(check).any() data['fnlwgt'].apply(check).sum() #Reducing the magnitude data['fnlwgt'] = data['fnlwgt'].apply(lambda x: np.log1p(x)) sns.distplot(data['fnlwgt']) ###Output _____no_output_____ ###Markdown education ###Code #Values and its count data['education'].value_counts() data['education'].unique() #Function to replace classes of school and pre_university def edu(column): if column in [' 1st-4th',' 5th-6th',' 7th-8th',' 9th',' 10th',]: return ' School' elif column in [' 11th',' 12th']: return ' Pre_uni' else: return column #Apply the function on education column data['education'] = data['education'].apply(edu) data['education'].unique() plt.figure(figsize=(10,6)) sns.countplot(data['education']) plt.xticks(rotation=45) ###Output _____no_output_____ ###Markdown wage_class ###Code data['wage_class'].value_counts() #Get the unique values data['wage_class'].unique() #Replace it with 0 and 1 data = data.replace({' <=50K':0,' >50K':1,' <=50K.':0,' >50K.':1}) count = data['wage_class'].value_counts() count #Viisualization of the values plt.figure(figsize=(6,6)) count.plot(kind='pie', autopct='%.2f' ) plt.legend() ###Output _____no_output_____ ###Markdown 76% of the people belongs to the wage_class less than 50k per year ###Code sns.catplot(x='education',y='wage_class',data=data,height=10,palette='muted',kind='bar') plt.xticks(rotation=60) ###Output _____no_output_____ ###Markdown education_num ###Code data['education_num'].plot(kind='kde') ###Output _____no_output_____ ###Markdown marital_status ###Code data['marital_status'].value_counts() data['marital_status'].unique() #Replacement data['marital_status'].replace(' Married-civ-spouse',' Married-AF-spouse', inplace=True) count_mar = data['marital_status'].value_counts() count_mar plt.figure(figsize=(6,6)) count_mar.plot(kind='pie', autopct='%.2f') plt.title('Percentage of people with relationship categories') ###Output _____no_output_____ ###Markdown occupation ###Code data['occupation'].value_counts() data['occupation'].isnull().sum() #Filling the missing values with '0'. data['occupation'].fillna('0', inplace=True) data['occupation'].isnull().any() data['occupation'].replace(' Armed-Forces','0',inplace=True) data['occupation'].value_counts() sns.catplot(x='occupation',y='wage_class',data=data, kind='bar',height=8, hue='sex') plt.xticks(rotation=90) ###Output _____no_output_____ ###Markdown relationship ###Code value_rel = data['relationship'].value_counts() value_rel plt.figure(figsize=(6,6)) value_rel.plot(kind='pie',autopct='%.2f') plt.title("% of people and relationship") plt.show() data['native_country'].unique() #Function to replace countries into their continents def native(country): if country in [' United-States',' Canada']: return 'North_America' elif country in [' Puerto-Rico',' El-Salvador',' Cuba',' Jamaica',' Dominican-Republic',' Guatemala',' Haiti',' Nicaragua',' Trinadad&Tobago',' Honduras']: return 'Central_America' elif country in [' Mexico',' Columbia',' Vietnam',' Peru',' Ecuador',' South',' Outlying-US(Guam-USVI-etc)']: return 'South_America' elif country in [' Germany',' England',' Italy',' Poland',' Portugal',' Greece',' Yugoslavia',' France',' Ireland',' Scotland',' Hungary',' Holand-Netherlands']: return 'EU' elif country in [' India',' Iran',' China',' Japan',' Thailand',' Hong',' Cambodia',' Laos',' Philippines',' Taiwan']: return 'Asian' else: return country #Apply the native function on native_country column data['native_country'] = data['native_country'].apply(native) data['native_country'].fillna('0', inplace=True) native = data['native_country'].value_counts() native #Visualization plt.figure(figsize=(8,8)) explod = (0,0.1,0.2,0.3,0.4,0.5) label = ['North_America','South_America','Central_America','Asian','None','EU'] plt.pie(native, explode=explod, labels=label, autopct='%.3f') plt.title("Native Countries") plt.show() ###Output _____no_output_____ ###Markdown capital_gain ###Code #Check if any -ve values in capital_gain data['capital_gain'].apply(check).any(), data['capital_gain'].apply(check).sum() ###Output _____no_output_____ ###Markdown Correlation test ###Code #Correlation test cor = data.corr() plt.figure(figsize=(8,8)) sns.heatmap(cor,annot=True) ###Output _____no_output_____ ###Markdown Since the column 'fnlwgt' is very less correated with the label,, I'm dropping the column ###Code data = data.drop('fnlwgt',axis=1) ###Output _____no_output_____ ###Markdown Model Creation ###Code #Seerate feature and label from the dataset feature = data.iloc[:,:-1].values label = data.iloc[:,13].values #Convert the categorial columns into numeric #Label Encoder from sklearn.preprocessing import LabelEncoder le_workclass = LabelEncoder() le_education = LabelEncoder() le_marital = LabelEncoder() le_occupation = LabelEncoder() le_relationship = LabelEncoder() le_race = LabelEncoder() le_sex = LabelEncoder() le_native = LabelEncoder() feature[:,1] = le_workclass.fit_transform(feature[:,1]) feature[:,2] = le_education.fit_transform(feature[:,2]) feature[:,4] = le_marital.fit_transform(feature[:,4]) feature[:,5] = le_occupation.fit_transform(feature[:,5]) feature[:,6] = le_relationship.fit_transform(feature[:,6]) feature[:,7] = le_race.fit_transform(feature[:,7]) feature[:,8] = le_sex.fit_transform(feature[:,8]) feature[:,12] = le_native.fit_transform(feature[:,12]) feature[:10,1] #OneHotEncoder from sklearn.preprocessing import OneHotEncoder ohe = OneHotEncoder(sparse=False) ohe_feature = ohe.fit_transform(feature[:,(1,2,4,5,6,7,8,12)]) print(ohe_feature.shape) ohe_feature #Concatination of OneHotEncoded features and rest of the features final_feature = np.concatenate((ohe_feature,feature[:,[0,3,9,10,11]]), axis=1) final_feature.shape final_feature '''from sklearn.preprocessing import OneHotEncoder ohe_2 = OneHotEncoder(sparse=False) new_feature = ohe_2.fit_transform(try_feature[:,(1,2,4,5,6,7,8,12)]) new_feature ###Output _____no_output_____ ###Markdown The above code(OneHotEncoder) alone can give the output we required. ###Code #Train Test Split from sklearn.model_selection import train_test_split for i in range(50): x_train,x_test,y_train,y_test = train_test_split(final_feature,label, test_size=0.2,random_state=i) #Model training from xgboost import XGBRFClassifier model_1 = XGBRFClassifier() model_1.fit(x_train,y_train) train_score = model_1.score(x_train,y_train) test_score = model_1.score(x_test,y_test) if test_score>train_score: print(f"test score: {test_score}, train score: {train_score}, RS: {i}") ###Output test score: 0.8622172177295526, train score: 0.8575230977913137, RS: 0 test score: 0.8599651960282526, train score: 0.856755304174238, RS: 5 test score: 0.8605793837649708, train score: 0.856089883039439, RS: 6 test score: 0.8596581021598936, train score: 0.8571903872239142, RS: 9 test score: 0.8582249974408844, train score: 0.8582141120466819, RS: 17 test score: 0.8616030299928344, train score: 0.8569600491387915, RS: 19 test score: 0.8585320913092436, train score: 0.8575230977913137, RS: 24 test score: 0.8586344559320299, train score: 0.8574719115501753, RS: 25 test score: 0.858941549800389, train score: 0.858239705167251, RS: 30 test score: 0.8592486436687481, train score: 0.857830215238144, RS: 32 test score: 0.8607841130105436, train score: 0.856755304174238, RS: 37 test score: 0.8599651960282526, train score: 0.8561154761600082, RS: 41 ###Markdown Hyper Parameter Tuning ###Code parameters = [{'learning_rate':[0.1,0.5,1], 'n_estimators':[5,10,15], 'max_depth':[3,5,10]}] from sklearn.model_selection import GridSearchCV grid_sc = GridSearchCV(model_1, param_grid=parameters, scoring='accuracy', n_jobs=3, cv=10, verbose=3) grid_sc.fit(x_train,y_train) grid_sc.best_score_ grid_sc.best_params_ from sklearn.model_selection import train_test_split for i in range(50): x_train,x_test,y_train,y_test = train_test_split(final_feature,label, test_size=0.2,random_state=i) from xgboost import XGBRFClassifier model_1 = XGBRFClassifier(learning_rate=0.1, max_depth=10, n_estimators=5) model_1.fit(x_train,y_train) train_score = model_1.score(x_train,y_train) test_score = model_1.score(x_test,y_test) if test_score>train_score: print(f"test score: {test_score}, train score: {train_score}, RS: {i}") ###Output test score: 0.8679496366055891, train score: 0.867888311621836, RS: 37 ###Markdown Cross validation test ###Code from sklearn.model_selection import cross_val_score cv_score = cross_val_score(estimator=model_1,X=final_feature,y=label,cv=5) print("Minimum score: ",np.min(cv_score)) print("Average score: ",np.average(cv_score)) print("Maximum score: ",np.max(cv_score)) #Final model training from sklearn.model_selection import train_test_split x_train,x_test,y_train,y_test = train_test_split(final_feature,label, test_size=0.2,random_state=37) from xgboost import XGBRFClassifier model_1 = XGBRFClassifier(learning_rate=0.1, max_depth=10, n_estimators=5) model_1.fit(x_train,y_train) train_score = model_1.score(x_train,y_train) test_score = model_1.score(x_test,y_test) print(f"test score: {test_score}, train score: {train_score}") ###Output test score: 0.8679496366055891, train score: 0.867888311621836 ###Markdown Prediction and Testing ###Code #Prediction predictor = model_1.predict(final_feature) from sklearn.metrics import confusion_matrix, classification_report cm = confusion_matrix(label, predictor) ax = plt.subplot() sns.heatmap(cm,cbar=False,annot=True,cmap='Greens',fmt='g',ax=ax) plt.xlabel('Prediction', fontsize=12) plt.ylabel('Actual',fontsize=12) plt.title('Confusion matrix') plt.show() report = classification_report(label, predictor) print(report) ###Output precision recall f1-score support 0 0.88 0.95 0.92 37155 1 0.80 0.60 0.68 11687 accuracy 0.87 48842 macro avg 0.84 0.78 0.80 48842 weighted avg 0.86 0.87 0.86 48842 ###Markdown AUC and ROC Curve ###Code from sklearn.metrics import roc_auc_score auc = roc_auc_score(label,predictor) print(f"Area Under the Curve: {auc}") #Visualisation from sklearn.metrics import roc_curve fpr,tpr,threshold = roc_curve(label, predictor) plt.plot(fpr,tpr,'g',linewidth=2,label='ROC Curve (auc= %0.2f)' %auc) plt.plot([0,1],[0,1],'bo--',linewidth=2,label='Skill line') plt.xlabel('False Postive Rate', fontsize=12) plt.ylabel('True Positive Rate', fontsize=12) plt.title('ROC Curve', fontsize=14) plt.legend() plt.show() import pickle pickle.dump(model_1, open('XGBoost.model','wb')) pickle.dump(le_workclass, open("le_workclass",'wb')) pickle.dump(le_education, open("le_education",'wb')) pickle.dump(le_marital, open("le_workclass",'wb')) pickle.dump(le_occupation, open("le_workclass",'wb')) pickle.dump(le_relationship,open("le_workclass",'wb')) pickle.dump(le_race, open("le_workclass",'wb')) pickle.dump(le_sex, open("le_workclass",'wb')) pickle.dump(le_native , open("le_workclass",'wb')) pickle.dump(ohe, open("OneHotEncoder",'wb')) ###Output _____no_output_____
jupyter_russian/projects_individual/project_us_railway_accident_analysis.ipynb
###Markdown Анализ аварий на ЖД транспорте США в 2013 году и страховых выплат по ним 1. Описание набора данных и признаковВ этом проекте исследуются данные об инцидентах грузового железнодорожного транспорта США за 2013 год и соответствующие запросы на страховое возмещение ущербра от перевозчиков. Данные взяты с Cisco Data Explore.Датасет содержит следующие признаки:ПризнакОписаниеDEPARTURE CITYГород отправления груза (вагона)DEPARTURE STATEШтат отправления груза (вагона)DEPARTURE CARRIERПеревозчик отправления, отправительARRIVAL CITYГород прибытия груза (вагона)ARRIVAL STATEШтат прибытия груза (вагона)ARRIVAL CARRIERКомпания-перевозчик прибытия, принимающая сторонаRAIL SPEED SPEEDТип скороcти железной дорогиRAIL CAR TYPE TYPEТип вагонаRAIL OWNERSHIP OWNERSHIPТип собственности железной дорогиRAIL CARLOAD LOADТип грузаDEPEARTURE DATEДата отправленияARRIVAL DATEДата прибытияCAR VALUEСтоимость вагона, USD DAMAGEDРазмер ущерба, USDWEIGHTВес грузаFUEL USEDКоличествто израсходованного топливаPROPER DESTINATIONМетка правильности назначенияMILESПройденный путь OF STOPSКоличество остановок в пути Задача данного пректа - попытаться предсказать размер ущерба, полученного в результате инцидента, а также предоставить другую полезную информацию. Ценность результатов проекта - информация для страховых компаний, позволяющая быть более гибкими в расчете стоимости страховки для тех или иных компаний, грузов, направлений и т. д., а также для самих перевозчиков - для прогноза затрат на перевозку грузов, выбора более безопасных путей, времени и других параметров для транспортировки грузов. 2. Первичный анализ данных Импортируем все нужные библиотеки: ###Code import warnings warnings.filterwarnings('ignore') import numpy as np import pandas as pd from sklearn.preprocessing import StandardScaler, OneHotEncoder, LabelBinarizer from sklearn.model_selection import train_test_split, GridSearchCV, StratifiedKFold, cross_val_score from sklearn.linear_model import LogisticRegression, LinearRegression import xgboost as xgb from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline ###Output _____no_output_____ ###Markdown Теперь посмотрим на наши данные: ###Code data_file = '../../data/Rail_Insurance_Claims.csv' data = pd.read_csv(data_file, sep=',', parse_dates=['DEPEARTURE DATE','ARRIVAL DATE']) data.head() data.info() data.describe() data.describe(include=['object']) data.describe(include='datetime64') ###Output _____no_output_____ ###Markdown Видим, что в датасете большинство признаков - категориальные, целевая переменная и кол-во топлива - вещественные, два временных признака и несколько количественных. В данных нет пропусков. Также в данных есть много парных признаков DEPARTURE и ARRIVAL. Отсюда можно сделать следующие промежуточные выводы: * Категориальные признаки понадобится кодировать (OHE, mean target) * Из парных признаков можно извлечь много дополинтельной информации и создать новые признаки, связанные с путем следования, временем в пути и т.д. * В данных на первый взгляд нет пропусков - нужно проверить значения категориальных признаков на смысловые пропуски: значения типа N/A, unknown и т. д. * Из числовых признаков можно создать новые относительные. * Из временных признаков также можно извлечь дополнительную информацию * В данных присутствуют признаки CAR VALUE и DAMAGED - целесообразно предсказывать не сам ущерб, а его процент ###Code data['damaged percent'] = data['DAMAGED'] / data['CAR VALUE'] data['damaged percent'].describe() ###Output _____no_output_____ ###Markdown Видим, что значения находятся в интервали от 0 до 1, т.е. признак корректный. Также можно заметить, что 75-я квантиль на порядок меньше максимального значения, из чего можно сделать вывод, что целевая переменная имееть сильный дисбаланс. Посмотрим на распределения категориальных признаков и целевой переменной: построим несколько pivot-таблиц по категориальным признакам. ###Code (data.pivot_table( ['damaged percent'], ['DEPARTURE STATE'], ['ARRIVAL STATE'], aggfunc='mean')) * 100 ###Output _____no_output_____ ###Markdown Посмотрим на распределение по штатам отправления: ###Code print(data['DEPARTURE STATE'].value_counts()) ###Output _____no_output_____ ###Markdown Создадим дополнительные временные признаки и посмотрим, возможно, есть перекос по дням или месяцам в ущербе для штата отправления TN: ###Code data['Dep Month'] = data['DEPEARTURE DATE'].dt.month data['Dep Day'] = data['DEPEARTURE DATE'].dt.day (data[data['DEPARTURE STATE'] == 'TN'].pivot_table( ['damaged percent'], ['Dep Month'], ['Dep Day'], aggfunc='mean')) * 100 ###Output _____no_output_____ ###Markdown Продолжим с другими категориями: ###Code (data.pivot_table( ['damaged percent'], ['DEPARTURE CARRIER'], ['ARRIVAL CARRIER'], aggfunc='mean')) * 100 (data.pivot_table( ['damaged percent'], ['RAIL CARLOAD LOAD'], ['RAIL OWNERSHIP OWNERSHIP'], aggfunc='mean')) * 100 (data.pivot_table(['damaged percent'], ['RAIL CAR TYPE TYPE'], ['RAIL SPEED SPEED'], aggfunc='mean')) * 100 (data.pivot_table(['damaged percent'], ['PROPER DESTINATION'], aggfunc='mean')) * 100 ###Output _____no_output_____ ###Markdown Построим корреляционную матрицу: ###Code corr_m = data.corr() round((corr_m), 2) ###Output _____no_output_____ ###Markdown Проверим целевую переменную на нормальность и скошенность: ###Code from scipy.stats import shapiro, skewtest, skew print('Normality: {}'.format(shapiro(data['damaged percent']))) print('Skewness: {}'.format(skew(data['damaged percent']))) ###Output _____no_output_____ ###Markdown Проверим, нет ли в категориальных признаках значений, похожих на пропуски: ###Code for c in data.select_dtypes(include=['object']): print('{}: {}'.format(c, data[c].unique())) ###Output _____no_output_____ ###Markdown Выводы:К предыдущим выводам можно добавить следующее:* Вагоны, следующие из штата TN, терпят гораздо больший ущерб, чем из всех остальных штатов, но судя по распределению кол-ва рейсов из этого штата и средних потерь по датам, не похоже, что это выброс. Возможно, это будет хорошим предиктором.* Перевозчики-отправители CN и NS страдают немного сильнее, чем остальные, однако в ределах стандартного отклонения* В распределении остальных категорий отностильено таргета ничего необычного не замечено* С целевой переменной немного коррелируют стоимость вагона, вес груза, использованное топливо и кол-во остановок* Целевая переменная не распределена нормально и имеет скошенность с тяжелым левым хвостом, понадобится ее преобразовать* Выбросов и пропусков найти не удалось* Значения переменной PROPER DESTINATION нужно преобразовать в [0, 1] 3. Первичный визуальный анализ данных Для начала дополним данные недостающими временными признаками, преобразуем переменную PROPER DESTINATION: ###Code data['Dep DayOfWeek'] = data['DEPEARTURE DATE'].dt.weekday data['Dep weekend'] = data['Dep DayOfWeek'].isin([5,6]).astype('int') data['Arr Month'] = data['ARRIVAL DATE'].dt.month data['Arr Day'] = data['ARRIVAL DATE'].dt.day data['Arr DayOfWeek'] = data['ARRIVAL DATE'].dt.weekday data['Arr weekend'] = data['Arr DayOfWeek'].isin([5,6]).astype('int') data['proper_dest'] = data['PROPER DESTINATION'].map({'Yes': 1, 'No':0}) data['duration'] = (data['ARRIVAL DATE'] - data['DEPEARTURE DATE']).dt.days ###Output _____no_output_____ ###Markdown Отобразим корреляционную матрицу: ###Code c_m = data.corr() plt.figure(figsize=(15, 15)) sns.heatmap(np.abs(c_m), annot=True, fmt=".2f", linewidths=.5) ###Output _____no_output_____ ###Markdown Видна корреляция между днем отправления и днем прибытия, месяцем отправления и месяцем прибытия, что говорит о наличии расписания, корреляция между днем недели и выходным также ясна, как и между использованным топливом и весом груза. Интересна корреляция между правильным направлением и весом, нуждается в доп. изучении. Видно, что добавленные признаки немного коррелируют с целевой переменной. Переменную DAMAGED нужно удалить, она может быть получена из CAR VALUE и damaged percent. ###Code data.drop(['DAMAGED'], axis=1, inplace=True) ###Output _____no_output_____ ###Markdown Отобразим плотности распределения числовых величин и колличество значений категориальных: ###Code clmns = data.select_dtypes(exclude=['object','datetime64', 'bool']).columns f, axarr = plt.subplots(ncols=1, nrows=len(clmns), figsize=(15, 40)) for c in clmns: sns.distplot(data[c], ax=axarr[list(clmns).index(c)]) plt.tight_layout() categories = data.select_dtypes('object').columns f, axarr = plt.subplots(ncols=1, nrows=len(categories), figsize=(15, 40)) i = 0 for cat in categories: g = sns.countplot(x=cat, data=data, ax=axarr[i], palette="Blues_d") r = 30 if (cat.endswith('CITY')): r = 90 g.set_xticklabels(g.get_xticklabels(), rotation=r) i += 1 plt.tight_layout(h_pad=0.5) categories = list(data.select_dtypes('object').columns) + ['# OF STOPS', 'Dep Month', 'Dep Day', 'Dep DayOfWeek', 'Arr Month', 'Arr Day', 'Arr DayOfWeek', 'Dep weekend', 'Arr weekend'] f, axarr = plt.subplots(ncols=1, nrows=len(categories), figsize=(15, 80)) i = 0 for cat in categories: g = sns.barplot(x=cat, y='damaged percent', data=data, ax=axarr[i]) r = 30 if (cat.endswith('CITY')): r = 90 g.set_xticklabels(g.get_xticklabels(), rotation=r) i += 1 plt.tight_layout(h_pad=0.5) state_tbl = (data.pivot_table(['damaged percent'], ['DEPARTURE STATE'], ['ARRIVAL STATE'], aggfunc='mean')) * 100 plt.figure(figsize=(15, 15)) sns.heatmap(state_tbl) ###Output _____no_output_____ ###Markdown ВыводыВидно, что результаты визуального анализа отображают закономерности, выявленные в предыдущей части. Распределения величин не указывает на наличие выбросов. Почти все значения признаков имеют разные средние значения damaged percent, т.е. должны быть учтены при прогнозе. 4. Инсайты и закономерности Часть закономерностей описана выше.Следует также создать признаки, связанные с путем, закодировать некоторые из них OHE, для путей как таковых применить mean target encoding. 5. Выбор метрики и модели Т.к. в данных нет выбросов, а решаемая задача - регрессия, можно использовать MSE или R2. Т.к. R2 - это по сути 1 - усредненная MSE, то используем первую для большей наглядности. В качестве модели будем сравнивать линейную регрессию и градиентный бустинг, т.к. они обе подходят для задачи регрессии, а градиентный бустинг хорошо себя зарекомендовал в решениях задач со смешанным типом признаков. При использовании линейной регрессии будем масштабировать признаки. 6. Предобработка данных и создание новых признаков Частично предобработка была выполнена выше для визуализации.Создадим признаки, связанные с путем: ###Code data['interstate'] = (data['DEPARTURE STATE'] != data['ARRIVAL STATE']).astype('int') data['intercity'] = (data['DEPARTURE CITY'] != data['ARRIVAL CITY']).astype('int') data['intercarrier'] = (data['DEPARTURE CARRIER'] != data['ARRIVAL CARRIER']).astype('int') data['city route'] = data['DEPARTURE CITY'] + data['ARRIVAL CITY'] data['state route'] = data['DEPARTURE STATE'] + data['ARRIVAL STATE'] data['carrier route'] = data['DEPARTURE CARRIER'] + data['ARRIVAL CARRIER'] ###Output _____no_output_____ ###Markdown Создадим относительный признак расход доплива: ###Code data['FUEL PER MILE'] = (data['FUEL USED']/data['MILES']) ###Output _____no_output_____ ###Markdown Напишем функцию для кодирования средним: ###Code def mean_target_enc(train_df, y_train, valid_df, cat_features, skf): import warnings warnings.filterwarnings('ignore') target_name = y_train.name glob_mean = y_train.mean() train_df = pd.concat([train_df, pd.Series(y_train, name='y')], axis=1) new_train_df = train_df.copy() for col in cat_features: new_train_df[col + '_mean_' + target_name] = [glob_mean for _ in range(new_train_df.shape[0])] for train_idx, valid_idx in skf.split(train_df, y_train): train_df_cv, valid_df_cv = train_df.iloc[train_idx, :], train_df.iloc[valid_idx, :] for col in cat_features: means = valid_df_cv[col].map(train_df_cv.groupby(col)['y'].mean()) valid_df_cv[col + '_mean_' + target_name] = means.fillna(glob_mean) new_train_df.iloc[valid_idx] = valid_df_cv new_train_df.drop(['y'], axis=1, inplace=True) for col in cat_features: means = valid_df[col].map(train_df.groupby(col)['y'].mean()) valid_df[col + '_mean_' + target_name] = means.fillna(glob_mean) # valid_df.drop(cat_features, axis=1, inplace=True) return new_train_df, valid_df ###Output _____no_output_____ ###Markdown Применим OHE преобразование к категориальным признакам, за исключением путей: ###Code data_ohe = pd.get_dummies(data, columns=['DEPARTURE CITY', 'DEPARTURE STATE', 'DEPARTURE CARRIER', 'ARRIVAL CITY', 'ARRIVAL STATE', 'ARRIVAL CARRIER', 'RAIL SPEED SPEED', 'RAIL CAR TYPE TYPE', 'RAIL OWNERSHIP OWNERSHIP', 'RAIL CARLOAD LOAD']) ###Output _____no_output_____ ###Markdown Применим mean target encoding к путям ###Code data_ohe, _ = mean_target_enc(data_ohe, (data['damaged percent']*10000).astype('int'), data_ohe[-1:], ['city route', 'state route', 'carrier route'], StratifiedKFold(5, shuffle=True, random_state=17)) ###Output _____no_output_____ ###Markdown Удалим ненужные фичи и выделим целевую переменную: ###Code y = data['damaged percent'] data_ohe.drop(['DEPEARTURE DATE', 'ARRIVAL DATE', 'FUEL USED', 'city route', 'state route', 'carrier route', 'PROPER DESTINATION'], axis=1, inplace=True) data_ohe.drop(['damaged percent'], axis=1, inplace=True) import scipy.stats as stats stats.probplot(y, dist="norm", plot=plt) stats.probplot(np.log(y), dist="norm", plot=plt) stats.probplot(StandardScaler().fit_transform(y.values.reshape(-1,1).astype(np.float64)).flatten(), dist="norm", plot=plt) y = np.log(y) y.hist() ###Output _____no_output_____ ###Markdown Выделим тренировочную, валидационную и тестовые выборки. Т.к. данные у нас сбалансированы, выберем случайный способ. Отмасштабируем признаки. ###Code st = StandardScaler() X_train, X_val, y_train, y_val = train_test_split(data_ohe, y, test_size=0.3, random_state=1) X_train_st = st.fit_transform(X_train) X_val_st = st.transform(X_val) X_val_st, X_test_st, y_val, y_test = train_test_split(X_val_st, y_val, test_size=0.3333, random_state=1) lr = LinearRegression(n_jobs=-1) cv_sc = cross_val_score(lr, X_train, y_train, cv=5, n_jobs=-1) cv_sc lr.fit(X_train, y_train) lr_pred_val = lr.predict(X_val_st) r2_score(y_val, lr_pred_val) lr_test_pred = lr.predict((X_test_st)) print(r2_score(y_test, lr_test_pred)) np.sqrt(mean_squared_error(y_test, lr_test_pred)) plt.figure(figsize=(15, 10)) plt.plot(np.exp(y_test).values[-200:], 'b') plt.plot(np.exp(lr_test_pred)[-200:], 'g') ###Output _____no_output_____ ###Markdown Видим, что линейная регрессия не сработала. Посмотрим на xboost. ###Code dtrain = xgb.DMatrix(X_train_st, label=np.sqrt(y_train)) dtest = xgb.DMatrix(X_val_st) params = { 'objective':'reg:linear', 'max_depth':5, 'silent':1, 'nthread': 8, # 'booster': 'dart', # 'eta':0.5, # 'gamma': 0.1, # 'lambda': 20, # 'alpha': 0.5 } num_rounds = 100 xgb_ = xgb.train(params, dtrain, num_rounds) xgb__pred = xgb_.predict(dtest) r2_score(y_val, (xgb__pred)) np.sqrt(mean_squared_error(np.sqrt(y_val), xgb__pred)) np.sqrt(mean_squared_error(y_val, np.exp(xgb__pred))) xgb_test_pred = xgb_.predict(xgb.DMatrix(X_test_st)) print(r2_score(y_test, xgb_test_pred)) np.sqrt(mean_squared_error(y_test, xgb_test_pred)) plt.figure(figsize=(15, 10)) plt.plot(np.exp(y_test).values[-200:], 'b') plt.plot(np.exp(xgb_test_pred)[-200:], 'g') ###Output _____no_output_____
notebooks/demosaic_ppp_bm3d_admm.ipynb
###Markdown Image Demosaicing (ADMM Plug-and-Play Priors w/ BM3D)=====================================================This example demonstrates the use of the ADMM Plug and Play Priors(PPP) algorithm for solvinga raw image demosaicing problem. ###Code import numpy as np import jax from bm3d import bm3d_rgb from colour_demosaicing import demosaicing_CFA_Bayer_Menon2007 import scico import scico.numpy as snp import scico.random from scico import functional, linop, loss, metric, plot from scico.data import kodim23 from scico.optimize.admm import ADMM, LinearSubproblemSolver from scico.util import device_info plot.config_notebook_plotting() ###Output _____no_output_____ ###Markdown Read a ground truth image. ###Code img = kodim23(asfloat=True)[160:416, 60:316] img = jax.device_put(img) # convert to jax type, push to GPU ###Output _____no_output_____ ###Markdown Define demosaicing forward operator and its transpose. ###Code def Afn(x): """Map an RGB image to a single channel image with each pixel representing a single colour according to the colour filter array. """ y = snp.zeros(x.shape[0:2]) y = y.at[1::2, 1::2].set(x[1::2, 1::2, 0]) y = y.at[0::2, 1::2].set(x[0::2, 1::2, 1]) y = y.at[1::2, 0::2].set(x[1::2, 0::2, 1]) y = y.at[0::2, 0::2].set(x[0::2, 0::2, 2]) return y def ATfn(x): """Back project a single channel raw image to an RGB image with zeros at the locations of undefined samples. """ y = snp.zeros(x.shape + (3,)) y = y.at[1::2, 1::2, 0].set(x[1::2, 1::2]) y = y.at[0::2, 1::2, 1].set(x[0::2, 1::2]) y = y.at[1::2, 0::2, 1].set(x[1::2, 0::2]) y = y.at[0::2, 0::2, 2].set(x[0::2, 0::2]) return y ###Output _____no_output_____ ###Markdown Define a baseline demosaicing function based on the demosaicingalgorithm of from package[colour_demosaicing](https://github.com/colour-science/colour-demosaicing). ###Code def demosaic(cfaimg): """Apply baseline demosaicing.""" return demosaicing_CFA_Bayer_Menon2007(cfaimg, pattern="BGGR").astype(np.float32) ###Output _____no_output_____ ###Markdown Create a test image by color filter array sampling and adding Gaussianwhite noise. ###Code s = Afn(img) rgbshp = s.shape + (3,) # shape of reconstructed RGB image σ = 2e-2 # noise standard deviation noise, key = scico.random.randn(s.shape, seed=0) sn = s + σ * noise ###Output _____no_output_____ ###Markdown Compute a baseline demosaicing solution. ###Code imgb = jax.device_put(bm3d_rgb(demosaic(sn), 3 * σ).astype(np.float32)) ###Output _____no_output_____ ###Markdown Set up an ADMM solver object. Note the use of the baseline solutionas an initializer. We use BM3D as thedenoiser, using the [code](https://pypi.org/project/bm3d) releasedwith . ###Code A = linop.LinearOperator(input_shape=rgbshp, output_shape=s.shape, eval_fn=Afn, adj_fn=ATfn) f = loss.SquaredL2Loss(y=sn, A=A) C = linop.Identity(input_shape=rgbshp) g = 1.8e-1 * 6.1e-2 * functional.BM3D(is_rgb=True) ρ = 1.8e-1 # ADMM penalty parameter maxiter = 12 # number of ADMM iterations solver = ADMM( f=f, g_list=[g], C_list=[C], rho_list=[ρ], x0=imgb, maxiter=maxiter, subproblem_solver=LinearSubproblemSolver(cg_kwargs={"tol": 1e-3, "maxiter": 100}), itstat_options={"display": True}, ) ###Output _____no_output_____ ###Markdown Run the solver. ###Code print(f"Solving on {device_info()}\n") x = solver.solve() hist = solver.itstat_object.history(transpose=True) ###Output Solving on GPU (NVIDIA GeForce RTX 2080 Ti) ###Markdown Show reference and demosaiced images. ###Code fig, ax = plot.subplots(nrows=1, ncols=3, sharex=True, sharey=True, figsize=(21, 7)) plot.imview(img, title="Reference", fig=fig, ax=ax[0]) plot.imview(imgb, title="Baseline demoisac: %.2f (dB)" % metric.psnr(img, imgb), fig=fig, ax=ax[1]) plot.imview(x, title="PPP demoisac: %.2f (dB)" % metric.psnr(img, x), fig=fig, ax=ax[2]) fig.show() ###Output _____no_output_____ ###Markdown Plot convergence statistics. ###Code plot.plot( snp.vstack((hist.Prml_Rsdl, hist.Dual_Rsdl)).T, ptyp="semilogy", title="Residuals", xlbl="Iteration", lgnd=("Primal", "Dual"), ) ###Output _____no_output_____
Data Analytics/Topic 3 - One parameter models/Single parameters models/Flight data/Airlines.ipynb
###Markdown Airline fatalities 1976-1985We consider the number of fatal accidents and deaths on scheduled airline flights per year over a ten-year period *Source: Gelman et al. 2014 Reproduced from Statistical Abstract of the United States.* Our goal is to create a model predicting such number in 1986. ###Code import sys sys.path.append('../') import pystan import stan_utility import arviz as az import numpy as np import scipy.stats as stats import pandas as pd import matplotlib.pyplot as plt import matplotlib as mpl light="#FFFCDC" light_highlight="#FEF590" mid="#FDED2A" mid_highlight="#f0dc05" dark="#EECA02" dark_highlight="#BB9700" green="#00FF00" light_grey="#DDDDDD" plt.style.context('seaborn-white') mpl.rcParams['figure.dpi']= 200 dts=[24,734,25,516,31,754,31,877,22,814,21,362,26,764,20,809,16,223,22,1066] c1=dts[::2] c2=dts[1::2] Airline_data=pd.DataFrame({'Year':[1976,1977,1978,1979,1980,1981,1982,1983,1984,1985], 'Fatal accidents':c1, 'Passenger deaths':c2, 'Death rate':[0.19,0.12,0.15,0.16,0.14,0.06,0.13,0.13,0.03,0.15]}).set_index('Year') Airline_data['Miles flown [100 mln miles]']=np.round(Airline_data['Passenger deaths']/Airline_data['Death rate']) ## generation of vector for plotting samples under histograms acc=[] dta_cnt=[] for k in Airline_data['Fatal accidents']: dta_cnt.append(-(1.+acc.count(k))) acc.append(k) dta_cnt=np.array(dta_cnt) Airline_data ###Output _____no_output_____ ###Markdown Model for accidentsWe start our modelling by proposing very simple model, with an assumption, that Fatal accidents number $y_i$ has a Poisson distribution $$y_i\sim\mathrm{Poisson}(\lambda)$$with a rate $\lambda$ independent on year or miles flown. Prior for fatal accidents rateWe assume that having fatal accident every day would be very improbable. For poisson distribution we have mean of $\lambda$ and standard deviation of $\sqrt{\lambda}$. Approximately in order to have no more than 1% probability $\lambda$ should fulfill$$\lambda+3\sqrt{\lambda}\approx365$$We need to assign the prior that would have probability of smaller $\lambda$ equal 99%. ###Code root_of_lam=np.polynomial.polynomial.polyroots([-365.,3.,1.]) lam_ub=np.round(root_of_lam[root_of_lam>0]**2) print(lam_ub) ###Output [312.] ###Markdown Prior tuning in StanUsing Stan algebra solver we can solve nonlinear equations. In particular it can be used for finding distribution parameters that are fulfilling the conditions we have given. We can for example find $\sigma$ for a HalfNormal distribution. ###Code with open('prior_tune3.stan', 'r') as file: print(file.read()) tuning2=stan_utility.compile_model('prior_tune3.stan') data=dict(y_guess=np.array([np.log(100)]),theta=np.array(lam_ub)) tuned2 = tuning2.sampling(data=data, seed=1052020, algorithm="Fixed_param", iter=1, warmup=0, chains=1) sigma = np.round(tuned2.extract()['sigma'][0]) print(sigma) fig, ax2 = plt.subplots(1, 1,figsize=(7, 4)) x2=np.linspace(0,3*sigma,1000) x4=np.linspace(0,lam_ub[0],1000) ax2.plot(x2,2*stats.norm.pdf(x2,scale=sigma),color=dark,linewidth=2) ax2.fill_between(x4,2*stats.norm.pdf(x4,scale=sigma),0,color=dark) ax2.set_yticks([]) ax2.set_xticks([0,lam_ub[0]]) ax2.set_title(r'$\lambda$') plt.show() ###Output _____no_output_____ ###Markdown Prior predictive distributionWe can use stan to simulate possible outputs and parameteres based only on prior information. ###Code with open('airline_FA_hnorm_ppc.stan', 'r') as file: print(file.read()) model_prior=stan_utility.compile_model('airline_FA_hnorm_ppc.stan') R=1000 sim_uf=model_prior.sampling(data={'M':1}, algorithm="Fixed_param", iter=R, warmup=0, chains=1, refresh=R, seed=29042020) params=sim_uf.extract() theta=params['lambda'] y_sim=params['y_sim'] fig, axes = plt.subplots(2, 1,figsize=(7, 8)) ax1=axes[0] ax1.hist(theta,bins=20,color=dark,edgecolor=dark_highlight,density=True) x=np.linspace(0,350,2000) ax1.set_xticks([0,lam_ub[0]]) ax1.set_yticks([]) ax1.set_title(r'$\lambda$') ax1.plot(x,2*stats.norm.pdf(x,0,sigma),color='black',linestyle='--') arr_y_loc = 2*stats.norm.pdf(150,0,sigma) ax1.annotate('HalfNormal(0,'+str(np.int(sigma))+')',xy=(150,arr_y_loc),xytext=(200,1.5*arr_y_loc),arrowprops={'arrowstyle':'->'}) ax2=axes[1] ax2.hist(y_sim.flatten(),color=dark,edgecolor=dark_highlight,density=True,bins=20,zorder=1) ax2.scatter(acc,0.0002*dta_cnt,color='black',marker='.',zorder=2) ax2.set_xticks([0,365]) ax2.set_yticks([]) ax2.set_title('No. of accidents') plt.show() ###Output _____no_output_____ ###Markdown Posterior inference and posterior predictive checks ###Code with open('airline_FA_hnorm_fit.stan', 'r') as file: print(file.read()) model=stan_utility.compile_model('airline_FA_hnorm_fit.stan') data = dict(M = len(Airline_data), y = Airline_data['Fatal accidents']) fit = model.sampling(data=data, seed=8052020) params=fit.extract() lam=params['lambda'] y_sim=params['y_sim'] mean_lam = np.mean(lam) cinf_lam = az.hpd(lam,0.89) hpd_width=cinf_lam[1]-cinf_lam[0] print('Mean lambda : {:4.2f}'.format(mean_lam)) print('89% confidence interval: [',*['{:4.2f}'.format(k) for k in cinf_lam],']') fig, axes = plt.subplots(2, 1,figsize=(7, 8)) ax1=axes[0] ax1.hist(lam,bins=20,color=dark,edgecolor=dark_highlight,density=True) x=np.linspace(0,350,1000) #ax1.plot(x,2*stats.t.pdf(x,5,0,10),color='black',linestyle='--') ax1.plot(x,2*stats.norm.pdf(x,0,sigma),color='black',linestyle='--') arr_y_loc = 2*stats.norm.pdf(50,0,sigma) ax1.annotate('Prior',xy=(50,arr_y_loc),xytext=(100,10*arr_y_loc),arrowprops={'arrowstyle':'->'}) ax1.set_xticks([0,lam_ub[0]]) ax1.set_yticks([]) ax1.set_title(r'$\lambda$') ax_sm=plt.axes([0.5,0.6,0.35,0.2]) x_sm=np.linspace(cinf_lam[0]-hpd_width,cinf_lam[1]+hpd_width,200) ax_sm.hist(lam,bins=20,color=dark,edgecolor=dark_highlight,density=True) ax_sm.plot(x_sm,2*stats.norm.pdf(x_sm,0,sigma),color='black',linestyle='--') ax_sm.annotate(s='', xy=(cinf_lam[0]-.2,0.2), xytext=(cinf_lam[1]+.2,0.2), arrowprops=dict(arrowstyle='<->')) ax_sm.plot([cinf_lam[0],cinf_lam[0]],[0,0.3],color='black',linestyle='-',linewidth=0.5) ax_sm.plot([cinf_lam[1],cinf_lam[1]],[0,0.3],color='black',linestyle='-',linewidth=0.5) ax_sm.set_xticks(np.round([cinf_lam[0],cinf_lam[1]],2)) ax_sm.set_yticks([]) ax_sm.set_title(r'$\lambda$ HPD') ax2=axes[1] ax2.hist(y_sim.flatten(),color=dark,edgecolor=dark_highlight,density=True,bins=20,zorder=1) ax2.scatter(acc,0.002*dta_cnt,color='black',marker='.',zorder=2) ax2.set_xticks([0,np.max(y_sim)]) ax2.set_yticks([]) ax2.set_title('No. of accidents') plt.show() ###Output _____no_output_____ ###Markdown Using model for predictionIn 1986, there were **22** fatal accidents, **546** passenger deaths, and a death rate of **0.06** per 100 million miles flown. Lets check how our can perform such prediction.In order to predict value in 1986 we just need to use the prior predictive distribution of y_sim. ###Code median_y_sim = np.median(y_sim.flatten()) cinf_y_sim = az.hpd(y_sim.flatten(),0.89) print('Median of predicted accidents =',median_y_sim) print('Confidence interval = [',*cinf_y_sim,']') ###Output Median of predicted accidents = 24.0 Confidence interval = [ 15.0 31.0 ] ###Markdown Modelling for accidents, considering milesIt is rather logical, that number of accidents should be related to number of miles flown. We can still use the Poisson model, however we can decompose rate $\lambda$ into intensity $\theta$ and exposure $n$, i.e.$$y_i\sim\mathrm{Poisson}(\theta n)$$With $n$ being a number miles flown (in 100 mil). Prior for fatal accidents intensityWe still assume that having fatal accident every day would be very improbable. Our previous argument, can be still valid, however in order to compute the bound we will use $\lambda=\theta\cdot\bar{n}$, with $\bar{n}$ being mean of miles flown. This gives us condition$$\theta\cdot\bar{n}+3\sqrt{\theta\cdot\bar{n}}\approx365$$We need to assign the prior for $\theta$ that would have probability of smaller $\lambda$ equal 99%. ###Code mean_miles=np.mean(Airline_data['Miles flown [100 mln miles]']) root_of_theta=np.polynomial.polynomial.polyroots([-365/mean_miles,3./np.sqrt(mean_miles),1.]) theta_ub=(root_of_theta[root_of_lam>0]**2) print('theta upper bound','{:4.3f}'.format(theta_ub[0])) data=dict(y_guess=np.array([np.log(0.01)]),theta=np.array(theta_ub)) tuned2 = tuning2.sampling(data=data, seed=1052020, algorithm="Fixed_param", iter=1, warmup=0, chains=1) sigma = (tuned2.extract()['sigma'][0]) print('sigma =','{:4.3f}'.format(sigma)) fig, ax2 = plt.subplots(1, 1,figsize=(7, 4)) x2=np.linspace(0,3*sigma,1000) x4=np.linspace(0,theta_ub[0],1000) ax2.plot(x2,2*stats.norm.pdf(x2,scale=sigma),color=dark,linewidth=2) ax2.fill_between(x4,2*stats.norm.pdf(x4,scale=sigma),0,color=dark) ax2.set_yticks([]) ax2.set_xticks([0,theta_ub[0]]) ax2.set_xticklabels([0,0.055]) ax2.set_title(r'$\theta$') plt.show() ###Output _____no_output_____ ###Markdown Prior predictive distributionWe can use stan to simulate possible outputs and parameteres based only on prior information. ###Code with open('airline_FA_miles_hnorm_ppc.stan', 'r') as file: print(file.read()) model_prior=stan_utility.compile_model('airline_FA_miles_hnorm_ppc.stan') R=1000 data_prior=dict(M=len(Airline_data),miles=Airline_data['Miles flown [100 mln miles]'].to_numpy()) sim_uf=model_prior.sampling(data=data_prior,algorithm="Fixed_param", iter=R, warmup=0, chains=1, refresh=R, seed=29042020) params=sim_uf.extract() theta=params['theta'] #y_sim=params['y_sim'] fig, axes = plt.subplots(1, 1,figsize=(7, 4)) ax1=axes ax1.hist(theta,bins=20,color=dark,edgecolor=dark_highlight,density=True) x=np.linspace(0,1.2*theta_ub[0],2000) ax1.set_xticks([0,theta_ub[0]]) ax1.set_xticklabels([0,np.round(theta_ub[0],3)]) ax1.set_yticks([]) ax1.set_title(r'$\theta$') ax1.plot(x,2*stats.norm.pdf(x,0,sigma),color='black',linestyle='--') arr_y_loc = 2*stats.norm.pdf(0.025,0,sigma) ax1.annotate('HalfNormal(0,'+'{:4.3f}'.format(sigma)+')',xy=(0.025,arr_y_loc),xytext=(0.04,1.5*arr_y_loc),arrowprops={'arrowstyle':'->'}) plt.show() y_sim=params['y_sim'] fig, axes = plt.subplots(5, 2, figsize=(7, 8), sharey=True,squeeze=False) axes_flat=axes.flatten() for k in range(len(axes_flat)): ax = axes_flat[k] ax.hist(y_sim[:,k],bins=20,color=dark,edgecolor=dark_highlight,density=True) ax.set_title(Airline_data.index[k]) tv=Airline_data['Fatal accidents'].iloc[k] ax.plot([tv,tv],[0,0.02],linestyle='--',color='black') ax.set_yticks([]) ax.set_xticks([0,tv,365]) ax.set_xticklabels(['',tv,365]) ax.set_ylim([0,0.012]) fig.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown Posterior inference and posterior predictive checks ###Code with open('airline_FA_miles_hnorm_fit.stan', 'r') as file: print(file.read()) model_miles=stan_utility.compile_model('airline_FA_miles_hnorm_fit.stan') data = dict(M = len(Airline_data), miles = Airline_data['Miles flown [100 mln miles]'], y = Airline_data['Fatal accidents']) fit = model_miles.sampling(data=data, seed=8052020) params_miles=fit.extract() theta=params_miles['theta'] y_sim=params_miles['y_sim'] mean_theta = np.mean(theta) cinf_theta = az.hpd(theta,0.89) hpd_width=cinf_theta[1]-cinf_theta[0] print('Mean theta : {:5.4f}'.format(mean_theta)) print('89% confidence interval: [',*['{:5.4f}'.format(k) for k in cinf_theta],']') #fig, axes = plt.subplots(2, 1,figsize=(7, 8)) fig, axes = plt.subplots(1, 1,figsize=(7, 4)) ax1=axes ax1.hist(theta,bins=20,color=dark,edgecolor=dark_highlight,density=True) x=np.linspace(0,1.2*theta_ub[0],2000) ax1.set_xticks([0,theta_ub[0]]) ax1.set_xticklabels([0,np.round(theta_ub[0],3)]) ax1.set_yticks([]) ax1.set_title(r'$\theta$') ax1.plot(x,2*stats.norm.pdf(x,0,sigma),color='black',linestyle='--') arr_y_loc = 2*stats.norm.pdf(0.01,0,sigma) ax1.annotate('Prior',xy=(0.01,arr_y_loc),xytext=(0.015,10*arr_y_loc),arrowprops={'arrowstyle':'->'}) ax_sm=plt.axes([0.5,0.3,0.35,0.4]) x_sm=np.linspace(cinf_theta[0]-hpd_width,cinf_theta[1]+hpd_width,200) ax_sm.hist(theta,bins=20,color=dark,edgecolor=dark_highlight,density=True) ax_sm.plot(x_sm,2*stats.norm.pdf(x_sm,0,sigma),color='black',linestyle='--') ax_sm.annotate(s='', xy=(0.99*cinf_theta[0],1000), xytext=(1.01*cinf_theta[1],1000), arrowprops=dict(arrowstyle='<->')) ax_sm.plot([cinf_theta[0],cinf_theta[0]],[0,1600],color='black',linestyle='-',linewidth=0.5) ax_sm.plot([cinf_theta[1],cinf_theta[1]],[0,1600],color='black',linestyle='-',linewidth=0.5) ax_sm.set_xticks(([cinf_theta[0],cinf_theta[1]])) ax_sm.set_xticklabels(np.round([cinf_theta[0],cinf_theta[1]],4)) ax_sm.set_yticks([]) ax_sm.set_title(r'$\theta$ HPD') plt.show() y_sim=params_miles['y_sim'] fig, axes = plt.subplots(5, 2, figsize=(7, 8), sharey=True,squeeze=False) axes_flat=axes.flatten() for k in range(len(axes_flat)): ax = axes_flat[k] ax.hist(y_sim[:,k],bins=20,color=dark,edgecolor=dark_highlight,density=True) ax.set_title(Airline_data.index[k]) tv=Airline_data['Fatal accidents'].iloc[k] ax.plot([tv,tv],[0,0.15],linestyle='--',color='black') #ax.set_yticks([]) ax.set_xticks([0,tv,50]) ax.set_xticklabels([0,tv,50]) ax.set_ylim([0,0.15]) fig.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown Using model for predictionIn this situation prediction might be a slight more complicated, as it requires from us modifying the generated quantities blockAs stated before in 1986, there were **22** fatal accidents, **546** passenger deaths, and a death rate of **0.06** per 100 million miles flown. ###Code miles1986=546/0.06 print(np.round(miles1986)) with open('airline_FA_miles_1986.stan', 'r') as file: print(file.read()) model1986=stan_utility.compile_model('airline_FA_miles_1986.stan') data = dict(M = len(Airline_data), miles = Airline_data['Miles flown [100 mln miles]'], y = Airline_data['Fatal accidents']) fit1986 = model1986.sampling(data=data, seed=8052020) y_1986=fit1986.extract()['y_1986'] median_y_1986 = np.median(y_1986) cinf_y_1986 = az.hpd(y_1986,0.89) print('Median of predicted accidents =',median_y_1986) print('Confidence interval = [',*cinf_y_1986,']') y_sim=params['y_sim'] fig, ax = plt.subplots(1, 1, figsize=(7, 4)) ax.hist(y_1986,bins=20,color=dark,edgecolor=dark_highlight,density=True) ax.set_title('1986') tv = 22 ax.plot([tv,tv],[0,0.07],linestyle='--',color='black') ax.set_yticks([]) ax.set_xticks([0,tv,50]) ax.set_xticklabels(['0',tv,50]) ax.set_ylim([0,0.07]) plt.show() ###Output _____no_output_____
SQl_Alchemy_Juan.ipynb
###Markdown How to connect to a Database using Python First, the imports! ###Code !pip install SQLAlchemy !pip install psycopg2 !pip install psycopg2-binary from sqlalchemy import create_engine import pandas as pd import os ###Output _____no_output_____ ###Markdown Create a db connection ###Code USERNAME = 'postgres' PASSWORD = 'postgres' HOST = 'localhost' PORT = '5432' DBNAME = 'movies' conn_string = f'postgres://{USERNAME}:{PASSWORD}@{HOST}:{PORT}/{DBNAME}' conn_string_short = f'postgres://{HOST}:{PORT}/{DBNAME}' db = create_engine(conn_string) db ###Output _____no_output_____ ###Markdown Write csvs to disk - (maybe already done?) Query disk ###Code #sql command - written in sql query=input() #query to the db results = db.execute(query) results list_of_results = results.fetchall() #displaying the results of that query, plus doing stuff with the results list_of_results pd.DataFrame(list_of_results) iter(list_of_results) #list_of_results = iterable + iterator def generator_function(): yield x ###Output _____no_output_____ ###Markdown Advanced SQLAlchemy - the ORM part! declarative base, sessionmaker, python Queries ###Code from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker from sqlalchemy import MetaData, Table, create_engine, and_, or_, not_ base = declarative_base(db) Session = sessionmaker(db) session = Session() metadata = base.metadata base.metadata.tables.keys() Ratings = Table('ratings1', base.metadata, autoload = True) Movies = Table('movies', base.metadata, autoload = True) Links = Table('links', base.metadata, autoload=True) Tags = Table('tabs', base.metadata, autoload=True) Ratings base.metadata.tables.keys() base.metadata.tables['movies'].columns.values() select * from movies limit 5; session.query(Movies).limit(5).all() ###Output _____no_output_____
intro-tf/3-automatic-differentiation.ipynb
###Markdown Part of the training process requires calculating derivatives that involve tensors. So let's learn about TensorFlow's built-in [automatic differentiation](https://www.tensorflow.org/guide/autodiff) engine, using a very simple example. Let's consider the following two tensors:$$\begin{align} U = \begin{bmatrix} 1 & 2 \end{bmatrix} && V = \begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix}\end{align}$$Now let's suppose that we want to multiply $U$ by $V$, and then sum all the values in the resulting tensor, such that the result is a scalar. In math notation, we might represent this as the following scalar function $f$:$$f(U, V) = \mathrm{sum} (U \, V) = \sum_j \sum_i u_i \, v_{ij}$$Our goal is to calculate the derivative of $f$ with respect to each of its inputs: $\frac{\partial f}{\partial U}$ and $\frac{\partial f}{\partial V}$. We start by creating the two tensors $U$ and $V$. We then create a [tf.GradientTape](https://www.tensorflow.org/guide/autodiffgradient_tapes), and tell TensorFlow to watch for mathematical operations involving $U$ and $V$, recording those operations onto our "tape." The tape then enables us to calculate the derivatives of the function $f$ with respect to $U$ and $V$. ###Code # Decimal points in tensor values ensure they are floats, which automatic differentiation requires. U = tf.constant([[1., 2.]]) V = tf.constant([[3., 4.], [5., 6.]]) with tf.GradientTape(persistent=True) as tape: tape.watch(U) tape.watch(V) W = tf.matmul(U, V) f = tf.math.reduce_sum(W) print(tape.gradient(f, U)) # df/dU print(tape.gradient(f, V)) # df/dV ###Output tf.Tensor([[ 7. 11.]], shape=(1, 2), dtype=float32) tf.Tensor( [[1. 1.] [2. 2.]], shape=(2, 2), dtype=float32) ###Markdown TensorFlow automatically watches tensors that are defined as `Variable` instances. So let's turn `U` and `V` into variables, and remove the `watch` calls: ###Code # Decimal points in tensor values ensure they are floats, which automatic differentiation requires. U = tf.Variable(tf.constant([[1., 2.]])) V = tf.Variable(tf.constant([[3., 4.], [5., 6.]])) with tf.GradientTape(persistent=True) as tape: W = tf.matmul(U, V) f = tf.math.reduce_sum(W) print(tape.gradient(f, U)) # df/dU print(tape.gradient(f, V)) # df/dV ###Output tf.Tensor([[ 7. 11.]], shape=(1, 2), dtype=float32) tf.Tensor( [[1. 1.] [2. 2.]], shape=(2, 2), dtype=float32)
Exam/Final/GEOG489 SP22 Final.ipynb
###Markdown GEOG489 SP22 Final InstructionYour final exam consists of three major parts. **First**, you will prepare supply, demand, and mobility data for measuring spatial accessibility to healthcare resources in Champaign County. **Second**, you will measure spatial accessibility considering distance decay. **Third**, you will calculate spatial autocorrelation based on the accessibility measures.**When you finish the tasks, please save/download your Jupyter notebook and submit it to learn.illinois.edu.** ###Code import geopandas as gpd import pandas as pd import osmnx as ox import networkx as nx import matplotlib.pyplot as plt import esda import libpysal ###Output _____no_output_____ ###Markdown 1. Data preprocessing (3 points) 1.1. Supply (1 point)* Load `healthcare.shp` in the data folder and name it as `supply`. * Create a column named `weight` and assign weights based on `TYPE` of healthcare (10 for `Hospital` and 5 for `Urgent Care`). * Change the coordinate system of the dataframe to State Plane Coordinate System - Illinois East (NAD83) (epsg:26971).**Note**: The below is the expected result. ###Code # Your code here ###Output _____no_output_____ ###Markdown 1.2. Demand (1 point)* With `census_block_groups.shp` and `pop_census.csv` in the data folder, create a GeoDataFrame named `demand` by merging them based on a column that shares information between them.* Drop the `GEO_ID` column after the merge. * Change the coordinate system of the dataframe to State Plane Coordinate System - Illinois East (NAD83) (epsg:26971).**Note**: The below is the expected result. ###Code # Your code here ###Output _____no_output_____ ###Markdown 1.3. Mobility (1 point)* Utilize `OSMnx` package to obtain road network for `Champaign County` and assign the result to a variable `G`.* Project the road network to State Plane Coordinate System - Illinois East (NAD83) (epsg:26971).* Utilize the `remove_uncenessary_nodes` function below, and remove unnecessary nodes from the imported road network. ```pythondef remove_uncenessary_nodes(network): _nodes_removed = len([n for (n, deg) in network.out_degree() if deg == 0]) network.remove_nodes_from([n for (n, deg) in network.out_degree() if deg == 0]) for component in list(nx.strongly_connected_components(network)): if len(component) < 30: for node in component: _nodes_removed += 1 network.remove_node(node) print("Removed {} nodes ({:2.4f}%) from the OSMNX network".format(_nodes_removed, _nodes_removed / float(network.number_of_nodes()))) print("Number of nodes: {}".format(network.number_of_nodes())) print("Number of edges: {}".format(network.number_of_edges())) return network``` ###Code def remove_uncenessary_nodes(network): _nodes_removed = len([n for (n, deg) in network.out_degree() if deg == 0]) network.remove_nodes_from([n for (n, deg) in network.out_degree() if deg == 0]) for component in list(nx.strongly_connected_components(network)): if len(component) < 30: for node in component: _nodes_removed += 1 network.remove_node(node) print("Removed {} nodes ({:2.4f}%) from the OSMNX network".format(_nodes_removed, _nodes_removed / float(network.number_of_nodes()))) print("Number of nodes: {}".format(network.number_of_nodes())) print("Number of edges: {}".format(network.number_of_edges())) return network # Your code here ###Output _____no_output_____ ###Markdown 2. Measuring accessibility to healthcare resources (5 points) 2.1. Find the nearest OSM node from `supply` and `demand`. (1 point)* Use the following `find_nearest_osm` function to search the nearest OSM node from `supply` and `demand` GeoDataFrame, respectively.```pythondef find_nearest_osm(network, gdf): """ This function helps you to find the nearest OSM node from a given GeoDataFrame If geom type is point, it will take it without modification, but IF geom type is polygon or multipolygon, it will take its centroid to calculate the nearest element. Input: - network (NetworkX MultiDiGraph): Network Dataset obtained from OSMnx - gdf (GeoDataFrame): stores locations in its `geometry` column Output: - gdf (GeoDataFrame): will have `nearest_osm` column, which describes the nearest OSM node that was computed based on its geometry column """ for idx, row in gdf.iterrows(): if row.geometry.geom_type == 'Point': nearest_osm = ox.distance.nearest_nodes(network, X=row.geometry.x, Y=row.geometry.y ) elif row.geometry.geom_type == 'Polygon' or row.geometry.geom_type == 'MultiPolygon': nearest_osm = ox.distance.nearest_nodes(network, X=row.geometry.centroid.x, Y=row.geometry.centroid.y ) else: print(row.geometry.geom_type) continue gdf.at[idx, 'nearest_osm'] = nearest_osm return gdf``` ###Code # Your code here def find_nearest_osm(network, gdf): """ # This function helps you to find the nearest OSM node from a given GeoDataFrame # If geom type is point, it will take it without modification, but # IF geom type is polygon or multipolygon, it will take its centroid to calculate the nearest element. Input: - network (NetworkX MultiDiGraph): Network Dataset obtained from OSMnx - gdf (GeoDataFrame): stores locations in its `geometry` column Output: - gdf (GeoDataFrame): will have `nearest_osm` column, which describes the nearest OSM node that was computed based on its geometry column """ for idx, row in gdf.iterrows(): if row.geometry.geom_type == 'Point': nearest_osm = ox.distance.nearest_nodes(network, X=row.geometry.x, Y=row.geometry.y ) elif row.geometry.geom_type == 'Polygon' or row.geometry.geom_type == 'MultiPolygon': nearest_osm = ox.distance.nearest_nodes(network, X=row.geometry.centroid.x, Y=row.geometry.centroid.y ) else: print(row.geometry.geom_type) continue gdf.at[idx, 'nearest_osm'] = nearest_osm return gdf ###Output _____no_output_____ ###Markdown 2.2. Calculate estimated travel time for edges in the road network (1 points)* Investigate the road network `G` and compute the `time` column in `G`. This will include the subtasks below. * If `maxspeed` exists in each row, maintain the current value. * If `maxspeed` is missing, assign `maxspeed` value of each row based on `max_speed_per_type` dictionary below.```pythonmax_speed_per_type = {'motorway': 60, 'motorway_link': 45, 'trunk': 60, 'trunk_link': 45, 'primary': 50, 'primary_link': 35, 'secondary': 40, 'secondary_link': 35, 'tertiary': 40, 'tertiary_link': 35, 'residential': 20, 'living_street': 20, 'unclassified': 20, 'road': 20, 'busway': 20 }```**Note**: Be aware that the `length` column of `G` is based on meters, but `maxspeed` is MPH. You need to multiply `maxspeed` column with 26.8223 to compute meters per minute from mile per hour. ###Code # Your code here max_speed_per_type = {'motorway': 60, 'motorway_link': 45, 'trunk': 60, 'trunk_link': 45, 'primary': 50, 'primary_link': 35, 'secondary': 40, 'secondary_link': 35, 'tertiary': 40, 'tertiary_link': 35, 'residential': 20, 'living_street': 20, 'unclassified': 20, 'road': 20, 'busway': 20 } # Your code here ###Output _____no_output_____ ###Markdown 2.3. Measure accessibility (Enhanced two-step floating catchment area method) (2 points)Now, you will interpret the following two equations into code. First step:$$ R_j = \frac{S_j}{\sum_{k\in {\left\{{t_{kj}} \le {t_0} \right\}}}^{}{P_k}{W_k}}$$where$R_j$: the supply-to-demand ratio of location $j$. $S_j$: the degree of supply (e.g., number of doctors) at location $j$. $P_k$: the degree of demand (e.g., population) at location $k$. $t_{kj}$: the travel time between locations $k$ and $j$. $t_0$: the threshold travel time of the analysis. ${W_k}$: Weight based on a distance decay function Second step:$$ A_i = \sum_{j\in {\left\{{t_{ij}} \le {t_0} \right\}}} R_j{W_j}$$where$A_i$: the accessibility measures at location $i$. $R_j$: the supply-to-demand ratio of location $j$. ${W_j}$: Weight based on a distance decay function 2.3.1. Step1: Calculate the supply-to-demand ratio of each healthcare facility (1 point)In this stage, you will calculate supply-to-demand ratio ($R_j$) of each healthcare resource, and store the ratio into `ratio` column in the `supply` GeoDataFrame. The ratio should be depreciated based on the travel time and the weights provided below. In other words, each facility will have a catchment area that consists of three subzones. The inner subzone will be drawn from a 10-minute travel time and has a weight of 1. The middle subzone will be drawn from a 20-minute travel time and has a weight of 0.68. The outer subzone will be drawn from a 30-minute travel time and has a weight of 0.22. ```pythonminutes = [10, 20, 30]weights = {10: 1, 20: 0.68, 30: 0.22}```The function `calculate_catchment_area` will help you to calculate the three subzones for each facility. ```pythondef calculate_catchment_area(network, nearest_osm, minutes, distance_unit='time'): polygons = gpd.GeoDataFrame() Create convex hull for each travel time (minutes), respectively. for minute in minutes: access_nodes = nx.single_source_dijkstra_path_length(G=network, source=nearest_osm, cutoff=minute, weight=distance_unit ) convex_hull = nodes.loc[ nodes.index.isin(access_nodes.keys()), 'geometry' ].unary_union.convex_hull polygons.at[minute, 'geometry'] = convex_hull Calculate the differences between convex hulls which created in the previous section. polygons_ = polygons.copy(deep=True) for idx, minute in enumerate(minutes): if idx != 0: current_polygon = polygons.loc[[minute]] previous_polygons = polygons.loc[[minutes[idx-1]]] diff_polygon = gpd.overlay(current_polygon, previous_polygons, how="difference") if diff_polygon.shape[0] != 0: polygons_.at[minute, 'geometry'] = diff_polygon['geometry'].values[0] if polygons_.shape[0]: polygons_ = polygons_.set_crs(epsg=26971) return polygons_.copy(deep=True)``` ###Code # Extract the nodes and edges of the network dataset for the future analysis. nodes, edges = ox.graph_to_gdfs(G, nodes=True, edges=True, node_geometry=True) def calculate_catchment_area(network, nearest_osm, minutes, distance_unit='time'): polygons = gpd.GeoDataFrame() # Create convex hull for each travel time (minutes), respectively. for minute in minutes: access_nodes = nx.single_source_dijkstra_path_length(G=network, source=nearest_osm, cutoff=minute, weight=distance_unit ) convex_hull = nodes.loc[ nodes.index.isin(access_nodes.keys()), 'geometry' ].unary_union.convex_hull polygons.at[minute, 'geometry'] = convex_hull # Calculate the differences between convex hulls which created in the previous section. polygons_ = polygons.copy(deep=True) for idx, minute in enumerate(minutes): if idx != 0: current_polygon = polygons.loc[[minute]] previous_polygons = polygons.loc[[minutes[idx-1]]] diff_polygon = gpd.overlay(current_polygon, previous_polygons, how="difference") if diff_polygon.shape[0] != 0: polygons_.at[minute, 'geometry'] = diff_polygon['geometry'].values[0] if polygons_.shape[0]: polygons_ = polygons_.set_crs(epsg=26971) return polygons_.copy(deep=True) ###Output _____no_output_____ ###Markdown **Note**: The below is the expected result. ###Code supply['ratio'] = 0 minutes = [10, 20, 30] weights = {10: 1, 20: 0.68, 30: 0.22} # Your code here ###Output _____no_output_____ ###Markdown 2.3.2. Step2: Aggregate the supply-to-demand ratio for each census block group (1 point)In this stage, you will aggregate the supply-to-demand ratio, which was calculated in the step above, for each census block group (`demand`). Assign the aggregated result into `access` column at `demand` GeoDataFrame. You can still utilize `calculate_catchment_area` function to facilitate your analysis. **Note**: The below is the expected result. ###Code demand['access'] = 0 # Your code here ###Output _____no_output_____ ###Markdown 2.4. Plot the measures of accessibility (1 point)Try your best to mimic the map shown below, which demonstrate the measure of accessibility to healthcare resource at Champaign County. To achieve this, you need to 1) Plot the location of healthcare resources (`supply`). 2) Plot a Choropleth map with the `access` column in `demand`. 3) Use grey color to visualize locations without access 4) Hide x-axis and y-axis of the figure. **Note**: The below is the expected result. ###Code # Your code here ###Output _____no_output_____ ###Markdown 3. Calculate spatial autocorrelation based on the accessibility measure (2 points)Calculate **Moran's I** and **Local Moran's I** based on the accessibility measures. If you fail to finish the accessibility measurements, you can use `step2.shp` in the data folder for this task. * Compute weights (`w`) with `libpysal.weights.DistanceBand`, which will be utilized for calculating spatial autocorrelation. * Fixed distance will be 10000 and alpha value for distance decay is -1. If you are looking for places to search, visit `libpysal.weights.DistanceBand()`, `esda.Moran()`, `esda.Moran_Local()`. 3.1. Calculate Moran's I of accessibility measure (1 point)Utilize `esda.moran.Moran()` and print the `Moran's I`. ###Code # Your code here ###Output _____no_output_____ ###Markdown 3.2. Calculate Local Moran's I (1 point)Utilize `esda.moran.Moran_Local()` function and plot the Local Moran's I result as shown below. Use the following code to color your result if the classification is statistically significant (p-value < 0.05). ```pythonlm_dict = {1: 'HH', 2: 'LH', 3: 'LL', 4: 'HL'}lisa_color = {'HH': 'red', 'LL': 'blue', 'HL': 'orange', 'LH': 'skyblue', 'Not_Sig': 'lightgrey'}```**Note**: The map can be slightly different for every run, since the equation is based on a simulation. ###Code # Your code here ###Output _____no_output_____
materials/1_core.ipynb
###Markdown Core language A. VariablesVariables are used to store and modify values. ###Code a = 5 b = a + 3.1415 c = a / b print(a, b, c) ###Output 5 8.1415 0.6141374439599582 ###Markdown Note, we did not need to declare variable types (like in fortran), we could just assign anything to a variable and it works. This is the power of an interpreted (as opposed to compiled) language. Also, we can add different types (`a` is an integer, and we add the float 3.1415 to get `b`). The result is 'upcast' to whatever data type can handle the result. I.e., adding a float and an int results in a float.Variables can store lots of different kinds of data ###Code s = 'Ice cream' # A string f = [1, 2, 3, 4] # A list d = 3.1415928 # A floating point number i = 5 # An integer b = True # A boolean value ###Output _____no_output_____ ###Markdown *Side note*: Anything followed by a `` is a comment, and is not considered part of the code. Comments are useful for explaining what a bit of code does. ___USE COMMENTS___ You can see what `type` a variable has by using the `type` function, like ###Code type(s) ###Output _____no_output_____ ###Markdown --- *Exercise*> Use `type` to see the types of the other variables--- --- *Exercise*> What happens when you add variables of the same type? What about adding variables of different types?--- You can test to see if a variable is a particular type by using the `isinstance(var, type)` function. ###Code isinstance(s, str) # is s a string? isinstance(f, int) # is s an integer? ###Output _____no_output_____ ###Markdown C. Tests for equality and inequalityWe can test the values of variables using different operators. These tests return a `Boolean` value. Either `True` or `False`. `False` is the same as zero, `True` is nonzero. Note that assignment `=` is different than a test of equality `==`. ###Code a < 99 a > 99 a == 5. ###Output _____no_output_____ ###Markdown These statements have returned "booleans", which are `True` and `False` only. These are commonly used to check for conditions within a script or function to determine the next course of action.NOTE: booleans are NOT equivalent to a string that says "True" or "False". We can test this: ###Code True == 'True' ###Output _____no_output_____ ###Markdown There are other things that can be tested, not just mathematical equalities. For example, to test if an element is inside of a list or string (or any sequence, more on sequences below..), do ###Code foo = [1, 2, 3, 4, 5 ,6] 5 in foo 'this' in 'What is this?' 'that' in 'What is this?' ###Output _____no_output_____ ###Markdown D. Intro to functionsWe will discuss functions in more detail later in this notebook, but here is a quick view to help with the homework.Functions allow us to write code that we can use in the future. When we take a series of code statements and put them in a function, we can reuse that code to take in inputs, perform calculations or other manipulations, and return outputs, just like a function in math.Almost all of the code you submit in your homework will be within functions so that I can use and test the functionality of your code.Here we have a function called `display_and_capitalize_string` which takes in a string, prints that string, and then returns the same string but with it capitalized. ###Code def display_and_capitalize_string(input_str): '''Documentation for this function, which can span multiple lines since triple quotes are used for this. Takes in a string, prints that string, and then returns the same string but with it capitalized.''' print(input_str) # print out to the screen the string that was input, called `input_str` new_string = input_str.capitalize() # use built-in method for a string to capitalize it return new_string display_and_capitalize_string('hi') ###Output hi ###Markdown This is analogous to the relationship between a variable and a function in math. The variable is $x$, and the function is $f(x)$, which changes the input $x$ in some way, then returns a new value. To access that returned value, you have to use the function -- not just define the function. ###Code # input variable, x. Internal to the function itself, it is called # input_str. x = 'hi' # function f(x) is `display_and_capitalize_string` # the function returns the variable `output_string` output_string = display_and_capitalize_string('hi') ###Output hi ###Markdown --- *Exercise*> Write your own functions that do the following: 1. Take in a number and return that number plus 10. 2. Take in a variable and return the `type` of the variable.--- Equality checks are commonly used to test the outcome of a function to make sure it is performing as expected and desire. We can test the function we wrote before to see if it works the way we expect and want it to. Here are three different ways to test the outcome of the same input/output pair. ###Code out_string = display_and_capitalize_string('banana') assert(out_string == 'Banana') from nose.tools import assert_equal assert_equal(out_string, "Banana") assert(out_string[0].isupper()) ###Output _____no_output_____ ###Markdown We know that the assert statements passed because no error was thrown. On the other hand, the following test does not run successfully: ###Code assert(out_string=='BANANA') ###Output _____no_output_____ ###Markdown --- *Exercise*> Write tests using assertions to check how well your functions from the previous exercise are working.--- E. ConditionalsConditionals have a similar syntax to `for` statements. Generally, conditionals look like if : or if : elif : else: In both cases the test statements are code segments that return a boolean value, often a test for equality or inequality. The `elif` and `else` statements are always optional; both, either, or none can be included. ###Code x = 20 if x < 10: print('x is less than 10') else: print('x is more than 10') ###Output x is more than 10 ###Markdown --- *Exercise*> Rerun the code block above using different values for x. What happens if x=10?> Add an `elif` statement to the second block of code that will print something if x==10.--- F. StringsStrings are made using various kinds of (matching) quotes. Examples: ###Code s1 = 'hello' s2 = "world" s3 = '''strings can also go 'over' multiple "lines".''' s2 print(s3) ###Output strings can also go 'over' multiple "lines". ###Markdown You can also 'add' strings using 'operator overloading', meaning that the plus sign can take on different meanings depending on the data types of the variables you are using it on. ###Code print( s1 + ' ' + s2) # note, we need the space otherwise we would get 'helloworld' ###Output hello world ###Markdown We can include special characters in strings. For example `\n` gives a newline, `\t` a tab, etc. Notice that the multiple line string above (`s3`) is converted to a single quote string with the newlines 'escaped' out with `\n`. ###Code s3.upper() ###Output _____no_output_____ ###Markdown Strings are 'objects' in that they have 'methods'. Methods are functions that act on the particular instance of a string object. You can access the methods by putting a dot after the variable name and then the method name with parentheses (and any arguments to the method within the parentheses). Methods always have to have parentheses, even if they are empty. ###Code s3.capitalize() ###Output _____no_output_____ ###Markdown One of the most useful string methods is 'split' that returns a list of the words in a string, with all of the whitespace (actual spaces, newlines, and tabs) removed. More on lists next. ###Code s3.split() ###Output _____no_output_____ ###Markdown Another common thing that is done with strings is the `join` method. It can be used to join a sequence of strings given a common conjunction ###Code words = s3.split() '_'.join(words) # Here, we are using a method directly on the string '_' itself. ###Output _____no_output_____ ###Markdown G. ContainersOften you need lists or sequences of different values (e.g., a timeseries of temperature – a list of values representing the temperature on sequential days). There are three containers in the core python language. There are a few more specialized containers (e.g., numpy arrays and pandas dataframes) for use in scientific computing that we will learn much more about later; they are very similar to the containers we will learn about here. ListsLists are perhaps the most common container type. They are used for sequential data. Create them with square brackets with comma separated values within: ###Code foo = [1., 2., 3, 'four', 'five', [6., 7., 8], 'nine'] type(foo) ###Output _____no_output_____ ###Markdown Note that lists (unlike arrays, as we will later learn) can be heterogeneous. That is, the elements in the list don't have to have the same kind of data type. Here we have a list with floats, ints, strings, and even another (nested) list!We can retrieve the individual elements of a list by 'indexing' the list. We do this with square brackets, using zero-based indexes – that is `0` is the first element – as such: ###Code foo[0] foo[5] foo[5][1] # Python is sequential, we can access an element within an element using sequential indexing. foo[-1] # This is the way to access the last element. foo[-3] # ...and the third to last element foo[-3][2] # we can also index strings. ###Output _____no_output_____ ###Markdown We can get a sub-sequence from the list by giving a range of the data to extract. This is done by using the format start:stop:stridewhere `start` is the first element, up to but not including the element indexed by `stop`, taking every `stride` elements. The defaluts are start at the beginning, include through the end, and include every element. The up-to-but-not-including part is confusing to first time Python users, but makes sense given the zero-based indexing. For example, `foo[:10]` gives the first ten elements of a sequence. ###Code # create a sequence of 10 elements, starting with zero, up to but not including 10. bar = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] bar[2:5] bar[:4] bar[:] bar[::2] ###Output _____no_output_____ ###Markdown --- *Exercise*> Use the list bar = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] > use indexing to get the following sequences: [3, 4, 5] [9] note this is different than just the last element. It is a sequence with only one element, but still a sequence [2, 5, 8]> What happens when you exceed the limits of the list? bar[99] bar[-99] bar[5:99]--- You can assign values to list elements by putting the indexed list on the right side of the assignment, as ###Code bar[5] = -99 bar ###Output _____no_output_____ ###Markdown This works for sequences as well, ###Code bar[2:7] = [1, 1, 1, 1, 1, 1, 1, 1] bar ###Output _____no_output_____ ###Markdown Lists are also 'objects'; they also have 'methods'. Methods are functions that are designed to be applied to the data contained in the list. You can access them by putting a dot and the method name after the variable (called an 'object instance') ###Code bar.insert(5, 'here') bar bar = [4, 5, 6, 7, 3, 6, 7, 3, 5, 7, 9] bar.sort() # Note that we don't do 'bar = bar.sort()'. The sorting is done in place. bar ###Output _____no_output_____ ###Markdown --- *Exercise*> What other methods are there? Type `bar.` and then ``. This will show the possible completions, which in this case is a list of the methods and attributes. You can get help on a method by typing, for example, `bar.pop?`. The text in the help file is called a `docstring`; as we will see below, you can write these for your own functions.> See if you can use these four methods of the list instance `bar`: 1. append 2. pop 3. index 4. count--- TuplesTuples (pronounced `too'-puls`) are sequences that can't be modified, and don't have methods. Thus, they are designed to be immutable sequences. They are created like lists, but with parentheses instead of square brackets. ###Code foo = (3, 5, 7, 9) # foo[2] = -999 # gives an assignment error. Commented so that all cells run. ###Output _____no_output_____ ###Markdown Tuples are often used when a function has multiple outputs, or as a lightweight storage container. Becuase of this, you don't need to put the parentheses around them, and can assign multiple values at a time. ###Code a, b, c = 1, 2, 3 # Equivalent to '(a, b, c) = (1, 2, 3)' print(b) ###Output 2 ###Markdown DictionariesDictionaries are used for unordered sequences that are referenced by arbitrary 'keys' instead of by a (sequential) index. Dictionaries are created using curly braces with keys and values separated by a colon, and key:value pairs separated by commas, as ###Code foobar = {'a':3, 'b':4, 'c':5} ###Output _____no_output_____ ###Markdown Elements are referenced and assigned by keys: ###Code foobar['b'] foobar['c'] = -99 foobar ###Output _____no_output_____ ###Markdown The keys and values can be extracted as lists using methods of the dictionary class. ###Code foobar.keys() foobar.values() ###Output _____no_output_____ ###Markdown New values can be assigned simply by assigning a value to a key that does not exist yet ###Code foobar['spam'] = 'eggs' foobar ###Output _____no_output_____ ###Markdown --- *Exercise*> Create a dictionary variable with at least 3 entries. The entry keys should be the first name of people around you in the class, and the value should be their favorite food.> Explore the methods of the dictionary object, as was done with the list instance in the previous exercise.--- You can make an empty dictionary or list by using the `dict` and `list` functions respectively. ###Code empty_dict = dict() empty_list = list() print(empty_dict, empty_list) ###Output {} [] ###Markdown H. Logical OperatorsYou can compare statements that evaluate to a boolean value with the logical `and` and `or`. We can first think about this with boolean values directly: ###Code True and True, True and False True or True, True or False ###Output _____no_output_____ ###Markdown Note that you can also use the word `not` to switch the meaning of a boolean: ###Code not True, not False ###Output _____no_output_____ ###Markdown Now let's look at this with actual test examples instead of direct boolean values: ###Code word = 'the' sentence1 = 'the big brown dog' sentence2 = 'I stand at the fridge' sentence3 = 'go outside' (word in sentence1) and (word in sentence2) (word in sentence1) and (word in sentence2) and (word in sentence3) (word in sentence1) or (word in sentence2) or (word in sentence3) x = 20 5 < x < 30, 5 < x and x < 30 ###Output _____no_output_____ ###Markdown I. Loops For loopsLoops are one of the fundamental structures in programming. Loops allow you to iterate over each element in a sequence, one at a time, and do something with those elements.*Loop syntax*: Loops have a very particular syntax in Python; this syntax is one of the most notable features to Python newcomers. The format looks like for *element* in *sequence*: NOTE the colon at the end the block of code that is looped over for each element is indented four spaces (yes four! yes spaces!) the end of the loop is marked simply by unindented code Thus, indentation is significant to the code. This was done because good coding practice (in almost all languages, C, FORTRAN, MATLAB) typically indents loops, functions, etc. Having indentation be significant saves the end of loop syntax for more compact code.*Some important notes on indentation* Indentation in python is typically *4 spaces*. Most programming text editors will be smart about indentation, and will also convert TABs to four spaces. Jupyter notebooks are smart about indentation, and will do the right thing, i.e., autoindent a line below a line with a trailing colon, and convert TABs to spaces. If you are in another editor remember: ___TABS AND SPACES DO NOT MIX___. See [PEP-8](https://www.python.org/dev/peps/pep-0008/) for more information on the correct formatting of Python code.A simple example is to find the sum of the squares of the sequence 0 through 99, ###Code sum_of_squares = 0 for n in range(100): # range yields a sequence of numbers from 0 up to but not including 100 sum_of_squares += n**2 # the '+=' operator is equivalent to 'sum = sum + n**2', # the '**' operator is a power, like '^' in other languages print(sum_of_squares) ###Output 328350 ###Markdown You can iterate over any sequence, and in Python (like MATLAB) it is better to iterate over the sequence you want than to loop over the indices of that sequence. The following two examples give the same result, but the first is much more readable and easily understood than the second. Do the first whenever possible. ###Code # THIS IS BETTER THAN THE NEXT CODE BLOCK. DO IT THIS WAY. words = ['the', 'quick', 'brown', 'fox', 'jumped', 'over', 'the', 'lazy', 'dog'] sentence = '' # this initializes a string which we can then add onto for word in words: sentence += word + ' ' sentence # DON'T DO IT THIS WAY IF POSSIBLE, DO IT THE WAY IN THE PREVIOUS CODE BLOCK. words = ['the', 'quick', 'brown', 'fox', 'jumped', 'over', 'the', 'lazy', 'dog'] sentence = '' for i in range(len(words)): sentence += words[i] + ' ' sentence ###Output _____no_output_____ ###Markdown Sometimes you want to iterate over a sequence but you *also* want the indices of those elements. One way to do that is the `enumerate` function: enumerate()This returns a sequence of two element tuples, the first element in each tuple is the index, the second the element. It is commonly used in `for` loops, like ###Code for idx, word in enumerate(words): print('The index is', idx, '...') print('...and the word is', word) ###Output The index is 0 ... ...and the word is the The index is 1 ... ...and the word is quick The index is 2 ... ...and the word is brown The index is 3 ... ...and the word is fox The index is 4 ... ...and the word is jumped The index is 5 ... ...and the word is over The index is 6 ... ...and the word is the The index is 7 ... ...and the word is lazy The index is 8 ... ...and the word is dog ###Markdown List comprehensionThere is a short way to make a list from a simple rule by using list comprehensions. The syntax is like [ for item in sequence] for example, we can calculate the squares of the first 10 integers ###Code [n**2 for n in range(10)] ###Output _____no_output_____ ###Markdown The `element` can be any code snippet that depends on the `item`. This example gives a sequence of boolean values that determine if the element in a list is a string. ###Code random_list = [1, 2, 'three', 4.0, ['five',]] [isinstance(item, str) for item in random_list] random_list = [1, 2, 'three', 4.0, ['five',]] foo = [] for item in random_list: foo.append(isinstance(item, str)) foo ###Output _____no_output_____ ###Markdown --- *Exercise*> Modify the previous list comprehension to test if the elements are integers.--- While loopsThe majority of loops that you will write will be `for` loops. These are loops that have a defined number of iterations, over a specified sequence. However, there may be times when it is not clear when the loop should terminate. In this case, you use a `while` loop. This has the syntax while : `condition` should be something that can be evaluated when the loop is started, and the variables that determine the conditional should be modified in the loop.This kind of loop should be use carefully — it is relatively easy to accidentally create an infinite loop, where the condition never is triggered to stop so the loop continues forever. This is especially important to avoid given that we are using shared resources in our class and a `while` loop that never ends can cause the computer the crash. ###Code n = 5 # starting value while n > 0: n -= 1 # subtract 1 each loop print(n) # look at value of n ###Output 4 3 2 1 0 ###Markdown Flow controlThere are a few commands that allow you to control the flow of any iterative loop: `continue`, `break`, and `pass`.- `continue` stops the current iteration and continues to the next element, if there is one.- `break` stops the current iteration, and leaves the loop.- `pass` does nothing, and is just a placeholder when syntax requires some code needs to be present ###Code # print all the numbers, except 5 for n in range(10): if n == 5: continue print(n) # print all the numbers up to (but not including) 5, then break out of the loop. for n in range(10): print('.') if n == 5: break print(n) print('done') # pass can be used for empty functions or classes, # or in loops (in which case it is usually a placeholder for future code) def foo(x): pass class Foo(object): pass x = 2 if x == 1: pass # could just leave this part of the code out entirely... elif x == 2: print(x) ###Output 2 ###Markdown J. FunctionsFunctions are ways to create reusable blocks of code that can be run with different variable values – the input variables to the function. Functions are defined using the syntax def (var1, var2, ...): return Functions can be defined at any point in the code, and called at any subsequent point. ###Code def addfive(x): return x+5 addfive(3.1415) ###Output _____no_output_____ ###Markdown Function inputs and outputsFunctions can have multiple input and output values. The documentation for the function can (and should) be provided as a string at the beginning of the function. ###Code def sasos(a, b, c): '''return the sum of a, b, and c and the sum of the squares of a, b, and c''' res1 = a + b + c res2 = a**2 + b**2 + c**2 return res1, res2 s, ss = sasos(3, 4, 5) print(s) print(ss) ###Output 12 50 ###Markdown Functions can have variables with default values. You can also specify positional variables out of order if they are labeled explicitly. ###Code def powsum(x, y, z, a=1, b=2, c=3): return x**a + y**b + z**c print( powsum(2., 3., 4.) ) print( powsum(2., 3., 4., b=5) ) print( powsum(z=2., c=2, x=3., y=4.) ) ###Output 75.0 309.0 23.0 ###Markdown --- *Exercise*> Verify `powsum(z=2., x=3., y=4., c=2)` is the same as `powsum(3., 4., 2., c=2)`> What happens when you do `powsum(3., 4., 2., x=2)`? Why?--- --- *Exercise*> Write a function that takes in a list of numbers and returns two lists of numbers: the odd numbers in the list and the even numbers in the list. That is, if your function is called `odds_evens()`, it should work as follows: >>> odds, evens = odds_evens([1,5,2,8,3,4]) >>> odds, evens ([1, 5, 3], [2, 8, 4]) > Note that `x % y` gives the remainder of `x/y`.> How would you change the code to make a counter (the index) available each loop?--- DocstringsYou can add 'help' text to functions (and classes) by adding a 'docstring', which is just a regular string, right below the definition of the function. This should be considered a mandatory step in your code writing. ###Code def addfive(x): '''Return the argument plus five Input : x A number Output: foo The number x plus five ''' return x+5 # now, try addfive? addfive? ###Output _____no_output_____ ###Markdown See [PEP-257](https://www.python.org/dev/peps/pep-0257/) for guidelines about writing good docstrings. ScopeVariables within the function are treated as 'local' variables, and do not affect variables outside of the 'scope' of the function. That is, all of the variables that are changed within the block of code inside a function are only changed within that block, and do not affect similarly named variables outside the function. ###Code x = 5 def changex(x): # This x is local to the function x += 10. # here the local variable x is changed print('Inside changex, x=', x) return x res = changex(x) # supply the value of x in the 'global' scope. print(res) print(x) # The global x is unchanged ###Output Inside changex, x= 15.0 15.0 5 ###Markdown Variables from the 'global' scope can be used within a function, as long as those variables are unchanged. This technique should generally only be used when it is very clear what value the global variable has, for example, in very short helper functions. ###Code x = 5 def dostuffwithx(y): res = y + x # Here, the global value of x is used, since it is not defined inside the function. return res print(dostuffwithx(3.0)) print(x) ###Output 8.0 5 ###Markdown [Packing and unpacking](https://docs.python.org/2/tutorial/controlflow.htmlunpacking-argument-lists) function argumentsYou can provide a sequence of arguments to a function by placing a `*` in front of the sequence, like foo(*args)This unpacks the elements of the sequence into the arguments of the function, in order. ###Code list(range(3, 6)) # normal call with separate arguments args = [3, 6] list(range(*args)) # call with arguments unpacked from a list ###Output _____no_output_____ ###Markdown You can also unpack dictionaries as keyword arguments by placing `**` in front of the dictionary, like bar(**kwargs)These can be mixed, to an extent. E.g., `foo(*args, **kwargs)` works.Using our function from earlier, here we call `powsum` first with keyword arguments written in and second by unpacking a dictionary. ###Code x = 5; y = 6; z = 7 powdict = {'a': 1, 'b': 2, 'c': 3} print(powsum(x, y, z, a=1, b=2, c=3)) print(powsum(x, y, z, **powdict)) ###Output 384 384 ###Markdown One common usage is using the builtin `zip` function to take a 'transpose' of a set of points. ###Code list(zip((1, 2, 3, 4, 5), ('a', 'b', 'c', 'd', 'e'), (6, 7, 8, 9, 10))) pts = ((1, 2), (3, 4), (5, 6), (7, 8), (9, 10)) x, y = list(zip(*pts)) print(x) print(y) # and back again, print(list(zip(*(x,y)))) ###Output (1, 3, 5, 7, 9) (2, 4, 6, 8, 10) [(1, 2), (3, 4), (5, 6), (7, 8), (9, 10)] ###Markdown K. Classes*We won't cover classes in this class, but these notes are here for your reference in case you are interested.*Classes are used to define generic objects. The 'instances' of the class are supplied with specific data. Classes define a data structure, 'methods' to work with this data, and 'attributes' that define the data. The computer science way to think of classesThink of the class as a sentence. The nouns would be the classes, the associated verbs class methods, and associated adjectives class attributes. For example take the sentence> The white car signals and makes a left turn.In this case the object is a `car`, a generic kind of vehicle. We see in the sentence that we have a particular instance of a `car`, a *white* `car`. Obviously, there can be many instances of the class `car`. White is a defining or distinguishing 'attribute' of the car. There are two 'methods' noted: signaling and turning. We might write the code for a `car` object like this: class Car(object): def __init__(self, color): self.color = color def signal(self, direction): def turn(self, direction): The scientific way to thing about classesGenerally, in science we use objects to store and work with complicated data sets, so it is natural to think of the data structure first, and use that to define the class. The methods are functions that work on this data. The attributes hold the data, and other defining characteristics about the dataset (i.e., metadata). The primary advantage of this approach is that the data are in a specified structure, so that the methods can assume this structure and are thereby more efficient.For example, consider a (atmospheric, oceanic, geologic) profile of temperature in the vertical axis. We might create a class that would look like: class Profile(object): ''' Documentation describing the object, in particular how it is instantiated. ''' def __init__(self, z, temp, lat, lon, time): self.z = z A sequence of values defining the vertical positions of the samples self.property = temp A corresponding sequence of temperature values self.lat = lat The latitude at which the profile was taken self.lon = lon The longitude at which the profile was taken self.time = time The time at which the profile was taken def mean(self): 'return the mean of the profile' Note, there could be a number of different choices for how the data are stored, more variables added to the profile, etc. Designing good classes is essential to the art of computer programming. Make classes as small and agile as possible, building up your code from small, flexible building blocks. Classes should be parsimonious and cogent. Avoid bloat.Classes are traditionally named with a Capitol, sometimes CamelCase, sometimes underlined_words_in_a_row, as opposed to functions which are traditionally lower case (there are many exceptions to these rules, though). When a class instance is created, the special `__init__` function is called to create the class instance. Within the class, the attributes are stored in `self` with a dot and the attribute name. Methods are defined like normal functions, but within the block, and the first argument is always `self`.There are many other special functions, that allow you to, for exmaple, overload the addition operator (`__add__`) or have a representation of the class that resembles the command used to create it (`__repr__`).Consider the example of a class defining a point on a 2D plan: ###Code from math import sqrt # more on importing external packages below class Point(object): def __init__(self, x, y): self.x = x self.y = y def norm(self): 'The distance of the point from the origin' return sqrt(self.x**2 + self.y**2) def dist(self, other): 'The distance to another point' dx = self.x - other.x dy = self.y - other.y return sqrt(dx**2 + dy**2) def __add__(self, other): return Point(self.x + other.x, self.y + other.y) def __repr__(self): return 'Point(%f, %f)' % (self.x, self.y) p1 = Point(3.3, 4.) # a point at location (3, 4) p2 = Point(6., 8.) # another point, we can have as many as we want.. res = p1.norm() print('p1.norm() = ', res) res = p2.norm() print('p2.norm() = ', res) res = p1.dist(p2) res2 = p2.dist(p1) print('The distance between p1 and p2 is', res) print('The distance between p2 and p1 is', res2) p3 = p1+p2 p1 ###Output p1.norm() = 5.185556864985669 p2.norm() = 10.0 The distance between p1 and p2 is 4.825971404805461 The distance between p2 and p1 is 4.825971404805461 ###Markdown Notice that we don't require `other` to be a `Point` class instance; it could be any object with `x` and `y` attributes. This is known as 'object composition' and is a useful approach for using multiple different kinds of objects with similar data in the same functions. L. PackagesFunctions and classes represent code that is intended to be reused over and over. Packages are a way to store and manage this code. Python has a number of 'built-in' classes and functions that we have discussed above. List, tuples and dictionaries; `for` and `while` loops; and standard data types are part of every python session.There is also a very wide range of packages that you can import that extend the abilities of core Python. There are packages that deal with file input and output, internet communication, numerical processing, etc. One of the nice features about Python is that you only import the packages you need, so that the memory footprint of your code remains lean. Also, there are ways to import code that keep your 'namespace' organized.> Namespaces are one honking great idea -- let's do more of those!In the same way directories keep your files organized on your computer, namespaces organize your Python environment. There are a number of ways to import packages, for example. ###Code import math # This imports the math function. Here 'math' is like a subdirectory # in your namespace that holds all of the math functions math.e e = 15.7 print(math.e, e) ###Output 2.718281828459045 15.7 ###Markdown --- *Exercise*> After importing the math package, type `math.` and hit to see all the possible completions. These are the functions available in the math package. Use the math package to calculate the square root of 2.> There are a number of other ways to import things from the math package. Experiment with these commands from math import tanh Import just the `tanh` function. Called as `tanh(x)` import math as m Import the math package, but rename it to `m`. Functions called like `m.sin(x)` from math import * All the functions imported to top level namespace. Functions called like `sin(x)` > This last example makes things easier to use, but is frowned on as it is less clear where different functions come from.> For the rest of the 'Zen of Python' type `import this`--- One particular package that is central to scientific Python is the `numpy` package (*Num*erical *Py*thon). We will talk about this package much more in the future, but will outline a few things about the package now. The standard way to import this package is ###Code import numpy as np ###Output _____no_output_____ ###Markdown The `numpy` package has the same math functions as the `math` package, but these functions are designed to work with numpy arrays. Arrays are the backbone of the `numpy` package. For now, just think of them as homogeneous, multidimensional lists. ###Code a = np.array([[1., 2., 3], [4., 5., 6.]]) a np.sin(a) ###Output _____no_output_____ ###Markdown Note that we can have two `sin` functions at the same time, one from the `math` package and one from the `numpy` package. This is one of the advantages of namespaces. ###Code math.sin(2.0) == np.sin(2.0) ###Output _____no_output_____
.ipynb_checkpoints/News-Classifier-checkpoint.ipynb
###Markdown Data Warahousing and Data Mining Assignment H.M.D.R.W.Herath KU-HDCBIS-171F-001 NLP (Natural Language Processing) with PythonThis notebook focues on the Assignment given for DW & DM Module.**Summery*** Two class categorization problem* Training set : 200 training instances* Testing set : 100 test instances* Each document is one line of text* Fields are seperated by the tab '\t' character> CLASS \t TITLE \t DATE \t BODY* CLASS is either +1 or -1**Objective**Predict the labels for the 100 test instances. Process ###Code # Importing the NLTK package import nltk # Download the stopwords #nltk.download_shell() ###Output _____no_output_____ ###Markdown Importing the DataData sets needed for the process is included inside the `dataset` directory in the root.As the summery indicates we have **TSV (Tab Seperated Values)** as the documents. Instead of parsing TSV manually using Python, I will take advantage of pandas. ###Code # Importing the Pandas package import pandas as pd # Parse using read_csv news = pd.read_csv('dataset/trainset.txt', sep='\t', names=['CLASS', 'TITLE', 'DATE', 'BODY']) news.head() ###Output _____no_output_____ ###Markdown Exploratory Data Analysis ###Code news.describe() ###Output _____no_output_____ ###Markdown Now we can use **groupby** to describe by *CLASS*, this way we can begin to think about the features that separate **+1** and **-1** ###Code news.groupby('CLASS').describe() ###Output _____no_output_____ ###Markdown In the training set we have 98 instances of **-1** class. The remaining 102 instances bear the class of **+1**.We have two instances of class -1 that does not have a body and another 10 instances of class +1 without a body.Also, class +1 contains 10 instances where there is a no date specified.All the class instances contains a title.> Therefore we can assume TITLE plays a bigger role when it comes to classifying these news articles. Now we have to check the if lenght of the body plays a part in the classification.First lets create a addtional column contaning the body length. ###Code news['BODY LENGTH'] = news['BODY'].apply(len) news.head() ###Output _____no_output_____ ###Markdown Data Visualization ###Code # Importing the Visualization libraries import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline news['BODY LENGTH'].plot.hist(bins=50) news['BODY LENGTH'].plot.hist(bins=150) ###Output _____no_output_____ ###Markdown According to the above Histograms we can identify body length usually revolves around 0-1000 area, with exception some of the news Body lengths exceeding 4000 words. ###Code # Overview of the Lengths news['BODY LENGTH'].describe() ###Output _____no_output_____ ###Markdown Now we need to identify whether the BODY LENGTH have a effect on the CLASS classification. ###Code news.hist(column='BODY LENGTH', by='CLASS', bins=60, figsize=(12,4)) ###Output _____no_output_____ ###Markdown Using FacetGrid from the seaborn library to create a grid of 2 histograms of BODY LENGTH based off of the CLASS values. ###Code g = sns.FacetGrid(news,col='CLASS') g.map(plt.hist,'BODY LENGTH') ###Output _____no_output_____ ###Markdown Creating a boxplot of BODY LENGTH for each CLASS. ###Code sns.boxplot(x='CLASS', y='BODY LENGTH', data=news, palette='rainbow') ###Output _____no_output_____ ###Markdown Creating a countplot of the number of occurrences for each type of CLASS. ###Code sns.countplot(x='CLASS',data=news,palette='rainbow') ###Output _____no_output_____ ###Markdown As the histograms indicate we cannot distinguish BODY LENGTH having a clear effect on CLASSES -1 and +1. But we can observe that the CLASS -1 BODY LENGTHS spread closely around 0-1000 mark wheares CLASS +1 BODY LENGTHS more spread out. Text Pre-processing Main issues with the dataset is it consists of text data.Due to that we need to pre-process them in order to convert **corpus** to a **vector** format. ###Code # Importing String library for remove punctuations import string # Importing Regular Expressions import re # Importing stop words from nltk.corpus import stopwords # Importing Stemming Library from nltk.stem import PorterStemmer stemmer = PorterStemmer() ###Output _____no_output_____ ###Markdown Text Processing Fuction ###Code def text_process(mess): """ 1. Remove punc 2. Remove numbers 3. Remove stop words + 'reuters' (News Network) 4. Stemming 5. Return list of clean text words """ text = [char for char in mess if char not in string.punctuation] text = ''.join(text) text = re.sub(r'\d+', ' ', text) text = [word for word in text.split() if word.lower() not in stopwords.words('english')+['reuter']] return [stemmer.stem(word) for word in text] ###Output _____no_output_____ ###Markdown Data Pipeline Now we need to Vectorize, train and evaluvate model. We can due to this step by step but the best way (easy way) is to create a data pipeline. We will use use SciKit Learn's pipeline capabilities to store a pipeline of workflow. This will allow us to set up all the transformations that we will do to the data for future use. We will use **TF-IDF** for the term weighting and normalization. What is TF-IDF TF-IDF stands for *term frequency-inverse document frequency*, and the tf-idf weight is a weight often used in information retrieval and text mining. This weight is a statistical measure used to evaluate how important a word is to a document in a collection or corpus. The importance increases proportionally to the number of times a word appears in the document but is offset by the frequency of the word in the corpus. Variations of the tf-idf weighting scheme are often used by search engines as a central tool in scoring and ranking a document's relevance given a user query.One of the simplest ranking functions is computed by summing the tf-idf for each query term; many more sophisticated ranking functions are variants of this simple model.Typically, the tf-idf weight is composed by two terms: the first computes the normalized Term Frequency (TF), aka. the number of times a word appears in a document, divided by the total number of words in that document; the second term is the Inverse Document Frequency (IDF), computed as the logarithm of the number of the documents in the corpus divided by the number of documents where the specific term appears.**TF: Term Frequency**, which measures how frequently a term occurs in a document. Since every document is different in length, it is possible that a term would appear much more times in long documents than shorter ones. Thus, the term frequency is often divided by the document length (aka. the total number of terms in the document) as a way of normalization: *TF(t) = (Number of times term t appears in a document) / (Total number of terms in the document).***IDF: Inverse Document Frequency**, which measures how important a term is. While computing TF, all terms are considered equally important. However it is known that certain terms, such as "is", "of", and "that", may appear a lot of times but have little importance. Thus we need to weigh down the frequent terms while scale up the rare ones, by computing the following: *IDF(t) = log_e(Total number of documents / Number of documents with term t in it).*See below for a simple example.**Example:**Consider a document containing 100 words wherein the word cat appears 3 times. The term frequency (i.e., tf) for cat is then (3 / 100) = 0.03. Now, assume we have 10 million documents and the word cat appears in one thousand of these. Then, the inverse document frequency (i.e., idf) is calculated as log(10,000,000 / 1,000) = 4. Thus, the Tf-idf weight is the product of these quantities: 0.03 * 4 = 0.12. Pipeline Creation Process We will split the training data set into two parts as *training* and *test* for modal building and evaluvation. ###Code # Importing train_test_split package from sklearn.model_selection import train_test_split news_body_train, news_body_test, class_train, class_test = train_test_split(news['BODY'], news['CLASS'], test_size=0.3) print(len(news_body_train), len(news_body_test), len(news_body_train) + len(news_body_test)) # Imporing CountVectorizer Package from sklearn.feature_extraction.text import CountVectorizer # Importing Tfidf Library from sklearn.feature_extraction.text import TfidfTransformer # Importing MultinomialNB from sklearn.naive_bayes import MultinomialNB # Importing Pipeline Package from sklearn.pipeline import Pipeline pipeline = Pipeline([ ('bow', CountVectorizer(analyzer=text_process)), ('tfidf', TfidfTransformer()), ('classifier', MultinomialNB()) ]) ###Output _____no_output_____ ###Markdown Now we can directly pass news body data and the pipeline will do our pre-processing for us. We can treat it as a model/estimator API: ###Code pipeline.fit(news_body_train,class_train) predictions_eval = pipeline.predict(news_body_test) ###Output _____no_output_____ ###Markdown Lets make a simple evaluvation by comaparing the predictions with real train set values ###Code import numpy as np np.asarray(class_test.tolist()) predictions_eval ###Output _____no_output_____ ###Markdown Now lets create a report ###Code # Import classification report package from sklearn.metrics import confusion_matrix,classification_report from sklearn.metrics import accuracy_score print(confusion_matrix(class_test, predictions_eval)) print('\n') print(classification_report(class_test, predictions_eval)) print('\n') print('Accuracy :', accuracy_score(class_test, predictions_eval)) ###Output [[25 1] [ 2 32]] precision recall f1-score support -1 0.93 0.96 0.94 26 1 0.97 0.94 0.96 34 avg / total 0.95 0.95 0.95 60 Accuracy : 0.95 ###Markdown Comparing Models Now lets change the MultinomialNB to RandomForrest and generate reports ###Code # Importing RandomForrestClassifier from sklearn.ensemble import RandomForestClassifier pipeline = Pipeline([ ('bow', CountVectorizer(analyzer=text_process)), ('tfidf', TfidfTransformer()), ('classifier', RandomForestClassifier()) ]) pipeline.fit(news_body_train,class_train) predictions_eval = pipeline.predict(news_body_test) print(confusion_matrix(class_test, predictions_eval)) print('\n') print(classification_report(class_test, predictions_eval)) print('\n') print('Accuracy :', accuracy_score(class_test, predictions_eval)) ###Output [[24 2] [ 3 31]] precision recall f1-score support -1 0.89 0.92 0.91 26 1 0.94 0.91 0.93 34 avg / total 0.92 0.92 0.92 60 Accuracy : 0.9166666666666666 ###Markdown **Conclusion : *RandomForrestClassifier* offeres better precision than *MultinomialNB* when comes to CLASS +1** Can TITLE be used for News Classification? Here we will try to determine whether TITLE place a role in News classification.We will use the pipelines with TITLE based test and train sets. **Step 1 :** Train Test Split ###Code news_title_train, news_title_test, class_train, class_test = train_test_split(news['TITLE'], news['CLASS'], test_size=0.3) ###Output _____no_output_____ ###Markdown **Step 2 :** Determine the pipeline. We will use the MultinomialNB.**Step 3 :** Train the model. ###Code pipeline.fit(news_title_train,class_train) ###Output _____no_output_____ ###Markdown **Step 4 :** Predict ###Code predictions_eval = pipeline.predict(news_title_test) ###Output _____no_output_____ ###Markdown **Step 5 :** Generate Reports ###Code print(confusion_matrix(class_test, predictions_eval)) print('\n') print(classification_report(class_test, predictions_eval)) print('\n') print('Accuracy :', accuracy_score(class_test, predictions_eval)) ###Output [[27 1] [ 8 24]] precision recall f1-score support -1 0.77 0.96 0.86 28 1 0.96 0.75 0.84 32 avg / total 0.87 0.85 0.85 60 Accuracy : 0.85 ###Markdown Modal Evaluvation After couple of runs we get a table like below. ###Code runs = [1, 2, 3, 4] body_mdf_acc = [0.91, 0.85, 0.95, 0.95] body_rnf_acc = [0.89, 0.82, 0.86, 0.92] title_mdf_acc = [0.93, 0.9, 0.93, 0.85] plt.plot(runs, body_mdf_acc, color='g') plt.plot(runs, body_rnf_acc, color='orange') plt.plot(runs, title_mdf_acc, color='blue') plt.xticks(np.arange(min(runs), max(runs)+1, 1.0)) plt.xlabel('Runs') plt.ylabel('Accuracy') plt.title('Model Accuracy by Runs') plt.show() ###Output _____no_output_____ ###Markdown ConclusionAccording to the graph using BODY content with MultinomialNB will provide better predictions than the others.Therefore we can predict the test set without labels like below. Predicting Test Labels ###Code # Parse using read_csv news_without_labels = pd.read_csv('dataset/testsetwithoutlabels.txt', sep='\t', names=['TITLE', 'DATE', 'BODY']) news_without_labels.head() pipeline = Pipeline([ ('bow', CountVectorizer(analyzer=text_process)), ('tfidf', TfidfTransformer()), ('classifier', MultinomialNB()) ]) pipeline.fit(news_body_train,class_train) predictions_final = pipeline.predict(news_without_labels['BODY']) predictions_final ###Output _____no_output_____ ###Markdown Witing Predictions to CSV File ###Code result = pd.DataFrame(data={'CLASS': predictions_final, 'TITLE': news_without_labels['TITLE'], 'DATE': news_without_labels['DATE'], 'BODY': news_without_labels['BODY']}) result.to_csv(path_or_buf='Final_Prediction.csv', index = False, header = True) ###Output _____no_output_____ ###Markdown NLP (Natural Language Processing) with Python**Summery*** Two class categorization problem* Training set : 200 training instances* Testing set : 100 test instances* Each document is one line of text* Fields are seperated by the tab '\t' character> CLASS \t TITLE \t DATE \t BODY* CLASS is either +1 or -1**Objective**Predict the labels for the 100 test instances. Process ###Code # Importing the NLTK package import nltk # Download the stopwords nltk.download_shell() ###Output NLTK Downloader --------------------------------------------------------------------------- d) Download l) List u) Update c) Config h) Help q) Quit --------------------------------------------------------------------------- ###Markdown Importing the DataData sets needed for the process is included inside the `dataset` directory in the root.As the summery indicates we have **TSV (Tab Seperated Values)** as the documents. Instead of parsing TSV manually using Python, I will take advantage of pandas. ###Code # Importing the Pandas package import pandas as pd # Parse using read_csv news = pd.read_csv('dataset/trainset.txt', sep='\t', names=['CLASS', 'TITLE', 'DATE', 'BODY']) news.head() ###Output _____no_output_____ ###Markdown Exploratory Data Analysis ###Code news.describe() ###Output _____no_output_____ ###Markdown Now we can use **groupby** to describe by *CLASS*, this way we can begin to think about the features that separate **+1** and **-1** ###Code news.groupby('CLASS').describe() ###Output _____no_output_____ ###Markdown In the training set we have 98 instances of **-1** class. The remaining 102 instances bear the class of **+1**.We have two instances of class -1 that does not have a body and another 10 instances of class +1 without a body.Also, class +1 contains 10 instances where there is a no date specified.All the class instances contains a title.> Therefore we can assume TITLE plays a bigger role when it comes to classifying these news articles. Now we have to check the if lenght of the body plays a part in the classification.First lets create a addtional column contaning the body length. ###Code news['BODY LENGTH'] = news['BODY'].apply(len) news.head() ###Output _____no_output_____ ###Markdown Data Visualization ###Code # Importing the Visualization libraries import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline news['BODY LENGTH'].plot.hist(bins=50) news['BODY LENGTH'].plot.hist(bins=150) ###Output _____no_output_____ ###Markdown According to the above Histograms we can identify body length usually revolves around 0-1000 area, with exception some of the news Body lengths exceeding 4000 words. ###Code # Overview of the Lengths news['BODY LENGTH'].describe() ###Output _____no_output_____ ###Markdown Now we need to identify whether the BODY LENGTH have a effect on the CLASS classification. ###Code news.hist(column='BODY LENGTH', by='CLASS', bins=60, figsize=(12,4)) ###Output _____no_output_____ ###Markdown Using FacetGrid from the seaborn library to create a grid of 2 histograms of BODY LENGTH based off of the CLASS values. ###Code g = sns.FacetGrid(news,col='CLASS') g.map(plt.hist,'BODY LENGTH') ###Output _____no_output_____ ###Markdown Creating a boxplot of BODY LENGTH for each CLASS. ###Code sns.boxplot(x='CLASS', y='BODY LENGTH', data=news, palette='rainbow') ###Output _____no_output_____ ###Markdown Creating a countplot of the number of occurrences for each type of CLASS. ###Code sns.countplot(x='CLASS',data=news,palette='rainbow') ###Output _____no_output_____ ###Markdown As the histograms indicate we cannot distinguish BODY LENGTH having a clear effect on CLASSES -1 and +1. But we can observe that the CLASS -1 BODY LENGTHS spread closely around 0-1000 mark wheares CLASS +1 BODY LENGTHS more spread out. Text Pre-processing Main issues with the dataset is it consists of text data.Due to that we need to pre-process them in order to convert **corpus** to a **vector** format. ###Code # Importing String library for remove punctuations import string # Importing Regular Expressions import re # Importing stop words from nltk.corpus import stopwords # Importing Stemming Library from nltk.stem import PorterStemmer stemmer = PorterStemmer() ###Output _____no_output_____ ###Markdown Text Processing Fuction ###Code def text_process(mess): """ 1. Remove punc 2. Remove numbers 3. Remove stop words + 'reuters' (News Network) 4. Stemming 5. Return list of clean text words """ text = [char for char in mess if char not in string.punctuation] text = ''.join(text) text = re.sub(r'\d+', ' ', text) text = [word for word in text.split() if word.lower() not in stopwords.words('english')+['reuter']] return [stemmer.stem(word) for word in text] ###Output _____no_output_____ ###Markdown Data Pipeline Now we need to Vectorize, train and evaluvate model. We can due to this step by step but the best way (easy way) is to create a data pipeline. We will use use SciKit Learn's pipeline capabilities to store a pipeline of workflow. This will allow us to set up all the transformations that we will do to the data for future use. We will use **TF-IDF** for the term weighting and normalization. What is TF-IDF TF-IDF stands for *term frequency-inverse document frequency*, and the tf-idf weight is a weight often used in information retrieval and text mining. This weight is a statistical measure used to evaluate how important a word is to a document in a collection or corpus. The importance increases proportionally to the number of times a word appears in the document but is offset by the frequency of the word in the corpus. Variations of the tf-idf weighting scheme are often used by search engines as a central tool in scoring and ranking a document's relevance given a user query.One of the simplest ranking functions is computed by summing the tf-idf for each query term; many more sophisticated ranking functions are variants of this simple model.Typically, the tf-idf weight is composed by two terms: the first computes the normalized Term Frequency (TF), aka. the number of times a word appears in a document, divided by the total number of words in that document; the second term is the Inverse Document Frequency (IDF), computed as the logarithm of the number of the documents in the corpus divided by the number of documents where the specific term appears.**TF: Term Frequency**, which measures how frequently a term occurs in a document. Since every document is different in length, it is possible that a term would appear much more times in long documents than shorter ones. Thus, the term frequency is often divided by the document length (aka. the total number of terms in the document) as a way of normalization: *TF(t) = (Number of times term t appears in a document) / (Total number of terms in the document).***IDF: Inverse Document Frequency**, which measures how important a term is. While computing TF, all terms are considered equally important. However it is known that certain terms, such as "is", "of", and "that", may appear a lot of times but have little importance. Thus we need to weigh down the frequent terms while scale up the rare ones, by computing the following: *IDF(t) = log_e(Total number of documents / Number of documents with term t in it).*See below for a simple example.**Example:**Consider a document containing 100 words wherein the word cat appears 3 times. The term frequency (i.e., tf) for cat is then (3 / 100) = 0.03. Now, assume we have 10 million documents and the word cat appears in one thousand of these. Then, the inverse document frequency (i.e., idf) is calculated as log(10,000,000 / 1,000) = 4. Thus, the Tf-idf weight is the product of these quantities: 0.03 * 4 = 0.12. Pipeline Creation Process We will split the training data set into two parts as *training* and *test* for modal building and evaluvation. ###Code # Importing train_test_split package from sklearn.model_selection import train_test_split news_body_train, news_body_test, class_train, class_test = train_test_split(news['BODY'], news['CLASS'], test_size=0.3) print(len(news_body_train), len(news_body_test), len(news_body_train) + len(news_body_test)) # Imporing CountVectorizer Package from sklearn.feature_extraction.text import CountVectorizer # Importing Tfidf Library from sklearn.feature_extraction.text import TfidfTransformer # Importing MultinomialNB from sklearn.naive_bayes import MultinomialNB # Importing Pipeline Package from sklearn.pipeline import Pipeline pipeline = Pipeline([ ('bow', CountVectorizer(analyzer=text_process)), ('tfidf', TfidfTransformer()), ('classifier', MultinomialNB()) ]) ###Output _____no_output_____ ###Markdown Now we can directly pass news body data and the pipeline will do our pre-processing for us. We can treat it as a model/estimator API: ###Code pipeline.fit(news_body_train,class_train) predictions_eval = pipeline.predict(news_body_test) ###Output _____no_output_____ ###Markdown Lets make a simple evaluvation by comaparing the predictions with real train set values ###Code import numpy as np np.asarray(class_test.tolist()) predictions_eval ###Output _____no_output_____ ###Markdown Now lets create a report ###Code # Import classification report package from sklearn.metrics import confusion_matrix,classification_report from sklearn.metrics import accuracy_score print(confusion_matrix(class_test, predictions_eval)) print('\n') print(classification_report(class_test, predictions_eval)) print('\n') print('Accuracy :', accuracy_score(class_test, predictions_eval)) ###Output [[25 1] [ 0 34]] precision recall f1-score support -1 1.00 0.96 0.98 26 1 0.97 1.00 0.99 34 avg / total 0.98 0.98 0.98 60 Accuracy : 0.9833333333333333 ###Markdown Comparing Models Now lets change the MultinomialNB to RandomForrest and generate reports ###Code # Importing RandomForrestClassifier from sklearn.ensemble import RandomForestClassifier pipeline = Pipeline([ ('bow', CountVectorizer(analyzer=text_process)), ('tfidf', TfidfTransformer()), ('classifier', RandomForestClassifier()) ]) pipeline.fit(news_body_train,class_train) predictions_eval = pipeline.predict(news_body_test) print(confusion_matrix(class_test, predictions_eval)) print('\n') print(classification_report(class_test, predictions_eval)) print('\n') print('Accuracy :', accuracy_score(class_test, predictions_eval)) ###Output [[25 1] [ 4 30]] precision recall f1-score support -1 0.86 0.96 0.91 26 1 0.97 0.88 0.92 34 avg / total 0.92 0.92 0.92 60 Accuracy : 0.9166666666666666 ###Markdown **Conclusion : *RandomForrestClassifier* offeres better precision than *MultinomialNB* when comes to CLASS +1** Can TITLE be used for News Classification? Here we will try to determine whether TITLE place a role in News classification.We will use the pipelines with TITLE based test and train sets. **Step 1 :** Train Test Split ###Code news_title_train, news_title_test, class_train, class_test = train_test_split(news['TITLE'], news['CLASS'], test_size=0.3) ###Output _____no_output_____ ###Markdown **Step 2 :** Determine the pipeline. We will use the MultinomialNB.**Step 3 :** Train the model. ###Code pipeline.fit(news_title_train,class_train) ###Output _____no_output_____ ###Markdown **Step 4 :** Predict ###Code predictions_eval = pipeline.predict(news_title_test) ###Output _____no_output_____ ###Markdown **Step 5 :** Generate Reports ###Code print(confusion_matrix(class_test, predictions_eval)) print('\n') print(classification_report(class_test, predictions_eval)) print('\n') print('Accuracy :', accuracy_score(class_test, predictions_eval)) ###Output [[25 2] [ 7 26]] precision recall f1-score support -1 0.78 0.93 0.85 27 1 0.93 0.79 0.85 33 avg / total 0.86 0.85 0.85 60 Accuracy : 0.85 ###Markdown Modal Evaluvation After couple of runs we get a table like below. ###Code runs = [1, 2, 3, 4] body_mdf_acc = [0.91, 0.85, 0.95, 0.95] body_rnf_acc = [0.89, 0.82, 0.86, 0.92] title_mdf_acc = [0.93, 0.9, 0.93, 0.85] plt.plot(runs, body_mdf_acc, color='g') plt.plot(runs, body_rnf_acc, color='orange') plt.plot(runs, title_mdf_acc, color='blue') plt.xticks(np.arange(min(runs), max(runs)+1, 1.0)) plt.xlabel('Runs') plt.ylabel('Accuracy') plt.title('Model Accuracy by Runs') plt.show() ###Output _____no_output_____ ###Markdown ConclusionAccording to the graph using BODY content with MultinomialNB will provide better predictions than the others.Therefore we can predict the test set without labels like below. Predicting Test Labels ###Code # Parse using read_csv news_without_labels = pd.read_csv('dataset/testsetwithoutlabels.txt', sep='\t', names=['TITLE', 'DATE', 'BODY']) news_without_labels.head() pipeline = Pipeline([ ('bow', CountVectorizer(analyzer=text_process)), ('tfidf', TfidfTransformer()), ('classifier', MultinomialNB()) ]) pipeline.fit(news_body_train,class_train) predictions_final = pipeline.predict(news_without_labels['BODY']) predictions_final ###Output _____no_output_____ ###Markdown Witing Predictions to CSV File ###Code result = pd.DataFrame(data={'CLASS': predictions_final, 'TITLE': news_without_labels['TITLE'], 'DATE': news_without_labels['DATE'], 'BODY': news_without_labels['BODY']}) result.to_csv(path_or_buf='Final_Prediction.csv', index = False, header = True) ###Output _____no_output_____
insurance_scikit/prudential.ipynb
###Markdown See : https://www.kaggle.com/c/prudential-life-insurance-assessment/data Variable DescriptionId A unique identifier associated with an application.Product_Info_1-7 A set of normalized variables relating to the product applied forIns_Age Normalized age of applicantHt Normalized height of applicantWt Normalized weight of applicantBMI Normalized BMI of applicantEmployment_Info_1-6 A set of normalized variables relating to the employment history of the applicant.InsuredInfo_1-6 A set of normalized variables providing information about the applicant.Insurance_History_1-9 A set of normalized variables relating to the insurance history of the applicant.Family_Hist_1-5 A set of normalized variables relating to the family history of the applicant.Medical_History_1-41 A set of normalized variables relating to the medical history of the applicant.Medical_Keyword_1-48 A set of dummy variables relating to the presence of/absence of a medical keyword being associated with the application.**Response** This is the target variable, an ordinal variable relating to the final decision associated with an application The following variables are all categorical (nominal) :Product_Info_1, Product_Info_2, Product_Info_3, Product_Info_5, Product_Info_6, Product_Info_7,Employment_Info_2, Employment_Info_3, Employment_Info_5, InsuredInfo_1, InsuredInfo_2, InsuredInfo_3,InsuredInfo_4, InsuredInfo_5, InsuredInfo_6, InsuredInfo_7,Insurance_History_1, Insurance_History_2, Insurance_History_3, Insurance_History_4, Insurance_History_7,Insurance_History_8, Insurance_History_9,Family_Hist_1,Medical_History_2, Medical_History_3, Medical_History_4, Medical_History_5, Medical_History_6, Medical_History_7,Medical_History_8, Medical_History_9, Medical_History_11, Medical_History_12, Medical_History_13,Medical_History_14, Medical_History_16, Medical_History_17, Medical_History_18, Medical_History_19,Medical_History_20, Medical_History_21, Medical_History_22, Medical_History_23, Medical_History_25,Medical_History_26, Medical_History_27, Medical_History_28, Medical_History_29, Medical_History_30,Medical_History_31, Medical_History_33, Medical_History_34, Medical_History_35, Medical_History_36,Medical_History_37, Medical_History_38, Medical_History_39, Medical_History_40, Medical_History_41 The following variables are continuous :Product_Info_4, Ins_Age, Ht, Wt, BMI,Employment_Info_1, Employment_Info_4, Employment_Info_6,Insurance_History_5,Family_Hist_2, Family_Hist_3, Family_Hist_4, Family_Hist_5 The following variables are discrete :Medical_History_1, Medical_History_10, Medical_History_15, Medical_History_24, Medical_History_32 The following variables are dummy variables :Medical_Keyword_1-48 ###Code import math import pandas import numpy as np import matplotlib.pyplot as plt # machine learning #from sklearn import datasets from sklearn.metrics import log_loss from sklearn.preprocessing import OneHotEncoder, MinMaxScaler, StandardScaler from sklearn.feature_selection import chi2 from sklearn.feature_selection import SelectKBest from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC, LinearSVC from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB # Keras #from keras.preprocessing.sequence import pad_sequences from keras.layers import Input, Dense, Embedding, Activation, LSTM, merge, Flatten, Dropout, Lambda from keras.layers import RepeatVector, Reshape from keras.models import Model, Sequential #from keras.engine.topology import Merge from keras.layers.normalization import BatchNormalization from keras.optimizers import SGD, RMSprop, Adam #from keras.layers.convolutional import * #from keras.utils.data_utils import get_file # from keras import backend as K import xgboost as xgb from metrics import quadratic_weighted_kappa df0 = pandas.read_csv("../data/train.csv.gz") # WARNING : shuffle to better split the train/test sets df = df0.sample(frac=1) df['BMI_Age'] = df['BMI'] * df['Ins_Age'] med_keyword_columns = df.columns[df.columns.str.startswith('Medical_Keyword_')] df['Med_Keywords_Count'] = df[med_keyword_columns].sum(axis=1) #df.describe().transpose() ###Output _____no_output_____ ###Markdown Continuous variables Product_Info_4, Ins_Age, Ht, Wt, BMI Employment_Info_1, Employment_Info_4, Employment_Info_6 Insurance_History_5 Family_Hist_2, Family_Hist_3, Family_Hist_4, Family_Hist_5 ###Code L = [] L1 = ['Product_Info_4', 'Ins_Age', 'Ht', 'Wt', 'BMI', 'BMI_Age', 'Med_Keywords_Count', 'Employment_Info_1', 'Employment_Info_4', 'Employment_Info_6'] L.extend(L1) L2 = ['Insurance_History_5', 'Family_Hist_2', 'Family_Hist_3', 'Family_Hist_4', 'Family_Hist_5'] L.extend(L2) df[L].describe().transpose() ### note that some variables are not defined everywhere L1 = ['Product_Info_4', 'Ins_Age', 'Ht', 'Wt', 'BMI','BMI_Age', 'Med_Keywords_Count'] df[L1].describe().transpose() for l in L: if not(l in L1): print(l, df[l].mean()) df[l].fillna((df[l].mean()), inplace=True) df[L].describe().transpose() X = df[L].as_matrix() Y = df['Response'].as_matrix() logreg = LogisticRegression(C=1e5) logreg.fit(X, Y) # WARNING : check how Logistic handles more than 2 classes len( [1 for y, ym in zip(Y, logreg.predict(X)) if y==ym] ) / float(len(Y)) knn = KNeighborsClassifier() knn.fit(X, Y) len( [1 for y, ym in zip(Y, knn.predict(X)) if y==ym] ) / float(len(Y)) c2val, c2prob = chi2(X, Y) c2val.sort() c2val = np.fliplr([c2val])[0] print c2val print X.shape X_new = SelectKBest(chi2, k=2).fit_transform(X, Y) print X_new.shape ###Output (59381, 15) (59381, 2) ###Markdown Turn categorical variables into dummies with OneHotEncodingList of variables:Product_Info_1, Product_Info_2, Product_Info_3, Product_Info_5, Product_Info_6, Product_Info_7,Employment_Info_2, Employment_Info_3, Employment_Info_5, InsuredInfo_1, InsuredInfo_2, InsuredInfo_3,InsuredInfo_4, InsuredInfo_5, InsuredInfo_6, InsuredInfo_7,Insurance_History_1, Insurance_History_2, Insurance_History_3, Insurance_History_4, Insurance_History_7,Insurance_History_8, Insurance_History_9,Family_Hist_1,Medical_History_2, Medical_History_3, Medical_History_4, Medical_History_5, Medical_History_6, Medical_History_7,Medical_History_8, Medical_History_9, Medical_History_11, Medical_History_12, Medical_History_13,Medical_History_14, Medical_History_16, Medical_History_17, Medical_History_18, Medical_History_19,Medical_History_20, Medical_History_21, Medical_History_22, Medical_History_23, Medical_History_25,Medical_History_26, Medical_History_27, Medical_History_28, Medical_History_29, Medical_History_30,Medical_History_31, Medical_History_33, Medical_History_34, Medical_History_35, Medical_History_36,Medical_History_37, Medical_History_38, Medical_History_39, Medical_History_40, Medical_History_41 ###Code catstring = 'Product_Info_1, Product_Info_2, Product_Info_3, Product_Info_5, Product_Info_6, Product_Info_7, ' catstring+= 'Employment_Info_2, Employment_Info_3, Employment_Info_5, ' catstring+= 'InsuredInfo_1, InsuredInfo_2, InsuredInfo_3, InsuredInfo_4, InsuredInfo_5, InsuredInfo_6, InsuredInfo_7, ' catstring+= 'Insurance_History_1, Insurance_History_2, Insurance_History_3, Insurance_History_4, Insurance_History_7, ' catstring+= 'Insurance_History_8, Insurance_History_9, ' catstring+= 'Family_Hist_1, ' catstring+= 'Medical_History_2, Medical_History_3, Medical_History_4, Medical_History_5, Medical_History_6, ' catstring+= 'Medical_History_7, Medical_History_8, Medical_History_9, Medical_History_11, Medical_History_12, ' catstring+= 'Medical_History_13, Medical_History_14, Medical_History_16, Medical_History_17, Medical_History_18, ' catstring+= 'Medical_History_19, Medical_History_20, Medical_History_21, Medical_History_22, Medical_History_23, ' catstring+= 'Medical_History_25, Medical_History_26, Medical_History_27, Medical_History_28, Medical_History_29, ' catstring+= 'Medical_History_30, Medical_History_31, Medical_History_33, Medical_History_34, Medical_History_35, ' catstring+= 'Medical_History_36, Medical_History_37, Medical_History_38, Medical_History_39, Medical_History_40, ' catstring+= 'Medical_History_41' categories = catstring.replace(' ','').split(',') print categories[0:10] df[categories].describe().transpose() ###Output _____no_output_____ ###Markdown WARNING : Product_Info_2 is not numeric ###Code print( df[['Product_Info_2']].count() ) df[['Product_Info_2']].head(5) # Found at : # https://www.kaggle.com/marcellonegro/prudential-life-insurance-assessment/xgb-offset0501/run/137585/code df['Product_Info_2_char'] = df.Product_Info_2.str[0] df['Product_Info_2_num'] = df.Product_Info_2.str[1] # factorize categorical variables df['Product_Info_2'] = pandas.factorize(df['Product_Info_2'])[0] df['Product_Info_2_char'] = pandas.factorize(df['Product_Info_2_char'])[0] df['Product_Info_2_num'] = pandas.factorize(df['Product_Info_2_num'])[0] df[['Product_Info_2','Product_Info_2_char','Product_Info_2_num']].head(5) categories.append('Product_Info_2_char') categories.append('Product_Info_2_num') encX = OneHotEncoder() # remove Product_Info_2 as it is not numeric (should convert it separately) #Xcat = df[categories].drop('Product_Info_2', 1).as_matrix() Xcat = df[categories].as_matrix() #print Xcat.shape #print df[categories].head() encX.fit(Xcat) Xohe = encX.transform(Xcat).toarray() print Xohe.shape # as Y has 9 categories it can be usefull to treat them separately encY = OneHotEncoder() encY.fit(Y.reshape(-1, 1)) # reshape as Y is a vector and OHE requires a matrix Yohe = encY.transform(Y.reshape(-1, 1)) print Yohe.shape ###Output (59381, 842) (59381, 8) ###Markdown We can remove low occurence one-hot columns to reduce dimension ###Code column_test = (np.sum(Xohe, axis=0) > 25) # tweak filter setting print(np.sum(column_test*1)) Xohe_trim = Xohe[:,column_test] print(Xohe_trim.shape) ###Output 308 (59381, 308) ###Markdown Discrete variables / WARNING still need to include these ###Code discstring = 'Medical_History_1, Medical_History_10, Medical_History_15, Medical_History_24, Medical_History_32' discretes = discstring.replace(' ', '').split(',') missing_disc_indic = -1 for discrete in discretes: # WARNING : shall fill with most frequent modality ? df[discrete].fillna(missing_disc_indic, inplace=True) #df[discrete] = pandas.factorize(df[discrete])[0] df[discrete] = df[discrete] - missing_disc_indic # TO AVOID NEGATIVE VALUES Xdisc = df[discretes].as_matrix() if True: encD = OneHotEncoder() encD.fit(Xdisc) Xdisc_ohe = encD.transform(Xdisc).toarray() print Xdisc_ohe.shape column_test = (np.sum(Xdisc_ohe, axis=0) > 10) # tweak filter setting print(np.sum(column_test*1)) Xdisc_ohe_trim = Xdisc_ohe[:,column_test] print(Xdisc_ohe_trim.shape) df[discretes].describe().transpose() df[discretes].head(10) ###Output _____no_output_____ ###Markdown Dummy variables ###Code dummies = ['Medical_Keyword_'+str(i) for i in range(1,49)] df[dummies].describe().transpose() Xdummies = df[dummies].as_matrix() ###Output _____no_output_____ ###Markdown Merge ###Code if False: # non trimmed one-hot Xmerge = np.concatenate((X, Xohe, Xdummies, Xdisc), axis=1) else: Xmerge = np.concatenate((X, Xohe_trim, Xdummies), axis=1) # Xdisc # Xdisc_ohe # Xdisc_ohe_trim ? Xmerge.shape ###Output _____no_output_____ ###Markdown chi2 selection ###Code def getbests(Xarray, Yarray, nbkeep=20): c2val, c2prob = chi2(Xarray, Yarray) print len([j for j, p in enumerate(c2prob) if p<0.01]) / float(len(c2prob)) aux = c2val.tolist() aux.sort() aux.reverse() minc2val = aux[nbkeep] return [j for j, cv in enumerate(c2val) if cv>minc2val] bests20 = getbests(Xmerge, Y, 20) Xbests20 = Xmerge[:,bests20] print Xbests20.shape bests30 = getbests(Xmerge, Y, 30) Xbests30 = Xmerge[:,bests30] print Xbests30.shape bests40 = getbests(Xmerge, Y, 40) Xbests40 = Xmerge[:,bests40] print Xbests40.shape bests50 = getbests(Xmerge, Y, 50) Xbests50 = Xmerge[:,bests50] print Xbests50.shape ###Output 0.654986522911 (59381, 20) 0.654986522911 (59381, 30) 0.654986522911 (59381, 40) 0.654986522911 (59381, 50) ###Markdown XGBoost (installed from pip)see this link :https://www.kaggle.com/zeroblue/prudential-life-insurance-assessment/xgboost-with-optimized-offsets/code ###Code columns_to_drop = ['Id', 'Response'] #, 'Medical_History_10','Medical_History_24'] xgb_num_rounds = 720 num_classes = 8 missing_indicator = -1000 def get_params(): params = {} params["objective"] = "reg:linear" params["eta"] = 0.05 params["min_child_weight"] = 360 params["subsample"] = 0.85 params["colsample_bytree"] = 0.3 params["silent"] = 1 params["max_depth"] = 7 plst = list(params.items()) return plst xgtrain = xgb.DMatrix(df.drop(columns_to_drop, axis=1), df['Response'].values, missing=missing_indicator) #xgtest = xgb.DMatrix(test.drop(columns_to_drop, axis=1), label=test['Response'].values, # missing=missing_indicator) plst = get_params() # train model xgbmodel = xgb.train(plst, xgtrain, xgb_num_rounds) train_preds = xgbmodel.predict(xgtrain, ntree_limit=xgbmodel.best_iteration) quadratic_weighted_kappa(train_preds, df['Response'].as_matrix()) # Kaggle metric ###Output _____no_output_____ ###Markdown KNN ###Code knn2 = KNeighborsClassifier() Xknntrain = Xbests20[range(0,50000), :] Yknntrain = Y[range(0,50000)] Xknntest = Xbests20[range(50000,59000), :] Yknntest = Y[range(50000,59000)] knn2.fit(Xknntrain, Yknntrain) # lower the "bests" threshold to include more variables ... but KNN will slow drastically #len( [1 for y, ym in zip(Y, knn2.predict(Xbests30)) if y==ym] ) / float(len(Y)) print knn2.score(Xknntrain, Yknntrain) print knn2.score(Xknntest, Yknntest) quadratic_weighted_kappa(knn2.predict(Xknntrain), Yknntrain) # Kaggle metric # split the set into different Y classes to measure their importance np.mean(encY.transform(Yknntrain.reshape(-1, 1)).toarray(), axis=0) ###Output _____no_output_____ ###Markdown SVC ###Code classcol = 7 #model = LogisticRegression() #model = KNeighborsClassifier() #model = RandomForestClassifier(n_estimators=50) #model = GaussianNB() model = SVC() Xrftrain = Xbests40[range(0,40000), :] Yrftrain = Y[range(0,40000)] Xrftest = Xbests40[range(40000,59000), :] Yrftest = Y[range(40000,59000)] colYrftrain = encY.transform(Yrftrain.reshape(-1, 1)).getcol(classcol).toarray().flatten() colYrftest = encY.transform(Yrftest.reshape(-1, 1)).getcol(classcol).toarray().flatten() model.fit(Xrftrain, colYrftrain) print model.score(Xrftrain, colYrftrain) print model.score(Xrftest, colYrftest) quadratic_weighted_kappa(model.predict(Xrftrain), colYrftrain) # Kaggle metric ###Output _____no_output_____ ###Markdown Random Forests ###Code random_forest = RandomForestClassifier(n_estimators=50) Xrftrain = Xbests20[range(0,50000), :] Yrftrain = Y[range(0,50000)] Xrftest = Xbests20[range(50000,59000), :] Yrftest = Y[range(50000,59000)] random_forest.fit(Xrftrain, Yrftrain) #Y_pred = random_forest.predict(X) print random_forest.score(Xrftrain, Yrftrain) print random_forest.score(Xrftest, Yrftest) quadratic_weighted_kappa(random_forest.predict(Xrftrain), Yrftrain) # Kaggle metric ###Output _____no_output_____ ###Markdown Neural Network (with Keras) ###Code Xmerge.shape, Yohe.toarray().shape # WARNING : to_array nn_input_dim = Xmerge.shape[1] if True: min_max_scaler = MinMaxScaler() # WARNING : is it correct for binary variables ? Xmerge_prepro = min_max_scaler.fit_transform(Xmerge) else: std_scaler = StandardScaler().fit(Xmerge) Xmerge_prepro = std_scaler.transform(Xmerge) Xnn_train = Xmerge_prepro[0:45000] Xnn_valid = Xmerge_prepro[45000:] Ynn_train = Yohe.toarray()[0:45000] Ynn_valid = Yohe.toarray()[45000:] ###Output _____no_output_____ ###Markdown Stand alone Neural Network i.e. no mixture ###Code model = Sequential() model.add( Dense(500, init='glorot_uniform', activation='relu', input_dim=nn_input_dim) ) model.add( BatchNormalization() ) model.add( Dropout(0.4) ) model.add( Dense(200, activation='sigmoid') ) model.add( BatchNormalization() ) model.add( Dropout(0.4) ) model.add( Dense(100, activation='sigmoid') ) model.add( BatchNormalization() ) model.add( Dropout(0.4) ) model.add( Dense(8, activation='softmax') ) model.compile(optimizer=Adam(1e-3), loss='categorical_crossentropy', metrics=['accuracy']) model.optimizer.lr = 1e-4 # train 30 times (at least) model.fit(Xnn_train, Ynn_train, nb_epoch=10, batch_size=64, validation_data=(Xnn_valid, Ynn_valid), verbose=1) ###Output Train on 45000 samples, validate on 14381 samples Epoch 1/10 45000/45000 [==============================] - 6s - loss: 1.2841 - acc: 0.5326 - val_loss: 1.3131 - val_acc: 0.5237 Epoch 2/10 45000/45000 [==============================] - 6s - loss: 1.2751 - acc: 0.5373 - val_loss: 1.3141 - val_acc: 0.5237 Epoch 3/10 45000/45000 [==============================] - 6s - loss: 1.2662 - acc: 0.5373 - val_loss: 1.3089 - val_acc: 0.5249 Epoch 4/10 45000/45000 [==============================] - 6s - loss: 1.2624 - acc: 0.5413 - val_loss: 1.3089 - val_acc: 0.5267 Epoch 5/10 45000/45000 [==============================] - 6s - loss: 1.2538 - acc: 0.5456 - val_loss: 1.3097 - val_acc: 0.5269 Epoch 6/10 45000/45000 [==============================] - 6s - loss: 1.2440 - acc: 0.5472 - val_loss: 1.3074 - val_acc: 0.5283 Epoch 7/10 45000/45000 [==============================] - 6s - loss: 1.2399 - acc: 0.5503 - val_loss: 1.3062 - val_acc: 0.5287 Epoch 8/10 45000/45000 [==============================] - 6s - loss: 1.2333 - acc: 0.5525 - val_loss: 1.3072 - val_acc: 0.5279 Epoch 9/10 45000/45000 [==============================] - 6s - loss: 1.2308 - acc: 0.5522 - val_loss: 1.3067 - val_acc: 0.5308 Epoch 10/10 45000/45000 [==============================] - 6s - loss: 1.2271 - acc: 0.5529 - val_loss: 1.3022 - val_acc: 0.5296 ###Markdown GATED MIXTURE OF EXPERTS A custom loss function seems tricky to implement in Keras so we implement a NN that takes X,Y as input and returns the Errors as output. The fit function will have a dummy null output target so that the fit minimizes the Error function. ###Code NM = 2 inputs = Input(shape=(nn_input_dim,)) outputs = Input(shape=(8,)) predictions = [] for i in range(NM): if True: xi = Dense(500, init='glorot_uniform', activation='relu')(inputs) xi = BatchNormalization()(xi) xi = Dropout(0.40)(xi) xi = Dense(200, activation='relu')(xi) xi = BatchNormalization()(xi) xi = Dropout(0.40)(xi) xi = Dense(100, activation='relu')(xi) xi = BatchNormalization()(xi) xi = Dropout(0.40)(xi) predictions.append( Dense(8, activation='softmax')(xi) ) predmat = Reshape((NM,8))( merge(predictions, mode='concat', concat_axis=1) ) # .summary to check axis deltas = merge([RepeatVector(NM)(outputs), predmat], output_shape=(NM,8), mode=lambda x: -(x[0] * K.log(x[1]))) deltasums = Lambda(lambda x: K.sum(x, axis=2), output_shape=lambda s: (s[0], s[1]))(deltas)# .summary to check axis hinton_trick = True # see "Adaptive Mixtures of Local Experts" if hinton_trick: Hinton1 = Lambda(lambda x: K.exp(-x), output_shape=lambda s: s) deltasums = Hinton1(deltasums) gate = Dense(100, activation='relu')(inputs) gate = BatchNormalization()(gate) gate = Dropout(0.40)(gate) gate = Dense(NM, activation='softmax')(gate) errors = merge([gate, deltasums], mode='dot') if hinton_trick: Hinton2 = Lambda(lambda x: -K.log(x), output_shape=lambda s: s) errors = Hinton2(errors) # a model for training only modelG_train = Model(input=[inputs, outputs], output=errors) predavg = merge([gate, Reshape((8,2))(predmat)], mode='dot') # WARNING : not sure about that one ! # a model for prediction / WARNING : share weights with "train" ??? modelG_pred = Model(input=inputs, output=[predavg, predmat, gate]) # INFO : # CE is positive and we want to minimize it # if dummy_target = 0 then MAE = Mean(CrossEntropy) modelG_train.compile(optimizer=Adam(1e-3), loss='mean_absolute_error') #modelG_train.summary() # useful when debugging tensor shapes #modelG_pred.summary() # useful when debugging tensor shapes modelG_train.optimizer.lr = 1e-4 # train 30 times (at least) Yg_train_dummy = Ynn_train[:,0]*0 Yg_valid_dummy = Ynn_valid[:,0]*0 modelG_train.fit([Xnn_train, Ynn_train], Yg_train_dummy, validation_data=([Xnn_valid, Ynn_valid], Yg_valid_dummy), nb_epoch=5, batch_size=64, verbose=1) # to check the mixing is not degenerate print( np.min(modelG_pred.predict(Xnn_train[0:5000,:])[2], axis=0) ) print( np.max(modelG_pred.predict(Xnn_train[0:5000,:])[2], axis=0) ) # round up forecasted probabilities (modelG_pred.predict(Xnn_train[5000:5010,:])[0]*100).astype(int) # there is a bug with 0-th index output as CE is too large log_loss(Ynn_train, modelG_pred.predict(Xnn_train)[0], eps=1e-3, normalize=True) # there is a bug with 0-th index output as CE is too large -np.mean(np.log(np.sum(Ynn_train * modelG_pred.predict(Xnn_train)[0], axis=1))) # log out of sum is fine preds = modelG_pred.predict(Xnn_train) Ypred = np.sum(preds[1] * np.tile(np.expand_dims(preds[2],2), (1, 1, 8)), axis=1) # this CE value is consistent so 1-th and 2-th index seem fine -np.mean(np.log(np.sum(Ynn_train * Ypred, axis=1))) ###Output _____no_output_____
shell-commands-in-python.ipynb
###Markdown Shell Commands in PythonSorry, not sorry. Old Methods`os` module ###Code import os os.system("ls") # can't get the result, only 0 for success else non-zero exit code print(os.popen("git --version").read()) # get the result ###Output git version 2.26.0.windows.1 ###Markdown Subprocess module ###Code import subprocess subprocess.run("ls") # Runs the program 'ls' subprocess.run(["python3", "test.py"]) # Need a list of strings here since we have args. This will run 'python3 test.py' ###Output _____no_output_____ ###Markdown Actually reading the output ###Code # To see stdout result = subprocess.run('ls',stdout=subprocess.PIPE) print(result.stdout.decode()) # To see stdout and stderr result = subprocess.run(['rm','xyz'],stdout=subprocess.PIPE,stderr=subprocess.PIPE) print(result.stderr.decode()) subprocess.run('ls -la',shell=True) # This is a way to pass args without using a list like above ###Output _____no_output_____ ###Markdown Taking stdin parameters ###Code # pass 'abc' and then 'def' subprocess.run(['python3','test.py'],capture_output=True,input="abc\ndef".encode()) ###Output _____no_output_____ ###Markdown Run with timeout ###Code subprocess.run(['sleep','5'],timeout=3) # Generates timeout expired error ###Output _____no_output_____ ###Markdown Throw and error if the command fails ###Code try: subprocess.run(['rm','xyz'],check=True) # Generates an error if anything goes wrong while running shell command except subprocess.CalledProcessError: print("Failed") ###Output _____no_output_____
data_extraction/dartAPI.ipynb
###Markdown 기업 고유번호 불러오기 회사의 고유번호 데이터를 불러오는 작업 ###Code openApi = "ab851319407812ac10d593dcb2fef51d0c944b66" ### 필요한 모듈 from urllib.request import urlopen from io import BytesIO from zipfile import ZipFile ### 회사고유번호 데이터 불러오기 url = 'https://opendart.fss.or.kr/api/corpCode.xml?crtfc_key=' + openApi with urlopen(url) as zipresp: with ZipFile(BytesIO(zipresp.read())) as zfile: zfile.extractall('corp_num') ###Output _____no_output_____ ###Markdown XML 데이터 읽기 ###Code ### 모듈 import import xml.etree.ElementTree as ET ### 압축파일 안의 xml 파일 읽기 tree = ET.parse('CORPCODE.xml') root = tree.getroot() ## 총 80939개 기업 ###Output _____no_output_____ ###Markdown 필요한 정보를 얻기위한 함수 만들기 ###Code ### 회사 이름으로 회사 고유번호 찾기 def find_corp_num(find_name): for country in root.iter("list"): if country.findtext("corp_name") == find_name: return country.findtext("corp_code") find_corp_num('삼성전자') corp_code = [] for country in root.iter("list"): corp_code.append(country.findtext("corp_code")) print(corp_code) len(corp_code) ###Output _____no_output_____ ###Markdown 기업개황api 한 회사 검색 테스트 ###Code import requests import pandas as pd from urllib.request import urlopen from time import sleep import time url = "https://opendart.fss.or.kr/api/company.json?crtfc_key=" + crtfc_key_2 + "&corp_code=00126380" response = requests.get(url) print(response.text) #urldata = response.json() #corp_df = pd.DataFrame(urldata, index=[0]) print(response) # response에 200이 나오면 잘 응답이 온것. 400은 잘 응답이 안온것. ###Output _____no_output_____ ###Markdown 모든 기업 개황 검색해 데이터프레임화 후 저장 회사 고유번호 불러오기 (Load 또는 Read) ###Code ### xml 모듈 import import xml.etree.ElementTree as ET ### xml 파일 읽기 tree = ET.parse('CORPCODE.xml') root = tree.getroot() ###Output _____no_output_____ ###Markdown 기업 고유번호 모음 list 만들기 ###Code ### 기업 고유번호 모음 list 만들기 code_list=[] for country in root.iter("corp_code"): code_list.append(country.text) print(code_list[0:3]) ###Output ['00434003', '00434456', '00430964'] ###Markdown 기업 개황 검색 함수 만들기 ###Code ### 본인의 인증키 입력 crtfc_key_1 = "ab851319407812ac10d593dcb2fef51d0c944b66" crtfc_key_2 = "f494a3020128060351c817cabf5b1b4a851e0737" crtfc_key_3 = "5a79f1c6d673e00b0614c74e542b390ddd0b3542" crtfc_key_4 = "614f7fe579f14daf0ecb6aa38652677ab0576191" crtfc_key_5 = "d4857d7491b5c47d494584350731c06dc7b66882" crtfc_key_6 = "bb7d92cbd78b6b67d156bef779a02e74bce661c4" crtfc_key_7 = "a30987f4b05d0371f9f3d84c898efc698bbbc1e2" crtfc_key_8 = "012be8cea16c0d414c5273f7422280f3f9905adf" crtfc_key_9 = "ba2c91d2cc13f79700da1e0ed1542d2a37f18068" crtfc_key_10 = "02c190bf4a27db86defd39afd0c48183dbff1d2c" crtfc_key_11 = "a263608b5e4e9040a9de7ad1f0ff62808b29503d" crtfc_key_12 = "c42daf7eaba42a0ed786b61e59240c58caa1d5d6" ### 기업개황 검색 함수 만들기 def load_data(corp_code): ### 기업개황 요청 url url = "https://opendart.fss.or.kr/api/company.json?crtfc_key=" +crtfc_key_1+"&corp_code=" +corp_code ### HTTP 요청 r = requests.get(url) ### 요청한 데이터는 json형태이기 때문에 json으로 읽어줍니다. company_data = r.json() ### 기업개황을 요청했을 때 기업개황에 대한 자료를 반환합니다. return company_data print(r) ###Output _____no_output_____ ###Markdown 반복문을 통한 데이터 수집 ###Code ### 데이터를 담아둘 list 생성 company_list_1 = [] # company_list_1 0 ~ 9,000 (ㅇ) company_list_2 = [] # company_list_2 9,000 ~ 18,000 (ㅇ) company_list_4 = [] # company_list_4 18,000 ~ 27,000 (ㅇ) company_list_5 = [] # company_list_5 27,000 ~ 36,000 (ㅇ) company_list_6 = [] # company_list_6 36,000 ~ 45,000 (ㅇ) company_list_7 = [] # company_list_7 45,000 ~ 54,000 (ㅇ) company_list_8 = [] # company_list_8 54,000 ~ 63,000 (ㅇ) company_list_9 = [] # company_list_9 63,000 ~ 72,000 (ㅇ) company_list_10 = [] # company_list_10 72,000 ~ 80,939 (ㅇ) company_list_4 = [] ### 반복문 실행 for corp_code in code_list[18000:27000]: company_dict = load_data(corp_code) ### list 변경할것 company_list_4.append(company_dict) # sleep으로 트래픽 휴식시간주기 time.sleep(0.1) print(company_list_3[0]) len(company_list_1) len(company_list_2) len(company_list_4) print(company_list_4[0]) len(company_list_5) len(company_list_6) len(company_list_7) print(company_list_7[8999]) len(company_list_8) print(company_list_8[8999]) len(company_list_9) print(company_list_9[8999]) len(company_list_10) print(company_list_10[8938]) ###Output {'status': '000', 'message': '정상', 'corp_code': '00585963', 'corp_name': '지앤지인베스트 주식회사', 'corp_name_eng': 'GnG Invest co., Ltd.', 'stock_name': '지앤지인베스트', 'stock_code': '', 'ceo_nm': '선경래', 'corp_cls': 'E', 'jurir_no': '1101113315002', 'bizr_no': '2118771445', 'adres': '서울특별시 강남구 남부순환로 2736 (도곡동)', 'hm_url': '', 'ir_url': '', 'phn_no': '02-3460-4821', 'fax_no': '02-3460-4829', 'induty_code': '68112', 'est_dt': '20050930', 'acc_mt': '03'} ###Markdown 데이터 저장 ###Code ### pickle 모듈 import import pickle ### pickle 모듈을 통해 list 저장 with open('company_4.txt','wb') as f: pickle.dump(company_list_4,f) ###Output _____no_output_____ ###Markdown 기업 개황 통합 ###Code ### 기업개황 통합하기 # 모든 기업개황이 담길 list total_company_list=[] # for문을 이용해 통합 for num in range(1,10): file_name = 'company_'+str(num)+'.txt' with open(file_name,'rb') as f: data=pickle.load(f) total_company_list=total_company_list + data # 통합 list 저장 with open('total_company_list.txt','wb') as f: pickle.dump(total_company_list,f) total_company_list = [] total_company_list += company_list_1 total_company_list += company_list_2 total_company_list += company_list_4 total_company_list += company_list_5 total_company_list += company_list_6 total_company_list += company_list_7 total_company_list += company_list_8 total_company_list += company_list_9 total_company_list += company_list_10 len(total_company_list) ###Output _____no_output_____ ###Markdown 데이터프레임화 및 통합리스트 엑셀화 ###Code data = pd.DataFrame(total_company_list) data.to_excel('기업개황.xlsx') type(total_company_list[0]) ###Output _____no_output_____ ###Markdown ------------------------------------------- 재무제표 크롤링 ###Code url = "https://opendart.fss.or.kr/api/fnlttSinglAcntAll.json?crtfc_key=" + crtfc_key_1 + "&corp_code=00126380&bsns_year=2017&reprt_code=11011&fs_div=OFS" print(code_list[30000]) r = requests.get(url) finance_data = r.json() print(load_finance_data('00126380')) len(finance_list_1) ### 본인의 인증키 입력 crtfc_key_1 = "ab851319407812ac10d593dcb2fef51d0c944b66" crtfc_key_2 = "f494a3020128060351c817cabf5b1b4a851e0737" crtfc_key_3 = "5a79f1c6d673e00b0614c74e542b390ddd0b3542" crtfc_key_4 = "614f7fe579f14daf0ecb6aa38652677ab0576191" crtfc_key_5 = "d4857d7491b5c47d494584350731c06dc7b66882" crtfc_key_6 = "bb7d92cbd78b6b67d156bef779a02e74bce661c4" crtfc_key_7 = "a30987f4b05d0371f9f3d84c898efc698bbbc1e2" crtfc_key_8 = "012be8cea16c0d414c5273f7422280f3f9905adf" crtfc_key_9 = "ba2c91d2cc13f79700da1e0ed1542d2a37f18068" crtfc_key_10 = "02c190bf4a27db86defd39afd0c48183dbff1d2c" crtfc_key_11 = "a263608b5e4e9040a9de7ad1f0ff62808b29503d" crtfc_key_12 = "c42daf7eaba42a0ed786b61e59240c58caa1d5d6" ### 재무제표 검색 함수 만들기 def load_finance_data(corp_code): ### 재무제표 요청 url url = "https://opendart.fss.or.kr/api/fnlttSinglAcntAll.json?crtfc_key=" +crtfc_key_6+"&corp_code=" +corp_code + "&bsns_year=2019&reprt_code=11011&fs_div=OFS" ### HTTP 요청 r = requests.get(url) ### 요청한 데이터는 json형태이기 때문에 json으로 읽어줍니다. finance_data = r.json() ### 재무제표를 요청했을 때 재무제표에 대한 자료를 반환합니다. return finance_data ###Output _____no_output_____ ###Markdown 반복문을 통한 데이터 수집 ###Code ### 데이터를 담아둘 list 생성 finance_list_18_1 = [] # 0 ~ 9,000 (ㅇ) finance_list_18_2 = [] # 9,000 ~ 18,000 finance_list_18_3 = []# 18,000 ~ 27,000 finance_list_18_4 = []# 27,000~ 36,000 finance_list_18_5 = [] # 36,000 ~ 45,000 finance_list_18_6 = [] # 45,000 ~ 54,000 finance_list_18_7 = [] # 54,000 ~ 63,000 finance_list_18_8 = [] # 63,000 ~ 72,000 finance_list_18_9 = []# 72,000 ~ 80,939 finance_list_18_10 = [] finance_list_18_11 = [] ### 데이터를 담아둘 list 생성 finance_list_19_1 = [] # 0 ~ 9,000 (ㅇ) finance_list_19_2 = [] # 9,000 ~ 18,000 finance_list_19_3 = []# 18,000 ~ 27,000 finance_list_19_4 = []# 27,000~ 36,000 finance_list_19_5 = [] # 36,000 ~ 45,000 finance_list_19_6 = [] # 45,000 ~ 54,000 finance_list_19_7 = [] # 54,000 ~ 63,000 finance_list_19_8 = [] # 63,000 ~ 72,000 finance_list_19_9 = []# 72,000 ~ 80,939 finance_list_19_10 = [] finance_list_19_11 = [] ### 반복문 실행 for corp_code in code_list[72000:]: company_dict = load_finance_data(corp_code) ### list 변경할것 if(company_dict["status"] != "013") : finance_list_19_9.append(company_dict) # sleep으로 트래픽 휴식시간주기 time.sleep(0.1) # 2017년 total_finance_list = [] total_finance_list += finance_list_2 # 1개 total_finance_list += finance_list_5 # 3개 total_finance_list += finance_list_6 # 608개 total_finance_list += finance_list_7 # 327개 total_finance_list += finance_list_9 # 373개 total_finance_list += finance_list_10 # 574개 total_finance_list_17 = total_finance_list len(total_finance_list_17) # 2018년 total_finance_list_18 = [] total_finance_list_18 += finance_list_18_2 # 1개 total_finance_list_18 += finance_list_18_5 # 3개 total_finance_list_18 += finance_list_18_6 # 624개 total_finance_list_18 += finance_list_18_7 # 347개 total_finance_list_18 += finance_list_18_8 # 402개 total_finance_list_18 += finance_list_18_9 # 601개 len(total_finance_list_18) # 2019년 total_finance_list_19 = [] total_finance_list_19 += finance_list_19_2 # 1개 total_finance_list_19 += finance_list_19_5 # 4개 total_finance_list_19 += finance_list_19_6 # 639개 total_finance_list_19 += finance_list_19_7 # 371개 total_finance_list_19 += finance_list_19_8 # 424개 total_finance_list_19 += finance_list_19_9 # 622개 finance_list_19_9[621] # 3개년치 통합 total_finance_all = [] total_finance_all += total_finance_list total_finance_all += total_finance_list_18 total_finance_all += total_finance_list_19 len(total_finance_all) # 조회되지 않은 기업 걸러내기 while(len(finance_list_7) > 327) : #cnt = 0 for company in finance_list_7 : if(company["status"] != '000'): finance_list_7.remove(company) #cnt += 1 #print(cnt) ###Output _____no_output_____ ###Markdown 모델링 구조에 맞게 데이터 가공하기 corp_code, thstrm_nm(회차), 등록일 수익(매출액), 영업이익(손실), 당기순이익(손실)유동자산,비유동자산, 자산총계, 유동부채, 비유동부채, 부채총계, 자본금, 이익잉여금(결손금), 자본총계영업활동현금흐름, 투자활동현금흐름, 재무활동현금흐름 ###Code company = finance_list_7[2] # 리스트에 들어있는 회사 하나 추출 (dict) companyFin = company['list'] # 세가지 key값중 재무제표 list 키 추출 print(companyFin[0]) # list 키의 첫번째 dict 추출 # DB에 손익계산서, 재무상태표, 현금 흐름표로 나뉘어져있으므로 각각의 리스트와 딕셔너리를 만든다. cash_flow_list = [] fs_status_list = [] icm_stmt_list = [] cash_flow_dict = {} fs_status_dict = {} icm_stmt_dict = {} ###Output _____no_output_____ ###Markdown 손익계산서 ###Code for org_dict in total_finance_all: finc_list = org_dict["list"] # 각 딕셔너리마다 기업 코드, 회차, 등록일 key 추가 icm_stmt_dict["기업코드"] = (finc_list[0])["corp_code"] icm_stmt_dict["회차"] = (finc_list[0])["thstrm_nm"] icm_stmt_dict["등록일"] = ((finc_list[0])["rcept_no"])[0:8] for finc_dict in finc_list: if(finc_dict["sj_nm"] == '포괄손익계산서'): # 필요한 항목만 골라 넣는다. if(finc_dict["account_nm"] == '수익(매출액)') or (finc_dict["account_nm"] == '영업이익(손실)') or (finc_dict["account_nm"] == '당기순이익(손실)'): column = finc_dict["account_nm"] icm_stmt_dict[column] = finc_dict["thstrm_amount"] icm_stmt_list.append(icm_stmt_dict) # 한 회사의 손익계산서 딕셔너리 완성 후 리스트에 넣기 icm_stmt_dict = {} # 딕셔너리 초기화 icm_stmt_data = pd.DataFrame(icm_stmt_list) icm_stmt_data.head(10) icm_stmt_data.sort_values('기업코드') icm_stmt_data.to_csv('손익계산서.csv', encoding='utf-8-sig') ###Output _____no_output_____ ###Markdown 현금흐름표 ###Code for org_dict in total_finance_all: finc_list = org_dict["list"] cash_flow_dict["기업코드"] = (finc_list[0])["corp_code"] cash_flow_dict["회차"] = (finc_list[0])["thstrm_nm"] cash_flow_dict["등록일"] = ((finc_list[0])["rcept_no"])[0:8] for finc_dict in finc_list: if(finc_dict["sj_nm"] == '현금흐름표'): if(finc_dict["account_nm"] == '영업활동현금흐름') or (finc_dict["account_nm"] == '투자활동현금흐름') or (finc_dict["account_nm"] == '재무활동현금흐름'): column = finc_dict["account_nm"] cash_flow_dict[column] = finc_dict["thstrm_amount"] cash_flow_list.append(cash_flow_dict) # 한 회사의 손익계산서 딕셔너리 완성 후 리스트에 넣기 cash_flow_dict = {} # 딕셔너리 초기화 cash_flow_data = pd.DataFrame(cash_flow_list) cash_flow_data.head(10) cash_flow_data.sort_values('기업코드') cash_flow_data.to_csv('현금흐름표.csv', encoding='utf-8-sig') ###Output _____no_output_____ ###Markdown 재무상태표 ###Code for org_dict in total_finance_all: finc_list = org_dict["list"] fs_status_dict["기업코드"] = (finc_list[0])["corp_code"] fs_status_dict["회차"] = (finc_list[0])["thstrm_nm"] fs_status_dict["등록일"] = ((finc_list[0])["rcept_no"])[0:8] for finc_dict in finc_list: if(finc_dict["sj_nm"] == '재무상태표'): if(finc_dict["account_nm"] == '유동자산') or (finc_dict["account_nm"] == '비유동자산') or (finc_dict["account_nm"] == '자산총계') or (finc_dict["account_nm"] == '유동부채') or (finc_dict["account_nm"] == '비유동부채') or (finc_dict["account_nm"] == '부채총계') or (finc_dict["account_nm"] == '자본금') or (finc_dict["account_nm"] == '이익잉여금(결손금)') or (finc_dict["account_nm"] == '자본총계'): column = finc_dict["account_nm"] fs_status_dict[column] = finc_dict["thstrm_amount"] fs_status_list.append(fs_status_dict) # 한 회사의 손익계산서 딕셔너리 완성 후 리스트에 넣기 fs_status_dict = {} # 딕셔너리 초기화 fs_status_data = pd.DataFrame(fs_status_list) fs_status_data.head(10) len(finance_list_7) fs_status_data.to_csv('재무상태표.csv', encoding='utf-8-sig') fs_status_data.sort_values('기업코드').head(20) ###Output _____no_output_____ ###Markdown -------------------------------------------------------- 기업 개황 데이터 불러와 정제 ###Code import pandas as pd corpData = pd.read_excel('/Users/linakim/Desktop/최종프로젝트/기업개황.xlsx', '정제후') corpData.head(3) ###Output _____no_output_____
Data_Science/google_trends/02_google_trends_to_google_data_studio.ipynb
###Markdown Google Trends to Google Data Studio1. Get the result form `Google Trends`2. Using [gspread](https://github.com/burnash/gspread) transform the data of `Google Trends` to `Google Sheets`3. Import the file of `Google Sheets` into `Google Data Studio` Get the result from `Goolge Trends` ###Code import pandas as pd from pytrends.request import TrendReq # Create an instance(實例) of TrendReq pytrend = TrendReq() # Build a payload pytrend.build_payload(kw_list=['Coronavirus'], timeframe='2020-01-01 2020-06-04') # Requset data: Interest Over Time covid_19_interest_over_time_df = pytrend.interest_over_time() covid_19_interest_over_time_df.tail() ###Output _____no_output_____ ###Markdown Plot the result ###Code import matplotlib import matplotlib.pyplot as plt import seaborn as sns sns.set(color_codes=True) plt.style.use('fivethirtyeight') # 中文 plt.rcParams['font.sans-serif'] = ['Noto Sans Mono CJK TC', 'sans-serif'] plt.rcParams['axes.unicode_minus'] = False %matplotlib inline axes = covid_19_interest_over_time_df.plot.line( figsize=(20,5), title='The Search Trends of COVID-19 in 2020') axes.set_yticks([0, 25, 50, 75, 100]) axes.set_xlabel('Date') axes.set_ylabel('Trends Index') axes.tick_params(axis='both', which='major', labelsize=13) ###Output _____no_output_____ ###Markdown Using `gspread` transform the data of `Google Trends` to `Google Sheets`Reference: [Access spreadsheets via Google Sheets API.](https://gspread.readthedocs.io/en/latest/oauth2.html) Install the required packages- [gspread](https://github.com/burnash/gspread)- [oauth2client](https://github.com/googleapis/oauth2client) ###Code !pip3 install gspread oauth2client ###Output _____no_output_____ ###Markdown 申請帳號並啟用API因為我們要存取 `Google sheets`,所以我們必須打開原本Google帳號的權限(或是申請一個新的帳號)1. 到 [Google Cloud Platform](https://console.developers.google.com/?hl=zh-tw) 建立一個`Project` 新增專案 -> 專案名稱:`google-sheets` -> 建立 ![](./images/google_apis_create_an_project_1.png) ![](./images/google_apis_create_an_project_2.png)2. 啟動該`Project`的 API 啟用API和服務 -> 在搜尋API和服務打上`Drive API` -> 啟用 -> 在搜尋API和服務打上`Sheets API(Google Sheets)` -> 啟用 ![](./images/google_apis_active_api_1.png) ![](./images/google_apis_active_api_2.png) ![](./images/google_apis_active_api_3.png) ![](./images/google_apis_active_api_4.png) ![](./images/google_apis_active_api_5.png) ![](./images/google_apis_active_api_6.png)3. 建立憑證(Credentials) 回到首頁點選憑證 -> 建立憑證 -> 選服務帳號 -> 服務帳號詳細資料:`Google Trends to Google Sheets` -> 建立 -> 繼續 -> 建立金鑰 -> 選擇 `JSON` -> 建立 -> 完成 ![](./images/google_apis_create_credentials_1.png) ![](./images/google_apis_create_credentials_2.png) ![](./images/google_apis_create_credentials_3.png) ![](./images/google_apis_create_credentials_4.png) ![](./images/google_apis_create_credentials_5.png) ![](./images/google_apis_create_credentials_6.png)4. 將下載好的`JSON`檔案取名為`auth.json` 建立試算表透過`gspread`建立並使用試算表有兩種方式1. 在`Google Drive`或是[Google Sheets](https://sheets.google.com)建立試算表,並將開試算表分享給剛剛下載的`JSON`裡的`client_email`裡的帳號: `[email protected]`使用,並給予編輯的權限,這樣才有辦法透過程式存取。2. 透過`gspread`的`create()`創建試算表 ```python sh = gc.create('A new spreadsheet') ``` Note: ``` If you’re using a service account, this new spreadsheet will be visible only to your script's account. To be able to access newly created spreadsheet from Google Sheets with your own Google account you must share it with your email. See how to share a spreadsheet in the section below. ``` - Sharing a Spreadsheet: ```python sh.share('your_email', perm_type='user', role='writer') ```以下使用第二種方法! Connect to `Google Sheets` ###Code import gspread from google.oauth2.service_account import Credentials def google_oauth2_service(auth_path, scopes): credentials = Credentials.from_service_account_file( auth_path, scopes=scopes ) return gspread.authorize(credentials) scopes = [ 'https://www.googleapis.com/auth/spreadsheets', 'https://www.googleapis.com/auth/drive' ] auth_path = 'google_sheets_auth.json' gc = google_oauth2_service(auth_path, scopes) ###Output _____no_output_____ ###Markdown Connetc and share a spreadsheet ###Code # Create a spreadsheet sh = gc.create("COVID-19 Search Trends") # Share a spreadsheet sh.share('[email protected]', perm_type='user', role='writer') ###Output _____no_output_____ ###Markdown Select a worksheetSelect worksheet by index. Worksheet indexes start from zero:```pythonworksheet = sh.get_worksheet(0)```Or by title:```pythonworksheet = sh.worksheet("January")```Or the most common case: Sheet1:```pythonworksheet = sh.sheet1```To get a list of all worksheets:```pythonworksheet_list = sh.worksheets()``` ###Code worksheet = gc.open("COVID-19 Search Trends").sheet1 ###Output _____no_output_____ ###Markdown Update value of cell: send `DataFrame` into `sheet` Prepocess DataFrame1. `reset_index()`: 因為我們需要date這個欄位2. conver datatime to string: ``` Object of type 'Timestamp' is not JSON serializable ``` ###Code covid_19_interest_over_time_df covid_19_interest_over_time_df.index ###Output _____no_output_____ ###Markdown 1. Reset index ###Code covid_19_interest_over_time_df.reset_index(inplace=True) covid_19_interest_over_time_df ###Output _____no_output_____ ###Markdown 2. Convert datatime to string ###Code def convert_datetime_to_string(df): df['date'] = df['date'].dt.strftime('%Y-%m-%d %H:%M:%S') convert_datetime_to_string(covid_19_interest_over_time_df) covid_19_interest_over_time_df.head() ###Output _____no_output_____ ###Markdown Send `DataFram` into `Sheet` ###Code def iter_pd(df): for val in df.columns: yield val for row in df.to_numpy(): for val in row: if pd.isna(val): yield "" else: yield val def pandas_to_sheets(pandas_df, sheet, clear=True): """Update all values in a worksheet to match a pandas dataframe""" if clear: sheet.clear() (row, col) = pandas_df.shape cells = sheet.range("A1:{}".format(gspread.utils.rowcol_to_a1(row+1, col))) for cell, val in zip(cells, iter_pd(pandas_df)): cell.value = val sheet.update_cells(cells) pandas_to_sheets(covid_19_interest_over_time_df, worksheet) ###Output _____no_output_____
assignments/2019/assignment1/softmax.ipynb
###Markdown Softmax exercise*Complete and hand in this completed worksheet (including its outputs and any supporting code outside of the worksheet) with your assignment submission. For more details see the [assignments page](http://vision.stanford.edu/teaching/cs231n/assignments.html) on the course website.*This exercise is analogous to the SVM exercise. You will:- implement a fully-vectorized **loss function** for the Softmax classifier- implement the fully-vectorized expression for its **analytic gradient**- **check your implementation** with numerical gradient- use a validation set to **tune the learning rate and regularization** strength- **optimize** the loss function with **SGD**- **visualize** the final learned weights ###Code import random import numpy as np from cs231n.data_utils import load_CIFAR10 import matplotlib.pyplot as plt %matplotlib inline plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' # for auto-reloading extenrnal modules # see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython %load_ext autoreload %autoreload 2 def get_CIFAR10_data(num_training=49000, num_validation=1000, num_test=1000, num_dev=500): """ Load the CIFAR-10 dataset from disk and perform preprocessing to prepare it for the linear classifier. These are the same steps as we used for the SVM, but condensed to a single function. """ # Load the raw CIFAR-10 data cifar10_dir = 'cs231n/datasets/cifar-10-batches-py' # Cleaning up variables to prevent loading data multiple times (which may cause memory issue) try: del X_train, y_train del X_test, y_test print('Clear previously loaded data.') except: pass X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir) # subsample the data mask = list(range(num_training, num_training + num_validation)) X_val = X_train[mask] y_val = y_train[mask] mask = list(range(num_training)) X_train = X_train[mask] y_train = y_train[mask] mask = list(range(num_test)) X_test = X_test[mask] y_test = y_test[mask] mask = np.random.choice(num_training, num_dev, replace=False) X_dev = X_train[mask] y_dev = y_train[mask] # Preprocessing: reshape the image data into rows X_train = np.reshape(X_train, (X_train.shape[0], -1)) X_val = np.reshape(X_val, (X_val.shape[0], -1)) X_test = np.reshape(X_test, (X_test.shape[0], -1)) X_dev = np.reshape(X_dev, (X_dev.shape[0], -1)) # Normalize the data: subtract the mean image mean_image = np.mean(X_train, axis = 0) X_train -= mean_image X_val -= mean_image X_test -= mean_image X_dev -= mean_image # add bias dimension and transform into columns X_train = np.hstack([X_train, np.ones((X_train.shape[0], 1))]) X_val = np.hstack([X_val, np.ones((X_val.shape[0], 1))]) X_test = np.hstack([X_test, np.ones((X_test.shape[0], 1))]) X_dev = np.hstack([X_dev, np.ones((X_dev.shape[0], 1))]) return X_train, y_train, X_val, y_val, X_test, y_test, X_dev, y_dev # Invoke the above function to get our data. X_train, y_train, X_val, y_val, X_test, y_test, X_dev, y_dev = get_CIFAR10_data() print('Train data shape: ', X_train.shape) print('Train labels shape: ', y_train.shape) print('Validation data shape: ', X_val.shape) print('Validation labels shape: ', y_val.shape) print('Test data shape: ', X_test.shape) print('Test labels shape: ', y_test.shape) print('dev data shape: ', X_dev.shape) print('dev labels shape: ', y_dev.shape) ###Output _____no_output_____ ###Markdown Softmax ClassifierYour code for this section will all be written inside **cs231n/classifiers/softmax.py**. ###Code # First implement the naive softmax loss function with nested loops. # Open the file cs231n/classifiers/softmax.py and implement the # softmax_loss_naive function. from cs231n.classifiers.softmax import softmax_loss_naive import time # Generate a random softmax weight matrix and use it to compute the loss. W = np.random.randn(3073, 10) * 0.0001 loss, grad = softmax_loss_naive(W, X_dev, y_dev, 0.0) # As a rough sanity check, our loss should be something close to -log(0.1). print('loss: %f' % loss) print('sanity check: %f' % (-np.log(0.1))) ###Output _____no_output_____ ###Markdown **Inline Question 1**Why do we expect our loss to be close to -log(0.1)? Explain briefly.**$\color{blue}{\textit Your Answer:}$ *Fill this in* ###Code # Complete the implementation of softmax_loss_naive and implement a (naive) # version of the gradient that uses nested loops. loss, grad = softmax_loss_naive(W, X_dev, y_dev, 0.0) # As we did for the SVM, use numeric gradient checking as a debugging tool. # The numeric gradient should be close to the analytic gradient. from cs231n.gradient_check import grad_check_sparse f = lambda w: softmax_loss_naive(w, X_dev, y_dev, 0.0)[0] grad_numerical = grad_check_sparse(f, W, grad, 10) # similar to SVM case, do another gradient check with regularization loss, grad = softmax_loss_naive(W, X_dev, y_dev, 5e1) f = lambda w: softmax_loss_naive(w, X_dev, y_dev, 5e1)[0] grad_numerical = grad_check_sparse(f, W, grad, 10) # Now that we have a naive implementation of the softmax loss function and its gradient, # implement a vectorized version in softmax_loss_vectorized. # The two versions should compute the same results, but the vectorized version should be # much faster. tic = time.time() loss_naive, grad_naive = softmax_loss_naive(W, X_dev, y_dev, 0.000005) toc = time.time() print('naive loss: %e computed in %fs' % (loss_naive, toc - tic)) from cs231n.classifiers.softmax import softmax_loss_vectorized tic = time.time() loss_vectorized, grad_vectorized = softmax_loss_vectorized(W, X_dev, y_dev, 0.000005) toc = time.time() print('vectorized loss: %e computed in %fs' % (loss_vectorized, toc - tic)) # As we did for the SVM, we use the Frobenius norm to compare the two versions # of the gradient. grad_difference = np.linalg.norm(grad_naive - grad_vectorized, ord='fro') print('Loss difference: %f' % np.abs(loss_naive - loss_vectorized)) print('Gradient difference: %f' % grad_difference) # Use the validation set to tune hyperparameters (regularization strength and # learning rate). You should experiment with different ranges for the learning # rates and regularization strengths; if you are careful you should be able to # get a classification accuracy of over 0.35 on the validation set. from cs231n.classifiers import Softmax results = {} best_val = -1 best_softmax = None learning_rates = [1e-7, 5e-7] regularization_strengths = [2.5e4, 5e4] ################################################################################ # TODO: # # Use the validation set to set the learning rate and regularization strength. # # This should be identical to the validation that you did for the SVM; save # # the best trained softmax classifer in best_softmax. # ################################################################################ # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** pass # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** # Print out results. for lr, reg in sorted(results): train_accuracy, val_accuracy = results[(lr, reg)] print('lr %e reg %e train accuracy: %f val accuracy: %f' % ( lr, reg, train_accuracy, val_accuracy)) print('best validation accuracy achieved during cross-validation: %f' % best_val) # evaluate on test set # Evaluate the best softmax on test set y_test_pred = best_softmax.predict(X_test) test_accuracy = np.mean(y_test == y_test_pred) print('softmax on raw pixels final test set accuracy: %f' % (test_accuracy, )) ###Output _____no_output_____ ###Markdown **Inline Question 2** - *True or False*Suppose the overall training loss is defined as the sum of the per-datapoint loss over all training examples. It is possible to add a new datapoint to a training set that would leave the SVM loss unchanged, but this is not the case with the Softmax classifier loss.$\color{blue}{\textit Your Answer:}$$\color{blue}{\textit Your Explanation:}$ ###Code # Visualize the learned weights for each class w = best_softmax.W[:-1,:] # strip out the bias w = w.reshape(32, 32, 3, 10) w_min, w_max = np.min(w), np.max(w) classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] for i in range(10): plt.subplot(2, 5, i + 1) # Rescale the weights to be between 0 and 255 wimg = 255.0 * (w[:, :, :, i].squeeze() - w_min) / (w_max - w_min) plt.imshow(wimg.astype('uint8')) plt.axis('off') plt.title(classes[i]) ###Output _____no_output_____ ###Markdown Softmax exercise*Complete and hand in this completed worksheet (including its outputs and any supporting code outside of the worksheet) with your assignment submission. For more details see the [assignments page](http://vision.stanford.edu/teaching/cs231n/assignments.html) on the course website.*This exercise is analogous to the SVM exercise. You will:- implement a fully-vectorized **loss function** for the Softmax classifier- implement the fully-vectorized expression for its **analytic gradient**- **check your implementation** with numerical gradient- use a validation set to **tune the learning rate and regularization** strength- **optimize** the loss function with **SGD**- **visualize** the final learned weights ###Code import random import numpy as np from cs231n.data_utils import load_CIFAR10 import matplotlib.pyplot as plt %matplotlib inline plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' # for auto-reloading extenrnal modules # see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython %load_ext autoreload %autoreload 2 def get_CIFAR10_data(num_training=49000, num_validation=1000, num_test=1000, num_dev=500): """ Load the CIFAR-10 dataset from disk and perform preprocessing to prepare it for the linear classifier. These are the same steps as we used for the SVM, but condensed to a single function. """ # Load the raw CIFAR-10 data cifar10_dir = 'cs231n/datasets/cifar-10-batches-py' # Cleaning up variables to prevent loading data multiple times (which may cause memory issue) try: del X_train, y_train del X_test, y_test print('Clear previously loaded data.') except: pass X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir) # subsample the data mask = list(range(num_training, num_training + num_validation)) X_val = X_train[mask] y_val = y_train[mask] mask = list(range(num_training)) X_train = X_train[mask] y_train = y_train[mask] mask = list(range(num_test)) X_test = X_test[mask] y_test = y_test[mask] mask = np.random.choice(num_training, num_dev, replace=False) X_dev = X_train[mask] y_dev = y_train[mask] # Preprocessing: reshape the image data into rows X_train = np.reshape(X_train, (X_train.shape[0], -1)) X_val = np.reshape(X_val, (X_val.shape[0], -1)) X_test = np.reshape(X_test, (X_test.shape[0], -1)) X_dev = np.reshape(X_dev, (X_dev.shape[0], -1)) # Normalize the data: subtract the mean image mean_image = np.mean(X_train, axis = 0) X_train -= mean_image X_val -= mean_image X_test -= mean_image X_dev -= mean_image # add bias dimension and transform into columns X_train = np.hstack([X_train, np.ones((X_train.shape[0], 1))]) X_val = np.hstack([X_val, np.ones((X_val.shape[0], 1))]) X_test = np.hstack([X_test, np.ones((X_test.shape[0], 1))]) X_dev = np.hstack([X_dev, np.ones((X_dev.shape[0], 1))]) return X_train, y_train, X_val, y_val, X_test, y_test, X_dev, y_dev # Invoke the above function to get our data. X_train, y_train, X_val, y_val, X_test, y_test, X_dev, y_dev = get_CIFAR10_data() print('Train data shape: ', X_train.shape) print('Train labels shape: ', y_train.shape) print('Validation data shape: ', X_val.shape) print('Validation labels shape: ', y_val.shape) print('Test data shape: ', X_test.shape) print('Test labels shape: ', y_test.shape) print('dev data shape: ', X_dev.shape) print('dev labels shape: ', y_dev.shape) ###Output Train data shape: (49000, 3073) Train labels shape: (49000,) Validation data shape: (1000, 3073) Validation labels shape: (1000,) Test data shape: (1000, 3073) Test labels shape: (1000,) dev data shape: (500, 3073) dev labels shape: (500,) ###Markdown Softmax ClassifierYour code for this section will all be written inside **cs231n/classifiers/softmax.py**. ###Code # First implement the naive softmax loss function with nested loops. # Open the file cs231n/classifiers/softmax.py and implement the # softmax_loss_naive function. from cs231n.classifiers.softmax import softmax_loss_naive import time # Generate a random softmax weight matrix and use it to compute the loss. W = np.random.randn(3073, 10) * 0.0001 loss, grad = softmax_loss_naive(W, X_dev, y_dev, 0.0) # As a rough sanity check, our loss should be something close to -log(0.1). print('loss: %f' % loss) print('sanity check: %f' % (-np.log(0.1))) ###Output loss: 2.377603 sanity check: 2.302585 ###Markdown **Inline Question 1**Why do we expect our loss to be close to -log(0.1)? Explain briefly.**$\color{blue}{\textit Your Answer:}$ 随机初始化,每个类的得分大致是相等的,有10类,所以是1/10=0.1。 ###Code # Complete the implementation of softmax_loss_naive and implement a (naive) # version of the gradient that uses nested loops. loss, grad = softmax_loss_naive(W, X_dev, y_dev, 0.0) # As we did for the SVM, use numeric gradient checking as a debugging tool. # The numeric gradient should be close to the analytic gradient. from cs231n.gradient_check import grad_check_sparse f = lambda w: softmax_loss_naive(w, X_dev, y_dev, 0.0)[0] grad_numerical = grad_check_sparse(f, W, grad, 10) # similar to SVM case, do another gradient check with regularization loss, grad = softmax_loss_naive(W, X_dev, y_dev, 5e1) f = lambda w: softmax_loss_naive(w, X_dev, y_dev, 5e1)[0] grad_numerical = grad_check_sparse(f, W, grad, 10) # Now that we have a naive implementation of the softmax loss function and its gradient, # implement a vectorized version in softmax_loss_vectorized. # The two versions should compute the same results, but the vectorized version should be # much faster. tic = time.time() loss_naive, grad_naive = softmax_loss_naive(W, X_dev, y_dev, 0.000005) toc = time.time() print('naive loss: %e computed in %fs' % (loss_naive, toc - tic)) from cs231n.classifiers.softmax import softmax_loss_vectorized tic = time.time() loss_vectorized, grad_vectorized = softmax_loss_vectorized(W, X_dev, y_dev, 0.000005) toc = time.time() print('vectorized loss: %e computed in %fs' % (loss_vectorized, toc - tic)) # As we did for the SVM, we use the Frobenius norm to compare the two versions # of the gradient. grad_difference = np.linalg.norm(grad_naive - grad_vectorized, ord='fro') print('Loss difference: %f' % np.abs(loss_naive - loss_vectorized)) print('Gradient difference: %f' % grad_difference) # Use the validation set to tune hyperparameters (regularization strength and # learning rate). You should experiment with different ranges for the learning # rates and regularization strengths; if you are careful you should be able to # get a classification accuracy of over 0.35 on the validation set. from cs231n.classifiers import Softmax results = {} best_val = -1 best_softmax = None learning_rates = [1e-7, 5e-7] regularization_strengths = [2.5e4, 5e4] ################################################################################ # # # Use the validation set to set the learning rate and regularization strength. # # This should be identical to the validation that you did for the SVM; save # # the best trained softmax classifer in best_softmax. # ################################################################################ # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** for lr in learning_rates: for reg in regularization_strengths: sfm=Softmax() sfm.train(X_train, y_train, learning_rate=lr, reg=reg, num_iters=1500, batch_size=200, verbose=False) y_train_pred=sfm.predict(X_train) trn_acc=np.mean(y_train_pred==y_train) y_val_pred=sfm.predict(X_val) val_acc=np.mean(y_val_pred==y_val) if val_acc>best_val: best_val=val_acc best_softmax=sfm results[(lr,reg)]=(trn_acc,val_acc) # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** # Print out results. for lr, reg in sorted(results): train_accuracy, val_accuracy = results[(lr, reg)] print('lr %e reg %e train accuracy: %f val accuracy: %f' % ( lr, reg, train_accuracy, val_accuracy)) print('best validation accuracy achieved during cross-validation: %f' % best_val) # evaluate on test set # Evaluate the best softmax on test set y_test_pred = best_softmax.predict(X_test) test_accuracy = np.mean(y_test == y_test_pred) print('softmax on raw pixels final test set accuracy: %f' % (test_accuracy, )) ###Output softmax on raw pixels final test set accuracy: 0.340000 ###Markdown **Inline Question 2** - *True or False*Suppose the overall training loss is defined as the sum of the per-datapoint loss over all training examples. It is possible to add a new datapoint to a training set that would leave the SVM loss unchanged, but this is not the case with the Softmax classifier loss.$\color{blue}{\textit Your Answer:}$正确$\color{blue}{\textit Your Explanation:}$svm的loss有margin范围,如果没有超出范围,loss为0,所以可能不会改变,但是softmax对每个样本都会有loss ###Code # Visualize the learned weights for each class w = best_softmax.W[:-1,:] # strip out the bias w = w.reshape(32, 32, 3, 10) w_min, w_max = np.min(w), np.max(w) classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] for i in range(10): plt.subplot(2, 5, i + 1) # Rescale the weights to be between 0 and 255 wimg = 255.0 * (w[:, :, :, i].squeeze() - w_min) / (w_max - w_min) plt.imshow(wimg.astype('uint8')) plt.axis('off') plt.title(classes[i]) ###Output _____no_output_____ ###Markdown Softmax exercise*Complete and hand in this completed worksheet (including its outputs and any supporting code outside of the worksheet) with your assignment submission. For more details see the [assignments page](http://vision.stanford.edu/teaching/cs231n/assignments.html) on the course website.*This exercise is analogous to the SVM exercise. You will:- implement a fully-vectorized **loss function** for the Softmax classifier- implement the fully-vectorized expression for its **analytic gradient**- **check your implementation** with numerical gradient- use a validation set to **tune the learning rate and regularization** strength- **optimize** the loss function with **SGD**- **visualize** the final learned weights ###Code import random import numpy as np from cs231n.data_utils import load_CIFAR10 import matplotlib.pyplot as plt %matplotlib inline plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' # for auto-reloading extenrnal modules # see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython %load_ext autoreload %autoreload 2 def get_CIFAR10_data(num_training=49000, num_validation=1000, num_test=1000, num_dev=500): """ Load the CIFAR-10 dataset from disk and perform preprocessing to prepare it for the linear classifier. These are the same steps as we used for the SVM, but condensed to a single function. """ # Load the raw CIFAR-10 data cifar10_dir = 'cs231n/datasets/cifar-10-batches-py' # Cleaning up variables to prevent loading data multiple times (which may cause memory issue) try: del X_train, y_train del X_test, y_test print('Clear previously loaded data.') except: pass X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir) # subsample the data mask = list(range(num_training, num_training + num_validation)) X_val = X_train[mask] y_val = y_train[mask] mask = list(range(num_training)) X_train = X_train[mask] y_train = y_train[mask] mask = list(range(num_test)) X_test = X_test[mask] y_test = y_test[mask] mask = np.random.choice(num_training, num_dev, replace=False) X_dev = X_train[mask] y_dev = y_train[mask] # Preprocessing: reshape the image data into rows X_train = np.reshape(X_train, (X_train.shape[0], -1)) X_val = np.reshape(X_val, (X_val.shape[0], -1)) X_test = np.reshape(X_test, (X_test.shape[0], -1)) X_dev = np.reshape(X_dev, (X_dev.shape[0], -1)) # Normalize the data: subtract the mean image mean_image = np.mean(X_train, axis = 0) X_train -= mean_image X_val -= mean_image X_test -= mean_image X_dev -= mean_image # add bias dimension and transform into columns X_train = np.hstack([X_train, np.ones((X_train.shape[0], 1))]) X_val = np.hstack([X_val, np.ones((X_val.shape[0], 1))]) X_test = np.hstack([X_test, np.ones((X_test.shape[0], 1))]) X_dev = np.hstack([X_dev, np.ones((X_dev.shape[0], 1))]) return X_train, y_train, X_val, y_val, X_test, y_test, X_dev, y_dev # Invoke the above function to get our data. X_train, y_train, X_val, y_val, X_test, y_test, X_dev, y_dev = get_CIFAR10_data() print('Train data shape: ', X_train.shape) print('Train labels shape: ', y_train.shape) print('Validation data shape: ', X_val.shape) print('Validation labels shape: ', y_val.shape) print('Test data shape: ', X_test.shape) print('Test labels shape: ', y_test.shape) print('dev data shape: ', X_dev.shape) print('dev labels shape: ', y_dev.shape) ###Output _____no_output_____ ###Markdown Softmax ClassifierYour code for this section will all be written inside **cs231n/classifiers/softmax.py**. ###Code # First implement the naive softmax loss function with nested loops. # Open the file cs231n/classifiers/softmax.py and implement the # softmax_loss_naive function. from cs231n.classifiers.softmax import softmax_loss_naive import time # Generate a random softmax weight matrix and use it to compute the loss. W = np.random.randn(3073, 10) * 0.0001 loss, grad = softmax_loss_naive(W, X_dev, y_dev, 0.0) # As a rough sanity check, our loss should be something close to -log(0.1). print('loss: %f' % loss) print('sanity check: %f' % (-np.log(0.1))) ###Output _____no_output_____ ###Markdown **Inline Question 1**Why do we expect our loss to be close to -log(0.1)? Explain briefly.**$\color{blue}{\textit Your Answer:}$ *Fill this in* ###Code # Complete the implementation of softmax_loss_naive and implement a (naive) # version of the gradient that uses nested loops. loss, grad = softmax_loss_naive(W, X_dev, y_dev, 0.0) # As we did for the SVM, use numeric gradient checking as a debugging tool. # The numeric gradient should be close to the analytic gradient. from cs231n.gradient_check import grad_check_sparse f = lambda w: softmax_loss_naive(w, X_dev, y_dev, 0.0)[0] grad_numerical = grad_check_sparse(f, W, grad, 10) # similar to SVM case, do another gradient check with regularization loss, grad = softmax_loss_naive(W, X_dev, y_dev, 5e1) f = lambda w: softmax_loss_naive(w, X_dev, y_dev, 5e1)[0] grad_numerical = grad_check_sparse(f, W, grad, 10) # Now that we have a naive implementation of the softmax loss function and its gradient, # implement a vectorized version in softmax_loss_vectorized. # The two versions should compute the same results, but the vectorized version should be # much faster. tic = time.time() loss_naive, grad_naive = softmax_loss_naive(W, X_dev, y_dev, 0.000005) toc = time.time() print('naive loss: %e computed in %fs' % (loss_naive, toc - tic)) from cs231n.classifiers.softmax import softmax_loss_vectorized tic = time.time() loss_vectorized, grad_vectorized = softmax_loss_vectorized(W, X_dev, y_dev, 0.000005) toc = time.time() print('vectorized loss: %e computed in %fs' % (loss_vectorized, toc - tic)) # As we did for the SVM, we use the Frobenius norm to compare the two versions # of the gradient. grad_difference = np.linalg.norm(grad_naive - grad_vectorized, ord='fro') print('Loss difference: %f' % np.abs(loss_naive - loss_vectorized)) print('Gradient difference: %f' % grad_difference) # Use the validation set to tune hyperparameters (regularization strength and # learning rate). You should experiment with different ranges for the learning # rates and regularization strengths; if you are careful you should be able to # get a classification accuracy of over 0.35 on the validation set. from cs231n.classifiers import Softmax results = {} best_val = -1 best_softmax = None learning_rates = [1e-7, 5e-7] regularization_strengths = [2.5e4, 5e4] ################################################################################ # TODO: # # Use the validation set to set the learning rate and regularization strength. # # This should be identical to the validation that you did for the SVM; save # # the best trained softmax classifer in best_softmax. # ################################################################################ # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** pass # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** # Print out results. for lr, reg in sorted(results): train_accuracy, val_accuracy = results[(lr, reg)] print('lr %e reg %e train accuracy: %f val accuracy: %f' % ( lr, reg, train_accuracy, val_accuracy)) print('best validation accuracy achieved during cross-validation: %f' % best_val) # evaluate on test set # Evaluate the best softmax on test set y_test_pred = best_softmax.predict(X_test) test_accuracy = np.mean(y_test == y_test_pred) print('softmax on raw pixels final test set accuracy: %f' % (test_accuracy, )) ###Output _____no_output_____ ###Markdown **Inline Question 2** - *True or False*Suppose the overall training loss is defined as the sum of the per-datapoint loss over all training examples. It is possible to add a new datapoint to a training set that would leave the SVM loss unchanged, but this is not the case with the Softmax classifier loss.$\color{blue}{\textit Your Answer:}$$\color{blue}{\textit Your Explanation:}$ ###Code # Visualize the learned weights for each class w = best_softmax.W[:-1,:] # strip out the bias w = w.reshape(32, 32, 3, 10) w_min, w_max = np.min(w), np.max(w) classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] for i in range(10): plt.subplot(2, 5, i + 1) # Rescale the weights to be between 0 and 255 wimg = 255.0 * (w[:, :, :, i].squeeze() - w_min) / (w_max - w_min) plt.imshow(wimg.astype('uint8')) plt.axis('off') plt.title(classes[i]) ###Output _____no_output_____ ###Markdown Softmax exercise*Complete and hand in this completed worksheet (including its outputs and any supporting code outside of the worksheet) with your assignment submission. For more details see the [assignments page](http://vision.stanford.edu/teaching/cs231n/assignments.html) on the course website.*This exercise is analogous to the SVM exercise. You will:- implement a fully-vectorized **loss function** for the Softmax classifier- implement the fully-vectorized expression for its **analytic gradient**- **check your implementation** with numerical gradient- use a validation set to **tune the learning rate and regularization** strength- **optimize** the loss function with **SGD**- **visualize** the final learned weights ###Code import random import numpy as np from cs231n.data_utils import load_CIFAR10 import matplotlib.pyplot as plt %matplotlib inline plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' # for auto-reloading extenrnal modules # see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython %load_ext autoreload %autoreload 2 def get_CIFAR10_data(num_training=49000, num_validation=1000, num_test=1000, num_dev=500): """ Load the CIFAR-10 dataset from disk and perform preprocessing to prepare it for the linear classifier. These are the same steps as we used for the SVM, but condensed to a single function. """ # Load the raw CIFAR-10 data cifar10_dir = 'cs231n/datasets/cifar-10-batches-py' # Cleaning up variables to prevent loading data multiple times (which may cause memory issue) try: del X_train, y_train del X_test, y_test print('Clear previously loaded data.') except: pass X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir) # subsample the data mask = list(range(num_training, num_training + num_validation)) X_val = X_train[mask] y_val = y_train[mask] mask = list(range(num_training)) X_train = X_train[mask] y_train = y_train[mask] mask = list(range(num_test)) X_test = X_test[mask] y_test = y_test[mask] mask = np.random.choice(num_training, num_dev, replace=False) X_dev = X_train[mask] y_dev = y_train[mask] # Preprocessing: reshape the image data into rows X_train = np.reshape(X_train, (X_train.shape[0], -1)) X_val = np.reshape(X_val, (X_val.shape[0], -1)) X_test = np.reshape(X_test, (X_test.shape[0], -1)) X_dev = np.reshape(X_dev, (X_dev.shape[0], -1)) # Normalize the data: subtract the mean image mean_image = np.mean(X_train, axis = 0) X_train -= mean_image X_val -= mean_image X_test -= mean_image X_dev -= mean_image # add bias dimension and transform into columns X_train = np.hstack([X_train, np.ones((X_train.shape[0], 1))]) X_val = np.hstack([X_val, np.ones((X_val.shape[0], 1))]) X_test = np.hstack([X_test, np.ones((X_test.shape[0], 1))]) X_dev = np.hstack([X_dev, np.ones((X_dev.shape[0], 1))]) return X_train, y_train, X_val, y_val, X_test, y_test, X_dev, y_dev # Invoke the above function to get our data. X_train, y_train, X_val, y_val, X_test, y_test, X_dev, y_dev = get_CIFAR10_data() print('Train data shape: ', X_train.shape) print('Train labels shape: ', y_train.shape) print('Validation data shape: ', X_val.shape) print('Validation labels shape: ', y_val.shape) print('Test data shape: ', X_test.shape) print('Test labels shape: ', y_test.shape) print('dev data shape: ', X_dev.shape) print('dev labels shape: ', y_dev.shape) ###Output Train data shape: (49000, 3073) Train labels shape: (49000,) Validation data shape: (1000, 3073) Validation labels shape: (1000,) Test data shape: (1000, 3073) Test labels shape: (1000,) dev data shape: (500, 3073) dev labels shape: (500,) ###Markdown Softmax ClassifierYour code for this section will all be written inside **cs231n/classifiers/softmax.py**. ###Code # First implement the naive softmax loss function with nested loops. # Open the file cs231n/classifiers/softmax.py and implement the # softmax_loss_naive function. from cs231n.classifiers.softmax import softmax_loss_naive import time # Generate a random softmax weight matrix and use it to compute the loss. W = np.random.randn(3073, 10) * 0.0001 loss, grad = softmax_loss_naive(W, X_dev, y_dev, 0.0) # As a rough sanity check, our loss should be something close to -log(0.1). print('loss: %f' % loss) print('sanity check: %f' % (-np.log(0.1))) ###Output loss: 2.418137 sanity check: 2.302585 ###Markdown **Inline Question 1**Why do we expect our loss to be close to -log(0.1)? Explain briefly.**$\color{blue}{\textit Your Answer:}$ Because we have 10 class, so initially if we spread out the probability, each class is 0.1. -log(Probabilty of a class). ###Code # Complete the implementation of softmax_loss_naive and implement a (naive) # version of the gradient that uses nested loops. loss, grad = softmax_loss_naive(W, X_dev, y_dev, 0.0) # As we did for the SVM, use numeric gradient checking as a debugging tool. # The numeric gradient should be close to the analytic gradient. from cs231n.gradient_check import grad_check_sparse f = lambda w: softmax_loss_naive(w, X_dev, y_dev, 0.0)[0] grad_numerical = grad_check_sparse(f, W, grad, 10) # similar to SVM case, do another gradient check with regularization loss, grad = softmax_loss_naive(W, X_dev, y_dev, 5e1) f = lambda w: softmax_loss_naive(w, X_dev, y_dev, 5e1)[0] grad_numerical = grad_check_sparse(f, W, grad, 10) # Now that we have a naive implementation of the softmax loss function and its gradient, # implement a vectorized version in softmax_loss_vectorized. # The two versions should compute the same results, but the vectorized version should be # much faster. tic = time.time() loss_naive, grad_naive = softmax_loss_naive(W, X_dev, y_dev, 0.000005) toc = time.time() print('naive loss: %e computed in %fs' % (loss_naive, toc - tic)) from cs231n.classifiers.softmax import softmax_loss_vectorized tic = time.time() loss_vectorized, grad_vectorized = softmax_loss_vectorized(W, X_dev, y_dev, 0.000005) toc = time.time() print('vectorized loss: %e computed in %fs' % (loss_vectorized, toc - tic)) # As we did for the SVM, we use the Frobenius norm to compare the two versions # of the gradient. grad_difference = np.linalg.norm(grad_naive - grad_vectorized, ord='fro') print('Loss difference: %f' % np.abs(loss_naive - loss_vectorized)) print('Gradient difference: %f' % grad_difference) # Use the validation set to tune hyperparameters (regularization strength and # learning rate). You should experiment with different ranges for the learning # rates and regularization strengths; if you are careful you should be able to # get a classification accuracy of over 0.35 on the validation set. from cs231n.classifiers import Softmax results = {} best_val = -1 best_softmax = None learning_rates = [1e-7, 2e-6, 2.5e-6] regularization_strengths = [1e3, 1e4, 2e4, 2.5e4, 3e4, 3.5e4] ################################################################################ # TODO: # # Use the validation set to set the learning rate and regularization strength. # # This should be identical to the validation that you did for the SVM; save # # the best trained softmax classifer in best_softmax. # ################################################################################ # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** grid_search_params = [(l, r) for l in learning_rates for r in regularization_strengths] for l, r in grid_search_params: model = Softmax() model.train(X_train, y_train, learning_rate=l, reg=r, num_iters=500) y_pred_train = model.predict(X_train) y_pred_dev = model.predict(X_dev) train_accuracy = np.mean(y_pred_train == y_train) val_accuracy = np.mean(y_pred_dev == y_dev) results[(l, r)] = (train_accuracy, val_accuracy) if val_accuracy > best_val: best_softmax = model best_val = val_accuracy # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** # Print out results. for lr, reg in sorted(results): train_accuracy, val_accuracy = results[(lr, reg)] print('lr %e reg %e train accuracy: %f val accuracy: %f' % ( lr, reg, train_accuracy, val_accuracy)) print('best validation accuracy achieved during cross-validation: %f' % best_val) # evaluate on test set # Evaluate the best softmax on test set y_test_pred = best_softmax.predict(X_test) test_accuracy = np.mean(y_test == y_test_pred) print('softmax on raw pixels final test set accuracy: %f' % (test_accuracy, )) ###Output softmax on raw pixels final test set accuracy: 0.278000 ###Markdown **Inline Question 2** - *True or False*Suppose the overall training loss is defined as the sum of the per-datapoint loss over all training examples. It is possible to add a new datapoint to a training set that would leave the SVM loss unchanged, but this is not the case with the Softmax classifier loss.$\color{blue}{\textit Your Answer:}$ True.$\color{blue}{\textit Your Explanation:}$ Let's assume that we add a new datapoint that leads to scores [10,8,7], also that the margin for SVM is 2 and the correct class is "10", then the SVM loss of this datapoint will be 0 because it satisfies the margin, i.e., max(0, 8 + 2 - 10) + max(0, 7 + 2 - 10) = 0. Thus, the loss remains unchanged. However, it is not the case for Softmax classifier where the loss will increase, i.e., -log(softmax(10)) = -log(0.84) = 0.17. This occurs because the SVM loss is local objective, that is, it does not care about the details of individual scores only the margin has to be satisfied. On the other hand, the Softmax classifier considers all the individual scores in the calculation of the loss. ###Code # Visualize the learned weights for each class w = best_softmax.W[:-1,:] # strip out the bias w = w.reshape(32, 32, 3, 10) w_min, w_max = np.min(w), np.max(w) classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] for i in range(10): plt.subplot(2, 5, i + 1) # Rescale the weights to be between 0 and 255 wimg = 255.0 * (w[:, :, :, i].squeeze() - w_min) / (w_max - w_min) plt.imshow(wimg.astype('uint8')) plt.axis('off') plt.title(classes[i]) ###Output _____no_output_____ ###Markdown Softmax exercise*Complete and hand in this completed worksheet (including its outputs and any supporting code outside of the worksheet) with your assignment submission. For more details see the [assignments page](http://vision.stanford.edu/teaching/cs231n/assignments.html) on the course website.*This exercise is analogous to the SVM exercise. You will:- implement a fully-vectorized **loss function** for the Softmax classifier- implement the fully-vectorized expression for its **analytic gradient**- **check your implementation** with numerical gradient- use a validation set to **tune the learning rate and regularization** strength- **optimize** the loss function with **SGD**- **visualize** the final learned weights ###Code import random import numpy as np from cs231n.data_utils import load_CIFAR10 import matplotlib.pyplot as plt %matplotlib inline plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' # for auto-reloading extenrnal modules # see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython %load_ext autoreload %autoreload 2 def get_CIFAR10_data(num_training=49000, num_validation=1000, num_test=1000, num_dev=500): """ Load the CIFAR-10 dataset from disk and perform preprocessing to prepare it for the linear classifier. These are the same steps as we used for the SVM, but condensed to a single function. """ # Load the raw CIFAR-10 data cifar10_dir = 'cs231n/datasets/cifar-10-batches-py' # Cleaning up variables to prevent loading data multiple times (which may cause memory issue) try: del X_train, y_train del X_test, y_test print('Clear previously loaded data.') except: pass X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir) # subsample the data mask = list(range(num_training, num_training + num_validation)) X_val = X_train[mask] y_val = y_train[mask] mask = list(range(num_training)) X_train = X_train[mask] y_train = y_train[mask] mask = list(range(num_test)) X_test = X_test[mask] y_test = y_test[mask] mask = np.random.choice(num_training, num_dev, replace=False) X_dev = X_train[mask] y_dev = y_train[mask] # Preprocessing: reshape the image data into rows X_train = np.reshape(X_train, (X_train.shape[0], -1)) X_val = np.reshape(X_val, (X_val.shape[0], -1)) X_test = np.reshape(X_test, (X_test.shape[0], -1)) X_dev = np.reshape(X_dev, (X_dev.shape[0], -1)) # Normalize the data: subtract the mean image mean_image = np.mean(X_train, axis = 0) X_train -= mean_image X_val -= mean_image X_test -= mean_image X_dev -= mean_image # add bias dimension and transform into columns X_train = np.hstack([X_train, np.ones((X_train.shape[0], 1))]) X_val = np.hstack([X_val, np.ones((X_val.shape[0], 1))]) X_test = np.hstack([X_test, np.ones((X_test.shape[0], 1))]) X_dev = np.hstack([X_dev, np.ones((X_dev.shape[0], 1))]) return X_train, y_train, X_val, y_val, X_test, y_test, X_dev, y_dev # Invoke the above function to get our data. X_train, y_train, X_val, y_val, X_test, y_test, X_dev, y_dev = get_CIFAR10_data() print('Train data shape: ', X_train.shape) print('Train labels shape: ', y_train.shape) print('Validation data shape: ', X_val.shape) print('Validation labels shape: ', y_val.shape) print('Test data shape: ', X_test.shape) print('Test labels shape: ', y_test.shape) print('dev data shape: ', X_dev.shape) print('dev labels shape: ', y_dev.shape) ###Output Train data shape: (49000, 3073) Train labels shape: (49000,) Validation data shape: (1000, 3073) Validation labels shape: (1000,) Test data shape: (1000, 3073) Test labels shape: (1000,) dev data shape: (500, 3073) dev labels shape: (500,) ###Markdown Softmax ClassifierYour code for this section will all be written inside **cs231n/classifiers/softmax.py**. ###Code # First implement the naive softmax loss function with nested loops. # Open the file cs231n/classifiers/softmax.py and implement the # softmax_loss_naive function. from cs231n.classifiers.softmax import softmax_loss_naive import time # Generate a random softmax weight matrix and use it to compute the loss. W = np.random.randn(3073, 10) * 0.0001 loss, grad = softmax_loss_naive(W, X_dev, y_dev, 0.0) # As a rough sanity check, our loss should be something close to -log(0.1). print('loss: %f' % loss) print('sanity check: %f' % (-np.log(0.1))) ###Output loss: 2.304681 sanity check: 2.302585 ###Markdown **Inline Question 1**Why do we expect our loss to be close to -log(0.1)? Explain briefly.**$\color{blue}{\textit Your Answer:}$ *Fill this in* Initially, all classes will have similar scores, so the loss will be:$$L = -\log \left(\frac{e^{.1}}{10 e^{.1}}\right) = -\log .1$$ ###Code # Complete the implementation of softmax_loss_naive and implement a (naive) # version of the gradient that uses nested loops. loss, grad = softmax_loss_naive(W, X_dev, y_dev, 0.0) # As we did for the SVM, use numeric gradient checking as a debugging tool. # The numeric gradient should be close to the analytic gradient. from cs231n.gradient_check import grad_check_sparse f = lambda w: softmax_loss_naive(w, X_dev, y_dev, 0.0)[0] grad_numerical = grad_check_sparse(f, W, grad, 10) # similar to SVM case, do another gradient check with regularization loss, grad = softmax_loss_naive(W, X_dev, y_dev, 5e1) f = lambda w: softmax_loss_naive(w, X_dev, y_dev, 5e1)[0] grad_numerical = grad_check_sparse(f, W, grad, 10) # Now that we have a naive implementation of the softmax loss function and its gradient, # implement a vectorized version in softmax_loss_vectorized. # The two versions should compute the same results, but the vectorized version should be # much faster. tic = time.time() loss_naive, grad_naive = softmax_loss_naive(W, X_dev, y_dev, 0.000005) toc = time.time() print('naive loss: %e computed in %fs' % (loss_naive, toc - tic)) from cs231n.classifiers.softmax import softmax_loss_vectorized tic = time.time() loss_vectorized, grad_vectorized = softmax_loss_vectorized(W, X_dev, y_dev, 0.000005) toc = time.time() print('vectorized loss: %e computed in %fs' % (loss_vectorized, toc - tic)) # As we did for the SVM, we use the Frobenius norm to compare the two versions # of the gradient. grad_difference = np.linalg.norm(grad_naive - grad_vectorized, ord='fro') print('Loss difference: %f' % np.abs(loss_naive - loss_vectorized)) print('Gradient difference: %f' % grad_difference) # Use the validation set to tune hyperparameters (regularization strength and # learning rate). You should experiment with different ranges for the learning # rates and regularization strengths; if you are careful you should be able to # get a classification accuracy of over 0.35 on the validation set. from cs231n.classifiers import Softmax results = {} best_val = -1 best_softmax = None #learning_rates = [1e-7, 5e-7] #regularization_strengths = [2.5e4, 5e4] learning_rates = [ 5e-7, 2.000000e-06, 1e-6] regularization_strengths = [ 3.25e4, 3.5e4, 1.000000e+03, 2e+3] ################################################################################ # TODO: # # Use the validation set to set the learning rate and regularization strength. # # This should be identical to the validation that you did for the softmax; save # # the best trained softmax classifer in best_softmax. # ################################################################################ # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** combos = [(rate, reg) for rate in learning_rates for reg in regularization_strengths] for lr, rv in combos: softmax = Softmax() tic = time.time() softmax.train(X_train, y_train, lr, reg= rv, num_iters=1600) y_train_pred = softmax.predict(X_train) train_acc = np.mean(y_train == y_train_pred) y_val_pred = softmax.predict(X_val) val_acc = np.mean(y_val == y_val_pred) print(lr,rv, train_acc, val_acc) results[(lr, rv)] = (train_acc, val_acc) if val_acc > best_val: best_val = val_acc best_softmax = softmax # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** # Print out results. for lr, reg in sorted(results): train_accuracy, val_accuracy = results[(lr, reg)] print('lr %e reg %e train accuracy: %f val accuracy: %f' % ( lr, reg, train_accuracy, val_accuracy)) print('best validation accuracy achieved during cross-validation: %f' % best_val) # evaluate on test set # Evaluate the best softmax on test set y_test_pred = best_softmax.predict(X_test) test_accuracy = np.mean(y_test == y_test_pred) print('softmax on raw pixels final test set accuracy: %f' % (test_accuracy, )) ###Output softmax on raw pixels final test set accuracy: 0.386000 ###Markdown **Inline Question 2** - *True or False*Suppose the overall training loss is defined as the sum of the per-datapoint loss over all training examples. It is possible to add a new datapoint to a training set that would leave the SVM loss unchanged, but this is not the case with the Softmax classifier loss.$\color{blue}{\textit Your Answer:}$False.$\color{blue}{\textit Your Explanation:}$If datapoint produces weights of (1,0,...) it will have 0 loss. ###Code # Visualize the learned weights for each class w = best_softmax.W[:-1,:] # strip out the bias w = w.reshape(32, 32, 3, 10) w_min, w_max = np.min(w), np.max(w) classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] for i in range(10): plt.subplot(2, 5, i + 1) # Rescale the weights to be between 0 and 255 wimg = 255.0 * (w[:, :, :, i].squeeze() - w_min) / (w_max - w_min) plt.imshow(wimg.astype('uint8')) plt.axis('off') plt.title(classes[i]) ###Output _____no_output_____ ###Markdown Softmax exercise*Complete and hand in this completed worksheet (including its outputs and any supporting code outside of the worksheet) with your assignment submission. For more details see the [assignments page](http://vision.stanford.edu/teaching/cs231n/assignments.html) on the course website.*This exercise is analogous to the SVM exercise. You will:- implement a fully-vectorized **loss function** for the Softmax classifier- implement the fully-vectorized expression for its **analytic gradient**- **check your implementation** with numerical gradient- use a validation set to **tune the learning rate and regularization** strength- **optimize** the loss function with **SGD**- **visualize** the final learned weights ###Code import random import numpy as np from cs231n.data_utils import load_CIFAR10 import matplotlib.pyplot as plt %matplotlib inline plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' # for auto-reloading extenrnal modules # see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython %load_ext autoreload %autoreload 2 def get_CIFAR10_data(num_training=49000, num_validation=1000, num_test=1000, num_dev=500): """ Load the CIFAR-10 dataset from disk and perform preprocessing to prepare it for the linear classifier. These are the same steps as we used for the SVM, but condensed to a single function. """ # Load the raw CIFAR-10 data cifar10_dir = 'cs231n/datasets/cifar-10-batches-py' # Cleaning up variables to prevent loading data multiple times (which may cause memory issue) try: del X_train, y_train del X_test, y_test print('Clear previously loaded data.') except: pass X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir) # subsample the data mask = list(range(num_training, num_training + num_validation)) X_val = X_train[mask] y_val = y_train[mask] mask = list(range(num_training)) X_train = X_train[mask] y_train = y_train[mask] mask = list(range(num_test)) X_test = X_test[mask] y_test = y_test[mask] mask = np.random.choice(num_training, num_dev, replace=False) X_dev = X_train[mask] y_dev = y_train[mask] # Preprocessing: reshape the image data into rows X_train = np.reshape(X_train, (X_train.shape[0], -1)) X_val = np.reshape(X_val, (X_val.shape[0], -1)) X_test = np.reshape(X_test, (X_test.shape[0], -1)) X_dev = np.reshape(X_dev, (X_dev.shape[0], -1)) # Normalize the data: subtract the mean image mean_image = np.mean(X_train, axis = 0) X_train -= mean_image X_val -= mean_image X_test -= mean_image X_dev -= mean_image # add bias dimension and transform into columns X_train = np.hstack([X_train, np.ones((X_train.shape[0], 1))]) X_val = np.hstack([X_val, np.ones((X_val.shape[0], 1))]) X_test = np.hstack([X_test, np.ones((X_test.shape[0], 1))]) X_dev = np.hstack([X_dev, np.ones((X_dev.shape[0], 1))]) return X_train, y_train, X_val, y_val, X_test, y_test, X_dev, y_dev # Invoke the above function to get our data. X_train, y_train, X_val, y_val, X_test, y_test, X_dev, y_dev = get_CIFAR10_data() print('Train data shape: ', X_train.shape) print('Train labels shape: ', y_train.shape) print('Validation data shape: ', X_val.shape) print('Validation labels shape: ', y_val.shape) print('Test data shape: ', X_test.shape) print('Test labels shape: ', y_test.shape) print('dev data shape: ', X_dev.shape) print('dev labels shape: ', y_dev.shape) ###Output Train data shape: (49000, 3073) Train labels shape: (49000,) Validation data shape: (1000, 3073) Validation labels shape: (1000,) Test data shape: (1000, 3073) Test labels shape: (1000,) dev data shape: (500, 3073) dev labels shape: (500,) ###Markdown Softmax ClassifierYour code for this section will all be written inside **cs231n/classifiers/softmax.py**. ###Code # First implement the naive softmax loss function with nested loops. # Open the file cs231n/classifiers/softmax.py and implement the # softmax_loss_naive function. from cs231n.classifiers.softmax import softmax_loss_naive import time # Generate a random softmax weight matrix and use it to compute the loss. W = np.random.randn(3073, 10) * 0.0001 loss, grad = softmax_loss_naive(W, X_dev, y_dev, 0.0) # As a rough sanity check, our loss should be something close to -log(0.1). print('loss: %f' % loss) print('sanity check: %f' % (-np.log(0.1))) ###Output loss: 2.336374 sanity check: 2.302585 ###Markdown **Inline Question 1**Why do we expect our loss to be close to -log(0.1)? Explain briefly.**$\color{blue}{\textit Your Answer:}$ because it is loss of random uniform sampled scores of ten classes. ###Code # Complete the implementation of softmax_loss_naive and implement a (naive) # version of the gradient that uses nested loops. loss, grad = softmax_loss_naive(W, X_dev, y_dev, 0.0) # As we did for the SVM, use numeric gradient checking as a debugging tool. # The numeric gradient should be close to the analytic gradient. from cs231n.gradient_check import grad_check_sparse f = lambda w: softmax_loss_naive(w, X_dev, y_dev, 0.0)[0] grad_numerical = grad_check_sparse(f, W, grad, 10) # similar to SVM case, do another gradient check with regularization loss, grad = softmax_loss_naive(W, X_dev, y_dev, 5e1) f = lambda w: softmax_loss_naive(w, X_dev, y_dev, 5e1)[0] grad_numerical = grad_check_sparse(f, W, grad, 10) # Now that we have a naive implementation of the softmax loss function and its gradient, # implement a vectorized version in softmax_loss_vectorized. # The two versions should compute the same results, but the vectorized version should be # much faster. tic = time.time() loss_naive, grad_naive = softmax_loss_naive(W, X_dev, y_dev, 0.000005) toc = time.time() print('naive loss: %e computed in %fs' % (loss_naive, toc - tic)) from cs231n.classifiers.softmax import softmax_loss_vectorized tic = time.time() loss_vectorized, grad_vectorized = softmax_loss_vectorized(W, X_dev, y_dev, 0.000005) toc = time.time() print('vectorized loss: %e computed in %fs' % (loss_vectorized, toc - tic)) # As we did for the SVM, we use the Frobenius norm to compare the two versions # of the gradient. grad_difference = np.linalg.norm(grad_naive - grad_vectorized, ord='fro') print('Loss difference: %f' % np.abs(loss_naive - loss_vectorized)) print('Gradient difference: %f' % grad_difference) # Use the validation set to tune hyperparameters (regularization strength and # learning rate). You should experiment with different ranges for the learning # rates and regularization strengths; if you are careful you should be able to # get a classification accuracy of over 0.35 on the validation set. from cs231n.classifiers import Softmax results = {} best_val = -1 best_softmax = None learning_rates = [1e-7, 5e-7] regularization_strengths = [2.5e4, 5e4] ################################################################################ # TODO: # # Use the validation set to set the learning rate and regularization strength. # # This should be identical to the validation that you did for the SVM; save # # the best trained softmax classifer in best_softmax. # ################################################################################ # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** for lr in learning_rates: for reg in regularization_strengths: softmax = Softmax() softmax.train(X_train, y_train, learning_rate=lr, reg=reg, num_iters=1500, verbose=False) y_train_pred = softmax.predict(X_train) train_acc = np.mean(y_train == y_train_pred) y_val_pred = softmax.predict(X_val) val_acc = np.mean(y_val == y_val_pred) results[(lr, reg)] = (train_acc, val_acc) if val_acc > best_val: best_val = val_acc best_softmax = softmax # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** # Print out results. for lr, reg in sorted(results): train_accuracy, val_accuracy = results[(lr, reg)] print('lr %e reg %e train accuracy: %f val accuracy: %f' % ( lr, reg, train_accuracy, val_accuracy)) print('best validation accuracy achieved during cross-validation: %f' % best_val) # evaluate on test set # Evaluate the best softmax on test set y_test_pred = best_softmax.predict(X_test) test_accuracy = np.mean(y_test == y_test_pred) print('softmax on raw pixels final test set accuracy: %f' % (test_accuracy, )) ###Output softmax on raw pixels final test set accuracy: 0.347000 ###Markdown **Inline Question 2** - *True or False*Suppose the overall training loss is defined as the sum of the per-datapoint loss over all training examples. It is possible to add a new datapoint to a training set that would leave the SVM loss unchanged, but this is not the case with the Softmax classifier loss.$\color{blue}{\textit Your Answer:}$ True$\color{blue}{\textit Your Explanation:}$ log loss can't be strictly equal to zero so any new datapoint change the final loss. Unlike this, svm loss can be equal to zero. ###Code # Visualize the learned weights for each class w = best_softmax.W[:-1,:] # strip out the bias w = w.reshape(32, 32, 3, 10) w_min, w_max = np.min(w), np.max(w) classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] for i in range(10): plt.subplot(2, 5, i + 1) # Rescale the weights to be between 0 and 255 wimg = 255.0 * (w[:, :, :, i].squeeze() - w_min) / (w_max - w_min) plt.imshow(wimg.astype('uint8')) plt.axis('off') plt.title(classes[i]) ###Output _____no_output_____
notebooks/multi_gpu_training_torch.ipynb
###Markdown Train a CNN on multiple GPUs using data parallelism.Based on sec 12.5 of http://d2l.ai/chapter_computational-performance/multiple-gpus.html.Note: in colab, we only have access to 1 GPU, so the code below just simulates the effects of multiple GPUs, so it will not run faster. You may not see a speedup eveen on a machine which really does have multiple GPUs, because the model and data are too small. But the example should still illustrate the key ideas. ###Code import matplotlib.pyplot as plt import numpy as np import math import torch from torch import nn from torch.nn import functional as F !mkdir figures # for saving plots !wget https://raw.githubusercontent.com/d2l-ai/d2l-en/master/d2l/torch.py -q -O d2l.py import d2l ###Output _____no_output_____ ###Markdown ModelWe use a slightly modified version of the LeNet CNN. ###Code # Initialize model parameters scale = 0.01 torch.random.manual_seed(0) W1 = torch.randn(size=(20, 1, 3, 3)) * scale b1 = torch.zeros(20) W2 = torch.randn(size=(50, 20, 5, 5)) * scale b2 = torch.zeros(50) W3 = torch.randn(size=(800, 128)) * scale b3 = torch.zeros(128) W4 = torch.randn(size=(128, 10)) * scale b4 = torch.zeros(10) params = [W1, b1, W2, b2, W3, b3, W4, b4] # Define the model def lenet(X, params): h1_conv = F.conv2d(input=X, weight=params[0], bias=params[1]) h1_activation = F.relu(h1_conv) h1 = F.avg_pool2d(input=h1_activation, kernel_size=(2, 2), stride=(2, 2)) h2_conv = F.conv2d(input=h1, weight=params[2], bias=params[3]) h2_activation = F.relu(h2_conv) h2 = F.avg_pool2d(input=h2_activation, kernel_size=(2, 2), stride=(2, 2)) h2 = h2.reshape(h2.shape[0], -1) h3_linear = torch.mm(h2, params[4]) + params[5] h3 = F.relu(h3_linear) y_hat = torch.mm(h3, params[6]) + params[7] return y_hat # Cross-entropy loss function loss = nn.CrossEntropyLoss(reduction='none') ###Output _____no_output_____ ###Markdown Copying parameters across devices ###Code def get_params(params, device): new_params = [p.clone().to(device) for p in params] for p in new_params: p.requires_grad_() return new_params # Copy the params to GPU0 gpu0 = torch.device('cuda:0') new_params = get_params(params, gpu0) print('b1 weight:', new_params[1]) print('b1 grad:', new_params[1].grad) # Copy the params to GPU1 gpu1 = torch.device('cuda:0') # torch.device('cuda:1') new_params = get_params(params, gpu1) print('b1 weight:', new_params[1]) print('b1 grad:', new_params[1].grad) ###Output b1 weight: tensor([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], device='cuda:0', requires_grad=True) b1 grad: None ###Markdown All-reduce will copy data (eg gradients) from all devices to device 0, add them, and then broadcast the result back to each device. ###Code def allreduce(data): for i in range(1, len(data)): data[0][:] += data[i].to(data[0].device) for i in range(1, len(data)): data[i] = data[0].to(data[i].device) data = [torch.ones((1, 2), device=d2l.try_gpu(i)) * (i + 1) for i in range(2)] print('before allreduce:\n', data[0], '\n', data[1]) allreduce(data) print('after allreduce:\n', data[0], '\n', data[1]) ###Output before allreduce: tensor([[1., 1.]], device='cuda:0') tensor([[2., 2.]]) after allreduce: tensor([[3., 3.]], device='cuda:0') tensor([[3., 3.]]) ###Markdown Distribute data across GPUs ###Code data = torch.arange(20).reshape(4, 5) #devices = [torch.device('cuda:0'), torch.device('cuda:1')] devices = [torch.device('cuda:0'), torch.device('cuda:0')] split = nn.parallel.scatter(data, devices) print('input :', data) print('load into', devices) print('output:', split) ###Output input : tensor([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19]]) load into [device(type='cuda', index=0), device(type='cuda', index=0)] output: (tensor([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]], device='cuda:0'), tensor([[10, 11, 12, 13, 14], [15, 16, 17, 18, 19]], device='cuda:0')) ###Markdown Split data and labels. ###Code def split_batch(X, y, devices): """Split `X` and `y` into multiple devices.""" assert X.shape[0] == y.shape[0] return (nn.parallel.scatter(X, devices), nn.parallel.scatter(y, devices)) ###Output _____no_output_____ ###Markdown Training ###Code def sgd(params, lr, batch_size): """Minibatch stochastic gradient descent.""" with torch.no_grad(): for param in params: param -= lr * param.grad / batch_size param.grad.zero_() def train_batch(X, y, device_params, devices, lr): X_shards, y_shards = split_batch(X, y, devices) # Loss is calculated separately on each GPU losses = [ loss(lenet(X_shard, device_W), y_shard).sum() for X_shard, y_shard, device_W in zip( X_shards, y_shards, device_params)] for l in losses: # Back Propagation is performed separately on each GPU l.backward() # Sum all gradients from each GPU and broadcast them to all GPUs with torch.no_grad(): for i in range(len(device_params[0])): allreduce([device_params[c][i].grad for c in range(len(devices))]) # The model parameters are updated separately on each GPU ndata = X.shape[0] # gradient is summed over the full minibatch for param in device_params: #d2l.sgd(param, lr, ndata) sgd(param, lr, ndata) def train(num_gpus, batch_size, lr): train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size) devices = [d2l.try_gpu(i) for i in range(num_gpus)] # Copy model parameters to num_gpus GPUs device_params = [get_params(params, d) for d in devices] # num_epochs, times, acces = 10, [], [] num_epochs = 5 animator = d2l.Animator('epoch', 'test acc', xlim=[1, num_epochs]) timer = d2l.Timer() for epoch in range(num_epochs): timer.start() for X, y in train_iter: # Perform multi-GPU training for a single minibatch train_batch(X, y, device_params, devices, lr) torch.cuda.synchronize() timer.stop() # Verify the model on GPU 0 animator.add(epoch + 1, (d2l.evaluate_accuracy_gpu( lambda x: lenet(x, device_params[0]), test_iter, devices[0]),)) print(f'test acc: {animator.Y[0][-1]:.2f}, {timer.avg():.1f} sec/epoch ' f'on {str(devices)}') #train(num_gpus=2, batch_size=256, lr=0.2) train(num_gpus=1, batch_size=256, lr=0.2) ###Output _____no_output_____
pdbbind_data.ipynb
###Markdown Parse and clean affinity data ###Code %%bash -s $path --out missing path=$1 # Save binding affinities to csv file echo 'pdbid,-logKd/Ki' > affinity_data.csv cat $path/PDBbind_2016_plain_text_index/index/INDEX_general_PL_data.2016 | while read l1 l2 l3 l4 l5; do if [[ ! $l1 =~ "#" ]]; then echo $l1,$l4 fi done >> affinity_data.csv # Find affinities without structural data (i.e. with missing directories) cut -f 1 -d ',' affinity_data.csv | tail -n +2 | while read l; do if [ ! -e $path/general-set-except-refined/$l ] && [ ! -e $path/refined-set/$l ]; then echo $l; fi done missing = set(missing.split()) len(missing) affinity_data = pd.read_csv('affinity_data.csv', comment='#') affinity_data = affinity_data[~np.in1d(affinity_data['pdbid'], list(missing))] affinity_data.head() # Check for NaNs affinity_data['-logKd/Ki'].isnull().any() # Separate core, refined, and general sets core_set = ! grep -v '#' $path/PDBbind_2016_plain_text_index/index/INDEX_core_data.2016 | cut -f 1 -d ' ' core_set = set(core_set) refined_set = ! grep -v '#' $path/PDBbind_2016_plain_text_index/index/INDEX_refined_data.2016 | cut -f 1 -d ' ' refined_set = set(refined_set) general_set = set(affinity_data['pdbid']) assert core_set & refined_set == core_set assert refined_set & general_set == refined_set len(general_set), len(refined_set), len(core_set) # Exclude v 2013 core set - it will be used as another test set core2013 = ! cat core_pdbbind2013.ids core2013 = set(core2013) affinity_data['include'] = True affinity_data.loc[np.in1d(affinity_data['pdbid'], list(core2013 & (general_set - core_set))), 'include'] = False affinity_data.loc[np.in1d(affinity_data['pdbid'], list(general_set)), 'set'] = 'general' affinity_data.loc[np.in1d(affinity_data['pdbid'], list(refined_set)), 'set'] = 'refined' affinity_data.loc[np.in1d(affinity_data['pdbid'], list(core_set)), 'set'] = 'core' affinity_data.head() affinity_data[affinity_data['include']].groupby('set').apply(len).loc[['general', 'refined', 'core']] # Check affinity distributions grid = sns.FacetGrid(affinity_data[affinity_data['include']], row='set', row_order=['general', 'refined', 'core'], size=3, aspect=3) grid.map(sns.distplot, '-logKd/Ki'); affinity_data[['pdbid']].to_csv('pdb.ids', header=False, index=False) affinity_data[['pdbid', '-logKd/Ki', 'set']].to_csv('affinity_data_cleaned.csv', index=False) ###Output _____no_output_____ ###Markdown --- Parse molecules ###Code dataset_path = {'general': 'general-set-except-refined', 'refined': 'refined-set', 'core': 'refined-set'} %%bash -s $path # Prepare pockets with UCSF Chimera - pybel sometimes fails to calculate the charges. # Even if Chimera fails to calculate several charges (mostly for non-standard residues), # it returns charges for other residues. path=$1 for dataset in general-set-except-refined refined-set; do echo $dataset for pdbfile in $path/$dataset/*/*_pocket.pdb; do mol2file=${pdbfile%pdb}mol2 if [[ ! -e $mol2file ]]; then echo -e "open $pdbfile \n addh \n addcharge \n write format mol2 0 tmp.mol2 \n stop" | chimera --nogui # Do not use TIP3P atom types, pybel cannot read them sed 's/H\.t3p/H /' tmp.mol2 | sed 's/O\.t3p/O\.3 /' > $mol2file fi done done > chimera_rw.log featurizer = Featurizer() charge_idx = featurizer.FEATURE_NAMES.index('partialcharge') with h5py.File('%s/core2013.hdf' % path, 'w') as g: j = 0 for dataset_name, data in affinity_data.groupby('set'): print(dataset_name, 'set') i = 0 ds_path = dataset_path[dataset_name] with h5py.File('%s/%s.hdf' % (path, dataset_name), 'w') as f: for _, row in data.iterrows(): name = row['pdbid'] affinity = row['-logKd/Ki'] ligand = next(pybel.readfile('mol2', '%s/%s/%s/%s_ligand.mol2' % (path, ds_path, name, name))) # do not add the hydrogens! they are in the strucutre and it would reset the charges try: pocket = next(pybel.readfile('mol2', '%s/%s/%s/%s_pocket.mol2' % (path, ds_path, name, name))) # do not add the hydrogens! they were already added in chimera and it would reset the charges except: warnings.warn('no pocket for %s (%s set)' % (name, dataset_name)) continue ligand_coords, ligand_features = featurizer.get_features(ligand, molcode=1) assert (ligand_features[:, charge_idx] != 0).any() pocket_coords, pocket_features = featurizer.get_features(pocket, molcode=-1) assert (pocket_features[:, charge_idx] != 0).any() centroid = ligand_coords.mean(axis=0) ligand_coords -= centroid pocket_coords -= centroid data = np.concatenate((np.concatenate((ligand_coords, pocket_coords)), np.concatenate((ligand_features, pocket_features))), axis=1) if row['include']: dataset = f.create_dataset(name, data=data, shape=data.shape, dtype='float32', compression='lzf') dataset.attrs['affinity'] = affinity i += 1 else: dataset = g.create_dataset(name, data=data, shape=data.shape, dtype='float32', compression='lzf') dataset.attrs['affinity'] = affinity j += 1 print('prepared', i, 'complexes') print('excluded', j, 'complexes') with h5py.File('%s/core.hdf' % path, 'r') as f, \ h5py.File('%s/core2013.hdf' % path, 'r+') as g: for name in f: if name in core2013: dataset = g.create_dataset(name, data=f[name]) dataset.attrs['affinity'] = f[name].attrs['affinity'] ###Output _____no_output_____ ###Markdown Protein data ###Code protein_data = pd.read_csv('%s/PDBbind_2016_plain_text_index/index/INDEX_general_PL_name.2016' % path, comment='#', sep=' ', engine='python', na_values='------', header=None, names=['pdbid', 'year', 'uniprotid', 'name']) protein_data.head() # we assume that PDB IDs are unique assert ~protein_data['pdbid'].duplicated().any() protein_data = protein_data[np.in1d(protein_data['pdbid'], affinity_data['pdbid'])] # check for missing values protein_data.isnull().any() protein_data[protein_data['name'].isnull()] # fix rows with wrong separators between protein ID and name for idx, row in protein_data[protein_data['name'].isnull()].iterrows(): uniprotid = row['uniprotid'][:6] name = row['uniprotid'][7:] protein_data.loc[idx, ['uniprotid', 'name']] = [uniprotid, name] protein_data.isnull().any() protein_data.to_csv('protein_data.csv', index=False) ###Output _____no_output_____
1-basics/1-assignment.ipynb
###Markdown Python Block Course Assignment 1: Python basics and programming fundamentals Prof. Dr. Karsten Donnay, Stefan ScholzWinter Term 2019 / 2020In this first assignment we will practice how to use Jupyter Notebooks and how to execute Python code. You can score up to 15 points in this assignment. Please submit your solutions inside this notebook in your repository on GitHub. The deadline for submission is on Tuesday, October 15, 09:59 am. You will get individual feedback in your repository. 1.1 Encoding Text Suppose you want to send a secret message. Therefore, you want to use a very simple encoding method called [Ceasar Cipher](https://en.wikipedia.org/wiki/Caesar_cipher). For this, you first have to define which characters you want to send and of couse which message you want to send. We have already prepared an alphabet and a message for you. ###Code # define characters you want to use alphabet = list("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ .") # define message you want to send message = "Mission accomplished. Meeting point is Mailand. I will wear a black coat." ###Output _____no_output_____ ###Markdown To get a encoded alphabet we need to shift our alphabet by a certain amount of characters. Therefore we can use a combination of **pop()** and **append()**. We have already prepared some code to move the alphabet by three characters. Exercise (2 Points): Try to understand the following code. To increase the security level, increase the shift to a value greater than three characters. ###Code # define characters you want to use for encoding alphabet_encoded = list(alphabet) # shift alphabet for i in range(3): alphabet_encoded.append(alphabet_encoded.pop(0)) # print encoded alphabet print(alphabet_encoded) ###Output _____no_output_____ ###Markdown You have an encoded alphabet now. But in order to encode your message easily, you still need a table or dictionary, in which you encode from the normal alphabet to the encoded one. We have already prepared this dictionary and encoded the original message. ###Code # define dictionary with original and encoded alphabet encoder = dict(zip(alphabet, alphabet_encoded)) # encode message message_encoded = "" for letter in message: message_encoded += encoder[letter] # print encoded message print(message_encoded) ###Output _____no_output_____
notebooks/ne_baseline.ipynb
###Markdown はじめにこのノートブックでは、拡張固有表現認識のベースラインモデルの作成を行います。まずはデータセットを読み込み、整形します。その後、ベースラインモデルを構築し、評価を行います。 データセットの読み込みこの節では、拡張固有表現のデータセットを読み込みます。データセットには、毎日新聞1995に対して拡張固有表現が付与されたデータセットを用います。以下のコードを実行して、文字ベースのIOB2形式で読み込みます。 ###Code import os import sys sys.path.append('../') from entitypedia.evaluation.converter import to_iob2 mainichi_dir = '../data/raw/corpora/mainichi' X, y = to_iob2(mainichi_dir) print(' '.join(X[0][:50])) print(' '.join(y[0][:50])) ###Output _____no_output_____ ###Markdown 上記に示したように読み込んだデータセットでは文字単位でラベルがついています。今回は単語単位で認識するベースラインモデルを作りたいため、単語レベルにラベルを付け直します。タスクとしては以下の通りです。* 文字のリストを結合して文字列にする* 文字列を形態素解析器で解析し、分かち書きする* 分かち書きした単語のリストに対してラベルを付け直す。まずは文字のリストを結合して文字列にします。 ###Code docs = [''.join(doc) for doc in X] docs[0][:100] ###Output _____no_output_____ ###Markdown 次に、結合した文字列に対して形態素解析を行います。形態素解析機にはMeCabを使用します。ついでに品詞情報も取得しておきましょう。 ###Code import MeCab t = MeCab.Tagger() def tokenize(sent): tokens = [] t.parse('') # for UnicodeDecodeError node = t.parseToNode(sent) while node: feature = node.feature.split(',') surface = node.surface # 表層形 pos = feature[0] # 品詞 tokens.append((surface, pos)) node = node.next return tokens[1:-1] tokenized_docs = [[d[0] for d in tokenize(doc)] for doc in docs] poses = [[d[1] for d in tokenize(doc)] for doc in docs] print(tokenized_docs[0][:10]) print(poses[0][:10]) ###Output ['\u3000', '◇', '国際', '貢献', 'など', '4', '点', '、', 'ビジョン', 'の'] ['記号', '記号', '名詞', '名詞', '助詞', '名詞', '名詞', '記号', '名詞', '助詞'] ###Markdown これで分かち書きまではできました。その後が若干面倒です。ラベルを単語単位で付け直す必要があります。以下の手順でやってみましょう。1. 形態素を1つ取り出す2. 形態素を構成するラベルを文字列マッチングによって取り出す3. ラベルを修正する ###Code tags = [] for t_doc, doc, label in zip(tokenized_docs, docs, y): i = 0 doc_tags = [] for word in t_doc: j = len(word) while not doc[i:].startswith(word): # correct i += 1 tag = label[i: i+j][0] # print('{}\t{}'.format(word, tag)) doc_tags.append(tag) i += j tags.append(doc_tags) # break ###Output _____no_output_____ ###Markdown 対応付けができているか確認してみましょう。 ###Code for word, tag in zip(tokenized_docs[0][:20], tags[0][:20]): print('{}\t{}'.format(word, tag)) ###Output   O ◇ O 国際 O 貢献 O など O 4 O 点 O 、 O ビジョン O の O 基本 O 示す O   O 村山 B-person 富市 I-person 首相 B-position_vocation は O 年頭 B-date の O 記者 B-position_vocation ###Markdown 大丈夫そうですね。では`tokenized_docs`と`tags`を`X`と`y`に代入してやりましょう。 ###Code X = tokenized_docs y = tags ###Output _____no_output_____ ###Markdown 以上でデータの読み込みと整形は完了しました。次はベースラインモデルを作成します。 ベースラインモデルの作成本節では拡張固有表現を認識するベースラインモデルを作成します。現在の固有表現認識ではBi-LSTMとCRFを組み合わせたモデルがよく用いられます。しかし、今回のように認識するタグ数が多い場合、CRFを入れると計算量が非常に多くなり、現実的な時間で問題を解くことができなくなります。したがって、まずはシンプルなモデルで解いてみましょう。ここでは、まず単純な単語ベースBi-LSTMを試してみます。計算時間が多いようだったら、更に簡単なモデルを検討します。ではまずは、データセットを学習用と検証用に分割しましょう。 ###Code from sklearn.model_selection import train_test_split x_train, x_valid, y_train, y_valid = train_test_split(X, y, test_size=0.3, random_state=42) ###Output _____no_output_____ ###Markdown これでデータセットを分割できました。現在、データセットの中は文字列で表現されています。これではモデルにデータを与えることができないので前処理を行います。前処理のためのコードを定義していきましょう。具体的な前処理としては、以下を行います。* 単語を数字に変換* 系列長の統一少々長いですが以下のように定義できます。 ###Code import itertools import re import numpy as np from sklearn.base import BaseEstimator, TransformerMixin from sklearn.externals import joblib from keras.preprocessing.sequence import pad_sequences UNK = '<UNK>' PAD = '<PAD>' class Preprocessor(BaseEstimator, TransformerMixin): def __init__(self, lowercase=True, num_norm=True, vocab_init=None, padding=True, return_lengths=True): self.lowercase = lowercase self.num_norm = num_norm self.padding = padding self.return_lengths = return_lengths self.vocab_word = None self.vocab_tag = None self.vocab_init = vocab_init or {} def fit(self, X, y): words = {PAD: 0, UNK: 1} tags = {PAD: 0} for w in set(itertools.chain(*X)) | set(self.vocab_init): if w not in words: words[w] = len(words) for t in itertools.chain(*y): if t not in tags: tags[t] = len(tags) self.vocab_word = words self.vocab_tag = tags return self def transform(self, X, y=None): """transforms input(s) Args: X: list of list of words y: list of list of tags Returns: numpy array: sentences numpy array: tags Examples: >>> X = [['President', 'Obama', 'is', 'speaking']] >>> print(self.transform(X)) [ [1999, 1037, 22123, 48388], # word ids ] """ words = [] lengths = [] for sent in X: word_ids = [] lengths.append(len(sent)) for word in sent: word_ids.append(self.vocab_word.get(word, self.vocab_word[UNK])) words.append(word_ids) if y is not None: y = [[self.vocab_tag[t] for t in sent] for sent in y] if self.padding: maxlen = max(lengths) sents = pad_sequences(words, maxlen, padding='post') if y is not None: y = pad_sequences(y, maxlen, padding='post') y = dense_to_one_hot(y, len(self.vocab_tag), nlevels=2) else: sents = words if self.return_lengths: lengths = np.asarray(lengths, dtype=np.int32) lengths = lengths.reshape((lengths.shape[0], 1)) sents = [sents, lengths] return (sents, y) if y is not None else sents def inverse_transform(self, y): indice_tag = {i: t for t, i in self.vocab_tag.items()} return [indice_tag[y_] for y_ in y] def vocab_size(self): return len(self.vocab_word) def tag_size(self): return len(self.vocab_tag) def dense_to_one_hot(labels_dense, num_classes, nlevels=1): """Convert class labels from scalars to one-hot vectors.""" if nlevels == 1: num_labels = labels_dense.shape[0] index_offset = np.arange(num_labels) * num_classes labels_one_hot = np.zeros((num_labels, num_classes), dtype=np.int32) labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1 return labels_one_hot elif nlevels == 2: # assume that labels_dense has same column length num_labels = labels_dense.shape[0] num_length = labels_dense.shape[1] labels_one_hot = np.zeros((num_labels, num_length, num_classes), dtype=np.int32) layer_idx = np.arange(num_labels).reshape(num_labels, 1) # this index selects each component separately component_idx = np.tile(np.arange(num_length), (num_labels, 1)) # then we use `a` to select indices according to category label labels_one_hot[layer_idx, component_idx, labels_dense] = 1 return labels_one_hot else: raise ValueError('nlevels can take 1 or 2, not take {}.'.format(nlevels)) def prepare_preprocessor(X, y, use_char=True): p = Preprocessor() p.fit(X, y) return p p = prepare_preprocessor(X, y) ###Output _____no_output_____ ###Markdown 前処理の関数を定義できたので、次にデータ生成部分の処理を描いてあげます。これは、バッチごとに前処理器を用いてデータを生成する処理になります。以下のように定義できます。 ###Code def batch_iter(data, labels, batch_size, shuffle=False, preprocessor=None): num_batches_per_epoch = int((len(data) - 1) / batch_size) + 1 def data_generator(): """ Generates a batch iterator for a dataset. """ data_size = len(data) while True: # Shuffle the data at each epoch if shuffle: shuffle_indices = np.random.permutation(np.arange(data_size)) shuffled_data = data[shuffle_indices] shuffled_labels = labels[shuffle_indices] else: shuffled_data = data shuffled_labels = labels for batch_num in range(num_batches_per_epoch): start_index = batch_num * batch_size end_index = min((batch_num + 1) * batch_size, data_size) X, y = shuffled_data[start_index: end_index], shuffled_labels[start_index: end_index] if preprocessor: yield preprocessor.transform(X, y) else: yield X, y return num_batches_per_epoch, data_generator() BATCH_SIZE = 32 train_steps, train_batches = batch_iter( x_train, y_train, BATCH_SIZE, preprocessor=p) valid_steps, valid_batches = batch_iter( x_valid, y_valid, BATCH_SIZE, preprocessor=p) ###Output _____no_output_____ ###Markdown ではモデルを定義しましょう。フレームワークにはKerasを使用します。 ###Code from keras.layers import Dense, LSTM, Bidirectional, Embedding, Input, Dropout from keras.models import Model def build_model(vocab_size, ntags, embedding_size=100, n_lstm_units=100, dropout=0.5): sequence_lengths = Input(batch_shape=(None, 1), dtype='int32') word_ids = Input(batch_shape=(None, None), dtype='int32') word_embeddings = Embedding(input_dim=vocab_size, output_dim=embedding_size, mask_zero=True)(word_ids) x = Dropout(dropout)(word_embeddings) x = Bidirectional(LSTM(units=n_lstm_units, return_sequences=True))(x) x = Dropout(dropout)(x) x = Dense(n_lstm_units, activation='tanh')(x) pred = Dense(ntags, activation='softmax')(x) model = Model(inputs=[word_ids, sequence_lengths], outputs=[pred]) return model model = build_model(p.vocab_size(), p.tag_size()) ###Output _____no_output_____ ###Markdown 以上で学習の準備が整いました。実際に学習させてみましょう。最適化アルゴリズムには`Adam`を使用します。 ###Code from keras.optimizers import Adam MAX_EPOCH = 5 model.compile(loss='categorical_crossentropy', optimizer=Adam(), metrics=['acc'], ) model.fit_generator(generator=train_batches, steps_per_epoch=train_steps, validation_data=valid_batches, validation_steps=valid_steps, epochs=MAX_EPOCH) ###Output _____no_output_____
kaggle_notebooks/metrics-calculations-for-tumor-region.ipynb
###Markdown Display SR Tumor Images ###Code ## Display SR Tumors displayImages(sr_tumors) def img_normal(img1, img2): hr_img = img1.astype(np.uint16) sr_img = img2.astype(np.uint16) hr_img = 0.2*hr_img/255. sr_img = 0.1*sr_img/255. return hr_img, sr_img ## Extract Tumor regions with the help of contours sr_tumor_regions = [] sr_contours_regions = [] for img in sr_tumors: ret, thresh = cv2.threshold(img,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU) contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) ## get the biggest contour biggest_cntr = max(contours, key = cv2.contourArea) img_cpy = img.get().copy() ## Apply Polygon Curve approximation to extract out the tumor eps = 0.01 * cv2.arcLength(biggest_cntr, True) approx = cv2.approxPolyDP(biggest_cntr, eps, True) sr_contours_regions.append(cv2.drawContours(img_cpy, [approx],0,(255,0,0), 3)) ## Bounding Rectangle (x,y,w,h) = cv2.boundingRect(biggest_cntr) ## Crop the tumor region sr_tumor_regions.append(img.get()[y:y+h, x:x+w]) ###Output _____no_output_____ ###Markdown Display Contours on Tumor ###Code displayImages(sr_contours_regions) ###Output _____no_output_____ ###Markdown Display Extracted Tumor Regions ###Code displayTumors(sr_tumor_regions) ###Output _____no_output_____ ###Markdown Compute SSIM parameters individually and see the output ###Code espcn_tumor_metric = {} espcn_tumor_metric["tumor"] = {} espcn_tumor_metric["mannwhitneyu"] = {} ###Output _____no_output_____ ###Markdown Defining Constants C1 and C2 and C3 C1 = (K1,L) C2 = (K2,L) C3 = C2/2 L is the dynamic range for pixel values [How to decide Value of L?](https://scikit-image.org/docs/dev/user_guide/data_types.html)**Here K1 and K2 are constant values very very close to 0** ###Code C1 = (0.01 * 65535) ** 2 C2 = (0.03 * 65535) ** 2 C3 = C2/2 def luminance(img1, img2): mu1 = img1.mean() mu2 = img2.mean() mu1_sqr = mu1 ** 2 mu2_sqr = mu2 ** 2 L = (2*mu1*mu2 + C1) / (2*(mu1_sqr + mu2_sqr) + C1) return L def contrast(img1, img2): sigma1 = img1.std() sigma2 = img2.std() sigma1_sqr = sigma1 ** 2 sigma2_sqr = sigma2 ** 2 C = (2*sigma1*sigma2 + C2) / (2*(sigma1_sqr + sigma2_sqr) + C2) return C def structure(img1, img2): C3 = C2/2 sigma1 = img1.std() sigma2 = img2.std() sigma12 = np.cov(img1, img2)[0,1] S = (sigma12 + C3) / (2*sigma1*sigma2 + C3) return S def compute_ssim(sr_img, hr_img): sr_img = sr_img.astype(np.uint16) hr_img = hr_img.astype(np.uint16) img1 = np.array(list(filter(lambda pixel : pixel !=0, sr_img.flatten()))) img2 = np.array(list(filter(lambda pixel : pixel !=0, hr_img.flatten()))) ## Computing Luminance Comparison Function L = luminance(img1, img2) ## Computing Contrast Comparison Function C = contrast(img1, img2) ## Computing Structure Comparison Function S = structure(img1, img2) ## defining alpha, beta, gamma alpha, beta, gamma = 1, 1, 1 ssim = (L ** alpha) * (C ** beta) ** (S ** gamma) return ssim from skimage.metrics import structural_similarity as ssim ## Compute SSIM for single image compute_ssim(sr_tumor_regions[22],hr_tumor_regions[22]) ssim_arr = [] for sr_img, hr_img in zip(sr_tumor_regions,hr_tumor_regions): ssim_arr.append(compute_ssim(sr_img, hr_img)) ## Display Results for starting 10 images print(ssim_arr[:10]) ssim_mean, ssim_std = np.mean(ssim_arr), np.std(ssim_arr) espcn_tumor_metric["tumor"]["ssim"] = ssim_arr print("mean: ", ssim_mean, " std: ", ssim_std) ###Output mean: 0.9291948580719523 std: 0.03647167423360422 ###Markdown Universal Quality Index (UQI) It is special case of SSIM when C1=0 and C2=0**NOTE: It produces unstable results when either (mu1_srq + mu2_srq) or (sigma1_sqr + sigma2_sqr) is close to 0** ###Code # def displayResults(img_arr1, img_arr2,ssim_arr, metric, dim=(1, 3), figsize=(15, 5)): # width=8 # height=8 # rows = 5 # cols = 5 # axes=[] # fig=plt.figure(figsize=(10,10)) # for i in range(rows * cols): # plt.figure(figsize=figsize) # plt.subplot(dim[0], dim[1], 1) # plt.imshow(img_arr1[i].squeeze(), interpolation='nearest', cmap='gray') # plt.title(f"Super Resolution Image Tumor {i+1}") # plt.axis('off') # plt.subplot(dim[0], dim[1], 2) # plt.imshow(img_arr2[i].squeeze(), interpolation='nearest', cmap='gray') # plt.title(f"Origial Image Tumor {i+1}") # plt.axis('off') # plt.subplot(dim[0], dim[1], 3) # plt.text(0.5, 0.5,f"{metric} {ssim_arr[i]}") # plt.axis('off') # fig.tight_layout() # plt.show() ###Output _____no_output_____ ###Markdown Display SSIM Results for starting 10 Images ###Code # displayResults(sr_tumor_regions, hr_tumor_regions, ssim_arr, "SSIM") ###Output _____no_output_____ ###Markdown Mean Absolute Error ###Code def MAE(true_img, pred_img): hr_img, sr_img = img_normal(true_img, pred_img) img1 = np.array(list(filter(lambda pixel : pixel !=0., sr_img.flatten()))) img2 = np.array(list(filter(lambda pixel : pixel !=0., hr_img.flatten()))) metric = (np.sum(np.absolute(np.subtract(img1, img2)))) / len(img1) return metric MAE(hr_tumor_regions[0], sr_tumor_regions[0]) mae_arr=[] for img1, img2 in zip(hr_tumor_regions, sr_tumor_regions): mae_arr.append(MAE(img1, img2)) print(mae_arr[:10]) mae_mean, mae_std = np.mean(mae_arr), np.std(mae_arr) espcn_tumor_metric["tumor"]["mae"] = mae_arr print("mean: ", mae_mean, " std: ", mae_std) ###Output mean: 0.050516821579605256 std: 0.01603081056611103 ###Markdown Mean Percentage Error ###Code def MPE(true_img, pred_img): hr_img, sr_img = img_normal(true_img, pred_img) img1 = np.array(list(filter(lambda pixel : pixel !=0, hr_img.flatten()))) img2 = np.array(list(filter(lambda pixel : pixel !=0., sr_img.flatten()))) metric = np.sum((img1 - img2)) / len(img1) return metric * 100 MPE(hr_tumor_regions[0], sr_tumor_regions[0]) mpe_arr=[] for img1, img2 in zip(hr_tumor_regions, sr_tumor_regions): mpe_arr.append(MPE(img1, img2)) print(mpe_arr[:10]) mpe_mean, mpe_std = np.mean(mpe_arr), np.std(mpe_arr) espcn_tumor_metric["tumor"]["mpe"] = mpe_arr print("mean: ", mpe_mean, " std: ", mpe_std) def hr_normal(img): hr_img = img.astype(np.uint16) hr_img = 0.2*hr_img/255. return hr_img def sr_normal(img): sr_img = img.astype(np.uint16) sr_img = 0.1*sr_img/255. return sr_img n_hr_tumor_regions = [] for img in hr_tumor_regions: n_hr_tumor_regions.append(hr_normal(img)) n_sr_tumor_regions = [] for img in sr_tumor_regions: n_sr_tumor_regions.append(sr_normal(img)) ###Output _____no_output_____ ###Markdown Mean Square Error (MSE) ###Code ans = sewar.full_ref.mse(n_hr_tumor_regions[9], n_sr_tumor_regions[9]) print(ans, type(ans)) mse_arr = [] for i in range(199): mse_arr.append(sewar.full_ref.mse(n_hr_tumor_regions[i], n_sr_tumor_regions[i])) ## Display Results for starting 10 images print(mse_arr[:10]) mse_mean, mse_std = np.mean(mse_arr), np.std(mse_arr) espcn_tumor_metric["tumor"]["mse"] = mse_arr print("mean: ", mse_mean, " std: ", mse_std) ###Output mean: 0.0025827580914429666 std: 0.0015045413630965234 ###Markdown Root Mean Square Error (RMSE) ###Code ans = sewar.full_ref.rmse(n_hr_tumor_regions[9], n_sr_tumor_regions[9]) print(ans, type(ans)) rmse_arr = [] for i in range(199): rmse_arr.append(sewar.full_ref.rmse(n_hr_tumor_regions[i], n_sr_tumor_regions[i])) ## Display Results for starting 10 images print(rmse_arr[:10]) rmse_mean, rmse_std = np.mean(rmse_arr), np.std(rmse_arr) espcn_tumor_metric["tumor"]["rmse"] = rmse_arr print("mean: ", rmse_mean, " std: ", rmse_std) ###Output mean: 0.04860087564495682 std: 0.014856412015907825 ###Markdown PSNR ###Code from skimage.metrics import peak_signal_noise_ratio as psnr ans = psnr(n_hr_tumor_regions[4], n_sr_tumor_regions[4]) print(ans, type(ans)) psnr_arr = [] for i in range(199): psnr_arr.append(psnr(n_hr_tumor_regions[i], n_sr_tumor_regions[i])) ## Display Results for starting 10 images print(psnr_arr[:10]) psnr_mean, psnr_std = np.mean(psnr_arr), np.std(psnr_arr) espcn_tumor_metric["tumor"]["psnr"] = psnr_arr print("mean: ", psnr_mean, " std: ", psnr_std) ###Output mean: 26.69571461551074 std: 2.779466891272773 ###Markdown Multi-Scale Structural Similarity Index (MS-SSIM) ###Code ans = sewar.full_ref.msssim(n_hr_tumor_regions[2].astype(np.uint16), n_sr_tumor_regions[2].astype(np.uint16)).real print(ans, type(ans)) msssim_arr = [] for i in range(199): try: msssim_arr.append(sewar.full_ref.msssim(n_hr_tumor_regions[i].astype(np.uint16), n_sr_tumor_regions[i].astype(np.uint16)).real) except: continue ## Display Results for starting 10 images print(msssim_arr[:10]) msssim_mean, msssim_std = np.mean(msssim_arr), np.std(msssim_arr) espcn_tumor_metric["tumor"]["msssim"] = msssim_arr print("mean: ", msssim_mean, " std: ", msssim_std) ###Output mean: 1.0 std: 0.0 ###Markdown Spatial Corelation Coefficient (SCC) ###Code ans = sewar.full_ref.scc(n_hr_tumor_regions[3], n_sr_tumor_regions[3]) print(ans, type(ans)) scc_arr = [] for i in range(199): scc_arr.append(sewar.full_ref.scc(n_hr_tumor_regions[i], n_sr_tumor_regions[i])) ## Display Results for starting 10 images print(scc_arr[:10]) scc_mean, scc_std = np.mean(scc_arr), np.std(scc_arr) espcn_tumor_metric["tumor"]["scc"] = scc_arr print("mean: ", scc_mean, " std: ", scc_std) ###Output mean: 0.9408737259163489 std: 0.07100322306382177 ###Markdown Pixel Based Visual Information Fidelity (vif-p) ###Code ans = sewar.full_ref.vifp(n_hr_tumor_regions[5], n_sr_tumor_regions[5]) print(ans, type(ans)) vifp_arr = [] for i in range(199): try: vifp_arr.append(sewar.full_ref.vifp(n_hr_tumor_regions[i], n_sr_tumor_regions[i])) except: continue ## Display Results for starting 10 images print(vifp_arr[:10]) vifp_mean, vifp_std = np.mean(vifp_arr), np.std(vifp_arr) espcn_tumor_metric["tumor"]["vifp"] = vifp_arr print("mean: ", vifp_mean, " std: ", vifp_std) # os.mkdir('./tumor') # os.mkdir('./tumor/error_barplot') # os.mkdir('./tumor/scatter') # os.mkdir('./tumor/regression') # ## Define error bar plot function # def error_barplot(error_arr,title='', file_name=''): # # Calculate the average # error_mean = np.mean(error_arr) # # Calculate the standard deviation # error_std = np.std(error_arr) # # Define labels, positions, bar heights and error bar heights # labels = ['For 200 Images'] # x_pos = np.arange(len(labels)) # CTEs = [error_mean] # error = [error_std] # # Build the plot # fig, ax = plt.subplots(figsize=(5,5)) # ax.bar(x_pos, CTEs,yerr=error,align='center',alpha=0.5,ecolor='black',capsize=10) # # ax.set_ylabel('Mean Percentage Error') # ax.set_xticks(x_pos) # ax.set_xticklabels(labels) # ax.set_title(title) # ax.yaxis.grid(True) # plt.savefig(f"./tumor/error_barplot/{file_name}.png") # # Save the figure and show # plt.tight_layout() # # plt.savefig('bar_plot_with_error_bars.png') # plt.show() # error_barplot(mae_arr,title='Mean Absolute Error (MAE)', file_name='mae_barplot') # error_barplot(mpe_arr,title='Mean Percentage Error (MPE)', file_name='mpe_barplot') # error_barplot(mse_arr,title='Mean Square Error (MSE)', file_name='mse_barplot') # error_barplot(rmse_arr,title='Root Mean Square Error (RMSE)', file_name='rmse_barplot') # error_barplot(psnr_arr,title='Peak Signal to Noise Ratio (PSNR)', file_name='psnr_barplot') # error_barplot(ssim_arr,title='Structural Similarity Index (SSIM)', file_name='ssim_barplot') # error_barplot(scc_arr,title='Spatial Corelation Coefficient (SCC)', file_name='scc_barplot') # error_barplot(vifp_arr,title='Pixel Based Visual Information Fidelity (vif-p)', file_name='vifp_barplot') ###Output _____no_output_____ ###Markdown Scatter Plot for MAE, MPE, MSE, RMSE, PSNR, SSIM, MS-SSIM, SCC and VIF-P ###Code # import seaborn as sns # sns.set_theme(style="whitegrid") # sns.set(rc={'figure.figsize':(8,8)}) # metric_dict = {'Images': [i for i in range(1,200)], # 'MAE' : mae_arr, # 'MPE' : mpe_arr, # 'MSE' : mse_arr, # 'RMSE' : rmse_arr, # 'PSNR' : psnr_arr, # 'SSIM' : ssim_arr, # 'SCC' : scc_arr, # 'VIFP' : vifp_arr # } # metric_df = pd.DataFrame(metric_dict) # def getScatterPlot(y_val,df,title='', file_name=''): # sns_plt = sns.scatterplot(x=metric_df.Images, y=y_val, data=df, linewidth=2.5).set_title(title) # sns_fig = sns_plt.get_figure() # sns_fig.savefig(f"./tumor/scatter/{file_name}.png") # def RegPlot(y_val,df,title='', file_name=''): # sns_plt = sns.regplot(x=metric_df.Images, y=y_val, data=df).set_title(title) # sns_fig = sns_plt.get_figure() # sns_fig.savefig(f"./tumor/regression/{file_name}.png") # getScatterPlot(metric_df.MAE, metric_df, 'Mean Absolute Error', 'mae_scatter') # getScatterPlot(metric_df.MPE, metric_df, title='Mean Percentage Error', file_name='mpe_scatter') # getScatterPlot(metric_df.MSE, metric_df, title='Mean Square Error', file_name='mse_scatter') # getScatterPlot(metric_df.RMSE, metric_df, title='Root Mean Square Error', file_name='rmse_scatter') # getScatterPlot(metric_df.PSNR, metric_df, title='Peak Signal to Noise Ratio', file_name='psnr_scatter') # getScatterPlot(metric_df.SSIM, metric_df, title='Structure Similarity Index', file_name='ssim_scatter') # getScatterPlot(metric_df.SCC, metric_df, title='Spatial Corelation Coefficient', file_name='scc_scatter') # getScatterPlot(metric_df.VIFP, metric_df, title='Pixel Based Visual Information Fidelity', file_name='vifp_scatter') ###Output _____no_output_____ ###Markdown Regression Plot for MAE, MPE, MSE, RMSE, PSNR, SSIM, MS-SSIM, SCC and VIF-P ###Code # RegPlot(metric_df.MAE, metric_df, 'Mean Absolute Error', 'mae_scatter') # RegPlot(metric_df.MPE, metric_df, title='Mean Percentage Error', file_name='mpe_scatter') # RegPlot(metric_df.MSE, metric_df, title='Mean Square Error', file_name='mse_scatter') # RegPlot(metric_df.RMSE, metric_df, title='Root Mean Square Error', file_name='rmse_scatter') # RegPlot(metric_df.PSNR, metric_df, title='Peak Signal to Noise Ratio', file_name='psnr_scatter') # RegPlot(metric_df.SSIM, metric_df, title='Structure Similarity Index', file_name='ssim_scatter') # RegPlot(metric_df.SCC, metric_df, title='Spatial Corelation Coefficient', file_name='scc_scatter') # RegPlot(metric_df.VIFP, metric_df, title='Pixel Based Visual Information Fidelity', file_name='vifp_scatter') import pickle with open('./espcn_tumor_pickle.pkl', 'wb') as f: pickle.dump(espcn_tumor_metric, f) %%! zip espcn_tumor_metric.zip ./espcn_tumor_pickle.pkl ###Output _____no_output_____
notebooks/experiments_lstm/medium_article.ipynb
###Markdown > Data downloadingData link https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/6C3JR1 Data descriptionHere we consoder dataset of "Additional Tennessee Eastman Process Simulation Data for Anomaly Detection Evaluation"This dataverse contains the data referenced in Rieth et al. (2017). Issues and Advances in Anomaly Detection Evaluation for Joint Human-Automated Systems. To be presented at Applied Human Factors and Ergonomics 2017. Columns description* **faultNumber** ranges from 1 to 20 in the “Faulty” datasets and represents the fault type in the TEP. The “FaultFree” datasets only contain fault 0 (i.e. normal operating conditions).* **simulationRun** ranges from 1 to 500 and represents a different random number generator state from which a full TEP dataset was generated (Note: the actual seeds used to generate training and testing datasets were non-overlapping).* **sample** ranges either from 1 to 500 (“Training” datasets) or 1 to 960 (“Testing” datasets). The TEP variables (columns 4 to 55) were sampled every 3 minutes for a total duration of 25 hours and 48 hours respectively. Note that the faults were introduced 1 and 8 hours into the Faulty Training and Faulty Testing datasets, respectively.* **columns 4-55** contain the process variables; the column names retain the original variable names. ###Code # ! unzip dataverse_files.zip -d dataverse_files #reading train data in .R format a1 = py.read_r("dataverse_files/TEP_FaultFree_Training.RData") a2 = py.read_r("dataverse_files/TEP_Faulty_Training.RData") #reading test data in .R format a3 = py.read_r("dataverse_files/TEP_FaultFree_Testing.RData") a4 = py.read_r("dataverse_files/TEP_Faulty_Testing.RData") print("Objects that are present in a1 :", a1.keys()) print("Objects that are present in a2 :", a2.keys()) print("Objects that are present in a3 :", a3.keys()) print("Objects that are present in a4 :", a4.keys()) # concatinating the train and the test dataset # train dataframe raw_train = pd.concat([a1['fault_free_training'], a2['faulty_training']]) # test dataframe raw_test = pd.concat([a3['fault_free_testing'], a4['faulty_testing']]) raw_train.groupby(['faultNumber','simulationRun']).size() raw_test.groupby(['faultNumber','simulationRun']).size() ###Output _____no_output_____ ###Markdown > EDA ###Code for col in raw_train.columns[3:]: plt.figure(figsize=(10,5)) plt.hist(raw_train[col]) plt.xlabel(col) plt.ylabel('counts') plt.show() ###Output _____no_output_____ ###Markdown > SamplingDescribed in "Data Preparation for Deep Learning Models" in [that article](https://medium.com/@mrunal68/tennessee-eastman-process-simulation-data-for-anomaly-detection-evaluation-d719dc133a7f) ###Code %%time # Program to construct the sample train data frame = [] for i in set(raw_train['faultNumber']): b_i = pd.DataFrame() if i == 0: b_i = raw_train[raw_train['faultNumber'] == i][0:20000] frame.append(b_i) else: fr = [] b = raw_train[raw_train['faultNumber'] == i] for x in range(1,25): b_x = b[b['simulationRun'] == x][20:500] fr.append(b_x) b_i = pd.concat(fr) frame.append(b_i) sampled_train = pd.concat(frame) sampled_train.groupby('faultNumber')['simulationRun'].count() / raw_train.groupby('faultNumber')['simulationRun'].count() %%time # Program to construct the sample CV Data frame = [] for i in set(raw_train['faultNumber']): b_i = pd.DataFrame() if i == 0: b_i = raw_train[raw_train['faultNumber'] == i][20000:30000] frame.append(b_i) else: fr = [] b = raw_train[raw_train['faultNumber'] == i] for x in range(26,35): b_x = b[b['simulationRun'] == x][20:500] fr.append(b_x) b_i = pd.concat(fr) frame.append(b_i) sampled_cv = pd.concat(frame) %%time # Program to construct Sampled raw_test data frame = [] for i in set(raw_test['faultNumber']): b_i = pd.DataFrame() if i == 0: b_i = raw_test[raw_test['faultNumber'] == i][0:2000] frame.append(b_i) else: fr = [] b = raw_test[raw_test['faultNumber'] == i] for x in range(1,11): b_x = b[b['simulationRun'] == x][160:660] fr.append(b_x) b_i = pd.concat(fr) frame.append(b_i) sampled_test = pd.concat(frame) len(sampled_train), len(sampled_cv), len(sampled_test) sampled_data_path = "sampled_data/" sampled_train.to_csv(sampled_data_path + "train.csv") sampled_test.to_csv(sampled_data_path + "test.csv") sampled_cv.to_csv(sampled_data_path + "cv.csv") ###Output _____no_output_____ ###Markdown > Preparing data ###Code #Sorting the Datasets wrt to the simulation runs sampled_train.sort_values(['simulationRun', 'faultNumber'], inplace=True) sampled_test.sort_values(['simulationRun', 'faultNumber'], inplace=True) sampled_cv.sort_values(['simulationRun', 'faultNumber'], inplace=True) # Removing faults 3, 9 and 15 tr = sampled_train.drop(sampled_train[(sampled_train['faultNumber'] == 3) |\ (sampled_train['faultNumber'] == 9) |\ (sampled_train['faultNumber'] == 15)].index) # Removing faults 3, 9 and 15 ts = sampled_test.drop(sampled_test[(sampled_test['faultNumber'] == 3) |\ (sampled_test['faultNumber'] == 9) |\ (sampled_test['faultNumber'] == 15)].index) # Removing faults 3, 9 and 15 cv = sampled_cv.drop(sampled_cv[(sampled_cv['faultNumber'] == 3) |\ (sampled_cv['faultNumber'] == 9) |\ (sampled_cv['faultNumber'] == 15)].index) #converting the class labels to categorical values and removing unnecessary features from train, test and cv data. y_train = to_categorical(tr['faultNumber'], num_classes=21) y_test = to_categorical(ts['faultNumber'], num_classes=21) y_cv = to_categorical(cv['faultNumber'], num_classes=21) tr = tr.drop(['faultNumber', 'simulationRun', 'sample'], axis=1) ts = ts.drop(['faultNumber', 'simulationRun', 'sample'], axis=1) cv = cv.drop(['faultNumber', 'simulationRun', 'sample'], axis=1) # Resizing the train, test and cv data. x_train = np.array(tr)[:, :, np.newaxis] x_test = np.array(ts)[:, :, np.newaxis] x_cv = np.array(cv)[:, :, np.newaxis] tr.shape, x_train.shape tr ###Output _____no_output_____ ###Markdown > Modeling: LSTM-1 Models configuration ###Code model_1 = Sequential() model_1.add(LSTM(256, input_shape=(52, 1), return_sequences=True)) model_1.add(LSTM(128, return_sequences=False)) model_1.add(Dense(300)) model_1.add(Dropout(0.5)) model_1.add(Dense(128)) model_1.add(Dense(21, activation='softmax')) model_1.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) print(model_1.summary()) ###Output _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= lstm_1 (LSTM) (None, 52, 256) 264192 _________________________________________________________________ lstm_2 (LSTM) (None, 128) 197120 _________________________________________________________________ dense_1 (Dense) (None, 300) 38700 _________________________________________________________________ dropout_1 (Dropout) (None, 300) 0 _________________________________________________________________ dense_2 (Dense) (None, 128) 38528 _________________________________________________________________ dense_3 (Dense) (None, 21) 2709 ================================================================= Total params: 541,249 Trainable params: 541,249 Non-trainable params: 0 _________________________________________________________________ None ###Markdown Training ###Code n_epochs = 25 # n_epochs = 50 history_1 = model_1.fit(x_train, y_train, validation_data=(x_cv, y_cv), batch_size=256, epochs=n_epochs, verbose=2) ###Output Train on 230080 samples, validate on 93440 samples Epoch 1/25 - 777s - loss: 1.7492 - acc: 0.4454 - val_loss: 1.2626 - val_acc: 0.6079 Epoch 2/25 - 683s - loss: 1.2116 - acc: 0.6009 - val_loss: 1.1726 - val_acc: 0.6395 Epoch 3/25 - 671s - loss: 1.1393 - acc: 0.6237 - val_loss: 1.1172 - val_acc: 0.6560 Epoch 4/25 - 800s - loss: 1.1003 - acc: 0.6360 - val_loss: 1.0926 - val_acc: 0.6623 Epoch 5/25 - 683s - loss: 1.0817 - acc: 0.6416 - val_loss: 1.0666 - val_acc: 0.6674 Epoch 6/25 - 657s - loss: 1.0652 - acc: 0.6469 - val_loss: 1.0530 - val_acc: 0.6737 Epoch 7/25 - 646s - loss: 1.0457 - acc: 0.6540 - val_loss: 1.0447 - val_acc: 0.6799 Epoch 8/25 - 638s - loss: 1.0177 - acc: 0.6623 - val_loss: 1.0391 - val_acc: 0.6787 Epoch 9/25 - 640s - loss: 0.9945 - acc: 0.6698 - val_loss: 1.0131 - val_acc: 0.6859 Epoch 10/25 - 639s - loss: 0.9769 - acc: 0.6791 - val_loss: 1.0727 - val_acc: 0.6706 Epoch 11/25 - 639s - loss: 0.9706 - acc: 0.6808 - val_loss: 1.0361 - val_acc: 0.6753 Epoch 12/25 - 641s - loss: 0.9408 - acc: 0.6918 - val_loss: 1.2099 - val_acc: 0.6436 Epoch 13/25 - 640s - loss: 0.9568 - acc: 0.6886 - val_loss: 0.9643 - val_acc: 0.7094 Epoch 14/25 - 640s - loss: 0.8883 - acc: 0.7118 - val_loss: 0.9733 - val_acc: 0.7068 Epoch 15/25 - 641s - loss: 0.8728 - acc: 0.7173 - val_loss: 0.8782 - val_acc: 0.7371 Epoch 16/25 - 640s - loss: 0.8011 - acc: 0.7399 - val_loss: 0.7926 - val_acc: 0.7631 Epoch 17/25 - 638s - loss: 0.8472 - acc: 0.7266 - val_loss: 0.8087 - val_acc: 0.7601 Epoch 18/25 - 641s - loss: 0.7525 - acc: 0.7544 - val_loss: 0.8741 - val_acc: 0.7433 Epoch 19/25 - 640s - loss: 0.7341 - acc: 0.7605 - val_loss: 0.7692 - val_acc: 0.7745 Epoch 20/25 - 640s - loss: 0.7213 - acc: 0.7638 - val_loss: 0.8173 - val_acc: 0.7568 Epoch 21/25 - 642s - loss: 0.8166 - acc: 0.7346 - val_loss: 0.8563 - val_acc: 0.7450 Epoch 22/25 - 641s - loss: 0.8237 - acc: 0.7337 - val_loss: 0.7729 - val_acc: 0.7708 Epoch 23/25 - 643s - loss: 0.7153 - acc: 0.7650 - val_loss: 0.7883 - val_acc: 0.7613 Epoch 24/25 - 642s - loss: 0.6942 - acc: 0.7708 - val_loss: 0.9523 - val_acc: 0.7285 Epoch 25/25 - 643s - loss: 0.7074 - acc: 0.7683 - val_loss: 0.7577 - val_acc: 0.7745 ###Markdown Metrics ###Code history_1.history def plots_and_metrics(h, m): epochs_arr = list(range(1, len(h.history['acc']) + 1)) # Plot training & validation accuracy values plt.figure(figsize=(20,5)) plt.plot(epochs_arr, h.history['acc']) plt.plot(epochs_arr, h.history['val_acc']) plt.title('Model accuracy') plt.ylabel('Accuracy') plt.xlabel('Epoch') plt.xticks(epochs_arr) plt.legend(['Train', 'Test'], loc='upper left') plt.show() # Plot training & validation loss values plt.figure(figsize=(20,5)) plt.plot(epochs_arr, h.history['loss']) plt.plot(epochs_arr, h.history['val_loss']) plt.title('Model loss') plt.ylabel('Loss') plt.xlabel('Epoch') plt.xticks(epochs_arr) plt.legend(['Train', 'Test'], loc='upper left') plt.show() score, accuracy = m.evaluate(x_test, y_test, verbose=0) print('Test accuracy:', accuracy) print("Test loss:", score) %%time plots_and_metrics(history_1, model_1) ###Output _____no_output_____ ###Markdown > Modeling: LSTM-2 ###Code model_2 = Sequential() model_2.add(LSTM(128, input_shape=(52, 1), return_sequences=False)) model_2.add(Dense(300)) model_2.add(Dropout(0.5)) model_2.add(Dense(128)) model_2.add(Dense(21, activation='softmax')) model_2.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) print(model_2.summary()) ###Output _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= lstm_4 (LSTM) (None, 128) 66560 _________________________________________________________________ dense_7 (Dense) (None, 300) 38700 _________________________________________________________________ dropout_3 (Dropout) (None, 300) 0 _________________________________________________________________ dense_8 (Dense) (None, 128) 38528 _________________________________________________________________ dense_9 (Dense) (None, 21) 2709 ================================================================= Total params: 146,497 Trainable params: 146,497 Non-trainable params: 0 _________________________________________________________________ None ###Markdown Training ###Code n_epochs = 3 n_epochs = 50 history_2 = model_2.fit(x_train, y_train, validation_data = (x_cv, y_cv), batch_size=256, epochs=n_epochs, verbose=2) ###Output Train on 230080 samples, validate on 93440 samples Epoch 1/50 - 129s - loss: 1.8608 - acc: 0.4174 - val_loss: 1.5097 - val_acc: 0.5491 Epoch 2/50 - 126s - loss: 1.3767 - acc: 0.5593 - val_loss: 1.3313 - val_acc: 0.5970 Epoch 3/50 - 127s - loss: 1.2526 - acc: 0.5954 - val_loss: 1.4297 - val_acc: 0.5565 Epoch 4/50 - 127s - loss: 1.1557 - acc: 0.6317 - val_loss: 1.1099 - val_acc: 0.6701 Epoch 5/50 - 127s - loss: 1.0390 - acc: 0.6703 - val_loss: 1.0263 - val_acc: 0.7048 Epoch 6/50 - 128s - loss: 0.9635 - acc: 0.6920 - val_loss: 0.9132 - val_acc: 0.7278 Epoch 7/50 - 128s - loss: 0.9214 - acc: 0.7043 - val_loss: 0.9526 - val_acc: 0.7220 Epoch 8/50 - 129s - loss: 0.8746 - acc: 0.7172 - val_loss: 0.8725 - val_acc: 0.7428 Epoch 9/50 - 130s - loss: 0.8656 - acc: 0.7198 - val_loss: 1.0994 - val_acc: 0.6725 Epoch 10/50 - 131s - loss: 0.8445 - acc: 0.7251 - val_loss: 0.8970 - val_acc: 0.7390 Epoch 11/50 - 132s - loss: 0.8258 - acc: 0.7308 - val_loss: 0.8235 - val_acc: 0.7504 Epoch 12/50 - 132s - loss: 0.8110 - acc: 0.7359 - val_loss: 0.8687 - val_acc: 0.7461 Epoch 13/50 - 132s - loss: 0.7975 - acc: 0.7406 - val_loss: 0.8057 - val_acc: 0.7644 Epoch 14/50 - 132s - loss: 0.7887 - acc: 0.7427 - val_loss: 0.8411 - val_acc: 0.7499 Epoch 15/50 - 132s - loss: 0.7761 - acc: 0.7468 - val_loss: 0.7749 - val_acc: 0.7683 Epoch 16/50 - 132s - loss: 0.7698 - acc: 0.7483 - val_loss: 0.8044 - val_acc: 0.7595 Epoch 17/50 - 134s - loss: 0.7659 - acc: 0.7502 - val_loss: 0.7777 - val_acc: 0.7649 Epoch 18/50 - 131s - loss: 0.7574 - acc: 0.7526 - val_loss: 0.8002 - val_acc: 0.7634 Epoch 19/50 - 131s - loss: 0.7521 - acc: 0.7540 - val_loss: 0.7716 - val_acc: 0.7693 Epoch 20/50 - 131s - loss: 0.7443 - acc: 0.7556 - val_loss: 0.7844 - val_acc: 0.7667 Epoch 21/50 - 131s - loss: 0.7433 - acc: 0.7568 - val_loss: 0.7927 - val_acc: 0.7668 Epoch 22/50 - 131s - loss: 0.7391 - acc: 0.7586 - val_loss: 0.7870 - val_acc: 0.7696 Epoch 23/50 - 131s - loss: 0.7372 - acc: 0.7584 - val_loss: 0.7599 - val_acc: 0.7721 Epoch 24/50 - 131s - loss: 0.7334 - acc: 0.7596 - val_loss: 0.7727 - val_acc: 0.7679 Epoch 25/50 - 131s - loss: 0.7296 - acc: 0.7614 - val_loss: 0.7580 - val_acc: 0.7703 Epoch 26/50 - 132s - loss: 0.7268 - acc: 0.7617 - val_loss: 0.7540 - val_acc: 0.7768 Epoch 27/50 - 131s - loss: 0.7252 - acc: 0.7627 - val_loss: 0.7368 - val_acc: 0.7807 Epoch 28/50 - 131s - loss: 0.7182 - acc: 0.7642 - val_loss: 0.7246 - val_acc: 0.7825 Epoch 29/50 - 131s - loss: 0.7208 - acc: 0.7642 - val_loss: 0.7422 - val_acc: 0.7816 Epoch 30/50 - 131s - loss: 0.7147 - acc: 0.7656 - val_loss: 0.7827 - val_acc: 0.7635 Epoch 31/50 - 132s - loss: 0.7100 - acc: 0.7673 - val_loss: 0.7574 - val_acc: 0.7760 Epoch 32/50 - 131s - loss: 0.7097 - acc: 0.7672 - val_loss: 0.7480 - val_acc: 0.7775 Epoch 33/50 - 132s - loss: 0.7064 - acc: 0.7690 - val_loss: 0.7730 - val_acc: 0.7684 Epoch 34/50 - 131s - loss: 0.7036 - acc: 0.7688 - val_loss: 0.7184 - val_acc: 0.7843 Epoch 35/50 - 132s - loss: 0.7002 - acc: 0.7697 - val_loss: 0.7248 - val_acc: 0.7835 Epoch 36/50 - 131s - loss: 0.6953 - acc: 0.7714 - val_loss: 0.7293 - val_acc: 0.7833 Epoch 37/50 - 131s - loss: 0.6928 - acc: 0.7717 - val_loss: 0.7407 - val_acc: 0.7766 Epoch 38/50 - 131s - loss: 0.6931 - acc: 0.7723 - val_loss: 0.7530 - val_acc: 0.7761 Epoch 39/50 - 131s - loss: 0.6912 - acc: 0.7729 - val_loss: 0.7341 - val_acc: 0.7833 Epoch 40/50 - 131s - loss: 0.6904 - acc: 0.7727 - val_loss: 0.7300 - val_acc: 0.7818 Epoch 41/50 - 131s - loss: 0.8237 - acc: 0.7343 - val_loss: 0.7859 - val_acc: 0.7630 Epoch 42/50 - 131s - loss: 0.6931 - acc: 0.7722 - val_loss: 0.7160 - val_acc: 0.7858 Epoch 43/50 - 131s - loss: 0.6858 - acc: 0.7746 - val_loss: 0.7256 - val_acc: 0.7850 Epoch 44/50 - 132s - loss: 0.6824 - acc: 0.7749 - val_loss: 0.7172 - val_acc: 0.7843 Epoch 45/50 - 133s - loss: 0.6818 - acc: 0.7754 - val_loss: 0.7533 - val_acc: 0.7741 Epoch 46/50 - 131s - loss: 0.6715 - acc: 0.7796 - val_loss: 0.6802 - val_acc: 0.8010 Epoch 47/50 - 132s - loss: 0.6477 - acc: 0.7923 - val_loss: 0.7166 - val_acc: 0.7896 Epoch 48/50 - 131s - loss: 0.6218 - acc: 0.8012 - val_loss: 0.6687 - val_acc: 0.8050 Epoch 49/50 - 131s - loss: 0.6082 - acc: 0.8057 - val_loss: 0.6411 - val_acc: 0.8112 Epoch 50/50 - 131s - loss: 0.5981 - acc: 0.8093 - val_loss: 0.6090 - val_acc: 0.8228 ###Markdown Metrics ###Code %%time plots_and_metrics(history_2, model_2) ###Output _____no_output_____
Chapter 2 Basics/Chapter_2_Section_5_Using_Variables.ipynb
###Markdown Ch `02`: Concept `05` Using variables Here we go, here we go, here we go! Moving on from those simple examples, let's get a better understanding of variables. Start with a session: ###Code import tensorflow as tf sess = tf.InteractiveSession() ###Output _____no_output_____ ###Markdown Below is a series of numbers. Don't worry what they mean. Just for fun, let's think of them as neural activations. ###Code raw_data = [1., 2., 8., -1., 0., 5.5, 6., 13] ###Output _____no_output_____ ###Markdown Create a boolean variable called `spike` to detect a sudden increase in the values.All variables must be initialized. Go ahead and initialize the variable by calling `run()` on its `initializer`: ###Code spike = tf.Variable(False) spike.initializer.run() ###Output _____no_output_____ ###Markdown Loop through the data and update the spike variable when there is a significant increase: ###Code for i in range(1, len(raw_data)): if raw_data[i] - raw_data[i-1] > 5: tf.assign(spike, True).eval() else: tf.assign(spike, False).eval() print("Spike", spike.eval()) ###Output Spike False Spike True Spike False Spike False Spike True Spike False Spike True ###Markdown You forgot to close the session! Here, let me do it: ###Code sess.close() ###Output _____no_output_____
AdventOfCode 2020/AOC.7-2.ipynb
###Markdown Common ###Code import collections import math import re from utils import * from personal import SESSION aoc = AOC(session=SESSION) #aoc.verify_session() data = aoc.get_today_file().analyse().head().data ###Output Local file found. 4% of data are digits. Analyse as text. 0 empty line(s) found. Analyse as monline data. ===== HEAD (5) ===== shiny aqua bags contain 1 dark white bag. muted blue bags contain 1 vibrant lavender bag, 4 dotted silver bags, 2 dim indigo bags. drab gray bags contain 5 mirrored white bags, 1 light green bag, 5 shiny lavender bags, 5 faded aqua bags. muted indigo bags contain 4 muted chartreuse bags, 2 dotted teal bags. drab white bags contain 2 dull fuchsia bags, 1 vibrant bronze bag. ==================== ###Markdown Treatment ###Code contents = collections.defaultdict(dict) contentsin = collections.defaultdict(set) for el in data: main, content = el.split(' bags contain ') for amount, name in re.findall('(\d) (.+?) bags?[.,]', content): contents[main][name] = int(amount) contentsin[name].add(main) dic_head(contents) print('--') dic_head(contentsin) ###Output shiny aqua {'dark white': 1} muted blue {'vibrant lavender': 1, 'dotted silver': 4, 'dim indigo': 2} drab gray {'mirrored white': 5, 'light green': 1, 'shiny lavender': 5, 'faded aqua': 5} muted indigo {'muted chartreuse': 4, 'dotted teal': 2} drab white {'dull fuchsia': 2, 'vibrant bronze': 1} -- dark white {'light orange', 'shiny aqua', 'clear teal', 'drab cyan', 'faded turquoise', 'striped cyan', 'shiny gold', 'bright cyan'} vibrant lavender {'pale silver', 'muted blue'} dotted silver {'clear red', 'muted yellow', 'posh white', 'dark gold', 'muted blue'} dim indigo {'dim bronze', 'mirrored gray', 'striped purple', 'muted blue'} mirrored white {'mirrored gold', 'drab gray', 'posh yellow', 'dotted white', 'faded teal'} ###Markdown Part 1 ###Code res = set() def p1(x, i=0): if i > 10: return for k in contentsin[x]: fct(k, i+1) res.add(k) p1('shiny gold') len(res) ###Output _____no_output_____ ###Markdown Part 2 ###Code tot = 0 def p2(x, amount=1): global tot for k, v in contents[x].items(): tot += v*amount p2(k, v*amount) p2('shiny gold') print(tot) ###Output 14177
tooling/DataVisualization.ipynb
###Markdown JSS '19 - Gkortzis et al. - Data AnalysisThis notebook performs the following analyses reported in the study:1. [Prepare dataset](prepare)2. [RQ1](rq1) 1. [Descriptive statistics](rq1-descriptive) 2. [Descriptive statistics (sums & median)](rq1-sums) 4. [Regression Analysis (Prepare dataset)](rq1-regression) 5. [Dataset Visualization](rq1-visual) 6. [Multivariate Regression Analysis](rq1-regression-multivariate) 7. [rq1-boxplots](rq1-boxplots)3. [RQ2](rq2) 1. [Prepare Dataset](rq2-pd) 2. [Scatterplots](rq2-scatter) 3. [Boxplots](rq2-boxplots2) 4. [Regression Analysis [vuln-density, reuse-ratio]](rq2-regression) 5. [Regression Analysis [native-vuln-density, reuse-ratio]](rq2-regression2) 6. [Multivariate Regression Analysis [vuln-density, native-sloc, reuse-sloc]](rq2-regression3) 7. [Multivariate Regression Analysis [vuln-density, native-vuln-density, reuse-vuln-density]](rq2-regression4)4. [RQ3](rq3) 1. [Dataset Description](rq3-dd) 2. [Regression Analysis [cves-dependencies]](rq3-regression) 3. [RQ3 - Regression Analysis [v - dependencies]](rq3-potential) 3. [Regression Analysis [cves - module_size]](rq3-regression2) 4. [Regression Analysis [cve-density - dependencies]](rq3-regression3) 3. [Count Vulnerable Projects](rq3-count)5. [RQ4](rq4) 1. [Prepare Dataset](rq4-pd) 2. [Count Vulnerabilities](rq4-count) 3. [Regression Analysis](rq4-regression)6. [[Discussion] How are potential vulnerabilities related to disclosed ones?](discussion)7. [JSS Revision 1 - New Analysis](jss-rev1) Prepare dataset ###Code import csv import logging import numpy as np import pandas as pd from scipy import stats logging.basicConfig(level=logging.INFO) def map_deps_to_projects(dependencies_usages): logging.info("Creating projects dependencies' list..") projects_dependencies = {} with open(dependencies_usages, 'r') as csv_file: for line in csv_file: fields = line.replace('\n','').split(';') # logging.info(fields) dependency = fields[0] for project in fields[2:]: if project not in projects_dependencies: projects_dependencies[project] = [dependency] else: projects_dependencies[project].append(dependency) return projects_dependencies def count_vulnerabilities(projects_dependencies, owasp_vulnerabilities): logging.info("Creating projects cves list..") dependencies_vulnerabilities = {} with open(owasp_vulnerabilities, 'r') as csv_file: for line in csv_file: fields = line.replace('\n','').split(';') # logging.info(fields) dependency = fields[0] number_of_cves = int(fields[2]) if number_of_cves > 0: cves = fields[4].split(',') dependencies_vulnerabilities[dependency] = set(cves) projects_vulnerabilities = {} for project in projects_dependencies: cves = set() for dependency in projects_dependencies[project]: if dependency in dependencies_vulnerabilities: dependency_cves = dependencies_vulnerabilities[dependency] cves.update(dependency_cves) else: # logging.warning("dependency {} not found".format(dependency)) pass projects_vulnerabilities[project] = len(cves) # logging.info("{}-->{}".format(project,projects_vulnerabilities[project])) return projects_vulnerabilities def load_dataset(csv_file): return pd.read_csv(csv_file) def prepare_dataset(df): print("Creating main dataframe. Size {}".format(len(df))) # Calculate derived variables df['#uv_p1'] = df['#uv_p1_r1'] + df['#uv_p1_r2'] + df['#uv_p1_r3'] + df['#uv_p1_r4'] df['#dv_p1'] = df['#dv_p1_r1'] + df['#dv_p1_r2'] + df['#dv_p1_r3'] + df['#dv_p1_r4'] df['#dev_p1'] = df['#dev_p1_r1'] + df['#dev_p1_r2'] + df['#dev_p1_r3'] + df['#dev_p1_r4'] df['#dnev_p1'] = df['#dnev_p1_r1'] + df['#dnev_p1_r2'] + df['#dnev_p1_r3'] + df['#dnev_p1_r4'] df['#dwv_p1'] = df['#dwv_p1_r1'] + df['#dwv_p1_r2'] + df['#dwv_p1_r3'] + df['#dwv_p1_r4'] df['#dnwv_p1'] = df['#dnwv_p1_r1'] + df['#dnwv_p1_r2'] + df['#dnwv_p1_r3'] + df['#dnwv_p1_r4'] df['#uv_p2'] = df['#uv_p2_r1'] + df['#uv_p2_r2'] + df['#uv_p2_r3'] + df['#uv_p2_r4'] df['#dv_p2'] = df['#dv_p2_r1'] + df['#dv_p2_r2'] + df['#dv_p2_r3'] + df['#dv_p2_r4'] df['#dev_p2'] = df['#dev_p2_r1'] + df['#dev_p2_r2'] + df['#dev_p2_r3'] + df['#dev_p2_r4'] df['#dnev_p2'] = df['#dnev_p2_r1'] + df['#dnev_p2_r2'] + df['#dnev_p2_r3'] + df['#dnev_p2_r4'] df['#dwv_p2'] = df['#dwv_p2_r1'] + df['#dwv_p2_r2'] + df['#dwv_p2_r3'] + df['#dwv_p2_r4'] df['#dnwv_p2'] = df['#dnwv_p2_r1'] + df['#dnwv_p2_r2'] + df['#dnwv_p2_r3'] + df['#dnwv_p2_r4'] df['#uv'] = df['#uv_p1'] + df['#uv_p2'] df['#dv'] = df['#dv_p1'] + df['#dv_p2'] df['#dev'] = df['#dev_p1'] + df['#dev_p2'] df['#dnev'] = df['#dnev_p1'] + df['#dnev_p2'] df['#dwv'] = df['#dwv_p1'] + df['#dwv_p2'] df['#dnwv'] = df['#dnwv_p1'] + df['#dnwv_p2'] df['#uv_sloc'] = df['#uv'] / (df['#d_sloc']+df['#u_sloc']) df['#dv_sloc'] = df['#dv'] / (df['#d_sloc']+df['#u_sloc']) # df['#dev_sloc'] = df['#dev'] / (df['#d_sloc']+df['#u_sloc']) # df['#dnev_sloc'] = df['#dnev'] / (df['#d_sloc']+df['#u_sloc']) # df['#dwv_sloc'] = df['#dwv'] / (df['#d_sloc']+df['#u_sloc']) # df['#dnwv_sloc'] = df['#dnw'] / (df['#d_sloc']+df['#u_sloc']) df['classes'] = df['#u_classes'] + df['#d_classes'] df['sloc'] = df['#u_sloc'] + df['#d_sloc'] df['v'] = df['#uv'] + df['#dv'] # Remove project with no external classes or very small native code base df = df[df['#d_classes'] > 0] df = df[df['#u_sloc'] >= 1000] print("Initial filtering reduced size to {}".format(len(df))) return df def enhance_dataset(df, projects_dependencies, projects_vulnerabilities): logging.info("Enhancing dataframe with dependencies and cves..") df["#dependencies"] = np.nan df["#cves"] = np.nan for index, row in df.iterrows(): project = row['project'] number_of_dependencies = len(projects_dependencies[project]) number_of_cves = projects_vulnerabilities[project] df.at[index,'#dependencies'] = int(number_of_dependencies) df.at[index,'#cves'] = int(number_of_cves) return df def detect_enterprise_repos(df, enterprise_repos): logging.info("Detecting enterprise repos") df["is_enterprise"] = np.nan df["contributors"] = np.nan # read the enterprise repos with open(enterprise_repos) as f: lines = f.read().splitlines() repositories_info = {} for repository in lines[1:]: # skip csv's headings fields = repository.split(',') repositories_info[fields[0]] = fields[1:] for index, row in df.iterrows(): project = row['project'] if not project: print("Project {} not found".format(project)) continue if project in repositories_info: is_of_enterprise_org = repositories_info[project][3] contributors = repositories_info[project][4] else: print("{} :: does not exist in the group ids list".format(project)) is_of_enterprise_org = 0 contributors = 1 df.at[index,'is_enterprise'] = int(is_of_enterprise_org) df.at[index,'contributors'] = int(contributors) return df def filter_dataset(df, projects_as_dependencies): logging.info("Filtering dataset") project_list = [] with open(projects_as_dependencies, 'r') as csv_file: for line in csv_file: project = line.rstrip('\n') project_list.append(project) df = df[df.project != project] print("Selected data set after filtering :: {}".format(len(df))) return df owasp_vulnerabilities = '../owasp_vulnerabilities_enhanced.csv' dependencies_usages = '../depependencies_usages.csv' projects_dataset = '../datasets/dataset_complete.csv' study_vars = ['classes','#u_classes','#d_classes', 'sloc','#u_sloc','#d_sloc','#de_sloc','#dne_sloc','#dw_sloc','#dnw_sloc', 'v', '#uv', '#dv', '#dev', '#dnev', '#dwv', '#dnwv', '#uv_classes', '#dv_classes', '#uv_sloc', '#dv_sloc', '#dependencies', '#cves'] projects_dependencies = map_deps_to_projects(dependencies_usages) projects_vulnerabilities = count_vulnerabilities(projects_dependencies, owasp_vulnerabilities) projects_as_dependencies = '../projects_as_dependencies.csv' enterprise_repos = "../projects_groupids_enterprise_info.csv" df = load_dataset(projects_dataset) df = prepare_dataset(df) df = enhance_dataset(df, projects_dependencies, projects_vulnerabilities) df = detect_enterprise_repos(df, enterprise_repos) df = filter_dataset(df, projects_as_dependencies) ###Output _____no_output_____ ###Markdown RQ1__RQ1: "What size and reuse factors are related with potential security vulnerabilities?"__. [Back to table of contents](index) RQ1 - Descriptive statisticsThis is the table with the descriptive statistics for the whole dataset. [Back to table of contents](index) ###Code VLn = sum(df['#uv_classes_sloc']) VLr = sum(df['#dv_classes_sloc']) # Add reuse ratio df_filtered = df[study_vars] pd.set_option('float_format', '{:f}'.format) df_filtered.describe() # df_filtered.describe().to_csv("../datasets/temp_descriptive_stats.csv") # uncomment if you want to export the descriptive stats into a csv file ###Output _____no_output_____ ###Markdown RQ1 - Descriptive statistics (Sums & median)// TODO description [Back to table of contents](index) ###Code C = sum(df['classes']) Cn = sum(df['#u_classes']) Cr = sum(df['#d_classes']) L = sum(df['sloc']) Ln = sum(df['#u_sloc']) Lr = sum(df['#d_sloc']) Lre = sum(df['#de_sloc']) Lrne = sum(df['#dne_sloc']) Lrw = sum(df['#dw_sloc']) Lrnw = sum(df['#dnw_sloc']) V = sum(df['v']) Vn = sum(df['#uv']) Vr = sum(df['#dv']) Vre = sum(df['#dev']) Vrne = sum(df['#dnev']) Vrw = sum(df['#dwv']) Vrnw = sum(df['#dnwv']) VCn = sum(df['#uv_classes']) VCr = sum(df['#dv_classes']) D = sum(df['#dependencies']) print('''----- Descriptive statistics [sum] ----- {:30}{:=10d}\n{:30}{:=10d}\n{:30}{:=10d} {:30}{:=10d}\n{:30}{:=10d}\n{:30}{:=10d} {:30}{:=10d}\n{:30}{:=10d} {:30}{:=10d}\n{:30}{:=10d} {:30}{:=10d}\n{:30}{:=10d}\n{:30}{:=10d} {:30}{:=10d}\n{:30}{:=10d} {:30}{:=10d}\n{:30}{:=10d} {:30}{:=10d}\n{:30}{:=10d} {:30}{:=10d}\n{:30}{:=10d} {:30}{:=10.0f} '''.format('Classes =',C,'Native classes =',Cn,'Reused classes =',Cr, 'Sloc =', L,'Native sloc =',Ln,'Reused sloc =', Lr, 'Reused enterprise sloc =',Lre,'Reused volunteer sloc =', Lrne, 'Reused well-known sloc =',Lrw, 'Reused less-known sloc =', Lrnw, 'Vulnerabilities (potential) =',V, 'Vulns native =', Vn, 'Vulns reused =', Vr, 'Vulns reused enterprise =', Vre, 'Vulns reused volunteer =', Vrne, 'Vulns reused well-known =', Vrw,'Vulns reused less-known =', Vrnw, 'Vulnerbale native classes =',VCn,'Vulnerable reused classes', VCr, 'Vulnerable native sloc',VLn,'Vulnerable reused sloc =', VLr, 'Dependencies =',D)) print("---- Descriptive statistics [median] ---") df_filtered.median() ###Output _____no_output_____ ###Markdown RQ1 - Descriptive statistics [For Enterprise projects]The following represent the descriptive statistics for the Enterprise projects [Back to table of contents](index) ###Code enterprise = df[df['is_enterprise'] > 0] enterprise.describe() # enterprise.describe().to_csv("../datasets/temp_enterprise_descriptive_statistics.csv") ###Output _____no_output_____ ###Markdown RQ1 - Descriptive statistics [For Volunteer projects]The following represent the descriptive statistics for the Volunteer projects [Back to table of contents](index) ###Code non_enterprise = df[df['is_enterprise'] == 0] non_enterprise.describe() # non_enterprise.describe().to_csv("../datasets/temp_volunteer_descriptive_statistics.csv") ###Output _____no_output_____ ###Markdown RQ1 - Regression Analysis (Prepare dataset)// TODO description [Back to table of contents](index) ###Code #----------------- # IMPORTS & CONFIG #----------------- import pandas import numpy import seaborn import statsmodels.formula.api as sm from scipy import stats from matplotlib import pyplot from IPython.display import display, HTML %matplotlib inline marker_size = 5 df['dependencies'] = df['#dependencies'] # make a copy of the column without the '#' that cannot be parsed by statsmodels library df['cves'] = df['#cves'] # make a copy of the column without the '#' that cannot be parsed by statsmodels library df['reuse_ratio'] = df['#d_sloc'] / (df['#d_sloc']+df['#u_sloc']) # these variable is also declared and initialized in RQ2 df['wk_ratio'] = df['#dw_sloc'] / (df['#dw_sloc']+df['#dnw_sloc']) df['dv'] = df['#dv'] df['dependency_size'] = df['#d_sloc'] / df['dependencies'] # the average size of the dependencies modules of a project df['cve_density'] = df['#cves'] / df['#d_sloc'] # # Standardize beta coefficient (by z-score) # df['v_z'] = df['v'].pipe(stats.zscore) df['sloc_z'] = df['sloc'].pipe(stats.zscore) df['classes_z'] = df['classes'].pipe(stats.zscore) df['dependencies_z'] = df['#dependencies'].pipe(stats.zscore) df['cves_z'] = df['#cves'].pipe(stats.zscore) df['reuse_ratio_z'] = df['reuse_ratio'].pipe(stats.zscore) df['wk_ratio_z'] = df['wk_ratio'].pipe(stats.zscore) df['dv_z'] = df['dv'].pipe(stats.zscore) df['dependency_size_z'] = df['dependency_size'].pipe(stats.zscore) df['cve_density_z'] = df['cve_density'].pipe(stats.zscore) df['u_sloc_z'] = df['#u_sloc'].pipe(stats.zscore) df['d_sloc_z'] = df['#d_sloc'].pipe(stats.zscore) df['dw_sloc_z'] = df['#dw_sloc'].pipe(stats.zscore) df['dnw_sloc_z'] = df['#dnw_sloc'].pipe(stats.zscore) ###Output _____no_output_____ ###Markdown RQ1 - Dataset VisualizationThe following four figures present the regression line of the number of vulnerabilities against the 4 factors: _'sloc'_, _'dependencies'_, _'reuse-ratio'_ and _'classes'_.[Back to table of contents](index) ###Code # print plots with regression line seaborn.lmplot(x='sloc',y='v',data=df,fit_reg=True, scatter_kws={"s": marker_size}) # seaborn.lmplot(x='sloc_z',y='v_z',data=df,fit_reg=True, scatter_kws={"s": marker_size}) seaborn.lmplot(x='dependencies',y='v',data=df,fit_reg=True, scatter_kws={"s": marker_size}) # seaborn.lmplot(x='v_z',y='dependencies_z',data=df,fit_reg=True, scatter_kws={"s": marker_size}) seaborn.lmplot(x='reuse_ratio', y='v',data=df,fit_reg=True, scatter_kws={"s": marker_size}) # seaborn.lmplot(x='reuse_ratio_z',y='v_z',data=df,fit_reg=True, scatter_kws={"s": marker_size}) seaborn.lmplot(x='classes', y='v',data=df,fit_reg=True, scatter_kws={"s": marker_size}) # seaborn.lmplot(x='classes_z',y='v_z',data=df,fit_reg=True, scatter_kws={"s": marker_size}) ###Output _____no_output_____ ###Markdown Multivariate Regression AnalysisHere, we calculate the standardized beta values and perform a multivariate regression analysis on the four factors: _'sloc'_, _'dependencies'_, _'reuse-ratio'_ and _'classes'_.[Back to table of contents](index) ###Code # OLS with beta standardized ols_model = sm.ols(formula="v_z ~ sloc_z + dependencies_z + reuse_ratio_z + classes_z", data=df) result = ols_model.fit() print(result.summary()) ###Output _____no_output_____ ###Markdown Multivariate Regression Analysis [well-known]Here, we calculate the standardized beta values and perform a multivariate regression analysis on the four factors: _'sloc'_, _'dependencies'_, _'reuse-ratio'_ and _'classes'_.[Back to table of contents](index) ###Code # OLS with beta standardized ols_model = sm.ols(formula="v_z ~ u_sloc_z + dw_sloc_z + dnw_sloc_z", data=df) result = ols_model.fit() print(result.summary()) ###Output _____no_output_____ ###Markdown Correlation between well-known Ratio and VulnerabilitiesHere, we calculate the Pearson correlation between the amount of vulnerabilitites in a project and the ratio of well-known dependencies.[Back to table of contents](index) ###Code # Correlation with Kendall Tau tau, p_value = stats.kendalltau(df['v_z'], df['wk_ratio_z']) print(f'tau: {round(tau,2)}, p-value: {round(p_value,2)}') ###Output _____no_output_____ ###Markdown RQ1 - Boxplots[Back to table of contents](index) ###Code import matplotlib import matplotlib.pyplot as plt %matplotlib inline matplotlib.rcParams['mathtext.fontset'] = 'custom' matplotlib.rcParams['mathtext.rm'] = 'Bitstream Vera Sans' matplotlib.rcParams['mathtext.it'] = 'Bitstream Vera Sans:italic' matplotlib.rcParams['mathtext.bf'] = 'Bitstream Vera Sans:bold' matplotlib.rcParams['font.family'] = 'STIXGeneral' fig, axs = plt.subplots(nrows=1, ncols=4, figsize=(8, 4), tight_layout = {'pad': 1}) bp_vars = ['sloc', 'classes', 'dependencies', 'reuse_ratio'] labels = ['Design\nsize', 'Number of\nclasses', 'Number of\ndependencies', 'Reuse\nratio'] # Plot boxes for i in range(len(labels)): bxp_df = df[bp_vars[i]] axs[i].boxplot(bxp_df, showfliers=False) axs[i].set_xticks([]) axs[i].set_title(labels[i]) fig.subplots_adjust(hspace=0.1, wspace=0.5) plt.savefig("../figs/boxplots_rq1.pdf") plt.show() ###Output _____no_output_____ ###Markdown RQ2__RQ2: "How are potential security vulnerabilities distributed between native and reused code?"__[Back to table of contents](index) RQ2 - Prepare DatasetDefine new variables for the analysis of RQ2 and calculate their standardized beta values. [Back to table of contents](index) ###Code # # Define and calculate new variables # df['reuse_ratio'] = df['#d_sloc'] / (df['#d_sloc']+df['#u_sloc']) df['uv_ratio'] = df['#uv'] / df['#u_sloc'] df['dv_ratio'] = df['#dv'] / df['#d_sloc'] df['#v_sloc'] = (df['#uv'] + df['#dv']) / (df['#d_sloc']+df['#u_sloc']) # vulnerability density # # Standardize beta coefficient (by z-score) # df['reuse_ratio_z'] = df['reuse_ratio'].pipe(stats.zscore) df['uv_ratio_z'] = df['uv_ratio'].pipe(stats.zscore) # vulnerability density in native code df['dv_ratio_z'] = df['dv_ratio'].pipe(stats.zscore) # vulnerability density in reused code df['v_sloc_z'] = df['#v_sloc'].pipe(stats.zscore) # vulnerability density ###Output _____no_output_____ ###Markdown RQ2 - Scatterplots[Back to table of contents](index) ###Code import matplotlib import matplotlib.pyplot as plt %matplotlib inline matplotlib.rcParams.update({'font.size': 16}) fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(20, 6), tight_layout = {'pad': 1}) label_size = 24 axs[0].scatter(df['uv_ratio'], df['reuse_ratio'],s=5,cmap='bwr') axs[0].set_xlim([-0.0001,0.02]) axs[0].set_xlabel("Native Vulnerability Density", fontsize=label_size) axs[0].set_ylabel('Reuse Ratio', rotation=90, fontsize=label_size) axs[1].scatter(df['dv_ratio'], df['reuse_ratio'],s=5,cmap='bwr') axs[1].set_xlim([-0.0001,0.01]) axs[1].set_xlabel("Reused Vulnerability Density", fontsize=label_size) axs[1].set_yticks([]) fig.subplots_adjust(wspace=0.1) plt.savefig("../figs/scatter_plots.pdf") plt.show() ###Output _____no_output_____ ###Markdown RQ2 - Boxplots[Back to table of contents](index) ###Code import matplotlib import matplotlib.pyplot as plt %matplotlib inline def draw_seperate_plots(): matplotlib.rcParams['mathtext.fontset'] = 'custom' matplotlib.rcParams['mathtext.rm'] = 'Bitstream Vera Sans' matplotlib.rcParams['mathtext.it'] = 'Bitstream Vera Sans:italic' matplotlib.rcParams['mathtext.bf'] = 'Bitstream Vera Sans:bold' matplotlib.rcParams['font.family'] = 'STIXGeneral' fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(8, 4), tight_layout = {'pad': 1}) bp_vars = ['uv_ratio', 'dv_ratio', '#v_sloc'] #'reuse_ratio' labels = ['Native\nvulnerabilities density', 'Reused\nvulnerabilities density', 'Overall\nvulnerabilities density'] #'Reuse ratio', # Plot boxes for i in range(len(labels)): bxp_df = df[bp_vars[i]] axs[i].boxplot(bxp_df, showfliers=False) axs[i].set_xticks([]) axs[i].set_ylim([-0.0001,0.0065]) axs[i].set_ylim([-0.0001,0.0100]) axs[i].set_title(labels[i]) fig.subplots_adjust(hspace=0.1, wspace=0.5) plt.savefig("../figs/boxplots2.pdf") plt.show() def draw_merged_plots(): matplotlib.rcParams['mathtext.fontset'] = 'custom' matplotlib.rcParams['mathtext.rm'] = 'Bitstream Vera Sans' matplotlib.rcParams['mathtext.it'] = 'Bitstream Vera Sans:italic' matplotlib.rcParams['mathtext.bf'] = 'Bitstream Vera Sans:bold' matplotlib.rcParams['font.family'] = 'STIXGeneral' # Multiple box plots on one Axes boxplots_df = [df[bp_vars[0]]*1000, df[bp_vars[1]]*1000, df[bp_vars[2]]*1000] fig = plt.figure(1, figsize=(6, 4),tight_layout = {'pad': 1}) # fig, ax = plt.subplots(figsize=(10, 6), tight_layout = {'pad': 1}) # Create an axes instance ax = fig.add_subplot(111) ax.boxplot(boxplots_df, showfliers=False, widths=0.15) # ax.set_xticks([]) ax.set_ylim([-0.0001*1000,0.0100*1000]) ax.yaxis.grid(False) ## Custom x-axis labels ax.set_xticklabels(labels) ax.set_axisbelow(True) # Create the boxplot # bp = ax.boxplot(boxplots_df) plt.savefig("../figs/boxplots_rq2_compact.pdf") plt.show() draw_seperate_plots() draw_merged_plots() ###Output _____no_output_____ ###Markdown RQ2 - Regression Analysis [vuln-density, reuse-ratio]In the following analysis we investigate how reuse ratio in a project is related to its vulnerability density. The results show that there is no evidence that these two variables are somehow related.[Back to table of contents](index) ###Code # OLS with beta standardized df['v_sloc'] = df['#v_sloc'] ols_model = sm.ols(formula="v_sloc_z ~ reuse_ratio_z", data=df) result = ols_model.fit() print(result.summary()) seaborn.lmplot(x='reuse_ratio', y='#v_sloc',data=df,fit_reg=True, scatter_kws={"s": marker_size}) ###Output _____no_output_____ ###Markdown RQ2 - Regression Analysis [native-vuln-density, reuse-ratio]In the following analysis we investigate how reuse ratio in a project is related to its vulnerability density in the native code. The results show that there is a weak correlation between the two variables. __Very unexpected results__: How can we interprete? [Back to table of contents](index) ###Code # OLS with beta standardized ols_model = sm.ols(formula="uv_ratio_z ~ reuse_ratio_z", data=df) result = ols_model.fit() print(result.summary()) seaborn.lmplot(x='reuse_ratio_z', y='uv_ratio_z',data=df,fit_reg=True, scatter_kws={"s": marker_size}) ###Output _____no_output_____ ###Markdown RQ2 - Multivariate Regression Analysis [vuln-density, native-sloc, reuse-sloc]In the following analysis we investigate how native and reused code contribute to the vulnerability density of the project. <!--The results show that there is a weak correlation between the two variables. __Very unexpected results__: How can we interprete? -->[Back to table of contents](index) ###Code # OLS with beta standardized ols_model = sm.ols(formula="uv_ratio_z ~ u_sloc_z + d_sloc_z", data=df) result = ols_model.fit() print(result.summary()) ###Output _____no_output_____ ###Markdown RQ2 - Multivariate Regression Analysis [vuln-density, native-vuln-density, reuse-vuln-density]In the following analysis we investigate how native and reused code contribute to the vulnerability density of the project. [Back to table of contents](index) ###Code # OLS with beta standardized ols_model = sm.ols(formula="v_sloc_z ~ uv_ratio_z + dv_ratio_z", data=df) result = ols_model.fit() print(result.summary()) ###Output _____no_output_____ ###Markdown RQ3__RQ3: "To What extent do open source projects suffer from vulnerabilities introduced through dependencies?"__.For that RQ we collect information from the the OWASP dependenvcy-check tool in order to find how projects may use [Back to table of contents](index) RQ3 - Dataset DescriptionVizualize how projects are distributed based to the number of their disclosed vulnerabilities. [Back to table of contents](index) ###Code import seaborn as sns sns.set(font_scale=1.1) ax = sns.violinplot(y=df['#cves']) fig = ax.get_figure() ax.set_xlabel("Disclosed Vulnerabilities in Projects") ax.set_ylabel("Observed values") fig.savefig('../figs/rq3_violin.pdf') ###Output _____no_output_____ ###Markdown RQ3 - Regression Analysis [cves - dependencies]Perform a regression analysis to investigate how the number of the disclosed vulnerabilities of a project is related to the number of its dependencies.[Back to table of contents](index) ###Code # OLS with beta standardized ols_model = sm.ols(formula="cves_z ~ dependencies_z", data=df) result = ols_model.fit() print(result.summary()) # print plots with regression line seaborn.lmplot(x='dependencies',y='cves',data=df,fit_reg=True, scatter_kws={"s": marker_size}) ###Output _____no_output_____ ###Markdown RQ3 - Regression Analysis [v - dependencies]Perform a regression analysis to investigate how the number of the disclosed vulnerabilities of a project is related to the number of its dependencies.[Back to table of contents](index) ###Code # OLS with beta standardized ols_model = sm.ols(formula="v_z ~ dependencies_z", data=df) result = ols_model.fit() print(result.summary()) # print plots with regression line seaborn.lmplot(x='dependencies',y='v',data=df,fit_reg=True, scatter_kws={"s": marker_size}) ###Output _____no_output_____ ###Markdown RQ3 - Regression Analysis [cves - module_size]Perform a regression analysis to investigate how the number of the disclosed vulnerabilities of a project is related to the size of its dependencies.The results show that the size of a module(dependency) is not related to the number of its disclosed vulnerablities. [Back to table of contents](index) ###Code # OLS with beta standardized ols_model = sm.ols(formula="cves_z ~ dependency_size_z", data=df) result = ols_model.fit() print(result.summary()) # print plots with regression line seaborn.lmplot(x='dependency_size',y='cves',data=df,fit_reg=True, scatter_kws={"s": marker_size}) ###Output _____no_output_____ ###Markdown RQ3 - Regression Analysis [cve-density - dependencies]Perform a regression analysis to investigate how the cve density of a project is related to the number of its dependencies.[Back to table of contents](index) ###Code df_filtered = df[df['cve_density'] < 0.2] # filter a great outlier # OLS with beta standardized ols_model = sm.ols(formula="cve_density_z ~ dependencies_z", data=df_filtered) result = ols_model.fit() print(result.summary()) seaborn.lmplot(x='dependencies', y='cve_density',data=df_filtered,fit_reg=True, scatter_kws={"s": marker_size}) ###Output _____no_output_____ ###Markdown RQ3 - Multivariate Regression AnalysisPerform a multivariate regression analysis to investigate how the cves of a project is related to the following variables: number of its dependencies, size of the depndencies, reused_code.[Back to table of contents](index) ###Code # OLS with beta standardized ols_model = sm.ols(formula="cves_z ~ dependencies_z + dependency_size_z + d_sloc_z", data=df) result = ols_model.fit() print(result.summary()) # print plots with regression line seaborn.lmplot(x='dependencies_z',y='cves_z',data=df,fit_reg=True, scatter_kws={"s": marker_size}) seaborn.lmplot(x='dependency_size_z',y='cves_z',data=df,fit_reg=True, scatter_kws={"s": marker_size}) seaborn.lmplot(x='d_sloc_z', y='cves_z',data=df,fit_reg=True, scatter_kws={"s": marker_size}) seaborn.lmplot(x='dependency_size_z',y='d_sloc_z',data=df,fit_reg=True, scatter_kws={"s": marker_size}) seaborn.lmplot(x='dependencies_z',y='d_sloc_z',data=df,fit_reg=True, scatter_kws={"s": marker_size}) ###Output _____no_output_____ ###Markdown RQ3 - Vulnerable projectsThe following script identifies projects that contain at least one vulnerable dependency.[Back to table of contents](index) ###Code vul_projects = df[df['#cves'] > 0] print("Vulnerable projects {} out of {} [{:2.2%}]".format(len(vul_projects.index), len(df.index), len(vul_projects.index)/len(df.index))) ###Output _____no_output_____ ###Markdown RQ4__RQ4: "How is the use frequency of a dependency related to its disclosed vulnerabilities"__.For this RQ we: 1. Generate the dataset and present the descriptive statistics,2. Count the vulnerable dependencies3. Perform a univariate regression analysis between the number of vulnerabilities and its use frequency.[Back to table of contents](index) RQ4 - Prepare datasetThe following code generates the dataset used for answering RQ4 and presents its descriptive statistics. [Back to table of contents](index) ###Code import csv import logging import pandas as pd logging.basicConfig(level=logging.INFO) def get_dependencies(dependencies_usages): dependencies = [] with open(dependencies_usages, 'r') as csv_file: csv_reader = csv.reader(csv_file, delimiter=';') for row in csv_reader: logging.debug("{}::{}".format(row[0],row[1])) dependencies.append([row[0],row[1]]) return dependencies def get_vulnerabilities(owasp_vulnerabilities): dependencies_vulns = {} with open(owasp_vulnerabilities, 'r') as csv_file: csv_reader = csv.reader(csv_file, delimiter=';') for row in csv_reader: logging.debug("{}::{}".format(row[0],row[1])) dependencies_vulns[row[0]] = row[1] return dependencies_vulns def get_potential_vulnerabilities(depependencies_spotbugs): depependencies_potential_vulns = {} with open(depependencies_spotbugs, 'r') as csv_file: csv_reader = csv.reader(csv_file, delimiter=';') for row in csv_reader: logging.debug("{}::{}".format(row[0],row[1])) depependencies_potential_vulns[row[0]] = row[1] return depependencies_potential_vulns def create_dataset(dependencies_usages, owasp_vulnerabilities, depependencies_spotbugs): dependencies = get_dependencies(dependencies_usages) logging.info("Dependencies with usages :: {}".format(len(dependencies))) dependencies_vulns = get_vulnerabilities(owasp_vulnerabilities) logging.info("Dependencies with vulnerabilities :: {}".format(len(dependencies_vulns))) depependencies_potential_vulns = get_potential_vulnerabilities(depependencies_spotbugs) logging.info("Dependencies with potential vulnerabilities :: {}".format(len(depependencies_potential_vulns))) data = [] logging.info("Creating dataset...") for entry in dependencies: logging.debug("Parsing usage dependency :: {}".format(entry)) dependency = entry[0] usages = int(entry[1]) vulns = 0 potential_vulns = 0 if dependency not in dependencies_vulns: logging.warning("Dependency not in owasp reports :: {}".format(dependency)) else: vulns = int(dependencies_vulns[dependency]) if dependency not in depependencies_potential_vulns: logging.warning("Dependency not in spotbugs reports :: {}".format(dependency)) else: potential_vulns = int(depependencies_potential_vulns[dependency]) data_entry = [dependency, usages, vulns, potential_vulns] data.append(data_entry) return data owasp_vulnerabilities = '../owasp_vulnerabilities.csv' dependencies_usages = '../depependencies_usages.csv' depependencies_spotbugs = "../depependencies_spotbugs.csv" data = create_dataset(dependencies_usages, owasp_vulnerabilities, depependencies_spotbugs) logging.info("Created dataset with {} entries".format(len(data))) # print(data[1:10]) df_vulnerable = pd.DataFrame(data, columns = ['Dependency', 'Usages', 'Vulnerabilities', 'Potential_vulns']) # df_vulnerable[1:10] df_vulnerable.describe() ###Output _____no_output_____ ###Markdown RQ4 - Count Vulnerable dependenciesIn this step we analyze the dependencies used in the projects and report those that are vulnerable with at least one disclosed vulnerability. [Back to table of contents](index) ###Code import numpy as np import pandas as pd import seaborn as sns from scipy import stats # df_vulnerable[1:10] df_vulnerable_filtered = df_vulnerable[df_vulnerable['Vulnerabilities'] > 0] # exclude non-vulnerable dependencies df_vulnerable_filtered = df_vulnerable_filtered[df_vulnerable_filtered['Vulnerabilities'] < 40] # exclude one extreme (outlier) value # df_vulnerable = df_vulnerable[df_vulnerable['Usages'] < 40] # exclude one extreme (outlier) value print("Found {} vulnerable dependencies out of {} total [{:2.2%}]".format(len(df_vulnerable_filtered.index), len(df_vulnerable.index), len(df_vulnerable_filtered.index)/len(df_vulnerable.index))) sns.set(font_scale=1.1) ax = sns.violinplot(y=df_vulnerable_filtered['Vulnerabilities']) fig = ax.get_figure() ax.set_ylabel("Disclosed Vulnerabilities") fig.savefig('../figs/rq4_violin.pdf') # df_vulnerable_filtered.plot(kind='scatter',x='Usages',y='Vulnerabilities',color='red') # df_vulnerable[1:10] ###Output _____no_output_____ ###Markdown RQ4 - Regression Analysis [CVEs - Usages][Back to table of contents](index) ###Code # todo zero values df_vulnerable_filtered['Vulnerabilities_z'] = df_vulnerable_filtered['Vulnerabilities'].pipe(stats.zscore) df_vulnerable_filtered['Usages_z'] = df_vulnerable_filtered['Usages'].pipe(stats.zscore) # OLS with beta standardized ols_model = sm.ols(formula="Vulnerabilities_z ~ Usages_z", data=df_vulnerable_filtered) result = ols_model.fit() print(result.summary()) # print plots with regression line # seaborn.lmplot(x='sloc',y='v',data=df,fit_reg=True, scatter_kws={"s": marker_size}) seaborn.lmplot(x='Vulnerabilities_z',y='Usages_z',data=df_vulnerable_filtered,fit_reg=True, scatter_kws={"s": marker_size}) ###Output _____no_output_____ ###Markdown RQ4 - Regression Analysis [Potential Vulns - Usages][Back to table of contents](index) ###Code df_vulnerable_filtered['Potential_vulns_z'] = df_vulnerable_filtered['Potential_vulns'].pipe(stats.zscore) # OLS with beta standardized ols_model = sm.ols(formula="Potential_vulns_z ~ Usages_z", data=df_vulnerable_filtered) result = ols_model.fit() print(result.summary()) # print plots with regression line seaborn.lmplot(x='Usages',y='Potential_vulns',data=df_vulnerable_filtered,fit_reg=True, scatter_kws={"s": marker_size}) ###Output _____no_output_____ ###Markdown [Discussion] How are potential vulnerabilities related to disclosed ones?[Back to table of contents](index) ###Code # OLS with beta standardized ols_model = sm.ols(formula="cves_z ~ dv_z", data=df) result = ols_model.fit() print(result.summary()) # print plots with regression line fig = seaborn.lmplot(x='cves_z',y='dv_z',data=df,fit_reg=True, scatter_kws={"s": marker_size}) plt.xlabel('Disclosed vulnerabilities') plt.ylabel('Potential vulnerabilities') fig.savefig('../figs/vulnerabilities_z.pdf') # print plots with regression line fig = seaborn.lmplot(x='cves',y='dv',data=df,fit_reg=True, scatter_kws={"s": marker_size}) plt.xlabel('Disclosed vulnerabilities') plt.ylabel('Potential vulnerabilities') fig.savefig('../figs/vulnerabilities.pdf') ###Output _____no_output_____ ###Markdown JSS Revision 1 - New analysis Eyes on dependencies[Back to table of contents](index) ###Code import pandas as pd import pprint pp = pprint.PrettyPrinter(indent=1) def create_dependencies_to_contributors_dataframe(projects_info,dependencies_usages,dependencies_info,dependencies_cves, dependencies_spotbugs): # collect projects and contributors with open(projects_info) as f: lines = f.read().splitlines() projects = {} for line in lines[1:]: fields = line.split(',') projects[fields[0]]=int(fields[5]) # collect dependencies info with open(dependencies_info) as f: lines = f.read().splitlines() dependencies = {} for line in lines[1:]: fields = line.split(';') dependencies[fields[0]]=[int(fields[2]),int(fields[6])] # collect dependencies usages with open(dependencies_usages) as f: lines = f.read().splitlines() for line in lines[1:]: fields = line.split(';') dep_name = fields[0] used_in = fields[2:] sum=0 for project in used_in: sum += projects[project] if dep_name in dependencies: dependencies[dep_name].append(len(used_in)) dependencies[dep_name].append(sum) # collect cves with open(dependencies_cves) as f: lines = f.read().splitlines() for line in lines: fields = line.split(';') dep_name = fields[0] cves = fields[2] if dep_name in dependencies: dependencies[dep_name].append(int(cves)) # collect spotbugs with open(dependencies_spotbugs) as f: lines = f.read().splitlines() for line in lines: fields = line.split(';') dep_name = fields[0] potential_vulns = fields[1] if dep_name in dependencies: dependencies[dep_name].append(int(potential_vulns)) # cleanup entries with missing fields (only one) delete = [key for key in dependencies if len(dependencies[key]) < 5] for key in delete: del dependencies[key] #TODO: transform the dict to dataframe df_dict = {'dependency': [],'enterprise': [],'well_known': [],'used_projects': [], 'contributors_in_used_projects': [],'cves': [],'spotbugs_vuls': []} for d in dependencies: df_dict['dependency'].append(d) df_dict['enterprise'].append(dependencies[d][0]) df_dict['well_known'].append(dependencies[d][1]) df_dict['used_projects'].append(dependencies[d][2]) df_dict['contributors_in_used_projects'].append(dependencies[d][3]) df_dict['cves'].append(dependencies[d][4]) df_dict['spotbugs_vuls'].append(dependencies[d][5]) return pd.DataFrame.from_dict(df_dict) dependencies_info = "../dependencies_groupids_enterprise_info.csv" dependencies_usages = "../depependencies_usages.csv" projects_info = "../projects_groupids_enterprise_info.csv" dependencies_spotbugs = "../depependencies_spotbugs.csv" dependencies_cves = "../owasp_vulnerabilities.csv" df_deps = create_dependencies_to_contributors_dataframe(projects_info,dependencies_usages,dependencies_info, dependencies_cves, dependencies_spotbugs) df_deps.describe() df_deps.median() df_deps_enterprise = df_deps[df_deps['enterprise'] >0] print((len(df_deps_enterprise)/len(df_deps))*100) from scipy import stats print(f'overall (N={len(df_deps)})') df_test = df_deps for v in ['cves', 'spotbugs_vuls']: tau, p_value = stats.kendalltau(df_test[v], df_test['contributors_in_used_projects']) print(f' [{v} x contrib.] tau: {round(tau,2)}, p-value: {round(p_value,2)}') tau, p_value = stats.kendalltau(df_test[v], df_test['used_projects']) print(f' [{v} x n_projs ] tau: {round(tau,2)}, p-value: {round(p_value,2)}') for c in ['enterprise', 'well_known']: for b in [1,0]: df_test = df_deps[df_deps[c] == b] print(f'{c} == {b} (N={len(df_test)})') for v in ['cves', 'spotbugs_vuls']: tau, p_value = stats.kendalltau(df_test[v], df_test['contributors_in_used_projects']) print(f' [{v} x contrib.] tau: {round(tau,2)}, p-value: {round(p_value,2)}') tau, p_value = stats.kendalltau(df_test[v], df_test['used_projects']) print(f' [{v} x n_projs ] tau: {round(tau,2)}, p-value: {round(p_value,2)}') df_test = df_deps[(df_deps['enterprise'] == 1) & (df_deps['well_known'] == 1)] print(f'enterprise == 1 & well_known == 1 (N={len(df_test)})') for v in ['cves', 'spotbugs_vuls']: tau, p_value = stats.kendalltau(df_test[v], df_test['contributors_in_used_projects']) print(f' [{v} x contrib.] tau: {round(tau,2)}, p-value: {round(p_value,2)}') tau, p_value = stats.kendalltau(df_test[v], df_test['used_projects']) print(f' [{v} x n_projs ] tau: {round(tau,2)}, p-value: {round(p_value,2)}') ols_model = sm.ols(formula="contributors_in_used_projects ~ cves", data=df_deps) result = ols_model.fit() print(result.summary()) ###Output _____no_output_____ ###Markdown Redo RQs for enterprise projects vs. volunteer projects [revision 1 comment 1][Back to table of contents](index) ###Code # Split datasets df_e = df[df['is_enterprise'] == 1] df_ne = df[df['is_enterprise'] == 0] # # RQ1 # # OLS with beta standardized ols_model = sm.ols(formula="v_z ~ sloc_z + dependencies_z + reuse_ratio_z + classes_z", data=df_e) result = ols_model.fit() print(result.summary()) ols_model = sm.ols(formula="v_z ~ sloc_z + dependencies_z + reuse_ratio_z + classes_z", data=df_ne) result = ols_model.fit() print(result.summary()) ols_model = sm.ols(formula="v_z ~ u_sloc_z + dw_sloc_z + dnw_sloc_z", data=df_e) result = ols_model.fit() print(result.summary()) ols_model = sm.ols(formula="v_z ~ u_sloc_z + dw_sloc_z + dnw_sloc_z", data=df_ne) result = ols_model.fit() print(result.summary()) # Correlation with Kendall Tau tau, p_value = stats.kendalltau(df_e['v_z'], df_e['wk_ratio_z']) print(f'Enterprise: tau: {round(tau,2)}, p-value: {round(p_value,2)}') tau, p_value = stats.kendalltau(df_ne['v_z'], df_ne['wk_ratio_z']) print(f'Non-enterprise: tau: {round(tau,2)}, p-value: {round(p_value,2)}') # # RQ2 # print('=====================================================') print('RQ2 - Regression Analysis [vuln-density, reuse-ratio]') print('=====================================================\n') ols_model = sm.ols(formula="v_sloc_z ~ reuse_ratio_z", data=df) result = ols_model.fit() print(result.summary()) ols_model = sm.ols(formula="v_sloc_z ~ reuse_ratio_z", data=df_e) result = ols_model.fit() print(result.summary()) ols_model = sm.ols(formula="v_sloc_z ~ reuse_ratio_z", data=df_ne) result = ols_model.fit() print(result.summary()) import matplotlib import matplotlib.pyplot as plt %matplotlib inline matplotlib.rcParams['mathtext.fontset'] = 'custom' matplotlib.rcParams['mathtext.rm'] = 'Bitstream Vera Sans' matplotlib.rcParams['mathtext.it'] = 'Bitstream Vera Sans:italic' matplotlib.rcParams['mathtext.bf'] = 'Bitstream Vera Sans:bold' matplotlib.rcParams['font.family'] = 'STIXGeneral' bp_vars = ['uv_ratio', 'dv_ratio', '#v_sloc'] #'reuse_ratio' labels = ['Native\nvulnerabilities density', '', 'Reused\nvulnerabilities density', '', 'Overall\nvulnerabilities density'] #'Reuse ratio', # Multiple box plots on one Axes boxplots_df = [] for v in bp_vars: boxplots_df.append(df_e[v]*1000) boxplots_df.append(df_ne[v]*1000) fig = plt.figure(1, figsize=(6, 4),tight_layout = {'pad': 1}) # Create an axes instance ax = fig.add_subplot(111) ax.boxplot(boxplots_df, showfliers=False, widths=0.15) # ax.set_xticks([]) ax.set_ylim([-0.0001*1000,0.0100*1000]) ax.yaxis.grid(False) ## Custom x-axis labels ax.set_xticklabels(labels) ax.set_axisbelow(True) # Create the boxplot # bp = ax.boxplot(boxplots_df) # plt.savefig("../figs/boxplots_rq2_compact.pdf") plt.show() for test_var in ['uv_ratio', 'dv_ratio', '#v_sloc']: t = stats.ttest_ind(df_e[test_var],df_ne[test_var]) print(f'Comparison of {test_var}') print(f'\tStatistic={t[0]:.2f} (p={t[1]:.2f})') # # RQ3 # print('=====================================================') print('RQ3 - Regression Analysis [#cves - #dependencies]') print('=====================================================\n') ols_model = sm.ols(formula="cves_z ~ dependencies_z", data=df) result = ols_model.fit() print(result.summary()) ols_model = sm.ols(formula="cves_z ~ dependencies_z", data=df_e) result = ols_model.fit() print(result.summary()) ols_model = sm.ols(formula="cves_z ~ dependencies_z", data=df_ne) result = ols_model.fit() print(result.summary()) # print plots with regression line # seaborn.lmplot(x='dependencies',y='cves',data=df,fit_reg=True, scatter_kws={"s": marker_size}) print('=====================================================') print('RQ3 - Regression Analysis [#v - #dependencies]') print('=====================================================\n') ols_model = sm.ols(formula="v_z ~ dependencies_z", data=df) result = ols_model.fit() print(result.summary()) ols_model = sm.ols(formula="v_z ~ dependencies_z", data=df_e) result = ols_model.fit() print(result.summary()) ols_model = sm.ols(formula="v_z ~ dependencies_z", data=df_ne) result = ols_model.fit() print(result.summary()) # print plots with regression line # seaborn.lmplot(x='dependencies',y='v',data=df,fit_reg=True, scatter_kws={"s": marker_size}) print('=====================================================') print('RQ3 - Regression Analysis [#cves - #module_size]') print('=====================================================\n') ols_model = sm.ols(formula="cves_z ~ dependency_size_z", data=df) result = ols_model.fit() print(result.summary()) ols_model = sm.ols(formula="cves_z ~ dependency_size_z", data=df_e) result = ols_model.fit() print(result.summary()) ols_model = sm.ols(formula="cves_z ~ dependency_size_z", data=df_ne) result = ols_model.fit() print(result.summary()) # print plots with regression line # seaborn.lmplot(x='dependency_size',y='cves',data=df,fit_reg=True, scatter_kws={"s": marker_size}) print('=====================================================') print('RQ3 - Regression Analysis [#cve-density - #dependencies]') print('=====================================================\n') df_filtered = df[df['cve_density'] < 0.2] # filter a great outlier df_e_filtered = df_e[df_e['cve_density'] < 0.2] # filter a great outlier df_ne_filtered = df_ne[df_ne['cve_density'] < 0.2] # filter a great outlier ols_model = sm.ols(formula="cve_density_z ~ dependencies_z", data=df_filtered) result = ols_model.fit() print(result.summary()) ols_model = sm.ols(formula="cve_density_z ~ dependencies_z", data=df_e_filtered) result = ols_model.fit() print(result.summary()) ols_model = sm.ols(formula="cve_density_z ~ dependencies_z", data=df_ne_filtered) result = ols_model.fit() print(result.summary()) # seaborn.lmplot(x='dependencies', y='cve_density',data=df,fit_reg=True, scatter_kws={"s": marker_size}) print('=====================================================') print('RQ3 - Multivariate Regression Analysis') print('=====================================================\n') ols_model = sm.ols(formula="cves_z ~ dependencies_z + dependency_size_z + d_sloc_z", data=df) result = ols_model.fit() print(result.summary()) ols_model = sm.ols(formula="cves_z ~ dependencies_z + dependency_size_z + d_sloc_z", data=df_e) result = ols_model.fit() print(result.summary()) ols_model = sm.ols(formula="cves_z ~ dependencies_z + dependency_size_z + d_sloc_z", data=df_ne) result = ols_model.fit() print(result.summary()) print('=====================================================') print('RQ3 - Vulnerable projects') print('=====================================================\n') vul_projects = df[df['#cves'] > 0] vul_projects_e = df_e[df_e['#cves'] > 0] vul_projects_ne = df_ne[df_ne['#cves'] > 0] print("Vulnerable projects {} out of {} [{:2.2%}]".format(len(vul_projects.index), len(df.index), len(vul_projects.index)/len(df.index))) print("Enterprise: Vulnerable projects {} out of {} [{:2.2%}]".format(len(vul_projects_e.index), len(df_e.index), len(vul_projects_e.index)/len(df_e.index))) print("Non-enterprise: Vulnerable projects {} out of {} [{:2.2%}]".format(len(vul_projects_ne.index), len(df_ne.index), len(vul_projects_ne.index)/len(df_ne.index))) ###Output _____no_output_____
notebooks/wav2vec2large_experiment_language_model.ipynb
###Markdown Install ffmpeg-pythonfor recorded audio decoding ###Code !pip install -q ffmpeg-python ###Output _____no_output_____ ###Markdown Installing transformers ###Code !pip install -q transformers ###Output  |████████████████████████████████| 2.1MB 6.8MB/s  |████████████████████████████████| 901kB 35.8MB/s  |████████████████████████████████| 3.3MB 43.1MB/s [?25h ###Markdown Installing ctcdecodeImplementation of beam search algorithm for python. This is used to rescore output symbols from model using language model (kenlm in this case)kenlm is a n-gram language model small and efficient.We can use neural network based networks but it will be more resource intensive so kenlm is best choice to use as language model and is already used in many projects.By default ctcdecode use kenlm for rescoring so I do not bother to setup the model.- [ctcdecode repo](https://github.com/parlance/ctcdecode)- [kenlm](https://github.com/kpu/kenlm) ###Code !git clone --recursive https://github.com/parlance/ctcdecode.git !cd ctcdecode && pip install . ###Output Cloning into 'ctcdecode'... remote: Enumerating objects: 1063, done. remote: Total 1063 (delta 0), reused 0 (delta 0), pack-reused 1063 Receiving objects: 100% (1063/1063), 759.71 KiB | 11.17 MiB/s, done. Resolving deltas: 100% (513/513), done. Submodule 'third_party/ThreadPool' (https://github.com/progschj/ThreadPool.git) registered for path 'third_party/ThreadPool' Submodule 'third_party/kenlm' (https://github.com/kpu/kenlm.git) registered for path 'third_party/kenlm' Cloning into '/content/ctcdecode/third_party/ThreadPool'... remote: Enumerating objects: 82, done. remote: Total 82 (delta 0), reused 0 (delta 0), pack-reused 82 Cloning into '/content/ctcdecode/third_party/kenlm'... remote: Enumerating objects: 13792, done. remote: Counting objects: 100% (105/105), done. remote: Compressing objects: 100% (58/58), done. remote: Total 13792 (delta 59), reused 74 (delta 34), pack-reused 13687 Receiving objects: 100% (13792/13792), 5.48 MiB | 18.83 MiB/s, done. Resolving deltas: 100% (7939/7939), done. Submodule path 'third_party/ThreadPool': checked out '9a42ec1329f259a5f4881a291db1dcb8f2ad9040' Submodule path 'third_party/kenlm': checked out '35835f1ac4884126458ac89f9bf6dd9ccad561e0' Processing /content/ctcdecode Building wheels for collected packages: ctcdecode Building wheel for ctcdecode (setup.py) ... [?25l[?25hdone Created wheel for ctcdecode: filename=ctcdecode-1.0.2-cp37-cp37m-linux_x86_64.whl size=12877957 sha256=8694cfcf1208f7dfdbfbc88076b27389dc1ef8328381244234792bcc12871d65 Stored in directory: /tmp/pip-ephem-wheel-cache-tjrqr5u6/wheels/c3/6c/94/7d57d4f20a87a22ef1722eaad22052b4c435892b55400e5f4e Successfully built ctcdecode Installing collected packages: ctcdecode Successfully installed ctcdecode-1.0.2 ###Markdown Loading Dependencies- pytorch- Transformers library- numpy- ctcdecode (ctc beam search decoder with kenlm as language model)- librosa ###Code import torch import transformers import numpy as np import ctcdecode import librosa ###Output _____no_output_____ ###Markdown Instantiate pretrained models- Tokenizer- Wav2Vec2 ModelThe model takes as input a speech signal in any language (currently english because it was trained on english dataset) in its raw form. This audio data is one-dimensional and is passed to a multi-layer 1-d Convolutional neural network to generate audio representations of 25ms each ###Code tokenizer = transformers.Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-large-960h-lv60-self") model = transformers.Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self") model.eval() ###Output _____no_output_____ ###Markdown Recording and loading audio in colabTaken from [ricardodeazambuja.com](https://ricardodeazambuja.com/deep_learning/2019/03/09/audio_and_video_google_colab/) ###Code # https://ricardodeazambuja.com/deep_learning/2019/03/09/audio_and_video_google_colab/ from IPython.display import HTML, Audio from google.colab.output import eval_js from base64 import b64decode import numpy as np import io import ffmpeg AUDIO_HTML = """ <script> var my_div = document.createElement("DIV"); var my_p = document.createElement("P"); var my_btn = document.createElement("BUTTON"); var t = document.createTextNode("Press to start recording"); my_btn.appendChild(t); //my_p.appendChild(my_btn); my_div.appendChild(my_btn); document.body.appendChild(my_div); var base64data = 0; var reader; var recorder, gumStream; var recordButton = my_btn; var handleSuccess = function(stream) { gumStream = stream; var options = { //bitsPerSecond: 8000, //chrome seems to ignore, always 48k mimeType : 'audio/webm;codecs=opus' //mimeType : 'audio/webm;codecs=pcm' }; //recorder = new MediaRecorder(stream, options); recorder = new MediaRecorder(stream); recorder.ondataavailable = function(e) { var url = URL.createObjectURL(e.data); var preview = document.createElement('audio'); preview.controls = true; preview.src = url; document.body.appendChild(preview); reader = new FileReader(); reader.readAsDataURL(e.data); reader.onloadend = function() { base64data = reader.result; //console.log("Inside FileReader:" + base64data); } }; recorder.start(); }; recordButton.innerText = "Recording... press to stop"; navigator.mediaDevices.getUserMedia({audio: true}).then(handleSuccess); function toggleRecording() { if (recorder && recorder.state == "recording") { recorder.stop(); gumStream.getAudioTracks()[0].stop(); recordButton.innerText = "Saving the recording... pls wait!" } } // https://stackoverflow.com/a/951057 function sleep(ms) { return new Promise(resolve => setTimeout(resolve, ms)); } var data = new Promise(resolve=>{ //recordButton.addEventListener("click", toggleRecording); recordButton.onclick = ()=>{ toggleRecording() sleep(2000).then(() => { // wait 2000ms for the data to be available... // ideally this should use something like await... //console.log("Inside data:" + base64data) resolve(base64data.toString()) }); } }); </script> """ def get_audio(sr): display(HTML(AUDIO_HTML)) data = eval_js("data") binary = b64decode(data.split(',')[1]) process = (ffmpeg .input('pipe:0') .output('pipe:1', format='wav') .run_async(pipe_stdin=True, pipe_stdout=True, pipe_stderr=True, quiet=True, overwrite_output=True) ) output, err = process.communicate(input=binary) riff_chunk_size = len(output) - 8 # Break up the chunk size into four bytes, held in b. q = riff_chunk_size b = [] for i in range(4): q, r = divmod(q, 256) b.append(r) # Replace bytes 4:8 in proc.stdout with the actual size of the RIFF chunk. riff = output[:4] + bytes(b) + output[8:] speech, rate = librosa.load(io.BytesIO(riff),sr=16000) return speech, sr #record or load any audio file of your choice here speech, rate = get_audio(sr=16000) ###Output _____no_output_____ ###Markdown wave2vec2 vocabulary[found here](https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/vocab.json) ###Code label_dict = {"<pad>": 0, "<s>": 1, "</s>": 2, "<unk>": 3, "|": 4, "E": 5, "T": 6, "A": 7, "O": 8, "N": 9, "I": 10, "H": 11, "S": 12, "R": 13, "D": 14, "L": 15, "U": 16, "M": 17, "W": 18, "C": 19, "F": 20, "G": 21, "Y": 22, "P": 23, "B": 24, "V": 25, "K": 26, "'": 27, "X": 28, "J": 29, "Q": 30, "Z": 31 } labels = [key for key, value in label_dict.items()] ###Output _____no_output_____ ###Markdown CTC Beam searchCTC Beam search algorithm combined with language model for rescoring probabilities output from language model.This class handles all the things we just need to pass our models softmax output into this class object to decode ###Code class CTCBeamDecoder: def __init__(self, labels, blank_id=0, beam_size=100, kenlm_path=None): print("loading beam search with kenlm...") self.labels = labels # model_path = is the path to your external kenlm language model(LM). Default is none. # alpha = Weighting associated with the LMs probabilities. A weight of 0 means the LM has no effect. # beta = Weight associated with the number of words within our beam. self.ctcdecoder = ctcdecode.CTCBeamDecoder( self.labels, model_path=kenlm_path, alpha=0.6, beta=1, beam_width=beam_size, blank_id=blank_id) print("loading finished") def __call__(self, output, num_sentences=1): sentences = [] for num in range(num_sentences): beam_result, beam_scores, timesteps, out_seq_len = self.ctcdecoder.decode(output) # beam_result[0][0][:out_seq_len[0][0]] get the top beam for the first item in batch sentences.append(self.output(beam_result[0][num], self.labels, out_seq_len[0][num])) return sentences def output(self, tokens, vocab, seq_len): out = ''.join([vocab[x] for x in tokens[0:seq_len]]) # wave2vec implementation use | for space in vocabulary return out.replace("|", " ") # blank_id = ctc blank token (epsilon) which is <pad> in wave2vec vocabulary decode_and_rescore = CTCBeamDecoder(kenlm_path=None, labels=labels, blank_id=label_dict.get("<pad>"), beam_size=100) ###Output loading beam search with kenlm... loading finished ###Markdown Inferencing- tokenizing(encoding) speech data and return pytorch tensor- pass encodings to model- converting model outputs into probabilities using softmax ###Code input_values = tokenizer(speech, return_tensors = 'pt').input_values #logits (non-normalized predictions) logits = model(input_values).logits out_proba = torch.nn.functional.softmax(logits, dim=-1) predicted_ids = torch.argmax(out_proba, dim =-1) results_ = tokenizer.decode(predicted_ids[0]) print("Without Language Model") print(results_) ###Output Without Language Model THE BOOK IS ON THE TABLE ###Markdown Applying rescoring algorithm using language model and beam search ###Code results = decode_and_rescore(out_proba, num_sentences=5) print("With Language Model Kenlm") for result in results: print(result) ###Output With Language Model Kenlm THE BOOK IS ON THE TABLE ETHE BOOK IS ON THE TABLE THE BOOK IS ON THEI TABLE THE BOOK IS ON THE TABLE THE BOOK IS ON THE TABLEE ###Markdown Load Audio and transcribe ###Code !wget https://upload.wikimedia.org/wikipedia/commons/c/c8/Example.ogg -O example.ogg ###Output --2021-04-29 12:20:09-- https://upload.wikimedia.org/wikipedia/commons/c/c8/Example.ogg Resolving upload.wikimedia.org (upload.wikimedia.org)... 208.80.154.240, 2620:0:861:ed1a::2:b Connecting to upload.wikimedia.org (upload.wikimedia.org)|208.80.154.240|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 105243 (103K) [application/ogg] Saving to: ‘example.ogg’ example.ogg 0%[ ] 0 --.-KB/s example.ogg 100%[===================>] 102.78K --.-KB/s in 0.03s 2021-04-29 12:20:09 (2.98 MB/s) - ‘example.ogg’ saved [105243/105243] ###Markdown Audio Loading Functions ###Code from scipy.signal import resample import numpy as np import soundfile as sf class AudioReader: def __init__(self, audio_path, sr=16000, dtype="float32"): self._sr = sr self._dtype = dtype self._audio_path = audio_path def read(self): data, sr = sf.read(self._audio_path, dtype=self._dtype) data = self.__resample_file(data, sr, self._sr) return data, self._sr def __resample_file(self, array, original_sr, target_sr): return resample(array, num=int(len(array)*target_sr/original_sr)) class AudioStreaming: def __init__(self, audio_path, blocksize, sr=16000, overlap=0, padding=None, dtype="float32"): assert blocksize >= 0, "blocksize cannot be 0 or negative" self._sr = sr self._orig_sr = sf.info(audio_path).samplerate self._sf_blocks = sf.blocks(audio_path, blocksize=blocksize, overlap=overlap, fill_value=padding, dtype=dtype) def generator(self): for block in self._sf_blocks: chunk = self.__resample_file(block, self._orig_sr, self._sr) yield chunk, self._orig_sr def __resample_file(self, array, original_sr, target_sr): return resample(array, num=int(len(array)*target_sr/original_sr)) ###Output _____no_output_____ ###Markdown Loading Audio one passload full audio at once and transcribe ###Code audio_reader = AudioReader("/content/example.ogg", sr=16000) block, sr = audio_reader.read() print(sr) print(block.shape) input_values = tokenizer(block[:,0], return_tensors = 'pt').input_values #logits (non-normalized predictions) logits = model(input_values).logits out_proba = torch.nn.functional.softmax(logits, dim=-1) predicted_ids = torch.argmax(out_proba, dim =-1) results_ = tokenizer.decode(predicted_ids[0]) print("Without Language Model") print(results_) results = decode_and_rescore(out_proba, num_sentences=5) print("With Language Model Kenlm") for result in results: print(result) ###Output With Language Model Kenlm THIS IS AN EXAMPLE SOUND FILE IN AG FORBUS FORMA FROM WICIPAEDIA THE FREE ENCYCLOPAEDIA THIS IS AN EXAMPLE SOUND FILE IN AUG FORBUS FORMA FROM WICIPAEDIA THE FREE ENCYCLOPAEDIA THIS IS AN EXAMPLE SOUND FILE IN AG FORBUS FORMA FROM WICHIPAEDIA THE FREE ENCYCLOPAEDIA THIS IS AN EXAMPLE SOUND FILE IN AUG FORBUS FORMA FROM WICHIPAEDIA THE FREE ENCYCLOPAEDIA THIS IS AN EXAMPLE SOUND FILE IN OG FORBUS FORMA FROM WICIPAEDIA THE FREE ENCYCLOPAEDIA ###Markdown Splitting audio and loadfirst split audio into multiple blocks and pass each block for transcribing ###Code ## splitting 5 sec audio_stream = AudioStreaming(audio_path="/content/example.ogg", blocksize=16000*5, padding=0) for block, sr in audio_stream.generator(): inputs = tokenizer(block[:,0], return_tensors='pt').input_values logits = model(inputs).logits predicted_ids = torch.argmax(logits, dim =-1) print(tokenizer.decode(predicted_ids[0]), end="") ###Output THIS IS AN EXAMPLE SOUNDILEIN AG VORBUS FORMAWICKIPEDIA THE FREEPADIA ###Markdown transcribe block and decode a last ###Code ## splitting 5 sec audio_stream = AudioStreaming(audio_path="/content/example.ogg", blocksize=16000*5, padding=0) ctc_outs = torch.Tensor() for block, sr in audio_stream.generator(): inputs = tokenizer(block[:,0], return_tensors='pt').input_values logits = model(inputs).logits logits = torch.nn.functional.softmax(logits, dim=-1) ctc_outs = torch.cat((ctc_outs, logits), dim=1) results = decode_and_rescore(ctc_outs, num_sentences=5) for result in results: print(result) ###Output _____no_output_____
IV. Molecular Dynamics/out/IV. Molecular Dynamics.ipynb
###Markdown Computer simulations course 2018/2019-2 @ ELTE Assignment 4: Molecular Dynamics - 1D motion 03.19.2019 ###Code import numpy as np import matplotlib.pyplot as plt import seaborn as sns import random import os import sys from scipy import stats from datetime import datetime import time import imageio from mpl_toolkits.mplot3d import Axes3D from matplotlib.patches import Circle from matplotlib.patches import Patch from matplotlib.lines import Line2D import mpl_toolkits.mplot3d.art3d as art3d sns.set_style(style='whitegrid') def mode_choose2(file, mode, n, N, rho, T): current_mode = (file + ' ' + mode + ' ' + str(n) + ' ' + str(N) + ' ' + str(rho) + ' ' + str(T) ) return(current_mode) def mode_choose3(file, mode, n, N, rho, T, rCutOff, rMax, updateInterval): current_mode = (file + ' ' + mode + ' ' + str(n) + ' ' + str(N) + ' ' + str(rho) + ' ' + str(T) + ' ' + str(rCutOff) + ' ' + str(rMax) + ' ' + str(updateInterval) ) return(current_mode) # Number of simulated steps n = 3000 N = 64 T = 1.0 # Constants k_B = 1.38e-23 # Boltzmann constant [J/K] N_A = 6.022e23 # Avogadro's number [1/mol] # Others steps = 1 image_dpi = 72 image_format = 'pdf' image_path_trajectories = '..\\Documentation\\src\\images\\Trajectories\\' image_path_others = '..\\Documentation\\src\\images\\Others\\' ###Output _____no_output_____ ###Markdown Run simulations Modes:- periodic- bounded- write anything else for non-bounded ###Code os.system('..\Release\md1.exe' + ' ' + 'bounded' + ' ' + str(n) + ' ' + str(N) + ' ' + str(T)) data_set_1 = np.genfromtxt('md1.dat'); Temperature_1 = data_set_1[::steps,-1] Virial_1 = data_set_1[::steps,-2] Energy_1 = data_set_1[::steps,-3] print('Last run\'s n:', len(data_set_1)) current_mode = mode_choose2(file='..\Release\md2.exe', mode='bounded', n=n, N=N, rho=0.95, T=1.0) os.system(current_mode) data_set_2 = np.genfromtxt('md2.dat') Temperature_2 = data_set_2[::steps,-1] Virial_2 = data_set_2[::steps,-2] Energy_2 = data_set_2[::steps,-3] print('Last run\'s n:', len(data_set_2)) current_mode = mode_choose3(file='..\Release\md3.exe', mode='bounded', n=n, N=N, rho=0.95, T=1.0, rCutOff=2.5, rMax=3.2, updateInterval=10) os.system(current_mode) data_set_3 = np.genfromtxt('md3.dat') Temperature_3 = data_set_3[::steps,-1] Virial_3 = data_set_3[::steps,-2] Energy_3 = data_set_3[::steps,-3] print('Last run\'s n:', len(data_set_3)) ###Output _____no_output_____ ###Markdown Eqilibrium ###Code equlibrium = 4000 ###Output _____no_output_____ ###Markdown Plot out data Instantaneous temperature ###Code nrows=1 ncols=3 fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(ncols*7,nrows*7)) titlesize = 23 axislabelsize = 20 for i in range(0,ncols): axes[i].axvline(x=200, linewidth=2, linestyle='--', color='green', label='First rescaling') axes[i].axvline(x=equlibrium, linewidth=2, linestyle='--', color='black', label='Equilibrium') axes[i].set_title('Simulation\'s index: md' + str(i+1), fontsize=titlesize) axes[i].set_xlabel('Steps [n]', fontsize=axislabelsize) axes[i].set_ylabel('Temperature [K]', fontsize=axislabelsize) axes[i].tick_params(axis='both', which='major', labelsize=axislabelsize-3) axes[i].yaxis.get_offset_text().set_size(15) axes[0].plot([i for i in range(0,len(Temperature_1))], Temperature_1, color='red') axes[1].plot([i for i in range(0,len(Temperature_2))], Temperature_2, color='orange') axes[2].plot([i for i in range(0,len(Temperature_3))], Temperature_3, color='purple') for i in range(0,ncols): axes[i].legend(loc='upper right', fontsize=17) fig.tight_layout() plt.savefig(image_path_others + 'instantaneous_temperatures_' + str(int(n/1000)) + '.' + image_format, format=image_format, dpi=image_dpi, bbox_inches='tight') plt.show() nrows=1 ncols=3 fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(ncols*7,nrows*7)) titlesize = 23 axislabelsize = 20 for i in range(0,ncols): axes[i].set_title('Simulation\'s index: md' + str(i+1), fontsize=titlesize) axes[i].set_xlabel('Steps [n]', fontsize=axislabelsize) axes[i].set_ylabel('Temperature [K]', fontsize=axislabelsize) axes[i].tick_params(axis='both', which='major', labelsize=axislabelsize-3) axes[i].yaxis.get_offset_text().set_size(15) axes[0].plot([i for i in range(equlibrium,len(Temperature_1))], Temperature_1[equlibrium:], color='red') axes[1].plot([i for i in range(equlibrium,len(Temperature_2))], Temperature_2[equlibrium:], color='orange') axes[2].plot([i for i in range(equlibrium,len(Temperature_3))], Temperature_3[equlibrium:], color='purple') fig.tight_layout() plt.savefig(image_path_others + 'instantaneous_temperatures_equi_' + str(int(n/1000)) + '.' + image_format, format=image_format, dpi=image_dpi, bbox_inches='tight') plt.show() ###Output _____no_output_____ ###Markdown Total energy ###Code nrows=1 ncols=3 fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(ncols*7,nrows*7)) titlesize = 23 axislabelsize = 20 for i in range(0,ncols): axes[i].axvline(x=200, linewidth=2, linestyle='--', color='green', label='First rescaling') axes[i].axvline(x=equlibrium, linewidth=2, linestyle='--', color='black', label='Equilibrium') axes[i].set_title('Simulation\'s index: md' + str(i+1), fontsize=titlesize) axes[i].set_xlabel('Steps [n]', fontsize=axislabelsize) axes[i].set_ylabel('Total energy [J]', fontsize=axislabelsize) axes[i].tick_params(axis='both', which='major', labelsize=axislabelsize-3) axes[i].yaxis.get_offset_text().set_size(15) axes[0].plot([i for i in range(0,len(Energy_1))], Energy_1, color='red') axes[1].plot([i for i in range(0,len(Energy_1))], Energy_2, color='orange') axes[2].plot([i for i in range(0,len(Energy_1))], Energy_3, color='purple') for i in range(0,ncols): axes[i].legend(loc='upper right', fontsize=17) fig.tight_layout() plt.savefig(image_path_others + 'total_energy_' + str(int(n/1000)) + '.' + image_format, format=image_format, dpi=image_dpi, bbox_inches='tight') plt.show() nrows=1 ncols=3 fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(ncols*7,nrows*7)) titlesize = 23 axislabelsize = 20 for i in range(0,ncols): axes[i].set_title('Simulation\'s index: md' + str(i+1), fontsize=titlesize) axes[i].set_xlabel('Steps [n]', fontsize=axislabelsize) axes[i].set_ylabel('Total energy [J]', fontsize=axislabelsize) axes[i].tick_params(axis='both', which='major', labelsize=axislabelsize-3) axes[i].yaxis.get_offset_text().set_size(15) axes[0].plot([i for i in range(equlibrium,len(Energy_1))], Energy_1[equlibrium:], color='red') axes[1].plot([i for i in range(equlibrium,len(Energy_2))], Energy_2[equlibrium:], color='orange') axes[2].plot([i for i in range(equlibrium,len(Energy_3))], Energy_3[equlibrium:], color='purple') fig.tight_layout() plt.savefig(image_path_others + 'total_energy_equi_' + str(int(n/1000)) + '.' + image_format, format=image_format, dpi=image_dpi, bbox_inches='tight') plt.show() ###Output _____no_output_____ ###Markdown Total work ###Code nrows=1 ncols=3 fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(ncols*7,nrows*7)) titlesize = 23 axislabelsize = 20 for i in range(0,ncols): axes[i].axvline(x=200, linewidth=2, linestyle='--', color='green', label='First rescaling') axes[i].axvline(x=equlibrium, linewidth=2, linestyle='--', color='black', label='Equilibrium') axes[i].set_title('Simulation\'s index: md' + str(i+1), fontsize=titlesize) axes[i].set_xlabel('Steps [n]', fontsize=axislabelsize) axes[i].set_ylabel('Current work [J]', fontsize=axislabelsize) axes[i].tick_params(axis='both', which='major', labelsize=axislabelsize-3) axes[i].yaxis.get_offset_text().set_size(15) axes[0].plot(Virial_1, color='red') axes[1].plot(Virial_2, color='orange') axes[2].plot(Virial_3, color='purple') for i in range(0,ncols): axes[i].legend(loc='upper right', fontsize=17) fig.tight_layout() plt.savefig(image_path_others + 'virial_' + str(int(n/1000)) + '.' + image_format, format=image_format, dpi=image_dpi, bbox_inches='tight') plt.show() nrows=1 ncols=3 fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(ncols*7,nrows*7)) titlesize = 23 axislabelsize = 20 for i in range(0,ncols): axes[i].set_title('Simulation\'s index: md' + str(i+1), fontsize=titlesize) axes[i].set_xlabel('Steps [n]', fontsize=axislabelsize) axes[i].set_ylabel('Current work [J]', fontsize=axislabelsize) axes[i].tick_params(axis='both', which='major', labelsize=axislabelsize-3) axes[i].yaxis.get_offset_text().set_size(15) axes[0].plot([i for i in range(equlibrium,len(Virial_1))], Virial_1[equlibrium:], color='red') axes[1].plot([i for i in range(equlibrium,len(Virial_2))], Virial_2[equlibrium:], color='orange') axes[2].plot([i for i in range(equlibrium,len(Virial_3))], Virial_3[equlibrium:], color='purple') fig.tight_layout() plt.savefig(image_path_others + 'virial_equi_' + str(int(n/1000)) + '.' + image_format, format=image_format, dpi=image_dpi, bbox_inches='tight') plt.show() ###Output _____no_output_____ ###Markdown Calculations for $$, $$, $C_V$, $Z$ ###Code E_expected_1 = np.mean(Energy_1[equlibrium::]) E_expected_2 = np.mean(Energy_2[equlibrium::]) E_expected_3 = np.mean(Energy_3[equlibrium::]) E_expected_squared_1 = E_expected_1**2 E_expected_squared_2 = E_expected_2**2 E_expected_squared_3 = E_expected_3**2 E2_expected_1 = np.mean(np.square(Energy_1[equlibrium::])) E2_expected_2 = np.mean(np.square(Energy_2[equlibrium::])) E2_expected_3 = np.mean(np.square(Energy_3[equlibrium::])) E_oscillation_1 = E2_expected_1 - E_expected_squared_1 E_oscillation_2 = E2_expected_2 - E_expected_squared_2 E_oscillation_3 = E2_expected_3 - E_expected_squared_3 print('Expected value for first simulation: {0}'.format(E_expected_1)) print('Expected value for second simulation: {0}'.format(E_expected_2)) print('Expected value for third simulation: {0}'.format(E_expected_3)) print('\n') print('Square of expected value for first simulation: {0}'.format(E_expected_squared_1)) print('Square of expected value for second simulation: {0}'.format(E_expected_squared_2)) print('Square of expected value for third simulation: {0}'.format(E_expected_squared_3)) print('\n') print('Expected value for first simulation: {0}'.format(E2_expected_1)) print('Expected value for second simulation: {0}'.format(E2_expected_2)) print('Expected value for third simulation: {0}'.format(E2_expected_3)) print('\n') print('Oscillation of energy in equilibrium (md1): {0}'.format(E_oscillation_1)) print('Oscillation of energy in equilibrium (md2): {0}'.format(E_oscillation_2)) print('Oscillation of energy in equilibrium (md3): {0}'.format(E_oscillation_3)) ###Output _____no_output_____ ###Markdown Propagation of means ###Code E_expected_propag_1 = np.array([np.mean(Energy_1[equlibrium:i+1]) for i in range(equlibrium, len(Energy_1))]) E_expected_propag_2 = np.array([np.mean(Energy_2[equlibrium:i+1]) for i in range(equlibrium, len(Energy_2))]) E_expected_propag_3 = np.array([np.mean(Energy_3[equlibrium:i+1]) for i in range(equlibrium, len(Energy_3))]) nrows=1 ncols=3 fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(ncols*7,nrows*7)) titlesize = 23 axislabelsize = 20 for i in range(0,ncols): axes[i].set_title('Simulation\'s index: md' + str(i+1), fontsize=titlesize) axes[i].set_xlabel('Steps [n]', fontsize=axislabelsize) axes[i].set_ylabel('Propagation of mean energy ($\\left< E \\right>$) [J]', fontsize=axislabelsize) axes[i].tick_params(axis='both', which='major', labelsize=axislabelsize-3) axes[i].yaxis.get_offset_text().set_size(15) axes[0].plot([i for i in range(equlibrium, len(E_expected_propag_1)+equlibrium)], E_expected_propag_1, color='red') axes[1].plot([i for i in range(equlibrium, len(E_expected_propag_2)+equlibrium)], E_expected_propag_2, color='orange') axes[2].plot([i for i in range(equlibrium, len(E_expected_propag_3)+equlibrium)], E_expected_propag_3, color='purple') axes[0].axhline(y=E_expected_propag_1[-1], linewidth=2, linestyle='--', color='green', label='Best value of $< E >$ = {0:.2f}'.format(E_expected_propag_1[-1])) axes[1].axhline(y=E_expected_propag_2[-1], linewidth=2, linestyle='--', color='green', label='Best value of $< E >$ = {0:.2f}'.format(E_expected_propag_2[-1])) axes[2].axhline(y=E_expected_propag_3[-1], linewidth=2, linestyle='--', color='green', label='Best value of $< E >$ = {0:.2f}'.format(E_expected_propag_3[-1])) for i in range(0,ncols): axes[i].legend(loc='upper right', fontsize=17) fig.tight_layout() plt.savefig(image_path_others + 'energy_propag_' + str(int(n/1000)) + '.' + image_format, format=image_format, dpi=image_dpi, bbox_inches='tight') plt.show() E2_expected_propag_1 = np.array([np.mean(np.square(Energy_1[equlibrium:i+1])) for i in range(equlibrium, len(Energy_1))]) E2_expected_propag_2 = np.array([np.mean(np.square(Energy_2[equlibrium:i+1])) for i in range(equlibrium, len(Energy_2))]) E2_expected_propag_3 = np.array([np.mean(np.square(Energy_3[equlibrium:i+1])) for i in range(equlibrium, len(Energy_3))]) nrows=1 ncols=3 fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(ncols*7,nrows*7)) titlesize = 23 axislabelsize = 20 for i in range(0,ncols): axes[i].set_title('Simulation\'s index: md' + str(i+1), fontsize=titlesize) axes[i].set_xlabel('Steps [n]', fontsize=axislabelsize) axes[i].set_ylabel('Propagation of mean energy squared ($\\left< E^{2} \\right>$) [J$^{2}$]', fontsize=axislabelsize) axes[i].tick_params(axis='both', which='major', labelsize=axislabelsize-3) axes[i].yaxis.get_offset_text().set_size(15) axes[0].plot([i for i in range(equlibrium, len(Energy_1))], E2_expected_propag_1, color='red') axes[1].plot([i for i in range(equlibrium, len(Energy_2))], E2_expected_propag_2, color='orange') axes[2].plot([i for i in range(equlibrium, len(Energy_3))], E2_expected_propag_3, color='purple') axes[0].axhline(y=E2_expected_propag_1[-1], linewidth=2, linestyle='--', color='green', label='Best value of $< E^2 >$ = {0:.2f}'.format(E2_expected_propag_1[-1])) axes[1].axhline(y=E2_expected_propag_2[-1], linewidth=2, linestyle='--', color='green', label='Best value of $< E^2 >$ = {0:.2f}'.format(E2_expected_propag_2[-1])) axes[2].axhline(y=E2_expected_propag_3[-1], linewidth=2, linestyle='--', color='green', label='Best value of $< E^2 >$ = {0:.2f}'.format(E2_expected_propag_3[-1])) for i in range(0,ncols): axes[i].legend(loc='upper right', fontsize=17) fig.tight_layout() plt.savefig(image_path_others + 'energy2_propag_' + str(int(n/1000)) + '.' + image_format, format=image_format, dpi=image_dpi, bbox_inches='tight') plt.show() E_oscillation_1 = E2_expected_propag_1 - E_expected_propag_1**2 E_oscillation_2 = E2_expected_propag_2 - E_expected_propag_2**2 E_oscillation_3 = E2_expected_propag_3 - E_expected_propag_3**2 nrows=1 ncols=3 fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(ncols*7,nrows*7)) titlesize = 23 axislabelsize = 20 for i in range(0,ncols): axes[i].set_title('Simulation\'s index: md' + str(i+1), fontsize=titlesize) axes[i].set_xlabel('Steps [n]', fontsize=axislabelsize) axes[i].set_ylabel('Propagation of mean energy squared\n($\\left< E^{2} \\right> - \\left< E \\right>^{2}$) [J$^{2}$]', fontsize=axislabelsize) axes[i].tick_params(axis='both', which='major', labelsize=axislabelsize-3) axes[i].yaxis.get_offset_text().set_size(15) axes[0].plot([i for i in range(equlibrium, len(Energy_1))], E_oscillation_1, color='red') axes[1].plot([i for i in range(equlibrium, len(Energy_2))], E_oscillation_2, color='orange') axes[2].plot([i for i in range(equlibrium, len(Energy_3))], E_oscillation_3, color='purple') axes[0].axhline(y=E_oscillation_1[-1], linewidth=2, linestyle='--', color='green', label='Best value of $\sigma^2$ = {0:.2f}'.format(E_oscillation_1[-1])) axes[1].axhline(y=E_oscillation_2[-1], linewidth=2, linestyle='--', color='green', label='Best value of $\sigma^2$ = {0:.2f}'.format(E_oscillation_2[-1])) axes[2].axhline(y=E_oscillation_3[-1], linewidth=2, linestyle='--', color='green', label='Best value of $\sigma^2$ = {0:.2f}'.format(E_oscillation_3[-1])) for i in range(0,ncols): axes[i].legend(loc='lower right', fontsize=20) fig.tight_layout() plt.savefig(image_path_others + 'energy_oscill_' + str(int(n/1000)) + '.' + image_format, format=image_format, dpi=image_dpi, bbox_inches='tight') plt.show() ###Output _____no_output_____ ###Markdown Heat capacityDimension:$$[C_{V}]=\left[ \frac{1}{k_{B} T^{2}} \cdot \left( \left - \left^{2} \right) \right]=\frac{1}{\frac{J}{K} \cdot K^{2}} \cdot J^{2}=\frac{J}{K}$$For argon gas it's$$12.76\ \frac{J}{mol \cdot K}$$ ###Code molar_heat_cap_1 = E_oscillation_1 * (1/(k_B * Temperature_1[equlibrium::] * Temperature_1[equlibrium::])) / N_A molar_heat_cap_2 = E_oscillation_2 * (1/(k_B * Temperature_2[equlibrium::] * Temperature_2[equlibrium::])) / N_A molar_heat_cap_3 = E_oscillation_3 * (1/(k_B * Temperature_3[equlibrium::] * Temperature_3[equlibrium::])) / N_A nrows=1 ncols=3 fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(ncols*7,nrows*7)) titlesize = 23 axislabelsize = 20 for i in range(0,ncols): axes[i].set_title('Simulation\'s index: md' + str(i+1), fontsize=titlesize) axes[i].set_xlabel('Steps [n]', fontsize=axislabelsize) axes[i].set_ylabel('$C_{v}$ [$\\frac{J}{mol \cdot K}$]', fontsize=axislabelsize) axes[i].tick_params(axis='both', which='major', labelsize=axislabelsize-3) axes[i].yaxis.get_offset_text().set_size(15) axes[0].plot([i for i in range(equlibrium, len(Energy_1))], molar_heat_cap_1, color='red') axes[1].plot([i for i in range(equlibrium, len(Energy_2))], molar_heat_cap_2, color='orange') axes[2].plot([i for i in range(equlibrium, len(Energy_3))], molar_heat_cap_3, color='purple') axes[0].axhline(y=molar_heat_cap_1[-1], linewidth=2, linestyle='--', color='green', label='Best value of C$_V$ = {0:.2f}'.format(molar_heat_cap_1[-1])) axes[1].axhline(y=molar_heat_cap_2[-1], linewidth=2, linestyle='--', color='green', label='Best value of C$_V$ = {0:.2f}'.format(molar_heat_cap_2[-1])) axes[2].axhline(y=molar_heat_cap_3[-1], linewidth=2, linestyle='--', color='green', label='Best value of C$_V$ = {0:.2f}'.format(molar_heat_cap_3[-1])) for i in range(0,ncols): axes[i].legend(loc='lower right', fontsize=20) fig.tight_layout() plt.savefig(image_path_others + 'heat_capacity_propag_' + str(int(n/1000)) + '.' + image_format, format=image_format, dpi=image_dpi, bbox_inches='tight') plt.show() ###Output _____no_output_____ ###Markdown Pressure ###Code PV_exp_1 = np.array([np.mean(Virial_1[equlibrium:i+1]) for i in range(equlibrium, len(Virial_1))]) PV_exp_2 = np.array([np.mean(Virial_2[equlibrium:i+1]) for i in range(equlibrium, len(Virial_2))]) PV_exp_3 = np.array([np.mean(Virial_3[equlibrium:i+1]) for i in range(equlibrium, len(Virial_3))]) PV_1 = N * k_B * Temperature_1[equlibrium:] + 1/3 * PV_exp_1 PV_2 = N * k_B * Temperature_2[equlibrium:] + 1/3 * PV_exp_2 PV_3 = N * k_B * Temperature_3[equlibrium:] + 1/3 * PV_exp_3 nrows=1 ncols=3 fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(ncols*7,nrows*7)) titlesize = 23 axislabelsize = 20 for i in range(0,ncols): axes[i].set_title('Simulation\'s index: md' + str(i+1), fontsize=titlesize) axes[i].set_xlabel('Steps [n]', fontsize=axislabelsize) axes[i].set_ylabel('Pressure $\cdot$ Volume [Pa $\cdot$ m$^3$]', fontsize=axislabelsize) axes[i].tick_params(axis='both', which='major', labelsize=axislabelsize-3) axes[i].yaxis.get_offset_text().set_size(15) axes[0].plot([i for i in range(equlibrium, len(Energy_1))], PV_1, color='red') axes[1].plot([i for i in range(equlibrium, len(Energy_2))], PV_2, color='orange') axes[2].plot([i for i in range(equlibrium, len(Energy_3))], PV_3, color='purple') axes[0].axhline(y=PV_1[-1], linewidth=2, linestyle='--', color='green', label='Best value of PV = {0:.2f}'.format(PV_1[-1])) axes[1].axhline(y=PV_2[-1], linewidth=2, linestyle='--', color='green', label='Best value of PV = {0:.2f}'.format(PV_2[-1])) axes[2].axhline(y=PV_3[-1], linewidth=2, linestyle='--', color='green', label='Best value of PV = {0:.2f}'.format(PV_3[-1])) for i in range(0,ncols): axes[i].legend(loc='lower right', fontsize=20) fig.tight_layout() plt.savefig(image_path_others + 'PV_' + str(int(n/1000)) + '.' + image_format, format=image_format, dpi=image_dpi, bbox_inches='tight') plt.show() ###Output _____no_output_____ ###Markdown Compressibility factor Dimension:$$[Z]=\left[ \frac{PV}{N k_{B} T} \right]=\frac{\frac{\text{kg}}{\text{m}\ \text{s}^{2}} \text{m}^{3}}{1 \frac{\text{J}}{\text{K}} \text{K}}=\frac{\frac{\text{kg}}{\text{m}\ \text{s}^{2}} \text{m}^{3}}{\frac{\text{kg}\ \text{m}^{2}}{\text{s}^{2}}}=\frac{\text{m}^{2}}{\text{m}^{2}}=1$$ ###Code Z_1 = PV_1 / (N * k_B * Temperature_1[equlibrium:] * N_A) Z_2 = PV_2 / (N * k_B * Temperature_2[equlibrium:] * N_A) Z_3 = PV_3 / (N * k_B * Temperature_3[equlibrium:] * N_A) nrows=1 ncols=3 fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(ncols*7,nrows*7)) titlesize = 23 axislabelsize = 20 for i in range(0,ncols): axes[i].set_title('Simulation\'s index: md' + str(i+1), fontsize=titlesize) axes[i].set_xlabel('Steps [n]', fontsize=axislabelsize) axes[i].set_ylabel('Compressibility factor', fontsize=axislabelsize) axes[i].tick_params(axis='both', which='major', labelsize=axislabelsize-3) axes[i].yaxis.get_offset_text().set_size(15) axes[0].plot([i for i in range(equlibrium, len(Energy_1))], Z_1, color='red') axes[1].plot([i for i in range(equlibrium, len(Energy_1))], Z_2, color='orange') axes[2].plot([i for i in range(equlibrium, len(Energy_1))], Z_3, color='purple') axes[0].axhline(y=Z_1[-1], linewidth=2, linestyle='--', color='green', label='Best value of Z = {0:.2f}'.format(Z_1[-1])) axes[1].axhline(y=Z_2[-1], linewidth=2, linestyle='--', color='green', label='Best value of Z = {0:.2f}'.format(Z_2[-1])) axes[2].axhline(y=Z_3[-1], linewidth=2, linestyle='--', color='green', label='Best value of Z = {0:.2f}'.format(Z_3[-1])) for i in range(0,ncols): axes[i].legend(loc='lower right', fontsize=20) fig.tight_layout() plt.savefig(image_path_others + 'Z_' + str(int(n/1000)) + '.' + image_format, format=image_format, dpi=image_dpi, bbox_inches='tight') plt.show() ###Output _____no_output_____ ###Markdown Don't run ###Code nrows=1 ncols=3 fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(ncols*7,nrows*7)) titlesize = 23 axislabelsize = 20 for i in range(0,ncols): axes[i].set_title('Simulation\'s index: md' + str(i+1), fontsize=titlesize) axes[i].set_xlabel('Steps [n]', fontsize=axislabelsize) axes[i].set_ylabel('Compressibility factor', fontsize=axislabelsize) axes[i].tick_params(axis='both', which='major', labelsize=axislabelsize-3) axes[i].yaxis.get_offset_text().set_size(15) for i in range(0,10): color = np.array([random.random(), random.random(), random.random()]) N = i * 8 + 64 os.system('..\Release\md1.exe' + ' ' + 'bounded' + ' ' + str(n) + ' ' + str(N) + ' ' + str(T)) data_set_1 = np.genfromtxt('md1.dat') current_mode = mode_choose2(file='..\Release\md2.exe', mode='bounded', n=n, N=N, rho=0.95, T=1.0) os.system(current_mode) data_set_2 = np.genfromtxt('md2.dat') current_mode = mode_choose3(file='..\Release\md3.exe', mode='bounded', n=n, N=N, rho=0.95, T=1.0, rCutOff=2.5, rMax=3.2, updateInterval=10) os.system(current_mode) data_set_3 = np.genfromtxt('md3.dat') axes[0].plot(data_set_1[::steps,-2], color=color) axes[1].plot(data_set_2[::steps,-2], color=color) axes[2].plot(data_set_3[::steps,-2], color=color) fig.tight_layout() plt.savefig(image_path_others + 'Z_particles_' + str(int(n/1000)) + '.' + image_format, format=image_format, dpi=image_dpi, bbox_inches='tight') plt.show() ###Output _____no_output_____ ###Markdown Plot coordinates, velocities and accelerations MD1 ###Code nrows=1 ncols=3 fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(ncols*20,nrows*20), subplot_kw={'projection': '3d'}) axislabelsize = 30 labelpad = 20 axes[0].set_xlim(0,10) axes[0].set_ylim(0,10) axes[0].set_zlim(0,10) axes[0].set_xlabel('Distance (X)', fontsize=axislabelsize, labelpad=labelpad) axes[0].set_ylabel('Distance (Y)', fontsize=axislabelsize, labelpad=labelpad) axes[0].set_zlabel('Distance (Z)', fontsize=axislabelsize, labelpad=labelpad) axes[1].set_xlabel('Velocity (V_X)', fontsize=axislabelsize, labelpad=labelpad) axes[1].set_ylabel('Velocity (V_Y)', fontsize=axislabelsize, labelpad=labelpad) axes[1].set_zlabel('Velocity (V_Z)', fontsize=axislabelsize, labelpad=labelpad) axes[2].set_xlabel('Acceleration (A_X)', fontsize=axislabelsize, labelpad=labelpad) axes[2].set_ylabel('Acceleration (A_Y)', fontsize=axislabelsize, labelpad=labelpad) axes[2].set_zlabel('Acceleration (A_Z)', fontsize=axislabelsize, labelpad=labelpad) axes[0].tick_params(axis='both', which='major', labelsize=axislabelsize) axes[1].tick_params(axis='both', which='major', labelsize=axislabelsize) axes[2].tick_params(axis='both', which='major', labelsize=axislabelsize) for i in range(0, (data_set_1.shape[1]-1)//9): axes[0].scatter(data_set_1[::steps,i*9], data_set_1[::steps,i*9+1], data_set_1[::steps,i*9+2]) axes[1].scatter(data_set_1[::steps,i*9+3], data_set_1[::steps,i*9+4], data_set_1[::steps,i*9+5]) axes[2].scatter(data_set_1[::steps,i*9+6], data_set_1[::steps,i*9+7], data_set_1[::steps,i*9+8]) axes[0].scatter(data_set_1[::steps,i*9][-1], data_set_1[::steps,i*9+1][-1], data_set_1[::steps,i*9+2][-1], color='red', s=200) fig.tight_layout() plt.savefig(image_path_trajectories + 'md1_trajectories' + '.' + image_format, format=image_format, dpi=image_dpi, bbox_inches='tight') plt.savefig(image_path_trajectories + 'md1_trajectories' + '.' + 'png', format='png', dpi=image_dpi, bbox_inches='tight') plt.show() nrows=1 ncols=2 fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(ncols*20,nrows*20), subplot_kw={'projection': '3d'}) axislabelsize = 30 labelpad = 20 axes[0].set_xlabel('Distance (X)', fontsize=axislabelsize, labelpad=labelpad) axes[0].set_ylabel('Distance (Y)', fontsize=axislabelsize, labelpad=labelpad) axes[0].set_zlabel('Distance (Z)', fontsize=axislabelsize, labelpad=labelpad) axes[1].set_xlabel('Distance (X)', fontsize=axislabelsize, labelpad=labelpad) axes[1].set_ylabel('Distance (Y)', fontsize=axislabelsize, labelpad=labelpad) axes[1].set_zlabel('Distance (Z)', fontsize=axislabelsize, labelpad=labelpad) axes[0].tick_params(axis='both', which='major', labelsize=axislabelsize) axes[1].tick_params(axis='both', which='major', labelsize=axislabelsize) for i in range(0, (data_set_1.shape[1]-1)//9): color = np.array([random.random(), random.random(), random.random()]) axes[0].plot(data_set_1[::steps,i*9], data_set_1[::steps,i*9+1], data_set_1[::steps,i*9+2], color=color, lw=3) axes[1].scatter(data_set_1[::steps,i*9], data_set_1[::steps,i*9+1], data_set_1[::steps,i*9+2], color=color, s=20) axes[0].scatter(data_set_1[::steps,i*9][-1], data_set_1[::steps,i*9+1][-1], data_set_1[::steps,i*9+2][-1], color='red', s=200) axes[1].scatter(data_set_1[::steps,i*9][-1], data_set_1[::steps,i*9+1][-1], data_set_1[::steps,i*9+2][-1], color='red', s=200) fig.tight_layout() plt.savefig(image_path_trajectories + 'md1_trajectories_compare' + '.' + image_format, format=image_format, dpi=image_dpi, bbox_inches='tight') plt.savefig(image_path_trajectories + 'md1_trajectories_compare' + '.' + 'png', format='png', dpi=image_dpi, bbox_inches='tight') plt.show() nrows=4 ncols=5 fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(ncols*10,nrows*10)) axislabelsize = 18 for i in range(0,nrows): for j in range(0,ncols): p = int((i*nrows + j) * (len(data_set_1) / (nrows*ncols))) velocities = np.array([np.sqrt(data_set_1[::steps][p][k*9]**2 + data_set_1[::steps][p][k*9+1]**2 + data_set_1[::steps][p][k*9+2]**2) for k in range(0, (data_set_1.shape[1]-1)//9)]) sns.distplot(velocities, ax=axes[i][j]) axes[i][j].set_xlabel('Velocities', fontsize=axislabelsize+10) axes[i][j].tick_params(axis='both', which='major', labelsize=axislabelsize) fig.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown MD2 ###Code nrows=1 ncols=3 fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(ncols*20,nrows*20), subplot_kw={'projection': '3d'}) axislabelsize = 30 labelpad = 20 axes[0].set_xlabel('Distance (X)', fontsize=axislabelsize, labelpad=labelpad) axes[0].set_ylabel('Distance (Y)', fontsize=axislabelsize, labelpad=labelpad) axes[0].set_zlabel('Distance (Z)', fontsize=axislabelsize, labelpad=labelpad) axes[1].set_xlabel('Velocity (V_X)', fontsize=axislabelsize, labelpad=labelpad) axes[1].set_ylabel('Velocity (V_Y)', fontsize=axislabelsize, labelpad=labelpad) axes[1].set_zlabel('Velocity (V_Z)', fontsize=axislabelsize, labelpad=labelpad) axes[2].set_xlabel('Acceleration (A_X)', fontsize=axislabelsize, labelpad=labelpad) axes[2].set_ylabel('Acceleration (A_Y)', fontsize=axislabelsize, labelpad=labelpad) axes[2].set_zlabel('Acceleration (A_Z)', fontsize=axislabelsize, labelpad=labelpad) axes[0].tick_params(axis='both', which='major', labelsize=axislabelsize) axes[1].tick_params(axis='both', which='major', labelsize=axislabelsize) axes[2].tick_params(axis='both', which='major', labelsize=axislabelsize) for i in range(0, (data_set_2.shape[1]-1)//9): axes[0].scatter(data_set_2[::steps,i*9], data_set_2[::steps,i*9+1], data_set_2[::steps,i*9+2]) axes[1].scatter(data_set_2[::steps,i*9+3], data_set_2[::steps,i*9+4], data_set_2[::steps,i*9+5]) axes[2].scatter(data_set_2[::steps,i*9+6], data_set_2[::steps,i*9+7], data_set_2[::steps,i*9+8]) axes[0].scatter(data_set_2[::steps,i*9][-1], data_set_2[::steps,i*9+1][-1], data_set_2[::steps,i*9+2][-1], color='red', s=200) fig.tight_layout() plt.savefig(image_path_trajectories + 'md2_trajectories' + '.' + image_format, format=image_format, dpi=image_dpi, bbox_inches='tight') plt.savefig(image_path_trajectories + 'md2_trajectories' + '.' + 'png', format='png', dpi=image_dpi, bbox_inches='tight') plt.show() nrows=1 ncols=2 fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(ncols*20,nrows*20), subplot_kw={'projection': '3d'}) axislabelsize = 30 labelpad = 20 axes[0].set_xlabel('Distance (X)', fontsize=axislabelsize, labelpad=labelpad) axes[0].set_ylabel('Distance (Y)', fontsize=axislabelsize, labelpad=labelpad) axes[0].set_zlabel('Distance (Z)', fontsize=axislabelsize, labelpad=labelpad) axes[1].set_xlabel('Distance (X)', fontsize=axislabelsize, labelpad=labelpad) axes[1].set_ylabel('Distance (Y)', fontsize=axislabelsize, labelpad=labelpad) axes[1].set_zlabel('Distance (Z)', fontsize=axislabelsize, labelpad=labelpad) axes[0].tick_params(axis='both', which='major', labelsize=axislabelsize) axes[1].tick_params(axis='both', which='major', labelsize=axislabelsize) for i in range(0, (data_set_2.shape[1]-1)//9): color = np.array([random.random(), random.random(), random.random()]) axes[0].plot(data_set_2[::steps,i*9], data_set_2[::steps,i*9+1], data_set_2[::steps,i*9+2], color=color, lw=3) axes[1].scatter(data_set_2[::steps,i*9], data_set_2[::steps,i*9+1], data_set_2[::steps,i*9+2], color=color, s=20) axes[0].scatter(data_set_2[::steps,i*9][-1], data_set_2[::steps,i*9+1][-1], data_set_2[::steps,i*9+2][-1], color='red', s=200) axes[1].scatter(data_set_2[::steps,i*9][-1], data_set_2[::steps,i*9+1][-1], data_set_2[::steps,i*9+2][-1], color='red', s=200) fig.tight_layout() plt.savefig(image_path_trajectories + 'md2_trajectories_compare' + '.' + image_format, format=image_format, dpi=image_dpi, bbox_inches='tight') plt.savefig(image_path_trajectories + 'md2_trajectories_compare' + '.' + 'png', format='png', dpi=image_dpi, bbox_inches='tight') plt.show() nrows=4 ncols=5 fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(ncols*10,nrows*10)) axislabelsize = 18 for i in range(0,nrows): for j in range(0,ncols): p = int((i*nrows + j) * (len(data_set_2) / (nrows*ncols))) velocities = np.array([np.sqrt(data_set_2[::steps][p][k*9]**2 + data_set_2[::steps][p][k*9+1]**2 + data_set_2[::steps][p][k*9+2]**2) for k in range(0, (data_set_2.shape[1]-1)//9)]) sns.distplot(velocities, ax=axes[i][j]) axes[i][j].set_xlabel('Velocities', fontsize=axislabelsize+10) axes[i][j].tick_params(axis='both', which='major', labelsize=axislabelsize) fig.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown MD3 ###Code nrows=1 ncols=3 fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(ncols*20,nrows*20), subplot_kw={'projection': '3d'}) axislabelsize = 30 labelpad = 20 axes[0].set_xlabel('Distance (X)', fontsize=axislabelsize, labelpad=labelpad) axes[0].set_ylabel('Distance (Y)', fontsize=axislabelsize, labelpad=labelpad) axes[0].set_zlabel('Distance (Z)', fontsize=axislabelsize, labelpad=labelpad) axes[1].set_xlabel('Velocity (V_X)', fontsize=axislabelsize, labelpad=labelpad) axes[1].set_ylabel('Velocity (V_Y)', fontsize=axislabelsize, labelpad=labelpad) axes[1].set_zlabel('Velocity (V_Z)', fontsize=axislabelsize, labelpad=labelpad) axes[2].set_xlabel('Acceleration (A_X)', fontsize=axislabelsize, labelpad=labelpad) axes[2].set_ylabel('Acceleration (A_Y)', fontsize=axislabelsize, labelpad=labelpad) axes[2].set_zlabel('Acceleration (A_Z)', fontsize=axislabelsize, labelpad=labelpad) axes[0].tick_params(axis='both', which='major', labelsize=axislabelsize) axes[1].tick_params(axis='both', which='major', labelsize=axislabelsize) axes[2].tick_params(axis='both', which='major', labelsize=axislabelsize) for i in range(0, (data_set_3.shape[1]-1)//9): color = np.array([random.random(), random.random(), random.random()]) axes[0].scatter(data_set_3[::steps,i*9], data_set_3[::steps,i*9+1], data_set_3[::steps,i*9+2], color=color) axes[1].scatter(data_set_3[::steps,i*9+3], data_set_3[::steps,i*9+4], data_set_3[::steps,i*9+5], color=color) axes[2].scatter(data_set_3[::steps,i*9+6], data_set_3[::steps,i*9+7], data_set_3[::steps,i*9+8], color=color) for i in range(0, (data_set_3.shape[1]-1)//9): axes[0].scatter(data_set_3[::steps,i*9][-1], data_set_3[::steps,i*9+1][-1], data_set_3[::steps,i*9+2][-1], color='grey', s=200) fig.tight_layout() plt.savefig(image_path_trajectories + 'md3_trajectories' + '.' + image_format, format=image_format, dpi=image_dpi, bbox_inches='tight') plt.savefig(image_path_trajectories + 'md3_trajectories' + '.' + 'png', format='png', dpi=image_dpi, bbox_inches='tight') plt.show() nrows=1 ncols=2 fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(ncols*20,nrows*20), subplot_kw={'projection': '3d'}) axislabelsize = 30 labelpad = 20 axes[0].set_xlabel('Distance (X)', fontsize=axislabelsize, labelpad=labelpad) axes[0].set_ylabel('Distance (Y)', fontsize=axislabelsize, labelpad=labelpad) axes[0].set_zlabel('Distance (Z)', fontsize=axislabelsize, labelpad=labelpad) axes[1].set_xlabel('Distance (X)', fontsize=axislabelsize, labelpad=labelpad) axes[1].set_ylabel('Distance (Y)', fontsize=axislabelsize, labelpad=labelpad) axes[1].set_zlabel('Distance (Z)', fontsize=axislabelsize, labelpad=labelpad) axes[0].tick_params(axis='both', which='major', labelsize=axislabelsize) axes[1].tick_params(axis='both', which='major', labelsize=axislabelsize) for i in range(0, (data_set_3.shape[1]-1)//9): color = np.array([random.random(), random.random(), random.random()]) axes[0].plot(data_set_3[::steps,i*9], data_set_3[::steps,i*9+1], data_set_3[::steps,i*9+2], color=color, lw=3) axes[0].scatter(data_set_3[::steps,i*9][-1], data_set_3[::steps,i*9+1][-1], data_set_3[::steps,i*9+2][-1], color='red', s=200) axes[1].scatter(data_set_3[::steps,i*9], data_set_3[::steps,i*9+1], data_set_3[::steps,i*9+2], color=color, s=10) axes[1].scatter(data_set_3[::steps,i*9][-1], data_set_3[::steps,i*9+1][-1], data_set_3[::steps,i*9+2][-1], color='red', s=200) fig.tight_layout() plt.savefig(image_path_trajectories + 'md3_trajectories_compare' + '.' + image_format, format=image_format, dpi=image_dpi, bbox_inches='tight') plt.savefig(image_path_trajectories + 'md3_trajectories_compare' + '.' + 'png', format='png', dpi=image_dpi, bbox_inches='tight') plt.show() nrows=4 ncols=5 fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(ncols*10,nrows*10)) axislabelsize = 18 for i in range(0,nrows): for j in range(0,ncols): p = int((i*nrows + j) * (len(data_set_3) / (nrows*ncols))) velocities = np.array([np.sqrt(data_set_3[::steps][p][k*9]**2 + data_set_3[::steps][p][k*9+1]**2 + data_set_3[::steps][p][k*9+2]**2) for k in range(0, (data_set_3.shape[1]-1)//9)]) sns.distplot(velocities, ax=axes[i][j]) axes[i][j].set_xlabel('Velocities', fontsize=axislabelsize+10) axes[i][j].tick_params(axis='both', which='major', labelsize=axislabelsize) fig.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown Differencies with various rCutOffs, rMax and updateIntervals ###Code runtimes = np.genfromtxt('runtimes.dat') nrows=1 ncols=3 fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(ncols*20,nrows*20), subplot_kw={'projection': '3d'}) axislabelsize = 30 labelpad = 20 axes[0].set_xlabel('rMax', fontsize=axislabelsize, labelpad=labelpad) axes[0].set_ylabel('updateIntervals [n]', fontsize=axislabelsize, labelpad=labelpad) axes[0].set_zlabel('Runtime [s]', fontsize=axislabelsize, labelpad=labelpad) axes[1].set_xlabel('rCutOff', fontsize=axislabelsize, labelpad=labelpad) axes[1].set_ylabel('updateIntervals [n]', fontsize=axislabelsize, labelpad=labelpad) axes[1].set_zlabel('Runtime [s]', fontsize=axislabelsize, labelpad=labelpad) axes[2].set_xlabel('rCutOff', fontsize=axislabelsize, labelpad=labelpad) axes[2].set_ylabel('rMax', fontsize=axislabelsize, labelpad=labelpad) axes[2].set_zlabel('Runtime [s]', fontsize=axislabelsize, labelpad=labelpad) for i in range(0, ncols): axes[i].tick_params(axis='both', which='major', labelsize=axislabelsize) for k in range(1, len(runtimes)): axes[0].scatter(runtimes[k][1], runtimes[k][2], runtimes[k][3]) axes[1].scatter(runtimes[k][0], runtimes[k][2], runtimes[k][3]) axes[2].scatter(runtimes[k][0], runtimes[k][1], runtimes[k][3]) fig.tight_layout() plt.savefig(image_path_others + 'runtime_full_md3' + '.' + image_format, format=image_format, dpi=image_dpi, bbox_inches='tight') plt.show() nrows=1 ncols=2 fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(ncols*20,nrows*12)) axislabelsize = 30 labelpad = 20 axes[0].set_xlabel('rMax', fontsize=axislabelsize+3, labelpad=labelpad) axes[0].set_ylabel('Runtime [s]', fontsize=axislabelsize+3, labelpad=labelpad) axes[1].set_xlabel('updateIntervals [n]', fontsize=axislabelsize+3, labelpad=labelpad) axes[1].set_ylabel('Runtime [s]', fontsize=axislabelsize+3, labelpad=labelpad) axes[0].tick_params(axis='both', which='major', labelsize=axislabelsize) axes[1].tick_params(axis='both', which='major', labelsize=axislabelsize) for k in range(1, len(runtimes)): axes[0].scatter(runtimes[k][1], runtimes[k][3]) axes[1].scatter(runtimes[k][2], runtimes[k][3]) fig.tight_layout() plt.savefig(image_path_others + 'runtime_rmax_update_md3' + '.' + image_format, format=image_format, dpi=image_dpi, bbox_inches='tight') plt.show() nrows=1 ncols=2 fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(ncols*20,nrows*12)) axislabelsize = 30 labelpad = 20 axes[0].set_xlabel('rCutOff', fontsize=axislabelsize+3, labelpad=labelpad) axes[0].set_ylabel('Runtime [s]', fontsize=axislabelsize+3, labelpad=labelpad) axes[1].set_xlabel('updateIntervals [n]', fontsize=axislabelsize+3, labelpad=labelpad) axes[1].set_ylabel('Runtime [s]', fontsize=axislabelsize+3, labelpad=labelpad) axes[0].tick_params(axis='both', which='major', labelsize=axislabelsize) axes[1].tick_params(axis='both', which='major', labelsize=axislabelsize) for k in range(1, len(runtimes)): axes[0].scatter(runtimes[k][0], runtimes[k][3]) axes[1].scatter(runtimes[k][2], runtimes[k][3]) fig.tight_layout() plt.savefig(image_path_others + 'runtime_rcutoff_update_md3' + '.' + image_format, format=image_format, dpi=image_dpi, bbox_inches='tight') plt.show() nrows=1 ncols=2 fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(ncols*20,nrows*12)) axislabelsize = 30 labelpad = 20 axes[0].set_xlabel('rCutOff', fontsize=axislabelsize+3, labelpad=labelpad) axes[0].set_ylabel('Runtime [s]', fontsize=axislabelsize+3, labelpad=labelpad) axes[1].set_xlabel('rMax', fontsize=axislabelsize+3, labelpad=labelpad) axes[1].set_ylabel('Runtime [s]', fontsize=axislabelsize+3, labelpad=labelpad) axes[0].tick_params(axis='both', which='major', labelsize=axislabelsize) axes[1].tick_params(axis='both', which='major', labelsize=axislabelsize) for k in range(1, len(runtimes)): axes[0].scatter(runtimes[k][0], runtimes[k][3]) axes[1].scatter(runtimes[k][1], runtimes[k][3]) fig.tight_layout() plt.savefig(image_path_others + 'runtime_rcutoff_rmax_md3' + '.' + image_format, format=image_format, dpi=image_dpi, bbox_inches='tight') plt.show() ###Output _____no_output_____
docs/docs/documentation/tutorials/1-Training_a_text_classifier.ipynb
###Markdown Training a short text classifier of German business names [View on recogn.ai](https://https://recognai.github.io/biome-text/master/documentation/tutorials/1-Training_a_text_classifier.html)[Run in Google Colab](https://colab.research.google.com/github/recognai/biome-text/blob/master/docs/docs/documentation/tutorials/1-Training_a_text_classifier.ipynb)[View source on GitHub](https://github.com/recognai/biome-text/blob/master/docs/docs/documentation/tutorials/1-Training_a_text_classifier.ipynb) When running this tutorial in Google Colab, make sure to install *biome.text* first: ###Code !pip install -U pip !pip install -U git+https://github.com/recognai/biome-text.git exit(0) # Force restart of the runtime ###Output _____no_output_____ ###Markdown *If* you want to log your runs with [WandB](https://wandb.ai/home), don't forget to install its client and log in. ###Code !pip install wandb !wandb login ###Output _____no_output_____ ###Markdown IntroductionIn this tutorial we will train a basic short-text classifier for predicting the sector of a business based only on its business name. For this we will use a training data set with business names and business categories in German. ImportsLet us first import all the stuff we need for this tutorial: ###Code from biome.text import Pipeline, Dataset, Trainer from biome.text.configuration import VocabularyConfiguration, WordFeatures, TrainerConfiguration ###Output _____no_output_____ ###Markdown Explore the training dataLet's take a look at the data we will use for training. For this we will use the [`Dataset`](https://recognai.github.io/biome-text/master/api/biome/text/dataset.htmldataset) class that is a very thin wrapper around HuggingFace's awesome [datasets.Dataset](https://huggingface.co/docs/datasets/master/package_reference/main_classes.htmldatasets.Dataset).We will download the data first to create `Dataset` instances.Apart from the training data we will also download an optional validation data set to estimate the generalization error. ###Code # Downloading the dataset first !curl -O https://biome-tutorials-data.s3-eu-west-1.amazonaws.com/text_classifier/business.cat.train.csv !curl -O https://biome-tutorials-data.s3-eu-west-1.amazonaws.com/text_classifier/business.cat.valid.csv # Loading from local train_ds = Dataset.from_csv("business.cat.train.csv") valid_ds = Dataset.from_csv("business.cat.valid.csv") ###Output _____no_output_____ ###Markdown Most of HuggingFace's `Dataset` API is exposed and you can checkout their nice [documentation](https://huggingface.co/docs/datasets/master/processing.html) on how to work with data in a `Dataset`. For example, let's quickly check the size of our training data and print the first 10 examples as a pandas DataFrame: ###Code len(train_ds) train_ds.head() ###Output _____no_output_____ ###Markdown As we can see we have two relevant columns *label* and *text*. Our classifier will be trained to predict the *label* given the *text*. ::: tip TipThe [TaskHead](https://recognai.github.io/biome-text/master/api/biome/text/modules/heads/task_head.htmltaskhead) of our model below will expect a *text* and a *label* column to be present in the `Dataset`. In our data set this is already the case, otherwise we would need to change or map the corresponding column names via `Dataset.rename_column_()` or `Dataset.map()`.::: We can also quickly check the distribution of our labels. Use `Dataset.head(None)` to return the complete data set as a pandas DataFrame: ###Code train_ds.head(None)["label"].value_counts() ###Output _____no_output_____ ###Markdown The `Dataset` class also provides access to Hugging Face's extensive NLP datasets collection via the `Dataset.load_dataset()` method. Have a look at their [quicktour](https://huggingface.co/docs/datasets/master/quicktour.html) for more details about their awesome library. Configure your *biome.text* Pipeline A typical [Pipeline](https://recognai.github.io/biome-text/master/api/biome/text/pipeline.htmlpipeline) consists of tokenizing the input, extracting features, applying a language encoding (optionally) and executing a task-specific head in the end.After training a pipeline, you can use it to make predictions.As a first step we must define a configuration for our pipeline. In this tutorial we will create a configuration dictionary and use the `Pipeline.from_config()` method to create our pipeline, but there are [other ways](https://recognai.github.io/biome-text/master/api/biome/text/pipeline.htmlpipeline).A *biome.text* pipeline has the following main components:```yamlname: a descriptive name of your pipelinetokenizer: how to tokenize the inputfeatures: input features of the modelencoder: the language encoderhead: your task configuration```See the [Configuration section](https://recognai.github.io/biome-text/master/documentation/user-guides/2-configuration.html) for a detailed description of how these main components can be configured.Our complete configuration for this tutorial will be following: ###Code pipeline_dict = { "name": "german_business_names", "tokenizer": { "text_cleaning": { "rules": ["strip_spaces"] } }, "features": { "word": { "embedding_dim": 64, "lowercase_tokens": True, }, "char": { "embedding_dim": 32, "lowercase_characters": True, "encoder": { "type": "gru", "num_layers": 1, "hidden_size": 32, "bidirectional": True, }, "dropout": 0.1, }, }, "head": { "type": "TextClassification", "labels": train_ds.unique("label"), "pooler": { "type": "gru", "num_layers": 1, "hidden_size": 32, "bidirectional": True, }, "feedforward": { "num_layers": 1, "hidden_dims": [32], "activations": ["relu"], "dropout": [0.0], }, }, } ###Output _____no_output_____ ###Markdown With this dictionary we can now create a `Pipeline`: ###Code pl = Pipeline.from_config(pipeline_dict) ###Output _____no_output_____ ###Markdown Configure the vocabularyThe default behavior of *biome.text* is to add all tokens from the training data set to the pipeline's vocabulary. This is done automatically when training the pipeline for the first time.If you want to have more control over this step, you can define a `VocabularyConfiguration` and pass it to the [`Trainer`](https://recognai.github.io/biome-text/master/api/biome/text/trainer.html) later on.In our business name classifier we only want to include words with a general meaning to our word feature vocabulary (like "Computer" or "Autohaus", for example), and want to exclude specific names that will not help to generally classify the kind of business.This can be achieved by including only the most frequent words in our training set via the `min_count` argument. For a complete list of available arguments see the [VocabularyConfiguration API](https://recognai.github.io/biome-text/master/api/biome/text/configuration.htmlvocabularyconfiguration). ###Code vocab_config = VocabularyConfiguration(min_count={WordFeatures.namespace: 20}) ###Output _____no_output_____ ###Markdown Configure the trainerAs a next step we have to configure the [`Trainer`](https://recognai.github.io/biome-text/master/api/biome/text/trainer.html), which in essentially is a light wrapper around the amazing [Pytorch Lightning Trainer](https://pytorch-lightning.readthedocs.io/en/latest/common/trainer.html).The default trainer has sensible defaults and should work alright for most of your cases.In this tutorial, however, we want to tune a bit the learning rate and limit the training time to three epochs only.We also want to modify the monitored validation metric (by default it is the `validation_loss`) that is used to rank the checkpoints, as well as for the early stopping mechanism and to load the best model weights at the end of the training.For a complete list of available arguments see the [TrainerConfiguration API](https://recognai.github.io/biome-text/master/api/biome/text/configuration.htmltrainerconfiguration).::: tip TipBy default we will use a CUDA device if one is available. If you prefer not to use it, just set `gpus=0` in the `TrainerConfiguration`.:::::: tip TipThe default [WandB](https://wandb.ai/site) logger will log the runs to the "biome" project. You can easily change this by setting the `WANDB_PROJECT` env variable:```pythonimport osos.environ["WANDB_PROJECT"] = "my_project"```::: ###Code trainer_config = TrainerConfiguration( optimizer={ "type": "adam", "lr": 0.01, }, max_epochs=3, monitor="validation_accuracy", monitor_mode="max" ) ###Output _____no_output_____ ###Markdown Train your modelNow we have everything ready to start the training of our model:- training data set- pipeline- trainer configurationIn a fist step we have to create a `Trainer` instance and pass in the pipeline, the training/validation data, the trainer configuration and our vocabulary configuration.This will load the data into memory (unless you specify `layz=True`) and build the vocabulary. ###Code trainer = Trainer( pipeline=pl, train_dataset=train_ds, valid_dataset=valid_ds, trainer_config=trainer_config, vocab_config=vocab_config, ) ###Output _____no_output_____ ###Markdown In a second step we simply have to call the `Trainer.fit()` method to start the training.By default, at the end of the training the trained pipeline and the training metrics will be saved in a folder called `output`.The trained pipeline is saved as a `model.tar.gz` file that contains the pipeline configuration, the model weights and the vocabulary.The metrics are saved to a `metrics.json` file.During the training the `Trainer` will also create a logging folder called `training_logs` by default.You can modify this path via the `default_root_dir` option in your `TrainerConfiguration`, that also supports remote addresses such as s3 or hdfs.This logging folder contains all your checkpoints and logged metrics, like the ones logged for [TensorBoard](https://www.tensorflow.org/tensorboard/) for example. ###Code trainer.fit() ###Output _____no_output_____ ###Markdown After 3 epochs we achieve a validation accuracy of about 0.91.The validation loss seems to be decreasing further, though, so we could probably train the model for a few more epochs without overfitting the training data.For this we could simply reinitialize the `Trainer` and call `Trainer.fit(exist_ok=True)` again.::: tip TipIf for some reason the training gets interrupted, you can continue from the last saved checkpoint by setting the `resume_from_checkpoint` option in the `TrainerConfiguration`.:::::: tip TipIf you receive warnings about the data loader being a bottleneck, try to increase the `num_workers_for_dataloader` parameter in the `TrainerConfiguration` (up to the number of cpus on your machine).::: Make your first predictions Now that we trained our model we can go on to make our first predictions. We provide the input expected by our `TaskHead` of the model to the `Pipeline.predict()` method.In our case it is a `TextClassification` head that classifies a `text` input: ###Code pl.predict(text="Autohaus biome.text") ###Output _____no_output_____ ###Markdown The output of the `Pipeline.predict()` method is a dictionary with a `labels` and `probabilities` key containing a list of labels and their corresponding probabilities, ordered from most to less likely. ::: tip TipWhen configuring the pipeline in the first place, we recommend to check that it is correctly setup by using the `predict` method.Since the pipeline is still not trained at that moment, the predictions will be arbitrary.::: We can also load the trained pipeline from the training output. This is useful in case you trained the pipeline in some earlier session, and want to continue your work with the inference steps: ###Code pl_trained = Pipeline.from_pretrained("output/model.tar.gz") ###Output _____no_output_____ ###Markdown Training a short text classifier of German business names [View on recogn.ai](https://https://recognai.github.io/biome-text/v3.2.1/documentation/tutorials/1-Training_a_text_classifier.html)[Run in Google Colab](https://colab.research.google.com/github/recognai/biome-text/blob/v3.2.1/docs/docs/documentation/tutorials/1-Training_a_text_classifier.ipynb)[View source on GitHub](https://github.com/recognai/biome-text/blob/v3.2.1/docs/docs/documentation/tutorials/1-Training_a_text_classifier.ipynb) When running this tutorial in Google Colab, make sure to install *biome.text* first: ###Code !pip install -U pip !pip install -U biome-text exit(0) # Force restart of the runtime ###Output _____no_output_____ ###Markdown *If* you want to log your runs with [WandB](https://wandb.ai/home), don't forget to install its client and log in. ###Code !pip install wandb !wandb login ###Output _____no_output_____ ###Markdown IntroductionIn this tutorial we will train a basic short-text classifier for predicting the sector of a business based only on its business name. For this we will use a training data set with business names and business categories in German. ImportsLet us first import all the stuff we need for this tutorial: ###Code from biome.text import Pipeline, Dataset, Trainer from biome.text.configuration import VocabularyConfiguration, WordFeatures, TrainerConfiguration ###Output _____no_output_____ ###Markdown Explore the training dataLet's take a look at the data we will use for training. For this we will use the [`Dataset`](https://recognai.github.io/biome-text/v3.2.1/api/biome/text/dataset.htmldataset) class that is a very thin wrapper around HuggingFace's awesome [datasets.Dataset](https://huggingface.co/docs/datasets/master/package_reference/main_classes.htmldatasets.Dataset).We will download the data first to create `Dataset` instances.Apart from the training data we will also download an optional validation data set to estimate the generalization error. ###Code # Downloading the dataset first !curl -O https://biome-tutorials-data.s3-eu-west-1.amazonaws.com/text_classifier/business.cat.train.csv !curl -O https://biome-tutorials-data.s3-eu-west-1.amazonaws.com/text_classifier/business.cat.valid.csv # Loading from local train_ds = Dataset.from_csv("business.cat.train.csv") valid_ds = Dataset.from_csv("business.cat.valid.csv") ###Output _____no_output_____ ###Markdown Most of HuggingFace's `Dataset` API is exposed and you can checkout their nice [documentation](https://huggingface.co/docs/datasets/master/processing.html) on how to work with data in a `Dataset`. For example, let's quickly check the size of our training data and print the first 10 examples as a pandas DataFrame: ###Code len(train_ds) train_ds.head() ###Output _____no_output_____ ###Markdown As we can see we have two relevant columns *label* and *text*. Our classifier will be trained to predict the *label* given the *text*. ::: tip TipThe [TaskHead](https://recognai.github.io/biome-text/v3.2.1/api/biome/text/modules/heads/task_head.htmltaskhead) of our model below will expect a *text* and a *label* column to be present in the `Dataset`. In our data set this is already the case, otherwise we would need to change or map the corresponding column names via `Dataset.rename_column_()` or `Dataset.map()`.::: We can also quickly check the distribution of our labels. Use `Dataset.head(None)` to return the complete data set as a pandas DataFrame: ###Code train_ds.head(None)["label"].value_counts() ###Output _____no_output_____ ###Markdown The `Dataset` class also provides access to Hugging Face's extensive NLP datasets collection via the `Dataset.load_dataset()` method. Have a look at their [quicktour](https://huggingface.co/docs/datasets/master/quicktour.html) for more details about their awesome library. Configure your *biome.text* Pipeline A typical [Pipeline](https://recognai.github.io/biome-text/v3.2.1/api/biome/text/pipeline.htmlpipeline) consists of tokenizing the input, extracting features, applying a language encoding (optionally) and executing a task-specific head in the end.After training a pipeline, you can use it to make predictions.As a first step we must define a configuration for our pipeline. In this tutorial we will create a configuration dictionary and use the `Pipeline.from_config()` method to create our pipeline, but there are [other ways](https://recognai.github.io/biome-text/v3.2.1/api/biome/text/pipeline.htmlpipeline).A *biome.text* pipeline has the following main components:```yamlname: a descriptive name of your pipelinetokenizer: how to tokenize the inputfeatures: input features of the modelencoder: the language encoderhead: your task configuration```See the [Configuration section](https://recognai.github.io/biome-text/v3.2.1/documentation/user-guides/2-configuration.html) for a detailed description of how these main components can be configured.Our complete configuration for this tutorial will be following: ###Code pipeline_dict = { "name": "german_business_names", "tokenizer": { "text_cleaning": { "rules": ["strip_spaces"] } }, "features": { "word": { "embedding_dim": 64, "lowercase_tokens": True, }, "char": { "embedding_dim": 32, "lowercase_characters": True, "encoder": { "type": "gru", "num_layers": 1, "hidden_size": 32, "bidirectional": True, }, "dropout": 0.1, }, }, "head": { "type": "TextClassification", "labels": train_ds.unique("label"), "pooler": { "type": "gru", "num_layers": 1, "hidden_size": 32, "bidirectional": True, }, "feedforward": { "num_layers": 1, "hidden_dims": [32], "activations": ["relu"], "dropout": [0.0], }, }, } ###Output _____no_output_____ ###Markdown With this dictionary we can now create a `Pipeline`: ###Code pl = Pipeline.from_config(pipeline_dict) ###Output _____no_output_____ ###Markdown Configure the vocabularyThe default behavior of *biome.text* is to add all tokens from the training data set to the pipeline's vocabulary. This is done automatically when training the pipeline for the first time.If you want to have more control over this step, you can define a `VocabularyConfiguration` and pass it to the [`Trainer`](https://recognai.github.io/biome-text/v3.2.1/api/biome/text/trainer.html) later on.In our business name classifier we only want to include words with a general meaning to our word feature vocabulary (like "Computer" or "Autohaus", for example), and want to exclude specific names that will not help to generally classify the kind of business.This can be achieved by including only the most frequent words in our training set via the `min_count` argument. For a complete list of available arguments see the [VocabularyConfiguration API](https://recognai.github.io/biome-text/v3.2.1/api/biome/text/configuration.htmlvocabularyconfiguration). ###Code vocab_config = VocabularyConfiguration(min_count={WordFeatures.namespace: 20}) ###Output _____no_output_____ ###Markdown Configure the trainerAs a next step we have to configure the [`Trainer`](https://recognai.github.io/biome-text/v3.2.1/api/biome/text/trainer.html), which in essentially is a light wrapper around the amazing [Pytorch Lightning Trainer](https://pytorch-lightning.readthedocs.io/en/latest/common/trainer.html).The default trainer has sensible defaults and should work alright for most of your cases.In this tutorial, however, we want to tune a bit the learning rate and limit the training time to three epochs only.We also want to modify the monitored validation metric (by default it is the `validation_loss`) that is used to rank the checkpoints, as well as for the early stopping mechanism and to load the best model weights at the end of the training.For a complete list of available arguments see the [TrainerConfiguration API](https://recognai.github.io/biome-text/v3.2.1/api/biome/text/configuration.htmltrainerconfiguration).::: tip TipBy default we will use a CUDA device if one is available. If you prefer not to use it, just set `gpus=0` in the `TrainerConfiguration`.:::::: tip TipThe default [WandB](https://wandb.ai/site) logger will log the runs to the "biome" project. You can easily change this by setting the `WANDB_PROJECT` env variable:```pythonimport osos.environ["WANDB_PROJECT"] = "my_project"```::: ###Code trainer_config = TrainerConfiguration( optimizer={ "type": "adam", "lr": 0.01, }, max_epochs=3, monitor="validation_accuracy", monitor_mode="max" ) ###Output _____no_output_____ ###Markdown Train your modelNow we have everything ready to start the training of our model:- training data set- pipeline- trainer configurationIn a fist step we have to create a `Trainer` instance and pass in the pipeline, the training/validation data, the trainer configuration and our vocabulary configuration.This will load the data into memory (unless you specify `layz=True`) and build the vocabulary. ###Code trainer = Trainer( pipeline=pl, train_dataset=train_ds, valid_dataset=valid_ds, trainer_config=trainer_config, vocab_config=vocab_config, ) ###Output _____no_output_____ ###Markdown In a second step we simply have to call the `Trainer.fit()` method to start the training.By default, at the end of the training the trained pipeline and the training metrics will be saved in a folder called `output`.The trained pipeline is saved as a `model.tar.gz` file that contains the pipeline configuration, the model weights and the vocabulary.The metrics are saved to a `metrics.json` file.During the training the `Trainer` will also create a logging folder called `training_logs` by default.You can modify this path via the `default_root_dir` option in your `TrainerConfiguration`, that also supports remote addresses such as s3 or hdfs.This logging folder contains all your checkpoints and logged metrics, like the ones logged for [TensorBoard](https://www.tensorflow.org/tensorboard/) for example. ###Code trainer.fit() ###Output _____no_output_____ ###Markdown After 3 epochs we achieve a validation accuracy of about 0.91.The validation loss seems to be decreasing further, though, so we could probably train the model for a few more epochs without overfitting the training data.For this we could simply reinitialize the `Trainer` and call `Trainer.fit(exist_ok=True)` again.::: tip TipIf for some reason the training gets interrupted, you can continue from the last saved checkpoint by setting the `resume_from_checkpoint` option in the `TrainerConfiguration`.:::::: tip TipIf you receive warnings about the data loader being a bottleneck, try to increase the `num_workers_for_dataloader` parameter in the `TrainerConfiguration` (up to the number of cpus on your machine).::: Make your first predictions Now that we trained our model we can go on to make our first predictions. We provide the input expected by our `TaskHead` of the model to the `Pipeline.predict()` method.In our case it is a `TextClassification` head that classifies a `text` input: ###Code pl.predict(text="Autohaus biome.text") ###Output _____no_output_____ ###Markdown The output of the `Pipeline.predict()` method is a dictionary with a `labels` and `probabilities` key containing a list of labels and their corresponding probabilities, ordered from most to less likely. ::: tip TipWhen configuring the pipeline in the first place, we recommend to check that it is correctly setup by using the `predict` method.Since the pipeline is still not trained at that moment, the predictions will be arbitrary.::: We can also load the trained pipeline from the training output. This is useful in case you trained the pipeline in some earlier session, and want to continue your work with the inference steps: ###Code pl_trained = Pipeline.from_pretrained("output/model.tar.gz") ###Output _____no_output_____ ###Markdown Training a short text classifier of German business names [View on recogn.ai](https://www.recogn.ai/biome-text/master/documentation/tutorials/1-Training_a_text_classifier.html)[Run in Google Colab](https://colab.research.google.com/github/recognai/biome-text/blob/master/docs/docs/documentation/tutorials/1-Training_a_text_classifier.ipynb)[View source on GitHub](https://github.com/recognai/biome-text/blob/master/docs/docs/documentation/tutorials/1-Training_a_text_classifier.ipynb) When running this tutorial in Google Colab, make sure to install *biome.text* first: ###Code !pip install -U pip !pip install -U git+https://github.com/recognai/biome-text.git exit(0) # Force restart of the runtime ###Output _____no_output_____ ###Markdown *If* you want to log your runs with [WandB](https://wandb.ai/home), don't forget to install its client and log in. ###Code !pip install wandb !wandb login ###Output _____no_output_____ ###Markdown IntroductionIn this tutorial we will train a basic short-text classifier for predicting the sector of a business based only on its business name. For this we will use a training data set with business names and business categories in German. ImportsLet us first import all the stuff we need for this tutorial: ###Code from biome.text import Pipeline, Dataset, Trainer from biome.text.configuration import VocabularyConfiguration, WordFeatures, TrainerConfiguration ###Output _____no_output_____ ###Markdown Explore the training dataLet's take a look at the data we will use for training. For this we will use the [`Dataset`](https://www.recogn.ai/biome-text/master/api/biome/text/dataset.htmldataset) class that is a very thin wrapper around HuggingFace's awesome [datasets.Dataset](https://huggingface.co/docs/datasets/master/package_reference/main_classes.htmldatasets.Dataset). We will download the data first to create `Dataset` instances.Apart from the training data we will also download an optional validation data set to estimate the generalization error. ###Code # Downloading the dataset first !curl -O https://biome-tutorials-data.s3-eu-west-1.amazonaws.com/text_classifier/business.cat.train.csv !curl -O https://biome-tutorials-data.s3-eu-west-1.amazonaws.com/text_classifier/business.cat.valid.csv # Loading from local train_ds = Dataset.from_csv("business.cat.train.csv") valid_ds = Dataset.from_csv("business.cat.valid.csv") ###Output _____no_output_____ ###Markdown Most of HuggingFace's `Dataset` API is exposed and you can checkout their nice [documentation](https://huggingface.co/docs/datasets/master/processing.html) on how to work with data in a `Dataset`. For example, let's quickly check the size of our training data and print the first 10 examples as a pandas DataFrame: ###Code len(train_ds) train_ds.head() ###Output _____no_output_____ ###Markdown As we can see we have two relevant columns *label* and *text*. Our classifier will be trained to predict the *label* given the *text*. ::: tip TipThe [TaskHead](https://www.recogn.ai/biome-text/master/api/biome/text/modules/heads/task_head.htmltaskhead) of our model below will expect a *text* and a *label* column to be present in the `Dataset`. In our data set this is already the case, otherwise we would need to change or map the corresponding column names via `Dataset.rename_column_()` or `Dataset.map()`.::: We can also quickly check the distribution of our labels. Use `Dataset.head(None)` to return the complete data set as a pandas DataFrame: ###Code train_ds.head(None)["label"].value_counts() ###Output _____no_output_____ ###Markdown The `Dataset` class also provides access to Hugging Face's extensive NLP datasets collection via the `Dataset.load_dataset()` method. Have a look at their [quicktour](https://huggingface.co/docs/datasets/master/quicktour.html) for more details about their awesome library. Configure your *biome.text* Pipeline A typical [Pipeline](https://www.recogn.ai/biome-text/master/api/biome/text/pipeline.htmlpipeline) consists of tokenizing the input, extracting features, applying a language encoding (optionally) and executing a task-specific head in the end.After training a pipeline, you can use it to make predictions.As a first step we must define a configuration for our pipeline. In this tutorial we will create a configuration dictionary and use the `Pipeline.from_config()` method to create our pipeline, but there are [other ways](https://www.recogn.ai/biome-text/master/api/biome/text/pipeline.htmlpipeline).A *biome.text* pipeline has the following main components:```yamlname: a descriptive name of your pipelinetokenizer: how to tokenize the inputfeatures: input features of the modelencoder: the language encoderhead: your task configuration```See the [Configuration section](https://www.recogn.ai/biome-text/master/documentation/user-guides/2-configuration.html) for a detailed description of how these main components can be configured.Our complete configuration for this tutorial will be following: ###Code pipeline_dict = { "name": "german_business_names", "tokenizer": { "text_cleaning": { "rules": ["strip_spaces"] } }, "features": { "word": { "embedding_dim": 64, "lowercase_tokens": True, }, "char": { "embedding_dim": 32, "lowercase_characters": True, "encoder": { "type": "gru", "num_layers": 1, "hidden_size": 32, "bidirectional": True, }, "dropout": 0.1, }, }, "head": { "type": "TextClassification", "labels": train_ds.unique("label"), "pooler": { "type": "gru", "num_layers": 1, "hidden_size": 32, "bidirectional": True, }, "feedforward": { "num_layers": 1, "hidden_dims": [32], "activations": ["relu"], "dropout": [0.0], }, }, } ###Output _____no_output_____ ###Markdown With this dictionary we can now create a `Pipeline`: ###Code pl = Pipeline.from_config(pipeline_dict) ###Output _____no_output_____ ###Markdown Configure the vocabularyThe default behavior of *biome.text* is to add all tokens from the training data set to the pipeline's vocabulary. This is done automatically when training the pipeline for the first time.If you want to have more control over this step, you can define a `VocabularyConfiguration` and pass it to the [`Trainer`](https://www.recogn.ai/biome-text/master/api/biome/text/trainer.html) later on.In our business name classifier we only want to include words with a general meaning to our word feature vocabulary (like "Computer" or "Autohaus", for example), and want to exclude specific names that will not help to generally classify the kind of business.This can be achieved by including only the most frequent words in our training set via the `min_count` argument. For a complete list of available arguments see the [VocabularyConfiguration API](https://www.recogn.ai/biome-text/master/api/biome/text/configuration.htmlvocabularyconfiguration). ###Code vocab_config = VocabularyConfiguration(min_count={WordFeatures.namespace: 20}) ###Output _____no_output_____ ###Markdown Configure the trainerAs a next step we have to configure the [`Trainer`](https://www.recogn.ai/biome-text/master/api/biome/text/trainer.html), which in essentially is a light wrapper around the amazing [Pytorch Lightning Trainer](https://pytorch-lightning.readthedocs.io/en/latest/common/trainer.html).The default trainer has sensible defaults and should work alright for most of your cases.In this tutorial, however, we want to tune a bit the learning rate and limit the training time to three epochs only.We also want to modify the monitored validation metric (by default it is the `validation_loss`) that is used to rank the checkpoints, as well as for the early stopping mechanism and to load the best model weights at the end of the training.For a complete list of available arguments see the [TrainerConfiguration API](https://www.recogn.ai/biome-text/master/api/biome/text/configuration.htmltrainerconfiguration).::: tip TipBy default we will use a CUDA device if one is available. If you prefer not to use it, just set `gpus=0` in the `TrainerConfiguration`.:::::: tip TipThe default [WandB](https://wandb.ai/site) logger will log the runs to the "biome" project. You can easily change this by setting the `WANDB_PROJECT` env variable:```pythonimport osos.environ["WANDB_PROJECT"] = "my_project"```::: ###Code trainer_config = TrainerConfiguration( optimizer={ "type": "adam", "lr": 0.01, }, max_epochs=3, monitor="validation_accuracy", monitor_mode="max" ) ###Output _____no_output_____ ###Markdown Train your modelNow we have everything ready to start the training of our model:- training data set- pipeline- trainer configurationIn a fist step we have to create a `Trainer` instance and pass in the pipeline, the training/validation data, the trainer configuration and our vocabulary configuration.This will load the data into memory (unless you specify `layz=True`) and build the vocabulary. ###Code trainer = Trainer( pipeline=pl, train_dataset=train_ds, valid_dataset=valid_ds, trainer_config=trainer_config, vocab_config=vocab_config, ) ###Output _____no_output_____ ###Markdown In a second step we simply have to call the `Trainer.fit()` method to start the training.By default, at the end of the training the trained pipeline and the training metrics will be saved in a folder called `output`.The trained pipeline is saved as a `model.tar.gz` file that contains the pipeline configuration, the model weights and the vocabulary.The metrics are saved to a `metrics.json` file.During the training the `Trainer` will also create a logging folder called `training_logs` by default.You can modify this path via the `default_root_dir` option in your `TrainerConfiguration`, that also supports remote addresses such as s3 or hdfs.This logging folder contains all your checkpoints and logged metrics, like the ones logged for [TensorBoard](https://www.tensorflow.org/tensorboard/) for example. ###Code trainer.fit() ###Output _____no_output_____ ###Markdown After 3 epochs we achieve a validation accuracy of about 0.91.The validation loss seems to be decreasing further, though, so we could probably train the model for a few more epochs without overfitting the training data.For this we could simply reinitialize the `Trainer` and call `Trainer.fit(exist_ok=True)` again.::: tip TipIf for some reason the training gets interrupted, you can continue from the last saved checkpoint by setting the `resume_from_checkpoint` option in the `TrainerConfiguration`.:::::: tip TipIf you receive warnings about the data loader being a bottleneck, try to increase the `num_workers_for_dataloader` parameter in the `TrainerConfiguration` (up to the number of cpus on your machine).::: Make your first predictions Now that we trained our model we can go on to make our first predictions. We provide the input expected by our `TaskHead` of the model to the `Pipeline.predict()` method.In our case it is a `TextClassification` head that classifies a `text` input: ###Code pl.predict(text="Autohaus biome.text") ###Output _____no_output_____ ###Markdown The output of the `Pipeline.predict()` method is a dictionary with a `labels` and `probabilities` key containing a list of labels and their corresponding probabilities, ordered from most to less likely. ::: tip TipWhen configuring the pipeline in the first place, we recommend to check that it is correctly setup by using the `predict` method.Since the pipeline is still not trained at that moment, the predictions will be arbitrary.::: We can also load the trained pipeline from the training output. This is useful in case you trained the pipeline in some earlier session, and want to continue your work with the inference steps: ###Code pl_trained = Pipeline.from_pretrained("output/model.tar.gz") ###Output _____no_output_____
src/[1]_BuildingDamage_STA221_feature_ML.ipynb
###Markdown Comparative Assessment of Building Damage from High-Resolution Satellite-Based Images Erica Scaduto ([email protected]), Yuhan Huang ([email protected]) The automatic extraction and evaluation of building damage by natural hazards can aid in assessing risk management and mapping distributions of urban vulnerability. Although wildfire is a common and critical natural disaster posing significant threats, constrained by the methods and data quality, most previous studies only focused on large-scale disasters. Deriving a reliable and efficient building extraction and damage classification method has presented challenges due to regional differences in development type (e.g. rural vs metropolitan), as well as the sheer varieties in building characteristics (i.e. color, shape, materials). In this project, we intend to compare different machine learning algorithms for image classification to develop a general framework for fire-induced building damage evaluation from high-resolution remotely sensed images.Our results show machine learning models, based on spectral, texture, and convolutional features, have promising utility in the applications for post-fire building-damage monitoring. For the binary classification scheme, the Random Forest (RF) classifier performed the best with an overall accuracy of 93% with a kappa of 0.73. For the multiclass scheme (i.e without vegetation mask), XGBoost performed better than the 5-layer neural networks. It is able to detect building areas but is less accurate in predicting damage when compared with the binary case. Feature engineering also proved to be an essential step in model building. Particularly, the addition of SNIC segmentation which greatly aided in the improvement of overall model performance for both RF and XGBoost classifiers. Main Pipeline:**Data Preprocessing**: As both XView building annotations and NAIP images include geograohic information, XView data was converted to shapefiles to filter out corresponding NAIP images in the same location through GEE API. Both pre-fire and post-fire images were used. **Feature Engineering:** Based on the four channels of NAIP images, features were further calculated through band math, convolutoinal filters and unsupervised methods. **Classification Model:** Decision tree, SVM, random forest, xgboost, and simple neural networks were built to test their predictability of buliding damage types. The dicision tree, SVM, and random forest were run directly on the server provided by GEE API. XGBoost and neural net were run locally on images extracted through GEE from Google Colab. **Model Evaluation** Table of Content(1) __Preprocessing XView Data__ (See file: 0_BuildingDamage_STA221_preprocessing.ipynb): extract geographic coordinates and fire-related annotations as geojson and shapefilesfrom XView json files(2) __Set up__: Load API and packages. Connect to Google Drive, GEE API, and load annotations(3) __Visualize Dataset__: use GEE API and leaflet to visualize ground truth labels and acquire NAIP images based on the locations of these labels(4) __Vegetation Indices and Texture FEatures__: calculate several useful features for classification, including remote sensing indices, texture metrics, and some layers filtered by convolutional filters(5) __Unsupervised Clustering Features__: use unsupervised methods to get clusters, superpixels, or segmentations as features(6) __Image Extraction__: using the extent of buildings with the same image id as the boundary to extract NAIP images from the API. (7) __Supervised Classification (server-end)__: GEE provide some fuctions for machine learning method (*Decision Tree, SVM, and Random Forest*) to do the classification directly on its server. Test these methods on the NAIP images and summarize their results(8) __Supervised Classificatoin (client-end, XGBoost)__: See notebook *BuildingProj_XGBoost*. (9) __Supervised Classification (client-end, Simple Neural Network)__: See notebook *BuildingProj_NN*. Dataset: - Building Annotations from XView- NAIP (National Agriculture Imagery Program) aerial photos (resolution: 0.6 meter) XView Annotations- Labels for two fire events in 2017: Santa Rosa & South CA fires (geographic coordinates only)![alt text](https://miro.medium.com/max/1200/1*0KCxmxuLX_CAol-xOBmG5w.jpeg) NAIP images (acquired from GEE API)- RGB, Near Infrared- both pre- and post- fire images![alt text]() Setting UpThe following steps below will (1) mount the colab to the appropriate drive directory (2) Load the training and tes datasets (3) connect to GEE API and load the data as GEE Assets Connect to Drive & Set Directory ###Code from google.colab import drive # import drive from google colab ROOT = "/content/drive" # default location for the drive print(ROOT) # print content of ROOT (Optional) drive.mount(ROOT) # we mount the google drive at /content/drive %cd "/content/drive/My Drive/STA221_FinalProj" %ls "./Data/FireDataset/train" import os rootPath = '/content/drive/My Drive/STA221_FinalProj' os.chdir(rootPath) ###Output /content/drive/.shortcut-targets-by-id/1xQURupjEB6eidd-IqFW8qhj4FjXXQz8r/STA221_FinalProj santa-rosa-wildfire/ socal-fire/ ###Markdown Load Data ###Code # install dependencies and packages ! pip install geopandas import numpy as np import pandas as pd import geopandas as gpd def lstFiles(rootPath, ext): ''' retrieve file path + names based on extension ''' file_list = [] root = rootPath for path, subdirs, files in os.walk(root): for names in files: if names.endswith(ext) and not names.startswith("._"): file_list.append(path +"/" + names) return(file_list) def createFolder(rootPath, folderName): ''' Create new folder in root path ''' folderPath = os.path.join(rootPath, folderName) if not os.path.exists(folderPath): os.makedirs(folderPath) return folderPath + "/" merged_path = "./Data/FireDataset/merged_shp" merged_files = lstFiles(merged_path, '.shp') train_shp = merged_files[0] test_shp = merged_files[1] from pyproj import CRS def subsetData(dataPath, path, outfolder): '''(1) Subset training dataset w/Santa Rosa (post fire) & Socal (pre fire) ** since NAIP doesnt reflect post fire damage (2) combine (3) Remove any unclassified classes (4) Convert factor classes 'damage' to int (no-damage:0, minor-damage:1, destroyed:3) (5) output to folder in rootpath ''' gdf = gpd.read_file(dataPath) santaRosa = gdf[(gdf['location_n'] == 'santa-rosa-wildfire') & (gdf['pre_post_d'] == 'post')] socal = gdf[(gdf['location_n'] == 'socal-fire') & (gdf['pre_post_d'] == 'pre')] joined_all = gpd.GeoDataFrame( pd.concat( [santaRosa, socal], ignore_index=True) ) joined_all = joined_all[(joined_all['damage'] != 'unclassified') & (joined_all['damage'] != 'un-classified')] joined_all['class'] = np.where(joined_all['damage']== 'no-damage', 0,1) joined_all.crs = "EPSG:4326" outPath = createFolder(path, outfolder) joined_all.to_file(os.path.join(outPath, outfolder + '.shp')) return joined_all path = "Data/FireDataset/merged_shp" trainDF = subsetData(train_shp, path, 'train_filt') testDF = subsetData(test_shp, path, 'test_filt') print(len(trainDF[trainDF['class'] == 0]), len(trainDF[trainDF['class'] == 1]),len(trainDF)) print(len(testDF[testDF['class'] == 0]), len(testDF[testDF['class'] == 1]), len(testDF)) ###Output 19760 3612 23372 7494 992 8486 ###Markdown Connect to GEE API & Load Asset ###Code # initialize and connect to GEE from google.colab import auth auth.authenticate_user() !earthengine authenticate import ee ee.Initialize() # Installs geemap package import subprocess try: import geemap except ImportError: print('geemap package not installed. Installing ...') subprocess.check_call(["python", '-m', 'pip', 'install', 'geemap']) # Checks whether this notebook is running on Google Colab try: import google.colab import geemap.eefolium as emap except: import geemap as emap # Connect to google cloud ! gcloud auth login # export files hosted in cloud bucket as assets to GEE # needed to set up a bucket in google cloud: gs://esca_bucket ! earthengine upload table --asset_id=users/escaduto/XVIEW_newtraining gs://esca_bucket/train_filt/train_filt.shp ! earthengine upload table --asset_id=users/escaduto/XVIEW_newtesting gs://esca_bucket/test_filt/test_filt.shp # import feature collection asset train_data = ee.FeatureCollection('users/escaduto/XVIEW_newtraining') test_data = ee.FeatureCollection('users/escaduto/XVIEW_newtesting') ###Output _____no_output_____ ###Markdown Interactively Visualize Dataset w/ GEE API & leafletThe annotated test/train xView dataset were read as feature collections via the GEE API. Now, we want to visualize the building footprints and identify which ones are classified as damaged vs non-damaged. To best do this, we will utilize an interactive mapping tool to directly load the data into the notebook. Building Geometry w/ Attributes ###Code def visualizeByAttribute(fc, className): ''' visualize building polygon based on damage type 'class' (0,1) ''' empty = ee.Image().byte() feature = empty.paint(**{ 'featureCollection': fc, 'color': className, 'width': 1 }) return feature train_palette = ['green', # no-damage (0) 'red' # destroyed (1) ] test_palette = ['yellow', # no-damage(0) 'blue' # destroyed (1) ] Map = emap.Map(center=[38.50178453635526,-122.74843617724784], zoom=16) Map.addLayer(visualizeByAttribute(train_data, 'class'), {'palette': train_palette, 'min': 0, 'max':1}, 'train') Map.addLayer(visualizeByAttribute(test_data, 'class'), {'palette': test_palette,'min': 0, 'max':1}, 'test') Map.addLayerControl() Map ###Output _____no_output_____ ###Markdown Load NAIP ImageryAnother crucial step before we can get started is to load the NAIP imagery from GEE. To first do this, we must identify our area of interest, which is the bounding box from the data extent. We will obtain pre-/post- fire imagery and overlay the annotated building footprints on top. ###Code def extract_coords(geom): ''' takes one polygon from geopandas and converts it to the GEE geometry format input: geom from each row of the 'geometry' column in the gpd dataframe output: coordinate list of the GEE geometry ''' try: coords=geom.__geo_interface__['coordinates'] geom_extr=[list(map(list,coord)) for coord in coords] return geom_extr except: pass def get_bounds(gdf): ''' takes a geo data frame get convert its bounding extent to a GEE format rectangle ''' bounds=gdf.total_bounds geom_bound=[[ [bounds[0],bounds[1]], [bounds[2],bounds[1]], [bounds[2],bounds[3]], [bounds[0],bounds[3]]]] return geom_bound gdf = gpd.read_file(train_shp) santaRosa = gdf[(gdf['location_n'] == 'santa-rosa-wildfire') & (gdf['pre_post_d'] == 'post')] socal = gdf[(gdf['location_n'] == 'socal-fire') & (gdf['pre_post_d'] == 'pre')] SR_bounds=get_bounds(santaRosa) SC_bounds=get_bounds(socal) sr_geom=[extract_coords(pol) for pol in santaRosa['geometry']] SR_ROI = ee.Geometry.MultiPolygon(sr_geom) SR_Bound_Box=ee.Geometry.Polygon(SR_bounds) sc_geom=[extract_coords(pol) for pol in socal['geometry']] SC_ROI = ee.Geometry.MultiPolygon(sc_geom) SC_Bound_Box=ee.Geometry.Polygon(SC_bounds) # combine the bounding boxes from above into feature collection features = [ ee.Feature(SC_Bound_Box), ee.Feature(SR_Bound_Box) ] finalBounds = ee.FeatureCollection(features); preFire = ee.Image(ee.ImageCollection('USDA/NAIP/DOQQ') .filter(ee.Filter.date('2014-01-01', '2015-12-31')) .select(['R', 'G', 'B', 'N']) .filterBounds(finalBounds) .mosaic()); postFire = ee.Image(ee.ImageCollection('USDA/NAIP/DOQQ') .filter(ee.Filter.date('2017-01-01', '2019-12-31')) .select(['R', 'G', 'B', 'N']) .filterBounds(finalBounds) .mosaic()); preFire = preFire.clip(finalBounds) postFire = postFire.clip(finalBounds) trueColorVis = { min: 0.0, max: 255.0, } # visualize santa rosa building dataset overlaid on NAIP Map = emap.Map(center=[38.4815,-122.7084], zoom=11) Map.add_basemap('TERRAIN') Map.addLayer(preFire.select(['R', 'G', 'B']), trueColorVis, 'PreFire') Map.addLayer(postFire.select(['R', 'G', 'B']), trueColorVis, 'Postfire') Map.addLayer(finalBounds, {'color': 'white'}, 'bound', True, opacity=0.4) Map.addLayer(visualizeByAttribute(train_data, 'class'), {'palette': train_palette, 'min': 0, 'max':1}, 'train') Map.addLayer(visualizeByAttribute(test_data, 'class'), {'palette': test_palette,'min': 0, 'max':1}, 'test') Map.addLayerControl() Map # visualize socal building dataset overlaid on NAIP Map = emap.Map(center=[34.0922,-118.8058], zoom=11) Map.add_basemap('TERRAIN') Map.addLayer(preFire, trueColorVis, 'PreFire'); Map.addLayer(postFire, trueColorVis, 'Postfire'); Map.addLayer(finalBounds, {'color': 'white'}, 'Postfire', True, opacity = 0.8); Map.addLayer(visualizeByAttribute(train_data, 'class'), {'palette': train_palette, 'min': 0, 'max':1}, 'train') Map.addLayer(visualizeByAttribute(test_data, 'class'), {'palette': test_palette,'min': 0, 'max':1}, 'test') Map.addLayerControl() Map ###Output _____no_output_____ ###Markdown Feature Calculation(1) NDVI: (NIR-R)/(NIR+R)(2) Canny edge detection to extract structural information from different vision objects and dramatically reduce the amount of data to be processed. (3) Bare Soil Index: (R+B-G)/(R+G+B)(4) Shadow Index: $\sqrt {(256-B)*(256-G)}$(5) Texture Information: GLCM & spatial association of neighborhood(6) Convolutional filters NDVI ###Code def getNDVI(image): ''' Add Normalized Differenced Vegetation Index using NIR and Red bands ''' nir = image.select('N') red = image.select('R') ndvi = nir.subtract(red).divide(nir.add(red)).rename('NDVI') new_image = image.addBands(ndvi) return new_image preFire = getNDVI(preFire) postFire = getNDVI(postFire) print(preFire.bandNames().getInfo()) ###Output ['R', 'G', 'B', 'N', 'NDVI'] ###Markdown Edge Detection ###Code def edgeDetection(image, band): ''' Perform Canny edge detection and add to image. ''' canny = ee.Algorithms.CannyEdgeDetector(**{ 'image': image.select(band), 'threshold': 50, 'sigma': 1 }) new_image = image.addBands(canny.rename('edge')) return new_image preFire = edgeDetection(preFire, 'R') postFire = edgeDetection(postFire, 'R') print(preFire.bandNames().getInfo()) ###Output ['R', 'G', 'B', 'N', 'NDVI', 'edge'] ###Markdown Bare Soil Index (BSI) ###Code def bareSoil(image): ''' Add Bare Soil Index Index using the Red, Blue, and Green bands ''' red = image.select('R') blue = image.select('B') green = image.select('G') BSI = red.add(blue).subtract(green).divide(red.add(blue).add(green)).rename('BSI') new_image = image.addBands(BSI) return new_image preFire = bareSoil(preFire) postFire = bareSoil(postFire) print(preFire.bandNames().getInfo()) ###Output ['R', 'G', 'B', 'N', 'NDVI', 'edge', 'BSI'] ###Markdown Shadow Index ###Code def shadowIndex(image): ''' Add Shadow Index using Blue and Green bands ''' SI = image.expression( 'sqrt((256 - B) * (256 - G))', { 'B': image.select('B'), 'G': image.select('G') }).rename('SI'); new_image = image.addBands(SI) return new_image preFire = shadowIndex(preFire) postFire = shadowIndex(postFire) print(preFire.bandNames().getInfo()) ###Output ['R', 'G', 'B', 'N', 'NDVI', 'edge', 'BSI', 'SI'] ###Markdown TextureGet texture values with NIR band. (1) compute entropy w. defined neighborhood, (2) gray-level co-occurence matrix (GLCM) to get contrast, (3) local Geary's C, measure of spatial association[ source code](https://github.com/giswqs/earthengine-py-notebooks/blob/master/Image/texture.ipynb) ###Code import math def texture(image): ''' Get texture values with NIR band. (1) compute entropy w. defined neighborhood, (2) gray-level co-occurence matrix (GLCM) to get contrast, (3) local Geary's C, measure of spatial association ''' # Get the NIR band. nir = image.select('N') # Define a neighborhood with a kernel. square = ee.Kernel.square(**{'radius': 4}) # Compute entropy and display. entropy = nir.entropy(square) # Compute the gray-level co-occurrence matrix (GLCM), get contrast. glcm = nir.glcmTexture(**{'size': 4}) contrast = glcm.select('N_contrast') # Create a list of weights for a 9x9 kernel. list = [1, 1, 1, 1, 1, 1, 1, 1, 1] # The center of the kernel is zero. centerList = [1, 1, 1, 1, 0, 1, 1, 1, 1] # Assemble a list of lists: the 9x9 kernel weights as a 2-D matrix. lists = [list, list, list, list, centerList, list, list, list, list] # Create the kernel from the weights. # Non-zero weights represent the spatial neighborhood. kernel = ee.Kernel.fixed(9, 9, lists, -4, -4, False) # Convert the neighborhood into multiple bands. neighs = nir.neighborhoodToBands(kernel) # Compute local Geary's C, a measure of spatial association. gearys = nir.subtract(neighs).pow(2).reduce(ee.Reducer.sum()) \ .divide(math.pow(9, 2)).rename('texture'); new_image = image.addBands(gearys) return new_image preFire = texture(preFire) postFire = texture(postFire) print(preFire.bandNames().getInfo()) ###Output ['R', 'G', 'B', 'N', 'NDVI', 'edge', 'BSI', 'SI', 'texture'] ###Markdown GLCM TextureGLCM Texture list (selection in bold):- Angular Second Moment: of repeated pairs- **Contrast**: local contrast - **Correlation**: correlation between pairs of pixels - **Variance**: spreat-out of the Grayscale -**Inverse Difference Moment**: homogeneity- sum average- sum variance- sum entropy- entropy: randomness of the grayscale- difference variance- difference entropy- information measure of correlation 1, 2 , and Max Corr. Coefficient.- **dissimilarity**- inertia- **cluster shade**- cluster prominence ###Code def glcm_texture(image): ''' add some texture calculations for each spectral band (contrast and variance only for NIR and Red band) ''' #average the directional bands #consider a neighborhood of 4 pixels texture_img=image.select(['R','G','B','N']).glcmTexture(size=4,average=True) #select some useful textures : selection=['N_corr','N_var', 'B_shade','N_shade'] new_image = image.addBands(texture_img.select(selection)) return new_image preFire = glcm_texture(preFire) postFire = glcm_texture(postFire) print(preFire.bandNames().getInfo()) ###Output ['R', 'G', 'B', 'N', 'NDVI', 'edge', 'BSI', 'SI', 'texture', 'N_corr', 'N_var', 'B_shade', 'N_shade'] ###Markdown Convolution Layers(tuned with best visual performance)- low-pass convolutional filter (Gaussian)- high-pass filter and gradient (has been represented by canny edge detection above)- shape-sensitive filter (rectangle, octagon)- manhattan kernel based on rectilinear (city-block) distance ###Code def conv_filter(image): ''' apply gaussian, octagon, and mangattan convolutional filters to the image ''' #define filters #Gaussian gauss=ee.Kernel.gaussian(radius=7, sigma=2, units='pixels', normalize=True) # #define a 19 by 11 rectangle low pass filter # low_pass_rect1 = ee.Kernel.rectangle(xRadius=9,yRadius=5, units='pixels', normalize=True); # #the opposite way # low_pass_rect2 = ee.Kernel.rectangle(xRadius=5,yRadius=9, units='pixels', normalize=True); #octagon low_oct = ee.Kernel.octagon(radius=5, units='pixels', normalize=True); #manhattan manha=ee.Kernel.manhattan(radius=4, units='pixels', normalize=True) new_image=image filt_dict={'gauss':gauss,'low_oct':low_oct,'manha':manha} for name,filt in filt_dict.items(): smooth=image.select(['R','G','B','N']).convolve(filt).rename(['R_'+name,'G_'+name,'B_'+name,'N_'+name]) new_image = new_image.addBands(smooth) return new_image preFire = conv_filter(preFire) postFire = conv_filter(postFire) print(preFire.bandNames().getInfo()) ###Output ['R', 'G', 'B', 'N', 'NDVI', 'edge', 'BSI', 'SI', 'texture', 'N_corr', 'N_var', 'B_shade', 'N_shade', 'R_gauss', 'G_gauss', 'B_gauss', 'N_gauss', 'R_low_oct', 'G_low_oct', 'B_low_oct', 'N_low_oct', 'R_manha', 'G_manha', 'B_manha', 'N_manha'] ###Markdown Visualize Indices ###Code siViz = {'min': 0, 'max': 100, 'palette': ['ffff00', '330033']} bsiViz = {'min': 0.0, 'max': 0.3, 'palette': ['7fffd4', 'b99879']} ndviViz = {'min': -0.5, 'max': 0.5, 'palette': ['cc8e7f', '268b07']} texViz = {'min': 0, 'max': 4000, 'palette': ['fe6b73', '7fffd4']} Map = emap.Map(center=[38.50178453635526,-122.74843617724784], zoom=16) Map.addLayer(preFire.select(['R', 'G', 'B']), trueColorVis, 'preFire') Map.addLayer(preFire.select(['NDVI']),ndviViz, 'NDVI') Map.addLayer(preFire.select(['SI']),siViz, 'SI') Map.addLayer(preFire.select(['edge']),'', 'Canny') Map.addLayer(preFire.select(['BSI']),bsiViz, 'BSI') Map.addLayer(preFire.select(['texture']),texViz, 'texture') Map.addLayer(train_data, {'color': 'yellow'}, 'training') Map.addLayer(test_data, {'color': 'blue'}, 'testing') Map.addLayerControl() Map ###Output _____no_output_____ ###Markdown Unsupervised Methods(1) KMeans Clustering(2) Learning Vector Quantization Clustering (LVQ)(3) KMeans Segmentation (4) Simple Non-Iterative Clustering Segmentation (SNIC) KMeans Clustering ###Code bands = ['R', 'G', 'B', 'N', 'NDVI', 'edge', 'BSI', 'SI', 'texture'] # Make the training dataset. training = postFire.sample(**{ 'region': finalBounds, 'scale': 10, 'numPixels': 5000 }) # Instantiate the clusterer and train it. clusterer = ee.Clusterer.wekaKMeans(15).train(training) # Cluster the input using the trained clusterer. preFire_result = preFire.cluster(clusterer).rename('KMeans') postFire_result = postFire.cluster(clusterer).rename('KMeans') # add KMeans clustering postFire = postFire.addBands(postFire_result) preFire = preFire.addBands(preFire_result) print(postFire.bandNames().getInfo()) Map = emap.Map(center=[38.50178453635526,-122.74843617724784], zoom=19) Map.addLayer(preFire.select(['R', 'G', 'B']), trueColorVis, 'preFire') Map.addLayer(postFire.select(['R', 'G', 'B']), trueColorVis, 'postFire') Map.addLayer(postFire_result.randomVisualizer(),'', 'postFire_Kmeans',opacity=0.6) Map.addLayer(preFire_result.randomVisualizer(),'', 'preFire_Kmeans', opacity=0.6) Map.addLayer(train_data, {'color': 'yellow'}, 'training',opacity=0.4) Map.addLayer(test_data, {'color': 'blue'}, 'testing',opacity=0.4) Map.addLayerControl() Map ###Output _____no_output_____ ###Markdown Learning Vector Quantization (LVQ) ClusteringT. Kohonen, "Learning Vector Quantization", The Handbook of Brain Theory and Neural Networks, 2nd Edition, MIT Press, 2003, pp. 631-634.**ee.Clusterer.wekaLVQ(numClusters, learningRate, epochs, normalizeInput)** ###Code bands = ['R', 'G', 'B', 'N', 'NDVI', 'edge', 'BSI', 'SI', 'texture'] # Make the training dataset. training = postFire.select(bands).sample(**{ 'region': finalBounds, 'scale': 10, 'numPixels': 5000 }) # Instantiate the clusterer and train it. clusterer = ee.Clusterer.wekaLVQ(15).train(training) # Cluster the input using the trained clusterer. preFire_result = preFire.select(bands).cluster(clusterer).rename('LVQ') postFire_result = postFire.select(bands).cluster(clusterer).rename('LVQ') # add layer postFire = postFire.addBands(postFire_result) preFire = preFire.addBands(preFire_result) print(postFire.bandNames().getInfo()) Map = emap.Map(center=[38.50178453635526,-122.74843617724784], zoom=18) Map.addLayer(postFire.select(['R', 'G', 'B']), trueColorVis, 'postFire') Map.addLayer(postFire_result.randomVisualizer(),'', 'postFire_LVQ',opacity=0.6) Map.addLayer(preFire_result.randomVisualizer(),'', 'preFire_LVQ', opacity=0.6) Map.addLayer(train_data, {'color': 'yellow'}, 'training',opacity=0.4) Map.addLayer(test_data, {'color': 'blue'}, 'testing',opacity=0.4) Map.addLayerControl() Map ###Output _____no_output_____ ###Markdown KMeans Segmentation**Description:** Performs K-Means clustering on the input image. Outputs a 1-band image containing the ID of the cluster that each pixel belongs to. **ee.Algorithms.Image.Segmentation.KMeans(image, numClusters, numIterations, neighborhoodSize, gridSize, forceConvergence, uniqueLabels)*** **numClusters:** Number of clusters.* **numIterations:** Number of iterations.* **neighborhoodSize:** The amount to extend each tile (overlap) when computing the clusters. This option is mutually exclusive with gridSize.* **gridSize:** If greater than 0, kMeans will be run independently on cells of this size. This has the effect of limiting the size of any cluster to be gridSize or smaller. This option is mutually exclusive with neighborhoodSize.* **forceConvergence:** If true, an error is thrown if convergence is not achieved before numIterations.* **uniqueLabels:** If true, clusters are assigned unique IDs. Otherwise, they repeat per tile or grid cell. ###Code pre_kmeans = ee.Algorithms.Image.Segmentation.KMeans(preFire, 15, 1000, 20, 0, False, False) pre_clusters = pre_kmeans.select('clusters').rename('KMeans_Seg') post_kmeans = ee.Algorithms.Image.Segmentation.KMeans(postFire, 15, 1000, 20,0, False, False) post_clusters = post_kmeans.select('clusters').rename('KMeans_Seg') # add layer postFire = postFire.addBands(post_clusters) preFire = preFire.addBands(pre_clusters) print(preFire.bandNames().getInfo()) Map = emap.Map(center=[38.50178453635526,-122.74843617724784], zoom=18) Map.addLayer(preFire.select(['R', 'G', 'B']), trueColorVis, 'preFire') Map.addLayer(postFire.select(['R', 'G', 'B']), trueColorVis, 'postFire') Map.addLayer(pre_clusters.randomVisualizer(),'', 'pre_clusters', opacity=0.6) Map.addLayer(post_clusters.randomVisualizer(),'', 'post_clusters', opacity=0.6) Map.addLayer(train_data, {'color': 'yellow'}, 'training',opacity=0.4) Map.addLayer(test_data, {'color': 'blue'}, 'testing',opacity=0.4) Map.addLayerControl() Map ###Output _____no_output_____ ###Markdown Simple Non-Iterative Clustering (SNIC) Segmentation**Description:** An improved version of non-parametric SLIC. Superpixel clustering based on SNIC (Simple Non-Iterative Clustering). Outputs a band of cluster IDs and the per-cluster averages for each of the input bands. Outputs a band of cluster IDs and the per-cluster averages for each of the input bands.**ee.Algorithms.Image.Segmentation.SNIC(image, size, compactness, connectivity, neighborhoodSize, seeds)*** **size:** The superpixel seed location spacing, in pixels. If 'seeds' image is provided, no grid is produced.* **compactness:** Compactness factor. Larger values cause clusters to be more compact (square). Setting this to 0 disables spatial distance weighting.* **connectivity:** Connectivity. Either 4 or 8.* **neighbor:** Tile neighborhood size (to avoid tile boundary artifacts). Defaults to 2 * size.* **seeds:** If provided, any non-zero valued pixels are used as seed locations. Pixels that touch (as specified by 'connectivity') are considered to belong to the same cluster. ###Code def expandSeeds(seeds): seeds = seeds.unmask(0).focal_max() return seeds.updateMask(seeds) seeds = ee.Algorithms.Image.Segmentation.seedGrid(30) pre_snic = ee.Algorithms.Image.Segmentation.SNIC(preFire, 30, 15, 8, 200, seeds).select(["R_mean", "G_mean", "B_mean", "N_mean", "clusters"], ["R", "G", "B", "N", "clusters"]) pre_clusters = pre_snic.select('clusters').rename('SNIC') post_snic = ee.Algorithms.Image.Segmentation.SNIC(postFire, 30, 15, 8) post_clusters = post_snic.select('clusters').rename('SNIC') # add layer postFire = postFire.addBands(post_clusters) preFire = preFire.addBands(pre_clusters) print(preFire.bandNames().getInfo()) Map = emap.Map(center=[38.50178453635526,-122.74843617724784], zoom=18) Map.addLayer(pre_clusters.randomVisualizer(),'' , "clusters") Map.addLayer(post_clusters.randomVisualizer(),'', 'postFire_SNIC', opacity=0.6) Map.addLayer(expandSeeds(seeds), {}, 'seeds') Map.addLayer(train_data, {'color': 'yellow'}, 'training',opacity=0.4) Map.addLayer(test_data, {'color': 'blue'}, 'testing',opacity=0.4) Map.addLayerControl() Map ###Output _____no_output_____ ###Markdown Filter ImageryExclude areas with vegetation i.e. only keeps imagery areas with urban and baresoil ###Code hansenImage = ee.Image('UMD/hansen/global_forest_change_2015') def applyMask(imageryA, imageryB, hansenImage): ''' Mask out all vegetation and water from imagery from pre disaster values. ''' NDVIMaskB = imageryB.select('NDVI').lt(0.005) dataMask = hansenImage.select('datamask') waterMask = dataMask.eq(1) imageryA = imageryA.updateMask(NDVIMaskB) new_imagery = imageryA.updateMask(waterMask) return new_imagery postFire_filt = applyMask(postFire, preFire, hansenImage) Map = emap.Map(center=[38.50178453635526,-122.74843617724784], zoom=11) Map.addLayer(postFire_filt.select(['R', 'G', 'B']), trueColorVis, 'postFire') Map.addLayerControl() Map ###Output _____no_output_____ ###Markdown Supervised Classification(1) Train Data(2) CART (3) SVM(4) Random Forest Train Data ###Code # get layer names print(postFire_filt.bandNames().getInfo()) bands = ['R', 'G', 'B', 'N', 'NDVI', 'BSI', # Bands & Indices 'SNIC', # Clustering, Segmentation 'N_corr', 'B_shade', 'B_gauss', # GLCM Texture 'R_manha','R_low_oct'] # Convolution training = postFire_filt.select(bands).sampleRegions(**{ 'collection': train_data, 'properties': ['class'], 'scale': 10 }); ###Output _____no_output_____ ###Markdown CART Classifier ###Code # Train a CART classifier with default parameters. classifier = ee.Classifier.smileCart().train(training, 'class', bands); # Classify the image with the same bands used for training. postFire_classified = postFire_filt.select(bands).classify(classifier); #preFire_classified = preFire_filt.select(bands).classify(trained); ###Output _____no_output_____ ###Markdown Feature Importance ###Code class_explain = classifier.explain() variable_importance = ee.Feature(None, ee.Dictionary(class_explain).get('importance')) variable_importance.getInfo() import json import matplotlib.pylab as plt import seaborn as sns import pandas.util.testing as tm sns.set(style="whitegrid") sns.set_color_codes("pastel") var_dict = variable_importance.getInfo() lists = sorted(var_dict['properties'].items(), key = lambda kv:(kv[1], kv[0]), reverse=True) var = [i[0] for i in lists] values = [i[1] for i in lists] d = pd.DataFrame({'Variables':var,'Values':values}) sns.barplot('Values', 'Variables', data = d, label="Variables", color="b") plt.tight_layout() plt.savefig("Figures/CART_feature_imp.png", dpi=250) ###Output _____no_output_____ ###Markdown Validation ###Code validation = postFire_classified.sampleRegions(**{ 'collection': test_data, 'properties': ['class'], 'scale': 10, }) testAccuracy = validation.errorMatrix('class', 'classification'); print("Test Accuracy: ", testAccuracy.accuracy().getInfo()) print("Kappa Accuracy: ", testAccuracy.kappa().getInfo()) print("Producer Accuracy: ", testAccuracy.producersAccuracy().getInfo()) print("Consumers Accuracy(): ", testAccuracy.consumersAccuracy().getInfo()) ###Output Test Accuracy: 0.8306339904102291 Kappa Accuracy: 0.4481339614555388 Producer Accuracy: [[0.857304146020197], [0.6802263883975946]] Consumers Accuracy(): [[0.9379632171287401, 0.45807527393997144]] ###Markdown Classification Visual ###Code class_palette = ['bff7ff','ff9900'] Map = emap.Map(center=[38.50178453635526,-122.74843617724784], zoom=11) Map.addLayer(preFire.select(['R', 'G', 'B']), trueColorVis, 'preFire') Map.addLayer(postFire.select(['R', 'G', 'B']), trueColorVis, 'postFire') Map.addLayer(postFire_classified, {'palette': class_palette, 'min': 0, 'max':1}, 'postFire_classification') Map.addLayer(visualizeByAttribute(train_data, 'class'), {'palette': train_palette, 'min': 0, 'max':1}, 'train') Map.addLayer(visualizeByAttribute(test_data, 'class'), {'palette': train_palette,'min': 0, 'max':1}, 'test') Map.addLayerControl() Map ###Output _____no_output_____ ###Markdown Support Vector Machine Classifier ###Code # Create an SVM classifier with custom parameters. classifier = ee.Classifier.libsvm(**{ 'kernelType': 'RBF' }).train(training, 'class', bands) # Classify the image. postFire_classified = postFire_filt.select(bands).classify(classifier) ###Output _____no_output_____ ###Markdown Validation ###Code validation = postFire_classified.sampleRegions(**{ 'collection': test_data, 'properties': ['class'], 'scale': 10, }) testAccuracy = validation.errorMatrix('class', 'classification'); print("Test Accuracy: ", testAccuracy.accuracy().getInfo()) print("Kappa Accuracy: ", testAccuracy.kappa().getInfo()) print("Producer Accuracy: ", testAccuracy.producersAccuracy().getInfo()) print("Consumers Accuracy(): ", testAccuracy.consumersAccuracy().getInfo()) ###Output Test Accuracy: 0.9042834479111581 Kappa Accuracy: 0.5850923650769214 Producer Accuracy: [[0.9904336734693877], [0.48606811145510836]] Consumers Accuracy(): [[0.9034322280395579, 0.9127906976744186]] ###Markdown Classification Visual ###Code Map = emap.Map(center=[38.50178453635526,-122.74843617724784], zoom=11) Map.addLayer(preFire.select(['R', 'G', 'B']), trueColorVis, 'preFire') Map.addLayer(postFire.select(['R', 'G', 'B']), trueColorVis, 'postFire') Map.addLayer(postFire_classified, {'palette': class_palette, 'min': 0, 'max':1}, 'postFire_classification') Map.addLayer(visualizeByAttribute(train_data, 'class'), {'palette': train_palette, 'min': 0, 'max':1}, 'train') Map.addLayer(visualizeByAttribute(test_data, 'class'), {'palette': train_palette,'min': 0, 'max':1}, 'test') Map.addLayerControl() Map ###Output _____no_output_____ ###Markdown Random Forestee.Classifier.randomForest(numberOfTrees, variablesPerSplit, minLeafPopulation, bagFraction, outOfBagMode, seed) Classifier ###Code # Create an SVM classifier with custom parameters. classifier = ee.Classifier.smileRandomForest(**{ 'numberOfTrees': 100 }).train(training, 'class', bands) postFire_classified = postFire_filt.select(bands).classify(classifier) ###Output _____no_output_____ ###Markdown Feature Importance ###Code class_explain = classifier.explain() variable_importance = ee.Feature(None, ee.Dictionary(class_explain).get('importance')) variable_importance.getInfo() sns.set(style="whitegrid") sns.set_color_codes("pastel") var_dict = variable_importance.getInfo() lists = sorted(var_dict['properties'].items(), key = lambda kv:(kv[1], kv[0]), reverse=True) var = [i[0] for i in lists] values = [i[1] for i in lists] d = pd.DataFrame({'Variables':var,'Values':values}) sns.barplot('Values', 'Variables', data = d, label="Variables", color="b") plt.tight_layout() plt.savefig("Figures/RF_feature_imp.png", dpi=250) ###Output _____no_output_____ ###Markdown Validation ###Code validation = postFire_classified.sampleRegions(**{ 'collection': test_data, 'properties': ['class'], 'scale': 30, }) testAccuracy = validation.errorMatrix('class', 'classification'); testAccuracy.array().getInfo() print("Test Accuracy: ", testAccuracy.accuracy().getInfo()) print("Kappa Accuracy: ", testAccuracy.kappa().getInfo()) print("Producer Accuracy: ", testAccuracy.producersAccuracy().getInfo()) print("Consumers Accuracy(): ", testAccuracy.consumersAccuracy().getInfo()) accuracy = [] kappa = [] producer = [] consumer = [] scale = [] for i in range (10, 120+1, 10): print(i) validation = postFire_classified.sampleRegions(**{ 'collection': test_data, 'properties': ['class'], 'scale': i, }) testAccuracy = validation.errorMatrix('class', 'classification') accuracy.append(testAccuracy.accuracy().getInfo()) kappa.append(testAccuracy.kappa().getInfo()) producer.append(testAccuracy.producersAccuracy().getInfo()) consumer.append(testAccuracy.consumersAccuracy().getInfo()) scale.append(i) prod_0 = [i[0] for i in producer] prod_0 = [i[0] for i in prod_0] prod_1 = [i[1] for i in producer] prod_1 = [i[0] for i in prod_1] user_0 = [i[0] for i in consumer] user_0 = [i[0] for i in user_0] user_1 = [i[0] for i in consumer] user_1 = [i[1] for i in user_1] # plot effects of block scales on accuracy assessment data = {'Scale (pixels)': scale, 'Accuracy (%)': accuracy, 'Kappa (%)': kappa, 'Producer (no-damage)': prod_0, 'Producer (damaged)': prod_1, 'User (no-damage)': user_0, 'User (damaged)': user_1, } scale_scores = pd.DataFrame.from_dict(data) #scale_scores.to_csv('scale_scores.csv', index=False) scale_scores = pd.read_csv(r'scale_scores.csv', index_col=None) scale_scores = scale_scores[1:] scale_scores melted = pd.melt(scale_scores, id_vars=['Scale (pixels)'], value_vars=['Accuracy (%)', 'Kappa (%)', 'Producer (damaged)', 'User (damaged)'], var_name='Assessment', value_name='Accuracy (%)') melted['Accuracy (%)'] = melted['Accuracy (%)'] * 100 melted import seaborn as sns import matplotlib.pylab as plt sns.set(style="ticks") colors = ["#f684a0", "#df6748", "#84a0f6", "#534c5c"] sns.set_color_codes("pastel") sns.scatterplot(x="Scale (pixels)", y="Accuracy (%)", hue = 'Assessment', style = 'Assessment',data=melted, palette = sns.color_palette(colors)) sns.lineplot(x="Scale (pixels)", y="Accuracy (%)", hue = 'Assessment', style = 'Assessment',data=melted, palette = sns.color_palette(colors), legend=False) plt.savefig("Figures/RF_scale_accuracy.png", dpi=250) ###Output _____no_output_____ ###Markdown Classification Visual ###Code class_palette = ['bff7ff','ff9900'] Map = emap.Map(center=[38.50178453635526,-122.74843617724784], zoom=11) Map.addLayer(preFire.select(['R', 'G', 'B']), trueColorVis, 'preFire') Map.addLayer(postFire.select(['R', 'G', 'B']), trueColorVis, 'postFire') Map.addLayer(postFire_classified, {'palette': class_palette, 'min': 0, 'max':1}, 'postFire_classification') Map.addLayer(visualizeByAttribute(train_data, 'class'), {'palette': train_palette, 'min': 0, 'max':1}, 'train') Map.addLayer(visualizeByAttribute(test_data, 'class'), {'palette': train_palette,'min': 0, 'max':1}, 'test') Map.addLayerControl() Map ###Output _____no_output_____ ###Markdown Image ExtractionTo run xgboost and neural networks locally, extract images by building polygons from the GEE API. Extracted images (with all features) will be saved in Google Drive. Reading these extracted images as well as training XGBoost and Neural Net will be run in seperate jupyter notebooks.__output images will have all 43 features at a resolutoin of 1 meter__To reduce image size (due to the expot limit from GEE API):Each polygon converted from XView annotations has recorded its original image ID. Based on these, for each id, clip the pre- and post- images respectively by polygons with the same id****The output image would roughly be in the same extent as its original image ###Code #make sure all features (each band of the image has the same data type) preFire=ee.Image.float(preFire) postFire=ee.Image.float(postFire) #The whole pre- and post- images include two seperate areas, first use geo dataframe to subset Santa Rosa #Santa Rosa train_data_SR=train_data.filter(ee.Filter.eq('location_n', 'santa-rosa-wildfire')) santaRosa = gdf.query("location_n == 'santa-rosa-wildfire'") ID_list=santaRosa.ID.unique() #convert ground truth polygons to image SR_true_pre = ee.Image.byte(train_data_SR.filter(ee.Filter.eq('pre_post_d','pre')).reduceToImage(properties=['dmg_code'],reducer=ee.Reducer.first())) SR_true_post = ee.Image.byte(train_data_SR.filter(ee.Filter.eq('pre_post_d','post')).reduceToImage(properties=['dmg_code'],reducer=ee.Reducer.first())) #use the export function from GEE API to save both pre- and post-fire features and ground truth images for index in ID_list: try: image_ROI=train_data_SR.filter(ee.Filter.eq('ID', index)) #post ROI_shp=santaRosa[(santaRosa['ID']==index)&(santaRosa['pre_post_d']=='post')] image_bound=ee.Geometry.Polygon(get_bounds(ROI_shp)) task1=ee.batch.Export.image.toDrive(image=postFire, description='post_'+index, folder='NAIP_img_new', region=image_bound, scale=1) task2=ee.batch.Export.image.toDrive(image=SR_true_post, description='post_'+index+'gt', folder='NAIP_img_new', region=image_bound, scale=1) task1.start() task2.start() #print(task2.status()) #pre ROI_shp=santaRosa[(santaRosa['ID']==index)&(santaRosa['pre_post_d']=='pre')] image_bound=ee.Geometry.Polygon(get_bounds(ROI_shp)) task3=ee.batch.Export.image.toDrive(image=preFire, description='pre_'+index, folder='NAIP_img_new', region=image_bound, scale=1) task4=ee.batch.Export.image.toDrive(image=SR_true_pre, description='pre_'+index+'gt', folder='NAIP_img_new', region=image_bound, scale=1) task3.start() task4.start() #print(task3.status()) #if index=='00000376': # print('done!') except: continue ###Output _____no_output_____
MandMs/02_Facies_classification-MandMs_plurality_voting_classifier.ipynb
###Markdown Facies classification using plurality voting (e.g. multiclass majority voting) Contest entry by: Matteo Niccoli and Mark Dahl [Original contest notebook](../Facies_classification.ipynb) by Brendon Hall, [Enthought](https://www.enthought.com/) The code and ideas in this notebook, by Matteo Niccoli and Mark Dahl, are licensed under a Creative Commons Attribution 4.0 International License. In this notebook we will attempt to predict facies from well log data using machine learnig classifiers. The dataset comes from a class exercise from The University of Kansas on [Neural Networks and Fuzzy Systems](http://www.people.ku.edu/~gbohling/EECS833/). This exercise is based on a consortium project to use machine learning techniques to create a reservoir model of the largest gas fields in North America, the Hugoton and Panoma Fields. For more info on the origin of the data, see [Bohling and Dubois (2003)](http://www.kgs.ku.edu/PRS/publication/2003/ofr2003-50.pdf) and [Dubois et al. (2007)](http://dx.doi.org/10.1016/j.cageo.2006.08.011). The dataset consists of log data from nine wells that have been labeled with a facies type based on observation of core. We will use this log data to train a support vector machine to classify facies types. The planWe will created three classifiers with pretuned parameters:- best SVM in the competition (by our team's SVM submission) - best Random Forest in the competition (form the leading submission, by gccrowther) - multilayer perceptron (from previous notebooks, not submitted)We will then try to predict the facies using a plurality voting approach (plurality voting = multi-class majority voting).From the [scikit-learn website](http://scikit-learn.org/stable/modules/ensemble.htmlvoting-classifier): "The idea behind the voting classifier implementation is to combine conceptually different machine learning classifiers and use a majority vote or the average predicted probabilities (soft vote) to predict the class labels. Such a classifier can be useful for a set of equally well performing model in order to balance out their individual weaknesses". Exploring the datasetFirst, we will examine the data set we will use to train the classifier. ###Code %matplotlib inline import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.colors as colors from mpl_toolkits.axes_grid1 import make_axes_locatable import pandas as pd from pandas import set_option set_option("display.max_rows", 10) pd.options.mode.chained_assignment = None from sklearn import preprocessing from sklearn.metrics import f1_score, accuracy_score, make_scorer from sklearn.model_selection import LeaveOneGroupOut filename = 'facies_vectors.csv' training_data = pd.read_csv(filename) training_data ###Output _____no_output_____ ###Markdown This data is from the Council Grove gas reservoir in Southwest Kansas. The Panoma Council Grove Field is predominantly a carbonate gas reservoir encompassing 2700 square miles in Southwestern Kansas. This dataset is from nine wells (with 4149 examples), consisting of a set of seven predictor variables and a rock facies (class) for each example vector and validation (test) data (830 examples from two wells) having the same seven predictor variables in the feature vector. Facies are based on examination of cores from nine wells taken vertically at half-foot intervals. Predictor variables include five from wireline log measurements and two geologic constraining variables that are derived from geologic knowledge. These are essentially continuous variables sampled at a half-foot sample rate. The seven predictor variables are:* Five wire line log curves include [gamma ray](http://petrowiki.org/Gamma_ray_logs) (GR), [resistivity logging](http://petrowiki.org/Resistivity_and_spontaneous_%28SP%29_logging) (ILD_log10),[photoelectric effect](http://www.glossary.oilfield.slb.com/en/Terms/p/photoelectric_effect.aspx) (PE), [neutron-density porosity difference and average neutron-density porosity](http://petrowiki.org/Neutron_porosity_logs) (DeltaPHI and PHIND). Note, some wells do not have PE.* Two geologic constraining variables: nonmarine-marine indicator (NM_M) and relative position (RELPOS)The nine discrete facies (classes of rocks) are: 1. Nonmarine sandstone2. Nonmarine coarse siltstone 3. Nonmarine fine siltstone 4. Marine siltstone and shale 5. Mudstone (limestone)6. Wackestone (limestone)7. Dolomite8. Packstone-grainstone (limestone)9. Phylloid-algal bafflestone (limestone)These facies aren't discrete, and gradually blend into one another. Some have neighboring facies that are rather close. Mislabeling within these neighboring facies can be expected to occur. The following table lists the facies, their abbreviated labels and their approximate neighbors.Facies |Label| Adjacent Facies:---: | :---: |:--:1 |SS| 22 |CSiS| 1,33 |FSiS| 24 |SiSh| 55 |MS| 4,66 |WS| 5,77 |D| 6,88 |PS| 6,7,99 |BS| 7,8Let's clean up this dataset. The 'Well Name' and 'Formation' columns can be turned into a categorical data type. ###Code training_data['Well Name'] = training_data['Well Name'].astype('category') training_data['Formation'] = training_data['Formation'].astype('category') training_data['Well Name'].unique() ###Output _____no_output_____ ###Markdown These are the names of the 10 training wells in the Council Grove reservoir. Data has been recruited into pseudo-well 'Recruit F9' to better represent facies 9, the Phylloid-algal bafflestone. Before we plot the well data, let's define a color map so the facies are represented by consistent color in all the plots in this tutorial. We also create the abbreviated facies labels, and add those to the `facies_vectors` dataframe. ###Code # 1=sandstone 2=c_siltstone 3=f_siltstone # 4=marine_silt_shale #5=mudstone 6=wackestone 7=dolomite 8=packstone 9=bafflestone facies_colors = ['#F4D03F', '#F5B041', '#DC7633','#A569BD', '#000000', '#000080', '#2E86C1', '#AED6F1', '#196F3D'] facies_labels = ['SS', 'CSiS', 'FSiS', 'SiSh', 'MS', 'WS', 'D','PS', 'BS'] #facies_color_map is a dictionary that maps facies labels #to their respective colors facies_color_map = {} for ind, label in enumerate(facies_labels): facies_color_map[label] = facies_colors[ind] def label_facies(row, labels): return labels[ row['Facies'] -1] training_data.loc[:,'FaciesLabels'] = training_data.apply(lambda row: label_facies(row, facies_labels), axis=1) training_data.describe() ###Output _____no_output_____ ###Markdown This is a quick view of the statistical distribution of the input variables. Looking at the `count` values, most values have 4149 valid values except for `PE`, which has 3232. We will drop the feature vectors that don't have a valid `PE` entry. ###Code PE_mask = training_data['PE'].notnull().values training_data = training_data[PE_mask] training_data.describe() ###Output _____no_output_____ ###Markdown Now we extract just the feature variables we need to perform the classification. The predictor variables are the five log values and two geologic constraining variables, **and we are also using depth**. We also get a vector of the facies labels that correspond to each feature vector. ###Code y = training_data['Facies'].values print y[25:40] print np.shape(y) X = training_data.drop(['Formation', 'Well Name','Facies','FaciesLabels'], axis=1) print np.shape(X) X.describe(percentiles=[.05, .25, .50, .75, .95]) scaler = preprocessing.StandardScaler().fit(X) X = scaler.transform(X) ###Output _____no_output_____ ###Markdown Make performance scorersUsed to evaluate performance. ###Code Fscorer = make_scorer(f1_score, average = 'micro') ###Output _____no_output_____ ###Markdown Pre-tuned SVM classifier classifier and leave one well out average F1 scoreThis is the Support Vector Machine classifier from our [first submission](https://github.com/mycarta/2016-ml-contest/blob/master/MandMs/Facies_classification-M%26Ms_SVM_rbf_kernel_optimal.ipynb). ###Code from sklearn import svm SVC_classifier = svm.SVC(C = 100, cache_size=2400, class_weight=None, coef0=0.0, decision_function_shape=None, degree=3, gamma=0.01, kernel='rbf', max_iter=-1, probability=True, random_state=49, shrinking=True, tol=0.001, verbose=False) f1_svc = [] wells = training_data["Well Name"].values logo = LeaveOneGroupOut() for train, test in logo.split(X, y, groups=wells): well_name = wells[test[0]] SVC_classifier.fit(X[train], y[train]) pred_svc = SVC_classifier.predict(X[test]) sc = f1_score(y[test], pred_svc, labels = np.arange(10), average = 'micro') print("{:>20s} {:.3f}".format(well_name, sc)) f1_svc.append(sc) print "-Average leave-one-well-out F1 Score: %6f" % (sum(f1_svc)/(1.0*(len(f1_svc)))) ###Output CHURCHMAN BIBLE 0.542 CROSS H CATTLE 0.347 LUKE G U 0.440 NEWBY 0.400 NOLAN 0.494 Recruit F9 0.721 SHANKLE 0.483 SHRIMPLIN 0.590 -Average leave-one-well-out F1 Score: 0.502174 ###Markdown Pre-tuned multi-layer perceptron classifier and average F1 score ###Code from sklearn.neural_network import MLPClassifier mlp_classifier = MLPClassifier(activation='logistic', alpha=0.01, batch_size='auto', beta_1=0.9, beta_2=0.999, early_stopping=False, epsilon=1e-08, hidden_layer_sizes=(100,), learning_rate='adaptive', learning_rate_init=0.001, max_iter=1000, momentum=0.9, nesterovs_momentum=True, power_t=0.5, random_state=49, shuffle=True, solver='adam', tol=0.0001, validation_fraction=0.1, verbose=False, warm_start=False) f1_mlp = [] wells = training_data["Well Name"].values logo = LeaveOneGroupOut() for train, test in logo.split(X, y, groups=wells): well_name = wells[test[0]] mlp_classifier.fit(X[train], y[train]) pred_mlp = mlp_classifier.predict(X[test]) sc = f1_score(y[test], pred_mlp, labels = np.arange(10), average = 'micro') print("{:>20s} {:.3f}".format(well_name, sc)) f1_mlp.append(sc) print "-Average leave-one-well-out F1 Score: %6f" % (sum(f1_mlp)/(1.0*(len(f1_mlp)))) ###Output CHURCHMAN BIBLE 0.525 CROSS H CATTLE 0.341 LUKE G U 0.419 NEWBY 0.415 NOLAN 0.482 Recruit F9 0.779 SHANKLE 0.541 SHRIMPLIN 0.575 -Average leave-one-well-out F1 Score: 0.509666 ###Markdown Pre-tuned extra treesThis is the RF classifier with parameters tuned in the leading submission, by George Crowther, but without his engineered features. ###Code from sklearn.pipeline import make_pipeline from sklearn.feature_selection import VarianceThreshold from sklearn.ensemble import ExtraTreesClassifier ET_classifier = make_pipeline( VarianceThreshold(threshold=0.49), ExtraTreesClassifier(criterion="entropy", max_features=0.71, n_estimators=500, random_state=49)) f1_ET = [] wells = training_data["Well Name"].values logo = LeaveOneGroupOut() for train, test in logo.split(X, y, groups=wells): well_name = wells[test[0]] ET_classifier.fit(X[train], y[train]) pred_cv = ET_classifier.predict(X[test]) sc = f1_score(y[test], pred_cv, labels = np.arange(10), average = 'micro') print("{:>20s} {:.3f}".format(well_name, sc)) f1_ET.append(sc) print "-Average leave-one-well-out F1 Score: %6f" % (sum(f1_ET)/(1.0*(len(f1_ET)))) ###Output CHURCHMAN BIBLE 0.498 CROSS H CATTLE 0.337 LUKE G U 0.434 NEWBY 0.408 NOLAN 0.494 Recruit F9 0.912 SHANKLE 0.486 SHRIMPLIN 0.614 -Average leave-one-well-out F1 Score: 0.522719 ###Markdown Plurality voting classifier (multi-class majority voting)We will use a weighted approach, where the weights are somewhat arbitrary, but their proportion is based on the average f1 score of the individual classifiers. ###Code from sklearn.ensemble import VotingClassifier eclf_cv = VotingClassifier(estimators=[ ('SVC', SVC_classifier), ('MLP', mlp_classifier), ('ET', ET_classifier)], voting='soft', weights=[0.3,0.33,0.37]) ###Output _____no_output_____ ###Markdown Leave one-well-out F1 scores ###Code f1_ens = [] wells = training_data["Well Name"].values logo = LeaveOneGroupOut() for train, test in logo.split(X, y, groups=wells): well_name = wells[test[0]] eclf_cv.fit(X[train], y[train]) pred_cv = eclf_cv.predict(X[test]) sc = f1_score(y[test], pred_cv, labels = np.arange(10), average = 'micro') print("{:>20s} {:.3f}".format(well_name, sc)) f1_ens.append(sc) print "-Average leave-one-well-out F1 Score: %6f" % (sum(f1_ens)/(1.0*(len(f1_ens)))) ###Output CHURCHMAN BIBLE 0.554 CROSS H CATTLE 0.351 LUKE G U 0.451 NEWBY 0.400 NOLAN 0.501 Recruit F9 0.912 SHANKLE 0.519 SHRIMPLIN 0.603 -Average leave-one-well-out F1 Score: 0.536423 ###Markdown Comments Using the average F1 score from the leave-one-well out cross validation as a metric, the majority voting is superior to the individual classifiers, including the pre-tuned Random Forest from the leading submission. However, the Random Forest in the official leading submission was trained using additional new features engineered by George, and outperforms our majority voting classifier, with an F1 score of 0.580 against our 0.579. A clear indication, in our view, that the feature engineering is a key element to achieve the best possible prediction. Predicting, displaying, and saving facies for blind wells ###Code blind = pd.read_csv('validation_data_nofacies.csv') X_blind = np.array(blind.drop(['Formation', 'Well Name'], axis=1)) X_blind = scaler.transform(X_blind) y_pred = eclf_cv.fit(X, y).predict(X_blind) blind['Facies'] = y_pred def make_facies_log_plot(logs, facies_colors): #make sure logs are sorted by depth logs = logs.sort_values(by='Depth') cmap_facies = colors.ListedColormap( facies_colors[0:len(facies_colors)], 'indexed') ztop=logs.Depth.min(); zbot=logs.Depth.max() cluster=np.repeat(np.expand_dims(logs['Facies'].values,1), 100, 1) f, ax = plt.subplots(nrows=1, ncols=6, figsize=(8, 12)) ax[0].plot(logs.GR, logs.Depth, '-g') ax[1].plot(logs.ILD_log10, logs.Depth, '-') ax[2].plot(logs.DeltaPHI, logs.Depth, '-', color='0.5') ax[3].plot(logs.PHIND, logs.Depth, '-', color='r') ax[4].plot(logs.PE, logs.Depth, '-', color='black') im=ax[5].imshow(cluster, interpolation='none', aspect='auto', cmap=cmap_facies,vmin=1,vmax=9) divider = make_axes_locatable(ax[5]) cax = divider.append_axes("right", size="20%", pad=0.05) cbar=plt.colorbar(im, cax=cax) cbar.set_label((17*' ').join([' SS ', 'CSiS', 'FSiS', 'SiSh', ' MS ', ' WS ', ' D ', ' PS ', ' BS '])) cbar.set_ticks(range(0,1)); cbar.set_ticklabels('') for i in range(len(ax)-1): ax[i].set_ylim(ztop,zbot) ax[i].invert_yaxis() ax[i].grid() ax[i].locator_params(axis='x', nbins=3) ax[0].set_xlabel("GR") ax[0].set_xlim(logs.GR.min(),logs.GR.max()) ax[1].set_xlabel("ILD_log10") ax[1].set_xlim(logs.ILD_log10.min(),logs.ILD_log10.max()) ax[2].set_xlabel("DeltaPHI") ax[2].set_xlim(logs.DeltaPHI.min(),logs.DeltaPHI.max()) ax[3].set_xlabel("PHIND") ax[3].set_xlim(logs.PHIND.min(),logs.PHIND.max()) ax[4].set_xlabel("PE") ax[4].set_xlim(logs.PE.min(),logs.PE.max()) ax[5].set_xlabel('Facies') ax[1].set_yticklabels([]); ax[2].set_yticklabels([]); ax[3].set_yticklabels([]) ax[4].set_yticklabels([]); ax[5].set_yticklabels([]) ax[5].set_xticklabels([]) f.suptitle('Well: %s'%logs.iloc[0]['Well Name'], fontsize=14,y=0.94) make_facies_log_plot(blind[blind['Well Name'] == 'STUART'], facies_colors) make_facies_log_plot(blind[blind['Well Name'] == 'CRAWFORD'], facies_colors) np.save('ypred.npy', y_pred) ###Output _____no_output_____ ###Markdown Displaying predicted versus original facies in the training dataThis is a nice display to finish up with, as it gives us a visual idea of the predicted faces where we have facies from the core observations.The plot we will use a function from the original notebook. Let's look at the well with the lowest F1 from the previous code block, CROSS H CATTLE, and the one with the highest F1 (excluding Recruit F9), which is SHRIMPLIN. ###Code def compare_facies_plot(logs, compadre, facies_colors): #make sure logs are sorted by depth logs = logs.sort_values(by='Depth') cmap_facies = colors.ListedColormap( facies_colors[0:len(facies_colors)], 'indexed') ztop=logs.Depth.min(); zbot=logs.Depth.max() cluster1 = np.repeat(np.expand_dims(logs['Facies'].values,1), 100, 1) cluster2 = np.repeat(np.expand_dims(logs[compadre].values,1), 100, 1) f, ax = plt.subplots(nrows=1, ncols=7, figsize=(9, 12)) ax[0].plot(logs.GR, logs.Depth, '-g') ax[1].plot(logs.ILD_log10, logs.Depth, '-') ax[2].plot(logs.DeltaPHI, logs.Depth, '-', color='0.5') ax[3].plot(logs.PHIND, logs.Depth, '-', color='r') ax[4].plot(logs.PE, logs.Depth, '-', color='black') im1 = ax[5].imshow(cluster1, interpolation='none', aspect='auto', cmap=cmap_facies,vmin=1,vmax=9) im2 = ax[6].imshow(cluster2, interpolation='none', aspect='auto', cmap=cmap_facies,vmin=1,vmax=9) divider = make_axes_locatable(ax[6]) cax = divider.append_axes("right", size="20%", pad=0.05) cbar=plt.colorbar(im2, cax=cax) cbar.set_label((17*' ').join([' SS ', 'CSiS', 'FSiS', 'SiSh', ' MS ', ' WS ', ' D ', ' PS ', ' BS '])) cbar.set_ticks(range(0,1)); cbar.set_ticklabels('') for i in range(len(ax)-2): ax[i].set_ylim(ztop,zbot) ax[i].invert_yaxis() ax[i].grid() ax[i].locator_params(axis='x', nbins=3) ax[0].set_xlabel("GR") ax[0].set_xlim(logs.GR.min(),logs.GR.max()) ax[1].set_xlabel("ILD_log10") ax[1].set_xlim(logs.ILD_log10.min(),logs.ILD_log10.max()) ax[2].set_xlabel("DeltaPHI") ax[2].set_xlim(logs.DeltaPHI.min(),logs.DeltaPHI.max()) ax[3].set_xlabel("PHIND") ax[3].set_xlim(logs.PHIND.min(),logs.PHIND.max()) ax[4].set_xlabel("PE") ax[4].set_xlim(logs.PE.min(),logs.PE.max()) ax[5].set_xlabel('Facies') ax[6].set_xlabel(compadre) ax[1].set_yticklabels([]); ax[2].set_yticklabels([]); ax[3].set_yticklabels([]) ax[4].set_yticklabels([]); ax[5].set_yticklabels([]) ax[5].set_xticklabels([]) ax[6].set_xticklabels([]) f.suptitle('Well: %s'%logs.iloc[0]['Well Name'], fontsize=14,y=0.94) eclf_cv.fit(X,y) pred = eclf_cv.predict(X) X = training_data X['Prediction'] = pred compare_facies_plot(X[X['Well Name'] == 'CROSS H CATTLE'], 'Prediction', facies_colors) compare_facies_plot(X[X['Well Name'] == 'SHRIMPLIN'], 'Prediction', facies_colors) ###Output _____no_output_____
src/pubmed_disc_conc/TopicModelTest.ipynb
###Markdown Topic Model TestThis is a notebook for trying to use topic models for classifying sets of text that are more syntactically similar than topically similar. This notebook attempts to distinguish between discussion and conclusion section of scientific papers.Below we are loading the dataset for use. ###Code from __future__ import print_function from time import time import os from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from sklearn.decomposition import NMF, LatentDirichletAllocation from sklearn.cross_validation import train_test_split import numpy as np import pickle validDocsDict = dict() fileList = os.listdir("BioMedProcessed") for f in fileList: validDocsDict.update(pickle.load(open("BioMedProcessed/" + f, "rb"))) ###Output _____no_output_____ ###Markdown Here we are setting some vaiables to be used below and defining a function for printing the top words in a topic for the topic modeling. ###Code n_samples = len(validDocsDict.keys()) n_features = 1000 n_topics = 2 n_top_words = 30 def print_top_words(model, feature_names, n_top_words): for topic_idx, topic in enumerate(model.components_): print("Topic #%d:" % topic_idx) print(" ".join([feature_names[i] for i in topic.argsort()[:-n_top_words - 1:-1]])) ###Output _____no_output_____ ###Markdown Pre-process dataHere we are preprocessing data for use later. This code only grabs the discussion and conclusion sections of the data. We are also creating appropriate labels for the data and spliting the documents up to train and test sets. ###Code print("Loading dataset...") t0 = time() documents = [] labels = [] concLengthTotal = 0 discLengthTotal = 0 concCount = 0 discCount = 0 for k in validDocsDict.keys(): if k.startswith("conclusion"): labels.append("conclusion") documents.append(validDocsDict[k]) concCount += 1 concLengthTotal += len(validDocsDict[k].split(' ')) elif k.startswith("discussion"): labels.append("discussion") documents.append(validDocsDict[k]) discCount += 1 discLengthTotal += len(validDocsDict[k].split(' ')) print(len(documents)) print(concLengthTotal * 1.0/ concCount) print(discLengthTotal * 1.0/ discCount) train, test, labelsTrain, labelsTest = train_test_split(documents, labels, test_size = 0.1) ###Output Loading dataset... 53034 621.583361617 1197.39683976 ###Markdown Here we are splitting the data up some more to train different models. Discussion and conclusion sections are being put into their own training sets. A TFIDF vectorizer is trained with the whole dataset of conclusion AND discussion sections. The multiple different training sets are then transformed using this vectorizer to get vector encodings of the text normalized to sum to 1 which accounts for differing lengths of conclusion and discussion sections. ###Code trainSetOne = [] trainSetTwo = [] for x in range(len(train)): if labelsTrain[x] == "conclusion": trainSetOne.append(train[x]) else: trainSetTwo.append(train[x]) # Use tf (raw term count) features for LDA. print("Extracting tf features for LDA...") tf_vectorizer = TfidfVectorizer(max_df=0.95, norm = 'l1', min_df=2, max_features=n_features, stop_words='english') t0 = time() tf = tf_vectorizer.fit_transform(train) tfSetOne = tf_vectorizer.transform(trainSetOne) tfSetTwo = tf_vectorizer.transform(trainSetTwo) tfTest = tf_vectorizer.transform(test) test = tfTest train = tf trainSetOne = tfSetOne trainSetTwo = tfSetTwo print("done in %0.3fs." % (time() - t0)) ###Output Extracting tf features for LDA... done in 74.115s. ###Markdown LDA With Two TopicsDefine an LDA topic model on the whole data set with two topics. This is trying to see if the topic model can define the difference between the two groups automatically and prints the top words per topic. ###Code print("Fitting LDA models with tf features, n_samples=%d and n_features=%d..." % (n_samples, n_features)) lda = LatentDirichletAllocation(n_topics=n_topics, max_iter=100, learning_method='online', learning_offset=50., random_state=0) t0 = time() lda.fit(tf) print("done in %0.3fs." % (time() - t0)) print("\nTopics in LDA model:") tf_feature_names = tf_vectorizer.get_feature_names() print_top_words(lda, tf_feature_names, n_top_words) ###Output Fitting LDA models with tf features, n_samples=157526 and n_features=1000... done in 354.955s. Topics in LDA model: Topic #0: patients health study care 1016 authors risk manuscript treatment clinical data disease use research women patient hiv medical children competing history pre interests analysis publication population design quality pain age Topic #1: background expression gene cells genes cell protein cancer results different human studies activity used species levels model specific proteins present genetic method using dna genome role number data function observed ###Markdown Transform the unknown data through the topic model and calculate which topic it is more associated with according to the ratios. Calculate how many of each type (conclusion and discussion) go into each topic (1 or 2). ###Code results = lda.transform(test) totalConTop1 = 0 totalConTop2 = 0 totalDisTop1 = 0 totalDisTop2 = 0 for x in range(len(results)): val1 = results[x][0] val2 = results[x][1] total = val1 + val2 print(str(labelsTest[x]) + " " + str(val1/total) + " " + str(val2/total)) if val1 > val2: if labelsTest[x] == "conclusion": totalConTop1 += 1 else: totalDisTop1 += 1 else: if labelsTest[x] == "conclusion": totalConTop2 += 1 else: totalDisTop2 += 1 ###Output _____no_output_____ ###Markdown Print out the results from the topic transforms. ###Code print("Total Conclusion Topic One: " + str(totalConTop1)) print("Total Conclusion Topic Two: " + str(totalConTop2)) print("Total Discussion Topic One: " + str(totalDisTop1)) print("Total Discussion Topic Two: " + str(totalDisTop2)) ###Output _____no_output_____ ###Markdown Get the parameters for the LDA. ###Code lda.get_params() ###Output _____no_output_____ ###Markdown Basic ClassifiersTrain three basic classifiers to solve the problem. Try Gaussian, Bernoulli and K Nearest Neighbors classifiers and calculate how accurate they are. ###Code from sklearn.naive_bayes import GaussianNB classifier = GaussianNB() classifier.fit(train.toarray(), labelsTrain) classResults = classifier.predict(test.toarray()) numRight = 0 for item in range(len(classResults)): if classResults[item] == labelsTest[item]: numRight += 1 print(str(numRight * 1.0 / len(classResults) * 1.0)) from sklearn.naive_bayes import MultinomialNB classifier = MultinomialNB() classifier.fit(train.toarray(), labelsTrain) classResults = classifier.predict(test.toarray()) numRight = 0 for item in range(len(classResults)): if classResults[item] == labelsTest[item]: numRight += 1 print(str(numRight * 1.0 / len(classResults) * 1.0)) from sklearn.naive_bayes import BernoulliNB classifier = BernoulliNB() classifier.fit(train.toarray(), labelsTrain) classResults = classifier.predict(test.toarray()) numRight = 0 for item in range(len(classResults)): if classResults[item] == labelsTest[item]: numRight += 1 print(str(numRight * 1.0 / len(classResults) * 1.0)) from sklearn.neighbors import KNeighborsClassifier classifier = KNeighborsClassifier() classifier.fit(train, labelsTrain) classResults = classifier.predict(test) numRight = 0 for item in range(len(classResults)): if classResults[item] == labelsTest[item]: numRight += 1 print(str(numRight * 1.0 / len(classResults) * 1.0)) ###Output 0.743212669683 ###Markdown Decision TreesDecision trees work well for binary classification and require little data prep ###Code from sklearn.tree import DecisionTreeClassifier classifier = DecisionTreeClassifier() classifier.fit(train.toarray(), labelsTrain) classResults = classifier.predict(test.toarray()) numRight = 0 for item in range(len(classResults)): if classResults[item] == labelsTest[item]: numRight += 1 print(str(numRight * 1.0 / len(classResults) * 1.0)) ###Output 0.942873303167 ###Markdown SVM ###Code from sklearn.linear_model import SGDClassifier classifier = SGDClassifier() classifier.fit(train, labelsTrain) classResults = classifier.predict(test) numRight = 0 for item in range(len(classResults)): if classResults[item] == labelsTest[item]: numRight += 1 print(str(numRight * 1.0 / len(classResults) * 1.0)) ###Output 0.863122171946 ###Markdown Two Topic ModelsDefine two topic models with 20 topics each, one on discussion sections and one on conclusion sections. Then transform both the train and test sets using both topic models to get 40 features for each sample based on the probability distribution for each topic in each LDA. ###Code ldaSet1 = LatentDirichletAllocation(n_topics=20, max_iter=100, learning_method='online', learning_offset=50., random_state=0) ldaSet2 = LatentDirichletAllocation(n_topics=20, max_iter=100, learning_method='online', learning_offset=50., random_state=0) ldaSet1.fit(trainSetOne) print_top_words(ldaSet1, tf_feature_names, n_top_words) ldaSet2.fit(trainSetTwo) print_top_words(ldaSet2, tf_feature_names, n_top_words) results1 = ldaSet1.transform(train) results2 = ldaSet2.transform(train) resultsTest1 = ldaSet1.transform(test) resultsTest2 = ldaSet2.transform(test) results = np.hstack((results1, results2)) resultsTest = np.hstack((resultsTest1, resultsTest2)) ###Output _____no_output_____ ###Markdown Define two classifiers using the transformed train and test sets from the topic models. Print out the accuracy of each one. ###Code from sklearn.naive_bayes import GaussianNB classifier = GaussianNB() classifier.fit(results, labelsTrain) classResults = classifier.predict(resultsTest) numRight = 0 for item in range(len(classResults)): if classResults[item] == labelsTest[item]: numRight += 1 print(str(numRight * 1.0 / len(classResults) * 1.0)) from sklearn.neighbors import KNeighborsClassifier classifier = KNeighborsClassifier() classifier.fit(results, labelsTrain) classResults = classifier.predict(resultsTest) numRight = 0 for item in range(len(classResults)): if classResults[item] == labelsTest[item]: numRight += 1 print(str(numRight * 1.0 / len(classResults) * 1.0)) from sklearn.tree import DecisionTreeClassifier classifier = DecisionTreeClassifier() classifier.fit(results, labelsTrain) classResults = classifier.predict(resultsTest) numRight = 0 for item in range(len(classResults)): if classResults[item] == labelsTest[item]: numRight += 1 print(str(numRight * 1.0 / len(classResults) * 1.0)) from sklearn.linear_model import SGDClassifier classifier = SGDClassifier() classifier.fit(results, labelsTrain) classResults = classifier.predict(resultsTest) numRight = 0 for item in range(len(classResults)): if classResults[item] == labelsTest[item]: numRight += 1 print(str(numRight * 1.0 / len(classResults) * 1.0)) ###Output 0.588989441931 ###Markdown Normalize the results of each sample of 40 features so they sum to 1. Then train two more classifiers using the data and print out the accuracy of each. ###Code for x in range(len(results)): total = 0 for y in range(len(results[x])): total += results[x][y] for y in range(len(results[x])): results[x][y] = results[x][y]/total for x in range(len(resultsTest)): total = 0 for y in range(len(resultsTest[x])): total += resultsTest[x][y] for y in range(len(resultsTest[x])): resultsTest[x][y] = resultsTest[x][y]/total from sklearn.naive_bayes import GaussianNB classifier = GaussianNB() classifier.fit(results, labelsTrain) classResults = classifier.predict(resultsTest) numRight = 0 for item in range(len(classResults)): if classResults[item] == labelsTest[item]: numRight += 1 print(str(numRight * 1.0 / len(classResults) * 1.0)) from sklearn.neighbors import KNeighborsClassifier classifier = KNeighborsClassifier() classifier.fit(results, labelsTrain) classResults = classifier.predict(resultsTest) numRight = 0 for item in range(len(classResults)): if classResults[item] == labelsTest[item]: numRight += 1 print(str(numRight * 1.0 / len(classResults) * 1.0)) from sklearn.tree import DecisionTreeClassifier classifier = DecisionTreeClassifier() classifier.fit(results, labelsTrain) classResults = classifier.predict(resultsTest) numRight = 0 for item in range(len(classResults)): if classResults[item] == labelsTest[item]: numRight += 1 print(str(numRight * 1.0 / len(classResults) * 1.0)) from sklearn.linear_model import SGDClassifier classifier = SGDClassifier() classifier.fit(results, labelsTrain) classResults = classifier.predict(resultsTest) numRight = 0 for item in range(len(classResults)): if classResults[item] == labelsTest[item]: numRight += 1 print(str(numRight * 1.0 / len(classResults) * 1.0)) ###Output 0.588989441931
keras_tiny_yolo3_train_20200923.ipynb
###Markdown Download keras-yolo3 projectGithub: https://github.com/sleepless-se/keras-yolo3(本家)自分のgit : https://github.com/tsuna-can/yolo-test.git Clone sleepless-se/keras-yolo3.git ###Code #自分のやつtinyに変更済み !git clone https://github.com/tsuna-can/yolo-test.git %cd yolo-test ###Output _____no_output_____ ###Markdown Install requirementsインストールした後にランタイムを再起動するのを忘れずに ###Code !pip install -r requirements.txt ###Output _____no_output_____ ###Markdown Upload VoTT export file and directory (.zip)Please upload your Archive.zip ###Code %cd VOCDevkit/VOC2007 %cd /content/yolo-test/VOCDevkit/VOC2007 from google.colab import files uploaded = files.upload() !ls ###Output _____no_output_____ ###Markdown Unzip and make train *files* ###Code !unzip Archive %cd /content/yolo-test/ !python make_train_files.py ###Output _____no_output_____ ###Markdown Convert annotations for YOLOPlease set your *classes*フラグでクラスを指定する ###Code !python voc_annotation.py tree tree_white ###Output _____no_output_____ ###Markdown Train model ###Code !python train.py ###Output _____no_output_____ ###Markdown Download trainde weights and classes fileダウンロードがブロックされることがあるので注意 ###Code #weight trained = 'logs/000/trained_weights_final.h5' files.download(trained) #クラス名 classes = "model_data/voc_classes.txt" files.download(classes) #train train_imgs = "model_data/2007_train.txt" files.download(train_imgs) #val val_imgs = "model_data/2007_val.txt" files.download(val_imgs) #test test_imgs = "model_data/2007_test.txt" files.download(test_imgs) ###Output _____no_output_____ ###Markdown Predict by new model結果はresult.jpgとして保存されるようにしてありますカーネルを再起動した時はディレクトリを移動し、voc_classes.txtを書き換えて、logs/000/にweightファイルをアップロードする。weightファイルが破損する可能性があるので、必ずアップロードボタンからアップロードする ###Code !python tiny_yolo_video.py --image ###Output _____no_output_____
notebooks_for_models/1969/model5_penalized_svm_1969.ipynb
###Markdown Purpose: Try different models-- Part5. Penalized_SVM. ###Code # import dependencies. import pandas as pd import numpy as np from sklearn.preprocessing import StandardScaler from sklearn.metrics import classification_report from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.svm import SVC ###Output _____no_output_____ ###Markdown STEP1: Read in dataset. Remove data from 2016-2019.- data from 2016-2018 will be used to bs test the model.- data from 2019 will be used to predict the winners of the 2019 WS. ###Code # read in the data. team_data = pd.read_csv("../../Resources/clean_data_1969.csv") del team_data["Unnamed: 0"] team_data.head() # remove data from 2016 through 2019. team_data_new = team_data.loc[team_data["year"] < 2016] team_data_new.head() target = team_data_new["winners"] features = team_data_new.drop({"team", "year", "winners"}, axis=1) feature_columns = list(features.columns) print (target.shape) print (features.shape) print (feature_columns) ###Output (1266,) (1266, 59) ['A', 'DP', 'E', 'G2', 'GS2', 'INN', 'PB', 'PO', 'TC', '2B', '3B', 'AB', 'AO', 'BB', 'CS', 'G', 'GDP', 'H', 'HBP', 'HR', 'IBB', 'NP_x', 'OBP', 'OPS_x', 'PA', 'R', 'RBI', 'SAC', 'SB', 'SF', 'SLG', 'SO', 'TB', 'XBH', 'BB1', 'BK', 'CG', 'ER', 'ERA', 'G1', 'GF', 'GS', 'H1', 'HB', 'HR1', 'IBB1', 'IP', 'L', 'OBP1', 'R1', 'SHO', 'SO1', 'SV', 'SVO', 'TBF', 'W', 'WHIP', 'WP', 'WPCT'] ###Markdown STEP2: Split and scale the data. ###Code # split data. X_train, X_test, y_train, y_test = train_test_split(features, target, random_state=42) # scale data. scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.fit_transform(X_test) ###Output /Applications/anaconda3/envs/PythonData/lib/python3.6/site-packages/sklearn/preprocessing/data.py:645: DataConversionWarning: Data with input dtype int64, float64 were all converted to float64 by StandardScaler. return self.partial_fit(X, y) /Applications/anaconda3/envs/PythonData/lib/python3.6/site-packages/sklearn/base.py:464: DataConversionWarning: Data with input dtype int64, float64 were all converted to float64 by StandardScaler. return self.fit(X, **fit_params).transform(X) /Applications/anaconda3/envs/PythonData/lib/python3.6/site-packages/sklearn/preprocessing/data.py:645: DataConversionWarning: Data with input dtype int64, float64 were all converted to float64 by StandardScaler. return self.partial_fit(X, y) /Applications/anaconda3/envs/PythonData/lib/python3.6/site-packages/sklearn/base.py:464: DataConversionWarning: Data with input dtype int64, float64 were all converted to float64 by StandardScaler. return self.fit(X, **fit_params).transform(X) ###Markdown STEP3: Try the SVC model. ###Code # generate the model. model = SVC(kernel="rbf", class_weight="balanced", probability=True) # fit the model. model.fit(X_train_scaled, y_train) # predict. prediction = model.predict(X_test_scaled) print ((classification_report(y_test, prediction, target_names=["0", "1"]))) ###Output precision recall f1-score support 0 0.97 0.87 0.92 304 1 0.09 0.31 0.14 13 micro avg 0.85 0.85 0.85 317 macro avg 0.53 0.59 0.53 317 weighted avg 0.93 0.85 0.89 317 ###Markdown STEP4: Predict the winner 2016-2018. ###Code def predict_the_winner(model, year, team_data, X_train): ''' INPUT: -X_train = scaled X train data. -model = the saved model. -team_data = complete dataframe with all data. -year = the year want to look at. OUTPUT: -printed prediction. DESCRIPTION: -data from year of interest is isolated. -the data are scaled. -the prediction is made. -print out the resulting probability and the name of the team. ''' # grab the data. team_data = team_data.loc[team_data["year"] == year].reset_index() # set features (no team, year, winners). # set target (winners). features = team_data[feature_columns] # scale. scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) features = scaler.fit_transform(features) # fit the model. probabilities = model.predict_proba(features) # convert predictions to datafram.e WS_predictions = pd.DataFrame(probabilities[:,1]) # Sort the DataFrame (descending) WS_predictions = WS_predictions.sort_values(0, ascending=False) WS_predictions['Probability'] = WS_predictions[0] # Print 50 highest probability HoF inductees from still eligible players for i, row in WS_predictions.head(50).iterrows(): prob = ' '.join(('WS Probability =', str(row['Probability']))) print('') print(prob) print(team_data.iloc[i,1:27]["team"]) # predict for 2018. predict_the_winner(model, 2018, team_data, X_train_scaled) # predict for 2017. predict_the_winner(model, 2017, team_data, X_train_scaled) ###Output WS Probability = 0.08984049057305296 Washington Nationals WS Probability = 0.057445408892973594 Los Angeles Angels WS Probability = 0.05635823472062213 Boston Red Sox WS Probability = 0.05190520611531737 Cleveland Indians WS Probability = 0.050463324998347915 Seattle Mariners WS Probability = 0.04888431760027947 Atlanta Braves WS Probability = 0.046303631017353276 Tampa Bay Rays WS Probability = 0.04273026559203425 New York Yankees WS Probability = 0.03930025498556103 Houston Astros WS Probability = 0.03768582846748057 New York Mets WS Probability = 0.036353868121461665 Milwaukee Brewers WS Probability = 0.03557061393914468 Oakland Athletics WS Probability = 0.030991035748564457 Colorado Rockies WS Probability = 0.0307854271217912 Los Angeles Dodgers WS Probability = 0.02953121500312916 Minnesota Twins WS Probability = 0.026272963230368766 Arizona Diamondbacks WS Probability = 0.02497380042928017 Pittsburgh Pirates WS Probability = 0.020629277499001553 Chicago Cubs WS Probability = 0.020046274906916205 Philadelphia Phillies WS Probability = 0.019356217311531525 San Francisco Giants WS Probability = 0.01867169331462274 Detroit Tigers WS Probability = 0.015243968202559311 St. Louis Cardinals WS Probability = 0.01509342417488987 Miami Marlins WS Probability = 0.014086150973926036 Toronto Blue Jays WS Probability = 0.0136490170951492 San Diego Padres WS Probability = 0.012760562757734989 Baltimore Orioles WS Probability = 0.012217435273636036 Kansas City Royals WS Probability = 0.012031110962683162 Chicago White Sox WS Probability = 0.010842809017258967 Cincinnati Reds WS Probability = 0.009949770497300045 Texas Rangers ###Markdown Ok. This didn't work. Let's try this penalized model with a grid search. ###Code def grid_search_svc(X_train, X_test, y_train, y_test): ''' INPUT: -X_train = scaled X train data. -X_test = scaled X test data. -y_train = y train data. -y_test = y test data. OUTPUT: -classification report (has F1 score, precision and recall). -grid = saved model for prediction. DESCRIPTION: -the scaled and split data is put through a grid search with svc. -the model is trained. -a prediction is made. -print out the classification report and give the model. ''' # set up svc model. model = SVC(kernel="rbf", class_weight="balanced", probability=True) # create gridsearch estimator. param_grid = {"C": [0.0001, 0.001, 0.01, 0.1, 1, 10, 100], "gamma": [0.0001, 0.001, 0.01, 0.1]} grid = GridSearchCV(model, param_grid, verbose=3) # fit the model. grid.fit(X_train, y_train) # predict. prediction = grid.predict(X_test) # print out the basic information about the grid search. print (grid.best_params_) print (grid.best_score_) print (grid.best_estimator_) grid = grid.best_estimator_ predictions = grid.predict(X_test) print (classification_report(y_test, prediction, target_names=["0", "1"])) return grid model_grid = grid_search_svc(X_train, X_test, y_train, y_test) ###Output Fitting 3 folds for each of 28 candidates, totalling 84 fits [CV] C=0.0001, gamma=0.0001 ..........................................
US_GDP_Dashboard_using_bokeh.ipynb
###Markdown Analyzing US Economic Data and Building a Dashboard Description Extracting essential data from a dataset and displaying it is a necessary part of data science; therefore individuals can make correct decisions based on the data. In this assignment, you will extract some essential economic indicators from some data, you will then display these economic indicators in a Dashboard. You can then share the dashboard via an URL. Gross domestic product (GDP) is a measure of the market value of all the final goods and services produced in a period. GDP is an indicator of how well the economy is doing. A drop in GDP indicates the economy is producing less; similarly an increase in GDP suggests the economy is performing better. In this lab, you will examine how changes in GDP impact the unemployment rate. You will take screen shots of every step, you will share the notebook and the URL pointing to the dashboard. We Define Function that Makes a Dashboard We will import the following libraries. ###Code import pandas as pd from bokeh.plotting import figure, output_file, show,output_notebook output_notebook() ###Output _____no_output_____ ###Markdown In this section, we define the function make_dashboard. You don't have to know how the function works, you should only care about the inputs. The function will produce a dashboard as well as an html file. You can then use this html file to share your dashboard. If you do not know what an html file is don't worry everything you need to know will be provided in the lab. ###Code def make_dashboard(x, gdp_change, unemployment, title, file_name): output_file(file_name) p = figure(title=title, x_axis_label='year', y_axis_label='%') p.line(x.squeeze(), gdp_change.squeeze(), color="firebrick", line_width=4, legend_label="% GDP change") p.line(x.squeeze(), unemployment.squeeze(), line_width=4, legend_label="% unemployed") show(p) ###Output _____no_output_____ ###Markdown The dictionary links contain the CSV files with all the data. The value for the key GDP is the file that contains the GDP data. The value for the key unemployment contains the unemployment data. ###Code links={'GDP':'https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/PY0101EN/projects/coursera_project/clean_gdp.csv',\ 'unemployment':'https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/PY0101EN/projects/coursera_project/clean_unemployment.csv'} ###Output _____no_output_____ ###Markdown Step 1: Create a dataframe that contains the GDP data and display the first five rows of the dataframe. Use the dictionary links and the function pd.read_csv to create a Pandas dataframes that contains the GDP data. Hint: links["GDP"] contains the path or name of the file. ###Code csv=links['GDP'] df=pd.read_csv(csv) ###Output _____no_output_____ ###Markdown Use the method head() to display the first five rows of the GDP data, then take a screen-shot. ###Code df.head() ###Output _____no_output_____ ###Markdown Step 2: Create a diferent dataframe that contains the unemployment data. Display the first five rows of the dataframe. Use the dictionary links and the function pd.read_csv to create a Pandas dataframes that contains the unemployment data. ###Code unemployment_csv=links['unemployment'] df2=pd.read_csv(unemployment_csv) ###Output _____no_output_____ ###Markdown Use the method head() to display the first five rows of the GDP data, then take a screen-shot. ###Code df2.head() ###Output _____no_output_____ ###Markdown Step 3: Display a dataframe where unemployment was greater than 8.5%. Take a screen-shot. ###Code df3=df2[df2['unemployment']>8.5] df3 ###Output _____no_output_____ ###Markdown Step 4: Use the function make_dashboard to make a dashboard In this section, you will call the function make_dashboard , to produce a dashboard. We will use the convention of giving each variable the same name as the function parameter. Create a new dataframe with the column 'date' called x from the dataframe that contains the GDP data. ###Code x = pd.DataFrame(df,columns=['date']) x.head() ###Output _____no_output_____ ###Markdown Create a new dataframe with the column 'change-current' called gdp_change from the dataframe that contains the GDP data. ###Code gdp_change = pd.DataFrame(df, columns=['change-current']) gdp_change.head() ###Output _____no_output_____ ###Markdown Create a new dataframe with the column 'unemployment' called unemployment from the dataframe that contains the unemployment data. ###Code unemployment = pd.DataFrame(df2, columns=['unemployment']) unemployment.head() ###Output _____no_output_____ ###Markdown Give your dashboard a string title, and assign it to the variable title ###Code title = "GDP stats of USA" ###Output _____no_output_____ ###Markdown Finally, the function make_dashboard will output an .html in your direictory, just like a csv file. The name of the file is "index.html" and it will be stored in the varable file_name. ###Code file_name = "index.html" ###Output _____no_output_____ ###Markdown Call the function make_dashboard , to produce a dashboard. Assign the parameter values accordingly take a the , take a screen shot of the dashboard and submit it. ###Code make_dashboard(x=x, gdp_change=gdp_change, unemployment=unemployment, title=title, file_name=file_name) ###Output _____no_output_____
notebooks/kafka-streams-flows-as-source.ipynb
###Markdown kafka-streams-flows-as-source The cells needed to run your application are included below. Make any changes and add your sources, analytics and outputs. Documentation - [Streams Python development guide](https://ibmstreams.github.io/streamsx.documentation/docs/latest/python/) - [Streams Python API](https://streamsxtopology.readthedocs.io/) Install python packagesInstalls the required python packages with pip. ###Code !pip install --user streamsx.kafka>=1.9.0 !pip install --user streamsx==1.14.13 ###Output _____no_output_____ ###Markdown Setup Sets up the Streams instance name and extracts the resources required for the Streams application to a local directory.In order to submit a Streams application you need to provide the name of the Streams instance.To change the instance for the Streams application:1. From the navigation menu, click **My instances**.2. Click the **Provisioned Instances** tab.3. Update the value of streams_instance_name in the cell below according to your Streams instance. ###Code from project_lib import Project import os, shutil, tarfile from icpd_core import icpd_util def setup(archive, resource_path): def extract_project_file(file, path): project = Project.access() if os.path.exists(path): shutil.rmtree(path) os.makedirs(path) buffio = project.get_file(file, direct_storage=True) tarfile.open(fileobj=buffio, mode="r:gz").extractall(path) extract_project_file(archive, resource_path) os.chdir(resource_path) streams_instance_name = "streams" cfg = icpd_util.get_service_instance_details(streams_instance_name) resource_path = "streams_flows_notebooks/kafka_streams_flows_as_source_1597265335685" setup("streams_flows_notebooks/kafka_streams_flows_as_source_1597265335685.tar.gz", resource_path) ###Output _____no_output_____ ###Markdown Create the flow ###Code %%writefile flow_schemas from typing import NamedTuple class KafkaSchema(NamedTuple): event_key: str = "" event_topic: str = "" event_offset: int = 0.0 event_partition: int = 0.0 event_timestamp: int = 0.0 event_message: str = "" class SchemaMapper1Schema(NamedTuple): key: str = "" topic: str = "" offset: str = "" partition: float = 0.0 time: str = "" message: str = "" from streamsx.topology.topology import Topology import flow_schemas from lib.error_utils import TupleError import lib.file_utils as file_utils import os import streamsx.kafka as kafka import typing # ================================================================================ # MAIN def build_flow(): topo = Topology(name='kafka_streams_flows_as_source', namespace=os.environ.get('USER', 'flow')) topo.name_to_runtime_id = name_mapping().get topo.add_pip_package('streamsx.kafka>=1.9.0') kafka_stream = add_kafka(topo) # Node: "Kafka" debug_stream = add_debug(kafka_stream) # Node: "Debug" add_views(topo) return topo # ================================================================================ # Function for top-level operator: Kafka def add_kafka(topo): connection = file_utils.read_from_json(os.path.abspath("connections/kafka_4560768a-c25f-49e7-9333-23726b8ae71e.json")) return ( topo .source( kafka.KafkaConsumer( config={ 'bootstrap.servers': connection['brokers'], 'security.protocol': connection['security_protocol'], 'sasl.mechanism': connection['sasl_mechanism'], 'sasl.jaas.config': f'org.apache.kafka.common.security.plain.PlainLoginModule required username="{connection["username"]}" password="{connection["api_key"]}";', 'auto.offset.reset': 'latest' }, topic="clicks", message_attribute_name='event_message', key_attribute_name='event_key', topic_attribute_name='event_topic', offset_attribute_name='event_offset', partition_attribute_name='event_partition', timestamp_attribute_name='event_timestamp', schema=flow_schemas.KafkaSchema), name='Kafka') .map( _map_schema_for_kafka, name='SchemaMapper1', schema=flow_schemas.SchemaMapper1Schema) .filter( lambda event: True, name='CompositeOutput1') ) # ================================================================================ # Function for top-level operator: Debug def add_debug(stream): return ( stream .for_each( debug, name='Debug') ) # ================================================================================ # Operator-specific global code, such as filter classes: def _map_schema_for_kafka(event): try: return flow_schemas.SchemaMapper1Schema( key=event.event_key, topic=event.event_topic, offset=str(event.event_offset), partition=float(event.event_partition), time=str(event.event_timestamp), message=event.event_message ) except Exception as err: TupleError(operation_id='Kafka', message=str(err)) return None def debug(event): # you can add debugging/logging code here pass # ================================================================================ # Utils: def add_views(topo): name_to_id = name_mapping() for name, stream in topo.streams.items(): stream_id = name_to_id.get(name) if stream_id and stream_id.endswith('__Composite_Output_Id'): stream.view(name=stream_id + "__output") def name_mapping(): return { 'Kafka': 'Kafka', 'SchemaMapper1': 'SchemaMapper1', 'CompositeOutput1': 'Kafka__Composite_Output_Id', 'Debug': 'Debug' } ###Output _____no_output_____ ###Markdown Submit the application ###Code import streamsx import datetime from streamsx.topology.context import ContextTypes, JobConfig from streamsx.topology import context def submit_app(): cfg[context.ConfigParams.SSL_VERIFY] = False app = build_flow() dt = datetime.datetime.now().strftime('%F_%T') job_config = JobConfig(job_name=f'{app.namespace}:{app.name}:{dt}', tracing='info') job_config.add(cfg) shutil.copytree('lib', 'python/modules/lib') app.add_file_dependency('python', 'opt') submission_result = streamsx.topology.context.submit(ContextTypes.DISTRIBUTED, app, config=cfg) streams_job = submission_result.job print("JobId: ", streams_job.id, "\nJob name: ", streams_job.name) submit_app() ###Output _____no_output_____ ###Markdown Delete the resource directory (Optional)Cleans up the resource folders used in this application. ###Code #cleanup() # import shutil # os.chdir(os.environ['PWD']) # if os.path.exists(resource_path): # shutil.rmtree(resource_path) ###Output _____no_output_____
notebooks/R4ML_Introduction_Exploratory_DataAnalysis.ipynb
###Markdown R4ML: Introduction and Exploratory Data Analysis (part I) [Alok Singh](https://github.com/aloknsingh/) Contents &nbsp;&nbsp; 1. Introduction &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 1.1. R4ML Brief Introduction &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 1.2. R4ML Architecture &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 1.3. R4ML Installation &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 1.4. Starting the R4ML Session &nbsp;&nbsp; 2. Overview of Dataset &nbsp;&nbsp; 3. Load the Data &nbsp;&nbsp; 4. Exploratory Data Analysis &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 4.1. Graphical/Visual Exploratory Data Analysis &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 4.2. Analytics Based Exploratory Data Analysis &nbsp;&nbsp; 5. Summary and next steps ... 1. Introduction 1.1. R4ML Brief Introduction[R4ML](https://github.com/SparkTC/r4ml) is an open-source, scalable Machine Learning Framework built using [Apache Spark/SparkR](https://spark.apache.org/docs/latest/sparkr.html) and [Apache SystemML](https://systemml.apache.org/).R4ML is the hybrid of SparkR and SystemML. It’s mission is to ** make BigData R , R-like ** and to:* Support more big data ML algorithms.* Creating custom Algorithms.* Support more R-like syntaxR4ML allows R scripts to invoke custom algorithms developed in Apache SystemML. R4ML integrates seamlessly with SparkR, so data scientists can use the best features of SparkR and SystemML together in the same scripts. In addition, the R4ML package provides a number of useful new R functions that simplifycommon data cleaning and statistical analysis tasks.In this set of tutorial style notebooks, we will walk through a standard example of a data-scientist work flow. This includes data precessing, data exploration, model creation, model tuning and model selection.Let's first install and load the relevant library: 1.2. R4ML Architecture![R4ML Architecture]() 1.3. Installation Here are the steps to install R4ML. (This will only need to be done once per user.) ###Code # first step would be to install the R4ML in your environment # install dependencies . This steps only need to be done once install.packages(c("uuid", "R6", "PerformanceAnalytics"), repos = "http://cloud.r-project.org") library("SparkR") download.file("http://codait-r4ml.s3-api.us-geo.objectstorage.softlayer.net/R4ML_0.8.0.tar.gz", "~/R4ML_0.8.0.tar.gz") install.packages("~/R4ML_0.8.0.tar.gz", repos = NULL, type = "source") ###Output Installing packages into ‘/gpfs/global_fs01/sym_shared/YPProdSpark/user/sa28-9716de71e3ac0f-9ac12ed2939a/R/libs’ (as ‘lib’ is unspecified) Installing package into ‘/gpfs/global_fs01/sym_shared/YPProdSpark/user/sa28-9716de71e3ac0f-9ac12ed2939a/R/libs’ (as ‘lib’ is unspecified) ###Markdown 1.4. Starting the R4ML SessionLet's load the R4ML in R and start a new session ###Code # now load the R4ML library library(R4ML) library(SparkR) # start the session r4ml.session() ###Output Warning message: “WARN[R4ML]: Reloading SparkR”Loading required namespace: SparkR _______ _ _ ____ ____ _____ |_ __ \ | | | | |_ \ / _||_ _| | |__) || |__| |_ | \/ | | | | __ / |____ _| | |\ /| | | | _ _| | \ \_ _| |_ _| |_\/_| |_ _| |__/ | |____| |___| |_____||_____||_____||________| [R4ML]: version 0.8.0 Warning message: “no function found corresponding to methods exports from ‘R4ML’ for: ‘collect’” Attaching package: ‘SparkR’ The following object is masked from ‘package:R4ML’: predict The following objects are masked from ‘package:stats’: cov, filter, lag, na.omit, predict, sd, var, window The following objects are masked from ‘package:base’: as.data.frame, colnames, colnames<-, drop, endsWith, intersect, rank, rbind, sample, startsWith, subset, summary, transform, union Warning message: “WARN[R4ML]: driver.memory not defined. Defaulting to 2G”Spark package found in SPARK_HOME: /usr/local/src/spark21master/spark ###Markdown 2. Overview of DataWhile there are many data sets to chose from, we have decided to use the airline dataset because: * The airline dataset is not always clean and building predictive model is not straight forward. Thus we can illustrate other points about the data preparation and analysis. * This dataset is free and reasonably sized (around 20GB with around 100M rows). * R4ML is shipped with a sampled version of this dataset (around 130K rows). * Typically, this dataset is used to predict the various types of delays, like arrival delays, etc.Here is the description of the data (you can also see similar info by using help in the R console) Airline Dataset Description: A 1% sample of the "airline" dataset is available at http://stat-computing.org/dataexpo/2009/the-data.html. This data originally comes from RITA (http://www.rita.dot.gov) and is in the public domain. Usage: data(airline) Format: A data frame with 128790 rows and 29 columns Source: American Statistical Association RITA: Research and Innovative Technology Administration 3. Load the DataLet's first load the data. ###Code # read the airline dataset airt <- airline # testing, we just use the small dataset airt <- airt[airt$Year >= "2007",] air_hf <- as.r4ml.frame(airt) # note: in the production environment when you have the big data airline, above three lines are not scalable and should be replaced by read csv #here is the schema # (Year,Month,DayofMonth,DayOfWeek,DepTime,CRSDepTime,ArrTime,CRSArrTime,UniqueCarrier,FlightNum,TailNum,ActualElapsedTime, # CRSElapsedTime,AirTime,ArrDelay,DepDelay,Origin,Dest,Distance,TaxiIn,TaxiOut,Cancelled,CancellationCode,Diverted,CarrierDelay, # WeatherDelay,NASDelay,SecurityDelay,LateAircraftDelay) ###Output INFO[calc num partitions]: 48 partitions INFO[as.r4ml.frame]: repartitioning an object of size: 2448976 into 48 partitions ###Markdown 4. Exploratory Data Analysis 4.1. Graphical data analysisSince R provides a very powerful visualization and exploratory data analysis tool, use the sampling strategy and sample a small dataset from the distributed data frame.Note: you can use the other exploratory analysis options here if you want to try them out. ###Code airs <- r4ml.sample(air_hf, 0.1)[[1]] rairs <- SparkR::as.data.frame(airs) # r indicate R data frame ###Output _____no_output_____ ###Markdown 4.1.1. HistogramsThe blank principle proves that the predictive power of the features are highest if it is approximately gaussian distributed.Let's explore this line of thinking. Lets create histograms to see if the outputs are approximately guassian distributed and which variables are important. ###Code library(reshape2) library(ggplot2) # use reshape util to create tall data for visualization mrairs <- suppressWarnings(melt(rairs)) g<-suppressWarnings(ggplot(mrairs, aes(x=value, colour=variable))+geom_histogram()+facet_wrap(~variable, scales="free", ncol=5) + theme(legend.position="none")) suppressWarnings(g) ###Output Using UniqueCarrier, FlightNum, TailNum, Origin, Dest, CancellationCode, Diverted as id variables `stat_bin()` using `bins = 30`. Pick better value with `binwidth`. Warning message: “Removed 2957 rows containing non-finite values (stat_bin).” ###Markdown * As we can see from the plot, since Year, Month, DayofMonth, and DayOfWeek have almost uniform distribution, they are not likely to have any predictive power and will be ignored in the following analysis.* Since we will be predicting ArrivalDelay, remove from analysis any other delays that are dependent on it. This includes WeatherDelay, NASDelay, SecurityDelay and LateAircraftDelay.* Also note that there are some one sided [Power Law distributions](https://en.wikipedia.org/wiki/Power_law) (e.g. TaxiOut). We can use log transformations to make them approximately guassian.Let’s prune the data for further exploration.** Note: we can make non-bell shaped curves more normalized by using [box-cox](https://en.wikipedia.org/wiki/Power_transform) transformations. Using [SparkR](https://spark.apache.org/docs/latest/sparkr.html) and our custom machine learning features (explained in later sections) should make for a very straight forward exercise** ###Code # total number of columns in the dataset total_feat <- c("Year", "Month", "DayofMonth", "DayOfWeek", "DepTime", "CRSDepTime", "ArrTime", "CRSArrTime", "UniqueCarrier", "FlightNum", "TailNum", "ActualElapsedTime", "CRSElapsedTime", "AirTime", "ArrDelay", "DepDelay", "Origin", "Dest", "Distance", "TaxiIn", "TaxiOut", "Cancelled", "CancellationCode", "Diverted", "CarrierDelay", "WeatherDelay", "NASDelay", "SecurityDelay", "LateAircraftDelay") # categorical features # Year , Month , DayofMonth , DayOfWeek , cat_feat <- c("UniqueCarrier", "FlightNum", "TailNum", "Origin", "Dest", "CancellationCode", "Diverted") numeric_feat <- setdiff(total_feat, cat_feat) # these features have no predictive power as it is uniformly distributed i.e # less information unif_feat <- c("Year", "Month", "DayofMonth", "DayOfWeek") # these are the constant features and we can ignore without much difference # in output const_feat <- c("WeatherDelay", "NASDelay", "SecurityDelay", "LateAircraftDelay") col2rm <- c(unif_feat, const_feat, cat_feat) airs_names <- names(rairs) rairs2_names <- setdiff(airs_names, col2rm) rairs2 <- rairs[, rairs2_names] ###Output _____no_output_____ ###Markdown 4.1.2. Correlated featuresOne of the things you want to avoid is co-related features. In other words, if we have one column (say c4), which is a constant multiple of another column (say c3), then either c4 or c3 should be used. Since geometrically n columns corresponds to n edges of an n dimensional rectangle or cube, if any other edges are dependent (i.e. c4 and c3 are co-linear) then the volume of the cube in n dimension will be zero. This will manifest into the matrix solver error while solving system of equations. We will next find if there is any co-relation between the input data.Though there are many R packages that you can use, we will be using ** Performance Analytics **. ###Code library(PerformanceAnalytics) suppressWarnings(chart.Correlation(rairs2, histogram=TRUE, pch=19)) ###Output _____no_output_____ ###Markdown Note the following from the above graphs:* The diagonal cells contain the histogram of the corresponding column.* The off-diagonal entries contain the pairwise correlation. For example, the 7th cell in the 10th row contains the correlation between AirTime and Distance.* These charts provide insight about which columns to use as predictors and we should avoid using any heavily correlated columns in our prediction. 4.2. Analytics Based Exploratory Data AnalysisThis exploratory analysis can also be done in a nongraphical manner, using R4ML/SparkR.It is desirable to have the normally distributed predictors as it provides better predictions. However, the distribution can be skewed from the normal distribution (i.e. left sided or right sided guassian distribtion). This property is measured in [Skewness](https://en.wikipedia.org/wiki/Skewness).Similarly, [Kurtosis](https://en.wikipedia.org/wiki/Kurtosis) is a measure of tailedness of the distribution.For example, we can calculate the skewness and kurtosis to find whether a feature is close to gaussian or whether it has predictive power.The data shows that we have the distribution for distance that is heavy tailed on the right side. To get the best predictive power we might have to create a transformation so that the distribution is close to gaussian. Lets see what happens if we apply log transformation to the Distance feature.. ###Code library(SparkR) library(R4ML) #airs_sdf <- new("SparkDataFrame", airs@sdf, isCached = airs@env$isCached) #SparkR::count(airs_sdf) dist_skew <- SparkR:::agg(airs, SparkR::skewness(log(airs$Distance))) SparkR::collect(dist_skew) dist_kurtosis <- SparkR:::agg(airs, SparkR::kurtosis(log(airs$Distance))) SparkR::collect(dist_kurtosis) ###Output _____no_output_____ ###Markdown R4ML: Introduction and Exploratory Data Analysis (part I) [Alok Singh](https://github.com/aloknsingh/) Contents &nbsp;&nbsp; 1. Introduction &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 1.1. R4ML Brief Introduction &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 1.2. R4ML Architecture &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 1.3. R4ML Installation &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 1.4. Starting the R4ML Session &nbsp;&nbsp; 2. Overview of Dataset &nbsp;&nbsp; 3. Load the Data &nbsp;&nbsp; 4. Exploratory Data Analysis &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 4.1. Graphical/Visual Exploratory Data Analysis &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 4.2. Analytics Based Exploratory Data Analysis &nbsp;&nbsp; 5. Summary and next steps ... 1. Introduction 1.1. R4ML Brief Introduction[R4ML](https://github.com/SparkTC/r4ml) is an open-source, scalable Machine Learning Framework built using [Apache Spark/SparkR](https://spark.apache.org/docs/latest/sparkr.html) and [Apache SystemML](https://systemml.apache.org/).R4ML is the hybrid of SparkR and SystemML. It’s mission is to ** make BigData R , R-like ** and to:* Support more big data ML algorithms.* Creating custom Algorithms.* Support more R-like syntaxR4ML allows R scripts to invoke custom algorithms developed in Apache SystemML. R4ML integrates seamlessly with SparkR, so data scientists can use the best features of SparkR and SystemML together in the same scripts. In addition, the R4ML package provides a number of useful new R functions that simplifycommon data cleaning and statistical analysis tasks.In this set of tutorial style notebooks, we will walk through a standard example of a data-scientist work flow. This includes data precessing, data exploration, model creation, model tuning and model selection.Let's first install and load the relevant library: 1.2. R4ML Architecture![R4ML Architecture]() 1.3. Installation Here are the steps to install R4ML. (This will only need to be done once for each user.) ###Code # first step would be to install the R4ML in your environment # install dependencies . This steps only need to be done once install.packages(c("uuid", "R6", "PerformanceAnalytics"), repos = "http://cloud.r-project.org") library("SparkR") download.file("http://169.45.79.58/R4ML_0.8.0.tar.gz", "~/R4ML_0.8.0.tar.gz") install.packages("~/R4ML_0.8.0.tar.gz", repos = NULL, type = "source") ###Output Installing packages into ‘/gpfs/global_fs01/sym_shared/YPProdSpark/user/sa28-9716de71e3ac0f-9ac12ed2939a/R/libs’ (as ‘lib’ is unspecified) Installing package into ‘/gpfs/global_fs01/sym_shared/YPProdSpark/user/sa28-9716de71e3ac0f-9ac12ed2939a/R/libs’ (as ‘lib’ is unspecified) ###Markdown 1.4. Starting the R4ML SessionLet's load the R4ML in R and start a new session ###Code # now load the R4ML library library(R4ML) library(SparkR) # start the session r4ml.session() ###Output Warning message: “WARN[R4ML]: Reloading SparkR”Loading required namespace: SparkR _______ _ _ ____ ____ _____ |_ __ \ | | | | |_ \ / _||_ _| | |__) || |__| |_ | \/ | | | | __ / |____ _| | |\ /| | | | _ _| | \ \_ _| |_ _| |_\/_| |_ _| |__/ | |____| |___| |_____||_____||_____||________| [R4ML]: version 0.8.0 Warning message: “no function found corresponding to methods exports from ‘R4ML’ for: ‘collect’” Attaching package: ‘SparkR’ The following object is masked from ‘package:R4ML’: predict The following objects are masked from ‘package:stats’: cov, filter, lag, na.omit, predict, sd, var, window The following objects are masked from ‘package:base’: as.data.frame, colnames, colnames<-, drop, endsWith, intersect, rank, rbind, sample, startsWith, subset, summary, transform, union Warning message: “WARN[R4ML]: driver.memory not defined. Defaulting to 2G”Spark package found in SPARK_HOME: /usr/local/src/spark21master/spark ###Markdown 2. Overview of DataThere are many data sets and we have decided to use the airline dataset since * airline dataset is not always clean and building predictive model is not straight forward. Thus we can illustrate other points about the data preparation and analysis * This is the free data set and reasonably sized (around 20GB and around 100M rows) * R4ML is shipped with a sampled version of that dataset (around 130K rows) * Typically, this dataset is used to predict the various delays like arrival delays etc.Here is the description of data. (you can also see the similar info by using help in R console) Airline Dataset Description: A 1% sample of the "airline" dataset available at http://stat-computing.org/dataexpo/2009/the-data.html This data originally comes from RITA (http://www.rita.dot.gov) and is in the public domain. Usage: data(airline) Format: A data frame with 128790 rows and 29 columns Source: American Statistical Association RITA: Research and Innovative Technology Administration 3. Load the DataLet's first load the data. ###Code # read the airline dataset airt <- airline # testing, we just use the small dataset airt <- airt[airt$Year >= "2007",] air_hf <- as.r4ml.frame(airt) # note: in the production environment when you have the big data airline, above three lines are not scalable and should be replaced by read csv #here is the schema # (Year,Month,DayofMonth,DayOfWeek,DepTime,CRSDepTime,ArrTime,CRSArrTime,UniqueCarrier,FlightNum,TailNum,ActualElapsedTime, # CRSElapsedTime,AirTime,ArrDelay,DepDelay,Origin,Dest,Distance,TaxiIn,TaxiOut,Cancelled,CancellationCode,Diverted,CarrierDelay, # WeatherDelay,NASDelay,SecurityDelay,LateAircraftDelay) ###Output INFO[calc num partitions]: 48 partitions INFO[as.r4ml.frame]: repartitioning an object of size: 2448976 into 48 partitions ###Markdown 4. Exploratory Data Analysis 4.1. Graphical data analysisSince R provides a very powerful visualization and exploratory data analysis, use the sampling strategy and we will sample a small data set from the distributed data frame .Note: you can use the other exploratory analysis options here if you want to try them out. ###Code airs <- r4ml.sample(air_hf, 0.1)[[1]] rairs <- SparkR::as.data.frame(airs) # r indicate R data frame ###Output _____no_output_____ ###Markdown 4.1.1. HistogramsThe blank principle “proves that the predictive power of the features are highest if it is approximately gaussian distributed.Let's explore this line of thinking. Lets create the histogram to see if the outputs are approximately guassian distributed and what variables are important. ###Code library(reshape2) library(ggplot2) # use reshape util to create tall data for visualization mrairs <- suppressWarnings(melt(rairs)) g<-suppressWarnings(ggplot(mrairs, aes(x=value, colour=variable))+geom_histogram()+facet_wrap(~variable, scales="free", ncol=5) + theme(legend.position="none")) suppressWarnings(g) ###Output Using UniqueCarrier, FlightNum, TailNum, Origin, Dest, CancellationCode, Diverted as id variables `stat_bin()` using `bins = 30`. Pick better value with `binwidth`. Warning message: “Removed 2957 rows containing non-finite values (stat_bin).” ###Markdown * We can see from the plot, that since Year, Month, DayofMonth, DayOfWeek are almost uniform distribution and hence most likely, they won’t have much predictive power, so it would make sense to remove these variables in the subsequent analysis.* Since we will be predicting the ArrivalDelay and all other delays i.e WeatherDelay, NASDelay, SecurityDelay and LateAircraftDelay are dependent on it so we will be removing them from analysis.* Also note that there are some one sided [Power Law distribution](https://en.wikipedia.org/wiki/Power_law) e.g TaxiOut.We can use log transformation to make it approximately guassian.Let’s prune the data for further exploration.** Note that you can make the non bell shape curve, bell shape, using [box-cox](https://en.wikipedia.org/wiki/Power_transform) transformation. Using [SparkR](https://spark.apache.org/docs/latest/sparkr.html) and our custom machine learning features (explained in later sections), it should be very straight forward exercise ** ###Code # total number of columns in the dataset total_feat <- c("Year", "Month", "DayofMonth", "DayOfWeek", "DepTime", "CRSDepTime", "ArrTime", "CRSArrTime", "UniqueCarrier", "FlightNum", "TailNum", "ActualElapsedTime", "CRSElapsedTime", "AirTime", "ArrDelay", "DepDelay", "Origin", "Dest", "Distance", "TaxiIn", "TaxiOut", "Cancelled", "CancellationCode", "Diverted", "CarrierDelay", "WeatherDelay", "NASDelay", "SecurityDelay", "LateAircraftDelay") # categorical features # Year , Month , DayofMonth , DayOfWeek , cat_feat <- c("UniqueCarrier", "FlightNum", "TailNum", "Origin", "Dest", "CancellationCode", "Diverted") numeric_feat <- setdiff(total_feat, cat_feat) # these features have no predictive power as it is uniformly distributed i.e # less information unif_feat <- c("Year", "Month", "DayofMonth", "DayOfWeek") # these are the constant features and we can ignore without much difference # in output const_feat <- c("WeatherDelay", "NASDelay", "SecurityDelay", "LateAircraftDelay") col2rm <- c(unif_feat, const_feat, cat_feat) airs_names <- names(rairs) rairs2_names <- setdiff(airs_names, col2rm) rairs2 <- rairs[, rairs2_names] ###Output _____no_output_____ ###Markdown 4.1.2. Correlated featuresOne of the things you want to avoid is the co-related features i.e if we have one column (say c4), which is a constant multiple of another column (say c3) then either one of c4 or c3 should be used. Since geometrically n columns corresponds to n edges of n dimensional rectangle or cube and if any other edges are dependent i.e c4 and c3 are co-linear then the volume of the cube in n dimension will be zero. And this manifest it into the matrix solver error while solving system of equations) We will next find if there is any co-relation between the input data.Though there are many R packages that you can use, we are going to use ** Performance Analytics ** ###Code library(PerformanceAnalytics) suppressWarnings(chart.Correlation(rairs2, histogram=TRUE, pch=19)) ###Output _____no_output_____ ###Markdown We would like to point out these in the above graph* The diagonal cells contain the histogram of the corresponding column.* The off-diagonal entries contains the pairwise correlation. For example the 7th cell in the 10th row contains the correlation between AirTime and Distance.* The above chart, gives us insight about which columns to use as predictors and we would want to make sure that heavy correlated columns are not used in the prediction. 4.2. Analytics Based Exploratory Data AnalysisThis exploratory analysis can also be done in a nongraphical manner, using R4ML/SparkR.It is desirable to have the normally distributed predictors as it gives a better predictions. However, the distribution can be skewed from the normal distribution i.e left sided or right sided guassian distribtion. This property is measured in [Skewness](https://en.wikipedia.org/wiki/Skewness).Similarly, [Kurtosis](https://en.wikipedia.org/wiki/Kurtosis) is a measure of tailedness of the distribution.For example, we can calculate the skewness and kurtosis to find whether a feature is close to gaussian or whether it has predictive power.The data shows that we have the distribution for distance that is heavy tail on the right side. To get the best predictive power we might have to create a transformation so that the distribution is close to gaussian. Lets see what happens if we apply log transformation to the Distance feature.. ###Code library(SparkR) library(R4ML) #airs_sdf <- new("SparkDataFrame", airs@sdf, isCached = airs@env$isCached) #SparkR::count(airs_sdf) dist_skew <- SparkR:::agg(airs, SparkR::skewness(log(airs$Distance))) SparkR::collect(dist_skew) dist_kurtosis <- SparkR:::agg(airs, SparkR::kurtosis(log(airs$Distance))) SparkR::collect(dist_kurtosis) ###Output _____no_output_____
5-ExamProblems/Exam2/.src/MidTerm2-TakeHome-WS.ipynb
###Markdown Full name: R: HEX: Exam 2 Take-Home_{your name} Date: Problem 0.0 (1 pts.)Run the cell below as-is! ###Code # Preamble script block to identify host, user, and kernel import sys ! hostname ! whoami print(sys.executable) #print(sys.version) #print(sys.version_info) ! pwd ###Output atomickitty.aws compthink /opt/conda/envs/python/bin/python /home/compthink/CECE-1330-PsuedoCourse/5-ExamProblems/Exam2 ###Markdown Problem 1 (5 pts)The table below contains some experimental observations.|Elapsed Time (s)|Speed (m/s)||---:|---:||0 |0||1.0 |3||2.0 |7||3.0 |12||4.0 |20||5.0 |30||6.0 | 45.6| |7.0 | 60.3 ||8.0 | 77.7 ||9.0 | 97.3 ||10.0| 121.1|1. Plot the speed vs time (speed on y-axis, time on x-axis) using a scatter plot. Use blue markers. 2. Plot a red line on the scatterplot based on the linear model $f(x) = mx + b$ 3. By trial-and-error find values of $m$ and $b$ that provide a good visual fit (i.e. makes the red line explain the blue markers).4. Using this data model estimate the speed at $t = 15~\texttt{sec.}$ ###Code # Create two lists; time and speed # Create a data model function # Create a model list - using same time list # Create a scatterplot chart of time and speed, overlay a line plot of time and modeled speed # Report best values m and b # Estimate speed@ t = 15 sec. using fitted model ###Output _____no_output_____ ###Markdown Problem 2 (5 pts)Consider the script below, which crudely implements a simulation of Russian Roulette.How many times can you spin the cylinder and pull the trigger, before you fail?Play the game 10 times, record the pull count until failure.1. Create a list of pulls until failure for each of your 10 attempts, and make a histogram of the list.2. From your histogram, estimate the mean number of pulls until failure.In the movie `The Deer Hunter` https://en.wikipedia.org/wiki/The_Deer_Hunter the captured soldiers modify the Russian Roulette Game by using more than a single cartridge. 3. Modify the program to the number of cartridges in the movie (3) and play again 10 times, record your pulls to failure4. Make a second histogram of the `Deer Hunter` version of the game.5. From your histogram, estimate the mean number of pulls until failure under the `Deer Hunter` conditions. ###Code #RUSSIAN ROULETTE PROGRAM IN PYTHON: import random print('THIS IS A RUSSIAN ROULETTE PROGRAM. BEST PLAYED WHILE DRINKING VODKA.') leaveprogram=0 triggerpulls = 0 while leaveprogram != "q": print("Press Enter to Spin the Cylinder & Test Your Courage") input() number=random.randint (1, 6) if number==1: print("[ CLICK! ]") triggerpulls += 1 print("Pulls = ",triggerpulls, "Type 'q' to quit") leaveprogram=input() if number==2: print("[ CLICK! ]") triggerpulls += 1 print("Pulls = ",triggerpulls, "Type 'q' to quit") leaveprogram=input() if number==3: print("[ CLICK! ]") triggerpulls += 1 print("Pulls = ",triggerpulls, "Type 'q' to quit") leaveprogram=input() if number==4: print("[ CLICK! ]") triggerpulls += 1 print("Pulls = ",triggerpulls, "Type 'q' to quit") leaveprogram=input() if number==5: print("[ BANG!!!! ]") triggerpulls += 1 print("[ So long ]") print("[ Comrade. ]") print("Pulls = ",triggerpulls) leaveprogram='q' if number==6: print("[ CLICK! ]") triggerpulls += 1 print("Pulls = ",triggerpulls, "Type 'q' to quit") leaveprogram=input() # # List of results # Histogram # Mean Pulls to Failure # Put Deer Hunter Version Here # List of results # Histogram # Mean Pulls to Failure ###Output _____no_output_____ ###Markdown Problem 3 (10 points)The data below are the impact impact strength of packaging materials in foot-pounds of two branded boxes. Produce a histogram of the two series, and determine if there is evidence of a difference in mean strength between the two brands. Use an appropriate hypothesis test to support your assertion at a level of significance of $\alpha = 0.10$. | Amazon Branded Boxes | Walmart Branded Boxes ||:---|:---|| 1.25 | 0.89|| 1.16 | 1.01|| 1.33| 0.97|| 1.15| 0.95|| 1.23| 0.94|| 1.20| 1.02|| 1.32| 0.98|| 1.28| 1.06|| 1.21| 0.98| ###Code # define lists and make into dataframe 2 points amazon =[1.25,1.16,1.33,1.15,1.23,1.20,1.32,1.28,1.21] wallyworld = [0.89,1.01,0.97,0.95,0.94,1.02,0.98,1.06,0.98] boxdf = pandas.DataFrame() boxdf['amazon']=amazon boxdf['wallyw']=wallyworld # describe lists/dataframe 2 points print(boxdf.describe()) boxdf.plot.hist() # 2 points for histogram # parametric are means same? 2 points # Example of the Student's t-test from scipy.stats import ttest_ind stat, p = ttest_ind(amazon, wallyworld) print("Student's T-test") print('stat=%.3f, p=%.3f' % (stat, p)) if p > 0.1: print('Do not reject Ho : means are the same') else: print('Reject Ho : means are not the same') ###Output Student's T-test stat=9.564, p=0.000 Reject Ho : means are not the same ###Markdown Problem 4 (30 points)Precipitation records for Lubbock from 1895 to 2019 for the month of October is located in the file `http://54.243.252.9/engr-1330-psuedo-course/CECE-1330-PsuedoCourse/5-ExamProblems/Exam2/Exam2/`. 1. Produce a plot of year vs precipitation. *[Script + Plot 1: data==blue]*2. Describe the entire data set. *[Script]*3. Split the data into two parts at the year 1960. *[Script]*4. Describe the two data series you have created. *[Script]*5. Plot the two series on the same plot. *[Script + Plot 2: data1==blue, data2==green]*6. Is there evidence of different mean precipitation in the pre-1990 and post-1990 data sets? Use a hypothesis test to support your assertion. *[Markdown + Script]*7. Using the entire data set (before the 1960 split) prepare an empirical cumulative distribution plot using the weibull plotting position formula. *[Script + Plot 3: data==blue]*8. What is the 50% precipitation exceedence depth? *[Markdown]*9. What is the 90% precipitation exceedence depth? *[Markdown]*10. Fit the empirical distribution using a normal distribution data model, plot the model using a red curve. Assess the fit. *[Script + Plot 4: data==blue, model==red]*11. Fit the empirical distribution using a gammal distribution data model, plot the model using a red curve. Assess the fit. *[Script + Plot 5: data==blue, model==red]*12. Using your preferred model (normal vs. gamma) estimate the 99% precipitation exceedence depth. *[Script + Markdown]* ###Code # Problem 4 import pandas lbbdata = pandas.read_csv("Lubbockdata.csv") #1 pt lbbdata.head() lbbdata.plot.line() # 1pt lbbdata.describe() # 1pt lbbold = lbbdata[lbbdata['Date'] <= '1960-10'] # 1pt lbbnew = lbbdata[lbbdata['Date'] > '1960-10'] # 1pt print(lbbold.describe()) # 1pt print(lbbnew.describe()) # 1pt import matplotlib.pyplot myfigure = matplotlib.pyplot.figure(figsize = (8,8)) # generate a object from the figure class, set aspect ratio matplotlib.pyplot.plot(lbbold['Date'],lbbold['precipitation'] ,color ='blue') matplotlib.pyplot.plot(lbbnew['Date'],lbbnew['precipitation'] ,color ='green') matplotlib.pyplot.xlabel("Date") matplotlib.pyplot.ylabel("Precipitation Value") matplotlib.pyplot.title("Lubbock Precipitation in October") matplotlib.pyplot.show() # 2 pts for a plot like below; extra point if the year label is readable # lbbnew has smaller sample mean, but probably not significant. Reuse the T-test 2 pts # Example of the Student's t-test from scipy.stats import ttest_ind stat, p = ttest_ind(lbbold['precipitation'], lbbnew['precipitation']) print("Student's T-test") print('stat=%.3f, p=%.3f' % (stat, p)) if p > 0.05: print('Do not reject Ho : means are the same') else: print('Reject Ho : means are not the same') def weibull_pp(sample): # Weibull plotting position function 1 pt, copy from lab # returns a list of plotting positions; sample must be a numeric list weibull_pp = [] # null list to return after fill sample.sort() # sort the sample list in place for i in range(0,len(sample),1): weibull_pp.append((i+1)/(len(sample)+1)) #values from the gringorten formula return weibull_pp lbbprecip = lbbdata['precipitation'].tolist() # 1 pt ecdf = weibull_pp(lbbprecip) # 1pt import matplotlib.pyplot # 2 pt, copy from lab myfigure = matplotlib.pyplot.figure(figsize = (6,6)) # generate a object from the figure class, set aspect ratio matplotlib.pyplot.scatter(ecdf, lbbprecip ,color ='blue') matplotlib.pyplot.xlabel("Density or Quantile Value") matplotlib.pyplot.ylabel("Precipitation Value") matplotlib.pyplot.title("Quantile Plot for LBB October rains Weibull Plotting Function") matplotlib.pyplot.show() # 50% is at about 1 inch depth 1 pt # 90% is at about 4 inch depth 1 pt import math # copy from lesson/lab 13 2 pts def normdist(x,mu,sigma): argument = (x - mu)/(math.sqrt(2.0)*sigma) normdist = (1.0 + math.erf(argument))/2.0 return normdist # Fitted Model # copy from lesson/lab 13 2 pts mu = lbbdata['precipitation'].mean() sigma = lbbdata['precipitation'].std() x = [] ycdf = [] xlow = lbbdata['precipitation'].min() xhigh = lbbdata['precipitation'].max() howMany = 100 xstep = (xhigh - xlow)/howMany for i in range(0,howMany+1,1): x.append(xlow + i*xstep) yvalue = normdist(xlow + i*xstep,mu,sigma) ycdf.append(yvalue) # Now plot the sample values and plotting position 2 pts myfigure = matplotlib.pyplot.figure(figsize = (10,5)) # generate a object from the figure class, set aspect ratio # Built the plot matplotlib.pyplot.scatter(ecdf, lbbprecip ,color ='blue') matplotlib.pyplot.plot(ycdf, x, color ='red') matplotlib.pyplot.xlabel("Density or Quantile Value") matplotlib.pyplot.ylabel("Precipitation Value") matplotlib.pyplot.title("Quantile Plot for LBB October rains Weibull Plotting Function") matplotlib.pyplot.show() import scipy.stats # import scipy stats package ## copy from lab 6 pts import math # import math package import numpy # import numpy package # log and antilog def loggit(x): # A prototype function to log transform x return(math.log(x)) def antiloggit(x): # A prototype function to log transform x return(math.exp(x)) def weibull_pp(sample): # plotting position function # returns a list of plotting positions; sample must be a numeric list weibull_pp = [] # null list to return after fill sample.sort() # sort the sample list in place for i in range(0,len(sample),1): weibull_pp.append((i+1)/(len(sample)+1)) return weibull_pp def gammacdf(x,tau,alpha,beta): # Gamma Cumulative Density function - with three parameter to one parameter convert xhat = x-tau lamda = 1.0/beta gammacdf = scipy.stats.gamma.cdf(lamda*xhat, alpha) return gammacdf sample = lbbdata['precipitation'].tolist() # put the log rain into a list sample_mean = numpy.array(sample).mean() sample_stdev = numpy.array(sample).std() sample_skew = scipy.stats.skew(sample) sample_alpha = 4.0/(sample_skew**2) sample_beta = numpy.sign(sample_skew)*math.sqrt(sample_stdev**2/sample_alpha) sample_tau = sample_mean - sample_alpha*sample_beta plotting = weibull_pp(sample) x = []; ycdf = [] xlow = (0.9*min(sample)); xhigh = (1.1*max(sample)) ; howMany = 100 xstep = (xhigh - xlow)/howMany for i in range(0,howMany+1,1): x.append(xlow + i*xstep) yvalue = gammacdf(xlow + i*xstep,sample_tau,sample_alpha,sample_beta) ycdf.append(yvalue) myfigure = matplotlib.pyplot.figure(figsize = (7,8)) # generate a object from the figure class, set aspect ratio matplotlib.pyplot.scatter(plotting, sample ,color ='blue') matplotlib.pyplot.plot(ycdf, x, color ='red') matplotlib.pyplot.xlabel("Quantile Value") matplotlib.pyplot.ylabel("Value of RV") mytitle = "Pearson Type III Distribution Data Model\n " mytitle += "Mean = " + str((sample_mean)) + "\n" mytitle += "SD = " + str((sample_stdev)) + "\n" mytitle += "Skew = " + str((sample_skew)) + "\n" matplotlib.pyplot.title(mytitle) matplotlib.pyplot.show() print(sample_tau) print(sample_alpha) print(sample_beta) # If we want to get fancy we can use Newton's method to get really close to the root from scipy.optimize import newton def f(x): sample_tau = -0.7893085743067978 sample_alpha = 2.3177909391313727 sample_beta = 1.1271890532482214 quantile = 0.99 argument = (x) gammavalue = gammacdf(argument,sample_tau,sample_alpha,sample_beta) return gammavalue - quantile myguess = 8 print(newton(f, myguess)) ###Output 7.347913576046983 ###Markdown Bonus Problem (5 pts)Consider the script below, which implements a simulation of Russian Roulette (using an object oriented approach). Run the script to familarize yourself with the output.Then to prevent `Farhang` from dying, determine a way to change his outcome, and explain how you save him. Like with the robot speeding ticket you are channeling Kirk's approach to the Kobayashi-Maru exercise https://en.wikipedia.org/wiki/Kobayashi_Maru You can find the necessary trick from https://en.wikipedia.org/wiki/WarGames ###Code import random import itertools class RussianRoulette: def __init__(self, players, chambers=6): random.shuffle(players) self.players = itertools.cycle(players) self.chambers = [False for _ in range(chambers)] self.current = None self.rounds = 0 def load(self): """ Randomly load a chamber with a bullet. """ chamber_to_load = random.randint(0, len(self.chambers)-1) for i, chamber in enumerate(self.chambers): if i == chamber_to_load: self.chambers[i] = True def next_round(self): """ Advance to the next round. Returns: the `player` whose turn it is next """ self.rounds += 1 return next(self.players) def spin(self): """ Randomly assign a new chamber. """ self.current = random.randrange(0, len(self.chambers)) def fire(self, player): """ Fires the gun, then advances to the next chamber. The gun will loop back to the first chamber if we were at the final chamber in the cyclinder. Returns: `None` if no one has died `player` if the bullet was in the next chamber """ if self.chambers[self.current]: return player self.current = (self.current + 1) % len(self.chambers) if __name__ == '__main__': players = ['Nikita', 'Dima', 'Sergey', 'Farhang', 'Andrey', 'Neko'] game = RussianRoulette(players) game.load() game.spin() while True: player = game.next_round() choice = random.choice(['spin', 'fire']) if choice == 'spin': game.spin() #pass if game.fire(player): print(f'{player} died. :(') print(f'{game.rounds} completed.') break print(f'{player} lives to see another round!') ###Output Andrey lives to see another round! Farhang lives to see another round! Nikita lives to see another round! Dima lives to see another round! Sergey died. :( 5 completed.
deprecated/boosting-classifier/classifier_feature_importance.ipynb
###Markdown 1. prepare data ###Code # -*- coding: utf-8 -*- %matplotlib inline import matplotlib.pyplot as plt import pandas as pd import numpy as np from sklearn.model_selection import train_test_split df1_path = "../dataset/titanic_dataset.csv" df2_path = "../dataset/titanic_answer.csv" df1 = pd.read_csv(df1_path) df2 = pd.read_csv(df2_path) df = df1.append(df2) df.head() df = df[['survived', 'pclass', 'sex', 'age', 'sibsp', 'parch', 'fare', 'embarked']] df = df.dropna() df.info() df.isnull().sum() ###Output _____no_output_____ ###Markdown ----- 2. encoding & split dataset ###Code categorical_columns = ['pclass', 'sex', 'embarked'] df = pd.get_dummies(df, columns=categorical_columns) df.head() train_df, test_df = train_test_split(df, test_size=0.2) train_X = train_df.loc[:, train_df.columns != 'survived'].values test_X = test_df.loc[:, test_df.columns != 'survived'].values train_y = train_df['survived'].values test_y = test_df['survived'].values ###Output _____no_output_____ ###Markdown ----- 3. Random forest classifier feature importance ###Code from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import roc_auc_score clf = RandomForestClassifier(n_estimators=100, max_depth=2, random_state=0) clf.fit(train_X, train_y) pred_y = clf.predict(test_X) print(roc_auc_score(test_y, pred_y)) final_features = ['age', 'sibsp', 'parch', 'fare', 'pclass_1', 'pclass_2', 'pclass_3', 'sex_female', 'sex_male', 'embarked_C', 'embarked_Q', 'embarked_S'] for importance, feature in zip(clf.feature_importances_, final_features): print(feature + " : " + str(importance)) plt.bar(range(len(clf.feature_importances_)), clf.feature_importances_) plt.show() ###Output _____no_output_____ ###Markdown ----- 3. XGB classifier feature importance ###Code from xgboost import XGBClassifier from xgboost import plot_importance clf = XGBClassifier() clf.fit(train_df.loc[:, train_df.columns != 'survived'], train_df['survived']) pred_y = clf.predict(test_df.loc[:, test_df.columns != 'survived']) print(roc_auc_score(test_y, pred_y)) plot_importance(clf) plt.show() ###Output 0.7673745173745173
1 - Neural Networks and Deep Learning/Neural Networks Basics/Logistic_Regression_with_a_Neural_Network_mindset_v5.ipynb
###Markdown Logistic Regression with a Neural Network mindsetWelcome to your first (required) programming assignment! You will build a logistic regression classifier to recognize cats. This assignment will step you through how to do this with a Neural Network mindset, and so will also hone your intuitions about deep learning.**Instructions:**- Do not use loops (for/while) in your code, unless the instructions explicitly ask you to do so.**You will learn to:**- Build the general architecture of a learning algorithm, including: - Initializing parameters - Calculating the cost function and its gradient - Using an optimization algorithm (gradient descent) - Gather all three functions above into a main model function, in the right order. 1 - Packages First, let's run the cell below to import all the packages that you will need during this assignment. - [numpy](www.numpy.org) is the fundamental package for scientific computing with Python.- [h5py](http://www.h5py.org) is a common package to interact with a dataset that is stored on an H5 file.- [matplotlib](http://matplotlib.org) is a famous library to plot graphs in Python.- [PIL](http://www.pythonware.com/products/pil/) and [scipy](https://www.scipy.org/) are used here to test your model with your own picture at the end. ###Code import numpy as np import matplotlib.pyplot as plt import h5py import scipy from PIL import Image from scipy import ndimage from lr_utils import load_dataset %matplotlib inline ###Output _____no_output_____ ###Markdown 2 - Overview of the Problem set **Problem Statement**: You are given a dataset ("data.h5") containing: - a training set of m_train images labeled as cat (y=1) or non-cat (y=0) - a test set of m_test images labeled as cat or non-cat - each image is of shape (num_px, num_px, 3) where 3 is for the 3 channels (RGB). Thus, each image is square (height = num_px) and (width = num_px).You will build a simple image-recognition algorithm that can correctly classify pictures as cat or non-cat.Let's get more familiar with the dataset. Load the data by running the following code. ###Code # Loading the data (cat/non-cat) train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset() ###Output _____no_output_____ ###Markdown We added "_orig" at the end of image datasets (train and test) because we are going to preprocess them. After preprocessing, we will end up with train_set_x and test_set_x (the labels train_set_y and test_set_y don't need any preprocessing).Each line of your train_set_x_orig and test_set_x_orig is an array representing an image. You can visualize an example by running the following code. Feel free also to change the `index` value and re-run to see other images. ###Code # Example of a picture index = 25 plt.imshow(train_set_x_orig[index]) print ("y = " + str(train_set_y[:, index]) + ", it's a '" + classes[np.squeeze(train_set_y[:, index])].decode("utf-8") + "' picture.") ###Output y = [1], it's a 'cat' picture. ###Markdown Many software bugs in deep learning come from having matrix/vector dimensions that don't fit. If you can keep your matrix/vector dimensions straight you will go a long way toward eliminating many bugs. **Exercise:** Find the values for: - m_train (number of training examples) - m_test (number of test examples) - num_px (= height = width of a training image)Remember that `train_set_x_orig` is a numpy-array of shape (m_train, num_px, num_px, 3). For instance, you can access `m_train` by writing `train_set_x_orig.shape[0]`. ###Code ### START CODE HERE ### (≈ 3 lines of code) m_train = train_set_x_orig.shape[0] m_test = test_set_x_orig.shape[0] num_px = train_set_x_orig.shape[1] ### END CODE HERE ### print ("Number of training examples: m_train = " + str(m_train)) print ("Number of testing examples: m_test = " + str(m_test)) print ("Height/Width of each image: num_px = " + str(num_px)) print ("Each image is of size: (" + str(num_px) + ", " + str(num_px) + ", 3)") print ("train_set_x shape: " + str(train_set_x_orig.shape)) print ("train_set_y shape: " + str(train_set_y.shape)) print ("test_set_x shape: " + str(test_set_x_orig.shape)) print ("test_set_y shape: " + str(test_set_y.shape)) ###Output Number of training examples: m_train = 209 Number of testing examples: m_test = 50 Height/Width of each image: num_px = 64 Each image is of size: (64, 64, 3) train_set_x shape: (209, 64, 64, 3) train_set_y shape: (1, 209) test_set_x shape: (50, 64, 64, 3) test_set_y shape: (1, 50) ###Markdown **Expected Output for m_train, m_test and num_px**: **m_train** 209 **m_test** 50 **num_px** 64 For convenience, you should now reshape images of shape (num_px, num_px, 3) in a numpy-array of shape (num_px $*$ num_px $*$ 3, 1). After this, our training (and test) dataset is a numpy-array where each column represents a flattened image. There should be m_train (respectively m_test) columns.**Exercise:** Reshape the training and test data sets so that images of size (num_px, num_px, 3) are flattened into single vectors of shape (num\_px $*$ num\_px $*$ 3, 1).A trick when you want to flatten a matrix X of shape (a,b,c,d) to a matrix X_flatten of shape (b$*$c$*$d, a) is to use: ```pythonX_flatten = X.reshape(X.shape[0], -1).T X.T is the transpose of X``` ###Code # Reshape the training and test examples ### START CODE HERE ### (≈ 2 lines of code) train_set_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T test_set_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T ### END CODE HERE ### print ("train_set_x_flatten shape: " + str(train_set_x_flatten.shape)) print ("train_set_y shape: " + str(train_set_y.shape)) print ("test_set_x_flatten shape: " + str(test_set_x_flatten.shape)) print ("test_set_y shape: " + str(test_set_y.shape)) print ("sanity check after reshaping: " + str(train_set_x_flatten[0:5,0])) ###Output train_set_x_flatten shape: (12288, 209) train_set_y shape: (1, 209) test_set_x_flatten shape: (12288, 50) test_set_y shape: (1, 50) sanity check after reshaping: [17 31 56 22 33] ###Markdown **Expected Output**: **train_set_x_flatten shape** (12288, 209) **train_set_y shape** (1, 209) **test_set_x_flatten shape** (12288, 50) **test_set_y shape** (1, 50) **sanity check after reshaping** [17 31 56 22 33] To represent color images, the red, green and blue channels (RGB) must be specified for each pixel, and so the pixel value is actually a vector of three numbers ranging from 0 to 255.One common preprocessing step in machine learning is to center and standardize your dataset, meaning that you substract the mean of the whole numpy array from each example, and then divide each example by the standard deviation of the whole numpy array. But for picture datasets, it is simpler and more convenient and works almost as well to just divide every row of the dataset by 255 (the maximum value of a pixel channel). Let's standardize our dataset. ###Code train_set_x = train_set_x_flatten / 255. test_set_x = test_set_x_flatten / 255. ###Output _____no_output_____ ###Markdown **What you need to remember:**Common steps for pre-processing a new dataset are:- Figure out the dimensions and shapes of the problem (m_train, m_test, num_px, ...)- Reshape the datasets such that each example is now a vector of size (num_px \* num_px \* 3, 1)- "Standardize" the data 3 - General Architecture of the learning algorithm It's time to design a simple algorithm to distinguish cat images from non-cat images.You will build a Logistic Regression, using a Neural Network mindset. The following Figure explains why **Logistic Regression is actually a very simple Neural Network!****Mathematical expression of the algorithm**:For one example $x^{(i)}$:$$z^{(i)} = w^T x^{(i)} + b \tag{1}$$$$\hat{y}^{(i)} = a^{(i)} = sigmoid(z^{(i)})\tag{2}$$ $$ \mathcal{L}(a^{(i)}, y^{(i)}) = - y^{(i)} \log(a^{(i)}) - (1-y^{(i)} ) \log(1-a^{(i)})\tag{3}$$The cost is then computed by summing over all training examples:$$ J = \frac{1}{m} \sum_{i=1}^m \mathcal{L}(a^{(i)}, y^{(i)})\tag{6}$$**Key steps**:In this exercise, you will carry out the following steps: - Initialize the parameters of the model - Learn the parameters for the model by minimizing the cost - Use the learned parameters to make predictions (on the test set) - Analyse the results and conclude 4 - Building the parts of our algorithm The main steps for building a Neural Network are:1. Define the model structure (such as number of input features) 2. Initialize the model's parameters3. Loop: - Calculate current loss (forward propagation) - Calculate current gradient (backward propagation) - Update parameters (gradient descent)You often build 1-3 separately and integrate them into one function we call `model()`. 4.1 - Helper functions**Exercise**: Using your code from "Python Basics", implement `sigmoid()`. As you've seen in the figure above, you need to compute $sigmoid( w^T x + b) = \frac{1}{1 + e^{-(w^T x + b)}}$ to make predictions. Use np.exp(). ###Code # GRADED FUNCTION: sigmoid def sigmoid(z): """ Compute the sigmoid of z Arguments: z -- A scalar or numpy array of any size. Return: s -- sigmoid(z) """ ### START CODE HERE ### (≈ 1 line of code) s = 1 / (1 + np.exp(-z)) ### END CODE HERE ### return s print ("sigmoid([0, 2]) = " + str(sigmoid(np.array([0,2])))) ###Output sigmoid([0, 2]) = [ 0.5 0.88079708] ###Markdown **Expected Output**: **sigmoid([0, 2])** [ 0.5 0.88079708] 4.2 - Initializing parameters**Exercise:** Implement parameter initialization in the cell below. You have to initialize w as a vector of zeros. If you don't know what numpy function to use, look up np.zeros() in the Numpy library's documentation. ###Code # GRADED FUNCTION: initialize_with_zeros def initialize_with_zeros(dim): """ This function creates a vector of zeros of shape (dim, 1) for w and initializes b to 0. Argument: dim -- size of the w vector we want (or number of parameters in this case) Returns: w -- initialized vector of shape (dim, 1) b -- initialized scalar (corresponds to the bias) """ ### START CODE HERE ### (≈ 1 line of code) w = np.zeros((dim, 1)) b = 0 ### END CODE HERE ### assert(w.shape == (dim, 1)) assert(isinstance(b, float) or isinstance(b, int)) return w, b dim = 2 w, b = initialize_with_zeros(dim) print ("w = " + str(w)) print ("b = " + str(b)) ###Output w = [[ 0.] [ 0.]] b = 0 ###Markdown **Expected Output**: ** w ** [[ 0.] [ 0.]] ** b ** 0 For image inputs, w will be of shape (num_px $\times$ num_px $\times$ 3, 1). 4.3 - Forward and Backward propagationNow that your parameters are initialized, you can do the "forward" and "backward" propagation steps for learning the parameters.**Exercise:** Implement a function `propagate()` that computes the cost function and its gradient.**Hints**:Forward Propagation:- You get X- You compute $A = \sigma(w^T X + b) = (a^{(1)}, a^{(2)}, ..., a^{(m-1)}, a^{(m)})$- You calculate the cost function: $J = -\frac{1}{m}\sum_{i=1}^{m}y^{(i)}\log(a^{(i)})+(1-y^{(i)})\log(1-a^{(i)})$Here are the two formulas you will be using: $$ \frac{\partial J}{\partial w} = \frac{1}{m}X(A-Y)^T\tag{7}$$$$ \frac{\partial J}{\partial b} = \frac{1}{m} \sum_{i=1}^m (a^{(i)}-y^{(i)})\tag{8}$$ ###Code # GRADED FUNCTION: propagate def propagate(w, b, X, Y): """ Implement the cost function and its gradient for the propagation explained above Arguments: w -- weights, a numpy array of size (num_px * num_px * 3, 1) b -- bias, a scalar X -- data of size (num_px * num_px * 3, number of examples) Y -- true "label" vector (containing 0 if non-cat, 1 if cat) of size (1, number of examples) Return: cost -- negative log-likelihood cost for logistic regression dw -- gradient of the loss with respect to w, thus same shape as w db -- gradient of the loss with respect to b, thus same shape as b Tips: - Write your code step by step for the propagation. np.log(), np.dot() """ m = X.shape[1] # FORWARD PROPAGATION (FROM X TO COST) ### START CODE HERE ### (≈ 2 lines of code) A = sigmoid(np.dot(w.T, X) + b) # compute activation cost = - np.sum(Y * np.log(A) + (1 - Y) * np.log(1 - A)) / m # compute cost ### END CODE HERE ### # BACKWARD PROPAGATION (TO FIND GRAD) ### START CODE HERE ### (≈ 2 lines of code) dw = np.dot(X, (A - Y).T) / m db = np.sum(A - Y) / m ### END CODE HERE ### assert(dw.shape == w.shape) assert(db.dtype == float) cost = np.squeeze(cost) assert(cost.shape == ()) grads = {"dw": dw, "db": db} return grads, cost w, b, X, Y = np.array([[1.],[2.]]), 2., np.array([[1.,2.,-1.],[3.,4.,-3.2]]), np.array([[1,0,1]]) grads, cost = propagate(w, b, X, Y) print ("dw = " + str(grads["dw"])) print ("db = " + str(grads["db"])) print ("cost = " + str(cost)) ###Output dw = [[ 0.99845601] [ 2.39507239]] db = 0.00145557813678 cost = 5.80154531939 ###Markdown **Expected Output**: ** dw ** [[ 0.99845601] [ 2.39507239]] ** db ** 0.00145557813678 ** cost ** 5.801545319394553 4.4 - Optimization- You have initialized your parameters.- You are also able to compute a cost function and its gradient.- Now, you want to update the parameters using gradient descent.**Exercise:** Write down the optimization function. The goal is to learn $w$ and $b$ by minimizing the cost function $J$. For a parameter $\theta$, the update rule is $ \theta = \theta - \alpha \text{ } d\theta$, where $\alpha$ is the learning rate. ###Code # GRADED FUNCTION: optimize def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost = False): """ This function optimizes w and b by running a gradient descent algorithm Arguments: w -- weights, a numpy array of size (num_px * num_px * 3, 1) b -- bias, a scalar X -- data of shape (num_px * num_px * 3, number of examples) Y -- true "label" vector (containing 0 if non-cat, 1 if cat), of shape (1, number of examples) num_iterations -- number of iterations of the optimization loop learning_rate -- learning rate of the gradient descent update rule print_cost -- True to print the loss every 100 steps Returns: params -- dictionary containing the weights w and bias b grads -- dictionary containing the gradients of the weights and bias with respect to the cost function costs -- list of all the costs computed during the optimization, this will be used to plot the learning curve. Tips: You basically need to write down two steps and iterate through them: 1) Calculate the cost and the gradient for the current parameters. Use propagate(). 2) Update the parameters using gradient descent rule for w and b. """ costs = [] for i in range(num_iterations): # Cost and gradient calculation (≈ 1-4 lines of code) ### START CODE HERE ### grads, cost = propagate(w, b, X, Y) ### END CODE HERE ### # Retrieve derivatives from grads dw = grads["dw"] db = grads["db"] # update rule (≈ 2 lines of code) ### START CODE HERE ### w = w - learning_rate * dw b = b - learning_rate * db ### END CODE HERE ### # Record the costs if i % 100 == 0: costs.append(cost) # Print the cost every 100 training iterations if print_cost and i % 100 == 0: print ("Cost after iteration %i: %f" %(i, cost)) params = {"w": w, "b": b} grads = {"dw": dw, "db": db} return params, grads, costs params, grads, costs = optimize(w, b, X, Y, num_iterations= 100, learning_rate = 0.009, print_cost = False) print ("w = " + str(params["w"])) print ("b = " + str(params["b"])) print ("dw = " + str(grads["dw"])) print ("db = " + str(grads["db"])) ###Output w = [[ 0.19033591] [ 0.12259159]] b = 1.92535983008 dw = [[ 0.67752042] [ 1.41625495]] db = 0.219194504541 ###Markdown **Expected Output**: **w** [[ 0.19033591] [ 0.12259159]] **b** 1.92535983008 **dw** [[ 0.67752042] [ 1.41625495]] **db** 0.219194504541 **Exercise:** The previous function will output the learned w and b. We are able to use w and b to predict the labels for a dataset X. Implement the `predict()` function. There are two steps to computing predictions:1. Calculate $\hat{Y} = A = \sigma(w^T X + b)$2. Convert the entries of a into 0 (if activation 0.5), stores the predictions in a vector `Y_prediction`. If you wish, you can use an `if`/`else` statement in a `for` loop (though there is also a way to vectorize this). ###Code # GRADED FUNCTION: predict def predict(w, b, X): ''' Predict whether the label is 0 or 1 using learned logistic regression parameters (w, b) Arguments: w -- weights, a numpy array of size (num_px * num_px * 3, 1) b -- bias, a scalar X -- data of size (num_px * num_px * 3, number of examples) Returns: Y_prediction -- a numpy array (vector) containing all predictions (0/1) for the examples in X ''' m = X.shape[1] Y_prediction = np.zeros((1,m)) w = w.reshape(X.shape[0], 1) # Compute vector "A" predicting the probabilities of a cat being present in the picture ### START CODE HERE ### (≈ 1 line of code) A = sigmoid(np.dot(w.T, X) + b) ### END CODE HERE ### # non vectorized way: for i in range(A.shape[1]): # Convert probabilities A[0,i] to actual predictions p[0,i] ### START CODE HERE ### (≈ 4 lines of code) if A[0, i] > 0.5: Y_prediction[0, i] = 1 elif A[0, i] <= 0.5: Y_prediction[0, i] = 0 ### END CODE HERE ### # vectorized way: # Y_prediction = A // 0.5 assert(Y_prediction.shape == (1, m)) return Y_prediction w = np.array([[0.1124579],[0.23106775]]) b = -0.3 X = np.array([[1.,-1.1,-3.2],[1.2,2.,0.1]]) print ("predictions = " + str(predict(w, b, X))) ###Output predictions = [[ 1. 1. 0.]] ###Markdown **Expected Output**: **predictions** [[ 1. 1. 0.]] **What to remember:**You've implemented several functions that:- Initialize (w,b)- Optimize the loss iteratively to learn parameters (w,b): - computing the cost and its gradient - updating the parameters using gradient descent- Use the learned (w,b) to predict the labels for a given set of examples 5 - Merge all functions into a model You will now see how the overall model is structured by putting together all the building blocks (functions implemented in the previous parts) together, in the right order.**Exercise:** Implement the model function. Use the following notation: - Y_prediction_test for your predictions on the test set - Y_prediction_train for your predictions on the train set - w, costs, grads for the outputs of optimize() ###Code # GRADED FUNCTION: model def model(X_train, Y_train, X_test, Y_test, num_iterations = 2000, learning_rate = 0.5, print_cost = False): """ Builds the logistic regression model by calling the function you've implemented previously Arguments: X_train -- training set represented by a numpy array of shape (num_px * num_px * 3, m_train) Y_train -- training labels represented by a numpy array (vector) of shape (1, m_train) X_test -- test set represented by a numpy array of shape (num_px * num_px * 3, m_test) Y_test -- test labels represented by a numpy array (vector) of shape (1, m_test) num_iterations -- hyperparameter representing the number of iterations to optimize the parameters learning_rate -- hyperparameter representing the learning rate used in the update rule of optimize() print_cost -- Set to true to print the cost every 100 iterations Returns: d -- dictionary containing information about the model. """ ### START CODE HERE ### # initialize parameters with zeros (≈ 1 line of code) w, b = initialize_with_zeros(dim=X_train.shape[0]) # Gradient descent (≈ 1 line of code) parameters, grads, costs = optimize(w, b, X_train, Y_train, num_iterations, learning_rate, print_cost) # Retrieve parameters w and b from dictionary "parameters" w = parameters["w"] b = parameters["b"] # Predict test/train set examples (≈ 2 lines of code) Y_prediction_test = predict(w, b, X_test) Y_prediction_train = predict(w, b, X_train) ### END CODE HERE ### # Print train/test Errors print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100)) print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100)) d = {"costs": costs, "Y_prediction_test": Y_prediction_test, "Y_prediction_train" : Y_prediction_train, "w" : w, "b" : b, "learning_rate" : learning_rate, "num_iterations": num_iterations} return d ###Output _____no_output_____ ###Markdown Run the following cell to train your model. ###Code d = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 2000, learning_rate = 0.005, print_cost = True) ###Output Cost after iteration 0: 0.693147 Cost after iteration 100: 0.584508 Cost after iteration 200: 0.466949 Cost after iteration 300: 0.376007 Cost after iteration 400: 0.331463 Cost after iteration 500: 0.303273 Cost after iteration 600: 0.279880 Cost after iteration 700: 0.260042 Cost after iteration 800: 0.242941 Cost after iteration 900: 0.228004 Cost after iteration 1000: 0.214820 Cost after iteration 1100: 0.203078 Cost after iteration 1200: 0.192544 Cost after iteration 1300: 0.183033 Cost after iteration 1400: 0.174399 Cost after iteration 1500: 0.166521 Cost after iteration 1600: 0.159305 Cost after iteration 1700: 0.152667 Cost after iteration 1800: 0.146542 Cost after iteration 1900: 0.140872 train accuracy: 99.04306220095694 % test accuracy: 70.0 % ###Markdown **Expected Output**: **Cost after iteration 0 ** 0.693147 $\vdots$ $\vdots$ **Train Accuracy** 99.04306220095694 % **Test Accuracy** 70.0 % **Comment**: Training accuracy is close to 100%. This is a good sanity check: your model is working and has high enough capacity to fit the training data. Test error is 68%. It is actually not bad for this simple model, given the small dataset we used and that logistic regression is a linear classifier. But no worries, you'll build an even better classifier next week!Also, you see that the model is clearly overfitting the training data. Later in this specialization you will learn how to reduce overfitting, for example by using regularization. Using the code below (and changing the `index` variable) you can look at predictions on pictures of the test set. ###Code # Example of a picture that was wrongly classified. index = 2 plt.imshow(test_set_x[:,index].reshape((num_px, num_px, 3))) print ("y = " + str(test_set_y[0,index]) + ", you predicted that it is a \"" + classes[d["Y_prediction_test"][0,index]].decode("utf-8") + "\" picture.") ###Output y = 1, you predicted that it is a "cat" picture. ###Markdown Let's also plot the cost function and the gradients. ###Code # Plot learning curve (with costs) costs = np.squeeze(d['costs']) plt.plot(costs) plt.ylabel('cost') plt.xlabel('iterations (per hundreds)') plt.title("Learning rate =" + str(d["learning_rate"])) plt.show() ###Output _____no_output_____ ###Markdown **Interpretation**:You can see the cost decreasing. It shows that the parameters are being learned. However, you see that you could train the model even more on the training set. Try to increase the number of iterations in the cell above and rerun the cells. You might see that the training set accuracy goes up, but the test set accuracy goes down. This is called overfitting. 6 - Further analysis (optional/ungraded exercise) Congratulations on building your first image classification model. Let's analyze it further, and examine possible choices for the learning rate $\alpha$. Choice of learning rate **Reminder**:In order for Gradient Descent to work you must choose the learning rate wisely. The learning rate $\alpha$ determines how rapidly we update the parameters. If the learning rate is too large we may "overshoot" the optimal value. Similarly, if it is too small we will need too many iterations to converge to the best values. That's why it is crucial to use a well-tuned learning rate.Let's compare the learning curve of our model with several choices of learning rates. Run the cell below. This should take about 1 minute. Feel free also to try different values than the three we have initialized the `learning_rates` variable to contain, and see what happens. ###Code learning_rates = [0.01, 0.001, 0.0001] models = {} for i in learning_rates: print ("learning rate is: " + str(i)) models[str(i)] = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 1500, learning_rate = i, print_cost = False) print ('\n' + "-------------------------------------------------------" + '\n') for i in learning_rates: plt.plot(np.squeeze(models[str(i)]["costs"]), label= str(models[str(i)]["learning_rate"])) plt.ylabel('cost') plt.xlabel('iterations (hundreds)') legend = plt.legend(loc='upper center', shadow=True) frame = legend.get_frame() frame.set_facecolor('0.90') plt.show() ###Output learning rate is: 0.01 train accuracy: 99.52153110047847 % test accuracy: 68.0 % ------------------------------------------------------- learning rate is: 0.001 train accuracy: 88.99521531100478 % test accuracy: 64.0 % ------------------------------------------------------- learning rate is: 0.0001 train accuracy: 68.42105263157895 % test accuracy: 36.0 % ------------------------------------------------------- ###Markdown **Interpretation**: - Different learning rates give different costs and thus different predictions results.- If the learning rate is too large (0.01), the cost may oscillate up and down. It may even diverge (though in this example, using 0.01 still eventually ends up at a good value for the cost). - A lower cost doesn't mean a better model. You have to check if there is possibly overfitting. It happens when the training accuracy is a lot higher than the test accuracy.- In deep learning, we usually recommend that you: - Choose the learning rate that better minimizes the cost function. - If your model overfits, use other techniques to reduce overfitting. (We'll talk about this in later videos.) 7 - Test with your own image (optional/ungraded exercise) Congratulations on finishing this assignment. You can use your own image and see the output of your model. To do that: 1. Click on "File" in the upper bar of this notebook, then click "Open" to go on your Coursera Hub. 2. Add your image to this Jupyter Notebook's directory, in the "images" folder 3. Change your image's name in the following code 4. Run the code and check if the algorithm is right (1 = cat, 0 = non-cat)! ###Code ## START CODE HERE ## (PUT YOUR IMAGE NAME) my_image = "my_image.jpg" # change this to the name of your image file ## END CODE HERE ## # We preprocess the image to fit your algorithm. fname = "images/" + my_image image = np.array(ndimage.imread(fname, flatten=False)) my_image = scipy.misc.imresize(image, size=(num_px,num_px)).reshape((1, num_px*num_px*3)).T my_predicted_image = predict(d["w"], d["b"], my_image) plt.imshow(image) print("y = " + str(np.squeeze(my_predicted_image)) + ", your algorithm predicts a \"" + classes[int(np.squeeze(my_predicted_image)),].decode("utf-8") + "\" picture.") ###Output _____no_output_____
evalvacia_modelu_IV_b/evalvacia_modelu_IV_b.ipynb
###Markdown 0. Imports ###Code import pandas as pd import numpy as np from scipy import stats # statistika ###Output _____no_output_____ ###Markdown 1. Load CSV ###Code # change to your file location df = pd.read_csv('/content/drive/MyDrive/Škola/DM/evalvacia_modelu_IV_b/MLM_vstup.csv', ';', usecols=range(0,13)) df_stats = pd.read_csv('/content/drive/MyDrive/Škola/DM/evalvacia_modelu_IV_b/MLM_ZAM_stats.csv', ';', usecols=range(0,10)) # fiter for students df = df[(df['HODINA'] > 6) & (df['HODINA'] <= 22) & (df['ZAM'] == 1) & (df['KATEGORIA'].isin(['uvod', 'studium', 'o_fakulte', 'oznamy']))] # empty dict to save created crosstables dfDict = {} ###Output _____no_output_____ ###Markdown 2. Create crosstables*Crosstable - PO* ###Code df1 = df[(df['PO'] == 1)] crosstable = pd.crosstab(df1['HODINA'], df1['KATEGORIA'], values=df1['PO'], margins=True, dropna=False, aggfunc='count').reset_index().fillna(0) # Add missing line crosstable = crosstable.append({'HODINA': 18, 'o_fakulte': 0, 'oznamy': 0, 'studium': 0, 'uvod': 0, 'All': 0}, ignore_index=True) crosstable = crosstable.append({'HODINA': 19, 'o_fakulte': 0, 'oznamy': 0, 'studium': 0, 'uvod': 0, 'All': 0}, ignore_index=True) crosstable = crosstable.append({'HODINA': 20, 'o_fakulte': 0, 'oznamy': 0, 'studium': 0, 'uvod': 0, 'All': 0}, ignore_index=True) # Add PO crosstable into dict dfDict['PO'] = crosstable ###Output _____no_output_____ ###Markdown *Crosstable - UT* ###Code df1 = df[(df['UT'] == 1)] crosstable = pd.crosstab(df1['HODINA'], df1['KATEGORIA'], values=df1['UT'], margins=True, dropna=False, aggfunc='count').reset_index().fillna(0) # Add missing line crosstable = crosstable.append({'HODINA': 19, 'o_fakulte': 0, 'oznamy': 0, 'studium': 0, 'uvod': 0, 'All': 0}, ignore_index=True) crosstable = crosstable.append({'HODINA': 20, 'o_fakulte': 0, 'oznamy': 0, 'studium': 0, 'uvod': 0, 'All': 0}, ignore_index=True) crosstable = crosstable.append({'HODINA': 21, 'o_fakulte': 0, 'oznamy': 0, 'studium': 0, 'uvod': 0, 'All': 0}, ignore_index=True) crosstable = crosstable.append({'HODINA': 22, 'o_fakulte': 0, 'oznamy': 0, 'studium': 0, 'uvod': 0, 'All': 0}, ignore_index=True) # Add UT crosstable into dict dfDict['UT'] = crosstable ###Output _____no_output_____ ###Markdown *Crosstable - STR* ###Code df1 = df[(df['STR'] == 1)] crosstable = pd.crosstab(df1['HODINA'], df1['KATEGORIA'], values=df1['STR'], margins=True, dropna=False, aggfunc='count').reset_index().fillna(0) # Add missing line crosstable = crosstable.append({'HODINA': 17, 'o_fakulte': 0, 'oznamy': 0, 'studium': 0, 'uvod': 0, 'All': 0}, ignore_index=True) crosstable = crosstable.append({'HODINA': 20, 'o_fakulte': 0, 'oznamy': 0, 'studium': 0, 'uvod': 0, 'All': 0}, ignore_index=True) crosstable = crosstable.append({'HODINA': 21, 'o_fakulte': 0, 'oznamy': 0, 'studium': 0, 'uvod': 0, 'All': 0}, ignore_index=True) crosstable = crosstable.append({'HODINA': 22, 'o_fakulte': 0, 'oznamy': 0, 'studium': 0, 'uvod': 0, 'All': 0}, ignore_index=True) # Add STR crosstable into dict dfDict['STR'] = crosstable ###Output _____no_output_____ ###Markdown *Crosstable - STVR* ###Code df1 = df[(df['STVR'] == 1)] crosstable = pd.crosstab(df1['HODINA'], df1['KATEGORIA'], values=df1['STVR'], margins=True, dropna=False, aggfunc='count').reset_index().fillna(0) # Add missing lines crosstable = crosstable.append({'HODINA': 18, 'o_fakulte': 0, 'oznamy': 0, 'studium': 0, 'uvod': 0, 'All': 0}, ignore_index=True) crosstable = crosstable.append({'HODINA': 19, 'o_fakulte': 0, 'oznamy': 0, 'studium': 0, 'uvod': 0, 'All': 0}, ignore_index=True) crosstable = crosstable.append({'HODINA': 20, 'o_fakulte': 0, 'oznamy': 0, 'studium': 0, 'uvod': 0, 'All': 0}, ignore_index=True) crosstable = crosstable.append({'HODINA': 21, 'o_fakulte': 0, 'oznamy': 0, 'studium': 0, 'uvod': 0, 'All': 0}, ignore_index=True) crosstable = crosstable.append({'HODINA': 22, 'o_fakulte': 0, 'oznamy': 0, 'studium': 0, 'uvod': 0, 'All': 0}, ignore_index=True) # Add STVR crosstable into dict dfDict['STVR'] = crosstable ###Output _____no_output_____ ###Markdown *Crosstable - PIA* ###Code df1 = df[(df['PIA'] == 1)] crosstable = pd.crosstab(df1['HODINA'], df1['KATEGORIA'], values=df1['PIA'], margins=True, dropna=False, aggfunc='count').reset_index().fillna(0) # Add missing lines crosstable = crosstable.append({'HODINA': 16, 'o_fakulte': 0, 'oznamy': 0, 'studium': 0, 'uvod': 0, 'All': 0}, ignore_index=True) crosstable = crosstable.append({'HODINA': 17, 'o_fakulte': 0, 'oznamy': 0, 'studium': 0, 'uvod': 0, 'All': 0}, ignore_index=True) crosstable = crosstable.append({'HODINA': 18, 'o_fakulte': 0, 'oznamy': 0, 'studium': 0, 'uvod': 0, 'All': 0}, ignore_index=True) crosstable = crosstable.append({'HODINA': 19, 'o_fakulte': 0, 'oznamy': 0, 'studium': 0, 'uvod': 0, 'All': 0}, ignore_index=True) crosstable = crosstable.append({'HODINA': 20, 'o_fakulte': 0, 'oznamy': 0, 'studium': 0, 'uvod': 0, 'All': 0}, ignore_index=True) crosstable = crosstable.append({'HODINA': 21, 'o_fakulte': 0, 'oznamy': 0, 'studium': 0, 'uvod': 0, 'All': 0}, ignore_index=True) crosstable = crosstable.append({'HODINA': 22, 'o_fakulte': 0, 'oznamy': 0, 'studium': 0, 'uvod': 0, 'All': 0}, ignore_index=True) # Add PIA crosstable into dict dfDict['PIA'] = crosstable ###Output _____no_output_____ ###Markdown 3. Create collection of weekdays ###Code days = ['PO', 'UT', 'STR', 'STVR', 'PIA'] ###Output _____no_output_____ ###Markdown 4. Calculate differences ###Code # Dataframes for empirical relative abundance df1 = pd.DataFrame() df2 = pd.DataFrame() df3 = pd.DataFrame() df4 = pd.DataFrame() # Dataframes estimates for web parts df1_estimate = pd.DataFrame() df2_estimate = pd.DataFrame() df3_estimate = pd.DataFrame() df4_estimate = pd.DataFrame() index = 0 # Cycle through hours from 7 to 23 for x in range (7,23): # Rows for empirical relative abundance new_row_uvod = {} new_row_studium = {} new_row_oznamy = {} new_row_fakulte = {} # Rows for estimations new_row_uvod_estimate = {} new_row_studium_estimate = {} new_row_oznamy_estimate = {} new_row_fakulte_estimate = {} i = 1 # Cycle through weekdays for day in days: # Create logits estimates logit_uvod = df_stats.at[index, 'Intercept'] + df_stats.at[index, 'HODINA']*x+df_stats.at[index, 'HODINA_STV']*(x*x)+df_stats.at[index, day] logit_studium = df_stats.at[index+1, 'Intercept'] + df_stats.at[index+1, 'HODINA']*x+df_stats.at[index+1, 'HODINA_STV']*(x*x)+df_stats.at[index+1, day] logit_oznamy = df_stats.at[index+2, 'Intercept'] + df_stats.at[index+2, 'HODINA']*x+df_stats.at[index+2, 'HODINA_STV']*(x*x)+df_stats.at[index+2, day] reference_web = 1 / (1 + np.exp(logit_uvod) + np.exp(logit_studium) + np.exp(logit_oznamy)) # Create estimates for web parts estimate_uvod = np.exp(logit_uvod) * reference_web estimate_studium = np.exp(logit_studium) * reference_web estimate_oznamy = np.exp(logit_oznamy) * reference_web estimate_fakulte = np.exp(reference_web) * reference_web # Get current crosstable crosstable = dfDict[day] crosstable = crosstable[(crosstable['HODINA'] == x)] crosstable_all = crosstable.iloc[0]['All'] # Empirical relative abundance if(crosstable_all == 0): dij_uvod = 0 dij_studium = 0 dij_oznamy = 0 dij_fakulte = 0 else: dij_uvod = crosstable.iloc[0]['uvod'] / crosstable_all dij_studium = crosstable.iloc[0]['studium'] / crosstable_all dij_oznamy = crosstable.iloc[0]['oznamy'] / crosstable_all dij_fakulte = crosstable.iloc[0]['o_fakulte'] / crosstable_all den = str(i) + '_' + day # Add data to new rows # Empirical new_row_uvod.update({den: dij_uvod}) new_row_studium.update({den: dij_studium}) new_row_oznamy.update({den: dij_oznamy}) new_row_fakulte.update({den: dij_fakulte}) # Estimations new_row_uvod_estimate.update({den: estimate_uvod}) new_row_studium_estimate.update({den: estimate_studium}) new_row_oznamy_estimate.update({den: estimate_oznamy}) new_row_fakulte_estimate.update({den: estimate_fakulte}) i = i + 1 # Append time and ext to rows new_row_uvod.update({'0_hod': x}) new_row_studium.update({'0_hod': x}) new_row_oznamy.update({'0_hod': x}) new_row_fakulte.update({'0_hod': x}) new_row_uvod_estimate.update({'0_hod': x}) new_row_studium_estimate.update({'0_hod': x}) new_row_oznamy_estimate.update({'0_hod': x}) new_row_fakulte_estimate.update({'0_hod': x}) # Update dataframes df1 = df1.append(new_row_uvod, sort=False, ignore_index=True) df2 = df2.append(new_row_studium, sort=False, ignore_index=True) df3 = df3.append(new_row_oznamy, sort=False, ignore_index=True) df4 = df4.append(new_row_fakulte, sort=False, ignore_index=True) df1_estimate = df1_estimate.append(new_row_uvod_estimate, sort=False, ignore_index=True) df2_estimate = df2_estimate.append(new_row_studium_estimate, sort=False, ignore_index=True) df3_estimate = df3_estimate.append(new_row_oznamy_estimate, sort=False, ignore_index=True) df4_estimate = df4_estimate.append(new_row_fakulte_estimate, sort=False, ignore_index=True) df1.head() ###Output _____no_output_____ ###Markdown 5. Create collection of weekdays with numbers ###Code days = ['1_PO', '2_UT', '3_STR', '4_STVR', '5_PIA'] ###Output _____no_output_____ ###Markdown 6. Print WilcoxonResult for: *Uvod* ###Code for day in days: print(stats.wilcoxon(df1[day], df1_estimate[day])) ###Output WilcoxonResult(statistic=53.0, pvalue=0.43796657516602056) WilcoxonResult(statistic=62.0, pvalue=0.7563688628810696) WilcoxonResult(statistic=19.0, pvalue=0.011285575373529618) WilcoxonResult(statistic=30.0, pvalue=0.049421966979675956) WilcoxonResult(statistic=25.0, pvalue=0.026183648097068732) ###Markdown 7. Print WilcoxonResult for: *Studium* ###Code for day in days: print(stats.wilcoxon(df2[day], df2_estimate[day])) ###Output WilcoxonResult(statistic=24.0, pvalue=0.022894784183124583) WilcoxonResult(statistic=16.0, pvalue=0.007169734292803208) WilcoxonResult(statistic=23.0, pvalue=0.019970875425605675) WilcoxonResult(statistic=11.0, pvalue=0.0032045855456292547) WilcoxonResult(statistic=11.0, pvalue=0.0032045855456292547) ###Markdown 8. Print WilcoxonResult for: *Oznamy* ###Code for day in days: print(stats.wilcoxon(df3[day], df3_estimate[day])) ###Output WilcoxonResult(statistic=16.0, pvalue=0.007169734292803208) WilcoxonResult(statistic=14.0, pvalue=0.005233909190788298) WilcoxonResult(statistic=33.0, pvalue=0.07032573521121915) WilcoxonResult(statistic=44.0, pvalue=0.21460188629190957) WilcoxonResult(statistic=25.0, pvalue=0.026183648097068732) ###Markdown 9. Print WilcoxonResult for: *Fakulta* ###Code for day in days: print(stats.wilcoxon(df4[day], df4_estimate[day])) ###Output WilcoxonResult(statistic=34.0, pvalue=0.07873081119613402) WilcoxonResult(statistic=56.0, pvalue=0.5349252131384397) WilcoxonResult(statistic=16.0, pvalue=0.007169734292803208) WilcoxonResult(statistic=13.0, pvalue=0.004455352355471741) WilcoxonResult(statistic=5.0, pvalue=0.0011233790034369743)
codici/.ipynb_checkpoints/kmeans-checkpoint.ipynb
###Markdown k-means clustering ###Code import warnings warnings.filterwarnings('ignore') %matplotlib inline import scipy as sc import scipy.stats as stats from scipy.spatial.distance import euclidean import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.colors as mcolors plt.style.use('fivethirtyeight') plt.rcParams['font.family'] = 'sans-serif' plt.rcParams['font.serif'] = 'Ubuntu' plt.rcParams['font.monospace'] = 'Ubuntu Mono' plt.rcParams['font.size'] = 10 plt.rcParams['axes.labelsize'] = 10 plt.rcParams['axes.labelweight'] = 'bold' plt.rcParams['axes.titlesize'] = 10 plt.rcParams['xtick.labelsize'] = 8 plt.rcParams['ytick.labelsize'] = 8 plt.rcParams['legend.fontsize'] = 10 plt.rcParams['figure.titlesize'] = 12 plt.rcParams['image.cmap'] = 'jet' plt.rcParams['image.interpolation'] = 'none' plt.rcParams['figure.figsize'] = (16, 8) plt.rcParams['lines.linewidth'] = 2 plt.rcParams['lines.markersize'] = 8 colors = ['#008fd5', '#fc4f30', '#e5ae38', '#6d904f', '#8b8b8b', '#810f7c', '#137e6d', '#be0119', '#3b638c', '#af6f09', '#008fd5', '#fc4f30', '#e5ae38', '#6d904f', '#8b8b8b', '#810f7c', '#137e6d', '#be0119', '#3b638c', '#af6f09'] cmap = mcolors.LinearSegmentedColormap.from_list("", ["#82cafc", "#069af3", "#0485d1", colors[0], colors[8]]) rv0 = stats.multivariate_normal(mean=[3, 3], cov=[[.3, .3],[.3,.4]]) rv1 = stats.multivariate_normal(mean=[1.5, 1], cov=[[.5, -.5],[-.5,.7]]) rv2 = stats.multivariate_normal(mean=[0, 1.2], cov=[[.15, .1],[.1,.3]]) rv3 = stats.multivariate_normal(mean=[3.2, 1], cov=[[.2, 0],[0,.1]]) z0 = rv0.rvs(size=300) z1 = rv1.rvs(size=300) z2 = rv2.rvs(size=300) z3 = rv3.rvs(size=300) z=np.concatenate((z0, z1, z2, z3), axis=0) fig, ax = plt.subplots() ax.scatter(z0[:,0], z0[:,1], s=40, color='C0', alpha =.8, edgecolors='k', label=r'$C_0$') ax.scatter(z1[:,0], z1[:,1], s=40, color='C1', alpha =.8, edgecolors='k', label=r'$C_1$') ax.scatter(z2[:,0], z2[:,1], s=40, color='C2', alpha =.8, edgecolors='k', label=r'$C_2$') ax.scatter(z3[:,0], z3[:,1], s=40, color='C3', alpha =.8, edgecolors='k', label=r'$C_3$') plt.xlabel('$x$') plt.ylabel('$y$') plt.legend() cc='xkcd:strawberry' fig = plt.figure(figsize=(16,8)) ax = fig.gca() plt.scatter(z[:,0], z[:,1], s=40, color=cc, edgecolors='k', alpha=.8) plt.ylabel('$x_2$', fontsize=12) plt.xlabel('$x_1$', fontsize=12) plt.title('Data set', fontsize=12) plt.show() # Number of clusters nc = 3 # X coordinates of random centroids C_x = np.random.sample(nc)*(np.max(z[:,0])-np.min(z[:,0]))*.7+np.min(z[:,0])*.7 # Y coordinates of random centroids C_y = np.random.sample(nc)*(np.max(z[:,1])-np.min(z[:,1]))*.7+np.min(z[:,0])*.7 C = np.array(list(zip(C_x, C_y)), dtype=np.float32) fig = plt.figure(figsize=(16,8)) ax = fig.gca() plt.scatter(z[:,0], z[:,1], s=40, color=cc, edgecolors='k', alpha=.5) for i in range(nc): plt.scatter(C_x[i], C_y[i], marker='*', s=500, c=colors[i], edgecolors='k', linewidth=1.5) plt.ylabel('$x_2$', fontsize=12) plt.xlabel('$x_1$', fontsize=12) plt.title('Data set', fontsize=12) plt.show() C_list = [] errors = [] # Cluster Labels(0, 1, 2, 3) clusters = np.zeros(z.shape[0]) C_list.append(C) # Error func. - Distance between new centroids and old centroids error = np.linalg.norm([euclidean(C[i,:], [0,0]) for i in range(nc)]) errors.append(error) print("Error: {0:3.5f}".format(error)) for l in range(5): # Assigning each value to its closest cluster for i in range(z.shape[0]): distances = [euclidean(z[i,:], C[j,:]) for j in range(nc)] cluster = np.argmin(distances) clusters[i] = cluster # Storing the old centroid values C = np.zeros([nc,2]) # Finding the new centroids by taking the average value for i in range(nc): points = [z[j,:] for j in range(z.shape[0]) if clusters[j] == i] C[i] = np.mean(points, axis=0) error = np.linalg.norm([euclidean(C[i,:], C_list[-1][i,:]) for i in range(nc)]) errors.append(error) C_list.append(C) fig = plt.figure(figsize=(16,8)) ax = fig.gca() for cl in range(nc): z1 = z[clusters==cl] plt.scatter(z1[:,0],z1[:,1], c=colors[cl], marker='o', s=40, edgecolors='k', alpha=.7) for i in range(nc): plt.scatter(C[i,0], C[i,1], marker='*', s=400, c=colors[i], edgecolors='k', linewidth=1.5) plt.ylabel('$x_2$', fontsize=12) plt.xlabel('$x_1$', fontsize=12) plt.title('Data set', fontsize=12) plt.show() C_list print("Error: {0:3.5f}".format(error)) errors ###Output _____no_output_____
code/ch07/07_visualization.ipynb
###Markdown Python for Financial Data ScienceDr Yves J Hilpisch | The Python Quants GmbHhttp://tpq.io | [email protected] Data Visualization ###Code import matplotlib as mpl mpl.__version__ import matplotlib.pyplot as plt plt.style.use('seaborn') mpl.rcParams['font.family'] = 'serif' %matplotlib inline ###Output _____no_output_____ ###Markdown Static 2D Plotting One-Dimensional Data Set ###Code import numpy as np np.random.seed(1000) y = np.random.standard_normal(20) x = np.arange(len(y)) plt.plot(x, y); # plt.savefig('../../images/ch07/mpl_01') plt.plot(y); # plt.savefig('../../images/ch07/mpl_02') plt.plot(y.cumsum()); # plt.savefig('../../images/ch07/mpl_03') plt.plot(y.cumsum()) plt.grid(False); # plt.savefig('../../images/ch07/mpl_04') plt.plot(y.cumsum()) plt.xlim(-1, 20) plt.ylim(np.min(y.cumsum()) - 1, np.max(y.cumsum()) + 1); # plt.savefig('../../images/ch07/mpl_05') plt.figure(figsize=(10, 6)) plt.plot(y.cumsum(), 'b', lw=1.5) plt.plot(y.cumsum(), 'ro') plt.xlabel('index') plt.ylabel('value') plt.title('A Simple Plot'); # plt.savefig('../../images/ch07/mpl_06') ###Output _____no_output_____ ###Markdown Two-Dimensional Data Set ###Code y = np.random.standard_normal((20, 2)).cumsum(axis=0) plt.figure(figsize=(10, 6)) plt.plot(y, lw=1.5) plt.plot(y, 'ro') plt.xlabel('index') plt.ylabel('value') plt.title('A Simple Plot'); # plt.savefig('../../images/ch07/mpl_07') plt.figure(figsize=(10, 6)) plt.plot(y[:, 0], lw=1.5, label='1st') plt.plot(y[:, 1], lw=1.5, label='2nd') plt.plot(y, 'ro') plt.legend(loc=0) plt.xlabel('index') plt.ylabel('value') plt.title('A Simple Plot'); # plt.savefig('../../images/ch07/mpl_08') y[:, 0] = y[:, 0] * 100 plt.figure(figsize=(10, 6)) plt.plot(y[:, 0], lw=1.5, label='1st') plt.plot(y[:, 1], lw=1.5, label='2nd') plt.plot(y, 'ro') plt.legend(loc=0) plt.xlabel('index') plt.ylabel('value') plt.title('A Simple Plot'); # plt.savefig('../../images/ch07/mpl_09') fig, ax1 = plt.subplots() plt.plot(y[:, 0], 'b', lw=1.5, label='1st') plt.plot(y[:, 0], 'ro') plt.legend(loc=8) plt.xlabel('index') plt.ylabel('value 1st') plt.title('A Simple Plot') ax2 = ax1.twinx() plt.plot(y[:, 1], 'g', lw=1.5, label='2nd')a plt.plot(y[:, 1], 'ro') plt.legend(loc=0) plt.ylabel('value 2nd'); # plt.savefig('../../images/ch07/mpl_10') plt.figure(figsize=(10, 6)) plt.subplot(211) plt.plot(y[:, 0], lw=1.5, label='1st') plt.plot(y[:, 0], 'ro') plt.legend(loc=0) plt.ylabel('value') plt.title('A Simple Plot') plt.subplot(212) plt.plot(y[:, 1], 'g', lw=1.5, label='2nd') plt.plot(y[:, 1], 'ro') plt.legend(loc=0) plt.xlabel('index') plt.ylabel('value'); # plt.savefig('../../images/ch07/mpl_11') plt.figure(figsize=(10, 6)) plt.subplot(121) plt.plot(y[:, 0], lw=1.5, label='1st') plt.plot(y[:, 0], 'ro') plt.legend(loc=0) plt.xlabel('index') plt.ylabel('value') plt.title('1st Data Set') plt.subplot(122) plt.bar(np.arange(len(y)), y[:, 1], width=0.5, color='g', label='2nd') plt.legend(loc=0) plt.xlabel('index') plt.title('2nd Data Set'); # plt.savefig('../../images/ch07/mpl_12') ###Output _____no_output_____ ###Markdown Other Plot Styles ###Code y = np.random.standard_normal((1000, 2)) plt.figure(figsize=(10, 6)) plt.plot(y[:, 0], y[:, 1], 'ro') plt.xlabel('1st') plt.ylabel('2nd') plt.title('Scatter Plot'); # plt.savefig('../../images/ch07/mpl_13') plt.figure(figsize=(10, 6)) plt.scatter(y[:, 0], y[:, 1], marker='o') plt.xlabel('1st') plt.ylabel('2nd') plt.title('Scatter Plot'); # plt.savefig('../../images/ch07/mpl_14') c = np.random.randint(0, 10, len(y)) plt.figure(figsize=(10, 6)) plt.scatter(y[:, 0], y[:, 1], c=c, cmap='coolwarm', marker='o') plt.colorbar() plt.xlabel('1st') plt.ylabel('2nd') plt.title('Scatter Plot'); # plt.savefig('../../images/ch07/mpl_15') plt.figure(figsize=(10, 6)) plt.hist(y, label=['1st', '2nd'], bins=25) plt.legend(loc=0) plt.xlabel('value') plt.ylabel('frequency') plt.title('Histogram'); # plt.savefig('../../images/ch07/mpl_16') plt.figure(figsize=(10, 6)) plt.hist(y, label=['1st', '2nd'], color=['b', 'g'], stacked=True, bins=20, alpha=0.5) plt.legend(loc=0) plt.xlabel('value') plt.ylabel('frequency') plt.title('Histogram'); # plt.savefig('../../images/ch07/mpl_17') fig, ax = plt.subplots(figsize=(10, 6)) plt.boxplot(y) plt.setp(ax, xticklabels=['1st', '2nd']) plt.xlabel('data set') plt.ylabel('value') plt.title('Boxplot'); # plt.savefig('../../images/ch07/mpl_18') def func(x): return 0.5 * np.exp(x) + 1 a, b = 0.5, 1.5 x = np.linspace(0, 2) y = func(x) Ix = np.linspace(a, b) Iy = func(Ix) # <6> verts = [(a, 0)] + list(zip(Ix, Iy)) + [(b, 0)] from matplotlib.patches import Polygon fig, ax = plt.subplots(figsize=(10, 6)) plt.plot(x, y, 'b', linewidth=2) plt.ylim(ymin=0) poly = Polygon(verts, facecolor='0.7', edgecolor='0.5') ax.add_patch(poly) plt.text(0.5 * (a + b), 1, r'$\int_a^b f(x)\mathrm{d}x$', horizontalalignment='center', fontsize=20) plt.figtext(0.9, 0.075, '$x$') plt.figtext(0.075, 0.9, '$f(x)$') ax.set_xticks((a, b)) ax.set_xticklabels(('$a$', '$b$')) ax.set_yticks([func(a), func(b)]) ax.set_yticklabels(('$f(a)$', '$f(b)$')) # plt.savefig('../../images/ch07/mpl_19') ###Output _____no_output_____ ###Markdown Static 3D Plotting ###Code strike = np.linspace(50, 150, 24) ttm = np.linspace(0.5, 2.5, 24) strike, ttm = np.meshgrid(strike, ttm) strike[:2].round(1) iv = (strike - 100) ** 2 / (100 * strike) / ttm iv[:5, :3] from mpl_toolkits.mplot3d import Axes3D fig = plt.figure(figsize=(10, 6)) ax = fig.gca(projection='3d') surf = ax.plot_surface(strike, ttm, iv, rstride=2, cstride=2, cmap=plt.cm.coolwarm, linewidth=0.5, antialiased=True) ax.set_xlabel('strike') ax.set_ylabel('time-to-maturity') ax.set_zlabel('implied volatility') fig.colorbar(surf, shrink=0.5, aspect=5); # plt.savefig('../../images/ch07/mpl_20') fig = plt.figure(figsize=(10, 6)) ax = fig.add_subplot(111, projection='3d') ax.view_init(30, 60) ax.scatter(strike, ttm, iv, zdir='z', s=25, c='b', marker='^') ax.set_xlabel('strike') ax.set_ylabel('time-to-maturity') ax.set_zlabel('implied volatility'); # plt.savefig('../../images/ch07/mpl_21') ###Output _____no_output_____ ###Markdown Interactive 2D Plotting Basic Plots ###Code import pandas as pd import cufflinks as cf cf.set_config_file(offline=True) a = np.random.standard_normal((250, 5)).cumsum(axis=0) index = pd.date_range('2019-1-1', freq='B', periods=len(a)) # <4> df = pd.DataFrame(100 + 5 * a, columns=list('abcde'), index=index) df.head() df.plot() df.iplot() df[['a', 'b']].iplot( theme='polar', title='A Time Series Plot', xTitle='date', yTitle='value', mode={'a': 'markers', 'b': 'lines+markers'}, symbol={'a': 'dot', 'b': 'diamond'}, size=3.5, colors={'a': 'blue', 'b': 'magenta'}, ) df.iplot(kind='hist', subplots=True, bins=15, ) ###Output _____no_output_____ ###Markdown Financial Plotting ###Code # data from FXCM Forex Capital Markets Ltd. raw = pd.read_csv('http://hilpisch.com/fxcm_eur_usd_eod_data.csv', index_col=0, parse_dates=True) raw.info() quotes = raw[['OpenAsk', 'HighAsk', 'LowAsk', 'CloseAsk']] quotes = quotes.iloc[-60:] quotes.tail() qf = cf.QuantFig( quotes, title='EUR/USD Exchange Rate', legend='top', name='EUR/USD' ) qf.iplot() qf.add_bollinger_bands(periods=15, boll_std=2) qf.iplot() qf.add_rsi(periods=14, showbands=False) qf.iplot() ###Output _____no_output_____ ###Markdown Python for Finance (2nd ed.)**Mastering Data-Driven Finance**&copy; Dr. Yves J. Hilpisch | The Python Quants GmbH Data Visualization ###Code import matplotlib as mpl mpl.__version__ import matplotlib.pyplot as plt plt.style.use('seaborn') # 设置图样 mpl.rcParams['font.family'] = 'serif' # 设置字型 %matplotlib inline ###Output _____no_output_____ ###Markdown Static 2D Plotting One-Dimensional Data Set ###Code import numpy as np np.random.seed(1000) y = np.random.standard_normal(20) y x = np.arange(1, len(y)+1) plt.plot(x, y); # 画线图 plt.savefig('H:/py4fi/images/ch07/mpl_01') plt.plot(y); plt.savefig('H:/py4fi/images/ch07/mpl_02') plt.plot(y.cumsum()); plt.savefig('H:/py4fi/images/ch07/mpl_03') plt.plot(y.cumsum()) plt.grid(False) # 不要格线 plt.axis('equal'); # Lead to equal scaling for the two axes plt.savefig('H:/py4fi/images/ch07/mpl_04') plt.plot? plt.plot(y.cumsum()) # 设置图形界限 plt.xlim(-1, 20) # x轴范围-1,20 plt.ylim(np.min(y.cumsum()) - 1, np.max(y.cumsum()) + 1); # y的范围最小值-1,最大值+1 plt.savefig('H:/py4fi/images/ch07/mpl_05') plt.figure(figsize=(10, 6)) # 图形大小 # 把下面两张图叠在一起 plt.plot(y.cumsum(), 'b', lw=1.5) # 'b'蓝色的线,lw=1.5线宽1.5 plt.plot(y.cumsum(), 'ro') # ‘ro’红色的点 plt.xlabel('index') # x轴标签‘index’ plt.ylabel('value') # y轴标签‘value’ plt.title('A Simple Plot'); # 图标 plt.savefig('H:/py4fi/images/ch07/mpl_06') ###Output _____no_output_____ ###Markdown Two-Dimensional Data Set* Two data sets might have such a different scaling that they cannot be plotted using the same y- and/or x-axis scaling.* Another issue might be that one might want to visualize two different data sets in defferent ways, e.g., one by a line plot and the other by a bar plot ###Code y = np.random.standard_normal((20, 2)).cumsum(axis=0) y plt.figure(figsize=(10, 6)) plt.plot(y, lw=1.5) plt.plot(y, 'ro') plt.xlabel('index') plt.ylabel('value') plt.title('A Simple Plot'); plt.savefig('H:/py4fi/images/ch07/mpl_07') plt.figure(figsize=(10, 6)) plt.plot(y[:, 0], lw=1.5, label='1st') plt.plot(y[:, 1], lw=1.5, label='2nd') plt.plot(y, 'ro') plt.legend(loc=0) # 0 stands for best location 选空的地方放图例 plt.xlabel('index') plt.ylabel('value') plt.title('A Simple Plot'); plt.savefig('H:/py4fi/images/ch07/mpl_08') y[:, 0] = y[:, 0] * 100 plt.figure(figsize=(10, 6)) plt.plot(y[:, 0], lw=1.5, label='1st') plt.plot(y[:, 1], lw=1.5, label='2nd') plt.plot(y, 'ro') plt.legend(loc=0) plt.xlabel('index') plt.ylabel('value') plt.title('A Simple Plot'); plt.savefig('H:/py4fi/images/ch07/mpl_09') fig, ax1 = plt.subplots() plt.plot(y[:, 0], 'b', lw=1.5, label='1st') plt.plot(y[:, 0], 'ro') plt.legend(loc=8) plt.xlabel('index') plt.ylabel('value 1st') plt.title('A Simple Plot') ax2 = ax1.twinx() # Creates a second axis object that shares the x-axis. plt.plot(y[:, 1], 'g', lw=1.5, label='2nd') plt.plot(y[:, 1], 'ro') plt.legend(loc=0) plt.ylabel('value 2nd'); plt.savefig('H:/py4fi/images/ch07/mpl_10') ax1.twinx? plt.figure(figsize=(10, 6)) plt.subplot(211) # 2行1列第1个子图 plt.plot(y[:, 0], lw=1.5, label='1st') plt.plot(y[:, 0], 'ro') plt.legend(loc=0) plt.ylabel('value') plt.title('A Simple Plot') plt.subplot(212) # 2行1列第2个子图 plt.plot(y[:, 1], 'g', lw=1.5, label='2nd') plt.plot(y[:, 1], 'ro') plt.legend(loc=0) plt.xlabel('index') plt.ylabel('value'); plt.savefig('H:/py4fi/images/ch07/mpl_11') plt.figure(figsize=(10, 6)) plt.subplot(121) plt.plot(y[:, 0], lw=1.5, label='1st') plt.plot(y[:, 0], 'ro') plt.legend(loc=0) plt.xlabel('index') plt.ylabel('value') plt.title('1st Data Set') plt.subplot(122) plt.bar(np.arange(len(y)), y[:, 1], width=0.5, # 柱状图的参数 color='g', label='2nd') plt.legend(loc=0) plt.xlabel('index') plt.title('2nd Data Set'); plt.savefig('H:/py4fi/images/ch07/mpl_12') ###Output _____no_output_____ ###Markdown Other Plot Styles ###Code y = np.random.standard_normal((1000, 2)) plt.figure(figsize=(10, 6)) plt.plot(y[:, 0], y[:, 1], 'ro') # 线图的方法画散布图 plt.xlabel('1st') plt.ylabel('2nd') plt.title('Scatter Plot'); plt.savefig('H:/py4fi/images/ch07/mpl_13') plt.figure(figsize=(10, 6)) plt.scatter(y[:, 0], y[:, 1], marker='o') # 散布图 Using the plt.scatter() plt.xlabel('1st') plt.ylabel('2nd') plt.title('Scatter Plot'); plt.savefig('H:/py4fi/images/ch07/mpl_14') c = np.random.randint(0, 10, len(y)) plt.figure(figsize=(10, 6)) plt.scatter(y[:, 0], y[:, 1], c=c, # color = 0, 1, 2, ..., 9的随机数 第一个c是颜色的意思 cmap='coolwarm', # coolwarm颜色样式 marker='o') plt.colorbar() # 右边的color bar plt.xlabel('1st') plt.ylabel('2nd') plt.title('Scatter Plot'); plt.savefig('H:/py4fi/images/ch07/mpl_15') plt.figure(figsize=(10, 6)) plt.hist(y, label=['1st', '2nd'], bins=25) # 直方图 分成25个群 plt.legend(loc=0) plt.xlabel('value') plt.ylabel('frequency') plt.title('Histogram'); plt.savefig('H:/py4fi/images/ch07/mpl_16') plt.figure(figsize=(10, 6)) plt.hist(y, label=['1st', '2nd'], color=['b', 'g'], stacked=True, bins=20, alpha=0.5) # alpha透明度 直方图叠起来 plt.legend(loc=0) plt.xlabel('value') plt.ylabel('frequency') plt.title('Histogram'); plt.savefig('H:/py4fi/images/ch07/mpl_17') fig, ax = plt.subplots(figsize=(10, 6)) plt.boxplot(y) # 盒状图 plt.setp(ax, xticklabels=['1st', '2nd']) plt.xlabel('data set') plt.ylabel('value') plt.title('Boxplot'); plt.savefig('H:/py4fi/images/ch07/mpl_18') plt.setp? def func(x): return 0.5 * np.exp(x) + 1 a, b = 0.5, 1.5 # The integral limits. x = np.linspace(0, 2) # The x values to plot the function. 预设取50个点 y = func(x) Ix = np.linspace(a, b) Iy = func(Ix) verts = [(a, 0)] + list(zip(Ix, Iy)) + [(b, 0)] # zip()方法 Ix Iy verts len(verts) from matplotlib.patches import Polygon # polygon 多边形 fig, ax = plt.subplots(figsize=(10, 6)) plt.plot(x, y, 'b', linewidth=2) plt.ylim(bottom=0) from matplotlib.patches import Polygon fig, ax = plt.subplots(figsize=(10, 6)) poly = Polygon([(0.5, 0), (0.6, 0), (0.6, func(0.6)-1), (0.5, func(0.5)-1)]) ax.add_patch(poly) # 画多边形 from matplotlib.patches import Polygon fig, ax = plt.subplots(figsize=(10, 6)) poly = Polygon([(0.5, 0), (0.6, 0),(0.5, func(0.5)-1),(0.6,func(0.6)-1)]) ax.add_patch(poly) # 画多边形 from matplotlib.patches import Polygon fig, ax = plt.subplots(figsize=(10, 6)) plt.plot(x, y,'b', lw=0.2) plt.ylim(bottom=0) poly = Polygon(verts) ax.add_patch(poly) # 画多边形 from matplotlib.patches import Polygon fig, ax = plt.subplots(figsize=(10, 6)) plt.plot(x, y, 'b', linewidth=2) plt.ylim(bottom=0) poly = Polygon(verts, facecolor='0.7', edgecolor='0.5') # Plots the polygon (integral area) in gray ax.add_patch(poly) plt.text(0.5 * (a + b), 1, r'$\int_a^b f(x)\mathrm{d}x$', # Places the integral formula in the plot. horizontalalignment='center', fontsize=20) plt.figtext(0.9, 0.075, '$x$') plt.figtext(0.075, 0.9, '$f(x)$') ax.set_xticks((a, b)) # x轴上画线 ax.set_xticklabels(('$a$', '$b$')) ax.set_yticks([func(a), func(b)]) # y轴上画线 ax.set_yticklabels(('$f(a)$', '$f(b)$')); plt.savefig('H:/py4fi/images/ch07/mpl_19') Polygon? plt.text? plt.figtext? ###Output _____no_output_____ ###Markdown Static 3D Plotting ###Code strike = np.linspace(50, 150, 24) strike ttm = np.linspace(0.5, 2.5, 24) ttm strike, ttm = np.meshgrid(strike, ttm) # meshgrid撒点 strike ttm strike.shape np.meshgrid? strike[:2].round(1) iv = (strike - 100) ** 2 / (100 * strike) / ttm iv.shape iv[:5, :3] from mpl_toolkits.mplot3d import Axes3D fig = plt.figure(figsize=(10, 6)) ax = fig.gca(projection='3d') surf = ax.plot_surface(strike, ttm, iv, rstride=2, cstride=2,# row 轴步长2, column 轴步长2 cmap=plt.cm.coolwarm, linewidth=0.5, # cmpa 颜色 antialiased=True) # 抗锯齿 ax.set_xlabel('strike') ax.set_ylabel('time-to-maturity') ax.set_zlabel('implied volatility') fig.colorbar(surf, shrink=0.5, aspect=5); # colorbar的属性 plt.savefig('H:/py4fi/images/ch07/mpl_20') fig = plt.figure(figsize=(10, 6)) ax = fig.add_subplot(111, projection='3d') # fig, ax = plt.subplot() ax.view_init(30, 60) # 3D图形角度 ax.scatter(strike, ttm, iv, zdir='z', s=25, c='b', marker='^') ax.set_xlabel('strike') ax.set_ylabel('time-to-maturity') ax.set_zlabel('implied volatility'); plt.savefig('H:/py4fi/images/ch07/mpl_21') ###Output _____no_output_____ ###Markdown Interactive 2D Plotting* pip install cufflinks* pip install plotly* The section focuses on selected aspects only, in that Cufflinks is used exclusively to create interactive plots from data stored in DataFrame objects. Basic Plots ###Code import pandas as pd import cufflinks as cf import plotly.offline as plyo plyo.init_notebook_mode(connected=True) a = np.random.standard_normal((250, 5)).cumsum(axis=0) index = pd.date_range('2019-1-1', freq='B', periods=len(a)) df = pd.DataFrame(100 + 5 * a, columns=list('abcde'), index=index) df.head() plyo.iplot( df.iplot(asFigure=True), image='png', filename='ply_01' ) plyo.iplot( df[['a', 'b']].iplot(asFigure=True, theme='polar', title='A Time Series Plot', xTitle='date', yTitle='value', mode={'a': 'markers', 'b': 'lines+markers'}, symbol={'a': 'circle', 'b': 'diamond'}, size=3.5, colors={'a': 'blue', 'b': 'magenta'}, ), image='png', filename='ply_02' ) plyo.iplot( df.iplot(kind='hist', subplots=True, bins=15, asFigure=True), image='png', filename='ply_03' ) ###Output _____no_output_____ ###Markdown Financial Plotting ###Code # from fxcmpy import fxcmpy_candles_data_reader as cdr # data = cdr('EURUSD', start='2013-1-1', end='2017-12-31', period='D1', verbosity=True) # data.get_data().to_csv('../../source/fxcm_eur_usd_eod_data.csv') pd.read_csv? # data from FXCM Forex Capital Markets Ltd. raw = pd.read_csv('fxcm_eur_usd_eod_data.csv', index_col=0, parse_dates=True) raw.info() quotes = raw[['AskOpen', 'AskHigh', 'AskLow', 'AskClose']] quotes = quotes.iloc[-60:] # 最后60笔 按照编码来抓 quotes.tail() qf = cf.QuantFig( quotes, title='EUR/USD Exchange Rate', legend='top', name='EUR/USD' ) cf.QuantFig? plyo.iplot( qf.iplot(asFigure=True), image='png', filename='qf_01' ) qf.add_bollinger_bands(periods=15, boll_std=2) plyo.iplot(qf.iplot(asFigure=True), image='png', filename='qf_02') qf.add_rsi(periods=14, showbands=False) plyo.iplot( qf.iplot(asFigure=True), image='png', filename='qf_03' ) ###Output _____no_output_____
HeroesOfPymoli/HeroesOfPymoli_starter_code-Copy1.ipynb
###Markdown Note* Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps. ###Code # Dependencies and Setup import pandas as pd # File to Load (Remember to Change These) file_to_load = "Resources/purchase_data.csv" # Read Purchasing File and store into Pandas data frame purchase_data = pd.read_csv(file_to_load) purchase_data ###Output _____no_output_____
docs/load-wordvector.ipynb
###Markdown Word Vector This tutorial is available as an IPython notebook at [Malaya/example/wordvector](https://github.com/huseinzol05/Malaya/tree/master/example/wordvector). Pretrained word2vecYou can download Malaya pretrained without need to import malaya. word2vec from local news[size-256](https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/wordvectordownload) word2vec from wikipedia[size-256](https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/wordvectordownload) word2vec from local social media[size-256](https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/wordvectordownload) But If you don't know what to do with malaya word2vec, Malaya provided some useful functions for you! ###Code %%time import malaya %matplotlib inline ###Output /Users/huseinzolkepli/Documents/Malaya/malaya/preprocessing.py:259: FutureWarning: Possible nested set at position 2289 self.tok = re.compile(r'({})'.format('|'.join(pipeline))) ###Markdown Load malaya news word2vec```pythondef load_news(): """ Return malaya pretrained local malaysia news word2vec size 256. https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/wordvector Returns ------- vocabulary: indices dictionary for `vector`. vector: np.array, 2D. """``` ###Code vocab_news, embedded_news = malaya.wordvector.load_news() ###Output _____no_output_____ ###Markdown Load malaya wikipedia word2vec```pythondef load_wiki(): """ Return malaya pretrained wikipedia word2vec size 256. https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/wordvector Returns ------- vocabulary: indices dictionary for `vector`. vector: np.array, 2D. """``` ###Code vocab_wiki, embedded_wiki = malaya.wordvector.load_wiki() ###Output _____no_output_____ ###Markdown Load word vector interface```pythondef load(embed_matrix, dictionary): """ Return malaya.wordvector._wordvector object. Parameters ---------- embed_matrix: numpy array dictionary: dictionary Returns ------- _wordvector: malaya.wordvector._wordvector object """ ```1. `embed_matrix` must be a 2d,```pythonarray([[ 0.25 , -0.10816103, -0.19881412, ..., 0.40432587, 0.19388093, -0.07062137], [ 0.3231817 , -0.01318745, -0.17950962, ..., 0.25 , 0.08444146, -0.11705721], [ 0.29103908, -0.16274083, -0.20255531, ..., 0.25 , 0.06253044, -0.16404966], ..., [ 0.21346697, 0.12686132, -0.4029543 , ..., 0.43466234, 0.20910986, -0.32219803], [ 0.2372157 , 0.32420087, -0.28036436, ..., 0.2894639 , 0.20745888, -0.30600077], [ 0.27907744, 0.35755727, -0.34932107, ..., 0.37472805, 0.42045262, -0.21725406]], dtype=float32)```2. `dictionary`, a dictionary mapped `{'word': 0}`,```python{'mengembanfkan': 394623, 'dipujanya': 234554, 'comicolor': 182282, 'immaz': 538660, 'qabar': 585119, 'phidippus': 180802,}``` Load custom word vectorLike fast-text, example, I download from here, https://dl.fbaipublicfiles.com/fasttext/vectors-wiki/wiki.ms.vecWe need to parse the data to get `embed_matrix` and `dictionary`. ###Code import io import numpy as np fin = io.open('wiki.ms.vec', 'r', encoding='utf-8', newline='\n', errors='ignore') n, d = map(int, fin.readline().split()) data, vectors = {}, [] for no, line in enumerate(fin): tokens = line.rstrip().split(' ') data[tokens[0]] = no vectors.append(list(map(float, tokens[1:]))) vectors = np.array(vectors) fast_text = malaya.wordvector.load(vectors, data) word_vector_news = malaya.wordvector.load(embedded_news, vocab_news) word_vector_wiki = malaya.wordvector.load(embedded_wiki, vocab_wiki) ###Output WARNING:tensorflow:From /Users/huseinzolkepli/Documents/Malaya/malaya/wordvector.py:94: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead. WARNING:tensorflow:From /Users/huseinzolkepli/Documents/Malaya/malaya/wordvector.py:105: The name tf.InteractiveSession is deprecated. Please use tf.compat.v1.InteractiveSession instead. ###Markdown Check top-k similar semantics based on a word```pythondef n_closest( self, word: str, num_closest: int = 5, metric: str = 'cosine', return_similarity: bool = True,): """ find nearest words based on a word. Parameters ---------- word: str Eg, 'najib' num_closest: int, (default=5) number of words closest to the result. metric: str, (default='cosine') vector distance algorithm. return_similarity: bool, (default=True) if True, will return between 0-1 represents the distance. Returns ------- word_list: list of nearest words """``` ###Code word = 'anwar' print("Embedding layer: 8 closest words to: '%s' using malaya news word2vec"%(word)) print(word_vector_news.n_closest(word=word, num_closest=8, metric='cosine')) word = 'anwar' print("Embedding layer: 8 closest words to: '%s' using malaya wiki word2vec"%(word)) print(word_vector_wiki.n_closest(word=word, num_closest=8, metric='cosine')) ###Output Embedding layer: 8 closest words to: 'anwar' using malaya wiki word2vec [['rasulullah', 0.6918460130691528], ['jamal', 0.6604709029197693], ['noraniza', 0.65153968334198], ['khalid', 0.6450133323669434], ['mahathir', 0.6447468400001526], ['sukarno', 0.641593337059021], ['wahid', 0.6359774470329285], ['pekin', 0.6262176036834717]] ###Markdown Check batch top-k similar semantics based on a word```pythondef batch_n_closest( self, words: List[str], num_closest: int = 5, return_similarity: bool = False, soft: bool = True,): """ find nearest words based on a batch of words using Tensorflow. Parameters ---------- words: list Eg, ['najib','anwar'] num_closest: int, (default=5) number of words closest to the result. return_similarity: bool, (default=True) if True, will return between 0-1 represents the distance. soft: bool, (default=True) if True, a word not in the dictionary will be replaced with nearest JaroWinkler ratio. if False, it will throw an exception if a word not in the dictionary. Returns ------- word_list: list of nearest words """``` ###Code words = ['anwar', 'mahathir'] word_vector_news.batch_n_closest(words, num_closest=8, return_similarity=False) ###Output _____no_output_____ ###Markdown What happen if a word not in the dictionary?You can set parameter `soft` to `True` or `False`. Default is `True`.if `True`, a word not in the dictionary will be replaced with nearest JaroWrinkler ratio.if `False`, it will throw an exception if a word not in the dictionary. ###Code words = ['anwar', 'mahathir','husein-comel'] word_vector_wiki.batch_n_closest(words, num_closest=8, return_similarity=False,soft=False) words = ['anwar', 'mahathir','husein-comel'] word_vector_wiki.batch_n_closest(words, num_closest=8, return_similarity=False,soft=True) ###Output _____no_output_____ ###Markdown Word2vec calculatorYou can put any equation you wanted.```pythondef calculator( self, equation: str, num_closest: int = 5, metric: str = 'cosine', return_similarity: bool = True,): """ calculator parser for word2vec. Parameters ---------- equation: str Eg, '(mahathir + najib) - rosmah' num_closest: int, (default=5) number of words closest to the result. metric: str, (default='cosine') vector distance algorithm. return_similarity: bool, (default=True) if True, will return between 0-1 represents the distance. Returns ------- word_list: list of nearest words """``` ###Code word_vector_news.calculator('anwar + amerika + mahathir', num_closest=8, metric='cosine', return_similarity=False) word_vector_wiki.calculator('anwar + amerika + mahathir', num_closest=8, metric='cosine', return_similarity=False) ###Output _____no_output_____ ###Markdown Visualize scatter-plot```pythondef scatter_plot( self, labels, centre: str = None, figsize: Tuple[int, int] = (7, 7), plus_minus: int = 25, handoff: float = 5e-5,): """ plot a scatter plot based on output from calculator / n_closest / analogy. Parameters ---------- labels : list output from calculator / n_closest / analogy centre : str, (default=None) centre label, if a str, it will annotate in a red color. figsize : tuple, (default=(7, 7)) figure size for plot. Returns ------- tsne: np.array, 2D. """``` ###Code word = 'anwar' result = word_vector_news.n_closest(word=word, num_closest=8, metric='cosine') data = word_vector_news.scatter_plot(result, centre = word) word = 'anwar' result = word_vector_wiki.n_closest(word=word, num_closest=8, metric='cosine') data = word_vector_wiki.scatter_plot(result, centre = word) ###Output _____no_output_____ ###Markdown Visualize tree-plot```pythondef tree_plot( self, labels, figsize: Tuple[int, int] = (7, 7), annotate: bool = True): """ plot a tree plot based on output from calculator / n_closest / analogy. Parameters ---------- labels : list output from calculator / n_closest / analogy. visualize : bool if True, it will render plt.show, else return data. figsize : tuple, (default=(7, 7)) figure size for plot. Returns ------- embed: np.array, 2D. labelled: labels for X / Y axis. """``` ###Code word = 'anwar' result = word_vector_news.n_closest(word=word, num_closest=8, metric='cosine') data = word_vector_news.tree_plot(result) word = 'anwar' result = word_vector_wiki.n_closest(word=word, num_closest=8, metric='cosine') data = word_vector_wiki.tree_plot(result) ###Output _____no_output_____ ###Markdown Visualize social-network```pythondef network( self, word, num_closest = 8, depth = 4, min_distance = 0.5, iteration = 300, figsize = (15, 15), node_color = '72bbd0', node_factor = 50,): """ plot a social network based on word given Parameters ---------- word : str centre of social network. num_closest: int, (default=8) number of words closest to the node. depth: int, (default=4) depth of social network. More deeper more expensive to calculate, big^O(num_closest ** depth). min_distance: float, (default=0.5) minimum distance among nodes. Increase the value to increase the distance among nodes. iteration: int, (default=300) number of loops to train the social network to fit min_distace. figsize: tuple, (default=(15, 15)) figure size for plot. node_color: str, (default='72bbd0') color for nodes. node_factor: int, (default=10) size factor for depth nodes. Increase this value will increase nodes sizes based on depth. ``` ###Code g = word_vector_news.network('mahathir', figsize = (10, 10), node_factor = 50, depth = 3) g = word_vector_wiki.network('mahathir', figsize = (10, 10), node_factor = 50, depth = 3) ###Output _____no_output_____ ###Markdown Get embedding from a word```pythondef get_vector_by_name( self, word: str, soft: bool = False, topn_soft: int = 5): """ get vector based on string. Parameters ---------- word: str soft: bool, (default=True) if True, a word not in the dictionary will be replaced with nearest JaroWinkler ratio. if False, it will throw an exception if a word not in the dictionary. topn_soft: int, (default=5) if word not found in dictionary, will returned `topn_soft` size of similar size using jarowinkler. Returns ------- vector: np.array, 1D """``` ###Code word_vector_wiki.get_vector_by_name('najib').shape ###Output _____no_output_____ ###Markdown If a word not found in the vocabulary, it will throw an exception with top-5 nearest words ###Code word_vector_wiki.get_vector_by_name('husein-comel') ###Output _____no_output_____ ###Markdown Word Vector This tutorial is available as an IPython notebook at [Malaya/example/wordvector](https://github.com/huseinzol05/Malaya/tree/master/example/wordvector). Pretrained word2vecYou can download Malaya pretrained without need to import malaya. word2vec from local news[size-256](https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/wordvectordownload) word2vec from wikipedia[size-256](https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/wordvectordownload) word2vec from local social media[size-256](https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/wordvectordownload) But If you don't know what to do with malaya word2vec, Malaya provided some useful functions for you! ###Code %%time import malaya %matplotlib inline ###Output CPU times: user 4.21 s, sys: 793 ms, total: 5 s Wall time: 4.11 s ###Markdown Load malaya news word2vec ###Code vocab_news, embedded_news = malaya.wordvector.load_news() ###Output _____no_output_____ ###Markdown Load malaya wikipedia word2vec ###Code vocab_wiki, embedded_wiki = malaya.wordvector.load_wiki() ###Output _____no_output_____ ###Markdown Load word vector interface```pythondef load(embed_matrix, dictionary): """ Return malaya.wordvector._wordvector object. Parameters ---------- embed_matrix: numpy array dictionary: dictionary Returns ------- _wordvector: malaya.wordvector._wordvector object """ ```1. `embed_matrix` must be a 2d,```pythonarray([[ 0.25 , -0.10816103, -0.19881412, ..., 0.40432587, 0.19388093, -0.07062137], [ 0.3231817 , -0.01318745, -0.17950962, ..., 0.25 , 0.08444146, -0.11705721], [ 0.29103908, -0.16274083, -0.20255531, ..., 0.25 , 0.06253044, -0.16404966], ..., [ 0.21346697, 0.12686132, -0.4029543 , ..., 0.43466234, 0.20910986, -0.32219803], [ 0.2372157 , 0.32420087, -0.28036436, ..., 0.2894639 , 0.20745888, -0.30600077], [ 0.27907744, 0.35755727, -0.34932107, ..., 0.37472805, 0.42045262, -0.21725406]], dtype=float32)```2. `dictionary`, a dictionary mapped `{'word': 0}`,```python{'mengembanfkan': 394623, 'dipujanya': 234554, 'comicolor': 182282, 'immaz': 538660, 'qabar': 585119, 'phidippus': 180802,}``` Load custom word vectorLike fast-text, example, I download from here, https://dl.fbaipublicfiles.com/fasttext/vectors-wiki/wiki.ms.vecWe need to parse the data to get `embed_matrix` and `dictionary`. ###Code import io import numpy as np fin = io.open('wiki.ms.vec', 'r', encoding='utf-8', newline='\n', errors='ignore') n, d = map(int, fin.readline().split()) data, vectors = {}, [] for no, line in enumerate(fin): tokens = line.rstrip().split(' ') data[tokens[0]] = no vectors.append(list(map(float, tokens[1:]))) vectors = np.array(vectors) fast_text = malaya.wordvector.load(vectors, data) word_vector_news = malaya.wordvector.load(embedded_news, vocab_news) word_vector_wiki = malaya.wordvector.load(embedded_wiki, vocab_wiki) ###Output WARNING:tensorflow:From /Users/huseinzolkepli/Documents/Malaya/malaya/wordvector.py:94: The name tf.placeholder is deprecated. Please use tf.compat.v1.placeholder instead. WARNING:tensorflow:From /Users/huseinzolkepli/Documents/Malaya/malaya/wordvector.py:105: The name tf.InteractiveSession is deprecated. Please use tf.compat.v1.InteractiveSession instead. ###Markdown Check top-k similar semantics based on a word ###Code word = 'anwar' print("Embedding layer: 8 closest words to: '%s' using malaya news word2vec"%(word)) print(word_vector_news.n_closest(word=word, num_closest=8, metric='cosine')) word = 'anwar' print("Embedding layer: 8 closest words to: '%s' using malaya wiki word2vec"%(word)) print(word_vector_wiki.n_closest(word=word, num_closest=8, metric='cosine')) ###Output Embedding layer: 8 closest words to: 'anwar' using malaya wiki word2vec [['rasulullah', 0.6918460130691528], ['jamal', 0.6604709029197693], ['noraniza', 0.65153968334198], ['khalid', 0.6450133323669434], ['mahathir', 0.6447468400001526], ['sukarno', 0.641593337059021], ['wahid', 0.6359774470329285], ['pekin', 0.6262176036834717]] ###Markdown Check batch top-k similar semantics based on a word ###Code words = ['anwar', 'mahathir'] word_vector_news.batch_n_closest(words, num_closest=8, return_similarity=False) ###Output _____no_output_____ ###Markdown What happen if a word not in the dictionary?You can set parameter `soft` to `True` or `False`. Default is `True`.if `True`, a word not in the dictionary will be replaced with nearest JaroWrinkler ratio.if `False`, it will throw an exception if a word not in the dictionary. ###Code words = ['anwar', 'mahathir','husein-comel'] word_vector_wiki.batch_n_closest(words, num_closest=8, return_similarity=False,soft=False) words = ['anwar', 'mahathir','husein-comel'] word_vector_wiki.batch_n_closest(words, num_closest=8, return_similarity=False,soft=True) ###Output _____no_output_____ ###Markdown Word2vec calculatorYou can put any equation you wanted. ###Code word_vector_news.calculator('anwar + amerika + mahathir', num_closest=8, metric='cosine', return_similarity=False) word_vector_wiki.calculator('anwar + amerika + mahathir', num_closest=8, metric='cosine', return_similarity=False) ###Output _____no_output_____ ###Markdown Visualize scatter-plot ###Code word = 'anwar' result = word_vector_news.n_closest(word=word, num_closest=8, metric='cosine') data = word_vector_news.scatter_plot(result, centre = word) word = 'anwar' result = word_vector_wiki.n_closest(word=word, num_closest=8, metric='cosine') data = word_vector_wiki.scatter_plot(result, centre = word) ###Output _____no_output_____ ###Markdown Visualize tree-plot ###Code word = 'anwar' result = word_vector_news.n_closest(word=word, num_closest=8, metric='cosine') data = word_vector_news.tree_plot(result) word = 'anwar' result = word_vector_wiki.n_closest(word=word, num_closest=8, metric='cosine') data = word_vector_wiki.tree_plot(result) ###Output _____no_output_____ ###Markdown Visualize social-network```pythondef network( self, word, num_closest = 8, depth = 4, min_distance = 0.5, iteration = 300, figsize = (15, 15), node_color = '72bbd0', node_factor = 50,): """ plot a social network based on word given Parameters ---------- word : str centre of social network. num_closest: int, (default=8) number of words closest to the node. depth: int, (default=4) depth of social network. More deeper more expensive to calculate, big^O(num_closest ** depth). min_distance: float, (default=0.5) minimum distance among nodes. Increase the value to increase the distance among nodes. iteration: int, (default=300) number of loops to train the social network to fit min_distace. figsize: tuple, (default=(15, 15)) figure size for plot. node_color: str, (default='72bbd0') color for nodes. node_factor: int, (default=10) size factor for depth nodes. Increase this value will increase nodes sizes based on depth. ``` ###Code g = word_vector_news.network('mahathir', figsize = (10, 10), node_factor = 50, depth = 3) g = word_vector_wiki.network('mahathir', figsize = (10, 10), node_factor = 50, depth = 3) ###Output _____no_output_____ ###Markdown Get embedding from a word ###Code word_vector_wiki.get_vector_by_name('najib').shape ###Output _____no_output_____ ###Markdown If a word not found in the vocabulary, it will throw an exception with top-5 nearest words ###Code word_vector_wiki.get_vector_by_name('husein-comel') ###Output _____no_output_____
Data_Science/Regressao/Linear/Regressao_Linear_Stats.ipynb
###Markdown Regressão Linear - Stats Model * Regressão linear utilizando a biblioteca Stats Model do Python ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt dados = pd.read_csv('Regresao_Linear.csv') dados.head() X = dados['X'].values Y = dados['Y'].values plt.scatter(X,Y,label='Y(X)'); plt.xlabel('X'); plt.ylabel('Y'); plt.legend(); ###Output _____no_output_____ ###Markdown ![image.png](attachment:image.png) ###Code import statsmodels.api as sm modelo = sm.OLS(Y, X) resultado = modelo.fit() print(resultado.summary()) ###Output OLS Regression Results ======================================================================================= Dep. Variable: y R-squared (uncentered): 0.756 Model: OLS Adj. R-squared (uncentered): 0.754 Method: Least Squares F-statistic: 307.0 Date: Thu, 29 Oct 2020 Prob (F-statistic): 4.23e-32 Time: 17:27:54 Log-Likelihood: -322.75 No. Observations: 100 AIC: 647.5 Df Residuals: 99 BIC: 650.1 Df Model: 1 Covariance Type: nonrobust ============================================================================== coef std err t P>|t| [0.025 0.975] ------------------------------------------------------------------------------ x1 1.8563 0.106 17.520 0.000 1.646 2.067 ============================================================================== Omnibus: 2.224 Durbin-Watson: 0.394 Prob(Omnibus): 0.329 Jarque-Bera (JB): 1.543 Skew: -0.042 Prob(JB): 0.462 Kurtosis: 2.397 Cond. No. 1.00 ============================================================================== Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. ###Markdown Modelo precisa de um intercepto ###Code X = sm.add_constant(X) modelo2 = sm.OLS(Y, X) resultado2 = modelo2.fit() print(resultado2.summary()) coef_linear, coef_angular = resultado2.params reta = coef_angular*X+coef_linear X = X[:,1] reta = reta[:,1] plt.scatter(X,Y,label='Y(X)'); plt.plot(X,reta,label='Ajuste linear',color='red'); plt.xlabel('X'); plt.ylabel('Y'); plt.legend(); from sklearn.metrics import mean_absolute_error,mean_squared_error MAE = mean_absolute_error(Y,reta) RMSE = np.sqrt(mean_squared_error(Y,reta)) print("MAE = {:0.2f}".format(MAE)) print("RMSE = {:0.2f}".format(RMSE)) ###Output MAE = 1.89 RMSE = 2.43
doc/jupyter_execute/examples/models/disruption_budgets/pdbs_example.ipynb
###Markdown Defining Disruption Budgets for Seldon Deployments Prerequisites * A kubernetes cluster with kubectl configured* pygmentize Setup Seldon CoreUse the setup notebook to [Setup Cluster](https://docs.seldon.io/projects/seldon-core/en/latest/examples/seldon_core_setup.htmlSetup-Cluster) with [Ambassador Ingress](https://docs.seldon.io/projects/seldon-core/en/latest/examples/seldon_core_setup.htmlAmbassador) and [Install Seldon Core](https://docs.seldon.io/projects/seldon-core/en/latest/examples/seldon_core_setup.htmlInstall-Seldon-Core). Instructions [also online](https://docs.seldon.io/projects/seldon-core/en/latest/examples/seldon_core_setup.html). ###Code !kubectl create namespace seldon !kubectl config set-context $(kubectl config current-context) --namespace=seldon ###Output _____no_output_____ ###Markdown Create model with Pod Disruption BudgetTo create a model with a Pod Disruption Budget, it is first important to understand how you would like your application to respond to [voluntary disruptions](https://kubernetes.io/docs/concepts/workloads/pods/disruptions/voluntary-and-involuntary-disruptions). Depending on the type of disruption budgeting your application needs, you will either define either of the following:* `minAvailable` which is a description of the number of pods from that set that must still be available after the eviction, even in the absence of the evicted pod. `minAvailable` can be either an absolute number or a percentage.* `maxUnavailable` which is a description of the number of pods from that set that can be unavailable after the eviction. It can be either an absolute number or a percentage.The full SeldonDeployment spec is shown below. ###Code !pygmentize model_with_pdb.yaml !kubectl apply -f model_with_pdb.yaml !kubectl rollout status deploy/$(kubectl get deploy -l seldon-deployment-id=seldon-model -o jsonpath='{.items[0].metadata.name}') ###Output _____no_output_____ ###Markdown Validate Disruption Budget Configuration ###Code import json def getPdbConfig(): dp = !kubectl get pdb seldon-model-example-0-classifier -o json dp = json.loads("".join(dp)) return dp["spec"]["maxUnavailable"] assert getPdbConfig() == 2 !kubectl get pods,deployments,pdb ###Output _____no_output_____ ###Markdown Update Disruption Budget and Validate ChangeNext, we'll update the maximum number of unavailable pods and check that the PDB is properly updated to match. ###Code !pygmentize model_with_patched_pdb.yaml !kubectl apply -f model_with_patched_pdb.yaml !kubectl rollout status deploy/$(kubectl get deploy -l seldon-deployment-id=seldon-model -o jsonpath='{.items[0].metadata.name}') assert getPdbConfig() == 1 ###Output _____no_output_____ ###Markdown Clean Up ###Code !kubectl get pods,deployments,pdb !kubectl delete -f model_with_patched_pdb.yaml ###Output _____no_output_____
demos/Optimizing almost-Clifford circuits.ipynb
###Markdown Optimizing almost-Clifford circuitsIn this Notebook we will produce some comparisons for how the PyZX Clifford simplification procedure fares in comparison to more naive approaches. First we import all the necessary libraries ###Code import sys; sys.path.append('..') import random, math, os import pyzx as zx from fractions import Fraction from functools import reduce import numpy as np ###Output _____no_output_____ ###Markdown Now we define some useful functions for generating our data and optimizing circuits ###Code def generate_clifford_circuit(qubits, depth, p_cnot=0.3, p_t=0): p_s = 0.5*(1.0-p_cnot-p_t) p_had = 0.5*(1.0-p_cnot-p_t) c = zx.Circuit(qubits) for _ in range(depth): r = random.random() if r > 1-p_had: c.add_gate("HAD",random.randrange(qubits)) elif r > 1-p_had-p_s: c.add_gate("S",random.randrange(qubits)) elif r > 1-p_had-p_s-p_t: c.add_gate("T",random.randrange(qubits)) else: tgt = random.randrange(qubits) while True: ctrl = random.randrange(qubits) if ctrl!=tgt: break c.add_gate("CNOT",tgt,ctrl) return c ###Output _____no_output_____ ###Markdown For the naive approach, we introduce a function that splits the circuit when a T gate is encountered and a function for merging circuits back together. ###Code def split_circ_on_T(c): """Produces a list of circuits whose odd elements are T-free circuits and whose even elements are circuits consisting only of T gates. Note it expects the circuit to only have basic gates (i.e. at most 1 control).""" q = c.qubits # keep lists of T-free and T-only circuits cs0 = [zx.Circuit(q)] cs1 = [zx.Circuit(q)] after = zx.Circuit(q) blocked = set() blocked2 = set() for g in c.gates: if g.name == 'T': if g.target in blocked2: cs0.append(after) after = zx.Circuit(q) cs1.append(zx.Circuit(q)) blocked.clear() blocked2.clear() cs1[-1].gates.append(g) blocked.add(g.target) else: cs1[-1].gates.append(g) blocked.add(g.target) else: if g.name in ('CNOT','HAD') and g.target in blocked: after.gates.append(g) blocked2.add(g.target) if g.name == 'CNOT': blocked.add(g.control) elif g.target in blocked2 or (g.name == 'CNOT' and g.control in blocked2): after.gates.append(g) if g.name == 'CNOT': blocked.add(g.target) blocked2.add(g.target) else: cs0[-1].gates.append(g) cs = [] for i,c0 in enumerate(cs0): cs.append(c0) cs.append(cs1[i]) cs.append(after) return cs def merge_circ(cs): c0 = zx.Circuit(cs[0].qubits) for c in cs: c0.add_circuit(c) return c0 ###Output _____no_output_____ ###Markdown Testing circuit generation and split/merge code. ###Code c = generate_clifford_circuit(6,100,p_t=0.1) zx.draw(c) cs = split_circ_on_T(c) print(len(cs)) #zx.d3.draw(cs[4]) c2 = merge_circ(cs) print(zx.compare_tensors(c,c2)) g = c2.to_graph(False) zx.draw(g) def opt_circuit(c): g = c.to_graph() zx.simplify.interior_clifford_simp(g,quiet=True) c2 = zx.extract_circuit(g) return zx.optimize.basic_optimization(c2.to_basic_gates()).to_basic_gates() def part_opt_circuit(c): cs = split_circ_on_T(c) for i in range(len(cs)): if i % 2 == 0: cs[i] = opt_circuit(cs[i]) return zx.optimize.basic_optimization(merge_circ(cs)).to_basic_gates() def generate_dataset(qubits,depth,cnot_prob,t_prob,reps=50,two_q=False): """Generates a set of `reps` circuits consisting of `layers` amount of Clifford circuits, interspersed with T gates that appear with probability `t_prob` on every qubit. Each Clifford layer has `depth` amount of gates.""" stats = [] count = [0,0,0,0] count2 = [0,0,0,0] for _ in range(reps): c = generate_clifford_circuit(qubits,depth,p_cnot=cnot_prob,p_t=t_prob) c0 = c.copy() c0 = zx.optimize.basic_optimization(c0).to_basic_gates() c1 = part_opt_circuit(c) c2 = opt_circuit(c) count[0] += len(c.gates) count[1] += len(c0.gates) count[2] += len(c1.gates) count[3] += len(c2.gates) count2[0] += c.twoqubitcount() count2[1] += c0.twoqubitcount() count2[2] += c1.twoqubitcount() count2[3] += c2.twoqubitcount() for i in range(4): count[i] /= reps count2[i] /= reps return (count, count2) ###Output _____no_output_____ ###Markdown Now we generate some data comparing the different optimization methods when we vary the gate count per Clifford block ###Code random.seed(42) xs = [0.015*i for i in range(11)] yys = [[],[],[],[]] zzs = [[],[],[],[]] qubits = 8 reps = 20 for t_prob in xs: print(t_prob, end=';') depth = 800 ys,zs = generate_dataset(qubits,depth,cnot_prob=0.3,t_prob=t_prob,reps=reps) for i,y in enumerate(ys): yys[i].append(y) for i,z in enumerate(zs): zzs[i].append(z) ###Output 0.0;0.015;0.03;0.045;0.06;0.075;0.09;0.105;0.12;0.135;0.15; ###Markdown And now we plot the resulting data ###Code %matplotlib inline import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression plt.style.use('seaborn-whitegrid') colors = ['#53257f', '#bc1b73', '#f8534a', '#ffa600'] names = ['original','original+','naive', 'pyzx'] styles = ['-','--','-.',':'] fig = plt.figure() ax1 = fig.add_subplot(111) for i, ys in enumerate(yys): ax1.plot(xs, ys, c=colors[i], marker="o",markersize=3, linestyle=styles[i], label=names[i]) ax1.set_ylabel("total gate count") ax1.set_xlabel("$p_t$") plt.legend(loc='upper left'); plt.grid(color='#EEEEEE') plt.show() fig = plt.figure() ax1 = fig.add_subplot(111) for i, zs in enumerate(zzs): ax1.plot(xs, zs, c=colors[i], marker="o",markersize=3, linestyle=styles[i], label=names[i]) ax1.set_ylabel("2-qubit gate count") ax1.set_xlabel("$p_t$") plt.legend(loc='upper left'); plt.grid(color='#EEEEEE') plt.show() ###Output _____no_output_____ ###Markdown As can be seen, both of the extraction methods, the one that only acts on the block of Cliffords, and the full extraction, saturate in the amount of 2-qubit gates, but the full extraction saturates at a much lower total gate count, showing that it indeed performs better than naive Clifford optimization. ###Code fig.savefig(r'/home/aleks/git/papers/cliff-simp/graphics/gatecount-2q.pdf',bbox_inches='tight') ###Output _____no_output_____
pittsburgh-bridges-data-set-analysis/models-analyses/cross_validation_analyses/Data Space Report (Official) - Two-Dimensional Analyses-v1.0.1.ipynb
###Markdown Data Space Report Pittsburgh Bridges Data Set Andy Warhol Bridge - Pittsburgh.Report created by Student Francesco Maria Chiarlo s253666, for A.A 2019/2020.**Abstract**:The aim of this report is to evaluate the effectiveness of distinct, different statistical learning approaches, in particular focusing on their characteristics as well as on their advantages and backwards when applied onto a relatively small dataset as the one employed within this report, that is Pittsburgh Bridgesdataset.**Key words**:Statistical Learning, Machine Learning, Bridge Design. TOC:* [Imports Section](imports-section)* [Dataset's Attributes Description](attributes-description)* [Data Preparation and Investigation](data-preparation)* [Learning Models](learning-models)* [Improvements and Conclusions](improvements-and-conclusions)* [References](references) Imports Section ###Code # =========================================================================== # # STANDARD IMPORTS # =========================================================================== # print(__doc__) from pprint import pprint import warnings warnings.filterwarnings('ignore') import copy import os import sys import time import pandas as pd import numpy as np %matplotlib inline # Matplotlib pyplot provides plotting API import matplotlib as mpl from matplotlib import pyplot as plt import chart_studio.plotly.plotly as py import seaborn as sns; sns.set() # =========================================================================== # # UTILS IMPORTS (Done by myself) # =========================================================================== # from utils.display_utils import * from utils.preprocessing_utils import * from utils.training_utils import * from utils.training_utils_v2 import fit_by_n_components, fit_all_by_n_components from itertools import islice # =========================================================================== # # sklearn IMPORT # =========================================================================== # from sklearn.decomposition import PCA, KernelPCA # Import scikit-learn classes: models (Estimators). from sklearn.naive_bayes import GaussianNB # Non-parametric Generative Model from sklearn.naive_bayes import MultinomialNB # Non-parametric Generative Model from sklearn.linear_model import LinearRegression # Parametric Linear Discriminative Model from sklearn.linear_model import LogisticRegression # Parametric Linear Discriminative Model from sklearn.linear_model import Ridge, Lasso from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC # Parametric Linear Discriminative "Support Vector Classifier" from sklearn.tree import DecisionTreeClassifier # Non-parametric Model from sklearn.ensemble import BaggingClassifier # Non-parametric Model (Meta-Estimator, that is, an Ensemble Method) from sklearn.ensemble import RandomForestClassifier # Non-parametric Model (Meta-Estimator, that is, an Ensemble Method) ###Output _____no_output_____ ###Markdown Dataset's Attributes Description The analyses that I aim at accomplishing while using as means the methods or approaches provided by both Statistical Learning and Machine Learning fields, concern the dataset Pittsburgh Bridges, and what follows is a overview and brief description of the main characteristics, as well as, basic information about this precise dataset.The Pittsburgh Bridges dataset is a dataset available from the web site called mainly *"UCI Machine Learing Repository"*, which is one of the well known web site that let a large amount of different datasets, from different domains or fields, to be used for machine-learning research and which have been cited in peer-reviewed academic journals.In particular, the dataset I'm going to treat and analyze, which is Pittsburgh Bridges dataset, has been made freely available from the Western Pennsylvania Regional Data Center (WPRDC), which is a project led by the University Center of Social and Urban Research (UCSUR) at the University of Pittsburgh ("University") in collaboration with City of Pittsburgh and The County of Allegheny in Pennsylvania. The WPRDC and the WPRDC Project is supported by a grant from the Richard King Mellon Foundation.In order to be more precise, from the official and dedicated web page, within UCI Machine Learning cite, Pittsburgh Bridges dataset is a dataset that has been created after the works of some co-authors which are:- Yoram Reich & Steven J. Fenves from Department of Civil Engineering and Engineering Design Research Center Carnegie Mellon University Pittsburgh, PA 15213The Pittsburgh Bridges dataset is made of up to 108 distinct observations and each of that data sample is made of 12 attributes or features where some of them are considered to be continuous properties and other to be categorical or nominal properties. Those variables are the following:- **RIVER**: which is a nominal type variable that can assume the subsequent possible discrete values which are: A, M, O. Where A stands for Allegheny river, while M stands for Monongahela river and lastly O stands for Ohio river.- **LOCATION**: which represents a nominal type variable too, and assume a positive integer value from 1 up to 52 used as categorical attribute.- **ERECTED**: which might be either a numerical or categorical variable, depending on the fact that we want to aggregate a bunch of value under a categorical quantity. What this means is that, basically such attribute is made of date starting from 1818 up to 1986, but we may imagine to aggregate somehow these data within a given category among those suggested, that are CRAFTS, EMERGENING, MATURE, MODERN.- **PURPOSE**: which is a categorical attribute and represents the reason why a particular bridge has been built, which means that this attribute represents what kind of vehicle can cross the bridge or if the bridge has been made just for people. For this reasons the allowd values for this attributes are the following: WALK, AQUEDUCT, RR, HIGHWAY. Three out of four are self explained values, while RR value that might be tricky at first glance, it just stands for railroad.- **LENGTH**: which represents the bridge's length, is a numerical attribute if we just look at the real number values that go from 804 up to 4558, but we can again decide to handle or arrange such values so that they can be grouped into range of values mapped into SHORT, MEDIUM, LONG so that we can refer to a bridge's length by means of these new categorical values.- **LANES**: which is a categorical variable which is represented by numerical values, that are 1, 2, 4, 6 which indicate the number of distinct lanes that a bridge in Pittsburgh city may have. The larger the value the wider the bridge.- **CLEAR-G**: specifies whether a vertical navigation clearance requirement was enforced in the design or not.- **T-OR-D**: which is a nominal attribute, in other words, a categorical attribute that can assume THROUGH, DECK values. In order to be more precise, this samples attribute deals with structural elements of a bridge. In fact, a deck is the surface of a bridge and this structural element, of bridge's superstructure, may be constructed of concrete, steel, open grating, or wood. On the other hand, a through arch bridge, also known as a half-through arch bridge or a through-type arch bridge, is a bridge that is made from materials such as steel or reinforced concrete, in which the base of an arch structure is below the deck but the top rises above it.- **MATERIAL**: which is a categorical or nominal variable and is used to describe the bridge telling which is the main or core material used to build it. This attribute can assume one of the possible, following values which are: WOOD, IRON, STEEL. Furthermore, we expect to see somehow a bit of correlation between the values assumed by the pairs represented by T-OR-D and MATERIAL columns, when looking just to them.- **SPAN**: which is a categorical or nominal value and has been recorded by means of three possible values for each sample, that are SHORT, MEDIUM, LONG. This attribute, within the field of Structural Engineering, is the distance between two intermediate supports for a structure, e.g. a beam or a bridge. A span can be closed by a solid beam or by a rope. The first kind is used for bridges, the second one for power lines, overhead telecommunication lines, some type of antennas or for aerial tramways. - **REL-L**: which is a categorical or nominal variable and stands for relative length of the main span of the bridge to the total crossing length, it can assume three possible values that are S, S-F, F.- Lastly, **TYPE** which indicates as a categorical or nominal attributes what type of bridge each record represents, among the possible 6 distinct classes or types of bridges that are: WOOD, SUSPEN, SIMPLE-T, ARCH, CANTILEV, CONT-T. Data Preparation and Investigation The aim of this chapter is to get in the data, that are available within Pittsburgh Bridge Dataset, in order to investigate a bit more in to detail and generally speaking deeper the main or high level statistics quantities, such as mean, median, standard deviation of each attribute, as well as displaying somehow data distribution for each attribute by means of histogram plots. This phase allows or enables us to decide which should be the best feature to be selected as the target variable, in other word the attribute that will represent the dependent variable with respect to the remaining attributes that instead will play the role of predictors and independent variables, as well.In order to investigate and explore our data we make usage of *Pandas library*. We recall mainly that, in computer programming, Pandas is a software library written for the Python programming language* for *data manipulation and analysis*. In particular, it offers data structures and operations for manipulating numerical tables and time series. It is free software and a interesting and funny things about such tool is that the name is derived from the term "panel data", an econometrics term for data sets that include observations over multiple time periods for the same individuals.We also note that as the analysis proceeds we will introduce other computer programming as well as programming libraries that allow or enable us to fulfill our goals. Initially, once I have downloaded from the provided web page the dataset with the data samples about Pittsburgh Bridge we load the data by means of functions available using python library's pandas. We notice that the overall set of data points is large up to 108 records or rows, which are sorted by Erected attributes, so this means that are sorted in decreasing order from the oldest bridge which has been built in 1818 up to the most modern bridge that has been erected in 1986. Then we display the first 5 rows to get an overview and have a first idea about what is inside the overall dataset, and the result we obtain by means of head() function applied onto the fetched dataset is equals to what follows: ###Code # =========================================================================== # # READ INPUT DATASET # =========================================================================== # dataset_path = 'C:\\Users\\Francesco\Documents\\datasets\\pittsburgh_dataset' dataset_name = 'bridges.data.csv' # column_names = ['IDENTIF', 'RIVER', 'LOCATION', 'ERECTED', 'PURPOSE', 'LENGTH', 'LANES', 'CLEAR-G', 'T-OR-D', 'MATERIAL', 'SPAN', 'REL-L', 'TYPE'] column_names = ['RIVER', 'LOCATION', 'ERECTED', 'PURPOSE', 'LENGTH', 'LANES', 'CLEAR-G', 'T-OR-D', 'MATERIAL', 'SPAN', 'REL-L', 'TYPE'] dataset = pd.read_csv(os.path.join(dataset_path, dataset_name), names=column_names, index_col=0) # SHOW SOME STANDARD DATASET INFOS # --------------------------------------------------------------------------- # print('Dataset shape: {}'.format(dataset.shape)) print(dataset.info()) # SHOWING FIRSTS N-ROWS AS THEY ARE STORED WITHIN DATASET # --------------------------------------------------------------------------- # dataset.head(5) ###Output _____no_output_____ ###Markdown What we can notice from just the table above is that there are some attributes that are characterized by a special character that is '?' which stands for a missing value, so by chance there was not possibility to get the value for this attribute, such as for LENGTH and SPAN attributes. Analyzing in more details the dataset we discover that there are up to 6 different attributes, in the majority attributes with categorical or nominal nature such as CLEAR-G, T-OR-D, MATERIAL, SPAN, REL-L, and TYPE that contain at list one row characterized by the fact that one of its attributes is set to assuming '?' value that stands, as we already know for a missing value.Here, we can follow different strategies that depends onto the level of complexity as well as accuracy we want to obtain or achieve for models we are going to fit to the data after having correctly pre-processed them, speaking about what we could do with missing values. In fact one can follow the simplest way and can decide to simply discard those rows that contain at least one attribute with a missing value represented by the '?' symbol. Otherwise one may alos decide to follow a different strategy that aims at keeping also those rows that have some missing values by means of some kind of technique that allows to establish a potential substituting value for the missing one.So, in this setting, that is our analyses, we start by just leaving out those rows that at least contain one attribute that has a missing value, this choice leads us to reduce the size of our dataset from 108 records to 70 remaining samples, with a drop of 38 data examples, which may affect the final results, since we left out more or less the 46\% of the data because of missing values. ###Code # INVESTIGATING DATASET IN ORDER TO DETECT NULL VALUES # --------------------------------------------------------------------------- # print('Before preprocessing dataset and handling null values') result = dataset.isnull().values.any() print('There are any null values ? Response: {}'.format(result)) result = dataset.isnull().sum() print('Number of null values for each predictor:\n{}'.format(result)) # DISCOVERING VALUES WITHIN EACH PREDICTOR DOMAIN # --------------------------------------------------------------------------- # columns_2_avoid = ['ERECTED', 'LENGTH', 'LOCATION', 'LANES'] # columns_2_avoid = None list_columns_2_fix = show_categorical_predictor_values(dataset, columns_2_avoid) # FIXING, UPDATING NULL VALUES CODED AS '?' SYMBOL # WITHIN EACH CATEGORICAL VARIABLE, IF DETECTED ANY # --------------------------------------------------------------------------- # print('"Before" removing \'?\' rows, Dataset dim:', dataset.shape) for _, predictor in enumerate(list_columns_2_fix): dataset = dataset[dataset[predictor] != '?'] print('"After" removing \'?\' rows, Dataset dim: ', dataset.shape) print('-' * 50) _ = show_categorical_predictor_values(dataset, columns_2_avoid) # INTERMEDIATE RESULT FOUND # --------------------------------------------------------------------------- # preprocess_categorical_variables(dataset, columns_2_avoid) print(dataset.info()) dataset.head(5) ###Output _____no_output_____ ###Markdown The next step is represented by the effort of mapping categorical variables into numerical variables, so that them are comparable with the already existing numerical or continuous variables, and also by mapping the categorical variables into numerical variables we allow or enable us to perform some kind of normalization or just transformation onto the entire dataset in order to let some machine learning algorithm to work better or to take advantage of normalized data within our pre-processed dataset. Furthermore, by transforming first the categorical attributes into a continuous version we are also able to calculate the \textit{heatmap}, which is a very useful way of representing a correlation matrix calculated on the whole dataset. Moreover we have displayed data distribution for each attribute by means of histogram representation to take some useful information about the number of occurrences for each possible value, in particular for those attributes that have a categorical nature. ###Code # MAP NUMERICAL VALUES TO INTEGER VALUES # --------------------------------------------------------------------------- # print('Before', dataset.shape) columns_2_map = ['ERECTED', 'LANES'] for _, predictor in enumerate(columns_2_map): dataset = dataset[dataset[predictor] != '?'] dataset[predictor] = np.array(list(map(lambda x: int(x), dataset[predictor].values))) print('After', dataset.shape) print(dataset.info()) # print(dataset.head(5)) # MAP NUMERICAL VALUES TO FLOAT VALUES # --------------------------------------------------------------------------- # # print('Before', dataset.shape) columns_2_map = ['LOCATION', 'LANES', 'LENGTH'] for _, predictor in enumerate(columns_2_map): dataset = dataset[dataset[predictor] != '?'] dataset[predictor] = np.array(list(map(lambda x: float(x), dataset[predictor].values))) # print('After', dataset.shape) # print(dataset.info()) # print(dataset.head(5)) # columns_2_avoid = None # list_columns_2_fix = show_categorical_predictor_values(dataset, None) result = dataset.isnull().values.any() # print('After handling null values\nThere are any null values ? Response: {}'.format(result)) result = dataset.isnull().sum() # print('Number of null values for each predictor:\n{}'.format(result)) dataset.head(5) dataset.describe(include='all') # sns.pairplot(dataset, hue='T-OR-D', size=1.5) columns_2_avoid = ['ERECTED', 'LENGTH', 'LOCATION'] target_col = 'T-OR-D' # show_frequency_distribution_predictors(dataset, columns_2_avoid) # show_frequency_distribution_predictor(dataset, predictor_name='RIVER', columns_2_avoid=columns_2_avoid) # build_boxplot(dataset, predictor_name='RIVER', columns_2_avoid=columns_2_avoid, target_col='T-OR-D') # show_frequency_distribution_predictors(dataset, columns_2_avoid) # show_frequency_distribution_predictor(dataset, predictor_name='T-OR-D', columns_2_avoid=columns_2_avoid) # show_frequency_distribution_predictors(dataset, columns_2_avoid) # show_frequency_distribution_predictor(dataset, predictor_name='CLEAR-G', columns_2_avoid=columns_2_avoid) # build_boxplot(dataset, predictor_name='CLEAR-G', columns_2_avoid=columns_2_avoid, target_col='T-OR-D') # show_frequency_distribution_predictors(dataset, columns_2_avoid) # show_frequency_distribution_predictor(dataset, predictor_name='SPAN', columns_2_avoid=columns_2_avoid) # build_boxplot(dataset, predictor_name='SPAN', columns_2_avoid=columns_2_avoid, target_col='T-OR-D') # show_frequency_distribution_predictors(dataset, columns_2_avoid) # show_frequency_distribution_predictor(dataset, predictor_name='MATERIAL', columns_2_avoid=columns_2_avoid) # build_boxplot(dataset, predictor_name='MATERIAL', columns_2_avoid=columns_2_avoid, target_col='T-OR-D') # show_frequency_distribution_predictors(dataset, columns_2_avoid) # show_frequency_distribution_predictor(dataset, predictor_name='REL-L', columns_2_avoid=columns_2_avoid) # show_frequency_distribution_predictors(dataset, columns_2_avoid) # show_frequency_distribution_predictor(dataset, predictor_name='TYPE', columns_2_avoid=columns_2_avoid) # build_boxplot(dataset, predictor_name='TYPE', columns_2_avoid=columns_2_avoid, target_col='T-OR-D') corr_result = dataset.corr() # corr_result.head(corr_result.shape[0]) display_heatmap(corr_result) # show_histograms_from_heatmap_corr_matrix(corr_result, row_names=dataset.columns) # Make distinction between Target Variable and Predictors # --------------------------------------------------------------------------- # columns = dataset.columns # List of all attribute names target_col = 'T-OR-D' # Target variable name # Get Target values and map to 0s and 1s y = np.array(list(map(lambda x: 0 if x == 1 else 1, dataset[target_col].values))) print('Summary about Target Variable {target_col}') print('-' * 50) print(dataset['T-OR-D'].value_counts()) # Get Predictors X = dataset.loc[:, dataset.columns != target_col].values # Standardizing the features # --------------------------------------------------------------------------- # scaler_methods = ['minmax', 'standard', 'norm'] scaler_method = 'standard' rescaledX = preprocessing_data_rescaling(scaler_method, X) ###Output shape features matrix X, after normalizing: (70, 11) ###Markdown Pricipal Component AnalysisAfter having investigate the data points inside the dataset, I move one to another section of my report where I decide to explore examples that made up the entire dataset using a particular technique in the field of statistical analysis that corresponds, precisely, to so called Principal Component Analysis. In fact, the major objective of this section is understand whether it is possible to transform, by means of some kind of linear transformation given by a mathematical calculation, the original data examples into reprojected representation that allows me to retrieve most useful information to be later exploited at training time. So, lets dive a bit whitin what is and which are main concepts, pros and cons about Principal Component Analysis.Firstly, we know that **Principal Component Analysis**, more shortly PCA, is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called *principal components*. This transformation is defined in such a way that:- the first principal component has the largest possible variance (that is, accounts for as much of the variability in the data as possible),- and each succeeding component in turn has the highest variance possible under the constraint that it is orthogonal to the preceding components.The resulting vectors, each being a linear combination of the variables and containing n observations, are an uncorrelated orthogonal basis set. PCA is sensitive to the relative scaling of the original variables.PCA is mostly used as a tool in *exploratory data analysis* and for making predictive models, for that reasons I used such a technique here, before going through the different learning technique for producing my models. Several Different ImplementationFrom the theory and the filed of research in statistics, we know that out there, there are several different implementation and way of computing principal component analysis, and each adopted technique has different performance as well as numerical stability. The three major derivations are:- PCA by means of an iterative based procedure of extraing pricipal components one after the other selecting each time the one that account for the most of variance along its own axis, within the remainig subspace to be derived.- The second possible way of performing PCA is done via calculation of *Covariance Matrix* applied to attributes, that are our independent predictive variables, used to represent data points.- Lastly, it is used the technique known as *Singular Valued Decomposition* applied to the overall data points within our dataset.Reading scikit-learn documentation, I discovered that PCA's derivation uses the *LAPACK implementation* of the *full SVD* or a *randomized truncated SVD* by the method of *Halko et al. 2009*, depending on the shape of the input data and the number of components to extract. Therefore I will descrive mainly that way of deriving the method with respect to the others that, instead, will be described more briefly and roughly. PCA's Iterative based MethodGoing in order, as depicted briefly above, I start describing PCA obtained by means of iterative based procedure to extract one at a time a new principal componet explointing the data points at hand.We begin, recalling that, PCA is defined as an orthogonal linear transformation that transforms the data to a new coordinate system such that the greatest variance by some scalar projection of the data comes to lie on the first coordinate (called the first principal component), the second greatest variance on the second coordinate, and so on.We suppose to deal with a data matrix X, with column-wise zero empirical mean, where each of the n rows represents a different repetition of the experiment, and each of the p columns gives a particular kind of feature.From a math poitn of view, the transformation is defined by a set of p-dimensional vectors of weights or coefficients $\mathbf {w} _{(k)}=(w_{1},\dots ,w_{p})_{(k)}$ that map each row vector $\mathbf{x}_{(i)}$ of X to a new vector of principal component scores ${\displaystyle \mathbf {t} _{(i)}=(t_{1},\dots ,t_{l})_{(i)}}$, given by: ${\displaystyle {t_{k}}_{(i)}=\mathbf {x} _{(i)}\cdot \mathbf {w} _{(k)}\qquad \mathrm {for} \qquad i=1,\dots ,n\qquad k=1,\dots ,l}$.In this way all the individual variables ${\displaystyle t_{1},\dots ,t_{l}}$ of t considered over the data set successively inherit the maximum possible variance from X, with each coefficient vector w constrained to be a unit vector.More precisely, the first component In order to maximize variance has to satisfy the following expression:${\displaystyle \mathbf {w} _{(1)}={\underset {\Vert \mathbf {w} \Vert =1}{\operatorname {\arg \,max} }}\,\left\{\sum _{i}\left(t_{1}\right)_{(i)}^{2}\right\}={\underset {\Vert \mathbf {w} \Vert =1}{\operatorname {\arg \,max} }}\,\left\{\sum _{i}\left(\mathbf {x} _{(i)}\cdot \mathbf {w} \right)^{2}\right\}}$So, with $w_{1}$ found, the first principal component of a data vector $x_{1}$ can then be given as a score $t_{1(i)} = x_{1} ⋅ w_{1}$ in the transformed co-ordinates, or as the corresponding vector in the original variables, $(x_{1} ⋅ w_{1})w_{1}$.The others remainig components are computed as folloes. The kth component can be found by subtracting the first k − 1 principal components from X, as in the following expression:- ${\displaystyle \mathbf {\hat {X}} _{k}=\mathbf {X} -\sum _{s=1}^{k-1}\mathbf {X} \mathbf {w} _{(s)}\mathbf {w} _{(s)}^{\rm {T}}}$- and then finding the weight vector which extracts the maximum variance from this new data matrix ${\mathbf {w}}_{{(k)}}={\underset {\Vert {\mathbf {w}}\Vert =1}{\operatorname {arg\,max}}}\left\{\Vert {\mathbf {{\hat {X}}}}_{{k}}{\mathbf {w}}\Vert ^{2}\right\}={\operatorname {\arg \,max}}\,\left\{{\tfrac {{\mathbf {w}}^{T}{\mathbf {{\hat {X}}}}_{{k}}^{T}{\mathbf {{\hat {X}}}}_{{k}}{\mathbf {w}}}{{\mathbf {w}}^{T}{\mathbf {w}}}}\right\}$It turns out that:- from the formulas depicted above me get the remaining eigenvectors of $X^{T}X$, with the maximum values for the quantity in brackets given by their corresponding eigenvalues. Thus the weight vectors are eigenvectors of $X^{T}X$.- The kth principal component of a data vector $x_(i)$ can therefore be given as a score $t_{k(i)} = x_{(i)} ⋅ w_(k)$ in the transformed co-ordinates, or as the corresponding vector in the space of the original variables, $(x_{(i)} ⋅ w_{(k)}) w_{(k)}$, where $w_{(k)}$ is the kth eigenvector of $X^{T}X$.- The full principal components decomposition of X can therefore be given as: ${\displaystyle \mathbf {T} =\mathbf {X} \mathbf {W}}$, where W is a p-by-p matrix of weights whose columns are the eigenvectors of $X^{T}X$. Covariance Matrix for PCA analysisPCA made from covarian matrix computation requires the calculation of sample covariance matrix of the dataset as follows: $\mathbf{Q} \propto \mathbf{X}^T \mathbf{X} = \mathbf{W} \mathbf{\Lambda} \mathbf{W}^T$.The empirical covariance matrix between the principal components becomes ${\displaystyle \mathbf {W} ^{T}\mathbf {Q} \mathbf {W} \propto \mathbf {W} ^{T}\mathbf {W} \,\mathbf {\Lambda } \,\mathbf {W} ^{T}\mathbf {W} =\mathbf {\Lambda } }$. Singular Value Decomposition for PCA analysisFinally, the principal components transformation can also be associated with another matrix factorization, the singular value decomposition (SVD) of X, ${\displaystyle \mathbf {X} =\mathbf {U} \mathbf {\Sigma } \mathbf {W} ^{T}}$, where more precisely:- Σ is an n-by-p rectangular diagonal matrix of positive numbers $σ_{(k)}$, called the singular values of X;- instead U is an n-by-n matrix, the columns of which are orthogonal unit vectors of length n called the left singular vectors of X;- Then, W is a p-by-p whose columns are orthogonal unit vectors of length p and called the right singular vectors of X.factorizingn the matrix ${X^{T}X}$, it can be written as:${\begin{aligned}\mathbf {X} ^{T}\mathbf {X} &=\mathbf {W} \mathbf {\Sigma } ^{T}\mathbf {U} ^{T}\mathbf {U} \mathbf {\Sigma } \mathbf {W} ^{T}\\&=\mathbf {W} \mathbf {\Sigma } ^{T}\mathbf {\Sigma } \mathbf {W} ^{T}\\&=\mathbf {W} \mathbf {\hat {\Sigma }} ^{2}\mathbf {W} ^{T}\end{aligned}}$Where we recall that ${\displaystyle \mathbf {\hat {\Sigma }} }$ is the square diagonal matrix with the singular values of X and the excess zeros chopped off that satisfies ${\displaystyle \mathbf {{\hat {\Sigma }}^{2}} =\mathbf {\Sigma } ^{T}\mathbf {\Sigma } } {\displaystyle \mathbf {{\hat {\Sigma }}^{2}} =\mathbf {\Sigma } ^{T}\mathbf {\Sigma } }$. Comparison with the eigenvector factorization of $X^{T}X$ establishes that the right singular vectors W of X are equivalent to the eigenvectors of $X^{T}X$ , while the singular values $σ_{(k)}$ of X are equal to the square-root of the eigenvalues $λ_{(k)}$ of $X^{T}X$ . At this point we understand that using the singular value decomposition the score matrix T can be written as:$\begin{align} \mathbf{T} & = \mathbf{X} \mathbf{W} \\ & = \mathbf{U}\mathbf{\Sigma}\mathbf{W}^T \mathbf{W} \\ & = \mathbf{U}\mathbf{\Sigma} \end{align}$so each column of T is given by one of the left singular vectors of X multiplied by the corresponding singular value. This form is also the polar decomposition of T.Efficient algorithms exist to calculate the SVD, as in scikit-learn package, of X without having to form the matrix $X^{T}X$, so computing the SVD is now the standard way to calculate a principal components analysis from a data matrix ###Code n_components = rescaledX.shape[1] pca = PCA(n_components=n_components) # pca = PCA(n_components=2) # X_pca = pca.fit_transform(X) pca = pca.fit(rescaledX) X_pca = pca.transform(rescaledX) print(f"Cumulative varation explained(percentage) up to given number of pcs:") tmp_data = [] principal_components = [pc for pc in '2,5,6,7,8,9,10'.split(',')] for _, pc in enumerate(principal_components): n_components = int(pc) cum_var_exp_up_to_n_pcs = np.cumsum(pca.explained_variance_ratio_)[n_components-1] # print(f"Cumulative varation explained up to {n_components} pcs = {cum_var_exp_up_to_n_pcs}") # print(f"# pcs {n_components}: {cum_var_exp_up_to_n_pcs*100:.2f}%") tmp_data.append([n_components, cum_var_exp_up_to_n_pcs * 100]) tmp_df = pd.DataFrame(data=tmp_data, columns=['# PCS', 'Cumulative Varation Explained (percentage)']) tmp_df.head(len(tmp_data)) n_components = rescaledX.shape[1] pca = PCA(n_components=n_components) # pca = PCA(n_components=2) #X_pca = pca.fit_transform(X) pca = pca.fit(rescaledX) X_pca = pca.transform(rescaledX) fig = show_cum_variance_vs_components(pca, n_components) # py.sign_in('franec94', 'QbLNKpC0EZB0kol0aL2Z') # py.iplot(fig, filename='selecting-principal-components {}'.format(scaler_method)) ###Output _____no_output_____ ###Markdown Major Pros & Cons of PCA Learning Models ###Code # Parameters to be tested for Cross-Validation Approach estimators_list = [GaussianNB(), LogisticRegression(), KNeighborsClassifier(), SVC(), DecisionTreeClassifier(), RandomForestClassifier()] estimators_names = ['GaussianNB', 'LogisticRegression', 'KNeighborsClassifier', 'SVC', 'DecisionTreeClassifier', 'RandomForestClassifier'] plots_names = list(map(lambda xi: f"{xi}_learning_curve.png", estimators_names)) pca_kernels_list = ['linear', 'poly', 'rbf', 'cosine',] cv_list = [10, 9, 8, 7, 6, 5, 4, 3, 2] parameters_sgd_classifier = { 'clf__loss': ('hinge', 'log', 'modified_huber', 'squared_hinge', 'perceptron'), 'clf__penalty': ('l2', 'l1', 'elasticnet'), 'clf__alpha': (1e-1, 1e-2, 1e-3, 1e-4), 'clf__max_iter': (50, 100, 150, 200, 500, 1000, 1500, 2000, 2500), 'clf__learning_rate': ('optimal',), 'clf__tol': (None, 1e-2, 1e-4, 1e-5, 1e-6) } kernel_type = 'svm-rbf-kernel' parameters_svm = { 'clf__gamma': (0.003, 0.03, 0.05, 0.5, 0.7, 1.0, 1.5), 'clf__max_iter':(1e+2, 1e+3, 2 * 1e+3, 5 * 1e+3, 1e+4, 1.5 * 1e+3), 'clf__C': (1e-4, 1e-3, 1e-2, 0.1, 1.0, 10, 1e+2, 1e+3), } parmas_decision_tree = { 'clf__splitter': ('random', 'best'), 'clf__criterion':('gini', 'entropy'), 'clf__max_features': (None, 'auto', 'sqrt', 'log2') } parmas_random_forest = { 'clf__n_estimators': (3, 5, 7, 10, 30, 50, 70, 100, 150, 200), 'clf__criterion':('gini', 'entropy'), 'clf__bootstrap': (True, False) } model = PCA(n_components=2) model.fit(X) X_2D = model.transform(X) df = pd.DataFrame() df['PCA1'] = X_2D[:, 0] df['PCA2'] = X_2D[:, 1] df[target_col] = dataset[target_col].values sns.lmplot("PCA1", "PCA2", hue=target_col, data=df, fit_reg=False) # show_pca_1_vs_pca_2_pcaKernel(X, pca_kernels_list, target_col, dataset) # show_scatter_plots_pcaKernel(X, pca_kernels_list, target_col, dataset, n_components=12) ###Output _____no_output_____ ###Markdown PCA = 2 ###Code plot_dest = os.path.join("figures", "n_comp_2_analysis") N_CV, N_KERNEL = 9, 4 assert len(cv_list) >= N_CV, f"Error: N_CV={N_CV} > len(cv_list)={len(cv_list)}" assert len(pca_kernels_list) >= N_KERNEL, f"Error: N_KERNEL={N_KERNEL} > len(pca_kernels_list)={len(pca_kernels_list)}" X = rescaledX n = len(estimators_list) # len(estimators_list) dfs_list, df_strfd = fit_all_by_n_components( estimators_list=estimators_list[:n], \ estimators_names=estimators_names[:n], \ X=X, \ y=y, \ n_components=2, \ show_plots=False, \ cv_list=cv_list[:N_CV], \ # pca_kernels_list=['linear'], pca_kernels_list=pca_kernels_list[:N_KERNEL], verbose=0 # 0=silent, 1=show informations ) df_strfd.head(df_strfd.shape[0]) # GaussianNB # ----------------------------------- dfs_list[0].head(dfs_list[0].shape[0]) pos = 0 plot_name = plots_names[pos] show_learning_curve(dfs_list[pos], n=len(cv_list[:N_CV]), plot_dest=plot_dest, grid_size=[2, 2], plot_name=plot_name) # LogisticRegression # ----------------------------------- dfs_list[1].head(dfs_list[0].shape[0]) pos = pos + 1 plot_name = plots_names[pos] show_learning_curve(dfs_list[pos], n=len(cv_list[:N_CV]), plot_dest=plot_dest, grid_size=[2, 2], plot_name=plot_name) # SVC # ----------------------------------- dfs_list[2].head(dfs_list[0].shape[0]) pos = pos + 1 plot_name = plots_names[pos] show_learning_curve(dfs_list[pos], n=len(cv_list[:N_CV]), plot_dest=plot_dest, grid_size=[2, 2], plot_name=plot_name) # DecisionTreeClassifier # ----------------------------------- dfs_list[3].head(dfs_list[0].shape[0]) pos = pos + 1 plot_name = plots_names[pos] show_learning_curve(dfs_list[pos], n=len(cv_list[:N_CV]), plot_dest=plot_dest, grid_size=[2, 2], plot_name=plot_name) # RandomForestClassifier # ----------------------------------- dfs_list[4].head(dfs_list[0].shape[0]) pos = pos + 1 plot_name = plots_names[pos] show_learning_curve(dfs_list[pos], n=len(cv_list[:N_CV]), plot_dest=plot_dest, grid_size=[2, 2], plot_name=plot_name) ###Output _____no_output_____ ###Markdown PCA = 9 ###Code plot_dest = os.path.join("figures", "n_comp_9_analysis") n = len(estimators_list) # len(estimators_list) pos = 0 dfs_list, df_strfd = fit_all_by_n_components( estimators_list=estimators_list[:n], \ estimators_names=estimators_names[:n], \ X=X, \ y=y, \ n_components=9, \ show_plots=False, \ cv_list=cv_list[:N_CV], \ # pca_kernels_list=['linear'], pca_kernels_list=pca_kernels_list[:N_KERNEL], verbose=0 # 0=silent, 1=show informations ) df_strfd.head(df_strfd.shape[0]) # GaussianNB # ----------------------------------- dfs_list[0].head(dfs_list[0].shape[0]) pos = pos + 1 plot_name = plots_names[pos] show_learning_curve(dfs_list[pos], n=len(cv_list[:N_CV]), plot_dest=plot_dest, grid_size=[2, 2], plot_name=plot_name) # LogisticRegression # ----------------------------------- dfs_list[1].head(dfs_list[0].shape[0]) ppos = pos + 1 plot_name = plots_names[pos] show_learning_curve(dfs_list[pos], n=len(cv_list[:N_CV]), plot_dest=plot_dest, grid_size=[2, 2], plot_name=plot_name) # SVC # ----------------------------------- dfs_list[2].head(dfs_list[0].shape[0]) pos = pos + 1 plot_name = plots_names[pos] show_learning_curve(dfs_list[pos], n=len(cv_list[:N_CV]), plot_dest=plot_dest, grid_size=[2, 2], plot_name=plot_name) # DecisionTreeClassifier # ----------------------------------- dfs_list[3].head(dfs_list[0].shape[0]) pos = pos + 1 plot_name = plots_names[pos] show_learning_curve(dfs_list[pos], n=len(cv_list[:N_CV]), plot_dest=plot_dest, grid_size=[2, 2], plot_name=plot_name) # RandomForestClassifier # ----------------------------------- dfs_list[4].head(dfs_list[0].shape[0]) pos = pos + 1 plot_name = plots_names[pos] show_learning_curve(dfs_list[pos], n=len(cv_list[:N_CV]), plot_dest=plot_dest, grid_size=[2, 2], plot_name=plot_name) ###Output _____no_output_____ ###Markdown PCA = 12 ###Code plot_dest = os.path.join("figures", "n_comp_12_analysis") n = len(estimators_list) # len(estimators_list) pos = 0 dfs_list, df_strfd = fit_all_by_n_components( estimators_list=estimators_list[:n], \ estimators_names=estimators_names[:n], \ X=X, \ y=y, \ n_components=12, \ show_plots=False, \ cv_list=cv_list[:N_CV], \ # pca_kernels_list=['linear'], pca_kernels_list=pca_kernels_list[:N_KERNEL], verbose=0 # 0=silent, 1=show informations ) df_strfd.head(df_strfd.shape[0]) # GaussianNB # ----------------------------------- dfs_list[0].head(dfs_list[0].shape[0]) pos = pos + 1 plot_name = plots_names[pos] show_learning_curve(dfs_list[pos], n=len(cv_list[:N_CV]), plot_dest=plot_dest, grid_size=[2, 2], plot_name=plot_name) # LogisticRegression # ----------------------------------- dfs_list[1].head(dfs_list[0].shape[0]) pos = pos + 1 plot_name = plots_names[pos] show_learning_curve(dfs_list[pos], n=len(cv_list[:N_CV]), plot_dest=plot_dest, grid_size=[2, 2], plot_name=plot_name) # SVC # ----------------------------------- dfs_list[2].head(dfs_list[0].shape[0]) pos = pos + 1 plot_name = plots_names[pos] show_learning_curve(dfs_list[pos], n=len(cv_list[:N_CV]), plot_dest=plot_dest, grid_size=[2, 2], plot_name=plot_name) # DecisionTreeClassifier # ----------------------------------- dfs_list[3].head(dfs_list[0].shape[0]) pos = pos + 1 plot_name = plots_names[pos] show_learning_curve(dfs_list[pos], n=len(cv_list[:N_CV]), plot_dest=plot_dest, grid_size=[2, 2], plot_name=plot_name) # RandomForestClassifier # ----------------------------------- dfs_list[4].head(dfs_list[0].shape[0]) pos = pos + 1 plot_name = plots_names[pos] show_learning_curve(dfs_list[pos], n=len(cv_list[:N_CV]), plot_dest=plot_dest, grid_size=[2, 2], plot_name=plot_name) from sklearn.metrics import f1_score y_true = [0, 1, 2, 0, 1, 2] y_pred = [0, 2, 1, 0, 0, 1] f1_score(y_true, y_pred, average='macro') ###Output _____no_output_____
GAN/simple-GAN.ipynb
###Markdown https://towardsdatascience.com/build-a-super-simple-gan-in-pytorch-54ba349920e4 ###Code import math import numpy as np import torch from torch import nn def create_binary_list_from_int(number): return [int(x) for x in list(bin(number))[2:]] def generate_even_data(max_int, batch_size): max_length = int(math.log(max_int, 2)) sampled_integers = np.random.randint(0, int(max_int / 2), batch_size) labels = [1] * batch_size data = [create_binary_list_from_int(int(x * 2)) for x in sampled_integers] data = [([0] * (max_length - len(x))) + x for x in data] return labels, data class Generator(nn.Module): def __init__(self, input_length): super(Generator, self).__init__() self.dense_layer = nn.Linear(int(input_length), int(input_length)) self.activation = nn.Sigmoid def forward(self, x): return self.activation(self.dense_layer(x)) class Generator(nn.Module): def __init__(self, input_length: int): super(Generator, self).__init__() self.dense_layer = nn.Linear(int(input_length), int(input_length)) self.activation = nn.Sigmoid() def forward(self, x): return self.activation(self.dense_layer(x)) def getInteger(x): x = torch.round(x) numbers = list() for i in range(x.shape[0]): r = 0 for j in range(x.shape[1]): r += pow(2,x.shape[1]-j-1)*x[i][j].item() numbers.append(int(r)) return numbers def train(max_int: int = 128, batch_size: int = 16, training_steps: int = 500): input_length = int(math.log(max_int, 2)) generator = Generator(input_length) discriminator = Discriminator(input_length) generator_optimizer = torch.optim.Adam(generator.parameters(), lr=0.001) discriminator_optimizer = torch.optim.Adam(discriminator.parameters(), lr=0.001) loss = nn.BCELoss() for i in range(training_steps): generator_optimizer.zero_grad() noise = torch.randint(0, 2, size=(batch_size, input_length)).float() generated_data = generator(noise) if i%100 == 0: print(getInteger(generated_data)) true_labels, true_data = generate_even_data(max_int, batch_size=batch_size) true_labels = torch.tensor(true_labels).float() true_data = torch.tensor(true_data).float() generator_discriminator_out = discriminator(generated_data) generator_loss = loss(generator_discriminator_out, true_labels.reshape(1,-1).t()) generator_loss.backward() generator_optimizer.step() discriminator_optimizer.zero_grad() true_discriminator_out = discriminator(true_data) true_discriminator_loss = loss(true_discriminator_out, true_labels.reshape(1,-1).t()) generator_discriminator_out = discriminator(generated_data.detach()) generator_discriminator_loss = loss(generator_discriminator_out, torch.zeros(batch_size).reshape(1,-1).t()) discriminator_loss = (true_discriminator_loss + generator_discriminator_loss) / 2 discriminator_loss.backward() discriminator_optimizer.step() train(training_steps=1000) ###Output [19, 58, 97, 100, 116, 56, 50, 11, 0, 2, 38, 0, 50, 16, 52, 27] [108, 95, 117, 68, 22, 64, 68, 68, 64, 68, 100, 117, 68, 100, 68, 64] [68, 76, 76, 76, 108, 68, 76, 108, 108, 76, 76, 108, 76, 76, 72, 76] [108, 108, 108, 108, 108, 76, 76, 76, 76, 76, 108, 108, 76, 108, 108, 76] [100, 100, 108, 4, 100, 100, 108, 100, 100, 100, 108, 100, 100, 8, 108, 100] [96, 96, 96, 100, 96, 96, 0, 36, 32, 32, 0, 100, 100, 32, 100, 96] [0, 32, 24, 0, 32, 26, 0, 32, 32, 10, 32, 8, 0, 0, 24, 0] [26, 26, 8, 26, 8, 26, 24, 10, 8, 26, 26, 26, 26, 10, 26, 26] [26, 58, 26, 26, 18, 26, 18, 26, 26, 26, 26, 26, 26, 26, 18, 26] [50, 118, 54, 54, 50, 118, 54, 18, 50, 118, 18, 50, 118, 50, 114, 50]
notebooks/char_rnn_sample_tutorial.ipynb
###Markdown Now, we are ready to make our RNN model with seq2seq This network is for sampling, so we don't need batches for sequenes nor optimizers ###Code # Important RNN parameters rnn_size = 128 num_layers = 2 batch_size = 1 # <= In the training phase, these were both 50 seq_length = 1 # Construct RNN model unitcell = rnn_cell.BasicLSTMCell(rnn_size) cell = rnn_cell.MultiRNNCell([unitcell] * num_layers) input_data = tf.placeholder(tf.int32, [batch_size, seq_length]) istate = cell.zero_state(batch_size, tf.float32) # Weigths with tf.variable_scope('rnnlm'): softmax_w = tf.get_variable("softmax_w", [rnn_size, vocab_size]) softmax_b = tf.get_variable("softmax_b", [vocab_size]) with tf.device("/cpu:0"): embedding = tf.get_variable("embedding", [vocab_size, rnn_size]) inputs = tf.split(1, seq_length, tf.nn.embedding_lookup(embedding, input_data)) inputs = [tf.squeeze(_input, [1]) for _input in inputs] # Output def loop(prev, _): prev = tf.nn.xw_plus_b(prev, softmax_w, softmax_b) prev_symbol = tf.stop_gradient(tf.argmax(prev, 1)) return tf.nn.embedding_lookup(embedding, prev_symbol) outputs, final_state = seq2seq.rnn_decoder(inputs, istate, cell , loop_function=None, scope='rnnlm') output = tf.reshape(tf.concat(1, outputs), [-1, rnn_size]) logits = tf.nn.xw_plus_b(output, softmax_w, softmax_b) probs = tf.nn.softmax(logits) print ("Network Ready") # Restore RNN sess = tf.Session() sess.run(tf.initialize_all_variables()) saver = tf.train.Saver(tf.all_variables()) ckpt = tf.train.get_checkpoint_state(load_dir) print (ckpt.model_checkpoint_path) saver.restore(sess, ckpt.model_checkpoint_path) ###Output /tmp/tf_logs/char_rnn_tutorial/model.ckpt-8000 ###Markdown Finally, show what RNN has generated! ###Code # Sampling function def weighted_pick(weights): t = np.cumsum(weights) s = np.sum(weights) return(int(np.searchsorted(t, np.random.rand(1)*s))) # Sample using RNN and prime characters prime = "/* " state = sess.run(cell.zero_state(1, tf.float32)) for char in prime[:-1]: x = np.zeros((1, 1)) x[0, 0] = vocab[char] state = sess.run(final_state, feed_dict={input_data: x, istate:state}) # Sample 'num' characters ret = prime char = prime[-1] # <= This goes IN! num = 1000 for n in range(num): x = np.zeros((1, 1)) x[0, 0] = vocab[char] [probsval, state] = sess.run([probs, final_state] , feed_dict={input_data: x, istate:state}) p = probsval[0] sample = weighted_pick(p) # sample = np.argmax(p) pred = chars[sample] ret = ret + pred char = pred print ("Sampling Done. \n___________________________________________\n") print (ret) ###Output Sampling Done. ___________________________________________ /* *syscblanim types when the formathing) */ void console_dir(tmp_cgroup_shorts); /* * This already (proces6or * @pid_struct(__kthread_lock unlatelf if (subskick_map shoulds (the softwach then as up is boot fields up posix are HRPS5/ int set_futex_intend_head_unintvel_ap, .max_acquire(void, test_cpu(&rq->load, sizeof(struct file *g), (singlec_ns); int EAVECLERPE }6 rlim_polic_entires; } static void audit_unlock_irq(struct helds, void cpu_stattr_namespace(__kprobess) ISusyoffreings void) { if (!res->panicalings) goto root = ATOST_MEM: p >= d = __delayed_poffset; *strt' = delta_event_fs_allowed; BUG_ON(!oops->list, new_audit_lock); } freepstart; long d; atomic_expid(table, flags); subbufs_pid_t now; idle = &pi_state->flags; maxRetect_call(aggm_natch); return printk(*fa->tv_softirqs_entry) { address, .cquient(i) goto ops_type = seq_rese, }; static struct head_stats { struct trans_ctly *next; /* Ax or with unbless and just even notifier restart= r ###Markdown Now, we are ready to make our RNN model with seq2seq This network is for sampling, so we don't need batches for sequenes nor optimizers ###Code # Important RNN parameters rnn_size = 128 num_layers = 2 batch_size = 1 # <= In the training phase, these were both 50 seq_length = 1 # Construct RNN model unitcell = tf.nn.rnn_cell.BasicLSTMCell(rnn_size) cell = tf.nn.rnn_cell.MultiRNNCell([unitcell] * num_layers) input_data = tf.placeholder(tf.int32, [batch_size, seq_length]) istate = cell.zero_state(batch_size, tf.float32) # Weigths with tf.variable_scope('rnnlm'): softmax_w = tf.get_variable("softmax_w", [rnn_size, vocab_size]) softmax_b = tf.get_variable("softmax_b", [vocab_size]) with tf.device("/cpu:0"): embedding = tf.get_variable("embedding", [vocab_size, rnn_size]) inputs = tf.split(1, seq_length, tf.nn.embedding_lookup(embedding, input_data)) inputs = [tf.squeeze(_input, [1]) for _input in inputs] # Output def loop(prev, _): prev = tf.nn.xw_plus_b(prev, softmax_w, softmax_b) prev_symbol = tf.stop_gradient(tf.argmax(prev, 1)) return tf.nn.embedding_lookup(embedding, prev_symbol) outputs, final_state = seq2seq.rnn_decoder(inputs, istate, cell , loop_function=None, scope='rnnlm') output = tf.reshape(tf.concat(1, outputs), [-1, rnn_size]) logits = tf.nn.xw_plus_b(output, softmax_w, softmax_b) probs = tf.nn.softmax(logits) print ("Network Ready") # Restore RNN sess = tf.Session() sess.run(tf.initialize_all_variables()) saver = tf.train.Saver(tf.all_variables()) ckpt = tf.train.get_checkpoint_state(load_dir) print (ckpt.model_checkpoint_path) saver.restore(sess, ckpt.model_checkpoint_path) ###Output data/linux_kernel/model.ckpt-8000 ###Markdown Finally, show what RNN has generated! ###Code # Sampling function def weighted_pick(weights): t = np.cumsum(weights) s = np.sum(weights) return(int(np.searchsorted(t, np.random.rand(1)*s))) # Sample using RNN and prime characters prime = "/* " state = sess.run(cell.zero_state(1, tf.float32)) for char in prime[:-1]: x = np.zeros((1, 1)) x[0, 0] = vocab[char] state = sess.run(final_state, feed_dict={input_data: x, istate:state}) # Sample 'num' characters ret = prime char = prime[-1] # <= This goes IN! num = 1000 for n in range(num): x = np.zeros((1, 1)) x[0, 0] = vocab[char] [probsval, state] = sess.run([probs, final_state] , feed_dict={input_data: x, istate:state}) p = probsval[0] sample = weighted_pick(p) # sample = np.argmax(p) pred = chars[sample] ret = ret + pred char = pred print ("Sampling Done. \n___________________________________________\n") print (ret) ###Output Sampling Done. ___________________________________________ /* : A C. Fruemptly etweennars must be serversed */ static int __cgroup_hash_power(struct rt_mutex_d *uaddr, int watab, long -XIT_PYS__AUTIMER_PAT(seed_class_table_watch, v1->curr); } static void down_cpusets(struct pid; static int pid_thread(voids_mm) { if (ps->cpumainte_to_cgroup_grp <= NULL) return 0; } conset sched_VRICE_SOFTIRQ_DISU{ softirq_signal(this_css_set_bytes)); } void private = { .mode = CPUCLOCK_BALANCE, .process = optime) /* * The are * en * @buf' - for so allows the condext it of it regions) * massessiging that Sto be stime in the expoxes */ void __fsix; struct audit_chunk *tsk; key_utvec_oper(struct *read_ns, struct futex_ckernel); int atomic_attime = res->init_switch(void), -+signal->state = 0; tmr = tmp; printk("%s\n", signal, &max_huts_string, 1, look_t *)(modemask++); up_sem(cft, &(max))) { if (probes) set_cpu(name == 0) goto out; } pposs_unlock(*pefmask_plocks); audit_log_lock_fuces(rq); } static void again; int con ###Markdown Now, we are ready to make our RNN model with seq2seq This network is for sampling, so we don't need batches for sequenes nor optimizers ###Code '"\'' # Important RNN parameters rnn_size = 128 num_layers = 2 batch_size = 1 # <= In the training phase, these were both 50 seq_length = 1 # Construct RNN model unitcell = tf.nn.rnn_cell.BasicLSTMCell(rnn_size) cell = tf.nn.rnn_cell.MultiRNNCell([unitcell] * num_layers) input_data = tf.placeholder(tf.int32, [batch_size, seq_length]) istate = cell.zero_state(batch_size, tf.float32) # Weigths with tf.variable_scope('rnnlm'): softmax_w = tf.get_variable("softmax_w", [rnn_size, vocab_size]) softmax_b = tf.get_variable("softmax_b", [vocab_size]) with tf.device("/cpu:0"): embedding = tf.get_variable("embedding", [vocab_size, rnn_size]) inputs = tf.split(1, seq_length, tf.nn.embedding_lookup(embedding, input_data)) inputs = [tf.squeeze(_input, [1]) for _input in inputs] # Output def loop(prev, _): prev = tf.nn.xw_plus_b(prev, softmax_w, softmax_b) prev_symbol = tf.stop_gradient(tf.argmax(prev, 1)) return tf.nn.embedding_lookup(embedding, prev_symbol) outputs, final_state = seq2seq.rnn_decoder(inputs, istate, cell , loop_function=None, scope='rnnlm') output = tf.reshape(tf.concat(1, outputs), [-1, rnn_size]) logits = tf.nn.xw_plus_b(output, softmax_w, softmax_b) probs = tf.nn.softmax(logits) print ("Network Ready") # Restore RNN sess = tf.Session() sess.run(tf.initialize_all_variables()) saver = tf.train.Saver(tf.all_variables()) ckpt = tf.train.get_checkpoint_state(load_dir) print (ckpt.model_checkpoint_path) saver.restore(sess, ckpt.model_checkpoint_path) ###Output data/linux_kernel/model.ckpt-8000 ###Markdown Finally, show what RNN has generated! ###Code # Sampling function def weighted_pick(weights): t = np.cumsum(weights) s = np.sum(weights) return(int(np.searchsorted(t, np.random.rand(1)*s))) # Sample using RNN and prime characters prime = "/* " state = sess.run(cell.zero_state(1, tf.float32)) for char in prime[:-1]: x = np.zeros((1, 1)) x[0, 0] = vocab[char] state = sess.run(final_state, feed_dict={input_data: x, istate:state}) # Sample 'num' characters ret = prime char = prime[-1] # <= This goes IN! num = 1000 for n in range(num): x = np.zeros((1, 1)) x[0, 0] = vocab[char] [probsval, state] = sess.run([probs, final_state] , feed_dict={input_data: x, istate:state}) p = probsval[0] sample = weighted_pick(p) # sample = np.argmax(p) pred = chars[sample] ret = ret + pred char = pred print ("Sampling Done. \n___________________________________________\n") print (ret) ###Output Sampling Done. ___________________________________________ /* : A C. Fruemptly etweennars must be serversed */ static int __cgroup_hash_power(struct rt_mutex_d *uaddr, int watab, long -XIT_PYS__AUTIMER_PAT(seed_class_table_watch, v1->curr); } static void down_cpusets(struct pid; static int pid_thread(voids_mm) { if (ps->cpumainte_to_cgroup_grp <= NULL) return 0; } conset sched_VRICE_SOFTIRQ_DISU{ softirq_signal(this_css_set_bytes)); } void private = { .mode = CPUCLOCK_BALANCE, .process = optime) /* * The are * en * @buf' - for so allows the condext it of it regions) * massessiging that Sto be stime in the expoxes */ void __fsix; struct audit_chunk *tsk; key_utvec_oper(struct *read_ns, struct futex_ckernel); int atomic_attime = res->init_switch(void), -+signal->state = 0; tmr = tmp; printk("%s\n", signal, &max_huts_string, 1, look_t *)(modemask++); up_sem(cft, &(max))) { if (probes) set_cpu(name == 0) goto out; } pposs_unlock(*pefmask_plocks); audit_log_lock_fuces(rq); } static void again; int con
concepts/Python Ternary.ipynb
###Markdown A ternary expression allows for a concise way to test a condition on a single line of codeIn C, the syntax would be:```// ternary operator in Cc = (a < b) ? a : b;```Python differs from the C/Java/JavaScript syntax, as we will look at below. ###Code job_1 = {'title': 'Python Developer', 'salary': 80_000} job_2 = {'title': 'Store Manager', 'salary': 70_000} choice = job_1 if job_1['salary'] > job_2['salary'] else job_2 choice ###Output _____no_output_____
Notebooks/Covid_Biopython_analysis.ipynb
###Markdown Biopython Basics Applications : - **Sequence Analysis** (DNA/RNA/Protein) - **Transcription** & **translation studies** - Quering & accessing **Bioinformatics Databases**a. **Entrez**b. **PDB**c. **Genbank**- 3D **structure** analysis 1. Install modules & packages ###Code # !pip install pandas # !pip install nglview # !pip install biopython # !pip install matplotlib # !conda install -c rmg py3dmol -y # !pip install dna_features_viewer import Bio import heapq import pylab import urllib import py3Dmol import pandas as pd import nglview as nv from Bio.Seq import Seq from Bio.Blast import NCBIWWW from Bio.Alphabet import IUPAC from collections import Counter from Bio.Data import CodonTable from Bio import SeqIO, SearchIO, Entrez from Bio.PDB import PDBParser,MMCIFParser from Bio.SeqUtils import GC,molecular_weight from dna_features_viewer import GraphicFeature, GraphicRecord from Bio.Alphabet import generic_dna,generic_rna,generic_protein # Attributes of Biopython dir(Bio) ###Output _____no_output_____ ###Markdown 2. Sequence analysis ###Code # dir(Seq) # DNA sequence dna = Seq('ATATATATAGCGCGCGCGCTCTCTCGGAGAGAGAGAGGCGCGGCGCGCGCGCTTCTCTGAGA') dna # identify the type type(dna) # converting sequence to string type(str(dna)) # converting sequence to alphabet type(dna.alphabet) ###Output _____no_output_____ ###Markdown 2.1. Alphabet Types--- generic_dna/rna- generic_proteins- IUPACUnambiguousDNA (provides basic letters)- IUPACAmbiguousDNA (provides for ambiguity letters for every possible situation) Use cases of Alphabets--- To identify the type of information contained by within a sequence object- provides a mean of constraining the information- facilitates sequence checking. ###Code seq1 = Seq('atgagtcagcagacatcagacgacg', generic_dna) seq2 = Seq('auauagcgccucgcgcggcgcauau', generic_rna) seq3 = Seq('atattatagcacacagacaggatct', IUPAC.unambiguous_dna) seq1.alphabet seq2.alphabet seq3.alphabet ###Output _____no_output_____ ###Markdown 3. Sequence Manipulation- indexing/slicing- concatination- codon search- GC content- complement- transcription- translation ###Code dna_seq = Seq('ATATATATAGCGCGCGCGCTCTCTCGGAGAGAGAGAGGCGCGGCGCGCGCGCTTCTCTGAGA',generic_dna) # Indexing / slicing dna_seq[0:2] # concatination dna_seq2 = Seq('cgcgcgtatattagaccagagcaca',generic_dna) dna_seq[0:4] + dna_seq2[0:4] # codon search dna_seq.find('G') dna_seq.find('AGA') # codon count dna_seq.count('T') # GC content (dna_seq.count('G') + dna_seq.count('C'))/(len(dna_seq)) * 100 ###Output _____no_output_____ ###Markdown OR ###Code GC(dna_seq) # complement & reverse complement comp1 = dna_seq[0:10] comp2 = dna_seq[0:10].complement() comp3 = dna_seq[0:10].reverse_complement() print(f" \ sequence = {comp1}\n \ complement = {comp2}\n \ reverse complement = {comp3}") # Calculating molecular weight of the sequence molecular_weight(dna_seq) ###Output _____no_output_____ ###Markdown 3.1 Transcription & Translation- DNA > mRNA = transcription- mRNA > amino acid = translation ###Code mRNA = dna_seq.transcribe() mRNA[:10] protein = mRNA.translate() protein[-10:] # change symbol for stop codon mRNA.translate(stop_symbol = '$')[-10:] # reverse transcription mRNA.back_transcribe()[:10] ###Output _____no_output_____ ###Markdown Can protein sequences be reverse translated ?Note : there is no function called `back_translate` so we'll make use of `back_transcribe`. ###Code protein.back_transcribe() ###Output _____no_output_____ ###Markdown This error is true for all the biological life on earth too...- we can't perform an exact "reverse translation" of course, since several amino acids are produced by the same codon. Note that if instead we started with the nucleotide sequence, then we could use Biopython's .transcribe() and .translate() functions to convert sequences from DNA to RNA and DNA to protein respectively. 3.1.1. Custom translation ###Code # function to translate any input sequence of any length translation_table = { 'ATA':'I', 'ATC':'I', 'ATT':'I', 'ATG':'M', 'ACA':'T', 'ACC':'T', 'ACG':'T', 'ACT':'T', 'AAC':'N', 'AAT':'N', 'AAA':'K', 'AAG':'K', 'AGC':'S', 'AGT':'S', 'AGA':'R', 'AGG':'R', 'CTA':'L', 'CTC':'L', 'CTG':'L', 'CTT':'L', 'CCA':'P', 'CCC':'P', 'CCG':'P', 'CCT':'P', 'CAC':'H', 'CAT':'H', 'CAA':'Q', 'CAG':'Q', 'CGA':'R', 'CGC':'R', 'CGG':'R', 'CGT':'R', 'GTA':'V', 'GTC':'V', 'GTG':'V', 'GTT':'V', 'GCA':'A', 'GCC':'A', 'GCG':'A', 'GCT':'A', 'GAC':'D', 'GAT':'D', 'GAA':'E', 'GAG':'E', 'GGA':'G', 'GGC':'G', 'GGG':'G', 'GGT':'G', 'TCA':'S', 'TCC':'S', 'TCG':'S', 'TCT':'S', 'TTC':'F', 'TTT':'F', 'TTA':'L', 'TTG':'L', 'TAC':'Y', 'TAT':'Y', 'TAA':'_', 'TAG':'_', 'TGC':'C', 'TGT':'C', 'TGA':'_', 'TGG':'W', } def translate(seq): ''' translates sequence using the `translation_table` ''' protein = '' if len(seq)%3 == 0: for i in range(0,len(seq),3): codon = seq[i:i+3] protein += translation_table[codon] return protein translate('ATCGATCTCTGA') ###Output _____no_output_____ ###Markdown 3.1.2. Builtin codon table Unambiguous DNA ###Code print(CodonTable.unambiguous_dna_by_name['Standard']) ###Output Table 1 Standard, SGC0 | T | C | A | G | --+---------+---------+---------+---------+-- T | TTT F | TCT S | TAT Y | TGT C | T T | TTC F | TCC S | TAC Y | TGC C | C T | TTA L | TCA S | TAA Stop| TGA Stop| A T | TTG L(s)| TCG S | TAG Stop| TGG W | G --+---------+---------+---------+---------+-- C | CTT L | CCT P | CAT H | CGT R | T C | CTC L | CCC P | CAC H | CGC R | C C | CTA L | CCA P | CAA Q | CGA R | A C | CTG L(s)| CCG P | CAG Q | CGG R | G --+---------+---------+---------+---------+-- A | ATT I | ACT T | AAT N | AGT S | T A | ATC I | ACC T | AAC N | AGC S | C A | ATA I | ACA T | AAA K | AGA R | A A | ATG M(s)| ACG T | AAG K | AGG R | G --+---------+---------+---------+---------+-- G | GTT V | GCT A | GAT D | GGT G | T G | GTC V | GCC A | GAC D | GGC G | C G | GTA V | GCA A | GAA E | GGA G | A G | GTG V | GCG A | GAG E | GGG G | G --+---------+---------+---------+---------+-- ###Markdown Unambiguous RNA ###Code print(CodonTable.unambiguous_rna_by_name['Standard']) # dir(CodonTable) ###Output _____no_output_____ ###Markdown 4. Handling Sequence data (FASTA File) ###Code # Loading FASTA file seq_file = SeqIO.read("Data/sequence.fasta", "fasta") ###Output _____no_output_____ ###Markdown 4.1. Sequence details ###Code type(seq_file) # list sequence details for record in SeqIO.parse("Data/sequence.fasta","fasta"): print(record) # list individula features for record in SeqIO.parse("Data/sequence.fasta","fasta"): print(record.id) print(record.description) # store sequence for later analysis seqfromfile = seq_file.seq seqfromfile ###Output _____no_output_____ ###Markdown We can now perform `transcription` , `translation` or GC content calculation with this sequence as shown above. ###Code len(seqfromfile) protein_seq = seqfromfile.translate() len(protein_seq) # Listing the most common amino acids common_amino = Counter(protein_seq) common_amino.most_common(10) del common_amino['*'] pylab.bar(common_amino.keys(),common_amino.values()) pylab.title("%i protein sequences\nLengths %i to %i" % (len(common_amino.values()), min(common_amino.values()), max(common_amino.values()))) pylab.xlabel("Amino acid") pylab.ylabel("frequency") pylab.show() ###Output _____no_output_____ ###Markdown Since stop codon * signifies end of a protein we can split the sequence using ( * ) ###Code protein_list = [str(i) for i in protein_seq.split('*')] protein_list[:10] # listing proteins greater than a given length large_proteins = [x for x in protein_list if len(x)> 10] len(large_proteins) # convert sequences to dataframe df = pd.DataFrame({'protein_seq':large_proteins}) df.head() # add a new column with length df['length'] = df['protein_seq'].apply(len) df.head() # # plot to visualise protein sequences based on length # pylab.hist(df.length, bins=20) # pylab.title("%i protein sequences\nLengths %i to %i" \ # % (len(df.length), # min(df.length), # max(df.length))) # pylab.xlabel("Sequence length (bp)") # pylab.ylabel("Count") # pylab.show() #sort based on legth df.sort_values(by = ['length'], ascending = False)[:10] ###Output _____no_output_____ ###Markdown OR ###Code df.nlargest(10,'length') ###Output _____no_output_____ ###Markdown 5. Basic local alignment using NCBI-BLAST ###Code # let's take a single protein from the table one_large_protein = df.nlargest(1,'length') single_prot = one_large_protein.iloc[0,0] # write to a file with open("Data/single_seq.fasta","w") as file: file.write(">unknown \n"+single_prot) from Bio import SeqIO read = SeqIO.read("single_seq.fasta", "fasta") read.seq %%time # based on the internet speed this query might take 2-5 minutes to run result_handle = NCBIWWW.qblast("blastp","pdb",read.seq) blast_qresult = SearchIO.read(result_handle, "blast-xml") print(blast_qresult) #fetch the id, description, evalue, bitscore & alignment of first hit seqid = blast_qresult[0] details = seqid[0] print(f"\ Sequence ID:{seqid.id}\n\ description:{seqid.description}\n\ E value: {details.evalue} \n\ Bit Score: {details.bitscore}\n\ ") print(f"alignment:\n{details.aln}") pdbid = seqid.id.split('|')[1] pdbid ###Output _____no_output_____ ###Markdown Optional 5.1. Entrez ###Code Entrez.email = "[email protected]" entrez_record = Entrez.efetch(db="protein", id=seqid.id, retmode="txt", rettype="gb") genbank_record = SeqIO.read(entrez_record,"genbank") with open("Data/genbank_record.txt","w") as gb: gb.write(str(genbank_record)) ###Output _____no_output_____ ###Markdown There's a lot of information in the genbank record if you know where to find it... 0. Is it single or double stranded and a DNA or RNA ? In case of DNA ###Code # IN CASE OF DNA # genbank_record.annotations["molecule"]) ###Output _____no_output_____ ###Markdown 1. What is the full NCBI taxonomy of this virus? ###Code genbank_record.annotations["taxonomy"] ###Output _____no_output_____ ###Markdown 2. What are the relevant references/labs who generated the data? ###Code for reference in genbank_record.annotations["references"]: print(reference) ###Output location: [0:935] authors: Hillen,H.S., Kokic,G., Farnung,L., Dienemann,C., Tegunov,D. and Cramer,P. title: Structure of replicating SARS-CoV-2 polymerase journal: Nature (2020) In press medline id: pubmed id: 32438371 comment: Publication Status: Available-Online prior to print location: [0:935] authors: Hillen,H.S., Kokic,G., Farnung,L., Dienemann,C., Tegunov,D. and Cramer,P. title: Direct Submission journal: Submitted (06-MAY-2020) medline id: pubmed id: comment: ###Markdown 3. Retrieve the protein coding sequences (CDSs) from the Genbank record (in case of DNA) OR3. Retrive the features of the protein(in case of Protein) ###Code # number of features len(genbank_record.features) #list features {feature.type for feature in genbank_record.features} # finding the CDS # CDSs = [feature for feature in genbank_record.features if feature.type == "CDS"] # len(CDSs) # listing the gene # CDSs[0].qualifiers["gene"] # hunting for it's protein # protein_seq = Seq(CDSs[0].qualifiers["translation"][0]) ###Output _____no_output_____ ###Markdown 4. Does the protein sequence start with a "start codon" ? ###Code genbank_record.seq.startswith("M") print(CodonTable.unambiguous_dna_by_id[1]) ###Output Table 1 Standard, SGC0 | T | C | A | G | --+---------+---------+---------+---------+-- T | TTT F | TCT S | TAT Y | TGT C | T T | TTC F | TCC S | TAC Y | TGC C | C T | TTA L | TCA S | TAA Stop| TGA Stop| A T | TTG L(s)| TCG S | TAG Stop| TGG W | G --+---------+---------+---------+---------+-- C | CTT L | CCT P | CAT H | CGT R | T C | CTC L | CCC P | CAC H | CGC R | C C | CTA L | CCA P | CAA Q | CGA R | A C | CTG L(s)| CCG P | CAG Q | CGG R | G --+---------+---------+---------+---------+-- A | ATT I | ACT T | AAT N | AGT S | T A | ATC I | ACC T | AAC N | AGC S | C A | ATA I | ACA T | AAA K | AGA R | A A | ATG M(s)| ACG T | AAG K | AGG R | G --+---------+---------+---------+---------+-- G | GTT V | GCT A | GAT D | GGT G | T G | GTC V | GCC A | GAC D | GGC G | C G | GTA V | GCA A | GAA E | GGA G | A G | GTG V | GCG A | GAG E | GGG G | G --+---------+---------+---------+---------+-- ###Markdown 5.2. Sequence visualisation- [DNA features viewer](https://github.com/Edinburgh-Genome-Foundry/DnaFeaturesViewer) allows to plot nucleotide or amino acid sequences under the record plot: ###Code from dna_features_viewer import BiopythonTranslator graphic_record = BiopythonTranslator().translate_record(genbank_record) plot = graphic_record.plot(figure_width=15, strand_in_label_threshold=5) # plot ###Output _____no_output_____ ###Markdown This enables for instance to plot an overview of a sequence along with a detailed detail of a sequence subsegment ###Code # Incase of DNA # from Bio.SeqRecord import SeqRecord # import matplotlib.pyplot as plt # from Bio import SeqIO # import numpy as np from dna_features_viewer import BiopythonTranslator fig, (ax1, ax2) = plt.subplots( 2, 1, figsize=(20, 10), sharex=True, gridspec_kw={"height_ratios": [4, 1]} ) # PLOT THE RECORD MAP # record = SeqIO.read(entrez_record,"genbank") record = genbank_record graphic_record = BiopythonTranslator().translate_record(record) graphic_record.plot(ax=ax1, with_ruler=False, strand_in_label_threshold=4) # PLOT THE LOCAL GC CONTENT (we use 50bp windows) gc = lambda s: 100.0 * len([c for c in s if c in "GC"]) / 50 xx = np.arange(len(record.seq) - 50) yy = [gc(record.seq[x : x + 50]) for x in xx] ax2.fill_between(xx + 25, yy, alpha=0.3) ax2.set_ylim(bottom=0) ax2.set_ylabel("GC(%)") ###Output _____no_output_____ ###Markdown 6. 3D structure visualisation of proteins Inorder to visualise the protein we need to fetch the pdb file from pdb database We'll use `PDBParser` & `MMCIFParser` for this purpose 6.1. retreiving PDB structure from RCSB-PDB ###Code # link format https://files.rcsb.org/download/6YYT.pdb urllib.request.urlretrieve('https://files.rcsb.org/download/6YYT.pdb', 'Data/6YYT.pdb') ###Output _____no_output_____ ###Markdown 6.2. Reading the PDB structure ###Code parser = PDBParser() structure = parser.get_structure("6YYT","Data/6YYT.pdb") structure ###Output _____no_output_____ ###Markdown 6.2.1. Identifying the number of chains & atoms ###Code for chain in structure[0]: print(f"chain: {chain}, chainid: {chain.id}") # Check the atoms for model in structure: print(model) for chain in model: print(chain) # for residue in chain: # for atom in residue: # print(atom) ###Output <Model id=0> <Chain id=A> <Chain id=B> <Chain id=C> <Chain id=D> <Chain id=P> <Chain id=Q> <Chain id=T> <Chain id=U> ###Markdown 6.3. Visualising Protein structure we'll make use of `nglview` & `py3dmol` 6.3.1. `nglview` ###Code nv.demo() view1 = nv.show_biopython(structure) view1 ###Output _____no_output_____ ###Markdown 6.3.1.2 capturing the current posture ###Code view1.render_image() ###Output _____no_output_____ ###Markdown 6.3.2. `py3Dmol` ###Code view2 = py3Dmol.view(query='pdb:6YYT') view2.setStyle({ 'cartoon':{'color':'spectrum'} }) view2.display_image() ###Output _____no_output_____ ###Markdown BONUS- listing modules in the current jupyter notebook- exporting the list of modules used in the current notebook to .txt file ###Code # Listing currently used packages import types def imports(): for name, val in globals().items(): if isinstance(val, types.ModuleType): yield val.__name__ list(imports()) # writing package names to a file with open("requirements.txt","w") as req: req.write(str(list(imports()))) ###Output _____no_output_____
notebooks/train/shapes.ipynb
###Markdown Config ###Code config = { "lr": 1e-5, "epochs_num": 3000, "batch_size": 64, "log_each": 1, "save_each": 2, "device": "cuda:2", "x_dim": 1024, "z_dim": 8, "disc_coef": 5, "lambda": 5 } ###Output _____no_output_____ ###Markdown Data ###Code from generation.dataset.shapes_dataset import ShapesDataset dataset = ShapesDataset(4, signal_dim=config['x_dim']) idx = np.random.choice(range(len(dataset))) signal = dataset[idx].numpy() print("Signal size:", signal.shape) plt.plot(signal) plt.show() ###Output Signal size: (1024,) ###Markdown Models ###Code from generation.nets.shapes import Generator, Discriminator discriminator = Discriminator(config) test_tensor = dataset[0].unsqueeze(0) discriminator(test_tensor, debug=True) generator = Generator(config) test_z = torch.rand(1, config['z_dim']) output = generator(test_z, debug=True) assert(output.shape == test_tensor.shape) ###Output torch.Size([1, 1, 1024]) torch.Size([1, 8, 1024]) torch.Size([1, 8, 340]) torch.Size([1, 32, 340]) torch.Size([1, 32, 112]) torch.Size([1, 8, 112]) torch.Size([1, 8, 36]) torch.Size([1, 288]) torch.Size([1, 1]) torch.Size([1, 1024]) torch.Size([1, 1, 1024]) torch.Size([1, 8, 1024]) torch.Size([1, 32, 1024]) torch.Size([1, 16, 1024]) torch.Size([1, 8, 1024]) torch.Size([1, 1, 1024]) ###Markdown Training ###Code from generation.training.wgan_trainer import WganTrainer g_optimizer = torch.optim.Adam(generator.parameters(), lr=config['lr']) d_optimizer = torch.optim.Adam(discriminator.parameters(), lr=config['lr']) trainer = WganTrainer(generator, discriminator, g_optimizer, \ d_optimizer, config) trainer.run_train(dataset) ###Output _____no_output_____
Week5/PersonAttributes/notebooks/A5_lr_finder_exp.ipynb
###Markdown ###Code images[0].shape len(images) from models.custom_model_builder import get_custom_model model = get_custom_model(input_shape=(224, 224, 3)) model model.summary() from keras.optimizers import SGD losses = { "gender_output": "binary_crossentropy", "image_quality_output": "categorical_crossentropy", "age_output": "categorical_crossentropy", "weight_output": "categorical_crossentropy", "bag_output": "categorical_crossentropy", "footwear_output": "categorical_crossentropy", "pose_output": "categorical_crossentropy", "emotion_output": "categorical_crossentropy" } loss_weights = { "gender_output": 1.0, "image_quality_output": 1.0, "age_output": 1.0, "weight_output": 1.0, "bag_output": 1.0, "footwear_output": 1.0, "pose_output": 1.0, "emotion_output": 1.0 } opt = SGD(lr=0.001, momentum=0.9) model.compile( optimizer = opt, loss = losses, loss_weights = loss_weights, metrics=["accuracy"] ) from feature_scripts.cyclic_lr import LRFinder, OneCycleLR train_df.shape lr_dir = Path.join(project_dir, 'models', 'lr_finder') if not Path.exists(lr_dir): os.makedirs(lr_dir) print('Dir created') lr_dir lr_callback = LRFinder(num_samples=train_df.shape[0], batch_size=128, minimum_lr=0.00002, maximum_lr=1.0,verbose=False, lr_scale='exp', save_dir=lr_dir) lr_history = model.fit_generator(train_gen, steps_per_epoch = 10000, epochs=1, validation_data = valid_gen, callbacks=[lr_callback], verbose=1) lr_callback.plot_schedule(clip_beginning=10) lr_callback.plot_schedule(clip_beginning=20) lr_callback.plot_schedule(clip_beginning=30) lr_callback.plot_schedule(clip_beginning=40) ###Output _____no_output_____ ###Markdown Max LR - 10^(-2) --> 0.01 ###Code results = model.evaluate_generator(valid_gen, verbose=1) dict(zip(model.metrics_names, results)) ###Output _____no_output_____
examples/2_animations_and_callbacks/1_surface_plot_animated.ipynb
###Markdown Animated surface plot y=f(x,z)This example shows how to: - create a surface plot - animate updates of the plot data - optimize compute load ###Code # use "notebook" option to display figure between cells # in the browser window - heaviest to the CPU %matplotlib notebook # use "qt" option to open figure outside the browser, this # reduces CPU load (less interface layers and image copies # between the ray tracer and GUI display) #%matplotlib qt # TkOptiX GUI instead of matplotlib+NpOptix gives the best # performance plus all GUI actions (rotations, focus, etc.); # change import below and raytracer constructor name # (indicated in the code) #from plotoptix import TkOptiX from plotoptix import NpOptiX from plotoptix.utils import map_to_colors, simplex from plotoptix.materials import m_eye_normal_cos import matplotlib.pyplot as plt import numpy as np ###Output _____no_output_____ ###Markdown Make some data. The mesh size and simplex noise calculations are not very significant in this example. You can try much larger meshes. ###Code class params(): rx = (-1, 16); nx = 180 rz = (0, 10); nz = 100 x = np.linspace(rx[0], rx[1], nx) z = np.linspace(rz[0], rz[1], nz) X, Z = np.meshgrid(x, z) XZ = np.stack((X.flatten(), Z.flatten(), np.full(nx*nz, 1.0, dtype=np.float32))).T.reshape(nz, nx, 3) XZ = np.ascontiguousarray(XZ, dtype=np.float32) Y = simplex(XZ) ###Output _____no_output_____ ###Markdown **Setup callback functions** ###Code def init(rt): # configure scene and plot data at initialization rt.set_param( min_accumulation_step=16, # <- smooth out images, good for camera with depth # of field simulation (DoF), affects GPU load max_accumulation_frames=50 # <- max number of frames to compute when paused ) rt.setup_material("cos", m_eye_normal_cos) # setup a very fast-shaded material # (no secondary rays are calculated, # saves lots of GPU time) # standard gamma correction (2D postprocessing is almost for free on GPU) rt.set_float("tonemap_exposure", 0.8) rt.set_float("tonemap_gamma", 2.2) rt.add_postproc("Gamma") rt.set_background(0) rt.set_ambient(0.25) rt.set_data_2d("surface", params.Y, range_x=params.rx, range_z=params.rz, c=map_to_colors(params.Y, "OrRd"), mat="cos", # comment out to use default, diffuse material # (diffuse requires multiple secondary rays) make_normals=True) rt.setup_camera("cam1", cam_type="DoF", # comment out to use default, pinhole camera # (pinhole has no DoF and requires very few # accumulaton frames, for anti-aliasing only) eye=[7.5, 1.5, 18], aperture_radius=0.2, fov=20, focal_scale=0.62) rt.setup_light("light1", pos=[2, 5, 20], color=5, radius=4) # not used with m_eye_normal_cos def compute(rt, delta): # compute scene updates in parallel to the raytracing params.XZ += 0.03 * delta * np.array([-0.2, 1, 0.4], dtype=np.float32) params.Y = simplex(params.XZ, params.Y) # compute noise "in place" def update_data(rt): # update plot data (raytracing is finished here) rt.update_data_2d("surface", params.Y, c=map_to_colors(params.Y, "OrRd")) def update_image(rt): # update your image here (not used with TkOptiX) imgplot.set_data(rt._img_rgba) plt.draw() ###Output _____no_output_____ ###Markdown Prepare the output figure: ###Code width = 1500; height = 500 # width*height ~ rays_to_trace, directly affects GPU load! plt.figure(1, figsize=(9.5, 3.5)) plt.tight_layout() imgplot = plt.imshow(np.zeros((height, width, 4), dtype=np.uint8)) optix = NpOptiX( # change to TkOptiX for the lowest CPU load on_initialization=init, on_scene_compute=compute, on_rt_completed=update_data, on_launch_finished=update_image, # comment out if TkOptiX is used width=width, height=height, start_now=True) ###Output _____no_output_____ ###Markdown The `on_scene_compute` - `on_rt_completed` callbacks can be paused/resumed. Raytracing is still running, until the `max_accumulation_frames` is reached. You can run the two following cells multiple times and see how the image is smoothed out during pause. ###Code optix.pause_compute() optix.resume_compute() ###Output _____no_output_____ ###Markdown Stop all (raytracing cannot be restarted from that point): ###Code optix.close() ###Output _____no_output_____ ###Markdown Animated surface plot y=f(x,z)This example shows how to: - create a surface plot - animate updates of the plot data - optimize compute load ###Code # use "notebook" option to display figure between cells # in the browser window - heaviest to the CPU %matplotlib notebook # use "qt" option to open figure outside the browser, this # reduces CPU load (less interface layers and image copies # between the ray tracer and GUI display) #%matplotlib qt # TkOptiX GUI instead of matplotlib+NpOptix gives the best # performance plus all GUI actions (rotations, focus, etc.); # change import below and raytracer constructor name # (indicated in the code) #from plotoptix import TkOptiX from plotoptix import NpOptiX from plotoptix.utils import map_to_colors, simplex from plotoptix.materials import m_eye_normal_cos import matplotlib.pyplot as plt import numpy as np ###Output _____no_output_____ ###Markdown Make some data. The mesh size and simplex noise calculations are not very significant in this example. You can try much larger meshes. ###Code class params(): rx = (-1, 16); nx = 180 rz = (0, 10); nz = 100 x = np.linspace(rx[0], rx[1], nx) z = np.linspace(rz[0], rz[1], nz) X, Z = np.meshgrid(x, z) XZ = np.stack((X.flatten(), Z.flatten(), np.full(nx*nz, 1.0, dtype=np.float32))).T.reshape(nz, nx, 3) XZ = np.ascontiguousarray(XZ, dtype=np.float32) Y = simplex(XZ) ###Output _____no_output_____ ###Markdown **Setup callback functions** ###Code def init(rt): # configure scene and plot data at initialization rt.set_param( min_accumulation_step=16, # <- smooth out images, good for camera with depth # of field simulation (DoF), affects GPU load max_accumulation_frames=50 # <- max number of frames to compute when paused ) rt.setup_material("cos", m_eye_normal_cos) # setup a very fast-shaded material # (no secondary rays are calculated, # saves lots of GPU time) # standard gamma correction (2D postprocessing is almost for free on GPU) rt.set_float("tonemap_exposure", 0.8) rt.set_float("tonemap_gamma", 2.2) rt.add_postproc("Gamma") rt.set_background(0) rt.set_ambient(0.25) rt.set_data_2d("surface", params.Y, range_x=params.rx, range_z=params.rz, c=map_to_colors(params.Y, "OrRd"), mat="cos", # comment out to use default, diffuse material # (diffuse requires multiple secondary rays) make_normals=True) rt.setup_camera("cam1", cam_type="DoF", # comment out to use default, pinhole camera # (pinhole has no DoF and requires very few # accumulaton frames, for anti-aliasing only) eye=[7.5, 1.5, 18], aperture_radius=0.2, fov=20, focal_scale=0.62) rt.setup_light("light1", pos=[2, 5, 20], color=5, radius=4) # not used with m_eye_normal_cos def compute(rt, delta): # compute scene updates in parallel to the raytracing params.XZ += 0.03 * delta * np.array([-0.2, 1, 0.4], dtype=np.float32) params.Y = simplex(params.XZ, params.Y) # compute noise "in place" def update_data(rt): # update plot data (raytracing is finished here) rt.update_data_2d("surface", pos=params.Y, c=map_to_colors(params.Y, "OrRd")) def update_image(rt): # update your image here (not used with TkOptiX) imgplot.set_data(rt._img_rgba) plt.draw() ###Output _____no_output_____ ###Markdown Prepare the output figure: ###Code width = 1500; height = 500 # width*height ~ rays_to_trace, directly affects GPU load! plt.figure(1, figsize=(5.5, 2)) plt.tight_layout() imgplot = plt.imshow(np.zeros((height, width, 4), dtype=np.uint8)) optix = NpOptiX( # change to TkOptiX for the lowest CPU load on_initialization=init, on_scene_compute=compute, on_rt_completed=update_data, on_launch_finished=update_image, # comment out if TkOptiX is used width=width, height=height, start_now=True) ###Output _____no_output_____ ###Markdown The `on_scene_compute` - `on_rt_completed` callbacks can be paused/resumed. Raytracing is still running, until the `max_accumulation_frames` is reached. You can run the two following cells multiple times and see how the image is smoothed out during pause. ###Code optix.pause_compute() optix.resume_compute() ###Output _____no_output_____ ###Markdown Stop all (raytracing cannot be restarted from that point): ###Code optix.close() ###Output _____no_output_____
files/notebooks/Macro_Prediction_Models/addingHourlyTraffic.ipynb
###Markdown ###Code import pandas as pd import tqdm import datetime import pickle from ast import literal_eval import numpy as np import calendar import os #initialization Vehicle_Type = 'Electric_Vehicles' Vehicle_ID = [751] dateFormat = '%Y-%m-%d' datetimeFormat = '%Y-%m-%d %H:%M:%S:%f' ###Output _____no_output_____ ###Markdown Loading data for mapping OSM segments to TMC IDs ###Code # load the OSM_TMC_MAP OSM_TMC_MAP_PATH = os.path.join(os.getcwd(), "data", "osm_tmc_matching_ids.pickle") with open(OSM_TMC_MAP_PATH, 'rb') as handle: OSM_TMC_MAP = pickle.load(handle) ###Output _____no_output_____ ###Markdown Loading Hourly Traffic Data for Chattanooga ###Code df_TMC = pd.read_csv(f'Chattanooga_TrafficData_August19_July20.csv') print(df_TMC.columns) df_TMC=df_TMC.dropna() Columns = ['Speed_Real','Speed_FreeFlow','Speed_JF','Hour'] for col in df_TMC.columns: if col in Columns: df_TMC[col] = df_TMC[col].apply(literal_eval) TMC_Id_for_Matching = list(df_TMC.TMC) Day = list(df_TMC.Day) Hour = list(df_TMC.Hour) Date = list(df_TMC.Date) Hourly_Speed_Real = list(df_TMC.Speed_Real) Hourly_Speed_Freeflow = list(df_TMC.Speed_FreeFlow) Hourly_Jam_Factor = list(df_TMC.Speed_JF) def findDay(year, month, day): dayNumber = calendar.weekday(year, month, day) days = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"] return (dayNumber) ###Output _____no_output_____ ###Markdown Mapping OSM to TMC ID ###Code Vehicle_Name = f'BYD_751' print(f'Processing {Vehicle_Name}') df = pd.read_csv(f'{Vehicle_Name}_with_Elevation_Weather.csv', low_memory=False) print(len(df)) OSM_Feature = list(df.OSM_Feature) TMC_Id = [] OSM = [] Found_OSM = [] Not_Found = 0 for i in OSM_Feature: i = str(i) temp = [] for key, value in OSM_TMC_MAP.items(): if i == key: temp.append(value) if len(temp) != 0: for j in temp: Found_OSM.append(i) TMC_Id.append(j) else: Not_Found += 1 OSM.append(i) TMC_Id.append(0) print(f'Total Segments = {len(TMC_Id)}\n TMC-ID not found = {Not_Found}') print(f'Total Unique OSM = {len(set(OSM_Feature))}\n Mapped to TMC = {len(set(Found_OSM))} \n') TMC_Id = np.array(TMC_Id) df['TMC_Id'] = TMC_Id ###Output _____no_output_____ ###Markdown Breaking up TimeStamps into Time of Day and Day of Week ###Code Time = df.TimeStart Lat_ViriCity = df.Initial_recorded_Latitude Long_ViriCity = df.Initial_recorded_Longitude Date_from_ViriCity = [] Hour_from_ViriCity = [] Day_of_Week = [] Time_of_Day = [] for i in Time: timestamp = i TD = datetime.datetime.strptime(timestamp, datetimeFormat) Date_from_ViriCity.append(TD.date()) year = TD.year month = TD.month day = TD.day Day_of_Week.append(findDay(year, month, day)) Time_of_Day.append(TD.hour) df['Day_of_Week'] = Day_of_Week df['Time_of_Day'] = Time_of_Day ###Output _____no_output_____ ###Markdown Matching with TMC and adding Hourly Traffic Data ###Code TMC_Id = list(df.TMC_Id) Day_of_Week = list(df.Day_of_Week) Time_of_Day = list(df.Time_of_Day) TimeStart = list(df.TimeStart) Speed_Ratio = [] Jam_Factor = [] for count in tqdm.tqdm(range(len(TMC_Id))): tmc = TMC_Id[count] indi_tmc = [] timestamp = TimeStart[count] TD = datetime.datetime.strptime(timestamp, datetimeFormat) date_viricity = TD.date() hour_viricity = TD.hour if len(tmc) > 2: tmc = tmc.replace("', '", ",") tmc = tmc.replace("'", "") tmc = tmc.replace("[", "") tmc = tmc.replace("]", "") tmc = tmc.split(',') for j in tmc: indi_tmc.append(j) if len(indi_tmc)>0: for indi in indi_tmc: tag = 0 tmp_JF = [] tmp_SR = [] for i in range(len(TMC_Id_for_Matching)): date_time_str = Date[i] TD = datetime.datetime.strptime(date_time_str, '%Y-%m-%d') Date_Traffic = TD.date() hour_Traffic = TD.hour if indi==TMC_Id_for_Matching[i] and date_viricity==Date_Traffic: hour_list=Hour[i] JF = Hourly_Jam_Factor[i] RS = Hourly_Speed_Real[i] FF = Hourly_Speed_Freeflow[i] for h in hour_list: if h==hour_viricity: index = hour_list.index(h) tmp_JF.append(JF[index]) ratio = RS[index]/FF[index] tmp_SR.append(ratio) tag = 1 if tag != 1: tmp_SR.append(1) tmp_JF.append(0) Jam_Factor.append(sum(tmp_JF)/len(tmp_JF)) Speed_Ratio.append(sum(tmp_SR)/len(tmp_SR)) else: Speed_Ratio.append(1) Jam_Factor.append(0) else: Speed_Ratio.append(1) Jam_Factor.append(0) df['Speed_Ratio'] = Speed_Ratio df['Jam_Factor'] = Jam_Factor df.to_csv(f'{Vehicle_Name}_with_Elevation_Weather_Traffic_Day_Week.csv',index=False) ###Output _____no_output_____
benchmarking/Convex_Function_1D_Parallel_5.ipynb
###Markdown Example of optimizing a convex function Goal is to test the objective values found by Mango Search space size: 10,000 Number of iterations to try: 40 Random domain size: 5000 Benchmarking Parallel Evaluation ###Code from mango.tuner import Tuner def get_param_dict(): param_dict = { 'x': range(-5000, 5000) } return param_dict def objfunc(args_list): results = [] for hyper_par in args_list: x = hyper_par['x'] result = -(x**2) results.append(result) return results def get_conf(): conf = dict() conf['batch_size'] = 5 conf['initial_random'] = 5 conf['num_iteration'] = 12 conf['domain_size'] = 5000 return conf def get_optimal_x(): param_dict = get_param_dict() conf = get_conf() tuner = Tuner(param_dict, objfunc,conf) results = tuner.maximize() return results optimal_X = [] Results = [] num_of_tries = 100 for i in range(num_of_tries): results = get_optimal_x() Results.append(results) optimal_X.append(results['best_params']['x']) print(i,":",results['best_params']['x']) ###Output 0 : 91 1 : 0 2 : 1261 3 : 0 4 : 0 5 : 0 6 : 0 7 : 0 8 : 0 9 : 0 10 : 0 11 : 0 12 : 0 13 : 0 14 : 0 15 : 0 16 : 292 17 : 0 18 : 0 19 : 0 20 : 0 21 : 0 22 : 0 23 : 0 24 : 0 25 : 0 26 : 0 27 : 0 28 : 0 29 : -529 30 : 0 31 : 0 32 : -1567 33 : 0 34 : 0 35 : 0 36 : 0 37 : 0 38 : 0 39 : 0 40 : 0 41 : 497 42 : 0 43 : 1 44 : 0 45 : 0 46 : 0 47 : 0 48 : 0 49 : 0 50 : 0 51 : 0 52 : 0 53 : 0 54 : 0 55 : -207 56 : 0 57 : 0 58 : 0 59 : 0 60 : -249 61 : 0 62 : 0 63 : 0 64 : 0 65 : 0 66 : 1337 67 : 0 68 : 0 69 : 0 70 : -1 71 : 0 72 : 1 73 : 0 74 : -190 75 : 0 76 : 0 77 : 0 78 : 0 79 : 0 80 : 0 81 : -7 82 : 0 83 : 405 84 : -1 85 : 0 86 : 0 87 : 0 88 : 0 89 : -119 90 : 295 91 : -213 92 : 715 93 : 1 94 : 0 95 : -641 96 : -905 97 : 0 98 : 0 99 : 0 ###Markdown Plotting the Parallel run results ###Code import numpy as np import matplotlib.pyplot as plt fig = plt.figure(figsize=(10,10)) n, bins, patches = plt.hist(optimal_X, 20, facecolor='g', alpha=0.75) def autolabel(rects): """ Attach a text label above each bar displaying its height """ for rect in rects: height = rect.get_height() plt.text(rect.get_x() + rect.get_width()/2., 1.0*height, '%d' % int(height), ha='center', va='bottom',fontsize=15) plt.xlabel('X-Value',fontsize=25) plt.ylabel('Number of Occurence',fontsize=25) plt.title('Optimal Objective',fontsize=20) plt.xticks(fontsize=20) plt.yticks(fontsize=20) plt.grid(True) autolabel(patches) plt.show() ###Output _____no_output_____ ###Markdown Parallel with different number of executions batch sizes for iterations 10 ###Code from mango.tuner import Tuner def get_param_dict(): param_dict = { 'x': range(-5000, 5000) } return param_dict def objfunc(args_list): results = [] for hyper_par in args_list: x = hyper_par['x'] result = -(x**2) results.append(result) return results def get_conf_1(): conf = dict() conf['batch_size'] = 1 conf['initial_random'] = 5 conf['num_iteration'] = 10 conf['domain_size'] = 5000 return conf def get_conf_3(): conf = dict() conf['batch_size'] = 3 conf['initial_random'] = 5 conf['num_iteration'] = 10 conf['domain_size'] = 5000 return conf def get_conf_5(): conf = dict() conf['batch_size'] = 5 conf['initial_random'] = 5 conf['num_iteration'] = 10 conf['domain_size'] = 5000 return conf def get_conf_10(): conf = dict() conf['batch_size'] = 10 conf['initial_random'] = 5 conf['num_iteration'] = 10 conf['domain_size'] = 5000 return conf def get_optimal_x(): param_dict = get_param_dict() conf_1 = get_conf_1() tuner_1 = Tuner(param_dict, objfunc,conf_1) conf_3 = get_conf_3() tuner_3 = Tuner(param_dict, objfunc,conf_3) conf_5 = get_conf_5() tuner_5 = Tuner(param_dict, objfunc,conf_5) conf_10 = get_conf_10() tuner_10 = Tuner(param_dict, objfunc,conf_10) results_1 = tuner_1.maximize() results_3 = tuner_3.maximize() results_5 = tuner_5.maximize() results_10 = tuner_10.maximize() return results_1, results_3, results_5 , results_10 Store_Optimal_X = [] Store_Results = [] num_of_tries = 100 for i in range(num_of_tries): results_1, results_3, results_5 , results_10 = get_optimal_x() Store_Results.append([results_1, results_3, results_5 , results_10]) Store_Optimal_X.append([results_1['best_params']['x'],results_3['best_params']['x'],results_5['best_params']['x'],results_10['best_params']['x']]) print(i,":",[results_1['best_params']['x'],results_3['best_params']['x'],results_5['best_params']['x'],results_10['best_params']['x']]) import numpy as np Store_Optimal_X=np.array(Store_Optimal_X) import numpy as np import matplotlib.pyplot as plt fig = plt.figure(figsize=(10,10)) n, bins, patches = plt.hist(Store_Optimal_X[:,0], 20, facecolor='g', alpha=0.75) def autolabel(rects): """ Attach a text label above each bar displaying its height """ for rect in rects: height = rect.get_height() plt.text(rect.get_x() + rect.get_width()/2., 1.0*height, '%d' % int(height), ha='center', va='bottom',fontsize=15) plt.xlabel('X-Value',fontsize=25) plt.ylabel('Number of Occurence',fontsize=25) plt.title('Optimal Objective: Batch 1',fontsize=20) plt.xticks(fontsize=20) plt.yticks(fontsize=20) plt.grid(True) autolabel(patches) plt.show() import numpy as np import matplotlib.pyplot as plt fig = plt.figure(figsize=(10,10)) n, bins, patches = plt.hist(Store_Optimal_X[:,1], 20, facecolor='g', alpha=0.75) def autolabel(rects): """ Attach a text label above each bar displaying its height """ for rect in rects: height = rect.get_height() plt.text(rect.get_x() + rect.get_width()/2., 1.0*height, '%d' % int(height), ha='center', va='bottom',fontsize=15) plt.xlabel('X-Value',fontsize=25) plt.ylabel('Number of Occurence',fontsize=25) plt.title('Optimal Objective: Batch 3',fontsize=20) plt.xticks(fontsize=20) plt.yticks(fontsize=20) plt.grid(True) autolabel(patches) plt.show() import numpy as np import matplotlib.pyplot as plt fig = plt.figure(figsize=(10,10)) n, bins, patches = plt.hist(Store_Optimal_X[:,2], 20, facecolor='g', alpha=0.75) def autolabel(rects): """ Attach a text label above each bar displaying its height """ for rect in rects: height = rect.get_height() plt.text(rect.get_x() + rect.get_width()/2., 1.0*height, '%d' % int(height), ha='center', va='bottom',fontsize=15) plt.xlabel('X-Value',fontsize=25) plt.ylabel('Number of Occurence',fontsize=25) plt.title('Optimal Objective: Batch 5',fontsize=20) plt.xticks(fontsize=20) plt.yticks(fontsize=20) plt.grid(True) autolabel(patches) plt.show() import numpy as np import matplotlib.pyplot as plt fig = plt.figure(figsize=(10,10)) n, bins, patches = plt.hist(Store_Optimal_X[:,3], 20, facecolor='g', alpha=0.75) def autolabel(rects): """ Attach a text label above each bar displaying its height """ for rect in rects: height = rect.get_height() plt.text(rect.get_x() + rect.get_width()/2., 1.0*height, '%d' % int(height), ha='center', va='bottom',fontsize=15) plt.xlabel('X-Value',fontsize=25) plt.ylabel('Number of Occurence',fontsize=25) plt.title('Optimal Objective: Batch 10',fontsize=20) plt.xticks(fontsize=20) plt.yticks(fontsize=20) plt.grid(True) autolabel(patches) plt.show() ###Output _____no_output_____
getBERT/getBERT_book.ipynb
###Markdown ###Code ''' For use on local runtime. How to run: - Download the appropriate BERT model from: https://github.com/google-research/bert (here BERT-Base). - Download the code to your system path from the same repository, by running the following command in the command window: git clone https://github.com/google-research/bert - Create a virtual environment (e.g. using anaconda), using Python 3.5. - Install tensorflow in your virtual environment (pip install tensorflow==1.15). - Start a local runtime in your virtual environment using https://research.google.com/colaboratory/local-runtimes.html - Make sure the BERT model is in your system path (here named 'uncased_L-12_H-768_A-12'). - Make sure all data is available and update the paths at the end of this code. Adapted from Trusca, Wassenberg, Frasincar and Dekker (2020) for use on a local runtime Truşcǎ M.M., Wassenberg D., Frasincar F., Dekker R. (2020) A Hybrid Approach for Aspect-Based Sentiment Analysis Using Deep Contextual Word Embeddings and Hierarchical Attention. In: Bielikova M., Mikkonen T., Pautasso C. (eds) Web Engineering. ICWE 2020. Lecture Notes in Computer Science, vol 12128. Springer, Cham. https://doi.org/10.1007/978-3-030-50578-3_25 https://github.com/mtrusca/HAABSA_PLUS_PLUS ''' from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys sys.path.append('bert/') import codecs import collections import json import re import os import pprint import numpy as np import tensorflow as tf import modeling import tokenization BERT_PRETRAINED_DIR = 'uncased_L-12_H-768_A-12' LAYERS = [-1, -2, -3, -4] NUM_TPU_CORES = 8 MAX_SEQ_LENGTH = 87 BERT_CONFIG = BERT_PRETRAINED_DIR + '/bert_config.json' CHKPT_DIR = BERT_PRETRAINED_DIR + '/bert_model.ckpt' VOCAB_FILE = BERT_PRETRAINED_DIR + '/vocab.txt' INIT_CHECKPOINT = BERT_PRETRAINED_DIR + '/bert_model.ckpt' BATCH_SIZE = 128 class InputExample(object): def __init__(self, unique_id, text_a, text_b=None): self.unique_id = unique_id self.text_a = text_a self.text_b = text_b class InputFeatures(object): """A single set of features of data.""" def __init__(self, unique_id, tokens, input_ids, input_mask, input_type_ids): self.unique_id = unique_id self.tokens = tokens self.input_ids = input_ids self.input_mask = input_mask self.input_type_ids = input_type_ids def input_fn_builder(features, seq_length): """Creates an `input_fn` closure to be passed to TPUEstimator.""" all_unique_ids = [] all_input_ids = [] all_input_mask = [] all_input_type_ids = [] for feature in features: all_unique_ids.append(feature.unique_id) all_input_ids.append(feature.input_ids) all_input_mask.append(feature.input_mask) all_input_type_ids.append(feature.input_type_ids) def input_fn(params): """The actual input function.""" batch_size = params["batch_size"] num_examples = len(features) # This is for demo purposes and does NOT scale to large data sets. We do # not use Dataset.from_generator() because that uses tf.py_func which is # not TPU compatible. The right way to load data is with TFRecordReader. d = tf.data.Dataset.from_tensor_slices({ "unique_ids": tf.constant(all_unique_ids, shape=[num_examples], dtype=tf.int32), "input_ids": tf.constant( all_input_ids, shape=[num_examples, seq_length], dtype=tf.int32), "input_mask": tf.constant( all_input_mask, shape=[num_examples, seq_length], dtype=tf.int32), "input_type_ids": tf.constant( all_input_type_ids, shape=[num_examples, seq_length], dtype=tf.int32), }) d = d.batch(batch_size=batch_size, drop_remainder=False) return d return input_fn def model_fn_builder(bert_config, init_checkpoint, layer_indexes, use_tpu, use_one_hot_embeddings): """Returns `model_fn` closure for TPUEstimator.""" def model_fn(features, labels, mode, params): # pylint: disable=unused-argument """The `model_fn` for TPUEstimator.""" unique_ids = features["unique_ids"] input_ids = features["input_ids"] input_mask = features["input_mask"] input_type_ids = features["input_type_ids"] model = modeling.BertModel( config=bert_config, is_training=False, input_ids=input_ids, input_mask=input_mask, token_type_ids=input_type_ids, use_one_hot_embeddings=use_one_hot_embeddings) if mode != tf.estimator.ModeKeys.PREDICT: raise ValueError("Only PREDICT modes are supported: %s" % (mode)) tvars = tf.trainable_variables() scaffold_fn = None (assignment_map, initialized_variable_names) = modeling.get_assignment_map_from_checkpoint( tvars, init_checkpoint) if use_tpu: def tpu_scaffold(): tf.train.init_from_checkpoint(init_checkpoint, assignment_map) return tf.train.Scaffold() scaffold_fn = tpu_scaffold else: tf.train.init_from_checkpoint(init_checkpoint, assignment_map) tf.logging.info("**** Trainable Variables ****") for var in tvars: init_string = "" if var.name in initialized_variable_names: init_string = ", *INIT_FROM_CKPT*" tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape, init_string) all_layers = model.get_all_encoder_layers() predictions = { "unique_id": unique_ids, } for (i, layer_index) in enumerate(layer_indexes): predictions["layer_output_%d" % i] = all_layers[layer_index] output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, predictions=predictions, scaffold_fn=scaffold_fn) return output_spec return model_fn def convert_examples_to_features(examples, seq_length, tokenizer): """Loads a data file into a list of `InputBatch`s.""" features = [] for (ex_index, example) in enumerate(examples): tokens_a = tokenizer.tokenize(example.text_a) tokens_b = None if example.text_b: tokens_b = tokenizer.tokenize(example.text_b) if tokens_b: # Modifies `tokens_a` and `tokens_b` in place so that the total # length is less than the specified length. # Account for [CLS], [SEP], [SEP] with "- 3" _truncate_seq_pair(tokens_a, tokens_b, seq_length - 3) else: # Account for [CLS] and [SEP] with "- 2" if len(tokens_a) > seq_length - 2: tokens_a = tokens_a[0:(seq_length - 2)] tokens = [] input_type_ids = [] tokens.append("[CLS]") input_type_ids.append(0) for token in tokens_a: tokens.append(token) input_type_ids.append(0) tokens.append("[SEP]") input_type_ids.append(0) if tokens_b: for token in tokens_b: tokens.append(token) input_type_ids.append(1) tokens.append("[SEP]") input_type_ids.append(1) input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. while len(input_ids) < seq_length: input_ids.append(0) input_mask.append(0) input_type_ids.append(0) assert len(input_ids) == seq_length assert len(input_mask) == seq_length assert len(input_type_ids) == seq_length if ex_index < 5: tf.logging.info("*** Example ***") tf.logging.info("unique_id: %s" % (example.unique_id)) tf.logging.info("tokens: %s" % " ".join( [tokenization.printable_text(x) for x in tokens])) tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask])) tf.logging.info( "input_type_ids: %s" % " ".join([str(x) for x in input_type_ids])) features.append( InputFeatures( unique_id=example.unique_id, tokens=tokens, input_ids=input_ids, input_mask=input_mask, input_type_ids=input_type_ids)) return features def _truncate_seq_pair(tokens_a, tokens_b, max_length): """Truncates a sequence pair in place to the maximum length.""" # This is a simple heuristic which will always truncate the longer sequence # one token at a time. This makes more sense than truncating an equal percent # of tokens from each, since if one sequence is very short then each token # that's truncated likely contains more information than a longer sequence. while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop() def read_sequence(input_sentences): examples = [] unique_id = 0 for sentence in input_sentences: line = tokenization.convert_to_unicode(sentence) examples.append(InputExample(unique_id=unique_id, text_a=line)) unique_id += 1 return examples def get_features(input_text, dim=768): tf.logging.set_verbosity(tf.logging.ERROR) layer_indexes = LAYERS bert_config = modeling.BertConfig.from_json_file(BERT_CONFIG) tokenizer = tokenization.FullTokenizer( vocab_file=VOCAB_FILE, do_lower_case=True) examples = read_sequence(input_text) features = convert_examples_to_features( examples=examples, seq_length=MAX_SEQ_LENGTH, tokenizer=tokenizer) unique_id_to_feature = {} for feature in features: unique_id_to_feature[feature.unique_id] = feature model_fn = model_fn_builder( bert_config=bert_config, init_checkpoint=INIT_CHECKPOINT, layer_indexes=layer_indexes, use_tpu=False, use_one_hot_embeddings=True) # If TPU is not available, this will fall back to normal Estimator on CPU # or GPU. estimator = tf.contrib.tpu.TPUEstimator( use_tpu=False, model_fn=model_fn, config=tf.contrib.tpu.RunConfig(), predict_batch_size=BATCH_SIZE, train_batch_size=BATCH_SIZE) input_fn = input_fn_builder( features=features, seq_length=MAX_SEQ_LENGTH) # Get features for result in estimator.predict(input_fn, yield_single_examples=True): unique_id = int(result["unique_id"]) feature = unique_id_to_feature[unique_id] output = collections.OrderedDict() for (i, token) in enumerate(feature.tokens): layers = [] for (j, layer_index) in enumerate(layer_indexes): layer_output = result["layer_output_%d" % j] layer_output_flat = np.array([x for x in layer_output[i:(i + 1)].flat]) layers.append(layer_output_flat) output[token] = sum(layers)[:dim] return output # When it takes too long, data can be split in multiple subfiles such as in # lines 5-30 lines = open('dataBERT/raw_data_book_2019.txt', errors='replace').readlines() ''' for j in range(0, len(lines), 150): with open("dataBERT/BERT_base_laptop_2014_" + str(round(j/150)) + ".txt", 'w') as f: for i in range(j, j + 150, 3): # Was 0*3, 2530*3, 3 print("sentence: " + str(i / 3) + " out of " + str(len(lines) / 3) + " in " + "raw_data;") target = lines[i + 1].lower().split() words = lines[i].lower().split() words_l, words_r = [], [] flag = True for word in words: if word == '$t$': flag = False continue if flag: words_l.append(word) else: words_r.append(word) sentence = " ".join(words_l + target + words_r) print(sentence) embeddings = get_features([sentence]) for key, value in embeddings.items(): f.write('\n%s ' % key) for v in value: f.write('%s ' % v) ''' with open("dataBERT/BERT_base_book_2019.txt", 'w') as f: for i in range(0, len(lines), 3): # Was 0*3, 2530*3, 3 print("sentence: " + str(i / 3) + " out of " + str(len(lines) / 3) + " in " + "raw_data;") target = lines[i + 1].lower().split() words = lines[i].lower().split() words_l, words_r = [], [] flag = True for word in words: if word == '$t$': flag = False continue if flag: words_l.append(word) else: words_r.append(word) sentence = " ".join(words_l + target + words_r) print(sentence) embeddings = get_features([sentence]) for key, value in embeddings.items(): f.write('\n%s ' % key) for v in value: f.write('%s ' % v) ###Output _____no_output_____
hacks/IPython Parallel and R.ipynb
###Markdown IPy Parallel and RIn this notebook, we'll use IPython.parallel (IPP) and rpy2 as a quick-and-dirty way of parallelizing work in R. We'll use a cluster of IPP engines running on the same VM as the notebook server to demonstarate. We'll also need to install [rpy2](http://rpy.sourceforge.net/) before we can start.`!pip install rpy2` Start Local IPP EnginesFirst we must start a cluster of IPP engines. We can do this using the *Cluster* tab of the Jupyter dashboard. Or we can do it programmatically in the notebook. ###Code from IPython.html.services.clusters.clustermanager import ClusterManager cm = ClusterManager() ###Output _____no_output_____ ###Markdown We have to list the profiles before we can start anything, even if we know the profile name. ###Code cm.list_profiles() ###Output _____no_output_____ ###Markdown For our demo purposes, we'll just use the default profile which starts a cluster on the local machine for us. ###Code cm.start_cluster('default') ###Output _____no_output_____ ###Markdown After running the command above, we need to pause for a few moments to let all the workers come up. (Breathe and count 10 ... 9 ... 8 ...) Now we can continue to create a DirectView that can talk to all of the workers. (If you get an error, breathe, count so more, and try again in a few.) ###Code import IPython.parallel client = IPython.parallel.Client() dv = client[:] ###Output _____no_output_____ ###Markdown In my case, I have 8 CPUs so I get 8 workers by default. Your number will likely differ. ###Code len(dv) ###Output _____no_output_____ ###Markdown To ensure the workers are functioning, we can ask each one to run the bash command `echo $$` to print a PID. ###Code %%px !echo $$ ###Output [stdout:0] 12973 [stdout:1] 12974 [stdout:2] 12978 [stdout:3] 12980 [stdout:4] 12977 [stdout:5] 12975 [stdout:6] 12976 [stdout:7] 12979 ###Markdown Use R on the EnginesNext, we'll tell each engine to load the `rpy2.ipython` extension. In our local cluster, this step is easy because all of the workers are running in the same environment as the notebook server. If the engines were remote, we'd have many more installs to do. ###Code %%px %load_ext rpy2.ipython ###Output _____no_output_____ ###Markdown Now we can tell every engine to run R code using the `%%R` (or `%R`) magic. Let's sample 50 random numbers from a normal distribution. ###Code %%px %%R x <- rnorm(50) summary(x) ###Output _____no_output_____ ###Markdown Pull it Back to PythonWith our hack, we can't simply pull the R vectors back to the local notebook. (IPP can't pickle them.) But we can convert them to Python and pull the resulting objects back. ###Code %%px %Rpull x x = list(x) x = dv.gather('x', block=True) ###Output _____no_output_____ ###Markdown We should get 50 elements per engine. ###Code assert len(x) == 50 * len(dv) ###Output _____no_output_____ ###Markdown Clean Up the EnginesWhen we're done, we can clean up any engines started using the code at the top of this notebook with the following call. ###Code cm.stop_cluster('default') ###Output _____no_output_____
MachineLearning_9/08_xgboost_lightgbm/rossmann-store-sales/.ipynb_checkpoints/Rossmann_Store_Sales_competition_mine-checkpoint.ipynb
###Markdown 引入所需库 ###Code import pandas as pd import datetime import numpy as np import scipy as sp import csv import os import xgboost as xgb import itertools import operator import warnings warnings.filterwarnings("ignore") from sklearn.preprocessing import StandardScaler, LabelEncoder from sklearn.base import TransformerMixin from sklearn.model_selection import cross_validate from matplotlib import pylab as plt plot = True goal = 'Sales' myid = 'Id' ###Output _____no_output_____ ###Markdown 定义一些变换和评判准则 ###Code def ToWeight(y): w = np.zeros(y.shape,dtype=float) ind = y !=0 w[ind] = 1./(y[ind]**2) return w def rmspe(yhat,y): w = ToWeight(y) np.sqrt(np.mean(w * (y - yhat)**2)) return rmspe def rmspe_xg(yhat,y): # y = y.values y = y.get_label() y = np.exp(y) - 1 yhat = np.exp(yhat) - 1 w = ToWeight(y) rmspe = np.sqrt(np.mean(w * (y - yhat)**2)) return "rmspe",rmspe store = pd.read_csv('store.csv') store.head() train_df = pd.read_csv('train.csv') train_df.head() test_df = pd.read_csv('test.csv') test_df.head() ###Output _____no_output_____ ###Markdown 加在数据 ###Code def load_data(): """ 加在数据, 设定数值型和非数值型 """ store = pd.read_csv('store.csv') train_org = pd.read_csv('train.csv',dtype={'StateHoliday':pd.np.string_}) test_org = pd.read_csv('test.csv',dtype={'StateHoliday':pd.np.string_}) train = pd.merge(train_org,store,on='Store',how='left') test = pd.merge(test_org,store,on='Store',how='left') features = test.columns.tolist() numerics = ['int16','int32','int64','float16','float32','float64'] features_numeric = test.select_dtypes(include=numerics).cloumns.tolist() features_non_numeric = [f for f in features if f not in features_numeric] return(train,test,features,features_non_numeric) ###Output _____no_output_____ ###Markdown 数据与特征处理 ###Code def process_data(train,test,features,features_non_numeric): """ Feature engineering and selection """ ## Feature engineering train = train[train['Sales'] > 0] for data in [train,test]: # year month day data['year'] = data.Date.apply(lambda x: x.split('-')[0]) data['year'] = data['year'].astype(float) data['month'] = data.Date.apply(lambda x: x.split('-')[1]) data['month'] = data['moth'].astype(float) data['day'] = data.Date.apply(lambda x: x.split('-')[2]) data['day'] = data['data'].astype(float) # promo interval "Jan,APr,Jul,Oct" data['promojan'] = data.PromoInterval.apply(lambda x: 0 if isinstance(x, float) else 1 if "Jan" in x else 0) # TypeError: data['promofed'] = data.PromoInterval.apply(lambda x: 0 if isinstance(x,float) else 1 if "Feb" in x else 0) data['promomar'] = data.PromoInterval.apply(lambda x: 0 if isinstance(x,float) else 1 if "Mar" in x else 0) data['promomapr'] = data.PromoInterval.apply(lambda x: 0 if isinstance(x,float) else 1 if "Apr" in x else 0) data['promomay'] = data.PromoInterval.apply(lambda x: 0 if isinstance(x,float) else 1 if "May" in x else 0) data['promomjun'] = data.PromoInterval.apply(lambda x: 0 if isinstance(x,float) else 1 if "Jun" in x else 0) data['promojul'] = data.PromoInterval.apply(lambda x: 0 if isinstance(x,float) else 1 if "Jul" in x else 0) data['promoaug'] = data.PromoInterval.apply(lambda x: 0 if isinstance(x,float) esle 1 if "Aug" in x else 0) data['promosep'] = data.PromoInterval.apply(lambda x: 0 if isinstance(x,float) else 1 if "Sep" in x else 0) data['promooct'] = data.PromoInterval.apply(lambda x: 0 if isinstance(x,float) else 1 if "Oct" in x else 0) data['promonov'] = data.PromoInterval.apply(lambda x: 0 if isinstance(x,float) else 1 if "Nov" in x else 0) data['promodec'] = data.PromoInterval.apply(lambda x: 0 if isinstance(x,float) esle 1 if "Dec" in x else 0) # Features set noisy_features = [myid,'Date'] features = [c for c in features if c not in noisy_features] features_non_numeric = [c for c in features_non_numeric if c not in noisy_features] features.extend(['year','month','day']) # Fill NA class DataFrameImputer(transformerMixin): def __init__(self): ###Output _____no_output_____
Capitulo_1/.ipynb_checkpoints/Capitulo1-checkpoint.ipynb
###Markdown 1.1 Marcos de referencia y sistemas de coordenadas ###Code # Definimos marcos de referencia con sympy.physics.mechanics a=ReferenceFrame('A') b=ReferenceFrame('B') c=ReferenceFrame('C') # Cada marco de referencia automaticamente define un sistema de coordenadas. # Observe que la notación en sympy es x,y,z en vez de 1,2,3. # Podemos verificar la definición de los vectores unitarios con el producto cruz (pag 2.) c.z.cross(c.x) ###Output _____no_output_____ ###Markdown 1.2 Variables de movimiento ###Code #Para el ejemplo de la atracción de parque (Figura 3) en vez de definir los marcos de referencia # por separado podemos utilizar cada marco de referencia para definir el siguiente y vincularlos # a través de una rotación relativa, definida por las variables de movimiento (q1,q2,q3). # Definimos primero el marco A (base de la atracción) a=ReferenceFrame('A') # Ahora los symbolos para las variables de movimiento q1,q2=symbols('q1,q2') # Definimos b rotando q1 respecto a a.x b=a.orientnew('B','Axis',(q1,a.x)) # Definimos c rotando q2 respecto a b.z c=b.orientnew('C','Axis',(q2,b.z)) # De esta manera quedan definidas las coordenadas como propone el ejemplo. Esto lo podemos verificar # facilmente: print(a.x==b.x) #True print(c.z==c.z) #True print(a.x==b.y) #False ###Output True True False ###Markdown 1.3 Derivadas de vectores ###Code # Implemente el robot SCARA de la Figura 4: # Defina los símbolos para las variables de movimiento q1,q2,q3=symbols('q1,q2,q3') # Defina los marcos de referencia para cada parte A B C A a=ReferenceFrame('A') # Defina b rotando q1 respecto a a.z b=a.orientnew('B','Axis',(q1,a.z)) # Defina c rotando q2 respecto a b.z c=b.orientnew('C','Axis',(q2,b.z)) # No necesita definir D, ya que tiene la misma orientación de C # Luega defina cada punto usando los sistemas de coordenadas # Primero el Origen O O=Point('O') # El Punto P en la base del hombro esta a una distancia l1 en el eje a.z l1,l2,l3=symbols('l1,l2,l3') P=O.locatenew('P',l1*a.z) Q=P.locatenew('Q',l2*b.x) R=Q.locatenew('R',l3*c.x) S=R.locatenew('S',q3*c.z) #Ahora encuentre la posición del punto O al punto S v=S.pos_from(O) v # Y la posición del punto Q al punto S w=S.pos_from(Q) w # Si se calcula la derivada en el marco de referencia B w.diff(q1,b) # Si se calcula la derivada en el marco de referencia A w.diff(q1,a) ###Output _____no_output_____ ###Markdown 1.4 Derivadas parciales ###Code # Ejemplo modelo simplificado de una pierna # Defina los símbolos para las variables de movimiento q1,q2,q3,q4=symbols('q1,q2,q3,q4') # Se definen marcos de referencia para cada parte A B C D a=ReferenceFrame('A') # Aqui un comentario para aclarar esta seccion: # Segun el ejemplo del libro q1 es rotacion en a1(ax) y luego q2 es rotacion en y. # La figura 5 puede no ser muy clara por si sola hasta que no se revisa el eje intermedio e (figura 6) y se entiende # que las rotaciones q1 y q2 son flexión/extensión (q1) y abducción/adducción (q2) de la cadera. # Teniendo en cuenta esto, se define también el marco de referencia intermedio "E" para mayor claridad. # Aunque se podría realizar directamente la definición del marco b asi: # b=a.orientnew('B','Body',(q1,q2,0),'XYZ') # Defina e rotando q1 en a.x e=a.orientnew('E','Axis',(q1,a.x)) # Defina b rotando q2 en e.y b=e.orientnew('B','Axis',(q2,e.y)) # Defina c rotando q3 en b.z c=b.orientnew('C','Axis',(q3,b.x)) # Defina D rotando q4 en c.x d=c.orientnew('D','Axis',(q4,-c.x)) # Luega defina cada punto usando los sistemas de coordenadas # Primero el Origen O en la pelvis O=Point('O') l1,l2,l3,l4,l5,l6,l7,l8=symbols('l1,l2,l3,l4,l5,l6,l7,l8') # variables de distancia origen_b=O.locatenew('P',-l1*a.x+l2*a.y-l3*b.x-l4*b.y) rodilla=origen_b.locatenew('Q',-l5*b.z) origen_c=rodilla.locatenew('R',-l6*c.z) origen_d=origen_c.locatenew('S',-l7*d.z-l8*d.y) # Ahora calcule los vectores u=origen_d.pos_from(rodilla) # rodilla hasta punta del pie v=origen_c.pos_from(origen_b) # cadera hasta tobillo w=rodilla.pos_from(O) # pelvis hasta rodilla # Tabla 1. Cambio en los vectores en los marcos de referencia tables=dict() for frame in [a,b,c,d]: tbl=np.zeros((4,3),dtype=bool) for j,vec in enumerate([u,v,w]): for i,coord in enumerate([q1,q2,q3,q4]): tbl[i,j]=not(vec.diff(coord,frame)==0) tables[frame.name]=tbl # Confirmando los resultados de la tabla 1. tables # Puede utilizar el metodo express para expresar cualquier vector en el # marco de referencia deseado y verificar si contiene terminos qi. w.express(b) # Tambien puede utilizar el metodo express para establecer las relaciones # entre vectores unitarios de la figura 6. d.y.express(c) # Y por supuesto calcular derivadas parciales de estos vectores d.y.diff(q4,c).simplify() # Puede verificar todas las derivadas parciales del ejemplo b.x.diff(q2,a).simplify() #b.y.diff(q2,a).simplify() #b.z.diff(q2,a).simplify() #a.x.diff(q1,b).simplify() #a.y.diff(q1,b).simplify() #a.z.diff(q1,b).simplify() ###Output _____no_output_____ ###Markdown 1.5 Derivada total ###Code # Se utiliza el modelo simplificado de una pierna con una simplificación # adicional: espesor 0. # Se definen las variables de movimiento. # Como se quiere encontrar la derivada total (derivada respecto al tiempo), en este caso # se utilizan simbolos dinamicos para las variables de movimiento. (q1(t), q2(t), etc.) q1,q2,q3,q4=dynamicsymbols('q1,q2,q3,q4') # Los marcos se mantienen igual, pero podemos simplificar la definción y eliminar # el marco intermedio E, al usar b orientado con rotaciones sucesivas ('Body'). # Se definen marcos de referencia para cada parte A B C D a=ReferenceFrame('A') # Defina b rotando sucesivamente en x (ax) y luego en y (ey). b=a.orientnew('B','Body',(q1,q2,0),'XYZ') # Defina c rotando q3 en b.z c=b.orientnew('C','Axis',(q3,b.x)) # Defina D rotando q4 en c.x d=c.orientnew('D','Axis',(q4,-c.x)) # Luega defina cada punto usando los sistemas de coordenadas # Primero el Origen O en la pelvis O=Point('O') la,lb,lc,ld=symbols('la,lb,lc,ld') # variables de distancia origen_b=O.locatenew('P',-la*a.x) rodilla=origen_b.locatenew('Q',-lb*b.z) origen_c=rodilla.locatenew('R',-lc*c.z) origen_d=origen_c.locatenew('S',-ld*d.y) # Ahora calcule los vectores u=origen_d.pos_from(rodilla) # rodilla hasta punta del pie v=origen_c.pos_from(origen_b) # cadera hasta tobillo w=rodilla.pos_from(O) # pelvis hasta rodilla # Puede verificar los vectores u # rodilla hasta punta del pie # v # cadera hasta tobillo # w # pelvis hasta rodilla # Puede calcular las derivadas totales u.dt(d) # derivada du/dt en el marco D #v.dt(d).express(c) # derivada dv/dt en el marco D expresadas en coordenadas c #w.dt(a) # derivada dw/dt en el marco A ###Output _____no_output_____ ###Markdown 1.6 Matrices de rotacion ###Code # Defina un marco de referencia A a=ReferenceFrame('A') # Defina el símbolo theta para el angulo de rotación theta=symbols('theta') # Defina un marco de referencia B aplicando una rotación en ax. b=a.orientnew('B','Axis',(theta,a.x)) # Puede expresar vectores definidos con componentes en b. Por ejemplo: b1,b2,b3=symbols('b1,b2,b3') vec1=b1*b.x+b2*b.y+b3*b.z # Vector vec1 definido por componentes b1 en bx, b2 en by, b3, en bz. # Observe que pasa cuando expresa el vector en el sistema de coordenadas de A vec1.express(a) #vec1.express(b) ###Output _____no_output_____ ###Markdown 1.7 Cosenos directores ###Code # Defina un marco de referencia A a=ReferenceFrame('A') # Defina el símbolo theta para el ángulo de rotación theta=symbols('theta') # Ahora defina un marco de referencia B con con diferentes rotaciones. b=a.orientnew('B','Axis',(theta,a.x)) print('en x:') pprint(a.dcm(b)) b=a.orientnew('B','Axis',(theta,a.y)) print('en y:') pprint(a.dcm(b)) b=a.orientnew('B','Axis',(theta,a.z)) print('en z:') pprint(a.dcm(b)) ###Output en x: ⎡1 0 0 ⎤ ⎢ ⎥ ⎢0 cos(θ) -sin(θ)⎥ ⎢ ⎥ ⎣0 sin(θ) cos(θ) ⎦ en y: ⎡cos(θ) 0 sin(θ)⎤ ⎢ ⎥ ⎢ 0 1 0 ⎥ ⎢ ⎥ ⎣-sin(θ) 0 cos(θ)⎦ en z: ⎡cos(θ) -sin(θ) 0⎤ ⎢ ⎥ ⎢sin(θ) cos(θ) 0⎥ ⎢ ⎥ ⎣ 0 0 1⎦ ###Markdown 1.8 Diádicas de vectores ###Code # Puede construir diádicas utilizando el método outer (producto diádico) from sympy.physics.mechanics import outer,dot A=outer(a.x,a.x)+outer(a.y,a.y)+outer(a.z,a.z) A # Diádica A #Calule el producto A.b A.dot(b1*b.x+b2*b.y+b3*b.z) ###Output _____no_output_____
Payslip.ipynb
###Markdown We need to program to print out a payslip for sales people. Consider 'Ram' who has a salary of \$25000. They have sold goods worth $20000 and earns 2% commision on the sales. They fall into the 10% tax bracket and so before making payments we need to deduct 10% form his total payout. ###Code salary = 25000 sales = 20000 commission = 0.02 * sales tax = (salary + commission) * 0.10 pay = salary + commission - tax print('Payslip of Ram') print('Salary', salary,'Commission',commission,'Tax', tax) print('Total pay',pay) ###Output Payslip of Ram Salary 25000 Commission 400.0 Tax 2540.0 Total pay 22860.0 ###Markdown Consider 'Radha' who has a salary of \$30000. They have sold goods worth $40000 and earns 2.5% commision on the sales. They fall into the 10% tax bracket and so before making payments we need to deduct 10% form his total payout. ###Code salary = 30000 sales = 40000 commission = 0.025 * sales tax = (salary + commission) * 0.10 pay = salary + commission - tax print('Payslip of Radha') print('Salary', salary,'Commission',commission,'Tax', tax) print('Total pay',pay) ###Output Payslip of Radha Salary 30000 Commission 1000.0 Tax 3100.0 Total pay 27900.0 ###Markdown What did we change from Ram to Radha? ###Code we change values of salary, sales, commission and name. ###Output _____no_output_____ ###Markdown Make what we changed as inputs (parameters) to a function ###Code def pay_slip (name,salary,sales,rate): commission = rate * sales tax = (salary + commission) * 0.10 pay = salary + commission - tax print('Payslip of', name) print('Salary:', salary,',Commission:',commission,',Tax:', tax) print('Total pay:',pay) pay_slip('Parshav',20000,50000,0.30) pay_slip('Brooks',50000,60000,0.26) ###Output _____no_output_____ ###Markdown We need to program to print out a payslip for sales people. Consider 'Ram' who has a salary of \$25000. They have sold goods worth $20000 and earns 2% commision on the sales. They fall into the 10% tax bracket and so before making payments we need to deduct 10% form his total payout. ###Code salary = 30000 #25000 sales = 40000 #20000 commission = 0.02 * sales tax = (salary + commission) * 0.10 pay = salary + commission - tax print('Payslip of Ram') #ram print('Salary', salary,'Commission',commission,'Tax', tax) print('Total pay',pay) ###Output Payslip of Ram Salary 30000 Commission 800.0 Tax 3080.0 Total pay 27720.0 ###Markdown Consider 'Radha' who has a salary of \$30000. They have sold goods worth $40000 and earns 2.5% commision on the sales. They fall into the 10% tax bracket and so before making payments we need to deduct 10% form his total payout. ###Code def printPaySlip(salary,sales, rate,name): #salary = 30000 #25000 #sales = 40000 #20000 commission = rate *sales tax = (salary + commission) * 0.10 pay = salary + commission - tax print('Payslip of ' + name) #ram print('Salary', salary,'Commission',commission,'Tax', tax) print('Total pay',pay) ###Output _____no_output_____ ###Markdown What did we change from Ram to Radha? ###Code printPaySlip(30000, 40000, 0.025, 'Radha') ###Output Payslip of Radha Salary 30000 Commission 1000.0 Tax 3100.0 Total pay 27900.0 ###Markdown Make what we changed as inputs (parameters) to a function ###Code ###Output _____no_output_____ ###Markdown We need to program to print out a payslip for sales people. Consider 'Ram' who has a salary of \$25000. They have sold goods worth $20000 and earns 2% commision on the sales. They fall into the 10% tax bracket and so before making payments we need to deduct 10% form his total payout. ###Code salary = 25000 sales = 20000 commission = 0.02 * sales tax = (salary + commission) * 0.10 pay = salary + commission - tax print('Payslip of Ram') print('Salary', salary,'Commission',commission,'Tax', tax) print('Total pay',pay) ###Output Payslip of Ram Salary 25000 Commission 400.0 Tax 2540.0 Total pay 22860.0 ###Markdown Consider 'Radha' who has a salary of \$30000. They have sold goods worth $40000 and earns 2.5% commision on the sales. They fall into the 10% tax bracket and so before making payments we need to deduct 10% form his total payout. ###Code salary = 30000 sales = 40000 commission = 0.025 * sales tax = (salary + commission) * 0.10 pay = salary + commission - tax print('Payslip of Radha') print('Salary', salary,'Commission',commission,'Tax', tax) print('Total pay',pay) ###Output Payslip of Radha Salary 30000 Commission 1000.0 Tax 3100.0 Total pay 27900.0 ###Markdown What did we change from Ram to Radha? ###Code ###Output _____no_output_____ ###Markdown Make what we changed as inputs (parameters) to a function ###Code def payslip (name, salary, sales, rate, tax_rate): commission = rate * sales tax = (salary + commission) * tax_rate pay = salary + commission - tax print('Payslip of {}'.format(name)) print('Salary:', salary,'Commission:',commission,'Tax:', tax) print('Total pay:',pay) payslip('Radha', 30000, 40000, 0.025, 0.1) ###Output Payslip of Radha Salary: 30000 Commission: 1000.0 Tax: 3100.0 Total pay: 27900.0
15-ParseProductionBrowser.ipynb
###Markdown User Agent representation User Agent as tuple From Udger `UserAgent = {ua_family_code, ua_version, ua_class_code, device_class_code, os_family_code, os_code}` Load data (if needed) ###Code main_data = np.load('df/main_prod_data.npy').tolist() values_data = np.load('df/values_prod_data.npy').tolist() order_data = np.load('df/order_prod_data.npy').tolist() main_df = pd.DataFrame(main_data) main_df list_device_class_code = pd.DataFrame(main_data).device_class_code.value_counts().index.tolist() list_os_family_code = pd.DataFrame(main_data).os_family_code.value_counts().index.tolist() list_os_code = pd.DataFrame(main_data).os_code.value_counts().index.tolist() list_ua_class_code = pd.DataFrame(main_data).ua_class_code.value_counts().index.tolist() list_ua_family_code = pd.DataFrame(main_data).ua_family_code.value_counts().index.tolist() list_ua_version = pd.DataFrame(main_data).ua_version.value_counts().index.tolist() print("Device count: {}".format(len(list_device_class_code))) print("Device platform family count: {}".format(len(list_os_family_code))) print("Device platform count: {}".format(len(list_os_code))) print("Device browser class count: {}".format(len(list_ua_class_code))) print("Device browser family count: {}".format(len(list_ua_family_code))) print("Device browser version count: {}".format(len(list_ua_version))) ###Output Device count: 5 Device platform family count: 29 Device platform count: 98 Device browser class count: 5 Device browser family count: 129 Device browser version count: 2585 ###Markdown Train Part ###Code important_orders_keys_set = { 'Upgrade-Insecure-Requests', 'Accept', 'If-Modified-Since', 'Host', 'Connection', 'User-Agent', 'From', 'Accept-Encoding' } important_values_keys_set = { 'Accept', 'Accept-Charset', 'Accept-Encoding' } orders_vectorizer = sklearn.feature_extraction.DictVectorizer(sparse=True, dtype=float) values_vectorizer = sklearn.feature_extraction.DictVectorizer(sparse=True, dtype=float) from lib.parsers.logParser import LogParser l_parser = LogParser(log_folder='Logs/') #from sklearn import preprocessing #y = pd.DataFrame(main_data).User_Agent.fillna('NaN') #print("UA count: {}".format(len(list_ua))) #from sklearn import preprocessing #y = pd.DataFrame(main_data).User_Agent.fillna('NaN') #print("UA count: {}".format(len(list_ua)))#### OS_family_code l_parser.reassign_orders_values(order_data, values_data) full_sparce_dummy = l_parser.prepare_data(orders_vectorizer, values_vectorizer, important_orders_keys_set, important_values_keys_set, fit_dict=True) import os from sklearn.externals import joblib filename_order = 'cls/prod_orders_vectorizer.joblib.pkl' _ = joblib.dump(orders_vectorizer, filename_order, compress=9) filename_values = 'cls/prod_values_vectorizer.joblib.pkl' _ = joblib.dump(values_vectorizer, filename_values, compress=9) from lib.helpers.fileSplitter import split_file files_count = split_file(filename_order, 'parted-cls/prod_orders_vectorizer.joblib.pkl') files_count = split_file(filename_values, 'parted-cls/prod_values_vectorizer.joblib.pkl') ###Output _____no_output_____ ###Markdown WarningSometimes if dataset have over 150K rows and n_jobs=-1 we get `OSError: [Errno 28] No space left on device` in `sklearn/externals/joblib/pool.py`https://github.com/scikit-learn/scikit-learn/issues/3313https://stackoverflow.com/questions/24406937/scikit-learn-joblib-bug-multiprocessing-pool-self-value-out-of-range-for-i-foMaybehttps://stackoverflow.com/questions/40115043/no-space-left-on-device-error-while-fitting-sklearn-model`It seems, that your are running out of shared memory (/dev/shm when you run df -h). Try setting JOBLIB_TEMP_FOLDER environment variable to something different: e.g., to /tmp. In my case it has solved the problem.` OS_family_code ###Code %%time from sklearn.linear_model import LogisticRegression clf_os_family_code = LogisticRegression(random_state=42, C=100) clf_os_family_code.fit(full_sparce_dummy, main_df.os_family_code.fillna('NaN')) import os from sklearn.externals import joblib#### OS_code filename = 'cls/prod_os_family_code_logreg_cls.joblib.pkl' _ = joblib.dump(clf_os_family_code, filename, compress=9) print("Model saved with size(Bytes): {}".format(os.stat(filename).st_size)) files_count = split_file(filename, 'parted-cls/prod_os_family_code_logreg_cls.joblib.pkl') print('Splitted in {} files'.format(files_count)) ###Output Model saved with size(Bytes): 59470 Splitted in 0 files ###Markdown OS_code ###Code %%time clf_os_code = LogisticRegression(random_state=42, C=100) clf_os_code.fit(full_sparce_dummy, main_df.os_code.fillna('NaN')) filename = 'cls/prod_os_code_logreg_cls.joblib.pkl' _ = joblib.dump(clf_os_code, filename, compress=9) print("Model saved with size(Bytes): {}".format(os.stat(filename).st_size)) files_count = split_file(filename, 'parted-cls/prod_os_code_logreg_cls.joblib.pkl') print('Splitted in {} files'.format(files_count)) ###Output Model saved with size(Bytes): 203087 Splitted in 0 files ###Markdown Browser family_code ###Code %%time clf_ua_family_code = LogisticRegression(random_state=42, C=100) clf_ua_family_code.fit(full_sparce_dummy, main_df.ua_family_code.fillna('NaN')) filename = 'cls/prod_ua_family_code_logreg_cls.joblib.pkl' _ = joblib.dump(clf_ua_family_code, filename, compress=9) print("Model saved with size(Bytes): {}".format(os.stat(filename).st_size)) files_count = split_file(filename, 'parted-cls/prod_ua_family_code_logreg_cls.joblib.pkl') print('Splitted in {} files'.format(files_count)) ###Output Model saved with size(Bytes): 257819 Splitted in 0 files ###Markdown Browser version ###Code %%time clf_ua_version = LogisticRegression(random_state=42, C=100) clf_ua_version.fit(full_sparce_dummy, main_df.ua_version.fillna('NaN')) filename = 'cls/prod_ua_version_logreg_cls.joblib.pkl' _ = joblib.dump(clf_ua_version, filename, compress=9) print("Model saved with size(Bytes): {}".format(os.stat(filename).st_size)) files_count = split_file(filename, 'parted-cls/prod_ua_version_logreg_cls.joblib.pkl') print('Splitted in {} files'.format(files_count)) ###Output Model saved with size(Bytes): 4852875 Splitted in 0 files ###Markdown Test part ###Code import pandas as pd import numpy as np import scipy.sparse import sklearn.feature_extraction import matplotlib.pylab as plt %matplotlib inline from tqdm import tqdm import platform pd.set_option("display.max_rows", 10) pd.set_option('display.max_columns', 1100) import os %pylab inline warnings.filterwarnings('ignore') important_orders_keys_set = { 'Upgrade-Insecure-Requests', 'Accept', 'If-Modified-Since', 'Host', 'Connection', 'User-Agent', 'From', 'Accept-Encoding' } important_values_keys_set = { 'Accept', 'Accept-Charset', 'Accept-Encoding' } import os from sklearn.externals import joblib from lib.helpers.fileSplitter import cat_files orders_vectorizer = joblib.load('cls/prod_orders_vectorizer.joblib.pkl') values_vectorizer = joblib.load("cls/prod_values_vectorizer.joblib.pkl") clf_os_family_code = joblib.load('cls/prod_os_family_code_logreg_cls.joblib.pkl') clf_os_code = joblib.load('cls/prod_os_code_logreg_cls.joblib.pkl') clf_ua_family_code = joblib.load('cls/prod_ua_family_code_logreg_cls.joblib.pkl') clf_ua_version = joblib.load('cls/prod_ua_version_logreg_cls.joblib.pkl') ###Output _____no_output_____ ###Markdown Load test data ###Code main_data = np.load('df/main_prodtest_data1.npy').tolist()[200000:250000] values_data = np.load('df/values_prodtest_data1.npy').tolist()[200000:250000] order_data = np.load('df/order_prodtest_data1.npy').tolist()[200000:250000] main_df = pd.DataFrame(main_data) main_df important_values_keys_set = { 'Accept', 'Accept-Charset', 'Accept-Encoding' } important_orders_keys_set = { 'Upgrade-Insecure-Requests', 'Accept', 'If-Modified-Since', 'Host', 'Connection', 'User-Agent', 'From', 'Accept-Encoding' } from lib.parsers.logParser import LogParser l_parser = LogParser(log_folder='Logs/') l_parser.reassign_orders_values(order_data, values_data) X_test = l_parser.prepare_data(orders_vectorizer, values_vectorizer, important_orders_keys_set, important_values_keys_set, fit_dict=False) ###Output 100%|██████████| 50000/50000 [00:00<00:00, 540769.30it/s] 100%|██████████| 50000/50000 [00:00<00:00, 442357.81it/s] 100%|██████████| 50000/50000 [00:00<00:00, 699685.05it/s] ###Markdown Calculate scoresПримечание: Для Decision Tree в cross_val_score по умолчанию берется показатель 'Accuracy'Поскольку 'Accuracy' для линейной регрессии линейный мы не будем считать на 3-х или 5-ти фолдах(долго), а просто возьмем от тренировочной выборки 'Accuracy' ###Code thres = 0.00001 ###Output _____no_output_____ ###Markdown **Browser (clf_ua_family_code)** ###Code from lib.thresholdPredictions import ThresholdPredictions pred = ThresholdPredictions(user_agent_list=clf_ua_family_code.classes_.tolist(), clf=clf_ua_family_code) y_test_names, y_predicted, compare_answers, is_bot, answers_count = pred.bot_predict(X_test, main_df.ua_family_code.fillna('NaN'), thres, sparce_y=False, mark_new_labels_None=True, single_labels=True) compare_frame = pd.concat( [ pd.DataFrame(y_test_names), y_predicted, pd.DataFrame(compare_answers), pd.DataFrame(is_bot), pd.DataFrame(answers_count) ], keys=['browser_name', 'predicted_browser_name', 'browser_name_correctness', 'browser_name_bot', 'browser_name_count'], axis=1, join='inner') compare_frame ###Output _____no_output_____ ###Markdown Accuracy: $ACC = \frac{TP + TN}{P + N},\ \ \mathrm{where}\ \ P + N = length,\ \ TP = sum(True), \ \ TN = 0$ ###Code compare_frame.browser_name_bot[0].value_counts() print('Сonfirmed bot: {}'.format(sum(compare_frame.browser_name_bot[0])/50000)) ###Output Сonfirmed bot: 0.11904 ###Markdown **Browser + Browser version (clf_ua_family_code + clf_ua_version)** ###Code pred = ThresholdPredictions(user_agent_list=clf_ua_version.classes_.tolist(), clf=clf_ua_version) y_test_names, y_predicted, compare_answers, is_bot, answers_count = pred.bot_predict(X_test, main_df.ua_version.fillna('NaN'), thres, sparce_y=False, mark_new_labels_None=True, single_labels=True) compare_frame['browser_version'] = pd.DataFrame(y_test_names) compare_frame['predicted_browser_version'] = y_predicted compare_frame['browser_version_correctness'] = pd.DataFrame(compare_answers) compare_frame['browser_version_bot'] = pd.DataFrame(is_bot) compare_frame['browser_version_count'] = pd.DataFrame(answers_count) compare_frame print('Сonfirmed bot: {}'.format(sum(compare_frame.browser_version_bot)/50000)) print('Conditional Сonfirmed bot: {}'.format(sum(compare_frame.browser_name_bot[0] | compare_frame.browser_version_bot)/50000)) ###Output Сonfirmed bot: 0.27672 Conditional Сonfirmed bot: 0.33966 ###Markdown **Browser + Browser version + Platform (clf_ua_family_code + clf_ua_version + clf_os_family_code)** ###Code pred = ThresholdPredictions(user_agent_list=clf_os_family_code.classes_.tolist(), clf=clf_os_family_code) y_test_names, y_predicted, compare_answers, is_bot, answers_count = pred.bot_predict(X_test, main_df.os_family_code.fillna('NaN'), thres, sparce_y=False, mark_new_labels_None=True, single_labels=True) compare_frame['platform'] = pd.DataFrame(y_test_names) compare_frame['predicted_platform'] = y_predicted compare_frame['platform_correctness'] = pd.DataFrame(compare_answers) compare_frame['platform_bot'] = pd.DataFrame(is_bot) compare_frame['platform_count'] = pd.DataFrame(answers_count) compare_frame print('Сonfirmed bot: {}'.format(sum(compare_frame.platform_bot)/50000)) print('Conditional Сonfirmed bot: {}'.format(sum(compare_frame.browser_name_bot[0] | compare_frame.browser_version_bot | compare_frame.platform_bot)/50000)) ###Output Сonfirmed bot: 0.0 Conditional Сonfirmed bot: 0.33966 ###Markdown **Browser + Browser version + Platform + Platform version (clf_ua_family_code + clf_ua_version + clf_os_family_code + clf_os_code)** ###Code pred = ThresholdPredictions(user_agent_list=clf_os_code.classes_.tolist(), clf=clf_os_code) y_test_names, y_predicted, compare_answers, is_bot, answers_count = pred.bot_predict(X_test, main_df.os_code.fillna('NaN'), thres, sparce_y=False, mark_new_labels_None=True, single_labels=True) compare_frame['platform_version'] = pd.DataFrame(y_test_names) compare_frame['predicted_platform_version'] = y_predicted compare_frame['platform_version_correctness'] = pd.DataFrame(compare_answers) compare_frame['platform_version_bot'] = pd.DataFrame(is_bot) compare_frame['platform_version_count'] = pd.DataFrame(answers_count) compare_frame print('Сonfirmed bot: {}'.format(sum(compare_frame.platform_version_bot)/50000)) print('Conditional Сonfirmed bot: {}'.format(sum(compare_frame.browser_name_bot[0] | compare_frame.browser_version_bot | compare_frame.platform_bot | compare_frame.platform_version_bot)/50000)) ###Output Сonfirmed bot: 0.06036 Conditional Сonfirmed bot: 0.35916