path
stringlengths
7
265
concatenated_notebook
stringlengths
46
17M
Model backlog/Models/26-openvaccine-lstm-wave-net.ipynb
###Markdown Dependencies ###Code import warnings, json, random, os import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.model_selection import KFold, StratifiedKFold from sklearn.metrics import mean_squared_error import tensorflow as tf import tensorflow.keras.layers as L import tensorflow.keras.backend as K from tensorflow.keras import optimizers, losses, Model from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau def seed_everything(seed=0): random.seed(seed) np.random.seed(seed) tf.random.set_seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) os.environ['TF_DETERMINISTIC_OPS'] = '1' SEED = 0 seed_everything(SEED) warnings.filterwarnings('ignore') ###Output _____no_output_____ ###Markdown Model parameters ###Code config = { "BATCH_SIZE": 64, "EPOCHS": 120, "LEARNING_RATE": 1e-3, "ES_PATIENCE": 10, "N_FOLDS": 5, "N_USED_FOLDS": 5, "PB_SEQ_LEN": 107, "PV_SEQ_LEN": 130, } with open('config.json', 'w') as json_file: json.dump(json.loads(json.dumps(config)), json_file) config ###Output _____no_output_____ ###Markdown Load data ###Code database_base_path = '/kaggle/input/stanford-covid-vaccine/' train = pd.read_json(database_base_path + 'train.json', lines=True) test = pd.read_json(database_base_path + 'test.json', lines=True) print('Train samples: %d' % len(train)) display(train.head()) print(f'Test samples: {len(test)}') display(test.head()) ###Output Train samples: 2400 ###Markdown Auxiliary functions ###Code token2int = {x:i for i, x in enumerate('().ACGUBEHIMSX')} token2int_seq = {x:i for i, x in enumerate('ACGU')} token2int_struct = {x:i for i, x in enumerate('().')} token2int_loop = {x:i for i, x in enumerate('BEHIMSX')} def plot_metrics(history): metric_list = [m for m in list(history_list[0].keys()) if m is not 'lr'] size = len(metric_list)//2 fig, axes = plt.subplots(size, 1, sharex='col', figsize=(20, size * 5)) if size > 1: axes = axes.flatten() else: axes = [axes] for index in range(len(metric_list)//2): metric_name = metric_list[index] val_metric_name = metric_list[index+size] axes[index].plot(history[metric_name], label='Train %s' % metric_name) axes[index].plot(history[val_metric_name], label='Validation %s' % metric_name) axes[index].legend(loc='best', fontsize=16) axes[index].set_title(metric_name) axes[index].axvline(np.argmin(history[metric_name]), linestyle='dashed') axes[index].axvline(np.argmin(history[val_metric_name]), linestyle='dashed', color='orange') plt.xlabel('Epochs', fontsize=16) sns.despine() plt.show() def preprocess_inputs(df, encoder, cols=['sequence', 'structure', 'predicted_loop_type']): input_lists = df[cols].applymap(lambda seq: [encoder[x] for x in seq]).values.tolist() return np.transpose(np.array(input_lists), (0, 2, 1)) def evaluate_model(df, y_true, y_pred, target_cols): # Complete data metrics = [] metrics_clean_sn = [] metrics_noisy_sn = [] metrics_clean_sig = [] metrics_noisy_sig = [] for idx, col in enumerate(pred_cols): metrics.append(np.sqrt(np.mean((y_true[:, :, idx] - y_pred[:, :, idx])**2))) target_cols = ['Overall'] + target_cols metrics = [np.mean(metrics)] + metrics # SN_filter = 1 idxs = df[df['SN_filter'] == 1].index for idx, col in enumerate(pred_cols): metrics_clean_sn.append(np.sqrt(np.mean((y_true[idxs, :, idx] - y_pred[idxs, :, idx])**2))) metrics_clean_sn = [np.mean(metrics_clean_sn)] + metrics_clean_sn # SN_filter = 0 idxs = df[df['SN_filter'] == 0].index for idx, col in enumerate(pred_cols): metrics_noisy_sn.append(np.sqrt(np.mean((y_true[idxs, :, idx] - y_pred[idxs, :, idx])**2))) metrics_noisy_sn = [np.mean(metrics_noisy_sn)] + metrics_noisy_sn # signal_to_noise > 1 idxs = df[df['signal_to_noise'] > 1].index for idx, col in enumerate(pred_cols): metrics_clean_sig.append(np.sqrt(np.mean((y_true[idxs, :, idx] - y_pred[idxs, :, idx])**2))) metrics_clean_sig = [np.mean(metrics_clean_sig)] + metrics_clean_sig # signal_to_noise <= 1 idxs = df[df['signal_to_noise'] <= 1].index for idx, col in enumerate(pred_cols): metrics_noisy_sig.append(np.sqrt(np.mean((y_true[idxs, :, idx] - y_pred[idxs, :, idx])**2))) metrics_noisy_sig = [np.mean(metrics_noisy_sig)] + metrics_noisy_sig metrics_df = pd.DataFrame({'Metric/MCRMSE': target_cols, 'Complete': metrics, 'Clean (SN)': metrics_clean_sn, 'Noisy (SN)': metrics_noisy_sn, 'Clean (signal)': metrics_clean_sig, 'Noisy (signal)': metrics_noisy_sig}) return metrics_df def get_dataset(x, y=None, labeled=True, shuffled=True, batch_size=32, buffer_size=-1, seed=0): if labeled: dataset = tf.data.Dataset.from_tensor_slices(({'inputs_seq': x[:, 0, :, :], 'inputs_struct': x[:, 1, :, :], 'inputs_loop': x[:, 2, :, :]}, {'outputs': y})) else: dataset = tf.data.Dataset.from_tensor_slices(({'inputs_seq': x[:, 0, :, :], 'inputs_struct': x[:, 1, :, :], 'inputs_loop': x[:, 2, :, :]})) if shuffled: dataset = dataset.shuffle(2048, seed=seed) dataset = dataset.batch(batch_size) dataset = dataset.prefetch(AUTO) return dataset def get_dataset_sampling(x, y=None, shuffled=True, seed=0): dataset = tf.data.Dataset.from_tensor_slices(({'inputs_seq': x[:, 0, :, :], 'inputs_struct': x[:, 1, :, :], 'inputs_loop': x[:, 2, :, :]}, {'outputs': y})) if shuffled: dataset = dataset.shuffle(2048, seed=seed) return dataset ###Output _____no_output_____ ###Markdown Model ###Code def MCRMSE(y_true, y_pred): colwise_mse = tf.reduce_mean(tf.square(y_true - y_pred), axis=1) return tf.reduce_mean(tf.sqrt(colwise_mse), axis=1) def wave_block(x, filters, kernel_size, n): dilation_rates = [2 ** i for i in range(n)] x = L.Conv1D(filters=filters, kernel_size = 1, padding='same')(x) res_x = x for dilation_rate in dilation_rates: tanh_out = L.Conv1D(filters=filters, kernel_size=kernel_size, padding='same', activation='tanh', dilation_rate=dilation_rate)(x) sigm_out = L.Conv1D(filters=filters, kernel_size=kernel_size, padding='same', activation='sigmoid', dilation_rate=dilation_rate)(x) x = L.Multiply()([tanh_out, sigm_out]) x = L.Conv1D(filters=filters, kernel_size=1, padding='same')(x) res_x = L.Add()([res_x, x]) return res_x def model_fn(embed_dim=160, hidden_dim=384, dropout=.5, sp_dropout=.2, pred_len=68, n_outputs=5): inputs_seq = L.Input(shape=(None, 1), name='inputs_seq') inputs_struct = L.Input(shape=(None, 1), name='inputs_struct') inputs_loop = L.Input(shape=(None, 1), name='inputs_loop') shared_embed = L.Embedding(input_dim=len(token2int), output_dim=embed_dim, name='shared_embedding') embed_seq = shared_embed(inputs_seq) embed_struct = shared_embed(inputs_struct) embed_loop = shared_embed(inputs_loop) x_concat = L.concatenate([embed_seq, embed_struct, embed_loop], axis=2, name='embedding_concatenate') x_reshaped = L.Reshape((-1, x_concat.shape[2]*x_concat.shape[3]))(x_concat) x = L.SpatialDropout1D(sp_dropout)(x_reshaped) x = L.Bidirectional(L.LSTM(hidden_dim, dropout=dropout, return_sequences=True, kernel_initializer='orthogonal'))(x) x_1 = L.Bidirectional(L.LSTM(hidden_dim, dropout=dropout, return_sequences=True, kernel_initializer='orthogonal'))(x) x_1 = L.Add()([x_1, x]) # Wave net x = wave_block(x_1, 16, 3, 12) x = L.BatchNormalization()(x) x = L.Dropout(.1)(x) x = wave_block(x, 32, 3, 8) x = L.BatchNormalization()(x) x = L.Dropout(.1)(x) x = wave_block(x, 64, 3, 4) x = L.BatchNormalization()(x) x = L.Dropout(.1)(x) x = wave_block(x, 128, 3, 1) x = L.BatchNormalization()(x) x = L.Dropout(.1)(x) x_2 = L.Bidirectional(L.LSTM(hidden_dim, dropout=dropout, return_sequences=True, kernel_initializer='orthogonal'))(x) x = L.Add()([x_2, x_1]) # Since we are only making predictions on the first part of each sequence, we have to truncate it x_truncated = x[:, :pred_len] outputs = L.Dense(n_outputs, activation='linear', name='outputs')(x_truncated) model = Model(inputs=[inputs_seq, inputs_struct, inputs_loop], outputs=outputs) opt = optimizers.Adam(learning_rate=config['LEARNING_RATE']) model.compile(optimizer=opt, loss=MCRMSE) return model model = model_fn() model.summary() ###Output Model: "functional_1" __________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ================================================================================================== inputs_seq (InputLayer) [(None, None, 1)] 0 __________________________________________________________________________________________________ inputs_struct (InputLayer) [(None, None, 1)] 0 __________________________________________________________________________________________________ inputs_loop (InputLayer) [(None, None, 1)] 0 __________________________________________________________________________________________________ shared_embedding (Embedding) (None, None, 1, 160) 2240 inputs_seq[0][0] inputs_struct[0][0] inputs_loop[0][0] __________________________________________________________________________________________________ embedding_concatenate (Concaten (None, None, 3, 160) 0 shared_embedding[0][0] shared_embedding[1][0] shared_embedding[2][0] __________________________________________________________________________________________________ reshape (Reshape) (None, None, 480) 0 embedding_concatenate[0][0] __________________________________________________________________________________________________ spatial_dropout1d (SpatialDropo (None, None, 480) 0 reshape[0][0] __________________________________________________________________________________________________ bidirectional (Bidirectional) (None, None, 768) 2657280 spatial_dropout1d[0][0] __________________________________________________________________________________________________ bidirectional_1 (Bidirectional) (None, None, 768) 3542016 bidirectional[0][0] __________________________________________________________________________________________________ add (Add) (None, None, 768) 0 bidirectional_1[0][0] bidirectional[0][0] __________________________________________________________________________________________________ conv1d (Conv1D) (None, None, 16) 12304 add[0][0] __________________________________________________________________________________________________ conv1d_1 (Conv1D) (None, None, 16) 784 conv1d[0][0] __________________________________________________________________________________________________ conv1d_2 (Conv1D) (None, None, 16) 784 conv1d[0][0] __________________________________________________________________________________________________ multiply (Multiply) (None, None, 16) 0 conv1d_1[0][0] conv1d_2[0][0] __________________________________________________________________________________________________ conv1d_3 (Conv1D) (None, None, 16) 272 multiply[0][0] __________________________________________________________________________________________________ conv1d_4 (Conv1D) (None, None, 16) 784 conv1d_3[0][0] __________________________________________________________________________________________________ conv1d_5 (Conv1D) (None, None, 16) 784 conv1d_3[0][0] __________________________________________________________________________________________________ multiply_1 (Multiply) (None, None, 16) 0 conv1d_4[0][0] conv1d_5[0][0] __________________________________________________________________________________________________ conv1d_6 (Conv1D) (None, None, 16) 272 multiply_1[0][0] __________________________________________________________________________________________________ conv1d_7 (Conv1D) (None, None, 16) 784 conv1d_6[0][0] __________________________________________________________________________________________________ conv1d_8 (Conv1D) (None, None, 16) 784 conv1d_6[0][0] __________________________________________________________________________________________________ multiply_2 (Multiply) (None, None, 16) 0 conv1d_7[0][0] conv1d_8[0][0] __________________________________________________________________________________________________ conv1d_9 (Conv1D) (None, None, 16) 272 multiply_2[0][0] __________________________________________________________________________________________________ conv1d_10 (Conv1D) (None, None, 16) 784 conv1d_9[0][0] __________________________________________________________________________________________________ conv1d_11 (Conv1D) (None, None, 16) 784 conv1d_9[0][0] __________________________________________________________________________________________________ multiply_3 (Multiply) (None, None, 16) 0 conv1d_10[0][0] conv1d_11[0][0] __________________________________________________________________________________________________ conv1d_12 (Conv1D) (None, None, 16) 272 multiply_3[0][0] __________________________________________________________________________________________________ conv1d_13 (Conv1D) (None, None, 16) 784 conv1d_12[0][0] __________________________________________________________________________________________________ conv1d_14 (Conv1D) (None, None, 16) 784 conv1d_12[0][0] __________________________________________________________________________________________________ multiply_4 (Multiply) (None, None, 16) 0 conv1d_13[0][0] conv1d_14[0][0] __________________________________________________________________________________________________ conv1d_15 (Conv1D) (None, None, 16) 272 multiply_4[0][0] __________________________________________________________________________________________________ conv1d_16 (Conv1D) (None, None, 16) 784 conv1d_15[0][0] __________________________________________________________________________________________________ conv1d_17 (Conv1D) (None, None, 16) 784 conv1d_15[0][0] __________________________________________________________________________________________________ multiply_5 (Multiply) (None, None, 16) 0 conv1d_16[0][0] conv1d_17[0][0] __________________________________________________________________________________________________ conv1d_18 (Conv1D) (None, None, 16) 272 multiply_5[0][0] __________________________________________________________________________________________________ conv1d_19 (Conv1D) (None, None, 16) 784 conv1d_18[0][0] __________________________________________________________________________________________________ conv1d_20 (Conv1D) (None, None, 16) 784 conv1d_18[0][0] __________________________________________________________________________________________________ multiply_6 (Multiply) (None, None, 16) 0 conv1d_19[0][0] conv1d_20[0][0] __________________________________________________________________________________________________ conv1d_21 (Conv1D) (None, None, 16) 272 multiply_6[0][0] __________________________________________________________________________________________________ conv1d_22 (Conv1D) (None, None, 16) 784 conv1d_21[0][0] __________________________________________________________________________________________________ conv1d_23 (Conv1D) (None, None, 16) 784 conv1d_21[0][0] __________________________________________________________________________________________________ multiply_7 (Multiply) (None, None, 16) 0 conv1d_22[0][0] conv1d_23[0][0] __________________________________________________________________________________________________ conv1d_24 (Conv1D) (None, None, 16) 272 multiply_7[0][0] __________________________________________________________________________________________________ conv1d_25 (Conv1D) (None, None, 16) 784 conv1d_24[0][0] __________________________________________________________________________________________________ conv1d_26 (Conv1D) (None, None, 16) 784 conv1d_24[0][0] __________________________________________________________________________________________________ add_1 (Add) (None, None, 16) 0 conv1d[0][0] conv1d_3[0][0] __________________________________________________________________________________________________ multiply_8 (Multiply) (None, None, 16) 0 conv1d_25[0][0] conv1d_26[0][0] __________________________________________________________________________________________________ add_2 (Add) (None, None, 16) 0 add_1[0][0] conv1d_6[0][0] __________________________________________________________________________________________________ conv1d_27 (Conv1D) (None, None, 16) 272 multiply_8[0][0] __________________________________________________________________________________________________ add_3 (Add) (None, None, 16) 0 add_2[0][0] conv1d_9[0][0] __________________________________________________________________________________________________ conv1d_28 (Conv1D) (None, None, 16) 784 conv1d_27[0][0] __________________________________________________________________________________________________ conv1d_29 (Conv1D) (None, None, 16) 784 conv1d_27[0][0] __________________________________________________________________________________________________ add_4 (Add) (None, None, 16) 0 add_3[0][0] conv1d_12[0][0] __________________________________________________________________________________________________ multiply_9 (Multiply) (None, None, 16) 0 conv1d_28[0][0] conv1d_29[0][0] __________________________________________________________________________________________________ add_5 (Add) (None, None, 16) 0 add_4[0][0] conv1d_15[0][0] __________________________________________________________________________________________________ conv1d_30 (Conv1D) (None, None, 16) 272 multiply_9[0][0] __________________________________________________________________________________________________ add_6 (Add) (None, None, 16) 0 add_5[0][0] conv1d_18[0][0] __________________________________________________________________________________________________ conv1d_31 (Conv1D) (None, None, 16) 784 conv1d_30[0][0] __________________________________________________________________________________________________ conv1d_32 (Conv1D) (None, None, 16) 784 conv1d_30[0][0] __________________________________________________________________________________________________ add_7 (Add) (None, None, 16) 0 add_6[0][0] conv1d_21[0][0] __________________________________________________________________________________________________ multiply_10 (Multiply) (None, None, 16) 0 conv1d_31[0][0] conv1d_32[0][0] __________________________________________________________________________________________________ add_8 (Add) (None, None, 16) 0 add_7[0][0] conv1d_24[0][0] __________________________________________________________________________________________________ conv1d_33 (Conv1D) (None, None, 16) 272 multiply_10[0][0] __________________________________________________________________________________________________ add_9 (Add) (None, None, 16) 0 add_8[0][0] conv1d_27[0][0] __________________________________________________________________________________________________ conv1d_34 (Conv1D) (None, None, 16) 784 conv1d_33[0][0] __________________________________________________________________________________________________ conv1d_35 (Conv1D) (None, None, 16) 784 conv1d_33[0][0] __________________________________________________________________________________________________ add_10 (Add) (None, None, 16) 0 add_9[0][0] conv1d_30[0][0] __________________________________________________________________________________________________ multiply_11 (Multiply) (None, None, 16) 0 conv1d_34[0][0] conv1d_35[0][0] __________________________________________________________________________________________________ add_11 (Add) (None, None, 16) 0 add_10[0][0] conv1d_33[0][0] __________________________________________________________________________________________________ conv1d_36 (Conv1D) (None, None, 16) 272 multiply_11[0][0] __________________________________________________________________________________________________ add_12 (Add) (None, None, 16) 0 add_11[0][0] conv1d_36[0][0] __________________________________________________________________________________________________ batch_normalization (BatchNorma (None, None, 16) 64 add_12[0][0] __________________________________________________________________________________________________ dropout (Dropout) (None, None, 16) 0 batch_normalization[0][0] __________________________________________________________________________________________________ conv1d_37 (Conv1D) (None, None, 32) 544 dropout[0][0] __________________________________________________________________________________________________ conv1d_38 (Conv1D) (None, None, 32) 3104 conv1d_37[0][0] __________________________________________________________________________________________________ conv1d_39 (Conv1D) (None, None, 32) 3104 conv1d_37[0][0] __________________________________________________________________________________________________ multiply_12 (Multiply) (None, None, 32) 0 conv1d_38[0][0] conv1d_39[0][0] __________________________________________________________________________________________________ conv1d_40 (Conv1D) (None, None, 32) 1056 multiply_12[0][0] __________________________________________________________________________________________________ conv1d_41 (Conv1D) (None, None, 32) 3104 conv1d_40[0][0] __________________________________________________________________________________________________ conv1d_42 (Conv1D) (None, None, 32) 3104 conv1d_40[0][0] __________________________________________________________________________________________________ multiply_13 (Multiply) (None, None, 32) 0 conv1d_41[0][0] conv1d_42[0][0] __________________________________________________________________________________________________ conv1d_43 (Conv1D) (None, None, 32) 1056 multiply_13[0][0] __________________________________________________________________________________________________ conv1d_44 (Conv1D) (None, None, 32) 3104 conv1d_43[0][0] __________________________________________________________________________________________________ conv1d_45 (Conv1D) (None, None, 32) 3104 conv1d_43[0][0] __________________________________________________________________________________________________ multiply_14 (Multiply) (None, None, 32) 0 conv1d_44[0][0] conv1d_45[0][0] __________________________________________________________________________________________________ conv1d_46 (Conv1D) (None, None, 32) 1056 multiply_14[0][0] __________________________________________________________________________________________________ conv1d_47 (Conv1D) (None, None, 32) 3104 conv1d_46[0][0] __________________________________________________________________________________________________ conv1d_48 (Conv1D) (None, None, 32) 3104 conv1d_46[0][0] __________________________________________________________________________________________________ multiply_15 (Multiply) (None, None, 32) 0 conv1d_47[0][0] conv1d_48[0][0] __________________________________________________________________________________________________ conv1d_49 (Conv1D) (None, None, 32) 1056 multiply_15[0][0] __________________________________________________________________________________________________ conv1d_50 (Conv1D) (None, None, 32) 3104 conv1d_49[0][0] __________________________________________________________________________________________________ conv1d_51 (Conv1D) (None, None, 32) 3104 conv1d_49[0][0] __________________________________________________________________________________________________ multiply_16 (Multiply) (None, None, 32) 0 conv1d_50[0][0] conv1d_51[0][0] __________________________________________________________________________________________________ conv1d_52 (Conv1D) (None, None, 32) 1056 multiply_16[0][0] __________________________________________________________________________________________________ conv1d_53 (Conv1D) (None, None, 32) 3104 conv1d_52[0][0] __________________________________________________________________________________________________ conv1d_54 (Conv1D) (None, None, 32) 3104 conv1d_52[0][0] __________________________________________________________________________________________________ multiply_17 (Multiply) (None, None, 32) 0 conv1d_53[0][0] conv1d_54[0][0] __________________________________________________________________________________________________ add_13 (Add) (None, None, 32) 0 conv1d_37[0][0] conv1d_40[0][0] __________________________________________________________________________________________________ conv1d_55 (Conv1D) (None, None, 32) 1056 multiply_17[0][0] __________________________________________________________________________________________________ add_14 (Add) (None, None, 32) 0 add_13[0][0] conv1d_43[0][0] __________________________________________________________________________________________________ conv1d_56 (Conv1D) (None, None, 32) 3104 conv1d_55[0][0] __________________________________________________________________________________________________ conv1d_57 (Conv1D) (None, None, 32) 3104 conv1d_55[0][0] __________________________________________________________________________________________________ add_15 (Add) (None, None, 32) 0 add_14[0][0] conv1d_46[0][0] __________________________________________________________________________________________________ multiply_18 (Multiply) (None, None, 32) 0 conv1d_56[0][0] conv1d_57[0][0] __________________________________________________________________________________________________ add_16 (Add) (None, None, 32) 0 add_15[0][0] conv1d_49[0][0] __________________________________________________________________________________________________ conv1d_58 (Conv1D) (None, None, 32) 1056 multiply_18[0][0] __________________________________________________________________________________________________ add_17 (Add) (None, None, 32) 0 add_16[0][0] conv1d_52[0][0] __________________________________________________________________________________________________ conv1d_59 (Conv1D) (None, None, 32) 3104 conv1d_58[0][0] __________________________________________________________________________________________________ conv1d_60 (Conv1D) (None, None, 32) 3104 conv1d_58[0][0] __________________________________________________________________________________________________ add_18 (Add) (None, None, 32) 0 add_17[0][0] conv1d_55[0][0] __________________________________________________________________________________________________ multiply_19 (Multiply) (None, None, 32) 0 conv1d_59[0][0] conv1d_60[0][0] __________________________________________________________________________________________________ add_19 (Add) (None, None, 32) 0 add_18[0][0] conv1d_58[0][0] __________________________________________________________________________________________________ conv1d_61 (Conv1D) (None, None, 32) 1056 multiply_19[0][0] __________________________________________________________________________________________________ add_20 (Add) (None, None, 32) 0 add_19[0][0] conv1d_61[0][0] __________________________________________________________________________________________________ batch_normalization_1 (BatchNor (None, None, 32) 128 add_20[0][0] __________________________________________________________________________________________________ dropout_1 (Dropout) (None, None, 32) 0 batch_normalization_1[0][0] __________________________________________________________________________________________________ conv1d_62 (Conv1D) (None, None, 64) 2112 dropout_1[0][0] __________________________________________________________________________________________________ conv1d_63 (Conv1D) (None, None, 64) 12352 conv1d_62[0][0] __________________________________________________________________________________________________ conv1d_64 (Conv1D) (None, None, 64) 12352 conv1d_62[0][0] __________________________________________________________________________________________________ multiply_20 (Multiply) (None, None, 64) 0 conv1d_63[0][0] conv1d_64[0][0] __________________________________________________________________________________________________ conv1d_65 (Conv1D) (None, None, 64) 4160 multiply_20[0][0] __________________________________________________________________________________________________ conv1d_66 (Conv1D) (None, None, 64) 12352 conv1d_65[0][0] __________________________________________________________________________________________________ conv1d_67 (Conv1D) (None, None, 64) 12352 conv1d_65[0][0] __________________________________________________________________________________________________ multiply_21 (Multiply) (None, None, 64) 0 conv1d_66[0][0] conv1d_67[0][0] __________________________________________________________________________________________________ conv1d_68 (Conv1D) (None, None, 64) 4160 multiply_21[0][0] __________________________________________________________________________________________________ conv1d_69 (Conv1D) (None, None, 64) 12352 conv1d_68[0][0] __________________________________________________________________________________________________ conv1d_70 (Conv1D) (None, None, 64) 12352 conv1d_68[0][0] __________________________________________________________________________________________________ multiply_22 (Multiply) (None, None, 64) 0 conv1d_69[0][0] conv1d_70[0][0] __________________________________________________________________________________________________ conv1d_71 (Conv1D) (None, None, 64) 4160 multiply_22[0][0] __________________________________________________________________________________________________ add_21 (Add) (None, None, 64) 0 conv1d_62[0][0] conv1d_65[0][0] __________________________________________________________________________________________________ conv1d_72 (Conv1D) (None, None, 64) 12352 conv1d_71[0][0] __________________________________________________________________________________________________ conv1d_73 (Conv1D) (None, None, 64) 12352 conv1d_71[0][0] __________________________________________________________________________________________________ add_22 (Add) (None, None, 64) 0 add_21[0][0] conv1d_68[0][0] __________________________________________________________________________________________________ multiply_23 (Multiply) (None, None, 64) 0 conv1d_72[0][0] conv1d_73[0][0] __________________________________________________________________________________________________ add_23 (Add) (None, None, 64) 0 add_22[0][0] conv1d_71[0][0] __________________________________________________________________________________________________ conv1d_74 (Conv1D) (None, None, 64) 4160 multiply_23[0][0] __________________________________________________________________________________________________ add_24 (Add) (None, None, 64) 0 add_23[0][0] conv1d_74[0][0] __________________________________________________________________________________________________ batch_normalization_2 (BatchNor (None, None, 64) 256 add_24[0][0] __________________________________________________________________________________________________ dropout_2 (Dropout) (None, None, 64) 0 batch_normalization_2[0][0] __________________________________________________________________________________________________ conv1d_75 (Conv1D) (None, None, 128) 8320 dropout_2[0][0] __________________________________________________________________________________________________ conv1d_76 (Conv1D) (None, None, 128) 49280 conv1d_75[0][0] __________________________________________________________________________________________________ conv1d_77 (Conv1D) (None, None, 128) 49280 conv1d_75[0][0] __________________________________________________________________________________________________ multiply_24 (Multiply) (None, None, 128) 0 conv1d_76[0][0] conv1d_77[0][0] __________________________________________________________________________________________________ conv1d_78 (Conv1D) (None, None, 128) 16512 multiply_24[0][0] __________________________________________________________________________________________________ add_25 (Add) (None, None, 128) 0 conv1d_75[0][0] conv1d_78[0][0] __________________________________________________________________________________________________ batch_normalization_3 (BatchNor (None, None, 128) 512 add_25[0][0] __________________________________________________________________________________________________ dropout_3 (Dropout) (None, None, 128) 0 batch_normalization_3[0][0] __________________________________________________________________________________________________ bidirectional_2 (Bidirectional) (None, None, 768) 1575936 dropout_3[0][0] __________________________________________________________________________________________________ add_26 (Add) (None, None, 768) 0 bidirectional_2[0][0] add[0][0] __________________________________________________________________________________________________ tf_op_layer_strided_slice (Tens [(None, None, 768)] 0 add_26[0][0] __________________________________________________________________________________________________ outputs (Dense) (None, None, 5) 3845 tf_op_layer_strided_slice[0][0] ================================================================================================== Total params: 8,116,277 Trainable params: 8,115,797 Non-trainable params: 480 __________________________________________________________________________________________________ ###Markdown Pre-process ###Code feature_cols = ['sequence', 'structure', 'predicted_loop_type'] pred_cols = ['reactivity', 'deg_Mg_pH10', 'deg_pH10', 'deg_Mg_50C', 'deg_50C'] encoder_list = [token2int, token2int, token2int] train_features = np.array([preprocess_inputs(train, encoder_list[idx], [col]) for idx, col in enumerate(feature_cols)]).transpose((1, 0, 2, 3)) train_labels = np.array(train[pred_cols].values.tolist()).transpose((0, 2, 1)) public_test = test.query("seq_length == 107").copy() private_test = test.query("seq_length == 130").copy() x_test_public = np.array([preprocess_inputs(public_test, encoder_list[idx], [col]) for idx, col in enumerate(feature_cols)]).transpose((1, 0, 2, 3)) x_test_private = np.array([preprocess_inputs(private_test, encoder_list[idx], [col]) for idx, col in enumerate(feature_cols)]).transpose((1, 0, 2, 3)) # To use as stratified col train['signal_to_noise_int'] = train['signal_to_noise'].astype(int) ###Output _____no_output_____ ###Markdown Training ###Code AUTO = tf.data.experimental.AUTOTUNE skf = StratifiedKFold(n_splits=config['N_USED_FOLDS'], shuffle=True, random_state=SEED) history_list = [] oof = train[['id']].copy() oof_preds = np.zeros(train_labels.shape) test_public_preds = np.zeros((x_test_public.shape[0], config['PB_SEQ_LEN'], len(pred_cols))) test_private_preds = np.zeros((x_test_private.shape[0], config['PV_SEQ_LEN'], len(pred_cols))) for fold,(train_idx, valid_idx) in enumerate(skf.split(train_labels, train['signal_to_noise_int'])): if fold >= config['N_USED_FOLDS']: break print(f'\nFOLD: {fold+1}') ### Create datasets x_train = train_features[train_idx] y_train = train_labels[train_idx] x_valid = train_features[valid_idx] y_valid = train_labels[valid_idx] train_ds = get_dataset(x_train, y_train, labeled=True, shuffled=True, batch_size=config['BATCH_SIZE'], buffer_size=AUTO, seed=SEED) valid_ds = get_dataset(x_valid, y_valid, labeled=True, shuffled=False, batch_size=config['BATCH_SIZE'], buffer_size=AUTO, seed=SEED) oof_ds = get_dataset(train_features[valid_idx], labeled=False, shuffled=False, batch_size=config['BATCH_SIZE'], buffer_size=AUTO, seed=SEED) test_public_ds = get_dataset(x_test_public, labeled=False, shuffled=False, batch_size=config['BATCH_SIZE'], buffer_size=AUTO, seed=SEED) test_private_ds = get_dataset(x_test_private, labeled=False, shuffled=False, batch_size=config['BATCH_SIZE'], buffer_size=AUTO, seed=SEED) ### Model K.clear_session() model = model_fn() model_path = f'model_{fold}.h5' es = EarlyStopping(monitor='val_loss', mode='min', patience=config['ES_PATIENCE'], restore_best_weights=True, verbose=1) rlrp = ReduceLROnPlateau(monitor='val_loss', mode='min', factor=0.1, patience=5, verbose=1) ### Train history = model.fit(train_ds, validation_data=valid_ds, callbacks=[es, rlrp], epochs=config['EPOCHS'], batch_size=config['BATCH_SIZE'], verbose=2).history history_list.append(history) # Save last model weights model.save_weights(model_path) ### Inference oof_preds[valid_idx] = model.predict(oof_ds) # Short sequence (public test) model = model_fn(pred_len= config['PB_SEQ_LEN']) model.load_weights(model_path) test_public_preds += model.predict(test_public_ds) * (1 / config['N_USED_FOLDS']) # Long sequence (private test) model = model_fn(pred_len= config['PV_SEQ_LEN']) model.load_weights(model_path) test_private_preds += model.predict(test_private_ds) * (1 / config['N_USED_FOLDS']) ###Output FOLD: 1 Epoch 1/120 30/30 - 14s - loss: 0.5858 - val_loss: 0.6858 Epoch 2/120 30/30 - 11s - loss: 0.5031 - val_loss: 0.6689 Epoch 3/120 30/30 - 11s - loss: 0.4856 - val_loss: 0.6335 Epoch 4/120 30/30 - 11s - loss: 0.4732 - val_loss: 0.6132 Epoch 5/120 30/30 - 11s - loss: 0.4640 - val_loss: 0.5835 Epoch 6/120 30/30 - 11s - loss: 0.4588 - val_loss: 0.5596 Epoch 7/120 30/30 - 11s - loss: 0.4495 - val_loss: 0.5399 Epoch 8/120 30/30 - 11s - loss: 0.4424 - val_loss: 0.5253 Epoch 9/120 30/30 - 11s - loss: 0.4346 - val_loss: 0.5219 Epoch 10/120 30/30 - 11s - loss: 0.4299 - val_loss: 0.5088 Epoch 11/120 30/30 - 11s - loss: 0.4234 - val_loss: 0.5024 Epoch 12/120 30/30 - 11s - loss: 0.4184 - val_loss: 0.5052 Epoch 13/120 30/30 - 11s - loss: 0.4140 - val_loss: 0.4950 Epoch 14/120 30/30 - 11s - loss: 0.4104 - val_loss: 0.4955 Epoch 15/120 30/30 - 11s - loss: 0.4090 - val_loss: 0.4939 Epoch 16/120 30/30 - 11s - loss: 0.4064 - val_loss: 0.4916 Epoch 17/120 30/30 - 11s - loss: 0.4023 - val_loss: 0.4857 Epoch 18/120 30/30 - 11s - loss: 0.3995 - val_loss: 0.4844 Epoch 19/120 30/30 - 11s - loss: 0.3958 - val_loss: 0.4835 Epoch 20/120 30/30 - 11s - loss: 0.3924 - val_loss: 0.4817 Epoch 21/120 30/30 - 11s - loss: 0.3897 - val_loss: 0.4787 Epoch 22/120 30/30 - 11s - loss: 0.3892 - val_loss: 0.4730 Epoch 23/120 30/30 - 11s - loss: 0.3864 - val_loss: 0.4785 Epoch 24/120 30/30 - 11s - loss: 0.3835 - val_loss: 0.4796 Epoch 25/120 30/30 - 11s - loss: 0.3836 - val_loss: 0.4761 Epoch 26/120 30/30 - 11s - loss: 0.3777 - val_loss: 0.4697 Epoch 27/120 30/30 - 11s - loss: 0.3755 - val_loss: 0.4717 Epoch 28/120 30/30 - 11s - loss: 0.3738 - val_loss: 0.4685 Epoch 29/120 30/30 - 11s - loss: 0.3724 - val_loss: 0.4666 Epoch 30/120 30/30 - 11s - loss: 0.3705 - val_loss: 0.4682 Epoch 31/120 30/30 - 11s - loss: 0.3689 - val_loss: 0.4642 Epoch 32/120 30/30 - 11s - loss: 0.3664 - val_loss: 0.4636 Epoch 33/120 30/30 - 11s - loss: 0.3651 - val_loss: 0.4644 Epoch 34/120 30/30 - 11s - loss: 0.3615 - val_loss: 0.4623 Epoch 35/120 30/30 - 11s - loss: 0.3606 - val_loss: 0.4632 Epoch 36/120 30/30 - 11s - loss: 0.3590 - val_loss: 0.4626 Epoch 37/120 30/30 - 11s - loss: 0.3563 - val_loss: 0.4618 Epoch 38/120 30/30 - 11s - loss: 0.3553 - val_loss: 0.4612 Epoch 39/120 30/30 - 11s - loss: 0.3534 - val_loss: 0.4617 Epoch 40/120 30/30 - 11s - loss: 0.3508 - val_loss: 0.4592 Epoch 41/120 30/30 - 11s - loss: 0.3498 - val_loss: 0.4599 Epoch 42/120 30/30 - 11s - loss: 0.3481 - val_loss: 0.4584 Epoch 43/120 30/30 - 11s - loss: 0.3454 - val_loss: 0.4562 Epoch 44/120 30/30 - 11s - loss: 0.3459 - val_loss: 0.4586 Epoch 45/120 30/30 - 11s - loss: 0.3439 - val_loss: 0.4587 Epoch 46/120 30/30 - 11s - loss: 0.3411 - val_loss: 0.4571 Epoch 47/120 30/30 - 11s - loss: 0.3393 - val_loss: 0.4582 Epoch 48/120 Epoch 00048: ReduceLROnPlateau reducing learning rate to 0.00010000000474974513. 30/30 - 11s - loss: 0.3377 - val_loss: 0.4566 Epoch 49/120 30/30 - 11s - loss: 0.3314 - val_loss: 0.4539 Epoch 50/120 30/30 - 11s - loss: 0.3283 - val_loss: 0.4534 Epoch 51/120 30/30 - 11s - loss: 0.3272 - val_loss: 0.4529 Epoch 52/120 30/30 - 11s - loss: 0.3261 - val_loss: 0.4532 Epoch 53/120 30/30 - 11s - loss: 0.3260 - val_loss: 0.4528 Epoch 54/120 30/30 - 11s - loss: 0.3255 - val_loss: 0.4531 Epoch 55/120 30/30 - 11s - loss: 0.3250 - val_loss: 0.4534 Epoch 56/120 30/30 - 11s - loss: 0.3242 - val_loss: 0.4533 Epoch 57/120 30/30 - 11s - loss: 0.3243 - val_loss: 0.4530 Epoch 58/120 Epoch 00058: ReduceLROnPlateau reducing learning rate to 1.0000000474974514e-05. 30/30 - 11s - loss: 0.3232 - val_loss: 0.4529 Epoch 59/120 30/30 - 11s - loss: 0.3227 - val_loss: 0.4530 Epoch 60/120 30/30 - 11s - loss: 0.3227 - val_loss: 0.4530 Epoch 61/120 30/30 - 11s - loss: 0.3223 - val_loss: 0.4529 Epoch 62/120 30/30 - 11s - loss: 0.3225 - val_loss: 0.4528 Epoch 63/120 Epoch 00063: ReduceLROnPlateau reducing learning rate to 1.0000000656873453e-06. 30/30 - 11s - loss: 0.3221 - val_loss: 0.4532 Epoch 64/120 30/30 - 11s - loss: 0.3223 - val_loss: 0.4531 Epoch 65/120 30/30 - 11s - loss: 0.3218 - val_loss: 0.4531 Epoch 66/120 30/30 - 11s - loss: 0.3224 - val_loss: 0.4531 Epoch 67/120 30/30 - 11s - loss: 0.3222 - val_loss: 0.4531 Epoch 68/120 Epoch 00068: ReduceLROnPlateau reducing learning rate to 1.0000001111620805e-07. 30/30 - 11s - loss: 0.3223 - val_loss: 0.4531 Epoch 69/120 30/30 - 11s - loss: 0.3224 - val_loss: 0.4531 Epoch 70/120 30/30 - 11s - loss: 0.3223 - val_loss: 0.4531 Epoch 71/120 30/30 - 11s - loss: 0.3220 - val_loss: 0.4531 Epoch 72/120 Restoring model weights from the end of the best epoch. 30/30 - 11s - loss: 0.3219 - val_loss: 0.4531 Epoch 00072: early stopping FOLD: 2 Epoch 1/120 30/30 - 14s - loss: 0.6098 - val_loss: 0.5799 Epoch 2/120 30/30 - 11s - loss: 0.5312 - val_loss: 0.5746 Epoch 3/120 30/30 - 11s - loss: 0.5091 - val_loss: 0.5344 Epoch 4/120 30/30 - 11s - loss: 0.4980 - val_loss: 0.4890 Epoch 5/120 30/30 - 11s - loss: 0.4895 - val_loss: 0.4722 Epoch 6/120 30/30 - 11s - loss: 0.4800 - val_loss: 0.4414 Epoch 7/120 30/30 - 11s - loss: 0.4714 - val_loss: 0.4343 Epoch 8/120 30/30 - 11s - loss: 0.4640 - val_loss: 0.4298 Epoch 9/120 30/30 - 11s - loss: 0.4585 - val_loss: 0.4077 Epoch 10/120 30/30 - 11s - loss: 0.4529 - val_loss: 0.4062 Epoch 11/120 30/30 - 11s - loss: 0.4486 - val_loss: 0.4374 Epoch 12/120 30/30 - 11s - loss: 0.4446 - val_loss: 0.4042 Epoch 13/120 30/30 - 11s - loss: 0.4387 - val_loss: 0.4048 Epoch 14/120 30/30 - 11s - loss: 0.4350 - val_loss: 0.4035 Epoch 15/120 30/30 - 11s - loss: 0.4321 - val_loss: 0.3923 Epoch 16/120 30/30 - 11s - loss: 0.4281 - val_loss: 0.3924 Epoch 17/120 30/30 - 11s - loss: 0.4256 - val_loss: 0.3889 Epoch 18/120 30/30 - 11s - loss: 0.4227 - val_loss: 0.3877 Epoch 19/120 30/30 - 11s - loss: 0.4196 - val_loss: 0.3787 Epoch 20/120 30/30 - 11s - loss: 0.4170 - val_loss: 0.3774 Epoch 21/120 30/30 - 11s - loss: 0.4166 - val_loss: 0.3817 Epoch 22/120 30/30 - 11s - loss: 0.4126 - val_loss: 0.3746 Epoch 23/120 30/30 - 11s - loss: 0.4093 - val_loss: 0.3775 Epoch 24/120 30/30 - 11s - loss: 0.4085 - val_loss: 0.3747 Epoch 25/120 30/30 - 11s - loss: 0.4070 - val_loss: 0.3730 Epoch 26/120 30/30 - 11s - loss: 0.4034 - val_loss: 0.3773 Epoch 27/120 30/30 - 11s - loss: 0.4028 - val_loss: 0.3719 Epoch 28/120 30/30 - 11s - loss: 0.3996 - val_loss: 0.3687 Epoch 29/120 30/30 - 11s - loss: 0.3988 - val_loss: 0.3703 Epoch 30/120 30/30 - 11s - loss: 0.3987 - val_loss: 0.3662 Epoch 31/120 30/30 - 11s - loss: 0.3960 - val_loss: 0.3698 Epoch 32/120 30/30 - 11s - loss: 0.3941 - val_loss: 0.3660 Epoch 33/120 30/30 - 11s - loss: 0.3914 - val_loss: 0.3708 Epoch 34/120 30/30 - 11s - loss: 0.3896 - val_loss: 0.3645 Epoch 35/120 30/30 - 11s - loss: 0.3880 - val_loss: 0.3675 Epoch 36/120 30/30 - 11s - loss: 0.3868 - val_loss: 0.3696 Epoch 37/120 30/30 - 11s - loss: 0.3842 - val_loss: 0.3686 Epoch 38/120 30/30 - 11s - loss: 0.3821 - val_loss: 0.3581 Epoch 39/120 30/30 - 11s - loss: 0.3799 - val_loss: 0.3614 Epoch 40/120 30/30 - 11s - loss: 0.3778 - val_loss: 0.3607 Epoch 41/120 30/30 - 11s - loss: 0.3768 - val_loss: 0.3617 Epoch 42/120 30/30 - 11s - loss: 0.3754 - val_loss: 0.3610 Epoch 43/120 Epoch 00043: ReduceLROnPlateau reducing learning rate to 0.00010000000474974513. 30/30 - 11s - loss: 0.3733 - val_loss: 0.3610 Epoch 44/120 30/30 - 11s - loss: 0.3676 - val_loss: 0.3560 Epoch 45/120 30/30 - 11s - loss: 0.3650 - val_loss: 0.3553 Epoch 46/120 30/30 - 11s - loss: 0.3630 - val_loss: 0.3549 Epoch 47/120 30/30 - 11s - loss: 0.3625 - val_loss: 0.3548 Epoch 48/120 30/30 - 11s - loss: 0.3619 - val_loss: 0.3548 Epoch 49/120 30/30 - 11s - loss: 0.3615 - val_loss: 0.3537 Epoch 50/120 30/30 - 11s - loss: 0.3612 - val_loss: 0.3544 Epoch 51/120 30/30 - 11s - loss: 0.3608 - val_loss: 0.3541 Epoch 52/120 30/30 - 11s - loss: 0.3605 - val_loss: 0.3539 Epoch 53/120 30/30 - 11s - loss: 0.3596 - val_loss: 0.3539 Epoch 54/120 Epoch 00054: ReduceLROnPlateau reducing learning rate to 1.0000000474974514e-05. 30/30 - 11s - loss: 0.3594 - val_loss: 0.3538 Epoch 55/120 30/30 - 11s - loss: 0.3592 - val_loss: 0.3538 Epoch 56/120 30/30 - 11s - loss: 0.3589 - val_loss: 0.3538 Epoch 57/120 30/30 - 11s - loss: 0.3587 - val_loss: 0.3539 Epoch 58/120 30/30 - 11s - loss: 0.3585 - val_loss: 0.3539 Epoch 59/120 Restoring model weights from the end of the best epoch. Epoch 00059: ReduceLROnPlateau reducing learning rate to 1.0000000656873453e-06. 30/30 - 11s - loss: 0.3584 - val_loss: 0.3540 Epoch 00059: early stopping FOLD: 3 Epoch 1/120 30/30 - 14s - loss: 0.6061 - val_loss: 0.5892 Epoch 2/120 30/30 - 11s - loss: 0.5237 - val_loss: 0.5722 Epoch 3/120 30/30 - 11s - loss: 0.5038 - val_loss: 0.5541 Epoch 4/120 30/30 - 11s - loss: 0.4936 - val_loss: 0.5131 Epoch 5/120 30/30 - 11s - loss: 0.4850 - val_loss: 0.4769 Epoch 6/120 30/30 - 11s - loss: 0.4769 - val_loss: 0.4532 Epoch 7/120 30/30 - 11s - loss: 0.4688 - val_loss: 0.4445 Epoch 8/120 30/30 - 11s - loss: 0.4614 - val_loss: 0.4318 Epoch 9/120 30/30 - 11s - loss: 0.4539 - val_loss: 0.4267 Epoch 10/120 30/30 - 11s - loss: 0.4487 - val_loss: 0.4161 Epoch 11/120 30/30 - 11s - loss: 0.4450 - val_loss: 0.4154 Epoch 12/120 30/30 - 11s - loss: 0.4398 - val_loss: 0.4097 Epoch 13/120 30/30 - 11s - loss: 0.4351 - val_loss: 0.4063 Epoch 14/120 30/30 - 11s - loss: 0.4322 - val_loss: 0.4012 Epoch 15/120 30/30 - 11s - loss: 0.4285 - val_loss: 0.3981 Epoch 16/120 30/30 - 11s - loss: 0.4243 - val_loss: 0.3970 Epoch 17/120 30/30 - 11s - loss: 0.4217 - val_loss: 0.4002 Epoch 18/120 30/30 - 11s - loss: 0.4196 - val_loss: 0.3919 Epoch 19/120 30/30 - 11s - loss: 0.4159 - val_loss: 0.3934 Epoch 20/120 30/30 - 11s - loss: 0.4142 - val_loss: 0.3949 Epoch 21/120 30/30 - 11s - loss: 0.4126 - val_loss: 0.3912 Epoch 22/120 30/30 - 11s - loss: 0.4103 - val_loss: 0.3895 Epoch 23/120 30/30 - 11s - loss: 0.4074 - val_loss: 0.3841 Epoch 24/120 30/30 - 11s - loss: 0.4054 - val_loss: 0.3862 Epoch 25/120 30/30 - 11s - loss: 0.4023 - val_loss: 0.3822 Epoch 26/120 30/30 - 11s - loss: 0.4007 - val_loss: 0.3801 Epoch 27/120 30/30 - 11s - loss: 0.3976 - val_loss: 0.3797 Epoch 28/120 30/30 - 11s - loss: 0.3959 - val_loss: 0.3799 Epoch 29/120 30/30 - 11s - loss: 0.3943 - val_loss: 0.3772 Epoch 30/120 30/30 - 11s - loss: 0.3917 - val_loss: 0.3800 Epoch 31/120 30/30 - 11s - loss: 0.3899 - val_loss: 0.3772 Epoch 32/120 30/30 - 11s - loss: 0.3894 - val_loss: 0.3775 Epoch 33/120 30/30 - 11s - loss: 0.3857 - val_loss: 0.3741 Epoch 34/120 30/30 - 11s - loss: 0.3836 - val_loss: 0.3746 Epoch 35/120 30/30 - 11s - loss: 0.3823 - val_loss: 0.3784 Epoch 36/120 30/30 - 11s - loss: 0.3813 - val_loss: 0.3739 Epoch 37/120 30/30 - 11s - loss: 0.3790 - val_loss: 0.3738 Epoch 38/120 30/30 - 11s - loss: 0.3769 - val_loss: 0.3739 Epoch 39/120 30/30 - 11s - loss: 0.3749 - val_loss: 0.3751 Epoch 40/120 30/30 - 11s - loss: 0.3751 - val_loss: 0.3801 Epoch 41/120 30/30 - 11s - loss: 0.3728 - val_loss: 0.3748 Epoch 42/120 30/30 - 11s - loss: 0.3700 - val_loss: 0.3712 Epoch 43/120 30/30 - 11s - loss: 0.3686 - val_loss: 0.3716 Epoch 44/120 30/30 - 11s - loss: 0.3677 - val_loss: 0.3764 Epoch 45/120 30/30 - 11s - loss: 0.3661 - val_loss: 0.3726 Epoch 46/120 30/30 - 11s - loss: 0.3638 - val_loss: 0.3713 Epoch 47/120 Epoch 00047: ReduceLROnPlateau reducing learning rate to 0.00010000000474974513. 30/30 - 11s - loss: 0.3627 - val_loss: 0.3743 Epoch 48/120 30/30 - 11s - loss: 0.3557 - val_loss: 0.3687 Epoch 49/120 30/30 - 11s - loss: 0.3526 - val_loss: 0.3681 Epoch 50/120 30/30 - 11s - loss: 0.3515 - val_loss: 0.3669 Epoch 51/120 30/30 - 11s - loss: 0.3506 - val_loss: 0.3668 Epoch 52/120 30/30 - 11s - loss: 0.3499 - val_loss: 0.3669 Epoch 53/120 30/30 - 11s - loss: 0.3498 - val_loss: 0.3670 Epoch 54/120 30/30 - 11s - loss: 0.3490 - val_loss: 0.3673 Epoch 55/120 30/30 - 11s - loss: 0.3484 - val_loss: 0.3675 Epoch 56/120 Epoch 00056: ReduceLROnPlateau reducing learning rate to 1.0000000474974514e-05. 30/30 - 11s - loss: 0.3479 - val_loss: 0.3681 Epoch 57/120 30/30 - 11s - loss: 0.3471 - val_loss: 0.3678 Epoch 58/120 30/30 - 11s - loss: 0.3468 - val_loss: 0.3677 Epoch 59/120 30/30 - 11s - loss: 0.3471 - val_loss: 0.3676 Epoch 60/120 30/30 - 11s - loss: 0.3469 - val_loss: 0.3675 Epoch 61/120 Restoring model weights from the end of the best epoch. Epoch 00061: ReduceLROnPlateau reducing learning rate to 1.0000000656873453e-06. 30/30 - 11s - loss: 0.3470 - val_loss: 0.3676 Epoch 00061: early stopping FOLD: 4 Epoch 1/120 30/30 - 14s - loss: 0.5990 - val_loss: 0.5668 Epoch 2/120 30/30 - 11s - loss: 0.5239 - val_loss: 0.5607 Epoch 3/120 30/30 - 11s - loss: 0.5044 - val_loss: 0.5461 Epoch 4/120 30/30 - 11s - loss: 0.4955 - val_loss: 0.5157 Epoch 5/120 30/30 - 11s - loss: 0.4855 - val_loss: 0.4806 Epoch 6/120 30/30 - 11s - loss: 0.4753 - val_loss: 0.4687 Epoch 7/120 30/30 - 11s - loss: 0.4681 - val_loss: 0.4574 Epoch 8/120 30/30 - 11s - loss: 0.4602 - val_loss: 0.4490 Epoch 9/120 30/30 - 11s - loss: 0.4513 - val_loss: 0.4399 Epoch 10/120 30/30 - 11s - loss: 0.4452 - val_loss: 0.4353 Epoch 11/120 30/30 - 11s - loss: 0.4406 - val_loss: 0.4320 Epoch 12/120 30/30 - 11s - loss: 0.4358 - val_loss: 0.4260 Epoch 13/120 30/30 - 11s - loss: 0.4317 - val_loss: 0.4204 Epoch 14/120 30/30 - 11s - loss: 0.4274 - val_loss: 0.4187 Epoch 15/120 30/30 - 11s - loss: 0.4252 - val_loss: 0.4209 Epoch 16/120 30/30 - 11s - loss: 0.4229 - val_loss: 0.4155 Epoch 17/120 30/30 - 11s - loss: 0.4187 - val_loss: 0.4138 Epoch 18/120 30/30 - 11s - loss: 0.4157 - val_loss: 0.4061 Epoch 19/120 30/30 - 11s - loss: 0.4128 - val_loss: 0.4088 Epoch 20/120 30/30 - 11s - loss: 0.4110 - val_loss: 0.4008 Epoch 21/120 30/30 - 11s - loss: 0.4076 - val_loss: 0.4043 Epoch 22/120 30/30 - 11s - loss: 0.4064 - val_loss: 0.4006 Epoch 23/120 30/30 - 11s - loss: 0.4033 - val_loss: 0.4008 Epoch 24/120 30/30 - 11s - loss: 0.4017 - val_loss: 0.3977 Epoch 25/120 30/30 - 11s - loss: 0.3989 - val_loss: 0.3991 Epoch 26/120 30/30 - 11s - loss: 0.3970 - val_loss: 0.3968 Epoch 27/120 30/30 - 11s - loss: 0.3964 - val_loss: 0.3966 Epoch 28/120 30/30 - 11s - loss: 0.3929 - val_loss: 0.3930 Epoch 29/120 30/30 - 11s - loss: 0.3909 - val_loss: 0.3927 Epoch 30/120 30/30 - 11s - loss: 0.3895 - val_loss: 0.3928 Epoch 31/120 30/30 - 11s - loss: 0.3893 - val_loss: 0.3897 Epoch 32/120 30/30 - 11s - loss: 0.3865 - val_loss: 0.3887 Epoch 33/120 30/30 - 11s - loss: 0.3839 - val_loss: 0.3875 Epoch 34/120 30/30 - 11s - loss: 0.3821 - val_loss: 0.3867 Epoch 35/120 30/30 - 11s - loss: 0.3813 - val_loss: 0.3922 Epoch 36/120 30/30 - 11s - loss: 0.3796 - val_loss: 0.3861 Epoch 37/120 30/30 - 11s - loss: 0.3763 - val_loss: 0.3851 Epoch 38/120 30/30 - 11s - loss: 0.3754 - val_loss: 0.3854 Epoch 39/120 30/30 - 11s - loss: 0.3747 - val_loss: 0.3862 Epoch 40/120 30/30 - 11s - loss: 0.3732 - val_loss: 0.3839 Epoch 41/120 30/30 - 11s - loss: 0.3709 - val_loss: 0.3852 Epoch 42/120 30/30 - 11s - loss: 0.3691 - val_loss: 0.3857 Epoch 43/120 30/30 - 11s - loss: 0.3671 - val_loss: 0.3849 Epoch 44/120 30/30 - 11s - loss: 0.3679 - val_loss: 0.3844 Epoch 45/120 Epoch 00045: ReduceLROnPlateau reducing learning rate to 0.00010000000474974513. 30/30 - 11s - loss: 0.3655 - val_loss: 0.3848 Epoch 46/120 30/30 - 11s - loss: 0.3593 - val_loss: 0.3805 Epoch 47/120 30/30 - 11s - loss: 0.3559 - val_loss: 0.3790 Epoch 48/120 30/30 - 11s - loss: 0.3552 - val_loss: 0.3788 Epoch 49/120 30/30 - 11s - loss: 0.3543 - val_loss: 0.3793 Epoch 50/120 30/30 - 11s - loss: 0.3535 - val_loss: 0.3789 Epoch 51/120 30/30 - 11s - loss: 0.3530 - val_loss: 0.3788 Epoch 52/120 30/30 - 11s - loss: 0.3526 - val_loss: 0.3793 Epoch 53/120 Epoch 00053: ReduceLROnPlateau reducing learning rate to 1.0000000474974514e-05. 30/30 - 11s - loss: 0.3518 - val_loss: 0.3793 Epoch 54/120 30/30 - 11s - loss: 0.3514 - val_loss: 0.3789 Epoch 55/120 30/30 - 11s - loss: 0.3509 - val_loss: 0.3787 Epoch 56/120 30/30 - 11s - loss: 0.3511 - val_loss: 0.3788 Epoch 57/120 30/30 - 11s - loss: 0.3507 - val_loss: 0.3789 Epoch 58/120 Epoch 00058: ReduceLROnPlateau reducing learning rate to 1.0000000656873453e-06. 30/30 - 11s - loss: 0.3506 - val_loss: 0.3788 Epoch 59/120 30/30 - 11s - loss: 0.3507 - val_loss: 0.3788 Epoch 60/120 30/30 - 11s - loss: 0.3506 - val_loss: 0.3788 Epoch 61/120 30/30 - 11s - loss: 0.3506 - val_loss: 0.3788 Epoch 62/120 30/30 - 11s - loss: 0.3506 - val_loss: 0.3788 Epoch 63/120 Epoch 00063: ReduceLROnPlateau reducing learning rate to 1.0000001111620805e-07. 30/30 - 11s - loss: 0.3505 - val_loss: 0.3788 Epoch 64/120 30/30 - 11s - loss: 0.3506 - val_loss: 0.3788 Epoch 65/120 Restoring model weights from the end of the best epoch. 30/30 - 11s - loss: 0.3505 - val_loss: 0.3788 Epoch 00065: early stopping FOLD: 5 Epoch 1/120 30/30 - 14s - loss: 0.6006 - val_loss: 0.6228 Epoch 2/120 30/30 - 11s - loss: 0.5252 - val_loss: 0.6106 Epoch 3/120 30/30 - 11s - loss: 0.5048 - val_loss: 0.6036 Epoch 4/120 30/30 - 11s - loss: 0.4947 - val_loss: 0.6035 Epoch 5/120 30/30 - 11s - loss: 0.4854 - val_loss: 0.5009 Epoch 6/120 30/30 - 11s - loss: 0.4773 - val_loss: 0.4795 Epoch 7/120 30/30 - 11s - loss: 0.4681 - val_loss: 0.4661 Epoch 8/120 30/30 - 11s - loss: 0.4610 - val_loss: 0.4400 Epoch 9/120 30/30 - 11s - loss: 0.4532 - val_loss: 0.4341 Epoch 10/120 30/30 - 11s - loss: 0.4484 - val_loss: 0.4311 Epoch 11/120 30/30 - 11s - loss: 0.4420 - val_loss: 0.4250 Epoch 12/120 30/30 - 11s - loss: 0.4394 - val_loss: 0.4256 Epoch 13/120 30/30 - 11s - loss: 0.4353 - val_loss: 0.4182 Epoch 14/120 30/30 - 11s - loss: 0.4301 - val_loss: 0.4095 Epoch 15/120 30/30 - 11s - loss: 0.4269 - val_loss: 0.4097 Epoch 16/120 30/30 - 11s - loss: 0.4233 - val_loss: 0.4086 Epoch 17/120 30/30 - 11s - loss: 0.4223 - val_loss: 0.4052 Epoch 18/120 30/30 - 11s - loss: 0.4161 - val_loss: 0.4037 Epoch 19/120 30/30 - 11s - loss: 0.4144 - val_loss: 0.4025 Epoch 20/120 30/30 - 11s - loss: 0.4111 - val_loss: 0.4008 Epoch 21/120 30/30 - 11s - loss: 0.4099 - val_loss: 0.3977 Epoch 22/120 30/30 - 11s - loss: 0.4060 - val_loss: 0.3976 Epoch 23/120 30/30 - 11s - loss: 0.4049 - val_loss: 0.3959 Epoch 24/120 30/30 - 11s - loss: 0.4014 - val_loss: 0.3948 Epoch 25/120 30/30 - 11s - loss: 0.3992 - val_loss: 0.3968 Epoch 26/120 30/30 - 11s - loss: 0.3972 - val_loss: 0.3922 Epoch 27/120 30/30 - 11s - loss: 0.3954 - val_loss: 0.3900 Epoch 28/120 30/30 - 11s - loss: 0.3919 - val_loss: 0.3931 Epoch 29/120 30/30 - 11s - loss: 0.3898 - val_loss: 0.3914 Epoch 30/120 30/30 - 11s - loss: 0.3892 - val_loss: 0.3868 Epoch 31/120 30/30 - 11s - loss: 0.3871 - val_loss: 0.3915 Epoch 32/120 30/30 - 11s - loss: 0.3853 - val_loss: 0.3884 Epoch 33/120 30/30 - 11s - loss: 0.3838 - val_loss: 0.3864 Epoch 34/120 30/30 - 11s - loss: 0.3801 - val_loss: 0.3835 Epoch 35/120 30/30 - 11s - loss: 0.3787 - val_loss: 0.3864 Epoch 36/120 30/30 - 11s - loss: 0.3773 - val_loss: 0.3847 Epoch 37/120 30/30 - 11s - loss: 0.3754 - val_loss: 0.3860 Epoch 38/120 30/30 - 11s - loss: 0.3724 - val_loss: 0.3834 Epoch 39/120 Epoch 00039: ReduceLROnPlateau reducing learning rate to 0.00010000000474974513. 30/30 - 11s - loss: 0.3701 - val_loss: 0.3839 Epoch 40/120 30/30 - 11s - loss: 0.3635 - val_loss: 0.3803 Epoch 41/120 30/30 - 11s - loss: 0.3598 - val_loss: 0.3791 Epoch 42/120 30/30 - 11s - loss: 0.3585 - val_loss: 0.3787 Epoch 43/120 30/30 - 11s - loss: 0.3578 - val_loss: 0.3791 Epoch 44/120 30/30 - 11s - loss: 0.3574 - val_loss: 0.3791 Epoch 45/120 30/30 - 11s - loss: 0.3564 - val_loss: 0.3791 Epoch 46/120 30/30 - 11s - loss: 0.3558 - val_loss: 0.3787 Epoch 47/120 Epoch 00047: ReduceLROnPlateau reducing learning rate to 1.0000000474974514e-05. 30/30 - 11s - loss: 0.3555 - val_loss: 0.3793 Epoch 48/120 30/30 - 11s - loss: 0.3548 - val_loss: 0.3790 Epoch 49/120 30/30 - 11s - loss: 0.3540 - val_loss: 0.3790 Epoch 50/120 30/30 - 11s - loss: 0.3543 - val_loss: 0.3791 Epoch 51/120 30/30 - 11s - loss: 0.3541 - val_loss: 0.3787 Epoch 52/120 Restoring model weights from the end of the best epoch. Epoch 00052: ReduceLROnPlateau reducing learning rate to 1.0000000656873453e-06. 30/30 - 11s - loss: 0.3541 - val_loss: 0.3789 Epoch 00052: early stopping ###Markdown Model loss graph ###Code for fold, history in enumerate(history_list): print(f'\nFOLD: {fold+1}') print(f"Train {np.array(history['loss']).min():.5f} Validation {np.array(history['val_loss']).min():.5f}") plot_metrics(history) ###Output FOLD: 1 Train 0.32179 Validation 0.45283 ###Markdown Post-processing ###Code # Assign values to OOF set # Assign labels for idx, col in enumerate(pred_cols): val = train_labels[:, :, idx] oof = oof.assign(**{col: list(val)}) # Assign preds for idx, col in enumerate(pred_cols): val = oof_preds[:, :, idx] oof = oof.assign(**{f'{col}_pred': list(val)}) # Assign values to test set preds_ls = [] for df, preds in [(public_test, test_public_preds), (private_test, test_private_preds)]: for i, uid in enumerate(df.id): single_pred = preds[i] single_df = pd.DataFrame(single_pred, columns=pred_cols) single_df['id_seqpos'] = [f'{uid}_{x}' for x in range(single_df.shape[0])] preds_ls.append(single_df) preds_df = pd.concat(preds_ls) ###Output _____no_output_____ ###Markdown Model evaluation ###Code display(evaluate_model(train, train_labels, oof_preds, pred_cols)) ###Output _____no_output_____ ###Markdown Visualize test predictions ###Code submission = pd.read_csv(database_base_path + 'sample_submission.csv') submission = submission[['id_seqpos']].merge(preds_df, on=['id_seqpos']) ###Output _____no_output_____ ###Markdown Test set predictions ###Code display(submission.head(10)) display(submission.describe()) submission.to_csv('submission.csv', index=False) ###Output _____no_output_____
notebooks/B2_FeatureExtraction.ipynb
###Markdown Copyright &copy; 2020-2021 by Fraunhofer-Gesellschaft. All rights reserved.Fraunhofer Institute for Integrated Circuits IIS, Division Engineering of Adaptive Systems EASZeunerstraße 38, 01069 Dresden, Germany--- ESB - Energy Saving by BlockchainEurostars – EXP 00119832 / EUS-2019113348--- Prediction of Energy Consumption for Variable Customer Portfolios Including Aleatoric Uncertainty Estimation*Oliver Mey, André Schneider, Olaf Enge-Rosenblatt, Yesnier Bravo, Pit Stenzel*The notebook is part of a paper submission contributed to the **10th International Conference on Power Science and Engineering (ICPSE 2021)** will be held on Oct. 21-23, 2021 in Yildiz Technical University, Istanbul, Turkey.--- B2: Data Preprocessing and Feature ExtractionThis notebook loads the available datasets, splits the datasets into three subsets for training, test and validation, fits the scalers and encoders for feature extraction, and extracts the features for all subsets. At the end, the feature vectors are explained in detail.---Version 0.4.3 (August 5, 2021)Authors: Oliver Mey, André Schneider (Fraunhofer IIS) ###Code import warnings warnings.filterwarnings('ignore') import os import joblib import time import numpy as np import pandas as pd import matplotlib.pyplot as plt import holidays as hd import seaborn as sns import tensorflow as tf import tensorflow_probability as tfp from tensorflow.keras.models import load_model from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import RobustScaler %matplotlib inline sns.set(rc={'figure.figsize':(16, 6)}) ###Output _____no_output_____ ###Markdown Configuration ###Code path = '..' timezone = 'Europe/Madrid' date = '2019-02-02' customer = 20 seed = 12345 properties = { 't_consumption_daily': [-14, -1], 't_weather_daily': [-14, -1], 't_consumption_hourly': [-7, -1], 't_weather_hourly': [-2, 0], } ###Output _____no_output_____ ###Markdown Function Definitions ###Code def fix_DST(data): data = data[~data.index.duplicated(keep='first')] data = data.resample('H').ffill() return data def crop(data): hour_index = data.index.hour t0 = data[hour_index==0].head(1).index tn = data[hour_index==23].tail(1).index data.drop(data.loc[data.index < t0[0]].index, inplace=True) data.drop(data.loc[data.index > tn[0]].index, inplace=True) return def time_from_to(date, t, tz=timezone): t0_ = pd.Timestamp(date, tz=tz)+pd.Timedelta(days=t[0]) tn_ = pd.Timestamp(date, tz=tz)+pd.Timedelta(days=t[1])+pd.Timedelta(hours=23) return slice(t0_, tn_) def day_from_to(date, t, tz=timezone): t0_ = pd.Timestamp(date)+pd.Timedelta(days=t[0]) tn_ = pd.Timestamp(date)+pd.Timedelta(days=t[1]) return slice(t0_, tn_) def softrange(x, x_min=0, x_max=1): r = x_max - x_min y = x_min + tf.constant(r)/tf.math.softplus(r) * tf.math.softplus(-tf.math.softplus(x_max-x) + r) return y ###Output _____no_output_____ ###Markdown Class Definitions Data Loader ###Code class DataLoader: def __init__(self, data_path, model_path): self.data_path = data_path self.model_path = model_path self.categories = ['consumption', 'weather', 'profiles'] self.scaler_names = ['scaler_consumptions', 'scaler_consumptions_daily_mean', 'scaler_weather_daily_mean', 'scaler_day_of_month', 'scaler_month', 'scaler_weather_forecast'] self.files = [self.data_path + '/' + '20201015_' + name + '.xlsx' for name in self.categories] return def scale_data(self, data): x = data.groupby(data.index.date).mean() x.index = pd.to_datetime(x.index) x = x.append(pd.DataFrame(x.tail(1), index=x.tail(1).index+pd.Timedelta(days=1))) x = x.resample('h').ffill()[:-1] x.index = data.index y = data / x y.fillna(value=0, inplace=True) return y def load_metadata(self): customers = pd.read_excel(self.files[self.categories.index('profiles')]) customers.columns = ['customer', 'profile'] profiles = pd.DataFrame(customers['profile'].unique(), columns=['profile']) holidays = hd.ES(years=list(range(2010, 2021)), prov="MD") return customers, profiles, holidays def load_data(self): consumptions = pd.read_excel(self.files[self.categories.index('consumption')], parse_dates=[0], index_col=0) consumptions.columns = pd.DataFrame(consumptions.columns, columns=['customer']).index consumptions.index.name = 'time' consumptions = fix_DST(consumptions) consumptions_scaled = self.scale_data(consumptions) weather = pd.read_excel(self.files[self.categories.index('weather')], parse_dates=[0], index_col=0) weather.columns = consumptions.columns weather.index.name = 'time' weather = fix_DST(weather) weather_forecast = weather.copy() weather_forecast.index = weather.index-pd.Timedelta(days=1) weather_forecast = fix_DST(weather_forecast) return consumptions, consumptions_scaled, weather, weather_forecast def load_scalers(self): scalers = [joblib.load(self.model_path + '/' + name) for name in self.scaler_names] scalers = dict(zip(self.scaler_names, scalers)) scale = scalers['scaler_consumptions'].scale_ offset = scalers['scaler_consumptions'].mean_ return scalers def load_models(self, names): models = [load_model(model_path + '/' + name + '.h5') for name in names] models = dict(zip(names, models)) return models ###Output _____no_output_____ ###Markdown Feature Extractor ###Code class FeatureExtractor: def __init__(self, properties, refit=False): self.t_consumption_daily = properties.get('t_consumption_daily', [-13, -1]) self.t_consumption_hourly = properties.get('t_consumption_hourly', [-2, -1]) self.t_weather_daily = properties.get('t_weather_daily', [-2, -0]) self.t_weather_hourly = properties.get('t_weather_hourly', [-2, -0]) self.encoder = properties.get('encoder') if not refit: scalers = properties.get('scalers') self.scaler_consumption = scalers['scaler_consumptions'] self.scaler_weather = scalers['scaler_weather'] self.scaler_weather_forecast = scalers['scaler_weather_forecast'] self.scaler_day_of_month = scalers['scaler_day_of_month'] self.scaler_month = scalers['scaler_month'] return def get_days(self, dates, holidays): days = pd.DataFrame(pd.to_datetime(dates.date), index=dates, columns=['date']) days['day_of_week'] = list(days.index.dayofweek) days['day_of_month'] = list(days.index.day) days['month'] = list(days.index.month) days['day_category'] = days['day_of_week'].replace({0:0,1:1,2:1,3:1,4:2,5:3,6:4}) days.loc[days['date'].apply(lambda d: d in holidays), 'day_category'] = 4 days = days.groupby(['date']).first() return days def split(self, indices, seed=12345): n = len(indices) n_validate = n//10 n_test = n//10 n_train = n-n_validate - n_test np.random.seed(seed) I = np.random.permutation(indices) I_train = I[0:n_train] I_test = I[n_train:n_train + n_test] I_validate = I[n_train + n_test:] return I_train, I_test, I_validate def fit(self, consumptions, weather, weather_forecast, holidays): days = self.get_days(consumptions.index, holidays) consumptions_daily_mean = pd.DataFrame(consumptions.groupby(consumptions.index.date).mean(), index=days.index) weather_daily_mean = pd.DataFrame(weather.groupby(weather.index.date).mean(), index=days.index) households = customers[customers['profile'].astype(str).str.contains('hogares')].index.values I_train, I_test, I_validate = self.split(households, seed) self.scaler_consumptions = RobustScaler(quantile_range=(0,75)) self.scaler_consumptions.fit(consumptions_daily_mean.loc[:, I_train].values.reshape(-1, 1)) self.scaler_weather = RobustScaler(quantile_range=(0,75)) self.scaler_weather.fit(weather_daily_mean.loc[:, I_train].values.reshape(-1, 1)) self.scaler_day_of_month = RobustScaler(quantile_range=(0,75)) self.scaler_day_of_month.fit(days['day_of_month'].values.reshape(-1, 1)) self.scaler_month = RobustScaler(quantile_range=(0,75)) self.scaler_month.fit(days['month'].values.reshape(-1, 1)) X = weather_forecast.loc[:, I_train] X.index = pd.MultiIndex.from_arrays([X.index.date, X.index.time], names=['date','time']) X = X.stack().unstack(level=1) self.scaler_weather_forecast = RobustScaler(quantile_range=(0,75)) self.scaler_weather_forecast.fit(X) scalers = self.get_scalers() dates = consumptions_daily_mean.index.date self.days = days self.consumptions_daily_mean = consumptions_daily_mean self.weather_daily_mean = weather_daily_mean return [I_train, I_test, I_validate], dates, scalers def get_scalers(self): scalers = {'scaler_consumptions': self.scaler_consumptions, 'scaler_weather': self.scaler_weather, 'scaler_weather_forecast': self.scaler_weather_forecast, 'scaler_day_of_month': self.scaler_day_of_month, 'scaler_month': self.scaler_month } return scalers def extract(self, date, customer, consumptions, weather, holidays, offset=1e-5): days = self.days consumptions_daily_mean = self.consumptions_daily_mean weather_daily_mean = self.weather_daily_mean X1 = consumptions.loc[time_from_to(date, self.t_consumption_hourly),customer].values X1 = np.array(X1).reshape(-1) + offset X2 = weather.loc[time_from_to(date, self.t_weather_hourly),customer].values X2 = self.scaler_weather_forecast.transform(np.array(X2).reshape(3,24)).reshape(-1) X2 = (X2+1)/2 X3 = days.loc[pd.Timestamp(date),'month'] X3 = self.scaler_month.transform(np.array([X3]).reshape(-1,1))[0][0] X3 = (X3+1)/2 X4 = days.loc[pd.Timestamp(date),'day_of_month'] X4 = self.scaler_day_of_month.transform(np.array([X4]).reshape(-1,1))[0][0] X4 = (X4+1)/2 X5 = days.loc[pd.Timestamp(date),'day_category'] X5 = self.encoder.transform(np.array(X5).reshape(1, -1)).reshape(-1) X6 = consumptions_daily_mean.loc[day_from_to(date, self.t_consumption_daily), customer].values X6 = X6/(2*self.scaler_consumptions.scale_) + offset X7 = weather_daily_mean.loc[day_from_to(date, self.t_weather_daily), customer].values X7 = self.scaler_weather.transform(np.array([X7]).reshape(-1,1)).reshape(-1) X7 = (X7+1)/2 Xa = np.concatenate([X1, X2, [X3], [X4], X5]).reshape(1,-1) ya = consumptions.loc[time_from_to(date, [0, 0]),customer].values Xb = np.concatenate([X6, X7, X5, [X4], [X3]]).reshape(1,-1) yb = consumptions_daily_mean.loc[day_from_to(date, [0, 0]), customer].values return [Xa, ya, Xb, yb] ###Output _____no_output_____ ###Markdown Prediction Model ###Code class PredictionModel: def __init__(self, Xy, properties): scalers = properties.get('scalers') self.inputs = properties.get('inputs', [247, 35]) self.scale = scalers['scaler_consumptions'].scale_ self.offset = scalers['scaler_consumptions'].center_ self.Xa_train, self.ya_train, self.Xb_train, self.yb_train = self.get_samples(Xy[0]) self.Xa_test, self.ya_test, self.Xb_test, self.yb_test = self.get_samples(Xy[1]) self.Xa_validate, self.ya_validate, self.Xb_validate, self.yb_validate = self.get_samples(Xy[2]) return def get_samples(self, Xy): Xa = np.concatenate([Xy[i][0] for i in range(len(Xy))]) ya = np.concatenate([Xy[i][1] for i in range(len(Xy))]).reshape(-1,24) Xb = np.concatenate([Xy[i][2] for i in range(len(Xy))]) yb = np.concatenate([Xy[i][3] for i in range(len(Xy))]).reshape(-1,1) return Xa, ya, Xb, yb ###Output _____no_output_____ ###Markdown Loading Data ###Code loader = DataLoader(path + '/data', path + '/models') consumptions, consumptions_scaled, weather, weather_forecast = loader.load_data() customers, profiles, holidays = loader.load_metadata() scalers = loader.load_scalers() encoder = OneHotEncoder(sparse=False) encoder.fit(np.arange(5).reshape(-1,1)) properties['encoder'] = encoder ###Output _____no_output_____ ###Markdown Extracting Features ###Code extractor = FeatureExtractor(properties, refit=True) I, dates, scalers = extractor.fit(consumptions, weather, weather_forecast, holidays) features = [[extractor.extract(date, customer, consumptions_scaled, weather, holidays) for date in dates[15:] for customer in Ii] for Ii in I] ###Output _____no_output_____ ###Markdown Preparing the Model ###Code properties['scalers'] = scalers model = PredictionModel(features, properties) ###Output _____no_output_____ ###Markdown Recorded and Preprocessed Data Consumptions The dataframe *consumptions* contains the recorded hourly energy consumptions in kWh (*rows*) for all 499 customers (*columns*). ###Code consumptions _ = consumptions.loc[:, customer].plot(title='Hourly Energy Consumption of Customer #' + \ str(customer) + ' for the Entire Recording Period (Year)', ylabel='energy consumption [kWh]', color='b', alpha=0.7) _ = consumptions.loc[date, customer].plot(title='Hourly Energy Consumption of Customer #' + \ str(customer) + ' for a Selected Date (Day)', ylabel='energy consumption [kWh]', color='b', alpha=0.7) ###Output _____no_output_____ ###Markdown The dataframe *consumptions_daily_mean* contains the daily mean energy consumption for all customers. ###Code extractor.consumptions_daily_mean ###Output _____no_output_____ ###Markdown The dataframe *consumptions_scaled* contains the scaled energy consumptions for all customers. The raw values (see *consumptions*) are divided by the daily mean consumption (see *consumptions_daily_mean*) of the customer. ###Code _ = consumptions_scaled.loc[date, customer].plot(title='Scaled Hourly Energy Consumption of Customer #' + \ str(customer) + ' for a Selected Date (Day)', ylabel='scaled abstract consumption [without unit]', color='b', alpha=0.7) ###Output _____no_output_____ ###Markdown The daily sum (total) of the scaled consumption values (see *consumptions_scaled*) is *24*. Weather The dataframe *weather* contains the weather data (outside temperature in °C) for the customers region with an hourly time resolution. ###Code weather _ = weather.loc[:, customer].plot(title='Hourly Outside Temperature for the Region of Customer #' + \ str(customer) + ' for the Entire Recording Period (Year)', ylabel='outside temperature [°C]', color='g', alpha=0.7) _ = weather.loc[date, customer].plot(title='Hourly Outside Temperature for the Region of Customer #' + \ str(customer) + ' for a Selected Date (Day)', ylabel='outside temperature [°C]', color='g', alpha=0.7) ###Output _____no_output_____ ###Markdown Day Category The dataframe *days* contains all day-related properties like the *day of week* (0...6), the *day of month* (1...31), the *month* (1...12) within the year, and the *day category* (0: Monday, 1: Tuesday-Thursday, 2: Friday, 3: Saturday, 4: Sunday/Holiday). ###Code extractor.days _ = extractor.days.loc['2019-12','day_category'].plot(kind='bar', color='orange', alpha=0.4, title='Day Categories for December 2019') ###Output _____no_output_____ ###Markdown Feature and Target Vectors The *features* contain three subsets: for training, test and validation. ###Code len(features) ###Output _____no_output_____ ###Markdown The training data contain 80% of the total number of samples. The test and validation sets contain 10% each. ###Code _ = [print(s + ': ' + str(len(f)) + ' samples') for f,s in zip(features, ['train', 'test', 'validate'])] ###Output train: 88200 samples test: 10850 samples validate: 10850 samples ###Markdown Each sample consists of 4 parts: the feature vector *Xa* and the target value *ya* for the submodel *A* (intraday prediction) and the feature vector *Xb* and the target value *yb* for the submodel *B* (day-ahead prediction). ###Code len(features[0][0]) ###Output _____no_output_____ ###Markdown The feature vector *Xa* contains a total of **247** values: scaled hourly consumption values (7dx24h), scaled hourly temperature values (3dx24h), the month, the day of month and the onehot-encoded day category. The feature vector *Xb* contains a total of **35** values: scaled daily mean consumption values (14d), scaled daily mean temperature values (14d), the onehot-encoded day category, the day of month and the month.The model *A* predicts the an abstract, unitless intraday curve with hourly resolution (24 values, target vector *ya*) and the model *B* predicts the day-ahead energy consumption (1 value, target vector *yb*). ###Code _ = [print(s + ': ' + str(f.shape)) for f,s in zip(features[0][0], ['Xa', 'ya', 'Xb', 'yb'])] features[0][0] ###Output _____no_output_____
CFMM_for_DFT/tests/.ipynb_checkpoints/test_case_4-checkpoint.ipynb
###Markdown Test Case 4 Calculating interaction of randomly generated sphecial gaussian charge distribution with similar r_ext in 3D space ###Code import os import sys module_path = os.path.abspath(os.path.join('..')) if module_path not in sys.path: sys.path.append(module_path) import numpy as np from fast_multipole_method import operation as op from scipy.special import erf from scipy.special import erfc import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D %matplotlib inline plt.style.use('ggplot') def plot_3d(x): """plot particles in 3 dimentional""" y = np.transpose(x) fig = plt.figure(figsize=(8,8)) ax = fig.add_subplot(111, projection='3d') ax.scatter(y[0], y[1], y[2]) ax = ax.view_init(30) plt.show() return # btm_level == 3, l = 1/8, for WS_index <=2 a_min = 2 * ((erfc(1-1e-16) * 8) ** 2) a_min #case 4.1 construction: random sphecial distributions, similar extend to make WS<=2 num_distribution = 100 x_i = np.ndarray(shape=(3, num_distribution)) x_i[0] = 20 * np.random.rand(num_distribution) - 10 x_i[1] = 20 * np.random.rand(num_distribution) - 10 x_i[2] = 20 * np.random.rand(num_distribution) - 10 x_i = np.transpose(x_i) K_i = np.ones(num_distribution) a_i = 10 * np.random.rand(num_distribution) + a_min #case 4.2 constuction: uniform distributed sphecial distributions, same WS index num_distribution_in_a_box = 1 num_distribution_1D = 3 num_distribution = num_distribution_in_a_box * num_distribution_1D **3 x_i = np.zeros(shape=(num_distribution,3)) for i in range(0,num_distribution_1D): for j in range(0,num_distribution_1D): for k in range(0,num_distribution_1D): x_i[i*num_distribution_1D*num_distribution_1D+j*num_distribution_1D+k] = [i,j,k] K_i = np.ones(num_distribution) a_i = 10 * np.random.rand(num_distribution) + a_min [x0_i, scale_factor] = op.cartesian_scaling_to_unit_range(x_i) plot_3d(x0_i) a_i # analytical answer pair_potential = np.zeros(shape=(num_distribution,num_distribution)) pre_factor = np.power(np.pi, 3) for i in range(0, num_distribution): for j in range(i+1, num_distribution): pre_factor2 = K_i[i] * K_i[j] / ( np.power(a_i[i]*a_i[j], 1.5) * op.distance_cal(x0_i[i], x0_i[j])) t_sqrt = np.sqrt(a_i[i]*a_i[j]/(a_i[i]+a_i[j])) * op.distance_cal(x0_i[i], x0_i[j]) * scale_factor[1] pair_potential[i][j] = pre_factor * pre_factor2 * erf(t_sqrt) pair_potential /= scale_factor[1] pair_potential J_analytic = np.zeros(num_distribution) for i in range(0, num_distribution): for j in range(0, num_distribution): if j<i: J_analytic[i] += pair_potential[j][i] if j>i: J_analytic[i] += pair_potential[i][j] J_analytic total_energy = 0.5 * sum(J_analytic) total_energy from fast_multipole_method import fmm from fast_multipole_method import fmm_q_gaussain_distribution as fq # build list of q_source q_source = np.ndarray(shape=(len(x0_i)), dtype=fq) for i in range(0, len(x0_i)): q_source[i] = fq(x0_i[i], a_i[i], K_i[i]) btm_level = 3 p = 10 ws_index = 3 [J_far_field, J_near_field] = fmm(q_source, btm_level, p, scale_factor[1], ws_index) J_far_field J_near_field J_total = J_far_field + J_near_field J_total total_energy = 0.5 * sum(J_total) total_energy J_error = np.abs(J_total-J_analytic) / J_analytic J_error ###Output _____no_output_____
Pytorch notebooks/Intro_DL_Pytorch_MNIST.ipynb
###Markdown transforms.Compose()* ToTensor() : Converts PIL Image to a tensor. Value range [0, 255] --> [0, 1]* Normalize(mean , std) : Normalizes data of each channel according to mean and standard deviation provided ###Code class Classifier(nn.Module): def __init__(self): super().__init__() self.fc1 = nn.Linear(784, 512) self.fc2 = nn.Linear(512, 256) self.fc3 = nn.Linear(256, 128) self.fc4 = nn.Linear(128, 64) self.fc5 = nn.Linear(64, 10) self.dropout = nn.Dropout(p=0.3) def forward(self, x): x = x.view(x.shape[0], -1) x = self.dropout(F.relu(self.fc1(x))) x = self.dropout(F.relu(self.fc2(x))) x = self.dropout(F.relu(self.fc3(x))) x = self.dropout(F.relu(self.fc4(x))) x = F.log_softmax(self.fc5(x), dim=1) return x model = Classifier() criterion = nn.CrossEntropyLoss() optimizer = optim.Adagrad(model.parameters(), lr = 0.01, lr_decay = 1e-3) images, labels = next(iter(trainloader)) epochs = 15 train_log, test_log = [], [] for epoch in range(epochs): running_loss = 0 for images, labels in trainloader: # Flatten the images images = images.view(images.shape[0], -1) optimizer.zero_grad() scores = model(images) loss = criterion(scores, labels) loss.backward() optimizer.step() running_loss += loss.item() else: test_loss = 0 accuracy = 0 with torch.no_grad(): # Set the model to eval mode. Dropout = 0 model.eval() for images, labels in testloader: scores = model(images) test_loss += criterion(scores, labels) ps = torch.exp(scores) top_p, top_class = ps.topk(1, dim=1) equals = top_class == labels.view(*top_class.shape) accuracy += torch.mean(equals.type(torch.FloatTensor)) train_log.append(running_loss/len(trainloader)) test_log.append(test_loss/len(testloader)) print("Epoch: {}/{} |".format(epoch+1, epochs), "Training Loss: {:.3f} |".format(running_loss/len(trainloader)), "Test Loss: {:.3f} |".format(test_loss/len(testloader)), "Test Accuracy: {:.3f}".format(accuracy/len(testloader))) # Set the model back to train mode. Dropout value restored model.train() plt.plot(train_log, label='Training loss') plt.plot(test_log, label='Validation loss') plt.legend(frameon=False) %config InlineBackend.figure_format = 'retina' def view_classify(img, ps, version="MNIST"): ''' Function for viewing an image and it's predicted classes. ''' ps = ps.data.numpy().squeeze() fig, (ax1, ax2) = plt.subplots(figsize=(6,9), ncols=2) ax1.imshow(img.resize_(1, 28, 28).numpy().squeeze()) ax1.axis('off') ax2.barh(np.arange(10), ps) ax2.set_aspect(0.1) ax2.set_yticks(np.arange(10)) if version == "MNIST": ax2.set_yticklabels(np.arange(10)) elif version == "Fashion": ax2.set_yticklabels(['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle Boot'], size='small'); ax2.set_title('Class Probability') ax2.set_xlim(0, 1.1) plt.tight_layout() model.eval() images, labels = next(iter(trainloader)) img = images[1].view(1, 784) with torch.no_grad(): output = model.forward(img) ps = torch.exp(output) view_classify(img.view(1, 28, 28), ps, version="Fashion") ###Output _____no_output_____ ###Markdown Saving & loading a model* Save the architecture + weights + biases in a dictionary ###Code # Saving a model # print(model.state_dict().keys()) checkpoint = {'input_size': 784, 'output_size': 10, 'hidden_layers': [each.out_features for each in model.hidden_layers], 'state_dict': model.state_dict()} torch.save(checkpoint, 'checkpoint.pth') # Load a model # checkpoint = torch.load(filepath) # model = fc_model.Network(checkpoint['input_size'], checkpoint['output_size'], # checkpoint['hidden_layers']) # model.load_state_dict(checkpoint['state_dict']) ###Output _____no_output_____
Section-04-Missing-Data-Imputation/04.14-Automatic-Imputation-Method-Detection-Sklearn.ipynb
###Markdown Automatic selection of best imputation technique with SklearnIn this notebook we will do a grid search over the imputation methods available in Scikit-learn to determine which imputation technique works best for this dataset and the machine learning model of choice.We will also train a very simple machine learning model as part of a small pipeline.We will use the House Price dataset.- To download the dataset please visit the lecture **Datasets** in **Section 1** of the course. ###Code import pandas as pd import numpy as np # import classes for imputation from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline from sklearn.impute import SimpleImputer # import extra classes for modelling from sklearn.preprocessing import StandardScaler, OneHotEncoder from sklearn.linear_model import Lasso from sklearn.model_selection import train_test_split, GridSearchCV np.random.seed(0) # load dataset with all the variables data = pd.read_csv('../houseprice.csv',) data.head() # find categorical variables # those of type 'Object' in the dataset features_categorical = [c for c in data.columns if data[c].dtypes=='O'] # find numerical variables # those different from object and also excluding the target SalePrice features_numerical = [c for c in data.columns if data[c].dtypes!='O' and c !='SalePrice'] # inspect the categorical variables data[features_categorical].head() # inspect the numerical variables data[features_numerical].head() # separate intro train and test set X_train, X_test, y_train, y_test = train_test_split( data.drop('SalePrice', axis=1), # just the features data['SalePrice'], # the target test_size=0.3, # the percentage of obs in the test set random_state=0) # for reproducibility X_train.shape, X_test.shape # We create the preprocessing pipelines for both # numerical and categorical data # adapted from Scikit-learn code available here under BSD3 license: # https://scikit-learn.org/stable/auto_examples/compose/plot_column_transformer_mixed_types.html numeric_transformer = Pipeline(steps=[ ('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler())]) categorical_transformer = Pipeline(steps=[ ('imputer', SimpleImputer(strategy='constant', fill_value='missing')), ('onehot', OneHotEncoder(handle_unknown='ignore'))]) preprocessor = ColumnTransformer( transformers=[ ('numerical', numeric_transformer, features_numerical), ('categorical', categorical_transformer, features_categorical)]) # Note that to initialise the pipeline I pass any argument to the transformers. # Those will be changed during the gridsearch below. # Append classifier to preprocessing pipeline. # Now we have a full prediction pipeline. clf = Pipeline(steps=[('preprocessor', preprocessor), ('regressor', Lasso(max_iter=2000))]) # now we create the grid with all the parameters that we would like to test param_grid = { 'preprocessor__numerical__imputer__strategy': ['mean', 'median'], 'preprocessor__categorical__imputer__strategy': ['most_frequent', 'constant'], 'regressor__alpha': [10, 100, 200], } #grid_search = GridSearchCV(clf, param_grid, cv=5, iid=False, n_jobs=-1, scoring='r2') grid_search = GridSearchCV(clf, param_grid, cv=5, n_jobs=-1, scoring='r2') # cv=3 is the cross-validation # no_jobs =-1 indicates to use all available cpus # scoring='r2' indicates to evaluate using the r squared # for more details in the grid parameters visit: #https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html ###Output _____no_output_____ ###Markdown When setting the grid parameters, this is how we indicate the parameters:preprocessor__numerical__imputer__strategy': ['mean', 'median'],the above line of code indicates that I would like to test the mean and the median in the imputer step of the numerical processor.preprocessor__categorical__imputer__strategy': ['most_frequent', 'constant']the above line of code indicates that I would like to test the most frequent or a constant value in the imputer step of the categorical processorclassifier__alpha': [0.1, 1.0, 0.5]the above line of code indicates that I want to test those 3 values for the alpha parameter of Lasso. Note that Lasso is the 'classifier' step of our last pipeline ###Code # and now we train over all the possible combinations of the parameters above grid_search.fit(X_train, y_train) # and we print the best score over the train set print(("best linear regression from grid search: %.3f" % grid_search.score(X_train, y_train))) # we can print the best estimator parameters like this grid_search.best_estimator_ # and find the best fit parameters like this grid_search.best_params_ # here we can see all the combinations evaluated during the gridsearch grid_search.cv_results_['params'] # and here the scores for each of one of the above combinations grid_search.cv_results_['mean_test_score'] # and finally let's check the performance over the test set print(("best linear regression from grid search: %.3f" % grid_search.score(X_test, y_test))) ###Output best linear regression from grid search: 0.738 ###Markdown This model overfits to the train set, look at the r2 of 0.93 obtained for the train set vs 0.738 for the test set.We will try to reduce this over-fitting as we progress in the course. ###Code import pprint pprint.pprint(grid_search.cv_results_.keys()) # here we can see all the combinations evaluated during the gridsearch grid_search.cv_results_ ###Output _____no_output_____ ###Markdown Automatic selection of best imputation technique with SklearnIn this notebook we will do a grid search over the imputation methods available in Scikit-learn to determine which imputation technique works best for this dataset and the machine learning model of choice.We will also train a very simple machine learning model as part of a small pipeline.We will use the House Price dataset.- To download the dataset please visit the lecture **Datasets** in **Section 1** of the course. ###Code import pandas as pd import numpy as np # import classes for imputation from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline from sklearn.impute import SimpleImputer # import extra classes for modelling from sklearn.preprocessing import StandardScaler, OneHotEncoder from sklearn.linear_model import Lasso from sklearn.model_selection import train_test_split, GridSearchCV np.random.seed(0) # load dataset with all the variables data = pd.read_csv('../houseprice.csv',) data.head() # find categorical variables # those of type 'Object' in the dataset features_categorical = [c for c in data.columns if data[c].dtypes=='O'] # find numerical variables # those different from object and also excluding the target SalePrice features_numerical = [c for c in data.columns if data[c].dtypes!='O' and c !='SalePrice'] # inspect the categorical variables data[features_categorical].head() # inspect the numerical variables data[features_numerical].head() # separate intro train and test set X_train, X_test, y_train, y_test = train_test_split( data.drop('SalePrice', axis=1), # just the features data['SalePrice'], # the target test_size=0.3, # the percentage of obs in the test set random_state=0) # for reproducibility X_train.shape, X_test.shape # We create the preprocessing pipelines for both # numerical and categorical data # adapted from Scikit-learn code available here under BSD3 license: # https://scikit-learn.org/stable/auto_examples/compose/plot_column_transformer_mixed_types.html numeric_transformer = Pipeline(steps=[ ('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler())]) categorical_transformer = Pipeline(steps=[ ('imputer', SimpleImputer(strategy='constant', fill_value='missing')), ('onehot', OneHotEncoder(handle_unknown='ignore'))]) preprocessor = ColumnTransformer( transformers=[ ('numerical', numeric_transformer, features_numerical), ('categorical', categorical_transformer, features_categorical)]) # Note that to initialise the pipeline I pass any argument to the transformers. # Those will be changed during the gridsearch below. # Append classifier to preprocessing pipeline. # Now we have a full prediction pipeline. clf = Pipeline(steps=[('preprocessor', preprocessor), ('classifier', Lasso(max_iter=2000))]) # now we create the grid with all the parameters that we would like to test param_grid = { 'preprocessor__numerical__imputer__strategy': ['mean', 'median'], 'preprocessor__categorical__imputer__strategy': ['most_frequent', 'constant'], 'classifier__alpha': [10, 100, 200], } grid_search = GridSearchCV(clf, param_grid, cv=5, iid=False, n_jobs=-1, scoring='r2') # cv=3 is the cross-validation # no_jobs =-1 indicates to use all available cpus # scoring='r2' indicates to evaluate using the r squared # for more details in the grid parameters visit: #https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html ###Output _____no_output_____ ###Markdown When setting the grid parameters, this is how we indicate the parameters:preprocessor__numerical__imputer__strategy': ['mean', 'median'],the above line of code indicates that I would like to test the mean and the median in the imputer step of the numerical processor.preprocessor__categorical__imputer__strategy': ['most_frequent', 'constant']the above line of code indicates that I would like to test the most frequent or a constant value in the imputer step of the categorical processorclassifier__alpha': [0.1, 1.0, 0.5]the above line of code indicates that I want to test those 3 values for the alpha parameter of Lasso. Note that Lasso is the 'classifier' step of our last pipeline ###Code # and now we train over all the possible combinations of the parameters above grid_search.fit(X_train, y_train) # and we print the best score over the train set print(("best linear regression from grid search: %.3f" % grid_search.score(X_train, y_train))) # we can print the best estimator parameters like this grid_search.best_estimator_ # and find the best fit parameters like this grid_search.best_params_ # here we can see all the combinations evaluated during the gridsearch grid_search.cv_results_['params'] # and here the scores for each of one of the above combinations grid_search.cv_results_['mean_test_score'] # and finally let's check the performance over the test set print(("best linear regression from grid search: %.3f" % grid_search.score(X_test, y_test))) ###Output best linear regression from grid search: 0.738 ###Markdown Automatic selection of best imputation technique with SklearnIn this notebook we will do a grid search over the imputation methods available in Scikit-learn to determine which imputation technique works best for this dataset and the machine learning model of choice.We will also train a very simple machine learning model as part of a small pipeline.We will use the House Price dataset.- To download the dataset please visit the lecture **Datasets** in **Section 1** of the course. ###Code import pandas as pd import numpy as np # import classes for imputation from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline from sklearn.impute import SimpleImputer # import extra classes for modelling from sklearn.preprocessing import StandardScaler, OneHotEncoder from sklearn.linear_model import Lasso from sklearn.model_selection import train_test_split, GridSearchCV np.random.seed(0) # load dataset with all the variables data = pd.read_csv('../houseprice.csv',) data.head() # find categorical variables # those of type 'Object' in the dataset features_categorical = [c for c in data.columns if data[c].dtypes=='O'] # find numerical variables # those different from object and also excluding the target SalePrice features_numerical = [c for c in data.columns if data[c].dtypes!='O' and c !='SalePrice'] # inspect the categorical variables data[features_categorical].head() # inspect the numerical variables data[features_numerical].head() # separate intro train and test set X_train, X_test, y_train, y_test = train_test_split( data.drop('SalePrice', axis=1), # just the features data['SalePrice'], # the target test_size=0.3, # the percentage of obs in the test set random_state=0) # for reproducibility X_train.shape, X_test.shape # We create the preprocessing pipelines for both # numerical and categorical data # adapted from Scikit-learn code available here under BSD3 license: # https://scikit-learn.org/stable/auto_examples/compose/plot_column_transformer_mixed_types.html numeric_transformer = Pipeline(steps=[ ('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler())]) categorical_transformer = Pipeline(steps=[ ('imputer', SimpleImputer(strategy='constant', fill_value='missing')), ('onehot', OneHotEncoder(handle_unknown='ignore'))]) preprocessor = ColumnTransformer( transformers=[ ('numerical', numeric_transformer, features_numerical), ('categorical', categorical_transformer, features_categorical)]) # Note that to initialise the pipeline I pass any argument to the transformers. # Those will be changed during the gridsearch below. # Append classifier to preprocessing pipeline. # Now we have a full prediction pipeline. clf = Pipeline(steps=[('preprocessor', preprocessor), ('regressor', Lasso(max_iter=2000))]) # now we create the grid with all the parameters that we would like to test param_grid = { 'preprocessor__numerical__imputer__strategy': ['mean', 'median'], 'preprocessor__categorical__imputer__strategy': ['most_frequent', 'constant'], 'regressor__alpha': [10, 100, 200], } grid_search = GridSearchCV(clf, param_grid, cv=5, iid=False, n_jobs=-1, scoring='r2') # cv=3 is the cross-validation # no_jobs =-1 indicates to use all available cpus # scoring='r2' indicates to evaluate using the r squared # for more details in the grid parameters visit: #https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html ###Output _____no_output_____ ###Markdown When setting the grid parameters, this is how we indicate the parameters:preprocessor__numerical__imputer__strategy': ['mean', 'median'],the above line of code indicates that I would like to test the mean and the median in the imputer step of the numerical processor.preprocessor__categorical__imputer__strategy': ['most_frequent', 'constant']the above line of code indicates that I would like to test the most frequent or a constant value in the imputer step of the categorical processorclassifier__alpha': [0.1, 1.0, 0.5]the above line of code indicates that I want to test those 3 values for the alpha parameter of Lasso. Note that Lasso is the 'classifier' step of our last pipeline ###Code # and now we train over all the possible combinations of the parameters above grid_search.fit(X_train, y_train) # and we print the best score over the train set print(("best linear regression from grid search: %.3f" % grid_search.score(X_train, y_train))) # we can print the best estimator parameters like this grid_search.best_estimator_ # and find the best fit parameters like this grid_search.best_params_ # here we can see all the combinations evaluated during the gridsearch grid_search.cv_results_['params'] # and here the scores for each of one of the above combinations grid_search.cv_results_['mean_test_score'] # and finally let's check the performance over the test set print(("best linear regression from grid search: %.3f" % grid_search.score(X_test, y_test))) ###Output best linear regression from grid search: 0.738
_notebooks/2020-12-23-simple-backprop.ipynb
###Markdown Bare-Bones Backpropagation> Demonstrating the simplest possible backpropagation implementation, with all the clutter removed.- toc:true- badges: true- comments: true- author: Charlie Blake- categories: [neural-networks, backpropagation]- image: images/blog/simple-backprop/viz.png Making Backprop Simple The first few times I came across backpropagation I struggled to get a feel for what was going on. It's not just enoughto follow the equations - I couldn't visualise the operations and updates, especially the mysterious backwards pass. If someone had shown me then how simple it was to implement the key part of the training algorithm that figures out how to update the weights, then it would have helped me a lot. I understood how the chain rule worked and its relevance here, but I didn't have a picture of it in my head. I got bogged down in the matrix notation and PyTorch tensors and lost sight of what was really going on.So this is a simple-as-possible backprop implementation, to clear up that confusion. I don't go into the maths; I assume the reader already knows what's going on in theory, but doesn't have a great feel for what happens in practice.This can also serve as a reference for how to implement this from scratch a clean way. Enjoy! Setup First things first, there's some setup to do. This isn't a tutorial on data loading, so I'm just going to paste somecode for loading up our dataset and we can ignore the details. The only thing worth noting is that we'll be using theclassic *MNIST* dataset: ###Code #collapse-hide import math import torch import torchvision from torchvision.datasets import MNIST from torch.utils.data import DataLoader from torch.nn.functional import one_hot from functools import reduce import altair as alt import pandas as pd batch_sz = 64 train = DataLoader(MNIST('data/', train=True, download=True, transform=torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), lambda x: torch.flatten(x), ]) ), batch_size=batch_sz, shuffle=True) ###Output _____no_output_____ ###Markdown This `train` dataloader can be iterated over and returns minibatches of shape `(batch__sz, input_dim)`.In our case, these values are `(64, 28*28=784)` Layer-by-layer We'll construct our neural network by making classes for each layer. We'll use a standard setup of: linear layer, ReLU, linear layer, softmax; plus a cross-entropy loss.For each layer class we require two methods:- **`__call__(self, x)`**: implements the forward pass. `__call__` allows us to feed an input through the layer by treating the initialised layer object as a function. For example: `relu_layer = ReLU(); output = relu_layer(input)`.- **`bp_input(self, grad)`**: implements the backward pass, allowing us to backpropagate the gradient vector through the layer. The `grad` parameter is a matrix of partial derivatives of the loss, with respect to the data sent from the given layer to the next. As such, it is a `(batch_sz, out)` matrix. The job of `bp_input` is to return a `(batch_sz, in)` matrix to be sent to the next layer by multiplying `grad` by the derivative of the forward pass with respect to the _input_ (or an equivalent operation).There are two other methods we sometimes wish to implement for different layers:- **`__init__(self, ...)`**: initialises the layer, e.g. weights.- **`bp_param(self, grad)`**: the "final stop" of the backwards pass. Only applicable for layers with trainable weights. Similar to `bp_input`, but calculates the derivative with respect to the _weights_ of the layer. Should return a matrix with the same shape as the weights (`self.W`) to be updated. > Important: The key point to recall when visualising this is that when we have a batch dimension it is always the first dimension. For both the forward and backward pass. This makes everything much simpler! Linear LayerLet's start with the linear layer. We do the following:1. We start by initialising the weights (in this case using the Xavier initialisation).2. We then implement the call method. Rather than adding an explicit bias, we append a vector of ones to the layer's input (this is equivalent, and makes backprop simpler).3. Backpropagation with respect to the input is just right multiplication by the transpose of the weight matrix (adjusted to remove the added 1s column)4. Backpropagation with respect to the output is left multiplication by the transpose of the input matrix. ###Code class LinearLayer: def __init__(self, in_sz, out_sz): self.W = self._xavier_init(in_sz + 1, out_sz) # (in+1, out) def _xavier_init(self, i, o): return torch.Tensor(i, o).uniform_(-1, 1) * math.sqrt(6./(i + o)) def __call__(self, X): # (batch_sz, in) self.X = torch.cat([X, torch.ones(X.shape[0], 1)], dim=1) # (batch_sz, in+1) return self.X @ self.W # (batch_sz, in+1) @ (in+1, out) = (batch_sz, out) def bp_input(self, grad): return (grad @ self.W.T)[:,:-1] # (batch_sz, out) @ (out, in) = (batch_sz, in) def bp_param(self, grad): return self.X.T @ grad # (in+1, batch_sz) @ (batch_sz, out) = (in+1, out) ###Output _____no_output_____ ###Markdown ReLU LayerSome non-linearity is a must! Bring on the RelU function. The implementation is pretty obvious here. `clamp()` is doing all the work. ###Code class ReLU: def __call__(self, X): self.X = X return X.clamp(min=0) # (batch_sz, in) def bp_input(self, grad): return grad * (self.X > 0).float() # (batch_sz, in) ###Output _____no_output_____ ###Markdown Softmax & Cross Entropy LossWhat? Both at once, why would you do this??This is quite common, and I can justify it in two ways:1. This layer-loss combination often go together, so why not put them all in one layer? This saves us from having to do two separate forward and backward propagation steps.2. I won't prove it here, but it turns out that the derivative of the loss with respect to the input to the softmax, is much simpler than the two intermediate derivative operations, and bypasses the numerical stability issues that arise when we do the exponential and the logarithm. Phew!The downside here is that is we're just doing _inference_ then we only want the softmax output. But for the purposes of this tutorial we only really care about training. So this will do just fine!There's a trick in the second line of the softmax implementation: it turns out subtracting the argmax from the softmax input keeps the output the same, but the intermediate values are more numerically stable. How neat!Finally, we examine the backprop step. It's so simple! Our starting grad for backprop (the initial `grad` value passed in is just the ones vector) is the difference in our predicted output vector and the actual one-hot encoded label. This is so intuitive and wonderful.> Tip: This is exactly the same derivative as when we don't use a softmax layer and apply an MSE loss (i.e. the regression case). We can thus think of softmax + cross entropy as a way of getting to the same underlying backprop, but in the classification case. ###Code class SoftmaxCrossEntropyLoss: # (batch_sz, in=out) for all dims in this layer def __call__(self, X, Y): self.Y = Y self.Y_prob = self._softmax(X) self.loss = self._cross_entropy_loss(Y, self.Y_prob) return self.Y_prob, self.loss def _softmax(self, X): self.X = X X_adj = X - X.amax(dim=1, keepdim=True) exps = torch.exp(X_adj) return exps / exps.sum(axis=1, keepdim=True) def _cross_entropy_loss(self, Y, Y_prob): return (-Y * torch.log(Y_prob)).sum(axis=1).mean() def bp_input(self, grad): return (self.Y_prob - self.Y) * grad ###Output _____no_output_____ ###Markdown Putting it all togetherLet's bring these layers together in a class: our `NeuralNet` implementation.The `evaluate()` function does two things. Firstly, it runs the forward pass by chaining the `__call__()` functions, to generate label probabilities. Secondly, it uses the labels passed to it to calculate the loss and percentage correctly predicted.> Note: for this simplified example we don't have a pure inference function, but we could add one with a small change to `SoftmaxCrossEntropyLoss`.The `gradient_descent()` function then gets the matrix of updates for each weight matrix and applies the update. The key bit here is how `backprop()` works. Going backwards through the computation graph we chain the backprop with respect to input methods. Then for each weighted layer we want to update, we apply the backprop with respect to prameters method to the relevant gradient vector. ###Code class NeuralNet: def __init__(self, input_size=28*28, hidden_size=32, output_size=10, alpha=0.001): self.alpha = alpha self.z1 = LinearLayer(input_size, hidden_size) self.a1 = ReLU() self.z2 = LinearLayer(hidden_size, output_size) self.loss = SoftmaxCrossEntropyLoss() def evaluate(self, X, Y): out = self.z2(self.a1(self.z1(X))) correct = torch.eq(out.argmax(axis=1), Y).double().mean() Y_prob, loss = self.loss(out, one_hot(Y, 10)) return Y_prob, correct, loss def gradient_descent(self): delta_W1, delta_W2 = self.backprop() self.z1.W -= self.alpha * delta_W1 self.z2.W -= self.alpha * delta_W2 def backprop(self): d_out = torch.ones(*self.loss.Y.shape) d_z2 = self.loss.bp_input(d_out) d_a1 = self.z2.bp_input(d_z2) d_z1 = self.a1.bp_input(d_a1) d_w2 = self.z2.bp_param(d_z2) d_w1 = self.z1.bp_param(d_z1) return d_w1, d_w2 ###Output _____no_output_____ ###Markdown Training the modelWe're almost there! I won't go into this bit too much because this tutorial isn't about training loops, but it's all very standard here.We break the training data into minibatches and train on them over 10 epochs. The evaluation metrics plotted are those recorded during regular training.> Warning: these results are only on the training set! In practice we should *always* plot performance on a test set, but we don't want to clutter the tutorial with this extra detail. ###Code #collapse-hide model = NeuralNet() stats = {'correct': [], 'loss': [], 'epoch': []} for epoch in range(2): correct, loss = 0, 0 for i, (X, y) in enumerate(train): y_prob, batch_correct, batch_loss = model.evaluate(X, y) model.gradient_descent() correct += batch_correct / len(train) loss += batch_loss / len(train) stats['correct'].append(correct.item()) stats['loss'].append(loss.item()) stats['epoch'].append(epoch) print(f'epoch: {epoch} | correct: {correct:.2f}, loss: {loss:.2f}') base = alt.Chart(pd.DataFrame.from_dict(stats)).mark_line() \ .encode(alt.X('epoch', axis=alt.Axis(title='epoch'))) line1 = base.mark_line(stroke='#5276A7', interpolate='monotone') \ .encode(alt.Y('loss' , axis=alt.Axis(title='Loss' , titleColor='#5276A7'), scale=alt.Scale(domain=[0.0, max(stats['loss' ])])), tooltip='loss' ) line2 = base.mark_line(stroke='#57A44C', interpolate='monotone') \ .encode(alt.Y('correct', axis=alt.Axis(title='Correct', titleColor='#57A44C'), scale=alt.Scale(domain=[min(stats['correct']), 1.0])), tooltip='correct') alt.layer(line1, line2).resolve_scale(y = 'independent') ###Output _____no_output_____
master/tutorial_ptrans.ipynb
###Markdown Translação PeriódicaA translação periódica é uma translação de uma imagem que se repete periodicamente como se fosse umaparede ladrilhada e cada ladrilho fosse a imagem em questão. A translação periódica da imagem **f** pelo deslocamento (dh,dw) é ilustrada no exemplo a seguir.A imagem **f4** é montada a partir de 4 imagens. Sua montagem é feita com o auxílio das funções**vstack** e **hstack**. Estas funções do NumPy concatenam as imagens da tupla na vertical (vstack) ouhorizontal (hstack). No caso iremos fazer uma translação por (-30,-80). Note que no trecho do códigoabaixo, estamos usando mapeamento inverso e há necessidade de multiplicarmos (dh,dw) por -1. Comoa translação é periódica e estamos montando as 4 imagens, além de multiplicarmos por -1 somamos (H,W)e fazemos o módulo por (H,W) para que o valor fique entre (0,0) e (H-1,W-1): ###Code %matplotlib inline import matplotlib.image as mpimg import matplotlib.pyplot as plt import numpy as np f = mpimg.imread('../data/cameraman.tif') plt.imshow(f,cmap='gray'),plt.title('original') H,W = f.shape dh,dw = (-30,-80) dhi = (-dh + H) % H # mapeamento inverso igual feito em iaffine (inversa de T) dwi = (-dw + W) % W # mapeamento inverso f2 = np.vstack((f,f)) f4 = np.hstack((f2,f2)) plt.figure(1) plt.imshow(f4,cmap='gray'), plt.title('montagem periódica de f') f4[dhi:dhi+H,dwi ] = 255 f4[dhi:dhi+H,dwi+W-1] = 255 f4[dhi ,dwi:dwi+W] = 255 f4[dhi+H-1,dwi:dwi+W] = 255 plt.figure(2) plt.imshow(f4,cmap='gray'), plt.title('marcação de f transladada') g = f4[dhi:dhi+H,dwi:dwi+W] plt.figure(3) plt.imshow(g,cmap='gray'), plt.title('f periodicamente translada por (%d,%d)' % (dh,dw)) ###Output _____no_output_____ ###Markdown Translação PeriódicaA translação periódica é uma translação de uma imagem que se repete periodicamente como se fosse umaparede ladrilhada e cada ladrilho fosse a imagem em questão. A translação periódica da imagem **f** pelo deslocamento (dh,dw) é ilustrada no exemplo a seguir.A imagem **f4** é montada a partir de 4 imagens. Sua montagem é feita com o auxílio das funções**vstack** e **hstack**. Estas funções do NumPy concatenam as imagens da tupla na vertical (vstack) ouhorizontal (hstack). No caso iremos fazer uma translação por (-30,-80). Note que no trecho do códigoabaixo, estamos usando mapeamento inverso e há necessidade de multiplicarmos (dh,dw) por -1. Comoa translação é periódica e estamos montando as 4 imagens, além de multiplicarmos por -1 somamos (H,W)e fazemos o módulo por (H,W) para que o valor fique entre (0,0) e (H-1,W-1): ###Code %matplotlib inline import matplotlib.image as mpimg import matplotlib.pyplot as plt import numpy as np f = mpimg.imread('../data/cameraman.tif') plt.imshow(f,cmap='gray'),plt.title('original') H,W = f.shape dh,dw = (-30,-80) dhi = (-dh + H) % H # mapeamento inverso igual feito em iaffine (inversa de T) dwi = (-dw + W) % W # mapeamento inverso f2 = np.vstack((f,f)) f4 = np.hstack((f2,f2)) plt.figure(1) plt.imshow(f4,cmap='gray'), plt.title('montagem periódica de f') f4[dhi:dhi+H,dwi ] = 255 f4[dhi:dhi+H,dwi+W-1] = 255 f4[dhi ,dwi:dwi+W] = 255 f4[dhi+H-1,dwi:dwi+W] = 255 plt.figure(2) plt.imshow(f4,cmap='gray'), plt.title('marcação de f transladada') g = f4[dhi:dhi+H,dwi:dwi+W] plt.figure(3) plt.imshow(g,cmap='gray'), plt.title('f periodicamente translada por (%d,%d)' % (dh,dw)) ###Output _____no_output_____
SourceCodes/P2_evaluation/ARIMA/ARIMA__SP_P500.ipynb
###Markdown Packages ###Code !pip install pmdarima !pip install arch !pip install yfinance import numpy as np import pandas as pd import scipy import statsmodels.api as sm import matplotlib.pyplot as plt import seaborn as sns import sklearn import statsmodels.graphics.tsaplots as sgt import statsmodels.tsa.stattools as sts from statsmodels.tsa.arima_model import ARIMA from arch import arch_model import yfinance import warnings warnings.filterwarnings("ignore") sns.set() ###Output _____no_output_____ ###Markdown Loading the data ###Code raw_data = yfinance.download (tickers = "WMT", start = "2015-01-02", end = "2020-05-08", interval = "1d", group_by = 'ticker', auto_adjust = True, treads = True) df_comp = raw_data.copy() df_comp=df_comp.asfreq('d') df_comp=df_comp.fillna(method='ffill') Apple_df = df_comp ###Output _____no_output_____ ###Markdown Creating Returns ###Code Apple_df['return'] = df_comp.Close.pct_change(1).mul(100) Apple_df = Apple_df.drop(columns='Volume') ###Output _____no_output_____ ###Markdown Walmart dataset ###Code Apple_df.tail() Apple_df.summa S_P5 ###Output _____no_output_____ ###Markdown S&P500 dataset ###Code df_comp.tail() df_comp['norm_ret_spx'] = df_comp.ret_spx.div(df_comp.ret_spx[1])*100 ###Output _____no_output_____ ###Markdown Splitting the Data ###Code size = int(len(df_comp)*0.8) df_train, df_test = df_comp.iloc[:size], df_comp.iloc[size:] df_train.shape ###Output _____no_output_____ ###Markdown Fitting a Model ###Code model_ar = ARIMA(df_train.Close, order = (1,0,0)) results_ar = model_ar.fit() model_ar_510 = ARIMA(df_train.Close, order = (5,0,0)) results_ar_510 = model_ar_510.fit() ###Output _____no_output_____ ###Markdown Simple Forecasting ###Code df_train.tail() df_test.head() df_test.tail() # create variables that will help us change the periods easily instead of typing them up every time # make sure the start and end dates are business days, otherwise the code will result in an error start_date = "2015-04-16" end_date = "2020-05-11" end_date = "2020-05-11" df_pred = results_ar.predict(start = start_date, end = end_date) end_date = "2020-05-11" df_pred_510 = results_ar_510.predict(start = start_date, end = end_date) df_pred_510[start_date:end_date].plot(figsize = (20,5), color = "red") df_test.Close[start_date:end_date].plot(color = "blue") plt.title("S&P500 ARIMA prediction", size = 12) plt.show() df_test.shape from statsmodels.tools.eval_measures import rmse from statsmodels.tools.eval_measures import mse print("RMSE %.4f" % rmse(df_test.Close,df_pred)) print("MSE %.4f" %) print("MSE %4f" % mse(df_test.Close,df_pred_510)) ###Output _____no_output_____
Big-Data-Clusters/CU8/Public/content/common/sop011-set-kubernetes-context.ipynb
###Markdown SOP011 - Set kubernetes configuration context=============================================Description-----------Set the kubernetes configuration to use.NOTE: To view available contexts use the following TSG:- [TSG010 - Get configuration contexts](../monitor-k8s/tsg010-get-kubernetes-contexts.ipynb)Steps----- Parameters ###Code context_name = None ###Output _____no_output_____ ###Markdown Common functionsDefine helper functions used in this notebook. ###Code # Define `run` function for transient fault handling, suggestions on error, and scrolling updates on Windows import sys import os import re import json import platform import shlex import shutil import datetime from subprocess import Popen, PIPE from IPython.display import Markdown retry_hints = {} # Output in stderr known to be transient, therefore automatically retry error_hints = {} # Output in stderr where a known SOP/TSG exists which will be HINTed for further help install_hint = {} # The SOP to help install the executable if it cannot be found first_run = True rules = None debug_logging = False def run(cmd, return_output=False, no_output=False, retry_count=0, base64_decode=False, return_as_json=False): """Run shell command, stream stdout, print stderr and optionally return output NOTES: 1. Commands that need this kind of ' quoting on Windows e.g.: kubectl get nodes -o jsonpath={.items[?(@.metadata.annotations.pv-candidate=='data-pool')].metadata.name} Need to actually pass in as '"': kubectl get nodes -o jsonpath={.items[?(@.metadata.annotations.pv-candidate=='"'data-pool'"')].metadata.name} The ' quote approach, although correct when pasting into Windows cmd, will hang at the line: `iter(p.stdout.readline, b'')` The shlex.split call does the right thing for each platform, just use the '"' pattern for a ' """ MAX_RETRIES = 5 output = "" retry = False global first_run global rules if first_run: first_run = False rules = load_rules() # When running `azdata sql query` on Windows, replace any \n in """ strings, with " ", otherwise we see: # # ('HY090', '[HY090] [Microsoft][ODBC Driver Manager] Invalid string or buffer length (0) (SQLExecDirectW)') # if platform.system() == "Windows" and cmd.startswith("azdata sql query"): cmd = cmd.replace("\n", " ") # shlex.split is required on bash and for Windows paths with spaces # cmd_actual = shlex.split(cmd) # Store this (i.e. kubectl, python etc.) to support binary context aware error_hints and retries # user_provided_exe_name = cmd_actual[0].lower() # When running python, use the python in the ADS sandbox ({sys.executable}) # if cmd.startswith("python "): cmd_actual[0] = cmd_actual[0].replace("python", sys.executable) # On Mac, when ADS is not launched from terminal, LC_ALL may not be set, which causes pip installs to fail # with: # # UnicodeDecodeError: 'ascii' codec can't decode byte 0xc5 in position 4969: ordinal not in range(128) # # Setting it to a default value of "en_US.UTF-8" enables pip install to complete # if platform.system() == "Darwin" and "LC_ALL" not in os.environ: os.environ["LC_ALL"] = "en_US.UTF-8" # When running `kubectl`, if AZDATA_OPENSHIFT is set, use `oc` # if cmd.startswith("kubectl ") and "AZDATA_OPENSHIFT" in os.environ: cmd_actual[0] = cmd_actual[0].replace("kubectl", "oc") # To aid supportability, determine which binary file will actually be executed on the machine # which_binary = None # Special case for CURL on Windows. The version of CURL in Windows System32 does not work to # get JWT tokens, it returns "(56) Failure when receiving data from the peer". If another instance # of CURL exists on the machine use that one. (Unfortunately the curl.exe in System32 is almost # always the first curl.exe in the path, and it can't be uninstalled from System32, so here we # look for the 2nd installation of CURL in the path) if platform.system() == "Windows" and cmd.startswith("curl "): path = os.getenv('PATH') for p in path.split(os.path.pathsep): p = os.path.join(p, "curl.exe") if os.path.exists(p) and os.access(p, os.X_OK): if p.lower().find("system32") == -1: cmd_actual[0] = p which_binary = p break # Find the path based location (shutil.which) of the executable that will be run (and display it to aid supportability), this # seems to be required for .msi installs of azdata.cmd/az.cmd. (otherwise Popen returns FileNotFound) # # NOTE: Bash needs cmd to be the list of the space separated values hence shlex.split. # if which_binary == None: which_binary = shutil.which(cmd_actual[0]) # Display an install HINT, so the user can click on a SOP to install the missing binary # if which_binary == None: print(f"The path used to search for '{cmd_actual[0]}' was:") print(sys.path) if user_provided_exe_name in install_hint and install_hint[user_provided_exe_name] is not None: display(Markdown(f'HINT: Use [{install_hint[user_provided_exe_name][0]}]({install_hint[user_provided_exe_name][1]}) to resolve this issue.')) raise FileNotFoundError(f"Executable '{cmd_actual[0]}' not found in path (where/which)") else: cmd_actual[0] = which_binary start_time = datetime.datetime.now().replace(microsecond=0) print(f"START: {cmd} @ {start_time} ({datetime.datetime.utcnow().replace(microsecond=0)} UTC)") print(f" using: {which_binary} ({platform.system()} {platform.release()} on {platform.machine()})") print(f" cwd: {os.getcwd()}") # Command-line tools such as CURL and AZDATA HDFS commands output # scrolling progress bars, which causes Jupyter to hang forever, to # workaround this, use no_output=True # # Work around a infinite hang when a notebook generates a non-zero return code, break out, and do not wait # wait = True try: if no_output: p = Popen(cmd_actual) else: p = Popen(cmd_actual, stdout=PIPE, stderr=PIPE, bufsize=1) with p.stdout: for line in iter(p.stdout.readline, b''): line = line.decode() if return_output: output = output + line else: if cmd.startswith("azdata notebook run"): # Hyperlink the .ipynb file regex = re.compile(' "(.*)"\: "(.*)"') match = regex.match(line) if match: if match.group(1).find("HTML") != -1: display(Markdown(f' - "{match.group(1)}": "{match.group(2)}"')) else: display(Markdown(f' - "{match.group(1)}": "[{match.group(2)}]({match.group(2)})"')) wait = False break # otherwise infinite hang, have not worked out why yet. else: print(line, end='') if rules is not None: apply_expert_rules(line) if wait: p.wait() except FileNotFoundError as e: if install_hint is not None: display(Markdown(f'HINT: Use {install_hint} to resolve this issue.')) raise FileNotFoundError(f"Executable '{cmd_actual[0]}' not found in path (where/which)") from e exit_code_workaround = 0 # WORKAROUND: azdata hangs on exception from notebook on p.wait() if not no_output: for line in iter(p.stderr.readline, b''): try: line_decoded = line.decode() except UnicodeDecodeError: # NOTE: Sometimes we get characters back that cannot be decoded(), e.g. # # \xa0 # # For example see this in the response from `az group create`: # # ERROR: Get Token request returned http error: 400 and server # response: {"error":"invalid_grant",# "error_description":"AADSTS700082: # The refresh token has expired due to inactivity.\xa0The token was # issued on 2018-10-25T23:35:11.9832872Z # # which generates the exception: # # UnicodeDecodeError: 'utf-8' codec can't decode byte 0xa0 in position 179: invalid start byte # print("WARNING: Unable to decode stderr line, printing raw bytes:") print(line) line_decoded = "" pass else: # azdata emits a single empty line to stderr when doing an hdfs cp, don't # print this empty "ERR:" as it confuses. # if line_decoded == "": continue print(f"STDERR: {line_decoded}", end='') if line_decoded.startswith("An exception has occurred") or line_decoded.startswith("ERROR: An error occurred while executing the following cell"): exit_code_workaround = 1 # inject HINTs to next TSG/SOP based on output in stderr # if user_provided_exe_name in error_hints: for error_hint in error_hints[user_provided_exe_name]: if line_decoded.find(error_hint[0]) != -1: display(Markdown(f'HINT: Use [{error_hint[1]}]({error_hint[2]}) to resolve this issue.')) # apply expert rules (to run follow-on notebooks), based on output # if rules is not None: apply_expert_rules(line_decoded) # Verify if a transient error, if so automatically retry (recursive) # if user_provided_exe_name in retry_hints: for retry_hint in retry_hints[user_provided_exe_name]: if line_decoded.find(retry_hint) != -1: if retry_count < MAX_RETRIES: print(f"RETRY: {retry_count} (due to: {retry_hint})") retry_count = retry_count + 1 output = run(cmd, return_output=return_output, retry_count=retry_count) if return_output: if base64_decode: import base64 return base64.b64decode(output).decode('utf-8') else: return output elapsed = datetime.datetime.now().replace(microsecond=0) - start_time # WORKAROUND: We avoid infinite hang above in the `azdata notebook run` failure case, by inferring success (from stdout output), so # don't wait here, if success known above # if wait: if p.returncode != 0: raise SystemExit(f'Shell command:\n\n\t{cmd} ({elapsed}s elapsed)\n\nreturned non-zero exit code: {str(p.returncode)}.\n') else: if exit_code_workaround !=0 : raise SystemExit(f'Shell command:\n\n\t{cmd} ({elapsed}s elapsed)\n\nreturned non-zero exit code: {str(exit_code_workaround)}.\n') print(f'\nSUCCESS: {elapsed}s elapsed.\n') if return_output: if base64_decode: import base64 return base64.b64decode(output).decode('utf-8') else: return output def load_json(filename): """Load a json file from disk and return the contents""" with open(filename, encoding="utf8") as json_file: return json.load(json_file) def load_rules(): """Load any 'expert rules' from the metadata of this notebook (.ipynb) that should be applied to the stderr of the running executable""" # Load this notebook as json to get access to the expert rules in the notebook metadata. # try: j = load_json("sop011-set-kubernetes-context.ipynb") except: pass # If the user has renamed the book, we can't load ourself. NOTE: Is there a way in Jupyter, to know your own filename? else: if "metadata" in j and \ "azdata" in j["metadata"] and \ "expert" in j["metadata"]["azdata"] and \ "expanded_rules" in j["metadata"]["azdata"]["expert"]: rules = j["metadata"]["azdata"]["expert"]["expanded_rules"] rules.sort() # Sort rules, so they run in priority order (the [0] element). Lowest value first. # print (f"EXPERT: There are {len(rules)} rules to evaluate.") return rules def apply_expert_rules(line): """Determine if the stderr line passed in, matches the regular expressions for any of the 'expert rules', if so inject a 'HINT' to the follow-on SOP/TSG to run""" global rules for rule in rules: notebook = rule[1] cell_type = rule[2] output_type = rule[3] # i.e. stream or error output_type_name = rule[4] # i.e. ename or name output_type_value = rule[5] # i.e. SystemExit or stdout details_name = rule[6] # i.e. evalue or text expression = rule[7].replace("\\*", "*") # Something escaped *, and put a \ in front of it! if debug_logging: print(f"EXPERT: If rule '{expression}' satisfied', run '{notebook}'.") if re.match(expression, line, re.DOTALL): if debug_logging: print("EXPERT: MATCH: name = value: '{0}' = '{1}' matched expression '{2}', therefore HINT '{4}'".format(output_type_name, output_type_value, expression, notebook)) match_found = True display(Markdown(f'HINT: Use [{notebook}]({notebook}) to resolve this issue.')) print('Common functions defined successfully.') # Hints for binary (transient fault) retry, (known) error and install guide # retry_hints = {'kubectl': ['A connection attempt failed because the connected party did not properly respond after a period of time, or established connection failed because connected host has failed to respond'], 'azdata': ['Endpoint sql-server-master does not exist', 'Endpoint livy does not exist', 'Failed to get state for cluster', 'Endpoint webhdfs does not exist', 'Adaptive Server is unavailable or does not exist', 'Error: Address already in use', 'Login timeout expired (0) (SQLDriverConnect)', 'SSPI Provider: No Kerberos credentials available', 'ERROR: No credentials were supplied, or the credentials were unavailable or inaccessible.']} error_hints = {'kubectl': [['no such host', 'TSG010 - Get configuration contexts', '../monitor-k8s/tsg010-get-kubernetes-contexts.ipynb'], ['No connection could be made because the target machine actively refused it', 'TSG056 - Kubectl fails with No connection could be made because the target machine actively refused it', '../repair/tsg056-kubectl-no-connection-could-be-made.ipynb']], 'azdata': [['The token is expired', 'SOP028 - azdata login', '../common/sop028-azdata-login.ipynb'], ['Reason: Unauthorized', 'SOP028 - azdata login', '../common/sop028-azdata-login.ipynb'], ['Max retries exceeded with url: /api/v1/bdc/endpoints', 'SOP028 - azdata login', '../common/sop028-azdata-login.ipynb'], ['Look at the controller logs for more details', 'TSG027 - Observe cluster deployment', '../diagnose/tsg027-observe-bdc-create.ipynb'], ['provided port is already allocated', 'TSG062 - Get tail of all previous container logs for pods in BDC namespace', '../log-files/tsg062-tail-bdc-previous-container-logs.ipynb'], ['Create cluster failed since the existing namespace', 'SOP061 - Delete a big data cluster', '../install/sop061-delete-bdc.ipynb'], ['Failed to complete kube config setup', 'TSG067 - Failed to complete kube config setup', '../repair/tsg067-failed-to-complete-kube-config-setup.ipynb'], ['Error processing command: "ApiError', 'TSG110 - Azdata returns ApiError', '../repair/tsg110-azdata-returns-apierror.ipynb'], ['Error processing command: "ControllerError', 'TSG036 - Controller logs', '../log-analyzers/tsg036-get-controller-logs.ipynb'], ['ERROR: 500', 'TSG046 - Knox gateway logs', '../log-analyzers/tsg046-get-knox-logs.ipynb'], ['Data source name not found and no default driver specified', 'SOP069 - Install ODBC for SQL Server', '../install/sop069-install-odbc-driver-for-sql-server.ipynb'], ["Can't open lib 'ODBC Driver 17 for SQL Server", 'SOP069 - Install ODBC for SQL Server', '../install/sop069-install-odbc-driver-for-sql-server.ipynb'], ['Control plane upgrade failed. Failed to upgrade controller.', 'TSG108 - View the controller upgrade config map', '../diagnose/tsg108-controller-failed-to-upgrade.ipynb'], ["[Errno 2] No such file or directory: '..\\\\", 'TSG053 - ADS Provided Books must be saved before use', '../repair/tsg053-save-book-first.ipynb'], ["NameError: name 'azdata_login_secret_name' is not defined", 'SOP013 - Create secret for azdata login (inside cluster)', '../common/sop013-create-secret-for-azdata-login.ipynb'], ['ERROR: No credentials were supplied, or the credentials were unavailable or inaccessible.', "TSG124 - 'No credentials were supplied' error from azdata login", '../repair/tsg124-no-credentials-were-supplied.ipynb'], ['Please accept the license terms to use this product through', "TSG126 - azdata fails with 'accept the license terms to use this product'", '../repair/tsg126-accept-license-terms.ipynb']]} install_hint = {'kubectl': ['SOP036 - Install kubectl command line interface', '../install/sop036-install-kubectl.ipynb'], 'azdata': ['SOP063 - Install azdata CLI (using package manager)', '../install/sop063-packman-install-azdata.ipynb']} ###Output _____no_output_____ ###Markdown List available contexts ###Code if context_name is None: contexts = run('kubectl config get-contexts --output name', return_output=True) contexts =contexts.split("\n")[:-1] counter = 0 for context in contexts: print(f'{counter}. {context}') counter += 1 else: print(f'context_name: {context_name}') ###Output _____no_output_____ ###Markdown Select a context (if not set as a parameter) ###Code if context_name is None: context_name = contexts[5] # <-- select context here (set ordinal) print(f'context_name: {context_name}') ###Output _____no_output_____ ###Markdown Log out using azdataTo avoid a situation where the `Kubernetes` context is for a clusterwhich is not hosting the Big Data Cluster `azdata` currently loggedinto. ###Code run('azdata logout') ###Output _____no_output_____ ###Markdown Set the kubernetes configuration to use ###Code run(f'kubectl config use-context {context_name}') print('Notebook execution complete.') ###Output _____no_output_____
07/Animal_Panda_Homework_7_Skinner.ipynb
###Markdown *1. Import pandas with the right name ###Code import pandas as pd ###Output _____no_output_____ ###Markdown *2. Set all graphics from matplotlib to display inline ###Code import matplotlib.pyplot as plt %matplotlib inline ###Output _____no_output_____ ###Markdown *3. Import pandas with the right name ###Code #for encoding the command would look smth like this: #df = pd.read_csv("XXXXXXXXXXXXXXXXX.csv", encoding='mac_roman') df = pd.read_csv("Animal_Data/07-hw-animals.csv") ###Output _____no_output_____ ###Markdown *4. Display the names of the columns in the csv ###Code df.columns ###Output _____no_output_____ ###Markdown *5. Display the first 3 animals. ###Code df.head(3) ###Output _____no_output_____ ###Markdown *6. Sort the animals to see the 3 longest animals. ###Code df.sort_values(by='length', ascending=False).head(3) ###Output _____no_output_____ ###Markdown *7. What are the counts of the different values of the "animal" column? a.k.a. how many cats and how many dogs. ###Code df['animal'].value_counts() ###Output _____no_output_____ ###Markdown *8. Only select the dogs. ###Code #df['animal'] == 'dog' this just tests, whether row is a dog or not, True or False #is_dog = df['animal'] == 'dog' #df[is_dog] df[df['animal'] == 'dog'] ###Output _____no_output_____ ###Markdown *9. Display all of the animals that are greater than 40 cm. ###Code df[df['length'] > 40] #del df['feet'] ###Output _____no_output_____ ###Markdown *10. 'length' is the animal's length in cm. Create a new column called inches that is the length in inches. ###Code df['inches'] = df['length'] * 0.394 df.head() ###Output _____no_output_____ ###Markdown *11. Save the cats to a separate variable called "cats." Save the dogs to a separate variable called "dogs." ###Code dogs = df[df['animal'] == 'dog'] cats = df[df['animal'] == 'cat'] ###Output _____no_output_____ ###Markdown *12. Display all of the animals that are cats and above 12 inches long. First do it using the "cats" variable, then do it using your normal dataframe. ###Code cats[cats['inches'] > 12] #df[df[df[df['animal'] == 'cat']'inches'] > 12] #df[df['animal'] == 'cat']& #df[df['inches'] > 12] #pd.read_csv('imdb.txt') # .sort(columns='year') # .filter('year >1990') # .to_csv('filtered.csv') df[(df['animal'] == 'cat') & (df['inches'] > 12)] #3 > 2 & 4 > 3 #true & true #true #3 > 2 & 4 > 3 #true & 4 > 3 #(3 > 2) & (4 > 3) ###Output _____no_output_____ ###Markdown *13. What's the mean length of a cat? ###Code df[df['animal'] == 'cat'].describe() ###Output _____no_output_____ ###Markdown *14. What's the mean length of a dog? ###Code df[df['animal'] == 'dog'].describe() ###Output _____no_output_____ ###Markdown *15. Use groupby to accomplish both of the above tasks at once. ###Code df.groupby(['animal'])['inches'].describe() ###Output _____no_output_____ ###Markdown *16. Make a histogram of the length of dogs. I apologize that it is so boring. ###Code df[df['animal'] == 'dog'].hist() ###Output _____no_output_____ ###Markdown *17. Change your graphing style to be something else (anything else!) ###Code import matplotlib.pyplot as plt plt.style.available plt.style.use('ggplot') dogs['inches'].hist() ###Output _____no_output_____ ###Markdown *18. Make a horizontal bar graph of the length of the animals, with their name as the label (look at the billionaires notebook I put on Slack!) ###Code df['length'].plot(kind='bar') #or: df.plot(kind='barh', x='name', y='length', legend=False) ###Output _____no_output_____ ###Markdown *19. Make a sorted horizontal bar graph of the cats, with the larger cats on top. ###Code cats_sorted = cats.sort_values(by='length', ascending=True).head(3) cats_sorted.plot(kind='barh', x='name', y='length', legend=False) #or: df[df['animal'] == 'cat'].sort_values(by='length', ascending=True).plot(kind='barh', x='name', y='length') ###Output _____no_output_____
PA4/Bonus-Model_Policy_Network-HyperparameterTuning.ipynb
###Markdown Model-Based RL - TunedIn this exercise you will implement a policy and model network which work in tandem to solve the CartPole reinforcement learning problem. This is a bonus task where this Model Policy Network is tuned. Loading libraries and starting CartPole environment ###Code from __future__ import print_function import numpy as np try: import cPickle as pickle except: import pickle import tensorflow as tf %matplotlib inline import matplotlib.pyplot as plt import math import sys if sys.version_info.major > 2: xrange = range del sys import gym env = gym.make('CartPole-v0') ###Output /home/u20842/.local/lib/python3.6/site-packages/gym/envs/registration.py:14: PkgResourcesDeprecationWarning: Parameters to load are deprecated. Call .resolve and .require separately. result = entry_point.load(False) ###Markdown Setting Hyper-parameters ###Code # hyperparameters H = 16 # number of hidden layer neurons learning_rate = 1e-2 gamma = 0.99 # discount factor for reward decay_rate = 0.99 # decay factor for RMSProp leaky sum of grad^2 resume = False # resume from previous checkpoint? model_bs = 3 # Batch size when learning from model real_bs = 3 # Batch size when learning from real environment # model initialization D = 4 # input dimensionality ###Output _____no_output_____ ###Markdown Policy Network ###Code tf.reset_default_graph() observations = tf.placeholder(tf.float32, [None,4] , name="input_x") W1 = tf.get_variable("W1", shape=[4, H], initializer=tf.contrib.layers.xavier_initializer()) layer1 = tf.nn.relu(tf.matmul(observations,W1)) W2 = tf.get_variable("W2", shape=[H, 1], initializer=tf.contrib.layers.xavier_initializer()) score = tf.matmul(layer1,W2) probability = tf.nn.sigmoid(score) tvars = tf.trainable_variables() input_y = tf.placeholder(tf.float32,[None,1], name="input_y") advantages = tf.placeholder(tf.float32,name="reward_signal") adam = tf.train.AdamOptimizer(learning_rate=learning_rate) W1Grad = tf.placeholder(tf.float32,name="batch_grad1") W2Grad = tf.placeholder(tf.float32,name="batch_grad2") batchGrad = [W1Grad,W2Grad] ################################################################################ # TODO: Implement the loss function. # # This sends the weights in the direction of making actions that gave good # # advantage (reward overtime) more likely, and actions that didn't less likely.# ################################################################################ loglik = tf.log(input_y*(input_y - probability) + (1 - input_y)*(input_y + probability)) loss = -tf.reduce_mean(loglik * advantages) ################################################################################ # END OF YOUR CODE # ################################################################################ newGrads = tf.gradients(loss,tvars) updateGrads = adam.apply_gradients(zip(batchGrad,tvars)) ###Output _____no_output_____ ###Markdown Model NetworkHere we implement a multi-layer neural network that predicts the next observation, reward, and done state from a current state and action. ###Code mH = 256 # model layer size input_data = tf.placeholder(tf.float32, [None, 5]) with tf.variable_scope('rnnlm'): softmax_w = tf.get_variable("softmax_w", [mH, 50]) softmax_b = tf.get_variable("softmax_b", [50]) previous_state = tf.placeholder(tf.float32, [None,5] , name="previous_state") W1M = tf.get_variable("W1M", shape=[5, mH], initializer=tf.contrib.layers.xavier_initializer()) B1M = tf.Variable(tf.zeros([mH]),name="B1M") layer1M = tf.nn.relu(tf.matmul(previous_state,W1M) + B1M) W2M = tf.get_variable("W2M", shape=[mH, mH], initializer=tf.contrib.layers.xavier_initializer()) B2M = tf.Variable(tf.zeros([mH]),name="B2M") layer2M = tf.nn.relu(tf.matmul(layer1M,W2M) + B2M) wO = tf.get_variable("wO", shape=[mH, 4], initializer=tf.contrib.layers.xavier_initializer()) wR = tf.get_variable("wR", shape=[mH, 1], initializer=tf.contrib.layers.xavier_initializer()) wD = tf.get_variable("wD", shape=[mH, 1], initializer=tf.contrib.layers.xavier_initializer()) bO = tf.Variable(tf.zeros([4]),name="bO") bR = tf.Variable(tf.zeros([1]),name="bR") bD = tf.Variable(tf.ones([1]),name="bD") predicted_observation = tf.matmul(layer2M,wO,name="predicted_observation") + bO predicted_reward = tf.matmul(layer2M,wR,name="predicted_reward") + bR predicted_done = tf.sigmoid(tf.matmul(layer2M,wD,name="predicted_done") + bD) true_observation = tf.placeholder(tf.float32,[None,4],name="true_observation") true_reward = tf.placeholder(tf.float32,[None,1],name="true_reward") true_done = tf.placeholder(tf.float32,[None,1],name="true_done") predicted_state = tf.concat([predicted_observation,predicted_reward,predicted_done],1) observation_loss = tf.square(true_observation - predicted_observation) reward_loss = tf.square(true_reward - predicted_reward) done_loss = tf.multiply(predicted_done, true_done) + tf.multiply(1-predicted_done, 1-true_done) done_loss = -tf.log(done_loss) model_loss = tf.reduce_mean(observation_loss + done_loss + reward_loss) modelAdam = tf.train.AdamOptimizer(learning_rate=learning_rate) updateModel = modelAdam.minimize(model_loss) ###Output _____no_output_____ ###Markdown Helper-functions ###Code def resetGradBuffer(gradBuffer): for ix,grad in enumerate(gradBuffer): gradBuffer[ix] = grad * 0 return gradBuffer def discount_rewards(r): ################################################################################ # TODO: Implement the discounted rewards function # # Return discounted rewards weighed by gamma. Each reward will be replaced # # with a weight reward that involves itself and all the other rewards occuring # # after it. The later the reward after it happens, the less effect it has on # # the current rewards's discounted reward # # Hint: [r0, r1, r2, ..., r_N] will look someting like: # # [(r0 + r1*gamma^1 + ... r_N*gamma^N), (r1 + r2*gamma^1 + ...), ...] # ################################################################################ rnew = np.copy(r) for i in range(1, len(rnew)): rnew[:len(r)-i] += gamma**i * r[i:] return rnew ################################################################################ # END OF YOUR CODE # ################################################################################ # This function uses our model to produce a new state when given a previous state and action def stepModel(sess, xs, action): toFeed = np.reshape(np.hstack([xs[-1][0],np.array(action)]),[1,5]) myPredict = sess.run([predicted_state],feed_dict={previous_state: toFeed}) reward = myPredict[0][:,4] observation = myPredict[0][:,0:4] observation[:,0] = np.clip(observation[:,0],-2.4,2.4) observation[:,2] = np.clip(observation[:,2],-0.4,0.4) doneP = np.clip(myPredict[0][:,5],0,1) if doneP > 0.1 or len(xs)>= 300: done = True else: done = False return observation, reward, done ###Output _____no_output_____ ###Markdown Training the Policy and Model ###Code xs,drs,ys,ds = [],[],[],[] running_reward = None reward_sum = 0 episode_number = 1 real_episodes = 1 init = tf.global_variables_initializer() batch_size = real_bs drawFromModel = False # When set to True, will use model for observations trainTheModel = True # Whether to train the model trainThePolicy = False # Whether to train the policy switch_point = 1 # Launch the graph with tf.Session() as sess: rendering = False sess.run(init) observation = env.reset() x = observation gradBuffer = sess.run(tvars) gradBuffer = resetGradBuffer(gradBuffer) while episode_number <= 5000: # Start displaying environment once performance is acceptably high. if (reward_sum/batch_size > 150 and drawFromModel == False) or rendering == True : # env.render() rendering = True x = np.reshape(observation,[1,4]) tfprob = sess.run(probability,feed_dict={observations: x}) action = 1 if np.random.uniform() < tfprob else 0 # record various intermediates (needed later for backprop) xs.append(x) y = 1 if action == 0 else 0 ys.append(y) # step the model or real environment and get new measurements if drawFromModel == False: observation, reward, done, info = env.step(action) else: observation, reward, done = stepModel(sess,xs,action) reward_sum += reward ds.append(done*1) drs.append(reward) # record reward (has to be done after we call step() to get reward for previous action) if done: if drawFromModel == False: real_episodes += 1 episode_number += 1 # stack together all inputs, hidden states, action gradients, and rewards for this episode epx = np.vstack(xs) epy = np.vstack(ys) epr = np.vstack(drs) epd = np.vstack(ds) xs,drs,ys,ds = [],[],[],[] # reset array memory if trainTheModel == True: ################################################################################ # TODO: Run the model network and compute predicted_state # # Output: 'pState' # ################################################################################ feed_dict = { previous_state: np.hstack([epx[:-1], np.array([1-y for y in epy][:-1])]), true_observation: epx[1:], true_reward: epr[1:], true_done: epd[1:] } tState = np.hstack([epx[1:], epr[1:], epd[1:]]) _, pState = sess.run([updateModel, predicted_state], feed_dict=feed_dict) ################################################################################ # END OF YOUR CODE # ################################################################################ if trainThePolicy == True: ################################################################################ # TODO: Run the policy network and compute newGrads # # Output: 'tGrad' # ################################################################################ discounted_epr = discount_rewards(epr) # size the rewards to be unit normal (helps control the gradient estimator variance) discounted_epr -= np.mean(discounted_epr) discounted_epr //= np.std(discounted_epr) tGrad = sess.run(newGrads, feed_dict={observations: epx, input_y: epy, advantages: discounted_epr}) ################################################################################ # END OF YOUR CODE # ################################################################################ # If gradients becom too large, end training process if np.sum(tGrad[0] == tGrad[0]) == 0: break for ix,grad in enumerate(tGrad): gradBuffer[ix] += grad if switch_point + batch_size == episode_number: switch_point = episode_number if trainThePolicy == True: ################################################################################ # TODO: # # (1) Run the policy network and update gradients # # (2) Reset gradBuffer to 0 # ################################################################################ sess.run(updateGrads, feed_dict={W1Grad: gradBuffer[0], W2Grad: gradBuffer[1]}) # gradBuffer reset is already done at the beginning of episode ################################################################################ # END OF YOUR CODE # ################################################################################ running_reward = reward_sum if running_reward is None else running_reward * 0.99 + reward_sum * 0.01 if drawFromModel == False: print('World Perf: Episode %f. Reward %f. action: %f. mean reward %f.' % (real_episodes,reward_sum/real_bs,action, running_reward/real_bs)) if reward_sum/batch_size >= 200: break reward_sum = 0 # Once the model has been trained on 100 episodes if episode_number > 100: ################################################################################ # TODO: Alternating between training the policy from the model and training # # the model from the real environment. # ################################################################################ drawFromModel = not drawFromModel trainTheModel = not trainTheModel trainThePolicy = not trainThePolicy ################################################################################ # END OF YOUR CODE # ################################################################################ if drawFromModel == True: observation = np.random.uniform(-0.1,0.1,[4]) # Generate reasonable starting point batch_size = model_bs else: observation = env.reset() batch_size = real_bs print(real_episodes) ###Output World Perf: Episode 4.000000. Reward 19.000000. action: 0.000000. mean reward 19.000000. World Perf: Episode 7.000000. Reward 25.333333. action: 1.000000. mean reward 19.063333. World Perf: Episode 10.000000. Reward 22.666667. action: 1.000000. mean reward 19.099367. World Perf: Episode 13.000000. Reward 27.000000. action: 0.000000. mean reward 19.178373. World Perf: Episode 16.000000. Reward 19.666667. action: 1.000000. mean reward 19.183256. World Perf: Episode 19.000000. Reward 19.333333. action: 0.000000. mean reward 19.184757. World Perf: Episode 22.000000. Reward 25.666667. action: 1.000000. mean reward 19.249576. World Perf: Episode 25.000000. Reward 20.000000. action: 0.000000. mean reward 19.257080. World Perf: Episode 28.000000. Reward 17.333333. action: 0.000000. mean reward 19.237843. World Perf: Episode 31.000000. Reward 19.666667. action: 0.000000. mean reward 19.242131. World Perf: Episode 34.000000. Reward 19.333333. action: 1.000000. mean reward 19.243043. World Perf: Episode 37.000000. Reward 24.000000. action: 1.000000. mean reward 19.290612. World Perf: Episode 40.000000. Reward 40.333333. action: 0.000000. mean reward 19.501040. World Perf: Episode 43.000000. Reward 21.666667. action: 0.000000. mean reward 19.522696. World Perf: Episode 46.000000. Reward 23.666667. action: 0.000000. mean reward 19.564136. World Perf: Episode 49.000000. Reward 17.333333. action: 0.000000. mean reward 19.541828. World Perf: Episode 52.000000. Reward 27.666667. action: 0.000000. mean reward 19.623076. World Perf: Episode 55.000000. Reward 21.333333. action: 1.000000. mean reward 19.640179. World Perf: Episode 58.000000. Reward 20.666667. action: 1.000000. mean reward 19.650443. World Perf: Episode 61.000000. Reward 16.666667. action: 0.000000. mean reward 19.620606. World Perf: Episode 64.000000. Reward 19.666667. action: 0.000000. mean reward 19.621066. World Perf: Episode 67.000000. Reward 21.666667. action: 1.000000. mean reward 19.641522. World Perf: Episode 70.000000. Reward 32.333333. action: 0.000000. mean reward 19.768440. World Perf: Episode 73.000000. Reward 27.333333. action: 0.000000. mean reward 19.844089. World Perf: Episode 76.000000. Reward 34.333333. action: 1.000000. mean reward 19.988982. World Perf: Episode 79.000000. Reward 20.333333. action: 1.000000. mean reward 19.992425. World Perf: Episode 82.000000. Reward 20.000000. action: 1.000000. mean reward 19.992501. World Perf: Episode 85.000000. Reward 23.333333. action: 1.000000. mean reward 20.025909. World Perf: Episode 88.000000. Reward 35.000000. action: 1.000000. mean reward 20.175650. World Perf: Episode 91.000000. Reward 20.333333. action: 0.000000. mean reward 20.177227. World Perf: Episode 94.000000. Reward 35.000000. action: 1.000000. mean reward 20.325455. World Perf: Episode 97.000000. Reward 19.666667. action: 0.000000. mean reward 20.318867. World Perf: Episode 100.000000. Reward 12.666667. action: 0.000000. mean reward 20.242345. World Perf: Episode 103.000000. Reward 13.333333. action: 0.000000. mean reward 20.173255. World Perf: Episode 106.000000. Reward 26.666667. action: 1.000000. mean reward 20.160816. World Perf: Episode 109.000000. Reward 23.000000. action: 0.000000. mean reward 20.107731. World Perf: Episode 112.000000. Reward 19.000000. action: 1.000000. mean reward 20.023344. World Perf: Episode 115.000000. Reward 20.666667. action: 0.000000. mean reward 20.020765. World Perf: Episode 118.000000. Reward 25.333333. action: 0.000000. mean reward 19.961702. World Perf: Episode 121.000000. Reward 23.000000. action: 1.000000. mean reward 19.928999. World Perf: Episode 124.000000. Reward 18.666667. action: 0.000000. mean reward 19.872879. World Perf: Episode 127.000000. Reward 17.000000. action: 1.000000. mean reward 19.760763. World Perf: Episode 130.000000. Reward 19.666667. action: 0.000000. mean reward 21.086786. World Perf: Episode 133.000000. Reward 16.000000. action: 0.000000. mean reward 20.955912. World Perf: Episode 136.000000. Reward 27.000000. action: 0.000000. mean reward 20.866470. World Perf: Episode 139.000000. Reward 17.333333. action: 0.000000. mean reward 20.729610. World Perf: Episode 142.000000. Reward 30.333333. action: 0.000000. mean reward 20.679577. World Perf: Episode 145.000000. Reward 25.000000. action: 0.000000. mean reward 20.827681. World Perf: Episode 148.000000. Reward 23.666667. action: 1.000000. mean reward 23.354219. World Perf: Episode 151.000000. Reward 23.333333. action: 0.000000. mean reward 26.192713. World Perf: Episode 154.000000. Reward 30.000000. action: 0.000000. mean reward 26.605247. World Perf: Episode 157.000000. Reward 54.000000. action: 1.000000. mean reward 26.655001. World Perf: Episode 160.000000. Reward 33.000000. action: 0.000000. mean reward 26.577667. World Perf: Episode 163.000000. Reward 29.666667. action: 0.000000. mean reward 26.596146. World Perf: Episode 166.000000. Reward 27.333333. action: 1.000000. mean reward 26.538157. World Perf: Episode 169.000000. Reward 64.333333. action: 1.000000. mean reward 26.696426. World Perf: Episode 172.000000. Reward 43.000000. action: 1.000000. mean reward 27.239616. World Perf: Episode 175.000000. Reward 48.666667. action: 0.000000. mean reward 29.538530. World Perf: Episode 178.000000. Reward 26.000000. action: 1.000000. mean reward 29.289825. World Perf: Episode 181.000000. Reward 38.333333. action: 1.000000. mean reward 29.181463. World Perf: Episode 184.000000. Reward 62.666667. action: 1.000000. mean reward 30.186125. World Perf: Episode 187.000000. Reward 22.666667. action: 1.000000. mean reward 32.867023. World Perf: Episode 190.000000. Reward 63.000000. action: 1.000000. mean reward 32.903473. World Perf: Episode 193.000000. Reward 98.333333. action: 0.000000. mean reward 33.292240. World Perf: Episode 196.000000. Reward 65.333333. action: 1.000000. mean reward 35.173031. World Perf: Episode 199.000000. Reward 41.666667. action: 1.000000. mean reward 38.038906. World Perf: Episode 202.000000. Reward 44.000000. action: 1.000000. mean reward 37.771332. World Perf: Episode 205.000000. Reward 66.666667. action: 1.000000. mean reward 37.779060. World Perf: Episode 208.000000. Reward 60.333333. action: 0.000000. mean reward 37.720272. World Perf: Episode 211.000000. Reward 34.000000. action: 1.000000. mean reward 37.419216. World Perf: Episode 214.000000. Reward 30.000000. action: 0.000000. mean reward 37.620312. World Perf: Episode 217.000000. Reward 46.666667. action: 0.000000. mean reward 37.427105. World Perf: Episode 220.000000. Reward 40.333333. action: 1.000000. mean reward 37.433071. World Perf: Episode 223.000000. Reward 41.333333. action: 1.000000. mean reward 37.371838. World Perf: Episode 226.000000. Reward 43.333333. action: 1.000000. mean reward 37.280632. World Perf: Episode 229.000000. Reward 61.666667. action: 1.000000. mean reward 37.347809. World Perf: Episode 232.000000. Reward 72.000000. action: 1.000000. mean reward 37.598980. World Perf: Episode 235.000000. Reward 77.333333. action: 1.000000. mean reward 40.539330. World Perf: Episode 238.000000. Reward 60.333333. action: 1.000000. mean reward 41.300999. World Perf: Episode 241.000000. Reward 31.333333. action: 1.000000. mean reward 40.893749. World Perf: Episode 244.000000. Reward 42.333333. action: 1.000000. mean reward 41.976902. World Perf: Episode 247.000000. Reward 85.666667. action: 1.000000. mean reward 42.332020. World Perf: Episode 250.000000. Reward 67.333333. action: 1.000000. mean reward 45.062092. World Perf: Episode 253.000000. Reward 78.333333. action: 0.000000. mean reward 47.869877. World Perf: Episode 256.000000. Reward 56.000000. action: 0.000000. mean reward 47.626255. World Perf: Episode 259.000000. Reward 71.333333. action: 0.000000. mean reward 50.488789. World Perf: Episode 262.000000. Reward 92.666667. action: 1.000000. mean reward 50.599895. World Perf: Episode 265.000000. Reward 53.666667. action: 0.000000. mean reward 53.073410. World Perf: Episode 268.000000. Reward 74.666667. action: 0.000000. mean reward 53.037830. World Perf: Episode 271.000000. Reward 85.333333. action: 1.000000. mean reward 55.152660. World Perf: Episode 274.000000. Reward 57.666667. action: 1.000000. mean reward 55.088223.
nbs/65_medical.text.ipynb
###Markdown Medical Text> Medical NLP data and models `fastai.medical.text` is coming later! ###Code #export from fastai.basics import * #hide from nbdev.showdoc import * ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_torch_core.ipynb. Converted 01_layers.ipynb. Converted 02_data.load.ipynb. Converted 03_data.core.ipynb. Converted 04_data.external.ipynb. Converted 05_data.transforms.ipynb. Converted 06_data.block.ipynb. Converted 07_vision.core.ipynb. Converted 08_vision.data.ipynb. Converted 09_vision.augment.ipynb. Converted 09b_vision.utils.ipynb. Converted 09c_vision.widgets.ipynb. Converted 10_tutorial.pets.ipynb. Converted 11_vision.models.xresnet.ipynb. Converted 12_optimizer.ipynb. Converted 13_callback.core.ipynb. Converted 13a_learner.ipynb. Converted 13b_metrics.ipynb. Converted 14_callback.schedule.ipynb. Converted 14a_callback.data.ipynb. Converted 15_callback.hook.ipynb. Converted 15a_vision.models.unet.ipynb. Converted 16_callback.progress.ipynb. Converted 17_callback.tracker.ipynb. Converted 18_callback.fp16.ipynb. Converted 18a_callback.training.ipynb. Converted 19_callback.mixup.ipynb. Converted 20_interpret.ipynb. Converted 20a_distributed.ipynb. Converted 21_vision.learner.ipynb. Converted 22_tutorial.imagenette.ipynb. Converted 23_tutorial.vision.ipynb. Converted 24_tutorial.siamese.ipynb. Converted 24_vision.gan.ipynb. Converted 30_text.core.ipynb. Converted 31_text.data.ipynb. Converted 32_text.models.awdlstm.ipynb. Converted 33_text.models.core.ipynb. Converted 34_callback.rnn.ipynb. Converted 35_tutorial.wikitext.ipynb. Converted 36_text.models.qrnn.ipynb. Converted 37_text.learner.ipynb. Converted 38_tutorial.text.ipynb. Converted 39_tutorial.transformers.ipynb. Converted 40_tabular.core.ipynb. Converted 41_tabular.data.ipynb. Converted 42_tabular.model.ipynb. Converted 43_tabular.learner.ipynb. Converted 44_tutorial.tabular.ipynb. Converted 45_collab.ipynb. Converted 46_tutorial.collab.ipynb. Converted 50_tutorial.datablock.ipynb. Converted 60_medical.imaging.ipynb. Converted 61_tutorial.medical_imaging.ipynb. Converted 65_medical.text.ipynb. Converted 70_callback.wandb.ipynb. Converted 71_callback.tensorboard.ipynb. Converted 72_callback.neptune.ipynb. Converted 73_callback.captum.ipynb. Converted 74_callback.cutmix.ipynb. Converted 97_test_utils.ipynb. Converted 99_pytorch_doc.ipynb. Converted index.ipynb. Converted tutorial.ipynb. ###Markdown Medical Text> Medical NLP data and models `fastai.medical.text` is coming in late 2019 or early 2020! ###Code #export from fastai2.basics import * from nbdev.showdoc import * ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_test.ipynb. Converted 01_core.foundation.ipynb. Converted 01a_core.utils.ipynb. Converted 01b_core.dispatch.ipynb. Converted 01c_core.transform.ipynb. Converted 02_core.script.ipynb. Converted 03_torch_core.ipynb. Converted 03a_layers.ipynb. Converted 04_data.load.ipynb. Converted 05_data.core.ipynb. Converted 06_data.transforms.ipynb. Converted 07_data.block.ipynb. Converted 08_vision.core.ipynb. Converted 09_vision.augment.ipynb. Converted 09a_vision.data.ipynb. Converted 09b_vision.utils.ipynb. Converted 10_tutorial.pets.ipynb. Converted 11_vision.models.xresnet.ipynb. Converted 12_optimizer.ipynb. Converted 13_learner.ipynb. Converted 13a_metrics.ipynb. Converted 14_callback.schedule.ipynb. Converted 14a_callback.data.ipynb. Converted 15_callback.hook.ipynb. Converted 15a_vision.models.unet.ipynb. Converted 16_callback.progress.ipynb. Converted 17_callback.tracker.ipynb. Converted 18_callback.fp16.ipynb. Converted 19_callback.mixup.ipynb. Converted 20_interpret.ipynb. Converted 20a_distributed.ipynb. Converted 21_vision.learner.ipynb. Converted 22_tutorial.imagenette.ipynb. Converted 23_tutorial.transfer_learning.ipynb. Converted 30_text.core.ipynb. Converted 31_text.data.ipynb. Converted 32_text.models.awdlstm.ipynb. Converted 33_text.models.core.ipynb. Converted 34_callback.rnn.ipynb. Converted 35_tutorial.wikitext.ipynb. Converted 36_text.models.qrnn.ipynb. Converted 37_text.learner.ipynb. Converted 38_tutorial.ulmfit.ipynb. Converted 40_tabular.core.ipynb. Converted 41_tabular.model.ipynb. Converted 50_datablock_examples.ipynb. Converted 60_medical.imaging.ipynb. Converted 65_medical.text.ipynb. Converted 70_callback.wandb.ipynb. Converted 71_callback.tensorboard.ipynb. Converted 90_xse_resnext.ipynb. Converted 96_data.external.ipynb. Converted 97_test_utils.ipynb. Converted index.ipynb. ###Markdown Medical Text> Medical NLP data and models `fastai.medical.text` is coming later! ###Code #export from fastai2.basics import * #hide from nbdev.showdoc import * ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_torch_core.ipynb. Converted 01_layers.ipynb. Converted 02_data.load.ipynb. Converted 03_data.core.ipynb. Converted 04_data.external.ipynb. Converted 05_data.transforms.ipynb. Converted 06_data.block.ipynb. Converted 07_vision.core.ipynb. Converted 08_vision.data.ipynb. Converted 09_vision.augment.ipynb. Converted 09b_vision.utils.ipynb. Converted 09c_vision.widgets.ipynb. Converted 10_tutorial.pets.ipynb. Converted 11_vision.models.xresnet.ipynb. Converted 12_optimizer.ipynb. Converted 13_callback.core.ipynb. Converted 13a_learner.ipynb. Converted 13b_metrics.ipynb. Converted 14_callback.schedule.ipynb. Converted 14a_callback.data.ipynb. Converted 15_callback.hook.ipynb. Converted 15a_vision.models.unet.ipynb. Converted 16_callback.progress.ipynb. Converted 17_callback.tracker.ipynb. Converted 18_callback.fp16.ipynb. Converted 18a_callback.training.ipynb. Converted 19_callback.mixup.ipynb. Converted 20_interpret.ipynb. Converted 20a_distributed.ipynb. Converted 21_vision.learner.ipynb. Converted 22_tutorial.imagenette.ipynb. Converted 23_tutorial.vision.ipynb. Converted 24_tutorial.siamese.ipynb. Converted 24_vision.gan.ipynb. Converted 30_text.core.ipynb. Converted 31_text.data.ipynb. Converted 32_text.models.awdlstm.ipynb. Converted 33_text.models.core.ipynb. Converted 34_callback.rnn.ipynb. Converted 35_tutorial.wikitext.ipynb. Converted 36_text.models.qrnn.ipynb. Converted 37_text.learner.ipynb. Converted 38_tutorial.text.ipynb. Converted 39_tutorial.transformers.ipynb. Converted 40_tabular.core.ipynb. Converted 41_tabular.data.ipynb. Converted 42_tabular.model.ipynb. Converted 43_tabular.learner.ipynb. Converted 44_tutorial.tabular.ipynb. Converted 45_collab.ipynb. Converted 46_tutorial.collab.ipynb. Converted 50_tutorial.datablock.ipynb. Converted 60_medical.imaging.ipynb. Converted 61_tutorial.medical_imaging.ipynb. Converted 65_medical.text.ipynb. Converted 70_callback.wandb.ipynb. Converted 71_callback.tensorboard.ipynb. Converted 72_callback.neptune.ipynb. Converted 73_callback.captum.ipynb. Converted 74_callback.cutmix.ipynb. Converted 97_test_utils.ipynb. Converted 99_pytorch_doc.ipynb. Converted index.ipynb. Converted tutorial.ipynb. ###Markdown Medical Text> Medical NLP data and models `fastai.medical.text` is coming in late 2019 or early 2020! ###Code #export from fastai2.basics import * from nbdev.showdoc import * ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_test.ipynb. Converted 01_core.foundation.ipynb. Converted 01a_core.utils.ipynb. Converted 01b_core.dispatch.ipynb. Converted 01c_core.transform.ipynb. Converted 02_core.script.ipynb. Converted 03_torch_core.ipynb. Converted 03a_layers.ipynb. Converted 04_data.load.ipynb. Converted 05_data.core.ipynb. Converted 06_data.transforms.ipynb. Converted 07_data.block.ipynb. Converted 08_vision.core.ipynb. Converted 09_vision.augment.ipynb. Converted 09a_vision.data.ipynb. Converted 09b_vision.utils.ipynb. Converted 10_tutorial.pets.ipynb. Converted 11_vision.models.xresnet.ipynb. Converted 12_optimizer.ipynb. Converted 13_learner.ipynb. Converted 13a_metrics.ipynb. Converted 14_callback.schedule.ipynb. Converted 14a_callback.data.ipynb. Converted 15_callback.hook.ipynb. Converted 15a_vision.models.unet.ipynb. Converted 16_callback.progress.ipynb. Converted 17_callback.tracker.ipynb. Converted 18_callback.fp16.ipynb. Converted 19_callback.mixup.ipynb. Converted 20_interpret.ipynb. Converted 20a_distributed.ipynb. Converted 21_vision.learner.ipynb. Converted 22_tutorial.imagenette.ipynb. Converted 23_tutorial.transfer_learning.ipynb. Converted 30_text.core.ipynb. Converted 31_text.data.ipynb. Converted 32_text.models.awdlstm.ipynb. Converted 33_text.models.core.ipynb. Converted 34_callback.rnn.ipynb. Converted 35_tutorial.wikitext.ipynb. Converted 36_text.models.qrnn.ipynb. Converted 37_text.learner.ipynb. Converted 38_tutorial.ulmfit.ipynb. Converted 40_tabular.core.ipynb. Converted 41_tabular.model.ipynb. Converted 50_datablock_examples.ipynb. Converted 60_medical.imaging.ipynb. Converted 65_medical.text.ipynb. Converted 70_callback.wandb.ipynb. Converted 71_callback.tensorboard.ipynb. Converted 90_xse_resnext.ipynb. Converted 96_data.external.ipynb. Converted 97_test_utils.ipynb. Converted index.ipynb. ###Markdown Medical Text> Medical NLP data and models `fastai.medical.text` is coming later! ###Code #export from fastai2.basics import * from nbdev.showdoc import * ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_torch_core.ipynb. Converted 01_layers.ipynb. Converted 02_data.load.ipynb. Converted 03_data.core.ipynb. Converted 04_data.external.ipynb. Converted 05_data.transforms.ipynb. Converted 06_data.block.ipynb. Converted 07_vision.core.ipynb. Converted 08_vision.data.ipynb. Converted 09_vision.augment.ipynb. Converted 09b_vision.utils.ipynb. Converted 09c_vision.widgets.ipynb. Converted 10_tutorial.pets.ipynb. Converted 11_vision.models.xresnet.ipynb. Converted 12_optimizer.ipynb. Converted 13_callback.core.ipynb. Converted 13a_learner.ipynb. Converted 13b_metrics.ipynb. Converted 14_callback.schedule.ipynb. Converted 14a_callback.data.ipynb. Converted 15_callback.hook.ipynb. Converted 15a_vision.models.unet.ipynb. Converted 16_callback.progress.ipynb. Converted 17_callback.tracker.ipynb. Converted 18_callback.fp16.ipynb. Converted 18a_callback.training.ipynb. Converted 19_callback.mixup.ipynb. Converted 20_interpret.ipynb. Converted 20a_distributed.ipynb. Converted 21_vision.learner.ipynb. Converted 22_tutorial.imagenette.ipynb. Converted 23_tutorial.vision.ipynb. Converted 24_tutorial.siamese.ipynb. Converted 24_vision.gan.ipynb. Converted 30_text.core.ipynb. Converted 31_text.data.ipynb. Converted 32_text.models.awdlstm.ipynb. Converted 33_text.models.core.ipynb. Converted 34_callback.rnn.ipynb. Converted 35_tutorial.wikitext.ipynb. Converted 36_text.models.qrnn.ipynb. Converted 37_text.learner.ipynb. Converted 38_tutorial.text.ipynb. Converted 39_tutorial.transformers.ipynb. Converted 40_tabular.core.ipynb. Converted 41_tabular.data.ipynb. Converted 42_tabular.model.ipynb. Converted 43_tabular.learner.ipynb. Converted 44_tutorial.tabular.ipynb. Converted 45_collab.ipynb. Converted 46_tutorial.collab.ipynb. Converted 50_tutorial.datablock.ipynb. Converted 60_medical.imaging.ipynb. Converted 61_tutorial.medical_imaging.ipynb. Converted 65_medical.text.ipynb. Converted 70_callback.wandb.ipynb. Converted 71_callback.tensorboard.ipynb. Converted 72_callback.neptune.ipynb. Converted 73_callback.captum.ipynb. Converted 74_callback.cutmix.ipynb. Converted 97_test_utils.ipynb. Converted 99_pytorch_doc.ipynb. Converted index.ipynb. Converted tutorial.ipynb. ###Markdown Medical Text> Medical NLP data and models `fastai.medical.text` is coming later! ###Code #|export from __future__ import annotations from fastai.basics import * #|hide from nbdev.showdoc import * ###Output _____no_output_____ ###Markdown Export - ###Code #|hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_torch_core.ipynb. Converted 01_layers.ipynb. Converted 02_data.load.ipynb. Converted 03_data.core.ipynb. Converted 04_data.external.ipynb. Converted 05_data.transforms.ipynb. Converted 06_data.block.ipynb. Converted 07_vision.core.ipynb. Converted 08_vision.data.ipynb. Converted 09_vision.augment.ipynb. Converted 09b_vision.utils.ipynb. Converted 09c_vision.widgets.ipynb. Converted 10_tutorial.pets.ipynb. Converted 11_vision.models.xresnet.ipynb. Converted 12_optimizer.ipynb. Converted 13_callback.core.ipynb. Converted 13a_learner.ipynb. Converted 13b_metrics.ipynb. Converted 14_callback.schedule.ipynb. Converted 14a_callback.data.ipynb. Converted 15_callback.hook.ipynb. Converted 15a_vision.models.unet.ipynb. Converted 16_callback.progress.ipynb. Converted 17_callback.tracker.ipynb. Converted 18_callback.fp16.ipynb. Converted 18a_callback.training.ipynb. Converted 19_callback.mixup.ipynb. Converted 20_interpret.ipynb. Converted 20a_distributed.ipynb. Converted 21_vision.learner.ipynb. Converted 22_tutorial.imagenette.ipynb. Converted 23_tutorial.vision.ipynb. Converted 24_tutorial.siamese.ipynb. Converted 24_vision.gan.ipynb. Converted 30_text.core.ipynb. Converted 31_text.data.ipynb. Converted 32_text.models.awdlstm.ipynb. Converted 33_text.models.core.ipynb. Converted 34_callback.rnn.ipynb. Converted 35_tutorial.wikitext.ipynb. Converted 36_text.models.qrnn.ipynb. Converted 37_text.learner.ipynb. Converted 38_tutorial.text.ipynb. Converted 39_tutorial.transformers.ipynb. Converted 40_tabular.core.ipynb. Converted 41_tabular.data.ipynb. Converted 42_tabular.model.ipynb. Converted 43_tabular.learner.ipynb. Converted 44_tutorial.tabular.ipynb. Converted 45_collab.ipynb. Converted 46_tutorial.collab.ipynb. Converted 50_tutorial.datablock.ipynb. Converted 60_medical.imaging.ipynb. Converted 61_tutorial.medical_imaging.ipynb. Converted 65_medical.text.ipynb. Converted 70_callback.wandb.ipynb. Converted 71_callback.tensorboard.ipynb. Converted 72_callback.neptune.ipynb. Converted 73_callback.captum.ipynb. Converted 74_callback.cutmix.ipynb. Converted 97_test_utils.ipynb. Converted 99_pytorch_doc.ipynb. Converted index.ipynb. Converted tutorial.ipynb. ###Markdown Medical Text> Medical NLP data and models `fastai.medical.text` is coming later! ###Code #export from fastai.basics import * #hide from nbdev.showdoc import * ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_torch_core.ipynb. Converted 01_layers.ipynb. Converted 02_data.load.ipynb. Converted 03_data.core.ipynb. Converted 04_data.external.ipynb. Converted 05_data.transforms.ipynb. Converted 06_data.block.ipynb. Converted 07_vision.core.ipynb. Converted 08_vision.data.ipynb. Converted 09_vision.augment.ipynb. Converted 09b_vision.utils.ipynb. Converted 09c_vision.widgets.ipynb. Converted 10_tutorial.pets.ipynb. Converted 11_vision.models.xresnet.ipynb. Converted 12_optimizer.ipynb. Converted 13_callback.core.ipynb. Converted 13a_learner.ipynb. Converted 13b_metrics.ipynb. Converted 14_callback.schedule.ipynb. Converted 14a_callback.data.ipynb. Converted 15_callback.hook.ipynb. Converted 15a_vision.models.unet.ipynb. Converted 16_callback.progress.ipynb. Converted 17_callback.tracker.ipynb. Converted 18_callback.fp16.ipynb. Converted 18a_callback.training.ipynb. Converted 19_callback.mixup.ipynb. Converted 20_interpret.ipynb. Converted 20a_distributed.ipynb. Converted 21_vision.learner.ipynb. Converted 22_tutorial.imagenette.ipynb. Converted 23_tutorial.vision.ipynb. Converted 24_tutorial.siamese.ipynb. Converted 24_vision.gan.ipynb. Converted 30_text.core.ipynb. Converted 31_text.data.ipynb. Converted 32_text.models.awdlstm.ipynb. Converted 33_text.models.core.ipynb. Converted 34_callback.rnn.ipynb. Converted 35_tutorial.wikitext.ipynb. Converted 36_text.models.qrnn.ipynb. Converted 37_text.learner.ipynb. Converted 38_tutorial.text.ipynb. Converted 39_tutorial.transformers.ipynb. Converted 40_tabular.core.ipynb. Converted 41_tabular.data.ipynb. Converted 42_tabular.model.ipynb. Converted 43_tabular.learner.ipynb. Converted 44_tutorial.tabular.ipynb. Converted 45_collab.ipynb. Converted 46_tutorial.collab.ipynb. Converted 50_tutorial.datablock.ipynb. Converted 60_medical.imaging.ipynb. Converted 61_tutorial.medical_imaging.ipynb. Converted 65_medical.text.ipynb. Converted 70_callback.wandb.ipynb. Converted 71_callback.tensorboard.ipynb. Converted 72_callback.neptune.ipynb. Converted 73_callback.captum.ipynb. Converted 74_callback.cutmix.ipynb. Converted 97_test_utils.ipynb. Converted 99_pytorch_doc.ipynb. Converted index.ipynb. Converted tutorial.ipynb. ###Markdown Medical Text> Medical NLP data and models `fastai.medical.text` is coming later! ###Code #export from fastai.basics import * #hide from nbdev.showdoc import * ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_torch_core.ipynb. Converted 01_layers.ipynb. Converted 02_data.load.ipynb. Converted 03_data.core.ipynb. Converted 04_data.external.ipynb. Converted 05_data.transforms.ipynb. Converted 06_data.block.ipynb. Converted 07_vision.core.ipynb. Converted 08_vision.data.ipynb. Converted 09_vision.augment.ipynb. Converted 09b_vision.utils.ipynb. Converted 09c_vision.widgets.ipynb. Converted 10_tutorial.pets.ipynb. Converted 11_vision.models.xresnet.ipynb. Converted 12_optimizer.ipynb. Converted 13_callback.core.ipynb. Converted 13a_learner.ipynb. Converted 13b_metrics.ipynb. Converted 14_callback.schedule.ipynb. Converted 14a_callback.data.ipynb. Converted 15_callback.hook.ipynb. Converted 15a_vision.models.unet.ipynb. Converted 16_callback.progress.ipynb. Converted 17_callback.tracker.ipynb. Converted 18_callback.fp16.ipynb. Converted 18a_callback.training.ipynb. Converted 19_callback.mixup.ipynb. Converted 20_interpret.ipynb. Converted 20a_distributed.ipynb. Converted 21_vision.learner.ipynb. Converted 22_tutorial.imagenette.ipynb. Converted 23_tutorial.vision.ipynb. Converted 24_tutorial.siamese.ipynb. Converted 24_vision.gan.ipynb. Converted 30_text.core.ipynb. Converted 31_text.data.ipynb. Converted 32_text.models.awdlstm.ipynb. Converted 33_text.models.core.ipynb. Converted 34_callback.rnn.ipynb. Converted 35_tutorial.wikitext.ipynb. Converted 36_text.models.qrnn.ipynb. Converted 37_text.learner.ipynb. Converted 38_tutorial.text.ipynb. Converted 39_tutorial.transformers.ipynb. Converted 40_tabular.core.ipynb. Converted 41_tabular.data.ipynb. Converted 42_tabular.model.ipynb. Converted 43_tabular.learner.ipynb. Converted 44_tutorial.tabular.ipynb. Converted 45_collab.ipynb. Converted 46_tutorial.collab.ipynb. Converted 50_tutorial.datablock.ipynb. Converted 60_medical.imaging.ipynb. Converted 61_tutorial.medical_imaging.ipynb. Converted 65_medical.text.ipynb. Converted 70_callback.wandb.ipynb. Converted 71_callback.tensorboard.ipynb. Converted 72_callback.neptune.ipynb. Converted 73_callback.captum.ipynb. Converted 74_callback.cutmix.ipynb. Converted 97_test_utils.ipynb. Converted 99_pytorch_doc.ipynb. Converted index.ipynb. Converted tutorial.ipynb. ###Markdown Medical Text> Medical NLP data and models `fastai.medical.text` is coming in late 2019 or early 2020! ###Code #export from fastai2.test import * from fastai2.core import * from fastai2.data.all import * from fastai2.optimizer import * from fastai2.learner import * from fastai2.metrics import * from nbdev.showdoc import * ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_test.ipynb. Converted 01_core.foundation.ipynb. Converted 01a_core.utils.ipynb. Converted 01b_core.dispatch.ipynb. Converted 01c_core.transform.ipynb. Converted 02_core.script.ipynb. Converted 03_torch_core.ipynb. Converted 03a_layers.ipynb. Converted 04_data.load.ipynb. Converted 05_data.core.ipynb. Converted 06_data.transforms.ipynb. Converted 07_data.block.ipynb. Converted 08_vision.core.ipynb. Converted 09_vision.augment.ipynb. Converted 09a_vision.data.ipynb. Converted 09b_vision.utils.ipynb. Converted 10_tutorial.pets.ipynb. Converted 11_vision.models.xresnet.ipynb. Converted 12_optimizer.ipynb. Converted 13_learner.ipynb. Converted 13a_metrics.ipynb. Converted 14_callback.schedule.ipynb. Converted 14a_callback.data.ipynb. Converted 15_callback.hook.ipynb. Converted 15a_vision.models.unet.ipynb. Converted 16_callback.progress.ipynb. Converted 17_callback.tracker.ipynb. Converted 18_callback.fp16.ipynb. Converted 19_callback.mixup.ipynb. Converted 20_interpret.ipynb. Converted 20a_distributed.ipynb. Converted 21_vision.learner.ipynb. Converted 22_tutorial.imagenette.ipynb. Converted 23_tutorial.transfer_learning.ipynb. Converted 30_text.core.ipynb. Converted 31_text.data.ipynb. Converted 32_text.models.awdlstm.ipynb. Converted 33_text.models.core.ipynb. Converted 34_callback.rnn.ipynb. Converted 35_tutorial.wikitext.ipynb. Converted 36_text.models.qrnn.ipynb. Converted 37_text.learner.ipynb. Converted 38_tutorial.ulmfit.ipynb. Converted 40_tabular.core.ipynb. Converted 41_tabular.model.ipynb. Converted 50_datablock_examples.ipynb. Converted 60_medical.imaging.ipynb. Converted 65_medical.text.ipynb. Converted 70_callback.wandb.ipynb. Converted 71_callback.tensorboard.ipynb. Converted 90_xse_resnext.ipynb. Converted 96_data.external.ipynb. Converted 97_test_utils.ipynb. Converted index.ipynb.
ml/pandas_test.ipynb
###Markdown 操作| 句法 |结果--|--|--选择列 |df[[col]]| Series用标签选择行 |df.loc[[label]] |Series用整数位置选择行 |df.iloc[[loc]]| Series行切片 |df[[5:10]]| DataFrame用布尔向量选择行| df[[bool_vec]] |DataFrame ###Code df['id'].head() print(df.iloc[0]) print(df[0:5]) ###Output id 1 category hotelname ask 刚刚订单的酒店名称忘了帮我查下 Name: 0, dtype: object id category ask 0 1 hotelname 刚刚订单的酒店名称忘了帮我查下 1 2 hotelname 用订单号查酒店 2 3 hotelname 我现在还不知道我住的酒店名字 3 4 hotelname 酒店名称忘了 4 5 hotelname 预定的酒店的名字没有
06-tfx-interactive.ipynb
###Markdown 06 - TFX Interactive Training Pipeline ExecutionThe purpose of this notebook is to interactively run the following TFX pipeline steps:1. Receive hyperparameters using hyperparam_gen custom python component2. Extract data from BigQuery using BigQueryExampleGen3. Validate the raw data using StatisticsGen and ExampleValidator4. Process the data using Transform5. Train a custom model using Trainer7. Evaluat and Validate the custom model using ModelEvaluator7. Save the blessed to model registry location using using Pusher8. Upload the model to AI Platform using aip_model_pusher custom python componentThe custom components are implemented in the [tfx_pipeline/components.py](tfx_pipeline/components) module. Setup ###Code %load_ext autoreload %autoreload 2 import os import json import numpy as np import tfx import tensorflow as tf import tensorflow_transform as tft import tensorflow_data_validation as tfdv import tensorflow_model_analysis as tfma from tensorflow_transform.tf_metadata import schema_utils import logging from src.common import features from src.model_training import data from src.pipelines import components logging.getLogger().setLevel(logging.INFO) print("Tensorflow Version:", tfx.__version__) print("Tensorflow Version:", tf.__version__) PROJECT = 'ksalama-cloudml' REGION = 'us-central1' BUCKET = 'ksalama-cloudml-us' DATASET_DISPLAYNAME = 'chicago_taxi_tips' MODEL_DISPLAYNAME = f'{DATASET_DISPLAYNAME}_classifier_custom' WORKSPACE = f"gs://{BUCKET}/ucaip_demo/chicago_taxi/pipelines_interactive" RAW_SCHEMA_DIR = 'src/raw_schema' MLMD_SQLLITE = 'mlmd.sqllite' ARTIFACT_STORE = os.path.join(WORKSPACE, 'tfx_artifacts') MODEL_REGISTRY = os.path.join(WORKSPACE, 'model_registry') PIPELINE_NAME = f'{DATASET_DISPLAYNAME}_training_pipeline' PIPELINE_ROOT = os.path.join(ARTIFACT_STORE) ###Output _____no_output_____ ###Markdown Create Interactive Context ###Code CLEAN_WORKSPACE = True if tf.io.gfile.exists(WORKSPACE) and CLEAN_WORKSPACE: print("Removing previous artifacts...") tf.io.gfile.rmtree(WORKSPACE) if tf.io.gfile.exists(MLMD_SQLLITE) and CLEAN_WORKSPACE: print("Deleting previous mlmd.sqllite...") tf.io.gfile.rmtree(MLMD_SQLLITE) print(f'Pipeline artifacts directory: {PIPELINE_ROOT}') print(f'Local metadata SQLlit path: {MLMD_SQLLITE}') import ml_metadata as mlmd from ml_metadata.proto import metadata_store_pb2 from tfx.orchestration.experimental.interactive.interactive_context import InteractiveContext connection_config = metadata_store_pb2.ConnectionConfig() connection_config.sqlite.filename_uri = MLMD_SQLLITE connection_config.sqlite.connection_mode = 3 # READWRITE_OPENCREATE mlmd_store = mlmd.metadata_store.MetadataStore(connection_config) context = InteractiveContext( pipeline_name=PIPELINE_NAME, pipeline_root=PIPELINE_ROOT, metadata_connection_config=connection_config ) ###Output _____no_output_____ ###Markdown 1. Hyperparameter Generation ###Code hyperparams_gen = components.hyperparameters_gen( num_epochs=5, learning_rate=0.001, batch_size=512, hidden_units='64,64', ) context.run(hyperparams_gen, enable_cache=False) json.load( tf.io.gfile.GFile( os.path.join( hyperparams_gen.outputs.hyperparameters.get()[0].uri, 'hyperparameters.json') ) ) ###Output _____no_output_____ ###Markdown 2. Data Extraction ###Code from src.utils import datasource_utils from tfx.extensions.google_cloud_big_query.example_gen.component import BigQueryExampleGen from tfx.proto import example_gen_pb2, transform_pb2 ###Output _____no_output_____ ###Markdown Extract train and eval splits ###Code sql_query = datasource_utils.get_training_source_query( PROJECT, REGION, DATASET_DISPLAYNAME, data_split='UNASSIGNED', limit=10000) output_config = example_gen_pb2.Output( split_config=example_gen_pb2.SplitConfig( splits=[ example_gen_pb2.SplitConfig.Split(name="train", hash_buckets=4), example_gen_pb2.SplitConfig.Split(name="eval", hash_buckets=1), ] ) ) train_example_gen = BigQueryExampleGen(query=sql_query, output_config=output_config) beam_pipeline_args=[ f"--project={PROJECT}", f"--temp_location=gs://{BUCKET}/bq_tmp" ] context.run( train_example_gen, beam_pipeline_args=beam_pipeline_args, enable_cache=False ) ###Output _____no_output_____ ###Markdown Extract test split ###Code sql_query = datasource_utils.get_training_source_query( PROJECT, REGION, DATASET_DISPLAYNAME, data_split='TEST', limit=1000) output_config = example_gen_pb2.Output( split_config=example_gen_pb2.SplitConfig( splits=[ example_gen_pb2.SplitConfig.Split(name="test", hash_buckets=1), ] ) ) test_example_gen = BigQueryExampleGen(query=sql_query, output_config=output_config) beam_pipeline_args=[ f"--project={PROJECT}", f"--temp_location=gs://{BUCKET}/bq_tmp" ] context.run( test_example_gen, beam_pipeline_args=beam_pipeline_args, enable_cache=False ) train_uri = os.path.join(train_example_gen.outputs.examples.get()[0].uri, "Split-train/*") print(train_uri) source_raw_schema = tfdv.load_schema_text(os.path.join(RAW_SCHEMA_DIR, 'schema.pbtxt')) raw_feature_spec = schema_utils.schema_as_feature_spec(source_raw_schema).feature_spec def _parse_tf_example(tfrecord): return tf.io.parse_single_example(tfrecord, raw_feature_spec) tfrecord_filenames = tf.data.Dataset.list_files(train_uri) dataset = tf.data.TFRecordDataset(tfrecord_filenames, compression_type="GZIP") dataset = dataset.map(_parse_tf_example) for raw_features in dataset.shuffle(1000).batch(3).take(1): for key in raw_features: print(f"{key}: {np.squeeze(raw_features[key], -1)}") print("") ###Output _____no_output_____ ###Markdown 3. Data Validation Import raw schema ###Code schema_importer = tfx.components.common_nodes.importer_node.ImporterNode( source_uri=RAW_SCHEMA_DIR, artifact_type=tfx.types.standard_artifacts.Schema, reimport=False ) context.run(schema_importer) ###Output _____no_output_____ ###Markdown Generate statistics ###Code statistics_gen = tfx.components.StatisticsGen( examples=train_example_gen.outputs.examples) context.run(statistics_gen) !rm -r {RAW_SCHEMA_DIR}/.ipynb_checkpoints/ ###Output _____no_output_____ ###Markdown Validate statistics against schema ###Code example_validator = tfx.components.ExampleValidator( statistics=statistics_gen.outputs.statistics, schema=schema_importer.outputs.result, ) context.run(example_validator) context.show(example_validator.outputs.anomalies) ###Output _____no_output_____ ###Markdown 4. Data Transformation ###Code _transform_module_file = 'src/preprocessing/transformations.py' transform = tfx.components.Transform( examples=train_example_gen.outputs.examples, schema=schema_importer.outputs.result, module_file=_transform_module_file, splits_config=transform_pb2.SplitsConfig( analyze=['train'], transform=['train', 'eval']), ) context.run(transform, enable_cache=False) train_uri = os.path.join(transform.outputs.transformed_examples.get()[0].uri, "Split-train/*") transform_graph_uri = transform.outputs.transform_graph.get()[0].uri tft_output = tft.TFTransformOutput(transform_graph_uri) transform_feature_spec = tft_output.transformed_feature_spec() for input_features, target in data.get_dataset( train_uri, transform_feature_spec, batch_size=3).take(1): for key in input_features: print(f"{key} ({input_features[key].dtype}): {input_features[key].numpy().tolist()}") print(f"target: {target.numpy().tolist()}") ###Output _____no_output_____ ###Markdown 5. Model Training ###Code from tfx.components.base import executor_spec from tfx.components.trainer import executor as trainer_executor from tfx.dsl.components.common.resolver import Resolver from tfx.dsl.experimental import latest_artifacts_resolver from tfx.dsl.experimental import latest_blessed_model_resolver ###Output _____no_output_____ ###Markdown Get the latest model to warm start ###Code latest_model_resolver = Resolver( strategy_class=latest_artifacts_resolver.LatestArtifactsResolver, latest_model=tfx.types.Channel(type=tfx.types.standard_artifacts.Model) ) context.run(latest_model_resolver, enable_cache=False) ###Output _____no_output_____ ###Markdown Train the model ###Code _train_module_file = 'src/model_training/runner.py' trainer = tfx.components.Trainer( custom_executor_spec=executor_spec.ExecutorClassSpec(trainer_executor.GenericExecutor), module_file=_train_module_file, transformed_examples=transform.outputs.transformed_examples, schema=schema_importer.outputs.result, base_model=latest_model_resolver.outputs.latest_model, transform_graph=transform.outputs.transform_graph, train_args=tfx.proto.trainer_pb2.TrainArgs(num_steps=0), eval_args=tfx.proto.trainer_pb2.EvalArgs(num_steps=None), hyperparameters=hyperparams_gen.outputs.hyperparameters, ) context.run(trainer, enable_cache=False) ###Output _____no_output_____ ###Markdown 6. Model Evaluation Get the latest blessed model for model validation. ###Code blessed_model_resolver = Resolver( strategy_class=latest_blessed_model_resolver.LatestBlessedModelResolver, model=tfx.types.Channel(type=tfx.types.standard_artifacts.Model), model_blessing=tfx.types.Channel(type=tfx.types.standard_artifacts.ModelBlessing) ) context.run(blessed_model_resolver, enable_cache=False) ###Output _____no_output_____ ###Markdown Evaluate and validate the model against the baseline model. ###Code from tfx.components import Evaluator eval_config = tfma.EvalConfig( model_specs=[ tfma.ModelSpec( signature_name='serving_tf_example', label_key=features.TARGET_FEATURE_NAME, prediction_key='probabilities') ], slicing_specs=[ tfma.SlicingSpec(), ], metrics_specs=[ tfma.MetricsSpec( metrics=[ tfma.MetricConfig(class_name='ExampleCount'), tfma.MetricConfig( class_name='BinaryAccuracy', threshold=tfma.MetricThreshold( value_threshold=tfma.GenericValueThreshold( lower_bound={'value': 0.8}), # Change threshold will be ignored if there is no # baseline model resolved from MLMD (first run). change_threshold=tfma.GenericChangeThreshold( direction=tfma.MetricDirection.HIGHER_IS_BETTER, absolute={'value': -1e-10}))), ]) ]) evaluator = Evaluator( examples=test_example_gen.outputs.examples, example_splits=['test'], model=trainer.outputs.model, baseline_model=blessed_model_resolver.outputs.model, eval_config=eval_config, schema=schema_importer.outputs.result ) context.run(evaluator, enable_cache=False) evaluation_results = evaluator.outputs.evaluation.get()[0].uri print("validation_ok:", tfma.load_validation_result(evaluation_results).validation_ok) for entry in list(tfma.load_metrics(evaluation_results))[0].metric_keys_and_values: if entry.key.model_name == 'candidate': value = entry.value.double_value.value if value: print(entry.key.name, ":", round(entry.value.double_value.value, 3)) ###Output _____no_output_____ ###Markdown 7. Model Pushing ###Code exported_model_location = os.path.join(MODEL_REGISTRY, f'{DATASET_DISPLAYNAME}_classifier') push_destination=tfx.proto.pusher_pb2.PushDestination( filesystem=tfx.proto.pusher_pb2.PushDestination.Filesystem( base_directory=exported_model_location, ) ) pusher = tfx.components.Pusher( model=trainer.outputs.model, model_blessing=evaluator.outputs.blessing, push_destination=push_destination ) context.run(pusher, enable_cache=False) ###Output _____no_output_____ ###Markdown 8. Model Upload to AI Platform ###Code serving_runtime ='tf2-cpu.2-4' serving_image_uri = f"gcr.io/cloud-aiplatform/prediction/{serving_runtime}:latest" aip_model_uploader = components.aip_model_uploader( project=PROJECT, region=REGION, model_display_name=MODEL_DISPLAYNAME, pushed_model_location=exported_model_location, serving_image_uri=serving_image_uri, ) context.run(aip_model_uploader, enable_cache=False) aip_model_uploader.outputs.uploaded_model.get()[0].get_string_custom_property('model_uri') ###Output _____no_output_____
Implementations/FY22/BLD_DECAT_CompareDA_GOOGLE/Untitled.ipynb
###Markdown Compare builidng footprintsCompare the newly released Google footprints dataset to the DigitizeAfrica datahttps://sites.research.google/open-buildings/ ###Code import sys, os, importlib import rasterio import pandas as pd import geopandas as gpd import GOSTRocks.rasterMisc as rMisc from GOSTRocks.misc import tPrint from shapely.geometry import Point from shapely.wkt import loads google_file = '/home/wb411133/temp/0fd_buildings.csv.gz' inG = pd.read_csv(google_file) inG['geometry'] = inG['geometry'].apply(lambda x: loads(x)) inGeom = gpd.GeoDataFrame(inG, geometry='geometry', crs='epsg:4326') da_file = '/home/public/Data/COUNTRY/GHA/Buildings/120519/AFRICA_GHANA_building_32630.shp' inD = gpd.read_file(da_file) # limit the datasets to the select AOI aoi_file = 'Data/ACCRA_AOI.shp' inA = gpd.read_file(aoi_file) inG_aoi = inA.to_crs(inGeom.crs) selG = inGeom.loc[inGeom.intersects(inG_aoi.unary_union)] inD_aoi = inA.to_crs(inD.crs) selD = inD.loc[inD.intersects(inD_aoi.unary_union)] out_folder = '/home/wb411133/temp/B_comparison' if not os.path.exists(out_folder): os.makedirs(out_folder) selG.to_file(os.path.join(out_folder, "google.shp")) selD.to_file(os.path.join(out_folder, "da.shp")) ###Output <ipython-input-29-cefd2e42a7bc>:5: UserWarning: Column names longer than 10 characters will be truncated when saved to ESRI Shapefile. selG.to_file(os.path.join(out_folder, "google.shp")) ###Markdown Rasterize buildings ###Code dir(rMisc) inD_pt = selD.copy() inD_pt['geometry'] = inD_pt['geometry'].apply(lambda x: x.centroid) inD_pt.head() inG_pt = selG.copy() inG_pt['geometry'] = inG_pt['geometry'].apply(lambda x: x.centroid) inG_pt.head() inG_pt = inG_pt.to_crs(inD_pt.crs) res = 100 out_google = os.path.join(out_folder, f"google_buildings_{res}.tif") gR = rMisc.rasterizeDataFrame(inG_pt, out_google, mergeAlg='ADD', res = res) out_da = os.path.join(out_folder, f"da_buildings_{res}.tif") daR = rMisc.rasterizeDataFrame(inD_pt, out_da, mergeAlg='ADD', templateRaster = out_google) # Calculate differences between rasterized solutions diff_image = gR['vals'] - daR['vals'] with rasterio.open(os.path.join(out_folder, f"bldg_difference_{res}.tif"), 'w', **gR['meta']) as outR: outR.write_band(1, diff_image) ###Output {'init': 'epsg:32630'}
examples/Conley_Index_Examples.ipynb
###Markdown Leslie map numerical ###Code # Define Leslie map def f(x): th1 = 19.6 th2 = 23.68 return [(th1 * x[0] + th2 * x[1]) * math.exp (-0.1 * (x[0] + x[1])), 0.7 * x[0]] # Define box map for f def F(rect): return CMGDB.BoxMap(f, rect, padding=True) subdiv_min = 20 subdiv_max = 30 lower_bounds = [-0.001, -0.001] upper_bounds = [90.0, 70.0] model = CMGDB.Model(subdiv_min, subdiv_max, lower_bounds, upper_bounds, F) %%time morse_graph, map_graph = CMGDB.ComputeConleyMorseGraph(model) CMGDB.PlotMorseGraph(morse_graph, cmap=matplotlib.cm.cool) CMGDB.PlotMorseSets(morse_graph, cmap=matplotlib.cm.cool, fig_w=5, fig_h=5) ###Output _____no_output_____ ###Markdown Leslie map interval arithmetic ###Code # Define interval box map for f def IntervalBoxMap2D(f, rect): # Get endpoints defining rect x1, y1, x2, y2 = rect # Define interval box x x = [interval[x1, x2], interval[y1, y2]] # Evaluate f as an interval map y = f(x) # Get endpoints of y # y[0] is the first variable interval # y[1] is the second variable interval x1, x2 = y[0][0].inf, y[0][0].sup y1, y2 = y[1][0].inf, y[1][0].sup return [x1, y1, x2, y2] # Define interval Leslie map def f(x): th1 = interval[19.6] th2 = interval[23.68] return [(th1 * x[0] + th2 * x[1]) * imath.exp (-interval[0.1] * (x[0] + x[1])), interval[0.7] * x[0]] # Define interval box map for f def F(rect): return IntervalBoxMap2D(f, rect) subdiv_min = 20 subdiv_max = 30 subdiv_init = 4 subdiv_limit = 10000 lower_bounds = [-0.001, -0.001] upper_bounds = [90.0, 70.0] model = CMGDB.Model(subdiv_min, subdiv_max, subdiv_init, subdiv_limit, lower_bounds, upper_bounds, F) %%time morse_graph, map_graph = CMGDB.ComputeConleyMorseGraph(model) CMGDB.PlotMorseGraph(morse_graph, cmap=matplotlib.cm.cool) CMGDB.PlotMorseSets(morse_graph, cmap=matplotlib.cm.cool, fig_w=5, fig_h=5) ###Output _____no_output_____ ###Markdown Additional examples ###Code # Define map f def f(x): return [x[0] / (2.0 - x[0]), x[1] / (2.0 - x[1])] # Define box map for f def F(rect): return CMGDB.BoxMap(f, rect, padding=False) subdiv_min = 6 subdiv_max = 10 subdiv_init = 4 subdiv_limit = 10000 lower_bounds = [0, 0] upper_bounds = [1, 1] model = CMGDB.Model(subdiv_min, subdiv_max, subdiv_init, subdiv_limit, lower_bounds, upper_bounds, F) %%time morse_graph, map_graph = CMGDB.ComputeConleyMorseGraph(model) CMGDB.PlotMorseGraph(morse_graph, cmap=matplotlib.cm.cool) CMGDB.PlotMorseSets(morse_graph, cmap=matplotlib.cm.cool, fig_w=5, fig_h=5) subdiv_min = 6 subdiv_max = 10 subdiv_init = 4 subdiv_limit = 10000 lower_bounds = [0, 0] upper_bounds = [1.2, 1.2] model = CMGDB.Model(subdiv_min, subdiv_max, subdiv_init, subdiv_limit, lower_bounds, upper_bounds, F) %%time morse_graph, map_graph = CMGDB.ComputeConleyMorseGraph(model) CMGDB.PlotMorseGraph(morse_graph, cmap=matplotlib.cm.cool) CMGDB.PlotMorseSets(morse_graph, cmap=matplotlib.cm.cool, fig_w=5, fig_h=5) ###Output _____no_output_____ ###Markdown With interval arithmetic ###Code # Define interval box map for f def F(rect): return IntervalBoxMap2D(f, rect) subdiv_min = 6 subdiv_max = 8 subdiv_init = 4 subdiv_limit = 10000 lower_bounds = [0, 0] upper_bounds = [1, 1] model = CMGDB.Model(subdiv_min, subdiv_max, subdiv_init, subdiv_limit, lower_bounds, upper_bounds, F) %%time morse_graph, map_graph = CMGDB.ComputeConleyMorseGraph(model) CMGDB.PlotMorseGraph(morse_graph, cmap=matplotlib.cm.cool) CMGDB.PlotMorseSets(morse_graph, cmap=matplotlib.cm.cool, fig_w=5, fig_h=5) ###Output _____no_output_____
Data Visualization/Matplotlib/sample_plots.ipynb
###Markdown Sample plots in MatplotlibHere you'll find a host of example plots with the code thatgenerated them.Line Plot=========Here's how to create a line plot with text labels using:func:`~matplotlib.pyplot.plot`... figure:: ../../gallery/lines_bars_and_markers/images/sphx_glr_simple_plot_001.png :target: ../../gallery/lines_bars_and_markers/simple_plot.html :align: center :scale: 50 Simple PlotMultiple subplots in one figure===============================Multiple axes (i.e. subplots) are created with the:func:`~matplotlib.pyplot.subplot` function:.. figure:: ../../gallery/subplots_axes_and_figures/images/sphx_glr_subplot_001.png :target: ../../gallery/subplots_axes_and_figures/subplot.html :align: center :scale: 50 SubplotImages======Matplotlib can display images (assuming equally spacedhorizontal dimensions) using the :func:`~matplotlib.pyplot.imshow` function... figure:: ../../gallery/images_contours_and_fields/images/sphx_glr_image_demo_003.png :target: ../../gallery/images_contours_and_fields/image_demo.html :align: center :scale: 50 Example of using :func:`~matplotlib.pyplot.imshow` to display a CT scanContouring and pseudocolor==========================The :func:`~matplotlib.pyplot.pcolormesh` function can make a coloredrepresentation of a two-dimensional array, even if the horizontal dimensionsare unevenly spaced. The:func:`~matplotlib.pyplot.contour` function is another way to representthe same data:.. figure:: ../../gallery/images_contours_and_fields/images/sphx_glr_pcolormesh_levels_001.png :target: ../../gallery/images_contours_and_fields/pcolormesh_levels.html :align: center :scale: 50 Example comparing :func:`~matplotlib.pyplot.pcolormesh` and :func:`~matplotlib.pyplot.contour` for plotting two-dimensional dataHistograms==========The :func:`~matplotlib.pyplot.hist` function automatically generateshistograms and returns the bin counts or probabilities:.. figure:: ../../gallery/statistics/images/sphx_glr_histogram_features_001.png :target: ../../gallery/statistics/histogram_features.html :align: center :scale: 50 Histogram FeaturesPaths=====You can add arbitrary paths in Matplotlib using the:mod:`matplotlib.path` module:.. figure:: ../../gallery/shapes_and_collections/images/sphx_glr_path_patch_001.png :target: ../../gallery/shapes_and_collections/path_patch.html :align: center :scale: 50 Path PatchThree-dimensional plotting==========================The mplot3d toolkit (see `toolkit_mplot3d-tutorial` and`mplot3d-examples-index`) has support for simple 3d graphsincluding surface, wireframe, scatter, and bar charts... figure:: ../../gallery/mplot3d/images/sphx_glr_surface3d_001.png :target: ../../gallery/mplot3d/surface3d.html :align: center :scale: 50 Surface3dThanks to John Porter, Jonathon Taylor, Reinier Heeres, and Ben Root forthe `mplot3d` toolkit. This toolkit is included with all standard Matplotlibinstalls.Streamplot==========The :meth:`~matplotlib.pyplot.streamplot` function plots the streamlines ofa vector field. In addition to simply plotting the streamlines, it allows youto map the colors and/or line widths of streamlines to a separate parameter,such as the speed or local intensity of the vector field... figure:: ../../gallery/images_contours_and_fields/images/sphx_glr_plot_streamplot_001.png :target: ../../gallery/images_contours_and_fields/plot_streamplot.html :align: center :scale: 50 Streamplot with various plotting options.This feature complements the :meth:`~matplotlib.pyplot.quiver` function forplotting vector fields. Thanks to Tom Flannaghan and Tony Yu for adding thestreamplot function.Ellipses========In support of the `Phoenix `_mission to Mars (which used Matplotlib to display ground tracking ofspacecraft), Michael Droettboom built on work by Charlie Moad to providean extremely accurate 8-spline approximation to elliptical arcs (see:class:`~matplotlib.patches.Arc`), which are insensitive to zoom level... figure:: ../../gallery/shapes_and_collections/images/sphx_glr_ellipse_demo_001.png :target: ../../gallery/shapes_and_collections/ellipse_demo.html :align: center :scale: 50 Ellipse DemoBar charts==========Use the :func:`~matplotlib.pyplot.bar` function to make bar charts, whichincludes customizations such as error bars:.. figure:: ../../gallery/statistics/images/sphx_glr_barchart_demo_001.png :target: ../../gallery/statistics/barchart_demo.html :align: center :scale: 50 Barchart DemoYou can also create stacked bars(`bar_stacked.py `_),or horizontal bar charts(`barh.py `_).Pie charts==========The :func:`~matplotlib.pyplot.pie` function allows you to create piecharts. Optional features include auto-labeling the percentage of area,exploding one or more wedges from the center of the pie, and a shadow effect.Take a close look at the attached code, which generates this figure in justa few lines of code... figure:: ../../gallery/pie_and_polar_charts/images/sphx_glr_pie_features_001.png :target: ../../gallery/pie_and_polar_charts/pie_features.html :align: center :scale: 50 Pie FeaturesTables======The :func:`~matplotlib.pyplot.table` function adds a text tableto an axes... figure:: ../../gallery/misc/images/sphx_glr_table_demo_001.png :target: ../../gallery/misc/table_demo.html :align: center :scale: 50 Table DemoScatter plots=============The :func:`~matplotlib.pyplot.scatter` function makes a scatter plotwith (optional) size and color arguments. This example plots changesin Google's stock price, with marker sizes reflecting thetrading volume and colors varying with time. Here, thealpha attribute is used to make semitransparent circle markers... figure:: ../../gallery/lines_bars_and_markers/images/sphx_glr_scatter_demo2_001.png :target: ../../gallery/lines_bars_and_markers/scatter_demo2.html :align: center :scale: 50 Scatter Demo2GUI widgets===========Matplotlib has basic GUI widgets that are independent of the graphicaluser interface you are using, allowing you to write cross GUI figuresand widgets. See :mod:`matplotlib.widgets` and the`widget examples `_... figure:: ../../gallery/widgets/images/sphx_glr_slider_demo_001.png :target: ../../gallery/widgets/slider_demo.html :align: center :scale: 50 Slider and radio-button GUI.Filled curves=============The :func:`~matplotlib.pyplot.fill` function lets youplot filled curves and polygons:.. figure:: ../../gallery/lines_bars_and_markers/images/sphx_glr_fill_001.png :target: ../../gallery/lines_bars_and_markers/fill.html :align: center :scale: 50 FillThanks to Andrew Straw for adding this function.Date handling=============You can plot timeseries data with major and minor ticks and customtick formatters for both... figure:: ../../gallery/text_labels_and_annotations/images/sphx_glr_date_001.png :target: ../../gallery/text_labels_and_annotations/date.html :align: center :scale: 50 DateSee :mod:`matplotlib.ticker` and :mod:`matplotlib.dates` for details and usage.Log plots=========The :func:`~matplotlib.pyplot.semilogx`,:func:`~matplotlib.pyplot.semilogy` and:func:`~matplotlib.pyplot.loglog` functions simplify the creation oflogarithmic plots... figure:: ../../gallery/scales/images/sphx_glr_log_demo_001.png :target: ../../gallery/scales/log_demo.html :align: center :scale: 50 Log DemoThanks to Andrew Straw, Darren Dale and Gregory Lielens for contributionslog-scaling infrastructure.Polar plots===========The :func:`~matplotlib.pyplot.polar` function generates polar plots... figure:: ../../gallery/pie_and_polar_charts/images/sphx_glr_polar_demo_001.png :target: ../../gallery/pie_and_polar_charts/polar_demo.html :align: center :scale: 50 Polar DemoLegends=======The :func:`~matplotlib.pyplot.legend` function automaticallygenerates figure legends, with MATLAB-compatible legend-placementfunctions... figure:: ../../gallery/text_labels_and_annotations/images/sphx_glr_legend_001.png :target: ../../gallery/text_labels_and_annotations/legend.html :align: center :scale: 50 LegendThanks to Charles Twardy for input on the legend function.TeX-notation for text objects=============================Below is a sampling of the many TeX expressions now supported by Matplotlib'sinternal mathtext engine. The mathtext module provides TeX style mathematicalexpressions using `FreeType `_and the DejaVu, BaKoMa computer modern, or `STIX `_fonts. See the :mod:`matplotlib.mathtext` module for additional details... figure:: ../../gallery/text_labels_and_annotations/images/sphx_glr_mathtext_examples_001.png :target: ../../gallery/text_labels_and_annotations/mathtext_examples.html :align: center :scale: 50 Mathtext ExamplesMatplotlib's mathtext infrastructure is an independent implementation anddoes not require TeX or any external packages installed on your computer. Seethe tutorial at :doc:`/tutorials/text/mathtext`.Native TeX rendering====================Although Matplotlib's internal math rendering engine is quitepowerful, sometimes you need TeX. Matplotlib supports external TeXrendering of strings with the *usetex* option... figure:: ../../gallery/text_labels_and_annotations/images/sphx_glr_tex_demo_001.png :target: ../../gallery/text_labels_and_annotations/tex_demo.html :align: center :scale: 50 Tex DemoEEG GUI=======You can embed Matplotlib into pygtk, wx, Tk, or Qt applications.Here is a screenshot of an EEG viewer called `pbrain`__.![](../../_static/eeg_small.png)The lower axes uses :func:`~matplotlib.pyplot.specgram`to plot the spectrogram of one of the EEG channels.For examples of how to embed Matplotlib in different toolkits, see: * :doc:`/gallery/user_interfaces/embedding_in_gtk3_sgskip` * :doc:`/gallery/user_interfaces/embedding_in_wx2_sgskip` * :doc:`/gallery/user_interfaces/mpl_with_glade3_sgskip` * :doc:`/gallery/user_interfaces/embedding_in_qt_sgskip` * :doc:`/gallery/user_interfaces/embedding_in_tk_sgskip`XKCD-style sketch plots=======================Just for fun, Matplotlib supports plotting in the style of `xkcd`... figure:: ../../gallery/showcase/images/sphx_glr_xkcd_001.png :target: ../../gallery/showcase/xkcd.html :align: center :scale: 50 xkcd Subplot example===============Many plot types can be combined in one figure to createpowerful and flexible representations of data. ###Code import matplotlib.pyplot as plt import numpy as np np.random.seed(19680801) data = np.random.randn(2, 100) fig, axs = plt.subplots(2, 2, figsize=(5, 5)) axs[0, 0].hist(data[0]) axs[1, 0].scatter(data[0], data[1]) axs[0, 1].plot(data[0], data[1]) axs[1, 1].hist2d(data[0], data[1]) plt.show() ###Output _____no_output_____
4_2_bistability.ipynb
###Markdown cells defined in earlier notebooks ###Code def R_nonbinding_3eq(y,t): """ system of ODEs from Zaytsev 2016, simplified using two mass balances with the following components: - a: inactive Aurora B kinase - A: active Aurora B kinase - AA: enzyme-substrate complex of inactive + active Aurora B kinase - Ph: phosphatase - PhA: enzyme-substrate complex of phosphatase + active Aurora B kinase - a0: total Aurora B kinase - p0: total phosphatase """ # set variable space A, AA, Ph = y # mass balances PhA = p0 - Ph a = a0 - A - 2*AA - PhA # reaction equations dAdt = (kcis - kfa*A)*a + (kra+2*kca)*AA - kfp*A*Ph + krp*PhA dAAdt = kfa*A*a - (kra+kca)*AA dPhdt = -kfp*A*Ph + (krp + kcp)*PhA return dAdt, dAAdt, dPhdt """ parameters from Zaytsev 2016 """ kcis = 7.29*10**-6 # 1/s # rate constant for 'in cis' Aurora B activation kfa = 0.1 # 1/(uM*s) # rate constant for AA complex formation kca = 2.7*10**-2 # 1/s # rate constant for AA catalysis Kma = 51 # uM # Michaelis constant for AA 'in trans' activation kra = kfa*Kma-kca # 1/ # rate constant for AA complex dissociation kfp = 0.6 # 1/(uM*s) # rate constant for PhA complex formation kcp = 2.4*10**-2 # 1/s # rate constant for PhA catalysis Kmp = 1.95 # uM # Michaelis constant for PhA 'in trans' activation krp = kfp*Kmp-kcp # 1/s # rate constant for PhA complex dissociation def R_nonbinding_3eq_cisonly(y,t): """ system of ODEs from Zaytsev 2016, with the 'in trans' reaction component removed """ # set variable space A, Ph = y # mass balances PhA = p0 - Ph a = a0 - A - PhA # reaction equations dAdt = kcis_only*a - kfp*A*Ph + krp*PhA dPhdt = -kfp*A*Ph + (krp + kcp)*PhA return dAdt, dPhdt """ parameter specific to the 'cis only' set of ODEs, fit to demonstrate principle """ kcis_only = 1.8*10**-3 # 1/s # rate constant for 'in cis' Aurora B activation ###Output _____no_output_____ ###Markdown demonstration of bistability ###Code """ Figure 5A time evolution of the 'in cis + in trans' system showing bistability at 0.55 uM phosphatase where: - an initially low state retains low activity - an initially high state retains high activity - this stability at two states does not exist for other phosphatase concentrations plotted """ a0 = 10 p0s = [0,.15,.35,.55,.75] colors = ['k','C0','C1','C2','C3'] colors_dashed = ['k--','C0--','C1--','C2--','C3--'] t = np.linspace(0,140*60,500) for p0,color,color_dashed in zip(p0s,colors,colors_dashed): # initially low activity y = odeint(R_nonbinding_3eq,[0,0,p0],t) plt.plot(t/60,y[:,0],color,label=f'{p0}') # initial high activity y = odeint(R_nonbinding_3eq,[a0,0,p0],t) plt.plot(t/60,y[:,0],color_dashed) plt.legend(title='[PPase] (\u03BCM)',loc='lower right') plt.xlabel("Time (min)") plt.ylabel("[ABKp] (\u03BCM)"); """ Figure 5B time evolution of the 'in cis' system showing no bistability - thus, the 'in trans' reactions (positive feedback) are necessary for bistability """ a0 = 10 p0s = [0,.15,.35,.55,.75] colors = ['k','C0','C1','C2','C3'] colors_dashed = ['k--','C0--','C1--','C2--','C3--'] t = np.linspace(0,140*60,500) for p0,color,color_dashed in zip(p0s,colors,colors_dashed): y = odeint(R_nonbinding_3eq_cisonly,[0,p0],t) plt.plot(t/60,y[:,0],color,label=f'{p0}') y = odeint(R_nonbinding_3eq_cisonly,[a0,p0],t) plt.plot(t/60,y[:,0],color_dashed) plt.legend(title='[PPase] (\u03BCM)',loc='lower right') plt.xlabel("Time (min)") plt.ylabel("[ABKp] (\u03BCM)"); def saddle_node_locator(ss_list): """ find point where steady state (ss) jumps (hysteresis) where unsteady state manifold appears/disappears """ for n,(i,j) in enumerate(zip(ss_list[:-1], ss_list[1:])): if abs(j-i) > 0.3: return n+1 """ algorithm to find steady states + unsteady state manifold in the bistable regions of the 'in cis + in trans' system at different phosphatase concentrations """ start = time.time() ## algorithm takes ~3 min tspan = np.linspace(0,5000*60,10000) Atot_range = np.arange(0,17.5,.05) curves_15_75 = [] for p0 in [.15,.35,.55,.75]: lo_list = [] hi_list = [] Atot_bistable_list = [] bistable_list = [] for a0 in Atot_range: # time evolutions starting with low + high active kinase levels lo_init = [0,0,p0] y = odeint(R_nonbinding_3eq,lo_init,tspan) lo_ss = y[-1,0] lo_list.append(lo_ss) hi_init = [a0,0,p0] y = odeint(R_nonbinding_3eq,hi_init,tspan) hi_ss = y[-1,0] hi_list.append(hi_ss) # if steady state values differ with low + high initial active kinase levels, # system is bistable, record location along with both steady states if not np.isclose(lo_ss, hi_ss, atol=1): Atot_bistable_list.append(a0) bistable_list.append((a0, lo_ss, hi_ss)) if len(bistable_list) == 0: # if no bistabiliy exists at this phosphatase concentration, record curve + move on curves_15_75.append((p0,lo_list,0,hi_list,0,0,0)) else: # if bistability exists, time evolve at increasing kinase concentration # until steady state diverges, record point as unstable manifold unstablemanifold_list = [] for a0, lo_ss, hi_ss in bistable_list: A0 = lo_ss y_sim = np.zeros((2,2)) y_sim[-1,0] = -1 while y_sim[-1,0] < np.average((A0,lo_ss)): A0 += .01 A_init = [A0,0,p0] y_sim = odeint(R_nonbinding_3eq,A_init,tspan) unstablemanifold_list.append(A0) # finds hysteresis points in low and high steady state curves n_lo = saddle_node_locator(lo_list) n_hi = saddle_node_locator(hi_list) # plot low ss until hysteresis + unstable manifold + high ss from hysteresis saddle_x = [Atot_range[n_hi]] + Atot_bistable_list + [Atot_range[n_lo-1]] saddle_y = [hi_list[n_hi]] + unstablemanifold_list + [lo_list[n_lo-1]] curves_15_75.append((p0,lo_list,n_lo,hi_list,n_hi,saddle_x,saddle_y)) pickle.dump(curves_15_75,open('curves_15_75','wb')) end = time.time() print(f'~ {round( (end - start)/60, 1 )} min') """ Figure 5C plots bistability curve results of above algorithm dotted lines show the region of systems that are bistable gray dashed line bisects the curves at values that correspond to the plot above, explaining the bistable behavior at 0.55 uM + monostable behavior otherwise """ curves_15_75 = pickle.load(open('curves_15_75','rb')) Atot_range = np.arange(0,17.5,.05) plt.plot(Atot_range,Atot_range,'k', label = '0') p0,lo_list,n_lo,hi_list,n_hi,saddle_x,saddle_y = curves_15_75[0] plt.plot(Atot_range,lo_list,'C0', label = '0.15') p0,lo_list,n_lo,hi_list,n_hi,saddle_x,saddle_y = curves_15_75[1] plt.plot(Atot_range[:n_lo], lo_list[:n_lo],'C1', label = '0.35') plt.plot(Atot_range[n_hi:], hi_list[n_hi:],'C1') plt.plot(saddle_x,saddle_y,'C1:') p0,lo_list,n_lo,hi_list,n_hi,saddle_x,saddle_y = curves_15_75[2] plt.plot(Atot_range[:n_lo], lo_list[:n_lo],'C2', label = '0.55') plt.plot(Atot_range[n_hi:], hi_list[n_hi:],'C2') plt.plot(saddle_x,saddle_y,'C2:') p0,lo_list,n_lo,hi_list,n_hi,saddle_x,saddle_y = curves_15_75[3] plt.plot(Atot_range[:n_lo], lo_list[:n_lo],'C3', label = '0.75') plt.plot(Atot_range[n_hi:], hi_list[n_hi:],'C3') # first three points not plotted due to imprecision in algorithm plt.plot(saddle_x[3:],saddle_y[3:],'C3:') # plot vertical line showing steady state values for 10 uM kinase, relating to previous two plots plt.axvline(10,color='gray',linestyle='dashed') plt.legend(title='[PPase] (\u03BCM)') plt.xlabel('[Total ABK] (\u03BCM)') plt.ylabel('[ABKp] (\u03BCM)') plt.xlim(0,17.5) plt.ylim(0,14) plt.locator_params(axis='x', nbins=7); """ algorithm to find steady states of the 'in cis' system at different phosphatase concentrations """ start = time.time() ## algorithm takes <1 min tspan = np.linspace(0,5000*60,10000) Atot_range = np.arange(0,17.5,.05) curves_15_75_cis = [] for p0 in [.15,.35,.55,.75]: ss_list = [] for a0 in Atot_range: init = [0,p0] y = odeint(R_nonbinding_3eq_cisonly,init,tspan) ss_list.append(y[-1,0]) curves_15_75_cis.append((p0,ss_list,0,0,0,0,0)) end = time.time() print(f'~ {round( (end - start)/60, 1 )} min') """ Figure 5D plots curves of the above algorithm showing no bistability """ colors = ['C0','C1','C2','C3'] plt.plot(Atot_range,Atot_range,'k', label = '0') for (p0,lo_list,n_lo,hi_list,n_hi,saddle_x,saddle_y),color in zip(curves_15_75_cis,colors): plt.plot(Atot_range,lo_list, color, label = f'{p0}') plt.axvline(10,color='gray',linestyle='dashed') plt.legend(title='[PPase] (\u03BCM)') plt.xlabel('[Total ABK] (\u03BCM)') plt.ylabel('[ABKp] (\u03BCM)') plt.xlim(-.5,18) plt.ylim(-.05, 14*1.05); ###Output _____no_output_____
src/user_guide/output_statement.ipynb
###Markdown The `output` statement * **Difficulty level**: easy* **Time need to lean**: 10 minutes or less* **Key points**: * Step output are defined for each substep and can be derived from substep input (variable `_input`) * Variable `step_output` is defined at the completion of the step, and can be passed to other steps The output statement defines the output files or targets of a SoS step, it is optional but is fundamental for the creation of all but very simple workflows. You can check out the [How to create dependencies between SoS steps](step_dependencies.html) tutorial for a quick overview of the use of output statements. This tutorial lists what you can put in the output statement of a step with simple examples and you should refer to other tutorials for more in-depth discussions of the topics. Steps with no output statement The `output` statement is optional. When no output file is defined, a step will have undefined output. For example, the following workflow has a step `A` that execute a simple shell script. No output statement is needed and the workflow will work just fine. ###Code %run A -v0 [A_1] sh: echo do something [A_2] print(f'The input of step {step_name} is "{step_input}"') ###Output [##] 2 steps processed (2 jobs completed) ###Markdown In simple workflows with numerically indexed steps, an empty output will be passed to the next step. Unnamed output files The easiest way to explicitly specify input of a step is to list output files directly in the `output` statement. ###Code output: 'a.txt' _output.touch() print(f'_output is {_output}') ###Output _output is a.txt ###Markdown Here we showed touch function for _output, which is of type sos_targets. This function creates one or more files in variable _output and will be used quite often in the tutorials because SoS will check if the output file exists after the execution of the step.As for the case of input statement, multiple files can be listed as multiple paramters, sequences (list, tuple etc), or variables of string or sequence types. Output in substeps It is very important to remember that **output statement defines output for substeps**.Let us create a few input files, ###Code !touch a.txt b.txt c.txt d.txt ###Output _____no_output_____ ###Markdown In the following example, option `group_by` creates two substeps with `_input` being `a.txt` and `b.txt` respectively. The `_input` (actually `_input[0]` is of type `file_target`, which is derived from `pathlib.Path` so you can use any member function for `pathlib.Path`. Here we use `with_suffix` to obtain `a.bak` from `a.txt`. ###Code input: 'a.txt', 'b.txt', group_by=1 output: _input.with_suffix('.bak') print(f'Input of substep is {_input}, output of substep is {_output}') _output.touch() ###Output Input of substep is a.txt, output of substep is a.bak Input of substep is b.txt, output of substep is b.bak ###Markdown As you can see, `_output` is defined for each substep from `_input`. But what is `step_output`?**`step_output` is defined as an accumuted version of `_output`, with `_output` as its groups**. It is useful only when the output is imported to other steps, either implicitly as show below, or as output of functions `output_from` and `named_output`. ###Code %run -v0 [10] input: 'a.txt', 'b.txt', group_by=1 output: _input.with_suffix('.bak') print(f'Input of substep is {_input}, output of substep is {_output}') _output.touch() [20] print(f'step_input is {step_input}, substep input is {_input}') ###Output [##] 2 steps processed (4 jobs completed) ###Markdown **SoS substeps must produce different sets of `_output`**. The following workflow will fail to execute because both substeps will attemp to produce `a.bak`. ###Code %env --expect-error input: 'a.txt', 'b.txt', group_by=1 output: 'a.bak' _output.touch() ###Output RuntimeError: Failed to process step output ('a.bak'): Output a.bak from substep 1 of 2 substeps overlaps with output from a previous substep. ###Markdown Output with predefined groups (option `group_by`) In situations when you have predefined input and output pairs, you can define output groups with option `group_by`. The key here is that the number of groups should match the number of substeps.For example, ###Code %run -s force -v0 txt_files = ['a.txt', 'b.txt'] bak_files = ['a.bak', 'b.bak'] input: txt_files, group_by=1 output: bak_files, group_by=1 print(f'Input of substep is {_input}, output of substep is {_output}') _output.touch() ###Output [#] 1 step processed (2 jobs completed) ###Markdown Named output Similar to named input, you can assign labels to output files and refer them with `_output["label"]`. ###Code output: A='a.txt', B='b.txt' print(f"Output with label A is {_output['A']}, with label B is {_output['B']}") print(f"Output of step is {_output}") _output.touch() ###Output Output with label A is a.txt, with label B is b.txt Output of step is a.txt b.txt ###Markdown More importantly though, is that these labels defines named output that can be referred to with function `named_output`. ###Code %run -v0 [A] output: A='a.txt', B='b.txt' _output.touch() [default] input: named_output('A') print(f'Input of step is {_input}') ###Output [##] 2 steps processed (1 job completed, 1 job ignored) ###Markdown Attach variables to individual output files The `paired_with` variables can be used to attach variables to output files. ###Code output: 'a.txt', 'b.txt', paired_with=dict(sample_name=['A', 'B']) print(f'Output of substep is {_output}, with sample names {_output[0].sample_name} and {_output[1].sample_name}') _output.touch() ###Output Output of substep is a.txt b.txt, with sample names A and B ###Markdown Attach variables to output Option `group_with` can be used to attach variable to output groups, which can be useful as annotations for output files when the output is passed to other steps.A potentially confusing part of the `group_with` option is that it assigns elements to either `_output` or `step_output`, depending on how `output` statement is defined. If the `output` does not have `group_by` and `for_each` option (no group), `group_with` should assign a single element to the specific substep `_output`: ###Code sample_names = ['A', 'B'] input: for_each=dict(sample_name=sample_names) output: f'out_{sample_name}.txt', group_with=dict(sample=sample_names[_index]) print(f'Output of substep is {_output}, with sample name {_output.sample}') _output.touch() ###Output Output of substep is out_A.txt, with sample name A Output of substep is out_B.txt, with sample name B ###Markdown If you would like to attach some result to individual substep, it can be easier to just set the variable to `_output` though. ###Code !rm -f out_0.txt out_1.txt %run -v1 -s force [10] input: for_each=dict(i=range(2)) output: f'out_{i}.txt' import random seed = random.randint(1, 1000) _output.touch() _output.set(seed=seed) [20] print(f'seed of output {_input} is {_input.seed}') ###Output seed of output out_0.txt is 21 seed of output out_1.txt is 490 ###Markdown The `output` statement * **Difficulty level**: easy* **Time need to lean**: 10 minutes or less* **Key points**: * Step output are defined for each substep and can be derived from substep input (variable `_input`) * Variable `step_output` is defined at the completion of the step, and can be passed to other steps The output statement defines the output files or targets of a SoS step, it is optional but is fundamental for the creation of all but very simple workflows. You can check out the [How to create dependencies between SoS steps](step_dependencies.html) tutorial for a quick overview of the use of output statements. This tutorial lists what you can put in the output statement of a step with simple examples and you should refer to other tutorials for more in-depth discussions of the topics. Steps with no output statement The `output` statement is optional. When no output file is defined, a step will have undefined output. For example, the following workflow has a step `A` that execute a simple shell script. No output statement is needed and the workflow will work just fine. ###Code %run A -v1 [A_1] sh: echo do something [A_2] print(f'The input of step {step_name} is "{step_input}"') ###Output do something The input of step A_2 is "" ###Markdown In simple workflows with numerically indexed steps, an empty output will be passed to the next step. Unnamed output files The easiest way to explicitly specify input of a step is to list output files directly in the `output` statement. ###Code output: 'a.txt' _output.touch() print(f'_output is {_output}') ###Output _output is a.txt ###Markdown Here we showed touch function for _output, which is of type sos_targets. This function creates one or more files in variable _output and will be used quite often in the tutorials because SoS will check if the output file exists after the execution of the step.As for the case of input statement, multiple files can be listed as multiple paramters, sequences (list, tuple etc), or variables of string or sequence types. Output in substeps The output statement can define output for a single substep or all substeps. That is to say, If the output targets are ungrouped, it defines _output. step_output would be an accumulated version of _output. If the output targets are grouped with options group_by or for_each, it defines step_output, which should have the same number of groups as step_input Let us create a few input files, ###Code !touch a.txt b.txt c.txt d.txt ###Output _____no_output_____ ###Markdown **The `output` statement usually defines output of a single substep**. In the following example, option `group_by` creates two substeps with `_input` being `a.txt` and `b.txt` respectively. The `_input` (actually `_input[0]` is of type `file_target`, which is derived from `pathlib.Path` so you can use any member function for `pathlib.Path`. Here we use `with_suffix` to obtain `a.bak` from `a.txt`. ###Code input: 'a.txt', 'b.txt', group_by=1 output: _input.with_suffix('.bak') print(f'Input of substep is {_input}, output of substep is {_output}') _output.touch() ###Output Input of substep is a.txt, output of substep is a.bak Input of substep is b.txt, output of substep is b.bak ###Markdown As you can see, `_output` is defined for each substep from `_input`. But what is `step_output`?**`step_output` is defined as an accumuted version of `_output`, with `_output` as its groups**. It is useful only when the output is imported to other steps, either implicitly as show below, or as output of functions `output_from` and `named_output`. ###Code %run -v1 [10] input: 'a.txt', 'b.txt', group_by=1 output: _input.with_suffix('.bak') print(f'Input of substep is {_input}, output of substep is {_output}') _output.touch() [20] print(f'step_input is {step_input}, substep input is {_input}') ###Output Input of substep is a.txt, output of substep is a.bak Input of substep is b.txt, output of substep is b.bak step_input is a.bak b.bak, substep input is a.bak step_input is a.bak b.bak, substep input is b.bak ###Markdown **SoS substeps must produce different sets of `_output`**. The following workflow will fail to execute because both substeps will attemp to produce `a.bak`. ###Code %env --expect-error input: 'a.txt', 'b.txt', group_by=1 output: 'a.bak' _output.touch() ###Output RuntimeError: Failed to process step output ('a.bak'): Output a.bak from substep 1 of 2 substeps overlaps with output from a previous substep. ###Markdown Output with predefined groups (option `group_by`) In situations when you have predefined input and output pairs, you can define output targets with groups using option `group_by`. The key here is that the number of groups should match the number of substeps. Technically speaking the `output` statement defines `step_output` and each substep takes one group as its `_output`.For example, ###Code %run -s force -v1 txt_files = ['a.txt', 'b.txt'] bak_files = ['a.bak', 'b.bak'] input: txt_files, group_by=1 output: bak_files, group_by=1 print(f'Input of substep is {_input}, output of substep is {_output}') _output.touch() ###Output Input of substep is a.txt, output of substep is a.bak Input of substep is b.txt, output of substep is b.bak ###Markdown Named output Similar to named input, you can assign labels to output files and refer them with `_output["label"]`. ###Code output: A='a.txt', B='b.txt' print(f"Output with label A is {_output['A']}, with label B is {_output['B']}") print(f"Output of step is {_output}") _output.touch() ###Output Output with label A is a.txt, with label B is b.txt Output of step is a.txt b.txt ###Markdown More importantly though, is that these labels defines named output that can be referred to with function `named_output`. ###Code %run -v1 [A] output: A='a.txt', B='b.txt' _output.touch() [default] input: named_output('A') print(f'Input of step is {_input}') ###Output Input of step is a.txt ###Markdown Attach variables to individual output files The `paired_with` variables can be used to attach variables to output files. ###Code output: 'a.txt', 'b.txt', paired_with=dict(sample_name=['A', 'B']) print(f'Output of substep is {_output}, with sample names {_output[0].sample_name} and {_output[1].sample_name}') _output.touch() ###Output Output of substep is a.txt b.txt, with sample names A and B ###Markdown Attach variables to output Option `group_with` can be used to attach variable to output groups, which can be useful as annotations for output files when the output is passed to other steps.A potentially confusing part of the `group_with` option is that it assigns elements to either `_output` or `step_output`, depending on how `output` statement is defined. If the `output` does not have `group_by` and `for_each` option, it defines a single `_output` and `group_with` should assign a single element to `_output` of this specific substep: ###Code sample_names = ['A', 'B'] input: for_each=dict(sample_name=sample_names) output: f'out_{sample_name}.txt', group_with=dict(sample=sample_names[_index]) print(f'Output of substep is {_output}, with sample name {_output.sample}') _output.touch() ###Output Output of substep is out_A.txt, with sample name A Output of substep is out_B.txt, with sample name B ###Markdown If you would like to attach some result to individual substep, it can be easier to just set the variable to `_output` though. ###Code !rm -f out_0.txt out_1.txt %run -v1 -s force [10] input: for_each=dict(i=range(2)) output: f'out_{i}.txt' import random seed = random.randint(1, 1000) _output.touch() _output.set(seed=seed) [20] print(f'seed of output {_input} is {_input.seed}') ###Output seed of output out_0.txt is 577 seed of output out_1.txt is 209 ###Markdown How to define step output * **Difficulty level**: easy* **Time need to lean**: 10 minutes or less* **Key points**: * Step output are defined for each substep and can be derived from substep input (variable `_input`) * Variable `step_output` is defined at the completion of the step, and can be passed to other steps The output statement defines the output files or targets of a SoS step, it is optional but is fundamental for the creation of all but very simple workflows. You can check out the [How to create dependencies between SoS steps](doc/user_guide/step_dependencies.html) tutorial for a quick overview of the use of output statements. This tutorial lists what you can put in the output statement of a step with simple examples and you should refer to other tutorials for more in-depth discussions of the topics. Steps with no output statement The `output` statement is optional. When no output file is defined, a step will have undefined output. For example, the following workflow has a step `A` that execute a simple shell script. No output statement is needed and the workflow will work just fine. ###Code %run A -v0 [A_1] sh: echo do something [A_2] print(f'The input of step {step_name} is "{step_input}"') ###Output The input of step A_2 is "" ###Markdown In simple workflows with numerically indexed steps, an empty output will be passed to the next step. Unnamed output files The easiest way to explicitly specify input of a step is to list output files directly in the `output` statement. ###Code output: 'a.txt' _output.touch() print(f'_output is {_output}') ###Output _____no_output_____ ###Markdown Here we showed touch function for _output, which is of type sos_targets. This function creates one or more files in variable _output and will be used quite often in the tutorials because SoS will check if the output file exists after the execution of the step.As for the case of input statement, multiple files can be listed as multiple paramters, sequences (list, tuple etc), or variables of string or sequence types. Output in substeps It is very important to remember that **output statement defines output for substeps**.Let us create a few input files, ###Code !touch a.txt b.txt c.txt d.txt ###Output _____no_output_____ ###Markdown In the following example, option `group_by` creates two substeps with `_input` being `a.txt` and `b.txt` respectively. The `_input` (actually `_input[0]` is of type `file_target`, which is derived from `pathlib.Path` so you can use any member function for `pathlib.Path`. Here we use `with_suffix` to obtain `a.bak` from `a.txt`. ###Code input: 'a.txt', 'b.txt', group_by=1 output: _input.with_suffix('.bak') print(f'Input of substep is {_input}, output of substep is {_output}') _output.touch() ###Output _____no_output_____ ###Markdown As you can see, `_output` is defined for each substep from `_input`. But what is `step_output`?`step_output` is defined as an accumuted version of `_output`, with `_output` as its groups. It is useful only when the output is imported to other steps, either implicitly as show below, or as output of functions `output_from` and `named_output`. ###Code %run -v0 [10] input: 'a.txt', 'b.txt', group_by=1 output: _input.with_suffix('.bak') print(f'Input of substep is {_input}, output of substep is {_output}') _output.touch() [20] print(f'step_input is {step_input}, substep input is {_input}') ###Output Input of substep is a.txt, output of substep is a.bak Input of substep is b.txt, output of substep is b.bak step_input is a.bak b.bak, substep input is a.bak step_input is a.bak b.bak, substep input is b.bak ###Markdown Output with predefined groups In situations when you have predefined input and output pairs, you can define output groups with option `group_by`. The key here is that the number of groups should match the number of substeps.For example, ###Code %run -s force -v0 txt_files = ['a.txt', 'b.txt'] bak_files = ['a.bak', 'b.bak'] input: txt_files, group_by=1 output: bak_files, group_by=1 print(f'Input of substep is {_input}, output of substep is {_output}') _output.touch() ###Output Input of substep is a.txt, output of substep is a.bak Input of substep is b.txt, output of substep is b.bak ###Markdown Named output Similar to named input, you can assign labels to output files and refer them with `_output["label"]`. ###Code output: A='a.txt', B='b.txt' print(f"Output with label A is {_output['A']}, with label B is {_output['B']}") print(f"Output of step is {_output}") _output.touch() ###Output _____no_output_____ ###Markdown More importantly though, is that these labels defines named output that can be referred to with function `named_output`. ###Code %run -v0 [A] output: A='a.txt', B='b.txt' _output.touch() [default] input: named_output('A') print(f'Input of step is {_input}') ###Output Input of step is a.txt ###Markdown Attach variables to individual output files The `paired_with` variables can be used to attach variables to output files. ###Code output: 'a.txt', 'b.txt', paired_with=dict(sample_name=['A', 'B']) print(f'Output of substep is {_output}, with sample names {_output[0].sample_name} and {_output[1].sample_name}') _output.touch() ###Output Output of substep is a.txt b.txt, with sample names A and B ###Markdown Attach variables to output Option `group_with` can be used to attach variable to output groups, which can be useful as annotations for output files when the output is passed to other steps.A potentially confusing part of the `group_with` option is that it assigns elements of the list to all `_output`, not to a single `_output` that the output statement is creating. ###Code sample_names = ['A', 'B'] input: for_each=dict(sample_name=sample_names) output: f'out_{sample_name}.txt', group_with=dict(sample=sample_names) print(f'Output of substep is {_output}, with sample name {_output.sample}') _output.touch() ###Output Output of substep is out_A.txt, with sample name A Output of substep is out_B.txt, with sample name B ###Markdown If you would like to attach some result to individual substep, it can be easier to just set the variable to `_output` though. ###Code %run -v0 [10] input: for_each=dict(i=range(2)) output: f'out_{i}.txt' import random seed = random.randint(1, 1000) _output.touch() _output.set(seed=seed) [20] print(f'seed of output {_input} is {seed}') ###Output seed of output out_0.txt is 369 seed of output out_1.txt is 701
flower_classifier_project/Image Classifier Project.ipynb
###Markdown Developing an AI applicationGoing forward, AI algorithms will be incorporated into more and more everyday applications. For example, you might want to include an image classifier in a smart phone app. To do this, you'd use a deep learning model trained on hundreds of thousands of images as part of the overall application architecture. A large part of software development in the future will be using these types of models as common parts of applications. In this project, you'll train an image classifier to recognize different species of flowers. You can imagine using something like this in a phone app that tells you the name of the flower your camera is looking at. In practice you'd train this classifier, then export it for use in your application. We'll be using [this dataset](http://www.robots.ox.ac.uk/~vgg/data/flowers/102/index.html) of 102 flower categories, you can see a few examples below. The project is broken down into multiple steps:* Load and preprocess the image dataset* Train the image classifier on your dataset* Use the trained classifier to predict image contentWe'll lead you through each part which you'll implement in Python.When you've completed this project, you'll have an application that can be trained on any set of labeled images. Here your network will be learning about flowers and end up as a command line application. But, what you do with your new skills depends on your imagination and effort in building a dataset. For example, imagine an app where you take a picture of a car, it tells you what the make and model is, then looks up information about it. Go build your own dataset and make something new.First up is importing the packages you'll need. It's good practice to keep all the imports at the beginning of your code. As you work through this notebook and find you need to import a package, make sure to add the import up here. ###Code # Imports here import json import torch import PIL import matplotlib import numpy as np import torchvision as tv import matplotlib.pyplot as plt from torch import nn from collections import OrderedDict ###Output _____no_output_____ ###Markdown Load the dataHere you'll use `torchvision` to load the data ([documentation](http://pytorch.org/docs/0.3.0/torchvision/index.html)). The data should be included alongside this notebook, otherwise you can [download it here](https://s3.amazonaws.com/content.udacity-data.com/nd089/flower_data.tar.gz). The dataset is split into three parts, training, validation, and testing. For the training, you'll want to apply transformations such as random scaling, cropping, and flipping. This will help the network generalize leading to better performance. You'll also need to make sure the input data is resized to 224x224 pixels as required by the pre-trained networks.The validation and testing sets are used to measure the model's performance on data it hasn't seen yet. For this you don't want any scaling or rotation transformations, but you'll need to resize then crop the images to the appropriate size.The pre-trained networks you'll use were trained on the ImageNet dataset where each color channel was normalized separately. For all three sets you'll need to normalize the means and standard deviations of the images to what the network expects. For the means, it's `[0.485, 0.456, 0.406]` and for the standard deviations `[0.229, 0.224, 0.225]`, calculated from the ImageNet images. These values will shift each color channel to be centered at 0 and range from -1 to 1. ###Code data_dir = 'flowers' train_dir = data_dir + '/train' valid_dir = data_dir + '/valid' test_dir = data_dir + '/test' # TODO: Define your transforms for the training, validation, and testing sets # Order important! Crops/Flips applied on Image; convert to Tensor; Normalize applied to Tensor train_transforms = tv.transforms.Compose([tv.transforms.RandomRotation(30), tv.transforms.RandomResizedCrop(224), tv.transforms.RandomHorizontalFlip(), tv.transforms.RandomVerticalFlip(), tv.transforms.ToTensor(), tv.transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225]) ]) valid_transforms = tv.transforms.Compose([tv.transforms.Resize(255), tv.transforms.CenterCrop(224), tv.transforms.ToTensor(), tv.transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225]) ]) test_transforms = tv.transforms.Compose([tv.transforms.Resize(255), tv.transforms.CenterCrop(224), tv.transforms.ToTensor(), tv.transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225]) ]) # TODO: Load the datasets with ImageFolder train_dataset = tv.datasets.ImageFolder(train_dir, transform=train_transforms) valid_dataset = tv.datasets.ImageFolder(valid_dir, transform=valid_transforms) test_dataset = tv.datasets.ImageFolder(test_dir, transform=test_transforms) # TODO: Using the image datasets and the trainforms, define the dataloaders train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True) valid_loader = torch.utils.data.DataLoader(valid_dataset, batch_size=64, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=True) ###Output _____no_output_____ ###Markdown Label mappingYou'll also need to load in a mapping from category label to category name. You can find this in the file `cat_to_name.json`. It's a JSON object which you can read in with the [`json` module](https://docs.python.org/2/library/json.html). This will give you a dictionary mapping the integer encoded categories to the actual names of the flowers. ###Code with open('cat_to_name.json', 'r') as f: cat_to_name = json.load(f) ###Output _____no_output_____ ###Markdown Building and training the classifierNow that the data is ready, it's time to build and train the classifier. As usual, you should use one of the pretrained models from `torchvision.models` to get the image features. Build and train a new feed-forward classifier using those features.Refer to [the rubric](https://review.udacity.com/!/rubrics/1663/view) for guidance on successfully completing this section. Things you'll need to do:* Load a [pre-trained network](http://pytorch.org/docs/master/torchvision/models.html) (If you need a starting point, the VGG networks work great and are straightforward to use)* Define a new, untrained feed-forward network as a classifier, using ReLU activations and dropout* Train the classifier layers using backpropagation using the pre-trained network to get the features* Track the loss and accuracy on the validation set to determine the best hyperparametersWhen training make sure you're updating only the weights of the feed-forward network. You should be able to get the validation accuracy above 70% if you build everything right. Make sure to try different hyperparameters (learning rate, units in the classifier, epochs, etc) to find the best model. Save those hyperparameters to use as default values in the next part of the project. ###Code # TODO: Build and train your network def setup_nn(input_size, hidden_sizes, output_size, drop_p, learning_rate): model = tv.models.vgg16(pretrained=True) for param in model.parameters(): param.requires_grad = False classifier = nn.Sequential(OrderedDict([ ('dropout',nn.Dropout(drop_p)), ('fc1', nn.Linear(input_size, hidden_sizes[0])), ('relu1', nn.ReLU()), ('fc2', nn.Linear(hidden_sizes[0], hidden_sizes[1])), ('relu2',nn.ReLU()), ('fc3',nn.Linear(hidden_sizes[1], hidden_sizes[2])), ('relu3',nn.ReLU()), ('fc4',nn.Linear(hidden_sizes[2], output_size)), ('output', nn.LogSoftmax(dim=1)) ])) model.classifier = classifier criterion = nn.NLLLoss() optimizer = torch.optim.Adam(model.classifier.parameters(), lr=learning_rate) return model, criterion, optimizer input_size=25088 hidden_sizes=[6200, 1600, 400] output_size=102 drop_p=0.5 learning_rate=0.001 epochs = 12 print_every = 65 steps = 0 model, criterion, optimizer = setup_nn(input_size, hidden_sizes, output_size, drop_p, learning_rate) # change to cuda model.to('cuda') for e in range(epochs): running_loss = 0 for ii, (inputs, labels) in enumerate(train_loader): steps += 1 inputs, labels = inputs.to('cuda'), labels.to('cuda') optimizer.zero_grad() # Forward and backward passes outputs = model.forward(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if steps % print_every == 0: print("Epoch: {}/{}... ".format(e+1, epochs), "Loss: {:.4f}".format(running_loss/print_every)) running_loss = 0 ###Output Epoch: 1/12... Loss: 3.5941 Epoch: 2/12... Loss: 0.8176 Epoch: 2/12... Loss: 1.7052 Epoch: 3/12... Loss: 1.1713 Epoch: 4/12... Loss: 0.3069 Epoch: 4/12... Loss: 1.1863 Epoch: 5/12... Loss: 0.7203 Epoch: 6/12... Loss: 0.0861 Epoch: 6/12... Loss: 0.9855 Epoch: 7/12... Loss: 0.4439 Epoch: 7/12... Loss: 0.8979 Epoch: 8/12... Loss: 0.7905 Epoch: 9/12... Loss: 0.2835 Epoch: 9/12... Loss: 0.8226 Epoch: 10/12... Loss: 0.6167 Epoch: 11/12... Loss: 0.1266 Epoch: 11/12... Loss: 0.7714 Epoch: 12/12... Loss: 0.4457 Epoch: 12/12... Loss: 0.7175 ###Markdown Testing your networkIt's good practice to test your trained network on test data, images the network has never seen either in training or validation. This will give you a good estimate for the model's performance on completely new images. Run the test images through the network and measure the accuracy, the same way you did validation. You should be able to reach around 70% accuracy on the test set if the model has been trained well. ###Code # TODO: Do validation on the test set correct = 0 total = 0 model.to('cuda') with torch.no_grad(): for data in test_loader: images, labels = data images, labels = images.to('cuda'), labels.to('cuda') outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the test images: %d %%' % (100 * correct / total)) ###Output Accuracy of the network on the test images: 83 % ###Markdown Save the checkpointNow that your network is trained, save the model so you can load it later for making predictions. You probably want to save other things such as the mapping of classes to indices which you get from one of the image datasets: `image_datasets['train'].class_to_idx`. You can attach this to the model as an attribute which makes inference easier later on.```model.class_to_idx = image_datasets['train'].class_to_idx```Remember that you'll want to completely rebuild the model later so you can use it for inference. Make sure to include any information you need in the checkpoint. If you want to load the model and keep training, you'll want to save the number of epochs as well as the optimizer state, `optimizer.state_dict`. You'll likely want to use this trained model in the next part of the project, so best to save it now. ###Code # TODO: Save the checkpoint checkpoint = {'input_size': input_size, 'hidden_sizes': hidden_sizes, 'output_size': output_size, 'drop_p': drop_p, 'learning_rate': learning_rate, 'state_dict': model.state_dict()} torch.save(checkpoint, 'checkpoint.pth') ###Output _____no_output_____ ###Markdown Loading the checkpointAt this point it's good to write a function that can load a checkpoint and rebuild the model. That way you can come back to this project and keep working on it without having to retrain the network. ###Code # TODO: Write a function that loads a checkpoint and rebuilds the model checkpoint = torch.load('checkpoint.pth') model,_,_ = setup_nn(checkpoint['input_size'], checkpoint['hidden_sizes'], checkpoint['output_size'], checkpoint['drop_p'], checkpoint['learning_rate']) model.load_state_dict(checkpoint['state_dict']) ###Output _____no_output_____ ###Markdown Inference for classificationNow you'll write a function to use a trained network for inference. That is, you'll pass an image into the network and predict the class of the flower in the image. Write a function called `predict` that takes an image and a model, then returns the top $K$ most likely classes along with the probabilities. It should look like ```pythonprobs, classes = predict(image_path, model)print(probs)print(classes)> [ 0.01558163 0.01541934 0.01452626 0.01443549 0.01407339]> ['70', '3', '45', '62', '55']```First you'll need to handle processing the input image such that it can be used in your network. Image PreprocessingYou'll want to use `PIL` to load the image ([documentation](https://pillow.readthedocs.io/en/latest/reference/Image.html)). It's best to write a function that preprocesses the image so it can be used as input for the model. This function should process the images in the same manner used for training. First, resize the images where the shortest side is 256 pixels, keeping the aspect ratio. This can be done with the [`thumbnail`](http://pillow.readthedocs.io/en/3.1.x/reference/Image.htmlPIL.Image.Image.thumbnail) or [`resize`](http://pillow.readthedocs.io/en/3.1.x/reference/Image.htmlPIL.Image.Image.thumbnail) methods. Then you'll need to crop out the center 224x224 portion of the image.Color channels of images are typically encoded as integers 0-255, but the model expected floats 0-1. You'll need to convert the values. It's easiest with a Numpy array, which you can get from a PIL image like so `np_image = np.array(pil_image)`.As before, the network expects the images to be normalized in a specific way. For the means, it's `[0.485, 0.456, 0.406]` and for the standard deviations `[0.229, 0.224, 0.225]`. You'll want to subtract the means from each color channel, then divide by the standard deviation. And finally, PyTorch expects the color channel to be the first dimension but it's the third dimension in the PIL image and Numpy array. You can reorder dimensions using [`ndarray.transpose`](https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.ndarray.transpose.html). The color channel needs to be first and retain the order of the other two dimensions. ###Code def process_image(image): ''' Scales, crops, and normalizes a PIL image for a PyTorch model, returns an Numpy array ''' # TODO: Process a PIL image for use in a PyTorch model pil_image = PIL.Image.open(image) image_transforms = tv.transforms.Compose([tv.transforms.Resize(255), tv.transforms.CenterCrop(224), tv.transforms.ToTensor(), tv.transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225]) ]) tensor_image = image_transforms(pil_image) np_image = tensor_image.numpy() #print(np.amin(np_image)) #print(np.amax(np_image)) #print(np_image) #print(np_image.shape) return np_image ###Output _____no_output_____ ###Markdown To check your work, the function below converts a PyTorch tensor and displays it in the notebook. If your `process_image` function works, running the output through this function should return the original image (except for the cropped out portions). ###Code def imshow(image, ax=None, title=None): if ax is None: fig, ax = plt.subplots() # PyTorch tensors assume the color channel is the first dimension # but matplotlib assumes is the third dimension image = image.transpose((1, 2, 0)) # Undo preprocessing mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) image = std * image + mean # Image needs to be clipped between 0 and 1 or it looks like noise when displayed image = np.clip(image, 0, 1) ax.imshow(image) return ax ###Output _____no_output_____ ###Markdown Class PredictionOnce you can get images in the correct format, it's time to write a function for making predictions with your model. A common practice is to predict the top 5 or so (usually called top-$K$) most probable classes. You'll want to calculate the class probabilities then find the $K$ largest values.To get the top $K$ largest values in a tensor use [`x.topk(k)`](http://pytorch.org/docs/master/torch.htmltorch.topk). This method returns both the highest `k` probabilities and the indices of those probabilities corresponding to the classes. You need to convert from these indices to the actual class labels using `class_to_idx` which hopefully you added to the model or from an `ImageFolder` you used to load the data ([see here](Save-the-checkpoint)). Make sure to invert the dictionary so you get a mapping from index to class as well.Again, this method should take a path to an image and a model checkpoint, then return the probabilities and classes.```pythonprobs, classes = predict(image_path, model)print(probs)print(classes)> [ 0.01558163 0.01541934 0.01452626 0.01443549 0.01407339]> ['70', '3', '45', '62', '55']``` ###Code def predict(image_path, model, topk=5): ''' Predict the class (or classes) of an image using a trained deep learning model. ''' # TODO: Implement the code to predict the class from an image file model.to('cuda') image = process_image(image_path) image = torch.from_numpy(image) image = image.unsqueeze_(0) image = image.to('cuda') # Calculate the class probabilities (softmax) for img with torch.no_grad(): output = model.forward(image) output_softmaxed = torch.nn.functional.softmax(output.data, dim=1) return output_softmaxed.topk(topk) ###Output _____no_output_____ ###Markdown Sanity CheckingNow that you can use a trained model for predictions, check to make sure it makes sense. Even if the testing accuracy is high, it's always good to check that there aren't obvious bugs. Use `matplotlib` to plot the probabilities for the top 5 classes as a bar graph, along with the input image. It should look like this:You can convert from the class integer encoding to actual flower names with the `cat_to_name.json` file (should have been loaded earlier in the notebook). To show a PyTorch tensor as an image, use the `imshow` function defined above. ###Code # TODO: Display an image along with the top 5 classes image_index = 1 image_path = test_dir + '/' + str(image_index) + '/image_06743.jpg' predicted_probabilities, predicted_labels = predict(image_path, model) image = process_image(image_path) predicted_probabilities = np.array(predicted_probabilities[0]) predicted_labels = np.array(predicted_labels[0]) print(predicted_probabilities) print(predicted_labels) # Show image ax1 = imshow(image, ax = plt) ax1.axis('off') ax1.title(cat_to_name[str(image_index)]) ax1.show() # Do assignments assigned_probabilities = np.array(predicted_probabilities) assigned_labels = [cat_to_name[str(label+1)] for label in predicted_labels] print(assigned_probabilities) print(assigned_labels) # Show Assignments _,ax2 = plt.subplots() ticks = np.arange(len(assigned_labels)) ax2.bar(ticks, assigned_probabilities) ax2.set_xticks(ticks = ticks) ax2.set_xticklabels(assigned_labels) ax2.yaxis.grid(True) plt.show() ###Output [ 9.99501109e-01 1.15869087e-04 1.12051908e-04 1.05393607e-04 6.08839327e-05] [ 0 49 95 87 84]
notebooks/T6 - 3 - K-Means.ipynb
###Markdown El método de k-means ###Code import numpy as np data = np.random.random(90).reshape(30,3)# reshape(30,3) reorganiza en 30 filas y 3 columnas data c1 = np.random.choice(range(len(data)))# choice : escoje al Azar c2 = np.random.choice(range(len(data))) clust_centers = np.vstack([data[c1], data[c2]]) clust_centers from scipy.cluster.vq import vq clusters = vq(data, clust_centers) clusters labels = clusters[0] labels import plotly.plotly as py import plotly.graph_objs as go import plotly.offline as ply x = [] y = [] z = [] x2 = [] y2 = [] z2 = [] for i in range(0, len(labels)): if(labels[i] == 0): x.append(data[i,0]) y.append(data[i,1]) z.append(data[i,2]) else: x2.append(data[i,0]) y2.append(data[i,1]) z2.append(data[i,2]) cluster1 = go.Scatter3d( x=x, y=y, z=z, mode='markers', marker=dict( size=12, line=dict( color='rgba(217, 217, 217, 0.14)', width=0.5 ), opacity=0.9 ), name="Cluster 0" ) cluster2 = go.Scatter3d( x=x2, y=y2, z=z2, mode='markers', marker=dict( color='rgb(127, 127, 127)', size=12, symbol='circle', line=dict( color='rgb(204, 204, 204)', width=1 ), opacity=0.9 ), name="Cluster 1" ) data2 = [cluster1, cluster2] layout = go.Layout( margin=dict( l=0, r=0, b=0, t=30 ) ) fig = go.Figure(data=data2, layout=layout) ply.plot(fig, filename='Clusters') from scipy.cluster.vq import kmeans kmeans(data, clust_centers) kmeans(data, 2) ###Output _____no_output_____ ###Markdown El método de k-means ###Code import numpy as np data = np.random.random(90).reshape(30,3) data c1 = np.random.choice(range(len(data))) c2 = np.random.choice(range(len(data))) clust_centers = np.vstack([data[c1], data[c2]]) clust_centers from scipy.cluster.vq import vq clusters = vq(data, clust_centers) clusters labels = clusters[0] labels import plotly.plotly as py import plotly.graph_objs as go import plotly.offline as ply x = [] y = [] z = [] x2 = [] y2 = [] z2 = [] for i in range(0, len(labels)): if(labels[i] == 0): x.append(data[i,0]) y.append(data[i,1]) z.append(data[i,2]) else: x2.append(data[i,0]) y2.append(data[i,1]) z2.append(data[i,2]) cluster1 = go.Scatter3d( x=x, y=y, z=z, mode='markers', marker=dict( size=12, line=dict( color='rgba(217, 217, 217, 0.14)', width=0.5 ), opacity=0.9 ), name="Cluster 0" ) cluster2 = go.Scatter3d( x=x2, y=y2, z=z2, mode='markers', marker=dict( color='rgb(127, 127, 127)', size=12, symbol='circle', line=dict( color='rgb(204, 204, 204)', width=1 ), opacity=0.9 ), name="Cluster 1" ) data2 = [cluster1, cluster2] layout = go.Layout( margin=dict( l=0, r=0, b=0, t=30 ) ) fig = go.Figure(data=data2, layout=layout) ply.plot(fig, filename='Clusters') from scipy.cluster.vq import kmeans kmeans(data, clust_centers) kmeans(data, 2) ###Output _____no_output_____ ###Markdown El método de k-means ###Code import numpy as np data = np.random.random(90).reshape(30,3) data c1 = np.random.choice(range(len(data))) c2 = np.random.choice(range(len(data))) clust_centers = np.vstack([data[c1], data[c2]]) clust_centers from scipy.cluster.vq import vq clusters = vq(data, clust_centers) clusters labels = clusters[0] labels import plotly.plotly as py import plotly.graph_objs as go import plotly.offline as ply x = [] y = [] z = [] x2 = [] y2 = [] z2 = [] for i in range(0, len(labels)): if(labels[i] == 0): x.append(data[i,0]) y.append(data[i,1]) z.append(data[i,2]) else: x2.append(data[i,0]) y2.append(data[i,1]) z2.append(data[i,2]) cluster1 = go.Scatter3d( x=x, y=y, z=z, mode='markers', marker=dict( size=12, line=dict( color='rgba(217, 217, 217, 0.14)', width=0.5 ), opacity=0.9 ), name="Cluster 0" ) cluster2 = go.Scatter3d( x=x2, y=y2, z=z2, mode='markers', marker=dict( color='rgb(127, 127, 127)', size=12, symbol='circle', line=dict( color='rgb(204, 204, 204)', width=1 ), opacity=0.9 ), name="Cluster 1" ) data2 = [cluster1, cluster2] layout = go.Layout( margin=dict( l=0, r=0, b=0, t=30 ) ) fig = go.Figure(data=data2, layout=layout) ply.plot(fig, filename='Clusters') from scipy.cluster.vq import kmeans kmeans(data, clust_centers) kmeans(data, 2) ###Output _____no_output_____ ###Markdown El método de k-means ###Code import numpy as np data = np.random.random(90).reshape(30,3) data c1 = np.random.choice(range(len(data))) c2 = np.random.choice(range(len(data))) clust_centers = np.vstack([data[c1], data[c2]]) clust_centers from scipy.cluster.vq import vq vq(data, clust_centers) from scipy.cluster.vq import kmeans kmeans(data, clust_centers) kmeans(data, 2) ###Output _____no_output_____ ###Markdown El método de k-means ###Code import numpy as np data = np.random.random(90).reshape(30,3) data c1 = np.random.choice(range(len(data))) c2 = np.random.choice(range(len(data))) clust_centers = np.vstack([data[c1], data[c2]]) clust_centers from scipy.cluster.vq import vq clusters = vq(data, clust_centers) clusters labels = clusters[0] labels import plotly.plotly as py import plotly.graph_objs as go import plotly.offline as ply x = [] y = [] z = [] x2 = [] y2 = [] z2 = [] for i in range(0, len(labels)): if(labels[i] == 0): x.append(data[i,0]) y.append(data[i,1]) z.append(data[i,2]) else: x2.append(data[i,0]) y2.append(data[i,1]) z2.append(data[i,2]) cluster1 = go.Scatter3d( x=x, y=y, z=z, mode='markers', marker=dict( size=12, line=dict( color='rgba(217, 217, 217, 0.14)', width=0.5 ), opacity=0.9 ), name="Cluster 0" ) cluster2 = go.Scatter3d( x=x2, y=y2, z=z2, mode='markers', marker=dict( color='rgb(127, 127, 127)', size=12, symbol='circle', line=dict( color='rgb(204, 204, 204)', width=1 ), opacity=0.9 ), name="Cluster 1" ) data2 = [cluster1, cluster2] layout = go.Layout( margin=dict( l=0, r=0, b=0, t=30 ) ) fig = go.Figure(data=data2, layout=layout) ply.plot(fig, filename='Clusters') from scipy.cluster.vq import kmeans kmeans(data, clust_centers) kmeans(data, 2) ###Output _____no_output_____
bandits/simple_bandit.ipynb
###Markdown 1. K-Armed Bandit ProblemBandit problems are reinforcement learning (RL) problems in which there is only a single state in which multiple actions can potentially be taken. In the k-armed bandit problem, you are repeatedly faced with a choice among k different options/actions. After selecting an action, you receive a reward chosen from a stationary probability distribution that is dependent on the selected action. Objective: Maximize the expected total reward over some time periodAlthough the rewards for actions are chosen from a probability distribution, each action has a mean reward value. We start out with estimates of the rewards for each action, but with more selections/experience, the estimates converge to the mean. If we have a 'way' to quantify the value of taking each action (the expected reward), then to achieve the objective, we would simply always take the action with the highest value. Mathematically speaking,$Q_t(a) = E[R_t | A_t = a]$This says that the value of an arbitrary action **a** is the expected reward given that **a** is selected* If we keep estimates of the action values, then at each step, there is at least one action whose estimate is the greatest. These actions are called **greedy actions** and if selected, we are said to be **exploting** our current knowledge of the values of actions* If instaed we select a non-greedy action, then we are said to be **exploring** because it enables us to improve our estimates of the non-greedy action values Sample-Average Action-Value EstimationA simple method of estimating the value of an action is by averaging the rewards previosly received from taking thataction. i.e.$$Q_t(a) = \frac{\text{sum of rewards when a is taken prior to t}}{\text{number of times a has been taken prior to t}}$$The next step is then to use the estimates to select actions. The simplest rule is to select the action (or one of the actions) with the highest estimated values. This is called the **greedy action selection** method and is denoted:$A_t = argmax_a Q_t(a)$where $argmax_a$ denotes the value of a at which the expression is maximized* If multiple actions maximize the expression, then it is important that the tie is broken **arbitrarily**You may have guessed that being greedy all the time is probably not the best way to go - there may be an unexplored action of higher value than our current greedy choice. An alternative is to be greedy most of the time, but every once in a while, with probability $\epsilon$, select a random action. Methods with this action selection rule are called **$\epsilon$-greedy methods**. This means that with probability $\epsilon$ we select a random action and with probability $1-\epsilon$ we select a greedy action. Problem DescriptionWe have a k-armed bandit problem with k = 10. The actual action values, $q_*(a)$ are selected according to a normal distribution with mean 0 and variance 1. When a learning method selects action $A_t$ at time t, the actual reward $R_t$ is selected from a normal distribution with mean $q_*(A_t)$ and variance 1. We'll measure the behavior as it improves over 1000 steps. This makes up one run. We'll execute 2000 independent runs to obtain the learning algorithm's average behavior. Environment* Python 3.5* numpy* matplotlib ###Code import numpy as np import matplotlib.pyplot as plt %matplotlib inline def sample_average(actions): """ Returns the action-value for each action using the sample-average method :param actions: actions[0] is a tuple for each action of the form (sum of rewards received, no. of times taken) """ results = [0.0 if actions[i][1] == 0 else actions[i][0] / float(actions[i][1]) for i in range(len(actions))] return results def get_reward(true_values, a): """ Returns the reward for selecting action a. Reward is selected around true_values[a] with unit variance (as in problem description) :param true_values: list of expected reward for each action :param a: index of action to return reward for """ reward = np.random.normal(true_values[a], size=1)[0] return reward def k_armed_bandit(k, epsilon, iterations): """ Performs a single run of the k-armed bandit experiment :param k: the number of arms :param epsilon: value of epsilon for epoch-greedy action selection :param iterations: number of steps in a single run """ # Randomly assign true values of reward for each action with mean 0 and variance 1 true_values = np.random.normal(size=k) # actions[i] is the ith action # actions[i][0] is the sum of received rewards for taking action i # actions[i][1] is the number of times action i has been taken actions = [[0.0, 0] for _ in range(k)] # Store the rewards received for this experiment rewards = [] # Track how often the optimal action was selected optimal = [] optimal_action = true_values.argmax() for _ in range(iterations): prob = np.random.rand(1) if prob > epsilon: # Greedy (exploit current knowledge) action_values = np.array(sample_average(actions)) # Break ties arbitrarily (reference: http://stackoverflow.com/questions/42071597/numpy-argmax-random-tie-breaking) a = np.random.choice(np.flatnonzero(action_values == action_values.max())) else: # Explore (take random action) a = np.random.randint(0, k) reward = get_reward(true_values, a) # Update statistics for executed action actions[a][0] += reward actions[a][1] += 1 rewards.append(reward) optimal.append(1 if a == optimal_action else 0) return rewards, optimal def experiment(k, epsilon, iters, epochs): """ Runs the k-armed bandit experiment :param k: the number of arms :param epsilon: the value of epsilon for epoch-greedy action selection :param iters: the number of steps in a single run :param epochs: the number of runs to execute """ rewards = [] optimal = [] for i in range(epochs): r, o = k_armed_bandit(k, epsilon, iters) rewards.append(r) optimal.append(o) print('Experiment with \u03b5 = {} completed.'.format(epsilon)) # Compute the mean reward for each iteration r_means = np.mean(rewards, axis=0) o_means = np.mean(optimal, axis=0) return r_means, o_means k = 10 iters = 1000 runs = 2000 # We experiment with values 0.01, 0.1 and 0 (always greedy) r_exp1, o_exp1 = experiment(k, 0, iters, runs) r_exp2, o_exp2 = experiment(k, 0.01, iters, runs) r_exp3, o_exp3 = experiment(k, 0.1, iters, runs) x = range(iters) plt.plot(x, r_exp1, c='green', label='\u03b5 = 0') plt.plot(x, r_exp2, c='red', label='\u03b5 = 0.01') plt.plot(x, r_exp3, c='black', label='\u03b5 = 0.1') plt.xlabel('Steps') plt.ylabel('Average reward') plt.legend() plt.show() plt.plot(x, o_exp1, c='green', label='\u03b5 = 0') plt.plot(x, o_exp2, c='red', label='\u03b5 = 0.01') plt.plot(x, o_exp3, c='black', label='\u03b5 = 0.1') plt.xlabel('Steps') plt.ylabel('% Optimal action') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown From these results we can see that the greedy method ($\epsilon$ = 0) performs the worst. This is because it simply selects the same action each time (the first one that gives a positive reward, remember, all are initialized to 0.0 so have equal liklihood initially). The other experiments involve exploration of varying degrees and so can be seen improving wiith time. Incremental ImplementationIn the code listing above, we computed the values of actions by summing rewards and then dividing by the number of times a particular action was taken. i.e.$Q_n = \frac{R_1 + R_2 + ... + R_{n-1}}{n - 1}$An obvious implemtattion would be to maintain a record of all the rewards and then perform this computation when needed. This can be memory intensive and is unnecessary. We can show that that computation can be computed incrementally as:$Q_{n+1} = Q_n + \frac{1}{n}[R_n - Q_n]$ Proof\begin{align}Q_{n+1} & = \frac{1}{n}\sum_{i = 1}^n R_i \\& = \frac{1}{n}\left(R_n + \sum_{i=1}^{n-1} R_i\right) \\& = \frac{1}{n}\left(R_n + (n-1)\frac{1}{n-1} \sum_{i = 1}^{n-1} R_i\right) \\& = \frac{1}{n}\left(R_n + (n-1)Q_n\right) \\& = \frac{1}{n}\left(R_n + nQ_n - Q_n\right) \\& = Q_n + \frac{1}{n} \left(R_n - Q_n\right)\end{align} ###Code # We get rid of the sample_average() method and modify k_armed_bandit as follows: # Lines marked ** indicate changes to the code def k_armed_bandit(k, epsilon, iterations): """ Performs a single run of the k-armed bandit experiment :param k: the number of arms :param epsilon: Value of epsilon for epoch-greedy action selection """ # Randomly assign true values of reward for each action with mean 0 and variance 1 true_values = np.random.normal(size=k) # Estimates of action values ** Q = np.zeros(k) # N[i] is the no. of times action i has been taken ** N = np.zeros(k) # Store the rewards received for this experiment rewards = [] # Track how often the optimal action was selected optimal = [] optimal_action = true_values.argmax() for _ in range(iterations): prob = np.random.rand(1) if prob > epsilon: # Greedy (exploit current knowledge) ** a = np.random.choice(np.flatnonzero(Q == Q.max())) else: # Explore (take random action) a = np.random.randint(0, k) reward = get_reward(true_values, a) # Update statistics for executed action ** N[a] += reward Q[a] += (1.0 / N[a]) * (reward - Q[a]) rewards.append(reward) optimal.append(1 if a == optimal_action else 0) return rewards, optimal ###Output _____no_output_____
code/data_process/data_prep_201115.ipynb
###Markdown Inspect TEMPURA dataset ###Code tempura = pd.read_csv("../../data/thermo/200617_TEMPURA.csv") tempura.head() tempura.groupby("superkingdom").count().iloc[:,0:2] tempura.loc[:,["superkingdom","Genome_GC","16S_GC","Tmin","Tmax","Tmax_Tmin"]].groupby("superkingdom").agg(['mean', 'max','min']) tempura.loc[tempura["taxonomy_id"]==760142,:] ###Output _____no_output_____ ###Markdown Inspect istable2.0 data ###Code istable_train = pd.read_csv("../../data/thermo/istable_S3568_training.txt",sep = '\t') istable_train.head() istable_test = pd.read_csv("../../data/thermo/istable_S630.txt",sep = '\t') istable_test.head() ###Output _____no_output_____ ###Markdown Inspect Thermo Prot dataset- The temperature of thermophilic proteins in this dataset was set to above 60°C and the temperature of non-thermophilic proteins was set to be less than 30°C ###Code records = SeqIO.parse("../../data/thermo/thermo_prot_nonthermophilic_2.fasta", "fasta") count = SeqIO.write(records, "../../data/thermo/thermo_prot_nonthermophilic_2.tab", "tab") print("Converted %i records" % count) thermo_prot_nonthermophilic_2 = pd.read_csv("../../data/thermo/thermo_prot_nonthermophilic_2.tab",sep = '\t',header=None) thermo_prot_nonthermophilic_2.columns = ["id", "seq"] thermo_prot_nonthermophilic_2.head() records = SeqIO.parse("../../data/thermo/thermo_prot_thermophilic_2.fasta", "fasta") count = SeqIO.write(records, "../../data/thermo/thermo_prot_thermophilic_2.tab", "tab") print("Converted %i records" % count) thermo_prot_thermophilic_2 = pd.read_csv("../../data/thermo/thermo_prot_thermophilic_2.tab",sep = '\t',header=None) thermo_prot_thermophilic_2.columns = ["id", "seq"] thermo_prot_thermophilic_2.head() ###Output Converted 106 records ###Markdown Inspect ProThermDat dataset- for pdt_y: 1 is thermophilic, 0 is otherwise ###Code pdt_X = np.load("../../data/thermo/pdt_X_unique_huge.npy") pdt_y = np.load("../../data/thermo/pdt_y_unique_huge.npy",allow_pickle=True) pdt_header = np.load("../../data/thermo/pdt_header_unique_huge.npy",allow_pickle=True) pdt_X[1] print(pdt_X.shape) print(pdt_y.shape) print(pdt_header) IUPAC_Extended_Dic_Transf = {"A":1,"C":2,"D":3,"E":4,"F":5,"G":6,"H":7,"I":8,"K":9,"L":10,"M":11,"N":12,"P":13,"Q":14,"R":15,"S":16,"T":17,"V":18,"W":19,"Y":20,"B":21,"X":21,"Z":21,"J":21,"U":21,"O":21} tok_to_aa = [(b,a) for (a,b) in IUPAC_Extended_Dic_Transf.items()] tok_to_aa.append((0,'')) tok_to_aa = dict(tok_to_aa) # convert tokenized aa sequence back to real sequence ''.join([tok_to_aa[x] for x in pdt_X[0,:]]) # get the domains from the superfamily belonging to the motor proteins p_loop_gtpase = "PF06414;PF06564;PF07015;PF02367;PF02534;PF06309;PF05621;PF00265;PF06068;PF02223;PF00685;PF00448;PF02463;PF01202;PF00158;PF10443;PF03215;PF00485;PF00519;PF06431;PF01057;PF10609;PF00931;PF05729;PF00488;PF03205;PF09140;PF01078;PF00493;PF08433;PF07693;PF01695;PF01745;PF01715;PF00693;PF00625;PF00437;PF01580;PF00142;PF01935;PF05872;PF05673;PF01712;PF06144;PF02224;PF06418;PF07931;PF02492;PF01121;PF01656;PF00308;PF03668;PF00006;PF02374;PF03308;PF01637;PF01583;PF03969;PF00406;PF00709;PF00005;PF08298;PF07728;PF07726;PF07724;PF00004;PF05707;PF11496;PF10649;PF10412;PF10236;PF09820;PF09818;PF09547;PF09439;PF09037;PF08423;PF07755;PF07652;PF07088;PF06990;PF06733;PF05970;PF05894;PF05879;PF05876;PF05783;PF05127;PF04670;PF04466;PF04257;PF03976;PF03796;PF03567;PF03354;PF02689;PF02606;PF02572;PF02499;PF02399;PF01268;PF00350;PF00225;PF00063;PF10662;PF00271;PF00910;PF05496;PF02562;PF00025;PF05049;PF03266;PF01591;PF00071;PF04548;PF00009;PF00176;PF07517;PF03237;PF00735;PF04665;PF02263;PF01926;PF00580;PF00270;PF09848;PF06745;PF04851;PF01443;PF03193;PF00503;PF06858;PF02283;PF02456;PF00154;PF03029;PF08477;PF02421;PF12696;PF07999;PF04310;PF05272;PF06048;PF12774;PF12775;PF12780;PF04317;PF12846;PF11398;PF13086;PF13087;PF13166;PF13173;PF13175;PF13177;PF13189;PF10923;PF13191;PF08303;PF13207;PF13238;PF13245;PF13304;PF13307;PF13361;PF13401;PF13469;PF12128;PF13479;PF13476;PF13481;PF13500;PF13514;PF13521;PF13538;PF13555;PF13558;PF13604;PF13614;PF13654;PF13671;PF13872;PF14516;PF14532;PF14617;PF05625;PF05179;PF16203;PF14417;PF02500;PF13337;PF11602;PF16575;PF16796;PF13871;PF02702;PF10088;PF03846;PF17213;PF12848;PF12399;PF14396;PF10996;PF09711;PF11111;PF08351;PF03192;PF02841;PF05609;PF08438;PF12344;PF12781;PF03028;PF16813;PF16834;PF16836;PF07034;PF10483;PF09807;PF03618;PF17784;PF18128;PF18133;PF07529;PF18747;PF18748;PF18751;PF18766;PF18082;PF19044;PF19263;" tubulin_binding = "PF10644;PF14881;PF13809;PF00091;" tubulin_c = "PF03953;PF12327;" actin_like = "PF06406;PF00480;PF02541;PF00814;PF06723;PF05378;PF01968;PF00012;PF03727;PF00349;PF02685;PF01150;PF03630;PF00370;PF02782;PF06277;PF02543;PF03309;PF01869;PF00022;PF00871;PF03702;PF08841;PF07318;PF05134;PF11104;PF13941;PF14450;PF09989;PF06050;PF17003;PF14574;PF17788;PF17989;" p_loop_gtpase = p_loop_gtpase.split(";")[0:-1] tubulin_binding = tubulin_binding.split(";")[0:-1] tubulin_c = tubulin_c.split(";")[0:-1] actin_like = actin_like.split(";")[0:-1] motors_related = p_loop_gtpase + tubulin_binding + tubulin_c + actin_like in_p_loop_gtpase = pd.Series(pdt_header[:,1]).isin(p_loop_gtpase) in_tubulin_binding = pd.Series(pdt_header[:,1]).isin(tubulin_binding) in_tubulin_c = pd.Series(pdt_header[:,1]).isin(tubulin_c) in_actin_like = pd.Series(pdt_header[:,1]).isin(actin_like) in_motors_related = pd.Series(pdt_header[:,1]).isin(motors_related) pdt_X_motor = pdt_X[in_motors_related,:] pdt_y_motor = pdt_y[in_motors_related] pdt_header_motor = pdt_header[in_motors_related,:] pdt_X_list = [pdt_X_motor[i] for i in range(pdt_X_motor.shape[0])] # build up the dataframe pdt_motor = pd.DataFrame({"uniprot_id":pdt_header_motor[:,0], "pfam_id":pdt_header_motor[:,1], 'is_thermophilic': pdt_y_motor, "token":pdt_X_list}) pdt_motor.head() pdt_seq_motor = [] for i in range(pdt_motor.shape[0]): token = pdt_motor.iloc[i,3] if i%10000 == 0: print(i) # print(token) curr_seq = ''.join([tok_to_aa[x] for x in token]) pdt_seq_motor.append(curr_seq) pdt_seq_motor[0] pdt_motor["seq"] = pdt_seq_motor pdt_motor.head() pdt_motor["clan"] = "na" in_p_loop_gtpase = pd.Series(pdt_header_motor[:,1]).isin(p_loop_gtpase) in_tubulin_binding = pd.Series(pdt_header_motor[:,1]).isin(tubulin_binding) in_tubulin_c = pd.Series(pdt_header_motor[:,1]).isin(tubulin_c) in_actin_like = pd.Series(pdt_header_motor[:,1]).isin(actin_like) print(sum(in_p_loop_gtpase)) print(sum(in_tubulin_binding)) print(sum(in_tubulin_c)) print(sum(in_actin_like)) pdt_motor.loc[in_p_loop_gtpase,"clan"] = "p_loop_gtpase" pdt_motor.loc[in_tubulin_binding,"clan"] = "tubulin_binding" pdt_motor.loc[in_tubulin_c,"clan"] = "tubulin_c" pdt_motor.loc[in_actin_like,"clan"] = "actin_like" pdt_motor.groupby(["clan","is_thermophilic"]).count() # perform a sanity check on 10 thermophilic pfam proteins (by checking their taxonomy) pdt_motor.loc[pdt_motor["is_thermophilic"]==1,:].iloc[0:10,:] ###Output _____no_output_____ ###Markdown - F2LWD8_HIPMA: Hippea maritima is a bacterium from the genus of Hippea which has been isolated from sediments from a hydrothermal vent from Matupi Harbour in Papua New Guinea- A0A0A8WZL0: B.selenatarsenatis is a mesophile with its optimal growth temperature between 25~40 degrees Celsius, and a pH between 7.5~9.0.- I3EAK2: Bacillus methanolicus MGA3, was isolated from freshwater marsh soils, and grows rapidly in cultures heated to up to 60 °C using only methanol as a carbon source. ###Code # export pdt_motor to a csv file pdt_motor.to_csv("../../data/thermo/pdt_motor.csv",index = False) ###Output _____no_output_____
notebooks/Stochastic Bandits - Preference Estimation.ipynb
###Markdown Stochastic Multi-Armed Bandits - Preference EstimationThese examples come from Chapter 2 of [Reinforcement Learning: An Introduction](https://webdocs.cs.ualberta.ca/~sutton/book/the-book.html) by Sutton and Barto (2nd ed. rev: Oct2015) ###Code %matplotlib inline import os import sys module_path = os.path.abspath(os.path.join('..')) if module_path not in sys.path: sys.path.append(module_path) import bandits as bd ###Output _____no_output_____ ###Markdown Instead of estimating the expected reward from selecting a particular arm, we may only care about the relative preference of one arm to another. ###Code n_arms = 10 bandit = bd.GaussianBandit(n_arms, mu=4) n_trials = 1000 n_experiments = 500 ###Output _____no_output_____ ###Markdown SoftmaxPreference learning uses a Softmax-based policy, where the action estimates are converted to a probability distribution using the softmax function. This is then sampled to produce the chosen arm. ###Code policy = bd.SoftmaxPolicy() agents = [ bd.GradientAgent(bandit, policy, alpha=0.1), bd.GradientAgent(bandit, policy, alpha=0.4), bd.GradientAgent(bandit, policy, alpha=0.1, baseline=False), bd.GradientAgent(bandit, policy, alpha=0.4, baseline=False) ] env = bd.Environment(bandit, agents, 'Gradient Agents') scores, optimal = env.run(n_trials, n_experiments) env.plot_results(scores, optimal) ###Output _____no_output_____ ###Markdown Stochastic Multi-Armed Bandits - Preference EstimationThese examples come from Chapter 2 of [Reinforcement Learning: An Introduction](https://webdocs.cs.ualberta.ca/~sutton/book/the-book.html) by Sutton and Barto (2nd ed. rev: Oct2015) ###Code %matplotlib inline import os import sys module_path = os.path.abspath(os.path.join('..')) if module_path not in sys.path: sys.path.append(module_path) import bandits as bd ###Output _____no_output_____ ###Markdown Instead of estimating the expected reward from selecting a particular arm, we may only care about the relative preference of one arm to another. ###Code n_arms = 10 bandit = bd.GaussianBandit(n_arms, mu=4) n_trials = 1000 n_experiments = 500 ###Output _____no_output_____ ###Markdown SoftmaxPreference learning uses a Softmax-based policy, where the action estimates are converted to a probability distribution using the softmax function. This is then sampled to produce the chosen arm. ###Code policy = bd.SoftmaxPolicy() agents = [ bd.GradientAgent(bandit, policy, alpha=0.1), bd.GradientAgent(bandit, policy, alpha=0.4), bd.GradientAgent(bandit, policy, alpha=0.1, baseline=False), bd.GradientAgent(bandit, policy, alpha=0.4, baseline=False) ] env = bd.Environment(bandit, agents, 'Gradient Agents') scores, optimal = env.run(n_trials, n_experiments) env.plot_results(scores, optimal) ###Output _____no_output_____
src/.ipynb_checkpoints/37b > Only Origs-checkpoint.ipynb
###Markdown From the useful sheets, we have to formalize a GRL problem. ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt %matplotlib inline import os import requests import io import seaborn as sns PATH = '../data/' files = os.listdir(PATH) dfs = {f[:-4] : pd.read_csv(PATH + f) for f in files if f[-3:] == 'csv' } ###Output _____no_output_____ ###Markdown What all is useful here:- orig_members: member_id (763)- orig_inline_notifications: notify_from_id, notify_to_id (47066)- orig_message_topic_user_map: map_user_id, map_topic_id (6025)- orig_message_topics: mt_starter_id, mt_to_member_id, mt_id (3101)- orig_reputation_index: member_id (141550) ###Code #76. 763 Original members. sum(dfs['orig_members'].email.isnull()) # (== 0) = True dfs['orig_members'].head(4); mems = list(dfs['orig_members'].member_id) #75. Useful. Notification Graph could give us very informative edges. # from notify_from_id to notify_to_id based on notify_type_key # and notify_type_key could be a nice edge feature dfs['orig_inline_notifications'].notify_type_key.value_counts(); # wow, both are fully included print(np.mean([m in mems for m in dfs['orig_inline_notifications'].notify_from_id])) print(np.mean([m in mems for m in dfs['orig_inline_notifications'].notify_to_id])) dfs['orig_inline_notifications'].head(4) #78. Useful. But don't fully understand. # Mapping from user_id to topic_id, might help connect users. print(np.mean([m in mems for m in dfs['orig_message_topic_user_map'].map_user_id])) dfs['orig_message_topic_user_map'].head(4); # TODO: # Check if users following the same topic are same in # this map and core_message_topics and orig_message_topics # reference with topic_title and compare the topic_id v topic_title mapping of both # orig and core ids = 0 for i in range(len(dfs['orig_message_topics'].mt_title)): if dfs['orig_message_topics'].mt_title[i] == dfs['core_message_topics'].mt_title[i]: ids += 1 print(ids) len(dfs['orig_message_topics'].mt_title), len(dfs['core_message_topics'].mt_title) #79 All Orig Message Topics (total 3101) # mt_id is same as map_topic_id from orig_message_topic_user_map # mt_starter_id is the member_id of the person who put the first message on that topic # mt_to_member_id is the member_id of the recipient of this message tops = list(dfs['orig_message_topics'].mt_id) print(np.mean([m in mems for m in dfs['orig_message_topics'].mt_starter_id])) print(np.mean([m in mems for m in dfs['orig_message_topics'].mt_to_member_id])) print(np.mean([m in tops for m in dfs['orig_message_topic_user_map'].map_topic_id])) dfs['orig_message_topics'].head(5); #82. pfields of 764 members. Might help in node features. Not really, mostly nans. dfs['orig_pfields_content'].head(3); # What is reputation? Total 141550 # 635 users have a reputation index, could be used for node classification or features? members = set(dfs['orig_reputation_index'].member_id) print(np.mean([m in mems for m in members])) # print(members) freq = [[m, sum(dfs['orig_reputation_index'].member_id == m)] for m in members] # dfs['orig_reputation_index'].head(3) freq_sort = sorted(freq, key = lambda z: z[1], reverse=True) freq_sorted = pd.DataFrame(freq_sort) i = 0 while freq_sorted[1][i] > 30: i += 1 print(i) print(len(freq_sorted[1]) - i) plt.plot(freq_sorted[1]) plt.grid() ###Output _____no_output_____
aprendizado-de-maquina-i/regressao/salaries.ipynb
###Markdown Regressão linear simples ###Code from sklearn.linear_model import LinearRegression lr_1 = LinearRegression() lr_1.fit(X, y) from sklearn.preprocessing import PolynomialFeatures pf = PolynomialFeatures(degree=2) X_poly = pf.fit_transform(X) lr_2 = LinearRegression() lr_2.fit(X_poly, y) ###Output _____no_output_____ ###Markdown Visualizando os resultados Regressão linear ###Code plt.scatter(X, y, color="red") plt.plot(X, lr_1.predict(X), color="blue") plt.title('Nível versus Salários (RL)') plt.xlabel('Nível') plt.ylabel('Salário') from sklearn.metrics import mean_squared_error y_pred = lr_1.predict(X) rmse = np.sqrt(mean_squared_error(y, y_pred)) print('RMSE {}'.format(rmse)) ###Output RMSE 163388.73519272613 ###Markdown Regressão polinomial ###Code plt.scatter(X, y, color="red") plt.plot(X, lr_2.predict(X_poly), color="blue") plt.title('Nível versus Salários (RL)') plt.xlabel('Nível') plt.ylabel('Salário') from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_absolute_error y_pred = lr_2.predict(X_poly) mae = mean_absolute_error(y, y_pred) mse = mean_squared_error(y, y_pred) rmse = np.sqrt(mean_squared_error(y, y_pred)) print('Comparação enntre metricas de erros:') print('MAE {}'.format(mae)) print('MSE {}'.format(mse)) print('RMSE {}'.format(rmse)) ###Output Comparação enntre metricas de erros: MAE 70218.1818181819 MSE 6758833333.333336 RMSE 82212.12400451247
notebooks/DeepFM_NFM_DeepCTR.ipynb
###Markdown CTR预估(2)资料&&代码整理by[@寒小阳](https://blog.csdn.net/han_xiaoyang)([email protected])reference:* [《广告点击率预估是怎么回事?》](https://zhuanlan.zhihu.com/p/23499698)* [从ctr预估问题看看f(x)设计—DNN篇](https://zhuanlan.zhihu.com/p/28202287)* [Atomu2014 product_nets](https://github.com/Atomu2014/product-nets) 同样以criteo数据为例,我们来看看深度学习的应用。 特征工程特征工程是比较重要的数据处理过程,这里对criteo数据依照[paddlepaddle做ctr预估特征工程](https://github.com/PaddlePaddle/models/blob/develop/deep_fm/preprocess.py)完成特征工程 ###Code #coding=utf8 """ 特征工程参考(https://github.com/PaddlePaddle/models/blob/develop/deep_fm/preprocess.py)完成 -对数值型特征,normalize处理 -对类别型特征,对长尾(出现频次低于200)的进行过滤 """ import os import sys import random import collections import argparse from multiprocessing import Pool as ThreadPool # 13个连续型列,26个类别型列 continous_features = range(1, 14) categorial_features = range(14, 40) # 对连续值进行截断处理(取每个连续值列的95%分位数) continous_clip = [20, 600, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50] class CategoryDictGenerator: """ 类别型特征编码字典 """ def __init__(self, num_feature): self.dicts = [] self.num_feature = num_feature for i in range(0, num_feature): self.dicts.append(collections.defaultdict(int)) def build(self, datafile, categorial_features, cutoff=0): with open(datafile, 'r') as f: for line in f: features = line.rstrip('\n').split('\t') for i in range(0, self.num_feature): if features[categorial_features[i]] != '': self.dicts[i][features[categorial_features[i]]] += 1 for i in range(0, self.num_feature): self.dicts[i] = filter(lambda x: x[1] >= cutoff, self.dicts[i].items()) self.dicts[i] = sorted(self.dicts[i], key=lambda x: (-x[1], x[0])) vocabs, _ = list(zip(*self.dicts[i])) self.dicts[i] = dict(zip(vocabs, range(1, len(vocabs) + 1))) self.dicts[i]['<unk>'] = 0 def gen(self, idx, key): if key not in self.dicts[idx]: res = self.dicts[idx]['<unk>'] else: res = self.dicts[idx][key] return res def dicts_sizes(self): return map(len, self.dicts) class ContinuousFeatureGenerator: """ 对连续值特征做最大最小值normalization """ def __init__(self, num_feature): self.num_feature = num_feature self.min = [sys.maxint] * num_feature self.max = [-sys.maxint] * num_feature def build(self, datafile, continous_features): with open(datafile, 'r') as f: for line in f: features = line.rstrip('\n').split('\t') for i in range(0, self.num_feature): val = features[continous_features[i]] if val != '': val = int(val) if val > continous_clip[i]: val = continous_clip[i] self.min[i] = min(self.min[i], val) self.max[i] = max(self.max[i], val) def gen(self, idx, val): if val == '': return 0.0 val = float(val) return (val - self.min[idx]) / (self.max[idx] - self.min[idx]) def preprocess(input_dir, output_dir): """ 对连续型和类别型特征进行处理 """ dists = ContinuousFeatureGenerator(len(continous_features)) dists.build(input_dir + 'train.txt', continous_features) dicts = CategoryDictGenerator(len(categorial_features)) dicts.build(input_dir + 'train.txt', categorial_features, cutoff=150) output = open(output_dir + 'feature_map','w') for i in continous_features: output.write("{0} {1}\n".format('I'+str(i), i)) dict_sizes = dicts.dicts_sizes() categorial_feature_offset = [dists.num_feature] for i in range(1, len(categorial_features)+1): offset = categorial_feature_offset[i - 1] + dict_sizes[i - 1] categorial_feature_offset.append(offset) for key, val in dicts.dicts[i-1].iteritems(): output.write("{0} {1}\n".format('C'+str(i)+'|'+key, categorial_feature_offset[i - 1]+val+1)) random.seed(0) # 90%的数据用于训练,10%的数据用于验证 with open(output_dir + 'tr.libsvm', 'w') as out_train: with open(output_dir + 'va.libsvm', 'w') as out_valid: with open(input_dir + 'train.txt', 'r') as f: for line in f: features = line.rstrip('\n').split('\t') feat_vals = [] for i in range(0, len(continous_features)): val = dists.gen(i, features[continous_features[i]]) feat_vals.append(str(continous_features[i]) + ':' + "{0:.6f}".format(val).rstrip('0').rstrip('.')) for i in range(0, len(categorial_features)): val = dicts.gen(i, features[categorial_features[i]]) + categorial_feature_offset[i] feat_vals.append(str(val) + ':1') label = features[0] if random.randint(0, 9999) % 10 != 0: out_train.write("{0} {1}\n".format(label, ' '.join(feat_vals))) else: out_valid.write("{0} {1}\n".format(label, ' '.join(feat_vals))) with open(output_dir + 'te.libsvm', 'w') as out: with open(input_dir + 'test.txt', 'r') as f: for line in f: features = line.rstrip('\n').split('\t') feat_vals = [] for i in range(0, len(continous_features)): val = dists.gen(i, features[continous_features[i] - 1]) feat_vals.append(str(continous_features[i]) + ':' + "{0:.6f}".format(val).rstrip('0').rstrip('.')) for i in range(0, len(categorial_features)): val = dicts.gen(i, features[categorial_features[i] - 1]) + categorial_feature_offset[i] feat_vals.append(str(val) + ':1') out.write("{0} {1}\n".format(label, ' '.join(feat_vals))) input_dir = './criteo_data/' output_dir = './criteo_data/' print("开始数据处理与特征工程...") preprocess(input_dir, output_dir) !head -5 ./criteo_data/tr.libsvm ###Output 0 1:0.2 2:0.028192 3:0.07 4:0.56 5:0.000562 6:0.056 7:0.04 8:0.86 9:0.094 10:0.25 11:0.2 12:0 13:0.56 14:1 169:1 631:1 1414:1 2534:1 2584:1 4239:1 4991:1 5060:1 5064:1 7141:1 8818:1 9906:1 11250:1 11377:1 12951:1 13833:1 13883:1 14817:1 15204:1 15327:1 16118:1 16128:1 16183:1 17289:1 17361:1 1 1:0 2:0.004975 3:0.11 4:0 5:1.373375 6:0 7:0 8:0.14 9:0 10:0 11:0 12:0 13:0 14:1 181:1 543:1 1379:1 2534:1 2582:1 3632:1 4990:1 5061:1 5217:1 6925:1 8726:1 9705:1 11250:1 11605:1 12849:1 13835:1 13971:1 14816:1 15202:1 15224:1 16118:1 16129:1 16148:1 17280:1 17320:1 0 1:0.1 2:0.008292 3:0.28 4:0.14 5:0.000016 6:0.002 7:0.21 8:0.14 9:0.786 10:0.125 11:0.4 12:0 13:0.02 14:1 209:1 632:1 1491:1 2534:1 2582:1 2719:1 4995:1 5060:1 5069:1 6960:1 8820:1 9727:1 11249:1 11471:1 12933:1 13834:1 13927:1 14817:1 15204:1 15328:1 16118:1 16129:1 16185:1 17282:1 17364:1 1 1:0 2:0.003317 3:0.04 4:0.5 5:0.504031 6:0.222 7:0.02 8:0.72 9:0.16 10:0 11:0.1 12:0 13:0.5 14:1 156:1 529:1 1377:1 2534:1 2583:1 3768:1 4990:1 5060:1 5247:1 7131:1 8711:1 9893:1 11250:1 11361:1 12827:1 13835:1 13888:1 14816:1 15202:1 15207:1 16118:1 16129:1 16145:1 17280:1 17320:1 0 1:0 2:0.004975 3:0.28 4:0.14 5:0.022766 6:0.058 7:0.05 8:0.28 9:0.464 10:0 11:0.3 12:0 13:0.14 15:1 142:1 528:1 1376:1 2535:1 2582:1 2659:1 4997:1 5060:1 5064:1 7780:1 8710:1 9703:1 11250:1 11324:1 12826:1 13834:1 13861:1 14817:1 15203:1 15206:1 16118:1 16128:1 16746:1 17282:1 17320:1 ###Markdown DeepFMreference:[常见的计算广告点击率预估算法总结](https://zhuanlan.zhihu.com/p/29053940)DeepFM结合了wide and deep和FM,其实就是把PNN和WDL结合了。原始的Wide and Deep,Wide的部分只是LR,构造线性关系,Deep部分建模更高阶的关系,所以在Wide and Deep中还需要做一些特征的东西,如Cross Column的工作,FM是可以建模二阶关系达到Cross column的效果,DeepFM就是把FM和NN结合,无需再对特征做诸如Cross Column的工作了。FM部分如下:![](https://pic1.zhimg.com/80/v2-7bdf133eb39aa65aefc84c71b98e64e5_hd.jpg)Deep部分如下:![](https://pic2.zhimg.com/80/v2-e02f6b7d867d7aa2600bab38e39df7d6_hd.jpg)总体结构图:![](https://pic4.zhimg.com/80/v2-a3d58ffcf53af5b1eef70ac42b555317_hd.jpg)DeepFM相对于FNN、PNN,能够利用其Deep部分建模更高阶信息(二阶以上),而相对于Wide and Deep能够减少特征工程的部分工作,wide部分类似FM建模一、二阶特征间关系, 算是NN和FM的一个很好的结合,另外不同的是如下图,DeepFM的wide和deep部分共享embedding向量空间,wide和deep均可以更新embedding部分 ###Code # %load DeepFM.py #!/usr/bin/env python """ #1 Input pipline using Dataset high level API, Support parallel and prefetch reading #2 Train pipline using Coustom Estimator by rewriting model_fn #3 Support distincted training using TF_CONFIG #4 Support export_model for TensorFlow Serving 方便迁移到其他算法上,只要修改input_fn and model_fn by lambdaji """ #from __future__ import absolute_import #from __future__ import division #from __future__ import print_function #import argparse import shutil #import sys import os import json import glob from datetime import date, timedelta from time import time #import gc #from multiprocessing import Process #import math import random import pandas as pd import numpy as np import tensorflow as tf #################### CMD Arguments #################### FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_integer("dist_mode", 0, "distribuion mode {0-loacal, 1-single_dist, 2-multi_dist}") tf.app.flags.DEFINE_string("ps_hosts", '', "Comma-separated list of hostname:port pairs") tf.app.flags.DEFINE_string("worker_hosts", '', "Comma-separated list of hostname:port pairs") tf.app.flags.DEFINE_string("job_name", '', "One of 'ps', 'worker'") tf.app.flags.DEFINE_integer("task_index", 0, "Index of task within the job") tf.app.flags.DEFINE_integer("num_threads", 16, "Number of threads") tf.app.flags.DEFINE_integer("feature_size", 0, "Number of features") tf.app.flags.DEFINE_integer("field_size", 0, "Number of fields") tf.app.flags.DEFINE_integer("embedding_size", 32, "Embedding size") tf.app.flags.DEFINE_integer("num_epochs", 10, "Number of epochs") tf.app.flags.DEFINE_integer("batch_size", 64, "Number of batch size") tf.app.flags.DEFINE_integer("log_steps", 1000, "save summary every steps") tf.app.flags.DEFINE_float("learning_rate", 0.0005, "learning rate") tf.app.flags.DEFINE_float("l2_reg", 0.0001, "L2 regularization") tf.app.flags.DEFINE_string("loss_type", 'log_loss', "loss type {square_loss, log_loss}") tf.app.flags.DEFINE_string("optimizer", 'Adam', "optimizer type {Adam, Adagrad, GD, Momentum}") tf.app.flags.DEFINE_string("deep_layers", '256,128,64', "deep layers") tf.app.flags.DEFINE_string("dropout", '0.5,0.5,0.5', "dropout rate") tf.app.flags.DEFINE_boolean("batch_norm", False, "perform batch normaization (True or False)") tf.app.flags.DEFINE_float("batch_norm_decay", 0.9, "decay for the moving average(recommend trying decay=0.9)") tf.app.flags.DEFINE_string("data_dir", '', "data dir") tf.app.flags.DEFINE_string("dt_dir", '', "data dt partition") tf.app.flags.DEFINE_string("model_dir", '', "model check point dir") tf.app.flags.DEFINE_string("servable_model_dir", '', "export servable model for TensorFlow Serving") tf.app.flags.DEFINE_string("task_type", 'train', "task type {train, infer, eval, export}") tf.app.flags.DEFINE_boolean("clear_existing_model", False, "clear existing model or not") #1 1:0.5 2:0.03519 3:1 4:0.02567 7:0.03708 8:0.01705 9:0.06296 10:0.18185 11:0.02497 12:1 14:0.02565 15:0.03267 17:0.0247 18:0.03158 20:1 22:1 23:0.13169 24:0.02933 27:0.18159 31:0.0177 34:0.02888 38:1 51:1 63:1 132:1 164:1 236:1 def input_fn(filenames, batch_size=32, num_epochs=1, perform_shuffle=False): print('Parsing', filenames) def decode_libsvm(line): #columns = tf.decode_csv(value, record_defaults=CSV_COLUMN_DEFAULTS) #features = dict(zip(CSV_COLUMNS, columns)) #labels = features.pop(LABEL_COLUMN) columns = tf.string_split([line], ' ') labels = tf.string_to_number(columns.values[0], out_type=tf.float32) splits = tf.string_split(columns.values[1:], ':') id_vals = tf.reshape(splits.values,splits.dense_shape) feat_ids, feat_vals = tf.split(id_vals,num_or_size_splits=2,axis=1) feat_ids = tf.string_to_number(feat_ids, out_type=tf.int32) feat_vals = tf.string_to_number(feat_vals, out_type=tf.float32) #feat_ids = tf.reshape(feat_ids,shape=[-1,FLAGS.field_size]) #for i in range(splits.dense_shape.eval()[0]): # feat_ids.append(tf.string_to_number(splits.values[2*i], out_type=tf.int32)) # feat_vals.append(tf.string_to_number(splits.values[2*i+1])) #return tf.reshape(feat_ids,shape=[-1,field_size]), tf.reshape(feat_vals,shape=[-1,field_size]), labels return {"feat_ids": feat_ids, "feat_vals": feat_vals}, labels # Extract lines from input files using the Dataset API, can pass one filename or filename list dataset = tf.data.TextLineDataset(filenames).map(decode_libsvm, num_parallel_calls=10).prefetch(500000) # multi-thread pre-process then prefetch # Randomizes input using a window of 256 elements (read into memory) if perform_shuffle: dataset = dataset.shuffle(buffer_size=256) # epochs from blending together. dataset = dataset.repeat(num_epochs) dataset = dataset.batch(batch_size) # Batch size to use #return dataset.make_one_shot_iterator() iterator = dataset.make_one_shot_iterator() batch_features, batch_labels = iterator.get_next() #return tf.reshape(batch_ids,shape=[-1,field_size]), tf.reshape(batch_vals,shape=[-1,field_size]), batch_labels return batch_features, batch_labels def model_fn(features, labels, mode, params): """Bulid Model function f(x) for Estimator.""" #------hyperparameters---- field_size = params["field_size"] feature_size = params["feature_size"] embedding_size = params["embedding_size"] l2_reg = params["l2_reg"] learning_rate = params["learning_rate"] #batch_norm_decay = params["batch_norm_decay"] #optimizer = params["optimizer"] layers = map(int, params["deep_layers"].split(',')) dropout = map(float, params["dropout"].split(',')) #------bulid weights------ FM_B = tf.get_variable(name='fm_bias', shape=[1], initializer=tf.constant_initializer(0.0)) FM_W = tf.get_variable(name='fm_w', shape=[feature_size], initializer=tf.glorot_normal_initializer()) # F FM_V = tf.get_variable(name='fm_v', shape=[feature_size, embedding_size], initializer=tf.glorot_normal_initializer()) # F * E #------build feaure------- feat_ids = features['feat_ids'] feat_ids = tf.reshape(feat_ids,shape=[-1,field_size]) # None * f/K * K feat_vals = features['feat_vals'] feat_vals = tf.reshape(feat_vals,shape=[-1,field_size]) # None * f/K * K #------build f(x)------ with tf.variable_scope("First-order"): feat_wgts = tf.nn.embedding_lookup(FM_W, feat_ids) # None * f/K * K y_w = tf.reduce_sum(tf.multiply(feat_wgts, feat_vals),1) with tf.variable_scope("Second-order"): embeddings = tf.nn.embedding_lookup(FM_V, feat_ids) # None * f/K * K * E feat_vals = tf.reshape(feat_vals, shape=[-1, field_size, 1]) # None * f/K * K * 1 ? embeddings = tf.multiply(embeddings, feat_vals) #vij*xi sum_square = tf.square(tf.reduce_sum(embeddings,1)) # None * K * E square_sum = tf.reduce_sum(tf.square(embeddings),1) y_v = 0.5*tf.reduce_sum(tf.subtract(sum_square, square_sum),1) # None * 1 with tf.variable_scope("Deep-part"): if FLAGS.batch_norm: #normalizer_fn = tf.contrib.layers.batch_norm #normalizer_fn = tf.layers.batch_normalization if mode == tf.estimator.ModeKeys.TRAIN: train_phase = True #normalizer_params = {'decay': batch_norm_decay, 'center': True, 'scale': True, 'updates_collections': None, 'is_training': True, 'reuse': None} else: train_phase = False #normalizer_params = {'decay': batch_norm_decay, 'center': True, 'scale': True, 'updates_collections': None, 'is_training': False, 'reuse': True} else: normalizer_fn = None normalizer_params = None deep_inputs = tf.reshape(embeddings,shape=[-1,field_size*embedding_size]) # None * (F*K) for i in range(len(layers)): #if FLAGS.batch_norm: # deep_inputs = batch_norm_layer(deep_inputs, train_phase=train_phase, scope_bn='bn_%d' %i) #normalizer_params.update({'scope': 'bn_%d' %i}) deep_inputs = tf.contrib.layers.fully_connected(inputs=deep_inputs, num_outputs=layers[i], \ #normalizer_fn=normalizer_fn, normalizer_params=normalizer_params, \ weights_regularizer=tf.contrib.layers.l2_regularizer(l2_reg), scope='mlp%d' % i) if FLAGS.batch_norm: deep_inputs = batch_norm_layer(deep_inputs, train_phase=train_phase, scope_bn='bn_%d' %i) #放在RELU之后 https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md#bn----before-or-after-relu if mode == tf.estimator.ModeKeys.TRAIN: deep_inputs = tf.nn.dropout(deep_inputs, keep_prob=dropout[i]) #Apply Dropout after all BN layers and set dropout=0.8(drop_ratio=0.2) #deep_inputs = tf.layers.dropout(inputs=deep_inputs, rate=dropout[i], training=mode == tf.estimator.ModeKeys.TRAIN) y_deep = tf.contrib.layers.fully_connected(inputs=deep_inputs, num_outputs=1, activation_fn=tf.identity, \ weights_regularizer=tf.contrib.layers.l2_regularizer(l2_reg), scope='deep_out') y_d = tf.reshape(y_deep,shape=[-1]) #sig_wgts = tf.get_variable(name='sigmoid_weights', shape=[layers[-1]], initializer=tf.glorot_normal_initializer()) #sig_bias = tf.get_variable(name='sigmoid_bias', shape=[1], initializer=tf.constant_initializer(0.0)) #deep_out = tf.nn.xw_plus_b(deep_inputs,sig_wgts,sig_bias,name='deep_out') with tf.variable_scope("DeepFM-out"): #y_bias = FM_B * tf.ones_like(labels, dtype=tf.float32) # None * 1 warning;这里不能用label,否则调用predict/export函数会出错,train/evaluate正常;初步判断estimator做了优化,用不到label时不传 y_bias = FM_B * tf.ones_like(y_d, dtype=tf.float32) # None * 1 y = y_bias + y_w + y_v + y_d pred = tf.sigmoid(y) predictions={"prob": pred} export_outputs = {tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: tf.estimator.export.PredictOutput(predictions)} # Provide an estimator spec for `ModeKeys.PREDICT` if mode == tf.estimator.ModeKeys.PREDICT: return tf.estimator.EstimatorSpec( mode=mode, predictions=predictions, export_outputs=export_outputs) #------bulid loss------ loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=y, labels=labels)) + \ l2_reg * tf.nn.l2_loss(FM_W) + \ l2_reg * tf.nn.l2_loss(FM_V) #+ \ l2_reg * tf.nn.l2_loss(sig_wgts) # Provide an estimator spec for `ModeKeys.EVAL` eval_metric_ops = { "auc": tf.metrics.auc(labels, pred) } if mode == tf.estimator.ModeKeys.EVAL: return tf.estimator.EstimatorSpec( mode=mode, predictions=predictions, loss=loss, eval_metric_ops=eval_metric_ops) #------bulid optimizer------ if FLAGS.optimizer == 'Adam': optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=0.9, beta2=0.999, epsilon=1e-8) elif FLAGS.optimizer == 'Adagrad': optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate, initial_accumulator_value=1e-8) elif FLAGS.optimizer == 'Momentum': optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=0.95) elif FLAGS.optimizer == 'ftrl': optimizer = tf.train.FtrlOptimizer(learning_rate) train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step()) # Provide an estimator spec for `ModeKeys.TRAIN` modes if mode == tf.estimator.ModeKeys.TRAIN: return tf.estimator.EstimatorSpec( mode=mode, predictions=predictions, loss=loss, train_op=train_op) # Provide an estimator spec for `ModeKeys.EVAL` and `ModeKeys.TRAIN` modes. #return tf.estimator.EstimatorSpec( # mode=mode, # loss=loss, # train_op=train_op, # predictions={"prob": pred}, # eval_metric_ops=eval_metric_ops) def batch_norm_layer(x, train_phase, scope_bn): bn_train = tf.contrib.layers.batch_norm(x, decay=FLAGS.batch_norm_decay, center=True, scale=True, updates_collections=None, is_training=True, reuse=None, scope=scope_bn) bn_infer = tf.contrib.layers.batch_norm(x, decay=FLAGS.batch_norm_decay, center=True, scale=True, updates_collections=None, is_training=False, reuse=True, scope=scope_bn) z = tf.cond(tf.cast(train_phase, tf.bool), lambda: bn_train, lambda: bn_infer) return z def set_dist_env(): if FLAGS.dist_mode == 1: # 本地分布式测试模式1 chief, 1 ps, 1 evaluator ps_hosts = FLAGS.ps_hosts.split(',') chief_hosts = FLAGS.chief_hosts.split(',') task_index = FLAGS.task_index job_name = FLAGS.job_name print('ps_host', ps_hosts) print('chief_hosts', chief_hosts) print('job_name', job_name) print('task_index', str(task_index)) # 无worker参数 tf_config = { 'cluster': {'chief': chief_hosts, 'ps': ps_hosts}, 'task': {'type': job_name, 'index': task_index } } print(json.dumps(tf_config)) os.environ['TF_CONFIG'] = json.dumps(tf_config) elif FLAGS.dist_mode == 2: # 集群分布式模式 ps_hosts = FLAGS.ps_hosts.split(',') worker_hosts = FLAGS.worker_hosts.split(',') chief_hosts = worker_hosts[0:1] # get first worker as chief worker_hosts = worker_hosts[2:] # the rest as worker task_index = FLAGS.task_index job_name = FLAGS.job_name print('ps_host', ps_hosts) print('worker_host', worker_hosts) print('chief_hosts', chief_hosts) print('job_name', job_name) print('task_index', str(task_index)) # use #worker=0 as chief if job_name == "worker" and task_index == 0: job_name = "chief" # use #worker=1 as evaluator if job_name == "worker" and task_index == 1: job_name = 'evaluator' task_index = 0 # the others as worker if job_name == "worker" and task_index > 1: task_index -= 2 tf_config = { 'cluster': {'chief': chief_hosts, 'worker': worker_hosts, 'ps': ps_hosts}, 'task': {'type': job_name, 'index': task_index } } print(json.dumps(tf_config)) os.environ['TF_CONFIG'] = json.dumps(tf_config) def main(_): tr_files = glob.glob("%s/tr*libsvm" % FLAGS.data_dir) random.shuffle(tr_files) print("tr_files:", tr_files) va_files = glob.glob("%s/va*libsvm" % FLAGS.data_dir) print("va_files:", va_files) te_files = glob.glob("%s/te*libsvm" % FLAGS.data_dir) print("te_files:", te_files) if FLAGS.clear_existing_model: try: shutil.rmtree(FLAGS.model_dir) except Exception as e: print(e, "at clear_existing_model") else: print("existing model cleaned at %s" % FLAGS.model_dir) set_dist_env() model_params = { "field_size": FLAGS.field_size, "feature_size": FLAGS.feature_size, "embedding_size": FLAGS.embedding_size, "learning_rate": FLAGS.learning_rate, "batch_norm_decay": FLAGS.batch_norm_decay, "l2_reg": FLAGS.l2_reg, "deep_layers": FLAGS.deep_layers, "dropout": FLAGS.dropout } config = tf.estimator.RunConfig().replace(session_config = tf.ConfigProto(device_count={'GPU':0, 'CPU':FLAGS.num_threads}), log_step_count_steps=FLAGS.log_steps, save_summary_steps=FLAGS.log_steps) DeepFM = tf.estimator.Estimator(model_fn=model_fn, model_dir=FLAGS.model_dir, params=model_params, config=config) if FLAGS.task_type == 'train': train_spec = tf.estimator.TrainSpec(input_fn=lambda: input_fn(tr_files, num_epochs=FLAGS.num_epochs, batch_size=FLAGS.batch_size)) eval_spec = tf.estimator.EvalSpec(input_fn=lambda: input_fn(va_files, num_epochs=1, batch_size=FLAGS.batch_size), steps=None, start_delay_secs=1000, throttle_secs=1200) tf.estimator.train_and_evaluate(DeepFM, train_spec, eval_spec) elif FLAGS.task_type == 'eval': DeepFM.evaluate(input_fn=lambda: input_fn(va_files, num_epochs=1, batch_size=FLAGS.batch_size)) elif FLAGS.task_type == 'infer': preds = DeepFM.predict(input_fn=lambda: input_fn(te_files, num_epochs=1, batch_size=FLAGS.batch_size), predict_keys="prob") with open(FLAGS.data_dir+"/pred.txt", "w") as fo: for prob in preds: fo.write("%f\n" % (prob['prob'])) elif FLAGS.task_type == 'export': #feature_spec = tf.feature_column.make_parse_example_spec(feature_columns) #feature_spec = { # 'feat_ids': tf.FixedLenFeature(dtype=tf.int64, shape=[None, FLAGS.field_size]), # 'feat_vals': tf.FixedLenFeature(dtype=tf.float32, shape=[None, FLAGS.field_size]) #} #serving_input_receiver_fn = tf.estimator.export.build_parsing_serving_input_receiver_fn(feature_spec) feature_spec = { 'feat_ids': tf.placeholder(dtype=tf.int64, shape=[None, FLAGS.field_size], name='feat_ids'), 'feat_vals': tf.placeholder(dtype=tf.float32, shape=[None, FLAGS.field_size], name='feat_vals') } serving_input_receiver_fn = tf.estimator.export.build_raw_serving_input_receiver_fn(feature_spec) DeepFM.export_savedmodel(FLAGS.servable_model_dir, serving_input_receiver_fn) if __name__ == "__main__": #------check Arguments------ if FLAGS.dt_dir == "": FLAGS.dt_dir = (date.today() + timedelta(-1)).strftime('%Y%m%d') FLAGS.model_dir = FLAGS.model_dir + FLAGS.dt_dir #FLAGS.data_dir = FLAGS.data_dir + FLAGS.dt_dir print('task_type ', FLAGS.task_type) print('model_dir ', FLAGS.model_dir) print('data_dir ', FLAGS.data_dir) print('dt_dir ', FLAGS.dt_dir) print('num_epochs ', FLAGS.num_epochs) print('feature_size ', FLAGS.feature_size) print('field_size ', FLAGS.field_size) print('embedding_size ', FLAGS.embedding_size) print('batch_size ', FLAGS.batch_size) print('deep_layers ', FLAGS.deep_layers) print('dropout ', FLAGS.dropout) print('loss_type ', FLAGS.loss_type) print('optimizer ', FLAGS.optimizer) print('learning_rate ', FLAGS.learning_rate) print('batch_norm_decay ', FLAGS.batch_norm_decay) print('batch_norm ', FLAGS.batch_norm) print('l2_reg ', FLAGS.l2_reg) tf.logging.set_verbosity(tf.logging.INFO) tf.app.run() !python DeepFM.py --task_type=train \ --learning_rate=0.0005 \ --optimizer=Adam \ --num_epochs=1 \ --batch_size=256 \ --field_size=39 \ --feature_size=117581 \ --deep_layers=400,400,400 \ --dropout=0.5,0.5,0.5 \ --log_steps=1000 \ --num_threads=8 \ --model_dir=./criteo_model/DeepFM \ --data_dir=./criteo_data ###Output ('task_type ', 'train') ('model_dir ', './criteo_model20180503') ('data_dir ', './criteo_data') ('dt_dir ', '20180503') ('num_epochs ', 1) ('feature_size ', 117581) ('field_size ', 39) ('embedding_size ', 32) ('batch_size ', 256) ('deep_layers ', '400,400,400') ('dropout ', '0.5,0.5,0.5') ('loss_type ', 'log_loss') ('optimizer ', 'Adam') ('learning_rate ', 0.0005) ('batch_norm_decay ', 0.9) ('batch_norm ', False) ('l2_reg ', 0.0001) ('tr_files:', ['./criteo_data/tr.libsvm']) ('va_files:', ['./criteo_data/va.libsvm']) ('te_files:', ['./criteo_data/te.libsvm']) INFO:tensorflow:Using config: {'_save_checkpoints_secs': 600, '_session_config': device_count { key: "CPU" value: 8 } device_count { key: "GPU" } , '_keep_checkpoint_max': 5, '_task_type': 'worker', '_is_chief': True, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x537c4d0>, '_save_checkpoints_steps': None, '_keep_checkpoint_every_n_hours': 10000, '_service': None, '_num_ps_replicas': 0, '_tf_random_seed': None, '_master': '', '_num_worker_replicas': 1, '_task_id': 0, '_log_step_count_steps': 1000, '_model_dir': './criteo_model', '_save_summary_steps': 1000} INFO:tensorflow:Running training and evaluation locally (non-distributed). INFO:tensorflow:Start train and evaluate loop. The evaluate will happen after 1200 secs (eval_spec.throttle_secs) or training is finished. ('Parsing', ['./criteo_data/tr.libsvm']) INFO:tensorflow:Create CheckpointSaverHook. 2018-05-04 23:34:53.147375: I tensorflow/core/platform/cpu_feature_guard.cc:137] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA INFO:tensorflow:Saving checkpoints for 1 into ./criteo_model/model.ckpt. INFO:tensorflow:loss = 0.6947804, step = 1 INFO:tensorflow:loss = 0.51585126, step = 101 (4.948 sec) INFO:tensorflow:loss = 0.4950318, step = 201 (4.408 sec) INFO:tensorflow:loss = 0.5462832, step = 301 (4.357 sec) INFO:tensorflow:loss = 0.5671505, step = 401 (4.368 sec) INFO:tensorflow:loss = 0.45424744, step = 501 (4.300 sec) INFO:tensorflow:loss = 0.5399899, step = 601 (4.274 sec) INFO:tensorflow:loss = 0.49540266, step = 701 (4.234 sec) INFO:tensorflow:loss = 0.5175852, step = 801 (4.294 sec) INFO:tensorflow:loss = 0.4686305, step = 901 (4.314 sec) INFO:tensorflow:global_step/sec: 22.8576 INFO:tensorflow:loss = 0.5371931, step = 1001 (4.254 sec) INFO:tensorflow:loss = 0.49340367, step = 1101 (4.243 sec) INFO:tensorflow:loss = 0.49719507, step = 1201 (4.346 sec) INFO:tensorflow:loss = 0.48593232, step = 1301 (4.225 sec) INFO:tensorflow:loss = 0.48725832, step = 1401 (4.238 sec) INFO:tensorflow:loss = 0.4386774, step = 1501 (4.361 sec) INFO:tensorflow:loss = 0.49065983, step = 1601 (4.312 sec) INFO:tensorflow:loss = 0.53164876, step = 1701 (4.272 sec) INFO:tensorflow:loss = 0.40944415, step = 1801 (4.286 sec) INFO:tensorflow:loss = 0.521611, step = 1901 (4.270 sec) INFO:tensorflow:global_step/sec: 23.327 INFO:tensorflow:loss = 0.49082595, step = 2001 (4.317 sec) INFO:tensorflow:loss = 0.50453734, step = 2101 (4.302 sec) INFO:tensorflow:loss = 0.49503702, step = 2201 (4.369 sec) INFO:tensorflow:loss = 0.45685932, step = 2301 (4.326 sec) INFO:tensorflow:loss = 0.47562104, step = 2401 (4.326 sec) INFO:tensorflow:loss = 0.5106457, step = 2501 (4.366 sec) INFO:tensorflow:loss = 0.4949795, step = 2601 (4.408 sec) INFO:tensorflow:loss = 0.4684176, step = 2701 (4.442 sec) INFO:tensorflow:loss = 0.43745354, step = 2801 (4.457 sec) INFO:tensorflow:loss = 0.48600715, step = 2901 (4.490 sec) INFO:tensorflow:global_step/sec: 22.7801 INFO:tensorflow:loss = 0.4853104, step = 3001 (4.412 sec) INFO:tensorflow:loss = 0.49764964, step = 3101 (4.420 sec) INFO:tensorflow:loss = 0.4432894, step = 3201 (4.496 sec) INFO:tensorflow:loss = 0.46213925, step = 3301 (4.479 sec) INFO:tensorflow:loss = 0.4637582, step = 3401 (4.582 sec) INFO:tensorflow:loss = 0.46756223, step = 3501 (4.504 sec) INFO:tensorflow:loss = 0.46732077, step = 3601 (4.464 sec) ###Markdown NFMreference:[从ctr预估问题看看f(x)设计—DNN篇](https://zhuanlan.zhihu.com/p/28202287) [深度学习在CTR预估中的应用](https://zhuanlan.zhihu.com/p/35484389)NFM = LR + Embedding + Bi-Interaction Pooling + MLP![](https://pic4.zhimg.com/v2-582ade4feb65a88b828942c460e08192_r.jpg)对不同特征做相同维数的embedding向量。接下来,这些embedding向量两两做element-wise的相乘运算得到B-interaction layer。(element-wide运算举例: (1,2,3)element-wide相乘(4,5,6)结果是(4,10,18)。)B-interaction Layer 得到的是一个和embedding维数相同的向量。然后后面接几个隐藏层输出结果。大家思考一下,如果B-interaction layer后面不接隐藏层,直接把向量的元素相加输出结果, 就是一个FM,现在后面增加了隐藏层,相当于做了更高阶的FM,更加增强了非线性表达能力。NFM 在 embedding 做了 bi-interaction 操作来做特征的交叉处理,优点是网络参数从 n 直接压缩到 k(比 FNN 和 DeepFM 的 f\*k 还少),降低了网络复杂度,能够加速网络的训练得到模型;但同时这种方法也可能带来较大的信息损失。 ###Code # %load NFM.py #!/usr/bin/env python """ TensorFlow Implementation of <<Neural Factorization Machines for Sparse Predictive Analytics>> with the fellowing features: #1 Input pipline using Dataset high level API, Support parallel and prefetch reading #2 Train pipline using Coustom Estimator by rewriting model_fn #3 Support distincted training by TF_CONFIG #4 Support export model for TensorFlow Serving by lambdaji """ #from __future__ import absolute_import #from __future__ import division #from __future__ import print_function #import argparse import shutil #import sys import os import json import glob from datetime import date, timedelta from time import time #import gc #from multiprocessing import Process #import math import random import pandas as pd import numpy as np import tensorflow as tf #################### CMD Arguments #################### FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_integer("dist_mode", 0, "distribuion mode {0-loacal, 1-single_dist, 2-multi_dist}") tf.app.flags.DEFINE_string("ps_hosts", '', "Comma-separated list of hostname:port pairs") tf.app.flags.DEFINE_string("worker_hosts", '', "Comma-separated list of hostname:port pairs") tf.app.flags.DEFINE_string("job_name", '', "One of 'ps', 'worker'") tf.app.flags.DEFINE_integer("task_index", 0, "Index of task within the job") tf.app.flags.DEFINE_integer("num_threads", 16, "Number of threads") tf.app.flags.DEFINE_integer("feature_size", 0, "Number of features") tf.app.flags.DEFINE_integer("field_size", 0, "Number of fields") tf.app.flags.DEFINE_integer("embedding_size", 64, "Embedding size") tf.app.flags.DEFINE_integer("num_epochs", 10, "Number of epochs") tf.app.flags.DEFINE_integer("batch_size", 128, "Number of batch size") tf.app.flags.DEFINE_integer("log_steps", 1000, "save summary every steps") tf.app.flags.DEFINE_float("learning_rate", 0.05, "learning rate") tf.app.flags.DEFINE_float("l2_reg", 0.001, "L2 regularization") tf.app.flags.DEFINE_string("loss_type", 'log_loss', "loss type {square_loss, log_loss}") tf.app.flags.DEFINE_string("optimizer", 'Adam', "optimizer type {Adam, Adagrad, GD, Momentum}") tf.app.flags.DEFINE_string("deep_layers", '128,64', "deep layers") tf.app.flags.DEFINE_string("dropout", '0.5,0.8,0.8', "dropout rate") tf.app.flags.DEFINE_boolean("batch_norm", False, "perform batch normaization (True or False)") tf.app.flags.DEFINE_float("batch_norm_decay", 0.9, "decay for the moving average(recommend trying decay=0.9)") tf.app.flags.DEFINE_string("data_dir", '', "data dir") tf.app.flags.DEFINE_string("dt_dir", '', "data dt partition") tf.app.flags.DEFINE_string("model_dir", '', "model check point dir") tf.app.flags.DEFINE_string("servable_model_dir", '', "export servable model for TensorFlow Serving") tf.app.flags.DEFINE_string("task_type", 'train', "task type {train, infer, eval, export}") tf.app.flags.DEFINE_boolean("clear_existing_model", False, "clear existing model or not") #1 1:0.5 2:0.03519 3:1 4:0.02567 7:0.03708 8:0.01705 9:0.06296 10:0.18185 11:0.02497 12:1 14:0.02565 15:0.03267 17:0.0247 18:0.03158 20:1 22:1 23:0.13169 24:0.02933 27:0.18159 31:0.0177 34:0.02888 38:1 51:1 63:1 132:1 164:1 236:1 def input_fn(filenames, batch_size=32, num_epochs=1, perform_shuffle=False): print('Parsing', filenames) def decode_libsvm(line): #columns = tf.decode_csv(value, record_defaults=CSV_COLUMN_DEFAULTS) #features = dict(zip(CSV_COLUMNS, columns)) #labels = features.pop(LABEL_COLUMN) columns = tf.string_split([line], ' ') labels = tf.string_to_number(columns.values[0], out_type=tf.float32) splits = tf.string_split(columns.values[1:], ':') id_vals = tf.reshape(splits.values,splits.dense_shape) feat_ids, feat_vals = tf.split(id_vals,num_or_size_splits=2,axis=1) feat_ids = tf.string_to_number(feat_ids, out_type=tf.int32) feat_vals = tf.string_to_number(feat_vals, out_type=tf.float32) return {"feat_ids": feat_ids, "feat_vals": feat_vals}, labels # Extract lines from input files using the Dataset API, can pass one filename or filename list dataset = tf.data.TextLineDataset(filenames).map(decode_libsvm, num_parallel_calls=10).prefetch(500000) # multi-thread pre-process then prefetch # Randomizes input using a window of 256 elements (read into memory) if perform_shuffle: dataset = dataset.shuffle(buffer_size=256) # epochs from blending together. dataset = dataset.repeat(num_epochs) dataset = dataset.batch(batch_size) # Batch size to use iterator = dataset.make_one_shot_iterator() batch_features, batch_labels = iterator.get_next() #return tf.reshape(batch_ids,shape=[-1,field_size]), tf.reshape(batch_vals,shape=[-1,field_size]), batch_labels return batch_features, batch_labels def model_fn(features, labels, mode, params): """Bulid Model function f(x) for Estimator.""" #------hyperparameters---- field_size = params["field_size"] feature_size = params["feature_size"] embedding_size = params["embedding_size"] l2_reg = params["l2_reg"] learning_rate = params["learning_rate"] #optimizer = params["optimizer"] layers = map(int, params["deep_layers"].split(',')) dropout = map(float, params["dropout"].split(',')) #------bulid weights------ Global_Bias = tf.get_variable(name='bias', shape=[1], initializer=tf.constant_initializer(0.0)) Feat_Bias = tf.get_variable(name='linear', shape=[feature_size], initializer=tf.glorot_normal_initializer()) Feat_Emb = tf.get_variable(name='emb', shape=[feature_size,embedding_size], initializer=tf.glorot_normal_initializer()) #------build feaure------- feat_ids = features['feat_ids'] feat_ids = tf.reshape(feat_ids,shape=[-1,field_size]) feat_vals = features['feat_vals'] feat_vals = tf.reshape(feat_vals,shape=[-1,field_size]) #------build f(x)------ with tf.variable_scope("Linear-part"): feat_wgts = tf.nn.embedding_lookup(Feat_Bias, feat_ids) # None * F * 1 y_linear = tf.reduce_sum(tf.multiply(feat_wgts, feat_vals),1) with tf.variable_scope("BiInter-part"): embeddings = tf.nn.embedding_lookup(Feat_Emb, feat_ids) # None * F * K feat_vals = tf.reshape(feat_vals, shape=[-1, field_size, 1]) embeddings = tf.multiply(embeddings, feat_vals) # vij * xi sum_square_emb = tf.square(tf.reduce_sum(embeddings,1)) square_sum_emb = tf.reduce_sum(tf.square(embeddings),1) deep_inputs = 0.5*tf.subtract(sum_square_emb, square_sum_emb) # None * K with tf.variable_scope("Deep-part"): if mode == tf.estimator.ModeKeys.TRAIN: train_phase = True else: train_phase = False if mode == tf.estimator.ModeKeys.TRAIN: deep_inputs = tf.nn.dropout(deep_inputs, keep_prob=dropout[0]) # None * K for i in range(len(layers)): deep_inputs = tf.contrib.layers.fully_connected(inputs=deep_inputs, num_outputs=layers[i], \ weights_regularizer=tf.contrib.layers.l2_regularizer(l2_reg), scope='mlp%d' % i) if FLAGS.batch_norm: deep_inputs = batch_norm_layer(deep_inputs, train_phase=train_phase, scope_bn='bn_%d' %i) #放在RELU之后 https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md#bn----before-or-after-relu if mode == tf.estimator.ModeKeys.TRAIN: deep_inputs = tf.nn.dropout(deep_inputs, keep_prob=dropout[i]) #Apply Dropout after all BN layers and set dropout=0.8(drop_ratio=0.2) #deep_inputs = tf.layers.dropout(inputs=deep_inputs, rate=dropout[i], training=mode == tf.estimator.ModeKeys.TRAIN) y_deep = tf.contrib.layers.fully_connected(inputs=deep_inputs, num_outputs=1, activation_fn=tf.identity, \ weights_regularizer=tf.contrib.layers.l2_regularizer(l2_reg), scope='deep_out') y_d = tf.reshape(y_deep,shape=[-1]) with tf.variable_scope("NFM-out"): #y_bias = Global_Bias * tf.ones_like(labels, dtype=tf.float32) # None * 1 warning;这里不能用label,否则调用predict/export函数会出错,train/evaluate正常;初步判断estimator做了优化,用不到label时不传 y_bias = Global_Bias * tf.ones_like(y_d, dtype=tf.float32) # None * 1 y = y_bias + y_linear + y_d pred = tf.sigmoid(y) predictions={"prob": pred} export_outputs = {tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: tf.estimator.export.PredictOutput(predictions)} # Provide an estimator spec for `ModeKeys.PREDICT` if mode == tf.estimator.ModeKeys.PREDICT: return tf.estimator.EstimatorSpec( mode=mode, predictions=predictions, export_outputs=export_outputs) #------bulid loss------ loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=y, labels=labels)) + \ l2_reg * tf.nn.l2_loss(Feat_Bias) + l2_reg * tf.nn.l2_loss(Feat_Emb) # Provide an estimator spec for `ModeKeys.EVAL` eval_metric_ops = { "auc": tf.metrics.auc(labels, pred) } if mode == tf.estimator.ModeKeys.EVAL: return tf.estimator.EstimatorSpec( mode=mode, predictions=predictions, loss=loss, eval_metric_ops=eval_metric_ops) #------bulid optimizer------ if FLAGS.optimizer == 'Adam': optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=0.9, beta2=0.999, epsilon=1e-8) elif FLAGS.optimizer == 'Adagrad': optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate, initial_accumulator_value=1e-8) elif FLAGS.optimizer == 'Momentum': optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=0.95) elif FLAGS.optimizer == 'ftrl': optimizer = tf.train.FtrlOptimizer(learning_rate) train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step()) # Provide an estimator spec for `ModeKeys.TRAIN` modes if mode == tf.estimator.ModeKeys.TRAIN: return tf.estimator.EstimatorSpec( mode=mode, predictions=predictions, loss=loss, train_op=train_op) # Provide an estimator spec for `ModeKeys.EVAL` and `ModeKeys.TRAIN` modes. #return tf.estimator.EstimatorSpec( # mode=mode, # loss=loss, # train_op=train_op, # predictions={"prob": pred}, # eval_metric_ops=eval_metric_ops) def batch_norm_layer(x, train_phase, scope_bn): bn_train = tf.contrib.layers.batch_norm(x, decay=FLAGS.batch_norm_decay, center=True, scale=True, updates_collections=None, is_training=True, reuse=None, scope=scope_bn) bn_infer = tf.contrib.layers.batch_norm(x, decay=FLAGS.batch_norm_decay, center=True, scale=True, updates_collections=None, is_training=False, reuse=True, scope=scope_bn) z = tf.cond(tf.cast(train_phase, tf.bool), lambda: bn_train, lambda: bn_infer) return z def set_dist_env(): if FLAGS.dist_mode == 1: # 本地分布式测试模式1 chief, 1 ps, 1 evaluator ps_hosts = FLAGS.ps_hosts.split(',') chief_hosts = FLAGS.chief_hosts.split(',') task_index = FLAGS.task_index job_name = FLAGS.job_name print('ps_host', ps_hosts) print('chief_hosts', chief_hosts) print('job_name', job_name) print('task_index', str(task_index)) # 无worker参数 tf_config = { 'cluster': {'chief': chief_hosts, 'ps': ps_hosts}, 'task': {'type': job_name, 'index': task_index } } print(json.dumps(tf_config)) os.environ['TF_CONFIG'] = json.dumps(tf_config) elif FLAGS.dist_mode == 2: # 集群分布式模式 ps_hosts = FLAGS.ps_hosts.split(',') worker_hosts = FLAGS.worker_hosts.split(',') chief_hosts = worker_hosts[0:1] # get first worker as chief worker_hosts = worker_hosts[2:] # the rest as worker task_index = FLAGS.task_index job_name = FLAGS.job_name print('ps_host', ps_hosts) print('worker_host', worker_hosts) print('chief_hosts', chief_hosts) print('job_name', job_name) print('task_index', str(task_index)) # use #worker=0 as chief if job_name == "worker" and task_index == 0: job_name = "chief" # use #worker=1 as evaluator if job_name == "worker" and task_index == 1: job_name = 'evaluator' task_index = 0 # the others as worker if job_name == "worker" and task_index > 1: task_index -= 2 tf_config = { 'cluster': {'chief': chief_hosts, 'worker': worker_hosts, 'ps': ps_hosts}, 'task': {'type': job_name, 'index': task_index } } print(json.dumps(tf_config)) os.environ['TF_CONFIG'] = json.dumps(tf_config) def main(_): tr_files = glob.glob("%s/tr*libsvm" % FLAGS.data_dir) random.shuffle(tr_files) print("tr_files:", tr_files) va_files = glob.glob("%s/va*libsvm" % FLAGS.data_dir) print("va_files:", va_files) te_files = glob.glob("%s/te*libsvm" % FLAGS.data_dir) print("te_files:", te_files) if FLAGS.clear_existing_model: try: shutil.rmtree(FLAGS.model_dir) except Exception as e: print(e, "at clear_existing_model") else: print("existing model cleaned at %s" % FLAGS.model_dir) set_dist_env() model_params = { "field_size": FLAGS.field_size, "feature_size": FLAGS.feature_size, "embedding_size": FLAGS.embedding_size, "learning_rate": FLAGS.learning_rate, "l2_reg": FLAGS.l2_reg, "deep_layers": FLAGS.deep_layers, "dropout": FLAGS.dropout } config = tf.estimator.RunConfig().replace(session_config = tf.ConfigProto(device_count={'GPU':0, 'CPU':FLAGS.num_threads}), log_step_count_steps=FLAGS.log_steps, save_summary_steps=FLAGS.log_steps) DeepFM = tf.estimator.Estimator(model_fn=model_fn, model_dir=FLAGS.model_dir, params=model_params, config=config) if FLAGS.task_type == 'train': train_spec = tf.estimator.TrainSpec(input_fn=lambda: input_fn(tr_files, num_epochs=FLAGS.num_epochs, batch_size=FLAGS.batch_size)) eval_spec = tf.estimator.EvalSpec(input_fn=lambda: input_fn(va_files, num_epochs=1, batch_size=FLAGS.batch_size), steps=None, start_delay_secs=1000, throttle_secs=1200) tf.estimator.train_and_evaluate(DeepFM, train_spec, eval_spec) elif FLAGS.task_type == 'eval': DeepFM.evaluate(input_fn=lambda: input_fn(va_files, num_epochs=1, batch_size=FLAGS.batch_size)) elif FLAGS.task_type == 'infer': preds = DeepFM.predict(input_fn=lambda: input_fn(te_files, num_epochs=1, batch_size=FLAGS.batch_size), predict_keys="prob") with open(FLAGS.data_dir+"/pred.txt", "w") as fo: for prob in preds: fo.write("%f\n" % (prob['prob'])) elif FLAGS.task_type == 'export': #feature_spec = tf.feature_column.make_parse_example_spec(feature_columns) #feature_spec = { # 'feat_ids': tf.FixedLenFeature(dtype=tf.int64, shape=[None, FLAGS.field_size]), # 'feat_vals': tf.FixedLenFeature(dtype=tf.float32, shape=[None, FLAGS.field_size]) #} #serving_input_receiver_fn = tf.estimator.export.build_parsing_serving_input_receiver_fn(feature_spec) feature_spec = { 'feat_ids': tf.placeholder(dtype=tf.int64, shape=[None, FLAGS.field_size], name='feat_ids'), 'feat_vals': tf.placeholder(dtype=tf.float32, shape=[None, FLAGS.field_size], name='feat_vals') } serving_input_receiver_fn = tf.estimator.export.build_raw_serving_input_receiver_fn(feature_spec) DeepFM.export_savedmodel(FLAGS.servable_model_dir, serving_input_receiver_fn) if __name__ == "__main__": #------check Arguments------ if FLAGS.dt_dir == "": FLAGS.dt_dir = (date.today() + timedelta(-1)).strftime('%Y%m%d') FLAGS.model_dir = FLAGS.model_dir + FLAGS.dt_dir #FLAGS.data_dir = FLAGS.data_dir + FLAGS.dt_dir print('task_type ', FLAGS.task_type) print('model_dir ', FLAGS.model_dir) print('data_dir ', FLAGS.data_dir) print('dt_dir ', FLAGS.dt_dir) print('num_epochs ', FLAGS.num_epochs) print('feature_size ', FLAGS.feature_size) print('field_size ', FLAGS.field_size) print('embedding_size ', FLAGS.embedding_size) print('batch_size ', FLAGS.batch_size) print('deep_layers ', FLAGS.deep_layers) print('dropout ', FLAGS.dropout) print('loss_type ', FLAGS.loss_type) print('optimizer ', FLAGS.optimizer) print('learning_rate ', FLAGS.learning_rate) print('l2_reg ', FLAGS.l2_reg) tf.logging.set_verbosity(tf.logging.INFO) tf.app.run() !python NFM.py --task_type=train \ --learning_rate=0.0005 \ --optimizer=Adam \ --num_epochs=1 \ --batch_size=256 \ --field_size=39 \ --feature_size=117581 \ --deep_layers=400,400,400 \ --dropout=0.5,0.5,0.5 \ --log_steps=1000 \ --num_threads=8 \ --model_dir=./criteo_model/NFM \ --data_dir=./criteo_data ###Output ('task_type ', 'train') ('model_dir ', './criteo_model/NFM20180504') ('data_dir ', './criteo_data') ('dt_dir ', '20180504') ('num_epochs ', 1) ('feature_size ', 117581) ('field_size ', 39) ('embedding_size ', 64) ('batch_size ', 256) ('deep_layers ', '400,400,400') ('dropout ', '0.5,0.5,0.5') ('loss_type ', 'log_loss') ('optimizer ', 'Adam') ('learning_rate ', 0.0005) ('l2_reg ', 0.001) ('tr_files:', ['./criteo_data/tr.libsvm']) ('va_files:', ['./criteo_data/va.libsvm']) ('te_files:', ['./criteo_data/te.libsvm']) INFO:tensorflow:Using config: {'_save_checkpoints_secs': 600, '_session_config': device_count { key: "CPU" value: 8 } device_count { key: "GPU" } , '_keep_checkpoint_max': 5, '_task_type': 'worker', '_is_chief': True, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x6455490>, '_save_checkpoints_steps': None, '_keep_checkpoint_every_n_hours': 10000, '_service': None, '_num_ps_replicas': 0, '_tf_random_seed': None, '_master': '', '_num_worker_replicas': 1, '_task_id': 0, '_log_step_count_steps': 1000, '_model_dir': './criteo_model/NFM', '_save_summary_steps': 1000} INFO:tensorflow:Running training and evaluation locally (non-distributed). INFO:tensorflow:Start train and evaluate loop. The evaluate will happen after 1200 secs (eval_spec.throttle_secs) or training is finished. ('Parsing', ['./criteo_data/tr.libsvm']) INFO:tensorflow:Create CheckpointSaverHook. 2018-05-05 09:12:20.744054: I tensorflow/core/platform/cpu_feature_guard.cc:137] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA INFO:tensorflow:Saving checkpoints for 1 into ./criteo_model/NFM/model.ckpt. INFO:tensorflow:loss = 0.74344236, step = 1 INFO:tensorflow:loss = 0.52700615, step = 101 (12.126 sec) INFO:tensorflow:loss = 0.53884023, step = 201 (8.622 sec) INFO:tensorflow:loss = 0.5741194, step = 301 (8.680 sec) INFO:tensorflow:loss = 0.59511054, step = 401 (8.699 sec) INFO:tensorflow:loss = 0.47535682, step = 501 (8.683 sec) INFO:tensorflow:loss = 0.5811361, step = 601 (9.074 sec) INFO:tensorflow:loss = 0.5244339, step = 701 (9.141 sec) INFO:tensorflow:loss = 0.5584926, step = 801 (9.293 sec) INFO:tensorflow:loss = 0.51474106, step = 901 (9.456 sec) INFO:tensorflow:global_step/sec: 10.8086 INFO:tensorflow:loss = 0.5706619, step = 1001 (8.749 sec) INFO:tensorflow:loss = 0.523185, step = 1101 (9.152 sec) INFO:tensorflow:loss = 0.5341173, step = 1201 (8.163 sec) INFO:tensorflow:loss = 0.5158627, step = 1301 (8.788 sec) INFO:tensorflow:loss = 0.51566017, step = 1401 (8.700 sec) INFO:tensorflow:loss = 0.4592861, step = 1501 (8.962 sec) INFO:tensorflow:loss = 0.50802827, step = 1601 (8.990 sec) INFO:tensorflow:loss = 0.5538678, step = 1701 (8.596 sec) INFO:tensorflow:loss = 0.4346152, step = 1801 (8.267 sec) INFO:tensorflow:loss = 0.5406091, step = 1901 (8.907 sec) INFO:tensorflow:global_step/sec: 11.4221 INFO:tensorflow:loss = 0.5177407, step = 2001 (9.026 sec) INFO:tensorflow:loss = 0.50947416, step = 2101 (10.118 sec) INFO:tensorflow:loss = 0.5290449, step = 2201 (8.635 sec) INFO:tensorflow:loss = 0.48367974, step = 2301 (9.689 sec) INFO:tensorflow:loss = 0.5103478, step = 2401 (9.785 sec) INFO:tensorflow:loss = 0.5290227, step = 2501 (9.748 sec) INFO:tensorflow:loss = 0.5219102, step = 2601 (9.889 sec) INFO:tensorflow:loss = 0.5131693, step = 2701 (10.787 sec) INFO:tensorflow:loss = 0.47013655, step = 2801 (11.150 sec) INFO:tensorflow:loss = 0.5133655, step = 2901 (12.453 sec) INFO:tensorflow:global_step/sec: 9.68192 INFO:tensorflow:loss = 0.5253961, step = 3001 (11.027 sec) INFO:tensorflow:loss = 0.53593737, step = 3101 (10.576 sec) INFO:tensorflow:loss = 0.47377995, step = 3201 (9.975 sec) INFO:tensorflow:loss = 0.5179897, step = 3301 (9.655 sec) INFO:tensorflow:loss = 0.5014092, step = 3401 (8.827 sec) INFO:tensorflow:loss = 0.50651914, step = 3501 (9.877 sec) INFO:tensorflow:loss = 0.4893608, step = 3601 (7.170 sec) INFO:tensorflow:loss = 0.5037479, step = 3701 (7.128 sec) INFO:tensorflow:loss = 0.46921813, step = 3801 (7.062 sec) INFO:tensorflow:loss = 0.5224898, step = 3901 (6.815 sec) INFO:tensorflow:global_step/sec: 11.7165 INFO:tensorflow:loss = 0.5555479, step = 4001 (8.265 sec) INFO:tensorflow:loss = 0.53638494, step = 4101 (9.037 sec) INFO:tensorflow:loss = 0.58234245, step = 4201 (8.601 sec) INFO:tensorflow:loss = 0.57939863, step = 4301 (8.564 sec) INFO:tensorflow:loss = 0.51434916, step = 4401 (8.940 sec) INFO:tensorflow:loss = 0.5549449, step = 4501 (8.833 sec) INFO:tensorflow:loss = 0.5062487, step = 4601 (8.651 sec) INFO:tensorflow:loss = 0.5529063, step = 4701 (8.658 sec) INFO:tensorflow:loss = 0.49861303, step = 4801 (8.808 sec) INFO:tensorflow:loss = 0.54094946, step = 4901 (8.782 sec) INFO:tensorflow:global_step/sec: 11.413 INFO:tensorflow:loss = 0.49571908, step = 5001 (8.745 sec) INFO:tensorflow:loss = 0.5437416, step = 5101 (8.432 sec) INFO:tensorflow:loss = 0.5013172, step = 5201 (8.366 sec) INFO:tensorflow:loss = 0.50875455, step = 5301 (8.017 sec) INFO:tensorflow:loss = 0.5869225, step = 5401 (8.335 sec) INFO:tensorflow:loss = 0.5402778, step = 5501 (8.121 sec) INFO:tensorflow:loss = 0.52757925, step = 5601 (8.187 sec) INFO:tensorflow:loss = 0.48195118, step = 5701 (7.991 sec) INFO:tensorflow:loss = 0.4779031, step = 5801 (7.904 sec) INFO:tensorflow:loss = 0.5278434, step = 5901 (7.916 sec) INFO:tensorflow:global_step/sec: 12.3543 INFO:tensorflow:loss = 0.5329895, step = 6001 (7.673 sec) INFO:tensorflow:loss = 0.5151729, step = 6101 (7.622 sec) INFO:tensorflow:loss = 0.62112814, step = 6201 (7.493 sec) INFO:tensorflow:loss = 0.48736763, step = 6301 (7.491 sec) INFO:tensorflow:loss = 0.45068923, step = 6401 (7.353 sec) INFO:tensorflow:loss = 0.51698387, step = 6501 (7.221 sec) INFO:tensorflow:loss = 0.5078758, step = 6601 (7.112 sec) INFO:tensorflow:loss = 0.53784084, step = 6701 (7.051 sec) INFO:tensorflow:loss = 0.568355, step = 6801 (6.848 sec) INFO:tensorflow:Saving checkpoints for 6863 into ./criteo_model/NFM/model.ckpt. INFO:tensorflow:loss = 0.5869765, step = 6901 (7.007 sec) INFO:tensorflow:global_step/sec: 13.877 INFO:tensorflow:loss = 0.50776565, step = 7001 (6.864 sec) INFO:tensorflow:Saving checkpoints for 7034 into ./criteo_model/NFM/model.ckpt. INFO:tensorflow:Loss for final step: 0.66966015. ('Parsing', ['./criteo_data/va.libsvm']) INFO:tensorflow:Starting evaluation at 2018-05-05-01:22:35 INFO:tensorflow:Restoring parameters from ./criteo_model/NFM/model.ckpt-7034 INFO:tensorflow:Finished evaluation at 2018-05-05-01:22:58 INFO:tensorflow:Saving dict for global step 7034: auc = 0.7614266, global_step = 7034, loss = 0.50850546 ('Parsing', ['./criteo_data/tr.libsvm']) INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Restoring parameters from ./criteo_model/NFM/model.ckpt-7034 INFO:tensorflow:Saving checkpoints for 7035 into ./criteo_model/NFM/model.ckpt. INFO:tensorflow:loss = 0.53954387, step = 7035 INFO:tensorflow:loss = 0.506534, step = 7135 (10.071 sec) INFO:tensorflow:loss = 0.5184156, step = 7235 (8.270 sec) INFO:tensorflow:loss = 0.5448781, step = 7335 (8.497 sec) INFO:tensorflow:loss = 0.58426636, step = 7435 (7.031 sec) INFO:tensorflow:loss = 0.4775302, step = 7535 (7.547 sec) INFO:tensorflow:loss = 0.57145935, step = 7635 (8.272 sec) INFO:tensorflow:loss = 0.52330667, step = 7735 (7.936 sec) INFO:tensorflow:loss = 0.52791095, step = 7835 (7.510 sec) INFO:tensorflow:loss = 0.5160444, step = 7935 (7.842 sec) INFO:tensorflow:global_step/sec: 12.3632 INFO:tensorflow:loss = 0.54860413, step = 8035 (7.911 sec) INFO:tensorflow:loss = 0.5232839, step = 8135 (8.025 sec) INFO:tensorflow:loss = 0.5313403, step = 8235 (7.744 sec) INFO:tensorflow:loss = 0.5083723, step = 8335 (8.124 sec) INFO:tensorflow:loss = 0.5127937, step = 8435 (7.833 sec) INFO:tensorflow:loss = 0.45451465, step = 8535 (8.071 sec) INFO:tensorflow:loss = 0.5148269, step = 8635 (8.239 sec) INFO:tensorflow:loss = 0.5475166, step = 8735 (8.724 sec) INFO:tensorflow:loss = 0.4436438, step = 8835 (7.380 sec) INFO:tensorflow:loss = 0.527986, step = 8935 (6.852 sec) INFO:tensorflow:global_step/sec: 12.8544 INFO:tensorflow:loss = 0.5004729, step = 9035 (6.800 sec) INFO:tensorflow:loss = 0.5152983, step = 9135 (6.864 sec) INFO:tensorflow:loss = 0.5443342, step = 9235 (6.611 sec) INFO:tensorflow:loss = 0.48795786, step = 9335 (8.363 sec) INFO:tensorflow:loss = 0.50839627, step = 9435 (8.677 sec) INFO:tensorflow:loss = 0.53861755, step = 9535 (8.617 sec) INFO:tensorflow:loss = 0.5102945, step = 9635 (8.498 sec) INFO:tensorflow:loss = 0.49490649, step = 9735 (8.507 sec) INFO:tensorflow:loss = 0.46887958, step = 9835 (8.529 sec) INFO:tensorflow:loss = 0.5098571, step = 9935 (8.540 sec) INFO:tensorflow:global_step/sec: 12.2224 INFO:tensorflow:loss = 0.5108617, step = 10035 (8.612 sec) INFO:tensorflow:loss = 0.5259123, step = 10135 (8.646 sec) INFO:tensorflow:loss = 0.49567312, step = 10235 (8.585 sec) INFO:tensorflow:loss = 0.50952077, step = 10335 (9.826 sec) INFO:tensorflow:loss = 0.50462925, step = 10435 (8.775 sec) INFO:tensorflow:loss = 0.49131048, step = 10535 (8.954 sec) INFO:tensorflow:loss = 0.51161194, step = 10635 (8.810 sec) INFO:tensorflow:loss = 0.49189892, step = 10735 (8.735 sec) INFO:tensorflow:loss = 0.45244217, step = 10835 (8.599 sec) INFO:tensorflow:loss = 0.5231385, step = 10935 (8.917 sec) INFO:tensorflow:global_step/sec: 11.2768 INFO:tensorflow:loss = 0.5461174, step = 11035 (8.829 sec) INFO:tensorflow:loss = 0.5328863, step = 11135 (8.628 sec) INFO:tensorflow:loss = 0.5831222, step = 11235 (8.300 sec) INFO:tensorflow:loss = 0.5753766, step = 11335 (7.912 sec) INFO:tensorflow:loss = 0.5203026, step = 11435 (8.527 sec) INFO:tensorflow:loss = 0.55177057, step = 11535 (8.694 sec) INFO:tensorflow:loss = 0.5044052, step = 11635 (8.612 sec) INFO:tensorflow:loss = 0.54929847, step = 11735 (8.030 sec) INFO:tensorflow:loss = 0.5100083, step = 11835 (8.013 sec) INFO:tensorflow:loss = 0.54684854, step = 11935 (8.033 sec) INFO:tensorflow:global_step/sec: 12.0882 INFO:tensorflow:loss = 0.49854505, step = 12035 (7.976 sec) INFO:tensorflow:loss = 0.5296041, step = 12135 (8.307 sec) INFO:tensorflow:loss = 0.5118119, step = 12235 (8.437 sec) INFO:tensorflow:loss = 0.5206564, step = 12335 (8.180 sec) INFO:tensorflow:loss = 0.56792927, step = 12435 (8.102 sec) INFO:tensorflow:loss = 0.53202826, step = 12535 (8.284 sec) ###Markdown DeepCTR充分利用图像带来的视觉影响,结合图像信息(通过CNN抽取)和业务特征一起判断点击率大小![](https://pic3.zhimg.com/v2-df0ed2332c6fb09786dfd29a3311b47c_r.jpg) ###Code # %load train_with_googlenet.py from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation, Flatten, Reshape from keras.layers.convolutional import Convolution2D, MaxPooling2D, ZeroPadding2D from keras.optimizers import SGD, Adadelta, Adagrad from keras.layers import Embedding,Merge from keras.callbacks import ModelCheckpoint import keras from keras.preprocessing import image import numpy as np import sys, os, re from keras.applications.inception_v3 import InceptionV3, preprocess_input #定义VGG卷积神经网络 def GoogleInceptionV3(): model = InceptionV3(weights='imagenet', include_top=False) model.trainable = False return model #加载field和feature信息 def load_field_feature_meta(field_info_file): field_feature_dic = {} for line in open(field_info_file): contents = line.strip().split("\t") field_id = int(contents[1]) feature_count = int(contents[4]) field_feature_dic[field_id] = feature_count return field_feature_dic #CTR特征做embedding def CTR_embedding(field_feature_dic): emd = [] for field_id in range(len(field_feature_dic)): # 先把离散特征embedding到稠密的层 tmp_model = Sequential() #留一个位置给rare input_dims = field_feature_dic[field_id]+1 if input_dims>16: dense_dim = 16 else: dense_dim = input_dims tmp_model.add(Dense(dense_dim, input_dim=input_dims)) emd.append(tmp_model) return emd #总的网络结构 def full_network(field_feature_dic): print "GoogleNet model loading" googleNet_model = GoogleInceptionV3() image_model = Flatten()(googleNet_model.outputs) image_model = Dense(256)(image_model) print "GoogleNet model loaded" print "initialize embedding model" print "loading fields info..." emd = CTR_embedding(field_feature_dic) print "embedding model done!" print "initialize full model..." full_model = Sequential() full_input = [image_model] + emd full_model.add(Merge(full_input, mode='concat')) #批规范化 full_model.add(keras.layers.normalization.BatchNormalization()) #全连接层 full_model.add(Dense(128)) full_model.add(Dropout(0.4)) full_model.add(Activation('relu')) #全连接层 full_model.add(Dense(128)) full_model.add(Dropout(0.4)) #最后的分类 full_model.add(Dense(1)) full_model.add(Activation('sigmoid')) #编译整个模型 full_model.compile(loss='binary_crossentropy', optimizer='adadelta', metrics=['binary_accuracy','fmeasure']) #输出模型每一层的信息 full_model.summary() return full_model #图像预处理 def vgg_image_preoprocessing(image): img = image.load_img(image, target_size=(299, 299)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) return x #CTR特征预处理 def ctr_feature_preprocessing(field_feature_string): contents = field_feature_string.strip().split(" ") feature_dic = {} for content in contents: field_id, feature_id, num = content.split(":") feature_dic[int(field_id)] = int(feature_id) return feature_dic #产出用于训练的一个batch数据 def generate_batch_from_file(in_f, field_feature_dic, batch_num, skip_lines=0): #初始化x和y img_x = [] x = [] for field_id in range(len(field_feature_dic)): x.append(np.zeros((batch_num, int(field_feature_dic[field_id])+1))) y = [0.0]*batch_num round_num = 1 while True: line_count = 0 skips = 0 f = open(in_f) for line in f: if(skip_lines>0 and round_num==1): if skips < skip_lines: skips += 1 continue if (line_count+1)%batch_num == 0: contents = line.strip().split("\t") img_name = "images/"+re.sub(r'.jpg.*', '.jpg', contents[1].split("/")[-1]) if not os.path.isfile(img_name): continue #初始化最后一个样本 try: img_input = vgg_image_preoprocessing(img_name) except: continue #图片特征填充 img_x.append(img_input) #ctr特征填充 ctr_feature_dic = ctr_feature_preprocessing(contents[2]) for field_id in ctr_feature_dic: x[field_id][line_count][ctr_feature_dic[field_id]] = 1.0 #填充y值 y[line_count] = int(contents[0]) #print "shape is", np.array(img_x).shape yield ([np.array(img_x)]+x, y) img_x = [] x = [] for field_id in range(len(field_feature_dic)): x.append(np.zeros((batch_num, int(field_feature_dic[field_id])+1))) y = [0.0]*batch_num line_count = 0 else: contents = line.strip().split("\t") img_name = "images/"+re.sub(r'.jpg.*', '.jpg', contents[1].split("/")[-1]) if not os.path.isfile(img_name): continue try: img_input = vgg_image_preoprocessing(img_name) except: continue #图片特征填充 img_x.append(img_input) #ctr特征填充 ctr_feature_dic = ctr_feature_preprocessing(contents[2]) for field_id in ctr_feature_dic: x[field_id][line_count][ctr_feature_dic[field_id]] = 1.0 #填充y值 y[line_count] = int(contents[0]) line_count += 1 f.close() round_num += 1 def train_network(skip_lines, batch_num, field_info_file, data_file, weight_file): print "starting train whole network...\n" field_feature_dic = load_field_feature_meta(field_info_file) full_model = full_network(field_feature_dic) if os.path.isfile(weight_file): full_model.load_weights(weight_file) checkpointer = ModelCheckpoint(filepath=weight_file, save_best_only=False, verbose=1, period=3) full_model.fit_generator(generate_batch_from_file(data_file, field_feature_dic, batch_num, skip_lines),samples_per_epoch=1280, nb_epoch=100000, callbacks=[checkpointer]) if __name__ == '__main__': skip_lines = sys.argv[1] batch_num = sys.argv[2] field_info_file = sys.argv[3] data_file = sys.argv[4] weight_file = sys.argv[5] train_network(int(skip_lines), int(batch_num), field_info_file, data_file, weight_file) ###Output _____no_output_____
Datalabs/Datalab02/2-IntermediatePythonI.ipynb
###Markdown Intermediate Python IPlease indicate your name below, since you will need to submit this notebook completed latest the day after the datalab.Don't forget to save your progress during the datalab to avoid any loss due to crashes. ###Code name='' ###Output _____no_output_____ ###Markdown During the previous datalab we have learnt about the basic built-in features of python: we learnt about variable and data types, loops and conditions. We also mentioned before that there are thousands of open source packages which can be imported to python. Several of these libraries are considered rather standard (and preinstalled when using anaconda). If we would like to create a package executing less standard tasks (for example parsing nuclear data formats), it is worth browsing the world wide web for pre-existing solutions before reinvintenting the wheel. There is for example the nuclear engineering toolkit called Pyne which provides a lot of functionality relevant for nuclear scientists. In the next two datalabs we are going to try some standard libraries, and get acquainted with various data formats.Libraries reviewed today are:- numpy which provides data containers and functions to perform numerical analysis, matrix operations, linear algebra and a lot more.- matplotlib which provides visualization tools from simple 2D plots to advanced 3D visualizations- scipy which provides scientific tools, for example fitting, ODE solvers, numerical integration- re which allows using regular expressions. A regular expression (often called regex or regexp) is a search pattern specified as a sequence of characters. The `re` package provides regexp operations. It is neither possible nor necessary to review all the features of these packages, rather we would like to provide you with the basic terminology and to cover the basic functionality of these packages. That said, what is imporant for now is to know about these packages, familiarize yourself with the basic principles of these tools. Later, in other exercises we are going to refer to functions and methods of these libraries. It is not required to keep all functionality of these libraries in your head, as you will advance you will often find yourself googling for solutions, reading through stackoverflow entries, and then with your basic understanding and the knowledge of the terminology you will be able to adapt the proposed solutions to your own needs.There are several other mainstream libraries of python which we will not cover at all in this course. For example symPy allows for symbolic operations, or sklearn provides an interface to machine learning models. Nevertheless, once you got a feeling for using python, it will be relatively easy for you to use any other package according to your future needs. NumpyWe saw before how to organize data in arrays called lists. Lists are extremely flexible, they can store data of different types (eg. `[1,'one',True]`), and one can easily create multidimensional lists, or matrices (eg. `[[1,2,3],[4,5,6],[7,8,9]]`). Nevertheless, in some sense this flexibility is also a drawback. If we perform operations on a list (for example by looping over its elements, and performing some simple mathetmatics), Python needs to check the type of each element. For a compiled code, when the type is declared beforehand such checks are not needed, hence it runs faster. Numpy (numerical python) offers a more efficient data structure called *numpy array* (which stores elements of the same type) and provides related data operations. Numpy arrays are important building blocks of several other tools (eg. data science applications), and they make life easier, hence it is valuable to understand how to use them.Besides the numpy array, numpy contains a lot of useful functions and libraries (operations and linear algebra on the arrays, random number generators etc), which we will not cover now, but we will use them later on. The common way to import numpy is with ###Code import numpy as np ###Output _____no_output_____ ###Markdown Here we state that we want to `import numpy`, and later we will refer to it as `np`, meaning that we can access functions within numpy with `np.functionName()`. One can use different reference names as well, or just simply `import numpy`, and refer to functions with `numpy.functionName()`. (We could import directly functions from numpy, for example `from numpy import cos`, or we could import everything from numpy with `from numpy import *`, however this is generally not adviced since some libraries might have functions with the same name, like there is a `cos` implementation both in `math` and numpy, and the two implementations do not have the same functionality (eg. the numpy version can use lists as an input, the math version cannot).Let's look at numpy arrays.What would you expect when you execute this? ###Code a=np.array([1,2,3]) a[0]=2.3 a b=np.array([0,1.2,'one']) print(b) b[0]=42.0 b ###Output _____no_output_____ ###Markdown In the first case, python interprets the definition as the array only stores integers. Upon changing an element it will convert the float to an integer. You have to be careful, since we saw that in normal python a list like `[0,0,0]` can be updated with floats, but `np.array([0,0,0])` cannot. Nevertheless we will see that initializing an array with zeros should be done with `np.zeros()`.In the second case essentially the same thing happens. Python cannot interpret `'one'` as a number, instead it broadcasts the string type to all other elements. Upon modifying an element, it is automatically converted to string.One can however directly give a type to a numpy array (although when working with floats it is often just better to write out the decimals). ###Code c=np.array([1, 2, 3], dtype='float32') print(c) c[0]=2.3 c ###Output _____no_output_____ ###Markdown Numpy provides several functions to initialize arrays (even 2D), which are probably familiar to Matlab users: ###Code a=np.zeros(3) print(a) A=np.zeros((3,3)) print(A) b=np.ones(3) print(b) c=np.linspace(-5,5,11) print(c) print(A.shape) print(len(c)) ###Output _____no_output_____ ###Markdown Indexing of numpy arrays is similar as for lists, however for matrices we reach the elements with comma separated indices. ###Code B=np.arange(9) print(B) print(B[2:5]) print(B[2:8:2]) #start:stop:step C=B.reshape((3,3)) print(C) print(C[:,1]) #second column print(C[1,:]) #second row print(C[1,1]) ###Output _____no_output_____ ###Markdown With numpy arrays we can easily perform aggregations, see the examples below. This is powerful, when needed to be performed on large arrays. ###Code print(np.min(c)) print(np.max(c)) print(np.sum(c)) print(np.mean(c)) ###Output _____no_output_____ ###Markdown And we can perform operations with the arrays, and apply mathematical functions on the arrays. Notice that doing the same with lists would require loops. ###Code print(c+100) print(c+c) print(3*c) print(np.sin(c)) ###Output _____no_output_____ ###Markdown What makes numpy arrays even more powerful is that it is possible to mask them, ie. we can filter arrays based on conditions of other arrays ###Code energy=np.logspace(-3,7,20) #20 values between 1e-3 and 1e7 energy values=1/energy values energy<1.0 values[energy<1.0] values*(energy<1.0) #we multiply with bools, so ones and zeros. Keeps the same shape. ###Output _____no_output_____ ###Markdown Last, we can mention that numpy also has some functions to read data in columns. For example if we open the file '2-U235_xs_cap.txt', we can see that it contains two columns of data:``` Incident energy (ev) cross section (barn) 1.0E-5 5960.097 1.0625E-5 5782.129 1.125E-5 5619.206 1.1875E-5 5469.321 1.25E-5 5330.822 1.375E-5 5082.714 1.5E-5 4866.305 1.625E-5 4675.372 1.75E-5 4505.28 1.875E-5 4352.493 ...```We do not need to write a parser to read this file, instead we can use the `np.loadtxt()` function. ###Code u235=np.loadtxt('02-sample.txt',skiprows=1) #we skip the first row, which is a header u235 ###Output _____no_output_____ ###Markdown As said before, numpy has a lot of other functionality what we cannot cover in one single datalab, but later we will cover the ones needed for solving the exercises. MatplotlibWe saw previously how to do some mathematics with Python, but of course as aspiring scientists or engineers we would like to present our results visually as well. Matplotlib is a multi-platform data visualization library. It is designed to work with Numpy arrays. It will allow us to create 2D and 3D plots, and we can even create simple graphics as we will see. Matplotlib works well on several operating systems and it supports several output formats.The basic syntax of Matplotlib will feel familiar to Matlab users, and indeed it is straightforward to create basic plots. However, creating more difficult plots can feel sometimes frustrating.Besides Matplotlib, an other mainstream visualization library called Seaborn is also available in the Python universe. We are not going to use this in the course. Simple 2D plotLet us first simply look at the basic features by plotting the exponential decay curve. The most simple example would look like this. ###Code import matplotlib.pyplot as plt Thalf=14.9 #days lam=np.log(2)/Thalf #1/days N0=1e6 #number of atoms time=np.linspace(0,200,50) #in days atoms=N0*np.exp(-lam*time) plt.figure() plt.plot(time,atoms) plt.show() ###Output _____no_output_____ ###Markdown As an other simple example we can plot the content of the previously read file (which in fact is the neutron capture cross section of uranium-235. Here we use the `plt.loglog` function to have a logarithmic scale, and we set the labels of the axes. ###Code plt.figure() plt.loglog(u235[:,0],u235[:,1]) plt.xlabel('energy (eV)') plt.ylabel('cross section (barn)') plt.show() ###Output _____no_output_____ ###Markdown In the following we will show how to customize parts of the figure. With `plt.figure` we create a canvas (and can set a size), then `plt.plot` will plot the specified X and Y arrays against each other. Here we can set the color, the type of the curve (solid or dashed etc.), the markers, and marker size or line width (`lw`), and we can add a label. If more `plt.plot` commands would be included, more curves would appear on the canvas. We can include a label, which will be shown if a legend is created (`plt.legend`)We can set the label on the x and y axis (`plt.xlabel`, `plt.ylabel`), and a title (`plt.title`). LaTeX expressions can be used where strings are given to describe content (`r'$a=3$'` will be rendered as LaTeX, `a=3` would be rendered as a normal string). With `xlim`, `ylim`, `xticks` and `yticks` we can set the boundaries of the plot and overwrite the default tick positions and labels.We can include a grid (`plt.grid`), and we can we can include custom horizontal and vertical lines (`plt.axhline` and `plt.axvline`).Note that all these commands are optional, and they have further parameters to tune. Almost anything is possible here. Don't be afraid to google for solutions when you want to make your plots pretty.The `matplotlib.pyplot` library has several more plotting options for scatter plots, errorbars, histograms, barplots, charts etc. You can also change the axis to logarithmic (and there are functions readily available for this which might sound familiar to previous Matlab users: `plt.loglog`, `plt.semilogx`, `plt.semilogy`. We will use some of these later in the course. ###Code import numpy as np import matplotlib.pyplot as plt Thalf=14.9 #days lam=np.log(2)/Thalf #1/days N0=1e6 #number of atoms time=np.linspace(0,200,1000) #in days plt.figure(figsize=(10,4)) plt.plot(time,N0*np.exp(-lam*time),'k-',lw=2,label=r'$N_0e^{-\lambda t}$') plt.title('Exponential Decay') plt.xlabel('Time',fontsize=14) plt.ylabel('Number of nuclei',fontsize=14) plt.xticks([(i)*Thalf for i in range(1,14)], #list of values where ticks are added [r'$%dT_{1/2}$'%i for i in range(1,14)]) #list of strings written at the ticks plt.yticks([N0/i for i in [1,2,4,8,16]], #list of values where ticks are added [r'$N_0/%d$'%i for i in [1,2,4,8,16]]) #list of strings written at the ticks plt.xlim(0,200.0) plt.ylim(0,N0) plt.grid() plt.axhline(N0/2,xmin=0,xmax=Thalf/200.0,color='r',ls='--') #xmin and max between 0 and 1; ls: linestyle plt.axvline(Thalf,ymin=0,ymax=1/2,color='r',ls='--') plt.axhline(N0/4,xmin=0,xmax=2*Thalf/200.0,color='r',ls='--') #xmin and max between 0 and 1 plt.axvline(2*Thalf,ymin=0,ymax=1/4,color='r',ls='--') plt.axhline(N0/8,xmin=0,xmax=3*Thalf/200.0,color='r',ls='--') #xmin and max between 0 and 1 plt.axvline(3*Thalf,ymin=0,ymax=1/8,color='r',ls='--') plt.axhline(N0/16,xmin=0,xmax=4*Thalf/200.0,color='r',ls='--') #xmin and max between 0 and 1 plt.axvline(4*Thalf,ymin=0,ymax=1/16,color='r',ls='--') # Notice that we could have used a for loop for this part #for i in range(1,5): # plt.axhline(N0*0.5**i,xmin=0,xmax=i*Thalf/200.0,color='r',ls='--') #xmin and max between 0 and 1 # plt.axvline(i*Thalf,ymin=0,ymax=0.5**i,color='r',ls='--') plt.legend() #plt.savefig('myfigure.png',dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Simple 2D graphicsMatplotlib allows us to create graphics as well, we can define Polygons, Circles etc and place them on the canvas. We can also combine these graphics elements with data plots.In the following we will want to define a function which becomes zero on the edges of a hexagon (let's consider we have a hexagonal reactor, and the neutron population becomes zero on the boundary). We can use matplotlib to draw a hexagon to define our problem. Note, that here we also use `plt.annotate` to place text on our canvas, and we switched off the visibility of the right and top axes. ###Code import matplotlib.pyplot as plt R=10.0 fig, ax = plt.subplots() #defining the hexagon through its corners. polygon=plt.Polygon([[-R,0.0],[-1/2*R,np.sqrt(3)/2*R],[1/2*R,np.sqrt(3)/2*R], [R,0.0],[1/2*R,-np.sqrt(3)/2*R],[-1/2*R,-np.sqrt(3)/2*R]],facecolor='white',edgecolor='black') ax.add_artist(polygon) plt.axvline(0.0,color='black') #we draw a vertical line for y axis plt.axhline(0.0,color='black') #we draw a horizontal line for x axis plt.annotate(r'$y=\sqrt{3}R-\sqrt{3}x$',(R*0.8,R/2)) #write this expression to that location plt.annotate(r'$y=-\sqrt{3}R+\sqrt{3}x$',(R*0.8,-R/2)) plt.annotate(r'$-R$',(-R*1.4,1)) plt.annotate(r'$R$',(R*1.,1)) plt.annotate(r'$y=\frac{\sqrt{3}}{2}R$',(0.,R)) plt.xlim(-R*2.5,R*2.5) #limit the x-axis between -R*2.5, R*2.5 plt.ylim(-R*2.5,R*2.5) plt.gca().set_aspect('equal', adjustable='box') plt.gca().spines['right'].set_visible(False)#Switch off frame on right plt.gca().spines['top'].set_visible(False)#Switch off frame on top plt.show() ###Output _____no_output_____ ###Markdown Simple 3D plotWe could construct a function from sines or cosines which disappears at the edge of a hexagon with a width $R$. One possible solution is$$f(x,y)=\cos\big(\frac{\pi}{\sqrt{3}R}y\big)\cdot \cos\big(\frac{\pi}{2\sqrt{3}R}(y+\sqrt{3}x)\big)\cdot \cos\big(\frac{\pi}{2\sqrt{3}R}(y-\sqrt{3}x)\big)$$.We first define a function `hexFunc()`, which will return zero if we are outside of the hexagon, and the mathematical function's value if we are inside. For this we will use a mask. **Note**: the backslash `\` character tells the python interpreter that the code is continued in the next line, this improves legibility.Then we can create a meshgrid, and evaluate the function at each of the grid points. Note that how concise numpy is, we didn't need to write any loop to evaluate the function at several grid points. Finally we can plot the surface with the `plot_surface` function. We can also plot a 2D projection/representation of the surface: with `contour` and `contourf` we can visualize contour lines and filled contour lines. With `imshow` the values are considered to be pixels of an image. ###Code def hexFunc(x,y,R): """Function which disappears on the edge of a hexagon Parameters ---------- X : ndarray meshgrid X values. Y : ndarray meshgrid Y values R : size of the hexagon """ z = np.zeros(x.shape) mask = (y<=np.sqrt(3)/2*R) * \ (y>=-np.sqrt(3)/2*R) * \ (y<=np.sqrt(3)*R-np.sqrt(3)*x) * \ (y>=-np.sqrt(3)*R-np.sqrt(3)*x) * \ (y<=np.sqrt(3)*R+np.sqrt(3)*x) * \ (y>=-np.sqrt(3)*R+np.sqrt(3)*x) z[mask] =np.cos(y[mask]*np.pi/np.sqrt(3)/R)*\ np.cos((y[mask]+np.sqrt(3)*x[mask])*np.pi/2/np.sqrt(3)/R)*\ np.cos((y[mask]-np.sqrt(3)*x[mask])*np.pi/2/np.sqrt(3)/R) return z from mpl_toolkits.mplot3d import Axes3D import numpy as np R=10 #cm X = np.linspace(-R, R, 1000) Y = np.linspace(-R, R, 1000) Xn, Yn = np.meshgrid(X, Y) Z=hexFunc(Xn,Yn,R) fig = plt.figure() ax = fig.gca(projection='3d') surf=ax.plot_surface(Xn, Yn, Z, cmap="plasma") fig.colorbar(surf) plt.show() plt.figure() plt.contour(Xn,Yn,Z) plt.axis('equal') plt.colorbar() plt.show() plt.figure() plt.contourf(Xn,Yn,Z) plt.axis('equal') plt.colorbar() plt.show() plt.figure() plt.imshow(Z) plt.axis('equal') plt.colorbar() plt.show() ###Output _____no_output_____ ###Markdown ScipyThe name Scipy is a bit confusing: in a way Scipy is a whole ecosystem including numpy, matplotlib, pandas and other packages, but there is also a package called Scipy within this ecosystem. Probably one could spend a whole course just on covering the functionality of Scipy. It provides solutions to most of the engineering/science problems (fitting, optimization, integration, Fourier transform etc). Here we just use one illustrative example on how to solve simple coupled ODE systems with it by using the `solve_ivp` function from the `scipy.integrate` package, and later when we need some other functionality we will introduce other functions.Let's solve the simple decay chain when a parent nuclide decays into a radioactive daughter: $P\rightarrow D \rightarrow$, with decay constants $\lambda_P$ and $\lambda_D$. The differential equations characterizing this process are$$\frac{dN_P}{dt}=-\lambda_P N_P$$$$\frac{dN_D}{dt}=\lambda_P N_P-\lambda_D N_D$$with initial condition $N_P(t=0)=N_P(0)$ and $N_D(t=0)=0$.The same system could be written in matrix form:\begin{equation}\frac{d}{dt}\begin{pmatrix}N_P \\ N_D\end{pmatrix}=\begin{pmatrix}-\lambda_P & 0 \\ \lambda_P & -\lambda_D\end{pmatrix}\begin{pmatrix}N_P \\ N_D\end{pmatrix}\end{equation}or with using vectors ($N=(N_P \: N_D)$) and matrices\begin{equation} \dot N=AN\end{equation}We will use the `scipy.integrate.solve_ivp` function to solve numerically this system (note that we do not import the whole scipy library, only this function, and remember that you can access the documentation with `?solve_ivp`) in the form of $\dot y=Ay$. The solver requires a function in the form `myDerivative(t,y)` which describes the derivative $Ay$. Optinally this function can have some extra arguments. Then this derivative function is passed to `solve_ivp`, along with the time span (time window in which the integration is performed), the initial conditions and the times at which $y$ is evaluated, and any arguments (`args`) needed by the derivative function.`sol=solve_ivp(myDerivative,(Tstart,Tend),[InitialConditions],t_eval=TimesArray,args=(arguments))` ###Code ?solve_ivp def derivDaughter(t,y,lp,ld): A=np.array([[-lp,0.0],[lp,-ld]]) return np.dot(A,y) from scipy.integrate import solve_ivp TP=14.9 #d, parent, and all time units are considered to be in days lP=np.log(2)/TP TD=9.9 lD=np.log(2)/TD N0=50 Tstart=0.0 Tend=90.0 #days Neval=1001 T_eval=np.linspace(Tstart,Tend, Neval) sol=solve_ivp(derivDaughter,(Tstart,Tend),[N0,0.0],t_eval=T_eval,args=(lP, lD)) plt.figure() plt.plot(sol.t,sol.y[0],label='Ra') plt.plot(sol.t,sol.y[1],label='Act') plt.xlabel('time (d)') plt.legend() plt.ylabel('Number of nuclei') plt.show() ?solve_ivp ###Output _____no_output_____ ###Markdown find() and reIt is often required in science and engineering applications that one parses various files (for example outputs produced by a software, or data files), and need to extract some specific information. Python provides a basic string method (https://www.w3schools.com/python/python_ref_string.asp), to find strings within strings. Take a look at the code below. Let's assume that some software gives the final results in the following format, and we are interested in the 'keff' value. We could locate the number by matching the `=` sign, and the word `with`. Of course this is not perfect. What happens if a word or substring appears more than once? ###Code resuStr='the final estimated keff = 1.04562 with an estimated standard deviation of 0.00057' i=resuStr.find('=') print(i) j=resuStr.find('with') print(j) print(float(resuStr[i+1:j])) ###Output _____no_output_____ ###Markdown A more accurate solution to problems like this is to use regular expressions. Regular expressions are not a part of python, it is an independent "language", which allows the description of a search pattern as a string. Nevertheless, python has a package `re` which let's python users apply regexp. Hardcore geeks probably know by heart all the possible regexp patterns, and I certainly advice you to [read up on them](https://www.rexegg.com/regex-quickstart.html), nevertheless for this course we will only need to read numbers from strings. And you can most often survive by googling "regexp integer within string" or similar phrases depending on your application.One function of the `re` package is `re.findall`, the first input should be a regular expression as a string, and the second is the string in which you would like to perform the search. Take the regular expression below, which will match floating point numbers. The pattern `[+-]?\d+\.\d+` encodes a floating point number: in `[+-]?` the ? indicates zero or one occurence of the preceding element, which in this case is one of the characters in the `[]`. Outside of the bracket, the + indicates one or more occurance of the preceding element, and `\d` indicates a digit, so `\d+` will match one or more digits. In total `\d+\.\d+` will look for one or more digits followed by a floating point and followed by one or more digits. This pattern will not match numbers written as '1.' or '.9932'. ###Code import re re.findall('[+-]?\d+\.\d+',resuStr) ###Output _____no_output_____ ###Markdown An other typical example a nuclear engineer faces often is that you'll need to split a string (for example the name of a nuclide), to get the symbol and the mass number of the nuclide. ###Code myNuc='U238' re.split('(\d+)', myNuc) ###Output _____no_output_____ ###Markdown Exercises 1Construct a function $f(x,y)$ which becomes zero at the edges of a rectangle centered around the origin and with a side length of $a$. First create a 2D graphic representing the rectangle, and annotate one vertical and one horizontal side by giving the equation of the side. Then, use `plot_surface` and `contour` to visualize the function. Include the equation of the surface here with latex code:And write your function and code for plotting below. ###Code #your code comes here ###Output _____no_output_____ ###Markdown 2Consider the following decay chain $U-234 \rightarrow Th-230 \rightarrow Ra-226 \rightarrow Rn-222 \rightarrow$, which is part of the U-238 decay serie. The alpha decays have the following half-lifes: 245.5ky, 75.38ky, 1602y and 3.82d. Use scipy, and matplotlib to plot the number of nuclides and the activity between 0 and 15 kyears if $N_{U-234}(t=0)=5000000$, and the daughters are not present at $t=0$.- Inspect the half-lifes, what do you expect, what can cause numerical issues in this case?- What is your expectation on how will the activity of Ra-226 and Rn-222 compare to each other? ###Code #your code comes here ###Output _____no_output_____ ###Markdown 3The minimum energy required to disassemble the nucleus of an atom into its components is the binding energy. In this exercise you are going to compute the binding energy per nucleon for several nuclides in two ways:1. based on the relative atomic mass of the nuclides2. based on a semi-empirical formula.If we substract the mass of the nucleus from the mass of the nucleons and express it in energy unit we get the binding energy:$B(A,Z)=[Z\cdot m_p+(A-Z)\cdot m_n-M(A,Z)]c^2$For a given nuclide one can estimate the binding energy with the semi-empirical Bethe–Weizsäcker formula, which has various forms in literature. Here you can use the following form:$B(A,Z)=15.75A-94.8\frac{(A/2 - Z)^2}{A}-17.8A^{2/3}-0.71Z^2A^{-1/3}+34\delta A^{-3/4}$where $\delta = 1$ for even-even nuclei, $\delta = -1$ for odd-odd nuclei and $\delta = 0$ otherwise.(Note: that all terms in the formula have a physical meaning: volume term, assymmetry term, surface term, Coulomb term and pairing term. Make sure based on the text book that you understand these).In the first formula one can express the neutron and proton mass in unified mass units (u). Also notice, that in most tabulated data (also here) you can only look up the relative atom mass of isotopes, and not the mass of the nucleus, thus the mass of the electrons needs to be taken into account as well. The reason for this is that for high Z isotopes it is difficult to remove all the electrons, so the neutral atoms are measured instead.You are given the relative mass (in unified mass units) of several nuclides (downloaded from https://physics.nist.gov/cgi-bin/Compositions/stand_alone.pl?ele=&ascii=html) as a python nested dictionary `nuclides`. Dictionaries are used to store data values in key:value pairs. It is basically an unorder array with "named" columns. In this case the outer keys are nuclide identifiers, and the values are also dictionaries, with the keys being Z, A and m.Your task is to 1. implement two functions which calculate $\varepsilon=B(A,Z)/A$ with the two methods listed above.2. apply the functions for the nuclides listed in `nuclides`3. Plot the binding energy curves. Use solid line for the semi-empirical formula, and red dot markers `ro` for the results taking into account the relative mass4. Find the nuclide with the highest binding energy per nucleon, and use `plt.annotate` to include the name of the nuclide in the figure above the corresponding marker. ###Code import numpy as np import matplotlib.pyplot as plt me=5.48579909070e-4 #u mn=1.00866491588 #u mp=1.007276466621 #u muc2=931.49410242 #MeV nuclides={'H2': {'Z': 1, 'A': 2, 'm': 2.01410177812}, 'H3': {'Z': 1, 'A': 3, 'm': 3.0160492779}, 'He3': {'Z': 2, 'A': 3, 'm': 3.0160293201}, 'He4': {'Z': 2, 'A': 4, 'm': 4.002603254}, 'Li6': {'Z': 3, 'A': 6, 'm': 6.0151228874}, 'O16': {'Z': 8, 'A': 16, 'm': 15.99491461957}, 'S34': {'Z': 16, 'A': 34, 'm': 33.96786701}, 'Fe56': {'Z': 26, 'A': 56, 'm': 55.9349375}, 'Ni62': {'Z': 28, 'A': 62, 'm': 61.92834537}, 'Kr84': {'Z': 36, 'A': 84, 'm': 83.9114977282}, 'Sn119': {'Z': 50, 'A': 119, 'm': 118.90331117}, 'Ti205': {'Z': 81, 'A': 205, 'm': 204.9744278}, 'U238': {'Z': 92, 'A': 238, 'm': 238.0507884}} def BAZ(A,Z,m): """Function to calculate the binding energy per nucleon Parameters ---------- A : int Mass number of nuclide Z : int Proton number of nuclide m : float Mass of the nuclide """ eps=#YOUR CODE HERE return eps/A def BAZ_BW(A,Z): """Function to calculate the binding energy per nucleon with the semi-empirical formula Parameters ---------- A : int Mass number of nuclide Z : int Proton number of nuclide """ #your code comes here return eps/A #your code to apply these functions and to plot the results comes here. ###Output _____no_output_____
examples/Give Me Your Attention.ipynb
###Markdown Neural Language Model Given some content $C$ as a sequence of words, and some words $x_1, \ldots, x_n$, a language model (LM) is modeling the conditional probability\begin{equation} P \left( x_{n+1} \mid x_1, \ldots, x_n; C \right).\end{equation} The original nerual language model, a language model by neural netwok, is implemented by RNN. In the case of nerual machine translation (as a LM), it is a RNN auto-encoder. The encoder encodes the sentence from language A, as a sequence of words in A, to a vector; and then the decoder decodes the vector to language B, as another sequence of words in B. Backward of RNN Encoder The information contained the final encoding vector is limited by the dimension of the vector. A `float32` value in range $(-1, 1)$ has $24$ bits. If the encoding dimension is $1000$ (large), then the total information is $1000 \times 24 = 24000$ bits. Can these bits encode all the poems of Shakespeare? No way! The solution to this obstacle is, naturally, to use the full encoded sequence, instead of the last element of the sequence. This retains almost all the information.However, at every step of decoding, not all the elements in the sequence are relavent. So, we, or say the machine, has to figure out the relavence. This is attention. Focus your Attention! A detailed architecture: ###Code import abc import tensorflow as tf class BaseAttention(abc.ABC): """Abstract base class of attention.""" # Abbreviations for shapes: # batch_shape -> B (list of `int`s) # seqlen -> L (`int`) # query_dim -> Q (`int`) # key_dim -> K (`int`) # value_dim -> V (`int`) def __call__(self, query, keys, values, name='Attention'): """Returns the context, with attention-score. Args: query: Tensor with shape `batch_shape + [query_dim]`. keys: Tensor with shape `batch_shape + [seqlen, key_dim]`. values: Tensor with shape `batch_shape + [seqlen, value_dim]`. name: String. Returns: Tuple of two tensors. The first with shape `batch_shape + [value_dim]` as the context; and the second with shape `batch_shape + [seqlen]` as the attention-score. """ with tf.name_scope(name): score = self._score(query, keys) # B + [L, 1] # score * values: B + [L, V] context = tf.reduce_sum(score * values, axis=-2) # B + [V] score = tf.squeeze(score, axis=-1) # B + [L] return score, context def _score(self, query, keys, name='attention_score'): """Returns the attention-score. Args: query: Tensor with shape `batch_shape + [query_dim]`. keys: Tensor with shape `batch_shape + [seqlen, key_dim]`. name: String. Returns: Tensor with shape `batch_shape + [seqlen, 1]`. The additional `1` is made for convienence for being contracted by a "values" tensor with shape `batch_shape + [seqlen, value_dim]` along the `seqlen` axis. """ with tf.name_scope(name): with tf.name_scope('repeat'): # along `seqlen`-axis. query = tf.expand_dims(query, axis=-2) # B + [1, Q] query = tf.tile(query, self._get_repeats(keys)) # B + [L, Q] concated = tf.concat([query, keys], axis=-1) # B + [L, Q+K] energy = self.energy(concated) # B + [L, 1] # Softmax along the `L`-axis attention_score = tf.nn.softmax(energy, axis=-2) # B + [L, 1] return attention_score def _get_repeats(self, keys): """Returns the `repeats` argument of the `tf.tile()` in `self.__call__()`.""" with tf.name_scope('repeats'): shape = keys.get_shape().as_list() rank = len(shape) seqlen = shape[-2] return [1] * (rank - 2) + [seqlen, 1] @abc.abstractmethod def energy(self, x): """ Args: x: Tensor with shape `batch_shape + [query_dim + key_dim]`. Returns: Tensor with shape `batch_shape + [1]`. """ pass ###Output _____no_output_____ ###Markdown A Simple Example We show up a simple enough example found in [Ng's course](https://github.com/GSimas/Deep-LearningAI/tree/master/Course%205/Week%203/Neural%20Machine%20Translation). This is a simple neural machine translation model that converts date-format from the natural language format for human to the standard format for machine. Date-Format Data ###Code import numpy as np from nmt_utils import load_dataset, preprocess_data dataset, human_vocab, machine_vocab, inv_machine_vocab = load_dataset(10000) ###Output 100%|██████████| 10000/10000 [00:00<00:00, 17223.09it/s] ###Markdown Some instances: ###Code dataset[:10] ###Output _____no_output_____ ###Markdown The vocabularies for both human and machine are character-level: ###Code print('Human vocabulary:', human_vocab, '\n') print('Machine vocabulary:', machine_vocab) ###Output Human vocabulary: {' ': 0, '.': 1, '/': 2, '0': 3, '1': 4, '2': 5, '3': 6, '4': 7, '5': 8, '6': 9, '7': 10, '8': 11, '9': 12, 'a': 13, 'b': 14, 'c': 15, 'd': 16, 'e': 17, 'f': 18, 'g': 19, 'h': 20, 'i': 21, 'j': 22, 'l': 23, 'm': 24, 'n': 25, 'o': 26, 'p': 27, 'r': 28, 's': 29, 't': 30, 'u': 31, 'v': 32, 'w': 33, 'y': 34, '<unk>': 35, '<pad>': 36} Machine vocabulary: {'-': 0, '0': 1, '1': 2, '2': 3, '3': 4, '4': 5, '5': 6, '6': 7, '7': 8, '8': 9, '9': 10} ###Markdown Preprocessing to model inputs: 1. replacing unknown with ""; 1. post-padding; 1. the inputs and outputs (targets) are all in one-hot format. ###Code input_seqlen = 30 output_seqlen = 10 X, y, X_oh, y_oh = preprocess_data( dataset, human_vocab, machine_vocab, input_seqlen, output_seqlen) index = 0 print("Source date:", dataset[index][0]) print("Target date:", dataset[index][1]) print() print("Source after preprocessing (indices):", X[index]) print("Target after preprocessing (indices):", y[index]) print() print("Source after preprocessing (one-hot):", X_oh[index]) print("Target after preprocessing (one-hot):", y_oh[index]) ###Output Source date: 9 may 1998 Target date: 1998-05-09 Source after preprocessing (indices): [12 0 24 13 34 0 4 12 12 11 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36] Target after preprocessing (indices): [ 2 10 10 9 0 1 6 0 1 10] Source after preprocessing (one-hot): [[0. 0. 0. ... 0. 0. 0.] [1. 0. 0. ... 0. 0. 0.] [0. 0. 0. ... 0. 0. 0.] ... [0. 0. 0. ... 0. 0. 1.] [0. 0. 0. ... 0. 0. 1.] [0. 0. 0. ... 0. 0. 1.]] Target after preprocessing (one-hot): [[0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.] [1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0.] [1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]] ###Markdown RNN Auto-Encoder with Attention The model is illustrated as follow:And now let's implement it. ###Code from tensorflow.keras.layers import Bidirectional, Dense, Dropout from tfutils.initializer import GlorotInitializer if tf.test.is_gpu_available(): from tensorflow.keras.layers import CuDNNLSTM as LSTM else: from tensorflow.keras.layers import LSTM class Attention(BaseAttention): def __init__(self, energy_units, **kwargs): super().__init__(**kwargs) self._layers = [] for n in energy_units: self._layers += [tf.layers.Dense(n, activation=tf.nn.relu), tf.layers.Dropout()] self._layers += [tf.layers.Dense(1)] def energy(self, x): with tf.name_scope('energy'): for layer in self._layers: x = layer(x) return x def model_fn(features, labels, mode, params): """The `labels` is one-hot.""" pre_rnn = Bidirectional(LSTM(params['pre_lstm_units'], return_sequences=True)) attention = Attention(params['energy_units']) post_rnn = LSTM(params['post_lstm_units'], return_state=True) # Returns the logits output_layer = Dense(params['output_vocab_size']) # [batch_size, post_lstm_units] s = features['init_s'] c = features['init_c'] # [batch_size, input_seqlen, input_vocab_size] onehot_inputs = features['onehot_inputs'] # [batch_size, input_seqlen, pre_lstm_units * 2] a_seq = pre_rnn(onehot_inputs) # Implements the loop output_seqlen = tf.constant(params['output_seqlen']) logits = tf.TensorArray(dtype=s.dtype, size=output_seqlen) attention_scores = tf.TensorArray(dtype=s.dtype, size=output_seqlen) def cond(logits, attention_scores, s, c, step): return tf.less(step, output_seqlen) def body(logits, attention_scores, s, c, step): # [batch_size, input_seqlen] and # [batch_size, pre_lstm_units * 2] attention_score, context = attention(s, a_seq, a_seq) with tf.name_scope('logit'): # Prepare for inputting `post_rnn` # [batch_size, 1, pre_lstm_units * 2] context = tf.expand_dims(context, axis=-2) # [batch_size, post_lstm_units] s, _, c = post_rnn(context, initial_state=[s, c]) # [batch_size, output_vocab_size] logit = output_layer(s) logits = logits.write(step, logit) attention_scores = attention_scores.write(step, attention_score) return logits, attention_scores, s, c, (step + 1) logits, attention_scores, *_ = tf.while_loop( cond, body, loop_vars=[logits, attention_scores, s, c, 0]) # Postprocess the TensorArray # [output_seqlen, batch_size, output_vocab_size] logits = logits.stack() # [batch_size, output_seqlen, output_vocab_size] logits = tf.transpose(logits, [1, 0, 2]) # [output_seqlen, batch_size, input_seqlen] attention_scores = attention_scores.stack() # [batch_size, output_seqlen, input_seqlen] attention_scores = tf.transpose(attention_scores, [1, 0, 2]) # [batch_size, output_seqlen, output_vocab_size] predict_probs = tf.nn.softmax(logits, axis=-1) # [batch_size, output_seqlen] predict_classes = tf.argmax(logits, axis=-1) if mode == tf.estimator.ModeKeys.PREDICT: predictions = { 'logits': logits, 'probs': predict_probs, 'class_ids': predict_classes, 'attention_scores': attention_scores, } return tf.estimator.EstimatorSpec(mode, predictions=predictions) loss = tf.losses.softmax_cross_entropy(labels, logits) # [batch_size, output_seqlen] label_classes = tf.argmax(labels, axis=-1) accuracy = tf.metrics.accuracy( label_classes, predict_classes, name='acc_op') metrics = {'accuracy': accuracy} if mode == tf.estimator.ModeKeys.EVAL: return tf.estimator.EstimatorSpec( mode, loss=loss, eval_metric_ops=metrics) assert mode == tf.estimator.ModeKeys.TRAIN optimizer = tf.train.AdamOptimizer(params['lr']) train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step()) return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op) tf.reset_default_graph() params={ 'lr': 0.05, 'output_vocab_size': y_oh.shape[-1], 'pre_lstm_units': 32, 'energy_units': [128], 'post_lstm_units': 64, 'output_seqlen': y_oh.shape[-2], } estimator = tf.estimator.Estimator(model_fn=model_fn, params=params) print('\n', params) ###Output INFO:tensorflow:Using default config. WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmp4n0pb66v INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmp4n0pb66v', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true graph_options { rewrite_options { meta_optimizer_iterations: ONE } } , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_service': None, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x7fc45ae1ecc0>, '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1} {'lr': 0.05, 'output_vocab_size': 11, 'pre_lstm_units': 32, 'energy_units': [128], 'post_lstm_units': 64, 'output_seqlen': 10} ###Markdown Train and Evaluate the Model ###Code def train_input_fn(X_oh, y_oh, init_s, init_c, batch_size): """An input function for training""" features = {'onehot_inputs': X_oh, 'init_s': init_s, 'init_c': init_c} dataset = tf.data.Dataset.from_tensor_slices((features, y_oh)) dataset = dataset.shuffle(1000).repeat().batch(batch_size) return dataset def eval_input_fn(X_oh, y_oh, init_s, init_c, batch_size): """An input function for evaluating and predicting.""" features = {'onehot_inputs': X_oh, 'init_s': init_s, 'init_c': init_c} if y_oh is None: dataset = tf.data.Dataset.from_tensor_slices(features) else: dataset = tf.data.Dataset.from_tensor_slices((features, y_oh)) dataset = dataset.batch(batch_size) # shall NOT shuffle and repeat! return dataset def get_inits(n_data, params): init_s = np.zeros([n_data, params['post_lstm_units']], dtype='float32') init_c = np.zeros([n_data, params['post_lstm_units']], dtype='float32') return init_s, init_c from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X_oh, y_oh) init_s, init_c = get_inits(X_train.shape[0], params) estimator.train( input_fn=lambda: train_input_fn(X_train, y_train, init_s, init_c, 100), steps=2000) init_s, init_c = get_inits(X_test.shape[0], params) estimator.evaluate(input_fn=lambda: eval_input_fn( X_test, y_test, init_s, init_c, batch_size=128)) ###Output INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2019-04-12-09:31:08 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmp4n0pb66v/model.ckpt-2000 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Finished evaluation at 2019-04-12-09:31:09 INFO:tensorflow:Saving dict for global step 2000: accuracy = 1.0, global_step = 2000, loss = 4.37774e-05 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 2000: /tmp/tmp4n0pb66v/model.ckpt-2000 ###Markdown It Works ###Code from typing import List, Dict def pad(input_seqlen: int, chars: List[str], ) -> List[str]: chars = chars[:input_seqlen] chars += ['<pad>'] * (input_seqlen - len(chars)) return chars def unk(input_vocab: Dict[str, int], chars: List[str], ) -> List[str]: chars = [c if c in input_vocab else '<unk>' for c in chars] return chars def onehot(input_vocab: Dict[str, int], chars: List[str], ) -> List[List[int]]: # To indices indices = [input_vocab[c] for c in chars] # To onehot, shape `[input_seqlen, input_vocab_size]` return [[1 if i == index else 0 for i, _ in enumerate(input_vocab)] for index in indices] def preprocess_sources(sources: List[str], input_seqlen: int, input_vocab: Dict[str, int] ) -> np.array: def preprocess_source(source: str) -> List[List[int]]: chars = [c for c in source.lower()] chars = unk(input_vocab, chars) chars = pad(input_seqlen, chars) return onehot(input_vocab, chars) # [len(sources), input_seqlen, input_vocab_size] return np.array([preprocess_source(_) for _ in sources], dtype='float32') def postprocess(sources: List[str], predictions: dict) -> List[dict]: all_processed = [] for src, pred in zip(sources, predictions): prediction = ''.join(inv_machine_vocab[_] for _ in pred['class_ids']) processed = { 'source': src, 'prediction': prediction, 'attention_scores': pred['attention_scores'], 'logits': pred['logits'] } all_processed.append(processed) return all_processed sources = [ '3 May 2079', '5 April 09', '21th of August 2016', 'Tue 10 Jul 2007', 'Saturday May 9 2018', 'March 3 2001', 'March 3rd 2001', '1 March 2001' ] X_oh_pred = preprocess_sources(sources, X_oh.shape[-2], human_vocab) n_data_pred = X_oh_pred.shape[0] input_seqlen = X_oh_pred.shape[1] init_s_pred, init_c_pred = get_inits(len(sources), params) predicted = estimator.predict(input_fn=lambda: eval_input_fn( X_oh_pred, None, init_s_pred, init_c_pred, batch_size=128)) predictions = postprocess(sources, predicted) for src, pred in zip(sources, predictions): print(src) print(pred['prediction']) print() ###Output INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmp4n0pb66v/model.ckpt-2000 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. 3 May 2079 2979-05-03 5 April 09 2009-04-05 21th of August 2016 2016-08-21 Tue 10 Jul 2007 2007-07-10 Saturday May 9 2018 2018-05-09 March 3 2001 2001-03-03 March 3rd 2001 2001-03-03 1 March 2001 2001-03-01 ###Markdown Why Attention The attention has one advantage that almost any other NN architecture absents, that is, the explainability! ###Code import matplotlib.pyplot as plt from typing import List def plot_attention(attention: np.array, source: str, prediction: str, figsize=(7, 7)): def preprocess(s: str) -> List[str]: return ['*' if c == ' ' else c for c in s.lower()] source = preprocess(source) prediction = preprocess(prediction) attention = attention[:len(prediction), :len(source)] fig = plt.figure(figsize=figsize) ax = fig.add_subplot(1, 1, 1) ax.matshow(attention, cmap='viridis') # Set axes fontdict = {'fontsize': 12} ax.set_xticks(range(0, len(source))) ax.set_xticklabels(source, fontdict=fontdict) ax.set_yticks(range(0, len(prediction))) ax.set_yticklabels(prediction, fontdict=fontdict) plt.show() for pred in predictions: plot_attention(pred['attention_scores'], pred['source'], pred['prediction']) ###Output _____no_output_____
Data_Acquisition/as3uj_web_crawler.ipynb
###Markdown Reading block dates in from ipblocks ###Code #ipblocks = pd.read_csv("/home/ec2-user/SageMaker/bucket/wiki_trust/ipblocks_fulldump_new.csv") #del ipblocks['Unnamed: 0'] ipblocks = pd.read_csv("/home/ec2-user/SageMaker/bucket/wiki_trust/ipblocks_fulldump_20190223.txt",sep='\t') ipblocks.tail() ipblocks = ipblocks[['ipb_address','date']] ipblocks.tail() ###Output _____no_output_____ ###Markdown Removing the null rows ###Code ipblocks.isnull().sum() ipblocks.shape ipblocks = ipblocks[ipblocks['ipb_address'].isnull()==False] ipblocks.isnull().sum() ipblocks.shape ###Output _____no_output_____ ###Markdown Developing for single user (Skip to Iterative code) ###Code ipblocks[ipblocks['ipb_address']=='Sad.tbhs'] buser = 'Sad.tbhs' bdate = '20190217' new_url_1 = 'https://en.wikipedia.org/w/index.php?title=Special:Contributions&offset='+bdate+'235959&limit=20&contribs=user&target='+buser+'&namespace=3&tagfilter=&start=&end=' new_url_1 response1 = requests.get(new_url_1) html1 = response1.content soup1= BeautifulSoup(html1,'html.parser') print(soup1.prettify()) type(soup1) ###Output _____no_output_____ ###Markdown Shortening to only needed lines ###Code list(soup1.find('div',id='mw-content-text').children)[4].get_text() for i in list(soup1.find('div',id='mw-content-text')): try: if i.get_text() == 'No changes were found matching these criteria.\n': print('yes') else: print('no') except: continue if list(soup1.find('div',id='mw-content-text').children)[1].get_text() == 'No changes were found matching these criteria.\n': print('yes') soup1 = soup1.find('ul',class_='mw-contributions-list') soup1 type(soup1) lines = soup1.findAll('li') lines type(lines) len(lines) type(lines[0]) list(lines[0].children) date = list(lines[0].children)[0].get_text() date char_change = list(lines[0].children)[6].get_text() char_change li = list(lines[0].children)[2] li type(li) list(li.children) diff = list(li.children)[0] diff type(diff) type(list(diff.children)[0]) list(diff.children)[0] link = list(diff.children)[0].get('href') link ###Output _____no_output_____ ###Markdown Now trying this iteratively to get all 20 links for namespace3 ###Code new_url_1 = 'https://en.wikipedia.org/w/index.php?title=Special:Contributions&offset='+bdate+'235959&limit=20&contribs=user&target='+buser+'&namespace=3&tagfilter=&start=&end=' new_url_1 response1 = requests.get(new_url_1) html1 = response1.content soup1= BeautifulSoup(html1,'html.parser') soup1 = soup1.find('ul',class_='mw-contributions-list') lines = soup1.findAll('li') dates = [] char_changes = [] links = [] for line in lines: date = list(line.children)[0].get_text() char_change = list(line.children)[6].get_text() li = list(line.children)[2] diff = list(li.children)[0] if(list(diff.children)[0]=='diff'): continue link = list(diff.children)[0].get('href') dates.append(date) char_changes.append(char_change) links.append(link) dates char_changes links ###Output _____no_output_____ ###Markdown Similarly adding the lines from namespace1 ###Code new_url_2 = 'https://en.wikipedia.org/w/index.php?title=Special:Contributions&offset='+bdate+'235959&limit=20&contribs=user&target='+buser+'&namespace=1&tagfilter=&start=&end=' new_url_2 response2 = requests.get(new_url_2) html2 = response2.content soup2= BeautifulSoup(html2,'html.parser') print(soup2.prettify()) soup2 = soup2.find('ul',class_='mw-contributions-list') lines = soup2.findAll('li') lines #list(lines[1].children)[0].get_text() #list(lines[1].children)[6].get_text() #list(lines[1].children)[2] #li = list(lines[1].children)[2] #li #list(li.children) #diff = list(li.children)[0] #diff #list(diff.children)[0] #list(diff.children)[0].get('href') #link = list(diff.children)[0].get('href') #link for line in lines: date = list(line.children)[0].get_text() char_change = list(line.children)[6].get_text() li = list(line.children)[2] diff = list(li.children)[0] if(list(diff.children)[0]=='diff'): continue link = list(diff.children)[0].get('href') dates.append(date) char_changes.append(char_change) links.append(link) dates char_changes links user = pd.DataFrame({ "user": buser, "dates": dates, "char_changes": char_changes, "links":links }) user ###Output _____no_output_____ ###Markdown Stage 1: Iterative through list of users to get revision links(read from pandas) ###Code #blocked = pd.read_csv("/home/ec2-user/SageMaker/bucket/wiki_trust/revisions_data/csvs_stored/blocked_users_1718.csv") blocked = pd.read_csv("/home/ec2-user/SageMaker/bucket/wiki_trust/revisions_data/csvs_stored/ipb_remaining3.csv") blocked.head(20) blocked.shape ipb = blocked.iloc[20000:,] #ipb = blocked ipb ipb = pd.merge(ipb,ipblocks,how="left",left_on=["rev_user_text"],right_on=["ipb_address"]) ipb.head() ipb.isnull().sum() del ipb['ipb_address'] ipb.head() buser = [] dates = [] char_changes = [] links = [] exc_count1 = 0 exc_count2 = 0 exc_count3 = 0 exc_count4 = 0 user_less_than3 = [] namespace = [] user_all = pd.DataFrame({"user": buser,"dates": dates,"char_changes": char_changes,"links":links}) user_all start = time.time() for index, row in ipb.iterrows(): buser = row['rev_user_text'] bdate = str(row['date']) # For namespace 3 dates = [] char_changes = [] links = [] flag = 0 new_url_1 = 'https://en.wikipedia.org/w/index.php?title=Special:Contributions&offset='+bdate+'235959&limit=20&contribs=user&target='+buser+'&namespace=3&tagfilter=&start=&end=' try: response1 = requests.get(new_url_1) html1 = response1.content soup1= BeautifulSoup(html1,'html.parser') except: exc_count4 = exc_count4 + 1 print('Connection error at {0}'.format(new_url_1)) continue for i in list(soup1.find('div',id='mw-content-text')): try: if i.get_text() == 'No changes were found matching these criteria.\n': flag = 1 except: continue if flag == 1: exc_count1 = exc_count1+1 continue else: try: soup1 = soup1.find('ul',class_='mw-contributions-list') lines = soup1.findAll('li') if len(lines)<3: user_less_than3.append(buser) namespace.append('User Talk') continue except: exc_count2 = exc_count2+1 continue for line in lines: date = list(line.children)[0].get_text() char_change = list(line.children)[6].get_text() li = list(line.children)[2] diff = list(li.children)[0] if(list(diff.children)[0]=='diff'): exc_count3 = exc_count3+1 continue link = list(diff.children)[0].get('href') dates.append(date) char_changes.append(char_change) links.append(link) user = pd.DataFrame({"user": buser,"dates": dates,"char_changes": char_changes,"links":links}) frames = [user_all,user] user_all = pd.concat(frames) for index, row in ipb.iterrows(): buser = row['rev_user_text'] bdate = str(row['date']) # For namespace 1 dates = [] char_changes = [] links = [] flag = 0 new_url_1 = 'https://en.wikipedia.org/w/index.php?title=Special:Contributions&offset='+bdate+'235959&limit=20&contribs=user&target='+buser+'&namespace=1&tagfilter=&start=&end=' try: response1 = requests.get(new_url_1) html1 = response1.content soup1= BeautifulSoup(html1,'html.parser') except: exc_count4 = exc_count4 + 1 print('Connection error at {0}'.format(new_url_1)) continue for i in list(soup1.find('div',id='mw-content-text')): try: if i.get_text() == 'No changes were found matching these criteria.\n': flag = 1 except: continue if flag == 1: exc_count1 = exc_count1+1 continue else: try: soup1 = soup1.find('ul',class_='mw-contributions-list') lines = soup1.findAll('li') if len(lines)<3: user_less_than3.append(buser) namespace.append('Article Talk') continue except: exc_count2 = exc_count2+1 continue for line in lines: date = list(line.children)[0].get_text() char_change = list(line.children)[6].get_text() li = list(line.children)[2] diff = list(li.children)[0] if(list(diff.children)[0]=='diff'): exc_count3 = exc_count3+1 continue link = list(diff.children)[0].get('href') dates.append(date) char_changes.append(char_change) links.append(link) user = pd.DataFrame({"user": buser,"dates": dates,"char_changes": char_changes,"links":links}) frames = [user_all,user] user_all = pd.concat(frames) end = time.time() print(end - start) print(exc_count1,exc_count2,exc_count3,exc_count4) user_all ###Output _____no_output_____ ###Markdown Adding required https to link ###Code user_all['links'] = 'https://en.wikipedia.org'+ user_all['links'] user_all len(set(user_all['user'])) ###Output _____no_output_____ ###Markdown 4702 users out of 10000 have namespace 1 and 3 diff data available 3338 out of next 10000 have namespace 1 and 3 diff data available 2482 out of next 10000 have namespace 1 and 3 diff data available 2543 out of next 10000 have namespace 1 and 3 diff data available 6272 out of top 11303 ###Code ipb_userlist = set(ipb['rev_user_text']) available = set(user_all['user']) no_data = ipb_userlist - available list(no_data) len(no_data) user_all.to_csv('/home/ec2-user/SageMaker/bucket/wiki_trust/revisions_data/csvs_stored/blocked_more6.csv') u_3 = pd.DataFrame({"rev_user_text":user_less_than3,"namespace":namespace}) u_3 u_3.to_csv('/home/ec2-user/SageMaker/bucket/wiki_trust/revisions_data/csvs_stored/less_than3_examples3.csv') ###Output _____no_output_____ ###Markdown Stage 2 - iterating through all the revision diff links Developing for single user(skip to iterative code) ###Code new_url_1 = list(user_all['links'])[25] new_url_1 response1 = requests.get(new_url_1) html1 = response1.content soup1= BeautifulSoup(html1,'html.parser') print(soup1.prettify()) lines = soup1.findAll('td',class_='diff-addedline') lines lines[0] type(lines[0]) lines[0].get_text() lines[1].get_text() lines[2].get_text() ###Output _____no_output_____ ###Markdown Getting this data iteratively ###Code user_all = pd.read_csv('/home/ec2-user/SageMaker/bucket/wiki_trust/revisions_data/csvs_stored/blocked_more3.csv') del user_all['Unnamed: 0'] user_all user_all = user_all.iloc[1850:,] user_all user_all['text'] = '' user_all start = time.time() st2_exec_count = 0 for index,row in user_all.iterrows(): try: if index==1891: print('Skipping adding text at {0}'.format(index)) continue new_url_1 = row['links'] response1 = requests.get(new_url_1) html1 = response1.content soup1= BeautifulSoup(html1,'html.parser') lines = soup1.findAll('td',class_='diff-addedline') txt = '' for line in lines: txt= txt + line.get_text() user_all.at[index,'text'] = txt print('Completed adding text at {0}'.format(index)) except: st2_exec_count = st2_exec_count + 1 print('Exception at {0}'.format(index)) continue end = time.time() print(end - start) user_all user_all.to_csv('/home/ec2-user/SageMaker/bucket/wiki_trust/revisions_data/csvs_stored/blocked_more3_2_stage2.csv') print(st2_exec_count) list(user_all['text'])[0] list(user_all['text'])[1] list(user_all['text'])[41] list(user_all['text'])[42] ###Output _____no_output_____ ###Markdown Similarly for Non blocked users ###Code #nonblocked = pd.read_csv("/home/ec2-user/SageMaker/bucket/wiki_trust/revisions_data/csvs_stored/nonblocked_users_1718.csv") nonblocked = pd.read_csv("/home/ec2-user/SageMaker/bucket/wiki_trust/revisions_data/csvs_stored/ipnb_remaining.csv") nonblocked.head(20) #ipnb = nonblocked.head(10000) ipnb = nonblocked.iloc[:10000,] ipnb buser = [] dates = [] char_changes = [] links = [] exc_count1 = 0 exc_count2 = 0 exc_count3 = 0 exc_count4 = 0 user_all = pd.DataFrame({"user": buser,"dates": dates,"char_changes": char_changes,"links":links}) user_all start = time.time() for index, row in ipnb.iterrows(): buser = row['rev_user_text'] # For namespace 3 dates = [] char_changes = [] links = [] flag = 0 new_url_1 = 'https://en.wikipedia.org/w/index.php?limit=20&title=Special%3AContributions&contribs=user&target='+buser+'&namespace=3&tagfilter=&start=&end=' response1 = requests.get(new_url_1) html1 = response1.content soup1= BeautifulSoup(html1,'html.parser') try: for i in list(soup1.find('div',id='mw-content-text')): try: if i.get_text() == 'No changes were found matching these criteria.\n': flag = 1 except: continue except: exc_count4=exc_count4+1 continue if flag == 1: exc_count1=exc_count1+1 continue else: try: soup1 = soup1.find('ul',class_='mw-contributions-list') lines = soup1.findAll('li') if len(lines)<3: #user_less_than3.append(buser) continue except: exc_count2=exc_count2+1 continue for line in lines: date = list(line.children)[0].get_text() char_change = list(line.children)[6].get_text() li = list(line.children)[2] diff = list(li.children)[0] if(list(diff.children)[0]=='diff'): exc_count3=exc_count3+1 continue link = list(diff.children)[0].get('href') dates.append(date) char_changes.append(char_change) links.append(link) user = pd.DataFrame({"user": buser,"dates": dates,"char_changes": char_changes,"links":links}) frames = [user_all,user] user_all = pd.concat(frames) # For namespace 1 for index, row in ipnb.iterrows(): buser = row['rev_user_text'] dates = [] char_changes = [] links = [] flag = 0 new_url_1 = 'https://en.wikipedia.org/w/index.php?limit=20&title=Special%3AContributions&contribs=user&target='+buser+'&namespace=1&tagfilter=&start=&end=' response1 = requests.get(new_url_1) html1 = response1.content soup1= BeautifulSoup(html1,'html.parser') try: for i in list(soup1.find('div',id='mw-content-text')): try: if i.get_text() == 'No changes were found matching these criteria.\n': flag = 1 except: continue except: exc_count4=exc_count4+1 continue if flag == 1: exc_count1=exc_count1+1 continue else: try: soup1 = soup1.find('ul',class_='mw-contributions-list') lines = soup1.findAll('li') if len(lines)<3: #user_less_than3.append(buser) continue except: exc_count2=exc_count2+1 continue for line in lines: date = list(line.children)[0].get_text() char_change = list(line.children)[6].get_text() li = list(line.children)[2] diff = list(li.children)[0] if(list(diff.children)[0]=='diff'): exc_count3=exc_count3+1 continue link = list(diff.children)[0].get('href') dates.append(date) char_changes.append(char_change) links.append(link) user = pd.DataFrame({"user": buser,"dates": dates,"char_changes": char_changes,"links":links}) frames = [user_all,user] user_all = pd.concat(frames) end = time.time() print(end - start) print(exc_count1,exc_count2,exc_count3,exc_count4) user_all ###Output _____no_output_____ ###Markdown Adding required https to link ###Code user_all['links'] = 'https://en.wikipedia.org'+ user_all['links'] user_all len(set(user_all['user'])) ###Output _____no_output_____ ###Markdown 382 users out of 10000 have namespace 1 and 3 diff data available 374 users out of next 30000 have namespace 1 and 3 diff data available 825 users out of next 60000 have namespace 1 and 3 diff data available 3303 users out of next 100000 have namespace 1 and 3 diff data available 2418 users out of next 50000 have namespace 1 and 3 diff data available 1883 users out of next 50000 have namespace 1 and 3 diff data available 3254 users out of next 100000 have namespace 1 and 3 diff data available 538 users out of next 20000 have namespace 1 and 3 diff data available 8601 users out of top 10000 ###Code ipnb_userlist = set(ipnb['rev_user_text']) available = set(user_all['user']) no_data = ipnb_userlist - available list(no_data) len(no_data) user_all.to_csv('/home/ec2-user/SageMaker/bucket/wiki_trust/revisions_data/csvs_stored/nonblocked_top1.csv') ###Output _____no_output_____ ###Markdown Stage 2 ###Code user_all = pd.read_csv('/home/ec2-user/SageMaker/bucket/wiki_trust/revisions_data/csvs_stored/nonblocked_top1.csv') del user_all['Unnamed: 0'] user_all user_all = user_all.iloc[180000:,] user_all user_all['text'] = '' user_all start = time.time() st2_exec_count = 0 for index,row in user_all.iterrows(): try: new_url_1 = row['links'] response1 = requests.get(new_url_1) html1 = response1.content soup1= BeautifulSoup(html1,'html.parser') lines = soup1.findAll('td',class_='diff-addedline') txt = '' for line in lines: txt= txt + line.get_text() user_all.at[index,'text'] = txt except: st2_exec_count = st2_exec_count + 1 continue end = time.time() print(end - start) print(st2_exec_count) user_all user_all.to_csv('/home/ec2-user/SageMaker/bucket/wiki_trust/revisions_data/csvs_stored/nonblocked_top1_7_stage2.csv') ###Output _____no_output_____
Notebooks/5-humidity-precip-windspeed-MODELLING/model_build_fast_WINDSPEED.ipynb
###Markdown Model Build - Fast Hyper Parameter SearchBuilding and testing models notebook for Google ColabThe gridsearch was taking way too long. This script now includes a function that searches over the hyperparemeters far more rapidly. Its not as thorough but given what we saw last time, it doesnt need to be.This was primarily used to create optimised models for the weather variables besides temperature.For more thorough commentary, please see model_build_smooth.Be sure to switch to GPU in the run time ###Code import pandas as pd import numpy as np import datetime as dt import matplotlib.pyplot as plt import time import os import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import InputLayer, LSTM, GRU, Dense, Dropout from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint from tensorflow.keras.preprocessing.sequence import TimeseriesGenerator from scipy.ndimage import gaussian_filter1d print(tf.config.list_physical_devices()) #my file path to data on Gdrive ! ls drive/MyDrive/0_neural_net_weather_forecasts_on_cloud/Data os.chdir('drive/MyDrive/0_neural_net_weather_forecasts_on_cloud/Data') df = pd.read_csv('weather_data.csv') #get time df['datetime'] = pd.to_datetime(df['datetime'], format='%d/%m/%Y') df = df.set_index('datetime') print(df.columns) #get windspeed wind = df['windspeed'] #split data (Save a week for testing. Train and Validation made in class) wind_train = wind.iloc[:-7] wind_test = wind.iloc[-7:] #inspect wind_train.iloc[-60:].plot() ###Output _____no_output_____ ###Markdown Define the model class ###Code class BuildModel(): """ Build a model. Arguments allow one to customise the hyper parameters ATTRIBUTES :- length - number of steps in time sequence to feed the rnn layers_num - number of rnn layers in model (capped at 3) layers_type - select "LSTM" or "GRU" units - number of units in rnn layers num_step_preds - number of steps/days in time to predict dropout - dropout % to be applied to rnn units g_filt - gaussian filter for smoothing. Default: no smoothing batch_size - number of samples to feed model at a time. patience - how many epochs to wait before stopping model after finding good score. model_name - file name of model we save. must end in ".h5" eg 'temp_model.h5' """ def __init__(self, model_name, length=10, layers_num=1, layers_type='LSTM',\ units=50, dropout=0.0, g_filt=00.1, num_step_preds=1,\ epochs=8, batch_size=1, patience=5): #assertions for input assert 0 < layers_num < 4, "1 <= layers_num <= 3" assert layers_type in ['LSTM', 'GRU'], "layers_type is LSTM or GRU" assert 0 <= dropout < 1, "dropout must be float < 1" assert model_name[-3:] == '.h5', "End model_name with '.h5'" #initialise self.model_name = model_name self.length = length self.layers_num = layers_num self.layers_type = layers_type self.units = units self.num_step_preds = num_step_preds self.dropout = dropout self.g_filt = g_filt self.epochs = epochs self.batch_size = batch_size self.n_features = 1 #callbacks self.callbacks =[EarlyStopping(monitor='val_loss', patience=patience),\ ModelCheckpoint(self.model_name, monitor='val_loss',\ save_best_only=True)] #BUILD MODEL ##inputs self.model = Sequential() self.model.add(InputLayer(input_shape=(self.length, self.n_features))) ##add extra layers as required (or not if layers_num = 1) for i in range(layers_num - 1): self.model.add(eval('{}(units={}, dropout={}, return_sequences=True)'\ .format(self.layers_type, self.units, self.dropout))) ##closing rnn layer (do not return squences) self.model.add(eval('{}(units={}, dropout={})'\ .format(self.layers_type, self.units, self.dropout))) ##Dense output self.model.add(Dense(units=self.num_step_preds)) #compile model self.model.compile(optimizer='adam', loss='mse', metrics=['mae']) def setupData(self, series, val_days=450): """ splits data, scales data, creates generators for the model """ assert val_days > self.length , "val_days must exceed lenght" #split data into train and validation self.train = series.iloc[:-val_days] self.validation = series.iloc[-val_days:] #Apply smoothing filters self.train_smooth = \ gaussian_filter1d(self.train, self.g_filt)\ .reshape(-1,1) self.validation_smooth = \ gaussian_filter1d(self.validation, self.g_filt)\ .reshape(-1,1) #create time series generators self.generator = \ TimeseriesGenerator(data=self.train_smooth,\ targets=self.train_smooth,\ length=self.length,\ batch_size=self.batch_size) self.val_generator = \ TimeseriesGenerator(data=self.validation_smooth,\ targets=self.validation_smooth,\ length=self.length,\ batch_size=self.batch_size) def fitModel(self): """ Fits the model on your generators for training and validation sets. EarlyStopping call back ends training if val_loss doesnt improve. Record epoch metrics in a DataFrame. """ self.model.fit(self.generator, validation_data=self.val_generator,\ epochs=self.epochs, callbacks=self.callbacks) self.history = pd.DataFrame(self.model.history.history) def loadModel(self): """ Load a model instead of fitting a new one (uses model_name) """ self.model = tf.keras.models.load_model(self.model_name) def predAhead(self, days, series=None): """ Predicts a number of days ahead set by the user. Input your own series or dont if you want to predict off of the validation set. """ assert self.num_step_preds == 1,\ "sorry, function not yet available for multi step models" #use end of the validation set to project forward if no series given if series is None: series = self.validation #get end of the series to plug into the model assert len(series) >= self.length,\ "series must be at least {} days".format(self.length) series_cut = series.iloc[-self.length:].values.reshape(-1,1) #predict ahead by appending predictions and removing first values pred_series = series_cut.reshape(1, self.length, self.n_features) predictions = [] for i in range(days): pred = self.model.predict(pred_series) pred_series = np.append(pred_series[:,1:,:], [pred], axis=1) predictions.append(pred) #convert to pandas series predictions = np.array(predictions) predictions = pd.Series(predictions.reshape(days)) predictions.index = self.validation.index[-days:] +\ dt.timedelta(days=days) return predictions def plotPreds(self, predictions, test_series=None, run_up=None,\ ylabel='units'): """ plot the predictions of the model. plot them against another series (test series). plot with with a run up leading to the pred period (validation set). """ #set up figure plt.figure(figsize=(10,6)) plt.ylabel(ylabel) plt.xlabel('datetime') #plot lines if run_up is None: run_up = self.validation[-7:] if test_series is not None: plt.plot(pd.concat([run_up, test_series[:1]])) plt.plot(test_series) else: plt.plot(run_up) #plot points plt.scatter(predictions.index, predictions, edgecolors='k',\ label='predictions', c='#2ca02c', s=64) if test_series is not None: plt.scatter(test_series.index, test_series, marker='X',\ edgecolors='k', label='test_data', c='#ff7f0e', s=200) plt.legend() def fastSearch(data: pd.Series, length: list, layers_num: list,\ layers_type: list, units: list, g_filt: list, model_name: str,\ best_dict=None): """ First it will set all hyperparameters to their first value in the lists we pass in. Then list by list it will train the model, keeping the best performing element in that list. Its recommended that you pass in the resulting dictionary into this function a second time. """ #record time for file_name time_now = str(round(time.time())) #set initial values if no specified parameters given. if best_dict is None: best_dict = {} best_dict['length'] = [length[0], length] best_dict['layers_num'] = [layers_num[0], layers_num] best_dict['layers_type'] = [layers_type[0], layers_type] best_dict['units'] = [units[0], units] best_dict['g_filt'] = [g_filt[0], g_filt] records = pd.DataFrame() #go through each hyperparameter for key in best_dict.keys(): if len(best_dict[key][1]) == 0: continue scores = [] #go through each value for item in best_dict[key][1]: best_dict[key][0] = item model = \ BuildModel(model_name=model_name,\ length=best_dict['length'][0],\ layers_num=best_dict['layers_num'][0], \ layers_type=best_dict['layers_type'][0],\ units=best_dict['units'][0],\ g_filt=best_dict['g_filt'][0], num_step_preds=1,\ epochs=120, batch_size=10, patience=15) #setup data and train the model model.setupData(data) model.fitModel() #calculate val_mae in unsmoothed original units best_model = tf.keras.models.load_model(model_name) preds = best_model.predict(model.val_generator) preds = pd.Series(preds[:,0],\ index = model.validation[model.length:].index) val_mae_og = (preds - model.validation[model.length:]).abs()\ .mean() record = pd.DataFrame(best_dict).iloc[:1] record['val_mae_og'] = val_mae_og #append score scores.append(val_mae_og) records = records.append(record) records.to_csv('records_' + time_now + '.csv', index=False) #get param value that performed the best best_score = min(scores) best_dict[key][0] = best_dict[key][1][scores.index(best_score)] return records, best_dict ###Output _____no_output_____ ###Markdown Use functions and class to optimise a model ###Code length = [15, 30, 60] layers_num = [1, 2] layers_type = ['LSTM'] units = [20, 40, 80] g_filt = [0.5, 0.75, 1.0, 1.25] model_name = 'windspeed_model.h5' records, best_dict = fastSearch(wind_train, length, layers_num, layers_type, units, g_filt, model_name=model_name, best_dict=None) records2, best_dict2 = fastSearch(wind_train, length, layers_num, layers_type, units, g_filt, model_name=model_name, best_dict=best_dict) records_all = pd.concat([records,records2]) ###Output Epoch 1/120 193/193 [==============================] - 9s 6ms/step - loss: 102.9898 - mae: 8.5735 - val_loss: 82.2140 - val_mae: 7.9981 Epoch 2/120 193/193 [==============================] - 1s 4ms/step - loss: 36.6651 - mae: 4.6356 - val_loss: 38.9598 - val_mae: 4.9047 Epoch 3/120 193/193 [==============================] - 1s 4ms/step - loss: 20.6372 - mae: 3.2892 - val_loss: 25.2359 - val_mae: 3.8174 Epoch 4/120 193/193 [==============================] - 1s 4ms/step - loss: 15.9589 - mae: 2.8945 - val_loss: 20.5559 - val_mae: 3.4515 Epoch 5/120 193/193 [==============================] - 1s 4ms/step - loss: 13.7239 - mae: 2.6912 - val_loss: 17.5182 - val_mae: 3.1843 Epoch 6/120 193/193 [==============================] - 1s 4ms/step - loss: 12.2725 - mae: 2.5679 - val_loss: 15.4971 - val_mae: 3.0199 Epoch 7/120 193/193 [==============================] - 1s 4ms/step - loss: 11.4784 - mae: 2.4965 - val_loss: 14.5550 - val_mae: 2.9185 Epoch 8/120 193/193 [==============================] - 1s 4ms/step - loss: 10.9679 - mae: 2.4512 - val_loss: 13.8088 - val_mae: 2.8335 Epoch 9/120 193/193 [==============================] - 1s 4ms/step - loss: 10.5199 - mae: 2.4050 - val_loss: 13.0951 - val_mae: 2.7648 Epoch 10/120 193/193 [==============================] - 1s 4ms/step - loss: 10.1449 - mae: 2.3587 - val_loss: 12.2948 - val_mae: 2.7262 Epoch 11/120 193/193 [==============================] - 1s 4ms/step - loss: 9.8840 - mae: 2.3495 - val_loss: 12.1082 - val_mae: 2.6831 Epoch 12/120 193/193 [==============================] - 1s 4ms/step - loss: 9.7451 - mae: 2.3219 - val_loss: 11.7038 - val_mae: 2.6722 Epoch 13/120 193/193 [==============================] - 1s 4ms/step - loss: 9.6136 - mae: 2.3232 - val_loss: 11.4502 - val_mae: 2.6464 Epoch 14/120 193/193 [==============================] - 1s 4ms/step - loss: 9.4382 - mae: 2.3075 - val_loss: 11.3384 - val_mae: 2.6243 Epoch 15/120 193/193 [==============================] - 1s 4ms/step - loss: 9.3586 - mae: 2.3017 - val_loss: 11.2987 - val_mae: 2.6062 Epoch 16/120 193/193 [==============================] - 1s 5ms/step - loss: 9.2485 - mae: 2.2850 - val_loss: 11.0830 - val_mae: 2.5979 Epoch 17/120 193/193 [==============================] - 1s 4ms/step - loss: 9.1846 - mae: 2.2819 - val_loss: 11.1557 - val_mae: 2.5872 Epoch 18/120 193/193 [==============================] - 1s 4ms/step - loss: 9.0944 - mae: 2.2813 - val_loss: 11.1157 - val_mae: 2.5820 Epoch 19/120 193/193 [==============================] - 1s 4ms/step - loss: 9.0528 - mae: 2.2693 - val_loss: 10.9849 - val_mae: 2.5760 Epoch 20/120 193/193 [==============================] - 1s 4ms/step - loss: 9.0233 - mae: 2.2689 - val_loss: 10.9485 - val_mae: 2.5727 Epoch 21/120 193/193 [==============================] - 1s 4ms/step - loss: 8.9747 - mae: 2.2681 - val_loss: 11.1215 - val_mae: 2.5761 Epoch 22/120 193/193 [==============================] - 1s 4ms/step - loss: 8.9402 - mae: 2.2562 - val_loss: 10.6692 - val_mae: 2.5831 Epoch 23/120 193/193 [==============================] - 1s 4ms/step - loss: 8.9524 - mae: 2.2725 - val_loss: 10.7282 - val_mae: 2.5599 Epoch 24/120 193/193 [==============================] - 1s 4ms/step - loss: 8.9116 - mae: 2.2549 - val_loss: 10.8092 - val_mae: 2.5693 Epoch 25/120 193/193 [==============================] - 1s 4ms/step - loss: 8.8490 - mae: 2.2541 - val_loss: 10.6496 - val_mae: 2.5526 Epoch 26/120 193/193 [==============================] - 1s 4ms/step - loss: 8.8577 - mae: 2.2573 - val_loss: 10.6735 - val_mae: 2.5548 Epoch 27/120 193/193 [==============================] - 1s 4ms/step - loss: 8.8271 - mae: 2.2582 - val_loss: 10.5758 - val_mae: 2.5716 Epoch 28/120 193/193 [==============================] - 1s 4ms/step - loss: 8.8201 - mae: 2.2508 - val_loss: 10.5495 - val_mae: 2.5617 Epoch 29/120 193/193 [==============================] - 1s 4ms/step - loss: 8.8480 - mae: 2.2579 - val_loss: 10.7012 - val_mae: 2.5484 Epoch 30/120 193/193 [==============================] - 1s 4ms/step - loss: 8.7662 - mae: 2.2502 - val_loss: 10.6394 - val_mae: 2.5572 Epoch 31/120 193/193 [==============================] - 1s 4ms/step - loss: 8.7385 - mae: 2.2454 - val_loss: 10.6550 - val_mae: 2.5690 Epoch 32/120 193/193 [==============================] - 1s 4ms/step - loss: 8.7054 - mae: 2.2391 - val_loss: 10.6583 - val_mae: 2.5368 Epoch 33/120 193/193 [==============================] - 1s 4ms/step - loss: 8.7467 - mae: 2.2539 - val_loss: 11.1412 - val_mae: 2.5630 Epoch 34/120 193/193 [==============================] - 1s 4ms/step - loss: 8.7284 - mae: 2.2355 - val_loss: 10.5814 - val_mae: 2.5452 Epoch 35/120 193/193 [==============================] - 1s 4ms/step - loss: 8.6677 - mae: 2.2425 - val_loss: 10.5712 - val_mae: 2.5505 Epoch 36/120 193/193 [==============================] - 1s 4ms/step - loss: 8.6144 - mae: 2.2264 - val_loss: 10.6580 - val_mae: 2.5576 Epoch 37/120 193/193 [==============================] - 1s 4ms/step - loss: 8.7333 - mae: 2.2509 - val_loss: 10.9461 - val_mae: 2.5473 Epoch 38/120 193/193 [==============================] - 1s 4ms/step - loss: 8.6164 - mae: 2.2309 - val_loss: 11.0234 - val_mae: 2.5568 Epoch 39/120 193/193 [==============================] - 1s 4ms/step - loss: 8.6321 - mae: 2.2324 - val_loss: 10.8174 - val_mae: 2.5416 Epoch 40/120 193/193 [==============================] - 1s 4ms/step - loss: 8.5687 - mae: 2.2204 - val_loss: 10.5796 - val_mae: 2.5489 Epoch 41/120 193/193 [==============================] - 1s 4ms/step - loss: 8.5943 - mae: 2.2276 - val_loss: 10.8227 - val_mae: 2.5419 Epoch 42/120 193/193 [==============================] - 1s 4ms/step - loss: 8.6129 - mae: 2.2255 - val_loss: 10.4823 - val_mae: 2.5696 Epoch 43/120 193/193 [==============================] - 1s 4ms/step - loss: 8.6171 - mae: 2.2400 - val_loss: 10.6926 - val_mae: 2.5391 Epoch 44/120 193/193 [==============================] - 1s 4ms/step - loss: 8.5602 - mae: 2.2266 - val_loss: 10.5435 - val_mae: 2.5376 Epoch 45/120 193/193 [==============================] - 1s 4ms/step - loss: 8.5761 - mae: 2.2305 - val_loss: 10.8760 - val_mae: 2.5386 Epoch 46/120 193/193 [==============================] - 1s 4ms/step - loss: 8.5536 - mae: 2.2189 - val_loss: 10.4737 - val_mae: 2.5479 Epoch 47/120 193/193 [==============================] - 1s 4ms/step - loss: 8.6192 - mae: 2.2429 - val_loss: 10.8762 - val_mae: 2.5580 Epoch 48/120 193/193 [==============================] - 1s 4ms/step - loss: 8.5568 - mae: 2.2305 - val_loss: 10.7797 - val_mae: 2.5459 Epoch 49/120 193/193 [==============================] - 1s 4ms/step - loss: 8.5097 - mae: 2.2209 - val_loss: 10.6652 - val_mae: 2.5437 Epoch 50/120 193/193 [==============================] - 1s 4ms/step - loss: 8.6016 - mae: 2.2371 - val_loss: 10.6007 - val_mae: 2.5473 Epoch 51/120 193/193 [==============================] - 1s 4ms/step - loss: 8.5076 - mae: 2.2241 - val_loss: 10.4225 - val_mae: 2.5441 Epoch 52/120 193/193 [==============================] - 1s 4ms/step - loss: 8.4789 - mae: 2.2198 - val_loss: 10.8581 - val_mae: 2.5391 Epoch 53/120 193/193 [==============================] - 1s 4ms/step - loss: 8.5279 - mae: 2.2290 - val_loss: 10.7700 - val_mae: 2.5452 Epoch 54/120 193/193 [==============================] - 1s 4ms/step - loss: 8.5398 - mae: 2.2181 - val_loss: 10.6172 - val_mae: 2.5405 Epoch 55/120 193/193 [==============================] - 1s 4ms/step - loss: 8.4479 - mae: 2.2175 - val_loss: 10.6971 - val_mae: 2.5608 Epoch 56/120 193/193 [==============================] - 1s 4ms/step - loss: 8.4527 - mae: 2.2185 - val_loss: 10.9560 - val_mae: 2.5656 Epoch 57/120 193/193 [==============================] - 1s 4ms/step - loss: 8.5134 - mae: 2.2174 - val_loss: 10.9845 - val_mae: 2.5550 Epoch 58/120 193/193 [==============================] - 1s 4ms/step - loss: 8.4999 - mae: 2.2214 - val_loss: 10.8421 - val_mae: 2.5603 Epoch 59/120 193/193 [==============================] - 1s 4ms/step - loss: 8.5145 - mae: 2.2200 - val_loss: 10.5576 - val_mae: 2.5532 Epoch 60/120 193/193 [==============================] - 1s 4ms/step - loss: 8.5185 - mae: 2.2257 - val_loss: 10.8886 - val_mae: 2.5909 Epoch 61/120 193/193 [==============================] - 1s 4ms/step - loss: 8.4922 - mae: 2.2187 - val_loss: 10.6573 - val_mae: 2.5450 Epoch 62/120 193/193 [==============================] - 1s 4ms/step - loss: 8.4689 - mae: 2.2215 - val_loss: 10.7658 - val_mae: 2.5705 Epoch 63/120 193/193 [==============================] - 1s 4ms/step - loss: 8.4505 - mae: 2.2110 - val_loss: 10.4780 - val_mae: 2.5672 Epoch 64/120 193/193 [==============================] - 1s 4ms/step - loss: 8.4688 - mae: 2.2209 - val_loss: 10.9126 - val_mae: 2.5583 Epoch 65/120 193/193 [==============================] - 1s 4ms/step - loss: 8.4682 - mae: 2.2087 - val_loss: 10.6133 - val_mae: 2.5491 Epoch 66/120 193/193 [==============================] - 1s 4ms/step - loss: 8.4291 - mae: 2.2134 - val_loss: 10.6057 - val_mae: 2.5652 Epoch 1/120 192/192 [==============================] - 2s 6ms/step - loss: 75.5513 - mae: 7.0420 - val_loss: 49.8008 - val_mae: 5.8144 Epoch 2/120 192/192 [==============================] - 1s 4ms/step - loss: 26.9782 - mae: 3.9032 - val_loss: 29.4137 - val_mae: 4.1548 Epoch 3/120 192/192 [==============================] - 1s 4ms/step - loss: 18.2644 - mae: 3.1075 - val_loss: 21.3893 - val_mae: 3.5068 Epoch 4/120 192/192 [==============================] - 1s 4ms/step - loss: 15.2662 - mae: 2.8570 - val_loss: 18.2926 - val_mae: 3.2566 Epoch 5/120 192/192 [==============================] - 1s 4ms/step - loss: 13.6563 - mae: 2.7052 - val_loss: 16.6125 - val_mae: 3.1025 Epoch 6/120 192/192 [==============================] - 1s 4ms/step - loss: 12.4442 - mae: 2.5844 - val_loss: 14.8516 - val_mae: 2.9511 Epoch 7/120 192/192 [==============================] - 1s 5ms/step - loss: 11.6541 - mae: 2.5081 - val_loss: 13.8085 - val_mae: 2.8557 Epoch 8/120 192/192 [==============================] - 1s 4ms/step - loss: 10.9818 - mae: 2.4573 - val_loss: 12.9892 - val_mae: 2.7736 Epoch 9/120 192/192 [==============================] - 1s 4ms/step - loss: 10.5274 - mae: 2.4012 - val_loss: 12.4264 - val_mae: 2.7081 Epoch 10/120 192/192 [==============================] - 1s 4ms/step - loss: 10.2272 - mae: 2.3794 - val_loss: 12.0140 - val_mae: 2.6641 Epoch 11/120 192/192 [==============================] - 1s 4ms/step - loss: 10.0260 - mae: 2.3652 - val_loss: 11.7963 - val_mae: 2.6332 Epoch 12/120 192/192 [==============================] - 1s 4ms/step - loss: 9.7689 - mae: 2.3333 - val_loss: 11.3748 - val_mae: 2.6103 Epoch 13/120 192/192 [==============================] - 1s 4ms/step - loss: 9.7073 - mae: 2.3379 - val_loss: 11.2850 - val_mae: 2.5863 Epoch 14/120 192/192 [==============================] - 1s 4ms/step - loss: 9.4714 - mae: 2.3125 - val_loss: 11.0384 - val_mae: 2.5717 Epoch 15/120 192/192 [==============================] - 1s 4ms/step - loss: 9.4539 - mae: 2.3098 - val_loss: 10.8792 - val_mae: 2.5530 Epoch 16/120 192/192 [==============================] - 1s 4ms/step - loss: 9.2818 - mae: 2.2944 - val_loss: 10.8738 - val_mae: 2.5456 Epoch 17/120 192/192 [==============================] - 1s 4ms/step - loss: 9.2347 - mae: 2.2945 - val_loss: 10.7068 - val_mae: 2.5411 Epoch 18/120 192/192 [==============================] - 1s 4ms/step - loss: 9.1435 - mae: 2.2825 - val_loss: 10.7186 - val_mae: 2.5309 Epoch 19/120 192/192 [==============================] - 1s 4ms/step - loss: 9.1357 - mae: 2.2920 - val_loss: 10.7056 - val_mae: 2.5234 Epoch 20/120 192/192 [==============================] - 1s 4ms/step - loss: 9.1089 - mae: 2.2880 - val_loss: 10.4769 - val_mae: 2.5362 Epoch 21/120 192/192 [==============================] - 1s 4ms/step - loss: 9.0088 - mae: 2.2801 - val_loss: 10.8716 - val_mae: 2.5147 Epoch 22/120 192/192 [==============================] - 1s 4ms/step - loss: 9.0565 - mae: 2.2857 - val_loss: 10.7129 - val_mae: 2.5092 Epoch 23/120 192/192 [==============================] - 1s 4ms/step - loss: 8.9165 - mae: 2.2649 - val_loss: 10.5495 - val_mae: 2.5021 Epoch 24/120 192/192 [==============================] - 1s 4ms/step - loss: 8.9019 - mae: 2.2611 - val_loss: 10.4276 - val_mae: 2.5068 Epoch 25/120 192/192 [==============================] - 1s 4ms/step - loss: 8.9089 - mae: 2.2626 - val_loss: 10.4333 - val_mae: 2.5011 Epoch 26/120 192/192 [==============================] - 1s 4ms/step - loss: 8.9435 - mae: 2.2881 - val_loss: 10.3929 - val_mae: 2.5023 Epoch 27/120 192/192 [==============================] - 1s 4ms/step - loss: 8.8720 - mae: 2.2559 - val_loss: 10.6782 - val_mae: 2.5089 Epoch 28/120 192/192 [==============================] - 1s 4ms/step - loss: 8.8657 - mae: 2.2678 - val_loss: 10.3450 - val_mae: 2.5014 Epoch 29/120 192/192 [==============================] - 1s 4ms/step - loss: 8.8428 - mae: 2.2605 - val_loss: 10.2974 - val_mae: 2.5044 Epoch 30/120 192/192 [==============================] - 1s 4ms/step - loss: 8.8811 - mae: 2.2663 - val_loss: 10.3579 - val_mae: 2.4966 Epoch 31/120 192/192 [==============================] - 1s 4ms/step - loss: 8.8149 - mae: 2.2553 - val_loss: 10.2225 - val_mae: 2.5084 Epoch 32/120 192/192 [==============================] - 1s 4ms/step - loss: 8.7989 - mae: 2.2582 - val_loss: 10.3342 - val_mae: 2.4974 Epoch 33/120 192/192 [==============================] - 1s 5ms/step - loss: 8.8140 - mae: 2.2657 - val_loss: 10.3842 - val_mae: 2.4930 Epoch 34/120 192/192 [==============================] - 1s 5ms/step - loss: 8.7851 - mae: 2.2627 - val_loss: 10.3721 - val_mae: 2.4931 Epoch 35/120 192/192 [==============================] - 1s 5ms/step - loss: 8.7592 - mae: 2.2539 - val_loss: 10.2852 - val_mae: 2.5017 Epoch 36/120 192/192 [==============================] - 1s 4ms/step - loss: 8.8059 - mae: 2.2615 - val_loss: 10.3086 - val_mae: 2.5101 Epoch 37/120 192/192 [==============================] - 1s 5ms/step - loss: 8.7755 - mae: 2.2524 - val_loss: 10.2848 - val_mae: 2.5299 Epoch 38/120 192/192 [==============================] - 1s 5ms/step - loss: 8.7353 - mae: 2.2580 - val_loss: 10.4290 - val_mae: 2.5898 Epoch 39/120 192/192 [==============================] - 1s 4ms/step - loss: 8.7542 - mae: 2.2579 - val_loss: 10.3680 - val_mae: 2.4928 Epoch 40/120 192/192 [==============================] - 1s 4ms/step - loss: 8.7533 - mae: 2.2524 - val_loss: 10.2179 - val_mae: 2.4995 Epoch 41/120 192/192 [==============================] - 1s 4ms/step - loss: 8.8170 - mae: 2.2652 - val_loss: 10.3209 - val_mae: 2.5001 Epoch 42/120 192/192 [==============================] - 1s 4ms/step - loss: 8.7192 - mae: 2.2527 - val_loss: 10.2523 - val_mae: 2.5458 Epoch 43/120 192/192 [==============================] - 1s 4ms/step - loss: 8.7153 - mae: 2.2458 - val_loss: 10.2374 - val_mae: 2.5056 Epoch 44/120 192/192 [==============================] - 1s 4ms/step - loss: 8.6691 - mae: 2.2557 - val_loss: 10.3271 - val_mae: 2.5478 Epoch 45/120 192/192 [==============================] - 1s 4ms/step - loss: 8.6926 - mae: 2.2449 - val_loss: 10.2575 - val_mae: 2.4962 Epoch 46/120 192/192 [==============================] - 1s 4ms/step - loss: 8.7045 - mae: 2.2532 - val_loss: 10.3379 - val_mae: 2.4960 Epoch 47/120 192/192 [==============================] - 1s 4ms/step - loss: 8.6785 - mae: 2.2408 - val_loss: 10.3721 - val_mae: 2.5038 Epoch 48/120 192/192 [==============================] - 1s 4ms/step - loss: 8.6699 - mae: 2.2496 - val_loss: 10.2432 - val_mae: 2.5188 Epoch 49/120 192/192 [==============================] - 1s 4ms/step - loss: 8.6677 - mae: 2.2474 - val_loss: 10.4030 - val_mae: 2.5042 Epoch 50/120 192/192 [==============================] - 1s 4ms/step - loss: 8.7988 - mae: 2.2575 - val_loss: 10.3358 - val_mae: 2.5017 Epoch 51/120 192/192 [==============================] - 1s 4ms/step - loss: 8.7300 - mae: 2.2558 - val_loss: 10.2846 - val_mae: 2.5114 Epoch 52/120 192/192 [==============================] - 1s 4ms/step - loss: 8.7205 - mae: 2.2592 - val_loss: 10.3162 - val_mae: 2.5054 Epoch 53/120 192/192 [==============================] - 1s 4ms/step - loss: 8.6798 - mae: 2.2405 - val_loss: 10.2240 - val_mae: 2.5130 Epoch 54/120 192/192 [==============================] - 1s 5ms/step - loss: 8.6471 - mae: 2.2395 - val_loss: 10.2159 - val_mae: 2.5229 Epoch 55/120 192/192 [==============================] - 1s 4ms/step - loss: 8.6252 - mae: 2.2405 - val_loss: 10.3301 - val_mae: 2.4969 Epoch 56/120 192/192 [==============================] - 1s 4ms/step - loss: 8.6456 - mae: 2.2420 - val_loss: 10.6939 - val_mae: 2.5036 Epoch 57/120 192/192 [==============================] - 1s 4ms/step - loss: 8.6409 - mae: 2.2395 - val_loss: 10.1474 - val_mae: 2.5256 Epoch 58/120 192/192 [==============================] - 1s 4ms/step - loss: 8.6611 - mae: 2.2453 - val_loss: 10.2702 - val_mae: 2.4976 Epoch 59/120 192/192 [==============================] - 1s 4ms/step - loss: 8.6252 - mae: 2.2373 - val_loss: 10.6019 - val_mae: 2.5009 Epoch 60/120 192/192 [==============================] - 1s 4ms/step - loss: 8.6909 - mae: 2.2455 - val_loss: 10.3989 - val_mae: 2.5057 Epoch 61/120 192/192 [==============================] - 1s 5ms/step - loss: 8.6813 - mae: 2.2456 - val_loss: 10.2135 - val_mae: 2.5154 Epoch 62/120 192/192 [==============================] - 1s 4ms/step - loss: 8.5697 - mae: 2.2310 - val_loss: 10.6348 - val_mae: 2.6235 Epoch 63/120 192/192 [==============================] - 1s 4ms/step - loss: 8.6712 - mae: 2.2478 - val_loss: 10.2081 - val_mae: 2.5027 Epoch 64/120 192/192 [==============================] - 1s 4ms/step - loss: 8.6152 - mae: 2.2409 - val_loss: 10.3409 - val_mae: 2.5741 Epoch 65/120 192/192 [==============================] - 1s 5ms/step - loss: 8.6442 - mae: 2.2458 - val_loss: 10.3269 - val_mae: 2.5082 Epoch 66/120 192/192 [==============================] - 1s 4ms/step - loss: 8.6344 - mae: 2.2332 - val_loss: 10.3398 - val_mae: 2.5079 Epoch 67/120 192/192 [==============================] - 1s 5ms/step - loss: 8.6371 - mae: 2.2362 - val_loss: 10.4632 - val_mae: 2.4968 Epoch 68/120 192/192 [==============================] - 1s 4ms/step - loss: 8.9263 - mae: 2.2816 - val_loss: 10.2883 - val_mae: 2.5081 Epoch 69/120 192/192 [==============================] - 1s 4ms/step - loss: 8.6669 - mae: 2.2443 - val_loss: 10.2221 - val_mae: 2.5062 Epoch 70/120 192/192 [==============================] - 1s 4ms/step - loss: 8.5869 - mae: 2.2355 - val_loss: 10.2767 - val_mae: 2.5085 Epoch 71/120 192/192 [==============================] - 1s 4ms/step - loss: 8.6124 - mae: 2.2422 - val_loss: 10.2666 - val_mae: 2.5509 Epoch 72/120 192/192 [==============================] - 1s 5ms/step - loss: 8.5911 - mae: 2.2297 - val_loss: 10.1590 - val_mae: 2.5225 Epoch 1/120 189/189 [==============================] - 3s 8ms/step - loss: 79.6780 - mae: 7.5141 - val_loss: 69.2531 - val_mae: 7.1896 Epoch 2/120 189/189 [==============================] - 1s 5ms/step - loss: 32.8572 - mae: 4.3591 - val_loss: 32.3264 - val_mae: 4.3751 Epoch 3/120 189/189 [==============================] - 1s 5ms/step - loss: 19.2780 - mae: 3.1871 - val_loss: 22.8465 - val_mae: 3.6194 Epoch 4/120 189/189 [==============================] - 1s 5ms/step - loss: 15.8059 - mae: 2.9116 - val_loss: 19.1829 - val_mae: 3.3260 Epoch 5/120 189/189 [==============================] - 1s 5ms/step - loss: 14.1849 - mae: 2.7618 - val_loss: 17.0166 - val_mae: 3.1394 Epoch 6/120 189/189 [==============================] - 1s 5ms/step - loss: 12.7945 - mae: 2.6351 - val_loss: 15.5708 - val_mae: 2.9971 Epoch 7/120 189/189 [==============================] - 1s 5ms/step - loss: 11.8979 - mae: 2.5508 - val_loss: 14.5077 - val_mae: 2.8834 Epoch 8/120 189/189 [==============================] - 1s 5ms/step - loss: 11.2758 - mae: 2.4769 - val_loss: 13.7724 - val_mae: 2.8007 Epoch 9/120 189/189 [==============================] - 1s 5ms/step - loss: 10.8372 - mae: 2.4392 - val_loss: 12.8656 - val_mae: 2.7292 Epoch 10/120 189/189 [==============================] - 1s 5ms/step - loss: 10.4353 - mae: 2.4096 - val_loss: 12.3030 - val_mae: 2.6842 Epoch 11/120 189/189 [==============================] - 1s 5ms/step - loss: 10.1791 - mae: 2.3852 - val_loss: 12.2240 - val_mae: 2.6477 Epoch 12/120 189/189 [==============================] - 1s 5ms/step - loss: 10.0447 - mae: 2.3739 - val_loss: 11.7836 - val_mae: 2.6156 Epoch 13/120 189/189 [==============================] - 1s 5ms/step - loss: 9.8004 - mae: 2.3548 - val_loss: 12.0130 - val_mae: 2.6087 Epoch 14/120 189/189 [==============================] - 1s 5ms/step - loss: 9.7237 - mae: 2.3519 - val_loss: 11.3019 - val_mae: 2.5792 Epoch 15/120 189/189 [==============================] - 1s 5ms/step - loss: 9.5773 - mae: 2.3393 - val_loss: 11.1059 - val_mae: 2.5712 Epoch 16/120 189/189 [==============================] - 1s 5ms/step - loss: 9.4510 - mae: 2.3197 - val_loss: 11.1110 - val_mae: 2.5571 Epoch 17/120 189/189 [==============================] - 1s 5ms/step - loss: 9.4025 - mae: 2.3213 - val_loss: 10.9291 - val_mae: 2.5534 Epoch 18/120 189/189 [==============================] - 1s 5ms/step - loss: 9.3563 - mae: 2.3197 - val_loss: 10.9746 - val_mae: 2.5475 Epoch 19/120 189/189 [==============================] - 1s 5ms/step - loss: 9.2654 - mae: 2.3093 - val_loss: 10.9812 - val_mae: 2.5312 Epoch 20/120 189/189 [==============================] - 1s 5ms/step - loss: 9.1652 - mae: 2.2952 - val_loss: 10.9372 - val_mae: 2.5266 Epoch 21/120 189/189 [==============================] - 1s 5ms/step - loss: 9.2137 - mae: 2.3077 - val_loss: 11.0479 - val_mae: 2.5342 Epoch 22/120 189/189 [==============================] - 1s 5ms/step - loss: 9.1363 - mae: 2.3028 - val_loss: 10.6296 - val_mae: 2.5252 Epoch 23/120 189/189 [==============================] - 1s 5ms/step - loss: 9.0798 - mae: 2.2968 - val_loss: 10.6519 - val_mae: 2.5340 Epoch 24/120 189/189 [==============================] - 1s 5ms/step - loss: 9.0520 - mae: 2.2918 - val_loss: 10.6462 - val_mae: 2.5147 Epoch 25/120 189/189 [==============================] - 1s 5ms/step - loss: 9.0396 - mae: 2.2961 - val_loss: 10.6514 - val_mae: 2.5119 Epoch 26/120 189/189 [==============================] - 1s 5ms/step - loss: 9.0711 - mae: 2.3017 - val_loss: 11.1931 - val_mae: 2.5316 Epoch 27/120 189/189 [==============================] - 1s 5ms/step - loss: 9.0062 - mae: 2.2888 - val_loss: 10.6526 - val_mae: 2.5105 Epoch 28/120 189/189 [==============================] - 1s 5ms/step - loss: 9.1337 - mae: 2.3077 - val_loss: 10.7814 - val_mae: 2.5160 Epoch 29/120 189/189 [==============================] - 1s 5ms/step - loss: 9.0970 - mae: 2.3102 - val_loss: 10.4648 - val_mae: 2.5186 Epoch 30/120 189/189 [==============================] - 1s 5ms/step - loss: 8.9470 - mae: 2.2823 - val_loss: 10.7872 - val_mae: 2.5088 Epoch 31/120 189/189 [==============================] - 1s 5ms/step - loss: 8.8602 - mae: 2.2731 - val_loss: 10.4500 - val_mae: 2.5271 Epoch 32/120 189/189 [==============================] - 1s 5ms/step - loss: 9.0137 - mae: 2.2922 - val_loss: 10.5368 - val_mae: 2.5555 Epoch 33/120 189/189 [==============================] - 1s 5ms/step - loss: 8.8714 - mae: 2.2760 - val_loss: 10.4605 - val_mae: 2.5132 Epoch 34/120 189/189 [==============================] - 1s 5ms/step - loss: 8.8765 - mae: 2.2889 - val_loss: 10.4839 - val_mae: 2.5046 Epoch 35/120 189/189 [==============================] - 1s 5ms/step - loss: 8.9761 - mae: 2.2953 - val_loss: 10.6897 - val_mae: 2.5083 Epoch 36/120 189/189 [==============================] - 1s 5ms/step - loss: 8.8752 - mae: 2.2776 - val_loss: 10.6213 - val_mae: 2.5027 Epoch 37/120 189/189 [==============================] - 1s 5ms/step - loss: 8.8383 - mae: 2.2741 - val_loss: 10.4840 - val_mae: 2.5053 Epoch 38/120 189/189 [==============================] - 1s 5ms/step - loss: 9.0348 - mae: 2.3067 - val_loss: 10.5366 - val_mae: 2.4981 Epoch 39/120 189/189 [==============================] - 1s 5ms/step - loss: 8.8284 - mae: 2.2761 - val_loss: 10.5014 - val_mae: 2.5093 Epoch 40/120 189/189 [==============================] - 1s 5ms/step - loss: 8.9381 - mae: 2.2916 - val_loss: 10.4613 - val_mae: 2.5086 Epoch 41/120 189/189 [==============================] - 1s 5ms/step - loss: 8.8344 - mae: 2.2698 - val_loss: 10.4947 - val_mae: 2.5092 Epoch 42/120 189/189 [==============================] - 1s 5ms/step - loss: 8.7768 - mae: 2.2692 - val_loss: 10.4827 - val_mae: 2.5264 Epoch 43/120 189/189 [==============================] - 1s 5ms/step - loss: 8.7773 - mae: 2.2680 - val_loss: 10.4542 - val_mae: 2.5452 Epoch 44/120 189/189 [==============================] - 1s 5ms/step - loss: 8.8236 - mae: 2.2774 - val_loss: 10.5366 - val_mae: 2.5653 Epoch 45/120 189/189 [==============================] - 1s 5ms/step - loss: 8.7967 - mae: 2.2802 - val_loss: 10.4841 - val_mae: 2.5070 Epoch 46/120 189/189 [==============================] - 1s 5ms/step - loss: 8.9218 - mae: 2.2895 - val_loss: 10.4901 - val_mae: 2.5739 Epoch 1/120 192/192 [==============================] - 2s 6ms/step - loss: 88.2063 - mae: 7.9205 - val_loss: 66.7991 - val_mae: 7.0538 Epoch 2/120 192/192 [==============================] - 1s 4ms/step - loss: 31.4810 - mae: 4.2085 - val_loss: 29.8336 - val_mae: 4.1892 Epoch 3/120 192/192 [==============================] - 1s 4ms/step - loss: 18.0396 - mae: 3.0821 - val_loss: 20.9731 - val_mae: 3.4738 Epoch 4/120 192/192 [==============================] - 1s 4ms/step - loss: 14.9910 - mae: 2.8362 - val_loss: 17.7064 - val_mae: 3.1981 Epoch 5/120 192/192 [==============================] - 1s 5ms/step - loss: 13.1813 - mae: 2.6630 - val_loss: 15.9225 - val_mae: 3.0362 Epoch 6/120 192/192 [==============================] - 1s 5ms/step - loss: 12.1639 - mae: 2.5647 - val_loss: 14.3029 - val_mae: 2.9080 Epoch 7/120 192/192 [==============================] - 1s 4ms/step - loss: 11.4083 - mae: 2.5027 - val_loss: 13.3299 - val_mae: 2.8159 Epoch 8/120 192/192 [==============================] - 1s 5ms/step - loss: 10.8367 - mae: 2.4406 - val_loss: 12.7031 - val_mae: 2.7393 Epoch 9/120 192/192 [==============================] - 1s 5ms/step - loss: 10.4283 - mae: 2.4005 - val_loss: 12.5763 - val_mae: 2.6938 Epoch 10/120 192/192 [==============================] - 1s 5ms/step - loss: 10.1904 - mae: 2.3879 - val_loss: 12.3121 - val_mae: 2.6573 Epoch 11/120 192/192 [==============================] - 1s 5ms/step - loss: 9.9150 - mae: 2.3452 - val_loss: 11.4478 - val_mae: 2.6241 Epoch 12/120 192/192 [==============================] - 1s 5ms/step - loss: 9.7273 - mae: 2.3403 - val_loss: 11.2179 - val_mae: 2.6011 Epoch 13/120 192/192 [==============================] - 1s 4ms/step - loss: 9.6201 - mae: 2.3310 - val_loss: 11.3567 - val_mae: 2.5788 Epoch 14/120 192/192 [==============================] - 1s 5ms/step - loss: 9.4637 - mae: 2.3100 - val_loss: 11.0200 - val_mae: 2.5574 Epoch 15/120 192/192 [==============================] - 1s 5ms/step - loss: 9.3442 - mae: 2.3052 - val_loss: 10.8163 - val_mae: 2.5552 Epoch 16/120 192/192 [==============================] - 1s 4ms/step - loss: 9.2566 - mae: 2.2925 - val_loss: 10.6795 - val_mae: 2.5376 Epoch 17/120 192/192 [==============================] - 1s 4ms/step - loss: 9.1961 - mae: 2.2974 - val_loss: 10.5411 - val_mae: 2.5493 Epoch 18/120 192/192 [==============================] - 1s 5ms/step - loss: 9.1731 - mae: 2.2921 - val_loss: 10.6122 - val_mae: 2.5198 Epoch 19/120 192/192 [==============================] - 1s 5ms/step - loss: 9.0840 - mae: 2.2855 - val_loss: 10.4617 - val_mae: 2.5311 Epoch 20/120 192/192 [==============================] - 1s 5ms/step - loss: 9.0501 - mae: 2.2826 - val_loss: 11.4038 - val_mae: 2.5498 Epoch 21/120 192/192 [==============================] - 1s 5ms/step - loss: 9.0271 - mae: 2.2745 - val_loss: 10.4943 - val_mae: 2.5056 Epoch 22/120 192/192 [==============================] - 1s 4ms/step - loss: 9.0040 - mae: 2.2810 - val_loss: 10.4267 - val_mae: 2.5185 Epoch 23/120 192/192 [==============================] - 1s 5ms/step - loss: 8.8989 - mae: 2.2663 - val_loss: 10.3174 - val_mae: 2.5222 Epoch 24/120 192/192 [==============================] - 1s 5ms/step - loss: 8.9258 - mae: 2.2656 - val_loss: 10.2984 - val_mae: 2.5126 Epoch 25/120 192/192 [==============================] - 1s 5ms/step - loss: 8.8892 - mae: 2.2673 - val_loss: 10.3386 - val_mae: 2.5080 Epoch 26/120 192/192 [==============================] - 1s 5ms/step - loss: 9.0077 - mae: 2.2748 - val_loss: 10.2839 - val_mae: 2.5134 Epoch 27/120 192/192 [==============================] - 1s 5ms/step - loss: 8.9136 - mae: 2.2732 - val_loss: 10.2523 - val_mae: 2.5131 Epoch 28/120 192/192 [==============================] - 1s 5ms/step - loss: 8.8194 - mae: 2.2619 - val_loss: 10.3296 - val_mae: 2.4933 Epoch 29/120 192/192 [==============================] - 1s 5ms/step - loss: 8.8643 - mae: 2.2693 - val_loss: 10.3579 - val_mae: 2.5432 Epoch 30/120 192/192 [==============================] - 1s 4ms/step - loss: 8.8091 - mae: 2.2551 - val_loss: 10.2567 - val_mae: 2.5292 Epoch 31/120 192/192 [==============================] - 1s 5ms/step - loss: 8.8435 - mae: 2.2635 - val_loss: 10.2785 - val_mae: 2.4922 Epoch 32/120 192/192 [==============================] - 1s 4ms/step - loss: 8.7971 - mae: 2.2616 - val_loss: 10.2678 - val_mae: 2.5319 Epoch 33/120 192/192 [==============================] - 1s 4ms/step - loss: 8.7673 - mae: 2.2507 - val_loss: 10.2266 - val_mae: 2.5062 Epoch 34/120 192/192 [==============================] - 1s 5ms/step - loss: 8.9096 - mae: 2.2719 - val_loss: 10.2219 - val_mae: 2.5176 Epoch 35/120 192/192 [==============================] - 1s 5ms/step - loss: 8.7977 - mae: 2.2659 - val_loss: 10.2112 - val_mae: 2.4995 Epoch 36/120 192/192 [==============================] - 1s 5ms/step - loss: 8.8843 - mae: 2.2767 - val_loss: 10.4074 - val_mae: 2.5703 Epoch 37/120 192/192 [==============================] - 1s 5ms/step - loss: 8.7313 - mae: 2.2532 - val_loss: 10.3009 - val_mae: 2.4925 Epoch 38/120 192/192 [==============================] - 1s 5ms/step - loss: 8.7269 - mae: 2.2563 - val_loss: 10.2100 - val_mae: 2.5067 Epoch 39/120 192/192 [==============================] - 1s 5ms/step - loss: 8.7025 - mae: 2.2440 - val_loss: 10.1937 - val_mae: 2.5273 Epoch 40/120 192/192 [==============================] - 1s 5ms/step - loss: 8.7429 - mae: 2.2579 - val_loss: 10.3775 - val_mae: 2.4949 Epoch 41/120 192/192 [==============================] - 1s 5ms/step - loss: 8.7003 - mae: 2.2542 - val_loss: 10.4000 - val_mae: 2.5011 Epoch 42/120 192/192 [==============================] - 1s 5ms/step - loss: 8.6723 - mae: 2.2384 - val_loss: 10.2468 - val_mae: 2.5122 Epoch 43/120 192/192 [==============================] - 1s 5ms/step - loss: 8.6622 - mae: 2.2410 - val_loss: 10.1735 - val_mae: 2.5188 Epoch 44/120 192/192 [==============================] - 1s 5ms/step - loss: 8.7027 - mae: 2.2516 - val_loss: 10.3955 - val_mae: 2.5129 Epoch 45/120 192/192 [==============================] - 1s 5ms/step - loss: 8.7184 - mae: 2.2622 - val_loss: 10.2559 - val_mae: 2.5022 Epoch 46/120 192/192 [==============================] - 1s 5ms/step - loss: 8.6912 - mae: 2.2405 - val_loss: 10.2569 - val_mae: 2.5186 Epoch 47/120 192/192 [==============================] - 1s 5ms/step - loss: 8.8002 - mae: 2.2652 - val_loss: 10.3077 - val_mae: 2.5169 Epoch 48/120 192/192 [==============================] - 1s 5ms/step - loss: 8.6939 - mae: 2.2482 - val_loss: 10.1628 - val_mae: 2.5246 Epoch 49/120 192/192 [==============================] - 1s 5ms/step - loss: 8.6645 - mae: 2.2541 - val_loss: 10.2296 - val_mae: 2.5100 Epoch 50/120 192/192 [==============================] - 1s 5ms/step - loss: 8.6186 - mae: 2.2395 - val_loss: 10.3569 - val_mae: 2.4935 Epoch 51/120 192/192 [==============================] - 1s 4ms/step - loss: 8.6196 - mae: 2.2359 - val_loss: 10.3857 - val_mae: 2.5154 Epoch 52/120 192/192 [==============================] - 1s 5ms/step - loss: 8.6532 - mae: 2.2458 - val_loss: 10.2209 - val_mae: 2.4991 Epoch 53/120 192/192 [==============================] - 1s 4ms/step - loss: 8.6153 - mae: 2.2369 - val_loss: 10.2270 - val_mae: 2.5071 Epoch 54/120 192/192 [==============================] - 1s 5ms/step - loss: 8.6094 - mae: 2.2366 - val_loss: 10.3431 - val_mae: 2.5049 Epoch 55/120 192/192 [==============================] - 1s 5ms/step - loss: 8.6115 - mae: 2.2409 - val_loss: 10.2915 - val_mae: 2.5186 Epoch 56/120 192/192 [==============================] - 1s 5ms/step - loss: 8.7201 - mae: 2.2554 - val_loss: 10.5117 - val_mae: 2.5095 Epoch 57/120 192/192 [==============================] - 1s 5ms/step - loss: 8.7392 - mae: 2.2587 - val_loss: 10.4866 - val_mae: 2.5912 Epoch 58/120 192/192 [==============================] - 1s 5ms/step - loss: 8.6457 - mae: 2.2419 - val_loss: 10.3562 - val_mae: 2.5088 Epoch 59/120 192/192 [==============================] - 1s 5ms/step - loss: 8.6216 - mae: 2.2438 - val_loss: 10.3236 - val_mae: 2.5280 Epoch 60/120 192/192 [==============================] - 1s 5ms/step - loss: 8.6021 - mae: 2.2375 - val_loss: 10.2494 - val_mae: 2.5260 Epoch 61/120 192/192 [==============================] - 1s 5ms/step - loss: 8.6100 - mae: 2.2385 - val_loss: 10.1783 - val_mae: 2.5118 Epoch 62/120 192/192 [==============================] - 1s 4ms/step - loss: 8.5653 - mae: 2.2357 - val_loss: 10.4581 - val_mae: 2.4970 Epoch 63/120 192/192 [==============================] - 1s 5ms/step - loss: 8.6058 - mae: 2.2419 - val_loss: 10.3179 - val_mae: 2.4996 Epoch 1/120 192/192 [==============================] - 4s 10ms/step - loss: 68.4598 - mae: 6.7726 - val_loss: 49.9427 - val_mae: 5.8181 Epoch 2/120 192/192 [==============================] - 1s 7ms/step - loss: 27.9157 - mae: 4.0258 - val_loss: 29.0784 - val_mae: 4.1239 Epoch 3/120 192/192 [==============================] - 1s 6ms/step - loss: 18.7367 - mae: 3.1544 - val_loss: 21.6824 - val_mae: 3.5321 Epoch 4/120 192/192 [==============================] - 1s 7ms/step - loss: 16.1653 - mae: 2.9594 - val_loss: 19.0752 - val_mae: 3.3451 Epoch 5/120 192/192 [==============================] - 1s 7ms/step - loss: 15.2801 - mae: 2.8913 - val_loss: 18.0586 - val_mae: 3.2837 Epoch 6/120 192/192 [==============================] - 1s 6ms/step - loss: 14.9227 - mae: 2.8950 - val_loss: 17.5145 - val_mae: 3.2110 Epoch 7/120 192/192 [==============================] - 1s 7ms/step - loss: 13.8148 - mae: 2.7433 - val_loss: 16.5949 - val_mae: 3.1123 Epoch 8/120 192/192 [==============================] - 1s 6ms/step - loss: 12.5805 - mae: 2.6190 - val_loss: 14.7454 - val_mae: 2.9851 Epoch 9/120 192/192 [==============================] - 1s 6ms/step - loss: 11.4523 - mae: 2.4952 - val_loss: 13.4173 - val_mae: 2.8273 Epoch 10/120 192/192 [==============================] - 1s 6ms/step - loss: 10.7996 - mae: 2.4256 - val_loss: 12.8708 - val_mae: 2.7226 Epoch 11/120 192/192 [==============================] - 1s 7ms/step - loss: 10.3659 - mae: 2.3929 - val_loss: 12.1594 - val_mae: 2.6599 Epoch 12/120 192/192 [==============================] - 1s 6ms/step - loss: 10.0412 - mae: 2.3650 - val_loss: 11.5696 - val_mae: 2.6554 Epoch 13/120 192/192 [==============================] - 1s 7ms/step - loss: 9.8266 - mae: 2.3517 - val_loss: 11.5444 - val_mae: 2.5970 Epoch 14/120 192/192 [==============================] - 1s 7ms/step - loss: 9.6589 - mae: 2.3271 - val_loss: 11.1572 - val_mae: 2.5963 Epoch 15/120 192/192 [==============================] - 1s 7ms/step - loss: 9.7890 - mae: 2.3567 - val_loss: 11.1431 - val_mae: 2.6216 Epoch 16/120 192/192 [==============================] - 1s 7ms/step - loss: 9.4785 - mae: 2.3174 - val_loss: 10.9870 - val_mae: 2.5590 Epoch 17/120 192/192 [==============================] - 1s 6ms/step - loss: 9.3615 - mae: 2.3054 - val_loss: 11.0323 - val_mae: 2.5510 Epoch 18/120 192/192 [==============================] - 1s 8ms/step - loss: 9.2430 - mae: 2.3156 - val_loss: 11.1417 - val_mae: 2.5437 Epoch 19/120 192/192 [==============================] - 1s 7ms/step - loss: 9.1892 - mae: 2.2898 - val_loss: 10.6196 - val_mae: 2.5297 Epoch 20/120 192/192 [==============================] - 1s 7ms/step - loss: 9.1274 - mae: 2.2927 - val_loss: 10.4877 - val_mae: 2.5452 Epoch 21/120 192/192 [==============================] - 1s 7ms/step - loss: 9.1850 - mae: 2.3036 - val_loss: 10.8154 - val_mae: 2.6066 Epoch 22/120 192/192 [==============================] - 1s 7ms/step - loss: 9.0415 - mae: 2.2936 - val_loss: 10.4587 - val_mae: 2.5523 Epoch 23/120 192/192 [==============================] - 1s 7ms/step - loss: 9.0218 - mae: 2.2915 - val_loss: 10.8650 - val_mae: 2.6075 Epoch 24/120 192/192 [==============================] - 1s 7ms/step - loss: 8.9054 - mae: 2.2762 - val_loss: 10.7141 - val_mae: 2.5097 Epoch 25/120 192/192 [==============================] - 1s 7ms/step - loss: 8.9351 - mae: 2.2770 - val_loss: 10.8067 - val_mae: 2.5149 Epoch 26/120 192/192 [==============================] - 1s 7ms/step - loss: 8.9212 - mae: 2.2816 - val_loss: 10.7823 - val_mae: 2.5207 Epoch 27/120 192/192 [==============================] - 1s 7ms/step - loss: 8.9217 - mae: 2.2746 - val_loss: 10.7150 - val_mae: 2.4986 Epoch 28/120 192/192 [==============================] - 1s 7ms/step - loss: 8.8581 - mae: 2.2740 - val_loss: 10.3250 - val_mae: 2.5182 Epoch 29/120 192/192 [==============================] - 1s 7ms/step - loss: 8.7968 - mae: 2.2664 - val_loss: 10.5907 - val_mae: 2.5445 Epoch 30/120 192/192 [==============================] - 1s 7ms/step - loss: 8.8126 - mae: 2.2775 - val_loss: 10.5641 - val_mae: 2.5239 Epoch 31/120 192/192 [==============================] - 1s 7ms/step - loss: 8.7868 - mae: 2.2692 - val_loss: 10.3398 - val_mae: 2.4993 Epoch 32/120 192/192 [==============================] - 1s 7ms/step - loss: 8.7270 - mae: 2.2435 - val_loss: 10.6047 - val_mae: 2.5457 Epoch 33/120 192/192 [==============================] - 1s 7ms/step - loss: 8.6968 - mae: 2.2507 - val_loss: 11.5282 - val_mae: 2.5537 Epoch 34/120 192/192 [==============================] - 1s 7ms/step - loss: 8.8433 - mae: 2.2678 - val_loss: 10.2971 - val_mae: 2.4910 Epoch 35/120 192/192 [==============================] - 1s 7ms/step - loss: 8.7373 - mae: 2.2637 - val_loss: 10.8358 - val_mae: 2.5013 Epoch 36/120 192/192 [==============================] - 1s 7ms/step - loss: 8.7603 - mae: 2.2681 - val_loss: 10.2447 - val_mae: 2.5276 Epoch 37/120 192/192 [==============================] - 1s 7ms/step - loss: 8.7910 - mae: 2.2609 - val_loss: 10.4073 - val_mae: 2.5027 Epoch 38/120 192/192 [==============================] - 1s 7ms/step - loss: 8.8689 - mae: 2.2828 - val_loss: 10.3262 - val_mae: 2.5020 Epoch 39/120 192/192 [==============================] - 1s 7ms/step - loss: 8.6969 - mae: 2.2473 - val_loss: 10.5129 - val_mae: 2.5453 Epoch 40/120 192/192 [==============================] - 1s 7ms/step - loss: 8.6761 - mae: 2.2409 - val_loss: 10.2135 - val_mae: 2.5048 Epoch 41/120 192/192 [==============================] - 1s 7ms/step - loss: 8.7245 - mae: 2.2638 - val_loss: 10.1239 - val_mae: 2.5099 Epoch 42/120 192/192 [==============================] - 1s 7ms/step - loss: 8.6023 - mae: 2.2474 - val_loss: 10.2947 - val_mae: 2.4958 Epoch 43/120 192/192 [==============================] - 1s 7ms/step - loss: 8.5670 - mae: 2.2331 - val_loss: 10.5132 - val_mae: 2.5452 Epoch 44/120 192/192 [==============================] - 1s 7ms/step - loss: 8.6032 - mae: 2.2499 - val_loss: 10.5104 - val_mae: 2.5121 Epoch 45/120 192/192 [==============================] - 1s 7ms/step - loss: 8.6067 - mae: 2.2466 - val_loss: 10.6856 - val_mae: 2.5001 Epoch 46/120 192/192 [==============================] - 1s 7ms/step - loss: 8.6538 - mae: 2.2409 - val_loss: 10.5716 - val_mae: 2.5236 Epoch 47/120 192/192 [==============================] - 1s 7ms/step - loss: 8.5000 - mae: 2.2157 - val_loss: 10.1787 - val_mae: 2.5401 Epoch 48/120 192/192 [==============================] - 1s 7ms/step - loss: 8.6450 - mae: 2.2453 - val_loss: 10.4221 - val_mae: 2.5005 Epoch 49/120 192/192 [==============================] - 1s 7ms/step - loss: 8.6806 - mae: 2.2428 - val_loss: 10.1182 - val_mae: 2.5104 Epoch 50/120 192/192 [==============================] - 1s 7ms/step - loss: 8.6382 - mae: 2.2564 - val_loss: 10.3926 - val_mae: 2.5428 Epoch 51/120 192/192 [==============================] - 1s 7ms/step - loss: 8.6200 - mae: 2.2456 - val_loss: 10.5664 - val_mae: 2.5886 Epoch 52/120 192/192 [==============================] - 1s 7ms/step - loss: 8.5590 - mae: 2.2418 - val_loss: 10.1660 - val_mae: 2.5596 Epoch 53/120 192/192 [==============================] - 1s 7ms/step - loss: 8.6274 - mae: 2.2438 - val_loss: 10.2563 - val_mae: 2.5414 Epoch 54/120 192/192 [==============================] - 1s 7ms/step - loss: 8.5874 - mae: 2.2324 - val_loss: 10.4387 - val_mae: 2.5061 Epoch 55/120 192/192 [==============================] - 1s 7ms/step - loss: 8.5526 - mae: 2.2264 - val_loss: 10.5113 - val_mae: 2.5143 Epoch 56/120 192/192 [==============================] - 1s 7ms/step - loss: 8.4921 - mae: 2.2269 - val_loss: 10.7427 - val_mae: 2.6702 Epoch 57/120 192/192 [==============================] - 1s 7ms/step - loss: 8.5979 - mae: 2.2321 - val_loss: 10.5826 - val_mae: 2.5766 Epoch 58/120 192/192 [==============================] - 1s 7ms/step - loss: 8.4772 - mae: 2.2227 - val_loss: 10.6396 - val_mae: 2.5578 Epoch 59/120 192/192 [==============================] - 1s 7ms/step - loss: 8.4296 - mae: 2.2169 - val_loss: 10.6299 - val_mae: 2.5328 Epoch 60/120 192/192 [==============================] - 1s 7ms/step - loss: 8.5398 - mae: 2.2254 - val_loss: 10.7579 - val_mae: 2.5219 Epoch 61/120 192/192 [==============================] - 1s 7ms/step - loss: 8.6013 - mae: 2.2447 - val_loss: 10.3163 - val_mae: 2.5088 Epoch 62/120 192/192 [==============================] - 1s 7ms/step - loss: 8.6738 - mae: 2.2461 - val_loss: 10.2869 - val_mae: 2.5310 Epoch 63/120 192/192 [==============================] - 1s 7ms/step - loss: 8.5383 - mae: 2.2315 - val_loss: 10.5402 - val_mae: 2.5241 Epoch 64/120 192/192 [==============================] - 1s 7ms/step - loss: 8.5430 - mae: 2.2324 - val_loss: 10.1462 - val_mae: 2.5255 Epoch 1/120 192/192 [==============================] - 4s 9ms/step - loss: 69.3060 - mae: 6.7198 - val_loss: 47.9370 - val_mae: 5.6586 Epoch 2/120 192/192 [==============================] - 1s 7ms/step - loss: 25.6692 - mae: 3.7519 - val_loss: 27.4579 - val_mae: 3.9894 Epoch 3/120 192/192 [==============================] - 1s 7ms/step - loss: 19.3196 - mae: 3.2664 - val_loss: 21.2644 - val_mae: 3.5001 Epoch 4/120 192/192 [==============================] - 1s 7ms/step - loss: 16.4500 - mae: 2.9936 - val_loss: 18.8367 - val_mae: 3.3309 Epoch 5/120 192/192 [==============================] - 1s 6ms/step - loss: 15.4595 - mae: 2.9314 - val_loss: 18.1462 - val_mae: 3.2887 Epoch 6/120 192/192 [==============================] - 1s 7ms/step - loss: 15.3235 - mae: 2.9361 - val_loss: 17.8271 - val_mae: 3.2719 Epoch 7/120 192/192 [==============================] - 1s 7ms/step - loss: 14.9053 - mae: 2.8813 - val_loss: 17.8298 - val_mae: 3.2406 Epoch 8/120 192/192 [==============================] - 1s 7ms/step - loss: 14.0242 - mae: 2.7942 - val_loss: 16.1503 - val_mae: 3.1002 Epoch 9/120 192/192 [==============================] - 1s 7ms/step - loss: 12.5399 - mae: 2.6156 - val_loss: 14.9839 - val_mae: 3.0212 Epoch 10/120 192/192 [==============================] - 1s 7ms/step - loss: 11.7243 - mae: 2.5428 - val_loss: 14.0220 - val_mae: 2.8245 Epoch 11/120 192/192 [==============================] - 1s 7ms/step - loss: 10.7039 - mae: 2.4286 - val_loss: 12.8010 - val_mae: 2.7079 Epoch 12/120 192/192 [==============================] - 1s 7ms/step - loss: 10.3030 - mae: 2.3953 - val_loss: 12.1130 - val_mae: 2.6528 Epoch 13/120 192/192 [==============================] - 1s 7ms/step - loss: 10.0723 - mae: 2.3689 - val_loss: 12.7730 - val_mae: 2.6765 Epoch 14/120 192/192 [==============================] - 1s 7ms/step - loss: 9.9243 - mae: 2.3672 - val_loss: 11.2048 - val_mae: 2.5930 Epoch 15/120 192/192 [==============================] - 1s 7ms/step - loss: 9.5671 - mae: 2.3159 - val_loss: 11.0781 - val_mae: 2.5740 Epoch 16/120 192/192 [==============================] - 1s 7ms/step - loss: 9.5147 - mae: 2.3238 - val_loss: 10.9575 - val_mae: 2.5617 Epoch 17/120 192/192 [==============================] - 1s 7ms/step - loss: 9.4666 - mae: 2.3208 - val_loss: 10.7297 - val_mae: 2.5513 Epoch 18/120 192/192 [==============================] - 1s 7ms/step - loss: 9.3466 - mae: 2.3172 - val_loss: 10.7766 - val_mae: 2.6144 Epoch 19/120 192/192 [==============================] - 1s 7ms/step - loss: 9.3225 - mae: 2.3100 - val_loss: 10.5515 - val_mae: 2.5311 Epoch 20/120 192/192 [==============================] - 1s 7ms/step - loss: 9.3055 - mae: 2.3162 - val_loss: 10.6927 - val_mae: 2.5202 Epoch 21/120 192/192 [==============================] - 1s 7ms/step - loss: 9.1385 - mae: 2.2879 - val_loss: 10.7670 - val_mae: 2.5173 Epoch 22/120 192/192 [==============================] - 1s 7ms/step - loss: 9.1477 - mae: 2.3070 - val_loss: 10.6100 - val_mae: 2.5022 Epoch 23/120 192/192 [==============================] - 1s 7ms/step - loss: 9.1936 - mae: 2.3208 - val_loss: 10.4443 - val_mae: 2.5203 Epoch 24/120 192/192 [==============================] - 1s 7ms/step - loss: 8.9968 - mae: 2.2857 - val_loss: 10.5591 - val_mae: 2.5035 Epoch 25/120 192/192 [==============================] - 1s 7ms/step - loss: 9.2174 - mae: 2.3221 - val_loss: 10.3760 - val_mae: 2.5304 Epoch 26/120 192/192 [==============================] - 1s 7ms/step - loss: 8.9467 - mae: 2.2775 - val_loss: 10.7989 - val_mae: 2.5147 Epoch 27/120 192/192 [==============================] - 1s 7ms/step - loss: 8.9781 - mae: 2.3004 - val_loss: 10.4549 - val_mae: 2.5051 Epoch 28/120 192/192 [==============================] - 1s 7ms/step - loss: 8.8825 - mae: 2.2723 - val_loss: 10.6575 - val_mae: 2.6133 Epoch 29/120 192/192 [==============================] - 1s 7ms/step - loss: 9.1199 - mae: 2.3045 - val_loss: 10.3907 - val_mae: 2.5156 Epoch 30/120 192/192 [==============================] - 1s 7ms/step - loss: 8.8955 - mae: 2.2839 - val_loss: 10.5196 - val_mae: 2.4930 Epoch 31/120 192/192 [==============================] - 1s 7ms/step - loss: 8.9675 - mae: 2.2863 - val_loss: 10.7318 - val_mae: 2.5602 Epoch 32/120 192/192 [==============================] - 1s 7ms/step - loss: 9.1883 - mae: 2.3022 - val_loss: 10.8457 - val_mae: 2.5077 Epoch 33/120 192/192 [==============================] - 1s 7ms/step - loss: 8.9106 - mae: 2.2797 - val_loss: 11.0691 - val_mae: 2.5275 Epoch 34/120 192/192 [==============================] - 1s 7ms/step - loss: 8.9472 - mae: 2.2964 - val_loss: 10.4702 - val_mae: 2.5025 Epoch 35/120 192/192 [==============================] - 1s 7ms/step - loss: 8.8431 - mae: 2.2712 - val_loss: 10.2675 - val_mae: 2.5146 Epoch 36/120 192/192 [==============================] - 1s 7ms/step - loss: 8.8723 - mae: 2.2757 - val_loss: 10.4510 - val_mae: 2.4964 Epoch 37/120 192/192 [==============================] - 1s 7ms/step - loss: 8.9000 - mae: 2.2827 - val_loss: 10.4647 - val_mae: 2.4954 Epoch 38/120 192/192 [==============================] - 1s 7ms/step - loss: 8.7780 - mae: 2.2706 - val_loss: 10.2826 - val_mae: 2.5447 Epoch 39/120 192/192 [==============================] - 1s 7ms/step - loss: 8.7979 - mae: 2.2629 - val_loss: 10.5594 - val_mae: 2.4981 Epoch 40/120 192/192 [==============================] - 1s 7ms/step - loss: 8.7641 - mae: 2.2582 - val_loss: 10.3127 - val_mae: 2.5137 Epoch 41/120 192/192 [==============================] - 1s 7ms/step - loss: 8.7664 - mae: 2.2619 - val_loss: 11.3729 - val_mae: 2.5470 Epoch 42/120 192/192 [==============================] - 1s 7ms/step - loss: 8.8737 - mae: 2.2771 - val_loss: 10.3982 - val_mae: 2.5304 Epoch 43/120 192/192 [==============================] - 1s 7ms/step - loss: 8.7561 - mae: 2.2675 - val_loss: 10.4679 - val_mae: 2.5076 Epoch 44/120 192/192 [==============================] - 1s 7ms/step - loss: 8.7487 - mae: 2.2623 - val_loss: 10.6014 - val_mae: 2.4968 Epoch 45/120 192/192 [==============================] - 1s 7ms/step - loss: 8.7759 - mae: 2.2713 - val_loss: 10.7706 - val_mae: 2.5165 Epoch 46/120 192/192 [==============================] - 1s 7ms/step - loss: 8.7543 - mae: 2.2674 - val_loss: 10.6295 - val_mae: 2.6046 Epoch 47/120 192/192 [==============================] - 1s 7ms/step - loss: 8.7949 - mae: 2.2671 - val_loss: 10.5068 - val_mae: 2.5387 Epoch 48/120 192/192 [==============================] - 1s 7ms/step - loss: 8.6809 - mae: 2.2454 - val_loss: 10.4845 - val_mae: 2.5066 Epoch 49/120 192/192 [==============================] - 1s 7ms/step - loss: 8.6770 - mae: 2.2551 - val_loss: 10.2847 - val_mae: 2.5253 Epoch 50/120 192/192 [==============================] - 1s 7ms/step - loss: 8.6498 - mae: 2.2543 - val_loss: 10.3331 - val_mae: 2.5339 Epoch 1/120 192/192 [==============================] - 4s 10ms/step - loss: 57.5027 - mae: 6.0917 - val_loss: 41.6975 - val_mae: 5.1545 Epoch 2/120 192/192 [==============================] - 1s 7ms/step - loss: 24.3025 - mae: 3.6736 - val_loss: 25.7083 - val_mae: 3.8503 Epoch 3/120 192/192 [==============================] - 1s 7ms/step - loss: 17.5246 - mae: 3.0603 - val_loss: 20.3834 - val_mae: 3.4347 Epoch 4/120 192/192 [==============================] - 1s 7ms/step - loss: 15.5750 - mae: 2.9264 - val_loss: 18.8488 - val_mae: 3.3243 Epoch 5/120 192/192 [==============================] - 1s 7ms/step - loss: 15.3125 - mae: 2.9042 - val_loss: 17.4768 - val_mae: 3.2181 Epoch 6/120 192/192 [==============================] - 1s 7ms/step - loss: 13.7388 - mae: 2.7270 - val_loss: 16.1020 - val_mae: 3.0836 Epoch 7/120 192/192 [==============================] - 1s 7ms/step - loss: 12.3507 - mae: 2.5981 - val_loss: 14.9049 - val_mae: 2.9549 Epoch 8/120 192/192 [==============================] - 1s 7ms/step - loss: 11.4126 - mae: 2.4972 - val_loss: 13.4184 - val_mae: 2.8198 Epoch 9/120 192/192 [==============================] - 1s 7ms/step - loss: 11.0254 - mae: 2.4529 - val_loss: 12.6970 - val_mae: 2.7752 Epoch 10/120 192/192 [==============================] - 1s 7ms/step - loss: 10.4798 - mae: 2.4139 - val_loss: 12.3339 - val_mae: 2.6788 Epoch 11/120 192/192 [==============================] - 1s 7ms/step - loss: 10.1474 - mae: 2.3795 - val_loss: 11.5332 - val_mae: 2.6446 Epoch 12/120 192/192 [==============================] - 1s 7ms/step - loss: 9.8648 - mae: 2.3525 - val_loss: 11.2388 - val_mae: 2.5958 Epoch 13/120 192/192 [==============================] - 1s 7ms/step - loss: 9.7101 - mae: 2.3411 - val_loss: 11.2233 - val_mae: 2.5678 Epoch 14/120 192/192 [==============================] - 1s 7ms/step - loss: 9.5053 - mae: 2.3280 - val_loss: 10.8817 - val_mae: 2.5488 Epoch 15/120 192/192 [==============================] - 1s 7ms/step - loss: 9.4112 - mae: 2.3208 - val_loss: 10.7122 - val_mae: 2.5439 Epoch 16/120 192/192 [==============================] - 1s 7ms/step - loss: 9.2698 - mae: 2.3020 - val_loss: 10.7571 - val_mae: 2.5222 Epoch 17/120 192/192 [==============================] - 1s 7ms/step - loss: 9.1573 - mae: 2.2846 - val_loss: 10.8333 - val_mae: 2.5223 Epoch 18/120 192/192 [==============================] - 1s 7ms/step - loss: 9.1267 - mae: 2.2871 - val_loss: 10.7947 - val_mae: 2.5188 Epoch 19/120 192/192 [==============================] - 1s 7ms/step - loss: 9.0596 - mae: 2.2977 - val_loss: 11.1089 - val_mae: 2.5306 Epoch 20/120 192/192 [==============================] - 1s 7ms/step - loss: 9.0251 - mae: 2.2822 - val_loss: 10.7333 - val_mae: 2.5025 Epoch 21/120 192/192 [==============================] - 1s 7ms/step - loss: 8.8913 - mae: 2.2687 - val_loss: 11.1405 - val_mae: 2.7052 Epoch 22/120 192/192 [==============================] - 1s 7ms/step - loss: 9.0921 - mae: 2.3026 - val_loss: 10.3269 - val_mae: 2.5091 Epoch 23/120 192/192 [==============================] - 1s 7ms/step - loss: 8.8467 - mae: 2.2759 - val_loss: 10.7893 - val_mae: 2.5004 Epoch 24/120 192/192 [==============================] - 1s 7ms/step - loss: 8.9205 - mae: 2.2655 - val_loss: 10.3067 - val_mae: 2.4971 Epoch 25/120 192/192 [==============================] - 1s 7ms/step - loss: 8.8645 - mae: 2.2638 - val_loss: 10.3257 - val_mae: 2.5575 Epoch 26/120 192/192 [==============================] - 1s 7ms/step - loss: 8.9346 - mae: 2.2921 - val_loss: 10.3681 - val_mae: 2.5767 Epoch 27/120 192/192 [==============================] - 1s 7ms/step - loss: 8.8071 - mae: 2.2638 - val_loss: 10.3269 - val_mae: 2.5647 Epoch 28/120 192/192 [==============================] - 1s 7ms/step - loss: 8.8327 - mae: 2.2754 - val_loss: 10.7237 - val_mae: 2.4939 Epoch 29/120 192/192 [==============================] - 1s 7ms/step - loss: 8.7337 - mae: 2.2584 - val_loss: 11.0500 - val_mae: 2.5200 Epoch 30/120 192/192 [==============================] - 1s 7ms/step - loss: 8.8209 - mae: 2.2728 - val_loss: 10.2689 - val_mae: 2.5060 Epoch 31/120 192/192 [==============================] - 1s 7ms/step - loss: 8.9593 - mae: 2.2921 - val_loss: 10.2972 - val_mae: 2.5279 Epoch 32/120 192/192 [==============================] - 1s 7ms/step - loss: 8.8007 - mae: 2.2645 - val_loss: 10.5769 - val_mae: 2.5022 Epoch 33/120 192/192 [==============================] - 1s 7ms/step - loss: 8.8115 - mae: 2.2611 - val_loss: 10.2589 - val_mae: 2.5488 Epoch 34/120 192/192 [==============================] - 1s 7ms/step - loss: 8.7214 - mae: 2.2601 - val_loss: 10.3574 - val_mae: 2.4997 Epoch 35/120 192/192 [==============================] - 1s 7ms/step - loss: 8.7265 - mae: 2.2477 - val_loss: 10.5904 - val_mae: 2.5252 Epoch 36/120 192/192 [==============================] - 1s 7ms/step - loss: 8.7593 - mae: 2.2619 - val_loss: 10.4075 - val_mae: 2.5025 Epoch 37/120 192/192 [==============================] - 1s 7ms/step - loss: 8.6697 - mae: 2.2589 - val_loss: 10.2516 - val_mae: 2.5654 Epoch 38/120 192/192 [==============================] - 1s 7ms/step - loss: 8.6993 - mae: 2.2502 - val_loss: 10.4736 - val_mae: 2.5527 Epoch 39/120 192/192 [==============================] - 1s 7ms/step - loss: 8.6258 - mae: 2.2356 - val_loss: 10.2790 - val_mae: 2.5034 Epoch 40/120 192/192 [==============================] - 1s 7ms/step - loss: 8.6914 - mae: 2.2517 - val_loss: 10.7624 - val_mae: 2.5062 Epoch 41/120 192/192 [==============================] - 1s 7ms/step - loss: 8.6746 - mae: 2.2473 - val_loss: 10.2913 - val_mae: 2.5088 Epoch 42/120 192/192 [==============================] - 1s 7ms/step - loss: 8.6403 - mae: 2.2453 - val_loss: 10.5544 - val_mae: 2.5215 Epoch 43/120 192/192 [==============================] - 1s 7ms/step - loss: 8.6101 - mae: 2.2427 - val_loss: 10.5007 - val_mae: 2.5032 Epoch 44/120 192/192 [==============================] - 1s 6ms/step - loss: 8.6348 - mae: 2.2380 - val_loss: 10.3510 - val_mae: 2.5047 Epoch 45/120 192/192 [==============================] - 1s 7ms/step - loss: 8.5650 - mae: 2.2303 - val_loss: 10.1758 - val_mae: 2.5439 Epoch 46/120 192/192 [==============================] - 1s 7ms/step - loss: 8.6474 - mae: 2.2548 - val_loss: 10.4521 - val_mae: 2.5106 Epoch 47/120 192/192 [==============================] - 1s 7ms/step - loss: 8.6517 - mae: 2.2449 - val_loss: 10.3489 - val_mae: 2.5060 Epoch 48/120 192/192 [==============================] - 1s 7ms/step - loss: 8.7180 - mae: 2.2556 - val_loss: 10.7368 - val_mae: 2.5233 Epoch 49/120 192/192 [==============================] - 1s 7ms/step - loss: 8.6418 - mae: 2.2407 - val_loss: 10.1857 - val_mae: 2.5285 Epoch 50/120 192/192 [==============================] - 1s 7ms/step - loss: 8.5473 - mae: 2.2265 - val_loss: 10.3637 - val_mae: 2.5094 Epoch 51/120 192/192 [==============================] - 1s 7ms/step - loss: 8.6286 - mae: 2.2344 - val_loss: 10.2280 - val_mae: 2.5455 Epoch 52/120 192/192 [==============================] - 1s 7ms/step - loss: 8.5673 - mae: 2.2288 - val_loss: 10.3791 - val_mae: 2.5268 Epoch 53/120 192/192 [==============================] - 1s 7ms/step - loss: 8.4700 - mae: 2.2232 - val_loss: 10.6997 - val_mae: 2.5247 Epoch 54/120 192/192 [==============================] - 1s 7ms/step - loss: 8.4567 - mae: 2.2230 - val_loss: 11.2671 - val_mae: 2.6615 Epoch 55/120 192/192 [==============================] - 1s 7ms/step - loss: 8.5165 - mae: 2.2183 - val_loss: 11.0889 - val_mae: 2.5304 Epoch 56/120 192/192 [==============================] - 1s 7ms/step - loss: 8.5846 - mae: 2.2423 - val_loss: 10.3798 - val_mae: 2.5491 Epoch 57/120 192/192 [==============================] - 1s 7ms/step - loss: 8.5272 - mae: 2.2259 - val_loss: 10.3616 - val_mae: 2.5241 Epoch 58/120 192/192 [==============================] - 1s 7ms/step - loss: 8.5093 - mae: 2.2235 - val_loss: 10.3682 - val_mae: 2.5609 Epoch 59/120 192/192 [==============================] - 1s 7ms/step - loss: 8.4942 - mae: 2.2251 - val_loss: 10.6855 - val_mae: 2.5164 Epoch 60/120 192/192 [==============================] - 1s 7ms/step - loss: 8.5411 - mae: 2.2282 - val_loss: 10.4639 - val_mae: 2.5192 Epoch 1/120 192/192 [==============================] - 4s 10ms/step - loss: 38.3172 - mae: 4.5374 - val_loss: 21.1297 - val_mae: 3.4896 Epoch 2/120 192/192 [==============================] - 1s 7ms/step - loss: 15.8306 - mae: 2.9570 - val_loss: 18.2116 - val_mae: 3.2882 Epoch 3/120 192/192 [==============================] - 1s 7ms/step - loss: 15.0342 - mae: 2.9127 - val_loss: 17.1012 - val_mae: 3.1636 Epoch 4/120 192/192 [==============================] - 1s 7ms/step - loss: 13.0040 - mae: 2.6897 - val_loss: 14.2992 - val_mae: 2.9242 Epoch 5/120 192/192 [==============================] - 1s 7ms/step - loss: 11.2486 - mae: 2.5091 - val_loss: 13.1648 - val_mae: 2.7282 Epoch 6/120 192/192 [==============================] - 1s 7ms/step - loss: 10.3268 - mae: 2.4040 - val_loss: 11.5584 - val_mae: 2.6881 Epoch 7/120 192/192 [==============================] - 1s 7ms/step - loss: 9.7682 - mae: 2.3524 - val_loss: 11.2568 - val_mae: 2.6193 Epoch 8/120 192/192 [==============================] - 1s 7ms/step - loss: 9.5418 - mae: 2.3205 - val_loss: 10.7678 - val_mae: 2.5773 Epoch 9/120 192/192 [==============================] - 1s 7ms/step - loss: 9.5953 - mae: 2.3538 - val_loss: 10.9961 - val_mae: 2.5395 Epoch 10/120 192/192 [==============================] - 1s 7ms/step - loss: 9.3897 - mae: 2.3377 - val_loss: 11.8386 - val_mae: 2.5869 Epoch 11/120 192/192 [==============================] - 1s 7ms/step - loss: 9.4402 - mae: 2.3325 - val_loss: 11.0317 - val_mae: 2.5264 Epoch 12/120 192/192 [==============================] - 1s 7ms/step - loss: 9.2484 - mae: 2.3213 - val_loss: 10.4708 - val_mae: 2.5604 Epoch 13/120 192/192 [==============================] - 1s 7ms/step - loss: 9.1109 - mae: 2.2994 - val_loss: 10.9694 - val_mae: 2.6882 Epoch 14/120 192/192 [==============================] - 1s 7ms/step - loss: 9.1395 - mae: 2.3151 - val_loss: 10.3788 - val_mae: 2.5050 Epoch 15/120 192/192 [==============================] - 1s 7ms/step - loss: 9.1230 - mae: 2.3009 - val_loss: 10.8069 - val_mae: 2.5261 Epoch 16/120 192/192 [==============================] - 1s 7ms/step - loss: 9.0809 - mae: 2.3056 - val_loss: 10.5908 - val_mae: 2.5230 Epoch 17/120 192/192 [==============================] - 1s 7ms/step - loss: 9.0613 - mae: 2.3054 - val_loss: 11.0530 - val_mae: 2.6275 Epoch 18/120 192/192 [==============================] - 1s 7ms/step - loss: 9.0125 - mae: 2.2939 - val_loss: 10.2486 - val_mae: 2.4981 Epoch 19/120 192/192 [==============================] - 1s 7ms/step - loss: 8.8898 - mae: 2.2888 - val_loss: 11.2531 - val_mae: 2.5349 Epoch 20/120 192/192 [==============================] - 1s 7ms/step - loss: 8.9356 - mae: 2.2795 - val_loss: 10.3039 - val_mae: 2.5056 Epoch 21/120 192/192 [==============================] - 1s 7ms/step - loss: 8.9094 - mae: 2.2819 - val_loss: 10.2063 - val_mae: 2.5100 Epoch 22/120 192/192 [==============================] - 1s 7ms/step - loss: 8.8913 - mae: 2.2909 - val_loss: 10.7974 - val_mae: 2.5800 Epoch 23/120 192/192 [==============================] - 1s 7ms/step - loss: 8.8113 - mae: 2.2690 - val_loss: 10.3655 - val_mae: 2.5298 Epoch 24/120 192/192 [==============================] - 1s 7ms/step - loss: 8.8788 - mae: 2.2752 - val_loss: 10.5309 - val_mae: 2.5051 Epoch 25/120 192/192 [==============================] - 1s 7ms/step - loss: 8.8747 - mae: 2.2808 - val_loss: 10.1799 - val_mae: 2.4990 Epoch 26/120 192/192 [==============================] - 1s 7ms/step - loss: 8.8368 - mae: 2.2785 - val_loss: 11.6466 - val_mae: 2.7805 Epoch 27/120 192/192 [==============================] - 1s 7ms/step - loss: 8.8186 - mae: 2.2681 - val_loss: 10.2308 - val_mae: 2.5263 Epoch 28/120 192/192 [==============================] - 1s 7ms/step - loss: 8.8522 - mae: 2.2638 - val_loss: 10.5735 - val_mae: 2.5762 Epoch 29/120 192/192 [==============================] - 1s 7ms/step - loss: 8.8310 - mae: 2.2622 - val_loss: 10.3667 - val_mae: 2.5319 Epoch 30/120 192/192 [==============================] - 1s 7ms/step - loss: 8.9080 - mae: 2.2818 - val_loss: 10.5654 - val_mae: 2.4989 Epoch 31/120 192/192 [==============================] - 1s 7ms/step - loss: 8.7896 - mae: 2.2682 - val_loss: 10.3469 - val_mae: 2.5522 Epoch 32/120 192/192 [==============================] - 1s 7ms/step - loss: 8.7851 - mae: 2.2633 - val_loss: 10.3554 - val_mae: 2.5100 Epoch 33/120 192/192 [==============================] - 1s 7ms/step - loss: 8.8562 - mae: 2.2797 - val_loss: 10.4124 - val_mae: 2.5159 Epoch 34/120 192/192 [==============================] - 1s 7ms/step - loss: 8.7021 - mae: 2.2544 - val_loss: 10.5840 - val_mae: 2.5216 Epoch 35/120 192/192 [==============================] - 1s 7ms/step - loss: 8.8174 - mae: 2.2531 - val_loss: 10.3610 - val_mae: 2.5403 Epoch 36/120 192/192 [==============================] - 1s 7ms/step - loss: 8.6411 - mae: 2.2534 - val_loss: 10.4226 - val_mae: 2.5444 Epoch 37/120 192/192 [==============================] - 1s 7ms/step - loss: 8.6961 - mae: 2.2573 - val_loss: 10.8879 - val_mae: 2.5523 Epoch 38/120 192/192 [==============================] - 1s 7ms/step - loss: 8.6452 - mae: 2.2500 - val_loss: 10.8517 - val_mae: 2.5429 Epoch 39/120 192/192 [==============================] - 1s 7ms/step - loss: 8.6950 - mae: 2.2619 - val_loss: 10.4104 - val_mae: 2.5141 Epoch 40/120 192/192 [==============================] - 1s 7ms/step - loss: 9.0753 - mae: 2.3054 - val_loss: 10.2178 - val_mae: 2.5408 Epoch 1/120 192/192 [==============================] - 4s 12ms/step - loss: 24.7585 - mae: 3.7222 - val_loss: 17.0984 - val_mae: 3.2242 Epoch 2/120 192/192 [==============================] - 1s 8ms/step - loss: 14.0254 - mae: 2.8208 - val_loss: 14.3192 - val_mae: 2.9115 Epoch 3/120 192/192 [==============================] - 1s 7ms/step - loss: 10.8411 - mae: 2.4672 - val_loss: 12.0781 - val_mae: 2.6283 Epoch 4/120 192/192 [==============================] - 1s 7ms/step - loss: 9.9414 - mae: 2.3813 - val_loss: 10.6852 - val_mae: 2.5772 Epoch 5/120 192/192 [==============================] - 1s 7ms/step - loss: 9.4442 - mae: 2.3368 - val_loss: 10.4692 - val_mae: 2.5090 Epoch 6/120 192/192 [==============================] - 1s 7ms/step - loss: 9.5847 - mae: 2.3737 - val_loss: 11.4033 - val_mae: 2.5493 Epoch 7/120 192/192 [==============================] - 1s 7ms/step - loss: 9.3361 - mae: 2.3189 - val_loss: 10.6209 - val_mae: 2.5477 Epoch 8/120 192/192 [==============================] - 1s 7ms/step - loss: 9.4816 - mae: 2.3585 - val_loss: 13.3284 - val_mae: 3.0217 Epoch 9/120 192/192 [==============================] - 1s 7ms/step - loss: 9.6069 - mae: 2.3666 - val_loss: 10.1542 - val_mae: 2.5316 Epoch 10/120 192/192 [==============================] - 1s 7ms/step - loss: 9.4403 - mae: 2.3612 - val_loss: 10.4976 - val_mae: 2.5839 Epoch 11/120 192/192 [==============================] - 1s 7ms/step - loss: 9.0793 - mae: 2.3000 - val_loss: 10.3623 - val_mae: 2.4979 Epoch 12/120 192/192 [==============================] - 1s 7ms/step - loss: 8.9091 - mae: 2.2913 - val_loss: 11.5874 - val_mae: 2.5761 Epoch 13/120 192/192 [==============================] - 1s 7ms/step - loss: 9.1047 - mae: 2.2950 - val_loss: 10.7759 - val_mae: 2.6435 Epoch 14/120 192/192 [==============================] - 1s 7ms/step - loss: 8.9706 - mae: 2.2902 - val_loss: 10.1644 - val_mae: 2.5087 Epoch 15/120 192/192 [==============================] - 1s 7ms/step - loss: 8.9856 - mae: 2.2897 - val_loss: 10.9460 - val_mae: 2.5127 Epoch 16/120 192/192 [==============================] - 1s 7ms/step - loss: 9.2347 - mae: 2.3153 - val_loss: 10.0651 - val_mae: 2.5355 Epoch 17/120 192/192 [==============================] - 1s 7ms/step - loss: 9.1098 - mae: 2.3124 - val_loss: 10.7868 - val_mae: 2.5775 Epoch 18/120 192/192 [==============================] - 1s 7ms/step - loss: 9.1481 - mae: 2.3205 - val_loss: 10.5654 - val_mae: 2.5220 Epoch 19/120 192/192 [==============================] - 1s 7ms/step - loss: 9.3789 - mae: 2.3266 - val_loss: 10.1297 - val_mae: 2.5289 Epoch 20/120 192/192 [==============================] - 2s 8ms/step - loss: 8.9015 - mae: 2.2822 - val_loss: 10.7598 - val_mae: 2.5195 Epoch 21/120 192/192 [==============================] - 1s 7ms/step - loss: 8.9735 - mae: 2.2882 - val_loss: 11.3732 - val_mae: 2.6988 Epoch 22/120 192/192 [==============================] - 1s 7ms/step - loss: 9.0470 - mae: 2.2987 - val_loss: 10.4677 - val_mae: 2.5997 Epoch 23/120 192/192 [==============================] - 1s 7ms/step - loss: 8.9896 - mae: 2.3032 - val_loss: 10.3675 - val_mae: 2.5891 Epoch 24/120 192/192 [==============================] - 1s 8ms/step - loss: 8.9957 - mae: 2.2947 - val_loss: 10.8312 - val_mae: 2.6299 Epoch 25/120 192/192 [==============================] - 1s 8ms/step - loss: 8.9865 - mae: 2.2837 - val_loss: 10.1110 - val_mae: 2.5210 Epoch 26/120 192/192 [==============================] - 2s 8ms/step - loss: 8.8993 - mae: 2.2889 - val_loss: 10.6349 - val_mae: 2.5142 Epoch 27/120 192/192 [==============================] - 2s 8ms/step - loss: 9.0282 - mae: 2.2997 - val_loss: 10.3587 - val_mae: 2.5798 Epoch 28/120 192/192 [==============================] - 1s 7ms/step - loss: 8.8410 - mae: 2.2541 - val_loss: 10.1178 - val_mae: 2.5465 Epoch 29/120 192/192 [==============================] - 1s 7ms/step - loss: 8.7939 - mae: 2.2693 - val_loss: 10.9490 - val_mae: 2.5725 Epoch 30/120 192/192 [==============================] - 1s 8ms/step - loss: 8.8616 - mae: 2.2564 - val_loss: 10.4963 - val_mae: 2.5420 Epoch 31/120 192/192 [==============================] - 1s 7ms/step - loss: 8.8757 - mae: 2.2874 - val_loss: 10.4275 - val_mae: 2.5085 Epoch 1/120 192/192 [==============================] - 4s 10ms/step - loss: 41.4617 - mae: 4.9264 - val_loss: 23.5260 - val_mae: 3.6769 Epoch 2/120 192/192 [==============================] - 1s 7ms/step - loss: 16.2480 - mae: 2.9836 - val_loss: 22.3248 - val_mae: 3.5837 Epoch 3/120 192/192 [==============================] - 1s 7ms/step - loss: 15.2116 - mae: 2.9301 - val_loss: 17.5402 - val_mae: 3.2082 Epoch 4/120 192/192 [==============================] - 1s 7ms/step - loss: 12.8321 - mae: 2.6541 - val_loss: 14.3338 - val_mae: 2.9038 Epoch 5/120 192/192 [==============================] - 1s 7ms/step - loss: 11.1049 - mae: 2.4765 - val_loss: 12.2444 - val_mae: 2.6925 Epoch 6/120 192/192 [==============================] - 1s 7ms/step - loss: 10.2678 - mae: 2.3931 - val_loss: 11.4367 - val_mae: 2.6139 Epoch 7/120 192/192 [==============================] - 1s 7ms/step - loss: 9.9577 - mae: 2.3632 - val_loss: 11.3742 - val_mae: 2.6005 Epoch 8/120 192/192 [==============================] - 1s 7ms/step - loss: 9.6852 - mae: 2.3599 - val_loss: 10.8338 - val_mae: 2.5944 Epoch 9/120 192/192 [==============================] - 1s 7ms/step - loss: 9.6662 - mae: 2.3611 - val_loss: 10.7091 - val_mae: 2.5627 Epoch 10/120 192/192 [==============================] - 1s 7ms/step - loss: 9.3143 - mae: 2.3237 - val_loss: 10.7036 - val_mae: 2.5269 Epoch 11/120 192/192 [==============================] - 1s 7ms/step - loss: 9.2479 - mae: 2.3181 - val_loss: 10.5239 - val_mae: 2.4980 Epoch 12/120 192/192 [==============================] - 1s 7ms/step - loss: 9.3392 - mae: 2.3185 - val_loss: 11.2362 - val_mae: 2.5298 Epoch 13/120 192/192 [==============================] - 1s 7ms/step - loss: 9.2338 - mae: 2.3215 - val_loss: 10.8502 - val_mae: 2.5069 Epoch 14/120 192/192 [==============================] - 1s 7ms/step - loss: 9.0541 - mae: 2.2890 - val_loss: 10.5260 - val_mae: 2.5018 Epoch 15/120 192/192 [==============================] - 1s 7ms/step - loss: 9.0510 - mae: 2.3011 - val_loss: 10.4584 - val_mae: 2.5257 Epoch 16/120 192/192 [==============================] - 1s 7ms/step - loss: 8.9703 - mae: 2.2929 - val_loss: 10.3849 - val_mae: 2.5249 Epoch 17/120 192/192 [==============================] - 1s 7ms/step - loss: 9.0513 - mae: 2.3028 - val_loss: 10.6502 - val_mae: 2.6293 Epoch 18/120 192/192 [==============================] - 1s 7ms/step - loss: 9.0414 - mae: 2.3102 - val_loss: 10.5210 - val_mae: 2.5987 Epoch 19/120 192/192 [==============================] - 1s 7ms/step - loss: 8.8789 - mae: 2.2830 - val_loss: 10.5821 - val_mae: 2.6070 Epoch 20/120 192/192 [==============================] - 1s 7ms/step - loss: 8.9747 - mae: 2.2994 - val_loss: 10.6631 - val_mae: 2.6214 Epoch 21/120 192/192 [==============================] - 1s 7ms/step - loss: 8.9581 - mae: 2.2961 - val_loss: 10.2647 - val_mae: 2.5297 Epoch 22/120 192/192 [==============================] - 1s 7ms/step - loss: 8.7994 - mae: 2.2621 - val_loss: 10.5217 - val_mae: 2.4998 Epoch 23/120 192/192 [==============================] - 1s 7ms/step - loss: 8.7123 - mae: 2.2558 - val_loss: 10.1446 - val_mae: 2.5326 Epoch 24/120 192/192 [==============================] - 1s 7ms/step - loss: 8.8413 - mae: 2.2750 - val_loss: 10.6265 - val_mae: 2.5106 Epoch 25/120 192/192 [==============================] - 1s 7ms/step - loss: 8.8625 - mae: 2.2681 - val_loss: 10.5611 - val_mae: 2.4989 Epoch 26/120 192/192 [==============================] - 1s 7ms/step - loss: 8.7677 - mae: 2.2695 - val_loss: 11.0589 - val_mae: 2.5302 Epoch 27/120 192/192 [==============================] - 1s 7ms/step - loss: 8.8911 - mae: 2.2850 - val_loss: 10.2406 - val_mae: 2.5067 Epoch 28/120 192/192 [==============================] - 1s 7ms/step - loss: 8.7628 - mae: 2.2630 - val_loss: 10.5180 - val_mae: 2.5077 Epoch 29/120 192/192 [==============================] - 1s 7ms/step - loss: 8.8724 - mae: 2.2711 - val_loss: 10.2166 - val_mae: 2.5469 Epoch 30/120 192/192 [==============================] - 1s 7ms/step - loss: 8.7651 - mae: 2.2608 - val_loss: 10.4112 - val_mae: 2.5826 Epoch 31/120 192/192 [==============================] - 1s 7ms/step - loss: 8.7745 - mae: 2.2596 - val_loss: 10.4926 - val_mae: 2.5097 Epoch 32/120 192/192 [==============================] - 1s 7ms/step - loss: 8.7114 - mae: 2.2617 - val_loss: 10.9518 - val_mae: 2.5120 Epoch 33/120 192/192 [==============================] - 1s 7ms/step - loss: 8.7036 - mae: 2.2610 - val_loss: 10.6395 - val_mae: 2.5158 Epoch 34/120 192/192 [==============================] - 1s 7ms/step - loss: 8.7776 - mae: 2.2643 - val_loss: 10.2912 - val_mae: 2.5213 Epoch 35/120 192/192 [==============================] - 1s 7ms/step - loss: 8.6420 - mae: 2.2511 - val_loss: 10.5066 - val_mae: 2.5527 Epoch 36/120 192/192 [==============================] - 1s 7ms/step - loss: 8.6985 - mae: 2.2656 - val_loss: 11.0547 - val_mae: 2.5460 Epoch 37/120 192/192 [==============================] - 1s 7ms/step - loss: 8.6779 - mae: 2.2605 - val_loss: 10.3957 - val_mae: 2.5753 Epoch 38/120 192/192 [==============================] - 1s 7ms/step - loss: 8.8317 - mae: 2.2742 - val_loss: 10.7890 - val_mae: 2.5314 Epoch 1/120 192/192 [==============================] - 4s 10ms/step - loss: 39.4926 - mae: 4.8993 - val_loss: 19.7211 - val_mae: 3.3496 Epoch 2/120 192/192 [==============================] - 1s 7ms/step - loss: 13.8739 - mae: 2.7437 - val_loss: 14.6356 - val_mae: 2.9378 Epoch 3/120 192/192 [==============================] - 1s 7ms/step - loss: 11.9679 - mae: 2.5577 - val_loss: 13.9563 - val_mae: 2.8407 Epoch 4/120 192/192 [==============================] - 1s 7ms/step - loss: 9.4641 - mae: 2.2050 - val_loss: 9.7903 - val_mae: 2.3625 Epoch 5/120 192/192 [==============================] - 1s 7ms/step - loss: 6.7650 - mae: 1.8484 - val_loss: 7.0412 - val_mae: 1.9597 Epoch 6/120 192/192 [==============================] - 1s 7ms/step - loss: 4.9739 - mae: 1.5767 - val_loss: 5.2901 - val_mae: 1.6581 Epoch 7/120 192/192 [==============================] - 1s 7ms/step - loss: 4.0612 - mae: 1.4431 - val_loss: 4.5233 - val_mae: 1.5462 Epoch 8/120 192/192 [==============================] - 1s 7ms/step - loss: 3.7051 - mae: 1.3969 - val_loss: 4.1525 - val_mae: 1.4908 Epoch 9/120 192/192 [==============================] - 1s 7ms/step - loss: 3.5079 - mae: 1.3816 - val_loss: 4.2445 - val_mae: 1.5102 Epoch 10/120 192/192 [==============================] - 1s 7ms/step - loss: 3.3464 - mae: 1.3565 - val_loss: 3.8923 - val_mae: 1.4626 Epoch 11/120 192/192 [==============================] - 1s 7ms/step - loss: 3.1672 - mae: 1.3266 - val_loss: 3.6211 - val_mae: 1.4330 Epoch 12/120 192/192 [==============================] - 1s 7ms/step - loss: 3.1925 - mae: 1.3324 - val_loss: 3.4924 - val_mae: 1.4181 Epoch 13/120 192/192 [==============================] - 1s 7ms/step - loss: 3.0388 - mae: 1.3032 - val_loss: 3.4402 - val_mae: 1.4398 Epoch 14/120 192/192 [==============================] - 1s 7ms/step - loss: 2.9945 - mae: 1.3021 - val_loss: 3.4589 - val_mae: 1.4364 Epoch 15/120 192/192 [==============================] - 1s 7ms/step - loss: 2.9940 - mae: 1.3025 - val_loss: 3.5710 - val_mae: 1.4549 Epoch 16/120 192/192 [==============================] - 1s 7ms/step - loss: 2.9013 - mae: 1.2836 - val_loss: 3.4337 - val_mae: 1.4201 Epoch 17/120 192/192 [==============================] - 1s 7ms/step - loss: 2.8971 - mae: 1.2970 - val_loss: 3.3894 - val_mae: 1.4281 Epoch 18/120 192/192 [==============================] - 1s 7ms/step - loss: 2.8583 - mae: 1.2715 - val_loss: 3.3520 - val_mae: 1.4132 Epoch 19/120 192/192 [==============================] - 1s 7ms/step - loss: 2.8909 - mae: 1.2880 - val_loss: 4.8075 - val_mae: 1.6866 Epoch 20/120 192/192 [==============================] - 1s 7ms/step - loss: 2.8868 - mae: 1.2911 - val_loss: 3.3617 - val_mae: 1.4310 Epoch 21/120 192/192 [==============================] - 1s 7ms/step - loss: 2.8086 - mae: 1.2633 - val_loss: 3.2454 - val_mae: 1.4161 Epoch 22/120 192/192 [==============================] - 1s 7ms/step - loss: 2.7959 - mae: 1.2783 - val_loss: 3.4058 - val_mae: 1.4260 Epoch 23/120 192/192 [==============================] - 1s 7ms/step - loss: 2.7566 - mae: 1.2575 - val_loss: 3.7470 - val_mae: 1.4983 Epoch 24/120 192/192 [==============================] - 1s 7ms/step - loss: 2.7711 - mae: 1.2628 - val_loss: 3.6091 - val_mae: 1.4604 Epoch 25/120 192/192 [==============================] - 1s 7ms/step - loss: 2.7606 - mae: 1.2558 - val_loss: 3.7649 - val_mae: 1.5023 Epoch 26/120 192/192 [==============================] - 1s 7ms/step - loss: 2.7537 - mae: 1.2558 - val_loss: 3.2721 - val_mae: 1.4124 Epoch 27/120 192/192 [==============================] - 1s 7ms/step - loss: 2.7195 - mae: 1.2515 - val_loss: 3.3921 - val_mae: 1.4382 Epoch 28/120 192/192 [==============================] - 1s 7ms/step - loss: 2.9249 - mae: 1.3065 - val_loss: 3.6760 - val_mae: 1.4725 Epoch 29/120 192/192 [==============================] - 1s 7ms/step - loss: 2.7533 - mae: 1.2567 - val_loss: 3.4319 - val_mae: 1.4365 Epoch 30/120 192/192 [==============================] - 1s 7ms/step - loss: 2.6778 - mae: 1.2390 - val_loss: 3.4807 - val_mae: 1.4499 Epoch 31/120 192/192 [==============================] - 1s 7ms/step - loss: 2.6866 - mae: 1.2387 - val_loss: 3.2965 - val_mae: 1.4224 Epoch 32/120 192/192 [==============================] - 1s 7ms/step - loss: 2.6832 - mae: 1.2333 - val_loss: 3.5731 - val_mae: 1.4789 Epoch 33/120 192/192 [==============================] - 1s 7ms/step - loss: 2.6941 - mae: 1.2333 - val_loss: 3.7202 - val_mae: 1.5685 Epoch 34/120 192/192 [==============================] - 1s 7ms/step - loss: 2.6648 - mae: 1.2338 - val_loss: 3.9618 - val_mae: 1.6055 Epoch 35/120 192/192 [==============================] - 1s 7ms/step - loss: 2.7017 - mae: 1.2410 - val_loss: 3.6206 - val_mae: 1.4815 Epoch 36/120 192/192 [==============================] - 1s 7ms/step - loss: 2.6684 - mae: 1.2305 - val_loss: 3.4654 - val_mae: 1.4564 Epoch 1/120 192/192 [==============================] - 5s 10ms/step - loss: 39.4224 - mae: 4.8064 - val_loss: 19.6580 - val_mae: 3.3853 Epoch 2/120 192/192 [==============================] - 1s 7ms/step - loss: 12.3234 - mae: 2.5674 - val_loss: 12.5863 - val_mae: 2.7170 Epoch 3/120 192/192 [==============================] - 1s 7ms/step - loss: 10.5741 - mae: 2.4021 - val_loss: 11.1359 - val_mae: 2.5887 Epoch 4/120 192/192 [==============================] - 1s 7ms/step - loss: 8.3291 - mae: 2.0557 - val_loss: 8.3974 - val_mae: 2.1695 Epoch 5/120 192/192 [==============================] - 1s 7ms/step - loss: 5.6065 - mae: 1.6445 - val_loss: 5.4757 - val_mae: 1.7031 Epoch 6/120 192/192 [==============================] - 1s 7ms/step - loss: 3.6612 - mae: 1.2864 - val_loss: 3.7976 - val_mae: 1.4054 Epoch 7/120 192/192 [==============================] - 1s 7ms/step - loss: 2.6078 - mae: 1.0881 - val_loss: 2.5481 - val_mae: 1.0690 Epoch 8/120 192/192 [==============================] - 1s 7ms/step - loss: 1.8082 - mae: 0.8588 - val_loss: 1.9373 - val_mae: 0.9437 Epoch 9/120 192/192 [==============================] - 1s 7ms/step - loss: 1.4435 - mae: 0.7872 - val_loss: 1.4971 - val_mae: 0.8335 Epoch 10/120 192/192 [==============================] - 1s 7ms/step - loss: 1.2777 - mae: 0.7711 - val_loss: 1.3012 - val_mae: 0.7793 Epoch 11/120 192/192 [==============================] - 1s 7ms/step - loss: 1.0931 - mae: 0.7240 - val_loss: 1.2708 - val_mae: 0.8020 Epoch 12/120 192/192 [==============================] - 1s 7ms/step - loss: 1.0304 - mae: 0.7181 - val_loss: 1.5270 - val_mae: 0.9335 Epoch 13/120 192/192 [==============================] - 1s 7ms/step - loss: 0.9624 - mae: 0.7024 - val_loss: 1.2168 - val_mae: 0.8056 Epoch 14/120 192/192 [==============================] - 1s 7ms/step - loss: 0.8789 - mae: 0.6813 - val_loss: 1.0313 - val_mae: 0.7447 Epoch 15/120 192/192 [==============================] - 1s 7ms/step - loss: 0.8653 - mae: 0.6787 - val_loss: 1.2567 - val_mae: 0.8519 Epoch 16/120 192/192 [==============================] - 1s 7ms/step - loss: 0.8392 - mae: 0.6842 - val_loss: 1.0057 - val_mae: 0.7476 Epoch 17/120 192/192 [==============================] - 1s 8ms/step - loss: 0.7856 - mae: 0.6555 - val_loss: 0.8933 - val_mae: 0.7090 Epoch 18/120 192/192 [==============================] - 1s 7ms/step - loss: 0.8226 - mae: 0.6793 - val_loss: 1.1858 - val_mae: 0.8520 Epoch 19/120 192/192 [==============================] - 1s 7ms/step - loss: 0.8000 - mae: 0.6709 - val_loss: 0.8897 - val_mae: 0.7086 Epoch 20/120 192/192 [==============================] - 1s 7ms/step - loss: 0.7601 - mae: 0.6556 - val_loss: 0.9238 - val_mae: 0.7278 Epoch 21/120 192/192 [==============================] - 1s 7ms/step - loss: 0.7121 - mae: 0.6334 - val_loss: 0.8002 - val_mae: 0.6815 Epoch 22/120 192/192 [==============================] - 1s 7ms/step - loss: 0.7482 - mae: 0.6511 - val_loss: 0.7855 - val_mae: 0.6796 Epoch 23/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6866 - mae: 0.6214 - val_loss: 0.8926 - val_mae: 0.7307 Epoch 24/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6938 - mae: 0.6319 - val_loss: 0.7860 - val_mae: 0.6880 Epoch 25/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6870 - mae: 0.6309 - val_loss: 0.7870 - val_mae: 0.6898 Epoch 26/120 192/192 [==============================] - 1s 7ms/step - loss: 0.7014 - mae: 0.6333 - val_loss: 0.7768 - val_mae: 0.6848 Epoch 27/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6820 - mae: 0.6264 - val_loss: 0.7275 - val_mae: 0.6615 Epoch 28/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6703 - mae: 0.6211 - val_loss: 0.7609 - val_mae: 0.6836 Epoch 29/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6727 - mae: 0.6257 - val_loss: 0.7654 - val_mae: 0.6878 Epoch 30/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6414 - mae: 0.6112 - val_loss: 0.7780 - val_mae: 0.6899 Epoch 31/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6624 - mae: 0.6236 - val_loss: 0.8948 - val_mae: 0.7487 Epoch 32/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6641 - mae: 0.6233 - val_loss: 0.7684 - val_mae: 0.6781 Epoch 33/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6624 - mae: 0.6108 - val_loss: 0.7971 - val_mae: 0.6981 Epoch 34/120 192/192 [==============================] - 1s 7ms/step - loss: 0.7100 - mae: 0.6446 - val_loss: 0.7576 - val_mae: 0.6821 Epoch 35/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6723 - mae: 0.6257 - val_loss: 0.7747 - val_mae: 0.6914 Epoch 36/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6480 - mae: 0.6134 - val_loss: 0.8384 - val_mae: 0.7173 Epoch 37/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6407 - mae: 0.6141 - val_loss: 0.8551 - val_mae: 0.7288 Epoch 38/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6418 - mae: 0.6114 - val_loss: 0.7598 - val_mae: 0.6779 Epoch 39/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6435 - mae: 0.6165 - val_loss: 0.8107 - val_mae: 0.7040 Epoch 40/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6636 - mae: 0.6209 - val_loss: 0.8310 - val_mae: 0.7116 Epoch 41/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6406 - mae: 0.6223 - val_loss: 0.7492 - val_mae: 0.6979 Epoch 42/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6077 - mae: 0.5964 - val_loss: 0.8870 - val_mae: 0.7498 Epoch 1/120 192/192 [==============================] - 4s 10ms/step - loss: 38.2752 - mae: 4.8879 - val_loss: 16.2174 - val_mae: 3.0718 Epoch 2/120 192/192 [==============================] - 1s 7ms/step - loss: 10.6057 - mae: 2.3890 - val_loss: 10.5002 - val_mae: 2.4994 Epoch 3/120 192/192 [==============================] - 1s 7ms/step - loss: 9.1932 - mae: 2.2157 - val_loss: 9.7208 - val_mae: 2.3283 Epoch 4/120 192/192 [==============================] - 1s 7ms/step - loss: 6.5769 - mae: 1.8196 - val_loss: 6.7777 - val_mae: 1.9086 Epoch 5/120 192/192 [==============================] - 1s 7ms/step - loss: 4.2538 - mae: 1.3815 - val_loss: 4.2128 - val_mae: 1.4472 Epoch 6/120 192/192 [==============================] - 1s 7ms/step - loss: 2.8663 - mae: 1.1054 - val_loss: 2.6699 - val_mae: 1.1179 Epoch 7/120 192/192 [==============================] - 1s 7ms/step - loss: 1.9954 - mae: 0.8987 - val_loss: 1.8841 - val_mae: 0.9050 Epoch 8/120 192/192 [==============================] - 1s 8ms/step - loss: 1.3687 - mae: 0.7270 - val_loss: 1.2995 - val_mae: 0.7441 Epoch 9/120 192/192 [==============================] - 1s 7ms/step - loss: 1.0254 - mae: 0.6179 - val_loss: 0.9583 - val_mae: 0.6190 Epoch 10/120 192/192 [==============================] - 1s 7ms/step - loss: 0.7700 - mae: 0.5272 - val_loss: 0.7142 - val_mae: 0.5183 Epoch 11/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6090 - mae: 0.4714 - val_loss: 0.7984 - val_mae: 0.6559 Epoch 12/120 192/192 [==============================] - 1s 7ms/step - loss: 0.5098 - mae: 0.4507 - val_loss: 0.4680 - val_mae: 0.4126 Epoch 13/120 192/192 [==============================] - 1s 7ms/step - loss: 0.4295 - mae: 0.4167 - val_loss: 0.3992 - val_mae: 0.3875 Epoch 14/120 192/192 [==============================] - 1s 7ms/step - loss: 0.3640 - mae: 0.3941 - val_loss: 0.3517 - val_mae: 0.3681 Epoch 15/120 192/192 [==============================] - 1s 7ms/step - loss: 0.3006 - mae: 0.3506 - val_loss: 0.3213 - val_mae: 0.3652 Epoch 16/120 192/192 [==============================] - 1s 7ms/step - loss: 0.2823 - mae: 0.3441 - val_loss: 0.4463 - val_mae: 0.4954 Epoch 17/120 192/192 [==============================] - 1s 7ms/step - loss: 0.2503 - mae: 0.3271 - val_loss: 0.2888 - val_mae: 0.3610 Epoch 18/120 192/192 [==============================] - 1s 7ms/step - loss: 0.2460 - mae: 0.3420 - val_loss: 0.2316 - val_mae: 0.3245 Epoch 19/120 192/192 [==============================] - 1s 7ms/step - loss: 0.2348 - mae: 0.3437 - val_loss: 0.2297 - val_mae: 0.3359 Epoch 20/120 192/192 [==============================] - 1s 7ms/step - loss: 0.2248 - mae: 0.3352 - val_loss: 0.2150 - val_mae: 0.3220 Epoch 21/120 192/192 [==============================] - 1s 7ms/step - loss: 0.2025 - mae: 0.3197 - val_loss: 0.1866 - val_mae: 0.3044 Epoch 22/120 192/192 [==============================] - 1s 7ms/step - loss: 0.2093 - mae: 0.3299 - val_loss: 0.3286 - val_mae: 0.4458 Epoch 23/120 192/192 [==============================] - 1s 7ms/step - loss: 0.1928 - mae: 0.3210 - val_loss: 0.2348 - val_mae: 0.3652 Epoch 24/120 192/192 [==============================] - 1s 7ms/step - loss: 0.1717 - mae: 0.3050 - val_loss: 0.1890 - val_mae: 0.3175 Epoch 25/120 192/192 [==============================] - 1s 7ms/step - loss: 0.2063 - mae: 0.3337 - val_loss: 0.2087 - val_mae: 0.3524 Epoch 26/120 192/192 [==============================] - 1s 7ms/step - loss: 0.1844 - mae: 0.3250 - val_loss: 0.1678 - val_mae: 0.3051 Epoch 27/120 192/192 [==============================] - 1s 7ms/step - loss: 0.1524 - mae: 0.2861 - val_loss: 0.1497 - val_mae: 0.2893 Epoch 28/120 192/192 [==============================] - 1s 7ms/step - loss: 0.1559 - mae: 0.2885 - val_loss: 0.2336 - val_mae: 0.3679 Epoch 29/120 192/192 [==============================] - 1s 7ms/step - loss: 0.1703 - mae: 0.3116 - val_loss: 0.1997 - val_mae: 0.3389 Epoch 30/120 192/192 [==============================] - 1s 7ms/step - loss: 0.1662 - mae: 0.3099 - val_loss: 0.1498 - val_mae: 0.2953 Epoch 31/120 192/192 [==============================] - 1s 7ms/step - loss: 0.1478 - mae: 0.2899 - val_loss: 0.1606 - val_mae: 0.3091 Epoch 32/120 192/192 [==============================] - 1s 7ms/step - loss: 0.1203 - mae: 0.2625 - val_loss: 0.1435 - val_mae: 0.2954 Epoch 33/120 192/192 [==============================] - 1s 7ms/step - loss: 0.1546 - mae: 0.2968 - val_loss: 0.1704 - val_mae: 0.3238 Epoch 34/120 192/192 [==============================] - 1s 7ms/step - loss: 0.1798 - mae: 0.3244 - val_loss: 0.2513 - val_mae: 0.3853 Epoch 35/120 192/192 [==============================] - 1s 7ms/step - loss: 0.1846 - mae: 0.3312 - val_loss: 0.1511 - val_mae: 0.2972 Epoch 36/120 192/192 [==============================] - 1s 7ms/step - loss: 0.1362 - mae: 0.2814 - val_loss: 0.1421 - val_mae: 0.2929 Epoch 37/120 192/192 [==============================] - 1s 7ms/step - loss: 0.1782 - mae: 0.3190 - val_loss: 0.1333 - val_mae: 0.2827 Epoch 38/120 192/192 [==============================] - 1s 7ms/step - loss: 0.1467 - mae: 0.2883 - val_loss: 0.1447 - val_mae: 0.2966 Epoch 39/120 192/192 [==============================] - 1s 7ms/step - loss: 0.1357 - mae: 0.2823 - val_loss: 0.1577 - val_mae: 0.3139 Epoch 40/120 192/192 [==============================] - 1s 7ms/step - loss: 0.1282 - mae: 0.2736 - val_loss: 0.1410 - val_mae: 0.2918 Epoch 41/120 192/192 [==============================] - 1s 7ms/step - loss: 0.1203 - mae: 0.2661 - val_loss: 0.1400 - val_mae: 0.3016 Epoch 42/120 192/192 [==============================] - 1s 7ms/step - loss: 0.1234 - mae: 0.2737 - val_loss: 0.1729 - val_mae: 0.3305 Epoch 43/120 192/192 [==============================] - 1s 7ms/step - loss: 0.1251 - mae: 0.2724 - val_loss: 0.2017 - val_mae: 0.3576 Epoch 44/120 192/192 [==============================] - 1s 7ms/step - loss: 0.1258 - mae: 0.2704 - val_loss: 0.1429 - val_mae: 0.2976 Epoch 45/120 192/192 [==============================] - 1s 7ms/step - loss: 0.1242 - mae: 0.2703 - val_loss: 0.2017 - val_mae: 0.3596 Epoch 46/120 192/192 [==============================] - 1s 7ms/step - loss: 0.1200 - mae: 0.2660 - val_loss: 0.1514 - val_mae: 0.2962 Epoch 47/120 192/192 [==============================] - 1s 7ms/step - loss: 0.1265 - mae: 0.2737 - val_loss: 0.1478 - val_mae: 0.3038 Epoch 48/120 192/192 [==============================] - 1s 7ms/step - loss: 0.1288 - mae: 0.2800 - val_loss: 0.1515 - val_mae: 0.3052 Epoch 49/120 192/192 [==============================] - 1s 7ms/step - loss: 0.1242 - mae: 0.2695 - val_loss: 0.1232 - val_mae: 0.2739 Epoch 50/120 192/192 [==============================] - 1s 7ms/step - loss: 0.1187 - mae: 0.2653 - val_loss: 0.1657 - val_mae: 0.3206 Epoch 51/120 192/192 [==============================] - 1s 7ms/step - loss: 0.1247 - mae: 0.2704 - val_loss: 0.1397 - val_mae: 0.2949 Epoch 52/120 192/192 [==============================] - 1s 7ms/step - loss: 0.1149 - mae: 0.2635 - val_loss: 0.1261 - val_mae: 0.2795 Epoch 53/120 192/192 [==============================] - 1s 7ms/step - loss: 0.1245 - mae: 0.2698 - val_loss: 0.1456 - val_mae: 0.3060 Epoch 54/120 192/192 [==============================] - 1s 7ms/step - loss: 0.1442 - mae: 0.2932 - val_loss: 0.1340 - val_mae: 0.2886 Epoch 55/120 192/192 [==============================] - 1s 7ms/step - loss: 0.1177 - mae: 0.2654 - val_loss: 0.1353 - val_mae: 0.2842 Epoch 56/120 192/192 [==============================] - 1s 7ms/step - loss: 0.1295 - mae: 0.2739 - val_loss: 0.2217 - val_mae: 0.3752 Epoch 57/120 192/192 [==============================] - 1s 7ms/step - loss: 0.1332 - mae: 0.2768 - val_loss: 0.1362 - val_mae: 0.2919 Epoch 58/120 192/192 [==============================] - 1s 7ms/step - loss: 0.1341 - mae: 0.2782 - val_loss: 0.1568 - val_mae: 0.3080 Epoch 59/120 192/192 [==============================] - 1s 7ms/step - loss: 0.1192 - mae: 0.2655 - val_loss: 0.1253 - val_mae: 0.2795 Epoch 60/120 192/192 [==============================] - 1s 7ms/step - loss: 0.1089 - mae: 0.2525 - val_loss: 0.1649 - val_mae: 0.3235 Epoch 61/120 192/192 [==============================] - 1s 7ms/step - loss: 0.1225 - mae: 0.2703 - val_loss: 0.1392 - val_mae: 0.2904 Epoch 62/120 192/192 [==============================] - 1s 8ms/step - loss: 0.1380 - mae: 0.2832 - val_loss: 0.1357 - val_mae: 0.2847 Epoch 63/120 192/192 [==============================] - 1s 7ms/step - loss: 0.1100 - mae: 0.2554 - val_loss: 0.1396 - val_mae: 0.2965 Epoch 64/120 192/192 [==============================] - 1s 7ms/step - loss: 0.1142 - mae: 0.2578 - val_loss: 0.1373 - val_mae: 0.2931 Epoch 1/120 193/193 [==============================] - 4s 9ms/step - loss: 31.0828 - mae: 4.2342 - val_loss: 17.2363 - val_mae: 3.1235 Epoch 2/120 193/193 [==============================] - 1s 7ms/step - loss: 10.9653 - mae: 2.4192 - val_loss: 12.2583 - val_mae: 2.7317 Epoch 3/120 193/193 [==============================] - 1s 6ms/step - loss: 8.1825 - mae: 2.0489 - val_loss: 9.1364 - val_mae: 2.3107 Epoch 4/120 193/193 [==============================] - 1s 6ms/step - loss: 5.5997 - mae: 1.6585 - val_loss: 6.3323 - val_mae: 1.8331 Epoch 5/120 193/193 [==============================] - 1s 6ms/step - loss: 3.7489 - mae: 1.3244 - val_loss: 4.1719 - val_mae: 1.4532 Epoch 6/120 193/193 [==============================] - 1s 7ms/step - loss: 2.5593 - mae: 1.0759 - val_loss: 2.9887 - val_mae: 1.2245 Epoch 7/120 193/193 [==============================] - 1s 6ms/step - loss: 1.8577 - mae: 0.9038 - val_loss: 1.9544 - val_mae: 0.9556 Epoch 8/120 193/193 [==============================] - 1s 6ms/step - loss: 1.4230 - mae: 0.7881 - val_loss: 1.5645 - val_mae: 0.8781 Epoch 9/120 193/193 [==============================] - 1s 7ms/step - loss: 1.1828 - mae: 0.7406 - val_loss: 1.3821 - val_mae: 0.8361 Epoch 10/120 193/193 [==============================] - 1s 6ms/step - loss: 1.0887 - mae: 0.7260 - val_loss: 1.1943 - val_mae: 0.7870 Epoch 11/120 193/193 [==============================] - 1s 6ms/step - loss: 0.9731 - mae: 0.7000 - val_loss: 1.2316 - val_mae: 0.8292 Epoch 12/120 193/193 [==============================] - 1s 7ms/step - loss: 0.9195 - mae: 0.6900 - val_loss: 1.0415 - val_mae: 0.7404 Epoch 13/120 193/193 [==============================] - 1s 6ms/step - loss: 0.8566 - mae: 0.6756 - val_loss: 0.9716 - val_mae: 0.7267 Epoch 14/120 193/193 [==============================] - 1s 6ms/step - loss: 0.8633 - mae: 0.6859 - val_loss: 1.0075 - val_mae: 0.7558 Epoch 15/120 193/193 [==============================] - 1s 7ms/step - loss: 0.7977 - mae: 0.6583 - val_loss: 0.9521 - val_mae: 0.7433 Epoch 16/120 193/193 [==============================] - 1s 7ms/step - loss: 0.7526 - mae: 0.6492 - val_loss: 0.9147 - val_mae: 0.7264 Epoch 17/120 193/193 [==============================] - 1s 7ms/step - loss: 0.7550 - mae: 0.6455 - val_loss: 0.8997 - val_mae: 0.7181 Epoch 18/120 193/193 [==============================] - 1s 7ms/step - loss: 0.7507 - mae: 0.6478 - val_loss: 0.8577 - val_mae: 0.7075 Epoch 19/120 193/193 [==============================] - 1s 7ms/step - loss: 0.7340 - mae: 0.6467 - val_loss: 0.8284 - val_mae: 0.7019 Epoch 20/120 193/193 [==============================] - 1s 7ms/step - loss: 0.7651 - mae: 0.6643 - val_loss: 0.8373 - val_mae: 0.7011 Epoch 21/120 193/193 [==============================] - 1s 7ms/step - loss: 0.7083 - mae: 0.6352 - val_loss: 0.8061 - val_mae: 0.6962 Epoch 22/120 193/193 [==============================] - 1s 6ms/step - loss: 0.7062 - mae: 0.6352 - val_loss: 0.7708 - val_mae: 0.6849 Epoch 23/120 193/193 [==============================] - 1s 7ms/step - loss: 0.6974 - mae: 0.6314 - val_loss: 0.7768 - val_mae: 0.6819 Epoch 24/120 193/193 [==============================] - 1s 6ms/step - loss: 0.6920 - mae: 0.6309 - val_loss: 0.8696 - val_mae: 0.7357 Epoch 25/120 193/193 [==============================] - 1s 7ms/step - loss: 0.6549 - mae: 0.6126 - val_loss: 0.8710 - val_mae: 0.7265 Epoch 26/120 193/193 [==============================] - 1s 6ms/step - loss: 0.6416 - mae: 0.6037 - val_loss: 0.7698 - val_mae: 0.6781 Epoch 27/120 193/193 [==============================] - 1s 7ms/step - loss: 0.6868 - mae: 0.6329 - val_loss: 1.0706 - val_mae: 0.8116 Epoch 28/120 193/193 [==============================] - 1s 6ms/step - loss: 0.6424 - mae: 0.6114 - val_loss: 0.7697 - val_mae: 0.6826 Epoch 29/120 193/193 [==============================] - 1s 6ms/step - loss: 0.6512 - mae: 0.6148 - val_loss: 0.8134 - val_mae: 0.7076 Epoch 30/120 193/193 [==============================] - 1s 6ms/step - loss: 0.6620 - mae: 0.6177 - val_loss: 0.7723 - val_mae: 0.6928 Epoch 31/120 193/193 [==============================] - 1s 7ms/step - loss: 0.6413 - mae: 0.6081 - val_loss: 0.8981 - val_mae: 0.7511 Epoch 32/120 193/193 [==============================] - 1s 7ms/step - loss: 0.6394 - mae: 0.6075 - val_loss: 0.8305 - val_mae: 0.7256 Epoch 33/120 193/193 [==============================] - 1s 7ms/step - loss: 0.6250 - mae: 0.6026 - val_loss: 0.7522 - val_mae: 0.6788 Epoch 34/120 193/193 [==============================] - 1s 7ms/step - loss: 0.6153 - mae: 0.5992 - val_loss: 0.8629 - val_mae: 0.7202 Epoch 35/120 193/193 [==============================] - 1s 7ms/step - loss: 0.6108 - mae: 0.5982 - val_loss: 0.8312 - val_mae: 0.7111 Epoch 36/120 193/193 [==============================] - 1s 7ms/step - loss: 0.6080 - mae: 0.5940 - val_loss: 0.7163 - val_mae: 0.6650 Epoch 37/120 193/193 [==============================] - 1s 6ms/step - loss: 0.6376 - mae: 0.6060 - val_loss: 0.7307 - val_mae: 0.6713 Epoch 38/120 193/193 [==============================] - 1s 6ms/step - loss: 0.6108 - mae: 0.5926 - val_loss: 0.7652 - val_mae: 0.6869 Epoch 39/120 193/193 [==============================] - 1s 6ms/step - loss: 0.6483 - mae: 0.6153 - val_loss: 0.7341 - val_mae: 0.6705 Epoch 40/120 193/193 [==============================] - 1s 6ms/step - loss: 0.6227 - mae: 0.6030 - val_loss: 0.7249 - val_mae: 0.6677 Epoch 41/120 193/193 [==============================] - 1s 6ms/step - loss: 0.6174 - mae: 0.6020 - val_loss: 0.7346 - val_mae: 0.6754 Epoch 42/120 193/193 [==============================] - 1s 7ms/step - loss: 0.6217 - mae: 0.6050 - val_loss: 0.8559 - val_mae: 0.7236 Epoch 43/120 193/193 [==============================] - 1s 7ms/step - loss: 0.6068 - mae: 0.5987 - val_loss: 0.7415 - val_mae: 0.6746 Epoch 44/120 193/193 [==============================] - 1s 7ms/step - loss: 0.6419 - mae: 0.6137 - val_loss: 0.7069 - val_mae: 0.6623 Epoch 45/120 193/193 [==============================] - 1s 7ms/step - loss: 0.6200 - mae: 0.5970 - val_loss: 0.7453 - val_mae: 0.6799 Epoch 46/120 193/193 [==============================] - 1s 7ms/step - loss: 0.6315 - mae: 0.6042 - val_loss: 0.7759 - val_mae: 0.6833 Epoch 47/120 193/193 [==============================] - 1s 7ms/step - loss: 0.5997 - mae: 0.5886 - val_loss: 0.8403 - val_mae: 0.7095 Epoch 48/120 193/193 [==============================] - 1s 7ms/step - loss: 0.5913 - mae: 0.5859 - val_loss: 0.7737 - val_mae: 0.6869 Epoch 49/120 193/193 [==============================] - 1s 7ms/step - loss: 0.6229 - mae: 0.5983 - val_loss: 0.9838 - val_mae: 0.7840 Epoch 50/120 193/193 [==============================] - 1s 7ms/step - loss: 0.6458 - mae: 0.6139 - val_loss: 0.9353 - val_mae: 0.7625 Epoch 51/120 193/193 [==============================] - 1s 7ms/step - loss: 0.6159 - mae: 0.5964 - val_loss: 0.8019 - val_mae: 0.6900 Epoch 52/120 193/193 [==============================] - 1s 6ms/step - loss: 0.5812 - mae: 0.5802 - val_loss: 0.7842 - val_mae: 0.6910 Epoch 53/120 193/193 [==============================] - 1s 7ms/step - loss: 0.6025 - mae: 0.5894 - val_loss: 0.8452 - val_mae: 0.7141 Epoch 54/120 193/193 [==============================] - 1s 6ms/step - loss: 0.5992 - mae: 0.5914 - val_loss: 0.7953 - val_mae: 0.6916 Epoch 55/120 193/193 [==============================] - 1s 6ms/step - loss: 0.5952 - mae: 0.5843 - val_loss: 0.7257 - val_mae: 0.6663 Epoch 56/120 193/193 [==============================] - 1s 7ms/step - loss: 0.5988 - mae: 0.5918 - val_loss: 0.8095 - val_mae: 0.7022 Epoch 57/120 193/193 [==============================] - 1s 7ms/step - loss: 0.5846 - mae: 0.5864 - val_loss: 0.7900 - val_mae: 0.7098 Epoch 58/120 193/193 [==============================] - 1s 7ms/step - loss: 0.5969 - mae: 0.5854 - val_loss: 0.8197 - val_mae: 0.6997 Epoch 59/120 193/193 [==============================] - 1s 7ms/step - loss: 0.5811 - mae: 0.5783 - val_loss: 0.7916 - val_mae: 0.6958 Epoch 1/120 192/192 [==============================] - 4s 10ms/step - loss: 34.3454 - mae: 4.4804 - val_loss: 16.6348 - val_mae: 3.0712 Epoch 2/120 192/192 [==============================] - 1s 8ms/step - loss: 11.4835 - mae: 2.4821 - val_loss: 12.1785 - val_mae: 2.6948 Epoch 3/120 192/192 [==============================] - 1s 8ms/step - loss: 10.7089 - mae: 2.4219 - val_loss: 12.0346 - val_mae: 2.6593 Epoch 4/120 192/192 [==============================] - 1s 7ms/step - loss: 8.5446 - mae: 2.1020 - val_loss: 8.8423 - val_mae: 2.2379 Epoch 5/120 192/192 [==============================] - 1s 7ms/step - loss: 5.8755 - mae: 1.7022 - val_loss: 5.9090 - val_mae: 1.8136 Epoch 6/120 192/192 [==============================] - 1s 7ms/step - loss: 4.0105 - mae: 1.3789 - val_loss: 4.0927 - val_mae: 1.4779 Epoch 7/120 192/192 [==============================] - 1s 7ms/step - loss: 2.8215 - mae: 1.1377 - val_loss: 2.8346 - val_mae: 1.1652 Epoch 8/120 192/192 [==============================] - 1s 7ms/step - loss: 2.0736 - mae: 0.9599 - val_loss: 2.0826 - val_mae: 0.9885 Epoch 9/120 192/192 [==============================] - 1s 7ms/step - loss: 1.6162 - mae: 0.8562 - val_loss: 1.6274 - val_mae: 0.8713 Epoch 10/120 192/192 [==============================] - 1s 8ms/step - loss: 1.3051 - mae: 0.7748 - val_loss: 1.4017 - val_mae: 0.8405 Epoch 11/120 192/192 [==============================] - 1s 8ms/step - loss: 1.1528 - mae: 0.7423 - val_loss: 1.3041 - val_mae: 0.8226 Epoch 12/120 192/192 [==============================] - 1s 7ms/step - loss: 1.0384 - mae: 0.7240 - val_loss: 1.0935 - val_mae: 0.7480 Epoch 13/120 192/192 [==============================] - 1s 7ms/step - loss: 0.9390 - mae: 0.6951 - val_loss: 1.0926 - val_mae: 0.7665 Epoch 14/120 192/192 [==============================] - 1s 7ms/step - loss: 0.9009 - mae: 0.6921 - val_loss: 1.0220 - val_mae: 0.7459 Epoch 15/120 192/192 [==============================] - 1s 7ms/step - loss: 0.8746 - mae: 0.6858 - val_loss: 1.0633 - val_mae: 0.7609 Epoch 16/120 192/192 [==============================] - 1s 7ms/step - loss: 0.8724 - mae: 0.6953 - val_loss: 1.0354 - val_mae: 0.7724 Epoch 17/120 192/192 [==============================] - 1s 7ms/step - loss: 0.8548 - mae: 0.6971 - val_loss: 0.9202 - val_mae: 0.7248 Epoch 18/120 192/192 [==============================] - 1s 7ms/step - loss: 0.7959 - mae: 0.6704 - val_loss: 0.9673 - val_mae: 0.7335 Epoch 19/120 192/192 [==============================] - 1s 7ms/step - loss: 0.7793 - mae: 0.6636 - val_loss: 0.9000 - val_mae: 0.7223 Epoch 20/120 192/192 [==============================] - 1s 7ms/step - loss: 0.7707 - mae: 0.6655 - val_loss: 1.0999 - val_mae: 0.8236 Epoch 21/120 192/192 [==============================] - 1s 7ms/step - loss: 0.7271 - mae: 0.6439 - val_loss: 0.8545 - val_mae: 0.7070 Epoch 22/120 192/192 [==============================] - 1s 7ms/step - loss: 0.7305 - mae: 0.6417 - val_loss: 0.8107 - val_mae: 0.6935 Epoch 23/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6948 - mae: 0.6303 - val_loss: 0.8421 - val_mae: 0.7021 Epoch 24/120 192/192 [==============================] - 1s 7ms/step - loss: 0.7119 - mae: 0.6368 - val_loss: 0.9624 - val_mae: 0.7627 Epoch 25/120 192/192 [==============================] - 1s 7ms/step - loss: 0.7176 - mae: 0.6398 - val_loss: 0.7614 - val_mae: 0.6713 Epoch 26/120 192/192 [==============================] - 1s 7ms/step - loss: 0.7069 - mae: 0.6327 - val_loss: 0.8696 - val_mae: 0.7172 Epoch 27/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6722 - mae: 0.6188 - val_loss: 0.7978 - val_mae: 0.7051 Epoch 28/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6955 - mae: 0.6338 - val_loss: 0.7916 - val_mae: 0.6947 Epoch 29/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6662 - mae: 0.6253 - val_loss: 0.8346 - val_mae: 0.7309 Epoch 30/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6631 - mae: 0.6198 - val_loss: 0.8469 - val_mae: 0.7221 Epoch 31/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6766 - mae: 0.6243 - val_loss: 0.7931 - val_mae: 0.6943 Epoch 32/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6396 - mae: 0.6101 - val_loss: 0.7657 - val_mae: 0.7065 Epoch 33/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6979 - mae: 0.6360 - val_loss: 0.7341 - val_mae: 0.6737 Epoch 34/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6758 - mae: 0.6257 - val_loss: 0.9084 - val_mae: 0.7537 Epoch 35/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6938 - mae: 0.6309 - val_loss: 0.7594 - val_mae: 0.6859 Epoch 36/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6259 - mae: 0.6007 - val_loss: 0.8795 - val_mae: 0.7352 Epoch 37/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6690 - mae: 0.6246 - val_loss: 0.8096 - val_mae: 0.7016 Epoch 38/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6665 - mae: 0.6221 - val_loss: 0.9480 - val_mae: 0.7660 Epoch 39/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6358 - mae: 0.6089 - val_loss: 0.8662 - val_mae: 0.7263 Epoch 40/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6802 - mae: 0.6305 - val_loss: 0.8428 - val_mae: 0.7445 Epoch 41/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6320 - mae: 0.6019 - val_loss: 0.8085 - val_mae: 0.7031 Epoch 42/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6274 - mae: 0.6025 - val_loss: 0.9366 - val_mae: 0.7544 Epoch 43/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6406 - mae: 0.6098 - val_loss: 0.7111 - val_mae: 0.6715 Epoch 44/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6275 - mae: 0.6042 - val_loss: 0.8071 - val_mae: 0.6990 Epoch 45/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6311 - mae: 0.6110 - val_loss: 0.8000 - val_mae: 0.6997 Epoch 46/120 192/192 [==============================] - 1s 8ms/step - loss: 0.6436 - mae: 0.6125 - val_loss: 0.8396 - val_mae: 0.7151 Epoch 47/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6587 - mae: 0.6282 - val_loss: 0.7410 - val_mae: 0.6761 Epoch 48/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6419 - mae: 0.6081 - val_loss: 0.7356 - val_mae: 0.6706 Epoch 49/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6098 - mae: 0.6002 - val_loss: 0.8618 - val_mae: 0.7242 Epoch 50/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6260 - mae: 0.6065 - val_loss: 0.7902 - val_mae: 0.6869 Epoch 51/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6321 - mae: 0.6111 - val_loss: 0.7372 - val_mae: 0.6660 Epoch 52/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6440 - mae: 0.6155 - val_loss: 0.7366 - val_mae: 0.6688 Epoch 53/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6240 - mae: 0.6027 - val_loss: 0.7855 - val_mae: 0.6982 Epoch 54/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6175 - mae: 0.5993 - val_loss: 0.7535 - val_mae: 0.6818 Epoch 55/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6204 - mae: 0.6015 - val_loss: 0.7448 - val_mae: 0.6711 Epoch 56/120 192/192 [==============================] - 1s 8ms/step - loss: 0.5993 - mae: 0.5953 - val_loss: 0.7527 - val_mae: 0.6802 Epoch 57/120 192/192 [==============================] - 1s 7ms/step - loss: 0.6160 - mae: 0.6003 - val_loss: 0.7325 - val_mae: 0.6648 Epoch 58/120 192/192 [==============================] - 1s 8ms/step - loss: 0.6118 - mae: 0.5995 - val_loss: 0.7396 - val_mae: 0.6702 Epoch 1/120 189/189 [==============================] - 4s 12ms/step - loss: 37.2446 - mae: 4.7209 - val_loss: 17.9556 - val_mae: 3.1976 Epoch 2/120 189/189 [==============================] - 2s 9ms/step - loss: 11.4290 - mae: 2.4858 - val_loss: 12.7621 - val_mae: 2.7245 Epoch 3/120 189/189 [==============================] - 2s 9ms/step - loss: 9.7915 - mae: 2.3001 - val_loss: 10.7131 - val_mae: 2.4812 Epoch 4/120 189/189 [==============================] - 2s 9ms/step - loss: 7.1362 - mae: 1.9000 - val_loss: 8.2771 - val_mae: 2.1428 Epoch 5/120 189/189 [==============================] - 2s 9ms/step - loss: 5.0771 - mae: 1.5944 - val_loss: 5.1098 - val_mae: 1.6497 Epoch 6/120 189/189 [==============================] - 2s 9ms/step - loss: 3.3609 - mae: 1.2511 - val_loss: 3.3511 - val_mae: 1.2828 Epoch 7/120 189/189 [==============================] - 2s 9ms/step - loss: 2.3940 - mae: 1.0394 - val_loss: 2.3650 - val_mae: 1.0537 Epoch 8/120 189/189 [==============================] - 2s 9ms/step - loss: 1.7716 - mae: 0.8875 - val_loss: 1.7974 - val_mae: 0.9148 Epoch 9/120 189/189 [==============================] - 2s 9ms/step - loss: 1.3473 - mae: 0.7800 - val_loss: 1.4267 - val_mae: 0.8073 Epoch 10/120 189/189 [==============================] - 2s 9ms/step - loss: 1.1809 - mae: 0.7528 - val_loss: 1.2515 - val_mae: 0.7896 Epoch 11/120 189/189 [==============================] - 2s 9ms/step - loss: 1.0267 - mae: 0.7092 - val_loss: 1.2806 - val_mae: 0.8294 Epoch 12/120 189/189 [==============================] - 2s 9ms/step - loss: 0.9777 - mae: 0.7182 - val_loss: 1.1687 - val_mae: 0.7902 Epoch 13/120 189/189 [==============================] - 2s 9ms/step - loss: 0.8883 - mae: 0.6811 - val_loss: 1.0296 - val_mae: 0.7458 Epoch 14/120 189/189 [==============================] - 2s 9ms/step - loss: 0.8706 - mae: 0.6910 - val_loss: 0.9627 - val_mae: 0.7096 Epoch 15/120 189/189 [==============================] - 2s 9ms/step - loss: 0.8135 - mae: 0.6603 - val_loss: 0.9423 - val_mae: 0.7208 Epoch 16/120 189/189 [==============================] - 2s 9ms/step - loss: 0.7947 - mae: 0.6659 - val_loss: 0.8987 - val_mae: 0.6976 Epoch 17/120 189/189 [==============================] - 2s 9ms/step - loss: 0.7899 - mae: 0.6682 - val_loss: 0.8661 - val_mae: 0.6991 Epoch 18/120 189/189 [==============================] - 2s 9ms/step - loss: 0.8141 - mae: 0.6777 - val_loss: 0.9602 - val_mae: 0.7450 Epoch 19/120 189/189 [==============================] - 2s 9ms/step - loss: 0.8005 - mae: 0.6796 - val_loss: 0.9163 - val_mae: 0.7202 Epoch 20/120 189/189 [==============================] - 2s 9ms/step - loss: 0.7753 - mae: 0.6576 - val_loss: 0.8206 - val_mae: 0.6848 Epoch 21/120 189/189 [==============================] - 2s 9ms/step - loss: 0.7296 - mae: 0.6493 - val_loss: 0.8224 - val_mae: 0.7038 Epoch 22/120 189/189 [==============================] - 2s 9ms/step - loss: 0.7162 - mae: 0.6451 - val_loss: 0.7926 - val_mae: 0.6773 Epoch 23/120 189/189 [==============================] - 2s 11ms/step - loss: 0.6991 - mae: 0.6266 - val_loss: 0.8102 - val_mae: 0.6984 Epoch 24/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6876 - mae: 0.6274 - val_loss: 1.0158 - val_mae: 0.7829 Epoch 25/120 189/189 [==============================] - 2s 9ms/step - loss: 0.7345 - mae: 0.6486 - val_loss: 0.7973 - val_mae: 0.6930 Epoch 26/120 189/189 [==============================] - 2s 9ms/step - loss: 0.7042 - mae: 0.6345 - val_loss: 0.8318 - val_mae: 0.7047 Epoch 27/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6787 - mae: 0.6313 - val_loss: 0.7704 - val_mae: 0.6897 Epoch 28/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6715 - mae: 0.6223 - val_loss: 0.7541 - val_mae: 0.6757 Epoch 29/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6696 - mae: 0.6222 - val_loss: 0.7598 - val_mae: 0.6751 Epoch 30/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6579 - mae: 0.6178 - val_loss: 0.7387 - val_mae: 0.6675 Epoch 31/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6724 - mae: 0.6279 - val_loss: 0.7725 - val_mae: 0.6876 Epoch 32/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6771 - mae: 0.6307 - val_loss: 0.8081 - val_mae: 0.6985 Epoch 33/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6414 - mae: 0.6070 - val_loss: 0.7277 - val_mae: 0.6626 Epoch 34/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6535 - mae: 0.6120 - val_loss: 0.7480 - val_mae: 0.6703 Epoch 35/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6287 - mae: 0.6048 - val_loss: 0.7431 - val_mae: 0.6720 Epoch 36/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6267 - mae: 0.6036 - val_loss: 0.7115 - val_mae: 0.6549 Epoch 37/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6495 - mae: 0.6178 - val_loss: 0.7102 - val_mae: 0.6541 Epoch 38/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6467 - mae: 0.6150 - val_loss: 0.7318 - val_mae: 0.6635 Epoch 39/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6727 - mae: 0.6303 - val_loss: 0.8617 - val_mae: 0.7237 Epoch 40/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6447 - mae: 0.6166 - val_loss: 1.0604 - val_mae: 0.8202 Epoch 41/120 189/189 [==============================] - 2s 9ms/step - loss: 0.7144 - mae: 0.6410 - val_loss: 0.7405 - val_mae: 0.6650 Epoch 42/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6476 - mae: 0.6138 - val_loss: 0.7035 - val_mae: 0.6518 Epoch 43/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6475 - mae: 0.6194 - val_loss: 0.7520 - val_mae: 0.6864 Epoch 44/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6320 - mae: 0.6009 - val_loss: 0.7299 - val_mae: 0.6700 Epoch 45/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6465 - mae: 0.6175 - val_loss: 0.7281 - val_mae: 0.6620 Epoch 46/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6371 - mae: 0.6123 - val_loss: 0.7100 - val_mae: 0.6583 Epoch 47/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6393 - mae: 0.6125 - val_loss: 0.9041 - val_mae: 0.7515 Epoch 48/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6210 - mae: 0.6057 - val_loss: 0.7934 - val_mae: 0.6930 Epoch 49/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6262 - mae: 0.6064 - val_loss: 0.7679 - val_mae: 0.7019 Epoch 50/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6469 - mae: 0.6098 - val_loss: 0.7940 - val_mae: 0.6882 Epoch 51/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6160 - mae: 0.6001 - val_loss: 0.7374 - val_mae: 0.6664 Epoch 52/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6699 - mae: 0.6268 - val_loss: 0.7243 - val_mae: 0.6588 Epoch 53/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6288 - mae: 0.6054 - val_loss: 0.7044 - val_mae: 0.6518 Epoch 54/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6387 - mae: 0.6092 - val_loss: 0.7149 - val_mae: 0.6603 Epoch 55/120 189/189 [==============================] - 2s 10ms/step - loss: 0.6213 - mae: 0.6036 - val_loss: 0.9535 - val_mae: 0.7704 Epoch 56/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6323 - mae: 0.6061 - val_loss: 0.7329 - val_mae: 0.6776 Epoch 57/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6293 - mae: 0.6073 - val_loss: 0.8049 - val_mae: 0.7001 Epoch 1/120 189/189 [==============================] - 3s 8ms/step - loss: 56.7079 - mae: 5.9415 - val_loss: 19.9163 - val_mae: 3.3949 Epoch 2/120 189/189 [==============================] - 1s 6ms/step - loss: 10.7773 - mae: 2.3560 - val_loss: 10.7864 - val_mae: 2.4949 Epoch 3/120 189/189 [==============================] - 1s 6ms/step - loss: 7.1768 - mae: 1.8899 - val_loss: 7.6160 - val_mae: 2.0599 Epoch 4/120 189/189 [==============================] - 1s 6ms/step - loss: 5.3074 - mae: 1.6289 - val_loss: 5.9020 - val_mae: 1.7995 Epoch 5/120 189/189 [==============================] - 1s 6ms/step - loss: 4.1722 - mae: 1.4356 - val_loss: 4.9940 - val_mae: 1.6377 Epoch 6/120 189/189 [==============================] - 1s 6ms/step - loss: 3.3927 - mae: 1.3036 - val_loss: 3.8039 - val_mae: 1.4210 Epoch 7/120 189/189 [==============================] - 1s 6ms/step - loss: 2.7888 - mae: 1.1795 - val_loss: 3.2563 - val_mae: 1.3179 Epoch 8/120 189/189 [==============================] - 1s 6ms/step - loss: 2.3423 - mae: 1.0846 - val_loss: 2.7965 - val_mae: 1.2102 Epoch 9/120 189/189 [==============================] - 1s 6ms/step - loss: 1.9466 - mae: 0.9853 - val_loss: 2.3642 - val_mae: 1.1063 Epoch 10/120 189/189 [==============================] - 1s 6ms/step - loss: 1.6570 - mae: 0.9067 - val_loss: 1.8970 - val_mae: 0.9943 Epoch 11/120 189/189 [==============================] - 1s 6ms/step - loss: 1.4343 - mae: 0.8461 - val_loss: 1.7311 - val_mae: 0.9459 Epoch 12/120 189/189 [==============================] - 1s 6ms/step - loss: 1.2307 - mae: 0.7870 - val_loss: 1.4421 - val_mae: 0.8653 Epoch 13/120 189/189 [==============================] - 1s 6ms/step - loss: 1.1169 - mae: 0.7522 - val_loss: 1.3014 - val_mae: 0.8296 Epoch 14/120 189/189 [==============================] - 1s 7ms/step - loss: 0.9992 - mae: 0.7146 - val_loss: 1.1876 - val_mae: 0.7996 Epoch 15/120 189/189 [==============================] - 1s 6ms/step - loss: 0.9232 - mae: 0.6952 - val_loss: 1.1370 - val_mae: 0.7916 Epoch 16/120 189/189 [==============================] - 1s 6ms/step - loss: 0.8658 - mae: 0.6751 - val_loss: 1.0672 - val_mae: 0.7743 Epoch 17/120 189/189 [==============================] - 1s 6ms/step - loss: 0.8171 - mae: 0.6608 - val_loss: 0.9959 - val_mae: 0.7560 Epoch 18/120 189/189 [==============================] - 1s 6ms/step - loss: 0.7967 - mae: 0.6542 - val_loss: 0.9656 - val_mae: 0.7423 Epoch 19/120 189/189 [==============================] - 1s 6ms/step - loss: 0.7624 - mae: 0.6447 - val_loss: 1.0029 - val_mae: 0.7678 Epoch 20/120 189/189 [==============================] - 1s 6ms/step - loss: 0.7405 - mae: 0.6309 - val_loss: 0.9494 - val_mae: 0.7506 Epoch 21/120 189/189 [==============================] - 1s 6ms/step - loss: 0.7229 - mae: 0.6312 - val_loss: 0.9573 - val_mae: 0.7494 Epoch 22/120 189/189 [==============================] - 1s 6ms/step - loss: 0.7210 - mae: 0.6323 - val_loss: 0.8847 - val_mae: 0.7191 Epoch 23/120 189/189 [==============================] - 1s 6ms/step - loss: 0.7057 - mae: 0.6244 - val_loss: 0.8697 - val_mae: 0.7201 Epoch 24/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6960 - mae: 0.6266 - val_loss: 0.8700 - val_mae: 0.7240 Epoch 25/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6794 - mae: 0.6214 - val_loss: 0.8522 - val_mae: 0.7119 Epoch 26/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6796 - mae: 0.6195 - val_loss: 0.8667 - val_mae: 0.7117 Epoch 27/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6743 - mae: 0.6144 - val_loss: 0.9242 - val_mae: 0.7440 Epoch 28/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6669 - mae: 0.6138 - val_loss: 0.7846 - val_mae: 0.6830 Epoch 29/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6624 - mae: 0.6129 - val_loss: 0.7854 - val_mae: 0.6832 Epoch 30/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6878 - mae: 0.6257 - val_loss: 0.8338 - val_mae: 0.7069 Epoch 31/120 189/189 [==============================] - 1s 6ms/step - loss: 0.7095 - mae: 0.6364 - val_loss: 0.9066 - val_mae: 0.7308 Epoch 32/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6719 - mae: 0.6161 - val_loss: 0.8656 - val_mae: 0.7193 Epoch 33/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6791 - mae: 0.6160 - val_loss: 0.9537 - val_mae: 0.7727 Epoch 34/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6738 - mae: 0.6202 - val_loss: 0.8068 - val_mae: 0.6996 Epoch 35/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6779 - mae: 0.6189 - val_loss: 0.8814 - val_mae: 0.7367 Epoch 36/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6576 - mae: 0.6117 - val_loss: 0.7870 - val_mae: 0.6888 Epoch 37/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6567 - mae: 0.6156 - val_loss: 0.7764 - val_mae: 0.6770 Epoch 38/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6476 - mae: 0.6068 - val_loss: 0.7986 - val_mae: 0.6955 Epoch 39/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6437 - mae: 0.6046 - val_loss: 0.8031 - val_mae: 0.6988 Epoch 40/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6538 - mae: 0.6138 - val_loss: 0.8213 - val_mae: 0.7071 Epoch 41/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6281 - mae: 0.5981 - val_loss: 0.7486 - val_mae: 0.6724 Epoch 42/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6295 - mae: 0.6004 - val_loss: 0.7340 - val_mae: 0.6657 Epoch 43/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6305 - mae: 0.6023 - val_loss: 0.7519 - val_mae: 0.6734 Epoch 44/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6308 - mae: 0.6057 - val_loss: 0.7520 - val_mae: 0.6760 Epoch 45/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6209 - mae: 0.5976 - val_loss: 0.8085 - val_mae: 0.7037 Epoch 46/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6226 - mae: 0.5975 - val_loss: 0.8393 - val_mae: 0.7212 Epoch 47/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6341 - mae: 0.6038 - val_loss: 0.7827 - val_mae: 0.6902 Epoch 48/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6195 - mae: 0.5974 - val_loss: 0.7913 - val_mae: 0.7061 Epoch 49/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6257 - mae: 0.5994 - val_loss: 0.7901 - val_mae: 0.6937 Epoch 50/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6214 - mae: 0.5987 - val_loss: 0.7181 - val_mae: 0.6617 Epoch 51/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6277 - mae: 0.6018 - val_loss: 0.7928 - val_mae: 0.6968 Epoch 52/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6126 - mae: 0.5932 - val_loss: 0.7576 - val_mae: 0.6826 Epoch 53/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6181 - mae: 0.5944 - val_loss: 0.8255 - val_mae: 0.7144 Epoch 54/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6322 - mae: 0.6075 - val_loss: 0.7584 - val_mae: 0.6800 Epoch 55/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6192 - mae: 0.5995 - val_loss: 0.7152 - val_mae: 0.6627 Epoch 56/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6064 - mae: 0.5922 - val_loss: 0.7601 - val_mae: 0.6804 Epoch 57/120 189/189 [==============================] - 1s 6ms/step - loss: 0.5963 - mae: 0.5910 - val_loss: 0.8357 - val_mae: 0.7162 Epoch 58/120 189/189 [==============================] - 1s 6ms/step - loss: 0.5908 - mae: 0.5873 - val_loss: 0.7356 - val_mae: 0.6608 Epoch 59/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6006 - mae: 0.5911 - val_loss: 0.7662 - val_mae: 0.6812 Epoch 60/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6036 - mae: 0.5943 - val_loss: 0.7772 - val_mae: 0.6883 Epoch 61/120 189/189 [==============================] - 1s 6ms/step - loss: 0.5971 - mae: 0.5879 - val_loss: 0.7724 - val_mae: 0.6945 Epoch 62/120 189/189 [==============================] - 1s 6ms/step - loss: 0.5916 - mae: 0.5870 - val_loss: 0.7434 - val_mae: 0.6707 Epoch 63/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6086 - mae: 0.5936 - val_loss: 0.7328 - val_mae: 0.6666 Epoch 64/120 189/189 [==============================] - 1s 6ms/step - loss: 0.5971 - mae: 0.5901 - val_loss: 0.7252 - val_mae: 0.6594 Epoch 65/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6051 - mae: 0.5889 - val_loss: 0.7440 - val_mae: 0.6706 Epoch 66/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6108 - mae: 0.5970 - val_loss: 0.7087 - val_mae: 0.6568 Epoch 67/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6123 - mae: 0.5979 - val_loss: 0.7237 - val_mae: 0.6590 Epoch 68/120 189/189 [==============================] - 1s 6ms/step - loss: 0.5970 - mae: 0.5913 - val_loss: 0.7622 - val_mae: 0.6789 Epoch 69/120 189/189 [==============================] - 1s 6ms/step - loss: 0.5910 - mae: 0.5848 - val_loss: 0.7843 - val_mae: 0.6857 Epoch 70/120 189/189 [==============================] - 1s 6ms/step - loss: 0.5907 - mae: 0.5864 - val_loss: 0.7418 - val_mae: 0.6693 Epoch 71/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6098 - mae: 0.6012 - val_loss: 0.7230 - val_mae: 0.6567 Epoch 72/120 189/189 [==============================] - 1s 6ms/step - loss: 0.5848 - mae: 0.5832 - val_loss: 0.7384 - val_mae: 0.6746 Epoch 73/120 189/189 [==============================] - 1s 6ms/step - loss: 0.5986 - mae: 0.5908 - val_loss: 0.7337 - val_mae: 0.6682 Epoch 74/120 189/189 [==============================] - 1s 6ms/step - loss: 0.5863 - mae: 0.5863 - val_loss: 0.7444 - val_mae: 0.6678 Epoch 75/120 189/189 [==============================] - 1s 6ms/step - loss: 0.5887 - mae: 0.5854 - val_loss: 0.7582 - val_mae: 0.6842 Epoch 76/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6068 - mae: 0.5946 - val_loss: 0.7210 - val_mae: 0.6627 Epoch 77/120 189/189 [==============================] - 1s 6ms/step - loss: 0.5858 - mae: 0.5833 - val_loss: 0.7433 - val_mae: 0.6783 Epoch 78/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6018 - mae: 0.5941 - val_loss: 0.7208 - val_mae: 0.6640 Epoch 79/120 189/189 [==============================] - 1s 7ms/step - loss: 0.5916 - mae: 0.5865 - val_loss: 0.7207 - val_mae: 0.6630 Epoch 80/120 189/189 [==============================] - 1s 6ms/step - loss: 0.5838 - mae: 0.5852 - val_loss: 0.7538 - val_mae: 0.6790 Epoch 81/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6010 - mae: 0.5904 - val_loss: 0.7392 - val_mae: 0.6610 Epoch 1/120 189/189 [==============================] - 5s 13ms/step - loss: 36.0232 - mae: 4.7118 - val_loss: 19.2633 - val_mae: 3.3306 Epoch 2/120 189/189 [==============================] - 2s 9ms/step - loss: 12.4827 - mae: 2.6059 - val_loss: 12.7134 - val_mae: 2.7405 Epoch 3/120 189/189 [==============================] - 2s 9ms/step - loss: 10.6728 - mae: 2.4067 - val_loss: 12.4935 - val_mae: 2.6667 Epoch 4/120 189/189 [==============================] - 2s 9ms/step - loss: 8.5681 - mae: 2.1151 - val_loss: 8.8933 - val_mae: 2.2519 Epoch 5/120 189/189 [==============================] - 2s 9ms/step - loss: 5.8632 - mae: 1.6828 - val_loss: 6.2932 - val_mae: 1.8198 Epoch 6/120 189/189 [==============================] - 2s 10ms/step - loss: 4.0180 - mae: 1.3665 - val_loss: 4.1963 - val_mae: 1.4468 Epoch 7/120 189/189 [==============================] - 2s 9ms/step - loss: 2.8391 - mae: 1.1337 - val_loss: 2.8266 - val_mae: 1.1404 Epoch 8/120 189/189 [==============================] - 2s 9ms/step - loss: 2.0034 - mae: 0.9305 - val_loss: 2.0647 - val_mae: 0.9618 Epoch 9/120 189/189 [==============================] - 2s 9ms/step - loss: 1.5560 - mae: 0.8256 - val_loss: 1.6176 - val_mae: 0.8611 Epoch 10/120 189/189 [==============================] - 2s 9ms/step - loss: 1.2767 - mae: 0.7581 - val_loss: 1.4419 - val_mae: 0.8323 Epoch 11/120 189/189 [==============================] - 2s 9ms/step - loss: 1.1317 - mae: 0.7358 - val_loss: 1.3260 - val_mae: 0.8198 Epoch 12/120 189/189 [==============================] - 2s 9ms/step - loss: 1.0396 - mae: 0.7124 - val_loss: 1.1430 - val_mae: 0.7579 Epoch 13/120 189/189 [==============================] - 2s 10ms/step - loss: 0.9446 - mae: 0.6953 - val_loss: 1.1145 - val_mae: 0.7595 Epoch 14/120 189/189 [==============================] - 2s 9ms/step - loss: 0.9043 - mae: 0.6906 - val_loss: 1.0658 - val_mae: 0.7497 Epoch 15/120 189/189 [==============================] - 2s 9ms/step - loss: 0.8622 - mae: 0.6836 - val_loss: 1.2381 - val_mae: 0.8473 Epoch 16/120 189/189 [==============================] - 2s 9ms/step - loss: 0.8148 - mae: 0.6708 - val_loss: 0.9866 - val_mae: 0.7386 Epoch 17/120 189/189 [==============================] - 2s 9ms/step - loss: 0.8112 - mae: 0.6669 - val_loss: 0.9284 - val_mae: 0.7103 Epoch 18/120 189/189 [==============================] - 2s 9ms/step - loss: 0.8074 - mae: 0.6666 - val_loss: 1.1182 - val_mae: 0.8148 Epoch 19/120 189/189 [==============================] - 2s 9ms/step - loss: 0.7882 - mae: 0.6718 - val_loss: 0.9833 - val_mae: 0.7532 Epoch 20/120 189/189 [==============================] - 2s 9ms/step - loss: 0.7168 - mae: 0.6355 - val_loss: 0.8989 - val_mae: 0.7163 Epoch 21/120 189/189 [==============================] - 2s 9ms/step - loss: 0.7270 - mae: 0.6532 - val_loss: 0.9972 - val_mae: 0.7708 Epoch 22/120 189/189 [==============================] - 2s 9ms/step - loss: 0.7414 - mae: 0.6426 - val_loss: 0.8851 - val_mae: 0.7179 Epoch 23/120 189/189 [==============================] - 2s 10ms/step - loss: 0.7125 - mae: 0.6363 - val_loss: 0.7956 - val_mae: 0.6873 Epoch 24/120 189/189 [==============================] - 2s 10ms/step - loss: 0.6865 - mae: 0.6227 - val_loss: 0.7862 - val_mae: 0.6847 Epoch 25/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6727 - mae: 0.6289 - val_loss: 0.8504 - val_mae: 0.7237 Epoch 26/120 189/189 [==============================] - 2s 10ms/step - loss: 0.6763 - mae: 0.6226 - val_loss: 0.7794 - val_mae: 0.6842 Epoch 27/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6655 - mae: 0.6183 - val_loss: 0.9218 - val_mae: 0.7604 Epoch 28/120 189/189 [==============================] - 2s 10ms/step - loss: 0.6908 - mae: 0.6379 - val_loss: 0.8573 - val_mae: 0.7161 Epoch 29/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6725 - mae: 0.6280 - val_loss: 1.0539 - val_mae: 0.7954 Epoch 30/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6558 - mae: 0.6195 - val_loss: 0.8431 - val_mae: 0.7426 Epoch 31/120 189/189 [==============================] - 2s 10ms/step - loss: 0.6790 - mae: 0.6305 - val_loss: 0.9373 - val_mae: 0.7622 Epoch 32/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6438 - mae: 0.6144 - val_loss: 0.9395 - val_mae: 0.7560 Epoch 33/120 189/189 [==============================] - 2s 10ms/step - loss: 0.7213 - mae: 0.6539 - val_loss: 0.7932 - val_mae: 0.7155 Epoch 34/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6573 - mae: 0.6163 - val_loss: 0.7246 - val_mae: 0.6641 Epoch 35/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6485 - mae: 0.6147 - val_loss: 0.7286 - val_mae: 0.6673 Epoch 36/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6650 - mae: 0.6243 - val_loss: 0.7921 - val_mae: 0.7040 Epoch 37/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6371 - mae: 0.6100 - val_loss: 0.7829 - val_mae: 0.6949 Epoch 38/120 189/189 [==============================] - 2s 10ms/step - loss: 0.6288 - mae: 0.6101 - val_loss: 0.8161 - val_mae: 0.7029 Epoch 39/120 189/189 [==============================] - 2s 10ms/step - loss: 0.6311 - mae: 0.6033 - val_loss: 0.9740 - val_mae: 0.7829 Epoch 40/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6608 - mae: 0.6220 - val_loss: 0.7999 - val_mae: 0.6993 Epoch 41/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6609 - mae: 0.6248 - val_loss: 0.8194 - val_mae: 0.7075 Epoch 42/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6300 - mae: 0.6031 - val_loss: 0.8745 - val_mae: 0.7285 Epoch 43/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6522 - mae: 0.6185 - val_loss: 0.7625 - val_mae: 0.6771 Epoch 44/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6329 - mae: 0.6088 - val_loss: 0.7178 - val_mae: 0.6561 Epoch 45/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6328 - mae: 0.6107 - val_loss: 0.7595 - val_mae: 0.6831 Epoch 46/120 189/189 [==============================] - 2s 10ms/step - loss: 0.6242 - mae: 0.6075 - val_loss: 0.7903 - val_mae: 0.7030 Epoch 47/120 189/189 [==============================] - 2s 10ms/step - loss: 0.6286 - mae: 0.6125 - val_loss: 0.8581 - val_mae: 0.7255 Epoch 48/120 189/189 [==============================] - 2s 10ms/step - loss: 0.6478 - mae: 0.6180 - val_loss: 0.7095 - val_mae: 0.6647 Epoch 49/120 189/189 [==============================] - 2s 10ms/step - loss: 0.6340 - mae: 0.6115 - val_loss: 0.7019 - val_mae: 0.6598 Epoch 50/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6216 - mae: 0.6029 - val_loss: 0.7641 - val_mae: 0.6819 Epoch 51/120 189/189 [==============================] - 2s 10ms/step - loss: 0.6166 - mae: 0.6009 - val_loss: 0.7048 - val_mae: 0.6514 Epoch 52/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6252 - mae: 0.6039 - val_loss: 0.7286 - val_mae: 0.6728 Epoch 53/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6262 - mae: 0.6049 - val_loss: 0.7201 - val_mae: 0.6544 Epoch 54/120 189/189 [==============================] - 2s 10ms/step - loss: 0.6344 - mae: 0.6164 - val_loss: 0.7863 - val_mae: 0.6818 Epoch 55/120 189/189 [==============================] - 2s 10ms/step - loss: 0.6307 - mae: 0.6094 - val_loss: 0.7721 - val_mae: 0.6821 Epoch 56/120 189/189 [==============================] - 2s 10ms/step - loss: 0.6049 - mae: 0.6002 - val_loss: 0.7418 - val_mae: 0.6817 Epoch 57/120 189/189 [==============================] - 2s 10ms/step - loss: 0.6113 - mae: 0.6038 - val_loss: 0.8039 - val_mae: 0.6946 Epoch 58/120 189/189 [==============================] - 2s 9ms/step - loss: 0.6365 - mae: 0.6129 - val_loss: 0.7246 - val_mae: 0.6666 Epoch 59/120 189/189 [==============================] - 2s 10ms/step - loss: 0.6436 - mae: 0.6191 - val_loss: 0.7771 - val_mae: 0.6850 Epoch 60/120 189/189 [==============================] - 2s 10ms/step - loss: 0.6126 - mae: 0.6004 - val_loss: 0.8131 - val_mae: 0.7018 Epoch 61/120 189/189 [==============================] - 2s 10ms/step - loss: 0.5989 - mae: 0.5897 - val_loss: 0.8244 - val_mae: 0.7020 Epoch 62/120 189/189 [==============================] - 2s 10ms/step - loss: 0.6034 - mae: 0.5958 - val_loss: 0.7629 - val_mae: 0.6850 Epoch 63/120 189/189 [==============================] - 2s 10ms/step - loss: 0.5992 - mae: 0.5942 - val_loss: 0.7431 - val_mae: 0.6655 Epoch 64/120 189/189 [==============================] - 2s 10ms/step - loss: 0.6180 - mae: 0.6003 - val_loss: 0.7131 - val_mae: 0.6552 Epoch 1/120 189/189 [==============================] - 3s 8ms/step - loss: 62.4933 - mae: 6.3232 - val_loss: 27.0084 - val_mae: 4.1426 Epoch 2/120 189/189 [==============================] - 1s 7ms/step - loss: 12.5809 - mae: 2.5311 - val_loss: 12.2437 - val_mae: 2.6170 Epoch 3/120 189/189 [==============================] - 1s 7ms/step - loss: 7.7753 - mae: 1.9513 - val_loss: 8.9840 - val_mae: 2.2193 Epoch 4/120 189/189 [==============================] - 1s 7ms/step - loss: 5.7574 - mae: 1.6621 - val_loss: 6.6078 - val_mae: 1.8979 Epoch 5/120 189/189 [==============================] - 1s 6ms/step - loss: 4.5119 - mae: 1.4695 - val_loss: 5.5806 - val_mae: 1.7172 Epoch 6/120 189/189 [==============================] - 1s 7ms/step - loss: 3.5722 - mae: 1.2993 - val_loss: 4.0605 - val_mae: 1.4529 Epoch 7/120 189/189 [==============================] - 1s 7ms/step - loss: 2.9072 - mae: 1.1840 - val_loss: 3.3215 - val_mae: 1.2998 Epoch 8/120 189/189 [==============================] - 1s 6ms/step - loss: 2.3203 - mae: 1.0494 - val_loss: 3.1227 - val_mae: 1.2717 Epoch 9/120 189/189 [==============================] - 1s 6ms/step - loss: 1.9390 - mae: 0.9522 - val_loss: 2.2773 - val_mae: 1.0635 Epoch 10/120 189/189 [==============================] - 1s 7ms/step - loss: 1.6335 - mae: 0.8752 - val_loss: 1.9241 - val_mae: 0.9797 Epoch 11/120 189/189 [==============================] - 1s 6ms/step - loss: 1.3972 - mae: 0.8124 - val_loss: 1.6715 - val_mae: 0.9223 Epoch 12/120 189/189 [==============================] - 1s 7ms/step - loss: 1.2142 - mae: 0.7639 - val_loss: 1.4808 - val_mae: 0.8758 Epoch 13/120 189/189 [==============================] - 1s 7ms/step - loss: 1.0931 - mae: 0.7293 - val_loss: 1.4113 - val_mae: 0.8591 Epoch 14/120 189/189 [==============================] - 1s 7ms/step - loss: 1.0111 - mae: 0.7155 - val_loss: 1.2321 - val_mae: 0.8170 Epoch 15/120 189/189 [==============================] - 1s 7ms/step - loss: 0.9389 - mae: 0.6919 - val_loss: 1.1403 - val_mae: 0.7856 Epoch 16/120 189/189 [==============================] - 1s 6ms/step - loss: 0.8898 - mae: 0.6831 - val_loss: 1.1061 - val_mae: 0.7744 Epoch 17/120 189/189 [==============================] - 1s 7ms/step - loss: 0.8326 - mae: 0.6619 - val_loss: 1.0778 - val_mae: 0.7836 Epoch 18/120 189/189 [==============================] - 1s 7ms/step - loss: 0.8139 - mae: 0.6600 - val_loss: 0.9739 - val_mae: 0.7439 Epoch 19/120 189/189 [==============================] - 1s 6ms/step - loss: 0.8019 - mae: 0.6622 - val_loss: 1.0502 - val_mae: 0.7650 Epoch 20/120 189/189 [==============================] - 1s 6ms/step - loss: 0.7713 - mae: 0.6511 - val_loss: 0.9791 - val_mae: 0.7575 Epoch 21/120 189/189 [==============================] - 1s 6ms/step - loss: 0.7496 - mae: 0.6396 - val_loss: 0.9504 - val_mae: 0.7423 Epoch 22/120 189/189 [==============================] - 1s 6ms/step - loss: 0.7166 - mae: 0.6294 - val_loss: 0.8835 - val_mae: 0.7125 Epoch 23/120 189/189 [==============================] - 1s 6ms/step - loss: 0.7189 - mae: 0.6290 - val_loss: 0.8972 - val_mae: 0.7205 Epoch 24/120 189/189 [==============================] - 1s 6ms/step - loss: 0.7488 - mae: 0.6536 - val_loss: 0.9081 - val_mae: 0.7256 Epoch 25/120 189/189 [==============================] - 1s 6ms/step - loss: 0.7096 - mae: 0.6277 - val_loss: 0.8578 - val_mae: 0.7056 Epoch 26/120 189/189 [==============================] - 1s 7ms/step - loss: 0.7016 - mae: 0.6269 - val_loss: 0.8520 - val_mae: 0.7090 Epoch 27/120 189/189 [==============================] - 1s 7ms/step - loss: 0.7051 - mae: 0.6337 - val_loss: 0.8277 - val_mae: 0.6964 Epoch 28/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6752 - mae: 0.6161 - val_loss: 0.8951 - val_mae: 0.7282 Epoch 29/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6815 - mae: 0.6194 - val_loss: 0.8334 - val_mae: 0.7028 Epoch 30/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6705 - mae: 0.6178 - val_loss: 0.8595 - val_mae: 0.7225 Epoch 31/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6706 - mae: 0.6167 - val_loss: 0.8604 - val_mae: 0.7181 Epoch 32/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6722 - mae: 0.6158 - val_loss: 0.8371 - val_mae: 0.7139 Epoch 33/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6615 - mae: 0.6120 - val_loss: 0.7928 - val_mae: 0.6866 Epoch 34/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6550 - mae: 0.6128 - val_loss: 0.7691 - val_mae: 0.6795 Epoch 35/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6479 - mae: 0.6093 - val_loss: 0.7678 - val_mae: 0.6756 Epoch 36/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6636 - mae: 0.6125 - val_loss: 0.8424 - val_mae: 0.7166 Epoch 37/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6366 - mae: 0.6023 - val_loss: 0.8014 - val_mae: 0.7060 Epoch 38/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6355 - mae: 0.6009 - val_loss: 0.7662 - val_mae: 0.6752 Epoch 39/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6417 - mae: 0.6041 - val_loss: 0.7628 - val_mae: 0.6772 Epoch 40/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6320 - mae: 0.6028 - val_loss: 0.7558 - val_mae: 0.6829 Epoch 41/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6337 - mae: 0.6051 - val_loss: 0.7675 - val_mae: 0.6803 Epoch 42/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6580 - mae: 0.6100 - val_loss: 0.7874 - val_mae: 0.6937 Epoch 43/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6379 - mae: 0.6052 - val_loss: 0.8357 - val_mae: 0.7131 Epoch 44/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6460 - mae: 0.6096 - val_loss: 0.7870 - val_mae: 0.6930 Epoch 45/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6430 - mae: 0.6052 - val_loss: 1.0809 - val_mae: 0.8345 Epoch 46/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6604 - mae: 0.6202 - val_loss: 0.7885 - val_mae: 0.6905 Epoch 47/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6440 - mae: 0.6112 - val_loss: 0.7746 - val_mae: 0.6825 Epoch 48/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6274 - mae: 0.6026 - val_loss: 0.7872 - val_mae: 0.6898 Epoch 49/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6189 - mae: 0.5986 - val_loss: 0.8319 - val_mae: 0.7141 Epoch 50/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6127 - mae: 0.5911 - val_loss: 0.8113 - val_mae: 0.7097 Epoch 51/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6240 - mae: 0.5978 - val_loss: 0.8235 - val_mae: 0.7117 Epoch 52/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6209 - mae: 0.5982 - val_loss: 0.8305 - val_mae: 0.7077 Epoch 53/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6094 - mae: 0.5928 - val_loss: 0.7958 - val_mae: 0.6947 Epoch 54/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6244 - mae: 0.6028 - val_loss: 0.7849 - val_mae: 0.6886 Epoch 55/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6093 - mae: 0.5937 - val_loss: 0.7863 - val_mae: 0.7021 Epoch 1/120 189/189 [==============================] - 3s 8ms/step - loss: 81.1299 - mae: 7.8674 - val_loss: 64.2365 - val_mae: 7.2652 Epoch 2/120 189/189 [==============================] - 1s 6ms/step - loss: 30.6533 - mae: 4.3953 - val_loss: 33.3239 - val_mae: 4.7759 Epoch 3/120 189/189 [==============================] - 1s 6ms/step - loss: 18.2809 - mae: 3.1192 - val_loss: 21.3737 - val_mae: 3.5633 Epoch 4/120 189/189 [==============================] - 1s 6ms/step - loss: 12.9101 - mae: 2.5236 - val_loss: 15.4097 - val_mae: 2.9423 Epoch 5/120 189/189 [==============================] - 1s 6ms/step - loss: 9.8994 - mae: 2.1860 - val_loss: 11.8986 - val_mae: 2.5589 Epoch 6/120 189/189 [==============================] - 1s 6ms/step - loss: 8.0754 - mae: 1.9488 - val_loss: 9.7792 - val_mae: 2.3053 Epoch 7/120 189/189 [==============================] - 1s 6ms/step - loss: 6.6387 - mae: 1.7429 - val_loss: 8.2027 - val_mae: 2.0902 Epoch 8/120 189/189 [==============================] - 1s 6ms/step - loss: 5.6120 - mae: 1.5913 - val_loss: 6.9469 - val_mae: 1.9111 Epoch 9/120 189/189 [==============================] - 1s 6ms/step - loss: 4.8001 - mae: 1.4675 - val_loss: 5.8758 - val_mae: 1.7371 Epoch 10/120 189/189 [==============================] - 1s 6ms/step - loss: 4.1903 - mae: 1.3645 - val_loss: 5.0145 - val_mae: 1.6076 Epoch 11/120 189/189 [==============================] - 1s 6ms/step - loss: 3.6401 - mae: 1.2716 - val_loss: 4.4961 - val_mae: 1.5009 Epoch 12/120 189/189 [==============================] - 1s 6ms/step - loss: 3.1994 - mae: 1.1823 - val_loss: 3.8395 - val_mae: 1.3807 Epoch 13/120 189/189 [==============================] - 1s 7ms/step - loss: 2.8242 - mae: 1.1185 - val_loss: 3.4469 - val_mae: 1.2986 Epoch 14/120 189/189 [==============================] - 1s 7ms/step - loss: 2.4946 - mae: 1.0460 - val_loss: 3.0547 - val_mae: 1.2182 Epoch 15/120 189/189 [==============================] - 1s 6ms/step - loss: 2.2185 - mae: 0.9790 - val_loss: 2.7805 - val_mae: 1.1569 Epoch 16/120 189/189 [==============================] - 1s 7ms/step - loss: 1.9700 - mae: 0.9218 - val_loss: 2.4730 - val_mae: 1.0878 Epoch 17/120 189/189 [==============================] - 1s 6ms/step - loss: 1.7961 - mae: 0.8816 - val_loss: 2.2516 - val_mae: 1.0379 Epoch 18/120 189/189 [==============================] - 1s 6ms/step - loss: 1.6154 - mae: 0.8390 - val_loss: 2.0548 - val_mae: 0.9892 Epoch 19/120 189/189 [==============================] - 1s 6ms/step - loss: 1.4917 - mae: 0.8127 - val_loss: 1.9086 - val_mae: 0.9621 Epoch 20/120 189/189 [==============================] - 1s 7ms/step - loss: 1.3826 - mae: 0.7847 - val_loss: 1.7105 - val_mae: 0.9136 Epoch 21/120 189/189 [==============================] - 1s 6ms/step - loss: 1.2830 - mae: 0.7607 - val_loss: 1.6252 - val_mae: 0.9021 Epoch 22/120 189/189 [==============================] - 1s 7ms/step - loss: 1.2140 - mae: 0.7488 - val_loss: 1.5019 - val_mae: 0.8694 Epoch 23/120 189/189 [==============================] - 1s 6ms/step - loss: 1.1369 - mae: 0.7307 - val_loss: 1.4207 - val_mae: 0.8501 Epoch 24/120 189/189 [==============================] - 1s 6ms/step - loss: 1.0795 - mae: 0.7166 - val_loss: 1.3436 - val_mae: 0.8307 Epoch 25/120 189/189 [==============================] - 1s 6ms/step - loss: 1.0324 - mae: 0.7089 - val_loss: 1.3020 - val_mae: 0.8224 Epoch 26/120 189/189 [==============================] - 1s 7ms/step - loss: 0.9956 - mae: 0.6991 - val_loss: 1.2980 - val_mae: 0.8296 Epoch 27/120 189/189 [==============================] - 1s 6ms/step - loss: 0.9514 - mae: 0.6895 - val_loss: 1.2169 - val_mae: 0.8072 Epoch 28/120 189/189 [==============================] - 1s 7ms/step - loss: 0.9075 - mae: 0.6779 - val_loss: 1.2041 - val_mae: 0.8066 Epoch 29/120 189/189 [==============================] - 1s 7ms/step - loss: 0.8937 - mae: 0.6758 - val_loss: 1.1236 - val_mae: 0.7878 Epoch 30/120 189/189 [==============================] - 1s 6ms/step - loss: 0.8555 - mae: 0.6650 - val_loss: 1.0832 - val_mae: 0.7732 Epoch 31/120 189/189 [==============================] - 1s 7ms/step - loss: 0.8357 - mae: 0.6633 - val_loss: 1.0496 - val_mae: 0.7663 Epoch 32/120 189/189 [==============================] - 1s 6ms/step - loss: 0.8143 - mae: 0.6554 - val_loss: 1.0152 - val_mae: 0.7580 Epoch 33/120 189/189 [==============================] - 1s 6ms/step - loss: 0.7951 - mae: 0.6481 - val_loss: 1.0013 - val_mae: 0.7550 Epoch 34/120 189/189 [==============================] - 1s 6ms/step - loss: 0.7756 - mae: 0.6433 - val_loss: 0.9993 - val_mae: 0.7638 Epoch 35/120 189/189 [==============================] - 1s 6ms/step - loss: 0.7562 - mae: 0.6393 - val_loss: 0.9595 - val_mae: 0.7372 Epoch 36/120 189/189 [==============================] - 1s 7ms/step - loss: 0.7575 - mae: 0.6421 - val_loss: 0.9478 - val_mae: 0.7378 Epoch 37/120 189/189 [==============================] - 1s 7ms/step - loss: 0.7419 - mae: 0.6353 - val_loss: 0.9207 - val_mae: 0.7259 Epoch 38/120 189/189 [==============================] - 1s 6ms/step - loss: 0.7163 - mae: 0.6266 - val_loss: 0.9142 - val_mae: 0.7280 Epoch 39/120 189/189 [==============================] - 1s 7ms/step - loss: 0.7261 - mae: 0.6290 - val_loss: 0.9440 - val_mae: 0.7476 Epoch 40/120 189/189 [==============================] - 1s 6ms/step - loss: 0.7021 - mae: 0.6192 - val_loss: 0.9051 - val_mae: 0.7240 Epoch 41/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6958 - mae: 0.6193 - val_loss: 0.8946 - val_mae: 0.7267 Epoch 42/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6947 - mae: 0.6235 - val_loss: 0.8963 - val_mae: 0.7273 Epoch 43/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6855 - mae: 0.6170 - val_loss: 0.8681 - val_mae: 0.7155 Epoch 44/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6757 - mae: 0.6138 - val_loss: 0.8808 - val_mae: 0.7227 Epoch 45/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6845 - mae: 0.6174 - val_loss: 0.8534 - val_mae: 0.7041 Epoch 46/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6665 - mae: 0.6105 - val_loss: 0.8809 - val_mae: 0.7286 Epoch 47/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6687 - mae: 0.6133 - val_loss: 0.8595 - val_mae: 0.7105 Epoch 48/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6697 - mae: 0.6120 - val_loss: 0.8604 - val_mae: 0.7163 Epoch 49/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6613 - mae: 0.6118 - val_loss: 0.8144 - val_mae: 0.6933 Epoch 50/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6550 - mae: 0.6078 - val_loss: 0.8229 - val_mae: 0.7025 Epoch 51/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6540 - mae: 0.6062 - val_loss: 0.8250 - val_mae: 0.6950 Epoch 52/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6563 - mae: 0.6092 - val_loss: 0.8380 - val_mae: 0.7027 Epoch 53/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6441 - mae: 0.6013 - val_loss: 0.8035 - val_mae: 0.6922 Epoch 54/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6542 - mae: 0.6085 - val_loss: 0.8208 - val_mae: 0.7049 Epoch 55/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6407 - mae: 0.6039 - val_loss: 0.8247 - val_mae: 0.7030 Epoch 56/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6409 - mae: 0.6048 - val_loss: 0.7991 - val_mae: 0.6962 Epoch 57/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6447 - mae: 0.6043 - val_loss: 0.8506 - val_mae: 0.7102 Epoch 58/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6339 - mae: 0.5995 - val_loss: 0.8003 - val_mae: 0.6948 Epoch 59/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6402 - mae: 0.6041 - val_loss: 0.7826 - val_mae: 0.6855 Epoch 60/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6330 - mae: 0.6001 - val_loss: 0.8408 - val_mae: 0.7091 Epoch 61/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6407 - mae: 0.6033 - val_loss: 0.7791 - val_mae: 0.6848 Epoch 62/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6259 - mae: 0.5973 - val_loss: 0.7574 - val_mae: 0.6753 Epoch 63/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6388 - mae: 0.6042 - val_loss: 0.7832 - val_mae: 0.6929 Epoch 64/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6330 - mae: 0.6016 - val_loss: 0.7612 - val_mae: 0.6796 Epoch 65/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6251 - mae: 0.5947 - val_loss: 0.7706 - val_mae: 0.6796 Epoch 66/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6255 - mae: 0.5973 - val_loss: 0.7628 - val_mae: 0.6815 Epoch 67/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6162 - mae: 0.5959 - val_loss: 0.7634 - val_mae: 0.6761 Epoch 68/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6239 - mae: 0.5982 - val_loss: 0.7469 - val_mae: 0.6751 Epoch 69/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6149 - mae: 0.5954 - val_loss: 0.7784 - val_mae: 0.6851 Epoch 70/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6368 - mae: 0.6059 - val_loss: 0.7646 - val_mae: 0.6813 Epoch 71/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6203 - mae: 0.5955 - val_loss: 0.7789 - val_mae: 0.6920 Epoch 72/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6128 - mae: 0.5903 - val_loss: 0.7617 - val_mae: 0.6799 Epoch 73/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6094 - mae: 0.5934 - val_loss: 0.7755 - val_mae: 0.6894 Epoch 74/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6106 - mae: 0.5918 - val_loss: 0.7621 - val_mae: 0.6787 Epoch 75/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6149 - mae: 0.5926 - val_loss: 0.7678 - val_mae: 0.6886 Epoch 76/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6121 - mae: 0.5922 - val_loss: 0.7496 - val_mae: 0.6740 Epoch 77/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6073 - mae: 0.5885 - val_loss: 0.7503 - val_mae: 0.6741 Epoch 78/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6261 - mae: 0.6001 - val_loss: 0.7519 - val_mae: 0.6765 Epoch 79/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6055 - mae: 0.5911 - val_loss: 0.7630 - val_mae: 0.6819 Epoch 80/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6024 - mae: 0.5908 - val_loss: 0.7771 - val_mae: 0.6943 Epoch 81/120 189/189 [==============================] - 1s 6ms/step - loss: 0.5987 - mae: 0.5892 - val_loss: 0.8077 - val_mae: 0.7040 Epoch 82/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6013 - mae: 0.5892 - val_loss: 0.7643 - val_mae: 0.6826 Epoch 83/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6067 - mae: 0.5913 - val_loss: 0.7502 - val_mae: 0.6788 Epoch 1/120 189/189 [==============================] - 3s 8ms/step - loss: 47.4713 - mae: 5.3326 - val_loss: 15.8499 - val_mae: 2.9895 Epoch 2/120 189/189 [==============================] - 1s 6ms/step - loss: 9.6044 - mae: 2.2220 - val_loss: 10.6164 - val_mae: 2.4418 Epoch 3/120 189/189 [==============================] - 1s 7ms/step - loss: 7.0287 - mae: 1.8880 - val_loss: 7.4329 - val_mae: 2.0622 Epoch 4/120 189/189 [==============================] - 1s 7ms/step - loss: 5.2396 - mae: 1.6153 - val_loss: 5.7076 - val_mae: 1.7752 Epoch 5/120 189/189 [==============================] - 1s 7ms/step - loss: 4.0007 - mae: 1.3987 - val_loss: 4.6602 - val_mae: 1.5848 Epoch 6/120 189/189 [==============================] - 1s 7ms/step - loss: 3.2439 - mae: 1.2611 - val_loss: 3.6883 - val_mae: 1.3858 Epoch 7/120 189/189 [==============================] - 1s 7ms/step - loss: 2.6286 - mae: 1.1302 - val_loss: 3.0480 - val_mae: 1.2574 Epoch 8/120 189/189 [==============================] - 1s 7ms/step - loss: 2.1925 - mae: 1.0358 - val_loss: 2.6411 - val_mae: 1.1669 Epoch 9/120 189/189 [==============================] - 1s 7ms/step - loss: 1.8281 - mae: 0.9525 - val_loss: 2.1919 - val_mae: 1.0675 Epoch 10/120 189/189 [==============================] - 1s 7ms/step - loss: 1.5557 - mae: 0.8725 - val_loss: 1.8096 - val_mae: 0.9781 Epoch 11/120 189/189 [==============================] - 1s 7ms/step - loss: 1.3630 - mae: 0.8272 - val_loss: 1.6560 - val_mae: 0.9492 Epoch 12/120 189/189 [==============================] - 1s 7ms/step - loss: 1.2173 - mae: 0.7838 - val_loss: 1.4906 - val_mae: 0.8886 Epoch 13/120 189/189 [==============================] - 1s 6ms/step - loss: 1.0808 - mae: 0.7434 - val_loss: 1.3029 - val_mae: 0.8320 Epoch 14/120 189/189 [==============================] - 1s 7ms/step - loss: 0.9741 - mae: 0.7127 - val_loss: 1.2208 - val_mae: 0.8173 Epoch 15/120 189/189 [==============================] - 1s 6ms/step - loss: 0.9215 - mae: 0.6921 - val_loss: 1.0851 - val_mae: 0.7808 Epoch 16/120 189/189 [==============================] - 1s 7ms/step - loss: 0.8543 - mae: 0.6751 - val_loss: 1.0561 - val_mae: 0.7806 Epoch 17/120 189/189 [==============================] - 1s 6ms/step - loss: 0.8170 - mae: 0.6627 - val_loss: 1.0157 - val_mae: 0.7543 Epoch 18/120 189/189 [==============================] - 1s 7ms/step - loss: 0.7825 - mae: 0.6519 - val_loss: 1.0110 - val_mae: 0.7595 Epoch 19/120 189/189 [==============================] - 1s 7ms/step - loss: 0.7598 - mae: 0.6431 - val_loss: 0.9790 - val_mae: 0.7486 Epoch 20/120 189/189 [==============================] - 1s 7ms/step - loss: 0.7516 - mae: 0.6463 - val_loss: 0.8982 - val_mae: 0.7210 Epoch 21/120 189/189 [==============================] - 1s 7ms/step - loss: 0.7233 - mae: 0.6329 - val_loss: 1.0937 - val_mae: 0.8044 Epoch 22/120 189/189 [==============================] - 1s 7ms/step - loss: 0.7369 - mae: 0.6430 - val_loss: 0.9110 - val_mae: 0.7406 Epoch 23/120 189/189 [==============================] - 1s 7ms/step - loss: 0.7188 - mae: 0.6377 - val_loss: 0.9554 - val_mae: 0.7589 Epoch 24/120 189/189 [==============================] - 1s 7ms/step - loss: 0.7148 - mae: 0.6385 - val_loss: 0.8573 - val_mae: 0.7116 Epoch 25/120 189/189 [==============================] - 1s 7ms/step - loss: 0.7027 - mae: 0.6271 - val_loss: 0.8526 - val_mae: 0.7215 Epoch 26/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6798 - mae: 0.6203 - val_loss: 0.8369 - val_mae: 0.7097 Epoch 27/120 189/189 [==============================] - 1s 7ms/step - loss: 0.7157 - mae: 0.6340 - val_loss: 0.8258 - val_mae: 0.7072 Epoch 28/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6805 - mae: 0.6184 - val_loss: 0.8694 - val_mae: 0.7228 Epoch 29/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6650 - mae: 0.6167 - val_loss: 0.8128 - val_mae: 0.6959 Epoch 30/120 189/189 [==============================] - 1s 7ms/step - loss: 0.8052 - mae: 0.6737 - val_loss: 0.8536 - val_mae: 0.7182 Epoch 31/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6823 - mae: 0.6272 - val_loss: 0.7927 - val_mae: 0.6893 Epoch 32/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6728 - mae: 0.6174 - val_loss: 0.7662 - val_mae: 0.6745 Epoch 33/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6488 - mae: 0.6084 - val_loss: 0.8092 - val_mae: 0.7003 Epoch 34/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6501 - mae: 0.6059 - val_loss: 0.7530 - val_mae: 0.6706 Epoch 35/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6545 - mae: 0.6073 - val_loss: 0.7986 - val_mae: 0.6946 Epoch 36/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6542 - mae: 0.6125 - val_loss: 0.8062 - val_mae: 0.7030 Epoch 37/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6499 - mae: 0.6117 - val_loss: 0.7955 - val_mae: 0.6942 Epoch 38/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6452 - mae: 0.6052 - val_loss: 0.7449 - val_mae: 0.6752 Epoch 39/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6258 - mae: 0.5993 - val_loss: 0.7714 - val_mae: 0.6814 Epoch 40/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6287 - mae: 0.6054 - val_loss: 0.7673 - val_mae: 0.6806 Epoch 41/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6221 - mae: 0.5969 - val_loss: 0.7709 - val_mae: 0.6902 Epoch 42/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6285 - mae: 0.5999 - val_loss: 0.7993 - val_mae: 0.6992 Epoch 43/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6132 - mae: 0.5972 - val_loss: 0.7574 - val_mae: 0.6823 Epoch 44/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6206 - mae: 0.6021 - val_loss: 0.7452 - val_mae: 0.6721 Epoch 45/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6140 - mae: 0.5957 - val_loss: 0.7187 - val_mae: 0.6605 Epoch 46/120 189/189 [==============================] - 1s 6ms/step - loss: 0.6295 - mae: 0.5995 - val_loss: 0.7204 - val_mae: 0.6589 Epoch 47/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6246 - mae: 0.6025 - val_loss: 0.7422 - val_mae: 0.6691 Epoch 48/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6060 - mae: 0.5957 - val_loss: 0.7466 - val_mae: 0.6636 Epoch 49/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6209 - mae: 0.6021 - val_loss: 0.7485 - val_mae: 0.6750 Epoch 50/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6129 - mae: 0.5963 - val_loss: 0.7514 - val_mae: 0.6714 Epoch 51/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6095 - mae: 0.5982 - val_loss: 0.7138 - val_mae: 0.6614 Epoch 52/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6070 - mae: 0.5927 - val_loss: 0.7440 - val_mae: 0.6711 Epoch 53/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6116 - mae: 0.5972 - val_loss: 0.7205 - val_mae: 0.6567 Epoch 54/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6215 - mae: 0.5994 - val_loss: 0.7950 - val_mae: 0.7037 Epoch 55/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6156 - mae: 0.5992 - val_loss: 0.7367 - val_mae: 0.6721 Epoch 56/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6052 - mae: 0.5931 - val_loss: 0.7610 - val_mae: 0.6795 Epoch 57/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6088 - mae: 0.5963 - val_loss: 0.7623 - val_mae: 0.6818 Epoch 58/120 189/189 [==============================] - 1s 7ms/step - loss: 0.5991 - mae: 0.5939 - val_loss: 0.7218 - val_mae: 0.6622 Epoch 59/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6068 - mae: 0.5954 - val_loss: 0.7446 - val_mae: 0.6723 Epoch 60/120 189/189 [==============================] - 1s 7ms/step - loss: 0.5959 - mae: 0.5890 - val_loss: 0.7588 - val_mae: 0.6787 Epoch 61/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6133 - mae: 0.5999 - val_loss: 0.7709 - val_mae: 0.6874 Epoch 62/120 189/189 [==============================] - 1s 6ms/step - loss: 0.5939 - mae: 0.5906 - val_loss: 0.7481 - val_mae: 0.6756 Epoch 63/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6166 - mae: 0.6021 - val_loss: 0.7338 - val_mae: 0.6623 Epoch 64/120 189/189 [==============================] - 1s 7ms/step - loss: 0.5876 - mae: 0.5843 - val_loss: 0.7237 - val_mae: 0.6595 Epoch 65/120 189/189 [==============================] - 1s 7ms/step - loss: 0.5972 - mae: 0.5901 - val_loss: 0.8089 - val_mae: 0.6965 Epoch 66/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6238 - mae: 0.5988 - val_loss: 0.7208 - val_mae: 0.6619 Epoch 1/120 189/189 [==============================] - 3s 9ms/step - loss: 27.5450 - mae: 3.7531 - val_loss: 9.6313 - val_mae: 2.3578 Epoch 2/120 189/189 [==============================] - 1s 7ms/step - loss: 6.3607 - mae: 1.8320 - val_loss: 6.4137 - val_mae: 1.9009 Epoch 3/120 189/189 [==============================] - 1s 7ms/step - loss: 4.1454 - mae: 1.4639 - val_loss: 4.1726 - val_mae: 1.5380 Epoch 4/120 189/189 [==============================] - 1s 7ms/step - loss: 2.9892 - mae: 1.2508 - val_loss: 3.3383 - val_mae: 1.3525 Epoch 5/120 189/189 [==============================] - 1s 7ms/step - loss: 2.2238 - mae: 1.0846 - val_loss: 2.4990 - val_mae: 1.1603 Epoch 6/120 189/189 [==============================] - 1s 7ms/step - loss: 1.7992 - mae: 0.9650 - val_loss: 1.9785 - val_mae: 1.0297 Epoch 7/120 189/189 [==============================] - 1s 7ms/step - loss: 1.4256 - mae: 0.8717 - val_loss: 1.5725 - val_mae: 0.9290 Epoch 8/120 189/189 [==============================] - 1s 7ms/step - loss: 1.1736 - mae: 0.7932 - val_loss: 1.3176 - val_mae: 0.8491 Epoch 9/120 189/189 [==============================] - 1s 7ms/step - loss: 1.0096 - mae: 0.7367 - val_loss: 1.1265 - val_mae: 0.7901 Epoch 10/120 189/189 [==============================] - 1s 7ms/step - loss: 0.8759 - mae: 0.6916 - val_loss: 1.0406 - val_mae: 0.7731 Epoch 11/120 189/189 [==============================] - 1s 7ms/step - loss: 0.8424 - mae: 0.6767 - val_loss: 1.0057 - val_mae: 0.7641 Epoch 12/120 189/189 [==============================] - 1s 7ms/step - loss: 0.7608 - mae: 0.6500 - val_loss: 0.9301 - val_mae: 0.7372 Epoch 13/120 189/189 [==============================] - 1s 7ms/step - loss: 0.7492 - mae: 0.6431 - val_loss: 0.8927 - val_mae: 0.7285 Epoch 14/120 189/189 [==============================] - 1s 7ms/step - loss: 0.7258 - mae: 0.6375 - val_loss: 0.8700 - val_mae: 0.7162 Epoch 15/120 189/189 [==============================] - 1s 7ms/step - loss: 0.7433 - mae: 0.6452 - val_loss: 0.8341 - val_mae: 0.7058 Epoch 16/120 189/189 [==============================] - 1s 7ms/step - loss: 0.7182 - mae: 0.6346 - val_loss: 0.8264 - val_mae: 0.7042 Epoch 17/120 189/189 [==============================] - 1s 7ms/step - loss: 0.7007 - mae: 0.6304 - val_loss: 0.8164 - val_mae: 0.7024 Epoch 18/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6952 - mae: 0.6270 - val_loss: 0.8438 - val_mae: 0.7210 Epoch 19/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6693 - mae: 0.6154 - val_loss: 0.7708 - val_mae: 0.6772 Epoch 20/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6700 - mae: 0.6205 - val_loss: 0.7995 - val_mae: 0.7003 Epoch 21/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6964 - mae: 0.6306 - val_loss: 0.7740 - val_mae: 0.6928 Epoch 22/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6712 - mae: 0.6214 - val_loss: 0.8077 - val_mae: 0.6998 Epoch 23/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6562 - mae: 0.6124 - val_loss: 0.7688 - val_mae: 0.6900 Epoch 24/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6486 - mae: 0.6146 - val_loss: 0.7504 - val_mae: 0.6759 Epoch 25/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6998 - mae: 0.6307 - val_loss: 1.0010 - val_mae: 0.7975 Epoch 26/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6695 - mae: 0.6175 - val_loss: 0.8050 - val_mae: 0.7024 Epoch 27/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6606 - mae: 0.6144 - val_loss: 0.7453 - val_mae: 0.6731 Epoch 28/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6259 - mae: 0.6013 - val_loss: 0.7771 - val_mae: 0.6870 Epoch 29/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6324 - mae: 0.6086 - val_loss: 0.7900 - val_mae: 0.6958 Epoch 30/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6159 - mae: 0.6019 - val_loss: 0.7273 - val_mae: 0.6652 Epoch 31/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6404 - mae: 0.6068 - val_loss: 0.7454 - val_mae: 0.6706 Epoch 32/120 189/189 [==============================] - 1s 8ms/step - loss: 0.6211 - mae: 0.5980 - val_loss: 0.7086 - val_mae: 0.6575 Epoch 33/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6084 - mae: 0.5924 - val_loss: 0.7584 - val_mae: 0.6784 Epoch 34/120 189/189 [==============================] - 1s 8ms/step - loss: 0.6608 - mae: 0.6217 - val_loss: 0.7491 - val_mae: 0.6788 Epoch 35/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6408 - mae: 0.6086 - val_loss: 0.7296 - val_mae: 0.6635 Epoch 36/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6364 - mae: 0.6119 - val_loss: 0.7131 - val_mae: 0.6598 Epoch 37/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6242 - mae: 0.6015 - val_loss: 0.7667 - val_mae: 0.6878 Epoch 38/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6303 - mae: 0.6081 - val_loss: 0.9231 - val_mae: 0.7585 Epoch 39/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6371 - mae: 0.6092 - val_loss: 0.7212 - val_mae: 0.6588 Epoch 40/120 189/189 [==============================] - 1s 8ms/step - loss: 0.6189 - mae: 0.6016 - val_loss: 0.7360 - val_mae: 0.6675 Epoch 41/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6226 - mae: 0.6042 - val_loss: 0.7106 - val_mae: 0.6553 Epoch 42/120 189/189 [==============================] - 2s 8ms/step - loss: 0.6363 - mae: 0.6086 - val_loss: 0.7078 - val_mae: 0.6576 Epoch 43/120 189/189 [==============================] - 1s 8ms/step - loss: 0.6029 - mae: 0.5910 - val_loss: 0.8167 - val_mae: 0.7040 Epoch 44/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6139 - mae: 0.5971 - val_loss: 0.8124 - val_mae: 0.7073 Epoch 45/120 189/189 [==============================] - 1s 8ms/step - loss: 0.6277 - mae: 0.6007 - val_loss: 0.7767 - val_mae: 0.6878 Epoch 46/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6108 - mae: 0.5949 - val_loss: 0.7765 - val_mae: 0.6918 Epoch 47/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6475 - mae: 0.6135 - val_loss: 0.7405 - val_mae: 0.6695 Epoch 48/120 189/189 [==============================] - 1s 8ms/step - loss: 0.6255 - mae: 0.6017 - val_loss: 0.7479 - val_mae: 0.6759 Epoch 49/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6139 - mae: 0.5968 - val_loss: 0.7030 - val_mae: 0.6530 Epoch 50/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6177 - mae: 0.6006 - val_loss: 0.7252 - val_mae: 0.6640 Epoch 51/120 189/189 [==============================] - 1s 8ms/step - loss: 0.6051 - mae: 0.5930 - val_loss: 0.7141 - val_mae: 0.6600 Epoch 52/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6262 - mae: 0.6079 - val_loss: 0.7604 - val_mae: 0.6787 Epoch 53/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6239 - mae: 0.6020 - val_loss: 0.8416 - val_mae: 0.7200 Epoch 54/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6093 - mae: 0.5947 - val_loss: 0.7552 - val_mae: 0.6793 Epoch 55/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6287 - mae: 0.6079 - val_loss: 0.8617 - val_mae: 0.7380 Epoch 56/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6240 - mae: 0.6011 - val_loss: 0.7092 - val_mae: 0.6499 Epoch 57/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6064 - mae: 0.6002 - val_loss: 0.7715 - val_mae: 0.6785 Epoch 58/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6307 - mae: 0.6125 - val_loss: 0.7316 - val_mae: 0.6660 Epoch 59/120 189/189 [==============================] - 1s 8ms/step - loss: 0.6182 - mae: 0.5980 - val_loss: 0.8154 - val_mae: 0.6999 Epoch 60/120 189/189 [==============================] - 1s 7ms/step - loss: 0.5935 - mae: 0.5897 - val_loss: 0.7440 - val_mae: 0.6666 Epoch 61/120 189/189 [==============================] - 1s 8ms/step - loss: 0.6129 - mae: 0.6003 - val_loss: 0.7110 - val_mae: 0.6617 Epoch 62/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6072 - mae: 0.5949 - val_loss: 0.7016 - val_mae: 0.6516 Epoch 63/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6103 - mae: 0.5997 - val_loss: 0.7586 - val_mae: 0.6769 Epoch 64/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6086 - mae: 0.5999 - val_loss: 0.7323 - val_mae: 0.6637 Epoch 65/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6149 - mae: 0.6004 - val_loss: 0.7227 - val_mae: 0.6610 Epoch 66/120 189/189 [==============================] - 1s 8ms/step - loss: 0.6373 - mae: 0.6093 - val_loss: 0.7388 - val_mae: 0.6743 Epoch 67/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6320 - mae: 0.6116 - val_loss: 0.6995 - val_mae: 0.6504 Epoch 68/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6003 - mae: 0.5947 - val_loss: 0.7149 - val_mae: 0.6558 Epoch 69/120 189/189 [==============================] - 1s 7ms/step - loss: 0.5970 - mae: 0.5896 - val_loss: 0.7000 - val_mae: 0.6494 Epoch 70/120 189/189 [==============================] - 1s 8ms/step - loss: 0.6063 - mae: 0.5917 - val_loss: 0.7107 - val_mae: 0.6563 Epoch 71/120 189/189 [==============================] - 1s 7ms/step - loss: 0.5956 - mae: 0.5927 - val_loss: 0.7099 - val_mae: 0.6543 Epoch 72/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6032 - mae: 0.5950 - val_loss: 0.8491 - val_mae: 0.7196 Epoch 73/120 189/189 [==============================] - 1s 7ms/step - loss: 0.5951 - mae: 0.5916 - val_loss: 0.6824 - val_mae: 0.6465 Epoch 74/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6767 - mae: 0.6267 - val_loss: 0.8037 - val_mae: 0.6976 Epoch 75/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6322 - mae: 0.6079 - val_loss: 0.7111 - val_mae: 0.6557 Epoch 76/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6064 - mae: 0.5986 - val_loss: 0.7040 - val_mae: 0.6513 Epoch 77/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6003 - mae: 0.5911 - val_loss: 0.8245 - val_mae: 0.7072 Epoch 78/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6030 - mae: 0.5959 - val_loss: 0.8950 - val_mae: 0.7620 Epoch 79/120 189/189 [==============================] - 1s 8ms/step - loss: 0.6026 - mae: 0.5915 - val_loss: 0.7022 - val_mae: 0.6525 Epoch 80/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6001 - mae: 0.5976 - val_loss: 0.8361 - val_mae: 0.7123 Epoch 81/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6048 - mae: 0.5971 - val_loss: 0.7112 - val_mae: 0.6514 Epoch 82/120 189/189 [==============================] - 1s 7ms/step - loss: 0.5916 - mae: 0.5868 - val_loss: 0.8201 - val_mae: 0.7104 Epoch 83/120 189/189 [==============================] - 1s 7ms/step - loss: 0.5961 - mae: 0.5914 - val_loss: 0.7278 - val_mae: 0.6627 Epoch 84/120 189/189 [==============================] - 1s 8ms/step - loss: 0.5948 - mae: 0.5903 - val_loss: 0.8148 - val_mae: 0.7067 Epoch 85/120 189/189 [==============================] - 1s 8ms/step - loss: 0.5875 - mae: 0.5849 - val_loss: 0.6971 - val_mae: 0.6470 Epoch 86/120 189/189 [==============================] - 1s 7ms/step - loss: 0.5871 - mae: 0.5867 - val_loss: 0.7656 - val_mae: 0.6924 Epoch 87/120 189/189 [==============================] - 1s 8ms/step - loss: 0.5963 - mae: 0.5907 - val_loss: 0.7785 - val_mae: 0.6858 Epoch 88/120 189/189 [==============================] - 1s 7ms/step - loss: 0.5932 - mae: 0.5918 - val_loss: 0.7697 - val_mae: 0.6822 Epoch 1/120 189/189 [==============================] - 3s 9ms/step - loss: 33.9651 - mae: 4.2580 - val_loss: 16.9745 - val_mae: 3.2227 Epoch 2/120 189/189 [==============================] - 1s 7ms/step - loss: 12.9371 - mae: 2.7065 - val_loss: 14.4041 - val_mae: 2.9067 Epoch 3/120 189/189 [==============================] - 1s 8ms/step - loss: 11.2938 - mae: 2.5312 - val_loss: 12.8566 - val_mae: 2.7407 Epoch 4/120 189/189 [==============================] - 1s 7ms/step - loss: 10.2553 - mae: 2.4172 - val_loss: 11.9095 - val_mae: 2.6340 Epoch 5/120 189/189 [==============================] - 1s 7ms/step - loss: 9.8175 - mae: 2.3914 - val_loss: 10.8945 - val_mae: 2.5618 Epoch 6/120 189/189 [==============================] - 1s 7ms/step - loss: 9.4369 - mae: 2.3337 - val_loss: 10.6322 - val_mae: 2.5477 Epoch 7/120 189/189 [==============================] - 1s 7ms/step - loss: 9.3634 - mae: 2.3348 - val_loss: 10.6807 - val_mae: 2.5054 Epoch 8/120 189/189 [==============================] - 1s 7ms/step - loss: 9.2245 - mae: 2.3088 - val_loss: 10.4154 - val_mae: 2.5012 Epoch 9/120 189/189 [==============================] - 1s 7ms/step - loss: 9.1463 - mae: 2.3016 - val_loss: 11.2599 - val_mae: 2.5247 Epoch 10/120 189/189 [==============================] - 1s 8ms/step - loss: 9.1213 - mae: 2.3117 - val_loss: 10.3469 - val_mae: 2.5185 Epoch 11/120 189/189 [==============================] - 1s 7ms/step - loss: 9.2780 - mae: 2.3415 - val_loss: 10.7591 - val_mae: 2.4982 Epoch 12/120 189/189 [==============================] - 1s 8ms/step - loss: 9.2096 - mae: 2.3185 - val_loss: 10.8900 - val_mae: 2.5008 Epoch 13/120 189/189 [==============================] - 1s 7ms/step - loss: 9.1271 - mae: 2.3190 - val_loss: 10.5281 - val_mae: 2.4882 Epoch 14/120 189/189 [==============================] - 1s 8ms/step - loss: 9.1241 - mae: 2.3226 - val_loss: 10.6643 - val_mae: 2.4979 Epoch 15/120 189/189 [==============================] - 1s 7ms/step - loss: 9.1707 - mae: 2.3150 - val_loss: 10.3638 - val_mae: 2.5095 Epoch 16/120 189/189 [==============================] - 1s 8ms/step - loss: 9.0890 - mae: 2.3160 - val_loss: 10.2628 - val_mae: 2.5106 Epoch 17/120 189/189 [==============================] - 1s 7ms/step - loss: 9.0057 - mae: 2.3081 - val_loss: 10.4261 - val_mae: 2.5698 Epoch 18/120 189/189 [==============================] - 1s 8ms/step - loss: 9.0866 - mae: 2.3091 - val_loss: 10.3138 - val_mae: 2.5307 Epoch 19/120 189/189 [==============================] - 1s 7ms/step - loss: 9.1337 - mae: 2.3238 - val_loss: 11.1429 - val_mae: 2.5211 Epoch 20/120 189/189 [==============================] - 1s 7ms/step - loss: 9.0392 - mae: 2.3025 - val_loss: 10.3060 - val_mae: 2.5097 Epoch 21/120 189/189 [==============================] - 1s 7ms/step - loss: 9.0582 - mae: 2.3126 - val_loss: 10.4586 - val_mae: 2.5394 Epoch 22/120 189/189 [==============================] - 1s 7ms/step - loss: 8.9371 - mae: 2.2983 - val_loss: 10.6967 - val_mae: 2.5449 Epoch 23/120 189/189 [==============================] - 1s 8ms/step - loss: 8.9941 - mae: 2.3082 - val_loss: 10.4153 - val_mae: 2.5070 Epoch 24/120 189/189 [==============================] - 1s 7ms/step - loss: 9.0550 - mae: 2.3124 - val_loss: 10.3318 - val_mae: 2.5093 Epoch 25/120 189/189 [==============================] - 1s 7ms/step - loss: 8.9632 - mae: 2.2921 - val_loss: 10.6731 - val_mae: 2.6136 Epoch 26/120 189/189 [==============================] - 1s 8ms/step - loss: 8.9853 - mae: 2.3036 - val_loss: 10.6101 - val_mae: 2.6122 Epoch 27/120 189/189 [==============================] - 1s 8ms/step - loss: 9.0183 - mae: 2.2992 - val_loss: 10.5447 - val_mae: 2.5083 Epoch 28/120 189/189 [==============================] - 1s 7ms/step - loss: 8.9145 - mae: 2.2853 - val_loss: 10.4754 - val_mae: 2.4955 Epoch 29/120 189/189 [==============================] - 1s 8ms/step - loss: 9.0905 - mae: 2.3136 - val_loss: 11.0337 - val_mae: 2.5075 Epoch 30/120 189/189 [==============================] - 1s 7ms/step - loss: 8.8960 - mae: 2.2843 - val_loss: 10.4398 - val_mae: 2.5317 Epoch 31/120 189/189 [==============================] - 1s 7ms/step - loss: 8.9973 - mae: 2.3137 - val_loss: 10.8342 - val_mae: 2.4977 Epoch 1/120 189/189 [==============================] - 3s 9ms/step - loss: 27.6469 - mae: 3.7721 - val_loss: 11.9337 - val_mae: 2.6963 Epoch 2/120 189/189 [==============================] - 1s 7ms/step - loss: 8.6783 - mae: 2.1629 - val_loss: 8.8065 - val_mae: 2.2549 Epoch 3/120 189/189 [==============================] - 1s 7ms/step - loss: 6.2620 - mae: 1.8547 - val_loss: 6.7910 - val_mae: 1.9715 Epoch 4/120 189/189 [==============================] - 1s 7ms/step - loss: 4.8690 - mae: 1.6405 - val_loss: 5.2693 - val_mae: 1.7295 Epoch 5/120 189/189 [==============================] - 1s 7ms/step - loss: 3.9947 - mae: 1.4943 - val_loss: 4.4022 - val_mae: 1.5844 Epoch 6/120 189/189 [==============================] - 1s 7ms/step - loss: 3.4576 - mae: 1.3855 - val_loss: 3.8800 - val_mae: 1.4716 Epoch 7/120 189/189 [==============================] - 1s 7ms/step - loss: 3.1854 - mae: 1.3452 - val_loss: 3.9502 - val_mae: 1.4801 Epoch 8/120 189/189 [==============================] - 1s 7ms/step - loss: 3.0675 - mae: 1.3288 - val_loss: 3.5766 - val_mae: 1.4295 Epoch 9/120 189/189 [==============================] - 1s 7ms/step - loss: 3.0437 - mae: 1.3278 - val_loss: 3.3734 - val_mae: 1.4247 Epoch 10/120 189/189 [==============================] - 1s 7ms/step - loss: 3.0986 - mae: 1.3435 - val_loss: 3.4318 - val_mae: 1.4505 Epoch 11/120 189/189 [==============================] - 2s 8ms/step - loss: 3.0011 - mae: 1.3220 - val_loss: 3.3882 - val_mae: 1.4169 Epoch 12/120 189/189 [==============================] - 1s 7ms/step - loss: 2.9368 - mae: 1.3020 - val_loss: 3.4790 - val_mae: 1.4315 Epoch 13/120 189/189 [==============================] - 1s 7ms/step - loss: 2.8391 - mae: 1.2875 - val_loss: 3.5261 - val_mae: 1.4619 Epoch 14/120 189/189 [==============================] - 1s 7ms/step - loss: 2.9151 - mae: 1.3039 - val_loss: 3.3631 - val_mae: 1.4097 Epoch 15/120 189/189 [==============================] - 1s 7ms/step - loss: 2.8766 - mae: 1.2911 - val_loss: 3.3491 - val_mae: 1.4096 Epoch 16/120 189/189 [==============================] - 1s 7ms/step - loss: 2.9230 - mae: 1.3124 - val_loss: 3.3134 - val_mae: 1.4090 Epoch 17/120 189/189 [==============================] - 1s 7ms/step - loss: 2.9043 - mae: 1.3096 - val_loss: 3.3760 - val_mae: 1.4414 Epoch 18/120 189/189 [==============================] - 1s 7ms/step - loss: 2.8965 - mae: 1.2883 - val_loss: 3.4638 - val_mae: 1.4694 Epoch 19/120 189/189 [==============================] - 1s 7ms/step - loss: 2.8550 - mae: 1.2844 - val_loss: 3.2612 - val_mae: 1.4062 Epoch 20/120 189/189 [==============================] - 1s 7ms/step - loss: 2.8240 - mae: 1.2741 - val_loss: 3.4415 - val_mae: 1.4789 Epoch 21/120 189/189 [==============================] - 1s 8ms/step - loss: 2.8642 - mae: 1.2828 - val_loss: 3.3267 - val_mae: 1.4087 Epoch 22/120 189/189 [==============================] - 1s 7ms/step - loss: 2.8075 - mae: 1.2790 - val_loss: 3.4459 - val_mae: 1.4271 Epoch 23/120 189/189 [==============================] - 1s 8ms/step - loss: 2.7687 - mae: 1.2752 - val_loss: 3.2168 - val_mae: 1.4010 Epoch 24/120 189/189 [==============================] - 1s 7ms/step - loss: 2.8344 - mae: 1.2780 - val_loss: 3.3493 - val_mae: 1.4115 Epoch 25/120 189/189 [==============================] - 1s 8ms/step - loss: 2.7741 - mae: 1.2702 - val_loss: 3.4237 - val_mae: 1.4708 Epoch 26/120 189/189 [==============================] - 1s 8ms/step - loss: 2.8779 - mae: 1.2909 - val_loss: 3.4713 - val_mae: 1.4515 Epoch 27/120 189/189 [==============================] - 1s 7ms/step - loss: 2.8472 - mae: 1.2907 - val_loss: 3.3931 - val_mae: 1.4513 Epoch 28/120 189/189 [==============================] - 1s 7ms/step - loss: 2.8275 - mae: 1.2765 - val_loss: 3.2394 - val_mae: 1.4157 Epoch 29/120 189/189 [==============================] - 1s 8ms/step - loss: 2.7854 - mae: 1.2705 - val_loss: 3.2944 - val_mae: 1.4112 Epoch 30/120 189/189 [==============================] - 1s 7ms/step - loss: 2.7871 - mae: 1.2695 - val_loss: 3.3025 - val_mae: 1.4185 Epoch 31/120 189/189 [==============================] - 1s 8ms/step - loss: 2.7618 - mae: 1.2608 - val_loss: 3.4450 - val_mae: 1.4362 Epoch 32/120 189/189 [==============================] - 1s 7ms/step - loss: 2.7477 - mae: 1.2592 - val_loss: 3.2629 - val_mae: 1.4033 Epoch 33/120 189/189 [==============================] - 1s 8ms/step - loss: 2.7653 - mae: 1.2610 - val_loss: 3.3098 - val_mae: 1.4135 Epoch 34/120 189/189 [==============================] - 1s 7ms/step - loss: 2.7601 - mae: 1.2645 - val_loss: 3.4005 - val_mae: 1.4430 Epoch 35/120 189/189 [==============================] - 1s 8ms/step - loss: 2.7635 - mae: 1.2627 - val_loss: 3.3106 - val_mae: 1.4108 Epoch 36/120 189/189 [==============================] - 1s 8ms/step - loss: 2.7331 - mae: 1.2499 - val_loss: 3.2502 - val_mae: 1.4269 Epoch 37/120 189/189 [==============================] - 1s 8ms/step - loss: 2.7603 - mae: 1.2648 - val_loss: 3.2716 - val_mae: 1.4152 Epoch 38/120 189/189 [==============================] - 1s 8ms/step - loss: 2.7306 - mae: 1.2484 - val_loss: 3.3098 - val_mae: 1.4186 Epoch 1/120 189/189 [==============================] - 3s 10ms/step - loss: 24.6330 - mae: 3.5781 - val_loss: 9.3742 - val_mae: 2.3531 Epoch 2/120 189/189 [==============================] - 1s 7ms/step - loss: 6.1415 - mae: 1.8105 - val_loss: 5.8992 - val_mae: 1.8564 Epoch 3/120 189/189 [==============================] - 1s 7ms/step - loss: 4.1412 - mae: 1.4738 - val_loss: 4.3799 - val_mae: 1.5727 Epoch 4/120 189/189 [==============================] - 1s 7ms/step - loss: 2.9542 - mae: 1.2501 - val_loss: 3.4121 - val_mae: 1.3740 Epoch 5/120 189/189 [==============================] - 2s 8ms/step - loss: 2.1971 - mae: 1.0710 - val_loss: 2.3266 - val_mae: 1.1254 Epoch 6/120 189/189 [==============================] - 1s 8ms/step - loss: 1.6778 - mae: 0.9362 - val_loss: 1.9994 - val_mae: 1.0397 Epoch 7/120 189/189 [==============================] - 1s 8ms/step - loss: 1.3940 - mae: 0.8693 - val_loss: 1.5723 - val_mae: 0.9193 Epoch 8/120 189/189 [==============================] - 1s 7ms/step - loss: 1.1315 - mae: 0.7750 - val_loss: 1.5600 - val_mae: 0.9456 Epoch 9/120 189/189 [==============================] - 1s 8ms/step - loss: 0.9585 - mae: 0.7188 - val_loss: 1.1277 - val_mae: 0.7971 Epoch 10/120 189/189 [==============================] - 1s 8ms/step - loss: 0.8645 - mae: 0.6863 - val_loss: 0.9998 - val_mae: 0.7586 Epoch 11/120 189/189 [==============================] - 1s 7ms/step - loss: 0.8076 - mae: 0.6627 - val_loss: 0.9716 - val_mae: 0.7557 Epoch 12/120 189/189 [==============================] - 1s 7ms/step - loss: 0.7557 - mae: 0.6423 - val_loss: 0.9473 - val_mae: 0.7475 Epoch 13/120 189/189 [==============================] - 1s 7ms/step - loss: 0.7209 - mae: 0.6289 - val_loss: 0.9360 - val_mae: 0.7400 Epoch 14/120 189/189 [==============================] - 1s 7ms/step - loss: 0.7346 - mae: 0.6429 - val_loss: 1.0481 - val_mae: 0.7982 Epoch 15/120 189/189 [==============================] - 2s 8ms/step - loss: 0.7153 - mae: 0.6362 - val_loss: 0.8082 - val_mae: 0.6973 Epoch 16/120 189/189 [==============================] - 1s 7ms/step - loss: 0.7077 - mae: 0.6335 - val_loss: 0.8484 - val_mae: 0.7056 Epoch 17/120 189/189 [==============================] - 1s 7ms/step - loss: 0.7017 - mae: 0.6292 - val_loss: 0.8223 - val_mae: 0.7023 Epoch 18/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6627 - mae: 0.6139 - val_loss: 0.8188 - val_mae: 0.7057 Epoch 19/120 189/189 [==============================] - 1s 8ms/step - loss: 0.6761 - mae: 0.6195 - val_loss: 0.7719 - val_mae: 0.6772 Epoch 20/120 189/189 [==============================] - 1s 7ms/step - loss: 0.7002 - mae: 0.6306 - val_loss: 0.7953 - val_mae: 0.6899 Epoch 21/120 189/189 [==============================] - 1s 8ms/step - loss: 0.6828 - mae: 0.6227 - val_loss: 0.8045 - val_mae: 0.6973 Epoch 22/120 189/189 [==============================] - 1s 8ms/step - loss: 0.6783 - mae: 0.6233 - val_loss: 0.7934 - val_mae: 0.6921 Epoch 23/120 189/189 [==============================] - 1s 7ms/step - loss: 0.7009 - mae: 0.6363 - val_loss: 0.8330 - val_mae: 0.7114 Epoch 24/120 189/189 [==============================] - 1s 7ms/step - loss: 0.7124 - mae: 0.6393 - val_loss: 0.8413 - val_mae: 0.7143 Epoch 25/120 189/189 [==============================] - 1s 8ms/step - loss: 0.6833 - mae: 0.6261 - val_loss: 0.8249 - val_mae: 0.7041 Epoch 26/120 189/189 [==============================] - 1s 8ms/step - loss: 0.6784 - mae: 0.6227 - val_loss: 0.8106 - val_mae: 0.7018 Epoch 27/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6503 - mae: 0.6059 - val_loss: 0.7563 - val_mae: 0.6808 Epoch 28/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6905 - mae: 0.6273 - val_loss: 0.7534 - val_mae: 0.6776 Epoch 29/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6692 - mae: 0.6227 - val_loss: 0.8005 - val_mae: 0.7044 Epoch 30/120 189/189 [==============================] - 1s 7ms/step - loss: 0.8131 - mae: 0.6876 - val_loss: 0.9004 - val_mae: 0.7525 Epoch 31/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6743 - mae: 0.6244 - val_loss: 0.7436 - val_mae: 0.6759 Epoch 32/120 189/189 [==============================] - 1s 8ms/step - loss: 0.6366 - mae: 0.6079 - val_loss: 0.8233 - val_mae: 0.7235 Epoch 33/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6404 - mae: 0.6103 - val_loss: 0.8357 - val_mae: 0.7161 Epoch 34/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6327 - mae: 0.6081 - val_loss: 0.8103 - val_mae: 0.7026 Epoch 35/120 189/189 [==============================] - 1s 8ms/step - loss: 0.6505 - mae: 0.6122 - val_loss: 0.8216 - val_mae: 0.7106 Epoch 36/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6246 - mae: 0.6080 - val_loss: 0.7222 - val_mae: 0.6620 Epoch 37/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6598 - mae: 0.6203 - val_loss: 0.7251 - val_mae: 0.6688 Epoch 38/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6175 - mae: 0.5983 - val_loss: 0.7082 - val_mae: 0.6595 Epoch 39/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6236 - mae: 0.6043 - val_loss: 0.7209 - val_mae: 0.6610 Epoch 40/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6218 - mae: 0.6008 - val_loss: 0.7508 - val_mae: 0.6778 Epoch 41/120 189/189 [==============================] - 1s 8ms/step - loss: 0.6415 - mae: 0.6113 - val_loss: 0.7591 - val_mae: 0.6793 Epoch 42/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6163 - mae: 0.5983 - val_loss: 0.7000 - val_mae: 0.6504 Epoch 43/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6140 - mae: 0.5967 - val_loss: 0.7244 - val_mae: 0.6661 Epoch 44/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6190 - mae: 0.6000 - val_loss: 0.7466 - val_mae: 0.6777 Epoch 45/120 189/189 [==============================] - 1s 8ms/step - loss: 0.6120 - mae: 0.5943 - val_loss: 0.7643 - val_mae: 0.6902 Epoch 46/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6415 - mae: 0.6151 - val_loss: 0.7468 - val_mae: 0.6711 Epoch 47/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6130 - mae: 0.5903 - val_loss: 0.7531 - val_mae: 0.6771 Epoch 48/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6382 - mae: 0.6062 - val_loss: 0.7442 - val_mae: 0.6743 Epoch 49/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6367 - mae: 0.6104 - val_loss: 0.8159 - val_mae: 0.7058 Epoch 50/120 189/189 [==============================] - 1s 8ms/step - loss: 0.6003 - mae: 0.5952 - val_loss: 0.7227 - val_mae: 0.6670 Epoch 51/120 189/189 [==============================] - 1s 8ms/step - loss: 0.6282 - mae: 0.6080 - val_loss: 0.7273 - val_mae: 0.6611 Epoch 52/120 189/189 [==============================] - 1s 8ms/step - loss: 0.6176 - mae: 0.6018 - val_loss: 0.7724 - val_mae: 0.6907 Epoch 53/120 189/189 [==============================] - 1s 8ms/step - loss: 0.6133 - mae: 0.5947 - val_loss: 0.7174 - val_mae: 0.6622 Epoch 54/120 189/189 [==============================] - 1s 8ms/step - loss: 0.6254 - mae: 0.6045 - val_loss: 0.7844 - val_mae: 0.6888 Epoch 55/120 189/189 [==============================] - 2s 8ms/step - loss: 0.6192 - mae: 0.5996 - val_loss: 0.7636 - val_mae: 0.6882 Epoch 56/120 189/189 [==============================] - 2s 8ms/step - loss: 0.6298 - mae: 0.6060 - val_loss: 0.7537 - val_mae: 0.6783 Epoch 57/120 189/189 [==============================] - 2s 8ms/step - loss: 0.6115 - mae: 0.5970 - val_loss: 0.7095 - val_mae: 0.6549 Epoch 1/120 189/189 [==============================] - 3s 10ms/step - loss: 25.9326 - mae: 3.6498 - val_loss: 10.0485 - val_mae: 2.3923 Epoch 2/120 189/189 [==============================] - 1s 7ms/step - loss: 6.4171 - mae: 1.8206 - val_loss: 5.6008 - val_mae: 1.7908 Epoch 3/120 189/189 [==============================] - 1s 7ms/step - loss: 3.6777 - mae: 1.3675 - val_loss: 3.5144 - val_mae: 1.4066 Epoch 4/120 189/189 [==============================] - 1s 7ms/step - loss: 2.5691 - mae: 1.1451 - val_loss: 2.6789 - val_mae: 1.2060 Epoch 5/120 189/189 [==============================] - 1s 7ms/step - loss: 1.8663 - mae: 0.9812 - val_loss: 1.9042 - val_mae: 1.0264 Epoch 6/120 189/189 [==============================] - 1s 8ms/step - loss: 1.4158 - mae: 0.8475 - val_loss: 1.5056 - val_mae: 0.9161 Epoch 7/120 189/189 [==============================] - 1s 7ms/step - loss: 1.1239 - mae: 0.7615 - val_loss: 1.3505 - val_mae: 0.8850 Epoch 8/120 189/189 [==============================] - 1s 7ms/step - loss: 0.9217 - mae: 0.6989 - val_loss: 1.0058 - val_mae: 0.7595 Epoch 9/120 189/189 [==============================] - 1s 7ms/step - loss: 0.7731 - mae: 0.6335 - val_loss: 0.8483 - val_mae: 0.6751 Epoch 10/120 189/189 [==============================] - 1s 7ms/step - loss: 0.6447 - mae: 0.5780 - val_loss: 0.7200 - val_mae: 0.6381 Epoch 11/120 189/189 [==============================] - 1s 7ms/step - loss: 0.5687 - mae: 0.5448 - val_loss: 0.6013 - val_mae: 0.5752 Epoch 12/120 189/189 [==============================] - 1s 8ms/step - loss: 0.4668 - mae: 0.5008 - val_loss: 0.6732 - val_mae: 0.6200 Epoch 13/120 189/189 [==============================] - 1s 7ms/step - loss: 0.4381 - mae: 0.4836 - val_loss: 0.4538 - val_mae: 0.4994 Epoch 14/120 189/189 [==============================] - 1s 7ms/step - loss: 0.3560 - mae: 0.4399 - val_loss: 0.3939 - val_mae: 0.4666 Epoch 15/120 189/189 [==============================] - 1s 7ms/step - loss: 0.3039 - mae: 0.4040 - val_loss: 0.3560 - val_mae: 0.4481 Epoch 16/120 189/189 [==============================] - 1s 8ms/step - loss: 0.2579 - mae: 0.3722 - val_loss: 0.3528 - val_mae: 0.4510 Epoch 17/120 189/189 [==============================] - 1s 7ms/step - loss: 0.2402 - mae: 0.3555 - val_loss: 0.2658 - val_mae: 0.3904 Epoch 18/120 189/189 [==============================] - 1s 8ms/step - loss: 0.2132 - mae: 0.3413 - val_loss: 0.2498 - val_mae: 0.3830 Epoch 19/120 189/189 [==============================] - 1s 7ms/step - loss: 0.2063 - mae: 0.3378 - val_loss: 0.2962 - val_mae: 0.4159 Epoch 20/120 189/189 [==============================] - 1s 8ms/step - loss: 0.1850 - mae: 0.3167 - val_loss: 0.2341 - val_mae: 0.3693 Epoch 21/120 189/189 [==============================] - 1s 8ms/step - loss: 0.1805 - mae: 0.3177 - val_loss: 0.2144 - val_mae: 0.3529 Epoch 22/120 189/189 [==============================] - 1s 8ms/step - loss: 0.1857 - mae: 0.3162 - val_loss: 0.4981 - val_mae: 0.5510 Epoch 23/120 189/189 [==============================] - 2s 8ms/step - loss: 0.1894 - mae: 0.3220 - val_loss: 0.1919 - val_mae: 0.3361 Epoch 24/120 189/189 [==============================] - 1s 8ms/step - loss: 0.1628 - mae: 0.2995 - val_loss: 0.1946 - val_mae: 0.3382 Epoch 25/120 189/189 [==============================] - 2s 10ms/step - loss: 0.1505 - mae: 0.2907 - val_loss: 0.1646 - val_mae: 0.3149 Epoch 26/120 189/189 [==============================] - 2s 8ms/step - loss: 0.1483 - mae: 0.2903 - val_loss: 0.1849 - val_mae: 0.3351 Epoch 27/120 189/189 [==============================] - 2s 8ms/step - loss: 0.1384 - mae: 0.2802 - val_loss: 0.1542 - val_mae: 0.3025 Epoch 28/120 189/189 [==============================] - 1s 8ms/step - loss: 0.1399 - mae: 0.2839 - val_loss: 0.1903 - val_mae: 0.3444 Epoch 29/120 189/189 [==============================] - 1s 7ms/step - loss: 0.2237 - mae: 0.3491 - val_loss: 0.1760 - val_mae: 0.3187 Epoch 30/120 189/189 [==============================] - 1s 8ms/step - loss: 0.1549 - mae: 0.2980 - val_loss: 0.1725 - val_mae: 0.3195 Epoch 31/120 189/189 [==============================] - 1s 8ms/step - loss: 0.1335 - mae: 0.2746 - val_loss: 0.1441 - val_mae: 0.2923 Epoch 32/120 189/189 [==============================] - 1s 8ms/step - loss: 0.1404 - mae: 0.2774 - val_loss: 0.1629 - val_mae: 0.3108 Epoch 33/120 189/189 [==============================] - 2s 8ms/step - loss: 0.1209 - mae: 0.2614 - val_loss: 0.1515 - val_mae: 0.3025 Epoch 34/120 189/189 [==============================] - 1s 8ms/step - loss: 0.1413 - mae: 0.2857 - val_loss: 0.1321 - val_mae: 0.2805 Epoch 35/120 189/189 [==============================] - 2s 8ms/step - loss: 0.1381 - mae: 0.2833 - val_loss: 0.1319 - val_mae: 0.2809 Epoch 36/120 189/189 [==============================] - 1s 8ms/step - loss: 0.1219 - mae: 0.2642 - val_loss: 0.1764 - val_mae: 0.3302 Epoch 37/120 189/189 [==============================] - 2s 8ms/step - loss: 0.1333 - mae: 0.2759 - val_loss: 0.1513 - val_mae: 0.3017 Epoch 38/120 189/189 [==============================] - 2s 8ms/step - loss: 0.1276 - mae: 0.2718 - val_loss: 0.1473 - val_mae: 0.2982 Epoch 39/120 189/189 [==============================] - 1s 8ms/step - loss: 0.1188 - mae: 0.2616 - val_loss: 0.1463 - val_mae: 0.2992 Epoch 40/120 189/189 [==============================] - 2s 8ms/step - loss: 0.1104 - mae: 0.2539 - val_loss: 0.1217 - val_mae: 0.2706 Epoch 41/120 189/189 [==============================] - 2s 8ms/step - loss: 0.1101 - mae: 0.2531 - val_loss: 0.2228 - val_mae: 0.3797 Epoch 42/120 189/189 [==============================] - 2s 8ms/step - loss: 0.1352 - mae: 0.2838 - val_loss: 0.1700 - val_mae: 0.3260 Epoch 43/120 189/189 [==============================] - 1s 8ms/step - loss: 0.1219 - mae: 0.2656 - val_loss: 0.1838 - val_mae: 0.3423 Epoch 44/120 189/189 [==============================] - 1s 8ms/step - loss: 0.1104 - mae: 0.2570 - val_loss: 0.1256 - val_mae: 0.2760 Epoch 45/120 189/189 [==============================] - 2s 8ms/step - loss: 0.1123 - mae: 0.2595 - val_loss: 0.1269 - val_mae: 0.2758 Epoch 46/120 189/189 [==============================] - 1s 8ms/step - loss: 0.1174 - mae: 0.2539 - val_loss: 0.1324 - val_mae: 0.2823 Epoch 47/120 189/189 [==============================] - 2s 8ms/step - loss: 0.1107 - mae: 0.2523 - val_loss: 0.1143 - val_mae: 0.2672 Epoch 48/120 189/189 [==============================] - 2s 8ms/step - loss: 0.1074 - mae: 0.2515 - val_loss: 0.1278 - val_mae: 0.2791 Epoch 49/120 189/189 [==============================] - 2s 8ms/step - loss: 0.1062 - mae: 0.2489 - val_loss: 0.1175 - val_mae: 0.2677 Epoch 50/120 189/189 [==============================] - 1s 7ms/step - loss: 0.1111 - mae: 0.2535 - val_loss: 0.1185 - val_mae: 0.2694 Epoch 51/120 189/189 [==============================] - 1s 8ms/step - loss: 0.1054 - mae: 0.2492 - val_loss: 0.1419 - val_mae: 0.2990 Epoch 52/120 189/189 [==============================] - 1s 8ms/step - loss: 0.1050 - mae: 0.2480 - val_loss: 0.1408 - val_mae: 0.2933 Epoch 53/120 189/189 [==============================] - 1s 8ms/step - loss: 0.1413 - mae: 0.2838 - val_loss: 0.2014 - val_mae: 0.3499 Epoch 54/120 189/189 [==============================] - 2s 8ms/step - loss: 0.1466 - mae: 0.2924 - val_loss: 0.1571 - val_mae: 0.3047 Epoch 55/120 189/189 [==============================] - 1s 7ms/step - loss: 0.1172 - mae: 0.2630 - val_loss: 0.1225 - val_mae: 0.2741 Epoch 56/120 189/189 [==============================] - 1s 8ms/step - loss: 0.1208 - mae: 0.2662 - val_loss: 0.1681 - val_mae: 0.3249 Epoch 57/120 189/189 [==============================] - 1s 8ms/step - loss: 0.2160 - mae: 0.3172 - val_loss: 0.3956 - val_mae: 0.5003 Epoch 58/120 189/189 [==============================] - 1s 8ms/step - loss: 0.1930 - mae: 0.3262 - val_loss: 0.1531 - val_mae: 0.3008 Epoch 59/120 189/189 [==============================] - 1s 7ms/step - loss: 0.1290 - mae: 0.2710 - val_loss: 0.1452 - val_mae: 0.3029 Epoch 60/120 189/189 [==============================] - 2s 9ms/step - loss: 0.1217 - mae: 0.2650 - val_loss: 0.1255 - val_mae: 0.2748 Epoch 61/120 189/189 [==============================] - 2s 8ms/step - loss: 0.1130 - mae: 0.2553 - val_loss: 0.1238 - val_mae: 0.2726 Epoch 62/120 189/189 [==============================] - 2s 8ms/step - loss: 0.1137 - mae: 0.2550 - val_loss: 0.1246 - val_mae: 0.2730 ###Markdown Analyse the Grid Search Results ###Code #load it from drive records = pd.read_csv('records_1622140823.csv') records2 = pd.read_csv('records_1622141750.csv') gs = pd.concat([records,records2]) gs.groupby('length')['val_mae_og'].mean().plot(kind='bar', title='mean'); plt.show() gs.groupby('layers_num')['val_mae_og'].mean().plot(kind='bar', title='mean'); plt.show() gs.groupby('layers_type')['val_mae_og'].mean().plot(kind='bar', title='mean'); plt.show() gs.groupby('units')['val_mae_og'].mean().plot(kind='bar', title='mean'); plt.show() gs.groupby('g_filt')['val_mae_og'].mean().plot(kind='bar', title='mean'); plt.show() ###Output _____no_output_____ ###Markdown COMMENTARYNot too disimlar to the temp model, though it does better with longer series fed into it. Recreate the best model and compare against test data ###Code best_model_params = gs.sort_values('val_mae_og').iloc[0] best_model_params best_model = BuildModel(model_name='best_windspeed_model.h5', length=30, layers_num=2,\ layers_type='LSTM', units=40, dropout=0, g_filt=1, epochs=120, batch_size=10,\ patience=15) best_model.setupData(wind_train) best_model.fitModel() #load best performer best_model.loadModel() #predict a week week_pred = best_model.predAhead(7) #plot against test week best_model.plotPreds(week_pred, wind_test, ylabel='windspeed') ###Output _____no_output_____ ###Markdown COMMENTARYFirst pred is a fair bit off. Rest of the series looks okay. ###Code ###Output _____no_output_____
notebooks/concepts/Minimal Specviz.ipynb
###Markdown A Minimal Specviz+notebook WorkflowThis notebook provides a short example of combining the Specviz interactive visualization tool of the `jdaviz` package with a more traditional non-interactive Python workflow. The science case is loading a single 1D-spectrum (from the [Sloan Digital Sky Survey](https://www.sdss.org/)) and measuring the flux in a single spectral line (${\rm H}\alpha$). We begin by creating an instance of the `Specviz` helper class, which provides a range of conveniences for the discerning astronomy to easily work with the visualization tool. Ending the cell with the `.app` attribute of that instance will show the viz tool. ###Code from jdaviz import Specviz specviz = Specviz() specviz.app ###Output _____no_output_____ ###Markdown The above is currently empty. While one could use the "import" option to find a local file on disk, a notebook workflow is more amenable to downloading and loading a spectrum directly in Python code. To do this, we load our spectrum using the `specutils` package. This provides maximum flexibility because `Spectrum1D` objects can either be created from local data files, URLs (as shown below), or manually from user-provided arrays.We then use the `Specviz.load_data` method to load the data into the array - this should then immediately show the spectrum in the cell above. ###Code import specutils spec_url = 'https://dr14.sdss.org/optical/spectrum/view/data/format=fits/spec=lite?plateid=1323&mjd=52797&fiberid=12' spec = specutils.Spectrum1D.read(spec_url, cache=True) specviz.load_spectrum(spec) ###Output _____no_output_____ ###Markdown That spectrum looks great! But the line we are looking for is pretty narrow. We could use the UI to zoom, which can be done using the pan/zoom tool, but you can also execute the cell below to zoom the view in on the region around ${\rm H}\alpha$: ###Code # zoom in on Halpha region v = specviz.app.get_viewer('spectrum-viewer') v.state.x_min = 6500 v.state.x_max = 6750 ###Output _____no_output_____ ###Markdown If the spectrum has uncertainties, we can display them as a shadded band around the spectral trace. ###Code v.show_uncertainties() ###Output _____no_output_____ ###Markdown If the spectrum has masked data points, we can mark them on the plot. ###Code v.show_mask() ###Output _____no_output_____ ###Markdown This erases the unceratinties and masks from the plot. ###Code v.clean() ###Output _____no_output_____ ###Markdown Now use the Glupyter range selection tool (expand the menu and choose the second tool), and select the area around the ${\rm H}\alpha$ line. Then you can execute the cell below to get that selection into a format `specutils` understands: ###Code line_region = specviz.get_spectral_regions()['Subset 1'] line_region # To reproduce the exact values this notebook was written assuming, uncomment the below # line_region = specutils.SpectralRegion(6557.48830955*u.angstrom, 6584.69919391*u.angstrom) ###Output _____no_output_____ ###Markdown Now with that region selected, we can build a Gaussian + Constant continuum model to fit the selected line, and then fit it to just the data in the selected region: ###Code from astropy.modeling import models from specutils.fitting import fit_lines from specutils import manipulation line_model_guess = models.Gaussian1D(mean=(line_region.lower + line_region.upper)/2, stddev=3, amplitude=1000) + models.Const1D(200) #fit that model to the selected region # after a bug fix, the below should just be a single line: # fit_lines(spec, line_model_guess, window=line_region) extracted = manipulation.extract_region(spec, line_region) extracted.mask[:] = False fitted_line = fit_lines(extracted, line_model_guess) fitted_line ###Output _____no_output_____ ###Markdown Now we plot that model with the spectrum to examine the fit: ###Code import numpy as np from matplotlib import pyplot as plt from astropy import units as u plt.plot(spec.spectral_axis, spec.flux, lw=3) model_lamb = np.linspace(v.state.x_min, v.state.x_max, 1000)*u.angstrom plt.plot(model_lamb, fitted_line(model_lamb), '-', lw=2) plt.xlim(v.state.x_min, v.state.x_max) plt.ylim(v.state.y_min, v.state.y_max); ###Output _____no_output_____ ###Markdown Looks good! Now to achieve the final goal of a line flux measurement, we can integrate over the line: ###Code from scipy.integrate import quad quad(fitted_line.unitless_model.left, 6500, 6700)[0] * fitted_line.return_units*spec.spectral_axis.unit ###Output _____no_output_____ ###Markdown A Minimal Specviz+notebook WorkflowThis notebook provides a short example of combining the Specviz interactive visualization tool of the `jdaviz` package with a more traditional non-interactive Python workflow. The science case is loading a single 1D-spectrum (from the [Sloan Digital Sky Survey](https://www.sdss.org/)) and measuring the flux in a single spectral line (${\rm H}\alpha$). We begin by creating an instance of the `Specviz` helper class, which provides a range of conveniences for the discerning astronomy to easily work with the visualization tool. Ending the cell with the `.app` attribute of that instance will show the viz tool. ###Code from jdaviz import SpecViz specviz = SpecViz() specviz.app ###Output _____no_output_____ ###Markdown The above is currently empty. While one could use the "import" option to find a local file on disk, a notebook workflow is more amenable to downloading and loading a spectrum directly in Python code. To do this, we load our spectrum using the `specutils` package. This provides maximum flexibility because `Spectrum1D` objects can either be created from local data files, URLs (as shown below), or manually from user-provided arrays.We then use the `Specviz.load_data` method to load the data into the array - this should then immediately show the spectrum in the cell above. ###Code import specutils spec_url = 'https://dr14.sdss.org/optical/spectrum/view/data/format=fits/spec=lite?plateid=1323&mjd=52797&fiberid=12' spec = specutils.Spectrum1D.read(spec_url, cache=True) specviz.load_spectrum(spec) ###Output _____no_output_____ ###Markdown That spectrum looks great! But the line we are looking for is pretty narrow. We could use the UI to zoom, which can be done using the pan/zoom tool, but you can also execute the cell below to zoom the view in on the region around ${\rm H}\alpha$: ###Code # zoom in on Halpha region v = specviz.app.get_viewer('spectrum-viewer') v.state.x_min = 6500 v.state.x_max = 6750 ###Output _____no_output_____ ###Markdown If the spectrum has uncertainties, we can display them as a shadded band around the spectral trace. ###Code v.show_uncertainties() ###Output _____no_output_____ ###Markdown If the spectrum has masked data points, we can mark them on the plot. ###Code v.show_mask() ###Output _____no_output_____ ###Markdown This erases the unceratinties and masks from the plot. ###Code v.clean() ###Output _____no_output_____ ###Markdown Now use the Glupyter range selection tool (expand the menu and choose the second tool), and select the area around the ${\rm H}\alpha$ line. Then you can execute the cell below to get that selection into a format `specutils` understands: ###Code line_region = specviz.get_spectral_regions()['Subset 1'] line_region # To reproduce the exact values this notebook was written assuming, uncomment the below # line_region = specutils.SpectralRegion(6557.48830955*u.angstrom, 6584.69919391*u.angstrom) ###Output _____no_output_____ ###Markdown Now with that region selected, we can build a Gaussian + Constant continuum model to fit the selected line, and then fit it to just the data in the selected region: ###Code from astropy.modeling import models from specutils.fitting import fit_lines from specutils import manipulation line_model_guess = models.Gaussian1D(mean=(line_region.lower + line_region.upper)/2, stddev=3, amplitude=1000) + models.Const1D(200) #fit that model to the selected region # after a bug fix, the below should just be a single line: # fit_lines(spec, line_model_guess, window=line_region) extracted = manipulation.extract_region(spec, line_region) extracted.mask[:] = False fitted_line = fit_lines(extracted, line_model_guess) fitted_line ###Output _____no_output_____ ###Markdown Now we plot that model with the spectrum to examine the fit: ###Code import numpy as np from matplotlib import pyplot as plt from astropy import units as u plt.plot(spec.spectral_axis, spec.flux, lw=3) model_lamb = np.linspace(v.state.x_min, v.state.x_max, 1000)*u.angstrom plt.plot(model_lamb, fitted_line(model_lamb), '-', lw=2) plt.xlim(v.state.x_min, v.state.x_max) plt.ylim(v.state.y_min, v.state.y_max); ###Output _____no_output_____ ###Markdown Looks good! Now to achieve the final goal of a line flux measurement, we can integrate over the line: ###Code from scipy.integrate import quad quad(fitted_line.unitless_model.left, 6500, 6700)[0] * fitted_line.return_units*spec.spectral_axis.unit ###Output _____no_output_____
AAS-18-290_6DOF_manuscript/Run/Run_4km_terminal/test-9km.ipynb
###Markdown Optimize Policy ###Code from env_mdr import Env from reward_terminal_mdr import Reward import env_utils as envu import attitude_utils as attu from dynamics_model import Dynamics_model from lander_model import Lander_model from ic_gen import Landing_icgen from agent_mdr2 import Agent from policy_ppo import Policy from value_function import Value_function from utils import Mapminmax,Logger,Scaler from flat_constraint import Flat_constraint from glideslope_constraint import Glideslope_constraint from attitude_constraint import Attitude_constraint from thruster_model import Thruster_model logger = Logger() dynamics_model = Dynamics_model() attitude_parameterization = attu.Quaternion_attitude() lander_model = Lander_model(Thruster_model(), attitude_parameterization=attitude_parameterization, apf_v0=70, apf_atarg=15., apf_tau2=100.) lander_model.get_state_agent = lander_model.get_state_agent_tgo_alt reward_object = Reward(tracking_bias=0.01,tracking_coeff=-0.01, fuel_coeff=-0.05, debug=False, landing_coeff=10.) glideslope_constraint = Glideslope_constraint(gs_limit=-1.0) shape_constraint = Flat_constraint() attitude_constraint = Attitude_constraint(attitude_parameterization, attitude_penalty=-100,attitude_coeff=-10, attitude_limit=(10*np.pi, np.pi/2-np.pi/16, np.pi/2-np.pi/16)) env = Env(lander_model,dynamics_model,logger, reward_object=reward_object, glideslope_constraint=glideslope_constraint, shape_constraint=shape_constraint, attitude_constraint=attitude_constraint, tf_limit=120.0,print_every=10) obs_dim = 12 act_dim = 4 policy = Policy(obs_dim,act_dim,kl_targ=0.001,epochs=20, beta=0.1, shuffle=True, servo_kl=True) import utils fname = "optimize_4km" input_normalizer = utils.load_run(policy,fname) print(input_normalizer) ###Output 6dof dynamics model Quaternion_attitude Thruster Config Shape: (4, 6) 4 Inertia Tensor: [[2000. 0. 0.] [ 0. 2000. 0.] [ 0. 0. 3200.]] Lander Model: - apf_v0: 70 - apf_vf1: [ 0. 0. -2.] - apf_vf2: [ 0. 0. -1.] - apf_atarg: 15.0 - apf_tau1: 20 - apf_tau2: 100.0 Reward_terminal queue fixed Flat Constraint Attitude Constraint ###Markdown 9 square km ###Code policy.test_mode=True env.lander.divert=(0,0,0) env.lander.apf_pot=env.lander.apf_pot2 env.ic_gen = Landing_icgen(mass_uncertainty=0.03, g_uncertainty=(0.0,0.0), adapt_apf_v0=True, attitude_parameterization=attitude_parameterization, downrange = (0,3000 , -70, -10), crossrange = (-1500,1500 , -30,30), altitude = (2300,2400,-90,-70), yaw = (-np.pi/8, np.pi/8, 0.0, 0.0) , pitch = (np.pi/4-np.pi/8, np.pi/4+np.pi/16, -0.0, 0.0), roll = (-np.pi/8, np.pi/8, -0.0, 0.0), noise_u=0*np.ones(3), noise_sd=0*np.ones(3)) env.test_policy_batch(policy,input_normalizer,10000,print_every=100) ###Output i : 100 Cumulative Stats (mean,std,max,argmax) thrust |9766.26 |2701.78 |3200.00 |16000.00 | 94 glideslope | 3.028 | 8.272 | 0.515 |620.573 | 56 sc_margin |100.000 | 0.000 |100.000 |100.000 | 0 Final Stats (mean,std,min,max) position | 0.3 0.0 -0.0 | 0.5 0.5 0.0 | -0.7 -2.7 -0.0 | 1.8 1.7 -0.0 velocity | 0.044 -0.034 -0.949 | 0.019 0.065 0.040 | -0.027 -0.137 -1.028 | 0.098 0.121 -0.825 fuel |301.74 | 22.40 |265.67 |361.48 attitude_321 | -0.079 -0.025 -0.019 | 0.137 0.011 0.021 | -0.413 -0.058 -0.054 | 0.214 0.012 0.051 w | -0.037 -0.016 -0.000 | 0.059 0.027 0.000 | -0.175 -0.087 -0.000 | 0.078 0.052 0.000 glideslope | 22.057 | 7.661 | 10.838 | 43.266 i : 200 Cumulative Stats (mean,std,max,argmax) thrust |9694.90 |2698.42 |3200.00 |16000.00 | 94 glideslope | 3.246 | 9.159 | 0.515 |620.573 | 56 sc_margin |100.000 | 0.000 |100.000 |100.000 | 0 Final Stats (mean,std,min,max) position | 0.4 0.0 -0.0 | 0.5 0.5 0.0 | -0.8 -2.7 -0.0 | 1.8 1.7 -0.0 velocity | 0.043 -0.033 -0.947 | 0.018 0.066 0.041 | -0.027 -0.148 -1.060 | 0.098 0.140 -0.825 fuel |304.49 | 23.21 |265.67 |368.10 attitude_321 | -0.069 -0.025 -0.019 | 0.149 0.010 0.023 | -0.415 -0.058 -0.078 | 0.418 0.012 0.051 w | -0.034 -0.013 0.000 | 0.056 0.029 0.000 | -0.175 -0.123 -0.000 | 0.078 0.052 0.000 glideslope | 21.318 | 7.982 | 10.349 | 58.363 i : 300 Cumulative Stats (mean,std,max,argmax) thrust |9683.89 |2709.94 |3200.00 |16000.00 | 94 glideslope | 3.077 | 8.955 | 0.458 |691.980 | 280 sc_margin |100.000 | 0.000 |100.000 |100.000 | 0 Final Stats (mean,std,min,max) position | 0.4 -0.0 -0.0 | 0.5 0.4 0.0 | -0.9 -2.7 -0.0 | 1.8 1.7 -0.0 velocity | 0.043 -0.033 -0.946 | 0.017 0.065 0.039 | -0.027 -0.148 -1.060 | 0.098 0.140 -0.825 fuel |305.68 | 23.22 |265.67 |374.38 attitude_321 | -0.062 -0.025 -0.018 | 0.155 0.010 0.023 | -0.415 -0.067 -0.078 | 0.418 0.012 0.051 w | -0.033 -0.011 0.000 | 0.055 0.027 0.000 | -0.175 -0.123 -0.000 | 0.089 0.052 0.000 glideslope | 20.840 | 7.477 | 9.245 | 58.363 i : 400 Cumulative Stats (mean,std,max,argmax) thrust |9659.65 |2684.46 |3200.00 |16000.00 | 94 glideslope | 3.093 | 8.569 | 0.458 |691.980 | 280 sc_margin |100.000 | 0.000 |100.000 |100.000 | 0 Final Stats (mean,std,min,max) position | 0.4 -0.0 -0.0 | 0.5 0.5 0.0 | -0.9 -2.7 -0.0 | 1.9 1.7 -0.0 velocity | 0.042 -0.033 -0.945 | 0.017 0.065 0.040 | -0.027 -0.148 -1.060 | 0.098 0.144 -0.809 fuel |305.06 | 22.63 |263.94 |374.38 attitude_321 | -0.057 -0.025 -0.018 | 0.156 0.010 0.022 | -0.464 -0.067 -0.078 | 0.418 0.012 0.051 w | -0.032 -0.010 0.000 | 0.054 0.026 0.000 | -0.175 -0.123 -0.000 | 0.089 0.068 0.000 glideslope | 20.611 | 7.271 | 9.245 | 58.363 i : 500 Cumulative Stats (mean,std,max,argmax) thrust |9659.48 |2688.68 |3200.00 |16000.00 | 94 glideslope | 3.050 | 8.538 | 0.458 |691.980 | 280 sc_margin |100.000 | 0.000 |100.000 |100.000 | 0 Final Stats (mean,std,min,max) position | 0.4 -0.0 -0.0 | 0.5 0.5 0.0 | -1.6 -2.7 -0.0 | 1.9 1.9 -0.0 velocity | 0.042 -0.032 -0.945 | 0.017 0.066 0.041 | -0.027 -0.148 -1.060 | 0.098 0.155 -0.809 fuel |305.34 | 22.89 |263.94 |387.27 attitude_321 | -0.058 -0.025 -0.018 | 0.158 0.010 0.022 | -0.464 -0.067 -0.078 | 0.418 0.014 0.051 w | -0.032 -0.010 0.000 | 0.055 0.027 0.000 | -0.175 -0.160 -0.000 | 0.089 0.068 0.000 glideslope | 20.689 | 7.494 | 9.245 | 66.473 i : 600 Cumulative Stats (mean,std,max,argmax) thrust |9659.25 |2688.65 |3200.00 |16000.00 | 94 glideslope | 3.069 | 8.783 | 0.458 |1085.152 | 587 sc_margin |100.000 | 0.000 |100.000 |100.000 | 0 Final Stats (mean,std,min,max) position | 0.4 -0.0 -0.0 | 0.5 0.5 0.0 | -1.6 -2.7 -0.0 | 2.0 2.2 -0.0 velocity | 0.042 -0.032 -0.944 | 0.017 0.065 0.042 | -0.027 -0.148 -1.060 | 0.098 0.155 -0.805 fuel |305.25 | 22.89 |263.94 |387.27 attitude_321 | -0.055 -0.025 -0.018 | 0.159 0.010 0.022 | -0.464 -0.067 -0.078 | 0.418 0.014 0.051 w | -0.032 -0.010 0.000 | 0.054 0.026 0.000 | -0.175 -0.160 -0.000 | 0.089 0.068 0.000 glideslope | 20.852 | 8.220 | 9.245 | 87.887 i : 700 Cumulative Stats (mean,std,max,argmax) thrust |9639.72 |2692.51 |3200.00 |16000.00 | 94 glideslope | 3.033 | 8.569 | 0.432 |1085.152 | 587 sc_margin |100.000 | 0.000 |100.000 |100.000 | 0 Final Stats (mean,std,min,max) position | 0.4 -0.0 -0.0 | 0.5 0.5 0.0 | -1.6 -3.4 -0.0 | 2.9 2.2 -0.0 velocity | 0.042 -0.032 -0.943 | 0.016 0.065 0.042 | -0.027 -0.148 -1.060 | 0.098 0.185 -0.805 fuel |306.11 | 23.52 |263.94 |392.67 attitude_321 | -0.057 -0.025 -0.018 | 0.156 0.009 0.022 | -0.464 -0.067 -0.078 | 0.495 0.014 0.051 w | -0.031 -0.009 0.000 | 0.053 0.026 0.000 | -0.175 -0.160 -0.000 | 0.108 0.073 0.000 glideslope | 20.703 | 7.899 | 9.245 | 87.887 i : 800 Cumulative Stats (mean,std,max,argmax) thrust |9645.28 |2693.80 |3200.00 |16000.00 | 94 glideslope | 3.029 | 8.729 | 0.432 |1085.152 | 587 sc_margin |100.000 | 0.000 |100.000 |100.000 | 0 Final Stats (mean,std,min,max) position | 0.4 -0.0 -0.0 | 0.5 0.5 0.0 | -1.6 -3.4 -0.0 | 2.9 2.2 -0.0 velocity | 0.042 -0.032 -0.943 | 0.017 0.065 0.043 | -0.027 -0.171 -1.060 | 0.100 0.185 -0.796 fuel |306.07 | 23.49 |263.12 |392.67 attitude_321 | -0.056 -0.025 -0.018 | 0.156 0.009 0.022 | -0.464 -0.067 -0.078 | 0.495 0.014 0.051 w | -0.031 -0.010 0.000 | 0.053 0.026 0.000 | -0.175 -0.160 -0.000 | 0.108 0.073 0.000 glideslope | 20.817 | 8.297 | 9.245 | 105.914 i : 900 Cumulative Stats (mean,std,max,argmax) thrust |9640.82 |2690.91 |3200.00 |16000.00 | 94 glideslope | 3.026 | 8.622 | 0.265 |1085.152 | 587 sc_margin |100.000 | 0.000 |100.000 |100.000 | 0 Final Stats (mean,std,min,max) position | 0.4 -0.0 -0.0 | 0.5 0.5 0.0 | -1.6 -3.4 -0.0 | 2.9 2.2 -0.0 velocity | 0.042 -0.032 -0.944 | 0.017 0.065 0.043 | -0.027 -0.171 -1.060 | 0.100 0.185 -0.791 fuel |305.94 | 23.61 |263.12 |392.67 attitude_321 | -0.057 -0.025 -0.018 | 0.156 0.009 0.022 | -0.464 -0.067 -0.078 | 0.495 0.014 0.051 w | -0.031 -0.009 0.000 | 0.053 0.026 0.000 | -0.175 -0.160 -0.000 | 0.108 0.073 0.000 glideslope | 20.817 | 8.574 | 9.245 | 105.914 i : 1000 Cumulative Stats (mean,std,max,argmax) thrust |9635.52 |2685.83 |3200.00 |16000.00 | 94 glideslope | 3.031 | 8.593 | 0.265 |1085.152 | 587 sc_margin |100.000 | 0.000 |100.000 |100.000 | 0 Final Stats (mean,std,min,max) position | 0.4 -0.0 -0.0 | 0.5 0.5 0.0 | -1.6 -3.4 -0.0 | 2.9 2.2 -0.0 velocity | 0.042 -0.031 -0.944 | 0.017 0.066 0.043 | -0.027 -0.171 -1.060 | 0.100 0.185 -0.791 fuel |305.93 | 23.48 |263.12 |392.67 attitude_321 | -0.060 -0.025 -0.018 | 0.155 0.009 0.022 | -0.464 -0.067 -0.078 | 0.495 0.014 0.051 w | -0.031 -0.009 0.000 | 0.054 0.027 0.000 | -0.175 -0.160 -0.000 | 0.108 0.073 0.000 glideslope | 21.179 | 14.682 | 9.245 | 396.036 i : 1100 Cumulative Stats (mean,std,max,argmax) thrust |9627.48 |2684.23 |3200.00 |16000.00 | 94 glideslope | 2.999 | 8.406 | 0.265 |1085.152 | 587 sc_margin |100.000 | 0.000 |100.000 |100.000 | 0 Final Stats (mean,std,min,max) position | 0.4 -0.0 -0.0 | 0.5 0.5 0.0 | -1.6 -3.4 -0.0 | 2.9 2.2 -0.0 velocity | 0.042 -0.031 -0.944 | 0.017 0.065 0.043 | -0.027 -0.171 -1.060 | 0.100 0.185 -0.791 fuel |306.10 | 23.68 |263.12 |392.67 attitude_321 | -0.059 -0.025 -0.018 | 0.155 0.009 0.022 | -0.464 -0.067 -0.078 | 0.495 0.014 0.051 w | -0.030 -0.009 0.000 | 0.054 0.027 0.000 | -0.175 -0.160 -0.000 | 0.108 0.073 0.000 glideslope | 21.164 | 14.321 | 9.245 | 396.036 ###Markdown 12 sq km 3000m ###Code policy.test_mode=True env.lander.divert=(0,0,0) env.lander.apf_pot=env.lander.apf_pot2 env.ic_gen = Landing_icgen(mass_uncertainty=0.03, g_uncertainty=(0.0,0.0), adapt_apf_v0=True, attitude_parameterization=attitude_parameterization, downrange = (0,4000 , -70, -10), crossrange = (-1500,1500 , -30,30), altitude = (2900,3100,-90,-70), yaw = (-np.pi/8, np.pi/8, 0.0, 0.0) , pitch = (np.pi/4-np.pi/8, np.pi/4+np.pi/16, -0.0, 0.0), roll = (-np.pi/8, np.pi/8, -0.0, 0.0), noise_u=0*np.ones(3), noise_sd=0*np.ones(3)) env.test_policy_batch(policy,input_normalizer,10000,print_every=100) ###Output i : 100 Cumulative Stats (mean,std,max,argmax) thrust |9137.82 |2346.19 |3200.00 |16000.00 | 82 glideslope | 2.962 | 8.911 | 0.587 |819.085 | 15 sc_margin |100.000 | 0.000 |100.000 |100.000 | 0 Final Stats (mean,std,min,max) position | 0.5 -0.2 -0.0 | 0.6 0.4 0.0 | -1.0 -1.3 -0.0 | 2.1 1.0 -0.0 velocity | 0.042 -0.038 -0.929 | 0.017 0.063 0.046 | -0.019 -0.142 -1.017 | 0.074 0.141 -0.777 fuel |334.84 | 26.90 |290.74 |405.12 attitude_321 | -0.033 -0.023 -0.015 | 0.172 0.008 0.020 | -0.487 -0.052 -0.046 | 0.343 0.001 0.039 w | -0.034 -0.008 0.000 | 0.048 0.023 0.000 | -0.165 -0.073 -0.000 | 0.058 0.059 0.000 glideslope | 20.491 | 7.236 | 10.895 | 52.488 i : 200 Cumulative Stats (mean,std,max,argmax) thrust |9117.11 |2375.01 |3200.00 |16000.00 | 82 glideslope | 3.032 | 8.561 | 0.579 |819.085 | 15 sc_margin |100.000 | 0.000 |100.000 |100.000 | 0 Final Stats (mean,std,min,max) position | 28.4 -3.5 43.4 | 287.1 67.2 352.8 | -1.5 -589.9 -0.0 | 3868.8 492.4 2961.8 velocity | -0.647 -0.177 -2.092 | 6.265 1.604 9.497 | -66.570 -17.943 -88.209 | 0.091 4.218 -0.612 fuel |332.65 | 49.44 | 3.82 |427.00 attitude_321 | -0.025 -0.019 -0.028 | 0.189 0.154 0.140 | -0.836 -1.385 -1.409 | 0.468 1.286 0.259 w | -0.035 -0.006 0.000 | 0.051 0.062 0.000 | -0.227 -0.437 -0.000 | 0.095 0.520 0.000 glideslope | 19.907 | 6.993 | 1.096 | 52.488 i : 300 Cumulative Stats (mean,std,max,argmax) thrust |9115.20 |2376.81 |3200.00 |16000.00 | 82 glideslope | 2.970 | 8.069 | 0.579 |819.085 | 15 sc_margin |100.000 | 0.000 |100.000 |100.000 | 0 Final Stats (mean,std,min,max) position | 55.0 -10.7 57.6 | 426.2 112.8 404.4 | -1.5 -1457.9 -0.0 | 3868.8 492.4 2965.7 velocity | -0.567 -0.087 -2.498 | 5.339 1.950 11.049 | -66.570 -17.943 -88.209 | 0.091 16.038 -0.612 fuel |331.41 | 54.08 | 3.82 |427.00 attitude_321 | -0.010 -0.031 -0.031 | 0.192 0.167 0.168 | -0.836 -1.385 -1.422 | 0.860 1.286 0.794 w | -0.037 -0.009 -0.000 | 0.049 0.062 0.000 | -0.227 -0.437 -0.000 | 0.095 0.520 0.000 glideslope | 19.834 | 7.181 | 1.096 | 52.488 i : 400 Cumulative Stats (mean,std,max,argmax) thrust |9128.52 |2396.81 |3200.00 |16000.00 | 82 glideslope | 2.968 | 7.828 | 0.520 |819.085 | 15 sc_margin |100.000 | 0.000 |100.000 |100.000 | 0 Final Stats (mean,std,min,max) position | 51.3 -9.0 50.5 | 418.2 99.3 379.3 | -1.5 -1457.9 -0.1 | 3950.0 492.4 2965.7 velocity | -0.447 -0.037 -2.302 | 4.674 1.877 10.341 | -66.570 -17.943 -88.209 | 0.091 16.301 -0.612 fuel |332.90 | 52.11 | 3.82 |427.00 attitude_321 | -0.011 -0.033 -0.026 | 0.187 0.160 0.148 | -0.836 -1.390 -1.422 | 0.860 1.286 0.794 w | -0.038 -0.010 0.000 | 0.049 0.061 0.000 | -0.227 -0.533 -0.000 | 0.095 0.520 0.000 glideslope | 19.793 | 7.199 | 1.096 | 65.029 i : 500 Cumulative Stats (mean,std,max,argmax) thrust |9153.37 |2393.57 |3200.00 |16000.00 | 412 glideslope | 3.011 | 7.880 | 0.520 |819.085 | 15 sc_margin |100.000 | 0.000 |100.000 |100.000 | 0 Final Stats (mean,std,min,max) position | 41.1 -7.2 40.4 | 374.7 88.9 339.9 | -1.5 -1457.9 -0.1 | 3950.0 492.4 2965.7 velocity | -0.349 -0.038 -2.026 | 4.187 1.679 9.268 | -66.570 -17.943 -88.209 | 0.091 16.301 -0.612 fuel |333.12 | 48.39 | 3.82 |427.00 attitude_321 | -0.013 -0.031 -0.024 | 0.184 0.143 0.133 | -0.836 -1.390 -1.422 | 0.860 1.286 0.794 w | -0.038 -0.010 -0.000 | 0.049 0.055 0.000 | -0.227 -0.533 -0.000 | 0.105 0.520 0.000 glideslope | 19.970 | 7.211 | 1.096 | 65.029 i : 600 Cumulative Stats (mean,std,max,argmax) thrust |9153.89 |2395.08 |3200.00 |16000.00 | 412 glideslope | 3.013 | 7.978 | 0.436 |819.085 | 15 sc_margin |100.000 | 0.000 |100.000 |100.000 | 0 Final Stats (mean,std,min,max) position | 41.4 -9.8 43.4 | 374.3 105.3 351.9 | -1.5 -1457.9 -0.1 | 3950.0 492.4 2965.7 velocity | -0.414 -0.122 -2.084 | 4.666 2.094 9.412 | -66.570 -26.319 -88.209 | 0.091 16.301 -0.612 fuel |332.80 | 49.61 | 3.82 |427.00 attitude_321 | -0.012 -0.029 -0.028 | 0.185 0.145 0.145 | -0.836 -1.390 -1.422 | 0.860 1.308 0.794 w | -0.038 -0.010 -0.000 | 0.049 0.056 0.000 | -0.227 -0.558 -0.000 | 0.105 0.520 0.000 glideslope | 19.835 | 6.993 | 1.083 | 65.029 i : 700 Cumulative Stats (mean,std,max,argmax) thrust |9171.30 |2387.37 |3200.00 |16000.00 | 412 glideslope | 3.014 | 8.124 | 0.436 |819.085 | 15 sc_margin |100.000 | 0.000 |100.000 |100.000 | 0 Final Stats (mean,std,min,max) position | 35.5 -8.8 41.4 | 346.9 98.0 344.5 | -57.9 -1457.9 -0.1 | 3950.0 492.4 2976.3 velocity | -0.418 -0.132 -2.023 | 4.698 2.020 9.127 | -66.570 -26.319 -88.209 | 0.114 16.301 -0.566 fuel |332.13 | 48.64 | 3.82 |427.00 attitude_321 | -0.016 -0.026 -0.028 | 0.191 0.144 0.144 | -0.923 -1.390 -1.433 | 0.860 1.320 0.794 w | -0.038 -0.010 0.000 | 0.051 0.055 0.000 | -0.227 -0.558 -0.000 | 0.181 0.520 0.000 glideslope | 20.238 | 8.103 | 1.083 | 97.429 *** ATT VIO TYPE CNT: [0. 1. 0.] i : 800 Cumulative Stats (mean,std,max,argmax) thrust |9165.31 |2383.91 |3200.00 |16000.00 | 412 glideslope | 2.984 | 7.934 | 0.436 |819.085 | 15 sc_margin |100.000 | 0.000 |100.000 |100.000 | 0 Final Stats (mean,std,min,max) position | 31.5 -9.5 40.0 | 324.8 104.5 338.8 | -57.9 -1457.9 -0.1 | 3950.0 492.4 2976.3 velocity | -0.444 -0.083 -1.977 | 4.975 2.153 8.907 | -66.570 -26.319 -88.209 | 0.114 29.085 -0.566 fuel |332.25 | 48.15 | 3.34 |427.00 attitude_321 | -0.020 -0.025 -0.027 | 0.188 0.143 0.136 | -0.923 -1.390 -1.433 | 0.860 1.379 0.794 w | -0.037 -0.009 -0.000 | 0.052 0.059 0.000 | -0.227 -0.558 -0.000 | 0.181 0.764 0.000 glideslope | 20.242 | 8.195 | 1.004 | 97.429 i : 900 Cumulative Stats (mean,std,max,argmax) thrust |9161.07 |2383.82 |3200.00 |16000.00 | 412 glideslope | 2.982 | 7.900 | 0.436 |819.085 | 15 sc_margin |100.000 | 0.000 |100.000 |100.000 | 0 Final Stats (mean,std,min,max) position | 28.1 -8.5 35.5 | 306.4 98.6 319.7 | -57.9 -1457.9 -0.1 | 3950.0 492.4 2976.3 velocity | -0.390 -0.080 -1.860 | 4.694 2.030 8.405 | -66.570 -26.319 -88.209 | 0.114 29.085 -0.566 fuel |332.63 | 46.46 | 3.34 |427.00 attitude_321 | -0.018 -0.024 -0.026 | 0.185 0.135 0.128 | -0.923 -1.390 -1.433 | 0.860 1.379 0.794 w | -0.038 -0.009 0.000 | 0.051 0.056 0.000 | -0.227 -0.558 -0.000 | 0.181 0.764 0.000 glideslope | 20.291 | 8.070 | 1.004 | 97.429 i : 1000 Cumulative Stats (mean,std,max,argmax) thrust |9159.83 |2385.09 |3200.00 |16000.00 | 412 glideslope | 2.974 | 8.161 | 0.436 |1194.846 | 988 sc_margin |100.000 | 0.000 |100.000 |100.000 | 0 Final Stats (mean,std,min,max) position | 25.3 -7.6 32.0 | 290.8 93.6 303.5 | -57.9 -1457.9 -0.1 | 3950.0 492.4 2976.3 velocity | -0.346 -0.077 -1.767 | 4.455 1.926 7.979 | -66.570 -26.319 -88.209 | 0.114 29.085 -0.566 fuel |333.29 | 44.95 | 3.34 |427.00 attitude_321 | -0.018 -0.024 -0.025 | 0.183 0.128 0.122 | -0.923 -1.390 -1.433 | 0.860 1.379 0.794 w | -0.038 -0.009 0.000 | 0.052 0.054 0.000 | -0.227 -0.558 -0.000 | 0.181 0.764 0.000 glideslope | 20.383 | 8.289 | 1.004 | 97.429 i : 1100 Cumulative Stats (mean,std,max,argmax) thrust |9159.60 |2385.47 |3200.00 |16000.00 | 412 glideslope | 2.971 | 8.432 | 0.436 |1532.022 | 1027 sc_margin |100.000 | 0.000 |100.000 |100.000 | 0 Final Stats (mean,std,min,max) position | 27.0 -7.8 34.4 | 300.5 91.7 314.8 | -57.9 -1457.9 -0.1 | 3950.0 492.4 2976.3 velocity | -0.391 -0.074 -1.831 | 4.736 1.920 8.283 | -66.570 -26.319 -88.209 | 0.114 29.085 -0.566 fuel |333.14 | 45.87 | 3.34 |427.00 attitude_321 | -0.021 -0.024 -0.026 | 0.184 0.136 0.121 | -0.923 -1.390 -1.433 | 0.860 1.393 0.794 w | -0.038 -0.008 -0.000 | 0.052 0.060 0.000 | -0.236 -0.558 -0.000 | 0.181 1.015 0.000 glideslope | 20.248 | 8.161 | 1.004 | 97.429
Python Assignment 3.ipynb
###Markdown Assigment 3: Split the check-Part II loops and lists OBJECTIVEYou will practice how to read numerical and text data from the command line, do simple arithmetic computations, and to output results to the terminal, but this time using lists to store the data.THE PROBLEMYou have been in a fancy restaurant with four of your best friends. All the individual bills are brought to the table and it is time to add the tip and to compute everyone’s share. Since nobody ordered anything extravagantly expensive, you decide that everyone will pay an equal share of the bill. The number of friends variable `number_of_friends` is already provided for you as function parameter and initialized with a default value of 5. Inside your program, you have to declare 2 new variables: one for a list of `names` and for a list of `bills`. Assume the group has five or more people. Request names of the attendees and store them in the list `names` . Then assign bills for each person and store each of them in the corresponding list variable `bills`. Print out both of those variables. Next ask for input for the tip percentage and compute and print the total bill and the amount each person must pay.You are must use the number_of_friends variable in defining the number of iterations for your loop (either for or while loop) and the size or length of your lists must match the value of number_of_friends. All variables must be declared except (number_of_friends) and used. You will get a ZERO if you not comply with the instructions.Your program should start by a documentation string that includes your name, the program name, the Course number, the semester and a short description of the program, as in: """ Tanvir Rahman, Peoplesoft ID: 111111 Program 1: Sharing the bill This program computes individual shares of a restaurant bill. """ Note that the text above starts and ends with three double quotes.HINTS1. The easiest way to output numbers with two decimals is to use the f-strings to insert them into astring:print(f"The result is {result:.2f }") Output: The following example demonstrates the expected output from running your program.Note that these names and bills must be entered by the user from the keyboard and not hardcoded in your program.Enter name of friend: DavidEnter name of friend: JohnEnter name of friend: JaneEnter name of friend: SmithEnter name of friend: AliEnter bill for David: 25.2Enter bill for John: 22.99Enter bill for Jane: 23.5Enter bill for Smith: 24.0Enter bill for Ali: 24.8 Names of Friends: David, John, Jane, Smith, AliIndividual bills: 25.2, 22.99, 23.5, 24.0, 24.8Enter tip percentage: 20Total bill plus tip: $ 144.59Each of us must pay $ 28.92 What to submit: your source code properly documented in a .ipynb file named according to the instructions: FirstName_LastName_assignmentNumber.ipynb How to submit: Please submit homework in moodle Login into moodle with you UH credentials look up the assignment and submit your work. Recommendations: Your source code must run without syntax errors in order to receive a passing grade for this assignment. Make sure you add comments in your source code that describe what the program is supposed to do. Before submitting your code, make sure you test it with different input values to ensure it works correctly. ###Code #Replace pass with body of statement to complete the homework def split_the_check(number_of_friends=5): names=[] bills=[] for name in range(number_of_friends): print('Enter name of friend:') nameofFrnd='name'+str(name) nameofFrnd = input() names.append(nameofFrnd) for i in range(number_of_friends): print(f'Enter bill for {names[i]} : ') bill='bill'+str(name) bill = float(input()) bills.append(bill) print('Names of Friends: ', names) print(f'Individual bills: {bills}') totalbill=0 for i in range(0,len(bills)): totalbill=totalbill+bills[i] print('Enter tip percentage: ') tipPercent = float(input()) tipAmount=(tipPercent*totalbill)/100 totalBill=totalbill+tipAmount print(f'Total bill plus tip: $ {round(totalBill,2)}') avgTotal=(totalBill)/number_of_friends print(f'Each of us must pay $ {round(avgTotal,2)}') return round(avgTotal,2) split_the_check(5) ###Output _____no_output_____
Federated_Learning.ipynb
###Markdown Section: Federated Learning Lesson: Introducing Federated LearningFederated Learning is a technique for training Deep Learning models on data to which you do not have access. Basically:Federated Learning: Instead of bringing all the data to one machine and training a model, we bring the model to the data, train it locally, and merely upload "model updates" to a central server.Use Cases: - app company (Texting prediction app) - predictive maintenance (automobiles / industrial engines) - wearable medical devices - ad blockers / autotomplete in browsers (Firefox/Brave) Challenge Description: data is distributed amongst sources but we cannot aggregated it because of: - privacy concerns: legal, user discomfort, competitive dynamics - engineering: the bandwidth/storage requirements of aggregating the larger dataset Lesson: Introducing / Installing PySyftIn order to perform Federated Learning, we need to be able to use Deep Learning techniques on remote machines. This will require a new set of tools. Specifically, we will use an extensin of PyTorch called PySyft. Install PySyftThe easiest way to install the required libraries is with [Conda](https://docs.conda.io/projects/conda/en/latest/user-guide/overview.html). Create a new environment, then install the dependencies in that environment. In your terminal:```bashconda create -n pysyft python=3conda activate pysyft some older version of conda require "source activate pysyft" instead.conda install jupyter notebookpip install syftpip install numpy```If you have any errors relating to zstd - run the following (if everything above installed fine then skip this step):```pip install --upgrade --force-reinstall zstd```and then retry installing syft (pip install syft).If you are using Windows, I suggest installing [Anaconda and using the Anaconda Prompt](https://docs.anaconda.com/anaconda/user-guide/getting-started/) to work from the command line. With this environment activated and in the repo directory, launch Jupyter Notebook:```bashjupyter notebook```and re-open this notebook on the new Jupyter server.If any part of this doesn't work for you (or any of the tests fail) - first check the [README](https://github.com/OpenMined/PySyft.git) for installation help and then open a Github Issue or ping the beginner channel in our slack! [slack.openmined.org](http://slack.openmined.org/) ###Code import torch as th x = th.tensor([1,2,3,4,5]) x y = x + x print(y) !pip install syft import syft as sy hook = sy.TorchHook(th) th.tensor([1,2,3,4,5]) ###Output _____no_output_____ ###Markdown Lesson: Basic Remote Execution in PySyft PySyft => Remote PyTorchThe essence of Federated Learning is the ability to train models in parallel on a wide number of machines. Thus, we need the ability to tell remote machines to execute the operations required for Deep Learning.Thus, instead of using Torch tensors - we're now going to work with **pointers** to tensors. Let me show you what I mean. First, let's create a "pretend" machine owned by a "pretend" person - we'll call him Bob. ###Code bob = sy.VirtualWorker(hook, id="bob") bob._objects x = th.tensor([1,2,3,4,5]) x = x.send(bob) bob._objects x.location x.id_at_location x.id x.owner hook.local_worker x x = x.get() x bob._objects ###Output _____no_output_____ ###Markdown Project: Playing with Remote TensorsIn this project, I want you to .send() and .get() a tensor to TWO workers by calling .send(bob,alice). This will first require the creation of another VirtualWorker called alice. ###Code # try this project here! alice = sy.VirtualWorker(hook, id="alice") x = th.tensor([1,2,3,4,5]) x_ptr = x.send(bob, alice) x_ptr.get() x = th.tensor([1,2,3,4,5]).send(bob,alice) x.get(sum_results=True) ###Output _____no_output_____ ###Markdown Lesson: Introducing Remote Arithmetic ###Code x = th.tensor([1,2,3,4,5]).send(bob) y = th.tensor([1,1,1,1,1]).send(bob) x y z = x + y z z = z.get() z z = th.add(x,y) z z = z.get() z x = th.tensor([1.,2,3,4,5], requires_grad=True).send(bob) y = th.tensor([1.,1,1,1,1], requires_grad=True).send(bob) z = (x + y).sum() z.backward() x = x.get() x x.grad ###Output _____no_output_____ ###Markdown Project: Learn a Simple Linear ModelIn this project, I'd like for you to create a simple linear model which will solve for the following dataset below. You should use only Variables and .backward() to do so (no optimizers or nn.Modules). Furthermore, you must do so with both the data and the model being located on Bob's machine. ###Code # try this project here! input = th.tensor([[1.,1],[0,1,],[1,0],[0,0]], requires_grad=True).send(bob) target = th.tensor([[1.],[1],[0],[0]], requires_grad=True).send(bob) weights = th.tensor([[0.],[0.]], requires_grad=True).send(bob) pred,target for i in range(10): pred = input.mm(weights) loss = ((pred - target)**2).sum() loss.backward() weights.data.sub_(weights.grad * 0.1) weights.grad *= 0 print(loss.get().data) ###Output tensor(0.0058) tensor(0.0037) tensor(0.0024) tensor(0.0015) tensor(0.0010) tensor(0.0006) tensor(0.0004) tensor(0.0003) tensor(0.0002) tensor(0.0001) ###Markdown Lesson: Garbage Collection and Common Errors ###Code bob = bob.clear_objects() bob._objects x = th.tensor([1,2,3,4,5]).send(bob) bob._objects del x bob._objects x = th.tensor([1,2,3,4,5]).send(bob) bob._objects x = "asdf" bob._objects x = th.tensor([1,2,3,4,5]).send(bob) x bob._objects x = "asdf" bob._objects del x bob._objects bob = bob.clear_objects() bob._objects for i in range(1000): x = th.tensor([1,2,3,4,5]).send(bob) bob._objects #x = th.tensor([1,2,3,4,5]).send(bob) #y = th.tensor([1,1,1,1,1]) #z = x + y #x = th.tensor([1,2,3,4,5]).send(bob) #y = th.tensor([1,1,1,1,1]).send(alice) #z = x + y ###Output _____no_output_____ ###Markdown Lesson: Toy Federated LearningLet's start by training a toy model the centralized way. This is about a simple as models get. We first need:- a toy dataset- a model- some basic training logic for training a model to fit the data. ###Code from torch import nn, optim # A Toy Dataset data = th.tensor([[1.,1],[0,1],[1,0],[0,0]], requires_grad=True) target = th.tensor([[1.],[1], [0], [0]], requires_grad=True) # A Toy Model model = nn.Linear(2,1) opt = optim.SGD(params=model.parameters(), lr=0.1) def train(iterations=20): for iter in range(iterations): opt.zero_grad() pred = model(data) loss = ((pred - target)**2).sum() loss.backward() opt.step() print(loss.data) train() data_bob = data[0:2].send(bob) target_bob = target[0:2].send(bob) data_alice = data[2:4].send(alice) target_alice = target[2:4].send(alice) datasets = [(data_bob, target_bob), (data_alice, target_alice)] _data, _target=datasets[0] _data.location model = model.send(_data.location) list(model.parameters(model)) def train(iterations=20): model = nn.Linear(2,1) opt = optim.SGD(params=model.parameters(), lr=0.1) for iter in range(iterations): for _data, _target in datasets: # send model to the data model = model.send(_data.location) # do normal training opt.zero_grad() pred = model(_data) loss = ((pred - _target)**2).sum() loss.backward() opt.step() # get smarter model back model = model.get() print(loss.get()) train() ###Output _____no_output_____ ###Markdown Lesson: Advanced Remote Execution ToolsIn the last section we trained a toy model using Federated Learning. We did this by calling .send() and .get() on our model, sending it to the location of training data, updating it, and then bringing it back. However, at the end of the example we realized that we needed to go a bit further to protect people privacy. Namely, we want to average the gradients BEFORE calling .get(). That way, we won't ever see anyone's exact gradient (thus better protecting their privacy!!!)But, in order to do this, we need a few more pieces:- use a pointer to send a Tensor directly to another workerAnd in addition, while we're here, we're going to learn about a few more advanced tensor operations as well which will help us both with this example and a few in the future! ###Code bob.clear_objects() alice.clear_objects() x = th.tensor([1,2,3,4,5]).send(bob) x = x.send(alice) bob._objects alice._objects y = x + x y bob._objects alice._objects jon = sy.VirtualWorker(hook, id="jon") bob.clear_objects() alice.clear_objects() x = th.tensor([1,2,3,4,5]).send(bob).send(alice) bob._objects alice._objects x = x.get() x bob._objects alice._objects x = x.get() x bob._objects bob.clear_objects() alice.clear_objects() x = th.tensor([1,2,3,4,5]).send(bob).send(alice) bob._objects alice._objects del x bob._objects alice._objects ###Output _____no_output_____ ###Markdown Lesson: Pointer Chain Operations ###Code bob.clear_objects() alice.clear_objects() x = th.tensor([1,2,3,4,5]).send(bob) bob._objects alice._objects x.move(alice) bob._objects alice._objects x = th.tensor([1,2,3,4,5]).send(bob).send(alice) bob._objects alice._objects x.remote_get() bob._objects alice._objects x.move(bob) x bob._objects alice._objects ###Output _____no_output_____ ###Markdown ###Code import sys import pandas as pd import numpy as np import sklearn import keras print('Python: {}'.format(sys.version)) print('Pandas: {}'.format(pd.__version__)) print('Numpy: {}'.format(np.__version__)) print('Sklearn: {}'.format(sklearn.__version__)) print('Keras: {}'.format(keras.__version__)) import matplotlib.pyplot as plt import seaborn as sns from IPython.display import display %matplotlib inline import plotly.offline as py import plotly.graph_objs as go import plotly.tools as tls py.init_notebook_mode(connected=True) import warnings warnings.filterwarnings('ignore') # Data processing, metrics and modeling from sklearn.preprocessing import StandardScaler, LabelEncoder from sklearn.model_selection import GridSearchCV, cross_val_score, train_test_split, GridSearchCV, RandomizedSearchCV from sklearn.metrics import precision_score, recall_score, confusion_matrix, roc_curve, precision_recall_curve, accuracy_score, roc_auc_score import lightgbm as lgbm from sklearn.ensemble import VotingClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import roc_curve,auc from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_predict from yellowbrick.classifier import DiscriminationThreshold # Stats import scipy.stats as ss from scipy import interp from scipy.stats import randint as sp_randint from scipy.stats import uniform as sp_uniform # Time from contextlib import contextmanager @contextmanager def timer(title): t0 = time.time() yield print("{} - done in {:.0f}s".format(title, time.time() - t0)) #ignore warning messages import warnings warnings.filterwarnings('ignore') # Always good to set a seed for reproducibility SEED = 7 np.random.seed(SEED) from google.colab import drive drive.mount('/content/drive') names = ['n_pregnant', 'glucose_concentration', 'blood_pressuer (mm Hg)', 'skin_thickness (mm)', 'serum_insulin (mu U/ml)', 'BMI', 'pedigree_function', 'age', 'class'] #df = pd.read_csv('../input/diabetes.csv', names = names) df = pd.read_csv('/content/drive/MyDrive/diabetes.csv') df_name=df.columns df.head() df.info() df.describe() data=df # 2 datasets D = data[(data['Outcome'] != 0)] H = data[(data['Outcome'] == 0)] #------------COUNT----------------------- def target_count(): trace = go.Bar( x = data['Outcome'].value_counts().values.tolist(), y = ['healthy','diabetic' ], orientation = 'h', text=data['Outcome'].value_counts().values.tolist(), textfont=dict(size=15), textposition = 'auto', opacity = 0.8,marker=dict( color=['lightskyblue', 'gold'], line=dict(color='#000000',width=1.5))) layout = dict(title = 'Count of Outcome variable') fig = dict(data = [trace], layout=layout) py.iplot(fig) #------------PERCENTAGE------------------- def target_percent(): trace = go.Pie(labels = ['healthy','diabetic'], values = data['Outcome'].value_counts(), textfont=dict(size=15), opacity = 0.8, marker=dict(colors=['lightskyblue', 'gold'], line=dict(color='#000000', width=1.5))) layout = dict(title = 'Distribution of Outcome variable') fig = dict(data = [trace], layout=layout) py.iplot(fig) target_col = ["Outcome"] cat_cols = data.nunique()[data.nunique() < 12].keys().tolist() cat_cols = [x for x in cat_cols ] #numerical columns num_cols = [x for x in data.columns if x not in cat_cols + target_col] #Binary columns with 2 values bin_cols = data.nunique()[data.nunique() == 2].keys().tolist() #Columns more than 2 values multi_cols = [i for i in cat_cols if i not in bin_cols] #Label encoding Binary columns le = LabelEncoder() for i in bin_cols : data[i] = le.fit_transform(data[i]) #Duplicating columns for multi value columns data = pd.get_dummies(data = data,columns = multi_cols ) #Scaling Numerical columns std = StandardScaler() scaled = std.fit_transform(data[num_cols]) scaled = pd.DataFrame(scaled,columns=num_cols) #dropping original values merging scaled values for numerical columns df_data_og = data.copy() data = data.drop(columns = num_cols,axis = 1) data = data.merge(scaled,left_index=True,right_index=True,how = "left") def correlation_plot(): #correlation correlation = data.corr() #tick labels matrix_cols = correlation.columns.tolist() #convert to array corr_array = np.array(correlation) trace = go.Heatmap(z = corr_array, x = matrix_cols, y = matrix_cols, colorscale='Viridis', colorbar = dict() , ) layout = go.Layout(dict(title = 'Correlation Matrix for variables', #autosize = False, #height = 1400, #width = 1600, margin = dict(r = 0 ,l = 100, t = 0,b = 100, ), yaxis = dict(tickfont = dict(size = 9)), xaxis = dict(tickfont = dict(size = 9)), ) ) fig = go.Figure(data = [trace],layout = layout) py.iplot(fig) correlation_plot() # Def X and Y X = data.drop('Outcome', 1) y = data['Outcome'] def model_performance(model, subtitle) : #Kfold cv = KFold(n_splits=5,shuffle=False, random_state = 42) y_real = [] y_proba = [] tprs = [] aucs = [] mean_fpr = np.linspace(0,1,100) i = 1 for train,test in cv.split(X,y): model.fit(X.iloc[train], y.iloc[train]) pred_proba = model.predict_proba(X.iloc[test]) precision, recall, _ = precision_recall_curve(y.iloc[test], pred_proba[:,1]) y_real.append(y.iloc[test]) y_proba.append(pred_proba[:,1]) fpr, tpr, t = roc_curve(y[test], pred_proba[:, 1]) tprs.append(interp(mean_fpr, fpr, tpr)) roc_auc = auc(fpr, tpr) aucs.append(roc_auc) # Confusion matrix y_pred = cross_val_predict(model, X, y, cv=5) conf_matrix = confusion_matrix(y, y_pred) trace1 = go.Heatmap(z = conf_matrix ,x = ["0 (pred)","1 (pred)"], y = ["0 (true)","1 (true)"],xgap = 2, ygap = 2, colorscale = 'Viridis', showscale = False) #Show metrics tp = conf_matrix[1,1] fn = conf_matrix[1,0] fp = conf_matrix[0,1] tn = conf_matrix[0,0] Accuracy = ((tp+tn)/(tp+tn+fp+fn)) Precision = (tp/(tp+fp)) Recall = (tp/(tp+fn)) F1_score = (2*(((tp/(tp+fp))*(tp/(tp+fn)))/((tp/(tp+fp))+(tp/(tp+fn))))) show_metrics = pd.DataFrame(data=[[Accuracy , Precision, Recall, F1_score]]) show_metrics = show_metrics.T colors = ['gold', 'lightgreen', 'lightcoral', 'lightskyblue'] trace2 = go.Bar(x = (show_metrics[0].values), y = ['Accuracy', 'Precision', 'Recall', 'F1_score'], text = np.round_(show_metrics[0].values,4), textposition = 'auto', textfont=dict(color='black'), orientation = 'h', opacity = 1, marker=dict( color=colors, line=dict(color='#000000',width=1.5))) #Roc curve mean_tpr = np.mean(tprs, axis=0) mean_auc = auc(mean_fpr, mean_tpr) trace3 = go.Scatter(x=mean_fpr, y=mean_tpr, name = "Roc : " , line = dict(color = ('rgb(22, 96, 167)'),width = 2), fill='tozeroy') trace4 = go.Scatter(x = [0,1],y = [0,1], line = dict(color = ('black'),width = 1.5, dash = 'dot')) #Precision - recall curve y_real = y y_proba = np.concatenate(y_proba) precision, recall, _ = precision_recall_curve(y_real, y_proba) trace5 = go.Scatter(x = recall, y = precision, name = "Precision" + str(precision), line = dict(color = ('lightcoral'),width = 2), fill='tozeroy') mean_auc=round(mean_auc,3) #Subplots fig = tls.make_subplots(rows=2, cols=2, print_grid=False, specs=[[{}, {}], [{}, {}]], subplot_titles=('Confusion Matrix', 'Metrics', 'ROC curve'+" "+ '('+ str(mean_auc)+')', 'Precision - Recall curve', )) #Trace and layout fig.append_trace(trace1,1,1) fig.append_trace(trace2,1,2) fig.append_trace(trace3,2,1) fig.append_trace(trace4,2,1) fig.append_trace(trace5,2,2) fig['layout'].update(showlegend = False, title = '<b>Model performance report (5 folds)</b><br>'+subtitle, autosize = False, height = 830, width = 830, plot_bgcolor = 'black', paper_bgcolor = 'black', margin = dict(b = 195), font=dict(color='white')) fig["layout"]["xaxis1"].update(color = 'white') fig["layout"]["yaxis1"].update(color = 'white') fig["layout"]["xaxis2"].update((dict(range=[0, 1], color = 'white'))) fig["layout"]["yaxis2"].update(color = 'white') fig["layout"]["xaxis3"].update(dict(title = "false positive rate"), color = 'white') fig["layout"]["yaxis3"].update(dict(title = "true positive rate"),color = 'white') fig["layout"]["xaxis4"].update(dict(title = "recall"), range = [0,1.05],color = 'white') fig["layout"]["yaxis4"].update(dict(title = "precision"), range = [0,1.05],color = 'white') for i in fig['layout']['annotations']: i['font'] = titlefont=dict(color='white', size = 14) py.iplot(fig) def scores_table(model, subtitle): scores = ['accuracy', 'precision', 'recall', 'f1', 'roc_auc'] res = [] for sc in scores: scores = cross_val_score(model, X, y, cv = 5, scoring = sc) res.append(scores) df = pd.DataFrame(res).T df.loc['mean'] = df.mean() df.loc['std'] = df.std() df= df.rename(columns={0: 'accuracy', 1:'precision', 2:'recall',3:'f1',4:'roc_auc'}) trace = go.Table( header=dict(values=['<b>Fold', '<b>Accuracy', '<b>Precision', '<b>Recall', '<b>F1 score', '<b>Roc auc'], line = dict(color='#7D7F80'), fill = dict(color='#a1c3d1'), align = ['center'], font = dict(size = 15)), cells=dict(values=[('1','2','3','4','5','mean', 'std'), np.round(df['accuracy'],3), np.round(df['precision'],3), np.round(df['recall'],3), np.round(df['f1'],3), np.round(df['roc_auc'],3)], line = dict(color='#7D7F80'), fill = dict(color='#EDFAFF'), align = ['center'], font = dict(size = 15))) layout = dict(width=800, height=400, title = '<b>Cross Validation - 5 folds</b><br>'+subtitle, font = dict(size = 15)) fig = dict(data=[trace], layout=layout) py.iplot(fig, filename = 'styled_table') random_state=42 fit_params = {"early_stopping_rounds" : 100, "eval_metric" : 'auc', "eval_set" : [(X,y)], 'eval_names': ['valid'], 'verbose': 0, 'categorical_feature': 'auto'} param_test = {'learning_rate' : [0.01, 0.02, 0.03, 0.04, 0.05, 0.08, 0.1, 0.2, 0.3, 0.4], 'n_estimators' : [100, 200, 300, 400, 500, 600, 800, 1000, 1500, 2000], 'num_leaves': sp_randint(6, 50), 'min_child_samples': sp_randint(100, 500), 'min_child_weight': [1e-5, 1e-3, 1e-2, 1e-1, 1, 1e1, 1e2, 1e3, 1e4], 'subsample': sp_uniform(loc=0.2, scale=0.8), 'max_depth': [-1, 1, 2, 3, 4, 5, 6, 7], 'colsample_bytree': sp_uniform(loc=0.4, scale=0.6), 'reg_alpha': [0, 1e-1, 1, 2, 5, 7, 10, 50, 100], 'reg_lambda': [0, 1e-1, 1, 5, 10, 20, 50, 100]} #number of combinations n_iter = 300 #intialize lgbm and lunch the search lgbm_clf = lgbm.LGBMClassifier(random_state=random_state, silent=True, metric='None', n_jobs=4) grid_search = RandomizedSearchCV( estimator=lgbm_clf, param_distributions=param_test, n_iter=n_iter, scoring='accuracy', cv=5, refit=True, random_state=random_state, verbose=True) grid_search.fit(X, y, **fit_params) opt_parameters = grid_search.best_params_ lgbm_clf = lgbm.LGBMClassifier(**opt_parameters) model_performance(lgbm_clf, 'LightGBM') scores_table(lgbm_clf, 'LightGBM') # Drop rows with missing values df.dropna(inplace=True) # summarize the number of rows and columns in df df.describe() # Convert dataframe to numpy array dataset = df.values print(dataset.shape) # split into input (X) and an output (Y) X = dataset[:,0:8] Y = dataset[:, 8].astype(int) print(X.shape) print(Y.shape) print(Y[:5]) # Normalize the data using sklearn StandardScaler from sklearn.preprocessing import StandardScaler scaler = StandardScaler().fit(X) # Transform and display the training data X_standardized = scaler.transform(X) data = pd.DataFrame(X_standardized) data.describe() # import necessary sklearn and keras packages from sklearn.model_selection import GridSearchCV, KFold from keras.models import Sequential from keras.layers import Dense from keras.wrappers.scikit_learn import KerasClassifier from keras.optimizers import Adam # Do a grid search for the optimal batch size and number of epochs # import necessary packages from sklearn.model_selection import GridSearchCV from sklearn.model_selection import KFold from keras.models import Sequential from keras.layers import Dense from keras.wrappers.scikit_learn import KerasClassifier from keras.optimizers import Adam from keras.callbacks import ModelCheckpoint # Define a random seed seed = 6 np.random.seed(seed) # Start defining the model def create_model(): # create model model = Sequential() model.add(Dense(8, input_dim = 8, kernel_initializer='normal', activation='relu')) model.add(Dense(16, input_dim = 8, kernel_initializer='normal', activation='relu')) model.add(Dense(8, input_dim = 16, kernel_initializer='normal', activation='relu')) model.add(Dense(1, activation='sigmoid')) # compile the model adam = Adam(lr = 0.01) model.compile(loss = 'binary_crossentropy', optimizer = adam, metrics = ['accuracy']) return model # create the model model = KerasClassifier(build_fn = create_model, verbose = 0) # define the grid search parameters batch_size = [16, 32, 64,128] epochs = [2, 5, 10] # make a dictionary of the grid search parameters param_grid = dict(batch_size=batch_size, epochs=epochs) # build and fit the GridSearchCV grid = GridSearchCV(estimator = model, param_grid = param_grid, cv = KFold(random_state=seed), verbose = 10) grid_results = grid.fit(X_standardized, Y) # summarize the results print("Best: {0}, using {1}".format(grid_results.best_score_, grid_results.best_params_)) means = grid_results.cv_results_['mean_test_score'] stds = grid_results.cv_results_['std_test_score'] params = grid_results.cv_results_['params'] for mean, stdev, param in zip(means, stds, params): print('{0} ({1}) with: {2}'.format(mean, stdev, param)) best_batch_size = 64 best_epochs = 10 # 100 best_dropout_rate = 0.0 best_learn_rate = 0.01 best_activation = 'relu' best_init = 'normal' best_neuron1 = 16 best_neuron2 = 16 best_neuron3 = 8 from keras.optimizers import Adam from sklearn.model_selection import train_test_split #best model model = Sequential() model.add(Dense(best_neuron1, input_dim = 8, kernel_initializer= best_init, activation= best_activation)) model.add(Dense(best_neuron2, input_dim = best_neuron1, kernel_initializer= best_init, activation= best_activation)) model.add(Dense(best_neuron3, input_dim = best_neuron2, kernel_initializer= best_init, activation= best_activation)) model.add(Dense(1, activation='sigmoid')) # compile the model adam = Adam(lr = best_learn_rate) model.compile(loss = 'binary_crossentropy', optimizer = adam, metrics = ['accuracy']) ckpt_model = 'pima-weights_best_t.hdf5' checkpoint = ModelCheckpoint(ckpt_model, monitor='val_accuracy', verbose=1, save_best_only=True, mode='max') callbacks_list = [checkpoint] X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.20, random_state=0) print(X_train.shape) print(X_test.shape) history = model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=best_epochs, batch_size=best_batch_size, callbacks=callbacks_list, verbose=1) !pip install pyyaml h5py # Required to save models in HDF5 format # Display the model's architecture model.summary() # Save the entire model as a SavedModel. !mkdir -p saved_model model.save('/content/drive/MyDrive/saved_model/my_model1') model.save('/content/drive/MyDrive/saved_model/my_model1.hdf5') model.save_weights("/content/drive/MyDrive/weights1.h5") model.save("/content/drive/MyDrive/") model.load_weights("pima-weights_best_t.hdf5") ###Output _____no_output_____ ###Markdown MOUNTING DRIVE ###Code from google.colab import drive drive.mount('/content/gdrive') ###Output Mounted at /content/gdrive ###Markdown IMPORTING LIBRARIES ###Code !pip install medpy --upgrade --q !pip install nibabel --upgrade --q !pip install nilearn --upgrade --q !pip install torchio --upgrade --q import os import torch from glob import glob import nibabel as nib import numpy as np import torch.nn as nn import matplotlib.pyplot as plt from torch.autograd import Variable from collections import OrderedDict from torch.utils.data import Dataset, DataLoader import nibabel as nib from tqdm import tqdm import enum from skimage.transform import resize import time from scipy import stats import random from IPython import display import torch.nn.functional as F from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.utils import to_categorical import torchvision import torchio as tio ###Output _____no_output_____ ###Markdown GAN ###Code import numpy as np import torch import os from torch import nn from torch import optim from torch.nn import functional as F from skimage.transform import resize class Generator(nn.Module): def __init__(self, noise:int=1000, channel:int=64): super(Generator, self).__init__() _c = channel self.noise = noise self.fc = nn.Linear(1000,512*4*4*4) self.bn1 = nn.BatchNorm3d(_c*8) self.tp_conv2 = nn.Conv3d(_c*8, _c*4, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm3d(_c*4) self.tp_conv3 = nn.Conv3d(_c*4, _c*2, kernel_size=3, stride=1, padding=1, bias=False) self.bn3 = nn.BatchNorm3d(_c*2) self.tp_conv4 = nn.Conv3d(_c*2, _c, kernel_size=3, stride=1, padding=1, bias=False) self.bn4 = nn.BatchNorm3d(_c) self.tp_conv5 = nn.Conv3d(_c, 1, kernel_size=3, stride=1, padding=1, bias=False) def forward(self, noise): noise = noise.view(-1, 1000) h = self.fc(noise) h = h.view(-1,512,4,4,4) h = F.relu(self.bn1(h)) h = F.interpolate(h,scale_factor = 2) h = self.tp_conv2(h) h = F.relu(self.bn2(h)) h = F.interpolate(h,scale_factor = 2) h = self.tp_conv3(h) h = F.relu(self.bn3(h)) h = F.interpolate(h,scale_factor = 2) h = self.tp_conv4(h) h = F.relu(self.bn4(h)) h = F.interpolate(h,scale_factor = 2) h = self.tp_conv5(h) h = torch.tanh(h) # Extra layers h = F.interpolate(h,scale_factor = 2) return h # Loading Generator G = Generator().cuda() G.load_state_dict(torch.load('/content/gdrive/MyDrive/WGAN_G.pth',map_location='cuda:0')) import nibabel as nib from nilearn import plotting Show_color = False noise = Variable(torch.randn((1, 1000)).cuda()) fake_image = G(noise) featmask = np.squeeze(fake_image[0].data.cpu().numpy()) featmask = nib.Nifti1Image(featmask,affine = np.eye(4)) arr1 = [4,6,8,10,12,14,16,18,20,22,24,26,28,30,32] arr2 = [34,36,38,40,42,44,46,48,50,52,54,56,58,60] if Show_color: disp = plotting.plot_img(featmask,cut_coords=arr1,draw_cross=False,annotate=False,black_bg=True,display_mode='x') # disp.annotate(size=25,left_right=False,positions=True) plotting.show() disp=plotting.plot_img(featmask,cut_coords=arr2,draw_cross=False,annotate=False,black_bg=True,display_mode='x') # disp.annotate(size=25,left_right=False) plotting.show() else: disp = plotting.plot_anat(featmask,cut_coords=arr1,draw_cross=False,annotate=False,black_bg=True,display_mode='x') plotting.show() # disp.annotate(size=25,left_right=False) disp=plotting.plot_anat(featmask,cut_coords=arr2,draw_cross=False,annotate=False,black_bg=True,display_mode='x') # disp.annotate(size=25,left_right=False) plotting.show() # visualization import matplotlib.pyplot as plt def show_image(test_image): count = 1 # test_image = test_image.view(64*2,64*2,64*2) test_image = test_image.detach().to('cpu') plt.figure(figsize=(20,12)) for i in range(48): # if i%2==0: plt.subplot(8,6,count) count+=1 # plt.imshow(test_image[:,:,i]) plt.imshow(test_image[:,:,i], cmap='bone') plt.show() # plt.savefig('brain_48.png') # noise = Variable(torch.randn((1, 1000, 1, 1 ,1)).cuda()) # fake_image = G(noise) # print(fake_image.shape) # show_image(fake_image[0]) ###Output _____no_output_____ ###Markdown UNET ###Code class Attention(nn.Module): #it gives channel attention def __init__(self, in_channels, reduced_dim): #input_shape ---> output_shape super(Attention, self).__init__() self.se = nn.Sequential( nn.AdaptiveAvgPool3d(1), # C x H x W -> C x 1 x 1 nn.Conv3d(in_channels, reduced_dim, 1), nn.SiLU(), nn.Conv3d(reduced_dim, in_channels, 1), nn.Sigmoid(), ) def forward(self, x): return x * self.se(x) @torch.jit.script def autocrop(encoder_layer: torch.Tensor, decoder_layer: torch.Tensor): """ Center-crops the encoder_layer to the size of the decoder_layer, so that merging (concatenation) between levels/blocks is possible. This is only necessary for input sizes != 2**n for 'same' padding and always required for 'valid' padding. """ if encoder_layer.shape[2:] != decoder_layer.shape[2:]: ds = encoder_layer.shape[2:] es = decoder_layer.shape[2:] assert ds[0] >= es[0] assert ds[1] >= es[1] if encoder_layer.dim() == 4: # 2D encoder_layer = encoder_layer[ :, :, ((ds[0] - es[0]) // 2):((ds[0] + es[0]) // 2), ((ds[1] - es[1]) // 2):((ds[1] + es[1]) // 2) ] elif encoder_layer.dim() == 5: # 3D assert ds[2] >= es[2] encoder_layer = encoder_layer[ :, :, ((ds[0] - es[0]) // 2):((ds[0] + es[0]) // 2), ((ds[1] - es[1]) // 2):((ds[1] + es[1]) // 2), ((ds[2] - es[2]) // 2):((ds[2] + es[2]) // 2), ] return encoder_layer, decoder_layer def conv_layer(dim: int): if dim == 3: return nn.Conv3d elif dim == 2: return nn.Conv2d def get_conv_layer(in_channels: int, out_channels: int, kernel_size: int = 3, stride: int = 1, padding: int = 1, bias: bool = True, dim: int = 2): return conv_layer(dim)(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias) def conv_transpose_layer(dim: int): if dim == 3: return nn.ConvTranspose3d elif dim == 2: return nn.ConvTranspose2d def get_up_layer(in_channels: int, out_channels: int, kernel_size: int = 2, stride: int = 2, dim: int = 3, up_mode: str = 'transposed', ): if up_mode == 'transposed': return conv_transpose_layer(dim)(in_channels, out_channels, kernel_size=kernel_size, stride=stride) else: return nn.Upsample(scale_factor=2.0, mode=up_mode) def maxpool_layer(dim: int): if dim == 3: return nn.MaxPool3d elif dim == 2: return nn.MaxPool2d def get_maxpool_layer(kernel_size: int = 2, stride: int = 2, padding: int = 0, dim: int = 2): return maxpool_layer(dim=dim)(kernel_size=kernel_size, stride=stride, padding=padding) def get_activation(activation: str): if activation == 'ReLU': return nn.ReLU() elif activation == 'leaky': return nn.LeakyReLU(negative_slope=0.1) elif activation == 'elu': return nn.ELU() elif activation == 'PReLU': return nn.PReLU() def get_normalization(normalization: str, num_channels: int, dim: int): if normalization == 'batch': if dim == 3: return nn.BatchNorm3d(num_channels) elif dim == 2: return nn.BatchNorm2d(num_channels) elif normalization == 'instance': if dim == 3: return nn.InstanceNorm3d(num_channels) elif dim == 2: return nn.InstanceNorm2d(num_channels) elif 'group' in normalization: num_groups = int(normalization.partition('group')[-1]) # get the group size from string return nn.GroupNorm(num_groups=num_groups, num_channels=num_channels) class Concatenate(nn.Module): def __init__(self): super(Concatenate, self).__init__() def forward(self, layer_1, layer_2): x = torch.cat((layer_1, layer_2), 1) return x class DownBlock(nn.Module): """ A helper Module that performs 2 Convolutions and 1 MaxPool. An activation follows each convolution. A normalization layer follows each convolution. """ def __init__(self, in_channels: int, out_channels: int, pooling: bool = True, activation: str = 'relu', normalization: str = None, dim: str = 2, conv_mode: str = 'same'): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.pooling = pooling self.normalization = normalization if conv_mode == 'same': self.padding = 1 elif conv_mode == 'valid': self.padding = 0 self.dim = dim self.activation = activation # conv layers self.conv1 = get_conv_layer(self.in_channels, self.out_channels, kernel_size=3, stride=1, padding=self.padding, bias=True, dim=self.dim) self.conv2 = get_conv_layer(self.out_channels, self.out_channels, kernel_size=3, stride=1, padding=self.padding, bias=True, dim=self.dim) # pooling layer if self.pooling: self.pool = get_maxpool_layer(kernel_size=2, stride=2, padding=0, dim=self.dim) # activation layers self.act1 = get_activation(self.activation) self.act2 = get_activation(self.activation) # normalization layers if self.normalization: self.norm1 = get_normalization(normalization=self.normalization, num_channels=self.out_channels, dim=self.dim) self.norm2 = get_normalization(normalization=self.normalization, num_channels=self.out_channels, dim=self.dim) self.Attention = Attention(self.out_channels,16) # self.ProjectExciteLayer = ProjectExciteLayer(self.out_channels) def forward(self, x): y = self.conv1(x) # convolution 1 y = self.act1(y) # activation 1 if self.normalization: y = self.norm1(y) # normalization 1 y = self.conv2(y) # convolution 2 y = self.act2(y) # activation 2 if self.normalization: y = self.norm2(y) # normalization 2 y = self.Attention(y) # y = self.ProjectExciteLayer(y) before_pooling = y # save the outputs before the pooling operation if self.pooling: y = self.pool(y) # pooling return y, before_pooling class UpBlock(nn.Module): """ A helper Module that performs 2 Convolutions and 1 UpConvolution/Upsample. An activation follows each convolution. A normalization layer follows each convolution. """ def __init__(self, in_channels: int, out_channels: int, activation: str = 'relu', normalization: str = None, dim: int = 3, conv_mode: str = 'same', up_mode: str = 'transposed' ): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.normalization = normalization if conv_mode == 'same': self.padding = 1 elif conv_mode == 'valid': self.padding = 0 self.dim = dim self.activation = activation self.up_mode = up_mode # upconvolution/upsample layer self.up = get_up_layer(self.in_channels, self.out_channels, kernel_size=2, stride=2, dim=self.dim, up_mode=self.up_mode) # conv layers self.conv0 = get_conv_layer(self.in_channels, self.out_channels, kernel_size=1, stride=1, padding=0, bias=True, dim=self.dim) self.conv1 = get_conv_layer(2 * self.out_channels, self.out_channels, kernel_size=3, stride=1, padding=self.padding, bias=True, dim=self.dim) self.conv2 = get_conv_layer(self.out_channels, self.out_channels, kernel_size=3, stride=1, padding=self.padding, bias=True, dim=self.dim) # activation layers self.act0 = get_activation(self.activation) self.act1 = get_activation(self.activation) self.act2 = get_activation(self.activation) # normalization layers if self.normalization: self.norm0 = get_normalization(normalization=self.normalization, num_channels=self.out_channels, dim=self.dim) self.norm1 = get_normalization(normalization=self.normalization, num_channels=self.out_channels, dim=self.dim) self.norm2 = get_normalization(normalization=self.normalization, num_channels=self.out_channels, dim=self.dim) # concatenate layer self.concat = Concatenate() def forward(self, encoder_layer, decoder_layer): """ Forward pass Arguments: encoder_layer: Tensor from the encoder pathway decoder_layer: Tensor from the decoder pathway (to be up'd) """ up_layer = self.up(decoder_layer) # up-convolution/up-sampling cropped_encoder_layer, dec_layer = autocrop(encoder_layer, up_layer) # cropping if self.up_mode != 'transposed': # We need to reduce the channel dimension with a conv layer up_layer = self.conv0(up_layer) # convolution 0 up_layer = self.act0(up_layer) # activation 0 if self.normalization: up_layer = self.norm0(up_layer) # normalization 0 merged_layer = self.concat(up_layer, cropped_encoder_layer) # concatenation y = self.conv1(merged_layer) # convolution 1 y = self.act1(y) # activation 1 if self.normalization: y = self.norm1(y) # normalization 1 y = self.conv2(y) # convolution 2 y = self.act2(y) # acivation 2 if self.normalization: y = self.norm2(y) # normalization 2 return y class UNet(nn.Module): def __init__(self, in_channels: int = 1, out_channels: int = 2, n_blocks: int = 4, start_filters: int = 32, activation: str = 'relu', normalization: str = 'batch', conv_mode: str = 'same', dim: int = 2, up_mode: str = 'transposed' ): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.n_blocks = n_blocks self.start_filters = start_filters self.activation = activation self.normalization = normalization self.conv_mode = conv_mode self.dim = dim self.up_mode = up_mode self.down_blocks = [] self.up_blocks = [] # create encoder path for i in range(self.n_blocks): num_filters_in = self.in_channels if i == 0 else num_filters_out num_filters_out = self.start_filters * (2 ** i) pooling = True if i < self.n_blocks - 1 else False down_block = DownBlock(in_channels=num_filters_in, out_channels=num_filters_out, pooling=pooling, activation=self.activation, normalization=self.normalization, conv_mode=self.conv_mode, dim=self.dim) self.down_blocks.append(down_block) # create decoder path (requires only n_blocks-1 blocks) for i in range(n_blocks - 1): num_filters_in = num_filters_out num_filters_out = num_filters_in // 2 up_block = UpBlock(in_channels=num_filters_in, out_channels=num_filters_out, activation=self.activation, normalization=self.normalization, conv_mode=self.conv_mode, dim=self.dim, up_mode=self.up_mode) self.up_blocks.append(up_block) # final convolution self.conv_final = get_conv_layer(num_filters_out, self.out_channels, kernel_size=1, stride=1, padding=0, bias=True, dim=self.dim) # add the list of modules to current module self.down_blocks = nn.ModuleList(self.down_blocks) self.up_blocks = nn.ModuleList(self.up_blocks) # initialize the weights self.initialize_parameters() @staticmethod def weight_init(module, method, **kwargs): if isinstance(module, (nn.Conv3d, nn.Conv2d, nn.ConvTranspose3d, nn.ConvTranspose2d)): method(module.weight, **kwargs) # weights @staticmethod def bias_init(module, method, **kwargs): if isinstance(module, (nn.Conv3d, nn.Conv2d, nn.ConvTranspose3d, nn.ConvTranspose2d)): method(module.bias, **kwargs) # bias def initialize_parameters(self, method_weights=nn.init.kaiming_uniform_, method_bias=nn.init.zeros_, kwargs_weights={}, kwargs_bias={} ): for module in self.modules(): self.weight_init(module, method_weights, **kwargs_weights) # initialize weights self.bias_init(module, method_bias, **kwargs_bias) # initialize bias def forward(self, x: torch.tensor): encoder_output = [] # Encoder pathway for module in self.down_blocks: x, before_pooling = module(x) encoder_output.append(before_pooling) # Decoder pathway for i, module in enumerate(self.up_blocks): before_pool = encoder_output[-(i + 2)] x = module(before_pool, x) x = self.conv_final(x) return x segmentor = UNet(in_channels=3, out_channels=4, n_blocks=4, start_filters=32, activation='ReLU', normalization='batch', conv_mode='same', dim=3).to('cuda') optimizer = torch.optim.Adam(segmentor.parameters(), lr=0.0001) checkpoint = torch.load('/content/gdrive/MyDrive/weights_best_one.pth') segmentor.load_state_dict(checkpoint['weights']) ###Output _____no_output_____ ###Markdown DATA ###Code TRAIN_IMG_DIR = "/content/gdrive/MyDrive/brain/Task01_BrainTumour/imagesTr" TRAIN_MASK_DIR = "/content/gdrive/MyDrive/brain/Task01_BrainTumour/labelsTr" VAL_IMG_DIR = "/content/gdrive/MyDrive/brain/Task01_BrainTumour/imagesVal" VAL_MASK_DIR = "/content/gdrive/MyDrive/brain/Task01_BrainTumour/labelsVal" TEST_IMG_DIR = "/content/gdrive/MyDrive/brain/Task01_BrainTumour/imagesTs" def make_list(s): l = sorted(os.listdir(s)) return l images_train = make_list(TRAIN_IMG_DIR) masks_train = make_list(TRAIN_MASK_DIR) images_val = make_list(VAL_IMG_DIR) masks_val = make_list(VAL_MASK_DIR) images_test = make_list(TEST_IMG_DIR) len(images_train), len(masks_train), len(images_val), len(masks_val), len(images_test) #list of img and mask path......TRAIN img_train_paths = [] mask_train_paths = [] #list of img and mask path......VAL img_val_paths = [] mask_val_paths = [] #list of img path.......TEST img_test_paths = [] for idx in range(len(images_train)): img_train_paths.append(os.path.join(TRAIN_IMG_DIR, images_train[idx])) mask_train_paths.append(os.path.join(TRAIN_MASK_DIR, masks_train[idx])) for idx in range(len(images_val)): img_val_paths.append(os.path.join(VAL_IMG_DIR, images_val[idx])) mask_val_paths.append(os.path.join(VAL_MASK_DIR, masks_val[idx])) for idx in range(len(images_test)): img_test_paths.append(os.path.join(TEST_IMG_DIR, images_test[idx])) len(img_train_paths), len(mask_train_paths), len(img_val_paths), len(mask_val_paths), len(img_test_paths) from torch.utils.data.dataset import Dataset from torch.utils.data import dataloader class TrueDataset(Dataset): def __init__(self, img_paths=None, mask_paths=None, transform_imgs=None, transform_mask=None): self.img_paths = img_paths self.mask_paths = mask_paths self.transform_imgs = transform_imgs self.transform_mask = transform_mask if self.mask_paths is not None: assert len(self.img_paths) == len(self.mask_paths) self.images = len(self.img_paths) #list all the files present in that folder... def __len__(self): return len(self.img_paths) #length of dataset def __getitem__(self, index): img_path = self.img_paths[index] image = nib.load(img_path).get_fdata(dtype=np.float32) scaler = MinMaxScaler() image = scaler.fit_transform(image.reshape(-1, image.shape[-1])).reshape(image.shape) image = image[56:184, 56:184, 73:121] image0 = image[:,:,:,0] image2 = image[:,:,:,2] image3 = image[:,:,:,3] image = np.stack((image0,image2,image3),axis=3) if self.mask_paths is not None: mask_path = self.mask_paths[index] mask = nib.load(mask_path).get_fdata(dtype=np.float32) mask = mask.astype(np.uint8) mask = mask[56:184, 56:184, 73:121] mask = to_categorical(mask, num_classes=4) # image = np.load(img_path) image = torch.from_numpy(image) image = image.permute(3,0,1,2) if self.mask_paths is not None: # mask = np.load(mask_path) mask = torch.from_numpy(mask) mask = mask.permute(3,0,1,2) if self.transform_imgs is not None: image = training_transforms(image) if self.transform_mask is not None: mask = training_transforms(mask) if self.mask_paths is not None: return image, mask if self.mask_paths is None: return image from torch.utils.data.dataset import Dataset from torch.utils.data import dataloader from torch.autograd import Variable class GeneratedDataset(Dataset): def __init__(self, generator, segmentor): self.segmentor = segmentor self.generator = generator def __len__(self): return 10 #length of dataset def __getitem__(self, index): torch.manual_seed(index) noise = Variable(torch.randn((1, 1000, 1, 1 ,1)).cuda()) fake_image = self.generator(noise) fake_image = fake_image.view(64*2,64*2,64*2) fake_image = fake_image.detach().to('cpu') scaler = MinMaxScaler() fake_image = scaler.fit_transform(fake_image.reshape(-1, fake_image.shape[-1])).reshape(fake_image.shape) r = range(16,112,2) image0 = fake_image[:,:,r] r = range(17,112,2) image2 = fake_image[:,:,r] r = range(16,112,2) image3 = fake_image[:,:,r] image = np.stack((image0,image2,image3),axis=3) image = torch.from_numpy(image) image = image.type(torch.float32) image = image.permute(3,0,1,2) img = image.view(1,3, 128, 128, 48).to('cuda') mask = self.segmentor(img).softmax(dim=1) mask = mask.view(4,128,128,48) return image, mask ###Output _____no_output_____ ###Markdown FEDERATED PIPELINE ###Code # Client 1 Client_1 = dict() Client_1['datasource_1'] = TrueDataset( img_paths=img_train_paths, mask_paths=mask_train_paths ) Client_1['dataloader_1'] = DataLoader( Client_1['datasource_1'], batch_size=4, num_workers=2, shuffle=True, ) Client_1['datasource_2'] = GeneratedDataset( generator = G, segmentor = segmentor, ) Client_1['dataloader_2'] = DataLoader( Client_1['datasource_2'], batch_size=1, num_workers=0, shuffle=True, ) Client_1['model'] = UNet(in_channels=3, out_channels=4, n_blocks=4, start_filters=32, activation='ReLU', normalization='batch', conv_mode='same', dim=3).to('cuda') Client_1['optimizer'] = torch.optim.Adam(Client_1['model'].parameters(), lr=0.0001) checkpoint = torch.load('/content/gdrive/MyDrive/weights_best_one.pth') Client_1['model'].load_state_dict(checkpoint['weights']) # Client 2 Client_2 = dict() Client_2['datasource_1'] = TrueDataset( img_paths=img_train_paths, mask_paths=mask_train_paths ) Client_2['dataloader_1'] = DataLoader( Client_2['datasource_1'], batch_size=4, num_workers=2, shuffle=True, ) Client_2['datasource_2'] = GeneratedDataset( generator = G, segmentor = segmentor, ) Client_2['dataloader_2'] = DataLoader( Client_2['datasource_2'], batch_size=1, num_workers=0, shuffle=True, ) Client_2['model'] = UNet(in_channels=3, out_channels=4, n_blocks=4, start_filters=32, activation='ReLU', normalization='batch', conv_mode='same', dim=3).to('cuda') Client_2['optimizer'] = torch.optim.Adam(Client_2['model'].parameters(), lr=0.0001) checkpoint = torch.load('/content/gdrive/MyDrive/weights_best_one.pth') Client_2['model'].load_state_dict(checkpoint['weights']) Clients = [Client_1, Client_2] # Server Server = dict() Server['model'] = UNet(in_channels=3, out_channels=4, n_blocks=4, start_filters=32, activation='ReLU', normalization='batch', conv_mode='same', dim=3).to('cuda') Server['optimizer'] = torch.optim.Adam(Server['model'].parameters(), lr=0.0001) checkpoint = torch.load('/content/gdrive/MyDrive/weights_best_one.pth') Server['model'].load_state_dict(checkpoint['weights']) # Loss Function class DiceLoss(nn.Module): def __init__(self, weight=None, size_average=True): super(DiceLoss, self).__init__() def forward(self, inputs, targets, smooth=1): # inputs = F.sigmoid(inputs) inputs = inputs.view(-1) targets = targets.view(-1) intersection = (inputs * targets).sum() dice = (2.*intersection + smooth)/(inputs.sum() + targets.sum() + smooth) return 1 - dice, dice DiceLoss = DiceLoss() ALPHA = 0.8 BETA = 0.2 GAMMA = 0.75 class FocalTverskyLoss(nn.Module): def __init__(self, weight=None, size_average=True): super(FocalTverskyLoss, self).__init__() def forward(self, inputs, targets, smooth=1, alpha=ALPHA, beta=BETA, gamma=GAMMA): #comment out if your model contains a sigmoid or equivalent activation layer # inputs = F.sigmoid(inputs) c,d = DiceLoss(inputs, targets) #flatten label and prediction tensors inputs = inputs.view(-1) targets = targets.view(-1) #True Positives, False Positives & False Negatives TP = (inputs * targets).sum() FP = ((1-targets) * inputs).sum() FN = (targets * (1-inputs)).sum() Tversky = (TP + smooth) / (TP + alpha*FP + beta*FN + smooth) FocalTversky = (1 - Tversky)**gamma return FocalTversky, d FocalTverskyLoss = FocalTverskyLoss() # Federated Training loop from tqdm.auto import tqdm import torch.distributions as tdist for epoch in range(2): print('\nEpoch:',epoch+1,'\n') i = 1 for client in Clients: print(f'Training Client {i}') model = client['model'] optimizer = client['optimizer'] epoch_losses = [] dice_coefs = [] # Real Data for batch_idx, (inputs, targets) in enumerate(tqdm(client['dataloader_1'])): inputs = inputs.to('cuda') targets = targets.to('cuda') optimizer.zero_grad() with torch.set_grad_enabled(True): logits = model(inputs) probabilities = F.softmax(logits, dim=1) batch_losses, dice_coefficients = FocalTverskyLoss(probabilities, targets) #DiceLoss(probabilities, targets) batch_loss = batch_losses.mean() dice_coef = dice_coefficients.mean() batch_loss.backward() optimizer.step() epoch_losses.append(batch_loss.detach().item()) dice_coefs.append(dice_coef.item()) # GAN Generated Data for batch_idx, (inputs, targets) in enumerate(tqdm(client['dataloader_2'])): inputs = inputs.to('cuda') targets = targets.to('cuda') optimizer.zero_grad() with torch.set_grad_enabled(True): logits = model(inputs) probabilities = F.softmax(logits, dim=1) batch_losses, dice_coefficients = FocalTverskyLoss(probabilities, targets) #DiceLoss(probabilities, targets) batch_loss = batch_losses.mean() dice_coef = dice_coefficients.mean() batch_loss.backward() optimizer.step() epoch_losses.append(batch_loss.detach().item()) dice_coefs.append(dice_coef.item()) epoch_losses = np.array(epoch_losses) dice_coefs = np.array(dice_coefs) print(f'Mean loss: {epoch_losses.mean():0.3f} \t Dice score: {dice_coefs.mean():0.3f}\n') i+=1 print('\nSending Weights to Central Server...\n') # Updating Server model = Server['model'] models = [Client_1['model'], Client_2['model']] with torch.no_grad(): for key in model.state_dict().keys(): if models[0].state_dict()[key].dtype == torch.int64: model.state_dict()[key].data.copy_(models[0].state_dict()[key]) else: temp = torch.zeros_like(model.state_dict()[key]) # add noise for s in range(len(models)): n = tdist.Normal(0,1) noise = n.sample(models[s].state_dict()[key].size()).squeeze() noise = noise.to('cuda') noise = noise.view(models[s].state_dict()[key].shape) temp += 0.5*(models[s].state_dict()[key] + noise*1e-5) # update server model model.state_dict()[key].data.copy_(temp) # updata client model for s in range(len(models)): models[s].state_dict()[key].data.copy_(model.state_dict()[key]) print('Central Server Updated...\n') print('Local Clients Updated...\n') ###Output Epoch: 1 Training Client 1 ###Markdown INFERENCE ###Code val_ds = TrueDataset( img_paths = img_val_paths, mask_paths = mask_val_paths ) val_loader = DataLoader( val_ds, batch_size=4, num_workers=2, shuffle=False, ) model = Server['model'] # model = segmentor model.eval() with torch.no_grad(): for batch_idx, (inputs,outputs) in enumerate(tqdm(val_loader)): inputs = inputs.to('cuda') outputs = outputs.to('cuda') logits = model(inputs).softmax(dim=1) l = logits.cpu() l = np.argmax(l, axis=1) i = inputs.cpu() o = outputs.cpu() o = np.argmax(o, axis=1) n_slice=random.randint(0, o.shape[3]) plt.figure(figsize=(12, 8)) no=0 print(n_slice,no) plt.subplot(221) plt.imshow(i[no,0,:,:, n_slice], cmap='gray') plt.title('Image flair') plt.subplot(222) plt.imshow(i[no,1,:,:, n_slice], cmap='gray') plt.title('Image t1ce') plt.subplot(223) plt.imshow(o[no,:,:,n_slice]) plt.title('Mask original') plt.subplot(224) plt.imshow(l[no,:,:,n_slice]) plt.title('Mask predicted') plt.show() ###Output _____no_output_____
themes/academic/exampleSite/content/post/jupyter/index.ipynb
###Markdown ---title: Display Jupyter Notebooks with Academicsubtitle: Learn how to blog in Academic using Jupyter notebookssummary: Learn how to blog in Academic using Jupyter notebooksauthors:- admintags: []categories: []date: "2019-02-05T00:00:00Z"lastMod: "2019-09-05T00:00:00Z"featured: falsedraft: false Featured image To use, add an image named `featured.jpg/png` to your page's folder. image: caption: "" focal_point: "" Projects (optional). Associate this post with one or more of your projects. Simply enter your project's folder or file name without extension. E.g. `projects = ["internal-project"]` references `content/project/deep-learning/index.md`. Otherwise, set `projects = []`.projects: []--- ###Code from IPython.core.display import Image Image('https://www.python.org/static/community_logos/python-logo-master-v3-TM-flattened.png') print("Welcome to Academic!") ###Output Welcome to Academic!
docs/plugins/tasks/version_control/gitlab.ipynb
###Markdown Gitlab ###Code from nornir.plugins.tasks.version_control import gitlab print(gitlab.__doc__) ###Output Exposes some of the Gitlab API functionality for operations on files in a Gitlab repository. Example: nornir.run(files.gitlab, action="create", url="https://gitlab.localhost.com", token="ABCD1234", repository="test", filename="config", ref="master") Arguments: dry_run: Whether to apply changes or not url: Gitlab instance URL token: Personal access token repository: source/destination repository filename: source/destination file name content: content to write action: ``create``, ``update``, ``get`` branch: destination branch destination: local destination filename (only used in get action) ref: branch, commit hash or tag (only used in get action) commit_message: commit message Returns: Result object with the following attributes set: * changed (``bool``): * diff (``str``): unified diff ###Markdown Example 1 : create a file in a git repository on a gitlab serverIn this example we will create a new file in a git repository on a gitlab server.The contents that we will write to the file is a arbitrary string, in a real world scenario this could be the running configuration of a device that we fetched using napalm or through another method.First let's import the necessary methods & tasks, then we will create a variable called `content` which is an arbitrary string. ###Code from nornir import InitNornir from nornir.plugins.tasks.version_control import gitlab from nornir.plugins.tasks.commands import remote_command from nornir.plugins.functions.text import print_result inventory = { "plugin": "nornir.plugins.inventory.simple.SimpleInventory", "options": { "host_file": "gitlab_data/inventory/hosts.yaml" } } n = InitNornir(inventory=inventory) content = """127.0.0.1\t\tlocalhost 255.255.255.255\tbroadcasthost ::1\t\tlocalhost """ ###Output _____no_output_____ ###Markdown And create a new file called `hosts` in the repository `test` on the `master` branch. ###Code import requests_mock from functools import wraps def wrap_gitlab(f): @wraps(f) def wrapper(*args, **kwargs): with requests_mock.Mocker() as m: if kwargs.get("ref", None): kwargs["branch"] = kwargs["ref"] m.get(url=f"{kwargs['url']}/api/v4/projects?search={kwargs['repository']}", status_code=200, json=[{"name":"test","id":1}]) m.post(url=f"{kwargs['url']}/api/v4/projects/1/repository/files/{kwargs['filename']}", status_code=201) m.get(url=f"{kwargs['url']}/api/v4/projects/1/repository/files/{kwargs['filename']}?ref={kwargs['branch']}",status_code=200, json={"content":"MTI3LjAuMC4xCQlsb2NhbGhvc3QKMjU1LjI1NS4yNTUuMjU1CWJyb2FkY2FzdGhvc3QKOjoxCQls\nb2NhbGhvc3QK\n"}) m.put(url=f"{kwargs['url']}/api/v4/projects/1/repository/files/{kwargs['filename']}", status_code=200) return f(*args, **kwargs) return wrapper gitlab = wrap_gitlab(gitlab) result = n.run( gitlab, action="create", url="http://localhost:8080", token = "SuperSecretToken", repository="test", branch="master", filename="hosts", #content=results["dev5.no_group"][0] content=content, commit_message="Nornir is AWESOME!" ) ###Output _____no_output_____ ###Markdown The result of the task shows us a diff of the created `hosts` file and the content we provided. ###Code print_result(result) ###Output gitlab************************************************************************** * alpine ** changed : True ***************************************************** vvvv gitlab ** changed : True vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv INFO --- +++ hosts @@ -0,0 +1,3 @@ +127.0.0.1 localhost +255.255.255.255 broadcasthost +::1 localhost ^^^^ END gitlab ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  ###Markdown Example 2 : update an existing file in a git repository on a gitlab server In this example we will update the contents of the hosts file that we created in the previous step. The new contents could come again from a remote host or device, but in this case we will use an arbitrary value for the new contents of the file. ###Code result = n.run( gitlab, action="update", url="http://localhost:8080", token="SuperSecretToken", repository="test", branch="master", filename="hosts", content=f"{content}8.8.8.8\t\tgoogledns", commit_message="Added new line to hosts file" ) ###Output _____no_output_____ ###Markdown The result of the task should show us a diff of the changes that we made. ###Code print_result(result) ###Output gitlab************************************************************************** * alpine ** changed : True ***************************************************** vvvv gitlab ** changed : True vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv INFO --- hosts +++ hosts @@ -1,3 +1,4 @@ 127.0.0.1 localhost 255.255.255.255 broadcasthost ::1 localhost +8.8.8.8 googledns ^^^^ END gitlab ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  ###Markdown Example 3: get a file from a gitlab repository In this example we will get/download a file from a repository in gitlab. The contents of this file could be a staged configuration of a device or a service on a device. This configuration could then be pushed to the device.In our example we will download the file `hosts` from the `master` branch and save it as `/tmp/hosts`.The `ref` parameter can also be a commit hash or tag. ###Code !rm -f /tmp/hosts result = n.run( gitlab, action="get", url="http://localhost:8080", token="SuperSecretToken", repository="test", ref="master", filename="hosts", destination="/tmp/hosts" ) ###Output  ###Markdown The result should show us a new file `/tmp/hosts` being created on the local system. ###Code print_result(result) ###Output gitlab************************************************************************** * alpine ** changed : True ***************************************************** vvvv gitlab ** changed : True vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv INFO --- /tmp/hosts +++ /tmp/hosts @@ -0,0 +1,3 @@ +127.0.0.1 localhost +255.255.255.255 broadcasthost +::1 localhost ^^^^ END gitlab ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  ###Markdown Gitlab ###Code from nornir.plugins.tasks.version_control import gitlab print(gitlab.__doc__) ###Output Exposes some of the Gitlab API functionality for operations on files in a Gitlab repository. Example: nornir.run(files.gitlab, action="create", url="https://gitlab.localhost.com", token="ABCD1234", repository="test", filename="config", ref="master") Arguments: dry_run: Whether to apply changes or not url: Gitlab instance URL token: Personal access token repository: source/destination repository filename: source/destination file name content: content to write action: ``create``, ``update``, ``get`` branch: destination branch destination: local destination filename (only used in get action) ref: branch, commit hash or tag (only used in get action) commit_message: commit message Returns: Result object with the following attributes set: * changed (``bool``): * diff (``str``): unified diff ###Markdown Example 1 : create a file in a git repository on a gitlab serverIn this example we will create a new file in a git repository on a gitlab server.The contents that we will write to the file is a arbitrary string, in a real world scenario this could be the running configuration of a device that we fetched using napalm or through another method.First let's import the necessary methods & tasks, then we will create a variable called `content` which is an arbitrary string. ###Code from nornir import InitNornir from nornir.plugins.tasks.version_control import gitlab from nornir.plugins.tasks.commands import remote_command from nornir.plugins.functions.text import print_result inventory = { "plugin": "nornir.plugins.inventory.simple.SimpleInventory", "options": { "host_file": "gitlab_data/inventory/hosts.yaml" } } n = InitNornir(inventory=inventory) content = """127.0.0.1\t\tlocalhost 255.255.255.255\tbroadcasthost ::1\t\tlocalhost """ ###Output _____no_output_____ ###Markdown And create a new file called `hosts` in the repository `test` on the `master` branch. ###Code import requests_mock from functools import wraps def wrap_gitlab(f): @wraps(f) def wrapper(*args, **kwargs): with requests_mock.Mocker() as m: if kwargs.get("ref", None): kwargs["branch"] = kwargs["ref"] m.get(url=f"{kwargs['url']}/api/v4/projects?search={kwargs['repository']}", status_code=200, json=[{"name":"test","id":1}]) m.post(url=f"{kwargs['url']}/api/v4/projects/1/repository/files/{kwargs['filename']}", status_code=201) m.get(url=f"{kwargs['url']}/api/v4/projects/1/repository/files/{kwargs['filename']}?ref={kwargs['branch']}",status_code=200, json={"content":"MTI3LjAuMC4xCQlsb2NhbGhvc3QKMjU1LjI1NS4yNTUuMjU1CWJyb2FkY2FzdGhvc3QKOjoxCQls\nb2NhbGhvc3QK\n"}) m.put(url=f"{kwargs['url']}/api/v4/projects/1/repository/files/{kwargs['filename']}", status_code=200) return f(*args, **kwargs) return wrapper gitlab = wrap_gitlab(gitlab) result = n.run( gitlab, action="create", url="http://localhost:8080", token = "SuperSecretToken", repository="test", branch="master", filename="hosts", #content=results["dev5.no_group"][0] content=content, commit_message="Nornir is AWESOME!" ) ###Output _____no_output_____ ###Markdown The result of the task shows us a diff of the created `hosts` file and the content we provided. ###Code print_result(result) ###Output gitlab************************************************************************** ###Markdown Example 2 : update an existing file in a git repository on a gitlab server In this example we will update the contents of the hosts file that we created in the previous step. The new contents could come again from a remote host or device, but in this case we will use an arbitrary value for the new contents of the file. ###Code result = n.run( gitlab, action="update", url="http://localhost:8080", token="SuperSecretToken", repository="test", branch="master", filename="hosts", content=f"{content}8.8.8.8\t\tgoogledns", commit_message="Added new line to hosts file" ) ###Output _____no_output_____ ###Markdown The result of the task should show us a diff of the changes that we made. ###Code print_result(result) ###Output gitlab************************************************************************** ###Markdown Example 3: get a file from a gitlab repository In this example we will get/download a file from a repository in gitlab. The contents of this file could be a staged configuration of a device or a service on a device. This configuration could then be pushed to the device.In our example we will download the file `hosts` from the `master` branch and save it as `/tmp/hosts`.The `ref` parameter can also be a commit hash or tag. ###Code result = n.run( gitlab, action="get", url="http://localhost:8080", token="SuperSecretToken", repository="test", ref="master", filename="hosts", destination="/tmp/hosts" ) ###Output _____no_output_____ ###Markdown The result should show us a new file `/tmp/hosts` being created on the local system. ###Code print_result(result) ###Output gitlab************************************************************************** ###Markdown Gitlab ###Code from nornir.plugins.tasks.version_control import gitlab print(gitlab.__doc__) ###Output Exposes some of the Gitlab API functionality for operations on files in a Gitlab repository. Example: nornir.run(files.gitlab, action="create", url="https://gitlab.localhost.com", token="ABCD1234", repository="test", filename="config", ref="master") Arguments: dry_run: Whether to apply changes or not url: Gitlab instance URL token: Personal access token repository: source/destination repository filename: source/destination file name content: content to write action: ``create``, ``update``, ``get`` branch: destination branch destination: local destination filename (only used in get action) ref: branch, commit hash or tag (only used in get action) commit_message: commit message Returns: Result object with the following attributes set: * changed (``bool``): * diff (``str``): unified diff ###Markdown Example 1 : create a file in a git repository on a gitlab serverIn this example we will create a new file in a git repository on a gitlab server.The contents that we will write to the file is a arbitary string, in a real world scenario this could be the running configuration of a device that we fetched using napalm or through another method.First let's import the necessary methods & tasks, then we will create a variable called `content` which is an arbitary string. ###Code from nornir import InitNornir from nornir.plugins.tasks.version_control import gitlab from nornir.plugins.tasks.commands import remote_command from nornir.plugins.functions.text import print_result inventory = { "plugin": "nornir.plugins.inventory.simple.SimpleInventory", "options": { "host_file": "gitlab_data/inventory/hosts.yaml" } } n = InitNornir(inventory=inventory) content = """127.0.0.1\t\tlocalhost 255.255.255.255\tbroadcasthost ::1\t\tlocalhost """ ###Output _____no_output_____ ###Markdown And create a new file called `hosts` in the repository `test` on the `master` branch. ###Code import requests_mock from functools import wraps def wrap_gitlab(f): @wraps(f) def wrapper(*args, **kwargs): with requests_mock.Mocker() as m: if kwargs.get("ref", None): kwargs["branch"] = kwargs["ref"] m.get(url=f"{kwargs['url']}/api/v4/projects?search={kwargs['repository']}", status_code=200, json=[{"name":"test","id":1}]) m.post(url=f"{kwargs['url']}/api/v4/projects/1/repository/files/{kwargs['filename']}", status_code=201) m.get(url=f"{kwargs['url']}/api/v4/projects/1/repository/files/{kwargs['filename']}?ref={kwargs['branch']}",status_code=200, json={"content":"MTI3LjAuMC4xCQlsb2NhbGhvc3QKMjU1LjI1NS4yNTUuMjU1CWJyb2FkY2FzdGhvc3QKOjoxCQls\nb2NhbGhvc3QK\n"}) m.put(url=f"{kwargs['url']}/api/v4/projects/1/repository/files/{kwargs['filename']}", status_code=200) return f(*args, **kwargs) return wrapper gitlab = wrap_gitlab(gitlab) result = n.run( gitlab, action="create", url="http://localhost:8080", token = "SuperSecretToken", repository="test", branch="master", filename="hosts", #content=results["dev5.no_group"][0] content=content, commit_message="Nornir is AWESOME!" ) ###Output _____no_output_____ ###Markdown The result of the task shows us a diff of the created `hosts` file and the content we provided. ###Code print_result(result) ###Output gitlab************************************************************************** ###Markdown Example 2 : update an existing file in a git repository on a gitlab server In this example we will update the contents of the hosts file that we created in the previous step. The new contents could come again from a remote host or device, but in this case we will use an arbitary value for the new contents of the file. ###Code result = n.run( gitlab, action="update", url="http://localhost:8080", token="SuperSecretToken", repository="test", branch="master", filename="hosts", content=f"{content}8.8.8.8\t\tgoogledns", commit_message="Added new line to hosts file" ) ###Output _____no_output_____ ###Markdown The result of the task should show us a diff of the changes that we made. ###Code print_result(result) ###Output gitlab************************************************************************** ###Markdown Example 3: get a file from a gitlab repository In this example we will get/download a file from a repository in gitlab. The contents of this file could be a staged configuration of a device or a service on a device. This configuration could then be pushed to the device.In our example we will download the file `hosts` from the `master` branch and save it as `/tmp/hosts`.The `ref` parameter can also be a commit hash or tag. ###Code result = n.run( gitlab, action="get", url="http://localhost:8080", token="SuperSecretToken", repository="test", ref="master", filename="hosts", destination="/tmp/hosts" ) ###Output _____no_output_____ ###Markdown The result should show us a new file `/tmp/hosts` being created on the local system. ###Code print_result(result) ###Output gitlab************************************************************************** ###Markdown Gitlab ###Code from nornir.plugins.tasks.version_control import gitlab print(gitlab.__doc__) ###Output Exposes some of the Gitlab API functionality for operations on files in a Gitlab repository. Example: nornir.run(files.gitlab, action="create", url="https://gitlab.localhost.com", token="ABCD1234", repository="test", filename="config", ref="master") Arguments: dry_run: Whether to apply changes or not url: Gitlab instance URL token: Personal access token repository: source/destination repository filename: source/destination file name content: content to write action: ``create``, ``update``, ``get`` branch: destination branch destination: local destination filename (only used in get action) ref: branch, commit hash or tag (only used in get action) commit_message: commit message Returns: Result object with the following attributes set: * changed (``bool``): * diff (``str``): unified diff ###Markdown Example 1 : create a file in a git repository on a gitlab serverIn this example we will create a new file in a git repository on a gitlab server.The contents that we will write to the file is a arbitrary string, in a real world scenario this could be the running configuration of a device that we fetched using napalm or through another method.First let's import the necessary methods & tasks, then we will create a variable called `content` which is an arbitrary string. ###Code from nornir import InitNornir from nornir.plugins.tasks.version_control import gitlab from nornir.plugins.tasks.commands import remote_command from nornir.plugins.functions.text import print_result inventory = { "plugin": "nornir.plugins.inventory.simple.SimpleInventory", "options": { "host_file": "gitlab_data/inventory/hosts.yaml" } } n = InitNornir(inventory=inventory) content = """127.0.0.1\t\tlocalhost 255.255.255.255\tbroadcasthost ::1\t\tlocalhost """ ###Output _____no_output_____ ###Markdown And create a new file called `hosts` in the repository `test` on the `master` branch. ###Code import requests_mock from functools import wraps def wrap_gitlab(f): @wraps(f) def wrapper(*args, **kwargs): with requests_mock.Mocker() as m: if kwargs.get("ref", None): kwargs["branch"] = kwargs["ref"] m.post(url=f"{kwargs['url']}/api/v4/projects/{kwargs['repository']}/repository/files/{kwargs['filename']}", status_code=201) m.get(url=f"{kwargs['url']}/api/v4/projects/{kwargs['repository']}/repository/files/{kwargs['filename']}?ref={kwargs['branch']}",status_code=200, json={"content":"MTI3LjAuMC4xCQlsb2NhbGhvc3QKMjU1LjI1NS4yNTUuMjU1CWJyb2FkY2FzdGhvc3QKOjoxCQls\nb2NhbGhvc3QK\n"}) m.put(url=f"{kwargs['url']}/api/v4/projects/{kwargs['repository']}/repository/files/{kwargs['filename']}", status_code=200) return f(*args, **kwargs) return wrapper gitlab = wrap_gitlab(gitlab) result = n.run( gitlab, action="create", url="http://localhost:8080", token = "SuperSecretToken", repository="test", branch="master", filename="hosts", #content=results["dev5.no_group"][0] content=content, commit_message="Nornir is AWESOME!" ) ###Output _____no_output_____ ###Markdown The result of the task shows us a diff of the created `hosts` file and the content we provided. ###Code print_result(result) ###Output gitlab************************************************************************** * alpine ** changed : True ***************************************************** vvvv gitlab ** changed : True vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv INFO --- +++ hosts @@ -0,0 +1,3 @@ +127.0.0.1 localhost +255.255.255.255 broadcasthost +::1 localhost ^^^^ END gitlab ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  ###Markdown Example 2 : update an existing file in a git repository on a gitlab server In this example we will update the contents of the hosts file that we created in the previous step. The new contents could come again from a remote host or device, but in this case we will use an arbitrary value for the new contents of the file. ###Code result = n.run( gitlab, action="update", url="http://localhost:8080", token="SuperSecretToken", repository="test", branch="master", filename="hosts", content=f"{content}8.8.8.8\t\tgoogledns", commit_message="Added new line to hosts file" ) ###Output _____no_output_____ ###Markdown The result of the task should show us a diff of the changes that we made. ###Code print_result(result) ###Output gitlab************************************************************************** * alpine ** changed : True ***************************************************** vvvv gitlab ** changed : True vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv INFO --- hosts +++ hosts @@ -1,3 +1,4 @@ 127.0.0.1 localhost 255.255.255.255 broadcasthost ::1 localhost +8.8.8.8 googledns ^^^^ END gitlab ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  ###Markdown Example 3: get a file from a gitlab repository In this example we will get/download a file from a repository in gitlab. The contents of this file could be a staged configuration of a device or a service on a device. This configuration could then be pushed to the device.In our example we will download the file `hosts` from the `master` branch and save it as `/tmp/hosts`.The `ref` parameter can also be a commit hash or tag. ###Code !rm -f /tmp/hosts result = n.run( gitlab, action="get", url="http://localhost:8080", token="SuperSecretToken", repository="test", ref="master", filename="hosts", destination="/tmp/hosts" ) ###Output  ###Markdown The result should show us a new file `/tmp/hosts` being created on the local system. ###Code print_result(result) ###Output gitlab************************************************************************** * alpine ** changed : True ***************************************************** vvvv gitlab ** changed : True vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv INFO --- /tmp/hosts +++ /tmp/hosts @@ -0,0 +1,3 @@ +127.0.0.1 localhost +255.255.255.255 broadcasthost +::1 localhost ^^^^ END gitlab ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 
tv/tvl1den_clr_cupy.ipynb
###Markdown Colour ℓ1-TV Denoising (CuPy Version)=====================================This example demonstrates the use of class [tvl1.TVL1Denoise](http://sporco.rtfd.org/en/latest/modules/sporco.admm.tvl1.htmlsporco.admm.tvl1.TVL1Denoise) for removing salt & pepper noise from a colour image using Total Variation regularization with an ℓ1 data fidelity term (ℓ1-TV denoising). This variant of the example uses the GPU accelerated version of [tvl1](http://sporco.rtfd.org/en/latest/modules/sporco.admm.tvl1.htmlmodule-sporco.admm.tvl1) within the [sporco.cupy](http://sporco.rtfd.org/en/latest/modules/sporco.cupy.htmlmodule-sporco.cupy) subpackage. ###Code from __future__ import print_function from builtins import input import numpy as np from sporco import util from sporco import signal from sporco import metric from sporco import plot plot.config_notebook_plotting() from sporco.cupy import (cupy_enabled, np2cp, cp2np, select_device_by_load, gpu_info) from sporco.cupy.admm import tvl1 ###Output _____no_output_____ ###Markdown Load reference image. ###Code img = util.ExampleImages().image('monarch.png', scaled=True, idxexp=np.s_[:,160:672]) ###Output _____no_output_____ ###Markdown Construct test image corrupted by 20% salt & pepper noise. ###Code np.random.seed(12345) imgn = signal.spnoise(img, 0.2) ###Output _____no_output_____ ###Markdown Set regularization parameter and options for ℓ1-TV denoising solver. The regularization parameter used here has been manually selected for good performance. ###Code lmbda = 8e-1 opt = tvl1.TVL1Denoise.Options({'Verbose': True, 'MaxMainIter': 200, 'RelStopTol': 5e-3, 'gEvalY': False, 'AutoRho': {'Enabled': True}}) ###Output _____no_output_____ ###Markdown Create solver object and solve, returning the the denoised image ``imgr``. ###Code if not cupy_enabled(): print('CuPy/GPU device not available: running without GPU acceleration\n') else: id = select_device_by_load() info = gpu_info() if info: print('Running on GPU %d (%s)\n' % (id, info[id].name)) b = tvl1.TVL1Denoise(np2cp(imgn), lmbda, opt) imgr = cp2np(b.solve()) ###Output Running on GPU 0 (GeForce RTX 2080 Ti) ###Markdown Display solve time and denoising performance. ###Code print("TVL1Denoise solve time: %5.2f s" % b.timer.elapsed('solve')) print("Noisy image PSNR: %5.2f dB" % metric.psnr(img, imgn)) print("Denoised image PSNR: %5.2f dB" % metric.psnr(img, imgr)) ###Output TVL1Denoise solve time: 0.95 s Noisy image PSNR: 12.02 dB Denoised image PSNR: 29.29 dB ###Markdown Display reference, corrupted, and denoised images. ###Code fig = plot.figure(figsize=(20, 5)) plot.subplot(1, 3, 1) plot.imview(img, title='Reference', fig=fig) plot.subplot(1, 3, 2) plot.imview(imgn, title='Corrupted', fig=fig) plot.subplot(1, 3, 3) plot.imview(imgr, title=r'Restored ($\ell_1$-TV)', fig=fig) fig.show() ###Output _____no_output_____ ###Markdown Get iterations statistics from solver object and plot functional value, ADMM primary and dual residuals, and automatically adjusted ADMM penalty parameter against the iteration number. ###Code its = b.getitstat() fig = plot.figure(figsize=(20, 5)) plot.subplot(1, 3, 1) plot.plot(its.ObjFun, xlbl='Iterations', ylbl='Functional', fig=fig) plot.subplot(1, 3, 2) plot.plot(np.vstack((its.PrimalRsdl, its.DualRsdl)).T, ptyp='semilogy', xlbl='Iterations', ylbl='Residual', lgnd=['Primal', 'Dual'], fig=fig) plot.subplot(1, 3, 3) plot.plot(its.Rho, xlbl='Iterations', ylbl='Penalty Parameter', fig=fig) fig.show() ###Output _____no_output_____
views/code/build-page-simple.ipynb
###Markdown Run the following cell to generate an index sorted alphabetically by lowercase term local name. Omit this index if the terms have opaque local names. ###Code # generate the index of terms grouped by category and sorted alphabetically by lowercase term local name text = '### 3.1 Index By Term Name\n\n' text += '(See also [3.2 Index By Label](#32-index-by-label))\n\n' for category in range(0,len(display_order)): text += '**' + display_label[category] + '**\n' text += '\n' if organized_in_categories: filtered_table = terms_sorted_by_localname[terms_sorted_by_localname['tdwgutility_organizedInClass']==display_order[category]] filtered_table.reset_index(drop=True, inplace=True) else: filtered_table = terms_sorted_by_localname filtered_table.reset_index(drop=True, inplace=True) for row_index,row in filtered_table.iterrows(): curie = row['pref_ns_prefix'] + ":" + row['term_localName'] curie_anchor = curie.replace(':','_') text += '[' + curie + '](#' + curie_anchor + ') |\n' text = text[:len(text)-2] # remove final trailing vertical bar and newline text += '\n\n' # put back removed newline index_by_name = text print(index_by_name) ###Output _____no_output_____ ###Markdown Run the following cell to generate an index by term label ###Code text = '\n\n' # Comment out the following two lines if there is no index by local names #text = '### 3.2 Index By Label\n\n' #text += '(See also [3.1 Index By Term Name](#31-index-by-term-name))\n\n' for category in range(0,len(display_order)): if organized_in_categories: text += '**' + display_label[category] + '**\n' text += '\n' filtered_table = terms_sorted_by_label[terms_sorted_by_label['tdwgutility_organizedInClass']==display_order[category]] filtered_table.reset_index(drop=True, inplace=True) else: filtered_table = terms_sorted_by_label filtered_table.reset_index(drop=True, inplace=True) for row_index,row in filtered_table.iterrows(): if row_index == 0 or (row_index != 0 and row['label'] != filtered_table.iloc[row_index - 1].loc['label']): # this is a hack to prevent duplicate labels curie_anchor = row['pref_ns_prefix'] + "_" + row['term_localName'] text += '[' + row['label'] + '](#' + curie_anchor + ') |\n' text = text[:len(text)-2] # remove final trailing vertical bar and newline text += '\n\n' # put back removed newline index_by_label = text print(index_by_label) decisions_df = pd.read_csv('https://raw.githubusercontent.com/tdwg/rs.tdwg.org/master/decisions/decisions-links.csv', na_filter=False) # generate a table for each term, with terms grouped by category # generate the Markdown for the terms table text = '## 4 Vocabulary\n' for category in range(0,len(display_order)): if organized_in_categories: text += '### 4.' + str(category + 1) + ' ' + display_label[category] + '\n' text += '\n' text += display_comments[category] # insert the comments for the category, if any. filtered_table = terms_sorted_by_localname[terms_sorted_by_localname['tdwgutility_organizedInClass']==display_order[category]] filtered_table.reset_index(drop=True, inplace=True) else: filtered_table = terms_sorted_by_localname filtered_table.reset_index(drop=True, inplace=True) for row_index,row in filtered_table.iterrows(): text += '<table>\n' curie = row['pref_ns_prefix'] + ":" + row['term_localName'] curieAnchor = curie.replace(':','_') text += '\t<thead>\n' text += '\t\t<tr>\n' text += '\t\t\t<th colspan="2"><a id="' + curieAnchor + '"></a>Term Name ' + curie + '</th>\n' text += '\t\t</tr>\n' text += '\t</thead>\n' text += '\t<tbody>\n' text += '\t\t<tr>\n' text += '\t\t\t<td>Term IRI</td>\n' uri = row['pref_ns_uri'] + row['term_localName'] text += '\t\t\t<td><a href="' + uri + '">' + uri + '</a></td>\n' text += '\t\t</tr>\n' text += '\t\t<tr>\n' text += '\t\t\t<td>Modified</td>\n' text += '\t\t\t<td>' + row['term_modified'] + '</td>\n' text += '\t\t</tr>\n' if row['version_iri'] != '': text += '\t\t<tr>\n' text += '\t\t\t<td>Term version IRI</td>\n' text += '\t\t\t<td><a href="' + row['version_iri'] + '">' + row['version_iri'] + '</a></td>\n' text += '\t\t</tr>\n' text += '\t\t<tr>\n' text += '\t\t\t<td>Label</td>\n' text += '\t\t\t<td>' + row['label'] + '</td>\n' text += '\t\t</tr>\n' if row['term_deprecated'] != '': text += '\t\t<tr>\n' text += '\t\t\t<td></td>\n' text += '\t\t\t<td><strong>This term is deprecated and should no longer be used.</strong></td>\n' text += '\t\t</tr>\n' text += '\t\t<tr>\n' text += '\t\t\t<td>Definition</td>\n' text += '\t\t\t<td>' + row['definition'] + '</td>\n' text += '\t\t</tr>\n' if row['usage'] != '': text += '\t\t<tr>\n' text += '\t\t\t<td>Usage</td>\n' text += '\t\t\t<td>' + convert_link(convert_code(row['usage'])) + '</td>\n' text += '\t\t</tr>\n' if row['notes'] != '': text += '\t\t<tr>\n' text += '\t\t\t<td>Notes</td>\n' text += '\t\t\t<td>' + convert_link(convert_code(row['notes'])) + '</td>\n' text += '\t\t</tr>\n' if row['examples'] != '': text += '\t\t<tr>\n' text += '\t\t\t<td>Examples</td>\n' text += '\t\t\t<td>' + convert_link(convert_code(row['examples'])) + '</td>\n' text += '\t\t</tr>\n' if (vocab_type == 2 or vocab_type == 3) and row['controlled_value_string'] != '': # controlled vocabulary text += '\t\t<tr>\n' text += '\t\t\t<td>Controlled value</td>\n' text += '\t\t\t<td>' + row['controlled_value_string'] + '</td>\n' text += '\t\t</tr>\n' if vocab_type == 3 and row['skos_broader'] != '': # controlled vocabulary with skos:broader relationships text += '\t\t<tr>\n' text += '\t\t\t<td>Has broader concept</td>\n' curieAnchor = row['skos_broader'].replace(':','_') text += '\t\t\t<td><a href="#' + curieAnchor + '">' + row['skos_broader'] + '</a></td>\n' text += '\t\t</tr>\n' text += '\t\t<tr>\n' text += '\t\t\t<td>Type</td>\n' if row['type'] == 'http://www.w3.org/1999/02/22-rdf-syntax-ns#Property': text += '\t\t\t<td>Property</td>\n' elif row['type'] == 'http://www.w3.org/2000/01/rdf-schema#Class': text += '\t\t\t<td>Class</td>\n' elif row['type'] == 'http://www.w3.org/2004/02/skos/core#Concept': text += '\t\t\t<td>Concept</td>\n' else: text += '\t\t\t<td>' + row['type'] + '</td>\n' # this should rarely happen text += '\t\t</tr>\n' # Look up decisions related to this term for drow_index,drow in decisions_df.iterrows(): if drow['linked_affected_resource'] == uri: text += '\t\t<tr>\n' text += '\t\t\t<td>Executive Committee decision</td>\n' text += '\t\t\t<td><a href="http://rs.tdwg.org/decisions/' + drow['decision_localName'] + '">http://rs.tdwg.org/decisions/' + drow['decision_localName'] + '</a></td>\n' text += '\t\t</tr>\n' text += '\t</tbody>\n' text += '</table>\n' text += '\n' text += '\n' term_table = text print(term_table) ###Output ## 4 Vocabulary <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p001"></a>Term Name dwcpw:p001</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p001">http://rs.tdwg.org/dwc/pw/p001</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p001-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p001-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>biological control</td> </tr> <tr> <td>Definition</td> <td>Organisms occuring in an area because they were introduced for the purpose of biological control of another organism.</td> </tr> <tr> <td>Notes</td> <td>Released intentionally into the (semi)natural environment with the purpose of controlling the population(s) of one or more organisms. See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>biologicalControl</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p045">dwcpw:p045</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p002"></a>Term Name dwcpw:p002</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p002">http://rs.tdwg.org/dwc/pw/p002</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p002-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p002-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>erosion control</td> </tr> <tr> <td>Definition</td> <td>Organisms introduced for the purpose of erosion control/dune stabilization (windbreaks, hedges, etc).</td> </tr> <tr> <td>Notes</td> <td>Probably only applicable only to plants. See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>erosionControl</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p045">dwcpw:p045</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p003"></a>Term Name dwcpw:p003</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p003">http://rs.tdwg.org/dwc/pw/p003</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p003-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p003-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>fishery in the wild</td> </tr> <tr> <td>Definition</td> <td>Fish stocked into the wild either to create a fishery or for recreational angling.</td> </tr> <tr> <td>Notes</td> <td>Largely applicable to freshwater and anadromous fish. See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>fisheryInTheWild</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p045">dwcpw:p045</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p004"></a>Term Name dwcpw:p004</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p004">http://rs.tdwg.org/dwc/pw/p004</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p004-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p004-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>hunting</td> </tr> <tr> <td>Definition</td> <td>Animals stocked into the wild specifically with the intention that they would be hunted for sport.</td> </tr> <tr> <td>Notes</td> <td>Largely applicable to terrestrial vertebrates. See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>hunting</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p045">dwcpw:p045</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p005"></a>Term Name dwcpw:p005</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p005">http://rs.tdwg.org/dwc/pw/p005</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p005-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p005-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>landscape improvement</td> </tr> <tr> <td>Definition</td> <td>Landscape/flora/fauna "improvement" in the wild.</td> </tr> <tr> <td>Notes</td> <td>"Improvement" in this context is intended for introductions for the purpose of aesthetic enhancement of the landscape, as opposed to practical introductions for the purpose of erosion control, agriculture, forestry etc. See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>landscapeImprovement</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p045">dwcpw:p045</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p006"></a>Term Name dwcpw:p006</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p006">http://rs.tdwg.org/dwc/pw/p006</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p006-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p006-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>conservation or wildlife management</td> </tr> <tr> <td>Definition</td> <td>Organisms introduced for conservation purposes or wildlife management.</td> </tr> <tr> <td>Notes</td> <td>The organism was released with the intention of improving its conservation status of the species or the conservation status other species in the habitat. See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>conservationOrWildlifeManagement</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p045">dwcpw:p045</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p007"></a>Term Name dwcpw:p007</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p007">http://rs.tdwg.org/dwc/pw/p007</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p007-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p007-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>released for use</td> </tr> <tr> <td>Definition</td> <td>Release in nature for use (other than above, e.g., fur, transport, medical use).</td> </tr> <tr> <td>Notes</td> <td>This term refers to organisms intentionally and directly released into the wild to serve a specific purpose. See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>releasedForUse</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p045">dwcpw:p045</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p008"></a>Term Name dwcpw:p008</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p008">http://rs.tdwg.org/dwc/pw/p008</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p008-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p008-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>other intentional release</td> </tr> <tr> <td>Definition</td> <td>A catch-all for intentional releases not for human use that are not covered by other more specific terms.</td> </tr> <tr> <td>Notes</td> <td>Compare with "other escape from confinement". See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>otherIntentionalRelease</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p045">dwcpw:p045</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p009"></a>Term Name dwcpw:p009</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p009">http://rs.tdwg.org/dwc/pw/p009</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p009-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p009-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>agriculture (including biofuel feedstocks)</td> </tr> <tr> <td>Definition</td> <td>Plants grown with then intention of harvesting.</td> </tr> <tr> <td>Notes</td> <td>See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>agriculture</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p046">dwcpw:p046</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p010"></a>Term Name dwcpw:p010</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p010">http://rs.tdwg.org/dwc/pw/p010</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p010-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p010-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>aquaculture/mariculture</td> </tr> <tr> <td>Definition</td> <td>The analog of agriculture and farmed animals, specifically related to aquatic organisms.</td> </tr> <tr> <td>Notes</td> <td>See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>aquacultureMariculture</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p046">dwcpw:p046</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p011"></a>Term Name dwcpw:p011</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p011">http://rs.tdwg.org/dwc/pw/p011</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p011-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p011-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>botanic garden/zoo/aquaria (excluding domestic aquaria)</td> </tr> <tr> <td>Definition</td> <td>Organisms in public collections of plants and/or animals.</td> </tr> <tr> <td>Notes</td> <td>See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>publisGardenZooAquaria</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p046">dwcpw:p046</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p012"></a>Term Name dwcpw:p012</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p012">http://rs.tdwg.org/dwc/pw/p012</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p012-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p012-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>pet/aquarium/terrarium species (including live food for such species )</td> </tr> <tr> <td>Definition</td> <td>Privately kept animals.</td> </tr> <tr> <td>Usage</td> <td>Animals kept for hunting, such as falcons and ferrets SHOULD be included here, not under the hunting term</td> </tr> <tr> <td>Notes</td> <td>See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>pet</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p046">dwcpw:p046</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p013"></a>Term Name dwcpw:p013</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p013">http://rs.tdwg.org/dwc/pw/p013</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p013-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p013-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>farmed animals (including animals left under limited control)</td> </tr> <tr> <td>Definition</td> <td>Animals cared for and bred with the specific intention of using their products, such as meat and milk.</td> </tr> <tr> <td>Notes</td> <td>Farmed animals are generally kept in a defined area, such as a fields. See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>farmedAnimals</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p046">dwcpw:p046</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p014"></a>Term Name dwcpw:p014</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p014">http://rs.tdwg.org/dwc/pw/p014</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p014-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p014-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>forestry (including reforestation)</td> </tr> <tr> <td>Definition</td> <td>Trees specifically introduced to provide timber and other forestry products.</td> </tr> <tr> <td>Notes</td> <td>See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>forestry</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p046">dwcpw:p046</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p015"></a>Term Name dwcpw:p015</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p015">http://rs.tdwg.org/dwc/pw/p015</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p015-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p015-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>fur farms</td> </tr> <tr> <td>Definition</td> <td>Organisms escaped from a fur farms, including unauthorised releases.</td> </tr> <tr> <td>Notes</td> <td>Probably only applicable to vertebrates raised for their pelts and skins. See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>fur</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p046">dwcpw:p046</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p016"></a>Term Name dwcpw:p016</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p016">http://rs.tdwg.org/dwc/pw/p016</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p016-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p016-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>horticulture</td> </tr> <tr> <td>Definition</td> <td>Plants distributed by the ornamental and decorative plants industry. </td> </tr> <tr> <td>Usage</td> <td>This term excludes plants and other organisms from aquaria and terrariums from the aquarium and terrarium trade which SHOULD be classified under the pet/aquarium/terrarium term.</td> </tr> <tr> <td>Notes</td> <td>See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>horticulture</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p046">dwcpw:p046</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p017"></a>Term Name dwcpw:p017</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p017">http://rs.tdwg.org/dwc/pw/p017</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p017-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p017-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>ornamental purpose other than horticulture</td> </tr> <tr> <td>Definition</td> <td>Ornamental plants introduced through pathways other than the horticultural industry.</td> </tr> <tr> <td>Notes</td> <td>See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>ornamentalNonHorticulture</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p046">dwcpw:p046</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p018"></a>Term Name dwcpw:p018</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p018">http://rs.tdwg.org/dwc/pw/p018</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p018-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p018-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>research and ex-situ breeding (in facilities)</td> </tr> <tr> <td>Definition</td> <td>Plants and animals introduced for the purpose of breeding, scientific and medical research, including science education.</td> </tr> <tr> <td>Notes</td> <td>See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>research</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p046">dwcpw:p046</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p019"></a>Term Name dwcpw:p019</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p019">http://rs.tdwg.org/dwc/pw/p019</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p019-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p019-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>live food and live bait</td> </tr> <tr> <td>Definition</td> <td>Live food imported for human consumption, such as shellfish and snails, and for live bait. </td> </tr> <tr> <td>Notes</td> <td>Live food, such as mealworms, for the organisms kept as pets should be classified under the pet term. See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>liveFoodLiveBait</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p046">dwcpw:p046</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p020"></a>Term Name dwcpw:p020</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p020">http://rs.tdwg.org/dwc/pw/p020</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p020-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p020-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>other escape from confinement</td> </tr> <tr> <td>Definition</td> <td>Organisms brought into an area with the intention of keeping them in captivity permanently, but that have subsequently escaped.</td> </tr> <tr> <td>Notes</td> <td>See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>otherEscape</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p046">dwcpw:p046</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p021"></a>Term Name dwcpw:p021</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p021">http://rs.tdwg.org/dwc/pw/p021</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p021-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p021-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>contaminant nursery material</td> </tr> <tr> <td>Definition</td> <td>Organisms transported into an area together with plant material.</td> </tr> <tr> <td>Notes</td> <td>These may be other plants, diseases, fungi and animals. They may be attached to the plant or within the soil. See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>contaminantNursery</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p047">dwcpw:p047</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p022"></a>Term Name dwcpw:p022</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p022">http://rs.tdwg.org/dwc/pw/p022</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p022-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p022-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>contaminated bait</td> </tr> <tr> <td>Definition</td> <td>Contaminants, pathogens and parasites transported with live, frozen or preserved bait used to catch fish or other organisms.</td> </tr> <tr> <td>Notes</td> <td>Typical examples include crustaceans, cephalopods and molluscs. See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>contaminateBait</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p047">dwcpw:p047</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p023"></a>Term Name dwcpw:p023</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p023">http://rs.tdwg.org/dwc/pw/p023</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p023-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p023-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>food contaminant (including of live food)</td> </tr> <tr> <td>Definition</td> <td>Foods for human consumption, whether they are transported life or dead.</td> </tr> <tr> <td>Notes</td> <td>This term includes unintentional introduction of contaminants such as diseases on those foods and in the case of plants, should include seeds. See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>foodContaminant</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p047">dwcpw:p047</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p024"></a>Term Name dwcpw:p024</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p024">http://rs.tdwg.org/dwc/pw/p024</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p024-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p024-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>contaminant on animals (except parasites, organisms transported by host/vector)</td> </tr> <tr> <td>Definition</td> <td>Contaminants carried either on or in the body of transported animals.</td> </tr> <tr> <td>Usage</td> <td>This term excludes parasites and pathogens, which SHOULD be classified under their own specific term ("parasites on animals"). </td> </tr> <tr> <td>Notes</td> <td>Transported animals carry other organisms in their coat, on thier gut and in soil on their hooves and feet. See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>contaminantOnAnimals</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p047">dwcpw:p047</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p025"></a>Term Name dwcpw:p025</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p025">http://rs.tdwg.org/dwc/pw/p025</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p025-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p025-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>parasites on animals (including organisms transported by host and vector)</td> </tr> <tr> <td>Definition</td> <td>Parasitic and pathogenic organisms transported with their host or vector animal.</td> </tr> <tr> <td>Notes</td> <td>See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>parasitesOnAnimals</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p047">dwcpw:p047</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p026"></a>Term Name dwcpw:p026</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p026">http://rs.tdwg.org/dwc/pw/p026</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p026-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p026-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>contaminant on plants (except parasites, species transported by host/vector)</td> </tr> <tr> <td>Definition</td> <td>Organisms transported on plant material.</td> </tr> <tr> <td>Usage</td> <td>This term excludes organisms carried on contaminant nursery material, seed contaminants, and the timber trade, which SHOULD be classified under their own pathway terms.</td> </tr> <tr> <td>Notes</td> <td>See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>contaminantOnPlants</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p047">dwcpw:p047</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p027"></a>Term Name dwcpw:p027</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p027">http://rs.tdwg.org/dwc/pw/p027</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p027-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p027-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>parasites on plants (including species transported by host and vector)</td> </tr> <tr> <td>Definition</td> <td>Parasitic and pathogenic organisms transported with their host or vector plant.</td> </tr> <tr> <td>Notes</td> <td>See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>parasitesOnPlants</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p047">dwcpw:p047</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p028"></a>Term Name dwcpw:p028</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p028">http://rs.tdwg.org/dwc/pw/p028</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p028-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p028-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>seed contaminant</td> </tr> <tr> <td>Definition</td> <td>Organisms contaminating transported seeds.</td> </tr> <tr> <td>Notes</td> <td>These may be parasites or pathogens of the seeds, seeds of other species not intended to be transported, or species that eat seeds. See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>seedContaminant</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p047">dwcpw:p047</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p029"></a>Term Name dwcpw:p029</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p029">http://rs.tdwg.org/dwc/pw/p029</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p029-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p029-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>timber trade</td> </tr> <tr> <td>Definition</td> <td>Contaminants on unprocessed timber, processed wood and wood derived products.</td> </tr> <tr> <td>Usage</td> <td>This term excludes packing material and habitat material made from wood that SHOULD be included under their own terms ("packing material" and "transportation of habitat material").</td> </tr> <tr> <td>Notes</td> <td>Examples include wooden furniture, saw dust and fire wood. See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>timberTrade</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p047">dwcpw:p047</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p030"></a>Term Name dwcpw:p030</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p030">http://rs.tdwg.org/dwc/pw/p030</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p030-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p030-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>transportation of habitat material (soil, vegetation, wood etc)</td> </tr> <tr> <td>Definition</td> <td>Organisms transported with their habitat material to a new location.</td> </tr> <tr> <td>Notes</td> <td>Examples include materials such as soil, vegetation, straw and wood chips. Unless these materials are sterilised the organisms can be transported with their habitat to a new location. See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>transportationHabitatMaterial</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p047">dwcpw:p047</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p031"></a>Term Name dwcpw:p031</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p031">http://rs.tdwg.org/dwc/pw/p031</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p031-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p031-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>angling/fishing equipment</td> </tr> <tr> <td>Definition</td> <td>Aquatic organisms moved between sites on equipment of recreational anglers and professional fishermen.</td> </tr> <tr> <td>Notes</td> <td>See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>fishingEquipment</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p048">dwcpw:p048</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p032"></a>Term Name dwcpw:p032</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p032">http://rs.tdwg.org/dwc/pw/p032</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p032-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p032-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>container/bulk</td> </tr> <tr> <td>Definition</td> <td>Stowaways transported in or on the cargo containers or bulk cargo units themselves.</td> </tr> <tr> <td>Notes</td> <td>The difference between this category and others, such as "hitchhikers on ship/boat", is that the organism embarked and disembarked from the container itself rather than the ship. See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>containerBulk</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p048">dwcpw:p048</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p033"></a>Term Name dwcpw:p033</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p033">http://rs.tdwg.org/dwc/pw/p033</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p033-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p033-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>hitchhikers in or on airplane</td> </tr> <tr> <td>Definition</td> <td>Organisms that enter airplanes or other aircraft, such as helicopters, and are transported by them to another location.</td> </tr> <tr> <td>Notes</td> <td>This term does not apply to organisms that embarked onto containers that were subsequently loaded on to an aircraft. See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>hitchhikersAirplane</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p048">dwcpw:p048</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p034"></a>Term Name dwcpw:p034</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p034">http://rs.tdwg.org/dwc/pw/p034</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p034-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p034-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>hitchhikers on ship/boat (excluding ballast water and hull fouling)</td> </tr> <tr> <td>Definition</td> <td>Organisms that enter directly onto boats or ships and are transported by them to another location.</td> </tr> <tr> <td>Notes</td> <td>This term does not apply to organisms that embarked containers that are subsequently loaded on the ship, nor to contaminents of products loaded on the ship. The term is intended for organisms that directly interact with the boat or ship. See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>hitchhikersShip</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p048">dwcpw:p048</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p035"></a>Term Name dwcpw:p035</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p035">http://rs.tdwg.org/dwc/pw/p035</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p035-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p035-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>machinery/equipment</td> </tr> <tr> <td>Definition</td> <td>Organisms carried on the surfaces of or within heavy machinery and equipment.</td> </tr> <tr> <td>Notes</td> <td>This includes military equipment, farm machinery and manufacturing equipment. This term does not include products carried by vehicles. See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>machineryEquipment</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p048">dwcpw:p048</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p036"></a>Term Name dwcpw:p036</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p036">http://rs.tdwg.org/dwc/pw/p036</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p036-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p036-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>people and their luggage/equipment (in particular tourism)</td> </tr> <tr> <td>Definition</td> <td>Organisms transported on people themselves and/or their personal luggage.</td> </tr> <tr> <td>Usage</td> <td>This term excludes recreational angling equipment, which SHOULD be classified under its own term ("angling/fishing equipment"). </td> </tr> <tr> <td>Notes</td> <td>Examples include organisms transported by tourists. See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>people</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p048">dwcpw:p048</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p037"></a>Term Name dwcpw:p037</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p037">http://rs.tdwg.org/dwc/pw/p037</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p037-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p037-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>organic packing material, in particular wood packaging</td> </tr> <tr> <td>Definition</td> <td>Organic material, particularly unprocessed plant material that is used to pack transported goods.</td> </tr> <tr> <td>Notes</td> <td>Examples include woodern pallets, boxes, bags and baskets. See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>packingMaterial</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p048">dwcpw:p048</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p038"></a>Term Name dwcpw:p038</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p038">http://rs.tdwg.org/dwc/pw/p038</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p038-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p038-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>ship/boat ballast water</td> </tr> <tr> <td>Definition</td> <td>Organisms transported within the water pumped into boats and ships to provide ballast.</td> </tr> <tr> <td>Notes</td> <td>See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>ballastWater</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p048">dwcpw:p048</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p039"></a>Term Name dwcpw:p039</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p039">http://rs.tdwg.org/dwc/pw/p039</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p039-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p039-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>ship/boat hull fouling</td> </tr> <tr> <td>Definition</td> <td>Organisms that attach themselves to the subsurface hull of boats and ships. </td> </tr> <tr> <td>Notes</td> <td>See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>hullFouling</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p048">dwcpw:p048</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p040"></a>Term Name dwcpw:p040</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p040">http://rs.tdwg.org/dwc/pw/p040</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p040-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p040-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>vehicles (car, train, etc.)</td> </tr> <tr> <td>Definition</td> <td>Other vehicle hitchhikers that have been unintentionally dispersed, but are not covered by other terms.</td> </tr> <tr> <td>Notes</td> <td>These organisms may be carried on or within the vehicle. See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>vehicles</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p048">dwcpw:p048</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p041"></a>Term Name dwcpw:p041</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p041">http://rs.tdwg.org/dwc/pw/p041</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p041-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p041-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>other means of transport</td> </tr> <tr> <td>Definition</td> <td>A catchall term for any transport related dispersal that is not covered in other terms.</td> </tr> <tr> <td>Notes</td> <td>Examples include the movement of offshore installations, such as drilling platforms, but also pipeline and cable transport. See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>otherTransport</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p048">dwcpw:p048</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p042"></a>Term Name dwcpw:p042</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p042">http://rs.tdwg.org/dwc/pw/p042</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p042-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p042-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>interconnected waterways/basins/seas</td> </tr> <tr> <td>Definition</td> <td>Organisms that dispersed through artificial waterways created to connect previosuly unconnected water bodies. </td> </tr> <tr> <td>Usage</td> <td>Organisms transported along these corridors in ballast, on as hull fouling SHOULD be categorised under the "ship/boat ballast water" or "ship/boat hull fouling" terms. </td> </tr> <tr> <td>Notes</td> <td>See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>waterwaysBasinsSeas</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p049">dwcpw:p049</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p043"></a>Term Name dwcpw:p043</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p043">http://rs.tdwg.org/dwc/pw/p043</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p043-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p043-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>tunnels and land bridges</td> </tr> <tr> <td>Definition</td> <td>Unintentional dispersal by organisms using artificial tunnels, bridges, roads and railways.</td> </tr> <tr> <td>Notes</td> <td>See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>tunnelsBridges</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p049">dwcpw:p049</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p044"></a>Term Name dwcpw:p044</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p044">http://rs.tdwg.org/dwc/pw/p044</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p044-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p044-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>natural dispersal across borders of invasive alien organisms</td> </tr> <tr> <td>Definition</td> <td>Dispersal of organisms to new regions by natural dispersal from regions in which they are alien.</td> </tr> <tr> <td>Notes</td> <td>These are alien species that have previously been introduced through one of these pathways: release in nature, excape from confinement, transport-contaminant, transport-stowaway, or corridor. See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>naturalDispersal</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p050">dwcpw:p050</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p045"></a>Term Name dwcpw:p045</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p045">http://rs.tdwg.org/dwc/pw/p045</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p045-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p045-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>release in nature</td> </tr> <tr> <td>Definition</td> <td>Organisms transported and released by humans in a (semi)natural environment with the intention that they should live their without further human aid.</td> </tr> <tr> <td>Notes</td> <td>See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>releaseInNature</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p051">dwcpw:p051</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p046"></a>Term Name dwcpw:p046</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p046">http://rs.tdwg.org/dwc/pw/p046</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p046-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p046-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>escape from confinement</td> </tr> <tr> <td>Definition</td> <td>Organisms intentionally transported by humans and intended to be kept in captivity or cultivation, but having inadvertently escaped from human control.</td> </tr> <tr> <td>Notes</td> <td>See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>escapeFromConfinement</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p051">dwcpw:p051</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p047"></a>Term Name dwcpw:p047</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p047">http://rs.tdwg.org/dwc/pw/p047</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p047-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p047-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>transport-contaminant</td> </tr> <tr> <td>Definition</td> <td>An umbrella term for all species transported as contaninents in other products.</td> </tr> <tr> <td>Notes</td> <td>An alien species is a contaminant if it had a trophic or biotic relationship to organisms or items being transported and was to some extent dependent on them for survival. See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>transportContaminant</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p052">dwcpw:p052</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p048"></a>Term Name dwcpw:p048</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p048">http://rs.tdwg.org/dwc/pw/p048</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p048-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p048-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>transport-stowaway</td> </tr> <tr> <td>Definition</td> <td>An umbrella term for all species transported by riding on forms of transport where the organism has a direct interation with the transport and is not merely carried as part of, or a contaminent of cargo.</td> </tr> <tr> <td>Notes</td> <td>A stowaway has no trophic or biotic relationship to the organisms or items being transported. See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>transportStowaway</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p052">dwcpw:p052</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p049"></a>Term Name dwcpw:p049</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p049">http://rs.tdwg.org/dwc/pw/p049</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p049-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p049-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>corridor</td> </tr> <tr> <td>Definition</td> <td>Infrastructure, such as bridges, tunnels and canals have removed natural barriers to dispersal and allowed a species to move into a novel location.</td> </tr> <tr> <td>Notes</td> <td>See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>corridor</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p053">dwcpw:p053</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p050"></a>Term Name dwcpw:p050</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p050">http://rs.tdwg.org/dwc/pw/p050</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p050-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p050-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>unaided</td> </tr> <tr> <td>Definition</td> <td>Organisms that spread by natural dispersal, without action or assistance by humans, from regions in which they are also alien.</td> </tr> <tr> <td>Notes</td> <td>The term refers to secondary dispersal from an area where the taxon is also alien. See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>unaided</td> </tr> <tr> <td>Has broader concept</td> <td><a href="#dwcpw_p053">dwcpw:p053</a></td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p051"></a>Term Name dwcpw:p051</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p051">http://rs.tdwg.org/dwc/pw/p051</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p051-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p051-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>intentional</td> </tr> <tr> <td>Definition</td> <td>Organisms were brought to new area with the specific intention of keeping them alive in the new region, regardless of whether they were intended to be cultivated or released into the wild.</td> </tr> <tr> <td>Notes</td> <td>See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>intentional</td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p052"></a>Term Name dwcpw:p052</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p052">http://rs.tdwg.org/dwc/pw/p052</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p052-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p052-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>unintentional</td> </tr> <tr> <td>Definition</td> <td>The organism was unintentionally brought to a new region.</td> </tr> <tr> <td>Notes</td> <td>See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>unintentional</td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> <table> <thead> <tr> <th colspan="2"><a id="dwcpw_p053"></a>Term Name dwcpw:p053</th> </tr> </thead> <tbody> <tr> <td>Term IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/p053">http://rs.tdwg.org/dwc/pw/p053</a></td> </tr> <td>Modified</td> <td>2020-06-28</td> </tr> <tr> <td>Term version IRI</td> <td><a href="http://rs.tdwg.org/dwc/pw/version/p053-2020-06-28">http://rs.tdwg.org/dwc/pw/version/p053-2020-06-28</a></td> </tr> <tr> <td>Label</td> <td>corridor and dispersal</td> </tr> <tr> <td>Definition</td> <td>Organisms dispersed naturally, even if that dispersal was aided by changes in the landscape created by humans.</td> </tr> <tr> <td>Notes</td> <td>See also Harrower et al. 2017 <a href="http://nora.nerc.ac.uk/id/eprint/519129">http://nora.nerc.ac.uk/id/eprint/519129</a></td> </tr> <tr> <td>Controlled value</td> <td>corridorAndDispersal</td> </tr> <tr> <td>Type</td> <td>Concept</td> </tr> </tbody> </table> ###Markdown Modify to display the indices that you want ###Code text = index_by_label + term_table #text = index_by_name + index_by_label + term_table # read in header and footer, merge with terms table, and output headerObject = open(headerFileName, 'rt', encoding='utf-8') header = headerObject.read() headerObject.close() footerObject = open(footerFileName, 'rt', encoding='utf-8') footer = footerObject.read() footerObject.close() output = header + text + footer outputObject = open(outFileName, 'wt', encoding='utf-8') outputObject.write(output) outputObject.close() print('done') ###Output done
src/notebook/Predictions_2d.ipynb
###Markdown Comparaisons des meilleures/pires prédictions ###Code %reset -f import numpy as np import pandas as pd import ast import matplotlib.pyplot as plt from ast import literal_eval as l_eval from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm from matplotlib.animation import FuncAnimation from mpl_toolkits.axes_grid1.inset_locator import inset_axes %matplotlib nbagg ###Output _____no_output_____ ###Markdown Chargement des données ###Code """ Chargement de la dataframe (qui contient 1 seule ligne à priori) """ converters={'rho':l_eval, 'E_u':l_eval, 'F_u':l_eval, 'T_u':l_eval, 'E_d':l_eval, 'F_d':l_eval, 'T_d':l_eval, 'E_l':l_eval, 'F_l':l_eval, 'T_l':l_eval, 'E_r':l_eval, 'F_r':l_eval, 'T_r':l_eval} df_true = pd.read_csv("../../data/df_true.csv", converters=converters) df_pred = pd.read_csv("../../data/df_pred.csv", converters=converters) x_min = df_true.loc[0, "x_min"] x_max = df_true.loc[0, "x_max"] y_min = df_true.loc[0, "y_min"] y_max = df_true.loc[0, "y_max"] t_0 = df_true.loc[0, "t_0"] t_f = df_true.loc[0, "t_f"] N = df_true.loc[0, 'N'] M = df_true.loc[0, 'M'] step_count = df_true.loc[0, 'step_count'] print("x_min, x_max:", (x_min, x_max)) print("y_min, y_max:", (y_min, y_max)) print("t_0, t_f :", (t_0, t_f)) print() print("taille du maillage :", (N, M)) print("nombre d'itérations:", step_count) df_true["rho_attr"] df_pred ###Output _____no_output_____ ###Markdown Sous Imshow ###Code """ Un plot de la densite """ # pour calculer les valeurs extremes d'un tenseur def min_max(mat, dim=2): mat_min = mat for i in range(dim-1, -1, -1): mat_min = np.nanmin(mat_min, axis=i) mat_max = mat for i in range(dim-1, -1, -1): mat_max = np.nanmax(mat_max, axis=i) return mat_min, mat_max # pour faire les plots def plot_density(ax, df_true, df_pred, index=0, cb=True): rho_true = np.array(df_true.loc[0, 'rho']) true_min, true_max = min_max(rho_true) print("(min, max) true rho =", (true_min, true_max)) rho_pred = np.array(df_pred.loc[0, 'rho']) pred_min, pred_max = min_max(rho_pred) print("(min, max) pred rho =", (pred_min, pred_max)) rho_min, rho_max = min(true_min, pred_min), max(true_max, pred_max) # rho_min, rho_max = pred_min, pred_max # print("(min, max) rho =", (rho_min, rho_max)) # print(rho_true - rho_pred) img1 = ax.imshow(rho_true, origin='lower', cmap=cm.Greens, interpolation='bicubic', aspect='auto', alpha=5, # vmin=rho_min, vmax=rho_max, extent=[x_min, x_max, y_min, y_max]) img2 = ax.imshow(rho_pred, origin='lower', cmap=cm.Reds, interpolation="bicubic", aspect='auto', alpha=0.5, # vmin=rho_min, vmax=rho_max, extent=[x_min, x_max, y_min, y_max]) if cb == True: # cbar2 = fig.colorbar(img2, ax=[ax], ticks=[pred_min, pred_max], orientation="horizontal", cax=fig.add_axes([0.1, 0.1, 0.2, 0.01])) cbar2 = fig.colorbar(img2, ax=[ax], ticks=[pred_min, pred_max], shrink=0.4, aspect=10, location='right') # cbar2 = fig.colorbar(img2, ax=ax, ticks=[pred_min, pred_max], cax=fig.add_axes([0.92, 0.2, 0.01, 0.2])) cbar2.ax.set_yticklabels([str(pred_min), str(pred_max)[:4]]) cbar2.set_label('Prédiction') # cbar1 = fig.colorbar(img1, ax=[ax], ticks=[true_min, true_max], orientation="horizontal", cax=fig.add_axes([0.6, 0.1, 0.2, 0.01])) cbar1 = fig.colorbar(img1, ax=[ax], ticks=[true_min, true_max], shrink=0.4, aspect=10, location='right') # cbar1 = fig.colorbar(img1, ax=ax, ticks=[true_min, true_max], shrink=0.25, aspect=10, cax=fig.add_axes([0.8, 0.6, 0.01, 0.2])) cbar1.ax.set_yticklabels([str(true_min), str(true_max)[:4]]) cbar1.set_label('Label') ax.set_xlabel("x", size="large") ax.set_ylabel("y", size="large") fig, ax = plt.subplots(1,1,figsize=(9,5.4)) plot_density(ax, df_true, df_pred, index=0) # plt.tight_layout() ###Output _____no_output_____ ###Markdown Calcul de l'erreur absolue ###Code true = [0.405,0.724,1.95] pred = [0.409,0.736,1.9] true = np.array(true) pred = np.array(pred) def norm(vec): return vec[0]**2 + vec[1]**2 + (vec[2] / 10)**2 print("Erreur absolue:", round(norm(true-pred), 4)) # def plot_density3D(ax, df_true, df_pred, type="surface", cmap="viridis", stride=10): # # make the time axis, x , y # x = np.linspace(df_true["x_min"], df_true["x_max"], df_true["N"]) # y = np.linspace(df_true["y_min"], df_true["y_max"], df_true["M"]) # XX, YY = np.meshgrid(x, y) # # make the signals # rho_true = np.array(df_true.loc[0, "rho"]) # rho_pred = np.array(df_pred.loc[0, "rho"]) # if type=="surface": # ax.plot_surface(XX, YY, rho_true, cmap=cm.Greens, edgecolor='none') # ax.plot_surface(XX, YY, rho_pred, cmap=cm.Reds, edgecolor='none') # elif type=="wireframe": # ax.plot_wireframe(XX, YY, rho_true, rstride=stride, cstride=stride) # ax.plot_wireframe(XX, YY, rho_pred, rstride=stride, cstride=stride) # ax.set_xlabel('abscisse') # ax.set_ylabel('ordonnée') # ax.set_zlabel('hauteur') # ax.view_init(0, 45) # # ax.view_init(90, 0) # fig = plt.figure(figsize=(8,8)) # ax = fig.add_subplot(111, projection='3d') # plot_density3D(ax, df_true, df_pred, type="surface", cmap="jet") # # plt.legend() # plt.tight_layout() ###Output _____no_output_____
Model Selection - Tuning Hyperparameters/RandomizedSearchCV_HyperParameterTuning.ipynb
###Markdown 2. Hyperparameter tuning with RandomizedSearchCV Scikit-Learn's [RandomizedSearchCV](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html) allows us to randomly search across different hyperparameters to see which work best. It also stores details about the ones which work best we create a grid (dictionary) of hyperparameters we'd like to search over. ###Code # Hyperparameter grid RandomizedSearchCV will search over # Hyperparameters --> keys # values we want to try # grid is a dictionoary grid = {"n_estimators": [10, 100, 200, 500, 1000, 1200], "max_depth": [None, 5, 10, 20, 30], "max_features": ["auto", "sqrt"], "min_samples_split": [2, 4, 6], "min_samples_leaf": [1, 2, 4]} ###Output _____no_output_____ ###Markdown Where did these values come from?. They're made up.Yes. Not completely pulled out of the air but after reading the Scikit-Learn documentation on Random Forest's you'll see some of these values have certain values which usually perform well and certain hyperparameters take strings rather than integers. Now we've got the grid setup, Scikit-Learn's RandomizedSearchCV will look at it, pick a random value from each, instantiate a model with those values and test each model.How many models will it test?As many as there are for each combination of hyperparameters to be tested. max_depth has 4, max_features has 2, min_samples_leaf has 3, min_samples_split has 3, n_estimators has 5. That's 4x2x3x3x5 = 360 models!Or...We can set the n_iter parameter to limit the number of models RandomizedSearchCV tests. The best thing? The results we get will be cross-validated (hence the CV in RandomizedSearchCV) so we can use train_test_split().And since we're going over so many different models, we'll set n_jobs to 1 of RandomForestClassifier so Scikit-Learn takes advantage of all the cores (processors) on our computers. **Note**: Depending on n_iter (how many models you test), the different values in the hyperparameter grid, and the power of your computer, running the cell below may take a while. ###Code from sklearn.model_selection import RandomizedSearchCV from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier np.random.seed(42) # Results are reproducable # Shuffle the data heart_df_shuffle = heart_df.sample(frac=1) # Split into X and y X = heart_df_shuffle.drop("target",axis=1) y = heart_df_shuffle["target"] # Split into train and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) # Instantiate RandomForestClassifier # n_jobs --> how much of ur computer processor are u going to dedicate towards the machine learning model # 1 --> means all clf = RandomForestClassifier(n_jobs=1) # Setup RandomizedSearchCV --> cross validation - automatically creates the validation sets for us rs_clf = RandomizedSearchCV(estimator=clf, param_distributions=grid, n_iter=10, # try 20 models total cv=5, # 5-fold cross-validation verbose=2) # print out results # it will take clf and grid, then search over grid for different types of the hyperparameters combinations at random (which works best) # Fit the RandomizedSearchCV version of clf rs_clf.fit(X_train, y_train); # Fitting 5 folds for each of 10 candidates, totalling 50 fits means, # 10 iterations of different combinations of parameters in grid # Splitting each combination 5 times, cv = 5 # fit function is run 50x times using different hyperparamters on different sets of data # Which combination of hyperparameters got the best results found by RandomizedSearchCV rs_clf.best_params_ ###Output _____no_output_____ ###Markdown when we call predict() on rs_clf (our RandomizedSearchCV version of our classifier), it'll use the best hyperparameters it found. ###Code def evaluate_preds(y_true,y_preds): """ Performs evaluation comparison on y_true labels vs. y_pred labels on a classification model. """ accuracy = accuracy_score(y_true,y_preds) precision = precision_score(y_true,y_preds) recall = recall_score(y_true,y_preds) f1 = f1_score(y_true,y_preds) metric_dict = { "accuracy":round(accuracy,2), "precision":round(precision,2), "recall":round(recall,2), "f1":round(f1,2) } # A dictionary that stores the results of the evaluation metrics print(f"Acc: {accuracy * 100:.2f}%") print(f"Precision: {precision:.2f}") print(f"Recall: {recall:.2f}") print(f"F1 score: {f1:.2f}") return metric_dict from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score # Make predictions with the best hyperparameters rs_y_preds = rs_clf.predict(X_test) # Evaluate the predictions rs_metrics = evaluate_preds(y_test, rs_y_preds) # ------------------------------------------------------------------ ###Output _____no_output_____ ###Markdown A few next ideas you could try:* Collecting more data - Based on the results our models are getting now, it seems like they're finding some patterns. Collecting more data may improve a models ability to find patterns. However, your ability to do this will largely depend on the project you're working on.* Try a more advanced model - Although our tuned Random Forest model is doing pretty well, a more advanced ensemble method such as [XGBoost](https://xgboost.ai/) or [CatBoost](https://catboost.ai/) might perform better. Since machine learning is part engineering, part science, **these kind of experiments are common place in any machine learning project.** ###Code # --------------------------------------------------------------- ###Output _____no_output_____
toc_trends_oct_2016.ipynb
###Markdown TOC trends October 2016Heleen would like updated results for the ICPW trends analysis at the beginning of October. Today is the last day of September and I'm committed to other projects for the next few weeks, so time is getting tight! The aim of this notebook is to get some more-or-less complete results that Heleen can work with while I'm away next week.**Note:** There are still a number of significant issues with the database that I am unlikely to have time to fix in the near future. Although the ICPW dataset itself is pretty simple, cleaning up the existing system is not a small job, due to a long history of database structural development and, in particular, the way that RESA2 is coupled to various other systems. I'm not going to attempt to deal with these issues here, but I'll try to describe them below so I can come back in the future. The aim here is to try to produce something useful *despite* the outstanding known (and unknown?) issues. 1. ICPW database summaryMost of the tasks disucssed with John, Don and Heleen back in May have been completed, as described [here](http://nbviewer.jupyter.org/github/JamesSample/icpw/blob/master/toc_trends_2015_data_cleaning.ipynb), [here](http://nbviewer.jupyter.org/github/JamesSample/icpw/blob/master/toc_trends_2015_data_cleaning2.ipynb) and [here](http://nbviewer.jupyter.org/github/JamesSample/icpw/blob/master/updated_toc_trends_analysis2.ipynb). Section 5 of the latter notebook provides a more detailed summary.On 25/08/2016, John sent a couple of very helpful e-mails in response to my earlier questions regarding the US sites. Unfortunately, comparing John's spreadsheets to the information in RESA2 highlighted a number of further database-wide errors (not specific to the US sites), which are going to be tricky to fix. A notebook describing this work in detail is [here](http://nbviewer.jupyter.org/github/JamesSample/icpw/blob/master/toc_trends_2015_data_cleaning3.ipynb), but the main implications are summarised in an e-mail to Heleen (sent 02/09/2016 at 11:42), which is reproduced in part below.> *"...it is not possible to reliably extract complete water chemistry time series from RESA2, even for just a single chemical parameter at a single site. This is because, if you choose a site that appears in both the core ICPW programme and in the wider trends analysis (which is most of them), you will find two time series in the database: one associated with 'ICPWaters' and another linked to 'TOC_TRENDS'. These two series will likely have different start and end points and different periods of missing data. There will also be a lot of overlap, and most of the overlapping values will agree, but in a few places they will be substantially different. What's more, at present the database will often report significantly different site properties for the two time series (i.e. different station names, geographic co-ordinates and catchment properties), despite the fact that the samples actually all come from a single location. All this means that if you want to look at a complete water chemistry time series for any site in ICP Waters, the only way to do it at the moment is to extract both series, manually merge them (e.g. in Excel) and then try to figure out which set of site properties is correct.* > *[...]*> *At present it is possible for someone using RESA2 to extract two different time series and two sets of site properties for a single location. This is pretty confusing (as we found out back in May), and it also somewhat defeats the point of having a database."*Other outstanding issues include the large number of Swedish sites with no data, problems with the Czech data (in an e-mail received 08/09/2016, Vladimir suggested just deleting and reloading everything) and the poor availability of site metadata for many locations. Having discussed these issues with Heleen, I've decided to try the following: * Tidy up the US sites based on information provided by John. I'm not going to attempt to merge any datasets at this stage, but I can clean up the site names and add the original USEPA site codes to reduce confusion. * Look at the Czech data sent by Vladimir and decide whether it can and should replace the values currently in the database. * Run the trends analysis using whatever data is currently associated with the `TOC_TRENDS` projects. In principle, these datasets were gathered together separately from ICPW for the 2015 reanalysis, which is why they're associated with separate projects in the database. As described in the notebook linked above, the values in these series sometimes do not agree with those reported for the core ICPW projects, but I'm going to ignore this for now as reconciling the differences will take a long time. ###Code # Import custom functions and connect to db resa2_basic_path = (r'C:\Data\James_Work\Staff\Heleen_d_W\ICP_Waters\Upload_Template' r'\useful_resa2_code.py') resa2_basic = imp.load_source('useful_resa2_code', resa2_basic_path) engine, conn = resa2_basic.connect_to_resa2() ###Output _____no_output_____ ###Markdown 2. Tidy up US sitesBased on the results in the [previous notebook](http://nbviewer.jupyter.org/github/JamesSample/icpw/blob/master/toc_trends_2015_data_cleaning3.ipynb), I'd like to go through all the US sites in RESA2 and modify the site properties to match the values in John's spreadsheet (which I'm taking to be definitive). In particular, I want to correct the station names and geographic co-ordinates, as well as appending the original USEPA site codes to the station metadata. 2.1. Core ICPW sitesWe'll start by correcting the core ICPW sites. John's spreadsheet identified 95 sites that should be associated with this project and, following the work in the [previous notebook](http://nbviewer.jupyter.org/github/JamesSample/icpw/blob/master/toc_trends_2015_data_cleaning3.ipynb), this now agrees with what's in RESA2. Four of the core ICPW sites in John's spreadsheet are marked `NA` in the `station_code` column. These sites do now have codes in RESA2, so I've created a new version of John's spreadsheet (*U.S.Site.Reconciliation.August.2016_jes.xlsx*) with these codes added. The first step is therefore to check that there is a direct match between codes for the 95 core sites in RESA2 and the the 95 sites listed in John's spreadsheet. ###Code # Read John's spreadsheet in_xls = (r'C:\Data\James_Work\Staff\Heleen_d_W\ICP_Waters\Call_for_Data_2016' '\Replies\usa\U.S.Site.Reconciliation.August.2016_jes.xlsx') j_df = pd.read_excel(in_xls, sheetname='Sheet1') # Get a subset of columns from John's spreadsheet us_df = j_df[['Station Code', 'Station name', 'Suggested Name', 'Active', 'INCLUDE IN ICP WATERS DATABASE', 'INCLUDE IN ICP DOC ANALYSIS', 'NFC_SITEID', 'NFC_SITENAME', 'Latitude', 'Longitude', 'Altitude (m)']] # Rename columns us_df.columns = ['station_code', 'station_name', 'suggested_name', 'active', 'core', 'trend', 'nfc_code', 'nfc_name', 'latitude', 'longitude', 'elevation'] # Just the core sites core_df = us_df.query('core == "YES"') core_df.head() # Get station codes associated with 'ICP Waters US' project sql = ('SELECT station_id, station_code, station_name, latitude, longitude ' 'FROM resa2.stations ' 'WHERE station_id in (SELECT station_id ' 'FROM resa2.projects_stations ' 'WHERE project_id = 1679)') r2_df = pd.read_sql_query(sql, engine) r2_df.head() # Join df = r2_df.merge(core_df, on='station_code', how='outer', suffixes=('_r', '_j')) if len(df) == 95: print 'All rows match.' df.head() ###Output All rows match. ###Markdown The code above shows that all the sites have been matched correctly, so I can now loop over each site in the `ICP Waters US` project, updating the details in the stations table using the information in John's spreadsheet.I also want to add the original National Focal Centre site code as an additional attribute (as John suggested in his e-mails). The easiest way to do this is to create a new entry (`NFC_Code`) in the `STATION_PARAMETER_DEFINITIONS` table. ###Code # Loop over sites for row in df.iterrows(): # Get site properties stn_id = row[1]['station_id'] name = row[1]['suggested_name'] lat = row[1]['latitude_j'] lon = row[1]['longitude_j'] elev = row[1]['elevation'] nfc = row[1]['nfc_code'] # Update stations table sql = ("UPDATE resa2.stations " "SET station_name = '%s', " "latitude = %s, " "longitude = %s, " "altitude = %s " "WHERE station_id = %s" % (name, lat, lon, elev, stn_id)) result = conn.execute(sql) # Update stations_par_values table with NFC code sql = ("INSERT INTO resa2.stations_par_values " "(station_id, var_id, value, entered_by, entered_date) " "VALUES (%s, 321, '%s', 'JES', TO_DATE('2016-09-30', 'YYYY-MM-DD'))" % (stn_id, nfc)) result = conn.execute(sql) ###Output _____no_output_____ ###Markdown 2.2. Trends sitesThe next step is to correct the entries for the trends sites. Note that if the database was properly normalised this step wouldn't be necessary, as the 76 trends sites are a sub-set of the 95 core ICPW sites, so the steps described above should cover all relevant sites. However, due to the duplication of sites in the database, it is necessary to do this cleaning twice.Matching the trends sites turns out to be a bit more difficult, because of inconsistencies in the `X15:` prefixes. The first step is to manually add `Newbert Pond, Maine` (`station_code = US82`) to the `ICPW_TOCTRENDS_2015_US_LTM` project, as mentioned at the end of the [previous notebook](http://nbviewer.jupyter.org/github/JamesSample/icpw/blob/master/toc_trends_2015_data_cleaning3.ipynb). This should mean that we have 76 sites associated with the trends project, as specified in John's spreadsheet. ###Code # Just the trend sites trend_df = us_df.query('trend == "YES"') trend_df.head() # Get station codes associated with 'ICPW_TOCTRENDS_2015_US_LTM' project sql = ('SELECT station_id, station_code, station_name, latitude, longitude ' 'FROM resa2.stations ' 'WHERE station_id in (SELECT station_id ' 'FROM resa2.projects_stations ' 'WHERE project_id = 3870)') r2_df = pd.read_sql_query(sql, engine) print 'Number of sites:', len(r2_df) r2_df.head() ###Output Number of sites: 76 ###Markdown The next question is how well we can match these sites to John's spreadsheet. Based on the analysis in the previous notebook, the answer is, "*not very well*", because leading and trailing zeros in the original site codes have been truncated (presumably accidently, e.g. in Excel) prior to the `X15:` prefix being added. This isn't necessarily a major problem - the station codes used in RESA2 are mostly irrelevant - but I do need to somehow match them to John's spreadsheet and then update the station properties (preferably also adding the original site codes supplied by John, so we don't have to go through all this again later). The code below takes a slightly "heuristic" approach to finding matches. ###Code # Loop over rows from John for row in trend_df.iterrows(): # Get site properties nfc_cd = row[1]['nfc_code'] name = row[1]['suggested_name'] lat = row[1]['latitude'] lon = row[1]['longitude'] elev = row[1]['elevation'] # Attempt to find match. Need to add 'X15:' and allow for variants q_res = r2_df[(r2_df['station_code']=='X15:%s' % nfc_cd) | (r2_df['station_code']=='X15:%s' % nfc_cd[1:]) | (r2_df['station_code']=='X15:%s' % nfc_cd[:-1])] if len(q_res) == 1: # Single match found. Get stn_id stn_id = q_res.iloc[0]['station_id'] # Update stations table sql = ("UPDATE resa2.stations " "SET station_name = '%s', " "latitude = %s, " "longitude = %s, " "altitude = %s " "WHERE station_id = %s" % (name, lat, lon, elev, stn_id)) result = conn.execute(sql) # Check whether there's already an entry for this site # in stations_par_values table sql = ('SELECT * FROM resa2.stations_par_values ' 'WHERE station_id = %s ' 'AND var_id = 321' % stn_id) df = pd.read_sql_query(sql, engine) if len(df) < 1: # Update stations_par_values table with NFC code sql = ("INSERT INTO resa2.stations_par_values " "(station_id, var_id, value, entered_by, entered_date) " "VALUES (%s, 321, '%s', 'JES', TO_DATE('2016-09-30', 'YYYY-MM-DD'))" % (stn_id, nfc_cd)) result = conn.execute(sql) else: # Can't get good match print "Can't match %s." % nfc_cd ###Output Can't match 1E1-134E. Can't match ME-9998E. ###Markdown This code manages to find unique matches for all but two of the sites, which is a good start. Looking at the site codes for the two exceptions in John's spreadsheet, it seems as though they were previously only associated with core ICPW project and not the broader trends analysis. They were therefore not duplicated when the `TOC Trends` projects were created and instead only appear in the database once, using station codes `US74` and `US82`, respectively (rather than any of the `X15:` stuff). 2.3. TestingWith a bit of luck, I've finally managed to sort out the basic details for the US sites. Let's check. ###Code # Get the NFC site codes sql = ('SELECT station_id, value AS nfc_code ' 'FROM resa2.stations_par_values ' 'WHERE var_id =321') nfc_df = pd.read_sql_query(sql, engine) # Get station codes associated with 'ICP Waters US' project sql = ('SELECT station_id, station_code, station_name, latitude, longitude, altitude ' 'FROM resa2.stations ' 'WHERE station_id in (SELECT station_id ' 'FROM resa2.projects_stations ' 'WHERE project_id = 1679)') core_df = pd.read_sql_query(sql, engine) # Get station codes associated with 'ICPW_TOCTRENDS_2015_US_LTM' project sql = ('SELECT station_id, station_code, station_name, latitude, longitude, altitude ' 'FROM resa2.stations ' 'WHERE station_id in (SELECT station_id ' 'FROM resa2.projects_stations ' 'WHERE project_id = 3870)') trend_df = pd.read_sql_query(sql, engine) # Join in original site codes core_df = core_df.merge(nfc_df, on='station_id', how='left') trend_df = trend_df.merge(nfc_df, on='station_id', how='left') print 'Sites in core ICPW project:', len(core_df) print 'Sites in trends project: ', len(trend_df) ###Output Sites in core ICPW project: 95 Sites in trends project: 76 ###Markdown Regardless of the station codes and IDs in RESA2, I should now be able to make sense of the US data using the actual USEPA codes. For example, the sites in `trend_df` should be a true sub-set of those in `core_df`, and all the site properties should agree. ###Code # Inner join dfs df = trend_df.merge(core_df, on='nfc_code', how='inner', suffixes=('_t', '_c')) # Testing assert len(df) == 76, 'Incorrect number of sites.' for item in ['station_name', 'latitude', 'longitude', 'altitude']: assert (df[item + '_t'] == df[item + '_c']).all(), 'Mismatch in %ss.' print 'Check complete. All properties match.' ###Output Check complete. All properties match. ###Markdown Great - I think the US LTM sites are now more-or-less sorted. Only another 20 countires to go! Note that, with the changes made above, it is now possible to extract the NFC station codes from RESA2 in the same way as for the other station properties (i.e. using the `Additional station data` tab). There are still some issues to be aware of though. In particular, if you choose to export station properties from RESA2 to Excel, the RESA2 code will convert any all-numeric NFC codes to numbers. The result is that NFC codes such as `013425` are truncated as `12345`. This is not a problem with the database (the values in Oracle are correct) - it is a problem with the RESA2 code that copies results from the database into Excel. I'm not going to delve into this at the moment as I'm keen to avoid becoming too involved with the RESA2 application itself. As a workaround, it is safer to export from RESA2 as CSV and then import the CSV into Excel, taking care to set the column type for the `nfc_code` field to `Text` during the import process. 3. Czech dataVladimir has suggested deleting all the Czech data and then uploading it again from scratch. I'm reluctant to delete more than a decade's worth of data, but an alternative option more consistent with what's been done before would be to rename the existing Czech site codes and shift them into and `EXCLUDED` project. I can then upload the new Czech data using the same site codes as previously, which will hopefully avoid the issues created when the trend data was similarly uploaded, but using modified (i.e. `X15:`) prefixes.Firstly, some points to note: * The "old" database has Czech data for 9 sites. Two of these, Lysina (`CZ07`) and Pluhuv Bor (`CZ09`) have higher resolution data than the rest. See Section 3 of [this notebook](http://nbviewer.jupyter.org/github/JamesSample/icpw/blob/master/toc_trends_2015_data_cleaning2.ipynb) for full details. * In his latest data submission, Vladimir has only supplied **monthly** resolution data for sites `CZ01` to `CZ08` inclusive (i.e. excluding Pluhuv Bor). This is exactly what's required for the core ICPW dataset, but we may wish to include some of old (weekly) data from Lysina and Pluhuv Bor in the trends analysis (assuming it's considered good enough to use). For the moment, I propose **shifting all of the existing Czech data (sites `CZ01` to `CZ09`) into a new project called `ICPWaters CZ Excl`**. I will then upload the new data for sites `CZ01` to `CZ08` and associate these records with **both** the core ICPW project and the trend analysis work. Both projects will therefore access exactly the same (monthly resolution) data, which is more consistent than the data structure used at present. The downsides are that the trends project will then make use of lower resolution (monthly rather than weekly) data for Lysina (`CZ07`) and have no data at all for Pluhuv Bor (`CZ09`). Given that we are estimating trends from annual averages anyway, I don't think the differences in temporal resolution are a problem (in fact, using monthly data is arguably better as it's more consistent with our statistical analyses elsewhere). It is also possible to include Pluhuv Bor in the trends project if we want to, but Jakub has previously stated that it is a very well-buffered catchment that does not suffer from acidification (see e-mail received 29/06/2016 at 10:58), so I'm not sure it's appropriate anyway? **Check with Heleen**. 3.1. Restructure Czech projectsThe first step is to create a new project called `ICPWaters CZ Excl`. I can then rename all the existing Czech site codes (`CZ01` etc.) by adding the suffix `_Old`, followed by shifting them over to the newly created project. The second step is to create 8 new sites (with identical properties to the old ones), assigning them the same site codes as used previously (`CZ01` etc.). These new sites have no data associated with them, so I should be able to upload the revised data from Vladimir without creating any conflicts (I hope). All of this is most easily done manually using Access.**Note:** This process involves creating duplicate sites and is therefore superficially similar to the duplication described above, which has already caused lots of confusion. However, these problems have primarily been caused because we have two sets of sites (core and trends), which represent the same locations but which often have different site properties. More importantly, both of these projects are considered "active", and data is periodically appended to update them. This is what causes the problems: we have two supposedly identical datasets evolving in parallel, and over time differences emerge that are difficult to correct.For the Czech sites, I'm moving all the old data into an `EXCLUDED` project, marking the site names as `OLD`, and also adding a description to the `STATIONS` table saying they are `Associated with data supplied prior to August 2016`. In principle, I'd be happy to delete all of this data entirely (which would remove any concerns about duplication and database normalisation etc.), but I don't want to lose any information if I can avoid it. Besides, deleting records from RESA2 is not straightforward, due to all the other database interactions (a topic I'd like to avoid getting involved in for the moment). My hope is that the changes I'm making here will not cause further confusion, because the sites with the suffix `_Old` will be discontinued completely i.e. no new data will be associated with them and they won't be used in subsequent projects. This should avoid the messy situation that we're now in with sites from other countries. 3.2. Upload new dataWith the new project structure in place, I can use *upload_icpw_template.ipynb* to load the latest data from Vladimir into the database. This seems to have worked successfully, but for some reason the available parameters for the new sites are not showing up properly in the RESA2 application. They are there, and the values appear to be correct, but the `Refresh parameter list` button is not working as it used to. However, if the `STANDARD` button is pressed to select the routine parameters of interest, everything works as expected and the data can be exported to Excel as usual. The bit that's missing is that the user is no longer presented with the option of selecting custom parameters. I'm not sure what's happening here - another of the mysteries of RESA2! I'll have to **ask Tore where his code pulls this information from and modify the database accordingly**, but I'm not going to worry about this for now, as all my code will interact directly with the underlying Oracle database itself. 3.3. Data checkingTo check that my changes have worked as expected, I want to compare the data now in the database with what's in Vladimir's spreadsheet. To do this, I've manually extracted time series for the 8 Czech sites from RESA2 and saved them in *check_czech.xlsx*. The code below plots these values from RESA2 against the raw values in Valdimir's spreadsheet, which hopefully should agree. ###Code # Read data in_xlsx = (r'C:\Data\James_Work\Staff\Heleen_d_W\ICP_Waters\Call_for_Data_2016' '\Replies\czech_republic\check_czech.xlsx') r2_df = pd.read_excel(in_xlsx, sheetname='RESA') vl_df = pd.read_excel(in_xlsx, sheetname='Orig') # Define params of interest params = ['pH', 'Ca', 'Mg', 'Na', 'K', 'Cl', 'SO4', 'ALK', 'TOC'] fig, axes = plt.subplots(nrows=9, ncols=8, figsize=(15, 20)) # Loop over data for row, param in enumerate(params): # Get data df1 = r2_df[['Code', 'Date', param]] df2 = vl_df[['Code', 'Date', param]] # Pivot df1 = df1.pivot(index='Date', columns='Code', values=param) df2 = df2.pivot(index='Date', columns='Code', values=param) # Join df = df1.merge(df2, how='outer', left_index=True, right_index=True) for site in range(1, 9): # Get data for this site s_df = df[['CZ%02d_RESA' % site, 'CZ%02d_Orig' % site]] s_df.dropna(how='any', inplace=True) # Plot s_df.plot(ax=axes[row, site-1], legend=False) axes[row, site-1].set_title('CZ%02d %s' % (site, param)) plt.tight_layout() plt.show() ###Output C:\Data\64_Bit_WinPython\python-2.7.10.amd64\lib\site-packages\ipykernel\__main__.py:23: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy ###Markdown This looks proimising: there is only one colour visible on these plots, but two lines are being plotted, so I assume the results from RESA are overlapping exactly with those from Vladimir's spreadsheet. 4. Trends analysisThe final step for this notebook is to update my trends code and re-run the analysis. Note that **there are still some known issues with the data, so these results should not be taken as definitive**, but hopefully they are a step in the right direction. 4.1. Modify trends codeMy previous [trends notebook](http://nbviewer.jupyter.org/github/JamesSample/icpw/blob/master/updated_toc_trends_analysis2.ipynb) left a number of loose ends, which need tidying up here: * My current code averages samples taken from 0 and 0.5 m depth. In his e-mail from 21/07/2016 at 14:54, Don recommended only using samples from 0.5 m. Changing this will require some careful coding, as many of the samples seem to have `depth = 0` as a kind of default, so if I select only those records where `depth = 0.5`, I'll end up missing a large chunk of the data. My algorithm needs to first select all the surface water data, and then choose the 0.5 m sample *only* in cases where there are duplicates (i.e. results for both 0.5 m and 0.0 m). * My original code used reference ratios for sea-salt corrections which I back-calculated from RESA2. In an e-mail received 16/08/2016 at 14:04 Heleen provided the true values used for the original analysis. I think these agree with my back-calculated values, but this needs checking. * My code does not currently calculate trends for the correct parameters. Based on Heleen's e-mail (see above), the main quantities of interest are: * ESO4 ($μeq/l$) * ESO4X ($μeq/l$) * ECl ($μeq/l$) * ESO4_ECl ($μeq/l$) * ECa_EMg ($μeq/l$) * ECaX_EMgX ($μeq/l$) * ENO3 ($μeq/l$) * TOC ($mgC/l$) * Al ($mg/l$) * ANC ($= Ca + Mg + K + Na + NH_4 - Cl - SO_4 - NO_3$, all in $μeq/l$) * ALK ($μeq/l$) * HPLUS ($μeq/l$) * Deal with duplicates. The [previous notebook](http://nbviewer.jupyter.org/github/JamesSample/icpw/blob/master/updated_toc_trends_analysis2.ipynb) highlighted some other duplicates for which I couldn't find an explanation (see section 3.2.3). Suzanne hasn't responsed to my e-mails, so I'm not in a position to correct these issues at this stage. For now, **I propose to take the most recently uploaded of the duplicate values**, as these are usually the ones for which I can find a "paper-trail". * Choose a method for dealing with values at the detection limit. There are no hard-and-fast rules here and the choice is unlikely to dramatically influence trend results calculated using non-parametric statistics (i.e. Sen's slope calculated from annual medians). At present, my code simply substitutes the detection limit value, which is the easiest and most transparent approach. **I can change this if there are strong arguments for using an alternative method, though.** 4.1.1. Depths Some more careful checking of the database shows that this is actually a very minor problem. Records with measurements from both 0 m and 0.5 m only occur for a few of the Norwegian sites back in the 1970s. For these measurements, the chemistry values are the same regardless of which depth is chosen, so the problem is actually negligible. The code below finds all of the duplicate depth associated with all the ICPW trends sites.The issue is so limitied that I don't think it needs further consideration. ###Code # Specify projects of interest proj_list = ['ICPW_TOCTRENDS_2015_CA_ATL', 'ICPW_TOCTRENDS_2015_CA_DO', 'ICPW_TOCTRENDS_2015_CA_ICPW', 'ICPW_TOCTRENDS_2015_CA_NF', 'ICPW_TOCTRENDS_2015_CA_QU', 'ICPW_TOCTRENDS_2015_CZ', 'ICPW_TOCTRENDS_2015_Cz2', 'ICPW_TOCTRENDS_2015_FI', 'ICPW_TOCTRENDS_2015_NO', 'ICPW_TOCTRENDS_2015_SE', 'ICPW_TOCTRENDS_2015_UK', 'ICPW_TOCTRENDS_2015_US_LTM', 'ICPWaters Ca'] sql = ('SELECT station_id, station_code ' 'FROM resa2.stations ' 'WHERE station_id IN (SELECT UNIQUE(station_id) ' 'FROM resa2.projects_stations ' 'WHERE project_id IN (SELECT project_id ' 'FROM resa2.projects ' 'WHERE project_name IN %s))' % str(tuple(proj_list))) stn_df = pd.read_sql(sql, engine) sql = ("SELECT water_sample_id, station_id, sample_date " "FROM resa2.water_samples " "WHERE station_id IN %s " "AND depth1 <= 1 " "AND depth2 <= 1" % str(tuple(stn_df['station_id'].values))) df = pd.read_sql(sql, engine) print 'Number of duplicated records:', df.duplicated(subset=['station_id', 'sample_date']).sum() df[df.duplicated(subset=['station_id', 'sample_date'], keep=False)] ###Output Number of duplicated records: 12 ###Markdown 4.1.2. Reference ratiosThese have been checked and the values in my code agree with those in Heleen's e-mail. 4.1.3. Additional parametersI have modified the code to include ANC, calculated as $$ANC = Ca + Mg + K + Na + NH_4 - Cl - SO_4 - NO_3$$where all values are in $μeq/l$ (as per Heleen's e-mail - see above). However, note that not all sites have complete data for all these chemical parameters e.g. the Newfoundland sites do not report NH4. I believe NH4 is usually a fairly small component of ANC, so in my code I've decided to assume $NH_4 = 0$ unless it's explicitly specified. This means that I can still calculate ANC for the Newfoundland sites (which would otherwise all return "NoData"). **Is this reasonable? Are there any other chemical species that can safely be ignored when they're not reported? Check this with Heleen**.Including alkalinity is not straightforward, as there are many different methods and some of them are not fully described in the database. To make use of the alkalinity data I need to convert everything to a common scale and units (preferably in $\mu eq/l$). This can be done for some of the methods using the metadata in RESA2, but for others this is not possible. Having queried this with Heleen, she has suggested ignoring alkalinity for now (see e-mail received 17/10/2016 at 13:19), but this is something to return to later, possibly with help from Øyvind Garmo regarding how to align the various methods. For future reference, the methods in question are listed here:C:\Data\James_Work\Staff\Heleen_d_W\ICP_Waters\Data_Summaries\alkalin_method_issues.xlsx 4.1.4. DuplicatesWhere duplicates are reported which cannot be explained by different sampling depths (e.g. 0 m and 0.5 m, as above), my code now selects the value that has been **added to the database most recently**. There is relatively little justification for this decision: I haven't been able to get to the bottom of these issues and this step is really just a fudge (my code previously averaged these measurements, which is also dodgy). The main reason for choosing the most recent database addition is that I can generally find these values in the raw data, whereas the older measurements aren't so obvious. However, it's possible that this is more a reflection of my (still limited) knowledge of the data on the NIVA network, rather than because the more recent data is "more correct". 4.1.5. Detection limitsHeleen is happy to replace values below the detection limit with the detection limit itself, which is what my code currently does. See e-mail received 07/10/2016 at 15:18. 5. New trends analysisThis section tests the new code by applying it to the data for all years (i.e. the full adataset for each site). ###Code # Import code for trends analysis resa2_trends_path = (r'C:\Data\James_Work\Staff\Heleen_d_W\ICP_Waters\TOC_Trends_Analysis_2015' r'\Python\icpw\toc_trends_analysis.py') resa2_trends = imp.load_source('toc_trends_analysis', resa2_trends_path) ###Output _____no_output_____ ###Markdown The list of projects to consider has been previously agreed with Heleen (see section 3 of [this notebook](http://nbviewer.jupyter.org/github/JamesSample/icpw/blob/master/toc_trends_2015_data_cleaning.ipynb)). ###Code # User input # Specify projects of interest proj_list = ['ICPW_TOCTRENDS_2015_CA_ATL', 'ICPW_TOCTRENDS_2015_CA_DO', 'ICPW_TOCTRENDS_2015_CA_ICPW', 'ICPW_TOCTRENDS_2015_CA_NF', 'ICPW_TOCTRENDS_2015_CA_QU', 'ICPW_TOCTRENDS_2015_CZ', 'ICPW_TOCTRENDS_2015_Cz2', 'ICPW_TOCTRENDS_2015_FI', 'ICPW_TOCTRENDS_2015_NO', 'ICPW_TOCTRENDS_2015_SE', 'ICPW_TOCTRENDS_2015_UK', 'ICPW_TOCTRENDS_2015_US_LTM', 'ICPWaters Ca'] # Output paths plot_fold = (r'C:\Data\James_Work\Staff\Heleen_d_W\ICP_Waters\TOC_Trends_Analysis_2015' r'\Results\Trends_Plots') res_csv = (r'C:\Data\James_Work\Staff\Heleen_d_W\ICP_Waters\TOC_Trends_Analysis_2015' r'\Results\res.csv') dup_csv = (r'C:\Data\James_Work\Staff\Heleen_d_W\ICP_Waters\TOC_Trends_Analysis_2015' r'\Results\dup.csv') nd_csv = (r'C:\Data\James_Work\Staff\Heleen_d_W\ICP_Waters\TOC_Trends_Analysis_2015' r'\Results\nd.csv') # Run analysis res_df, dup_df, nd_df = resa2_trends.run_trend_analysis(proj_list, engine, st_yr=None, end_yr=None, plot=True, fold=plot_fold) # Delete mk_std_dev col as not relevant here del res_df['mk_std_dev'] # Write output res_df.to_csv(res_csv, index=False) dup_df.to_csv(dup_csv, index=False) nd_df.to_csv(nd_csv, index=False) res_df.head(14).sort_values(by='par_id') ###Output Extracting data from RESA2... The database contains duplicate values for some station-date-parameter combinations. Only the most recent values will be used, but you should check the repeated values are not errors. The duplicated entries are returned in a separate dataframe. Some stations have no relevant data in the period specified. Their IDs are returned in a separate dataframe. Done. Converting units and applying sea-salt correction... Done. Calculating statistics... Data series for Al at site 101 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 102 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 103 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 104 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 107 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 109 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 112 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 115 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 118 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 119 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 120 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 121 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 122 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 123 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 128 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 132 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 134 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 135 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 144 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 146 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 147 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 150 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 156 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 158 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 161 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 162 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 163 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 166 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 168 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 170 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 173 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 176 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 179 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 180 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 181 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 182 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 183 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 185 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 192 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 193 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 196 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 12081 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for EH at site 23468 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 23546 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 36547 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 36560 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for EH at site 36733 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for EH at site 36739 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for EH at site 36750 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for EH at site 36753 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for EH at site 36793 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for EH at site 36797 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 37063 has fewer than 10 non-null values. Significance estimates may be unreliable. Done. Finished. ###Markdown 6. Data issuesThe code seems to be working correctly, but I still have concerns about some of the values in RESA. Looking at the output (`res.csv`), the following issues are fairly obvious: * A number of the Swedish stations have ridiculously high EH+ (i.e. low pH). They can be idenified with the following SQL: SELECT * FROM RESA2.STATIONS WHERE STATION_ID IN (36797, 36733, 36753, 36793, 36588, 36660, 36578, 36750, 36670, 36825, 36584, 36680, 36788, 36575, 36813, 36636, 36690, 36592, 36675, 36826, 36711, 36723, 36731, 36739); As far as I can tell, my trends code is working correctly, but the values in RESA2 for these sites must surely be wrong (pH is often * Sites 37124 and 37129 also have very high EH+/low pH. A quick check suggets that zeros have been entered into RESA instead of NoData in a few cases - this needs correcting. * Overall, **the entire dataset would benefit from being checked by someone with a better feel for realistic acid chemistry values than me**. 6.1. Correct sites 37124 and 37129 I've removed the zeros for pH from these datasets, as they've obviously been entered in error. 6.2. Correct Swedish sites Where have the very low pH values for the 24 Swedish sites come from? The raw data from the Focal Centre for these stations is here:K:\Prosjekter\langtransporterte forurensninger\O-23300 - ICP-WATERS - HWI\Tilsendte data fra Focalsentere\Sweden\EKSTRA2015These files contain sensible values for pH (usually around 7), so what's gone wrong? The filenames ending with the letters “ED” denote spreadsheets created by Tore for uploading into the database. He usually uses the ICPW template for this, but in this case he’s done something different. Strangely, pH seems to be missing from the `Lakesfrom 1988 3y` sheet of the "ED" files and it looks as though something has gone wrong with the upload process. In fact, it looks suspiciously like the values for Pb (in ug/l) have been entered as pH by mistake.Correcting this is fiddly, because I suspect the problem actually affects a large number of Swedish sites, not just the ones listed above. The difficulty is that these errors aren't obvious in cases where the Pb concentrations are high enough to be sensibly interpreted as pH.As a start, I've copied the correct pH data from the raw data file over to:C:\Data\James_Work\Staff\Heleen_d_W\ICP_Waters\Call_for_Data_2016\Replies\sweden\correct_ph_error.xlsLet's see how this compares to what's in the database. ###Code # Read data from template raw_xls = (r'C:\Data\James_Work\Staff\Heleen_d_W\ICP_Waters\Call_for_Data_2016' r'\Replies\sweden\correct_ph_error.xls') raw_df = pd.read_excel(raw_xls, sheetname='Data') raw_df.head() # Get unique list of site codes stn_list = raw_df['Code'].unique() # Get station_ids sql = ('SELECT * FROM resa2.stations ' 'WHERE station_code IN %s' % str(tuple(stn_list))) stn_df = pd.read_sql(sql, engine) # Decode special characters from `windows-1252` encoding to unicode stn_df['station_name'] = stn_df['station_name'].str.decode('windows-1252') stn_df.head() # Get all samples from these sites sql = ('SELECT * FROM resa2.water_samples ' 'WHERE station_id IN %s' % str(tuple(stn_df['station_id']))) samp_df = pd.read_sql(sql, engine) samp_df.head() # Get all the pH data for these sites sql = ('SELECT * FROM resa2.water_chemistry_values2 ' 'WHERE sample_id IN (SELECT water_sample_id ' 'FROM resa2.water_samples ' 'WHERE station_id IN %s) ' 'AND method_id = 10268' % str(tuple(stn_df['station_id']))) wc_df = pd.read_sql(sql, engine) wc_df.head() # Join samples df = pd.merge(wc_df, samp_df, how='left', left_on='sample_id', right_on='water_sample_id') # Join stations df = pd.merge(df, stn_df, how='left', left_on='station_id', right_on='station_id') # Join raw data df = pd.merge(df, raw_df, how='left', left_on=['station_code', 'sample_date'], right_on=['Code', 'Date']) # Extract columns of interest df = df[['station_id', 'station_code', 'station_name', 'sample_date', 'sample_id', 'method_id', 'flag1', 'value', 'pH', 'Pb']] df.head(10) ###Output _____no_output_____ ###Markdown The `value` column in the above table shows pH measurements according to RESA2. The pH and Pb columns show the values in the raw data. It is clear that the database values agree with those in the raw data in many places (i.e. the database is correct), which only makes this issue stranger: I would expect all of this data to be uploaded in a single go, so it's surprising that the results are correct for some sites but not for others. I'm not sure what's going on here!Nevertheless, there are 310 occasions where values for Pb have been entered as pH by mistake. ###Code print 'Number of occasions where Pb entered instead of pH:', len(df.query('value != pH').dropna(subset=['pH',])) df2 = df.query('value != pH').dropna(subset=['pH',]) df2.head() ###Output Number of occasions where Pb entered instead of pH: 310 ###Markdown The next step is to loop over these 310 records, replacing the numbers in the `value` column with those in the `pH` column. Note that a few of the Pb entries were associated with "less than" flags, so these need clearing as well. ###Code df2.query('flag1 == "<"') # Loop over rows for index, row in df2.iterrows(): # Get data samp_id = row['sample_id'] ph = row['pH'] # Update chem table sql = ("UPDATE resa2.water_chemistry_values2 " "SET value = %s, " "flag1 = NULL " "WHERE sample_id = %s " "AND method_id = 10268" % (ph, samp_id)) result = conn.execute(sql) # Check changes have taken effect sql = ('SELECT * FROM resa2.water_chemistry_values2 ' 'WHERE sample_id = 597377 ' 'AND method_id = 10268') df3 = pd.read_sql(sql, engine) df3 ###Output _____no_output_____ ###Markdown Finally, re-run the trends code to make sure the EH+ values are now more sensible. ###Code # Run analysis res_df, dup_df, nd_df = resa2_trends.run_trend_analysis(proj_list, engine, st_yr=None, end_yr=None, plot=False, fold=None) # Delete mk_std_dev col as not relevant here del res_df['mk_std_dev'] res_df.sort_values(by='mean', ascending=False).head() ###Output Extracting data from RESA2... The database contains duplicate values for some station-date-parameter combinations. Only the most recent values will be used, but you should check the repeated values are not errors. The duplicated entries are returned in a separate dataframe. Some stations have no relevant data in the period specified. Their IDs are returned in a separate dataframe. Done. Converting units and applying sea-salt correction... Done. Calculating statistics... Data series for Al at site 101 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 102 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 103 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 104 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 107 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 109 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 112 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 115 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 118 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 119 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 120 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 121 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 122 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 123 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 128 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 132 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 134 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 135 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 144 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 146 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 147 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 150 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 156 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 158 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 161 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 162 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 163 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 166 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 168 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 170 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 173 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 176 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 179 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 180 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 181 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 182 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 183 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 185 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 192 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 193 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 196 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 12081 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for EH at site 23468 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 23546 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 36547 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 36560 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for EH at site 36733 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for EH at site 36739 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for EH at site 36750 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for EH at site 36753 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for EH at site 36793 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for EH at site 36797 has fewer than 10 non-null values. Significance estimates may be unreliable. Data series for Al at site 37063 has fewer than 10 non-null values. Significance estimates may be unreliable. Done. Finished.
Zimnat_challenge/code.ipynb
###Markdown Functions ###Code def timer(start_time=None): """Timer to measure working time of the algorithm""" if not start_time: start_time = datetime.now() return start_time elif start_time: thour, time_sec = divmod((datetime.now() - start_time).total_seconds(), 3600) tmin, tsec = divmod(time_sec, 60) print("Time taken: %i hours %i minutes %s seconds" % (thour, tmin, round(tsec, 2))) def get_estimator(model, grid): """Function to select the best estimator using Random search CV""" # Random cross validation for Hyperparameter tuning x_random = RandomizedSearchCV( estimator=model, param_distributions=grid, n_iter=5, n_jobs=-1, scoring='neg_log_loss', cv=5, verbose=2, random_state=33 ) start_time = timer(None) # Timing starts from this point for \"start_time\" variable x_random.fit(X_train, y_train) timer(start_time) # timing ends here for \"start_time\" variable" return x_random.best_estimator_ def encode_LE(data, cols, verbose=True): """Function to Encode Data""" for col in cols: data[col], unique = pd.factorize(data[col], sort=True) def age_group(data, col): """Function to create new feature age group""" group = [] cat = None for age in data[col]: if (age > 0) & (age <= 30): cat = 'young' group.append(cat) if (age > 30) & (age <= 60): cat = 'adult' group.append(cat) if (age > 60) & (age < 100): cat = 'elder' group.append(cat) return group def get_output(data, clf, name): """Function to make predictions and store it into a csv file""" x = { 'ID X PCODE': data['ID X PCODE'] } # Prediction y_pred = clf.predict(X_true) x['Label'] = y_pred output = pd.DataFrame(x) output.reset_index(drop=True, inplace=True) return output.to_csv(name, index=False) ###Output _____no_output_____ ###Markdown A. Training Set 1. Load Data ###Code print("*"*45, "Train set", "*"*45) df = pd.read_csv(r"/home/praveen/Downloads/Data Science/Data projects/Insurance/file/Train.csv") df.fillna(method='ffill', inplace=True) df.sample(5).T ###Output ********************************************* Train set ********************************************* ###Markdown 2. Restructure Data ###Code # Products in the df products = df[['P5DA', 'RIBP', '8NN1', '7POT', '66FJ', 'GYSR', 'SOP4', 'RVSZ', 'PYUQ', 'LJR9', 'N2MW', 'AHXO', 'BSTQ', 'FM3X', 'K6QO', 'QBOL', 'JWFN', 'JZ9D', 'J9JW', 'GHYX', 'ECY3']] # Number of products nop = products.shape[1] pro_cols = products.columns.tolist() # Age feature in years df['Age'] = 2020 - df['birth_year'] # Age Group of customers df['age_group'] = age_group(df, 'Age') # Retention time in days df['join_date'] = df['join_date'].apply(lambda x: datetime.strptime(str(x), "%d/%m/%Y")) df['retention_time(days)'] = (datetime(2020,7,23) - df['join_date']).dt.days # Retention time in years df['retention_time(years)'] = df['retention_time(days)']/365 # Alligning features df = df[['ID', 'join_date', 'sex', 'marital_status', 'birth_year', 'branch_code', 'occupation_code', 'occupation_category_code', 'Age', 'age_group', 'retention_time(days)', 'retention_time(years)', 'P5DA', 'RIBP', '8NN1', '7POT', '66FJ', 'GYSR','SOP4', 'RVSZ', 'PYUQ','LJR9', 'N2MW', 'AHXO', 'BSTQ', 'FM3X', 'K6QO', 'QBOL', 'JWFN', 'JZ9D', 'J9JW', 'GHYX', 'ECY3']] ###Output _____no_output_____ ###Markdown Target Variable ###Code # Assigning labels by sampling products = df[['P5DA', 'RIBP', '8NN1', '7POT', '66FJ', 'GYSR', 'SOP4', 'RVSZ', 'PYUQ', 'LJR9', 'N2MW', 'AHXO', 'BSTQ', 'FM3X', 'K6QO', 'QBOL', 'JWFN', 'JZ9D', 'J9JW', 'GHYX', 'ECY3']] df = df.melt( id_vars = df.columns[:12], value_vars=products, var_name='PCODE', value_name='Label' ) df['X'] = ' X ' # Combining Unique ID with code df['ID X PCODE'] = df['ID'] + df['X'] + df['PCODE'] #Re-arrange columns df = df[['ID', 'join_date', 'sex', 'marital_status', 'birth_year', 'branch_code', 'Age', 'age_group', 'retention_time(days)', 'retention_time(years)', 'occupation_code', 'occupation_category_code', 'PCODE', 'ID X PCODE', 'Label']] df.head(5) ###Output _____no_output_____ ###Markdown 3. Base Model 3.1 Split Data ###Code X = df.drop(['Label', 'ID', 'retention_time(years)', 'join_date', 'birth_year', 'ID X PCODE'], axis=1) y = df['Label'].copy() clean_X = autoclean(X) X_train, X_val, y_train, y_val = train_test_split(clean_X, y, test_size=0.3, random_state=7) ###Output _____no_output_____ ###Markdown 3.2 Base Model Evaluation ###Code # Classifier base_clf = GradientBoostingClassifier().fit(X_train, y_train) # Predictions y_pred = base_clf.predict(X_val) print(classification_report(y_val, y_pred)) x = { 'train score': round(base_clf.score(X_train, y_train), 2), # Training Accuracy 'test score': round(base_clf.score(X_val, y_val), 2), # Testing Accuracy 'ROC AUC score': round(roc_auc_score(y_val, y_pred), 2), # ROC AUC Score 'log loss': round(log_loss(y_val, y_pred), 2) # Log Loss Score } print(x) ###Output precision recall f1-score support 0 0.97 0.98 0.98 163502 1 0.85 0.72 0.78 20030 accuracy 0.96 183532 macro avg 0.91 0.85 0.88 183532 weighted avg 0.95 0.96 0.95 183532 {'train score': 0.96, 'test score': 0.96, 'ROC AUC score': 0.85, 'log loss': 1.52} ###Markdown 4. Feature Significance ###Code cols = X.columns.tolist() encode_LE(X,['sex', 'marital_status', 'branch_code', 'occupation_category_code', 'PCODE', 'occupation_code', 'age_group']) X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.3, random_state=33) xgb = XGBClassifier() xgb.fit(X_train, y_train) # perform xgb importance xgb_fea_imp = pd.DataFrame(list(xgb.get_booster().get_fscore().items()), columns=['feature','importance']).sort_values('importance', ascending=False) # get xgb importance xgb_sig = xgb.feature_importances_ # perform permutation importance results = permutation_importance(xgb, X, y, scoring='neg_log_loss') # get permutation importance importance = results.importances_mean # List of feature f score print('Feature Importance using f score :\n', '', xgb_fea_imp) print('-'*50) # Plot feature f score plot_importance(xgb, ) plt.show() print('-'*50) # Summarize feature importance print('Feature importance using xgboost :') for i,v in enumerate(xgb_sig): print('Feature: %0d, Score: %.5f' % (i,v)) print('-'*50) # plot xgb feature importance plt.figure(figsize=[15, 4]) plt.bar([x for x in cols], xgb_sig) plt.xticks(rotation=90) plt.show() print('-'*50) # Summarize feature importance print('Feature importance using permutation :') for i,v in enumerate(importance): print('Feature: %0d, Score: %.5f' % (i,v)) print('-'*50) # plot permutation feature importance plt.figure(figsize=[15, 4]) plt.bar([x for x in cols], importance) plt.xticks(rotation=90) plt.show() ###Output Feature Importance using f score : feature importance 0 PCODE 1500 1 retention_time(days) 1176 4 occupation_code 718 3 branch_code 695 6 Age 641 2 marital_status 261 5 occupation_category_code 125 7 sex 90 8 age_group 21 -------------------------------------------------- ###Markdown Feature SelectionThe Following columns will be dropped -- join_date - birth_year- retention_time(days)- Age Split Data ###Code X_fs = df.drop(['Label', 'ID', 'ID X PCODE', 'join_date', 'birth_year', 'retention_time(days)', 'Age'], axis=1) y_fs = df['Label'].copy() encode_LE(X_fs,['sex', 'marital_status', 'branch_code', 'occupation_category_code', 'PCODE', 'occupation_code', 'age_group']) # Train and Validation set X_train, X_val, y_train, y_val = train_test_split(X_fs, y_fs, test_size=0.3, random_state=33) ###Output _____no_output_____ ###Markdown 5. Hyperparameter Tuning Grid ###Code # Number of trees in the model max_iters = [int(x) for x in np.arange(1000, 2000, 200)] # Learning rate in XGBClassifier learning_rate = [round(x, 2) for x in np.arange(0.05, 0.3, 0.05)] # Number of trees in the model n_estimators = [int(x) for x in np.arange(100, 300, 50)] # Number of features to consider at every split max_features = ['auto', 'sqrt'] # Maximum number of levels in tree max_depth = [int(x) for x in np.linspace(9, 35, num=11)] max_depth.append(None) # Minimum number of samples required to split a node min_samples_split = [2, 5, 10] # Minimum number of samples required at each leaf node min_samples_leaf = [1, 2, 4] # Method of selecting samples for training each tree bootstrap = [True, False] # Create the random grid gb_grid = {'learning_rate': learning_rate, 'n_estimators': n_estimators, 'max_depth': max_depth, 'min_samples_split': [2, 3, 4, 5, 6, 7, 8], 'min_samples_leaf': list(np.arange(1,7)), 'max_leaf_nodes': list(np.arange(2,11,2))} print("Grid for Hyperparameter tuning :\n", gb_grid) print('-'*100) ###Output Grid for Hyperparameter tuning : {'learning_rate': [0.05, 0.1, 0.15, 0.2, 0.25], 'n_estimators': [100, 150, 200, 250], 'max_depth': [9, 11, 14, 16, 19, 22, 24, 27, 29, 32, 35, None], 'min_samples_split': [2, 3, 4, 5, 6, 7, 8], 'min_samples_leaf': [1, 2, 3, 4, 5, 6], 'max_leaf_nodes': [2, 4, 6, 8, 10]} ---------------------------------------------------------------------------------------------------- ###Markdown Tuned Model Evaluation ###Code gb_imb = get_estimator(GradientBoostingClassifier(), gb_grid) print('Best Estimator :\n', gb_imb) print('-'*100) # Fit model on train set gb_imb.fit(X_train, y_train) # Predictions y_pred = gb_imb.predict(X_val) print(classification_report(y_val, y_pred)) x = { 'train score': round(gb_imb.score(X_train, y_train), 2), # Training Accuracy 'test score': round(gb_imb.score(X_val, y_val), 2), # Testing Accuracy 'ROC AUC Score': round(roc_auc_score(y_val, y_pred), 2), # ROC AUC Score 'log loss': round(log_loss(y_val, y_pred), 2) # Log Loss Score } print(x) ###Output precision recall f1-score support 0 0.97 0.99 0.98 163557 1 0.87 0.75 0.81 19975 accuracy 0.96 183532 macro avg 0.92 0.87 0.89 183532 weighted avg 0.96 0.96 0.96 183532 {'train score': 0.96, 'test score': 0.96, 'ROC AUC Score': 0.87, 'log loss': 1.35} ###Markdown B. Test Set 1. Load Dataset ###Code ### B. Testing set print("*"*45, "Test set", "*"*45) test = pd.read_csv(r"/home/praveen/Downloads/Data Science/Data projects/Insurance/file/Test.csv") # Filling NaN values test.fillna(method='ffill', inplace=True) ###Output ********************************************* Test set ********************************************* ###Markdown 2. Restructure Data ###Code # Products in the test products = test[['P5DA', 'RIBP', '8NN1', '7POT', '66FJ', 'GYSR', 'SOP4', 'RVSZ', 'PYUQ', 'LJR9', 'N2MW', 'AHXO', 'BSTQ', 'FM3X', 'K6QO', 'QBOL', 'JWFN', 'JZ9D', 'J9JW', 'GHYX', 'ECY3']] # Age feature in years test['Age'] = 2020 - test['birth_year'] # Age Group of customers test['age_group'] = age_group(test, 'Age') # Retention time in days test['join_date'] = test['join_date'].apply(lambda x: datetime.strptime(str(x), "%d/%m/%Y")) test['retention_time(days)'] = (datetime(2020,7,23) - test['join_date']).dt.days # Retention time in years test['retention_time(years)'] = test['retention_time(days)']/365 # Alligning features test = test[['ID', 'join_date', 'sex', 'marital_status', 'birth_year', 'branch_code', 'occupation_code', 'occupation_category_code', 'Age', 'age_group', 'retention_time(days)', 'retention_time(years)', 'P5DA', 'RIBP', '8NN1', '7POT', '66FJ', 'GYSR','SOP4', 'RVSZ', 'PYUQ','LJR9', 'N2MW', 'AHXO', 'BSTQ', 'FM3X', 'K6QO', 'QBOL', 'JWFN', 'JZ9D', 'J9JW', 'GHYX', 'ECY3']] ###Output _____no_output_____ ###Markdown Target Variable ###Code # Assigning labels by sampling products = test[['P5DA', 'RIBP', '8NN1', '7POT', '66FJ', 'GYSR', 'SOP4', 'RVSZ', 'PYUQ', 'LJR9', 'N2MW', 'AHXO', 'BSTQ', 'FM3X', 'K6QO', 'QBOL', 'JWFN', 'JZ9D', 'J9JW', 'GHYX', 'ECY3']] test = test.melt( id_vars = test.columns[:12], value_vars=products, var_name='PCODE', value_name='Label' ) test['X'] = ' X ' # Combining Unique ID with code test['ID X PCODE'] = test['ID'] + test['X'] + test['PCODE'] #Re-arrange columns test = test[['ID', 'join_date', 'sex', 'marital_status', 'birth_year', 'branch_code', 'Age', 'age_group', 'retention_time(days)', 'retention_time(years)', 'occupation_code', 'occupation_category_code', 'PCODE', 'ID X PCODE', 'Label']] ###Output _____no_output_____ ###Markdown Feature Engineering ###Code X_true = test.drop(['Label', 'ID', 'ID X PCODE', 'join_date', 'birth_year', 'retention_time(days)', 'Age'], axis=1) encode_LE(X_true,['sex', 'marital_status', 'branch_code', 'occupation_category_code', 'PCODE', 'occupation_code', 'age_group']) ###Output _____no_output_____ ###Markdown Output ###Code get_output( test, gb_imb, 'gb_imb_output.csv') ###Output _____no_output_____
deep-learning/multi-frameworks/notebooks/Keras_TF_RNN.ipynb
###Markdown High-level RNN Keras (TF) Example ###Code import os import sys import numpy as np os.environ['KERAS_BACKEND'] = "tensorflow" import keras as K import tensorflow as tf from keras.models import Sequential from keras.layers import Dense, Embedding, GRU, CuDNNGRU from common.params_lstm import * from common.utils import * # Force one-gpu os.environ["CUDA_VISIBLE_DEVICES"] = "0" print("OS: ", sys.platform) print("Python: ", sys.version) print("Keras: ", K.__version__) print("Numpy: ", np.__version__) print("Tensorflow: ", tf.__version__) print(K.backend.backend()) print(K.backend.image_data_format()) print("GPU: ", get_gpu_name()) print(get_cuda_version()) print("CuDNN Version ", get_cudnn_version()) def create_symbol(CUDNN=True, maxf=MAXFEATURES, edim=EMBEDSIZE, nhid=NUMHIDDEN, maxl=MAXLEN): model = Sequential() model.add(Embedding(maxf, edim, input_length=maxl)) # Only return last output if not CUDNN: model.add(GRU(nhid, return_sequences=False, return_state=False)) else: model.add(CuDNNGRU(nhid, return_sequences=False, return_state=False)) model.add(Dense(2, activation='softmax')) return model def init_model(m, lr=LR, b1=BETA_1, b2=BETA_2, eps=EPS): m.compile( loss = "categorical_crossentropy", optimizer = K.optimizers.Adam(lr, b1, b2, eps), metrics = ['accuracy']) return m %%time # Data into format for library x_train, x_test, y_train, y_test = imdb_for_library(seq_len=MAXLEN, max_features=MAXFEATURES, one_hot=True) print(x_train.shape, x_test.shape, y_train.shape, y_test.shape) print(x_train.dtype, x_test.dtype, y_train.dtype, y_test.dtype) %%time # Load symbol sym = create_symbol() %%time # Initialise model model = init_model(sym) model.summary() %%time # Main training loop: 26s model.fit(x_train, y_train, batch_size=BATCHSIZE, epochs=EPOCHS, verbose=1) %%time # Main evaluation loop: 3s y_guess = model.predict(x_test, batch_size=BATCHSIZE) y_guess = np.argmax(y_guess, axis=-1) y_truth = np.argmax(y_test, axis=-1) print("Accuracy: ", sum(y_guess == y_truth)/len(y_guess)) ###Output Accuracy: 0.85496
hw10/hw10.ipynb
###Markdown Stat 133 Homework 10Xinyang Geng ###Code library(DataComputing) library(XML) ###Output _____no_output_____ ###Markdown 1. We load the file earthquakes.csv into R ###Code data = read.csv(file="earthquakes.csv")%>% filter(Magnitude>=4) long = data$Longitude lat = data$Latitude head(data) ###Output _____no_output_____ ###Markdown 2. Create XML document ###Code Doc = newXMLDoc() Root = newXMLNode("kml",namespaceDefinitions = "http://www.opengis.net/kml/2.2", doc = Doc) Docmt = newXMLNode("Document", parent = Root) Name = newXMLNode("Name", "Earthquakes", parent = Docmt) Description = newXMLNode("Description", "4+ Earthquakes, 1966-present", parent = Docmt) ###Output _____no_output_____ ###Markdown 3. Adding nodes and Timestamp ###Code n = nrow(data) Dtime = as.character(data$DateTime) Dtimefix = gsub("/", "-", Dtime) time = gsub(" ","T",Dtimefix) for (i in 1:n) { M = newXMLNode("Placemark", parent = Docmt) T = newXMLNode("Point", parent = M) cood = c(long[i],",",lat[i]) newXMLNode("coordinates", cood, parent = T) S = newXMLNode("TimeStamp",parent=M) newXMLNode("when", time[i],"+08:00", parent=S) } saveXML(Doc, "earthquakes6.kml") ###Output _____no_output_____ ###Markdown Thực hiện lại phần demo trên dữ liệu InstaCart:1. Sử dụng hàm 'interactive' thay cho hàm 'interact'2. Bổ sung thêm Button sao cho sau khi chọn các options xong, phải click lênButton mới thực hiện vẽ lại figureLuyện tập: áp dụng interactive widgets cho phân tích EDA dữ liệu chuyến bay ###Code import pandas as pd import numpy as np from matplotlib import pyplot as plt import seaborn as sns import ipywidgets as widgets print(widgets.__version__) df = pd.read_csv('aisle_deparment_counts.csv') df.head(3) df.info() from IPython.display import display, clear_output df = df.sort_values('counts', ascending=False) df.reset_index(drop=True, inplace=True) df.head() ###Output _____no_output_____ ###Markdown 20 largest aisles and the rest ###Code N = 20 df1 = df[['counts', 'aisle']][0:N] other_count = df['counts'][N:].sum() print(other_count) other = pd.DataFrame({'counts': [other_count], 'aisle': ['others']}) df1 = df1.append(other, ignore_index=True) df1.tail(5) ###Output 2802620 ###Markdown Bar plot ###Code wOutput = widgets.Output(layout={'border': '1px solid white'}) wIntSlider = widgets.IntSlider(description="Aisles", value=10, min=3, max=20, step=1) wButton = widgets.Button(description="Plot", button_style='info', tooltip="Click here", icon= 'check') # display(wIntSlider, wOutput) def aislePlot(N): df2 = df[['counts', 'aisle']][0:N] other = pd.DataFrame({'counts': [df['counts'][N:].sum()], 'aisle': ['others']}) df2 = df2.append(other, ignore_index=True) df2.plot.bar(y='counts', color='orange', alpha=0.7, figsize=(8,3)) plt.xticks(df2.index,df2['aisle'], rotation=-60, ha='left') plt.title("The largest aisles by orders") plt.show() plt.close('all') wHBox = widgets.HBox([wIntSlider, wButton]) display(wHBox) wAislePlot = widgets.interactive(aislePlot, N=wIntSlider) def wAction(click): with wOutput: wOutput.clear_output() global wIntSlider display(wIntSlider) # print(wIntSlider.value) aislePlot(N=wIntSlider.value) # display(wAislePlot) wButton.on_click(wAction) display(wOutput) # wVBox = widgets.VBox([wHBox, wOutput]) # display(wVBox) display(wAislePlot) ###Output _____no_output_____
PVPY Demo.ipynb
###Markdown Spectra Plot a couple spectra. How about the AM1.5G and a blackbody with T=5800 K, the default value ###Code am15g = pvpy.PowerSpectrum(spectra="AM1.5G") bb5800 = pvpy.PowerSpectrum(spectra="BlackBody", bbtemp=5800) # The spectrum objects hold their spectrum as an Nx2 numpy array that you can call with the dot operator, # the __getitem__() method (aka square brackets[]), # or more formally via the get_spectrum() method plt.plot(am15g[0], am15g[1], bb5800[0], bb5800[1]) plt.ylabel(r"$W m^{-2} s^{-1}$") plt.xlabel("Wavelength (nm)") print(am15g([400])) ###Output [ 1.1141] ###Markdown pvpy allows you to easily plot photon or photocurrent spectra too. Either create the spectrum directly, or convert an existing spectrum to the desired. Spectrum objects are: PowerSpectrum (W/m^2), PhotonSpectrum (photons / (m^2 s)), PhotocurrentSpectrum (A/m^2) ###Code # create a photon spectrum directly am15g = pvpy.PhotonSpectrum(spectra="AM1.5G") # or convert the previous power spectrum bb5800.to_PhotonSpectrum() # The spectrum objects hold their spectrum as an Nx2 numpy array that you can call with the dot operator, or # more formally via the get_spectrum() method plt.plot(am15g[0], am15g[1], bb5800[0], bb5800[1]) plt.ylabel(r"photons $m^{-2} s^{-1}$") plt.xlabel("Wavelength (nm)") ###Output _____no_output_____ ###Markdown pvpy was made with theortical photocurrent from an EQE spectrum in mind. How much photocurrent is in the AM1.5G spectrum below 1200nm? Feed the jsc() function a unity Nx2 EQE spectrum. The result is given in the common units of mA/cm^2. ###Code wavelengths = np.arange(400, 1200) EQE_spectrum = np.ones(wavelengths.shape) EQE_spectrum = np.vstack((wavelengths, EQE_spectrum)) max_photocurrent0 = pvpy.jsc(EQE_spectrum) # For a cell with non-perfect EQE EQE_spectrum[1] = np.linspace(1, 0, len(wavelengths)) max_photocurrent1 = pvpy.jsc(EQE_spectrum) print("Perfect EQE gives %0.2f mA/cm^2 and a linearly decreasing EQE give %0.2f mA/cm^2." % (max_photocurrent0, max_photocurrent1)) ###Output Perfect EQE gives 45.06 mA/cm^2 and a linearly decreasing EQE give 24.38 mA/cm^2. ###Markdown Detailed Balance Solar Cells pvpy includes detailed balance analysis for solar cells. Create a solar cell object, assign it properties such as bandgap, radiative (LED) effciency, temperature, ideality, absorbtivity, or tilt from sun. Future releases aim to include a double diode model, with series and shunt resistance. Create an illumination spectrum and illuminate the cell, then show the JV curve for the cell in the dark and in the light ###Code # SolarCell defaults are shown below. Assign other properties with the dot-operator mysolarcell = pvpy.SolarCell(bandgap=1.1, celltemp=300, tilt=0, back_reflector=True) mysolarcell.LED_eff = .01 # Silicon has poor LED efficiency voltages = np.linspace(-.1, .725, 250) #the cell outputs in SI units, A/m^2, use 0.1 to convert to mA/cm^2 dark_JV = mysolarcell.get_current(voltages) * .1 plt.plot(voltages, dark_JV) # create an illumination spectrum. The default black body spectrum is a sun with T=5800K mysolarspectrum = pvpy.PhotonSpectrum(spectra="AM1.5G") # illuminate the cell mysolarcell.set_illumination(mysolarspectrum) light_JV = mysolarcell.get_current(voltages) * .1 plt.plot(voltages, light_JV) plt.ylabel(r"Current Density $mA/cm^{2}$") plt.xlabel("Voltage (V)") print("The incident power on my Silicon cell is %0.1f W/m^2 and it is %0.1f %% efficient." % (mysolarcell.incident_power, 100*mysolarcell.get_efficiency())) ###Output The incident power on my Silicon cell is 1000.4 W/m^2 and it is 27.1 % efficient. ###Markdown Recreate the famous efficiency versus bandgap curves for the 4 default illumination spectra. You can always define your own custom spectrum by passing a (2,N) numpy array to the ``spectra`` keyword ###Code bandgaps = np.linspace(.35,4,125) spectras = ["AM1.5G", "AM1.5D", "AM0Etr", "BlackBody",] for spectra in spectras: def effofbandgap(bandgap): cell = pvpy.SolarCell(bandgap=bandgap) spectrum = pvpy.PhotocurrentSpectrum(spectra=spectra) cell.set_illumination(spectrum) return cell.get_efficiency() *100 effciencies = [effofbandgap(bandgap) for bandgap in bandgaps] plt.plot(bandgaps, effciencies) plt.ylabel(r"Single Junction Efficiency") plt.xlabel("Bandgap Energy (eV)") plt.legend(spectras) ###Output _____no_output_____
Stock_Algorithms/Basic_Machine_Learning_Predicts.ipynb
###Markdown Simple Linear Regression for stock using scikit-learn ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt import math import seaborn as sns %matplotlib inline import warnings warnings.filterwarnings("ignore") import yfinance as yf yf.pdr_override() stock = 'AAPL' start = '2016-01-01' end = '2018-01-01' data = yf.download(stock, start, end) data.head() df = data.reset_index() df.head() X = df.drop(['Date','Close'], axis=1) y = df['Adj Close'] from sklearn.model_selection import train_test_split # Split X and y into X_ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=0) from sklearn.linear_model import LinearRegression regression_model = LinearRegression() regression_model.fit(X_train, y_train) intercept = regression_model.intercept_ print("The intercept for our model is {}".format(intercept)) regression_model.score(X_test, y_test) from sklearn.metrics import mean_squared_error y_predict = regression_model.predict(X_test) regression_model_mse = mean_squared_error(y_predict, y_test) regression_model_mse math.sqrt(regression_model_mse) # input the latest Open, High, Low, Close, Volume # predicts the next day price regression_model.predict([[167.81, 171.75, 165.19, 166.48, 37232900]]) ###Output _____no_output_____
c7_classification_performance_measures/08_Confusion_Matrix_in_Multiclass_Classification.ipynb
###Markdown 多分类问题中的混淆矩阵 ###Code import numpy as np import matplotlib.pyplot as plt from sklearn import datasets digits = datasets.load_digits() X = digits.data y = digits.target from sklearn.model_selection._split import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.8, random_state=666) from sklearn.linear_model.logistic import LogisticRegression log_reg = LogisticRegression() log_reg.fit(X_train, y_train) log_reg.score(X_test, y_test) y_predict =log_reg.predict(X_test) ###Output _____no_output_____ ###Markdown 多分类问题求精准率 ###Code from sklearn.metrics.scorer import precision_score precision_score(y_test, y_predict) ###Output _____no_output_____ ###Markdown 默认参数average='binary',只能解决二分类问题 ###Code # average设为None就只返回分数? precision_score(y_test, y_predict, average=None) precision_score(y_test, y_predict, average='micro') ###Output _____no_output_____ ###Markdown 混淆矩阵天然支持多分类问题 ###Code from sklearn.metrics.classification import confusion_matrix confusion_matrix(y_test, y_predict) ###Output _____no_output_____ ###Markdown 一种直观的发现什么地方犯错较多的方法 ###Code cfm = confusion_matrix(y_test, y_predict) plt.matshow(cfm, cmap=plt.cm.gray) # 映射为一个矩阵排列的灰度图? plt.show() ###Output _____no_output_____ ###Markdown 最亮的地方就是(样本)数目比较大的地方,图中的对角线就对应着评估正确的样本,不过我们的关注重点不在预测正确的部分,而是关注哪里预测错了 ###Code # 每一行有多少个样本 row_sums = np.sum(cfm, axis=1) # 每一格就是占比 err_matrix = cfm / row_sums # 很明显,对角线上的数是最大的,但我们并不关心对角线上的数(因为都是正确的) # 我们把对角线全变为0 np.fill_diagonal(err_matrix, 0) err_matrix plt.matshow(err_matrix, cmap=plt.cm.gray) # 映射为一个矩阵排列的灰度图? plt.show() ###Output _____no_output_____
variable_exploration/mk/.ipynb_checkpoints/pipeline-checkpoint.ipynb
###Markdown Pipelin is the boss ###Code # Create a pipeline that standardizes the data then creates a model import os from datetime import datetime import numpy as np import pandas as pd #read data, create listings dataframe path = '../../data/new-york-city-airbnb-open-data/' listings_csv = os.path.join(path,'listings.csv') listings = pd.read_csv(listings_csv) def less_than_50_percent(column): total_row = listings.shape[0] isnull_count = listings[column].isna().sum() if isnull_count/total_row > .5: return True columns = list(listings) remove_columns_0 = [] for column in columns: remove_column_y_n = less_than_50_percent(column) if remove_column_y_n: remove_columns_0.append(column) print(remove_columns_0) from sklearn.pipeline import Pipeline from sklearn.impute import SimpleImputer from sklearn.preprocessing import StandardScaler, OneHotEncoder numeric_transformer = Pipeline(steps=[ ('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler())]) categorical_transformer = Pipeline(steps=[ ('imputer', SimpleImputer(strategy='constant', fill_value='missing')), ('onehot', OneHotEncoder(handle_unknown='ignore'))]) numeric_features = listings.select_dtypes(include=['int64', 'float64']).columns categorical_features = listings.select_dtypes(include=['object']).drop(['Loan_Status'], axis=1).columns from sklearn.compose import ColumnTransformer preprocessor = ColumnTransformer( transformers=[ # ('num', numeric_transformer, numeric_features), ('cat', categorical_transformer, categorical_features)]) from sklearn.ensemble import RandomForestClassifierrf = Pipeline(steps=[('preprocessor', preprocessor), ('classifier', RandomForestClassifier())]) ###Output _____no_output_____
tutorial/3_2_Functions.ipynb
###Markdown 3.2 Coding Concepts: Functions FunctionsA function is a block of code that can be reused elsewhere in your notebook. Each function has a name, and we execute the function by *calling* it, using the function name. Functions are the building blocks of computer programming because they allow us to organize our code into meaningful pieces. See [Functions](https://python.swaroopch.com/functions.html) for more information. Function defintionsA function is defined using the `def` statment. It requires both a function name, which is followed by parenthesis `()` and a colon `:`, as well as a block of code indented below. Here is a simple function that prints `"Hello_80L"`. ###Code # define a function that prints "hello world!" def hello_world(): print("Hello_80l!") ###Output _____no_output_____ ###Markdown Now we call the function by writing the function name ***and*** parenthesis! ###Code # call the function hello_world() ###Output Hello_80l! ###Markdown Return statements Functions can return values. This is written using the `return` statement and the value you wish to return. When you call the function, you get the value it returns. Here we define a function that returns the value `99`. Note that the `return` statment is generally the last line of the function, because once the interpreter executes a `return` statement it leaves the function and returns to the program that called it. ###Code # define a funtion that returns the value 99 def a_return_function(): return 99 ###Output _____no_output_____ ###Markdown Call the function. ###Code # call the function a_return_function() ###Output _____no_output_____ ###Markdown We can even use that returned value to do arithmetic! ###Code # call the function and do arithmetic 1 + a_return_function() ###Output _____no_output_____ ###Markdown Both in oneFunctions can do many things, including both printing and returning a value. Here we define a function that does both. ###Code # define a funtion that returns the value 99 def my_first_function(): # print print("Hello_80L!") # return return 99 ###Output _____no_output_____ ###Markdown And call it. ###Code my_first_function() ###Output Hello_80L! ###Markdown ArgumentsFunctions may take one or more *arguments*. Arguments are defined by argument names within the parentheses of the function definition. Arguments allow us to pass information from outside the function into the function for use within our code block. Arguments are similar to variables becuase they associate a name with a value, but they are different because we don't define them using a variable declaration statement. ###Code # define a function with arguments def function_with_arguments(arg1, arg2): # print the first argument print(arg1) # print the second argument print(arg2) # return the product return arg1 * arg2 ###Output _____no_output_____ ###Markdown When we call a function that has arguments, we pass values to the function by placing them inside parenthesis. Each value is passed to the corresponding argument name. ###Code # call the function print(function_with_arguments(3, 76)) ###Output 3 76 228 ###Markdown AMB as a functionHere's the AMB function that lives inside the `mai` course package. All I've done is take the giant `while` loop from the previous tutorial and put it inside the body of a function. I added *arguments* for each of the AMB parameters and also a `return` statement to return the lists of pitches and durations generated by AMB. ###Code def amb(pitch_center=40, pitch_range=6, pulse=120, rhythm=0.0, detune=0.0, repeat=0.5, memory=5, length=24): # start with empty lists for both pitch and duration my_pitches = [] my_durs = [] # loop until we have enough notes while len(my_durs) < length: # do we look back? if random.random() <= repeat and len(my_pitches) >= memory: # use the fifth previous note new_pitch = my_pitches[-memory] new_dur = my_durs[-memory] # if we don't look back else: # choose pitch new_pitch = random.randint(pitch_center - pitch_range, pitch_center + pitch_range) # microtonal pitch adjustment new_pitch += random.uniform(-detune, detune) # choose duration new_dur = (60.0 / pulse) * random.uniform(1-rhythm, 1+rhythm) # append to the melody my_pitches += [new_pitch] my_durs += [new_dur] return my_pitches, my_durs ###Output _____no_output_____
week4_approx_rl/homework_tf.ipynb
###Markdown Deep Q-Network implementationThis notebook shamelessly demands you to implement a DQN - an approximate q-learning algorithm with experience replay and target networks - and see if it works any better this way. ###Code #XVFB will be launched if you run on a server import os if type(os.environ.get("DISPLAY")) is not str or len(os.environ.get("DISPLAY"))==0: !bash ../xvfb start %env DISPLAY=:1 ###Output _____no_output_____ ###Markdown __Frameworks__ - we'll accept this homework in any deep learning framework. This particular notebook was designed for tensorflow, but you will find it easy to adapt it to almost any python-based deep learning framework. ###Code import gym import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline ###Output _____no_output_____ ###Markdown Let's play some old videogames![img](https://s17.postimg.org/y9xcab74f/nerd.png)This time we're gonna apply approximate q-learning to an atari game called Breakout. It's not the hardest thing out there, but it's definitely way more complex than anything we tried before. Processing game image Raw atari images are large, 210x160x3 by default. However, we don't need that level of detail in order to learn them.We can thus save a lot of time by preprocessing game image, including* Resizing to a smaller shape, 64 x 64* Converting to grayscale* Cropping irrelevant image parts (top & bottom) ###Code from gym.core import ObservationWrapper from gym.spaces import Box from scipy.misc import imresize class PreprocessAtari(ObservationWrapper): def __init__(self, env): """A gym wrapper that crops, scales image into the desired shapes and optionally grayscales it.""" ObservationWrapper.__init__(self,env) self.img_size = (64, 64) self.observation_space = Box(0.0, 1.0, self.img_size) def _observation(self, img): """what happens to each observation""" # Here's what you need to do: # * crop image, remove irrelevant parts # * resize image to self.img_size # (use imresize imported above or any library you want, # e.g. opencv, skimage, PIL, keras) # * cast image to grayscale # * convert image pixels to (0,1) range, float32 type <Your code here> return <...> import gym #spawn game instance for tests env = gym.make("BreakoutDeterministic-v0") #create raw env env = PreprocessAtari(env) observation_shape = env.observation_space.shape n_actions = env.action_space.n obs = env.reset() #test observation assert obs.ndim == 3, "observation must be [batch, time, channels] even if there's just one channel" assert obs.shape == observation_shape assert obs.dtype == 'float32' assert len(np.unique(obs))>2, "your image must not be binary" assert 0 <= np.min(obs) and np.max(obs) <=1, "convert image pixels to (0,1) range" print "Formal tests seem fine. Here's an example of what you'll get." plt.title("what your network gonna see") plt.imshow(obs,interpolation='none',cmap='gray'); ###Output _____no_output_____ ###Markdown Frame bufferOur agent can only process one observation at a time, so we gotta make sure it contains enough information to fing optimal actions. For instance, agent has to react to moving objects so he must be able to measure object's velocity.To do so, we introduce a buffer that stores 4 last images. This time everything is pre-implemented for you. ###Code from framebuffer import FrameBuffer def make_env(): env = gym.make("BreakoutDeterministic-v4") env = PreprocessAtari(env) env = FrameBuffer(env, n_frames=4, dim_order='tensorflow') return env env = make_env() env.reset() n_actions = env.action_space.n state_dim = env.observation_space.shape for _ in range(50): obs, _, _, _ = env.step(env.action_space.sample()) plt.title("Game image") plt.imshow(env.render("rgb_array")) plt.show() plt.title("Agent observation (4 frames left to right)") plt.imshow(obs.transpose([0,2,1]).reshape([state_dim[0],-1])); ###Output _____no_output_____ ###Markdown Building a networkWe now need to build a neural network that can map images to state q-values. This network will be called on every agent's step so it better not be resnet-152 unless you have an array of GPUs. Instead, you can use strided convolutions with a small number of features to save time and memory.You can build any architecture you want, but for reference, here's something that will more or less work: ![img](https://s17.postimg.org/ogg4xo51r/dqn_arch.png) ###Code import tensorflow as tf tf.reset_default_graph() sess = tf.InteractiveSession() from keras.layers import Conv2D, Dense, Flatten class DQNAgent: def __init__(self, name, state_shape, n_actions, epsilon=0, reuse=False): """A simple DQN agent""" with tf.variable_scope(name, reuse=reuse): < Define your network body here. Please make sure you don't use any layers created elsewhere > # prepare a graph for agent step self.state_t = tf.placeholder('float32', [None,] + list(state_shape)) self.qvalues_t = self.get_symbolic_qvalues(self.state_t) self.weights = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=name) self.epsilon = epsilon def get_symbolic_qvalues(self, state_t): """takes agent's observation, returns qvalues. Both are tf Tensors""" < apply your network layers here > qvalues = < symbolic tensor for q-values > assert tf.is_numeric_tensor(qvalues) and qvalues.shape.ndims == 2, \ "please return 2d tf tensor of qvalues [you got %s]" % repr(qvalues) assert int(qvalues.shape[1]) == n_actions return qvalues def get_qvalues(self, state_t): """Same as symbolic step except it operates on numpy arrays""" sess = tf.get_default_session() return sess.run(self.qvalues_t, {self.state_t: state_t}) def sample_actions(self, qvalues): """pick actions given qvalues. Uses epsilon-greedy exploration strategy. """ epsilon = self.epsilon batch_size, n_actions = qvalues.shape random_actions = np.random.choice(n_actions, size=batch_size) best_actions = qvalues.argmax(axis=-1) should_explore = np.random.choice([0, 1], batch_size, p = [1-epsilon, epsilon]) return np.where(should_explore, random_actions, best_actions) agent = DQNAgent("dqn_agent", state_dim, n_actions, epsilon=0.5) sess.run(tf.global_variables_initializer()) ###Output _____no_output_____ ###Markdown Now let's try out our agent to see if it raises any errors. ###Code def evaluate(env, agent, n_games=1, greedy=False, t_max=10000): """ Plays n_games full games. If greedy, picks actions as argmax(qvalues). Returns mean reward. """ rewards = [] for _ in range(n_games): s = env.reset() reward = 0 for _ in range(t_max): qvalues = agent.get_qvalues([s]) action = qvalues.argmax(axis=-1)[0] if greedy else agent.sample_actions(qvalues)[0] s, r, done, _ = env.step(action) reward += r if done: break rewards.append(reward) return np.mean(rewards) evaluate(env, agent, n_games=1) ###Output _____no_output_____ ###Markdown Experience replayFor this assignment, we provide you with experience replay buffer. If you implemented experience replay buffer in last week's assignment, you can copy-paste it here __to get 2 bonus points__.![img](https://s17.postimg.org/ms4zvqj4v/exp_replay.png) The interface is fairly simple:* `exp_replay.add(obs, act, rw, next_obs, done)` - saves (s,a,r,s',done) tuple into the buffer* `exp_replay.sample(batch_size)` - returns observations, actions, rewards, next_observations and is_done for `batch_size` random samples.* `len(exp_replay)` - returns number of elements stored in replay buffer. ###Code from replay_buffer import ReplayBuffer exp_replay = ReplayBuffer(10) for _ in range(30): exp_replay.add(env.reset(), env.action_space.sample(), 1.0, env.reset(), done=False) obs_batch, act_batch, reward_batch, next_obs_batch, is_done_batch = exp_replay.sample(5) assert len(exp_replay) == 10, "experience replay size should be 10 because that's what maximum capacity is" def play_and_record(agent, env, exp_replay, n_steps=1): """ Play the game for exactly n steps, record every (s,a,r,s', done) to replay buffer. Whenever game ends, add record with done=True and reset the game. It is guaranteed that env has done=False when passed to this function. :returns: return sum of rewards over time """ # Play the game for n_steps as per instructions above <YOUR CODE> # testing your code. This may take a minute... exp_replay = ReplayBuffer(20000) play_and_record(agent, env, exp_replay, n_steps=10000) # if you're using your own experience replay buffer, some of those tests may need correction. # just make sure you know what your code does assert len(exp_replay) == 10000, "play_and_record should have added exactly 10000 steps, "\ "but instead added %i"%len(exp_replay) is_dones = list(zip(*exp_replay._storage))[-1] assert 0 < np.mean(is_dones) < 0.1, "Please make sure you restart the game whenever it is 'done' and record the is_done correctly into the buffer."\ "Got %f is_done rate over %i steps. [If you think it's your tough luck, just re-run the test]"%(np.mean(is_dones), len(exp_replay)) for _ in range(100): obs_batch, act_batch, reward_batch, next_obs_batch, is_done_batch = exp_replay.sample(10) assert obs_batch.shape == next_obs_batch.shape == (10,) + state_dim assert act_batch.shape == (10,), "actions batch should have shape (10,) but is instead %s"%str(act_batch.shape) assert reward_batch.shape == (10,), "rewards batch should have shape (10,) but is instead %s"%str(reward_batch.shape) assert is_done_batch.shape == (10,), "is_done batch should have shape (10,) but is instead %s"%str(is_done_batch.shape) assert [int(i) in (0,1) for i in is_dones], "is_done should be strictly True or False" assert [0 <= a <= n_actions for a in act_batch], "actions should be within [0, n_actions]" print("Well done!") ###Output _____no_output_____ ###Markdown Target networksWe also employ the so called "target network" - a copy of neural network weights to be used for reference Q-values:The network itself is an exact copy of agent network, but it's parameters are not trained. Instead, they are moved here from agent's actual network every so often.$$ Q_{reference}(s,a) = r + \gamma \cdot \max _{a'} Q_{target}(s',a') $$![img](https://s17.postimg.org/x3hcoi5q7/taget_net.png) ###Code target_network = DQNAgent("target_network", state_dim, n_actions) def load_weigths_into_target_network(agent, target_network): """ assign target_network.weights variables to their respective agent.weights values. """ assigns = [] for w_agent, w_target in zip(agent.weights, target_network.weights): assigns.append(tf.assign(w_target, w_agent, validate_shape=True)) tf.get_default_session().run(assigns) load_weigths_into_target_network(agent, target_network) # check that it works sess.run([tf.assert_equal(w, w_target) for w, w_target in zip(agent.weights, target_network.weights)]); print("It works!") ###Output _____no_output_____ ###Markdown Learning with... Q-learningHere we write a function similar to `agent.update` from tabular q-learning. ###Code # placeholders that will be fed with exp_replay.sample(batch_size) obs_ph = tf.placeholder(tf.float32, shape=(None,) + state_dim) actions_ph = tf.placeholder(tf.int32, shape=[None]) rewards_ph = tf.placeholder(tf.float32, shape=[None]) next_obs_ph = tf.placeholder(tf.float32, shape=(None,) + state_dim) is_done_ph = tf.placeholder(tf.float32, shape=[None]) is_not_done = 1 - is_done_ph gamma = 0.99 ###Output _____no_output_____ ###Markdown Take q-values for actions agent just took ###Code current_qvalues = agent.get_symbolic_qvalues(obs_ph) current_action_qvalues = tf.reduce_sum(tf.one_hot(actions_ph, n_actions) * current_qvalues, axis=1) ###Output _____no_output_____ ###Markdown Compute Q-learning TD error:$$ L = { 1 \over N} \sum_i [ Q_{\theta}(s,a) - Q_{reference}(s,a) ] ^2 $$With Q-reference defined as$$ Q_{reference}(s,a) = r(s,a) + \gamma \cdot max_{a'} Q_{target}(s', a') $$Where* $Q_{target}(s',a')$ denotes q-value of next state and next action predicted by __target_network__* $s, a, r, s'$ are current state, action, reward and next state respectively* $\gamma$ is a discount factor defined two cells above. ###Code next_qvalues_target = ### YOUR CODE: compute q-values for NEXT states with target network next_state_values_target = ### YOUR CODE: compute state values by taking max over next_qvalues_target for all actions reference_qvalues = ### YOUR CODE: compute Q_reference(s,a) as per formula above # Define loss function for sgd. td_loss = (current_action_qvalues - reference_qvalues) ** 2 td_loss = tf.reduce_mean(td_loss) train_step = tf.train.AdamOptimizer(1e-3).minimize(td_loss, var_list=agent.weights) sess.run(tf.global_variables_initializer()) for chk_grad in tf.gradients(reference_qvalues, agent.weights): error_msg = "Reference q-values should have no gradient w.r.t. agent weights. Make sure you used target_network qvalues! " error_msg += "If you know what you're doing, ignore this assert." assert chk_grad is None or np.allclose(sess.run(chk_grad), sess.run(chk_grad * 0)), error_msg assert tf.gradients(reference_qvalues, is_not_done)[0] is not None, "make sure you used is_not_done" assert tf.gradients(reference_qvalues, rewards_ph)[0] is not None, "make sure you used rewards" assert tf.gradients(reference_qvalues, next_obs_ph)[0] is not None, "make sure you used next states" assert tf.gradients(reference_qvalues, obs_ph)[0] is None, "reference qvalues shouldn't depend on current observation!" # ignore if you're certain it's ok print("Splendid!") ###Output _____no_output_____ ###Markdown Main loopIt's time to put everything together and see if it learns anything. ###Code from tqdm import trange from IPython.display import clear_output import matplotlib.pyplot as plt from pandas import ewma %matplotlib inline mean_rw_history = [] td_loss_history = [] exp_replay = ReplayBuffer(10**5) play_and_record(agent, env, exp_replay, n_steps=10000) def sample_batch(exp_replay, batch_size): obs_batch, act_batch, reward_batch, next_obs_batch, is_done_batch = exp_replay.sample(batch_size) return { obs_ph:obs_batch, actions_ph:act_batch, rewards_ph:reward_batch, next_obs_ph:next_obs_batch, is_done_ph:is_done_batch } for i in trange(10**5): # play play_and_record(agent, env, exp_replay, 10) # train _, loss_t = sess.run([train_step, td_loss], sample_batch(exp_replay, batch_size=64)) td_loss_history.append(loss_t) # adjust agent parameters if i % 500 == 0: load_weigths_into_target_network(agent, target_network) agent.epsilon = max(agent.epsilon * 0.99, 0.01) mean_rw_history.append(evaluate(make_env(), agent, n_games=3)) if i % 100 == 0: clear_output(True) print("buffer size = %i, epsilon = %.5f" % (len(exp_replay), agent.epsilon)) plt.subplot(1,2,1) plt.title("mean reward per game") plt.plot(mean_rw_history) plt.grid() assert not np.isnan(loss_t) plt.figure(figsize=[12, 4]) plt.subplot(1,2,2) plt.title("TD loss history (moving average)") plt.plot(pd.ewma(np.array(td_loss_history), span=100, min_periods=100)) plt.grid() plt.show() assert np.mean(mean_rw_history[-10:]) > 10. print("That's good enough for tutorial.") ###Output _____no_output_____ ###Markdown __ How to interpret plots: __This aint no supervised learning so don't expect anything to improve monotonously. * __ TD loss __ is the MSE between agent's current Q-values and target Q-values. It may slowly increase or decrease, it's ok. The "not ok" behavior includes going NaN or stayng at exactly zero before agent has perfect performance.* __ mean reward__ is the expected sum of r(s,a) agent gets over the full game session. It will oscillate, but on average it should get higher over time (after a few thousand iterations...). * In basic q-learning implementation it takes 5-10k steps to "warm up" agent before it starts to get better.* __ buffer size__ - this one is simple. It should go up and cap at max size.* __ epsilon__ - agent's willingness to explore. If you see that agent's already at 0.01 epsilon before it's average reward is above 0 - __ it means you need to increase epsilon__. Set it back to some 0.2 - 0.5 and decrease the pace at which it goes down.* Also please ignore first 100-200 steps of each plot - they're just oscillations because of the way moving average works.At first your agent will lose quickly. Then it will learn to suck less and at least hit the ball a few times before it loses. Finally it will learn to actually score points.__Training will take time.__ A lot of it actually. An optimistic estimate is to say it's gonna start winning (average reward > 10) after 10k steps. But hey, look on the bright side of things:![img](https://s17.postimg.org/hy2v7r8hr/my_bot_is_training.png) Video ###Code agent.epsilon=0 # Don't forget to reset epsilon back to previous value if you want to go on training #record sessions import gym.wrappers env_monitor = gym.wrappers.Monitor(make_env(),directory="videos",force=True) sessions = [evaluate(env_monitor, agent, n_games=1) for _ in range(100)] env_monitor.close() #show video from IPython.display import HTML import os video_names = list(filter(lambda s:s.endswith(".mp4"),os.listdir("./videos/"))) HTML(""" <video width="640" height="480" controls> <source src="{}" type="video/mp4"> </video> """.format("./videos/"+video_names[-1])) #this may or may not be _last_ video. Try other indices ###Output _____no_output_____ ###Markdown Deep Q-Network implementationThis notebook shamelessly demands you to implement a DQN - an approximate q-learning algorithm with experience replay and target networks - and see if it works any better this way. ###Code #XVFB will be launched if you run on a server import os if type(os.environ.get("DISPLAY")) is not str or len(os.environ.get("DISPLAY"))==0: !bash ../xvfb start %env DISPLAY=:1 ###Output _____no_output_____ ###Markdown __Frameworks__ - we'll accept this homework in any deep learning framework. This particular notebook was designed for tensorflow, but you will find it easy to adapt it to almost any python-based deep learning framework. ###Code import gym import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline ###Output _____no_output_____ ###Markdown Let's play some old videogames![img](https://github.com/yandexdataschool/Practical_RL/raw/master/yet_another_week/_resource/nerd.png)This time we're gonna apply approximate q-learning to an atari game called Breakout. It's not the hardest thing out there, but it's definitely way more complex than anything we tried before. Processing game image Raw atari images are large, 210x160x3 by default. However, we don't need that level of detail in order to learn them.We can thus save a lot of time by preprocessing game image, including* Resizing to a smaller shape, 64 x 64* Converting to grayscale* Cropping irrelevant image parts (top & bottom) ###Code from gym.core import ObservationWrapper from gym.spaces import Box from scipy.misc import imresize class PreprocessAtari(ObservationWrapper): def __init__(self, env): """A gym wrapper that crops, scales image into the desired shapes and optionally grayscales it.""" ObservationWrapper.__init__(self,env) self.img_size = (64, 64) self.observation_space = Box(0.0, 1.0, self.img_size) def _observation(self, img): """what happens to each observation""" # Here's what you need to do: # * crop image, remove irrelevant parts # * resize image to self.img_size # (use imresize imported above or any library you want, # e.g. opencv, skimage, PIL, keras) # * cast image to grayscale # * convert image pixels to (0,1) range, float32 type <Your code here> return <...> import gym #spawn game instance for tests env = gym.make("BreakoutDeterministic-v0") #create raw env env = PreprocessAtari(env) observation_shape = env.observation_space.shape n_actions = env.action_space.n obs = env.reset() #test observation assert obs.ndim == 3, "observation must be [batch, time, channels] even if there's just one channel" assert obs.shape == observation_shape assert obs.dtype == 'float32' assert len(np.unique(obs))>2, "your image must not be binary" assert 0 <= np.min(obs) and np.max(obs) <=1, "convert image pixels to (0,1) range" print "Formal tests seem fine. Here's an example of what you'll get." plt.title("what your network gonna see") plt.imshow(obs,interpolation='none',cmap='gray'); ###Output _____no_output_____ ###Markdown Frame bufferOur agent can only process one observation at a time, so we gotta make sure it contains enough information to fing optimal actions. For instance, agent has to react to moving objects so he must be able to measure object's velocity.To do so, we introduce a buffer that stores 4 last images. This time everything is pre-implemented for you. ###Code from framebuffer import FrameBuffer def make_env(): env = gym.make("BreakoutDeterministic-v4") env = PreprocessAtari(env) env = FrameBuffer(env, n_frames=4, dim_order='tensorflow') return env env = make_env() env.reset() n_actions = env.action_space.n state_dim = env.observation_space.shape for _ in range(50): obs, _, _, _ = env.step(env.action_space.sample()) plt.title("Game image") plt.imshow(env.render("rgb_array")) plt.show() plt.title("Agent observation (4 frames left to right)") plt.imshow(obs.transpose([0,2,1]).reshape([state_dim[0],-1])); ###Output _____no_output_____ ###Markdown Building a networkWe now need to build a neural network that can map images to state q-values. This network will be called on every agent's step so it better not be resnet-152 unless you have an array of GPUs. Instead, you can use strided convolutions with a small number of features to save time and memory.You can build any architecture you want, but for reference, here's something that will more or less work: ![img](https://github.com/yandexdataschool/Practical_RL/raw/master/yet_another_week/_resource/dqn_arch.png) ###Code import tensorflow as tf tf.reset_default_graph() sess = tf.InteractiveSession() from keras.layers import Conv2D, Dense, Flatten class DQNAgent: def __init__(self, name, state_shape, n_actions, epsilon=0, reuse=False): """A simple DQN agent""" with tf.variable_scope(name, reuse=reuse): < Define your network body here. Please make sure you don't use any layers created elsewhere > # prepare a graph for agent step self.state_t = tf.placeholder('float32', [None,] + list(state_shape)) self.qvalues_t = self.get_symbolic_qvalues(self.state_t) self.weights = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=name) self.epsilon = epsilon def get_symbolic_qvalues(self, state_t): """takes agent's observation, returns qvalues. Both are tf Tensors""" < apply your network layers here > qvalues = < symbolic tensor for q-values > assert tf.is_numeric_tensor(qvalues) and qvalues.shape.ndims == 2, \ "please return 2d tf tensor of qvalues [you got %s]" % repr(qvalues) assert int(qvalues.shape[1]) == n_actions return qvalues def get_qvalues(self, state_t): """Same as symbolic step except it operates on numpy arrays""" sess = tf.get_default_session() return sess.run(self.qvalues_t, {self.state_t: state_t}) def sample_actions(self, qvalues): """pick actions given qvalues. Uses epsilon-greedy exploration strategy. """ epsilon = self.epsilon batch_size, n_actions = qvalues.shape random_actions = np.random.choice(n_actions, size=batch_size) best_actions = qvalues.argmax(axis=-1) should_explore = np.random.choice([0, 1], batch_size, p = [1-epsilon, epsilon]) return np.where(should_explore, random_actions, best_actions) agent = DQNAgent("dqn_agent", state_dim, n_actions, epsilon=0.5) sess.run(tf.global_variables_initializer()) ###Output _____no_output_____ ###Markdown Now let's try out our agent to see if it raises any errors. ###Code def evaluate(env, agent, n_games=1, greedy=False, t_max=10000): """ Plays n_games full games. If greedy, picks actions as argmax(qvalues). Returns mean reward. """ rewards = [] for _ in range(n_games): s = env.reset() reward = 0 for _ in range(t_max): qvalues = agent.get_qvalues([s]) action = qvalues.argmax(axis=-1)[0] if greedy else agent.sample_actions(qvalues)[0] s, r, done, _ = env.step(action) reward += r if done: break rewards.append(reward) return np.mean(rewards) evaluate(env, agent, n_games=1) ###Output _____no_output_____ ###Markdown Experience replayFor this assignment, we provide you with experience replay buffer. If you implemented experience replay buffer in last week's assignment, you can copy-paste it here __to get 2 bonus points__.![img](https://github.com/yandexdataschool/Practical_RL/raw/master/yet_another_week/_resource/exp_replay.png) The interface is fairly simple:* `exp_replay.add(obs, act, rw, next_obs, done)` - saves (s,a,r,s',done) tuple into the buffer* `exp_replay.sample(batch_size)` - returns observations, actions, rewards, next_observations and is_done for `batch_size` random samples.* `len(exp_replay)` - returns number of elements stored in replay buffer. ###Code from replay_buffer import ReplayBuffer exp_replay = ReplayBuffer(10) for _ in range(30): exp_replay.add(env.reset(), env.action_space.sample(), 1.0, env.reset(), done=False) obs_batch, act_batch, reward_batch, next_obs_batch, is_done_batch = exp_replay.sample(5) assert len(exp_replay) == 10, "experience replay size should be 10 because that's what maximum capacity is" def play_and_record(agent, env, exp_replay, n_steps=1): """ Play the game for exactly n steps, record every (s,a,r,s', done) to replay buffer. Whenever game ends, add record with done=True and reset the game. It is guaranteed that env has done=False when passed to this function. PLEASE DO NOT RESET ENV UNLESS IT IS "DONE" :returns: return sum of rewards over time """ # initial state s = env.framebuffer # Play the game for n_steps as per instructions above <YOUR CODE> # testing your code. This may take a minute... exp_replay = ReplayBuffer(20000) play_and_record(agent, env, exp_replay, n_steps=10000) # if you're using your own experience replay buffer, some of those tests may need correction. # just make sure you know what your code does assert len(exp_replay) == 10000, "play_and_record should have added exactly 10000 steps, "\ "but instead added %i"%len(exp_replay) is_dones = list(zip(*exp_replay._storage))[-1] assert 0 < np.mean(is_dones) < 0.1, "Please make sure you restart the game whenever it is 'done' and record the is_done correctly into the buffer."\ "Got %f is_done rate over %i steps. [If you think it's your tough luck, just re-run the test]"%(np.mean(is_dones), len(exp_replay)) for _ in range(100): obs_batch, act_batch, reward_batch, next_obs_batch, is_done_batch = exp_replay.sample(10) assert obs_batch.shape == next_obs_batch.shape == (10,) + state_dim assert act_batch.shape == (10,), "actions batch should have shape (10,) but is instead %s"%str(act_batch.shape) assert reward_batch.shape == (10,), "rewards batch should have shape (10,) but is instead %s"%str(reward_batch.shape) assert is_done_batch.shape == (10,), "is_done batch should have shape (10,) but is instead %s"%str(is_done_batch.shape) assert [int(i) in (0,1) for i in is_dones], "is_done should be strictly True or False" assert [0 <= a <= n_actions for a in act_batch], "actions should be within [0, n_actions]" print("Well done!") ###Output _____no_output_____ ###Markdown Target networksWe also employ the so called "target network" - a copy of neural network weights to be used for reference Q-values:The network itself is an exact copy of agent network, but it's parameters are not trained. Instead, they are moved here from agent's actual network every so often.$$ Q_{reference}(s,a) = r + \gamma \cdot \max _{a'} Q_{target}(s',a') $$![img](https://github.com/yandexdataschool/Practical_RL/raw/master/yet_another_week/_resource/target_net.png) ###Code target_network = DQNAgent("target_network", state_dim, n_actions) def load_weigths_into_target_network(agent, target_network): """ assign target_network.weights variables to their respective agent.weights values. """ assigns = [] for w_agent, w_target in zip(agent.weights, target_network.weights): assigns.append(tf.assign(w_target, w_agent, validate_shape=True)) # tf.get_default_session().run(assigns) return assigns # create the tf copy graph only once. copy_step=load_weigths_into_target_network(agent, target_network) sess.run(copy_step) # check that it works sess.run([tf.assert_equal(w, w_target) for w, w_target in zip(agent.weights, target_network.weights)]); print("It works!") ###Output _____no_output_____ ###Markdown Learning with... Q-learningHere we write a function similar to `agent.update` from tabular q-learning. ###Code # placeholders that will be fed with exp_replay.sample(batch_size) obs_ph = tf.placeholder(tf.float32, shape=(None,) + state_dim) actions_ph = tf.placeholder(tf.int32, shape=[None]) rewards_ph = tf.placeholder(tf.float32, shape=[None]) next_obs_ph = tf.placeholder(tf.float32, shape=(None,) + state_dim) is_done_ph = tf.placeholder(tf.float32, shape=[None]) is_not_done = 1 - is_done_ph gamma = 0.99 ###Output _____no_output_____ ###Markdown Take q-values for actions agent just took ###Code current_qvalues = agent.get_symbolic_qvalues(obs_ph) current_action_qvalues = tf.reduce_sum(tf.one_hot(actions_ph, n_actions) * current_qvalues, axis=1) ###Output _____no_output_____ ###Markdown Compute Q-learning TD error:$$ L = { 1 \over N} \sum_i [ Q_{\theta}(s,a) - Q_{reference}(s,a) ] ^2 $$With Q-reference defined as$$ Q_{reference}(s,a) = r(s,a) + \gamma \cdot max_{a'} Q_{target}(s', a') $$Where* $Q_{target}(s',a')$ denotes q-value of next state and next action predicted by __target_network__* $s, a, r, s'$ are current state, action, reward and next state respectively* $\gamma$ is a discount factor defined two cells above. ###Code next_qvalues_target = ### YOUR CODE: compute q-values for NEXT states with target network next_state_values_target = ### YOUR CODE: compute state values by taking max over next_qvalues_target for all actions reference_qvalues = ### YOUR CODE: compute Q_reference(s,a) as per formula above # Define loss function for sgd. td_loss = (current_action_qvalues - reference_qvalues) ** 2 td_loss = tf.reduce_mean(td_loss) train_step = tf.train.AdamOptimizer(1e-3).minimize(td_loss, var_list=agent.weights) sess.run(tf.global_variables_initializer()) for chk_grad in tf.gradients(reference_qvalues, agent.weights): error_msg = "Reference q-values should have no gradient w.r.t. agent weights. Make sure you used target_network qvalues! " error_msg += "If you know what you're doing, ignore this assert." assert chk_grad is None or np.allclose(sess.run(chk_grad), sess.run(chk_grad * 0)), error_msg assert tf.gradients(reference_qvalues, is_not_done)[0] is not None, "make sure you used is_not_done" assert tf.gradients(reference_qvalues, rewards_ph)[0] is not None, "make sure you used rewards" assert tf.gradients(reference_qvalues, next_obs_ph)[0] is not None, "make sure you used next states" assert tf.gradients(reference_qvalues, obs_ph)[0] is None, "reference qvalues shouldn't depend on current observation!" # ignore if you're certain it's ok print("Splendid!") ###Output _____no_output_____ ###Markdown Main loopIt's time to put everything together and see if it learns anything. ###Code from tqdm import trange from IPython.display import clear_output import matplotlib.pyplot as plt from pandas import DataFrame moving_average = lambda x, span=100, **kw: DataFrame({'x':np.asarray(x)}).x.ewm(span=span, **kw).mean().values %matplotlib inline mean_rw_history = [] td_loss_history = [] exp_replay = ReplayBuffer(10**5) play_and_record(agent, env, exp_replay, n_steps=10000) def sample_batch(exp_replay, batch_size): obs_batch, act_batch, reward_batch, next_obs_batch, is_done_batch = exp_replay.sample(batch_size) return { obs_ph:obs_batch, actions_ph:act_batch, rewards_ph:reward_batch, next_obs_ph:next_obs_batch, is_done_ph:is_done_batch } for i in trange(10**5): # play play_and_record(agent, env, exp_replay, 10) # train _, loss_t = sess.run([train_step, td_loss], sample_batch(exp_replay, batch_size=64)) td_loss_history.append(loss_t) # adjust agent parameters if i % 500 == 0: #load_weigths_into_target_network(agent, target_network) #calling 'load_weights_into_target_network' repeatedly cause creating tf copy operator #again and again, which bloat memory consumption along training step #create'copy_step' once sess.run(copy_step) agent.epsilon = max(agent.epsilon * 0.99, 0.01) mean_rw_history.append(evaluate(make_env(), agent, n_games=3)) if i % 100 == 0: clear_output(True) print("buffer size = %i, epsilon = %.5f" % (len(exp_replay), agent.epsilon)) plt.subplot(1,2,1) plt.title("mean reward per game") plt.plot(mean_rw_history) plt.grid() assert not np.isnan(loss_t) plt.figure(figsize=[12, 4]) plt.subplot(1,2,2) plt.title("TD loss history (moving average)") plt.plot(moving_average(np.array(td_loss_history), span=100, min_periods=100)) plt.grid() plt.show() assert np.mean(mean_rw_history[-10:]) > 10. print("That's good enough for tutorial.") ###Output _____no_output_____ ###Markdown __ How to interpret plots: __This aint no supervised learning so don't expect anything to improve monotonously. * __ TD loss __ is the MSE between agent's current Q-values and target Q-values. It may slowly increase or decrease, it's ok. The "not ok" behavior includes going NaN or stayng at exactly zero before agent has perfect performance.* __ mean reward__ is the expected sum of r(s,a) agent gets over the full game session. It will oscillate, but on average it should get higher over time (after a few thousand iterations...). * In basic q-learning implementation it takes 5-10k steps to "warm up" agent before it starts to get better.* __ buffer size__ - this one is simple. It should go up and cap at max size.* __ epsilon__ - agent's willingness to explore. If you see that agent's already at 0.01 epsilon before it's average reward is above 0 - __ it means you need to increase epsilon__. Set it back to some 0.2 - 0.5 and decrease the pace at which it goes down.* Also please ignore first 100-200 steps of each plot - they're just oscillations because of the way moving average works.At first your agent will lose quickly. Then it will learn to suck less and at least hit the ball a few times before it loses. Finally it will learn to actually score points.__Training will take time.__ A lot of it actually. An optimistic estimate is to say it's gonna start winning (average reward > 10) after 10k steps. But hey, look on the bright side of things:![img](https://github.com/yandexdataschool/Practical_RL/raw/master/yet_another_week/_resource/training.png) Video ###Code agent.epsilon=0 # Don't forget to reset epsilon back to previous value if you want to go on training #record sessions import gym.wrappers env_monitor = gym.wrappers.Monitor(make_env(),directory="videos",force=True) sessions = [evaluate(env_monitor, agent, n_games=1) for _ in range(100)] env_monitor.close() #show video from IPython.display import HTML import os video_names = list(filter(lambda s:s.endswith(".mp4"),os.listdir("./videos/"))) HTML(""" <video width="640" height="480" controls> <source src="{}" type="video/mp4"> </video> """.format("./videos/"+video_names[-1])) #this may or may not be _last_ video. Try other indices ###Output _____no_output_____ ###Markdown Deep Q-Network implementationThis notebook shamelessly demands you to implement a DQN - an approximate q-learning algorithm with experience replay and target networks - and see if it works any better this way. ###Code #XVFB will be launched if you run on a server import os if type(os.environ.get("DISPLAY")) is not str or len(os.environ.get("DISPLAY"))==0: !bash ../xvfb start %env DISPLAY=:1 ###Output _____no_output_____ ###Markdown __Frameworks__ - we'll accept this homework in any deep learning framework. This particular notebook was designed for tensorflow, but you will find it easy to adapt it to almost any python-based deep learning framework. ###Code import gym import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline ###Output _____no_output_____ ###Markdown Let's play some old videogames![img](https://s17.postimg.org/y9xcab74f/nerd.png)This time we're gonna apply approximate q-learning to an atari game called Breakout. It's not the hardest thing out there, but it's definitely way more complex than anything we tried before. Processing game image Raw atari images are large, 210x160x3 by default. However, we don't need that level of detail in order to learn them.We can thus save a lot of time by preprocessing game image, including* Resizing to a smaller shape, 64 x 64* Converting to grayscale* Cropping irrelevant image parts (top & bottom) ###Code from gym.core import ObservationWrapper from gym.spaces import Box from scipy.misc import imresize class PreprocessAtari(ObservationWrapper): def __init__(self, env): """A gym wrapper that crops, scales image into the desired shapes and optionally grayscales it.""" ObservationWrapper.__init__(self,env) self.img_size = (64, 64) self.observation_space = Box(0.0, 1.0, self.img_size) def _observation(self, img): """what happens to each observation""" # Here's what you need to do: # * crop image, remove irrelevant parts # * resize image to self.img_size # (use imresize imported above or any library you want, # e.g. opencv, skimage, PIL, keras) # * cast image to grayscale # * convert image pixels to (0,1) range, float32 type <Your code here> return <...> import gym #spawn game instance for tests env = gym.make("BreakoutDeterministic-v0") #create raw env env = PreprocessAtari(env) observation_shape = env.observation_space.shape n_actions = env.action_space.n obs = env.reset() #test observation assert obs.ndim == 3, "observation must be [batch, time, channels] even if there's just one channel" assert obs.shape == observation_shape assert obs.dtype == 'float32' assert len(np.unique(obs))>2, "your image must not be binary" assert 0 <= np.min(obs) and np.max(obs) <=1, "convert image pixels to (0,1) range" print "Formal tests seem fine. Here's an example of what you'll get." plt.title("what your network gonna see") plt.imshow(obs,interpolation='none',cmap='gray'); ###Output _____no_output_____ ###Markdown Frame bufferOur agent can only process one observation at a time, so we gotta make sure it contains enough information to fing optimal actions. For instance, agent has to react to moving objects so he must be able to measure object's velocity.To do so, we introduce a buffer that stores 4 last images. This time everything is pre-implemented for you. ###Code from framebuffer import FrameBuffer def make_env(): env = gym.make("BreakoutDeterministic-v4") env = PreprocessAtari(env) env = FrameBuffer(env, n_frames=4, dim_order='tensorflow') return env env = make_env() env.reset() n_actions = env.action_space.n state_dim = env.observation_space.shape for _ in range(50): obs, _, _, _ = env.step(env.action_space.sample()) plt.title("Game image") plt.imshow(env.render("rgb_array")) plt.show() plt.title("Agent observation (4 frames left to right)") plt.imshow(obs.transpose([0,2,1]).reshape([state_dim[0],-1])); ###Output _____no_output_____ ###Markdown Building a networkWe now need to build a neural network that can map images to state q-values. This network will be called on every agent's step so it better not be resnet-152 unless you have an array of GPUs. Instead, you can use strided convolutions with a small number of features to save time and memory.You can build any architecture you want, but for reference, here's something that will more or less work: ![img](https://s17.postimg.org/ogg4xo51r/dqn_arch.png) ###Code import tensorflow as tf tf.reset_default_graph() sess = tf.InteractiveSession() from keras.layers import Conv2D, Dense, Flatten class DQNAgent: def __init__(self, name, state_shape, n_actions, epsilon=0, reuse=False): """A simple DQN agent""" with tf.variable_scope(name, reuse=reuse): < Define your network body here. Please make sure you don't use any layers created elsewhere > # prepare a graph for agent step self.state_t = tf.placeholder('float32', [None,] + list(state_shape)) self.qvalues_t = self.get_symbolic_qvalues(self.state_t) self.weights = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=name) self.epsilon = epsilon def get_symbolic_qvalues(self, state_t): """takes agent's observation, returns qvalues. Both are tf Tensors""" < apply your network layers here > qvalues = < symbolic tensor for q-values > assert tf.is_numeric_tensor(qvalues) and qvalues.shape.ndims == 2, \ "please return 2d tf tensor of qvalues [you got %s]" % repr(qvalues) assert int(qvalues.shape[1]) == n_actions return qvalues def get_qvalues(self, state_t): """Same as symbolic step except it operates on numpy arrays""" sess = tf.get_default_session() return sess.run(self.qvalues_t, {self.state_t: state_t}) def sample_actions(self, qvalues): """pick actions given qvalues. Uses epsilon-greedy exploration strategy. """ epsilon = self.epsilon batch_size, n_actions = qvalues.shape random_actions = np.random.choice(n_actions, size=batch_size) best_actions = qvalues.argmax(axis=-1) should_explore = np.random.choice([0, 1], batch_size, p = [1-epsilon, epsilon]) return np.where(should_explore, random_actions, best_actions) agent = DQNAgent("dqn_agent", state_dim, n_actions, epsilon=0.5) sess.run(tf.global_variables_initializer()) ###Output _____no_output_____ ###Markdown Now let's try out our agent to see if it raises any errors. ###Code def evaluate(env, agent, n_games=1, greedy=False, t_max=10000): """ Plays n_games full games. If greedy, picks actions as argmax(qvalues). Returns mean reward. """ rewards = [] for _ in range(n_games): s = env.reset() reward = 0 for _ in range(t_max): qvalues = agent.get_qvalues([s]) action = qvalues.argmax(axis=-1)[0] if greedy else agent.sample_actions(qvalues)[0] s, r, done, _ = env.step(action) reward += r if done: break rewards.append(reward) return np.mean(rewards) evaluate(env, agent, n_games=1) ###Output _____no_output_____ ###Markdown Experience replayFor this assignment, we provide you with experience replay buffer. If you implemented experience replay buffer in last week's assignment, you can copy-paste it here __to get 2 bonus points__.![img](https://s17.postimg.org/ms4zvqj4v/exp_replay.png) The interface is fairly simple:* `exp_replay.add(obs, act, rw, next_obs, done)` - saves (s,a,r,s',done) tuple into the buffer* `exp_replay.sample(batch_size)` - returns observations, actions, rewards, next_observations and is_done for `batch_size` random samples.* `len(exp_replay)` - returns number of elements stored in replay buffer. ###Code from replay_buffer import ReplayBuffer exp_replay = ReplayBuffer(10) for _ in range(30): exp_replay.add(env.reset(), env.action_space.sample(), 1.0, env.reset(), done=False) obs_batch, act_batch, reward_batch, next_obs_batch, is_done_batch = exp_replay.sample(5) assert len(exp_replay) == 10, "experience replay size should be 10 because that's what maximum capacity is" def play_and_record(agent, env, exp_replay, n_steps=1): """ Play the game for exactly n steps, record every (s,a,r,s', done) to replay buffer. Whenever game ends, add record with done=True and reset the game. It is guaranteed that env has done=False when passed to this function. PLEASE DO NOT RESET ENV UNLESS IT IS "DONE" :returns: return sum of rewards over time """ # initial state s = env.framebuffer # Play the game for n_steps as per instructions above <YOUR CODE> # testing your code. This may take a minute... exp_replay = ReplayBuffer(20000) play_and_record(agent, env, exp_replay, n_steps=10000) # if you're using your own experience replay buffer, some of those tests may need correction. # just make sure you know what your code does assert len(exp_replay) == 10000, "play_and_record should have added exactly 10000 steps, "\ "but instead added %i"%len(exp_replay) is_dones = list(zip(*exp_replay._storage))[-1] assert 0 < np.mean(is_dones) < 0.1, "Please make sure you restart the game whenever it is 'done' and record the is_done correctly into the buffer."\ "Got %f is_done rate over %i steps. [If you think it's your tough luck, just re-run the test]"%(np.mean(is_dones), len(exp_replay)) for _ in range(100): obs_batch, act_batch, reward_batch, next_obs_batch, is_done_batch = exp_replay.sample(10) assert obs_batch.shape == next_obs_batch.shape == (10,) + state_dim assert act_batch.shape == (10,), "actions batch should have shape (10,) but is instead %s"%str(act_batch.shape) assert reward_batch.shape == (10,), "rewards batch should have shape (10,) but is instead %s"%str(reward_batch.shape) assert is_done_batch.shape == (10,), "is_done batch should have shape (10,) but is instead %s"%str(is_done_batch.shape) assert [int(i) in (0,1) for i in is_dones], "is_done should be strictly True or False" assert [0 <= a <= n_actions for a in act_batch], "actions should be within [0, n_actions]" print("Well done!") ###Output _____no_output_____ ###Markdown Target networksWe also employ the so called "target network" - a copy of neural network weights to be used for reference Q-values:The network itself is an exact copy of agent network, but it's parameters are not trained. Instead, they are moved here from agent's actual network every so often.$$ Q_{reference}(s,a) = r + \gamma \cdot \max _{a'} Q_{target}(s',a') $$![img](https://s17.postimg.org/x3hcoi5q7/taget_net.png) ###Code target_network = DQNAgent("target_network", state_dim, n_actions) def load_weigths_into_target_network(agent, target_network): """ assign target_network.weights variables to their respective agent.weights values. """ assigns = [] for w_agent, w_target in zip(agent.weights, target_network.weights): assigns.append(tf.assign(w_target, w_agent, validate_shape=True)) tf.get_default_session().run(assigns) load_weigths_into_target_network(agent, target_network) # check that it works sess.run([tf.assert_equal(w, w_target) for w, w_target in zip(agent.weights, target_network.weights)]); print("It works!") ###Output _____no_output_____ ###Markdown Learning with... Q-learningHere we write a function similar to `agent.update` from tabular q-learning. ###Code # placeholders that will be fed with exp_replay.sample(batch_size) obs_ph = tf.placeholder(tf.float32, shape=(None,) + state_dim) actions_ph = tf.placeholder(tf.int32, shape=[None]) rewards_ph = tf.placeholder(tf.float32, shape=[None]) next_obs_ph = tf.placeholder(tf.float32, shape=(None,) + state_dim) is_done_ph = tf.placeholder(tf.float32, shape=[None]) is_not_done = 1 - is_done_ph gamma = 0.99 ###Output _____no_output_____ ###Markdown Deep Q-Network implementationThis notebook shamelessly demands you to implement a DQN - an approximate q-learning algorithm with experience replay and target networks - and see if it works any better this way. ###Code #XVFB will be launched if you run on a server import os #if type(os.environ.get("DISPLAY")) is not str or len(os.environ.get("DISPLAY"))==0: # !bash ../xvfb start # %env DISPLAY=:1 ###Output _____no_output_____ ###Markdown __Frameworks__ - we'll accept this homework in any deep learning framework. This particular notebook was designed for tensorflow, but you will find it easy to adapt it to almost any python-based deep learning framework. ###Code import gym import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline ###Output _____no_output_____ ###Markdown Let's play some old videogames![img](https://github.com/yandexdataschool/Practical_RL/raw/master/yet_another_week/_resource/nerd.png)This time we're gonna apply approximate q-learning to an atari game called Breakout. It's not the hardest thing out there, but it's definitely way more complex than anything we tried before. Processing game image Raw atari images are large, 210x160x3 by default. However, we don't need that level of detail in order to learn them.We can thus save a lot of time by preprocessing game image, including* Resizing to a smaller shape, 64 x 64* Converting to grayscale* Cropping irrelevant image parts (top & bottom) ###Code from skimage.transform import resize from skimage.color import rgb2gray, gray2rgb from skimage import img_as_float from gym.core import ObservationWrapper from gym.spaces import Box class PreprocessAtari(ObservationWrapper): def __init__(self, env): """A gym wrapper that crops, scales image into the desired shapes and optionally grayscales it.""" ObservationWrapper.__init__(self,env) self.img_size = (64, 64) self.observation_space = Box(0.0, 1.0, (self.img_size[0], self.img_size[1], 1)) def _observation(self, img): """what happens to each observation""" # Here's what you need to do: # * crop image, remove irrelevant parts # * resize image to self.img_size # (use imresize imported above or any library you want, # e.g. opencv, skimage, PIL, keras) # * cast image to grayscale # * convert image pixels to (0,1) range, float32 type #<Your code here> img = img[50:-5,5:-5] img = resize(img, self.img_size) img = rgb2gray(img) img = np.expand_dims(img,-1) img = img_as_float(img) img = np.float32(img) #print(img.shape) return img import gym #spawn game instance for tests env = gym.make("BreakoutDeterministic-v0") #create raw env env = PreprocessAtari(env) observation_shape = env.observation_space.shape n_actions = env.action_space.n obs = env.reset() #test observation assert obs.ndim == 3, "observation must be [batch, time, channels] even if there's just one channel" assert obs.shape == observation_shape assert obs.dtype == 'float32' assert len(np.unique(obs))>2, "your image must not be binary" assert 0 <= np.min(obs) and np.max(obs) <=1, "convert image pixels to (0,1) range" print("Formal tests seem fine. Here's an example of what you'll get.") plt.title("what your network gonna see") plt.imshow(obs[:,:,0],interpolation='none',cmap='gray'); ###Output WARN: gym.spaces.Box autodetected dtype as <class 'numpy.float32'>. Please provide explicit dtype. WARN: <class '__main__.PreprocessAtari'> doesn't implement 'observation' method. Maybe it implements deprecated '_observation' method. Formal tests seem fine. Here's an example of what you'll get. ###Markdown Frame bufferOur agent can only process one observation at a time, so we gotta make sure it contains enough information to fing optimal actions. For instance, agent has to react to moving objects so he must be able to measure object's velocity.To do so, we introduce a buffer that stores 4 last images. This time everything is pre-implemented for you. ###Code from framebuffer import FrameBuffer def make_env(): env = gym.make("BreakoutDeterministic-v4") env = PreprocessAtari(env) env = FrameBuffer(env, n_frames=4, dim_order='tensorflow') return env env = make_env() env.reset() n_actions = env.action_space.n state_dim = env.observation_space.shape for _ in range(50): obs, _, _, _ = env.step(env.action_space.sample()) plt.title("Game image") plt.imshow(env.render("rgb_array")) plt.show() plt.title("Agent observation (4 frames left to right)") plt.imshow(obs.transpose([0,2,1]).reshape([state_dim[0],-1])); ###Output /home/sheshank/anaconda3/lib/python3.6/site-packages/skimage/transform/_warps.py:84: UserWarning: The default mode, 'constant', will be changed to 'reflect' in skimage 0.15. warn("The default mode, 'constant', will be changed to 'reflect' in " ###Markdown Building a networkWe now need to build a neural network that can map images to state q-values. This network will be called on every agent's step so it better not be resnet-152 unless you have an array of GPUs. Instead, you can use strided convolutions with a small number of features to save time and memory.You can build any architecture you want, but for reference, here's something that will more or less work: ![img](https://github.com/yandexdataschool/Practical_RL/raw/master/yet_another_week/_resource/dqn_arch.png) ###Code import tensorflow as tf tf.reset_default_graph() sess = tf.InteractiveSession() import keras.layers as L import keras class DQNAgent: def __init__(self, name, state_shape, n_actions, epsilon=0, reuse=False): """A simple DQN agent""" with tf.variable_scope(name, reuse=reuse): #< Define your network body here. Please make sure you don't use any layers created elsewhere > self.network = keras.models.Sequential() self.network.add(L.InputLayer(state_shape)) self.network.add(L.Conv2D(16, (3,3), strides=2, activation='relu')) self.network.add(L.Conv2D(32, (3,3), strides=2, activation='relu')) self.network.add(L.Conv2D(64, (3,3), strides=2, activation='relu')) self.network.add(L.Flatten()) self.network.add(L.Dense(256, activation='relu')) self.network.add(L.Dense(n_actions)) # prepare a graph for agent step self.state_t = tf.placeholder('float32', [None,] + list(state_shape)) self.qvalues_t = self.get_symbolic_qvalues(self.state_t) self.weights = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=name) self.epsilon = epsilon def get_symbolic_qvalues(self, state_t): """takes agent's observation, returns qvalues. Both are tf Tensors""" qvalues = self.network(state_t) #< apply your network layers here > #qvalues = < symbolic tensor for q-values > assert tf.is_numeric_tensor(qvalues) and qvalues.shape.ndims == 2, \ "please return 2d tf tensor of qvalues [you got %s]" % repr(qvalues) assert int(qvalues.shape[1]) == n_actions return qvalues def get_qvalues(self, state_t): """Same as symbolic step except it operates on numpy arrays""" sess = tf.get_default_session() return sess.run(self.qvalues_t, {self.state_t: state_t}) def sample_actions(self, qvalues): """pick actions given qvalues. Uses epsilon-greedy exploration strategy. """ epsilon = self.epsilon batch_size, n_actions = qvalues.shape random_actions = np.random.choice(n_actions, size=batch_size) best_actions = qvalues.argmax(axis=-1) should_explore = np.random.choice([0, 1], batch_size, p = [1-epsilon, epsilon]) return np.where(should_explore, random_actions, best_actions) agent = DQNAgent("dqn_agent", state_dim, n_actions, epsilon=0.5) sess.run(tf.global_variables_initializer()) ###Output _____no_output_____ ###Markdown Now let's try out our agent to see if it raises any errors. ###Code def evaluate(env, agent, n_games=1, greedy=False, t_max=10000): """ Plays n_games full games. If greedy, picks actions as argmax(qvalues). Returns mean reward. """ rewards = [] for _ in range(n_games): s = env.reset() reward = 0 for _ in range(t_max): qvalues = agent.get_qvalues([s]) action = qvalues.argmax(axis=-1)[0] if greedy else agent.sample_actions(qvalues)[0] s, r, done, _ = env.step(action) reward += r if done: break rewards.append(reward) return np.mean(rewards) evaluate(env, agent, n_games=1) ###Output /home/sheshank/anaconda3/lib/python3.6/site-packages/skimage/transform/_warps.py:84: UserWarning: The default mode, 'constant', will be changed to 'reflect' in skimage 0.15. warn("The default mode, 'constant', will be changed to 'reflect' in " ###Markdown Experience replayFor this assignment, we provide you with experience replay buffer. If you implemented experience replay buffer in last week's assignment, you can copy-paste it here __to get 2 bonus points__.![img](https://github.com/yandexdataschool/Practical_RL/raw/master/yet_another_week/_resource/exp_replay.png) The interface is fairly simple:* `exp_replay.add(obs, act, rw, next_obs, done)` - saves (s,a,r,s',done) tuple into the buffer* `exp_replay.sample(batch_size)` - returns observations, actions, rewards, next_observations and is_done for `batch_size` random samples.* `len(exp_replay)` - returns number of elements stored in replay buffer. ###Code from replay_buffer import ReplayBuffer exp_replay = ReplayBuffer(10) for _ in range(30): exp_replay.add(env.reset(), env.action_space.sample(), 1.0, env.reset(), done=False) obs_batch, act_batch, reward_batch, next_obs_batch, is_done_batch = exp_replay.sample(5) assert len(exp_replay) == 10, "experience replay size should be 10 because that's what maximum capacity is" def play_and_record(agent, env, exp_replay, n_steps=1): """ Play the game for exactly n steps, record every (s,a,r,s', done) to replay buffer. Whenever game ends, add record with done=True and reset the game. :returns: return sum of rewards over time Note: please do not env.reset() unless env is done. It is guaranteed that env has done=False when passed to this function. """ # State at the beginning of rollout s = env.framebuffer # Play the game for n_steps as per instructions above # <YOUR CODE> total_reward = 0.0 for _ in range(n_steps): qvalues = agent.get_qvalues([s]) action = agent.sample_actions(qvalues)[0] #print(action) next_s, r, done, _ = env.step(action) #print(done) exp_replay.add(s, action, r, next_s, done) total_reward +=r s = next_s if done: s = env.reset() return total_reward # testing your code. This may take a minute... exp_replay = ReplayBuffer(20000) play_and_record(agent, env, exp_replay, n_steps=10000) # if you're using your own experience replay buffer, some of those tests may need correction. # just make sure you know what your code does assert len(exp_replay) == 10000, "play_and_record should have added exactly 10000 steps, "\ "but instead added %i"%len(exp_replay) is_dones = list(zip(*exp_replay._storage))[-1] assert 0 < np.mean(is_dones) < 0.1, "Please make sure you restart the game whenever it is 'done' and record the is_done correctly into the buffer."\ "Got %f is_done rate over %i steps. [If you think it's your tough luck, just re-run the test]"%(np.mean(is_dones), len(exp_replay)) for _ in range(100): obs_batch, act_batch, reward_batch, next_obs_batch, is_done_batch = exp_replay.sample(10) assert obs_batch.shape == next_obs_batch.shape == (10,) + state_dim assert act_batch.shape == (10,), "actions batch should have shape (10,) but is instead %s"%str(act_batch.shape) assert reward_batch.shape == (10,), "rewards batch should have shape (10,) but is instead %s"%str(reward_batch.shape) assert is_done_batch.shape == (10,), "is_done batch should have shape (10,) but is instead %s"%str(is_done_batch.shape) assert [int(i) in (0,1) for i in is_dones], "is_done should be strictly True or False" assert [0 <= a <= n_actions for a in act_batch], "actions should be within [0, n_actions]" print("Well done!") ###Output /home/sheshank/anaconda3/lib/python3.6/site-packages/skimage/transform/_warps.py:84: UserWarning: The default mode, 'constant', will be changed to 'reflect' in skimage 0.15. warn("The default mode, 'constant', will be changed to 'reflect' in " ###Markdown Target networksWe also employ the so called "target network" - a copy of neural network weights to be used for reference Q-values:The network itself is an exact copy of agent network, but it's parameters are not trained. Instead, they are moved here from agent's actual network every so often.$$ Q_{reference}(s,a) = r + \gamma \cdot \max _{a'} Q_{target}(s',a') $$![img](https://github.com/yandexdataschool/Practical_RL/raw/master/yet_another_week/_resource/target_net.png) ###Code target_network = DQNAgent("target_network", state_dim, n_actions) def load_weigths_into_target_network(agent, target_network): """ assign target_network.weights variables to their respective agent.weights values. """ assigns = [] for w_agent, w_target in zip(agent.weights, target_network.weights): assigns.append(tf.assign(w_target, w_agent, validate_shape=True)) tf.get_default_session().run(assigns) load_weigths_into_target_network(agent, target_network) # check that it works sess.run([tf.assert_equal(w, w_target) for w, w_target in zip(agent.weights, target_network.weights)]); print("It works!") ###Output It works! ###Markdown Learning with... Q-learningHere we write a function similar to `agent.update` from tabular q-learning. ###Code # placeholders that will be fed with exp_replay.sample(batch_size) obs_ph = tf.placeholder(tf.float32, shape=(None,) + state_dim) actions_ph = tf.placeholder(tf.int32, shape=[None]) rewards_ph = tf.placeholder(tf.float32, shape=[None]) next_obs_ph = tf.placeholder(tf.float32, shape=(None,) + state_dim) is_done_ph = tf.placeholder(tf.float32, shape=[None]) is_not_done = 1 - is_done_ph gamma = 0.99 ###Output _____no_output_____ ###Markdown Take q-values for actions agent just took ###Code current_qvalues = agent.get_symbolic_qvalues(obs_ph) current_action_qvalues = tf.reduce_sum(tf.one_hot(actions_ph, n_actions) * current_qvalues, axis=1) ###Output _____no_output_____ ###Markdown Compute Q-learning TD error:$$ L = { 1 \over N} \sum_i [ Q_{\theta}(s,a) - Q_{reference}(s,a) ] ^2 $$With Q-reference defined as$$ Q_{reference}(s,a) = r(s,a) + \gamma \cdot max_{a'} Q_{target}(s', a') $$Where* $Q_{target}(s',a')$ denotes q-value of next state and next action predicted by __target_network__* $s, a, r, s'$ are current state, action, reward and next state respectively* $\gamma$ is a discount factor defined two cells above. ###Code # compute q-values for NEXT states with target network next_qvalues_target = target_network.get_symbolic_qvalues(next_obs_ph) #<YOUR CODE> # compute state values by taking max over next_qvalues_target for all actions next_state_values_target = tf.reduce_max(next_qvalues_target, axis=1) #<YOUR CODE> # compute Q_reference(s,a) as per formula above. reference_qvalues = rewards_ph + gamma * next_state_values_target * is_not_done #<YOUR CODE> # Define loss function for sgd. td_loss = (current_action_qvalues - tf.stop_gradient(reference_qvalues)) ** 2 td_loss = tf.reduce_mean(td_loss) train_step = tf.train.AdamOptimizer(1e-4).minimize(td_loss, var_list=agent.weights) sess.run(tf.global_variables_initializer()) for chk_grad in tf.gradients(reference_qvalues, agent.weights): error_msg = "Reference q-values should have no gradient w.r.t. agent weights. Make sure you used target_network qvalues! " error_msg += "If you know what you're doing, ignore this assert." assert chk_grad is None or np.allclose(sess.run(chk_grad), sess.run(chk_grad * 0)), error_msg assert tf.gradients(reference_qvalues, is_not_done)[0] is not None, "make sure you used is_not_done" assert tf.gradients(reference_qvalues, rewards_ph)[0] is not None, "make sure you used rewards" assert tf.gradients(reference_qvalues, next_obs_ph)[0] is not None, "make sure you used next states" assert tf.gradients(reference_qvalues, obs_ph)[0] is None, "reference qvalues shouldn't depend on current observation!" # ignore if you're certain it's ok print("Splendid!") ###Output Splendid! ###Markdown Main loopIt's time to put everything together and see if it learns anything. ###Code from tqdm import trange from IPython.display import clear_output import matplotlib.pyplot as plt from pandas import ewma %matplotlib inline mean_rw_history = [] td_loss_history = [] exp_replay = ReplayBuffer(10**5) play_and_record(agent, env, exp_replay, n_steps=10000) def sample_batch(exp_replay, batch_size): obs_batch, act_batch, reward_batch, next_obs_batch, is_done_batch = exp_replay.sample(batch_size) return { obs_ph:obs_batch, actions_ph:act_batch, rewards_ph:reward_batch, next_obs_ph:next_obs_batch, is_done_ph:is_done_batch } for i in trange(10**5): # play play_and_record(agent, env, exp_replay, 10) # train _, loss_t = sess.run([train_step, td_loss], sample_batch(exp_replay, batch_size=64)) td_loss_history.append(loss_t) # adjust agent parameters if i % 500 == 0: load_weigths_into_target_network(agent, target_network) agent.epsilon = max(agent.epsilon * 0.99, 0.01) mean_rw_history.append(evaluate(make_env(), agent, n_games=3)) if i % 100 == 0: clear_output(True) print("buffer size = %i, epsilon = %.5f" % (len(exp_replay), agent.epsilon)) plt.subplot(1,2,1) plt.title("mean reward per game") plt.plot(mean_rw_history) plt.grid() assert not np.isnan(loss_t) plt.figure(figsize=[12, 4]) plt.subplot(1,2,2) plt.title("TD loss history (moving average)") plt.plot(pd.ewma(np.array(td_loss_history), span=100, min_periods=100)) plt.grid() plt.show() assert np.mean(mean_rw_history[-10:]) > 10. print("That's good enough for tutorial.") ###Output That's good enough for tutorial. ###Markdown __ How to interpret plots: __This aint no supervised learning so don't expect anything to improve monotonously. * __ TD loss __ is the MSE between agent's current Q-values and target Q-values. It may slowly increase or decrease, it's ok. The "not ok" behavior includes going NaN or stayng at exactly zero before agent has perfect performance.* __ mean reward__ is the expected sum of r(s,a) agent gets over the full game session. It will oscillate, but on average it should get higher over time (after a few thousand iterations...). * In basic q-learning implementation it takes 5-10k steps to "warm up" agent before it starts to get better.* __ buffer size__ - this one is simple. It should go up and cap at max size.* __ epsilon__ - agent's willingness to explore. If you see that agent's already at 0.01 epsilon before it's average reward is above 0 - __ it means you need to increase epsilon__. Set it back to some 0.2 - 0.5 and decrease the pace at which it goes down.* Also please ignore first 100-200 steps of each plot - they're just oscillations because of the way moving average works.At first your agent will lose quickly. Then it will learn to suck less and at least hit the ball a few times before it loses. Finally it will learn to actually score points.__Training will take time.__ A lot of it actually. An optimistic estimate is to say it's gonna start winning (average reward > 10) after 10k steps. But hey, look on the bright side of things:![img](https://github.com/yandexdataschool/Practical_RL/raw/master/yet_another_week/_resource/training.png) Video ###Code agent.epsilon=0 # Don't forget to reset epsilon back to previous value if you want to go on training #record sessions import gym.wrappers env_monitor = gym.wrappers.Monitor(make_env(),directory="videos",force=True) sessions = [evaluate(env_monitor, agent, n_games=1) for _ in range(100)] env_monitor.close() #show video from IPython.display import HTML import os video_names = list(filter(lambda s:s.endswith(".mp4"),os.listdir("./videos/"))) HTML(""" <video width="640" height="480" controls> <source src="{}" type="video/mp4"> </video> """.format("./videos/"+video_names[-1])) #this may or may not be _last_ video. Try other indices ###Output _____no_output_____ ###Markdown Deep Q-Network implementationThis notebook shamelessly demands you to implement a DQN - an approximate q-learning algorithm with experience replay and target networks - and see if it works any better this way. ###Code # XVFB will be launched if you run on a server import os if type(os.environ.get("DISPLAY")) is not str or len(os.environ.get("DISPLAY")) == 0: !bash ../xvfb start %env DISPLAY = : 1 ###Output _____no_output_____ ###Markdown __Frameworks__ - we'll accept this homework in any deep learning framework. This particular notebook was designed for tensorflow, but you will find it easy to adapt it to almost any python-based deep learning framework. ###Code import gym import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline ###Output _____no_output_____ ###Markdown Let's play some old videogames![img](https://github.com/yandexdataschool/Practical_RL/raw/master/yet_another_week/_resource/nerd.png)This time we're gonna apply approximate q-learning to an atari game called Breakout. It's not the hardest thing out there, but it's definitely way more complex than anything we tried before. Processing game image Raw atari images are large, 210x160x3 by default. However, we don't need that level of detail in order to learn them.We can thus save a lot of time by preprocessing game image, including* Resizing to a smaller shape, 64 x 64* Converting to grayscale* Cropping irrelevant image parts (top & bottom) ###Code from gym.core import ObservationWrapper from gym.spaces import Box from scipy.misc import imresize class PreprocessAtari(ObservationWrapper): def __init__(self, env): """A gym wrapper that crops, scales image into the desired shapes and optionally grayscales it.""" ObservationWrapper.__init__(self, env) self.img_size = (64, 64) self.observation_space = Box(0.0, 1.0, self.img_size) def _observation(self, img): """what happens to each observation""" # Here's what you need to do: # * crop image, remove irrelevant parts # * resize image to self.img_size # (use imresize imported above or any library you want, # e.g. opencv, skimage, PIL, keras) # * cast image to grayscale # * convert image pixels to (0,1) range, float32 type <Your code here > return < ... > import gym # spawn game instance for tests env = gym.make("BreakoutDeterministic-v0") # create raw env env = PreprocessAtari(env) observation_shape = env.observation_space.shape n_actions = env.action_space.n obs = env.reset() # test observation assert obs.ndim == 3, "observation must be [batch, time, channels] even if there's just one channel" assert obs.shape == observation_shape assert obs.dtype == 'float32' assert len(np.unique(obs)) > 2, "your image must not be binary" assert 0 <= np.min(obs) and np.max( obs) <= 1, "convert image pixels to (0,1) range" print "Formal tests seem fine. Here's an example of what you'll get." plt.title("what your network gonna see") plt.imshow(obs, interpolation='none', cmap='gray') ###Output _____no_output_____ ###Markdown Frame bufferOur agent can only process one observation at a time, so we gotta make sure it contains enough information to fing optimal actions. For instance, agent has to react to moving objects so he must be able to measure object's velocity.To do so, we introduce a buffer that stores 4 last images. This time everything is pre-implemented for you. ###Code from framebuffer import FrameBuffer def make_env(): env = gym.make("BreakoutDeterministic-v4") env = PreprocessAtari(env) env = FrameBuffer(env, n_frames=4, dim_order='tensorflow') return env env = make_env() env.reset() n_actions = env.action_space.n state_dim = env.observation_space.shape for _ in range(50): obs, _, _, _ = env.step(env.action_space.sample()) plt.title("Game image") plt.imshow(env.render("rgb_array")) plt.show() plt.title("Agent observation (4 frames left to right)") plt.imshow(obs.transpose([0, 2, 1]).reshape([state_dim[0], -1])) ###Output _____no_output_____ ###Markdown Building a networkWe now need to build a neural network that can map images to state q-values. This network will be called on every agent's step so it better not be resnet-152 unless you have an array of GPUs. Instead, you can use strided convolutions with a small number of features to save time and memory.You can build any architecture you want, but for reference, here's something that will more or less work: ![img](https://github.com/yandexdataschool/Practical_RL/raw/master/yet_another_week/_resource/dqn_arch.png) ###Code import tensorflow as tf tf.reset_default_graph() sess = tf.InteractiveSession() from keras.layers import Conv2D, Dense, Flatten class DQNAgent: def __init__(self, name, state_shape, n_actions, epsilon=0, reuse=False): """A simple DQN agent""" with tf.variable_scope(name, reuse=reuse): < Define your network body here. Please make sure you don't use any layers created elsewhere > # prepare a graph for agent step self.state_t = tf.placeholder( 'float32', [None, ] + list(state_shape)) self.qvalues_t = self.get_symbolic_qvalues(self.state_t) self.weights = tf.get_collection( tf.GraphKeys.TRAINABLE_VARIABLES, scope=name) self.epsilon = epsilon def get_symbolic_qvalues(self, state_t): """takes agent's observation, returns qvalues. Both are tf Tensors""" < apply your network layers here > qvalues = < symbolic tensor for q-values > assert tf.is_numeric_tensor(qvalues) and qvalues.shape.ndims == 2, \ "please return 2d tf tensor of qvalues [you got %s]" % repr( qvalues) assert int(qvalues.shape[1]) == n_actions return qvalues def get_qvalues(self, state_t): """Same as symbolic step except it operates on numpy arrays""" sess = tf.get_default_session() return sess.run(self.qvalues_t, {self.state_t: state_t}) def sample_actions(self, qvalues): """pick actions given qvalues. Uses epsilon-greedy exploration strategy. """ epsilon = self.epsilon batch_size, n_actions = qvalues.shape random_actions = np.random.choice(n_actions, size=batch_size) best_actions = qvalues.argmax(axis=-1) should_explore = np.random.choice( [0, 1], batch_size, p=[1-epsilon, epsilon]) return np.where(should_explore, random_actions, best_actions) agent = DQNAgent("dqn_agent", state_dim, n_actions, epsilon=0.5) sess.run(tf.global_variables_initializer()) ###Output _____no_output_____ ###Markdown Now let's try out our agent to see if it raises any errors. ###Code def evaluate(env, agent, n_games=1, greedy=False, t_max=10000): """ Plays n_games full games. If greedy, picks actions as argmax(qvalues). Returns mean reward. """ rewards = [] for _ in range(n_games): s = env.reset() reward = 0 for _ in range(t_max): qvalues = agent.get_qvalues([s]) action = qvalues.argmax( axis=-1)[0] if greedy else agent.sample_actions(qvalues)[0] s, r, done, _ = env.step(action) reward += r if done: break rewards.append(reward) return np.mean(rewards) evaluate(env, agent, n_games=1) ###Output _____no_output_____ ###Markdown Experience replayFor this assignment, we provide you with experience replay buffer. If you implemented experience replay buffer in last week's assignment, you can copy-paste it here __to get 2 bonus points__.![img](https://github.com/yandexdataschool/Practical_RL/raw/master/yet_another_week/_resource/exp_replay.png) The interface is fairly simple:* `exp_replay.add(obs, act, rw, next_obs, done)` - saves (s,a,r,s',done) tuple into the buffer* `exp_replay.sample(batch_size)` - returns observations, actions, rewards, next_observations and is_done for `batch_size` random samples.* `len(exp_replay)` - returns number of elements stored in replay buffer. ###Code from replay_buffer import ReplayBuffer exp_replay = ReplayBuffer(10) for _ in range(30): exp_replay.add(env.reset(), env.action_space.sample(), 1.0, env.reset(), done=False) obs_batch, act_batch, reward_batch, next_obs_batch, is_done_batch = exp_replay.sample( 5) assert len(exp_replay) == 10, "experience replay size should be 10 because that's what maximum capacity is" def play_and_record(agent, env, exp_replay, n_steps=1): """ Play the game for exactly n steps, record every (s,a,r,s', done) to replay buffer. Whenever game ends, add record with done=True and reset the game. It is guaranteed that env has done=False when passed to this function. PLEASE DO NOT RESET ENV UNLESS IT IS "DONE" :returns: return sum of rewards over time """ # initial state s = env.framebuffer # Play the game for n_steps as per instructions above <YOUR CODE > # testing your code. This may take a minute... exp_replay = ReplayBuffer(20000) play_and_record(agent, env, exp_replay, n_steps=10000) # if you're using your own experience replay buffer, some of those tests may need correction. # just make sure you know what your code does assert len(exp_replay) == 10000, "play_and_record should have added exactly 10000 steps, "\ "but instead added %i" % len(exp_replay) is_dones = list(zip(*exp_replay._storage))[-1] assert 0 < np.mean(is_dones) < 0.1, "Please make sure you restart the game whenever it is 'done' and record the is_done correctly into the buffer."\ "Got %f is_done rate over %i steps. [If you think it's your tough luck, just re-run the test]" % ( np.mean(is_dones), len(exp_replay)) for _ in range(100): obs_batch, act_batch, reward_batch, next_obs_batch, is_done_batch = exp_replay.sample( 10) assert obs_batch.shape == next_obs_batch.shape == (10,) + state_dim assert act_batch.shape == ( 10,), "actions batch should have shape (10,) but is instead %s" % str(act_batch.shape) assert reward_batch.shape == ( 10,), "rewards batch should have shape (10,) but is instead %s" % str(reward_batch.shape) assert is_done_batch.shape == ( 10,), "is_done batch should have shape (10,) but is instead %s" % str(is_done_batch.shape) assert [int(i) in (0, 1) for i in is_dones], "is_done should be strictly True or False" assert [ 0 <= a <= n_actions for a in act_batch], "actions should be within [0, n_actions]" print("Well done!") ###Output _____no_output_____ ###Markdown Target networksWe also employ the so called "target network" - a copy of neural network weights to be used for reference Q-values:The network itself is an exact copy of agent network, but it's parameters are not trained. Instead, they are moved here from agent's actual network every so often.$$ Q_{reference}(s,a) = r + \gamma \cdot \max _{a'} Q_{target}(s',a') $$![img](https://github.com/yandexdataschool/Practical_RL/raw/master/yet_another_week/_resource/target_net.png) ###Code target_network = DQNAgent("target_network", state_dim, n_actions) def load_weigths_into_target_network(agent, target_network): """ assign target_network.weights variables to their respective agent.weights values. """ assigns = [] for w_agent, w_target in zip(agent.weights, target_network.weights): assigns.append(tf.assign(w_target, w_agent, validate_shape=True)) # tf.get_default_session().run(assigns) return assigns # create the tf copy graph only once. copy_step = load_weigths_into_target_network(agent, target_network) sess.run(copy_step) # check that it works sess.run([tf.assert_equal(w, w_target) for w, w_target in zip(agent.weights, target_network.weights)]) print("It works!") ###Output _____no_output_____ ###Markdown Learning with... Q-learningHere we write a function similar to `agent.update` from tabular q-learning. ###Code # placeholders that will be fed with exp_replay.sample(batch_size) obs_ph = tf.placeholder(tf.float32, shape=(None,) + state_dim) actions_ph = tf.placeholder(tf.int32, shape=[None]) rewards_ph = tf.placeholder(tf.float32, shape=[None]) next_obs_ph = tf.placeholder(tf.float32, shape=(None,) + state_dim) is_done_ph = tf.placeholder(tf.float32, shape=[None]) is_not_done = 1 - is_done_ph gamma = 0.99 ###Output _____no_output_____ ###Markdown Take q-values for actions agent just took ###Code current_qvalues = agent.get_symbolic_qvalues(obs_ph) current_action_qvalues = tf.reduce_sum(tf.one_hot( actions_ph, n_actions) * current_qvalues, axis=1) ###Output _____no_output_____ ###Markdown Compute Q-learning TD error:$$ L = { 1 \over N} \sum_i [ Q_{\theta}(s,a) - Q_{reference}(s,a) ] ^2 $$With Q-reference defined as$$ Q_{reference}(s,a) = r(s,a) + \gamma \cdot max_{a'} Q_{target}(s', a') $$Where* $Q_{target}(s',a')$ denotes q-value of next state and next action predicted by __target_network__* $s, a, r, s'$ are current state, action, reward and next state respectively* $\gamma$ is a discount factor defined two cells above. ###Code next_qvalues_target = # YOUR CODE: compute q-values for NEXT states with target network # YOUR CODE: compute state values by taking max over next_qvalues_target for all actions next_state_values_target = reference_qvalues = # YOUR CODE: compute Q_reference(s,a) as per formula above # Define loss function for sgd. td_loss = (current_action_qvalues - reference_qvalues) ** 2 td_loss = tf.reduce_mean(td_loss) train_step = tf.train.AdamOptimizer( 1e-3).minimize(td_loss, var_list=agent.weights) sess.run(tf.global_variables_initializer()) for chk_grad in tf.gradients(reference_qvalues, agent.weights): error_msg = "Reference q-values should have no gradient w.r.t. agent weights. Make sure you used target_network qvalues! " error_msg += "If you know what you're doing, ignore this assert." assert chk_grad is None or np.allclose( sess.run(chk_grad), sess.run(chk_grad * 0)), error_msg assert tf.gradients(reference_qvalues, is_not_done)[ 0] is not None, "make sure you used is_not_done" assert tf.gradients(reference_qvalues, rewards_ph)[ 0] is not None, "make sure you used rewards" assert tf.gradients(reference_qvalues, next_obs_ph)[ 0] is not None, "make sure you used next states" assert tf.gradients(reference_qvalues, obs_ph)[ 0] is None, "reference qvalues shouldn't depend on current observation!" # ignore if you're certain it's ok print("Splendid!") ###Output _____no_output_____ ###Markdown Main loopIt's time to put everything together and see if it learns anything. ###Code from tqdm import trange from IPython.display import clear_output import matplotlib.pyplot as plt from pandas import DataFrame moving_average = lambda x, span=100, **kw: DataFrame( {'x': np.asarray(x)}).x.ewm(span=span, **kw).mean().values %matplotlib inline mean_rw_history = [] td_loss_history = [] exp_replay = ReplayBuffer(10**5) play_and_record(agent, env, exp_replay, n_steps=10000) def sample_batch(exp_replay, batch_size): obs_batch, act_batch, reward_batch, next_obs_batch, is_done_batch = exp_replay.sample( batch_size) return { obs_ph: obs_batch, actions_ph: act_batch, rewards_ph: reward_batch, next_obs_ph: next_obs_batch, is_done_ph: is_done_batch } for i in trange(10**5): # play play_and_record(agent, env, exp_replay, 10) # train _, loss_t = sess.run([train_step, td_loss], sample_batch(exp_replay, batch_size=64)) td_loss_history.append(loss_t) # adjust agent parameters if i % 500 == 0: #load_weigths_into_target_network(agent, target_network) # calling 'load_weights_into_target_network' repeatedly cause creating tf copy operator # again and again, which bloat memory consumption along training step # create'copy_step' once sess.run(copy_step) agent.epsilon = max(agent.epsilon * 0.99, 0.01) mean_rw_history.append(evaluate(make_env(), agent, n_games=3)) if i % 100 == 0: clear_output(True) print("buffer size = %i, epsilon = %.5f" % (len(exp_replay), agent.epsilon)) plt.subplot(1, 2, 1) plt.title("mean reward per game") plt.plot(mean_rw_history) plt.grid() assert not np.isnan(loss_t) plt.figure(figsize=[12, 4]) plt.subplot(1, 2, 2) plt.title("TD loss history (moving average)") plt.plot(moving_average( np.array(td_loss_history), span=100, min_periods=100)) plt.grid() plt.show() assert np.mean(mean_rw_history[-10:]) > 10. print("That's good enough for tutorial.") ###Output _____no_output_____ ###Markdown __ How to interpret plots: __This aint no supervised learning so don't expect anything to improve monotonously. * __ TD loss __ is the MSE between agent's current Q-values and target Q-values. It may slowly increase or decrease, it's ok. The "not ok" behavior includes going NaN or stayng at exactly zero before agent has perfect performance.* __ mean reward__ is the expected sum of r(s,a) agent gets over the full game session. It will oscillate, but on average it should get higher over time (after a few thousand iterations...). * In basic q-learning implementation it takes 5-10k steps to "warm up" agent before it starts to get better.* __ buffer size__ - this one is simple. It should go up and cap at max size.* __ epsilon__ - agent's willingness to explore. If you see that agent's already at 0.01 epsilon before it's average reward is above 0 - __ it means you need to increase epsilon__. Set it back to some 0.2 - 0.5 and decrease the pace at which it goes down.* Also please ignore first 100-200 steps of each plot - they're just oscillations because of the way moving average works.At first your agent will lose quickly. Then it will learn to suck less and at least hit the ball a few times before it loses. Finally it will learn to actually score points.__Training will take time.__ A lot of it actually. An optimistic estimate is to say it's gonna start winning (average reward > 10) after 10k steps. But hey, look on the bright side of things:![img](https://github.com/yandexdataschool/Practical_RL/raw/master/yet_another_week/_resource/training.png) Video ###Code # Don't forget to reset epsilon back to previous value if you want to go on training agent.epsilon = 0 # record sessions import gym.wrappers env_monitor = gym.wrappers.Monitor(make_env(), directory="videos", force=True) sessions = [evaluate(env_monitor, agent, n_games=1) for _ in range(100)] env_monitor.close() # show video from IPython.display import HTML import os video_names = list( filter(lambda s: s.endswith(".mp4"), os.listdir("./videos/"))) HTML(""" <video width="640" height="480" controls> <source src="{}" type="video/mp4"> </video> """.format("./videos/"+video_names[-1])) # this may or may not be _last_ video. Try other indices ###Output _____no_output_____ ###Markdown Deep Q-Network implementationThis notebook shamelessly demands you to implement a DQN - an approximate q-learning algorithm with experience replay and target networks - and see if it works any better this way. ###Code #XVFB will be launched if you run on a server import os if os.environ.get("DISPLAY") is not str or len(os.environ.get("DISPLAY"))==0: !bash ../xvfb start %env DISPLAY=:1 ###Output _____no_output_____ ###Markdown __Frameworks__ - we'll accept this homework in any deep learning framework. This particular notebook was designed for tensorflow, but you will find it easy to adapt it to almost any python-based deep learning framework. ###Code import gym import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline ###Output _____no_output_____ ###Markdown Let's play some old videogames![img](https://s17.postimg.org/y9xcab74f/nerd.png)This time we're gonna apply approximate q-learning to an atari game called Breakout. It's not the hardest thing out there, but it's definitely way more complex than anything we tried before. Processing game image Raw atari images are large, 210x160x3 by default. However, we don't need that level of detail in order to learn them.We can thus save a lot of time by preprocessing game image, including* Resizing to a smaller shape, 64 x 64* Converting to grayscale* Cropping irrelevant image parts (top & bottom) ###Code from gym.core import ObservationWrapper from gym.spaces import Box from scipy.misc import imresize class PreprocessAtari(ObservationWrapper): def __init__(self, env): """A gym wrapper that crops, scales image into the desired shapes and optionally grayscales it.""" ObservationWrapper.__init__(self,env) self.img_size = (64, 64) self.observation_space = Box(0.0, 1.0, self.img_size) def _observation(self, img): """what happens to each observation""" # Here's what you need to do: # * crop image, remove irrelevant parts # * resize image to self.img_size # (use imresize imported above or any library you want, # e.g. opencv, skimage, PIL, keras) # * cast image to grayscale # * convert image pixels to (0,1) range, float32 type <Your code here> return <...> import gym #spawn game instance for tests env = gym.make("BreakoutDeterministic-v0") #create raw env env = PreprocessAtari(env) observation_shape = env.observation_space.shape n_actions = env.action_space.n obs = env.reset() #test observation assert obs.ndim == 3, "observation must be [batch, time, channels] even if there's just one channel" assert obs.shape == observation_shape assert obs.dtype == 'float32' assert len(np.unique(obs))>2, "your image must not be binary" assert 0 <= np.min(obs) and np.max(obs) <=1, "convert image pixels to (0,1) range" print "Formal tests seem fine. Here's an example of what you'll get." plt.title("what your network gonna see") plt.imshow(obs,interpolation='none',cmap='gray'); ###Output _____no_output_____ ###Markdown Frame bufferOur agent can only process one observation at a time, so we gotta make sure it contains enough information to fing optimal actions. For instance, agent has to react to moving objects so he must be able to measure object's velocity.To do so, we introduce a buffer that stores 4 last images. This time everything is pre-implemented for you. ###Code from framebuffer import FrameBuffer def make_env(): env = gym.make("BreakoutDeterministic-v4") env = PreprocessAtari(env) env = FrameBuffer(env, n_frames=4, dim_order='tensorflow') return env env = make_env() env.reset() n_actions = env.action_space.n state_dim = env.observation_space.shape for _ in range(50): obs, _, _, _ = env.step(env.action_space.sample()) plt.title("Game image") plt.imshow(env.render("rgb_array")) plt.show() plt.title("Agent observation (4 frames left to right)") plt.imshow(obs.transpose([0,2,1]).reshape([state_dim[0],-1])); ###Output _____no_output_____ ###Markdown Building a networkWe now need to build a neural network that can map images to state q-values. This network will be called on every agent's step so it better not be resnet-152 unless you have an array of GPUs. Instead, you can use strided convolutions with a small number of features to save time and memory.You can build any architecture you want, but for reference, here's something that will more or less work: ![img](https://s17.postimg.org/ogg4xo51r/dqn_arch.png) ###Code import tensorflow as tf tf.reset_default_graph() sess = tf.InteractiveSession() from keras.layers import Conv2D, Dense, Flatten class DQNAgent: def __init__(self, name, state_shape, n_actions, epsilon=0, reuse=False): """A simple DQN agent""" with tf.variable_scope(name, reuse=reuse): < Define your network body here. Please make sure you don't use any layers created elsewhere > # prepare a graph for agent step self.state_t = tf.placeholder('float32', [None,] + list(state_shape)) self.qvalues_t = self.get_symbolic_qvalues(self.state_t) self.weights = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=name) self.epsilon = epsilon def get_symbolic_qvalues(self, state_t): """takes agent's observation, returns qvalues. Both are tf Tensors""" < apply your network layers here > qvalues = < symbolic tensor for q-values > assert tf.is_numeric_tensor(qvalues) and qvalues.shape.ndims == 2, \ "please return 2d tf tensor of qvalues [you got %s]" % repr(qvalues) assert int(qvalues.shape[1]) == n_actions return qvalues def get_qvalues(self, state_t): """Same as symbolic step except it operates on numpy arrays""" sess = tf.get_default_session() return sess.run(self.qvalues_t, {self.state_t: state_t}) def sample_actions(self, qvalues): """pick actions given qvalues. Uses epsilon-greedy exploration strategy. """ epsilon = self.epsilon batch_size, n_actions = qvalues.shape random_actions = np.random.choice(n_actions, size=batch_size) best_actions = qvalues.argmax(axis=-1) should_explore = np.random.choice([0, 1], batch_size, p = [1-epsilon, epsilon]) return np.where(should_explore, random_actions, best_actions) agent = DQNAgent("dqn_agent", state_dim, n_actions, epsilon=0.5) sess.run(tf.global_variables_initializer()) ###Output _____no_output_____ ###Markdown Now let's try out our agent to see if it raises any errors. ###Code def evaluate(env, agent, n_games=1, greedy=False, t_max=10000): """ Plays n_games full games. If greedy, picks actions as argmax(qvalues). Returns mean reward. """ rewards = [] for _ in range(n_games): s = env.reset() reward = 0 for _ in range(t_max): qvalues = agent.get_qvalues([s]) action = qvalues.argmax(axis=-1)[0] if greedy else agent.sample_actions(qvalues)[0] s, r, done, _ = env.step(action) reward += r if done: break rewards.append(reward) return np.mean(rewards) evaluate(env, agent, n_games=1) ###Output _____no_output_____ ###Markdown Experience replayFor this assignment, we provide you with experience replay buffer. If you implemented experience replay buffer in last week's assignment, you can copy-paste it here __to get 2 bonus points__.![img](https://s17.postimg.org/ms4zvqj4v/exp_replay.png) The interface is fairly simple:* `exp_replay.add(obs, act, rw, next_obs, done)` - saves (s,a,r,s',done) tuple into the buffer* `exp_replay.sample(batch_size)` - returns observations, actions, rewards, next_observations and is_done for `batch_size` random samples.* `len(exp_replay)` - returns number of elements stored in replay buffer. ###Code from replay_buffer import ReplayBuffer exp_replay = ReplayBuffer(10) for _ in range(30): exp_replay.add(env.reset(), env.action_space.sample(), 1.0, env.reset(), done=False) obs_batch, act_batch, reward_batch, next_obs_batch, is_done_batch = exp_replay.sample(5) assert len(exp_replay) == 10, "experience replay size should be 10 because that's what maximum capacity is" def play_and_record(agent, env, exp_replay, n_steps=1): """ Play the game for exactly n steps, record every (s,a,r,s', done) to replay buffer. Whenever game ends, add record with done=True and reset the game. It is guaranteed that env has done=False when passed to this function. :returns: return sum of rewards over time """ # Play the game for n_steps as per instructions above <YOUR CODE> # testing your code. This may take a minute... exp_replay = ReplayBuffer(20000) play_and_record(agent, env, exp_replay, n_steps=10000) # if you're using your own experience replay buffer, some of those tests may need correction. # just make sure you know what your code does assert len(exp_replay) == 10000, "play_and_record should have added exactly 10000 steps, "\ "but instead added %i"%len(exp_replay) is_dones = list(zip(*exp_replay._storage))[-1] assert 0 < np.mean(is_dones) < 0.1, "Please make sure you restart the game whenever it is 'done' and record the is_done correctly into the buffer."\ "Got %f is_done rate over %i steps. [If you think it's your tough luck, just re-run the test]"%(np.mean(is_dones), len(exp_replay)) for _ in range(100): obs_batch, act_batch, reward_batch, next_obs_batch, is_done_batch = exp_replay.sample(10) assert obs_batch.shape == next_obs_batch.shape == (10,) + state_dim assert act_batch.shape == (10,), "actions batch should have shape (10,) but is instead %s"%str(act_batch.shape) assert reward_batch.shape == (10,), "rewards batch should have shape (10,) but is instead %s"%str(reward_batch.shape) assert is_done_batch.shape == (10,), "is_done batch should have shape (10,) but is instead %s"%str(is_done_batch.shape) assert [int(i) in (0,1) for i in is_dones], "is_done should be strictly True or False" assert [0 <= a <= n_actions for a in act_batch], "actions should be within [0, n_actions]" print("Well done!") ###Output _____no_output_____ ###Markdown Target networksWe also employ the so called "target network" - a copy of neural network weights to be used for reference Q-values:The network itself is an exact copy of agent network, but it's parameters are not trained. Instead, they are moved here from agent's actual network every so often.$$ Q_{reference}(s,a) = r + \gamma \cdot \max _{a'} Q_{target}(s',a') $$![img](https://s17.postimg.org/x3hcoi5q7/taget_net.png) ###Code target_network = DQNAgent("target_network", state_dim, n_actions) def load_weigths_into_target_network(agent, target_network): """ assign target_network.weights variables to their respective agent.weights values. """ assigns = [] for w_agent, w_target in zip(agent.weights, target_network.weights): assigns.append(tf.assign(w_target, w_agent, validate_shape=True)) tf.get_default_session().run(assigns) load_weigths_into_target_network(agent, target_network) # check that it works sess.run([tf.assert_equal(w, w_target) for w, w_target in zip(agent.weights, target_network.weights)]); print("It works!") ###Output _____no_output_____ ###Markdown Learning with... Q-learningHere we write a function similar to `agent.update` from tabular q-learning. ###Code # placeholders that will be fed with exp_replay.sample(batch_size) obs_ph = tf.placeholder(tf.float32, shape=(None,) + state_dim) actions_ph = tf.placeholder(tf.int32, shape=[None]) rewards_ph = tf.placeholder(tf.float32, shape=[None]) next_obs_ph = tf.placeholder(tf.float32, shape=(None,) + state_dim) is_done_ph = tf.placeholder(tf.float32, shape=[None]) is_not_done = 1 - is_done_ph gamma = 0.99 ###Output _____no_output_____ ###Markdown Take q-values for actions agent just took ###Code current_qvalues = agent.get_symbolic_qvalues(obs_ph) current_action_qvalues = tf.reduce_sum(tf.one_hot(actions_ph, n_actions) * current_qvalues, axis=1) ###Output _____no_output_____ ###Markdown Compute Q-learning TD error:$$ L = { 1 \over N} \sum_i [ Q_{\theta}(s,a) - Q_{reference}(s,a) ] ^2 $$With Q-reference defined as$$ Q_{reference}(s,a) = r(s,a) + \gamma \cdot max_{a'} Q_{target}(s', a') $$Where* $Q_{target}(s',a')$ denotes q-value of next state and next action predicted by __target_network__* $s, a, r, s'$ are current state, action, reward and next state respectively* $\gamma$ is a discount factor defined two cells above. ###Code next_qvalues_target = ### YOUR CODE: compute q-values for NEXT states with target network next_state_values_target = ### YOUR CODE: compute state values by taking max over next_qvalues_target for all actions reference_qvalues = ### YOUR CODE: compute Q_reference(s,a) as per formula above # Define loss function for sgd. td_loss = (current_action_qvalues - reference_qvalues) ** 2 td_loss = tf.reduce_mean(td_loss) train_step = tf.train.AdamOptimizer(1e-3).minimize(td_loss, var_list=agent.weights) sess.run(tf.global_variables_initializer()) for chk_grad in tf.gradients(reference_qvalues, agent.weights): error_msg = "Reference q-values should have no gradient w.r.t. agent weights. Make sure you used target_network qvalues! " error_msg += "If you know what you're doing, ignore this assert." assert chk_grad is None or np.allclose(sess.run(chk_grad), sess.run(chk_grad * 0)), error_msg assert tf.gradients(reference_qvalues, is_not_done)[0] is not None, "make sure you used is_not_done" assert tf.gradients(reference_qvalues, rewards_ph)[0] is not None, "make sure you used rewards" assert tf.gradients(reference_qvalues, next_obs_ph)[0] is not None, "make sure you used next states" assert tf.gradients(reference_qvalues, obs_ph)[0] is None, "reference qvalues shouldn't depend on current observation!" # ignore if you're certain it's ok print("Splendid!") ###Output _____no_output_____ ###Markdown Main loopIt's time to put everything together and see if it learns anything. ###Code from tqdm import trange from IPython.display import clear_output import matplotlib.pyplot as plt from pandas import ewma %matplotlib inline mean_rw_history = [] td_loss_history = [] exp_replay = ReplayBuffer(10**5) play_and_record(agent, env, exp_replay, n_steps=10000) def sample_batch(exp_replay, batch_size): obs_batch, act_batch, reward_batch, next_obs_batch, is_done_batch = exp_replay.sample(batch_size) return { obs_ph:obs_batch, actions_ph:act_batch, rewards_ph:reward_batch, next_obs_ph:next_obs_batch, is_done_ph:is_done_batch } for i in trange(10**5): # play play_and_record(agent, env, exp_replay, 10) # train _, loss_t = sess.run([train_step, td_loss], sample_batch(exp_replay, batch_size=64)) td_loss_history.append(loss_t) # adjust agent parameters if i % 500 == 0: load_weigths_into_target_network(agent, target_network) agent.epsilon = max(agent.epsilon * 0.99, 0.01) mean_rw_history.append(evaluate(make_env(), agent, n_games=3)) if i % 100 == 0: clear_output(True) print("buffer size = %i, epsilon = %.5f" % (len(exp_replay), agent.epsilon)) plt.subplot(1,2,1) plt.title("mean reward per game") plt.plot(mean_rw_history) plt.grid() assert not np.isnan(loss_t) plt.figure(figsize=[12, 4]) plt.subplot(1,2,2) plt.title("TD loss history (moving average)") plt.plot(pd.ewma(np.array(td_loss_history), span=100, min_periods=100)) plt.grid() plt.show() assert np.mean(mean_rw_history[-10:]) > 10. print("That's good enough for tutorial.") ###Output _____no_output_____ ###Markdown __ How to interpret plots: __This aint no supervised learning so don't expect anything to improve monotonously. * __ TD loss __ is the MSE between agent's current Q-values and target Q-values. It may slowly increase or decrease, it's ok. The "not ok" behavior includes going NaN or stayng at exactly zero before agent has perfect performance.* __ mean reward__ is the expected sum of r(s,a) agent gets over the full game session. It will oscillate, but on average it should get higher over time (after a few thousand iterations...). * In basic q-learning implementation it takes 5-10k steps to "warm up" agent before it starts to get better.* __ buffer size__ - this one is simple. It should go up and cap at max size.* __ epsilon__ - agent's willingness to explore. If you see that agent's already at 0.01 epsilon before it's average reward is above 0 - __ it means you need to increase epsilon__. Set it back to some 0.2 - 0.5 and decrease the pace at which it goes down.* Also please ignore first 100-200 steps of each plot - they're just oscillations because of the way moving average works.At first your agent will lose quickly. Then it will learn to suck less and at least hit the ball a few times before it loses. Finally it will learn to actually score points.__Training will take time.__ A lot of it actually. An optimistic estimate is to say it's gonna start winning (average reward > 10) after 10k steps. But hey, look on the bright side of things:![img](https://s17.postimg.org/hy2v7r8hr/my_bot_is_training.png) Video ###Code agent.epsilon=0 # Don't forget to reset epsilon back to previous value if you want to go on training #record sessions import gym.wrappers env_monitor = gym.wrappers.Monitor(make_env(),directory="videos",force=True) sessions = [evaluate(env_monitor, agent, n_games=1) for _ in range(100)] env_monitor.close() #show video from IPython.display import HTML import os video_names = list(filter(lambda s:s.endswith(".mp4"),os.listdir("./videos/"))) HTML(""" <video width="640" height="480" controls> <source src="{}" type="video/mp4"> </video> """.format("./videos/"+video_names[-1])) #this may or may not be _last_ video. Try other indices ###Output _____no_output_____ ###Markdown Take q-values for actions agent just took ###Code current_qvalues = agent.get_symbolic_qvalues(obs_ph) current_action_qvalues = tf.reduce_sum(tf.one_hot(actions_ph, n_actions) * current_qvalues, axis=1) ###Output _____no_output_____ ###Markdown Compute Q-learning TD error:$$ L = { 1 \over N} \sum_i [ Q_{\theta}(s,a) - Q_{reference}(s,a) ] ^2 $$With Q-reference defined as$$ Q_{reference}(s,a) = r(s,a) + \gamma \cdot max_{a'} Q_{target}(s', a') $$Where* $Q_{target}(s',a')$ denotes q-value of next state and next action predicted by __target_network__* $s, a, r, s'$ are current state, action, reward and next state respectively* $\gamma$ is a discount factor defined two cells above. ###Code next_qvalues_target = ### YOUR CODE: compute q-values for NEXT states with target network next_state_values_target = ### YOUR CODE: compute state values by taking max over next_qvalues_target for all actions reference_qvalues = ### YOUR CODE: compute Q_reference(s,a) as per formula above # Define loss function for sgd. td_loss = (current_action_qvalues - reference_qvalues) ** 2 td_loss = tf.reduce_mean(td_loss) train_step = tf.train.AdamOptimizer(1e-3).minimize(td_loss, var_list=agent.weights) sess.run(tf.global_variables_initializer()) for chk_grad in tf.gradients(reference_qvalues, agent.weights): error_msg = "Reference q-values should have no gradient w.r.t. agent weights. Make sure you used target_network qvalues! " error_msg += "If you know what you're doing, ignore this assert." assert chk_grad is None or np.allclose(sess.run(chk_grad), sess.run(chk_grad * 0)), error_msg assert tf.gradients(reference_qvalues, is_not_done)[0] is not None, "make sure you used is_not_done" assert tf.gradients(reference_qvalues, rewards_ph)[0] is not None, "make sure you used rewards" assert tf.gradients(reference_qvalues, next_obs_ph)[0] is not None, "make sure you used next states" assert tf.gradients(reference_qvalues, obs_ph)[0] is None, "reference qvalues shouldn't depend on current observation!" # ignore if you're certain it's ok print("Splendid!") ###Output _____no_output_____ ###Markdown Main loopIt's time to put everything together and see if it learns anything. ###Code from tqdm import trange from IPython.display import clear_output import matplotlib.pyplot as plt from pandas import ewma %matplotlib inline mean_rw_history = [] td_loss_history = [] exp_replay = ReplayBuffer(10**5) play_and_record(agent, env, exp_replay, n_steps=10000) def sample_batch(exp_replay, batch_size): obs_batch, act_batch, reward_batch, next_obs_batch, is_done_batch = exp_replay.sample(batch_size) return { obs_ph:obs_batch, actions_ph:act_batch, rewards_ph:reward_batch, next_obs_ph:next_obs_batch, is_done_ph:is_done_batch } for i in trange(10**5): # play play_and_record(agent, env, exp_replay, 10) # train _, loss_t = sess.run([train_step, td_loss], sample_batch(exp_replay, batch_size=64)) td_loss_history.append(loss_t) # adjust agent parameters if i % 500 == 0: load_weigths_into_target_network(agent, target_network) agent.epsilon = max(agent.epsilon * 0.99, 0.01) mean_rw_history.append(evaluate(make_env(), agent, n_games=3)) if i % 100 == 0: clear_output(True) print("buffer size = %i, epsilon = %.5f" % (len(exp_replay), agent.epsilon)) plt.subplot(1,2,1) plt.title("mean reward per game") plt.plot(mean_rw_history) plt.grid() assert not np.isnan(loss_t) plt.figure(figsize=[12, 4]) plt.subplot(1,2,2) plt.title("TD loss history (moving average)") plt.plot(pd.ewma(np.array(td_loss_history), span=100, min_periods=100)) plt.grid() plt.show() assert np.mean(mean_rw_history[-10:]) > 10. print("That's good enough for tutorial.") ###Output _____no_output_____ ###Markdown __ How to interpret plots: __This aint no supervised learning so don't expect anything to improve monotonously. * __ TD loss __ is the MSE between agent's current Q-values and target Q-values. It may slowly increase or decrease, it's ok. The "not ok" behavior includes going NaN or stayng at exactly zero before agent has perfect performance.* __ mean reward__ is the expected sum of r(s,a) agent gets over the full game session. It will oscillate, but on average it should get higher over time (after a few thousand iterations...). * In basic q-learning implementation it takes 5-10k steps to "warm up" agent before it starts to get better.* __ buffer size__ - this one is simple. It should go up and cap at max size.* __ epsilon__ - agent's willingness to explore. If you see that agent's already at 0.01 epsilon before it's average reward is above 0 - __ it means you need to increase epsilon__. Set it back to some 0.2 - 0.5 and decrease the pace at which it goes down.* Also please ignore first 100-200 steps of each plot - they're just oscillations because of the way moving average works.At first your agent will lose quickly. Then it will learn to suck less and at least hit the ball a few times before it loses. Finally it will learn to actually score points.__Training will take time.__ A lot of it actually. An optimistic estimate is to say it's gonna start winning (average reward > 10) after 10k steps. But hey, look on the bright side of things:![img](https://s17.postimg.org/hy2v7r8hr/my_bot_is_training.png) Video ###Code agent.epsilon=0 # Don't forget to reset epsilon back to previous value if you want to go on training #record sessions import gym.wrappers env_monitor = gym.wrappers.Monitor(make_env(),directory="videos",force=True) sessions = [evaluate(env_monitor, agent, n_games=1) for _ in range(100)] env_monitor.close() #show video from IPython.display import HTML import os video_names = list(filter(lambda s:s.endswith(".mp4"),os.listdir("./videos/"))) HTML(""" <video width="640" height="480" controls> <source src="{}" type="video/mp4"> </video> """.format("./videos/"+video_names[-1])) #this may or may not be _last_ video. Try other indices ###Output _____no_output_____ ###Markdown Deep Q-Network implementationThis notebook shamelessly demands you to implement a DQN - an approximate q-learning algorithm with experience replay and target networks - and see if it works any better this way. ###Code # XVFB will be launched if you run on a server import os if type(os.environ.get("DISPLAY")) is not str or len(os.environ.get("DISPLAY")) == 0: !bash ../xvfb start %env DISPLAY = : 1 ###Output _____no_output_____ ###Markdown __Frameworks__ - we'll accept this homework in any deep learning framework. This particular notebook was designed for tensorflow, but you will find it easy to adapt it to almost any python-based deep learning framework. ###Code import gym import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline ###Output _____no_output_____ ###Markdown Let's play some old videogames![img](https://github.com/yandexdataschool/Practical_RL/raw/master/yet_another_week/_resource/nerd.png)This time we're gonna apply approximate q-learning to an atari game called Breakout. It's not the hardest thing out there, but it's definitely way more complex than anything we tried before. Processing game image Raw atari images are large, 210x160x3 by default. However, we don't need that level of detail in order to learn them.We can thus save a lot of time by preprocessing game image, including* Resizing to a smaller shape, 64 x 64* Converting to grayscale* Cropping irrelevant image parts (top & bottom) ###Code from gym.core import ObservationWrapper from gym.spaces import Box from scipy.misc import imresize import cv2 class PreprocessAtari(ObservationWrapper): def __init__(self, env): """A gym wrapper that crops, scales image into the desired shapes and optionally grayscales it.""" ObservationWrapper.__init__(self, env) self.img_size = (1, 64, 64) self.observation_space = Box(0.0, 1.0, self.img_size) def _observation(self, img): """what happens to each observation""" # Here's what you need to do: # * crop image, remove irrelevant parts # * resize image to self.img_size # (use imresize imported above or any library you want, # e.g. opencv, skimage, PIL, keras) # * cast image to grayscale # * convert image pixels to (0,1) range, float32 type img = cv2.resize(img, self.img_size[1:], interpolation=cv2.INTER_AREA) img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) rows, cols = img.shape M = cv2.getRotationMatrix2D((cols / 2, rows / 2), 90, 1) img = cv2.warpAffine(img, M, (cols, rows)) img = (img / 255).astype('float32')[:, :, np.newaxis] return img.transpose() import gym # spawn game instance for tests env = gym.make("BreakoutDeterministic-v0") # create raw env env = PreprocessAtari(env) observation_shape = env.observation_space.shape n_actions = env.action_space.n obs = env.reset() print(obs.shape) # test observation assert obs.ndim == 3, "observation must be [batch, time, channels] even if there's just one channel" assert obs.shape == observation_shape assert obs.dtype == 'float32' assert len(np.unique(obs)) > 2, "your image must not be binary" assert 0 <= np.min(obs) and np.max( obs) <= 1, "convert image pixels to (0,1) range" print("Formal tests seem fine. Here's an example of what you'll get.") plt.title("what your network gonna see") plt.imshow(obs[0], interpolation='none', cmap='gray') ###Output (1, 64, 64) Formal tests seem fine. Here's an example of what you'll get. ###Markdown Frame bufferOur agent can only process one observation at a time, so we gotta make sure it contains enough information to fing optimal actions. For instance, agent has to react to moving objects so he must be able to measure object's velocity.To do so, we introduce a buffer that stores 4 last images. This time everything is pre-implemented for you. ###Code from framebuffer import FrameBuffer def make_env(): env = gym.make("BreakoutDeterministic-v4") env = PreprocessAtari(env) env = FrameBuffer(env, n_frames=4, dim_order='tensorflow') return env env = make_env() env.reset() n_actions = env.action_space.n state_dim = env.observation_space.shape for _ in range(50): obs, _, _, _ = env.step(env.action_space.sample()) plt.title("Game image") plt.imshow(env.render("rgb_array")) plt.show() plt.title("Agent observation (4 frames left to right)") plt.imshow(obs.transpose([0, 2, 1]).reshape([state_dim[0], -1])) plt.show() ###Output _____no_output_____ ###Markdown Building a networkWe now need to build a neural network that can map images to state q-values. This network will be called on every agent's step so it better not be resnet-152 unless you have an array of GPUs. Instead, you can use strided convolutions with a small number of features to save time and memory.You can build any architecture you want, but for reference, here's something that will more or less work: ![img](https://github.com/yandexdataschool/Practical_RL/raw/master/yet_another_week/_resource/dqn_arch.png) ###Code import tensorflow as tf tf.reset_default_graph() sess = tf.InteractiveSession() from keras.layers import Conv2D, Dense, Flatten from keras.models import Sequential class DQNAgent: def __init__(self, name, state_shape, n_actions, epsilon=0, reuse=False): """A simple DQN agent""" with tf.variable_scope(name, reuse=reuse): self.model = Sequential() self.model.add(Conv2D(filters=16, kernel_size=(3, 3), activation='relu')) self.model.add(Conv2D(32, (3, 3), activation='relu')) self.model.add(Conv2D(64, (3, 3), activation='relu')) self.model.add(Flatten()) self.model.add(Dense(3136, 256, activation='relu')) self.model.add(Dense(256, n_actions)) # prepare a graph for agent step self.state_t = tf.placeholder('float32', [None, ] + list(state_shape)) self.qvalues_t = self.get_symbolic_qvalues(self.state_t) self.weights = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=name) self.epsilon = epsilon def get_symbolic_qvalues(self, state_t): """takes agent's observation, returns qvalues. Both are tf Tensors""" qvalues = < symbolic tensor for q-values > assert tf.is_numeric_tensor(qvalues) and qvalues.shape.ndims == 2, \ "please return 2d tf tensor of qvalues [you got %s]" % repr( qvalues) assert int(qvalues.shape[1]) == n_actions return qvalues def get_qvalues(self, state_t): """Same as symbolic step except it operates on numpy arrays""" sess = tf.get_default_session() return sess.run(self.qvalues_t, {self.state_t: state_t}) def sample_actions(self, qvalues): """pick actions given qvalues. Uses epsilon-greedy exploration strategy. """ epsilon = self.epsilon batch_size, n_actions = qvalues.shape random_actions = np.random.choice(n_actions, size=batch_size) best_actions = qvalues.argmax(axis=-1) should_explore = np.random.choice( [0, 1], batch_size, p=[1-epsilon, epsilon]) return np.where(should_explore, random_actions, best_actions) agent = DQNAgent("dqn_agent", state_dim, n_actions, epsilon=0.5) sess.run(tf.global_variables_initializer()) ###Output _____no_output_____ ###Markdown Now let's try out our agent to see if it raises any errors. ###Code def evaluate(env, agent, n_games=1, greedy=False, t_max=10000): """ Plays n_games full games. If greedy, picks actions as argmax(qvalues). Returns mean reward. """ rewards = [] for _ in range(n_games): s = env.reset() reward = 0 for _ in range(t_max): qvalues = agent.get_qvalues([s]) action = qvalues.argmax( axis=-1)[0] if greedy else agent.sample_actions(qvalues)[0] s, r, done, _ = env.step(action) reward += r if done: break rewards.append(reward) return np.mean(rewards) evaluate(env, agent, n_games=1) ###Output _____no_output_____ ###Markdown Experience replayFor this assignment, we provide you with experience replay buffer. If you implemented experience replay buffer in last week's assignment, you can copy-paste it here __to get 2 bonus points__.![img](https://github.com/yandexdataschool/Practical_RL/raw/master/yet_another_week/_resource/exp_replay.png) The interface is fairly simple:* `exp_replay.add(obs, act, rw, next_obs, done)` - saves (s,a,r,s',done) tuple into the buffer* `exp_replay.sample(batch_size)` - returns observations, actions, rewards, next_observations and is_done for `batch_size` random samples.* `len(exp_replay)` - returns number of elements stored in replay buffer. ###Code from replay_buffer import ReplayBuffer exp_replay = ReplayBuffer(10) for _ in range(30): exp_replay.add(env.reset(), env.action_space.sample(), 1.0, env.reset(), done=False) obs_batch, act_batch, reward_batch, next_obs_batch, is_done_batch = exp_replay.sample( 5) assert len(exp_replay) == 10, "experience replay size should be 10 because that's what maximum capacity is" def play_and_record(agent, env, exp_replay, n_steps=1): """ Play the game for exactly n steps, record every (s,a,r,s', done) to replay buffer. Whenever game ends, add record with done=True and reset the game. It is guaranteed that env has done=False when passed to this function. PLEASE DO NOT RESET ENV UNLESS IT IS "DONE" :returns: return sum of rewards over time """ # initial state s = env.framebuffer # Play the game for n_steps as per instructions above <YOUR CODE > # testing your code. This may take a minute... exp_replay = ReplayBuffer(20000) play_and_record(agent, env, exp_replay, n_steps=10000) # if you're using your own experience replay buffer, some of those tests may need correction. # just make sure you know what your code does assert len(exp_replay) == 10000, "play_and_record should have added exactly 10000 steps, "\ "but instead added %i" % len(exp_replay) is_dones = list(zip(*exp_replay._storage))[-1] assert 0 < np.mean(is_dones) < 0.1, "Please make sure you restart the game whenever it is 'done' and record the is_done correctly into the buffer."\ "Got %f is_done rate over %i steps. [If you think it's your tough luck, just re-run the test]" % ( np.mean(is_dones), len(exp_replay)) for _ in range(100): obs_batch, act_batch, reward_batch, next_obs_batch, is_done_batch = exp_replay.sample( 10) assert obs_batch.shape == next_obs_batch.shape == (10,) + state_dim assert act_batch.shape == ( 10,), "actions batch should have shape (10,) but is instead %s" % str(act_batch.shape) assert reward_batch.shape == ( 10,), "rewards batch should have shape (10,) but is instead %s" % str(reward_batch.shape) assert is_done_batch.shape == ( 10,), "is_done batch should have shape (10,) but is instead %s" % str(is_done_batch.shape) assert [int(i) in (0, 1) for i in is_dones], "is_done should be strictly True or False" assert [ 0 <= a <= n_actions for a in act_batch], "actions should be within [0, n_actions]" print("Well done!") ###Output _____no_output_____ ###Markdown Target networksWe also employ the so called "target network" - a copy of neural network weights to be used for reference Q-values:The network itself is an exact copy of agent network, but it's parameters are not trained. Instead, they are moved here from agent's actual network every so often.$$ Q_{reference}(s,a) = r + \gamma \cdot \max _{a'} Q_{target}(s',a') $$![img](https://github.com/yandexdataschool/Practical_RL/raw/master/yet_another_week/_resource/target_net.png) ###Code target_network = DQNAgent("target_network", state_dim, n_actions) def load_weigths_into_target_network(agent, target_network): """ assign target_network.weights variables to their respective agent.weights values. """ assigns = [] for w_agent, w_target in zip(agent.weights, target_network.weights): assigns.append(tf.assign(w_target, w_agent, validate_shape=True)) # tf.get_default_session().run(assigns) return assigns # create the tf copy graph only once. copy_step = load_weigths_into_target_network(agent, target_network) sess.run(copy_step) # check that it works sess.run([tf.assert_equal(w, w_target) for w, w_target in zip(agent.weights, target_network.weights)]) print("It works!") ###Output _____no_output_____ ###Markdown Learning with... Q-learningHere we write a function similar to `agent.update` from tabular q-learning. ###Code # placeholders that will be fed with exp_replay.sample(batch_size) obs_ph = tf.placeholder(tf.float32, shape=(None,) + state_dim) actions_ph = tf.placeholder(tf.int32, shape=[None]) rewards_ph = tf.placeholder(tf.float32, shape=[None]) next_obs_ph = tf.placeholder(tf.float32, shape=(None,) + state_dim) is_done_ph = tf.placeholder(tf.float32, shape=[None]) is_not_done = 1 - is_done_ph gamma = 0.99 ###Output _____no_output_____ ###Markdown Take q-values for actions agent just took ###Code current_qvalues = agent.get_symbolic_qvalues(obs_ph) current_action_qvalues = tf.reduce_sum(tf.one_hot( actions_ph, n_actions) * current_qvalues, axis=1) ###Output _____no_output_____ ###Markdown Compute Q-learning TD error:$$ L = { 1 \over N} \sum_i [ Q_{\theta}(s,a) - Q_{reference}(s,a) ] ^2 $$With Q-reference defined as$$ Q_{reference}(s,a) = r(s,a) + \gamma \cdot max_{a'} Q_{target}(s', a') $$Where* $Q_{target}(s',a')$ denotes q-value of next state and next action predicted by __target_network__* $s, a, r, s'$ are current state, action, reward and next state respectively* $\gamma$ is a discount factor defined two cells above. ###Code next_qvalues_target = # YOUR CODE: compute q-values for NEXT states with target network # YOUR CODE: compute state values by taking max over next_qvalues_target for all actions next_state_values_target = reference_qvalues = # YOUR CODE: compute Q_reference(s,a) as per formula above # Define loss function for sgd. td_loss = (current_action_qvalues - reference_qvalues) ** 2 td_loss = tf.reduce_mean(td_loss) train_step = tf.train.AdamOptimizer( 1e-3).minimize(td_loss, var_list=agent.weights) sess.run(tf.global_variables_initializer()) for chk_grad in tf.gradients(reference_qvalues, agent.weights): error_msg = "Reference q-values should have no gradient w.r.t. agent weights. Make sure you used target_network qvalues! " error_msg += "If you know what you're doing, ignore this assert." assert chk_grad is None or np.allclose( sess.run(chk_grad), sess.run(chk_grad * 0)), error_msg assert tf.gradients(reference_qvalues, is_not_done)[ 0] is not None, "make sure you used is_not_done" assert tf.gradients(reference_qvalues, rewards_ph)[ 0] is not None, "make sure you used rewards" assert tf.gradients(reference_qvalues, next_obs_ph)[ 0] is not None, "make sure you used next states" assert tf.gradients(reference_qvalues, obs_ph)[ 0] is None, "reference qvalues shouldn't depend on current observation!" # ignore if you're certain it's ok print("Splendid!") ###Output _____no_output_____ ###Markdown Main loopIt's time to put everything together and see if it learns anything. ###Code from tqdm import trange from IPython.display import clear_output import matplotlib.pyplot as plt from pandas import DataFrame moving_average = lambda x, span=100, **kw: DataFrame( {'x': np.asarray(x)}).x.ewm(span=span, **kw).mean().values %matplotlib inline mean_rw_history = [] td_loss_history = [] exp_replay = ReplayBuffer(10**5) play_and_record(agent, env, exp_replay, n_steps=10000) def sample_batch(exp_replay, batch_size): obs_batch, act_batch, reward_batch, next_obs_batch, is_done_batch = exp_replay.sample( batch_size) return { obs_ph: obs_batch, actions_ph: act_batch, rewards_ph: reward_batch, next_obs_ph: next_obs_batch, is_done_ph: is_done_batch } for i in trange(10**5): # play play_and_record(agent, env, exp_replay, 10) # train _, loss_t = sess.run([train_step, td_loss], sample_batch(exp_replay, batch_size=64)) td_loss_history.append(loss_t) # adjust agent parameters if i % 500 == 0: #load_weigths_into_target_network(agent, target_network) # calling 'load_weights_into_target_network' repeatedly cause creating tf copy operator # again and again, which bloat memory consumption along training step # create'copy_step' once sess.run(copy_step) agent.epsilon = max(agent.epsilon * 0.99, 0.01) mean_rw_history.append(evaluate(make_env(), agent, n_games=3)) if i % 100 == 0: clear_output(True) print("buffer size = %i, epsilon = %.5f" % (len(exp_replay), agent.epsilon)) plt.subplot(1, 2, 1) plt.title("mean reward per game") plt.plot(mean_rw_history) plt.grid() assert not np.isnan(loss_t) plt.figure(figsize=[12, 4]) plt.subplot(1, 2, 2) plt.title("TD loss history (moving average)") plt.plot(moving_average( np.array(td_loss_history), span=100, min_periods=100)) plt.grid() plt.show() assert np.mean(mean_rw_history[-10:]) > 10. print("That's good enough for tutorial.") ###Output _____no_output_____ ###Markdown __ How to interpret plots: __This aint no supervised learning so don't expect anything to improve monotonously. * __ TD loss __ is the MSE between agent's current Q-values and target Q-values. It may slowly increase or decrease, it's ok. The "not ok" behavior includes going NaN or stayng at exactly zero before agent has perfect performance.* __ mean reward__ is the expected sum of r(s,a) agent gets over the full game session. It will oscillate, but on average it should get higher over time (after a few thousand iterations...). * In basic q-learning implementation it takes 5-10k steps to "warm up" agent before it starts to get better.* __ buffer size__ - this one is simple. It should go up and cap at max size.* __ epsilon__ - agent's willingness to explore. If you see that agent's already at 0.01 epsilon before it's average reward is above 0 - __ it means you need to increase epsilon__. Set it back to some 0.2 - 0.5 and decrease the pace at which it goes down.* Also please ignore first 100-200 steps of each plot - they're just oscillations because of the way moving average works.At first your agent will lose quickly. Then it will learn to suck less and at least hit the ball a few times before it loses. Finally it will learn to actually score points.__Training will take time.__ A lot of it actually. An optimistic estimate is to say it's gonna start winning (average reward > 10) after 10k steps. But hey, look on the bright side of things:![img](https://github.com/yandexdataschool/Practical_RL/raw/master/yet_another_week/_resource/training.png) Video ###Code # Don't forget to reset epsilon back to previous value if you want to go on training agent.epsilon = 0 # record sessions import gym.wrappers env_monitor = gym.wrappers.Monitor(make_env(), directory="videos", force=True) sessions = [evaluate(env_monitor, agent, n_games=1) for _ in range(100)] env_monitor.close() # show video from IPython.display import HTML import os video_names = list( filter(lambda s: s.endswith(".mp4"), os.listdir("./videos/"))) HTML(""" <video width="640" height="480" controls> <source src="{}" type="video/mp4"> </video> """.format("./videos/"+video_names[-1])) # this may or may not be _last_ video. Try other indices ###Output _____no_output_____ ###Markdown Deep Q-Network implementationThis notebook shamelessly demands you to implement a DQN - an approximate q-learning algorithm with experience replay and target networks - and see if it works any better this way. ###Code #XVFB will be launched if you run on a server import os if type(os.environ.get("DISPLAY")) is not str or len(os.environ.get("DISPLAY"))==0: !bash ../xvfb start %env DISPLAY=:1 ###Output _____no_output_____ ###Markdown __Frameworks__ - we'll accept this homework in any deep learning framework. This particular notebook was designed for tensorflow, but you will find it easy to adapt it to almost any python-based deep learning framework. ###Code import gym import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline ###Output _____no_output_____ ###Markdown Let's play some old videogames![img](https://github.com/yandexdataschool/Practical_RL/raw/master/yet_another_week/_resource/nerd.png)This time we're gonna apply approximate q-learning to an atari game called Breakout. It's not the hardest thing out there, but it's definitely way more complex than anything we tried before. Processing game image Raw atari images are large, 210x160x3 by default. However, we don't need that level of detail in order to learn them.We can thus save a lot of time by preprocessing game image, including* Resizing to a smaller shape, 64 x 64* Converting to grayscale* Cropping irrelevant image parts (top & bottom) ###Code from gym.core import ObservationWrapper from gym.spaces import Box from scipy.misc import imresize class PreprocessAtari(ObservationWrapper): def __init__(self, env): """A gym wrapper that crops, scales image into the desired shapes and optionally grayscales it.""" ObservationWrapper.__init__(self,env) self.img_size = (64, 64) self.observation_space = Box(0.0, 1.0, self.img_size) def _observation(self, img): """what happens to each observation""" # Here's what you need to do: # * crop image, remove irrelevant parts # * resize image to self.img_size # (use imresize imported above or any library you want, # e.g. opencv, skimage, PIL, keras) # * cast image to grayscale # * convert image pixels to (0,1) range, float32 type <Your code here> return <...> import gym #spawn game instance for tests env = gym.make("BreakoutDeterministic-v0") #create raw env env = PreprocessAtari(env) observation_shape = env.observation_space.shape n_actions = env.action_space.n obs = env.reset() #test observation assert obs.ndim == 3, "observation must be [batch, time, channels] even if there's just one channel" assert obs.shape == observation_shape assert obs.dtype == 'float32' assert len(np.unique(obs))>2, "your image must not be binary" assert 0 <= np.min(obs) and np.max(obs) <=1, "convert image pixels to (0,1) range" print "Formal tests seem fine. Here's an example of what you'll get." plt.title("what your network gonna see") plt.imshow(obs,interpolation='none',cmap='gray'); ###Output _____no_output_____ ###Markdown Frame bufferOur agent can only process one observation at a time, so we gotta make sure it contains enough information to fing optimal actions. For instance, agent has to react to moving objects so he must be able to measure object's velocity.To do so, we introduce a buffer that stores 4 last images. This time everything is pre-implemented for you. ###Code from framebuffer import FrameBuffer def make_env(): env = gym.make("BreakoutDeterministic-v4") env = PreprocessAtari(env) env = FrameBuffer(env, n_frames=4, dim_order='tensorflow') return env env = make_env() env.reset() n_actions = env.action_space.n state_dim = env.observation_space.shape for _ in range(50): obs, _, _, _ = env.step(env.action_space.sample()) plt.title("Game image") plt.imshow(env.render("rgb_array")) plt.show() plt.title("Agent observation (4 frames left to right)") plt.imshow(obs.transpose([0,2,1]).reshape([state_dim[0],-1])); ###Output _____no_output_____ ###Markdown Building a networkWe now need to build a neural network that can map images to state q-values. This network will be called on every agent's step so it better not be resnet-152 unless you have an array of GPUs. Instead, you can use strided convolutions with a small number of features to save time and memory.You can build any architecture you want, but for reference, here's something that will more or less work: ![img](https://github.com/yandexdataschool/Practical_RL/raw/master/yet_another_week/_resource/dqn_arch.png) ###Code import tensorflow as tf tf.reset_default_graph() sess = tf.InteractiveSession() from keras.layers import Conv2D, Dense, Flatten class DQNAgent: def __init__(self, name, state_shape, n_actions, epsilon=0, reuse=False): """A simple DQN agent""" with tf.variable_scope(name, reuse=reuse): < Define your network body here. Please make sure you don't use any layers created elsewhere > # prepare a graph for agent step self.state_t = tf.placeholder('float32', [None,] + list(state_shape)) self.qvalues_t = self.get_symbolic_qvalues(self.state_t) self.weights = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=name) self.epsilon = epsilon def get_symbolic_qvalues(self, state_t): """takes agent's observation, returns qvalues. Both are tf Tensors""" < apply your network layers here > qvalues = < symbolic tensor for q-values > assert tf.is_numeric_tensor(qvalues) and qvalues.shape.ndims == 2, \ "please return 2d tf tensor of qvalues [you got %s]" % repr(qvalues) assert int(qvalues.shape[1]) == n_actions return qvalues def get_qvalues(self, state_t): """Same as symbolic step except it operates on numpy arrays""" sess = tf.get_default_session() return sess.run(self.qvalues_t, {self.state_t: state_t}) def sample_actions(self, qvalues): """pick actions given qvalues. Uses epsilon-greedy exploration strategy. """ epsilon = self.epsilon batch_size, n_actions = qvalues.shape random_actions = np.random.choice(n_actions, size=batch_size) best_actions = qvalues.argmax(axis=-1) should_explore = np.random.choice([0, 1], batch_size, p = [1-epsilon, epsilon]) return np.where(should_explore, random_actions, best_actions) agent = DQNAgent("dqn_agent", state_dim, n_actions, epsilon=0.5) sess.run(tf.global_variables_initializer()) ###Output _____no_output_____ ###Markdown Now let's try out our agent to see if it raises any errors. ###Code def evaluate(env, agent, n_games=1, greedy=False, t_max=10000): """ Plays n_games full games. If greedy, picks actions as argmax(qvalues). Returns mean reward. """ rewards = [] for _ in range(n_games): s = env.reset() reward = 0 for _ in range(t_max): qvalues = agent.get_qvalues([s]) action = qvalues.argmax(axis=-1)[0] if greedy else agent.sample_actions(qvalues)[0] s, r, done, _ = env.step(action) reward += r if done: break rewards.append(reward) return np.mean(rewards) evaluate(env, agent, n_games=1) ###Output _____no_output_____ ###Markdown Experience replayFor this assignment, we provide you with experience replay buffer. If you implemented experience replay buffer in last week's assignment, you can copy-paste it here __to get 2 bonus points__.![img](https://github.com/yandexdataschool/Practical_RL/raw/master/yet_another_week/_resource/exp_replay.png) The interface is fairly simple:* `exp_replay.add(obs, act, rw, next_obs, done)` - saves (s,a,r,s',done) tuple into the buffer* `exp_replay.sample(batch_size)` - returns observations, actions, rewards, next_observations and is_done for `batch_size` random samples.* `len(exp_replay)` - returns number of elements stored in replay buffer. ###Code from replay_buffer import ReplayBuffer exp_replay = ReplayBuffer(10) for _ in range(30): exp_replay.add(env.reset(), env.action_space.sample(), 1.0, env.reset(), done=False) obs_batch, act_batch, reward_batch, next_obs_batch, is_done_batch = exp_replay.sample(5) assert len(exp_replay) == 10, "experience replay size should be 10 because that's what maximum capacity is" def play_and_record(agent, env, exp_replay, n_steps=1): """ Play the game for exactly n steps, record every (s,a,r,s', done) to replay buffer. Whenever game ends, add record with done=True and reset the game. It is guaranteed that env has done=False when passed to this function. PLEASE DO NOT RESET ENV UNLESS IT IS "DONE" :returns: return sum of rewards over time """ # initial state s = env.framebuffer # Play the game for n_steps as per instructions above <YOUR CODE> # testing your code. This may take a minute... exp_replay = ReplayBuffer(20000) play_and_record(agent, env, exp_replay, n_steps=10000) # if you're using your own experience replay buffer, some of those tests may need correction. # just make sure you know what your code does assert len(exp_replay) == 10000, "play_and_record should have added exactly 10000 steps, "\ "but instead added %i"%len(exp_replay) is_dones = list(zip(*exp_replay._storage))[-1] assert 0 < np.mean(is_dones) < 0.1, "Please make sure you restart the game whenever it is 'done' and record the is_done correctly into the buffer."\ "Got %f is_done rate over %i steps. [If you think it's your tough luck, just re-run the test]"%(np.mean(is_dones), len(exp_replay)) for _ in range(100): obs_batch, act_batch, reward_batch, next_obs_batch, is_done_batch = exp_replay.sample(10) assert obs_batch.shape == next_obs_batch.shape == (10,) + state_dim assert act_batch.shape == (10,), "actions batch should have shape (10,) but is instead %s"%str(act_batch.shape) assert reward_batch.shape == (10,), "rewards batch should have shape (10,) but is instead %s"%str(reward_batch.shape) assert is_done_batch.shape == (10,), "is_done batch should have shape (10,) but is instead %s"%str(is_done_batch.shape) assert [int(i) in (0,1) for i in is_dones], "is_done should be strictly True or False" assert [0 <= a <= n_actions for a in act_batch], "actions should be within [0, n_actions]" print("Well done!") ###Output _____no_output_____ ###Markdown Target networksWe also employ the so called "target network" - a copy of neural network weights to be used for reference Q-values:The network itself is an exact copy of agent network, but it's parameters are not trained. Instead, they are moved here from agent's actual network every so often.$$ Q_{reference}(s,a) = r + \gamma \cdot \max _{a'} Q_{target}(s',a') $$![img](https://github.com/yandexdataschool/Practical_RL/raw/master/yet_another_week/_resource/target_net.png) ###Code target_network = DQNAgent("target_network", state_dim, n_actions) def load_weigths_into_target_network(agent, target_network): """ assign target_network.weights variables to their respective agent.weights values. """ assigns = [] for w_agent, w_target in zip(agent.weights, target_network.weights): assigns.append(tf.assign(w_target, w_agent, validate_shape=True)) tf.get_default_session().run(assigns) load_weigths_into_target_network(agent, target_network) # check that it works sess.run([tf.assert_equal(w, w_target) for w, w_target in zip(agent.weights, target_network.weights)]); print("It works!") ###Output _____no_output_____ ###Markdown Learning with... Q-learningHere we write a function similar to `agent.update` from tabular q-learning. ###Code # placeholders that will be fed with exp_replay.sample(batch_size) obs_ph = tf.placeholder(tf.float32, shape=(None,) + state_dim) actions_ph = tf.placeholder(tf.int32, shape=[None]) rewards_ph = tf.placeholder(tf.float32, shape=[None]) next_obs_ph = tf.placeholder(tf.float32, shape=(None,) + state_dim) is_done_ph = tf.placeholder(tf.float32, shape=[None]) is_not_done = 1 - is_done_ph gamma = 0.99 ###Output _____no_output_____ ###Markdown Take q-values for actions agent just took ###Code current_qvalues = agent.get_symbolic_qvalues(obs_ph) current_action_qvalues = tf.reduce_sum(tf.one_hot(actions_ph, n_actions) * current_qvalues, axis=1) ###Output _____no_output_____ ###Markdown Compute Q-learning TD error:$$ L = { 1 \over N} \sum_i [ Q_{\theta}(s,a) - Q_{reference}(s,a) ] ^2 $$With Q-reference defined as$$ Q_{reference}(s,a) = r(s,a) + \gamma \cdot max_{a'} Q_{target}(s', a') $$Where* $Q_{target}(s',a')$ denotes q-value of next state and next action predicted by __target_network__* $s, a, r, s'$ are current state, action, reward and next state respectively* $\gamma$ is a discount factor defined two cells above. ###Code next_qvalues_target = ### YOUR CODE: compute q-values for NEXT states with target network next_state_values_target = ### YOUR CODE: compute state values by taking max over next_qvalues_target for all actions reference_qvalues = ### YOUR CODE: compute Q_reference(s,a) as per formula above # Define loss function for sgd. td_loss = (current_action_qvalues - reference_qvalues) ** 2 td_loss = tf.reduce_mean(td_loss) train_step = tf.train.AdamOptimizer(1e-3).minimize(td_loss, var_list=agent.weights) sess.run(tf.global_variables_initializer()) for chk_grad in tf.gradients(reference_qvalues, agent.weights): error_msg = "Reference q-values should have no gradient w.r.t. agent weights. Make sure you used target_network qvalues! " error_msg += "If you know what you're doing, ignore this assert." assert chk_grad is None or np.allclose(sess.run(chk_grad), sess.run(chk_grad * 0)), error_msg assert tf.gradients(reference_qvalues, is_not_done)[0] is not None, "make sure you used is_not_done" assert tf.gradients(reference_qvalues, rewards_ph)[0] is not None, "make sure you used rewards" assert tf.gradients(reference_qvalues, next_obs_ph)[0] is not None, "make sure you used next states" assert tf.gradients(reference_qvalues, obs_ph)[0] is None, "reference qvalues shouldn't depend on current observation!" # ignore if you're certain it's ok print("Splendid!") ###Output _____no_output_____ ###Markdown Main loopIt's time to put everything together and see if it learns anything. ###Code from tqdm import trange from IPython.display import clear_output import matplotlib.pyplot as plt from pandas import ewma %matplotlib inline mean_rw_history = [] td_loss_history = [] exp_replay = ReplayBuffer(10**5) play_and_record(agent, env, exp_replay, n_steps=10000) def sample_batch(exp_replay, batch_size): obs_batch, act_batch, reward_batch, next_obs_batch, is_done_batch = exp_replay.sample(batch_size) return { obs_ph:obs_batch, actions_ph:act_batch, rewards_ph:reward_batch, next_obs_ph:next_obs_batch, is_done_ph:is_done_batch } for i in trange(10**5): # play play_and_record(agent, env, exp_replay, 10) # train _, loss_t = sess.run([train_step, td_loss], sample_batch(exp_replay, batch_size=64)) td_loss_history.append(loss_t) # adjust agent parameters if i % 500 == 0: load_weigths_into_target_network(agent, target_network) agent.epsilon = max(agent.epsilon * 0.99, 0.01) mean_rw_history.append(evaluate(make_env(), agent, n_games=3)) if i % 100 == 0: clear_output(True) print("buffer size = %i, epsilon = %.5f" % (len(exp_replay), agent.epsilon)) plt.subplot(1,2,1) plt.title("mean reward per game") plt.plot(mean_rw_history) plt.grid() assert not np.isnan(loss_t) plt.figure(figsize=[12, 4]) plt.subplot(1,2,2) plt.title("TD loss history (moving average)") plt.plot(pd.ewma(np.array(td_loss_history), span=100, min_periods=100)) plt.grid() plt.show() assert np.mean(mean_rw_history[-10:]) > 10. print("That's good enough for tutorial.") ###Output _____no_output_____ ###Markdown __ How to interpret plots: __This aint no supervised learning so don't expect anything to improve monotonously. * __ TD loss __ is the MSE between agent's current Q-values and target Q-values. It may slowly increase or decrease, it's ok. The "not ok" behavior includes going NaN or stayng at exactly zero before agent has perfect performance.* __ mean reward__ is the expected sum of r(s,a) agent gets over the full game session. It will oscillate, but on average it should get higher over time (after a few thousand iterations...). * In basic q-learning implementation it takes 5-10k steps to "warm up" agent before it starts to get better.* __ buffer size__ - this one is simple. It should go up and cap at max size.* __ epsilon__ - agent's willingness to explore. If you see that agent's already at 0.01 epsilon before it's average reward is above 0 - __ it means you need to increase epsilon__. Set it back to some 0.2 - 0.5 and decrease the pace at which it goes down.* Also please ignore first 100-200 steps of each plot - they're just oscillations because of the way moving average works.At first your agent will lose quickly. Then it will learn to suck less and at least hit the ball a few times before it loses. Finally it will learn to actually score points.__Training will take time.__ A lot of it actually. An optimistic estimate is to say it's gonna start winning (average reward > 10) after 10k steps. But hey, look on the bright side of things:![img](https://github.com/yandexdataschool/Practical_RL/raw/master/yet_another_week/_resource/training.png) Video ###Code agent.epsilon=0 # Don't forget to reset epsilon back to previous value if you want to go on training #record sessions import gym.wrappers env_monitor = gym.wrappers.Monitor(make_env(),directory="videos",force=True) sessions = [evaluate(env_monitor, agent, n_games=1) for _ in range(100)] env_monitor.close() #show video from IPython.display import HTML import os video_names = list(filter(lambda s:s.endswith(".mp4"),os.listdir("./videos/"))) HTML(""" <video width="640" height="480" controls> <source src="{}" type="video/mp4"> </video> """.format("./videos/"+video_names[-1])) #this may or may not be _last_ video. Try other indices ###Output _____no_output_____
how-to-use-azureml/training/train-on-local/train-on-local.ipynb
###Markdown Copyright (c) Microsoft Corporation. All rights reserved.Licensed under the MIT License. ![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/training/train-on-local/train-on-local.png) 02. Train locally_**Train a model locally: Directly on your machine and within a Docker container**_--- Table of contents1. [Introduction](intro)1. [Pre-requisites](pre-reqs)1. [Initialize Workspace](init)1. [Create An Experiment](exp)1. [View training and auxiliary scripts](view)1. [Configure & Run](config-run) 1. User-managed environment 1. Set the environment up 1. Submit the script to run in the user-managed environment 1. Get run history details 1. System-managed environment 1. Set the environment up 1. Submit the script to run in the system-managed environment 1. Get run history details 1. Docker-based execution 1. Set the environment up 1. Submit the script to run in the system-managed environment 1. Get run history details 1. Use a custom Docker image1. [Query run metrics](query)--- 1. Introduction In this notebook, we will learn how to:* Connect to our AML workspace* Create or load a workspace* Configure & execute a local run in: - a user-managed Python environment - a system-managed Python environment - a Docker environment* Query run metrics to find the best model trained in the run* Register that model for operationalization 2. Pre-requisites In this notebook, we assume that you have set your Azure Machine Learning workspace. If you have not, make sure you go through the [configuration notebook](../../../configuration.ipynb) first. In the end, you should have configuration file that contains the subscription ID, resource group and name of your workspace. ###Code # Check core SDK version number import azureml.core print("SDK version:", azureml.core.VERSION) ###Output _____no_output_____ ###Markdown 3. Initialize Workspace Initialize your workspace object from configuration file ###Code from azureml.core.workspace import Workspace ws = Workspace.from_config() print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep='\n') ###Output _____no_output_____ ###Markdown 4. Create An Experiment An experiment is a logical container in an Azure ML Workspace. It contains a series of trials called `Runs`. As such, it hosts run records such as run metrics, logs, and other output artifacts from your experiments. ###Code from azureml.core import Experiment experiment_name = 'train-on-local' exp = Experiment(workspace=ws, name=experiment_name) ###Output _____no_output_____ ###Markdown 5. View training and auxiliary scripts For convenience, we already created the training (`train.py`) script and supportive libraries (`mylib.py`) for you. Take a few minutes to examine both files. ###Code with open('./train.py', 'r') as f: print(f.read()) with open('./mylib.py', 'r') as f: print(f.read()) ###Output _____no_output_____ ###Markdown 6. Configure & Run 6.A User-managed environment 6.A.a Set the environment upWhen using a user-managed environment, you are responsible for ensuring that all the necessary packages are available in the Python environment you choose to run the script in. ###Code from azureml.core import Environment # Editing a run configuration property on-fly. user_managed_env = Environment("user-managed-env") user_managed_env.python.user_managed_dependencies = True # You can choose a specific Python environment by pointing to a Python path #user_managed_env.python.interpreter_path = '/home/johndoe/miniconda3/envs/myenv/bin/python' ###Output _____no_output_____ ###Markdown 6.A.b Submit the script to run in the user-managed environmentWhatever the way you manage your environment, you need to use the `ScriptRunConfig` class. It allows you to further configure your run by pointing to the `train.py` script and to the working directory, which also contains the `mylib.py` file. These inputs indeed provide the commands to execute in the run. Once the run is configured, you submit it to your experiment. ###Code from azureml.core import ScriptRunConfig src = ScriptRunConfig(source_directory='./', script='train.py', environment=user_managed_env) run = exp.submit(src) ###Output _____no_output_____ ###Markdown 6.A.c Get run history detailsWhile all calculations were run on your machine (cf. below), by using a `run` you also captured the results of your calculations into your run and experiment. You can then see them on the Azure portal, through the link displayed as output of the following cell.**Note**: The recording of the computation results into your run was made possible by the `run.log()` commands in the `train.py` file. ###Code run ###Output _____no_output_____ ###Markdown Note: if you need to cancel a run, you can follow [these instructions](https://aka.ms/aml-docs-cancel-run). Block any execution to wait until the run finishes. ###Code run.wait_for_completion(show_output=True) ###Output _____no_output_____ ###Markdown **Note:** All these calculations were run on your local machine, in the conda environment you defined above. You can find the results in:- `~/.azureml/envs/azureml_xxxx` for the conda environment you just created- `~/AppData/Local/Temp/azureml_runs/train-on-local_xxxx` for the machine learning models you trained (this path may differ depending on the platform you use). This folder also contains - Logs (under azureml_logs/) - Output pickled files (under outputs/) - The configuration files (credentials, local and docker image setups) - The train.py and mylib.py scripts - The current notebookTake a few minutes to examine the output of the cell above. It shows the content of some of the log files, and extra information on the conda environment used. 6.B System-managed environment 6.B.a Set the environment upNow, instead of managing the setup of the environment yourself, you can ask the system to build a new conda environment for you. The environment is built once, and will be reused in subsequent executions as long as the conda dependencies remain unchanged. ###Code from azureml.core.conda_dependencies import CondaDependencies system_managed_env = Environment("system-managed-env") system_managed_env.python.user_managed_dependencies = False # Specify conda dependencies with scikit-learn cd = CondaDependencies.create(conda_packages=['scikit-learn']) system_managed_env.python.conda_dependencies = cd ###Output _____no_output_____ ###Markdown 6.B.b Submit the script to run in the system-managed environmentA new conda environment is built based on the conda dependencies object. If you are running this for the first time, this might take up to 5 minutes.The commands used to execute the run are then the same as the ones you used above. ###Code src.run_config.environment = system_managed_env run = exp.submit(src) ###Output _____no_output_____ ###Markdown 6.B.c Get run history details ###Code run run.wait_for_completion(show_output = True) ###Output _____no_output_____ ###Markdown 6.C Docker-based executionIn this section, you will train the same models, but you will do so in a Docker container, on your local machine. For this, you then need to have the Docker engine installed locally. If you don't have it yet, please follow the instructions below. How to install Docker- [Linux](https://docs.docker.com/install/linux/docker-ce/ubuntu/)- [MacOs](https://docs.docker.com/docker-for-mac/install/)- [Windows](https://docs.docker.com/docker-for-windows/install/) In case of issues, troubleshooting documentation can be found [here](https://docs.docker.com/docker-for-windows/troubleshoot/running-docker-for-windows-in-nested-virtualization-scenarios). Additionally, you can follow the steps below, if Virtualization is not enabled on your machine: - Go to Task Manager > Performance - Check that Virtualization is enabled - If it is not, go to `Start > Settings > Update and security > Recovery > Advanced Startup - Restart now > Troubleshoot > Advanced options > UEFI firmware settings - restart` - In the BIOS, go to `Advanced > System options > Click the "Virtualization Technology (VTx)" only > Save > Exit > Save all changes` -- This will restart the machine**Notes**: - If your kernel is already running in a Docker container, such as **Azure Notebooks**, this mode will **NOT** work.- If you use a GPU base image, it needs to be used on Microsoft Azure Services such as ACI, AML Compute, Azure VMs, or AKS.You can also ask the system to pull down a Docker image and execute your scripts in it. 6.C.a Set the environment upIn the cell below, you will configure your run to execute in a Docker container. It will:- run on a CPU- contain a conda environment in which the scikit-learn library will be installed.As before, you will finish configuring your run by pointing to the `train.py` and `mylib.py` files. ###Code docker_env = Environment("docker-env") docker_env.python.user_managed_dependencies = False docker_env.docker.enabled = True # use the default CPU-based Docker image from Azure ML print(docker_env.docker.base_image) # Specify conda dependencies with scikit-learn docker_env.python.conda_dependencies = cd ###Output _____no_output_____ ###Markdown 6.C.b Submit the script to run in the system-managed environmentThe run is now configured and ready to be executed in a Docker container. If you are running this for the first time, the Docker container will get created, as well as the conda environment inside it. This will take several minutes. Once all this is generated, however, this conda environment will be reused as long as you don't change the conda dependencies. ###Code import subprocess src.run_config.environment = docker_env # Check if Docker is installed and Linux containers are enabled if subprocess.run("docker -v", shell=True).returncode == 0: out = subprocess.check_output("docker system info", shell=True).decode('ascii') if not "OSType: linux" in out: print("Switch Docker engine to use Linux containers.") else: run = exp.submit(src) else: print("Docker engine is not installed.") ###Output _____no_output_____ ###Markdown Potential issue on Windows and how to solve itIf you are using a Windows machine, the creation of the Docker image may fail, and you may see the following error message`docker: Error response from daemon: Drive has not been shared. Failed to launch docker container. Check that docker is running and that C:\ on Windows and /tmp elsewhere is shared.`This is because the process above tries to create a linux-based, i.e. non-windows-based, Docker image. To fix this, you can:- Open the Docker user interface- Navigate to Settings > Shared drives- Select C (or both C and D, if you have one)- ApplyWhen this is done, you can try and re-run the command above. 6.C.c Get run history details ###Code # Get run history details run run.wait_for_completion(show_output=True) ###Output _____no_output_____ ###Markdown The results obtained here should be the same as those obtained before. However, take a look at the "Execution summary" section in the output of the cell above. Look for "docker". There, you should see the "enabled" field set to True. Compare this to the 2 prior runs ("enabled" was then set to False). 6.C.d Use a custom Docker imageYou can also specify a custom Docker image, if you don't want to use the default image provided by Azure ML.```pythoncustom_docker_env = Environment("custom-docker-env")custom_docker_env.docker.enabled = True```You can either pull an image directly from Anaconda:```python Use an image available in Docker Hub without authenticationcustom_docker_env.docker.base_image = "continuumio/miniconda3"```Or one of the images you may already have created:```python or, use an image available in your private Azure Container Registrycustom_docker_env.docker.base_image = "mycustomimage:1.0"custom_docker_env.docker.base_image_registry.address = "myregistry.azurecr.io"custom_docker_env.docker.base_image_registry.username = "username"custom_docker_env.docker.base_image_registry.password = "password"``` Where to find my Docker image name and registry credentials If you do not know what the name of your Docker image or container registry is, or if you don't know how to access the username and password needed above, proceed as follows: - Docker image name: - In the portal, under your resource group, click on your current workspace - Click on Experiments - Click on Images - Click on the image of your choice - Copy the "ID" string - In this notebook, replace "mycustomimage:1/0" with that ID string - Username and password: - In the portal, under your resource group, click on the container registry associated with your workspace - If you have several and don't know which one you need, click on your workspace, go to Overview and click on the "Registry" name on the upper right of the screen - There, go to "Access keys" - Copy the username and one of the passwords - In this notebook, replace "username" and "password" by these valuesIn any case, you will need to use the lines above in place of the line marked as ` Reference Docker image` in section 6.C.a. When you are using your custom Docker image, you might already have your Python environment properly set up. In that case, you can skip specifying conda dependencies, and just use the `user_managed_dependencies` option instead:```pythoncustom_docker_env.python.user_managed_dependencies = True path to the Python environment in the custom Docker imagecustom_docker_env.python.interpreter_path = '/opt/conda/bin/python'```Once you are done defining your environment, set that environment on your run configuration:```pythonsrc.run_config.environment = custom_docker_env``` 7. Query run metrics Once your run has completed, you can now extract the metrics you captured by using the `get_metrics` method. As shown in the `train.py` file, these metrics are "alpha" and "mse". ###Code # Get all metris logged in the run run.get_metrics() metrics = run.get_metrics() ###Output _____no_output_____ ###Markdown Let's find the model that has the lowest MSE value logged. ###Code import numpy as np best_alpha = metrics['alpha'][np.argmin(metrics['mse'])] print('When alpha is {1:0.2f}, we have min MSE {0:0.2f}.'.format( min(metrics['mse']), best_alpha )) ###Output _____no_output_____ ###Markdown Let's compare it to the others ###Code %matplotlib inline import matplotlib import matplotlib.pyplot as plt plt.plot(metrics['alpha'], metrics['mse'], marker='o') plt.ylabel("MSE") plt.xlabel("Alpha") ###Output _____no_output_____ ###Markdown You can also list all the files that are associated with this run record ###Code run.get_file_names() ###Output _____no_output_____ ###Markdown From the results obtained above, `ridge_0.40.pkl` is the best performing model. You can now register that particular model with the workspace. Once you have done so, go back to the portal and click on "Models". You should see it there. ###Code # Supply a model name, and the full path to the serialized model file. model = run.register_model(model_name='best_ridge_model', model_path='./outputs/ridge_0.40.pkl') print("Registered model:\n --> Name: {}\n --> Version: {}\n --> URL: {}".format(model.name, model.version, model.url)) ###Output _____no_output_____ ###Markdown Copyright (c) Microsoft Corporation. All rights reserved.Licensed under the MIT License. 02. Train locally* Create or load workspace.* Create scripts locally.* Create `train.py` in a folder, along with a `my.lib` file.* Configure & execute a local run in a user-managed Python environment.* Configure & execute a local run in a system-managed Python environment.* Configure & execute a local run in a Docker environment.* Query run metrics to find the best model* Register model for operationalization. PrerequisitesMake sure you go through the [configuration notebook](../../../configuration.ipynb) first if you haven't. ###Code # Check core SDK version number import azureml.core print("SDK version:", azureml.core.VERSION) ###Output _____no_output_____ ###Markdown Initialize WorkspaceInitialize a workspace object from persisted configuration. ###Code from azureml.core.workspace import Workspace ws = Workspace.from_config() print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep='\n') ###Output _____no_output_____ ###Markdown Create An Experiment**Experiment** is a logical container in an Azure ML Workspace. It hosts run records which can include run metrics and output artifacts from your experiments. ###Code from azureml.core import Experiment experiment_name = 'train-on-local' exp = Experiment(workspace=ws, name=experiment_name) ###Output _____no_output_____ ###Markdown View `train.py``train.py` is already created for you. ###Code with open('./train.py', 'r') as f: print(f.read()) ###Output _____no_output_____ ###Markdown Note `train.py` also references a `mylib.py` file. ###Code with open('./mylib.py', 'r') as f: print(f.read()) ###Output _____no_output_____ ###Markdown Configure & Run User-managed environmentBelow, we use a user-managed run, which means you are responsible to ensure all the necessary packages are available in the Python environment you choose to run the script. ###Code from azureml.core.runconfig import RunConfiguration # Editing a run configuration property on-fly. run_config_user_managed = RunConfiguration() run_config_user_managed.environment.python.user_managed_dependencies = True # You can choose a specific Python environment by pointing to a Python path #run_config.environment.python.interpreter_path = '/home/johndoe/miniconda3/envs/myenv/bin/python' ###Output _____no_output_____ ###Markdown Submit script to run in the user-managed environmentNote whole script folder is submitted for execution, including the `mylib.py` file. ###Code from azureml.core import ScriptRunConfig src = ScriptRunConfig(source_directory='./', script='train.py', run_config=run_config_user_managed) run = exp.submit(src) ###Output _____no_output_____ ###Markdown Get run history details ###Code run ###Output _____no_output_____ ###Markdown Note: if you need to cancel a run, you can follow [these instructions](https://aka.ms/aml-docs-cancel-run). Block to wait till run finishes. ###Code run.wait_for_completion(show_output=True) ###Output _____no_output_____ ###Markdown System-managed environmentYou can also ask the system to build a new conda environment and execute your scripts in it. The environment is built once and will be reused in subsequent executions as long as the conda dependencies remain unchanged. ###Code from azureml.core.conda_dependencies import CondaDependencies run_config_system_managed = RunConfiguration() run_config_system_managed.environment.python.user_managed_dependencies = False run_config_system_managed.auto_prepare_environment = True # Specify conda dependencies with scikit-learn cd = CondaDependencies.create(conda_packages=['scikit-learn']) run_config_system_managed.environment.python.conda_dependencies = cd ###Output _____no_output_____ ###Markdown Submit script to run in the system-managed environmentA new conda environment is built based on the conda dependencies object. If you are running this for the first time, this might take up to 5 mninutes. But this conda environment is reused so long as you don't change the conda dependencies. ###Code src = ScriptRunConfig(source_directory="./", script='train.py', run_config=run_config_system_managed) run = exp.submit(src) ###Output _____no_output_____ ###Markdown Get run history details ###Code run ###Output _____no_output_____ ###Markdown Block and wait till run finishes. ###Code run.wait_for_completion(show_output = True) ###Output _____no_output_____ ###Markdown Docker-based execution**IMPORTANT**: You must have Docker engine installed locally in order to use this execution mode. If your kernel is already running in a Docker container, such as **Azure Notebooks**, this mode will **NOT** work.NOTE: The GPU base image must be used on Microsoft Azure Services only such as ACI, AML Compute, Azure VMs, and AKS.You can also ask the system to pull down a Docker image and execute your scripts in it. ###Code run_config_docker = RunConfiguration() run_config_docker.environment.python.user_managed_dependencies = False run_config_docker.auto_prepare_environment = True run_config_docker.environment.docker.enabled = True # use the default CPU-based Docker image from Azure ML run_config_docker.environment.docker.base_image = azureml.core.runconfig.DEFAULT_CPU_IMAGE # Specify conda dependencies with scikit-learn cd = CondaDependencies.create(conda_packages=['scikit-learn']) run_config_docker.environment.python.conda_dependencies = cd src = ScriptRunConfig(source_directory="./", script='train.py', run_config=run_config_docker) ###Output _____no_output_____ ###Markdown Submit script to run in the system-managed environmentA new conda environment is built based on the conda dependencies object. If you are running this for the first time, this might take up to 5 minutes. But this conda environment is reused so long as you don't change the conda dependencies. ###Code import subprocess # Check if Docker is installed and Linux containers are enabled if subprocess.run("docker -v", shell=True).returncode == 0: out = subprocess.check_output("docker system info", shell=True).decode('ascii') if not "OSType: linux" in out: print("Switch Docker engine to use Linux containers.") else: run = exp.submit(src) else: print("Docker engine not installed.") #Get run history details run run.wait_for_completion(show_output=True) ###Output _____no_output_____ ###Markdown Use a custom Docker imageYou can also specify a custom Docker image if you don't want to use the default image provided by Azure ML.```python use an image available in Docker Hub without authenticationrun_config_docker.environment.docker.base_image = "continuumio/miniconda3" or, use an image available in a private Azure Container Registryrun_config_docker.environment.docker.base_image = "mycustomimage:1.0"run_config_docker.environment.docker.base_image_registry.address = "myregistry.azurecr.io"run_config_docker.environment.docker.base_image_registry.username = "username"run_config_docker.environment.docker.base_image_registry.password = "password"```When you are using a custom Docker image, you might already have your environment setup properly in a Python environment in the Docker image. In that case, you can skip specifying conda dependencies, and just use `user_managed_dependencies` option instead:```pythonrun_config_docker.environment.python.user_managed_dependencies = True path to the Python environment in the custom Docker imagerun_config.environment.python.interpreter_path = '/opt/conda/bin/python'``` Query run metrics ###Code # get all metris logged in the run run.get_metrics() metrics = run.get_metrics() ###Output _____no_output_____ ###Markdown Let's find the model that has the lowest MSE value logged. ###Code import numpy as np best_alpha = metrics['alpha'][np.argmin(metrics['mse'])] print('When alpha is {1:0.2f}, we have min MSE {0:0.2f}.'.format( min(metrics['mse']), best_alpha )) ###Output _____no_output_____ ###Markdown Let's compare it to the others ###Code %matplotlib inline import matplotlib import matplotlib.pyplot as plt plt.plot(metrics['alpha'], metrics['mse'], marker='o') plt.ylabel("MSE") plt.xlabel("Alpha") ###Output _____no_output_____ ###Markdown You can also list all the files that are associated with this run record ###Code run.get_file_names() ###Output _____no_output_____ ###Markdown We know the model `ridge_0.40.pkl` is the best performing model from the earlier queries. So let's register it with the workspace. ###Code # supply a model name, and the full path to the serialized model file. model = run.register_model(model_name='best_ridge_model', model_path='./outputs/ridge_0.40.pkl') print(model.name, model.version, model.url) ###Output _____no_output_____ ###Markdown Copyright (c) Microsoft Corporation. All rights reserved.Licensed under the MIT License. 02. Train locally* Create or load workspace.* Create scripts locally.* Create `train.py` in a folder, along with a `my.lib` file.* Configure & execute a local run in a user-managed Python environment.* Configure & execute a local run in a system-managed Python environment.* Configure & execute a local run in a Docker environment.* Query run metrics to find the best model* Register model for operationalization. PrerequisitesMake sure you go through the [configuration notebook](../../../configuration.ipynb) first if you haven't. ###Code # Check core SDK version number import azureml.core print("SDK version:", azureml.core.VERSION) ###Output _____no_output_____ ###Markdown Initialize WorkspaceInitialize a workspace object from persisted configuration. ###Code from azureml.core.workspace import Workspace ws = Workspace.from_config() print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep='\n') ###Output _____no_output_____ ###Markdown Create An Experiment**Experiment** is a logical container in an Azure ML Workspace. It hosts run records which can include run metrics and output artifacts from your experiments. ###Code from azureml.core import Experiment experiment_name = 'train-on-local' exp = Experiment(workspace=ws, name=experiment_name) ###Output _____no_output_____ ###Markdown View `train.py``train.py` is already created for you. ###Code with open('./train.py', 'r') as f: print(f.read()) ###Output _____no_output_____ ###Markdown Note `train.py` also references a `mylib.py` file. ###Code with open('./mylib.py', 'r') as f: print(f.read()) ###Output _____no_output_____ ###Markdown Configure & Run User-managed environmentBelow, we use a user-managed run, which means you are responsible to ensure all the necessary packages are available in the Python environment you choose to run the script. ###Code from azureml.core.runconfig import RunConfiguration # Editing a run configuration property on-fly. run_config_user_managed = RunConfiguration() run_config_user_managed.environment.python.user_managed_dependencies = True # You can choose a specific Python environment by pointing to a Python path #run_config.environment.python.interpreter_path = '/home/johndoe/miniconda3/envs/myenv/bin/python' ###Output _____no_output_____ ###Markdown Submit script to run in the user-managed environmentNote whole script folder is submitted for execution, including the `mylib.py` file. ###Code from azureml.core import ScriptRunConfig src = ScriptRunConfig(source_directory='./', script='train.py', run_config=run_config_user_managed) run = exp.submit(src) ###Output _____no_output_____ ###Markdown Get run history details ###Code run ###Output _____no_output_____ ###Markdown Note: if you need to cancel a run, you can follow [these instructions](https://aka.ms/aml-docs-cancel-run). Block to wait till run finishes. ###Code run.wait_for_completion(show_output=True) ###Output _____no_output_____ ###Markdown System-managed environmentYou can also ask the system to build a new conda environment and execute your scripts in it. The environment is built once and will be reused in subsequent executions as long as the conda dependencies remain unchanged. ###Code from azureml.core.conda_dependencies import CondaDependencies run_config_system_managed = RunConfiguration() run_config_system_managed.environment.python.user_managed_dependencies = False run_config_system_managed.auto_prepare_environment = True # Specify conda dependencies with scikit-learn cd = CondaDependencies.create(conda_packages=['scikit-learn']) run_config_system_managed.environment.python.conda_dependencies = cd ###Output _____no_output_____ ###Markdown Submit script to run in the system-managed environmentA new conda environment is built based on the conda dependencies object. If you are running this for the first time, this might take up to 5 mninutes. But this conda environment is reused so long as you don't change the conda dependencies. ###Code src = ScriptRunConfig(source_directory="./", script='train.py', run_config=run_config_system_managed) run = exp.submit(src) ###Output _____no_output_____ ###Markdown Get run history details ###Code run ###Output _____no_output_____ ###Markdown Block and wait till run finishes. ###Code run.wait_for_completion(show_output = True) ###Output _____no_output_____ ###Markdown Docker-based execution**IMPORTANT**: You must have Docker engine installed locally in order to use this execution mode. If your kernel is already running in a Docker container, such as **Azure Notebooks**, this mode will **NOT** work.NOTE: The GPU base image must be used on Microsoft Azure Services only such as ACI, AML Compute, Azure VMs, and AKS.You can also ask the system to pull down a Docker image and execute your scripts in it. ###Code run_config_docker = RunConfiguration() run_config_docker.environment.python.user_managed_dependencies = False run_config_docker.auto_prepare_environment = True run_config_docker.environment.docker.enabled = True # use the default CPU-based Docker image from Azure ML run_config_docker.environment.docker.base_image = azureml.core.runconfig.DEFAULT_CPU_IMAGE # Specify conda dependencies with scikit-learn cd = CondaDependencies.create(conda_packages=['scikit-learn']) run_config_docker.environment.python.conda_dependencies = cd src = ScriptRunConfig(source_directory="./", script='train.py', run_config=run_config_docker) ###Output _____no_output_____ ###Markdown Submit script to run in the system-managed environmentA new conda environment is built based on the conda dependencies object. If you are running this for the first time, this might take up to 5 mninutes. But this conda environment is reused so long as you don't change the conda dependencies. ###Code import subprocess # Check if Docker is installed and Linux containers are enables if subprocess.run("docker -v", shell=True) == 0: out = subprocess.check_output("docker system info", shell=True, encoding="ascii").split("\n") if not "OSType: linux" in out: print("Switch Docker engine to use Linux containers.") else: run = exp.submit(src) else: print("Docker engine not installed.") #Get run history details run run.wait_for_completion(show_output=True) ###Output _____no_output_____ ###Markdown Use a custom Docker imageYou can also specify a custom Docker image if you don't want to use the default image provided by Azure ML.```python use an image available in Docker Hub without authenticationrun_config_docker.environment.docker.base_image = "continuumio/miniconda3" or, use an image available in a private Azure Container Registryrun_config_docker.environment.docker.base_image = "mycustomimage:1.0"run_config_docker.environment.docker.base_image_registry.address = "myregistry.azurecr.io"run_config_docker.environment.docker.base_image_registry.username = "username"run_config_docker.environment.docker.base_image_registry.password = "password"```When you are using a custom Docker image, you might already have your environment setup properly in a Python environment in the Docker image. In that case, you can skip specifying conda dependencies, and just use `user_managed_dependencies` option instead:```pythonrun_config_docker.environment.python.user_managed_dependencies = True path to the Python environment in the custom Docker imagerun_config.environment.python.interpreter_path = '/opt/conda/bin/python'``` Query run metrics ###Code # get all metris logged in the run run.get_metrics() metrics = run.get_metrics() ###Output _____no_output_____ ###Markdown Let's find the model that has the lowest MSE value logged. ###Code import numpy as np best_alpha = metrics['alpha'][np.argmin(metrics['mse'])] print('When alpha is {1:0.2f}, we have min MSE {0:0.2f}.'.format( min(metrics['mse']), best_alpha )) ###Output _____no_output_____ ###Markdown You can also list all the files that are associated with this run record ###Code run.get_file_names() ###Output _____no_output_____ ###Markdown We know the model `ridge_0.40.pkl` is the best performing model from the eariler queries. So let's register it with the workspace. ###Code # supply a model name, and the full path to the serialized model file. model = run.register_model(model_name='best_ridge_model', model_path='./outputs/ridge_0.40.pkl') print(model.name, model.version, model.url) ###Output _____no_output_____ ###Markdown Copyright (c) Microsoft Corporation. All rights reserved.Licensed under the MIT License. 02. Train locally* Create or load workspace.* Create scripts locally.* Create `train.py` in a folder, along with a `my.lib` file.* Configure & execute a local run in a user-managed Python environment.* Configure & execute a local run in a system-managed Python environment.* Configure & execute a local run in a Docker environment.* Query run metrics to find the best model* Register model for operationalization. PrerequisitesMake sure you go through the [Configuration](../../../configuration.ipynb) Notebook first if you haven't. ###Code # Check core SDK version number import azureml.core print("SDK version:", azureml.core.VERSION) ###Output _____no_output_____ ###Markdown Initialize WorkspaceInitialize a workspace object from persisted configuration. ###Code from azureml.core.workspace import Workspace ws = Workspace.from_config() print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep='\n') ###Output _____no_output_____ ###Markdown Create An Experiment**Experiment** is a logical container in an Azure ML Workspace. It hosts run records which can include run metrics and output artifacts from your experiments. ###Code from azureml.core import Experiment experiment_name = 'train-on-local' exp = Experiment(workspace=ws, name=experiment_name) ###Output _____no_output_____ ###Markdown View `train.py``train.py` is already created for you. ###Code with open('./train.py', 'r') as f: print(f.read()) ###Output _____no_output_____ ###Markdown Note `train.py` also references a `mylib.py` file. ###Code with open('./mylib.py', 'r') as f: print(f.read()) ###Output _____no_output_____ ###Markdown Configure & Run User-managed environmentBelow, we use a user-managed run, which means you are responsible to ensure all the necessary packages are available in the Python environment you choose to run the script. ###Code from azureml.core.runconfig import RunConfiguration # Editing a run configuration property on-fly. run_config_user_managed = RunConfiguration() run_config_user_managed.environment.python.user_managed_dependencies = True # You can choose a specific Python environment by pointing to a Python path #run_config.environment.python.interpreter_path = '/home/johndoe/miniconda3/envs/sdk2/bin/python' ###Output _____no_output_____ ###Markdown Submit script to run in the user-managed environmentNote whole script folder is submitted for execution, including the `mylib.py` file. ###Code from azureml.core import ScriptRunConfig src = ScriptRunConfig(source_directory='./', script='train.py', run_config=run_config_user_managed) run = exp.submit(src) ###Output _____no_output_____ ###Markdown Get run history details ###Code run ###Output _____no_output_____ ###Markdown Block to wait till run finishes. ###Code run.wait_for_completion(show_output=True) ###Output _____no_output_____ ###Markdown System-managed environmentYou can also ask the system to build a new conda environment and execute your scripts in it. The environment is built once and will be reused in subsequent executions as long as the conda dependencies remain unchanged. ###Code from azureml.core.runconfig import RunConfiguration from azureml.core.conda_dependencies import CondaDependencies run_config_system_managed = RunConfiguration() run_config_system_managed.environment.python.user_managed_dependencies = False run_config_system_managed.auto_prepare_environment = True # Specify conda dependencies with scikit-learn cd = CondaDependencies.create(conda_packages=['scikit-learn']) run_config_system_managed.environment.python.conda_dependencies = cd ###Output _____no_output_____ ###Markdown Submit script to run in the system-managed environmentA new conda environment is built based on the conda dependencies object. If you are running this for the first time, this might take up to 5 mninutes. But this conda environment is reused so long as you don't change the conda dependencies. ###Code src = ScriptRunConfig(source_directory="./", script='train.py', run_config=run_config_system_managed) run = exp.submit(src) ###Output _____no_output_____ ###Markdown Get run history details ###Code run ###Output _____no_output_____ ###Markdown Block and wait till run finishes. ###Code run.wait_for_completion(show_output = True) ###Output _____no_output_____ ###Markdown Docker-based execution**IMPORTANT**: You must have Docker engine installed locally in order to use this execution mode. If your kernel is already running in a Docker container, such as **Azure Notebooks**, this mode will **NOT** work.NOTE: The GPU base image must be used on Microsoft Azure Services only such as ACI, AML Compute, Azure VMs, and AKS.You can also ask the system to pull down a Docker image and execute your scripts in it. ###Code run_config_docker = RunConfiguration() run_config_docker.environment.python.user_managed_dependencies = False run_config_docker.auto_prepare_environment = True run_config_docker.environment.docker.enabled = True run_config_docker.environment.docker.base_image = azureml.core.runconfig.DEFAULT_CPU_IMAGE # Specify conda dependencies with scikit-learn cd = CondaDependencies.create(conda_packages=['scikit-learn']) run_config_docker.environment.python.conda_dependencies = cd src = ScriptRunConfig(source_directory="./", script='train.py', run_config=run_config_docker) ###Output _____no_output_____ ###Markdown Submit script to run in the system-managed environmentA new conda environment is built based on the conda dependencies object. If you are running this for the first time, this might take up to 5 mninutes. But this conda environment is reused so long as you don't change the conda dependencies. ###Code import subprocess # Check if Docker is installed and Linux containers are enables if subprocess.run("docker -v", shell=True) == 0: out = subprocess.check_output("docker system info", shell=True, encoding="ascii").split("\n") if not "OSType: linux" in out: print("Switch Docker engine to use Linux containers.") else: run = exp.submit(src) else: print("Docker engine not installed.") #Get run history details run run.wait_for_completion(show_output=True) ###Output _____no_output_____ ###Markdown Query run metrics ###Code # get all metris logged in the run run.get_metrics() metrics = run.get_metrics() ###Output _____no_output_____ ###Markdown Let's find the model that has the lowest MSE value logged. ###Code import numpy as np best_alpha = metrics['alpha'][np.argmin(metrics['mse'])] print('When alpha is {1:0.2f}, we have min MSE {0:0.2f}.'.format( min(metrics['mse']), best_alpha )) ###Output _____no_output_____ ###Markdown You can also list all the files that are associated with this run record ###Code run.get_file_names() ###Output _____no_output_____ ###Markdown We know the model `ridge_0.40.pkl` is the best performing model from the eariler queries. So let's register it with the workspace. ###Code # supply a model name, and the full path to the serialized model file. model = run.register_model(model_name='best_ridge_model', model_path='./outputs/ridge_0.40.pkl') print(model.name, model.version, model.url) ###Output _____no_output_____ ###Markdown Copyright (c) Microsoft Corporation. All rights reserved.Licensed under the MIT License. 02. Train locally* Create or load workspace.* Create scripts locally.* Create `train.py` in a folder, along with a `my.lib` file.* Configure & execute a local run in a user-managed Python environment.* Configure & execute a local run in a system-managed Python environment.* Configure & execute a local run in a Docker environment.* Query run metrics to find the best model* Register model for operationalization. PrerequisitesMake sure you go through the [configuration notebook](../../../configuration.ipynb) first if you haven't. ###Code # Check core SDK version number import azureml.core print("SDK version:", azureml.core.VERSION) ###Output _____no_output_____ ###Markdown Initialize WorkspaceInitialize a workspace object from persisted configuration. ###Code from azureml.core.workspace import Workspace ws = Workspace.from_config() print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep='\n') ###Output _____no_output_____ ###Markdown Create An Experiment**Experiment** is a logical container in an Azure ML Workspace. It hosts run records which can include run metrics and output artifacts from your experiments. ###Code from azureml.core import Experiment experiment_name = 'train-on-local' exp = Experiment(workspace=ws, name=experiment_name) ###Output _____no_output_____ ###Markdown View `train.py``train.py` is already created for you. ###Code with open('./train.py', 'r') as f: print(f.read()) ###Output _____no_output_____ ###Markdown Note `train.py` also references a `mylib.py` file. ###Code with open('./mylib.py', 'r') as f: print(f.read()) ###Output _____no_output_____ ###Markdown Configure & Run User-managed environmentBelow, we use a user-managed run, which means you are responsible to ensure all the necessary packages are available in the Python environment you choose to run the script. ###Code from azureml.core.runconfig import RunConfiguration # Editing a run configuration property on-fly. run_config_user_managed = RunConfiguration() run_config_user_managed.environment.python.user_managed_dependencies = True # You can choose a specific Python environment by pointing to a Python path #run_config.environment.python.interpreter_path = '/home/johndoe/miniconda3/envs/myenv/bin/python' ###Output _____no_output_____ ###Markdown Submit script to run in the user-managed environmentNote whole script folder is submitted for execution, including the `mylib.py` file. ###Code from azureml.core import ScriptRunConfig src = ScriptRunConfig(source_directory='./', script='train.py', run_config=run_config_user_managed) run = exp.submit(src) ###Output _____no_output_____ ###Markdown Get run history details ###Code run ###Output _____no_output_____ ###Markdown Note: if you need to cancel a run, you can follow [these instructions](https://aka.ms/aml-docs-cancel-run). Block to wait till run finishes. ###Code run.wait_for_completion(show_output=True) ###Output _____no_output_____ ###Markdown System-managed environmentYou can also ask the system to build a new conda environment and execute your scripts in it. The environment is built once and will be reused in subsequent executions as long as the conda dependencies remain unchanged. ###Code from azureml.core.conda_dependencies import CondaDependencies run_config_system_managed = RunConfiguration() run_config_system_managed.environment.python.user_managed_dependencies = False run_config_system_managed.auto_prepare_environment = True # Specify conda dependencies with scikit-learn cd = CondaDependencies.create(conda_packages=['scikit-learn']) run_config_system_managed.environment.python.conda_dependencies = cd ###Output _____no_output_____ ###Markdown Submit script to run in the system-managed environmentA new conda environment is built based on the conda dependencies object. If you are running this for the first time, this might take up to 5 mninutes. But this conda environment is reused so long as you don't change the conda dependencies. ###Code src = ScriptRunConfig(source_directory="./", script='train.py', run_config=run_config_system_managed) run = exp.submit(src) ###Output _____no_output_____ ###Markdown Get run history details ###Code run ###Output _____no_output_____ ###Markdown Block and wait till run finishes. ###Code run.wait_for_completion(show_output = True) ###Output _____no_output_____ ###Markdown Docker-based execution**IMPORTANT**: You must have Docker engine installed locally in order to use this execution mode. If your kernel is already running in a Docker container, such as **Azure Notebooks**, this mode will **NOT** work.NOTE: The GPU base image must be used on Microsoft Azure Services only such as ACI, AML Compute, Azure VMs, and AKS.You can also ask the system to pull down a Docker image and execute your scripts in it. ###Code run_config_docker = RunConfiguration() run_config_docker.environment.python.user_managed_dependencies = False run_config_docker.auto_prepare_environment = True run_config_docker.environment.docker.enabled = True # use the default CPU-based Docker image from Azure ML run_config_docker.environment.docker.base_image = azureml.core.runconfig.DEFAULT_CPU_IMAGE # Specify conda dependencies with scikit-learn cd = CondaDependencies.create(conda_packages=['scikit-learn']) run_config_docker.environment.python.conda_dependencies = cd src = ScriptRunConfig(source_directory="./", script='train.py', run_config=run_config_docker) ###Output _____no_output_____ ###Markdown Submit script to run in the system-managed environmentA new conda environment is built based on the conda dependencies object. If you are running this for the first time, this might take up to 5 mninutes. But this conda environment is reused so long as you don't change the conda dependencies. ###Code import subprocess # Check if Docker is installed and Linux containers are enables if subprocess.run("docker -v", shell=True) == 0: out = subprocess.check_output("docker system info", shell=True, encoding="ascii").split("\n") if not "OSType: linux" in out: print("Switch Docker engine to use Linux containers.") else: run = exp.submit(src) else: print("Docker engine not installed.") #Get run history details run run.wait_for_completion(show_output=True) ###Output _____no_output_____ ###Markdown Use a custom Docker imageYou can also specify a custom Docker image if you don't want to use the default image provided by Azure ML.```python use an image available in Docker Hub without authenticationrun_config_docker.environment.docker.base_image = "continuumio/miniconda3" or, use an image available in a private Azure Container Registryrun_config_docker.environment.docker.base_image = "mycustomimage:1.0"run_config_docker.environment.docker.base_image_registry.address = "myregistry.azurecr.io"run_config_docker.environment.docker.base_image_registry.username = "username"run_config_docker.environment.docker.base_image_registry.password = "password"```When you are using a custom Docker image, you might already have your environment setup properly in a Python environment in the Docker image. In that case, you can skip specifying conda dependencies, and just use `user_managed_dependencies` option instead:```pythonrun_config_docker.environment.python.user_managed_dependencies = True path to the Python environment in the custom Docker imagerun_config.environment.python.interpreter_path = '/opt/conda/bin/python'``` Query run metrics ###Code # get all metris logged in the run run.get_metrics() metrics = run.get_metrics() ###Output _____no_output_____ ###Markdown Let's find the model that has the lowest MSE value logged. ###Code import numpy as np best_alpha = metrics['alpha'][np.argmin(metrics['mse'])] print('When alpha is {1:0.2f}, we have min MSE {0:0.2f}.'.format( min(metrics['mse']), best_alpha )) ###Output _____no_output_____ ###Markdown You can also list all the files that are associated with this run record ###Code run.get_file_names() ###Output _____no_output_____ ###Markdown We know the model `ridge_0.40.pkl` is the best performing model from the eariler queries. So let's register it with the workspace. ###Code # supply a model name, and the full path to the serialized model file. model = run.register_model(model_name='best_ridge_model', model_path='./outputs/ridge_0.40.pkl') print(model.name, model.version, model.url) ###Output _____no_output_____ ###Markdown Copyright (c) Microsoft Corporation. All rights reserved.Licensed under the MIT License. 02. Train locally* Create or load workspace.* Create scripts locally.* Create `train.py` in a folder, along with a `my.lib` file.* Configure & execute a local run in a user-managed Python environment.* Configure & execute a local run in a system-managed Python environment.* Configure & execute a local run in a Docker environment.* Query run metrics to find the best model* Register model for operationalization. PrerequisitesMake sure you go through the [00. Installation and Configuration](00.configuration.ipynb) Notebook first if you haven't. ###Code # Check core SDK version number import azureml.core print("SDK version:", azureml.core.VERSION) ###Output _____no_output_____ ###Markdown Initialize WorkspaceInitialize a workspace object from persisted configuration. ###Code from azureml.core.workspace import Workspace ws = Workspace.from_config() print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep='\n') ###Output _____no_output_____ ###Markdown Create An Experiment**Experiment** is a logical container in an Azure ML Workspace. It hosts run records which can include run metrics and output artifacts from your experiments. ###Code from azureml.core import Experiment experiment_name = 'train-on-local' exp = Experiment(workspace=ws, name=experiment_name) ###Output _____no_output_____ ###Markdown View `train.py``train.py` is already created for you. ###Code with open('./train.py', 'r') as f: print(f.read()) ###Output _____no_output_____ ###Markdown Note `train.py` also references a `mylib.py` file. ###Code with open('./mylib.py', 'r') as f: print(f.read()) ###Output _____no_output_____ ###Markdown Configure & Run User-managed environmentBelow, we use a user-managed run, which means you are responsible to ensure all the necessary packages are available in the Python environment you choose to run the script. ###Code from azureml.core.runconfig import RunConfiguration # Editing a run configuration property on-fly. run_config_user_managed = RunConfiguration() run_config_user_managed.environment.python.user_managed_dependencies = True # You can choose a specific Python environment by pointing to a Python path #run_config.environment.python.interpreter_path = '/home/johndoe/miniconda3/envs/sdk2/bin/python' ###Output _____no_output_____ ###Markdown Submit script to run in the user-managed environmentNote whole script folder is submitted for execution, including the `mylib.py` file. ###Code from azureml.core import ScriptRunConfig src = ScriptRunConfig(source_directory='./', script='train.py', run_config=run_config_user_managed) run = exp.submit(src) ###Output _____no_output_____ ###Markdown Get run history details ###Code run ###Output _____no_output_____ ###Markdown Block to wait till run finishes. ###Code run.wait_for_completion(show_output=True) ###Output _____no_output_____ ###Markdown System-managed environmentYou can also ask the system to build a new conda environment and execute your scripts in it. The environment is built once and will be reused in subsequent executions as long as the conda dependencies remain unchanged. ###Code from azureml.core.runconfig import RunConfiguration from azureml.core.conda_dependencies import CondaDependencies run_config_system_managed = RunConfiguration() run_config_system_managed.environment.python.user_managed_dependencies = False run_config_system_managed.auto_prepare_environment = True # Specify conda dependencies with scikit-learn cd = CondaDependencies.create(conda_packages=['scikit-learn']) run_config_system_managed.environment.python.conda_dependencies = cd ###Output _____no_output_____ ###Markdown Submit script to run in the system-managed environmentA new conda environment is built based on the conda dependencies object. If you are running this for the first time, this might take up to 5 mninutes. But this conda environment is reused so long as you don't change the conda dependencies. ###Code src = ScriptRunConfig(source_directory="./", script='train.py', run_config=run_config_system_managed) run = exp.submit(src) ###Output _____no_output_____ ###Markdown Get run history details ###Code run ###Output _____no_output_____ ###Markdown Block and wait till run finishes. ###Code run.wait_for_completion(show_output = True) ###Output _____no_output_____ ###Markdown Docker-based execution**IMPORTANT**: You must have Docker engine installed locally in order to use this execution mode. If your kernel is already running in a Docker container, such as **Azure Notebooks**, this mode will **NOT** work.NOTE: The GPU base image must be used on Microsoft Azure Services only such as ACI, AML Compute, Azure VMs, and AKS.You can also ask the system to pull down a Docker image and execute your scripts in it. ###Code run_config_docker = RunConfiguration() run_config_docker.environment.python.user_managed_dependencies = False run_config_docker.auto_prepare_environment = True run_config_docker.environment.docker.enabled = True run_config_docker.environment.docker.base_image = azureml.core.runconfig.DEFAULT_CPU_IMAGE # Specify conda dependencies with scikit-learn cd = CondaDependencies.create(conda_packages=['scikit-learn']) run_config_docker.environment.python.conda_dependencies = cd src = ScriptRunConfig(source_directory="./", script='train.py', run_config=run_config_docker) ###Output _____no_output_____ ###Markdown Submit script to run in the system-managed environmentA new conda environment is built based on the conda dependencies object. If you are running this for the first time, this might take up to 5 mninutes. But this conda environment is reused so long as you don't change the conda dependencies. ###Code import subprocess # Check if Docker is installed and Linux containers are enables if subprocess.run("docker -v", shell=True) == 0: out = subprocess.check_output("docker system info", shell=True, encoding="ascii").split("\n") if not "OSType: linux" in out: print("Switch Docker engine to use Linux containers.") else: run = exp.submit(src) else: print("Docker engine not installed.") #Get run history details run run.wait_for_completion(show_output=True) ###Output _____no_output_____ ###Markdown Query run metrics ###Code # get all metris logged in the run run.get_metrics() metrics = run.get_metrics() ###Output _____no_output_____ ###Markdown Let's find the model that has the lowest MSE value logged. ###Code import numpy as np best_alpha = metrics['alpha'][np.argmin(metrics['mse'])] print('When alpha is {1:0.2f}, we have min MSE {0:0.2f}.'.format( min(metrics['mse']), best_alpha )) ###Output _____no_output_____ ###Markdown You can also list all the files that are associated with this run record ###Code run.get_file_names() ###Output _____no_output_____ ###Markdown We know the model `ridge_0.40.pkl` is the best performing model from the eariler queries. So let's register it with the workspace. ###Code # supply a model name, and the full path to the serialized model file. model = run.register_model(model_name='best_ridge_model', model_path='./outputs/ridge_0.40.pkl') print(model.name, model.version, model.url) ###Output _____no_output_____ ###Markdown Copyright (c) Microsoft Corporation. All rights reserved.Licensed under the MIT License. ![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/training/train-on-local/train-on-local.png) 02. Train locally_**Train a model locally: Directly on your machine and within a Docker container**_--- Table of contents1. [Introduction](intro)1. [Pre-requisites](pre-reqs)1. [Initialize Workspace](init)1. [Create An Experiment](exp)1. [View training and auxiliary scripts](view)1. [Configure & Run](config-run) 1. User-managed environment 1. Set the environment up 1. Submit the script to run in the user-managed environment 1. Get run history details 1. System-managed environment 1. Set the environment up 1. Submit the script to run in the system-managed environment 1. Get run history details 1. Docker-based execution 1. Set the environment up 1. Submit the script to run in the system-managed environment 1. Get run history details 1. Use a custom Docker image1. [Query run metrics](query)--- 1. Introduction In this notebook, we will learn how to:* Connect to our AML workspace* Create or load a workspace* Configure & execute a local run in: - a user-managed Python environment - a system-managed Python environment - a Docker environment* Query run metrics to find the best model trained in the run* Register that model for operationalization 2. Pre-requisites In this notebook, we assume that you have set your Azure Machine Learning workspace. If you have not, make sure you go through the [configuration notebook](../../../configuration.ipynb) first. In the end, you should have configuration file that contains the subscription ID, resource group and name of your workspace. ###Code # Check core SDK version number import azureml.core print("SDK version:", azureml.core.VERSION) ###Output _____no_output_____ ###Markdown 3. Initialize Workspace Initialize your workspace object from configuration file ###Code from azureml.core.workspace import Workspace ws = Workspace.from_config() print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep='\n') ###Output _____no_output_____ ###Markdown 4. Create An Experiment An experiment is a logical container in an Azure ML Workspace. It contains a series of trials called `Runs`. As such, it hosts run records such as run metrics, logs, and other output artifacts from your experiments. ###Code from azureml.core import Experiment experiment_name = 'train-on-local' exp = Experiment(workspace=ws, name=experiment_name) ###Output _____no_output_____ ###Markdown 5. View training and auxiliary scripts For convenience, we already created the training (`train.py`) script and supportive libraries (`mylib.py`) for you. Take a few minutes to examine both files. ###Code with open('./train.py', 'r') as f: print(f.read()) with open('./mylib.py', 'r') as f: print(f.read()) ###Output _____no_output_____ ###Markdown 6. Configure & Run 6.A User-managed environment 6.A.a Set the environment upWhen using a user-managed environment, you are responsible for ensuring that all the necessary packages are available in the Python environment you choose to run the script in. ###Code from azureml.core import Environment # Editing a run configuration property on-fly. user_managed_env = Environment("user-managed-env") user_managed_env.python.user_managed_dependencies = True # You can choose a specific Python environment by pointing to a Python path #user_managed_env.python.interpreter_path = '/home/johndoe/miniconda3/envs/myenv/bin/python' ###Output _____no_output_____ ###Markdown 6.A.b Submit the script to run in the user-managed environmentWhatever the way you manage your environment, you need to use the `ScriptRunConfig` class. It allows you to further configure your run by pointing to the `train.py` script and to the working directory, which also contains the `mylib.py` file. These inputs indeed provide the commands to execute in the run. Once the run is configured, you submit it to your experiment. ###Code from azureml.core import ScriptRunConfig src = ScriptRunConfig(source_directory='./', script='train.py') src.run_config.environment = user_managed_env run = exp.submit(src) ###Output _____no_output_____ ###Markdown 6.A.c Get run history detailsWhile all calculations were run on your machine (cf. below), by using a `run` you also captured the results of your calculations into your run and experiment. You can then see them on the Azure portal, through the link displayed as output of the following cell.**Note**: The recording of the computation results into your run was made possible by the `run.log()` commands in the `train.py` file. ###Code run ###Output _____no_output_____ ###Markdown Note: if you need to cancel a run, you can follow [these instructions](https://aka.ms/aml-docs-cancel-run). Block any execution to wait until the run finishes. ###Code run.wait_for_completion(show_output=True) ###Output _____no_output_____ ###Markdown **Note:** All these calculations were run on your local machine, in the conda environment you defined above. You can find the results in:- `~/.azureml/envs/azureml_xxxx` for the conda environment you just created- `~/AppData/Local/Temp/azureml_runs/train-on-local_xxxx` for the machine learning models you trained (this path may differ depending on the platform you use). This folder also contains - Logs (under azureml_logs/) - Output pickled files (under outputs/) - The configuration files (credentials, local and docker image setups) - The train.py and mylib.py scripts - The current notebookTake a few minutes to examine the output of the cell above. It shows the content of some of the log files, and extra information on the conda environment used. 6.B System-managed environment 6.B.a Set the environment upNow, instead of managing the setup of the environment yourself, you can ask the system to build a new conda environment for you. The environment is built once, and will be reused in subsequent executions as long as the conda dependencies remain unchanged. ###Code from azureml.core.conda_dependencies import CondaDependencies system_managed_env = Environment("system-managed-env") system_managed_env.python.user_managed_dependencies = False # Specify conda dependencies with scikit-learn cd = CondaDependencies.create(conda_packages=['scikit-learn']) system_managed_env.python.conda_dependencies = cd ###Output _____no_output_____ ###Markdown 6.B.b Submit the script to run in the system-managed environmentA new conda environment is built based on the conda dependencies object. If you are running this for the first time, this might take up to 5 minutes.The commands used to execute the run are then the same as the ones you used above. ###Code src.run_config.environment = system_managed_env run = exp.submit(src) ###Output _____no_output_____ ###Markdown 6.B.c Get run history details ###Code run run.wait_for_completion(show_output = True) ###Output _____no_output_____ ###Markdown 6.C Docker-based executionIn this section, you will train the same models, but you will do so in a Docker container, on your local machine. For this, you then need to have the Docker engine installed locally. If you don't have it yet, please follow the instructions below. How to install Docker- [Linux](https://docs.docker.com/install/linux/docker-ce/ubuntu/)- [MacOs](https://docs.docker.com/docker-for-mac/install/)- [Windows](https://docs.docker.com/docker-for-windows/install/) In case of issues, troubleshooting documentation can be found [here](https://docs.docker.com/docker-for-windows/troubleshoot/running-docker-for-windows-in-nested-virtualization-scenarios). Additionally, you can follow the steps below, if Virtualization is not enabled on your machine: - Go to Task Manager > Performance - Check that Virtualization is enabled - If it is not, go to `Start > Settings > Update and security > Recovery > Advanced Startup - Restart now > Troubleshoot > Advanced options > UEFI firmware settings - restart` - In the BIOS, go to `Advanced > System options > Click the "Virtualization Technology (VTx)" only > Save > Exit > Save all changes` -- This will restart the machine**Notes**: - If your kernel is already running in a Docker container, such as **Azure Notebooks**, this mode will **NOT** work.- If you use a GPU base image, it needs to be used on Microsoft Azure Services such as ACI, AML Compute, Azure VMs, or AKS.You can also ask the system to pull down a Docker image and execute your scripts in it. 6.C.a Set the environment upIn the cell below, you will configure your run to execute in a Docker container. It will:- run on a CPU- contain a conda environment in which the scikit-learn library will be installed.As before, you will finish configuring your run by pointing to the `train.py` and `mylib.py` files. ###Code docker_env = Environment("docker-env") docker_env.python.user_managed_dependencies = False docker_env.docker.enabled = True # use the default CPU-based Docker image from Azure ML print(docker_env.docker.base_image) # Specify conda dependencies with scikit-learn docker_env.python.conda_dependencies = cd ###Output _____no_output_____ ###Markdown 6.C.b Submit the script to run in the system-managed environmentThe run is now configured and ready to be executed in a Docker container. If you are running this for the first time, the Docker container will get created, as well as the conda environment inside it. This will take several minutes. Once all this is generated, however, this conda environment will be reused as long as you don't change the conda dependencies. ###Code import subprocess src.run_config.environment = docker_env # Check if Docker is installed and Linux containers are enabled if subprocess.run("docker -v", shell=True).returncode == 0: out = subprocess.check_output("docker system info", shell=True).decode('ascii') if not "OSType: linux" in out: print("Switch Docker engine to use Linux containers.") else: run = exp.submit(src) else: print("Docker engine is not installed.") ###Output _____no_output_____ ###Markdown Potential issue on Windows and how to solve itIf you are using a Windows machine, the creation of the Docker image may fail, and you may see the following error message`docker: Error response from daemon: Drive has not been shared. Failed to launch docker container. Check that docker is running and that C:\ on Windows and /tmp elsewhere is shared.`This is because the process above tries to create a linux-based, i.e. non-windows-based, Docker image. To fix this, you can:- Open the Docker user interface- Navigate to Settings > Shared drives- Select C (or both C and D, if you have one)- ApplyWhen this is done, you can try and re-run the command above. 6.C.c Get run history details ###Code # Get run history details run run.wait_for_completion(show_output=True) ###Output _____no_output_____ ###Markdown The results obtained here should be the same as those obtained before. However, take a look at the "Execution summary" section in the output of the cell above. Look for "docker". There, you should see the "enabled" field set to True. Compare this to the 2 prior runs ("enabled" was then set to False). 6.C.d Use a custom Docker imageYou can also specify a custom Docker image, if you don't want to use the default image provided by Azure ML.You can either pull an image directly from Anaconda:```python Use an image available in Docker Hub without authenticationrun_config_docker.environment.docker.base_image = "continuumio/miniconda3"```Or one of the images you may already have created:```python or, use an image available in your private Azure Container Registryrun_config_docker.environment.docker.base_image = "mycustomimage:1.0"run_config_docker.environment.docker.base_image_registry.address = "myregistry.azurecr.io"run_config_docker.environment.docker.base_image_registry.username = "username"run_config_docker.environment.docker.base_image_registry.password = "password"``` Where to find my Docker image name and registry credentials If you do not know what the name of your Docker image or container registry is, or if you don't know how to access the username and password needed above, proceed as follows: - Docker image name: - In the portal, under your resource group, click on your current workspace - Click on Experiments - Click on Images - Click on the image of your choice - Copy the "ID" string - In this notebook, replace "mycustomimage:1/0" with that ID string - Username and password: - In the portal, under your resource group, click on the container registry associated with your workspace - If you have several and don't know which one you need, click on your workspace, go to Overview and click on the "Registry" name on the upper right of the screen - There, go to "Access keys" - Copy the username and one of the passwords - In this notebook, replace "username" and "password" by these valuesIn any case, you will need to use the lines above in place of the line marked as ` Reference Docker image` in section 6.C.a. When you are using your custom Docker image, you might already have your Python environment properly set up. In that case, you can skip specifying conda dependencies, and just use the `user_managed_dependencies` option instead:```pythonrun_config_docker.environment.python.user_managed_dependencies = True path to the Python environment in the custom Docker imagerun_config.environment.python.interpreter_path = '/opt/conda/bin/python'``` 7. Query run metrics Once your run has completed, you can now extract the metrics you captured by using the `get_metrics` method. As shown in the `train.py` file, these metrics are "alpha" and "mse". ###Code # Get all metris logged in the run run.get_metrics() metrics = run.get_metrics() ###Output _____no_output_____ ###Markdown Let's find the model that has the lowest MSE value logged. ###Code import numpy as np best_alpha = metrics['alpha'][np.argmin(metrics['mse'])] print('When alpha is {1:0.2f}, we have min MSE {0:0.2f}.'.format( min(metrics['mse']), best_alpha )) ###Output _____no_output_____ ###Markdown Let's compare it to the others ###Code %matplotlib inline import matplotlib import matplotlib.pyplot as plt plt.plot(metrics['alpha'], metrics['mse'], marker='o') plt.ylabel("MSE") plt.xlabel("Alpha") ###Output _____no_output_____ ###Markdown You can also list all the files that are associated with this run record ###Code run.get_file_names() ###Output _____no_output_____ ###Markdown From the results obtained above, `ridge_0.40.pkl` is the best performing model. You can now register that particular model with the workspace. Once you have done so, go back to the portal and click on "Models". You should see it there. ###Code # Supply a model name, and the full path to the serialized model file. model = run.register_model(model_name='best_ridge_model', model_path='./outputs/ridge_0.40.pkl') print("Registered model:\n --> Name: {}\n --> Version: {}\n --> URL: {}".format(model.name, model.version, model.url)) ###Output _____no_output_____ ###Markdown Copyright (c) Microsoft Corporation. All rights reserved.Licensed under the MIT License. ![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/training/train-on-local/train-on-local.png) 02. Train locally_**Train a model locally: Directly on your machine and within a Docker container**_--- Table of contents1. [Introduction](intro)1. [Pre-requisites](pre-reqs)1. [Initialize Workspace](init)1. [Create An Experiment](exp)1. [View training and auxiliary scripts](view)1. [Configure & Run](config-run) 1. User-managed environment 1. Set the environment up 1. Submit the script to run in the user-managed environment 1. Get run history details 1. System-managed environment 1. Set the environment up 1. Submit the script to run in the system-managed environment 1. Get run history details 1. Docker-based execution 1. Set the environment up 1. Submit the script to run in the system-managed environment 1. Get run history details 1. Use a custom Docker image1. [Query run metrics](query)--- 1. Introduction In this notebook, we will learn how to:* Connect to our AML workspace* Create or load a workspace* Configure & execute a local run in: - a user-managed Python environment - a system-managed Python environment - a Docker environment* Query run metrics to find the best model trained in the run* Register that model for operationalization 2. Pre-requisites In this notebook, we assume that you have set your Azure Machine Learning workspace. If you have not, make sure you go through the [configuration notebook](../../../configuration.ipynb) first. In the end, you should have configuration file that contains the subscription ID, resource group and name of your workspace. ###Code # Check core SDK version number import azureml.core print("SDK version:", azureml.core.VERSION) ###Output _____no_output_____ ###Markdown 3. Initialize Workspace Initialize your workspace object from configuration file ###Code from azureml.core.workspace import Workspace ws = Workspace.from_config() print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep='\n') ###Output _____no_output_____ ###Markdown 4. Create An Experiment An experiment is a logical container in an Azure ML Workspace. It contains a series of trials called `Runs`. As such, it hosts run records such as run metrics, logs, and other output artifacts from your experiments. ###Code from azureml.core import Experiment experiment_name = 'train-on-local' exp = Experiment(workspace=ws, name=experiment_name) ###Output _____no_output_____ ###Markdown 5. View training and auxiliary scripts For convenience, we already created the training (`train.py`) script and supportive libraries (`mylib.py`) for you. Take a few minutes to examine both files. ###Code with open('./train.py', 'r') as f: print(f.read()) with open('./mylib.py', 'r') as f: print(f.read()) ###Output _____no_output_____ ###Markdown 6. Configure & Run 6.A User-managed environment 6.A.a Set the environment upWhen using a user-managed environment, you are responsible for ensuring that all the necessary packages are available in the Python environment you choose to run the script in. ###Code from azureml.core.runconfig import RunConfiguration # Editing a run configuration property on-fly. run_config_user_managed = RunConfiguration() run_config_user_managed.environment.python.user_managed_dependencies = True # You can choose a specific Python environment by pointing to a Python path #run_config.environment.python.interpreter_path = '/home/johndoe/miniconda3/envs/myenv/bin/python' ###Output _____no_output_____ ###Markdown 6.A.b Submit the script to run in the user-managed environmentWhatever the way you manage your environment, you need to use the `ScriptRunConfig` class. It allows you to further configure your run by pointing to the `train.py` script and to the working directory, which also contains the `mylib.py` file. These inputs indeed provide the commands to execute in the run. Once the run is configured, you submit it to your experiment. ###Code from azureml.core import ScriptRunConfig src = ScriptRunConfig(source_directory='./', script='train.py', run_config=run_config_user_managed) run = exp.submit(src) ###Output _____no_output_____ ###Markdown 6.A.c Get run history detailsWhile all calculations were run on your machine (cf. below), by using a `run` you also captured the results of your calculations into your run and experiment. You can then see them on the Azure portal, through the link displayed as output of the following cell.**Note**: The recording of the computation results into your run was made possible by the `run.log()` commands in the `train.py` file. ###Code run ###Output _____no_output_____ ###Markdown Note: if you need to cancel a run, you can follow [these instructions](https://aka.ms/aml-docs-cancel-run). Block any execution to wait until the run finishes. ###Code run.wait_for_completion(show_output=True) ###Output _____no_output_____ ###Markdown **Note:** All these calculations were run on your local machine, in the conda environment you defined above. You can find the results in:- `~/.azureml/envs/azureml_xxxx` for the conda environment you just created- `~/AppData/Local/Temp/azureml_runs/train-on-local_xxxx` for the machine learning models you trained (this path may differ depending on the platform you use). This folder also contains - Logs (under azureml_logs/) - Output pickled files (under outputs/) - The configuration files (credentials, local and docker image setups) - The train.py and mylib.py scripts - The current notebookTake a few minutes to examine the output of the cell above. It shows the content of some of the log files, and extra information on the conda environment used. 6.B System-managed environment 6.B.a Set the environment upNow, instead of managing the setup of the environment yourself, you can ask the system to build a new conda environment for you. The environment is built once, and will be reused in subsequent executions as long as the conda dependencies remain unchanged. ###Code from azureml.core.conda_dependencies import CondaDependencies run_config_system_managed = RunConfiguration() run_config_system_managed.environment.python.user_managed_dependencies = False # Specify conda dependencies with scikit-learn cd = CondaDependencies.create(conda_packages=['scikit-learn']) run_config_system_managed.environment.python.conda_dependencies = cd ###Output _____no_output_____ ###Markdown 6.B.b Submit the script to run in the system-managed environmentA new conda environment is built based on the conda dependencies object. If you are running this for the first time, this might take up to 5 minutes.The commands used to execute the run are then the same as the ones you used above. ###Code src = ScriptRunConfig(source_directory="./", script='train.py', run_config=run_config_system_managed) run = exp.submit(src) ###Output _____no_output_____ ###Markdown 6.B.c Get run history details ###Code run run.wait_for_completion(show_output = True) ###Output _____no_output_____ ###Markdown 6.C Docker-based executionIn this section, you will train the same models, but you will do so in a Docker container, on your local machine. For this, you then need to have the Docker engine installed locally. If you don't have it yet, please follow the instructions below. How to install Docker- [Linux](https://docs.docker.com/install/linux/docker-ce/ubuntu/)- [MacOs](https://docs.docker.com/docker-for-mac/install/)- [Windows](https://docs.docker.com/docker-for-windows/install/) In case of issues, troubleshooting documentation can be found [here](https://docs.docker.com/docker-for-windows/troubleshoot/running-docker-for-windows-in-nested-virtualization-scenarios). Additionally, you can follow the steps below, if Virtualization is not enabled on your machine: - Go to Task Manager > Performance - Check that Virtualization is enabled - If it is not, go to `Start > Settings > Update and security > Recovery > Advanced Startup - Restart now > Troubleshoot > Advanced options > UEFI firmware settings - restart` - In the BIOS, go to `Advanced > System options > Click the "Virtualization Technology (VTx)" only > Save > Exit > Save all changes` -- This will restart the machine**Notes**: - If your kernel is already running in a Docker container, such as **Azure Notebooks**, this mode will **NOT** work.- If you use a GPU base image, it needs to be used on Microsoft Azure Services such as ACI, AML Compute, Azure VMs, or AKS.You can also ask the system to pull down a Docker image and execute your scripts in it. 6.C.a Set the environment upIn the cell below, you will configure your run to execute in a Docker container. It will:- run on a CPU- contain a conda environment in which the scikit-learn library will be installed.As before, you will finish configuring your run by pointing to the `train.py` and `mylib.py` files. ###Code run_config_docker = RunConfiguration() run_config_docker.environment.python.user_managed_dependencies = False run_config_docker.environment.docker.enabled = True # use the default CPU-based Docker image from Azure ML run_config_docker.environment.docker.base_image = azureml.core.runconfig.DEFAULT_CPU_IMAGE # Reference Docker image # Specify conda dependencies with scikit-learn cd = CondaDependencies.create(conda_packages=['scikit-learn']) run_config_docker.environment.python.conda_dependencies = cd src = ScriptRunConfig(source_directory="./", script='train.py', run_config=run_config_docker) ###Output _____no_output_____ ###Markdown 6.C.b Submit the script to run in the system-managed environmentThe run is now configured and ready to be executed in a Docker container. If you are running this for the first time, the Docker container will get created, as well as the conda environment inside it. This will take several minutes. Once all this is generated, however, this conda environment will be reused as long as you don't change the conda dependencies. ###Code import subprocess # Check if Docker is installed and Linux containers are enabled if subprocess.run("docker -v", shell=True).returncode == 0: out = subprocess.check_output("docker system info", shell=True).decode('ascii') if not "OSType: linux" in out: print("Switch Docker engine to use Linux containers.") else: run = exp.submit(src) else: print("Docker engine is not installed.") ###Output _____no_output_____ ###Markdown Potential issue on Windows and how to solve itIf you are using a Windows machine, the creation of the Docker image may fail, and you may see the following error message`docker: Error response from daemon: Drive has not been shared. Failed to launch docker container. Check that docker is running and that C:\ on Windows and /tmp elsewhere is shared.`This is because the process above tries to create a linux-based, i.e. non-windows-based, Docker image. To fix this, you can:- Open the Docker user interface- Navigate to Settings > Shared drives- Select C (or both C and D, if you have one)- ApplyWhen this is done, you can try and re-run the command above. 6.C.c Get run history details ###Code # Get run history details run run.wait_for_completion(show_output=True) ###Output _____no_output_____ ###Markdown The results obtained here should be the same as those obtained before. However, take a look at the "Execution summary" section in the output of the cell above. Look for "docker". There, you should see the "enabled" field set to True. Compare this to the 2 prior runs ("enabled" was then set to False). 6.C.d Use a custom Docker imageYou can also specify a custom Docker image, if you don't want to use the default image provided by Azure ML.You can either pull an image directly from Anaconda:```python Use an image available in Docker Hub without authenticationrun_config_docker.environment.docker.base_image = "continuumio/miniconda3"```Or one of the images you may already have created:```python or, use an image available in your private Azure Container Registryrun_config_docker.environment.docker.base_image = "mycustomimage:1.0"run_config_docker.environment.docker.base_image_registry.address = "myregistry.azurecr.io"run_config_docker.environment.docker.base_image_registry.username = "username"run_config_docker.environment.docker.base_image_registry.password = "password"``` Where to find my Docker image name and registry credentials If you do not know what the name of your Docker image or container registry is, or if you don't know how to access the username and password needed above, proceed as follows: - Docker image name: - In the portal, under your resource group, click on your current workspace - Click on Experiments - Click on Images - Click on the image of your choice - Copy the "ID" string - In this notebook, replace "mycustomimage:1/0" with that ID string - Username and password: - In the portal, under your resource group, click on the container registry associated with your workspace - If you have several and don't know which one you need, click on your workspace, go to Overview and click on the "Registry" name on the upper right of the screen - There, go to "Access keys" - Copy the username and one of the passwords - In this notebook, replace "username" and "password" by these valuesIn any case, you will need to use the lines above in place of the line marked as ` Reference Docker image` in section 6.C.a. When you are using your custom Docker image, you might already have your Python environment properly set up. In that case, you can skip specifying conda dependencies, and just use the `user_managed_dependencies` option instead:```pythonrun_config_docker.environment.python.user_managed_dependencies = True path to the Python environment in the custom Docker imagerun_config.environment.python.interpreter_path = '/opt/conda/bin/python'``` 7. Query run metrics Once your run has completed, you can now extract the metrics you captured by using the `get_metrics` method. As shown in the `train.py` file, these metrics are "alpha" and "mse". ###Code # Get all metris logged in the run run.get_metrics() metrics = run.get_metrics() ###Output _____no_output_____ ###Markdown Let's find the model that has the lowest MSE value logged. ###Code import numpy as np best_alpha = metrics['alpha'][np.argmin(metrics['mse'])] print('When alpha is {1:0.2f}, we have min MSE {0:0.2f}.'.format( min(metrics['mse']), best_alpha )) ###Output _____no_output_____ ###Markdown Let's compare it to the others ###Code %matplotlib inline import matplotlib import matplotlib.pyplot as plt plt.plot(metrics['alpha'], metrics['mse'], marker='o') plt.ylabel("MSE") plt.xlabel("Alpha") ###Output _____no_output_____ ###Markdown You can also list all the files that are associated with this run record ###Code run.get_file_names() ###Output _____no_output_____ ###Markdown From the results obtained above, `ridge_0.40.pkl` is the best performing model. You can now register that particular model with the workspace. Once you have done so, go back to the portal and click on "Models". You should see it there. ###Code # Supply a model name, and the full path to the serialized model file. model = run.register_model(model_name='best_ridge_model', model_path='./outputs/ridge_0.40.pkl') print("Registered model:\n --> Name: {}\n --> Version: {}\n --> URL: {}".format(model.name, model.version, model.url)) ###Output _____no_output_____ ###Markdown Copyright (c) Microsoft Corporation. All rights reserved.Licensed under the MIT License. ![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/training/train-on-local/train-on-local.png) 02. Train locally* Create or load workspace.* Create scripts locally.* Create `train.py` in a folder, along with a `my.lib` file.* Configure & execute a local run in a user-managed Python environment.* Configure & execute a local run in a system-managed Python environment.* Configure & execute a local run in a Docker environment.* Query run metrics to find the best model* Register model for operationalization. PrerequisitesIf you are using an Azure Machine Learning Notebook VM, you are all set. Otherwise, make sure you go through the [configuration notebook](../../../configuration.ipynb) first if you haven't. ###Code # Check core SDK version number import azureml.core print("SDK version:", azureml.core.VERSION) ###Output _____no_output_____ ###Markdown Initialize WorkspaceInitialize a workspace object from persisted configuration. ###Code from azureml.core.workspace import Workspace ws = Workspace.from_config() print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep='\n') ###Output _____no_output_____ ###Markdown Create An Experiment**Experiment** is a logical container in an Azure ML Workspace. It hosts run records which can include run metrics and output artifacts from your experiments. ###Code from azureml.core import Experiment experiment_name = 'train-on-local' exp = Experiment(workspace=ws, name=experiment_name) ###Output _____no_output_____ ###Markdown View `train.py``train.py` is already created for you. ###Code with open('./train.py', 'r') as f: print(f.read()) ###Output _____no_output_____ ###Markdown Note `train.py` also references a `mylib.py` file. ###Code with open('./mylib.py', 'r') as f: print(f.read()) ###Output _____no_output_____ ###Markdown Configure & Run User-managed environmentBelow, we use a user-managed run, which means you are responsible to ensure all the necessary packages are available in the Python environment you choose to run the script. ###Code from azureml.core.runconfig import RunConfiguration # Editing a run configuration property on-fly. run_config_user_managed = RunConfiguration() run_config_user_managed.environment.python.user_managed_dependencies = True # You can choose a specific Python environment by pointing to a Python path #run_config.environment.python.interpreter_path = '/home/johndoe/miniconda3/envs/myenv/bin/python' ###Output _____no_output_____ ###Markdown Submit script to run in the user-managed environmentNote whole script folder is submitted for execution, including the `mylib.py` file. ###Code from azureml.core import ScriptRunConfig src = ScriptRunConfig(source_directory='./', script='train.py', run_config=run_config_user_managed) run = exp.submit(src) ###Output _____no_output_____ ###Markdown Get run history details ###Code run ###Output _____no_output_____ ###Markdown Note: if you need to cancel a run, you can follow [these instructions](https://aka.ms/aml-docs-cancel-run). Block to wait till run finishes. ###Code run.wait_for_completion(show_output=True) ###Output _____no_output_____ ###Markdown System-managed environmentYou can also ask the system to build a new conda environment and execute your scripts in it. The environment is built once and will be reused in subsequent executions as long as the conda dependencies remain unchanged. ###Code from azureml.core.conda_dependencies import CondaDependencies run_config_system_managed = RunConfiguration() run_config_system_managed.environment.python.user_managed_dependencies = False run_config_system_managed.auto_prepare_environment = True # Specify conda dependencies with scikit-learn cd = CondaDependencies.create(conda_packages=['scikit-learn']) run_config_system_managed.environment.python.conda_dependencies = cd ###Output _____no_output_____ ###Markdown Submit script to run in the system-managed environmentA new conda environment is built based on the conda dependencies object. If you are running this for the first time, this might take up to 5 mninutes. But this conda environment is reused so long as you don't change the conda dependencies. ###Code src = ScriptRunConfig(source_directory="./", script='train.py', run_config=run_config_system_managed) run = exp.submit(src) ###Output _____no_output_____ ###Markdown Get run history details ###Code run ###Output _____no_output_____ ###Markdown Block and wait till run finishes. ###Code run.wait_for_completion(show_output = True) ###Output _____no_output_____ ###Markdown Docker-based execution**IMPORTANT**: You must have Docker engine installed locally in order to use this execution mode. If your kernel is already running in a Docker container, such as **Azure Notebooks**, this mode will **NOT** work.NOTE: The GPU base image must be used on Microsoft Azure Services only such as ACI, AML Compute, Azure VMs, and AKS.You can also ask the system to pull down a Docker image and execute your scripts in it. ###Code run_config_docker = RunConfiguration() run_config_docker.environment.python.user_managed_dependencies = False run_config_docker.auto_prepare_environment = True run_config_docker.environment.docker.enabled = True # use the default CPU-based Docker image from Azure ML run_config_docker.environment.docker.base_image = azureml.core.runconfig.DEFAULT_CPU_IMAGE # Specify conda dependencies with scikit-learn cd = CondaDependencies.create(conda_packages=['scikit-learn']) run_config_docker.environment.python.conda_dependencies = cd src = ScriptRunConfig(source_directory="./", script='train.py', run_config=run_config_docker) ###Output _____no_output_____ ###Markdown Submit script to run in the system-managed environmentA new conda environment is built based on the conda dependencies object. If you are running this for the first time, this might take up to 5 minutes. But this conda environment is reused so long as you don't change the conda dependencies. ###Code import subprocess # Check if Docker is installed and Linux containers are enabled if subprocess.run("docker -v", shell=True).returncode == 0: out = subprocess.check_output("docker system info", shell=True).decode('ascii') if not "OSType: linux" in out: print("Switch Docker engine to use Linux containers.") else: run = exp.submit(src) else: print("Docker engine not installed.") #Get run history details run run.wait_for_completion(show_output=True) ###Output _____no_output_____ ###Markdown Use a custom Docker imageYou can also specify a custom Docker image if you don't want to use the default image provided by Azure ML.```python use an image available in Docker Hub without authenticationrun_config_docker.environment.docker.base_image = "continuumio/miniconda3" or, use an image available in a private Azure Container Registryrun_config_docker.environment.docker.base_image = "mycustomimage:1.0"run_config_docker.environment.docker.base_image_registry.address = "myregistry.azurecr.io"run_config_docker.environment.docker.base_image_registry.username = "username"run_config_docker.environment.docker.base_image_registry.password = "password"```When you are using a custom Docker image, you might already have your environment setup properly in a Python environment in the Docker image. In that case, you can skip specifying conda dependencies, and just use `user_managed_dependencies` option instead:```pythonrun_config_docker.environment.python.user_managed_dependencies = True path to the Python environment in the custom Docker imagerun_config.environment.python.interpreter_path = '/opt/conda/bin/python'``` Query run metrics ###Code # get all metris logged in the run run.get_metrics() metrics = run.get_metrics() ###Output _____no_output_____ ###Markdown Let's find the model that has the lowest MSE value logged. ###Code import numpy as np best_alpha = metrics['alpha'][np.argmin(metrics['mse'])] print('When alpha is {1:0.2f}, we have min MSE {0:0.2f}.'.format( min(metrics['mse']), best_alpha )) ###Output _____no_output_____ ###Markdown Let's compare it to the others ###Code %matplotlib inline import matplotlib import matplotlib.pyplot as plt plt.plot(metrics['alpha'], metrics['mse'], marker='o') plt.ylabel("MSE") plt.xlabel("Alpha") ###Output _____no_output_____ ###Markdown You can also list all the files that are associated with this run record ###Code run.get_file_names() ###Output _____no_output_____ ###Markdown We know the model `ridge_0.40.pkl` is the best performing model from the earlier queries. So let's register it with the workspace. ###Code # supply a model name, and the full path to the serialized model file. model = run.register_model(model_name='best_ridge_model', model_path='./outputs/ridge_0.40.pkl') print(model.name, model.version, model.url) ###Output _____no_output_____ ###Markdown Copyright (c) Microsoft Corporation. All rights reserved.Licensed under the MIT License. ![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/training/train-on-local/train-on-local.png) 02. Train locally_**Train a model locally: Directly on your machine and within a Docker container**_--- Table of contents1. [Introduction](intro)1. [Pre-requisites](pre-reqs)1. [Initialize Workspace](init)1. [Create An Experiment](exp)1. [View training and auxiliary scripts](view)1. [Configure & Run](config-run) 1. User-managed environment 1. Set the environment up 1. Submit the script to run in the user-managed environment 1. Get run history details 1. System-managed environment 1. Set the environment up 1. Submit the script to run in the system-managed environment 1. Get run history details 1. Docker-based execution 1. Set the environment up 1. Submit the script to run in the system-managed environment 1. Get run history details 1. Use a custom Docker image1. [Query run metrics](query)--- 1. Introduction In this notebook, we will learn how to:* Connect to our AML workspace* Create or load a workspace* Configure & execute a local run in: - a user-managed Python environment - a system-managed Python environment - a Docker environment* Query run metrics to find the best model trained in the run* Register that model for operationalization 2. Pre-requisites In this notebook, we assume that you have set your Azure Machine Learning workspace. If you have not, make sure you go through the [configuration notebook](../../../configuration.ipynb) first. In the end, you should have configuration file that contains the subscription ID, resource group and name of your workspace. ###Code # Check core SDK version number import azureml.core print("SDK version:", azureml.core.VERSION) ###Output _____no_output_____ ###Markdown 3. Initialize Workspace Initialize your workspace object from configuration file ###Code from azureml.core.workspace import Workspace ws = Workspace.from_config() print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep='\n') ###Output _____no_output_____ ###Markdown 4. Create An Experiment An experiment is a logical container in an Azure ML Workspace. It contains a series of trials called `Runs`. As such, it hosts run records such as run metrics, logs, and other output artifacts from your experiments. ###Code from azureml.core import Experiment experiment_name = 'train-on-local' exp = Experiment(workspace=ws, name=experiment_name) ###Output _____no_output_____ ###Markdown 5. View training and auxiliary scripts For convenience, we already created the training (`train.py`) script and supportive libraries (`mylib.py`) for you. Take a few minutes to examine both files. ###Code with open('./train.py', 'r') as f: print(f.read()) with open('./mylib.py', 'r') as f: print(f.read()) ###Output _____no_output_____ ###Markdown 6. Configure & Run 6.A User-managed environment 6.A.a Set the environment upWhen using a user-managed environment, you are responsible for ensuring that all the necessary packages are available in the Python environment you choose to run the script in. ###Code from azureml.core import Environment # Editing a run configuration property on-fly. user_managed_env = Environment("user-managed-env") user_managed_env.python.user_managed_dependencies = True # You can choose a specific Python environment by pointing to a Python path #user_managed_env.python.interpreter_path = '/home/johndoe/miniconda3/envs/myenv/bin/python' ###Output _____no_output_____ ###Markdown 6.A.b Submit the script to run in the user-managed environmentWhatever the way you manage your environment, you need to use the `ScriptRunConfig` class. It allows you to further configure your run by pointing to the `train.py` script and to the working directory, which also contains the `mylib.py` file. These inputs indeed provide the commands to execute in the run. Once the run is configured, you submit it to your experiment. ###Code from azureml.core import ScriptRunConfig src = ScriptRunConfig(source_directory='./', script='train.py') src.run_config.environment = user_managed_env run = exp.submit(src) ###Output _____no_output_____ ###Markdown 6.A.c Get run history detailsWhile all calculations were run on your machine (cf. below), by using a `run` you also captured the results of your calculations into your run and experiment. You can then see them on the Azure portal, through the link displayed as output of the following cell.**Note**: The recording of the computation results into your run was made possible by the `run.log()` commands in the `train.py` file. ###Code run ###Output _____no_output_____ ###Markdown Note: if you need to cancel a run, you can follow [these instructions](https://aka.ms/aml-docs-cancel-run). Block any execution to wait until the run finishes. ###Code run.wait_for_completion(show_output=True) ###Output _____no_output_____ ###Markdown **Note:** All these calculations were run on your local machine, in the conda environment you defined above. You can find the results in:- `~/.azureml/envs/azureml_xxxx` for the conda environment you just created- `~/AppData/Local/Temp/azureml_runs/train-on-local_xxxx` for the machine learning models you trained (this path may differ depending on the platform you use). This folder also contains - Logs (under azureml_logs/) - Output pickled files (under outputs/) - The configuration files (credentials, local and docker image setups) - The train.py and mylib.py scripts - The current notebookTake a few minutes to examine the output of the cell above. It shows the content of some of the log files, and extra information on the conda environment used. 6.B System-managed environment 6.B.a Set the environment upNow, instead of managing the setup of the environment yourself, you can ask the system to build a new conda environment for you. The environment is built once, and will be reused in subsequent executions as long as the conda dependencies remain unchanged. ###Code from azureml.core.conda_dependencies import CondaDependencies system_managed_env = Environment("system-managed-env") system_managed_env.python.user_managed_dependencies = False # Specify conda dependencies with scikit-learn cd = CondaDependencies.create(conda_packages=['scikit-learn']) system_managed_env.python.conda_dependencies = cd ###Output _____no_output_____ ###Markdown 6.B.b Submit the script to run in the system-managed environmentA new conda environment is built based on the conda dependencies object. If you are running this for the first time, this might take up to 5 minutes.The commands used to execute the run are then the same as the ones you used above. ###Code src.run_config.environment = system_managed_env run = exp.submit(src) ###Output _____no_output_____ ###Markdown 6.B.c Get run history details ###Code run run.wait_for_completion(show_output = True) ###Output _____no_output_____ ###Markdown 6.C Docker-based executionIn this section, you will train the same models, but you will do so in a Docker container, on your local machine. For this, you then need to have the Docker engine installed locally. If you don't have it yet, please follow the instructions below. How to install Docker- [Linux](https://docs.docker.com/install/linux/docker-ce/ubuntu/)- [MacOs](https://docs.docker.com/docker-for-mac/install/)- [Windows](https://docs.docker.com/docker-for-windows/install/) In case of issues, troubleshooting documentation can be found [here](https://docs.docker.com/docker-for-windows/troubleshoot/running-docker-for-windows-in-nested-virtualization-scenarios). Additionally, you can follow the steps below, if Virtualization is not enabled on your machine: - Go to Task Manager > Performance - Check that Virtualization is enabled - If it is not, go to `Start > Settings > Update and security > Recovery > Advanced Startup - Restart now > Troubleshoot > Advanced options > UEFI firmware settings - restart` - In the BIOS, go to `Advanced > System options > Click the "Virtualization Technology (VTx)" only > Save > Exit > Save all changes` -- This will restart the machine**Notes**: - If your kernel is already running in a Docker container, such as **Azure Notebooks**, this mode will **NOT** work.- If you use a GPU base image, it needs to be used on Microsoft Azure Services such as ACI, AML Compute, Azure VMs, or AKS.You can also ask the system to pull down a Docker image and execute your scripts in it. 6.C.a Set the environment upIn the cell below, you will configure your run to execute in a Docker container. It will:- run on a CPU- contain a conda environment in which the scikit-learn library will be installed.As before, you will finish configuring your run by pointing to the `train.py` and `mylib.py` files. ###Code docker_env = Environment("docker-env") docker_env.python.user_managed_dependencies = False docker_env.docker.enabled = True # use the default CPU-based Docker image from Azure ML print(docker_env.docker.base_image) # Specify conda dependencies with scikit-learn docker_env.python.conda_dependencies = cd ###Output _____no_output_____ ###Markdown 6.C.b Submit the script to run in the system-managed environmentThe run is now configured and ready to be executed in a Docker container. If you are running this for the first time, the Docker container will get created, as well as the conda environment inside it. This will take several minutes. Once all this is generated, however, this conda environment will be reused as long as you don't change the conda dependencies. ###Code import subprocess src.run_config.environment = docker_env # Check if Docker is installed and Linux containers are enabled if subprocess.run("docker -v", shell=True).returncode == 0: out = subprocess.check_output("docker system info", shell=True).decode('ascii') if not "OSType: linux" in out: print("Switch Docker engine to use Linux containers.") else: run = exp.submit(src) else: print("Docker engine is not installed.") ###Output _____no_output_____ ###Markdown Potential issue on Windows and how to solve itIf you are using a Windows machine, the creation of the Docker image may fail, and you may see the following error message`docker: Error response from daemon: Drive has not been shared. Failed to launch docker container. Check that docker is running and that C:\ on Windows and /tmp elsewhere is shared.`This is because the process above tries to create a linux-based, i.e. non-windows-based, Docker image. To fix this, you can:- Open the Docker user interface- Navigate to Settings > Shared drives- Select C (or both C and D, if you have one)- ApplyWhen this is done, you can try and re-run the command above. 6.C.c Get run history details ###Code # Get run history details run run.wait_for_completion(show_output=True) ###Output _____no_output_____ ###Markdown The results obtained here should be the same as those obtained before. However, take a look at the "Execution summary" section in the output of the cell above. Look for "docker". There, you should see the "enabled" field set to True. Compare this to the 2 prior runs ("enabled" was then set to False). 6.C.d Use a custom Docker imageYou can also specify a custom Docker image, if you don't want to use the default image provided by Azure ML.You can either pull an image directly from Anaconda:```python Use an image available in Docker Hub without authenticationrun_config_docker.environment.docker.base_image = "continuumio/miniconda3"```Or one of the images you may already have created:```python or, use an image available in your private Azure Container Registryrun_config_docker.environment.docker.base_image = "mycustomimage:1.0"run_config_docker.environment.docker.base_image_registry.address = "myregistry.azurecr.io"run_config_docker.environment.docker.base_image_registry.username = "username"run_config_docker.environment.docker.base_image_registry.password = "password"``` Where to find my Docker image name and registry credentials If you do not know what the name of your Docker image or container registry is, or if you don't know how to access the username and password needed above, proceed as follows: - Docker image name: - In the portal, under your resource group, click on your current workspace - Click on Experiments - Click on Images - Click on the image of your choice - Copy the "ID" string - In this notebook, replace "mycustomimage:1/0" with that ID string - Username and password: - In the portal, under your resource group, click on the container registry associated with your workspace - If you have several and don't know which one you need, click on your workspace, go to Overview and click on the "Registry" name on the upper right of the screen - There, go to "Access keys" - Copy the username and one of the passwords - In this notebook, replace "username" and "password" by these valuesIn any case, you will need to use the lines above in place of the line marked as ` Reference Docker image` in section 6.C.a. When you are using your custom Docker image, you might already have your Python environment properly set up. In that case, you can skip specifying conda dependencies, and just use the `user_managed_dependencies` option instead:```pythonrun_config_docker.environment.python.user_managed_dependencies = True path to the Python environment in the custom Docker imagerun_config.environment.python.interpreter_path = '/opt/conda/bin/python'``` 7. Query run metrics Once your run has completed, you can now extract the metrics you captured by using the `get_metrics` method. As shown in the `train.py` file, these metrics are "alpha" and "mse". ###Code # Get all metris logged in the run run.get_metrics() metrics = run.get_metrics() ###Output _____no_output_____ ###Markdown Let's find the model that has the lowest MSE value logged. ###Code import numpy as np best_alpha = metrics['alpha'][np.argmin(metrics['mse'])] print('When alpha is {1:0.2f}, we have min MSE {0:0.2f}.'.format( min(metrics['mse']), best_alpha )) ###Output _____no_output_____ ###Markdown Let's compare it to the others ###Code %matplotlib inline import matplotlib import matplotlib.pyplot as plt plt.plot(metrics['alpha'], metrics['mse'], marker='o') plt.ylabel("MSE") plt.xlabel("Alpha") ###Output _____no_output_____ ###Markdown You can also list all the files that are associated with this run record ###Code run.get_file_names() ###Output _____no_output_____ ###Markdown From the results obtained above, `ridge_0.40.pkl` is the best performing model. You can now register that particular model with the workspace. Once you have done so, go back to the portal and click on "Models". You should see it there. ###Code # Supply a model name, and the full path to the serialized model file. model = run.register_model(model_name='best_ridge_model', model_path='./outputs/ridge_0.40.pkl') print("Registered model:\n --> Name: {}\n --> Version: {}\n --> URL: {}".format(model.name, model.version, model.url)) ###Output _____no_output_____ ###Markdown Copyright (c) Microsoft Corporation. All rights reserved.Licensed under the MIT License. ![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/training/train-on-local/train-on-local.png) 02. Train locally_**Train a model locally: Directly on your machine and within a Docker container**_--- Table of contents1. [Introduction](intro)1. [Pre-requisites](pre-reqs)1. [Initialize Workspace](init)1. [Create An Experiment](exp)1. [View training and auxiliary scripts](view)1. [Configure & Run](config-run) 1. User-managed environment 1. Set the environment up 1. Submit the script to run in the user-managed environment 1. Get run history details 1. System-managed environment 1. Set the environment up 1. Submit the script to run in the system-managed environment 1. Get run history details 1. Docker-based execution 1. Set the environment up 1. Submit the script to run in the system-managed environment 1. Get run history details 1. Use a custom Docker image1. [Query run metrics](query)--- 1. Introduction In this notebook, we will learn how to:* Connect to our AML workspace* Create or load a workspace* Configure & execute a local run in: - a user-managed Python environment - a system-managed Python environment - a Docker environment* Query run metrics to find the best model trained in the run* Register that model for operationalization 2. Pre-requisites In this notebook, we assume that you have set your Azure Machine Learning workspace. If you have not, make sure you go through the [configuration notebook](../../../configuration.ipynb) first. In the end, you should have configuration file that contains the subscription ID, resource group and name of your workspace. ###Code # Check core SDK version number import azureml.core print("SDK version:", azureml.core.VERSION) ###Output _____no_output_____ ###Markdown 3. Initialize Workspace Initialize your workspace object from configuration file ###Code from azureml.core.workspace import Workspace ws = Workspace.from_config() print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep='\n') ###Output _____no_output_____ ###Markdown 4. Create An Experiment An experiment is a logical container in an Azure ML Workspace. It contains a series of trials called `Runs`. As such, it hosts run records such as run metrics, logs, and other output artifacts from your experiments. ###Code from azureml.core import Experiment experiment_name = 'train-on-local' exp = Experiment(workspace=ws, name=experiment_name) ###Output _____no_output_____ ###Markdown 5. View training and auxiliary scripts For convenience, we already created the training (`train.py`) script and supportive libraries (`mylib.py`) for you. Take a few minutes to examine both files. ###Code with open('./train.py', 'r') as f: print(f.read()) with open('./mylib.py', 'r') as f: print(f.read()) ###Output _____no_output_____ ###Markdown 6. Configure & Run 6.A User-managed environment 6.A.a Set the environment upWhen using a user-managed environment, you are responsible for ensuring that all the necessary packages are available in the Python environment you choose to run the script in. ###Code from azureml.core import Environment # Editing a run configuration property on-fly. user_managed_env = Environment("user-managed-env") user_managed_env.python.user_managed_dependencies = True # You can choose a specific Python environment by pointing to a Python path #user_managed_env.python.interpreter_path = '/home/johndoe/miniconda3/envs/myenv/bin/python' ###Output _____no_output_____ ###Markdown 6.A.b Submit the script to run in the user-managed environmentWhatever the way you manage your environment, you need to use the `ScriptRunConfig` class. It allows you to further configure your run by pointing to the `train.py` script and to the working directory, which also contains the `mylib.py` file. These inputs indeed provide the commands to execute in the run. Once the run is configured, you submit it to your experiment. ###Code from azureml.core import ScriptRunConfig src = ScriptRunConfig(source_directory='./', script='train.py') src.run_config.environment = user_managed_env run = exp.submit(src) ###Output _____no_output_____ ###Markdown 6.A.c Get run history detailsWhile all calculations were run on your machine (cf. below), by using a `run` you also captured the results of your calculations into your run and experiment. You can then see them on the Azure portal, through the link displayed as output of the following cell.**Note**: The recording of the computation results into your run was made possible by the `run.log()` commands in the `train.py` file. ###Code run ###Output _____no_output_____ ###Markdown Note: if you need to cancel a run, you can follow [these instructions](https://aka.ms/aml-docs-cancel-run). Block any execution to wait until the run finishes. ###Code run.wait_for_completion(show_output=True) ###Output _____no_output_____ ###Markdown **Note:** All these calculations were run on your local machine, in the conda environment you defined above. You can find the results in:- `~/.azureml/envs/azureml_xxxx` for the conda environment you just created- `~/AppData/Local/Temp/azureml_runs/train-on-local_xxxx` for the machine learning models you trained (this path may differ depending on the platform you use). This folder also contains - Logs (under azureml_logs/) - Output pickled files (under outputs/) - The configuration files (credentials, local and docker image setups) - The train.py and mylib.py scripts - The current notebookTake a few minutes to examine the output of the cell above. It shows the content of some of the log files, and extra information on the conda environment used. 6.B System-managed environment 6.B.a Set the environment upNow, instead of managing the setup of the environment yourself, you can ask the system to build a new conda environment for you. The environment is built once, and will be reused in subsequent executions as long as the conda dependencies remain unchanged. ###Code from azureml.core.conda_dependencies import CondaDependencies system_managed_env = Environment("system-managed-env") system_managed_env.python.user_managed_dependencies = False # Specify conda dependencies with scikit-learn cd = CondaDependencies.create(conda_packages=['scikit-learn']) system_managed_env.python.conda_dependencies = cd ###Output _____no_output_____ ###Markdown 6.B.b Submit the script to run in the system-managed environmentA new conda environment is built based on the conda dependencies object. If you are running this for the first time, this might take up to 5 minutes.The commands used to execute the run are then the same as the ones you used above. ###Code src.run_config.environment = system_managed_env run = exp.submit(src) ###Output _____no_output_____ ###Markdown 6.B.c Get run history details ###Code run run.wait_for_completion(show_output = True) ###Output _____no_output_____ ###Markdown 6.C Docker-based executionIn this section, you will train the same models, but you will do so in a Docker container, on your local machine. For this, you then need to have the Docker engine installed locally. If you don't have it yet, please follow the instructions below. How to install Docker- [Linux](https://docs.docker.com/install/linux/docker-ce/ubuntu/)- [MacOs](https://docs.docker.com/docker-for-mac/install/)- [Windows](https://docs.docker.com/docker-for-windows/install/) In case of issues, troubleshooting documentation can be found [here](https://docs.docker.com/docker-for-windows/troubleshoot/running-docker-for-windows-in-nested-virtualization-scenarios). Additionally, you can follow the steps below, if Virtualization is not enabled on your machine: - Go to Task Manager > Performance - Check that Virtualization is enabled - If it is not, go to `Start > Settings > Update and security > Recovery > Advanced Startup - Restart now > Troubleshoot > Advanced options > UEFI firmware settings - restart` - In the BIOS, go to `Advanced > System options > Click the "Virtualization Technology (VTx)" only > Save > Exit > Save all changes` -- This will restart the machine**Notes**: - If your kernel is already running in a Docker container, such as **Azure Notebooks**, this mode will **NOT** work.- If you use a GPU base image, it needs to be used on Microsoft Azure Services such as ACI, AML Compute, Azure VMs, or AKS.You can also ask the system to pull down a Docker image and execute your scripts in it. 6.C.a Set the environment upIn the cell below, you will configure your run to execute in a Docker container. It will:- run on a CPU- contain a conda environment in which the scikit-learn library will be installed.As before, you will finish configuring your run by pointing to the `train.py` and `mylib.py` files. ###Code docker_env = Environment("docker-env") docker_env.python.user_managed_dependencies = False docker_env.docker.enabled = True # use the default CPU-based Docker image from Azure ML print(docker_env.docker.base_image) # Specify conda dependencies with scikit-learn docker_env.python.conda_dependencies = cd ###Output _____no_output_____ ###Markdown 6.C.b Submit the script to run in the system-managed environmentThe run is now configured and ready to be executed in a Docker container. If you are running this for the first time, the Docker container will get created, as well as the conda environment inside it. This will take several minutes. Once all this is generated, however, this conda environment will be reused as long as you don't change the conda dependencies. ###Code import subprocess src.run_config.environment = docker_env # Check if Docker is installed and Linux containers are enabled if subprocess.run("docker -v", shell=True).returncode == 0: out = subprocess.check_output("docker system info", shell=True).decode('ascii') if not "OSType: linux" in out: print("Switch Docker engine to use Linux containers.") else: run = exp.submit(src) else: print("Docker engine is not installed.") ###Output _____no_output_____ ###Markdown Potential issue on Windows and how to solve itIf you are using a Windows machine, the creation of the Docker image may fail, and you may see the following error message`docker: Error response from daemon: Drive has not been shared. Failed to launch docker container. Check that docker is running and that C:\ on Windows and /tmp elsewhere is shared.`This is because the process above tries to create a linux-based, i.e. non-windows-based, Docker image. To fix this, you can:- Open the Docker user interface- Navigate to Settings > Shared drives- Select C (or both C and D, if you have one)- ApplyWhen this is done, you can try and re-run the command above. 6.C.c Get run history details ###Code # Get run history details run run.wait_for_completion(show_output=True) ###Output _____no_output_____ ###Markdown The results obtained here should be the same as those obtained before. However, take a look at the "Execution summary" section in the output of the cell above. Look for "docker". There, you should see the "enabled" field set to True. Compare this to the 2 prior runs ("enabled" was then set to False). 6.C.d Use a custom Docker imageYou can also specify a custom Docker image, if you don't want to use the default image provided by Azure ML.You can either pull an image directly from Anaconda:```python Use an image available in Docker Hub without authenticationrun_config_docker.environment.docker.base_image = "continuumio/miniconda3"```Or one of the images you may already have created:```python or, use an image available in your private Azure Container Registryrun_config_docker.environment.docker.base_image = "mycustomimage:1.0"run_config_docker.environment.docker.base_image_registry.address = "myregistry.azurecr.io"run_config_docker.environment.docker.base_image_registry.username = "username"run_config_docker.environment.docker.base_image_registry.password = "password"``` Where to find my Docker image name and registry credentials If you do not know what the name of your Docker image or container registry is, or if you don't know how to access the username and password needed above, proceed as follows: - Docker image name: - In the portal, under your resource group, click on your current workspace - Click on Experiments - Click on Images - Click on the image of your choice - Copy the "ID" string - In this notebook, replace "mycustomimage:1/0" with that ID string - Username and password: - In the portal, under your resource group, click on the container registry associated with your workspace - If you have several and don't know which one you need, click on your workspace, go to Overview and click on the "Registry" name on the upper right of the screen - There, go to "Access keys" - Copy the username and one of the passwords - In this notebook, replace "username" and "password" by these valuesIn any case, you will need to use the lines above in place of the line marked as ` Reference Docker image` in section 6.C.a. When you are using your custom Docker image, you might already have your Python environment properly set up. In that case, you can skip specifying conda dependencies, and just use the `user_managed_dependencies` option instead:```pythonrun_config_docker.environment.python.user_managed_dependencies = True path to the Python environment in the custom Docker imagerun_config.environment.python.interpreter_path = '/opt/conda/bin/python'``` 7. Query run metrics Once your run has completed, you can now extract the metrics you captured by using the `get_metrics` method. As shown in the `train.py` file, these metrics are "alpha" and "mse". ###Code # Get all metris logged in the run run.get_metrics() metrics = run.get_metrics() ###Output _____no_output_____ ###Markdown Let's find the model that has the lowest MSE value logged. ###Code import numpy as np best_alpha = metrics['alpha'][np.argmin(metrics['mse'])] print('When alpha is {1:0.2f}, we have min MSE {0:0.2f}.'.format( min(metrics['mse']), best_alpha )) ###Output _____no_output_____ ###Markdown Let's compare it to the others ###Code %matplotlib inline import matplotlib import matplotlib.pyplot as plt plt.plot(metrics['alpha'], metrics['mse'], marker='o') plt.ylabel("MSE") plt.xlabel("Alpha") ###Output _____no_output_____ ###Markdown You can also list all the files that are associated with this run record ###Code run.get_file_names() ###Output _____no_output_____ ###Markdown From the results obtained above, `ridge_0.40.pkl` is the best performing model. You can now register that particular model with the workspace. Once you have done so, go back to the portal and click on "Models". You should see it there. ###Code # Supply a model name, and the full path to the serialized model file. model = run.register_model(model_name='best_ridge_model', model_path='./outputs/ridge_0.40.pkl') print("Registered model:\n --> Name: {}\n --> Version: {}\n --> URL: {}".format(model.name, model.version, model.url)) ###Output _____no_output_____ ###Markdown Copyright (c) Microsoft Corporation. All rights reserved.Licensed under the MIT License. ![Impressions](https://PixelServer20190423114238.azurewebsites.net/api/impressions/MachineLearningNotebooks/how-to-use-azureml/training/train-on-local/train-on-local.png) 02. Train locally_**Train a model locally: Directly on your machine and within a Docker container**_--- Table of contents1. [Introduction](intro)1. [Pre-requisites](pre-reqs)1. [Initialize Workspace](init)1. [Create An Experiment](exp)1. [View training and auxiliary scripts](view)1. [Configure & Run](config-run) 1. User-managed environment 1. Set the environment up 1. Submit the script to run in the user-managed environment 1. Get run history details 1. System-managed environment 1. Set the environment up 1. Submit the script to run in the system-managed environment 1. Get run history details 1. Docker-based execution 1. Set the environment up 1. Submit the script to run in the system-managed environment 1. Get run history details 1. Use a custom Docker image1. [Query run metrics](query)--- 1. Introduction In this notebook, we will learn how to:* Connect to our AML workspace* Create or load a workspace* Configure & execute a local run in: - a user-managed Python environment - a system-managed Python environment - a Docker environment* Query run metrics to find the best model trained in the run* Register that model for operationalization 2. Pre-requisites In this notebook, we assume that you have set your Azure Machine Learning workspace. If you have not, make sure you go through the [configuration notebook](../../../configuration.ipynb) first. In the end, you should have configuration file that contains the subscription ID, resource group and name of your workspace. ###Code # Check core SDK version number import azureml.core print("SDK version:", azureml.core.VERSION) ###Output _____no_output_____ ###Markdown 3. Initialize Workspace Initialize your workspace object from configuration file ###Code from azureml.core.workspace import Workspace ws = Workspace.from_config() print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep='\n') ###Output _____no_output_____ ###Markdown 4. Create An Experiment An experiment is a logical container in an Azure ML Workspace. It contains a series of trials called `Runs`. As such, it hosts run records such as run metrics, logs, and other output artifacts from your experiments. ###Code from azureml.core import Experiment experiment_name = 'train-on-local' exp = Experiment(workspace=ws, name=experiment_name) ###Output _____no_output_____ ###Markdown 5. View training and auxiliary scripts For convenience, we already created the training (`train.py`) script and supportive libraries (`mylib.py`) for you. Take a few minutes to examine both files. ###Code with open('./train.py', 'r') as f: print(f.read()) with open('./mylib.py', 'r') as f: print(f.read()) ###Output _____no_output_____ ###Markdown 6. Configure & Run 6.A User-managed environment 6.A.a Set the environment upWhen using a user-managed environment, you are responsible for ensuring that all the necessary packages are available in the Python environment you choose to run the script in. ###Code from azureml.core import Environment # Editing a run configuration property on-fly. user_managed_env = Environment("user-managed-env") user_managed_env.python.user_managed_dependencies = True # You can choose a specific Python environment by pointing to a Python path #user_managed_env.python.interpreter_path = '/home/johndoe/miniconda3/envs/myenv/bin/python' ###Output _____no_output_____ ###Markdown 6.A.b Submit the script to run in the user-managed environmentWhatever the way you manage your environment, you need to use the `ScriptRunConfig` class. It allows you to further configure your run by pointing to the `train.py` script and to the working directory, which also contains the `mylib.py` file. These inputs indeed provide the commands to execute in the run. Once the run is configured, you submit it to your experiment. ###Code from azureml.core import ScriptRunConfig src = ScriptRunConfig(source_directory='./', script='train.py') src.run_config.environment = user_managed_env run = exp.submit(src) ###Output _____no_output_____ ###Markdown 6.A.c Get run history detailsWhile all calculations were run on your machine (cf. below), by using a `run` you also captured the results of your calculations into your run and experiment. You can then see them on the Azure portal, through the link displayed as output of the following cell.**Note**: The recording of the computation results into your run was made possible by the `run.log()` commands in the `train.py` file. ###Code run ###Output _____no_output_____ ###Markdown Note: if you need to cancel a run, you can follow [these instructions](https://aka.ms/aml-docs-cancel-run). Block any execution to wait until the run finishes. ###Code run.wait_for_completion(show_output=True) ###Output _____no_output_____ ###Markdown **Note:** All these calculations were run on your local machine, in the conda environment you defined above. You can find the results in:- `~/.azureml/envs/azureml_xxxx` for the conda environment you just created- `~/AppData/Local/Temp/azureml_runs/train-on-local_xxxx` for the machine learning models you trained (this path may differ depending on the platform you use). This folder also contains - Logs (under azureml_logs/) - Output pickled files (under outputs/) - The configuration files (credentials, local and docker image setups) - The train.py and mylib.py scripts - The current notebookTake a few minutes to examine the output of the cell above. It shows the content of some of the log files, and extra information on the conda environment used. 6.B System-managed environment 6.B.a Set the environment upNow, instead of managing the setup of the environment yourself, you can ask the system to build a new conda environment for you. The environment is built once, and will be reused in subsequent executions as long as the conda dependencies remain unchanged. ###Code from azureml.core.conda_dependencies import CondaDependencies system_managed_env = Environment("system-managed-env") system_managed_env.python.user_managed_dependencies = False # Specify conda dependencies with scikit-learn cd = CondaDependencies.create(conda_packages=['scikit-learn']) system_managed_env.python.conda_dependencies = cd ###Output _____no_output_____ ###Markdown 6.B.b Submit the script to run in the system-managed environmentA new conda environment is built based on the conda dependencies object. If you are running this for the first time, this might take up to 5 minutes.The commands used to execute the run are then the same as the ones you used above. ###Code src.run_config.environment = system_managed_env run = exp.submit(src) ###Output _____no_output_____ ###Markdown 6.B.c Get run history details ###Code run run.wait_for_completion(show_output = True) ###Output _____no_output_____ ###Markdown 6.C Docker-based executionIn this section, you will train the same models, but you will do so in a Docker container, on your local machine. For this, you then need to have the Docker engine installed locally. If you don't have it yet, please follow the instructions below. How to install Docker- [Linux](https://docs.docker.com/install/linux/docker-ce/ubuntu/)- [MacOs](https://docs.docker.com/docker-for-mac/install/)- [Windows](https://docs.docker.com/docker-for-windows/install/) In case of issues, troubleshooting documentation can be found [here](https://docs.docker.com/docker-for-windows/troubleshoot/running-docker-for-windows-in-nested-virtualization-scenarios). Additionally, you can follow the steps below, if Virtualization is not enabled on your machine: - Go to Task Manager > Performance - Check that Virtualization is enabled - If it is not, go to `Start > Settings > Update and security > Recovery > Advanced Startup - Restart now > Troubleshoot > Advanced options > UEFI firmware settings - restart` - In the BIOS, go to `Advanced > System options > Click the "Virtualization Technology (VTx)" only > Save > Exit > Save all changes` -- This will restart the machine**Notes**: - If your kernel is already running in a Docker container, such as **Azure Notebooks**, this mode will **NOT** work.- If you use a GPU base image, it needs to be used on Microsoft Azure Services such as ACI, AML Compute, Azure VMs, or AKS.You can also ask the system to pull down a Docker image and execute your scripts in it. 6.C.a Set the environment upIn the cell below, you will configure your run to execute in a Docker container. It will:- run on a CPU- contain a conda environment in which the scikit-learn library will be installed.As before, you will finish configuring your run by pointing to the `train.py` and `mylib.py` files. ###Code docker_env = Environment("docker-env") docker_env.python.user_managed_dependencies = False docker_env.docker.enabled = True # use the default CPU-based Docker image from Azure ML print(docker_env.docker.base_image) # Specify conda dependencies with scikit-learn docker_env.python.conda_dependencies = cd ###Output _____no_output_____ ###Markdown 6.C.b Submit the script to run in the system-managed environmentThe run is now configured and ready to be executed in a Docker container. If you are running this for the first time, the Docker container will get created, as well as the conda environment inside it. This will take several minutes. Once all this is generated, however, this conda environment will be reused as long as you don't change the conda dependencies. ###Code import subprocess src.run_config.environment = docker_env # Check if Docker is installed and Linux containers are enabled if subprocess.run("docker -v", shell=True).returncode == 0: out = subprocess.check_output("docker system info", shell=True).decode('ascii') if not "OSType: linux" in out: print("Switch Docker engine to use Linux containers.") else: run = exp.submit(src) else: print("Docker engine is not installed.") ###Output _____no_output_____ ###Markdown Potential issue on Windows and how to solve itIf you are using a Windows machine, the creation of the Docker image may fail, and you may see the following error message`docker: Error response from daemon: Drive has not been shared. Failed to launch docker container. Check that docker is running and that C:\ on Windows and /tmp elsewhere is shared.`This is because the process above tries to create a linux-based, i.e. non-windows-based, Docker image. To fix this, you can:- Open the Docker user interface- Navigate to Settings > Shared drives- Select C (or both C and D, if you have one)- ApplyWhen this is done, you can try and re-run the command above. 6.C.c Get run history details ###Code # Get run history details run run.wait_for_completion(show_output=True) ###Output _____no_output_____ ###Markdown The results obtained here should be the same as those obtained before. However, take a look at the "Execution summary" section in the output of the cell above. Look for "docker". There, you should see the "enabled" field set to True. Compare this to the 2 prior runs ("enabled" was then set to False). 6.C.d Use a custom Docker imageYou can also specify a custom Docker image, if you don't want to use the default image provided by Azure ML.You can either pull an image directly from Anaconda:```python Use an image available in Docker Hub without authenticationrun_config_docker.environment.docker.base_image = "continuumio/miniconda3"```Or one of the images you may already have created:```python or, use an image available in your private Azure Container Registryrun_config_docker.environment.docker.base_image = "mycustomimage:1.0"run_config_docker.environment.docker.base_image_registry.address = "myregistry.azurecr.io"run_config_docker.environment.docker.base_image_registry.username = "username"run_config_docker.environment.docker.base_image_registry.password = "password"``` Where to find my Docker image name and registry credentials If you do not know what the name of your Docker image or container registry is, or if you don't know how to access the username and password needed above, proceed as follows: - Docker image name: - In the portal, under your resource group, click on your current workspace - Click on Experiments - Click on Images - Click on the image of your choice - Copy the "ID" string - In this notebook, replace "mycustomimage:1/0" with that ID string - Username and password: - In the portal, under your resource group, click on the container registry associated with your workspace - If you have several and don't know which one you need, click on your workspace, go to Overview and click on the "Registry" name on the upper right of the screen - There, go to "Access keys" - Copy the username and one of the passwords - In this notebook, replace "username" and "password" by these valuesIn any case, you will need to use the lines above in place of the line marked as ` Reference Docker image` in section 6.C.a. When you are using your custom Docker image, you might already have your Python environment properly set up. In that case, you can skip specifying conda dependencies, and just use the `user_managed_dependencies` option instead:```pythonrun_config_docker.environment.python.user_managed_dependencies = True path to the Python environment in the custom Docker imagerun_config.environment.python.interpreter_path = '/opt/conda/bin/python'``` 7. Query run metrics Once your run has completed, you can now extract the metrics you captured by using the `get_metrics` method. As shown in the `train.py` file, these metrics are "alpha" and "mse". ###Code # Get all metris logged in the run run.get_metrics() metrics = run.get_metrics() ###Output _____no_output_____ ###Markdown Let's find the model that has the lowest MSE value logged. ###Code import numpy as np best_alpha = metrics['alpha'][np.argmin(metrics['mse'])] print('When alpha is {1:0.2f}, we have min MSE {0:0.2f}.'.format( min(metrics['mse']), best_alpha )) ###Output _____no_output_____ ###Markdown Let's compare it to the others ###Code %matplotlib inline import matplotlib import matplotlib.pyplot as plt plt.plot(metrics['alpha'], metrics['mse'], marker='o') plt.ylabel("MSE") plt.xlabel("Alpha") ###Output _____no_output_____ ###Markdown You can also list all the files that are associated with this run record ###Code run.get_file_names() ###Output _____no_output_____ ###Markdown From the results obtained above, `ridge_0.40.pkl` is the best performing model. You can now register that particular model with the workspace. Once you have done so, go back to the portal and click on "Models". You should see it there. ###Code # Supply a model name, and the full path to the serialized model file. model = run.register_model(model_name='best_ridge_model', model_path='./outputs/ridge_0.40.pkl') print("Registered model:\n --> Name: {}\n --> Version: {}\n --> URL: {}".format(model.name, model.version, model.url)) ###Output _____no_output_____ ###Markdown Copyright (c) Microsoft Corporation. All rights reserved.Licensed under the MIT License. 02. Train locally* Create or load workspace.* Create scripts locally.* Create `train.py` in a folder, along with a `my.lib` file.* Configure & execute a local run in a user-managed Python environment.* Configure & execute a local run in a system-managed Python environment.* Configure & execute a local run in a Docker environment.* Query run metrics to find the best model* Register model for operationalization. PrerequisitesMake sure you go through the [configuration notebook](../../../configuration.ipynb) first if you haven't. ###Code # Check core SDK version number import azureml.core print("SDK version:", azureml.core.VERSION) ###Output _____no_output_____ ###Markdown Initialize WorkspaceInitialize a workspace object from persisted configuration. ###Code from azureml.core.workspace import Workspace ws = Workspace.from_config() print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep='\n') ###Output _____no_output_____ ###Markdown Create An Experiment**Experiment** is a logical container in an Azure ML Workspace. It hosts run records which can include run metrics and output artifacts from your experiments. ###Code from azureml.core import Experiment experiment_name = 'train-on-local' exp = Experiment(workspace=ws, name=experiment_name) ###Output _____no_output_____ ###Markdown View `train.py``train.py` is already created for you. ###Code with open('./train.py', 'r') as f: print(f.read()) ###Output _____no_output_____ ###Markdown Note `train.py` also references a `mylib.py` file. ###Code with open('./mylib.py', 'r') as f: print(f.read()) ###Output _____no_output_____ ###Markdown Configure & Run User-managed environmentBelow, we use a user-managed run, which means you are responsible to ensure all the necessary packages are available in the Python environment you choose to run the script. ###Code from azureml.core.runconfig import RunConfiguration # Editing a run configuration property on-fly. run_config_user_managed = RunConfiguration() run_config_user_managed.environment.python.user_managed_dependencies = True # You can choose a specific Python environment by pointing to a Python path #run_config.environment.python.interpreter_path = '/home/johndoe/miniconda3/envs/sdk2/bin/python' ###Output _____no_output_____ ###Markdown Submit script to run in the user-managed environmentNote whole script folder is submitted for execution, including the `mylib.py` file. ###Code from azureml.core import ScriptRunConfig src = ScriptRunConfig(source_directory='./', script='train.py', run_config=run_config_user_managed) run = exp.submit(src) ###Output _____no_output_____ ###Markdown Get run history details ###Code run ###Output _____no_output_____ ###Markdown Block to wait till run finishes. ###Code run.wait_for_completion(show_output=True) ###Output _____no_output_____ ###Markdown System-managed environmentYou can also ask the system to build a new conda environment and execute your scripts in it. The environment is built once and will be reused in subsequent executions as long as the conda dependencies remain unchanged. ###Code from azureml.core.runconfig import RunConfiguration from azureml.core.conda_dependencies import CondaDependencies run_config_system_managed = RunConfiguration() run_config_system_managed.environment.python.user_managed_dependencies = False run_config_system_managed.auto_prepare_environment = True # Specify conda dependencies with scikit-learn cd = CondaDependencies.create(conda_packages=['scikit-learn']) run_config_system_managed.environment.python.conda_dependencies = cd ###Output _____no_output_____ ###Markdown Submit script to run in the system-managed environmentA new conda environment is built based on the conda dependencies object. If you are running this for the first time, this might take up to 5 mninutes. But this conda environment is reused so long as you don't change the conda dependencies. ###Code src = ScriptRunConfig(source_directory="./", script='train.py', run_config=run_config_system_managed) run = exp.submit(src) ###Output _____no_output_____ ###Markdown Get run history details ###Code run ###Output _____no_output_____ ###Markdown Block and wait till run finishes. ###Code run.wait_for_completion(show_output = True) ###Output _____no_output_____ ###Markdown Docker-based execution**IMPORTANT**: You must have Docker engine installed locally in order to use this execution mode. If your kernel is already running in a Docker container, such as **Azure Notebooks**, this mode will **NOT** work.NOTE: The GPU base image must be used on Microsoft Azure Services only such as ACI, AML Compute, Azure VMs, and AKS.You can also ask the system to pull down a Docker image and execute your scripts in it. ###Code run_config_docker = RunConfiguration() run_config_docker.environment.python.user_managed_dependencies = False run_config_docker.auto_prepare_environment = True run_config_docker.environment.docker.enabled = True run_config_docker.environment.docker.base_image = azureml.core.runconfig.DEFAULT_CPU_IMAGE # Specify conda dependencies with scikit-learn cd = CondaDependencies.create(conda_packages=['scikit-learn']) run_config_docker.environment.python.conda_dependencies = cd src = ScriptRunConfig(source_directory="./", script='train.py', run_config=run_config_docker) ###Output _____no_output_____ ###Markdown Submit script to run in the system-managed environmentA new conda environment is built based on the conda dependencies object. If you are running this for the first time, this might take up to 5 mninutes. But this conda environment is reused so long as you don't change the conda dependencies. ###Code import subprocess # Check if Docker is installed and Linux containers are enables if subprocess.run("docker -v", shell=True) == 0: out = subprocess.check_output("docker system info", shell=True, encoding="ascii").split("\n") if not "OSType: linux" in out: print("Switch Docker engine to use Linux containers.") else: run = exp.submit(src) else: print("Docker engine not installed.") #Get run history details run run.wait_for_completion(show_output=True) ###Output _____no_output_____ ###Markdown Query run metrics ###Code # get all metris logged in the run run.get_metrics() metrics = run.get_metrics() ###Output _____no_output_____ ###Markdown Let's find the model that has the lowest MSE value logged. ###Code import numpy as np best_alpha = metrics['alpha'][np.argmin(metrics['mse'])] print('When alpha is {1:0.2f}, we have min MSE {0:0.2f}.'.format( min(metrics['mse']), best_alpha )) ###Output _____no_output_____ ###Markdown You can also list all the files that are associated with this run record ###Code run.get_file_names() ###Output _____no_output_____ ###Markdown We know the model `ridge_0.40.pkl` is the best performing model from the eariler queries. So let's register it with the workspace. ###Code # supply a model name, and the full path to the serialized model file. model = run.register_model(model_name='best_ridge_model', model_path='./outputs/ridge_0.40.pkl') print(model.name, model.version, model.url) ###Output _____no_output_____
Examples/Molecular_Dynamics.ipynb
###Markdown Molecular DynamicsThis module is still under development but will allow for the fast simulation of molecular dynamics problems. This module is developed to serve as a learning tool although the code used was developed through the understanding and reading of "The Art of Molecular Dynamics" by D.C. Rapaport. All backend code was written in native C and joined to Python through the use of CPython. This allows for the ease of use, seen below, as only python implementations are required, but the speed of native C is present.Below we simply import the module and call the Molecular_Dynamics class. What happens under the hood here is as follows: An input file is created in the local directory of the python script with all inputs, called input.txt. Then, the C code is called which will read from the input file and perform the simulation. Output is continually written to the specified output file in the same directory as the python script. If the script is run from the command line, prinout=True will provide live readouts of the stage of the simulation. Running from anywhere else will render the printout command useless as the printout is called within the C object file. ###Code import NuclearTools.Molecular_Dynamics as MD obj = MD.Simulate2D(deltaT = .005, density = 0.8, initUcellx = 20, initUcelly = 20, stepAvg = 100, stepEquil = 0, stepLimit = 10000, temperature = 1, limitVel = 4, rangeVel = 3, sizeHistVel = 100, stepVel = 5, randSeedP = 17, printout = True, outfile='2D_case_test') ###Output _____no_output_____ ###Markdown We have performed the above simulation of a 20 x 20 2D box consisting of 400 atoms. All output has been written to 2D_case_test.txt and now using the plotting functions of the class, we can easily parse the ouput and plot our results.Firstly, below we can call fplot for any of 'Kinetic Energy', 'Total Energy', 'Potential Energy', 'Temperature', 'Momentum', 'Pressure', 'Total Energy stdv', 'Kinetic Energy stdv' or 'Pressure stdv'. Lmean to true will calculate the mean value of each property and draw a horizontal line through that property. fplot_mult takes a list of properties to plot. fplot_ravg calculates the running average of the specified properties and plots them. ###Code obj.fplot('Kinetic Energy', Lmean=True) obj.fplot_mult(['Kinetic Energy', 'Momentum']) obj.fplot_ravg(['Momentum', 'Total Energy', 'Kinetic Energy', 'Pressure', 'Potential Energy', 'Temperature']) ###Output _____no_output_____ ###Markdown We can then use the so called h-function to observe the convergence of our simulation. The increments specifier dictates what iterations to plot for the probability distribution below and the lower_r, up_r are the lower and upper boundaries of the iterations to plot. Currently, these bounds are simply determined by your simulation input and may require some guesswork to observe what you intend. ###Code obj.plot_prob_vs_vel(increments=[0,1,2,10]) obj.plot_hfun_vs_time(low_r=0, up_r=10) ###Output _____no_output_____ ###Markdown Next we will perform a 3D simulation using the 'Cell_Neighbor' method. Viable methods also include all-pairs, cell-list, and neighbor-list. It is reccomended to use 'Cell-Neighbor' for speed. ###Code obj = MD.Simulate3D(deltaT = .001, density = 1.2, temperature = 0.4, rCut = 3, initUcellx = 5, initUcelly = 5, initUcellz = 5, nebrTabFac = 100, rNebrShell = 0.4, stepAvg = 100, stepEquil = 5000, stepLimit = 10000, stepAdjustTemp = 10, limitVel = 4, rangeVel = 3, sizeHistVel = 100, stepVel = 5, randSeedP = 17, method = 'Cell-Neighbor', printout = True, outfile='3D_case_test') ###Output _____no_output_____ ###Markdown The plotting is performed as before which can be seen below. ###Code obj.fplot('Kinetic Energy', Lmean=True) obj.fplot_mult(['Kinetic Energy', 'Momentum']) obj.fplot_ravg(['Momentum', 'Total Energy', 'Kinetic Energy', 'Pressure', 'Potential Energy', 'Temperature']) obj.fplot_ravg(['Kinetic Energy stdv']) obj.fplot_ravg(['Total Energy stdv']) obj.fplot_ravg(['Pressure stdv']) obj.plot_prob_vs_vel(increments=[0,1,2,5]) obj.plot_hfun_vs_time(low_r=0, up_r=10) ###Output _____no_output_____ ###Markdown Many time it is more efficient and more organized to have prebuilt input files and to simply run them all. Then one can load them into an object to plot or read information. Given below is the RunCases3D function with the 2D case simply being RunCases2D. The ReadfromOutput() class works for both. ###Code MD.RunCases3D(['input_1.txt', 'input_2.txt']) obj = MD.ReadfromOutput(['3D_1.txt', '3D_2.txt']) ###Output _____no_output_____ ###Markdown Plotting is the same as before and without specifying an output_list in the plotting functions, every file from ReadfromOuput will be plotted. To only plot certain files specify a list of files through this parameter. ###Code obj.fplot('Kinetic Energy', Lmean=True, output_list=['3D_1.txt']) obj.fplot_mult(['Kinetic Energy', 'Momentum']) obj.fplot_ravg(['Momentum', 'Total Energy', 'Kinetic Energy', 'Pressure', 'Potential Energy', 'Temperature']) obj.fplot_ravg(['Kinetic Energy stdv'], output_list=['3D_1.txt']) obj.fplot_ravg(['Total Energy stdv']) obj.fplot_ravg(['Pressure stdv']) ###Output _____no_output_____ ###Markdown To view the actual numerical values of the simulation, the following ways can be used. There are also two ways to call values. Through the direct names or a dictionary using the full name. This allows for ease of use and rememberance. All properties given above as viable for plotting can be directly called here. ###Code print('3D_1 Kinetic E: ', obj.outputs['3D_1.txt'].values['Kinetic Energy'][0:5]) print('3D_1 Kinetic E: ', obj.outputs['3D_1.txt'].kinenergy[0:5]) print('3D_2 Total E stdv: ', obj.outputs['3D_2.txt'].values['Total Energy stdv'][0:5]) print('3D_2 Total E stdv: ', obj.outputs['3D_2.txt'].sig_totenergy[0:5]) ###Output 3D_1 Kinetic E: [0.686 0.7552 0.7644 0.7487 0.7495] 3D_1 Kinetic E: [0.686 0.7552 0.7644 0.7487 0.7495] 3D_2 Total E stdv: [0.363 0.1498 0.0231 0.0156 0.0177] 3D_2 Total E stdv: [0.363 0.1498 0.0231 0.0156 0.0177]
docs/guide.ipynb
###Markdown plot_likert guideWelcome! This notebook aims to introduce you to the usage and options of plot_likert. Have questions or suggestions for improvement? Feel free to open an issue! Prerequisites First, obviously, you'll need plot_likert itself. See homepage for installation instructions. ###Code import plot_likert ###Output _____no_output_____ ###Markdown plot_likert operates on [Pandas](https://pandas.pydata.org/) [DataFrames](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html), so you'll need Pandas as well. ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Pandas uses [NumPy](https://numpy.org/) under the hood. You won't need it directly, but this notebook will use it for a couple of things, like random number generation. ###Code import numpy as np ###Output _____no_output_____ ###Markdown Quick startIf you have the data in the right format, you can make a plot with just one line of code! So, let's get some data: ###Code rng = np.random.default_rng(seed=42) data = pd.DataFrame(rng.choice(plot_likert.scales.agree, (10,2)), columns=['Q1','Q2']) ###Output _____no_output_____ ###Markdown and now, the magic happens: ###Code plot_likert.plot_likert(data, plot_likert.scales.agree); ###Output _____no_output_____ ###Markdown InputsNow you know how easy it can be to start using plot_likert. But we said that the data has to be in the right format. What does that mean exactly? Let's take a look at what we passed in to the function: ###Code data ###Output _____no_output_____ ###Markdown To make our assumptions explicit:1. The input has to be a [Pandas](https://pandas.pydata.org/) [DataFrame](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html)2. Each row represents a response from a single respondent3. Each cell contains their response, preferably as a string4. Each column represents a different question asked to each respondent ScalesThe second input to the `plot_likert` function is the _scale_ you're using for your questions,i.e., your questions' answer choices. Here's what it looked like for the dataset above: ###Code plot_likert.scales.agree ###Output _____no_output_____ ###Markdown You need to specify the scale explicitly because plot_likert needs to know the order of the scale (for colors and sorting), and in case there are any values in the scale that aren't represented in your dataset. The scale is an array of strings, so you can construct one yourself. ###Code another_scale = \ ['strongly disagree', 'disagree', 'neither agree nor disagree', 'agree', 'strongly agree'] ###Output _____no_output_____ ###Markdown Scale must match inputs exactlyThe scale you pass in must match the data exactly, otherwise a `PlotLikertError` is raised.For example, the scale we just constructed has the fields in lower-case, but the data has the words capitalized. Trying to plot now throws an exception. ###Code try: plot_likert.plot_likert(data, another_scale); print("Yay, everything worked!") except plot_likert.PlotLikertError as e: import sys print("Oh no, something went wrong! The message in the exception is:\n" + str(e), file=sys.stderr) ###Output Oh no, something went wrong! The message in the exception is: A response was found with value `Strongly disagree`, which is not one of the values in the provided scale: ['strongly disagree', 'disagree', 'neither agree nor disagree', 'agree', 'strongly agree']. If this is unexpected, you might want to double-check for extra whitespace, capitalization, spelling, or type (int versus str). ###Markdown Bundled scalesFor your convenience, plot_likert [includes some commonly used scales](https://github.com/nmalkin/plot-likert/blob/master/plot_likert/scales.py), for example: ###Code plot_likert.scales.acceptable plot_likert.scales.raw5 ###Output _____no_output_____ ###Markdown If you'd like to add a scale, please open a pull request. Missing dataIf not all of your respondents answered every question, you might have empty cells.This works fine.However, you'll get [a warning](https://docs.python.org/3/library/warnings.html) if you're plotting percentages (see below). ###Code missing_data = data.copy() missing_data.iloc[0,0] = np.NaN # This produces a warning: #plot_likert.plot_likert(missing_data, plot_likert.scales.agree, plot_percentage=True); ###Output _____no_output_____ ###Markdown Plotting percentagesOften, instead of plotting the raw number of responses, you'll want to plot the percentage of respondents who answered a certain way. You can do this by setting the argument `plot_percentage=True`: ###Code plot_likert.plot_likert(data, plot_likert.scales.agree, plot_percentage=True); ###Output _____no_output_____ ###Markdown Customizing colorsYou can change the colors used in the plot by passing in an array of color values as the `colors` argument: ###Code plot_likert.plot_likert(data, plot_likert.scales.agree, colors=plot_likert.colors.likert5); ###Output _____no_output_____ ###Markdown This is mandatory if you're using a scale that has more than 5 values.Some default color schemes [are provided under `plot_likert.colors`](https://github.com/nmalkin/plot-likert/blob/master/plot_likert/colors.py).A color scheme is just an array of [matplotlib color values](https://matplotlib.org/tutorials/colors/colors.html), so you can also construct your own. Changing the figure sizeThe default size of the plot can be pretty cramped. You can adjust the figure size using the `figsize` argument. This specifies the dimensions of the figure in inches. This argument is passed directly to [matplotlib](https://matplotlib.org), so [see its documentation](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.figure.html) for any questions. ###Code plot_likert.plot_likert(data, plot_likert.scales.agree, figsize=(10,3)); ###Output _____no_output_____ ###Markdown You can do more advanced customization too: Controlling the plotThe plotting function returns a [matplotlib Axes object](https://matplotlib.org/api/axes_api.htmlmatplotlib.axes.Axes), which you can use to customize the figure, just as you would with any other matplotlib plot.Here's a quick example: ###Code ax = plot_likert.plot_likert(data, plot_likert.scales.agree) ax.figure.set_size_inches(8, 2) ax.xaxis.set_label_text('# of awesome people'); ax.set_yticklabels(['Second question', 'First question']); ###Output _____no_output_____ ###Markdown Plotting already-aggregated dataThe `plot_likert` function we've been using operates on "raw" responses:a DataFrame that has a row for each response (as discussed above).However, it's possible your data has a different shape,and/or you have already aggregated the data,and just want to plot it.plot_likert provides a solution for this too!Just take your aggregated counts: ###Code precomputed_counts = pd.DataFrame( {'Strongly disagree': {'Q1': 2.0, 'Q2': 2.0}, 'Disagree': {'Q1': 1.0, 'Q2': 0.0}, 'Neither agree nor disagree': {'Q1': 3.0, 'Q2': 2.0}, 'Agree': {'Q1': 3.0, 'Q2': 4.0}, 'Strongly agree': {'Q1': 1.0, 'Q2': 2.0}} ) precomputed_counts ###Output _____no_output_____ ###Markdown …and pass them to the `plot_counts` function: ###Code plot_likert.plot_counts(precomputed_counts, plot_likert.scales.agree); ###Output _____no_output_____ ###Markdown plot_likert guideWelcome! This notebook aims to introduce you to the usage and options of plot_likert. Have questions or suggestions for improvement? Feel free to open an issue! Prerequisites First, obviously, you'll need plot_likert itself. See homepage for installation instructions. ###Code import plot_likert ###Output _____no_output_____ ###Markdown plot_likert operates on [Pandas](https://pandas.pydata.org/) [DataFrames](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html), so you'll need Pandas as well. ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Pandas uses [NumPy](https://numpy.org/) under the hood. You won't need it directly, but this notebook will use it for a couple of things, like random number generation. ###Code import numpy as np ###Output _____no_output_____ ###Markdown Quick startIf you have the data in the right format, you can make a plot with just one line of code! So, let's get some data: ###Code rng = np.random.default_rng(seed=42) data = pd.DataFrame(rng.choice(plot_likert.scales.agree, (10,2)), columns=['Q1','Q2']) ###Output _____no_output_____ ###Markdown and now, the magic happens: ###Code plot_likert.plot_likert(data, plot_likert.scales.agree); ###Output _____no_output_____ ###Markdown InputsNow you know how easy it can be to start using plot_likert. But we said that the data has to be in the right format. What does that mean exactly? Let's take a look at what we passed in to the function: ###Code data ###Output _____no_output_____ ###Markdown To make our assumptions explicit:1. The input has to be a [Pandas](https://pandas.pydata.org/) [DataFrame](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html)2. Each row represents a response from a single respondent3. Each cell contains their response, preferably as a string4. Each column represents a different question asked to each respondent ScalesThe second input to the `plot_likert` function is the _scale_ you're using for your questions,i.e., your questions' answer choices. Here's what it looked like for the dataset above: ###Code plot_likert.scales.agree ###Output _____no_output_____ ###Markdown You need to specify the scale explicitly because plot_likert needs to know the order of the scale (for colors and sorting), and in case there are any values in the scale that aren't represented in your dataset. The scale is an array of strings, so you can construct one yourself. ###Code another_scale = \ ['strongly disagree', 'disagree', 'neither agree nor disagree', 'agree', 'strongly agree'] ###Output _____no_output_____ ###Markdown Scale must match inputs exactlyThe scale you pass in must match the data exactly, otherwise a `PlotLikertError` is raised.For example, the scale we just constructed has the fields in lower-case, but the data has the words capitalized. Trying to plot now throws an exception. ###Code try: plot_likert.plot_likert(data, another_scale); print("Yay, everything worked!") except plot_likert.PlotLikertError as e: import sys print("Oh no, something went wrong! The message in the exception is:\n" + str(e), file=sys.stderr) ###Output Oh no, something went wrong! The message in the exception is: A response was found with value `Strongly disagree`, which is not one of the values in the provided scale: ['strongly disagree', 'disagree', 'neither agree nor disagree', 'agree', 'strongly agree']. If this is unexpected, you might want to double-check for extra whitespace, capitalization, spelling, or type (int versus str). ###Markdown Bundled scalesFor your convenience, plot_likert [includes some commonly used scales](https://github.com/nmalkin/plot-likert/blob/master/plot_likert/scales.py), for example: ###Code plot_likert.scales.acceptable plot_likert.scales.raw5 ###Output _____no_output_____ ###Markdown If you'd like to add a scale, please open a pull request. Missing dataIf not all of your respondents answered every question, you might have empty cells.This works fine.However, you'll get [a warning](https://docs.python.org/3/library/warnings.html) if you're plotting percentages (see below). ###Code missing_data = data.copy() missing_data.iloc[0,0] = np.NaN # This produces a warning: #plot_likert.plot_likert(missing_data, plot_likert.scales.agree, plot_percentage=True); ###Output _____no_output_____ ###Markdown Plotting percentagesOften, instead of plotting the raw number of responses, you'll want to plot the percentage of respondents who answered a certain way. You can do this by setting the argument `plot_percentage=True`: ###Code plot_likert.plot_likert(data, plot_likert.scales.agree, plot_percentage=True); ###Output _____no_output_____ ###Markdown Customizing colorsYou can change the colors used in the plot by passing in an array of color values as the `colors` argument: ###Code plot_likert.plot_likert(data, plot_likert.scales.agree, colors=plot_likert.colors.likert5); ###Output _____no_output_____ ###Markdown This is mandatory if you're using a scale that has more than 5 values.Some default color schemes [are provided under `plot_likert.colors`](https://github.com/nmalkin/plot-likert/blob/master/plot_likert/colors.py).A color scheme is just an array of [matplotlib color values](https://matplotlib.org/tutorials/colors/colors.html), so you can also construct your own. Labeling bar valuesYou can add a label with each bar segment's value by setting the `bar_labels` argument to `True`.The default color of the text is white, but you can change it with the `bar_labels_color` argument. ###Code plot_likert.plot_likert(data, plot_likert.scales.agree, plot_percentage=True, bar_labels=True, bar_labels_color="snow", colors=plot_likert.colors.default_with_darker_neutral); ###Output _____no_output_____ ###Markdown Changing the figure sizeThe default size of the plot can be pretty cramped. You can adjust the figure size using the `figsize` argument. This specifies the dimensions of the figure in inches. This argument is passed directly to [matplotlib](https://matplotlib.org), so [see its documentation](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.figure.html) for any questions. ###Code plot_likert.plot_likert(data, plot_likert.scales.agree, figsize=(10,3)); ###Output _____no_output_____ ###Markdown You can do more advanced customization too: Controlling the plotThe plotting function returns a [matplotlib Axes object](https://matplotlib.org/api/axes_api.htmlmatplotlib.axes.Axes), which you can use to customize the figure, just as you would with any other matplotlib plot.Here's a quick example: ###Code ax = plot_likert.plot_likert(data, plot_likert.scales.agree) ax.figure.set_size_inches(8, 2) ax.xaxis.set_label_text('# of awesome people'); ax.set_yticklabels(['Second question', 'First question']); ###Output _____no_output_____ ###Markdown Instead of manipulating the axes after they've been returned, you can also pass them in first, to enable even more advanced customization: More advanced plotsYou can pass a [matplotlib Axis](https://matplotlib.org/stable/api/axes_api.htmlmatplotlib.axes.Axes) and other options as arguments in order to build more advanced plots. These values will be passed through to [pandas.DataFrame.plot](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.plot.html) (which in turn may pass some of them through to matplotlib); see its documentation for details. ###Code # We import matplotlib in order to control the whole figure. import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown In this example, we're plotting two Likert plots side-by-side for comparison purposes — in this case, comparing absolute values vs percentages. Notice that we're using different bar widths. ###Code fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(15,3)) plot_likert.plot_likert(data, plot_likert.scales.agree, plot_percentage=False, # show absolute values ax=ax1, # show on the left-side subplot legend=0, # hide the legend for the subplot, we'll show a single figure legend instead ); plot_likert.plot_likert(data, plot_likert.scales.agree, plot_percentage=True, # show percentage values ax=ax2, # show on the right-side subplot legend=0, # hide the legend for the subplot, we'll show a single figure legend instead width=0.15 # make the bars slimmer ); # display a single legend for the whole figure handles, labels = ax2.get_legend_handles_labels() fig.legend(handles, labels, bbox_to_anchor=(1.08, .9)) plt.show() ###Output _____no_output_____ ###Markdown Plotting already-aggregated dataThe `plot_likert` function we've been using operates on "raw" responses:a DataFrame that has a row for each response (as discussed above).However, it's possible your data has a different shape,and/or you have already aggregated the data,and just want to plot it.plot_likert provides a solution for this too!Just take your aggregated counts: ###Code precomputed_counts = pd.DataFrame( {'Strongly disagree': {'Q1': 2.0, 'Q2': 2.0}, 'Disagree': {'Q1': 1.0, 'Q2': 0.0}, 'Neither agree nor disagree': {'Q1': 3.0, 'Q2': 2.0}, 'Agree': {'Q1': 3.0, 'Q2': 4.0}, 'Strongly agree': {'Q1': 1.0, 'Q2': 2.0}} ) precomputed_counts ###Output _____no_output_____ ###Markdown …and pass them to the `plot_counts` function: ###Code plot_likert.plot_counts(precomputed_counts, plot_likert.scales.agree); ###Output _____no_output_____ ###Markdown plot_likert guideWelcome! This notebook aims to introduce you to the usage and options of plot_likert. Have questions or suggestions for improvement? Feel free to open an issue! Prerequisites First, obviously, you'll need plot_likert itself. See homepage for installation instructions. ###Code import plot_likert ###Output _____no_output_____ ###Markdown plot_likert operates on [Pandas](https://pandas.pydata.org/) [DataFramas](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html), so you'll need Pandas as well. ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Pandas uses [NumPy](https://numpy.org/) under the hood. You won't need it directly, but this notebook will use it for a couple of things, like random number generation. ###Code import numpy as np ###Output _____no_output_____ ###Markdown Quick startIf you have the data in the right format, you can make a plot with just one line of code! So, let's get some data: ###Code rng = np.random.default_rng(seed=42) data = pd.DataFrame(rng.choice(plot_likert.scales.agree, (10,2)), columns=['Q1','Q2']) ###Output _____no_output_____ ###Markdown and now, the magic happens: ###Code plot_likert.plot_likert(data, plot_likert.scales.agree); ###Output _____no_output_____ ###Markdown InputsNow you know how easy it can be to start using plot_likert. But we said that the data has to be in the right format. What does that mean exactly? Let's take a look at what we passed in to the function: ###Code data ###Output _____no_output_____ ###Markdown To make our assumptions explicit:1. The input has to be a [Pandas](https://pandas.pydata.org/) [DataFrame](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html)2. Each row represents a response from a single respondent3. Each cell contains their response, preferably as a string4. Each column represents a different question asked to each respondent ScalesThe second input to the `plot_likert` function is the _scale_ you're using for your questions,i.e., your questions' answer choices. Here's what it looked like for the dataset above: ###Code plot_likert.scales.agree ###Output _____no_output_____ ###Markdown You need to specify the scale explicitly because plot_likert needs to know the order of the scale (for colors and sorting), and in case there are any values in the scale that aren't represented in your dataset. The scale is an array of strings, so you can construct one yourself. ###Code another_scale = \ ['strongly disagree', 'disagree', 'neither agree nor disagree', 'agree', 'strongly agree'] ###Output _____no_output_____ ###Markdown Scale must match inputs exactlyThe scale you pass in must match the data exactly, otherwise a `ValueError` is raised.For example, the scale we just constructed has the fields in lower-case, but the data has the words capitalized. Trying to plot now throws an exception. ###Code try: plot_likert.plot_likert(data, another_scale); print("Yay, everything worked!") except ValueError as e: import sys print("Oh no, something went wrong! The message in the exception is:\n" + str(e), file=sys.stderr) ###Output Oh no, something went wrong! The message in the exception is: Strongly disagree is not in the scale ###Markdown Bundled scalesFor your convenience, plot_likert [includes some commonly used scales](https://github.com/nmalkin/plot-likert/blob/master/plot_likert/scales.py), for example: ###Code plot_likert.scales.acceptable plot_likert.scales.raw5 ###Output _____no_output_____ ###Markdown If you'd like to add a scale, please open a pull request. Missing dataIf not all of your respondents answered every question, you might have empty cells.This works fine.However, you'll get [a warning](https://docs.python.org/3/library/warnings.html) if you're plotting percentages (see below). ###Code missing_data = data.copy() missing_data.iloc[0,0] = np.NaN # This produces a warning: #plot_likert.plot_likert(missing_data, plot_likert.scales.agree, plot_percentage=True); ###Output _____no_output_____ ###Markdown Plotting percentagesOften, instead of plotting the raw number of responses, you'll want to plot the percentage of respondents who answered a certain way. You can do this by setting the argument `plot_percentage=True`: ###Code plot_likert.plot_likert(data, plot_likert.scales.agree, plot_percentage=True); ###Output _____no_output_____ ###Markdown Customizing colorsYou can change the colors used in the plot by passing in an array of color values as the `colors` argument: ###Code plot_likert.plot_likert(data, plot_likert.scales.agree, colors=plot_likert.colors.likert5); ###Output _____no_output_____ ###Markdown This is mandatory if you're using a scale that has more than 5 values.Some default color schemes [are provided under `plot_likert.colors`](https://github.com/nmalkin/plot-likert/blob/master/plot_likert/colors.py).A color scheme is just an array of [matplotlib color values](https://matplotlib.org/tutorials/colors/colors.html), so you can also construct your own. Changing the figure sizeThe default size of the plot can be pretty cramped. You can adjust the figure size using the `figsize` argument. This specifies the dimensions of the figure in inches. This argument is passed directly to [matplotlib](https://matplotlib.org), so [see its documentation](https://matplotlib.org/api/_as_gen/matplotlib.pyplot.figure.html) for any questions. ###Code plot_likert.plot_likert(data, plot_likert.scales.agree, figsize=(10,3)); ###Output _____no_output_____ ###Markdown You can do more advanced customization too: Controlling the plotThe plotting function returns a [matplotlib Axes object](https://matplotlib.org/api/axes_api.htmlmatplotlib.axes.Axes), which you can use to customize the figure, just as you would with any other matplotlib plot.Here's a quick example: ###Code ax = plot_likert.plot_likert(data, plot_likert.scales.agree) ax.figure.set_size_inches(8, 2) ax.xaxis.set_label_text('# of awesome people'); ax.set_yticklabels(['Second question', 'First question']); ###Output _____no_output_____ ###Markdown Plotting already-aggregated dataThe `plot_likert` function we've been using operates on "raw" responses:a DataFrame that has a row for each response (as discussed above).However, it's possible your data has a different shape,and/or you have already aggregated the data,and just want to plot it.plot_likert provides a solution for this too!Just take your aggregated counts: ###Code precomputed_counts = pd.DataFrame( {'Strongly disagree': {'Q1': 2.0, 'Q2': 2.0}, 'Disagree': {'Q1': 1.0, 'Q2': 0.0}, 'Neither agree nor disagree': {'Q1': 3.0, 'Q2': 2.0}, 'Agree': {'Q1': 3.0, 'Q2': 4.0}, 'Strongly agree': {'Q1': 1.0, 'Q2': 2.0}} ) precomputed_counts ###Output _____no_output_____ ###Markdown …and pass them to the `plot_counts` function: ###Code plot_likert.plot_counts(precomputed_counts, plot_likert.scales.agree); ###Output _____no_output_____ ###Markdown How to customize or extend the knowledge base guidelineYou can design your own description language and use it with Draco or extend the existing language we use here. If you don't know where to start with the constraints, you can first use our [`run_clingo`](https://dig.cmu.edu/draco2/api/run.htmldraco.run.run_clingo) and [`programs`](https://dig.cmu.edu/draco2/api/programs.html) API to generate some recommendations. Then, you should be able to find some recommendations that should have been left out, and you can write constraints to reflect them. If you write your own despription language, you need to set up the search space in a similar way to [`generate.lp`](https://github.com/cmudig/draco2/blob/main/draco/asp/generate.lp) before trying to generate recommendations.For example, the following snippet shows how to use the `run_clingo` API to generate 1 recommendation. You can set a different number to look into more results. ###Code from draco import answer_set_to_dict, run_clingo from draco.programs import define, hard, helpers, constraints, generate from pprint import pprint prog = ( generate.program + define.program + helpers.program + hard.program + constraints.program ) scatter = """ attribute(number_rows,root,100). entity(field,root,(f,0)). attribute((field,name),(f,0),temperature). attribute((field,type),(f,0),number). entity(field,root,(f,1)). attribute((field,name),(f,1),precipitation). attribute((field,type),(f,1),number). entity(view,root,(v,0)). entity(mark,(v,0),(m,0)). entity(encoding,(m,0),(e,0)). attribute((encoding,field),(e,0),(f,0)). entity(encoding,(m,0),(e,1)). attribute((encoding,field),(e,1),(f,1)). entity(scale,(v,0),(s,0)). entity(scale,(v,0),(s,1)). #show entity/3. #show attribute/3. """ for model in run_clingo(prog + scatter, 1): pprint(answer_set_to_dict(model.answer_set)) print(model.answer_set) ###Output {'field': [{'name': 'temperature', 'type': 'number'}, {'name': 'precipitation', 'type': 'number'}], 'number_rows': 100, 'task': 'value', 'view': [{'mark': [{'channel': 'text', 'encoding': [{'channel': 'text', 'field': ('f', 0), 'scale_type': 'linear'}, {'channel': 'size', 'field': ('f', 1), 'scale_type': 'linear'}], 'scale': ('s', 1), 'type': 'text'}], 'scale': [{'channel': 'text', 'type': 'linear'}, {'channel': 'size', 'type': 'linear'}]}]} [attribute(number_rows,root,100), attribute((field,name),(f,0),temperature), attribute((field,type),(f,0),number), attribute((field,name),(f,1),precipitation), attribute((field,type),(f,1),number), attribute((encoding,field),(e,0),(f,0)), attribute((encoding,field),(e,1),(f,1)), attribute(task,root,value), attribute((scale,type),(s,1),linear), attribute((scale,type),(s,0),linear), attribute((encoding,channel),(e,1),size), attribute((encoding,channel),(e,0),text), attribute((mark,type),(m,0),text), attribute((scale,channel),(s,1),size), attribute((scale,channel),(s,0),text), attribute((mark,channel),(m,0),size), attribute((mark,channel),(m,0),text), attribute((mark,scale),(m,0),(s,0)), attribute((mark,scale),(m,0),(s,1)), attribute((encoding,scale_type),(e,0),linear), attribute((encoding,scale_type),(e,1),linear), entity(field,root,(f,0)), entity(field,root,(f,1)), entity(view,root,(v,0)), entity(mark,(v,0),(m,0)), entity(encoding,(m,0),(e,0)), entity(encoding,(m,0),(e,1)), entity(scale,(v,0),(s,0)), entity(scale,(v,0),(s,1))] ###Markdown If you see that there are too many recommendations, you can: * add more hard constraints * modify your generator and hard constraints to reduce symmetry in the search space (e.g. similar recommendations with switched entity ids)If you see too few recommendations, you can: * check if some of your constraints are too tight, and move them to soft constraints If you see no recommendations, you might have made mistakes in the hard constraints. You can allow violations to check what are the common ones by removing the `violation` constriant, which forbids any violations, from the programs. Below is an example: ###Code from draco import get_violations from draco.asp_utils import blocks_to_program c = "".join( blocks_to_program( constraints.blocks, set(constraints.blocks.keys()) - set(["violation"]) ) ) prog = generate.program + define.program + helpers.program + hard.program + c + scatter for model in run_clingo(prog + scatter, 1): pprint(answer_set_to_dict(model.answer_set)) print(model.answer_set) answer = [str(symbol) + ". " for symbol in model.answer_set] print(get_violations(answer)) ###Output {'field': [{'name': 'temperature', 'type': 'number'}, {'name': 'precipitation', 'type': 'number'}], 'number_rows': 100, 'task': 'value', 'view': [{'mark': [{'channel': 'shape', 'encoding': [{'channel': 'shape', 'field': ('f', 0), 'scale_type': 'categorical'}, {'channel': 'size', 'field': ('f', 1), 'scale_type': 'categorical'}], 'mark_channel_discrete_or_binned': 'shape', 'scale': ('s', 1), 'type': 'rect'}], 'scale': [{'channel': 'shape', 'type': 'categorical'}, {'channel': 'size', 'type': 'categorical'}]}]} [attribute(number_rows,root,100), attribute((field,name),(f,0),temperature), attribute((field,type),(f,0),number), attribute((field,name),(f,1),precipitation), attribute((field,type),(f,1),number), attribute((encoding,field),(e,0),(f,0)), attribute((encoding,field),(e,1),(f,1)), attribute(task,root,value), attribute((scale,type),(s,1),categorical), attribute((scale,type),(s,0),categorical), attribute((encoding,channel),(e,1),size), attribute((encoding,channel),(e,0),shape), attribute((mark,type),(m,0),rect), attribute((scale,channel),(s,1),size), attribute((scale,channel),(s,0),shape), attribute((mark,channel),(m,0),size), attribute((mark,channel),(m,0),shape), attribute((mark,scale),(m,0),(s,0)), attribute((mark,scale),(m,0),(s,1)), attribute((encoding,scale_type),(e,0),categorical), attribute((encoding,scale_type),(e,1),categorical), attribute(mark_channel_discrete_or_binned,(m,0),size), attribute(mark_channel_discrete_or_binned,(m,0),shape), entity(field,root,(f,0)), entity(field,root,(f,1)), entity(view,root,(v,0)), entity(mark,(v,0),(m,0)), entity(encoding,(m,0),(e,0)), entity(encoding,(m,0),(e,1)), entity(scale,(v,0),(s,0)), entity(scale,(v,0),(s,1))] ['size_without_point_text', 'shape_without_point', 'categorical_not_color']
Climate change Sentiment_Providers.ipynb
###Markdown list of negative words: ###Code with open("Negative_words.txt", "r") as f: negText = f.read() negTokens = negText.split("\n") # This splits the text file into tokens on the new line character negTokens[-1:] = [] # This strips out the final empty item print(negTokens[-10:]) ###Output ['wretchedly', 'wretchedness', 'wrong', 'wrongful', 'wrought', 'wrought', 'yawn', 'zealot', 'zealous', 'zealously'] ###Markdown list of positive words: ###Code with open("Positive_words.txt", "r") as f: posText = f.read() posTokens = posText.split("\n") # This splits the text file into tokens on the new line character posTokens[-1:] = [] # This strips out the final empty item print(posTokens[-10:]) ###Output ['worthwhile', 'worthy', 'wow', 'wry', 'yearning', 'yearningly', 'youthful', 'zeal', 'zenith', 'zest'] ###Markdown Calling the corpus: ###Code with open("Providers_text2.txt", "r") as f: tweetsText = f.read() tweetsTokens = tweetsText.split("\n") # This splits the text file into tokens on the new line character tweetsTokens[-1:] = [] # This strips out the final empty item print(tweetsTokens[:2]) ###Output ['Tweet/Post', '"For many years, #JasperNP has held a Spring Flower Count. Volunteers & Parks staff collect data on the flowers that are blooming in the park, which is then used for climate change research as it helps describe ecological trends over time. "'] ###Markdown Tokenizing reviews: ###Code import re def tokenizer(theText): theTokens = re.findall(r'\b\w[\w-]*\b', theText.lower()) return theTokens def calculator(theTweet): # Count positive words numPosWords = 0 theTweetTokens = tokenizer(theTweet) for word in theTweetTokens: if word in posTokens: numPosWords += 1 # Count negative words numNegWords = 0 for word in theTweetTokens: if word in negTokens: numNegWords += 1 sum = (numPosWords - numNegWords) return sum # Here is a line for testing this # print(calculator('Obama has called wrong wrong the GOP budget social Darwinism. Nice try, but they believe in social creationism.')) ###Output _____no_output_____ ###Markdown Number of total reviews, and Pos/Neg/Neutral reviews: ###Code # Here we set up the thresholds posi = 1 # This means there have to be more than 1 positive word nega = 0 # This means there has to be more than 1 negative words # Here we prime our variables numTweets = 0 numPosTweets = 0 numNegTweets = 0 numNeutTweets = 0 # This loop goes through all the Tweets and calculates if sums the number of positive or negative ones. for tweet in tweetsTokens: calc = calculator(tweet) if calc > posi: numPosTweets += 1 numTweets += 1 elif calc < nega: numNegTweets += 1 numTweets += 1 else: numNeutTweets += 1 numTweets += 1 # This prints out the results print("Total: " + str(numTweets) + "\n" + "Positive: " + str(numPosTweets) + "\n" + "Neutral: " + str(numNeutTweets) + "\n" + "Negative: " +str(numNegTweets)) ###Output Total: 602 Positive: 98 Neutral: 450 Negative: 54 ###Markdown Examples of positive reviews: ###Code # Here we set up the threshold. posi = 1 # This means there have to be more than 1 positive word numberWanted = 4 # Here you decide how many tweets you want # Here we prime our variables numTweets = 0 numPosTweets = 0 posiTweetList = [] # This loop goes through all the Tweets and calculates if sums the number of positive or negative ones. for tweet in tweetsTokens: calc = calculator(tweet) if calc > posi and numPosTweets < numberWanted: numPosTweets += 1 posiTweetList.append(tweet) print(posiTweetList) ###Output ['"Why is there still a fire ban in JNP? Since May 1, there has been an average of 66 mm of rainfall in the park. It will take almost the same amount of rain over 2 days to significantly change the moisture of medium & large fuels. Until then, the fire ban remains in effect. "', '"When the weather is warm, the thickness of natural ice can change from day to day"', 'Hi @kifehr The status of the fire ban is difficult to predict in advance as the weather and fuel conditions are always fluctuating. Fine fuels respond rapidly to changes in the environment; even if they are dampened by rain they can rebound given just one sunny day', '"The fire ban in #JasperNP, as well as the Municipality of Jasper, has been lifted. Thank you for your cooperation and support throughout this wildfire season. "'] ###Markdown Examples of negative reviews: ###Code # Here we set up the threshold. nega = -1 # This means there have to be more than 1 positive word numberWanted = 4 # Here you decide how many tweets you want # Here we prime our variables numTweets = 0 numNegTweets = 0 negaTweetList = [] # This loop goes through all the Tweets and calculates if sums the number of positive or negative ones. for tweet in tweetsTokens: calc = calculator(tweet) if calc < nega and numNegTweets < numberWanted: numNegTweets += 1 negaTweetList.append(tweet) print(negaTweetList) ###Output ['"Snarl Peak Wildfire Update: Fire activity increased yesterday due to high temperatures, low humidity and high winds."', 'A fire ban for Jasper National Park is in effect. Fire danger is rated as extreme. Warm, mostly dry weather is anticipated to continue through the Labour Day weekend keeping the fire danger at extreme.', '· Report any wildfires, illegal campfires or suspicious smoke to Parks Canada Dispatch: 780-852-6155.', 'Road construction makes for an added challenge in the daily lives of small terrestrial animals such as ground squirrels. To aid in mitigating the effects of current road paving work in Jasper National Park, our wildlife biologists are tracking the phenology of ground squirrels to ensure that they are kept out of harm’s way #Conservation "'] ###Markdown Test a review: ###Code tweetToCalc = input("What is the tweet to calculate?") print(calculator(tweetToCalc)) ###Output What is the tweet to calculate?2 0 ###Markdown Gathering and plotting positive and negative words of a sample review: ###Code import re posWordsList = [] negWordsList = [] def tokenizer(theText): theTokens = re.findall(r'\b\w[\w-]*\b', theText.lower()) return theTokens def wordsCalculator(theTweet): # Count positive words numPosWords = 0 theTweetTokens = tokenizer(theTweet) for word in theTweetTokens: if word in posTokens: numPosWords += 1 posWordsList.append(word) # Count negative words numNegWords = 0 for word in theTweetTokens: if word in negTokens: numNegWords += 1 negWordsList.append(word) tweet2Process = input("What tweet do you want to process? ") wordsCalculator(tweet2Process) print("Positive words: " + str(posWordsList[:10])) print("Negative words: " + str(negWordsList[:10])) ###Output What tweet do you want to process? 2 Positive words: [] Negative words: [] ###Markdown Gathering and plotting all positive and negative words: ###Code import re # Here we set up the thresholds posi = 1 # This means there have to be more than 1 positive word nega = 0 # This means there has to be more than 1 negative words # Here we prime our variables posWordsList = [] negWordsList = [] numTweets = 0 numPosTweets = 0 numNegTweets = 0 numNeutTweets = 0 def wordsGathering(theTweet): # Count positive words numPosWords = 0 theTweetTokens = tokenizer(theTweet) for word in theTweetTokens: if word in posTokens: numPosWords += 1 posWordsList.append(word) # Count negative words numNegWords = 0 for word in theTweetTokens: if word in negTokens: numNegWords += 1 negWordsList.append(word) sum = (numPosWords - numNegWords) return sum # This loop goes through all the Tweets and calculates if sums the number of positive or negative ones. for tweet in tweetsTokens: calc = wordsGathering(tweet) if calc > posi: numPosTweets += 1 numTweets += 1 elif calc < nega: numNegTweets += 1 numTweets += 1 else: numNeutTweets += 1 numTweets += 1 print("Positive words: " + str(len(posWordsList))) print("Negative words: " + str(len(negWordsList))) ###Output Positive words: 527 Negative words: 206 ###Markdown plotting positive words: ###Code import nltk, matplotlib posDist = nltk.FreqDist(posWordsList) posDist.tabulate(10) %matplotlib inline posDist.plot(25, title="Top Positive Words") ###Output will open help confident good potential hot elevated well important 89 64 24 18 15 15 15 14 13 12 ###Markdown Plotting negative words: ###Code negDist = nltk.FreqDist(negWordsList) negDist.tabulate(10) %matplotlib inline negDist.plot(25, title="Top Negative Words") with open('BIGDATA.txt','r') as myfile: data_string=myfile.read().replace('\n','') print("This string has", len(data_string), "characters.") from textblob import TextBlob testimonial = TextBlob(data_string) # any string (such as our sonnets) ###Output _____no_output_____
Kaggle/TitanicChallenge/TitanicChallenge.ipynb
###Markdown Titanic ChallengeUse a real data set from the Titanic passenger log to predict which passengers were most likely to survive the disaster. OverviewThe data has been split into two groups:- training set (train.csv)- test set (test.csv)The training set should be used to build the machine learning models. The test set should be used to see how well your model performs on unseen data. * use the model you trained to predict whether or not they survived the sinking of the Titanic.gender_submission.csv - a set of predictions that assume all and only female passengers survive, as an example of what a submission file should look like. Import Libraries ###Code import pandas as pd # pandas is a dataframe library import matplotlib.pyplot as plt # matplotlib.pyplot plots data import numpy as np # numpy provides N-dim object support # do plotting inline instead of a separate window %matplotlib inline ###Output _____no_output_____ ###Markdown Load and Review data ###Code df = pd.read_csv("./data/train.csv") # load training data df.shape df.head(5) df.tail(5) ###Output _____no_output_____ ###Markdown Definition of features| Variable | Definition | Key ||----------|----------|----------||survival|Survival|0 = No, 1 = Yes||pclass|Ticket class|1 = 1st, 2 = 2nd, 3 = 3rd||sex|Sex|||Age|Age in years|||sibsp| of siblings / spouses aboard the Titanic|||parch| of parents / children aboard the Titanic|||ticket|Ticket number|||fare|Passenger fare|||cabin|Cabin number|||embarked|Port of Embarkation|C = Cherbourg, Q = Queenstown, S = Southampton| Variable Notes- pclass: A proxy for socio-economic status (SES) * 1st = Upper * 2nd = Middle * 3rd = Lower- age: Age is fractional if less than 1. If the age is estimated, is it in the form of xx.5- sibsp: The dataset defines family relations in this way...- Sibling = brother, sister, stepbrother, stepsister- Spouse = husband, wife (mistresses and fiancés were ignored)- parch: The dataset defines family relations in this way...- Parent = mother, father- Child = daughter, son, stepdaughter, stepson- Some children travelled only with a nanny, therefore parch=0 for them. Check for null Values ###Code df.isnull().values.any() ###Output _____no_output_____ ###Markdown If the data has missing values, they will become NaNs in the Numpy arrays generated by the vectorizor so lets get rid of them ###Code df.replace('?', 0) df.fillna( 0, inplace = True ) def plot_corr(df, size=11): """ Function Plots a graphical correlation matrix for each pair of columns in the dataframe. Imput: df: pandas DataFrame size: vertical and horizontal size of plot Dislays: matrix of corelation betewwn columns. """ corr = df.corr() # data frame correlation function fig, ax = plt.subplots(figsize=(size, size)) ax.matshow(corr) # color code the rectangles by corelation value plt.xticks(range(len(corr.columns)), corr.columns) # draw x tick marks plt.yticks(range(len(corr.columns)), corr.columns) # draw y tick marks plot_corr(df) df.corr() ###Output _____no_output_____ ###Markdown When corelation columns are found, it is advised that they are deletedDelete Name field as it will not help with anything for predictionDelete Cabin as only 19.6% of data is providedDelete Ticket ###Code del df['Name'] del df['Cabin'] del df['Ticket'] df.head() ###Output _____no_output_____ ###Markdown Molding Data Check Data Types ###Code df.head() ###Output _____no_output_____ ###Markdown Change male to 1, female to 0 ###Code sex_map = { "male" : 1, "female" : 0} df['Sex'] = df['Sex'].map(sex_map) ###Output _____no_output_____ ###Markdown Embarked: C = Cherbourg, Q = Queenstown, S = SouthamptonTODO: check if prediction is better when mapping the embarked to a number ###Code df.head() ###Output _____no_output_____ ###Markdown Check true/false ration in Survived column ###Code num_survived = len(df.loc[df['Survived'] == 1]) num_not_survived = len(df.loc[df['Survived'] == 0]) print("Number of people who survived: {0} ({1:2.2f}%)".format(num_survived, (num_survived/ (num_survived+num_not_survived))*100)) print("Number of people who did not survived: {0} ({1:2.2f}%)".format(num_not_survived, (num_not_survived/ (num_survived+num_not_survived))*100)) plot_corr(df) df.corr() ###Output _____no_output_____ ###Markdown Hidden Missing Values Impute Age with the mean age ###Code from sklearn.preprocessing import Imputer # Impute with mean all 0 readings in Age imp = Imputer(missing_values=0, strategy="mean", axis=0) df["Age"] = imp.fit_transform(df[["Age"]]).ravel() ###Output _____no_output_____ ###Markdown Splitting the data70% testing, 30% training ###Code from sklearn.cross_validation import train_test_split feature_col_names = ["Pclass", "Sex", "Age", "SibSp", "Parch", "Fare"] predicted_class_name = ["Survived"] x = df[feature_col_names].values # predictor feature columns (6 x m) y = df[predicted_class_name].values # predicted class (1 = true, 0 = false) comumn (1 X m) split_test_size = 0.30 x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=split_test_size, random_state=42) # test_size = 0.3 is 30%, 42 is the answer to everything (seed for splitting) ###Output _____no_output_____ ###Markdown Check to ensure we have the desired 70% train, 30% test split of the data ###Code print("{0:0.2f}% in training set".format((len(x_train)/len(df.index))*100)) print("{0:0.2f}% in test set".format((len(x_test)/len(df.index))*100)) print("Original True : {0} ({1:0.2f}%)".format(len(df.loc[df['Survived'] == 1]), (len(df.loc[df['Survived'] == 1])/len(df.index)) * 100.0)) print("Original False : {0} ({1:0.2f}%)".format(len(df.loc[df['Survived'] == 0]), (len(df.loc[df['Survived'] == 0])/len(df.index)) * 100.0)) print("") print("Training True : {0} ({1:0.2f}%)".format(len(y_train[y_train[:] == 1]), (len(y_train[y_train[:] == 1])/len(y_train) * 100.0))) print("Training False : {0} ({1:0.2f}%)".format(len(y_train[y_train[:] == 0]), (len(y_train[y_train[:] == 0])/len(y_train) * 100.0))) print("") print("Test True : {0} ({1:0.2f}%)".format(len(y_test[y_test[:] == 1]), (len(y_test[y_test[:] == 1])/len(y_test) * 100.0))) print("Test False : {0} ({1:0.2f}%)".format(len(y_test[y_test[:] == 0]), (len(y_test[y_test[:] == 0])/len(y_test) * 100.0))) ###Output Original True : 342 (38.38%) Original False : 549 (61.62%) Training True : 231 (37.08%) Training False : 392 (62.92%) Test True : 111 (41.42%) Test False : 157 (58.58%) ###Markdown Post-split Data Preparation Hidden Missing Values ###Code df.head(10) print("# rws in dataframe {0}".format(len(df))) print("# rows missing Age: {0}".format(len(df.loc[df['Age'] == 0]))) # not missing anymore print("# rows missing Pclass: {0}".format(len(df.loc[df['Pclass'] == 0]))) print("# rows missing Fare: {0}".format(len(df.loc[df['Fare'] == 0]))) # ignore, only 15 entries ###Output # rws in dataframe 891 # rows missing Age: 0 # rows missing Pclass: 0 # rows missing Fare: 15 ###Markdown Training Initial Algorithm - Naive Bayes ###Code from sklearn.naive_bayes import GaussianNB # create Gausian Naive Bayes model object and train it with the data nb_model = GaussianNB() nb_model.fit(x_train, y_train.ravel()) ###Output _____no_output_____ ###Markdown Performance on Training Data ###Code # predict values using the training data nb_predict_train = nb_model.predict(x_train) # import the preformance metrics library from sklearn import metrics # Acuracy print("Accuracy: {0:0.4f}".format(metrics.accuracy_score(y_train, nb_predict_train))) print() ###Output Accuracy: 0.7945 ###Markdown Performance on Testing Data ###Code # predict values using the training data nb_predict_test = nb_model.predict(x_test) # Acuracy print("Accuracy: {0:0.4f}".format(metrics.accuracy_score(y_test, nb_predict_test))) print() ###Output Accuracy: 0.7910 ###Markdown Metrics ###Code print("Confusin Matrix") print("{0}".format(metrics.confusion_matrix(y_test, nb_predict_test))) print("") print("Classification Report") print(metrics.classification_report(y_test, nb_predict_test)) ###Output Confusin Matrix [[130 27] [ 29 82]] Classification Report precision recall f1-score support 0 0.82 0.83 0.82 157 1 0.75 0.74 0.75 111 avg / total 0.79 0.79 0.79 268 ###Markdown Random ForestThe difference between train data prediction and test data prediction is too big -> model trained too well ###Code from sklearn.ensemble import RandomForestClassifier rf_model = RandomForestClassifier(random_state = 42) # create random forest object rf_model.fit(x_train, y_train.ravel()) ###Output _____no_output_____ ###Markdown Predict Training data ###Code rf_predict_train = rf_model.predict(x_train) # training accuracy print("Accuracy: {0:0.4f}".format(metrics.accuracy_score(y_train, rf_predict_train))) ###Output Accuracy: 0.9631 ###Markdown Predict Test data ###Code rf_predict_test = rf_model.predict(x_test) # training accuracy print("Accuracy: {0:0.4f}".format(metrics.accuracy_score(y_test, rf_predict_test))) print("Confusin Matrix") print("{0}".format(metrics.confusion_matrix(y_test, rf_predict_test))) print("") print("Classification Report") print(metrics.classification_report(y_test, rf_predict_test)) ###Output Confusin Matrix [[132 25] [ 38 73]] Classification Report precision recall f1-score support 0 0.78 0.84 0.81 157 1 0.74 0.66 0.70 111 avg / total 0.76 0.76 0.76 268 ###Markdown Logistic Regression ###Code from sklearn.linear_model import LogisticRegression lr_model = LogisticRegression(C=0.7, random_state=42) lr_model.fit(x_train, y_train.ravel()) lr_predict_test = lr_model.predict(x_test) # training metrics print("Accuracy: {0:0.4f}".format(metrics.accuracy_score(y_test, lr_predict_test))) print("Confusin Matrix") print("{0}".format(metrics.confusion_matrix(y_test, lr_predict_test))) print("") print("Classification Report") print(metrics.classification_report(y_test, lr_predict_test)) ###Output Accuracy: 0.8060 Confusin Matrix [[138 19] [ 33 78]] Classification Report precision recall f1-score support 0 0.81 0.88 0.84 157 1 0.80 0.70 0.75 111 avg / total 0.81 0.81 0.80 268 ###Markdown Setting Regularization parameter ###Code C_start = 0.1 C_end = 5 C_inc = 0.1 C_values, recall_scores = [], [] C_val = C_start best_recall_score = 0 while (C_val < C_end): C_values.append(C_val) lr_model_loop = LogisticRegression(C=C_val, random_state=42) lr_model_loop.fit(x_train, y_train.ravel()) lr_predict_loop_test = lr_model_loop.predict(x_test) recall_score = metrics.recall_score(y_test, lr_predict_loop_test) recall_scores.append(recall_score) if (recall_score > best_recall_score): best_recall_score = recall_score best_lr_predict_test = lr_predict_loop_test C_val = C_val + C_inc best_score_C_val = C_values[recall_scores.index(best_recall_score)] print("1st max value of {0:.3f} occured at C={1:.3f}".format(best_recall_score, best_score_C_val)) %matplotlib inline plt.plot(C_values, recall_scores, "-") plt.xlabel("C value") plt.ylabel("recall score") ###Output 1st max value of 0.712 occured at C=5.000 ###Markdown Logistic Regression with class_weight='balanced' ###Code C_start = 0.1 C_end = 5 C_inc = 0.1 C_values, recall_scores = [], [] C_val = C_start best_recall_score = 0 while (C_val < C_end): C_values.append(C_val) lr_model_loop = LogisticRegression(C=C_val, class_weight='balanced', random_state=42) lr_model_loop.fit(x_train, y_train.ravel()) lr_predict_loop_test = lr_model_loop.predict(x_test) recall_score = metrics.recall_score(y_test, lr_predict_loop_test) recall_scores.append(recall_score) if (recall_score > best_recall_score): best_recall_score = recall_score best_lr_predict_test = lr_predict_loop_test C_val = C_val + C_inc best_score_C_val = C_values[recall_scores.index(best_recall_score)] print("1st max value of {0:.3f} occured at C={1:.3f}".format(best_recall_score, best_score_C_val)) %matplotlib inline plt.plot(C_values, recall_scores, "-") plt.xlabel("C value") plt.ylabel("recall score") #from sklearn.linear_model import LogisticRegression lr_model = LogisticRegression(class_weight='balanced', C=best_score_C_val, random_state=42) lr_model.fit(x_train, y_train.ravel()) lr_predict_test = lr_model.predict(x_test) # training metrics print("Accuracy: {0:0.4f}".format(metrics.accuracy_score(y_test, lr_predict_test))) print("Confusin Matrix") print("{0}".format(metrics.confusion_matrix(y_test, lr_predict_test))) print("") print("Classification Report") print(metrics.classification_report(y_test, lr_predict_test)) print("{0:0.4f}".format(metrics.recall_score(y_test, lr_predict_test))) ###Output Accuracy: 0.8134 Confusin Matrix [[128 29] [ 21 90]] Classification Report precision recall f1-score support 0 0.86 0.82 0.84 157 1 0.76 0.81 0.78 111 avg / total 0.82 0.81 0.81 268 0.8108 ###Markdown Logistic RegressionCV - Cross Validation ###Code from sklearn.linear_model import LogisticRegressionCV lr_cv_model = LogisticRegressionCV(n_jobs=-1, random_state=42, Cs=3, cv=10, refit=False, class_weight="balanced") lr_cv_model.fit(x_train, y_train.ravel()) ###Output _____no_output_____ ###Markdown Predict Test data ###Code lr_cv_predict_test = lr_cv_model.predict(x_test) # training accuracy print("Accuracy: {0:0.4f}".format(metrics.accuracy_score(y_test, lr_cv_predict_test))) print("Confusin Matrix") print("{0}".format(metrics.confusion_matrix(y_test, lr_cv_predict_test))) print("") print("Classification Report") print(metrics.classification_report(y_test, lr_cv_predict_test)) print("{0:0.4f}".format(metrics.recall_score(y_test, lr_cv_predict_test))) ###Output Accuracy: 0.8134 Confusin Matrix [[127 30] [ 20 91]] Classification Report precision recall f1-score support 0 0.86 0.81 0.84 157 1 0.75 0.82 0.78 111 avg / total 0.82 0.81 0.81 268 0.8198 ###Markdown Predictions to the test data Use data from test.csv file ###Code test_df = pd.read_csv("./data/test.csv") # load test data test_df.head() ###Output _____no_output_____ ###Markdown Clean test data ###Code test_df.replace('?', 0) test_df.fillna( 0, inplace = True ) del test_df['Name'] del test_df['Cabin'] del test_df['Ticket'] test_df['Sex'] = test_df['Sex'].map(sex_map) # Impute with mean all 0 readings in Age test_df["Age"] = imp.fit_transform(test_df[["Age"]]).ravel() print("# rws in dataframe {0}".format(len(test_df))) print("# rows missing Age: {0}".format(len(test_df.loc[df['Age'] == 0]))) # not missing anymore print("# rows missing Pclass: {0}".format(len(test_df.loc[df['Pclass'] == 0]))) print("# rows missing Fare: {0}".format(len(test_df.loc[df['Fare'] == 0]))) test_df.head() #get queries IDs for later usage queryIds = test_df['PassengerId'] x = test_df[feature_col_names].values predictions = lr_cv_model.predict(x) #------------------------------------------- # Print predictions to file #------------------------------------------- # open file to write Predictions predictionFile = open('./solutions/prediction.csv', 'w') predictionFile.write("PassengerId,Survived\n") for qId, prediction in zip(queryIds, predictions): #print("{0}, {1}".format(qId, prediction)) predictionFile.write("{0}, {1}\n".format(qId, prediction)) ###Output _____no_output_____
Stock Market Prediction.ipynb
###Markdown ARIMAARIMA (AutoRegressive Integrated Moving Average) is a forecasting algorithm based on the idea that the information in the past values of the time series can alone be used to predict the future values.ARIMA models explain a time series based on its own past values, basically its own lags and the lagged forecast errors.An ARIMA model is characterized by 3 terms (p, d, q):- p is the order of the AR term- d is the number of differencing required to make the time series stationary- q is the order of the MA termAs we see in the parameters required by the model, any stationary time series can be modeled with ARIMA models. StationarityA stationary time series is one whose properties do not depend on the time at which the series is observed. Thus, time series with trends, or with seasonality, are not stationary — the trend and seasonality will affect the value of the time series at different times.Subtract the previous value from the current value. Now if we just difference once, we might not get a stationary series so we might need to do that multiple times. And the minimum number of differencing operations needed to make the series stationary needs to be imputed into our ARIMA model. ADF testWe'll use the Augumented Dickey Fuller (ADF) test to check if the price series is stationary.The null hypothesis of the ADF test is that the time series is non-stationary. So, if the p-value of the test is less than the significance level (0.05) then we can reject the null hypothesis and infer that the time series is indeed stationary.So, in our case, if the p-value > 0.05 we'll need to find the order of differencing. ###Code # Check if price series is stationary from statsmodels.tsa.stattools import adfuller result = adfuller(df.Close.dropna()) print(f"ADF Statistic: {result[0]}") print(f"p-value: {result[1]}") ###Output ADF Statistic: -1.448789416529229 p-value: 0.558675490721378 ###Markdown p-value > 0.05, therefore the time series is not stationary. ###Code #!pipenv install --skip-lock pmdarima from pmdarima.arima.utils import ndiffs ndiffs(df.Close, test="adf") ###Output _____no_output_____ ###Markdown Therefore d value is 1 pp is the order of the Auto Regressive (AR) term. It refers to the number of lags to be used as predictors. We can find out the required number of AR terms by inspecting the Partial Autocorrelation (PACF) plot.The partial autocorrelation represents the correlation between the series and its lags. ###Code from statsmodels.graphics.tsaplots import plot_acf,plot_pacf diff = df.Close.diff().dropna() fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 4)) ax1.plot(diff) ax1.set_title("Difference once") ax2.set_ylim(0, 1) plot_pacf(diff, ax=ax2); ###Output _____no_output_____ ###Markdown qq is the order of the Moving Average (MA) term. It refers to the number of lagged forecast errors that should go into the ARIMA Model.We can look at the ACF plot for the number of MA terms. ###Code diff = df.Close.diff().dropna() fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 4)) ax1.plot(diff) ax1.set_title("Difference once") ax2.set_ylim(0, 1) plot_acf(diff, ax=ax2); dataset=df.copy() dataset.set_index('Date', inplace=True) dataset = dataset[['Close']] from matplotlib import pyplot pyplot.figure() pyplot.subplot(211) plot_acf(dataset, ax=pyplot.gca(),lags=10) pyplot.subplot(212) plot_pacf(dataset, ax=pyplot.gca(),lags=10) pyplot.show() ###Output _____no_output_____ ###Markdown In order to evaluate the ARIMA model, I decided to use two different error functions: Mean Squared Error (MSE) and Symmetric Mean Absolute Percentage Error (SMAPE). SMAPE is commonly used as an accuracy measure based on relative errors.SMAPE is not currently supported in Scikit-learn as a loss function I, therefore, had first to create this function on my own. ###Code def smape_kun(y_true, y_pred): return np.mean((np.abs(y_pred - y_true) * 200/ (np.abs(y_pred) + np.abs(y_true)))) ###Output _____no_output_____ ###Markdown ![1_I3WbbaaUPe9Mn5WcUVEwwg.png](attachment:1_I3WbbaaUPe9Mn5WcUVEwwg.png) ###Code train_ar = train_data['Close'].values test_ar = test_data['Close'].values history = [x for x in train_ar] print(type(history)) predictions = list() for t in range(len(test_ar)): model = ARIMA(history, order=(2,1,1)) model_fit = model.fit(disp=0) output = model_fit.forecast() yhat = output[0] predictions.append(yhat) obs = test_ar[t] history.append(obs) error = mean_squared_error(test_ar, predictions) print('Testing Mean Squared Error: %.3f' % error) error2 = smape_kun(test_ar, predictions) print('Symmetric mean absolute percentage error: %.3f' % error2) ###Output <class 'list'> Testing Mean Squared Error: 33910.630 Symmetric mean absolute percentage error: 8.380 ###Markdown SMAPE is commonly used loss function for Time Series problems and can, therefore, provide a more reliable analysis. That showed that our model is good. ###Code print(model_fit.summary()) residuals=pd.DataFrame(model_fit.resid) residuals.plot() residuals.plot(kind='kde') residuals.describe() plt.figure(figsize=(14,7)) plt.plot(df['Close'], 'green', color='blue', label='Training Data') plt.plot(test_data.index, predictions, color='green', marker='o', linestyle='dashed', label='Predicted Price') plt.plot(test_data.index, test_data['Close'], color='red', label='Actual Price') plt.title('Microsoft Prices Prediction') plt.xlabel('Dates') plt.ylabel('Prices') plt.xticks(np.arange(0,1500, 300), df['Date'][0:1500:300]) plt.legend() # Actual vs Fitted model_fit.plot_predict( start=1, end=60, dynamic=False, ); plt.figure(figsize=(14,7)) plt.plot(test_data.index, predictions, color='green', marker='o', linestyle='dashed',label='Predicted Price') plt.plot(test_data.index, test_data['Close'], color='red', label='Actual Price') plt.legend() plt.title('BSESN Stock Prices Prediction') plt.xlabel('Dates') plt.ylabel('Prices') plt.xticks(np.arange(1000,1259,100), df['Date'][1000:1259:100]) plt.legend() ###Output _____no_output_____ ###Markdown The above image is a zoomed in version. From this can be noticed how the two curves closely follow each other. However, the predicted price seems to look like a “noisy” version of the actual price. This analysis using ARIMA lead overall to appreciable results. This model demonstrated in fact to offer good prediction accuracy and to be relatively fast compared to other alternatives such as RRNs (Recurrent Neural Networks). Sentiment analysis NLTK's VADER moduleVADER is an NLTK module that provides sentiment scores based on words used ("completely" boosts a score, while "slightly" reduces it), on capitalization & punctuation ("GREAT!!!" is stronger than "great."), and negations (words like "isn't" and "doesn't" affect the outcome).To view the source code visit https://www.nltk.org/_modules/nltk/sentiment/vader.html ###Code import pandas as pd #Importing the PANDAS python library import numpy as np #importing Numpy %matplotlib inline #from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer #initiating VADER instance import nltk from nltk.sentiment.vader import SentimentIntensityAnalyzer analyser = SentimentIntensityAnalyzer() headlines= pd.read_csv("C:\\Users\\Kv\\Desktop\\The Sparks Foundation\\stock price prediction\\india-news-headlines.csv") headlines.head() # cleaning dataset #Drop rows with missing values headlines.dropna(inplace=True) headlines.tail() headlines["Date"] = pd.to_datetime(headlines["Date"],format='%Y%m%d') headlines.info() headlines.shape #Grouping the headlines for each day #headlines['headline_text'] = headlines.groupby(['Date']).transform(lambda x : ' '.join(x)) headlines = headlines.drop_duplicates(subset='Date', keep='first', inplace=False) headlines.reset_index(inplace = True, drop = True) headlines headlines.shape #Calculating score for each news headline in the dataframe/dataset i=0 #counter compval1 = [ ] #empty list to hold our computed 'compound' VADER scores while i<len(headlines): k = analyser.polarity_scores(headlines.iloc[i]['headline_text']) compval1.append(k['compound']) i = i+1 #converting sentiment values to numpy for easier usage compval1 = np.array(compval1) len(compval1) headlines['VADER score'] = compval1 headlines.head(20) i = 0 predicted_value = [ ] #empty series to hold our predicted values while(i<len(headlines)): if ((headlines.iloc[i]['VADER score'] >= 0.1)): predicted_value.append('positive') i = i+1 elif ((headlines.iloc[i]['VADER score'] > -0.1) & (headlines.iloc[i]['VADER score'] < 0.1)): predicted_value.append('neutral') i = i+1 elif ((headlines.iloc[i]['VADER score'] <= -0.1)): predicted_value.append('negative') i = i+1 headlines['sentiment'] = predicted_value headlines.head(10) headlines.sentiment.value_counts() ###Output _____no_output_____ ###Markdown Hybrid ###Code df_merge = pd.merge(df, headlines, how='left', on='Date') df_merge new_df=df_merge[['Close','sentiment']] new_df new_df.groupby(['sentiment']).mean() ###Output _____no_output_____ ###Markdown Author: Ankit Kumar The Sparks Foundation Stock Market Prediction using Numerical and Textual Analysis Objective: Create a hybrid model for stock price/performance prediction using numerical analysis of historical stock prices, and sentimental analysis of news headlines Importing Libraries ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import accuracy_score import warnings warnings.filterwarnings('ignore') import nltk from nltk.corpus import stopwords from nltk.stem.porter import PorterStemmer import re ###Output _____no_output_____ ###Markdown Reading Data File ###Code #### Samsung Stock Dataset ##### df_stock = pd.read_csv("C:\\Users\\ankit\\Downloads\\005930.KS.csv") df_stock.head() #### News Headline Dataset ##### df_headline = pd.read_csv("C:\\Users\\ankit\\Downloads\\india-news-headlines.csv") df_headline.head() df_stock.isnull().sum() #### Handling Missing Values #### for i in ["Open","High","Low","Close","Adj Close","Volume"]: df_stock[i].fillna(df_stock[i].mean(),inplace=True) df_stock.isnull().sum() df_headline.drop(columns=["headline_category"],inplace=True) ###Output _____no_output_____ ###Markdown Setting date as a index ###Code ##### Stock price Data ###### df_stock['Date']=pd.to_datetime(df_stock['Date']) ##### News Headlines Data ##### df_headline['publish_date'] = df_headline['publish_date'].astype(str) df_headline = df_headline.filter(['publish_date', 'headline_text']) # filtering the important columns required df_headline = df_headline.groupby(['publish_date'])['headline_text'].apply(lambda x: ','.join(x)).reset_index() # grouping the news headlines according to 'Date' df_headline['publish_date']=pd.to_datetime(df_headline['publish_date']) df_stock.set_index('Date',inplace=True) df_stock.head() df_headline.set_index('publish_date',inplace=True) df_headline.head() ###Output _____no_output_____ ###Markdown Combining Samsung Stock Dataset and News Headline Dataset ###Code stock_market=pd.concat([df_stock,df_headline],axis=1) stock_market.dropna(axis=0,inplace=True) stock_market.head() ###Output _____no_output_____ ###Markdown Cleaning the textual data by using Natural Language Preprocessing (NLP) ###Code lent=len(stock_market) corpus111=[] for i in range(0,lent): text = re.sub('[^a-zA-Z]', ' ', stock_market.iloc[i,6]) text = text.lower() text = text.split() ps = PorterStemmer() all_stopwords = stopwords.words('english') text = [ps.stem(word) for word in text if not word in set(all_stopwords)] text = ' '.join(text) corpus111.append(text) stock_market['headline_text']=corpus111 ###Output _____no_output_____ ###Markdown Calculating Sentiment Score ###Code from nltk.sentiment.vader import SentimentIntensityAnalyzer import unicodedata sid = SentimentIntensityAnalyzer() # calculating sentiment scores stock_market['Compound'] = stock_market['headline_text'].apply(lambda x: sid.polarity_scores(x)['compound']) stock_market['Negative'] = stock_market['headline_text'].apply(lambda x: sid.polarity_scores(x)['neg']) stock_market['Neutral'] = stock_market['headline_text'].apply(lambda x: sid.polarity_scores(x)['neu']) stock_market['Positive'] = stock_market['headline_text'].apply(lambda x: sid.polarity_scores(x)['pos']) stock_market.head() stock_market["Close"] stock_market.shape ###Output _____no_output_____ ###Markdown Finalizing Stock Data and Save as a csv file ###Code stock_market.drop(columns=["headline_text"],inplace=True) index = stock_market.index index.name = "Date" stock_market.to_csv('stock_market.csv') ###Output _____no_output_____ ###Markdown Reading Stock Data File ###Code df=pd.read_csv("stock_market.csv") df.set_index('Date', inplace=True) df.head() ###Output _____no_output_____ ###Markdown Exploratory Data Analysis of Stock data ###Code df.shape df.isnull().sum() df.describe() ###Output _____no_output_____ ###Markdown Visualizing Close Price ###Code plt.figure(figsize=(18,8)) df["Close"].plot() plt.xlabel('Date') plt.ylabel('Close Price') # calculating 7 day rolling mean df.rolling(7).mean().head(15) # plotting the close price and a 30-day rolling mean of close price plt.figure(figsize=(16,10)) df['Close'].plot() plt.ylabel("Price") df.rolling(window=30).mean()['Close'].plot() ###Output _____no_output_____ ###Markdown Testing For Stationarity ###Code from statsmodels.tsa.stattools import adfuller def adfuller_test(Price): result=adfuller(Price) labels = ['ADF Test Statistic','p-value','#Lags Used','Number of Observations Used'] for value,label in zip(result,labels): print(label+' : '+str(value) ) if result[1] <= 0.05: # If p_value is less than 0.05 than data is Stationary otherwise data is Non-Stationary print("Data is stationary") else: print("Data is non-stationary ") #### Testing Adfuller_test adfuller_test(df['Close']) ###Output ADF Test Statistic : 1.8122636122701679 p-value : 0.9983730323454776 #Lags Used : 30 Number of Observations Used : 4959 Data is non-stationary ###Markdown Converting Non-Stationary to Stationary data ###Code ## For converting non stationary to stationary data df['Seasonal Close Price Difference']=df['Close']-df['Close'].shift(12) df.head(15) df.rename(columns={"Close":"Close Price"}, inplace=True) ### Again testing for Stationarity adfuller_test(df['Seasonal Close Price Difference'].dropna()) #### Visualize the Data #### plt.figure(figsize=(18,8)) df["Seasonal Close Price Difference"].plot() plt.xlabel('Date') plt.ylabel('Seasonal Close Price Difference') ###Output _____no_output_____ ###Markdown Auto Regressive Model ###Code ### acf = Autocorellation Function ### pacf = Partial Autocorellation Function from statsmodels.graphics.tsaplots import plot_acf,plot_pacf ## Plotting Autocorellation and Partial Autocorellation Graph ## Collecting p,q,d values from observing these graph fig = plt.figure(figsize=(12,8)) ax1 = fig.add_subplot(211) fig = plot_acf(df['Seasonal Close Price Difference'].dropna(),lags=40,ax=ax1) ax2 = fig.add_subplot(212) fig = plot_pacf(df['Seasonal Close Price Difference'].dropna(),lags=40,ax=ax2) ###Output _____no_output_____ ###Markdown Predicting Using SARIMAX ###Code import statsmodels.api as sm model=sm.tsa.statespace.SARIMAX(df['Close Price'],order=(1, 1, 1),seasonal_order=(1,1,1,12)) # order=(p,d,q) results=model.fit() results.summary() results.plot_diagnostics() ## Predicting the forecasted value df['Forecasted Close Price']=results.predict(start=1,end=4989,dynamic=False) #### Comparison b/w Actual Close Price and Predicted price predict=pd.DataFrame({"Close Price": df['Close Price'],"Prediction":df['Forecasted Close Price']}) predict.dropna(axis=0, inplace=True) predict.head() ###Output _____no_output_____ ###Markdown Accuracy Percentage ###Code accuracy = (predict["Prediction"].sum() / predict["Close Price"].sum()) * 100 print(accuracy.round(1),"%") ###Output 99.9 % ###Markdown Comparison Graph Between Close price and Forecasted Close Price ###Code df[['Close Price','Forecasted Close Price']].plot(figsize=(15,8)) ax=plt.axes() ax.set_facecolor("black") plt.xlabel('Date', fontweight="bold") plt.ylabel('Price',fontweight="bold") plt.title('Comparison Graph',fontweight="bold") ###Output _____no_output_____ ###Markdown Predicting Close Price By using train_test_split method ###Code from pmdarima.model_selection import train_test_split ###Output _____no_output_____ ###Markdown Split Data in test and train ###Code train, test = train_test_split(df[["Close Price"]], test_size =0.3) test.shape ###Output _____no_output_____ ###Markdown Predicting using SARIMAX ###Code prediction = pd.DataFrame(results.predict(n_periods = 1497), test.index) prediction.columns = ["predicted_sales"] test["predicted_sales"] = prediction test ###Output _____no_output_____ ###Markdown Visualizing Predicted Data ###Code plt.figure(figsize = (16,10)) ax=plt.axes() ax.set_facecolor("black") plt.plot(train, label = "Training") plt.plot(test, label = "Testing",color="green") plt.plot(prediction, label = "Prediction") plt.legend() ###Output _____no_output_____ ###Markdown Author - ByruSrilakshmi Grip Task 7 Stock Market Prediction using Numerical and Textual Analysis- Objective : To Create a hybrid model for stock price or performance prediction using numerical analysis of historical stock prices, and sentimental analysis of news headlines. The stock to analyze and predict is SENSEX (S&P BSE SENSEX)- Stock to analyze and predict - SENSEX (S&P BSE SENSEX)- Download historical stock prices from finance.yahoo.com- Download textual (news) data from https://bit.ly/36fFPI6- Use either R or Python, or both for separate analysis and then combine the findings to create a hybrid model- You are free to select a different stock to analyze and news dataset as well while not changing the objective of the task. Import the Important Libraries ###Code # Import the libraries import os import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') from statsmodels.tsa.arima_model import ARIMA from statsmodels.tsa.statespace.sarimax import SARIMAX import nltk import re from textblob import TextBlob from nltk.sentiment.vader import SentimentIntensityAnalyzer from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_squared_error from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor, AdaBoostRegressor from sklearn.tree import DecisionTreeRegressor import xgboost import lightgbm # For reading stock data from yahoo from pandas_datareader.data import DataReader # For time stamps from datetime import datetime # Load the first dataset columns=['Date','Category','News'] ndf = pd.read_csv("india-news-headlines.csv",names=columns) print('Showing part of the whole dataset:') ndf.head(5) ndf.drop(0, inplace=True) ndf.drop('Category', axis = 1, inplace=True) print('Showing part of the whole dataset:') ndf.head(-5) # Load the second dataset hisdf = pd.read_csv("^BSESN.csv") hisdf.head(-5) ###Output _____no_output_____ ###Markdown Common Dataset Exploration ###Code # Check for common information of the first datast ndf["Date"] = pd.to_datetime(ndf["Date"],format='%Y%m%d') ndf.info() # Group the headlines for each day ndf['News'] = ndf.groupby(['Date']).transform(lambda x : ' '.join(x)) ndf = ndf.drop_duplicates() ndf.reset_index(inplace=True,drop=True) ndf # Check for any duplicated values ndf.isnull().sum() len(ndf) hisdf=hisdf[["Date","Open","High","Low","Close","Volume"]] hisdf.head(-5) # Check for common information of the second dataset hisdf["Date"]= pd.to_datetime(hisdf["Date"]) hisdf.info() hisdf.describe() # Check for duplicated values hisdf.isnull().sum() len(hisdf) # Figure plot plt.figure(figsize=(20,10)) hisdf['Close'].plot() plt.ylabel('BSESN') ###Output _____no_output_____ ###Markdown Remove Unwanted Characters from the News ###Code #removing unwanted characters from the News ndf.replace("[^a-zA-Z']"," ",regex=True,inplace=True) ndf["News"].head(5) ###Output _____no_output_____ ###Markdown Historical Analysis Plot the Moving Average ###Code #Plotting moving average close = hisdf['Close'] ma = close.rolling(window = 50).mean() std = close.rolling(window = 50).std() plt.figure(figsize=(20,10)) hisdf['Close'].plot(color='g',label='Close') ma.plot(color = 'r',label='Rolling Mean') std.plot(label = 'Rolling Standard Deviation') plt.legend() ###Output _____no_output_____ ###Markdown Plot the Returns ###Code #Plotting returns returns = close / close.shift(1) - 1 plt.figure(figsize = (20,10)) returns.plot(label='Return', color = 'g') plt.title("Returns") # Train test split train = hisdf[:1219] test = hisdf[1219:] ###Output _____no_output_____ ###Markdown Rolling mean and Standard Deviation ###Code #Stationarity test def test_stationarity(timeseries): #Determine the rolling statistics rolmean = timeseries.rolling(20).mean() rolstd = timeseries.rolling(20).std() #Plot rolling statistics: plt.figure(figsize = (20,10)) plt.plot(timeseries, color = 'blue', label = 'original') plt.plot(rolmean, color = 'r', label = 'rolling mean') plt.plot(rolstd, color = 'black', label = 'rolling std') plt.xlabel('Date') plt.legend() plt.title('Rolling Mean and Standard Deviation', fontsize = 30) plt.show(block = False) print('Results of dickey fuller test') result = adfuller(timeseries, autolag = 'AIC') labels = ['ADF Test Statistic','p-value','#Lags Used','Number of Observations Used'] for value,label in zip(result, labels): print(label+' : '+str(value) ) if result[1] <= 0.05: print("Strong evidence against the null hypothesis(Ho), reject the null hypothesis. Data is stationary") else: print("Weak evidence against null hypothesis, time series is non-stationary ") test_stationarity(train['Close']) train_log = np.log(train['Close']) test_log = np.log(test['Close']) mav = train_log.rolling(24).mean() plt.figure(figsize = (20,10)) plt.plot(train_log) plt.plot(mav, color = 'red') train_log.dropna(inplace = True) test_log.dropna(inplace = True) test_stationarity(train_log) train_log_diff = train_log - mav train_log_diff.dropna(inplace = True) test_stationarity(train_log_diff) #Using auto arima to make predictions using log data from pmdarima import auto_arima model = auto_arima(train_log, trace = True, error_action = 'ignore', suppress_warnings = True) model.fit(train_log) predictions = model.predict(periods = len(test)) predictions = pd.DataFrame(predictions,index = test_log.index,columns=['Prediction']) plt.plot(train_log, label='Train') plt.plot(test_log, label='Test') plt.plot(predictions, label='Prediction') plt.title('BSESN Stock Price Prediction') plt.xlabel('Time') plt.ylabel('Actual Stock Price') ###Output _____no_output_____ ###Markdown Error Calculation ###Code #Calculating error rms = np.sqrt(mean_squared_error(test_log,predictions)) print("RMSE : ", rms) ###Output RMSE : 0.026837616405067617 ###Markdown Textual Analysis ###Code #Functions to get the subjectivity and polarity def getSubjectivity(text): return TextBlob(text).sentiment.subjectivity def getPolarity(text): return TextBlob(text).sentiment.polarity #Adding subjectivity and polarity columns ndf['Subjectivity'] = ndf['News'].apply(getSubjectivity) ndf['Polarity'] = ndf['News'].apply(getPolarity) ndf #Adding sentiment score to df_news sia = SentimentIntensityAnalyzer() ndf['Compound'] = [sia.polarity_scores(v)['compound'] for v in ndf['News']] ndf['Negative'] = [sia.polarity_scores(v)['neg'] for v in ndf['News']] ndf['Neutral'] = [sia.polarity_scores(v)['neu'] for v in ndf['News']] ndf['Positive'] = [sia.polarity_scores(v)['pos'] for v in ndf['News']] ndf ###Output _____no_output_____ ###Markdown Merge the Historical and Textual Data ###Code df_merge = pd.merge(hisdf, ndf, how='inner', on='Date') df_merge ###Output _____no_output_____ ###Markdown Create Dataset for Model Training ###Code dfmerge1 = df_merge[['Close','Subjectivity', 'Polarity', 'Compound', 'Negative', 'Neutral', 'Positive']] dfmerge1 ###Output _____no_output_____ ###Markdown Normalize Data ###Code scaler = MinMaxScaler() df = pd.DataFrame(scaler.fit_transform(dfmerge1)) df.columns = dfmerge1.columns df.index = dfmerge1.index df.head() X=df.drop('Close',axis=1) X Y=df['Close'] Y ###Output _____no_output_____ ###Markdown Split the Dataset into Train & Test Data ###Code x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state = 0) x_train.shape x_train[:10] ###Output _____no_output_____ ###Markdown RandomForestRegressor Model ###Code rf = RandomForestRegressor() rf.fit(x_train, y_train) prediction=rf.predict(x_test) print(prediction[:10]) print(y_test[:10]) print('Mean Squared error: ',mean_squared_error(prediction,y_test)) ###Output [0.59204602 0.77743871 0.46716064 0.73144085 0.25611568 0.33254211 0.63953336 0.683319 0.59969559 0.26583055] 1006 0.966906 1109 0.627192 187 0.299075 896 0.723549 413 0.465435 501 0.578316 546 0.591144 881 0.839169 959 0.903342 268 0.228219 Name: Close, dtype: float64 Mean Squared error: 0.05257968397499098 ###Markdown DecisionTreeRegressor Model ###Code dtr = DecisionTreeRegressor() dtr.fit(x_train, y_train) predictions = dtr.predict(x_test) print(predictions[:10]) print(y_test[:10]) print('Mean Squared error: ',mean_squared_error(predictions,y_test)) ###Output [0.46121848 0.98284344 0.69232194 0.71547783 0.19176137 0.28527224 0.88757586 0.69698498 0.23569794 0.11570669] 1006 0.966906 1109 0.627192 187 0.299075 896 0.723549 413 0.465435 501 0.578316 546 0.591144 881 0.839169 959 0.903342 268 0.228219 Name: Close, dtype: float64 Mean Squared error: 0.10831900809236311 ###Markdown AdaBoostRegressor Model ###Code adb = AdaBoostRegressor() adb.fit(x_train, y_train) predictions = adb.predict(x_test) print(mean_squared_error(predictions, y_test)) ###Output 0.05492347045438241 ###Markdown LGBMRegressor Model ###Code gbm = lightgbm.LGBMRegressor() gbm.fit(x_train, y_train) predictions = gbm.predict(x_test) print(mean_squared_error(predictions, y_test)) ###Output 0.0583079056070462 ###Markdown XGBRegressor Model ###Code xgb = xgboost.XGBRegressor() xgb.fit(x_train, y_train) predictions = xgb.predict(x_test) print(mean_squared_error(predictions, y_test)) ###Output 0.05968830860645931 ###Markdown Data Preprocessing Feature Scaling ###Code from sklearn.preprocessing import MinMaxScaler sc = MinMaxScaler(feature_range = (0,1)) train_scaled = sc.fit_transform(train) x_train = [] y_train = [] for i in range(60,1258): x_train.append(train_scaled[i-60:i,0]) y_train.append(train_scaled[i,0]) x_train = np.array(x_train) y_train = np.array(y_train) x_train = np.reshape(x_train,(x_train.shape[0],x_train.shape[1],1)) ###Output _____no_output_____ ###Markdown Building the RNN ###Code from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM from keras.layers import Dropout regressor = Sequential() #First LSTM Layer regressor.add(LSTM(units=50, return_sequences = True, input_shape = (x_train.shape[1],1))) regressor.add(Dropout(0.2)) #Second LSTM Layer regressor.add(LSTM(units=50, return_sequences = True)) regressor.add(Dropout(0.2)) #Third LSTM Layer regressor.add(LSTM(units=50, return_sequences = True)) regressor.add(Dropout(0.2)) #Fourth LSTM Layer regressor.add(LSTM(units=50)) regressor.add(Dropout(0.2)) #Output Layer regressor.add(Dense(units=1)) regressor.compile(optimizer = 'adam', loss = 'mean_squared_error') regressor.fit(x_train,y_train,epochs=100,batch_size=32) ###Output Epoch 1/100 38/38 [==============================] - 31s 114ms/step - loss: 0.0738 Epoch 2/100 38/38 [==============================] - 5s 134ms/step - loss: 0.0074 Epoch 3/100 38/38 [==============================] - 5s 134ms/step - loss: 0.0055 Epoch 4/100 38/38 [==============================] - 5s 134ms/step - loss: 0.0056 Epoch 5/100 38/38 [==============================] - 5s 134ms/step - loss: 0.0046 Epoch 6/100 38/38 [==============================] - 5s 134ms/step - loss: 0.0050 Epoch 7/100 38/38 [==============================] - 5s 134ms/step - loss: 0.0053 Epoch 8/100 38/38 [==============================] - 5s 133ms/step - loss: 0.0050 Epoch 9/100 38/38 [==============================] - 5s 133ms/step - loss: 0.0060 Epoch 10/100 38/38 [==============================] - 5s 135ms/step - loss: 0.0042 Epoch 11/100 38/38 [==============================] - 6s 154ms/step - loss: 0.0040 Epoch 12/100 38/38 [==============================] - 5s 136ms/step - loss: 0.0037 Epoch 13/100 38/38 [==============================] - 5s 137ms/step - loss: 0.0038 Epoch 14/100 38/38 [==============================] - 5s 133ms/step - loss: 0.0043 Epoch 15/100 38/38 [==============================] - 5s 134ms/step - loss: 0.0041 Epoch 16/100 38/38 [==============================] - 5s 134ms/step - loss: 0.0035 Epoch 17/100 38/38 [==============================] - 5s 134ms/step - loss: 0.0034 Epoch 18/100 38/38 [==============================] - 5s 134ms/step - loss: 0.0043 Epoch 19/100 38/38 [==============================] - 5s 134ms/step - loss: 0.0031 Epoch 20/100 38/38 [==============================] - 5s 134ms/step - loss: 0.0038 Epoch 21/100 38/38 [==============================] - 5s 134ms/step - loss: 0.0035 Epoch 22/100 38/38 [==============================] - 6s 147ms/step - loss: 0.0034 Epoch 23/100 38/38 [==============================] - 6s 169ms/step - loss: 0.0037 Epoch 24/100 38/38 [==============================] - 6s 152ms/step - loss: 0.0037 Epoch 25/100 38/38 [==============================] - 5s 128ms/step - loss: 0.0029 Epoch 26/100 38/38 [==============================] - 5s 125ms/step - loss: 0.0031 Epoch 27/100 38/38 [==============================] - 5s 126ms/step - loss: 0.0037 Epoch 28/100 38/38 [==============================] - 5s 125ms/step - loss: 0.0030 Epoch 29/100 38/38 [==============================] - 5s 124ms/step - loss: 0.0033 Epoch 30/100 38/38 [==============================] - 5s 128ms/step - loss: 0.0028 Epoch 31/100 38/38 [==============================] - 5s 132ms/step - loss: 0.0030 Epoch 32/100 38/38 [==============================] - 5s 125ms/step - loss: 0.0033 Epoch 33/100 38/38 [==============================] - 5s 125ms/step - loss: 0.0025 Epoch 34/100 38/38 [==============================] - 5s 135ms/step - loss: 0.0027 Epoch 35/100 38/38 [==============================] - 6s 145ms/step - loss: 0.0027 Epoch 36/100 38/38 [==============================] - 5s 140ms/step - loss: 0.0025 Epoch 37/100 38/38 [==============================] - 5s 136ms/step - loss: 0.0030 Epoch 38/100 38/38 [==============================] - 5s 124ms/step - loss: 0.0029 Epoch 39/100 38/38 [==============================] - 5s 125ms/step - loss: 0.0027 Epoch 40/100 38/38 [==============================] - 5s 125ms/step - loss: 0.0027 Epoch 41/100 38/38 [==============================] - 5s 126ms/step - loss: 0.0023 Epoch 42/100 38/38 [==============================] - 6s 151ms/step - loss: 0.0025 Epoch 43/100 38/38 [==============================] - 5s 125ms/step - loss: 0.0025 Epoch 44/100 38/38 [==============================] - 5s 125ms/step - loss: 0.0022 Epoch 45/100 38/38 [==============================] - 5s 124ms/step - loss: 0.0024 Epoch 46/100 38/38 [==============================] - 5s 124ms/step - loss: 0.0024 Epoch 47/100 38/38 [==============================] - 5s 124ms/step - loss: 0.0023 Epoch 48/100 38/38 [==============================] - 5s 124ms/step - loss: 0.0027 Epoch 49/100 38/38 [==============================] - 5s 124ms/step - loss: 0.0022 Epoch 50/100 38/38 [==============================] - 5s 125ms/step - loss: 0.0022 Epoch 51/100 38/38 [==============================] - 5s 126ms/step - loss: 0.0021 Epoch 52/100 38/38 [==============================] - 5s 125ms/step - loss: 0.0023 Epoch 53/100 38/38 [==============================] - 5s 124ms/step - loss: 0.0022 Epoch 54/100 38/38 [==============================] - 6s 155ms/step - loss: 0.0021 Epoch 55/100 38/38 [==============================] - 5s 142ms/step - loss: 0.0022 Epoch 56/100 38/38 [==============================] - 6s 150ms/step - loss: 0.0022 Epoch 57/100 38/38 [==============================] - 5s 139ms/step - loss: 0.0019 Epoch 58/100 38/38 [==============================] - 5s 143ms/step - loss: 0.0017 Epoch 59/100 38/38 [==============================] - 5s 134ms/step - loss: 0.0022 Epoch 60/100 38/38 [==============================] - 6s 146ms/step - loss: 0.0021 Epoch 61/100 38/38 [==============================] - 6s 145ms/step - loss: 0.0018 Epoch 62/100 38/38 [==============================] - 6s 150ms/step - loss: 0.0020 Epoch 63/100 38/38 [==============================] - 5s 123ms/step - loss: 0.0021 Epoch 64/100 38/38 [==============================] - 5s 122ms/step - loss: 0.0019 Epoch 65/100 38/38 [==============================] - 5s 122ms/step - loss: 0.0017 Epoch 66/100 38/38 [==============================] - 5s 123ms/step - loss: 0.0022 Epoch 67/100 38/38 [==============================] - 5s 122ms/step - loss: 0.0021 Epoch 68/100 38/38 [==============================] - 5s 124ms/step - loss: 0.0017 Epoch 69/100 38/38 [==============================] - 5s 123ms/step - loss: 0.0016 Epoch 70/100 38/38 [==============================] - 5s 123ms/step - loss: 0.0019 Epoch 71/100 38/38 [==============================] - 5s 123ms/step - loss: 0.0017 Epoch 72/100 38/38 [==============================] - 5s 123ms/step - loss: 0.0019 Epoch 73/100 38/38 [==============================] - 5s 125ms/step - loss: 0.0016 Epoch 74/100 38/38 [==============================] - 5s 123ms/step - loss: 0.0018 Epoch 75/100 38/38 [==============================] - 5s 125ms/step - loss: 0.0019 Epoch 76/100 38/38 [==============================] - 5s 124ms/step - loss: 0.0018 Epoch 77/100 38/38 [==============================] - 5s 132ms/step - loss: 0.0017 Epoch 78/100 38/38 [==============================] - 5s 131ms/step - loss: 0.0016 Epoch 79/100 38/38 [==============================] - 5s 133ms/step - loss: 0.0019 Epoch 80/100 38/38 [==============================] - 5s 132ms/step - loss: 0.0018 Epoch 81/100 38/38 [==============================] - 5s 127ms/step - loss: 0.0017 Epoch 82/100 38/38 [==============================] - 5s 124ms/step - loss: 0.0016 Epoch 83/100 38/38 [==============================] - 5s 134ms/step - loss: 0.0016 Epoch 84/100 38/38 [==============================] - 5s 123ms/step - loss: 0.0016 Epoch 85/100 38/38 [==============================] - 5s 129ms/step - loss: 0.0015 Epoch 86/100 38/38 [==============================] - 5s 124ms/step - loss: 0.0016 Epoch 87/100 38/38 [==============================] - 5s 122ms/step - loss: 0.0014 Epoch 88/100 38/38 [==============================] - 5s 123ms/step - loss: 0.0017 Epoch 89/100 38/38 [==============================] - 5s 124ms/step - loss: 0.0014 Epoch 90/100 38/38 [==============================] - 5s 123ms/step - loss: 0.0016 Epoch 91/100 38/38 [==============================] - 5s 126ms/step - loss: 0.0014 Epoch 92/100 38/38 [==============================] - 5s 123ms/step - loss: 0.0014 Epoch 93/100 38/38 [==============================] - 5s 123ms/step - loss: 0.0013 Epoch 94/100 38/38 [==============================] - 5s 123ms/step - loss: 0.0016 Epoch 95/100 38/38 [==============================] - 5s 123ms/step - loss: 0.0016 Epoch 96/100 38/38 [==============================] - 5s 127ms/step - loss: 0.0015 Epoch 97/100 38/38 [==============================] - 5s 131ms/step - loss: 0.0014 Epoch 98/100 38/38 [==============================] - 5s 132ms/step - loss: 0.0015 Epoch 99/100 ###Markdown Now, making predictions using the test dataset ###Code stock_test = pd.read_csv('Google_Stock_Price_Test.csv',index_col = "Date", parse_dates = True) actual_stock = stock_test.iloc[:,1:2].values stock_test.head() stock_test.info() stock_test['Volume'] = stock_test['Volume'].str.replace(',','').astype(float) test = pd.DataFrame(stock_test['Open']) stock_total = pd.concat((stock['Open'],stock_test['Open']), axis = 0) inputs = stock_total[len(stock_total) - len(stock_test) - 60:].values inputs = inputs.reshape(-1,1) inputs = sc.transform(inputs) x_test = [] for i in range(60,80): x_test.append(inputs[i-60:i,0]) x_test = np.array(x_test) x_test = np.reshape(x_test,(x_test.shape[0],x_test.shape[1],1)) stock_prediction = regressor.predict(x_test) stock_prediction = sc.inverse_transform(stock_prediction) stock_prediction = pd.DataFrame(stock_prediction) ###Output _____no_output_____ ###Markdown Visualizing the Results ###Code plt.figure(figsize = (12,6)) plt.title("Google Stock Price Prediction") plt.xlabel("Time") plt.ylabel("Google Stock Price") plt.plot(actual_stock, color = 'blue',label = 'Actual Google Stock Price') plt.plot(stock_prediction,color = 'red', label = 'Predicted Google Stock Price') plt.legend() plt.plot() ###Output _____no_output_____
Files/Files.ipynb
###Markdown Python Reference - Files**Author:** Robert Bantele Definitionsome basic snippets for working with files Linkshttps://docs.python.org/3/library/functions.htmlopen https://docs.python.org/3/tutorial/inputoutput.htmlreading-and-writing-files https://stackabuse.com/file-handling-in-python/ operating systemfile systems are a bit different depending on the os. use the **platform.system** method to find out which os you are on ###Code import platform cur_plat = platform.system() print(cur_plat) ###Output Windows ###Markdown file pathsuse **os.path.join** to join correct file paths for your os. putting a dot as first argument will build the path from the script directory ###Code import os file_name: str = "File.txt" file_path = os.path.join(".", file_name) print(file_path) ###Output .\File.txt ###Markdown directory contentsuse **os.listdir** to get all files in a directory into a list ###Code import os contents = os.listdir(".") print(contents) ###Output ['.ipynb_checkpoints', 'CSV.csv', 'CSV.ipynb', 'Files.ipynb', 'new folder'] ###Markdown current working directoryuse **os.getcwd()** to get the path to the working directory ###Code import os current_working_directory = os.getcwd() print(current_working_directory) ###Output E:\Develop\Python\40_CodeSnippets\PythonReference\Files ###Markdown current script directoryuse **\_\_file\_\_** to get the location of the current script **works in .py files - does not work in Jupyter Notebook** ###Code import os print(__file__) print(os.path.dirname(__file__)) ###Output _____no_output_____ ###Markdown create directoryuse **makedirs** in to create a directory. ###Code import os new_dir = os.path.join(current_working_directory, "new folder") if not os.path.exists(new_dir): print(f"creating directory {new_dir}") os.makedirs(new_dir) ###Output _____no_output_____ ###Markdown check if file is directory ###Code print(f"\"{new_dir}\" is directory -> {os.path.isdir(new_dir)}") ###Output "E:\Develop\Python\40_CodeSnippets\PythonReference\Files\new folder" is directory -> True ###Markdown delete directory ###Code if os.path.exists(new_dir): print(f"deleting directory {new_dir}") os.remove(new_dir) ###Output _____no_output_____ ###Markdown file open modes source: https://stackabuse.com/file-handling-in-python/ | mode | description ||:-----|:------------|| r | Opens the file in read-only mode. Starts reading from the beginning of the file and is the **default** mode for the **open()** function. || rb | Opens the file as read-only in binary format and starts reading from the beginning of the file. Whilebinary format can be used for different purposes, it is usually used when dealing with things like images,videos, etc. || r+ | Opens a file for reading and writing, placing the pointer at the beginning of the file. || w | Opens in write-only mode. The pointer is placed at the beginning of the file and this will overwrite any existing file with the same name. It will create a new file if one with the same name doesn't exist. || wb | Opens a write-only file in binary mode. || w+ | Opens a file for writing and reading. || wb+ | Opens a file for writing and reading in binary mode. || a | Opens a file for appending new information to it. The pointer is placed at the end of the file. A new file is created if one with the same name doesn't exist. || ab | Opens a file for appending in binary mode. || a+ | Opens a file for both appending and reading. || ab+ | Opens a file for both appending and reading in binary mode. | create fileuse **open** in mode **wt** to open a file for writing ###Code with open(file=file_path, mode="wt", encoding="utf8") as file: print(file) ###Output <_io.TextIOWrapper name='.\\File.txt' mode='wt' encoding='utf8'> ###Markdown write to fileuse **file.write** to write to a file. append \n for a line break ###Code with open(file=file_path, mode="w+", encoding="utf8") as file: for r in range(1,10): file.write(f"this is line {r}\n") ###Output _____no_output_____ ###Markdown close fileuse **file.close** to close a file - although the right way to work with files is using **with open** and there is no need to use **file.close** ###Code file.close() ###Output _____no_output_____ ###Markdown copy fileuse **copyfile** from the **shutil** library to copy files ###Code from shutil import copyfile dst: str = "CopiedFile.txt" copyfile(file_name, dst) ###Output _____no_output_____ ###Markdown read fileuse **with open** to open a file and automatically close it when finished working with it ###Code with open(file=dst, mode="rt", encoding="utf8") as copied_file: for line in copied_file: print(line) ###Output this is line 1 this is line 2 this is line 3 this is line 4 this is line 5 this is line 6 this is line 7 this is line 8 this is line 9 this is line 1 this is line 2 this is line 3 this is line 4 this is line 5 this is line 6 this is line 7 this is line 8 this is line 9 ###Markdown delete fileuse **os.remove** to delete a file ###Code import os dst_path = os.path.join(".", dst) os.remove(dst_path) os.remove(file_path) ###Output _____no_output_____ ###Markdown move filecopied from stackoverflow: https://stackoverflow.com/a/8858026/9351796 **os.rename()**, **shutil.move()**, or **os.replace()**All employ the same syntax: ###Code import os import shutil os.rename("path/to/current/file.foo", "path/to/new/destination/for/file.foo") shutil.move("path/to/current/file.foo", "path/to/new/destination/for/file.foo") os.replace("path/to/current/file.foo", "path/to/new/destination/for/file.foo") ###Output _____no_output_____
4-assets/BOOKS/Jupyter-Notebooks/Overflow/Connecting_with_the_Qt_Console.ipynb
###Markdown Connecting to an existing IPython kernel using the Qt Console The Frontend/Kernel Model The traditional IPython (`ipython`) consists of a single process that combines a terminal based UI with the process that runs the users code.While this traditional application still exists, the modern Jupyter consists of two processes:* Kernel: this is the process that runs the users code.* Frontend: this is the process that provides the user interface where the user types code and sees results.Jupyter currently has 3 frontends:* Terminal Console (`jupyter console`)* Qt Console (`jupyter qtconsole`)* Notebook (`jupyter notebook`)The Kernel and Frontend communicate over a ZeroMQ/JSON based messaging protocol, which allows multiple Frontends (even of different types) to communicate with a single Kernel. This opens the door for all sorts of interesting things, such as connecting a Console or Qt Console to a Notebook's Kernel. For example, you may want to connect a Qt console to your Notebook's Kernel and use it as a helpbrowser, calling `??` on objects in the Qt console (whose pager is more flexible than theone in the notebook). This Notebook describes how you would connect another Frontend to an IPython Kernel that is associated with a Notebook.The commands currently given here are specific to the IPython kernel. Manual connection To connect another Frontend to a Kernel manually, you first need to find out the connection information for the Kernel using the `%connect_info` magic: ###Code %connect_info ###Output _____no_output_____ ###Markdown You can see that this magic displays everything you need to connect to this Notebook's Kernel. Automatic connection using a new Qt Console You can also start a new Qt Console connected to your current Kernel by using the `%qtconsole` magic. This will detect the necessary connectioninformation and start the Qt Console for you automatically. ###Code a = 10 %qtconsole ###Output _____no_output_____
Aggregation and grouping.ipynb
###Markdown TOPLULASTIRMA AGGREGATİONS AND GRUPPİNG* count()* first()* last()* mean()* median()* min()* max()* std()* var()* sum() ###Code import seaborn as sn import pandas as pd import numpy as np df= sn.load_dataset("planets") df ?sn.laod_dataset df.head() df.distance df.shape df.tail() df.mean() df.median() df.describe() # EGER BELİRBİ BİR DEGİSKEN İÇİN BUNU YAPMAK İSTERSEK ÖNCE DEGSİKENİ SECİP # SONRA FONKSİYONU EKLERz df["distance"].describe().T df["distance"].var() # min,std, sum, tum fonksiyonlrı toplarız. df.describe().T # sonunda daki T fonksiyonu trasnpoz dur tersinin alır. gözlemleri degiskenler ile yer degistrrr # EGER FRAMDE Kİ EKSİK VERİLERİ SİLMEK İSTERSEK Kİ DAHA NET BİLGİ VERİR BİZE DROP FONK. KULLANIRZ df.dropna().describe().T # sonucları karsılstırırsak yukarıdakı tablada farklılakrı göruruz. h= df.groupby("method")["orbital_period"].describe() h h.shape ###Output _____no_output_____
notebooks/04_FSharp.ipynb
###Markdown Use DwC-A_dotnet with FDwC-A_dotnet can be used with F as well as C. The NuGet library installation and ArchiveReader/FileReader formatters work in the same way as they do for C.Here we'll use the Papilionidae dataset to demonstrate reading latitude and longitude information from the occurrence data file and plot it on a map of Texas with Plotly.**Import Note:** If you are using this notebook from Binder make sure to select **Kernel -> Change Kernel -> .NET (F)** before running any of the cells below. ###Code #r "nuget:Plotly.NET,2.0.0-preview.15" #r "nuget:Plotly.NET.Interactive,2.0.0-preview.15" #r "nuget:FSharp.Data,4.2.5" #r "nuget:DwC-A_dotnet,0.6.0" #r "nuget:DwC-A_dotnet.Interactive,0.1.9-Pre" open DwC_A open DwC_A.Terms open DwC_A.Factories open DwC_A.Config open System.IO let archiveFile = "./data/Papilionidae.zip" let factory = new DefaultFactory(fun cfg -> cfg.Add<ArchiveFolderConfiguration>( fun cfg -> cfg.OutputPath <- "./Papilionidae" if(Directory.Exists(cfg.OutputPath)) then Directory.Delete(cfg.OutputPath, true) )) let archive = new ArchiveReader(archiveFile, factory); let occurrence = archive.CoreFile; occurrence open System.Linq open Plotly.NET let lonlat = occurrence.DataRows .Where(fun row -> row.[Terms.decimalLongitude] <> null && row.[Terms.decimalLatitude] <> null) .Select(fun row -> ( $"{row.[Terms.genus]} {row.[Terms.specificEpithet]}", row.[Terms.decimalLongitude] |> double, row.[Terms.decimalLatitude] |> double) ) .GroupBy(fun row -> match row with (a, b, c) -> a) .Select(fun group -> (group.Key, group.Select(fun row -> match row with (a, b, c) -> (b, c)))) let geo = lonlat.Select(fun row -> match row with (a, b) -> Chart.ScatterGeo(b, mode=StyleParam.Mode.Markers, ShowLegend = true) |> Chart.withMarkerStyle(Size = 2) |> Chart.withTraceName(a)) |> Chart.combine let map = geo |> Chart.withGeoStyle( FitBounds = StyleParam.GeoFitBounds.GeoJson, Scope = StyleParam.GeoScope.Usa, ShowLakes = true, ShowRivers = true, ShowLand = true, LandColor = Color.fromHex("#f1f1f1") ) |> Chart.withSize(height = 500.0, width = 800.0) |> Chart.withTitle(title = "Papilionidae of Texas") map ###Output _____no_output_____
battery-state-estimation/results/lg/lstm_soc_percentage_lg_result.ipynb
###Markdown Main notebook for battery state estimation ###Code import numpy as np import pandas as pd import scipy.io import math import os import ntpath import sys import logging import time import sys from importlib import reload import plotly.graph_objects as go import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation from keras.optimizers import SGD, Adam from keras.utils import np_utils from keras.layers import LSTM, Embedding, RepeatVector, TimeDistributed, Masking from keras.callbacks import EarlyStopping, ModelCheckpoint, LambdaCallback IS_COLAB = False if IS_COLAB: from google.colab import drive drive.mount('/content/drive') data_path = "/content/drive/My Drive/battery-state-estimation/battery-state-estimation/" else: data_path = "../../" sys.path.append(data_path) from data_processing.lg_dataset import LgData ###Output Using TensorFlow backend. ###Markdown Config logging ###Code reload(logging) logging.basicConfig(format='%(asctime)s [%(levelname)s]: %(message)s', level=logging.DEBUG, datefmt='%Y/%m/%d %H:%M:%S') ###Output _____no_output_____ ###Markdown Load Data ###Code train_names = [ '25degC/551_LA92', '25degC/551_Mixed1', '25degC/551_Mixed2', '25degC/551_UDDS', '25degC/551_US06', '25degC/552_Mixed3', '25degC/552_Mixed7', '25degC/552_Mixed8', ] test_names = [ '25degC/552_Mixed4', '25degC/552_Mixed5', '25degC/552_Mixed6', ] steps = 300 lg_data = LgData(data_path) cycles = lg_data.get_discharge_whole_cycle(train_names, test_names, output_capacity=False) train_x, train_y, test_x, test_y = lg_data.get_discharge_multiple_step(cycles, steps) train_y = lg_data.keep_only_y_end(train_y, steps) test_y = lg_data.keep_only_y_end(test_y, steps) # Model definition #opt = tf.keras.optimizers.Adam(lr=0.00001) #model = Sequential() #model.add(LSTM(256, activation='selu', # return_sequences=True, # input_shape=(train_x.shape[1], train_x.shape[2]))) #model.add(LSTM(256, activation='selu', return_sequences=False)) #model.add(Dense(256, activation='selu')) #model.add(Dense(128, activation='selu')) #model.add(Dense(1, activation='linear')) #model.summary() #model.compile(optimizer=opt, loss='huber', metrics=['mse', 'mae', 'mape', tf.keras.metrics.RootMeanSquaredError(name='rmse') experiment_name = '2020-12-06-19-44-14_lstm_soc_lg' history = pd.read_csv(data_path + 'results/trained_model/%s_history.csv' % experiment_name) model = keras.models.load_model(data_path + 'results/trained_model/%s.h5' % experiment_name) model.summary() print(history) ###Output Unnamed: 0 loss mse mae mape rmse val_loss \ 0 0 0.007985 0.015969 0.086286 52.072884 0.126369 0.000560 1 1 0.000647 0.001295 0.028370 12.785918 0.035986 0.000469 2 2 0.000446 0.000893 0.022999 10.227242 0.029876 0.000361 3 3 0.000401 0.000802 0.021868 9.565425 0.028311 0.000369 4 4 0.000347 0.000694 0.020349 8.510178 0.026346 0.000330 .. ... ... ... ... ... ... ... 95 95 0.000154 0.000308 0.014032 7.002544 0.017540 0.000262 96 96 0.000151 0.000302 0.013452 6.005038 0.017375 0.000264 97 97 0.000122 0.000243 0.012013 5.263407 0.015600 0.000142 98 98 0.000097 0.000193 0.010652 4.854163 0.013894 0.000136 99 99 0.000131 0.000263 0.012581 5.561449 0.016216 0.000188 val_mse val_mae val_mape val_rmse 0 0.001120 0.026847 11.940112 0.033467 1 0.000939 0.024750 11.601175 0.030635 2 0.000721 0.020993 9.335139 0.026856 3 0.000737 0.022172 9.051208 0.027151 4 0.000659 0.020589 8.731447 0.025679 .. ... ... ... ... 95 0.000524 0.019101 7.324101 0.022892 96 0.000528 0.018558 7.422750 0.022979 97 0.000283 0.013665 5.991758 0.016826 98 0.000271 0.013495 5.336795 0.016472 99 0.000376 0.015249 7.439945 0.019386 [100 rows x 11 columns] ###Markdown Testing ###Code results = model.evaluate(test_x, test_y) print(results) ###Output 23/23 [==============================] - 7s 319ms/step - loss: 2.1433e-04 - mean_squared_error: 4.2867e-04 - mean_absolute_error: 0.0156 - mean_absolute_percentage_error: 7.9237 - rmse: 0.0207 [0.00021433422807604074, 0.0004286684561520815, 0.015640864148736, 7.92370080947876, 0.02070431038737297] ###Markdown Data Visualization ###Code fig = go.Figure() fig.add_trace(go.Scatter(y=history['loss'], mode='lines', name='train')) fig.add_trace(go.Scatter(y=history['val_loss'], mode='lines', name='validation')) fig.update_layout(title='Loss trend', xaxis_title='epoch', yaxis_title='loss', width=1400, height=600) fig.show() train_predictions = model.predict(train_x) cycle_num = 0 steps_num = 8000 step_index = np.arange(cycle_num*steps_num, (cycle_num+1)*steps_num) fig = go.Figure() fig.add_trace(go.Scatter(x=step_index, y=train_predictions.flatten()[cycle_num*steps_num:(cycle_num+1)*steps_num], mode='lines', name='SoC predicted')) fig.add_trace(go.Scatter(x=step_index, y=train_y.flatten()[cycle_num*steps_num:(cycle_num+1)*steps_num], mode='lines', name='SoC actual')) fig.update_layout(title='Results on training', xaxis_title='Step', yaxis_title='SoC percentage', width=1400, height=600) fig.show() test_predictions = model.predict(test_x) cycle_num = 0 steps_num = 8000 step_index = np.arange(cycle_num*steps_num, (cycle_num+1)*steps_num) fig = go.Figure() fig.add_trace(go.Scatter(x=step_index, y=test_predictions.flatten()[cycle_num*steps_num:(cycle_num+1)*steps_num], mode='lines', name='SoC predicted')) fig.add_trace(go.Scatter(x=step_index, y=test_y.flatten()[cycle_num*steps_num:(cycle_num+1)*steps_num], mode='lines', name='SoC actual')) fig.update_layout(title='Results on testing', xaxis_title='Step', yaxis_title='SoC percentage', width=1400, height=600) fig.show() ###Output _____no_output_____
examples/sdf_parser_physics_engines.ipynb
###Markdown Physics enginesThe description of the physics engine's parameters is one of the most import parts in the world description in Gazebo. A `` can only have one physics element.It can use the following engines: * ODE (`ode`)* Bullet (`bullet`)* Simbody (`simbody`)* DART (`dart`) and a specific SDF block is available to describe each engine. ###Code # Import the element creator from pcg_gazebo.parsers.sdf import create_sdf_element # Create first the global physics block physics = create_sdf_element('physics') print(physics) # The physics engine's configuration modes are named after the # engine being used, the default being `ode` physics.reset(mode='ode', with_optional_elements=True) print(physics) physics.reset(mode='bullet', with_optional_elements=True) print(physics) physics.reset(mode='simbody', with_optional_elements=True) print(physics) ###Output <physics name="default_physics" default="1" type="simbody"> <max_step_size>0.001</max_step_size> <real_time_factor>1</real_time_factor> <real_time_update_rate>1000</real_time_update_rate> <max_contacts>20</max_contacts> <simbody> <min_step_size>0.0001</min_step_size> <accuracy>0.001</accuracy> <max_transient_velocity>0.01</max_transient_velocity> <contact> <stiffness>100000000.0</stiffness> <dissipation>100</dissipation> <plastic_coef_restitution>0.5</plastic_coef_restitution> <plastic_impact_velocity>0.5</plastic_impact_velocity> <static_friction>0.9</static_friction> <dynamic_friction>0.9</dynamic_friction> <viscous_friction>0</viscous_friction> <override_impact_capture_velocity>0.001</override_impact_capture_velocity> <override_stiction_transition_velocity>0.001</override_stiction_transition_velocity> </contact> </simbody> </physics> ###Markdown Physics enginesThe description of the physics engine's parameters is one of the most import parts in the world description in Gazebo. A `` can only have one physics element.It can use the following engines: * ODE (`ode`)* Bullet (`bullet`)* Simbody (`simbody`)* DART (`dart`) and a specific SDF block is available to describe each engine. ###Code # Import the element creator from pcg_gazebo.parsers.sdf import create_sdf_element # Create first the global physics block physics = create_sdf_element('physics') print(physics) # The physics engine's configuration modes are named after the # engine being used, the default being `ode` physics.reset(mode='ode', with_optional_elements=True) print(physics) physics.reset(mode='bullet', with_optional_elements=True) print(physics) physics.reset(mode='simbody', with_optional_elements=True) print(physics) ###Output <physics name="default_physics" default="1" type="simbody"> <max_step_size>0.001</max_step_size> <real_time_factor>1</real_time_factor> <real_time_update_rate>1000</real_time_update_rate> <max_contacts>20</max_contacts> <simbody> <min_step_size>0.0001</min_step_size> <accuracy>0.001</accuracy> <max_transient_velocity>0.01</max_transient_velocity> <contact> <stiffness>100000000.0</stiffness> <dissipation>100</dissipation> <plastic_coef_restitution>0.5</plastic_coef_restitution> <plastic_impact_velocity>0.5</plastic_impact_velocity> <static_friction>0.9</static_friction> <dynamic_friction>0.9</dynamic_friction> <viscous_friction>0</viscous_friction> <override_impact_capture_velocity>0.001</override_impact_capture_velocity> <override_stiction_transition_velocity>0.001</override_stiction_transition_velocity> </contact> </simbody> </physics>
benchmarking/Benchmarking_python.ipynb
###Markdown Load CSV ###Code df = pd.read_csv("/home/sahil/Documents/code/store_project/scripts/Names.csv", header=0) df.head(5) ###Output _____no_output_____ ###Markdown Load CSV into Local Postgres Database ###Code POSTGRES_USERNAME = "sahil" POSTGRES_PASSWORD = "zxcvbnm" POSTGRES_DBNAME = "postgres" POSTGRES_HOST = "localhost" url = 'postgresql://{}:{}@{}:{}/{}'.format(POSTGRES_USERNAME, POSTGRES_PASSWORD, POSTGRES_HOST, 5432, POSTGRES_DBNAME) print(url) engine = create_engine(url) # %%timeit -r 3 df.to_sql('transaction_data',engine, if_exists='append') ###Output _____no_output_____ ###Markdown Load CSV into AWS Postgres DatabaseBear in mid this time is affected by your internet speed and RDS instance type. ###Code POSTGRES_USERNAME = "sahil" POSTGRES_PASSWORD = "Asdfg1234!" POSTGRES_DBNAME = "postgres" POSTGRES_HOST = "postgresdb2.cznthudneeub.eu-west-1.rds.amazonaws.com" url = 'postgresql://{}:{}@{}:{}/{}'.format(POSTGRES_USERNAME, POSTGRES_PASSWORD, POSTGRES_HOST, 5432, POSTGRES_DBNAME) print(url) engine = create_engine(url) df.head(1000).to_sql('cfs_python',engine, if_exists='replace') ###Output _____no_output_____ ###Markdown Load CSV into Local MySQL Database ###Code POSTGRES_USERNAME = "root" POSTGRES_PASSWORD = "zxcvbnm" POSTGRES_DBNAME = "mysql" POSTGRES_HOST = "localhost" url = 'mysql+pymysql://{}:{}@{}:{}/{}'.format(POSTGRES_USERNAME, POSTGRES_PASSWORD, POSTGRES_HOST, 3306, POSTGRES_DBNAME) print(url) engine = create_engine(url) %%timeit -r 3 df.head(100000).to_sql('cfs_python',engine, if_exists='replace') ###Output _____no_output_____ ###Markdown Load CSV into AWS MySQL Database ###Code POSTGRES_USERNAME = "sahil" POSTGRES_PASSWORD = "Asdfg1234!" POSTGRES_DBNAME = "sahil" POSTGRES_HOST = "mysql2.cznthudneeub.eu-west-1.rds.amazonaws.com" url = 'mysql+pymysql://{}:{}@{}:{}/{}'.format(POSTGRES_USERNAME, POSTGRES_PASSWORD, POSTGRES_HOST, 3306, POSTGRES_DBNAME) print(url) engine = create_engine(url) # %%timeit -r 3 df.head(10000).to_sql('cfs_python',engine, if_exists='replace') ###Output _____no_output_____ ###Markdown Load CSV into Local SQL Server Database [Install SQL Server](https://docs.microsoft.com/en-us/sql/linux/quickstart-install-connect-ubuntu?view=sql-server-2017) ###Code import pymysql POSTGRES_USERNAME = "SA" POSTGRES_PASSWORD = "Asdfg1234!" POSTGRES_DBNAME = "sparkdemodb" POSTGRES_HOST = "localhost" url = 'mssql+pymssql://{}:{}@{}:{}/{}'.format(POSTGRES_USERNAME, POSTGRES_PASSWORD, POSTGRES_HOST, 3306, POSTGRES_DBNAME) print(url) engine = create_engine(url) engine.table_names() engine.execute("CREATE DATABASE TestDB1") ###Output _____no_output_____
0.8.0/_downloads/508c2f401de5e085afa802c76e7532f4/plot_display.ipynb
###Markdown In this example, notice that we used 'time' for both axis labels.In general, any of the supported modes can be used for either axis.For example, we could also plot the chroma covariance plot withchroma decorations on each axis: ###Code ccov = np.cov(chroma) fig, ax = plt.subplots() img = librosa.display.specshow(ccov, y_axis='chroma', x_axis='chroma', key='Eb:maj', ax=ax) ax.set(title='Chroma covariance') fig.colorbar(img, ax=ax) ###Output _____no_output_____ ###Markdown Color mapsYou may have noticed that the color mappings for the images abovewere selected automatically by `specshow`.This is done by `librosa.display.cmap` according to the following heuristic: - If the data is boolean, use black-and-white - If the data is (mostly) positive or (mostly) negative, use a sequential colormap - If the data contains both positive and negative values, use a diverging colormap.The default sequential colormap is 'magma', which is perceptually uniform andconverts gracefully to grayscale.You can always override this automatic colormap selection by setting anexplicit `cmap`: ###Code fig, ax = plt.subplots() img = librosa.display.specshow(S_db, cmap='gray_r', y_axis='log', x_axis='time', ax=ax) ax.set(title='Inverted grayscale') fig.colorbar(img, ax=ax, format="%+2.f dB") ###Output _____no_output_____ ###Markdown `specshow` uses `matplotlib.pyplot.pcolormesh` to generate the underlying image.Any parameters to `pcolormesh` can be passed through from `specshow`, for example,to set explicit bounds on the minimum and maximum ranges for colors.This can be helpful when centering divergent colormaps around 0 (or some otherreference point). ###Code max_var = np.max(np.abs(ccov)) fig, ax = plt.subplots() img = librosa.display.specshow(ccov, vmin=-max_var, vmax=max_var, y_axis='chroma', x_axis='chroma', key='Eb:maj', ax=ax) ax.set(title='Chroma covariance') fig.colorbar(img, ax=ax) ###Output _____no_output_____ ###Markdown Multiple plotsOften, we'll want to show multiple synchronized features simultaneously.This can be done using matplotlib's `subplot` mechanism and sharing axes.There are many examples of this throughout the librosa documentation, buthere we'll go through it step by step. ###Code # Construct a subplot grid with 3 rows and 1 column, sharing the x-axis) fig, ax = plt.subplots(nrows=3, ncols=1, sharex=True) # On the first subplot, show the original spectrogram img1 = librosa.display.specshow(S_db, x_axis='time', y_axis='log', ax=ax[0]) ax[0].set(title='STFT (log scale)') # On the second subplot, show the mel spectrogram img2 = librosa.display.specshow(M_db, x_axis='time', y_axis='mel', ax=ax[1]) ax[1].set(title='Mel') # On the third subplot, show the chroma features img3 = librosa.display.specshow(chroma, x_axis='time', y_axis='chroma', key='Eb:maj', ax=ax[2]) ax[2].set(title='Chroma') # To eliminate redundant axis labels, we'll use "label_outer" on all subplots: for ax_i in ax: ax_i.label_outer() # And we can share colorbars: fig.colorbar(img1, ax=[ax[0], ax[1]]) # Or have individual colorbars: fig.colorbar(img3, ax=[ax[2]]) # We can then even do fancy things like zoom into a particular time and frequency # region. Since the axes are shared, this will apply to all three subplots at once. ax[0].set(xlim=[1, 3]) # Zoom to seconds 1-3 ###Output _____no_output_____ ###Markdown Non-uniform axesAll of the examples so far have used either uniformly, linearly, or geometricallyspaced axes. But sometimes, we have non-uniform sampling of data, and we'd liketo plot it in natural coordinates.One example of this is when using beat-synchronous features in the common casewhere the tempo is not exactly fixed. To demonstrate this, we'll use a longerexample clip.To specify non-uniform axis sampling, you will need to provide the `x_coords`(or `y_coords`) array indicating the position of each sample, as demonstratedbelow. ###Code y, sr = librosa.load(librosa.ex('nutcracker')) chroma = librosa.feature.chroma_cqt(y=y, sr=sr) tempo, beats = librosa.beat.beat_track(y=y, sr=sr) # beats contains the frame indices of each detected beat # for synchronization and visualization, we'll need to expand this # to cover the limits of the data. This can be done as follows: beats = librosa.util.fix_frames(beats, x_min=0, x_max=chroma.shape[1]) # Now beat-synchronize the chroma features chroma_sync = librosa.util.sync(chroma, beats, aggregate=np.median) # For visualization, we can convert to time (in seconds) beat_times = librosa.frames_to_time(beats) # We'll plot the synchronized and unsynchronized features next # to each other fig, ax = plt.subplots(nrows=2, sharex=True) img = librosa.display.specshow(chroma, y_axis='chroma', x_axis='time', ax=ax[0], key='Eb:maj') ax[0].set(title='Uniform time sampling') ax[0].label_outer() librosa.display.specshow(chroma_sync, y_axis='chroma', x_axis='time', x_coords=beat_times, ax=ax[1], key='Eb:maj') ax[1].set(title='Beat-synchronous sampling') fig.colorbar(img, ax=ax) # For clarity, we'll zoom in on a 15-second patch ax[1].set(xlim=[10, 25]) ###Output _____no_output_____ ###Markdown Using display.specshowThis notebook gives a more in-depth demonstration of all things that `specshow`can do to help generate beautiful visualizations of spectro-temporal data. ###Code # Code source: Brian McFee # License: ISC # sphinx_gallery_thumbnail_number = 15 ###Output _____no_output_____ ###Markdown All of librosa's plotting functions rely on matplotlib.To demonstrate everything we can do, it will help toimport matplotlib's pyplot API here. ###Code import numpy as np import matplotlib.pyplot as plt import librosa import librosa.display ###Output _____no_output_____ ###Markdown First, we'll load in a demo track ###Code y, sr = librosa.load(librosa.ex('trumpet')) ###Output _____no_output_____ ###Markdown The first thing we might want to do is display an ordinary(linear) spectrogram.We'll do this by first computing the short-time Fouriertransform, and then mapping the magnitudes to a decibelscale. ###Code D = librosa.stft(y) # STFT of y S_db = librosa.amplitude_to_db(np.abs(D), ref=np.max) ###Output _____no_output_____ ###Markdown If you're familiar with matplotlib already, you may knowthat there are two ways of using it: the `pyplot` interfaceand the object-oriented interface.Both are supported by librosa, as we'll show here.First, the pyplot interface: ###Code plt.figure() librosa.display.specshow(S_db) plt.colorbar() ###Output _____no_output_____ ###Markdown And now the object-oriented interface ###Code fig, ax = plt.subplots() img = librosa.display.specshow(S_db, ax=ax) fig.colorbar(img, ax=ax) ###Output _____no_output_____ ###Markdown Both figures are identical, but they use different programminginterfaces to construct. Most people find the pyplot interfaceto be quicker to learn, but the object-oriented interface canbe a little more flexible for complex figures.For the remainder of this example, we'll use the object-orientedinterface. Decorating your plotThe figure above conveys the basic content of the spectrogram,but it's missing axis labels. Without that information, it'simpossible for a reader to know how to interpret the visualization.specshow provides many helpers to automatically decorate the axesof your plot. For the plot above, our x-axis corresponds to time,and our y-axis corresponds to linearly spaced frequencies producedby the discrete Fourier transform.We can tell specshow to decorate the axes accordingly: ###Code fig, ax = plt.subplots() img = librosa.display.specshow(S_db, x_axis='time', y_axis='linear', ax=ax) ax.set(title='Now with labeled axes!') fig.colorbar(img, ax=ax, format="%+2.f dB") ###Output _____no_output_____ ###Markdown This is much better already! Note that we also added a format stringto the colorbar, so readers know how to read the color scale. Changing axis scalesThe linear frequency scale is sometimes helpful, but often it candifficult to read. Alternatively, it is common to use a logarithmicfrequency axis. This has the benefit that every octave occupiesa constant vertical extent.We can tell specshow to use log-scaled frequency axes just as above: ###Code fig, ax = plt.subplots() img = librosa.display.specshow(S_db, x_axis='time', y_axis='log', ax=ax) ax.set(title='Using a logarithmic frequency axis') fig.colorbar(img, ax=ax, format="%+2.f dB") ###Output _____no_output_____ ###Markdown Changing the analysis parametersThe default parameter settings used by librosa (e.g., `sr=22050`, `hop_length=512`,etc) may not be appropriate for every signal.If you change a parameter from its default value, e.g. when computing an STFT,you can pass that same parameter to `specshow`.This ensures that axis scales (e.g. time or frequency) are computed correctly. ###Code fig, ax = plt.subplots() D_highres = librosa.stft(y, hop_length=256, n_fft=4096) S_db_hr = librosa.amplitude_to_db(np.abs(D_highres), ref=np.max) img = librosa.display.specshow(S_db_hr, hop_length=256, x_axis='time', y_axis='log', ax=ax) ax.set(title='Higher time and frequency resolution') fig.colorbar(img, ax=ax, format="%+2.f dB") ###Output _____no_output_____ ###Markdown Note that only the parameters which are strictly necessary are supported by`specshow`. For example, without the `hop_length`, we wouldn't know how totranslate frame indices to time indices. However, `n_fft` is *not* needed,because it can be inferred from the shape of the input spectrogram.A full list of the supported parameters is provided in the`librosa.display.specshow` documentation. Other types of spectral dataThe examples above illustrate how to plot linear spectrograms,but librosa provides many kinds of spectral representations:Mel-scaled, constant-Q, variable-Q, chromagrams, tempograms, etc.specshow can plot these just as well. For example, a Mel spectrogramcan be displayed as follows: ###Code fig, ax = plt.subplots() M = librosa.feature.melspectrogram(y=y, sr=sr) M_db = librosa.power_to_db(M, ref=np.max) img = librosa.display.specshow(M_db, y_axis='mel', x_axis='time', ax=ax) ax.set(title='Mel spectrogram display') fig.colorbar(img, ax=ax, format="%+2.f dB") ###Output _____no_output_____ ###Markdown Constant-Q plots, and other logarithmically scaled frequency representationssuch as Variable-Q or `iirt` can be decorated using either the frequencies (Hz)or their note names in scientific pitch notation: ###Code C = librosa.cqt(y=y, sr=sr) C_db = librosa.amplitude_to_db(np.abs(C), ref=np.max) fig, ax = plt.subplots() librosa.display.specshow(C_db, y_axis='cqt_hz', x_axis='time', ax=ax) ax.set(title='Frequency (Hz) axis decoration') fig, ax = plt.subplots() librosa.display.specshow(C_db, y_axis='cqt_note', x_axis='time', ax=ax) ax.set(title='Pitch axis decoration') ###Output _____no_output_____ ###Markdown In the latter case, the underlying data representation is still measured inHz; only the tick labels are changed. Chroma representations don't have a fixed frequency axis, and instead aggregateinformation across all frequencies corresponding to a given pitch class.specshow can plot these too: ###Code chroma = librosa.feature.chroma_cqt(y=y, sr=sr) fig, ax = plt.subplots() img = librosa.display.specshow(chroma, y_axis='chroma', x_axis='time', ax=ax) ax.set(title='Chromagram demonstration') fig.colorbar(img, ax=ax) ###Output _____no_output_____ ###Markdown If you also happen to know the key of the piece being analyzed, you canpass this to specshow and it will spell the notes properly: ###Code fig, ax = plt.subplots() img = librosa.display.specshow(chroma, y_axis='chroma', x_axis='time', key='Eb:maj', ax=ax) ax.set(title='Chromagram explicitly in Eb:maj') fig.colorbar(img, ax=ax) ###Output _____no_output_____ ###Markdown This will also work for 'cqt_note' mode. Indian notation systems ###Code # The examples above use Western music notation to identify pitch classes, but we can # also decorate axes with either Hindustani or Carnatic svara classes. # # These are specified by using `y_axis='chroma_h'` or `'chroma_c'`, respectively. # # Just as with key identification in the chroma example above, you can specify the # thaat (Hindustani) or melakarta number or name (Carnatic) to notate the plot. ###Output _____no_output_____ ###Markdown For example, the example above is in Eb:maj (or, more accurately, F:dorian),which we can also represent in Hindustani notation as Sa=5 (F) and 'kafi' thaat: ###Code fig, ax = plt.subplots() img = librosa.display.specshow(chroma, y_axis='chroma_h', x_axis='time', Sa=5, thaat='kafi', ax=ax) ax.set(title='Chromagram with Hindustani notation') fig.colorbar(img, ax=ax) ###Output _____no_output_____ ###Markdown In Carnatic notation, we would use melakarta 22.Note: `thaat` is optional for Hindustani notation, but `mela` is required forCarnatic. ###Code fig, ax = plt.subplots() img = librosa.display.specshow(chroma, y_axis='chroma_c', x_axis='time', Sa=5, mela=22, ax=ax) ax.set(title='Chromagram with Carnatic notation') fig.colorbar(img, ax=ax) ###Output _____no_output_____ ###Markdown These notation schemes can also be used in cqt plots by specifying`y_axis='cqt_svara'`.In this mode, `Sa` must be specified in Hz. Carnatic notation is usedif `mela` is provided, and Hindustani is used if not.Individual svara are only notated if the display range is sufficiently small,so we'll zoom into a single octave for this example. ###Code Sa = librosa.note_to_hz('F4') fig, ax = plt.subplots() librosa.display.specshow(C_db, y_axis='cqt_svara', Sa=Sa, x_axis='time', ax=ax) ax.set(title='Hindustani decoration', ylim=[Sa, 2*Sa]) fig, ax = plt.subplots() librosa.display.specshow(C_db, y_axis='cqt_svara', Sa=Sa, mela=22, x_axis='time', ax=ax) ax.set(title='Carnatic decoration', ylim=[Sa, 2*Sa]) ###Output _____no_output_____ ###Markdown Non-spectral dataspecshow can also be used for data that isn't exactly spectro-temporal.One common application is recurrence (self-similarity) plots, whichare time-by-time, as illustrated below. ###Code R = librosa.segment.recurrence_matrix(chroma, mode='affinity') fig, ax = plt.subplots() img = librosa.display.specshow(R, y_axis='time', x_axis='time', ax=ax) ax.set(title='Recurrence / self-similarity') fig.colorbar(img, ax=ax) ###Output _____no_output_____
members/keve/6.HF/course_7_initial_task.ipynb
###Markdown find the number of strings in a list of strings that contain a given letterupper or lower case> ```["abfg", "Bcd", "Ijk"], "b" -> 2``` ###Code from jkg_evaluators import letter_occurrences list_of_strings=["abfg", "Bcd", "Ijk"] letter=str("b") def find_letter_occurrences (list_of_strings,letter): #deklarálok egy új list nevű változót, melynek típusa lista list=[] #a "list_of_strings elemeinek számval megegyező számú csak nullákat tartalmazó listává alakítom a list változót for q in list_of_strings: list.append(0) #az i felveszi a list_of_strings adott elemének elemszámát - majd ezt futtatom mindegyik elemre for i in range (len(list_of_strings)): # az i-edik elemének egyesével megnézem az összes karakterét iterációval, az aktuális karaktert mindig az f jelöli for f in (list_of_strings[i]): #egy elágazást tartalmaz a függvény, ha az adott f karakter megegyezik a keresett értékkel akkor teljesíti ami az elágazásban van, ha nem akkor nem if f.upper()==letter.upper(): #a list nevű váltó esetén 1-es értéket ad azon elemeknek, amelyek esetén teljesült a feltétel list[i]=1 #deklarlom a megoldas nevu változót megoldas=0 #iterálom a lista elemeit for l in list: #a list nevű lista elemeit - mely 0-t tartalmaz, ha az adott értékre nem tejesül a feltétel és 1-et ha igen - egyesével hozzáadom a megoldashoz megoldas+=l #visszatérési értékként megadom a "megoldas" változó értékét return (megoldas) print (fgv(list_of_strings,letter)) print(find_letter_occurrences) letter_occurrences.evaluate(find_letter_occurrences) ###Output - success rate: 495/495 (100.0%) - error count: 0 - best performance: 1 - worst performance: 1 - mean performance: 1.0
6- Data Visualization/Top 5 Data Visualization Libraries Tutorial.ipynb
###Markdown Top 5 Data Visualization Libraries Tutorial last update: 25/01/2019> You may be interested have a look at 10 Steps to Become a Data Scientist: 1. [Leren Python](https://www.kaggle.com/mjbahmani/the-data-scientist-s-toolbox-tutorial-1)2. [Python Packages](https://www.kaggle.com/mjbahmani/the-data-scientist-s-toolbox-tutorial-2)3. [Mathematics and Linear Algebra](https://www.kaggle.com/mjbahmani/linear-algebra-for-data-scientists)4. [Programming &amp; Analysis Tools](https://www.kaggle.com/mjbahmani/20-ml-algorithms-15-plot-for-beginners)5. [Big Data](https://www.kaggle.com/mjbahmani/a-data-science-framework-for-quora)6. You are in the Sixth step7. [Data Cleaning](https://www.kaggle.com/mjbahmani/machine-learning-workflow-for-house-prices)8. [How to solve a Problem?](https://www.kaggle.com/mjbahmani/the-data-scientist-s-toolbox-tutorial-2)9. [Machine Learning](https://www.kaggle.com/mjbahmani/a-comprehensive-ml-workflow-with-python)10. [Deep Learning](https://www.kaggle.com/mjbahmani/top-5-deep-learning-frameworks-tutorial)---------------------------------------------------------------------You can Fork and Run this kernel on Github:> [ GitHub](https://github.com/mjbahmani/10-steps-to-become-a-data-scientist)------------------------------------------------------------------------------------------------------------- **I hope you find this kernel helpful and some UPVOTES would be very much appreciated** ----------- Notebook Content1. [Introduction](1)1. [Loading Packages](2) 1. [version](21) 1. [Setup](22) 1. [Data Collection](23)1. [Data Visualization Libraries](4)1. [Matplotlib](4) 1. [Scatterplots](41) 1. [ Line Plots](42) 1. [Bar Charts](43) 1. [Histograms](44) 1. [Box and Whisker Plots](45) 1. [Heatmaps](46) 1. [Animations](47) 1. [Interactivity](48) 1. [DataFrame.plot](49)1. [Seaborn](5) 1. [Seaborn Vs Matplotlib](51) 1. [Useful Python Data Visualization Libraries](52)1. [Plotly](6) 1. [New to Plotly?](61) 1. [Plotly Offline from Command Line](62)1. [Bokeh](7)1. [networkx](8)1. [Read more](9) 1. [Courses](91) 1. [Ebooks](92) 1. [Cheat sheet](93)1. [Conclusion](10) 1. [References](11) 1- IntroductionIf you've followed my other kernels so far. You have noticed that for those who are beginners, I've introduced a course " 10 Steps to Become a Data Scientist ". In this kernel we will start another step with each other. There are plenty of Kernels that can help you learn Python 's Libraries from scratch but here in Kaggle, I want to Analysis Meta Kaggle a popular Dataset.After reading, you can use it to Analysis other real dataset and use it as a template to deal with ML problems.It is clear that everyone in this community is familiar with Meta Kaggle dataset but if you need to review your information about the datasets please visit [meta-kaggle](https://www.kaggle.com/kaggle/meta-kaggle) .I am open to getting your feedback for improving this **kernel** together. 2- Loading PackagesIn this kernel we are using the following packages: ###Code from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot from bokeh.io import push_notebook, show, output_notebook import mpl_toolkits.axes_grid1.inset_locator as mpl_il from bokeh.plotting import figure, output_file, show from bokeh.io import show, output_notebook import matplotlib.animation as animation from matplotlib.figure import Figure from sklearn.cluster import KMeans import plotly.figure_factory as ff import matplotlib.pylab as pylab from ipywidgets import interact import plotly.graph_objs as go import plotly.graph_objs as go import matplotlib.pyplot as plt from bokeh.plotting import figure from sklearn import datasets import plotly.plotly as py import plotly.graph_objs as go from plotly import tools from sklearn import datasets import plotly.offline as py from random import randint from plotly import tools import matplotlib as mpl import seaborn as sns import pandas as pd import numpy as np import matplotlib import warnings import string import numpy import csv import os ###Output _____no_output_____ ###Markdown 2-1 version ###Code print('matplotlib: {}'.format(matplotlib.__version__)) print('seaborn: {}'.format(sns.__version__)) print('pandas: {}'.format(pd.__version__)) print('numpy: {}'.format(np.__version__)) #print('wordcloud: {}'.format(wordcloud.version)) ###Output _____no_output_____ ###Markdown 2-2 SetupA few tiny adjustments for better **code readability** ###Code sns.set(style='white', context='notebook', palette='deep') pylab.rcParams['figure.figsize'] = 12,8 warnings.filterwarnings('ignore') mpl.style.use('ggplot') sns.set_style('white') %matplotlib inline ###Output _____no_output_____ ###Markdown 2-3 Data Collection**Data collection** is the process of gathering and measuring data, information or any variables of interest in a standardized and established manner that enables the collector to answer or test hypothesis and evaluate outcomes of the particular collection.[techopedia]I start Collection Data by the Users and Kernels datasets into **Pandas DataFrames** ###Code # import kernels and users to play with it (MJ Bahmani) #command--> 1 users = pd.read_csv("../input/Users.csv") kernels = pd.read_csv("../input/Kernels.csv") messages = pd.read_csv("../input/ForumMessages.csv") ###Output _____no_output_____ ###Markdown **>*** Each row is an observation (also known as : sample, example, instance, record)* Each column is a feature (also known as: Predictor, attribute, Independent Variable, input, regressor, Covariate) [Go to top](top) ###Code #command--> 2 users.sample(1) ###Output _____no_output_____ ###Markdown Please **replace** your username and find your useridWe suppose that userid==authoruserid and use userid for both kernels and users dataset ###Code username="mjbahmani" userid=int(users[users['UserName']=="mjbahmani"].Id) userid ###Output _____no_output_____ ###Markdown We can just use **dropna()**(be careful sometimes you should not do this!) ###Code # remove rows that have NA's print('Before Droping',messages.shape) #command--> 3 messages = messages.dropna() print('After Droping',messages.shape) ###Output _____no_output_____ ###Markdown 2-3-1 FeaturesFeatures can be from following types:1. numeric1. categorical1. ordinal1. datetime1. coordinatesFind the type of features in **Meta Kaggle**?!For getting some information about the dataset you can use **info()** command [Go to top](top) ###Code #command--> 4 print(users.info()) ###Output _____no_output_____ ###Markdown 2-3-2 Explorer Dataset1. Dimensions of the dataset.1. Peek at the data itself.1. Statistical summary of all attributes.1. Breakdown of the data by the class variable.Don’t worry, each look at the data is **one command**. These are useful commands that you can use again and again on future projects. [Go to top](top) ###Code # shape #command--> 5 print(users.shape) #columns*rows #command--> 6 users.size ###Output _____no_output_____ ###Markdown We can get a quick idea of how many instances (rows) and how many attributes (columns) the data contains with the shape property. You see number of unique item for Species with command below: ###Code #command--> 7 kernels['Medal'].unique() #command--> 8 kernels["Medal"].value_counts() ###Output _____no_output_____ ###Markdown To check the first 5 rows of the data set, we can use head(5). ###Code kernels.head(5) ###Output _____no_output_____ ###Markdown To check out last 5 row of the data set, we use tail() function ###Code #command--> 9 users.tail() ###Output _____no_output_____ ###Markdown To pop up 5 random rows from the data set, we can use **sample(5)** function ###Code kernels.sample(5) ###Output _____no_output_____ ###Markdown To give a statistical summary about the dataset, we can use **describe()** ###Code kernels.describe() ###Output _____no_output_____ ###Markdown 2-3-5 Find yourself in Users datset ###Code #command--> 12 users[users['Id']==userid] ###Output _____no_output_____ ###Markdown 2-3-6 Find your kernels in Kernels dataset ###Code #command--> 13 yourkernels=kernels[kernels['AuthorUserId']==userid] yourkernels.head(2) ###Output _____no_output_____ ###Markdown 3- Data Visualization LibrariesBefore you start learning , I am giving an overview of 10 interdisciplinary **Python data visualization libraries**, from the well-known to the obscure.* 1- matplotlibmatplotlib is the O.G. of Python data visualization libraries. Despite being over a decade old, it’s still the most widely used library for plotting in the Python community. It was designed to closely resemble MATLAB, a proprietary programming language developed in the 1980s.* 2- SeabornSeaborn harnesses the power of matplotlib to create beautiful charts in a few lines of code. The key difference is Seaborn’s default styles and color palettes, which are designed to be more aesthetically pleasing and modern. Since Seaborn is built on top of matplotlib, you’ll need to know matplotlib to tweak Seaborn’s defaults.* 3- ggplotggplot is based on ggplot2, an R plotting system, and concepts from The Grammar of Graphics. ggplot operates differently than matplotlib: it lets you layer components to create a complete plot. For instance, you can start with axes, then add points, then a line, a trendline, etc. Although The Grammar of Graphics has been praised as an “intuitive” method for plotting, seasoned matplotlib users might need time to adjust to this new mindset.* 4- BokehLike ggplot, Bokeh is based on The Grammar of Graphics, but unlike ggplot, it’s native to Python, not ported over from R. Its strength lies in the ability to create interactive, web-ready plots, which can be easily outputted as JSON objects, HTML documents, or interactive web applications. Bokeh also supports streaming and real-time data.* 5- pygalLike Bokeh and Plotly, pygal offers interactive plots that can be embedded in the web browser. Its prime differentiator is the ability to output charts as SVGs. As long as you’re working with smaller datasets, SVGs will do you just fine. But if you’re making charts with hundreds of thousands of data points, they’ll have trouble rendering and become sluggish.* 6- PlotlyYou might know Plotly as an online platform for data visualization, but did you also know you can access its capabilities from a Python notebook? Like Bokeh, Plotly’s forte is making interactive plots, but it offers some charts you won’t find in most libraries, like contour plots, dendograms, and 3D charts.* 7- geoplotlibgeoplotlib is a toolbox for creating maps and plotting geographical data. You can use it to create a variety of map-types, like choropleths, heatmaps, and dot density maps. You must have Pyglet (an object-oriented programming interface) installed to use geoplotlib. Nonetheless, since most Python data visualization libraries don’t offer maps, it’s nice to have a library dedicated solely to them.* 8- GleamGleam is inspired by R’s Shiny package. It allows you to turn analyses into interactive web apps using only Python scripts, so you don’t have to know any other languages like HTML, CSS, or JavaScript. Gleam works with any Python data visualization library. Once you’ve created a plot, you can build fields on top of it so users can filter and sort data.* 9- missingnoDealing with missing data is a pain. missingno allows you to quickly gauge the completeness of a dataset with a visual summary, instead of trudging through a table. You can filter and sort data based on completion or spot correlations with a heatmap or a dendrogram.* 10- LeatherLeather’s creator, Christopher Groskopf, puts it best: “Leather is the Python charting library for those who need charts now and don’t care if they’re perfect.” It’s designed to work with all data types and produces charts as SVGs, so you can scale them without losing image quality. Since this library is relatively new, some of the documentation is still in progress. The charts you can make are pretty basic—but that’s the intention.At the end, nice cheatsheet on how to best visualize your data. I think I will print it out as a good reminder of "best practices". Check out the link for the complete cheatsheet, also as a PDF. * 11- ChartifyChartify is a Python library that makes it easy for data scientists to create charts.Why use Chartify?1. Consistent input data format: Spend less time transforming data to get your charts to work. All plotting functions use a consistent tidy input data format.1. Smart default styles: Create pretty charts with very little customization required.1. Simple API: We've attempted to make to the API as intuitive and easy to learn as possible.1. Flexibility: Chartify is built on top of Bokeh, so if you do need more control you can always fall back on Bokeh's API.Link: https://github.com/mjbahmani/Machine-Learning-Workflow-with-Python![cheatsheet ][1][Reference][2] [1]: http://s8.picofile.com/file/8340669884/53f6a826_d7df_4b55_81e6_7c23b3fff0a3_original.png [2]: https://blog.modeanalytics.com/python-data-visualization-libraries/ 4- MatplotlibThis Matplotlib tutorial takes you through the basics Python data visualization: 1. the anatomy of a plot 1. pyplot 1. pylab1. and much more [Go to top](top) You can show matplotlib figures directly in the notebook by using the `%matplotlib notebook` and `%matplotlib inline` magic commands. `%matplotlib notebook` provides an interactive environment. We can use html cell magic to display the image. ###Code #import matplotlib.pyplot as plt plt.plot([1, 2, 3, 4], [10, 20, 25, 30], color='lightblue', linewidth=3) plt.scatter([0.4, 3.8, 1.2, 2.5], [15, 25, 9, 26], color='darkgreen', marker='o') plt.xlim(0.5, 4.5) plt.show() ###Output _____no_output_____ ###Markdown Simple and powerful visualizations can be generated using the **Matplotlib Python** Library. More than a decade old, it is the most widely-used library for plotting in the Python community. A wide range of graphs from histograms to heat plots to line plots can be plotted using Matplotlib.Many other libraries are built on top of Matplotlib and are designed to work in conjunction with analysis, it being the first Python data visualization library. Libraries like pandas and matplotlib are “wrappers” over Matplotlib allowing access to a number of Matplotlib’s methods with less code.[7] 4-1 Scatterplots ###Code x = np.array([1,2,3,4,5,6,7,8]) y = x plt.figure() plt.scatter(x, y) # similar to plt.plot(x, y, '.'), but the underlying child objects in the axes are not Line2D x = np.array([1,2,3,4,5,6,7,8]) y = x # create a list of colors for each point to have # ['green', 'green', 'green', 'green', 'green', 'green', 'green', 'red'] colors = ['green']*(len(x)-1) colors.append('red') plt.figure() # plot the point with size 100 and chosen colors plt.scatter(x, y, s=100, c=colors) plt.figure() # plot a data series 'Tall students' in red using the first two elements of x and y plt.scatter(x[:2], y[:2], s=100, c='red', label='Tall students') # plot a second data series 'Short students' in blue using the last three elements of x and y plt.scatter(x[2:], y[2:], s=100, c='blue', label='Short students') x = np.random.randint(low=1, high=11, size=50) y = x + np.random.randint(1, 5, size=x.size) data = np.column_stack((x, y)) fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(8, 4)) ax1.scatter(x=x, y=y, marker='o', c='r', edgecolor='b') ax1.set_title('Scatter: $x$ versus $y$') ax1.set_xlabel('$x$') ax1.set_ylabel('$y$') ax2.hist(data, bins=np.arange(data.min(), data.max()), label=('x', 'y')) ax2.legend(loc=(0.65, 0.8)) ax2.set_title('Frequencies of $x$ and $y$') ax2.yaxis.tick_right() # Modify the graph above by assigning each species an individual color. #command--> 19 x=yourkernels["TotalVotes"] y=yourkernels["TotalViews"] plt.scatter(x, y) plt.legend() plt.show() ###Output _____no_output_____ ###Markdown 4-2 Line Plots ###Code linear_data = np.array([1,2,3,4,5,6,7,8]) exponential_data = linear_data**2 plt.figure() # plot the linear data and the exponential data plt.plot(linear_data, '-o', exponential_data, '-o') # plot another series with a dashed red line plt.plot([22,44,55], '--r') ###Output _____no_output_____ ###Markdown 4-3 Bar Charts ###Code plt.figure() xvals = range(len(linear_data)) plt.bar(xvals, linear_data, width = 0.3) new_xvals = [] # plot another set of bars, adjusting the new xvals to make up for the first set of bars plotted for item in xvals: new_xvals.append(item+0.3) plt.bar(new_xvals, exponential_data, width = 0.3 ,color='red') linear_err = [randint(0,15) for x in range(len(linear_data))] # This will plot a new set of bars with errorbars using the list of random error values plt.bar(xvals, linear_data, width = 0.3, yerr=linear_err) # stacked bar charts are also possible plt.figure() xvals = range(len(linear_data)) plt.bar(xvals, linear_data, width = 0.3, color='b') plt.bar(xvals, exponential_data, width = 0.3, bottom=linear_data, color='r') # or use barh for horizontal bar charts plt.figure() xvals = range(len(linear_data)) plt.barh(xvals, linear_data, height = 0.3, color='b') plt.barh(xvals, exponential_data, height = 0.3, left=linear_data, color='r') # Initialize the plot fig = plt.figure(figsize=(20,10)) ax1 = fig.add_subplot(121) ax2 = fig.add_subplot(122) # or replace the three lines of code above by the following line: #fig, (ax1, ax2) = plt.subplots(1,2, figsize=(20,10)) # Plot the data ax1.bar([1,2,3],[3,4,5]) ax2.barh([0.5,1,2.5],[0,1,2]) # Show the plot plt.show() plt.figure() # subplot with 1 row, 2 columns, and current axis is 1st subplot axes plt.subplot(1, 2, 1) linear_data = np.array([1,2,3,4,5,6,7,8]) plt.plot(linear_data, '-o') exponential_data = linear_data**2 # subplot with 1 row, 2 columns, and current axis is 2nd subplot axes plt.subplot(1, 2, 2) plt.plot(exponential_data, '-o') # plot exponential data on 1st subplot axes plt.subplot(1, 2, 1) plt.plot(exponential_data, '-x') plt.figure() ax1 = plt.subplot(1, 2, 1) plt.plot(linear_data, '-o') # pass sharey=ax1 to ensure the two subplots share the same y axis ax2 = plt.subplot(1, 2, 2, sharey=ax1) plt.plot(exponential_data, '-x') ###Output _____no_output_____ ###Markdown 4-4 Histograms ###Code # create 2x2 grid of axis subplots fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, sharex=True) axs = [ax1,ax2,ax3,ax4] # draw n = 10, 100, 1000, and 10000 samples from the normal distribution and plot corresponding histograms for n in range(0,len(axs)): sample_size = 10**(n+1) sample = np.random.normal(loc=0.0, scale=1.0, size=sample_size) axs[n].hist(sample) axs[n].set_title('n={}'.format(sample_size)) # repeat with number of bins set to 100 fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, sharex=True) axs = [ax1,ax2,ax3,ax4] for n in range(0,len(axs)): sample_size = 10**(n+1) sample = np.random.normal(loc=0.0, scale=1.0, size=sample_size) axs[n].hist(sample, bins=100) axs[n].set_title('n={}'.format(sample_size)) plt.figure() Y = np.random.normal(loc=0.0, scale=1.0, size=10000) X = np.random.random(size=10000) plt.scatter(X,Y) ###Output _____no_output_____ ###Markdown It looks like perhaps two of the input variables have a Gaussian distribution. This is useful to note as we can use algorithms that can exploit this assumption. ###Code yourkernels["TotalViews"].hist(); yourkernels["TotalComments"].hist(); sns.factorplot('TotalViews','TotalVotes',data=yourkernels) plt.show() ###Output _____no_output_____ ###Markdown 4-5 Box and Whisker PlotsIn descriptive statistics, a **box plot** or boxplot is a method for graphically depicting groups of numerical data through their quartiles. Box plots may also have lines extending vertically from the boxes (whiskers) indicating variability outside the upper and lower quartiles, hence the terms box-and-whisker plot and box-and-whisker diagram.[wikipedia] ###Code normal_sample = np.random.normal(loc=0.0, scale=1.0, size=10000) random_sample = np.random.random(size=10000) gamma_sample = np.random.gamma(2, size=10000) df = pd.DataFrame({'normal': normal_sample, 'random': random_sample, 'gamma': gamma_sample}) plt.figure() # create a boxplot of the normal data, assign the output to a variable to supress output _ = plt.boxplot(df['normal'], whis='range') # clear the current figure plt.clf() # plot boxplots for all three of df's columns _ = plt.boxplot([ df['normal'], df['random'], df['gamma'] ], whis='range') plt.figure() _ = plt.hist(df['gamma'], bins=100) plt.figure() plt.boxplot([ df['normal'], df['random'], df['gamma'] ], whis='range') # overlay axis on top of another ax2 = mpl_il.inset_axes(plt.gca(), width='60%', height='40%', loc=2) ax2.hist(df['gamma'], bins=100) ax2.margins(x=0.5) # switch the y axis ticks for ax2 to the right side ax2.yaxis.tick_right() # if `whis` argument isn't passed, boxplot defaults to showing 1.5*interquartile (IQR) whiskers with outliers plt.figure() _ = plt.boxplot([ df['normal'], df['random'], df['gamma'] ] ) sns.factorplot('TotalComments','TotalVotes',data=yourkernels) plt.show() ###Output _____no_output_____ ###Markdown 4-6 Heatmaps ###Code plt.figure() Y = np.random.normal(loc=0.0, scale=1.0, size=10000) X = np.random.random(size=10000) _ = plt.hist2d(X, Y, bins=25) plt.figure() _ = plt.hist2d(X, Y, bins=100) ###Output _____no_output_____ ###Markdown 4-7 Animations ###Code n = 100 x = np.random.randn(n) # create the function that will do the plotting, where curr is the current frame def update(curr): # check if animation is at the last frame, and if so, stop the animation a if curr == n: a.event_source.stop() plt.cla() bins = np.arange(-4, 4, 0.5) plt.hist(x[:curr], bins=bins) plt.axis([-4,4,0,30]) plt.gca().set_title('Sampling the Normal Distribution') plt.gca().set_ylabel('Frequency') plt.gca().set_xlabel('Value') plt.annotate('n = {}'.format(curr), [3,27]) fig = plt.figure() a = animation.FuncAnimation(fig, update, interval=100) ###Output _____no_output_____ ###Markdown 4-8 Interactivity ###Code plt.figure() data = np.random.rand(10) plt.plot(data) def onclick(event): plt.cla() plt.plot(data) plt.gca().set_title('Event at pixels {},{} \nand data {},{}'.format(event.x, event.y, event.xdata, event.ydata)) # tell mpl_connect we want to pass a 'button_press_event' into onclick when the event is detected plt.gcf().canvas.mpl_connect('button_press_event', onclick) from random import shuffle origins = ['China', 'Brazil', 'India', 'USA', 'Canada', 'UK', 'Germany', 'Iraq', 'Chile', 'Mexico'] shuffle(origins) df = pd.DataFrame({'height': np.random.rand(10), 'weight': np.random.rand(10), 'origin': origins}) df plt.figure() # picker=5 means the mouse doesn't have to click directly on an event, but can be up to 5 pixels away plt.scatter(df['height'], df['weight'], picker=5) plt.gca().set_ylabel('Weight') plt.gca().set_xlabel('Height') def onpick(event): origin = df.iloc[event.ind[0]]['origin'] plt.gca().set_title('Selected item came from {}'.format(origin)) # tell mpl_connect we want to pass a 'pick_event' into onpick when the event is detected plt.gcf().canvas.mpl_connect('pick_event', onpick) # use the 'seaborn-colorblind' style plt.style.use('seaborn-colorblind') ###Output _____no_output_____ ###Markdown 4-9 DataFrame.plot ###Code np.random.seed(123) df = pd.DataFrame({'A': np.random.randn(365).cumsum(0), 'B': np.random.randn(365).cumsum(0) + 20, 'C': np.random.randn(365).cumsum(0) - 20}, index=pd.date_range('1/1/2017', periods=365)) df.head() df.plot('A','B', kind = 'scatter'); ###Output _____no_output_____ ###Markdown You can also choose the plot kind by using the `DataFrame.plot.kind` methods instead of providing the `kind` keyword argument.`kind` :- `'line'` : line plot (default)- `'bar'` : vertical bar plot- `'barh'` : horizontal bar plot- `'hist'` : histogram- `'box'` : boxplot- `'kde'` : Kernel Density Estimation plot- `'density'` : same as 'kde'- `'area'` : area plot- `'pie'` : pie plot- `'scatter'` : scatter plot- `'hexbin'` : hexbin plot [Go to top](top) ###Code # create a scatter plot of columns 'A' and 'C', with changing color (c) and size (s) based on column 'B' df.plot.scatter('A', 'C', c='B', s=df['B'], colormap='viridis') ax = df.plot.scatter('A', 'C', c='B', s=df['B'], colormap='viridis') ax.set_aspect('equal') df.plot.box(); df.plot.hist(alpha=0.7); ###Output _____no_output_____ ###Markdown [Kernel density estimation plots](https://en.wikipedia.org/wiki/Kernel_density_estimation) are useful for deriving a smooth continuous function from a given sample. ###Code df.plot.kde(); ###Output _____no_output_____ ###Markdown 5- SeabornSeaborn is an open source, BSD-licensed Python library providing high level API for visualizing the data using Python programming language.[9][Go to top](top) 5-1 Seaborn Vs MatplotlibIt is summarized that if Matplotlib “tries to make easy things easy and hard things possible”, Seaborn tries to make a well defined set of hard things easy too.”Seaborn helps resolve the two major problems faced by Matplotlib; the problems are* Default Matplotlib parameters* Working with data framesAs Seaborn compliments and extends Matplotlib, the learning curve is quite gradual. If you know Matplotlib, you are already half way through Seaborn.Important Features of SeabornSeaborn is built on top of Python’s core visualization library Matplotlib. It is meant to serve as a complement, and not a replacement. However, Seaborn comes with some very important features. Let us see a few of them here. The features help in −* Built in themes for styling matplotlib graphics* Visualizing univariate and bivariate data* Fitting in and visualizing linear regression models* Plotting statistical time series data* Seaborn works well with NumPy and Pandas data structures* It comes with built in themes for styling Matplotlib graphicsIn most cases, you will still use Matplotlib for simple plotting. The knowledge of Matplotlib is recommended to tweak Seaborn’s default plots.[9][Go to top](top) ###Code def sinplot(flip = 1): x = np.linspace(0, 14, 100) for i in range(1, 5): plt.plot(x, np.sin(x + i * .5) * (7 - i) * flip) sinplot() plt.show() def sinplot(flip = 1): x = np.linspace(0, 14, 100) for i in range(1, 5): plt.plot(x, np.sin(x + i * .5) * (7 - i) * flip) sns.set() sinplot() plt.show() np.random.seed(1234) v1 = pd.Series(np.random.normal(0,10,1000), name='v1') v2 = pd.Series(2*v1 + np.random.normal(60,15,1000), name='v2') plt.figure() plt.hist(v1, alpha=0.7, bins=np.arange(-50,150,5), label='v1'); plt.hist(v2, alpha=0.7, bins=np.arange(-50,150,5), label='v2'); plt.legend(); plt.figure() # we can pass keyword arguments for each individual component of the plot sns.distplot(v2, hist_kws={'color': 'Teal'}, kde_kws={'color': 'Navy'}); sns.jointplot(v1, v2, alpha=0.4); grid = sns.jointplot(v1, v2, alpha=0.4); grid.ax_joint.set_aspect('equal') sns.jointplot(v1, v2, kind='hex'); # set the seaborn style for all the following plots sns.set_style('white') sns.jointplot(v1, v2, kind='kde', space=0); sns.factorplot('TotalComments','TotalVotes',data=yourkernels) plt.show() # violinplots on petal-length for each species #command--> 24 sns.violinplot(data=yourkernels,x="TotalViews", y="TotalVotes") # violinplots on petal-length for each species sns.violinplot(data=yourkernels,x="TotalComments", y="TotalVotes") sns.violinplot(data=yourkernels,x="Medal", y="TotalVotes") sns.violinplot(data=yourkernels,x="Medal", y="TotalComments") ###Output _____no_output_____ ###Markdown How many NA elements in every column. 5-2 kdeplot ###Code # seaborn's kdeplot, plots univariate or bivariate density estimates. #Size can be changed by tweeking the value used #command--> 25 sns.FacetGrid(yourkernels, hue="Medal", size=5).map(sns.kdeplot, "TotalComments").add_legend() plt.show() sns.FacetGrid(yourkernels, hue="Medal", size=5).map(sns.kdeplot, "TotalVotes").add_legend() plt.show() f,ax=plt.subplots(1,3,figsize=(20,8)) sns.distplot(yourkernels[yourkernels['Medal']==1].TotalVotes,ax=ax[0]) ax[0].set_title('TotalVotes in Medal 1') sns.distplot(yourkernels[yourkernels['Medal']==2].TotalVotes,ax=ax[1]) ax[1].set_title('TotalVotes in Medal 2') sns.distplot(yourkernels[yourkernels['Medal']==3].TotalVotes,ax=ax[2]) ax[2].set_title('TotalVotes in Medal 3') plt.show() ###Output _____no_output_____ ###Markdown 5-3 jointplot ###Code # Use seaborn's jointplot to make a hexagonal bin plot #Set desired size and ratio and choose a color. #command--> 25 sns.jointplot(x="TotalVotes", y="TotalViews", data=yourkernels, size=10,ratio=10, kind='hex',color='green') plt.show() ###Output _____no_output_____ ###Markdown 5-4 andrews_curves ###Code # we will use seaborn jointplot shows bivariate scatterplots and univariate histograms with Kernel density # estimation in the same figure sns.jointplot(x="TotalVotes", y="TotalViews", data=yourkernels, size=6, kind='kde', color='#800000', space=0) ###Output _____no_output_____ ###Markdown 5-5 Heatmap ###Code #command--> 26 plt.figure(figsize=(10,7)) sns.heatmap(yourkernels.corr(),annot=True,cmap='cubehelix_r') #draws heatmap with input as the correlation matrix calculted by(iris.corr()) plt.show() sns.factorplot('TotalComments','TotalVotes',data=yourkernels) plt.show() ###Output _____no_output_____ ###Markdown 5-6 distplot ###Code sns.distplot(yourkernels['TotalVotes']); ###Output _____no_output_____ ###Markdown 6- PlotlyHow to use **Plotly** offline inside IPython notebooks. 6-1 New to Plotly?Plotly, also known by its URL, Plot.ly, is a technical computing company headquartered in Montreal, Quebec, that develops online data analytics and visualization tools. Plotly provides online graphing, analytics, and statistics tools for individuals and collaboration, as well as scientific graphing libraries for Python, R, MATLAB, Perl, Julia, Arduino, and REST.[Go to top](top) ###Code # example for plotly py.init_notebook_mode(connected=True) iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. Y = iris.target x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 trace = go.Scatter(x=X[:, 0], y=X[:, 1], mode='markers', marker=dict(color=np.random.randn(150), size=10, colorscale='Viridis', showscale=False)) layout = go.Layout(title='Training Points', xaxis=dict(title='Sepal length', showgrid=False), yaxis=dict(title='Sepal width', showgrid=False), ) fig = go.Figure(data=[trace], layout=layout) py.iplot(fig) from sklearn.decomposition import PCA X_reduced = PCA(n_components=3).fit_transform(iris.data) trace = go.Scatter3d(x=X_reduced[:, 0], y=X_reduced[:, 1], z=X_reduced[:, 2], mode='markers', marker=dict( size=6, color=np.random.randn(150), colorscale='Viridis', opacity=0.8) ) layout=go.Layout(title='First three PCA directions', scene=dict( xaxis=dict(title='1st eigenvector'), yaxis=dict(title='2nd eigenvector'), zaxis=dict(title='3rd eigenvector')) ) fig = go.Figure(data=[trace], layout=layout) py.iplot(fig) ###Output _____no_output_____ ###Markdown 6-2 Plotly Offline from Command LineYou can plot your graphs from a python script from command line. On executing the script, it will open a web browser with your Plotly Graph drawn.[Go to top](top) ###Code plot([go.Scatter(x=[1, 2, 3], y=[3, 1, 6])]) np.random.seed(5) fig = tools.make_subplots(rows=2, cols=3, print_grid=False, specs=[[{'is_3d': True}, {'is_3d': True}, {'is_3d': True}], [ {'is_3d': True, 'rowspan':1}, None, None]]) scene = dict( camera = dict( up=dict(x=0, y=0, z=1), center=dict(x=0, y=0, z=0), eye=dict(x=2.5, y=0.1, z=0.1) ), xaxis=dict( range=[-1, 4], title='Petal width', gridcolor='rgb(255, 255, 255)', zerolinecolor='rgb(255, 255, 255)', showbackground=True, backgroundcolor='rgb(230, 230,230)', showticklabels=False, ticks='' ), yaxis=dict( range=[4, 8], title='Sepal length', gridcolor='rgb(255, 255, 255)', zerolinecolor='rgb(255, 255, 255)', showbackground=True, backgroundcolor='rgb(230, 230,230)', showticklabels=False, ticks='' ), zaxis=dict( range=[1,8], title='Petal length', gridcolor='rgb(255, 255, 255)', zerolinecolor='rgb(255, 255, 255)', showbackground=True, backgroundcolor='rgb(230, 230,230)', showticklabels=False, ticks='' ) ) centers = [[1, 1], [-1, -1], [1, -1]] iris = datasets.load_iris() X = iris.data y = iris.target estimators = {'k_means_iris_3': KMeans(n_clusters=3), 'k_means_iris_8': KMeans(n_clusters=8), 'k_means_iris_bad_init': KMeans(n_clusters=3, n_init=1, init='random')} fignum = 1 for name, est in estimators.items(): est.fit(X) labels = est.labels_ trace = go.Scatter3d(x=X[:, 3], y=X[:, 0], z=X[:, 2], showlegend=False, mode='markers', marker=dict( color=labels.astype(np.float), line=dict(color='black', width=1) )) fig.append_trace(trace, 1, fignum) fignum = fignum + 1 y = np.choose(y, [1, 2, 0]).astype(np.float) trace1 = go.Scatter3d(x=X[:, 3], y=X[:, 0], z=X[:, 2], showlegend=False, mode='markers', marker=dict( color=y, line=dict(color='black', width=1))) fig.append_trace(trace1, 2, 1) fig['layout'].update(height=900, width=900, margin=dict(l=10,r=10)) py.iplot(fig) ###Output _____no_output_____ ###Markdown 7- Bokeh**Bokeh** is a large library that exposes many capabilities, so this section is only a quick tour of some common Bokeh use cases and workflows. For more detailed information please consult the full User Guide.[11]Let’s begin with some examples. Plotting data in basic Python lists as a line plot including zoom, pan, save, and other tools is simple and straightforward:[Go to top](top) ###Code output_notebook() x = np.linspace(0, 2*np.pi, 2000) y = np.sin(x) # prepare some data x = [1, 2, 3, 4, 5] y = [6, 7, 2, 4, 5] # create a new plot with a title and axis labels p = figure(title="simple line example", x_axis_label='x', y_axis_label='y') # add a line renderer with legend and line thickness p.line(x, y, legend="Temp.", line_width=2) # show the results show(p) ###Output _____no_output_____ ###Markdown When you execute this script, you will see that a new output file "lines.html" is created, and that a browser automatically opens a new tab to display it. (For presentation purposes we have included the plot output directly inline in this document.)The basic steps to creating plots with the bokeh.plotting interface are:Prepare some dataIn this case plain python lists, but could also be NumPy arrays or Pandas series.Tell Bokeh where to generate outputIn this case using output_file(), with the filename "lines.html". Another option is output_notebook() for use in Jupyter notebooks.Call figure()This creates a plot with typical default options and easy customization of title, tools, and axes labels.Add renderersIn this case, we use line() for our data, specifying visual customizations like colors, legends and widths.Ask Bokeh to show() or save() the results.These functions save the plot to an HTML file and optionally display it in a browser.Steps three and four can be repeated to create more than one plot, as shown in some of the examples below.The bokeh.plotting interface is also quite handy if we need to customize the output a bit more by adding more data series, glyphs, logarithmic axis, and so on. It’s also possible to easily combine multiple glyphs together on one plot as shown below:[Go to top](top) ###Code from bokeh.plotting import figure, output_file, show # prepare some data x = [0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0] y0 = [i**2 for i in x] y1 = [10**i for i in x] y2 = [10**(i**2) for i in x] # create a new plot p = figure( tools="pan,box_zoom,reset,save", y_axis_type="log", y_range=[0.001, 10**11], title="log axis example", x_axis_label='sections', y_axis_label='particles' ) # add some renderers p.line(x, x, legend="y=x") p.circle(x, x, legend="y=x", fill_color="white", size=8) p.line(x, y0, legend="y=x^2", line_width=3) p.line(x, y1, legend="y=10^x", line_color="red") p.circle(x, y1, legend="y=10^x", fill_color="red", line_color="red", size=6) p.line(x, y2, legend="y=10^x^2", line_color="orange", line_dash="4 4") # show the results show(p) # bokeh basics # Create a blank figure with labels p = figure(plot_width = 600, plot_height = 600, title = 'Example Glyphs', x_axis_label = 'X', y_axis_label = 'Y') # Example data squares_x = [1, 3, 4, 5, 8] squares_y = [8, 7, 3, 1, 10] circles_x = [9, 12, 4, 3, 15] circles_y = [8, 4, 11, 6, 10] # Add squares glyph p.square(squares_x, squares_y, size = 12, color = 'navy', alpha = 0.6) # Add circle glyph p.circle(circles_x, circles_y, size = 12, color = 'red') # Set to output the plot in the notebook output_notebook() # Show the plot show(p) ###Output _____no_output_____ ###Markdown 8- NetworkX**NetworkX** is a Python package for the creation, manipulation, and study of the structure, dynamics, and functions of complex networks. ###Code import sys import matplotlib.pyplot as plt import networkx as nx G = nx.grid_2d_graph(5, 5) # 5x5 grid # print the adjacency list for line in nx.generate_adjlist(G): print(line) # write edgelist to grid.edgelist nx.write_edgelist(G, path="grid.edgelist", delimiter=":") # read edgelist from grid.edgelist H = nx.read_edgelist(path="grid.edgelist", delimiter=":") nx.draw(H) plt.show() from ipywidgets import interact %matplotlib inline import matplotlib.pyplot as plt import networkx as nx # wrap a few graph generation functions so they have the same signature def random_lobster(n, m, k, p): return nx.random_lobster(n, p, p / m) def powerlaw_cluster(n, m, k, p): return nx.powerlaw_cluster_graph(n, m, p) def erdos_renyi(n, m, k, p): return nx.erdos_renyi_graph(n, p) def newman_watts_strogatz(n, m, k, p): return nx.newman_watts_strogatz_graph(n, k, p) def plot_random_graph(n, m, k, p, generator): g = generator(n, m, k, p) nx.draw(g) plt.show() interact(plot_random_graph, n=(2,30), m=(1,10), k=(1,10), p=(0.0, 1.0, 0.001), generator={ 'lobster': random_lobster, 'power law': powerlaw_cluster, 'Newman-Watts-Strogatz': newman_watts_strogatz, u'Erdős-Rényi': erdos_renyi, }); ###Output _____no_output_____ ###Markdown Top 5 Data Visualization Libraries Tutorial last update: 31/12/2018> You may be interested have a look at 10 Steps to Become a Data Scientist: 1. [Leren Python](https://www.kaggle.com/mjbahmani/the-data-scientist-s-toolbox-tutorial-1)2. [Python Packages](https://www.kaggle.com/mjbahmani/the-data-scientist-s-toolbox-tutorial-2)3. [Mathematics and Linear Algebra](https://www.kaggle.com/mjbahmani/linear-algebra-for-data-scientists)4. [Programming &amp; Analysis Tools](https://www.kaggle.com/mjbahmani/20-ml-algorithms-15-plot-for-beginners)5. [Big Data](https://www.kaggle.com/mjbahmani/a-data-science-framework-for-quora)6. [Data visualization](https://www.kaggle.com/mjbahmani/top-5-data-visualization-libraries-tutorial)7. [Data Cleaning](https://www.kaggle.com/mjbahmani/machine-learning-workflow-for-house-prices)8. [How to solve a Problem?](https://www.kaggle.com/mjbahmani/the-data-scientist-s-toolbox-tutorial-2)9. [Machine Learning](https://www.kaggle.com/mjbahmani/a-comprehensive-ml-workflow-with-python)10. [Deep Learning](https://www.kaggle.com/mjbahmani/top-5-deep-learning-frameworks-tutorial)---------------------------------------------------------------------You can Fork and Run this kernel on Github:> [ GitHub](https://github.com/mjbahmani/10-steps-to-become-a-data-scientist)------------------------------------------------------------------------------------------------------------- **I hope you find this kernel helpful and some UPVOTES would be very much appreciated** ----------- a simple example you will learn in this notebook ###Code from ipywidgets import interact %matplotlib inline import matplotlib.pyplot as plt import networkx as nx # wrap a few graph generation functions so they have the same signature def random_lobster(n, m, k, p): return nx.random_lobster(n, p, p / m) def powerlaw_cluster(n, m, k, p): return nx.powerlaw_cluster_graph(n, m, p) def erdos_renyi(n, m, k, p): return nx.erdos_renyi_graph(n, p) def newman_watts_strogatz(n, m, k, p): return nx.newman_watts_strogatz_graph(n, k, p) def plot_random_graph(n, m, k, p, generator): g = generator(n, m, k, p) nx.draw(g) plt.show() interact(plot_random_graph, n=(2,30), m=(1,10), k=(1,10), p=(0.0, 1.0, 0.001), generator={ 'lobster': random_lobster, 'power law': powerlaw_cluster, 'Newman-Watts-Strogatz': newman_watts_strogatz, u'Erdős-Rényi': erdos_renyi, }); ###Output _____no_output_____ ###Markdown Notebook Content1. [Introduction](1)1. [Loading Packages](2) 1. [version](21) 1. [Setup](22) 1. [Data Collection](23)1. [Matplotlib](3) 1. [Scatterplots](31) 1. [ Line Plots](32) 1. [Bar Charts](33) 1. [Histograms](34) 1. [Box and Whisker Plots](35) 1. [Heatmaps](36) 1. [Animations](37) 1. [Interactivity](38) 1. [DataFrame.plot](39)1. [Seaborn](40) 1. [Seaborn Vs Matplotlib](37) 1. [Useful Python Data Visualization Libraries](38)1. [Plotly](60) 1. [New to Plotly?](61) 1. [Plotly Offline from Command Line](62)1. [Bokeh](63)1. [networkx](64)1. [Read more](39) 1. [Courses](40) 1. [Ebooks](41) 1. [Cheat sheet](41)1. [Conclusion](39) 1. [References](40) 1- IntroductionIf you've followed my other kernels so far. You have noticed that for those who are beginners, I've introduced a course " 10 Steps to Become a Data Scientist ". In this kernel we will start another step with each other. There are plenty of Kernels that can help you learn Python 's Libraries from scratch but here in Kaggle, I want to Analysis Meta Kaggle a popular Dataset.After reading, you can use it to Analysis other real dataset and use it as a template to deal with ML problems.It is clear that everyone in this community is familiar with Meta Kaggle dataset but if you need to review your information about the datasets please visit [meta-kaggle](https://www.kaggle.com/kaggle/meta-kaggle) .I am open to getting your feedback for improving this **kernel** together. 2- Loading PackagesIn this kernel we are using the following packages: ###Code from matplotlib.figure import Figure import matplotlib.pylab as pylab import matplotlib.pyplot as plt import matplotlib as mpl import seaborn as sns import pandas as pd import numpy as np import matplotlib import warnings import string import numpy import csv import os ###Output _____no_output_____ ###Markdown 2-1 version ###Code print('matplotlib: {}'.format(matplotlib.__version__)) print('seaborn: {}'.format(sns.__version__)) print('pandas: {}'.format(pd.__version__)) print('numpy: {}'.format(np.__version__)) #print('wordcloud: {}'.format(wordcloud.version)) ###Output _____no_output_____ ###Markdown 2-2 SetupA few tiny adjustments for better **code readability** ###Code sns.set(style='white', context='notebook', palette='deep') pylab.rcParams['figure.figsize'] = 12,8 warnings.filterwarnings('ignore') mpl.style.use('ggplot') sns.set_style('white') %matplotlib inline ###Output _____no_output_____ ###Markdown 2-3 Data Collection**Data collection** is the process of gathering and measuring data, information or any variables of interest in a standardized and established manner that enables the collector to answer or test hypothesis and evaluate outcomes of the particular collection.[techopedia]I start Collection Data by the Users and Kernels datasets into **Pandas DataFrames** ###Code # import kernels and users to play with it #command--> 1 users = pd.read_csv("../input/Users.csv") kernels = pd.read_csv("../input/Kernels.csv") messages = pd.read_csv("../input/ForumMessages.csv") ###Output _____no_output_____ ###Markdown **>*** Each row is an observation (also known as : sample, example, instance, record)* Each column is a feature (also known as: Predictor, attribute, Independent Variable, input, regressor, Covariate) [Go to top](top) ###Code #command--> 2 users.sample(1) ###Output _____no_output_____ ###Markdown Please **replace** your username and find your useridWe suppose that userid==authoruserid and use userid for both kernels and users dataset ###Code username="mjbahmani" userid=int(users[users['UserName']=="mjbahmani"].Id) userid ###Output _____no_output_____ ###Markdown But if we had , we can just use **dropna()**(be careful sometimes you should not do this!) ###Code # remove rows that have NA's print('Before Droping',messages.shape) #command--> 3 messages = messages.dropna() print('After Droping',messages.shape) ###Output _____no_output_____ ###Markdown 2-3-1 FeaturesFeatures can be from following types:1. numeric1. categorical1. ordinal1. datetime1. coordinatesFind the type of features in **Meta Kaggle**?!For getting some information about the dataset you can use **info()** command [Go to top](top) ###Code #command--> 4 print(users.info()) ###Output _____no_output_____ ###Markdown 2-3-2 Explorer Dataset1. Dimensions of the dataset.1. Peek at the data itself.1. Statistical summary of all attributes.1. Breakdown of the data by the class variable.Don’t worry, each look at the data is **one command**. These are useful commands that you can use again and again on future projects. [Go to top](top) ###Code # shape #command--> 5 print(users.shape) #columns*rows #command--> 6 users.size ###Output _____no_output_____ ###Markdown We can get a quick idea of how many instances (rows) and how many attributes (columns) the data contains with the shape property. You see number of unique item for Species with command below: ###Code #command--> 7 kernels['Medal'].unique() #command--> 8 kernels["Medal"].value_counts() ###Output _____no_output_____ ###Markdown To check the first 5 rows of the data set, we can use head(5). ###Code kernels.head(5) ###Output _____no_output_____ ###Markdown To check out last 5 row of the data set, we use tail() function ###Code #command--> 9 users.tail() ###Output _____no_output_____ ###Markdown To pop up 5 random rows from the data set, we can use **sample(5)** function ###Code kernels.sample(5) ###Output _____no_output_____ ###Markdown To give a statistical summary about the dataset, we can use **describe()** ###Code kernels.describe() ###Output _____no_output_____ ###Markdown 2-3-5 Find yourself in Users datset ###Code #command--> 12 users[users['Id']==userid] ###Output _____no_output_____ ###Markdown 2-3-6 Find your kernels in Kernels dataset ###Code #command--> 13 yourkernels=kernels[kernels['AuthorUserId']==userid] yourkernels.head(2) ###Output _____no_output_____ ###Markdown 3- Data Visualization LibrariesBefore you start learning , I am giving an overview of 10 interdisciplinary **Python data visualization libraries**, from the well-known to the obscure.* 1- matplotlibmatplotlib is the O.G. of Python data visualization libraries. Despite being over a decade old, it’s still the most widely used library for plotting in the Python community. It was designed to closely resemble MATLAB, a proprietary programming language developed in the 1980s.* 2- SeabornSeaborn harnesses the power of matplotlib to create beautiful charts in a few lines of code. The key difference is Seaborn’s default styles and color palettes, which are designed to be more aesthetically pleasing and modern. Since Seaborn is built on top of matplotlib, you’ll need to know matplotlib to tweak Seaborn’s defaults.* 3- ggplotggplot is based on ggplot2, an R plotting system, and concepts from The Grammar of Graphics. ggplot operates differently than matplotlib: it lets you layer components to create a complete plot. For instance, you can start with axes, then add points, then a line, a trendline, etc. Although The Grammar of Graphics has been praised as an “intuitive” method for plotting, seasoned matplotlib users might need time to adjust to this new mindset.* 4- BokehLike ggplot, Bokeh is based on The Grammar of Graphics, but unlike ggplot, it’s native to Python, not ported over from R. Its strength lies in the ability to create interactive, web-ready plots, which can be easily outputted as JSON objects, HTML documents, or interactive web applications. Bokeh also supports streaming and real-time data.* 5- pygalLike Bokeh and Plotly, pygal offers interactive plots that can be embedded in the web browser. Its prime differentiator is the ability to output charts as SVGs. As long as you’re working with smaller datasets, SVGs will do you just fine. But if you’re making charts with hundreds of thousands of data points, they’ll have trouble rendering and become sluggish.* 6- PlotlyYou might know Plotly as an online platform for data visualization, but did you also know you can access its capabilities from a Python notebook? Like Bokeh, Plotly’s forte is making interactive plots, but it offers some charts you won’t find in most libraries, like contour plots, dendograms, and 3D charts.* 7- geoplotlibgeoplotlib is a toolbox for creating maps and plotting geographical data. You can use it to create a variety of map-types, like choropleths, heatmaps, and dot density maps. You must have Pyglet (an object-oriented programming interface) installed to use geoplotlib. Nonetheless, since most Python data visualization libraries don’t offer maps, it’s nice to have a library dedicated solely to them.* 8- GleamGleam is inspired by R’s Shiny package. It allows you to turn analyses into interactive web apps using only Python scripts, so you don’t have to know any other languages like HTML, CSS, or JavaScript. Gleam works with any Python data visualization library. Once you’ve created a plot, you can build fields on top of it so users can filter and sort data.* 9- missingnoDealing with missing data is a pain. missingno allows you to quickly gauge the completeness of a dataset with a visual summary, instead of trudging through a table. You can filter and sort data based on completion or spot correlations with a heatmap or a dendrogram.* 10- LeatherLeather’s creator, Christopher Groskopf, puts it best: “Leather is the Python charting library for those who need charts now and don’t care if they’re perfect.” It’s designed to work with all data types and produces charts as SVGs, so you can scale them without losing image quality. Since this library is relatively new, some of the documentation is still in progress. The charts you can make are pretty basic—but that’s the intention.At the end, nice cheatsheet on how to best visualize your data. I think I will print it out as a good reminder of "best practices". Check out the link for the complete cheatsheet, also as a PDF. * 11- ChartifyChartify is a Python library that makes it easy for data scientists to create charts.Why use Chartify?1. Consistent input data format: Spend less time transforming data to get your charts to work. All plotting functions use a consistent tidy input data format.1. Smart default styles: Create pretty charts with very little customization required.1. Simple API: We've attempted to make to the API as intuitive and easy to learn as possible.1. Flexibility: Chartify is built on top of Bokeh, so if you do need more control you can always fall back on Bokeh's API.Link: https://github.com/mjbahmani/Machine-Learning-Workflow-with-Python![cheatsheet ][1][Reference][2] [1]: http://s8.picofile.com/file/8340669884/53f6a826_d7df_4b55_81e6_7c23b3fff0a3_original.png [2]: https://blog.modeanalytics.com/python-data-visualization-libraries/ 4- MatplotlibThis Matplotlib tutorial takes you through the basics Python data visualization: the anatomy of a plot, pyplot and pylab, and much more [Go to top](top) You can show matplotlib figures directly in the notebook by using the `%matplotlib notebook` and `%matplotlib inline` magic commands. `%matplotlib notebook` provides an interactive environment. We can use html cell magic to display the image. ###Code plt.plot([1, 2, 3, 4], [10, 20, 25, 30], color='lightblue', linewidth=3) plt.scatter([0.3, 3.8, 1.2, 2.5], [11, 25, 9, 26], color='darkgreen', marker='^') plt.xlim(0.5, 4.5) plt.show() ###Output _____no_output_____ ###Markdown Simple and powerful visualizations can be generated using the Matplotlib Python Library. More than a decade old, it is the most widely-used library for plotting in the Python community. A wide range of graphs from histograms to heat plots to line plots can be plotted using Matplotlib.Many other libraries are built on top of Matplotlib and are designed to work in conjunction with analysis, it being the first Python data visualization library. Libraries like pandas and matplotlib are “wrappers” over Matplotlib allowing access to a number of Matplotlib’s methods with less code. 4-1 Scatterplots ###Code x = np.array([1,2,3,4,5,6,7,8]) y = x plt.figure() plt.scatter(x, y) # similar to plt.plot(x, y, '.'), but the underlying child objects in the axes are not Line2D x = np.array([1,2,3,4,5,6,7,8]) y = x # create a list of colors for each point to have # ['green', 'green', 'green', 'green', 'green', 'green', 'green', 'red'] colors = ['green']*(len(x)-1) colors.append('red') plt.figure() # plot the point with size 100 and chosen colors plt.scatter(x, y, s=100, c=colors) plt.figure() # plot a data series 'Tall students' in red using the first two elements of x and y plt.scatter(x[:2], y[:2], s=100, c='red', label='Tall students') # plot a second data series 'Short students' in blue using the last three elements of x and y plt.scatter(x[2:], y[2:], s=100, c='blue', label='Short students') x = np.random.randint(low=1, high=11, size=50) y = x + np.random.randint(1, 5, size=x.size) data = np.column_stack((x, y)) fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(8, 4)) ax1.scatter(x=x, y=y, marker='o', c='r', edgecolor='b') ax1.set_title('Scatter: $x$ versus $y$') ax1.set_xlabel('$x$') ax1.set_ylabel('$y$') ax2.hist(data, bins=np.arange(data.min(), data.max()), label=('x', 'y')) ax2.legend(loc=(0.65, 0.8)) ax2.set_title('Frequencies of $x$ and $y$') ax2.yaxis.tick_right() # Modify the graph above by assigning each species an individual color. #command--> 19 x=yourkernels["TotalVotes"] y=yourkernels["TotalViews"] plt.scatter(x, y) plt.legend() plt.show() ###Output _____no_output_____ ###Markdown 4-2 Line Plots ###Code linear_data = np.array([1,2,3,4,5,6,7,8]) exponential_data = linear_data**2 plt.figure() # plot the linear data and the exponential data plt.plot(linear_data, '-o', exponential_data, '-o') # plot another series with a dashed red line plt.plot([22,44,55], '--r') ###Output _____no_output_____ ###Markdown 4-3 Bar Charts ###Code plt.figure() xvals = range(len(linear_data)) plt.bar(xvals, linear_data, width = 0.3) new_xvals = [] # plot another set of bars, adjusting the new xvals to make up for the first set of bars plotted for item in xvals: new_xvals.append(item+0.3) plt.bar(new_xvals, exponential_data, width = 0.3 ,color='red') from random import randint linear_err = [randint(0,15) for x in range(len(linear_data))] # This will plot a new set of bars with errorbars using the list of random error values plt.bar(xvals, linear_data, width = 0.3, yerr=linear_err) # stacked bar charts are also possible plt.figure() xvals = range(len(linear_data)) plt.bar(xvals, linear_data, width = 0.3, color='b') plt.bar(xvals, exponential_data, width = 0.3, bottom=linear_data, color='r') # or use barh for horizontal bar charts plt.figure() xvals = range(len(linear_data)) plt.barh(xvals, linear_data, height = 0.3, color='b') plt.barh(xvals, exponential_data, height = 0.3, left=linear_data, color='r') # Initialize the plot fig = plt.figure(figsize=(20,10)) ax1 = fig.add_subplot(121) ax2 = fig.add_subplot(122) # or replace the three lines of code above by the following line: #fig, (ax1, ax2) = plt.subplots(1,2, figsize=(20,10)) # Plot the data ax1.bar([1,2,3],[3,4,5]) ax2.barh([0.5,1,2.5],[0,1,2]) # Show the plot plt.show() plt.figure() # subplot with 1 row, 2 columns, and current axis is 1st subplot axes plt.subplot(1, 2, 1) linear_data = np.array([1,2,3,4,5,6,7,8]) plt.plot(linear_data, '-o') exponential_data = linear_data**2 # subplot with 1 row, 2 columns, and current axis is 2nd subplot axes plt.subplot(1, 2, 2) plt.plot(exponential_data, '-o') # plot exponential data on 1st subplot axes plt.subplot(1, 2, 1) plt.plot(exponential_data, '-x') plt.figure() ax1 = plt.subplot(1, 2, 1) plt.plot(linear_data, '-o') # pass sharey=ax1 to ensure the two subplots share the same y axis ax2 = plt.subplot(1, 2, 2, sharey=ax1) plt.plot(exponential_data, '-x') ###Output _____no_output_____ ###Markdown 4-4 Histograms ###Code # create 2x2 grid of axis subplots fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, sharex=True) axs = [ax1,ax2,ax3,ax4] # draw n = 10, 100, 1000, and 10000 samples from the normal distribution and plot corresponding histograms for n in range(0,len(axs)): sample_size = 10**(n+1) sample = np.random.normal(loc=0.0, scale=1.0, size=sample_size) axs[n].hist(sample) axs[n].set_title('n={}'.format(sample_size)) # repeat with number of bins set to 100 fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, sharex=True) axs = [ax1,ax2,ax3,ax4] for n in range(0,len(axs)): sample_size = 10**(n+1) sample = np.random.normal(loc=0.0, scale=1.0, size=sample_size) axs[n].hist(sample, bins=100) axs[n].set_title('n={}'.format(sample_size)) plt.figure() Y = np.random.normal(loc=0.0, scale=1.0, size=10000) X = np.random.random(size=10000) plt.scatter(X,Y) ###Output _____no_output_____ ###Markdown It looks like perhaps two of the input variables have a Gaussian distribution. This is useful to note as we can use algorithms that can exploit this assumption. ###Code yourkernels["TotalViews"].hist(); yourkernels["TotalComments"].hist(); sns.factorplot('TotalViews','TotalVotes',data=yourkernels) plt.show() ###Output _____no_output_____ ###Markdown 4-5 Box and Whisker PlotsIn descriptive statistics, a **box plot** or boxplot is a method for graphically depicting groups of numerical data through their quartiles. Box plots may also have lines extending vertically from the boxes (whiskers) indicating variability outside the upper and lower quartiles, hence the terms box-and-whisker plot and box-and-whisker diagram.[wikipedia] ###Code normal_sample = np.random.normal(loc=0.0, scale=1.0, size=10000) random_sample = np.random.random(size=10000) gamma_sample = np.random.gamma(2, size=10000) df = pd.DataFrame({'normal': normal_sample, 'random': random_sample, 'gamma': gamma_sample}) plt.figure() # create a boxplot of the normal data, assign the output to a variable to supress output _ = plt.boxplot(df['normal'], whis='range') # clear the current figure plt.clf() # plot boxplots for all three of df's columns _ = plt.boxplot([ df['normal'], df['random'], df['gamma'] ], whis='range') plt.figure() _ = plt.hist(df['gamma'], bins=100) import mpl_toolkits.axes_grid1.inset_locator as mpl_il plt.figure() plt.boxplot([ df['normal'], df['random'], df['gamma'] ], whis='range') # overlay axis on top of another ax2 = mpl_il.inset_axes(plt.gca(), width='60%', height='40%', loc=2) ax2.hist(df['gamma'], bins=100) ax2.margins(x=0.5) # switch the y axis ticks for ax2 to the right side ax2.yaxis.tick_right() # if `whis` argument isn't passed, boxplot defaults to showing 1.5*interquartile (IQR) whiskers with outliers plt.figure() _ = plt.boxplot([ df['normal'], df['random'], df['gamma'] ] ) sns.factorplot('TotalComments','TotalVotes',data=yourkernels) plt.show() ###Output _____no_output_____ ###Markdown 4-6 Heatmaps ###Code plt.figure() Y = np.random.normal(loc=0.0, scale=1.0, size=10000) X = np.random.random(size=10000) _ = plt.hist2d(X, Y, bins=25) plt.figure() _ = plt.hist2d(X, Y, bins=100) ###Output _____no_output_____ ###Markdown 4-7 Animations ###Code import matplotlib.animation as animation n = 100 x = np.random.randn(n) # create the function that will do the plotting, where curr is the current frame def update(curr): # check if animation is at the last frame, and if so, stop the animation a if curr == n: a.event_source.stop() plt.cla() bins = np.arange(-4, 4, 0.5) plt.hist(x[:curr], bins=bins) plt.axis([-4,4,0,30]) plt.gca().set_title('Sampling the Normal Distribution') plt.gca().set_ylabel('Frequency') plt.gca().set_xlabel('Value') plt.annotate('n = {}'.format(curr), [3,27]) fig = plt.figure() a = animation.FuncAnimation(fig, update, interval=100) ###Output _____no_output_____ ###Markdown 4-8 Interactivity ###Code plt.figure() data = np.random.rand(10) plt.plot(data) def onclick(event): plt.cla() plt.plot(data) plt.gca().set_title('Event at pixels {},{} \nand data {},{}'.format(event.x, event.y, event.xdata, event.ydata)) # tell mpl_connect we want to pass a 'button_press_event' into onclick when the event is detected plt.gcf().canvas.mpl_connect('button_press_event', onclick) from random import shuffle origins = ['China', 'Brazil', 'India', 'USA', 'Canada', 'UK', 'Germany', 'Iraq', 'Chile', 'Mexico'] shuffle(origins) df = pd.DataFrame({'height': np.random.rand(10), 'weight': np.random.rand(10), 'origin': origins}) df plt.figure() # picker=5 means the mouse doesn't have to click directly on an event, but can be up to 5 pixels away plt.scatter(df['height'], df['weight'], picker=5) plt.gca().set_ylabel('Weight') plt.gca().set_xlabel('Height') def onpick(event): origin = df.iloc[event.ind[0]]['origin'] plt.gca().set_title('Selected item came from {}'.format(origin)) # tell mpl_connect we want to pass a 'pick_event' into onpick when the event is detected plt.gcf().canvas.mpl_connect('pick_event', onpick) # use the 'seaborn-colorblind' style plt.style.use('seaborn-colorblind') ###Output _____no_output_____ ###Markdown 4-9 DataFrame.plot ###Code np.random.seed(123) df = pd.DataFrame({'A': np.random.randn(365).cumsum(0), 'B': np.random.randn(365).cumsum(0) + 20, 'C': np.random.randn(365).cumsum(0) - 20}, index=pd.date_range('1/1/2017', periods=365)) df.head() df.plot('A','B', kind = 'scatter'); ###Output _____no_output_____ ###Markdown You can also choose the plot kind by using the `DataFrame.plot.kind` methods instead of providing the `kind` keyword argument.`kind` :- `'line'` : line plot (default)- `'bar'` : vertical bar plot- `'barh'` : horizontal bar plot- `'hist'` : histogram- `'box'` : boxplot- `'kde'` : Kernel Density Estimation plot- `'density'` : same as 'kde'- `'area'` : area plot- `'pie'` : pie plot- `'scatter'` : scatter plot- `'hexbin'` : hexbin plot [Go to top](top) ###Code # create a scatter plot of columns 'A' and 'C', with changing color (c) and size (s) based on column 'B' df.plot.scatter('A', 'C', c='B', s=df['B'], colormap='viridis') ax = df.plot.scatter('A', 'C', c='B', s=df['B'], colormap='viridis') ax.set_aspect('equal') df.plot.box(); df.plot.hist(alpha=0.7); ###Output _____no_output_____ ###Markdown [Kernel density estimation plots](https://en.wikipedia.org/wiki/Kernel_density_estimation) are useful for deriving a smooth continuous function from a given sample. ###Code df.plot.kde(); ###Output _____no_output_____ ###Markdown 5- SeabornAs you have just read, **Seaborn** is complimentary to Matplotlib and it specifically targets statistical data visualization. But it goes even further than that: Seaborn extends Matplotlib and that’s why it can address the two biggest frustrations of working with Matplotlib. Or, as Michael Waskom says in the “introduction to Seaborn”: “If matplotlib “tries to make easy things easy and hard things possible”, seaborn tries to make a well-defined set of hard things easy too.”One of these hard things or frustrations had to do with the default Matplotlib parameters. Seaborn works with different parameters, which undoubtedly speaks to those users that don’t use the default looks of the Matplotlib plotsSeaborn is a library for making statistical graphics in Python. It is built on top of matplotlib and closely integrated with pandas data structures.Here is some of the functionality that seaborn offers:A dataset-oriented API for examining relationships between multiple variablesSpecialized support for using categorical variables to show observations or aggregate statisticsOptions for visualizing univariate or bivariate distributions and for comparing them between subsets of dataAutomatic estimation and plotting of linear regression models for different kinds dependent variablesConvenient views onto the overall structure of complex datasetsHigh-level abstractions for structuring multi-plot grids that let you easily build complex visualizationsConcise control over matplotlib figure styling with several built-in themesTools for choosing color palettes that faithfully reveal patterns in your dataSeaborn aims to make visualization a central part of exploring and understanding data. Its dataset-oriented plotting functions operate on dataframes and arrays containing whole datasets and internally perform the necessary semantic mapping and statistical aggregation to produce informative plots.Here’s an example of what this means:[Go to top](top) 5-1 Seaborn Vs MatplotlibIt is summarized that if Matplotlib “tries to make easy things easy and hard things possible”, Seaborn tries to make a well defined set of hard things easy too.”Seaborn helps resolve the two major problems faced by Matplotlib; the problems are* Default Matplotlib parameters* Working with data framesAs Seaborn compliments and extends Matplotlib, the learning curve is quite gradual. If you know Matplotlib, you are already half way through Seaborn.Important Features of SeabornSeaborn is built on top of Python’s core visualization library Matplotlib. It is meant to serve as a complement, and not a replacement. However, Seaborn comes with some very important features. Let us see a few of them here. The features help in −* Built in themes for styling matplotlib graphics* Visualizing univariate and bivariate data* Fitting in and visualizing linear regression models* Plotting statistical time series data* Seaborn works well with NumPy and Pandas data structures* It comes with built in themes for styling Matplotlib graphicsIn most cases, you will still use Matplotlib for simple plotting. The knowledge of Matplotlib is recommended to tweak Seaborn’s default plots.[Go to top](top) ###Code def sinplot(flip = 1): x = np.linspace(0, 14, 100) for i in range(1, 5): plt.plot(x, np.sin(x + i * .5) * (7 - i) * flip) sinplot() plt.show() def sinplot(flip = 1): x = np.linspace(0, 14, 100) for i in range(1, 5): plt.plot(x, np.sin(x + i * .5) * (7 - i) * flip) sns.set() sinplot() plt.show() np.random.seed(1234) v1 = pd.Series(np.random.normal(0,10,1000), name='v1') v2 = pd.Series(2*v1 + np.random.normal(60,15,1000), name='v2') plt.figure() plt.hist(v1, alpha=0.7, bins=np.arange(-50,150,5), label='v1'); plt.hist(v2, alpha=0.7, bins=np.arange(-50,150,5), label='v2'); plt.legend(); plt.figure() # we can pass keyword arguments for each individual component of the plot sns.distplot(v2, hist_kws={'color': 'Teal'}, kde_kws={'color': 'Navy'}); sns.jointplot(v1, v2, alpha=0.4); grid = sns.jointplot(v1, v2, alpha=0.4); grid.ax_joint.set_aspect('equal') sns.jointplot(v1, v2, kind='hex'); # set the seaborn style for all the following plots sns.set_style('white') sns.jointplot(v1, v2, kind='kde', space=0); sns.factorplot('TotalComments','TotalVotes',data=yourkernels) plt.show() # violinplots on petal-length for each species #command--> 24 sns.violinplot(data=yourkernels,x="TotalViews", y="TotalVotes") # violinplots on petal-length for each species sns.violinplot(data=yourkernels,x="TotalComments", y="TotalVotes") sns.violinplot(data=yourkernels,x="Medal", y="TotalVotes") sns.violinplot(data=yourkernels,x="Medal", y="TotalComments") ###Output _____no_output_____ ###Markdown How many NA elements in every column. 5-2 kdeplot ###Code # seaborn's kdeplot, plots univariate or bivariate density estimates. #Size can be changed by tweeking the value used #command--> 25 sns.FacetGrid(yourkernels, hue="Medal", size=5).map(sns.kdeplot, "TotalComments").add_legend() plt.show() sns.FacetGrid(yourkernels, hue="Medal", size=5).map(sns.kdeplot, "TotalVotes").add_legend() plt.show() f,ax=plt.subplots(1,3,figsize=(20,8)) sns.distplot(yourkernels[yourkernels['Medal']==1].TotalVotes,ax=ax[0]) ax[0].set_title('TotalVotes in Medal 1') sns.distplot(yourkernels[yourkernels['Medal']==2].TotalVotes,ax=ax[1]) ax[1].set_title('TotalVotes in Medal 2') sns.distplot(yourkernels[yourkernels['Medal']==3].TotalVotes,ax=ax[2]) ax[2].set_title('TotalVotes in Medal 3') plt.show() ###Output _____no_output_____ ###Markdown 5-3 jointplot ###Code # Use seaborn's jointplot to make a hexagonal bin plot #Set desired size and ratio and choose a color. #command--> 25 sns.jointplot(x="TotalVotes", y="TotalViews", data=yourkernels, size=10,ratio=10, kind='hex',color='green') plt.show() ###Output _____no_output_____ ###Markdown 5-4 andrews_curves ###Code # we will use seaborn jointplot shows bivariate scatterplots and univariate histograms with Kernel density # estimation in the same figure sns.jointplot(x="TotalVotes", y="TotalViews", data=yourkernels, size=6, kind='kde', color='#800000', space=0) ###Output _____no_output_____ ###Markdown 5-5 Heatmap ###Code #command--> 26 plt.figure(figsize=(10,7)) sns.heatmap(yourkernels.corr(),annot=True,cmap='cubehelix_r') #draws heatmap with input as the correlation matrix calculted by(iris.corr()) plt.show() sns.factorplot('TotalComments','TotalVotes',data=yourkernels) plt.show() ###Output _____no_output_____ ###Markdown 5-6 distplot ###Code sns.distplot(yourkernels['TotalVotes']); ###Output _____no_output_____ ###Markdown 6- PlotlyHow to use **Plotly** offline inside IPython notebooks. 6-1 New to Plotly?Plotly, also known by its URL, Plot.ly, is a technical computing company headquartered in Montreal, Quebec, that develops online data analytics and visualization tools. Plotly provides online graphing, analytics, and statistics tools for individuals and collaboration, as well as scientific graphing libraries for Python, R, MATLAB, Perl, Julia, Arduino, and REST.[Go to top](top) ###Code # example for plotly import plotly.offline as py import plotly.graph_objs as go py.init_notebook_mode(connected=True) from plotly import tools from sklearn import datasets import plotly.figure_factory as ff iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. Y = iris.target x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 trace = go.Scatter(x=X[:, 0], y=X[:, 1], mode='markers', marker=dict(color=np.random.randn(150), size=10, colorscale='Viridis', showscale=False)) layout = go.Layout(title='Training Points', xaxis=dict(title='Sepal length', showgrid=False), yaxis=dict(title='Sepal width', showgrid=False), ) fig = go.Figure(data=[trace], layout=layout) py.iplot(fig) ###Output _____no_output_____ ###Markdown 6-2 Plotly Offline from Command LineYou can plot your graphs from a python script from command line. On executing the script, it will open a web browser with your Plotly Graph drawn.[Go to top](top) ###Code from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot import plotly.graph_objs as go plot([go.Scatter(x=[1, 2, 3], y=[3, 1, 6])]) ###Output _____no_output_____ ###Markdown 7- Bokeh**Bokeh** is a large library that exposes many capabilities, so this section is only a quick tour of some common Bokeh use cases and workflows. For more detailed information please consult the full User Guide.Let’s begin with some examples. Plotting data in basic Python lists as a line plot including zoom, pan, save, and other tools is simple and straightforward:[Go to top](top) ###Code from ipywidgets import interact import numpy as np from bokeh.io import push_notebook, show, output_notebook from bokeh.plotting import figure output_notebook() x = np.linspace(0, 2*np.pi, 2000) y = np.sin(x) from bokeh.plotting import figure, output_file, show # prepare some data x = [1, 2, 3, 4, 5] y = [6, 7, 2, 4, 5] # create a new plot with a title and axis labels p = figure(title="simple line example", x_axis_label='x', y_axis_label='y') # add a line renderer with legend and line thickness p.line(x, y, legend="Temp.", line_width=2) # show the results show(p) ###Output _____no_output_____ ###Markdown When you execute this script, you will see that a new output file "lines.html" is created, and that a browser automatically opens a new tab to display it. (For presentation purposes we have included the plot output directly inline in this document.)The basic steps to creating plots with the bokeh.plotting interface are:Prepare some dataIn this case plain python lists, but could also be NumPy arrays or Pandas series.Tell Bokeh where to generate outputIn this case using output_file(), with the filename "lines.html". Another option is output_notebook() for use in Jupyter notebooks.Call figure()This creates a plot with typical default options and easy customization of title, tools, and axes labels.Add renderersIn this case, we use line() for our data, specifying visual customizations like colors, legends and widths.Ask Bokeh to show() or save() the results.These functions save the plot to an HTML file and optionally display it in a browser.Steps three and four can be repeated to create more than one plot, as shown in some of the examples below.The bokeh.plotting interface is also quite handy if we need to customize the output a bit more by adding more data series, glyphs, logarithmic axis, and so on. It’s also possible to easily combine multiple glyphs together on one plot as shown below:[Go to top](top) ###Code from bokeh.plotting import figure, output_file, show # prepare some data x = [0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0] y0 = [i**2 for i in x] y1 = [10**i for i in x] y2 = [10**(i**2) for i in x] # create a new plot p = figure( tools="pan,box_zoom,reset,save", y_axis_type="log", y_range=[0.001, 10**11], title="log axis example", x_axis_label='sections', y_axis_label='particles' ) # add some renderers p.line(x, x, legend="y=x") p.circle(x, x, legend="y=x", fill_color="white", size=8) p.line(x, y0, legend="y=x^2", line_width=3) p.line(x, y1, legend="y=10^x", line_color="red") p.circle(x, y1, legend="y=10^x", fill_color="red", line_color="red", size=6) p.line(x, y2, legend="y=10^x^2", line_color="orange", line_dash="4 4") # show the results show(p) ###Output _____no_output_____ ###Markdown 8- NetworkXNetworkX is a Python package for the creation, manipulation, and study of the structure, dynamics, and functions of complex networks. ###Code import sys import matplotlib.pyplot as plt import networkx as nx G = nx.grid_2d_graph(5, 5) # 5x5 grid # print the adjacency list for line in nx.generate_adjlist(G): print(line) # write edgelist to grid.edgelist nx.write_edgelist(G, path="grid.edgelist", delimiter=":") # read edgelist from grid.edgelist H = nx.read_edgelist(path="grid.edgelist", delimiter=":") nx.draw(H) plt.show() from ipywidgets import interact %matplotlib inline import matplotlib.pyplot as plt import networkx as nx # wrap a few graph generation functions so they have the same signature def random_lobster(n, m, k, p): return nx.random_lobster(n, p, p / m) def powerlaw_cluster(n, m, k, p): return nx.powerlaw_cluster_graph(n, m, p) def erdos_renyi(n, m, k, p): return nx.erdos_renyi_graph(n, p) def newman_watts_strogatz(n, m, k, p): return nx.newman_watts_strogatz_graph(n, k, p) def plot_random_graph(n, m, k, p, generator): g = generator(n, m, k, p) nx.draw(g) plt.show() interact(plot_random_graph, n=(2,30), m=(1,10), k=(1,10), p=(0.0, 1.0, 0.001), generator={ 'lobster': random_lobster, 'power law': powerlaw_cluster, 'Newman-Watts-Strogatz': newman_watts_strogatz, u'Erdős-Rényi': erdos_renyi, }); ###Output _____no_output_____ ###Markdown 6- PlotlyHow to use **Plotly** offline inside IPython notebooks. 6-1 New to Plotly?Plotly, also known by its URL, Plot.ly, is a technical computing company headquartered in Montreal, Quebec, that develops online data analytics and visualization tools. Plotly provides online graphing, analytics, and statistics tools for individuals and collaboration, as well as scientific graphing libraries for Python, R, MATLAB, Perl, Julia, Arduino, and REST.[Go to top](top) ###Code # example for plotly import plotly.offline as py import plotly.graph_objs as go py.init_notebook_mode(connected=True) from plotly import tools from sklearn import datasets import plotly.figure_factory as ff iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. Y = iris.target x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 trace = go.Scatter(x=X[:, 0], y=X[:, 1], mode='markers', marker=dict(color=np.random.randn(150), size=10, colorscale='Viridis', showscale=False)) layout = go.Layout(title='Training Points', xaxis=dict(title='Sepal length', showgrid=False), yaxis=dict(title='Sepal width', showgrid=False), ) fig = go.Figure(data=[trace], layout=layout) py.iplot(fig) ###Output _____no_output_____ ###Markdown 6-2 Plotly Offline from Command LineYou can plot your graphs from a python script from command line. On executing the script, it will open a web browser with your Plotly Graph drawn.[Go to top](top) ###Code from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot import plotly.graph_objs as go plot([go.Scatter(x=[1, 2, 3], y=[3, 1, 6])]) ###Output _____no_output_____ ###Markdown 7- Bokeh**Bokeh** is a large library that exposes many capabilities, so this section is only a quick tour of some common Bokeh use cases and workflows. For more detailed information please consult the full User Guide.Let’s begin with some examples. Plotting data in basic Python lists as a line plot including zoom, pan, save, and other tools is simple and straightforward:[Go to top](top) ###Code from ipywidgets import interact import numpy as np from bokeh.io import push_notebook, show, output_notebook from bokeh.plotting import figure output_notebook() x = np.linspace(0, 2*np.pi, 2000) y = np.sin(x) from bokeh.plotting import figure, output_file, show # prepare some data x = [1, 2, 3, 4, 5] y = [6, 7, 2, 4, 5] # create a new plot with a title and axis labels p = figure(title="simple line example", x_axis_label='x', y_axis_label='y') # add a line renderer with legend and line thickness p.line(x, y, legend="Temp.", line_width=2) # show the results show(p) ###Output _____no_output_____ ###Markdown When you execute this script, you will see that a new output file "lines.html" is created, and that a browser automatically opens a new tab to display it. (For presentation purposes we have included the plot output directly inline in this document.)The basic steps to creating plots with the bokeh.plotting interface are:Prepare some dataIn this case plain python lists, but could also be NumPy arrays or Pandas series.Tell Bokeh where to generate outputIn this case using output_file(), with the filename "lines.html". Another option is output_notebook() for use in Jupyter notebooks.Call figure()This creates a plot with typical default options and easy customization of title, tools, and axes labels.Add renderersIn this case, we use line() for our data, specifying visual customizations like colors, legends and widths.Ask Bokeh to show() or save() the results.These functions save the plot to an HTML file and optionally display it in a browser.Steps three and four can be repeated to create more than one plot, as shown in some of the examples below.The bokeh.plotting interface is also quite handy if we need to customize the output a bit more by adding more data series, glyphs, logarithmic axis, and so on. It’s also possible to easily combine multiple glyphs together on one plot as shown below:[Go to top](top) ###Code from bokeh.plotting import figure, output_file, show # prepare some data x = [0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0] y0 = [i**2 for i in x] y1 = [10**i for i in x] y2 = [10**(i**2) for i in x] # create a new plot p = figure( tools="pan,box_zoom,reset,save", y_axis_type="log", y_range=[0.001, 10**11], title="log axis example", x_axis_label='sections', y_axis_label='particles' ) # add some renderers p.line(x, x, legend="y=x") p.circle(x, x, legend="y=x", fill_color="white", size=8) p.line(x, y0, legend="y=x^2", line_width=3) p.line(x, y1, legend="y=10^x", line_color="red") p.circle(x, y1, legend="y=10^x", fill_color="red", line_color="red", size=6) p.line(x, y2, legend="y=10^x^2", line_color="orange", line_dash="4 4") # show the results show(p) ###Output _____no_output_____ ###Markdown 8- NetworkXNetworkX is a Python package for the creation, manipulation, and study of the structure, dynamics, and functions of complex networks. ###Code import sys import matplotlib.pyplot as plt import networkx as nx G = nx.grid_2d_graph(5, 5) # 5x5 grid # print the adjacency list for line in nx.generate_adjlist(G): print(line) # write edgelist to grid.edgelist nx.write_edgelist(G, path="grid.edgelist", delimiter=":") # read edgelist from grid.edgelist H = nx.read_edgelist(path="grid.edgelist", delimiter=":") nx.draw(H) plt.show() from ipywidgets import interact %matplotlib inline import matplotlib.pyplot as plt import networkx as nx # wrap a few graph generation functions so they have the same signature def random_lobster(n, m, k, p): return nx.random_lobster(n, p, p / m) def powerlaw_cluster(n, m, k, p): return nx.powerlaw_cluster_graph(n, m, p) def erdos_renyi(n, m, k, p): return nx.erdos_renyi_graph(n, p) def newman_watts_strogatz(n, m, k, p): return nx.newman_watts_strogatz_graph(n, k, p) def plot_random_graph(n, m, k, p, generator): g = generator(n, m, k, p) nx.draw(g) plt.show() interact(plot_random_graph, n=(2,30), m=(1,10), k=(1,10), p=(0.0, 1.0, 0.001), generator={ 'lobster': random_lobster, 'power law': powerlaw_cluster, 'Newman-Watts-Strogatz': newman_watts_strogatz, u'Erdős-Rényi': erdos_renyi, }); ###Output _____no_output_____ ###Markdown Top 5 Data Visualization Libraries Tutorial last update: 07/01/2019> You may be interested have a look at 10 Steps to Become a Data Scientist: 1. [Leren Python](https://www.kaggle.com/mjbahmani/the-data-scientist-s-toolbox-tutorial-1)2. [Python Packages](https://www.kaggle.com/mjbahmani/the-data-scientist-s-toolbox-tutorial-2)3. [Mathematics and Linear Algebra](https://www.kaggle.com/mjbahmani/linear-algebra-for-data-scientists)4. [Programming &amp; Analysis Tools](https://www.kaggle.com/mjbahmani/20-ml-algorithms-15-plot-for-beginners)5. [Big Data](https://www.kaggle.com/mjbahmani/a-data-science-framework-for-quora)6. [Data visualization](https://www.kaggle.com/mjbahmani/top-5-data-visualization-libraries-tutorial)7. [Data Cleaning](https://www.kaggle.com/mjbahmani/machine-learning-workflow-for-house-prices)8. [How to solve a Problem?](https://www.kaggle.com/mjbahmani/the-data-scientist-s-toolbox-tutorial-2)9. [Machine Learning](https://www.kaggle.com/mjbahmani/a-comprehensive-ml-workflow-with-python)10. [Deep Learning](https://www.kaggle.com/mjbahmani/top-5-deep-learning-frameworks-tutorial)---------------------------------------------------------------------You can Fork and Run this kernel on Github:> [ GitHub](https://github.com/mjbahmani/10-steps-to-become-a-data-scientist)------------------------------------------------------------------------------------------------------------- **I hope you find this kernel helpful and some UPVOTES would be very much appreciated** ----------- a simple example you will learn in this notebook ###Code from ipywidgets import interact %matplotlib inline import matplotlib.pyplot as plt import networkx as nx # wrap a few graph generation functions so they have the same signature def random_lobster(n, m, k, p): return nx.random_lobster(n, p, p / m) def powerlaw_cluster(n, m, k, p): return nx.powerlaw_cluster_graph(n, m, p) def erdos_renyi(n, m, k, p): return nx.erdos_renyi_graph(n, p) def newman_watts_strogatz(n, m, k, p): return nx.newman_watts_strogatz_graph(n, k, p) def plot_random_graph(n, m, k, p, generator): g = generator(n, m, k, p) nx.draw(g) plt.show() interact(plot_random_graph, n=(2,30), m=(1,10), k=(1,10), p=(0.0, 1.0, 0.001), generator={ 'lobster': random_lobster, 'power law': powerlaw_cluster, 'Newman-Watts-Strogatz': newman_watts_strogatz, u'Erdős-Rényi': erdos_renyi, }); ###Output _____no_output_____ ###Markdown Notebook Content1. [Introduction](1)1. [Loading Packages](2) 1. [version](21) 1. [Setup](22) 1. [Data Collection](23)1. [Matplotlib](3) 1. [Scatterplots](31) 1. [ Line Plots](32) 1. [Bar Charts](33) 1. [Histograms](34) 1. [Box and Whisker Plots](35) 1. [Heatmaps](36) 1. [Animations](37) 1. [Interactivity](38) 1. [DataFrame.plot](39)1. [Seaborn](4) 1. [Seaborn Vs Matplotlib](41) 1. [Useful Python Data Visualization Libraries](42)1. [Plotly](5) 1. [New to Plotly?](51) 1. [Plotly Offline from Command Line](52)1. [Bokeh](6)1. [networkx](7)1. [Read more](8) 1. [Courses](81) 1. [Ebooks](82) 1. [Cheat sheet](83)1. [Conclusion](9) 1. [References](10) 1- IntroductionIf you've followed my other kernels so far. You have noticed that for those who are beginners, I've introduced a course " 10 Steps to Become a Data Scientist ". In this kernel we will start another step with each other. There are plenty of Kernels that can help you learn Python 's Libraries from scratch but here in Kaggle, I want to Analysis Meta Kaggle a popular Dataset.After reading, you can use it to Analysis other real dataset and use it as a template to deal with ML problems.It is clear that everyone in this community is familiar with Meta Kaggle dataset but if you need to review your information about the datasets please visit [meta-kaggle](https://www.kaggle.com/kaggle/meta-kaggle) .I am open to getting your feedback for improving this **kernel** together. 2- Loading PackagesIn this kernel we are using the following packages: ###Code from matplotlib.figure import Figure import matplotlib.pylab as pylab import matplotlib.pyplot as plt import matplotlib as mpl import seaborn as sns import pandas as pd import numpy as np import matplotlib import warnings import string import numpy import csv import os ###Output _____no_output_____ ###Markdown 2-1 version ###Code print('matplotlib: {}'.format(matplotlib.__version__)) print('seaborn: {}'.format(sns.__version__)) print('pandas: {}'.format(pd.__version__)) print('numpy: {}'.format(np.__version__)) #print('wordcloud: {}'.format(wordcloud.version)) ###Output _____no_output_____ ###Markdown 2-2 SetupA few tiny adjustments for better **code readability** ###Code sns.set(style='white', context='notebook', palette='deep') pylab.rcParams['figure.figsize'] = 12,8 warnings.filterwarnings('ignore') mpl.style.use('ggplot') sns.set_style('white') %matplotlib inline ###Output _____no_output_____ ###Markdown 2-3 Data Collection**Data collection** is the process of gathering and measuring data, information or any variables of interest in a standardized and established manner that enables the collector to answer or test hypothesis and evaluate outcomes of the particular collection.[techopedia]I start Collection Data by the Users and Kernels datasets into **Pandas DataFrames** ###Code # import kernels and users to play with it #command--> 1 users = pd.read_csv("../input/Users.csv") kernels = pd.read_csv("../input/Kernels.csv") messages = pd.read_csv("../input/ForumMessages.csv") ###Output _____no_output_____ ###Markdown **>*** Each row is an observation (also known as : sample, example, instance, record)* Each column is a feature (also known as: Predictor, attribute, Independent Variable, input, regressor, Covariate) [Go to top](top) ###Code #command--> 2 users.sample(1) ###Output _____no_output_____ ###Markdown Please **replace** your username and find your useridWe suppose that userid==authoruserid and use userid for both kernels and users dataset ###Code username="mjbahmani" userid=int(users[users['UserName']=="mjbahmani"].Id) userid ###Output _____no_output_____ ###Markdown But if we had , we can just use **dropna()**(be careful sometimes you should not do this!) ###Code # remove rows that have NA's print('Before Droping',messages.shape) #command--> 3 messages = messages.dropna() print('After Droping',messages.shape) ###Output _____no_output_____ ###Markdown 2-3-1 FeaturesFeatures can be from following types:1. numeric1. categorical1. ordinal1. datetime1. coordinatesFind the type of features in **Meta Kaggle**?!For getting some information about the dataset you can use **info()** command [Go to top](top) ###Code #command--> 4 print(users.info()) ###Output _____no_output_____ ###Markdown 2-3-2 Explorer Dataset1. Dimensions of the dataset.1. Peek at the data itself.1. Statistical summary of all attributes.1. Breakdown of the data by the class variable.Don’t worry, each look at the data is **one command**. These are useful commands that you can use again and again on future projects. [Go to top](top) ###Code # shape #command--> 5 print(users.shape) #columns*rows #command--> 6 users.size ###Output _____no_output_____ ###Markdown We can get a quick idea of how many instances (rows) and how many attributes (columns) the data contains with the shape property. You see number of unique item for Species with command below: ###Code #command--> 7 kernels['Medal'].unique() #command--> 8 kernels["Medal"].value_counts() ###Output _____no_output_____ ###Markdown To check the first 5 rows of the data set, we can use head(5). ###Code kernels.head(5) ###Output _____no_output_____ ###Markdown To check out last 5 row of the data set, we use tail() function ###Code #command--> 9 users.tail() ###Output _____no_output_____ ###Markdown To pop up 5 random rows from the data set, we can use **sample(5)** function ###Code kernels.sample(5) ###Output _____no_output_____ ###Markdown To give a statistical summary about the dataset, we can use **describe()** ###Code kernels.describe() ###Output _____no_output_____ ###Markdown 2-3-5 Find yourself in Users datset ###Code #command--> 12 users[users['Id']==userid] ###Output _____no_output_____ ###Markdown 2-3-6 Find your kernels in Kernels dataset ###Code #command--> 13 yourkernels=kernels[kernels['AuthorUserId']==userid] yourkernels.head(2) ###Output _____no_output_____ ###Markdown 3- Data Visualization LibrariesBefore you start learning , I am giving an overview of 10 interdisciplinary **Python data visualization libraries**, from the well-known to the obscure.* 1- matplotlibmatplotlib is the O.G. of Python data visualization libraries. Despite being over a decade old, it’s still the most widely used library for plotting in the Python community. It was designed to closely resemble MATLAB, a proprietary programming language developed in the 1980s.* 2- SeabornSeaborn harnesses the power of matplotlib to create beautiful charts in a few lines of code. The key difference is Seaborn’s default styles and color palettes, which are designed to be more aesthetically pleasing and modern. Since Seaborn is built on top of matplotlib, you’ll need to know matplotlib to tweak Seaborn’s defaults.* 3- ggplotggplot is based on ggplot2, an R plotting system, and concepts from The Grammar of Graphics. ggplot operates differently than matplotlib: it lets you layer components to create a complete plot. For instance, you can start with axes, then add points, then a line, a trendline, etc. Although The Grammar of Graphics has been praised as an “intuitive” method for plotting, seasoned matplotlib users might need time to adjust to this new mindset.* 4- BokehLike ggplot, Bokeh is based on The Grammar of Graphics, but unlike ggplot, it’s native to Python, not ported over from R. Its strength lies in the ability to create interactive, web-ready plots, which can be easily outputted as JSON objects, HTML documents, or interactive web applications. Bokeh also supports streaming and real-time data.* 5- pygalLike Bokeh and Plotly, pygal offers interactive plots that can be embedded in the web browser. Its prime differentiator is the ability to output charts as SVGs. As long as you’re working with smaller datasets, SVGs will do you just fine. But if you’re making charts with hundreds of thousands of data points, they’ll have trouble rendering and become sluggish.* 6- PlotlyYou might know Plotly as an online platform for data visualization, but did you also know you can access its capabilities from a Python notebook? Like Bokeh, Plotly’s forte is making interactive plots, but it offers some charts you won’t find in most libraries, like contour plots, dendograms, and 3D charts.* 7- geoplotlibgeoplotlib is a toolbox for creating maps and plotting geographical data. You can use it to create a variety of map-types, like choropleths, heatmaps, and dot density maps. You must have Pyglet (an object-oriented programming interface) installed to use geoplotlib. Nonetheless, since most Python data visualization libraries don’t offer maps, it’s nice to have a library dedicated solely to them.* 8- GleamGleam is inspired by R’s Shiny package. It allows you to turn analyses into interactive web apps using only Python scripts, so you don’t have to know any other languages like HTML, CSS, or JavaScript. Gleam works with any Python data visualization library. Once you’ve created a plot, you can build fields on top of it so users can filter and sort data.* 9- missingnoDealing with missing data is a pain. missingno allows you to quickly gauge the completeness of a dataset with a visual summary, instead of trudging through a table. You can filter and sort data based on completion or spot correlations with a heatmap or a dendrogram.* 10- LeatherLeather’s creator, Christopher Groskopf, puts it best: “Leather is the Python charting library for those who need charts now and don’t care if they’re perfect.” It’s designed to work with all data types and produces charts as SVGs, so you can scale them without losing image quality. Since this library is relatively new, some of the documentation is still in progress. The charts you can make are pretty basic—but that’s the intention.At the end, nice cheatsheet on how to best visualize your data. I think I will print it out as a good reminder of "best practices". Check out the link for the complete cheatsheet, also as a PDF. * 11- ChartifyChartify is a Python library that makes it easy for data scientists to create charts.Why use Chartify?1. Consistent input data format: Spend less time transforming data to get your charts to work. All plotting functions use a consistent tidy input data format.1. Smart default styles: Create pretty charts with very little customization required.1. Simple API: We've attempted to make to the API as intuitive and easy to learn as possible.1. Flexibility: Chartify is built on top of Bokeh, so if you do need more control you can always fall back on Bokeh's API.Link: https://github.com/mjbahmani/Machine-Learning-Workflow-with-Python![cheatsheet ][1][Reference][2] [1]: http://s8.picofile.com/file/8340669884/53f6a826_d7df_4b55_81e6_7c23b3fff0a3_original.png [2]: https://blog.modeanalytics.com/python-data-visualization-libraries/ 4- MatplotlibThis Matplotlib tutorial takes you through the basics Python data visualization: the anatomy of a plot, pyplot and pylab, and much more [Go to top](top) You can show matplotlib figures directly in the notebook by using the `%matplotlib notebook` and `%matplotlib inline` magic commands. `%matplotlib notebook` provides an interactive environment. We can use html cell magic to display the image. ###Code plt.plot([1, 2, 3, 4], [10, 20, 25, 30], color='lightblue', linewidth=3) plt.scatter([0.3, 3.8, 1.2, 2.5], [11, 25, 9, 26], color='darkgreen', marker='^') plt.xlim(0.5, 4.5) plt.show() ###Output _____no_output_____ ###Markdown Simple and powerful visualizations can be generated using the Matplotlib Python Library. More than a decade old, it is the most widely-used library for plotting in the Python community. A wide range of graphs from histograms to heat plots to line plots can be plotted using Matplotlib.Many other libraries are built on top of Matplotlib and are designed to work in conjunction with analysis, it being the first Python data visualization library. Libraries like pandas and matplotlib are “wrappers” over Matplotlib allowing access to a number of Matplotlib’s methods with less code. 4-1 Scatterplots ###Code x = np.array([1,2,3,4,5,6,7,8]) y = x plt.figure() plt.scatter(x, y) # similar to plt.plot(x, y, '.'), but the underlying child objects in the axes are not Line2D x = np.array([1,2,3,4,5,6,7,8]) y = x # create a list of colors for each point to have # ['green', 'green', 'green', 'green', 'green', 'green', 'green', 'red'] colors = ['green']*(len(x)-1) colors.append('red') plt.figure() # plot the point with size 100 and chosen colors plt.scatter(x, y, s=100, c=colors) plt.figure() # plot a data series 'Tall students' in red using the first two elements of x and y plt.scatter(x[:2], y[:2], s=100, c='red', label='Tall students') # plot a second data series 'Short students' in blue using the last three elements of x and y plt.scatter(x[2:], y[2:], s=100, c='blue', label='Short students') x = np.random.randint(low=1, high=11, size=50) y = x + np.random.randint(1, 5, size=x.size) data = np.column_stack((x, y)) fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(8, 4)) ax1.scatter(x=x, y=y, marker='o', c='r', edgecolor='b') ax1.set_title('Scatter: $x$ versus $y$') ax1.set_xlabel('$x$') ax1.set_ylabel('$y$') ax2.hist(data, bins=np.arange(data.min(), data.max()), label=('x', 'y')) ax2.legend(loc=(0.65, 0.8)) ax2.set_title('Frequencies of $x$ and $y$') ax2.yaxis.tick_right() # Modify the graph above by assigning each species an individual color. #command--> 19 x=yourkernels["TotalVotes"] y=yourkernels["TotalViews"] plt.scatter(x, y) plt.legend() plt.show() ###Output _____no_output_____ ###Markdown 4-2 Line Plots ###Code linear_data = np.array([1,2,3,4,5,6,7,8]) exponential_data = linear_data**2 plt.figure() # plot the linear data and the exponential data plt.plot(linear_data, '-o', exponential_data, '-o') # plot another series with a dashed red line plt.plot([22,44,55], '--r') ###Output _____no_output_____ ###Markdown 4-3 Bar Charts ###Code plt.figure() xvals = range(len(linear_data)) plt.bar(xvals, linear_data, width = 0.3) new_xvals = [] # plot another set of bars, adjusting the new xvals to make up for the first set of bars plotted for item in xvals: new_xvals.append(item+0.3) plt.bar(new_xvals, exponential_data, width = 0.3 ,color='red') from random import randint linear_err = [randint(0,15) for x in range(len(linear_data))] # This will plot a new set of bars with errorbars using the list of random error values plt.bar(xvals, linear_data, width = 0.3, yerr=linear_err) # stacked bar charts are also possible plt.figure() xvals = range(len(linear_data)) plt.bar(xvals, linear_data, width = 0.3, color='b') plt.bar(xvals, exponential_data, width = 0.3, bottom=linear_data, color='r') # or use barh for horizontal bar charts plt.figure() xvals = range(len(linear_data)) plt.barh(xvals, linear_data, height = 0.3, color='b') plt.barh(xvals, exponential_data, height = 0.3, left=linear_data, color='r') # Initialize the plot fig = plt.figure(figsize=(20,10)) ax1 = fig.add_subplot(121) ax2 = fig.add_subplot(122) # or replace the three lines of code above by the following line: #fig, (ax1, ax2) = plt.subplots(1,2, figsize=(20,10)) # Plot the data ax1.bar([1,2,3],[3,4,5]) ax2.barh([0.5,1,2.5],[0,1,2]) # Show the plot plt.show() plt.figure() # subplot with 1 row, 2 columns, and current axis is 1st subplot axes plt.subplot(1, 2, 1) linear_data = np.array([1,2,3,4,5,6,7,8]) plt.plot(linear_data, '-o') exponential_data = linear_data**2 # subplot with 1 row, 2 columns, and current axis is 2nd subplot axes plt.subplot(1, 2, 2) plt.plot(exponential_data, '-o') # plot exponential data on 1st subplot axes plt.subplot(1, 2, 1) plt.plot(exponential_data, '-x') plt.figure() ax1 = plt.subplot(1, 2, 1) plt.plot(linear_data, '-o') # pass sharey=ax1 to ensure the two subplots share the same y axis ax2 = plt.subplot(1, 2, 2, sharey=ax1) plt.plot(exponential_data, '-x') ###Output _____no_output_____ ###Markdown 4-4 Histograms ###Code # create 2x2 grid of axis subplots fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, sharex=True) axs = [ax1,ax2,ax3,ax4] # draw n = 10, 100, 1000, and 10000 samples from the normal distribution and plot corresponding histograms for n in range(0,len(axs)): sample_size = 10**(n+1) sample = np.random.normal(loc=0.0, scale=1.0, size=sample_size) axs[n].hist(sample) axs[n].set_title('n={}'.format(sample_size)) # repeat with number of bins set to 100 fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, sharex=True) axs = [ax1,ax2,ax3,ax4] for n in range(0,len(axs)): sample_size = 10**(n+1) sample = np.random.normal(loc=0.0, scale=1.0, size=sample_size) axs[n].hist(sample, bins=100) axs[n].set_title('n={}'.format(sample_size)) plt.figure() Y = np.random.normal(loc=0.0, scale=1.0, size=10000) X = np.random.random(size=10000) plt.scatter(X,Y) ###Output _____no_output_____ ###Markdown It looks like perhaps two of the input variables have a Gaussian distribution. This is useful to note as we can use algorithms that can exploit this assumption. ###Code yourkernels["TotalViews"].hist(); yourkernels["TotalComments"].hist(); sns.factorplot('TotalViews','TotalVotes',data=yourkernels) plt.show() ###Output _____no_output_____ ###Markdown 4-5 Box and Whisker PlotsIn descriptive statistics, a **box plot** or boxplot is a method for graphically depicting groups of numerical data through their quartiles. Box plots may also have lines extending vertically from the boxes (whiskers) indicating variability outside the upper and lower quartiles, hence the terms box-and-whisker plot and box-and-whisker diagram.[wikipedia] ###Code normal_sample = np.random.normal(loc=0.0, scale=1.0, size=10000) random_sample = np.random.random(size=10000) gamma_sample = np.random.gamma(2, size=10000) df = pd.DataFrame({'normal': normal_sample, 'random': random_sample, 'gamma': gamma_sample}) plt.figure() # create a boxplot of the normal data, assign the output to a variable to supress output _ = plt.boxplot(df['normal'], whis='range') # clear the current figure plt.clf() # plot boxplots for all three of df's columns _ = plt.boxplot([ df['normal'], df['random'], df['gamma'] ], whis='range') plt.figure() _ = plt.hist(df['gamma'], bins=100) import mpl_toolkits.axes_grid1.inset_locator as mpl_il plt.figure() plt.boxplot([ df['normal'], df['random'], df['gamma'] ], whis='range') # overlay axis on top of another ax2 = mpl_il.inset_axes(plt.gca(), width='60%', height='40%', loc=2) ax2.hist(df['gamma'], bins=100) ax2.margins(x=0.5) # switch the y axis ticks for ax2 to the right side ax2.yaxis.tick_right() # if `whis` argument isn't passed, boxplot defaults to showing 1.5*interquartile (IQR) whiskers with outliers plt.figure() _ = plt.boxplot([ df['normal'], df['random'], df['gamma'] ] ) sns.factorplot('TotalComments','TotalVotes',data=yourkernels) plt.show() ###Output _____no_output_____ ###Markdown 4-6 Heatmaps ###Code plt.figure() Y = np.random.normal(loc=0.0, scale=1.0, size=10000) X = np.random.random(size=10000) _ = plt.hist2d(X, Y, bins=25) plt.figure() _ = plt.hist2d(X, Y, bins=100) ###Output _____no_output_____ ###Markdown 4-7 Animations ###Code import matplotlib.animation as animation n = 100 x = np.random.randn(n) # create the function that will do the plotting, where curr is the current frame def update(curr): # check if animation is at the last frame, and if so, stop the animation a if curr == n: a.event_source.stop() plt.cla() bins = np.arange(-4, 4, 0.5) plt.hist(x[:curr], bins=bins) plt.axis([-4,4,0,30]) plt.gca().set_title('Sampling the Normal Distribution') plt.gca().set_ylabel('Frequency') plt.gca().set_xlabel('Value') plt.annotate('n = {}'.format(curr), [3,27]) fig = plt.figure() a = animation.FuncAnimation(fig, update, interval=100) ###Output _____no_output_____ ###Markdown 4-8 Interactivity ###Code plt.figure() data = np.random.rand(10) plt.plot(data) def onclick(event): plt.cla() plt.plot(data) plt.gca().set_title('Event at pixels {},{} \nand data {},{}'.format(event.x, event.y, event.xdata, event.ydata)) # tell mpl_connect we want to pass a 'button_press_event' into onclick when the event is detected plt.gcf().canvas.mpl_connect('button_press_event', onclick) from random import shuffle origins = ['China', 'Brazil', 'India', 'USA', 'Canada', 'UK', 'Germany', 'Iraq', 'Chile', 'Mexico'] shuffle(origins) df = pd.DataFrame({'height': np.random.rand(10), 'weight': np.random.rand(10), 'origin': origins}) df plt.figure() # picker=5 means the mouse doesn't have to click directly on an event, but can be up to 5 pixels away plt.scatter(df['height'], df['weight'], picker=5) plt.gca().set_ylabel('Weight') plt.gca().set_xlabel('Height') def onpick(event): origin = df.iloc[event.ind[0]]['origin'] plt.gca().set_title('Selected item came from {}'.format(origin)) # tell mpl_connect we want to pass a 'pick_event' into onpick when the event is detected plt.gcf().canvas.mpl_connect('pick_event', onpick) # use the 'seaborn-colorblind' style plt.style.use('seaborn-colorblind') ###Output _____no_output_____ ###Markdown 4-9 DataFrame.plot ###Code np.random.seed(123) df = pd.DataFrame({'A': np.random.randn(365).cumsum(0), 'B': np.random.randn(365).cumsum(0) + 20, 'C': np.random.randn(365).cumsum(0) - 20}, index=pd.date_range('1/1/2017', periods=365)) df.head() df.plot('A','B', kind = 'scatter'); ###Output _____no_output_____ ###Markdown You can also choose the plot kind by using the `DataFrame.plot.kind` methods instead of providing the `kind` keyword argument.`kind` :- `'line'` : line plot (default)- `'bar'` : vertical bar plot- `'barh'` : horizontal bar plot- `'hist'` : histogram- `'box'` : boxplot- `'kde'` : Kernel Density Estimation plot- `'density'` : same as 'kde'- `'area'` : area plot- `'pie'` : pie plot- `'scatter'` : scatter plot- `'hexbin'` : hexbin plot [Go to top](top) ###Code # create a scatter plot of columns 'A' and 'C', with changing color (c) and size (s) based on column 'B' df.plot.scatter('A', 'C', c='B', s=df['B'], colormap='viridis') ax = df.plot.scatter('A', 'C', c='B', s=df['B'], colormap='viridis') ax.set_aspect('equal') df.plot.box(); df.plot.hist(alpha=0.7); ###Output _____no_output_____ ###Markdown [Kernel density estimation plots](https://en.wikipedia.org/wiki/Kernel_density_estimation) are useful for deriving a smooth continuous function from a given sample. ###Code df.plot.kde(); ###Output _____no_output_____ ###Markdown 5- SeabornAs you have just read, **Seaborn** is complimentary to Matplotlib and it specifically targets statistical data visualization. But it goes even further than that: Seaborn extends Matplotlib and that’s why it can address the two biggest frustrations of working with Matplotlib. Or, as Michael Waskom says in the “introduction to Seaborn”: “If matplotlib “tries to make easy things easy and hard things possible”, seaborn tries to make a well-defined set of hard things easy too.”One of these hard things or frustrations had to do with the default Matplotlib parameters. Seaborn works with different parameters, which undoubtedly speaks to those users that don’t use the default looks of the Matplotlib plotsSeaborn is a library for making statistical graphics in Python. It is built on top of matplotlib and closely integrated with pandas data structures.Here is some of the functionality that seaborn offers:A dataset-oriented API for examining relationships between multiple variablesSpecialized support for using categorical variables to show observations or aggregate statisticsOptions for visualizing univariate or bivariate distributions and for comparing them between subsets of dataAutomatic estimation and plotting of linear regression models for different kinds dependent variablesConvenient views onto the overall structure of complex datasetsHigh-level abstractions for structuring multi-plot grids that let you easily build complex visualizationsConcise control over matplotlib figure styling with several built-in themesTools for choosing color palettes that faithfully reveal patterns in your dataSeaborn aims to make visualization a central part of exploring and understanding data. Its dataset-oriented plotting functions operate on dataframes and arrays containing whole datasets and internally perform the necessary semantic mapping and statistical aggregation to produce informative plots.Here’s an example of what this means:[Go to top](top) 5-1 Seaborn Vs MatplotlibIt is summarized that if Matplotlib “tries to make easy things easy and hard things possible”, Seaborn tries to make a well defined set of hard things easy too.”Seaborn helps resolve the two major problems faced by Matplotlib; the problems are* Default Matplotlib parameters* Working with data framesAs Seaborn compliments and extends Matplotlib, the learning curve is quite gradual. If you know Matplotlib, you are already half way through Seaborn.Important Features of SeabornSeaborn is built on top of Python’s core visualization library Matplotlib. It is meant to serve as a complement, and not a replacement. However, Seaborn comes with some very important features. Let us see a few of them here. The features help in −* Built in themes for styling matplotlib graphics* Visualizing univariate and bivariate data* Fitting in and visualizing linear regression models* Plotting statistical time series data* Seaborn works well with NumPy and Pandas data structures* It comes with built in themes for styling Matplotlib graphicsIn most cases, you will still use Matplotlib for simple plotting. The knowledge of Matplotlib is recommended to tweak Seaborn’s default plots.[Go to top](top) ###Code def sinplot(flip = 1): x = np.linspace(0, 14, 100) for i in range(1, 5): plt.plot(x, np.sin(x + i * .5) * (7 - i) * flip) sinplot() plt.show() def sinplot(flip = 1): x = np.linspace(0, 14, 100) for i in range(1, 5): plt.plot(x, np.sin(x + i * .5) * (7 - i) * flip) sns.set() sinplot() plt.show() np.random.seed(1234) v1 = pd.Series(np.random.normal(0,10,1000), name='v1') v2 = pd.Series(2*v1 + np.random.normal(60,15,1000), name='v2') plt.figure() plt.hist(v1, alpha=0.7, bins=np.arange(-50,150,5), label='v1'); plt.hist(v2, alpha=0.7, bins=np.arange(-50,150,5), label='v2'); plt.legend(); plt.figure() # we can pass keyword arguments for each individual component of the plot sns.distplot(v2, hist_kws={'color': 'Teal'}, kde_kws={'color': 'Navy'}); sns.jointplot(v1, v2, alpha=0.4); grid = sns.jointplot(v1, v2, alpha=0.4); grid.ax_joint.set_aspect('equal') sns.jointplot(v1, v2, kind='hex'); # set the seaborn style for all the following plots sns.set_style('white') sns.jointplot(v1, v2, kind='kde', space=0); sns.factorplot('TotalComments','TotalVotes',data=yourkernels) plt.show() # violinplots on petal-length for each species #command--> 24 sns.violinplot(data=yourkernels,x="TotalViews", y="TotalVotes") # violinplots on petal-length for each species sns.violinplot(data=yourkernels,x="TotalComments", y="TotalVotes") sns.violinplot(data=yourkernels,x="Medal", y="TotalVotes") sns.violinplot(data=yourkernels,x="Medal", y="TotalComments") ###Output _____no_output_____ ###Markdown How many NA elements in every column. 5-2 kdeplot ###Code # seaborn's kdeplot, plots univariate or bivariate density estimates. #Size can be changed by tweeking the value used #command--> 25 sns.FacetGrid(yourkernels, hue="Medal", size=5).map(sns.kdeplot, "TotalComments").add_legend() plt.show() sns.FacetGrid(yourkernels, hue="Medal", size=5).map(sns.kdeplot, "TotalVotes").add_legend() plt.show() f,ax=plt.subplots(1,3,figsize=(20,8)) sns.distplot(yourkernels[yourkernels['Medal']==1].TotalVotes,ax=ax[0]) ax[0].set_title('TotalVotes in Medal 1') sns.distplot(yourkernels[yourkernels['Medal']==2].TotalVotes,ax=ax[1]) ax[1].set_title('TotalVotes in Medal 2') sns.distplot(yourkernels[yourkernels['Medal']==3].TotalVotes,ax=ax[2]) ax[2].set_title('TotalVotes in Medal 3') plt.show() ###Output _____no_output_____ ###Markdown 5-3 jointplot ###Code # Use seaborn's jointplot to make a hexagonal bin plot #Set desired size and ratio and choose a color. #command--> 25 sns.jointplot(x="TotalVotes", y="TotalViews", data=yourkernels, size=10,ratio=10, kind='hex',color='green') plt.show() ###Output _____no_output_____ ###Markdown 5-4 andrews_curves ###Code # we will use seaborn jointplot shows bivariate scatterplots and univariate histograms with Kernel density # estimation in the same figure sns.jointplot(x="TotalVotes", y="TotalViews", data=yourkernels, size=6, kind='kde', color='#800000', space=0) ###Output _____no_output_____ ###Markdown 5-5 Heatmap ###Code #command--> 26 plt.figure(figsize=(10,7)) sns.heatmap(yourkernels.corr(),annot=True,cmap='cubehelix_r') #draws heatmap with input as the correlation matrix calculted by(iris.corr()) plt.show() sns.factorplot('TotalComments','TotalVotes',data=yourkernels) plt.show() ###Output _____no_output_____ ###Markdown 5-6 distplot ###Code sns.distplot(yourkernels['TotalVotes']); ###Output _____no_output_____ ###Markdown Top 5 Data Visualization Libraries Tutorial last update: 11/29/2018> You may be interested have a look at it: [**10-Steps-to-Become-a-Data-Scientist**](https://github.com/mjbahmani/10-steps-to-become-a-data-scientist)---------------------------------------------------------------------You can Fork and Run this kernel on Github:> [ GitHub](https://github.com/mjbahmani/10-steps-to-become-a-data-scientist)------------------------------------------------------------------------------------------------------------- **I hope you find this kernel helpful and some UPVOTES would be very much appreciated** ----------- Notebook Content1. [Introduction](1)1. [Loading Packages](2) 1. [version](3) 1. [Setup](4) 1. [Data Collection](5)1. [Matplotlib](26) 1. [Scatterplots](27) 1. [ Line Plots](28) 1. [Bar Charts](29) 1. [Histograms](30) 1. [Box and Whisker Plots](31) 1. [Heatmaps](32) 1. [Animations](33) 1. [Interactivity](34) 1. [DataFrame.plot](35)1. [Seaborn](36) 1. [Seaborn Vs Matplotlib](37) 1. [Useful Python Data Visualization Libraries](38)1. [Plotly](60) 1. [New to Plotly?](61) 1. [Plotly Offline from Command Line](62)1. [Bokeh](63)1. [Read more](39) 1. [Courses](40) 1. [Ebooks](41) 1. [Cheat sheet](41)1. [Conclusion](39) 1. [References](40) 1- IntroductionIf you've followed my other kernels so far. You have noticed that for those who are beginners, I've introduced a course " 10 Steps to Become a Data Scientist ". In this kernel we will start another step with each other. There are plenty of Kernels that can help you learn Python 's Libraries from scratch but here in Kaggle, I want to Analysis Meta Kaggle a popular Dataset.After reading, you can use it to Analysis other real dataset and use it as a template to deal with ML problems.It is clear that everyone in this community is familiar with Meta Kaggle dataset but if you need to review your information about the datasets please visit [meta-kaggle](https://www.kaggle.com/kaggle/meta-kaggle) .I am open to getting your feedback for improving this **kernel** together. 2- Loading PackagesIn this kernel we are using the following packages: Now we import all of them ###Code from wordcloud import WordCloud as wc from matplotlib.figure import Figure from nltk.corpus import stopwords import matplotlib.pylab as pylab import matplotlib.pyplot as plt import matplotlib as mpl import seaborn as sns import pandas as pd import numpy as np import matplotlib import warnings import string import numpy import nltk import csv import os ###Output _____no_output_____ ###Markdown 2-1 version ###Code print('matplotlib: {}'.format(matplotlib.__version__)) print('seaborn: {}'.format(sns.__version__)) print('pandas: {}'.format(pd.__version__)) print('numpy: {}'.format(np.__version__)) #print('wordcloud: {}'.format(wordcloud.version)) ###Output _____no_output_____ ###Markdown 2-2 SetupA few tiny adjustments for better **code readability** ###Code sns.set(style='white', context='notebook', palette='deep') pylab.rcParams['figure.figsize'] = 12,8 warnings.filterwarnings('ignore') mpl.style.use('ggplot') sns.set_style('white') %matplotlib inline ###Output _____no_output_____ ###Markdown 2-3 Data Collection**Data collection** is the process of gathering and measuring data, information or any variables of interest in a standardized and established manner that enables the collector to answer or test hypothesis and evaluate outcomes of the particular collection.[techopedia]I start Collection Data by the Users and Kernels datasets into **Pandas DataFrames** ###Code # import kernels and users to play with it #command--> 1 users = pd.read_csv("../input/Users.csv") kernels = pd.read_csv("../input/Kernels.csv") messages = pd.read_csv("../input/ForumMessages.csv") ###Output _____no_output_____ ###Markdown 6 Data Collection Rules for Your Future Perfect Machine Learning Dataset:1. Ensure the data has no gaps1. Keep your raw data raw1. Foresee and document all the possible missing values and outliers in your data1. Changelogs and data structures versioning 1. Ensure the data points can’t get lost1. Hire a data officer. [reference](https://towardsdatascience.com/how-to-collect-your-deep-learning-dataset-2e0eefc0ba24) **>*** Each row is an observation (also known as : sample, example, instance, record)* Each column is a feature (also known as: Predictor, attribute, Independent Variable, input, regressor, Covariate) [Go to top](top) ###Code #command--> 2 users.sample(1) ###Output _____no_output_____ ###Markdown Please **replace** your username and find your useridWe suppose that userid==authoruserid and use userid for both kernels and users dataset ###Code username="mjbahmani" userid=int(users[users['UserName']=="mjbahmani"].Id) userid ###Output _____no_output_____ ###Markdown But if we had , we can just use **dropna()**(be careful sometimes you should not do this!) ###Code # remove rows that have NA's print('Before Droping',messages.shape) #command--> 3 messages = messages.dropna() print('After Droping',messages.shape) ###Output _____no_output_____ ###Markdown 2-3-1 FeaturesFeatures can be from following types:1. numeric1. categorical1. ordinal1. datetime1. coordinatesFind the type of features in **Meta Kaggle**?!For getting some information about the dataset you can use **info()** command [Go to top](top) ###Code #command--> 4 print(users.info()) ###Output _____no_output_____ ###Markdown 2-3-2 Explorer Dataset1. Dimensions of the dataset.1. Peek at the data itself.1. Statistical summary of all attributes.1. Breakdown of the data by the class variable.Don’t worry, each look at the data is **one command**. These are useful commands that you can use again and again on future projects. [Go to top](top) ###Code # shape #command--> 5 print(users.shape) #columns*rows #command--> 6 users.size ###Output _____no_output_____ ###Markdown We can get a quick idea of how many instances (rows) and how many attributes (columns) the data contains with the shape property. You see number of unique item for Species with command below: ###Code #command--> 7 kernels['Medal'].unique() #command--> 8 kernels["Medal"].value_counts() ###Output _____no_output_____ ###Markdown To check the first 5 rows of the data set, we can use head(5). ###Code kernels.head(5) ###Output _____no_output_____ ###Markdown To check out last 5 row of the data set, we use tail() function ###Code #command--> 9 users.tail() ###Output _____no_output_____ ###Markdown To pop up 5 random rows from the data set, we can use **sample(5)** function ###Code kernels.sample(5) ###Output _____no_output_____ ###Markdown To give a statistical summary about the dataset, we can use **describe() ###Code kernels.describe() ###Output _____no_output_____ ###Markdown 2-3-4 Data CleaningWhen dealing with real-world data, dirty data is the norm rather than the exception. We continuously need to predict correct values, impute missing ones, and find links between various data artefacts such as schemas and records. We need to stop treating data cleaning as a piecemeal exercise (resolving different types of errors in isolation), and instead leverage all signals and resources (such as constraints, available statistics, and dictionaries) to accurately predict corrective actions.The primary goal of data cleaning is to detect and remove errors and **anomalies** to increase the value of data in analytics and decision making. While it has been the focus of many researchers for several years, individual problems have been addressed separately. These include missing value imputation, outliers detection, transformations, integrity constraints violations detection and repair, consistent query answering, deduplication, and many other related problems such as profiling and constraints mining.[4] [Go to top](top) How many NA elements in every column!!Good news, it is Zero!to check out how many null info are on the dataset, we can use **isnull().sum()**. ###Code #How many NA elements in every column #command--> 10 users.isnull().sum() kernels.isnull().sum() #command--> 11 kernels.groupby('Medal').count() ###Output _____no_output_____ ###Markdown To print dataset **columns**, we can use columns atribute. ###Code kernels.columns ###Output _____no_output_____ ###Markdown **>**In pandas's data frame you can perform some query such as "where". 2-3-5 Find yourself in Users datset ###Code #command--> 12 users[users['Id']==userid] ###Output _____no_output_____ ###Markdown 2-3-6 Find your kernels in Kernels dataset ###Code #command--> 13 yourkernels=kernels[kernels['AuthorUserId']==userid] yourkernels ###Output _____no_output_____ ###Markdown 3- Data Visualization LibrariesBefore you start learning , I am giving an overview of 10 interdisciplinary **Python data visualization libraries**, from the well-known to the obscure.* 1- matplotlibmatplotlib is the O.G. of Python data visualization libraries. Despite being over a decade old, it’s still the most widely used library for plotting in the Python community. It was designed to closely resemble MATLAB, a proprietary programming language developed in the 1980s.* 2- SeabornSeaborn harnesses the power of matplotlib to create beautiful charts in a few lines of code. The key difference is Seaborn’s default styles and color palettes, which are designed to be more aesthetically pleasing and modern. Since Seaborn is built on top of matplotlib, you’ll need to know matplotlib to tweak Seaborn’s defaults.* 3- ggplotggplot is based on ggplot2, an R plotting system, and concepts from The Grammar of Graphics. ggplot operates differently than matplotlib: it lets you layer components to create a complete plot. For instance, you can start with axes, then add points, then a line, a trendline, etc. Although The Grammar of Graphics has been praised as an “intuitive” method for plotting, seasoned matplotlib users might need time to adjust to this new mindset.* 4- BokehLike ggplot, Bokeh is based on The Grammar of Graphics, but unlike ggplot, it’s native to Python, not ported over from R. Its strength lies in the ability to create interactive, web-ready plots, which can be easily outputted as JSON objects, HTML documents, or interactive web applications. Bokeh also supports streaming and real-time data.* 5- pygalLike Bokeh and Plotly, pygal offers interactive plots that can be embedded in the web browser. Its prime differentiator is the ability to output charts as SVGs. As long as you’re working with smaller datasets, SVGs will do you just fine. But if you’re making charts with hundreds of thousands of data points, they’ll have trouble rendering and become sluggish.* 6- PlotlyYou might know Plotly as an online platform for data visualization, but did you also know you can access its capabilities from a Python notebook? Like Bokeh, Plotly’s forte is making interactive plots, but it offers some charts you won’t find in most libraries, like contour plots, dendograms, and 3D charts.* 7- geoplotlibgeoplotlib is a toolbox for creating maps and plotting geographical data. You can use it to create a variety of map-types, like choropleths, heatmaps, and dot density maps. You must have Pyglet (an object-oriented programming interface) installed to use geoplotlib. Nonetheless, since most Python data visualization libraries don’t offer maps, it’s nice to have a library dedicated solely to them.* 8- GleamGleam is inspired by R’s Shiny package. It allows you to turn analyses into interactive web apps using only Python scripts, so you don’t have to know any other languages like HTML, CSS, or JavaScript. Gleam works with any Python data visualization library. Once you’ve created a plot, you can build fields on top of it so users can filter and sort data.* 9- missingnoDealing with missing data is a pain. missingno allows you to quickly gauge the completeness of a dataset with a visual summary, instead of trudging through a table. You can filter and sort data based on completion or spot correlations with a heatmap or a dendrogram.* 10- LeatherLeather’s creator, Christopher Groskopf, puts it best: “Leather is the Python charting library for those who need charts now and don’t care if they’re perfect.” It’s designed to work with all data types and produces charts as SVGs, so you can scale them without losing image quality. Since this library is relatively new, some of the documentation is still in progress. The charts you can make are pretty basic—but that’s the intention.At the end, nice cheatsheet on how to best visualize your data. I think I will print it out as a good reminder of "best practices". Check out the link for the complete cheatsheet, also as a PDF. * 11- ChartifyChartify is a Python library that makes it easy for data scientists to create charts.Why use Chartify?1. Consistent input data format: Spend less time transforming data to get your charts to work. All plotting functions use a consistent tidy input data format.1. Smart default styles: Create pretty charts with very little customization required.1. Simple API: We've attempted to make to the API as intuitive and easy to learn as possible.1. Flexibility: Chartify is built on top of Bokeh, so if you do need more control you can always fall back on Bokeh's API.Link: https://github.com/mjbahmani/Machine-Learning-Workflow-with-Python![cheatsheet ][1][Reference][2] [1]: http://s8.picofile.com/file/8340669884/53f6a826_d7df_4b55_81e6_7c23b3fff0a3_original.png [2]: https://blog.modeanalytics.com/python-data-visualization-libraries/ 4- MatplotlibThis Matplotlib tutorial takes you through the basics Python data visualization: the anatomy of a plot, pyplot and pylab, and much more [Go to top](top) You can show matplotlib figures directly in the notebook by using the `%matplotlib notebook` and `%matplotlib inline` magic commands. `%matplotlib notebook` provides an interactive environment. ###Code # because the default is the line style '-', # nothing will be shown if we only pass in one point (3,2) plt.plot(3, 2) # we can pass in '.' to plt.plot to indicate that we want # the point (3,2) to be indicated with a marker '.' plt.plot(3, 2, '.') ###Output _____no_output_____ ###Markdown Let's see how to make a plot without using the scripting layer. We can use html cell magic to display the image. ###Code # create a new figure plt.figure() # plot the point (3,2) using the circle marker plt.plot(3, 2, 'o') # get the current axes ax = plt.gca() # Set axis properties [xmin, xmax, ymin, ymax] ax.axis([0,6,0,10]) # create a new figure plt.figure() # plot the point (1.5, 1.5) using the circle marker plt.plot(1.5, 1.5, 'o') # plot the point (2, 2) using the circle marker plt.plot(2, 2, 'o') # plot the point (2.5, 2.5) using the circle marker plt.plot(2.5, 2.5, 'o') # get current axes ax = plt.gca() # get all the child objects the axes contains ax.get_children() plt.plot([1, 2, 3, 4], [10, 20, 25, 30], color='lightblue', linewidth=3) plt.scatter([0.3, 3.8, 1.2, 2.5], [11, 25, 9, 26], color='darkgreen', marker='^') plt.xlim(0.5, 4.5) plt.show() ###Output _____no_output_____ ###Markdown Simple and powerful visualizations can be generated using the Matplotlib Python Library. More than a decade old, it is the most widely-used library for plotting in the Python community. A wide range of graphs from histograms to heat plots to line plots can be plotted using Matplotlib.Many other libraries are built on top of Matplotlib and are designed to work in conjunction with analysis, it being the first Python data visualization library. Libraries like pandas and matplotlib are “wrappers” over Matplotlib allowing access to a number of Matplotlib’s methods with less code. 4-1 Scatterplots ###Code x = np.array([1,2,3,4,5,6,7,8]) y = x plt.figure() plt.scatter(x, y) # similar to plt.plot(x, y, '.'), but the underlying child objects in the axes are not Line2D x = np.array([1,2,3,4,5,6,7,8]) y = x # create a list of colors for each point to have # ['green', 'green', 'green', 'green', 'green', 'green', 'green', 'red'] colors = ['green']*(len(x)-1) colors.append('red') plt.figure() # plot the point with size 100 and chosen colors plt.scatter(x, y, s=100, c=colors) # convert the two lists into a list of pairwise tuples zip_generator = zip([1,2,3,4,5], [6,7,8,9,10]) print(list(zip_generator)) # the above prints: # [(1, 6), (2, 7), (3, 8), (4, 9), (5, 10)] zip_generator = zip([1,2,3,4,5], [6,7,8,9,10]) # The single star * unpacks a collection into positional arguments print(*zip_generator) # the above prints: # (1, 6) (2, 7) (3, 8) (4, 9) (5, 10) # use zip to convert 5 tuples with 2 elements each to 2 tuples with 5 elements each print(list(zip((1, 6), (2, 7), (3, 8), (4, 9), (5, 10)))) # the above prints: # [(1, 2, 3, 4, 5), (6, 7, 8, 9, 10)] zip_generator = zip([1,2,3,4,5], [6,7,8,9,10]) # let's turn the data back into 2 lists x, y = zip(*zip_generator) # This is like calling zip((1, 6), (2, 7), (3, 8), (4, 9), (5, 10)) print(x) print(y) # the above prints: # (1, 2, 3, 4, 5) # (6, 7, 8, 9, 10) plt.figure() # plot a data series 'Tall students' in red using the first two elements of x and y plt.scatter(x[:2], y[:2], s=100, c='red', label='Tall students') # plot a second data series 'Short students' in blue using the last three elements of x and y plt.scatter(x[2:], y[2:], s=100, c='blue', label='Short students') # add a label to the x axis plt.xlabel('The number of times the child kicked a ball') # add a label to the y axis plt.ylabel('The grade of the student') # add a title plt.title('Relationship between ball kicking and grades') # add a legend (uses the labels from plt.scatter) plt.legend() # add the legend to loc=4 (the lower right hand corner), also gets rid of the frame and adds a title plt.legend(loc=4, frameon=False, title='Legend') # get children from current axes (the legend is the second to last item in this list) plt.gca().get_children() # get the legend from the current axes legend = plt.gca().get_children()[-2] x = np.random.randint(low=1, high=11, size=50) y = x + np.random.randint(1, 5, size=x.size) data = np.column_stack((x, y)) fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(8, 4)) ax1.scatter(x=x, y=y, marker='o', c='r', edgecolor='b') ax1.set_title('Scatter: $x$ versus $y$') ax1.set_xlabel('$x$') ax1.set_ylabel('$y$') ax2.hist(data, bins=np.arange(data.min(), data.max()), label=('x', 'y')) ax2.legend(loc=(0.65, 0.8)) ax2.set_title('Frequencies of $x$ and $y$') ax2.yaxis.tick_right() #command--> 18 yourkernels.columns # Modify the graph above by assigning each species an individual color. #command--> 19 x=yourkernels["TotalVotes"] y=yourkernels["TotalViews"] plt.scatter(x, y) plt.legend() plt.show() f,ax=plt.subplots(1,2,figsize=(18,8)) yourkernels['Medal'].value_counts().plot.bar(color=['#CD7F32','#FFDF00','#D3D3D3'],ax=ax[0]) ax[0].set_title('Number Of Medal') ax[0].set_ylabel('Count') plt.show() ###Output _____no_output_____ ###Markdown 4-2 Line Plots ###Code linear_data = np.array([1,2,3,4,5,6,7,8]) exponential_data = linear_data**2 plt.figure() # plot the linear data and the exponential data plt.plot(linear_data, '-o', exponential_data, '-o') # plot another series with a dashed red line plt.plot([22,44,55], '--r') ###Output _____no_output_____ ###Markdown 4-3 Bar Charts ###Code plt.figure() xvals = range(len(linear_data)) plt.bar(xvals, linear_data, width = 0.3) new_xvals = [] # plot another set of bars, adjusting the new xvals to make up for the first set of bars plotted for item in xvals: new_xvals.append(item+0.3) plt.bar(new_xvals, exponential_data, width = 0.3 ,color='red') from random import randint linear_err = [randint(0,15) for x in range(len(linear_data))] # This will plot a new set of bars with errorbars using the list of random error values plt.bar(xvals, linear_data, width = 0.3, yerr=linear_err) # stacked bar charts are also possible plt.figure() xvals = range(len(linear_data)) plt.bar(xvals, linear_data, width = 0.3, color='b') plt.bar(xvals, exponential_data, width = 0.3, bottom=linear_data, color='r') # or use barh for horizontal bar charts plt.figure() xvals = range(len(linear_data)) plt.barh(xvals, linear_data, height = 0.3, color='b') plt.barh(xvals, exponential_data, height = 0.3, left=linear_data, color='r') # Initialize the plot fig = plt.figure(figsize=(20,10)) ax1 = fig.add_subplot(121) ax2 = fig.add_subplot(122) # or replace the three lines of code above by the following line: #fig, (ax1, ax2) = plt.subplots(1,2, figsize=(20,10)) # Plot the data ax1.bar([1,2,3],[3,4,5]) ax2.barh([0.5,1,2.5],[0,1,2]) # Show the plot plt.show() plt.figure() # subplot with 1 row, 2 columns, and current axis is 1st subplot axes plt.subplot(1, 2, 1) linear_data = np.array([1,2,3,4,5,6,7,8]) plt.plot(linear_data, '-o') exponential_data = linear_data**2 # subplot with 1 row, 2 columns, and current axis is 2nd subplot axes plt.subplot(1, 2, 2) plt.plot(exponential_data, '-o') # plot exponential data on 1st subplot axes plt.subplot(1, 2, 1) plt.plot(exponential_data, '-x') plt.figure() ax1 = plt.subplot(1, 2, 1) plt.plot(linear_data, '-o') # pass sharey=ax1 to ensure the two subplots share the same y axis ax2 = plt.subplot(1, 2, 2, sharey=ax1) plt.plot(exponential_data, '-x') plt.figure() # the right hand side is equivalent shorthand syntax plt.subplot(1,2,1) == plt.subplot(121) # create a 3x3 grid of subplots fig, ((ax1,ax2,ax3), (ax4,ax5,ax6), (ax7,ax8,ax9)) = plt.subplots(3, 3, sharex=True, sharey=True) # plot the linear_data on the 5th subplot axes ax5.plot(linear_data, '-') # set inside tick labels to visible for ax in plt.gcf().get_axes(): for label in ax.get_xticklabels() + ax.get_yticklabels(): label.set_visible(True) plt.show() # necessary on some systems to update the plot plt.gcf().canvas.draw() plt.show() ###Output _____no_output_____ ###Markdown 4-4 Histograms ###Code # create 2x2 grid of axis subplots fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, sharex=True) axs = [ax1,ax2,ax3,ax4] # draw n = 10, 100, 1000, and 10000 samples from the normal distribution and plot corresponding histograms for n in range(0,len(axs)): sample_size = 10**(n+1) sample = np.random.normal(loc=0.0, scale=1.0, size=sample_size) axs[n].hist(sample) axs[n].set_title('n={}'.format(sample_size)) # repeat with number of bins set to 100 fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, sharex=True) axs = [ax1,ax2,ax3,ax4] for n in range(0,len(axs)): sample_size = 10**(n+1) sample = np.random.normal(loc=0.0, scale=1.0, size=sample_size) axs[n].hist(sample, bins=100) axs[n].set_title('n={}'.format(sample_size)) plt.figure() Y = np.random.normal(loc=0.0, scale=1.0, size=10000) X = np.random.random(size=10000) plt.scatter(X,Y) # use gridspec to partition the figure into subplots import matplotlib.gridspec as gridspec plt.figure() gspec = gridspec.GridSpec(3, 3) top_histogram = plt.subplot(gspec[0, 1:]) side_histogram = plt.subplot(gspec[1:, 0]) lower_right = plt.subplot(gspec[1:, 1:]) Y = np.random.normal(loc=0.0, scale=1.0, size=10000) X = np.random.random(size=10000) lower_right.scatter(X, Y) top_histogram.hist(X, bins=100) s = side_histogram.hist(Y, bins=100, orientation='horizontal') # clear the histograms and plot normed histograms top_histogram.clear() top_histogram.hist(X, bins=100, normed=True) side_histogram.clear() side_histogram.hist(Y, bins=100, orientation='horizontal', normed=True) # flip the side histogram's x axis side_histogram.invert_xaxis() # change axes limits for ax in [top_histogram, lower_right]: ax.set_xlim(0, 1) for ax in [side_histogram, lower_right]: ax.set_ylim(-5, 5) # histograms #command--> 24 yourkernels.hist(figsize=(15,20)) plt.figure() ###Output _____no_output_____ ###Markdown It looks like perhaps two of the input variables have a Gaussian distribution. This is useful to note as we can use algorithms that can exploit this assumption. ###Code yourkernels["TotalViews"].hist(); yourkernels["TotalComments"].hist(); sns.factorplot('TotalViews','TotalVotes',data=yourkernels) plt.show() ###Output _____no_output_____ ###Markdown 4-5 Box and Whisker PlotsIn descriptive statistics, a **box plot** or boxplot is a method for graphically depicting groups of numerical data through their quartiles. Box plots may also have lines extending vertically from the boxes (whiskers) indicating variability outside the upper and lower quartiles, hence the terms box-and-whisker plot and box-and-whisker diagram.[wikipedia] ###Code normal_sample = np.random.normal(loc=0.0, scale=1.0, size=10000) random_sample = np.random.random(size=10000) gamma_sample = np.random.gamma(2, size=10000) df = pd.DataFrame({'normal': normal_sample, 'random': random_sample, 'gamma': gamma_sample}) df.describe() plt.figure() # create a boxplot of the normal data, assign the output to a variable to supress output _ = plt.boxplot(df['normal'], whis='range') # clear the current figure plt.clf() # plot boxplots for all three of df's columns _ = plt.boxplot([ df['normal'], df['random'], df['gamma'] ], whis='range') plt.figure() _ = plt.hist(df['gamma'], bins=100) import mpl_toolkits.axes_grid1.inset_locator as mpl_il plt.figure() plt.boxplot([ df['normal'], df['random'], df['gamma'] ], whis='range') # overlay axis on top of another ax2 = mpl_il.inset_axes(plt.gca(), width='60%', height='40%', loc=2) ax2.hist(df['gamma'], bins=100) ax2.margins(x=0.5) # switch the y axis ticks for ax2 to the right side ax2.yaxis.tick_right() # if `whis` argument isn't passed, boxplot defaults to showing 1.5*interquartile (IQR) whiskers with outliers plt.figure() _ = plt.boxplot([ df['normal'], df['random'], df['gamma'] ] ) sns.factorplot('TotalComments','TotalVotes',data=yourkernels) plt.show() ###Output _____no_output_____ ###Markdown 4-6 Heatmaps ###Code plt.figure() Y = np.random.normal(loc=0.0, scale=1.0, size=10000) X = np.random.random(size=10000) _ = plt.hist2d(X, Y, bins=25) plt.figure() _ = plt.hist2d(X, Y, bins=100) ###Output _____no_output_____ ###Markdown 4-7 Animations ###Code import matplotlib.animation as animation n = 100 x = np.random.randn(n) # create the function that will do the plotting, where curr is the current frame def update(curr): # check if animation is at the last frame, and if so, stop the animation a if curr == n: a.event_source.stop() plt.cla() bins = np.arange(-4, 4, 0.5) plt.hist(x[:curr], bins=bins) plt.axis([-4,4,0,30]) plt.gca().set_title('Sampling the Normal Distribution') plt.gca().set_ylabel('Frequency') plt.gca().set_xlabel('Value') plt.annotate('n = {}'.format(curr), [3,27]) fig = plt.figure() a = animation.FuncAnimation(fig, update, interval=100) ###Output _____no_output_____ ###Markdown 4-8 Interactivity ###Code plt.figure() data = np.random.rand(10) plt.plot(data) def onclick(event): plt.cla() plt.plot(data) plt.gca().set_title('Event at pixels {},{} \nand data {},{}'.format(event.x, event.y, event.xdata, event.ydata)) # tell mpl_connect we want to pass a 'button_press_event' into onclick when the event is detected plt.gcf().canvas.mpl_connect('button_press_event', onclick) from random import shuffle origins = ['China', 'Brazil', 'India', 'USA', 'Canada', 'UK', 'Germany', 'Iraq', 'Chile', 'Mexico'] shuffle(origins) df = pd.DataFrame({'height': np.random.rand(10), 'weight': np.random.rand(10), 'origin': origins}) df plt.figure() # picker=5 means the mouse doesn't have to click directly on an event, but can be up to 5 pixels away plt.scatter(df['height'], df['weight'], picker=5) plt.gca().set_ylabel('Weight') plt.gca().set_xlabel('Height') def onpick(event): origin = df.iloc[event.ind[0]]['origin'] plt.gca().set_title('Selected item came from {}'.format(origin)) # tell mpl_connect we want to pass a 'pick_event' into onpick when the event is detected plt.gcf().canvas.mpl_connect('pick_event', onpick) # use the 'seaborn-colorblind' style plt.style.use('seaborn-colorblind') ###Output _____no_output_____ ###Markdown 4-9 DataFrame.plot ###Code np.random.seed(123) df = pd.DataFrame({'A': np.random.randn(365).cumsum(0), 'B': np.random.randn(365).cumsum(0) + 20, 'C': np.random.randn(365).cumsum(0) - 20}, index=pd.date_range('1/1/2017', periods=365)) df.head() df.plot('A','B', kind = 'scatter'); ###Output _____no_output_____ ###Markdown You can also choose the plot kind by using the `DataFrame.plot.kind` methods instead of providing the `kind` keyword argument.`kind` :- `'line'` : line plot (default)- `'bar'` : vertical bar plot- `'barh'` : horizontal bar plot- `'hist'` : histogram- `'box'` : boxplot- `'kde'` : Kernel Density Estimation plot- `'density'` : same as 'kde'- `'area'` : area plot- `'pie'` : pie plot- `'scatter'` : scatter plot- `'hexbin'` : hexbin plot [Go to top](top) ###Code # create a scatter plot of columns 'A' and 'C', with changing color (c) and size (s) based on column 'B' df.plot.scatter('A', 'C', c='B', s=df['B'], colormap='viridis') ax = df.plot.scatter('A', 'C', c='B', s=df['B'], colormap='viridis') ax.set_aspect('equal') df.plot.box(); df.plot.hist(alpha=0.7); ###Output _____no_output_____ ###Markdown [Kernel density estimation plots](https://en.wikipedia.org/wiki/Kernel_density_estimation) are useful for deriving a smooth continuous function from a given sample. ###Code df.plot.kde(); ###Output _____no_output_____ ###Markdown 5- SeabornAs you have just read, **Seaborn** is complimentary to Matplotlib and it specifically targets statistical data visualization. But it goes even further than that: Seaborn extends Matplotlib and that’s why it can address the two biggest frustrations of working with Matplotlib. Or, as Michael Waskom says in the “introduction to Seaborn”: “If matplotlib “tries to make easy things easy and hard things possible”, seaborn tries to make a well-defined set of hard things easy too.”One of these hard things or frustrations had to do with the default Matplotlib parameters. Seaborn works with different parameters, which undoubtedly speaks to those users that don’t use the default looks of the Matplotlib plotsSeaborn is a library for making statistical graphics in Python. It is built on top of matplotlib and closely integrated with pandas data structures.Here is some of the functionality that seaborn offers:A dataset-oriented API for examining relationships between multiple variablesSpecialized support for using categorical variables to show observations or aggregate statisticsOptions for visualizing univariate or bivariate distributions and for comparing them between subsets of dataAutomatic estimation and plotting of linear regression models for different kinds dependent variablesConvenient views onto the overall structure of complex datasetsHigh-level abstractions for structuring multi-plot grids that let you easily build complex visualizationsConcise control over matplotlib figure styling with several built-in themesTools for choosing color palettes that faithfully reveal patterns in your dataSeaborn aims to make visualization a central part of exploring and understanding data. Its dataset-oriented plotting functions operate on dataframes and arrays containing whole datasets and internally perform the necessary semantic mapping and statistical aggregation to produce informative plots.Here’s an example of what this means:[Go to top](top) 5-1 Seaborn Vs MatplotlibIt is summarized that if Matplotlib “tries to make easy things easy and hard things possible”, Seaborn tries to make a well defined set of hard things easy too.”Seaborn helps resolve the two major problems faced by Matplotlib; the problems are* Default Matplotlib parameters* Working with data framesAs Seaborn compliments and extends Matplotlib, the learning curve is quite gradual. If you know Matplotlib, you are already half way through Seaborn.Important Features of SeabornSeaborn is built on top of Python’s core visualization library Matplotlib. It is meant to serve as a complement, and not a replacement. However, Seaborn comes with some very important features. Let us see a few of them here. The features help in −* Built in themes for styling matplotlib graphics* Visualizing univariate and bivariate data* Fitting in and visualizing linear regression models* Plotting statistical time series data* Seaborn works well with NumPy and Pandas data structures* It comes with built in themes for styling Matplotlib graphicsIn most cases, you will still use Matplotlib for simple plotting. The knowledge of Matplotlib is recommended to tweak Seaborn’s default plots.[Go to top](top) ###Code def sinplot(flip = 1): x = np.linspace(0, 14, 100) for i in range(1, 5): plt.plot(x, np.sin(x + i * .5) * (7 - i) * flip) sinplot() plt.show() def sinplot(flip = 1): x = np.linspace(0, 14, 100) for i in range(1, 5): plt.plot(x, np.sin(x + i * .5) * (7 - i) * flip) sns.set() sinplot() plt.show() np.random.seed(1234) v1 = pd.Series(np.random.normal(0,10,1000), name='v1') v2 = pd.Series(2*v1 + np.random.normal(60,15,1000), name='v2') plt.figure() plt.hist(v1, alpha=0.7, bins=np.arange(-50,150,5), label='v1'); plt.hist(v2, alpha=0.7, bins=np.arange(-50,150,5), label='v2'); plt.legend(); plt.figure() # we can pass keyword arguments for each individual component of the plot sns.distplot(v2, hist_kws={'color': 'Teal'}, kde_kws={'color': 'Navy'}); sns.jointplot(v1, v2, alpha=0.4); grid = sns.jointplot(v1, v2, alpha=0.4); grid.ax_joint.set_aspect('equal') sns.jointplot(v1, v2, kind='hex'); # set the seaborn style for all the following plots sns.set_style('white') sns.jointplot(v1, v2, kind='kde', space=0); sns.factorplot('TotalComments','TotalVotes',data=yourkernels) plt.show() # violinplots on petal-length for each species #command--> 24 sns.violinplot(data=yourkernels,x="TotalViews", y="TotalVotes") # violinplots on petal-length for each species sns.violinplot(data=yourkernels,x="TotalComments", y="TotalVotes") sns.violinplot(data=yourkernels,x="Medal", y="TotalVotes") sns.violinplot(data=yourkernels,x="Medal", y="TotalComments") ###Output _____no_output_____ ###Markdown How many NA elements in every column. 5-2 kdeplot ###Code # seaborn's kdeplot, plots univariate or bivariate density estimates. #Size can be changed by tweeking the value used #command--> 25 sns.FacetGrid(yourkernels, hue="Medal", size=5).map(sns.kdeplot, "TotalComments").add_legend() plt.show() sns.FacetGrid(yourkernels, hue="Medal", size=5).map(sns.kdeplot, "TotalVotes").add_legend() plt.show() f,ax=plt.subplots(1,3,figsize=(20,8)) sns.distplot(yourkernels[yourkernels['Medal']==1].TotalVotes,ax=ax[0]) ax[0].set_title('TotalVotes in Medal 1') sns.distplot(yourkernels[yourkernels['Medal']==2].TotalVotes,ax=ax[1]) ax[1].set_title('TotalVotes in Medal 2') sns.distplot(yourkernels[yourkernels['Medal']==3].TotalVotes,ax=ax[2]) ax[2].set_title('TotalVotes in Medal 3') plt.show() ###Output _____no_output_____ ###Markdown 5-3 jointplot ###Code # Use seaborn's jointplot to make a hexagonal bin plot #Set desired size and ratio and choose a color. #command--> 25 sns.jointplot(x="TotalVotes", y="TotalViews", data=yourkernels, size=10,ratio=10, kind='hex',color='green') plt.show() ###Output _____no_output_____ ###Markdown 5-4 andrews_curves ###Code # we will use seaborn jointplot shows bivariate scatterplots and univariate histograms with Kernel density # estimation in the same figure sns.jointplot(x="TotalVotes", y="TotalViews", data=yourkernels, size=6, kind='kde', color='#800000', space=0) ###Output _____no_output_____ ###Markdown 5-5 Heatmap ###Code #command--> 26 plt.figure(figsize=(10,7)) sns.heatmap(yourkernels.corr(),annot=True,cmap='cubehelix_r') #draws heatmap with input as the correlation matrix calculted by(iris.corr()) plt.show() sns.factorplot('TotalComments','TotalVotes',data=yourkernels) plt.show() ###Output _____no_output_____ ###Markdown 5-6 distplot ###Code sns.distplot(yourkernels['TotalVotes']); ###Output _____no_output_____ ###Markdown 6- PlotlyHow to use **Plotly** offline inside IPython notebooks. 6-1 New to Plotly?Plotly, also known by its URL, Plot.ly, is a technical computing company headquartered in Montreal, Quebec, that develops online data analytics and visualization tools. Plotly provides online graphing, analytics, and statistics tools for individuals and collaboration, as well as scientific graphing libraries for Python, R, MATLAB, Perl, Julia, Arduino, and REST.[Go to top](top) ###Code # example for plotly import plotly.offline as py import plotly.graph_objs as go py.init_notebook_mode(connected=True) from plotly import tools from sklearn import datasets import plotly.figure_factory as ff iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. Y = iris.target x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 trace = go.Scatter(x=X[:, 0], y=X[:, 1], mode='markers', marker=dict(color=np.random.randn(150), size=10, colorscale='Viridis', showscale=False)) layout = go.Layout(title='Training Points', xaxis=dict(title='Sepal length', showgrid=False), yaxis=dict(title='Sepal width', showgrid=False), ) fig = go.Figure(data=[trace], layout=layout) py.iplot(fig) ###Output _____no_output_____ ###Markdown 6-2 Plotly Offline from Command LineYou can plot your graphs from a python script from command line. On executing the script, it will open a web browser with your Plotly Graph drawn.[Go to top](top) ###Code from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot import plotly.graph_objs as go plot([go.Scatter(x=[1, 2, 3], y=[3, 1, 6])]) ###Output _____no_output_____ ###Markdown 7- Bokeh**Bokeh** is a large library that exposes many capabilities, so this section is only a quick tour of some common Bokeh use cases and workflows. For more detailed information please consult the full User Guide.Let’s begin with some examples. Plotting data in basic Python lists as a line plot including zoom, pan, save, and other tools is simple and straightforward:[Go to top](top) ###Code from ipywidgets import interact import numpy as np from bokeh.io import push_notebook, show, output_notebook from bokeh.plotting import figure output_notebook() x = np.linspace(0, 2*np.pi, 2000) y = np.sin(x) from bokeh.plotting import figure, output_file, show # prepare some data x = [1, 2, 3, 4, 5] y = [6, 7, 2, 4, 5] # create a new plot with a title and axis labels p = figure(title="simple line example", x_axis_label='x', y_axis_label='y') # add a line renderer with legend and line thickness p.line(x, y, legend="Temp.", line_width=2) # show the results show(p) ###Output _____no_output_____ ###Markdown When you execute this script, you will see that a new output file "lines.html" is created, and that a browser automatically opens a new tab to display it. (For presentation purposes we have included the plot output directly inline in this document.)The basic steps to creating plots with the bokeh.plotting interface are:Prepare some dataIn this case plain python lists, but could also be NumPy arrays or Pandas series.Tell Bokeh where to generate outputIn this case using output_file(), with the filename "lines.html". Another option is output_notebook() for use in Jupyter notebooks.Call figure()This creates a plot with typical default options and easy customization of title, tools, and axes labels.Add renderersIn this case, we use line() for our data, specifying visual customizations like colors, legends and widths.Ask Bokeh to show() or save() the results.These functions save the plot to an HTML file and optionally display it in a browser.Steps three and four can be repeated to create more than one plot, as shown in some of the examples below.The bokeh.plotting interface is also quite handy if we need to customize the output a bit more by adding more data series, glyphs, logarithmic axis, and so on. It’s also possible to easily combine multiple glyphs together on one plot as shown below:[Go to top](top) ###Code from bokeh.plotting import figure, output_file, show # prepare some data x = [0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0] y0 = [i**2 for i in x] y1 = [10**i for i in x] y2 = [10**(i**2) for i in x] # create a new plot p = figure( tools="pan,box_zoom,reset,save", y_axis_type="log", y_range=[0.001, 10**11], title="log axis example", x_axis_label='sections', y_axis_label='particles' ) # add some renderers p.line(x, x, legend="y=x") p.circle(x, x, legend="y=x", fill_color="white", size=8) p.line(x, y0, legend="y=x^2", line_width=3) p.line(x, y1, legend="y=10^x", line_color="red") p.circle(x, y1, legend="y=10^x", fill_color="red", line_color="red", size=6) p.line(x, y2, legend="y=10^x^2", line_color="orange", line_dash="4 4") # show the results show(p) ###Output _____no_output_____ ###Markdown Top 5 Data Visualization Libraries Tutorial last update: 25/01/2019> You may be interested have a look at 10 Steps to Become a Data Scientist: 1. [Leren Python](https://www.kaggle.com/mjbahmani/the-data-scientist-s-toolbox-tutorial-1)2. [Python Packages](https://www.kaggle.com/mjbahmani/the-data-scientist-s-toolbox-tutorial-2)3. [Mathematics and Linear Algebra](https://www.kaggle.com/mjbahmani/linear-algebra-for-data-scientists)4. [Programming &amp; Analysis Tools](https://www.kaggle.com/mjbahmani/20-ml-algorithms-15-plot-for-beginners)5. [Big Data](https://www.kaggle.com/mjbahmani/a-data-science-framework-for-quora)6. You are in the Sixth step7. [Data Cleaning](https://www.kaggle.com/mjbahmani/machine-learning-workflow-for-house-prices)8. [How to solve a Problem?](https://www.kaggle.com/mjbahmani/the-data-scientist-s-toolbox-tutorial-2)9. [Machine Learning](https://www.kaggle.com/mjbahmani/a-comprehensive-ml-workflow-with-python)10. [Deep Learning](https://www.kaggle.com/mjbahmani/top-5-deep-learning-frameworks-tutorial)---------------------------------------------------------------------You can Fork and Run this kernel on Github:> [ GitHub](https://github.com/mjbahmani/10-steps-to-become-a-data-scientist)------------------------------------------------------------------------------------------------------------- **I hope you find this kernel helpful and some UPVOTES would be very much appreciated** ----------- Notebook Content1. [Introduction](1)1. [Loading Packages](2) 1. [version](21) 1. [Setup](22) 1. [Data Collection](23)1. [Data Visualization Libraries](4)1. [Matplotlib](4) 1. [Scatterplots](41) 1. [ Line Plots](42) 1. [Bar Charts](43) 1. [Histograms](44) 1. [Box and Whisker Plots](45) 1. [Heatmaps](46) 1. [Animations](47) 1. [Interactivity](48) 1. [DataFrame.plot](49)1. [Seaborn](5) 1. [Seaborn Vs Matplotlib](51) 1. [Useful Python Data Visualization Libraries](52)1. [Plotly](6) 1. [New to Plotly?](61) 1. [Plotly Offline from Command Line](62)1. [Bokeh](7)1. [networkx](8)1. [Read more](9) 1. [Courses](91) 1. [Ebooks](92) 1. [Cheat sheet](93)1. [Conclusion](10) 1. [References](11) 1- IntroductionIf you've followed my other kernels so far. You have noticed that for those who are beginners, I've introduced a course " 10 Steps to Become a Data Scientist ". In this kernel we will start another step with each other. There are plenty of Kernels that can help you learn Python 's Libraries from scratch but here in Kaggle, I want to Analysis Meta Kaggle a popular Dataset.After reading, you can use it to Analysis other real dataset and use it as a template to deal with ML problems.It is clear that everyone in this community is familiar with Meta Kaggle dataset but if you need to review your information about the datasets please visit [meta-kaggle](https://www.kaggle.com/kaggle/meta-kaggle) .I am open to getting your feedback for improving this **kernel** together. 2- Loading PackagesIn this kernel we are using the following packages: ###Code from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot from bokeh.io import push_notebook, show, output_notebook import mpl_toolkits.axes_grid1.inset_locator as mpl_il from bokeh.plotting import figure, output_file, show from bokeh.io import show, output_notebook import matplotlib.animation as animation from matplotlib.figure import Figure from sklearn.cluster import KMeans import plotly.figure_factory as ff import matplotlib.pylab as pylab from ipywidgets import interact import plotly.graph_objs as go import plotly.graph_objs as go import matplotlib.pyplot as plt from bokeh.plotting import figure from sklearn import datasets import plotly.plotly as py import plotly.graph_objs as go from plotly import tools from sklearn import datasets import plotly.offline as py from random import randint from plotly import tools import matplotlib as mpl import seaborn as sns import pandas as pd import numpy as np import matplotlib import warnings import string import numpy import csv import os ###Output _____no_output_____ ###Markdown 2-1 version ###Code print('matplotlib: {}'.format(matplotlib.__version__)) print('seaborn: {}'.format(sns.__version__)) print('pandas: {}'.format(pd.__version__)) print('numpy: {}'.format(np.__version__)) #print('wordcloud: {}'.format(wordcloud.version)) ###Output _____no_output_____ ###Markdown 2-2 SetupA few tiny adjustments for better **code readability** ###Code sns.set(style='white', context='notebook', palette='deep') pylab.rcParams['figure.figsize'] = 12,8 warnings.filterwarnings('ignore') mpl.style.use('ggplot') sns.set_style('white') %matplotlib inline ###Output _____no_output_____ ###Markdown 2-3 Data Collection**Data collection** is the process of gathering and measuring data, information or any variables of interest in a standardized and established manner that enables the collector to answer or test hypothesis and evaluate outcomes of the particular collection.[techopedia]I start Collection Data by the Users and Kernels datasets into **Pandas DataFrames** ###Code # import kernels and users to play with it (MJ Bahmani) #command--> 1 users = pd.read_csv("../input/Users.csv") kernels = pd.read_csv("../input/Kernels.csv") messages = pd.read_csv("../input/ForumMessages.csv") ###Output _____no_output_____ ###Markdown **>*** Each row is an observation (also known as : sample, example, instance, record)* Each column is a feature (also known as: Predictor, attribute, Independent Variable, input, regressor, Covariate) [Go to top](top) ###Code #command--> 2 users.sample(1) ###Output _____no_output_____ ###Markdown Please **replace** your username and find your useridWe suppose that userid==authoruserid and use userid for both kernels and users dataset ###Code username="mjbahmani" userid=int(users[users['UserName']=="mjbahmani"].Id) userid ###Output _____no_output_____ ###Markdown We can just use **dropna()**(be careful sometimes you should not do this!) ###Code # remove rows that have NA's print('Before Droping',messages.shape) #command--> 3 messages = messages.dropna() print('After Droping',messages.shape) ###Output _____no_output_____ ###Markdown 2-3-1 FeaturesFeatures can be from following types:1. numeric1. categorical1. ordinal1. datetime1. coordinatesFind the type of features in **Meta Kaggle**?!For getting some information about the dataset you can use **info()** command [Go to top](top) ###Code #command--> 4 print(users.info()) ###Output _____no_output_____ ###Markdown 2-3-2 Explorer Dataset1. Dimensions of the dataset.1. Peek at the data itself.1. Statistical summary of all attributes.1. Breakdown of the data by the class variable.Don’t worry, each look at the data is **one command**. These are useful commands that you can use again and again on future projects. [Go to top](top) ###Code # shape #command--> 5 print(users.shape) #columns*rows #command--> 6 users.size ###Output _____no_output_____ ###Markdown We can get a quick idea of how many instances (rows) and how many attributes (columns) the data contains with the shape property. You see number of unique item for Species with command below: ###Code #command--> 7 kernels['Medal'].unique() #command--> 8 kernels["Medal"].value_counts() ###Output _____no_output_____ ###Markdown To check the first 5 rows of the data set, we can use head(5). ###Code kernels.head(5) ###Output _____no_output_____ ###Markdown To check out last 5 row of the data set, we use tail() function ###Code #command--> 9 users.tail() ###Output _____no_output_____ ###Markdown To pop up 5 random rows from the data set, we can use **sample(5)** function ###Code kernels.sample(5) ###Output _____no_output_____ ###Markdown To give a statistical summary about the dataset, we can use **describe()** ###Code kernels.describe() ###Output _____no_output_____ ###Markdown 2-3-5 Find yourself in Users datset ###Code #command--> 12 users[users['Id']==userid] ###Output _____no_output_____ ###Markdown 2-3-6 Find your kernels in Kernels dataset ###Code #command--> 13 yourkernels=kernels[kernels['AuthorUserId']==userid] yourkernels.head(2) ###Output _____no_output_____ ###Markdown 3- Data Visualization LibrariesBefore you start learning , I am giving an overview of 10 interdisciplinary **Python data visualization libraries**, from the well-known to the obscure.* 1- matplotlibmatplotlib is the O.G. of Python data visualization libraries. Despite being over a decade old, it’s still the most widely used library for plotting in the Python community. It was designed to closely resemble MATLAB, a proprietary programming language developed in the 1980s.* 2- SeabornSeaborn harnesses the power of matplotlib to create beautiful charts in a few lines of code. The key difference is Seaborn’s default styles and color palettes, which are designed to be more aesthetically pleasing and modern. Since Seaborn is built on top of matplotlib, you’ll need to know matplotlib to tweak Seaborn’s defaults.* 3- ggplotggplot is based on ggplot2, an R plotting system, and concepts from The Grammar of Graphics. ggplot operates differently than matplotlib: it lets you layer components to create a complete plot. For instance, you can start with axes, then add points, then a line, a trendline, etc. Although The Grammar of Graphics has been praised as an “intuitive” method for plotting, seasoned matplotlib users might need time to adjust to this new mindset.* 4- BokehLike ggplot, Bokeh is based on The Grammar of Graphics, but unlike ggplot, it’s native to Python, not ported over from R. Its strength lies in the ability to create interactive, web-ready plots, which can be easily outputted as JSON objects, HTML documents, or interactive web applications. Bokeh also supports streaming and real-time data.* 5- pygalLike Bokeh and Plotly, pygal offers interactive plots that can be embedded in the web browser. Its prime differentiator is the ability to output charts as SVGs. As long as you’re working with smaller datasets, SVGs will do you just fine. But if you’re making charts with hundreds of thousands of data points, they’ll have trouble rendering and become sluggish.* 6- PlotlyYou might know Plotly as an online platform for data visualization, but did you also know you can access its capabilities from a Python notebook? Like Bokeh, Plotly’s forte is making interactive plots, but it offers some charts you won’t find in most libraries, like contour plots, dendograms, and 3D charts.* 7- geoplotlibgeoplotlib is a toolbox for creating maps and plotting geographical data. You can use it to create a variety of map-types, like choropleths, heatmaps, and dot density maps. You must have Pyglet (an object-oriented programming interface) installed to use geoplotlib. Nonetheless, since most Python data visualization libraries don’t offer maps, it’s nice to have a library dedicated solely to them.* 8- GleamGleam is inspired by R’s Shiny package. It allows you to turn analyses into interactive web apps using only Python scripts, so you don’t have to know any other languages like HTML, CSS, or JavaScript. Gleam works with any Python data visualization library. Once you’ve created a plot, you can build fields on top of it so users can filter and sort data.* 9- missingnoDealing with missing data is a pain. missingno allows you to quickly gauge the completeness of a dataset with a visual summary, instead of trudging through a table. You can filter and sort data based on completion or spot correlations with a heatmap or a dendrogram.* 10- LeatherLeather’s creator, Christopher Groskopf, puts it best: “Leather is the Python charting library for those who need charts now and don’t care if they’re perfect.” It’s designed to work with all data types and produces charts as SVGs, so you can scale them without losing image quality. Since this library is relatively new, some of the documentation is still in progress. The charts you can make are pretty basic—but that’s the intention.At the end, nice cheatsheet on how to best visualize your data. I think I will print it out as a good reminder of "best practices". Check out the link for the complete cheatsheet, also as a PDF. * 11- ChartifyChartify is a Python library that makes it easy for data scientists to create charts.Why use Chartify?1. Consistent input data format: Spend less time transforming data to get your charts to work. All plotting functions use a consistent tidy input data format.1. Smart default styles: Create pretty charts with very little customization required.1. Simple API: We've attempted to make to the API as intuitive and easy to learn as possible.1. Flexibility: Chartify is built on top of Bokeh, so if you do need more control you can always fall back on Bokeh's API.Link: https://github.com/mjbahmani/Machine-Learning-Workflow-with-Python![cheatsheet ][1][Reference][2] [1]: http://s8.picofile.com/file/8340669884/53f6a826_d7df_4b55_81e6_7c23b3fff0a3_original.png [2]: https://blog.modeanalytics.com/python-data-visualization-libraries/ 4- MatplotlibThis Matplotlib tutorial takes you through the basics Python data visualization: 1. the anatomy of a plot 1. pyplot 1. pylab1. and much more [Go to top](top) You can show matplotlib figures directly in the notebook by using the `%matplotlib notebook` and `%matplotlib inline` magic commands. `%matplotlib notebook` provides an interactive environment. We can use html cell magic to display the image. ###Code #import matplotlib.pyplot as plt plt.plot([1, 2, 3, 4], [10, 20, 25, 30], color='lightblue', linewidth=3) plt.scatter([0.4, 3.8, 1.2, 2.5], [15, 25, 9, 26], color='darkgreen', marker='o') plt.xlim(0.5, 4.5) plt.show() ###Output _____no_output_____ ###Markdown Simple and powerful visualizations can be generated using the **Matplotlib Python** Library. More than a decade old, it is the most widely-used library for plotting in the Python community. A wide range of graphs from histograms to heat plots to line plots can be plotted using Matplotlib.Many other libraries are built on top of Matplotlib and are designed to work in conjunction with analysis, it being the first Python data visualization library. Libraries like pandas and matplotlib are “wrappers” over Matplotlib allowing access to a number of Matplotlib’s methods with less code.[7] 4-1 Scatterplots ###Code x = np.array([1,2,3,4,5,6,7,8]) y = x plt.figure() plt.scatter(x, y) # similar to plt.plot(x, y, '.'), but the underlying child objects in the axes are not Line2D x = np.array([1,2,3,4,5,6,7,8]) y = x # create a list of colors for each point to have # ['green', 'green', 'green', 'green', 'green', 'green', 'green', 'red'] colors = ['green']*(len(x)-1) colors.append('red') plt.figure() # plot the point with size 100 and chosen colors plt.scatter(x, y, s=100, c=colors) plt.figure() # plot a data series 'Tall students' in red using the first two elements of x and y plt.scatter(x[:2], y[:2], s=100, c='red', label='Tall students') # plot a second data series 'Short students' in blue using the last three elements of x and y plt.scatter(x[2:], y[2:], s=100, c='blue', label='Short students') x = np.random.randint(low=1, high=11, size=50) y = x + np.random.randint(1, 5, size=x.size) data = np.column_stack((x, y)) fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(8, 4)) ax1.scatter(x=x, y=y, marker='o', c='r', edgecolor='b') ax1.set_title('Scatter: $x$ versus $y$') ax1.set_xlabel('$x$') ax1.set_ylabel('$y$') ax2.hist(data, bins=np.arange(data.min(), data.max()), label=('x', 'y')) ax2.legend(loc=(0.65, 0.8)) ax2.set_title('Frequencies of $x$ and $y$') ax2.yaxis.tick_right() # Modify the graph above by assigning each species an individual color. #command--> 19 x=yourkernels["TotalVotes"] y=yourkernels["TotalViews"] plt.scatter(x, y) plt.legend() plt.show() ###Output _____no_output_____ ###Markdown 4-2 Line Plots ###Code linear_data = np.array([1,2,3,4,5,6,7,8]) exponential_data = linear_data**2 plt.figure() # plot the linear data and the exponential data plt.plot(linear_data, '-o', exponential_data, '-o') # plot another series with a dashed red line plt.plot([22,44,55], '--r') ###Output _____no_output_____ ###Markdown 4-3 Bar Charts ###Code plt.figure() xvals = range(len(linear_data)) plt.bar(xvals, linear_data, width = 0.3) new_xvals = [] # plot another set of bars, adjusting the new xvals to make up for the first set of bars plotted for item in xvals: new_xvals.append(item+0.3) plt.bar(new_xvals, exponential_data, width = 0.3 ,color='red') linear_err = [randint(0,15) for x in range(len(linear_data))] # This will plot a new set of bars with errorbars using the list of random error values plt.bar(xvals, linear_data, width = 0.3, yerr=linear_err) # stacked bar charts are also possible plt.figure() xvals = range(len(linear_data)) plt.bar(xvals, linear_data, width = 0.3, color='b') plt.bar(xvals, exponential_data, width = 0.3, bottom=linear_data, color='r') # or use barh for horizontal bar charts plt.figure() xvals = range(len(linear_data)) plt.barh(xvals, linear_data, height = 0.3, color='b') plt.barh(xvals, exponential_data, height = 0.3, left=linear_data, color='r') # Initialize the plot fig = plt.figure(figsize=(20,10)) ax1 = fig.add_subplot(121) ax2 = fig.add_subplot(122) # or replace the three lines of code above by the following line: #fig, (ax1, ax2) = plt.subplots(1,2, figsize=(20,10)) # Plot the data ax1.bar([1,2,3],[3,4,5]) ax2.barh([0.5,1,2.5],[0,1,2]) # Show the plot plt.show() plt.figure() # subplot with 1 row, 2 columns, and current axis is 1st subplot axes plt.subplot(1, 2, 1) linear_data = np.array([1,2,3,4,5,6,7,8]) plt.plot(linear_data, '-o') exponential_data = linear_data**2 # subplot with 1 row, 2 columns, and current axis is 2nd subplot axes plt.subplot(1, 2, 2) plt.plot(exponential_data, '-o') # plot exponential data on 1st subplot axes plt.subplot(1, 2, 1) plt.plot(exponential_data, '-x') plt.figure() ax1 = plt.subplot(1, 2, 1) plt.plot(linear_data, '-o') # pass sharey=ax1 to ensure the two subplots share the same y axis ax2 = plt.subplot(1, 2, 2, sharey=ax1) plt.plot(exponential_data, '-x') ###Output _____no_output_____ ###Markdown 4-4 Histograms ###Code # create 2x2 grid of axis subplots fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, sharex=True) axs = [ax1,ax2,ax3,ax4] # draw n = 10, 100, 1000, and 10000 samples from the normal distribution and plot corresponding histograms for n in range(0,len(axs)): sample_size = 10**(n+1) sample = np.random.normal(loc=0.0, scale=1.0, size=sample_size) axs[n].hist(sample) axs[n].set_title('n={}'.format(sample_size)) # repeat with number of bins set to 100 fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, sharex=True) axs = [ax1,ax2,ax3,ax4] for n in range(0,len(axs)): sample_size = 10**(n+1) sample = np.random.normal(loc=0.0, scale=1.0, size=sample_size) axs[n].hist(sample, bins=100) axs[n].set_title('n={}'.format(sample_size)) plt.figure() Y = np.random.normal(loc=0.0, scale=1.0, size=10000) X = np.random.random(size=10000) plt.scatter(X,Y) ###Output _____no_output_____ ###Markdown It looks like perhaps two of the input variables have a Gaussian distribution. This is useful to note as we can use algorithms that can exploit this assumption. ###Code yourkernels["TotalViews"].hist(); yourkernels["TotalComments"].hist(); sns.factorplot('TotalViews','TotalVotes',data=yourkernels) plt.show() ###Output _____no_output_____ ###Markdown 4-5 Box and Whisker PlotsIn descriptive statistics, a **box plot** or boxplot is a method for graphically depicting groups of numerical data through their quartiles. Box plots may also have lines extending vertically from the boxes (whiskers) indicating variability outside the upper and lower quartiles, hence the terms box-and-whisker plot and box-and-whisker diagram.[wikipedia] ###Code normal_sample = np.random.normal(loc=0.0, scale=1.0, size=10000) random_sample = np.random.random(size=10000) gamma_sample = np.random.gamma(2, size=10000) df = pd.DataFrame({'normal': normal_sample, 'random': random_sample, 'gamma': gamma_sample}) plt.figure() # create a boxplot of the normal data, assign the output to a variable to supress output _ = plt.boxplot(df['normal'], whis='range') # clear the current figure plt.clf() # plot boxplots for all three of df's columns _ = plt.boxplot([ df['normal'], df['random'], df['gamma'] ], whis='range') plt.figure() _ = plt.hist(df['gamma'], bins=100) plt.figure() plt.boxplot([ df['normal'], df['random'], df['gamma'] ], whis='range') # overlay axis on top of another ax2 = mpl_il.inset_axes(plt.gca(), width='60%', height='40%', loc=2) ax2.hist(df['gamma'], bins=100) ax2.margins(x=0.5) # switch the y axis ticks for ax2 to the right side ax2.yaxis.tick_right() # if `whis` argument isn't passed, boxplot defaults to showing 1.5*interquartile (IQR) whiskers with outliers plt.figure() _ = plt.boxplot([ df['normal'], df['random'], df['gamma'] ] ) sns.factorplot('TotalComments','TotalVotes',data=yourkernels) plt.show() ###Output _____no_output_____ ###Markdown 4-6 Heatmaps ###Code plt.figure() Y = np.random.normal(loc=0.0, scale=1.0, size=10000) X = np.random.random(size=10000) _ = plt.hist2d(X, Y, bins=25) plt.figure() _ = plt.hist2d(X, Y, bins=100) ###Output _____no_output_____ ###Markdown 4-7 Animations ###Code n = 100 x = np.random.randn(n) # create the function that will do the plotting, where curr is the current frame def update(curr): # check if animation is at the last frame, and if so, stop the animation a if curr == n: a.event_source.stop()n = 100 x = np.random.randn(n) plt.cla() bins = np.arange(-4, 4, 0.5) plt.hist(x[:curr], bins=bins) plt.axis([-4,4,0,30]) plt.gca().set_title('Sampling the Normal Distribution') plt.gca().set_ylabel('Frequency') plt.gca().set_xlabel('Value') plt.annotate('n = {}'.format(curr), [3,27]) fig = plt.figure() a = animation.FuncAnimation(fig, update, interval=100) ###Output _____no_output_____ ###Markdown 4-8 Interactivity ###Code plt.figure() data = np.random.rand(10) plt.plot(data) def onclick(event): plt.cla() plt.plot(data) plt.gca().set_title('Event at pixels {},{} \nand data {},{}'.format(event.x, event.y, event.xdata, event.ydata)) # tell mpl_connect we want to pass a 'button_press_event' into onclick when the event is detected plt.gcf().canvas.mpl_connect('button_press_event', onclick) from random import shuffle origins = ['China', 'Brazil', 'India', 'USA', 'Canada', 'UK', 'Germany', 'Iraq', 'Chile', 'Mexico'] shuffle(origins) df = pd.DataFrame({'height': np.random.rand(10), 'weight': np.random.rand(10), 'origin': origins}) df plt.figure() # picker=5 means the mouse doesn't have to click directly on an event, but can be up to 5 pixels away plt.scatter(df['height'], df['weight'], picker=5) plt.gca().set_ylabel('Weight') plt.gca().set_xlabel('Height') def onpick(event): origin = df.iloc[event.ind[0]]['origin'] plt.gca().set_title('Selected item came from {}'.format(origin)) # tell mpl_connect we want to pass a 'pick_event' into onpick when the event is detected plt.gcf().canvas.mpl_connect('pick_event', onpick) # use the 'seaborn-colorblind' style plt.style.use('seaborn-colorblind') ###Output _____no_output_____ ###Markdown 4-9 DataFrame.plot ###Code np.random.seed(123) df = pd.DataFrame({'A': np.random.randn(365).cumsum(0), 'B': np.random.randn(365).cumsum(0) + 20, 'C': np.random.randn(365).cumsum(0) - 20}, index=pd.date_range('1/1/2017', periods=365)) df.head() df.plot('A','B', kind = 'scatter'); ###Output _____no_output_____ ###Markdown You can also choose the plot kind by using the `DataFrame.plot.kind` methods instead of providing the `kind` keyword argument.`kind` :- `'line'` : line plot (default)- `'bar'` : vertical bar plot- `'barh'` : horizontal bar plot- `'hist'` : histogram- `'box'` : boxplot- `'kde'` : Kernel Density Estimation plot- `'density'` : same as 'kde'- `'area'` : area plot- `'pie'` : pie plot- `'scatter'` : scatter plot- `'hexbin'` : hexbin plot [Go to top](top) ###Code # create a scatter plot of columns 'A' and 'C', with changing color (c) and size (s) based on column 'B' df.plot.scatter('A', 'C', c='B', s=df['B'], colormap='viridis') ax = df.plot.scatter('A', 'C', c='B', s=df['B'], colormap='viridis') ax.set_aspect('equal') df.plot.box(); df.plot.hist(alpha=0.7); ###Output _____no_output_____ ###Markdown [Kernel density estimation plots](https://en.wikipedia.org/wiki/Kernel_density_estimation) are useful for deriving a smooth continuous function from a given sample. ###Code df.plot.kde(); ###Output _____no_output_____ ###Markdown 5- SeabornSeaborn is an open source, BSD-licensed Python library providing high level API for visualizing the data using Python programming language.[9][Go to top](top) 5-1 Seaborn Vs MatplotlibIt is summarized that if Matplotlib “tries to make easy things easy and hard things possible”, Seaborn tries to make a well defined set of hard things easy too.”Seaborn helps resolve the two major problems faced by Matplotlib; the problems are* Default Matplotlib parameters* Working with data framesAs Seaborn compliments and extends Matplotlib, the learning curve is quite gradual. If you know Matplotlib, you are already half way through Seaborn.Important Features of SeabornSeaborn is built on top of Python’s core visualization library Matplotlib. It is meant to serve as a complement, and not a replacement. However, Seaborn comes with some very important features. Let us see a few of them here. The features help in −* Built in themes for styling matplotlib graphics* Visualizing univariate and bivariate data* Fitting in and visualizing linear regression models* Plotting statistical time series data* Seaborn works well with NumPy and Pandas data structures* It comes with built in themes for styling Matplotlib graphicsIn most cases, you will still use Matplotlib for simple plotting. The knowledge of Matplotlib is recommended to tweak Seaborn’s default plots.[9][Go to top](top) ###Code def sinplot(flip = 1): x = np.linspace(0, 14, 100) for i in range(1, 5): plt.plot(x, np.sin(x + i * .5) * (7 - i) * flip) sinplot() plt.show() def sinplot(flip = 1): x = np.linspace(0, 14, 100) for i in range(1, 5): plt.plot(x, np.sin(x + i * .5) * (7 - i) * flip) sns.set() sinplot() plt.show() np.random.seed(1234) v1 = pd.Series(np.random.normal(0,10,1000), name='v1') v2 = pd.Series(2*v1 + np.random.normal(60,15,1000), name='v2') plt.figure() plt.hist(v1, alpha=0.7, bins=np.arange(-50,150,5), label='v1'); plt.hist(v2, alpha=0.7, bins=np.arange(-50,150,5), label='v2'); plt.legend(); plt.figure() # we can pass keyword arguments for each individual component of the plot sns.distplot(v2, hist_kws={'color': 'Teal'}, kde_kws={'color': 'Navy'}); sns.jointplot(v1, v2, alpha=0.4); grid = sns.jointplot(v1, v2, alpha=0.4); grid.ax_joint.set_aspect('equal') sns.jointplot(v1, v2, kind='hex'); # set the seaborn style for all the following plots sns.set_style('white') sns.jointplot(v1, v2, kind='kde', space=0); sns.factorplot('TotalComments','TotalVotes',data=yourkernels) plt.show() # Not done # violinplots on petal-length for each species #command--> 24 sns.violinplot(data=yourkernels,x="TotalViews", y="TotalVotes") # violinplots on petal-length for each species sns.violinplot(data=yourkernels,x="TotalComments", y="TotalVotes") sns.violinplot(data=yourkernels,x="Medal", y="TotalVotes") sns.violinplot(data=yourkernels,x="Medal", y="TotalComments") ###Output _____no_output_____ ###Markdown How many NA elements in every column. 5-2 kdeplot ###Code # seaborn's kdeplot, plots univariate or bivariate density estimates. #Size can be changed by tweeking the value used #command--> 25 sns.FacetGrid(yourkernels, hue="Medal", size=5).map(sns.kdeplot, "TotalComments").add_legend() plt.show() sns.FacetGrid(yourkernels, hue="Medal", size=5).map(sns.kdeplot, "TotalVotes").add_legend() plt.show() f,ax=plt.subplots(1,3,figsize=(20,8)) sns.distplot(yourkernels[yourkernels['Medal']==1].TotalVotes,ax=ax[0]) ax[0].set_title('TotalVotes in Medal 1') sns.distplot(yourkernels[yourkernels['Medal']==2].TotalVotes,ax=ax[1]) ax[1].set_title('TotalVotes in Medal 2') sns.distplot(yourkernels[yourkernels['Medal']==3].TotalVotes,ax=ax[2]) ax[2].set_title('TotalVotes in Medal 3') plt.show() ###Output _____no_output_____ ###Markdown 5-3 jointplot ###Code # Use seaborn's jointplot to make a hexagonal bin plot #Set desired size and ratio and choose a color. #command--> 25 sns.jointplot(x="TotalVotes", y="TotalViews", data=yourkernels, size=10,ratio=10, kind='hex',color='green') plt.show() ###Output _____no_output_____ ###Markdown 5-4 andrews_curves ###Code # we will use seaborn jointplot shows bivariate scatterplots and univariate histograms with Kernel density # estimation in the same figure sns.jointplot(x="TotalVotes", y="TotalViews", data=yourkernels, size=6, kind='kde', color='#800000', space=0) ###Output _____no_output_____ ###Markdown 5-5 Heatmap ###Code #command--> 26 plt.figure(figsize=(10,7)) sns.heatmap(yourkernels.corr(),annot=True,cmap='cubehelix_r') #draws heatmap with input as the correlation matrix calculted by(iris.corr()) plt.show() sns.factorplot('TotalComments','TotalVotes',data=yourkernels) plt.show() ###Output _____no_output_____ ###Markdown 5-6 distplot ###Code sns.distplot(yourkernels['TotalVotes']); ###Output _____no_output_____ ###Markdown 6- PlotlyHow to use **Plotly** offline inside IPython notebooks. 6-1 New to Plotly?Plotly, also known by its URL, Plot.ly, is a technical computing company headquartered in Montreal, Quebec, that develops online data analytics and visualization tools. Plotly provides online graphing, analytics, and statistics tools for individuals and collaboration, as well as scientific graphing libraries for Python, R, MATLAB, Perl, Julia, Arduino, and REST.[Go to top](top) ###Code # example for plotly py.init_notebook_mode(connected=True) iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. Y = iris.target x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 trace = go.Scatter(x=X[:, 0], y=X[:, 1], mode='markers', marker=dict(color=np.random.randn(150), size=10, colorscale='Viridis', showscale=False)) layout = go.Layout(title='Training Points', xaxis=dict(title='Sepal length', showgrid=False), yaxis=dict(title='Sepal width', showgrid=False), ) fig = go.Figure(data=[trace], layout=layout) py.iplot(fig) from sklearn.decomposition import PCA X_reduced = PCA(n_components=3).fit_transform(iris.data) trace = go.Scatter3d(x=X_reduced[:, 0], y=X_reduced[:, 1], z=X_reduced[:, 2], mode='markers', marker=dict( size=6, color=np.random.randn(150), colorscale='Viridis', opacity=0.8) ) layout=go.Layout(title='First three PCA directions', scene=dict( xaxis=dict(title='1st eigenvector'), yaxis=dict(title='2nd eigenvector'), zaxis=dict(title='3rd eigenvector')) ) fig = go.Figure(data=[trace], layout=layout) py.iplot(fig) ###Output _____no_output_____ ###Markdown 6-2 Plotly Offline from Command LineYou can plot your graphs from a python script from command line. On executing the script, it will open a web browser with your Plotly Graph drawn.[Go to top](top) ###Code plot([go.Scatter(x=[1, 2, 3], y=[3, 1, 6])]) np.random.seed(5) fig = tools.make_subplots(rows=2, cols=3, print_grid=False, specs=[[{'is_3d': True}, {'is_3d': True}, {'is_3d': True}], [ {'is_3d': True, 'rowspan':1}, None, None]]) scene = dict( camera = dict( up=dict(x=0, y=0, z=1), center=dict(x=0, y=0, z=0), eye=dict(x=2.5, y=0.1, z=0.1) ), xaxis=dict( range=[-1, 4], title='Petal width', gridcolor='rgb(255, 255, 255)', zerolinecolor='rgb(255, 255, 255)', showbackground=True, backgroundcolor='rgb(230, 230,230)', showticklabels=False, ticks='' ), yaxis=dict( range=[4, 8], title='Sepal length', gridcolor='rgb(255, 255, 255)', zerolinecolor='rgb(255, 255, 255)', showbackground=True, backgroundcolor='rgb(230, 230,230)', showticklabels=False, ticks='' ), zaxis=dict( range=[1,8], title='Petal length', gridcolor='rgb(255, 255, 255)', zerolinecolor='rgb(255, 255, 255)', showbackground=True, backgroundcolor='rgb(230, 230,230)', showticklabels=False, ticks='' ) ) centers = [[1, 1], [-1, -1], [1, -1]] iris = datasets.load_iris() X = iris.data y = iris.target estimators = {'k_means_iris_3': KMeans(n_clusters=3), 'k_means_iris_8': KMeans(n_clusters=8), 'k_means_iris_bad_init': KMeans(n_clusters=3, n_init=1, init='random')} fignum = 1 for name, est in estimators.items(): est.fit(X) labels = est.labels_ trace = go.Scatter3d(x=X[:, 3], y=X[:, 0], z=X[:, 2], showlegend=False, mode='markers', marker=dict( color=labels.astype(np.float), line=dict(color='black', width=1) )) fig.append_trace(trace, 1, fignum) fignum = fignum + 1 y = np.choose(y, [1, 2, 0]).astype(np.float) trace1 = go.Scatter3d(x=X[:, 3], y=X[:, 0], z=X[:, 2], showlegend=False, mode='markers', marker=dict( color=y, line=dict(color='black', width=1))) fig.append_trace(trace1, 2, 1) fig['layout'].update(height=900, width=900, margin=dict(l=10,r=10)) py.iplot(fig) ###Output _____no_output_____ ###Markdown 7- Bokeh**Bokeh** is a large library that exposes many capabilities, so this section is only a quick tour of some common Bokeh use cases and workflows. For more detailed information please consult the full User Guide.[11]Let’s begin with some examples. Plotting data in basic Python lists as a line plot including zoom, pan, save, and other tools is simple and straightforward:[Go to top](top) ###Code output_notebook() x = np.linspace(0, 2*np.pi, 2000) y = np.sin(x) # prepare some data x = [1, 2, 3, 4, 5] y = [6, 7, 2, 4, 5] # create a new plot with a title and axis labels p = figure(title="simple line example", x_axis_label='x', y_axis_label='y') # add a line renderer with legend and line thickness p.line(x, y, legend="Temp.", line_width=2) # show the results show(p) ###Output _____no_output_____ ###Markdown When you execute this script, you will see that a new output file "lines.html" is created, and that a browser automatically opens a new tab to display it. (For presentation purposes we have included the plot output directly inline in this document.)The basic steps to creating plots with the bokeh.plotting interface are:Prepare some dataIn this case plain python lists, but could also be NumPy arrays or Pandas series.Tell Bokeh where to generate outputIn this case using output_file(), with the filename "lines.html". Another option is output_notebook() for use in Jupyter notebooks.Call figure()This creates a plot with typical default options and easy customization of title, tools, and axes labels.Add renderersIn this case, we use line() for our data, specifying visual customizations like colors, legends and widths.Ask Bokeh to show() or save() the results.These functions save the plot to an HTML file and optionally display it in a browser.Steps three and four can be repeated to create more than one plot, as shown in some of the examples below.The bokeh.plotting interface is also quite handy if we need to customize the output a bit more by adding more data series, glyphs, logarithmic axis, and so on. It’s also possible to easily combine multiple glyphs together on one plot as shown below:[Go to top](top) ###Code from bokeh.plotting import figure, output_file, show # prepare some data x = [0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0] y0 = [i**2 for i in x] y1 = [10**i for i in x] y2 = [10**(i**2) for i in x] # create a new plot p = figure( tools="pan,box_zoom,reset,save", y_axis_type="log", y_range=[0.001, 10**11], title="log axis example", x_axis_label='sections', y_axis_label='particles' ) # add some renderers p.line(x, x, legend="y=x") p.circle(x, x, legend="y=x", fill_color="white", size=8) p.line(x, y0, legend="y=x^2", line_width=3) p.line(x, y1, legend="y=10^x", line_color="red") p.circle(x, y1, legend="y=10^x", fill_color="red", line_color="red", size=6) p.line(x, y2, legend="y=10^x^2", line_color="orange", line_dash="4 4") # show the results show(p) # bokeh basics # Create a blank figure with labels p = figure(plot_width = 600, plot_height = 600, title = 'Example Glyphs', x_axis_label = 'X', y_axis_label = 'Y') # Example data squares_x = [1, 3, 4, 5, 8] squares_y = [8, 7, 3, 1, 10] circles_x = [9, 12, 4, 3, 15] circles_y = [8, 4, 11, 6, 10] # Add squares glyph p.square(squares_x, squares_y, size = 12, color = 'navy', alpha = 0.6) # Add circle glyph p.circle(circles_x, circles_y, size = 12, color = 'red') # Set to output the plot in the notebook output_notebook() # Show the plot show(p) ###Output _____no_output_____ ###Markdown 8- NetworkX**NetworkX** is a Python package for the creation, manipulation, and study of the structure, dynamics, and functions of complex networks. ###Code import sys import matplotlib.pyplot as plt import networkx as nx G = nx.grid_2d_graph(5, 5) # 5x5 grid # print the adjacency list for line in nx.generate_adjlist(G): print(line) # write edgelist to grid.edgelist nx.write_edgelist(G, path="grid.edgelist", delimiter=":") # read edgelist from grid.edgelist H = nx.read_edgelist(path="grid.edgelist", delimiter=":") nx.draw(H) plt.show() from ipywidgets import interact %matplotlib inline import matplotlib.pyplot as plt import networkx as nx # wrap a few graph generation functions so they have the same signature def random_lobster(n, m, k, p): return nx.random_lobster(n, p, p / m) def powerlaw_cluster(n, m, k, p): return nx.powerlaw_cluster_graph(n, m, p) def erdos_renyi(n, m, k, p): return nx.erdos_renyi_graph(n, p) def newman_watts_strogatz(n, m, k, p): return nx.newman_watts_strogatz_graph(n, k, p) def plot_random_graph(n, m, k, p, generator): g = generator(n, m, k, p) nx.draw(g) plt.show() interact(plot_random_graph, n=(2,30), m=(1,10), k=(1,10), p=(0.0, 1.0, 0.001), generator={ 'lobster': random_lobster, 'power law': powerlaw_cluster, 'Newman-Watts-Strogatz': newman_watts_strogatz, u'Erdős-Rényi': erdos_renyi, }); ###Output _____no_output_____ ###Markdown Top 5 Data Visualization Libraries Tutorial last update: 25/01/2019> You may be interested have a look at 10 Steps to Become a Data Scientist: 1. [Leren Python](https://www.kaggle.com/mjbahmani/the-data-scientist-s-toolbox-tutorial-1)2. [Python Packages](https://www.kaggle.com/mjbahmani/the-data-scientist-s-toolbox-tutorial-2)3. [Mathematics and Linear Algebra](https://www.kaggle.com/mjbahmani/linear-algebra-for-data-scientists)4. [Programming &amp; Analysis Tools](https://www.kaggle.com/mjbahmani/20-ml-algorithms-15-plot-for-beginners)5. [Big Data](https://www.kaggle.com/mjbahmani/a-data-science-framework-for-quora)6. You are in the Sixth step7. [Data Cleaning](https://www.kaggle.com/mjbahmani/machine-learning-workflow-for-house-prices)8. [How to solve a Problem?](https://www.kaggle.com/mjbahmani/the-data-scientist-s-toolbox-tutorial-2)9. [Machine Learning](https://www.kaggle.com/mjbahmani/a-comprehensive-ml-workflow-with-python)10. [Deep Learning](https://www.kaggle.com/mjbahmani/top-5-deep-learning-frameworks-tutorial)---------------------------------------------------------------------You can Fork and Run this kernel on Github:> [ GitHub](https://github.com/mjbahmani/10-steps-to-become-a-data-scientist)------------------------------------------------------------------------------------------------------------- **I hope you find this kernel helpful and some UPVOTES would be very much appreciated** ----------- Notebook Content1. [Introduction](1)1. [Loading Packages](2) 1. [version](21) 1. [Setup](22) 1. [Data Collection](23)1. [Data Visualization Libraries](4)1. [Matplotlib](4) 1. [Scatterplots](41) 1. [ Line Plots](42) 1. [Bar Charts](43) 1. [Histograms](44) 1. [Box and Whisker Plots](45) 1. [Heatmaps](46) 1. [Animations](47) 1. [Interactivity](48) 1. [DataFrame.plot](49)1. [Seaborn](5) 1. [Seaborn Vs Matplotlib](51) 1. [Useful Python Data Visualization Libraries](52)1. [Plotly](6) 1. [New to Plotly?](61) 1. [Plotly Offline from Command Line](62)1. [Bokeh](7)1. [networkx](8)1. [Read more](9) 1. [Courses](91) 1. [Ebooks](92) 1. [Cheat sheet](93)1. [Conclusion](10) 1. [References](11) 1- IntroductionIf you've followed my other kernels so far. You have noticed that for those who are beginners, I've introduced a course " 10 Steps to Become a Data Scientist ". In this kernel we will start another step with each other. There are plenty of Kernels that can help you learn Python 's Libraries from scratch but here in Kaggle, I want to Analysis Meta Kaggle a popular Dataset.After reading, you can use it to Analysis other real dataset and use it as a template to deal with ML problems.It is clear that everyone in this community is familiar with Meta Kaggle dataset but if you need to review your information about the datasets please visit [meta-kaggle](https://www.kaggle.com/kaggle/meta-kaggle) .I am open to getting your feedback for improving this **kernel** together. 2- Loading PackagesIn this kernel we are using the following packages: ###Code from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot from bokeh.io import push_notebook, show, output_notebook import mpl_toolkits.axes_grid1.inset_locator as mpl_il from bokeh.plotting import figure, output_file, show from bokeh.io import show, output_notebook import matplotlib.animation as animation from matplotlib.figure import Figure from sklearn.cluster import KMeans import plotly.figure_factory as ff import matplotlib.pylab as pylab from ipywidgets import interact import plotly.graph_objs as go import plotly.graph_objs as go import matplotlib.pyplot as plt from bokeh.plotting import figure from sklearn import datasets import plotly.plotly as py import plotly.graph_objs as go from plotly import tools from sklearn import datasets import plotly.offline as py from random import randint from plotly import tools import matplotlib as mpl import seaborn as sns import pandas as pd import numpy as np import matplotlib import warnings import string import numpy import csv import os ###Output _____no_output_____ ###Markdown 2-1 version ###Code print('matplotlib: {}'.format(matplotlib.__version__)) print('seaborn: {}'.format(sns.__version__)) print('pandas: {}'.format(pd.__version__)) print('numpy: {}'.format(np.__version__)) #print('wordcloud: {}'.format(wordcloud.version)) ###Output _____no_output_____ ###Markdown 2-2 SetupA few tiny adjustments for better **code readability** ###Code sns.set(style='white', context='notebook', palette='deep') pylab.rcParams['figure.figsize'] = 12,8 warnings.filterwarnings('ignore') mpl.style.use('ggplot') sns.set_style('white') %matplotlib inline ###Output _____no_output_____ ###Markdown 2-3 Data Collection**Data collection** is the process of gathering and measuring data, information or any variables of interest in a standardized and established manner that enables the collector to answer or test hypothesis and evaluate outcomes of the particular collection.[techopedia]I start Collection Data by the Users and Kernels datasets into **Pandas DataFrames** ###Code # import kernels and users to play with it (MJ Bahmani) #command--> 1 users = pd.read_csv("../input/Users.csv") kernels = pd.read_csv("../input/Kernels.csv") messages = pd.read_csv("../input/ForumMessages.csv") ###Output _____no_output_____ ###Markdown **>*** Each row is an observation (also known as : sample, example, instance, record)* Each column is a feature (also known as: Predictor, attribute, Independent Variable, input, regressor, Covariate) [Go to top](top) ###Code #command--> 2 users.sample(1) ###Output _____no_output_____ ###Markdown Please **replace** your username and find your useridWe suppose that userid==authoruserid and use userid for both kernels and users dataset ###Code username="mjbahmani" userid=int(users[users['UserName']=="mjbahmani"].Id) userid ###Output _____no_output_____ ###Markdown We can just use **dropna()**(be careful sometimes you should not do this!) ###Code # remove rows that have NA's print('Before Droping',messages.shape) #command--> 3 messages = messages.dropna() print('After Droping',messages.shape) ###Output _____no_output_____ ###Markdown 2-3-1 FeaturesFeatures can be from following types:1. numeric1. categorical1. ordinal1. datetime1. coordinatesFind the type of features in **Meta Kaggle**?!For getting some information about the dataset you can use **info()** command [Go to top](top) ###Code #command--> 4 print(users.info()) ###Output _____no_output_____ ###Markdown 2-3-2 Explorer Dataset1. Dimensions of the dataset.1. Peek at the data itself.1. Statistical summary of all attributes.1. Breakdown of the data by the class variable.Don’t worry, each look at the data is **one command**. These are useful commands that you can use again and again on future projects. [Go to top](top) ###Code # shape #command--> 5 print(users.shape) #columns*rows #command--> 6 users.size ###Output _____no_output_____ ###Markdown We can get a quick idea of how many instances (rows) and how many attributes (columns) the data contains with the shape property. You see number of unique item for Species with command below: ###Code #command--> 7 kernels['Medal'].unique() #command--> 8 kernels["Medal"].value_counts() ###Output _____no_output_____ ###Markdown To check the first 5 rows of the data set, we can use head(5). ###Code kernels.head(5) ###Output _____no_output_____ ###Markdown To check out last 5 row of the data set, we use tail() function ###Code #command--> 9 users.tail() ###Output _____no_output_____ ###Markdown To pop up 5 random rows from the data set, we can use **sample(5)** function ###Code kernels.sample(5) ###Output _____no_output_____ ###Markdown To give a statistical summary about the dataset, we can use **describe()** ###Code kernels.describe() ###Output _____no_output_____ ###Markdown 2-3-5 Find yourself in Users datset ###Code #command--> 12 users[users['Id']==userid] ###Output _____no_output_____ ###Markdown 2-3-6 Find your kernels in Kernels dataset ###Code #command--> 13 yourkernels=kernels[kernels['AuthorUserId']==userid] yourkernels.head(2) ###Output _____no_output_____ ###Markdown 3- Data Visualization LibrariesBefore you start learning , I am giving an overview of 10 interdisciplinary **Python data visualization libraries**, from the well-known to the obscure.* 1- matplotlibmatplotlib is the O.G. of Python data visualization libraries. Despite being over a decade old, it’s still the most widely used library for plotting in the Python community. It was designed to closely resemble MATLAB, a proprietary programming language developed in the 1980s.* 2- SeabornSeaborn harnesses the power of matplotlib to create beautiful charts in a few lines of code. The key difference is Seaborn’s default styles and color palettes, which are designed to be more aesthetically pleasing and modern. Since Seaborn is built on top of matplotlib, you’ll need to know matplotlib to tweak Seaborn’s defaults.* 3- ggplotggplot is based on ggplot2, an R plotting system, and concepts from The Grammar of Graphics. ggplot operates differently than matplotlib: it lets you layer components to create a complete plot. For instance, you can start with axes, then add points, then a line, a trendline, etc. Although The Grammar of Graphics has been praised as an “intuitive” method for plotting, seasoned matplotlib users might need time to adjust to this new mindset.* 4- BokehLike ggplot, Bokeh is based on The Grammar of Graphics, but unlike ggplot, it’s native to Python, not ported over from R. Its strength lies in the ability to create interactive, web-ready plots, which can be easily outputted as JSON objects, HTML documents, or interactive web applications. Bokeh also supports streaming and real-time data.* 5- pygalLike Bokeh and Plotly, pygal offers interactive plots that can be embedded in the web browser. Its prime differentiator is the ability to output charts as SVGs. As long as you’re working with smaller datasets, SVGs will do you just fine. But if you’re making charts with hundreds of thousands of data points, they’ll have trouble rendering and become sluggish.* 6- PlotlyYou might know Plotly as an online platform for data visualization, but did you also know you can access its capabilities from a Python notebook? Like Bokeh, Plotly’s forte is making interactive plots, but it offers some charts you won’t find in most libraries, like contour plots, dendograms, and 3D charts.* 7- geoplotlibgeoplotlib is a toolbox for creating maps and plotting geographical data. You can use it to create a variety of map-types, like choropleths, heatmaps, and dot density maps. You must have Pyglet (an object-oriented programming interface) installed to use geoplotlib. Nonetheless, since most Python data visualization libraries don’t offer maps, it’s nice to have a library dedicated solely to them.* 8- GleamGleam is inspired by R’s Shiny package. It allows you to turn analyses into interactive web apps using only Python scripts, so you don’t have to know any other languages like HTML, CSS, or JavaScript. Gleam works with any Python data visualization library. Once you’ve created a plot, you can build fields on top of it so users can filter and sort data.* 9- missingnoDealing with missing data is a pain. missingno allows you to quickly gauge the completeness of a dataset with a visual summary, instead of trudging through a table. You can filter and sort data based on completion or spot correlations with a heatmap or a dendrogram.* 10- LeatherLeather’s creator, Christopher Groskopf, puts it best: “Leather is the Python charting library for those who need charts now and don’t care if they’re perfect.” It’s designed to work with all data types and produces charts as SVGs, so you can scale them without losing image quality. Since this library is relatively new, some of the documentation is still in progress. The charts you can make are pretty basic—but that’s the intention.At the end, nice cheatsheet on how to best visualize your data. I think I will print it out as a good reminder of "best practices". Check out the link for the complete cheatsheet, also as a PDF. * 11- ChartifyChartify is a Python library that makes it easy for data scientists to create charts.Why use Chartify?1. Consistent input data format: Spend less time transforming data to get your charts to work. All plotting functions use a consistent tidy input data format.1. Smart default styles: Create pretty charts with very little customization required.1. Simple API: We've attempted to make to the API as intuitive and easy to learn as possible.1. Flexibility: Chartify is built on top of Bokeh, so if you do need more control you can always fall back on Bokeh's API.Link: https://github.com/mjbahmani/Machine-Learning-Workflow-with-Python![cheatsheet ][1][Reference][2] [1]: http://s8.picofile.com/file/8340669884/53f6a826_d7df_4b55_81e6_7c23b3fff0a3_original.png [2]: https://blog.modeanalytics.com/python-data-visualization-libraries/ 4- MatplotlibThis Matplotlib tutorial takes you through the basics Python data visualization: 1. the anatomy of a plot 1. pyplot 1. pylab1. and much more [Go to top](top) You can show matplotlib figures directly in the notebook by using the `%matplotlib notebook` and `%matplotlib inline` magic commands. `%matplotlib notebook` provides an interactive environment. We can use html cell magic to display the image. ###Code #import matplotlib.pyplot as plt plt.plot([1, 2, 3, 4], [10, 20, 25, 30], color='lightblue', linewidth=3) plt.scatter([0.4, 3.8, 1.2, 2.5], [15, 25, 9, 26], color='darkgreen', marker='o') plt.xlim(0.5, 4.5) plt.show() ###Output _____no_output_____ ###Markdown Simple and powerful visualizations can be generated using the **Matplotlib Python** Library. More than a decade old, it is the most widely-used library for plotting in the Python community. A wide range of graphs from histograms to heat plots to line plots can be plotted using Matplotlib.Many other libraries are built on top of Matplotlib and are designed to work in conjunction with analysis, it being the first Python data visualization library. Libraries like pandas and matplotlib are “wrappers” over Matplotlib allowing access to a number of Matplotlib’s methods with less code.[7] 4-1 Scatterplots ###Code x = np.array([1,2,3,4,5,6,7,8]) y = x plt.figure() plt.scatter(x, y) # similar to plt.plot(x, y, '.'), but the underlying child objects in the axes are not Line2D x = np.array([1,2,3,4,5,6,7,8]) y = x # create a list of colors for each point to have # ['green', 'green', 'green', 'green', 'green', 'green', 'green', 'red'] colors = ['green']*(len(x)-1) colors.append('red') plt.figure() # plot the point with size 100 and chosen colors plt.scatter(x, y, s=100, c=colors) plt.figure() # plot a data series 'Tall students' in red using the first two elements of x and y plt.scatter(x[:2], y[:2], s=100, c='red', label='Tall students') # plot a second data series 'Short students' in blue using the last three elements of x and y plt.scatter(x[2:], y[2:], s=100, c='blue', label='Short students') x = np.random.randint(low=1, high=11, size=50) y = x + np.random.randint(1, 5, size=x.size) data = np.column_stack((x, y)) fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(8, 4)) ax1.scatter(x=x, y=y, marker='o', c='r', edgecolor='b') ax1.set_title('Scatter: $x$ versus $y$') ax1.set_xlabel('$x$') ax1.set_ylabel('$y$') ax2.hist(data, bins=np.arange(data.min(), data.max()), label=('x', 'y')) ax2.legend(loc=(0.65, 0.8)) ax2.set_title('Frequencies of $x$ and $y$') ax2.yaxis.tick_right() # Modify the graph above by assigning each species an individual color. #command--> 19 x=yourkernels["TotalVotes"] y=yourkernels["TotalViews"] plt.scatter(x, y) plt.legend() plt.show() ###Output _____no_output_____ ###Markdown 4-2 Line Plots ###Code linear_data = np.array([1,2,3,4,5,6,7,8]) exponential_data = linear_data**2 plt.figure() # plot the linear data and the exponential data plt.plot(linear_data, '-o', exponential_data, '-o') # plot another series with a dashed red line plt.plot([22,44,55], '--r') ###Output _____no_output_____ ###Markdown 4-3 Bar Charts ###Code plt.figure() xvals = range(len(linear_data)) plt.bar(xvals, linear_data, width = 0.3) new_xvals = [] # plot another set of bars, adjusting the new xvals to make up for the first set of bars plotted for item in xvals: new_xvals.append(item+0.3) plt.bar(new_xvals, exponential_data, width = 0.3 ,color='red') linear_err = [randint(0,15) for x in range(len(linear_data))] # This will plot a new set of bars with errorbars using the list of random error values plt.bar(xvals, linear_data, width = 0.3, yerr=linear_err) # stacked bar charts are also possible plt.figure() xvals = range(len(linear_data)) plt.bar(xvals, linear_data, width = 0.3, color='b') plt.bar(xvals, exponential_data, width = 0.3, bottom=linear_data, color='r') # or use barh for horizontal bar charts plt.figure() xvals = range(len(linear_data)) plt.barh(xvals, linear_data, height = 0.3, color='b') plt.barh(xvals, exponential_data, height = 0.3, left=linear_data, color='r') # Initialize the plot fig = plt.figure(figsize=(20,10)) ax1 = fig.add_subplot(121) ax2 = fig.add_subplot(122) # or replace the three lines of code above by the following line: #fig, (ax1, ax2) = plt.subplots(1,2, figsize=(20,10)) # Plot the data ax1.bar([1,2,3],[3,4,5]) ax2.barh([0.5,1,2.5],[0,1,2]) # Show the plot plt.show() plt.figure() # subplot with 1 row, 2 columns, and current axis is 1st subplot axes plt.subplot(1, 2, 1) linear_data = np.array([1,2,3,4,5,6,7,8]) plt.plot(linear_data, '-o') exponential_data = linear_data**2 # subplot with 1 row, 2 columns, and current axis is 2nd subplot axes plt.subplot(1, 2, 2) plt.plot(exponential_data, '-o') # plot exponential data on 1st subplot axes plt.subplot(1, 2, 1) plt.plot(exponential_data, '-x') plt.figure() ax1 = plt.subplot(1, 2, 1) plt.plot(linear_data, '-o') # pass sharey=ax1 to ensure the two subplots share the same y axis ax2 = plt.subplot(1, 2, 2, sharey=ax1) plt.plot(exponential_data, '-x') ###Output _____no_output_____ ###Markdown 4-4 Histograms ###Code # create 2x2 grid of axis subplots fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, sharex=True) axs = [ax1,ax2,ax3,ax4] # draw n = 10, 100, 1000, and 10000 samples from the normal distribution and plot corresponding histograms for n in range(0,len(axs)): sample_size = 10**(n+1) sample = np.random.normal(loc=0.0, scale=1.0, size=sample_size) axs[n].hist(sample) axs[n].set_title('n={}'.format(sample_size)) # repeat with number of bins set to 100 fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, sharex=True) axs = [ax1,ax2,ax3,ax4] for n in range(0,len(axs)): sample_size = 10**(n+1) sample = np.random.normal(loc=0.0, scale=1.0, size=sample_size) axs[n].hist(sample, bins=100) axs[n].set_title('n={}'.format(sample_size)) plt.figure() Y = np.random.normal(loc=0.0, scale=1.0, size=10000) X = np.random.random(size=10000) plt.scatter(X,Y) ###Output _____no_output_____ ###Markdown It looks like perhaps two of the input variables have a Gaussian distribution. This is useful to note as we can use algorithms that can exploit this assumption. ###Code yourkernels["TotalViews"].hist(); yourkernels["TotalComments"].hist(); sns.factorplot('TotalViews','TotalVotes',data=yourkernels) plt.show() ###Output _____no_output_____ ###Markdown 4-5 Box and Whisker PlotsIn descriptive statistics, a **box plot** or boxplot is a method for graphically depicting groups of numerical data through their quartiles. Box plots may also have lines extending vertically from the boxes (whiskers) indicating variability outside the upper and lower quartiles, hence the terms box-and-whisker plot and box-and-whisker diagram.[wikipedia] ###Code normal_sample = np.random.normal(loc=0.0, scale=1.0, size=10000) random_sample = np.random.random(size=10000) gamma_sample = np.random.gamma(2, size=10000) df = pd.DataFrame({'normal': normal_sample, 'random': random_sample, 'gamma': gamma_sample}) plt.figure() # create a boxplot of the normal data, assign the output to a variable to supress output _ = plt.boxplot(df['normal'], whis='range') # clear the current figure plt.clf() # plot boxplots for all three of df's columns _ = plt.boxplot([ df['normal'], df['random'], df['gamma'] ], whis='range') plt.figure() _ = plt.hist(df['gamma'], bins=100) plt.figure() plt.boxplot([ df['normal'], df['random'], df['gamma'] ], whis='range') # overlay axis on top of another ax2 = mpl_il.inset_axes(plt.gca(), width='60%', height='40%', loc=2) ax2.hist(df['gamma'], bins=100) ax2.margins(x=0.5) # switch the y axis ticks for ax2 to the right side ax2.yaxis.tick_right() # if `whis` argument isn't passed, boxplot defaults to showing 1.5*interquartile (IQR) whiskers with outliers plt.figure() _ = plt.boxplot([ df['normal'], df['random'], df['gamma'] ] ) sns.factorplot('TotalComments','TotalVotes',data=yourkernels) plt.show() ###Output _____no_output_____ ###Markdown 4-6 Heatmaps ###Code plt.figure() Y = np.random.normal(loc=0.0, scale=1.0, size=10000) X = np.random.random(size=10000) _ = plt.hist2d(X, Y, bins=25) plt.figure() _ = plt.hist2d(X, Y, bins=100) ###Output _____no_output_____ ###Markdown 4-7 Animations ###Code n = 100 x = np.random.randn(n) # create the function that will do the plotting, where curr is the current frame def update(curr): # check if animation is at the last frame, and if so, stop the animation a if curr == n: a.event_source.stop() plt.cla() bins = np.arange(-4, 4, 0.5) plt.hist(x[:curr], bins=bins) plt.axis([-4,4,0,30]) plt.gca().set_title('Sampling the Normal Distribution') plt.gca().set_ylabel('Frequency') plt.gca().set_xlabel('Value') plt.annotate('n = {}'.format(curr), [3,27]) fig = plt.figure() a = animation.FuncAnimation(fig, update, interval=100) ###Output _____no_output_____ ###Markdown 4-8 Interactivity ###Code plt.figure() data = np.random.rand(10) plt.plot(data) def onclick(event): plt.cla() plt.plot(data) plt.gca().set_title('Event at pixels {},{} \nand data {},{}'.format(event.x, event.y, event.xdata, event.ydata)) # tell mpl_connect we want to pass a 'button_press_event' into onclick when the event is detected plt.gcf().canvas.mpl_connect('button_press_event', onclick) from random import shuffle origins = ['China', 'Brazil', 'India', 'USA', 'Canada', 'UK', 'Germany', 'Iraq', 'Chile', 'Mexico'] shuffle(origins) df = pd.DataFrame({'height': np.random.rand(10), 'weight': np.random.rand(10), 'origin': origins}) df plt.figure() # picker=5 means the mouse doesn't have to click directly on an event, but can be up to 5 pixels away plt.scatter(df['height'], df['weight'], picker=5) plt.gca().set_ylabel('Weight') plt.gca().set_xlabel('Height') def onpick(event): origin = df.iloc[event.ind[0]]['origin'] plt.gca().set_title('Selected item came from {}'.format(origin)) # tell mpl_connect we want to pass a 'pick_event' into onpick when the event is detected plt.gcf().canvas.mpl_connect('pick_event', onpick) # use the 'seaborn-colorblind' style plt.style.use('seaborn-colorblind') ###Output _____no_output_____ ###Markdown 4-9 DataFrame.plot ###Code np.random.seed(123) df = pd.DataFrame({'A': np.random.randn(365).cumsum(0), 'B': np.random.randn(365).cumsum(0) + 20, 'C': np.random.randn(365).cumsum(0) - 20}, index=pd.date_range('1/1/2017', periods=365)) df.head() df.plot('A','B', kind = 'scatter'); ###Output _____no_output_____ ###Markdown You can also choose the plot kind by using the `DataFrame.plot.kind` methods instead of providing the `kind` keyword argument.`kind` :- `'line'` : line plot (default)- `'bar'` : vertical bar plot- `'barh'` : horizontal bar plot- `'hist'` : histogram- `'box'` : boxplot- `'kde'` : Kernel Density Estimation plot- `'density'` : same as 'kde'- `'area'` : area plot- `'pie'` : pie plot- `'scatter'` : scatter plot- `'hexbin'` : hexbin plot [Go to top](top) ###Code # create a scatter plot of columns 'A' and 'C', with changing color (c) and size (s) based on column 'B' df.plot.scatter('A', 'C', c='B', s=df['B'], colormap='viridis') ax = df.plot.scatter('A', 'C', c='B', s=df['B'], colormap='viridis') ax.set_aspect('equal') df.plot.box(); df.plot.hist(alpha=0.7); ###Output _____no_output_____ ###Markdown [Kernel density estimation plots](https://en.wikipedia.org/wiki/Kernel_density_estimation) are useful for deriving a smooth continuous function from a given sample. ###Code df.plot.kde(); ###Output _____no_output_____ ###Markdown 5- SeabornSeaborn is an open source, BSD-licensed Python library providing high level API for visualizing the data using Python programming language.[9][Go to top](top) 5-1 Seaborn Vs MatplotlibIt is summarized that if Matplotlib “tries to make easy things easy and hard things possible”, Seaborn tries to make a well defined set of hard things easy too.”Seaborn helps resolve the two major problems faced by Matplotlib; the problems are* Default Matplotlib parameters* Working with data framesAs Seaborn compliments and extends Matplotlib, the learning curve is quite gradual. If you know Matplotlib, you are already half way through Seaborn.Important Features of SeabornSeaborn is built on top of Python’s core visualization library Matplotlib. It is meant to serve as a complement, and not a replacement. However, Seaborn comes with some very important features. Let us see a few of them here. The features help in −* Built in themes for styling matplotlib graphics* Visualizing univariate and bivariate data* Fitting in and visualizing linear regression models* Plotting statistical time series data* Seaborn works well with NumPy and Pandas data structures* It comes with built in themes for styling Matplotlib graphicsIn most cases, you will still use Matplotlib for simple plotting. The knowledge of Matplotlib is recommended to tweak Seaborn’s default plots.[9][Go to top](top) ###Code def sinplot(flip = 1): x = np.linspace(0, 14, 100) for i in range(1, 5): plt.plot(x, np.sin(x + i * .5) * (7 - i) * flip) sinplot() plt.show() def sinplot(flip = 1): x = np.linspace(0, 14, 100) for i in range(1, 5): plt.plot(x, np.sin(x + i * .5) * (7 - i) * flip) sns.set() sinplot() plt.show() np.random.seed(1234) v1 = pd.Series(np.random.normal(0,10,1000), name='v1') v2 = pd.Series(2*v1 + np.random.normal(60,15,1000), name='v2') plt.figure() plt.hist(v1, alpha=0.7, bins=np.arange(-50,150,5), label='v1'); plt.hist(v2, alpha=0.7, bins=np.arange(-50,150,5), label='v2'); plt.legend(); plt.figure() # we can pass keyword arguments for each individual component of the plot sns.distplot(v2, hist_kws={'color': 'Teal'}, kde_kws={'color': 'Navy'}); sns.jointplot(v1, v2, alpha=0.4); grid = sns.jointplot(v1, v2, alpha=0.4); grid.ax_joint.set_aspect('equal') sns.jointplot(v1, v2, kind='hex'); # set the seaborn style for all the following plots sns.set_style('white') sns.jointplot(v1, v2, kind='kde', space=0); sns.factorplot('TotalComments','TotalVotes',data=yourkernels) plt.show() # violinplots on petal-length for each species #command--> 24 sns.violinplot(data=yourkernels,x="TotalViews", y="TotalVotes") # violinplots on petal-length for each species sns.violinplot(data=yourkernels,x="TotalComments", y="TotalVotes") sns.violinplot(data=yourkernels,x="Medal", y="TotalVotes") sns.violinplot(data=yourkernels,x="Medal", y="TotalComments") ###Output _____no_output_____ ###Markdown How many NA elements in every column. 5-2 kdeplot ###Code # seaborn's kdeplot, plots univariate or bivariate density estimates. #Size can be changed by tweeking the value used #command--> 25 sns.FacetGrid(yourkernels, hue="Medal", size=5).map(sns.kdeplot, "TotalComments").add_legend() plt.show() sns.FacetGrid(yourkernels, hue="Medal", size=5).map(sns.kdeplot, "TotalVotes").add_legend() plt.show() f,ax=plt.subplots(1,3,figsize=(20,8)) sns.distplot(yourkernels[yourkernels['Medal']==1].TotalVotes,ax=ax[0]) ax[0].set_title('TotalVotes in Medal 1') sns.distplot(yourkernels[yourkernels['Medal']==2].TotalVotes,ax=ax[1]) ax[1].set_title('TotalVotes in Medal 2') sns.distplot(yourkernels[yourkernels['Medal']==3].TotalVotes,ax=ax[2]) ax[2].set_title('TotalVotes in Medal 3') plt.show() ###Output _____no_output_____ ###Markdown 5-3 jointplot ###Code # Use seaborn's jointplot to make a hexagonal bin plot #Set desired size and ratio and choose a color. #command--> 25 sns.jointplot(x="TotalVotes", y="TotalViews", data=yourkernels, size=10,ratio=10, kind='hex',color='green') plt.show() ###Output _____no_output_____ ###Markdown 5-4 andrews_curves ###Code # we will use seaborn jointplot shows bivariate scatterplots and univariate histograms with Kernel density # estimation in the same figure sns.jointplot(x="TotalVotes", y="TotalViews", data=yourkernels, size=6, kind='kde', color='#800000', space=0) ###Output _____no_output_____ ###Markdown 5-5 Heatmap ###Code #command--> 26 plt.figure(figsize=(10,7)) sns.heatmap(yourkernels.corr(),annot=True,cmap='cubehelix_r') #draws heatmap with input as the correlation matrix calculted by(iris.corr()) plt.show() sns.factorplot('TotalComments','TotalVotes',data=yourkernels) plt.show() ###Output _____no_output_____ ###Markdown 5-6 distplot ###Code sns.distplot(yourkernels['TotalVotes']); ###Output _____no_output_____ ###Markdown 6- PlotlyHow to use **Plotly** offline inside IPython notebooks. 6-1 New to Plotly?Plotly, also known by its URL, Plot.ly, is a technical computing company headquartered in Montreal, Quebec, that develops online data analytics and visualization tools. Plotly provides online graphing, analytics, and statistics tools for individuals and collaboration, as well as scientific graphing libraries for Python, R, MATLAB, Perl, Julia, Arduino, and REST.[Go to top](top) ###Code # example for plotly py.init_notebook_mode(connected=True) iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. Y = iris.target x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 trace = go.Scatter(x=X[:, 0], y=X[:, 1], mode='markers', marker=dict(color=np.random.randn(150), size=10, colorscale='Viridis', showscale=False)) layout = go.Layout(title='Training Points', xaxis=dict(title='Sepal length', showgrid=False), yaxis=dict(title='Sepal width', showgrid=False), ) fig = go.Figure(data=[trace], layout=layout) py.iplot(fig) from sklearn.decomposition import PCA X_reduced = PCA(n_components=3).fit_transform(iris.data) trace = go.Scatter3d(x=X_reduced[:, 0], y=X_reduced[:, 1], z=X_reduced[:, 2], mode='markers', marker=dict( size=6, color=np.random.randn(150), colorscale='Viridis', opacity=0.8) ) layout=go.Layout(title='First three PCA directions', scene=dict( xaxis=dict(title='1st eigenvector'), yaxis=dict(title='2nd eigenvector'), zaxis=dict(title='3rd eigenvector')) ) fig = go.Figure(data=[trace], layout=layout) py.iplot(fig) ###Output _____no_output_____ ###Markdown 6-2 Plotly Offline from Command LineYou can plot your graphs from a python script from command line. On executing the script, it will open a web browser with your Plotly Graph drawn.[Go to top](top) ###Code plot([go.Scatter(x=[1, 2, 3], y=[3, 1, 6])]) np.random.seed(5) fig = tools.make_subplots(rows=2, cols=3, print_grid=False, specs=[[{'is_3d': True}, {'is_3d': True}, {'is_3d': True}], [ {'is_3d': True, 'rowspan':1}, None, None]]) scene = dict( camera = dict( up=dict(x=0, y=0, z=1), center=dict(x=0, y=0, z=0), eye=dict(x=2.5, y=0.1, z=0.1) ), xaxis=dict( range=[-1, 4], title='Petal width', gridcolor='rgb(255, 255, 255)', zerolinecolor='rgb(255, 255, 255)', showbackground=True, backgroundcolor='rgb(230, 230,230)', showticklabels=False, ticks='' ), yaxis=dict( range=[4, 8], title='Sepal length', gridcolor='rgb(255, 255, 255)', zerolinecolor='rgb(255, 255, 255)', showbackground=True, backgroundcolor='rgb(230, 230,230)', showticklabels=False, ticks='' ), zaxis=dict( range=[1,8], title='Petal length', gridcolor='rgb(255, 255, 255)', zerolinecolor='rgb(255, 255, 255)', showbackground=True, backgroundcolor='rgb(230, 230,230)', showticklabels=False, ticks='' ) ) centers = [[1, 1], [-1, -1], [1, -1]] iris = datasets.load_iris() X = iris.data y = iris.target estimators = {'k_means_iris_3': KMeans(n_clusters=3), 'k_means_iris_8': KMeans(n_clusters=8), 'k_means_iris_bad_init': KMeans(n_clusters=3, n_init=1, init='random')} fignum = 1 for name, est in estimators.items(): est.fit(X) labels = est.labels_ trace = go.Scatter3d(x=X[:, 3], y=X[:, 0], z=X[:, 2], showlegend=False, mode='markers', marker=dict( color=labels.astype(np.float), line=dict(color='black', width=1) )) fig.append_trace(trace, 1, fignum) fignum = fignum + 1 y = np.choose(y, [1, 2, 0]).astype(np.float) trace1 = go.Scatter3d(x=X[:, 3], y=X[:, 0], z=X[:, 2], showlegend=False, mode='markers', marker=dict( color=y, line=dict(color='black', width=1))) fig.append_trace(trace1, 2, 1) fig['layout'].update(height=900, width=900, margin=dict(l=10,r=10)) py.iplot(fig) ###Output _____no_output_____ ###Markdown 7- Bokeh**Bokeh** is a large library that exposes many capabilities, so this section is only a quick tour of some common Bokeh use cases and workflows. For more detailed information please consult the full User Guide.[11]Let’s begin with some examples. Plotting data in basic Python lists as a line plot including zoom, pan, save, and other tools is simple and straightforward:[Go to top](top) ###Code output_notebook() x = np.linspace(0, 2*np.pi, 2000) y = np.sin(x) # prepare some data x = [1, 2, 3, 4, 5] y = [6, 7, 2, 4, 5] # create a new plot with a title and axis labels p = figure(title="simple line example", x_axis_label='x', y_axis_label='y') # add a line renderer with legend and line thickness p.line(x, y, legend="Temp.", line_width=2) # show the results show(p) ###Output _____no_output_____ ###Markdown When you execute this script, you will see that a new output file "lines.html" is created, and that a browser automatically opens a new tab to display it. (For presentation purposes we have included the plot output directly inline in this document.)The basic steps to creating plots with the bokeh.plotting interface are:Prepare some dataIn this case plain python lists, but could also be NumPy arrays or Pandas series.Tell Bokeh where to generate outputIn this case using output_file(), with the filename "lines.html". Another option is output_notebook() for use in Jupyter notebooks.Call figure()This creates a plot with typical default options and easy customization of title, tools, and axes labels.Add renderersIn this case, we use line() for our data, specifying visual customizations like colors, legends and widths.Ask Bokeh to show() or save() the results.These functions save the plot to an HTML file and optionally display it in a browser.Steps three and four can be repeated to create more than one plot, as shown in some of the examples below.The bokeh.plotting interface is also quite handy if we need to customize the output a bit more by adding more data series, glyphs, logarithmic axis, and so on. It’s also possible to easily combine multiple glyphs together on one plot as shown below:[Go to top](top) ###Code from bokeh.plotting import figure, output_file, show # prepare some data x = [0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0] y0 = [i**2 for i in x] y1 = [10**i for i in x] y2 = [10**(i**2) for i in x] # create a new plot p = figure( tools="pan,box_zoom,reset,save", y_axis_type="log", y_range=[0.001, 10**11], title="log axis example", x_axis_label='sections', y_axis_label='particles' ) # add some renderers p.line(x, x, legend="y=x") p.circle(x, x, legend="y=x", fill_color="white", size=8) p.line(x, y0, legend="y=x^2", line_width=3) p.line(x, y1, legend="y=10^x", line_color="red") p.circle(x, y1, legend="y=10^x", fill_color="red", line_color="red", size=6) p.line(x, y2, legend="y=10^x^2", line_color="orange", line_dash="4 4") # show the results show(p) # bokeh basics # Create a blank figure with labels p = figure(plot_width = 600, plot_height = 600, title = 'Example Glyphs', x_axis_label = 'X', y_axis_label = 'Y') # Example data squares_x = [1, 3, 4, 5, 8] squares_y = [8, 7, 3, 1, 10] circles_x = [9, 12, 4, 3, 15] circles_y = [8, 4, 11, 6, 10] # Add squares glyph p.square(squares_x, squares_y, size = 12, color = 'navy', alpha = 0.6) # Add circle glyph p.circle(circles_x, circles_y, size = 12, color = 'red') # Set to output the plot in the notebook output_notebook() # Show the plot show(p) ###Output _____no_output_____ ###Markdown 8- NetworkX**NetworkX** is a Python package for the creation, manipulation, and study of the structure, dynamics, and functions of complex networks. ###Code import sys import matplotlib.pyplot as plt import networkx as nx G = nx.grid_2d_graph(5, 5) # 5x5 grid # print the adjacency list for line in nx.generate_adjlist(G): print(line) # write edgelist to grid.edgelist nx.write_edgelist(G, path="grid.edgelist", delimiter=":") # read edgelist from grid.edgelist H = nx.read_edgelist(path="grid.edgelist", delimiter=":") nx.draw(H) plt.show() from ipywidgets import interact %matplotlib inline import matplotlib.pyplot as plt import networkx as nx # wrap a few graph generation functions so they have the same signature def random_lobster(n, m, k, p): return nx.random_lobster(n, p, p / m) def powerlaw_cluster(n, m, k, p): return nx.powerlaw_cluster_graph(n, m, p) def erdos_renyi(n, m, k, p): return nx.erdos_renyi_graph(n, p) def newman_watts_strogatz(n, m, k, p): return nx.newman_watts_strogatz_graph(n, k, p) def plot_random_graph(n, m, k, p, generator): g = generator(n, m, k, p) nx.draw(g) plt.show() interact(plot_random_graph, n=(2,30), m=(1,10), k=(1,10), p=(0.0, 1.0, 0.001), generator={ 'lobster': random_lobster, 'power law': powerlaw_cluster, 'Newman-Watts-Strogatz': newman_watts_strogatz, u'Erdős-Rényi': erdos_renyi, }); ###Output _____no_output_____
07-machine-learning/labs/1_[EDA]_titanic-first-kaggle-challenge-in-python.ipynb
###Markdown First Kaggle challenge - Titanic Machine Learning from Disaster- v1.6_032020- author: marcusRB- [Kaggle - Titanic challenge](https://www.kaggle.com/c/titanic/)```In this version I use only few feature, I try an another cleansing method.I use same ML algorithms```This is the legendary Titanic ML competition – the best, first challenge for you to dive into ML competitions and familiarize yourself with how the Kaggle platform works.The competition is simple: use machine learning to create a model that predicts which passengers survived the Titanic shipwreck. The ChallengeThe sinking of the Titanic is one of the most infamous shipwrecks in history.On April 15, 1912, during her maiden voyage, the widely considered “unsinkable” RMS Titanic sank after colliding with an iceberg. Unfortunately, there weren’t enough lifeboats for everyone onboard, resulting in the death of 1502 out of 2224 passengers and crew.While there was some element of luck involved in surviving, it seems some groups of people were more likely to survive than others.In this challenge, we ask you to build a predictive model that answers the question: “what sorts of people were more likely to survive?” using passenger data (ie name, age, gender, socio-economic class, etc). What Data Will I Use in This Competition?In this competition, you’ll gain access to two similar datasets that include passenger information like name, age, gender, socio-economic class, etc. One dataset is titled `train.csv` and the other is titled `test.csv`.Train.csv will contain the details of a subset of the passengers on board (891 to be exact) and importantly, will reveal whether they survived or not, also known as the “ground truth”.The `test.csv` dataset contains similar information but does not disclose the “ground truth” for each passenger. It’s your job to predict these outcomes.Using the patterns you find in the train.csv data, predict whether the other 418 passengers on board (found in test.csv) survived. Workflow stagesThe competition solution workflow goes through seven stages described in the Data Science Solutions book.1. Question or problem definition.2. Acquire training and testing data.3. Wrangle, prepare, cleanse the data.4. Analyze, identify patterns, and explore the data.5. Model, predict and solve the problem.6. Visualize, report, and present the problem solving steps and final solution.7. Supply or submit the results. Check the versions of libraries ###Code # Check the versions of libraries MacOS # Python version import sys print('Python: {}'.format(sys.version)) # scipy import scipy print('scipy: {}'.format(scipy.__version__)) # numpy import numpy print('numpy: {}'.format(numpy.__version__)) # matplotlib import matplotlib print('matplotlib: {}'.format(matplotlib.__version__)) # pandas import pandas print('pandas: {}'.format(pandas.__version__)) # scikit-learn import sklearn print('sklearn: {}'.format(sklearn.__version__)) # Check the versions of libraries Win10 Docker #!pip install --upgrade pandas #!pip install --upgrade sklearn #!pip install kaggle #!pip install keras #!pip install tensorflow ###Output _____no_output_____ ###Markdown *** Import Libraries ###Code # data analysis and wrangling import pandas as pd import numpy as np import random as rnd from scipy.stats import norm, skew from scipy import stats import xlrd, xdrlib # visualization import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline # data mining #from sklearn.impute import KNNImputer, MissingIndicator, SimpleImputer from sklearn import impute #from sklearn_pandas import categorical_imputer, CategoricalImputer from sklearn.pipeline import make_pipeline, make_union, Pipeline from sklearn import preprocessing from sklearn.impute import SimpleImputer from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA # machine learning from sklearn import linear_model from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.svm import LinearSVC from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import Perceptron from sklearn.linear_model import SGDClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.neural_network import MLPClassifier ## scikit modeling libraries from sklearn.ensemble import (RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier, ExtraTreesClassifier, VotingClassifier) from sklearn.model_selection import (GridSearchCV, cross_val_score, cross_val_predict, StratifiedKFold, learning_curve) ## Neural Network from keras.models import Sequential from keras.layers import Dense from keras.wrappers.scikit_learn import KerasClassifier from keras.utils import np_utils ## Load metrics for predictive modeling from sklearn.model_selection import train_test_split from sklearn.model_selection import cross_val_score from sklearn.feature_selection import RFE, rfe from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score from sklearn.metrics import roc_curve, auc from sklearn.metrics import mean_absolute_error, mean_squared_error ## Warnings and other tools import itertools import warnings warnings.filterwarnings("ignore") ###Output /opt/conda/lib/python3.7/site-packages/statsmodels/tools/_testing.py:19: FutureWarning: pandas.util.testing is deprecated. Use the functions in the public API at pandas.testing instead. import pandas.util.testing as tm Using TensorFlow backend. ###Markdown *** Load datasetKaggle we provide two datasets: train and test in csv extension. So, we check and analyze only train file. ###Code #!chmod 600 /home/jovyan/.kaggle/kaggle.json #! #!unzip -o titanic.zip # Load dataset train and test train_titanic = pd.read_csv('train.csv') test_titanic = pd.read_csv('test.csv') ids = test_titanic['PassengerId'] # concat these two datasets, this will come handy while processing the data titanic_list = pd.concat(objs=[train_titanic, test_titanic], axis=0).reset_index(drop=True) titanic_list train_titanic.shape, test_titanic.shape train_titanic.head(10) train_titanic.tail(10) titanic_list[891:] ###Output _____no_output_____ ###Markdown *** Data descriptionNuestro conjunto de datos tiene 12 columnas o varables, de las cuales 3 (Age, Cabin y Embarked) tienen valores no disponibles. La variable que queremos predecir es Survived, que nos indica si el pasajero sobrevivió a la tragedia del Titanic. ###Code # Check dataframe structure titanic_list.info() # Check dataframe basic stats data #stats(titanic_list) # Check test dataframe basic stats data titanic_list.describe() ###Output _____no_output_____ ###Markdown *** EDA, Visualization and transformation dataWe analyze all variable one by one and check null value, errors or we create new variables. ###Code # Check null and NA values for both dataset titanic_list.isna().sum() # Table of relative frequency titanic_list.isnull().sum()/len(titanic_list)*100 ###Output _____no_output_____ ###Markdown We need to check those 3 features, but it must probable remove `Cabin`, there are many null values. `PassengerId`Id of the passenger. We remove it because haven't predictive weight on our model. ###Code # Check first 10 elements titanic_list['PassengerId'].head(10) # Remove PassengerId variable only for train dataset titanic_list.drop(['PassengerId'], axis=1, inplace=True) # Check train dataset titanic_list.head() ###Output _____no_output_____ ###Markdown `Survived`This is our depedent variable or predictor, it check if passenger survived (`1`) or not (`0`). Almost 38% of passenger survived. ###Code titanic_list['Survived'][:891] = titanic_list['Survived'][:891].astype(int) sns.barplot(x="Survived", data=titanic_list) titanic_list.describe()['Survived'] ###Output _____no_output_____ ###Markdown `Pclass`Ticket class. This is a categorical feature with 3 different values, first class, second class and third class. Exist high correlation between this feature with dependent variable. ###Code titanic_list[['Pclass', 'Survived']].groupby(['Pclass'], as_index=False).mean() sns.barplot(x="Pclass", y="Survived", data=titanic_list) ###Output _____no_output_____ ###Markdown `Sex`Passenger genre. It's a categorical feature with two values, `male` y `female`. We converted it a dummy or binary value. ###Code # Now visualization of 'Gender' # Printing counts and percentage of male and female print(titanic_list['Sex'].value_counts(sort=False)) print(titanic_list['Sex'].value_counts(sort=False,normalize=True)) # Making variable categorical #sub['SEX'] = sub['SEX'].astype('category') # Visualising counts of Gender with bar graph sns.countplot(x="Sex", data=titanic_list); plt.xlabel('Gender') plt.ylabel('Frequency') plt.title('Count of Gender') # Showing proportion of survival for different type of gender sns.catplot(x="Sex", y="Survived", data=titanic_list, kind="bar", ci=None) plt.xlabel('Gender') plt.ylabel('Survive Percentage') plt.title('Survive v/s Sex') # Check the survived ratio with sex titanic_list[["Sex", "Survived"]].groupby(['Sex'], as_index=False).mean() sns.barplot(x="Sex", y="Survived", data=titanic_list) # Convert categorical variable to binary variable - female 1 and male 0 titanic_list['Sex'] = titanic_list['Sex'].map( {'female': 1, 'male': 0} ).astype(int) # Check Sex features titanic_list.head() ###Output _____no_output_____ ###Markdown `SibSp`Numerical feature. Indicate a sibling of passenger. ###Code titanic_list[["SibSp", "Survived"]].groupby(['SibSp'], as_index=False).mean() sns.barplot(x="SibSp", y="Survived", data=titanic_list) ###Output _____no_output_____ ###Markdown `Parch`Father and childs of passenger. Numerical variable ###Code titanic_list[["Parch", "Survived"]].groupby(['Parch'], as_index=False).mean() sns.barplot(x="Parch", y="Survived", data=titanic_list) ###Output _____no_output_____ ###Markdown `FamilySize`Create new feature, called FamilySize, where we summarize `SibSp` and `Parch` as numerical variable. ###Code # Create a new feature, family size included passenger alone titanic_list['FamilySize'] = titanic_list['SibSp'] + titanic_list['Parch'] + 1 titanic_list[["FamilySize", "Survived"]].groupby(['FamilySize'], as_index=False).mean() sns.barplot(x="FamilySize", y="Survived", data=titanic_list) ###Output _____no_output_____ ###Markdown `IsAlone`We create new feature caracterized if passanger travel alone or not, based on familySize. The binary feature is called `IsAlone`. ###Code titanic_list['IsAlone'] = 0 titanic_list.loc[titanic_list['FamilySize'] == 1, 'IsAlone'] = 1 # Check new feature with predictor titanic_list[['IsAlone', 'Survived']].groupby(['IsAlone'], as_index=False).mean() sns.barplot(x="IsAlone", y="Survived", data=titanic_list) ###Output _____no_output_____ ###Markdown `Ticket`Ticket number of the passanger. In first instance isn't important for the model. We removed it. ###Code # We remove Ticket variable in both traing and test dataset titanic_list.drop(['Ticket'], axis=1, inplace=True) # We check the dataset again - train titanic_list.head(10) ###Output _____no_output_____ ###Markdown `Embarked`This feature is Port of Embarkation. There are three categorical variables: `C` for Cherbourg, `Q` for Queenstown, `S` for Southampton. ###Code # Check ratio Embarked and Survived variable titanic_list[['Embarked', 'Survived']].groupby(['Embarked'], as_index=False).mean() # Fill na or null values with the most frequent value, C freq_port = titanic_list.Embarked.dropna().mode()[0] freq_port # Assign result on the dataset titanic_list['Embarked'] = titanic_list['Embarked'].fillna(freq_port) # Check ratio Embarked and Survived variable titanic_list[['Embarked', 'Survived']].groupby(['Embarked'], as_index=False).mean() sns.barplot(x="Embarked", y="Survived", data=titanic_list) ###Output _____no_output_____ ###Markdown `Fare`This continuous numerical variable is ticket fare of the passenger. ###Code # Doing same steps before for the second dataset s = titanic_list['Fare'].value_counts(normalize=True) missing = titanic_list['Fare'].isnull() titanic_list.loc[missing,'Fare'] = np.random.choice(s.index, size=len(titanic_list[missing]), p=s.values).astype(int) titanic_list['Fare'] sns.distplot(titanic_list['Fare'], fit=norm) ###Output _____no_output_____ ###Markdown After check the variable, has a normal distribution. We apply a logarithm to normalize. ###Code titanic_list['Fare'] = np.log1p(titanic_list['Fare'],) sns.distplot(titanic_list['Fare'], fit=norm) ###Output _____no_output_____ ###Markdown We transform to categorical variable ###Code titanic_list['FareGroup'] = pd.qcut(titanic_list['Fare'], 5, labels=['A', 'B', 'C', 'D', 'E']) titanic_list[['FareGroup', 'Survived']].groupby(['FareGroup'], as_index=False).mean() sns.barplot(x="FareGroup", y="Survived", data=titanic_list) ###Output _____no_output_____ ###Markdown `Cabin`We transform this feature in binary variable, so it inform if he was or not in the cabin. ###Code #!pip install tabulate pd.unique(titanic_list['Cabin']) # Now visualization of 'Gender' # Printing counts and percentage of male and female print(titanic_list['Cabin'].value_counts(sort=False)) print(titanic_list['Cabin'].value_counts(sort=False,normalize=True)) # Making variable categorical #sub['SEX'] = sub['SEX'].astype('category') # Visualising counts of Gender with bar graph sns.countplot(x="Cabin", data=titanic_list); plt.xlabel('Cabin') plt.ylabel('Frequency') plt.title('Count of Gender') # Showing proportion of survival for different type of gender sns.catplot(x="Cabin", y="Survived", data=titanic_list, kind="bar", ci=None) plt.xlabel('Cabin') plt.ylabel('Survive Percentage') plt.title('Survive v/s Cabin') titanic_list["Cabin"].value_counts() # Create new variable InCabin titanic_list['InCabin'] = ~titanic_list['Cabin'].isnull() sns.barplot(x="InCabin", y="Survived", data=titanic_list) plt.show() #Turning cabin number into Deck #cabin_only = titanic_list[["Cabin"]].copy() titanic_list["Cabin_Data"] = titanic_list["Cabin"].isnull().apply(lambda x: not x) titanic_list["Cabin_Data"] titanic_list["Deck"] = titanic_list["Cabin"].str.slice(0,1) titanic_list["Room"] = titanic_list["Cabin"].str.slice(1,5).str.extract("([0-9]+)", expand=False).astype("float") titanic_list[titanic_list["Cabin_Data"]] titanic_list[titanic_list["Deck"]=="F"] ###Output _____no_output_____ ###Markdown First we'll drop the Cabin and Cabin_Data columns. ###Code titanic_list.drop(["Cabin", "Cabin_Data"], axis=1, inplace=True, errors="ignore") ###Output _____no_output_____ ###Markdown Now we'll deal with the missing values. For the deck column we will replace the null values with an unused letter to represent lack of data. For the room number we will simply use the mean. ###Code titanic_list["Deck"] = titanic_list["Deck"].fillna("N") titanic_list["Room"] = round(titanic_list["Room"].fillna(titanic_list["Room"].mean()),4) titanic_list.info() def one_hot_column(df, label, drop_col=False): ''' This function will one hot encode the chosen column. Args: df: Pandas dataframe label: Label of the column to encode drop_col: boolean to decide if the chosen column should be dropped Returns: pandas dataframe with the given encoding ''' one_hot = pd.get_dummies(df[label], prefix=label) if drop_col: df = df.drop(label, axis=1) df = df.join(one_hot) return df def one_hot(df, labels, drop_col=False): ''' This function will one hot encode a list of columns. Args: df: Pandas dataframe labels: list of the columns to encode drop_col: boolean to decide if the chosen column should be dropped Returns: pandas dataframe with the given encoding ''' for label in labels: df = one_hot_column(df, label, drop_col) return df #titanic_list = one_hot(titanic_list, ["Deck"],drop_col=True) titanic_list.head() #cabin_only.columns.values[1:] #for column in cabin_only.columns.values[1:]: # titanic_list[column] = cabin_only[column] ###Output _____no_output_____ ###Markdown `Age`Numerical variable with age of the passenger. We transform in categorical variable and grouped. ###Code sns.barplot(x="Age", y="Survived", data=titanic_list) plt.show() bins = [-1, 0, 5, 12, 18, 24, 35, 60, np.inf] labels = ['Unknown', 'Baby', 'Child', 'Teenager', 'Student', 'Young Adult', 'Adult', 'Senior'] titanic_list["Age"] = titanic_list["Age"].fillna(-0.5) titanic_list['AgeGroup'] = pd.cut(titanic_list["Age"], bins, labels = labels) sns.barplot(x="AgeGroup", y="Survived", data=titanic_list) plt.show() titanic_list.head(5) ###Output _____no_output_____ ###Markdown `Name`Categorical variable with the name of the passenger. We extract from title names like as `Mr`, `Miss` or `Master`. ###Code # Check the names titanic_list['Name'].head(10) # Create the function to extract the title import re def get_title(name): title_search = re.search(' ([A-Za-z]+)\.', name) if title_search: return title_search.group(1) return "" # Apply get_title function titanic_list['Title'] = titanic_list['Name'].apply(get_title) # Check the results pd.crosstab(titanic_list['Title'], titanic_list['Sex']) ###Output _____no_output_____ ###Markdown Create groups for all frequents titles and the other will be `Rare`. ###Code sns.barplot(x="Title", y="Survived", data=titanic_list) plt.show() # Convert to categorical values Title titanic_list["Title"] = titanic_list["Title"].replace(['Lady', 'Countess', 'Capt', 'Col','Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Rare') # Check the results pd.crosstab(titanic_list['Title'], titanic_list['Sex']) # Check the results pd.crosstab(titanic_list['Title'], titanic_list['Survived']) titanic_list["Title"] = titanic_list["Title"].map({"Master":0, "Miss":1, "Ms" : 1 , "Mme":1, "Mlle":1, "Mrs":1, "Mr":2, "Rare":3}) sns.barplot(x="Title", y="Survived", data=titanic_list) plt.show() # Check all values and new features titanic_list.dtypes ###Output _____no_output_____ ###Markdown Others feature engineeringI will test the new features using cross-validation to see if they made a difference. `Age*Class`This is an interaction term, since age and class are both numbers we can just multiply them. ###Code titanic_list['Age*Class'] = titanic_list['Age']*titanic_list['Pclass'] ###Output _____no_output_____ ###Markdown `Fare per Person`Here we divide the fare by the number of family members traveling together, I’m not exactly sure what this represents, but it’s easy enough to add in. ###Code titanic_list['Fare_Per_Person'] = titanic_list['Fare']/(titanic_list['FamilySize']+1) ###Output _____no_output_____ ###Markdown Remove features ###Code # Backup titanic_list titanic_list_bak = titanic_list titanic_list_bak.head(5) #titanic_list = titanic_list_bak titanic_list.head(5) ###Output _____no_output_____ ###Markdown Save 1st EDA, Wrangle and Cleanse data partTo be continued 2nd part for features selection ###Code # Save dataset0 and dataset1 for next step: Modeling titanic_list.to_csv('titanic_list.csv', index=False) ###Output _____no_output_____
container_files/demos/Recommending Movies.ipynb
###Markdown Recommending MoviesThe [MovieLens 20M](http://files.grouplens.org/datasets/movielens/ml-20m-README.html) dataset contains 20 million user ratings from 1 to 5 of thousands of movies. In this demo we'll build a simple recommendation system which will use this data to suggest 25 movies based on a seed movie you provide. The notebook cells below use `pymldb`'s `Connection` class to make [REST API](../../../../doc/builtin/WorkingWithRest.md.html) calls. You can check out the [Using `pymldb` Tutorial](../../../../doc/nblink.html_tutorials/Using pymldb Tutorial) for more details. ###Code from pymldb import Connection mldb = Connection() ###Output _____no_output_____ ###Markdown Download the MovieLens 20M dataWe'll start by using some command-line tools to download and decompress the data. ###Code %%bash mkdir -p /mldb_data/data curl "http://public.mldb.ai/ml-20m.zip" 2>/dev/null > /mldb_data/data/ml-20m.zip unzip /mldb_data/data/ml-20m.zip -d /mldb_data/data %%bash head /mldb_data/data/ml-20m/README.txt %%bash head /mldb_data/data/ml-20m/ratings.csv ###Output userId,movieId,rating,timestamp 1,2,3.5,1112486027 1,29,3.5,1112484676 1,32,3.5,1112484819 1,47,3.5,1112484727 1,50,3.5,1112484580 1,112,3.5,1094785740 1,151,4.0,1094785734 1,223,4.0,1112485573 1,253,4.0,1112484940 ###Markdown Load the data into MLDBSee the [Loading Data Tutorial](../../../../doc/nblink.html_tutorials/Loading Data Tutorial) guide for more details on how to get data into MLDB. Here we load a text file and use the `pivot` aggregator to create a sparse matrix representation of the ratings. ###Code %%time print mldb.put('/v1/procedures/import_mvlns', { "type": "import.text", "params": { "dataFileUrl":"file:///mldb_data/data/ml-20m/ratings.csv", "outputDataset": "mvlns_ratings_csv", "runOnCreation": True } }) print mldb.put('/v1/procedures/process_mvlns', { "type": "transform", "params": { "inputData": """ select pivot(movieId, rating) as * named userId from mvlns_ratings_csv group by userId """, "outputDataset": "mvlns_ratings", "runOnCreation": True } }) ###Output <Response [201]> <Response [201]> CPU times: user 18.4 ms, sys: 4.22 ms, total: 22.7 ms Wall time: 1min 19s ###Markdown Take a peek at the datasetWe'll use the [Query API](../../../../doc/builtin/sql/QueryAPI.md.html). Each row is a user, each column is a movie, and the cell value is the rating the user gave the movie. ###Code mldb.query("select * from mvlns_ratings limit 3") ###Output _____no_output_____ ###Markdown Singular Value Decomposition (SVD)We will create and run a [Procedure](../../../../doc/builtin/procedures/Procedures.md.html) of type [`svd.train`](../../../../doc/builtin/procedures/Svd.md.html). This creates an `embedding` dataset where each row is a movie and the columns represent coordinates in a 100-dimensional space. Similar movies end up closer to each other than dissimilar movies. ###Code print mldb.put('/v1/procedures/mvlns_svd', { "type" : "svd.train", "params" : { "trainingData" : "select COLUMN EXPR (where rowCount() > 3) from mvlns_ratings", "columnOutputDataset" : "mvlns_svd_embedding", "modelFileUrl": "file://models/mvlns.svd", "functionName": "mvlns_svd_embedder", "runOnCreation": True } }) ###Output <Response [201]> ###Markdown Explore the results!Our dataset has `movieId`s but humans think about movie names so we'll load up the movie names in a dataset. ###Code from ipywidgets import interact, interact_manual from uuid import uuid4 print mldb.put('/v1/procedures/import_movies', { "type": "import.text", "params": { "dataFileUrl":"file:///mldb_data/data/ml-20m/movies.csv", "outputDataset": "movies", "select": "title, movieId", "named": "movieId", "runOnCreation": True } }) ###Output <Response [201]> ###Markdown A simple search function to find all movies (and corresponding `movieId`s) whose names contain a string. ###Code @interact def movie_search(x = "toy story"): return mldb.query("select title from movies where regex_match(lower(title), '.*%s.*')" % x.strip().lower()) ###Output _____no_output_____ ###Markdown Now let's create a dataset to hold user preferences, and a simple function to simulate a user rating movies they like and movies they dislike, based on the `movie_search` function above. ###Code print mldb.put("/v1/datasets/mvlns_user_prefs", {"type": "sparse.mutable"}) print mldb.put("/v1/functions/preferences", { "type": "sql.query", "params": { "query": "select {*} as p from mvlns_user_prefs where rowName()=$user" } }) def save_prefs(user_id, likes, dislikes): for rating, search_terms in zip([5,1],[likes, dislikes]): for x in search_terms.split(","): if len(x) > 3: mldb.post("/v1/datasets/mvlns_user_prefs/rows", { "rowName":user_id, "columns": [[str(m), rating, 0] for m in movie_search(x).index] }) mldb.post("/v1/datasets/mvlns_user_prefs/commit", {}) save_prefs("janedoe", "Toy Story", "Terminator") mldb.query("select preferences({ user: 'janedoe' })[p] as *") ###Output <Response [201]> <Response [201]> ###Markdown With all that done, we can now build a recommendation engine out of a simple SQL query by mapping a user's preferences into the same space as the movie embeddings (i.e. embedding the user's preferences) and looking for the nearest movies. ###Code print mldb.put("/v1/functions/nearest_movies", { "type": "embedding.neighbors", "params": { "dataset": "mvlns_svd_embedding", "defaultNumNeighbors": 25, "columnName": "embedding" } }) print mldb.put("/v1/functions/recommendations", { "type": "sql.query", "params": { "query": """ select nearest_movies({ coords: mvlns_svd_embedder({ row: preferences({ user: $user })[p] })[embedding] })[distances] as r """ } }) ###Output <Response [201]> <Response [201]> ###Markdown Here's a simple function which lets you simulate the results of liking and disliking certain movies and getting back the resulting recommendations. ###Code def recommend(likes="Toy Story, Terminator", dislikes="Star Trek"): # here we simulate a new user saving these preferences user_id = str(uuid4()) save_prefs(user_id, likes, dislikes) # we can then run an SQL query to: # - retrieve recommendations # - transpose and join them to movies to get titles # - exclude the already-rated movies from the result return mldb.query(""" select m.title named m.movieId from transpose(( select recommendations({ user: '%(user)s' }) )) as r join movies as m on r.rowPathElement(2) = m.rowPathElement(0) where m.movieId not in (keys of preferences({ user: '%(user)s' })[p]) order by r.result """ % dict(user=user_id)) recommend(likes="Toy Story, Terminator", dislikes="Star Trek") ###Output _____no_output_____ ###Markdown Here's an interactive form that lets you play with this function to see if you agree with the recommendations!NOTE: the interactive part of this demo only works if you're running this Notebook live, not if you're looking at a static copy on http://docs.mldb.ai. See the documentation for [Running MLDB](../../../../doc/builtin/Running.md.html). ###Code interact_manual(recommend) ###Output _____no_output_____ ###Markdown Recommending MoviesThe [MovieLens 20M](http://files.grouplens.org/datasets/movielens/ml-20m-README.html) dataset contains 20 million user ratings from 1 to 5 of thousands of movies. In this demo we'll build a simple recommendation system which will use this data to suggest 25 movies based on a seed movie you provide. The notebook cells below use `pymldb`'s `Connection` class to make [REST API](../../../../doc/builtin/WorkingWithRest.md.html) calls. You can check out the [Using `pymldb` Tutorial](../../../../doc/nblink.html_tutorials/Using pymldb Tutorial) for more details. ###Code from pymldb import Connection mldb = Connection() ###Output _____no_output_____ ###Markdown Download the MovieLens 20M dataWe'll start by using some command-line tools to download and decompress the data. ###Code %%bash mkdir -p /mldb_data/data curl "file://mldb/mldb_test_data/ml-20m.zip" 2>/dev/null > /mldb_data/data/ml-20m.zip unzip /mldb_data/data/ml-20m.zip -d /mldb_data/data %%bash head /mldb_data/data/ml-20m/README.txt %%bash head /mldb_data/data/ml-20m/ratings.csv ###Output userId,movieId,rating,timestamp 1,2,3.5,1112486027 1,29,3.5,1112484676 1,32,3.5,1112484819 1,47,3.5,1112484727 1,50,3.5,1112484580 1,112,3.5,1094785740 1,151,4.0,1094785734 1,223,4.0,1112485573 1,253,4.0,1112484940 ###Markdown Load the data into MLDBSee the [Loading Data Tutorial](../../../../doc/nblink.html_tutorials/Loading Data Tutorial) guide for more details on how to get data into MLDB. Here we load a text file and use the `pivot` aggregator to create a sparse matrix representation of the ratings. ###Code %%time print mldb.put('/v1/procedures/import_mvlns', { "type": "import.text", "params": { "dataFileUrl":"file:///mldb_data/data/ml-20m/ratings.csv", "outputDataset": "mvlns_ratings_csv", "runOnCreation": True } }) print mldb.put('/v1/procedures/process_mvlns', { "type": "transform", "params": { "inputData": """ select pivot(movieId, rating) as * named userId from mvlns_ratings_csv group by userId """, "outputDataset": "mvlns_ratings", "runOnCreation": True } }) ###Output <Response [201]> <Response [201]> CPU times: user 18.4 ms, sys: 4.22 ms, total: 22.7 ms Wall time: 1min 19s ###Markdown Take a peek at the datasetWe'll use the [Query API](../../../../doc/builtin/sql/QueryAPI.md.html). Each row is a user, each column is a movie, and the cell value is the rating the user gave the movie. ###Code mldb.query("select * from mvlns_ratings limit 3") ###Output _____no_output_____ ###Markdown Singular Value Decomposition (SVD)We will create and run a [Procedure](../../../../doc/builtin/procedures/Procedures.md.html) of type [`svd.train`](../../../../doc/builtin/procedures/Svd.md.html). This creates an `embedding` dataset where each row is a movie and the columns represent coordinates in a 100-dimensional space. Similar movies end up closer to each other than dissimilar movies. ###Code print mldb.put('/v1/procedures/mvlns_svd', { "type" : "svd.train", "params" : { "trainingData" : "select COLUMN EXPR (where rowCount() > 3) from mvlns_ratings", "columnOutputDataset" : "mvlns_svd_embedding", "modelFileUrl": "file://models/mvlns.svd", "functionName": "mvlns_svd_embedder", "runOnCreation": True } }) ###Output <Response [201]> ###Markdown Explore the results!Our dataset has `movieId`s but humans think about movie names so we'll load up the movie names in a dataset. ###Code from ipywidgets import interact, interact_manual from uuid import uuid4 print mldb.put('/v1/procedures/import_movies', { "type": "import.text", "params": { "dataFileUrl":"file:///mldb_data/data/ml-20m/movies.csv", "outputDataset": "movies", "select": "title, movieId", "named": "movieId", "runOnCreation": True } }) ###Output <Response [201]> ###Markdown A simple search function to find all movies (and corresponding `movieId`s) whose names contain a string. ###Code @interact def movie_search(x = "toy story"): return mldb.query("select title from movies where regex_match(lower(title), '.*%s.*')" % x.strip().lower()) ###Output _____no_output_____ ###Markdown Now let's create a dataset to hold user preferences, and a simple function to simulate a user rating movies they like and movies they dislike, based on the `movie_search` function above. ###Code print mldb.put("/v1/datasets/mvlns_user_prefs", {"type": "sparse.mutable"}) print mldb.put("/v1/functions/preferences", { "type": "sql.query", "params": { "query": "select {*} as p from mvlns_user_prefs where rowName()=$user" } }) def save_prefs(user_id, likes, dislikes): for rating, search_terms in zip([5,1],[likes, dislikes]): for x in search_terms.split(","): if len(x) > 3: mldb.post("/v1/datasets/mvlns_user_prefs/rows", { "rowName":user_id, "columns": [[str(m), rating, 0] for m in movie_search(x).index] }) mldb.post("/v1/datasets/mvlns_user_prefs/commit", {}) save_prefs("janedoe", "Toy Story", "Terminator") mldb.query("select preferences({ user: 'janedoe' })[p] as *") ###Output <Response [201]> <Response [201]> ###Markdown With all that done, we can now build a recommendation engine out of a simple SQL query by mapping a user's preferences into the same space as the movie embeddings (i.e. embedding the user's preferences) and looking for the nearest movies. ###Code print mldb.put("/v1/functions/nearest_movies", { "type": "embedding.neighbors", "params": { "dataset": "mvlns_svd_embedding", "defaultNumNeighbors": 25, "columnName": "embedding" } }) print mldb.put("/v1/functions/recommendations", { "type": "sql.query", "params": { "query": """ select nearest_movies({ coords: mvlns_svd_embedder({ row: preferences({ user: $user })[p] })[embedding] })[distances] as r """ } }) ###Output <Response [201]> <Response [201]> ###Markdown Here's a simple function which lets you simulate the results of liking and disliking certain movies and getting back the resulting recommendations. ###Code def recommend(likes="Toy Story, Terminator", dislikes="Star Trek"): # here we simulate a new user saving these preferences user_id = str(uuid4()) save_prefs(user_id, likes, dislikes) # we can then run an SQL query to: # - retrieve recommendations # - transpose and join them to movies to get titles # - exclude the already-rated movies from the result return mldb.query(""" select m.title named m.movieId from transpose(( select recommendations({ user: '%(user)s' }) )) as r join movies as m on r.rowPathElement(2) = m.rowPathElement(0) where m.movieId not in (keys of preferences({ user: '%(user)s' })[p]) order by r.result """ % dict(user=user_id)) recommend(likes="Toy Story, Terminator", dislikes="Star Trek") ###Output _____no_output_____ ###Markdown Here's an interactive form that lets you play with this function to see if you agree with the recommendations!NOTE: the interactive part of this demo only works if you're running this Notebook live, not if you're looking at a static copy on http://docs.mldb.ai. See the documentation for [Running MLDB](../../../../doc/builtin/Running.md.html). ###Code interact_manual(recommend) ###Output _____no_output_____
tutorials/W1D5_DimensionalityReduction/W1D5_Tutorial4.ipynb
###Markdown Tutorial 4: Nonlinear Dimensionality Reduction**Week 1, Day 5: Dimensionality Reduction****By Neuromatch Academy**__Content creators:__ Alex Cayco Gajic, John Murray__Content reviewers:__ Roozbeh Farhoudi, Matt Krause, Spiros Chavlis, Richard Gao, Michael Waskom --- Tutorial ObjectivesIn this notebook we'll explore how dimensionality reduction can be useful for visualizing and inferring structure in your data. To do this, we will compare PCA with t-SNE, a nonlinear dimensionality reduction method.Overview:- Visualize MNIST in 2D using PCA.- Visualize MNIST in 2D using t-SNE. ###Code # @title Video 1: PCA Applications from IPython.display import YouTubeVideo video = YouTubeVideo(id="2Zb93aOWioM", width=854, height=480, fs=1) print("Video available at https://youtube.com/watch?v=" + video.id) video ###Output _____no_output_____ ###Markdown --- SetupRun these cells to get the tutorial started. ###Code # Imports import numpy as np import matplotlib.pyplot as plt #@title Figure Settings import ipywidgets as widgets # interactive display %config InlineBackend.figure_format = 'retina' plt.style.use("https://raw.githubusercontent.com/NeuromatchAcademy/course-content/master/nma.mplstyle") #@title Helper functions def visualize_components(component1, component2, labels, show=True): """ Plots a 2D representation of the data for visualization with categories labelled as different colors. Args: component1 (numpy array of floats) : Vector of component 1 scores component2 (numpy array of floats) : Vector of component 2 scores labels (numpy array of floats) : Vector corresponding to categories of samples Returns: Nothing. """ plt.figure() cmap = plt.cm.get_cmap('tab10') plt.scatter(x=component1, y=component2, c=labels, cmap=cmap) plt.xlabel('Component 1') plt.ylabel('Component 2') plt.colorbar(ticks=range(10)) plt.clim(-0.5, 9.5) if show: plt.show() ###Output _____no_output_____ ###Markdown --- Section 1: Visualize MNIST in 2D using PCAIn this exercise, we'll visualize the first few components of the MNIST dataset to look for evidence of structure in the data. But in this tutorial, we will also be interested in the label of each image (i.e., which numeral it is from 0 to 9). Start by running the following cell to reload the MNIST dataset (this takes a few seconds). ###Code from sklearn.datasets import fetch_openml mnist = fetch_openml(name='mnist_784', as_frame = False) X = mnist.data labels = [int(k) for k in mnist.target] labels = np.array(labels) ###Output _____no_output_____ ###Markdown To perform PCA, we now will use the method implemented in sklearn. Run the following cell to set the parameters of PCA - we will only look at the top 2 components because we will be visualizing the data in 2D. ###Code from sklearn.decomposition import PCA pca_model = PCA(n_components=2) # Initializes PCA pca_model.fit(X) # Performs PCA ###Output _____no_output_____ ###Markdown Exercise 1: Visualization of MNIST in 2D using PCAFill in the code below to perform PCA and visualize the top two components. For better visualization, take only the first 2,000 samples of the data (this will also make t-SNE much faster in the following section of the tutorial so don't skip this step!)**Suggestions:**- Truncate the data matrix at 2,000 samples. You will also need to truncate the array of labels.- Perform PCA on the truncated data.- Use the function `visualize_components` to plot the labelled data. ###Code help(visualize_components) help(pca_model.transform) ################################################# ## TODO for students: take only 2,000 samples and perform PCA ################################################# # Take only the first 2000 samples with the corresponding labels # X, labels = ... # Perform PCA # scores = pca_model.transform(X) # Plot the data and reconstruction # visualize_components(...) # to_remove solution # Take only the first 2000 samples with the corresponding labels X, labels = X[:2000, :], labels[:2000] # Perform PCA scores = pca_model.transform(X) # Plot the data and reconstruction with plt.xkcd(): visualize_components(scores[:, 0], scores[:, 1], labels) ###Output _____no_output_____ ###Markdown Think!- What do you see? Are different samples corresponding to the same numeral clustered together? Is there much overlap?- Do some pairs of numerals appear to be more distinguishable than others? --- Section 2: Visualize MNIST in 2D using t-SNE ###Code # @title Video 2: Nonlinear Methods video = YouTubeVideo(id="5Xpb0YaN5Ms", width=854, height=480, fs=1) print("Video available at https://youtube.com/watch?v=" + video.id) video ###Output _____no_output_____ ###Markdown Next we will analyze the same data using t-SNE, a nonlinear dimensionality reduction method that is useful for visualizing high dimensional data in 2D or 3D. Run the cell below to get started. ###Code from sklearn.manifold import TSNE tsne_model = TSNE(n_components=2, perplexity=30, random_state=2020) ###Output _____no_output_____ ###Markdown Exercise 2: Apply t-SNE on MNISTFirst, we'll run t-SNE on the data to explore whether we can see more structure. The cell above defined the parameters that we will use to find our embedding (i.e, the low-dimensional representation of the data) and stored them in `model`. To run t-SNE on our data, use the function `model.fit_transform`.**Suggestions:**- Run t-SNE using the function `model.fit_transform`.- Plot the result data using `visualize_components`. ###Code help(tsne_model.fit_transform) ################################################# ## TODO for students: perform tSNE and visualize the data ################################################# # perform t-SNE embed = ... # Visualize the data # visualize_components(..., ..., labels) # to_remove solution # perform t-SNE embed = tsne_model.fit_transform(X) # Visualize the data with plt.xkcd(): visualize_components(embed[:, 0], embed[:, 1], labels) ###Output _____no_output_____ ###Markdown Exercise 3: Run t-SNE with different perplexitiesUnlike PCA, t-SNE has a free parameter (the perplexity) that roughly determines how global vs. local information is weighted. Here we'll take a look at how the perplexity affects our interpretation of the results. **Steps:**- Rerun t-SNE (don't forget to re-initialize using the function `TSNE` as above) with a perplexity of 50, 5 and 2. ###Code def explore_perplexity(values): """ Plots a 2D representation of the data for visualization with categories labelled as different colors using different perplexities. Args: values (list of floats) : list with perplexities to be visualized Returns: Nothing. """ for perp in values: ################################################# ## TO DO for students: Insert your code here to redefine the t-SNE "model" ## while setting the perplexity perform t-SNE on the data and plot the ## results for perplexity = 50, 5, and 2 (set random_state to 2020 # Comment these lines when you complete the function raise NotImplementedError("Student Exercise! Explore t-SNE with different perplexity") ################################################# # perform t-SNE tsne_model = ... embed = tsne_model.fit_transform(X) visualize_components(embed[:, 0], embed[:, 1], labels, show=False) plt.title(f"perplexity: {perp}") # Uncomment when you complete the function # values = [50, 5, 2] # explore_perplexity(values) # to_remove solution def explore_perplexity(values): """ Plots a 2D representation of the data for visualization with categories labelled as different colors using different perplexities. Args: values (list of floats) : list with perplexities to be visualized Returns: Nothing. """ for perp in values: # perform t-SNE tsne_model = TSNE(n_components=2, perplexity=perp, random_state=2020) embed = tsne_model.fit_transform(X) visualize_components(embed[:, 0], embed[:, 1], labels, show=False) plt.title(f"perplexity: {perp}") plt.show() # Uncomment when you complete the function values = [50, 5, 2] with plt.xkcd(): explore_perplexity(values) ###Output _____no_output_____ ###Markdown Tutorial 4: Nonlinear Dimensionality Reduction**Week 1, Day 5: Dimensionality Reduction****By Neuromatch Academy**__Content creators:__ Alex Cayco Gajic, John Murray__Content reviewers:__ Roozbeh Farhoudi, Matt Krause, Spiros Chavlis, Richard Gao, Michael Waskom **Our 2021 Sponsors, including Presenting Sponsor Facebook Reality Labs** --- Tutorial ObjectivesIn this notebook we'll explore how dimensionality reduction can be useful for visualizing and inferring structure in your data. To do this, we will compare PCA with t-SNE, a nonlinear dimensionality reduction method.Overview:- Visualize MNIST in 2D using PCA.- Visualize MNIST in 2D using t-SNE. ###Code # @title Video 1: PCA Applications from ipywidgets import widgets out2 = widgets.Output() with out2: from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = 'https://player.bilibili.com/player.html?bvid={0}&page={1}'.format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id="", width=854, height=480, fs=1) print('Video available at https://www.bilibili.com/video/{0}'.format(video.id)) display(video) out1 = widgets.Output() with out1: from IPython.display import YouTubeVideo video = YouTubeVideo(id="2Zb93aOWioM", width=854, height=480, fs=1, rel=0) print('Video available at https://youtube.com/watch?v=' + video.id) display(video) out = widgets.Tab([out1, out2]) out.set_title(0, 'Youtube') out.set_title(1, 'Bilibili') display(out) ###Output _____no_output_____ ###Markdown --- SetupRun these cells to get the tutorial started. ###Code # Imports import numpy as np import matplotlib.pyplot as plt #@title Figure Settings import ipywidgets as widgets # interactive display %config InlineBackend.figure_format = 'retina' plt.style.use("https://raw.githubusercontent.com/NeuromatchAcademy/course-content/master/nma.mplstyle") #@title Helper functions def visualize_components(component1, component2, labels, show=True): """ Plots a 2D representation of the data for visualization with categories labelled as different colors. Args: component1 (numpy array of floats) : Vector of component 1 scores component2 (numpy array of floats) : Vector of component 2 scores labels (numpy array of floats) : Vector corresponding to categories of samples Returns: Nothing. """ plt.figure() cmap = plt.cm.get_cmap('tab10') plt.scatter(x=component1, y=component2, c=labels, cmap=cmap) plt.xlabel('Component 1') plt.ylabel('Component 2') plt.colorbar(ticks=range(10)) plt.clim(-0.5, 9.5) if show: plt.show() ###Output _____no_output_____ ###Markdown --- Section 1: Visualize MNIST in 2D using PCAIn this exercise, we'll visualize the first few components of the MNIST dataset to look for evidence of structure in the data. But in this tutorial, we will also be interested in the label of each image (i.e., which numeral it is from 0 to 9). Start by running the following cell to reload the MNIST dataset (this takes a few seconds). ###Code from sklearn.datasets import fetch_openml mnist = fetch_openml(name='mnist_784', as_frame = False) X = mnist.data labels = [int(k) for k in mnist.target] labels = np.array(labels) ###Output _____no_output_____ ###Markdown To perform PCA, we now will use the method implemented in sklearn. Run the following cell to set the parameters of PCA - we will only look at the top 2 components because we will be visualizing the data in 2D. ###Code from sklearn.decomposition import PCA pca_model = PCA(n_components=2) # Initializes PCA pca_model.fit(X) # Performs PCA ###Output _____no_output_____ ###Markdown Exercise 1: Visualization of MNIST in 2D using PCAFill in the code below to perform PCA and visualize the top two components. For better visualization, take only the first 2,000 samples of the data (this will also make t-SNE much faster in the following section of the tutorial so don't skip this step!)**Suggestions:**- Truncate the data matrix at 2,000 samples. You will also need to truncate the array of labels.- Perform PCA on the truncated data.- Use the function `visualize_components` to plot the labelled data. ###Code help(visualize_components) help(pca_model.transform) ################################################# ## TODO for students: take only 2,000 samples and perform PCA ################################################# # Take only the first 2000 samples with the corresponding labels # X, labels = ... # Perform PCA # scores = pca_model.transform(X) # Plot the data and reconstruction # visualize_components(...) # to_remove solution # Take only the first 2000 samples with the corresponding labels X, labels = X[:2000, :], labels[:2000] # Perform PCA scores = pca_model.transform(X) # Plot the data and reconstruction with plt.xkcd(): visualize_components(scores[:, 0], scores[:, 1], labels) ###Output _____no_output_____ ###Markdown Think!- What do you see? Are different samples corresponding to the same numeral clustered together? Is there much overlap?- Do some pairs of numerals appear to be more distinguishable than others? --- Section 2: Visualize MNIST in 2D using t-SNE ###Code # @title Video 2: Nonlinear Methods from ipywidgets import widgets out2 = widgets.Output() with out2: from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = 'https://player.bilibili.com/player.html?bvid={0}&page={1}'.format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id="", width=854, height=480, fs=1) print('Video available at https://www.bilibili.com/video/{0}'.format(video.id)) display(video) out1 = widgets.Output() with out1: from IPython.display import YouTubeVideo video = YouTubeVideo(id="5Xpb0YaN5Ms", width=854, height=480, fs=1, rel=0) print('Video available at https://youtube.com/watch?v=' + video.id) display(video) out = widgets.Tab([out1, out2]) out.set_title(0, 'Youtube') out.set_title(1, 'Bilibili') display(out) ###Output _____no_output_____ ###Markdown Next we will analyze the same data using t-SNE, a nonlinear dimensionality reduction method that is useful for visualizing high dimensional data in 2D or 3D. Run the cell below to get started. ###Code from sklearn.manifold import TSNE tsne_model = TSNE(n_components=2, perplexity=30, random_state=2020) ###Output _____no_output_____ ###Markdown Exercise 2: Apply t-SNE on MNISTFirst, we'll run t-SNE on the data to explore whether we can see more structure. The cell above defined the parameters that we will use to find our embedding (i.e, the low-dimensional representation of the data) and stored them in `model`. To run t-SNE on our data, use the function `model.fit_transform`.**Suggestions:**- Run t-SNE using the function `model.fit_transform`.- Plot the result data using `visualize_components`. ###Code help(tsne_model.fit_transform) ################################################# ## TODO for students: perform tSNE and visualize the data ################################################# # perform t-SNE embed = ... # Visualize the data # visualize_components(..., ..., labels) # to_remove solution # perform t-SNE embed = tsne_model.fit_transform(X) # Visualize the data with plt.xkcd(): visualize_components(embed[:, 0], embed[:, 1], labels) ###Output _____no_output_____ ###Markdown Exercise 3: Run t-SNE with different perplexitiesUnlike PCA, t-SNE has a free parameter (the perplexity) that roughly determines how global vs. local information is weighted. Here we'll take a look at how the perplexity affects our interpretation of the results. **Steps:**- Rerun t-SNE (don't forget to re-initialize using the function `TSNE` as above) with a perplexity of 50, 5 and 2. ###Code def explore_perplexity(values): """ Plots a 2D representation of the data for visualization with categories labelled as different colors using different perplexities. Args: values (list of floats) : list with perplexities to be visualized Returns: Nothing. """ for perp in values: ################################################# ## TO DO for students: Insert your code here to redefine the t-SNE "model" ## while setting the perplexity perform t-SNE on the data and plot the ## results for perplexity = 50, 5, and 2 (set random_state to 2020 # Comment these lines when you complete the function raise NotImplementedError("Student Exercise! Explore t-SNE with different perplexity") ################################################# # perform t-SNE tsne_model = ... embed = tsne_model.fit_transform(X) visualize_components(embed[:, 0], embed[:, 1], labels, show=False) plt.title(f"perplexity: {perp}") # Uncomment when you complete the function # values = [50, 5, 2] # explore_perplexity(values) # to_remove solution def explore_perplexity(values): """ Plots a 2D representation of the data for visualization with categories labelled as different colors using different perplexities. Args: values (list of floats) : list with perplexities to be visualized Returns: Nothing. """ for perp in values: # perform t-SNE tsne_model = TSNE(n_components=2, perplexity=perp, random_state=2020) embed = tsne_model.fit_transform(X) visualize_components(embed[:, 0], embed[:, 1], labels, show=False) plt.title(f"perplexity: {perp}") plt.show() # Uncomment when you complete the function values = [50, 5, 2] with plt.xkcd(): explore_perplexity(values) ###Output _____no_output_____ ###Markdown Neuromatch Academy: Week 1, Day 5, Tutorial 4 Dimensionality Reduction: Nonlinear dimensionality reduction__Content creators:__ Alex Cayco Gajic, John Murray__Content reviewers:__ Roozbeh Farhoudi, Matt Krause, Spiros Chavlis, Richard Gao, Michael Waskom --- Tutorial ObjectivesIn this notebook we'll explore how dimensionality reduction can be useful for visualizing and inferring structure in your data. To do this, we will compare PCA with t-SNE, a nonlinear dimensionality reduction method.Overview:- Visualize MNIST in 2D using PCA.- Visualize MNIST in 2D using t-SNE. ###Code # @title Video 1: PCA Applications from IPython.display import YouTubeVideo video = YouTubeVideo(id="2Zb93aOWioM", width=854, height=480, fs=1) print("Video available at https://youtube.com/watch?v=" + video.id) video ###Output _____no_output_____ ###Markdown --- SetupRun these cells to get the tutorial started. ###Code # Imports import numpy as np import matplotlib.pyplot as plt #@title Figure Settings import ipywidgets as widgets # interactive display %config InlineBackend.figure_format = 'retina' plt.style.use("https://raw.githubusercontent.com/NeuromatchAcademy/course-content/master/nma.mplstyle") #@title Helper functions def visualize_components(component1, component2, labels, show=True): """ Plots a 2D representation of the data for visualization with categories labelled as different colors. Args: component1 (numpy array of floats) : Vector of component 1 scores component2 (numpy array of floats) : Vector of component 2 scores labels (numpy array of floats) : Vector corresponding to categories of samples Returns: Nothing. """ plt.figure() cmap = plt.cm.get_cmap('tab10') plt.scatter(x=component1, y=component2, c=labels, cmap=cmap) plt.xlabel('Component 1') plt.ylabel('Component 2') plt.colorbar(ticks=range(10)) plt.clim(-0.5, 9.5) if show: plt.show() ###Output _____no_output_____ ###Markdown --- Section 1: Visualize MNIST in 2D using PCAIn this exercise, we'll visualize the first few components of the MNIST dataset to look for evidence of structure in the data. But in this tutorial, we will also be interested in the label of each image (i.e., which numeral it is from 0 to 9). Start by running the following cell to reload the MNIST dataset (this takes a few seconds). ###Code from sklearn.datasets import fetch_openml mnist = fetch_openml(name='mnist_784') X = mnist.data labels = [int(k) for k in mnist.target] labels = np.array(labels) ###Output _____no_output_____ ###Markdown To perform PCA, we now will use the method implemented in sklearn. Run the following cell to set the parameters of PCA - we will only look at the top 2 components because we will be visualizing the data in 2D. ###Code from sklearn.decomposition import PCA pca_model = PCA(n_components=2) # Initializes PCA pca_model.fit(X) # Performs PCA ###Output _____no_output_____ ###Markdown Exercise 1: Visualization of MNIST in 2D using PCAFill in the code below to perform PCA and visualize the top two components. For better visualization, take only the first 2,000 samples of the data (this will also make t-SNE much faster in the following section of the tutorial so don't skip this step!)**Suggestions:**- Truncate the data matrix at 2,000 samples. You will also need to truncate the array of labels.- Perform PCA on the truncated data.- Use the function `visualize_components` to plot the labelled data. ###Code help(visualize_components) help(pca_model.transform) ################################################# ## TODO for students: take only 2,000 samples and perform PCA ################################################# # Take only the first 2000 samples with the corresponding labels # X, labels = ... # Perform PCA # scores = pca_model.transform(X) # Plot the data and reconstruction # visualize_components(...) # to_remove solution # Take only the first 2000 samples with the corresponding labels X, labels = X[:2000, :], labels[:2000] # Perform PCA scores = pca_model.transform(X) # Plot the data and reconstruction with plt.xkcd(): visualize_components(scores[:, 0], scores[:, 1], labels) ###Output _____no_output_____ ###Markdown Think!- What do you see? Are different samples corresponding to the same numeral clustered together? Is there much overlap?- Do some pairs of numerals appear to be more distinguishable than others? --- Section 2: Visualize MNIST in 2D using t-SNE ###Code # @title Video 2: Nonlinear Methods video = YouTubeVideo(id="5Xpb0YaN5Ms", width=854, height=480, fs=1) print("Video available at https://youtube.com/watch?v=" + video.id) video ###Output _____no_output_____ ###Markdown Next we will analyze the same data using t-SNE, a nonlinear dimensionality reduction method that is useful for visualizing high dimensional data in 2D or 3D. Run the cell below to get started. ###Code from sklearn.manifold import TSNE tsne_model = TSNE(n_components=2, perplexity=30, random_state=2020) ###Output _____no_output_____ ###Markdown Exercise 2: Apply t-SNE on MNISTFirst, we'll run t-SNE on the data to explore whether we can see more structure. The cell above defined the parameters that we will use to find our embedding (i.e, the low-dimensional representation of the data) and stored them in `model`. To run t-SNE on our data, use the function `model.fit_transform`.**Suggestions:**- Run t-SNE using the function `model.fit_transform`.- Plot the result data using `visualize_components`. ###Code help(tsne_model.fit_transform) ################################################# ## TODO for students: perform tSNE and visualize the data ################################################# # perform t-SNE embed = ... # Visualize the data # visualize_components(..., ..., labels) # to_remove solution # perform t-SNE embed = tsne_model.fit_transform(X) # Visualize the data with plt.xkcd(): visualize_components(embed[:, 0], embed[:, 1], labels) ###Output _____no_output_____ ###Markdown Exercise 3: Run t-SNE with different perplexitiesUnlike PCA, t-SNE has a free parameter (the perplexity) that roughly determines how global vs. local information is weighted. Here we'll take a look at how the perplexity affects our interpretation of the results. **Steps:**- Rerun t-SNE (don't forget to re-initialize using the function `TSNE` as above) with a perplexity of 50, 5 and 2. ###Code def explore_perplexity(values): """ Plots a 2D representation of the data for visualization with categories labelled as different colors using different perplexities. Args: values (list of floats) : list with perplexities to be visualized Returns: Nothing. """ for perp in values: ################################################# ## TO DO for students: Insert your code here to redefine the t-SNE "model" ## while setting the perplexity perform t-SNE on the data and plot the ## results for perplexity = 50, 5, and 2 (set random_state to 2020 # Comment these lines when you complete the function raise NotImplementedError("Student Exercise! Explore t-SNE with different perplexity") ################################################# # perform t-SNE tsne_model = ... embed = tsne_model.fit_transform(X) visualize_components(embed[:, 0], embed[:, 1], labels, show=False) plt.title(f"perplexity: {perp}") # Uncomment when you complete the function # values = [50, 5, 2] # explore_perplexity(values) # to_remove solution def explore_perplexity(values): """ Plots a 2D representation of the data for visualization with categories labelled as different colors using different perplexities. Args: values (list of floats) : list with perplexities to be visualized Returns: Nothing. """ for perp in values: # perform t-SNE tsne_model = TSNE(n_components=2, perplexity=perp, random_state=2020) embed = tsne_model.fit_transform(X) visualize_components(embed[:, 0], embed[:, 1], labels, show=False) plt.title(f"perplexity: {perp}") plt.show() # Uncomment when you complete the function values = [50, 5, 2] with plt.xkcd(): explore_perplexity(values) ###Output _____no_output_____ ###Markdown Tutorial 4: Nonlinear Dimensionality Reduction**Week 1, Day 5: Dimensionality Reduction****By Neuromatch Academy**__Content creators:__ Alex Cayco Gajic, John Murray__Content reviewers:__ Roozbeh Farhoudi, Matt Krause, Spiros Chavlis, Richard Gao, Michael Waskom, Siddharth Suresh, Natalie Schaworonkow, Ella Batty **Our 2021 Sponsors, including Presenting Sponsor Facebook Reality Labs** --- Tutorial Objectives*Estimated timing of tutorial: 35 minutes*In this notebook we'll explore how dimensionality reduction can be useful for visualizing and inferring structure in your data. To do this, we will compare PCA with t-SNE, a nonlinear dimensionality reduction method.Overview:- Visualize MNIST in 2D using PCA.- Visualize MNIST in 2D using t-SNE. ###Code # @title Tutorial slides # @markdown These are the slides for the videos in all tutorials today from IPython.display import IFrame IFrame(src=f"https://mfr.ca-1.osf.io/render?url=https://osf.io/kaq2x/?direct%26mode=render%26action=download%26mode=render", width=854, height=480) # @title Video 1: PCA Applications from ipywidgets import widgets out2 = widgets.Output() with out2: from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = 'https://player.bilibili.com/player.html?bvid={0}&page={1}'.format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id="BV1Jf4y1R7UZ", width=854, height=480, fs=1) print('Video available at https://www.bilibili.com/video/{0}'.format(video.id)) display(video) out1 = widgets.Output() with out1: from IPython.display import YouTubeVideo video = YouTubeVideo(id="2Zb93aOWioM", width=854, height=480, fs=1, rel=0) print('Video available at https://youtube.com/watch?v=' + video.id) display(video) out = widgets.Tab([out1, out2]) out.set_title(0, 'Youtube') out.set_title(1, 'Bilibili') display(out) ###Output _____no_output_____ ###Markdown --- Setup ###Code # Imports import numpy as np import matplotlib.pyplot as plt #@title Figure Settings import ipywidgets as widgets # interactive display %config InlineBackend.figure_format = 'retina' plt.style.use("https://raw.githubusercontent.com/NeuromatchAcademy/course-content/master/nma.mplstyle") # @title Plotting Functions def visualize_components(component1, component2, labels, show=True): """ Plots a 2D representation of the data for visualization with categories labelled as different colors. Args: component1 (numpy array of floats) : Vector of component 1 scores component2 (numpy array of floats) : Vector of component 2 scores labels (numpy array of floats) : Vector corresponding to categories of samples Returns: Nothing. """ plt.figure() cmap = plt.cm.get_cmap('tab10') plt.scatter(x=component1, y=component2, c=labels, cmap=cmap) plt.xlabel('Component 1') plt.ylabel('Component 2') plt.colorbar(ticks=range(10)) plt.clim(-0.5, 9.5) if show: plt.show() ###Output _____no_output_____ ###Markdown --- Section 1: Visualize MNIST in 2D using PCAIn this exercise, we'll visualize the first few components of the MNIST dataset to look for evidence of structure in the data. But in this tutorial, we will also be interested in the label of each image (i.e., which numeral it is from 0 to 9). Start by running the following cell to reload the MNIST dataset (this takes a few seconds). ###Code from sklearn.datasets import fetch_openml # Get images mnist = fetch_openml(name='mnist_784', as_frame = False) X = mnist.data # Get labels labels = [int(k) for k in mnist.target] labels = np.array(labels) ###Output _____no_output_____ ###Markdown To perform PCA, we now will use the method implemented in sklearn. Run the following cell to set the parameters of PCA - we will only look at the top 2 components because we will be visualizing the data in 2D. ###Code from sklearn.decomposition import PCA # Initializes PCA pca_model = PCA(n_components=2) # Performs PCA pca_model.fit(X) ###Output _____no_output_____ ###Markdown Coding Exercise 1: Visualization of MNIST in 2D using PCAFill in the code below to perform PCA and visualize the top two components. For better visualization, take only the first 2,000 samples of the data (this will also make t-SNE much faster in the following section of the tutorial so don't skip this step!)**Suggestions:**- Truncate the data matrix at 2,000 samples. You will also need to truncate the array of labels.- Perform PCA on the truncated data.- Use the function `visualize_components` to plot the labelled data. ###Code help(visualize_components) help(pca_model.transform) ################################################# ## TODO for students: take only 2,000 samples and perform PCA # Comment once you've completed the code raise NotImplementedError("Student excercise: perform PCA") ################################################# # Take only the first 2000 samples with the corresponding labels X, labels = ... # Perform PCA scores = pca_model.transform(X) # Plot the data and reconstruction visualize_components(...) # to_remove solution # Take only the first 2000 samples with the corresponding labels X, labels = X[:2000, :], labels[:2000] # Perform PCA scores = pca_model.transform(X) # Plot the data and reconstruction with plt.xkcd(): visualize_components(scores[:, 0], scores[:, 1], labels) ###Output _____no_output_____ ###Markdown Think! 1: PCA Visualization1. What do you see? Are different samples corresponding to the same numeral clustered together? Is there much overlap?2. Do some pairs of numerals appear to be more distinguishable than others? ###Code # to_remove explanation """ 1) Images corresponding to the some labels (numbers) are sort of clustered together in some cases but there's a lot of overlap and definitely not a clear distinction between all the number clusters. 2) The zeros and ones seem fairly non-overlapping. """ ###Output _____no_output_____ ###Markdown --- Section 2: Visualize MNIST in 2D using t-SNE*Estimated timing to here from start of tutorial: 15 min* ###Code # @title Video 2: Nonlinear Methods from ipywidgets import widgets out2 = widgets.Output() with out2: from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = 'https://player.bilibili.com/player.html?bvid={0}&page={1}'.format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id="BV14Z4y1u7HG", width=854, height=480, fs=1) print('Video available at https://www.bilibili.com/video/{0}'.format(video.id)) display(video) out1 = widgets.Output() with out1: from IPython.display import YouTubeVideo video = YouTubeVideo(id="5Xpb0YaN5Ms", width=854, height=480, fs=1, rel=0) print('Video available at https://youtube.com/watch?v=' + video.id) display(video) out = widgets.Tab([out1, out2]) out.set_title(0, 'Youtube') out.set_title(1, 'Bilibili') display(out) ###Output _____no_output_____ ###Markdown Next we will analyze the same data using t-SNE, a nonlinear dimensionality reduction method that is useful for visualizing high dimensional data in 2D or 3D. Run the cell below to get started. ###Code from sklearn.manifold import TSNE tsne_model = TSNE(n_components=2, perplexity=30, random_state=2020) ###Output _____no_output_____ ###Markdown Coding Exercise 2.1: Apply t-SNE on MNISTFirst, we'll run t-SNE on the data to explore whether we can see more structure. The cell above defined the parameters that we will use to find our embedding (i.e, the low-dimensional representation of the data) and stored them in `model`. To run t-SNE on our data, use the function `model.fit_transform`.**Suggestions:**- Run t-SNE using the function `model.fit_transform`.- Plot the result data using `visualize_components`. ###Code help(tsne_model.fit_transform) ################################################# ## TODO for students # Comment once you've completed the code raise NotImplementedError("Student excercise: perform t-SNE") ################################################# # Perform t-SNE embed = ... # Visualize the data visualize_components(..., ..., labels) # to_remove solution # Perform t-SNE embed = tsne_model.fit_transform(X) # Visualize the data with plt.xkcd(): visualize_components(embed[:, 0], embed[:, 1], labels) ###Output _____no_output_____ ###Markdown Coding Exercise 2.2: Run t-SNE with different perplexitiesUnlike PCA, t-SNE has a free parameter (the perplexity) that roughly determines how global vs. local information is weighted. Here we'll take a look at how the perplexity affects our interpretation of the results. **Steps:**- Rerun t-SNE (don't forget to re-initialize using the function `TSNE` as above) with a perplexity of 50, 5 and 2. ###Code def explore_perplexity(values): """ Plots a 2D representation of the data for visualization with categories labelled as different colors using different perplexities. Args: values (list of floats) : list with perplexities to be visualized Returns: Nothing. """ for perp in values: ################################################# ## TO DO for students: Insert your code here to redefine the t-SNE "model" ## while setting the perplexity perform t-SNE on the data and plot the ## results for perplexity = 50, 5, and 2 (set random_state to 2020 # Comment these lines when you complete the function raise NotImplementedError("Student Exercise! Explore t-SNE with different perplexity") ################################################# # Perform t-SNE tsne_model = ... embed = tsne_model.fit_transform(X) visualize_components(embed[:, 0], embed[:, 1], labels, show=False) plt.title(f"perplexity: {perp}") # Visualize values = [50, 5, 2] explore_perplexity(values) # to_remove solution def explore_perplexity(values): """ Plots a 2D representation of the data for visualization with categories labelled as different colors using different perplexities. Args: values (list of floats) : list with perplexities to be visualized Returns: Nothing. """ for perp in values: # Perform t-SNE tsne_model = TSNE(n_components=2, perplexity=perp, random_state=2020) embed = tsne_model.fit_transform(X) visualize_components(embed[:, 0], embed[:, 1], labels, show=False) plt.title(f"perplexity: {perp}") plt.show() # Visualize values = [50, 5, 2] with plt.xkcd(): explore_perplexity(values) ###Output _____no_output_____ ###Markdown Tutorial 4: Nonlinear Dimensionality Reduction**Week 1, Day 5: Dimensionality Reduction****By Neuromatch Academy**__Content creators:__ Alex Cayco Gajic, John Murray__Content reviewers:__ Roozbeh Farhoudi, Matt Krause, Spiros Chavlis, Richard Gao, Michael Waskom --- Tutorial ObjectivesIn this notebook we'll explore how dimensionality reduction can be useful for visualizing and inferring structure in your data. To do this, we will compare PCA with t-SNE, a nonlinear dimensionality reduction method.Overview:- Visualize MNIST in 2D using PCA.- Visualize MNIST in 2D using t-SNE. ###Code # @title Video 1: PCA Applications from IPython.display import YouTubeVideo video = YouTubeVideo(id="2Zb93aOWioM", width=854, height=480, fs=1) print("Video available at https://youtube.com/watch?v=" + video.id) video ###Output _____no_output_____ ###Markdown --- SetupRun these cells to get the tutorial started. ###Code # Imports import numpy as np import matplotlib.pyplot as plt #@title Figure Settings import ipywidgets as widgets # interactive display %config InlineBackend.figure_format = 'retina' plt.style.use("https://raw.githubusercontent.com/NeuromatchAcademy/course-content/master/nma.mplstyle") #@title Helper functions def visualize_components(component1, component2, labels, show=True): """ Plots a 2D representation of the data for visualization with categories labelled as different colors. Args: component1 (numpy array of floats) : Vector of component 1 scores component2 (numpy array of floats) : Vector of component 2 scores labels (numpy array of floats) : Vector corresponding to categories of samples Returns: Nothing. """ plt.figure() cmap = plt.cm.get_cmap('tab10') plt.scatter(x=component1, y=component2, c=labels, cmap=cmap) plt.xlabel('Component 1') plt.ylabel('Component 2') plt.colorbar(ticks=range(10)) plt.clim(-0.5, 9.5) if show: plt.show() ###Output _____no_output_____ ###Markdown --- Section 1: Visualize MNIST in 2D using PCAIn this exercise, we'll visualize the first few components of the MNIST dataset to look for evidence of structure in the data. But in this tutorial, we will also be interested in the label of each image (i.e., which numeral it is from 0 to 9). Start by running the following cell to reload the MNIST dataset (this takes a few seconds). ###Code from sklearn.datasets import fetch_openml mnist = fetch_openml(name='mnist_784', as_frame = False) X = mnist.data labels = [int(k) for k in mnist.target] labels = np.array(labels) ###Output _____no_output_____ ###Markdown To perform PCA, we now will use the method implemented in sklearn. Run the following cell to set the parameters of PCA - we will only look at the top 2 components because we will be visualizing the data in 2D. ###Code from sklearn.decomposition import PCA pca_model = PCA(n_components=2) # Initializes PCA pca_model.fit(X) # Performs PCA ###Output _____no_output_____ ###Markdown Exercise 1: Visualization of MNIST in 2D using PCAFill in the code below to perform PCA and visualize the top two components. For better visualization, take only the first 2,000 samples of the data (this will also make t-SNE much faster in the following section of the tutorial so don't skip this step!)**Suggestions:**- Truncate the data matrix at 2,000 samples. You will also need to truncate the array of labels.- Perform PCA on the truncated data.- Use the function `visualize_components` to plot the labelled data. ###Code help(visualize_components) help(pca_model.transform) ################################################# ## TODO for students: take only 2,000 samples and perform PCA ################################################# # Take only the first 2000 samples with the corresponding labels # X, labels = ... # Perform PCA # scores = pca_model.transform(X) # Plot the data and reconstruction # visualize_components(...) # to_remove solution # Take only the first 2000 samples with the corresponding labels X, labels = X[:2000, :], labels[:2000] # Perform PCA scores = pca_model.transform(X) # Plot the data and reconstruction with plt.xkcd(): visualize_components(scores[:, 0], scores[:, 1], labels) ###Output _____no_output_____ ###Markdown Think!- What do you see? Are different samples corresponding to the same numeral clustered together? Is there much overlap?- Do some pairs of numerals appear to be more distinguishable than others? --- Section 2: Visualize MNIST in 2D using t-SNE ###Code # @title Video 2: Nonlinear Methods video = YouTubeVideo(id="5Xpb0YaN5Ms", width=854, height=480, fs=1) print("Video available at https://youtube.com/watch?v=" + video.id) video ###Output _____no_output_____ ###Markdown Next we will analyze the same data using t-SNE, a nonlinear dimensionality reduction method that is useful for visualizing high dimensional data in 2D or 3D. Run the cell below to get started. ###Code from sklearn.manifold import TSNE tsne_model = TSNE(n_components=2, perplexity=30, random_state=2020) ###Output _____no_output_____ ###Markdown Exercise 2: Apply t-SNE on MNISTFirst, we'll run t-SNE on the data to explore whether we can see more structure. The cell above defined the parameters that we will use to find our embedding (i.e, the low-dimensional representation of the data) and stored them in `model`. To run t-SNE on our data, use the function `model.fit_transform`.**Suggestions:**- Run t-SNE using the function `model.fit_transform`.- Plot the result data using `visualize_components`. ###Code help(tsne_model.fit_transform) ################################################# ## TODO for students: perform tSNE and visualize the data ################################################# # perform t-SNE embed = ... # Visualize the data # visualize_components(..., ..., labels) # to_remove solution # perform t-SNE embed = tsne_model.fit_transform(X) # Visualize the data with plt.xkcd(): visualize_components(embed[:, 0], embed[:, 1], labels) ###Output _____no_output_____ ###Markdown Exercise 3: Run t-SNE with different perplexitiesUnlike PCA, t-SNE has a free parameter (the perplexity) that roughly determines how global vs. local information is weighted. Here we'll take a look at how the perplexity affects our interpretation of the results. **Steps:**- Rerun t-SNE (don't forget to re-initialize using the function `TSNE` as above) with a perplexity of 50, 5 and 2. ###Code def explore_perplexity(values): """ Plots a 2D representation of the data for visualization with categories labelled as different colors using different perplexities. Args: values (list of floats) : list with perplexities to be visualized Returns: Nothing. """ for perp in values: ################################################# ## TO DO for students: Insert your code here to redefine the t-SNE "model" ## while setting the perplexity perform t-SNE on the data and plot the ## results for perplexity = 50, 5, and 2 (set random_state to 2020 # Comment these lines when you complete the function raise NotImplementedError("Student Exercise! Explore t-SNE with different perplexity") ################################################# # perform t-SNE tsne_model = ... embed = tsne_model.fit_transform(X) visualize_components(embed[:, 0], embed[:, 1], labels, show=False) plt.title(f"perplexity: {perp}") # Uncomment when you complete the function # values = [50, 5, 2] # explore_perplexity(values) # to_remove solution def explore_perplexity(values): """ Plots a 2D representation of the data for visualization with categories labelled as different colors using different perplexities. Args: values (list of floats) : list with perplexities to be visualized Returns: Nothing. """ for perp in values: # perform t-SNE tsne_model = TSNE(n_components=2, perplexity=perp, random_state=2020) embed = tsne_model.fit_transform(X) visualize_components(embed[:, 0], embed[:, 1], labels, show=False) plt.title(f"perplexity: {perp}") plt.show() # Uncomment when you complete the function values = [50, 5, 2] with plt.xkcd(): explore_perplexity(values) ###Output _____no_output_____ ###Markdown &nbsp; Tutorial 4: Nonlinear Dimensionality Reduction**Week 1, Day 5: Dimensionality Reduction****By Neuromatch Academy**__Content creators:__ Alex Cayco Gajic, John Murray__Content reviewers:__ Roozbeh Farhoudi, Matt Krause, Spiros Chavlis, Richard Gao, Michael Waskom, Siddharth Suresh, Natalie Schaworonkow, Ella Batty **Our 2021 Sponsors, including Presenting Sponsor Facebook Reality Labs** --- Tutorial Objectives*Estimated timing of tutorial: 35 minutes*In this notebook we'll explore how dimensionality reduction can be useful for visualizing and inferring structure in your data. To do this, we will compare PCA with t-SNE, a nonlinear dimensionality reduction method.Overview:- Visualize MNIST in 2D using PCA.- Visualize MNIST in 2D using t-SNE. ###Code # @title Tutorial slides # @markdown These are the slides for the videos in all tutorials today from IPython.display import IFrame IFrame(src=f"https://mfr.ca-1.osf.io/render?url=https://osf.io/kaq2x/?direct%26mode=render%26action=download%26mode=render", width=854, height=480) # @title Video 1: PCA Applications from ipywidgets import widgets out2 = widgets.Output() with out2: from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = 'https://player.bilibili.com/player.html?bvid={0}&page={1}'.format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id="BV1Jf4y1R7UZ", width=854, height=480, fs=1) print('Video available at https://www.bilibili.com/video/{0}'.format(video.id)) display(video) out1 = widgets.Output() with out1: from IPython.display import YouTubeVideo video = YouTubeVideo(id="2Zb93aOWioM", width=854, height=480, fs=1, rel=0) print('Video available at https://youtube.com/watch?v=' + video.id) display(video) out = widgets.Tab([out1, out2]) out.set_title(0, 'Youtube') out.set_title(1, 'Bilibili') display(out) ###Output _____no_output_____ ###Markdown --- Setup ###Code # Imports import numpy as np import matplotlib.pyplot as plt #@title Figure Settings import ipywidgets as widgets # interactive display %config InlineBackend.figure_format = 'retina' plt.style.use("https://raw.githubusercontent.com/NeuromatchAcademy/course-content/master/nma.mplstyle") # @title Plotting Functions def visualize_components(component1, component2, labels, show=True): """ Plots a 2D representation of the data for visualization with categories labelled as different colors. Args: component1 (numpy array of floats) : Vector of component 1 scores component2 (numpy array of floats) : Vector of component 2 scores labels (numpy array of floats) : Vector corresponding to categories of samples Returns: Nothing. """ plt.figure() cmap = plt.cm.get_cmap('tab10') plt.scatter(x=component1, y=component2, c=labels, cmap=cmap) plt.xlabel('Component 1') plt.ylabel('Component 2') plt.colorbar(ticks=range(10)) plt.clim(-0.5, 9.5) if show: plt.show() ###Output _____no_output_____ ###Markdown --- Section 1: Visualize MNIST in 2D using PCAIn this exercise, we'll visualize the first few components of the MNIST dataset to look for evidence of structure in the data. But in this tutorial, we will also be interested in the label of each image (i.e., which numeral it is from 0 to 9). Start by running the following cell to reload the MNIST dataset (this takes a few seconds). ###Code from sklearn.datasets import fetch_openml # Get images mnist = fetch_openml(name='mnist_784', as_frame=False) X_all = mnist.data # Get labels labels_all = np.array([int(k) for k in mnist.target]) ###Output _____no_output_____ ###Markdown **Note:** We saved the complete dataset with as `X_all` and the labels as `labels_all`. To perform PCA, we now will use the method implemented in sklearn. Run the following cell to set the parameters of PCA - we will only look at the top 2 components because we will be visualizing the data in 2D. ###Code from sklearn.decomposition import PCA # Initializes PCA pca_model = PCA(n_components=2) # Performs PCA pca_model.fit(X_all) ###Output _____no_output_____ ###Markdown Coding Exercise 1: Visualization of MNIST in 2D using PCAFill in the code below to perform PCA and visualize the top two components. For better visualization, take only the first 2,000 samples of the data (this will also make t-SNE much faster in the following section of the tutorial so don't skip this step!)**Suggestions:**- Truncate the data matrix at 2,000 samples. You will also need to truncate the array of labels.- Perform PCA on the truncated data.- Use the function `visualize_components` to plot the labelled data. ###Code help(visualize_components) help(pca_model.transform) ################################################# ## TODO for students: take only 2,000 samples and perform PCA # Comment once you've completed the code raise NotImplementedError("Student excercise: perform PCA") ################################################# # Take only the first 2000 samples with the corresponding labels X, labels = ... # Perform PCA scores = pca_model.transform(X) # Plot the data and reconstruction visualize_components(...) # to_remove solution # Take only the first 2000 samples with the corresponding labels X, labels = X_all[:2000, :], labels_all[:2000] # Perform PCA scores = pca_model.transform(X) # Plot the data and reconstruction with plt.xkcd(): visualize_components(scores[:, 0], scores[:, 1], labels) ###Output _____no_output_____ ###Markdown Think! 1: PCA Visualization1. What do you see? Are different samples corresponding to the same numeral clustered together? Is there much overlap?2. Do some pairs of numerals appear to be more distinguishable than others? ###Code # to_remove explanation """ 1) Images corresponding to the some labels (numbers) are sort of clustered together in some cases but there's a lot of overlap and definitely not a clear distinction between all the number clusters. 2) The zeros and ones seem fairly non-overlapping. """ ###Output _____no_output_____ ###Markdown --- Section 2: Visualize MNIST in 2D using t-SNE*Estimated timing to here from start of tutorial: 15 min* ###Code # @title Video 2: Nonlinear Methods from ipywidgets import widgets out2 = widgets.Output() with out2: from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = 'https://player.bilibili.com/player.html?bvid={0}&page={1}'.format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id="BV14Z4y1u7HG", width=854, height=480, fs=1) print('Video available at https://www.bilibili.com/video/{0}'.format(video.id)) display(video) out1 = widgets.Output() with out1: from IPython.display import YouTubeVideo video = YouTubeVideo(id="5Xpb0YaN5Ms", width=854, height=480, fs=1, rel=0) print('Video available at https://youtube.com/watch?v=' + video.id) display(video) out = widgets.Tab([out1, out2]) out.set_title(0, 'Youtube') out.set_title(1, 'Bilibili') display(out) ###Output _____no_output_____ ###Markdown Next we will analyze the same data using t-SNE, a nonlinear dimensionality reduction method that is useful for visualizing high dimensional data in 2D or 3D. Run the cell below to get started. ###Code from sklearn.manifold import TSNE tsne_model = TSNE(n_components=2, perplexity=30, random_state=2020) ###Output _____no_output_____ ###Markdown Coding Exercise 2.1: Apply t-SNE on MNISTFirst, we'll run t-SNE on the data to explore whether we can see more structure. The cell above defined the parameters that we will use to find our embedding (i.e, the low-dimensional representation of the data) and stored them in `model`. To run t-SNE on our data, use the function `model.fit_transform`.**Suggestions:**- Run t-SNE using the function `model.fit_transform`.- Plot the result data using `visualize_components`. ###Code help(tsne_model.fit_transform) ################################################# ## TODO for students # Comment once you've completed the code raise NotImplementedError("Student excercise: perform t-SNE") ################################################# # Perform t-SNE embed = ... # Visualize the data visualize_components(..., ..., labels) # to_remove solution # Perform t-SNE embed = tsne_model.fit_transform(X) # Visualize the data with plt.xkcd(): visualize_components(embed[:, 0], embed[:, 1], labels) ###Output _____no_output_____ ###Markdown Coding Exercise 2.2: Run t-SNE with different perplexitiesUnlike PCA, t-SNE has a free parameter (the perplexity) that roughly determines how global vs. local information is weighted. Here we'll take a look at how the perplexity affects our interpretation of the results. **Steps:**- Rerun t-SNE (don't forget to re-initialize using the function `TSNE` as above) with a perplexity of 50, 5 and 2. ###Code def explore_perplexity(values, X, labels): """ Plots a 2D representation of the data for visualization with categories labelled as different colors using different perplexities. Args: values (list of floats) : list with perplexities to be visualized X (np.ndarray of floats) : matrix with the dataset labels (np.ndarray of int) : array with the labels Returns: Nothing. """ for perp in values: ################################################# ## TO DO for students: Insert your code here to redefine the t-SNE "model" ## while setting the perplexity perform t-SNE on the data and plot the ## results for perplexity = 50, 5, and 2 (set random_state to 2020 # Comment these lines when you complete the function raise NotImplementedError("Student Exercise! Explore t-SNE with different perplexity") ################################################# # Perform t-SNE tsne_model = ... embed = tsne_model.fit_transform(X) visualize_components(embed[:, 0], embed[:, 1], labels, show=False) plt.title(f"perplexity: {perp}") # Visualize values = [50, 5, 2] explore_perplexity(values, X, labels) # to_remove solution def explore_perplexity(values, X, labels): """ Plots a 2D representation of the data for visualization with categories labelled as different colors using different perplexities. Args: values (list of floats) : list with perplexities to be visualized X (np.ndarray of floats) : matrix with the dataset labels (np.ndarray of int) : array with the labels Returns: Nothing. """ for perp in values: # Perform t-SNE tsne_model = TSNE(n_components=2, perplexity=perp, random_state=2020) embed = tsne_model.fit_transform(X) visualize_components(embed[:, 0], embed[:, 1], labels, show=False) plt.title(f"perplexity: {perp}") plt.show() # Visualize values = [50, 5, 2] with plt.xkcd(): explore_perplexity(values, X, labels) ###Output _____no_output_____ ###Markdown [![Kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/NeuromatchAcademy/course-content/master/tutorials/W1D5_DimensionalityReduction/W1D5_Tutorial4.ipynb) Tutorial 4: Nonlinear Dimensionality Reduction**Week 1, Day 5: Dimensionality Reduction****By Neuromatch Academy**__Content creators:__ Alex Cayco Gajic, John Murray__Content reviewers:__ Roozbeh Farhoudi, Matt Krause, Spiros Chavlis, Richard Gao, Michael Waskom, Siddharth Suresh, Natalie Schaworonkow, Ella Batty **Our 2021 Sponsors, including Presenting Sponsor Facebook Reality Labs** --- Tutorial Objectives*Estimated timing of tutorial: 35 minutes*In this notebook we'll explore how dimensionality reduction can be useful for visualizing and inferring structure in your data. To do this, we will compare PCA with t-SNE, a nonlinear dimensionality reduction method.Overview:- Visualize MNIST in 2D using PCA.- Visualize MNIST in 2D using t-SNE. ###Code # @title Tutorial slides # @markdown These are the slides for the videos in all tutorials today from IPython.display import IFrame IFrame(src=f"https://mfr.ca-1.osf.io/render?url=https://osf.io/kaq2x/?direct%26mode=render%26action=download%26mode=render", width=854, height=480) # @title Video 1: PCA Applications from ipywidgets import widgets out2 = widgets.Output() with out2: from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = 'https://player.bilibili.com/player.html?bvid={0}&page={1}'.format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id="BV1Jf4y1R7UZ", width=854, height=480, fs=1) print('Video available at https://www.bilibili.com/video/{0}'.format(video.id)) display(video) out1 = widgets.Output() with out1: from IPython.display import YouTubeVideo video = YouTubeVideo(id="2Zb93aOWioM", width=854, height=480, fs=1, rel=0) print('Video available at https://youtube.com/watch?v=' + video.id) display(video) out = widgets.Tab([out1, out2]) out.set_title(0, 'Youtube') out.set_title(1, 'Bilibili') display(out) ###Output _____no_output_____ ###Markdown --- Setup ###Code # Imports import numpy as np import matplotlib.pyplot as plt #@title Figure Settings import ipywidgets as widgets # interactive display %config InlineBackend.figure_format = 'retina' plt.style.use("https://raw.githubusercontent.com/NeuromatchAcademy/course-content/master/nma.mplstyle") # @title Plotting Functions def visualize_components(component1, component2, labels, show=True): """ Plots a 2D representation of the data for visualization with categories labelled as different colors. Args: component1 (numpy array of floats) : Vector of component 1 scores component2 (numpy array of floats) : Vector of component 2 scores labels (numpy array of floats) : Vector corresponding to categories of samples Returns: Nothing. """ plt.figure() cmap = plt.cm.get_cmap('tab10') plt.scatter(x=component1, y=component2, c=labels, cmap=cmap) plt.xlabel('Component 1') plt.ylabel('Component 2') plt.colorbar(ticks=range(10)) plt.clim(-0.5, 9.5) if show: plt.show() ###Output _____no_output_____ ###Markdown --- Section 1: Visualize MNIST in 2D using PCAIn this exercise, we'll visualize the first few components of the MNIST dataset to look for evidence of structure in the data. But in this tutorial, we will also be interested in the label of each image (i.e., which numeral it is from 0 to 9). Start by running the following cell to reload the MNIST dataset (this takes a few seconds). ###Code from sklearn.datasets import fetch_openml # Get images mnist = fetch_openml(name='mnist_784', as_frame = False) X = mnist.data # Get labels labels = [int(k) for k in mnist.target] labels = np.array(labels) ###Output _____no_output_____ ###Markdown To perform PCA, we now will use the method implemented in sklearn. Run the following cell to set the parameters of PCA - we will only look at the top 2 components because we will be visualizing the data in 2D. ###Code from sklearn.decomposition import PCA # Initializes PCA pca_model = PCA(n_components=2) # Performs PCA pca_model.fit(X) ###Output _____no_output_____ ###Markdown Coding Exercise 1: Visualization of MNIST in 2D using PCAFill in the code below to perform PCA and visualize the top two components. For better visualization, take only the first 2,000 samples of the data (this will also make t-SNE much faster in the following section of the tutorial so don't skip this step!)**Suggestions:**- Truncate the data matrix at 2,000 samples. You will also need to truncate the array of labels.- Perform PCA on the truncated data.- Use the function `visualize_components` to plot the labelled data. ###Code help(visualize_components) help(pca_model.transform) ################################################# ## TODO for students: take only 2,000 samples and perform PCA # Comment once you've completed the code raise NotImplementedError("Student excercise: perform PCA") ################################################# # Take only the first 2000 samples with the corresponding labels X, labels = ... # Perform PCA scores = pca_model.transform(X) # Plot the data and reconstruction visualize_components(...) # to_remove solution # Take only the first 2000 samples with the corresponding labels X, labels = X[:2000, :], labels[:2000] # Perform PCA scores = pca_model.transform(X) # Plot the data and reconstruction with plt.xkcd(): visualize_components(scores[:, 0], scores[:, 1], labels) ###Output _____no_output_____ ###Markdown Think! 1: PCA Visualization1. What do you see? Are different samples corresponding to the same numeral clustered together? Is there much overlap?2. Do some pairs of numerals appear to be more distinguishable than others? ###Code # to_remove explanation """ 1) Images corresponding to the some labels (numbers) are sort of clustered together in some cases but there's a lot of overlap and definitely not a clear distinction between all the number clusters. 2) The zeros and ones seem fairly non-overlapping. """ ###Output _____no_output_____ ###Markdown --- Section 2: Visualize MNIST in 2D using t-SNE*Estimated timing to here from start of tutorial: 15 min* ###Code # @title Video 2: Nonlinear Methods from ipywidgets import widgets out2 = widgets.Output() with out2: from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = 'https://player.bilibili.com/player.html?bvid={0}&page={1}'.format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id="BV14Z4y1u7HG", width=854, height=480, fs=1) print('Video available at https://www.bilibili.com/video/{0}'.format(video.id)) display(video) out1 = widgets.Output() with out1: from IPython.display import YouTubeVideo video = YouTubeVideo(id="5Xpb0YaN5Ms", width=854, height=480, fs=1, rel=0) print('Video available at https://youtube.com/watch?v=' + video.id) display(video) out = widgets.Tab([out1, out2]) out.set_title(0, 'Youtube') out.set_title(1, 'Bilibili') display(out) ###Output _____no_output_____ ###Markdown Next we will analyze the same data using t-SNE, a nonlinear dimensionality reduction method that is useful for visualizing high dimensional data in 2D or 3D. Run the cell below to get started. ###Code from sklearn.manifold import TSNE tsne_model = TSNE(n_components=2, perplexity=30, random_state=2020) ###Output _____no_output_____ ###Markdown Coding Exercise 2.1: Apply t-SNE on MNISTFirst, we'll run t-SNE on the data to explore whether we can see more structure. The cell above defined the parameters that we will use to find our embedding (i.e, the low-dimensional representation of the data) and stored them in `model`. To run t-SNE on our data, use the function `model.fit_transform`.**Suggestions:**- Run t-SNE using the function `model.fit_transform`.- Plot the result data using `visualize_components`. ###Code help(tsne_model.fit_transform) ################################################# ## TODO for students # Comment once you've completed the code raise NotImplementedError("Student excercise: perform t-SNE") ################################################# # Perform t-SNE embed = ... # Visualize the data visualize_components(..., ..., labels) # to_remove solution # Perform t-SNE embed = tsne_model.fit_transform(X) # Visualize the data with plt.xkcd(): visualize_components(embed[:, 0], embed[:, 1], labels) ###Output _____no_output_____ ###Markdown Coding Exercise 2.2: Run t-SNE with different perplexitiesUnlike PCA, t-SNE has a free parameter (the perplexity) that roughly determines how global vs. local information is weighted. Here we'll take a look at how the perplexity affects our interpretation of the results. **Steps:**- Rerun t-SNE (don't forget to re-initialize using the function `TSNE` as above) with a perplexity of 50, 5 and 2. ###Code def explore_perplexity(values): """ Plots a 2D representation of the data for visualization with categories labelled as different colors using different perplexities. Args: values (list of floats) : list with perplexities to be visualized Returns: Nothing. """ for perp in values: ################################################# ## TO DO for students: Insert your code here to redefine the t-SNE "model" ## while setting the perplexity perform t-SNE on the data and plot the ## results for perplexity = 50, 5, and 2 (set random_state to 2020 # Comment these lines when you complete the function raise NotImplementedError("Student Exercise! Explore t-SNE with different perplexity") ################################################# # Perform t-SNE tsne_model = ... embed = tsne_model.fit_transform(X) visualize_components(embed[:, 0], embed[:, 1], labels, show=False) plt.title(f"perplexity: {perp}") # Visualize values = [50, 5, 2] explore_perplexity(values) # to_remove solution def explore_perplexity(values): """ Plots a 2D representation of the data for visualization with categories labelled as different colors using different perplexities. Args: values (list of floats) : list with perplexities to be visualized Returns: Nothing. """ for perp in values: # Perform t-SNE tsne_model = TSNE(n_components=2, perplexity=perp, random_state=2020) embed = tsne_model.fit_transform(X) visualize_components(embed[:, 0], embed[:, 1], labels, show=False) plt.title(f"perplexity: {perp}") plt.show() # Visualize values = [50, 5, 2] with plt.xkcd(): explore_perplexity(values) ###Output _____no_output_____ ###Markdown Neuromatch Academy: Week 1, Day 5, Tutorial 4 Dimensionality Reduction: Nonlinear dimensionality reduction__Content creators:__ Alex Cayco Gajic, John Murray__Content reviewers:__ Roozbeh Farhoudi, Matt Krause, Spiros Chavlis, Richard Gao, Michael Waskom --- Tutorial ObjectivesIn this notebook we'll explore how dimensionality reduction can be useful for visualizing and inferring structure in your data. To do this, we will compare PCA with t-SNE, a nonlinear dimensionality reduction method.Overview:- Visualize MNIST in 2D using PCA.- Visualize MNIST in 2D using t-SNE. ###Code # @title Video 1: PCA Applications from IPython.display import YouTubeVideo video = YouTubeVideo(id="2Zb93aOWioM", width=854, height=480, fs=1) print("Video available at https://youtube.com/watch?v=" + video.id) video ###Output _____no_output_____ ###Markdown --- SetupRun these cells to get the tutorial started. ###Code # Imports import numpy as np import matplotlib.pyplot as plt #@title Figure Settings import ipywidgets as widgets # interactive display %config InlineBackend.figure_format = 'retina' plt.style.use("https://raw.githubusercontent.com/NeuromatchAcademy/course-content/master/nma.mplstyle") #@title Helper functions def visualize_components(component1, component2, labels, show=True): """ Plots a 2D representation of the data for visualization with categories labelled as different colors. Args: component1 (numpy array of floats) : Vector of component 1 scores component2 (numpy array of floats) : Vector of component 2 scores labels (numpy array of floats) : Vector corresponding to categories of samples Returns: Nothing. """ plt.figure() cmap = plt.cm.get_cmap('tab10') plt.scatter(x=component1, y=component2, c=labels, cmap=cmap) plt.xlabel('Component 1') plt.ylabel('Component 2') plt.colorbar(ticks=range(10)) plt.clim(-0.5, 9.5) if show: plt.show() ###Output _____no_output_____ ###Markdown --- Section 1: Visualize MNIST in 2D using PCAIn this exercise, we'll visualize the first few components of the MNIST dataset to look for evidence of structure in the data. But in this tutorial, we will also be interested in the label of each image (i.e., which numeral it is from 0 to 9). Start by running the following cell to reload the MNIST dataset (this takes a few seconds). ###Code from sklearn.datasets import fetch_openml mnist = fetch_openml(name='mnist_784') X = mnist.data labels = [int(k) for k in mnist.target] labels = np.array(labels) ###Output _____no_output_____ ###Markdown To perform PCA, we now will use the method implemented in sklearn. Run the following cell to set the parameters of PCA - we will only look at the top 2 components because we will be visualizing the data in 2D. ###Code from sklearn.decomposition import PCA pca_model = PCA(n_components=2) # Initializes PCA pca_model.fit(X) # Performs PCA ###Output _____no_output_____ ###Markdown Exercise 1: Visualization of MNIST in 2D using PCAFill in the code below to perform PCA and visualize the top two components. For better visualization, take only the first 2,000 samples of the data (this will also make t-SNE much faster in the following section of the tutorial so don't skip this step!)**Suggestions:**- Truncate the data matrix at 2,000 samples. You will also need to truncate the array of labels.- Perform PCA on the truncated data.- Use the function `visualize_components` to plot the labelled data. ###Code help(visualize_components) help(pca_model.transform) ################################################# ## TODO for students: take only 2,000 samples and perform PCA ################################################# # Take only the first 2000 samples with the corresponding labels # X, labels = ... # Perform PCA # scores = pca_model.transform(X) # Plot the data and reconstruction # visualize_components(...) # to_remove solution # Take only the first 2000 samples with the corresponding labels X, labels = X[:2000, :], labels[:2000] # Perform PCA scores = pca_model.transform(X) # Plot the data and reconstruction with plt.xkcd(): visualize_components(scores[:, 0], scores[:, 1], labels) ###Output _____no_output_____ ###Markdown Think!- What do you see? Are different samples corresponding to the same numeral clustered together? Is there much overlap?- Do some pairs of numerals appear to be more distinguishable than others? --- Section 2: Visualize MNIST in 2D using t-SNE ###Code # @title Video 2: Nonlinear Methods video = YouTubeVideo(id="5Xpb0YaN5Ms", width=854, height=480, fs=1) print("Video available at https://youtube.com/watch?v=" + video.id) video ###Output _____no_output_____ ###Markdown Next we will analyze the same data using t-SNE, a nonlinear dimensionality reduction method that is useful for visualizing high dimensional data in 2D or 3D. Run the cell below to get started. ###Code from sklearn.manifold import TSNE tsne_model = TSNE(n_components=2, perplexity=30, random_state=2020) ###Output _____no_output_____ ###Markdown Exercise 2: Apply t-SNE on MNISTFirst, we'll run t-SNE on the data to explore whether we can see more structure. The cell above defined the parameters that we will use to find our embedding (i.e, the low-dimensional representation of the data) and stored them in `model`. To run t-SNE on our data, use the function `model.fit_transform`.**Suggestions:**- Run t-SNE using the function `model.fit_transform`.- Plot the result data using `visualize_components`. ###Code help(tsne_model.fit_transform) ################################################# ## TODO for students: perform tSNE and visualize the data ################################################# # perform t-SNE embed = ... # Visualize the data # visualize_components(..., ..., labels) # to_remove solution # perform t-SNE embed = tsne_model.fit_transform(X) # Visualize the data with plt.xkcd(): visualize_components(embed[:, 0], embed[:, 1], labels) ###Output _____no_output_____ ###Markdown Exercise 3: Run t-SNE with different perplexitiesUnlike PCA, t-SNE has a free parameter (the perplexity) that roughly determines how global vs. local information is weighted. Here we'll take a look at how the perplexity affects our interpretation of the results. **Steps:**- Rerun t-SNE (don't forget to re-initialize using the function `TSNE` as above) with a perplexity of 50, 5 and 2. ###Code def explore_perplexity(values): """ Plots a 2D representation of the data for visualization with categories labelled as different colors using different perplexities. Args: values (list of floats) : list with perplexities to be visualized Returns: Nothing. """ for perp in values: ################################################# ## TO DO for students: Insert your code here to redefine the t-SNE "model" ## while setting the perplexity perform t-SNE on the data and plot the ## results for perplexity = 50, 5, and 2 (set random_state to 2020 # Comment these lines when you complete the function raise NotImplementedError("Student Exercise! Explore t-SNE with different perplexity") ################################################# # perform t-SNE tsne_model = ... embed = tsne_model.fit_transform(X) visualize_components(embed[:, 0], embed[:, 1], labels, show=False) plt.title(f"perplexity: {perp}") # Uncomment when you complete the function # values = [50, 5, 2] # explore_perplexity(values) # to_remove solution def explore_perplexity(values): """ Plots a 2D representation of the data for visualization with categories labelled as different colors using different perplexities. Args: values (list of floats) : list with perplexities to be visualized Returns: Nothing. """ for perp in values: # perform t-SNE tsne_model = TSNE(n_components=2, perplexity=perp, random_state=2020) embed = tsne_model.fit_transform(X) visualize_components(embed[:, 0], embed[:, 1], labels, show=False) plt.title(f"perplexity: {perp}") plt.show() # Uncomment when you complete the function values = [50, 5, 2] with plt.xkcd(): explore_perplexity(values) ###Output _____no_output_____
multi_class_classification_of_handwritten_digits.ipynb
###Markdown Copyright 2017 Google LLC. ###Code # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Classifying Handwritten Digits with Neural Networks ![img](https://www.tensorflow.org/images/MNIST.png) **Learning Objectives:** * Train both a linear model and a neural network to classify handwritten digits from the classic [MNIST](http://yann.lecun.com/exdb/mnist/) data set * Compare the performance of the linear and neural network classification models * Visualize the weights of a neural-network hidden layer Our goal is to map each input image to the correct numeric digit. We will create a NN with a few hidden layers and a Softmax layer at the top to select the winning class. SetupFirst, let's download the data set, import TensorFlow and other utilities, and load the data into a *pandas* `DataFrame`. Note that this data is a sample of the original MNIST training data; we've taken 20000 rows at random. ###Code from __future__ import print_function import glob import math import os from IPython import display from matplotlib import cm from matplotlib import gridspec from matplotlib import pyplot as plt import numpy as np import pandas as pd import seaborn as sns from sklearn import metrics import tensorflow as tf from tensorflow.python.data import Dataset tf.logging.set_verbosity(tf.logging.ERROR) pd.options.display.max_rows = 10 pd.options.display.float_format = '{:.1f}'.format mnist_dataframe = pd.read_csv( "https://download.mlcc.google.com/mledu-datasets/mnist_train_small.csv", sep=",", header=None) # Use just the first 10,000 records for training/validation. mnist_dataframe = mnist_dataframe.head(10000) mnist_dataframe = mnist_dataframe.reindex(np.random.permutation(mnist_dataframe.index)) mnist_dataframe.head() ###Output _____no_output_____ ###Markdown Each row represents one labeled example. Column 0 represents the label that a human rater has assigned for one handwritten digit. For example, if Column 0 contains '6', then a human rater interpreted the handwritten character as the digit '6'. The ten digits 0-9 are each represented, with a unique class label for each possible digit. Thus, this is a multi-class classification problem with 10 classes. ![img](https://www.tensorflow.org/images/MNIST-Matrix.png) Columns 1 through 784 contain the feature values, one per pixel for the 28×28=784 pixel values. The pixel values are on a gray scale in which 0 represents white, 255 represents black, and values between 0 and 255 represent shades of gray. Most of the pixel values are 0; you may want to take a minute to confirm that they aren't all 0. For example, adjust the following text block to print out the values in column 72. ###Code mnist_dataframe.loc[:, 72:72] ###Output _____no_output_____ ###Markdown Now, let's parse out the labels and features and look at a few examples. Note the use of `loc` which allows us to pull out columns based on original location, since we don't have a header row in this data set. ###Code def parse_labels_and_features(dataset): """Extracts labels and features. This is a good place to scale or transform the features if needed. Args: dataset: A Pandas `Dataframe`, containing the label on the first column and monochrome pixel values on the remaining columns, in row major order. Returns: A `tuple` `(labels, features)`: labels: A Pandas `Series`. features: A Pandas `DataFrame`. """ labels = dataset[0] # DataFrame.loc index ranges are inclusive at both ends. features = dataset.loc[:,1:784] # Scale the data to [0, 1] by dividing out the max value, 255. features = features / 255 return labels, features training_targets, training_examples = parse_labels_and_features(mnist_dataframe[:7500]) training_examples.describe() validation_targets, validation_examples = parse_labels_and_features(mnist_dataframe[7500:10000]) validation_examples.describe() ###Output _____no_output_____ ###Markdown Show a random example and its corresponding label. ###Code rand_example = np.random.choice(training_examples.index) _, ax = plt.subplots() ax.matshow(training_examples.loc[rand_example].values.reshape(28, 28)) ax.set_title("Label: %i" % training_targets.loc[rand_example]) ax.grid(False) ###Output _____no_output_____ ###Markdown Task 1: Build a Linear Model for MNISTFirst, let's create a baseline model to compare against. The `LinearClassifier` provides a set of *k* one-vs-all classifiers, one for each of the *k* classes.You'll notice that in addition to reporting accuracy, and plotting Log Loss over time, we also display a [**confusion matrix**](https://en.wikipedia.org/wiki/Confusion_matrix). The confusion matrix shows which classes were misclassified as other classes. Which digits get confused for each other?Also note that we track the model's error using the `log_loss` function. This should not be confused with the loss function internal to `LinearClassifier` that is used for training. ###Code def construct_feature_columns(): """Construct the TensorFlow Feature Columns. Returns: A set of feature columns """ # There are 784 pixels in each image. return set([tf.feature_column.numeric_column('pixels', shape=784)]) ###Output _____no_output_____ ###Markdown Here, we'll make separate input functions for training and for prediction. We'll nest them in `create_training_input_fn()` and `create_predict_input_fn()`, respectively, so we can invoke these functions to return the corresponding `_input_fn`s to pass to our `.train()` and `.predict()` calls. ###Code def create_training_input_fn(features, labels, batch_size, num_epochs=None, shuffle=True): """A custom input_fn for sending MNIST data to the estimator for training. Args: features: The training features. labels: The training labels. batch_size: Batch size to use during training. Returns: A function that returns batches of training features and labels during training. """ def _input_fn(num_epochs=None, shuffle=True): # Input pipelines are reset with each call to .train(). To ensure model # gets a good sampling of data, even when number of steps is small, we # shuffle all the data before creating the Dataset object idx = np.random.permutation(features.index) raw_features = {"pixels":features.reindex(idx)} raw_targets = np.array(labels[idx]) ds = Dataset.from_tensor_slices((raw_features,raw_targets)) # warning: 2GB limit ds = ds.batch(batch_size).repeat(num_epochs) if shuffle: ds = ds.shuffle(10000) # Return the next batch of data. feature_batch, label_batch = ds.make_one_shot_iterator().get_next() return feature_batch, label_batch return _input_fn def create_predict_input_fn(features, labels, batch_size): """A custom input_fn for sending mnist data to the estimator for predictions. Args: features: The features to base predictions on. labels: The labels of the prediction examples. Returns: A function that returns features and labels for predictions. """ def _input_fn(): raw_features = {"pixels": features.values} raw_targets = np.array(labels) ds = Dataset.from_tensor_slices((raw_features, raw_targets)) # warning: 2GB limit ds = ds.batch(batch_size) # Return the next batch of data. feature_batch, label_batch = ds.make_one_shot_iterator().get_next() return feature_batch, label_batch return _input_fn def train_linear_classification_model( learning_rate, steps, batch_size, training_examples, training_targets, validation_examples, validation_targets): """Trains a linear classification model for the MNIST digits dataset. In addition to training, this function also prints training progress information, a plot of the training and validation loss over time, and a confusion matrix. Args: learning_rate: A `float`, the learning rate to use. steps: A non-zero `int`, the total number of training steps. A training step consists of a forward and backward pass using a single batch. batch_size: A non-zero `int`, the batch size. training_examples: A `DataFrame` containing the training features. training_targets: A `DataFrame` containing the training labels. validation_examples: A `DataFrame` containing the validation features. validation_targets: A `DataFrame` containing the validation labels. Returns: The trained `LinearClassifier` object. """ periods = 10 steps_per_period = steps / periods # Create the input functions. predict_training_input_fn = create_predict_input_fn( training_examples, training_targets, batch_size) predict_validation_input_fn = create_predict_input_fn( validation_examples, validation_targets, batch_size) training_input_fn = create_training_input_fn( training_examples, training_targets, batch_size) # Create a LinearClassifier object. my_optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate) my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) classifier = tf.estimator.LinearClassifier( feature_columns=construct_feature_columns(), n_classes=10, optimizer=my_optimizer, config=tf.estimator.RunConfig(keep_checkpoint_max=1) ) # Train the model, but do so inside a loop so that we can periodically assess # loss metrics. print("Training model...") print("LogLoss error (on validation data):") training_errors = [] validation_errors = [] for period in range (0, periods): # Train the model, starting from the prior state. classifier.train( input_fn=training_input_fn, steps=steps_per_period ) # Take a break and compute probabilities. training_predictions = list(classifier.predict(input_fn=predict_training_input_fn)) training_probabilities = np.array([item['probabilities'] for item in training_predictions]) training_pred_class_id = np.array([item['class_ids'][0] for item in training_predictions]) training_pred_one_hot = tf.keras.utils.to_categorical(training_pred_class_id,10) validation_predictions = list(classifier.predict(input_fn=predict_validation_input_fn)) validation_probabilities = np.array([item['probabilities'] for item in validation_predictions]) validation_pred_class_id = np.array([item['class_ids'][0] for item in validation_predictions]) validation_pred_one_hot = tf.keras.utils.to_categorical(validation_pred_class_id,10) # Compute training and validation errors. training_log_loss = metrics.log_loss(training_targets, training_pred_one_hot) validation_log_loss = metrics.log_loss(validation_targets, validation_pred_one_hot) # Occasionally print the current loss. print(" period %02d : %0.2f" % (period, validation_log_loss)) # Add the loss metrics from this period to our list. training_errors.append(training_log_loss) validation_errors.append(validation_log_loss) print("Model training finished.") # Remove event files to save disk space. _ = map(os.remove, glob.glob(os.path.join(classifier.model_dir, 'events.out.tfevents*'))) # Calculate final predictions (not probabilities, as above). final_predictions = classifier.predict(input_fn=predict_validation_input_fn) final_predictions = np.array([item['class_ids'][0] for item in final_predictions]) accuracy = metrics.accuracy_score(validation_targets, final_predictions) print("Final accuracy (on validation data): %0.2f" % accuracy) # Output a graph of loss metrics over periods. plt.ylabel("LogLoss") plt.xlabel("Periods") plt.title("LogLoss vs. Periods") plt.plot(training_errors, label="training") plt.plot(validation_errors, label="validation") plt.legend() plt.show() # Output a plot of the confusion matrix. cm = metrics.confusion_matrix(validation_targets, final_predictions) # Normalize the confusion matrix by row (i.e by the number of samples # in each class). cm_normalized = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis] ax = sns.heatmap(cm_normalized, cmap="bone_r") ax.set_aspect(1) plt.title("Confusion matrix") plt.ylabel("True label") plt.xlabel("Predicted label") plt.show() return classifier ###Output _____no_output_____ ###Markdown **Spend 5 minutes seeing how well you can do on accuracy with a linear model of this form. For this exercise, limit yourself to experimenting with the hyperparameters for batch size, learning rate and steps.**Stop if you get anything above about 0.9 accuracy. ###Code classifier = train_linear_classification_model( learning_rate=0.02, steps=100, batch_size=10, training_examples=training_examples, training_targets=training_targets, validation_examples=validation_examples, validation_targets=validation_targets) ###Output _____no_output_____ ###Markdown SolutionClick below for one possible solution. Here is a set of parameters that should attain roughly 0.9 accuracy. ###Code _ = train_linear_classification_model( learning_rate=0.03, steps=1000, batch_size=30, training_examples=training_examples, training_targets=training_targets, validation_examples=validation_examples, validation_targets=validation_targets) ###Output _____no_output_____ ###Markdown Task 2: Replace the Linear Classifier with a Neural Network**Replace the LinearClassifier above with a [`DNNClassifier`](https://www.tensorflow.org/api_docs/python/tf/estimator/DNNClassifier) and find a parameter combination that gives 0.95 or better accuracy.**You may wish to experiment with additional regularization methods, such as dropout. These additional regularization methods are documented in the comments for the `DNNClassifier` class. ###Code # # YOUR CODE HERE: Replace the linear classifier with a neural network. # ###Output _____no_output_____ ###Markdown Once you have a good model, double check that you didn't overfit the validation set by evaluating on the test data that we'll load below. ###Code mnist_test_dataframe = pd.read_csv( "https://download.mlcc.google.com/mledu-datasets/mnist_test.csv", sep=",", header=None) test_targets, test_examples = parse_labels_and_features(mnist_test_dataframe) test_examples.describe() # # YOUR CODE HERE: Calculate accuracy on the test set. # ###Output _____no_output_____ ###Markdown SolutionClick below for a possible solution. The code below is almost identical to the original `LinearClassifer` training code, with the exception of the NN-specific configuration, such as the hyperparameter for hidden units. ###Code def train_nn_classification_model( learning_rate, steps, batch_size, hidden_units, training_examples, training_targets, validation_examples, validation_targets): """Trains a neural network classification model for the MNIST digits dataset. In addition to training, this function also prints training progress information, a plot of the training and validation loss over time, as well as a confusion matrix. Args: learning_rate: A `float`, the learning rate to use. steps: A non-zero `int`, the total number of training steps. A training step consists of a forward and backward pass using a single batch. batch_size: A non-zero `int`, the batch size. hidden_units: A `list` of int values, specifying the number of neurons in each layer. training_examples: A `DataFrame` containing the training features. training_targets: A `DataFrame` containing the training labels. validation_examples: A `DataFrame` containing the validation features. validation_targets: A `DataFrame` containing the validation labels. Returns: The trained `DNNClassifier` object. """ periods = 10 # Caution: input pipelines are reset with each call to train. # If the number of steps is small, your model may never see most of the data. # So with multiple `.train` calls like this you may want to control the length # of training with num_epochs passed to the input_fn. Or, you can do a really-big shuffle, # or since it's in-memory data, shuffle all the data in the `input_fn`. steps_per_period = steps / periods # Create the input functions. predict_training_input_fn = create_predict_input_fn( training_examples, training_targets, batch_size) predict_validation_input_fn = create_predict_input_fn( validation_examples, validation_targets, batch_size) training_input_fn = create_training_input_fn( training_examples, training_targets, batch_size) # Create feature columns. feature_columns = [tf.feature_column.numeric_column('pixels', shape=784)] # Create a DNNClassifier object. my_optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate) my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) classifier = tf.estimator.DNNClassifier( feature_columns=feature_columns, n_classes=10, hidden_units=hidden_units, optimizer=my_optimizer, config=tf.contrib.learn.RunConfig(keep_checkpoint_max=1) ) # Train the model, but do so inside a loop so that we can periodically assess # loss metrics. print("Training model...") print("LogLoss error (on validation data):") training_errors = [] validation_errors = [] for period in range (0, periods): # Train the model, starting from the prior state. classifier.train( input_fn=training_input_fn, steps=steps_per_period ) # Take a break and compute probabilities. training_predictions = list(classifier.predict(input_fn=predict_training_input_fn)) training_probabilities = np.array([item['probabilities'] for item in training_predictions]) training_pred_class_id = np.array([item['class_ids'][0] for item in training_predictions]) training_pred_one_hot = tf.keras.utils.to_categorical(training_pred_class_id,10) validation_predictions = list(classifier.predict(input_fn=predict_validation_input_fn)) validation_probabilities = np.array([item['probabilities'] for item in validation_predictions]) validation_pred_class_id = np.array([item['class_ids'][0] for item in validation_predictions]) validation_pred_one_hot = tf.keras.utils.to_categorical(validation_pred_class_id,10) # Compute training and validation errors. training_log_loss = metrics.log_loss(training_targets, training_pred_one_hot) validation_log_loss = metrics.log_loss(validation_targets, validation_pred_one_hot) # Occasionally print the current loss. print(" period %02d : %0.2f" % (period, validation_log_loss)) # Add the loss metrics from this period to our list. training_errors.append(training_log_loss) validation_errors.append(validation_log_loss) print("Model training finished.") # Remove event files to save disk space. _ = map(os.remove, glob.glob(os.path.join(classifier.model_dir, 'events.out.tfevents*'))) # Calculate final predictions (not probabilities, as above). final_predictions = classifier.predict(input_fn=predict_validation_input_fn) final_predictions = np.array([item['class_ids'][0] for item in final_predictions]) accuracy = metrics.accuracy_score(validation_targets, final_predictions) print("Final accuracy (on validation data): %0.2f" % accuracy) # Output a graph of loss metrics over periods. plt.ylabel("LogLoss") plt.xlabel("Periods") plt.title("LogLoss vs. Periods") plt.plot(training_errors, label="training") plt.plot(validation_errors, label="validation") plt.legend() plt.show() # Output a plot of the confusion matrix. cm = metrics.confusion_matrix(validation_targets, final_predictions) # Normalize the confusion matrix by row (i.e by the number of samples # in each class). cm_normalized = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis] ax = sns.heatmap(cm_normalized, cmap="bone_r") ax.set_aspect(1) plt.title("Confusion matrix") plt.ylabel("True label") plt.xlabel("Predicted label") plt.show() return classifier classifier = train_nn_classification_model( learning_rate=0.05, steps=1000, batch_size=30, hidden_units=[100, 100], training_examples=training_examples, training_targets=training_targets, validation_examples=validation_examples, validation_targets=validation_targets) ###Output _____no_output_____ ###Markdown Next, we verify the accuracy on the test set. ###Code mnist_test_dataframe = pd.read_csv( "https://download.mlcc.google.com/mledu-datasets/mnist_test.csv", sep=",", header=None) test_targets, test_examples = parse_labels_and_features(mnist_test_dataframe) test_examples.describe() predict_test_input_fn = create_predict_input_fn( test_examples, test_targets, batch_size=100) test_predictions = classifier.predict(input_fn=predict_test_input_fn) test_predictions = np.array([item['class_ids'][0] for item in test_predictions]) accuracy = metrics.accuracy_score(test_targets, test_predictions) print("Accuracy on test data: %0.2f" % accuracy) ###Output _____no_output_____ ###Markdown Task 3: Visualize the weights of the first hidden layer.Let's take a few minutes to dig into our neural network and see what it has learned by accessing the `weights_` attribute of our model.The input layer of our model has `784` weights corresponding to the `28×28` pixel input images. The first hidden layer will have `784×N` weights where `N` is the number of nodes in that layer. We can turn those weights back into `28×28` images by *reshaping* each of the `N` `1×784` arrays of weights into `N` arrays of size `28×28`.Run the following cell to plot the weights. Note that this cell requires that a `DNNClassifier` called "classifier" has already been trained. ###Code print(classifier.get_variable_names()) weights0 = classifier.get_variable_value("dnn/hiddenlayer_0/kernel") print("weights0 shape:", weights0.shape) num_nodes = weights0.shape[1] num_rows = int(math.ceil(num_nodes / 10.0)) fig, axes = plt.subplots(num_rows, 10, figsize=(20, 2 * num_rows)) for coef, ax in zip(weights0.T, axes.ravel()): # Weights in coef is reshaped from 1x784 to 28x28. ax.matshow(coef.reshape(28, 28), cmap=plt.cm.pink) ax.set_xticks(()) ax.set_yticks(()) plt.show() ###Output _____no_output_____ ###Markdown Copyright 2017 Google LLC. ###Code # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Classifying Handwritten Digits with Neural Networks ![img](https://www.tensorflow.org/versions/r0.11/images/MNIST.png) **Learning Objectives:** * Train both a linear model and a neural network to classify handwritten digits from the classic [MNIST](http://yann.lecun.com/exdb/mnist/) data set * Compare the performance of the linear and neural network classification models * Visualize the weights of a neural-network hidden layer Our goal is to map each input image to the correct numeric digit. We will create a NN with a few hidden layers and a Softmax layer at the top to select the winning class. SetupFirst, let's download the data set, import TensorFlow and other utilities, and load the data into a *pandas* `DataFrame`. Note that this data is a sample of the original MNIST training data; we've taken 20000 rows at random. ###Code from __future__ import print_function import glob import math import os from IPython import display from matplotlib import cm from matplotlib import gridspec from matplotlib import pyplot as plt import numpy as np import pandas as pd import seaborn as sns from sklearn import metrics import tensorflow as tf from tensorflow.python.data import Dataset tf.logging.set_verbosity(tf.logging.ERROR) pd.options.display.max_rows = 10 pd.options.display.float_format = '{:.1f}'.format mnist_dataframe = pd.read_csv( "https://download.mlcc.google.com/mledu-datasets/mnist_train_small.csv", sep=",", header=None) # Use just the first 10,000 records for training/validation. mnist_dataframe = mnist_dataframe.head(10000) mnist_dataframe = mnist_dataframe.reindex(np.random.permutation(mnist_dataframe.index)) mnist_dataframe.head() ###Output _____no_output_____ ###Markdown Each row represents one labeled example. Column 0 represents the label that a human rater has assigned for one handwritten digit. For example, if Column 0 contains '6', then a human rater interpreted the handwritten character as the digit '6'. The ten digits 0-9 are each represented, with a unique class label for each possible digit. Thus, this is a multi-class classification problem with 10 classes. ![img](https://www.tensorflow.org/versions/r0.11/images/MNIST-Matrix.png) Columns 1 through 784 contain the feature values, one per pixel for the 28×28=784 pixel values. The pixel values are on a gray scale in which 0 represents white, 255 represents black, and values between 0 and 255 represent shades of gray. Most of the pixel values are 0; you may want to take a minute to confirm that they aren't all 0. For example, adjust the following text block to print out the values in column 72. ###Code mnist_dataframe.loc[:, 72:72] ###Output _____no_output_____ ###Markdown Now, let's parse out the labels and features and look at a few examples. Note the use of `loc` which allows us to pull out columns based on original location, since we don't have a header row in this data set. ###Code def parse_labels_and_features(dataset): """Extracts labels and features. This is a good place to scale or transform the features if needed. Args: dataset: A Pandas `Dataframe`, containing the label on the first column and monochrome pixel values on the remaining columns, in row major order. Returns: A `tuple` `(labels, features)`: labels: A Pandas `Series`. features: A Pandas `DataFrame`. """ labels = dataset[0] # DataFrame.loc index ranges are inclusive at both ends. features = dataset.loc[:,1:784] # Scale the data to [0, 1] by dividing out the max value, 255. features = features / 255 return labels, features training_targets, training_examples = parse_labels_and_features(mnist_dataframe[:7500]) training_examples.describe() validation_targets, validation_examples = parse_labels_and_features(mnist_dataframe[7500:10000]) validation_examples.describe() ###Output _____no_output_____ ###Markdown Show a random example and its corresponding label. ###Code rand_example = np.random.choice(training_examples.index) _, ax = plt.subplots() ax.matshow(training_examples.loc[rand_example].values.reshape(28, 28)) ax.set_title("Label: %i" % training_targets.loc[rand_example]) ax.grid(False) ###Output _____no_output_____ ###Markdown Task 1: Build a Linear Model for MNISTFirst, let's create a baseline model to compare against. The `LinearClassifier` provides a set of *k* one-vs-all classifiers, one for each of the *k* classes.You'll notice that in addition to reporting accuracy, and plotting Log Loss over time, we also display a [**confusion matrix**](https://en.wikipedia.org/wiki/Confusion_matrix). The confusion matrix shows which classes were misclassified as other classes. Which digits get confused for each other?Also note that we track the model's error using the `log_loss` function. This should not be confused with the loss function internal to `LinearClassifier` that is used for training. ###Code def construct_feature_columns(): """Construct the TensorFlow Feature Columns. Returns: A set of feature columns """ # There are 784 pixels in each image. return set([tf.feature_column.numeric_column('pixels', shape=784)]) ###Output _____no_output_____ ###Markdown Here, we'll make separate input functions for training and for prediction. We'll nest them in `create_training_input_fn()` and `create_predict_input_fn()`, respectively, so we can invoke these functions to return the corresponding `_input_fn`s to pass to our `.train()` and `.predict()` calls. ###Code def create_training_input_fn(features, labels, batch_size, num_epochs=None, shuffle=True): """A custom input_fn for sending MNIST data to the estimator for training. Args: features: The training features. labels: The training labels. batch_size: Batch size to use during training. Returns: A function that returns batches of training features and labels during training. """ def _input_fn(num_epochs=None, shuffle=True): # Input pipelines are reset with each call to .train(). To ensure model # gets a good sampling of data, even when number of steps is small, we # shuffle all the data before creating the Dataset object idx = np.random.permutation(features.index) raw_features = {"pixels":features.reindex(idx)} raw_targets = np.array(labels[idx]) ds = Dataset.from_tensor_slices((raw_features,raw_targets)) # warning: 2GB limit ds = ds.batch(batch_size).repeat(num_epochs) if shuffle: ds = ds.shuffle(10000) # Return the next batch of data. feature_batch, label_batch = ds.make_one_shot_iterator().get_next() return feature_batch, label_batch return _input_fn def create_predict_input_fn(features, labels, batch_size): """A custom input_fn for sending mnist data to the estimator for predictions. Args: features: The features to base predictions on. labels: The labels of the prediction examples. Returns: A function that returns features and labels for predictions. """ def _input_fn(): raw_features = {"pixels": features.values} raw_targets = np.array(labels) ds = Dataset.from_tensor_slices((raw_features, raw_targets)) # warning: 2GB limit ds = ds.batch(batch_size) # Return the next batch of data. feature_batch, label_batch = ds.make_one_shot_iterator().get_next() return feature_batch, label_batch return _input_fn def train_linear_classification_model( learning_rate, steps, batch_size, training_examples, training_targets, validation_examples, validation_targets): """Trains a linear classification model for the MNIST digits dataset. In addition to training, this function also prints training progress information, a plot of the training and validation loss over time, and a confusion matrix. Args: learning_rate: A `float`, the learning rate to use. steps: A non-zero `int`, the total number of training steps. A training step consists of a forward and backward pass using a single batch. batch_size: A non-zero `int`, the batch size. training_examples: A `DataFrame` containing the training features. training_targets: A `DataFrame` containing the training labels. validation_examples: A `DataFrame` containing the validation features. validation_targets: A `DataFrame` containing the validation labels. Returns: The trained `LinearClassifier` object. """ periods = 10 steps_per_period = steps / periods # Create the input functions. predict_training_input_fn = create_predict_input_fn( training_examples, training_targets, batch_size) predict_validation_input_fn = create_predict_input_fn( validation_examples, validation_targets, batch_size) training_input_fn = create_training_input_fn( training_examples, training_targets, batch_size) # Create a LinearClassifier object. my_optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate) my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) classifier = tf.estimator.LinearClassifier( feature_columns=construct_feature_columns(), n_classes=10, optimizer=my_optimizer, config=tf.estimator.RunConfig(keep_checkpoint_max=1) ) # Train the model, but do so inside a loop so that we can periodically assess # loss metrics. print("Training model...") print("LogLoss error (on validation data):") training_errors = [] validation_errors = [] for period in range (0, periods): # Train the model, starting from the prior state. classifier.train( input_fn=training_input_fn, steps=steps_per_period ) # Take a break and compute probabilities. training_predictions = list(classifier.predict(input_fn=predict_training_input_fn)) training_probabilities = np.array([item['probabilities'] for item in training_predictions]) training_pred_class_id = np.array([item['class_ids'][0] for item in training_predictions]) training_pred_one_hot = tf.keras.utils.to_categorical(training_pred_class_id,10) validation_predictions = list(classifier.predict(input_fn=predict_validation_input_fn)) validation_probabilities = np.array([item['probabilities'] for item in validation_predictions]) validation_pred_class_id = np.array([item['class_ids'][0] for item in validation_predictions]) validation_pred_one_hot = tf.keras.utils.to_categorical(validation_pred_class_id,10) # Compute training and validation errors. training_log_loss = metrics.log_loss(training_targets, training_pred_one_hot) validation_log_loss = metrics.log_loss(validation_targets, validation_pred_one_hot) # Occasionally print the current loss. print(" period %02d : %0.2f" % (period, validation_log_loss)) # Add the loss metrics from this period to our list. training_errors.append(training_log_loss) validation_errors.append(validation_log_loss) print("Model training finished.") # Remove event files to save disk space. _ = map(os.remove, glob.glob(os.path.join(classifier.model_dir, 'events.out.tfevents*'))) # Calculate final predictions (not probabilities, as above). final_predictions = classifier.predict(input_fn=predict_validation_input_fn) final_predictions = np.array([item['class_ids'][0] for item in final_predictions]) accuracy = metrics.accuracy_score(validation_targets, final_predictions) print("Final accuracy (on validation data): %0.2f" % accuracy) # Output a graph of loss metrics over periods. plt.ylabel("LogLoss") plt.xlabel("Periods") plt.title("LogLoss vs. Periods") plt.plot(training_errors, label="training") plt.plot(validation_errors, label="validation") plt.legend() plt.show() # Output a plot of the confusion matrix. cm = metrics.confusion_matrix(validation_targets, final_predictions) # Normalize the confusion matrix by row (i.e by the number of samples # in each class). cm_normalized = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis] ax = sns.heatmap(cm_normalized, cmap="bone_r") ax.set_aspect(1) plt.title("Confusion matrix") plt.ylabel("True label") plt.xlabel("Predicted label") plt.show() return classifier ###Output _____no_output_____ ###Markdown **Spend 5 minutes seeing how well you can do on accuracy with a linear model of this form. For this exercise, limit yourself to experimenting with the hyperparameters for batch size, learning rate and steps.**Stop if you get anything above about 0.9 accuracy. ###Code classifier = train_linear_classification_model( learning_rate=0.02, steps=100, batch_size=10, training_examples=training_examples, training_targets=training_targets, validation_examples=validation_examples, validation_targets=validation_targets) ###Output _____no_output_____ ###Markdown SolutionClick below for one possible solution. Here is a set of parameters that should attain roughly 0.9 accuracy. ###Code _ = train_linear_classification_model( learning_rate=0.03, steps=1000, batch_size=30, training_examples=training_examples, training_targets=training_targets, validation_examples=validation_examples, validation_targets=validation_targets) ###Output _____no_output_____ ###Markdown Task 2: Replace the Linear Classifier with a Neural Network**Replace the LinearClassifier above with a [`DNNClassifier`](https://www.tensorflow.org/api_docs/python/tf/estimator/DNNClassifier) and find a parameter combination that gives 0.95 or better accuracy.**You may wish to experiment with additional regularization methods, such as dropout. These additional regularization methods are documented in the comments for the `DNNClassifier` class. ###Code # # YOUR CODE HERE: Replace the linear classifier with a neural network. # ###Output _____no_output_____ ###Markdown Once you have a good model, double check that you didn't overfit the validation set by evaluating on the test data that we'll load below. ###Code mnist_test_dataframe = pd.read_csv( "https://download.mlcc.google.com/mledu-datasets/mnist_test.csv", sep=",", header=None) test_targets, test_examples = parse_labels_and_features(mnist_test_dataframe) test_examples.describe() # # YOUR CODE HERE: Calculate accuracy on the test set. # ###Output _____no_output_____ ###Markdown SolutionClick below for a possible solution. The code below is almost identical to the original `LinearClassifer` training code, with the exception of the NN-specific configuration, such as the hyperparameter for hidden units. ###Code def train_nn_classification_model( learning_rate, steps, batch_size, hidden_units, training_examples, training_targets, validation_examples, validation_targets): """Trains a neural network classification model for the MNIST digits dataset. In addition to training, this function also prints training progress information, a plot of the training and validation loss over time, as well as a confusion matrix. Args: learning_rate: A `float`, the learning rate to use. steps: A non-zero `int`, the total number of training steps. A training step consists of a forward and backward pass using a single batch. batch_size: A non-zero `int`, the batch size. hidden_units: A `list` of int values, specifying the number of neurons in each layer. training_examples: A `DataFrame` containing the training features. training_targets: A `DataFrame` containing the training labels. validation_examples: A `DataFrame` containing the validation features. validation_targets: A `DataFrame` containing the validation labels. Returns: The trained `DNNClassifier` object. """ periods = 10 # Caution: input pipelines are reset with each call to train. # If the number of steps is small, your model may never see most of the data. # So with multiple `.train` calls like this you may want to control the length # of training with num_epochs passed to the input_fn. Or, you can do a really-big shuffle, # or since it's in-memory data, shuffle all the data in the `input_fn`. steps_per_period = steps / periods # Create the input functions. predict_training_input_fn = create_predict_input_fn( training_examples, training_targets, batch_size) predict_validation_input_fn = create_predict_input_fn( validation_examples, validation_targets, batch_size) training_input_fn = create_training_input_fn( training_examples, training_targets, batch_size) # Create the input functions. predict_training_input_fn = create_predict_input_fn( training_examples, training_targets, batch_size) predict_validation_input_fn = create_predict_input_fn( validation_examples, validation_targets, batch_size) training_input_fn = create_training_input_fn( training_examples, training_targets, batch_size) # Create feature columns. feature_columns = [tf.feature_column.numeric_column('pixels', shape=784)] # Create a DNNClassifier object. my_optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate) my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) classifier = tf.estimator.DNNClassifier( feature_columns=feature_columns, n_classes=10, hidden_units=hidden_units, optimizer=my_optimizer, config=tf.contrib.learn.RunConfig(keep_checkpoint_max=1) ) # Train the model, but do so inside a loop so that we can periodically assess # loss metrics. print("Training model...") print("LogLoss error (on validation data):") training_errors = [] validation_errors = [] for period in range (0, periods): # Train the model, starting from the prior state. classifier.train( input_fn=training_input_fn, steps=steps_per_period ) # Take a break and compute probabilities. training_predictions = list(classifier.predict(input_fn=predict_training_input_fn)) training_probabilities = np.array([item['probabilities'] for item in training_predictions]) training_pred_class_id = np.array([item['class_ids'][0] for item in training_predictions]) training_pred_one_hot = tf.keras.utils.to_categorical(training_pred_class_id,10) validation_predictions = list(classifier.predict(input_fn=predict_validation_input_fn)) validation_probabilities = np.array([item['probabilities'] for item in validation_predictions]) validation_pred_class_id = np.array([item['class_ids'][0] for item in validation_predictions]) validation_pred_one_hot = tf.keras.utils.to_categorical(validation_pred_class_id,10) # Compute training and validation errors. training_log_loss = metrics.log_loss(training_targets, training_pred_one_hot) validation_log_loss = metrics.log_loss(validation_targets, validation_pred_one_hot) # Occasionally print the current loss. print(" period %02d : %0.2f" % (period, validation_log_loss)) # Add the loss metrics from this period to our list. training_errors.append(training_log_loss) validation_errors.append(validation_log_loss) print("Model training finished.") # Remove event files to save disk space. _ = map(os.remove, glob.glob(os.path.join(classifier.model_dir, 'events.out.tfevents*'))) # Calculate final predictions (not probabilities, as above). final_predictions = classifier.predict(input_fn=predict_validation_input_fn) final_predictions = np.array([item['class_ids'][0] for item in final_predictions]) accuracy = metrics.accuracy_score(validation_targets, final_predictions) print("Final accuracy (on validation data): %0.2f" % accuracy) # Output a graph of loss metrics over periods. plt.ylabel("LogLoss") plt.xlabel("Periods") plt.title("LogLoss vs. Periods") plt.plot(training_errors, label="training") plt.plot(validation_errors, label="validation") plt.legend() plt.show() # Output a plot of the confusion matrix. cm = metrics.confusion_matrix(validation_targets, final_predictions) # Normalize the confusion matrix by row (i.e by the number of samples # in each class). cm_normalized = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis] ax = sns.heatmap(cm_normalized, cmap="bone_r") ax.set_aspect(1) plt.title("Confusion matrix") plt.ylabel("True label") plt.xlabel("Predicted label") plt.show() return classifier classifier = train_nn_classification_model( learning_rate=0.05, steps=1000, batch_size=30, hidden_units=[100, 100], training_examples=training_examples, training_targets=training_targets, validation_examples=validation_examples, validation_targets=validation_targets) ###Output _____no_output_____ ###Markdown Next, we verify the accuracy on the test set. ###Code mnist_test_dataframe = pd.read_csv( "https://download.mlcc.google.com/mledu-datasets/mnist_test.csv", sep=",", header=None) test_targets, test_examples = parse_labels_and_features(mnist_test_dataframe) test_examples.describe() predict_test_input_fn = create_predict_input_fn( test_examples, test_targets, batch_size=100) test_predictions = classifier.predict(input_fn=predict_test_input_fn) test_predictions = np.array([item['class_ids'][0] for item in test_predictions]) accuracy = metrics.accuracy_score(test_targets, test_predictions) print("Accuracy on test data: %0.2f" % accuracy) ###Output _____no_output_____ ###Markdown Task 3: Visualize the weights of the first hidden layer.Let's take a few minutes to dig into our neural network and see what it has learned by accessing the `weights_` attribute of our model.The input layer of our model has `784` weights corresponding to the `28×28` pixel input images. The first hidden layer will have `784×N` weights where `N` is the number of nodes in that layer. We can turn those weights back into `28×28` images by *reshaping* each of the `N` `1×784` arrays of weights into `N` arrays of size `28×28`.Run the following cell to plot the weights. Note that this cell requires that a `DNNClassifier` called "classifier" has already been trained. ###Code print(classifier.get_variable_names()) weights0 = classifier.get_variable_value("dnn/hiddenlayer_0/kernel") print("weights0 shape:", weights0.shape) num_nodes = weights0.shape[1] num_rows = int(math.ceil(num_nodes / 10.0)) fig, axes = plt.subplots(num_rows, 10, figsize=(20, 2 * num_rows)) for coef, ax in zip(weights0.T, axes.ravel()): # Weights in coef is reshaped from 1x784 to 28x28. ax.matshow(coef.reshape(28, 28), cmap=plt.cm.pink) ax.set_xticks(()) ax.set_yticks(()) plt.show() ###Output _____no_output_____ ###Markdown Copyright 2017 Google LLC. 本课程原版地址:https://colab.research.google.com/notebooks/mlcc/multi-class_classification_of_handwritten_digits.ipynb?utm_source=mlcc&utm_campaign=colab-external&utm_medium=referral&utm_content=multiclass-colab&hl=en采用Apache 2.0协议 人工神经网络用于手写体识别(简化版课程) ![img](https://www.tensorflow.org/versions/r0.11/images/MNIST.png) **学习目标:** * 训练一个神经网络模型用于识别手写体经典问题 [MNIST](http://yann.lecun.com/exdb/mnist/) 模型:简单的神经网络模型,有少数隐层,并采用Softmax作为分类函数 ###Code from __future__ import print_function import glob import math import os from IPython import display from matplotlib import cm from matplotlib import gridspec from matplotlib import pyplot as plt import numpy as np import pandas as pd import seaborn as sns from sklearn import metrics import tensorflow as tf from tensorflow.python.data import Dataset tf.logging.set_verbosity(tf.logging.ERROR) pd.options.display.max_rows = 10 pd.options.display.float_format = '{:.1f}'.format mnist_dataframe = pd.read_csv( "mnist_train_small.csv", sep=",", header=None) # Use just the first 10,000 records for training/validation. mnist_dataframe = mnist_dataframe.head(10000) mnist_dataframe = mnist_dataframe.reindex(np.random.permutation(mnist_dataframe.index)) mnist_dataframe.head() ###Output _____no_output_____ ###Markdown 每一行代表一个手写体的数据实例。列0代表人工指定的本行数据值(0~9)。比如,如果列0为“6”,那么就是说,这行数据像素的实际内容是手写的6.所以这个问题被简化为预测10种不同分类的分类问题。 ![img](https://www.tensorflow.org/versions/r0.11/images/MNIST-Matrix.png) 列1至784是特征值,每个像素一个数值,也就是说,有 28×28=784 像素值,为0~255的一个灰度 ###Code mnist_dataframe.loc[:, 72:72] def parse_labels_and_features(dataset): """ 将每一行训练数据都拆分为标记量和特征量——1个标记量Label,784个特征量Features """ labels = dataset[0] # DataFrame.loc index ranges are inclusive at both ends. features = dataset.loc[:,1:784] # Scale the data to [0, 1] by dividing out the max value, 255. features = features / 255 return labels, features training_targets, training_examples = parse_labels_and_features(mnist_dataframe[:7500]) training_examples.describe() validation_targets, validation_examples = parse_labels_and_features(mnist_dataframe[7500:10000]) validation_examples.describe() ###Output _____no_output_____ ###Markdown Show a random example and its corresponding label. ###Code rand_example = np.random.choice(training_examples.index) _, ax = plt.subplots() ax.matshow(training_examples.loc[rand_example].values.reshape(28, 28)) ax.set_title("Label: %i" % training_targets.loc[rand_example]) ax.grid(False) def construct_feature_columns(): """ 构造特征列 """ # There are 784 pixels in each image. return set([tf.feature_column.numeric_column('pixels', shape=784)]) def create_training_input_fn(features, labels, batch_size, num_epochs=None, shuffle=True): """ 训练输入函数,根据特征量、标记量、本次训练集的数据批量、迭代次数进行训练,并且有是否打乱数据的选项 返回一个回调函数 """ def _input_fn(num_epochs=None, shuffle=True): # Input pipelines are reset with each call to .train(). To ensure model # gets a good sampling of data, even when number of steps is small, we # shuffle all the data before creating the Dataset object idx = np.random.permutation(features.index) raw_features = {"pixels":features.reindex(idx)} raw_targets = np.array(labels[idx]) ds = Dataset.from_tensor_slices((raw_features,raw_targets)) # warning: 2GB limit ds = ds.batch(batch_size).repeat(num_epochs) if shuffle: ds = ds.shuffle(10000) # Return the next batch of data. feature_batch, label_batch = ds.make_one_shot_iterator().get_next() return feature_batch, label_batch return _input_fn def create_predict_input_fn(features, labels, batch_size): """ 构造预测函数,根据特征量、标记量和本次代预测的批量,构造一个回调函数 """ def _input_fn(): raw_features = {"pixels": features.values} raw_targets = np.array(labels) ds = Dataset.from_tensor_slices((raw_features, raw_targets)) # warning: 2GB limit ds = ds.batch(batch_size) # Return the next batch of data. feature_batch, label_batch = ds.make_one_shot_iterator().get_next() return feature_batch, label_batch return _input_fn def train_nn_classification_model( learning_rate, steps, batch_size, hidden_units, training_examples, training_targets, validation_examples, validation_targets): """ 训练神经网络模型,可调参数:学习率、迭代次数、训练批量大小、训练特征集、训练目标集、验证特征集、验证目标集 返回一个DNN神经网络分类器对象 """ periods = 10 # 小心使用:每次调用上述流水线都会重置 # 如果迭代次数太小,则可能永远都没办法达到训练目标 # So with multiple `.train` calls like this you may want to control the length # of training with num_epochs passed to the input_fn. Or, you can do a really-big shuffle, # or since it's in-memory data, shuffle all the data in the `input_fn`. steps_per_period = steps / periods # Create the input functions. predict_training_input_fn = create_predict_input_fn( training_examples, training_targets, batch_size) predict_validation_input_fn = create_predict_input_fn( validation_examples, validation_targets, batch_size) training_input_fn = create_training_input_fn( training_examples, training_targets, batch_size) # Create the input functions. predict_training_input_fn = create_predict_input_fn( training_examples, training_targets, batch_size) predict_validation_input_fn = create_predict_input_fn( validation_examples, validation_targets, batch_size) training_input_fn = create_training_input_fn( training_examples, training_targets, batch_size) # Create feature columns. feature_columns = [tf.feature_column.numeric_column('pixels', shape=784)] # Create a DNNClassifier object. my_optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate) my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) classifier = tf.estimator.DNNClassifier( feature_columns=feature_columns, n_classes=10, hidden_units=hidden_units, optimizer=my_optimizer, config=tf.contrib.learn.RunConfig(keep_checkpoint_max=1) ) # Train the model, but do so inside a loop so that we can periodically assess # loss metrics. print("Training model...") print("LogLoss error (on validation data):") training_errors = [] validation_errors = [] for period in range (0, periods): # Train the model, starting from the prior state. classifier.train( input_fn=training_input_fn, steps=steps_per_period ) # Take a break and compute probabilities. training_predictions = list(classifier.predict(input_fn=predict_training_input_fn)) training_probabilities = np.array([item['probabilities'] for item in training_predictions]) training_pred_class_id = np.array([item['class_ids'][0] for item in training_predictions]) training_pred_one_hot = tf.keras.utils.to_categorical(training_pred_class_id,10) validation_predictions = list(classifier.predict(input_fn=predict_validation_input_fn)) validation_probabilities = np.array([item['probabilities'] for item in validation_predictions]) validation_pred_class_id = np.array([item['class_ids'][0] for item in validation_predictions]) validation_pred_one_hot = tf.keras.utils.to_categorical(validation_pred_class_id,10) # Compute training and validation errors. training_log_loss = metrics.log_loss(training_targets, training_pred_one_hot) validation_log_loss = metrics.log_loss(validation_targets, validation_pred_one_hot) # Occasionally print the current loss. print(" period %02d : %0.2f" % (period, validation_log_loss)) # Add the loss metrics from this period to our list. training_errors.append(training_log_loss) validation_errors.append(validation_log_loss) print("Model training finished.") # Remove event files to save disk space. _ = map(os.remove, glob.glob(os.path.join(classifier.model_dir, 'events.out.tfevents*'))) # Calculate final predictions (not probabilities, as above). final_predictions = classifier.predict(input_fn=predict_validation_input_fn) final_predictions = np.array([item['class_ids'][0] for item in final_predictions]) accuracy = metrics.accuracy_score(validation_targets, final_predictions) print("Final accuracy (on validation data): %0.2f" % accuracy) # Output a graph of loss metrics over periods. plt.ylabel("LogLoss") plt.xlabel("Periods") plt.title("LogLoss vs. Periods") plt.plot(training_errors, label="training") plt.plot(validation_errors, label="validation") plt.legend() plt.show() # Output a plot of the confusion matrix. cm = metrics.confusion_matrix(validation_targets, final_predictions) # Normalize the confusion matrix by row (i.e by the number of samples # in each class). cm_normalized = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis] ax = sns.heatmap(cm_normalized, cmap="bone_r") ax.set_aspect(1) plt.title("Confusion matrix") plt.ylabel("True label") plt.xlabel("Predicted label") plt.show() return classifier classifier = train_nn_classification_model( learning_rate=0.05, steps=1000, batch_size=30, hidden_units=[100, 100], training_examples=training_examples, training_targets=training_targets, validation_examples=validation_examples, validation_targets=validation_targets) ###Output Training model... LogLoss error (on validation data): period 00 : 4.50 period 01 : 3.73 period 02 : 3.05 period 03 : 2.68 period 04 : 2.47 period 05 : 2.24 period 06 : 2.14 period 07 : 2.11 period 08 : 1.93 period 09 : 2.02 Model training finished. Final accuracy (on validation data): 0.94 ###Markdown Next, we verify the accuracy on the test set. ###Code mnist_test_dataframe = pd.read_csv( "https://download.mlcc.google.com/mledu-datasets/mnist_test.csv", sep=",", header=None) test_targets, test_examples = parse_labels_and_features(mnist_test_dataframe) test_examples.describe() predict_test_input_fn = create_predict_input_fn( test_examples, test_targets, batch_size=100) test_predictions = classifier.predict(input_fn=predict_test_input_fn) test_predictions = np.array([item['class_ids'][0] for item in test_predictions]) accuracy = metrics.accuracy_score(test_targets, test_predictions) print("Accuracy on test data: %0.2f" % accuracy) ###Output Accuracy on test data: 0.95 ###Markdown Task 3: Visualize the weights of the first hidden layer.Let's take a few minutes to dig into our neural network and see what it has learned by accessing the `weights_` attribute of our model.The input layer of our model has `784` weights corresponding to the `28×28` pixel input images. The first hidden layer will have `784×N` weights where `N` is the number of nodes in that layer. We can turn those weights back into `28×28` images by *reshaping* each of the `N` `1×784` arrays of weights into `N` arrays of size `28×28`.Run the following cell to plot the weights. Note that this cell requires that a `DNNClassifier` called "classifier" has already been trained. ###Code print(classifier.get_variable_names()) weights0 = classifier.get_variable_value("dnn/hiddenlayer_0/kernel") print("weights0 shape:", weights0.shape) num_nodes = weights0.shape[1] num_rows = int(math.ceil(num_nodes / 10.0)) fig, axes = plt.subplots(num_rows, 10, figsize=(20, 2 * num_rows)) for coef, ax in zip(weights0.T, axes.ravel()): # Weights in coef is reshaped from 1x784 to 28x28. ax.matshow(coef.reshape(28, 28), cmap=plt.cm.pink) ax.set_xticks(()) ax.set_yticks(()) plt.show() ###Output ['dnn/hiddenlayer_0/bias', 'dnn/hiddenlayer_0/bias/t_0/Adagrad', 'dnn/hiddenlayer_0/kernel', 'dnn/hiddenlayer_0/kernel/t_0/Adagrad', 'dnn/hiddenlayer_1/bias', 'dnn/hiddenlayer_1/bias/t_0/Adagrad', 'dnn/hiddenlayer_1/kernel', 'dnn/hiddenlayer_1/kernel/t_0/Adagrad', 'dnn/logits/bias', 'dnn/logits/bias/t_0/Adagrad', 'dnn/logits/kernel', 'dnn/logits/kernel/t_0/Adagrad', 'global_step'] weights0 shape: (784, 100) ###Markdown [View in Colaboratory](https://colab.research.google.com/github/douglaswchung/MNIST-classification/blob/master/multi_class_classification_of_handwritten_digits.ipynb) Copyright 2017 Google LLC. ###Code # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Classifying Handwritten Digits with Neural Networks ![img](https://www.tensorflow.org/versions/r0.11/images/MNIST.png) **Learning Objectives:** * Train both a linear model and a neural network to classify handwritten digits from the classic [MNIST](http://yann.lecun.com/exdb/mnist/) data set * Compare the performance of the linear and neural network classification models * Visualize the weights of a neural-network hidden layer Our goal is to map each input image to the correct numeric digit. We will create a NN with a few hidden layers and a Softmax layer at the top to select the winning class. SetupFirst, let's download the data set, import TensorFlow and other utilities, and load the data into a *pandas* `DataFrame`. Note that this data is a sample of the original MNIST training data; we've taken 20000 rows at random. ###Code !wget https://storage.googleapis.com/mledu-datasets/mnist_train_small.csv -O /tmp/mnist_train_small.csv import glob import io import math import os from IPython import display from matplotlib import cm from matplotlib import gridspec from matplotlib import pyplot as plt import numpy as np import scipy as sp import pandas as pd import seaborn as sns from sklearn import metrics import tensorflow as tf from tensorflow.python.data import Dataset tf.logging.set_verbosity(tf.logging.ERROR) pd.options.display.max_rows = 10 pd.options.display.float_format = '{:.1f}'.format mnist_dataframe = pd.read_csv( io.open("/tmp/mnist_train_small.csv", "r"), sep=",", header=None) # Use just the first 10,000 records for training/validation. mnist_dataframe = mnist_dataframe.head(10000) mnist_dataframe = mnist_dataframe.reindex(np.random.permutation(mnist_dataframe.index)) mnist_dataframe.head() print(display.display(mnist_dataframe.describe())) ###Output _____no_output_____ ###Markdown Each row represents one labeled example. Column 0 represents the label that a human rater has assigned for one handwritten digit. For example, if Column 0 contains '6', then a human rater interpreted the handwritten character as the digit '6'. The ten digits 0-9 are each represented, with a unique class label for each possible digit. Thus, this is a multi-class classification problem with 10 classes. ![img](https://www.tensorflow.org/versions/r0.11/images/MNIST-Matrix.png) Columns 1 through 784 contain the feature values, one per pixel for the 28×28=784 pixel values. The pixel values are on a gray scale in which 0 represents white, 255 represents black, and values between 0 and 255 represent shades of gray. Most of the pixel values are 0; you may want to take a minute to confirm that they aren't all 0. For example, adjust the following text block to print out the values in column 72. ###Code print(display.display(mnist_dataframe.loc[:, range(69,784,100)].describe())) ###Output _____no_output_____ ###Markdown Now, let's parse out the labels and features and look at a few examples. Note the use of `loc` which allows us to pull out columns based on original location, since we don't have a header row in this data set. ###Code def parse_labels_and_features(dataset): """Extracts labels and features. This is a good place to scale or transform the features if needed. Args: dataset: A Pandas `Dataframe`, containing the label on the first column and monochrome pixel values on the remaining columns, in row major order. Returns: A `tuple` `(labels, features)`: labels: A Pandas `Series`. features: A Pandas `DataFrame`. """ labels = dataset[0] # DataFrame.loc index ranges are inclusive at both ends. features = dataset.loc[:,1:784] # Scale the data to [0, 1] by dividing out the max value, 255. features = features / 255 return labels, features training_targets, training_examples = parse_labels_and_features(mnist_dataframe[:7500]) training_examples.describe() validation_targets, validation_examples = parse_labels_and_features(mnist_dataframe[7500:10000]) validation_examples.describe() ###Output _____no_output_____ ###Markdown Show a random example and its corresponding label. ###Code rand_example = np.random.choice(training_examples.index) _, ax = plt.subplots() ax.matshow(training_examples.loc[rand_example].values.reshape(28, 28)) ax.set_title("Label: %i" % training_targets.loc[rand_example]) ax.grid(False) ###Output _____no_output_____ ###Markdown Task 1: Build a Linear Model for MNISTFirst, let's create a baseline model to compare against. The `LinearClassifier` provides a set of *k* one-vs-all classifiers, one for each of the *k* classes.You'll notice that in addition to reporting accuracy, and plotting Log Loss over time, we also display a [**confusion matrix**](https://en.wikipedia.org/wiki/Confusion_matrix). The confusion matrix shows which classes were misclassified as other classes. Which digits get confused for each other?Also note that we track the model's error using the `log_loss` function. This should not be confused with the loss function internal to `LinearClassifier` that is used for training. ###Code def construct_feature_columns(): """Construct the TensorFlow Feature Columns. Returns: A set of feature columns """ # There are 784 pixels in each image. return set([tf.feature_column.numeric_column('pixels', shape=784)]) ###Output _____no_output_____ ###Markdown Here, we'll make separate input functions for training and for prediction. We'll nest them in `create_training_input_fn()` and `create_predict_input_fn()`, respectively, so we can invoke these functions to return the corresponding `_input_fn`s to pass to our `.train()` and `.predict()` calls. ###Code def create_training_input_fn(features, labels, batch_size, num_epochs=None, shuffle=True): """A custom input_fn for sending MNIST data to the estimator for training. Args: features: The training features. labels: The training labels. batch_size: Batch size to use during training. Returns: A function that returns batches of training features and labels during training. """ def _input_fn(num_epochs=None, shuffle=True): # Input pipelines are reset with each call to .train(). To ensure model # gets a good sampling of data, even when number of steps is small, we # shuffle all the data before creating the Dataset object idx = np.random.permutation(features.index) raw_features = {"pixels":features.reindex(idx)} raw_targets = np.array(labels[idx]) ds = Dataset.from_tensor_slices((raw_features,raw_targets)) # warning: 2GB limit ds = ds.batch(batch_size).repeat(num_epochs) if shuffle: ds = ds.shuffle(10000) # Return the next batch of data. feature_batch, label_batch = ds.make_one_shot_iterator().get_next() return feature_batch, label_batch return _input_fn def create_predict_input_fn(features, labels, batch_size): """A custom input_fn for sending mnist data to the estimator for predictions. Args: features: The features to base predictions on. labels: The labels of the prediction examples. Returns: A function that returns features and labels for predictions. """ def _input_fn(): raw_features = {"pixels": features.values} raw_targets = np.array(labels) ds = Dataset.from_tensor_slices((raw_features, raw_targets)) # warning: 2GB limit ds = ds.batch(batch_size) # Return the next batch of data. feature_batch, label_batch = ds.make_one_shot_iterator().get_next() return feature_batch, label_batch return _input_fn def train_linear_classification_model( learning_rate, steps, batch_size, training_examples, training_targets, validation_examples, validation_targets): """Trains a linear classification model for the MNIST digits dataset. In addition to training, this function also prints training progress information, a plot of the training and validation loss over time, and a confusion matrix. Args: learning_rate: An `int`, the learning rate to use. steps: A non-zero `int`, the total number of training steps. A training step consists of a forward and backward pass using a single batch. batch_size: A non-zero `int`, the batch size. training_examples: A `DataFrame` containing the training features. training_targets: A `DataFrame` containing the training labels. validation_examples: A `DataFrame` containing the validation features. validation_targets: A `DataFrame` containing the validation labels. Returns: The trained `LinearClassifier` object. """ periods = 10 steps_per_period = steps / periods # Create the input functions. predict_training_input_fn = create_predict_input_fn( training_examples, training_targets, batch_size) predict_validation_input_fn = create_predict_input_fn( validation_examples, validation_targets, batch_size) training_input_fn = create_training_input_fn( training_examples, training_targets, batch_size) # Create a LinearClassifier object. my_optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate) my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) classifier = tf.estimator.LinearClassifier( feature_columns=construct_feature_columns(), n_classes=10, optimizer=my_optimizer, config=tf.estimator.RunConfig(keep_checkpoint_max=1) ) # Train the model, but do so inside a loop so that we can periodically assess # loss metrics. print "Training model..." print "LogLoss error (on validation data):" training_errors = [] validation_errors = [] for period in range (0, periods): # Train the model, starting from the prior state. classifier.train( input_fn=training_input_fn, steps=steps_per_period ) # Take a break and compute probabilities. training_predictions = list(classifier.predict(input_fn=predict_training_input_fn)) training_probabilities = np.array([item['probabilities'] for item in training_predictions]) training_pred_class_id = np.array([item['class_ids'][0] for item in training_predictions]) training_pred_one_hot = tf.keras.utils.to_categorical(training_pred_class_id,10) validation_predictions = list(classifier.predict(input_fn=predict_validation_input_fn)) validation_probabilities = np.array([item['probabilities'] for item in validation_predictions]) validation_pred_class_id = np.array([item['class_ids'][0] for item in validation_predictions]) validation_pred_one_hot = tf.keras.utils.to_categorical(validation_pred_class_id,10) # Compute training and validation errors. training_log_loss = metrics.log_loss(training_targets, training_pred_one_hot) validation_log_loss = metrics.log_loss(validation_targets, validation_pred_one_hot) # Occasionally print the current loss. print " period %02d : %0.2f" % (period, validation_log_loss) # Add the loss metrics from this period to our list. training_errors.append(training_log_loss) validation_errors.append(validation_log_loss) print "Model training finished." # Remove event files to save disk space. _ = map(os.remove, glob.glob(os.path.join(classifier.model_dir, 'events.out.tfevents*'))) # Calculate final predictions (not probabilities, as above). final_predictions = classifier.predict(input_fn=predict_validation_input_fn) final_probabilities = np.array([item['probabilities'] for item in final_predictions]) final_predictions = np.array([item['class_ids'][0] for item in final_predictions]) accuracy = metrics.accuracy_score(validation_targets, final_predictions) print "Final accuracy (on validation data): %0.2f" % accuracy # Output a graph of loss metrics over periods. plt.ylabel("LogLoss") plt.xlabel("Periods") plt.title("LogLoss vs. Periods") plt.plot(training_errors, label="training") plt.plot(validation_errors, label="validation") plt.legend() plt.show() # Output a plot of the confusion matrix. cm = metrics.confusion_matrix(validation_targets, final_predictions) # Normalize the confusion matrix by row (i.e by the number of samples # in each class). cm_normalized = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis] ax = sns.heatmap(cm_normalized, cmap="bone_r") ax.set_aspect(1) plt.title("Confusion matrix") plt.ylabel("True label") plt.xlabel("Predicted label") plt.show() return classifier ###Output _____no_output_____ ###Markdown **Spend 5 minutes seeing how well you can do on accuracy with a linear model of this form. For this exercise, limit yourself to experimenting with the hyperparameters for batch size, learning rate and steps.**Stop if you get anything above about 0.9 accuracy. ###Code classifier = train_linear_classification_model( learning_rate=0.01, steps=1000, batch_size=100, training_examples=training_examples, training_targets=training_targets, validation_examples=validation_examples, validation_targets=validation_targets) ###Output Training model... LogLoss error (on validation data): period 00 : 5.29 period 01 : 4.35 period 02 : 4.16 period 03 : 4.03 period 04 : 3.88 period 05 : 3.83 period 06 : 3.79 period 07 : 3.79 period 08 : 3.80 period 09 : 3.66 Model training finished. Final accuracy (on validation data): 0.89 ###Markdown SolutionClick below for one possible solution. Here is a set of parameters that should attain roughly 0.9 accuracy. ###Code _ = train_linear_classification_model( learning_rate=0.03, steps=1000, batch_size=30, training_examples=training_examples, training_targets=training_targets, validation_examples=validation_examples, validation_targets=validation_targets) ###Output _____no_output_____ ###Markdown Task 2: Replace the Linear Classifier with a Neural Network**Replace the LinearClassifier above with a [`DNNClassifier`](https://www.tensorflow.org/api_docs/python/tf/estimator/DNNClassifier) and find a parameter combination that gives 0.95 or better accuracy.**You may wish to experiment with additional regularization methods, such as dropout. These additional regularization methods are documented in the comments for the `DNNClassifier` class. ###Code def train_NN_classifier_model( learning_rate, steps, batch_size, hidden_units, dropout, training_examples, training_targets, validation_examples, validation_targets): """Trains a linear classification model for the MNIST digits dataset. In addition to training, this function also prints training progress information, a plot of the training and validation loss over time, and a confusion matrix. Args: learning_rate: An `int`, the learning rate to use. steps: A non-zero `int`, the total number of training steps. A training step consists of a forward and backward pass using a single batch. batch_size: A non-zero `int`, the batch size. training_examples: A `DataFrame` containing the training features. training_targets: A `DataFrame` containing the training labels. validation_examples: A `DataFrame` containing the validation features. validation_targets: A `DataFrame` containing the validation labels. Returns: The trained `LinearClassifier` object. """ periods = 10 steps_per_period = steps / periods # Create the input functions. predict_training_input_fn = create_predict_input_fn( training_examples, training_targets, batch_size) predict_validation_input_fn = create_predict_input_fn( validation_examples, validation_targets, batch_size) training_input_fn = create_training_input_fn( training_examples, training_targets, batch_size) # Create a LinearClassifier object. my_optimizer = tf.train.AdadeltaOptimizer(learning_rate=learning_rate) my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) classifier = tf.estimator.DNNClassifier( feature_columns=construct_feature_columns(), hidden_units=hidden_units, activation_fn=tf.nn.crelu, dropout=dropout, n_classes=10, optimizer=my_optimizer, config=tf.estimator.RunConfig(keep_checkpoint_max=1) ) # Train the model, but do so inside a loop so that we can periodically assess # loss metrics. print "Training model..." print "LogLoss error (on validation data):" training_errors = [] validation_errors = [] for period in range (0, periods): # Train the model, starting from the prior state. classifier.train( input_fn=training_input_fn, steps=steps_per_period ) # Take a break and compute probabilities. training_predictions = list(classifier.predict(input_fn=predict_training_input_fn)) training_probabilities = np.array([item['probabilities'] for item in training_predictions]) training_pred_class_id = np.array([item['class_ids'][0] for item in training_predictions]) training_pred_one_hot = tf.keras.utils.to_categorical(training_pred_class_id,10) validation_predictions = list(classifier.predict(input_fn=predict_validation_input_fn)) validation_probabilities = np.array([item['probabilities'] for item in validation_predictions]) validation_pred_class_id = np.array([item['class_ids'][0] for item in validation_predictions]) validation_pred_one_hot = tf.keras.utils.to_categorical(validation_pred_class_id,10) # Compute training and validation errors. training_log_loss = metrics.log_loss(training_targets, training_pred_one_hot) validation_log_loss = metrics.log_loss(validation_targets, validation_pred_one_hot) # Occasionally print the current loss. print " period %02d : %0.2f" % (period, validation_log_loss) # Add the loss metrics from this period to our list. training_errors.append(training_log_loss) validation_errors.append(validation_log_loss) print "Model training finished." # Remove event files to save disk space. _ = map(os.remove, glob.glob(os.path.join(classifier.model_dir, 'events.out.tfevents*'))) # Calculate final predictions (not probabilities, as above). final_predictions = classifier.predict(input_fn=predict_validation_input_fn) final_predictions = np.array([item['class_ids'][0] for item in final_predictions]) accuracy = metrics.accuracy_score(validation_targets, final_predictions) print "Final accuracy (on validation data): %0.2f" % accuracy # Output a graph of loss metrics over periods. plt.ylabel("LogLoss") plt.xlabel("Periods") plt.title("LogLoss vs. Periods") plt.plot(training_errors, label="training") plt.plot(validation_errors, label="validation") plt.legend() plt.show() # Output a plot of the confusion matrix. cm = metrics.confusion_matrix(validation_targets, final_predictions) # Normalize the confusion matrix by row (i.e by the number of samples # in each class). cm_normalized = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis] ax = sns.heatmap(cm_normalized, cmap="bone_r") ax.set_aspect(1) plt.title("Confusion matrix") plt.ylabel("True label") plt.xlabel("Predicted label") plt.show() return classifier classifier = train_NN_classifier_model( learning_rate=1.25, steps=1000, batch_size=75, hidden_units=[120,40,40], dropout=0.02, training_examples=training_examples, training_targets=training_targets, validation_examples=validation_examples, validation_targets=validation_targets) ###Output Training model... LogLoss error (on validation data): period 00 : 4.79 period 01 : 3.72 period 02 : 3.43 period 03 : 2.90 period 04 : 2.62 period 05 : 2.42 period 06 : 2.29 period 07 : 2.38 period 08 : 2.24 period 09 : 2.03 Model training finished. Final accuracy (on validation data): 0.94 ###Markdown Once you have a good model, double check that you didn't overfit the validation set by evaluating on the test data that we'll load below. ###Code !wget https://storage.googleapis.com/mledu-datasets/mnist_test.csv -O /tmp/mnist_test.csv mnist_test_dataframe = pd.read_csv( io.open("/tmp/mnist_test.csv", "r"), sep=",", header=None) test_targets, test_examples = parse_labels_and_features(mnist_test_dataframe) test_examples.describe() predict_test_input_fn = create_predict_input_fn( test_examples, test_targets, batch_size=150) # Calculate final predictions (not probabilities, as above). test_predictions = classifier.predict(input_fn=predict_test_input_fn) test_predictions = np.array([item['class_ids'][0] for item in test_predictions]) accuracy = metrics.accuracy_score(test_targets, test_predictions) print "Final accuracy (on validation data): %0.2f" % accuracy ###Output Final accuracy (on validation data): 0.95 ###Markdown SolutionClick below for a possible solution. The code below is almost identical to the original `LinearClassifer` training code, with the exception of the NN-specific configuration, such as the hyperparameter for hidden units. ###Code def train_nn_classification_model( learning_rate, steps, batch_size, hidden_units, training_examples, training_targets, validation_examples, validation_targets): """Trains a neural network classification model for the MNIST digits dataset. In addition to training, this function also prints training progress information, a plot of the training and validation loss over time, as well as a confusion matrix. Args: learning_rate: An `int`, the learning rate to use. steps: A non-zero `int`, the total number of training steps. A training step consists of a forward and backward pass using a single batch. batch_size: A non-zero `int`, the batch size. hidden_units: A `list` of int values, specifying the number of neurons in each layer. training_examples: A `DataFrame` containing the training features. training_targets: A `DataFrame` containing the training labels. validation_examples: A `DataFrame` containing the validation features. validation_targets: A `DataFrame` containing the validation labels. Returns: The trained `DNNClassifier` object. """ periods = 10 # Caution: input pipelines are reset with each call to train. # If the number of steps is small, your model may never see most of the data. # So with multiple `.train` calls like this you may want to control the length # of training with num_epochs passed to the input_fn. Or, you can do a really-big shuffle, # or since it's in-memory data, shuffle all the data in the `input_fn`. steps_per_period = steps / periods # Create the input functions. predict_training_input_fn = create_predict_input_fn( training_examples, training_targets, batch_size) predict_validation_input_fn = create_predict_input_fn( validation_examples, validation_targets, batch_size) training_input_fn = create_training_input_fn( training_examples, training_targets, batch_size) # Create the input functions. predict_training_input_fn = create_predict_input_fn( training_examples, training_targets, batch_size) predict_validation_input_fn = create_predict_input_fn( validation_examples, validation_targets, batch_size) training_input_fn = create_training_input_fn( training_examples, training_targets, batch_size) # Create feature columns. feature_columns = [tf.feature_column.numeric_column('pixels', shape=784)] # Create a DNNClassifier object. my_optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate) my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) classifier = tf.estimator.DNNClassifier( feature_columns=feature_columns, n_classes=10, hidden_units=hidden_units, optimizer=my_optimizer, config=tf.contrib.learn.RunConfig(keep_checkpoint_max=1) ) # Train the model, but do so inside a loop so that we can periodically assess # loss metrics. print "Training model..." print "LogLoss error (on validation data):" training_errors = [] validation_errors = [] for period in range (0, periods): # Train the model, starting from the prior state. classifier.train( input_fn=training_input_fn, steps=steps_per_period ) # Take a break and compute probabilities. training_predictions = list(classifier.predict(input_fn=predict_training_input_fn)) training_probabilities = np.array([item['probabilities'] for item in training_predictions]) training_pred_class_id = np.array([item['class_ids'][0] for item in training_predictions]) training_pred_one_hot = tf.keras.utils.to_categorical(training_pred_class_id,10) validation_predictions = list(classifier.predict(input_fn=predict_validation_input_fn)) validation_probabilities = np.array([item['probabilities'] for item in validation_predictions]) validation_pred_class_id = np.array([item['class_ids'][0] for item in validation_predictions]) validation_pred_one_hot = tf.keras.utils.to_categorical(validation_pred_class_id,10) # Compute training and validation errors. training_log_loss = metrics.log_loss(training_targets, training_pred_one_hot) validation_log_loss = metrics.log_loss(validation_targets, validation_pred_one_hot) # Occasionally print the current loss. print " period %02d : %0.2f" % (period, validation_log_loss) # Add the loss metrics from this period to our list. training_errors.append(training_log_loss) validation_errors.append(validation_log_loss) print "Model training finished." # Remove event files to save disk space. _ = map(os.remove, glob.glob(os.path.join(classifier.model_dir, 'events.out.tfevents*'))) # Calculate final predictions (not probabilities, as above). final_predictions = classifier.predict(input_fn=predict_validation_input_fn) final_predictions = np.array([item['class_ids'][0] for item in final_predictions]) accuracy = metrics.accuracy_score(validation_targets, final_predictions) print "Final accuracy (on validation data): %0.2f" % accuracy # Output a graph of loss metrics over periods. plt.ylabel("LogLoss") plt.xlabel("Periods") plt.title("LogLoss vs. Periods") plt.plot(training_errors, label="training") plt.plot(validation_errors, label="validation") plt.legend() plt.show() # Output a plot of the confusion matrix. cm = metrics.confusion_matrix(validation_targets, final_predictions) # Normalize the confusion matrix by row (i.e by the number of samples # in each class). cm_normalized = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis] ax = sns.heatmap(cm_normalized, cmap="bone_r") ax.set_aspect(1) plt.title("Confusion matrix") plt.ylabel("True label") plt.xlabel("Predicted label") plt.show() return classifier classifier = train_nn_classification_model( learning_rate=0.05, steps=1000, batch_size=30, hidden_units=[100, 100], training_examples=training_examples, training_targets=training_targets, validation_examples=validation_examples, validation_targets=validation_targets) ###Output Training model... LogLoss error (on validation data): period 00 : 4.95 period 01 : 3.54 period 02 : 2.85 period 03 : 2.74 period 04 : 2.82 period 05 : 2.51 period 06 : 2.02 period 07 : 1.95 period 08 : 2.38 period 09 : 1.93 Model training finished. Final accuracy (on validation data): 0.94 ###Markdown Next, we verify the accuracy on the test set. ###Code !wget https://storage.googleapis.com/mledu-datasets/mnist_test.csv -O /tmp/mnist_test.csv mnist_test_dataframe = pd.read_csv( io.open("/tmp/mnist_test.csv", "r"), sep=",", header=None) test_targets, test_examples = parse_labels_and_features(mnist_test_dataframe) test_examples.describe() predict_test_input_fn = create_predict_input_fn( test_examples, test_targets, batch_size=150) test_predictions = classifier.predict(input_fn=predict_test_input_fn) test_predictions = np.array([item['class_ids'][0] for item in test_predictions]) accuracy = metrics.accuracy_score(test_targets, test_predictions) print "Accuracy on test data: %0.2f" % accuracy ###Output Accuracy on test data: 0.95 ###Markdown Task 3: Visualize the weights of the first hidden layer.Let's take a few minutes to dig into our neural network and see what it has learned by accessing the `weights_` attribute of our model.The input layer of our model has `784` weights corresponding to the `28×28` pixel input images. The first hidden layer will have `784×N` weights where `N` is the number of nodes in that layer. We can turn those weights back into `28×28` images by *reshaping* each of the `N` `1×784` arrays of weights into `N` arrays of size `28×28`.Run the following cell to plot the weights. Note that this cell requires that a `DNNClassifier` called "classifier" has already been trained. ###Code print classifier.get_variable_names() weights0 = classifier.get_variable_value("dnn/hiddenlayer_0/kernel") print "weights0 shape:", weights0.shape num_nodes = weights0.shape[1] num_rows = int(math.ceil(num_nodes / 10.0)) fig, axes = plt.subplots(num_rows, 10, figsize=(20, 2 * num_rows)) for coef, ax in zip(weights0.T, axes.ravel()): # Weights in coef is reshaped from 1x784 to 28x28. ax.matshow(coef.reshape(28, 28), cmap=plt.cm.pink) ax.set_xticks(()) ax.set_yticks(()) plt.show() ###Output ['dnn/hiddenlayer_0/bias', 'dnn/hiddenlayer_0/bias/t_0/Adadelta', 'dnn/hiddenlayer_0/bias/t_0/Adadelta_1', 'dnn/hiddenlayer_0/kernel', 'dnn/hiddenlayer_0/kernel/t_0/Adadelta', 'dnn/hiddenlayer_0/kernel/t_0/Adadelta_1', 'dnn/hiddenlayer_1/bias', 'dnn/hiddenlayer_1/bias/t_0/Adadelta', 'dnn/hiddenlayer_1/bias/t_0/Adadelta_1', 'dnn/hiddenlayer_1/kernel', 'dnn/hiddenlayer_1/kernel/t_0/Adadelta', 'dnn/hiddenlayer_1/kernel/t_0/Adadelta_1', 'dnn/hiddenlayer_2/bias', 'dnn/hiddenlayer_2/bias/t_0/Adadelta', 'dnn/hiddenlayer_2/bias/t_0/Adadelta_1', 'dnn/hiddenlayer_2/kernel', 'dnn/hiddenlayer_2/kernel/t_0/Adadelta', 'dnn/hiddenlayer_2/kernel/t_0/Adadelta_1', 'dnn/logits/bias', 'dnn/logits/bias/t_0/Adadelta', 'dnn/logits/bias/t_0/Adadelta_1', 'dnn/logits/kernel', 'dnn/logits/kernel/t_0/Adadelta', 'dnn/logits/kernel/t_0/Adadelta_1', 'global_step'] weights0 shape: (784, 120) ###Markdown [View in Colaboratory](https://colab.research.google.com/github/ArunkumarRamanan/Exercises-Machine-Learning-Crash-Course-Google-Developers/blob/master/multi_class_classification_of_handwritten_digits.ipynb) Copyright 2017 Google LLC. ###Code # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Classifying Handwritten Digits with Neural Networks ![img](https://www.tensorflow.org/versions/r0.11/images/MNIST.png) **Learning Objectives:** * Train both a linear model and a neural network to classify handwritten digits from the classic [MNIST](http://yann.lecun.com/exdb/mnist/) data set * Compare the performance of the linear and neural network classification models * Visualize the weights of a neural-network hidden layer Our goal is to map each input image to the correct numeric digit. We will create a NN with a few hidden layers and a Softmax layer at the top to select the winning class. SetupFirst, let's download the data set, import TensorFlow and other utilities, and load the data into a *pandas* `DataFrame`. Note that this data is a sample of the original MNIST training data; we've taken 20000 rows at random. ###Code from __future__ import print_function import glob import math import os from IPython import display from matplotlib import cm from matplotlib import gridspec from matplotlib import pyplot as plt import numpy as np import pandas as pd import seaborn as sns from sklearn import metrics import tensorflow as tf from tensorflow.python.data import Dataset tf.logging.set_verbosity(tf.logging.ERROR) pd.options.display.max_rows = 10 pd.options.display.float_format = '{:.1f}'.format mnist_dataframe = pd.read_csv( "https://dl.google.com/mlcc/mledu-datasets/mnist_train_small.csv", sep=",", header=None) # Use just the first 10,000 records for training/validation. mnist_dataframe = mnist_dataframe.head(10000) mnist_dataframe = mnist_dataframe.reindex(np.random.permutation(mnist_dataframe.index)) mnist_dataframe.head() ###Output _____no_output_____ ###Markdown Each row represents one labeled example. Column 0 represents the label that a human rater has assigned for one handwritten digit. For example, if Column 0 contains '6', then a human rater interpreted the handwritten character as the digit '6'. The ten digits 0-9 are each represented, with a unique class label for each possible digit. Thus, this is a multi-class classification problem with 10 classes. ![img](https://www.tensorflow.org/versions/r0.11/images/MNIST-Matrix.png) Columns 1 through 784 contain the feature values, one per pixel for the 28×28=784 pixel values. The pixel values are on a gray scale in which 0 represents white, 255 represents black, and values between 0 and 255 represent shades of gray. Most of the pixel values are 0; you may want to take a minute to confirm that they aren't all 0. For example, adjust the following text block to print out the values in column 72. ###Code mnist_dataframe.loc[:, 72:72] ###Output _____no_output_____ ###Markdown Now, let's parse out the labels and features and look at a few examples. Note the use of `loc` which allows us to pull out columns based on original location, since we don't have a header row in this data set. ###Code def parse_labels_and_features(dataset): """Extracts labels and features. This is a good place to scale or transform the features if needed. Args: dataset: A Pandas `Dataframe`, containing the label on the first column and monochrome pixel values on the remaining columns, in row major order. Returns: A `tuple` `(labels, features)`: labels: A Pandas `Series`. features: A Pandas `DataFrame`. """ labels = dataset[0] # DataFrame.loc index ranges are inclusive at both ends. features = dataset.loc[:,1:784] # Scale the data to [0, 1] by dividing out the max value, 255. features = features / 255 return labels, features training_targets, training_examples = parse_labels_and_features(mnist_dataframe[:7500]) training_examples.describe() validation_targets, validation_examples = parse_labels_and_features(mnist_dataframe[7500:10000]) validation_examples.describe() ###Output _____no_output_____ ###Markdown Show a random example and its corresponding label. ###Code rand_example = np.random.choice(training_examples.index) _, ax = plt.subplots() ax.matshow(training_examples.loc[rand_example].values.reshape(28, 28)) ax.set_title("Label: %i" % training_targets.loc[rand_example]) ax.grid(False) ###Output _____no_output_____ ###Markdown Task 1: Build a Linear Model for MNISTFirst, let's create a baseline model to compare against. The `LinearClassifier` provides a set of *k* one-vs-all classifiers, one for each of the *k* classes.You'll notice that in addition to reporting accuracy, and plotting Log Loss over time, we also display a [**confusion matrix**](https://en.wikipedia.org/wiki/Confusion_matrix). The confusion matrix shows which classes were misclassified as other classes. Which digits get confused for each other?Also note that we track the model's error using the `log_loss` function. This should not be confused with the loss function internal to `LinearClassifier` that is used for training. ###Code def construct_feature_columns(): """Construct the TensorFlow Feature Columns. Returns: A set of feature columns """ # There are 784 pixels in each image. return set([tf.feature_column.numeric_column('pixels', shape=784)]) ###Output _____no_output_____ ###Markdown Here, we'll make separate input functions for training and for prediction. We'll nest them in `create_training_input_fn()` and `create_predict_input_fn()`, respectively, so we can invoke these functions to return the corresponding `_input_fn`s to pass to our `.train()` and `.predict()` calls. ###Code def create_training_input_fn(features, labels, batch_size, num_epochs=None, shuffle=True): """A custom input_fn for sending MNIST data to the estimator for training. Args: features: The training features. labels: The training labels. batch_size: Batch size to use during training. Returns: A function that returns batches of training features and labels during training. """ def _input_fn(num_epochs=None, shuffle=True): # Input pipelines are reset with each call to .train(). To ensure model # gets a good sampling of data, even when number of steps is small, we # shuffle all the data before creating the Dataset object idx = np.random.permutation(features.index) raw_features = {"pixels":features.reindex(idx)} raw_targets = np.array(labels[idx]) ds = Dataset.from_tensor_slices((raw_features,raw_targets)) # warning: 2GB limit ds = ds.batch(batch_size).repeat(num_epochs) if shuffle: ds = ds.shuffle(10000) # Return the next batch of data. feature_batch, label_batch = ds.make_one_shot_iterator().get_next() return feature_batch, label_batch return _input_fn def create_predict_input_fn(features, labels, batch_size): """A custom input_fn for sending mnist data to the estimator for predictions. Args: features: The features to base predictions on. labels: The labels of the prediction examples. Returns: A function that returns features and labels for predictions. """ def _input_fn(): raw_features = {"pixels": features.values} raw_targets = np.array(labels) ds = Dataset.from_tensor_slices((raw_features, raw_targets)) # warning: 2GB limit ds = ds.batch(batch_size) # Return the next batch of data. feature_batch, label_batch = ds.make_one_shot_iterator().get_next() return feature_batch, label_batch return _input_fn def train_linear_classification_model( learning_rate, steps, batch_size, training_examples, training_targets, validation_examples, validation_targets): """Trains a linear classification model for the MNIST digits dataset. In addition to training, this function also prints training progress information, a plot of the training and validation loss over time, and a confusion matrix. Args: learning_rate: An `int`, the learning rate to use. steps: A non-zero `int`, the total number of training steps. A training step consists of a forward and backward pass using a single batch. batch_size: A non-zero `int`, the batch size. training_examples: A `DataFrame` containing the training features. training_targets: A `DataFrame` containing the training labels. validation_examples: A `DataFrame` containing the validation features. validation_targets: A `DataFrame` containing the validation labels. Returns: The trained `LinearClassifier` object. """ periods = 10 steps_per_period = steps / periods # Create the input functions. predict_training_input_fn = create_predict_input_fn( training_examples, training_targets, batch_size) predict_validation_input_fn = create_predict_input_fn( validation_examples, validation_targets, batch_size) training_input_fn = create_training_input_fn( training_examples, training_targets, batch_size) # Create a LinearClassifier object. my_optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate) my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) classifier = tf.estimator.LinearClassifier( feature_columns=construct_feature_columns(), n_classes=10, optimizer=my_optimizer, config=tf.estimator.RunConfig(keep_checkpoint_max=1) ) # Train the model, but do so inside a loop so that we can periodically assess # loss metrics. print("Training model...") print("LogLoss error (on validation data):") training_errors = [] validation_errors = [] for period in range (0, periods): # Train the model, starting from the prior state. classifier.train( input_fn=training_input_fn, steps=steps_per_period ) # Take a break and compute probabilities. training_predictions = list(classifier.predict(input_fn=predict_training_input_fn)) training_probabilities = np.array([item['probabilities'] for item in training_predictions]) training_pred_class_id = np.array([item['class_ids'][0] for item in training_predictions]) training_pred_one_hot = tf.keras.utils.to_categorical(training_pred_class_id,10) validation_predictions = list(classifier.predict(input_fn=predict_validation_input_fn)) validation_probabilities = np.array([item['probabilities'] for item in validation_predictions]) validation_pred_class_id = np.array([item['class_ids'][0] for item in validation_predictions]) validation_pred_one_hot = tf.keras.utils.to_categorical(validation_pred_class_id,10) # Compute training and validation errors. training_log_loss = metrics.log_loss(training_targets, training_pred_one_hot) validation_log_loss = metrics.log_loss(validation_targets, validation_pred_one_hot) # Occasionally print the current loss. print(" period %02d : %0.2f" % (period, validation_log_loss)) # Add the loss metrics from this period to our list. training_errors.append(training_log_loss) validation_errors.append(validation_log_loss) print("Model training finished.") # Remove event files to save disk space. _ = map(os.remove, glob.glob(os.path.join(classifier.model_dir, 'events.out.tfevents*'))) # Calculate final predictions (not probabilities, as above). final_predictions = classifier.predict(input_fn=predict_validation_input_fn) final_predictions = np.array([item['class_ids'][0] for item in final_predictions]) accuracy = metrics.accuracy_score(validation_targets, final_predictions) print("Final accuracy (on validation data): %0.2f" % accuracy) # Output a graph of loss metrics over periods. plt.ylabel("LogLoss") plt.xlabel("Periods") plt.title("LogLoss vs. Periods") plt.plot(training_errors, label="training") plt.plot(validation_errors, label="validation") plt.legend() plt.show() # Output a plot of the confusion matrix. cm = metrics.confusion_matrix(validation_targets, final_predictions) # Normalize the confusion matrix by row (i.e by the number of samples # in each class). cm_normalized = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis] ax = sns.heatmap(cm_normalized, cmap="bone_r") ax.set_aspect(1) plt.title("Confusion matrix") plt.ylabel("True label") plt.xlabel("Predicted label") plt.show() return classifier ###Output _____no_output_____ ###Markdown **Spend 5 minutes seeing how well you can do on accuracy with a linear model of this form. For this exercise, limit yourself to experimenting with the hyperparameters for batch size, learning rate and steps.**Stop if you get anything above about 0.9 accuracy. ###Code classifier = train_linear_classification_model( learning_rate=0.02, steps=100, batch_size=10, training_examples=training_examples, training_targets=training_targets, validation_examples=validation_examples, validation_targets=validation_targets) ###Output _____no_output_____ ###Markdown SolutionClick below for one possible solution. Here is a set of parameters that should attain roughly 0.9 accuracy. ###Code _ = train_linear_classification_model( learning_rate=0.03, steps=1000, batch_size=30, training_examples=training_examples, training_targets=training_targets, validation_examples=validation_examples, validation_targets=validation_targets) ###Output _____no_output_____ ###Markdown Task 2: Replace the Linear Classifier with a Neural Network**Replace the LinearClassifier above with a [`DNNClassifier`](https://www.tensorflow.org/api_docs/python/tf/estimator/DNNClassifier) and find a parameter combination that gives 0.95 or better accuracy.**You may wish to experiment with additional regularization methods, such as dropout. These additional regularization methods are documented in the comments for the `DNNClassifier` class. ###Code # # YOUR CODE HERE: Replace the linear classifier with a neural network. # ###Output _____no_output_____ ###Markdown Once you have a good model, double check that you didn't overfit the validation set by evaluating on the test data that we'll load below. ###Code mnist_test_dataframe = pd.read_csv( "https://dl.google.com/mlcc/mledu-datasets/mnist_test.csv", sep=",", header=None) test_targets, test_examples = parse_labels_and_features(mnist_test_dataframe) test_examples.describe() # # YOUR CODE HERE: Calculate accuracy on the test set. # ###Output _____no_output_____ ###Markdown SolutionClick below for a possible solution. The code below is almost identical to the original `LinearClassifer` training code, with the exception of the NN-specific configuration, such as the hyperparameter for hidden units. ###Code def train_nn_classification_model( learning_rate, steps, batch_size, hidden_units, training_examples, training_targets, validation_examples, validation_targets): """Trains a neural network classification model for the MNIST digits dataset. In addition to training, this function also prints training progress information, a plot of the training and validation loss over time, as well as a confusion matrix. Args: learning_rate: An `int`, the learning rate to use. steps: A non-zero `int`, the total number of training steps. A training step consists of a forward and backward pass using a single batch. batch_size: A non-zero `int`, the batch size. hidden_units: A `list` of int values, specifying the number of neurons in each layer. training_examples: A `DataFrame` containing the training features. training_targets: A `DataFrame` containing the training labels. validation_examples: A `DataFrame` containing the validation features. validation_targets: A `DataFrame` containing the validation labels. Returns: The trained `DNNClassifier` object. """ periods = 10 # Caution: input pipelines are reset with each call to train. # If the number of steps is small, your model may never see most of the data. # So with multiple `.train` calls like this you may want to control the length # of training with num_epochs passed to the input_fn. Or, you can do a really-big shuffle, # or since it's in-memory data, shuffle all the data in the `input_fn`. steps_per_period = steps / periods # Create the input functions. predict_training_input_fn = create_predict_input_fn( training_examples, training_targets, batch_size) predict_validation_input_fn = create_predict_input_fn( validation_examples, validation_targets, batch_size) training_input_fn = create_training_input_fn( training_examples, training_targets, batch_size) # Create the input functions. predict_training_input_fn = create_predict_input_fn( training_examples, training_targets, batch_size) predict_validation_input_fn = create_predict_input_fn( validation_examples, validation_targets, batch_size) training_input_fn = create_training_input_fn( training_examples, training_targets, batch_size) # Create feature columns. feature_columns = [tf.feature_column.numeric_column('pixels', shape=784)] # Create a DNNClassifier object. my_optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate) my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) classifier = tf.estimator.DNNClassifier( feature_columns=feature_columns, n_classes=10, hidden_units=hidden_units, optimizer=my_optimizer, config=tf.contrib.learn.RunConfig(keep_checkpoint_max=1) ) # Train the model, but do so inside a loop so that we can periodically assess # loss metrics. print("Training model...") print("LogLoss error (on validation data):") training_errors = [] validation_errors = [] for period in range (0, periods): # Train the model, starting from the prior state. classifier.train( input_fn=training_input_fn, steps=steps_per_period ) # Take a break and compute probabilities. training_predictions = list(classifier.predict(input_fn=predict_training_input_fn)) training_probabilities = np.array([item['probabilities'] for item in training_predictions]) training_pred_class_id = np.array([item['class_ids'][0] for item in training_predictions]) training_pred_one_hot = tf.keras.utils.to_categorical(training_pred_class_id,10) validation_predictions = list(classifier.predict(input_fn=predict_validation_input_fn)) validation_probabilities = np.array([item['probabilities'] for item in validation_predictions]) validation_pred_class_id = np.array([item['class_ids'][0] for item in validation_predictions]) validation_pred_one_hot = tf.keras.utils.to_categorical(validation_pred_class_id,10) # Compute training and validation errors. training_log_loss = metrics.log_loss(training_targets, training_pred_one_hot) validation_log_loss = metrics.log_loss(validation_targets, validation_pred_one_hot) # Occasionally print the current loss. print(" period %02d : %0.2f" % (period, validation_log_loss)) # Add the loss metrics from this period to our list. training_errors.append(training_log_loss) validation_errors.append(validation_log_loss) print("Model training finished.") # Remove event files to save disk space. _ = map(os.remove, glob.glob(os.path.join(classifier.model_dir, 'events.out.tfevents*'))) # Calculate final predictions (not probabilities, as above). final_predictions = classifier.predict(input_fn=predict_validation_input_fn) final_predictions = np.array([item['class_ids'][0] for item in final_predictions]) accuracy = metrics.accuracy_score(validation_targets, final_predictions) print("Final accuracy (on validation data): %0.2f" % accuracy) # Output a graph of loss metrics over periods. plt.ylabel("LogLoss") plt.xlabel("Periods") plt.title("LogLoss vs. Periods") plt.plot(training_errors, label="training") plt.plot(validation_errors, label="validation") plt.legend() plt.show() # Output a plot of the confusion matrix. cm = metrics.confusion_matrix(validation_targets, final_predictions) # Normalize the confusion matrix by row (i.e by the number of samples # in each class). cm_normalized = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis] ax = sns.heatmap(cm_normalized, cmap="bone_r") ax.set_aspect(1) plt.title("Confusion matrix") plt.ylabel("True label") plt.xlabel("Predicted label") plt.show() return classifier classifier = train_nn_classification_model( learning_rate=0.05, steps=1000, batch_size=30, hidden_units=[100, 100], training_examples=training_examples, training_targets=training_targets, validation_examples=validation_examples, validation_targets=validation_targets) ###Output _____no_output_____ ###Markdown Next, we verify the accuracy on the test set. ###Code mnist_test_dataframe = pd.read_csv( "https://dl.google.com/mlcc/mledu-datasets/mnist_test.csv", sep=",", header=None) test_targets, test_examples = parse_labels_and_features(mnist_test_dataframe) test_examples.describe() predict_test_input_fn = create_predict_input_fn( test_examples, test_targets, batch_size=100) test_predictions = classifier.predict(input_fn=predict_test_input_fn) test_predictions = np.array([item['class_ids'][0] for item in test_predictions]) accuracy = metrics.accuracy_score(test_targets, test_predictions) print("Accuracy on test data: %0.2f" % accuracy) ###Output _____no_output_____ ###Markdown Task 3: Visualize the weights of the first hidden layer.Let's take a few minutes to dig into our neural network and see what it has learned by accessing the `weights_` attribute of our model.The input layer of our model has `784` weights corresponding to the `28×28` pixel input images. The first hidden layer will have `784×N` weights where `N` is the number of nodes in that layer. We can turn those weights back into `28×28` images by *reshaping* each of the `N` `1×784` arrays of weights into `N` arrays of size `28×28`.Run the following cell to plot the weights. Note that this cell requires that a `DNNClassifier` called "classifier" has already been trained. ###Code print(classifier.get_variable_names()) weights0 = classifier.get_variable_value("dnn/hiddenlayer_0/kernel") print("weights0 shape:", weights0.shape) num_nodes = weights0.shape[1] num_rows = int(math.ceil(num_nodes / 10.0)) fig, axes = plt.subplots(num_rows, 10, figsize=(20, 2 * num_rows)) for coef, ax in zip(weights0.T, axes.ravel()): # Weights in coef is reshaped from 1x784 to 28x28. ax.matshow(coef.reshape(28, 28), cmap=plt.cm.pink) ax.set_xticks(()) ax.set_yticks(()) plt.show() ###Output _____no_output_____ ###Markdown Copyright 2017 Google LLC. ###Code # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Classifying Handwritten Digits with Neural Networks ![img](https://www.tensorflow.org/versions/r0.11/images/MNIST.png) **Learning Objectives:** * Train both a linear model and a neural network to classify handwritten digits from the classic [MNIST](http://yann.lecun.com/exdb/mnist/) data set * Compare the performance of the linear and neural network classification models * Visualize the weights of a neural-network hidden layer Our goal is to map each input image to the correct numeric digit. We will create a NN with a few hidden layers and a Softmax layer at the top to select the winning class. SetupFirst, let's download the data set, import TensorFlow and other utilities, and load the data into a *pandas* `DataFrame`. Note that this data is a sample of the original MNIST training data; we've taken 20000 rows at random. ###Code from __future__ import print_function import glob import math import os from IPython import display from matplotlib import cm from matplotlib import gridspec from matplotlib import pyplot as plt import numpy as np import pandas as pd import seaborn as sns from sklearn import metrics import tensorflow as tf from tensorflow.python.data import Dataset tf.logging.set_verbosity(tf.logging.ERROR) pd.options.display.max_rows = 10 pd.options.display.float_format = '{:.1f}'.format mnist_dataframe = pd.read_csv( "https://download.mlcc.google.com/mledu-datasets/mnist_train_small.csv", sep=",", header=None) # Use just the first 10,000 records for training/validation. mnist_dataframe = mnist_dataframe.head(10000) mnist_dataframe = mnist_dataframe.reindex(np.random.permutation(mnist_dataframe.index)) mnist_dataframe.head() ###Output _____no_output_____ ###Markdown Each row represents one labeled example. Column 0 represents the label that a human rater has assigned for one handwritten digit. For example, if Column 0 contains '6', then a human rater interpreted the handwritten character as the digit '6'. The ten digits 0-9 are each represented, with a unique class label for each possible digit. Thus, this is a multi-class classification problem with 10 classes. ![img](https://www.tensorflow.org/versions/r0.11/images/MNIST-Matrix.png) Columns 1 through 784 contain the feature values, one per pixel for the 28×28=784 pixel values. The pixel values are on a gray scale in which 0 represents white, 255 represents black, and values between 0 and 255 represent shades of gray. Most of the pixel values are 0; you may want to take a minute to confirm that they aren't all 0. For example, adjust the following text block to print out the values in column 72. ###Code mnist_dataframe.loc[:, 72:72] ###Output _____no_output_____ ###Markdown Now, let's parse out the labels and features and look at a few examples. Note the use of `loc` which allows us to pull out columns based on original location, since we don't have a header row in this data set. ###Code def parse_labels_and_features(dataset): """Extracts labels and features. This is a good place to scale or transform the features if needed. Args: dataset: A Pandas `Dataframe`, containing the label on the first column and monochrome pixel values on the remaining columns, in row major order. Returns: A `tuple` `(labels, features)`: labels: A Pandas `Series`. features: A Pandas `DataFrame`. """ labels = dataset[0] # DataFrame.loc index ranges are inclusive at both ends. features = dataset.loc[:,1:784] # Scale the data to [0, 1] by dividing out the max value, 255. features = features / 255 return labels, features training_targets, training_examples = parse_labels_and_features(mnist_dataframe[:7500]) training_examples.describe() validation_targets, validation_examples = parse_labels_and_features(mnist_dataframe[7500:10000]) validation_examples.describe() ###Output _____no_output_____ ###Markdown Show a random example and its corresponding label. ###Code rand_example = np.random.choice(training_examples.index) _, ax = plt.subplots() ax.matshow(training_examples.loc[rand_example].values.reshape(28, 28)) ax.set_title("Label: %i" % training_targets.loc[rand_example]) ax.grid(False) ###Output _____no_output_____ ###Markdown Task 1: Build a Linear Model for MNISTFirst, let's create a baseline model to compare against. The `LinearClassifier` provides a set of *k* one-vs-all classifiers, one for each of the *k* classes.You'll notice that in addition to reporting accuracy, and plotting Log Loss over time, we also display a [**confusion matrix**](https://en.wikipedia.org/wiki/Confusion_matrix). The confusion matrix shows which classes were misclassified as other classes. Which digits get confused for each other?Also note that we track the model's error using the `log_loss` function. This should not be confused with the loss function internal to `LinearClassifier` that is used for training. ###Code def construct_feature_columns(): """Construct the TensorFlow Feature Columns. Returns: A set of feature columns """ # There are 784 pixels in each image. return set([tf.feature_column.numeric_column('pixels', shape=784)]) ###Output _____no_output_____ ###Markdown Here, we'll make separate input functions for training and for prediction. We'll nest them in `create_training_input_fn()` and `create_predict_input_fn()`, respectively, so we can invoke these functions to return the corresponding `_input_fn`s to pass to our `.train()` and `.predict()` calls. ###Code def create_training_input_fn(features, labels, batch_size, num_epochs=None, shuffle=True): """A custom input_fn for sending MNIST data to the estimator for training. Args: features: The training features. labels: The training labels. batch_size: Batch size to use during training. Returns: A function that returns batches of training features and labels during training. """ def _input_fn(num_epochs=None, shuffle=True): # Input pipelines are reset with each call to .train(). To ensure model # gets a good sampling of data, even when number of steps is small, we # shuffle all the data before creating the Dataset object idx = np.random.permutation(features.index) raw_features = {"pixels":features.reindex(idx)} raw_targets = np.array(labels[idx]) ds = Dataset.from_tensor_slices((raw_features,raw_targets)) # warning: 2GB limit ds = ds.batch(batch_size).repeat(num_epochs) if shuffle: ds = ds.shuffle(10000) # Return the next batch of data. feature_batch, label_batch = ds.make_one_shot_iterator().get_next() return feature_batch, label_batch return _input_fn def create_predict_input_fn(features, labels, batch_size): """A custom input_fn for sending mnist data to the estimator for predictions. Args: features: The features to base predictions on. labels: The labels of the prediction examples. Returns: A function that returns features and labels for predictions. """ def _input_fn(): raw_features = {"pixels": features.values} raw_targets = np.array(labels) ds = Dataset.from_tensor_slices((raw_features, raw_targets)) # warning: 2GB limit ds = ds.batch(batch_size) # Return the next batch of data. feature_batch, label_batch = ds.make_one_shot_iterator().get_next() return feature_batch, label_batch return _input_fn def train_linear_classification_model( learning_rate, steps, batch_size, training_examples, training_targets, validation_examples, validation_targets): """Trains a linear classification model for the MNIST digits dataset. In addition to training, this function also prints training progress information, a plot of the training and validation loss over time, and a confusion matrix. Args: learning_rate: An `int`, the learning rate to use. steps: A non-zero `int`, the total number of training steps. A training step consists of a forward and backward pass using a single batch. batch_size: A non-zero `int`, the batch size. training_examples: A `DataFrame` containing the training features. training_targets: A `DataFrame` containing the training labels. validation_examples: A `DataFrame` containing the validation features. validation_targets: A `DataFrame` containing the validation labels. Returns: The trained `LinearClassifier` object. """ periods = 10 steps_per_period = steps / periods # Create the input functions. predict_training_input_fn = create_predict_input_fn( training_examples, training_targets, batch_size) predict_validation_input_fn = create_predict_input_fn( validation_examples, validation_targets, batch_size) training_input_fn = create_training_input_fn( training_examples, training_targets, batch_size) # Create a LinearClassifier object. my_optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate) my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) classifier = tf.estimator.LinearClassifier( feature_columns=construct_feature_columns(), n_classes=10, optimizer=my_optimizer, config=tf.estimator.RunConfig(keep_checkpoint_max=1) ) # Train the model, but do so inside a loop so that we can periodically assess # loss metrics. print("Training model...") print("LogLoss error (on validation data):") training_errors = [] validation_errors = [] for period in range (0, periods): # Train the model, starting from the prior state. classifier.train( input_fn=training_input_fn, steps=steps_per_period ) # Take a break and compute probabilities. training_predictions = list(classifier.predict(input_fn=predict_training_input_fn)) training_probabilities = np.array([item['probabilities'] for item in training_predictions]) training_pred_class_id = np.array([item['class_ids'][0] for item in training_predictions]) training_pred_one_hot = tf.keras.utils.to_categorical(training_pred_class_id,10) validation_predictions = list(classifier.predict(input_fn=predict_validation_input_fn)) validation_probabilities = np.array([item['probabilities'] for item in validation_predictions]) validation_pred_class_id = np.array([item['class_ids'][0] for item in validation_predictions]) validation_pred_one_hot = tf.keras.utils.to_categorical(validation_pred_class_id,10) # Compute training and validation errors. training_log_loss = metrics.log_loss(training_targets, training_pred_one_hot) validation_log_loss = metrics.log_loss(validation_targets, validation_pred_one_hot) # Occasionally print the current loss. print(" period %02d : %0.2f" % (period, validation_log_loss)) # Add the loss metrics from this period to our list. training_errors.append(training_log_loss) validation_errors.append(validation_log_loss) print("Model training finished.") # Remove event files to save disk space. _ = map(os.remove, glob.glob(os.path.join(classifier.model_dir, 'events.out.tfevents*'))) # Calculate final predictions (not probabilities, as above). final_predictions = classifier.predict(input_fn=predict_validation_input_fn) final_predictions = np.array([item['class_ids'][0] for item in final_predictions]) accuracy = metrics.accuracy_score(validation_targets, final_predictions) print("Final accuracy (on validation data): %0.2f" % accuracy) # Output a graph of loss metrics over periods. plt.ylabel("LogLoss") plt.xlabel("Periods") plt.title("LogLoss vs. Periods") plt.plot(training_errors, label="training") plt.plot(validation_errors, label="validation") plt.legend() plt.show() # Output a plot of the confusion matrix. cm = metrics.confusion_matrix(validation_targets, final_predictions) # Normalize the confusion matrix by row (i.e by the number of samples # in each class). cm_normalized = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis] ax = sns.heatmap(cm_normalized, cmap="bone_r") ax.set_aspect(1) plt.title("Confusion matrix") plt.ylabel("True label") plt.xlabel("Predicted label") plt.show() return classifier ###Output _____no_output_____ ###Markdown **Spend 5 minutes seeing how well you can do on accuracy with a linear model of this form. For this exercise, limit yourself to experimenting with the hyperparameters for batch size, learning rate and steps.**Stop if you get anything above about 0.9 accuracy. ###Code classifier = train_linear_classification_model( learning_rate=0.02, steps=100, batch_size=10, training_examples=training_examples, training_targets=training_targets, validation_examples=validation_examples, validation_targets=validation_targets) ###Output _____no_output_____ ###Markdown SolutionClick below for one possible solution. Here is a set of parameters that should attain roughly 0.9 accuracy. ###Code _ = train_linear_classification_model( learning_rate=0.03, steps=1000, batch_size=30, training_examples=training_examples, training_targets=training_targets, validation_examples=validation_examples, validation_targets=validation_targets) ###Output _____no_output_____ ###Markdown Task 2: Replace the Linear Classifier with a Neural Network**Replace the LinearClassifier above with a [`DNNClassifier`](https://www.tensorflow.org/api_docs/python/tf/estimator/DNNClassifier) and find a parameter combination that gives 0.95 or better accuracy.**You may wish to experiment with additional regularization methods, such as dropout. These additional regularization methods are documented in the comments for the `DNNClassifier` class. ###Code # # YOUR CODE HERE: Replace the linear classifier with a neural network. # ###Output _____no_output_____ ###Markdown Once you have a good model, double check that you didn't overfit the validation set by evaluating on the test data that we'll load below. ###Code mnist_test_dataframe = pd.read_csv( "https://download.mlcc.google.com/mledu-datasets/mnist_test.csv", sep=",", header=None) test_targets, test_examples = parse_labels_and_features(mnist_test_dataframe) test_examples.describe() # # YOUR CODE HERE: Calculate accuracy on the test set. # ###Output _____no_output_____ ###Markdown SolutionClick below for a possible solution. The code below is almost identical to the original `LinearClassifer` training code, with the exception of the NN-specific configuration, such as the hyperparameter for hidden units. ###Code def train_nn_classification_model( learning_rate, steps, batch_size, hidden_units, training_examples, training_targets, validation_examples, validation_targets): """Trains a neural network classification model for the MNIST digits dataset. In addition to training, this function also prints training progress information, a plot of the training and validation loss over time, as well as a confusion matrix. Args: learning_rate: An `int`, the learning rate to use. steps: A non-zero `int`, the total number of training steps. A training step consists of a forward and backward pass using a single batch. batch_size: A non-zero `int`, the batch size. hidden_units: A `list` of int values, specifying the number of neurons in each layer. training_examples: A `DataFrame` containing the training features. training_targets: A `DataFrame` containing the training labels. validation_examples: A `DataFrame` containing the validation features. validation_targets: A `DataFrame` containing the validation labels. Returns: The trained `DNNClassifier` object. """ periods = 10 # Caution: input pipelines are reset with each call to train. # If the number of steps is small, your model may never see most of the data. # So with multiple `.train` calls like this you may want to control the length # of training with num_epochs passed to the input_fn. Or, you can do a really-big shuffle, # or since it's in-memory data, shuffle all the data in the `input_fn`. steps_per_period = steps / periods # Create the input functions. predict_training_input_fn = create_predict_input_fn( training_examples, training_targets, batch_size) predict_validation_input_fn = create_predict_input_fn( validation_examples, validation_targets, batch_size) training_input_fn = create_training_input_fn( training_examples, training_targets, batch_size) # Create the input functions. predict_training_input_fn = create_predict_input_fn( training_examples, training_targets, batch_size) predict_validation_input_fn = create_predict_input_fn( validation_examples, validation_targets, batch_size) training_input_fn = create_training_input_fn( training_examples, training_targets, batch_size) # Create feature columns. feature_columns = [tf.feature_column.numeric_column('pixels', shape=784)] # Create a DNNClassifier object. my_optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate) my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) classifier = tf.estimator.DNNClassifier( feature_columns=feature_columns, n_classes=10, hidden_units=hidden_units, optimizer=my_optimizer, config=tf.contrib.learn.RunConfig(keep_checkpoint_max=1) ) # Train the model, but do so inside a loop so that we can periodically assess # loss metrics. print("Training model...") print("LogLoss error (on validation data):") training_errors = [] validation_errors = [] for period in range (0, periods): # Train the model, starting from the prior state. classifier.train( input_fn=training_input_fn, steps=steps_per_period ) # Take a break and compute probabilities. training_predictions = list(classifier.predict(input_fn=predict_training_input_fn)) training_probabilities = np.array([item['probabilities'] for item in training_predictions]) training_pred_class_id = np.array([item['class_ids'][0] for item in training_predictions]) training_pred_one_hot = tf.keras.utils.to_categorical(training_pred_class_id,10) validation_predictions = list(classifier.predict(input_fn=predict_validation_input_fn)) validation_probabilities = np.array([item['probabilities'] for item in validation_predictions]) validation_pred_class_id = np.array([item['class_ids'][0] for item in validation_predictions]) validation_pred_one_hot = tf.keras.utils.to_categorical(validation_pred_class_id,10) # Compute training and validation errors. training_log_loss = metrics.log_loss(training_targets, training_pred_one_hot) validation_log_loss = metrics.log_loss(validation_targets, validation_pred_one_hot) # Occasionally print the current loss. print(" period %02d : %0.2f" % (period, validation_log_loss)) # Add the loss metrics from this period to our list. training_errors.append(training_log_loss) validation_errors.append(validation_log_loss) print("Model training finished.") # Remove event files to save disk space. _ = map(os.remove, glob.glob(os.path.join(classifier.model_dir, 'events.out.tfevents*'))) # Calculate final predictions (not probabilities, as above). final_predictions = classifier.predict(input_fn=predict_validation_input_fn) final_predictions = np.array([item['class_ids'][0] for item in final_predictions]) accuracy = metrics.accuracy_score(validation_targets, final_predictions) print("Final accuracy (on validation data): %0.2f" % accuracy) # Output a graph of loss metrics over periods. plt.ylabel("LogLoss") plt.xlabel("Periods") plt.title("LogLoss vs. Periods") plt.plot(training_errors, label="training") plt.plot(validation_errors, label="validation") plt.legend() plt.show() # Output a plot of the confusion matrix. cm = metrics.confusion_matrix(validation_targets, final_predictions) # Normalize the confusion matrix by row (i.e by the number of samples # in each class). cm_normalized = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis] ax = sns.heatmap(cm_normalized, cmap="bone_r") ax.set_aspect(1) plt.title("Confusion matrix") plt.ylabel("True label") plt.xlabel("Predicted label") plt.show() return classifier classifier = train_nn_classification_model( learning_rate=0.05, steps=1000, batch_size=30, hidden_units=[100, 100], training_examples=training_examples, training_targets=training_targets, validation_examples=validation_examples, validation_targets=validation_targets) ###Output _____no_output_____ ###Markdown Next, we verify the accuracy on the test set. ###Code mnist_test_dataframe = pd.read_csv( "https://download.mlcc.google.com/mledu-datasets/mnist_test.csv", sep=",", header=None) test_targets, test_examples = parse_labels_and_features(mnist_test_dataframe) test_examples.describe() predict_test_input_fn = create_predict_input_fn( test_examples, test_targets, batch_size=100) test_predictions = classifier.predict(input_fn=predict_test_input_fn) test_predictions = np.array([item['class_ids'][0] for item in test_predictions]) accuracy = metrics.accuracy_score(test_targets, test_predictions) print("Accuracy on test data: %0.2f" % accuracy) ###Output _____no_output_____ ###Markdown Task 3: Visualize the weights of the first hidden layer.Let's take a few minutes to dig into our neural network and see what it has learned by accessing the `weights_` attribute of our model.The input layer of our model has `784` weights corresponding to the `28×28` pixel input images. The first hidden layer will have `784×N` weights where `N` is the number of nodes in that layer. We can turn those weights back into `28×28` images by *reshaping* each of the `N` `1×784` arrays of weights into `N` arrays of size `28×28`.Run the following cell to plot the weights. Note that this cell requires that a `DNNClassifier` called "classifier" has already been trained. ###Code print(classifier.get_variable_names()) weights0 = classifier.get_variable_value("dnn/hiddenlayer_0/kernel") print("weights0 shape:", weights0.shape) num_nodes = weights0.shape[1] num_rows = int(math.ceil(num_nodes / 10.0)) fig, axes = plt.subplots(num_rows, 10, figsize=(20, 2 * num_rows)) for coef, ax in zip(weights0.T, axes.ravel()): # Weights in coef is reshaped from 1x784 to 28x28. ax.matshow(coef.reshape(28, 28), cmap=plt.cm.pink) ax.set_xticks(()) ax.set_yticks(()) plt.show() ###Output _____no_output_____ ###Markdown Copyright 2017 Google LLC. ###Code # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Classifying Handwritten Digits with Neural Networks ![img](https://www.tensorflow.org/versions/r0.11/images/MNIST.png) **Learning Objectives:** * Train both a linear model and a neural network to classify handwritten digits from the classic [MNIST](http://yann.lecun.com/exdb/mnist/) data set * Compare the performance of the linear and neural network classification models * Visualize the weights of a neural-network hidden layer Our goal is to map each input image to the correct numeric digit. We will create a NN with a few hidden layers and a Softmax layer at the top to select the winning class. SetupFirst, let's download the data set, import TensorFlow and other utilities, and load the data into a *pandas* `DataFrame`. Note that this data is a sample of the original MNIST training data; we've taken 20000 rows at random. ###Code from __future__ import print_function import glob import math import os from IPython import display from matplotlib import cm from matplotlib import gridspec from matplotlib import pyplot as plt import numpy as np import pandas as pd import seaborn as sns from sklearn import metrics import tensorflow as tf from tensorflow.python.data import Dataset tf.logging.set_verbosity(tf.logging.ERROR) pd.options.display.max_rows = 10 pd.options.display.float_format = '{:.1f}'.format mnist_dataframe = pd.read_csv( "https://download.mlcc.google.com/mledu-datasets/mnist_train_small.csv", sep=",", header=None) # Use just the first 10,000 records for training/validation. mnist_dataframe = mnist_dataframe.head(10000) mnist_dataframe = mnist_dataframe.reindex(np.random.permutation(mnist_dataframe.index)) mnist_dataframe.head() ###Output _____no_output_____ ###Markdown Each row represents one labeled example. Column 0 represents the label that a human rater has assigned for one handwritten digit. For example, if Column 0 contains '6', then a human rater interpreted the handwritten character as the digit '6'. The ten digits 0-9 are each represented, with a unique class label for each possible digit. Thus, this is a multi-class classification problem with 10 classes. ![img](https://www.tensorflow.org/versions/r0.11/images/MNIST-Matrix.png) Columns 1 through 784 contain the feature values, one per pixel for the 28×28=784 pixel values. The pixel values are on a gray scale in which 0 represents white, 255 represents black, and values between 0 and 255 represent shades of gray. Most of the pixel values are 0; you may want to take a minute to confirm that they aren't all 0. For example, adjust the following text block to print out the values in column 72. ###Code mnist_dataframe.loc[:, 72:72] ###Output _____no_output_____ ###Markdown Now, let's parse out the labels and features and look at a few examples. Note the use of `loc` which allows us to pull out columns based on original location, since we don't have a header row in this data set. ###Code def parse_labels_and_features(dataset): """Extracts labels and features. This is a good place to scale or transform the features if needed. Args: dataset: A Pandas `Dataframe`, containing the label on the first column and monochrome pixel values on the remaining columns, in row major order. Returns: A `tuple` `(labels, features)`: labels: A Pandas `Series`. features: A Pandas `DataFrame`. """ labels = dataset[0] # DataFrame.loc index ranges are inclusive at both ends. features = dataset.loc[:,1:784] # Scale the data to [0, 1] by dividing out the max value, 255. features = features / 255 return labels, features training_targets training_targets, training_examples = parse_labels_and_features(mnist_dataframe[:7500]) training_examples.describe() validation_targets, validation_examples = parse_labels_and_features(mnist_dataframe[7500:10000]) validation_examples.describe() ###Output _____no_output_____ ###Markdown Show a random example and its corresponding label. ###Code rand_example = np.random.choice(training_examples.index) _, ax = plt.subplots() ax.matshow(training_examples.loc[rand_example].values.reshape(28, 28)) ax.set_title("Label: %i" % training_targets.loc[rand_example]) ax.grid(False) ###Output _____no_output_____ ###Markdown Task 1: Build a Linear Model for MNISTFirst, let's create a baseline model to compare against. The `LinearClassifier` provides a set of *k* one-vs-all classifiers, one for each of the *k* classes.You'll notice that in addition to reporting accuracy, and plotting Log Loss over time, we also display a [**confusion matrix**](https://en.wikipedia.org/wiki/Confusion_matrix). The confusion matrix shows which classes were misclassified as other classes. Which digits get confused for each other?Also note that we track the model's error using the `log_loss` function. This should not be confused with the loss function internal to `LinearClassifier` that is used for training. ###Code def construct_feature_columns(): """Construct the TensorFlow Feature Columns. Returns: A set of feature columns """ # There are 784 pixels in each image. return set([tf.feature_column.numeric_column('pixels', shape=784)]) ###Output _____no_output_____ ###Markdown Here, we'll make separate input functions for training and for prediction. We'll nest them in `create_training_input_fn()` and `create_predict_input_fn()`, respectively, so we can invoke these functions to return the corresponding `_input_fn`s to pass to our `.train()` and `.predict()` calls. ###Code def create_training_input_fn(features, labels, batch_size, num_epochs=None, shuffle=True): """A custom input_fn for sending MNIST data to the estimator for training. Args: features: The training features. labels: The training labels. batch_size: Batch size to use during training. Returns: A function that returns batches of training features and labels during training. """ def _input_fn(num_epochs=None, shuffle=True): # Input pipelines are reset with each call to .train(). To ensure model # gets a good sampling of data, even when number of steps is small, we # shuffle all the data before creating the Dataset object idx = np.random.permutation(features.index) raw_features = {"pixels":features.reindex(idx)} raw_targets = np.array(labels[idx]) ds = Dataset.from_tensor_slices((raw_features,raw_targets)) # warning: 2GB limit ds = ds.batch(batch_size).repeat(num_epochs) if shuffle: ds = ds.shuffle(10000) # Return the next batch of data. feature_batch, label_batch = ds.make_one_shot_iterator().get_next() return feature_batch, label_batch return _input_fn def create_predict_input_fn(features, labels, batch_size): """A custom input_fn for sending mnist data to the estimator for predictions. Args: features: The features to base predictions on. labels: The labels of the prediction examples. Returns: A function that returns features and labels for predictions. """ def _input_fn(): raw_features = {"pixels": features.values} raw_targets = np.array(labels) ds = Dataset.from_tensor_slices((raw_features, raw_targets)) # warning: 2GB limit ds = ds.batch(batch_size) # Return the next batch of data. feature_batch, label_batch = ds.make_one_shot_iterator().get_next() return feature_batch, label_batch return _input_fn def train_linear_classification_model( learning_rate, steps, batch_size, training_examples, training_targets, validation_examples, validation_targets): """Trains a linear classification model for the MNIST digits dataset. In addition to training, this function also prints training progress information, a plot of the training and validation loss over time, and a confusion matrix. Args: learning_rate: A `float`, the learning rate to use. steps: A non-zero `int`, the total number of training steps. A training step consists of a forward and backward pass using a single batch. batch_size: A non-zero `int`, the batch size. training_examples: A `DataFrame` containing the training features. training_targets: A `DataFrame` containing the training labels. validation_examples: A `DataFrame` containing the validation features. validation_targets: A `DataFrame` containing the validation labels. Returns: The trained `LinearClassifier` object. """ periods = 10 steps_per_period = steps / periods # Create the input functions. predict_training_input_fn = create_predict_input_fn( training_examples, training_targets, batch_size) predict_validation_input_fn = create_predict_input_fn( validation_examples, validation_targets, batch_size) training_input_fn = create_training_input_fn( training_examples, training_targets, batch_size) # Create a LinearClassifier object. my_optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate) my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) classifier = tf.estimator.LinearClassifier( feature_columns=construct_feature_columns(), n_classes=10, optimizer=my_optimizer, config=tf.estimator.RunConfig(keep_checkpoint_max=1) ) # Train the model, but do so inside a loop so that we can periodically assess # loss metrics. print("Training model...") print("LogLoss error (on validation data):") training_errors = [] validation_errors = [] for period in range (0, periods): # Train the model, starting from the prior state. classifier.train( input_fn=training_input_fn, steps=steps_per_period ) # Take a break and compute probabilities. training_predictions = list(classifier.predict(input_fn=predict_training_input_fn)) training_probabilities = np.array([item['probabilities'] for item in training_predictions]) training_pred_class_id = np.array([item['class_ids'][0] for item in training_predictions]) training_pred_one_hot = tf.keras.utils.to_categorical(training_pred_class_id,10) validation_predictions = list(classifier.predict(input_fn=predict_validation_input_fn)) validation_probabilities = np.array([item['probabilities'] for item in validation_predictions]) validation_pred_class_id = np.array([item['class_ids'][0] for item in validation_predictions]) validation_pred_one_hot = tf.keras.utils.to_categorical(validation_pred_class_id,10) # Compute training and validation errors. training_log_loss = metrics.log_loss(training_targets, training_pred_one_hot) validation_log_loss = metrics.log_loss(validation_targets, validation_pred_one_hot) # Occasionally print the current loss. print(" period %02d : %0.2f" % (period, validation_log_loss)) # Add the loss metrics from this period to our list. training_errors.append(training_log_loss) validation_errors.append(validation_log_loss) print("Model training finished.") # Remove event files to save disk space. _ = map(os.remove, glob.glob(os.path.join(classifier.model_dir, 'events.out.tfevents*'))) # Calculate final predictions (not probabilities, as above). final_predictions = classifier.predict(input_fn=predict_validation_input_fn) final_predictions = np.array([item['class_ids'][0] for item in final_predictions]) accuracy = metrics.accuracy_score(validation_targets, final_predictions) print("Final accuracy (on validation data): %0.2f" % accuracy) # Output a graph of loss metrics over periods. plt.ylabel("LogLoss") plt.xlabel("Periods") plt.title("LogLoss vs. Periods") plt.plot(training_errors, label="training") plt.plot(validation_errors, label="validation") plt.legend() plt.show() # Output a plot of the confusion matrix. cm = metrics.confusion_matrix(validation_targets, final_predictions) # Normalize the confusion matrix by row (i.e by the number of samples # in each class). cm_normalized = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis] ax = sns.heatmap(cm_normalized, cmap="bone_r") ax.set_aspect(1) plt.title("Confusion matrix") plt.ylabel("True label") plt.xlabel("Predicted label") plt.show() return classifier ###Output _____no_output_____ ###Markdown **Spend 5 minutes seeing how well you can do on accuracy with a linear model of this form. For this exercise, limit yourself to experimenting with the hyperparameters for batch size, learning rate and steps.**Stop if you get anything above about 0.9 accuracy. ###Code classifier = train_linear_classification_model( learning_rate=0.03, steps=2000, batch_size=30, training_examples=training_examples, training_targets=training_targets, validation_examples=validation_examples, validation_targets=validation_targets) ###Output Training model... LogLoss error (on validation data): period 00 : 3.97 period 01 : 3.54 period 02 : 3.51 period 03 : 3.36 period 04 : 3.44 period 05 : 3.32 period 06 : 3.22 period 07 : 3.38 period 08 : 3.25 period 09 : 3.15 Model training finished. Final accuracy (on validation data): 0.91 ###Markdown SolutionClick below for one possible solution. Here is a set of parameters that should attain roughly 0.9 accuracy. ###Code _ = train_linear_classification_model( learning_rate=0.03, steps=1000, batch_size=30, training_examples=training_examples, training_targets=training_targets, validation_examples=validation_examples, validation_targets=validation_targets) ###Output _____no_output_____ ###Markdown Task 2: Replace the Linear Classifier with a Neural Network**Replace the LinearClassifier above with a [`DNNClassifier`](https://www.tensorflow.org/api_docs/python/tf/estimator/DNNClassifier) and find a parameter combination that gives 0.95 or better accuracy.**You may wish to experiment with additional regularization methods, such as dropout. These additional regularization methods are documented in the comments for the `DNNClassifier` class. ###Code def train_nn_classification_model( learning_rate, steps, batch_size, hidden_units, training_examples, training_targets, validation_examples, validation_targets): """Trains a neural network classification model for the MNIST digits dataset. In addition to training, this function also prints training progress information, a plot of the training and validation loss over time, as well as a confusion matrix. Args: learning_rate: An `int`, the learning rate to use. steps: A non-zero `int`, the total number of training steps. A training step consists of a forward and backward pass using a single batch. batch_size: A non-zero `int`, the batch size. hidden_units: A `list` of int values, specifying the number of neurons in each layer. training_examples: A `DataFrame` containing the training features. training_targets: A `DataFrame` containing the training labels. validation_examples: A `DataFrame` containing the validation features. validation_targets: A `DataFrame` containing the validation labels. Returns: The trained `DNNClassifier` object. """ periods = 10 # Caution: input pipelines are reset with each call to train. # If the number of steps is small, your model may never see most of the data. # So with multiple `.train` calls like this you may want to control the length # of training with num_epochs passed to the input_fn. Or, you can do a really-big shuffle, # or since it's in-memory data, shuffle all the data in the `input_fn`. steps_per_period = steps / periods # Create the input functions. predict_training_input_fn = create_predict_input_fn( training_examples, training_targets, batch_size) predict_validation_input_fn = create_predict_input_fn( validation_examples, validation_targets, batch_size) training_input_fn = create_training_input_fn( training_examples, training_targets, batch_size) # Create the input functions. predict_training_input_fn = create_predict_input_fn( training_examples, training_targets, batch_size) predict_validation_input_fn = create_predict_input_fn( validation_examples, validation_targets, batch_size) training_input_fn = create_training_input_fn( training_examples, training_targets, batch_size) # Create feature columns. feature_columns = [tf.feature_column.numeric_column('pixels', shape=784)] # Create a DNNClassifier object. my_optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate) my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) classifier = tf.estimator.DNNClassifier( feature_columns=feature_columns, n_classes=10, hidden_units=hidden_units, optimizer=my_optimizer, config=tf.contrib.learn.RunConfig(keep_checkpoint_max=1) ) # Train the model, but do so inside a loop so that we can periodically assess # loss metrics. print("Training model...") print("LogLoss error (on validation data):") training_errors = [] validation_errors = [] for period in range (0, periods): # Train the model, starting from the prior state. classifier.train( input_fn=training_input_fn, steps=steps_per_period ) # Take a break and compute probabilities. training_predictions = list(classifier.predict(input_fn=predict_training_input_fn)) training_probabilities = np.array([item['probabilities'] for item in training_predictions]) training_pred_class_id = np.array([item['class_ids'][0] for item in training_predictions]) training_pred_one_hot = tf.keras.utils.to_categorical(training_pred_class_id,10) validation_predictions = list(classifier.predict(input_fn=predict_validation_input_fn)) validation_probabilities = np.array([item['probabilities'] for item in validation_predictions]) validation_pred_class_id = np.array([item['class_ids'][0] for item in validation_predictions]) validation_pred_one_hot = tf.keras.utils.to_categorical(validation_pred_class_id,10) # Compute training and validation errors. training_log_loss = metrics.log_loss(training_targets, training_pred_one_hot) validation_log_loss = metrics.log_loss(validation_targets, validation_pred_one_hot) # Occasionally print the current loss. print(" period %02d : %0.2f" % (period, validation_log_loss)) # Add the loss metrics from this period to our list. training_errors.append(training_log_loss) validation_errors.append(validation_log_loss) print("Model training finished.") # Remove event files to save disk space. _ = map(os.remove, glob.glob(os.path.join(classifier.model_dir, 'events.out.tfevents*'))) # Calculate final predictions (not probabilities, as above). final_predictions = classifier.predict(input_fn=predict_validation_input_fn) final_predictions = np.array([item['class_ids'][0] for item in final_predictions]) accuracy = metrics.accuracy_score(validation_targets, final_predictions) print("Final accuracy (on validation data): %0.2f" % accuracy) # Output a graph of loss metrics over periods. plt.ylabel("LogLoss") plt.xlabel("Periods") plt.title("LogLoss vs. Periods") plt.plot(training_errors, label="training") plt.plot(validation_errors, label="validation") plt.legend() plt.show() # Output a plot of the confusion matrix. cm = metrics.confusion_matrix(validation_targets, final_predictions) # Normalize the confusion matrix by row (i.e by the number of samples # in each class). cm_normalized = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis] ax = sns.heatmap(cm_normalized, cmap="bone_r") ax.set_aspect(1) plt.title("Confusion matrix") plt.ylabel("True label") plt.xlabel("Predicted label") plt.show() return classifier ###Output _____no_output_____ ###Markdown Once you have a good model, double check that you didn't overfit the validation set by evaluating on the test data that we'll load below. ###Code mnist_test_dataframe = pd.read_csv( "https://download.mlcc.google.com/mledu-datasets/mnist_test.csv", sep=",", header=None) test_targets, test_examples = parse_labels_and_features(mnist_test_dataframe) test_examples.describe() classifier = train_nn_classification_model( learning_rate=0.05, steps=1000, batch_size=30, hidden_units=[100, 100], training_examples=training_examples, training_targets=training_targets, validation_examples=validation_examples, validation_targets=validation_targets) mnist_test_dataframe = pd.read_csv( "https://download.mlcc.google.com/mledu-datasets/mnist_test.csv", sep=",", header=None) test_targets, test_examples = parse_labels_and_features(mnist_test_dataframe) test_examples.describe() predict_test_input_fn = create_predict_input_fn( test_examples, test_targets, batch_size=100) test_predictions = classifier.predict(input_fn=predict_test_input_fn) test_predictions = np.array([item['class_ids'][0] for item in test_predictions]) accuracy = metrics.accuracy_score(test_targets, test_predictions) print("Accuracy on test data: %0.2f" % accuracy) ###Output Accuracy on test data: 0.95 ###Markdown SolutionClick below for a possible solution. The code below is almost identical to the original `LinearClassifer` training code, with the exception of the NN-specific configuration, such as the hyperparameter for hidden units. ###Code def train_nn_classification_model( learning_rate, steps, batch_size, hidden_units, training_examples, training_targets, validation_examples, validation_targets): """Trains a neural network classification model for the MNIST digits dataset. In addition to training, this function also prints training progress information, a plot of the training and validation loss over time, as well as a confusion matrix. Args: learning_rate: A `float`, the learning rate to use. steps: A non-zero `int`, the total number of training steps. A training step consists of a forward and backward pass using a single batch. batch_size: A non-zero `int`, the batch size. hidden_units: A `list` of int values, specifying the number of neurons in each layer. training_examples: A `DataFrame` containing the training features. training_targets: A `DataFrame` containing the training labels. validation_examples: A `DataFrame` containing the validation features. validation_targets: A `DataFrame` containing the validation labels. Returns: The trained `DNNClassifier` object. """ periods = 10 # Caution: input pipelines are reset with each call to train. # If the number of steps is small, your model may never see most of the data. # So with multiple `.train` calls like this you may want to control the length # of training with num_epochs passed to the input_fn. Or, you can do a really-big shuffle, # or since it's in-memory data, shuffle all the data in the `input_fn`. steps_per_period = steps / periods # Create the input functions. predict_training_input_fn = create_predict_input_fn( training_examples, training_targets, batch_size) predict_validation_input_fn = create_predict_input_fn( validation_examples, validation_targets, batch_size) training_input_fn = create_training_input_fn( training_examples, training_targets, batch_size) # Create the input functions. predict_training_input_fn = create_predict_input_fn( training_examples, training_targets, batch_size) predict_validation_input_fn = create_predict_input_fn( validation_examples, validation_targets, batch_size) training_input_fn = create_training_input_fn( training_examples, training_targets, batch_size) # Create feature columns. feature_columns = [tf.feature_column.numeric_column('pixels', shape=784)] # Create a DNNClassifier object. my_optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate) my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) classifier = tf.estimator.DNNClassifier( feature_columns=feature_columns, n_classes=10, hidden_units=hidden_units, optimizer=my_optimizer, config=tf.contrib.learn.RunConfig(keep_checkpoint_max=1) ) # Train the model, but do so inside a loop so that we can periodically assess # loss metrics. print("Training model...") print("LogLoss error (on validation data):") training_errors = [] validation_errors = [] for period in range (0, periods): # Train the model, starting from the prior state. classifier.train( input_fn=training_input_fn, steps=steps_per_period ) # Take a break and compute probabilities. training_predictions = list(classifier.predict(input_fn=predict_training_input_fn)) training_probabilities = np.array([item['probabilities'] for item in training_predictions]) training_pred_class_id = np.array([item['class_ids'][0] for item in training_predictions]) training_pred_one_hot = tf.keras.utils.to_categorical(training_pred_class_id,10) validation_predictions = list(classifier.predict(input_fn=predict_validation_input_fn)) validation_probabilities = np.array([item['probabilities'] for item in validation_predictions]) validation_pred_class_id = np.array([item['class_ids'][0] for item in validation_predictions]) validation_pred_one_hot = tf.keras.utils.to_categorical(validation_pred_class_id,10) # Compute training and validation errors. training_log_loss = metrics.log_loss(training_targets, training_pred_one_hot) validation_log_loss = metrics.log_loss(validation_targets, validation_pred_one_hot) # Occasionally print the current loss. print(" period %02d : %0.2f" % (period, validation_log_loss)) # Add the loss metrics from this period to our list. training_errors.append(training_log_loss) validation_errors.append(validation_log_loss) print("Model training finished.") # Remove event files to save disk space. _ = map(os.remove, glob.glob(os.path.join(classifier.model_dir, 'events.out.tfevents*'))) # Calculate final predictions (not probabilities, as above). final_predictions = classifier.predict(input_fn=predict_validation_input_fn) final_predictions = np.array([item['class_ids'][0] for item in final_predictions]) accuracy = metrics.accuracy_score(validation_targets, final_predictions) print("Final accuracy (on validation data): %0.2f" % accuracy) # Output a graph of loss metrics over periods. plt.ylabel("LogLoss") plt.xlabel("Periods") plt.title("LogLoss vs. Periods") plt.plot(training_errors, label="training") plt.plot(validation_errors, label="validation") plt.legend() plt.show() # Output a plot of the confusion matrix. cm = metrics.confusion_matrix(validation_targets, final_predictions) # Normalize the confusion matrix by row (i.e by the number of samples # in each class). cm_normalized = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis] ax = sns.heatmap(cm_normalized, cmap="bone_r") ax.set_aspect(1) plt.title("Confusion matrix") plt.ylabel("True label") plt.xlabel("Predicted label") plt.show() return classifier classifier = train_nn_classification_model( learning_rate=0.05, steps=1000, batch_size=30, hidden_units=[100, 100], training_examples=training_examples, training_targets=training_targets, validation_examples=validation_examples, validation_targets=validation_targets) ###Output _____no_output_____ ###Markdown Next, we verify the accuracy on the test set. ###Code mnist_test_dataframe = pd.read_csv( "https://download.mlcc.google.com/mledu-datasets/mnist_test.csv", sep=",", header=None) test_targets, test_examples = parse_labels_and_features(mnist_test_dataframe) test_examples.describe() predict_test_input_fn = create_predict_input_fn( test_examples, test_targets, batch_size=100) test_predictions = classifier.predict(input_fn=predict_test_input_fn) test_predictions = np.array([item['class_ids'][0] for item in test_predictions]) accuracy = metrics.accuracy_score(test_targets, test_predictions) print("Accuracy on test data: %0.2f" % accuracy) ###Output _____no_output_____ ###Markdown Task 3: Visualize the weights of the first hidden layer.Let's take a few minutes to dig into our neural network and see what it has learned by accessing the `weights_` attribute of our model.The input layer of our model has `784` weights corresponding to the `28×28` pixel input images. The first hidden layer will have `784×N` weights where `N` is the number of nodes in that layer. We can turn those weights back into `28×28` images by *reshaping* each of the `N` `1×784` arrays of weights into `N` arrays of size `28×28`.Run the following cell to plot the weights. Note that this cell requires that a `DNNClassifier` called "classifier" has already been trained. ###Code print(classifier.get_variable_names()) weights0 = classifier.get_variable_value("dnn/hiddenlayer_0/kernel") print("weights0 shape:", weights0.shape) num_nodes = weights0.shape[1] num_rows = int(math.ceil(num_nodes / 10.0)) fig, axes = plt.subplots(num_rows, 10, figsize=(20, 2 * num_rows)) for coef, ax in zip(weights0.T, axes.ravel()): # Weights in coef is reshaped from 1x784 to 28x28. ax.matshow(coef.reshape(28, 28), cmap=plt.cm.pink) ax.set_xticks(()) ax.set_yticks(()) plt.show() ###Output ['dnn/hiddenlayer_0/bias', 'dnn/hiddenlayer_0/bias/t_0/Adagrad', 'dnn/hiddenlayer_0/kernel', 'dnn/hiddenlayer_0/kernel/t_0/Adagrad', 'dnn/hiddenlayer_1/bias', 'dnn/hiddenlayer_1/bias/t_0/Adagrad', 'dnn/hiddenlayer_1/kernel', 'dnn/hiddenlayer_1/kernel/t_0/Adagrad', 'dnn/logits/bias', 'dnn/logits/bias/t_0/Adagrad', 'dnn/logits/kernel', 'dnn/logits/kernel/t_0/Adagrad', 'global_step'] weights0 shape: (784, 100) ###Markdown The first hidden layer of the neural network should be modeling some pretty low level features, so visualizing the weights will probably just show some fuzzy blobs or possibly a few parts of digits. You may also see some neurons that are essentially noise -- these are either unconverged or they are being ignored by higher layers.It can be interesting to stop training at different numbers of iterations and see the effect.**Train the classifier for 10, 100 and respectively 1000 steps. Then run this visualization again.**What differences do you see visually for the different levels of convergence? ###Code weights1 = classifier.get_variable_value("dnn/hiddenlayer_1/kernel") print("weights1 shape:", weights1.shape) num_nodes = weights1.shape[1] num_rows = int(math.ceil(num_nodes / 10.0)) fig, axes = plt.subplots(num_rows, 10, figsize=(20, 2 * num_rows)) for coef, ax in zip(weights1.T, axes.ravel()): # Weights in coef is reshaped from 1x784 to 28x28. ax.matshow(coef.reshape(10, 10), cmap=plt.cm.pink) ax.set_xticks(()) ax.set_yticks(()) plt.show() weights2 = classifier.get_variable_value("dnn/logits/kernel") print("weights2 shape:", weights2.shape) num_nodes = weights2.shape[1] num_rows = int(math.ceil(num_nodes / 10.0)) fig, axes = plt.subplots(num_rows, 10, figsize=(20, 2 * num_rows)) for coef, ax in zip(weights2.T, axes.ravel()): # Weights in coef is reshaped from 1x784 to 28x28. ax.matshow(coef.reshape(10, 10), cmap=plt.cm.pink) ax.set_xticks(()) ax.set_yticks(()) plt.show() ###Output weights2 shape: (100, 10) ###Markdown [View in Colaboratory](https://colab.research.google.com/github/nikhilbhatewara/GoogleMachineLearningCrashCourse/blob/master/multi_class_classification_of_handwritten_digits.ipynb) Copyright 2017 Google LLC. ###Code # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Classifying Handwritten Digits with Neural Networks ![img](https://www.tensorflow.org/versions/r0.11/images/MNIST.png) **Learning Objectives:** * Train both a linear model and a neural network to classify handwritten digits from the classic [MNIST](http://yann.lecun.com/exdb/mnist/) data set * Compare the performance of the linear and neural network classification models * Visualize the weights of a neural-network hidden layer Our goal is to map each input image to the correct numeric digit. We will create a NN with a few hidden layers and a Softmax layer at the top to select the winning class. SetupFirst, let's download the data set, import TensorFlow and other utilities, and load the data into a *pandas* `DataFrame`. Note that this data is a sample of the original MNIST training data; we've taken 20000 rows at random. ###Code from __future__ import print_function import glob import math import os from IPython import display from matplotlib import cm from matplotlib import gridspec from matplotlib import pyplot as plt import numpy as np import pandas as pd import seaborn as sns from sklearn import metrics import tensorflow as tf from tensorflow.python.data import Dataset tf.logging.set_verbosity(tf.logging.ERROR) pd.options.display.max_rows = 10 pd.options.display.float_format = '{:.1f}'.format mnist_dataframe = pd.read_csv( "https://download.mlcc.google.com/mledu-datasets/mnist_train_small.csv", sep=",", header=None) # Use just the first 10,000 records for training/validation. mnist_dataframe = mnist_dataframe.head(10000) mnist_dataframe = mnist_dataframe.reindex(np.random.permutation(mnist_dataframe.index)) mnist_dataframe.head() ###Output _____no_output_____ ###Markdown Each row represents one labeled example. Column 0 represents the label that a human rater has assigned for one handwritten digit. For example, if Column 0 contains '6', then a human rater interpreted the handwritten character as the digit '6'. The ten digits 0-9 are each represented, with a unique class label for each possible digit. Thus, this is a multi-class classification problem with 10 classes. ![img](https://www.tensorflow.org/versions/r0.11/images/MNIST-Matrix.png) Columns 1 through 784 contain the feature values, one per pixel for the 28×28=784 pixel values. The pixel values are on a gray scale in which 0 represents white, 255 represents black, and values between 0 and 255 represent shades of gray. Most of the pixel values are 0; you may want to take a minute to confirm that they aren't all 0. For example, adjust the following text block to print out the values in column 72. ###Code mnist_dataframe.loc[:, 72:72] ###Output _____no_output_____ ###Markdown Now, let's parse out the labels and features and look at a few examples. Note the use of `loc` which allows us to pull out columns based on original location, since we don't have a header row in this data set. ###Code def parse_labels_and_features(dataset): """Extracts labels and features. This is a good place to scale or transform the features if needed. Args: dataset: A Pandas `Dataframe`, containing the label on the first column and monochrome pixel values on the remaining columns, in row major order. Returns: A `tuple` `(labels, features)`: labels: A Pandas `Series`. features: A Pandas `DataFrame`. """ labels = dataset[0] # DataFrame.loc index ranges are inclusive at both ends. features = dataset.loc[:,1:784] # Scale the data to [0, 1] by dividing out the max value, 255. features = features / 255 return labels, features training_targets, training_examples = parse_labels_and_features(mnist_dataframe[:7500]) training_examples.describe() validation_targets, validation_examples = parse_labels_and_features(mnist_dataframe[7500:10000]) validation_examples.describe() ###Output _____no_output_____ ###Markdown Show a random example and its corresponding label. ###Code rand_example = np.random.choice(training_examples.index) _, ax = plt.subplots() ax.matshow(training_examples.loc[rand_example].values.reshape(28, 28)) ax.set_title("Label: %i" % training_targets.loc[rand_example]) ax.grid(False) ###Output _____no_output_____ ###Markdown Task 1: Build a Linear Model for MNISTFirst, let's create a baseline model to compare against. The `LinearClassifier` provides a set of *k* one-vs-all classifiers, one for each of the *k* classes.You'll notice that in addition to reporting accuracy, and plotting Log Loss over time, we also display a [**confusion matrix**](https://en.wikipedia.org/wiki/Confusion_matrix). The confusion matrix shows which classes were misclassified as other classes. Which digits get confused for each other?Also note that we track the model's error using the `log_loss` function. This should not be confused with the loss function internal to `LinearClassifier` that is used for training. ###Code def construct_feature_columns(): """Construct the TensorFlow Feature Columns. Returns: A set of feature columns """ # There are 784 pixels in each image. return set([tf.feature_column.numeric_column('pixels', shape=784)]) ###Output _____no_output_____ ###Markdown Here, we'll make separate input functions for training and for prediction. We'll nest them in `create_training_input_fn()` and `create_predict_input_fn()`, respectively, so we can invoke these functions to return the corresponding `_input_fn`s to pass to our `.train()` and `.predict()` calls. ###Code def create_training_input_fn(features, labels, batch_size, num_epochs=None, shuffle=True): """A custom input_fn for sending MNIST data to the estimator for training. Args: features: The training features. labels: The training labels. batch_size: Batch size to use during training. Returns: A function that returns batches of training features and labels during training. """ def _input_fn(num_epochs=None, shuffle=True): # Input pipelines are reset with each call to .train(). To ensure model # gets a good sampling of data, even when number of steps is small, we # shuffle all the data before creating the Dataset object idx = np.random.permutation(features.index) raw_features = {"pixels":features.reindex(idx)} raw_targets = np.array(labels[idx]) ds = Dataset.from_tensor_slices((raw_features,raw_targets)) # warning: 2GB limit ds = ds.batch(batch_size).repeat(num_epochs) if shuffle: ds = ds.shuffle(10000) # Return the next batch of data. feature_batch, label_batch = ds.make_one_shot_iterator().get_next() return feature_batch, label_batch return _input_fn def create_predict_input_fn(features, labels, batch_size): """A custom input_fn for sending mnist data to the estimator for predictions. Args: features: The features to base predictions on. labels: The labels of the prediction examples. Returns: A function that returns features and labels for predictions. """ def _input_fn(): raw_features = {"pixels": features.values} raw_targets = np.array(labels) ds = Dataset.from_tensor_slices((raw_features, raw_targets)) # warning: 2GB limit ds = ds.batch(batch_size) # Return the next batch of data. feature_batch, label_batch = ds.make_one_shot_iterator().get_next() return feature_batch, label_batch return _input_fn def train_linear_classification_model( learning_rate, steps, batch_size, training_examples, training_targets, validation_examples, validation_targets): """Trains a linear classification model for the MNIST digits dataset. In addition to training, this function also prints training progress information, a plot of the training and validation loss over time, and a confusion matrix. Args: learning_rate: An `int`, the learning rate to use. steps: A non-zero `int`, the total number of training steps. A training step consists of a forward and backward pass using a single batch. batch_size: A non-zero `int`, the batch size. training_examples: A `DataFrame` containing the training features. training_targets: A `DataFrame` containing the training labels. validation_examples: A `DataFrame` containing the validation features. validation_targets: A `DataFrame` containing the validation labels. Returns: The trained `LinearClassifier` object. """ periods = 10 steps_per_period = steps / periods # Create the input functions. predict_training_input_fn = create_predict_input_fn( training_examples, training_targets, batch_size) predict_validation_input_fn = create_predict_input_fn( validation_examples, validation_targets, batch_size) training_input_fn = create_training_input_fn( training_examples, training_targets, batch_size) # Create a LinearClassifier object. my_optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate) my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) classifier = tf.estimator.LinearClassifier( feature_columns=construct_feature_columns(), n_classes=10, optimizer=my_optimizer, config=tf.estimator.RunConfig(keep_checkpoint_max=1) ) # Train the model, but do so inside a loop so that we can periodically assess # loss metrics. print("Training model...") print("LogLoss error (on validation data):") training_errors = [] validation_errors = [] for period in range (0, periods): # Train the model, starting from the prior state. classifier.train( input_fn=training_input_fn, steps=steps_per_period ) # Take a break and compute probabilities. training_predictions = list(classifier.predict(input_fn=predict_training_input_fn)) training_probabilities = np.array([item['probabilities'] for item in training_predictions]) training_pred_class_id = np.array([item['class_ids'][0] for item in training_predictions]) training_pred_one_hot = tf.keras.utils.to_categorical(training_pred_class_id,10) validation_predictions = list(classifier.predict(input_fn=predict_validation_input_fn)) validation_probabilities = np.array([item['probabilities'] for item in validation_predictions]) validation_pred_class_id = np.array([item['class_ids'][0] for item in validation_predictions]) validation_pred_one_hot = tf.keras.utils.to_categorical(validation_pred_class_id,10) # Compute training and validation errors. training_log_loss = metrics.log_loss(training_targets, training_pred_one_hot) validation_log_loss = metrics.log_loss(validation_targets, validation_pred_one_hot) # Occasionally print the current loss. print(" period %02d : %0.2f" % (period, validation_log_loss)) # Add the loss metrics from this period to our list. training_errors.append(training_log_loss) validation_errors.append(validation_log_loss) print("Model training finished.") # Remove event files to save disk space. _ = map(os.remove, glob.glob(os.path.join(classifier.model_dir, 'events.out.tfevents*'))) # Calculate final predictions (not probabilities, as above). final_predictions = classifier.predict(input_fn=predict_validation_input_fn) final_predictions = np.array([item['class_ids'][0] for item in final_predictions]) accuracy = metrics.accuracy_score(validation_targets, final_predictions) print("Final accuracy (on validation data): %0.2f" % accuracy) # Output a graph of loss metrics over periods. plt.ylabel("LogLoss") plt.xlabel("Periods") plt.title("LogLoss vs. Periods") plt.plot(training_errors, label="training") plt.plot(validation_errors, label="validation") plt.legend() plt.show() # Output a plot of the confusion matrix. cm = metrics.confusion_matrix(validation_targets, final_predictions) # Normalize the confusion matrix by row (i.e by the number of samples # in each class). cm_normalized = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis] ax = sns.heatmap(cm_normalized, cmap="bone_r") ax.set_aspect(1) plt.title("Confusion matrix") plt.ylabel("True label") plt.xlabel("Predicted label") plt.show() return classifier ###Output _____no_output_____ ###Markdown **Spend 5 minutes seeing how well you can do on accuracy with a linear model of this form. For this exercise, limit yourself to experimenting with the hyperparameters for batch size, learning rate and steps.**Stop if you get anything above about 0.9 accuracy. ###Code classifier = train_linear_classification_model( learning_rate=0.2, steps=100, batch_size=20, training_examples=training_examples, training_targets=training_targets, validation_examples=validation_examples, validation_targets=validation_targets) ###Output Training model... LogLoss error (on validation data): period 00 : 11.62 period 01 : 11.49 period 02 : 8.98 period 03 : 9.09 period 04 : 6.41 period 05 : 6.33 period 06 : 6.07 period 07 : 6.95 period 08 : 5.94 period 09 : 5.07 Model training finished. Final accuracy (on validation data): 0.85 ###Markdown SolutionClick below for one possible solution. Here is a set of parameters that should attain roughly 0.9 accuracy. ###Code _ = train_linear_classification_model( learning_rate=0.03, steps=1000, batch_size=30, training_examples=training_examples, training_targets=training_targets, validation_examples=validation_examples, validation_targets=validation_targets) ###Output _____no_output_____ ###Markdown Task 2: Replace the Linear Classifier with a Neural Network**Replace the LinearClassifier above with a [`DNNClassifier`](https://www.tensorflow.org/api_docs/python/tf/estimator/DNNClassifier) and find a parameter combination that gives 0.95 or better accuracy.**You may wish to experiment with additional regularization methods, such as dropout. These additional regularization methods are documented in the comments for the `DNNClassifier` class. ###Code ###Output _____no_output_____ ###Markdown Once you have a good model, double check that you didn't overfit the validation set by evaluating on the test data that we'll load below. ###Code mnist_test_dataframe = pd.read_csv( "https://download.mlcc.google.com/mledu-datasets/mnist_test.csv", sep=",", header=None) test_targets, test_examples = parse_labels_and_features(mnist_test_dataframe) test_examples.describe() # # YOUR CODE HERE: Calculate accuracy on the test set. # ###Output _____no_output_____ ###Markdown SolutionClick below for a possible solution. The code below is almost identical to the original `LinearClassifer` training code, with the exception of the NN-specific configuration, such as the hyperparameter for hidden units. ###Code def train_nn_classification_model( learning_rate, steps, batch_size, hidden_units, training_examples, training_targets, validation_examples, validation_targets): """Trains a neural network classification model for the MNIST digits dataset. In addition to training, this function also prints training progress information, a plot of the training and validation loss over time, as well as a confusion matrix. Args: learning_rate: An `int`, the learning rate to use. steps: A non-zero `int`, the total number of training steps. A training step consists of a forward and backward pass using a single batch. batch_size: A non-zero `int`, the batch size. hidden_units: A `list` of int values, specifying the number of neurons in each layer. training_examples: A `DataFrame` containing the training features. training_targets: A `DataFrame` containing the training labels. validation_examples: A `DataFrame` containing the validation features. validation_targets: A `DataFrame` containing the validation labels. Returns: The trained `DNNClassifier` object. """ periods = 10 # Caution: input pipelines are reset with each call to train. # If the number of steps is small, your model may never see most of the data. # So with multiple `.train` calls like this you may want to control the length # of training with num_epochs passed to the input_fn. Or, you can do a really-big shuffle, # or since it's in-memory data, shuffle all the data in the `input_fn`. steps_per_period = steps / periods # Create the input functions. predict_training_input_fn = create_predict_input_fn( training_examples, training_targets, batch_size) predict_validation_input_fn = create_predict_input_fn( validation_examples, validation_targets, batch_size) training_input_fn = create_training_input_fn( training_examples, training_targets, batch_size) # Create the input functions. predict_training_input_fn = create_predict_input_fn( training_examples, training_targets, batch_size) predict_validation_input_fn = create_predict_input_fn( validation_examples, validation_targets, batch_size) training_input_fn = create_training_input_fn( training_examples, training_targets, batch_size) # Create feature columns. feature_columns = [tf.feature_column.numeric_column('pixels', shape=784)] # Create a DNNClassifier object. my_optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate) my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) classifier = tf.estimator.DNNClassifier( feature_columns=feature_columns, n_classes=10, hidden_units=hidden_units, optimizer=my_optimizer, config=tf.contrib.learn.RunConfig(keep_checkpoint_max=1) ) # Train the model, but do so inside a loop so that we can periodically assess # loss metrics. print("Training model...") print("LogLoss error (on validation data):") training_errors = [] validation_errors = [] for period in range (0, periods): # Train the model, starting from the prior state. classifier.train( input_fn=training_input_fn, steps=steps_per_period ) # Take a break and compute probabilities. training_predictions = list(classifier.predict(input_fn=predict_training_input_fn)) training_probabilities = np.array([item['probabilities'] for item in training_predictions]) training_pred_class_id = np.array([item['class_ids'][0] for item in training_predictions]) training_pred_one_hot = tf.keras.utils.to_categorical(training_pred_class_id,10) validation_predictions = list(classifier.predict(input_fn=predict_validation_input_fn)) validation_probabilities = np.array([item['probabilities'] for item in validation_predictions]) validation_pred_class_id = np.array([item['class_ids'][0] for item in validation_predictions]) validation_pred_one_hot = tf.keras.utils.to_categorical(validation_pred_class_id,10) # Compute training and validation errors. training_log_loss = metrics.log_loss(training_targets, training_pred_one_hot) validation_log_loss = metrics.log_loss(validation_targets, validation_pred_one_hot) # Occasionally print the current loss. print(" period %02d : %0.2f" % (period, validation_log_loss)) # Add the loss metrics from this period to our list. training_errors.append(training_log_loss) validation_errors.append(validation_log_loss) print("Model training finished.") # Remove event files to save disk space. _ = map(os.remove, glob.glob(os.path.join(classifier.model_dir, 'events.out.tfevents*'))) # Calculate final predictions (not probabilities, as above). final_predictions = classifier.predict(input_fn=predict_validation_input_fn) final_predictions = np.array([item['class_ids'][0] for item in final_predictions]) accuracy = metrics.accuracy_score(validation_targets, final_predictions) print("Final accuracy (on validation data): %0.2f" % accuracy) # Output a graph of loss metrics over periods. plt.ylabel("LogLoss") plt.xlabel("Periods") plt.title("LogLoss vs. Periods") plt.plot(training_errors, label="training") plt.plot(validation_errors, label="validation") plt.legend() plt.show() # Output a plot of the confusion matrix. cm = metrics.confusion_matrix(validation_targets, final_predictions) # Normalize the confusion matrix by row (i.e by the number of samples # in each class). cm_normalized = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis] ax = sns.heatmap(cm_normalized, cmap="bone_r") ax.set_aspect(1) plt.title("Confusion matrix") plt.ylabel("True label") plt.xlabel("Predicted label") plt.show() return classifier classifier = train_nn_classification_model( learning_rate=0.05, steps=10, batch_size=30, hidden_units=[100, 100], training_examples=training_examples, training_targets=training_targets, validation_examples=validation_examples, validation_targets=validation_targets) ###Output Training model... LogLoss error (on validation data): period 00 : 28.35 period 01 : 21.47 period 02 : 29.57 period 03 : 25.10 period 04 : 22.51 period 05 : 21.00 period 06 : 21.44 period 07 : 17.42 period 08 : 26.36 period 09 : 14.98 Model training finished. Final accuracy (on validation data): 0.57 ###Markdown Next, we verify the accuracy on the test set. ###Code mnist_test_dataframe = pd.read_csv( "https://download.mlcc.google.com/mledu-datasets/mnist_test.csv", sep=",", header=None) test_targets, test_examples = parse_labels_and_features(mnist_test_dataframe) test_examples.describe() predict_test_input_fn = create_predict_input_fn( test_examples, test_targets, batch_size=100) test_predictions = classifier.predict(input_fn=predict_test_input_fn) test_predictions = np.array([item['class_ids'][0] for item in test_predictions]) accuracy = metrics.accuracy_score(test_targets, test_predictions) print("Accuracy on test data: %0.2f" % accuracy) ###Output Accuracy on test data: 0.56 ###Markdown Task 3: Visualize the weights of the first hidden layer.Let's take a few minutes to dig into our neural network and see what it has learned by accessing the `weights_` attribute of our model.The input layer of our model has `784` weights corresponding to the `28×28` pixel input images. The first hidden layer will have `784×N` weights where `N` is the number of nodes in that layer. We can turn those weights back into `28×28` images by *reshaping* each of the `N` `1×784` arrays of weights into `N` arrays of size `28×28`.Run the following cell to plot the weights. Note that this cell requires that a `DNNClassifier` called "classifier" has already been trained. ###Code print(classifier.get_variable_names()) weights0 = classifier.get_variable_value("dnn/hiddenlayer_0/kernel") print("weights0 shape:", weights0.shape) num_nodes = weights0.shape[1] num_rows = int(math.ceil(num_nodes / 10.0)) fig, axes = plt.subplots(num_rows, 10, figsize=(20, 2 * num_rows)) for coef, ax in zip(weights0.T, axes.ravel()): # Weights in coef is reshaped from 1x784 to 28x28. ax.matshow(coef.reshape(28, 28), cmap=plt.cm.pink) ax.set_xticks(()) ax.set_yticks(()) plt.show() ###Output ['dnn/hiddenlayer_0/bias', 'dnn/hiddenlayer_0/bias/t_0/Adagrad', 'dnn/hiddenlayer_0/kernel', 'dnn/hiddenlayer_0/kernel/t_0/Adagrad', 'dnn/hiddenlayer_1/bias', 'dnn/hiddenlayer_1/bias/t_0/Adagrad', 'dnn/hiddenlayer_1/kernel', 'dnn/hiddenlayer_1/kernel/t_0/Adagrad', 'dnn/logits/bias', 'dnn/logits/bias/t_0/Adagrad', 'dnn/logits/kernel', 'dnn/logits/kernel/t_0/Adagrad', 'global_step'] weights0 shape: (784, 100) ###Markdown Copyright 2017 Google LLC. ###Code # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Classifying Handwritten Digits with Neural Networks ![img](https://www.tensorflow.org/versions/r0.11/images/MNIST.png) **Learning Objectives:** * Train both a linear model and a neural network to classify handwritten digits from the classic [MNIST](http://yann.lecun.com/exdb/mnist/) data set * Compare the performance of the linear and neural network classification models * Visualize the weights of a neural-network hidden layer Our goal is to map each input image to the correct numeric digit. We will create a NN with a few hidden layers and a Softmax layer at the top to select the winning class. SetupFirst, let's download the data set, import TensorFlow and other utilities, and load the data into a *pandas* `DataFrame`. Note that this data is a sample of the original MNIST training data; we've taken 20000 rows at random. ###Code from __future__ import print_function import glob import math import os from IPython import display from matplotlib import cm from matplotlib import gridspec from matplotlib import pyplot as plt import numpy as np import pandas as pd import seaborn as sns from sklearn import metrics import tensorflow as tf from tensorflow.python.data import Dataset tf.logging.set_verbosity(tf.logging.ERROR) pd.options.display.max_rows = 10 pd.options.display.float_format = '{:.1f}'.format mnist_dataframe = pd.read_csv( "https://download.mlcc.google.com/mledu-datasets/mnist_train_small.csv", sep=",", header=None) # Use just the first 10,000 records for training/validation. mnist_dataframe = mnist_dataframe.head(10000) mnist_dataframe = mnist_dataframe.reindex(np.random.permutation(mnist_dataframe.index)) mnist_dataframe.head() ###Output _____no_output_____ ###Markdown Each row represents one labeled example. Column 0 represents the label that a human rater has assigned for one handwritten digit. For example, if Column 0 contains '6', then a human rater interpreted the handwritten character as the digit '6'. The ten digits 0-9 are each represented, with a unique class label for each possible digit. Thus, this is a multi-class classification problem with 10 classes. ![img](https://www.tensorflow.org/versions/r0.11/images/MNIST-Matrix.png) Columns 1 through 784 contain the feature values, one per pixel for the 28×28=784 pixel values. The pixel values are on a gray scale in which 0 represents white, 255 represents black, and values between 0 and 255 represent shades of gray. Most of the pixel values are 0; you may want to take a minute to confirm that they aren't all 0. For example, adjust the following text block to print out the values in column 72. ###Code mnist_dataframe.loc[:, 0:0] ###Output _____no_output_____ ###Markdown Now, let's parse out the labels and features and look at a few examples. Note the use of `loc` which allows us to pull out columns based on original location, since we don't have a header row in this data set. ###Code def parse_labels_and_features(dataset): """Extracts labels and features. This is a good place to scale or transform the features if needed. Args: dataset: A Pandas `Dataframe`, containing the label on the first column and monochrome pixel values on the remaining columns, in row major order. Returns: A `tuple` `(labels, features)`: labels: A Pandas `Series`. features: A Pandas `DataFrame`. """ labels = dataset[0] # DataFrame.loc index ranges are inclusive at both ends. features = dataset.loc[:,1:784] # Scale the data to [0, 1] by dividing out the max value, 255. features = features / 255 return labels, features training_targets, training_examples = parse_labels_and_features(mnist_dataframe[:7500]) training_examples.describe() validation_targets, validation_examples = parse_labels_and_features(mnist_dataframe[7500:10000]) validation_examples.describe() ###Output _____no_output_____ ###Markdown Show a random example and its corresponding label. ###Code rand_example = np.random.choice(training_examples.index) _, ax = plt.subplots() ax.matshow(training_examples.loc[rand_example].values.reshape(28, 28)) ax.set_title("Label: %i" % training_targets.loc[rand_example]) ax.grid(False) ###Output _____no_output_____ ###Markdown Task 1: Build a Linear Model for MNISTFirst, let's create a baseline model to compare against. The `LinearClassifier` provides a set of *k* one-vs-all classifiers, one for each of the *k* classes.You'll notice that in addition to reporting accuracy, and plotting Log Loss over time, we also display a [**confusion matrix**](https://en.wikipedia.org/wiki/Confusion_matrix). The confusion matrix shows which classes were misclassified as other classes. Which digits get confused for each other?Also note that we track the model's error using the `log_loss` function. This should not be confused with the loss function internal to `LinearClassifier` that is used for training. ###Code def construct_feature_columns(): """Construct the TensorFlow Feature Columns. Returns: A set of feature columns """ # There are 784 pixels in each image. return set([tf.feature_column.numeric_column('pixels', shape=784)]) ###Output _____no_output_____ ###Markdown Here, we'll make separate input functions for training and for prediction. We'll nest them in `create_training_input_fn()` and `create_predict_input_fn()`, respectively, so we can invoke these functions to return the corresponding `_input_fn`s to pass to our `.train()` and `.predict()` calls. ###Code def create_training_input_fn(features, labels, batch_size, num_epochs=None, shuffle=True): """A custom input_fn for sending MNIST data to the estimator for training. Args: features: The training features. labels: The training labels. batch_size: Batch size to use during training. Returns: A function that returns batches of training features and labels during training. """ def _input_fn(num_epochs=None, shuffle=True): # Input pipelines are reset with each call to .train(). To ensure model # gets a good sampling of data, even when number of steps is small, we # shuffle all the data before creating the Dataset object idx = np.random.permutation(features.index) raw_features = {"pixels":features.reindex(idx)} raw_targets = np.array(labels[idx]) ds = Dataset.from_tensor_slices((raw_features,raw_targets)) # warning: 2GB limit ds = ds.batch(batch_size).repeat(num_epochs) if shuffle: ds = ds.shuffle(10000) # Return the next batch of data. feature_batch, label_batch = ds.make_one_shot_iterator().get_next() return feature_batch, label_batch return _input_fn def create_predict_input_fn(features, labels, batch_size): """A custom input_fn for sending mnist data to the estimator for predictions. Args: features: The features to base predictions on. labels: The labels of the prediction examples. Returns: A function that returns features and labels for predictions. """ def _input_fn(): raw_features = {"pixels": features.values} raw_targets = np.array(labels) ds = Dataset.from_tensor_slices((raw_features, raw_targets)) # warning: 2GB limit ds = ds.batch(batch_size) # Return the next batch of data. feature_batch, label_batch = ds.make_one_shot_iterator().get_next() return feature_batch, label_batch return _input_fn def train_linear_classification_model( learning_rate, steps, batch_size, training_examples, training_targets, validation_examples, validation_targets): """Trains a linear classification model for the MNIST digits dataset. In addition to training, this function also prints training progress information, a plot of the training and validation loss over time, and a confusion matrix. Args: learning_rate: An `int`, the learning rate to use. steps: A non-zero `int`, the total number of training steps. A training step consists of a forward and backward pass using a single batch. batch_size: A non-zero `int`, the batch size. training_examples: A `DataFrame` containing the training features. training_targets: A `DataFrame` containing the training labels. validation_examples: A `DataFrame` containing the validation features. validation_targets: A `DataFrame` containing the validation labels. Returns: The trained `LinearClassifier` object. """ periods = 10 steps_per_period = steps / periods # Create the input functions. predict_training_input_fn = create_predict_input_fn( training_examples, training_targets, batch_size) predict_validation_input_fn = create_predict_input_fn( validation_examples, validation_targets, batch_size) training_input_fn = create_training_input_fn( training_examples, training_targets, batch_size) # Create a LinearClassifier object. my_optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate) my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) classifier = tf.estimator.LinearClassifier( feature_columns=construct_feature_columns(), n_classes=10, optimizer=my_optimizer, config=tf.estimator.RunConfig(keep_checkpoint_max=1) ) # Train the model, but do so inside a loop so that we can periodically assess # loss metrics. print("Training model...") print("LogLoss error (on validation data):") training_errors = [] validation_errors = [] for period in range (0, periods): # Train the model, starting from the prior state. classifier.train( input_fn=training_input_fn, steps=steps_per_period ) # Take a break and compute probabilities. training_predictions = list(classifier.predict(input_fn=predict_training_input_fn)) training_probabilities = np.array([item['probabilities'] for item in training_predictions]) training_pred_class_id = np.array([item['class_ids'][0] for item in training_predictions]) training_pred_one_hot = tf.keras.utils.to_categorical(training_pred_class_id,10) validation_predictions = list(classifier.predict(input_fn=predict_validation_input_fn)) validation_probabilities = np.array([item['probabilities'] for item in validation_predictions]) validation_pred_class_id = np.array([item['class_ids'][0] for item in validation_predictions]) validation_pred_one_hot = tf.keras.utils.to_categorical(validation_pred_class_id,10) # Compute training and validation errors. training_log_loss = metrics.log_loss(training_targets, training_pred_one_hot) validation_log_loss = metrics.log_loss(validation_targets, validation_pred_one_hot) # Occasionally print the current loss. print(" period %02d : %0.2f" % (period, validation_log_loss)) # Add the loss metrics from this period to our list. training_errors.append(training_log_loss) validation_errors.append(validation_log_loss) print("Model training finished.") # Remove event files to save disk space. _ = map(os.remove, glob.glob(os.path.join(classifier.model_dir, 'events.out.tfevents*'))) # Calculate final predictions (not probabilities, as above). final_predictions = classifier.predict(input_fn=predict_validation_input_fn) final_predictions = np.array([item['class_ids'][0] for item in final_predictions]) accuracy = metrics.accuracy_score(validation_targets, final_predictions) print("Final accuracy (on validation data): %0.2f" % accuracy) # Output a graph of loss metrics over periods. plt.ylabel("LogLoss") plt.xlabel("Periods") plt.title("LogLoss vs. Periods") plt.plot(training_errors, label="training") plt.plot(validation_errors, label="validation") plt.legend() plt.show() # Output a plot of the confusion matrix. cm = metrics.confusion_matrix(validation_targets, final_predictions) # Normalize the confusion matrix by row (i.e by the number of samples # in each class). cm_normalized = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis] ax = sns.heatmap(cm_normalized, cmap="bone_r") ax.set_aspect(1) plt.title("Confusion matrix") plt.ylabel("True label") plt.xlabel("Predicted label") plt.show() return classifier ###Output _____no_output_____ ###Markdown **Spend 5 minutes seeing how well you can do on accuracy with a linear model of this form. For this exercise, limit yourself to experimenting with the hyperparameters for batch size, learning rate and steps.**Stop if you get anything above about 0.9 accuracy. ###Code classifier = train_linear_classification_model( learning_rate=0.02, steps=100, batch_size=10, training_examples=training_examples, training_targets=training_targets, validation_examples=validation_examples, validation_targets=validation_targets) ###Output Training model... LogLoss error (on validation data): period 00 : 19.25 period 01 : 11.52 period 02 : 7.97 period 03 : 7.96 period 04 : 7.63 period 05 : 7.00 period 06 : 6.55 period 07 : 5.55 period 08 : 5.83 period 09 : 5.39 Model training finished. Final accuracy (on validation data): 0.84 ###Markdown SolutionClick below for one possible solution. Here is a set of parameters that should attain roughly 0.9 accuracy. ###Code _ = train_linear_classification_model( learning_rate=0.03, steps=1000, batch_size=30, training_examples=training_examples, training_targets=training_targets, validation_examples=validation_examples, validation_targets=validation_targets) ###Output Training model... LogLoss error (on validation data): period 00 : 4.41 period 01 : 3.69 period 02 : 3.56 period 03 : 3.40 period 04 : 3.36 period 05 : 3.23 period 06 : 3.26 period 07 : 2.98 period 08 : 3.01 period 09 : 3.05 Model training finished. Final accuracy (on validation data): 0.91 ###Markdown Task 2: Replace the Linear Classifier with a Neural Network**Replace the LinearClassifier above with a [`DNNClassifier`](https://www.tensorflow.org/api_docs/python/tf/estimator/DNNClassifier) and find a parameter combination that gives 0.95 or better accuracy.**You may wish to experiment with additional regularization methods, such as dropout. These additional regularization methods are documented in the comments for the `DNNClassifier` class. ###Code def train_nn_classification_model( learning_rate, steps, batch_size, hidden_units, training_examples, training_targets, validation_examples, validation_targets): periods = 10 steps_per_period = steps / periods # Create the input functions. predict_training_input_fn = create_predict_input_fn( training_examples, training_targets, batch_size) predict_validation_input_fn = create_predict_input_fn( validation_examples, validation_targets, batch_size) training_input_fn = create_training_input_fn( training_examples, training_targets, batch_size) # Create a LinearClassifier object. my_optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate) my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) classifier = tf.estimator.DNNClassifier( feature_columns=construct_feature_columns(), n_classes=10, optimizer=my_optimizer, hidden_units=hidden_units, config=tf.estimator.RunConfig(keep_checkpoint_max=1) ) # Train the model, but do so inside a loop so that we can periodically assess # loss metrics. print("Training model...") print("LogLoss error (on validation data):") training_errors = [] validation_errors = [] for period in range (0, periods): # Train the model, starting from the prior state. classifier.train( input_fn=training_input_fn, steps=steps_per_period ) # Take a break and compute probabilities. training_predictions = list(classifier.predict(input_fn=predict_training_input_fn)) training_probabilities = np.array([item['probabilities'] for item in training_predictions]) training_pred_class_id = np.array([item['class_ids'][0] for item in training_predictions]) training_pred_one_hot = tf.keras.utils.to_categorical(training_pred_class_id,10) validation_predictions = list(classifier.predict(input_fn=predict_validation_input_fn)) validation_probabilities = np.array([item['probabilities'] for item in validation_predictions]) validation_pred_class_id = np.array([item['class_ids'][0] for item in validation_predictions]) validation_pred_one_hot = tf.keras.utils.to_categorical(validation_pred_class_id,10) # Compute training and validation errors. training_log_loss = metrics.log_loss(training_targets, training_pred_one_hot) validation_log_loss = metrics.log_loss(validation_targets, validation_pred_one_hot) # Occasionally print the current loss. print(" period %02d : %0.2f" % (period, validation_log_loss)) # Add the loss metrics from this period to our list. training_errors.append(training_log_loss) validation_errors.append(validation_log_loss) print("Model training finished.") # Remove event files to save disk space. _ = map(os.remove, glob.glob(os.path.join(classifier.model_dir, 'events.out.tfevents*'))) # Calculate final predictions (not probabilities, as above). final_predictions = classifier.predict(input_fn=predict_validation_input_fn) final_predictions = np.array([item['class_ids'][0] for item in final_predictions]) accuracy = metrics.accuracy_score(validation_targets, final_predictions) print("Final accuracy (on validation data): %0.2f" % accuracy) # Output a graph of loss metrics over periods. plt.ylabel("LogLoss") plt.xlabel("Periods") plt.title("LogLoss vs. Periods") plt.plot(training_errors, label="training") plt.plot(validation_errors, label="validation") plt.legend() plt.show() # Output a plot of the confusion matrix. cm = metrics.confusion_matrix(validation_targets, final_predictions) # Normalize the confusion matrix by row (i.e by the number of samples # in each class). cm_normalized = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis] ax = sns.heatmap(cm_normalized, cmap="bone_r") ax.set_aspect(1) plt.title("Confusion matrix") plt.ylabel("True label") plt.xlabel("Predicted label") plt.show() return classifier ###Output _____no_output_____ ###Markdown Once you have a good model, double check that you didn't overfit the validation set by evaluating on the test data that we'll load below. ###Code mnist_test_dataframe = pd.read_csv( "https://download.mlcc.google.com/mledu-datasets/mnist_test.csv", sep=",", header=None) test_targets, test_examples = parse_labels_and_features(mnist_test_dataframe) test_examples.describe() _ = train_nn_classification_model( learning_rate=0.05, steps=1000, batch_size=30, hidden_units=[100, 100], training_examples=training_examples, training_targets=training_targets, validation_examples=validation_examples, validation_targets=validation_targets) ###Output Training model... LogLoss error (on validation data): period 00 : 4.59 period 01 : 3.52 period 02 : 2.47 period 03 : 1.91 period 04 : 1.88 period 05 : 1.34 period 06 : 1.35 period 07 : 1.19 period 08 : 0.97 period 09 : 1.02 Model training finished. Final accuracy (on validation data): 0.97 ###Markdown SolutionClick below for a possible solution. The code below is almost identical to the original `LinearClassifer` training code, with the exception of the NN-specific configuration, such as the hyperparameter for hidden units. ###Code def train_nn_classification_model( learning_rate, steps, batch_size, hidden_units, training_examples, training_targets, validation_examples, validation_targets): """Trains a neural network classification model for the MNIST digits dataset. In addition to training, this function also prints training progress information, a plot of the training and validation loss over time, as well as a confusion matrix. Args: learning_rate: An `int`, the learning rate to use. steps: A non-zero `int`, the total number of training steps. A training step consists of a forward and backward pass using a single batch. batch_size: A non-zero `int`, the batch size. hidden_units: A `list` of int values, specifying the number of neurons in each layer. training_examples: A `DataFrame` containing the training features. training_targets: A `DataFrame` containing the training labels. validation_examples: A `DataFrame` containing the validation features. validation_targets: A `DataFrame` containing the validation labels. Returns: The trained `DNNClassifier` object. """ periods = 10 # Caution: input pipelines are reset with each call to train. # If the number of steps is small, your model may never see most of the data. # So with multiple `.train` calls like this you may want to control the length # of training with num_epochs passed to the input_fn. Or, you can do a really-big shuffle, # or since it's in-memory data, shuffle all the data in the `input_fn`. steps_per_period = steps / periods # Create the input functions. predict_training_input_fn = create_predict_input_fn( training_examples, training_targets, batch_size) predict_validation_input_fn = create_predict_input_fn( validation_examples, validation_targets, batch_size) training_input_fn = create_training_input_fn( training_examples, training_targets, batch_size) # Create the input functions. predict_training_input_fn = create_predict_input_fn( training_examples, training_targets, batch_size) predict_validation_input_fn = create_predict_input_fn( validation_examples, validation_targets, batch_size) training_input_fn = create_training_input_fn( training_examples, training_targets, batch_size) # Create feature columns. feature_columns = [tf.feature_column.numeric_column('pixels', shape=784)] # Create a DNNClassifier object. my_optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate) my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) classifier = tf.estimator.DNNClassifier( feature_columns=feature_columns, n_classes=10, hidden_units=hidden_units, optimizer=my_optimizer, config=tf.contrib.learn.RunConfig(keep_checkpoint_max=1) ) # Train the model, but do so inside a loop so that we can periodically assess # loss metrics. print("Training model...") print("LogLoss error (on validation data):") training_errors = [] validation_errors = [] for period in range (0, periods): # Train the model, starting from the prior state. classifier.train( input_fn=training_input_fn, steps=steps_per_period ) # Take a break and compute probabilities. training_predictions = list(classifier.predict(input_fn=predict_training_input_fn)) training_probabilities = np.array([item['probabilities'] for item in training_predictions]) training_pred_class_id = np.array([item['class_ids'][0] for item in training_predictions]) training_pred_one_hot = tf.keras.utils.to_categorical(training_pred_class_id,10) validation_predictions = list(classifier.predict(input_fn=predict_validation_input_fn)) validation_probabilities = np.array([item['probabilities'] for item in validation_predictions]) validation_pred_class_id = np.array([item['class_ids'][0] for item in validation_predictions]) validation_pred_one_hot = tf.keras.utils.to_categorical(validation_pred_class_id,10) # Compute training and validation errors. training_log_loss = metrics.log_loss(training_targets, training_pred_one_hot) validation_log_loss = metrics.log_loss(validation_targets, validation_pred_one_hot) # Occasionally print the current loss. print(" period %02d : %0.2f" % (period, validation_log_loss)) # Add the loss metrics from this period to our list. training_errors.append(training_log_loss) validation_errors.append(validation_log_loss) print("Model training finished.") # Remove event files to save disk space. _ = map(os.remove, glob.glob(os.path.join(classifier.model_dir, 'events.out.tfevents*'))) # Calculate final predictions (not probabilities, as above). final_predictions = classifier.predict(input_fn=predict_validation_input_fn) final_predictions = np.array([item['class_ids'][0] for item in final_predictions]) accuracy = metrics.accuracy_score(validation_targets, final_predictions) print("Final accuracy (on validation data): %0.2f" % accuracy) # Output a graph of loss metrics over periods. plt.ylabel("LogLoss") plt.xlabel("Periods") plt.title("LogLoss vs. Periods") plt.plot(training_errors, label="training") plt.plot(validation_errors, label="validation") plt.legend() plt.show() # Output a plot of the confusion matrix. cm = metrics.confusion_matrix(validation_targets, final_predictions) # Normalize the confusion matrix by row (i.e by the number of samples # in each class). cm_normalized = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis] ax = sns.heatmap(cm_normalized, cmap="bone_r") ax.set_aspect(1) plt.title("Confusion matrix") plt.ylabel("True label") plt.xlabel("Predicted label") plt.show() return classifier classifier = train_nn_classification_model( learning_rate=0.05, steps=100, batch_size=30, hidden_units=[100, 100], training_examples=training_examples, training_targets=training_targets, validation_examples=validation_examples, validation_targets=validation_targets) ###Output Training model... LogLoss error (on validation data): period 00 : 18.32 period 01 : 12.96 period 02 : 9.09 period 03 : 8.04 period 04 : 7.61 period 05 : 7.57 period 06 : 6.00 period 07 : 4.77 period 08 : 5.91 period 09 : 3.88 Model training finished. Final accuracy (on validation data): 0.89 ###Markdown Next, we verify the accuracy on the test set. ###Code mnist_test_dataframe = pd.read_csv( "https://download.mlcc.google.com/mledu-datasets/mnist_test.csv", sep=",", header=None) test_targets, test_examples = parse_labels_and_features(mnist_test_dataframe) test_examples.describe() predict_test_input_fn = create_predict_input_fn( test_examples, test_targets, batch_size=100) test_predictions = classifier.predict(input_fn=predict_test_input_fn) test_predictions = np.array([item['class_ids'][0] for item in test_predictions]) accuracy = metrics.accuracy_score(test_targets, test_predictions) print("Accuracy on test data: %0.2f" % accuracy) ###Output Accuracy on test data: 0.40 ###Markdown Task 3: Visualize the weights of the first hidden layer.Let's take a few minutes to dig into our neural network and see what it has learned by accessing the `weights_` attribute of our model.The input layer of our model has `784` weights corresponding to the `28×28` pixel input images. The first hidden layer will have `784×N` weights where `N` is the number of nodes in that layer. We can turn those weights back into `28×28` images by *reshaping* each of the `N` `1×784` arrays of weights into `N` arrays of size `28×28`.Run the following cell to plot the weights. Note that this cell requires that a `DNNClassifier` called "classifier" has already been trained. ###Code print(classifier.get_variable_names()) weights0 = classifier.get_variable_value("dnn/hiddenlayer_0/kernel") print("weights0 shape:", weights0.shape) num_nodes = weights0.shape[1] num_rows = int(math.ceil(num_nodes / 10.0)) fig, axes = plt.subplots(num_rows, 10, figsize=(20, 2 * num_rows)) for coef, ax in zip(weights0.T, axes.ravel()): # Weights in coef is reshaped from 1x784 to 28x28. ax.matshow(coef.reshape(28, 28), cmap=plt.cm.pink) ax.set_xticks(()) ax.set_yticks(()) plt.show() ###Output ['dnn/hiddenlayer_0/bias', 'dnn/hiddenlayer_0/bias/t_0/Adagrad', 'dnn/hiddenlayer_0/kernel', 'dnn/hiddenlayer_0/kernel/t_0/Adagrad', 'dnn/hiddenlayer_1/bias', 'dnn/hiddenlayer_1/bias/t_0/Adagrad', 'dnn/hiddenlayer_1/kernel', 'dnn/hiddenlayer_1/kernel/t_0/Adagrad', 'dnn/logits/bias', 'dnn/logits/bias/t_0/Adagrad', 'dnn/logits/kernel', 'dnn/logits/kernel/t_0/Adagrad', 'global_step'] weights0 shape: (784, 100) ###Markdown [View in Colaboratory](https://colab.research.google.com/github/DillipKS/MLCC_assignments/blob/master/multi_class_classification_of_handwritten_digits.ipynb) Copyright 2017 Google LLC. ###Code # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Classifying Handwritten Digits with Neural Networks ![img](https://www.tensorflow.org/versions/r0.11/images/MNIST.png) **Learning Objectives:** * Train both a linear model and a neural network to classify handwritten digits from the classic [MNIST](http://yann.lecun.com/exdb/mnist/) data set * Compare the performance of the linear and neural network classification models * Visualize the weights of a neural-network hidden layer Our goal is to map each input image to the correct numeric digit. We will create a NN with a few hidden layers and a Softmax layer at the top to select the winning class. SetupFirst, let's download the data set, import TensorFlow and other utilities, and load the data into a *pandas* `DataFrame`. Note that this data is a sample of the original MNIST training data; we've taken 20000 rows at random. ###Code from __future__ import print_function import glob import math import os from IPython import display from matplotlib import cm from matplotlib import gridspec from matplotlib import pyplot as plt import numpy as np import pandas as pd import seaborn as sns from sklearn import metrics import tensorflow as tf from tensorflow.python.data import Dataset tf.logging.set_verbosity(tf.logging.ERROR) pd.options.display.max_rows = 10 pd.options.display.float_format = '{:.1f}'.format mnist_dataframe = pd.read_csv( "https://dl.google.com/mlcc/mledu-datasets/mnist_train_small.csv", sep=",", header=None) # Use just the first 10,000 records for training/validation. mnist_dataframe = mnist_dataframe.head(10000) mnist_dataframe = mnist_dataframe.reindex(np.random.permutation(mnist_dataframe.index)) mnist_dataframe.head() ###Output _____no_output_____ ###Markdown Each row represents one labeled example. Column 0 represents the label that a human rater has assigned for one handwritten digit. For example, if Column 0 contains '6', then a human rater interpreted the handwritten character as the digit '6'. The ten digits 0-9 are each represented, with a unique class label for each possible digit. Thus, this is a multi-class classification problem with 10 classes. ![img](https://www.tensorflow.org/versions/r0.11/images/MNIST-Matrix.png) Columns 1 through 784 contain the feature values, one per pixel for the 28×28=784 pixel values. The pixel values are on a gray scale in which 0 represents white, 255 represents black, and values between 0 and 255 represent shades of gray. Most of the pixel values are 0; you may want to take a minute to confirm that they aren't all 0. For example, adjust the following text block to print out the values in column 72. ###Code mnist_dataframe.loc[:, 72:72] ###Output _____no_output_____ ###Markdown Now, let's parse out the labels and features and look at a few examples. Note the use of `loc` which allows us to pull out columns based on original location, since we don't have a header row in this data set. ###Code def parse_labels_and_features(dataset): """Extracts labels and features. This is a good place to scale or transform the features if needed. Args: dataset: A Pandas `Dataframe`, containing the label on the first column and monochrome pixel values on the remaining columns, in row major order. Returns: A `tuple` `(labels, features)`: labels: A Pandas `Series`. features: A Pandas `DataFrame`. """ labels = dataset[0] # DataFrame.loc index ranges are inclusive at both ends. features = dataset.loc[:,1:784] # Scale the data to [0, 1] by dividing out the max value, 255. features = features / 255 return labels, features training_targets, training_examples = parse_labels_and_features(mnist_dataframe[:7500]) training_examples.describe() validation_targets, validation_examples = parse_labels_and_features(mnist_dataframe[7500:10000]) validation_examples.describe() display.display(training_targets.hist()) display.display(validation_targets.hist()) ###Output _____no_output_____ ###Markdown Show a random example and its corresponding label. ###Code rand_example = np.random.choice(training_examples.index) _, ax = plt.subplots() ax.matshow(training_examples.loc[rand_example].values.reshape(28, 28)) ax.set_title("Label: %i" % training_targets.loc[rand_example]) ax.grid(False) ###Output _____no_output_____ ###Markdown Task 1: Build a Linear Model for MNISTFirst, let's create a baseline model to compare against. The `LinearClassifier` provides a set of *k* one-vs-all classifiers, one for each of the *k* classes.You'll notice that in addition to reporting accuracy, and plotting Log Loss over time, we also display a [**confusion matrix**](https://en.wikipedia.org/wiki/Confusion_matrix). The confusion matrix shows which classes were misclassified as other classes. Which digits get confused for each other?Also note that we track the model's error using the `log_loss` function. This should not be confused with the loss function internal to `LinearClassifier` that is used for training. ###Code def construct_feature_columns(): """Construct the TensorFlow Feature Columns. Returns: A set of feature columns """ # There are 784 pixels in each image. return set([tf.feature_column.numeric_column('pixels', shape=784)]) ###Output _____no_output_____ ###Markdown Here, we'll make separate input functions for training and for prediction. We'll nest them in `create_training_input_fn()` and `create_predict_input_fn()`, respectively, so we can invoke these functions to return the corresponding `_input_fn`s to pass to our `.train()` and `.predict()` calls. ###Code def create_training_input_fn(features, labels, batch_size, num_epochs=None, shuffle=True): """A custom input_fn for sending MNIST data to the estimator for training. Args: features: The training features. labels: The training labels. batch_size: Batch size to use during training. Returns: A function that returns batches of training features and labels during training. """ def _input_fn(num_epochs=None, shuffle=True): # Input pipelines are reset with each call to .train(). To ensure model # gets a good sampling of data, even when number of steps is small, we # shuffle all the data before creating the Dataset object idx = np.random.permutation(features.index) raw_features = {"pixels":features.reindex(idx)} raw_targets = np.array(labels[idx]) ds = Dataset.from_tensor_slices((raw_features,raw_targets)) # warning: 2GB limit ds = ds.batch(batch_size).repeat(num_epochs) if shuffle: ds = ds.shuffle(10000) # Return the next batch of data. feature_batch, label_batch = ds.make_one_shot_iterator().get_next() return feature_batch, label_batch return _input_fn def create_predict_input_fn(features, labels, batch_size): """A custom input_fn for sending mnist data to the estimator for predictions. Args: features: The features to base predictions on. labels: The labels of the prediction examples. Returns: A function that returns features and labels for predictions. """ def _input_fn(): raw_features = {"pixels": features.values} raw_targets = np.array(labels) ds = Dataset.from_tensor_slices((raw_features, raw_targets)) # warning: 2GB limit ds = ds.batch(batch_size) # Return the next batch of data. feature_batch, label_batch = ds.make_one_shot_iterator().get_next() return feature_batch, label_batch return _input_fn def train_linear_classification_model( learning_rate, steps, batch_size, training_examples, training_targets, validation_examples, validation_targets): """Trains a linear classification model for the MNIST digits dataset. In addition to training, this function also prints training progress information, a plot of the training and validation loss over time, and a confusion matrix. Args: learning_rate: An `int`, the learning rate to use. steps: A non-zero `int`, the total number of training steps. A training step consists of a forward and backward pass using a single batch. batch_size: A non-zero `int`, the batch size. training_examples: A `DataFrame` containing the training features. training_targets: A `DataFrame` containing the training labels. validation_examples: A `DataFrame` containing the validation features. validation_targets: A `DataFrame` containing the validation labels. Returns: The trained `LinearClassifier` object. """ periods = 10 steps_per_period = steps / periods # Create the input functions. predict_training_input_fn = create_predict_input_fn( training_examples, training_targets, batch_size) predict_validation_input_fn = create_predict_input_fn( validation_examples, validation_targets, batch_size) training_input_fn = create_training_input_fn( training_examples, training_targets, batch_size) # Create a LinearClassifier object. my_optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate) my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) classifier = tf.estimator.LinearClassifier( feature_columns=construct_feature_columns(), n_classes=10, optimizer=my_optimizer, config=tf.estimator.RunConfig(keep_checkpoint_max=1) ) # Train the model, but do so inside a loop so that we can periodically assess # loss metrics. print("Training model...") print("LogLoss error (on validation data):") training_errors = [] validation_errors = [] for period in range (0, periods): # Train the model, starting from the prior state. classifier.train( input_fn=training_input_fn, steps=steps_per_period ) # Take a break and compute probabilities. training_predictions = list(classifier.predict(input_fn=predict_training_input_fn)) training_probabilities = np.array([item['probabilities'] for item in training_predictions]) training_pred_class_id = np.array([item['class_ids'][0] for item in training_predictions]) training_pred_one_hot = tf.keras.utils.to_categorical(training_pred_class_id,10) validation_predictions = list(classifier.predict(input_fn=predict_validation_input_fn)) validation_probabilities = np.array([item['probabilities'] for item in validation_predictions]) validation_pred_class_id = np.array([item['class_ids'][0] for item in validation_predictions]) validation_pred_one_hot = tf.keras.utils.to_categorical(validation_pred_class_id,10) # Compute training and validation errors. training_log_loss = metrics.log_loss(training_targets, training_pred_one_hot) validation_log_loss = metrics.log_loss(validation_targets, validation_pred_one_hot) # Occasionally print the current loss. print(" period %02d : %0.2f" % (period, validation_log_loss)) # Add the loss metrics from this period to our list. training_errors.append(training_log_loss) validation_errors.append(validation_log_loss) print("Model training finished.") # Remove event files to save disk space. _ = map(os.remove, glob.glob(os.path.join(classifier.model_dir, 'events.out.tfevents*'))) # Calculate final predictions (not probabilities, as above). final_predictions = classifier.predict(input_fn=predict_validation_input_fn) final_predictions = np.array([item['class_ids'][0] for item in final_predictions]) accuracy = metrics.accuracy_score(validation_targets, final_predictions) print("Final accuracy (on validation data): %0.2f" % accuracy) # Output a graph of loss metrics over periods. plt.ylabel("LogLoss") plt.xlabel("Periods") plt.title("LogLoss vs. Periods") plt.plot(training_errors, label="training") plt.plot(validation_errors, label="validation") plt.legend() plt.show() # Output a plot of the confusion matrix. cm = metrics.confusion_matrix(validation_targets, final_predictions) # Normalize the confusion matrix by row (i.e by the number of samples # in each class). cm_normalized = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis] ax = sns.heatmap(cm_normalized, cmap="bone_r") ax.set_aspect(1) plt.title("Confusion matrix") plt.ylabel("True label") plt.xlabel("Predicted label") plt.show() return classifier ###Output _____no_output_____ ###Markdown **Spend 5 minutes seeing how well you can do on accuracy with a linear model of this form. For this exercise, limit yourself to experimenting with the hyperparameters for batch size, learning rate and steps.**Stop if you get anything above about 0.9 accuracy. ###Code classifier = train_linear_classification_model( learning_rate=0.02, steps=800, batch_size=20, training_examples=training_examples, training_targets=training_targets, validation_examples=validation_examples, validation_targets=validation_targets) ###Output Training model... LogLoss error (on validation data): period 00 : 5.58 period 01 : 4.89 period 02 : 4.68 period 03 : 4.42 period 04 : 4.50 period 05 : 4.14 period 06 : 4.03 period 07 : 4.19 period 08 : 4.13 period 09 : 3.94 Model training finished. Final accuracy (on validation data): 0.89 ###Markdown SolutionClick below for one possible solution. Here is a set of parameters that should attain roughly 0.9 accuracy. ###Code _ = train_linear_classification_model( learning_rate=0.03, steps=1000, batch_size=30, training_examples=training_examples, training_targets=training_targets, validation_examples=validation_examples, validation_targets=validation_targets) ###Output _____no_output_____ ###Markdown Task 2: Replace the Linear Classifier with a Neural Network**Replace the LinearClassifier above with a [`DNNClassifier`](https://www.tensorflow.org/api_docs/python/tf/estimator/DNNClassifier) and find a parameter combination that gives 0.95 or better accuracy.**You may wish to experiment with additional regularization methods, such as dropout. These additional regularization methods are documented in the comments for the `DNNClassifier` class. ###Code # YOUR CODE HERE: Replace the linear classifier with a neural network. def train_DNN_model( learning_rate, regularization, steps, batch_size, hidden_units, training_examples, training_targets, validation_examples, validation_targets): """Trains a DNN classification model for the MNIST digits dataset. In addition to training, this function also prints training progress information, a plot of the training and validation loss over time, and a confusion matrix. Args: learning_rate: An `int`, the learning rate to use. steps: A non-zero `int`, the total number of training steps. A training step consists of a forward and backward pass using a single batch. batch_size: A non-zero `int`, the batch size. training_examples: A `DataFrame` containing the training features. training_targets: A `DataFrame` containing the training labels. validation_examples: A `DataFrame` containing the validation features. validation_targets: A `DataFrame` containing the validation labels. Returns: The trained `LinearClassifier` object. """ periods = 10 steps_per_period = steps / periods # Create the input functions. predict_training_input_fn = create_predict_input_fn( training_examples, training_targets, batch_size) predict_validation_input_fn = create_predict_input_fn( validation_examples, validation_targets, batch_size) training_input_fn = create_training_input_fn( training_examples, training_targets, batch_size) # Create a DNNClassifier object. my_optimizer = tf.train.ProximalAdagradOptimizer(learning_rate=learning_rate, l1_regularization_strength=regularization) my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) classifier = tf.estimator.DNNClassifier( feature_columns=construct_feature_columns(), n_classes=10, hidden_units=hidden_units, optimizer=my_optimizer, config=tf.contrib.learn.RunConfig(keep_checkpoint_max=1) ) # Train the model, but do so inside a loop so that we can periodically assess # loss metrics. print("Training model...") print("LogLoss error (on validation data):") training_errors = [] validation_errors = [] for period in range (0, periods): # Train the model, starting from the prior state. classifier.train( input_fn=training_input_fn, steps=steps_per_period ) # Take a break and compute probabilities. training_predictions = list(classifier.predict(input_fn=predict_training_input_fn)) training_probabilities = np.array([item['probabilities'] for item in training_predictions]) training_pred_class_id = np.array([item['class_ids'][0] for item in training_predictions]) training_pred_one_hot = tf.keras.utils.to_categorical(training_pred_class_id,10) validation_predictions = list(classifier.predict(input_fn=predict_validation_input_fn)) validation_probabilities = np.array([item['probabilities'] for item in validation_predictions]) validation_pred_class_id = np.array([item['class_ids'][0] for item in validation_predictions]) validation_pred_one_hot = tf.keras.utils.to_categorical(validation_pred_class_id,10) # Compute training and validation errors. training_log_loss = metrics.log_loss(training_targets, training_pred_one_hot) validation_log_loss = metrics.log_loss(validation_targets, validation_pred_one_hot) # Occasionally print the current loss. print(" period %02d : %0.2f" % (period, validation_log_loss)) # Add the loss metrics from this period to our list. training_errors.append(training_log_loss) validation_errors.append(validation_log_loss) print("Model training finished.") # Remove event files to save disk space. _ = map(os.remove, glob.glob(os.path.join(classifier.model_dir, 'events.out.tfevents*'))) # Calculate final predictions (not probabilities, as above). final_predictions = classifier.predict(input_fn=predict_validation_input_fn) final_predictions = np.array([item['class_ids'][0] for item in final_predictions]) accuracy = metrics.accuracy_score(validation_targets, final_predictions) print("Final accuracy (on validation data): %0.2f" % accuracy) # Output a graph of loss metrics over periods. plt.ylabel("LogLoss") plt.xlabel("Periods") plt.title("LogLoss vs. Periods") plt.plot(training_errors, label="training") plt.plot(validation_errors, label="validation") plt.legend() plt.show() # Output a plot of the confusion matrix. cm = metrics.confusion_matrix(validation_targets, final_predictions) # Normalize the confusion matrix by row (i.e by the number of samples # in each class). cm_normalized = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis] ax = sns.heatmap(cm_normalized, cmap="bone_r") ax.set_aspect(1) plt.title("Confusion matrix") plt.ylabel("True label") plt.xlabel("Predicted label") plt.show() return classifier classifier = train_DNN_model( learning_rate=0.03, regularization=0.001, steps=500, batch_size=50, hidden_units=[100,100], training_examples=training_examples, training_targets=training_targets, validation_examples=validation_examples, validation_targets=validation_targets) ###Output Training model... LogLoss error (on validation data): period 00 : 6.31 period 01 : 4.78 period 02 : 4.05 period 03 : 3.29 period 04 : 3.23 period 05 : 3.04 period 06 : 2.65 period 07 : 2.80 period 08 : 3.07 period 09 : 2.83 Model training finished. Final accuracy (on validation data): 0.92 ###Markdown Once you have a good model, double check that you didn't overfit the validation set by evaluating on the test data that we'll load below. ###Code mnist_test_dataframe = pd.read_csv( "https://dl.google.com/mlcc/mledu-datasets/mnist_test.csv", sep=",", header=None) test_targets, test_examples = parse_labels_and_features(mnist_test_dataframe) test_examples.describe() # YOUR CODE HERE: Calculate accuracy on the test set. predict_test_input_fn = create_predict_input_fn( test_examples, test_targets, batch_size=20) test_predictions = classifier.predict(input_fn=predict_test_input_fn) test_pred_class_id = np.array([item['class_ids'][0] for item in test_predictions]) test_pred_one_hot = tf.keras.utils.to_categorical(test_pred_class_id,10) # Compute test errors. test_log_loss = metrics.log_loss(test_targets, test_pred_one_hot) accuracy = metrics.accuracy_score(test_targets, test_pred_class_id) print("Log Loss error (on test data): %0.2f" % test_log_loss) print("Final accuracy (on test data): %0.2f" % accuracy) ###Output Log Loss error (on test data): 2.27 Final accuracy (on test data): 0.93 ###Markdown SolutionClick below for a possible solution. The code below is almost identical to the original `LinearClassifer` training code, with the exception of the NN-specific configuration, such as the hyperparameter for hidden units. ###Code def train_nn_classification_model( learning_rate, steps, batch_size, hidden_units, training_examples, training_targets, validation_examples, validation_targets): """Trains a neural network classification model for the MNIST digits dataset. In addition to training, this function also prints training progress information, a plot of the training and validation loss over time, as well as a confusion matrix. Args: learning_rate: An `int`, the learning rate to use. steps: A non-zero `int`, the total number of training steps. A training step consists of a forward and backward pass using a single batch. batch_size: A non-zero `int`, the batch size. hidden_units: A `list` of int values, specifying the number of neurons in each layer. training_examples: A `DataFrame` containing the training features. training_targets: A `DataFrame` containing the training labels. validation_examples: A `DataFrame` containing the validation features. validation_targets: A `DataFrame` containing the validation labels. Returns: The trained `DNNClassifier` object. """ periods = 10 # Caution: input pipelines are reset with each call to train. # If the number of steps is small, your model may never see most of the data. # So with multiple `.train` calls like this you may want to control the length # of training with num_epochs passed to the input_fn. Or, you can do a really-big shuffle, # or since it's in-memory data, shuffle all the data in the `input_fn`. steps_per_period = steps / periods # Create the input functions. predict_training_input_fn = create_predict_input_fn( training_examples, training_targets, batch_size) predict_validation_input_fn = create_predict_input_fn( validation_examples, validation_targets, batch_size) training_input_fn = create_training_input_fn( training_examples, training_targets, batch_size) # Create feature columns. feature_columns = [tf.feature_column.numeric_column('pixels', shape=784)] # Create a DNNClassifier object. my_optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate) my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) classifier = tf.estimator.DNNClassifier( feature_columns=feature_columns, n_classes=10, hidden_units=hidden_units, optimizer=my_optimizer, config=tf.contrib.learn.RunConfig(keep_checkpoint_max=1) ) # Train the model, but do so inside a loop so that we can periodically assess # loss metrics. print("Training model...") print("LogLoss error (on validation data):") training_errors = [] validation_errors = [] for period in range (0, periods): # Train the model, starting from the prior state. classifier.train( input_fn=training_input_fn, steps=steps_per_period ) # Take a break and compute probabilities. training_predictions = list(classifier.predict(input_fn=predict_training_input_fn)) training_probabilities = np.array([item['probabilities'] for item in training_predictions]) training_pred_class_id = np.array([item['class_ids'][0] for item in training_predictions]) training_pred_one_hot = tf.keras.utils.to_categorical(training_pred_class_id,10) validation_predictions = list(classifier.predict(input_fn=predict_validation_input_fn)) validation_probabilities = np.array([item['probabilities'] for item in validation_predictions]) validation_pred_class_id = np.array([item['class_ids'][0] for item in validation_predictions]) validation_pred_one_hot = tf.keras.utils.to_categorical(validation_pred_class_id,10) # Compute training and validation errors. training_log_loss = metrics.log_loss(training_targets, training_pred_one_hot) validation_log_loss = metrics.log_loss(validation_targets, validation_pred_one_hot) # Occasionally print the current loss. print(" period %02d : %0.2f" % (period, validation_log_loss)) # Add the loss metrics from this period to our list. training_errors.append(training_log_loss) validation_errors.append(validation_log_loss) print("Model training finished.") # Remove event files to save disk space. _ = map(os.remove, glob.glob(os.path.join(classifier.model_dir, 'events.out.tfevents*'))) # Calculate final predictions (not probabilities, as above). final_predictions = classifier.predict(input_fn=predict_validation_input_fn) final_predictions = np.array([item['class_ids'][0] for item in final_predictions]) accuracy = metrics.accuracy_score(validation_targets, final_predictions) print("Final accuracy (on validation data): %0.2f" % accuracy) # Output a graph of loss metrics over periods. plt.ylabel("LogLoss") plt.xlabel("Periods") plt.title("LogLoss vs. Periods") plt.plot(training_errors, label="training") plt.plot(validation_errors, label="validation") plt.legend() plt.show() # Output a plot of the confusion matrix. cm = metrics.confusion_matrix(validation_targets, final_predictions) # Normalize the confusion matrix by row (i.e by the number of samples # in each class). cm_normalized = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis] ax = sns.heatmap(cm_normalized, cmap="bone_r") ax.set_aspect(1) plt.title("Confusion matrix") plt.ylabel("True label") plt.xlabel("Predicted label") plt.show() return classifier classifier = train_nn_classification_model( learning_rate=0.05, steps=1000, batch_size=30, hidden_units=[100, 100], training_examples=training_examples, training_targets=training_targets, validation_examples=validation_examples, validation_targets=validation_targets) ###Output _____no_output_____ ###Markdown Next, we verify the accuracy on the test set. ###Code mnist_test_dataframe = pd.read_csv( "https://dl.google.com/mlcc/mledu-datasets/mnist_test.csv", sep=",", header=None) test_targets, test_examples = parse_labels_and_features(mnist_test_dataframe) test_examples.describe() predict_test_input_fn = create_predict_input_fn( test_examples, test_targets, batch_size=100) test_predictions = classifier.predict(input_fn=predict_test_input_fn) test_predictions = np.array([item['class_ids'][0] for item in test_predictions]) accuracy = metrics.accuracy_score(test_targets, test_predictions) print("Accuracy on test data: %0.2f" % accuracy) ###Output _____no_output_____ ###Markdown Task 3: Visualize the weights of the first hidden layer.Let's take a few minutes to dig into our neural network and see what it has learned by accessing the `weights_` attribute of our model.The input layer of our model has `784` weights corresponding to the `28×28` pixel input images. The first hidden layer will have `784×N` weights where `N` is the number of nodes in that layer. We can turn those weights back into `28×28` images by *reshaping* each of the `N` `1×784` arrays of weights into `N` arrays of size `28×28`.Run the following cell to plot the weights. Note that this cell requires that a `DNNClassifier` called "classifier" has already been trained. ###Code print(classifier.get_variable_names()) weights0 = classifier.get_variable_value("dnn/hiddenlayer_0/kernel") print("weights0 shape:", weights0.shape) num_nodes = weights0.shape[1] num_rows = int(math.ceil(num_nodes / 10.0)) fig, axes = plt.subplots(num_rows, 10, figsize=(20, 2 * num_rows)) for coef, ax in zip(weights0.T, axes.ravel()): # Weights in coef is reshaped from 1x784 to 28x28. ax.matshow(coef.reshape(28, 28), cmap=plt.cm.pink) ax.set_xticks(()) ax.set_yticks(()) plt.show() ###Output ['dnn/hiddenlayer_0/bias', 'dnn/hiddenlayer_0/bias/t_0/ProximalAdagrad', 'dnn/hiddenlayer_0/kernel', 'dnn/hiddenlayer_0/kernel/t_0/ProximalAdagrad', 'dnn/hiddenlayer_1/bias', 'dnn/hiddenlayer_1/bias/t_0/ProximalAdagrad', 'dnn/hiddenlayer_1/kernel', 'dnn/hiddenlayer_1/kernel/t_0/ProximalAdagrad', 'dnn/logits/bias', 'dnn/logits/bias/t_0/ProximalAdagrad', 'dnn/logits/kernel', 'dnn/logits/kernel/t_0/ProximalAdagrad', 'global_step'] weights0 shape: (784, 100)
PythonNotebooks/ROC_and_CI/Comp_Vision_Ishan_Handa_ROC_and_CI_Hedgehog.ipynb
###Markdown 1. First we load the csv files where the positive test and the negative test results are stored for each animal. ###Code import matplotlib.pyplot as plt import numpy import csv # Change the path to csv file appropriately hedgehog_positive_csv = '/Users/ishanhanda/Documents/NYU_Fall16/Comp_Vision/Project/ProjectWorkspace/DataSets/OUTPUTS/Hedgehog.csv' hedgehog_negative_csv = '/Users/ishanhanda/Documents/NYU_Fall16/Comp_Vision/Project/ProjectWorkspace/DataSets/OUTPUTS/Hedgehog_neg.csv' def get_data_from_file(file_name): print('Loading from file' + file_name) reader = csv.reader(open(file_name,"rt")) temp = list(reader) return numpy.array(temp).astype('float') positive_data = get_data_from_file(hedgehog_positive_csv) positive_length = len(positive_data) print('Hedgehog positive test samples count: {}'.format(positive_length)) negative_data = get_data_from_file(hedgehog_negative_csv) negative_length = len(negative_data) print('Hedgehog negative test samples count: {}'.format(negative_length)) ###Output Loading from file/Users/ishanhanda/Documents/NYU_Fall16/Comp_Vision/Project/ProjectWorkspace/DataSets/OUTPUTS/Hedgehog.csv Hedgehog positive test samples count: 51 Loading from file/Users/ishanhanda/Documents/NYU_Fall16/Comp_Vision/Project/ProjectWorkspace/DataSets/OUTPUTS/Hedgehog_neg.csv Hedgehog negative test samples count: 51 ###Markdown 2. Now we need to define the threshold points over which the ROC will be plotted. ###Code # Here we are defining preset threshold levels for which TPR and FPR values will be calculated thresholds = numpy.arange(0.0,1.0,0.05) print('Thresholds: {}'.format(thresholds)) ###Output Thresholds: [ 0. 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95] ###Markdown Now calculating TPR and FNR for the first positive test ###Code sample_size = min(positive_length, negative_length) # all_TPRs and all_FPRs will be used later to evalute confidence intervals for each threshold level all_TPRs = [[None for _ in range(sample_size)] for _ in range(len(thresholds))] all_FPRs = [[None for _ in range(sample_size)] for _ in range(len(thresholds))] for j in range(0, sample_size): current_positive_sample = positive_data[j] TPRs = [None] * len(thresholds) current_negative_sample = negative_data[j] FPRs = [None] * len(thresholds) for i in range(0, len(thresholds)): test_positive = current_positive_sample[current_positive_sample >= thresholds[i]] tpr = len(test_positive) / len(current_positive_sample) TPRs[i] = tpr # This is the calculated TPR value for threshold level i in sample j all_TPRs[i][j] = tpr # The calculated TPR value is also added to all_TPR values for this threshold.(Used later to calculate confidence intervals) test_negative = current_negative_sample[current_negative_sample >= thresholds[i]] fpr = len(test_negative) / len(current_negative_sample) FPRs[i] = fpr # This is the calculated FPR value for threshold level i in sample j all_FPRs[i][j] = fpr print('\n\nPLOTTING ROC FOR CASE: {}'.format(j)) plt.scatter(FPRs, TPRs, color='red') plt.show() import scipy as sp import scipy.stats # Function to calculate confidence interval. By default it calculated 80%. def mean_confidence_interval(data, confidence=0.8): a = 1.0*numpy.array(data) n = len(a) m, se = numpy.mean(a), scipy.stats.sem(a) h = se * sp.stats.t._ppf((1+confidence)/2., n-1) return m, max(0.0, m-h), min(1.0 ,m+h) # Calculating and printing Confidence Intervals for all threshold values. thresh_s = [] ci_lower_TPR = [] ci_lower_FPR = [] ci_TPR_diff = [] ci_upper_TPR = [] ci_upper_FPR = [] ci_FPR_diff = [] print("\n\nConfidence Intervals for TPRs:") for i in range(0, len(thresholds)): mean_tpr, lower_tpr, upper_tpr = mean_confidence_interval(all_TPRs[i]) thresh = round(thresholds[i],2) thresh_s.append(thresh) diff = upper_tpr - lower_tpr ci_TPR_diff.append(diff) ci_lower_TPR.append(lower_tpr) ci_upper_TPR.append(upper_tpr) print("80% Confidence Interval of TPR with threshold {} is: {} to {}".format(thresh, lower_tpr, upper_tpr)) print("\n\nConfidence Intervals for FPRs:") for i in range(0, len(thresholds)): mean_fpr, lower_fpr, upper_fpr = mean_confidence_interval(all_FPRs[i]) thresh = round(thresholds[i],2) diff = upper_fpr - lower_fpr ci_FPR_diff.append(diff) ci_lower_FPR.append(lower_fpr) ci_upper_FPR.append(upper_fpr) print("80% Confidence Interval of FPR with threshold {} is: {} to {}".format(thresh, lower_fpr, upper_fpr)) # Plotting Confidence Intervals for TPR. import pylab N = len(thresh_s) ind = numpy.arange(N) # the x locations for the groups width = 0.25 # the width of the bars: can also be len(x) sequence fig = plt.figure(figsize=(8,6)) p2 = plt.bar(ind, ci_TPR_diff, width, color='B', bottom=ci_lower_TPR) plt.ylabel('Confidence Intervals') plt.xlabel('Thresholds') plt.title('Confidence Intervals for TPR (Hedgehog)') plt.xticks(ind + width/2., thresh_s) plt.yticks(numpy.arange(0, 1.1, 0.05)) plt.grid() pylab.savefig('CI_TPR_Hedgehog.png') plt.show() # Plotting Confidence Intervals for FPR. fig = plt.figure(figsize=(8,6)) p2 = plt.bar(ind, ci_FPR_diff, width, color='R', bottom=ci_lower_FPR) plt.ylabel('Confidence Intervals') plt.xlabel('Thresholds') plt.title('Confidence Intervals for FPR (Hedgehog)') plt.xticks(ind + width/2., thresh_s) plt.yticks(numpy.arange(-0.05, 1.1, 0.05)) plt.grid() pylab.savefig('CI_FPR_Hedgehog.png') plt.show() ###Output _____no_output_____
TESTS/workspace/mobile/.ipynb_checkpoints/index_old-checkpoint.ipynb
###Markdown Object Localization with TensorFlowCreated for the Coursera Guided Project: [Object Localization with TensorFlow](https://www.coursera.org/projects/object-localization-tensorflow)![ObjectLocalizationExample.jpg]()All emojis designed by [OpenMoji](https://openmoji.org/) – the open-source emoji and icon project. License: CC BY-SA 4.0 Task 2: Download and Visualize Data ###Code !wget https://github.com/hfg-gmuend/openmoji/releases/latest/download/openmoji-72x72-color.zip !mkdir emojis !unzip -q openmoji-72x72-color.zip -d ./emojis %matplotlib inline import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import os from PIL import Image, ImageDraw from tensorflow.keras.layers import Input, Dense, Flatten, Conv2D, MaxPool2D, BatchNormalization, Dropout print('Using TensorFlow version', tf.__version__) emojis = { 0: {'name': 'happy', 'file': '1F642.png'}, 1: {'name': 'laughing', 'file': '1F602.png'}, 2: {'name': 'skeptical', 'file': '1F928.png'}, 3: {'name': 'sad', 'file': '1F630.png'}, 4: {'name': 'cool', 'file': '1F60E.png'}, 5: {'name': 'whoa', 'file': '1F62F.png'}, 6: {'name': 'crying', 'file': '1F62D.png'}, 7: {'name': 'puking', 'file': '1F92E.png'}, 8: {'name': 'nervous', 'file': '1F62C.png'} } plt.figure(figsize=(9, 9)) for i, (j, e) in enumerate(emojis.items()): plt.subplot(3, 3, i + 1) plt.imshow(plt.imread(os.path.join('emojis', e['file']))) plt.xlabel(e['name']) plt.xticks([]) plt.yticks([]) plt.show() ###Output _____no_output_____ ###Markdown Task 3: Create Examples ###Code for class_id, values in emojis.items(): png_file = Image.open(os.path.join('emojis', values['file'])).convert('RGBA') png_file.load() new_file = Image.new("RGB", png_file.size, (255, 255, 255)) new_file.paste(png_file, mask=png_file.split()[3]) emojis[class_id]['image'] = new_file emojis def create_example(): class_id = np.random.randint(0, 9) image = np.ones((144, 144, 3)) * 255 row = np.random.randint(0, 72) col = np.random.randint(0, 72) image[row: row + 72, col: col + 72, :] = np.array(emojis[class_id]['image']) return image.astype('uint8'), class_id, (row + 10) / 144, (col + 10) / 144 image, class_id, row, col = create_example() plt.imshow(image); ###Output _____no_output_____ ###Markdown Task 4: Plot Bounding Boxes ###Code def plot_bounding_box(image, gt_coords, pred_coords=[], norm=False): if norm: image *= 255. image = image.astype('uint8') image = Image.fromarray(image) draw = ImageDraw.Draw(image) row, col = gt_coords row *= 144 col *= 144 draw.rectangle((col, row, col + 52, row + 52), outline='green', width=3) if len(pred_coords) == 2: row, col = pred_coords row *= 144 col *= 144 draw.rectangle((col, row, col + 52, row + 52), outline='red', width=3) return image image = plot_bounding_box(image, gt_coords=[row, col]) plt.imshow(image) plt.title(emojis[class_id]['name']) plt.show() ###Output _____no_output_____ ###Markdown Task 5: Data Generator ###Code def data_generator(batch_size=16): while True: x_batch = np.zeros((batch_size, 144, 144, 3)) y_batch = np.zeros((batch_size, 9)) bbox_batch = np.zeros((batch_size, 2)) for i in range(0, batch_size): image, class_id, row, col = create_example() x_batch[i] = image / 255. y_batch[i, class_id] = 1.0 bbox_batch[i] = np.array([row, col]) yield {'image': x_batch}, {'class_out': y_batch, 'box_out': bbox_batch} example, label = next(data_generator(1)) image = example['image'][0] class_id = np.argmax(label['class_out'][0]) coords = label['box_out'][0] image = plot_bounding_box(image, coords, norm=True) plt.imshow(image) plt.title(emojis[class_id]['name']) plt.show() ###Output _____no_output_____ ###Markdown Task 6: Model ###Code input_ = Input(shape=(144, 144, 3), name='image') x = input_ for i in range(0, 5): n_filters = 2**(4 + i) x = Conv2D(n_filters, 3, activation='relu')(x) x = BatchNormalization()(x) x = MaxPool2D(2)(x) x = Flatten()(x) x = Dense(256, activation='relu')(x) class_out = Dense(9, activation='softmax', name='class_out')(x) box_out = Dense(2, name='box_out')(x) model = tf.keras.models.Model(input_, [class_out, box_out]) model.summary() ###Output _____no_output_____ ###Markdown Task 7: Custom Metric: IoU ###Code class IoU(tf.keras.metrics.Metric): def __init__(self, **kwargs): super(IoU, self).__init__(**kwargs) self.iou = self.add_weight(name='iou', initializer='zeros') self.total_iou = self.add_weight(name='total_iou', initializer='zeros') self.num_ex = self.add_weight(name='num_ex', initializer='zeros') def update_state(self, y_true, y_pred, sample_weight=None): def get_box(y): rows, cols = y[:, 0], y[:, 1] rows, cols = rows * 144, cols * 144 y1, y2 = rows, rows + 52 x1, x2 = cols, cols + 52 return x1, y1, x2, y2 def get_area(x1, y1, x2, y2): return tf.math.abs(x2 - x1) * tf.math.abs(y2 - y1) gt_x1, gt_y1, gt_x2, gt_y2 = get_box(y_true) p_x1, p_y1, p_x2, p_y2 = get_box(y_pred) i_x1 = tf.maximum(gt_x1, p_x1) i_y1 = tf.maximum(gt_y1, p_y1) i_x2 = tf.minimum(gt_x2, p_x2) i_y2 = tf.minimum(gt_y2, p_y2) i_area = get_area(i_x1, i_y1, i_x2, i_y2) u_area = get_area(gt_x1, gt_y1, gt_x2, gt_y2) + get_area(p_x1, p_y1, p_x2, p_y2) - i_area iou = tf.math.divide(i_area, u_area) self.num_ex.assign_add(1) self.total_iou.assign_add(tf.reduce_mean(iou)) self.iou = tf.math.divide(self.total_iou, self.num_ex) def result(self): return self.iou def reset_state(self): self.iou = self.add_weight(name='iou', initializer='zeros') self.total_iou = self.add_weight(name='total_iou', initializer='zeros') self.num_ex = self.add_weight(name='num_ex', initializer='zeros') ###Output _____no_output_____ ###Markdown Task 8: Compile the Model ###Code model.compile( loss={ 'class_out': 'categorical_crossentropy', 'box_out': 'mse' }, optimizer=tf.keras.optimizers.Adam(learning_rate=1e-3), metrics={ 'class_out': 'accuracy', 'box_out': IoU(name='iou') } ) ###Output _____no_output_____ ###Markdown Task 9: Custom Callback: Model Testing ###Code def test_model(model, test_datagen): example, label = next(test_datagen) x = example['image'] y = label['class_out'] box = label['box_out'] pred_y, pred_box = model.predict(x) pred_coords = pred_box[0] gt_coords = box[0] pred_class = np.argmax(pred_y[0]) image = x[0] gt = emojis[np.argmax(y[0])]['name'] pred_class_name = emojis[pred_class]['name'] image = plot_bounding_box(image, gt_coords, pred_coords, norm=True) color = 'green' if gt == pred_class_name else 'red' plt.imshow(image) plt.xlabel(f'Pred: {pred_class_name}', color=color) plt.ylabel(f'GT: {gt}', color=color) plt.xticks([]) plt.yticks([]) def test(model): test_datagen = data_generator(1) plt.figure(figsize=(16, 4)) for i in range(0, 6): plt.subplot(1, 6, i + 1) test_model(model, test_datagen) plt.show() test(model) class ShowTestImages(tf.keras.callbacks.Callback): def on_epoch_end(self, epoch, logs=None): test(self.model) ###Output _____no_output_____ ###Markdown Task 10: Model Training ###Code def lr_schedule(epoch, lr): if (epoch + 1) % 5 == 0: lr *= 0.2 return max(lr, 3e-7) _ = model.fit( data_generator(), epochs=50, steps_per_epoch=500, callbacks=[ ShowTestImages(), tf.keras.callbacks.EarlyStopping(monitor='box_out_iou', patience=3, mode='max'), tf.keras.callbacks.LearningRateScheduler(lr_schedule) ] ) ###Output _____no_output_____
ch07-scaling/Recipe-3-robust-scaling.ipynb
###Markdown Scaling to quantiles and median - RobustScalingIn this procedure the median is removed from the observations and then they are scaled to the inter-quantile range (IQR). The IQR is the range between the 1st quartile (25th quantile) and the 3rd quartile (75th quantile).X_scaled = X - X_median / ( X.quantile(0.75) - X.quantile(0.25) ) ###Code import matplotlib.pyplot as plt import pandas as pd from sklearn.datasets import fetch_california_housing from sklearn.model_selection import train_test_split # the scaler - for robust scaling from sklearn.preprocessing import RobustScaler # load the California House price data from Scikit-learn X, y = fetch_california_housing(return_X_y=True, as_frame=True) # Remove 2 variables: X.drop(labels=["Latitude", "Longitude"], axis=1, inplace=True) # display top 5 rows X.head() # let's separate the data into training and testing sets X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.3, random_state=0, ) X_train.shape, X_test.shape # set up the scaler scaler = RobustScaler() # fit the scaler to the train set, it will learn the parameters scaler.fit(X_train) # transform train and test sets X_train_scaled = scaler.transform(X_train) X_test_scaled = scaler.transform(X_test) # the scaler stores the median values of the features as learned from train set scaler.center_ # the scaler stores the IQR values of the features as learned from train set scaler.scale_ # let's transform the returned NumPy arrays to dataframes X_train_scaled = pd.DataFrame(X_train_scaled, columns=X_train.columns) X_test_scaled = pd.DataFrame(X_test_scaled, columns=X_test.columns) # Inspect the original value statistics X_test.describe() # inspect the values after scaling X_test_scaled.describe() X_test.hist(bins=20, figsize=(20, 12), layout=(2, 3)) plt.show() X_test_scaled.hist(bins=20, figsize=(20, 12), layout=(2, 3)) plt.show() ###Output _____no_output_____
tests/Distance Calculations Example.ipynb
###Markdown Calculate cosmological distances with CCLIn this example, we will calculate various cosmological distances for an example cosmology. ###Code import numpy as np import pylab as plt import pyccl as ccl ###Output _____no_output_____ ###Markdown Set up a Cosmology object`Cosmology` objects contain the parameters and metadata needed as inputs to most functions. Each `Cosmology` object has a set of cosmological parameters attached to it. In this example, we will only use the parameters of a vanilla LCDM model, but simple extensions (like curvature, neutrino mass, and w0/wa) are also supported.`Cosmology` objects also contain precomputed data (e.g. splines) to help speed-up certain calculations. As such, `Cosmology` objects are supposed to be immutable; you should create a new `Cosmology` object when you want to change the values of any cosmological parameters. ###Code cosmo = ccl.Cosmology(Omega_c=0.27, Omega_b=0.045, h=0.67, A_s=2.1e-9, n_s=0.96) print cosmo ###Output Parameters ---------- Omega_c: 0.27 Omega_b: 0.045 Omega_m: 0.315 Omega_k: 0.0 Omega_l: 0.684927855904 w0: -1.0 wa: 0.0 H0: 67.0 h: 0.67 A_s: 2.1e-09 n_s: 0.96 N_nu_rel: 3.046 N_nu_mass: 0.0 mnu: 0.0 Omega_n_mass: 0.0 Omega_n_rel: 1.70947512533e-05 T_CMB: 2.725 Omega_g: 5.50493446829e-05 z_star: nan has_mgrowth: False Precomputed data ---------------- has_distances: False has_growth: False has_power: False has_sigma: False Status ------ status(0): C ###Markdown As you can see, a number of cosmological parameters have been set to default values, or derived from the input parameters. Some, like `sigma_8`, have been left undefined; this is because calculating them from the input parameters is non-trivial, so this will only be done if needed (or if the user explicitly requests it). Parameter values can be accessed from the `Parameters` object that the `Cosmology` object contains, like so: ###Code print cosmo.params['Omega_c'] ###Output 0.27 ###Markdown Cosmological DistancesWith a cosmology in hand, we can begin performing some calculations. We can start with the most basic measure, the comoving radial distance. ###Code z = 0.5 ccl.comoving_radial_distance(cosmo, 1/(1+z)) # Mpc ###Output _____no_output_____ ###Markdown Note that all distance function calls require scale factors, not redshifts. This function can take a `numpy` array of values as well. ###Code zs = np.arange(0, 1, 0.1) ccl.comoving_radial_distance(cosmo, 1/(1+zs)) ###Output _____no_output_____ ###Markdown CCL also supports calculation of the comoving angular distance. In flat spacetime (like the cosmology we have here) it is the same as the radial distance. ###Code ccl.comoving_angular_distance(cosmo, 1/(1+z)) ###Output _____no_output_____ ###Markdown If we create a cosmology with curvature, we'll get a different result. ###Code curved_cosmo = ccl.Cosmology(Omega_k = 0.1, Omega_c=0.17, Omega_b=0.045, h=0.67, A_s=2.1e-9, n_s=0.96) chi_rad = ccl.comoving_radial_distance(curved_cosmo, 1/(1+z)) chi_curved = ccl.comoving_angular_distance(curved_cosmo, 1/(1+z)) print 'Radial Dist. = %.2f Mpc \t Angular Dist. = %.2f Mpc'%(chi_rad, chi_curved) ###Output Radial Dist. = 1992.55 Mpc Angular Dist. = 1999.14 Mpc ###Markdown CCL explictly supports the calculation of the luminosity distance and the distance modulus too: ###Code chi_lum = ccl.luminosity_distance(cosmo, 1/(1+z)) DM = ccl.distance_modulus(cosmo, 1/(1+z)) print 'Luminosity Dist = %.2f Mpc \t Distance Modulus = %.2f ' % (chi_lum, DM) ###Output Luminosity Dist = 2944.44 Mpc Distance Modulus = 42.35 ###Markdown Finally, CCL supports an inverse operation, which calculates the scale factor for a given comoving distance: ###Code ccl.scale_factor_of_chi(cosmo, 1962.96) ###Output _____no_output_____
regular_expressions_in_Python_notebook.ipynb
###Markdown Regular expressions and patterns in sequences.It is a recurring theme of patterns in biological sequences that some positions are observed to be more conserved than others. The variable positions may be more variable because mutations are less likely to occur at these positions - or that they are not functionally or structurally crucial. In coding regions of exons the degeneracy of the genetic code means that mutations at the third position of codons may not change the resulting protein. And at the protein level some amino acid residues are more similar to each other and can be inter-changeable. For example both Asp and Glu may supply a negatively-charged side-chains, both Arg and Lys a positively-charged ones.Regular expressions are a flexible way to specify an underlying pattern while still allowing for such variation. For this reason various syntaxes based on regular expressions are found in user interfaces of bioinformatic programs and databases. ###Code # run this cell to check your Python version is OK for this notebook! import sys def check_python_version_above_3_6(): major = sys.version_info.major minor = sys.version_info.minor if major < 3 or minor < 6: print('ERROR you need to run this notebook with Python 3.6 or above (as f-strings used)') print('ERROR current Python version is {}.{}'.format(major, minor)) print('ERROR Please see:\n', ' https://canvas.anglia.ac.uk/courses/15139/pages/azure-notebooks-switching-kernel\n' ' for information on switching kernel on Azure Notebooks') else: print('Python version {}.{} you are good to go'.format(major, minor)) check_python_version_above_3_6() ###Output _____no_output_____ ###Markdown DataCamp Python Regular Expression TutorialRegular expressions are very powerful but take a bit of getting used. So first work through this DataCamp tutorial https://www.datacamp.com/community/tutorials/python-regular-expression-tutorialAdd notebook cells below as you work through the DataCamp tutorial. ###Code # work through DataCamp tutorial ###Output _____no_output_____ ###Markdown Python Regular Expressions Cheat Sheet.Regular expressions are a bit complicated and a good one page cheat sheet is a great help. So print out or store:https://www.dataquest.io/wp-content/uploads/2019/03/python-regular-expressions-cheat-sheet.pdf Regular expressions in PythonPython has sophisticated regular expression functions available in the module *re*. ###Code # run this cell to import Python regular expression library re import re ###Output _____no_output_____ ###Markdown Regular expressions use a range of special characters in patterns. And as here is a limited number of special characters some of these clash with usage in Python. One way around this is to preface strings with `r` for raw. Compare the print output of the following two strings. ###Code # run this cell to see how Python process \t and \n print("\t1\n2") # run this cell to see how the preface r means string is made "raw" print(r"\t1\n2") ###Output _____no_output_____ ###Markdown The regular expression `re search` function https://docs.python.org/3/library/re.htmlre.search can be used to find patterns in reasonably short sequences. For example, restriction enzymes have specific recognition sites in DNA. For simplicity this exercise ignore the fact that DNA has two strands! ###Code # run this cell to see a simple regular expression with re search dna = "TATAGAATTCATAAATT" if re.search(r"GAATTC", dna): print("EcoRI site found.") ###Output _____no_output_____ ###Markdown Note in the example above there was no need for the pattern to be made a raw string but it does not hurt.Of course for an exact match like this there are the usual string methods available of the form `text.find(substring)`. But some restriction enzymes recognise ambiguous sequences. You will be aware of the [ambiguous nomenclature for DNA bases](https://www.dnabaser.com/articles/IUPAC%20ambiguity%20codes.html): for example: R is any purine (A or G), Y is a pyrimidine (C or T). Unfortunately Python does not recognise these codes out of the box. As an example *AvaII* cuts the pattern GGWCC where W is either an A or a T (the converse is S for C or G). So this can be expressed using the regular expression symbol | for alternatives. ###Code dna = "TTATCGGTCCGC" if re.search(r"GG(A|T)CC", dna): print("AvaII site found.") ###Output _____no_output_____ ###Markdown *BisI* cuts the pattern GCNGC where, as you know., N stands for a nucleotide with any base. ###Code dna = "TCTTAGCAGCAATTCCGC" if re.search(r"GC(A|C|G|T)GC", dna): print("BisI site found.") ###Output _____no_output_____ ###Markdown Or by including a character class with a list of the alternatives. ###Code dna = "TCTTAGCAGCAATTCCGC" if re.search(r"GC[ACGT]GC", dna): print("BisI site found.") ###Output _____no_output_____ ###Markdown The symbol . will match any character - so that could match any nucleotide. ###Code dna = "TCTTAGCAGCAATTCCGC" if re.search(r"GC.GC", dna): print("BisI site found.") ###Output _____no_output_____ ###Markdown Unfortunately it would also match GCQGC, GCWGC, and even GC.GC Repeats of characters can be specified using symbols ? (0 or 1 times), * (0 to infinity), or + (1 to infinity). Notice that unlike the case of * in linux the modifier applies to the symbol in front of them.For instance, to search for at least 3A's in a row: ###Code dna = "TCTTAGCAGCAAAAAAAAAAAAATTCCGC" if re.search(r"AAA+", dna): print("poly(A) found.") ###Output _____no_output_____ ###Markdown Specific numbers can be given as a number range in {} after the character. For example {n} for a single specific number, {n,m} for number n to number m times, {n,} for n to infinity times {,m} for 0 to m times. Multicharacter patterns can be grouped together using parentheses. For example an intronic region in the human VWF gene contains variable numbers of tetranucleotide repeats that are used for forensic identification. Alleles differ in the number of repeats. Here is a check on an individual for the commonest short variants of that which have TCTA[TCTG]3-4[TCTA]7-11. ###Code dna = "TTGATTCTATCTGTCTGTCTGTCTGTCTATCTATCTATCTATCTATCTATCTATCTTCCA" if re.search(r"TCTA(TCTG){3,4}(TCTA){7,11}", dna): print("STR allele found.") ###Output _____no_output_____ ###Markdown Full specification of the use of special characters are in the documentation at https://docs.python.org/3/library/re.html User exercise (a) - regular expression for the restriction enzyme HinfIFrom https://international.neb.com/products/r0155-hinfiProduct%20Information find out the recognition sequence for the restriction enzyme HinfI. Then write Python code using a regular expression to check whether HinfI will cut the following sequences: ###Code test_dnas = {'sequence_a' : 'TTGATGCTATCTGTCTGTCTGTCTGTCTATCTATCTATCTATCTATCTATCTATCTTCCA', 'sequence_b' : 'TTGATTCTATCTGTCTGTCTGTCTGATTCATCTATCTATCTATCTATCTATCTATCTTCCA', 'sequence_c' : 'AAAGATTCAAA', 'sequence_d' : 'AAACTTAGA'} ###Output _____no_output_____ ###Markdown Your code should produce output of the form:```sequence_a not cut by HinfIsequence_b is cut by HinfIsequence_c is cut by HinfIsequence_d not cut by HinfI```**Please note that you will be asked for your code and its output in this week's quiz** ###Code # your Python code ###Output _____no_output_____ ###Markdown Match and regex objectsThe examples above give the impression that the `re search` function returns either `True` or `False`. But this is not the case, instead it returns either `None` if not match is found or [match object](https://docs.python.org/3/library/re.htmlmatch-objects) that has a boolean value of `True`.A match object represents the results of a regular expression `search` and has a number of useful methods for getting data out of it.Going back to the *AvaII* example. ###Code # run this cell to see how match object works dna = "TTATCGGTCCGC" avaii_match = re.search(r"GG(A|T)CC", dna) if avaii_match: print('AvaII site found.') print('string that was matched:', avaii_match.group()) print('index in string for start of match: ', avaii_match.start()) print('index in string after end of match: ', avaii_match.end()) print('index (start to end+1) for match: ', avaii_match.span()) else: print('AvaII site not found.') # user mini exercise modify this code to print out the length of the poly-A match in the string: dna = "TCTTAGCAGCAAAAAAAAAAAAATTCCGC" if re.search(r"AAA+", dna): print("poly(A) found.") ###Output _____no_output_____ ###Markdown If a regular expression is used multiple times it is more efficient to *compile* it into a regular expression object using the [`re compile` function](https://docs.python.org/3/library/re.htmlre.compile) Remember in general you need to check that the pattern found a match otherwise the search will return `None` and an exception will occur as there is nothing to interrogate or print. Here we apply a search for the AvaII restriction site to a sequences and a mutated form but only one returns the match: ###Code # run this cell to see how to use a compiled re seqs = ["TTATCGGTCCGC","TTATCGGGCCGC"] avaii_re = re.compile(r"GG(A|T)CC") for seq in seqs: match = avaii_re.search(seq) if match: print('AvaII site found at:', match.span()) else: print("AvaII site not found.") ###Output _____no_output_____ ###Markdown finding multiple occurences of a patternThe `re.search(pattern,string)` function (https://docs.python.org/3/library/re.htmlre.search) will find the first location where regular expression matches.For finding multiple occurrences there is the function `re.finditer(pattern, string)` (https://docs.python.org/3/library/re.htmlre.finditer). For example, ambiguous bases in a sequence can be found using the expression [^ATGC] where the ^ character inverts the selection (meaning not A T G or C). (Please note, outside square brackets [ ] the ^ character is used to mark the position of the pattern as the start of the string). ###Code # run this cell to see how re.finditer can be used dna = 'GGTGAGRTAAGAAGGGGYTAAGAGAGGATWAGG' ambiguous_base = re.compile(r'[^ATGC]') for match in ambiguous_base.finditer(dna): base = match.group() pos = match.start() + 1 # sequence position with 1 for start print(f"{base} found at position {pos}") ###Output _____no_output_____ ###Markdown Splitting a sequence using a regular expressionThere is a function `re.search(pattern,string)` https://docs.python.org/3/library/re.htmlre.split to split a string based on a regular expression. Here the sequence is split at each ambiguous base using the regex object `ambiguous_base` defined above. Notice that the actual pattern is omitted from the output strings. ###Code print(ambiguous_base.split(dna)) ###Output _____no_output_____ ###Markdown Further examples of regular expressions for sequence manipulation are covered in *Chapter 5* of Rocha & Ferreira (2008) *Bioinformatics Algorithms*. User exercise (b) finding restriction enzymes sites on a cloning vector plasmidPlasmids are circular bits of DNA. We will use pBR322 as an example. First read the wikipedia page on pBR322https://en.wikipedia.org/wiki/PBR322In this exercise we want to find the number of cut sites for a set of restriction enzymes on pBR322 and the position of the first restriction site on the plasmid.| Restriction enzyme| recognition sequence$| ----------------- |---------------------| HindIII | AAGCTT| EcoRV | GATATC| EcoRI | GAATTC| BisI | GCNGC| AvaII | GGWCC| XmaI | CCCGGG$Please note that [ambiguity codes](https://www.dnabaser.com/articles/IUPAC%20ambiguity%20codes.html) are used.The expected result for the first three enzymes is shown on this schematic representation: Further information at https://www.neb.com/~/media/nebus/page%20images/tools%20and%20resources/interactive%20tools/dna%20sequences%20and%20maps/pbr322_map.pdf ###Code # run this cell to download the DNA sequence of pbr322 and store it as pbr_322 import requests def supply_pbr322_sequence(): """returns DNA sequence of pBR322 plasmid from ENA""" url = 'https://www.ebi.ac.uk/ena/browser/api/fasta/J01749.1?download=true' sequence = requests.get(url).text lines = sequence.splitlines() lines.pop(0) # get rid of header sequence = ''.join(lines) return sequence pbr322_dna = supply_pbr322_sequence() ###Output _____no_output_____ ###Markdown First write python to check that pbr322 is 4361 base pairs long ###Code # write python to check that pbr322_dna has 4361 base pairs as expected # now write Python to report the number of times each restriction enzyme cuts or # that it does not cut. You should use regular expressions. # You are recommend to store the regular expression patterns in a Python dictionary # with the restriction enzyme name as a key. ###Output _____no_output_____ ###Markdown **Please note that you will be asked for your code and its output in this week's quiz** Advanced exercise using Biopython `Restriction` classIf you are actually working with restriction enzymes there is no need to reinvent the wheel as Biopython already has an excellent `Restriction` class. You will need to install biopython to use it, in conda this is easy:```conda install biopython``` ###Code # this should install biopython on Azure notebooks # https://notebooks.azure.com/help/jupyter-notebooks/package-installation !conda install biopython -y # import the Restiction class from BioPython checking try: from Bio import Restriction except ModuleNotFoundError: print('ERROR BioPython not available you will need to install it') ###Output _____no_output_____ ###Markdown The Restriction class is really easy to use see http://biopython.org/DIST/docs/cookbook/Restriction.html we will have a quick look here.= ###Code # run this cell to see how the Restriction class knows about AvaII my_enzyme = Restriction.AvaII print(f'{my_enzyme} has a restriction site {my_enzyme.site}') # run this cell to get pbr322 sequence into biopython # there is probably a better way provided by ????? pbr322_dna = supply_pbr322_sequence() # defined above from Bio.Seq import Seq from Bio.Alphabet.IUPAC import IUPACAmbiguousDNA amb = IUPACAmbiguousDNA() pbr322_seq = Seq(pbr322_dna, amb) # run this cell to see where there are BisI recognition sites in pbr322_seq sites = my_enzyme.search(pbr322_seq) print(f'Restriction sites for {my_enzyme} : {sites}') ###Output _____no_output_____ ###Markdown **Advanced user exercise** Repeat exercise (b) above using Biopython `Restriction` class. Remember the DNA is circular - see http://biopython.org/DIST/docs/cookbook/Restriction.html1.5 ###Code # write Python repeating (b) using biopython rather than re ###Output _____no_output_____
apt_presale_price.ipynb
###Markdown 전국 신규 민간 아파트 분양가격 동향* 2015년 10월부터 2018년 4월까지* 주택분양보증을 받아 분양한 전체 민간 신규아파트 분양가격 동향* https://www.data.go.kr/dataset/3035522/fileData.do ###Code import warnings warnings.filterwarnings('ignore') import pandas as pd import numpy as np import re from plotnine import * %ls data pre_sale = pd.read_csv('data/apt_price_201806.csv', encoding='euc-kr') pre_sale.shape pre_sale.head() pre_sale.tail() # 분양가격이 숫자 타입이 아닙니다. 숫자 타입으로 변경해줄 필요가 있겠어요. pre_sale.info() pre_sale_price = pre_sale['분양가격(㎡)'] # 연도와 월은 카테고리 형태의 데이터이기 때문에 스트링 형태로 변경 pre_sale['연도'] = pre_sale['연도'].astype(str) pre_sale['월'] = pre_sale['월'].astype(str) # 분양가격의 타입을 숫자로 변경해 줍니다. pre_sale['분양가격'] = pd.to_numeric(pre_sale_price, errors='coerce') # 평당 분양가격을 구해볼까요. pre_sale['평당분양가격'] = pre_sale['분양가격'] * 3.3 pre_sale.info() # 분양가격에 결측치가 많이 있어요. pre_sale.isnull().sum() pre_sale.describe() # 2017년 데이터만 봅니다. pre_sale_2017 = pre_sale.loc[pre_sale['연도'] == 2017] pre_sale_2017.shape # 같은 값을 갖고 있는 걸로 시도별로 동일하게 데이터가 들어 있는 것을 확인할 수 있습니다. pre_sale['규모구분'].value_counts() ###Output _____no_output_____ ###Markdown 전국평균 분양가격 ###Code # 분양가격만 봤을 때 2015년에서 2018년으로 갈수록 오른 것을 확인할 수 있습니다. pd.options.display.float_format = '{:,.0f}'.format pre_sale.groupby(pre_sale.연도).describe().T ###Output _____no_output_____ ###Markdown 규모별 전국 평균 분양가격 ###Code pre_sale.pivot_table('평당분양가격', '규모구분', '연도') ###Output _____no_output_____ ###Markdown 전국 분양가 변동금액규모구분이 전체로 되어있는 금액으로 연도별 변동금액을 살펴봅니다. ###Code # 규모구분에서 전체로 되어있는 데이터만 가져온다. region_year_all = pre_sale.loc[pre_sale['규모구분'] == '전체'] region_year = region_year_all.pivot_table('평당분양가격', '지역명', '연도').reset_index() region_year['변동액'] = region_year['2018'] - region_year['2015'] max_delta_price = np.max(region_year['변동액'])*1000 min_delta_price = np.min(region_year['변동액'])*1000 mean_delta_price = np.mean(region_year['변동액'])*1000 print('2015년부터 2018년까지 분양가는 계속 상승했으며, 상승액이 가장 큰 지역은 제주이며 상승액은 평당 {:,.0f}원이다.'.format(max_delta_price)) print('상승액이 가장 작은 지역은 울산이며 평당 {:,.0f}원이다.'.format(min_delta_price)) print('전국 평균 변동액은 평당 {:,.0f}원이다.'.format(mean_delta_price)) region_year ###Output 2015년부터 2018년까지 분양가는 계속 상승했으며, 상승액이 가장 큰 지역은 제주이며 상승액은 평당 5,335,550원이다. 상승액이 가장 작은 지역은 울산이며 평당 387,750원이다. 전국 평균 변동액은 평당 1,667,276원이다. ###Markdown 연도별 변동 그래프 ###Code (ggplot(region_year_all, aes(x='지역명', y='평당분양가격', fill='연도')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic')) ) ###Output C:\Users\a\Anaconda3\lib\site-packages\plotnine\layer.py:450: UserWarning: geom_bar : Removed 17 rows containing missing values. self.data = self.geom.handle_na(self.data) ###Markdown 지역별 평당 분양가격 합계* 아래 데이터로 어느정도 규모로 분양사업이 이루어졌는지를 봅니다.* 전체 데이터로 봤을 때 서울, 경기, 부산, 제주에 분양 사업이 다른 지역에 비해 규모가 큰 것으로 보여지지만 분양가격대비로 나눠볼 필요가 있습니다. ###Code pre_sale.pivot_table('평당분양가격', '규모구분', '지역명') ###Output _____no_output_____ ###Markdown 규모별 ###Code # 서울의 경우 전용면적 85㎡초과 102㎡이하가 분양가격이 가장 비싸게 나옵니다. (ggplot(pre_sale, aes(x='지역명', y='평당분양가격', fill='규모구분')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic')) ) # 위에 그린 그래프를 지역별로 나눠 봅니다. (ggplot(pre_sale) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_bar(stat='identity', position='dodge') + facet_wrap('지역명') + theme(text=element_text(family='NanumBarunGothic'), axis_text_x=element_text(rotation=70), figure_size=(12, 6)) ) # 박스플롯을 그려봅니다. (ggplot(pre_sale, aes(x='지역명', y='평당분양가격', fill='규모구분')) + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic'), figure_size=(12, 6)) ) pre_sale_seoul = pre_sale.loc[pre_sale['지역명']=='서울'] (ggplot(pre_sale_seoul) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) # 2015년에서 2018년까지 분양가 차이가 가장 컸던 제주를 봅니다. (ggplot(pre_sale.loc[pre_sale['지역명']=='제주']) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) # 2015년에서 2018년까지 분양가 차이가 가장 작았던 울산을 봅니다. (ggplot(pre_sale.loc[pre_sale['지역명']=='울산']) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) ###Output C:\Users\a\Anaconda3\lib\site-packages\plotnine\layer.py:363: UserWarning: stat_boxplot : Removed 38 rows containing non-finite values. data = self.stat.compute_layer(data, params, layout) ###Markdown 2013년 12월~2015년 9월 3.3㎡당 분양가격* 2015년 10월부터 2018년 4월까지 데이터는 평당 분양가로 조정을 해주었었는데 이 데이터는 평당 분양가가 들어가 있다. ###Code df = pd.read_csv('data/apt_aveprice_national_1509.csv', \ encoding='euc-kr', skiprows=1, header=0) df.shape # pandas에서 보기 쉽게 컬럼을 변경해 줄 필요가 있다. df year = df.iloc[0] month = df.iloc[1] # 결측치를 채워준다. year # 컬럼을 새로 만들어 주기 위해 0번째와 1번째 행을 합쳐준다. for i, y in enumerate(year): if i > 2 and i < 15: year[i] = '2014년 ' + month[i] elif i >= 15: year[i] = '2015년 ' + month[i] elif i == 2 : year[i] = year[i] + ' ' + month[i] elif i == 1: year[i] = '시군구' print(year) df.columns = year df = df.drop(df.index[[0,1]]) df # 지역 컬럼을 새로 만들어 시도와 시군구를 합쳐준다. df['구분'] = df['구분'].fillna('') df['시군구'] = df['시군구'].fillna('') df['지역'] = df['구분'] + df['시군구'] df['지역'] melt_columns = df.columns.copy() melt_columns df_2013_2015 = pd.melt(df, id_vars=['지역'], value_vars=['2013년 12월', '2014년 1월', '2014년 2월', '2014년 3월', '2014년 4월', '2014년 5월', '2014년 6월', '2014년 7월', '2014년 8월', '2014년 9월', '2014년 10월', '2014년 11월', '2014년 12월', '2015년 1월', '2015년 2월', '2015년 3월', '2015년 4월', '2015년 5월', '2015년 6월', '2015년 7월', '2015년 8월', '2015년 9월']) df_2013_2015.head() df_2013_2015.columns = ['지역', '기간', '분양가'] df_2013_2015.head() df_2013_2015['연도'] = df_2013_2015['기간'].apply(lambda year_month : year_month.split('년')[0]) df_2013_2015['월'] = df_2013_2015['기간'].apply(lambda year_month : re.sub('월', '', year_month.split('년')[1]).strip()) df_2013_2015.head() ###Output _____no_output_____ ###Markdown 지역명 강원과 부산 정리 ###Code df_2013_2015['지역'].value_counts() df_2013_2015['지역'] = df_2013_2015['지역'].apply(lambda x: re.sub('6대광역시부산','부산', x)) df_2013_2015['지역'] = df_2013_2015['지역'].apply(lambda x: re.sub('지방강원','강원', x)) df_2013_2015['지역'].value_counts() df_2013_2015.describe() df_2013_2015['분양가격'] = df_2013_2015['분양가'].str.replace(',', '').astype(int) (ggplot(df_2013_2015, aes(x='지역', y='분양가격', fill='연도')) + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic'), figure_size=(12, 6)) ) (ggplot(df_2013_2015, aes(x='지역', y='분양가격', fill='연도')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic'), figure_size=(12, 6)) ) ###Output _____no_output_____ ###Markdown 이제 2013년부터 2018년 4월까지 데이터를 합칠 준비가 됨 ###Code df_2015_2018 = pre_sale.loc[pre_sale['규모구분'] == '전체'] print(df_2015_2018.shape) df_2015_2018.head() df_2013_2015.columns df_2013_2015_prepare = df_2013_2015[['지역', '연도', '월', '분양가격']] df_2013_2015_prepare.head() df_2013_2015_prepare.columns = ['지역명', '연도', '월', '평당분양가격'] df_2015_2018.columns df_2015_2018_prepare = df_2015_2018[['지역명', '연도', '월', '평당분양가격']] df_2015_2018_prepare.head() df_2015_2018_prepare.describe() df_2013_2018 = pd.concat([df_2013_2015_prepare, df_2015_2018_prepare]) df_2013_2018.shape df_2013_2018.head() df_2013_2015_region= df_2013_2015_prepare['지역명'].unique() df_2013_2015_region df_2015_2018_region = df_2015_2018_prepare['지역명'].unique() df_2015_2018_region exclude_region = [region for region in df_2013_2015_region if not region in df_2015_2018_region] exclude_region df_2013_2018.shape df_2013_2018.loc[df_2013_2018['지역명'].str.match('전국|수도권')].head() df_2013_2018.drop(df_2013_2018.loc[df_2013_2018['지역명'].str.match('전국|수도권')].index, axis=0, inplace=True) df_2013_2018.drop(df_2013_2018.loc[df_2013_2018['지역명'] == ''].index, axis=0, inplace=True) (ggplot(df_2013_2018, aes(x='연도', y='평당분양가격')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic')) ) (ggplot(df_2013_2018, aes(x='지역명', y='평당분양가격', fill='연도')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic'), figure_size=(12, 6)) ) (ggplot(df_2013_2018) + aes(x='연도', y='평당분양가격') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) df_2013_2018_jeju = df_2013_2018.loc[df_2013_2018['지역명'] == '제주'] (ggplot(df_2013_2018_jeju) + aes(x='연도', y='평당분양가격') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) (ggplot(df_2013_2018) + aes(x='연도', y='평당분양가격') + geom_boxplot() + facet_wrap('지역명') + theme(text=element_text(family='NanumBarunGothic'), axis_text_x=element_text(rotation=70), figure_size=(12, 18)) ) ###Output C:\Users\a\Anaconda3\lib\site-packages\plotnine\layer.py:363: UserWarning: stat_boxplot : Removed 17 rows containing non-finite values. data = self.stat.compute_layer(data, params, layout) ###Markdown 전국 '신규' 민간 아파트 분양가격 동향* 2015년 10월부터 2018년 4월까지* 주택분양보증을 받아 분양한 전체 민간 신규아파트 분양가격 동향* https://www.data.go.kr/dataset/3035522/fileData.do ###Code import warnings warnings.filterwarnings('ignore') import pandas as pd import numpy as np import re from plotnine import * %ls data pre_sale = pd.read_csv('data/전국_평균_분양가격_2018.6월_.csv', encoding='euc-kr') pre_sale.shape pre_sale.head() pre_sale.tail() # Nan 결측지도 있네 # 분양가격이 숫자 타입이 아닙니다. 숫자 타입으로 변경해줄 필요가 있겠어요. pre_sale.info() pre_sale_price = pre_sale['분양가격(㎡)'] # 연도와 월은 카테고리 형태의 데이터이기 때문에 스트링 형태로 변경 ( 따로 연산하지않을거니까 ) pre_sale['연도'] = pre_sale['연도'].astype(str) pre_sale['월'] = pre_sale['월'].astype(str) # 분양가격의 타입을 숫자로 변경해 줍니다. 3.3제곱미터당 가격이 평당가격 pre_sale['분양가격'] = pd.to_numeric(pre_sale_price, errors='coerce') # 평당 분양가격을 구해볼까요. pre_sale['평당분양가격'] = pre_sale['분양가격'] * 3.3 pre_sale.info() # 제곱미터는 써주기 불편해서 그냥 '분약가격'이라는 컬럼을 만들어주고 타입을 float64로 만듬 # 분양가격에 결측치가 많이 있어요. pre_sale.isnull().sum() # 공백은 결측치로 안잡히는데 숫자로 변환하면서 공백 -> NaN 으로 바뀌었기 때문에 더욱 많다. pre_sale.describe() # 뒤에가 1000단위 평균은 평당 천만원 # 2017년 데이터만 봅니다. pre_sale_2017 = pre_sale.loc[pre_sale['연도'] == 2017] pre_sale_2017.shape # 같은 값을 갖고 있는 걸로 시도별로 동일하게 데이터가 들어 있는 것을 확인할 수 있습니다. pre_sale['규모구분'].value_counts() ###Output _____no_output_____ ###Markdown 전국평균 분양가격 ###Code # 분양가격만 봤을 때 2015년에서 2018년으로 갈수록 오른 것을 확인할 수 있습니다. pd.options.display.float_format = '{:,.0f}'.format pre_sale.groupby(pre_sale.연도).describe().T ###Output _____no_output_____ ###Markdown 규모별 전국 평균 분양가격 ###Code pre_sale.pivot_table('평당분양가격', '규모구분', '연도') # 4인기준이면 보통 85초과 102이하 가 인기 많다 ###Output _____no_output_____ ###Markdown 전국 분양가 변동금액규모구분이 전체로 되어있는 금액으로 연도별 변동금액을 살펴봅니다. ###Code # 규모구분에서 전체로 되어있는 데이터만 가져온다. region_year_all = pre_sale.loc[pre_sale['규모구분'] == '전체'] region_year = region_year_all.pivot_table('평당분양가격', '지역명', '연도').reset_index() region_year['변동액'] = region_year['2018'] - region_year['2015'] max_delta_price = np.max(region_year['변동액'].astype(int)*1000) min_delta_price = np.min(region_year['변동액'].astype(int)*1000) mean_delta_price = np.mean(region_year['변동액'].astype(int)*1000) print('2015년부터 2018년까지 분양가는 계속 상승했으며, 상승액이 가장 큰 지역은 제주이며 상승액은 평당 {:,.0f}원이다.'.format(max_delta_price)) print('상승액이 가장 작은 지역은 울산이며 평당 {:,.0f}원이다.'.format(min_delta_price)) print('전국 평균 변동액은 평당 {:,.0f}원이다.'.format(mean_delta_price)) region_year ###Output 2015년부터 2018년까지 분양가는 계속 상승했으며, 상승액이 가장 큰 지역은 제주이며 상승액은 평당 5,335,000원이다. 상승액이 가장 작은 지역은 울산이며 평당 387,000원이다. 전국 평균 변동액은 평당 1,666,647원이다. ###Markdown 연도별 변동 그래프 ###Code (ggplot(region_year_all, aes(x='지역명', y='평당분양가격', fill='연도')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic')) ) ###Output _____no_output_____ ###Markdown 지역별 평당 분양가격 합계* 아래 데이터로 어느정도 규모로 분양사업이 이루어졌는지를 봅니다.* 전체 데이터로 봤을 때 서울, 경기, 부산, 제주에 분양 사업이 다른 지역에 비해 규모가 큰 것으로 보여지지만 분양가격대비로 나눠볼 필요가 있습니다. ###Code pre_sale.pivot_table('평당분양가격', '규모구분', '지역명') ###Output _____no_output_____ ###Markdown 규모별 ###Code # 서울의 경우 전용면적 85㎡초과 102㎡이하가 분양가격이 가장 비싸게 나옵니다. (ggplot(pre_sale, aes(x='지역명', y='평당분양가격', fill='규모구분')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic')) ) # 위에 그린 그래프를 지역별로 나눠 봅니다. (ggplot(pre_sale) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_bar(stat='identity', position='dodge') + facet_wrap('지역명') + theme(text=element_text(family='NanumBarunGothic'), axis_text_x=element_text(rotation=70), figure_size=(12, 6)) ) # 박스플롯을 그려봅니다. (ggplot(pre_sale, aes(x='지역명', y='평당분양가격', fill='규모구분')) + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic'), figure_size=(12, 6)) ) pre_sale_seoul = pre_sale.loc[pre_sale['지역명']=='서울'] (ggplot(pre_sale_seoul) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) # 2015년에서 2018년까지 분양가 차이가 가장 컸던 제주를 봅니다. (ggplot(pre_sale.loc[pre_sale['지역명']=='제주']) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) # 2015년에서 2018년까지 분양가 차이가 가장 작았던 울산을 봅니다. (ggplot(pre_sale.loc[pre_sale['지역명']=='울산']) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) ###Output _____no_output_____ ###Markdown 2013년 12월~2015년 9월 3.3㎡당 분양가격* 2015년 10월부터 2018년 4월까지 데이터는 평당 분양가로 조정을 해주었었는데 이 데이터는 평당 분양가가 들어가 있다. ###Code df = pd.read_csv('data/지역별_3.3㎡당_평균_분양가격_천원__15.09월.csv', \ encoding='euc-kr', skiprows=1, header=0) df.shape # pandas에서 보기 쉽게 컬럼을 변경해 줄 필요가 있다. # 일단 마지막 3개의 컬럼은 필요도 없을 것 같고,, # 0번과 1번을 합치고 # 시도와 시군구도 합쳐보자 df year = df.iloc[0] month = df.iloc[1] # 결측치를 채워준다. year # 컬럼을 새로 만들어 주기 위해 0번째와 1번째 행을 합쳐준다. for i, y in enumerate(year): if i > 2 and i < 15: year[i] = '2014년 ' + month[i] elif i >= 15: year[i] = '2015년 ' + month[i] elif i == 2 : year[i] = year[i] + ' ' + month[i] elif i == 1: year[i] = '시군구' print(year) df.columns = year # 컬럼을 year로 해주고 df = df.drop(df.index[[0,1]]) # 인덱스 0과 1은 안쓰니까 날려버리 df # 지역 컬럼을 새로 만들어 시도와 시군구를 합쳐준다. df['구분'] = df['구분'].fillna('') df['시군구'] = df['시군구'].fillna('') df['지역'] = df['구분'] + df['시군구'] df['지역'] melt_columns = df.columns.copy() # 컬럼지정 melt_columns df_2013_2015 = pd.melt(df, id_vars=['지역'], value_vars=['2013년 12월', '2014년 1월', '2014년 2월', '2014년 3월', '2014년 4월', '2014년 5월', '2014년 6월', '2014년 7월', '2014년 8월', '2014년 9월', '2014년 10월', '2014년 11월', '2014년 12월', '2015년 1월', '2015년 2월', '2015년 3월', '2015년 4월', '2015년 5월', '2015년 6월', '2015년 7월', '2015년 8월', '2015년 9월']) # 전월비, 전년말비, 전년동월비는 빼버림 df_2013_2015.head() df_2013_2015.columns = ['지역', '기간', '분양가'] df_2013_2015.head() df_2013_2015['연도'] = df_2013_2015['기간'].apply(lambda year_month : year_month.split('년')[0]) df_2013_2015['월'] = df_2013_2015['기간'].apply(lambda year_month : re.sub('월', '', year_month.split('년')[1]).strip()) df_2013_2015.head() ###Output _____no_output_____ ###Markdown 지역명 강원과 부산 정리 ###Code df_2013_2015['지역'].value_counts() df_2013_2015['지역'] = df_2013_2015['지역'].apply(lambda x: re.sub('6대광역시부산','부산', x)) df_2013_2015['지역'] = df_2013_2015['지역'].apply(lambda x: re.sub('지방강원','강원', x)) df_2013_2015['지역'].value_counts() df_2013_2015.describe() df_2013_2015['분양가격'] = df_2013_2015['분양가'].str.replace(',', '').astype(int) # 컴마빼주고 int로 바꾸고 분양가격으로 바꿔줌 (ggplot(df_2013_2015, aes(x='지역', y='분양가격', fill='연도')) + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic'), figure_size=(12, 6)) ) (ggplot(df_2013_2015, aes(x='지역', y='분양가격', fill='연도')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic'), figure_size=(12, 6)) ) ###Output _____no_output_____ ###Markdown 이제 2013년부터 2018년 4월까지 데이터를 합칠 준비가 됨 ###Code df_2015_2018 = pre_sale.loc[pre_sale['규모구분'] == '전체'] print(df_2015_2018.shape) df_2015_2018.head() df_2013_2015.columns df_2013_2015_prepare = df_2013_2015[['지역', '연도', '월', '분양가격']] df_2013_2015_prepare.head() df_2013_2015_prepare.columns = ['지역명', '연도', '월', '평당분양가격'] df_2015_2018.columns df_2015_2018_prepare = df_2015_2018[['지역명', '연도', '월', '평당분양가격']] df_2015_2018_prepare.head() df_2015_2018_prepare.describe() df_2013_2018 = pd.concat([df_2013_2015_prepare, df_2015_2018_prepare]) # 합치기 concat은 위 아래로 합쳐준다, merge는 가로로 합쳐짐 df_2013_2018.shape df_2013_2018.head() # 합친것 한번 보기 df_2013_2015_region= df_2013_2015_prepare['지역명'].unique() df_2013_2015_region df_2015_2018_region = df_2015_2018_prepare['지역명'].unique() df_2015_2018_region exclude_region = [region for region in df_2013_2015_region if not region in df_2015_2018_region] exclude_region df_2013_2018.shape df_2013_2018.loc[df_2013_2018['지역명'].str.match('전국|수도권')].head() # 전국 | 수도권과 공백인것은 드랍시킨다. df_2013_2018.drop(df_2013_2018.loc[df_2013_2018['지역명'].str.match('전국|수도권')].index, axis=0, inplace=True) df_2013_2018.drop(df_2013_2018.loc[df_2013_2018['지역명'] == ''].index, axis=0, inplace=True) (ggplot(df_2013_2018, aes(x='연도', y='평당분양가격')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic')) ) (ggplot(df_2013_2018, aes(x='지역명', y='평당분양가격', fill='연도')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic'), figure_size=(12, 6)) ) (ggplot(df_2013_2018) + aes(x='연도', y='평당분양가격') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) df_2013_2018_jeju = df_2013_2018.loc[df_2013_2018['지역명'] == '제주'] (ggplot(df_2013_2018_jeju) + aes(x='연도', y='평당분양가격') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) (ggplot(df_2013_2018) + aes(x='연도', y='평당분양가격') + geom_boxplot() + facet_wrap('지역명') + theme(text=element_text(family='NanumBarunGothic'), axis_text_x=element_text(rotation=70), figure_size=(12, 12)) ) ###Output _____no_output_____ ###Markdown 전국 신규 민간 아파트 분양가격 동향* 2015년 10월부터 2018년 4월까지* 주택분양보증을 받아 분양한 전체 민간 신규아파트 분양가격 동향* https://www.data.go.kr/dataset/3035522/fileData.do ###Code import warnings warnings.filterwarnings('ignore') import pandas as pd import numpy as np import re from plotnine import * %ls pre_sale = pd.read_csv('201806.csv', encoding='euc-kr') pre_sale.shape pre_sale.head() pre_sale.tail() # 분양가격이 숫자 타입이 아닙니다. 숫자 타입으로 변경해줄 필요가 있겠어요. pre_sale.info() pre_sale_price = pre_sale['분양가격(㎡)'] # 연도와 월은 카테고리 형태의 데이터이기 때문에 스트링 형태로 변경 pre_sale['연도'] = pre_sale['연도'].astype(str) pre_sale['월'] = pre_sale['월'].astype(str) # 분양가격의 타입을 숫자로 변경해 줍니다. pre_sale['분양가격'] = pd.to_numeric(pre_sale_price, errors='coerce') # 평당 분양가격을 구해볼까요. pre_sale['평당분양가격'] = pre_sale['분양가격'] * 3.3 pre_sale.info() # 분양가격에 결측치가 많이 있어요. pre_sale.isnull().sum() pre_sale.describe() # 2017년 데이터만 봅니다. pre_sale_2017 = pre_sale.loc[pre_sale['연도'] == 2017] pre_sale_2017.shape # 같은 값을 갖고 있는 걸로 시도별로 동일하게 데이터가 들어 있는 것을 확인할 수 있습니다. pre_sale['규모구분'].value_counts() ###Output _____no_output_____ ###Markdown 전국평균 분양가격 ###Code # 분양가격만 봤을 때 2015년에서 2018년으로 갈수록 오른 것을 확인할 수 있습니다. pd.options.display.float_format = '{:,.0f}'.format pre_sale.groupby(pre_sale.연도).describe().T ###Output _____no_output_____ ###Markdown 규모별 전국 평균 분양가격 ###Code pre_sale.pivot_table('평당분양가격', '규모구분', '연도') ###Output _____no_output_____ ###Markdown 전국 분양가 변동금액규모구분이 전체로 되어있는 금액으로 연도별 변동금액을 살펴봅니다. ###Code # 규모구분에서 전체로 되어있는 데이터만 가져온다. region_year_all = pre_sale.loc[pre_sale['규모구분'] == '전체'] region_year = region_year_all.pivot_table('평당분양가격', '지역명', '연도').reset_index() region_year['변동액'] = region_year['2018'] - region_year['2015'].astype(int) max_delta_price = np.max(region_year['변동액'])*1000 min_delta_price = np.min(region_year['변동액'])*1000 mean_delta_price = np.mean(region_year['변동액'])*1000 print('2015년부터 2018년까지 분양가는 계속 상승했으며, 상승액이 가장 큰 지역은 제주이며 상승액은 평당 {:,.0f}원이다.'.format(max_delta_price)) print('상승액이 가장 작은 지역은 울산이며 평당 {:,.0f}원이다.'.format(min_delta_price)) print('전국 평균 변동액은 평당 {:,.0f}원이다.'.format(mean_delta_price)) region_year ###Output 2015년부터 2018년까지 분양가는 계속 상승했으며, 상승액이 가장 큰 지역은 제주이며 상승액은 평당 5,335,750원이다. 상승액이 가장 작은 지역은 울산이며 평당 388,650원이다. 전국 평균 변동액은 평당 1,667,735원이다. ###Markdown 연도별 변동 그래프 ###Code (ggplot(region_year_all, aes(x='지역명', y='평당분양가격', fill='연도')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic')) ) ###Output _____no_output_____ ###Markdown 지역별 평당 분양가격 합계* 아래 데이터로 어느정도 규모로 분양사업이 이루어졌는지를 봅니다.* 전체 데이터로 봤을 때 서울, 경기, 부산, 제주에 분양 사업이 다른 지역에 비해 규모가 큰 것으로 보여지지만 분양가격대비로 나눠볼 필요가 있습니다. ###Code pre_sale.pivot_table('평당분양가격', '규모구분', '지역명') ###Output _____no_output_____ ###Markdown 규모별 ###Code # 서울의 경우 전용면적 85㎡초과 102㎡이하가 분양가격이 가장 비싸게 나옵니다. (ggplot(pre_sale, aes(x='지역명', y='평당분양가격', fill='규모구분')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic')) ) # 위에 그린 그래프를 지역별로 나눠 봅니다. (ggplot(pre_sale) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_bar(stat='identity', position='dodge') + facet_wrap('지역명') + theme(text=element_text(family='NanumBarunGothic'), axis_text_x=element_text(rotation=70), figure_size=(12, 6)) ) # 박스플롯을 그려봅니다. (ggplot(pre_sale, aes(x='지역명', y='평당분양가격', fill='규모구분')) + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic'), figure_size=(12, 6)) ) pre_sale_seoul = pre_sale.loc[pre_sale['지역명']=='서울'] (ggplot(pre_sale_seoul) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) # 2015년에서 2018년까지 분양가 차이가 가장 컸던 제주를 봅니다. (ggplot(pre_sale.loc[pre_sale['지역명']=='제주']) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) # 2015년에서 2018년까지 분양가 차이가 가장 작았던 울산을 봅니다. (ggplot(pre_sale.loc[pre_sale['지역명']=='울산']) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) ###Output _____no_output_____ ###Markdown 2013년 12월~2015년 9월 3.3㎡당 분양가격* 2015년 10월부터 2018년 4월까지 데이터는 평당 분양가로 조정을 해주었었는데 이 데이터는 평당 분양가가 들어가 있다. ###Code df = pd.read_csv('201509.csv', \ encoding='euc-kr', skiprows=1, header=0) df.shape # pandas에서 보기 쉽게 컬럼을 변경해 줄 필요가 있다. df year = df.iloc[0] month = df.iloc[1] # 결측치를 채워준다. year # 컬럼을 새로 만들어 주기 위해 0번째와 1번째 행을 합쳐준다. for i, y in enumerate(year): if i > 2 and i < 15: year[i] = '2014년 ' + month[i] elif i >= 15: year[i] = '2015년 ' + month[i] elif i == 2 : year[i] = year[i] + ' ' + month[i] elif i == 1: year[i] = '시군구' print(year) df.columns = year df = df.drop(df.index[[0,1]]) df # 지역 컬럼을 새로 만들어 시도와 시군구를 합쳐준다. df['구분'] = df['구분'].fillna('') df['시군구'] = df['시군구'].fillna('') df['지역'] = df['구분'] + df['시군구'] df['지역'] melt_columns = df.columns.copy() melt_columns df_2013_2015 = pd.melt(df, id_vars=['지역'], value_vars=['2013년 12월', '2014년 1월', '2014년 2월', '2014년 3월', '2014년 4월', '2014년 5월', '2014년 6월', '2014년 7월', '2014년 8월', '2014년 9월', '2014년 10월', '2014년 11월', '2014년 12월', '2015년 1월', '2015년 2월', '2015년 3월', '2015년 4월', '2015년 5월', '2015년 6월', '2015년 7월', '2015년 8월', '2015년 9월']) df_2013_2015.head() df_2013_2015.columns = ['지역', '기간', '분양가'] df_2013_2015.head() df_2013_2015['연도'] = df_2013_2015['기간'].apply(lambda year_month : year_month.split('년')[0]) df_2013_2015['월'] = df_2013_2015['기간'].apply(lambda year_month : re.sub('월', '', year_month.split('년')[1]).strip()) df_2013_2015.head() ###Output _____no_output_____ ###Markdown 지역명 강원과 부산 정리 ###Code df_2013_2015['지역'].value_counts() df_2013_2015['지역'] = df_2013_2015['지역'].apply(lambda x: re.sub('6대광역시부산','부산', x)) df_2013_2015['지역'] = df_2013_2015['지역'].apply(lambda x: re.sub('지방강원','강원', x)) df_2013_2015['지역'].value_counts() df_2013_2015.describe() df_2013_2015['분양가격'] = df_2013_2015['분양가'].str.replace(',', '').astype(int) (ggplot(df_2013_2015, aes(x='지역', y='분양가격', fill='연도')) + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic'), figure_size=(12, 6)) ) (ggplot(df_2013_2015, aes(x='지역', y='분양가격', fill='연도')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic'), figure_size=(12, 6)) ) ###Output _____no_output_____ ###Markdown 이제 2013년부터 2018년 4월까지 데이터를 합칠 준비가 됨 ###Code df_2015_2018 = pre_sale.loc[pre_sale['규모구분'] == '전체'] print(df_2015_2018.shape) df_2015_2018.head() df_2013_2015.columns df_2013_2015_prepare = df_2013_2015[['지역', '연도', '월', '분양가격']] df_2013_2015_prepare.head() df_2013_2015_prepare.columns = ['지역명', '연도', '월', '평당분양가격'] df_2015_2018.columns df_2015_2018_prepare = df_2015_2018[['지역명', '연도', '월', '평당분양가격']] df_2015_2018_prepare.head() df_2015_2018_prepare.describe() df_2013_2018 = pd.concat([df_2013_2015_prepare, df_2015_2018_prepare]) df_2013_2018.shape df_2013_2018.head() df_2013_2015_region= df_2013_2015_prepare['지역명'].unique() df_2013_2015_region df_2015_2018_region = df_2015_2018_prepare['지역명'].unique() df_2015_2018_region exclude_region = [region for region in df_2013_2015_region if not region in df_2015_2018_region] exclude_region df_2013_2018.shape ###Output _____no_output_____ ###Markdown 수도권을 지워 주는 과정 ###Code df_2013_2018.loc[df_2013_2018['지역명'].str.match('전국|수도권')].head() ###Output _____no_output_____ ###Markdown 수도권과 공백을 지워주는 ###Code df_2013_2018.drop(df_2013_2018.loc[df_2013_2018['지역명'].str.match('전국|수도권')].index, axis=0, inplace=True) df_2013_2018.drop(df_2013_2018.loc[df_2013_2018['지역명'] == ''].index, axis=0, inplace=True) (ggplot(df_2013_2018, aes(x='연도', y='평당분양가격')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic')) ) (ggplot(df_2013_2018, aes(x='지역명', y='평당분양가격', fill='연도')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic'), figure_size=(12, 6)) ) (ggplot(df_2013_2018) + aes(x='연도', y='평당분양가격') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) df_2013_2018_jeju = df_2013_2018.loc[df_2013_2018['지역명'] == '제주'] (ggplot(df_2013_2018_jeju) + aes(x='연도', y='평당분양가격') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) A = (ggplot(df_2013_2018) + aes(x='연도', y='평당분양가격') + geom_boxplot() + facet_wrap('지역명') + theme(text=element_text(family='NanumBarunGothic'), axis_text_x=element_text(rotation=70), figure_size=(12, 6)) ) ggsave(A, device = 'jpeg',path = 'project') ###Output _____no_output_____ ###Markdown 전국 신규 민간 아파트 분양가격 동향* 2015년 10월부터 2018년 4월까지* 주택분양보증을 받아 분양한 전체 민간 신규아파트 분양가격 동향* https://www.data.go.kr/dataset/3035522/fileData.do ###Code import warnings warnings.filterwarnings('ignore') import pandas as pd import numpy as np import re from plotnine import * %ls data/apt_price pre_sale = pd.read_csv('data/apt_price/전국_평균_분양가격_2018.6월_.csv', encoding='euc-kr') pre_sale.shape pre_sale.head() pre_sale.tail() # 분양가격이 숫자 타입이 아닙니다. 숫자 타입으로 변경해줄 필요가 있겠어요. pre_sale.info() pre_sale_price = pre_sale['분양가격(㎡)'] # 연도와 월은 카테고리 형태의 데이터이기 때문에 스트링 형태로 변경 pre_sale['연도'] = pre_sale['연도'].astype(str) pre_sale['월'] = pre_sale['월'].astype(str) # 분양가격의 타입을 숫자로 변경해 줍니다. pre_sale['분양가격'] = pd.to_numeric(pre_sale_price, errors='coerce') # 평당 분양가격을 구해볼까요. pre_sale['평당분양가격'] = pre_sale['분양가격'] * 3.3 pre_sale.info() # 분양가격에 결측치가 많이 있어요. pre_sale.isnull().sum() pre_sale.describe() # 2017년 데이터만 봅니다. pre_sale_2017 = pre_sale.loc[pre_sale['연도'] == 2017] pre_sale_2017.shape # 같은 값을 갖고 있는 걸로 시도별로 동일하게 데이터가 들어 있는 것을 확인할 수 있습니다. pre_sale['규모구분'].value_counts() ###Output _____no_output_____ ###Markdown 전국평균 분양가격 ###Code # 분양가격만 봤을 때 2015년에서 2018년으로 갈수록 오른 것을 확인할 수 있습니다. pd.options.display.float_format = '{:,.0f}'.format pre_sale.groupby(pre_sale.연도).describe().T ###Output _____no_output_____ ###Markdown 규모별 전국 평균 분양가격 ###Code pre_sale.pivot_table('평당분양가격', '규모구분', '연도') ###Output _____no_output_____ ###Markdown 전국 분양가 변동금액규모구분이 전체로 되어있는 금액으로 연도별 변동금액을 살펴봅니다. ###Code # 규모구분에서 전체로 되어있는 데이터만 가져온다. region_year_all = pre_sale.loc[pre_sale['규모구분'] == '전체'] region_year = region_year_all.pivot_table('평당분양가격', '지역명', '연도').reset_index() region_year['변동액'] = region_year['2018'] - region_year['2015'] max_delta_price = np.max(region_year['변동액']).astype(int)*1000 min_delta_price = np.min(region_year['변동액']).astype(int)*1000 mean_delta_price = np.mean(region_year['변동액']).astype(int)*1000 print('2015년부터 2018년까지 분양가는 계속 상승했으며, 상승액이 가장 큰 지역은 제주이며 상승액은 평당 {:,.0f}원이다.'.format(max_delta_price)) print('상승액이 가장 작은 지역은 울산이며 평당 {:,.0f}원이다.'.format(min_delta_price)) print('전국 평균 변동액은 평당 {:,.0f}원이다.'.format(mean_delta_price)) region_year ###Output _____no_output_____ ###Markdown 연도별 변동 그래프 ###Code (ggplot(region_year_all, aes(x='지역명', y='평당분양가격', fill='연도')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic')) ) ###Output _____no_output_____ ###Markdown 지역별 평당 분양가격 합계* 아래 데이터로 어느정도 규모로 분양사업이 이루어졌는지를 봅니다.* 전체 데이터로 봤을 때 서울, 경기, 부산, 제주에 분양 사업이 다른 지역에 비해 규모가 큰 것으로 보여지지만 분양가격대비로 나눠볼 필요가 있습니다. ###Code pre_sale.pivot_table('평당분양가격', '규모구분', '지역명') ###Output _____no_output_____ ###Markdown 규모별 ###Code # 서울의 경우 전용면적 85㎡초과 102㎡이하가 분양가격이 가장 비싸게 나옵니다. (ggplot(pre_sale, aes(x='지역명', y='평당분양가격', fill='규모구분')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic')) ) # 위에 그린 그래프를 지역별로 나눠 봅니다. (ggplot(pre_sale) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_bar(stat='identity', position='dodge') + facet_wrap('지역명') + theme(text=element_text(family='NanumBarunGothic'), axis_text_x=element_text(rotation=70), figure_size=(12, 6)) ) # 박스플롯을 그려봅니다. (ggplot(pre_sale, aes(x='지역명', y='평당분양가격', fill='규모구분')) + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic'), figure_size=(12, 6)) ) pre_sale_seoul = pre_sale.loc[pre_sale['지역명']=='서울'] (ggplot(pre_sale_seoul) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) # 2015년에서 2018년까지 분양가 차이가 가장 컸던 제주를 봅니다. (ggplot(pre_sale.loc[pre_sale['지역명']=='제주']) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) # 2015년에서 2018년까지 분양가 차이가 가장 작았던 울산을 봅니다. (ggplot(pre_sale.loc[pre_sale['지역명']=='울산']) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) ###Output _____no_output_____ ###Markdown 2013년 12월~2015년 9월 3.3㎡당 분양가격* 2015년 10월부터 2018년 4월까지 데이터는 평당 분양가로 조정을 해주었었는데 이 데이터는 평당 분양가가 들어가 있다. ###Code df = pd.read_csv('data/apt_price/지역별_3.3㎡당_평균_분양가격_천원__15.09월.csv', \ encoding='euc-kr', skiprows=1, header=0) df.shape # pandas에서 보기 쉽게 컬럼을 변경해 줄 필요가 있다. df year = df.iloc[0] month = df.iloc[1] # 결측치를 채워준다. year # 컬럼을 새로 만들어 주기 위해 0번째와 1번째 행을 합쳐준다. for i, y in enumerate(year): if i > 2 and i < 15: year[i] = '2014년 ' + month[i] elif i >= 15: year[i] = '2015년 ' + month[i] elif i == 2 : year[i] = year[i] + ' ' + month[i] elif i == 1: year[i] = '시군구' print(year) df.columns = year df = df.drop(df.index[[0,1]]) df # 지역 컬럼을 새로 만들어 시도와 시군구를 합쳐준다. df['구분'] = df['구분'].fillna('') df['시군구'] = df['시군구'].fillna('') df['지역'] = df['구분'] + df['시군구'] df['지역'] melt_columns = df.columns.copy() melt_columns df_2013_2015 = pd.melt(df, id_vars=['지역'], value_vars=['2013년 12월', '2014년 1월', '2014년 2월', '2014년 3월', '2014년 4월', '2014년 5월', '2014년 6월', '2014년 7월', '2014년 8월', '2014년 9월', '2014년 10월', '2014년 11월', '2014년 12월', '2015년 1월', '2015년 2월', '2015년 3월', '2015년 4월', '2015년 5월', '2015년 6월', '2015년 7월', '2015년 8월', '2015년 9월']) df_2013_2015.head() df_2013_2015.columns = ['지역', '기간', '분양가'] df_2013_2015.head() df_2013_2015['연도'] = df_2013_2015['기간'].apply(lambda year_month : year_month.split('년')[0]) df_2013_2015['월'] = df_2013_2015['기간'].apply(lambda year_month : re.sub('월', '', year_month.split('년')[1]).strip()) df_2013_2015.head() ###Output _____no_output_____ ###Markdown 지역명 강원과 부산 정리 ###Code df_2013_2015['지역'].value_counts() df_2013_2015['지역'] = df_2013_2015['지역'].apply(lambda x: re.sub('6대광역시부산','부산', x)) df_2013_2015['지역'] = df_2013_2015['지역'].apply(lambda x: re.sub('지방강원','강원', x)) df_2013_2015['지역'].value_counts() df_2013_2015.describe() df_2013_2015['분양가격'] = df_2013_2015['분양가'].str.replace(',', '').astype(int) (ggplot(df_2013_2015, aes(x='지역', y='분양가격', fill='연도')) + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic'), figure_size=(12, 6)) ) (ggplot(df_2013_2015, aes(x='지역', y='분양가격', fill='연도')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic'), figure_size=(12, 6)) ) ###Output _____no_output_____ ###Markdown 이제 2013년부터 2018년 4월까지 데이터를 합칠 준비가 됨 ###Code df_2015_2018 = pre_sale.loc[pre_sale['규모구분'] == '전체'] print(df_2015_2018.shape) df_2015_2018.head() df_2013_2015.columns df_2013_2015_prepare = df_2013_2015[['지역', '연도', '월', '분양가격']] df_2013_2015_prepare.head() df_2013_2015_prepare.columns = ['지역명', '연도', '월', '평당분양가격'] df_2015_2018.columns df_2015_2018_prepare = df_2015_2018[['지역명', '연도', '월', '평당분양가격']] df_2015_2018_prepare.head() df_2015_2018_prepare.describe() df_2013_2018 = pd.concat([df_2013_2015_prepare, df_2015_2018_prepare]) df_2013_2018.shape df_2013_2018.head() df_2013_2015_region= df_2013_2015_prepare['지역명'].unique() df_2013_2015_region df_2015_2018_region = df_2015_2018_prepare['지역명'].unique() df_2015_2018_region exclude_region = [region for region in df_2013_2015_region if not region in df_2015_2018_region] exclude_region df_2013_2018.shape df_2013_2018.loc[df_2013_2018['지역명'].str.match('전국|수도권')].head() df_2013_2018.drop(df_2013_2018.loc[df_2013_2018['지역명'].str.match('전국|수도권')].index, axis=0, inplace=True) df_2013_2018.drop(df_2013_2018.loc[df_2013_2018['지역명'] == ''].index, axis=0, inplace=True) (ggplot(df_2013_2018, aes(x='연도', y='평당분양가격')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic')) ) (ggplot(df_2013_2018, aes(x='지역명', y='평당분양가격', fill='연도')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic'), figure_size=(12, 6)) ) (ggplot(df_2013_2018) + aes(x='연도', y='평당분양가격') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) df_2013_2018_jeju = df_2013_2018.loc[df_2013_2018['지역명'] == '제주'] (ggplot(df_2013_2018_jeju) + aes(x='연도', y='평당분양가격') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) (ggplot(df_2013_2018) + aes(x='연도', y='평당분양가격') + geom_boxplot() + facet_wrap('지역명') + theme(text=element_text(family='NanumBarunGothic'), axis_text_x=element_text(rotation=70), figure_size=(12, 6)) ) ###Output _____no_output_____ ###Markdown 전국 신규 민간 아파트 분양가격 동향* 2015년 10월부터 2018년 4월까지* 주택분양보증을 받아 분양한 전체 민간 신규아파트 분양가격 동향* https://www.data.go.kr/dataset/3035522/fileData.do ###Code import warnings warnings.filterwarnings('ignore') import pandas as pd import numpy as np import re from plotnine import * %ls data %pwd %ls pre_sale = pd.read_csv('data/price_201806.csv', encoding='euc-kr') pre_sale.shape pre_sale.head() pre_sale.tail() # 분양가격이 숫자 타입이 아닙니다. 숫자 타입으로 변경해줄 필요가 있겠어요. pre_sale.info() pre_sale_price = pre_sale['분양가격(㎡)'] # 연도와 월은 카테고리 형태의 데이터이기 때문에 스트링 형태로 변경 pre_sale['연도'] = pre_sale['연도'].astype(str) pre_sale['월'] = pre_sale['월'].astype(str) # 분양가격의 타입을 숫자to_numeric로 변경해 줍니다. pre_sale['분양가격'] = pd.to_numeric(pre_sale_price, errors='coerce') # 평당 분양가격을 구해볼까요. 평당분양가격의 칼럼을 만듭니다. pre_sale['평당분양가격'] = pre_sale['분양가격'] * 3.3 # 1평인 3.3제곱미터를 곱해줍니다. pre_sale.info() # 분양가격에 결측치가 많이 있어요. null값을 뺀 데이터의 수를 구해봅니다. pre_sale.isnull().sum() pre_sale.describe() # 통계량보기, 평균 1평당 천만원인 것을 확인 # 2017년 데이터만 봅니다. pre_sale_2017 = pre_sale.loc[pre_sale['연도'] == 2017] pre_sale_2017.shape # 같은 값을 갖고 있는 걸로 시도별로 동일하게 데이터가 들어 있는 것을 확인할 수 있습니다. pre_sale['규모구분'].value_counts() ###Output _____no_output_____ ###Markdown 전국평균 분양가격 ###Code # 분양가격만 봤을 때 2015년에서 2018년으로 갈수록 오른 것을 확인할 수 있습니다. pd.options.display.float_format = '{:,.0f}'.format pre_sale.groupby(pre_sale.연도).describe().T ###Output _____no_output_____ ###Markdown 규모별 전국 평균 분양가격 ###Code pre_sale.pivot_table('평당분양가격', '규모구분', '연도') ###Output _____no_output_____ ###Markdown 전국 분양가 변동금액규모구분이 전체로 되어있는 금액으로 연도별 변동금액을 살펴봅니다. ###Code # 규모구분에서 전체로 되어있는 데이터만 가져온다. region_year_all = pre_sale.loc[pre_sale['규모구분'] == '전체'] region_year = region_year_all.pivot_table('평당분양가격', '지역명', '연도').reset_index() # 2015년의 평당분양가격을 int타입으로 변경해주고 2018년데이터와 빼서 변동액 칼럼을 만들어준다. region_year['변동액'] = region_year['2018'] - region_year['2015'].astype(int) max_delta_price = np.max(region_year['변동액'])*1000 min_delta_price = np.min(region_year['변동액'])*1000 mean_delta_price = np.mean(region_year['변동액'])*1000 print('2015년부터 2018년까지 분양가는 계속 상승했으며, 상승액이 가장 큰 지역은 제주이며 상승액은 평당 {:,.0f}원이다.'.format(max_delta_price)) print('상승액이 가장 작은 지역은 울산이며 평당 {:,.0f}원이다.'.format(min_delta_price)) print('전국 평균 변동액은 평당 {:,.0f}원이다.'.format(mean_delta_price)) region_year ###Output 2015년부터 2018년까지 분양가는 계속 상승했으며, 상승액이 가장 큰 지역은 제주이며 상승액은 평당 5,335,750원이다. 상승액이 가장 작은 지역은 울산이며 평당 388,650원이다. 전국 평균 변동액은 평당 1,667,735원이다. ###Markdown 연도별 변동 그래프 ###Code (ggplot(region_year_all, aes(x='지역명', y='평당분양가격', fill='연도')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic')) ) ###Output C:\Anaconda3\lib\site-packages\plotnine\layer.py:450: UserWarning: geom_bar : Removed 17 rows containing missing values. self.data = self.geom.handle_na(self.data) ###Markdown 지역별 평당 분양가격 합계* 아래 데이터로 어느정도 규모로 분양사업이 이루어졌는지를 봅니다.* 전체 데이터로 봤을 때 서울, 경기, 부산, 제주에 분양 사업이 다른 지역에 비해 규모가 큰 것으로 보여지지만 분양가격대비로 나눠볼 필요가 있습니다. ###Code pre_sale.pivot_table('평당분양가격', '규모구분', '지역명') ###Output _____no_output_____ ###Markdown 규모별 ###Code # 서울의 경우 전용면적 85㎡초과 102㎡이하가 분양가격이 가장 비싸게 나옵니다. (ggplot(pre_sale, aes(x='지역명', y='평당분양가격', fill='규모구분')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic')) ) # 위에 그린 그래프를 지역별로 나눠 봅니다. (ggplot(pre_sale) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_bar(stat='identity', position='dodge') + facet_wrap('지역명') + theme(text=element_text(family='NanumBarunGothic'), axis_text_x=element_text(rotation=70), figure_size=(12, 6)) ) # 박스플롯을 그려봅니다. (ggplot(pre_sale, aes(x='지역명', y='평당분양가격', fill='규모구분')) + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic'), figure_size=(12, 6)) ) pre_sale_seoul = pre_sale.loc[pre_sale['지역명']=='서울'] (ggplot(pre_sale_seoul) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) # 2015년에서 2018년까지 분양가 차이가 가장 컸던 제주를 봅니다. (ggplot(pre_sale.loc[pre_sale['지역명']=='제주']) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) # 2015년에서 2018년까지 분양가 차이가 가장 작았던 울산을 봅니다. (ggplot(pre_sale.loc[pre_sale['지역명']=='울산']) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) ###Output C:\Anaconda3\lib\site-packages\plotnine\layer.py:363: UserWarning: stat_boxplot : Removed 38 rows containing non-finite values. data = self.stat.compute_layer(data, params, layout) ###Markdown 2013년 12월~2015년 9월 3.3㎡당 분양가격* 2015년 10월부터 2018년 4월까지 데이터는 평당 분양가로 조정을 해주었었는데 이 데이터는 평당 분양가가 들어가 있다. ###Code df = pd.read_csv('data/price_201509.csv',encoding='euc-kr', skiprows=1, header=0) df.shape # pandas에서 보기 쉽게 컬럼을 변경해 줄 필요가 있다. df year = df.iloc[0] # year에 인덱스0번df을 넣어줌 month = df.iloc[1] # month에 인덱스1번df을 넣어줌 # 결측치가 엄청 많다, 년월을 합쳐줄 필요가 있음 year # 컬럼을 새로 만들어 주기 위해 0번째와 1번째 행을 합쳐준다. 칼럼으로 사용할 year을 만들어줌 for i, y in enumerate(year): if i > 2 and i < 15: year[i] = '2014년 ' + month[i] elif i >= 15: year[i] = '2015년 ' + month[i] elif i == 2 : year[i] = year[i] + ' ' + month[i] elif i == 1: year[i] = '시군구' print(year) df.columns = year # 칼럼을 year로 설정 df = df.drop(df.index[[0,1]]) df # 구분과 시군구도 변경해줘야할 것으로 보임 # 지역 컬럼을 새로 만들어 시도와 시군구를 합쳐준다. df['구분'] = df['구분'].fillna('') df['시군구'] = df['시군구'].fillna('') df['지역'] = df['구분'] + df['시군구'] df['지역'] melt_columns = df.columns.copy() melt_columns df_2013_2015 = pd.melt(df, id_vars=['지역'], value_vars=['2013년 12월', '2014년 1월', '2014년 2월', '2014년 3월', '2014년 4월', '2014년 5월', '2014년 6월', '2014년 7월', '2014년 8월', '2014년 9월', '2014년 10월', '2014년 11월', '2014년 12월', '2015년 1월', '2015년 2월', '2015년 3월', '2015년 4월', '2015년 5월', '2015년 6월', '2015년 7월', '2015년 8월', '2015년 9월']) df_2013_2015.head() df_2013_2015.columns = ['지역', '기간', '분양가'] df_2013_2015.head() df_2013_2015['연도'] = df_2013_2015['기간'].apply(lambda year_month : year_month.split('년')[0]) df_2013_2015['월'] = df_2013_2015['기간'].apply(lambda year_month : re.sub('월', '', year_month.split('년')[1]).strip()) df_2013_2015.head() ###Output _____no_output_____ ###Markdown 지역명 강원과 부산 정리 ###Code df_2013_2015['지역'].value_counts() # 람다 함수를 사용해서 부산과 강원을 변경해준다 df_2013_2015['지역'] = df_2013_2015['지역'].apply(lambda x: re.sub('6대광역시부산','부산', x)) df_2013_2015['지역'] = df_2013_2015['지역'].apply(lambda x: re.sub('지방강원','강원', x)) df_2013_2015['지역'].value_counts() df_2013_2015.describe() df_2013_2015['분양가격'] = df_2013_2015['분양가'].str.replace(',', '').astype(int) # 콤마를 빼주고 int화 시킴 (ggplot(df_2013_2015, aes(x='지역', y='분양가격', fill='연도')) + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic'), figure_size=(12, 6)) ) (ggplot(df_2013_2015, aes(x='지역', y='분양가격', fill='연도')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic'), figure_size=(12, 6)) ) ###Output _____no_output_____ ###Markdown 이제 2013년부터 2018년 4월까지 데이터를 합칠 준비가 됨 ###Code # 규모구분에서 전체만 뽑아서 df_2015_2018이라는 df를 만들어줌 df_2015_2018 = pre_sale.loc[pre_sale['규모구분'] == '전체'] print(df_2015_2018.shape) df_2015_2018.head() df_2013_2015.columns df_2013_2015_prepare = df_2013_2015[['지역', '연도', '월', '분양가격']] df_2013_2015_prepare.head() # 평당분양가를 봐야함! df_2013_2015_prepare.columns = ['지역명', '연도', '월', '평당분양가격'] df_2015_2018.columns df_2015_2018_prepare = df_2015_2018[['지역명', '연도', '월', '평당분양가격']] df_2015_2018_prepare.head() df_2015_2018_prepare.describe() # concat으로 df_2013_2015_prepare의 아래로 df_2015_2018_prepare을 붙여준다. df_2013_2018 = pd.concat([df_2013_2015_prepare, df_2015_2018_prepare]) df_2013_2018.shape df_2013_2018.head() df_2013_2015_region= df_2013_2015_prepare['지역명'].unique() df_2013_2015_region df_2015_2018_region = df_2015_2018_prepare['지역명'].unique() df_2015_2018_region exclude_region = [region for region in df_2013_2015_region if not region in df_2015_2018_region] exclude_region df_2013_2018.shape df_2013_2018.loc[df_2013_2018['지역명'].str.match('전국|수도권')].head() df_2013_2018.drop(df_2013_2018.loc[df_2013_2018['지역명'].str.match('전국|수도권')].index, axis=0, inplace=True) df_2013_2018.drop(df_2013_2018.loc[df_2013_2018['지역명'] == ''].index, axis=0, inplace=True) (ggplot(df_2013_2018, aes(x='연도', y='평당분양가격')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic')) ) (ggplot(df_2013_2018, aes(x='지역명', y='평당분양가격', fill='연도')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic'), figure_size=(12, 6)) ) (ggplot(df_2013_2018) + aes(x='연도', y='평당분양가격') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) # 제주도의 평당분양가격 추이를 박스플롯으로 보기 df_2013_2018_jeju = df_2013_2018.loc[df_2013_2018['지역명'] == '제주'] (ggplot(df_2013_2018_jeju) + aes(x='연도', y='평당분양가격') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) (ggplot(df_2013_2018) + aes(x='연도', y='평당분양가격') + geom_boxplot() + facet_wrap('지역명') + theme(text=element_text(family='NanumBarunGothic'), axis_text_x=element_text(rotation=70), figure_size=(12, 12)) ) ###Output C:\Anaconda3\lib\site-packages\plotnine\layer.py:363: UserWarning: stat_boxplot : Removed 17 rows containing non-finite values. data = self.stat.compute_layer(data, params, layout) ###Markdown 전국 신규 민간 아파트 분양가격 동향* 2015년 10월부터 2018년 4월까지* 주택분양보증을 받아 분양한 전체 민간 신규아파트 분양가격 동향* https://www.data.go.kr/dataset/3035522/fileData.do ###Code import warnings warnings.filterwarnings('ignore') import pandas as pd import numpy as np import re from plotnine import * %ls data pre_sale = pd.read_csv('data/201806_apt_price.csv', encoding='euc-kr') pre_sale.shape pre_sale.head() pre_sale.tail() # 분양가격이 숫자 타입이 아닙니다. 숫자 타입으로 변경해줄 필요가 있겠어요. pre_sale.info() pre_sale_price = pre_sale['분양가격(㎡)'] # 연도와 월은 카테고리 형태의 데이터이기 때문에 스트링 형태로 변경 pre_sale['연도'] = pre_sale['연도'].astype(str) pre_sale['월'] = pre_sale['월'].astype(str) # 분양가격의 타입을 숫자로 변경해 줍니다. pre_sale['분양가격'] = pd.to_numeric(pre_sale_price, errors='coerce') # 평당 분양가격을 구해볼까요. pre_sale['평당분양가격'] = pre_sale['분양가격'] * 3.3 pre_sale.info() # 분양가격에 결측치가 많이 있어요. pre_sale.isnull().sum() pre_sale.describe() # 2017년 데이터만 봅니다. pre_sale_2017 = pre_sale.loc[pre_sale['연도'] == 2017] pre_sale_2017.shape # 같은 값을 갖고 있는 걸로 시도별로 동일하게 데이터가 들어 있는 것을 확인할 수 있습니다. pre_sale['규모구분'].value_counts() ###Output _____no_output_____ ###Markdown 전국평균 분양가격 ###Code # 분양가격만 봤을 때 2015년에서 2018년으로 갈수록 오른 것을 확인할 수 있습니다. pd.options.display.float_format = '{:,.0f}'.format pre_sale.groupby(pre_sale.연도).describe().T ###Output _____no_output_____ ###Markdown 규모별 전국 평균 분양가격 ###Code pre_sale.pivot_table('평당분양가격', '규모구분', '연도') ###Output _____no_output_____ ###Markdown 전국 분양가 변동금액규모구분이 전체로 되어있는 금액으로 연도별 변동금액을 살펴봅니다. ###Code # 규모구분에서 전체로 되어있는 데이터만 가져온다. region_year_all = pre_sale.loc[pre_sale['규모구분'] == '전체'] region_year = region_year_all.pivot_table('평당분양가격', '지역명', '연도').reset_index() region_year['변동액'] = region_year['2018'] - region_year['2015'] # 3년동안 가격이 어떻게 변했는지 max_delta_price = np.max(region_year['변동액'].astype(int)*1000) min_delta_price = np.min(region_year['변동액'].astype(int)*1000) mean_delta_price = np.mean(region_year['변동액'].astype(int)*1000) print('2015년부터 2018년까지 분양가는 계속 상승했으며, 상승액이 가장 큰 지역은 제주이며 상승액은 평당 {:,.0f}원이다.'.format(max_delta_price)) print('상승액이 가장 작은 지역은 울산이며 평당 {:,.0f}원이다.'.format(min_delta_price)) print('전국 평균 변동액은 평당 {:,.0f}원이다.'.format(mean_delta_price)) region_year ###Output 2015년부터 2018년까지 분양가는 계속 상승했으며, 상승액이 가장 큰 지역은 제주이며 상승액은 평당 5,335,000원이다. 상승액이 가장 작은 지역은 울산이며 평당 387,000원이다. 전국 평균 변동액은 평당 1,666,647원이다. ###Markdown 연도별 변동 그래프 ###Code (ggplot(region_year_all, aes(x='지역명', y='평당분양가격', fill='연도')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic')) ) ###Output C:\Users\wolever\Anaconda3\lib\site-packages\plotnine\layer.py:450: UserWarning: geom_bar : Removed 17 rows containing missing values. self.data = self.geom.handle_na(self.data) ###Markdown 지역별 평당 분양가격 합계* 아래 데이터로 어느정도 규모로 분양사업이 이루어졌는지를 봅니다.* 전체 데이터로 봤을 때 서울, 경기, 부산, 제주에 분양 사업이 다른 지역에 비해 규모가 큰 것으로 보여지지만 분양가격대비로 나눠볼 필요가 있습니다. ###Code pre_sale.pivot_table('평당분양가격', '규모구분', '지역명') ###Output _____no_output_____ ###Markdown 규모별 ###Code # 서울의 경우 전용면적 85㎡초과 102㎡이하가 분양가격이 가장 비싸게 나옵니다. (ggplot(pre_sale, aes(x='지역명', y='평당분양가격', fill='규모구분')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic')) ) # 위에 그린 그래프를 지역별로 나눠 봅니다. (ggplot(pre_sale) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_bar(stat='identity', position='dodge') + facet_wrap('지역명') + theme(text=element_text(family='NanumBarunGothic'), axis_text_x=element_text(rotation=70), figure_size=(12, 6)) ) # 박스플롯을 그려봅니다. (ggplot(pre_sale, aes(x='지역명', y='평당분양가격', fill='규모구분')) + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic'), figure_size=(12, 6)) ) pre_sale_seoul = pre_sale.loc[pre_sale['지역명']=='서울'] (ggplot(pre_sale_seoul) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) # 2015년에서 2018년까지 분양가 차이가 가장 컸던 제주를 봅니다. (ggplot(pre_sale.loc[pre_sale['지역명']=='제주']) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) # 2015년에서 2018년까지 분양가 차이가 가장 작았던 울산을 봅니다. (ggplot(pre_sale.loc[pre_sale['지역명']=='울산']) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) ###Output C:\Users\wolever\Anaconda3\lib\site-packages\plotnine\layer.py:363: UserWarning: stat_boxplot : Removed 38 rows containing non-finite values. data = self.stat.compute_layer(data, params, layout) ###Markdown 2013년 12월~2015년 9월 3.3㎡당 분양가격* 2015년 10월부터 2018년 4월까지 데이터는 평당 분양가로 조정을 해주었었는데 이 데이터는 평당 분양가가 들어가 있다. ###Code df = pd.read_csv('data/201509_apt_price_33.csv', \ encoding='euc-kr', skiprows=1, header=0) df.shape # pandas에서 보기 쉽게 컬럼을 변경해 줄 필요가 있다. df year = df.iloc[0] month = df.iloc[1] # 결측치를 채워준다. year # 컬럼을 새로 만들어 주기 위해 0번째와 1번째 행을 합쳐준다. for i, y in enumerate(year): if i > 2 and i < 15: year[i] = '2014년 ' + month[i] elif i >= 15: year[i] = '2015년 ' + month[i] elif i == 2 : year[i] = year[i] + ' ' + month[i] elif i == 1: year[i] = '시군구' print(year) df.columns = year df = df.drop(df.index[[0,1]]) df # 지역 컬럼을 새로 만들어 시도와 시군구를 합쳐준다. df['구분'] = df['구분'].fillna('') df['시군구'] = df['시군구'].fillna('') df['지역'] = df['구분'] + df['시군구'] df['지역'] melt_columns = df.columns.copy() melt_columns df_2013_2015 = pd.melt(df, id_vars=['지역'], value_vars=['2013년 12월', '2014년 1월', '2014년 2월', '2014년 3월', '2014년 4월', '2014년 5월', '2014년 6월', '2014년 7월', '2014년 8월', '2014년 9월', '2014년 10월', '2014년 11월', '2014년 12월', '2015년 1월', '2015년 2월', '2015년 3월', '2015년 4월', '2015년 5월', '2015년 6월', '2015년 7월', '2015년 8월', '2015년 9월']) df_2013_2015.head() df_2013_2015.columns = ['지역', '기간', '분양가'] df_2013_2015.head() df_2013_2015['연도'] = df_2013_2015['기간'].apply(lambda year_month : year_month.split('년')[0]) df_2013_2015['월'] = df_2013_2015['기간'].apply(lambda year_month : re.sub('월', '', year_month.split('년')[1]).strip()) df_2013_2015.head() ###Output _____no_output_____ ###Markdown 지역명 강원과 부산 정리 ###Code df_2013_2015['지역'].value_counts() df_2013_2015['지역'] = df_2013_2015['지역'].apply(lambda x: re.sub('6대광역시부산','부산', x)) df_2013_2015['지역'] = df_2013_2015['지역'].apply(lambda x: re.sub('지방강원','강원', x)) df_2013_2015['지역'].value_counts() df_2013_2015.describe() df_2013_2015['분양가격'] = df_2013_2015['분양가'].str.replace(',', '').astype(int) # 분양가격은 콤마를 빼주고 인트로 변경해 줌. (ggplot(df_2013_2015, aes(x='지역', y='분양가격', fill='연도')) + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic'), figure_size=(12, 6)) ) (ggplot(df_2013_2015, aes(x='지역', y='분양가격', fill='연도')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic'), figure_size=(12, 6)) ) ###Output _____no_output_____ ###Markdown 이제 2013년부터 2018년 4월까지 데이터를 합칠 준비가 됨 ###Code df_2015_2018 = pre_sale.loc[pre_sale['규모구분'] == '전체'] print(df_2015_2018.shape) df_2015_2018.head() df_2013_2015.columns df_2013_2015_prepare = df_2013_2015[['지역', '연도', '월', '분양가격']] df_2013_2015_prepare.head() df_2013_2015_prepare.columns = ['지역명', '연도', '월', '평당분양가격'] df_2015_2018.columns df_2015_2018_prepare = df_2015_2018[['지역명', '연도', '월', '평당분양가격']] df_2015_2018_prepare.head() df_2015_2018_prepare.describe() df_2013_2018 = pd.concat([df_2013_2015_prepare, df_2015_2018_prepare]) df_2013_2018.shape df_2013_2018.head() df_2013_2015_region= df_2013_2015_prepare['지역명'].unique() df_2013_2015_region df_2015_2018_region = df_2015_2018_prepare['지역명'].unique() df_2015_2018_region exclude_region = [region for region in df_2013_2015_region if not region in df_2015_2018_region] # 서로 겹치는 지역명만을 찾아서 drop시켜 줌. exclude_region df_2013_2018.shape df_2013_2018.loc[df_2013_2018['지역명'].str.match('전국|수도권')].head() df_2013_2018.drop(df_2013_2018.loc[df_2013_2018['지역명'].str.match('전국|수도권')].index, axis=0, inplace=True) df_2013_2018.drop(df_2013_2018.loc[df_2013_2018['지역명'] == ''].index, axis=0, inplace=True) (ggplot(df_2013_2018, aes(x='연도', y='평당분양가격')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic')) ) (ggplot(df_2013_2018, aes(x='지역명', y='평당분양가격', fill='연도')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic'), figure_size=(12, 6)) ) (ggplot(df_2013_2018) + aes(x='연도', y='평당분양가격') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) df_2013_2018_jeju = df_2013_2018.loc[df_2013_2018['지역명'] == '제주'] (ggplot(df_2013_2018_jeju) + aes(x='연도', y='평당분양가격') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) (ggplot(df_2013_2018) + aes(x='연도', y='평당분양가격') + geom_boxplot() + facet_wrap('지역명') + theme(text=element_text(family='NanumBarunGothic'), axis_text_x=element_text(rotation=70), figure_size=(12, 12)) ) ###Output C:\Users\wolever\Anaconda3\lib\site-packages\plotnine\layer.py:363: UserWarning: stat_boxplot : Removed 17 rows containing non-finite values. data = self.stat.compute_layer(data, params, layout) ###Markdown 전국 신규 민간 아파트 분양가격 동향* 2015년 10월부터 2018년 4월까지* 주택분양보증을 받아 분양한 전체 민간 신규아파트 분양가격 동향* https://www.data.go.kr/dataset/3035522/fileData.do ###Code import warnings warnings.filterwarnings('ignore') import pandas as pd import numpy as np import re from plotnine import * ls open-data-apt pwd() pre_sale = pd.read_csv('county_mean_price_201806.csv', encoding='euc-kr') pre_sale.shape pre_sale.head() pre_sale.tail() # 분양가격이 숫자 타입이 아닙니다. 숫자 타입으로 변경해줄 필요가 있겠어요. pre_sale.info() pre_sale_price = pre_sale['분양가격(㎡)'] # 연도와 월은 카테고리 형태의 데이터이기 때문에 스트링 형태로 변경 pre_sale['연도'] = pre_sale['연도'].astype(str) pre_sale['월'] = pre_sale['월'].astype(str) # 분양가격의 타입을 숫자로 변경해 줍니다. pre_sale['분양가격'] = pd.to_numeric(pre_sale_price, errors='coerce') # 평당 분양가격을 구해볼까요. pre_sale['평당분양가격'] = pre_sale['분양가격'] * 3.3 pre_sale.info() # 분양가격에 결측치가 많이 있어요. pre_sale.isnull().sum() pre_sale.describe() # 2017년 데이터만 봅니다. pre_sale_2017 = pre_sale.loc[pre_sale['연도'] == 2017] pre_sale_2017.shape # 같은 값을 갖고 있는 걸로 시도별로 동일하게 데이터가 들어 있는 것을 확인할 수 있습니다. pre_sale['규모구분'].value_counts() ###Output _____no_output_____ ###Markdown 전국평균 분양가격 ###Code # 분양가격만 봤을 때 2015년에서 2018년으로 갈수록 오른 것을 확인할 수 있습니다. pd.options.display.float_format = '{:,.0f}'.format pre_sale.groupby(pre_sale.연도).describe().T ###Output _____no_output_____ ###Markdown 규모별 전국 평균 분양가격 ###Code pre_sale.pivot_table('평당분양가격', '규모구분', '연도') ###Output _____no_output_____ ###Markdown 전국 분양가 변동금액규모구분이 전체로 되어있는 금액으로 연도별 변동금액을 살펴봅니다. ###Code # 규모구분에서 전체로 되어있는 데이터만 가져온다. region_year_all = pre_sale.loc[pre_sale['규모구분'] == '전체'] region_year = region_year_all.pivot_table('평당분양가격', '지역명', '연도').reset_index() region_year['변동액'] = region_year['2018'] - region_year['2015'] max_delta_price = np.max(region_year['변동액']).astype(int)*1000 min_delta_price = np.min(region_year['변동액']).astype(int)*1000 mean_delta_price = np.mean(region_year['변동액'])*1000 print('2015년부터 2018년까지 분양가는 계속 상승했으며, 상승액이 가장 큰 지역은 제주이며 상승액은 평당 {:,.0f}원이다.'.format(max_delta_price)) print('상승액이 가장 작은 지역은 울산이며 평당 {:,.0f}원이다.'.format(min_delta_price)) print('전국 평균 변동액은 평당 {:,.0f}원이다.'.format(mean_delta_price)) region_year ###Output 2015년부터 2018년까지 분양가는 계속 상승했으며, 상승액이 가장 큰 지역은 제주이며 상승액은 평당 5,335,000원이다. 상승액이 가장 작은 지역은 울산이며 평당 387,000원이다. 전국 평균 변동액은 평당 1,667,276원이다. ###Markdown 연도별 변동 그래프 ###Code (ggplot(region_year_all, aes(x='지역명', y='평당분양가격', fill='연도')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic')) ) ###Output _____no_output_____ ###Markdown 지역별 평당 분양가격 합계* 아래 데이터로 어느정도 규모로 분양사업이 이루어졌는지를 봅니다.* 전체 데이터로 봤을 때 서울, 경기, 부산, 제주에 분양 사업이 다른 지역에 비해 규모가 큰 것으로 보여지지만 분양가격대비로 나눠볼 필요가 있습니다. ###Code pre_sale.pivot_table('평당분양가격', '규모구분', '지역명') ###Output _____no_output_____ ###Markdown 규모별 ###Code # 서울의 경우 전용면적 85㎡초과 102㎡이하가 분양가격이 가장 비싸게 나옵니다. (ggplot(pre_sale, aes(x='지역명', y='평당분양가격', fill='규모구분')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic')) ) # 위에 그린 그래프를 지역별로 나눠 봅니다. (ggplot(pre_sale) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_bar(stat='identity', position='dodge') + facet_wrap('지역명') + theme(text=element_text(family='NanumBarunGothic'), axis_text_x=element_text(rotation=70), figure_size=(12, 6)) ) # 박스플롯을 그려봅니다. (ggplot(pre_sale, aes(x='지역명', y='평당분양가격', fill='규모구분')) + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic'), figure_size=(12, 6)) ) pre_sale_seoul = pre_sale.loc[pre_sale['지역명']=='서울'] (ggplot(pre_sale_seoul) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) # 2015년에서 2018년까지 분양가 차이가 가장 컸던 제주를 봅니다. (ggplot(pre_sale.loc[pre_sale['지역명']=='제주']) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) # 2015년에서 2018년까지 분양가 차이가 가장 작았던 울산을 봅니다. (ggplot(pre_sale.loc[pre_sale['지역명']=='울산']) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) ###Output _____no_output_____ ###Markdown 2013년 12월~2015년 9월 3.3㎡당 분양가격* 2015년 10월부터 2018년 4월까지 데이터는 평당 분양가로 조정을 해주었었는데 이 데이터는 평당 분양가가 들어가 있다. ###Code df = pd.read_csv('area_3.3_mean_price_thousand_won_201509.csv', \ encoding='euc-kr', skiprows=1, header=0) df.shape # pandas에서 보기 쉽게 컬럼을 변경해 줄 필요가 있다. df year = df.iloc[0] month = df.iloc[1] # 결측치를 채워준다. year # 컬럼을 새로 만들어 주기 위해 0번째와 1번째 행을 합쳐준다. for i, y in enumerate(year): if i > 2 and i < 15: year[i] = '2014년 ' + month[i] elif i >= 15: year[i] = '2015년 ' + month[i] elif i == 2 : year[i] = year[i] + ' ' + month[i] elif i == 1: year[i] = '시군구' print(year) df.columns = year df = df.drop(df.index[[0,1]]) df # 지역 컬럼을 새로 만들어 시도와 시군구를 합쳐준다. df['구분'] = df['구분'].fillna('') df['시군구'] = df['시군구'].fillna('') df['지역'] = df['구분'] + df['시군구'] df['지역'] melt_columns = df.columns.copy() melt_columns df_2013_2015 = pd.melt(df, id_vars=['지역'], value_vars=['2013년 12월', '2014년 1월', '2014년 2월', '2014년 3월', '2014년 4월', '2014년 5월', '2014년 6월', '2014년 7월', '2014년 8월', '2014년 9월', '2014년 10월', '2014년 11월', '2014년 12월', '2015년 1월', '2015년 2월', '2015년 3월', '2015년 4월', '2015년 5월', '2015년 6월', '2015년 7월', '2015년 8월', '2015년 9월']) df_2013_2015.head() df_2013_2015.columns = ['지역', '기간', '분양가'] df_2013_2015.head() df_2013_2015['연도'] = df_2013_2015['기간'].apply(lambda year_month : year_month.split('년')[0]) df_2013_2015['월'] = df_2013_2015['기간'].apply(lambda year_month : re.sub('월', '', year_month.split('년')[1]).strip()) df_2013_2015.head() ###Output _____no_output_____ ###Markdown 지역명 강원과 부산 정리 ###Code df_2013_2015['지역'].value_counts() df_2013_2015['지역'] = df_2013_2015['지역'].apply(lambda x: re.sub('6대광역시부산','부산', x)) df_2013_2015['지역'] = df_2013_2015['지역'].apply(lambda x: re.sub('지방강원','강원', x)) df_2013_2015['지역'].value_counts() df_2013_2015.describe() df_2013_2015['분양가격'] = df_2013_2015['분양가'].str.replace(',', '').astype(int) (ggplot(df_2013_2015, aes(x='지역', y='분양가격', fill='연도')) + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic'), figure_size=(12, 6)) ) (ggplot(df_2013_2015, aes(x='지역', y='분양가격', fill='연도')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic'), figure_size=(12, 6)) ) ###Output _____no_output_____ ###Markdown 이제 2013년부터 2018년 4월까지 데이터를 합칠 준비가 됨 ###Code df_2015_2018 = pre_sale.loc[pre_sale['규모구분'] == '전체'] print(df_2015_2018.shape) df_2015_2018.head() df_2013_2015.columns df_2013_2015_prepare = df_2013_2015[['지역', '연도', '월', '분양가격']] df_2013_2015_prepare.head() df_2013_2015_prepare.columns = ['지역명', '연도', '월', '평당분양가격'] df_2015_2018.columns df_2015_2018_prepare = df_2015_2018[['지역명', '연도', '월', '평당분양가격']] df_2015_2018_prepare.head() df_2015_2018_prepare.describe() df_2013_2018 = pd.concat([df_2013_2015_prepare, df_2015_2018_prepare]) df_2013_2018.shape df_2013_2018.head() df_2013_2015_region= df_2013_2015_prepare['지역명'].unique() df_2013_2015_region df_2015_2018_region = df_2015_2018_prepare['지역명'].unique() df_2015_2018_region exclude_region = [region for region in df_2013_2015_region if not region in df_2015_2018_region] exclude_region df_2013_2018.shape df_2013_2018.loc[df_2013_2018['지역명'].str.match('전국|수도권')].head() df_2013_2018.drop(df_2013_2018.loc[df_2013_2018['지역명'].str.match('전국|수도권')].index, axis=0, inplace=True) df_2013_2018.drop(df_2013_2018.loc[df_2013_2018['지역명'] == ''].index, axis=0, inplace=True) (ggplot(df_2013_2018, aes(x='연도', y='평당분양가격')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic')) ) (ggplot(df_2013_2018, aes(x='지역명', y='평당분양가격', fill='연도')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic'), figure_size=(12, 6)) ) (ggplot(df_2013_2018) + aes(x='연도', y='평당분양가격') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) df_2013_2018_jeju = df_2013_2018.loc[df_2013_2018['지역명'] == '제주'] (ggplot(df_2013_2018_jeju) + aes(x='연도', y='평당분양가격') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) (ggplot(df_2013_2018) + aes(x='연도', y='평당분양가격') + geom_boxplot() + facet_wrap('지역명') + theme(text=element_text(family='NanumBarunGothic'), axis_text_x=element_text(rotation=70), figure_size=(12, 12)) ) ###Output _____no_output_____ ###Markdown 전국 신규 민간 아파트 분양가격 동향* 2015년 10월부터 2018년 4월까지* 주택분양보증을 받아 분양한 전체 민간 신규아파트 분양가격 동향* https://www.data.go.kr/dataset/3035522/fileData.do ###Code import warnings warnings.filterwarnings('ignore') import pandas as pd import numpy as np import re from plotnine import * %ls data pre_sale = pd.read_csv('data/전국 평균 분양가격(2018.6월).csv', encoding='euc-kr') pre_sale.shape pre_sale.head() pre_sale.tail() # 분양가격이 숫자 타입이 아닙니다. 숫자 타입으로 변경해줄 필요가 있겠어요. pre_sale.info() pre_sale_price = pre_sale['분양가격(㎡)'] # 연도와 월은 카테고리 형태의 데이터이기 때문에 스트링 형태로 변경 # 따로 연산할 필요 없으므로. pre_sale['연도'] = pre_sale['연도'].astype(str) pre_sale['월'] = pre_sale['월'].astype(str) # 분양가격의 타입을 숫자로 변경해 줍니다. # astype 이나 to_numeric 을 이용해서 숫자로 변경할 수 있다. # 분양가격이라는 새 column 만든다. 분양가격(m2)에 있던 값을 누메릭으로 넣어 준다. pre_sale['분양가격'] = pd.to_numeric(pre_sale_price, errors='coerce') # 평당 분양가격을 구해볼까요. # 평당분양가격이라는 새 column 만들고, 분양가격에 3.3 곱해서 value 들을 넣어준다. pre_sale['평당분양가격'] = pre_sale['분양가격'] * 3.3 pre_sale.info() # 분양가격에 결측치가 많이 있어요. pre_sale.isnull().sum() pre_sale.describe() # 2017년 데이터만 봅니다. pre_sale_2017 = pre_sale.loc[pre_sale['연도'] == 2017] pre_sale_2017.shape # 같은 값을 갖고 있는 걸로 시도별로 동일하게 데이터가 들어 있는 것을 확인할 수 있습니다. pre_sale['규모구분'].value_counts() ###Output _____no_output_____ ###Markdown 전국평균 분양가격 ###Code # 분양가격만 봤을 때 2015년에서 2018년으로 갈수록 오른 것을 확인할 수 있습니다. pd.options.display.float_format = '{:,.0f}'.format pre_sale.groupby(pre_sale.연도).describe().T ###Output _____no_output_____ ###Markdown 규모별 전국 평균 분양가격 ###Code pre_sale.pivot_table('평당분양가격', '규모구분', '연도') ###Output _____no_output_____ ###Markdown 전국 분양가 변동금액규모구분이 전체로 되어있는 금액으로 연도별 변동금액을 살펴봅니다. ###Code # 규모구분에서 전체로 되어있는 데이터만 가져온다. region_year_all = pre_sale.loc[pre_sale['규모구분'] == '전체'] region_year = region_year_all.pivot_table('평당분양가격', '지역명', '연도').reset_index() region_year['변동액'] = region_year['2018'] - region_year['2015'].astype(int) max_delta_price = np.max(region_year['변동액'])*1000 min_delta_price = np.min(region_year['변동액'])*1000 mean_delta_price = np.mean(region_year['변동액'])*1000 print('2015년부터 2018년까지 분양가는 계속 상승했으며, 상승액이 가장 큰 지역은 제주이며 상승액은 평당 {:,.0f}원이다.'.format(max_delta_price)) print('상승액이 가장 작은 지역은 울산이며 평당 {:,.0f}원이다.'.format(min_delta_price)) print('전국 평균 변동액은 평당 {:,.0f}원이다.'.format(mean_delta_price)) region_year ###Output 2015년부터 2018년까지 분양가는 계속 상승했으며, 상승액이 가장 큰 지역은 제주이며 상승액은 평당 5,335,750원이다. 상승액이 가장 작은 지역은 울산이며 평당 388,650원이다. 전국 평균 변동액은 평당 1,667,735원이다. ###Markdown 연도별 변동 그래프 ###Code (ggplot(region_year_all, aes(x='지역명', y='평당분양가격', fill='연도')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='Noto Sans CJK KR')) ) ###Output /anaconda3/lib/python3.6/site-packages/plotnine/layer.py:450: UserWarning: geom_bar : Removed 17 rows containing missing values. self.data = self.geom.handle_na(self.data) ###Markdown 지역별 평당 분양가격 합계* 아래 데이터로 어느정도 규모로 분양사업이 이루어졌는지를 봅니다.* 전체 데이터로 봤을 때 서울, 경기, 부산, 제주에 분양 사업이 다른 지역에 비해 규모가 큰 것으로 보여지지만 분양가격대비로 나눠볼 필요가 있습니다. ###Code pre_sale.pivot_table('평당분양가격', '규모구분', '지역명') ###Output _____no_output_____ ###Markdown 규모별 ###Code # 서울의 경우 전용면적 85㎡초과 102㎡이하가 분양가격이 가장 비싸게 나옵니다. (ggplot(pre_sale, aes(x='지역명', y='평당분양가격', fill='규모구분')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='Noto Sans CJK KR')) ) # 위에 그린 그래프를 지역별로 나눠 봅니다. (ggplot(pre_sale) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_bar(stat='identity', position='dodge') + facet_wrap('지역명') + theme(text=element_text(family='Noto Sans CJK KR'), axis_text_x=element_text(rotation=70), figure_size=(12, 6)) ) # 박스플롯을 그려봅니다. (ggplot(pre_sale, aes(x='지역명', y='평당분양가격', fill='규모구분')) + geom_boxplot() + theme(text=element_text(family='Noto Sans CJK KR'), figure_size=(12, 6)) ) pre_sale_seoul = pre_sale.loc[pre_sale['지역명']=='서울'] (ggplot(pre_sale_seoul) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_boxplot() + theme(text=element_text(family='Noto Sans CJK KR')) ) # 2015년에서 2018년까지 분양가 차이가 가장 컸던 제주를 봅니다. (ggplot(pre_sale.loc[pre_sale['지역명']=='제주']) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_boxplot() + theme(text=element_text(family='Noto Sans CJK KR')) ) # 2015년에서 2018년까지 분양가 차이가 가장 작았던 울산을 봅니다. (ggplot(pre_sale.loc[pre_sale['지역명']=='울산']) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_boxplot() + theme(text=element_text(family='Noto Sans CJK KR')) ) ###Output /anaconda3/lib/python3.6/site-packages/plotnine/layer.py:363: UserWarning: stat_boxplot : Removed 38 rows containing non-finite values. data = self.stat.compute_layer(data, params, layout) ###Markdown 2013년 12월~2015년 9월 3.3㎡당 분양가격* 2015년 10월부터 2018년 4월까지 데이터는 평당 분양가로 조정을 해주었었는데 이 데이터는 평당 분양가가 들어가 있다. ###Code %ls data df = pd.read_csv('data/지역별 3.3㎡당 평균 분양가격(천원)_15.09월.csv', \ encoding='euc-kr', skiprows=1, header=0) df.shape # pandas에서 보기 쉽게 컬럼을 변경해 줄 필요가 있다. df year = df.iloc[0] month = df.iloc[1] # 결측치를 채워준다. year # 컬럼을 새로 만들어 주기 위해 0번째와 1번째 행을 합쳐준다. for i, y in enumerate(year): if i > 2 and i < 15: year[i] = '2014년 ' + month[i] elif i >= 15: year[i] = '2015년 ' + month[i] elif i == 2 : year[i] = year[i] + ' ' + month[i] elif i == 1: year[i] = '시군구' print(year) df.columns = year df = df.drop(df.index[[0,1]]) df # 지역 컬럼을 새로 만들어 시도와 시군구를 합쳐준다. df['구분'] = df['구분'].fillna('') df['시군구'] = df['시군구'].fillna('') df['지역'] = df['구분'] + df['시군구'] df['지역'] melt_columns = df.columns.copy() melt_columns df_2013_2015 = pd.melt(df, id_vars=['지역'], value_vars=['2013년 12월', '2014년 1월', '2014년 2월', '2014년 3월', '2014년 4월', '2014년 5월', '2014년 6월', '2014년 7월', '2014년 8월', '2014년 9월', '2014년 10월', '2014년 11월', '2014년 12월', '2015년 1월', '2015년 2월', '2015년 3월', '2015년 4월', '2015년 5월', '2015년 6월', '2015년 7월', '2015년 8월', '2015년 9월']) df_2013_2015.head() df_2013_2015.columns = ['지역', '기간', '분양가'] df_2013_2015.head() df_2013_2015['연도'] = df_2013_2015['기간'].apply(lambda year_month : year_month.split('년')[0]) df_2013_2015['월'] = df_2013_2015['기간'].apply(lambda year_month : re.sub('월', '', year_month.split('년')[1]).strip()) df_2013_2015.head() ###Output _____no_output_____ ###Markdown 지역명 강원과 부산 정리 ###Code df_2013_2015['지역'].value_counts() df_2013_2015['지역'] = df_2013_2015['지역'].apply(lambda x: re.sub('6대광역시부산','부산', x)) df_2013_2015['지역'] = df_2013_2015['지역'].apply(lambda x: re.sub('지방강원','강원', x)) df_2013_2015['지역'].value_counts() df_2013_2015.describe() df_2013_2015['분양가격'] = df_2013_2015['분양가'].str.replace(',', '').astype(int) (ggplot(df_2013_2015, aes(x='지역', y='분양가격', fill='연도')) + geom_boxplot() + theme(text=element_text(family='Noto Sans CJK KR'), figure_size=(12, 6)) ) (ggplot(df_2013_2015, aes(x='지역', y='분양가격', fill='연도')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='Noto Sans CJK KR'), figure_size=(12, 6)) ) ###Output _____no_output_____ ###Markdown 이제 2013년부터 2018년 4월까지 데이터를 합칠 준비가 됨 ###Code df_2015_2018 = pre_sale.loc[pre_sale['규모구분'] == '전체'] print(df_2015_2018.shape) df_2015_2018.head() df_2013_2015.columns df_2013_2015_prepare = df_2013_2015[['지역', '연도', '월', '분양가격']] df_2013_2015_prepare.head() df_2013_2015_prepare.columns = ['지역명', '연도', '월', '평당분양가격'] df_2015_2018.columns df_2015_2018_prepare = df_2015_2018[['지역명', '연도', '월', '평당분양가격']] df_2015_2018_prepare.head() df_2015_2018_prepare.describe() df_2013_2018 = pd.concat([df_2013_2015_prepare, df_2015_2018_prepare]) df_2013_2018.shape df_2013_2018.head() df_2013_2015_region= df_2013_2015_prepare['지역명'].unique() df_2013_2015_region df_2015_2018_region = df_2015_2018_prepare['지역명'].unique() df_2015_2018_region exclude_region = [region for region in df_2013_2015_region if not region in df_2015_2018_region] exclude_region df_2013_2018.shape df_2013_2018.loc[df_2013_2018['지역명'].str.match('전국|수도권')].head() df_2013_2018.drop(df_2013_2018.loc[df_2013_2018['지역명'].str.match('전국|수도권')].index, axis=0, inplace=True) df_2013_2018.drop(df_2013_2018.loc[df_2013_2018['지역명'] == ''].index, axis=0, inplace=True) (ggplot(df_2013_2018, aes(x='연도', y='평당분양가격')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='Noto Sans CJK KR')) ) (ggplot(df_2013_2018, aes(x='지역명', y='평당분양가격', fill='연도')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='Noto Sans CJK KR'), figure_size=(12, 6)) ) (ggplot(df_2013_2018) + aes(x='연도', y='평당분양가격') + geom_boxplot() + theme(text=element_text(family='Noto Sans CJK KR')) ) df_2013_2018_jeju = df_2013_2018.loc[df_2013_2018['지역명'] == '제주'] (ggplot(df_2013_2018_jeju) + aes(x='연도', y='평당분양가격') + geom_boxplot() + theme(text=element_text(family='Noto Sans CJK KR')) ) (ggplot(df_2013_2018) + aes(x='연도', y='평당분양가격') + geom_boxplot() + facet_wrap('지역명') + theme(text=element_text(family='Noto Sans CJK KR'), axis_text_x=element_text(rotation=70), figure_size=(12, 6)) ) ###Output /anaconda3/lib/python3.6/site-packages/plotnine/layer.py:363: UserWarning: stat_boxplot : Removed 17 rows containing non-finite values. data = self.stat.compute_layer(data, params, layout) ###Markdown 전국 신규 민간 아파트 분양가격 동향* 2015년 10월부터 2018년 4월까지* 주택분양보증을 받아 분양한 전체 민간 신규아파트 분양가격 동향* https://www.data.go.kr/dataset/3035522/fileData.do ###Code import warnings warnings.filterwarnings('ignore') import pandas as pd import numpy as np import re from plotnine import * %ls data # 데이터를 불러오지 못할 때는 파일 이름에서 한글을 지워준다. pre_sale = pd.read_csv('data/2018.06.csv', encoding='euc-kr') pre_sale.shape pre_sale.head() pre_sale.tail() # 분양가격이 숫자 타입이 아닙니다. 숫자 타입으로 변경해줄 필요가 있겠어요. pre_sale.info() pre_sale_price = pre_sale['분양가격(㎡)'] # 연도와 월은 카테고리 형태의 데이터이기 때문에 스트링 형태로 변경 pre_sale['연도'] = pre_sale['연도'].astype(str) pre_sale['월'] = pre_sale['월'].astype(str) # 분양가격의 타입을 숫자로 변경해 줍니다. pre_sale['분양가격'] = pd.to_numeric(pre_sale_price, errors='coerce') # 평당 분양가격을 구해볼까요. pre_sale['평당분양가격'] = pre_sale['분양가격'] * 3.3 pre_sale.info() # 분양가격에 결측치가 많이 있어요. pre_sale.isnull().sum() pre_sale.describe() # 2017년 데이터만 봅니다. pre_sale_2017 = pre_sale.loc[pre_sale['연도'] == 2017] pre_sale_2017.shape # 같은 값을 갖고 있는 걸로 시도별로 동일하게 데이터가 들어 있는 것을 확인할 수 있습니다. pre_sale['규모구분'].value_counts() ###Output _____no_output_____ ###Markdown 전국평균 분양가격 ###Code # 분양가격만 봤을 때 2015년에서 2018년으로 갈수록 오른 것을 확인할 수 있습니다. pd.options.display.float_format = '{:,.0f}'.format pre_sale.groupby(pre_sale.연도).describe().T ###Output _____no_output_____ ###Markdown 규모별 전국 평균 분양가격 ###Code pre_sale.pivot_table('평당분양가격', '규모구분', '연도') ###Output _____no_output_____ ###Markdown 전국 분양가 변동금액규모구분이 전체로 되어있는 금액으로 연도별 변동금액을 살펴봅니다. ###Code # 규모구분에서 전체로 되어있는 데이터만 가져온다. region_year_all = pre_sale.loc[pre_sale['규모구분'] == '전체'] region_year = region_year_all.pivot_table('평당분양가격', '지역명', '연도').reset_index() region_year['변동액'] = region_year['2018'] - region_year['2015'] max_delta_price = np.max(region_year['변동액'])*1000 min_delta_price = np.min(region_year['변동액'])*1000 mean_delta_price = np.mean(region_year['변동액'])*1000 print('2015년부터 2018년까지 분양가는 계속 상승했으며, 상승액이 가장 큰 지역은 제주이며 상승액은 평당 {:,.0f}원이다.'.format(max_delta_price)) print('상승액이 가장 작은 지역은 울산이며 평당 {:,.0f}원이다.'.format(min_delta_price)) print('전국 평균 변동액은 평당 {:,.0f}원이다.'.format(mean_delta_price)) region_year # 지하철의 유무에 따라서 변동금액을 살펴보자. ###Output 2015년부터 2018년까지 분양가는 계속 상승했으며, 상승액이 가장 큰 지역은 제주이며 상승액은 평당 5,335,550원이다. 상승액이 가장 작은 지역은 울산이며 평당 387,750원이다. 전국 평균 변동액은 평당 1,667,276원이다. ###Markdown 연도별 변동 그래프 ###Code (ggplot(region_year_all, aes(x='지역명', y='평당분양가격', fill='연도')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='HYnamM')) ) ###Output C:\Users\home\Anaconda3\lib\site-packages\plotnine\layer.py:450: UserWarning: geom_bar : Removed 17 rows containing missing values. self.data = self.geom.handle_na(self.data) ###Markdown 지역별 평당 분양가격 합계* 아래 데이터로 어느정도 규모로 분양사업이 이루어졌는지를 봅니다.* 전체 데이터로 봤을 때 서울, 경기, 부산, 제주에 분양 사업이 다른 지역에 비해 규모가 큰 것으로 보여지지만 분양가격대비로 나눠볼 필요가 있습니다. ###Code pre_sale.pivot_table('평당분양가격', '규모구분', '지역명') ###Output _____no_output_____ ###Markdown 규모별 ###Code # 서울의 경우 전용면적 85㎡초과 102㎡이하가 분양가격이 가장 비싸게 나옵니다. (ggplot(pre_sale, aes(x='지역명', y='평당분양가격', fill='규모구분')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='HYnamM')) ) # 위에 그린 그래프를 지역별로 나눠 봅니다. (ggplot(pre_sale) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_bar(stat='identity', position='dodge') + facet_wrap('지역명') + theme(text=element_text(family='HYnamM'), axis_text_x=element_text(rotation=70), figure_size=(12, 6)) ) # 박스플롯을 그려봅니다. (ggplot(pre_sale, aes(x='지역명', y='평당분양가격', fill='규모구분')) + geom_boxplot() + theme(text=element_text(family='HYnamM'), figure_size=(12, 6)) ) pre_sale_seoul = pre_sale.loc[pre_sale['지역명']=='서울'] (ggplot(pre_sale_seoul) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_boxplot() + theme(text=element_text(family='HYnamM')) ) # 2015년에서 2018년까지 분양가 차이가 가장 컸던 제주를 봅니다. (ggplot(pre_sale.loc[pre_sale['지역명']=='제주']) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_boxplot() + theme(text=element_text(family='HYnamM')) ) # 2015년에서 2018년까지 분양가 차이가 가장 작았던 울산을 봅니다. (ggplot(pre_sale.loc[pre_sale['지역명']=='울산']) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_boxplot() + theme(text=element_text(family='HYnamM')) ) ###Output C:\Users\home\Anaconda3\lib\site-packages\plotnine\layer.py:363: UserWarning: stat_boxplot : Removed 38 rows containing non-finite values. data = self.stat.compute_layer(data, params, layout) ###Markdown 2013년 12월~2015년 9월 3.3㎡당 분양가격* 2015년 10월부터 2018년 4월까지 데이터는 평당 분양가로 조정을 해주었었는데 이 데이터는 평당 분양가가 들어가 있다. ###Code df = pd.read_csv('data/2015.09.csv', \ encoding='euc-kr', skiprows=1, header=0) df.shape # pandas에서 보기 쉽게 컬럼을 변경해 줄 필요가 있다. df year = df.iloc[0] month = df.iloc[1] # 결측치를 채워준다. year # 컬럼을 새로 만들어 주기 위해 0번째와 1번째 행을 합쳐준다. for i, y in enumerate(year): if i > 2 and i < 15: year[i] = '2014년 ' + month[i] elif i >= 15: year[i] = '2015년 ' + month[i] elif i == 2 : year[i] = year[i] + ' ' + month[i] elif i == 1: year[i] = '시군구' print(year) df.columns = year df = df.drop(df.index[[0,1]]) df # 지역 컬럼을 새로 만들어 시도와 시군구를 합쳐준다. df['구분'] = df['구분'].fillna('') df['시군구'] = df['시군구'].fillna('') df['지역'] = df['구분'] + df['시군구'] df['지역'] melt_columns = df.columns.copy() melt_columns df_2013_2015 = pd.melt(df, id_vars=['지역'], value_vars=['2013년 12월', '2014년 1월', '2014년 2월', '2014년 3월', '2014년 4월', '2014년 5월', '2014년 6월', '2014년 7월', '2014년 8월', '2014년 9월', '2014년 10월', '2014년 11월', '2014년 12월', '2015년 1월', '2015년 2월', '2015년 3월', '2015년 4월', '2015년 5월', '2015년 6월', '2015년 7월', '2015년 8월', '2015년 9월']) df_2013_2015.head() df_2013_2015.columns = ['지역', '기간', '분양가'] df_2013_2015.head() df_2013_2015['연도'] = df_2013_2015['기간'].apply(lambda year_month : year_month.split('년')[0]) df_2013_2015['월'] = df_2013_2015['기간'].apply(lambda year_month : re.sub('월', '', year_month.split('년')[1]).strip()) df_2013_2015.head() ###Output _____no_output_____ ###Markdown 지역명 강원과 부산 정리 ###Code df_2013_2015['지역'].value_counts() # 정규표현식을 사용하여 부산과 강원 지역명을 바꿔준다. df_2013_2015['지역'] = df_2013_2015['지역'].apply(lambda x: re.sub('6대광역시부산','부산', x)) df_2013_2015['지역'] = df_2013_2015['지역'].apply(lambda x: re.sub('지방강원','강원', x)) df_2013_2015['지역'].value_counts() df_2013_2015.describe() # comma를 제거하고 type을 정수로 바꿔준다. df_2013_2015['분양가격'] = df_2013_2015['분양가'].str.replace(',', '').astype(int) (ggplot(df_2013_2015, aes(x='지역', y='분양가격', fill='연도')) + geom_boxplot() + theme(text=element_text(family='HYnamM'), figure_size=(12, 6)) ) (ggplot(df_2013_2015, aes(x='지역', y='분양가격', fill='연도')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='HYnamM'), figure_size=(12, 6)) ) ###Output _____no_output_____ ###Markdown 이제 2013년부터 2018년 4월까지 데이터를 합칠 준비가 됨 ###Code df_2015_2018 = pre_sale.loc[pre_sale['규모구분'] == '전체'] print(df_2015_2018.shape) df_2015_2018.head() df_2013_2015.columns df_2013_2015_prepare = df_2013_2015[['지역', '연도', '월', '분양가격']] df_2013_2015_prepare.head() df_2013_2015_prepare.columns = ['지역명', '연도', '월', '평당분양가격'] df_2015_2018.columns df_2015_2018_prepare = df_2015_2018[['지역명', '연도', '월', '평당분양가격']] df_2015_2018_prepare.head() df_2015_2018_prepare.describe() df_2013_2018 = pd.concat([df_2013_2015_prepare, df_2015_2018_prepare]) df_2013_2018.shape df_2013_2018.head() df_2013_2015_region= df_2013_2015_prepare['지역명'].unique() df_2013_2015_region df_2015_2018_region = df_2015_2018_prepare['지역명'].unique() df_2015_2018_region exclude_region = [region for region in df_2013_2015_region if not region in df_2015_2018_region] exclude_region df_2013_2018.shape df_2013_2018.loc[df_2013_2018['지역명'].str.match('전국|수도권')].head() df_2013_2018.drop(df_2013_2018.loc[df_2013_2018['지역명'].str.match('전국|수도권')].index, axis=0, inplace=True) df_2013_2018.drop(df_2013_2018.loc[df_2013_2018['지역명'] == ''].index, axis=0, inplace=True) (ggplot(df_2013_2018, aes(x='연도', y='평당분양가격')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='HYnamM')) ) (ggplot(df_2013_2018, aes(x='지역명', y='평당분양가격', fill='연도')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='HYnamM'), figure_size=(12, 6)) ) (ggplot(df_2013_2018) + aes(x='연도', y='평당분양가격') + geom_boxplot() + theme(text=element_text(family='HYnamM')) ) df_2013_2018_jeju = df_2013_2018.loc[df_2013_2018['지역명'] == '제주'] (ggplot(df_2013_2018_jeju) + aes(x='연도', y='평당분양가격') + geom_boxplot() + theme(text=element_text(family='HYnamM')) ) (ggplot(df_2013_2018) + aes(x='연도', y='평당분양가격') + geom_boxplot() + facet_wrap('지역명') + theme(text=element_text(family='HYnamM'), axis_text_x=element_text(rotation=70), figure_size=(12, 12)) ) ###Output C:\Users\home\Anaconda3\lib\site-packages\plotnine\layer.py:363: UserWarning: stat_boxplot : Removed 17 rows containing non-finite values. data = self.stat.compute_layer(data, params, layout) ###Markdown 전국 신규 민간 아파트 분양가격 동향* 2015년 10월부터 2018년 4월까지* 주택분양보증을 받아 분양한 전체 민간 신규아파트 분양가격 동향* https://www.data.go.kr/dataset/3035522/fileData.do ###Code import warnings warnings.filterwarnings('ignore') import pandas as pd import numpy as np import re from plotnine import * %pwd %ls data pre_sale = pd.read_csv('/Users/yunkim/Desktop/dataitgirls/open-data-apt/data/National_average_selling price_~2018.6_.csv', encoding='euc-kr') pre_sale.shape pre_sale.head(10) pre_sale.tail() # 분양가격이 숫자 타입이 아닙니다. 숫자 타입으로 변경해줄 필요가 있겠어요. pre_sale.info() pre_sale_price = pre_sale['분양가격(㎡)'] # 연도와 월은 카테고리 형태의 데이터이기 때문에 스트링 형태로 변경 pre_sale['연도'] = pre_sale['연도'].astype(str) pre_sale['월'] = pre_sale['월'].astype(str) # 분양가격의 타입을 숫자로 변경해 줍니다. pre_sale['분양가격'] = pd.to_numeric(pre_sale_price, errors='coerce') # 평당 분양가격을 구해볼까요. pre_sale['평당분양가격'] = pre_sale['분양가격'] * 3.3 pre_sale.info() # 분양가격에 결측치가 많이 있어요. pre_sale.isnull().sum() pre_sale.describe() pre_sale.hist() # 2017년 데이터만 봅니다. pre_sale_2017 = pre_sale.loc[pre_sale['연도'] == 2017] pre_sale_2017.shape # 같은 값을 갖고 있는 걸로 시도별로 동일하게 데이터가 들어 있는 것을 확인할 수 있습니다. pre_sale['규모구분'].value_counts() ###Output _____no_output_____ ###Markdown 전국평균 분양가격 ###Code # 분양가격만 봤을 때 2015년에서 2018년으로 갈수록 오른 것을 확인할 수 있습니다. pd.options.display.float_format = '{:,.0f}'.format pre_sale.groupby(pre_sale.연도).describe().T ###Output _____no_output_____ ###Markdown 규모별 전국 평균 분양가격 ###Code pre_sale.pivot_table('평당분양가격', '규모구분', '연도') ###Output _____no_output_____ ###Markdown 전국 분양가 변동금액규모구분이 전체로 되어있는 금액으로 연도별 변동금액을 살펴봅니다. ###Code # 규모구분에서 전체로 되어있는 데이터만 가져온다. region_year_all = pre_sale.loc[pre_sale['규모구분'] == '전체'] region_year = region_year_all.pivot_table('평당분양가격', '지역명', '연도').reset_index() region_year['변동액'] = region_year['2018'] - region_year['2015'] max_delta_price = np.max(region_year['변동액'])*1000 min_delta_price = np.min(region_year['변동액'])*1000 mean_delta_price = np.mean(region_year['변동액'])*1000 print('2015년부터 2018년까지 분양가는 계속 상승했으며, 상승액이 가장 큰 지역은 제주이며 상승액은 평당 {:,.0f}원이다.'.format(max_delta_price)) print('상승액이 가장 작은 지역은 울산이며 평당 {:,.0f}원이다.'.format(min_delta_price)) print('전국 평균 변동액은 평당 {:,.0f}원이다.'.format(mean_delta_price)) region_year ###Output 2015년부터 2018년까지 분양가는 계속 상승했으며, 상승액이 가장 큰 지역은 제주이며 상승액은 평당 5,335,550원이다. 상승액이 가장 작은 지역은 울산이며 평당 387,750원이다. 전국 평균 변동액은 평당 1,667,276원이다. ###Markdown 연도별 변동 그래프 ###Code (ggplot(region_year_all, aes(x='지역명', y='평당분양가격', fill='연도')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic')) ) ###Output /Users/yunkim/anaconda3/lib/python3.6/site-packages/plotnine/layer.py:452: UserWarning: geom_bar : Removed 17 rows containing missing values. self.data = self.geom.handle_na(self.data) ###Markdown 지역별 평당 분양가격 합계* 아래 데이터로 어느정도 규모로 분양사업이 이루어졌는지를 봅니다.* 전체 데이터로 봤을 때 서울, 경기, 부산, 제주에 분양 사업이 다른 지역에 비해 규모가 큰 것으로 보여지지만 분양가격대비로 나눠볼 필요가 있습니다. ###Code pre_sale.pivot_table('평당분양가격', '규모구분', '지역명') ###Output _____no_output_____ ###Markdown 규모별 ###Code # 서울의 경우 전용면적 85㎡초과 102㎡이하가 분양가격이 가장 비싸게 나옵니다. (ggplot(pre_sale, aes(x='지역명', y='평당분양가격', fill='규모구분')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic')) ) # 위에 그린 그래프를 지역별로 나눠 봅니다. (ggplot(pre_sale) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_bar(stat='identity', position='dodge') + facet_wrap('지역명') + theme(text=element_text(family='NanumBarunGothic'), axis_text_x=element_text(rotation=70), figure_size=(12, 6)) ) # 박스플롯을 그려봅니다. (ggplot(pre_sale, aes(x='지역명', y='평당분양가격', fill='규모구분')) + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic'), figure_size=(12, 6)) ) pre_sale_seoul = pre_sale.loc[pre_sale['지역명']=='서울'] (ggplot(pre_sale_seoul) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) # 2015년에서 2018년까지 분양가 차이가 가장 컸던 제주를 봅니다. (ggplot(pre_sale.loc[pre_sale['지역명']=='제주']) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) # 2015년에서 2018년까지 분양가 차이가 가장 작았던 울산을 봅니다. (ggplot(pre_sale.loc[pre_sale['지역명']=='울산']) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) ###Output /Users/yunkim/anaconda3/lib/python3.6/site-packages/plotnine/layer.py:363: UserWarning: stat_boxplot : Removed 38 rows containing non-finite values. data = self.stat.compute_layer(data, params, layout) ###Markdown 2013년 12월~2015년 9월 3.3㎡당 분양가격* 2015년 10월부터 2018년 4월까지 데이터는 평당 분양가로 조정을 해주었었는데 이 데이터는 평당 분양가가 들어가 있다. ###Code %pwd df = pd.read_csv('/Users/yunkim/Desktop/dataitgirls/open-data-apt/data/average_selling price_per _3.3㎡ by region_1000won_~15.09.csv', \ encoding='euc-kr', skiprows=1, header=0) df.shape # pandas에서 보기 쉽게 컬럼을 변경해 줄 필요가 있다. df year = df.iloc[0] month = df.iloc[1] # 결측치를 채워준다. year # 컬럼을 새로 만들어 주기 위해 0번째와 1번째 행을 합쳐준다. for i, y in enumerate(year): if i > 2 and i < 15: year[i] = '2014년 ' + month[i] elif i >= 15: year[i] = '2015년 ' + month[i] elif i == 2 : year[i] = year[i] + ' ' + month[i] elif i == 1: year[i] = '시군구' print(year) df.columns = year df = df.drop(df.index[[0,1]]) df # 지역 컬럼을 새로 만들어 시도와 시군구를 합쳐준다. df['구분'] = df['구분'].fillna('') df['시군구'] = df['시군구'].fillna('') df['지역'] = df['구분'] + df['시군구'] df['지역'] melt_columns = df.columns.copy() melt_columns df_2013_2015 = pd.melt(df, id_vars=['지역'], value_vars=['2013년 12월', '2014년 1월', '2014년 2월', '2014년 3월', '2014년 4월', '2014년 5월', '2014년 6월', '2014년 7월', '2014년 8월', '2014년 9월', '2014년 10월', '2014년 11월', '2014년 12월', '2015년 1월', '2015년 2월', '2015년 3월', '2015년 4월', '2015년 5월', '2015년 6월', '2015년 7월', '2015년 8월', '2015년 9월']) df_2013_2015.head() df_2013_2015.columns = ['지역', '기간', '분양가'] df_2013_2015.head() df_2013_2015['연도'] = df_2013_2015['기간'].apply(lambda year_month : year_month.split('년')[0]) df_2013_2015['월'] = df_2013_2015['기간'].apply(lambda year_month : re.sub('월', '', year_month.split('년')[1]).strip()) df_2013_2015.head() ###Output _____no_output_____ ###Markdown 지역명 강원과 부산 정리 ###Code df_2013_2015['지역'].value_counts() df_2013_2015['지역'] = df_2013_2015['지역'].apply(lambda x: re.sub('6대광역시부산','부산', x)) df_2013_2015['지역'] = df_2013_2015['지역'].apply(lambda x: re.sub('지방강원','강원', x)) df_2013_2015['지역'].value_counts() df_2013_2015.describe() df_2013_2015['분양가격'] = df_2013_2015['분양가'].str.replace(',', '').astype(int) (ggplot(df_2013_2015, aes(x='지역', y='분양가격', fill='연도')) + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic'), figure_size=(12, 6)) ) (ggplot(df_2013_2015, aes(x='지역', y='분양가격', fill='연도')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic'), figure_size=(12, 6)) ) ###Output _____no_output_____ ###Markdown 이제 2013년부터 2018년 4월까지 데이터를 합칠 준비가 됨 ###Code df_2015_2018 = pre_sale.loc[pre_sale['규모구분'] == '전체'] print(df_2015_2018.shape) df_2015_2018.head() df_2013_2015.columns df_2013_2015_prepare = df_2013_2015[['지역', '연도', '월', '분양가격']] df_2013_2015_prepare.head() df_2013_2015_prepare.columns = ['지역명', '연도', '월', '평당분양가격'] df_2015_2018.columns df_2015_2018_prepare = df_2015_2018[['지역명', '연도', '월', '평당분양가격']] df_2015_2018_prepare.head() df_2015_2018_prepare.describe() df_2013_2018 = pd.concat([df_2013_2015_prepare, df_2015_2018_prepare]) df_2013_2018.shape df_2013_2018.head() df_2013_2015_region= df_2013_2015_prepare['지역명'].unique() df_2013_2015_region df_2015_2018_region = df_2015_2018_prepare['지역명'].unique() df_2015_2018_region exclude_region = [region for region in df_2013_2015_region if not region in df_2015_2018_region] exclude_region df_2013_2018.shape df_2013_2018.loc[df_2013_2018['지역명'].str.match('전국|수도권')].head() df_2013_2018.drop(df_2013_2018.loc[df_2013_2018['지역명'].str.match('전국|수도권')].index, axis=0, inplace=True) df_2013_2018.drop(df_2013_2018.loc[df_2013_2018['지역명'] == ''].index, axis=0, inplace=True) (ggplot(df_2013_2018, aes(x='연도', y='평당분양가격')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic')) ) (ggplot(df_2013_2018, aes(x='지역명', y='평당분양가격', fill='연도')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic'), figure_size=(12, 6)) ) (ggplot(df_2013_2018) + aes(x='연도', y='평당분양가격') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) df_2013_2018_jeju = df_2013_2018.loc[df_2013_2018['지역명'] == '제주'] (ggplot(df_2013_2018_jeju) + aes(x='연도', y='평당분양가격') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) (ggplot(df_2013_2018) + aes(x='연도', y='평당분양가격') + geom_boxplot() + facet_wrap('지역명') + theme(text=element_text(family='NanumBarunGothic'), axis_text_x=element_text(rotation=70), figure_size=(12, 12)) ) ###Output /Users/yunkim/anaconda3/lib/python3.6/site-packages/plotnine/layer.py:363: UserWarning: stat_boxplot : Removed 17 rows containing non-finite values. data = self.stat.compute_layer(data, params, layout) ###Markdown 전국 신규 민간 아파트 분양가격 동향* 2015년 10월부터 2018년 4월까지* 주택분양보증을 받아 분양한 전체 민간 신규아파트 분양가격 동향* https://www.data.go.kr/dataset/3035522/fileData.do ###Code import warnings warnings.filterwarnings('ignore') import pandas as pd import numpy as np import re from plotnine import * %ls pre_sale = pd.read_csv('average_apt_201806.csv', encoding='euc-kr') pre_sale.shape pre_sale.head(5) pre_sale.tail() # 분양가격이 숫자 타입이 아닙니다. 숫자 타입으로 변경해줄 필요가 있겠어요. pre_sale.info() pre_sale_price = pre_sale['분양가격(㎡)'] # 연도와 월은 카테고리 형태의 데이터이기 때문에 스트링 형태로 변경 pre_sale['연도'] = pre_sale['연도'].astype(str) pre_sale['월'] = pre_sale['월'].astype(str) # 분양가격의 타입을 숫자로 변경해 줍니다. #numeric이랑 astype 같은 함수 pre_sale['분양가격'] = pd.to_numeric(pre_sale_price, errors='coerce') # 평당 분양가격을 구해볼까요. pre_sale['평당분양가격'] = pre_sale['분양가격'] * 3.3 pre_sale.info() # 분양가격에 결측치가 많이 있어요. pre_sale.isnull().sum() pre_sale.describe() #평당분양가격 단위 천억 # 2017년 데이터만 봅니다. pre_sale_2017 = pre_sale.loc[pre_sale['연도'] == 2017] pre_sale_2017.shape # 같은 값을 갖고 있는 걸로 시도별로 동일하게 데이터가 들어 있는 것을 확인할 수 있습니다. pre_sale['규모구분'].value_counts() ###Output _____no_output_____ ###Markdown 전국평균 분양가격 ###Code # 분양가격만 봤을 때 2015년에서 2018년으로 갈수록 오른 것을 확인할 수 있습니다. pd.options.display.float_format = '{:,.0f}'.format pre_sale.groupby(pre_sale.연도).describe().T ###Output _____no_output_____ ###Markdown 규모별 전국 평균 분양가격 ###Code pre_sale.pivot_table('평당분양가격', '규모구분', '연도') ###Output _____no_output_____ ###Markdown 전국 분양가 변동금액규모구분이 전체로 되어있는 금액으로 연도별 변동금액을 살펴봅니다. ###Code # 규모구분에서 전체로 되어있는 데이터만 가져온다. region_year_all = pre_sale.loc[pre_sale['규모구분'] == '전체'] region_year = region_year_all.pivot_table('평당분양가격', '지역명', '연도').reset_index() region_year['변동액'] = region_year['2018'] - region_year['2015'] max_delta_price = np.max(region_year['변동액'])*1000 min_delta_price = np.min(region_year['변동액'])*1000 mean_delta_price = np.mean(region_year['변동액'])*1000 print('2015년부터 2018년까지 분양가는 계속 상승했으며, 상승액이 가장 큰 지역은 제주이며 상승액은 평당 {:,.0f}원이다.'.format(max_delta_price)) print('상승액이 가장 작은 지역은 울산이며 평당 {:,.0f}원이다.'.format(min_delta_price)) print('전국 평균 변동액은 평당 {:,.0f}원이다.'.format(mean_delta_price)) region_year ###Output 2015년부터 2018년까지 분양가는 계속 상승했으며, 상승액이 가장 큰 지역은 제주이며 상승액은 평당 5,335,550원이다. 상승액이 가장 작은 지역은 울산이며 평당 387,750원이다. 전국 평균 변동액은 평당 1,667,276원이다. ###Markdown 연도별 변동 그래프 ###Code (ggplot(region_year_all, aes(x='지역명', y='평당분양가격', fill='연도')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumGothic')) ) ###Output C:\ProgramData\Anaconda3\lib\site-packages\plotnine\layer.py:450: UserWarning: geom_bar : Removed 17 rows containing missing values. self.data = self.geom.handle_na(self.data) ###Markdown 지역별 평당 분양가격 합계* 아래 데이터로 어느정도 규모로 분양사업이 이루어졌는지를 봅니다.* 전체 데이터로 봤을 때 서울, 경기, 부산, 제주에 분양 사업이 다른 지역에 비해 규모가 큰 것으로 보여지지만 분양가격대비로 나눠볼 필요가 있습니다. ###Code pre_sale.pivot_table('평당분양가격', '규모구분', '지역명') ###Output _____no_output_____ ###Markdown 규모별 ###Code # 서울의 경우 전용면적 85㎡초과 102㎡이하가 분양가격이 가장 비싸게 나옵니다. (ggplot(pre_sale, aes(x='지역명', y='평당분양가격', fill='규모구분')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumGothic')) ) # 위에 그린 그래프를 지역별로 나눠 봅니다. (ggplot(pre_sale) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_bar(stat='identity', position='dodge') + facet_wrap('지역명') + theme(text=element_text(family='NanumGothic'), axis_text_x=element_text(rotation=70), figure_size=(12, 6)) ) # 박스플롯을 그려봅니다. (ggplot(pre_sale, aes(x='지역명', y='평당분양가격', fill='규모구분')) + geom_boxplot() + theme(text=element_text(family='NanumGothic'), figure_size=(12, 6)) ) pre_sale_seoul = pre_sale.loc[pre_sale['지역명']=='서울'] (ggplot(pre_sale_seoul) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_boxplot() + theme(text=element_text(family='NanumGothic')) ) # 2015년에서 2018년까지 분양가 차이가 가장 컸던 제주를 봅니다. (ggplot(pre_sale.loc[pre_sale['지역명']=='제주']) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_boxplot() + theme(text=element_text(family='NanumGothic')) ) # 2015년에서 2018년까지 분양가 차이가 가장 작았던 울산을 봅니다. (ggplot(pre_sale.loc[pre_sale['지역명']=='울산']) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_boxplot() + theme(text=element_text(family='NanumGothic')) ) ###Output _____no_output_____ ###Markdown 2013년 12월~2015년 9월 3.3㎡당 분양가격* 2015년 10월부터 2018년 4월까지 데이터는 평당 분양가로 조정을 해주었었는데 이 데이터는 평당 분양가가 들어가 있다. ###Code df = pd.read_csv('average_apt_201509.csv', encoding='euc-kr', skiprows=1, header=0) df.shape # pandas에서 보기 쉽게 컬럼을 변경해 줄 필요가 있다. df year = df.iloc[0] month = df.iloc[1] # 결측치를 채워준다. year # 컬럼을 새로 만들어 주기 위해 0번째와 1번째 행을 합쳐준다. for i, y in enumerate(year): if i > 2 and i < 15: year[i] = '2014년 ' + month[i] elif i >= 15: year[i] = '2015년 ' + month[i] elif i == 2 : year[i] = year[i] + ' ' + month[i] elif i == 1: year[i] = '시군구' print(year) df.columns = year df = df.drop(df.index[[0,1]]) #0과 1행은 안쓰니까 (구분/시도) df # 지역 컬럼을 새로 만들어 시도와 시군구를 합쳐준다. #위를 보면 아직도 NaN이 있다 df['구분'] = df['구분'].fillna('') df['시군구'] = df['시군구'].fillna('') df['지역'] = df['구분'] + df['시군구'] df['지역'] melt_columns = df.columns.copy() melt_columns ###Output _____no_output_____ ###Markdown melt 함수 -> 필요한 값 새로 만들어주기 (column에 있는걸 raw로 내리기) ###Code df_2013_2015 = pd.melt(df, id_vars=['지역'], value_vars=['2013년 12월', '2014년 1월', '2014년 2월', '2014년 3월', '2014년 4월', '2014년 5월', '2014년 6월', '2014년 7월', '2014년 8월', '2014년 9월', '2014년 10월', '2014년 11월', '2014년 12월', '2015년 1월', '2015년 2월', '2015년 3월', '2015년 4월', '2015년 5월', '2015년 6월', '2015년 7월', '2015년 8월', '2015년 9월']) df_2013_2015.head() df_2013_2015.columns = ['지역', '기간', '분양가'] df_2013_2015.head() df_2013_2015['연도'] = df_2013_2015['기간'].apply(lambda year_month : year_month.split('년')[0]) df_2013_2015['월'] = df_2013_2015['기간'].apply(lambda year_month : re.sub('월', '', year_month.split('년')[1]).strip()) df_2013_2015.head() ###Output _____no_output_____ ###Markdown 지역명 강원과 부산 정리 ###Code df_2013_2015['지역'].value_counts() df_2013_2015['지역'] = df_2013_2015['지역'].apply(lambda x: re.sub('6대광역시부산','부산', x)) df_2013_2015['지역'] = df_2013_2015['지역'].apply(lambda x: re.sub('지방강원','강원', x)) df_2013_2015['지역'].value_counts() df_2013_2015.describe() df_2013_2015['분양가격'] = df_2013_2015['분양가'].str.replace(',', '').astype(int) #위(2018년자료)에 하고 명칭 맞게 바꿔주는 중 (ggplot(df_2013_2015, aes(x='지역', y='분양가격', fill='연도')) + geom_boxplot() + theme(text=element_text(family='NanumGothic'), figure_size=(12, 6)) ) (ggplot(df_2013_2015, aes(x='지역', y='분양가격', fill='연도')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumGothic'), figure_size=(12, 6)) ) ###Output _____no_output_____ ###Markdown 이제 2013년부터 2018년 4월까지 데이터를 합칠 준비가 됨 ###Code df_2015_2018 = pre_sale.loc[pre_sale['규모구분'] == '전체'] print(df_2015_2018.shape) df_2015_2018.head() df_2013_2015.columns df_2013_2015_prepare = df_2013_2015[['지역', '연도', '월', '분양가격']] df_2013_2015_prepare.head() df_2013_2015_prepare.columns = ['지역명', '연도', '월', '평당분양가격'] df_2015_2018.columns df_2015_2018_prepare = df_2015_2018[['지역명', '연도', '월', '평당분양가격']] df_2015_2018_prepare.head() df_2015_2018_prepare.describe() df_2013_2018 = pd.concat([df_2013_2015_prepare, df_2015_2018_prepare]) #concat 함수 = 위 아래를 붙여주는 것 #merge는 가로로 붙여줌 (column끼리) df_2013_2018.shape df_2013_2018.head() df_2013_2018.tail() df_2013_2015_region= df_2013_2015_prepare['지역명'].unique() df_2013_2015_region df_2015_2018_region = df_2015_2018_prepare['지역명'].unique() df_2015_2018_region exclude_region = [region for region in df_2013_2015_region if not region in df_2015_2018_region] exclude_region #사용하면 안되는 지역명 (2013버젼엔 있지만 2018년 버젼엔 없는 것 ) df_2013_2018.shape df_2013_2018.loc[df_2013_2018['지역명'].str.match('전국|수도권')].head() df_2013_2018.drop(df_2013_2018.loc[df_2013_2018['지역명'].str.match('전국|수도권')].index, axis=0, inplace=True) df_2013_2018.drop(df_2013_2018.loc[df_2013_2018['지역명'] == ''].index, axis=0, inplace=True) #전국 수도권 drop 해줌 (ggplot(df_2013_2018, aes(x='연도', y='평당분양가격')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumGothic')) ) (ggplot(df_2013_2018, aes(x='지역명', y='평당분양가격', fill='연도')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumGothic'), figure_size=(12, 6)) ) (ggplot(df_2013_2018) + aes(x='연도', y='평당분양가격') + geom_boxplot() + theme(text=element_text(family='NanumGothic')) ) df_2013_2018_jeju = df_2013_2018.loc[df_2013_2018['지역명'] == '제주'] (ggplot(df_2013_2018_jeju) + aes(x='연도', y='평당분양가격') + geom_boxplot() + theme(text=element_text(family='NanumGothic')) ) (ggplot(df_2013_2018) + aes(x='연도', y='평당분양가격') + geom_boxplot() + facet_wrap('지역명') + theme(text=element_text(family='NanumGothic'), axis_text_x=element_text(rotation=70), figure_size=(12, 12)) ) ###Output _____no_output_____ ###Markdown 전국 신규 민간 아파트 분양가격 동향* 2015년 10월부터 2018년 4월까지* 주택분양보증을 받아 분양한 전체 민간 신규아파트 분양가격 동향* https://www.data.go.kr/dataset/3035522/fileData.do ###Code import warnings warnings.filterwarnings('ignore') import pandas as pd import numpy as np import re from plotnine import * %pwd %ls data pre_sale = pd.read_csv('data/national_average_price.csv', encoding='euc-kr') pre_sale.shape pre_sale.head() pre_sale.tail() # 분양가격이 숫자 타입이 아닙니다. 숫자 타입으로 변경해줄 필요가 있겠어요. pre_sale.info() pre_sale_price = pre_sale['분양가격(㎡)'] # 연도와 월은 카테고리 형태의 데이터이기 때문에 스트링 형태로 변경 pre_sale['연도'] = pre_sale['연도'].astype(str) pre_sale['월'] = pre_sale['월'].astype(str) # 분양가격의 타입을 숫자로 변경해 줍니다. pre_sale['분양가격'] = pd.to_numeric(pre_sale_price, errors='coerce') # 평당 분양가격을 구해볼까요. pre_sale['평당분양가격'] = pre_sale['분양가격'] * 3.3 pre_sale.info() # 분양가격에 결측치가 많이 있어요. pre_sale.isnull().sum() pre_sale.describe() # 2017년 데이터만 봅니다. pre_sale_2017 = pre_sale.loc[pre_sale['연도'] == 2017] pre_sale_2017.shape # 같은 값을 갖고 있는 걸로 시도별로 동일하게 데이터가 들어 있는 것을 확인할 수 있습니다. pre_sale['규모구분'].value_counts() ###Output _____no_output_____ ###Markdown 전국평균 분양가격 ###Code # 분양가격만 봤을 때 2015년에서 2018년으로 갈수록 오른 것을 확인할 수 있습니다. pd.options.display.float_format = '{:,.0f}'.format pre_sale.groupby(pre_sale.연도).describe().T ###Output _____no_output_____ ###Markdown 규모별 전국 평균 분양가격 ###Code pre_sale.pivot_table('평당분양가격', '규모구분', '연도') ###Output _____no_output_____ ###Markdown 전국 분양가 변동금액규모구분이 전체로 되어있는 금액으로 연도별 변동금액을 살펴봅니다. ###Code # 규모구분에서 전체로 되어있는 데이터만 가져온다. region_year_all = pre_sale.loc[pre_sale['규모구분'] == '전체'] region_year = region_year_all.pivot_table('평당분양가격', '지역명', '연도').reset_index() region_year['변동액'] = region_year['2018'] - region_year['2015'] max_delta_price = np.max(region_year['변동액'])*1000 min_delta_price = np.min(region_year['변동액'])*1000 mean_delta_price = np.mean(region_year['변동액'])*1000 print('2015년부터 2018년까지 분양가는 계속 상승했으며, 상승액이 가장 큰 지역은 제주이며 상승액은 평당 {:,.0f}원이다.'.format(max_delta_price)) print('상승액이 가장 작은 지역은 울산이며 평당 {:,.0f}원이다.'.format(min_delta_price)) print('전국 평균 변동액은 평당 {:,.0f}원이다.'.format(mean_delta_price)) region_year ###Output 2015년부터 2018년까지 분양가는 계속 상승했으며, 상승액이 가장 큰 지역은 제주이며 상승액은 평당 5,335,550원이다. 상승액이 가장 작은 지역은 울산이며 평당 387,750원이다. 전국 평균 변동액은 평당 1,667,276원이다. ###Markdown 연도별 변동 그래프 ###Code (ggplot(region_year_all, aes(x='지역명', y='평당분양가격', fill='연도')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic')) ) ###Output C:\Users\user1\AppData\Roaming\Python\Python36\site-packages\plotnine\layer.py:450: UserWarning: geom_bar : Removed 17 rows containing missing values. self.data = self.geom.handle_na(self.data) ###Markdown 지역별 평당 분양가격 합계* 아래 데이터로 어느정도 규모로 분양사업이 이루어졌는지를 봅니다.* 전체 데이터로 봤을 때 서울, 경기, 부산, 제주에 분양 사업이 다른 지역에 비해 규모가 큰 것으로 보여지지만 분양가격대비로 나눠볼 필요가 있습니다. ###Code pre_sale.pivot_table('평당분양가격', '규모구분', '지역명') ###Output _____no_output_____ ###Markdown 규모별 ###Code # 서울의 경우 전용면적 85㎡초과 102㎡이하가 분양가격이 가장 비싸게 나옵니다. (ggplot(pre_sale, aes(x='지역명', y='평당분양가격', fill='규모구분')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic')) ) # 위에 그린 그래프를 지역별로 나눠 봅니다. (ggplot(pre_sale) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_bar(stat='identity', position='dodge') + facet_wrap('지역명') + theme(text=element_text(family='NanumBarunGothic'), axis_text_x=element_text(rotation=70), figure_size=(12, 6)) ) # 박스플롯을 그려봅니다. (ggplot(pre_sale, aes(x='지역명', y='평당분양가격', fill='규모구분')) + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic'), figure_size=(12, 6)) ) pre_sale_seoul = pre_sale.loc[pre_sale['지역명']=='서울'] (ggplot(pre_sale_seoul) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) # 2015년에서 2018년까지 분양가 차이가 가장 컸던 제주를 봅니다. (ggplot(pre_sale.loc[pre_sale['지역명']=='제주']) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) # 2015년에서 2018년까지 분양가 차이가 가장 작았던 울산을 봅니다. (ggplot(pre_sale.loc[pre_sale['지역명']=='울산']) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) ###Output C:\Users\user1\AppData\Roaming\Python\Python36\site-packages\plotnine\layer.py:363: UserWarning: stat_boxplot : Removed 38 rows containing non-finite values. data = self.stat.compute_layer(data, params, layout) ###Markdown 2013년 12월~2015년 9월 3.3㎡당 분양가격* 2015년 10월부터 2018년 4월까지 데이터는 평당 분양가로 조정을 해주었었는데 이 데이터는 평당 분양가가 들어가 있다. ###Code df = pd.read_csv('data/regional_average_price.csv', \ encoding='euc-kr', skiprows=1, header=0) df.shape # pandas에서 보기 쉽게 컬럼을 변경해 줄 필요가 있다. df pre_sale.head() year = df.iloc[0] month = df.iloc[1] # 결측치를 채워준다. year # 컬럼을 새로 만들어 주기 위해 0번째와 1번째 행을 합쳐준다. for i, y in enumerate(year): if i > 2 and i < 15: year[i] = '2014년 ' + month[i] elif i >= 15: year[i] = '2015년 ' + month[i] elif i == 2 : year[i] = year[i] + ' ' + month[i] elif i == 1: year[i] = '시군구' print(year) df.columns = year df = df.drop(df.index[[0,1]]) df # 지역 컬럼을 새로 만들어 시도와 시군구를 합쳐준다. df['구분'] = df['구분'].fillna('') df['시군구'] = df['시군구'].fillna('') df['지역'] = df['구분'] + df['시군구'] df['지역'] melt_columns = df.columns.copy() melt_columns df_2013_2015 = pd.melt(df, id_vars=['지역'], value_vars=['2013년 12월', '2014년 1월', '2014년 2월', '2014년 3월', '2014년 4월', '2014년 5월', '2014년 6월', '2014년 7월', '2014년 8월', '2014년 9월', '2014년 10월', '2014년 11월', '2014년 12월', '2015년 1월', '2015년 2월', '2015년 3월', '2015년 4월', '2015년 5월', '2015년 6월', '2015년 7월', '2015년 8월', '2015년 9월']) df_2013_2015.head() df_2013_2015.columns = ['지역', '기간', '분양가'] df_2013_2015.head() df_2013_2015['연도'] = df_2013_2015['기간'].apply(lambda year_month : year_month.split('년')[0]) df_2013_2015['월'] = df_2013_2015['기간'].apply(lambda year_month : re.sub('월', '', year_month.split('년')[1]).strip()) df_2013_2015.head() ###Output _____no_output_____ ###Markdown 지역명 강원과 부산 정리 ###Code df_2013_2015['지역'].value_counts() df_2013_2015['지역'] = df_2013_2015['지역'].apply(lambda x: re.sub('6대광역시부산','부산', x)) df_2013_2015['지역'] = df_2013_2015['지역'].apply(lambda x: re.sub('지방강원','강원', x)) df_2013_2015['지역'].value_counts() df_2013_2015.describe() df_2013_2015['분양가격'] = df_2013_2015['분양가'].str.replace(',', '').astype(int) (ggplot(df_2013_2015, aes(x='지역', y='분양가격', fill='연도')) + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic'), figure_size=(12, 6)) ) (ggplot(df_2013_2015, aes(x='지역', y='분양가격', fill='연도')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic'), figure_size=(12, 6)) ) ###Output _____no_output_____ ###Markdown 이제 2013년부터 2018년 4월까지 데이터를 합칠 준비가 됨 ###Code df_2015_2018 = pre_sale.loc[pre_sale['규모구분'] == '전체'] print(df_2015_2018.shape) df_2015_2018.head() df_2013_2015.columns df_2013_2015_prepare = df_2013_2015[['지역', '연도', '월', '분양가격']] df_2013_2015_prepare.head() df_2013_2015_prepare.columns = ['지역명', '연도', '월', '평당분양가격'] df_2015_2018.columns df_2015_2018_prepare = df_2015_2018[['지역명', '연도', '월', '평당분양가격']] df_2015_2018_prepare.head() df_2015_2018_prepare.describe() df_2013_2018 = pd.concat([df_2013_2015_prepare, df_2015_2018_prepare]) df_2013_2018.shape df_2013_2018.head() df_2013_2015_region= df_2013_2015_prepare['지역명'].unique() df_2013_2015_region df_2015_2018_region = df_2015_2018_prepare['지역명'].unique() df_2015_2018_region exclude_region = [region for region in df_2013_2015_region if not region in df_2015_2018_region] exclude_region df_2013_2018.shape df_2013_2018.loc[df_2013_2018['지역명'].str.match('전국|수도권')].head() df_2013_2018.drop(df_2013_2018.loc[df_2013_2018['지역명'].str.match('전국|수도권')].index, axis=0, inplace=True) df_2013_2018.drop(df_2013_2018.loc[df_2013_2018['지역명'] == ''].index, axis=0, inplace=True) (ggplot(df_2013_2018, aes(x='연도', y='평당분양가격')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic')) ) (ggplot(df_2013_2018, aes(x='지역명', y='평당분양가격', fill='연도')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic'), figure_size=(12, 6)) ) (ggplot(df_2013_2018) + aes(x='연도', y='평당분양가격') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) df_2013_2018_jeju = df_2013_2018.loc[df_2013_2018['지역명'] == '제주'] (ggplot(df_2013_2018_jeju) + aes(x='연도', y='평당분양가격') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) (ggplot(df_2013_2018) + aes(x='연도', y='평당분양가격') + geom_boxplot() + facet_wrap('지역명') + theme(text=element_text(family='NanumBarunGothic'), axis_text_x=element_text(rotation=70), figure_size=(12, 12)) ) ###Output C:\Users\user1\AppData\Roaming\Python\Python36\site-packages\plotnine\layer.py:363: UserWarning: stat_boxplot : Removed 17 rows containing non-finite values. data = self.stat.compute_layer(data, params, layout) ###Markdown 전국 신규 민간 아파트 분양가격 동향* 2015년 10월부터 2018년 4월까지* 주택분양보증을 받아 분양한 전체 민간 신규아파트 분양가격 동향* https://www.data.go.kr/dataset/3035522/fileData.do ###Code import warnings warnings.filterwarnings('ignore') import pandas as pd import numpy as np import re from plotnine import * %ls data pre_sale = pd.read_csv('data/aptprice_201806.csv', encoding='euc-kr') pre_sale.shape pre_sale.head() pre_sale.tail() # 분양가격이 숫자 타입이 아닙니다. 숫자 타입으로 변경해줄 필요가 있겠어요. pre_sale.info() pre_sale_price = pre_sale['분양가격(㎡)'] # 연도와 월은 카테고리 형태의 데이터이기 때문에 스트링 형태로 변경 pre_sale['연도'] = pre_sale['연도'].astype(str) pre_sale['월'] = pre_sale['월'].astype(str) # 분양가격의 타입을 숫자로 변경해 줍니다. pre_sale['분양가격'] = pd.to_numeric(pre_sale_price, errors='coerce') # 평당 분양가격을 구해볼까요. pre_sale['평당분양가격'] = pre_sale['분양가격'] * 3.3 pre_sale.info() # 분양가격에 결측치가 많이 있어요. pre_sale.isnull().sum() pre_sale.describe() # 2017년 데이터만 봅니다. pre_sale_2017 = pre_sale.loc[pre_sale['연도'] == 2017] pre_sale_2017.shape # 같은 값을 갖고 있는 걸로 시도별로 동일하게 데이터가 들어 있는 것을 확인할 수 있습니다. pre_sale['규모구분'].value_counts() ###Output _____no_output_____ ###Markdown 전국평균 분양가격 ###Code # 분양가격만 봤을 때 2015년에서 2018년으로 갈수록 오른 것을 확인할 수 있습니다. pd.options.display.float_format = '{:,.0f}'.format pre_sale.groupby(pre_sale.연도).describe().T ###Output _____no_output_____ ###Markdown 규모별 전국 평균 분양가격 ###Code pre_sale.pivot_table('평당분양가격', '규모구분', '연도') ###Output _____no_output_____ ###Markdown 전국 분양가 변동금액규모구분이 전체로 되어있는 금액으로 연도별 변동금액을 살펴봅니다. ###Code # 규모구분에서 전체로 되어있는 데이터만 가져온다. region_year_all = pre_sale.loc[pre_sale['규모구분'] == '전체'] region_year = region_year_all.pivot_table('평당분양가격', '지역명', '연도').reset_index() region_year['변동액'] = region_year['2018'] - region_year['2015'].astype(int) max_delta_price = np.max(region_year['변동액']).astype(int)*1000 min_delta_price = np.min(region_year['변동액']).astype(int)*1000 mean_delta_price = np.mean(region_year['변동액'])*1000 print('2015년부터 2018년까지 분양가는 계속 상승했으며, 상승액이 가장 큰 지역은 제주이며 상승액은 평당 {:,.0f}원이다.'.format(max_delta_price)) print('상승액이 가장 작은 지역은 울산이며 평당 {:,.0f}원이다.'.format(min_delta_price)) print('전국 평균 변동액은 평당 {:,.0f}원이다.'.format(mean_delta_price)) region_year ###Output 2015년부터 2018년까지 분양가는 계속 상승했으며, 상승액이 가장 큰 지역은 제주이며 상승액은 평당 5,335,000원이다. 상승액이 가장 작은 지역은 울산이며 평당 388,000원이다. 전국 평균 변동액은 평당 1,667,735원이다. ###Markdown 연도별 변동 그래프 ###Code (ggplot(region_year_all, aes(x='지역명', y='평당분양가격', fill='연도')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic')) ) ###Output C:\ProgramData\Anaconda3\lib\site-packages\plotnine\layer.py:450: UserWarning: geom_bar : Removed 17 rows containing missing values. self.data = self.geom.handle_na(self.data) ###Markdown 지역별 평당 분양가격 합계* 아래 데이터로 어느정도 규모로 분양사업이 이루어졌는지를 봅니다.* 전체 데이터로 봤을 때 서울, 경기, 부산, 제주에 분양 사업이 다른 지역에 비해 규모가 큰 것으로 보여지지만 분양가격대비로 나눠볼 필요가 있습니다. ###Code pre_sale.pivot_table('평당분양가격', '규모구분', '지역명') ###Output _____no_output_____ ###Markdown 규모별 ###Code # 서울의 경우 전용면적 85㎡초과 102㎡이하가 분양가격이 가장 비싸게 나옵니다. (ggplot(pre_sale, aes(x='지역명', y='평당분양가격', fill='규모구분')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic')) ) # 위에 그린 그래프를 지역별로 나눠 봅니다. (ggplot(pre_sale) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_bar(stat='identity', position='dodge') + facet_wrap('지역명') + theme(text=element_text(family='NanumBarunGothic'), axis_text_x=element_text(rotation=70), figure_size=(12, 6)) ) # 박스플롯을 그려봅니다. (ggplot(pre_sale, aes(x='지역명', y='평당분양가격', fill='규모구분')) + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic'), figure_size=(12, 6)) ) pre_sale_seoul = pre_sale.loc[pre_sale['지역명']=='서울'] (ggplot(pre_sale_seoul) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) # 2015년에서 2018년까지 분양가 차이가 가장 컸던 제주를 봅니다. (ggplot(pre_sale.loc[pre_sale['지역명']=='제주']) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) # 2015년에서 2018년까지 분양가 차이가 가장 작았던 울산을 봅니다. (ggplot(pre_sale.loc[pre_sale['지역명']=='울산']) + aes(x='연도', y='평당분양가격', fill='규모구분') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) ###Output C:\ProgramData\Anaconda3\lib\site-packages\plotnine\layer.py:363: UserWarning: stat_boxplot : Removed 38 rows containing non-finite values. data = self.stat.compute_layer(data, params, layout) ###Markdown 2013년 12월~2015년 9월 3.3㎡당 분양가격* 2015년 10월부터 2018년 4월까지 데이터는 평당 분양가로 조정을 해주었었는데 이 데이터는 평당 분양가가 들어가 있다. ###Code df = pd.read_csv('data/aptprice_201509.csv', \ encoding='euc-kr', skiprows=1, header=0) df.shape # pandas에서 보기 쉽게 컬럼을 변경해 줄 필요가 있다. df year = df.iloc[0] month = df.iloc[1] # 결측치를 채워준다. year # 컬럼을 새로 만들어 주기 위해 0번째와 1번째 행을 합쳐준다. for i, y in enumerate(year): if i > 2 and i < 15: year[i] = '2014년 ' + month[i] elif i >= 15: year[i] = '2015년 ' + month[i] elif i == 2 : year[i] = year[i] + ' ' + month[i] elif i == 1: year[i] = '시군구' print(year) df.columns = year df = df.drop(df.index[[0,1]]) df # 지역 컬럼을 새로 만들어 시도와 시군구를 합쳐준다. df['구분'] = df['구분'].fillna('') df['시군구'] = df['시군구'].fillna('') df['지역'] = df['구분'] + df['시군구'] df['지역'] melt_columns = df.columns.copy() melt_columns df_2013_2015 = pd.melt(df, id_vars=['지역'], value_vars=['2013년 12월', '2014년 1월', '2014년 2월', '2014년 3월', '2014년 4월', '2014년 5월', '2014년 6월', '2014년 7월', '2014년 8월', '2014년 9월', '2014년 10월', '2014년 11월', '2014년 12월', '2015년 1월', '2015년 2월', '2015년 3월', '2015년 4월', '2015년 5월', '2015년 6월', '2015년 7월', '2015년 8월', '2015년 9월']) df_2013_2015.head() df_2013_2015.columns = ['지역', '기간', '분양가'] df_2013_2015.head() df_2013_2015['연도'] = df_2013_2015['기간'].apply(lambda year_month : year_month.split('년')[0]) df_2013_2015['월'] = df_2013_2015['기간'].apply(lambda year_month : re.sub('월', '', year_month.split('년')[1]).strip()) df_2013_2015.head() ###Output _____no_output_____ ###Markdown 지역명 강원과 부산 정리 ###Code df_2013_2015['지역'].value_counts() df_2013_2015['지역'] = df_2013_2015['지역'].apply(lambda x: re.sub('6대광역시부산','부산', x)) df_2013_2015['지역'] = df_2013_2015['지역'].apply(lambda x: re.sub('지방강원','강원', x)) df_2013_2015['지역'].value_counts() df_2013_2015.describe() df_2013_2015['분양가격'] = df_2013_2015['분양가'].str.replace(',', '').astype(int) (ggplot(df_2013_2015, aes(x='지역', y='분양가격', fill='연도')) + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic'), figure_size=(12, 6)) ) (ggplot(df_2013_2015, aes(x='지역', y='분양가격', fill='연도')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic'), figure_size=(12, 6)) ) ###Output _____no_output_____ ###Markdown 이제 2013년부터 2018년 4월까지 데이터를 합칠 준비가 됨 ###Code df_2015_2018 = pre_sale.loc[pre_sale['규모구분'] == '전체'] print(df_2015_2018.shape) df_2015_2018.head() df_2013_2015.columns df_2013_2015_prepare = df_2013_2015[['지역', '연도', '월', '분양가격']] df_2013_2015_prepare.head() df_2013_2015_prepare.columns = ['지역명', '연도', '월', '평당분양가격'] df_2015_2018.columns df_2015_2018_prepare = df_2015_2018[['지역명', '연도', '월', '평당분양가격']] df_2015_2018_prepare.head() df_2015_2018_prepare.describe() df_2013_2018 = pd.concat([df_2013_2015_prepare, df_2015_2018_prepare]) df_2013_2018.shape df_2013_2018.head() df_2013_2015_region= df_2013_2015_prepare['지역명'].unique() df_2013_2015_region df_2015_2018_region = df_2015_2018_prepare['지역명'].unique() df_2015_2018_region exclude_region = [region for region in df_2013_2015_region if not region in df_2015_2018_region] exclude_region df_2013_2018.shape df_2013_2018.loc[df_2013_2018['지역명'].str.match('전국|수도권')].head() df_2013_2018.drop(df_2013_2018.loc[df_2013_2018['지역명'].str.match('전국|수도권')].index, axis=0, inplace=True) df_2013_2018.drop(df_2013_2018.loc[df_2013_2018['지역명'] == ''].index, axis=0, inplace=True) (ggplot(df_2013_2018, aes(x='연도', y='평당분양가격')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic')) ) (ggplot(df_2013_2018, aes(x='지역명', y='평당분양가격', fill='연도')) + geom_bar(stat='identity', position='dodge') + theme(text=element_text(family='NanumBarunGothic'), figure_size=(12, 6)) ) (ggplot(df_2013_2018) + aes(x='연도', y='평당분양가격') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) df_2013_2018_jeju = df_2013_2018.loc[df_2013_2018['지역명'] == '제주'] (ggplot(df_2013_2018_jeju) + aes(x='연도', y='평당분양가격') + geom_boxplot() + theme(text=element_text(family='NanumBarunGothic')) ) (ggplot(df_2013_2018) + aes(x='연도', y='평당분양가격') + geom_boxplot() + facet_wrap('지역명') + theme(text=element_text(family='NanumBarunGothic'), axis_text_x=element_text(rotation=70), figure_size=(12, 6)) ) ###Output _____no_output_____
Prototype Notebook/legacy/Geothealler big function 3D-Testing-degree0-Copy1.ipynb
###Markdown theano_set_3D_nugget_degree0 ###Code par2 = 1/49*10**2/14/3 par3 = 10**2/14/3 par4 = 10000 w = 1/7 nugget = 0.01 par5 = par3 CG = test.geoMigueller(dips,dips_angles,azimuths,polarity, rest, ref, par2,par3,par4,nugget,w,par5)[2] G = np.concatenate(test.geoMigueller(dips,dips_angles,azimuths,polarity, rest, ref, par2,par3,par4,nugget,w,par5)[-3:]) G = np.append(G,[0,0,0,0]) CG,np.linalg.solve(CG,G), 10**2/14/3, test.geoMigueller(dips,dips_angles,azimuths,polarity, rest, ref, par2,par3,par4,nugget,w,par5)[3:6] par2 = 1/49*10**2/14/3 par3 = 10**2/14/3 par4 = 10000 w = 1/7 nugget = 0.01 par5 = par3 CG = test.geoMigueller(dips,dips_angles,azimuths,polarity, rest, ref, par2,par3,par4,nugget,w,par5)[2] G = np.concatenate(test.geoMigueller(dips,dips_angles,azimuths,polarity, rest, ref, par2,par3,par4,nugget,w,par5)[-3:]) G = np.append(G,[0,0,0]) CG,np.linalg.solve(CG,G) # Printing SED par2 = 10**2/14/3 par3 = 10**2/14/3 par4 = 10000 w = 1 nugget = 0.01 par5 = par3 s1 = test.geoMigueller(dips,dips_angles,azimuths,polarity, rest, ref, par2,par3,par4,nugget,w,par5)[-4] s2 = test.geoMigueller(dips,dips_angles,azimuths,polarity, rest, ref, par2,par3,par4,nugget,w,par5)[-3] s3 = test.geoMigueller(dips,dips_angles,azimuths,polarity, rest, ref, par2,par3,par4,nugget,w,par5)[-2] s4 = test.geoMigueller(dips,dips_angles,azimuths,polarity, rest, ref, par2,par3,par4,nugget,w,par5)[-1] s1,s2,s3,s4 test.geoMigueller(dips,dips_angles,azimuths,polarity, rest, ref, par2,par3,par4,nugget,w,par5)[0]; # Calculating a,b,c l1 = -0.0448251 l3 = 2.9136523 l4 = 0.130866 a = -0.3433333*l1/l4 b = (-0.3433333*l3+1)/l4 c = (-a*l1-b*l3)/l4 a,b,c,0.3433333*l3 0.7056028/0.0162278, 0.0162278/0.7056028, 0.1176058/0.0027041, 3.6179315/0.0199456, 0.0199456/3.6179315 181.3899556794481/43.491660811360525, 43.491660811360525/10**2/14/3 0.7056028/0.1176058 ,0.0162278/0.0027041, 3.6179315/0.1, 180/6 test.geoMigueller(dips,dips_angles,azimuths,polarity, rest, ref, par2,par3,par4,nugget,w,par5)[5] a = 0.11760583830047379 b = -0.0027041052391104997 c = 0.1 CG[0,-1] = a CG[-1,0] = a CG[-1,2] = b CG[2,-1] = b CG[-1,-1] = c CG CG,np.linalg.solve(CG,G) test.geoMigueller(dips,dips_angles,azimuths,polarity, rest, ref, par2,par3,par4,nugget,w,par5)[5] CG[-1,0] np.linalg.solve(CG,G) test.geoMigueller(dips,dips_angles,azimuths,polarity, rest, ref, 10000,par3,par4,nugget,w,par5)[8] c_sol_ult = np.array([ -0.154971249149853, 0, 3.3634073049185047, 1.6440930894388599, -2.208027365601707 ]) c_sol_17 =np.array([ -0.07519608514102089913411219868066837079823017120361328125, 0, 3.33264951481644633446421721600927412509918212890625, 1.3778510792932487927231477442546747624874114990234375, -2.295940519242440469582788864499889314174652099609375, ]) test.a.get_value() ((10/8)**2)/14/3 par2 = 10**2/14/3 par3 = -10**2/14/3 par4 = 10**2/14/3 w = 1 nugget = +0.0 par5 = 0.05 print (par3) test.geoMigueller(dips,dips_angles,azimuths,polarity, rest, ref, par2,par3,par4,nugget,w,par5)[2],test.geoMigueller( dips,dips_angles,azimuths,polarity, rest, ref, par2, par3,par4,nugget,w,par5)[1], c_sol_ult np.linalg.solve(CG,G) test.geoMigueller(test.dips,dips_angles,azimuths,polarity, rest, ref, a,0,c,-0.333,8*a,f)[-1] test.c_o.set_value(14) test.nugget_effect_grad.set_value(-0.3) test.potential_field = test.interpolate(test.dips,dips_angles, azimuths,polarity, rest, ref)[0].reshape(10,10,10) test.interpolate(dips,dips_angles,azimuths,polarity, rest, ref)[1][:,0] test.plot_potential_field_2D(direction = "y") c_sol=np.array([ -0.07519608514102089913411219868066837079823017120361328125, 0, 3.33264951481644633446421721600927412509918212890625, 1.3778510792932487927231477442546747624874114990234375, -2.295940519242440469582788864499889314174652099609375, ]) # Calculation of gradients G_x = np.sin(np.deg2rad(dips_angles)) * np.sin(np.deg2rad(azimuths)) * polarity G_y = np.sin(np.deg2rad(dips_angles)) * np.cos(np.deg2rad(azimuths)) * polarity G_z = np.cos(np.deg2rad(dips_angles)) * polarity G_x, G_y, G_z _,h1 = np.argmin((abs(test.grid - ref[0])).sum(1)), test.geoMigueller(dips,dips_angles,azimuths,polarity, rest, ref)[0][np.argmin((abs(test.grid - ref[0])).sum(1))] _, h2 =np.argmin((abs(test.grid - ref[1])).sum(1)), test.geoMigueller(dips,dips_angles,azimuths,polarity, rest, ref)[0][np.argmin((abs(test.grid - ref[1])).sum(1))] # Gradients check G_x, G_y, G_z = test.geoMigueller(dips,dips_angles,azimuths,polarity, rest, ref)[-3:] G_x, G_y, G_z; # Plotting function import numpy as np from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import matplotlib import matplotlib.cm as cmx fig = plt.figure() ax = fig.add_subplot(111, projection='3d') h = np.array([h1,h2]) cm = plt.get_cmap("jet") cNorm = matplotlib.colors.Normalize(vmin=h.min(), vmax=h.max()) scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=cm) sol = test.geoMigueller(dips,dips_angles,azimuths,polarity, rest, ref)[0].reshape(200,200,200, order = "C")[:,:,:] #sol = np.swapaxes(sol,0,1) from skimage import measure isolines = np.linspace(h1,h2,2) #vertices = measure.marching_cubes(sol, isolines[0], spacing = (0.2,0.2,0.2), # gradient_direction = "descent")[0] for i in isolines[0:10]: vertices = measure.marching_cubes(sol, i, spacing = (0.05,0.05,0.05), gradient_direction = "ascent")[0] ax.scatter(vertices[::40,0],vertices[::40,1],vertices[::40,2],color=scalarMap.to_rgba(i), alpha = 0.2) #color=scalarMap.to_rgba(vertices[::10,2]) ax.scatter(layers[0][:,0],layers[0][:,1],layers[0][:,2], s = 50, c = "r" ) ax.scatter(layers[1][:,0],layers[1][:,1],layers[1][:,2], s = 50, c = "g" ) ax.quiver3D(dips[:,0],dips[:,1],dips[:,2], G_x,G_y,G_z, pivot = "tail", linewidths = 2) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("z") ax.set_xlim(0,10) ax.set_ylim(0,10) ax.set_zlim(0,10) #ax.scatter(simplices[:,0],simplices[:,1],simplices[:,2]) c_sol = np.array(([-7.2386541205560206435620784759521484375E-14], [-1.5265566588595902430824935436248779296875E-14], [-1.154631945610162802040576934814453125E-14], [6.21724893790087662637233734130859375E-15], [-5.9952043329758453182876110076904296875E-15], [7.99360577730112709105014801025390625E-15], [2.220446049250313080847263336181640625E-15], [-3.641531520770513452589511871337890625E-14], [8.0380146982861333526670932769775390625E-14], [0.8816416857576581111999303175252862274646759033203125], [9.355249580684368737593104015104472637176513671875], [-0.1793850547262900996248191631821100600063800811767578125], [0.047149729032205163481439313954979297704994678497314453125], [-8.994519501910499315044944523833692073822021484375], [ 0.4451793036427798000431721447966992855072021484375], [-1.7549816402777651536126768405665643513202667236328125], [0.0920938443689063301889063950511626899242401123046875], [0.36837537747562587586713789278292097151279449462890625])).squeeze() c_sol.squeeze() # Geomodeller solutions # this is correct c_sol_17 =np.array([ -0.07519608514102089913411219868066837079823017120361328125, 0, 3.33264951481644633446421721600927412509918212890625, 1.3778510792932487927231477442546747624874114990234375, -2.295940519242440469582788864499889314174652099609375, ]) c_sol_100= np.array([-0.0137274193697543359, 0, 3.0568482261959, 1.2783812756016, -2.051133867308]) # this is correct c_sol_10 = np.array([-0.151502417422, 0, 3.3353696310127, 1.6023015420914, -2.111778593772]) , c_sol_10_90 = np.array([0.419745323675709047783, -1.06527926020528126070109E-10, 3.25838975306877864923, 1.22202703670627732535, -2.1228757261714990001] ) c_sol_10_2dips = np.array([ -0.451454922983293982508001, -1.716482167839337824588, -3.978534821682584707878E-10, 9.4238070915992040076531E-10, 2.7910108234647372782433, 2.0918189335108881010683, 2.7639520139409876620106, 0.2536147925783167056401 ,] ) c_sol_10_2dips = np.array( [ -0.49345757792304362210344947925477754, -1.761009665135806256941464198462199, 0, 0, 2.788719784344781960072623405721969902, 2.152601573628609710198134052916429936, 2.693816367628854013815953294397331774, 0.371681174428028004985691268302616663 ] ) test.set_extent(0,1000,0,1000,0,1000) test.a.set_value(10) test.geoMigueller(test.dips,dips_angles,azimuths,polarity, rest, ref, a,0,c,-0.333,8*a,f)[1] test.a.get_value() import pymc as pm a = pm.Uniform('a', lower=-2, upper=1, value = 0.1 ) b = pm.Uniform('b', lower=-5, upper=1,) c = pm.Uniform('c', lower=-100, upper=10, ) d = pm.Uniform('d', lower=-10, upper=10, value = -0.3333) e = pm.Uniform('e', lower=-1.1, upper=10, value = 0.8 ) f = pm.Uniform('f', lower=-1.1, upper=1.1, value = 0.26666 ) @pm.deterministic def this(value = 0, a = a ,b = b,c = c,d = d,e= e,f =f): sol = test.geoMigueller(test.dips,dips_angles,azimuths,polarity, rest, ref, 0.17,-17**2/14/3,c,0,1,f)[1] #error = abs(sol-c_sol) #print (c_sol_10_2dips, sol) return sol like= pm.Normal("likelihood", this, 1./np.square(1e-40), value = c_sol_17, observed = True, size = len(c_sol_17) ) model = pm.Model([a,b,c,d,e,f, like]) M = pm.MAP(model) M.fit() print( "\n a",a.value, "\n b grad-> c_o GI",b.value, "\n c -> does not exist", c.value, "\n d -> nugeet", d.value, "\n e", e.value, "\n f",f.value) this.value, c_sol_17, c.value/a.value 1.42/0.29 100/14/3 print( "\n a",a.value, "\n b",b.value, "\n c", c.value, "\n d", d.value, "\n e", e.value, "\n f",f.value) this.value, c_sol_10_2dips, e.value/a.value 17**2/(14) par2 = 0.00033333 * 17**2 test.geoMigueller(dips,dips_angles,azimuths,polarity, rest, ref, par2,1000,400000,-6,par2,1)[1], c_sol_17 par2 = 17**2/(14) w = 0.15 print (par2) test.geoMigueller(dips,dips_angles,azimuths,polarity, rest, ref, par2,par2,1,-1.01,w*par2,1)[2],test.geoMigueller( dips,dips_angles,azimuths,polarity, rest, ref, par2,par2,1,1.01,w*par2,1)[1], c_sol_17 par2 = 17**2/(14*3) w = -11 print (par2) test.geoMigueller(dips,dips_angles,azimuths,polarity, rest, ref, par2,1000,400000,-0.01,w*par2,1)[2], test.geoMigueller( dips,dips_angles,azimuths,polarity, rest, ref, par2,1000,400000,-0.34,w*par2,1)[1], c_sol_17 for i in range(0,5): print (i, round((-0.3333-0.01*i),3), test.geoMigueller(dips,dips_angles,azimuths,polarity, rest, ref, par2,0,1,-0.3333*i,-8*par2,1)[1],) par = 0.1047 test.geoMigueller(dips,dips_angles,azimuths,polarity, rest, ref,par,-0.333333,1,8*par,1,1)[1] np.square(17)/0.1047, 0.1047/np.square(17) np.square(10)/0.03, 0.03/np.square(10) test.a.set_value(100) par = np.square(100)*0.00033 g_sol=test.geoMigueller(dips,dips_angles,azimuths,polarity, rest, ref,par*0.01,0,1000000.,-1./3 ,8*par*0.01,1)[1] print(g_sol) print(c_sol) print(g_sol-c_sol, sum(g_sol-c_sol)) np.square(100)*0.0003,8/14, 14/8, 0.058824 * 14 test.geoMigueller(dips,dips_angles,azimuths,polarity, rest, ref,par,-1/3,1,8*par,1,1)[1] par = np.square(100)*0.000345 test.geoMigueller(dips,dips_angles,azimuths,polarity, rest, ref,par,-0.01/3,0.01,8*par,1,1)[1] 0.855/0.33, 17*17/42 a.value, b.value, c.value,d.value, e.value, f.value, this.value, c_sol, test.geoMigueller(dips,dips_angles,azimuths,polarity, rest, ref,a,b,-3*b,d,1,1)[1] -3*b.value a.value, b.value, c.value,d.value, e.value, f.value, this.value, c_sol, test.geoMigueller(dips,dips_angles,azimuths,polarity, rest, ref,1,1,1,1,1,1)[1] a.value, b.value, c.value,d.value, e.value, f.value, this.value, c_sol, test.geoMigueller(dips,dips_angles,azimuths,polarity, rest, ref,1,1,1,1,1,1)[1] a.value, b.value, c.value,d.value, e.value, f.value, this.value, c_sol, test.geoMigueller(dips,dips_angles,azimuths,polarity, rest, ref,1,1,1,1,1,1)[1] a.value, b.value, c.value,d.value, e.value, f.value, this.value, c_sol, test.geoMigueller(dips,dips_angles,azimuths,polarity, rest, ref,1,1,1,1,1,1)[1] test.geoMigueller(dips,dips_angles,azimuths,polarity, rest, ref,0,0,-0.33,0,1,1)[1] ###Output _____no_output_____ ###Markdown Test with all variables ###Code a.value, b.value, c.value,d.value,e.value,f.value, this.value, c_sol, test.geoMigueller(dips,dips_angles,azimuths,polarity, rest, ref,a,b,1,1,1,1)[1] a.value, b.value, c.value,d.value,e.value,f.value, this.value, c_sol, test.geoMigueller(dips,dips_angles,azimuths,polarity, rest, ref,1,1,1,1,1,1)[1] importlib.reload(GeoMig) test = GeoMig.GeoMigSim_pro2(c_o = np.float32(-0.1),range = 17) test.create_regular_grid_3D(0,10,0,10,0,10,20,20,20) test.theano_set_3D_nugget_degree0() import matplotlib.pyplot as plt %matplotlib inline G_x, G_y, G_z = test.geoMigueller(dips,dips_angles,azimuths,polarity, rest, ref,1,1,1,1,1,1)[-3:] sol = test.geoMigueller(dips,dips_angles,azimuths,polarity, rest, ref,a,b,-3*b,d,1,-1)[0].reshape(20,20,20) def plot_this_crap(direction): fig = plt.figure() ax = fig.add_subplot(111) if direction == "x": plt.arrow(dip_pos_1[1],dip_pos_1[2], dip_pos_1_v[1]-dip_pos_1[1], dip_pos_1_v[2]-dip_pos_1[2], head_width = 0.2) plt.arrow(dip_pos_2[1],dip_pos_2[2],dip_pos_2_v[1]-dip_pos_2[1], dip_pos_2_v[2]-dip_pos_2[2], head_width = 0.2) plt.plot(layer_1[:,1],layer_1[:,2], "o") plt.plot(layer_2[:,1],layer_2[:,2], "o") plt.plot(layer_1[:,1],layer_1[:,2], ) plt.plot(layer_2[:,1],layer_2[:,2], ) plt.contour( sol[25,:,:] ,30,extent = (0,10,0,10) ) if direction == "y": plt.quiver(dips[:,0],dips[:,2], G_x,G_z, pivot = "tail") for layer in layers: plt.plot(layer[:,0], layer[:,2], "o") # plt.plot(layer_1[:,0],layer_1[:,2], "o") # plt.plot(layer_2[:,0],layer_2[:,2], "o") # plt.plot(layer_1[:,0],layer_1[:,2], ) # plt.plot(layer_2[:,0],layer_2[:,2], ) plt.contour( sol[:,10,:].T ,30,extent = (0,10,0,10) ) if direction == "z": plt.arrow(dip_pos_1[0],dip_pos_1[1], dip_pos_1_v[0]-dip_pos_1[0], dip_pos_1_v[1]-dip_pos_1[1], head_width = 0.2) plt.arrow(dip_pos_2[0],dip_pos_2[1],dip_pos_2_v[0]-dip_pos_2[0], dip_pos_2_v[1]-dip_pos_2[1], head_width = 0.2) plt.plot(layer_1[:,0],layer_1[:,1], "o") plt.plot(layer_2[:,0],layer_2[:,1], "o") plt.plot(layer_1[:,0],layer_1[:,1], ) plt.plot(layer_2[:,0],layer_2[:,1], ) plt.contour( sol[:,:,25] ,30,extent = (0,10,0,10) ) #plt.colorbar() #plt.xlim(0,10) #plt.ylim(0,10) plt.colorbar() plt.title("GeoBulleter v 0.1") layers plot_this_crap("y") a.value, b.value test.geoMigueller(dips,dips_angles,azimuths,polarity, rest, ref,1,1,1,1,1,1)[1] c_sol h,j,k =sol[5,10,35], sol[25,5,5], sol[30,15,-25] layer_1 = np.array([[1,5,7],[5,5,7],[6,5,7], [9,5,7]], dtype = "float32") layer_2 = np.array([[1,5,1],[5,5,1],[9,5,1]], dtype = "float32") print(sol[5,25,35], sol[25,25,35], sol[30,25,35], sol[45,25,35]) print(sol[5,25,5], sol[25,25,5], sol[45,25,5]) list(layer_1[0]*5) interfaces_aux = test.geoMigueller(dips,dips_angles,azimuths,polarity, rest, ref)[0] h = sol[10,20,30]# interfaces_aux[np.argmin(abs((test.grid - ref[0]).sum(1)))] k = sol[30,15,25]# interfaces_aux[np.argmin(abs((test.grid - dips[0]).sum(1)))] j = sol[45,25,5]#interfaces_aux[np.argmin(abs((test.grid - dips[-1]).sum(1)))] h,k,j dips[-1], ref[0] sol[30,15,25], sol[30,15,25] sol = test.geoMigueller(dips,dips_angles,azimuths,polarity, rest, ref)[0].reshape(50,50,50, order = "C") sol = np.swapaxes(sol,0,1) plt.contour(sol[:,25,:].transpose()) """Export model to VTK Export the geology blocks to VTK for visualisation of the entire 3-D model in an external VTK viewer, e.g. Paraview. ..Note:: Requires pyevtk, available for free on: https://github.com/firedrakeproject/firedrake/tree/master/python/evtk **Optional keywords**: - *vtk_filename* = string : filename of VTK file (default: output_name) - *data* = np.array : data array to export to VKT (default: entire block model) """ vtk_filename = "noddyFunct2" extent_x = 10 extent_y = 10 extent_z = 10 delx = 0.2 dely = 0.2 delz = 0.2 from pyevtk.hl import gridToVTK # Coordinates x = np.arange(0, extent_x + 0.1*delx, delx, dtype='float64') y = np.arange(0, extent_y + 0.1*dely, dely, dtype='float64') z = np.arange(0, extent_z + 0.1*delz, delz, dtype='float64') # self.block = np.swapaxes(self.block, 0, 2) gridToVTK(vtk_filename, x, y, z, cellData = {"geology" : sol}) len(x) surf_eq.min() np.min(z) layers[0][:,0] G_x = np.sin(np.deg2rad(dips_angles)) * np.sin(np.deg2rad(azimuths)) * polarity G_y = np.sin(np.deg2rad(dips_angles)) * np.cos(np.deg2rad(azimuths)) * polarity G_z = np.cos(np.deg2rad(dips_angles)) * polarity a data = [trace1, trace2] layout = go.Layout( xaxis=dict( range=[2, 5] ), yaxis=dict( range=[2, 5] ) ) fig = go.Figure(data=data, layout=layout) import lxml lxml?? # Random Box #layers = [np.random.uniform(0,10,(10,2)) for i in range(100)] #dips = np.random.uniform(0,10, (60,2)) #dips_angles = np.random.normal(90,10, 60) #rest = (np.vstack((i[1:] for i in layers))) #ref = np.vstack((np.tile(i[0],(np.shape(i)[0]-1,1)) for i in layers)) #rest; fig = plt.figure() ax = fig.add_subplot(111, projection='3d') X, Y, Z = axes3d.get_test_data(0.05) cset = ax.contour(X, Y, Z, cmap=cm.coolwarm) ax.clabel(cset, fontsize=9, inline=1) print(X) plt.show() import matplotlib.pyplot as plt % matplotlib inline plt.contour( sol.reshape(100,100) ,30,extent = (0,10,0,10) ) import matplotlib.pyplot as plt % matplotlib inline dip_pos_1_v = np.array([np.cos(np.deg2rad(dip_angle_1))*1, np.sin(np.deg2rad(dip_angle_1))]) + dip_pos_1 dip_pos_2_v = np.array([np.cos(np.deg2rad(dip_angle_2))*1, np.sin(np.deg2rad(dip_angle_2))]) + dip_pos_2 plt.arrow(dip_pos_1[0],dip_pos_1[1], dip_pos_1_v[0]-dip_pos_1[0], dip_pos_1_v[1]-dip_pos_1[1], head_width = 0.2) plt.arrow(dip_pos_2[0],dip_pos_2[1],dip_pos_2_v[0]-dip_pos_2[0], dip_pos_2_v[1]-dip_pos_2[1], head_width = 0.2) plt.plot(layer_1[:,0],layer_1[:,1], "o") plt.plot(layer_2[:,0],layer_2[:,1], "o") plt.plot(layer_1[:,0],layer_1[:,1], ) plt.plot(layer_2[:,0],layer_2[:,1], ) plt.contour( sol.reshape(100,100) ,30,extent = (0,10,0,10) ) #plt.colorbar() #plt.xlim(0,10) #plt.ylim(0,10) plt.title("GeoBulleter v 0.1") print (dip_pos_1_v, dip_pos_2_v, layer_1) ###Output [ 2. 5.] [ 6.34 3.94] [[ 1. 7.] [ 5. 7.] [ 6. 7.] [ 9. 8.]] ###Markdown CPU ###Code %%timeit sol = test.geoMigueller(dips,dips_angles,rest, ref)[0] test.geoMigueller.profile.summary() sys.path.append("/home/bl3/anaconda3/lib/python3.5/site-packages/PyEVTK-1.0.0-py3.5.egg_FILES/pyevtk") nx = 50 ny = 50 nz = 50 xmin = 1 ymin = 1 zmin = 1 grid = sol var_name = "Geology" #from evtk.hl import gridToVTK import pyevtk from pyevtk.hl import gridToVTK # define coordinates x = np.zeros(nx + 1) y = np.zeros(ny + 1) z = np.zeros(nz + 1) x[1:] = np.cumsum(delx) y[1:] = np.cumsum(dely) z[1:] = np.cumsum(delz) # plot in coordinates x += xmin y += ymin z += zmin print (len(x), x) gridToVTK("GeoMigueller", x, y, z, cellData = {var_name: grid}) ###Output 51 [ 1. 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2] ###Markdown GPU ###Code %%timeit sol = test.geoMigueller(dips,dips_angles,azimuths,polarity, rest, ref); test.geoMigueller.profile.summary() importlib.reload(GeoMig) test = GeoMig.GeoMigSim_pro2() from theano import function, config, shared, sandbox import theano.tensor as T import numpy import time vlen = 10 * 30 * 768 # 10 x #cores x # threads per core iters = 1000 rng = numpy.random.RandomState(22) x = shared(numpy.asarray(rng.rand(vlen), config.floatX)) f = function([], T.exp(x)) print(f.maker.fgraph.toposort()) t0 = time.time() for i in range(iters): r = f() t1 = time.time() print("Looping %d times took %f seconds" % (iters, t1 - t0)) print("Result is %s" % (r,)) if numpy.any([isinstance(x.op, T.Elemwise) for x in f.maker.fgraph.toposort()]): print('Used the cpu') else: print('Used the gpu') from theano import function, config, shared, sandbox import theano.tensor as T import numpy import time vlen = 10 * 30 * 768 # 10 x #cores x # threads per core iters = 1000 rng = numpy.random.RandomState(22) x = shared(numpy.asarray(rng.rand(vlen), config.floatX)) f = function([], T.exp(x)) print(f.maker.fgraph.toposort()) t0 = time.time() for i in range(iters): r = f() t1 = time.time() print("Looping %d times took %f seconds" % (iters, t1 - t0)) print("Result is %s" % (r,)) if numpy.any([isinstance(x.op, T.Elemwise) for x in f.maker.fgraph.toposort()]): print('Used the cpu') else: print('Used the gpu') from theano import function, config, shared, sandbox import theano.tensor as T import numpy import time vlen = 10 * 30 * 768 # 10 x #cores x # threads per core iters = 1000 rng = numpy.random.RandomState(22) x = shared(numpy.asarray(rng.rand(vlen), config.floatX)) f = function([], T.exp(x)) print(f.maker.fgraph.toposort()) t0 = time.time() for i in range(iters): r = f() t1 = time.time() print("Looping %d times took %f seconds" % (iters, t1 - t0)) print("Result is %s" % (r,)) if numpy.any([isinstance(x.op, T.Elemwise) for x in f.maker.fgraph.toposort()]): print('Used the cpu') else: print('Used the gpu') np.set_printoptions(precision=2) test.geoMigueller(dips,dips_angles,rest, ref)[1] T.fill_diagonal? import matplotlib.pyplot as plt % matplotlib inline dip_pos_1_v = np.array([np.cos(np.deg2rad(dip_angle_1))*1, np.sin(np.deg2rad(dip_angle_1))]) + dip_pos_1 dip_pos_2_v = np.array([np.cos(np.deg2rad(dip_angle_2))*1, np.sin(np.deg2rad(dip_angle_2))]) + dip_pos_2 plt.arrow(dip_pos_1[0],dip_pos_1[1], dip_pos_1_v[0]-dip_pos_1[0], dip_pos_1_v[1]-dip_pos_1[1], head_width = 0.2) plt.arrow(dip_pos_2[0],dip_pos_2[1],dip_pos_2_v[0]-dip_pos_2[0], dip_pos_2_v[1]-dip_pos_2[1], head_width = 0.2) plt.plot(layer_1[:,0],layer_1[:,1], "o") plt.plot(layer_2[:,0],layer_2[:,1], "o") plt.plot(layer_1[:,0],layer_1[:,1], ) plt.plot(layer_2[:,0],layer_2[:,1], ) plt.contour( sol.reshape(50,50) ,30,extent = (0,10,0,10) ) #plt.colorbar() #plt.xlim(0,10) #plt.ylim(0,10) plt.title("GeoBulleter v 0.1") print (dip_pos_1_v, dip_pos_2_v, layer_1) n = 10 #a = T.horizontal_stack(T.vertical_stack(T.ones(n),T.zeros(n)), T.vertical_stack(T.zeros(n), T.ones(n))) a = T.zeros(n) print (a.eval()) #U_G = T.horizontal_stack(([T.ones(n),T.zeros(n)],[T.zeros(n),T.ones(n)])) T.stack?ö+aeg x_min = 0 x_max = 10 y_min = 0 y_max = 10 z_min = 0 z_max = 10 nx = 2 ny = 2 nz = 2 g = np.meshgrid( np.linspace(x_min, x_max, nx, dtype="float32"), np.linspace(y_min, y_max, ny, dtype="float32"), np.linspace(z_min, z_max, nz, dtype="float32"), indexing="ij" ) np.vstack(map(np.ravel, g)).T.astype("float32") map(np.ravel, g) np.ravel(g, order = "F") g np.transpose? from scipy.optimize import basinhopping c_sol, test.geoMigueller(dips,dips_angles,azimuths,polarity, rest, ref,1,1,1,1,1,1)[1] def func2d(x): return abs((test.geoMigueller(dips,dips_angles,azimuths,polarity, rest, ref,x[0],x[1],x[2],x[3],1,1)[1] - c_sol)).sum() minimizer_kwargs = {"method": "BFGS"} x0 = [0.1, 0.1,0.1,0.1] ret = basinhopping(func2d, x0, minimizer_kwargs=minimizer_kwargs, niter=200) ret ret ret ###Output _____no_output_____
SBM_16Layer_ClusterDataset.ipynb
###Markdown ###Code !pip install -q condacolab import condacolab condacolab.install_anaconda() ###Output ✨🍰✨ Everything looks OK! ###Markdown Load and create environment ###Code from google.colab import drive drive.mount('/content/drive') %pwd # Execution time 4m 18s %cp -av /content/drive/MyDrive/'Colab Notebooks'/'Colab Notebooks'/benchmarking-gnns /content %cd benchmarking-gnns %cd /content/benchmarking-gnns/ !conda env create -f /content/benchmarking-gnns/environment_gpu.yml !conda activate benchmark_gnn ###Output _____no_output_____ ###Markdown Main Driver Notebook for Training Graph NNs on SBM Datasets MODELS- GatedGCN - GCN - GAT - GraphSage - MLP- GIN- MoNet- RingGNN - 3WLGNN DATASET- SBM_CLUSTER- SBM_PATTERN TASK- Node Classification ###Code #!pip install tensorboardX !pip install dgl-cu101 #!pip install tensorboardX !pip install pytorch #!pip install dgl !pip install tensorboardX import dgl import numpy as np import os import socket import time import random import glob import argparse, json import pickle import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.utils.data import DataLoader from tensorboardX import SummaryWriter from tqdm import tqdm class DotDict(dict): def __init__(self, **kwds): self.update(kwds) self.__dict__ = self #import dgl # """ # AUTORELOAD IPYTHON EXTENSION FOR RELOADING IMPORTED MODULES # """ def in_ipynb(): try: cfg = get_ipython().config return True except NameError: return False notebook_mode = in_ipynb() print(notebook_mode) if notebook_mode == True: %load_ext autoreload %autoreload 2 """ IMPORTING CUSTOM MODULES/METHODS """ from nets.SBMs_node_classification.load_net import gnn_model # import GNNs from data.data import LoadData # import dataset """ GPU Setup """ def gpu_setup(use_gpu, gpu_id): os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id) if torch.cuda.is_available() and use_gpu: print('cuda available with GPU:',torch.cuda.get_device_name(0)) device = torch.device("cuda") else: print('cuda not available') device = torch.device("cpu") return device # select GPU or CPU use_gpu = True; gpu_id = 0; device = None # default GPU #use_gpu = False; gpu_id = -1; device = None # CPU # """ # USER CONTROLS # """ if notebook_mode == True: #MODEL_NAME = '3WLGNN' #MODEL_NAME = 'RingGNN' MODEL_NAME = 'GatedGCN' #MODEL_NAME = 'GCN' #MODEL_NAME = 'GAT' #MODEL_NAME = 'GraphSage' #MODEL_NAME = 'MLP' #MODEL_NAME = 'GIN' #MODEL_NAME = 'MoNet' DATASET_NAME = 'SBM_CLUSTER' #DATASET_NAME = 'SBM_PATTERN' out_dir = 'out/SBMs_node_classification/' root_log_dir = out_dir + 'logs/' + MODEL_NAME + "_" + DATASET_NAME + "_" + time.strftime('%Hh%Mm%Ss_on_%b_%d_%Y') root_ckpt_dir = out_dir + 'checkpoints/' + MODEL_NAME + "_" + DATASET_NAME + "_" + time.strftime('%Hh%Mm%Ss_on_%b_%d_%Y') dataset = LoadData(DATASET_NAME) trainset, valset, testset = dataset.train, dataset.val, dataset.test #MODEL_NAME = 'RingGNN' MODEL_NAME = 'GatedGCN' #MODEL_NAME = 'GCN' #MODEL_NAME = 'GAT' #MODEL_NAME = 'GraphSage' #MODEL_NAME = 'MLP' #MODEL_NAME = 'DiffPool' #MODEL_NAME = 'GIN' #MODEL_NAME = 'MoNet' # """ # PARAMETERS # """ if notebook_mode == True: n_heads = -1 edge_feat = False pseudo_dim_MoNet = -1 kernel = -1 gnn_per_block = -1 embedding_dim = -1 pool_ratio = -1 n_mlp_GIN = -1 gated = False self_loop = False #self_loop = True max_time = 12 pos_enc = True #pos_enc = False pos_enc_dim = 10 if MODEL_NAME == 'GatedGCN': seed=41; epochs=1000; batch_size=5; init_lr=5e-5; lr_reduce_factor=0.5; lr_schedule_patience=25; min_lr = 1e-6; weight_decay=0 L=16; hidden_dim=70; out_dim=hidden_dim; dropout=0.0; readout='mean' if MODEL_NAME == 'GCN': seed=41; epochs=1000; batch_size=5; init_lr=5e-5; lr_reduce_factor=0.5; lr_schedule_patience=25; min_lr = 1e-6; weight_decay=0 L=4; hidden_dim=146; out_dim=hidden_dim; dropout=0.0; readout='mean' if MODEL_NAME == 'GAT': seed=41; epochs=1000; batch_size=50; init_lr=5e-5; lr_reduce_factor=0.5; lr_schedule_patience=25; min_lr = 1e-6; weight_decay=0 L=4; n_heads=8; hidden_dim=19; out_dim=n_heads*hidden_dim; dropout=0.0; readout='mean' print('True hidden dim:',out_dim) if MODEL_NAME == 'GraphSage': seed=41; epochs=1000; batch_size=50; init_lr=5e-5; lr_reduce_factor=0.5; lr_schedule_patience=25; min_lr = 1e-6; weight_decay=0 L=4; hidden_dim=108; out_dim=hidden_dim; dropout=0.0; readout='mean' if MODEL_NAME == 'MLP': seed=41; epochs=1000; batch_size=50; init_lr=5e-4; lr_reduce_factor=0.5; lr_schedule_patience=25; min_lr = 1e-6; weight_decay=0 gated=False; # MEAN L=4; hidden_dim=150; out_dim=hidden_dim; dropout=0.0; readout='mean' gated=True; # GATED L=4; hidden_dim=135; out_dim=hidden_dim; dropout=0.0; readout='mean' if MODEL_NAME == 'DiffPool': seed=41; epochs=1000; batch_size=50; init_lr=5e-4; lr_reduce_factor=0.5; lr_schedule_patience=25; min_lr = 1e-6; weight_decay=0 L=4; hidden_dim=32; out_dim=hidden_dim; dropout=0.0; readout='mean' n_heads=8; gnn_per_block=3; embedding_dim=32; batch_size=128; pool_ratio=0.15 if MODEL_NAME == 'GIN': seed=41; epochs=1000; batch_size=50; init_lr=5e-4; lr_reduce_factor=0.5; lr_schedule_patience=25; min_lr = 1e-6; weight_decay=0 L=4; hidden_dim=110; out_dim=hidden_dim; dropout=0.0; readout='mean' n_mlp_GIN = 2; learn_eps_GIN=True; neighbor_aggr_GIN='sum' if MODEL_NAME == 'MoNet': seed=41; epochs=1000; batch_size=50; init_lr=5e-4; lr_reduce_factor=0.5; lr_schedule_patience=25; min_lr = 1e-6; weight_decay=0 L=4; hidden_dim=90; out_dim=hidden_dim; dropout=0.0; readout='mean' pseudo_dim_MoNet=2; kernel=3; if MODEL_NAME == 'RingGNN': seed=41; epochs=1000; batch_size=1; init_lr=5e-5; lr_reduce_factor=0.5; lr_schedule_patience=25; min_lr = 1e-6; weight_decay=0 #L=4; hidden_dim=145; out_dim=hidden_dim; dropout=0.0; readout='mean' L=4; hidden_dim=25; out_dim=hidden_dim; dropout=0.0 if MODEL_NAME == '3WLGNN': seed=41; epochs=1000; batch_size=1; init_lr=5e-5; lr_reduce_factor=0.5; lr_schedule_patience=25; min_lr = 1e-6; weight_decay=0 L=3; hidden_dim=82; out_dim=hidden_dim; dropout=0.0 # generic new_params net_params = {} net_params['device'] = device net_params['in_dim'] = torch.unique(trainset[0][0].ndata['feat'],dim=0).size(0) # node_dim (feat is an integer) net_params['hidden_dim'] = hidden_dim net_params['out_dim'] = out_dim num_classes = torch.unique(trainset[0][1],dim=0).size(0) net_params['n_classes'] = num_classes net_params['L'] = L # min L should be 2 net_params['readout'] = "mean" net_params['layer_norm'] = True net_params['batch_norm'] = True net_params['in_feat_dropout'] = 0.0 net_params['dropout'] = 0.0 net_params['residual'] = True net_params['edge_feat'] = edge_feat net_params['self_loop'] = self_loop # for MLPNet net_params['gated'] = gated # for GAT net_params['n_heads'] = n_heads # for graphsage net_params['sage_aggregator'] = 'meanpool' # specific for GIN net_params['n_mlp_GIN'] = n_mlp_GIN net_params['learn_eps_GIN'] = True net_params['neighbor_aggr_GIN'] = 'sum' # specific for MoNet net_params['pseudo_dim_MoNet'] = pseudo_dim_MoNet net_params['kernel'] = kernel # specific for RingGNN net_params['radius'] = 2 num_nodes = [dataset.train[i][0].number_of_nodes() for i in range(len(dataset.train))] net_params['avg_node_num'] = int(np.ceil(np.mean(num_nodes))) # specific for 3WLGNN net_params['depth_of_mlp'] = 2 # specific for pos_enc_dim net_params['pos_enc'] = pos_enc net_params['pos_enc_dim'] = pos_enc_dim """ VIEWING MODEL CONFIG AND PARAMS """ def view_model_param(MODEL_NAME, net_params): model = gnn_model(MODEL_NAME, net_params) total_param = 0 print("MODEL DETAILS:\n") print(model) for param in model.parameters(): # print(param.data.size()) total_param += np.prod(list(param.data.size())) print('MODEL/Total parameters:', MODEL_NAME, total_param) return total_param if notebook_mode == True: view_model_param(MODEL_NAME, net_params) """ TRAINING CODE """ def train_val_pipeline(MODEL_NAME, dataset, params, net_params, dirs): start0 = time.time() per_epoch_time = [] DATASET_NAME = dataset.name if MODEL_NAME in ['GCN', 'GAT']: if net_params['self_loop']: print("[!] Adding graph self-loops for GCN/GAT models (central node trick).") dataset._add_self_loops() if MODEL_NAME in ['GatedGCN']: if net_params['pos_enc']: print("[!] Adding graph positional encoding.") dataset._add_positional_encodings(net_params['pos_enc_dim']) print('Time PE:',time.time()-start0) trainset, valset, testset = dataset.train, dataset.val, dataset.test root_log_dir, root_ckpt_dir, write_file_name, write_config_file = dirs device = net_params['device'] # Write network and optimization hyper-parameters in folder config/ with open(write_config_file + '.txt', 'w') as f: f.write("""Dataset: {},\nModel: {}\n\nparams={}\n\nnet_params={}\n\n\nTotal Parameters: {}\n\n"""\ .format(DATASET_NAME, MODEL_NAME, params, net_params, net_params['total_param'])) log_dir = os.path.join(root_log_dir, "RUN_" + str(0)) writer = SummaryWriter(log_dir=log_dir) # setting seeds random.seed(params['seed']) np.random.seed(params['seed']) torch.manual_seed(params['seed']) if device.type == 'cuda': torch.cuda.manual_seed(params['seed']) print("Training Graphs: ", len(trainset)) print("Validation Graphs: ", len(valset)) print("Test Graphs: ", len(testset)) print("Number of Classes: ", net_params['n_classes']) model = gnn_model(MODEL_NAME, net_params) model = model.to(device) optimizer = optim.Adam(model.parameters(), lr=params['init_lr'], weight_decay=params['weight_decay']) scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=params['lr_reduce_factor'], patience=params['lr_schedule_patience'], verbose=True) epoch_train_losses, epoch_val_losses = [], [] epoch_train_accs, epoch_val_accs = [], [] if MODEL_NAME in ['RingGNN', '3WLGNN']: # import train functions specific for WL-GNNs from train.train_SBMs_node_classification import train_epoch_dense as train_epoch, evaluate_network_dense as evaluate_network train_loader = DataLoader(trainset, shuffle=True, collate_fn=dataset.collate_dense_gnn) val_loader = DataLoader(valset, shuffle=False, collate_fn=dataset.collate_dense_gnn) test_loader = DataLoader(testset, shuffle=False, collate_fn=dataset.collate_dense_gnn) else: # import train functions for all other GCNs from train.train_SBMs_node_classification import train_epoch_sparse as train_epoch, evaluate_network_sparse as evaluate_network # import train functions train_loader = DataLoader(trainset, batch_size=params['batch_size'], shuffle=True, collate_fn=dataset.collate) val_loader = DataLoader(valset, batch_size=params['batch_size'], shuffle=False, collate_fn=dataset.collate) test_loader = DataLoader(testset, batch_size=params['batch_size'], shuffle=False, collate_fn=dataset.collate) # At any point you can hit Ctrl + C to break out of training early. try: with tqdm(range(params['epochs'])) as t: for epoch in t: t.set_description('Epoch %d' % epoch) start = time.time() if MODEL_NAME in ['RingGNN', '3WLGNN']: # since different batch training function for dense GNNs epoch_train_loss, epoch_train_acc, optimizer = train_epoch(model, optimizer, device, train_loader, epoch, params['batch_size']) else: # for all other models common train function epoch_train_loss, epoch_train_acc, optimizer = train_epoch(model, optimizer, device, train_loader, epoch) epoch_val_loss, epoch_val_acc = evaluate_network(model, device, val_loader, epoch) _, epoch_test_acc = evaluate_network(model, device, test_loader, epoch) epoch_train_losses.append(epoch_train_loss) epoch_val_losses.append(epoch_val_loss) epoch_train_accs.append(epoch_train_acc) epoch_val_accs.append(epoch_val_acc) writer.add_scalar('train/_loss', epoch_train_loss, epoch) writer.add_scalar('val/_loss', epoch_val_loss, epoch) writer.add_scalar('train/_acc', epoch_train_acc, epoch) writer.add_scalar('val/_acc', epoch_val_acc, epoch) writer.add_scalar('test/_acc', epoch_test_acc, epoch) writer.add_scalar('learning_rate', optimizer.param_groups[0]['lr'], epoch) t.set_postfix(time=time.time()-start, lr=optimizer.param_groups[0]['lr'], train_loss=epoch_train_loss, val_loss=epoch_val_loss, train_acc=epoch_train_acc, val_acc=epoch_val_acc, test_acc=epoch_test_acc) per_epoch_time.append(time.time()-start) # Saving checkpoint ckpt_dir = os.path.join(root_ckpt_dir, "RUN_") if not os.path.exists(ckpt_dir): os.makedirs(ckpt_dir) torch.save(model.state_dict(), '{}.pkl'.format(ckpt_dir + "/epoch_" + str(epoch))) files = glob.glob(ckpt_dir + '/*.pkl') for file in files: epoch_nb = file.split('_')[-1] epoch_nb = int(epoch_nb.split('.')[0]) if epoch_nb < epoch-1: os.remove(file) scheduler.step(epoch_val_loss) if optimizer.param_groups[0]['lr'] < params['min_lr']: print("\n!! LR SMALLER OR EQUAL TO MIN LR THRESHOLD.") break # Stop training after params['max_time'] hours if time.time()-start0 > params['max_time']*3600: print('-' * 89) print("Max_time for training elapsed {:.2f} hours, so stopping".format(params['max_time'])) break except KeyboardInterrupt: print('-' * 89) print('Exiting from training early because of KeyboardInterrupt') _, test_acc = evaluate_network(model, device, test_loader, epoch) _, train_acc = evaluate_network(model, device, train_loader, epoch) print("Test Accuracy: {:.4f}".format(test_acc)) print("Train Accuracy: {:.4f}".format(train_acc)) print("Convergence Time (Epochs): {:.4f}".format(epoch)) print("TOTAL TIME TAKEN: {:.4f}s".format(time.time()-start0)) print("AVG TIME PER EPOCH: {:.4f}s".format(np.mean(per_epoch_time))) writer.close() """ Write the results in out_dir/results folder """ with open(write_file_name + '.txt', 'w') as f: f.write("""Dataset: {},\nModel: {}\n\nparams={}\n\nnet_params={}\n\n{}\n\nTotal Parameters: {}\n\n FINAL RESULTS\nTEST ACCURACY: {:.4f}\nTRAIN ACCURACY: {:.4f}\n\n Convergence Time (Epochs): {:.4f}\nTotal Time Taken: {:.4f} hrs\nAverage Time Per Epoch: {:.4f} s\n\n\n"""\ .format(DATASET_NAME, MODEL_NAME, params, net_params, model, net_params['total_param'], test_acc, train_acc, epoch, (time.time()-start0)/3600, np.mean(per_epoch_time))) !pip install nbconvert import nbconvert def main(notebook_mode=False,config=None): """ USER CONTROLS """ # terminal mode if notebook_mode==False: parser = argparse.ArgumentParser() parser.add_argument('--config', help="Please give a config.json file with training/model/data/param details") parser.add_argument('--gpu_id', help="Please give a value for gpu id") parser.add_argument('--model', help="Please give a value for model name") parser.add_argument('--dataset', help="Please give a value for dataset name") parser.add_argument('--out_dir', help="Please give a value for out_dir") parser.add_argument('--seed', help="Please give a value for seed") parser.add_argument('--epochs', help="Please give a value for epochs") parser.add_argument('--batch_size', help="Please give a value for batch_size") parser.add_argument('--init_lr', help="Please give a value for init_lr") parser.add_argument('--lr_reduce_factor', help="Please give a value for lr_reduce_factor") parser.add_argument('--lr_schedule_patience', help="Please give a value for lr_schedule_patience") parser.add_argument('--min_lr', help="Please give a value for min_lr") parser.add_argument('--weight_decay', help="Please give a value for weight_decay") parser.add_argument('--print_epoch_interval', help="Please give a value for print_epoch_interval") parser.add_argument('--L', help="Please give a value for L") parser.add_argument('--hidden_dim', help="Please give a value for hidden_dim") parser.add_argument('--out_dim', help="Please give a value for out_dim") parser.add_argument('--residual', help="Please give a value for residual") parser.add_argument('--edge_feat', help="Please give a value for edge_feat") parser.add_argument('--readout', help="Please give a value for readout") parser.add_argument('--kernel', help="Please give a value for kernel") parser.add_argument('--n_heads', help="Please give a value for n_heads") parser.add_argument('--gated', help="Please give a value for gated") parser.add_argument('--in_feat_dropout', help="Please give a value for in_feat_dropout") parser.add_argument('--dropout', help="Please give a value for dropout") parser.add_argument('--layer_norm', help="Please give a value for layer_norm") parser.add_argument('--batch_norm', help="Please give a value for batch_norm") parser.add_argument('--sage_aggregator', help="Please give a value for sage_aggregator") parser.add_argument('--data_mode', help="Please give a value for data_mode") parser.add_argument('--num_pool', help="Please give a value for num_pool") parser.add_argument('--gnn_per_block', help="Please give a value for gnn_per_block") parser.add_argument('--embedding_dim', help="Please give a value for embedding_dim") parser.add_argument('--pool_ratio', help="Please give a value for pool_ratio") parser.add_argument('--linkpred', help="Please give a value for linkpred") parser.add_argument('--cat', help="Please give a value for cat") parser.add_argument('--self_loop', help="Please give a value for self_loop") parser.add_argument('--max_time', help="Please give a value for max_time") parser.add_argument('--pos_enc_dim', help="Please give a value for pos_enc_dim") parser.add_argument('--pos_enc', help="Please give a value for pos_enc") args = parser.parse_args() with open(args.config) as f: config = json.load(f) # device if args.gpu_id is not None: config['gpu']['id'] = int(args.gpu_id) config['gpu']['use'] = True device = gpu_setup(config['gpu']['use'], config['gpu']['id']) # model, dataset, out_dir if args.model is not None: MODEL_NAME = args.model else: MODEL_NAME = config['model'] if args.dataset is not None: DATASET_NAME = args.dataset else: DATASET_NAME = config['dataset'] dataset = LoadData(DATASET_NAME) if args.out_dir is not None: out_dir = args.out_dir else: out_dir = config['out_dir'] # parameters params = config['params'] if args.seed is not None: params['seed'] = int(args.seed) if args.epochs is not None: params['epochs'] = int(args.epochs) if args.batch_size is not None: params['batch_size'] = int(args.batch_size) if args.init_lr is not None: params['init_lr'] = float(args.init_lr) if args.lr_reduce_factor is not None: params['lr_reduce_factor'] = float(args.lr_reduce_factor) if args.lr_schedule_patience is not None: params['lr_schedule_patience'] = int(args.lr_schedule_patience) if args.min_lr is not None: params['min_lr'] = float(args.min_lr) if args.weight_decay is not None: params['weight_decay'] = float(args.weight_decay) if args.print_epoch_interval is not None: params['print_epoch_interval'] = int(args.print_epoch_interval) if args.max_time is not None: params['max_time'] = float(args.max_time) # network parameters net_params = config['net_params'] net_params['device'] = device net_params['gpu_id'] = config['gpu']['id'] net_params['batch_size'] = params['batch_size'] if args.L is not None: net_params['L'] = int(args.L) if args.hidden_dim is not None: net_params['hidden_dim'] = int(args.hidden_dim) if args.out_dim is not None: net_params['out_dim'] = int(args.out_dim) if args.residual is not None: net_params['residual'] = True if args.residual=='True' else False if args.edge_feat is not None: net_params['edge_feat'] = True if args.edge_feat=='True' else False if args.readout is not None: net_params['readout'] = args.readout if args.kernel is not None: net_params['kernel'] = int(args.kernel) if args.n_heads is not None: net_params['n_heads'] = int(args.n_heads) if args.gated is not None: net_params['gated'] = True if args.gated=='True' else False if args.in_feat_dropout is not None: net_params['in_feat_dropout'] = float(args.in_feat_dropout) if args.dropout is not None: net_params['dropout'] = float(args.dropout) if args.layer_norm is not None: net_params['layer_norm'] = True if args.layer_norm=='True' else False if args.batch_norm is not None: net_params['batch_norm'] = True if args.batch_norm=='True' else False if args.sage_aggregator is not None: net_params['sage_aggregator'] = args.sage_aggregator if args.data_mode is not None: net_params['data_mode'] = args.data_mode if args.num_pool is not None: net_params['num_pool'] = int(args.num_pool) if args.gnn_per_block is not None: net_params['gnn_per_block'] = int(args.gnn_per_block) if args.embedding_dim is not None: net_params['embedding_dim'] = int(args.embedding_dim) if args.pool_ratio is not None: net_params['pool_ratio'] = float(args.pool_ratio) if args.linkpred is not None: net_params['linkpred'] = True if args.linkpred=='True' else False if args.cat is not None: net_params['cat'] = True if args.cat=='True' else False if args.self_loop is not None: net_params['self_loop'] = True if args.self_loop=='True' else False if args.pos_enc is not None: net_params['pos_enc'] = True if args.pos_enc=='True' else False if args.pos_enc_dim is not None: net_params['pos_enc_dim'] = int(args.pos_enc_dim) # notebook mode if notebook_mode: # parameters params = config['params'] # dataset DATASET_NAME = config['dataset'] dataset = LoadData(DATASET_NAME) # device device = gpu_setup(config['gpu']['use'], config['gpu']['id']) out_dir = config['out_dir'] # GNN model MODEL_NAME = config['model'] # network parameters net_params = config['net_params'] net_params['device'] = device net_params['gpu_id'] = config['gpu']['id'] net_params['batch_size'] = params['batch_size'] # SBM net_params['in_dim'] = torch.unique(dataset.train[0][0].ndata['feat'],dim=0).size(0) # node_dim (feat is an integer) net_params['n_classes'] = torch.unique(dataset.train[0][1],dim=0).size(0) if MODEL_NAME == 'RingGNN': num_nodes = [dataset.train[i][0].number_of_nodes() for i in range(len(dataset.train))] net_params['avg_node_num'] = int(np.ceil(np.mean(num_nodes))) root_log_dir = out_dir + 'logs/' + MODEL_NAME + "_" + DATASET_NAME + "_GPU" + str(config['gpu']['id']) + "_" + time.strftime('%Hh%Mm%Ss_on_%b_%d_%Y') root_ckpt_dir = out_dir + 'checkpoints/' + MODEL_NAME + "_" + DATASET_NAME + "_GPU" + str(config['gpu']['id']) + "_" + time.strftime('%Hh%Mm%Ss_on_%b_%d_%Y') write_file_name = out_dir + 'results/result_' + MODEL_NAME + "_" + DATASET_NAME + "_GPU" + str(config['gpu']['id']) + "_" + time.strftime('%Hh%Mm%Ss_on_%b_%d_%Y') write_config_file = out_dir + 'configs/config_' + MODEL_NAME + "_" + DATASET_NAME + "_GPU" + str(config['gpu']['id']) + "_" + time.strftime('%Hh%Mm%Ss_on_%b_%d_%Y') dirs = root_log_dir, root_ckpt_dir, write_file_name, write_config_file if not os.path.exists(out_dir + 'results'): os.makedirs(out_dir + 'results') if not os.path.exists(out_dir + 'configs'): os.makedirs(out_dir + 'configs') net_params['total_param'] = view_model_param(MODEL_NAME, net_params) train_val_pipeline(MODEL_NAME, dataset, params, net_params, dirs) if notebook_mode==True: config = {} # gpu config gpu = {} gpu['use'] = use_gpu gpu['id'] = gpu_id config['gpu'] = gpu # GNN model, dataset, out_dir config['model'] = MODEL_NAME config['dataset'] = DATASET_NAME config['out_dir'] = out_dir # parameters params = {} params['seed'] = seed params['epochs'] = epochs params['batch_size'] = batch_size params['init_lr'] = init_lr params['lr_reduce_factor'] = lr_reduce_factor params['lr_schedule_patience'] = lr_schedule_patience params['min_lr'] = min_lr params['weight_decay'] = weight_decay params['print_epoch_interval'] = 5 params['max_time'] = max_time config['params'] = params # network parameters config['net_params'] = net_params # convert to .py format from utils.cleaner_main import * cleaner_main('main_SBMs_node_classification') main(True,config) else: main() ###Output _____no_output_____
Missing Value Imputation - Categorical Variable.ipynb
###Markdown Missing Value Imputation - Categorical Variable ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns df=pd.read_csv("d:\\train.csv") df.head() cat_vars=df.select_dtypes(include=["object"]) cat_vars.head() per=cat_vars.isnull().mean()*100 per drop_val=per[per>20].keys() drop_val cat_vars.drop(columns=drop_val,axis=1,inplace=True) cat_vars cat_vars isnull_per=cat_vars.isnull().mean()*100 miss_vars=isnull_per[isnull_per>0].keys() miss_vars cat_vars['MasVnrType'].mode() cat_vars['MasVnrType'].value_counts() cat_vars["MasVnrType"].fillna(cat_vars["MasVnrType"].mode()[0]) cat_vars["MasVnrType"].isnull().sum() for var in miss_vars: cat_vars[var].fillna(cat_vars[var].mode()[0],inplace=True) print(var,"=",cat_vars[var].mode()[0]) cat_vars.isnull().sum() df.update(cat_vars) df.drop(columns=drop_val,inplace=True) df.select_dtypes(include="object").isnull().any(axis=1) ###Output _____no_output_____
Spark_and_Python_For_Big_Data_with_PySpark/04-Spark_for_Machine_Learning/4-K-means_Clustering/Clustering_Code_Along.ipynb
###Markdown Clustering Code AlongWe'll be working with a real data set about seeds, from UCI repository: https://archive.ics.uci.edu/ml/datasets/seeds. The examined group comprised kernels belonging to three different varieties of wheat: Kama, Rosa and Canadian, 70 elements each, randomly selected for the experiment. High quality visualization of the internal kernel structure was detected using a soft X-ray technique. It is non-destructive and considerably cheaper than other more sophisticated imaging techniques like scanning microscopy or laser technology. The images were recorded on 13x18 cm X-ray KODAK plates. Studies were conducted using combine harvested wheat grain originating from experimental fields, explored at the Institute of Agrophysics of the Polish Academy of Sciences in Lublin. The data set can be used for the tasks of classification and cluster analysis.Attribute Information:To construct the data, seven geometric parameters of wheat kernels were measured: 1. area A, 2. perimeter P, 3. compactness C = 4*pi*A/P^2, 4. length of kernel, 5. width of kernel, 6. asymmetry coefficient 7. length of kernel groove. All of these parameters were real-valued continuous.Let's see if we can cluster them in to 3 groups with K-means! ###Code from pyspark.sql import SparkSession spark = SparkSession.builder.appName('cluster').getOrCreate() dataset = spark.read.csv('seeds_dataset.csv', header=True, inferSchema=True) dataset.printSchema() dataset.head(1) ###Output _____no_output_____ ###Markdown Format the Data ###Code from pyspark.ml.clustering import KMeans from pyspark.ml.feature import VectorAssembler dataset.columns assembler = VectorAssembler(inputCols=dataset.columns, outputCol='features') final_data = assembler.transform(dataset) final_data.printSchema() final_data.select(['features']).show() ###Output +--------------------+ | features| +--------------------+ |[15.26,14.84,0.87...| |[14.88,14.57,0.88...| |[14.29,14.09,0.90...| |[13.84,13.94,0.89...| |[16.14,14.99,0.90...| |[14.38,14.21,0.89...| |[14.69,14.49,0.87...| |[14.11,14.1,0.891...| |[16.63,15.46,0.87...| |[16.44,15.25,0.88...| |[15.26,14.85,0.86...| |[14.03,14.16,0.87...| |[13.89,14.02,0.88...| |[13.78,14.06,0.87...| |[13.74,14.05,0.87...| |[14.59,14.28,0.89...| |[13.99,13.83,0.91...| |[15.69,14.75,0.90...| |[14.7,14.21,0.915...| |[12.72,13.57,0.86...| +--------------------+ only showing top 20 rows ###Markdown Scale the DataIt is a good idea to scale our data to deal with the curse of dimensionality: https://en.wikipedia.org/wiki/Curse_of_dimensionality ###Code from pyspark.ml.feature import StandardScaler scaler = StandardScaler(inputCol='features', outputCol='scaledFeatures') # Compute summary statistics by fitting the StandardScaler scaler_model = scaler.fit(final_data) final_data = scaler_model.transform(final_data) final_data.select(['features', 'scaledFeatures']).show() ###Output +--------------------+--------------------+ | features| scaledFeatures| +--------------------+--------------------+ |[15.26,14.84,0.87...|[5.24452795332028...| |[14.88,14.57,0.88...|[5.11393027165175...| |[14.29,14.09,0.90...|[4.91116018695588...| |[13.84,13.94,0.89...|[4.75650503761158...| |[16.14,14.99,0.90...|[5.54696468981581...| |[14.38,14.21,0.89...|[4.94209121682475...| |[14.69,14.49,0.87...|[5.04863143081749...| |[14.11,14.1,0.891...|[4.84929812721816...| |[16.63,15.46,0.87...|[5.71536696354628...| |[16.44,15.25,0.88...|[5.65006812271202...| |[15.26,14.85,0.86...|[5.24452795332028...| |[14.03,14.16,0.87...|[4.82180387844584...| |[13.89,14.02,0.88...|[4.77368894309428...| |[13.78,14.06,0.87...|[4.73588435103234...| |[13.74,14.05,0.87...|[4.72213722664617...| |[14.59,14.28,0.89...|[5.01426361985209...| |[13.99,13.83,0.91...|[4.80805675405968...| |[15.69,14.75,0.90...|[5.39230954047151...| |[14.7,14.21,0.915...|[5.05206821191403...| |[12.72,13.57,0.86...|[4.37158555479908...| +--------------------+--------------------+ only showing top 20 rows ###Markdown Train the Model and Evaluate ###Code # Trains a k-means model. kmeans = KMeans(featuresCol='scaledFeatures', k=3) model = kmeans.fit(final_data) # Evaluate clustering by computing Within Set Sum of Squared Errors. print('WSSSE') print(model.computeCost(final_data)) print("Clusters' centers: ") for center in model.clusterCenters(): print(center) features_and_predictions = model.transform(final_data).select(['features', 'prediction']) features_and_predictions.show() ###Output +--------------------+----------+ | features|prediction| +--------------------+----------+ |[15.26,14.84,0.87...| 2| |[14.88,14.57,0.88...| 2| |[14.29,14.09,0.90...| 2| |[13.84,13.94,0.89...| 2| |[16.14,14.99,0.90...| 2| |[14.38,14.21,0.89...| 2| |[14.69,14.49,0.87...| 2| |[14.11,14.1,0.891...| 2| |[16.63,15.46,0.87...| 0| |[16.44,15.25,0.88...| 2| |[15.26,14.85,0.86...| 2| |[14.03,14.16,0.87...| 2| |[13.89,14.02,0.88...| 2| |[13.78,14.06,0.87...| 2| |[13.74,14.05,0.87...| 2| |[14.59,14.28,0.89...| 2| |[13.99,13.83,0.91...| 2| |[15.69,14.75,0.90...| 2| |[14.7,14.21,0.915...| 2| |[12.72,13.57,0.86...| 1| +--------------------+----------+ only showing top 20 rows
lab-auto-scale/stress-total-loss.ipynb
###Markdown Auto Scaling LabThis notebook walks you through how to configure and execute auto scaling on a SageMaker endpoint. ###Code import threading import numpy as np import time import math from multiprocessing.pool import ThreadPool from sagemaker.tensorflow.model import TensorFlowPredictor from sagemaker.estimator import Estimator ###Output _____no_output_____ ###Markdown Deploy or attach to your endpointThe lab has a dependency on the prior lab involving bringing your own TensorFlow script. To get started, we first attach to the existing endpoint from the prior lab. If the endpoint has already been deleted, we re-deploy it based on the name used earlier for the training job.To locate your specific training job, go back to your notebook from the earlier lab and look at the cell output from the `fit` method. It will show you the specific training job name. **Enter that as `ENDPOINT_NAME` in this cell before proceeding**. This ensures we use the same model you trained earlier. ###Code SERVE_INSTANCE_TYPE = 'ml.c5.xlarge' TRAINING_JOB_NAME = '<your training job name goes here>' ENDPOINT_NAME = TRAINING_JOB_NAME NOT_RUNNING = True import sagemaker from sagemaker import get_execution_role import boto3 sess = sagemaker.Session() role = get_execution_role() bucket = sess.default_bucket() if (NOT_RUNNING): from sagemaker.tensorflow.serving import Model model = Model(model_data=f's3://{bucket}/{TRAINING_JOB_NAME}/output/model.tar.gz', role=f'{role}') loss_predictor = model.deploy(initial_instance_count=1, instance_type=SERVE_INSTANCE_TYPE) else: loss_predictor = TensorFlowPredictor(endpoint_name=ENDPOINT_NAME) ###Output _____no_output_____ ###Markdown Now that the endpoint is available, prepare a single payload that we will use in the simple stress test. The actual values do not matter, as we are just trying to simulate load. ###Code X = [ 1.05332958, -0.53354753, -0.69436208, -2.21762908, -3.20396808, 1.03539088, 1.20417872, -1.03589941, -0.35095956, -0.01160373, -0.1615418, -0.20454251, -0.72053914] print(str(X)) ###Output _____no_output_____ ###Markdown Define a simple function for making a prediction. Track the elapsed time and return that as seconds. ###Code def predict(payload): elapsed_time = time.time() results = loss_predictor.predict(X) elapsed_time = time.time() - elapsed_time prediction = results['predictions'][0][0] return elapsed_time ###Output _____no_output_____ ###Markdown Make sure a single prediction is working against the endpoint before proceeding to generate load for auto scaling. ###Code predict(X) ###Output _____no_output_____ ###Markdown Configure auto scaling on your endpointFollow these steps to configure auto scaling.1. In a new browser tab, navigate to the `Endpoints` section of the SageMaker console. 2. Navigate to the details page for the endpoint. 3. Under the `Endpoint runtime settings`, select the one and only variant that was created for this endpoint (it is named `All traffic` by default).4. Click on `Configure auto scaling` in the upper right of `Endpoint runtime settings`.5. Under `Variant automatic scaling`, set the maximum number of instances to `2`.6. Under `Built in scaling policy`, set the target to track to `2000` for the `SageMakerVariantInvocationsPerInstance` metric. 7. Click `Save` at the bottom of the page.8. You will be returned to the endpoint detail page and should see a message at the top of the page in a green bar saying `Automatic scaling was configured for variant AllTraffic`.You have now set a threshold that will be used by SageMaker to determine when to add more instances. If it detects more invocations per instance per minute than the threshold, more instances will be added in an attempt to distribute the load and reduce that metric to the target. We have purposely set the threshold to a low number so that we can more easily trigger scaling. In practice, you will need to perform testing and analysis to determine an appropriate trigger and the right number of instances for your workload.See the detailed documentation on SageMaker auto scaling [here](https://docs.aws.amazon.com/sagemaker/latest/dg/endpoint-auto-scaling.html). Execute stress tests to force auto scalingNow that the endpoint has auto scaling configured, lets drive some inference traffic against the endpoint. We use multiple client threads to drive sufficient volume of requests to trigger SageMaker auto scaling. The number of requests are mapped across a set of threads. Resulting elasped times are summed and returned. ###Code def run_test(max_threads, max_requests): pool = ThreadPool(max_threads) bunch_of_x = [] for i in range(max_requests): bunch_of_x.append(X) result = pool.map(predict, bunch_of_x) pool.close() pool.join() elapsedtime = 0 for i in result: elapsedtime += i elapsedtime = np.sum(result) return elapsedtime ###Output _____no_output_____ ###Markdown Drive a few short testsWe run a few tests to allow us to start seeing invocation metrics in CloudWatch. This will help you visualize how traffic ramps up on your single instance endpoint, and is eventually distributed across a cluster of instances. ###Code %%time print('Starting test 0') run_test(5, 10) %%time print('Starting test 1') run_test(10, 250) %%time print('Starting test 2') run_test(10, 1000) ###Output _____no_output_____ ###Markdown Observe auto scalingTo trigger auto scaling, kick off one more round of tests. While that is running, read the instructions in the subsequent cell. It explains how to confirm that auto scaling worked. ###Code %%time print('Starting test 3') run_test(10, 600000) ###Output _____no_output_____ ###Markdown In the endpoint details console, you should still see the `Desired instance count` as `1`, since the scaling threshold has not been reached. This next test will continuously send traffic to the endpoint for about 15 minutes. During this time, we'll see the invocations per instance rise. Invocations per instance will track exactly the same as the total invocations until auto scaling happens, since we only have a single instance to start with. Note that in practice, you would want to start with at least two instances. This ensures you have higher availability by leveraging multiple availability zones.Auto scaling should trigger once the threshold is met. In our case, the threshold for the alarm in CloudWatch is InvocationsPerInstance > 2,000 for 3 datapoints within 3 minutes. This ensures an alarm is not triggered for a short spike in traffic.Once auto scaling is triggered, SageMaker will take several minutes to add new instances (in our case, just one). While the auto scaling is happening, the endpoint details console will show you that the new desired instance count has increased to two. There will also be a blue bar at the top of the console indicating that the endpoint is being updated. Eventually that banner turns green and indicates that the `Endpoint was successfully updated.`Once the expanded set of instances is running, click on `Invocation metrics` from the endpoint details console. This takes you to CloudWatch to show graphs of those metrics. Select two metrics: `Invocations` and `InvocationsPerInstance`. Next, click on the `Graphed metrics` tab, and update the `Statistics` to be `Sum`, and the `Period` to be `1 second`. At the top of the chart, set the time period to 30 minutes (using the `custom` drop down).For the time periods before the second instance was automatically added, the invocations will be exactly the same as the invocations perinstance.![Invocations identical to Invocations Per Instance](./images/combined.png)Once the auto scaling has happened, you will now see the total number of invocations continue at the same pace as before, yet the *invocations per instance* will be cut in half, as SageMaker automatically distributes the load ascross the cluster. ![Invocations split across instances](./images/split.png) Scaling back in (optional)For extra credit, you can observe SageMaker scaling in (reducing the number of instances) the infrastructure. This will take about 15 minutes after the previous traffic generator is complete. At that point, you should see a scale in event. SageMaker detects the invocations per instance is below the threshold, and automatically reduces the number of instances to avoid being over-provisioned. Cool down parameters are available to control how aggressively SageMaker adds or removes instances.To ensure the CloudWatch alarm scale is triggered, there needs to be at least some traffic to have sufficient data points for the alarm. Here we generate a small load. ###Code %%time print('Adding a few invocations every 30s for 15 mins') for i in range(30): run_test(10, 100) time.sleep(30) ###Output _____no_output_____ ###Markdown Delete the endpointDelete the endpoint, which will take down all of the instances. ###Code sagemaker.Session().delete_endpoint(loss_predictor.endpoint) ###Output _____no_output_____
site/en-snapshot/guide/basic_training_loops.ipynb
###Markdown Copyright 2020 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Basic training loops View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook In the previous guides, you have learned about [tensors](./tensor.ipynb), [variables](./variable.ipynb), [gradient tape](autodiff.ipynb), and [modules](./intro_to_modules.ipynb). In this guide, you will fit these all together to train models.TensorFlow also includes the [tf.Keras API](keras/overview.ipynb), a high-level neural network API that provides useful abstractions to reduce boilerplate. However, in this guide, you will use basic classes. Setup ###Code import tensorflow as tf ###Output _____no_output_____ ###Markdown Solving machine learning problemsSolving a machine learning problem usually consists of the following steps: - Obtain training data. - Define the model. - Define a loss function. - Run through the training data, calculating loss from the ideal value - Calculate gradients for that loss and use an *optimizer* to adjust the variables to fit the data. - Evaluate your results.For illustration purposes, in this guide you'll develop a simple linear model, $f(x) = x * W + b$, which has two variables: $W$ (weights) and $b$ (bias).This is the most basic of machine learning problems: Given $x$ and $y$, try to find the slope and offset of a line via [simple linear regression](https://en.wikipedia.org/wiki/Linear_regressionSimple_and_multiple_linear_regression). DataSupervised learning uses *inputs* (usually denoted as *x*) and *outputs* (denoted *y*, often called *labels*). The goal is to learn from paired inputs and outputs so that you can prediect the value of an output from an input.Each input of your data, in TensorFlow, is almost always represented by a tensor, and is often a vector. In supervised training, the output (or value you'd like to predict) is also a tensor.Here is some data synthesized by adding Gaussian (Normal) noise to points along a line. ###Code # The actual line TRUE_W = 3.0 TRUE_B = 2.0 NUM_EXAMPLES = 1000 # A vector of random x values x = tf.random.normal(shape=[NUM_EXAMPLES]) # Generate some noise noise = tf.random.normal(shape=[NUM_EXAMPLES]) # Calculate y y = x * TRUE_W + TRUE_B + noise # Plot all the data import matplotlib.pyplot as plt plt.scatter(x, y, c="b") plt.show() ###Output _____no_output_____ ###Markdown Tensors are usually gathered together in *batches*, or groups of inputs and outputs stacked together. Batching can confer some training benefits and works well with accelerators and vectorized computation. Given how small this dataset is, you can treat the entire dataset as a single batch. Define the modelUse `tf.Variable` to represent all weights in a model. A `tf.Variable` stores a value and provides this in tensor form as needed. See the [variable guide](./variable.ipynb) for more details.Use `tf.Module` to encapsulate the variables and the computation. You could use any Python object, but this way it can be easily saved.Here, you define both *w* and *b* as variables. ###Code class MyModel(tf.Module): def __init__(self, **kwargs): super().__init__(**kwargs) # Initialize the weights to `5.0` and the bias to `0.0` # In practice, these should be randomly initialized self.w = tf.Variable(5.0) self.b = tf.Variable(0.0) def __call__(self, x): return self.w * x + self.b model = MyModel() # List the variables tf.modules's built-in variable aggregation. print("Variables:", model.variables) # Verify the model works assert model(3.0).numpy() == 15.0 ###Output _____no_output_____ ###Markdown The initial variables are set here in a fixed way, but Keras comes with any of a number of [initalizers](https://www.tensorflow.org/api_docs/python/tf/keras/initializers) you could use, with or without the rest of Keras. Define a loss functionA loss function measures how well the output of a model for a given input matches the target output. The goal is to minimize this difference during training. Define the standard L2 loss, also known as the "mean squared" error: ###Code # This computes a single loss value for an entire batch def loss(target_y, predicted_y): return tf.reduce_mean(tf.square(target_y - predicted_y)) ###Output _____no_output_____ ###Markdown Before training the model, you can visualize the loss value by plotting the model's predictions in red and the training data in blue: ###Code plt.scatter(x, y, c="b") plt.scatter(x, model(x), c="r") plt.show() print("Current loss: %1.6f" % loss(model(x), y).numpy()) ###Output _____no_output_____ ###Markdown Define a training loopThe training loop consists of repeatedly doing three tasks in order:* Sending a batch of inputs through the model to generate outputs* Calculating the loss by comparing the outputs to the output (or label)* Using gradient tape to find the gradients* Optimizing the variables with those gradientsFor this example, you can train the model using [gradient descent](https://en.wikipedia.org/wiki/Gradient_descent).There are many variants of the gradient descent scheme that are captured in `tf.keras.optimizers`. But in the spirit of building from first principles, here you will implement the basic math yourself with the help of `tf.GradientTape` for automatic differentiation and `tf.assign_sub` for decrementing a value (which combines `tf.assign` and `tf.sub`): ###Code # Given a callable model, inputs, outputs, and a learning rate... def train(model, x, y, learning_rate): with tf.GradientTape() as t: # Trainable variables are automatically tracked by GradientTape current_loss = loss(y, model(x)) # Use GradientTape to calculate the gradients with respect to W and b dw, db = t.gradient(current_loss, [model.w, model.b]) # Subtract the gradient scaled by the learning rate model.w.assign_sub(learning_rate * dw) model.b.assign_sub(learning_rate * db) ###Output _____no_output_____ ###Markdown For a look at training, you can send the same batch of *x* an *y* through the training loop, and see how `W` and `b` evolve. ###Code model = MyModel() # Collect the history of W-values and b-values to plot later Ws, bs = [], [] epochs = range(10) # Define a training loop def training_loop(model, x, y): for epoch in epochs: # Update the model with the single giant batch train(model, x, y, learning_rate=0.1) # Track this before I update Ws.append(model.w.numpy()) bs.append(model.b.numpy()) current_loss = loss(y, model(x)) print("Epoch %2d: W=%1.2f b=%1.2f, loss=%2.5f" % (epoch, Ws[-1], bs[-1], current_loss)) print("Starting: W=%1.2f b=%1.2f, loss=%2.5f" % (model.w, model.b, loss(y, model(x)))) # Do the training training_loop(model, x, y) # Plot it plt.plot(epochs, Ws, "r", epochs, bs, "b") plt.plot([TRUE_W] * len(epochs), "r--", [TRUE_B] * len(epochs), "b--") plt.legend(["W", "b", "True W", "True b"]) plt.show() # Visualize how the trained model performs plt.scatter(x, y, c="b") plt.scatter(x, model(x), c="r") plt.show() print("Current loss: %1.6f" % loss(model(x), y).numpy()) ###Output _____no_output_____ ###Markdown The same solution, but with KerasIt's useful to contrast the code above with the equivalent in Keras.Defining the model looks exactly the same if you subclass `tf.keras.Model`. Remember that Keras models inherit ultimately from module. ###Code class MyModelKeras(tf.keras.Model): def __init__(self, **kwargs): super().__init__(**kwargs) # Initialize the weights to `5.0` and the bias to `0.0` # In practice, these should be randomly initialized self.w = tf.Variable(5.0) self.b = tf.Variable(0.0) def __call__(self, x, **kwargs): return self.w * x + self.b keras_model = MyModelKeras() # Reuse the training loop with a Keras model training_loop(keras_model, x, y) # You can also save a checkpoint using Keras's built-in support keras_model.save_weights("my_checkpoint") ###Output _____no_output_____ ###Markdown Rather than write new training loops each time you create a model, you can use the built-in features of Keras as a shortcut. This can be useful when you do not want to write or debug Python training loops.If you do, you will need to use `model.compile()` to set the parameters, and `model.fit()` to train. It can be less code to use Keras implementations of L2 loss and gradient descent, again as a shortcut. Keras losses and optimizers can be used outside of these convenience functions, too, and the previous example could have used them. ###Code keras_model = MyModelKeras() # compile sets the training paramaeters keras_model.compile( # By default, fit() uses tf.function(). You can # turn that off for debugging, but it is on now. run_eagerly=False, # Using a built-in optimizer, configuring as an object optimizer=tf.keras.optimizers.SGD(learning_rate=0.1), # Keras comes with built-in MSE error # However, you could use the loss function # defined above loss=tf.keras.losses.mean_squared_error, ) ###Output _____no_output_____ ###Markdown Keras `fit` expects batched data or a complete dataset as a NumPy array. NumPy arrays are chopped into batches and default to a batch size of 32.In this case, to match the behavior of the hand-written loop, you should pass `x` in as a single batch of size 1000. ###Code print(x.shape[0]) keras_model.fit(x, y, epochs=10, batch_size=1000) ###Output _____no_output_____ ###Markdown Copyright 2020 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Basic training loops View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook In the previous guides, you have learned about [tensors](./tensor.ipynb), [variables](./variable.ipynb), [gradient tape](autodiff.ipynb), and [modules](./intro_to_modules.ipynb). In this guide, you will fit these all together to train models.TensorFlow also includes the [tf.Keras API](https://www.tensorflow.org/guide/keras/overview), a high-level neural network API that provides useful abstractions to reduce boilerplate. However, in this guide, you will use basic classes. Setup ###Code import tensorflow as tf import matplotlib.pyplot as plt colors = plt.rcParams['axes.prop_cycle'].by_key()['color'] ###Output _____no_output_____ ###Markdown Solving machine learning problemsSolving a machine learning problem usually consists of the following steps: - Obtain training data. - Define the model. - Define a loss function. - Run through the training data, calculating loss from the ideal value - Calculate gradients for that loss and use an *optimizer* to adjust the variables to fit the data. - Evaluate your results.For illustration purposes, in this guide you'll develop a simple linear model, $f(x) = x * W + b$, which has two variables: $W$ (weights) and $b$ (bias).This is the most basic of machine learning problems: Given $x$ and $y$, try to find the slope and offset of a line via [simple linear regression](https://en.wikipedia.org/wiki/Linear_regressionSimple_and_multiple_linear_regression). DataSupervised learning uses *inputs* (usually denoted as *x*) and *outputs* (denoted *y*, often called *labels*). The goal is to learn from paired inputs and outputs so that you can predict the value of an output from an input.Each input of your data, in TensorFlow, is almost always represented by a tensor, and is often a vector. In supervised training, the output (or value you'd like to predict) is also a tensor.Here is some data synthesized by adding Gaussian (Normal) noise to points along a line. ###Code # The actual line TRUE_W = 3.0 TRUE_B = 2.0 NUM_EXAMPLES = 201 # A vector of random x values x = tf.linspace(-2,2, NUM_EXAMPLES) x = tf.cast(x, tf.float32) def f(x): return x * TRUE_W + TRUE_B # Generate some noise noise = tf.random.normal(shape=[NUM_EXAMPLES]) # Calculate y y = f(x) + noise # Plot all the data plt.plot(x, y, '.') plt.show() ###Output _____no_output_____ ###Markdown Tensors are usually gathered together in *batches*, or groups of inputs and outputs stacked together. Batching can confer some training benefits and works well with accelerators and vectorized computation. Given how small this dataset is, you can treat the entire dataset as a single batch. Define the modelUse `tf.Variable` to represent all weights in a model. A `tf.Variable` stores a value and provides this in tensor form as needed. See the [variable guide](./variable.ipynb) for more details.Use `tf.Module` to encapsulate the variables and the computation. You could use any Python object, but this way it can be easily saved.Here, you define both *w* and *b* as variables. ###Code class MyModel(tf.Module): def __init__(self, **kwargs): super().__init__(**kwargs) # Initialize the weights to `5.0` and the bias to `0.0` # In practice, these should be randomly initialized self.w = tf.Variable(5.0) self.b = tf.Variable(0.0) def __call__(self, x): return self.w * x + self.b model = MyModel() # List the variables tf.modules's built-in variable aggregation. print("Variables:", model.variables) # Verify the model works assert model(3.0).numpy() == 15.0 ###Output _____no_output_____ ###Markdown The initial variables are set here in a fixed way, but Keras comes with any of a number of [initalizers](https://www.tensorflow.org/api_docs/python/tf/keras/initializers) you could use, with or without the rest of Keras. Define a loss functionA loss function measures how well the output of a model for a given input matches the target output. The goal is to minimize this difference during training. Define the standard L2 loss, also known as the "mean squared" error: ###Code # This computes a single loss value for an entire batch def loss(target_y, predicted_y): return tf.reduce_mean(tf.square(target_y - predicted_y)) ###Output _____no_output_____ ###Markdown Before training the model, you can visualize the loss value by plotting the model's predictions in red and the training data in blue: ###Code plt.plot(x, y, '.', label="Data") plt.plot(x, f(x), label="Ground truth") plt.plot(x, model(x), label="Predictions") plt.legend() plt.show() print("Current loss: %1.6f" % loss(y, model(x)).numpy()) ###Output _____no_output_____ ###Markdown Define a training loopThe training loop consists of repeatedly doing three tasks in order:* Sending a batch of inputs through the model to generate outputs* Calculating the loss by comparing the outputs to the output (or label)* Using gradient tape to find the gradients* Optimizing the variables with those gradientsFor this example, you can train the model using [gradient descent](https://en.wikipedia.org/wiki/Gradient_descent).There are many variants of the gradient descent scheme that are captured in `tf.keras.optimizers`. But in the spirit of building from first principles, here you will implement the basic math yourself with the help of `tf.GradientTape` for automatic differentiation and `tf.assign_sub` for decrementing a value (which combines `tf.assign` and `tf.sub`): ###Code # Given a callable model, inputs, outputs, and a learning rate... def train(model, x, y, learning_rate): with tf.GradientTape() as t: # Trainable variables are automatically tracked by GradientTape current_loss = loss(y, model(x)) # Use GradientTape to calculate the gradients with respect to W and b dw, db = t.gradient(current_loss, [model.w, model.b]) # Subtract the gradient scaled by the learning rate model.w.assign_sub(learning_rate * dw) model.b.assign_sub(learning_rate * db) ###Output _____no_output_____ ###Markdown For a look at training, you can send the same batch of *x* and *y* through the training loop, and see how `W` and `b` evolve. ###Code model = MyModel() # Collect the history of W-values and b-values to plot later weights = [] biases = [] epochs = range(10) # Define a training loop def report(model, loss): return f"W = {model.w.numpy():1.2f}, b = {model.b.numpy():1.2f}, loss={current_loss:2.5f}" def training_loop(model, x, y): for epoch in epochs: # Update the model with the single giant batch train(model, x, y, learning_rate=0.1) # Track this before I update weights.append(model.w.numpy()) biases.append(model.b.numpy()) current_loss = loss(y, model(x)) print(f"Epoch {epoch:2d}:") print(" ", report(model, current_loss)) ###Output _____no_output_____ ###Markdown Do the training ###Code current_loss = loss(y, model(x)) print(f"Starting:") print(" ", report(model, current_loss)) training_loop(model, x, y) ###Output _____no_output_____ ###Markdown Plot the evolution of the weights over time: ###Code plt.plot(epochs, weights, label='Weights', color=colors[0]) plt.plot(epochs, [TRUE_W] * len(epochs), '--', label = "True weight", color=colors[0]) plt.plot(epochs, biases, label='bias', color=colors[1]) plt.plot(epochs, [TRUE_B] * len(epochs), "--", label="True bias", color=colors[1]) plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Visualize how the trained model performs ###Code plt.plot(x, y, '.', label="Data") plt.plot(x, f(x), label="Ground truth") plt.plot(x, model(x), label="Predictions") plt.legend() plt.show() print("Current loss: %1.6f" % loss(model(x), y).numpy()) ###Output _____no_output_____ ###Markdown The same solution, but with KerasIt's useful to contrast the code above with the equivalent in Keras.Defining the model looks exactly the same if you subclass `tf.keras.Model`. Remember that Keras models inherit ultimately from module. ###Code class MyModelKeras(tf.keras.Model): def __init__(self, **kwargs): super().__init__(**kwargs) # Initialize the weights to `5.0` and the bias to `0.0` # In practice, these should be randomly initialized self.w = tf.Variable(5.0) self.b = tf.Variable(0.0) def call(self, x): return self.w * x + self.b keras_model = MyModelKeras() # Reuse the training loop with a Keras model training_loop(keras_model, x, y) # You can also save a checkpoint using Keras's built-in support keras_model.save_weights("my_checkpoint") ###Output _____no_output_____ ###Markdown Rather than write new training loops each time you create a model, you can use the built-in features of Keras as a shortcut. This can be useful when you do not want to write or debug Python training loops.If you do, you will need to use `model.compile()` to set the parameters, and `model.fit()` to train. It can be less code to use Keras implementations of L2 loss and gradient descent, again as a shortcut. Keras losses and optimizers can be used outside of these convenience functions, too, and the previous example could have used them. ###Code keras_model = MyModelKeras() # compile sets the training parameters keras_model.compile( # By default, fit() uses tf.function(). You can # turn that off for debugging, but it is on now. run_eagerly=False, # Using a built-in optimizer, configuring as an object optimizer=tf.keras.optimizers.SGD(learning_rate=0.1), # Keras comes with built-in MSE error # However, you could use the loss function # defined above loss=tf.keras.losses.mean_squared_error, ) ###Output _____no_output_____ ###Markdown Keras `fit` expects batched data or a complete dataset as a NumPy array. NumPy arrays are chopped into batches and default to a batch size of 32.In this case, to match the behavior of the hand-written loop, you should pass `x` in as a single batch of size 1000. ###Code print(x.shape[0]) keras_model.fit(x, y, epochs=10, batch_size=1000) ###Output _____no_output_____
database/08_pymongo_zigbang(git).ipynb
###Markdown zigbang 매물 데이터 저장- pip install geohash2 ###Code import warnings warnings.filterwarnings('ignore') import zigbang as zb import pymongo import pandas as pd # server 연결 server = pymongo.MongoClient('mongodb://user:passwd@ip:27017/') db = server.zigbang addrs = { "seongnam": "성남동", "dangsan": "당산동", "hapjung": "합정동", "mongwon": "망원동", "sujin": "수진동", "yeungdeungpo":"영등포동" } # 데이터 수집 후 저장 for collection_name, addr in addrs.items(): collection = db[collection_name] datas = zb.oneroom(addr) ids = collection.insert(datas) print(collection_name, addr, len(ids)) # 성남동에서 월세 50이상 보증금 5000에서 10000조건으로 검색 QUERY = {"rent": {"$lte": 50}, "deposit": {"$lte": 10000, "$gte": 5000}} results = db["sujin"].find(QUERY) df = pd.DataFrame(results).tail() columns = ["title", "service_type", "sales_type", "deposit", "rent", "size_m2", "floor", "building_floor", "address1", "manage_cost", "is_new"] df[columns] # 컬렉션 삭제 for addr in addrs: print(addr) server.zigbang.drop_collection(addr) # 데이터 베이스 삭제 server.drop_database("zigbang") ###Output _____no_output_____
excs/exc03_introduction_to_keras_and_tf.ipynb
###Markdown 연습문제: 3장 케라스와 텐서플로우 저수준 선형 분류 신경망 구현 순수 텐서플로우 API만을 이용하여 두 개의 층을 갖는 선형 분류 신경망을 구현하라. ###Code import tensorflow as tf import numpy as np ###Output _____no_output_____ ###Markdown 데이터셋 생성 - `np.random.multivariate_normal()` - 다변량 정규분포를 따르는 데이터 생성 - 평균값과 공분산 지정 필요- 음성 데이터셋 - 샘플 수: 1,000 - 평균값: `[0, 3]` - 공분산: `[[1, 0.5],[0.5, 1]]`- 양성 데이터셋 - 샘플 수: 1,000 - 평균값: `[3, 0]` - 공분산: `[[1, 0.5],[0.5, 1]]` ###Code num_samples_per_class = 1000 # 음성 데이터셋 negative_samples = np.random.multivariate_normal( mean=[0, 3], cov=[[1, 0.5],[0.5, 1]], size=num_samples_per_class) # 양성 데이터셋 positive_samples = np.random.multivariate_normal( mean=[3, 0], cov=[[1, 0.5],[0.5, 1]], size=num_samples_per_class) ###Output _____no_output_____ ###Markdown 두 개의 `(1000, 2)` 모양의 양성, 음성 데이터셋을 하나의 `(2000, 2)` 모양의 데이터셋으로 합치면서동시에 자료형을 `np.float32`로 지정한다. 자료형을 지정하지 않으면 `np.float64`로 지정되어 보다 많은 메모리와 실행시간을 요구한다. ###Code inputs = np.vstack((negative_samples, positive_samples)).astype(np.float32) ###Output _____no_output_____ ###Markdown 음성 샘플의 타깃은 0, 양성 샘플의 타깃은 1로 지정한다. ###Code targets = np.vstack((np.zeros((num_samples_per_class, 1), dtype="float32"), np.ones((num_samples_per_class, 1), dtype="float32"))) ###Output _____no_output_____ ###Markdown 양성, 음성 샘플을 색깔로 구분하면 다음과 같다.- `inputs[:, 0]`: x 좌표- `inputs[:, 1]`: x 좌표- `c=targets[:, 0]`: 0 또는 1에 따른 색상 지정 ###Code import matplotlib.pyplot as plt plt.scatter(inputs[:, 0], inputs[:, 1], c=targets[:, 0]) plt.show() ###Output _____no_output_____ ###Markdown 가중치 변수 텐서 생성 ###Code inter_layers_dim1 = 5 input_dim1 = 2 # 입력 샘플의 특성수 output_dim1 = inter_layers_dim1 # 출력 샘플의 특성수 # 가중치: 무작위 초기화 W1 = tf.Variable(initial_value=tf.random.uniform(shape=(input_dim1, output_dim1))) # 편향: 0으로 초기화 b1 = tf.Variable(initial_value=tf.zeros(shape=(output_dim1,))) input_dim2 = inter_layers_dim1 # 입력 샘플의 특성수 output_dim2 = 1 # 하나의 값으로 출력 # 가중치: 무작위 초기화 W2 = tf.Variable(initial_value=tf.random.uniform(shape=(input_dim2, output_dim2))) # 편향: 0으로 초기화 b2 = tf.Variable(initial_value=tf.zeros(shape=(output_dim2,))) ###Output _____no_output_____ ###Markdown 예측 모델(함수) 선언아래 함수는 하나의 층을 사용하는 모델의 출력값을 계산하는 과정이다. ###Code def layer1(inputs, activation=None): outputs = tf.matmul(inputs, W1) + b1 if activation != None: return activation(outputs) else: return outputs def layer2(inputs, activation=None): outputs = tf.matmul(inputs, W2) + b2 if activation != None: return activation(outputs) else: return outputs def model(inputs): layer1_outputs = layer1(inputs, tf.nn.relu) layer2_outputs = layer2(layer1_outputs) return layer2_outputs ###Output _____no_output_____ ###Markdown 손실 함수: 평균 제곱 오차(MSE)- `tf.reduce_mean()`: 텐서에 포함된 항목들의 평균값 계산. 넘파이의 `np.mean()`과 결과는 동일하지만 텐서플로우의 텐서를 대상으로 함. ###Code def square_loss(targets, predictions): per_sample_losses = tf.square(targets - predictions) return tf.reduce_mean(per_sample_losses) ###Output _____no_output_____ ###Markdown 훈련 단계하나의 배치에 대해 예측값을 계산한 후에 손실 함수의 그레이디언트를 이용하여 가중치와 편향을 업데이트한다. ###Code learning_rate = 0.1 def training_step(inputs, targets): with tf.GradientTape() as tape: predictions = model(inputs) loss = square_loss(predictions, targets) grad_loss_wrt_W1, grad_loss_wrt_b1, grad_loss_wrt_W2, grad_loss_wrt_b2 = tape.gradient(loss, [W1, b1, W2, b2]) W1.assign_sub(grad_loss_wrt_W1 * learning_rate) b1.assign_sub(grad_loss_wrt_b1 * learning_rate) W2.assign_sub(grad_loss_wrt_W2 * learning_rate) b2.assign_sub(grad_loss_wrt_b2 * learning_rate) return loss ###Output _____no_output_____ ###Markdown 배치 훈련배치 훈련을 총 100번 반복한다. ###Code for step in range(100): loss = training_step(inputs, targets) if step % 10 == 0: print(f"Loss at step {step}: {loss:.4f}") ###Output Loss at step 0: 14.9883 Loss at step 10: 0.2718 Loss at step 20: 0.2498 Loss at step 30: 0.2459 Loss at step 40: 0.2336 Loss at step 50: 0.1279 Loss at step 60: 0.0581 Loss at step 70: 0.0441 Loss at step 80: 0.0397 Loss at step 90: 0.0373 ###Markdown 훈련을 보다 더 해볼 수도 있어 보인다. 600번 정도 더 훈련하면 손실값이 정체하기 시작한다. ###Code for step in range(1000): loss = training_step(inputs, targets) if step % 100 == 0: print(f"Loss at step {step}: {loss:.4f}") ###Output Loss at step 0: 0.0354 Loss at step 100: 0.0245 Loss at step 200: 0.0205 Loss at step 300: 0.0197 Loss at step 400: 0.0195 Loss at step 500: 0.0195 Loss at step 600: 0.0194 Loss at step 700: 0.0194 Loss at step 800: 0.0194 Loss at step 900: 0.0194 ###Markdown 예측 ###Code predictions = model(inputs) ###Output _____no_output_____ ###Markdown 예측 결과를 확인하면 다음과 같다.예측값이 0.5보다 클 때 양성으로 판정한다. ###Code plt.scatter(inputs[:, 0], inputs[:, 1], c=predictions[:, 0] > 0.5) plt.show() ###Output _____no_output_____
samples/getting-started/azure-quantum/provider-specific/Getting-started-with-Honeywell-and-OpenQASM-2.0-on-Azure-Quantum.ipynb
###Markdown Getting started with Honeywell and OpenQASM 2.0 on Azure QuantumThis notebook shows how to send a basic quantum circuit expressed using the [OpenQASM 2.0 spec](https://github.com/Qiskit/openqasm/tree/OpenQASM2.x) to a Honeywell target via the Azure Quantum service. First, install `azure-quantum` and optionally `matplotlib` for plotting: ###Code # To install the Azure Quantum client package, uncomment and run the line below: # # !pip install azure-quantum==0.19.2109.165653 --quiet # # We also recommend installing matplotlib, if you don't have it installed already: # !pip install matplotlib --quiet ###Output _____no_output_____ ###Markdown Connecting to the Azure Quantum serviceTo connect to the Azure Quantum service, find the resource ID and location of your Workspace from the Azure portal here: https://portal.azure.com. Navigate to your Azure Quantum workspace and copy the values from the header. ###Code from azure.quantum import Workspace from azure.quantum.target import Honeywell # Enter your workspace details here # Find your resource ID and location via portal.azure.com workspace = Workspace( resource_id="", location="" ) ###Output _____no_output_____ ###Markdown Use `workspace.get_targets` to see what targets are currently available for the Honeywell provider, including wait times. Running this method will trigger authentication to your Microsoft account, if you're not already logged in. ###Code workspace.get_targets(provider_id="honeywell") ###Output _____no_output_____ ###Markdown Submit a quantum circuit to the Honeywell API validatorNote: The [Honeywell API validator](https://docs.microsoft.com/azure/quantum/provider-honeywellapi-validator) target will always return 0 on measurement.Create a quantum circuit using the [OpenQASM 2.0 spec](https://github.com/Qiskit/openqasm/tree/OpenQASM2.x) representation. For example, the following example creates a Teleportation circuit: ###Code # Create raw OpenQASM circuit. circuit = """OPENQASM 2.0; include "qelib1.inc"; qreg q[3]; creg c0[1]; creg c1[3]; h q[0]; cx q[0], q[1]; x q[2]; h q[2]; cx q[2], q[0]; h q[2]; measure q[0] -> c1[0]; c0[0] = c1[0]; if (c0==1) x q[1]; c0[0] = 0; measure q[2] -> c1[1]; c0[0] = c1[1]; if (c0==1) z q[1]; c0[0] = 0; h q[1]; measure q[1] -> c1[2]; """ ###Output _____no_output_____ ###Markdown To see if this circuit is valid, we can submit it to the Honeywell API validator target. The following example uses the Honeywell API validator, which returns a Job object. For more information, see [Azure Quantum Job](https://review.docs.microsoft.com/en-us/azure/quantum/optimization-job-reference). ###Code target = workspace.get_targets(name="honeywell.hqs-lt-s1-apival") job = target.submit(circuit) ###Output _____no_output_____ ###Markdown Wait until the job is complete and then fetch the results. ###Code results = job.get_results() results ###Output ....... ###Markdown Run on Honeywell Simulator It looks like the program was indeed valid! Now we can run the circuit and simulate the result with the Honeywell simulator target: ###Code target = Honeywell(workspace=workspace, name="honeywell.hqs-lt-s1-sim") job = target.submit(circuit) ###Output _____no_output_____ ###Markdown Wait until the job is complete and then fetch the results. ###Code results = job.get_results() results ###Output ................... {'c0': ['0'], 'c1': ['111']}
300_task_activity/100_face_deviations_unfam/02_setup_timing.ipynb
###Markdown Please get the raw, predicted, and residual features from `120_features` folder.This will save demographics and trait measures. The demo and trait measures will be run in separate analyses. ###Code import os import pandas as pd import numpy as np import readline import rpy2 import rpy2.robjects as robjects r = robjects.r import rpy2.robjects.numpy2ri rpy2.robjects.numpy2ri.activate() from rpy2.robjects import pandas2ri pandas2ri.activate() from sklearn.preprocessing import scale ###Output _____no_output_____ ###Markdown Run ###Code def load_dat(timing): # Read in data dfa = pd.read_csv("measures/z_mean_vid_vals.csv") dfb = pd.read_csv("measures/z_mean_rel_vid_vals.csv") df = pd.concat([dfa.ix[:,1:-2],dfb.ix[:,1:-1]], axis=1) df = df.ix[:,df.columns != "mean_fds"] # Get the video names # We want to reorder the dataframe above based on the timing info feat_vnames = dfa.ix[:,-1] inds = [ (x == feat_vnames).nonzero()[0][0] for x in timing.video ] # Extract df_cols = df.columns df_dat = df.ix[inds,:] # Make matrix df_dat = df_dat.as_matrix() # Center the columns df_dat = scale(df_dat, with_mean=True, with_std=False) return (df_cols, df_dat) def face_activity(runs, onsets): uruns = np.unique(runs) nruns = uruns.shape[0] afni_facemat = [] for ri in range(nruns): run_inds = runs == uruns[ri] n = np.sum(run_inds) ovec = onsets[run_inds].astype('float32').round(4) row = [ '%.5f' % ovec[i] for i in range(n) ] row = " ".join(row) afni_facemat.append(row) return np.array(afni_facemat) def question_activity(runs, onsets, q_regressor): uruns = np.unique(runs) afni_qmat = [] nruns = uruns.shape[0] for ri in range(nruns): run_inds = runs == uruns[ri] n = np.sum(run_inds) qvec = q_regressor[run_inds] ovec = onsets[run_inds].astype('float32').round(4) row = np.array([ '%.5f' % ovec[i] for i,touse in enumerate(qvec) if touse == 1 ]) if len(row) == 0: row = '*' else: row = " ".join(row) afni_qmat.append(row) return np.array(afni_qmat) def motion_covars(subj): funcdir = "/data1/famface01/analysis/preprocessed/%s/func" % subj df_paths = pd.read_table("%s/df_paths.txt" % funcdir, sep=" ") inds = df_paths.inindex[df_paths.name == 'unfam_vids'] motion_fpaths = [ "%s/mc/func_run%02i_dfile.1D" % (funcdir, ind) for ind in inds ] from sklearn.preprocessing import scale motion_mats = [] for fpath in motion_fpaths: x = np.loadtxt(fpath) x = scale(x, with_std=False, with_mean=True) motion_mats.append(x) motion_mat = np.vstack(motion_mats) return motion_mat def am_activity(runs, onsets, df_mat): uruns = np.unique(runs) nruns = uruns.shape[0] afni_mats = [] for ci in range(df_mat.shape[1]): afni_mat = [] for ri in range(nruns): run_inds = runs == uruns[ri] n = np.sum(run_inds) ovecs= onsets[run_inds].astype('float32').round(4) dvecs= df_mat[run_inds,ci] row = [ '%.5f*%f' % (ovecs[i],dvecs[i]) for i in range(n) ] row = " ".join(row) afni_mat.append(row) afni_mats.append(np.array(afni_mat)) return afni_mats # Skip the first subject...for now for si in range(6): subj = "sub%02i" % (si+1) print(subj) # Load the R data infile = "/data1/famface01/analysis/encoding/ShapeAnalysis/data/roi_n_more_%s.rda" % subj r.load(infile) # Variables onsets = np.array(r.dat.rx2('basics').rx2('timing').rx2('onset')) questions = np.array(r['as.character'](r.dat.rx2('basics').rx2('timing').rx2('question'))) runs = np.array(r.dat.rx2('basics').rx2('timing').rx2('run')) uruns = np.unique(runs) timing = pandas2ri.ri2py(r.dat.rx2('basics').rx2('timing')) # Get data dat_cols, dat = load_dat(timing) ### # ACTIVITY ### # face afni_facemat = face_activity(runs, onsets) # questions q_regressor = (questions != 'none') * 1 afni_qmat = question_activity(runs, onsets, q_regressor) # motion motion_mat = motion_covars(subj) # pose/shape/etc shape_dat = am_activity(runs, onsets, dat) ### # SAVE ### base = "/data1/famface01/command/misc/face_representations" outbase = "%s/300_task_activity/100_face_deviations_unfam/timings" % base outdir = "%s/%s" % (outbase, subj) print outdir if not os.path.exists(outdir): os.mkdir(outdir) # Faces ofname = '%s/stim_faces.txt' % outdir np.savetxt(ofname, afni_facemat, fmt='%s') # Measures for i,amat in enumerate(shape_dat): cname = dat_cols[i] ofname = '%s/stimam_%s.txt' % (outdir, cname) np.savetxt(ofname, amat, fmt='%s') # Questions ofname = '%s/stim_questions.txt' % outdir np.savetxt(ofname, afni_qmat, fmt='%s') # MOTION ofname = '%s/motion.1D' % outdir np.savetxt(ofname, motion_mat, fmt='%f') load_dat(timing) ###Output _____no_output_____
general_assembly/01_welcome_to_data_science/solution-code-1.ipynb
###Markdown Check to see if you're ready to go on Thursday!1. Run each block of code2. Check for errors3. When you think you're error free, flag down a teaching team member to confirm! ###Code ###This is what an error looks like print(a) ###Output _____no_output_____ ###Markdown Objectives Get comfortable with IPython Notebook* How to start IPython Notebook* How to read data into pandas* How to do simple manipulations on pandas dataframes Start a notebook:For each class, we'll be using a set of common data science libraries and tools, like the IPython notebook. You can start an IPython notebook by running```jupyter notebook $NAME_OF_FILE``` Try it yourself!Read and run the block of code below by: 1. Clicking on it and pressing the play button above or2. Using a short cut- (help --> keyboard shortcuts) ###Code %matplotlib inline import matplotlib.pyplot as plt import matplotlib as mpl import pandas as pd mpl.rcParams['figure.figsize'] = (15, 6) pd.set_option('display.width', 4000) pd.set_option('display.max_columns', 100) ###Output _____no_output_____ ###Markdown First: Read in the data Review Simple CommandsPractice downloading and reading into sample data ###Code # Download and read the data (this may take more than 1 minute) orig_data = pd.read_csv('../../assets/dataset/311-service-requests.csv', parse_dates=['Created Date'], low_memory=False) plt.scatter(orig_data['Longitude'], orig_data['Latitude'], marker='.', color="purple") ###Output _____no_output_____ ###Markdown Try this Example: Graph the number of noise complaints each hour in New York ###Code complaints = orig_data[['Created Date', 'Complaint Type']] noise_complaints = complaints[complaints['Complaint Type'] == 'Noise - Street/Sidewalk'] noise_complaints.set_index('Created Date').sort_index().resample('H', how=len).plot() ###Output C:\Users\Ayham\Anaconda3\lib\site-packages\ipykernel\__main__.py:3: FutureWarning: how in .resample() is deprecated the new syntax is .resample(...)..apply(<func>) app.launch_new_instance() ###Markdown Second: Using IPython Review Python BasicsTest your skills by answering the following questions: Question 1. Divide 10 by 20 and set the result to a variable named "A" ###Code A = 10/20 print(A) #### If you did not get a float (decimals) alter your equation to get the desired result (0.5) A = 10./20 print(A) ###Output 0.5 ###Markdown Question 2. Create a function called division that will divide any two numbers and prints the result (with decimals). Call your function. Confirm that the results are as expected. ###Code def division(numerator, denominator): result = float(numerator) / denominator print(result) division(20, 10) division(10, 20) ###Output 2.0 0.5 ###Markdown Question 3. Using .split() split my string into separate words ###Code my_string = "the cow jumped over the moon" words = my_string.split() # returns ['the', 'cow', 'jumped', 'over', 'the', 'moon'] print(words) my_string.split('o') my_string.split() ###Output _____no_output_____ ###Markdown Question 4. How many words are in my_string? ###Code word_count = len(words) #returns the number of words- 6 print(word_count) len(my_string) ###Output _____no_output_____ ###Markdown Question 5. Use a list comprehension to find the length of each wordList comprehension: a way to apply a function which loops through a list ###Code length_of_each_word = [len(word) for word in words] print(length_of_each_word) [word[0] for word in words] ###Output _____no_output_____ ###Markdown Question 6. Put the words back together in a variable called sentence using .join() ###Code # put them back together with join sentence = " ".join(words) print(sentence) ###Output the cow jumped over the moon ###Markdown Bonus: Add a "||" between each word ###Code # the " " puts the space in between the words. or you could put anything else in alternate_sentence = "||".join(words) print(alternate_sentence) ###Output the||cow||jumped||over||the||moon
gui/my-webapp.ipynb
###Markdown Esempio webappEsempio di webapp mostrato per esecuzione con Voila**Per capire il funzionamento, vedere tutorial** [Applicazioni interattive - Sezione Webapp](https://it.softpython.org/gui/gui-sol.htmlWebapp)Nota: Le celle di testo di Jupyter come questa vengono mostrate anche da Voila. ###Code import ipywidgets as widgets from ipywidgets import Button, HBox, VBox, Tab, IntSlider, Label, HTML, AppLayout, Layout # !!!! IMPORTANTE !!!! # Il 'pyplot' che vedete qui sotto, che viene importato con il nome di 'plt' # proviene dalla libreria di bqplot, NON E' lo stesso pyplot di matplotlib !! # Gli autori di bqplot hanno adottato lo stesso nome e convenzioni per permettervi # di riusare facilmente esempi che già conoscete di matplotlib from bqplot import pyplot as plt x = [2,4,6] fig = plt.figure() # genera la figure lines = plt.plot(x, [15,3,20]) plt.title('Grafico in bqplot') slider1 = IntSlider() bottone_vai_pag2 = Button(description="VAI PAGINA 2") slider2 = IntSlider() hbox2 = HBox([Button(description='clicca qui'), Button(description='cliccami!')]) tab1 = HBox(children=[fig, VBox([slider1, bottone_vai_pag2])]) tab2 = VBox(children=[slider2, hbox2]) # al momento la prima 'pagina' è il widget Tab pagina1 = widgets.Tab(children=[tab1, tab2], layout=Layout(min_height='350px')) pagina1.set_title(0, 'TAB COL PLOT') pagina1.set_title(1, 'ALTRA TAB') bottone_vai_pag1 = Button(description="VAI PAGINA 1") pagina2 = HBox([ Label("Questa è la seconda pagina"), bottone_vai_pag1 ], layout=Layout(min_height='350px') ) # Il codice HTML è il codice con cui sono scritte le pagine web, qui lo # usiamo per creare il titolo come esempio ma non è indispensabile conoscerlo # Se vuoi saperne di più, prova a seguire questo tutorial: http://coderdojotrento.it/web1 titolo = HTML('<h1 style="color:orange">Webapp Incredibile</h1> <br/>') # testo comune in fondo alla pagina credits = Label("Credits: Interfacce Incredibili SRL") # la struttura della nostra webapp è un pila VBox di elementi. my_app = VBox( children=[titolo, # supponiamo che il titolo sia sempre visibile in tutto il sito pagina1, # al momento la prima 'pagina' è il widget tab credits]) # supponiamo che il titolo sia sempre visibile in tutto il sito # questa funzione permette di cambiare la parte centrale della webapp passando un nuovo widget def cambia_pagina(nuova_pagina): # le parentesi tonde in questo contesto creano una tupla, # cioè una sequenza immutabile di elementi): my_app.children = (my_app.children[0], # il widget del titolo precedente nuova_pagina, # widget che rappresenta la nuova pagina my_app.children[2]) # il widget dei credits precedente def bottone_vai_pag2_cliccato(b): cambia_pagina(pagina2) bottone_vai_pag2.on_click(bottone_vai_pag2_cliccato) def bottone_vai_pag1_cliccato(b): cambia_pagina(pagina1) bottone_vai_pag1.on_click(bottone_vai_pag1_cliccato) display(my_app) ###Output _____no_output_____
day3/Hubble.ipynb
###Markdown Expansion velocity of the universeIn 1929, Edwin Hubble published a [paper](http://www.pnas.org/content/pnas/15/3/168.full.pdf) in which he compared the radial velocity of objects with their distance. The former can be done pretty precisely with spectroscopy, the latter is much more uncertain. His original data are [here](table1.txt).He saw that the velocity increases with distance and speculated that this could be the sign of a cosmological expansion. Let's find out what he did.Load the data into an array with `numpy.genfromtxt`, make use of its arguments `names` and `dtype` to read in the column names from the header and choosing the data type on its own as needed. You should get 6 columns * `CAT`, `NUMBER`: These two combined give you the name of the galaxy. * `R`: distance in Mpc * `V`: radial velocity in km/s * `RA`, `DEC`: equatorial coordinates of the galaxy Make a scatter plot of V vs R. Don't forget labels and units... ###Code # load file into variable `data` # plot data with plt.scatter %matplotlib inline import matplotlib import numpy as np import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Use `np.linalg.lstsq` to fit a linear regression function and determine the slope $H_0$ of the line $V=H_0 R$. For that, reshape $R$ as a $N\times1$ matrix (the design matrix) and solve for 1 unknown parameter. Add the best-fit line to the plot. Why is there scatter with respect to the best-fit curve? Is it fair to only fit for the slope and not also for the intercept? How would $H_0$ change if you include an intercept in the fit? Correcting for motion of the sun$V$ as given in the table is a combination of any assumed cosmic expansion and the motion of the sun with respect to that cosmic frame. So, we need to generalize the model to $V=H_0 R + V_s$, where the solar velocity is given by $V_s = X \cos(RA)\cos(DEC) + Y\sin(RA)\cos(DEC)+Z\sin(DEC)$. We'll use `astropy` to read in the RA/DEC coordinate strings and properly convert them to degrees (and then radians): ###Code import astropy.coordinates as coord import astropy.units as u pos = coord.SkyCoord(ra=data['RA'].astype('U8'), dec=data['DEC'].astype('U9'), unit=(u.hourangle,u.deg),frame='fk5') ra_ = pos.ra.to(u.deg).value * np.pi/180 dec_ = pos.dec.to(u.deg).value * np.pi/180 ###Output _____no_output_____ ###Markdown Expansion velocity of the universeIn 1929, Edwin Hubble published a [paper](http://www.pnas.org/content/pnas/15/3/168.full.pdf) in which he compared the radial velocity of objects with their distance. The former can be done pretty precisely with spectroscopy, the latter is much more uncertain. His original data are [here](table1.txt).He saw that the velocity increases with distance and speculated that this could be the sign of a cosmological expansion. Let's find out what he did.First, the usual python imports: ###Code %matplotlib inline import numpy as np import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Exercise 1:Load the data into an array with `numpy.genfromtxt`, make use of its arguments `names` and `dtype` to read in the column names from the header and choosing the data type on its own as needed. You should get 6 columns * `CAT`, `NUMBER`: These two combined give you the name of the galaxy. * `R`: distance in Mpc * `V`: radial velocity in km/s * `RA`, `DEC`: equatorial coordinates of the galaxy Make a scatter plot of V vs R. Don't forget labels and units... Exercise 2:Use your knowledge of linear first to determine the slope $H_0$ of the line $V=H_0 R$. This is a linear model **with no intercept**. For that, reshape $R$ as a $N\times1$ design matrix and solve for 1 unknown parameter. Then, update the plot by adding the best-fit line. Can you guess the cause for the scatter with respect to the best-fit curve? Is it fair or even appropriate to fit only for the slope and not also for the intercept? How would $H_0$ change if you include an intercept in the fit? Correcting for motion of the sun$V$ as given in the table is a combination of any assumed cosmic expansion and the motion of the sun with respect to that cosmic frame. So, we need to generalize the model to $V=H_0 R + V_s$, where the solar velocity is given by $V_s = X \cos(RA)\cos(DEC) + Y\sin(RA)\cos(DEC)+Z\sin(DEC)$. We'll use `astropy` to read in the RA/DEC coordinate strings and properly convert them to degrees (and then radians): ###Code import astropy.coordinates as coord import astropy.units as u pos = coord.SkyCoord(ra=data['RA'].astype('U8'), dec=data['DEC'].astype('U9'), unit=(u.hourangle,u.deg),frame='fk5') ra_ = pos.ra.to(u.deg).value * np.pi/180 dec_ = pos.dec.to(u.deg).value * np.pi/180 ###Output _____no_output_____ ###Markdown Expansion velocity of the universeIn 1929, Edwin Hubble published a [paper](http://www.pnas.org/content/pnas/15/3/168.full.pdf) in which he compared the radial velocity of objects with their distance. The former can be done pretty precisely with spectroscopy, the latter is much more uncertain. His original data are [here](table1.txt).He saw that the velocity increases with distance and speculated that this could be the sign of a cosmological expansion. Let's find out what he did.First, the usual python imports: ###Code %matplotlib inline import numpy as np import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Exercise 1:Load the data into an array with `numpy.genfromtxt`, make use of its arguments `names` and `dtype` to read in the column names from the header and choosing the data type on its own as needed. You should get 6 columns * `CAT`, `NUMBER`: These two combined give you the name of the galaxy. * `R`: distance in Mpc * `V`: radial velocity in km/s * `RA`, `DEC`: equatorial coordinates of the galaxy Make a scatter plot of V vs R. Don't forget labels and units... ###Code # load file into variable `data` ... data = np.genfromtxt('table1.txt', dtype = None, names = True, encoding ='utf8') data # make scatter plot plt.scatter(data['R'], data['V']) ###Output _____no_output_____ ###Markdown Exercise 2:Use your knowledge of linear first to determine the slope $H_0$ of the line $V=H_0 R$. This is a linear model **with no intercept**. For that, reshape $R$ as a $N\times1$ design matrix and solve for 1 unknown parameter. Then, update the plot by adding the best-fit line. ###Code N = len(data) R = data['R'].reshape(N, 1) R X = data['R'].reshape((N,1)) params, _, _, _ = np.linalg.lstsq(X, data['V']) print(params) H0 = params[0] R = np.linspace(0,2.5,100) fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(data['R'], data['V']) ax.plot(R, H0*R, 'k--') ###Output [423.93732323] ###Markdown Can you guess the cause for the scatter with respect to the best-fit curve? Is it fair or even appropriate to fit only for the slope and not also for the intercept? How would $H_0$ change if you include an intercept in the fit? ###Code X = np.ones((N, 2)) X[:,1] = data['R'] params, _, _, _ = np.linalg.lstsq(X, data['V']) print(params) inter, H0 = params R = np.linspace(0,2.5,100) fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(data['R'], data['V']) ax.plot(R, H0*R + inter, 'k--') ax.set_xlim(xmin=0, xmax=2.5) ax.set_xlabel('Distance [Mpc]') ax.set_ylabel('Velocity [km/s]') ###Output (array([-40.7836491 , 454.15844092]), array([1193442.36627214]), 2, array([6.98607217, 2.17085022])) ###Markdown Correcting for motion of the sun$V$ as given in the table is a combination of any assumed cosmic expansion and the motion of the sun with respect to that cosmic frame. So, we need to generalize the model to $V=H_0 R + V_s$, where the solar velocity is given by $V_s = X \cos(RA)\cos(DEC) + Y\sin(RA)\cos(DEC)+Z\sin(DEC)$. We'll use `astropy` to read in the RA/DEC coordinate strings and properly convert them to degrees (and then radians): ###Code import astropy.coordinates as coord import astropy.units as u import numpy as np pos = coord.SkyCoord(ra=data['RA'].astype('U8'), dec=data['DEC'].astype('U9'), unit=(u.hourangle,u.deg),frame='fk5') ra_ = pos.ra.to(u.deg).value * np.pi/180 dec_ = pos.dec.to(u.deg).value * np.pi/180 ###Output _____no_output_____ ###Markdown Exercise 3:Construct a new $N\times4$ design matrix for the four unknown parameters $H_0$, $X$, $Y$, $Z$ to account for the solar motion. The resulting $H_0$ is Hubble's own version of the "Hubble constant". What do you get? ###Code Ah = np.column_stack((data['R'], np.cos(ra_)*np.cos(dec_), np.sin(ra_)*np.cos(dec_), np.sin(dec_))) params_h, _, _, _ = np.linalg.lstsq(Ah, data['V']) print(params_h) H0 = params_h[0] ###Output [ 465.17797833 -67.84096674 236.14706994 -199.58892695] ###Markdown Make a scatter plot of $V-V_S$ vs $R$. How is it different from the previous one without the correction for solar velicity. Add the best-fit linear regression line. ###Code VS = params_h[1]*data['R'] + params_h[2]*np.cos(ra_)*np.cos(dec_) + params_h[3]*np.sin(ra_)*np.cos(dec_) fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(data['R'], data['V'] - VS) ###Output _____no_output_____ ###Markdown Exercise 4:Using `astropy.units`, can you estimate the age of the universe from $H_0$? Does it make sense? ###Code H0q = H0 * u.km / u.s / u.Mpc (1./H0q).to(u.Gyr) ###Output _____no_output_____ ###Markdown Expansion velocity of the universeIn 1929, Edwin Hubble published a [paper](http://www.pnas.org/content/pnas/15/3/168.full.pdf) in which he compared the radial velocity of objects with their distance. The former can be done pretty precisely with spectroscopy, the latter is much more uncertain. His original data are [here](table1.txt).He saw that the velocity increases with distance and speculated that this could be the sign of a cosmological expansion. Let's find out what he did.First, the usual python imports: ###Code %matplotlib inline import numpy as np import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Exercise 1:Load the data into an array with `numpy.genfromtxt`, make use of its arguments `names` and `dtype` to read in the column names from the header and choosing the data type on its own as needed. You should get 6 columns * `CAT`, `NUMBER`: These two combined give you the name of the galaxy. * `R`: distance in Mpc * `V`: radial velocity in km/s * `RA`, `DEC`: equatorial coordinates of the galaxy Make a scatter plot of V vs R. Don't forget labels and units... ###Code # load file into variable `data` ... # make scatter plot ###Output _____no_output_____ ###Markdown Exercise 2:Use your knowledge of linear first to determine the slope $H_0$ of the line $V=H_0 R$. This is a linear model **with no intercept**. For that, reshape $R$ as a $N\times1$ design matrix and solve for 1 unknown parameter. Then, update the plot by adding the best-fit line. Can you guess the cause for the scatter with respect to the best-fit curve? Is it fair or even appropriate to fit only for the slope and not also for the intercept? How would $H_0$ change if you include an intercept in the fit? Correcting for motion of the sun$V$ as given in the table is a combination of any assumed cosmic expansion and the motion of the sun with respect to that cosmic frame. So, we need to generalize the model to $V=H_0 R + V_s$, where the solar velocity is given by $V_s = X \cos(RA)\cos(DEC) + Y\sin(RA)\cos(DEC)+Z\sin(DEC)$. We'll use `astropy` to read in the RA/DEC coordinate strings and properly convert them to degrees (and then radians): ###Code import astropy.coordinates as coord import astropy.units as u pos = coord.SkyCoord(ra=data['RA'].astype('U8'), dec=data['DEC'].astype('U9'), unit=(u.hourangle,u.deg),frame='fk5') ra_ = pos.ra.to(u.deg).value * np.pi/180 dec_ = pos.dec.to(u.deg).value * np.pi/180 ###Output _____no_output_____ ###Markdown Expansion velocity of the universeIn 1929, Edwin Hubble published a [paper](http://www.pnas.org/content/pnas/15/3/168.full.pdf) in which he compared the radial velocity of objects with their distance. The former can be done pretty precisely with spectroscopy, the latter is much more uncertain. His original data are [here](table1.txt).He saw that the velocity increases with distance and speculated that this could be the sign of a cosmological expansion. Let's find out what he did.First, the usual python imports: ###Code %matplotlib inline import numpy as np import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Exercise 1:Load the data into an array with `numpy.genfromtxt`, make use of its arguments `names` and `dtype` to read in the column names from the header and choosing the data type on its own as needed. You should get 6 columns * `CAT`, `NUMBER`: These two combined give you the name of the galaxy. * `R`: distance in Mpc * `V`: radial velocity in km/s * `RA`, `DEC`: equatorial coordinates of the galaxy Make a scatter plot of V vs R. Don't forget labels and units... ###Code data = np.genfromtxt("table1.txt", dtype = ('S8', 'S8', float, float, 'S8', 'S8'), skip_header = 0, names = True) print(np.shape(data)) distance = data['R'] velocity = data['V'] plt.scatter(distance, velocity) plt.xlabel("Distance (Mpc)") plt.ylabel("Radial Velocity (km/s)") ###Output (24,) ###Markdown Exercise 2:Use your knowledge of linear first to determine the slope $H_0$ of the line $V=H_0 R$. This is a linear model **with no intercept**. For that, reshape $R$ as a $N\times1$ design matrix and solve for 1 unknown parameter. Then, update the plot by adding the best-fit line. ###Code R = distance[:, np.newaxis] V = velocity[:, np.newaxis] pars_Cov = np.linalg.inv(np.matmul(R.T, R)) best_pars = np.matmul(np.matmul(pars_Cov, R.T), V) print(best_pars) plt.scatter(distance, velocity) plt.xlabel("Distance (Mpc)") plt.ylabel("Radial Velocity (km/s)") plt.plot(R, best_pars*R) ###Output [[423.93732323]] ###Markdown Can you guess the cause for the scatter with respect to the best-fit curve? Is it fair or even appropriate to fit only for the slope and not also for the intercept? How would $H_0$ change if you include an intercept in the fit? Correcting for motion of the sun$V$ as given in the table is a combination of any assumed cosmic expansion and the motion of the sun with respect to that cosmic frame. So, we need to generalize the model to $V=H_0 R + V_s$, where the solar velocity is given by $V_s = X \cos(RA)\cos(DEC) + Y\sin(RA)\cos(DEC)+Z\sin(DEC)$. We'll use `astropy` to read in the RA/DEC coordinate strings and properly convert them to degrees (and then radians): ###Code import astropy.coordinates as coord import astropy.units as u pos = coord.SkyCoord(ra=data['RA'].astype('U8'), dec=data['DEC'].astype('U9'), unit=(u.hourangle,u.deg),frame='fk5') ra = pos.ra.to(u.deg).value * np.pi/180 dec = pos.dec.to(u.deg).value * np.pi/180 ###Output _____no_output_____ ###Markdown Exercise 3:Construct a new $N\times4$ design matrix for the four unknown parameters $H_0$, $X$, $Y$, $Z$ to account for the solar motion. The resulting $H_0$ is Hubble's own version of the "Hubble constant". What do you get?Make a scatter plot of $V-V_S$ vs $R$. How is it different from the previous one without the correction for solar velicity. Add the best-fit linear regression line. ###Code vs1 = np.cos(ra)*np.cos(dec) vs2 = np.sin(ra)*np.cos(dec) vs3 = np.sin(dec) X = np.vstack((distance, vs1, vs2, vs3)).T pars_Cov = np.linalg.inv(np.matmul(X.T, X)) best_pars = np.matmul(np.matmul(pars_Cov, X.T), V) print(best_pars) H_0 = best_pars[0] Vs = X[:,1:] @ best_pars[1:] plt.scatter(R, np.subtract(V,Vs)) plt.plot(R, best_pars[0]*R) ###Output [[ 465.18113259] [ -67.83696743] [ 236.14419034] [-199.58718077]] ###Markdown Exercise 4:Using `astropy.units`, can you estimate the age of the universe from $H_0$? Does it make sense? ###Code H = float(H_0) * u.km / u.s / u.Mpc age = 1/H age.to(u.yr) ###Output _____no_output_____ ###Markdown Measurement errorsSo far we have not incorporated any measurement uncertainties. Exercise 5:Can you guess or estimate them from the scatter with respect to the best-fit line? You may want to look at the residuals with respect to the best-fit model.With this error estimate, construct a covariance matrix $\Sigma$ and repeat the linear regression, this time with errors, to get a new estimate of $H_0$. Has it changed? ###Code residuals = np.subtract(np.subtract(V,Vs), H_0*R) sigma = np.diag(residuals[:,0]) sigma_inv = np.linalg.inv(sigma) pars_Cov = np.linalg.inv(np.matmul(np.matmul(X.T, sigma_inv), X)) best_pars = np.matmul(np.matmul(np.matmul(pars_Cov, X.T),sigma_inv), np.subtract(V,Vs)) Ho_2 = best_pars[0] print(Ho_2) ###Output [783.40330493] ###Markdown Exercise 6:Compute the parameter covariance matrix and read off the variance of $H_0$. Update your plot to illustrate that uncertainty.How large is the relative error? Would that help with the problematic age estimate above? If not, what do you think is going on? ###Code pars_Cov = np.linalg.inv(np.matmul(np.matmul(X.T, sigma_inv), X)) H_var = pars_Cov[0][0] plt.scatter(R, np.subtract(V,Vs)) plt.plot(R, Ho_2*R) plt.plot(R, (Ho_2+H_var)*R) plt.plot(R, (Ho_2-H_var)*R) ###Output _____no_output_____
feature-extraction_v1.0.ipynb
###Markdown Extracting from `morph.tf` all morphological categories as separate Features for the Tischendorf TF-AppCody Kingham, MA, MA, PhD cand ([University of Cambridge](https://www.cam.ac.uk/)) has stored the morphological anylsis of the Tischendorf text (provided by Ulrik Sandborg-Petersen: https://github.com/morphgnt/tischendorf-data/)in the feature list `morph.tf`(https://github.com/codykingham/tischendorf_tf). I have (1) opened that list within excel (2) deleted the first lines containing the TF feature information and (3) stored the morphology as morph_quite-orig.xlsx ("quite-orig" because it does not contain the original TF feature information). This is the feature information I deleted:![featureinfo.png](attachment:featureinfo.png)After that the following procedure was applied:1. Identifying the different morphological features contained in the morph code by comparing the Tisch TF-app with the Tischendorf text in [Logos](https://ref.ly/logosres/tischnt?ref=BibleTISCH.Mt1). Below you find the coding for the first words of Matthew 1:1-2:![morphtf.png](attachment:morphtf.png)2. Extracting the different morphology features and adding them with new tagging as additional columns in the pandas df.3. Exporting the completed df as `tischendorffeatures_v1.0.xlsx`4. Copy pasting from the exported spreadsheet the new tf files as seperated morphological features: - sp (part of speech) - nu (number) - ps (person) - vt (verbal tense) - voice - mood - case - gn (gender) - nountype - prntyp (prnoun type) - originterrdiff (the original morphology distinguished between two different interrogative pronouns, that distinction is found in originterrdiff) ###Code import sys, os, collections import pandas as pd import numpy as np import re ###Output _____no_output_____ ###Markdown Extraction process Loading original `morph.tf` as df ###Code featureprep=pd.read_excel('d:/OneDrive/1200_AUS-research/Fabric-TEXT/Tischendorf-feature-project/morph_quite-orig.xlsx',delimiter='\t',encoding='utf-16') pd.set_option('display.max_columns', 50) featureprep.head(20) featureprep.dtypes ###Output _____no_output_____ ###Markdown Lets change the orig columns to strings Adding Part of Speech ###Code def spconditions(row): if re.search('^A.*', str(row)): return 'adjective' if re.search('^ADV.*', str(row)): return 'adverb' if re.search('^ARAM.*', str(row)): return 'aramaic-form-indeclinable' if re.search('^C.*', str(row)): return 'pronoun' if re.search('^COND.*', str(row)): return 'conjunction-cond' if re.search('^CONJ.*', str(row)): return 'conjunction' if re.search('^D.*', str(row)): return 'pronoun' if re.search('^F.*', str(row)): return 'pronoun' if re.search('^HEB.*', str(row)): return 'hebrew-form-indeclinable' if re.search('^I.*', str(row)): return 'pronoun' if re.search('^INJ.*', str(row)): return 'interjection' if re.search('^K.*', str(row)): return 'pronoun' if re.search('^N-.*', str(row)): return 'noun' if re.search('^P-.*', str(row)): return 'pronoun' if re.search('^PREP$', str(row)): return 'preposition' if re.search('^PRT.*', str(row)): return 'particle' if re.search('^Q.*', str(row)): return 'pronoun' if re.search('^R.*', str(row)): return 'pronoun' if re.search('^S.*', str(row)): return 'pronoun' if re.search('^T-.*', str(row)): return 'article' if re.search('^V-.*', str(row)): return 'verb' if re.search('^X.*', str(row)): return 'pronoun' else: return '' featureprep['sp']=featureprep['origcode'].apply(spconditions) featureprep.head(50) featureprep['sp'].value_counts() ###Output _____no_output_____ ###Markdown Adding Gender ###Code def gender(row): if re.search('.*F$', str(row)): return 'f' if re.search('.*M$', str(row)): return 'm' if re.search('.*N$', str(row)): return 'n' else: return '' featureprep['gn']=featureprep['origcode'].apply(gender) featureprep.head(20) ###Output _____no_output_____ ###Markdown Adding Number ###Code def number(row): if re.search('-.*S$', str(row)): return 'sg' if re.search('-.*S[MFN]$', str(row)): return 'sg' if re.search('-.*P$', str(row)): return 'pl' if re.search('-.*P[MFN]$', str(row)): return 'pl' else: return '' featureprep['nu']=featureprep['origcode'].apply(number) featureprep.head(50) ###Output _____no_output_____ ###Markdown Adding Person ###Code def person(row): if re.search('-.*1[SP]', str(row)): return 'p1' if re.search('-1[NGDASP]', str(row)): return 'p1' if re.search('-.*2[SP]', str(row)): return 'p2' if re.search('-2[NGDASP]', str(row)): return 'p2' if re.search('-.*3[SP]', str(row)): return 'p3' if re.search('-3[NGDASP]', str(row)): return 'p3' else: return '' featureprep['ps']=featureprep['origcode'].apply(person) featureprep.head(20) ###Output _____no_output_____ ###Markdown Adding Case ###Code def case(row): if re.search('-N[SP].*', str(row)): return 'nominative' if re.search('-[123]N[SP].*', str(row)): return 'nominative' if re.search('-G[SP].*', str(row)): return 'genitive' if re.search('-[123]G[SP].*', str(row)): return 'genitive' if re.search('-D[SP].*', str(row)): return 'dative' if re.search('-[123]D[SP].*', str(row)): return 'dative' if re.search('-A[SP].*', str(row)): return 'accusative' if re.search('-[123]A[SP].*', str(row)): return 'accusative' if re.search('-V[SP].*', str(row)): return 'vocative' if re.search('-[123]V[SP].*', str(row)): return 'vocative' if re.search('-PRI$', str(row)): return 'indeclinable' else: return '' featureprep['case']=featureprep['origcode'].apply(case) featureprep.head(20) ###Output _____no_output_____ ###Markdown Adding Tense ###Code def tense(row): if re.search('V-A.*', str(row)): return 'aorist' if re.search('V-[0-9][A].*', str(row)): return 'aorist' if re.search('V-P.*', str(row)): return 'present' if re.search('V-[0-9][P].*', str(row)): return 'present' if re.search('V-F.*', str(row)): return 'future-I' if re.search('V-[0-9][F].*', str(row)): return 'future-I' if re.search('V-I.*', str(row)): return 'imperfect' if re.search('V-[0-9][I].*', str(row)): return 'imperfect' if re.search('V-L.*', str(row)): return 'plusquamperfect' if re.search('V-[0-9][L].*', str(row)): return 'plusquamperfect' if re.search('V-R.*', str(row)): return 'perfect' if re.search('V-[0-9][R].*', str(row)): return 'perfect' if re.search('V-T.*', str(row)): return 'future-II' if re.search('V-[0-9][T].*', str(row)): return 'future-II' else: return '' featureprep['vt']=featureprep['origcode'].apply(tense) featureprep.head(20) ###Output _____no_output_____ ###Markdown Adding Voice ###Code def voice(row): if re.search('V-[A-Z][A].*', str(row)): return 'active' if re.search('V-[A-Z][O].*', str(row)): return 'passive' if re.search('V-[A-Z][P].*', str(row)): return 'passive' if re.search('V-[A-Z][D].*', str(row)): return 'medium' if re.search('V-[A-Z][N].*', str(row)): return 'mediumorpassive' else: return '' featureprep['voice']=featureprep['origcode'].apply(voice) featureprep.head(20) ###Output _____no_output_____ ###Markdown Adding Mood ###Code def mood(row): if re.search('V-[A-Z][A-Z][I].*', str(row)): return 'indicative' if re.search('V-[0-9][A-Z][A-Z][I].*', str(row)): return 'indicative' if re.search('V-[A-Z][A-Z][M].*', str(row)): return 'imperative' if re.search('V-[0-9][A-Z][A-Z][M].*', str(row)): return 'imperative' if re.search('V-[A-Z][A-Z][N].*', str(row)): return 'infinitive' if re.search('V-[0-9][A-Z][A-Z][N].*', str(row)): return 'infinitive' if re.search('V-[A-Z][A-Z][O].*', str(row)): return 'optative' if re.search('V-[0-9][A-Z][A-Z][O].*', str(row)): return 'optative' if re.search('V-[A-Z][A-Z][P].*', str(row)): return 'participle' if re.search('V-[0-9][A-Z][A-Z][P].*', str(row)): return 'participle' if re.search('V-[A-Z][A-Z][S].*', str(row)): return 'subjunctive' if re.search('V-[0-9][A-Z][A-Z][S].*', str(row)): return 'subjunctive' else: return '' featureprep['mood']=featureprep['origcode'].apply(mood) featureprep.head(50) ###Output _____no_output_____ ###Markdown Adding Pronoun type ###Code def pronountype(row): if re.search('^P-', str(row)): return 'pers' if re.search('^D-', str(row)): return 'demo' if re.search('^I-', str(row)): return 'interr' if re.search('^X-', str(row)): return 'indef' if re.search('^F-', str(row)): return 'reflex' if re.search('^K-', str(row)): return 'correl' if re.search('^R-', str(row)): return 'relativ' if re.search('^S-', str(row)): return 'posses' if re.search('^C-', str(row)): return 'recip' if re.search('^Q-', str(row)): return 'interr' else: return '' featureprep['prntyp']=featureprep['origcode'].apply(pronountype) featureprep.head(50) ###Output _____no_output_____ ###Markdown Adding Noun Type ###Code def propernoun(row): if re.search('-PRI$', str(row)): return 'nmpr' else: return '' featureprep['nountype']=featureprep['origcode'].apply(propernoun) featureprep.head(50) ###Output _____no_output_____ ###Markdown Adding Orig Interrogative differential ###Code def originterrdiff(row): if re.search('^I.*', str(row)): return 'I' if re.search('^Q.*', str(row)): return 'Q' else: return '' featureprep['originterrdiff']=featureprep['origcode'].apply(originterrdiff) featureprep['originterrdiff'].value_counts() ###Output _____no_output_____ ###Markdown Exporting proces ###Code featureprep.head() ###Output _____no_output_____ ###Markdown reordersorting first... ###Code featureprep.sort_values(['origorder'], ascending=True).head(10) ###Output _____no_output_____ ###Markdown to excel spreadsheet... ###Code featureprep.to_excel('d:/OneDrive/1200_AUS-research/Fabric-TEXT/Tischendorf-feature-project/tischendorffeatures_v1.0.xlsx') ###Output _____no_output_____ ###Markdown Misc Features to txt files... ###Code # tischendorffeatures[['origorder', 'nu']].to_csv('d:/OneDrive/1200_AUS-research/Fabric-TEXT/Tischendorf-feature-project/TF_features_gn.csv') ###Output _____no_output_____
_build/html/_sources/content/Section_02/Visual_diagnostics.ipynb
###Markdown Visual diagnosticsWe will discuss:* Trace plots* Autocorrelation plots* Rank plots Trace plots az.plot_trace()MCMC samples should not be sensitive to the starting point, so if you sample more than one chain (starting from different places) you should basically get the _same_ distribution within certain small error.As we already discussed in the numerical diagnostic section, MCMC samples should have the lowest possible autocorrelation Trace plots can help diagnose:* Bad intialization* Difficult topologies (such as Neal's funnel)* Multimodal posteriors Pathological tracesThe following figure shows examples of problematic samples:On the first row we see that the MCMC chains has large autocorrelation, you can see the trace (left column) shows long regions of monoticity (the lines parallel to the x-axis). This could be a consequence of a multimodal posterior with barrier between modes of very low probability. Thus the samples has trouble to freely move from mode to mode. Another explanation could be high correlation between parameters, this can also be problematic for some samplers specially Metropolis. In such cases the multimodality could be _apparent_ and not a real feature of our posterior.On the second row we see two chains that started from two very different position and eventually converge to the same distribution. The first $\approx$ 25 samples could bias our results so we can just remove them (*burn-in*).ON the last row, we see two chains exploring two different regions of the parameter space. From the trace it seems they are in fact approaching each other at a slow rate and the maybe eventually reach the same stationary distribution. Autocorrelation plot az.plot_autocorr()As we discussed in the Numerical Diagnostics section, we can see autocorrelation as a factor that decrease the actual amount of information contained in a sample. So we want to reduce autocorrelation as much as possible. ###Code bad_chains = np.linspace(0, 1, 1000).reshape(2, -1) az.plot_autocorr(bad_chains) ###Output _____no_output_____ ###Markdown The autocorrelation plot shows the _degree of autocorrelation_ by default it used a maximum window of 100. The previous figure, corresponding to `bad_chains` show a very high autocorrelation while the next figure corresponding to `good_chains` show a very low autocorrelation. ###Code good_chains = stats.uniform.rvs(0, 1, size=(2, 500)) az.plot_autocorr(good_chains) ###Output _____no_output_____ ###Markdown Rank plot az.plot_rank()Rank plots are histograms of the ranked posterior draws, ranked over all chains and then plotted separately for each chain. The idea behind this plot is that if all of the chains are targeting the same posterior, we expect the ranks in each chain to be uniform. Additionally, if rank plots of all chains look similar, this indicates good mixing of the chainsThis is a [recently](https://arxiv.org/abs/1903.08008) proposed visual test, author argue superiority over trace plots: ###Code az.plot_rank(good_chains); ###Output _____no_output_____ ###Markdown We can see that for the `good_chains` the histogram of the ranks is more or less uniform, uniformity will increasing with the sample size, and we can also see that both chains look similar with not distinctive pattern. This is in clear contrast the results for the `bad_chains`, while they are uniform both chains are exploring two separate set of values. Notice how this is consistent to the way we create `bad_chains`, 1000 ordered number from 0 to 1 split in two halves. ###Code az.plot_rank(bad_chains); ###Output _____no_output_____ ###Markdown The following is a snippet so you can get a better intuition of how to interpret rank plots. Notice that `az.plot_rank` is doing a more involved computation, but to get intuition this block of code should be enough. Here the histogram of the rank (right panel) is rotated with respect to the previous histogram to match the cumulative distribution on the left panel. So you can see the bottom bar on the right contains the first 100 values from the cumulative distribution on the left, the second bar the second 100 values and so on. You can see a rank plot as a device for detecting an excess of any given number, try for example uncommenting the line before and see how and excess of zeros affects the rank plot. ###Code original_data = np.random.beta(2, 2, 1000) #original_data[:100] = 0 ranked_data = stats.rankdata(original_data) _, ax = plt.subplots(1, 2, figsize=(12, 4), sharey=True) ax[0].plot(original_data, ranked_data, 'b.') ax[0].set_xlabel('data values') ax[0].set_ylabel('rank') ax[0].set_xlim([0, 1]) ax[1].hist(ranked_data, bins=10, rwidth=0.9, orientation='horizontal') ax[1].set_xlabel('frecuency'); ###Output _____no_output_____
notebooks/b2p_comments_data_extraction.ipynb
###Markdown OverviewThis dataset comes from Bridges to Prosperity, an NGO that builds bridges to help people in need get easier acess to schools, hospitals, and markets.This notebook is used to extract specific columns from a paragraph of data in the `Comments` column of our dataset. The delimiters, casing, and wording sometimes vary between and within columns, so we used regular expressions for their versatility. Imports and reading in dataset ###Code import re import pandas as pd bridges_df = pd.read_excel('B2P Dataset_2020.10.xlsx') bridges_df.info() # Display all columns, without truncation pd.set_option('display.max_columns', None) bridges_df ###Output _____no_output_____ ###Markdown Test Regex Matches ###Code # Example of paragraph of data test_string_2 = bridges_df['Bridge Opportunity: Comments'][2] test_string_2 comments = bridges_df['Bridge Opportunity: Comments'] non_nan_comments = comments.notna() comments comments[1] > 0 or comments[1] <= 0 comments[1] == comments[1] pd.notna(comments[1]) people_directly_served_matches = 0 people_directly_served_non_matches = set() for i in range(len(comments)): if non_nan_comments[i]: people_directly_served = re.search( pattern=r'([\d-]+) people directly served', string=comments[i]) if people_directly_served: people_directly_served_matches += 1 else: people_directly_served_non_matches.add(i) people_directly_served_matches # All indexes that aren't a paragraph (and for which these regex don't apply) non_formatted_comment_indexes = people_directly_served_non_matches def count_regex_matches( regex: str, comments: pd.Series, ignore: set ) -> int: match_count = 0 non_match_indexes = set() match_indexes = set() for index, comment in enumerate(comments): if pd.notna(comment): if re.search(regex, comment): match_count += 1 match_indexes.add(index) else: if index not in ignore: non_match_indexes.add(index) print('Match count:', match_count) print('Match indexes:', match_indexes) print('Non-match indexes:', non_match_indexes) count_regex_matches('([\w\s]+) injur', comments, ignore=non_formatted_comment_indexes) comments[388] # Matches range of people directly served, e.g. 6000-10000 # Case insensitive (?i) people_directly_served = re.search( pattern=r'(?i)([\d-]+) people directly served', string=test_string_2 ) if people_directly_served: print(people_directly_served.group(1)) # Matches elevation in meters # Note: Change column name to be Elevation (meters) so each column value can be an integer # Then cast this string as int elevation = re.search( pattern=r'Elevation:(\d+)', string=test_string_2 ) if elevation: print(elevation.group(1)) # Matches the 'cell' of the bridge site, optional space after Cell, optional dash between # word characters cell = re.search( pattern=r'Cell:(\w+\-?\w*)', string=test_string_2 ) if cell: print(cell.group(1)) bridge_connection = re.search( pattern=r'Bridge (?:[\s\w]+)?connect(?:\w*) ([\w\s-]+)', string=test_string_2 ) if bridge_connection: print(bridge_connection.group(1)) # None injuries = re.search( pattern=r'([\w\s]+) injur', string=test_string_2 ) if injuries: print(injuries.group(1)) deaths = re.search( pattern=r'([\w\s]+) die', string=test_string_2 ) if deaths: print(deaths.group(1)) crossing_frequency = re.search( pattern=r'(?i)Cross river on a normal day-?([>\d-]+)', string=test_string_2 ) if crossing_frequency: print(crossing_frequency.group(1)) nearby_city_centers = re.search( pattern=r'Nearby city centers--?([a-zA-Z -]*)', string=test_string_2 ) if nearby_city_centers: print(nearby_city_centers.group(1).replace(' -', ', ')) current_crossing_method = re.search( pattern=r'(?i)Crossing River now-([\w\s]+)', string=test_string_2 ) if current_crossing_method: print(current_crossing_method.group(1)) river_crossing_difficulty = re.search( pattern=r'(?i)Impossible/Dangerous to cross the river-([\w\s\-?]+)', string=test_string_2 ) if river_crossing_difficulty: print(river_crossing_difficulty.group(1)) hours_to_nearest_crossing = re.search( pattern=r'(?i)Travel to nearest safe bridge/river crossing-([>\w\s]+)', string=test_string_2) if hours_to_nearest_crossing: print(hours_to_nearest_crossing.group(1)) hours_to_hospital = re.search( pattern=r'(?i)Hours walking to reach the Hospital-([.\d-]+)', string=test_string_2 ) if hours_to_hospital: print(hours_to_hospital.group(1)) hours_to_health_center = re.search( pattern=r'(?i)Hours walking to reach the Health Center-([.\d-]+)', string=test_string_2 ) if hours_to_health_center: print(hours_to_health_center.group(1)) # Rename to Hours walking (no of), like the rest of the columns hours_to_market = re.search( pattern=r'(?i)Hours of walking to reach the market-([.\d-]+)', string=test_string_2 ) if hours_to_market: print(hours_to_market.group(1)) hours_to_primary_school = re.search( pattern=r'(?i)Hours walking to reach Primary School-([.\d-]+)', string=test_string_2 ) if hours_to_primary_school: print(hours_to_primary_school.group(1)) hours_to_secondary_school = re.search( pattern=r'(?i)Hours walking to reach Secondary School-([.\d-]+)', string=test_string_2) if hours_to_secondary_school: print(hours_to_secondary_school.group(1)) hours_to_church = re.search( pattern=r'(?i)Hours walking to reach the Church-([.\d-]+)', string=test_string_2 ) if hours_to_church: print(hours_to_church.group(1)) land_by_river_bank = re.search( pattern=r'(?i)Land within 50m of river bank-([\w\s()]+)', string=test_string_2 ) if land_by_river_bank: print(land_by_river_bank.group(1)) # Sometimes next column is separated with comma soil = re.search( pattern=r'Soil-([\w\s]+),Sand', string=test_string_2 ) if soil: print(soil.group(1)) sand_availability = re.search( pattern=r'Sand-([\w\s]+)', string=test_string_2 ) if sand_availability: print(sand_availability.group(1)) gravel_availability = re.search( pattern=r'Gravel-([\w\s,]+)', string=test_string_2 ) if gravel_availability: print(gravel_availability.group(1)) stone_availability = re.search( pattern=r'Stone-([\w\s,]+) ?/', string=test_string_2 ) if stone_availability: print(stone_availability.group(1)) timber_availability = re.search( pattern=r'Timber-([\w\s,]+)', string=test_string_2 ) if timber_availability: print(timber_availability.group(1)) stone_provided_by = re.search( pattern=r'Stone provided by-([\w\s,]+)', string=test_string_2 ) if stone_provided_by: print(stone_provided_by.group(1)) sand_provided_by = re.search( pattern=r'Sand Provided by-([\w\s,]+)', string=test_string_2 ) if sand_provided_by: print(sand_provided_by.group(1)) gravel_provided_by = re.search( pattern=r'Gravel provided by-([\w\s,]+)', string=test_string_2 ) if gravel_provided_by: print(gravel_provided_by.group(1)) timber_provided_by = re.search( pattern=r'Timber provided by-([\w\s,]+)', string=test_string_2 ) if timber_provided_by: print(timber_provided_by.group(1)) cement_provided_by = re.search( pattern=r'Cement provided by-([\w\s,]+)', string=test_string_2 ) if cement_provided_by: print(cement_provided_by.group(1)) reinforcement_steel_provided_by = re.search( pattern=r'Reinforcement steel provided by-([\w\s,]+)', string=test_string_2 ) if reinforcement_steel_provided_by: print(reinforcement_steel_provided_by.group(1)) land_ownership = re.search( pattern=r'Land ownership-([\w\s,]+)', string=test_string_2 ) if land_ownership: print(land_ownership.group(1)) land_ownership_permission = re.search( pattern=r'Land ownership permission-([\w\s,]+)', string=test_string_2 ) if land_ownership_permission: print(land_ownership_permission.group(1)) proposed_bridge_location = re.search( pattern=r'proposed bridge location is ([\w\s,]+).?-', string=test_string_2 ) if proposed_bridge_location: print(proposed_bridge_location.group(1)) # Strip m from values, put m in column name proposed_bridge_span = re.search( pattern=r'proposed bridge span is (?:approximately )?(\d+)\w*.?-', string=test_string_2 ) if proposed_bridge_span: print(proposed_bridge_span.group(1)) # Also in meters level_difference_between_two_banks = re.search( pattern=r'level difference between two banks is ([\d.]+)', string=test_string_2 ) if level_difference_between_two_banks: print(level_difference_between_two_banks.group(1)) space_for_foundation = re.search( pattern=r'space for foundation is (\w+\s*)', string=test_string_2 ) if space_for_foundation: print(space_for_foundation.group(1)) free_board = re.search( pattern=r'free board between the lowest point of the proposed bridge and the highest flood level(?: is)? (\w+\s*)', string=test_string_2 ) if free_board: print(free_board.group(1)) river_bed_status = re.search( pattern=r'river bed at the site is ([\w\s,]+)', string=test_string_2 ) if river_bed_status: print(river_bed_status.group(1)) river_bank_status = re.search( r'river bank of the site is ([\w\s,]+)', string=test_string_2 ) if river_bank_status: print(river_bank_status.group(1)) soil_from_site = re.search( pattern=r'soil from the site is ([\w\s]+)', string=test_string_2 ) if soil_from_site: print(soil_from_site.group(1)) confluence_area_near_place = re.search( r'([\w\s]+\bconfluence\b[\w\s]+)', string=test_string_2 ) if confluence_area_near_place: print(confluence_area_near_place.group(1)) ###Output _____no_output_____ ###Markdown Editing FeaturesNow that we've found regular expressions to match data in the comments column, we will add them to the dataset by either engineering new features or editing existing ones. Since the comments data is from 2013 while the other column data is from 2018, if data already exists in a separate column, we will keep it. We will only add old data to an existing column if that column's row is null. Columns in comments data that correspond to existing columns1. `People directly served` (corresponds to `Bridge Opportunity: Individuals Directly Served`)2. `Injuries` (roughly corresponds to `River crossing injuries in last 3 years`)3. `Deaths` (roughly corresponds to `River crossing deaths in last 3 years`)4. `Nearby city centers` (corresponds to `Name of nearest city`)5. `Crossing River now` (corresponds to `Current crossing method`) First, we'll map extracted data to their corresponding 5 existing columns wherever the values in those columns are null. ###Code comments = bridges_df['Bridge Opportunity: Comments'] extracted = bridges_df.copy() # Boolean array used to check whether there is data to extract non_nan_comments = bridges_df['Bridge Opportunity: Comments'].notna() # Boolean arrays used to check if values in existing columns are null (in which case # they will be changed, else they will be left the same) individuals_served_nans = bridges_df['Bridge Opportunity: Individuals Directly Served'].notna() injuries_nans = bridges_df['River crossing injuries in last 3 years'].notna() deaths_nans = bridges_df['River crossing deaths in last 3 years'].notna() nearest_city_nans = bridges_df['Name of nearest city'].notna() river_crossing_nans = bridges_df['Current crossing method'].notna() comment_count = 0 for i in range(len(bridges_df)): if non_nan_comments[i]: if individuals_served_nans[i]: people_directly_served = re.search( pattern=r'(?i)([\d-]+) people directly served', string=comments[i]) if people_directly_served: # This is a range separated by -. Take its midpoint. nums = [int(num) for num in people_directly_served.group(1).split('-')] avg = sum(nums) / len(nums) extracted['Bridge Opportunity: Individuals Directly Served'][i] = avg if injuries_nans[i]: injuries = re.search(pattern=r'([\w\s]+) injur', string=comments[i]) if injuries: extracted['River crossing injuries in last 3 years'][i] = injuries.group(1) if deaths_nans[i]: deaths = re.search(pattern=r'([\w\s]+) die', string=comments[i]) if deaths: extracted['River crossing deaths in last 3 years'][i] = deaths.group(1) if nearest_city_nans[i]: nearest_city = re.search( pattern=r'Nearby city centers--?([a-zA-Z -]*)', string=comments[i]) if nearest_city: extracted['Name of nearest city'][i] = nearest_city.group(1).replace(' -', ', ') if river_crossing_nans[i]: river_crossing = re.search( pattern=r'(?i)Crossing River now-([\w\s]+)', string=comments[i]) if river_crossing: extracted['Current crossing method'][i] = river_crossing.group(1) comment_count += 1 assert comment_count == sum(bridges_df['Bridge Opportunity: Comments'].notna()) df.to_csv('b2p_cleaned.csv') ###Output _____no_output_____ ###Markdown Engineering FeaturesNow, we'll make new columns for the rest of the values extracted from the comments column. ###Code new_columns = ['Elevation', 'Cell', 'Average Number of Daily Crossings', 'How long is it impossible/dangerous to cross river', 'Hours to nearest safe bridge/river crossing', 'Hours walking to Hospital', 'Hours walking to Health Center', 'Hours walking to market', 'Hours walking to Primary School'] new_regex = [] ###Output _____no_output_____
dev/20_interpret.ipynb
###Markdown Interpretation> Classes to build objects to better interpret predictions of a model ###Code #export @typedispatch def plot_top_losses(x, y, *args, **kwargs): raise Exception(f"plot_top_losses is not implemented for {type(x)},{type(y)}") #export _all_ = ["plot_top_losses"] #export class Interpretation(): "Interpretation base class, can be inherited for task specific Interpretation classes" def __init__(self, dl, inputs, preds, targs, decoded, losses): store_attr(self, "dl,inputs,preds,targs,decoded,losses") @classmethod def from_learner(cls, learn, ds_idx=1, dl=None, act=None): "Construct interpretatio object from a learner" if dl is None: dl = learn.dbunch.dls[ds_idx] return cls(dl, *learn.get_preds(dl=dl, with_input=True, with_loss=True, with_decoded=True, act=None)) def top_losses(self, k=None, largest=True): "`k` largest(/smallest) losses and indexes, defaulting to all losses (sorted by `largest`)." return self.losses.topk(ifnone(k, len(self.losses)), largest=largest) def plot_top_losses(self, k, largest=True, **kwargs): losses,idx = self.top_losses(k, largest) if not isinstance(self.inputs, tuple): self.inputs = (self.inputs,) if isinstance(self.inputs[0], Tensor): inps = tuple(o[idx] for o in self.inputs) else: inps = self.dl.create_batch(self.dl.before_batch([tuple(o[i] for o in self.inputs) for i in idx])) b = inps + tuple(o[idx] for o in (self.targs if is_listy(self.targs) else (self.targs,))) x,y,its = self.dl._pre_show_batch(b, max_n=k) b_out = inps + tuple(o[idx] for o in (self.decoded if is_listy(self.decoded) else (self.decoded,))) x1,y1,outs = self.dl._pre_show_batch(b_out, max_n=k) if its is not None: plot_top_losses(x, y, its, outs.itemgot(slice(len(inps), None)), self.preds[idx], losses, **kwargs) #TODO: figure out if this is needed #its None means that a batch knos how to show itself as a whole, so we pass x, x1 #else: show_results(x, x1, its, ctxs=ctxs, max_n=max_n, **kwargs) learn = synth_learner() interp = Interpretation.from_learner(learn) x,y = learn.dbunch.valid_ds.tensors test_eq(interp.inputs, x) test_eq(interp.targs, y) out = learn.model.a * x + learn.model.b test_eq(interp.preds, out) test_eq(interp.losses, (out-y)[:,0]**2) #export class ClassificationInterpretation(Interpretation): "Interpretation methods for classification models." def __init__(self, dl, inputs, preds, targs, decoded, losses): super().__init__(dl, inputs, preds, targs, decoded, losses) self.vocab = self.dl.vocab if is_listy(self.vocab): self.vocab = self.vocab[-1] def confusion_matrix(self): "Confusion matrix as an `np.ndarray`." x = torch.arange(0, len(self.vocab)) cm = ((self.decoded==x[:,None]) & (self.targs==x[:,None,None])).sum(2) return to_np(cm) def plot_confusion_matrix(self, normalize=False, title='Confusion matrix', cmap="Blues", norm_dec=2, plot_txt=True, **kwargs): "Plot the confusion matrix, with `title` and using `cmap`." # This function is mainly copied from the sklearn docs cm = self.confusion_matrix() if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] fig = plt.figure(**kwargs) plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) tick_marks = np.arange(len(self.vocab)) plt.xticks(tick_marks, self.vocab, rotation=90) plt.yticks(tick_marks, self.vocab, rotation=0) if plot_txt: thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): coeff = f'{cm[i, j]:.{norm_dec}f}' if normalize else f'{cm[i, j]}' plt.text(j, i, coeff, horizontalalignment="center", verticalalignment="center", color="white" if cm[i, j] > thresh else "black") ax = fig.gca() ax.set_ylim(len(self.vocab)-.5,-.5) plt.tight_layout() plt.ylabel('Actual') plt.xlabel('Predicted') plt.grid(False) def most_confused(self, min_val=1): "Sorted descending list of largest non-diagonal entries of confusion matrix, presented as actual, predicted, number of occurrences." cm = self.confusion_matrix() np.fill_diagonal(cm, 0) res = [(self.vocab[i],self.vocab[j],cm[i,j]) for i,j in zip(*np.where(cm>=min_val))] return sorted(res, key=itemgetter(2), reverse=True) ###Output _____no_output_____ ###Markdown Export - ###Code #hide from local.notebook.export import notebook2script notebook2script(all_fs=True) ###Output Converted 00_test.ipynb. Converted 01_core_foundation.ipynb. Converted 01a_core_utils.ipynb. Converted 01b_core_dispatch.ipynb. Converted 01c_core_transform.ipynb. Converted 02_core_script.ipynb. Converted 03_torchcore.ipynb. Converted 03a_layers.ipynb. Converted 04_data_load.ipynb. Converted 05_data_core.ipynb. Converted 06_data_transforms.ipynb. Converted 07_data_block.ipynb. Converted 08_vision_core.ipynb. Converted 09_vision_augment.ipynb. Converted 09a_vision_data.ipynb. Converted 09b_vision_utils.ipynb. Converted 10_pets_tutorial.ipynb. Converted 11_vision_models_xresnet.ipynb. Converted 12_optimizer.ipynb. Converted 13_learner.ipynb. Converted 13a_metrics.ipynb. Converted 14_callback_schedule.ipynb. Converted 14a_callback_data.ipynb. Converted 15_callback_hook.ipynb. Converted 15a_vision_models_unet.ipynb. Converted 16_callback_progress.ipynb. Converted 17_callback_tracker.ipynb. Converted 18_callback_fp16.ipynb. Converted 19_callback_mixup.ipynb. Converted 20_interpret.ipynb. Converted 20a_distributed.ipynb. Converted 21_vision_learner.ipynb. Converted 22_tutorial_imagenette.ipynb. Converted 23_tutorial_transfer_learning.ipynb. Converted 30_text_core.ipynb. Converted 31_text_data.ipynb. Converted 32_text_models_awdlstm.ipynb. Converted 33_text_models_core.ipynb. Converted 34_callback_rnn.ipynb. Converted 35_tutorial_wikitext.ipynb. Converted 36_text_models_qrnn.ipynb. Converted 37_text_learner.ipynb. Converted 38_tutorial_ulmfit.ipynb. Converted 40_tabular_core.ipynb. Converted 41_tabular_model.ipynb. Converted 42_tabular_rapids.ipynb. Converted 50_data_block_examples.ipynb. Converted 60_medical_imaging.ipynb. Converted 65_medical_text.ipynb. Converted 70_callback_wandb.ipynb. Converted 71_callback_tensorboard.ipynb. Converted 90_notebook_core.ipynb. Converted 91_notebook_export.ipynb. Converted 92_notebook_showdoc.ipynb. Converted 93_notebook_export2html.ipynb. Converted 94_notebook_test.ipynb. Converted 95_index.ipynb. Converted 96_data_external.ipynb. Converted 97_utils_test.ipynb. Converted notebook2jekyll.ipynb. Converted xse_resnext.ipynb. ###Markdown Interpretation> Classes to build objects to better interpret predictions of a model ###Code #export @typedispatch def plot_top_losses(x, y, *args, **kwargs): raise Exception(f"plot_top_losses is not implemented for {type(x)},{type(y)}") #export _all_ = ["plot_top_losses"] #export class Interpretation(): "Interpretation base class, can be inherited for task specific Interpretation classes" def __init__(self, dl, inputs, preds, targs, decoded, losses): store_attr(self, "dl,inputs,preds,targs,decoded,losses") @classmethod def from_learner(cls, learn, ds_idx=1, dl=None, act=None): "Construct interpretatio object from a learner" if dl is None: dl = learn.dbunch.dls[ds_idx] return cls(dl, *learn.get_preds(dl=dl, with_input=True, with_loss=True, with_decoded=True, act=None)) def top_losses(self, k=None, largest=True): "`k` largest(/smallest) losses and indexes, defaulting to all losses (sorted by `largest`)." return self.losses.topk(ifnone(k, len(self.losses)), largest=largest) def plot_top_losses(self, k, largest=True, **kwargs): losses,idx = self.top_losses(k, largest) if not isinstance(self.inputs, tuple): self.inputs = (self.inputs,) if isinstance(self.inputs[0], Tensor): inps = tuple(o[idx] for o in self.inputs) else: inps = self.dl.create_batch(self.dl.before_batch([tuple(o[i] for o in self.inputs) for i in idx])) b = inps + tuple(o[idx] for o in (self.targs if is_listy(self.targs) else (self.targs,))) x,y,its = self.dl._pre_show_batch(b, max_n=k) b_out = inps + tuple(o[idx] for o in (self.decoded if is_listy(self.decoded) else (self.decoded,))) x1,y1,outs = self.dl._pre_show_batch(b_out, max_n=k) if its is not None: plot_top_losses(x, y, its, outs.itemgot(slice(len(inps), None)), self.preds[idx], losses, **kwargs) #TODO: figure out if this is needed #its None means that a batch knos how to show itself as a whole, so we pass x, x1 #else: show_results(x, x1, its, ctxs=ctxs, max_n=max_n, **kwargs) learn = synth_learner() interp = Interpretation.from_learner(learn) x,y = learn.dbunch.valid_ds.tensors test_eq(interp.inputs, x) test_eq(interp.targs, y) out = learn.model.a * x + learn.model.b test_eq(interp.preds, out) test_eq(interp.losses, (out-y)[:,0]**2) #export class ClassificationInterpretation(Interpretation): "Interpretation methods for classification models." def __init__(self, dl, inputs, preds, targs, decoded, losses): super().__init__(dl, inputs, preds, targs, decoded, losses) self.vocab = self.dl.vocab if is_listy(self.vocab): self.vocab = self.vocab[-1] def confusion_matrix(self): "Confusion matrix as an `np.ndarray`." x = torch.arange(0, len(self.vocab)) cm = ((self.decoded==x[:,None]) & (self.targs==x[:,None,None])).sum(2) return to_np(cm) def plot_confusion_matrix(self, normalize=False, title='Confusion matrix', cmap="Blues", norm_dec=2, plot_txt=True, **kwargs): "Plot the confusion matrix, with `title` and using `cmap`." # This function is mainly copied from the sklearn docs cm = self.confusion_matrix() if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] fig = plt.figure(**kwargs) plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) tick_marks = np.arange(len(self.vocab)) plt.xticks(tick_marks, self.vocab, rotation=90) plt.yticks(tick_marks, self.vocab, rotation=0) if plot_txt: thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): coeff = f'{cm[i, j]:.{norm_dec}f}' if normalize else f'{cm[i, j]}' plt.text(j, i, coeff, horizontalalignment="center", verticalalignment="center", color="white" if cm[i, j] > thresh else "black") ax = fig.gca() ax.set_ylim(len(self.vocab)-.5,-.5) plt.tight_layout() plt.ylabel('Actual') plt.xlabel('Predicted') plt.grid(False) def most_confused(self, min_val=1): "Sorted descending list of largest non-diagonal entries of confusion matrix, presented as actual, predicted, number of occurrences." cm = self.confusion_matrix() np.fill_diagonal(cm, 0) res = [(self.vocab[i],self.vocab[j],cm[i,j]) for i,j in zip(*np.where(cm>=min_val))] return sorted(res, key=itemgetter(2), reverse=True) ###Output _____no_output_____ ###Markdown Export - ###Code #hide from nbdev.export import notebook2script notebook2script() ###Output Converted 00_test.ipynb. Converted 01_core_foundation.ipynb. Converted 01a_core_utils.ipynb. Converted 01b_core_dispatch.ipynb. Converted 01c_core_transform.ipynb. Converted 02_core_script.ipynb. Converted 03_torchcore.ipynb. Converted 03a_layers.ipynb. Converted 04_data_load.ipynb. Converted 05_data_core.ipynb. Converted 06_data_transforms.ipynb. Converted 07_data_block.ipynb. Converted 08_vision_core.ipynb. Converted 09_vision_augment.ipynb. Converted 09a_vision_data.ipynb. Converted 09b_vision_utils.ipynb. Converted 10_pets_tutorial.ipynb. Converted 11_vision_models_xresnet.ipynb. Converted 12_optimizer.ipynb. Converted 13_learner.ipynb. Converted 13a_metrics.ipynb. Converted 14_callback_schedule.ipynb. Converted 14a_callback_data.ipynb. Converted 15_callback_hook.ipynb. Converted 15a_vision_models_unet.ipynb. Converted 16_callback_progress.ipynb. Converted 17_callback_tracker.ipynb. Converted 18_callback_fp16.ipynb. Converted 19_callback_mixup.ipynb. Converted 20_interpret.ipynb. Converted 20a_distributed.ipynb. Converted 21_vision_learner.ipynb. Converted 22_tutorial_imagenette.ipynb. Converted 23_tutorial_transfer_learning.ipynb. Converted 30_text_core.ipynb. Converted 31_text_data.ipynb. Converted 32_text_models_awdlstm.ipynb. Converted 33_text_models_core.ipynb. Converted 34_callback_rnn.ipynb. Converted 35_tutorial_wikitext.ipynb. Converted 36_text_models_qrnn.ipynb. Converted 37_text_learner.ipynb. Converted 38_tutorial_ulmfit.ipynb. Converted 40_tabular_core.ipynb. Converted 41_tabular_model.ipynb. Converted 42_tabular_rapids.ipynb. Converted 50_data_block_examples.ipynb. Converted 60_medical_imaging.ipynb. Converted 65_medical_text.ipynb. Converted 70_callback_wandb.ipynb. Converted 71_callback_tensorboard.ipynb. Converted 90_notebook_core.ipynb. Converted 91_notebook_export.ipynb. Converted 92_notebook_showdoc.ipynb. Converted 93_notebook_export2html.ipynb. Converted 94_notebook_test.ipynb. Converted 95_index.ipynb. Converted 96_data_external.ipynb. Converted 97_utils_test.ipynb. Converted notebook2jekyll.ipynb. Converted xse_resnext.ipynb. ###Markdown Interpretation> Classes to build objects to better interpret predictions of a model ###Code #export @typedispatch def plot_top_losses(x, y, *args, **kwargs): raise Exception(f"plot_top_losses is not implemented for {type(x)},{type(y)}") #export _all_ = ["plot_top_losses"] #export class Interpretation(): "Interpretation base class, can be inherited for task specific Interpretation classes" def __init__(self, dl, inputs, preds, targs, decoded, losses): store_attr(self, "dl,inputs,preds,targs,decoded,losses") @classmethod def from_learner(cls, learn, ds_idx=1, dl=None, act=None): "Construct interpretatio object from a learner" if dl is None: dl = learn.dbunch.dls[ds_idx] return cls(dl, *learn.get_preds(dl=dl, with_input=True, with_loss=True, with_decoded=True, act=None)) def top_losses(self, k=None, largest=True): "`k` largest(/smallest) losses and indexes, defaulting to all losses (sorted by `largest`)." return self.losses.topk(ifnone(k, len(self.losses)), largest=largest) def plot_top_losses(self, k, largest=True, **kwargs): losses,idx = self.top_losses(k, largest) if isinstance(self.inputs[0], Tensor): inps = tuple(o[idx] for o in self.inputs) else: inps = self.dl.create_batch(self.dl.before_batch([tuple(o[i] for o in self.inputs) for i in idx])) b = inps + tuple(o[idx] for o in (self.targs if is_listy(self.targs) else (self.targs,))) x,y,its = self.dl._pre_show_batch(b, max_n=k) b_out = inps + tuple(o[idx] for o in (self.decoded if is_listy(self.decoded) else (self.decoded,))) x1,y1,outs = self.dl._pre_show_batch(b_out, max_n=k) if its is not None: plot_top_losses(x, y, its, outs.itemgot(slice(len(self.inputs), None)), self.preds[idx], losses, **kwargs) #TODO: figure out if this is needed #its None means that a batch knos how to show itself as a whole, so we pass x, x1 #else: show_results(x, x1, its, ctxs=ctxs, max_n=max_n, **kwargs) learn = synth_learner() interp = Interpretation.from_learner(learn) x,y = learn.dbunch.valid_ds.tensors test_eq(*interp.inputs, x) test_eq(interp.targs, y) out = learn.model.a * x + learn.model.b test_eq(interp.preds, out) test_eq(interp.losses, (out-y)[:,0]**2) #export class ClassificationInterpretation(Interpretation): "Interpretation methods for classification models." def __init__(self, dl, inputs, preds, targs, decoded, losses): super().__init__(dl, inputs, preds, targs, decoded, losses) self.vocab = self.dl.vocab if is_listy(self.vocab): self.vocab = self.vocab[-1] def confusion_matrix(self): "Confusion matrix as an `np.ndarray`." x = torch.arange(0, len(self.vocab)) cm = ((self.decoded==x[:,None]) & (self.targs==x[:,None,None])).sum(2) return to_np(cm) def plot_confusion_matrix(self, normalize=False, title='Confusion matrix', cmap="Blues", norm_dec=2, plot_txt=True, **kwargs): "Plot the confusion matrix, with `title` and using `cmap`." # This function is mainly copied from the sklearn docs cm = self.confusion_matrix() if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] fig = plt.figure(**kwargs) plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) tick_marks = np.arange(len(self.vocab)) plt.xticks(tick_marks, self.vocab, rotation=90) plt.yticks(tick_marks, self.vocab, rotation=0) if plot_txt: thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): coeff = f'{cm[i, j]:.{norm_dec}f}' if normalize else f'{cm[i, j]}' plt.text(j, i, coeff, horizontalalignment="center", verticalalignment="center", color="white" if cm[i, j] > thresh else "black") ax = fig.gca() ax.set_ylim(len(self.vocab)-.5,-.5) plt.tight_layout() plt.ylabel('Actual') plt.xlabel('Predicted') plt.grid(False) def most_confused(self, min_val=1): "Sorted descending list of largest non-diagonal entries of confusion matrix, presented as actual, predicted, number of occurrences." cm = self.confusion_matrix() np.fill_diagonal(cm, 0) res = [(self.vocab[i],self.vocab[j],cm[i,j]) for i,j in zip(*np.where(cm>=min_val))] return sorted(res, key=itemgetter(2), reverse=True) ###Output _____no_output_____ ###Markdown Export - ###Code #hide from local.notebook.export import notebook2script notebook2script(all_fs=True) ###Output Converted 00_test.ipynb. Converted 01_core.ipynb. Converted 01a_utils.ipynb. Converted 01b_dispatch.ipynb. Converted 01c_transform.ipynb. Converted 02_script.ipynb. Converted 03_torch_core.ipynb. Converted 03a_layers.ipynb. Converted 04_dataloader.ipynb. Converted 05_data_core.ipynb. Converted 06_data_transforms.ipynb. Converted 07_data_block.ipynb. Converted 08_vision_core.ipynb. Converted 09_vision_augment.ipynb. Converted 10_pets_tutorial.ipynb. Converted 11_vision_models_xresnet.ipynb. Converted 12_optimizer.ipynb. Converted 13_learner.ipynb. Converted 13a_metrics.ipynb. Converted 14_callback_schedule.ipynb. Converted 14a_callback_data.ipynb. Converted 15_callback_hook.ipynb. Converted 15a_vision_models_unet.ipynb. Converted 16_callback_progress.ipynb. Converted 17_callback_tracker.ipynb. Converted 18_callback_fp16.ipynb. Converted 19_callback_mixup.ipynb. Converted 20_interpret.ipynb. Converted 21_vision_learner.ipynb. Converted 22_tutorial_imagenette.ipynb. Converted 23_tutorial_transfer_learning.ipynb. Converted 30_text_core.ipynb. Converted 31_text_data.ipynb. Converted 32_text_models_awdlstm.ipynb. Converted 33_text_models_core.ipynb. Converted 34_callback_rnn.ipynb. Converted 35_tutorial_wikitext.ipynb. Converted 36_text_models_qrnn.ipynb. Converted 37_text_learner.ipynb. Converted 38_tutorial_ulmfit.ipynb. Converted 40_tabular_core.ipynb. Converted 41_tabular_model.ipynb. Converted 42_tabular_rapids.ipynb. Converted 50_data_block_examples.ipynb. Converted 60_medical_imaging.ipynb. Converted 65_medical_text.ipynb. Converted 90_notebook_core.ipynb. Converted 91_notebook_export.ipynb. Converted 92_notebook_showdoc.ipynb. Converted 93_notebook_export2html.ipynb. Converted 94_notebook_test.ipynb. Converted 95_index.ipynb. Converted 96_data_external.ipynb. Converted 97_utils_test.ipynb. Converted notebook2jekyll.ipynb. ###Markdown Interpretation> Classes to build objects to better interpret predictions of a model ###Code #export @typedispatch def plot_top_losses(x, y, *args, **kwargs): raise Exception(f"plot_top_losses is not implemented for {type(x)},{type(y)}") #export _all_ = ["plot_top_losses"] #export class Interpretation(): "Interpretation base class, can be inherited for task specific Interpretation classes" def __init__(self, dl, inputs, preds, targs, decoded, losses): store_attr(self, "dl,inputs,preds,targs,decoded,losses") @classmethod def from_learner(cls, learn, ds_idx=1, dl=None, act=None): "Construct interpretatio object from a learner" if dl is None: dl = learn.dbunch.dls[ds_idx] return cls(dl, *learn.get_preds(dl=dl, with_input=True, with_loss=True, with_decoded=True, act=None)) def top_losses(self, k=None, largest=True): "`k` largest(/smallest) losses and indexes, defaulting to all losses (sorted by `largest`)." return self.losses.topk(ifnone(k, len(self.losses)), largest=largest) def plot_top_losses(self, k, largest=True, **kwargs): losses,idx = self.top_losses(k, largest) if isinstance(self.inputs[0], Tensor): inps = tuple(o[idx] for o in self.inputs) else: inps = self.dl.create_batch(self.dl.before_batch([tuple(o[i] for o in self.inputs) for i in idx])) b = inps + tuple(o[idx] for o in (self.targs if is_listy(self.targs) else (self.targs,))) x,y,its = self.dl._pre_show_batch(b, max_n=k) b_out = inps + tuple(o[idx] for o in (self.decoded if is_listy(self.decoded) else (self.decoded,))) x1,y1,outs = self.dl._pre_show_batch(b_out, max_n=k) if its is not None: plot_top_losses(x, y, its, outs.itemgot(slice(len(self.inputs), None)), self.preds[idx], losses, **kwargs) #TODO: figure out if this is needed #its None means that a batch knos how to show itself as a whole, so we pass x, x1 #else: show_results(x, x1, its, ctxs=ctxs, max_n=max_n, **kwargs) ###Output _____no_output_____ ###Markdown Export - ###Code #hide from local.notebook.export import notebook2script notebook2script(all_fs=True) ###Output Converted 00_test.ipynb. Converted 01_core.ipynb. Converted 01a_utils.ipynb. Converted 01b_dispatch.ipynb. Converted 01c_transform.ipynb. Converted 02_script.ipynb. Converted 03_torch_core.ipynb. Converted 03a_layers.ipynb. Converted 04_dataloader.ipynb. Converted 05_data_core.ipynb. Converted 06_data_transforms.ipynb. Converted 07_data_block.ipynb. Converted 08_vision_core.ipynb. Converted 09_vision_augment.ipynb. Converted 10_pets_tutorial.ipynb. Converted 11_vision_models_xresnet.ipynb. Converted 12_optimizer.ipynb. Converted 13_learner.ipynb. Converted 13a_metrics.ipynb. Converted 14_callback_schedule.ipynb. Converted 14a_callback_data.ipynb. Converted 15_callback_hook.ipynb. Converted 15a_vision_models_unet.ipynb. Converted 16_callback_progress.ipynb. Converted 17_callback_tracker.ipynb. Converted 18_callback_fp16.ipynb. Converted 19_callback_mixup.ipynb. Converted 20_interpret.ipynb. Converted 21_vision_learner.ipynb. Converted 22_tutorial_imagenette.ipynb. Converted 23_tutorial_transfer_learning.ipynb. Converted 30_text_core.ipynb. Converted 31_text_data.ipynb. Converted 32_text_models_awdlstm.ipynb. Converted 33_text_models_core.ipynb. Converted 34_callback_rnn.ipynb. Converted 35_tutorial_wikitext.ipynb. Converted 36_text_models_qrnn.ipynb. Converted 37_text_learner.ipynb. This cell doesn't have an export destination and was ignored: e This cell doesn't have an export destination and was ignored: e Converted 38_tutorial_ulmfit.ipynb. Converted 40_tabular_core.ipynb. Converted 41_tabular_model.ipynb. Converted 42_tabular_rapids.ipynb. Converted 50_data_block_examples.ipynb. Converted 60_medical_imaging.ipynb. Converted 65_medical_text.ipynb. Converted 90_notebook_core.ipynb. Converted 91_notebook_export.ipynb. Converted 92_notebook_showdoc.ipynb. Converted 93_notebook_export2html.ipynb. Converted 94_notebook_test.ipynb. Converted 95_index.ipynb. Converted 96_data_external.ipynb. Converted 97_utils_test.ipynb. Converted notebook2jekyll.ipynb.
notebook_de_apresentacao.ipynb
###Markdown Apresentação do problemaO problema trabalhado neste notebook se trata de um desafio proposto em um processo seletivo. O desafio é descrito a seguir:A empresa "Ponto Quente" está enfrentando um problema no seu banco de dados. De alguma forma, seus produtos foram categorizados de forma errada e isso precisa ser corrigido. O time de inteligência de dados da empresa conseguiu montar um dataset contendo alguns produtos com a classificação correta. Nesse dataset, encontramos várias informações sobre o produto, inclusive os reviews dos clientes.A empresa "Ponto Quente" deseja um modelo de machine learning que seja capaz de categorizar automaticamente os seus produtos, baseado nas informações dos reviews dos clientes. Mais especificamente, a empresa quer um programa que recebe o modelo treinado junto com um dataframe a ser categorizado. Este dataframe não pode possuir a coluna `product_category`, que é a coluna que fornece a informação da categoria dos produtos. O programa a ser desenvlvido deve retornar o mesmo dataframe de entrada, mas agora com a coluna `product_category`, com as classificações previstas pelo modelo.Para resolver esse problema, foi utilizado o algoritmo de [Naive Beyes](https://www.analyticsvidhya.com/blog/2017/09/naive-bayes-explained/), do tipo Multinomial, que obteve uma acurácia de aproximadamente 73,24%.O tratamento dos dados, preparação, treinamento e validação do modelo foi toda baseada nesses dois notebooks:+ https://github.com/AarohiSingla/Multinomial-Naive-Bayes/blob/master/news_classifier_unseen_input.ipynb+ https://github.com/AarohiSingla/Multinomial-Naive-Bayes/blob/master/youtube_multinomial_naive_bayes.ipynbOutras consultas foram feitas na documentação das bibliotecas e, sobre remoção de emojis, foi consultado essa [dúvida do stackoverflow](https://stackoverflow.com/questions/33404752/removing-emojis-from-a-string-in-python). importando bibliotecasNo próximo código importamos as bibliotecas e métodos utilizados para resolução do desafio. Cada uma delas será descrita abaixo também. ###Code import pandas as pd import string, re, nltk from nltk.corpus import stopwords from sklearn.naive_bayes import MultinomialNB from sklearn.feature_extraction.text import CountVectorizer from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score nltk.download('stopwords') # obtem as stopwords ###Output [nltk_data] Downloading package stopwords to /root/nltk_data... [nltk_data] Package stopwords is already up-to-date! ###Markdown - pandas - manipulação de dataframes- nltk.corpus.stopwords - lista de palavras consideradas "stopwords"- string - manipulação de strings- re - biblioteca python para operação de strings com codificação. No caso iremos trabalhar com a codificação dos emojis.- da biblioteca sklearn: - MultinomialMB - algoritmo de Naive Beyes do tipo multinominal, o mais indicado para multiclassificação - train_test_split - divide os dados em treino e teste - accuracy_score - método utilizado para validar o modelo funções utilizadas no notebookPara ajudar na leitura do notebook e minimizar as linhas de código durante a apresentação, serão feclaradas aqui no início as funções utilizadas na apresentação, inclusive a função `validate` pedida no desafio. O funcionamento dessas funções será explicado ao longo das apresentações. ###Code def tratamento_reviews(df): # juntando o conteúdo das duas colunas de texto dos reviews chars = [(df['review_headline'].iloc[i] + ' ' + df['review_body'].iloc[i]) for i in df.index.to_list()] df['review_total'] = chars # preparando uma lista de emojis a serem excluídos emoji_pattern = re.compile("[" u"\U0001F300-\U0001F5FF" # símbolos u"\U0001F680-\U0001F6FF" # transporte e símbolos de mapa u"\U0001F1E0-\U0001F1FF" # flags (iOS) u"\U0000231A-\U000023F3" # relógios e setas u"\U000026A1-\U000026BE" # relâmpago, cores e bolas de esportes u"\U00002753-\U00002757" # pontuação u"\U00002B50" # estrela u"\U0001F32D-\U0001F37F" # comidas u"\U0001F3A0-\U0001F3D3" # esportes u"\U0001F600-\U0001F64F" # emoticons u"\U0001F910-\U0001F93E" # mais emoticons e emojis de esportes "]+", flags=re.UNICODE) # preparando para excluir os caracteres indesejados col_corrigida = [] # lista para armazenar o conteúdo já tratado e a ser colocado na coluna review_total char_excluir = string.punctuation + string.digits # lista contendo caracteres a serem excluídos: caracteres escpeciais e dígitos for row in df['review_total']: temp = [char for char in row if char not in char_excluir] # excluindo digitos e caracteres especiais text = ''.join(temp).lower() text = emoji_pattern.sub(r'', text) for word in stopwords.words('english'): text.replace(word, '') col_corrigida.append(text) df['review_total'] = col_corrigida return df def tratamento_categorias(df): df['num_category'] = df['product_category'].map({'Digital_Ebook_Purchase':0, 'Music':1, 'Video DVD':2, 'Mobile_Apps':3, 'Books':4, 'Electronics':5, 'Toys':6, 'Video Games':7, 'Digital_Video_Download':8, 'Digital_Music_Purchase':9, 'PC':10, 'Camera':11, 'Baby':12, 'Wireless':13, 'Home Entertainment':14, 'Sports':15, 'Musical Instruments':16, 'Lawn and Garden':17, 'Home Improvement':18, 'Home':19, 'Watches':20, 'Video':21, 'Shoes':22, 'Office Products':23, 'Automotive':24, 'Health & Personal Care':25, 'Personal_Care_Appliances':26, 'Software':27, 'Kitchen':28, 'Luggage':29, 'Pet Products':30, 'Beauty':31}) return df def split_and_vect(df_ML, seed): x_train, x_test, y_train, y_test = train_test_split(df_ML['review_total'], df_ML['num_category'], random_state=seed) vect = CountVectorizer(ngram_range=(2,2)) X_train = vect.fit_transform(x_train) X_test = vect.transform(x_test) return X_train, X_test, y_train, y_test, vect def validate(modelo, vect, df_teste): df_tratado = tratamento_reviews(df_teste) # tratando os textos de reviews texto_vetorizado = vect.transform(df_tratado['review_total']) df_tratado['product_category'] = modelo.predict(texto_vetorizado) # realizando predição do modelo e atribuindo a uma nova coluna do df # por fim, precisamos transformar de volta os tokers numéricos nas classes originais df_tratado['product_category'] = df_tratado['product_category'].map({0:'Digital_Ebook_Purchase', 1:'Music', 2:'Video DVD', 3:'Mobile_Apps', 4:'Books', 5:'Electronics', 6:'Toys', 7:'Video Games', 8:'Digital_Video_Download', 9:'Digital_Music_Purchase', 10:'PC', 11:'Camera', 12:'Baby', 13:'Wireless', 14:'Home Entertainment', 15:'Sports', 16:'Musical Instruments', 17:'Lawn and Garden', 18:'Home Improvement', 19:'Home', 20:'Watches', 21:'Video', 22:'Shoes', 23:'Office Products', 24:'Automotive', 25:'Health & Personal Care', 26:'Personal_Care_Appliances', 27:'Software', 28:'Kitchen', 29:'Luggage', 30:'Pet Products', 31:'Beauty'}) return df_tratado.drop('review_total', axis=1) ###Output _____no_output_____ ###Markdown obtenção dos dados e tratamentoOs dados foram fornecidos pela empresa SOLVIMM, que propôs o desafio. Eles correspondem a uma base de dados de produtos cadastrados pela empresa "Ponto Quente". ###Code arq = 'https://github.com/matheus97eng/desafio_solvimm/blob/main/data/reviews.tsv?raw=true' # repositório do github df_original = pd.read_csv(arq, sep='\t') print(df_original.shape) df_original.head() ###Output (170583, 16) ###Markdown Informações das features, exclusão de dados nulos e explicação do modelo:Vamos obter uma visão geral das features em questão. ###Code display(df_original.info()) ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 170583 entries, 0 to 170582 Data columns (total 16 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Unnamed: 0 170583 non-null int64 1 marketplace 170583 non-null object 2 customer_id 170583 non-null int64 3 review_id 170583 non-null object 4 product_id 170583 non-null object 5 product_parent 170583 non-null int64 6 product_title 170583 non-null object 7 star_rating 170583 non-null int64 8 helpful_votes 170583 non-null int64 9 total_votes 170583 non-null int64 10 vine 170583 non-null object 11 verified_purchase 170583 non-null object 12 review_headline 170583 non-null object 13 review_body 170582 non-null object 14 review_date 170578 non-null object 15 product_category 170583 non-null object dtypes: int64(6), object(10) memory usage: 20.8+ MB ###Markdown O desafio pede para classificar os produtos somente de acordo com os reviews feitos pelos clientes. Esclarecido isso, não precisamos nos preocupar com outras features, a não ser: `review_headline`, que é o título da avaliação, `review_body`, que é a avaliação em si e por fim, `product_category`, que é a categorização corrigida do produto. Aqui não consideraremos relevante a data de postagem do review, nem o ID do review.Dado que as features `review_headline` e `product_category` são todas texto (do tipo caracter), e por se tratar de um problema de classificação (identificar qual a classe que o produto pertence), precisamos de um modelo que utilize NPL (Natural Language Processing). Será escolhido o algoritmo de [Naive Beyes](https://www.analyticsvidhya.com/blog/2017/09/naive-bayes-explained/), pois é um algoritmo de fácil aplicação com python e sklearn, tem uma boa resposta dado uma quantidade pequena de dados e não é um algoritmo pesado. Explicando de uma forma não formal, o algoritmo de Nave Beyes trabalha calculando qual é a probabilidade de um produto ser da classe "X" sendo que no review desse produto encontramos certas "palavras-chave". Treinando o modelo, ele consegue identificar, por exemplo que, se no review aparecer a palavra "bola", é mais provável que o produto seja da categoria "esportes". Com as informações da base de dados, o algoritmo estará treinado e validado para classificar outros produtos, fora da base de dados preparada pelo time de dados da "Ponto Quente". Uma desvantagem desse modelo é que ele não considera a semântica do texto. Por exemplo, ao olhar para a frase "meus dedos ficaram muito apertados quando eu testei na corrida". Analisando o contexto, poderíamos identificar que o produto se trata provavelmente de um tênis. Mas o Nave Beyes analisa palavra por palavra, separadamente, o que tornaria mais difícil a identificação, nesse exemplo dado.No entanto, antes de modelar nosso problema, precisamos tratar os nossos dados.Executando `df_original.info()` já vemos que a feature `review_body` possui uma linha com dado nulo. Isso porque vemos 170582 dados não nulos nessa coluna, enquanto que a nossa base de dados possui 170583 linhas. Vamos optar por excluir toda a linha que contém esse dado nulo, já que atrapalhará no desenvolvimento do modelo e se trata apenas de um produto. ###Code excluir = df_original[df_original['review_body'].isnull()].index df_tratado = df_original.drop(excluir).reset_index(drop=True) df_tratado.head() ###Output _____no_output_____ ###Markdown Features de review dos clientesHá duas colunas no dataframe com o conteúdo de avaliações dos clientes: `review_headline`, que contém o título da avaliação, e `review_body`, que contém o corpo do review. O que será feito nesse desafio será juntar todas as palavras dessas duas features em uma coluna apenas, já que o contexto do texto não importa no modelo de Naive Beyes. O nome da coluna contendo o texto compactado será `review_total`.Além disso, precisamos fazer a limpeza desse texto. Será tirado todos os caracteres especiais, dígitos e uma lista de emojis. Além disso, serão removidas as chamadas **"stop-words"**, que são basicamente palavras que não nos fornecem muita informação quando analisadas separadamente. São palavras como "I, yourself, the...". A biblioteca `ntlk` possui uma lista dessas palavras. Será usado essa lista como base. Feito a limpeza, garantimos o melhor funcionamento do modelo, que analisará apenas palavras-chave dos dados.**obs.:** não serão excluídos todos os emojis possíveis. A lista de todos os emojis codificados é muito grande e poderia fazer o programa demorar muito para ser executado. Foram escolhidos emojis que são mais prováveis de aparecer em produtos. A lista de emojis a serem excluídos pode ser editada na própria função `tratamento_review`, que faz a limpeza dos textos dos reviews. Tipos de classificaçãoÉ importante também olharmos para os tipos de classificação de produtos que a empresa tem. Na base fornecida, foram identificados 32 classes. É essencial entender que o modelo a ser treinado **não identificará classes de produtos que não estão na base de dados**. Desse modo, se a empresa quisesse identificar um produto como classe "carro" ou não, teria que acrescentar à base de dados vários produtos da categoria "carro".O modelo de machine learning não consegue interpretar dados do tipo string. Portanto, precisamos alterar os dados da coluna alvo `product_category`, fazendo uma tokerização simples, em outras palavras, substituindo as palavras por números. Os valores substituídos serão armazenados em uma coluna chamada `num_category` execução das funções de tratamento do dataframeTodo esse tratamento descrito acima será feito por duas funções: `tratamento_reviews`, que tratará todo o conteúdo dos reviews dos clientes e `tratamento_categorias`, que tratará o conteúdo da coluna `product_category`. Enquanto que a primeira função retorna o dataframe acrescentado da coluna `review_total` (coluna esta que é criada pela próppria função), a segunda função reotornará o dataframe com os dados preparados para ser desenvolvido o modelo. Esse dataframe será chamado `df_ML` e conterá a coluna `review_total`, que será a variável x do modelo, e a coluna `num_category`, que será a variável y. ###Code df_tratado = tratamento_reviews(df_tratado) df_ML = tratamento_categorias(df_tratado) ###Output _____no_output_____ ###Markdown Aplicação do machine learning divisão dos dados em treino e teste / treinamento do modeloApós os tratamentos feitos, vamos separar os dados em treino e teste para o modelo. No entanto, mais uma transformação deverá ser feita na coluna `review_total`. Precisamos fazer a tokerização (ou vetorização) das palavras, além de transformar a coluna em uma matriz esparça, que é a entrada que o método `fit` do modelo `MultinomialNB` aceita. Para isso utilizaremos a classe `CountVectorizer` da biblioteca `sklearn`. Aqui, os dados da vetorização e da transformação em matriz esparça serão armazenados nas variáveis `X_train` e `X_test` (com X maiúsculo). A transformação será feita em cima de `x_train` e `x_test` (com x minúsculo), variáveis que serão preparadas através do método `train_test_split`, também da biblioteca `sklearn`. Estas variáveis são apenas uma separação dos dados de `df_ML`.Todo esse processo, bem como o treinamento do modelo, serão realizados pela função `split_and_vect`, que retornará as matrizes esparças `X_train` e `X_test` e os arrays `y_train` e `y_test`. Além dessas variáveis, a função retornará também a instância `vect`, que será utilizada na função `validate` para tokerizar as palavras dos textos. Os parâmetros que esta função recebe são o dataframe (que deve ser tratado pelas duas funções de tratamento) e o número `seed`, que garante a reprodutibilidade do modelo. Aqui executaremos a função com seed = 50. ###Code X_train, X_test, y_train, y_test, vect = split_and_vect(df_ML, 50) modelo = MultinomialNB(alpha=0.2) modelo.fit(X_train,y_train) result = modelo.predict(X_test) print(result) ###Output [2 2 3 ... 2 4 1] ###Markdown validação do modeloPara validar o modelo, utilizaremos o proposto pelo desafio da Solvimm, que é calcular a acurácia. Isso será calculado através da biblioteca `sklearn`.O modelo desenvolvido aqui apresenta uma acurácia de aproximadamente 73,24%. Em outras palavras, com a divisão dos dados feitas aqui e com esse modelo treinado, estamos acertando praticamente a classificação de 3 a cada 4 produtos. Essa é uma acurácia maior do que o mínimo esperado no desafio. ###Code accuracy_score(result,y_test) ###Output _____no_output_____ ###Markdown Aplicando o modelo: função validatePor fim, após o tratamento, treinamento e validação do modelo, resta desenvolver uma função que aplique nosso modelo a um dataframe, afim de classificar os produtos nele contidos. Para isso, utilizaremos a função `validate`, que recebe o modelo treinado, a função vect e um dataframe como o fornecido pela equipe da "Ponto Quente", mas sem a coluna `product_category`. A função deve retornar o mesmo dataframe de entrada, porém com a coluna `product_category` que terá as categorias previstas para cada produto.Não faz sentido nenhum executar esta função sobre a base de dados fornecida pela "Ponto Quente" para preparar o modelo, já que as classificações dos produtos já foram corrigidas pelo time da empresa. No entanto, utilizaremos a mesma base de dados apenas para verificar o funcionamento da função, uma vez que o modelo já está validado.É importante dizer que, antes de fazer de fato a predição do modelo, o dataframe que a função `validate` recebe precisa ser tratado, assim como fizemos o tratamento dos textos dos reviews antes de treinar o modelo. Mais especificamente, o dataframe precisa passar antes pela função `tratamento_reviews`, o que leva boa parte do tempo de execução de `validate`. Além disso, dentro da função precisa ser feita a tokerização das palavras, por isso o parâmetro `vect` deve ser fornecido. Sem esse parâmetro, não teria como a empresa "Ponto Quente" usar a função `validate` sem executar antes O dataframe que será utilizado como parâmetro de execução da função será `df_tratado`, e não `df_original`, aquele retirado diretamente da base fornecida pelo time de dados. Isso porque **o dataframe que `validate` recebe não pode conter dados nulos nos reviews**. Não será implementado nenhuma linha de código para tratar dados nulos, porque isso seria melhor feito sendo conversado com a empresa. É fácil entender o porque: digamos que a empresa aplique o algoritmo numa dataframe com vários dados nulos. Ela gostaria que simplesmente ignorássemos os produtos que não tiveram reviews ou desejaria que fosse feito um outro tipo de tratamento no algoritmo? Cabe a empresa decidir. ###Code df_sem_categoria = df_tratado.drop(['product_category', 'review_total'], axis=1).sample(100).reset_index(drop=True) df_categorizado = validate(modelo, vect, df_sem_categoria) df_categorizado.head() ###Output _____no_output_____
notebooks/06.00-Widget_Styling.ipynb
###Markdown Layout and Styling of Jupyter widgetsThis notebook presents how to layout and style Jupyter interactive widgets to build rich and *reactive* widget-based applications. The `layout` attribute.Jupyter interactive widgets have a `layout` attribute exposing a number of CSS properties that impact how widgets are laid out. Exposed CSS propertiesThe following properties map to the values of the CSS properties of the same name (underscores being replaced with dashes), applied to the top DOM elements of the corresponding widget. Sizes- `height`- `width`- `max_height`- `max_width`- `min_height`- `min_width` Display- `visibility`- `display`- `overflow`- `overflow_x`- `overflow_y` Box model- `border` - `margin`- `padding` Positioning- `top`- `left`- `bottom`- `right` Flexbox- `order`- `flex_flow`- `align_items`- `flex`- `align_self`- `align_content`- `justify_content` Grid layout- `grid_auto_columns`- `grid_auto_flow`- `grid_auto_rows`- `grid_gap`- `grid_template`- `grid_row`- `grid_column` Shorthand CSS propertiesYou may have noticed that certain CSS properties such as `margin-[top/right/bottom/left]` seem to be missing. The same holds for `padding-[top/right/bottom/left]` etc.In fact, you can atomically specify `[top/right/bottom/left]` margins via the `margin` attribute alone by passing the string `'100px 150px 100px 80px'` for a respectively `top`, `right`, `bottom` and `left` margins of `100`, `150`, `100` and `80` pixels.Similarly, the `flex` attribute can hold values for `flex-grow`, `flex-shrink` and `flex-basis`. The `border` attribute is a shorthand property for `border-width`, `border-style (required)`, and `border-color`. Simple examples The following example shows how to resize a `Button` so that its views have a height of `80px` and a width of `50%` of the available space. It also includes an example of setting a CSS property that requires multiple values (a border, in thise case): ###Code from ipywidgets import Button, Layout b = Button(description='(50% width, 80px height) button', layout=Layout(width='50%', height='80px', border='2px dotted blue')) b ###Output _____no_output_____ ###Markdown The `layout` property can be shared between multiple widgets and assigned directly. ###Code Button(description='Another button with the same layout', layout=b.layout) ###Output _____no_output_____ ###Markdown Description You may have noticed that long descriptions are truncated. This is because the description length is, by default, fixed. ###Code from ipywidgets import IntSlider IntSlider(description='A too long description') ###Output _____no_output_____ ###Markdown If you need more flexibility to lay out widgets and descriptions, you can use Label widgets directly. ###Code from ipywidgets import HBox, Label HBox([Label('A too long description'), IntSlider()]) ###Output _____no_output_____ ###Markdown **Spoiler alert**:You can change the length of the description to fit the description text. However, this will make the widget itself shorter. You can change both by adjusting the description width and the widget width using the widget's style. ###Code style = {'description_width': 'initial'} IntSlider(description='A too long description', style=style) ###Output _____no_output_____ ###Markdown Natural sizes, and arrangements using HBox and VBoxMost of the core-widgets have default heights and widths that tile well together. This allows simple layouts based on the `HBox` and `VBox` helper functions to align naturally: ###Code from ipywidgets import Button, HBox, VBox words = ['correct', 'horse', 'battery', 'staple'] items = [Button(description=w) for w in words] left_box = VBox([items[0], items[1]]) right_box = VBox([items[2], items[3]]) HBox([left_box, right_box]) ###Output _____no_output_____ ###Markdown LaTeX Widgets such as sliders and text inputs have a description attribute that can render Latex Equations. The `Label` widget also renders Latex equations. ###Code from ipywidgets import IntSlider, Label IntSlider(description=r'\(\int_0^t f\)') Label(value=r'\(e=mc^2\)') ###Output _____no_output_____ ###Markdown Number formattingSliders have a readout field which can be formatted using Python's [Format Specification Mini-Language](https://docs.python.org/3/library/string.htmlformat-specification-mini-language). If the space available for the readout is too narrow for the string representation of the slider value, a different styling is applied to show that not all digits are visible. The Flexbox layoutThe `HBox` and `VBox` classes above are special cases of the `Box` widget.The `Box` widget enables the entire CSS flexbox spec as well as the Grid layout spec, enabling rich reactive layouts in the Jupyter notebook. It aims at providing an efficient way to lay out, align and distribute space among items in a container.Again, the whole flexbox spec is exposed via the `layout` attribute of the container widget (`Box`) and the contained items. One may share the same `layout` attribute among all the contained items. AcknowledgementThe following flexbox tutorial on the flexbox layout follows the lines of the article [A Complete Guide to Flexbox](https://css-tricks.com/snippets/css/a-guide-to-flexbox/) by Chris Coyier, and uses text and various images from the article [with permission](https://css-tricks.com/license/). Basics and terminologySince flexbox is a whole module and not a single property, it involves a lot of things including its whole set of properties. Some of them are meant to be set on the container (parent element, known as "flex container") whereas the others are meant to be set on the children (known as "flex items").If regular layout is based on both block and inline flow directions, the flex layout is based on "flex-flow directions". Please have a look at this figure from the specification, explaining the main idea behind the flex layout.![Flexbox](./images/flexbox.png)Basically, items will be laid out following either the `main axis` (from `main-start` to `main-end`) or the `cross axis` (from `cross-start` to `cross-end`).- `main axis` - The main axis of a flex container is the primary axis along which flex items are laid out. Beware, it is not necessarily horizontal; it depends on the flex-direction property (see below).- `main-start | main-end` - The flex items are placed within the container starting from main-start and going to main-end.- `main size` - A flex item's width or height, whichever is in the main dimension, is the item's main size. The flex item's main size property is either the ‘width’ or ‘height’ property, whichever is in the main dimension.cross axis - The axis perpendicular to the main axis is called the cross axis. Its direction depends on the main axis direction.- `cross-start | cross-end` - Flex lines are filled with items and placed into the container starting on the cross-start side of the flex container and going toward the cross-end side.- `cross size` - The width or height of a flex item, whichever is in the cross dimension, is the item's cross size. The cross size property is whichever of ‘width’ or ‘height’ that is in the cross dimension. Properties of the parent![Container](./images/flex-container.svg) display`display` can be `flex` or `inline-flex`. This defines a flex container (block or inline). flex-flow`flex-flow` is a shorthand for the `flex-direction` and `flex-wrap` properties, which together define the flex container's main and cross axes. Default is `row nowrap`.- `flex-direction` (column-reverse | column | row | row-reverse ) This establishes the main-axis, thus defining the direction flex items are placed in the flex container. Flexbox is (aside from optional wrapping) a single-direction layout concept. Think of flex items as primarily laying out either in horizontal rows or vertical columns.![Direction](./images/flex-direction1.svg)- `flex-wrap` (nowrap | wrap | wrap-reverse) By default, flex items will all try to fit onto one line. You can change that and allow the items to wrap as needed with this property. Direction also plays a role here, determining the direction new lines are stacked in.![Wrap](./images/flex-wrap.svg) justify-content`justify-content` can be one of `flex-start`, `flex-end`, `center`, `space-between`, `space-around`. This defines the alignment along the main axis. It helps distribute extra free space left over when either all the flex items on a line are inflexible, or are flexible but have reached their maximum size. It also exerts some control over the alignment of items when they overflow the line. ![Justify](./images/justify-content.svg) align-items`align-items` can be one of `flex-start`, `flex-end`, `center`, `baseline`, `stretch`. This defines the default behaviour for how flex items are laid out along the cross axis on the current line. Think of it as the justify-content version for the cross-axis (perpendicular to the main-axis). ![Items](./images/align-items.svg) align-content`align-content` can be one of `flex-start`, `flex-end`, `center`, `baseline`, `stretch`. This aligns a flex container's lines within when there is extra space in the cross-axis, similar to how justify-content aligns individual items within the main-axis.![Items](./images/align-content.svg)**Note**: this property has no effect when there is only one line of flex items. Properties of the items![Item](./images/flex-items.svg)The flexbox-related CSS properties of the items have no impact if the parent element is not a flexbox container (i.e. has a `display` attribute equal to `flex` or `inline-flex`). orderBy default, flex items are laid out in the source order. However, the `order` property controls the order in which they appear in the flex container. flex`flex` is shorthand for three properties, `flex-grow`, `flex-shrink` and `flex-basis` combined. The second and third parameters (`flex-shrink` and `flex-basis`) are optional. Default is `0 1 auto`. - `flex-grow` This defines the ability for a flex item to grow if necessary. It accepts a unitless value that serves as a proportion. It dictates what amount of the available space inside the flex container the item should take up. If all items have flex-grow set to 1, the remaining space in the container will be distributed equally to all children. If one of the children a value of 2, the remaining space would take up twice as much space as the others (or it will try to, at least). ![Grow](./images/flex-grow.svg) - `flex-shrink` This defines the ability for a flex item to shrink if necessary. - `flex-basis` This defines the default size of an element before the remaining space is distributed. It can be a length (e.g. `20%`, `5rem`, etc.) or a keyword. The `auto` keyword means *"look at my width or height property"*. align-self`align-self` allows the default alignment (or the one specified by align-items) to be overridden for individual flex items.![Align](./images/align-self.svg) The VBox and HBox helpersThe `VBox` and `HBox` helper classes provide simple defaults to arrange child widgets in vertical and horizontal boxes. They are roughly equivalent to:```Pythondef VBox(*pargs, **kwargs): """Displays multiple widgets vertically using the flexible box model.""" box = Box(*pargs, **kwargs) box.layout.display = 'flex' box.layout.flex_flow = 'column' box.layout.align_items = 'stretch' return boxdef HBox(*pargs, **kwargs): """Displays multiple widgets horizontally using the flexible box model.""" box = Box(*pargs, **kwargs) box.layout.display = 'flex' box.layout.align_items = 'stretch' return box``` Examples **Four buttons in a VBox. Items stretch to the maximum width, in a vertical box taking `50%` of the available space.** ###Code from ipywidgets import Layout, Button, Box items_layout = Layout( width='auto') # override the default width of the button to 'auto' to let the button grow box_layout = Layout(display='flex', flex_flow='column', align_items='stretch', border='solid', width='50%') words = ['correct', 'horse', 'battery', 'staple'] items = [Button(description=word, layout=items_layout, button_style='danger') for word in words] box = Box(children=items, layout=box_layout) box ###Output _____no_output_____ ###Markdown **Three buttons in an HBox. Items flex proportionally to their weight.** ###Code from ipywidgets import Layout, Button, Box, VBox # Items flex proportionally to the weight and the left over space around the text items_auto = [ Button(description='weight=1; auto', layout=Layout(flex='1 1 auto', width='auto'), button_style='danger'), Button(description='weight=3; auto', layout=Layout(flex='3 1 auto', width='auto'), button_style='danger'), Button(description='weight=1; auto', layout=Layout(flex='1 1 auto', width='auto'), button_style='danger'), ] # Items flex proportionally to the weight items_0 = [ Button(description='weight=1; 0%', layout=Layout(flex='1 1 0%', width='auto'), button_style='danger'), Button(description='weight=3; 0%', layout=Layout(flex='3 1 0%', width='auto'), button_style='danger'), Button(description='weight=1; 0%', layout=Layout(flex='1 1 0%', width='auto'), button_style='danger'), ] box_layout = Layout(display='flex', flex_flow='row', align_items='stretch', width='70%') box_auto = Box(children=items_auto, layout=box_layout) box_0 = Box(children=items_0, layout=box_layout) VBox([box_auto, box_0]) ###Output _____no_output_____ ###Markdown **A more advanced example: a reactive form.**The form is a `VBox` of width '50%'. Each row in the VBox is an HBox, that justifies the content with space between.. ###Code from ipywidgets import Layout, Button, Box, FloatText, Textarea, Dropdown, Label, IntSlider form_item_layout = Layout( display='flex', flex_flow='row', justify_content='space-between' ) form_items = [ Box([Label(value='Age of the captain'), IntSlider(min=40, max=60)], layout=form_item_layout), Box([Label(value='Egg style'), Dropdown(options=['Scrambled', 'Sunny side up', 'Over easy'])], layout=form_item_layout), Box([Label(value='Ship size'), FloatText()], layout=form_item_layout), Box([Label(value='Information'), Textarea()], layout=form_item_layout) ] form = Box(form_items, layout=Layout( display='flex', flex_flow='column', border='solid 2px', align_items='stretch', width='50%' )) form ###Output _____no_output_____ ###Markdown **A more advanced example: a carousel.** ###Code from ipywidgets import Layout, Button, Box, Label item_layout = Layout(height='100px', min_width='40px') items = [Button(layout=item_layout, description=str(i), button_style='warning') for i in range(40)] box_layout = Layout(overflow_x='scroll', border='3px solid black', width='500px', height='', flex_flow='row', display='flex') carousel = Box(children=items, layout=box_layout) VBox([Label('Scroll horizontally:'), carousel]) ###Output _____no_output_____ ###Markdown A widget for exploring layout optionsThe widgets below was written by ipywidgets user [Doug Redden (@DougRzz)](https://github.com/DougRzz). If you want to look through the source code to see how it works, take a look at this [notebook he contributed](cssJupyterWidgetStyling-UI.ipynb).Use the dropdowns and sliders in the widget to change the layout of the box containing the five colored buttons. Many of the CSS layout optoins described above are available, and the Python code to generate a `Layout` object reflecting the settings is in a `TextArea` in the widget. ###Code from layout_preview import layout layout ###Output _____no_output_____ ###Markdown Predefined stylesIf you wish the styling of widgets to make use of colors and styles defined by the environment (to be consistent with e.g. a notebook theme), many widgets enable choosing in a list of pre-defined styles.For example, the `Button` widget has a `button_style` attribute that may take 5 different values: - `'primary'` - `'success'` - `'info'` - `'warning'` - `'danger'`besides the default empty string ''. ###Code from ipywidgets import Button Button(description='Danger Button', button_style='danger') ###Output _____no_output_____ ###Markdown The `style` attributeWhile the `layout` attribute only exposes layout-related CSS properties for the top-level DOM element of widgets, the `style` attribute is used to expose non-layout related styling attributes of widgets.However, the properties of the `style` attribute are specific to each widget type. ###Code b1 = Button(description='Custom color') b1.style.button_color = 'lightgreen' b1 ###Output _____no_output_____ ###Markdown You can get a list of the style attributes for a widget with the `keys` property. ###Code b1.style.keys ###Output _____no_output_____ ###Markdown Just like the `layout` attribute, widget styles can be assigned to other widgets. ###Code b2 = Button() b2.style = b1.style b2 ###Output _____no_output_____ ###Markdown Widget styling attributes are specific to each widget type. ###Code s1 = IntSlider(description='Blue handle') s1.style.handle_color = 'lightblue' s1 ###Output _____no_output_____ ###Markdown Layout and Styling of Jupyter widgetsThis notebook presents how to layout and style Jupyter interactive widgets to build rich and *reactive* widget-based applications. The `layout` attribute.Jupyter interactive widgets have a `layout` attribute exposing a number of CSS properties that impact how widgets are laid out. Exposed CSS propertiesThe following properties map to the values of the CSS properties of the same name (underscores being replaced with dashes), applied to the top DOM elements of the corresponding widget. Sizes- `height`- `width`- `max_height`- `max_width`- `min_height`- `min_width` Display- `visibility`- `display`- `overflow`- `overflow_x` (deprecated in `7.5`, use `overflow` instead)- `overflow_y` (deprecated in `7.5`, use `overflow` instead) Box model- `border` - `margin`- `padding` Positioning- `top`- `left`- `bottom`- `right` Flexbox- `order`- `flex_flow`- `align_items`- `flex`- `align_self`- `align_content`- `justify_content` Grid layout- `grid_auto_columns`- `grid_auto_flow`- `grid_auto_rows`- `grid_gap`- `grid_template`- `grid_row`- `grid_column` Shorthand CSS propertiesYou may have noticed that certain CSS properties such as `margin-[top/right/bottom/left]` seem to be missing. The same holds for `padding-[top/right/bottom/left]` etc.In fact, you can atomically specify `[top/right/bottom/left]` margins via the `margin` attribute alone by passing the string `'100px 150px 100px 80px'` for a respectively `top`, `right`, `bottom` and `left` margins of `100`, `150`, `100` and `80` pixels.Similarly, the `flex` attribute can hold values for `flex-grow`, `flex-shrink` and `flex-basis`. The `border` attribute is a shorthand property for `border-width`, `border-style (required)`, and `border-color`. Simple examples The following example shows how to resize a `Button` so that its views have a height of `80px` and a width of `50%` of the available space. It also includes an example of setting a CSS property that requires multiple values (a border, in thise case): ###Code from ipywidgets import Button, Layout b = Button(description='(50% width, 80px height) button', layout=Layout(width='50%', height='80px', border='2px dotted blue')) b ###Output _____no_output_____ ###Markdown The `layout` property can be shared between multiple widgets and assigned directly. ###Code Button(description='Another button with the same layout', layout=b.layout) ###Output _____no_output_____ ###Markdown Description You may have noticed that long descriptions are truncated. This is because the description length is, by default, fixed. ###Code from ipywidgets import IntSlider IntSlider(description='A too long description') ###Output _____no_output_____ ###Markdown If you need more flexibility to lay out widgets and descriptions, you can use Label widgets directly. ###Code from ipywidgets import HBox, Label HBox([Label('A too long description'), IntSlider()]) ###Output _____no_output_____ ###Markdown You can change the length of the description to fit the description text. However, this will make the widget itself shorter. You can change both by adjusting the description width and the widget width using the widget's style. ###Code style = {'description_width': 'initial'} IntSlider(description='A too long description', style=style) ###Output _____no_output_____ ###Markdown Natural sizes, and arrangements using HBox and VBoxMost of the core-widgets have default heights and widths that tile well together. This allows simple layouts based on the `HBox` and `VBox` helper functions to align naturally: ###Code from ipywidgets import Button, HBox, VBox words = ['correct', 'horse', 'battery', 'staple'] items = [Button(description=w) for w in words] left_box = VBox([items[0], items[1]]) right_box = VBox([items[2], items[3]]) HBox([left_box, right_box]) ###Output _____no_output_____ ###Markdown LaTeX Widgets such as sliders and text inputs have a description attribute that can render Latex Equations. The `Label` widget also renders Latex equations. ###Code from ipywidgets import IntSlider, Label IntSlider(description=r'\(\int_0^t f\)') Label(value=r'\(e=mc^2\)') ###Output _____no_output_____ ###Markdown Number formattingSliders have a readout field which can be formatted using Python's [Format Specification Mini-Language](https://docs.python.org/3/library/string.htmlformat-specification-mini-language). If the space available for the readout is too narrow for the string representation of the slider value, a different styling is applied to show that not all digits are visible. The Flexbox layoutThe `HBox` and `VBox` classes above are special cases of the `Box` widget.The `Box` widget enables the entire CSS flexbox spec as well as the Grid layout spec, enabling rich reactive layouts in the Jupyter notebook. It aims at providing an efficient way to lay out, align and distribute space among items in a container.Again, the whole flexbox spec is exposed via the `layout` attribute of the container widget (`Box`) and the contained items. One may share the same `layout` attribute among all the contained items. AcknowledgementThe following flexbox tutorial on the flexbox layout follows the lines of the article [A Complete Guide to Flexbox](https://css-tricks.com/snippets/css/a-guide-to-flexbox/) by Chris Coyier, and uses text and various images from the article [with permission](https://css-tricks.com/license/). Basics and terminologySince flexbox is a whole module and not a single property, it involves a lot of things including its whole set of properties. Some of them are meant to be set on the container (parent element, known as "flex container") whereas the others are meant to be set on the children (known as "flex items").If regular layout is based on both block and inline flow directions, the flex layout is based on "flex-flow directions". Please have a look at this figure from the specification, explaining the main idea behind the flex layout.![Flexbox](./images/flexbox.png)Basically, items will be laid out following either the `main axis` (from `main-start` to `main-end`) or the `cross axis` (from `cross-start` to `cross-end`).- `main axis` - The main axis of a flex container is the primary axis along which flex items are laid out. Beware, it is not necessarily horizontal; it depends on the flex-direction property (see below).- `main-start | main-end` - The flex items are placed within the container starting from main-start and going to main-end.- `main size` - A flex item's width or height, whichever is in the main dimension, is the item's main size. The flex item's main size property is either the ‘width’ or ‘height’ property, whichever is in the main dimension.cross axis - The axis perpendicular to the main axis is called the cross axis. Its direction depends on the main axis direction.- `cross-start | cross-end` - Flex lines are filled with items and placed into the container starting on the cross-start side of the flex container and going toward the cross-end side.- `cross size` - The width or height of a flex item, whichever is in the cross dimension, is the item's cross size. The cross size property is whichever of ‘width’ or ‘height’ that is in the cross dimension. Properties of the parent![Container](./images/flex-container.svg) display`display` can be `flex` or `inline-flex`. This defines a flex container (block or inline). flex-flow`flex-flow` is a shorthand for the `flex-direction` and `flex-wrap` properties, which together define the flex container's main and cross axes. Default is `row nowrap`.- `flex-direction` (column-reverse | column | row | row-reverse ) This establishes the main-axis, thus defining the direction flex items are placed in the flex container. Flexbox is (aside from optional wrapping) a single-direction layout concept. Think of flex items as primarily laying out either in horizontal rows or vertical columns.![Direction](./images/flex-direction1.svg)- `flex-wrap` (nowrap | wrap | wrap-reverse) By default, flex items will all try to fit onto one line. You can change that and allow the items to wrap as needed with this property. Direction also plays a role here, determining the direction new lines are stacked in.![Wrap](./images/flex-wrap.svg) justify-content`justify-content` can be one of `flex-start`, `flex-end`, `center`, `space-between`, `space-around`. This defines the alignment along the main axis. It helps distribute extra free space left over when either all the flex items on a line are inflexible, or are flexible but have reached their maximum size. It also exerts some control over the alignment of items when they overflow the line. ![Justify](./images/justify-content.svg) align-items`align-items` can be one of `flex-start`, `flex-end`, `center`, `baseline`, `stretch`. This defines the default behaviour for how flex items are laid out along the cross axis on the current line. Think of it as the justify-content version for the cross-axis (perpendicular to the main-axis). ![Items](./images/align-items.svg) align-content`align-content` can be one of `flex-start`, `flex-end`, `center`, `baseline`, `stretch`. This aligns a flex container's lines within when there is extra space in the cross-axis, similar to how justify-content aligns individual items within the main-axis.![Items](./images/align-content.svg)**Note**: this property has no effect when there is only one line of flex items. Properties of the items![Item](./images/flex-items.svg)The flexbox-related CSS properties of the items have no impact if the parent element is not a flexbox container (i.e. has a `display` attribute equal to `flex` or `inline-flex`). orderBy default, flex items are laid out in the source order. However, the `order` property controls the order in which they appear in the flex container. flex`flex` is shorthand for three properties, `flex-grow`, `flex-shrink` and `flex-basis` combined. The second and third parameters (`flex-shrink` and `flex-basis`) are optional. Default is `0 1 auto`. - `flex-grow` This defines the ability for a flex item to grow if necessary. It accepts a unitless value that serves as a proportion. It dictates what amount of the available space inside the flex container the item should take up. If all items have flex-grow set to 1, the remaining space in the container will be distributed equally to all children. If one of the children a value of 2, the remaining space would take up twice as much space as the others (or it will try to, at least). ![Grow](./images/flex-grow.svg) - `flex-shrink` This defines the ability for a flex item to shrink if necessary. - `flex-basis` This defines the default size of an element before the remaining space is distributed. It can be a length (e.g. `20%`, `5rem`, etc.) or a keyword. The `auto` keyword means *"look at my width or height property"*. align-self`align-self` allows the default alignment (or the one specified by align-items) to be overridden for individual flex items.![Align](./images/align-self.svg) The VBox and HBox helpersThe `VBox` and `HBox` helper classes provide simple defaults to arrange child widgets in vertical and horizontal boxes. They are roughly equivalent to:```Pythondef VBox(*pargs, **kwargs): """Displays multiple widgets vertically using the flexible box model.""" box = Box(*pargs, **kwargs) box.layout.display = 'flex' box.layout.flex_flow = 'column' box.layout.align_items = 'stretch' return boxdef HBox(*pargs, **kwargs): """Displays multiple widgets horizontally using the flexible box model.""" box = Box(*pargs, **kwargs) box.layout.display = 'flex' box.layout.align_items = 'stretch' return box``` Examples **Four buttons in a VBox. Items stretch to the maximum width, in a vertical box taking `50%` of the available space.** ###Code from ipywidgets import Layout, Button, Box items_layout = Layout( width='auto') # override the default width of the button to 'auto' to let the button grow box_layout = Layout(display='flex', flex_flow='column', align_items='stretch', border='solid', width='50%') words = ['correct', 'horse', 'battery', 'staple'] items = [Button(description=word, layout=items_layout, button_style='danger') for word in words] box = Box(children=items, layout=box_layout) box ###Output _____no_output_____ ###Markdown **Three buttons in an HBox. Items flex proportionally to their weight.** ###Code from ipywidgets import Layout, Button, Box, VBox # Items flex proportionally to the weight and the left over space around the text items_auto = [ Button(description='weight=1; auto', layout=Layout(flex='1 1 auto', width='auto'), button_style='danger'), Button(description='weight=3; auto', layout=Layout(flex='3 1 auto', width='auto'), button_style='danger'), Button(description='weight=1; auto', layout=Layout(flex='1 1 auto', width='auto'), button_style='danger'), ] # Items flex proportionally to the weight items_0 = [ Button(description='weight=1; 0%', layout=Layout(flex='1 1 0%', width='auto'), button_style='danger'), Button(description='weight=3; 0%', layout=Layout(flex='3 1 0%', width='auto'), button_style='danger'), Button(description='weight=1; 0%', layout=Layout(flex='1 1 0%', width='auto'), button_style='danger'), ] box_layout = Layout(display='flex', flex_flow='row', align_items='stretch', width='70%') box_auto = Box(children=items_auto, layout=box_layout) box_0 = Box(children=items_0, layout=box_layout) VBox([box_auto, box_0]) ###Output _____no_output_____ ###Markdown **A more advanced example: a reactive form.**The form is a `VBox` of width '50%'. Each row in the VBox is an HBox, that justifies the content with space between.. ###Code from ipywidgets import Layout, Button, Box, FloatText, Textarea, Dropdown, Label, IntSlider form_item_layout = Layout( display='flex', flex_flow='row', justify_content='space-between' ) form_items = [ Box([Label(value='Age of the captain'), IntSlider(min=40, max=60)], layout=form_item_layout), Box([Label(value='Egg style'), Dropdown(options=['Scrambled', 'Sunny side up', 'Over easy'])], layout=form_item_layout), Box([Label(value='Ship size'), FloatText()], layout=form_item_layout), Box([Label(value='Information'), Textarea()], layout=form_item_layout) ] form = Box(form_items, layout=Layout( display='flex', flex_flow='column', border='solid 2px', align_items='stretch', width='50%' )) form ###Output _____no_output_____ ###Markdown **A more advanced example: a carousel.** ###Code from ipywidgets import Layout, Button, Box, Label item_layout = Layout(height='100px', min_width='40px') items = [Button(layout=item_layout, description=str(i), button_style='warning') for i in range(40)] box_layout = Layout(overflow_x='scroll', border='3px solid black', width='500px', height='', flex_flow='row', display='flex') carousel = Box(children=items, layout=box_layout) VBox([Label('Scroll horizontally:'), carousel]) ###Output _____no_output_____ ###Markdown *Compatibility note*The `overflow_x` and `overflow_y` options are deprecated in ipywidgets `7.5`. Instead, use the shorthand property `overflow='scroll hidden'`. The first part specificies overflow in `x`, the second the overflow in `y`. A widget for exploring layout optionsThe widgets below was written by ipywidgets user [Doug Redden (@DougRzz)](https://github.com/DougRzz). If you want to look through the source code to see how it works, take a look at this [notebook he contributed](cssJupyterWidgetStyling-UI.ipynb).Use the dropdowns and sliders in the widget to change the layout of the box containing the five colored buttons. Many of the CSS layout optoins described above are available, and the Python code to generate a `Layout` object reflecting the settings is in a `TextArea` in the widget. ###Code from layout_preview import layout layout ###Output _____no_output_____ ###Markdown Predefined stylesIf you wish the styling of widgets to make use of colors and styles defined by the environment (to be consistent with e.g. a notebook theme), some widgets enable choosing in a list of pre-defined styles.For example, the `Button` widget has a `button_style` attribute that may take 5 different values: - `'primary'` - `'success'` - `'info'` - `'warning'` - `'danger'`besides the default empty string ''. ###Code from ipywidgets import Button Button(description='Danger Button', button_style='danger') ###Output _____no_output_____ ###Markdown The `style` attributeWhile the `layout` attribute only exposes layout-related CSS properties for the top-level DOM element of widgets, the `style` attribute is used to expose non-layout related styling attributes of widgets.However, the properties of the `style` attribute are specific to each widget type. ###Code b1 = Button(description='Custom color') b1.style.button_color = 'lightgreen' b1 ###Output _____no_output_____ ###Markdown You can get a list of the style attributes for a widget with the `keys` property. ###Code b1.style.keys ###Output _____no_output_____ ###Markdown Just like the `layout` attribute, widget styles can be assigned to other widgets. ###Code b2 = Button() b2.style = b1.style b2 ###Output _____no_output_____ ###Markdown Widget styling attributes are specific to each widget type. ###Code s1 = IntSlider(description='Blue handle') s1.style.handle_color = 'lightblue' s1 ###Output _____no_output_____ ###Markdown There is a [list of all style keys](Table%20of%20widget%20keys%20and%20style%20keys.ipynbStyle-keys). The Grid layoutThe `GridBox` class is a special case of the `Box` widget.The `Box` widget enables the entire CSS flexbox spec, enabling rich reactive layouts in the Jupyter notebook. It aims at providing an efficient way to lay out, align and distribute space among items in a container.Again, the whole grid layout spec is exposed via the `layout` attribute of the container widget (`Box`) and the contained items. One may share the same `layout` attribute among all the contained items.The following flexbox tutorial on the flexbox layout follows the lines of the article [A Complete Guide to Grid](https://css-tricks.com/snippets/css/complete-guide-grid/) by Chris House, and uses text and various images from the article [with permission](https://css-tricks.com/license/). Basics and browser supportTo get started you have to define a container element as a grid with display: grid, set the column and row sizes with grid-template-rows, grid-template-columns, and grid_template_areas, and then place its child elements into the grid with grid-column and grid-row. Similarly to flexbox, the source order of the grid items doesn't matter. Your CSS can place them in any order, which makes it super easy to rearrange your grid with media queries. Imagine defining the layout of your entire page, and then completely rearranging it to accommodate a different screen width all with only a couple lines of CSS. Grid is one of the most powerful CSS modules ever introduced.As of March 2017, most browsers shipped native, unprefixed support for CSS Grid: Chrome (including on Android), Firefox, Safari (including on iOS), and Opera. Internet Explorer 10 and 11 on the other hand support it, but it's an old implementation with an outdated syntax. The time to build with grid is now! Important terminologyBefore diving into the concepts of Grid it's important to understand the terminology. Since the terms involved here are all kinda conceptually similar, it's easy to confuse them with one another if you don't first memorize their meanings defined by the Grid specification. But don't worry, there aren't many of them.**Grid Container**The element on which `display: grid` is applied. It's the direct parent of all the grid items. In this example container is the grid container.```html ```**Grid Item**The children (e.g. direct descendants) of the grid container. Here the item elements are grid items, but sub-item isn't.```html ```**Grid Line**The dividing lines that make up the structure of the grid. They can be either vertical ("column grid lines") or horizontal ("row grid lines") and reside on either side of a row or column. Here the yellow line is an example of a column grid line.![grid-line](images/grid-line.png)**Grid Track**The space between two adjacent grid lines. You can think of them like the columns or rows of the grid. Here's the grid track between the second and third row grid lines.![grid-track](images/grid-track.png)**Grid Cell**The space between two adjacent row and two adjacent column grid lines. It's a single "unit" of the grid. Here's the grid cell between row grid lines 1 and 2, and column grid lines 2 and 3.![grid-cell](images/grid-cell.png)**Grid Area**The total space surrounded by four grid lines. A grid area may be comprised of any number of grid cells. Here's the grid area between row grid lines 1 and 3, and column grid lines 1 and 3.![grid-area](images/grid-area.png) Properties of the parent**grid-template-rows, grid-template-colums**Defines the columns and rows of the grid with a space-separated list of values. The values represent the track size, and the space between them represents the grid line.Values:- `` - can be a length, a percentage, or a fraction of the free space in the grid (using the `fr` unit)- `` - an arbitrary name of your choosing**grid-template-areas** Defines a grid template by referencing the names of the grid areas which are specified with the grid-area property. Repeating the name of a grid area causes the content to span those cells. A period signifies an empty cell. The syntax itself provides a visualization of the structure of the grid.Values:- `` - the name of a grid area specified with `grid-area`- `.` - a period signifies an empty grid cell- `none` - no grid areas are defined**grid-gap** A shorthand for `grid-row-gap` and `grid-column-gap`Values:- ``, `` - length valueswhere `grid-row-gap` and `grid-column-gap` specify the sizes of the grid lines. You can think of it like setting the width of the gutters between the columns / rows.- `` - a length value*Note: The `grid-` prefix will be removed and `grid-gap` renamed to `gap`. The unprefixed property is already supported in Chrome 68+, Safari 11.2 Release 50+ and Opera 54+.***align-items**Aligns grid items along the block (column) axis (as opposed to justify-items which aligns along the inline (row) axis). This value applies to all grid items inside the container.Values:- `start` - aligns items to be flush with the start edge of their cell- `end` - aligns items to be flush with the end edge of their cell- `center` - aligns items in the center of their cell- `stretch` - fills the whole height of the cell (this is the default)**justify-items**Aligns grid items along the inline (row) axis (as opposed to `align-items` which aligns along the block (column) axis). This value applies to all grid items inside the container.Values:- `start` - aligns items to be flush with the start edge of their cell- `end` - aligns items to be flush with the end edge of their cell- `center` - aligns items in the center of their cell- `stretch` - fills the whole width of the cell (this is the default)**align-content**Sometimes the total size of your grid might be less than the size of its grid container. This could happen if all of your grid items are sized with non-flexible units like `px`. In this case you can set the alignment of the grid within the grid container. This property aligns the grid along the block (column) axis (as opposed to justify-content which aligns the grid along the inline (row) axis).Values:- `start` - aligns the grid to be flush with the start edge of the grid container- `end` - aligns the grid to be flush with the end edge of the grid container- `center` - aligns the grid in the center of the grid container- `stretch` - resizes the grid items to allow the grid to fill the full height of the grid container- `space-around` - places an even amount of space between each grid item, with half-sized spaces on the far ends- `space-between` - places an even amount of space between each grid item, with no space at the far ends- `space-evenly` - places an even amount of space between each grid item, including the far ends**justify-content**Sometimes the total size of your grid might be less than the size of its grid container. This could happen if all of your grid items are sized with non-flexible units like `px`. In this case you can set the alignment of the grid within the grid container. This property aligns the grid along the inline (row) axis (as opposed to align-content which aligns the grid along the block (column) axis).Values:- `start` - aligns the grid to be flush with the start edge of the grid container- `end` - aligns the grid to be flush with the end edge of the grid container- `center` - aligns the grid in the center of the grid container- `stretch` - resizes the grid items to allow the grid to fill the full width of the grid container- `space-around` - places an even amount of space between each grid item, with half-sized spaces on the far ends- `space-between` - places an even amount of space between each grid item, with no space at the far ends- `space-evenly` - places an even amount of space between each grid item, including the far ends**grid-auto-columns, grid-auto-rows**Specifies the size of any auto-generated grid tracks (aka implicit grid tracks). Implicit tracks get created when there are more grid items than cells in the grid or when a grid item is placed outside of the explicit grid. (see The Difference Between Explicit and Implicit Grids)Values:- `` - can be a length, a percentage, or a fraction of the free space in the grid (using the `fr` unit) Properties of the items*Note: `float`, `display: inline-block`, `display: table-cell`, `vertical-align` and `column-??` properties have no effect on a grid item.***grid-column, grid-row**Determines a grid item's location within the grid by referring to specific grid lines. `grid-column-start`/`grid-row-start` is the line where the item begins, and `grid-column-end`/`grid-row-end` is the line where the item ends.Values:- `` - can be a number to refer to a numbered grid line, or a name to refer to a named grid line- `span ` - the item will span across the provided number of grid tracks- `span ` - the item will span across until it hits the next line with the provided name- `auto` - indicates auto-placement, an automatic span, or a default span of one```css.item { grid-column: | | span | span | auto / | | span | span | auto grid-row: | | span | span | auto / | | span | span | auto}```Examples:```css.item-a { grid-column: 2 / five; grid-row: row1-start / 3;}```![grid-start-end-a](images/grid-start-end-a.png)```css.item-b { grid-column: 1 / span col4-start; grid-row: 2 / span 2;}```![grid-start-end-b](images/grid-start-end-b.png)If no `grid-column` / `grid-row` is declared, the item will span 1 track by default.Items can overlap each other. You can use `z-index` to control their stacking order.**grid-area**Gives an item a name so that it can be referenced by a template created with the `grid-template-areas` property. Alternatively, this property can be used as an even shorter shorthand for `grid-row-start` + `grid-column-start` + `grid-row-end` + `grid-column-end`.Values:- `` - a name of your choosing- ` / / / ` - can be numbers or named lines```css.item { grid-area: | / / / ;}```Examples:As a way to assign a name to the item:```css.item-d { grid-area: header}```As the short-shorthand for `grid-row-start` + `grid-column-start` + `grid-row-end` + `grid-column-end`:```css.item-d { grid-area: 1 / col4-start / last-line / 6}```![grid-start-end-d](images/grid-start-end-d.png)**justify-self**Aligns a grid item inside a cell along the inline (row) axis (as opposed to `align-self` which aligns along the block (column) axis). This value applies to a grid item inside a single cell.Values:- `start` - aligns the grid item to be flush with the start edge of the cell- `end` - aligns the grid item to be flush with the end edge of the cell- `center` - aligns the grid item in the center of the cell- `stretch` - fills the whole width of the cell (this is the default)```css.item { justify-self: start | end | center | stretch;}```Examples:```css.item-a { justify-self: start;}```![Example of `justify-self` set to start](images/grid-justify-self-start.png)```css.item-a { justify-self: end;}```![Example of `justify-self` set to end](images/grid-justify-self-end.png)```css.item-a { justify-self: center;}```![Example of `justify-self` set to center](images/grid-justify-self-center.png)```css.item-a { justify-self: stretch;}```![Example of `justify-self` set to stretch](images/grid-justify-self-stretch.png)To set alignment for *all* the items in a grid, this behavior can also be set on the grid container via the `justify-items` property. ###Code from ipywidgets import Button, GridBox, Layout, ButtonStyle ###Output _____no_output_____ ###Markdown Placing items by name: ###Code header = Button(description='Header', layout=Layout(width='auto', grid_area='header'), style=ButtonStyle(button_color='lightblue')) main = Button(description='Main', layout=Layout(width='auto', grid_area='main'), style=ButtonStyle(button_color='moccasin')) sidebar = Button(description='Sidebar', layout=Layout(width='auto', grid_area='sidebar'), style=ButtonStyle(button_color='salmon')) footer = Button(description='Footer', layout=Layout(width='auto', grid_area='footer'), style=ButtonStyle(button_color='olive')) GridBox(children=[header, main, sidebar, footer], layout=Layout( width='50%', grid_template_rows='auto auto auto', grid_template_columns='25% 25% 25% 25%', grid_template_areas=''' "header header header header" "main main . sidebar " "footer footer footer footer" ''') ) ###Output _____no_output_____ ###Markdown Setting up row and column template and gap ###Code GridBox(children=[Button(layout=Layout(width='auto', height='auto'), style=ButtonStyle(button_color='darkseagreen')) for i in range(9) ], layout=Layout( width='50%', grid_template_columns='100px 50px 100px', grid_template_rows='80px auto 80px', grid_gap='5px 10px') ) ###Output _____no_output_____ ###Markdown Layout and Styling of Jupyter widgetsThis notebook presents how to layout and style Jupyter interactive widgets to build rich and *reactive* widget-based applications. The `layout` attribute.Jupyter interactive widgets have a `layout` attribute exposing a number of CSS properties that impact how widgets are laid out. Exposed CSS propertiesThe following properties map to the values of the CSS properties of the same name (underscores being replaced with dashes), applied to the top DOM elements of the corresponding widget.** Sizes **- `height`- `width`- `max_height`- `max_width`- `min_height`- `min_width`** Display **- `visibility`- `display`- `overflow`- `overflow_x`- `overflow_y`** Box model **- `border` - `margin`- `padding`** Positioning **- `top`- `left`- `bottom`- `right`** Flexbox **- `order`- `flex_flow`- `align_items`- `flex`- `align_self`- `align_content`- `justify_content` Shorthand CSS propertiesYou may have noticed that certain CSS properties such as `margin-[top/right/bottom/left]` seem to be missing. The same holds for `padding-[top/right/bottom/left]` etc.In fact, you can atomically specify `[top/right/bottom/left]` margins via the `margin` attribute alone by passing the string```margin: 100px 150px 100px 80px;```for a respectively `top`, `right`, `bottom` and `left` margins of `100`, `150`, `100` and `80` pixels.Similarly, the `flex` attribute can hold values for `flex-grow`, `flex-shrink` and `flex-basis`. The `border` attribute is a shorthand property for `border-width`, `border-style (required)`, and `border-color`. Simple examples The following example shows how to resize a `Button` so that its views have a height of `80px` and a width of `50%` of the available space. It also includes an example of setting a CSS property that requires multiple values (a border, in thise case): ###Code from ipywidgets import Button, Layout b = Button(description='(50% width, 80px height) button', layout=Layout(width='50%', height='80px', border='2px dotted blue')) b ###Output _____no_output_____ ###Markdown The `layout` property can be shared between multiple widgets and assigned directly. ###Code Button(description='Another button with the same layout', layout=b.layout) ###Output _____no_output_____ ###Markdown Description You may have noticed that long descriptions are truncated. This is because the description length is, by default, fixed. ###Code from ipywidgets import IntSlider IntSlider(description='A too long description') ###Output _____no_output_____ ###Markdown If you need more flexibility to lay out widgets and descriptions, you can use Label widgets directly. ###Code from ipywidgets import HBox, Label HBox([Label('A too long description'), IntSlider()]) ###Output _____no_output_____ ###Markdown **Spoiler alert**:You can change the length of the description to fit the description text. However, this will make the widget itself shorter. You can change both by adjusting the description width and the widget width using the widget's style. ###Code style = {'description_width': 'initial'} IntSlider(description='A too long description', style=style) ###Output _____no_output_____ ###Markdown Natural sizes, and arrangements using HBox and VBoxMost of the core-widgets have - a natural width that is a multiple of `148` pixels- a natural height of `32` pixels or a multiple of that number.- a default margin of `2` pixelswhich will be the ones used when it is not specified in the `layout` attribute.This allows simple layouts based on the `HBox` and `VBox` helper functions to align naturally: ###Code from ipywidgets import Button, HBox, VBox words = ['correct', 'horse', 'battery', 'staple'] items = [Button(description=w) for w in words] left_box = VBox([items[0], items[1]]) right_box = VBox([items[2], items[3]]) HBox([left_box, right_box]) ###Output _____no_output_____ ###Markdown LaTeX Widgets such as sliders and text inputs have a description attribute that can render $\LaTeX$ Equations. The `Label` widget also renders $\LaTeX$ equations. ###Code from ipywidgets import IntSlider, Label IntSlider(description=r'\(\int_0^t f\)') Label(value=r'\(e=mc^2\)') ###Output _____no_output_____ ###Markdown Number formattingSliders have a readout field which can be formatted using Python's *[Format Specification Mini-Language](https://docs.python.org/3/library/string.htmlformat-specification-mini-language)*. If the space available for the readout is too narrow for the string representation of the slider value, a different styling is applied to show that not all digits are visible. The Flexbox layoutIn fact, the `HBox` and `VBox` helpers used above are functions returning instances of the `Box` widget with specific options.The `Box` widgets enables the entire CSS Flexbox spec, enabling rich reactive layouts in the Jupyter notebook. It aims at providing an efficient way to lay out, align and distribute space among items in a container.Again, the whole Flexbox spec is exposed via the `layout` attribute of the container widget (`Box`) and the contained items. One may share the same `layout` attribute among all the contained items. AcknowledgementThe following tutorial on the Flexbox layout follows the lines of the article *[A Complete Guide to Flexbox](https://css-tricks.com/snippets/css/a-guide-to-flexbox/)* by Chris Coyier. Basics and terminologySince flexbox is a whole module and not a single property, it involves a lot of things including its whole set of properties. Some of them are meant to be set on the container (parent element, known as "flex container") whereas the others are meant to be set on the children (said "flex items").If regular layout is based on both block and inline flow directions, the flex layout is based on "flex-flow directions". Please have a look at this figure from the specification, explaining the main idea behind the flex layout.![Flexbox](./images/flexbox.png)Basically, items will be laid out following either the `main axis` (from `main-start` to `main-end`) or the `cross axis` (from `cross-start` to `cross-end`).- `main axis` - The main axis of a flex container is the primary axis along which flex items are laid out. Beware, it is not necessarily horizontal; it depends on the flex-direction property (see below).- `main-start | main-end` - The flex items are placed within the container starting from main-start and going to main-end.- `main size` - A flex item's width or height, whichever is in the main dimension, is the item's main size. The flex item's main size property is either the ‘width’ or ‘height’ property, whichever is in the main dimension.cross axis - The axis perpendicular to the main axis is called the cross axis. Its direction depends on the main axis direction.- `cross-start | cross-end` - Flex lines are filled with items and placed into the container starting on the cross-start side of the flex container and going toward the cross-end side.- `cross size` - The width or height of a flex item, whichever is in the cross dimension, is the item's cross size. The cross size property is whichever of ‘width’ or ‘height’ that is in the cross dimension. Properties of the parent![Container](./images/flex-container.svg)- `display` (must be equal to 'flex' or 'inline-flex') This defines a flex container (inline or block).- `flex-flow` **(shorthand for two properties)** This is a shorthand `flex-direction` and `flex-wrap` properties, which together define the flex container's main and cross axes. Default is `row nowrap`. - `flex-direction` (column-reverse | column | row | row-reverse | ) This establishes the main-axis, thus defining the direction flex items are placed in the flex container. Flexbox is (aside from optional wrapping) a single-direction layout concept. Think of flex items as primarily laying out either in horizontal rows or vertical columns. ![Direction](./images/flex-direction1.svg) - `flex-wrap` (nowrap | wrap | wrap-reverse) By default, flex items will all try to fit onto one line. You can change that and allow the items to wrap as needed with this property. Direction also plays a role here, determining the direction new lines are stacked in. ![Wrap](./images/flex-wrap.svg)- `justify-content` (flex-start | flex-end | center | space-between | space-around) This defines the alignment along the main axis. It helps distribute extra free space left over when either all the flex items on a line are inflexible, or are flexible but have reached their maximum size. It also exerts some control over the alignment of items when they overflow the line. ![Justify](./images/justify-content.svg)- `align-items` (flex-start | flex-end | center | baseline | stretch) This defines the default behaviour for how flex items are laid out along the cross axis on the current line. Think of it as the justify-content version for the cross-axis (perpendicular to the main-axis). ![Items](./images/align-items.svg) - `align-content` (flex-start | flex-end | center | baseline | stretch) This aligns a flex container's lines within when there is extra space in the cross-axis, similar to how justify-content aligns individual items within the main-axis. ![Items](./images/align-content.svg) **Note**: this property has no effect when there is only one line of flex items. Properties of the items![Item](./images/flex-items.svg)The flexbox-related CSS properties of the items have no impact if the parent element is not a flexbox container (i.e. has a `display` attribute equal to `flex` or `inline-flex`).- `order` By default, flex items are laid out in the source order. However, the order property controls the order in which they appear in the flex container. - `flex` **(shorthand for three properties)** This is the shorthand for flex-grow, flex-shrink and flex-basis combined. The second and third parameters (flex-shrink and flex-basis) are optional. Default is `0 1 auto`. - `flex-grow` This defines the ability for a flex item to grow if necessary. It accepts a unitless value that serves as a proportion. It dictates what amount of the available space inside the flex container the item should take up. If all items have flex-grow set to 1, the remaining space in the container will be distributed equally to all children. If one of the children a value of 2, the remaining space would take up twice as much space as the others (or it will try to, at least). ![Grow](./images/flex-grow.svg) - `flex-shrink` This defines the ability for a flex item to shrink if necessary. - `flex-basis` This defines the default size of an element before the remaining space is distributed. It can be a length (e.g. `20%`, `5rem`, etc.) or a keyword. The `auto` keyword means *"look at my width or height property"*. - `align-self` This allows the default alignment (or the one specified by align-items) to be overridden for individual flex items. ![Align](./images/align-self.svg) The VBox and HBox helpersThe `VBox` and `HBox` helper classes provide simple defaults to arrange child widgets in vertical and horizontal boxes. They are roughly equivalent to:```Pythondef VBox(*pargs, **kwargs): """Displays multiple widgets vertically using the flexible box model.""" box = Box(*pargs, **kwargs) box.layout.display = 'flex' box.layout.flex_flow = 'column' box.layout.align_items = 'stretch' return boxdef HBox(*pargs, **kwargs): """Displays multiple widgets horizontally using the flexible box model.""" box = Box(*pargs, **kwargs) box.layout.display = 'flex' box.layout.align_items = 'stretch' return box``` Examples **Four buttons in a VBox. Items stretch to the maximum width, in a vertical box taking `50%` of the available space.** ###Code from ipywidgets import Layout, Button, Box items_layout = Layout(flex='1 1 auto', width='auto') # override the default width of the button to 'auto' to let the button grow box_layout = Layout(display='flex', flex_flow='column', align_items='stretch', border='solid', width='50%') words = ['correct', 'horse', 'battery', 'staple'] items = [Button(description=w, layout=items_layout, button_style='danger') for w in words] box = Box(children=items, layout=box_layout) box ###Output _____no_output_____ ###Markdown **Three buttons in an HBox. Items flex proportionaly to their weight.** ###Code from ipywidgets import Layout, Button, Box items = [ Button(description='weight=1'), Button(description='weight=2', layout=Layout(flex='2 1 auto', width='auto')), Button(description='weight=1'), ] box_layout = Layout(display='flex', flex_flow='row', align_items='stretch', border='solid', width='50%') box = Box(children=items, layout=box_layout) box ###Output _____no_output_____ ###Markdown **A more advanced example: a reactive form.**The form is a `VBox` of width '50%'. Each row in the VBox is an HBox, that justifies the content with space between.. ###Code from ipywidgets import Layout, Button, Box, FloatText, Textarea, Dropdown, Label, IntSlider form_item_layout = Layout( display='flex', flex_flow='row', justify_content='space-between' ) form_items = [ Box([Label(value='Age of the captain'), IntSlider(min=40, max=60)], layout=form_item_layout), Box([Label(value='Egg style'), Dropdown(options=['Scrambled', 'Sunny side up', 'Over easy'])], layout=form_item_layout), Box([Label(value='Ship size'), FloatText()], layout=form_item_layout), Box([Label(value='Information'), Textarea()], layout=form_item_layout) ] form = Box(form_items, layout=Layout( display='flex', flex_flow='column', border='solid 2px', align_items='stretch', width='50%' )) form ###Output _____no_output_____ ###Markdown **A more advanced example: a carousel.** ###Code from ipywidgets import Layout, Button, Box item_layout = Layout(height='100px', min_width='40px') items = [Button(layout=item_layout, description=str(i), button_style='warning') for i in range(40)] box_layout = Layout(overflow_x='scroll', border='3px solid black', width='500px', height='', flex_direction='row', display='flex') carousel = Box(children=items, layout=box_layout) VBox([Label('Scroll horizontally:'), carousel]) ###Output _____no_output_____ ###Markdown A widget for exploring layout optionsThe widgets below was written by ipywidgets user [Doug Redden (@DougRzz)](https://github.com/DougRzz). If you want to look through the source code to see how it works, take a look at this [notebook he contributed](cssJupyterWidgetStyling-UI.ipynb).Use the dropdowns and sliders in the widget to change the layout of the box containing the five colored buttons. Many of the CSS layout optoins described above are available, and the Python code to generate a `Layout` object reflecting the settings is in a `TextArea` in the widget. ###Code from layout_preview import layout layout ###Output _____no_output_____ ###Markdown Predefined stylesIf you wish the styling of widgets to make use of colors and styles defined by the environment (to be consistent with e.g. a notebook theme), many widgets enable choosing in a list of pre-defined styles.For example, the `Button` widget has a `button_style` attribute that may take 5 different values: - `'primary'` - `'success'` - `'info'` - `'warning'` - `'danger'`besides the default empty string ''. ###Code from ipywidgets import Button Button(description='Danger Button', button_style='danger') ###Output _____no_output_____ ###Markdown The `style` attributeWhile the `layout` attribute only exposes layout-related CSS properties for the top-level DOM element of widgets, the `style` attribute is used to expose non-layout related styling attributes of widgets.However, the properties of the `style` atribute are specific to each widget type. ###Code b1 = Button(description='Custom color') b1.style.button_color = 'lightgreen' b1 ###Output _____no_output_____ ###Markdown You can get a list of the style attributes for a widget with the `keys` property. ###Code b1.style.keys ###Output _____no_output_____ ###Markdown Just like the `layout` attribute, widget styles can be assigned to other widgets. ###Code b2 = Button() b2.style = b1.style b2 ###Output _____no_output_____ ###Markdown Widget styling attributes are specific to each widget type. ###Code s1 = IntSlider(description='Blue handle') s1.style.handle_color = 'lightblue' s1 ###Output _____no_output_____
SARIMAX/hourly-weather-wind_direction.ipynb
###Markdown Seasonal Autoregressive Integrated Moving Average with Explanatory Variable (SARIMAX)The ARIMA model is a generalisation of an ARMA model that can be applied to non-stationary time series.The SARIMAX model is an modified and extended version of ARIMA that accounts for seasonality in the time series and includes independent predictor variables. ###Code %matplotlib inline import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd from time import time import statsmodels.api as sm from statsmodels.tsa.seasonal import seasonal_decompose from statsmodels.tsa.stattools import adfuller matplotlib.rcParams['figure.figsize'] = (16, 9) pd.options.display.max_columns = 999 ###Output _____no_output_____ ###Markdown Load Dataset ###Code df = pd.read_csv('../datasets/hourly-weather-wind_direction.csv', parse_dates=[0], index_col='DateTime') print(df.shape) df.head() ###Output (5000, 36) ###Markdown Define ParametersMake predictions for 24-hour period using a training period of four weeks. ###Code dataset_name = 'Hourly Weather Wind Direction' dataset_abbr = 'HWD' model_name = 'SARIMAX' context_length = 24*7*4 # Four weeks prediction_length = 24 ###Output _____no_output_____ ###Markdown Define Error MetricThe seasonal variant of the mean absolute scaled error (MASE) will be used to evaluate the forecasts. ###Code def calc_sMASE(training_series, testing_series, prediction_series, seasonality=prediction_length): a = training_series.iloc[seasonality:].values b = training_series.iloc[:-seasonality].values d = np.sum(np.abs(a-b)) / len(a) errors = np.abs(testing_series - prediction_series) return np.mean(errors) / d ###Output _____no_output_____ ###Markdown Example SARIMAX ModelExploration of how SARIMA models work using a single example time series. ###Code ts_ex = 'ts10' df_ex = df.loc[:, ts_ex] # Plot data from first five days df_ex.iloc[:24*5].plot(); ###Output _____no_output_____ ###Markdown Time Series DecompositionDecompose the example time series into trend, seasonal, and residual components. ###Code fig = seasonal_decompose(df_ex.iloc[-500:], model='additive').plot() ###Output _____no_output_____ ###Markdown There doesn't appear to be a consistent trend. We can run a Dicky-Fuller test to confirm the stationarity. ###Code dftest = adfuller(df_ex.iloc[-500:], autolag='AIC') dfoutput = pd.Series(dftest[0:4], index=['Test Statistic','p-value','#Lags Used','Number of Observations Used']) for key,value in dftest[4].items(): dfoutput['Critical Value (%s)'%key] = value dfoutput ###Output _____no_output_____ ###Markdown The very low p-value confirms that the data is stationary. We can see that there is daily seasonality which we will capture in our SARIMAX model. Plot ACF and PACFThe Autocorrelation Function (ACF) is the correlation of a signal with a delayed copy of itself as a function of delay.The Partial Autocorrelation Function (PACF) is the partial correlation of a signal with a delayed copy of itself, controlling for the values of the time series at all shorter delays, as a function of delay. ###Code fig, ax = plt.subplots(2) ax[0] = sm.graphics.tsa.plot_acf(df_ex, lags=50, ax=ax[0]) ax[1] = sm.graphics.tsa.plot_pacf(df_ex, lags=50, ax=ax[1]) ###Output _____no_output_____ ###Markdown There is clearly daily seasonality. A seasonality of 24 hours will be used for the SARIMAX model. Differencing by 24 hours helps remove the seasonality: ###Code fig, ax = plt.subplots(2) ax[0] = sm.graphics.tsa.plot_acf(df_ex.diff(24).dropna(), lags=50, ax=ax[0]) ax[1] = sm.graphics.tsa.plot_pacf(df_ex.diff(24).dropna(), lags=50, ax=ax[1]) fig = seasonal_decompose(df_ex.diff(24).dropna(), model='additive').plot() ###Output _____no_output_____ ###Markdown Prepare Data ###Code df_ex = pd.DataFrame(df_ex) days = df_ex.index.dayofweek dummy_days = pd.get_dummies(days) dummy_days.columns = ['mon', 'tue', 'wed', 'thu', 'fri', 'sat', 'sun'] dummy_days.index = df_ex.index df_ex = pd.concat([df_ex, dummy_days], axis=1) df_ex.head() ###Output _____no_output_____ ###Markdown Build ModelAs SARIMA models can be slow to train, a SARIMAX(1,1,1)(1,1,1)24 model will be used, as this should provide reasonable performance across the time series. Optimised forecasts could be obtained by using a grid search methodology to derive the best performining parameters, as demonstrated in the ARIMA and ARIMAX notebooks, but this would be at the expense of much greater training times. ###Code def runSARIMAX(time_series, test_length=prediction_length, train_length=context_length): ts = time_series.iloc[-(test_length+train_length):] ts_train = ts.iloc[:-test_length] ts_test = ts.iloc[-test_length:] sarimax = sm.tsa.SARIMAX(endog=ts_train.iloc[:, 0], exog=ts_train.iloc[:, 1:], order=(1,1,1), seasonal_order=(1,1,1,24), enforce_stationarity=False, enforce_invertibility=False).fit() summary = sarimax.summary() fcst = sarimax.predict(start=ts.index[2], end=ts.index[-1], exog=ts_test.iloc[:, 1:]) fcst = np.concatenate([np.array([0, 0]), fcst]) fcst = pd.DataFrame(data=fcst, index=ts.index, columns=['pred%s' % ts.columns[0][2:]]) return fcst, summary import warnings warnings.filterwarnings('ignore') %%time fcst, summary = runSARIMAX(df_ex) df_ex = pd.concat([df_ex, fcst], axis=1) print(summary) # Example forecast fcst0 = df_ex.copy() fcst0['pred%s' % ts_ex[2:]][fcst0['pred%s' % ts_ex[2:]] < 0] = 0 fcst0.iloc[-4*prediction_length:, 0].plot(label='Actual', c='k', alpha=0.5) fcst0.iloc[-4*prediction_length:, -1].plot(label='SARIMAX(1,1,1)(1,1,1)24', c='b', alpha=0.5) plt.axvline(x=fcst0.index[-prediction_length], linestyle=':', linewidth=2, color='r', label='Start of test data') plt.legend() plt.title(ts_ex); ###Output _____no_output_____ ###Markdown Evaluating SARIMAXTo evaluate SARIMAX, we will generate forecasts for each time series using the SARIMAX(1,1,1)(1,1,1)24 approach shown above. MASE and sMASE will be calculated for each individual time series, and the mean of all these scores will be used as overall accuracy metrics for SARIMAX on this dataset. ###Code results = df.iloc[-(prediction_length+context_length):].copy() tic = time() for i, col in enumerate(df.columns): if i % 10 == 0: toc = time() print("Running predictions for {}. Cumulative time: {:.1f} minutes.".format(col, (toc-tic)/60)) # Prepare DataFrame for selected column dft = df.loc[:, col] dft = pd.DataFrame(dft) days = dft.index.dayofweek dummy_days = pd.get_dummies(days) dummy_days.columns = ['mon', 'tue', 'wed', 'thu', 'fri', 'sat', 'sun'] dummy_days.index = dft.index dft = pd.concat([dft, dummy_days], axis=1) # Find best model fcst, summary = runSARIMAX(dft) # Add predictions to results DataFrame results['pred%s' % col[2:]] = fcst.values toc = time() print("Finished! Total run time: {:.1f} minutes.".format((toc-tic)/60)) results0 = results.copy() results0[results0 < 0] = 0 results0.head() sMASEs = [] for i, col in enumerate(df.columns): sMASEs.append(calc_sMASE(results0[col].iloc[-(context_length + prediction_length):-prediction_length], results0[col].iloc[-prediction_length:], results0['pred%s' % str(i+1)].iloc[-prediction_length:])) fig, ax = plt.subplots() ax.hist(sMASEs, bins=20) ax.set_title('Distributions of sMASEs for {} dataset'.format(dataset_name)) ax.set_xlabel('sMASE') ax.set_ylabel('Count'); sMASE = np.mean(sMASEs) print("Overall sMASE: {:.4f}".format(sMASE)) ###Output Overall sMASE: 0.7314 ###Markdown Show some example forecasts. ###Code fig, ax = plt.subplots(5, 2, sharex=True) ax = ax.ravel() for col in range(1, 11): ax[col-1].plot(results0.index[-prediction_length:], results0['ts%s' % col].iloc[-prediction_length:], label='Actual', c='k', linestyle='--', linewidth=1) ax[col-1].plot(results0.index[-prediction_length:], results0['pred%s' % col].iloc[-prediction_length:], label='SARIMAX(1,1,1)(1,1,1)24', c='b') ax[9].legend() fig.suptitle('{} Predictions'.format(dataset_name)); ###Output _____no_output_____ ###Markdown Store the predictions and accuracy score for the SARIMAX models. ###Code import pickle with open('{}-sMASE.pkl'.format(dataset_abbr), 'wb') as f: pickle.dump(sMASE, f) with open('../_results/{}/{}-results.pkl'.format(model_name, dataset_abbr), 'wb') as f: pickle.dump(results.iloc[-prediction_length:], f) ###Output _____no_output_____
01-titanic/pandas/pandas.ipynb
###Markdown 1. Какое количество мужчин и женщин ехало на корабле? В качестве ответа приведите два числа через пробел ###Code sex_counts = df['Sex'].value_counts() print('{} {}'.format(sex_counts['male'], sex_counts['female'])) ###Output 577 314 ###Markdown 2. Какой части пассажиров удалось выжить? Посчитайте долю выживших пассажиров. Ответ приведите в процентах (число в интервале от 0 до 100, знак процента не нужен), округлив до двух знаков. ###Code survived_df = df['Survived'] count_of_survived = survived_df.value_counts()[1] survived_percentage = 100.0 * count_of_survived / survived_df.value_counts().sum() print("{:0.2f}".format(survived_percentage)) ###Output 38.38 ###Markdown 3. Какую долю пассажиры первого класса составляли среди всех пассажиров? Ответ приведите в процентах (число в интервале от 0 до 100, знак процента не нужен), округлив до двух знаков. ###Code pclass_df = df['Pclass'] count_of_first_class_passengers = pclass_df.value_counts()[1] first_class_percentage = 100.0 * count_of_first_class_passengers / survived_df.value_counts().sum() print("{:0.2f}".format(first_class_percentage)) ###Output 24.24 ###Markdown 4. Какого возраста были пассажиры? Посчитайте среднее и медиану возраста пассажиров. Посчитайте среднее и медиану возраста пассажиров. В качестве ответа приведите два числа через пробел. ###Code ages = df['Age'].dropna() print("{:0.2f} {:0.2f}".format(ages.mean(), ages.median())) ###Output 29.70 28.00 ###Markdown 5. Коррелируют ли число братьев/сестер с числом родителей/детей? Посчитайте корреляцию Пирсона между признаками SibSp и Parch. ###Code correlation = df['SibSp'].corr(df['Parch']) print("{:0.2f}".format(correlation)) ###Output 0.41 ###Markdown 6. Какое самое популярное женское имя на корабле? Извлеките из полного имени пассажира (колонка Name) его личное имя (First Name). Это задание — типичный пример того, с чем сталкивается специалист по анализу данных. Данные очень разнородные и шумные, но из них требуется извлечь необходимую информацию. Попробуйте вручную разобрать несколько значений столбца Name и выработать правило для извлечения имен, а также разделения их на женские и мужские. ###Code def clean_name(name): # First word before comma is a surname s = re.search('^[^,]+, (.*)', name) if s: name = s.group(1) # get name from braces (if in braces) s = re.search('\(([^)]+)\)', name) if s: name = s.group(1) # Removing appeal name = re.sub('(Miss\. |Mrs\. |Ms\. )', '', name) # Get first left word and removing quotes name = name.split(' ')[0].replace('"', '') return name names = df[df['Sex'] == 'female']['Name'].map(clean_name) name_counts = names.value_counts() name_counts.head() print(name_counts.head(1).index.values[0]) ###Output _____no_output_____
examples/metrics_multi.ipynb
###Markdown Logistic Regression - Ridge ###Code lr = LogisticRegression(penalty='l2') lr = train_model(lr, X_train, y_train) print('Test score = ',lr.score(X_test,y_test)) prob, pred, label = get_data(lr, X_test, y_test) lr_metrics = MultiClassMetrics(prob, pred, label, method='micro') lr_metrics.give_threshold() make_plots(label, pred, lr_metrics.fpr, lr_metrics.tpr,lr_metrics.threshold, lr_metrics.recall, lr_metrics.precision) ###Output Confusion matrix, without normalization [[16 0 0] [ 0 20 0] [ 0 14 0]] ###Markdown Logistic regression - Lasso ###Code lr = LogisticRegression(penalty='l1') lr = train_model(lr, X_train, y_train) print('Test score = ',lr.score(X_test,y_test)) prob, pred, label = get_data(lr, X_test, y_test) lr_metrics = MultiClassMetrics(prob, pred, label, method='micro') lr_metrics.give_threshold() make_plots(label, pred, lr_metrics.fpr, lr_metrics.tpr,lr_metrics.threshold, lr_metrics.recall, lr_metrics.precision) ###Output Training score = 0.97 Test score = 0.9 Confusion matrix, without normalization [[16 0 0] [ 0 20 0] [ 0 14 0]] ###Markdown RF ###Code from sklearn.ensemble import ExtraTreesClassifier, RandomForestClassifier, GradientBoostingClassifier rf = RandomForestClassifier() rf = train_model(rf, X_train, y_train) print('Test score = ',rf.score(X_test,y_test)) prob, pred, label = get_data(rf, X_test, y_test) rf_metrics = MultiClassMetrics(prob, pred, label, method='micro') rf_metrics.give_threshold() make_plots(label, pred, rf_metrics.fpr, rf_metrics.tpr,rf_metrics.threshold, rf_metrics.recall, rf_metrics.precision) ###Output Training score = 0.99 Test score = 0.96 Confusion matrix, without normalization [[16 0 0] [ 0 13 0] [ 0 21 0]] ###Markdown ExtraTrees ###Code rf = ExtraTreesClassifier() rf = train_model(rf, X_train, y_train) print('Test score = ',rf.score(X_test,y_test)) prob, pred, label = get_data(rf, X_test, y_test) rf_metrics = MultiClassMetrics(prob, pred, label, method='micro') rf_metrics.give_threshold() make_plots(label, pred, rf_metrics.fpr, rf_metrics.tpr,rf_metrics.threshold, rf_metrics.recall, rf_metrics.precision) ###Output Training score = 1.0 Test score = 0.98 Confusion matrix, without normalization [[16 0 0] [ 0 14 0] [ 0 20 0]] ###Markdown GBT ###Code rf = GradientBoostingClassifier() rf = train_model(rf, X_train, y_train) print('Test score = ',rf.score(X_test,y_test)) prob, pred, label = get_data(rf, X_test, y_test) rf_metrics = MultiClassMetrics(prob, pred, label, method='micro') rf_metrics.give_threshold() make_plots(label, pred, rf_metrics.fpr, rf_metrics.tpr,rf_metrics.threshold, rf_metrics.recall, rf_metrics.precision) ###Output Training score = 1.0 Test score = 0.96 Confusion matrix, without normalization [[16 0 0] [ 0 15 0] [ 0 19 0]]
hw1/hw1-folder/code/HW-1.ipynb
###Markdown B.1 d. ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt import random np.random.seed(10) n = 256 sigma2 = 1 mean = 0 m_list = [1,2,4,8,16,32] xList = np.array(range(1,n+1))/n def f(x): return 4 * np.sin(np.pi * x) * np.cos(6 * np.pi * x ** 2) def y_i(x): return f(x) + np.random.normal(0,1) def cj(m,j): sum = 0.0 for i in range((j-1) * m + 1, j * m + 1): sum += y_i(i/n) return sum/m def f_hat(x, m): sum = 0.0 for j in range(1, int(n/m) + 1): if ((x > (j -1) *1.0* m /n) and (x <= j*m*1.0/n)): sum += cj(m,j) return sum def f_bar(j,m): sum = 0.0 for i in range((j-1)*m+1, j*m + 1): sum += f(i/n) return sum/m def bias(m,n): output = 0.0 for j in range(1, int(n/m)+1): for i in range((j-1)*m, j*m): output += (f_bar(j, m) - f(i/n))**2 return output/n def variance(sigma2, m): return sigma2 / m #Initialize empirical_error = [] bias_list = [] bias_sum = 0.0 variance_list = [] total_error = [] #Start iteration for m in m_list: empirical_error_sum = 0.0 # empirical_error for i in range(1,n+1): empirical_error_sum += (f_hat(i/n, m) - f(i/n))**2 empirical_error.append(empirical_error_sum/n) # variance bias_list.append(bias(m,n)) # bias variance_list.append(variance(sigma2, m)) #total error total_error = np.array(bias_list) + np.array(variance_list) plt.plot(m_list,variance_list, label="Average Variance") plt.plot(m_list,bias_list, label="Average Bias") plt.plot(m_list,total_error, label="Total Error") plt.plot(m_list,empirical_error, label="Average Empirical Error") plt.xlabel("Step Size") plt.ylabel("Average Error") plt.legend() # plt.savefig('pic_1.png') ###Output _____no_output_____ ###Markdown B.1 e. ###Code def polyfeatures(X, degree): """ Expands the given X into an n * d array of polynomial features of degree d. Returns: A n-by-d numpy array, with each row comprising of X, X * X, X ** 3, ... up to the dth power of X. Note that the returned matrix will not include the zero-th power. Arguments: X is an n-by-1 column numpy array degree is a positive integer """ outputX = X[:] for i in range(2, degree + 1): outputX = np.hstack((outputX,X**i)) return outputX X = polyfeatures(X, 8) X X[:] print(np.mean(X, axis=0)) np.std(X, axis=0) (X - np.mean(X, axis=0)) / np.std(X, axis=0) np.c_[np.ones([len(X), 1]), X] filePath = "data/polydata.dat" file = open(filePath,'r') allData = np.loadtxt(file, delimiter=',') X = allData[:, [0]] y = allData[:, [1]] X class PolynomialRegression: def __init__(self, degree=1, reg_lambda=1E-8): """ Constructor """ self.theta = None self.regLambda = reg_lambda self.degree = degree def polyfeatures(self, X, degree): """ Expands the given X into an n * d array of polynomial features of degree d. Returns: A n-by-d numpy array, with each row comprising of X, X * X, X ** 3, ... up to the dth power of X. Note that the returned matrix will not include the zero-th power. Arguments: X is an n-by-1 column numpy array degree is a positive integer """ outputX = X[:] for i in range(2, degree + 1): outputX = np.hstack((outputX,X**i)) return outputX def fit(self, X, y): """ Trains the model Arguments: X is a n-by-1 array y is an n-by-1 array Returns: No return value Note: You need to apply polynomial expansion and scaling at first """ n = len(X) # standardization X = (X - np.mean(X, axis=0)) / np.std(X, axis=0) X = self.polyfeatures(X, self.degree) print(X) X = np.c_[np.ones([n, 1]), X] # add 1s column n, d = X.shape self.theta = np.linalg.solve((X.T @ X) + self.regLambda*np.identity(d), X.T @ y) print(self.theta) def predict(self, X): """ Use the trained model to predict values for each instance in X Arguments: X is a n-by-1 numpy array Returns: an n-by-1 numpy array of the predictions """ n = len(X) X = self.polyfeatures(X, self.degree) X = (X - np.mean(X, axis=0)) / np.std(X, axis=0) # add 1s column X_ = np.c_[np.ones([n, 1]), X] # predict return X_ @ self.theta def trainPredicted(self, X): n = len(X) X = self.polyfeatures(X, self.degree) X = (X - np.mean(X, axis=0)) / np.std(X, axis=0) # add 1s column X_ = np.c_[np.ones([n, 1]), X] # predict return X_ @ self.theta from sklearn import model_selection loo = model_selection.LeaveOneOut() for train_index, test_index in loo.split(X): Xtrain, Xtest = X[train_index], X[test_index] ytrain, ytest = y[train_index], y[test_index] n = len(Xtrain) errorTrain = np.zeros(n) errorTest = np.zeros(n) for i in range(1, 1 + 1): model = PolynomialRegression(8, 0) model.fit(Xtrain[:i], Ytrain[:i]) testPredicted = model.predict(Xtest) singleErrorFromTrain = np.mean((model.trainPredicted(Xtrain[:i]) - ytrain[:i])**2) errorTrain = np.append(errorTrain, singleErrorFromTrain) singleErrorFromTest = np.mean((testPredicted - ytest[:i])**2) errorTest = np.append(errorTest, singleErrorFromTest) import mnist import numpy as np mndata = mnist.MNIST("./python-mnist/data/") X_train, labels_train = map(np.array, mndata.load_training()) X_test, labels_test = map(np.array, mndata.load_testing()) X_train = X_train/255.0 X_test = X_test/255.0 # Train function def train(X,y,lam): n, d = X.shape y = np.eye(10)[y] # put y into a one hot encoding matrix W = np.linalg.pinv(X.T @ X + lam*np.identity(d)) @ (X.T @ y) return W def predict(W, X_new): return (X_new @ W_hat).argmax(axis=1) # Compute weights W_hat = train(X_train, labels_train, lam = 0.0001) # Computed predicted training label predicted_train = predict(W=W_hat, X_new=X_train) # Compute predicted testing label predicted = predict(W=W_hat, X_new=X_test) # Compute error rate for both training and testing train_error_rate = 1 -( sum(predicted_train == labels_train) / len(labels_train)) test_error_rate = 1 - (sum(predicted == labels_test) / len(labels_test)) print("Training Error is: ", train_error_rate) print("Testing Error Rate is: ", test_error_rate) #Training Error is: 0.14806666666666668 #Testing Error Rate is: 0.14659999999999995 W_hat X_train[0] @ W_hat X_train.shape np.eye(10)[labels_train][0] p = 100 n, d = X_train.shape G = np.random.normal(0, np.sqrt(0.1), p*d).reshape((p, d)) b = np.random.uniform(0, 2*np.pi, p).reshape((p,1)) h = ((G @ X_train.T)+b).T h[0] a= np.random.permutation([[1, 4, 9, 12, 15], [2,2,2,2,2], [3,3,3,3,3]]) a np.cos((((G @ X_train.T)+b).T)[0]) ###Output _____no_output_____ ###Markdown B2.A ###Code %%time import numpy as np import matplotlib.pyplot as plt import mnist bestw = None mndata = mnist.MNIST('./python-mnist/data/') X_train, labels_train = map(np.array, mndata.load_training()) X_test, labels_test = map(np.array, mndata.load_testing()) X_train = X_train/255.0 X_test = X_test/255.0 # This function trains the model the return the weights def train(X, Y): lambda_ = 0.0001 n, d = np.shape(X) reg_matrix = lambda_ * np.identity(d) reg_matrix[0,0] = 0 W = np.linalg.solve(X.T @ X + reg_matrix, X.T @ Y) return W # This function do the prediction def predict(W,X): return (X @ W).argmax(axis = 1) # This function applt the transformation to data def h1(X_train, p): n, d = X_train.shape var = np.sqrt(0.1) G = np.random.normal(0, var, p * d).reshape(p, d) b = np.random.uniform(0, 2 * np.pi, p).reshape(1, p) h = np.cos(np.dot(X_train, G.T) + b.T) return h n, d = X_train.shape training_error_all = [] validing_error_all = [] W_list = [] # loop from p=500 to p=6000, step=500 for p in list(range(500, 6001, 500)): h = h1(X_train, p) # Train test split with 80%-20% train_index = np.random.choice(np.arange(n), int(X_train.shape[0] * 0.8), replace=False) valid_index = np.setdiff1d(np.arange(n), train_index) train_data = h[train_index, :] valid_data = h[valid_index, :] y_train = np.eye(10)[labels_train[train_index]] # Compute weights W_hat = train(train_data, y_train) W_list.append(W_hat) # Compute train predicted predict_train = predict(W_hat, train_data) predict_train = labels_train[train_index] - predict_train train_error_single = np.count_nonzero(predict_train) / len(predict_train) #train_size training_error_all.append(train_error_single) # Compute test predicted predicted_test = predict(W_hat, valid_data) predicted_test = labels_train[valid_index] - predicted_test valid_error_single = np.count_nonzero(predicted_test) / len(predicted_test) validing_error_all.append(valid_error_single) print("p: ", p,", train_err: ", train_error_single, ", test_err: ", valid_error_single) %%time x_index = list(range(500, 6001, 500)) plt.plot(x_index, training_error_all, label="Training Error") plt.scatter(x_index, training_error_all) plt.plot(x_index, validing_error_all, label="Testing Error") plt.scatter(x_index, validing_error_all) plt.xlabel("P") plt.ylabel("Prediction Error Rate") plt.legend() plt.savefig('pic_2.png') ###Output CPU times: user 5.96 s, sys: 1.14 s, total: 7.1 s Wall time: 7.25 s ###Markdown B2.b ###Code %%time # This function trains the model the return the weights def train(X, Y): lambda_ = 0.0001 n, d = np.shape(X) reg_matrix = lambda_ * np.identity(d) reg_matrix[0,0] = 0 W = np.linalg.solve(X.T @ X + reg_matrix, X.T @ Y) return W # This function do the prediction def predict(W,X): return (X @ W).argmax(axis = 1) # This function applt the transformation to data def h1(X_train, p): n, d = X_train.shape var = np.sqrt(0.1) G = np.random.normal(0, var, p * d).reshape(p, d) b = np.random.uniform(0, 2 * np.pi, p).reshape(1, p) h = np.cos(G @ X_train.T).T return h n, d = X_train.shape training_error_all = [] validing_error_all = [] W_list = [] # Train test split with 80%-20% h = h1(X_train, p) train_index = np.random.choice(np.arange(n), int(X_train.shape[0] * 0.8), replace=False) valid_index = np.setdiff1d(np.arange(n), train_index) train_data = h[train_index, :] valid_data = h[valid_index, :] y_train = np.eye(10)[labels_train[train_index]] # loop from p=500 to p=6000, step=500 for p in [6000]: # Compute weights W_hat = train(train_data, y_train) W_list.append(W_hat) # Compute train predicted predict_train = predict(W_hat, train_data) predict_train = labels_train[train_index] - predict_train train_error_single = np.count_nonzero(predict_train) / len(predict_train) #train_size training_error_all.append(train_error_single) # Compute test predicted predicted_test = predict(W_hat, valid_data) predicted_test = labels_train[valid_index] - predicted_test valid_error_single = np.count_nonzero(predicted_test) / len(predicted_test) validing_error_all.append(valid_error_single) print("p: ", p,", train_err: ", train_error_single, ", test_err: ", valid_error_single) %%time mndata = mnist.MNIST('./python-mnist/data/') X_train, labels_train = map(np.array, mndata.load_training()) X_test, labels_test = map(np.array, mndata.load_testing()) X_train = X_train/255.0 X_test = X_test/255.0 # This function trains the model the return the weights def train(X, Y): lambda_ = 0.0001 n, d = np.shape(X) X = np.c_[np.ones([n, 1]), X] reg_matrix = lambda_ * np.identity(d+1) reg_matrix[0,0] = 0 W = np.linalg.solve(X.T @ X + reg_matrix, X.T @ Y) return W # This function do the prediction def predict(W,X): n = len(X) X = np.c_[np.ones([n, 1]), X] return (X @ W).argmax(axis = 1) # # This function applt the transformation to data # def h1(X_train, p): # n, d = X_train.shape # var = np.sqrt(0.1) # G = np.random.normal(0, var, p * d).reshape(p, d) # b = np.random.uniform(0, 2 * np.pi, p).reshape(1, p) # h = np.cos(G @ X_train.T).T # return h def h1 (X , p , train = True ) : n , d = X.shape # Generate a random matrix G, # where each entry sampled i.i.d. from a Gaussian ( mean = 0, variance = 0.1) if train: G = np.random.normal (0 , np.sqrt(0.1) , (p , d)) # Generate a random vector b, where each item is Unif (0 , 2pi) b = np.random.uniform (0 , 2 * np.pi,(1 , p )) else: G = None b = None # return the transformed X: h(X) = cos (GX ’ + b) return np.cos(np.matmul(G , X.T).T + b) dt =0.05 # Delta = 0.05 p = 6000 # From previous question, the best p is 6000. best_W = W_list[-1] # The W when p is 6000 sigma = np.sqrt(0.1) n, d = X_test.shape h = h1(X_test, p) predicted = predict(best_W, h) test_error = sum(predicted == labels_test) / predicted.size H = np.sqrt(np.log(2/dt)/(2*predicted.size)) print(f'The test_error is {test_error}') print(f'Confidence Interval:[{test_error - H} : {test_error + H}]') # The test_error is 0.1197 # Confidence Interval:[0.1061189848425938 : 0.1332810151574062] %%time # This function trains the model the return the weights def train(X, Y, lambda_ = 0.0001): n, d = np.shape(X) reg_matrix = lambda_ * np.identity(d) reg_matrix[0,0] = 0 W = np.linalg.solve(X.T @ X + reg_matrix, X.T @ Y) return W # This function do the prediction def predict(W,X): return (X @ W).argmax(axis = 1) n, d = X_train.shape sigma = np.sqrt(0.1) p = 6000 G = np.random.normal(0, sigma, p * d).reshape(p, d) b = np.random.uniform(0, 2 * np.pi, p).reshape(1, p) # This function applt the transformation to data def h1(X_train, G, b): return np.cos(np.dot(X_train, G.T) + b.T) dt =0.05 # Delta = 0.05 p = 6000 # From previous question, the best p is 6000. # Gew W h_train = h1(X_train, G, b) y_train = np.eye(10)[labels_train] best_W = train(h_train, y_train, lambda_= 0.01) print('train complete') sigma = np.sqrt(0.1) n, d = X_test.shape h_test = h1(X_test, G, b) predicted = predict(best_W, h_test) print('predict complete') test_error = sum(predicted == labels_test) / predicted.size H = np.sqrt(np.log(2/dt)/(2*predicted.size)) print(f'The test_error is {test_error}') print(f'Confidence Interval:[{test_error - H} : {test_error + H}]') # The test_error is 0.1197 # Confidence Interval:[0.1061189848425938 : 0.1332810151574062] train_percent = 0.8 ori_train_size = X_train.shape[0] ori_test_size = X_test.shape[0] Y_train = np.eye(10)[labels_train] lam = 0.01 variance = 0.1 p = 6000 d = X_test.shape[1] G = np.random.normal(0, np.sqrt(variance), size = (p,d)) b = np.random.uniform(low=0, high=2*np.pi, size=(p,1)) def transform(X, p): d = X_test.shape[1] G = np.random.normal(0, np.sqrt(variance), size = (p,d)) b = np.random.uniform(low=0, high=2*np.pi, size=(p,1)) return np.cos(np.dot(X_test, G.T) + b.T) index = np.arange(ori_train_size) np.random.shuffle(index) train_index = index[0:int(train_percent * ori_train_size)] validation_index = index[int(train_percent * ori_train_size) : ] shuffled_labels_validation = labels_train[validation_index] shuffled_labels_train = labels_train[train_index] new_Y_train = Y_train[train_index, :] transed_X_train= np.cos(np.dot(X_train, G.T) + b.T) # transed_X_train = transform(X_train, p) new_X_train = transed_X_train[train_index, :] new_X_validate = transed_X_train[validation_index, :] Wp = train(new_X_train, new_Y_train) traned_X_test = np.cos(np.dot(X_test, G.T) + b.T) # traned_X_test = transform(X_test, p) test_pre = predict(Wp, traned_X_test) test_error = sum([1 for i in range(len(test_pre)) if test_pre[i] != labels_test[i] ]) / len(test_pre) q = X_test.shape[0] interval = np.sqrt(np.log(40) / (2*q)) print(test_error) test_error import numpy as np import matplotlib.pyplot as plt import mnist mndata = mnist.MNIST('./python-mnist/data/') X_train, labels_train = map(np.array, mndata.load_training()) X_test, labels_test = map(np.array, mndata.load_testing()) X_train = X_train/255.0 X_test = X_test/255.0 # This function trains the model the return the weights def train(X, Y): lambda_ = 0.0001 n, d = np.shape(X) W = np.linalg.solve(X.T @ X + lambda_ * np.identity(d), X.T @ Y) return W # This function do the prediction def predict(W,X): return (X @ W).argmax(axis = 1) # This function applt the transformation to data def h1(X_train, X_test, p): n, d = X_train.shape sigma = np.sqrt(0.1) G = np.random.normal(0, sigma, p * d).reshape(p, d) b = np.random.uniform(0, 2 * np.pi, p).reshape(p, 1) h_train = np.cos(np.dot(X_train, G.T) + b.T) h_test = np.cos(np.dot(X_test, G.T) + b.T) return h_train, h_test, G, b n, d = X_train.shape training_error_all = [] validing_error_all = [] W_list = [] Gb_list = [] train_index = np.random.choice(np.arange(n), int(X_train.shape[0] * 0.8), replace=False) valid_index = np.setdiff1d(np.arange(n), train_index) # loop from p=500 to p=6000, step=500 for p in list(range(500, 6001, 500)): h_train, h_test, G, b = h1(X_train[train_index, :], X_train[valid_index, :], p) # h = h1(X_train, p) # Train test split with 80%-20% Gb_list.append((G,b)) train_data = h_train valid_data = h_test y_train = np.eye(10)[labels_train[train_index]] # Compute weights W_hat = train(train_data, y_train) W_list.append(W_hat) # Compute train predicted predict_train = predict(W_hat, train_data) predict_train = labels_train[train_index] - predict_train train_error_single = np.count_nonzero(predict_train) / len(predict_train) #train_size training_error_all.append(train_error_single) # Compute test predicted predicted_test = predict(W_hat, valid_data) predicted_test = labels_train[valid_index] - predicted_test valid_error_single = np.count_nonzero(predicted_test) / len(predicted_test) validing_error_all.append(valid_error_single) print("p: ", p,", train_err: ", train_error_single, ", test_err: ", valid_error_single) x_index = list(range(500, 6001, 500)) plt.plot(x_index, training_error_all, label="Training Error") plt.scatter(x_index, training_error_all) plt.plot(x_index, validing_error_all, label="Testing Error") plt.scatter(x_index, validing_error_all) plt.xlabel("P") plt.ylabel("Prediction Error Rate") plt.legend() # Here I am using the testing data to finalize the error rate. # The testing data which I did not use in previous question. # Used weight from the best weight from previous question. # Used G and b in the previous question to transform the testing data. mndata = mnist.MNIST('./python-mnist/data/') X_train, labels_train = map(np.array, mndata.load_training()) X_test, labels_test = map(np.array, mndata.load_testing()) X_train = X_train/255.0 X_test = X_test/255.0 dt =0.05 # Delta = 0.05 p = 6000 # From previous question, the best p is 6000. W_best = W_list[-1] sigma = np.sqrt(0.1) G = Gb_list[-1][0] b = Gb_list[-1][1] h_test = np.cos(np.dot(X_test, G.T) + b.T) y_train = np.eye(10)[labels_train] print("transform done") predicted = (h_test @ W_best).argmax(axis = 1) print("predict done") test_error = sum(predicted == labels_test) / predicted.size H = np.sqrt(np.log(2/dt)/(2*predicted.size)) print(f'The test_error is {test_error}') print(f'Confidence Interval:[{test_error - H} : {test_error + H}]') # The test_error is 0.9506 # Confidence Interval:[0.9370189848425938 : 0.9641810151574062] import numpy as np import matplotlib.pyplot as plt import mnist mndata = mnist.MNIST('./python-mnist/data/') X_train, labels_train = map(np.array, mndata.load_training()) X_test, labels_test = map(np.array, mndata.load_testing()) X_train = X_train/255.0 X_test = X_test/255.0 # This function trains the model the return the weights def train(X, Y): lambda_ = 0.0001 n, d = np.shape(X) W = np.linalg.solve(X.T @ X + lambda_ * np.identity(d), X.T @ Y) return W # This function do the prediction def predict(W,X): return (X @ W).argmax(axis = 1) # This function applt the transformation to data def h1(X_train, X_test, p): n, d = X_train.shape sigma = np.sqrt(0.1) G = np.random.normal(0, sigma, p * d).reshape(p, d) b = np.random.uniform(0, 2 * np.pi, p).reshape(p, 1) h_train = np.cos(np.dot(X_train, G.T) + b.T) h_test = np.cos(np.dot(X_test, G.T) + b.T) return h_train, h_test, G, b %%time n, d = X_train.shape p = 6000 dt = 0.05 sigma = np.sqrt(0.1) h_train, h_test, G, b = h1(X_train, X_test, p) y_train = np.eye(10)[labels_train] # Compute weights W_hat = train(h_train, y_train) # Compute test predicted predicted_test = predict(W_hat, h_test) valid_error_single = 1 - (sum(labels_test == predicted_test) / len(labels_test)) H = np.sqrt(np.log(2/dt)/(2*len(labels_test))) print(f'The test_error is {valid_error_single}') print(f'Confidence Interval:[{valid_error_single - H} : {valid_error_single + H}]') # The test_error is 0.04600000000000004 # Confidence Interval:[0.03241898484259385 : 0.059581015157406235] 1 - (sum(labels_test == predicted_test) / len(labels_test)) (h_test @ W_best).argmax(axis = 1) predict(W_list[-1], h_test) W_list[-1].shape predicted = predict(W_list[-1], h_test) print("predict done") test_error = sum(predicted == labels_test) / predicted.size test_error ###Output _____no_output_____