premise
stringlengths
12
3.12k
hypothesis
stringlengths
10
236
label
stringclasses
3 values
premise_tptp
stringlengths
51
8k
hypothesis_tptp
stringlengths
41
352
proof_inputs
sequencelengths
0
20
proof
stringlengths
767
76.8k
rule_concentration
float64
0
0.72
Daisy, Melissa, Donald, Christina are the only persons in the room. “It is not the case that “more than one person in the room works on fridays”” unless “Christina writes poetry”. Daisy works on fridays. Melissa works on fridays. Donald writes poetry. Christina writes poetry. Donald collects modern art. Daisy is a wine connoisseur with a private cellar of vintage wines. Christina collects modern art. Donald is a wine connoisseur with a private cellar of vintage wines. If someone writes poetry then he/she works on fridays. Daisy writes poetry. It is not the case that “Melissa is a wine connoisseur with a private cellar of vintage wines, works on fridays and collects modern art”. Donald works on fridays. If someone writes poetry or works on fridays or both then he/she writes poetry and vice versa. Melissa collects modern art. Only one person in the room either writes poetry or is a wine connoisseur with a private cellar of vintage wines but not both. Daisy either collects modern art or writes poetry but not both. If someone neither writes poetry nor is a wine connoisseur with a private cellar of vintage wines then he/she writes poetry. Melissa writes poetry.
Christina is a wine connoisseur with a private cellar of vintage wines.
entailment
room(daisy)&room(melissa)&room(donald)&room(christina)&(![X]:(room(X)=>(X='daisy'|X='melissa'|X='donald'|X='christina')))& (~(writes_poetry(christina))=>(~((?[X,Y]:(room(X)&room(Y)&(works_on_fridays(X)&works_on_fridays(Y))&(X!=Y))))))& (works_on_fridays(daisy))& (works_on_fridays(melissa))& (writes_poetry(donald))& (writes_poetry(christina))& (collects_modern_art(donald))& (is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(daisy))& (collects_modern_art(christina))& (is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(donald))& ((![X]:((writes_poetry(X))=>(works_on_fridays(X)))))& (writes_poetry(daisy))& (~(((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(melissa))&(works_on_fridays(melissa))&(collects_modern_art(melissa)))))& (works_on_fridays(donald))& ((![X]:((((writes_poetry(X))|(works_on_fridays(X))))<=>(writes_poetry(X)))))& (collects_modern_art(melissa))& (((?[X]:(room(X)&((writes_poetry(X))<~>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X)))))&(![X,Y]:((room(X)&room(Y)&(((writes_poetry(X))<~>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))&(((writes_poetry(Y))<~>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(Y)))))=>(X=Y)))))& (((collects_modern_art(daisy))<~>(writes_poetry(daisy))))& ((![X]:((~((writes_poetry(X))|(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))=>(writes_poetry(X)))))& (writes_poetry(melissa))
room(daisy)&room(melissa)&room(donald)&room(christina)&(![X]:(room(X)=>(X='daisy'|X='melissa'|X='donald'|X='christina')))& is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(christina)
[ "b42", "p0", "p3", "p12", "p15", "p16", "p18", "p19", "hypothesis" ]
% SZS status Unsatisfiable for 847001443982661330757886 % SZS output start Proof for 847001443982661330757886 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 47. predc(paul) [input p3] 56. ~(predb(paul) & predc(paul) & preda(paul)) [input p12] 59. predb(paul) [input p15] 60. ! [X0,X1] : (((predd(X1) <~> preda(X1)) & (predd(X0) <~> preda(X0)) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : ((predd(X0) <~> preda(X0)) & room(X0)) [input p16] 62. ! [X0] : (~(preda(X0) | predd(X0)) => predd(X0)) [input p18] 63. predd(paul) [input p19] 64. ~(preda(alice) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 65. ! [X0,X1] : (((predd(X1) <~> preda(X1)) & (predd(X0) <~> preda(X0)) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : ((predd(X2) <~> preda(X2)) & room(X2)) [rectify 60] 138. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 139. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 138] 142. ~predb(paul) | ~predc(paul) | ~preda(paul) [ennf transformation 56] 143. ! [X0,X1] : (X0 = X1 | ((predd(X1) <=> preda(X1)) | (predd(X0) <=> preda(X0)) | ~room(X1) | ~room(X0))) & ? [X2] : ((predd(X2) <~> preda(X2)) & room(X2)) [ennf transformation 65] 144. ! [X0,X1] : (X0 = X1 | (predd(X1) <=> preda(X1)) | (predd(X0) <=> preda(X0)) | ~room(X1) | ~room(X0)) & ? [X2] : ((predd(X2) <~> preda(X2)) & room(X2)) [flattening 143] 145. ! [X0] : (predd(X0) | (preda(X0) | predd(X0))) [ennf transformation 62] 146. ! [X0] : (predd(X0) | preda(X0) | predd(X0)) [flattening 145] 147. ~preda(alice) | ? [X0] : ((alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 64] 148. ~preda(alice) | ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 147] 152. ! [X0,X1] : (X0 = X1 | ((predd(X1) | ~preda(X1)) & (preda(X1) | ~predd(X1))) | ((predd(X0) | ~preda(X0)) & (preda(X0) | ~predd(X0))) | ~room(X1) | ~room(X0)) & ? [X2] : (((~preda(X2) | ~predd(X2)) & (preda(X2) | predd(X2))) & room(X2)) [nnf transformation 144] 153. ! [X0,X1] : (X0 = X1 | ((predd(X1) | ~preda(X1)) & (preda(X1) | ~predd(X1))) | ((predd(X0) | ~preda(X0)) & (preda(X0) | ~predd(X0))) | ~room(X1) | ~room(X0)) & ? [X2] : ((~preda(X2) | ~predd(X2)) & (preda(X2) | predd(X2)) & room(X2)) [flattening 152] 154. ? [X2] : ((~preda(X2) | ~predd(X2)) & (preda(X2) | predd(X2)) & room(X2)) => ((~preda(sK0) | ~predd(sK0)) & (preda(sK0) | predd(sK0)) & room(sK0)) [choice axiom] 155. ! [X0,X1] : (X0 = X1 | ((predd(X1) | ~preda(X1)) & (preda(X1) | ~predd(X1))) | ((predd(X0) | ~preda(X0)) & (preda(X0) | ~predd(X0))) | ~room(X1) | ~room(X0)) & ((~preda(sK0) | ~predd(sK0)) & (preda(sK0) | predd(sK0)) & room(sK0)) [skolemisation 153,154] 157. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK1 & fred != sK1 & paul != sK1 & mary != sK1 & room(sK1)) [choice axiom] 158. ~preda(alice) | (alice != sK1 & fred != sK1 & paul != sK1 & mary != sK1 & room(sK1)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 148,157] 216. paul != alice [cnf transformation 43] 239. room(mary) [cnf transformation 139] 240. room(paul) [cnf transformation 139] 241. room(fred) [cnf transformation 139] 242. room(alice) [cnf transformation 139] 243. ~room(X0) | fred = X0 | paul = X0 | mary = X0 | alice = X0 [cnf transformation 139] 246. predc(paul) [cnf transformation 47] 255. ~predb(paul) | ~predc(paul) | ~preda(paul) [cnf transformation 142] 260. predb(paul) [cnf transformation 59] 264. ~predd(X1) | preda(X1) | X0 = X1 | preda(X0) | ~predd(X0) | ~room(X1) | ~room(X0) [cnf transformation 155] 270. predd(X0) | preda(X0) | predd(X0) [cnf transformation 146] 271. predd(paul) [cnf transformation 63] 272. ~preda(alice) | room(sK1) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 158] 273. ~preda(alice) | mary != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 158] 274. ~preda(alice) | paul != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 158] 275. ~preda(alice) | fred != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 158] 276. ~preda(alice) | alice != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 158] 277. preda(X0) | predd(X0) [duplicate literal removal 270] 287. ~predb(paul) | ~preda(paul) [subsumption resolution 255,246] 289. 3 <=> preda(paul) [avatar definition] 291. ~preda(paul) <- (~3) [avatar component clause 289] 293. 4 <=> predb(paul) [avatar definition] 296. ~3 | ~4 [avatar split clause 287,293,289] 297. 4 [avatar split clause 260,293] 309. ~preda(alice) | alice != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 276,242] 310. ~preda(alice) | alice != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 309,241] 311. ~preda(alice) | alice != sK1 | ~room(mary) [subsumption resolution 310,240] 312. ~preda(alice) | alice != sK1 [subsumption resolution 311,239] 314. 7 <=> alice = sK1 [avatar definition] 316. alice != sK1 <- (~7) [avatar component clause 314] 318. 8 <=> preda(alice) [avatar definition] 321. ~7 | ~8 [avatar split clause 312,318,314] 322. ~preda(alice) | fred != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 275,242] 323. ~preda(alice) | fred != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 322,241] 324. ~preda(alice) | fred != sK1 | ~room(mary) [subsumption resolution 323,240] 325. ~preda(alice) | fred != sK1 [subsumption resolution 324,239] 327. 9 <=> fred = sK1 [avatar definition] 329. fred != sK1 <- (~9) [avatar component clause 327] 330. ~9 | ~8 [avatar split clause 325,318,327] 331. ~preda(alice) | paul != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 274,242] 332. ~preda(alice) | paul != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 331,241] 333. ~preda(alice) | paul != sK1 | ~room(mary) [subsumption resolution 332,240] 334. ~preda(alice) | paul != sK1 [subsumption resolution 333,239] 336. 10 <=> paul = sK1 [avatar definition] 338. paul != sK1 <- (~10) [avatar component clause 336] 339. ~10 | ~8 [avatar split clause 334,318,336] 340. ~preda(alice) | mary != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 273,242] 341. ~preda(alice) | mary != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 340,241] 342. ~preda(alice) | mary != sK1 | ~room(mary) [subsumption resolution 341,240] 343. ~preda(alice) | mary != sK1 [subsumption resolution 342,239] 345. 11 <=> mary = sK1 [avatar definition] 347. mary != sK1 <- (~11) [avatar component clause 345] 348. ~11 | ~8 [avatar split clause 343,318,345] 349. ~preda(alice) | room(sK1) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 272,242] 350. ~preda(alice) | room(sK1) | ~room(paul) | ~room(mary) [subsumption resolution 349,241] 351. ~preda(alice) | room(sK1) | ~room(mary) [subsumption resolution 350,240] 352. ~preda(alice) | room(sK1) [subsumption resolution 351,239] 354. 12 <=> room(sK1) [avatar definition] 356. room(sK1) <- (12) [avatar component clause 354] 357. 12 | ~8 [avatar split clause 352,318,354] 440. preda(paul) | paul = X1 | preda(X1) | ~predd(X1) | ~room(paul) | ~room(X1) [resolution 264,271] 443. paul = X1 | preda(X1) | ~predd(X1) | ~room(paul) | ~room(X1) <- (~3) [subsumption resolution 440,291] 444. paul = X1 | preda(X1) | ~predd(X1) | ~room(X1) <- (~3) [subsumption resolution 443,240] 445. ~room(X1) | preda(X1) | paul = X1 <- (~3) [subsumption resolution 444,277] 452. preda(alice) | paul = alice <- (~3) [resolution 445,242] 456. preda(alice) <- (~3) [subsumption resolution 452,216] 457. 8 | 3 [avatar split clause 456,289,318] 481. fred = sK1 | paul = sK1 | mary = sK1 | alice = sK1 <- (12) [resolution 356,243] 483. paul = sK1 | mary = sK1 | alice = sK1 <- (~9, 12) [subsumption resolution 481,329] 484. mary = sK1 | alice = sK1 <- (~9, ~10, 12) [subsumption resolution 483,338] 485. alice = sK1 <- (~9, ~10, ~11, 12) [subsumption resolution 484,347] 486. $false <- (~7, ~9, ~10, ~11, 12) [subsumption resolution 485,316] 487. 7 | 9 | 10 | 11 | ~12 [avatar contradiction clause 486] 488. $false [avatar sat refutation 296,297,321,330,339,348,357,457,487] % SZS output end Proof for 847001443982661330757886 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.482906
Annie, Rebecca, Allen are the only persons in the room. If “it is not the case that “Annie is a curious person, is not a creative generous quiet person and is not a tall person”” then “Annie dreamt that “only one person in the room is quieter than Carmen””. If “it is not the case that “Allen is a humble kind person”” then “Rebecca is a funny strong person”. If “Rebecca is a funny strong person” then “William is older than Allen”. “If someone either is a creative generous person or is quieter than William but not both then he/she is not quiet, not funny, not creative and vice versa” if “Allen is not a wise curious person”. “Allen neither is older than Carmen nor is not a creative generous person” if “Annie is richer than William”. If “Annie and Rebecca are respectively quiet and happy” then “Rebecca is not quiet”. If “Rebecca is not quiet” then “Annie neither is older than William nor is quieter than Carmen”. Rebecca neither is tall nor is a creative person. Rebecca is quieter than William. If someone is not a tall patient person then he/she is not funny. All patient persons are generous. Annie dreamt that “Rebecca is patient”. Allen is a curious person. Annie is not a kind person.
Rebecca and Annie are not a funny quiet tall generous wise persons.
entailment
room(annie)&room(rebecca)&room(allen)&(![X]:(room(X)=>(X='annie'|X='rebecca'|X='allen')))& ((~(((curious(annie)&person(annie))&(~(creative(annie)&generous(annie)&quiet(annie)&person(annie)))&(~(tall(annie)&person(annie))))))=>((annie_dream=>(((?[X]:(room(X)&quieter(carmen,X)))&(![X,Y]:((room(X)&room(Y)&(quieter(carmen,X))&(quieter(carmen,Y)))=>(X=Y))))))))& (((~(humble(allen)&kind(allen)&person(allen)))=>(funny(rebecca)&strong(rebecca)&person(rebecca)))& ((funny(rebecca)&strong(rebecca)&person(rebecca))=>(older(allen,william))))& ((~(wise(allen)&curious(allen)&person(allen)))=>((![X]:((((creative(X)&generous(X)&person(X))<~>(quieter(william,X))))<=>(~quiet(X)&~funny(X)&~creative(X))))))& ((richer(william,annie))=>(~((older(carmen,allen))|(~(creative(allen)&generous(allen)&person(allen))))))& ((((quiet(annie))&(happy(rebecca)))=>(~quiet(rebecca)))& ((~quiet(rebecca))=>(~((older(william,annie))|(quieter(carmen,annie))))))& (~((tall(rebecca))|(creative(rebecca)&person(rebecca))))& (quieter(william,rebecca))& ((![X]:((~(tall(X)&patient(X)&person(X)))=>(~funny(X)))))& (![X]:(patient(X)=>generous(X)))& ((annie_dream=>(patient(rebecca))))& (curious(allen)&person(allen))& (~(kind(annie)&person(annie)))& (~(wise(rebecca)&person(rebecca)))& ((generous(allen)&person(allen))&(~(strong(allen)&person(allen))))& (~(quiet(annie)&person(annie)))& (?[X]:(room(X)&(creative(X)&person(X))))
room(annie)&room(rebecca)&room(allen)&(![X]:(room(X)=>(X='annie'|X='rebecca'|X='allen')))& ~(funny(rebecca)&quiet(rebecca)&tall(rebecca)&generous(rebecca)&wise(rebecca)&person(rebecca))&~(funny(annie)&quiet(annie)&tall(annie)&generous(annie)&wise(annie)&person(annie))
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 1637771078110960182641354 % SZS output start Proof for 1637771078110960182641354 44. ? [X0] : (person(X0) & creative(X0) & room(X0)) & ~(person(mary) & quiet(mary)) & ~(person(fred) & strong(fred)) & person(fred) & generous(fred) & ~(person(paul) & wise(paul)) & ~(person(mary) & kind(mary)) & person(fred) & curious(fred) & (mary_dream => patient(paul)) & ! [X0] : (patient(X0) => generous(X0)) & ! [X0] : (~(person(X0) & patient(X0) & tall(X0)) => ~funny(X0)) & quieter(alice,paul) & ~((person(paul) & creative(paul)) | tall(paul)) & (~quiet(paul) => ~(quieter(john,mary) | older(alice,mary))) & ((happy(paul) & quiet(mary)) => ~quiet(paul)) & (richer(alice,mary) => ~(~(person(fred) & generous(fred) & creative(fred)) | older(john,fred))) & (~(person(fred) & curious(fred) & wise(fred)) => ! [X0] : (((person(X0) & generous(X0) & creative(X0)) <~> quieter(alice,X0)) <=> (~creative(X0) & ~funny(X0) & ~quiet(X0)))) & ((person(paul) & strong(paul) & funny(paul)) => older(fred,alice)) & (~(person(fred) & kind(fred) & humble(fred)) => (person(paul) & strong(paul) & funny(paul))) & (~(~(person(mary) & tall(mary)) & ~(person(mary) & quiet(mary) & generous(mary) & creative(mary)) & person(mary) & curious(mary)) => (mary_dream => (! [X0,X1] : ((quieter(john,X1) & quieter(john,X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (quieter(john,X0) & room(X0))))) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 45. ~(~(person(mary) & wise(mary) & generous(mary) & tall(mary) & quiet(mary) & funny(mary)) & ~(person(paul) & wise(paul) & generous(paul) & tall(paul) & quiet(paul) & funny(paul)) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 46. ? [X0] : (person(X0) & creative(X0) & room(X0)) & ~(person(mary) & quiet(mary)) & ~(person(fred) & strong(fred)) & person(fred) & generous(fred) & ~(person(paul) & wise(paul)) & ~(person(mary) & kind(mary)) & person(fred) & curious(fred) & (mary_dream => patient(paul)) & ! [X1] : (patient(X1) => generous(X1)) & ! [X2] : (~(person(X2) & patient(X2) & tall(X2)) => ~funny(X2)) & quieter(alice,paul) & ~((person(paul) & creative(paul)) | tall(paul)) & (~quiet(paul) => ~(quieter(john,mary) | older(alice,mary))) & ((happy(paul) & quiet(mary)) => ~quiet(paul)) & (richer(alice,mary) => ~(~(person(fred) & generous(fred) & creative(fred)) | older(john,fred))) & (~(person(fred) & curious(fred) & wise(fred)) => ! [X3] : (((person(X3) & generous(X3) & creative(X3)) <~> quieter(alice,X3)) <=> (~creative(X3) & ~funny(X3) & ~quiet(X3)))) & ((person(paul) & strong(paul) & funny(paul)) => older(fred,alice)) & (~(person(fred) & kind(fred) & humble(fred)) => (person(paul) & strong(paul) & funny(paul))) & (~(~(person(mary) & tall(mary)) & ~(person(mary) & quiet(mary) & generous(mary) & creative(mary)) & person(mary) & curious(mary)) => (mary_dream => (! [X4,X5] : ((quieter(john,X5) & quieter(john,X4) & room(X5) & room(X4)) => X4 = X5) & ? [X6] : (quieter(john,X6) & room(X6))))) & ! [X7] : (room(X7) => (fred = X7 | paul = X7 | mary = X7)) & room(fred) & room(paul) & room(mary) [rectify 44] 47. ? [X0] : (person(X0) & creative(X0) & room(X0)) & ~(person(mary) & quiet(mary)) & ~(person(fred) & strong(fred)) & person(fred) & generous(fred) & ~(person(paul) & wise(paul)) & ~(person(mary) & kind(mary)) & person(fred) & curious(fred) & (mary_dream => patient(paul)) & ! [X1] : (patient(X1) => generous(X1)) & ! [X2] : (~(person(X2) & patient(X2) & tall(X2)) => ~funny(X2)) & quieter(alice,paul) & ~((person(paul) & creative(paul)) | tall(paul)) & (~quiet(paul) => ~(quieter(john,mary) | older(alice,mary))) & (richer(alice,mary) => ~(~(person(fred) & generous(fred) & creative(fred)) | older(john,fred))) & (~(person(fred) & curious(fred) & wise(fred)) => ! [X3] : (((person(X3) & generous(X3) & creative(X3)) <~> quieter(alice,X3)) <=> (~creative(X3) & ~funny(X3) & ~quiet(X3)))) & ((person(paul) & strong(paul) & funny(paul)) => older(fred,alice)) & (~(person(fred) & kind(fred) & humble(fred)) => (person(paul) & strong(paul) & funny(paul))) & (~(~(person(mary) & tall(mary)) & ~(person(mary) & quiet(mary) & generous(mary) & creative(mary)) & person(mary) & curious(mary)) => (mary_dream => (! [X4,X5] : ((quieter(john,X5) & quieter(john,X4) & room(X5) & room(X4)) => X4 = X5) & ? [X6] : (quieter(john,X6) & room(X6))))) & ! [X7] : (room(X7) => (fred = X7 | paul = X7 | mary = X7)) & room(fred) & room(paul) & room(mary) [pure predicate removal 46] 48. ? [X0] : (person(X0) & creative(X0) & room(X0)) & ~(person(mary) & quiet(mary)) & ~(person(fred) & strong(fred)) & person(fred) & generous(fred) & ~(person(paul) & wise(paul)) & ~(person(mary) & kind(mary)) & person(fred) & curious(fred) & (mary_dream => patient(paul)) & ! [X1] : (patient(X1) => generous(X1)) & ! [X2] : (~(person(X2) & patient(X2) & tall(X2)) => ~funny(X2)) & quieter(alice,paul) & ~((person(paul) & creative(paul)) | tall(paul)) & (~quiet(paul) => ~(quieter(john,mary) | older(alice,mary))) & (richer(alice,mary) => ~(~(person(fred) & generous(fred) & creative(fred)) | older(john,fred))) & (~(person(fred) & curious(fred) & wise(fred)) => ! [X3] : (((person(X3) & generous(X3) & creative(X3)) <~> quieter(alice,X3)) <=> (~creative(X3) & ~funny(X3) & ~quiet(X3)))) & ((person(paul) & strong(paul) & funny(paul)) => older(fred,alice)) & (~(person(fred) & kind(fred)) => (person(paul) & strong(paul) & funny(paul))) & (~(~(person(mary) & tall(mary)) & ~(person(mary) & quiet(mary) & generous(mary) & creative(mary)) & person(mary) & curious(mary)) => (mary_dream => (! [X4,X5] : ((quieter(john,X5) & quieter(john,X4) & room(X5) & room(X4)) => X4 = X5) & ? [X6] : (quieter(john,X6) & room(X6))))) & ! [X7] : (room(X7) => (fred = X7 | paul = X7 | mary = X7)) & room(fred) & room(paul) & room(mary) [pure predicate removal 47] 49. ? [X0] : (person(X0) & creative(X0) & room(X0)) & ~(person(mary) & quiet(mary)) & ~(person(fred) & strong(fred)) & person(fred) & generous(fred) & ~(person(paul) & wise(paul)) & ~(person(mary) & kind(mary)) & person(fred) & curious(fred) & ! [X1] : (patient(X1) => generous(X1)) & ! [X2] : (~(person(X2) & patient(X2) & tall(X2)) => ~funny(X2)) & quieter(alice,paul) & ~((person(paul) & creative(paul)) | tall(paul)) & (~quiet(paul) => ~(quieter(john,mary) | older(alice,mary))) & (richer(alice,mary) => ~(~(person(fred) & generous(fred) & creative(fred)) | older(john,fred))) & (~(person(fred) & curious(fred) & wise(fred)) => ! [X3] : (((person(X3) & generous(X3) & creative(X3)) <~> quieter(alice,X3)) <=> (~creative(X3) & ~funny(X3) & ~quiet(X3)))) & ((person(paul) & strong(paul) & funny(paul)) => older(fred,alice)) & (~(person(fred) & kind(fred)) => (person(paul) & strong(paul) & funny(paul))) & ! [X7] : (room(X7) => (fred = X7 | paul = X7 | mary = X7)) & room(fred) & room(paul) & room(mary) [pure predicate removal 48] 50. ? [X0] : (person(X0) & creative(X0) & room(X0)) & ~(person(mary) & quiet(mary)) & ~(person(fred) & strong(fred)) & person(fred) & generous(fred) & ~(person(paul) & wise(paul)) & ~(person(mary) & kind(mary)) & person(fred) & ! [X1] : (patient(X1) => generous(X1)) & ! [X2] : (~(person(X2) & patient(X2) & tall(X2)) => ~funny(X2)) & quieter(alice,paul) & ~((person(paul) & creative(paul)) | tall(paul)) & (~quiet(paul) => ~(quieter(john,mary) | older(alice,mary))) & (richer(alice,mary) => ~(~(person(fred) & generous(fred) & creative(fred)) | older(john,fred))) & (~(person(fred) & wise(fred)) => ! [X3] : (((person(X3) & generous(X3) & creative(X3)) <~> quieter(alice,X3)) <=> (~creative(X3) & ~funny(X3) & ~quiet(X3)))) & ((person(paul) & strong(paul) & funny(paul)) => older(fred,alice)) & (~(person(fred) & kind(fred)) => (person(paul) & strong(paul) & funny(paul))) & ! [X7] : (room(X7) => (fred = X7 | paul = X7 | mary = X7)) & room(fred) & room(paul) & room(mary) [pure predicate removal 49] 123. ? [X0] : (person(X0) & creative(X0) & room(X0)) & (~person(mary) | ~quiet(mary)) & (~person(fred) | ~strong(fred)) & person(fred) & generous(fred) & (~person(paul) | ~wise(paul)) & (~person(mary) | ~kind(mary)) & person(fred) & ! [X1] : (generous(X1) | ~patient(X1)) & ! [X2] : (~funny(X2) | (person(X2) & patient(X2) & tall(X2))) & quieter(alice,paul) & ((~person(paul) | ~creative(paul)) & ~tall(paul)) & ((~quieter(john,mary) & ~older(alice,mary)) | quiet(paul)) & (((person(fred) & generous(fred) & creative(fred)) & ~older(john,fred)) | ~richer(alice,mary)) & (! [X3] : (((person(X3) & generous(X3) & creative(X3)) <~> quieter(alice,X3)) <=> (~creative(X3) & ~funny(X3) & ~quiet(X3))) | (person(fred) & wise(fred))) & (older(fred,alice) | (~person(paul) | ~strong(paul) | ~funny(paul))) & ((person(paul) & strong(paul) & funny(paul)) | (person(fred) & kind(fred))) & ! [X7] : ((fred = X7 | paul = X7 | mary = X7) | ~room(X7)) & room(fred) & room(paul) & room(mary) [ennf transformation 50] 124. ? [X0] : (person(X0) & creative(X0) & room(X0)) & (~person(mary) | ~quiet(mary)) & (~person(fred) | ~strong(fred)) & person(fred) & generous(fred) & (~person(paul) | ~wise(paul)) & (~person(mary) | ~kind(mary)) & person(fred) & ! [X1] : (generous(X1) | ~patient(X1)) & ! [X2] : (~funny(X2) | (person(X2) & patient(X2) & tall(X2))) & quieter(alice,paul) & (~person(paul) | ~creative(paul)) & ~tall(paul) & ((~quieter(john,mary) & ~older(alice,mary)) | quiet(paul)) & ((person(fred) & generous(fred) & creative(fred) & ~older(john,fred)) | ~richer(alice,mary)) & (! [X3] : (((person(X3) & generous(X3) & creative(X3)) <~> quieter(alice,X3)) <=> (~creative(X3) & ~funny(X3) & ~quiet(X3))) | (person(fred) & wise(fred))) & (older(fred,alice) | ~person(paul) | ~strong(paul) | ~funny(paul)) & ((person(paul) & strong(paul) & funny(paul)) | (person(fred) & kind(fred))) & ! [X7] : (fred = X7 | paul = X7 | mary = X7 | ~room(X7)) & room(fred) & room(paul) & room(mary) [flattening 123] 125. (person(mary) & wise(mary) & generous(mary) & tall(mary) & quiet(mary) & funny(mary)) | (person(paul) & wise(paul) & generous(paul) & tall(paul) & quiet(paul) & funny(paul)) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 45] 126. (person(mary) & wise(mary) & generous(mary) & tall(mary) & quiet(mary) & funny(mary)) | (person(paul) & wise(paul) & generous(paul) & tall(paul) & quiet(paul) & funny(paul)) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 125] 127. ! [X3] : (sP0(X3) <=> ((person(X3) & generous(X3) & creative(X3)) <~> quieter(alice,X3))) [predicate definition introduction] 128. ! [X3] : (sP0(X3) <=> (~creative(X3) & ~funny(X3) & ~quiet(X3))) | ~sP1 [predicate definition introduction] 129. ? [X0] : (person(X0) & creative(X0) & room(X0)) & (~person(mary) | ~quiet(mary)) & (~person(fred) | ~strong(fred)) & person(fred) & generous(fred) & (~person(paul) | ~wise(paul)) & (~person(mary) | ~kind(mary)) & person(fred) & ! [X1] : (generous(X1) | ~patient(X1)) & ! [X2] : (~funny(X2) | (person(X2) & patient(X2) & tall(X2))) & quieter(alice,paul) & (~person(paul) | ~creative(paul)) & ~tall(paul) & ((~quieter(john,mary) & ~older(alice,mary)) | quiet(paul)) & ((person(fred) & generous(fred) & creative(fred) & ~older(john,fred)) | ~richer(alice,mary)) & (sP1 | (person(fred) & wise(fred))) & (older(fred,alice) | ~person(paul) | ~strong(paul) | ~funny(paul)) & ((person(paul) & strong(paul) & funny(paul)) | (person(fred) & kind(fred))) & ! [X7] : (fred = X7 | paul = X7 | mary = X7 | ~room(X7)) & room(fred) & room(paul) & room(mary) [definition folding 124,128,127] 130. (person(paul) & wise(paul) & generous(paul) & tall(paul) & quiet(paul) & funny(paul)) | ~sP2 [predicate definition introduction] 131. (person(mary) & wise(mary) & generous(mary) & tall(mary) & quiet(mary) & funny(mary)) | ~sP3 [predicate definition introduction] 132. sP3 | sP2 | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [definition folding 126,131,130] 140. ? [X0] : (person(X0) & creative(X0) & room(X0)) & (~person(mary) | ~quiet(mary)) & (~person(fred) | ~strong(fred)) & person(fred) & generous(fred) & (~person(paul) | ~wise(paul)) & (~person(mary) | ~kind(mary)) & person(fred) & ! [X1] : (generous(X1) | ~patient(X1)) & ! [X2] : (~funny(X2) | (person(X2) & patient(X2) & tall(X2))) & quieter(alice,paul) & (~person(paul) | ~creative(paul)) & ~tall(paul) & ((~quieter(john,mary) & ~older(alice,mary)) | quiet(paul)) & ((person(fred) & generous(fred) & creative(fred) & ~older(john,fred)) | ~richer(alice,mary)) & (sP1 | (person(fred) & wise(fred))) & (older(fred,alice) | ~person(paul) | ~strong(paul) | ~funny(paul)) & ((person(paul) & strong(paul) & funny(paul)) | (person(fred) & kind(fred))) & ! [X3] : (fred = X3 | paul = X3 | mary = X3 | ~room(X3)) & room(fred) & room(paul) & room(mary) [rectify 129] 141. ? [X0] : (person(X0) & creative(X0) & room(X0)) => (person(sK4) & creative(sK4) & room(sK4)) [choice axiom] 142. (person(sK4) & creative(sK4) & room(sK4)) & (~person(mary) | ~quiet(mary)) & (~person(fred) | ~strong(fred)) & person(fred) & generous(fred) & (~person(paul) | ~wise(paul)) & (~person(mary) | ~kind(mary)) & person(fred) & ! [X1] : (generous(X1) | ~patient(X1)) & ! [X2] : (~funny(X2) | (person(X2) & patient(X2) & tall(X2))) & quieter(alice,paul) & (~person(paul) | ~creative(paul)) & ~tall(paul) & ((~quieter(john,mary) & ~older(alice,mary)) | quiet(paul)) & ((person(fred) & generous(fred) & creative(fred) & ~older(john,fred)) | ~richer(alice,mary)) & (sP1 | (person(fred) & wise(fred))) & (older(fred,alice) | ~person(paul) | ~strong(paul) | ~funny(paul)) & ((person(paul) & strong(paul) & funny(paul)) | (person(fred) & kind(fred))) & ! [X3] : (fred = X3 | paul = X3 | mary = X3 | ~room(X3)) & room(fred) & room(paul) & room(mary) [skolemisation 140,141] 143. (person(mary) & wise(mary) & generous(mary) & tall(mary) & quiet(mary) & funny(mary)) | ~sP3 [nnf transformation 131] 144. (person(paul) & wise(paul) & generous(paul) & tall(paul) & quiet(paul) & funny(paul)) | ~sP2 [nnf transformation 130] 145. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK5 & paul != sK5 & mary != sK5 & room(sK5)) [choice axiom] 146. sP3 | sP2 | (fred != sK5 & paul != sK5 & mary != sK5 & room(sK5)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 132,145] 239. room(mary) [cnf transformation 142] 240. room(paul) [cnf transformation 142] 241. room(fred) [cnf transformation 142] 242. ~room(X3) | paul = X3 | mary = X3 | fred = X3 [cnf transformation 142] 258. ~tall(paul) [cnf transformation 142] 261. ~funny(X2) | tall(X2) [cnf transformation 142] 271. ~person(mary) | ~quiet(mary) [cnf transformation 142] 276. quiet(mary) | ~sP3 [cnf transformation 143] 280. person(mary) | ~sP3 [cnf transformation 143] 281. funny(paul) | ~sP2 [cnf transformation 144] 287. sP3 | sP2 | room(sK5) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 146] 288. sP3 | sP2 | mary != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 146] 289. sP3 | sP2 | paul != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 146] 290. sP3 | sP2 | fred != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 146] 312. 6 <=> quiet(mary) [avatar definition] 316. 7 <=> person(mary) [avatar definition] 319. ~6 | ~7 [avatar split clause 271,316,312] 387. 21 <=> funny(paul) [avatar definition] 388. funny(paul) <- (21) [avatar component clause 387] 410. 25 <=> sP3 [avatar definition] 413. ~25 | 7 [avatar split clause 280,316,410] 429. ~25 | 6 [avatar split clause 276,312,410] 436. 30 <=> sP2 [avatar definition] 449. ~30 | 21 [avatar split clause 281,387,436] 450. sP3 | sP2 | fred != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 290,241] 451. sP3 | sP2 | fred != sK5 | ~room(mary) [subsumption resolution 450,240] 452. sP3 | sP2 | fred != sK5 [subsumption resolution 451,239] 454. 32 <=> fred = sK5 [avatar definition] 456. fred != sK5 <- (~32) [avatar component clause 454] 457. ~32 | 30 | 25 [avatar split clause 452,410,436,454] 458. sP3 | sP2 | paul != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 289,241] 459. sP3 | sP2 | paul != sK5 | ~room(mary) [subsumption resolution 458,240] 460. sP3 | sP2 | paul != sK5 [subsumption resolution 459,239] 462. 33 <=> paul = sK5 [avatar definition] 464. paul != sK5 <- (~33) [avatar component clause 462] 465. ~33 | 30 | 25 [avatar split clause 460,410,436,462] 466. sP3 | sP2 | mary != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 288,241] 467. sP3 | sP2 | mary != sK5 | ~room(mary) [subsumption resolution 466,240] 468. sP3 | sP2 | mary != sK5 [subsumption resolution 467,239] 470. 34 <=> mary = sK5 [avatar definition] 472. mary != sK5 <- (~34) [avatar component clause 470] 473. ~34 | 30 | 25 [avatar split clause 468,410,436,470] 474. sP3 | sP2 | room(sK5) | ~room(paul) | ~room(mary) [subsumption resolution 287,241] 475. sP3 | sP2 | room(sK5) | ~room(mary) [subsumption resolution 474,240] 476. sP3 | sP2 | room(sK5) [subsumption resolution 475,239] 478. 35 <=> room(sK5) [avatar definition] 480. room(sK5) <- (35) [avatar component clause 478] 481. 35 | 30 | 25 [avatar split clause 476,410,436,478] 482. tall(paul) <- (21) [resolution 261,388] 483. $false <- (21) [subsumption resolution 482,258] 484. ~21 [avatar contradiction clause 483] 696. paul = sK5 | mary = sK5 | fred = sK5 <- (35) [resolution 242,480] 710. mary = sK5 | fred = sK5 <- (~33, 35) [subsumption resolution 696,464] 711. fred = sK5 <- (~33, ~34, 35) [subsumption resolution 710,472] 712. $false <- (~32, ~33, ~34, 35) [subsumption resolution 711,456] 713. 32 | 33 | 34 | ~35 [avatar contradiction clause 712] 714. $false [avatar sat refutation 319,413,429,449,457,465,473,481,484,713] % SZS output end Proof for 1637771078110960182641354 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.12373
Carlton, Benjamin, James, Pamela are the only persons in the room. Carlton neither is a coffee connoisseur nor enjoys deep-sea diving and exploring underwater caves. If someone is an amateur astronomer who builds and uses custom telescopes then he/she owns a smartwatch and vice versa. At least one person in the room owns a smartwatch. More than one person anywhere regularly contributes to tech forums and online communities. Carlton enjoys cross-country skiing. Everyone in the room owns a smartwatch if they is an expert in identifying and foraging wild edible plants. It is not the case that “someone in the room is an expert in identifying and foraging wild edible plants”. Carlton makes homemade pastries. Everyone in the room does not enjoy trail running if they is a coffee connoisseur. Everyone in the room does not enjoy trail running if they owns a smartwatch and vice versa. Everyone anywhere who enjoys deep-sea diving and exploring underwater caves either does not own a smartwatch or does enjoy trail running but not both.
James enjoys deep-sea diving and exploring underwater caves.
contradiction
room(carlton)&room(benjamin)&room(james)&room(pamela)&(![X]:(room(X)=>(X='carlton'|X='benjamin'|X='james'|X='pamela')))& (~((is_a_coffee_connoisseur(carlton))|(enjoys_deep-sea_diving_and_exploring_underwater_caves(carlton))))& ((![X]:((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))<=>(owns_a_smartwatch(X)))))& (((?[X]:(room(X)&owns_a_smartwatch(X)))))& ((?[X,Y]:(anywhere(X)&anywhere(Y)&(regularly_contributes_to_tech_forums_and_online_communities(X)&regularly_contributes_to_tech_forums_and_online_communities(Y))&(X!=Y))))& (enjoys_cross-country_skiing(carlton))& (![X]:(room(X)=>(((is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))=>(owns_a_smartwatch(X))))))& (~(?[X]:(room(X)&(is_an_expert_in_identifying_and_foraging_wild_edible_plants(X)))))& (makes_homemade_pastries(carlton))& (![X]:(room(X)=>(((is_a_coffee_connoisseur(X))=>(does_not_enjoy_trail_running(X))))))& (![X]:(room(X)=>(((does_not_enjoy_trail_running(X))<=>(owns_a_smartwatch(X))))))& ((![X]:((((enjoys_cross-country_skiing(X))<~>(regularly_contributes_to_tech_forums_and_online_communities(X))))<=>(writes_and_illustrates_their_own_graphic_novels(X)))))& (![X]:(anywhere(X)=>(((enjoys_deep-sea_diving_and_exploring_underwater_caves(X))=>(((does_not_own_a_smartwatch(X))<~>(does_enjoy_trail_running(X))))))))
room(carlton)&room(benjamin)&room(james)&room(pamela)&(![X]:(room(X)=>(X='carlton'|X='benjamin'|X='james'|X='pamela')))& enjoys_deep-sea_diving_and_exploring_underwater_caves(james)
[ "b4", "p0", "p10", "p12", "hypothesis" ]
% SZS status Unsatisfiable for 8524363854425135521225111 % SZS output start Proof for 8524363854425135521225111 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 54. ! [X0] : (room(X0) => (~predd(X0) <=> prede(X0))) [input p10] 56. ! [X0] : (anywhere(X0) => (predc(X0) => (~prede(X0) <~> predd(X0)))) [input p12] 57. predc(fred) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 136. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 137. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 136] 139. ! [X0] : ((~predd(X0) <=> prede(X0)) | ~room(X0)) [ennf transformation 54] 140. ! [X0] : (((~prede(X0) <~> predd(X0)) | ~predc(X0)) | ~anywhere(X0)) [ennf transformation 56] 141. ! [X0] : ((~prede(X0) <~> predd(X0)) | ~predc(X0) | ~anywhere(X0)) [flattening 140] 142. predc(fred) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 57] 143. predc(fred) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 142] 149. ! [X0] : (((~predd(X0) | ~prede(X0)) & (prede(X0) | predd(X0))) | ~room(X0)) [nnf transformation 139] 150. ! [X0] : (((~predd(X0) | prede(X0)) & (predd(X0) | ~prede(X0))) | ~predc(X0) | ~anywhere(X0)) [nnf transformation 141] 151. anywhere(X0) [cnf transformation 5] 234. room(fred) [cnf transformation 137] 243. ~room(X0) | predd(X0) | prede(X0) [cnf transformation 149] 244. ~predd(X0) | ~prede(X0) | ~room(X0) [cnf transformation 149] 245. predd(X0) | ~prede(X0) | ~predc(X0) | ~anywhere(X0) [cnf transformation 150] 246. ~predd(X0) | prede(X0) | ~predc(X0) | ~anywhere(X0) [cnf transformation 150] 252. predc(fred) [cnf transformation 143] 253. ~predd(X0) | prede(X0) | ~predc(X0) [subsumption resolution 246,151] 254. ~prede(X0) | predd(X0) | ~predc(X0) [subsumption resolution 245,151] 257. predd(fred) | prede(fred) [resolution 243,234] 279. 5 <=> prede(fred) [avatar definition] 281. prede(fred) <- (5) [avatar component clause 279] 283. 6 <=> predd(fred) [avatar definition] 285. predd(fred) <- (6) [avatar component clause 283] 286. 5 | 6 [avatar split clause 257,283,279] 316. predd(fred) | ~predc(fred) <- (5) [resolution 281,254] 317. predd(fred) <- (5) [subsumption resolution 316,252] 318. 6 | ~5 [avatar split clause 317,279,283] 319. prede(fred) | ~predc(fred) <- (6) [resolution 285,253] 320. ~prede(fred) | ~room(fred) <- (6) [resolution 285,244] 324. ~prede(fred) <- (6) [subsumption resolution 320,234] 325. ~5 | ~6 [avatar split clause 324,283,279] 326. prede(fred) <- (6) [subsumption resolution 319,252] 327. 5 | ~6 [avatar split clause 326,283,279] 328. $false [avatar sat refutation 286,318,325,327] % SZS output end Proof for 8524363854425135521225111 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0
Joseph, Dallas, Jonathan are the only persons in the room. Someone anywhere has lived in exactly three countries or enjoys logic puzzles or both. Dallas has lived in exactly three countries. Everyone in the room practices pilates only if they streams on Twitch. Everyone in the room enjoys logic puzzles if they streams on Twitch. Everyone in the room enjoys logic puzzles. Dallas who does not practice pilates streams on Twitch.
Jonathan has lived in exactly three countries.
neutral
room(joseph)&room(dallas)&room(jonathan)&(![X]:(room(X)=>(X='joseph'|X='dallas'|X='jonathan')))& (?[X]:(anywhere(X)&(((has_lived_in_exactly_three_countries(X))|(enjoys_logic_puzzles(X))))))& (has_lived_in_exactly_three_countries(dallas))& (![X]:(room(X)=>(((streams_on_Twitch(X))<=(practices_pilates(X))))))& (![X]:(room(X)=>(((streams_on_Twitch(X))=>(enjoys_logic_puzzles(X))))))& (![X]:(room(X)=>(enjoys_logic_puzzles(X))))& ((does_not_practice_pilates(dallas))&(streams_on_Twitch(dallas)))& (![X]:(room(X)=>(((participates_in_long-distance_cycling_events_across_the_country(X))<=>(enjoys_logic_puzzles(X))))))& (![X]:(room(X)=>(((enjoys_logic_puzzles(X))=>(streams_on_Twitch(X))))))& (participates_in_long-distance_cycling_events_across_the_country(dallas))& (?[X]:(room(X)&(has_lived_in_exactly_three_countries(X))))& (streams_on_Twitch(dallas))& (![X]:(room(X)=>(((~((enjoys_logic_puzzles(X))|(streams_on_Twitch(X))))=>(enjoys_logic_puzzles(X))))))& (has_lived_in_exactly_three_countries(joseph))& (![X]:(room(X)=>(((((streams_on_Twitch(X))&(has_lived_in_exactly_three_countries(X))))=>(streams_on_Twitch(X))))))& (enjoys_logic_puzzles(joseph))& (~(((participates_in_long-distance_cycling_events_across_the_country(dallas))<~>(has_lived_in_exactly_three_countries(dallas)))))& ((![X]:((streams_on_Twitch(X))<=>(participates_in_long-distance_cycling_events_across_the_country(X)))))
room(joseph)&room(dallas)&room(jonathan)&(![X]:(room(X)=>(X='joseph'|X='dallas'|X='jonathan')))& has_lived_in_exactly_three_countries(jonathan)
[]
null
0.04266
David is the only person in the room. If 'David is an enthusiastic bird watcher who travels for rare sightings' then 'David can play the harmonica'. If 'David enjoys writing detailed reviews of new and classic board games' then 'David does enjoy mountain biking'. David uses an ios phone. If someone enjoys writing detailed reviews of new and classic board games then he/she collects comic books and vice versa. It is not the case that 'someone in the room hosts a YouTube channel dedicated to art tutorials'. David owns an Android phone. David can play the harmonica.
David is an enthusiastic bird watcher who travels for rare sightings.
neutral
room(david)&(![X]:(room(X)=>(X='david')))& ((is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(david))=>(can_play_the_harmonica(david)))& ((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(david))=>(does_enjoy_mountain_biking(david)))& (uses_an_ios_phone(david))& ((![X]:((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))<=>(collects_comic_books(X)))))& (~(?[X]:(room(X)&(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X)))))& (owns_an_Android_phone(david))& (can_play_the_harmonica(david))
room(david)&(![X]:(room(X)=>(X='david')))& is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(david)
[]
null
0.331196
Larry, Richard, Patrick, Colton are the only persons in the room. If “everyone in the room does not practice zumba or practices zumba” then “everyone in the room who does not practice zumba enjoys writing detailed reviews of new and classic board games”. Only one person in the room frequently participates in hackathons and coding competitions. Everyone anywhere owns a smartwatch if they enjoys writing detailed reviews of new and classic board games and vice versa. Richard who practices zumba practices graffiti art. Everyone in the room is not an enthusiastic bird watcher who travels for rare sightings if they creates YouTube content. Everyone in the room writes a travel blog or owns a smartwatch or both if they is not an enthusiastic bird watcher who travels for rare sightings. Everyone in the room who writes a travel blog or owns a smartwatch or both volunteers for local environmental conservation projects. Everyone in the room who volunteers for local environmental conservation projects collects first edition books. Everyone in the room who is a wine connoisseur writes a travel blog. Everyone in the room enjoys writing detailed reviews of new and classic board games. If someone writes and illustrates their own graphic novels or volunteers for local environmental conservation projects or both then he/she does not collect classic novels and vice versa.
Colton collects classic novels.
contradiction
room(larry)&room(richard)&room(patrick)&room(colton)&(![X]:(room(X)=>(X='larry'|X='richard'|X='patrick'|X='colton')))& ((![X]:(room(X)=>(((practices_zumba(X))|(does_not_practice_zumba(X))))))=>(![X]:(room(X)=>(((does_not_practice_zumba(X))=>(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X)))))))& (((?[X]:(room(X)&frequently_participates_in_hackathons_and_coding_competitions(X)))&(![X,Y]:((room(X)&room(Y)&(frequently_participates_in_hackathons_and_coding_competitions(X))&(frequently_participates_in_hackathons_and_coding_competitions(Y)))=>(X=Y)))))& (![X]:(anywhere(X)=>(((owns_a_smartwatch(X))<=>(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))))))& ((practices_zumba(richard))&(practices_graffiti_art(richard)))& (![X]:(room(X)=>(((creates_YouTube_content(X))=>(is_not_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))))))& (![X]:(room(X)=>(((is_not_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))=>(((writes_a_travel_blog(X))|(owns_a_smartwatch(X))))))))& (![X]:(room(X)=>(((((writes_a_travel_blog(X))|(owns_a_smartwatch(X))))=>(volunteers_for_local_environmental_conservation_projects(X))))))& (![X]:(room(X)=>(((volunteers_for_local_environmental_conservation_projects(X))=>(collects_first_edition_books(X))))))& (![X]:(room(X)=>(((is_a_wine_connoisseur(X))=>(writes_a_travel_blog(X))))))& (![X]:(room(X)=>(((writes_a_travel_blog(X))=>(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))))))& ((![X]:((is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))<=>(is_not_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X)))))& (![X]:(room(X)=>(((practices_graffiti_art(X))=>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))))& (((?[X]:(room(X)&enjoys_camping_and_organizing_outdoor_survival_workshops(X)))&(![X,Y]:((room(X)&room(Y)&(enjoys_camping_and_organizing_outdoor_survival_workshops(X))&(enjoys_camping_and_organizing_outdoor_survival_workshops(Y)))=>(X=Y)))))& (![X]:(room(X)=>(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))))& ((![X]:((((writes_and_illustrates_their_own_graphic_novels(X))|(volunteers_for_local_environmental_conservation_projects(X))))<=>(does_not_collect_classic_novels(X)))))& (![X]:(room(X)=>(((does_enjoy_mountain_biking(X))<=(practices_zumba(X))))))& (![X]:(room(X)=>(((creates_YouTube_content(X))=>(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))))))& (![X]:(anywhere(X)=>(((does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(X))=>(frequently_participates_in_hackathons_and_coding_competitions(X))))))& ((![X]:((participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))=>(does_not_frequently_participates_in_hackathons_and_coding_competitions(X)))))& ((?[X,Y]:(room(X)&room(Y)&(((creates_YouTube_content(X))<~>(enjoys_virtual_reality_gaming(X)))&((creates_YouTube_content(Y))<~>(enjoys_virtual_reality_gaming(Y))))&(X!=Y))))& ((writes_a_travel_blog(patrick))&(does_not_enjoy_virtual_reality_gaming(patrick)))& (![X]:(room(X)=>(((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))<=(practices_graffiti_art(X))))))& ((![X]:((creates_YouTube_content(X))=>(plays_video_games(X)))))
room(larry)&room(richard)&room(patrick)&room(colton)&(![X]:(room(X)=>(X='larry'|X='richard'|X='patrick'|X='colton')))& collects_classic_novels(colton)
[ "b4", "p0", "p3", "p7", "p14", "p15", "hypothesis" ]
% SZS status Unsatisfiable for 6527481458090991583537523 % SZS output start Proof for 6527481458090991583537523 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 47. ! [X0] : (anywhere(X0) => (predz(X0) <=> predm(X0))) [input p3] 51. ! [X0] : (room(X0) => ((predz(X0) | predq(X0)) => predb(X0))) [input p7] 58. ! [X0] : (room(X0) => predm(X0)) [input p14] 59. ! [X0] : ((predb(X0) | predn(X0)) <=> ~predf(X0)) [input p15] 68. predf(alice) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 72. ! [X0] : ((predb(X0) | predn(X0)) => ~predf(X0)) [unused predicate definition removal 59] 73. ! [X0] : (predb(X0) => ~predf(X0)) [pure predicate removal 72] 151. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 152. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 151] 157. ! [X0] : ((predz(X0) <=> predm(X0)) | ~anywhere(X0)) [ennf transformation 47] 162. ! [X0] : ((predb(X0) | (~predz(X0) & ~predq(X0))) | ~room(X0)) [ennf transformation 51] 163. ! [X0] : (predb(X0) | (~predz(X0) & ~predq(X0)) | ~room(X0)) [flattening 162] 168. ! [X0] : (predm(X0) | ~room(X0)) [ennf transformation 58] 169. ! [X0] : (~predf(X0) | ~predb(X0)) [ennf transformation 73] 175. predf(alice) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 68] 176. predf(alice) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 175] 183. ! [X0] : (((predz(X0) | ~predm(X0)) & (predm(X0) | ~predz(X0))) | ~anywhere(X0)) [nnf transformation 157] 191. anywhere(X0) [cnf transformation 5] 275. room(alice) [cnf transformation 152] 284. predz(X0) | ~predm(X0) | ~anywhere(X0) [cnf transformation 183] 290. ~predz(X0) | predb(X0) | ~room(X0) [cnf transformation 163] 297. ~room(X0) | predm(X0) [cnf transformation 168] 298. ~predf(X0) | ~predb(X0) [cnf transformation 169] 316. predf(alice) [cnf transformation 176] 331. ~predm(X0) | predz(X0) [subsumption resolution 284,191] 358. predm(alice) [resolution 297,275] 363. ~predb(alice) [resolution 298,316] 367. predz(alice) [resolution 358,331] 394. predb(alice) | ~room(alice) [resolution 367,290] 396. ~room(alice) [subsumption resolution 394,363] 397. $false [subsumption resolution 396,275] % SZS output end Proof for 6527481458090991583537523 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.028 s % ------------------------------ % ------------------------------
0.291241
Arthur, Antonio are the only persons in the room. Arthur who is not an avid hiker, cannot play the harmonica and does not host a popular podcast about emerging technologies does not play the violin. Arthur either does not use an ios phone or does not own an Android phone but not both. Arthur neither does not own an Android phone nor does not enjoy watercolor painting. Arthur does not play the violin. Arthur who does not host a popular podcast about emerging technologies does not work as a freelance web developer specializing in e-commerce sites. Arthur does not volunteer for local environmental conservation projects. At least one person in the room does not volunteer for local environmental conservation projects and does not practice calligraphy. Arthur does not work as a freelance web developer specializing in e-commerce sites. Arthur does not host a popular podcast about emerging technologies. Arthur is not a client of Costco and does not play the violin. Arthur cannot play the harmonica. It is true that “Arthur does not own an extensive assortment of vintage comic book memorabilia”.
Everyone in the room does not use an ios phone.
neutral
room(arthur)&room(antonio)&(![X]:(room(X)=>(X='arthur'|X='antonio')))& ((((is_not_an_avid_hiker(arthur))&(cannot_play_the_harmonica(arthur))&(does_not_host_a_popular_podcast_about_emerging_technologies(arthur))))&(does_not_play_the_violin(arthur)))& (((does_not_use_an_ios_phone(arthur))<~>(does_not_own_an_Android_phone(arthur))))& (~((does_not_own_an_Android_phone(arthur))|(does_not_enjoy_watercolor_painting(arthur))))& (does_not_play_the_violin(arthur))& ((does_not_host_a_popular_podcast_about_emerging_technologies(arthur))&(does_not_work_as_a_freelance_web_developer_specializing_in_e-commerce_sites(arthur)))& (does_not_volunteer_for_local_environmental_conservation_projects(arthur))& (((?[X]:(room(X)&((does_not_volunteer_for_local_environmental_conservation_projects(X))&(does_not_practice_calligraphy(X)))))))& (does_not_work_as_a_freelance_web_developer_specializing_in_e-commerce_sites(arthur))& (does_not_host_a_popular_podcast_about_emerging_technologies(arthur))& (((is_not_a_client_of_Costco(arthur))&(does_not_play_the_violin(arthur))))& (cannot_play_the_harmonica(arthur))& (does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(arthur))& ((![X]:((does_not_enjoy_watercolor_painting(X))=>(~((is_not_a_client_of_Costco(X))|(does_not_work_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X)))))))& (does_not_enjoy_rooftop_gardening(arthur))& (is_not_a_client_of_Costco(arthur))& (?[X]:(room(X)&(~((does_not_play_the_violin(X))|(does_not_enjoy_wildlife_photography(X))))))
room(arthur)&room(antonio)&(![X]:(room(X)=>(X='arthur'|X='antonio')))& ![X]:(room(X)=>(does_not_use_an_ios_phone(X)))
[]
null
0.708896
Fidela, David, Guillermo, Robert are the only persons in the room. Everyone in the room is not an avid hiker. Fidela is not an active member of a local robotics club. Fidela is not a scotch connoisseur, is not a member of a local theater group specializing in improv or is not an active member of a local robotics club. Everyone in the room either does not volunteer for local environmental conservation projects or is not an avid hiker but not both. Everyone in the room is not a member of a local theater group specializing in improv. Fidela does not enjoy macrame. If someone is not an avid collector of autographed memorabilia from famous musicians then he/she does not enjoy salsa dancing and does not practice kickboxing and vice versa. Everyone in the room either is not a wine connoisseur with a private cellar of vintage wines or does not practice kickboxing but not both. Everyone in the room is not a skilled home brewer experimenting with craft beer recipes. Everyone in the room either does not regularly contributes to tech forums and online communities or does not collect foreign coins but not both. Everyone in the room does not regularly contributes to tech forums and online communities, is not a skilled home brewer experimenting with craft beer recipes or does not host a YouTube channel dedicated to art tutorials. If someone either does not enjoy macrame or does not volunteer for local environmental conservation projects but not both then he/she neither does not read mystery novels nor does not enjoy salsa dancing. Everyone outside the room does not make intricate hand-cut paper art for exhibitions, is not a drone photographer or does not enjoy macrame. David neither does not host themed dinner parties featuring gourmet home-cooked meals nor does not enjoy salsa dancing. Everyone outside the room neither is not an active member of a local robotics club nor is not a scotch connoisseur. No one anywhere does not volunteer for local environmental conservation projects or does not own a 3D printer or both.
Fidela enjoys salsa dancing.
entailment
room(fidela)&room(david)&room(guillermo)&room(robert)&(![X]:(room(X)=>(X='fidela'|X='david'|X='guillermo'|X='robert')))& (![X]:(room(X)=>(is_not_an_avid_hiker(X))))& (is_not_an_active_member_of_a_local_robotics_club(fidela))& (((is_not_a_scotch_connoisseur(fidela))|(is_not_a_member_of_a_local_theater_group_specializing_in_improv(fidela))|(is_not_an_active_member_of_a_local_robotics_club(fidela))))& (![X]:(room(X)=>(((does_not_volunteer_for_local_environmental_conservation_projects(X))<~>(is_not_an_avid_hiker(X))))))& (![X]:(room(X)=>(is_not_a_member_of_a_local_theater_group_specializing_in_improv(X))))& (does_not_enjoy_macrame(fidela))& ((![X]:((is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))<=>(((does_not_enjoy_salsa_dancing(X))&(does_not_practice_kickboxing(X)))))))& (![X]:(room(X)=>(((is_not_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))<~>(does_not_practice_kickboxing(X))))))& (![X]:(room(X)=>(is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))))& (![X]:(room(X)=>(((does_not_regularly_contributes_to_tech_forums_and_online_communities(X))<~>(does_not_collect_foreign_coins(X))))))& (![X]:(room(X)=>(((does_not_regularly_contributes_to_tech_forums_and_online_communities(X))|(is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))|(does_not_host_a_YouTube_channel_dedicated_to_art_tutorials(X))))))& ((![X]:((((does_not_enjoy_macrame(X))<~>(does_not_volunteer_for_local_environmental_conservation_projects(X))))=>(~((does_not_read_mystery_novels(X))|(does_not_enjoy_salsa_dancing(X)))))))& (![X]:(~room(X)=>(((does_not_make_intricate_hand-cut_paper_art_for_exhibitions(X))|(is_not_a_drone_photographer(X))|(does_not_enjoy_macrame(X))))))& (~((does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(david))|(does_not_enjoy_salsa_dancing(david))))& (![X]:(~room(X)=>(~((is_not_an_active_member_of_a_local_robotics_club(X))|(is_not_a_scotch_connoisseur(X))))))& ((![X]:((((does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))&(does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))&(does_not_read_mystery_novels(X))))=>(((does_not_own_a_3D_printer(X))|(does_not_read_mystery_novels(X)))))))& (does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(fidela))& (((is_not_an_active_member_of_a_local_robotics_club(fidela))|(does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(fidela))|(is_not_an_avid_hiker(fidela))))& (is_not_a_drone_photographer(david))& (![X]:(room(X)=>(((is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))<~>(is_not_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))))& (~![X]:(room(X)=>(~((does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))|(is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))))& (![X]:(room(X)=>(((cannot_play_the_flute(X))|(does_not_own_a_3D_printer(X))|(does_not_make_intricate_hand-cut_paper_art_for_exhibitions(X))))))& (~?[X]:(anywhere(X)=>(((does_not_volunteer_for_local_environmental_conservation_projects(X))|(does_not_own_a_3D_printer(X))))))
room(fidela)&room(david)&room(guillermo)&room(robert)&(![X]:(room(X)=>(X='fidela'|X='david'|X='guillermo'|X='robert')))& enjoys_salsa_dancing(fidela)
[ "p0", "p6", "p12", "p23", "hypothesis" ]
% SZS status Unsatisfiable for 2989503714567702199120184 % SZS output start Proof for 2989503714567702199120184 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 50. ~predj(mary) [input p6] 56. ! [X0] : ((~predj(X0) <~> ~predc(X0)) => ~(~predl(X0) | ~predo(X0))) [input p12] 67. ~? [X0] : (anywhere(X0) => (~predi(X0) | ~predc(X0))) [input p23] 68. ~(predl(mary) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 73. ! [X0] : ((~predj(X0) <~> ~predc(X0)) => ~~predl(X0)) [pure predicate removal 56] 74. ~? [X0] : (anywhere(X0) => ~predc(X0)) [pure predicate removal 67] 86. ~? [X0] : ~predc(X0) [pure predicate removal 74] 158. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 159. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 158] 165. ! [X0] : (predl(X0) | (~predj(X0) <=> ~predc(X0))) [ennf transformation 73] 170. ! [X0] : predc(X0) [ennf transformation 86] 171. ~predl(mary) | ? [X0] : ((alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 68] 172. ~predl(mary) | ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 171] 177. ! [X0] : (predl(X0) | ((~predj(X0) | predc(X0)) & (~predc(X0) | predj(X0)))) [nnf transformation 165] 181. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK1 & fred != sK1 & paul != sK1 & mary != sK1 & room(sK1)) [choice axiom] 182. ~predl(mary) | (alice != sK1 & fred != sK1 & paul != sK1 & mary != sK1 & room(sK1)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 172,181] 263. room(mary) [cnf transformation 159] 264. room(paul) [cnf transformation 159] 265. room(fred) [cnf transformation 159] 266. room(alice) [cnf transformation 159] 267. ~room(X0) | fred = X0 | paul = X0 | mary = X0 | alice = X0 [cnf transformation 159] 272. ~predj(mary) [cnf transformation 50] 278. ~predc(X0) | predl(X0) | predj(X0) [cnf transformation 177] 285. predc(X0) [cnf transformation 170] 286. ~predl(mary) | room(sK1) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 182] 287. ~predl(mary) | mary != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 182] 288. ~predl(mary) | paul != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 182] 289. ~predl(mary) | fred != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 182] 290. ~predl(mary) | alice != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 182] 293. ~predl(mary) | alice != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 290,266] 294. ~predl(mary) | alice != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 293,265] 295. ~predl(mary) | alice != sK1 | ~room(mary) [subsumption resolution 294,264] 296. ~predl(mary) | alice != sK1 [subsumption resolution 295,263] 298. 1 <=> alice = sK1 [avatar definition] 300. alice != sK1 <- (~1) [avatar component clause 298] 302. 2 <=> predl(mary) [avatar definition] 304. ~predl(mary) <- (~2) [avatar component clause 302] 305. ~1 | ~2 [avatar split clause 296,302,298] 306. ~predl(mary) | fred != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 289,266] 307. ~predl(mary) | fred != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 306,265] 308. ~predl(mary) | fred != sK1 | ~room(mary) [subsumption resolution 307,264] 309. ~predl(mary) | fred != sK1 [subsumption resolution 308,263] 311. 3 <=> fred = sK1 [avatar definition] 313. fred != sK1 <- (~3) [avatar component clause 311] 314. ~3 | ~2 [avatar split clause 309,302,311] 315. ~predl(mary) | paul != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 288,266] 316. ~predl(mary) | paul != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 315,265] 317. ~predl(mary) | paul != sK1 | ~room(mary) [subsumption resolution 316,264] 318. ~predl(mary) | paul != sK1 [subsumption resolution 317,263] 320. 4 <=> paul = sK1 [avatar definition] 322. paul != sK1 <- (~4) [avatar component clause 320] 323. ~4 | ~2 [avatar split clause 318,302,320] 324. ~predl(mary) | mary != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 287,266] 325. ~predl(mary) | mary != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 324,265] 326. ~predl(mary) | mary != sK1 | ~room(mary) [subsumption resolution 325,264] 327. ~predl(mary) | mary != sK1 [subsumption resolution 326,263] 329. 5 <=> mary = sK1 [avatar definition] 331. mary != sK1 <- (~5) [avatar component clause 329] 332. ~5 | ~2 [avatar split clause 327,302,329] 333. ~predl(mary) | room(sK1) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 286,266] 334. ~predl(mary) | room(sK1) | ~room(paul) | ~room(mary) [subsumption resolution 333,265] 335. ~predl(mary) | room(sK1) | ~room(mary) [subsumption resolution 334,264] 336. ~predl(mary) | room(sK1) [subsumption resolution 335,263] 338. 6 <=> room(sK1) [avatar definition] 340. room(sK1) <- (6) [avatar component clause 338] 341. 6 | ~2 [avatar split clause 336,302,338] 416. predl(X0) | predj(X0) [resolution 278,285] 440. predj(mary) <- (~2) [resolution 416,304] 441. $false <- (~2) [subsumption resolution 440,272] 442. 2 [avatar contradiction clause 441] 507. fred = sK1 | paul = sK1 | mary = sK1 | alice = sK1 <- (6) [resolution 267,340] 525. paul = sK1 | mary = sK1 | alice = sK1 <- (~3, 6) [subsumption resolution 507,313] 526. mary = sK1 | alice = sK1 <- (~3, ~4, 6) [subsumption resolution 525,322] 527. alice = sK1 <- (~3, ~4, ~5, 6) [subsumption resolution 526,331] 528. $false <- (~1, ~3, ~4, ~5, 6) [subsumption resolution 527,300] 529. 1 | 3 | 4 | 5 | ~6 [avatar contradiction clause 528] 530. $false [avatar sat refutation 305,314,323,332,341,442,529] % SZS output end Proof for 2989503714567702199120184 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.034 s % ------------------------------ % ------------------------------
0.068246
Sean is the only person in the room. Sean hosts regular game nights featuring complex strategy games.
Sean is a chess master who participates in national tournaments.
neutral
room(sean)&(![X]:(room(X)=>(X='sean')))& (hosts_regular_game_nights_featuring_complex_strategy_games(sean))& (is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(sean))& (![X]:(~room(X)=>(((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))=>(~((practices_pilates(X))|(hosts_regular_game_nights_featuring_complex_strategy_games(X))))))))& (![X]:(room(X)=>(((~((does_enjoy_mountain_biking(X))|(makes_intricate_hand-cut_paper_art_for_exhibitions(X))))=>(creates_augmented_reality_experiences_for_mobile_applications(X))))))& (plays_the_drums(sean))& (practices_pilates(sean))& (![X]:(room(X)=>(((creates_augmented_reality_experiences_for_mobile_applications(X))=>(owns_an_Android_phone(X))))))& (((?[X]:(room(X)&owns_an_Android_phone(X)))))& (enjoys_kayaking(sean))& (![X]:(room(X)=>(((plays_the_drums(X))=>(maintains_a_large,_organic_vegetable_garden_year-round(X))))))& (practices_kickboxing(sean))& (![X]:(room(X)=>(((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))=>(maintains_a_personal_blog_focused_on_cybersecurity_tips(X))))))& (![X]:(room(X)=>(((maintains_a_personal_blog_focused_on_cybersecurity_tips(X))=>(creates_augmented_reality_experiences_for_mobile_applications(X))))))& (![X]:(~room(X)=>(((creates_augmented_reality_experiences_for_mobile_applications(X))=>(is_a_chess_master_who_participates_in_national_tournaments(X))))))& (![X]:(room(X)=>(((does_not_play_the_drums(X))|(hosts_a_popular_podcast_about_emerging_technologies(X))))))& (writes_poetry(sean))& (![X]:(room(X)=>(((plays_the_drums(X))=>(writes_poetry(X))))))& (![X]:(room(X)=>(((writes_poetry(X))=>(practices_pilates(X))))))& (![X]:(~room(X)=>(((practices_pilates(X))=>(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))))& (![X]:(room(X)=>(((~((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))|(frequently_participates_in_hackathons_and_coding_competitions(X))))=>(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))))))& (![X]:(room(X)=>(((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))=>(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))))
room(sean)&(![X]:(room(X)=>(X='sean')))& is_a_chess_master_who_participates_in_national_tournaments(sean)
[]
null
0.697169
Daniel is the only person in the room. “Everyone in the room is a cybersecurity expert if and only if they has a piercing” if “Daniel collect rare sneakers”. Either “Daniel collects vintage stamps” or “Daniel collects modern art” but not both.
Daniel collects first edition books.
neutral
room(daniel)&(![X]:(room(X)=>(X='daniel')))& ((collect_rare_sneakers(daniel))=>(![X]:(room(X)=>(((is_a_cybersecurity_expert(X))<=>(has_a_piercing(X)))))))& ((collects_vintage_stamps(daniel))<~>(collects_modern_art(daniel)))& ((collects_first_edition_books(daniel))=>(is_an_expert_in_identifying_and_foraging_wild_edible_plants(daniel)))& (collects_modern_art(daniel))& (frequently_participates_in_hackathons_and_coding_competitions(daniel))& (maintains_a_personal_blog_focused_on_cybersecurity_tips(daniel))& (is_a_cybersecurity_expert(daniel))& (hosts_a_YouTube_channel_dedicated_to_art_tutorials(daniel))& (owns_a_telescope(daniel))& (enjoys_rooftop_gardening(daniel))& (is_an_expert_in_identifying_and_foraging_wild_edible_plants(daniel))& ((![X]:((is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))=>(is_a_client_of_Meta(X)))))& (enjoys_skydiving(daniel))& (collects_rare_minerals(daniel))
room(daniel)&(![X]:(room(X)=>(X='daniel')))& collects_first_edition_books(daniel)
[]
null
0.015094
Eric is the only person in the room. Someone in the room is louder than Ruth. Eric is quiet. Eric is younger than Hector. Eric does not hate Ruth. Only one person in the room is a patient generous quiet happy european. All old person is brave. Eric is brave. Eric is a client of Burton. Eric is a funny tourist. Eric does not own an extensive assortment of vintage comic book memorabilia. Eric is generous.
Ruth is a client of Eric.
neutral
room(eric)&(![X]:(room(X)=>(X='eric')))& (?[X]:(room(X)&(louder(ruth,X))))& (quiet(eric))& (younger(hector,eric))& (~hate(ruth,eric))& (((?[X]:(room(X)&patient(X)&generous(X)&quiet(X)&happy(X)&european(X)))&(![X,Y]:((room(X)&room(Y)&(patient(X)&generous(X)&quiet(X)&happy(X)&european(X))&(patient(Y)&generous(Y)&quiet(Y)&happy(Y)&european(Y)))=>(X=Y)))))& (![X]:(old(X)=>brave(X)))& (brave(eric))& (client(burton,eric))& (funny(eric)&tourist(eric))& (does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(eric))& (generous(eric))
room(eric)&(![X]:(room(X)=>(X='eric')))& client(eric,ruth)
[]
null
0.596266
Henry, Crystal, Rebecca, Rita are the only persons in the room. Either "Henry collects antique clocks" or "Henry hosts themed dinner parties featuring gourmet home-cooked meals" but not both. At least one person in the room does not host themed dinner parties featuring gourmet home-cooked meals. If someone does not host themed dinner parties featuring gourmet home-cooked meals then he/she collects antique clocks and vice versa.
Henry hosts themed dinner parties featuring gourmet home-cooked meals.
neutral
room(henry)&room(crystal)&room(rebecca)&room(rita)&(![X]:(room(X)=>(X='henry'|X='crystal'|X='rebecca'|X='rita')))& ((collects_antique_clocks(henry))<~>(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(henry)))& (((?[X]:(room(X)&does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X)))))& ((![X]:((does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))<=>(collects_antique_clocks(X)))))& (![X]:(room(X)=>(((collects_antique_clocks(X))=>(does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))
room(henry)&room(crystal)&room(rebecca)&room(rita)&(![X]:(room(X)=>(X='henry'|X='crystal'|X='rebecca'|X='rita')))& hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(henry)
[]
null
0.466533
Eugene, Amanda, Muriel, Lois are the only persons in the room. If “Lois collects modern art” then “Eugene is an active member of a local robotics club”. If “Eugene is an active member of a local robotics club” then “Eugene practices zumba”. Either “everyone in the room is not an avid collector of autographed memorabilia from famous musicians or plays the drums” or “Lois writes poetry” but not both. “No one in the room owns a microscope or does not write poetry” if “Muriel is a dedicated advocate for digital privacy and encryption”. If “Lois neither can play the harmonica nor is a dedicated advocate for digital privacy and encryption” then “everyone in the room owns a microscope only if they has a vast collection of first-edition science fiction novels”. Eugene either is a dedicated advocate for digital privacy and encryption or writes poetry but not both. Everyone in the room who has a vast collection of first-edition science fiction novels own a television. Not everyone in the room own a television only if they writes poetry. Eugene has a vast collection of first-edition science fiction novels. Not everyone in the room who collects antique clocks has a vast collection of first-edition science fiction novels. Muriel can play the harmonica. Everyone in the room does not practice urban gardening or is an avid collector of autographed memorabilia from famous musicians.
Amanda is an avid collector of autographed memorabilia from famous musicians.
entailment
room(eugene)&room(amanda)&room(muriel)&room(lois)&(![X]:(room(X)=>(X='eugene'|X='amanda'|X='muriel'|X='lois')))& (((collects_modern_art(lois))=>(is_an_active_member_of_a_local_robotics_club(eugene)))& ((is_an_active_member_of_a_local_robotics_club(eugene))=>(practices_zumba(eugene))))& ((![X]:(room(X)=>(((plays_the_drums(X))|(is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))))<~>(writes_poetry(lois)))& ((is_a_dedicated_advocate_for_digital_privacy_and_encryption(muriel))=>(~?[X]:(room(X)=>(((does_not_write_poetry(X))|(owns_a_microscope(X)))))))& ((~((can_play_the_harmonica(lois))|(is_a_dedicated_advocate_for_digital_privacy_and_encryption(lois))))=>(![X]:(room(X)=>(((has_a_vast_collection_of_first-edition_science_fiction_novels(X))<=(owns_a_microscope(X)))))))& (((is_a_dedicated_advocate_for_digital_privacy_and_encryption(eugene))<~>(writes_poetry(eugene))))& (![X]:(room(X)=>(((has_a_vast_collection_of_first-edition_science_fiction_novels(X))=>(own_a_television(X))))))& (~![X]:(room(X)=>(((writes_poetry(X))<=(own_a_television(X))))))& (has_a_vast_collection_of_first-edition_science_fiction_novels(eugene))& (~![X]:(room(X)=>(((collects_antique_clocks(X))=>(has_a_vast_collection_of_first-edition_science_fiction_novels(X))))))& (can_play_the_harmonica(muriel))& (![X]:(room(X)=>(((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))|(does_not_practice_urban_gardening(X))))))& ((?[X,Y]:(room(X)&room(Y)&(volunteers_for_local_environmental_conservation_projects(X)&volunteers_for_local_environmental_conservation_projects(Y))&(X!=Y))))& (maintains_a_personal_blog_focused_on_cybersecurity_tips(amanda))& (![X]:(room(X)=>(((writes_poetry(X))=>(collects_modern_art(X))))))& ((![X]:((uses_a_Windows_laptop(X))=>(practices_urban_gardening(X)))))& ((![X]:((trains_for_and_competes_in_international_triathlons(X))<=>(collects_rare_minerals(X)))))& (![X]:(room(X)=>(((((collects_rare_minerals(X))&(volunteers_for_local_environmental_conservation_projects(X))))=>(plays_the_drums(X))))))& (![X]:(room(X)=>(((plays_the_drums(X))=>(((writes_poetry(X))<~>(creates_augmented_reality_experiences_for_mobile_applications(X))))))))& (practices_urban_gardening(muriel))& (![X]:(room(X)=>(((collects_antique_clocks(X))=>(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))))& (practices_urban_gardening(amanda))& (can_play_the_harmonica(amanda))& (![X]:(room(X)=>(((((practices_urban_gardening(X))|(collects_rare_minerals(X))))<=(plays_the_drums(X))))))& (((creates_YouTube_content(lois))|(uses_a_Windows_laptop(lois))|(collects_modern_art(lois))))& (![X]:(room(X)=>(((collects_rare_minerals(X))=>(trains_for_and_competes_in_international_triathlons(X))))))& (![X]:(room(X)=>(((trains_for_and_competes_in_international_triathlons(X))=>(((does_not_train_for_and_competes_in_international_triathlons(X))<~>(practices_urban_gardening(X))))))))& (![X]:(~room(X)=>(((((does_not_train_for_and_competes_in_international_triathlons(X))<~>(practices_urban_gardening(X))))=>(is_an_active_member_of_a_local_robotics_club(X))))))
room(eugene)&room(amanda)&room(muriel)&room(lois)&(![X]:(room(X)=>(X='eugene'|X='amanda'|X='muriel'|X='lois')))& is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(amanda)
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 2068577036101788950542203 % SZS output start Proof for 2068577036101788950542203 44. ! [X0] : (~room(X0) => ((~predn(X0) <~> preds(X0)) => predi(X0))) & ! [X0] : (room(X0) => (predn(X0) => (~predn(X0) <~> preds(X0)))) & ! [X0] : (room(X0) => (predf(X0) => predn(X0))) & (prede(alice) | predo(alice) | predg(alice)) & ! [X0] : (room(X0) => (predh(X0) => (predf(X0) | preds(X0)))) & predq(paul) & preds(paul) & ! [X0] : (room(X0) => (predu(X0) => predm(X0))) & preds(fred) & ! [X0] : (room(X0) => (predh(X0) => (predt(X0) <~> predr(X0)))) & ! [X0] : (room(X0) => ((predb(X0) & predf(X0)) => predh(X0))) & ! [X0] : (predn(X0) <=> predf(X0)) & ! [X0] : (predo(X0) => preds(X0)) & ! [X0] : (room(X0) => (predt(X0) => prede(X0))) & preda(paul) & ? [X0,X1] : (X0 != X1 & predb(X1) & predb(X0) & room(X1) & room(X0)) & ! [X0] : (room(X0) => (~preds(X0) | predm(X0))) & predq(fred) & ~! [X0] : (room(X0) => (predu(X0) => predd(X0))) & predd(mary) & ~! [X0] : (room(X0) => (predj(X0) => predt(X0))) & ! [X0] : (room(X0) => (predd(X0) => predj(X0))) & (predc(mary) <~> predt(mary)) & (~(predc(alice) | predq(alice)) => ! [X0] : (room(X0) => (predp(X0) => predd(X0)))) & (predc(fred) => ~? [X0] : (room(X0) => (predp(X0) | ~predt(X0)))) & (! [X0] : (room(X0) => (~predm(X0) | predh(X0))) <~> predt(alice)) & (predi(mary) => predl(mary)) & (prede(alice) => predi(mary)) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 45. ~(predm(paul) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 46. ! [X0] : (~room(X0) => ((~predn(X0) <~> preds(X0)) => predi(X0))) & ! [X1] : (room(X1) => (predn(X1) => (~predn(X1) <~> preds(X1)))) & ! [X2] : (room(X2) => (predf(X2) => predn(X2))) & (prede(alice) | predo(alice) | predg(alice)) & ! [X3] : (room(X3) => (predh(X3) => (predf(X3) | preds(X3)))) & predq(paul) & preds(paul) & ! [X4] : (room(X4) => (predu(X4) => predm(X4))) & preds(fred) & ! [X5] : (room(X5) => (predh(X5) => (predt(X5) <~> predr(X5)))) & ! [X6] : (room(X6) => ((predb(X6) & predf(X6)) => predh(X6))) & ! [X7] : (predn(X7) <=> predf(X7)) & ! [X8] : (predo(X8) => preds(X8)) & ! [X9] : (room(X9) => (predt(X9) => prede(X9))) & preda(paul) & ? [X10,X11] : (X10 != X11 & predb(X11) & predb(X10) & room(X11) & room(X10)) & ! [X12] : (room(X12) => (~preds(X12) | predm(X12))) & predq(fred) & ~! [X13] : (room(X13) => (predu(X13) => predd(X13))) & predd(mary) & ~! [X14] : (room(X14) => (predj(X14) => predt(X14))) & ! [X15] : (room(X15) => (predd(X15) => predj(X15))) & (predc(mary) <~> predt(mary)) & (~(predc(alice) | predq(alice)) => ! [X16] : (room(X16) => (predp(X16) => predd(X16)))) & (predc(fred) => ~? [X17] : (room(X17) => (predp(X17) | ~predt(X17)))) & (! [X18] : (room(X18) => (~predm(X18) | predh(X18))) <~> predt(alice)) & (predi(mary) => predl(mary)) & (prede(alice) => predi(mary)) & ! [X19] : (room(X19) => (alice = X19 | fred = X19 | paul = X19 | mary = X19)) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 44] 47. ! [X0] : (~room(X0) => ((~predn(X0) <~> preds(X0)) => predi(X0))) & ! [X1] : (room(X1) => (predn(X1) => (~predn(X1) <~> preds(X1)))) & ! [X2] : (room(X2) => (predf(X2) => predn(X2))) & ! [X3] : (room(X3) => (predh(X3) => (predf(X3) | preds(X3)))) & predq(paul) & preds(paul) & ! [X4] : (room(X4) => (predu(X4) => predm(X4))) & preds(fred) & ! [X5] : (room(X5) => (predh(X5) => (predt(X5) <~> predr(X5)))) & ! [X6] : (room(X6) => ((predb(X6) & predf(X6)) => predh(X6))) & ! [X7] : (predn(X7) <=> predf(X7)) & ! [X8] : (predo(X8) => preds(X8)) & ! [X9] : (room(X9) => (predt(X9) => prede(X9))) & preda(paul) & ? [X10,X11] : (X10 != X11 & predb(X11) & predb(X10) & room(X11) & room(X10)) & ! [X12] : (room(X12) => (~preds(X12) | predm(X12))) & predq(fred) & ~! [X13] : (room(X13) => (predu(X13) => predd(X13))) & predd(mary) & ~! [X14] : (room(X14) => (predj(X14) => predt(X14))) & ! [X15] : (room(X15) => (predd(X15) => predj(X15))) & (predc(mary) <~> predt(mary)) & (~(predc(alice) | predq(alice)) => ! [X16] : (room(X16) => (predp(X16) => predd(X16)))) & (predc(fred) => ~? [X17] : (room(X17) => (predp(X17) | ~predt(X17)))) & (! [X18] : (room(X18) => (~predm(X18) | predh(X18))) <~> predt(alice)) & (predi(mary) => predl(mary)) & (prede(alice) => predi(mary)) & ! [X19] : (room(X19) => (alice = X19 | fred = X19 | paul = X19 | mary = X19)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 46] 48. ! [X0] : (~room(X0) => ((~predn(X0) <~> preds(X0)) => predi(X0))) & ! [X1] : (room(X1) => (predn(X1) => (~predn(X1) <~> preds(X1)))) & ! [X2] : (room(X2) => (predf(X2) => predn(X2))) & ! [X3] : (room(X3) => (predh(X3) => (predf(X3) | preds(X3)))) & predq(paul) & preds(paul) & ! [X4] : (room(X4) => (predu(X4) => predm(X4))) & preds(fred) & ! [X5] : (room(X5) => (predh(X5) => (predt(X5) <~> predr(X5)))) & ! [X6] : (room(X6) => ((predb(X6) & predf(X6)) => predh(X6))) & ! [X7] : (predn(X7) <=> predf(X7)) & ! [X9] : (room(X9) => (predt(X9) => prede(X9))) & preda(paul) & ? [X10,X11] : (X10 != X11 & predb(X11) & predb(X10) & room(X11) & room(X10)) & ! [X12] : (room(X12) => (~preds(X12) | predm(X12))) & predq(fred) & ~! [X13] : (room(X13) => (predu(X13) => predd(X13))) & predd(mary) & ~! [X14] : (room(X14) => (predj(X14) => predt(X14))) & ! [X15] : (room(X15) => (predd(X15) => predj(X15))) & (predc(mary) <~> predt(mary)) & (~(predc(alice) | predq(alice)) => ! [X16] : (room(X16) => (predp(X16) => predd(X16)))) & (predc(fred) => ~? [X17] : (room(X17) => (predp(X17) | ~predt(X17)))) & (! [X18] : (room(X18) => (~predm(X18) | predh(X18))) <~> predt(alice)) & (predi(mary) => predl(mary)) & (prede(alice) => predi(mary)) & ! [X19] : (room(X19) => (alice = X19 | fred = X19 | paul = X19 | mary = X19)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 47] 49. ! [X0] : (~room(X0) => ((~predn(X0) <~> preds(X0)) => predi(X0))) & ! [X1] : (room(X1) => (predn(X1) => (~predn(X1) <~> preds(X1)))) & ! [X2] : (room(X2) => (predf(X2) => predn(X2))) & ! [X3] : (room(X3) => (predh(X3) => (predf(X3) | preds(X3)))) & predq(paul) & preds(paul) & ! [X4] : (room(X4) => (predu(X4) => predm(X4))) & preds(fred) & ! [X5] : (room(X5) => (predh(X5) => (predt(X5) <~> predr(X5)))) & ! [X6] : (room(X6) => ((predb(X6) & predf(X6)) => predh(X6))) & ! [X7] : (predn(X7) <=> predf(X7)) & ! [X9] : (room(X9) => (predt(X9) => prede(X9))) & ? [X10,X11] : (X10 != X11 & predb(X11) & predb(X10) & room(X11) & room(X10)) & ! [X12] : (room(X12) => (~preds(X12) | predm(X12))) & predq(fred) & ~! [X13] : (room(X13) => (predu(X13) => predd(X13))) & predd(mary) & ~! [X14] : (room(X14) => (predj(X14) => predt(X14))) & ! [X15] : (room(X15) => (predd(X15) => predj(X15))) & (predc(mary) <~> predt(mary)) & (~(predc(alice) | predq(alice)) => ! [X16] : (room(X16) => (predp(X16) => predd(X16)))) & (predc(fred) => ~? [X17] : (room(X17) => (predp(X17) | ~predt(X17)))) & (! [X18] : (room(X18) => (~predm(X18) | predh(X18))) <~> predt(alice)) & (predi(mary) => predl(mary)) & (prede(alice) => predi(mary)) & ! [X19] : (room(X19) => (alice = X19 | fred = X19 | paul = X19 | mary = X19)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 48] 50. ! [X0] : (~room(X0) => ((~predn(X0) <~> preds(X0)) => predi(X0))) & ! [X1] : (room(X1) => (predn(X1) => (~predn(X1) <~> preds(X1)))) & ! [X2] : (room(X2) => (predf(X2) => predn(X2))) & ! [X3] : (room(X3) => (predh(X3) => (predf(X3) | preds(X3)))) & predq(paul) & preds(paul) & ! [X4] : (room(X4) => (predu(X4) => predm(X4))) & preds(fred) & ! [X5] : (room(X5) => (predh(X5) => (predt(X5) <~> predr(X5)))) & ! [X6] : (room(X6) => ((predb(X6) & predf(X6)) => predh(X6))) & ! [X7] : (predn(X7) <=> predf(X7)) & ! [X9] : (room(X9) => (predt(X9) => prede(X9))) & ? [X10,X11] : (X10 != X11 & predb(X11) & predb(X10) & room(X11) & room(X10)) & ! [X12] : (room(X12) => (~preds(X12) | predm(X12))) & predq(fred) & ~! [X13] : (room(X13) => (predu(X13) => predd(X13))) & predd(mary) & ~! [X14] : (room(X14) => predt(X14)) & (predc(mary) <~> predt(mary)) & (~(predc(alice) | predq(alice)) => ! [X16] : (room(X16) => (predp(X16) => predd(X16)))) & (predc(fred) => ~? [X17] : (room(X17) => (predp(X17) | ~predt(X17)))) & (! [X18] : (room(X18) => (~predm(X18) | predh(X18))) <~> predt(alice)) & (predi(mary) => predl(mary)) & (prede(alice) => predi(mary)) & ! [X19] : (room(X19) => (alice = X19 | fred = X19 | paul = X19 | mary = X19)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 49] 51. ! [X0] : (~room(X0) => ((~predn(X0) <~> preds(X0)) => predi(X0))) & ! [X1] : (room(X1) => (predn(X1) => (~predn(X1) <~> preds(X1)))) & ! [X2] : (room(X2) => (predf(X2) => predn(X2))) & ! [X3] : (room(X3) => (predh(X3) => (predf(X3) | preds(X3)))) & preds(paul) & ! [X4] : (room(X4) => (predu(X4) => predm(X4))) & preds(fred) & ! [X5] : (room(X5) => (predh(X5) => (predt(X5) <~> predr(X5)))) & ! [X6] : (room(X6) => ((predb(X6) & predf(X6)) => predh(X6))) & ! [X7] : (predn(X7) <=> predf(X7)) & ! [X9] : (room(X9) => (predt(X9) => prede(X9))) & ? [X10,X11] : (X10 != X11 & predb(X11) & predb(X10) & room(X11) & room(X10)) & ! [X12] : (room(X12) => (~preds(X12) | predm(X12))) & ~! [X13] : (room(X13) => (predu(X13) => predd(X13))) & predd(mary) & ~! [X14] : (room(X14) => predt(X14)) & (predc(mary) <~> predt(mary)) & (predc(fred) => ~? [X17] : (room(X17) => (predp(X17) | ~predt(X17)))) & (! [X18] : (room(X18) => (~predm(X18) | predh(X18))) <~> predt(alice)) & (predi(mary) => predl(mary)) & (prede(alice) => predi(mary)) & ! [X19] : (room(X19) => (alice = X19 | fred = X19 | paul = X19 | mary = X19)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 50] 52. ! [X0] : (~room(X0) => ((~predn(X0) <~> preds(X0)) => predi(X0))) & ! [X1] : (room(X1) => (predn(X1) => (~predn(X1) <~> preds(X1)))) & ! [X2] : (room(X2) => (predf(X2) => predn(X2))) & ! [X3] : (room(X3) => (predh(X3) => (predf(X3) | preds(X3)))) & preds(paul) & ! [X4] : (room(X4) => (predu(X4) => predm(X4))) & preds(fred) & ! [X5] : (room(X5) => (predh(X5) => (predt(X5) <~> predr(X5)))) & ! [X6] : (room(X6) => ((predb(X6) & predf(X6)) => predh(X6))) & ! [X7] : (predn(X7) <=> predf(X7)) & ! [X9] : (room(X9) => (predt(X9) => prede(X9))) & ? [X10,X11] : (X10 != X11 & predb(X11) & predb(X10) & room(X11) & room(X10)) & ! [X12] : (room(X12) => (~preds(X12) | predm(X12))) & ~! [X13] : (room(X13) => (predu(X13) => predd(X13))) & predd(mary) & ~! [X14] : (room(X14) => predt(X14)) & (predc(mary) <~> predt(mary)) & (predc(fred) => ~? [X17] : (room(X17) => ~predt(X17))) & (! [X18] : (room(X18) => (~predm(X18) | predh(X18))) <~> predt(alice)) & (predi(mary) => predl(mary)) & (prede(alice) => predi(mary)) & ! [X19] : (room(X19) => (alice = X19 | fred = X19 | paul = X19 | mary = X19)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 51] 53. ! [X0] : (~room(X0) => ((~predn(X0) <~> preds(X0)) => predi(X0))) & ! [X1] : (room(X1) => (predn(X1) => (~predn(X1) <~> preds(X1)))) & ! [X2] : (room(X2) => (predf(X2) => predn(X2))) & ! [X3] : (room(X3) => (predh(X3) => (predf(X3) | preds(X3)))) & preds(paul) & ! [X4] : (room(X4) => (predu(X4) => predm(X4))) & preds(fred) & ! [X5] : (room(X5) => (predh(X5) => (predt(X5) <~> predr(X5)))) & ! [X6] : (room(X6) => ((predb(X6) & predf(X6)) => predh(X6))) & ! [X7] : (predn(X7) <=> predf(X7)) & ! [X9] : (room(X9) => (predt(X9) => prede(X9))) & ? [X10,X11] : (X10 != X11 & predb(X11) & predb(X10) & room(X11) & room(X10)) & ! [X12] : (room(X12) => (~preds(X12) | predm(X12))) & ~! [X13] : (room(X13) => (predu(X13) => predd(X13))) & predd(mary) & ~! [X14] : (room(X14) => predt(X14)) & (predc(mary) <~> predt(mary)) & (predc(fred) => ~? [X17] : (room(X17) => ~predt(X17))) & (! [X18] : (room(X18) => (~predm(X18) | predh(X18))) <~> predt(alice)) & (prede(alice) => predi(mary)) & ! [X19] : (room(X19) => (alice = X19 | fred = X19 | paul = X19 | mary = X19)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 52] 54. ! [X1] : (room(X1) => (predn(X1) => (~predn(X1) <~> preds(X1)))) & ! [X2] : (room(X2) => (predf(X2) => predn(X2))) & ! [X3] : (room(X3) => (predh(X3) => (predf(X3) | preds(X3)))) & preds(paul) & ! [X4] : (room(X4) => (predu(X4) => predm(X4))) & preds(fred) & ! [X5] : (room(X5) => (predh(X5) => (predt(X5) <~> predr(X5)))) & ! [X6] : (room(X6) => ((predb(X6) & predf(X6)) => predh(X6))) & ! [X7] : (predn(X7) <=> predf(X7)) & ! [X9] : (room(X9) => (predt(X9) => prede(X9))) & ? [X10,X11] : (X10 != X11 & predb(X11) & predb(X10) & room(X11) & room(X10)) & ! [X12] : (room(X12) => (~preds(X12) | predm(X12))) & ~! [X13] : (room(X13) => (predu(X13) => predd(X13))) & predd(mary) & ~! [X14] : (room(X14) => predt(X14)) & (predc(mary) <~> predt(mary)) & (predc(fred) => ~? [X17] : (room(X17) => ~predt(X17))) & (! [X18] : (room(X18) => (~predm(X18) | predh(X18))) <~> predt(alice)) & ! [X19] : (room(X19) => (alice = X19 | fred = X19 | paul = X19 | mary = X19)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 53] 55. ! [X1] : (room(X1) => (predn(X1) => (~predn(X1) <~> preds(X1)))) & ! [X2] : (room(X2) => (predf(X2) => predn(X2))) & ! [X3] : (room(X3) => (predh(X3) => (predf(X3) | preds(X3)))) & preds(paul) & ! [X4] : (room(X4) => (predu(X4) => predm(X4))) & preds(fred) & ! [X5] : (room(X5) => (predh(X5) => (predt(X5) <~> predr(X5)))) & ! [X6] : (room(X6) => ((predb(X6) & predf(X6)) => predh(X6))) & ! [X7] : (predn(X7) <=> predf(X7)) & ? [X10,X11] : (X10 != X11 & predb(X11) & predb(X10) & room(X11) & room(X10)) & ! [X12] : (room(X12) => (~preds(X12) | predm(X12))) & ~! [X13] : (room(X13) => (predu(X13) => predd(X13))) & predd(mary) & ~! [X14] : (room(X14) => predt(X14)) & (predc(mary) <~> predt(mary)) & (predc(fred) => ~? [X17] : (room(X17) => ~predt(X17))) & (! [X18] : (room(X18) => (~predm(X18) | predh(X18))) <~> predt(alice)) & ! [X19] : (room(X19) => (alice = X19 | fred = X19 | paul = X19 | mary = X19)) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 54] 128. ! [X1] : (((~predn(X1) <~> preds(X1)) | ~predn(X1)) | ~room(X1)) & ! [X2] : ((predn(X2) | ~predf(X2)) | ~room(X2)) & ! [X3] : (((predf(X3) | preds(X3)) | ~predh(X3)) | ~room(X3)) & preds(paul) & ! [X4] : ((predm(X4) | ~predu(X4)) | ~room(X4)) & preds(fred) & ! [X5] : (((predt(X5) <~> predr(X5)) | ~predh(X5)) | ~room(X5)) & ! [X6] : ((predh(X6) | (~predb(X6) | ~predf(X6))) | ~room(X6)) & ! [X7] : (predn(X7) <=> predf(X7)) & ? [X10,X11] : (X10 != X11 & predb(X11) & predb(X10) & room(X11) & room(X10)) & ! [X12] : ((~preds(X12) | predm(X12)) | ~room(X12)) & ? [X13] : ((~predd(X13) & predu(X13)) & room(X13)) & predd(mary) & ? [X14] : (~predt(X14) & room(X14)) & (predc(mary) <~> predt(mary)) & (! [X17] : (predt(X17) & room(X17)) | ~predc(fred)) & (! [X18] : ((~predm(X18) | predh(X18)) | ~room(X18)) <~> predt(alice)) & ! [X19] : ((alice = X19 | fred = X19 | paul = X19 | mary = X19) | ~room(X19)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 55] 129. ! [X1] : ((~predn(X1) <~> preds(X1)) | ~predn(X1) | ~room(X1)) & ! [X2] : (predn(X2) | ~predf(X2) | ~room(X2)) & ! [X3] : (predf(X3) | preds(X3) | ~predh(X3) | ~room(X3)) & preds(paul) & ! [X4] : (predm(X4) | ~predu(X4) | ~room(X4)) & preds(fred) & ! [X5] : ((predt(X5) <~> predr(X5)) | ~predh(X5) | ~room(X5)) & ! [X6] : (predh(X6) | ~predb(X6) | ~predf(X6) | ~room(X6)) & ! [X7] : (predn(X7) <=> predf(X7)) & ? [X10,X11] : (X10 != X11 & predb(X11) & predb(X10) & room(X11) & room(X10)) & ! [X12] : (~preds(X12) | predm(X12) | ~room(X12)) & ? [X13] : (~predd(X13) & predu(X13) & room(X13)) & predd(mary) & ? [X14] : (~predt(X14) & room(X14)) & (predc(mary) <~> predt(mary)) & (! [X17] : (predt(X17) & room(X17)) | ~predc(fred)) & (! [X18] : (~predm(X18) | predh(X18) | ~room(X18)) <~> predt(alice)) & ! [X19] : (alice = X19 | fred = X19 | paul = X19 | mary = X19 | ~room(X19)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 128] 130. ~predm(paul) | ? [X0] : ((alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 45] 131. ~predm(paul) | ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 130] 133. ! [X1] : (((~preds(X1) | predn(X1)) & (preds(X1) | ~predn(X1))) | ~predn(X1) | ~room(X1)) & ! [X2] : (predn(X2) | ~predf(X2) | ~room(X2)) & ! [X3] : (predf(X3) | preds(X3) | ~predh(X3) | ~room(X3)) & preds(paul) & ! [X4] : (predm(X4) | ~predu(X4) | ~room(X4)) & preds(fred) & ! [X5] : (((~predr(X5) | ~predt(X5)) & (predr(X5) | predt(X5))) | ~predh(X5) | ~room(X5)) & ! [X6] : (predh(X6) | ~predb(X6) | ~predf(X6) | ~room(X6)) & ! [X7] : ((predn(X7) | ~predf(X7)) & (predf(X7) | ~predn(X7))) & ? [X10,X11] : (X10 != X11 & predb(X11) & predb(X10) & room(X11) & room(X10)) & ! [X12] : (~preds(X12) | predm(X12) | ~room(X12)) & ? [X13] : (~predd(X13) & predu(X13) & room(X13)) & predd(mary) & ? [X14] : (~predt(X14) & room(X14)) & ((~predt(mary) | ~predc(mary)) & (predt(mary) | predc(mary))) & (! [X17] : (predt(X17) & room(X17)) | ~predc(fred)) & ((~predt(alice) | ? [X18] : (predm(X18) & ~predh(X18) & room(X18))) & (predt(alice) | ! [X18] : (~predm(X18) | predh(X18) | ~room(X18)))) & ! [X19] : (alice = X19 | fred = X19 | paul = X19 | mary = X19 | ~room(X19)) & room(alice) & room(fred) & room(paul) & room(mary) [nnf transformation 129] 134. ! [X1] : (((~preds(X1) | predn(X1)) & (preds(X1) | ~predn(X1))) | ~predn(X1) | ~room(X1)) & ! [X2] : (predn(X2) | ~predf(X2) | ~room(X2)) & ! [X3] : (predf(X3) | preds(X3) | ~predh(X3) | ~room(X3)) & preds(paul) & ! [X4] : (predm(X4) | ~predu(X4) | ~room(X4)) & preds(fred) & ! [X5] : (((~predr(X5) | ~predt(X5)) & (predr(X5) | predt(X5))) | ~predh(X5) | ~room(X5)) & ! [X6] : (predh(X6) | ~predb(X6) | ~predf(X6) | ~room(X6)) & ! [X7] : ((predn(X7) | ~predf(X7)) & (predf(X7) | ~predn(X7))) & ? [X10,X11] : (X10 != X11 & predb(X11) & predb(X10) & room(X11) & room(X10)) & ! [X12] : (~preds(X12) | predm(X12) | ~room(X12)) & ? [X13] : (~predd(X13) & predu(X13) & room(X13)) & predd(mary) & ? [X14] : (~predt(X14) & room(X14)) & (~predt(mary) | ~predc(mary)) & (predt(mary) | predc(mary)) & (! [X17] : (predt(X17) & room(X17)) | ~predc(fred)) & (~predt(alice) | ? [X18] : (predm(X18) & ~predh(X18) & room(X18))) & (predt(alice) | ! [X18] : (~predm(X18) | predh(X18) | ~room(X18))) & ! [X19] : (alice = X19 | fred = X19 | paul = X19 | mary = X19 | ~room(X19)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 133] 135. ! [X0] : (((~preds(X0) | predn(X0)) & (preds(X0) | ~predn(X0))) | ~predn(X0) | ~room(X0)) & ! [X1] : (predn(X1) | ~predf(X1) | ~room(X1)) & ! [X2] : (predf(X2) | preds(X2) | ~predh(X2) | ~room(X2)) & preds(paul) & ! [X3] : (predm(X3) | ~predu(X3) | ~room(X3)) & preds(fred) & ! [X4] : (((~predr(X4) | ~predt(X4)) & (predr(X4) | predt(X4))) | ~predh(X4) | ~room(X4)) & ! [X5] : (predh(X5) | ~predb(X5) | ~predf(X5) | ~room(X5)) & ! [X6] : ((predn(X6) | ~predf(X6)) & (predf(X6) | ~predn(X6))) & ? [X7,X8] : (X7 != X8 & predb(X8) & predb(X7) & room(X8) & room(X7)) & ! [X9] : (~preds(X9) | predm(X9) | ~room(X9)) & ? [X10] : (~predd(X10) & predu(X10) & room(X10)) & predd(mary) & ? [X11] : (~predt(X11) & room(X11)) & (~predt(mary) | ~predc(mary)) & (predt(mary) | predc(mary)) & (! [X12] : (predt(X12) & room(X12)) | ~predc(fred)) & (~predt(alice) | ? [X13] : (predm(X13) & ~predh(X13) & room(X13))) & (predt(alice) | ! [X14] : (~predm(X14) | predh(X14) | ~room(X14))) & ! [X15] : (alice = X15 | fred = X15 | paul = X15 | mary = X15 | ~room(X15)) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 134] 136. ? [X7,X8] : (X7 != X8 & predb(X8) & predb(X7) & room(X8) & room(X7)) => (sK0 != sK1 & predb(sK1) & predb(sK0) & room(sK1) & room(sK0)) [choice axiom] 137. ? [X10] : (~predd(X10) & predu(X10) & room(X10)) => (~predd(sK2) & predu(sK2) & room(sK2)) [choice axiom] 138. ? [X11] : (~predt(X11) & room(X11)) => (~predt(sK3) & room(sK3)) [choice axiom] 139. ? [X13] : (predm(X13) & ~predh(X13) & room(X13)) => (predm(sK4) & ~predh(sK4) & room(sK4)) [choice axiom] 140. ! [X0] : (((~preds(X0) | predn(X0)) & (preds(X0) | ~predn(X0))) | ~predn(X0) | ~room(X0)) & ! [X1] : (predn(X1) | ~predf(X1) | ~room(X1)) & ! [X2] : (predf(X2) | preds(X2) | ~predh(X2) | ~room(X2)) & preds(paul) & ! [X3] : (predm(X3) | ~predu(X3) | ~room(X3)) & preds(fred) & ! [X4] : (((~predr(X4) | ~predt(X4)) & (predr(X4) | predt(X4))) | ~predh(X4) | ~room(X4)) & ! [X5] : (predh(X5) | ~predb(X5) | ~predf(X5) | ~room(X5)) & ! [X6] : ((predn(X6) | ~predf(X6)) & (predf(X6) | ~predn(X6))) & (sK0 != sK1 & predb(sK1) & predb(sK0) & room(sK1) & room(sK0)) & ! [X9] : (~preds(X9) | predm(X9) | ~room(X9)) & (~predd(sK2) & predu(sK2) & room(sK2)) & predd(mary) & (~predt(sK3) & room(sK3)) & (~predt(mary) | ~predc(mary)) & (predt(mary) | predc(mary)) & (! [X12] : (predt(X12) & room(X12)) | ~predc(fred)) & (~predt(alice) | (predm(sK4) & ~predh(sK4) & room(sK4))) & (predt(alice) | ! [X14] : (~predm(X14) | predh(X14) | ~room(X14))) & ! [X15] : (alice = X15 | fred = X15 | paul = X15 | mary = X15 | ~room(X15)) & room(alice) & room(fred) & room(paul) & room(mary) [skolemisation 135,139,138,137,136] 141. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK5 & fred != sK5 & paul != sK5 & mary != sK5 & room(sK5)) [choice axiom] 142. ~predm(paul) | (alice != sK5 & fred != sK5 & paul != sK5 & mary != sK5 & room(sK5)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 131,141] 223. room(mary) [cnf transformation 140] 224. room(paul) [cnf transformation 140] 225. room(fred) [cnf transformation 140] 226. room(alice) [cnf transformation 140] 227. ~room(X15) | fred = X15 | paul = X15 | mary = X15 | alice = X15 [cnf transformation 140] 242. ~preds(X9) | predm(X9) | ~room(X9) [cnf transformation 140] 255. preds(paul) [cnf transformation 140] 260. ~predm(paul) | room(sK5) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 142] 261. ~predm(paul) | mary != sK5 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 142] 262. ~predm(paul) | paul != sK5 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 142] 263. ~predm(paul) | fred != sK5 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 142] 264. ~predm(paul) | alice != sK5 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 142] 311. ~predm(paul) | alice != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 264,226] 312. ~predm(paul) | alice != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 311,225] 313. ~predm(paul) | alice != sK5 | ~room(mary) [subsumption resolution 312,224] 314. ~predm(paul) | alice != sK5 [subsumption resolution 313,223] 316. 11 <=> alice = sK5 [avatar definition] 318. alice != sK5 <- (~11) [avatar component clause 316] 320. 12 <=> predm(paul) [avatar definition] 323. ~11 | ~12 [avatar split clause 314,320,316] 324. ~predm(paul) | fred != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 263,226] 325. ~predm(paul) | fred != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 324,225] 326. ~predm(paul) | fred != sK5 | ~room(mary) [subsumption resolution 325,224] 327. ~predm(paul) | fred != sK5 [subsumption resolution 326,223] 329. 13 <=> fred = sK5 [avatar definition] 331. fred != sK5 <- (~13) [avatar component clause 329] 332. ~13 | ~12 [avatar split clause 327,320,329] 333. ~predm(paul) | paul != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 262,226] 334. ~predm(paul) | paul != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 333,225] 335. ~predm(paul) | paul != sK5 | ~room(mary) [subsumption resolution 334,224] 336. ~predm(paul) | paul != sK5 [subsumption resolution 335,223] 338. 14 <=> paul = sK5 [avatar definition] 340. paul != sK5 <- (~14) [avatar component clause 338] 341. ~14 | ~12 [avatar split clause 336,320,338] 342. ~predm(paul) | mary != sK5 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 261,226] 343. ~predm(paul) | mary != sK5 | ~room(paul) | ~room(mary) [subsumption resolution 342,225] 344. ~predm(paul) | mary != sK5 | ~room(mary) [subsumption resolution 343,224] 345. ~predm(paul) | mary != sK5 [subsumption resolution 344,223] 347. 15 <=> mary = sK5 [avatar definition] 349. mary != sK5 <- (~15) [avatar component clause 347] 350. ~15 | ~12 [avatar split clause 345,320,347] 351. ~predm(paul) | room(sK5) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 260,226] 352. ~predm(paul) | room(sK5) | ~room(paul) | ~room(mary) [subsumption resolution 351,225] 353. ~predm(paul) | room(sK5) | ~room(mary) [subsumption resolution 352,224] 354. ~predm(paul) | room(sK5) [subsumption resolution 353,223] 356. 16 <=> room(sK5) [avatar definition] 358. room(sK5) <- (16) [avatar component clause 356] 359. 16 | ~12 [avatar split clause 354,320,356] 361. predm(paul) | ~room(paul) [resolution 242,255] 366. predm(paul) [subsumption resolution 361,224] 367. 12 [avatar split clause 366,320] 421. fred = sK5 | paul = sK5 | mary = sK5 | alice = sK5 <- (16) [resolution 227,358] 507. paul = sK5 | mary = sK5 | alice = sK5 <- (~13, 16) [subsumption resolution 421,331] 508. mary = sK5 | alice = sK5 <- (~13, ~14, 16) [subsumption resolution 507,340] 509. alice = sK5 <- (~13, ~14, ~15, 16) [subsumption resolution 508,349] 510. $false <- (~11, ~13, ~14, ~15, 16) [subsumption resolution 509,318] 511. 11 | 13 | 14 | 15 | ~16 [avatar contradiction clause 510] 512. $false [avatar sat refutation 323,332,341,350,359,367,511] % SZS output end Proof for 2068577036101788950542203 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.093532
Eric, Celeste are the only persons in the room. If “everyone in the room builds model airplanes or does not practice graffiti art” then “someone in the room does not collect limited-edition art prints from contemporary artists”. If “someone in the room does not collect limited-edition art prints from contemporary artists” then “everyone in the room who enjoys skydiving builds model airplanes”. “Not everyone anywhere owns a smartwatch only if they plays as a goalkeeper for a local amateur soccer team” if “everyone in the room owns a smartwatch or does not collect antique jewelry”. If “Eric collects comic books” then “everyone in the room collects limited-edition art prints from contemporary artists if they own a television”. Everyone anywhere does not collect limited-edition art prints from contemporary artists. Everyone anywhere does not host regular game nights featuring complex strategy games if they collects limited-edition art prints from contemporary artists. Everyone in the room does not host regular game nights featuring complex strategy games only if they collects action figures. Everyone in the room does not practice graffiti art if they collects action figures. Everyone in the room does not own a significant collection of rare gemstones and minerals. Everyone in the room enjoys skydiving if they enjoys deep-sea diving and exploring underwater caves. Everyone in the room who enjoys skydiving practices urban gardening. Everyone in the room enjoys deep-sea diving and exploring underwater caves. Not everyone in the room does not play as a goalkeeper for a local amateur soccer team if they enjoys skydiving. Eric works on fridays. If someone does not work on fridays then he/she practices graffiti art and vice versa. If someone is not an avid mountain climber who has scaled several peaks then he/she owns a significant collection of rare gemstones and minerals. Everyone in the room does not own a 3D printer if they works on fridays and does not enjoy skydiving.
Everyone in the room does not own a significant collection of rare gemstones and minerals.
entailment
room(eric)&room(celeste)&(![X]:(room(X)=>(X='eric'|X='celeste')))& (((![X]:(room(X)=>(((does_not_practice_graffiti_art(X))|(builds_model_airplanes(X))))))=>(?[X]:(room(X)&(does_not_collect_limited-edition_art_prints_from_contemporary_artists(X)))))& ((?[X]:(room(X)&(does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))))=>(![X]:(room(X)=>(((enjoys_skydiving(X))=>(builds_model_airplanes(X))))))))& ((![X]:(room(X)=>(((does_not_collect_antique_jewelry(X))|(owns_a_smartwatch(X))))))=>(~![X]:(anywhere(X)=>(((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))<=(owns_a_smartwatch(X)))))))& ((collects_comic_books(eric))=>(![X]:(room(X)=>(((own_a_television(X))=>(collects_limited-edition_art_prints_from_contemporary_artists(X)))))))& (![X]:(anywhere(X)=>(does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))))& (![X]:(anywhere(X)=>(((collects_limited-edition_art_prints_from_contemporary_artists(X))=>(does_not_host_regular_game_nights_featuring_complex_strategy_games(X))))))& (![X]:(room(X)=>(((collects_action_figures(X))<=(does_not_host_regular_game_nights_featuring_complex_strategy_games(X))))))& (![X]:(room(X)=>(((collects_action_figures(X))=>(does_not_practice_graffiti_art(X))))))& (![X]:(room(X)=>(does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(X))))& (![X]:(room(X)=>(((enjoys_deep-sea_diving_and_exploring_underwater_caves(X))=>(enjoys_skydiving(X))))))& (![X]:(room(X)=>(((enjoys_skydiving(X))=>(practices_urban_gardening(X))))))& (![X]:(room(X)=>(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))))& (~![X]:(room(X)=>(((enjoys_skydiving(X))=>(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))& (works_on_fridays(eric))& ((![X]:((does_not_work_on_fridays(X))<=>(practices_graffiti_art(X)))))& ((![X]:((is_not_an_avid_mountain_climber_who_has_scaled_several_peaks(X))=>(owns_a_significant_collection_of_rare_gemstones_and_minerals(X)))))& (![X]:(room(X)=>(((((works_on_fridays(X))&(does_not_enjoy_skydiving(X))))=>(does_not_own_a_3D_printer(X))))))& (![X]:(room(X)=>(((does_not_own_a_3D_printer(X))=>(hosts_a_popular_podcast_about_emerging_technologies(X))))))
room(eric)&room(celeste)&(![X]:(room(X)=>(X='eric'|X='celeste')))& ![X]:(room(X)=>(does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(X)))
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 1396895325267640026344220 % SZS output start Proof for 1396895325267640026344220 44. ! [X0] : (room(X0) => (~predi(X0) => predc(X0))) & ! [X0] : (room(X0) => ((~predx(X0) & predy(X0)) => ~predi(X0))) & ! [X0] : (~predm(X0) => predh(X0)) & ! [X0] : (~predy(X0) <=> predj(X0)) & predy(mary) & ~! [X0] : (room(X0) => (predx(X0) => ~predv(X0))) & ! [X0] : (room(X0) => predz(X0)) & ! [X0] : (room(X0) => (predx(X0) => predb(X0))) & ! [X0] : (room(X0) => (predz(X0) => predx(X0))) & ! [X0] : (room(X0) => ~predh(X0)) & ! [X0] : (room(X0) => (predl(X0) => ~predj(X0))) & ! [X0] : (room(X0) => (~predo(X0) => predl(X0))) & ! [X0] : (anywhere(X0) => (predn(X0) => ~predo(X0))) & ! [X0] : (anywhere(X0) => ~predn(X0)) & (preds(mary) => ! [X0] : (room(X0) => (predg(X0) => predn(X0)))) & (! [X0] : (room(X0) => (predw(X0) | ~predd(X0))) => ~! [X0] : (anywhere(X0) => (predw(X0) => predv(X0)))) & (? [X0] : (~predn(X0) & room(X0)) => ! [X0] : (room(X0) => (predx(X0) => predr(X0)))) & (! [X0] : (room(X0) => (predr(X0) | ~predj(X0))) => ? [X0] : (~predn(X0) & room(X0))) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 45. ~(! [X0] : (room(X0) => ~predh(X0)) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 46. ! [X0] : (room(X0) => (~predi(X0) => predc(X0))) & ! [X1] : (room(X1) => ((~predx(X1) & predy(X1)) => ~predi(X1))) & ! [X2] : (~predm(X2) => predh(X2)) & ! [X3] : (~predy(X3) <=> predj(X3)) & predy(mary) & ~! [X4] : (room(X4) => (predx(X4) => ~predv(X4))) & ! [X5] : (room(X5) => predz(X5)) & ! [X6] : (room(X6) => (predx(X6) => predb(X6))) & ! [X7] : (room(X7) => (predz(X7) => predx(X7))) & ! [X8] : (room(X8) => ~predh(X8)) & ! [X9] : (room(X9) => (predl(X9) => ~predj(X9))) & ! [X10] : (room(X10) => (~predo(X10) => predl(X10))) & ! [X11] : (anywhere(X11) => (predn(X11) => ~predo(X11))) & ! [X12] : (anywhere(X12) => ~predn(X12)) & (preds(mary) => ! [X13] : (room(X13) => (predg(X13) => predn(X13)))) & (! [X14] : (room(X14) => (predw(X14) | ~predd(X14))) => ~! [X15] : (anywhere(X15) => (predw(X15) => predv(X15)))) & (? [X16] : (~predn(X16) & room(X16)) => ! [X17] : (room(X17) => (predx(X17) => predr(X17)))) & (! [X18] : (room(X18) => (predr(X18) | ~predj(X18))) => ? [X19] : (~predn(X19) & room(X19))) & ! [X20] : (room(X20) => (paul = X20 | mary = X20)) & room(paul) & room(mary) [rectify 44] 47. ~(! [X0] : (room(X0) => ~predh(X0)) & ! [X1] : (room(X1) => (paul = X1 | mary = X1)) & room(paul) & room(mary)) [rectify 45] 48. ! [X1] : (room(X1) => ((~predx(X1) & predy(X1)) => ~predi(X1))) & ! [X2] : (~predm(X2) => predh(X2)) & ! [X3] : (~predy(X3) <=> predj(X3)) & predy(mary) & ~! [X4] : (room(X4) => (predx(X4) => ~predv(X4))) & ! [X5] : (room(X5) => predz(X5)) & ! [X6] : (room(X6) => (predx(X6) => predb(X6))) & ! [X7] : (room(X7) => (predz(X7) => predx(X7))) & ! [X8] : (room(X8) => ~predh(X8)) & ! [X9] : (room(X9) => (predl(X9) => ~predj(X9))) & ! [X10] : (room(X10) => (~predo(X10) => predl(X10))) & ! [X11] : (anywhere(X11) => (predn(X11) => ~predo(X11))) & ! [X12] : (anywhere(X12) => ~predn(X12)) & (preds(mary) => ! [X13] : (room(X13) => (predg(X13) => predn(X13)))) & (! [X14] : (room(X14) => (predw(X14) | ~predd(X14))) => ~! [X15] : (anywhere(X15) => (predw(X15) => predv(X15)))) & (? [X16] : (~predn(X16) & room(X16)) => ! [X17] : (room(X17) => (predx(X17) => predr(X17)))) & (! [X18] : (room(X18) => (predr(X18) | ~predj(X18))) => ? [X19] : (~predn(X19) & room(X19))) & ! [X20] : (room(X20) => (paul = X20 | mary = X20)) & room(paul) & room(mary) [pure predicate removal 46] 49. ! [X2] : (~predm(X2) => predh(X2)) & ! [X3] : (~predy(X3) <=> predj(X3)) & predy(mary) & ~! [X4] : (room(X4) => (predx(X4) => ~predv(X4))) & ! [X5] : (room(X5) => predz(X5)) & ! [X6] : (room(X6) => (predx(X6) => predb(X6))) & ! [X7] : (room(X7) => (predz(X7) => predx(X7))) & ! [X8] : (room(X8) => ~predh(X8)) & ! [X9] : (room(X9) => (predl(X9) => ~predj(X9))) & ! [X10] : (room(X10) => (~predo(X10) => predl(X10))) & ! [X11] : (anywhere(X11) => (predn(X11) => ~predo(X11))) & ! [X12] : (anywhere(X12) => ~predn(X12)) & (preds(mary) => ! [X13] : (room(X13) => (predg(X13) => predn(X13)))) & (! [X14] : (room(X14) => (predw(X14) | ~predd(X14))) => ~! [X15] : (anywhere(X15) => (predw(X15) => predv(X15)))) & (? [X16] : (~predn(X16) & room(X16)) => ! [X17] : (room(X17) => (predx(X17) => predr(X17)))) & (! [X18] : (room(X18) => (predr(X18) | ~predj(X18))) => ? [X19] : (~predn(X19) & room(X19))) & ! [X20] : (room(X20) => (paul = X20 | mary = X20)) & room(paul) & room(mary) [pure predicate removal 48] 50. ! [X3] : (~predy(X3) <=> predj(X3)) & predy(mary) & ~! [X4] : (room(X4) => (predx(X4) => ~predv(X4))) & ! [X5] : (room(X5) => predz(X5)) & ! [X6] : (room(X6) => (predx(X6) => predb(X6))) & ! [X7] : (room(X7) => (predz(X7) => predx(X7))) & ! [X8] : (room(X8) => ~predh(X8)) & ! [X9] : (room(X9) => (predl(X9) => ~predj(X9))) & ! [X10] : (room(X10) => (~predo(X10) => predl(X10))) & ! [X11] : (anywhere(X11) => (predn(X11) => ~predo(X11))) & ! [X12] : (anywhere(X12) => ~predn(X12)) & (preds(mary) => ! [X13] : (room(X13) => (predg(X13) => predn(X13)))) & (! [X14] : (room(X14) => (predw(X14) | ~predd(X14))) => ~! [X15] : (anywhere(X15) => (predw(X15) => predv(X15)))) & (? [X16] : (~predn(X16) & room(X16)) => ! [X17] : (room(X17) => (predx(X17) => predr(X17)))) & (! [X18] : (room(X18) => (predr(X18) | ~predj(X18))) => ? [X19] : (~predn(X19) & room(X19))) & ! [X20] : (room(X20) => (paul = X20 | mary = X20)) & room(paul) & room(mary) [pure predicate removal 49] 51. ! [X3] : (~predy(X3) <=> predj(X3)) & predy(mary) & ~! [X4] : (room(X4) => (predx(X4) => ~predv(X4))) & ! [X5] : (room(X5) => predz(X5)) & ! [X7] : (room(X7) => (predz(X7) => predx(X7))) & ! [X8] : (room(X8) => ~predh(X8)) & ! [X9] : (room(X9) => (predl(X9) => ~predj(X9))) & ! [X10] : (room(X10) => (~predo(X10) => predl(X10))) & ! [X11] : (anywhere(X11) => (predn(X11) => ~predo(X11))) & ! [X12] : (anywhere(X12) => ~predn(X12)) & (preds(mary) => ! [X13] : (room(X13) => (predg(X13) => predn(X13)))) & (! [X14] : (room(X14) => (predw(X14) | ~predd(X14))) => ~! [X15] : (anywhere(X15) => (predw(X15) => predv(X15)))) & (? [X16] : (~predn(X16) & room(X16)) => ! [X17] : (room(X17) => (predx(X17) => predr(X17)))) & (! [X18] : (room(X18) => (predr(X18) | ~predj(X18))) => ? [X19] : (~predn(X19) & room(X19))) & ! [X20] : (room(X20) => (paul = X20 | mary = X20)) & room(paul) & room(mary) [pure predicate removal 50] 52. ! [X3] : (~predy(X3) <=> predj(X3)) & predy(mary) & ~! [X4] : (room(X4) => (predx(X4) => ~predv(X4))) & ! [X5] : (room(X5) => predz(X5)) & ! [X7] : (room(X7) => (predz(X7) => predx(X7))) & ! [X8] : (room(X8) => ~predh(X8)) & ! [X9] : (room(X9) => (predl(X9) => ~predj(X9))) & ! [X10] : (room(X10) => (~predo(X10) => predl(X10))) & ! [X11] : (anywhere(X11) => (predn(X11) => ~predo(X11))) & ! [X12] : (anywhere(X12) => ~predn(X12)) & (! [X14] : (room(X14) => (predw(X14) | ~predd(X14))) => ~! [X15] : (anywhere(X15) => (predw(X15) => predv(X15)))) & (? [X16] : (~predn(X16) & room(X16)) => ! [X17] : (room(X17) => (predx(X17) => predr(X17)))) & (! [X18] : (room(X18) => (predr(X18) | ~predj(X18))) => ? [X19] : (~predn(X19) & room(X19))) & ! [X20] : (room(X20) => (paul = X20 | mary = X20)) & room(paul) & room(mary) [pure predicate removal 51] 53. ! [X3] : (~predy(X3) <=> predj(X3)) & predy(mary) & ~! [X4] : (room(X4) => (predx(X4) => ~predv(X4))) & ! [X5] : (room(X5) => predz(X5)) & ! [X7] : (room(X7) => (predz(X7) => predx(X7))) & ! [X8] : (room(X8) => ~predh(X8)) & ! [X9] : (room(X9) => (predl(X9) => ~predj(X9))) & ! [X10] : (room(X10) => (~predo(X10) => predl(X10))) & ! [X11] : (anywhere(X11) => (predn(X11) => ~predo(X11))) & ! [X12] : (anywhere(X12) => ~predn(X12)) & (! [X14] : (room(X14) => predw(X14)) => ~! [X15] : (anywhere(X15) => (predw(X15) => predv(X15)))) & (? [X16] : (~predn(X16) & room(X16)) => ! [X17] : (room(X17) => (predx(X17) => predr(X17)))) & (! [X18] : (room(X18) => (predr(X18) | ~predj(X18))) => ? [X19] : (~predn(X19) & room(X19))) & ! [X20] : (room(X20) => (paul = X20 | mary = X20)) & room(paul) & room(mary) [pure predicate removal 52] 125. ! [X3] : (~predy(X3) <=> predj(X3)) & predy(mary) & ? [X4] : ((predv(X4) & predx(X4)) & room(X4)) & ! [X5] : (predz(X5) | ~room(X5)) & ! [X7] : ((predx(X7) | ~predz(X7)) | ~room(X7)) & ! [X8] : (~predh(X8) | ~room(X8)) & ! [X9] : ((~predj(X9) | ~predl(X9)) | ~room(X9)) & ! [X10] : ((predl(X10) | predo(X10)) | ~room(X10)) & ! [X11] : ((~predo(X11) | ~predn(X11)) | ~anywhere(X11)) & ! [X12] : (~predn(X12) | ~anywhere(X12)) & (? [X15] : ((~predv(X15) & predw(X15)) & anywhere(X15)) | ? [X14] : (~predw(X14) & room(X14))) & (! [X17] : ((predr(X17) | ~predx(X17)) | ~room(X17)) | ! [X16] : (predn(X16) | ~room(X16))) & (? [X19] : (~predn(X19) & room(X19)) | ? [X18] : ((~predr(X18) & predj(X18)) & room(X18))) & ! [X20] : ((paul = X20 | mary = X20) | ~room(X20)) & room(paul) & room(mary) [ennf transformation 53] 126. ! [X3] : (~predy(X3) <=> predj(X3)) & predy(mary) & ? [X4] : (predv(X4) & predx(X4) & room(X4)) & ! [X5] : (predz(X5) | ~room(X5)) & ! [X7] : (predx(X7) | ~predz(X7) | ~room(X7)) & ! [X8] : (~predh(X8) | ~room(X8)) & ! [X9] : (~predj(X9) | ~predl(X9) | ~room(X9)) & ! [X10] : (predl(X10) | predo(X10) | ~room(X10)) & ! [X11] : (~predo(X11) | ~predn(X11) | ~anywhere(X11)) & ! [X12] : (~predn(X12) | ~anywhere(X12)) & (? [X15] : (~predv(X15) & predw(X15) & anywhere(X15)) | ? [X14] : (~predw(X14) & room(X14))) & (! [X17] : (predr(X17) | ~predx(X17) | ~room(X17)) | ! [X16] : (predn(X16) | ~room(X16))) & (? [X19] : (~predn(X19) & room(X19)) | ? [X18] : (~predr(X18) & predj(X18) & room(X18))) & ! [X20] : (paul = X20 | mary = X20 | ~room(X20)) & room(paul) & room(mary) [flattening 125] 127. ? [X0] : (predh(X0) & room(X0)) | ? [X1] : ((paul != X1 & mary != X1) & room(X1)) | ~room(paul) | ~room(mary) [ennf transformation 47] 128. ? [X0] : (predh(X0) & room(X0)) | ? [X1] : (paul != X1 & mary != X1 & room(X1)) | ~room(paul) | ~room(mary) [flattening 127] 130. ! [X3] : ((~predy(X3) | ~predj(X3)) & (predj(X3) | predy(X3))) & predy(mary) & ? [X4] : (predv(X4) & predx(X4) & room(X4)) & ! [X5] : (predz(X5) | ~room(X5)) & ! [X7] : (predx(X7) | ~predz(X7) | ~room(X7)) & ! [X8] : (~predh(X8) | ~room(X8)) & ! [X9] : (~predj(X9) | ~predl(X9) | ~room(X9)) & ! [X10] : (predl(X10) | predo(X10) | ~room(X10)) & ! [X11] : (~predo(X11) | ~predn(X11) | ~anywhere(X11)) & ! [X12] : (~predn(X12) | ~anywhere(X12)) & (? [X15] : (~predv(X15) & predw(X15) & anywhere(X15)) | ? [X14] : (~predw(X14) & room(X14))) & (! [X17] : (predr(X17) | ~predx(X17) | ~room(X17)) | ! [X16] : (predn(X16) | ~room(X16))) & (? [X19] : (~predn(X19) & room(X19)) | ? [X18] : (~predr(X18) & predj(X18) & room(X18))) & ! [X20] : (paul = X20 | mary = X20 | ~room(X20)) & room(paul) & room(mary) [nnf transformation 126] 131. ! [X0] : ((~predy(X0) | ~predj(X0)) & (predj(X0) | predy(X0))) & predy(mary) & ? [X1] : (predv(X1) & predx(X1) & room(X1)) & ! [X2] : (predz(X2) | ~room(X2)) & ! [X3] : (predx(X3) | ~predz(X3) | ~room(X3)) & ! [X4] : (~predh(X4) | ~room(X4)) & ! [X5] : (~predj(X5) | ~predl(X5) | ~room(X5)) & ! [X6] : (predl(X6) | predo(X6) | ~room(X6)) & ! [X7] : (~predo(X7) | ~predn(X7) | ~anywhere(X7)) & ! [X8] : (~predn(X8) | ~anywhere(X8)) & (? [X9] : (~predv(X9) & predw(X9) & anywhere(X9)) | ? [X10] : (~predw(X10) & room(X10))) & (! [X11] : (predr(X11) | ~predx(X11) | ~room(X11)) | ! [X12] : (predn(X12) | ~room(X12))) & (? [X13] : (~predn(X13) & room(X13)) | ? [X14] : (~predr(X14) & predj(X14) & room(X14))) & ! [X15] : (paul = X15 | mary = X15 | ~room(X15)) & room(paul) & room(mary) [rectify 130] 132. ? [X1] : (predv(X1) & predx(X1) & room(X1)) => (predv(sK0) & predx(sK0) & room(sK0)) [choice axiom] 133. ? [X9] : (~predv(X9) & predw(X9) & anywhere(X9)) => (~predv(sK1) & predw(sK1) & anywhere(sK1)) [choice axiom] 134. ? [X10] : (~predw(X10) & room(X10)) => (~predw(sK2) & room(sK2)) [choice axiom] 135. ? [X13] : (~predn(X13) & room(X13)) => (~predn(sK3) & room(sK3)) [choice axiom] 136. ? [X14] : (~predr(X14) & predj(X14) & room(X14)) => (~predr(sK4) & predj(sK4) & room(sK4)) [choice axiom] 137. ! [X0] : ((~predy(X0) | ~predj(X0)) & (predj(X0) | predy(X0))) & predy(mary) & (predv(sK0) & predx(sK0) & room(sK0)) & ! [X2] : (predz(X2) | ~room(X2)) & ! [X3] : (predx(X3) | ~predz(X3) | ~room(X3)) & ! [X4] : (~predh(X4) | ~room(X4)) & ! [X5] : (~predj(X5) | ~predl(X5) | ~room(X5)) & ! [X6] : (predl(X6) | predo(X6) | ~room(X6)) & ! [X7] : (~predo(X7) | ~predn(X7) | ~anywhere(X7)) & ! [X8] : (~predn(X8) | ~anywhere(X8)) & ((~predv(sK1) & predw(sK1) & anywhere(sK1)) | (~predw(sK2) & room(sK2))) & (! [X11] : (predr(X11) | ~predx(X11) | ~room(X11)) | ! [X12] : (predn(X12) | ~room(X12))) & ((~predn(sK3) & room(sK3)) | (~predr(sK4) & predj(sK4) & room(sK4))) & ! [X15] : (paul = X15 | mary = X15 | ~room(X15)) & room(paul) & room(mary) [skolemisation 131,136,135,134,133,132] 138. ? [X0] : (predh(X0) & room(X0)) => (predh(sK5) & room(sK5)) [choice axiom] 139. ? [X1] : (paul != X1 & mary != X1 & room(X1)) => (paul != sK6 & mary != sK6 & room(sK6)) [choice axiom] 140. (predh(sK5) & room(sK5)) | (paul != sK6 & mary != sK6 & room(sK6)) | ~room(paul) | ~room(mary) [skolemisation 128,139,138] 222. room(mary) [cnf transformation 137] 223. room(paul) [cnf transformation 137] 224. ~room(X15) | mary = X15 | paul = X15 [cnf transformation 137] 242. ~predh(X4) | ~room(X4) [cnf transformation 137] 251. room(sK5) | room(sK6) | ~room(paul) | ~room(mary) [cnf transformation 140] 252. room(sK5) | mary != sK6 | ~room(paul) | ~room(mary) [cnf transformation 140] 253. room(sK5) | paul != sK6 | ~room(paul) | ~room(mary) [cnf transformation 140] 254. predh(sK5) | room(sK6) | ~room(paul) | ~room(mary) [cnf transformation 140] 255. predh(sK5) | mary != sK6 | ~room(paul) | ~room(mary) [cnf transformation 140] 256. predh(sK5) | paul != sK6 | ~room(paul) | ~room(mary) [cnf transformation 140] 308. predh(sK5) | paul != sK6 | ~room(mary) [subsumption resolution 256,223] 309. predh(sK5) | paul != sK6 [subsumption resolution 308,222] 311. 11 <=> paul = sK6 [avatar definition] 313. paul != sK6 <- (~11) [avatar component clause 311] 315. 12 <=> predh(sK5) [avatar definition] 317. predh(sK5) <- (12) [avatar component clause 315] 318. ~11 | 12 [avatar split clause 309,315,311] 319. predh(sK5) | mary != sK6 | ~room(mary) [subsumption resolution 255,223] 320. predh(sK5) | mary != sK6 [subsumption resolution 319,222] 322. 13 <=> mary = sK6 [avatar definition] 324. mary != sK6 <- (~13) [avatar component clause 322] 325. ~13 | 12 [avatar split clause 320,315,322] 326. predh(sK5) | room(sK6) | ~room(mary) [subsumption resolution 254,223] 327. predh(sK5) | room(sK6) [subsumption resolution 326,222] 329. 14 <=> room(sK6) [avatar definition] 331. room(sK6) <- (14) [avatar component clause 329] 332. 14 | 12 [avatar split clause 327,315,329] 333. room(sK5) | paul != sK6 | ~room(mary) [subsumption resolution 253,223] 334. room(sK5) | paul != sK6 [subsumption resolution 333,222] 336. 15 <=> room(sK5) [avatar definition] 339. ~11 | 15 [avatar split clause 334,336,311] 340. room(sK5) | mary != sK6 | ~room(mary) [subsumption resolution 252,223] 341. room(sK5) | mary != sK6 [subsumption resolution 340,222] 342. ~13 | 15 [avatar split clause 341,336,322] 343. room(sK5) | room(sK6) | ~room(mary) [subsumption resolution 251,223] 344. room(sK5) | room(sK6) [subsumption resolution 343,222] 345. 14 | 15 [avatar split clause 344,336,329] 440. ~room(sK5) <- (12) [resolution 317,242] 443. ~15 | ~12 [avatar split clause 440,315,336] 452. mary = sK6 | paul = sK6 <- (14) [resolution 224,331] 471. paul = sK6 <- (~13, 14) [subsumption resolution 452,324] 472. $false <- (~11, ~13, 14) [subsumption resolution 471,313] 473. 11 | 13 | ~14 [avatar contradiction clause 472] 474. $false [avatar sat refutation 318,325,332,339,342,345,443,473] % SZS output end Proof for 1396895325267640026344220 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.211475
There is a room. Everyone in the room is not an amateur astronomer who builds and uses custom telescopes. Everyone in the room does not read mystery novels. Everyone in the room is not a client of Costco. Everyone in the room does not enjoy skydiving. Everyone in the room does not practice yoga or does not collect foreign coins or both. Someone in the room does not collect foreign coins, is not an amateur astronomer who builds and uses custom telescopes and does not collect rare sneakers. Not everyone anywhere does not use a Windows laptop. Everyone in the room does not play as a goalkeeper for a local amateur soccer team. Everyone in the room either does not own an Android phone or is not an amateur astronomer who builds and uses custom telescopes but not both. Someone in the room cannot play the flute or does not host a YouTube channel dedicated to art tutorials or both. Everyone anywhere is not a professional photographer specializing in portrait photography. Everyone in the room is not an avid hiker. Everyone in the room does not read mystery novels or does not own an Android phone or both. Everyone in the room does not play the violin or does not play as a goalkeeper for a local amateur soccer team or both. Everyone outside the room does not have a saltwater aquarium, does not enjoy cross-country skiing and does not mentor a youth basketball team on weekends. Not everyone in the room does not play as a goalkeeper for a local amateur soccer team, does not practice graffiti art and does not read mystery novels. Everyone in the room cannot play the flute. Everyone anywhere cannot play the flute. Everyone outside the room is not a professional photographer specializing in portrait photography. Everyone in the room does not practice tai chi. Everyone in the room does not use a Windows laptop. Everyone in the room does not practice calligraphy. If someone does not create augmented reality experiences for mobile applications then he/she does not practice calligraphy or does not have a saltwater aquarium or both and vice versa. Not everyone outside the room does not own a smartwatch. Everyone in the room does not play the violin or is not an avid hiker or both. Everyone in the room does not create augmented reality experiences for mobile applications, is not a professional photographer specializing in portrait photography or does not enjoy virtual reality gaming. Someone outside the room does not practice calligraphy.
Everyone in the room practices graffiti art.
neutral
(there_is_a_room)& (![X]:(room(X)=>(is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))& (![X]:(room(X)=>(does_not_read_mystery_novels(X))))& (![X]:(room(X)=>(is_not_a_client_of_Costco(X))))& (![X]:(room(X)=>(does_not_enjoy_skydiving(X))))& (![X]:(room(X)=>(((does_not_practice_yoga(X))|(does_not_collect_foreign_coins(X))))))& (?[X]:(room(X)&(((does_not_collect_foreign_coins(X))&(is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))&(does_not_collect_rare_sneakers(X))))))& (~![X]:(anywhere(X)=>(does_not_use_a_Windows_laptop(X))))& (![X]:(room(X)=>(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))& (![X]:(room(X)=>(((does_not_own_an_Android_phone(X))<~>(is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))))& (?[X]:(room(X)&(((cannot_play_the_flute(X))|(does_not_host_a_YouTube_channel_dedicated_to_art_tutorials(X))))))& (![X]:(anywhere(X)=>(is_not_a_professional_photographer_specializing_in_portrait_photography(X))))& (![X]:(room(X)=>(is_not_an_avid_hiker(X))))& (![X]:(room(X)=>(((does_not_read_mystery_novels(X))|(does_not_own_an_Android_phone(X))))))& (![X]:(room(X)=>(((does_not_play_the_violin(X))|(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))& (![X]:(~room(X)=>(((does_not_have_a_saltwater_aquarium(X))&(does_not_enjoy_cross-country_skiing(X))&(does_not_mentor_a_youth_basketball_team_on_weekends(X))))))& (~![X]:(room(X)=>(((does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))&(does_not_practice_graffiti_art(X))&(does_not_read_mystery_novels(X))))))& (![X]:(room(X)=>(cannot_play_the_flute(X))))& (![X]:(anywhere(X)=>(cannot_play_the_flute(X))))& (![X]:(~room(X)=>(is_not_a_professional_photographer_specializing_in_portrait_photography(X))))& (![X]:(room(X)=>(does_not_practice_tai_chi(X))))& (![X]:(room(X)=>(does_not_use_a_Windows_laptop(X))))& (![X]:(room(X)=>(does_not_practice_calligraphy(X))))& ((![X]:((does_not_create_augmented_reality_experiences_for_mobile_applications(X))<=>(((does_not_practice_calligraphy(X))|(does_not_have_a_saltwater_aquarium(X)))))))& (~![X]:(~room(X)=>(does_not_own_a_smartwatch(X))))& (![X]:(room(X)=>(((does_not_play_the_violin(X))|(is_not_an_avid_hiker(X))))))& (![X]:(room(X)=>(((does_not_create_augmented_reality_experiences_for_mobile_applications(X))|(is_not_a_professional_photographer_specializing_in_portrait_photography(X))|(does_not_enjoy_virtual_reality_gaming(X))))))& (?[X]:(~room(X)&(does_not_practice_calligraphy(X))))
(there_is_a_room)& ![X]:(room(X)=>(practices_graffiti_art(X)))
[]
null
0.203267
Laura, Martin, Antonio are the only persons in the room. If “not everyone in the room collect rare sneakers or does not create bespoke furniture pieces from reclaimed wood” then “Martin does not create bespoke furniture pieces from reclaimed wood” otherwise “if someone neither enjoys kayaking nor collect rare sneakers then he/she either enjoys wildlife photography or collect rare sneakers but not both and vice versa”. “Everyone anywhere does not enjoy kayaking only if they does not collect antique jewelry, is a client of Costco and creates bespoke furniture pieces from reclaimed wood” if “not everyone in the room does not enjoy kayaking or collects rare minerals”. Laura collects rare minerals and enjoys wildlife photography. Everyone in the room owns a smartwatch or does not create bespoke furniture pieces from reclaimed wood. Martin neither is a client of Costco nor enjoys wildlife photography. Only one person in the room either is a client of Costco or can play the piano but not both. Everyone in the room either is a night owl or practices graffiti art but not both if they either owns a smartwatch or creates large-scale murals for public art installations but not both. Everyone in the room enjoys wildlife photography or is not a night owl.
Martin creates bespoke furniture pieces from reclaimed wood.
contradiction
room(laura)&room(martin)&room(antonio)&(![X]:(room(X)=>(X='laura'|X='martin'|X='antonio')))& (((~![X]:(room(X)=>(((does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(X))|(collect_rare_sneakers(X))))))=>(does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(martin)))&((~(~![X]:(room(X)=>(((does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(X))|(collect_rare_sneakers(X)))))))=>((![X]:((~((enjoys_kayaking(X))|(collect_rare_sneakers(X))))<=>(((enjoys_wildlife_photography(X))<~>(collect_rare_sneakers(X)))))))))& ((~![X]:(room(X)=>(((collects_rare_minerals(X))|(does_not_enjoy_kayaking(X))))))=>(![X]:(anywhere(X)=>(((((does_not_collect_antique_jewelry(X))&(is_a_client_of_Costco(X))&(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))<=(does_not_enjoy_kayaking(X)))))))& (((collects_rare_minerals(laura))&(enjoys_wildlife_photography(laura))))& (![X]:(room(X)=>(((does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(X))|(owns_a_smartwatch(X))))))& (~((is_a_client_of_Costco(martin))|(enjoys_wildlife_photography(martin))))& (((?[X]:(room(X)&((is_a_client_of_Costco(X))<~>(can_play_the_piano(X)))))&(![X,Y]:((room(X)&room(Y)&(((is_a_client_of_Costco(X))<~>(can_play_the_piano(X))))&(((is_a_client_of_Costco(Y))<~>(can_play_the_piano(Y)))))=>(X=Y)))))& (![X]:(room(X)=>(((((owns_a_smartwatch(X))<~>(creates_large-scale_murals_for_public_art_installations(X))))=>(((is_a_night_owl(X))<~>(practices_graffiti_art(X))))))))& (![X]:(room(X)=>(((is_not_a_night_owl(X))|(enjoys_wildlife_photography(X))))))
room(laura)&room(martin)&room(antonio)&(![X]:(room(X)=>(X='laura'|X='martin'|X='antonio')))& creates_bespoke_furniture_pieces_from_reclaimed_wood(martin)
[ "p0", "p1", "p5", "hypothesis" ]
% SZS status Unsatisfiable for 3498820273773749863833719 % SZS output start Proof for 3498820273773749863833719 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 45. (~~! [X0] : (room(X0) => (predu(X0) | ~predc(X0))) => ! [X0] : (~(predu(X0) | predl(X0)) <=> (preds(X0) <~> predu(X0)))) & (~! [X0] : (room(X0) => (predu(X0) | ~predc(X0))) => ~predc(paul)) [input p1] 49. ~(preds(paul) | predr(paul)) [input p5] 53. predc(paul) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 54. (~~! [X0] : (room(X0) => (predu(X0) | ~predc(X0))) => ! [X1] : (~(predu(X1) | predl(X1)) <=> (preds(X1) <~> predu(X1)))) & (~! [X2] : (room(X2) => (predu(X2) | ~predc(X2))) => ~predc(paul)) [rectify 45] 55. (! [X0] : (room(X0) => (predu(X0) | ~predc(X0))) => ! [X1] : (~(predu(X1) | predl(X1)) <=> (preds(X1) <~> predu(X1)))) & (~! [X2] : (room(X2) => (predu(X2) | ~predc(X2))) => ~predc(paul)) [flattening 54] 133. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 134. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 133] 135. (! [X1] : ((~predu(X1) & ~predl(X1)) <=> (preds(X1) <~> predu(X1))) | ? [X0] : ((~predu(X0) & predc(X0)) & room(X0))) & (~predc(paul) | ! [X2] : ((predu(X2) | ~predc(X2)) | ~room(X2))) [ennf transformation 55] 136. (! [X1] : ((~predu(X1) & ~predl(X1)) <=> (preds(X1) <~> predu(X1))) | ? [X0] : (~predu(X0) & predc(X0) & room(X0))) & (~predc(paul) | ! [X2] : (predu(X2) | ~predc(X2) | ~room(X2))) [flattening 135] 139. ~preds(paul) & ~predr(paul) [ennf transformation 49] 146. predc(paul) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 53] 147. predc(paul) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 146] 148. ! [X1] : ((~predu(X1) & ~predl(X1)) <=> (preds(X1) <~> predu(X1))) | ~sP0 [predicate definition introduction] 149. (sP0 | ? [X0] : (~predu(X0) & predc(X0) & room(X0))) & (~predc(paul) | ! [X2] : (predu(X2) | ~predc(X2) | ~room(X2))) [definition folding 136,148] 151. ! [X1] : (((~predu(X1) & ~predl(X1)) | ((preds(X1) | ~predu(X1)) & (predu(X1) | ~preds(X1)))) & (((~predu(X1) | ~preds(X1)) & (predu(X1) | preds(X1))) | (predu(X1) | predl(X1)))) | ~sP0 [nnf transformation 148] 152. ! [X1] : (((~predu(X1) & ~predl(X1)) | ((preds(X1) | ~predu(X1)) & (predu(X1) | ~preds(X1)))) & (((~predu(X1) | ~preds(X1)) & (predu(X1) | preds(X1))) | predu(X1) | predl(X1))) | ~sP0 [flattening 151] 153. ! [X0] : (((~predu(X0) & ~predl(X0)) | ((preds(X0) | ~predu(X0)) & (predu(X0) | ~preds(X0)))) & (((~predu(X0) | ~preds(X0)) & (predu(X0) | preds(X0))) | predu(X0) | predl(X0))) | ~sP0 [rectify 152] 154. (sP0 | ? [X0] : (~predu(X0) & predc(X0) & room(X0))) & (~predc(paul) | ! [X1] : (predu(X1) | ~predc(X1) | ~room(X1))) [rectify 149] 155. ? [X0] : (~predu(X0) & predc(X0) & room(X0)) => (~predu(sK1) & predc(sK1) & room(sK1)) [choice axiom] 156. (sP0 | (~predu(sK1) & predc(sK1) & room(sK1))) & (~predc(paul) | ! [X1] : (predu(X1) | ~predc(X1) | ~room(X1))) [skolemisation 154,155] 243. room(paul) [cnf transformation 134] 251. ~predu(X0) | preds(X0) | ~predu(X0) | ~sP0 [cnf transformation 153] 252. ~predc(paul) | predu(X1) | ~predc(X1) | ~room(X1) [cnf transformation 156] 253. sP0 | room(sK1) [cnf transformation 156] 254. sP0 | predc(sK1) [cnf transformation 156] 255. sP0 | ~predu(sK1) [cnf transformation 156] 259. ~preds(paul) [cnf transformation 139] 276. predc(paul) [cnf transformation 147] 278. ~predu(X0) | preds(X0) | ~sP0 [duplicate literal removal 251] 280. 1 <=> sP0 [avatar definition] 284. 2 <=> ! [X0] : (~predu(X0) | preds(X0)) [avatar definition] 285. ~predu(X0) | preds(X0) <- (2) [avatar component clause 284] 286. ~1 | 2 [avatar split clause 278,284,280] 300. 6 <=> predu(sK1) [avatar definition] 302. ~predu(sK1) <- (~6) [avatar component clause 300] 303. ~6 | 1 [avatar split clause 255,280,300] 305. 7 <=> predc(sK1) [avatar definition] 307. predc(sK1) <- (7) [avatar component clause 305] 308. 7 | 1 [avatar split clause 254,280,305] 310. 8 <=> room(sK1) [avatar definition] 313. 8 | 1 [avatar split clause 253,280,310] 315. 9 <=> ! [X1] : (predu(X1) | ~room(X1) | ~predc(X1)) [avatar definition] 316. ~predc(X1) | ~room(X1) | predu(X1) <- (9) [avatar component clause 315] 318. 10 <=> predc(paul) [avatar definition] 319. predc(paul) <- (10) [avatar component clause 318] 321. 9 | ~10 [avatar split clause 252,318,315] 332. 10 [avatar split clause 276,318] 337. ~room(sK1) | predu(sK1) <- (7, 9) [resolution 316,307] 338. ~room(paul) | predu(paul) <- (9, 10) [resolution 316,319] 342. predu(paul) <- (9, 10) [subsumption resolution 338,243] 343. ~room(sK1) <- (~6, 7, 9) [subsumption resolution 337,302] 344. ~8 | 6 | ~7 | ~9 [avatar split clause 343,315,305,300,310] 350. preds(paul) <- (2, 9, 10) [resolution 342,285] 351. $false <- (2, 9, 10) [subsumption resolution 350,259] 352. ~2 | ~9 | ~10 [avatar contradiction clause 351] 353. $false [avatar sat refutation 286,303,308,313,321,332,344,352] % SZS output end Proof for 3498820273773749863833719 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.034 s % ------------------------------ % ------------------------------
0.263679
There is a room. If “everyone in the room does not train for and competes in international triathlons or creates YouTube content” then “only one person in the room collects foreign coins”. If “everyone in the room does not enjoy camping and organizing outdoor survival workshops or practices calligraphy” then “someone in the room practices calligraphy”.
Everyone in the room maintains a personal blog focused on cybersecurity tips.
contradiction
(there_is_a_room)& ((![X]:(room(X)=>(((creates_YouTube_content(X))|(does_not_train_for_and_competes_in_international_triathlons(X))))))=>(((?[X]:(room(X)&collects_foreign_coins(X)))&(![X,Y]:((room(X)&room(Y)&(collects_foreign_coins(X))&(collects_foreign_coins(Y)))=>(X=Y))))))& (((![X]:(room(X)=>(((practices_calligraphy(X))|(does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))))))=>(?[X]:(room(X)&(practices_calligraphy(X)))))& ((?[X]:(room(X)&(practices_calligraphy(X))))=>(![X]:(room(X)=>(((collects_foreign_coins(X))=>(enjoys_bird_watching(X))))))))& ((~?[X]:(room(X)=>(((enjoys_snowboarding(X))|(cannot_play_the_guitar(X))))))=>(~![X]:(room(X)=>(((enjoys_snowboarding(X))=>(does_not_collect_rare_minerals(X)))))))& ((![X]:(room(X)=>(((enjoys_kayaking_and_exploring_remote_waterways(X))|(cannot_play_the_guitar(X))))))=>(~![X]:(room(X)=>(((cannot_play_the_guitar(X))=>(practices_calligraphy(X)))))))& ((?[X]:(room(X)&(((enjoys_skydiving(X))|(enjoys_coding_in_Python(X))|(practices_and_performs_acrobatic_dance_routines(X))))))=>(![X]:(room(X)=>(((writes_poetry(X))=>(collects_foreign_coins(X)))))))& ((![X]:(room(X)=>(((collects_rare_minerals(X))|(does_not_enjoy_kayaking_and_exploring_remote_waterways(X))))))=>(![X]:(room(X)=>(((does_not_enjoy_kayaking_and_exploring_remote_waterways(X))=>(can_play_the_guitar(X)))))))& ((![X]:(room(X)=>(((creates_augmented_reality_experiences_for_mobile_applications(X))|(does_not_frequently_participates_in_hackathons_and_coding_competitions(X))))))=>(?[X]:(room(X)&(is_a_professional_photographer_specializing_in_portrait_photography(X)))))& (![X]:(room(X)=>(((enjoys_camping_and_organizing_outdoor_survival_workshops(X))=>(((enjoys_camping_and_organizing_outdoor_survival_workshops(X))&(enjoys_coding_in_Python(X))&(is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))))))& ((![X]:((enjoys_kayaking_and_exploring_remote_waterways(X))<=>(enjoys_camping_and_organizing_outdoor_survival_workshops(X)))))& ((![X]:((is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))=>(enjoys_kayaking_and_exploring_remote_waterways(X)))))& (![X]:(room(X)=>(((frequently_participates_in_hackathons_and_coding_competitions(X))=>(enjoys_snowboarding(X))))))& (((?[X]:(~room(X)&enjoys_stand-up_paddleboarding(X)))&(![X,Y]:((~room(X)&~room(Y)&(enjoys_stand-up_paddleboarding(X))&(enjoys_stand-up_paddleboarding(Y)))=>(X=Y)))))& (![X]:(anywhere(X)=>(((can_play_the_guitar(X))=>(frequently_participates_in_hackathons_and_coding_competitions(X))))))& (~![X]:(room(X)=>(((frequently_participates_in_hackathons_and_coding_competitions(X))=>(enjoys_windsurfing(X))))))& (![X]:(room(X)=>(((creates_augmented_reality_experiences_for_mobile_applications(X))<=(enjoys_windsurfing(X))))))& (![X]:(room(X)=>(((enjoys_bird_watching(X))=>(can_play_the_guitar(X))))))& (![X]:(room(X)=>(((can_play_the_guitar(X))=>(enjoys_bird_watching(X))))))& ((![X]:((is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))=>(is_a_professional_photographer_specializing_in_portrait_photography(X)))))& (![X]:(anywhere(X)=>(enjoys_stand-up_paddleboarding(X))))& (![X]:(room(X)=>(((maintains_a_personal_blog_focused_on_cybersecurity_tips(X))=>(enjoys_kayaking_and_exploring_remote_waterways(X))))))& (![X]:(room(X)=>(enjoys_bird_watching(X))))
(there_is_a_room)& ![X]:(room(X)=>(maintains_a_personal_blog_focused_on_cybersecurity_tips(X)))
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 6946704806631647464766965 % SZS output start Proof for 6946704806631647464766965 44. ! [X0] : (room(X0) => predt(X0)) & ! [X0] : (room(X0) => (predk(X0) => predu(X0))) & ! [X0] : (anywhere(X0) => prede(X0)) & ! [X0] : (predb(X0) => predc(X0)) & ! [X0] : (room(X0) => (predw(X0) => predt(X0))) & ! [X0] : (room(X0) => (predt(X0) => predw(X0))) & ! [X0] : (room(X0) => (predq(X0) => predi(X0))) & ~! [X0] : (room(X0) => (predm(X0) => predq(X0))) & ! [X0] : (anywhere(X0) => (predw(X0) => predm(X0))) & ! [X0,X1] : ((prede(X1) & prede(X0) & ~room(X1) & ~room(X0)) => X0 = X1) & ? [X0] : (prede(X0) & ~room(X0)) & ! [X0] : (room(X0) => (predm(X0) => predh(X0))) & ! [X0] : (predb(X0) => predu(X0)) & ! [X0] : (predu(X0) <=> predo(X0)) & ! [X0] : (room(X0) => (predo(X0) => (predb(X0) & preds(X0) & predo(X0)))) & (! [X0] : (room(X0) => (~predm(X0) | predi(X0))) => ? [X0] : (predc(X0) & room(X0))) & (! [X0] : (room(X0) => (~predu(X0) | predj(X0))) => ! [X0] : (room(X0) => (~predu(X0) => predw(X0)))) & (? [X0] : ((predp(X0) | preds(X0) | predd(X0)) & room(X0)) => ! [X0] : (room(X0) => (predl(X0) => predf(X0)))) & (! [X0] : (room(X0) => (~predw(X0) | predu(X0))) => ~! [X0] : (room(X0) => (~predw(X0) => predv(X0)))) & (~? [X0] : (room(X0) => (~predw(X0) | predh(X0))) => ~! [X0] : (room(X0) => (predh(X0) => ~predj(X0)))) & (? [X0] : (predv(X0) & room(X0)) => ! [X0] : (room(X0) => (predf(X0) => predt(X0)))) & (! [X0] : (room(X0) => (~predo(X0) | predv(X0))) => ? [X0] : (predv(X0) & room(X0))) & (! [X0] : (room(X0) => (~predg(X0) | predn(X0))) => (! [X0,X1] : ((predf(X1) & predf(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (predf(X0) & room(X0)))) & there_is_a_room [input p0] 45. ! [X0] : (room(X0) => predk(X0)) & there_is_a_room [input hypothesis] 46. ! [X0] : (room(X0) => predt(X0)) & ! [X1] : (room(X1) => (predk(X1) => predu(X1))) & ! [X2] : (anywhere(X2) => prede(X2)) & ! [X3] : (predb(X3) => predc(X3)) & ! [X4] : (room(X4) => (predw(X4) => predt(X4))) & ! [X5] : (room(X5) => (predt(X5) => predw(X5))) & ! [X6] : (room(X6) => (predq(X6) => predi(X6))) & ~! [X7] : (room(X7) => (predm(X7) => predq(X7))) & ! [X8] : (anywhere(X8) => (predw(X8) => predm(X8))) & ! [X9,X10] : ((prede(X10) & prede(X9) & ~room(X10) & ~room(X9)) => X9 = X10) & ? [X11] : (prede(X11) & ~room(X11)) & ! [X12] : (room(X12) => (predm(X12) => predh(X12))) & ! [X13] : (predb(X13) => predu(X13)) & ! [X14] : (predu(X14) <=> predo(X14)) & ! [X15] : (room(X15) => (predo(X15) => (predb(X15) & preds(X15) & predo(X15)))) & (! [X16] : (room(X16) => (~predm(X16) | predi(X16))) => ? [X17] : (predc(X17) & room(X17))) & (! [X18] : (room(X18) => (~predu(X18) | predj(X18))) => ! [X19] : (room(X19) => (~predu(X19) => predw(X19)))) & (? [X20] : ((predp(X20) | preds(X20) | predd(X20)) & room(X20)) => ! [X21] : (room(X21) => (predl(X21) => predf(X21)))) & (! [X22] : (room(X22) => (~predw(X22) | predu(X22))) => ~! [X23] : (room(X23) => (~predw(X23) => predv(X23)))) & (~? [X24] : (room(X24) => (~predw(X24) | predh(X24))) => ~! [X25] : (room(X25) => (predh(X25) => ~predj(X25)))) & (? [X26] : (predv(X26) & room(X26)) => ! [X27] : (room(X27) => (predf(X27) => predt(X27)))) & (! [X28] : (room(X28) => (~predo(X28) | predv(X28))) => ? [X29] : (predv(X29) & room(X29))) & (! [X30] : (room(X30) => (~predg(X30) | predn(X30))) => (! [X31,X32] : ((predf(X32) & predf(X31) & room(X32) & room(X31)) => X31 = X32) & ? [X33] : (predf(X33) & room(X33)))) & there_is_a_room [rectify 44] 47. ! [X0] : (room(X0) => predt(X0)) & ! [X1] : (room(X1) => (predk(X1) => predu(X1))) & ! [X2] : (anywhere(X2) => prede(X2)) & ! [X3] : (predb(X3) => predc(X3)) & ! [X4] : (room(X4) => (predw(X4) => predt(X4))) & ! [X5] : (room(X5) => (predt(X5) => predw(X5))) & ~! [X7] : (room(X7) => ~predm(X7)) & ! [X8] : (anywhere(X8) => (predw(X8) => predm(X8))) & ! [X9,X10] : ((prede(X10) & prede(X9) & ~room(X10) & ~room(X9)) => X9 = X10) & ? [X11] : (prede(X11) & ~room(X11)) & ! [X12] : (room(X12) => (predm(X12) => predh(X12))) & ! [X13] : (predb(X13) => predu(X13)) & ! [X14] : (predu(X14) <=> predo(X14)) & ! [X15] : (room(X15) => (predo(X15) => (predb(X15) & preds(X15) & predo(X15)))) & (! [X16] : (room(X16) => (~predm(X16) | predi(X16))) => ? [X17] : (predc(X17) & room(X17))) & (! [X18] : (room(X18) => (~predu(X18) | predj(X18))) => ! [X19] : (room(X19) => (~predu(X19) => predw(X19)))) & (? [X20] : ((predp(X20) | preds(X20) | predd(X20)) & room(X20)) => ! [X21] : (room(X21) => (predl(X21) => predf(X21)))) & (! [X22] : (room(X22) => (~predw(X22) | predu(X22))) => ~! [X23] : (room(X23) => (~predw(X23) => predv(X23)))) & (~? [X24] : (room(X24) => (~predw(X24) | predh(X24))) => ~! [X25] : (room(X25) => (predh(X25) => ~predj(X25)))) & (? [X26] : (predv(X26) & room(X26)) => ! [X27] : (room(X27) => (predf(X27) => predt(X27)))) & (! [X28] : (room(X28) => (~predo(X28) | predv(X28))) => ? [X29] : (predv(X29) & room(X29))) & (! [X30] : (room(X30) => (~predg(X30) | predn(X30))) => (! [X31,X32] : ((predf(X32) & predf(X31) & room(X32) & room(X31)) => X31 = X32) & ? [X33] : (predf(X33) & room(X33)))) & there_is_a_room [pure predicate removal 46] 48. ! [X0] : (room(X0) => predt(X0)) & ! [X1] : (room(X1) => (predk(X1) => predu(X1))) & ! [X2] : (anywhere(X2) => prede(X2)) & ! [X3] : (predb(X3) => predc(X3)) & ! [X4] : (room(X4) => (predw(X4) => predt(X4))) & ! [X5] : (room(X5) => (predt(X5) => predw(X5))) & ~! [X7] : (room(X7) => ~predm(X7)) & ! [X8] : (anywhere(X8) => (predw(X8) => predm(X8))) & ! [X9,X10] : ((prede(X10) & prede(X9) & ~room(X10) & ~room(X9)) => X9 = X10) & ? [X11] : (prede(X11) & ~room(X11)) & ! [X12] : (room(X12) => (predm(X12) => predh(X12))) & ! [X13] : (predb(X13) => predu(X13)) & ! [X14] : (predu(X14) <=> predo(X14)) & ! [X15] : (room(X15) => (predo(X15) => (predb(X15) & preds(X15) & predo(X15)))) & (! [X16] : (room(X16) => ~predm(X16)) => ? [X17] : (predc(X17) & room(X17))) & (! [X18] : (room(X18) => (~predu(X18) | predj(X18))) => ! [X19] : (room(X19) => (~predu(X19) => predw(X19)))) & (? [X20] : ((predp(X20) | preds(X20) | predd(X20)) & room(X20)) => ! [X21] : (room(X21) => (predl(X21) => predf(X21)))) & (! [X22] : (room(X22) => (~predw(X22) | predu(X22))) => ~! [X23] : (room(X23) => (~predw(X23) => predv(X23)))) & (~? [X24] : (room(X24) => (~predw(X24) | predh(X24))) => ~! [X25] : (room(X25) => (predh(X25) => ~predj(X25)))) & (? [X26] : (predv(X26) & room(X26)) => ! [X27] : (room(X27) => (predf(X27) => predt(X27)))) & (! [X28] : (room(X28) => (~predo(X28) | predv(X28))) => ? [X29] : (predv(X29) & room(X29))) & (! [X30] : (room(X30) => (~predg(X30) | predn(X30))) => (! [X31,X32] : ((predf(X32) & predf(X31) & room(X32) & room(X31)) => X31 = X32) & ? [X33] : (predf(X33) & room(X33)))) & there_is_a_room [pure predicate removal 47] 49. ! [X0] : (room(X0) => predt(X0)) & ! [X1] : (room(X1) => (predk(X1) => predu(X1))) & ! [X2] : (anywhere(X2) => prede(X2)) & ! [X4] : (room(X4) => (predw(X4) => predt(X4))) & ! [X5] : (room(X5) => (predt(X5) => predw(X5))) & ~! [X7] : (room(X7) => ~predm(X7)) & ! [X8] : (anywhere(X8) => (predw(X8) => predm(X8))) & ! [X9,X10] : ((prede(X10) & prede(X9) & ~room(X10) & ~room(X9)) => X9 = X10) & ? [X11] : (prede(X11) & ~room(X11)) & ! [X12] : (room(X12) => (predm(X12) => predh(X12))) & ! [X13] : (predb(X13) => predu(X13)) & ! [X14] : (predu(X14) <=> predo(X14)) & ! [X15] : (room(X15) => (predo(X15) => (predb(X15) & preds(X15) & predo(X15)))) & (! [X16] : (room(X16) => ~predm(X16)) => ? [X17] : room(X17)) & (! [X18] : (room(X18) => (~predu(X18) | predj(X18))) => ! [X19] : (room(X19) => (~predu(X19) => predw(X19)))) & (? [X20] : ((predp(X20) | preds(X20) | predd(X20)) & room(X20)) => ! [X21] : (room(X21) => (predl(X21) => predf(X21)))) & (! [X22] : (room(X22) => (~predw(X22) | predu(X22))) => ~! [X23] : (room(X23) => (~predw(X23) => predv(X23)))) & (~? [X24] : (room(X24) => (~predw(X24) | predh(X24))) => ~! [X25] : (room(X25) => (predh(X25) => ~predj(X25)))) & (? [X26] : (predv(X26) & room(X26)) => ! [X27] : (room(X27) => (predf(X27) => predt(X27)))) & (! [X28] : (room(X28) => (~predo(X28) | predv(X28))) => ? [X29] : (predv(X29) & room(X29))) & (! [X30] : (room(X30) => (~predg(X30) | predn(X30))) => (! [X31,X32] : ((predf(X32) & predf(X31) & room(X32) & room(X31)) => X31 = X32) & ? [X33] : (predf(X33) & room(X33)))) & there_is_a_room [pure predicate removal 48] 50. ! [X0] : (room(X0) => predt(X0)) & ! [X1] : (room(X1) => (predk(X1) => predu(X1))) & ! [X2] : (anywhere(X2) => prede(X2)) & ! [X4] : (room(X4) => (predw(X4) => predt(X4))) & ! [X5] : (room(X5) => (predt(X5) => predw(X5))) & ~! [X7] : (room(X7) => ~predm(X7)) & ! [X8] : (anywhere(X8) => (predw(X8) => predm(X8))) & ! [X9,X10] : ((prede(X10) & prede(X9) & ~room(X10) & ~room(X9)) => X9 = X10) & ? [X11] : (prede(X11) & ~room(X11)) & ! [X12] : (room(X12) => (predm(X12) => predh(X12))) & ! [X13] : (predb(X13) => predu(X13)) & ! [X14] : (predu(X14) <=> predo(X14)) & ! [X15] : (room(X15) => (predo(X15) => (predb(X15) & preds(X15) & predo(X15)))) & (! [X16] : (room(X16) => ~predm(X16)) => ? [X17] : room(X17)) & (! [X18] : (room(X18) => (~predu(X18) | predj(X18))) => ! [X19] : (room(X19) => (~predu(X19) => predw(X19)))) & (! [X22] : (room(X22) => (~predw(X22) | predu(X22))) => ~! [X23] : (room(X23) => (~predw(X23) => predv(X23)))) & (~? [X24] : (room(X24) => (~predw(X24) | predh(X24))) => ~! [X25] : (room(X25) => (predh(X25) => ~predj(X25)))) & (? [X26] : (predv(X26) & room(X26)) => ! [X27] : (room(X27) => (predf(X27) => predt(X27)))) & (! [X28] : (room(X28) => (~predo(X28) | predv(X28))) => ? [X29] : (predv(X29) & room(X29))) & (! [X30] : (room(X30) => (~predg(X30) | predn(X30))) => (! [X31,X32] : ((predf(X32) & predf(X31) & room(X32) & room(X31)) => X31 = X32) & ? [X33] : (predf(X33) & room(X33)))) & there_is_a_room [pure predicate removal 49] 51. ! [X0] : (room(X0) => predt(X0)) & ! [X1] : (room(X1) => (predk(X1) => predu(X1))) & ! [X2] : (anywhere(X2) => prede(X2)) & ! [X4] : (room(X4) => (predw(X4) => predt(X4))) & ! [X5] : (room(X5) => (predt(X5) => predw(X5))) & ~! [X7] : (room(X7) => ~predm(X7)) & ! [X8] : (anywhere(X8) => (predw(X8) => predm(X8))) & ! [X9,X10] : ((prede(X10) & prede(X9) & ~room(X10) & ~room(X9)) => X9 = X10) & ? [X11] : (prede(X11) & ~room(X11)) & ! [X12] : (room(X12) => (predm(X12) => predh(X12))) & ! [X13] : (predb(X13) => predu(X13)) & ! [X14] : (predu(X14) <=> predo(X14)) & ! [X15] : (room(X15) => (predo(X15) => (predb(X15) & predo(X15)))) & (! [X16] : (room(X16) => ~predm(X16)) => ? [X17] : room(X17)) & (! [X18] : (room(X18) => (~predu(X18) | predj(X18))) => ! [X19] : (room(X19) => (~predu(X19) => predw(X19)))) & (! [X22] : (room(X22) => (~predw(X22) | predu(X22))) => ~! [X23] : (room(X23) => (~predw(X23) => predv(X23)))) & (~? [X24] : (room(X24) => (~predw(X24) | predh(X24))) => ~! [X25] : (room(X25) => (predh(X25) => ~predj(X25)))) & (? [X26] : (predv(X26) & room(X26)) => ! [X27] : (room(X27) => (predf(X27) => predt(X27)))) & (! [X28] : (room(X28) => (~predo(X28) | predv(X28))) => ? [X29] : (predv(X29) & room(X29))) & (! [X30] : (room(X30) => (~predg(X30) | predn(X30))) => (! [X31,X32] : ((predf(X32) & predf(X31) & room(X32) & room(X31)) => X31 = X32) & ? [X33] : (predf(X33) & room(X33)))) & there_is_a_room [pure predicate removal 50] 52. ! [X0] : (room(X0) => predt(X0)) & ! [X1] : (room(X1) => (predk(X1) => predu(X1))) & ! [X2] : (anywhere(X2) => prede(X2)) & ! [X4] : (room(X4) => (predw(X4) => predt(X4))) & ! [X5] : (room(X5) => (predt(X5) => predw(X5))) & ~! [X7] : (room(X7) => ~predm(X7)) & ! [X8] : (anywhere(X8) => (predw(X8) => predm(X8))) & ! [X9,X10] : ((prede(X10) & prede(X9) & ~room(X10) & ~room(X9)) => X9 = X10) & ? [X11] : (prede(X11) & ~room(X11)) & ! [X13] : (predb(X13) => predu(X13)) & ! [X14] : (predu(X14) <=> predo(X14)) & ! [X15] : (room(X15) => (predo(X15) => (predb(X15) & predo(X15)))) & (! [X16] : (room(X16) => ~predm(X16)) => ? [X17] : room(X17)) & (! [X18] : (room(X18) => (~predu(X18) | predj(X18))) => ! [X19] : (room(X19) => (~predu(X19) => predw(X19)))) & (! [X22] : (room(X22) => (~predw(X22) | predu(X22))) => ~! [X23] : (room(X23) => (~predw(X23) => predv(X23)))) & (? [X26] : (predv(X26) & room(X26)) => ! [X27] : (room(X27) => (predf(X27) => predt(X27)))) & (! [X28] : (room(X28) => (~predo(X28) | predv(X28))) => ? [X29] : (predv(X29) & room(X29))) & (! [X30] : (room(X30) => (~predg(X30) | predn(X30))) => (! [X31,X32] : ((predf(X32) & predf(X31) & room(X32) & room(X31)) => X31 = X32) & ? [X33] : (predf(X33) & room(X33)))) & there_is_a_room [pure predicate removal 51] 53. ! [X0] : (room(X0) => predt(X0)) & ! [X1] : (room(X1) => (predk(X1) => predu(X1))) & ! [X2] : (anywhere(X2) => prede(X2)) & ! [X4] : (room(X4) => (predw(X4) => predt(X4))) & ! [X5] : (room(X5) => (predt(X5) => predw(X5))) & ~! [X7] : ~room(X7) & ! [X9,X10] : ((prede(X10) & prede(X9) & ~room(X10) & ~room(X9)) => X9 = X10) & ? [X11] : (prede(X11) & ~room(X11)) & ! [X13] : (predb(X13) => predu(X13)) & ! [X14] : (predu(X14) <=> predo(X14)) & ! [X15] : (room(X15) => (predo(X15) => (predb(X15) & predo(X15)))) & (! [X16] : ~room(X16) => ? [X17] : room(X17)) & (! [X18] : (room(X18) => (~predu(X18) | predj(X18))) => ! [X19] : (room(X19) => (~predu(X19) => predw(X19)))) & (! [X22] : (room(X22) => (~predw(X22) | predu(X22))) => ~! [X23] : (room(X23) => (~predw(X23) => predv(X23)))) & (? [X26] : (predv(X26) & room(X26)) => ! [X27] : (room(X27) => (predf(X27) => predt(X27)))) & (! [X28] : (room(X28) => (~predo(X28) | predv(X28))) => ? [X29] : (predv(X29) & room(X29))) & (! [X30] : (room(X30) => (~predg(X30) | predn(X30))) => (! [X31,X32] : ((predf(X32) & predf(X31) & room(X32) & room(X31)) => X31 = X32) & ? [X33] : (predf(X33) & room(X33)))) & there_is_a_room [pure predicate removal 52] 54. ! [X0] : (room(X0) => predt(X0)) & ! [X1] : (room(X1) => (predk(X1) => predu(X1))) & ! [X2] : (anywhere(X2) => prede(X2)) & ! [X4] : (room(X4) => (predw(X4) => predt(X4))) & ! [X5] : (room(X5) => (predt(X5) => predw(X5))) & ~! [X7] : ~room(X7) & ! [X9,X10] : ((prede(X10) & prede(X9) & ~room(X10) & ~room(X9)) => X9 = X10) & ? [X11] : (prede(X11) & ~room(X11)) & ! [X13] : (predb(X13) => predu(X13)) & ! [X14] : (predu(X14) <=> predo(X14)) & ! [X15] : (room(X15) => (predo(X15) => (predb(X15) & predo(X15)))) & (! [X16] : ~room(X16) => ? [X17] : room(X17)) & (! [X18] : (room(X18) => ~predu(X18)) => ! [X19] : (room(X19) => (~predu(X19) => predw(X19)))) & (! [X22] : (room(X22) => (~predw(X22) | predu(X22))) => ~! [X23] : (room(X23) => (~predw(X23) => predv(X23)))) & (? [X26] : (predv(X26) & room(X26)) => ! [X27] : (room(X27) => (predf(X27) => predt(X27)))) & (! [X28] : (room(X28) => (~predo(X28) | predv(X28))) => ? [X29] : (predv(X29) & room(X29))) & (! [X30] : (room(X30) => (~predg(X30) | predn(X30))) => (! [X31,X32] : ((predf(X32) & predf(X31) & room(X32) & room(X31)) => X31 = X32) & ? [X33] : (predf(X33) & room(X33)))) & there_is_a_room [pure predicate removal 53] 55. ! [X0] : (room(X0) => predt(X0)) & ! [X1] : (room(X1) => (predk(X1) => predu(X1))) & ! [X2] : (anywhere(X2) => prede(X2)) & ! [X4] : (room(X4) => (predw(X4) => predt(X4))) & ! [X5] : (room(X5) => (predt(X5) => predw(X5))) & ~! [X7] : ~room(X7) & ! [X9,X10] : ((prede(X10) & prede(X9) & ~room(X10) & ~room(X9)) => X9 = X10) & ? [X11] : (prede(X11) & ~room(X11)) & ! [X13] : (predb(X13) => predu(X13)) & ! [X14] : (predu(X14) <=> predo(X14)) & ! [X15] : (room(X15) => (predo(X15) => (predb(X15) & predo(X15)))) & (! [X16] : ~room(X16) => ? [X17] : room(X17)) & (! [X18] : (room(X18) => ~predu(X18)) => ! [X19] : (room(X19) => (~predu(X19) => predw(X19)))) & (! [X22] : (room(X22) => (~predw(X22) | predu(X22))) => ~! [X23] : (room(X23) => (~predw(X23) => predv(X23)))) & (? [X26] : (predv(X26) & room(X26)) => ! [X27] : (room(X27) => (predf(X27) => predt(X27)))) & (! [X28] : (room(X28) => (~predo(X28) | predv(X28))) => ? [X29] : (predv(X29) & room(X29))) & (! [X30] : (room(X30) => predn(X30)) => (! [X31,X32] : ((predf(X32) & predf(X31) & room(X32) & room(X31)) => X31 = X32) & ? [X33] : (predf(X33) & room(X33)))) & there_is_a_room [pure predicate removal 54] 56. ! [X0] : (room(X0) => predt(X0)) & ! [X1] : (room(X1) => (predk(X1) => predu(X1))) & ! [X2] : (anywhere(X2) => prede(X2)) & ! [X4] : (room(X4) => (predw(X4) => predt(X4))) & ! [X5] : (room(X5) => (predt(X5) => predw(X5))) & ~! [X7] : ~room(X7) & ! [X9,X10] : ((prede(X10) & prede(X9) & ~room(X10) & ~room(X9)) => X9 = X10) & ? [X11] : (prede(X11) & ~room(X11)) & ! [X13] : (predb(X13) => predu(X13)) & ! [X14] : (predu(X14) <=> predo(X14)) & ! [X15] : (room(X15) => (predo(X15) => (predb(X15) & predo(X15)))) & (! [X16] : ~room(X16) => ? [X17] : room(X17)) & (! [X18] : (room(X18) => ~predu(X18)) => ! [X19] : (room(X19) => (~predu(X19) => predw(X19)))) & (! [X22] : (room(X22) => (~predw(X22) | predu(X22))) => ~! [X23] : (room(X23) => (~predw(X23) => predv(X23)))) & (? [X26] : (predv(X26) & room(X26)) => ! [X27] : (room(X27) => (predf(X27) => predt(X27)))) & (! [X28] : (room(X28) => (~predo(X28) | predv(X28))) => ? [X29] : (predv(X29) & room(X29))) & (! [X30] : ~room(X30) => (! [X31,X32] : ((predf(X32) & predf(X31) & room(X32) & room(X31)) => X31 = X32) & ? [X33] : (predf(X33) & room(X33)))) & there_is_a_room [pure predicate removal 55] 57. ! [X0] : (room(X0) => predt(X0)) & ! [X1] : (room(X1) => (predk(X1) => predu(X1))) & ! [X2] : (anywhere(X2) => prede(X2)) & ! [X4] : (room(X4) => (predw(X4) => predt(X4))) & ! [X5] : (room(X5) => (predt(X5) => predw(X5))) & ~! [X7] : ~room(X7) & ! [X9,X10] : ((prede(X10) & prede(X9) & ~room(X10) & ~room(X9)) => X9 = X10) & ? [X11] : (prede(X11) & ~room(X11)) & ! [X13] : (predb(X13) => predu(X13)) & ! [X14] : (predu(X14) <=> predo(X14)) & ! [X15] : (room(X15) => (predo(X15) => (predb(X15) & predo(X15)))) & (! [X16] : ~room(X16) => ? [X17] : room(X17)) & (! [X18] : (room(X18) => ~predu(X18)) => ! [X19] : (room(X19) => (~predu(X19) => predw(X19)))) & (! [X22] : (room(X22) => (~predw(X22) | predu(X22))) => ~! [X23] : (room(X23) => (~predw(X23) => predv(X23)))) & (? [X26] : (predv(X26) & room(X26)) => ! [X27] : (room(X27) => (predf(X27) => predt(X27)))) & (! [X28] : (room(X28) => (~predo(X28) | predv(X28))) => ? [X29] : (predv(X29) & room(X29))) & (! [X30] : ~room(X30) => (! [X31,X32] : ((predf(X32) & predf(X31) & room(X32) & room(X31)) => X31 = X32) & ? [X33] : (predf(X33) & room(X33)))) [pure predicate removal 56] 58. ! [X0] : (room(X0) => predk(X0)) [pure predicate removal 45] 130. ! [X0] : (predt(X0) | ~room(X0)) & ! [X1] : ((predu(X1) | ~predk(X1)) | ~room(X1)) & ! [X2] : (prede(X2) | ~anywhere(X2)) & ! [X4] : ((predt(X4) | ~predw(X4)) | ~room(X4)) & ! [X5] : ((predw(X5) | ~predt(X5)) | ~room(X5)) & ? [X7] : room(X7) & ! [X9,X10] : (X9 = X10 | (~prede(X10) | ~prede(X9) | room(X10) | room(X9))) & ? [X11] : (prede(X11) & ~room(X11)) & ! [X13] : (predu(X13) | ~predb(X13)) & ! [X14] : (predu(X14) <=> predo(X14)) & ! [X15] : (((predb(X15) & predo(X15)) | ~predo(X15)) | ~room(X15)) & (? [X17] : room(X17) | ? [X16] : room(X16)) & (! [X19] : ((predw(X19) | predu(X19)) | ~room(X19)) | ? [X18] : (predu(X18) & room(X18))) & (? [X23] : ((~predv(X23) & ~predw(X23)) & room(X23)) | ? [X22] : ((predw(X22) & ~predu(X22)) & room(X22))) & (! [X27] : ((predt(X27) | ~predf(X27)) | ~room(X27)) | ! [X26] : (~predv(X26) | ~room(X26))) & (? [X29] : (predv(X29) & room(X29)) | ? [X28] : ((predo(X28) & ~predv(X28)) & room(X28))) & ((! [X31,X32] : (X31 = X32 | (~predf(X32) | ~predf(X31) | ~room(X32) | ~room(X31))) & ? [X33] : (predf(X33) & room(X33))) | ? [X30] : room(X30)) [ennf transformation 57] 131. ! [X0] : (predt(X0) | ~room(X0)) & ! [X1] : (predu(X1) | ~predk(X1) | ~room(X1)) & ! [X2] : (prede(X2) | ~anywhere(X2)) & ! [X4] : (predt(X4) | ~predw(X4) | ~room(X4)) & ! [X5] : (predw(X5) | ~predt(X5) | ~room(X5)) & ? [X7] : room(X7) & ! [X9,X10] : (X9 = X10 | ~prede(X10) | ~prede(X9) | room(X10) | room(X9)) & ? [X11] : (prede(X11) & ~room(X11)) & ! [X13] : (predu(X13) | ~predb(X13)) & ! [X14] : (predu(X14) <=> predo(X14)) & ! [X15] : ((predb(X15) & predo(X15)) | ~predo(X15) | ~room(X15)) & (? [X17] : room(X17) | ? [X16] : room(X16)) & (! [X19] : (predw(X19) | predu(X19) | ~room(X19)) | ? [X18] : (predu(X18) & room(X18))) & (? [X23] : (~predv(X23) & ~predw(X23) & room(X23)) | ? [X22] : (predw(X22) & ~predu(X22) & room(X22))) & (! [X27] : (predt(X27) | ~predf(X27) | ~room(X27)) | ! [X26] : (~predv(X26) | ~room(X26))) & (? [X29] : (predv(X29) & room(X29)) | ? [X28] : (predo(X28) & ~predv(X28) & room(X28))) & ((! [X31,X32] : (X31 = X32 | ~predf(X32) | ~predf(X31) | ~room(X32) | ~room(X31)) & ? [X33] : (predf(X33) & room(X33))) | ? [X30] : room(X30)) [flattening 130] 132. ! [X0] : (predk(X0) | ~room(X0)) [ennf transformation 58] 133. ? [X22] : (predw(X22) & ~predu(X22) & room(X22)) | ~sP0 [predicate definition introduction] 134. ! [X0] : (predt(X0) | ~room(X0)) & ! [X1] : (predu(X1) | ~predk(X1) | ~room(X1)) & ! [X2] : (prede(X2) | ~anywhere(X2)) & ! [X4] : (predt(X4) | ~predw(X4) | ~room(X4)) & ! [X5] : (predw(X5) | ~predt(X5) | ~room(X5)) & ? [X7] : room(X7) & ! [X9,X10] : (X9 = X10 | ~prede(X10) | ~prede(X9) | room(X10) | room(X9)) & ? [X11] : (prede(X11) & ~room(X11)) & ! [X13] : (predu(X13) | ~predb(X13)) & ! [X14] : (predu(X14) <=> predo(X14)) & ! [X15] : ((predb(X15) & predo(X15)) | ~predo(X15) | ~room(X15)) & (? [X17] : room(X17) | ? [X16] : room(X16)) & (! [X19] : (predw(X19) | predu(X19) | ~room(X19)) | ? [X18] : (predu(X18) & room(X18))) & (? [X23] : (~predv(X23) & ~predw(X23) & room(X23)) | sP0) & (! [X27] : (predt(X27) | ~predf(X27) | ~room(X27)) | ! [X26] : (~predv(X26) | ~room(X26))) & (? [X29] : (predv(X29) & room(X29)) | ? [X28] : (predo(X28) & ~predv(X28) & room(X28))) & ((! [X31,X32] : (X31 = X32 | ~predf(X32) | ~predf(X31) | ~room(X32) | ~room(X31)) & ? [X33] : (predf(X33) & room(X33))) | ? [X30] : room(X30)) [definition folding 131,133] 136. ? [X22] : (predw(X22) & ~predu(X22) & room(X22)) | ~sP0 [nnf transformation 133] 137. ? [X0] : (predw(X0) & ~predu(X0) & room(X0)) | ~sP0 [rectify 136] 138. ? [X0] : (predw(X0) & ~predu(X0) & room(X0)) => (predw(sK1) & ~predu(sK1) & room(sK1)) [choice axiom] 139. (predw(sK1) & ~predu(sK1) & room(sK1)) | ~sP0 [skolemisation 137,138] 140. ! [X0] : (predt(X0) | ~room(X0)) & ! [X1] : (predu(X1) | ~predk(X1) | ~room(X1)) & ! [X2] : (prede(X2) | ~anywhere(X2)) & ! [X4] : (predt(X4) | ~predw(X4) | ~room(X4)) & ! [X5] : (predw(X5) | ~predt(X5) | ~room(X5)) & ? [X7] : room(X7) & ! [X9,X10] : (X9 = X10 | ~prede(X10) | ~prede(X9) | room(X10) | room(X9)) & ? [X11] : (prede(X11) & ~room(X11)) & ! [X13] : (predu(X13) | ~predb(X13)) & ! [X14] : ((predu(X14) | ~predo(X14)) & (predo(X14) | ~predu(X14))) & ! [X15] : ((predb(X15) & predo(X15)) | ~predo(X15) | ~room(X15)) & (? [X17] : room(X17) | ? [X16] : room(X16)) & (! [X19] : (predw(X19) | predu(X19) | ~room(X19)) | ? [X18] : (predu(X18) & room(X18))) & (? [X23] : (~predv(X23) & ~predw(X23) & room(X23)) | sP0) & (! [X27] : (predt(X27) | ~predf(X27) | ~room(X27)) | ! [X26] : (~predv(X26) | ~room(X26))) & (? [X29] : (predv(X29) & room(X29)) | ? [X28] : (predo(X28) & ~predv(X28) & room(X28))) & ((! [X31,X32] : (X31 = X32 | ~predf(X32) | ~predf(X31) | ~room(X32) | ~room(X31)) & ? [X33] : (predf(X33) & room(X33))) | ? [X30] : room(X30)) [nnf transformation 134] 141. ! [X0] : (predt(X0) | ~room(X0)) & ! [X1] : (predu(X1) | ~predk(X1) | ~room(X1)) & ! [X2] : (prede(X2) | ~anywhere(X2)) & ! [X3] : (predt(X3) | ~predw(X3) | ~room(X3)) & ! [X4] : (predw(X4) | ~predt(X4) | ~room(X4)) & ? [X5] : room(X5) & ! [X6,X7] : (X6 = X7 | ~prede(X7) | ~prede(X6) | room(X7) | room(X6)) & ? [X8] : (prede(X8) & ~room(X8)) & ! [X9] : (predu(X9) | ~predb(X9)) & ! [X10] : ((predu(X10) | ~predo(X10)) & (predo(X10) | ~predu(X10))) & ! [X11] : ((predb(X11) & predo(X11)) | ~predo(X11) | ~room(X11)) & (? [X12] : room(X12) | ? [X13] : room(X13)) & (! [X14] : (predw(X14) | predu(X14) | ~room(X14)) | ? [X15] : (predu(X15) & room(X15))) & (? [X16] : (~predv(X16) & ~predw(X16) & room(X16)) | sP0) & (! [X17] : (predt(X17) | ~predf(X17) | ~room(X17)) | ! [X18] : (~predv(X18) | ~room(X18))) & (? [X19] : (predv(X19) & room(X19)) | ? [X20] : (predo(X20) & ~predv(X20) & room(X20))) & ((! [X21,X22] : (X21 = X22 | ~predf(X22) | ~predf(X21) | ~room(X22) | ~room(X21)) & ? [X23] : (predf(X23) & room(X23))) | ? [X24] : room(X24)) [rectify 140] 142. ? [X5] : room(X5) => room(sK2) [choice axiom] 143. ? [X8] : (prede(X8) & ~room(X8)) => (prede(sK3) & ~room(sK3)) [choice axiom] 144. ? [X12] : room(X12) => room(sK4) [choice axiom] 145. ? [X13] : room(X13) => room(sK5) [choice axiom] 146. ? [X15] : (predu(X15) & room(X15)) => (predu(sK6) & room(sK6)) [choice axiom] 147. ? [X16] : (~predv(X16) & ~predw(X16) & room(X16)) => (~predv(sK7) & ~predw(sK7) & room(sK7)) [choice axiom] 148. ? [X19] : (predv(X19) & room(X19)) => (predv(sK8) & room(sK8)) [choice axiom] 149. ? [X20] : (predo(X20) & ~predv(X20) & room(X20)) => (predo(sK9) & ~predv(sK9) & room(sK9)) [choice axiom] 150. ? [X23] : (predf(X23) & room(X23)) => (predf(sK10) & room(sK10)) [choice axiom] 151. ? [X24] : room(X24) => room(sK11) [choice axiom] 152. ! [X0] : (predt(X0) | ~room(X0)) & ! [X1] : (predu(X1) | ~predk(X1) | ~room(X1)) & ! [X2] : (prede(X2) | ~anywhere(X2)) & ! [X3] : (predt(X3) | ~predw(X3) | ~room(X3)) & ! [X4] : (predw(X4) | ~predt(X4) | ~room(X4)) & room(sK2) & ! [X6,X7] : (X6 = X7 | ~prede(X7) | ~prede(X6) | room(X7) | room(X6)) & (prede(sK3) & ~room(sK3)) & ! [X9] : (predu(X9) | ~predb(X9)) & ! [X10] : ((predu(X10) | ~predo(X10)) & (predo(X10) | ~predu(X10))) & ! [X11] : ((predb(X11) & predo(X11)) | ~predo(X11) | ~room(X11)) & (room(sK4) | room(sK5)) & (! [X14] : (predw(X14) | predu(X14) | ~room(X14)) | (predu(sK6) & room(sK6))) & ((~predv(sK7) & ~predw(sK7) & room(sK7)) | sP0) & (! [X17] : (predt(X17) | ~predf(X17) | ~room(X17)) | ! [X18] : (~predv(X18) | ~room(X18))) & ((predv(sK8) & room(sK8)) | (predo(sK9) & ~predv(sK9) & room(sK9))) & ((! [X21,X22] : (X21 = X22 | ~predf(X22) | ~predf(X21) | ~room(X22) | ~room(X21)) & (predf(sK10) & room(sK10))) | room(sK11)) [skolemisation 141,151,150,149,148,147,146,145,144,143,142] 234. room(sK1) | ~sP0 [cnf transformation 139] 235. ~predu(sK1) | ~sP0 [cnf transformation 139] 247. room(sK7) | sP0 [cnf transformation 152] 248. ~predw(sK7) | sP0 [cnf transformation 152] 262. predw(X4) | ~predt(X4) | ~room(X4) [cnf transformation 152] 265. ~predk(X1) | predu(X1) | ~room(X1) [cnf transformation 152] 266. ~room(X0) | predt(X0) [cnf transformation 152] 267. ~room(X0) | predk(X0) [cnf transformation 132] 269. 1 <=> sP0 [avatar definition] 278. 3 <=> predu(sK1) [avatar definition] 280. ~predu(sK1) <- (~3) [avatar component clause 278] 281. ~1 | ~3 [avatar split clause 235,278,269] 283. 4 <=> room(sK1) [avatar definition] 285. room(sK1) <- (4) [avatar component clause 283] 286. ~1 | 4 [avatar split clause 234,283,269] 288. ~room(X4) | predw(X4) [subsumption resolution 262,266] 306. 8 <=> predw(sK7) [avatar definition] 309. 1 | ~8 [avatar split clause 248,306,269] 311. 9 <=> room(sK7) [avatar definition] 313. room(sK7) <- (9) [avatar component clause 311] 314. 1 | 9 [avatar split clause 247,311,269] 373. predw(sK7) <- (9) [resolution 288,313] 378. 8 | ~9 [avatar split clause 373,311,306] 380. predk(sK1) <- (4) [resolution 285,267] 402. predu(sK1) | ~room(sK1) <- (4) [resolution 380,265] 403. ~room(sK1) <- (~3, 4) [subsumption resolution 402,280] 404. $false <- (~3, 4) [subsumption resolution 403,285] 405. 3 | ~4 [avatar contradiction clause 404] 406. $false [avatar sat refutation 281,286,309,314,378,405] % SZS output end Proof for 6946704806631647464766965 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.025 s % ------------------------------ % ------------------------------
0.283141
Larry, Ronald, Brett are the only persons in the room. Everyone in the room collects rare and antique scientific instruments if they works on fridays. Everyone in the room creates augmented reality experiences for mobile applications if they collects rare and antique scientific instruments. It is true that 'everyone in the room who creates augmented reality experiences for mobile applications is not a craft beer aficionado'. Everyone in the room is a craft beer aficionado if they uses a Windows laptop. Larry uses a Windows laptop.
Larry works on fridays.
contradiction
room(larry)&room(ronald)&room(brett)&(![X]:(room(X)=>(X='larry'|X='ronald'|X='brett')))& (![X]:(room(X)=>(((works_on_fridays(X))=>(collects_rare_and_antique_scientific_instruments(X))))))& (![X]:(~room(X)=>(((collects_rare_and_antique_scientific_instruments(X))=>(enjoys_virtual_reality_gaming(X))))))& (![X]:(room(X)=>(((enjoys_virtual_reality_gaming(X))=>(is_a_night_owl(X))))))& (![X]:(room(X)=>(((collects_rare_and_antique_scientific_instruments(X))=>(knows_morse_code(X))))))& ((?[X,Y]:(room(X)&room(Y)&(is_passionate_about_collecting_and_restoring_classic_cars(X)&is_passionate_about_collecting_and_restoring_classic_cars(Y))&(X!=Y))))& (![X]:(room(X)=>(((does_not_enjoy_virtual_reality_gaming(X))=>(uses_a_Windows_laptop(X))))))& (![X]:(room(X)=>(((uses_a_Windows_laptop(X))=>(trains_for_and_competes_in_international_triathlons(X))))))& (![X]:(room(X)=>(((owns_a_telescope(X))=>(trains_for_and_competes_in_international_triathlons(X))))))& (![X]:(room(X)=>(((collects_rare_and_antique_scientific_instruments(X))=>(creates_augmented_reality_experiences_for_mobile_applications(X))))))& (![X]:(room(X)=>(((creates_augmented_reality_experiences_for_mobile_applications(X))=>(is_not_a_craft_beer_aficionado(X))))))& (trains_for_and_competes_in_international_triathlons(larry))& (![X]:(room(X)=>(((has_a_specialized_collection_of_handmade_artisan_pottery(X))<=(is_an_avid_hiker(X))))))& (![X]:(room(X)=>(((has_a_specialized_collection_of_handmade_artisan_pottery(X))=>(collects_rare_and_antique_scientific_instruments(X))))))& (![X]:(room(X)=>(((collects_rare_and_antique_scientific_instruments(X))=>(collects_action_figures(X))))))& (~(?[X]:(room(X)&(develops_open-source_software_projects_in_their_free_time(X)))))& (![X]:(room(X)=>(((owns_a_smartwatch(X))=>(uses_a_Windows_laptop(X))))))& (![X]:(room(X)=>(((uses_a_Windows_laptop(X))=>(is_a_craft_beer_aficionado(X))))))& ((?[X,Y]:(room(X)&room(Y)&(works_on_fridays(X)&works_on_fridays(Y))&(X!=Y))))& (uses_a_Windows_laptop(larry))& (![X]:(~room(X)=>(((owns_a_3D_printer(X))=>(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))))))& ((![X]:((((mentors_a_youth_basketball_team_on_weekends(X))&(collects_antique_jewelry(X))&(develops_open-source_software_projects_in_their_free_time(X))))<=>(mentors_a_youth_basketball_team_on_weekends(X)))))& (![X]:(room(X)=>(((((develops_open-source_software_projects_in_their_free_time(X))|(collects_rare_and_antique_scientific_instruments(X))))=>(has_a_specialized_collection_of_handmade_artisan_pottery(X))))))& ((![X]:((has_a_specialized_collection_of_handmade_artisan_pottery(X))<=>(((knows_morse_code(X))&(creates_augmented_reality_experiences_for_mobile_applications(X))&(has_a_specialized_collection_of_handmade_artisan_pottery(X)))))))
room(larry)&room(ronald)&room(brett)&(![X]:(room(X)=>(X='larry'|X='ronald'|X='brett')))& works_on_fridays(larry)
[ "p0", "p1", "p9", "p10", "p17", "p19", "hypothesis" ]
% SZS status Unsatisfiable for 8553216785802838525488446 % SZS output start Proof for 8553216785802838525488446 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 45. ! [X0] : (room(X0) => (predi(X0) => predw(X0))) [input p1] 53. ! [X0] : (room(X0) => (predw(X0) => predh(X0))) [input p9] 54. ! [X0] : (room(X0) => (predh(X0) => ~predq(X0))) [input p10] 61. ! [X0] : (room(X0) => (predu(X0) => predq(X0))) [input p17] 63. predu(mary) [input p19] 68. predi(mary) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 152. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 153. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 152] 154. ! [X0] : ((predw(X0) | ~predi(X0)) | ~room(X0)) [ennf transformation 45] 155. ! [X0] : (predw(X0) | ~predi(X0) | ~room(X0)) [flattening 154] 158. ! [X0] : ((predh(X0) | ~predw(X0)) | ~room(X0)) [ennf transformation 53] 159. ! [X0] : (predh(X0) | ~predw(X0) | ~room(X0)) [flattening 158] 160. ! [X0] : ((~predq(X0) | ~predh(X0)) | ~room(X0)) [ennf transformation 54] 161. ! [X0] : (~predq(X0) | ~predh(X0) | ~room(X0)) [flattening 160] 165. ! [X0] : ((predq(X0) | ~predu(X0)) | ~room(X0)) [ennf transformation 61] 166. ! [X0] : (predq(X0) | ~predu(X0) | ~room(X0)) [flattening 165] 169. predi(mary) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 68] 170. predi(mary) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 169] 260. room(mary) [cnf transformation 153] 264. ~predi(X0) | predw(X0) | ~room(X0) [cnf transformation 155] 269. ~predw(X0) | predh(X0) | ~room(X0) [cnf transformation 159] 270. ~predq(X0) | ~predh(X0) | ~room(X0) [cnf transformation 161] 273. ~predu(X0) | predq(X0) | ~room(X0) [cnf transformation 166] 279. predu(mary) [cnf transformation 63] 294. predi(mary) [cnf transformation 170] 297. predw(mary) | ~room(mary) [resolution 264,294] 300. predw(mary) [subsumption resolution 297,260] 309. predh(mary) | ~room(mary) [resolution 300,269] 311. predh(mary) [subsumption resolution 309,260] 313. predq(mary) | ~room(mary) [resolution 273,279] 314. predq(mary) [subsumption resolution 313,260] 315. ~predh(mary) | ~room(mary) [resolution 314,270] 316. ~room(mary) [subsumption resolution 315,311] 317. $false [subsumption resolution 316,260] % SZS output end Proof for 8553216785802838525488446 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.635777
There is a room. If “everyone anywhere is a certified yoga instructor teaching classes weekly or does not volunteer for local environmental conservation projects” then “someone in the room does not collect modern art”. “Everyone in the room enjoys writing detailed reviews of new and classic board games, enjoys origami and participates in citizen science projects related to wildlife monitoring” unless “everyone outside the room does not participate in citizen science projects related to wildlife monitoring or does not enjoy skydiving”. If “everyone in the room plays video games” then “not everyone in the room does not collect antique clocks if they is a certified yoga instructor teaching classes weekly or volunteers for local environmental conservation projects or both”. If “everyone outside the room is not passionate about collecting and restoring classic cars or has a pet dog” then “it is true that “everyone in the room who enjoys origami is a certified yoga instructor teaching classes weekly””. If “everyone in the room does not enjoy bird watching or is passionate about collecting and restoring classic cars” then “everyone in the room is a certified yoga instructor teaching classes weekly”.
Everyone in the room is not passionate about collecting and restoring classic cars or hosts a YouTube channel dedicated to art tutorials.
neutral
(there_is_a_room)& ((![X]:(anywhere(X)=>(((does_not_volunteer_for_local_environmental_conservation_projects(X))|(is_a_certified_yoga_instructor_teaching_classes_weekly(X))))))=>(?[X]:(room(X)&(does_not_collect_modern_art(X)))))& (~(![X]:(~room(X)=>(((does_not_enjoy_skydiving(X))|(does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(X))))))=>(![X]:(room(X)=>(((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))&(enjoys_origami(X))&(participates_in_citizen_science_projects_related_to_wildlife_monitoring(X)))))))& ((![X]:(room(X)=>(plays_video_games(X))))=>(~![X]:(room(X)=>(((((is_a_certified_yoga_instructor_teaching_classes_weekly(X))|(volunteers_for_local_environmental_conservation_projects(X))))=>(does_not_collect_antique_clocks(X)))))))& ((![X]:(~room(X)=>(((has_a_pet_dog(X))|(is_not_passionate_about_collecting_and_restoring_classic_cars(X))))))=>(![X]:(room(X)=>(((enjoys_origami(X))=>(is_a_certified_yoga_instructor_teaching_classes_weekly(X)))))))& ((![X]:(room(X)=>(((is_passionate_about_collecting_and_restoring_classic_cars(X))|(does_not_enjoy_bird_watching(X))))))=>(![X]:(room(X)=>(is_a_certified_yoga_instructor_teaching_classes_weekly(X)))))& ((![X]:(room(X)=>(((does_not_enjoy_bird_watching(X))|(writes_a_travel_blog(X))))))=>((![X]:((hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))=>(watches_fantasy_movies(X))))))& ((![X]:(room(X)=>(((does_not_have_a_pet_dog(X))|(enjoys_origami(X))))))=>(![X]:(room(X)=>(((enjoys_origami(X))=>(((does_not_practice_and_performs_acrobatic_dance_routines(X))|(collects_antique_clocks(X)))))))))& ((![X]:(~room(X)=>(((does_not_have_a_pet_dog(X))|(enjoys_wildlife_photography(X))))))<=>(![X]:(anywhere(X)=>(((does_not_enjoy_logic_puzzles(X))|(collects_modern_art(X)))))))& ((~?[X]:(room(X)=>(((enjoys_logic_puzzles(X))|(does_not_collect_modern_art(X))))))=>(![X]:(room(X)=>(((enjoys_logic_puzzles(X))=>(enjoys_origami(X)))))))& (~(![X]:(room(X)=>(((does_not_collect_antique_clocks(X))|(collect_rare_sneakers(X))))))=>(![X]:(room(X)=>(((collects_modern_art(X))=>(plays_video_games(X)))))))& (![X]:(room(X)=>(((participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))=>(((enjoys_wildlife_photography(X))|(enjoys_logic_puzzles(X))))))))& (![X]:(room(X)=>(((does_not_host_a_YouTube_channel_dedicated_to_art_tutorials(X))|(enjoys_macrame(X))))))& (![X]:(room(X)=>(((does_not_enjoy_macrame(X))=>(~((enjoys_origami(X))|(enjoys_bird_watching(X))))))))& ((?[X,Y]:(room(X)&room(Y)&(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X)&enjoys_writing_detailed_reviews_of_new_and_classic_board_games(Y))&(X!=Y))))& (?[X]:(anywhere(X)&(((enjoys_windsurfing(X))|(collects_antique_clocks(X))|(enjoys_wildlife_photography(X))))))& (![X]:(room(X)=>(((writes_a_travel_blog(X))=>(collect_rare_sneakers(X))))))& (![X]:(room(X)=>(participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))))& (![X]:(room(X)=>(((does_not_enjoy_origami(X))=>(participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))))))& (![X]:(room(X)=>(((participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))=>(does_not_own_a_3D_printer(X))))))& ((![X]:((((enjoys_macrame(X))|(collect_rare_sneakers(X))|(enjoys_wildlife_photography(X))))=>(watches_fantasy_movies(X)))))& ((?[X,Y]:(anywhere(X)&anywhere(Y)&(volunteers_for_local_environmental_conservation_projects(X)&volunteers_for_local_environmental_conservation_projects(Y))&(X!=Y))))& (![X]:(~room(X)=>(((has_a_pet_dog(X))=>(collects_antique_clocks(X))))))
(there_is_a_room)& ![X]:(room(X)=>(((hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))|(is_not_passionate_about_collecting_and_restoring_classic_cars(X)))))
[]
null
0.144385
Alex is the only person in the room. “Everyone in the room collects vintage vinyl records or does not practice and performs acrobatic dance routines” only if “everyone outside the room who collects vintage vinyl records is an expert in identifying and foraging wild edible plants”. “Everyone in the room creates augmented reality experiences for mobile applications if they practices and performs acrobatic dance routines and does not host a popular podcast about emerging technologies and vice versa” if “everyone in the room creates augmented reality experiences for mobile applications or does not collect modern art”. If “everyone in the room collects vintage vinyl records or does not know morse code” then “it is true that “Alex neither creates augmented reality experiences for mobile applications nor collects vintage vinyl records”” otherwise “everyone in the room who collects vintage vinyl records neither creates augmented reality experiences for mobile applications nor hosts a popular podcast about emerging technologies”. Alex does not know morse code. Alex does not practice and performs acrobatic dance routines. Everyone in the room who collects vintage vinyl records neither creates augmented reality experiences for mobile applications nor hosts a popular podcast about emerging technologies. Alex either is an expert in identifying and foraging wild edible plants or enjoys snowboarding but not both. Alex creates augmented reality experiences for mobile applications, hosts regular game nights featuring complex strategy games or enjoys snowboarding.
Alex collects vintage vinyl records.
contradiction
room(alex)&(![X]:(room(X)=>(X='alex')))& ((![X]:(room(X)=>(((does_not_practice_and_performs_acrobatic_dance_routines(X))|(collects_vintage_vinyl_records(X))))))=>(![X]:(~room(X)=>(((collects_vintage_vinyl_records(X))=>(is_an_expert_in_identifying_and_foraging_wild_edible_plants(X)))))))& ((![X]:(room(X)=>(((does_not_collect_modern_art(X))|(creates_augmented_reality_experiences_for_mobile_applications(X))))))=>(![X]:(room(X)=>(((creates_augmented_reality_experiences_for_mobile_applications(X))<=>(((practices_and_performs_acrobatic_dance_routines(X))&(does_not_host_a_popular_podcast_about_emerging_technologies(X)))))))))& (((![X]:(room(X)=>(((does_not_know_morse_code(X))|(collects_vintage_vinyl_records(X))))))=>(~((creates_augmented_reality_experiences_for_mobile_applications(alex))|(collects_vintage_vinyl_records(alex)))))&((~(![X]:(room(X)=>(((does_not_know_morse_code(X))|(collects_vintage_vinyl_records(X)))))))=>(![X]:(room(X)=>(((collects_vintage_vinyl_records(X))=>(~((creates_augmented_reality_experiences_for_mobile_applications(X))|(hosts_a_popular_podcast_about_emerging_technologies(X))))))))))& (does_not_know_morse_code(alex))& (does_not_practice_and_performs_acrobatic_dance_routines(alex))& (![X]:(room(X)=>(((collects_vintage_vinyl_records(X))=>(~((creates_augmented_reality_experiences_for_mobile_applications(X))|(hosts_a_popular_podcast_about_emerging_technologies(X))))))))& (((is_an_expert_in_identifying_and_foraging_wild_edible_plants(alex))<~>(enjoys_snowboarding(alex))))& (((creates_augmented_reality_experiences_for_mobile_applications(alex))|(hosts_regular_game_nights_featuring_complex_strategy_games(alex))|(enjoys_snowboarding(alex))))
room(alex)&(![X]:(room(X)=>(X='alex')))& collects_vintage_vinyl_records(alex)
[ "p0", "p3", "p4", "hypothesis" ]
% SZS status Unsatisfiable for 5882600166192508201874744 % SZS output start Proof for 5882600166192508201874744 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 47. (~! [X0] : (room(X0) => (predg(X0) | ~predb(X0))) => ! [X0] : (room(X0) => (predg(X0) => ~(predc(X0) | predf(X0))))) & (! [X0] : (room(X0) => (predg(X0) | ~predb(X0))) => ~(predg(mary) | predf(mary))) [input p3] 48. ~predb(mary) [input p4] 53. predg(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 56. (~! [X0] : (room(X0) => (predg(X0) | ~predb(X0))) => ! [X1] : (room(X1) => (predg(X1) => ~(predc(X1) | predf(X1))))) & (! [X2] : (room(X2) => (predg(X2) | ~predb(X2))) => ~(predg(mary) | predf(mary))) [rectify 47] 131. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 135. (! [X1] : (((~predc(X1) & ~predf(X1)) | ~predg(X1)) | ~room(X1)) | ! [X0] : ((predg(X0) | ~predb(X0)) | ~room(X0))) & ((~predg(mary) & ~predf(mary)) | ? [X2] : ((~predg(X2) & predb(X2)) & room(X2))) [ennf transformation 56] 136. (! [X1] : ((~predc(X1) & ~predf(X1)) | ~predg(X1) | ~room(X1)) | ! [X0] : (predg(X0) | ~predb(X0) | ~room(X0))) & ((~predg(mary) & ~predf(mary)) | ? [X2] : (~predg(X2) & predb(X2) & room(X2))) [flattening 135] 139. predg(mary) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 53] 149. (! [X0] : ((~predc(X0) & ~predf(X0)) | ~predg(X0) | ~room(X0)) | ! [X1] : (predg(X1) | ~predb(X1) | ~room(X1))) & ((~predg(mary) & ~predf(mary)) | ? [X2] : (~predg(X2) & predb(X2) & room(X2))) [rectify 136] 150. ? [X2] : (~predg(X2) & predb(X2) & room(X2)) => (~predg(sK2) & predb(sK2) & room(sK2)) [choice axiom] 151. (! [X0] : ((~predc(X0) & ~predf(X0)) | ~predg(X0) | ~room(X0)) | ! [X1] : (predg(X1) | ~predb(X1) | ~room(X1))) & ((~predg(mary) & ~predf(mary)) | (~predg(sK2) & predb(sK2) & room(sK2))) [skolemisation 149,150] 234. ~room(X0) | mary = X0 [cnf transformation 131] 247. ~predg(mary) | room(sK2) [cnf transformation 151] 248. ~predg(mary) | predb(sK2) [cnf transformation 151] 252. ~predb(mary) [cnf transformation 48] 260. predg(mary) [cnf transformation 139] 318. 14 <=> predg(mary) [avatar definition] 323. 15 <=> predb(sK2) [avatar definition] 325. predb(sK2) <- (15) [avatar component clause 323] 326. 15 | ~14 [avatar split clause 248,318,323] 328. 16 <=> room(sK2) [avatar definition] 330. room(sK2) <- (16) [avatar component clause 328] 331. 16 | ~14 [avatar split clause 247,318,328] 351. 14 [avatar split clause 260,318] 354. mary = sK2 <- (16) [resolution 234,330] 359. predb(mary) <- (15, 16) [backward demodulation 325,354] 363. $false <- (15, 16) [subsumption resolution 359,252] 364. ~15 | ~16 [avatar contradiction clause 363] 365. $false [avatar sat refutation 326,331,351,364] % SZS output end Proof for 5882600166192508201874744 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.251032
Lynette is the only person in the room. Everyone in the room who is older than Carol practices digital art. Everyone in the room is a creative kind person if they writes and illustrates their own graphic novels. Everyone outside the room who is older than Carol is not not creative.
Carol is older than Lynette.
neutral
room(lynette)&(![X]:(room(X)=>(X='lynette')))& (![X]:(room(X)=>(((older(carol,X))=>(practices_digital_art(X))))))& (![X]:(room(X)=>(((writes_and_illustrates_their_own_graphic_novels(X))=>(creative(X)&kind(X)&person(X))))))& (![X]:(~room(X)=>(((older(carol,X))=>(~~creative(X))))))& (~?[X]:(anywhere(X)=>(((does_not_travel_domestically_frequently(X))|(writes_and_illustrates_their_own_graphic_novels(X))))))& (![X]:(room(X)=>(((travels_domestically_frequently(X))<=>(enjoys_windsurfing(X))))))& (![X]:(room(X)=>(((enjoys_windsurfing(X))<=>(old(X))))))& (![X]:(room(X)=>(((travels_domestically_frequently(X))<=>(kind(X))))))& (![X]:(old(X)=>creative(X)))& (older(lynette,rebecca))& (![X]:(room(X)=>(((practices_digital_art(X))=>(travels_domestically_frequently(X))))))& (![X]:(kind(X)=>creative(X)))& ((![X]:((creative(X))=>(travels_domestically_frequently(X)))))& (![X]:(room(X)=>(((old(X)&person(X))=>(((practices_digital_art(X))|(writes_and_illustrates_their_own_graphic_novels(X))|(older(rebecca,X))))))))& (travels_domestically_frequently(lynette))& (![X]:(room(X)=>(((((writes_and_illustrates_their_own_graphic_novels(X))&(old(X))))=>(enjoys_windsurfing(X))))))
room(lynette)&(![X]:(room(X)=>(X='lynette')))& older(lynette,carol)
[]
null
0.713596
Thomas, Frank, Robert are the only persons in the room. If “everyone in the room builds model airplanes or does not collect historical artifacts related to ancient civilizations” then “Robert practices archery”. Not everyone in the room who builds model airplanes practices archery. If someone is a member of a local theater group specializing in improv then he/she practices archery. Everyone outside the room neither is an amateur astronomer who builds and uses custom telescopes nor creates augmented reality experiences for mobile applications if they does not enjoy making ceramics and does not watche fantasy movies. Robert builds model airplanes. Thomas writes in-depth travel guides for off-the-beaten-path destinations. Everyone in the room enjoys bird watching if they watches fantasy movies, uses an ios phone or practices and performs acrobatic dance routines. Thomas is a culinary enthusiast who experiments with international cuisines. No one anywhere enjoys bird watching. Everyone anywhere enjoys snowboarding if they creates augmented reality experiences for mobile applications. Thomas does not collect historical artifacts related to ancient civilizations. If someone practices archery then he/she is an amateur astronomer who builds and uses custom telescopes. Frank does not watche fantasy movies. Robert does not enjoy making ceramics and does not watche fantasy movies. More than one person anywhere enjoys making ceramics. Everyone in the room builds model airplanes if they writes in-depth travel guides for off-the-beaten-path destinations. Thomas enjoys writing detailed reviews of new and classic board games. Everyone outside the room who either builds model airplanes or is an amateur astronomer who builds and uses custom telescopes but not both either creates augmented reality experiences for mobile applications or writes in-depth travel guides for off-the-beaten-path destinations but not both. If someone does not practice archery then he/she uses an ios phone, practices and performs acrobatic dance routines or collects historical artifacts related to ancient civilizations.
Thomas is an amateur astronomer who builds and uses custom telescopes.
entailment
room(thomas)&room(frank)&room(robert)&(![X]:(room(X)=>(X='thomas'|X='frank'|X='robert')))& ((![X]:(room(X)=>(((does_not_collect_historical_artifacts_related_to_ancient_civilizations(X))|(builds_model_airplanes(X))))))=>(practices_archery(robert)))& (~![X]:(room(X)=>(((builds_model_airplanes(X))=>(practices_archery(X))))))& ((![X]:((is_a_member_of_a_local_theater_group_specializing_in_improv(X))=>(practices_archery(X)))))& (![X]:(~room(X)=>(((((does_not_enjoy_making_ceramics(X))&(does_not_watche_fantasy_movies(X))))=>(~((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))|(creates_augmented_reality_experiences_for_mobile_applications(X))))))))& (builds_model_airplanes(robert))& (writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(thomas))& (![X]:(room(X)=>(((((watches_fantasy_movies(X))|(uses_an_ios_phone(X))|(practices_and_performs_acrobatic_dance_routines(X))))=>(enjoys_bird_watching(X))))))& (is_a_culinary_enthusiast_who_experiments_with_international_cuisines(thomas))& (~?[X]:(anywhere(X)=>(enjoys_bird_watching(X))))& (![X]:(anywhere(X)=>(((creates_augmented_reality_experiences_for_mobile_applications(X))=>(enjoys_snowboarding(X))))))& (does_not_collect_historical_artifacts_related_to_ancient_civilizations(thomas))& ((![X]:((practices_archery(X))=>(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X)))))& (does_not_watche_fantasy_movies(frank))& (((does_not_enjoy_making_ceramics(robert))&(does_not_watche_fantasy_movies(robert))))& ((?[X,Y]:(anywhere(X)&anywhere(Y)&(enjoys_making_ceramics(X)&enjoys_making_ceramics(Y))&(X!=Y))))& (![X]:(room(X)=>(((writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))=>(builds_model_airplanes(X))))))& (enjoys_writing_detailed_reviews_of_new_and_classic_board_games(thomas))& (![X]:(~room(X)=>(((((builds_model_airplanes(X))<~>(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))=>(((creates_augmented_reality_experiences_for_mobile_applications(X))<~>(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))))))))& ((![X]:((practices_and_performs_acrobatic_dance_routines(X))<=>(does_not_enjoy_snowboarding(X)))))& (is_a_drone_photographer(thomas))& (?[X]:(room(X)&(collects_historical_artifacts_related_to_ancient_civilizations(X))))& ((![X]:((collects_historical_artifacts_related_to_ancient_civilizations(X))=>(((enjoys_snowboarding(X))|(does_not_practice_and_performs_acrobatic_dance_routines(X)))))))& ((![X]:((does_not_practice_archery(X))=>(((uses_an_ios_phone(X))|(practices_and_performs_acrobatic_dance_routines(X))|(collects_historical_artifacts_related_to_ancient_civilizations(X)))))))& (![X]:(room(X)=>(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))& (~![X]:(anywhere(X)=>(((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))<=(~((practices_and_performs_acrobatic_dance_routines(X))|(enjoys_making_ceramics(X))))))))& (enjoys_snowboarding(robert))
room(thomas)&room(frank)&room(robert)&(![X]:(room(X)=>(X='thomas'|X='frank'|X='robert')))& is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(thomas)
[ "p0", "p7", "p9", "p11", "p12", "p23", "hypothesis" ]
% SZS status Unsatisfiable for 4844916289840160438303606 % SZS output start Proof for 4844916289840160438303606 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 51. ! [X0] : (room(X0) => ((predp(X0) | predg(X0) | predf(X0)) => preda(X0))) [input p7] 53. ~? [X0] : (anywhere(X0) => preda(X0)) [input p9] 55. ~predo(mary) [input p11] 56. ! [X0] : (predl(X0) => predd(X0)) [input p12] 67. ! [X0] : (~predl(X0) => (predo(X0) | predp(X0) | predg(X0))) [input p23] 71. ~(predd(mary) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 146. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 147. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 146] 154. ! [X0] : ((preda(X0) | (~predp(X0) & ~predg(X0) & ~predf(X0))) | ~room(X0)) [ennf transformation 51] 155. ! [X0] : (preda(X0) | (~predp(X0) & ~predg(X0) & ~predf(X0)) | ~room(X0)) [flattening 154] 156. ! [X0] : (~preda(X0) & anywhere(X0)) [ennf transformation 53] 159. ! [X0] : (predd(X0) | ~predl(X0)) [ennf transformation 56] 166. ! [X0] : ((predo(X0) | predp(X0) | predg(X0)) | predl(X0)) [ennf transformation 67] 167. ! [X0] : (predo(X0) | predp(X0) | predg(X0) | predl(X0)) [flattening 166] 171. ~predd(mary) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 71] 172. ~predd(mary) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 171] 186. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK6 & paul != sK6 & mary != sK6 & room(sK6)) [choice axiom] 187. ~predd(mary) | (fred != sK6 & paul != sK6 & mary != sK6 & room(sK6)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 172,186] 269. room(mary) [cnf transformation 147] 270. room(paul) [cnf transformation 147] 271. room(fred) [cnf transformation 147] 272. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 147] 284. ~predg(X0) | preda(X0) | ~room(X0) [cnf transformation 155] 285. ~predp(X0) | preda(X0) | ~room(X0) [cnf transformation 155] 288. ~preda(X0) [cnf transformation 156] 290. ~predo(mary) [cnf transformation 55] 291. ~predl(X0) | predd(X0) [cnf transformation 159] 310. predp(X0) | predo(X0) | predg(X0) | predl(X0) [cnf transformation 167] 317. ~predd(mary) | room(sK6) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 187] 318. ~predd(mary) | mary != sK6 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 187] 319. ~predd(mary) | paul != sK6 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 187] 320. ~predd(mary) | fred != sK6 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 187] 343. ~predd(mary) | fred != sK6 | ~room(paul) | ~room(mary) [subsumption resolution 320,271] 344. ~predd(mary) | fred != sK6 | ~room(mary) [subsumption resolution 343,270] 345. ~predd(mary) | fred != sK6 [subsumption resolution 344,269] 347. 5 <=> fred = sK6 [avatar definition] 349. fred != sK6 <- (~5) [avatar component clause 347] 351. 6 <=> predd(mary) [avatar definition] 354. ~5 | ~6 [avatar split clause 345,351,347] 355. ~predd(mary) | paul != sK6 | ~room(paul) | ~room(mary) [subsumption resolution 319,271] 356. ~predd(mary) | paul != sK6 | ~room(mary) [subsumption resolution 355,270] 357. ~predd(mary) | paul != sK6 [subsumption resolution 356,269] 359. 7 <=> paul = sK6 [avatar definition] 361. paul != sK6 <- (~7) [avatar component clause 359] 362. ~7 | ~6 [avatar split clause 357,351,359] 363. ~predd(mary) | mary != sK6 | ~room(paul) | ~room(mary) [subsumption resolution 318,271] 364. ~predd(mary) | mary != sK6 | ~room(mary) [subsumption resolution 363,270] 365. ~predd(mary) | mary != sK6 [subsumption resolution 364,269] 367. 8 <=> mary = sK6 [avatar definition] 369. mary != sK6 <- (~8) [avatar component clause 367] 370. ~8 | ~6 [avatar split clause 365,351,367] 371. ~predd(mary) | room(sK6) | ~room(paul) | ~room(mary) [subsumption resolution 317,271] 372. ~predd(mary) | room(sK6) | ~room(mary) [subsumption resolution 371,270] 373. ~predd(mary) | room(sK6) [subsumption resolution 372,269] 375. 9 <=> room(sK6) [avatar definition] 377. room(sK6) <- (9) [avatar component clause 375] 378. 9 | ~6 [avatar split clause 373,351,375] 392. predo(X0) | predg(X0) | predl(X0) | preda(X0) | ~room(X0) [resolution 310,285] 396. ~room(X0) | predg(X0) | predl(X0) | predo(X0) [subsumption resolution 392,288] 426. predg(mary) | predl(mary) | predo(mary) [resolution 396,269] 431. predg(mary) | predl(mary) [subsumption resolution 426,290] 433. 15 <=> predl(mary) [avatar definition] 435. predl(mary) <- (15) [avatar component clause 433] 437. 16 <=> predg(mary) [avatar definition] 439. predg(mary) <- (16) [avatar component clause 437] 440. 15 | 16 [avatar split clause 431,437,433] 464. predd(mary) <- (15) [resolution 435,291] 467. 6 | ~15 [avatar split clause 464,433,351] 484. preda(mary) | ~room(mary) <- (16) [resolution 439,284] 485. ~room(mary) <- (16) [subsumption resolution 484,288] 486. $false <- (16) [subsumption resolution 485,269] 487. ~16 [avatar contradiction clause 486] 548. paul = sK6 | mary = sK6 | fred = sK6 <- (9) [resolution 272,377] 575. mary = sK6 | fred = sK6 <- (~7, 9) [subsumption resolution 548,361] 576. fred = sK6 <- (~7, ~8, 9) [subsumption resolution 575,369] 577. $false <- (~5, ~7, ~8, 9) [subsumption resolution 576,349] 578. 5 | 7 | 8 | ~9 [avatar contradiction clause 577] 579. $false [avatar sat refutation 354,362,370,378,440,467,487,578] % SZS output end Proof for 4844916289840160438303606 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0
Jenny, Edmund, Brett are the only persons in the room. “It is true that “at least one person anywhere does enjoy trail running”” if “everyone outside the room does not enjoy snowboarding or collects limited-edition art prints from contemporary artists” and vice versa. If “Jenny collects luxury watches” then “only one person in the room is a skilled home brewer experimenting with craft beer recipes”. If “everyone in the room collects rare and antique scientific instruments or does not enjoy snowboarding” then “everyone in the room who collects rare and antique scientific instruments writes poetry”. If “everyone in the room is a wine connoisseur with a private cellar of vintage wines” then “Brett who writes poetry has lived in exactly three countries”. If “Brett owns an extensive assortment of vintage comic book memorabilia” then “everyone in the room who is right-handed collects luxury watches”. Everyone in the room who is right-handed collects luxury watches. Edmund hosts a YouTube channel dedicated to art tutorials and practices zumba. Everyone in the room who hosts a YouTube channel dedicated to art tutorials writes poetry. Everyone in the room who writes poetry has lived in exactly three countries.
Edmund has lived in exactly three countries.
entailment
room(jenny)&room(edmund)&room(brett)&(![X]:(room(X)=>(X='jenny'|X='edmund'|X='brett')))& ((![X]:(~room(X)=>(((collects_limited-edition_art_prints_from_contemporary_artists(X))|(does_not_enjoy_snowboarding(X))))))<=>(((?[X]:(anywhere(X)&does_enjoy_trail_running(X))))))& ((collects_luxury_watches(jenny))=>(((?[X]:(room(X)&is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X)))&(![X,Y]:((room(X)&room(Y)&(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))&(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(Y)))=>(X=Y))))))& ((![X]:(room(X)=>(((does_not_enjoy_snowboarding(X))|(collects_rare_and_antique_scientific_instruments(X))))))=>(![X]:(room(X)=>(((collects_rare_and_antique_scientific_instruments(X))=>(writes_poetry(X)))))))& ((![X]:(room(X)=>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))=>((writes_poetry(brett))&(has_lived_in_exactly_three_countries(brett))))& ((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(brett))=>(![X]:(room(X)=>(((is_right-handed(X))=>(collects_luxury_watches(X)))))))& (![X]:(room(X)=>(((is_right-handed(X))=>(collects_luxury_watches(X))))))& ((regularly_contributes_to_tech_forums_and_online_communities(jenny))&(enjoys_salsa_dancing(jenny)))& (collects_antique_clocks(jenny))& (![X]:(room(X)=>(((does_not_enjoy_snowboarding(X))|(collects_rare_and_antique_scientific_instruments(X))))))& (![X]:(room(X)=>(((is_right-handed(X))=>(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))))& (![X]:(room(X)=>(((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))=>(practices_calligraphy(X))))))& (owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(brett))& (![X]:(room(X)=>(((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))=>(is_right-handed(X))))))& (((hosts_a_YouTube_channel_dedicated_to_art_tutorials(edmund))&(practices_zumba(edmund))))& (![X]:(room(X)=>(does_not_collect_rare_and_antique_scientific_instruments(X))))& (~![X]:(room(X)=>(((collects_limited-edition_art_prints_from_contemporary_artists(X))<=>(~((streams_on_Twitch(X))|(does_enjoy_trail_running(X))))))))& (?[X]:(room(X)&(((regularly_contributes_to_tech_forums_and_online_communities(X))<~>(practices_zumba(X))))))& (((?[X]:(room(X)&is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X)))&(![X,Y]:((room(X)&room(Y)&(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))&(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(Y)))=>(X=Y)))))& (((?[X]:(room(X)&is_right-handed(X)))&(![X,Y]:((room(X)&room(Y)&(is_right-handed(X))&(is_right-handed(Y)))=>(X=Y)))))& (![X]:(room(X)=>(((collects_limited-edition_art_prints_from_contemporary_artists(X))=>(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))))& (![X]:(room(X)=>(((hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))=>(writes_poetry(X))))))& (![X]:(room(X)=>(((writes_poetry(X))=>(has_lived_in_exactly_three_countries(X))))))
room(jenny)&room(edmund)&room(brett)&(![X]:(room(X)=>(X='jenny'|X='edmund'|X='brett')))& has_lived_in_exactly_three_countries(edmund)
[ "p0", "p14", "p21", "p22", "hypothesis" ]
% SZS status Unsatisfiable for 4303077453202550860399428 % SZS output start Proof for 4303077453202550860399428 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 58. predp(paul) & predu(paul) [input p14] 65. ! [X0] : (room(X0) => (predu(X0) => predq(X0))) [input p21] 66. ! [X0] : (room(X0) => (predq(X0) => prede(X0))) [input p22] 67. ~(prede(paul) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 149. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 150. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 149] 174. ! [X0] : ((predq(X0) | ~predu(X0)) | ~room(X0)) [ennf transformation 65] 175. ! [X0] : (predq(X0) | ~predu(X0) | ~room(X0)) [flattening 174] 176. ! [X0] : ((prede(X0) | ~predq(X0)) | ~room(X0)) [ennf transformation 66] 177. ! [X0] : (prede(X0) | ~predq(X0) | ~room(X0)) [flattening 176] 178. ~prede(paul) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 67] 179. ~prede(paul) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 178] 205. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK9 & paul != sK9 & mary != sK9 & room(sK9)) [choice axiom] 206. ~prede(paul) | (fred != sK9 & paul != sK9 & mary != sK9 & room(sK9)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 179,205] 288. room(mary) [cnf transformation 150] 289. room(paul) [cnf transformation 150] 290. room(fred) [cnf transformation 150] 291. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 150] 313. predu(paul) [cnf transformation 58] 330. ~predu(X0) | predq(X0) | ~room(X0) [cnf transformation 175] 331. ~predq(X0) | prede(X0) | ~room(X0) [cnf transformation 177] 332. ~prede(paul) | room(sK9) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 206] 333. ~prede(paul) | mary != sK9 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 206] 334. ~prede(paul) | paul != sK9 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 206] 335. ~prede(paul) | fred != sK9 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 206] 449. ~prede(paul) | fred != sK9 | ~room(paul) | ~room(mary) [subsumption resolution 335,290] 450. ~prede(paul) | fred != sK9 | ~room(mary) [subsumption resolution 449,289] 451. ~prede(paul) | fred != sK9 [subsumption resolution 450,288] 453. 25 <=> fred = sK9 [avatar definition] 455. fred != sK9 <- (~25) [avatar component clause 453] 457. 26 <=> prede(paul) [avatar definition] 460. ~25 | ~26 [avatar split clause 451,457,453] 461. ~prede(paul) | paul != sK9 | ~room(paul) | ~room(mary) [subsumption resolution 334,290] 462. ~prede(paul) | paul != sK9 | ~room(mary) [subsumption resolution 461,289] 463. ~prede(paul) | paul != sK9 [subsumption resolution 462,288] 465. 27 <=> paul = sK9 [avatar definition] 467. paul != sK9 <- (~27) [avatar component clause 465] 468. ~27 | ~26 [avatar split clause 463,457,465] 469. ~prede(paul) | mary != sK9 | ~room(paul) | ~room(mary) [subsumption resolution 333,290] 470. ~prede(paul) | mary != sK9 | ~room(mary) [subsumption resolution 469,289] 471. ~prede(paul) | mary != sK9 [subsumption resolution 470,288] 473. 28 <=> mary = sK9 [avatar definition] 475. mary != sK9 <- (~28) [avatar component clause 473] 476. ~28 | ~26 [avatar split clause 471,457,473] 477. ~prede(paul) | room(sK9) | ~room(paul) | ~room(mary) [subsumption resolution 332,290] 478. ~prede(paul) | room(sK9) | ~room(mary) [subsumption resolution 477,289] 479. ~prede(paul) | room(sK9) [subsumption resolution 478,288] 481. 29 <=> room(sK9) [avatar definition] 483. room(sK9) <- (29) [avatar component clause 481] 484. 29 | ~26 [avatar split clause 479,457,481] 488. predq(paul) | ~room(paul) [resolution 330,313] 489. predq(paul) [subsumption resolution 488,289] 490. prede(paul) | ~room(paul) [resolution 489,331] 494. prede(paul) [subsumption resolution 490,289] 495. 26 [avatar split clause 494,457] 554. paul = sK9 | mary = sK9 | fred = sK9 <- (29) [resolution 291,483] 620. mary = sK9 | fred = sK9 <- (~27, 29) [subsumption resolution 554,467] 621. fred = sK9 <- (~27, ~28, 29) [subsumption resolution 620,475] 622. $false <- (~25, ~27, ~28, 29) [subsumption resolution 621,455] 623. 25 | 27 | 28 | ~29 [avatar contradiction clause 622] 624. $false [avatar sat refutation 460,468,476,484,495,623] % SZS output end Proof for 4303077453202550860399428 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.040 s % ------------------------------ % ------------------------------
0.278857
Nina, Eileen are the only persons in the room. Not everyone in the room does not enjoy cross-country skiing. Eileen writes and illustrates their own graphic novels. Everyone outside the room enjoys cross-country skiing. Everyone anywhere cannot play the piano. Eileen neither works as a freelance web developer specializing in e-commerce sites nor does not develop open-source software projects in their free time. Everyone in the room does not enjoy skydiving. Everyone in the room is not a drone photographer. Nina neither is not an amateur astronomer who builds and uses custom telescopes nor is a chess master who participates in national tournaments. Everyone in the room does not participate in citizen science projects related to wildlife monitoring. Everyone in the room does not practice archery. Everyone in the room practices zumba. Not everyone anywhere neither develops open-source software projects in their free time nor does not write and illustrates their own graphic novels if they neither does not practice zumba nor does not enjoy landscape photography. Only one person anywhere neither does not create YouTube content nor writes and illustrates their own graphic novels. Everyone in the room does not enjoy landscape photography or works as a freelance web developer specializing in e-commerce sites or both if they does not enjoy skydiving. Nina does not create YouTube content. Everyone in the room does not create YouTube content or is not a chess master who participates in national tournaments. Not everyone outside the room does not participate in citizen science projects related to wildlife monitoring. Everyone in the room is not a certified yoga instructor teaching classes weekly and cannot play the piano. Nina does not practice archery. Everyone in the room is not a certified yoga instructor teaching classes weekly if they enjoys landscape photography. Nina neither does not practice zumba nor does not enjoy landscape photography. Nina cannot play the piano. Everyone in the room writes and illustrates their own graphic novels.
Eileen develops open-source software projects in their free time.
entailment
room(nina)&room(eileen)&(![X]:(room(X)=>(X='nina'|X='eileen')))& (~![X]:(room(X)=>(does_not_enjoy_cross-country_skiing(X))))& (writes_and_illustrates_their_own_graphic_novels(eileen))& (![X]:(~room(X)=>(enjoys_cross-country_skiing(X))))& (![X]:(anywhere(X)=>(cannot_play_the_piano(X))))& (~((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(eileen))|(does_not_develop_open-source_software_projects_in_their_free_time(eileen))))& (![X]:(room(X)=>(does_not_enjoy_skydiving(X))))& (![X]:(room(X)=>(is_not_a_drone_photographer(X))))& (~((is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(nina))|(is_a_chess_master_who_participates_in_national_tournaments(nina))))& (![X]:(room(X)=>(does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(X))))& (![X]:(room(X)=>(does_not_practice_archery(X))))& (![X]:(room(X)=>(practices_zumba(X))))& (~![X]:(anywhere(X)=>(((~((does_not_practice_zumba(X))|(does_not_enjoy_landscape_photography(X))))=>(~((develops_open-source_software_projects_in_their_free_time(X))|(does_not_write_and_illustrates_their_own_graphic_novels(X))))))))& (((?[X]:(anywhere(X)&~((does_not_create_YouTube_content(X))|(writes_and_illustrates_their_own_graphic_novels(X)))))&(![X,Y]:((anywhere(X)&anywhere(Y)&(~((does_not_create_YouTube_content(X))|(writes_and_illustrates_their_own_graphic_novels(X))))&(~((does_not_create_YouTube_content(Y))|(writes_and_illustrates_their_own_graphic_novels(Y)))))=>(X=Y)))))& (![X]:(room(X)=>(((does_not_enjoy_skydiving(X))=>(((does_not_enjoy_landscape_photography(X))|(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))))))& (does_not_create_YouTube_content(nina))& (![X]:(room(X)=>(((is_not_a_chess_master_who_participates_in_national_tournaments(X))|(does_not_create_YouTube_content(X))))))& (~![X]:(~room(X)=>(does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(X))))& (![X]:(room(X)=>(((is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))&(cannot_play_the_piano(X))))))& (does_not_practice_archery(nina))& (![X]:(room(X)=>(((enjoys_landscape_photography(X))=>(is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))))))& (~((does_not_practice_zumba(nina))|(does_not_enjoy_landscape_photography(nina))))& (cannot_play_the_piano(nina))& (![X]:(room(X)=>(writes_and_illustrates_their_own_graphic_novels(X))))
room(nina)&room(eileen)&(![X]:(room(X)=>(X='nina'|X='eileen')))& develops_open-source_software_projects_in_their_free_time(eileen)
[ "p0", "p5", "hypothesis" ]
% SZS status Unsatisfiable for 2723200501210633531724075 % SZS output start Proof for 2723200501210633531724075 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 49. ~(~predd(paul) | predc(paul)) [input p5] 68. ~(predd(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 157. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 158. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 157] 160. predd(paul) & ~predc(paul) [ennf transformation 49] 172. ~predd(paul) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 68] 173. ~predd(paul) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 172] 183. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK4 & mary != sK4 & room(sK4)) [choice axiom] 184. ~predd(paul) | (paul != sK4 & mary != sK4 & room(sK4)) | ~room(paul) | ~room(mary) [skolemisation 173,183] 266. room(mary) [cnf transformation 158] 267. room(paul) [cnf transformation 158] 268. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 158] 272. predd(paul) [cnf transformation 160] 288. ~predd(paul) | room(sK4) | ~room(paul) | ~room(mary) [cnf transformation 184] 289. ~predd(paul) | mary != sK4 | ~room(paul) | ~room(mary) [cnf transformation 184] 290. ~predd(paul) | paul != sK4 | ~room(paul) | ~room(mary) [cnf transformation 184] 303. paul != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 290,272] 304. paul != sK4 | ~room(mary) [subsumption resolution 303,267] 305. paul != sK4 [subsumption resolution 304,266] 306. mary != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 289,272] 307. mary != sK4 | ~room(mary) [subsumption resolution 306,267] 308. mary != sK4 [subsumption resolution 307,266] 309. room(sK4) | ~room(paul) | ~room(mary) [subsumption resolution 288,272] 310. room(sK4) | ~room(mary) [subsumption resolution 309,267] 311. room(sK4) [subsumption resolution 310,266] 332. mary = sK4 | paul = sK4 [resolution 268,311] 342. paul = sK4 [subsumption resolution 332,308] 343. $false [subsumption resolution 342,305] % SZS output end Proof for 2723200501210633531724075 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.057411
Charles is the only person in the room. If 'someone in the room enjoys writing detailed reviews of new and classic board games' then 'Charles plays eSports competitively'. If 'Charles enjoys snowboarding' then 'Charles does not use a Windows laptop'. Charles plays video games. Charles does not use a Windows laptop. Charles develops open-source software projects in their free time. It is true that 'Charles collects antique clocks'. Everyone in the room who plays video games streams on Twitch. Charles is not a coffee connoisseur.
Charles enjoys snowboarding.
neutral
room(charles)&(![X]:(room(X)=>(X='charles')))& ((?[X]:(room(X)&(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))))=>(plays_eSports_competitively(charles)))& ((enjoys_snowboarding(charles))=>(does_not_use_a_Windows_laptop(charles)))& (plays_video_games(charles))& (does_not_use_a_Windows_laptop(charles))& (develops_open-source_software_projects_in_their_free_time(charles))& (collects_antique_clocks(charles))& (![X]:(room(X)=>(((plays_video_games(X))=>(streams_on_Twitch(X))))))& (is_not_a_coffee_connoisseur(charles))& (![X]:(~room(X)=>(((can_play_the_flute(X))=>(enjoys_cross-country_skiing(X))))))& (does_not_maintain_a_large,_organic_vegetable_garden_year-round(charles))& (~(collects_vintage_vinyl_records(charles)))& (![X]:(anywhere(X)=>(((writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))=>(plays_eSports_competitively(X))))))& (collects_foreign_coins(charles))& (~(does_not_enjoy_trail_running(charles)))& (hosts_a_popular_podcast_about_emerging_technologies(charles))& (((?[X]:(room(X)&writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X)))))
room(charles)&(![X]:(room(X)=>(X='charles')))& enjoys_snowboarding(charles)
[]
null
0.129952
Amber, Linda are the only persons in the room. “Amber competes in national level swimming championships” if “everyone in the room is not an expert in identifying and foraging wild edible plants or enjoys fishing”. If “everyone in the room does not host a YouTube channel dedicated to art tutorials or is not an expert in identifying and foraging wild edible plants” then “Amber neither is an expert in identifying and foraging wild edible plants nor enjoys rooftop gardening”. Not everyone in the room collects antique jewelry. Everyone in the room creates bespoke furniture pieces from reclaimed wood only if they enjoys fishing. Not everyone in the room who neither does not enjoy fishing nor does not host a YouTube channel dedicated to art tutorials competes in national level swimming championships. Amber hosts a YouTube channel dedicated to art tutorials. Everyone in the room who enjoys rooftop gardening does not create bespoke furniture pieces from reclaimed wood. Amber is a certified yoga instructor teaching classes weekly. Everyone in the room who owns an extensive assortment of vintage comic book memorabilia enjoys fishing, owns an extensive assortment of vintage comic book memorabilia or hosts a YouTube channel dedicated to art tutorials. Everyone in the room does not compete in national level swimming championships if they enjoys fishing, owns an extensive assortment of vintage comic book memorabilia or hosts a YouTube channel dedicated to art tutorials. Amber creates bespoke furniture pieces from reclaimed wood. Amber practices pilates. Everyone in the room can play the guitar if they practices pilates.
More than one person in the room enjoys fishing.
contradiction
room(amber)&room(linda)&(![X]:(room(X)=>(X='amber'|X='linda')))& ((![X]:(room(X)=>(((enjoys_fishing(X))|(is_not_an_expert_in_identifying_and_foraging_wild_edible_plants(X))))))=>(competes_in_national_level_swimming_championships(amber)))& ((![X]:(room(X)=>(((is_not_an_expert_in_identifying_and_foraging_wild_edible_plants(X))|(does_not_host_a_YouTube_channel_dedicated_to_art_tutorials(X))))))=>(~((is_an_expert_in_identifying_and_foraging_wild_edible_plants(amber))|(enjoys_rooftop_gardening(amber)))))& (~![X]:(room(X)=>(collects_antique_jewelry(X))))& (![X]:(room(X)=>(((enjoys_fishing(X))<=(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))))& (~![X]:(room(X)=>(((~((does_not_enjoy_fishing(X))|(does_not_host_a_YouTube_channel_dedicated_to_art_tutorials(X))))=>(competes_in_national_level_swimming_championships(X))))))& (hosts_a_YouTube_channel_dedicated_to_art_tutorials(amber))& (![X]:(room(X)=>(((enjoys_rooftop_gardening(X))=>(does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(X))))))& (is_a_certified_yoga_instructor_teaching_classes_weekly(amber))& (![X]:(room(X)=>(((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))=>(((enjoys_fishing(X))|(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))|(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))))))& (![X]:(room(X)=>(((((enjoys_fishing(X))|(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))|(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))=>(does_not_compete_in_national_level_swimming_championships(X))))))& (creates_bespoke_furniture_pieces_from_reclaimed_wood(amber))& (practices_pilates(amber))& (![X]:(room(X)=>(((practices_pilates(X))=>(can_play_the_guitar(X))))))
room(amber)&room(linda)&(![X]:(room(X)=>(X='amber'|X='linda')))& (?[X,Y]:(room(X)&room(Y)&(enjoys_fishing(X)&enjoys_fishing(Y))&(X!=Y)))
[ "p0", "p1", "p4", "p10", "p11", "hypothesis" ]
% SZS status Unsatisfiable for 5054032778879507582914977 % SZS output start Proof for 5054032778879507582914977 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 45. ! [X0] : (room(X0) => (~predd(X0) | predf(X0))) => predi(mary) [input p1] 48. ! [X0] : (room(X0) => (prede(X0) => predf(X0))) [input p4] 54. ! [X0] : (room(X0) => ((predk(X0) | predc(X0) | predf(X0)) => ~predi(X0))) [input p10] 55. prede(mary) [input p11] 58. ? [X0,X1] : (X0 != X1 & predf(X1) & predf(X0) & room(X1) & room(X0)) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 59. ? [X0,X1] : (X0 != X1 & predf(X1) & predf(X0) & room(X1) & room(X0)) & ! [X2] : (room(X2) => (paul = X2 | mary = X2)) & room(paul) & room(mary) [rectify 58] 138. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 139. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 138] 140. predi(mary) | ? [X0] : ((predd(X0) & ~predf(X0)) & room(X0)) [ennf transformation 45] 141. predi(mary) | ? [X0] : (predd(X0) & ~predf(X0) & room(X0)) [flattening 140] 145. ! [X0] : ((predf(X0) | ~prede(X0)) | ~room(X0)) [ennf transformation 48] 146. ! [X0] : (predf(X0) | ~prede(X0) | ~room(X0)) [flattening 145] 151. ! [X0] : ((~predi(X0) | (~predk(X0) & ~predc(X0) & ~predf(X0))) | ~room(X0)) [ennf transformation 54] 152. ! [X0] : (~predi(X0) | (~predk(X0) & ~predc(X0) & ~predf(X0)) | ~room(X0)) [flattening 151] 153. ? [X0,X1] : (X0 != X1 & predf(X1) & predf(X0) & room(X1) & room(X0)) & ! [X2] : ((paul = X2 | mary = X2) | ~room(X2)) & room(paul) & room(mary) [ennf transformation 59] 154. ? [X0,X1] : (X0 != X1 & predf(X1) & predf(X0) & room(X1) & room(X0)) & ! [X2] : (paul = X2 | mary = X2 | ~room(X2)) & room(paul) & room(mary) [flattening 153] 156. ? [X0] : (predd(X0) & ~predf(X0) & room(X0)) => (predd(sK0) & ~predf(sK0) & room(sK0)) [choice axiom] 157. predi(mary) | (predd(sK0) & ~predf(sK0) & room(sK0)) [skolemisation 141,156] 164. ? [X0,X1] : (X0 != X1 & predf(X1) & predf(X0) & room(X1) & room(X0)) => (sK4 != sK5 & predf(sK5) & predf(sK4) & room(sK5) & room(sK4)) [choice axiom] 165. (sK4 != sK5 & predf(sK5) & predf(sK4) & room(sK5) & room(sK4)) & ! [X2] : (paul = X2 | mary = X2 | ~room(X2)) & room(paul) & room(mary) [skolemisation 154,164] 246. room(mary) [cnf transformation 139] 248. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 139] 249. predi(mary) | room(sK0) [cnf transformation 157] 250. predi(mary) | ~predf(sK0) [cnf transformation 157] 256. ~prede(X0) | predf(X0) | ~room(X0) [cnf transformation 146] 263. ~predi(X0) | ~predf(X0) | ~room(X0) [cnf transformation 152] 266. prede(mary) [cnf transformation 55] 270. room(sK4) [cnf transformation 165] 271. room(sK5) [cnf transformation 165] 272. predf(sK4) [cnf transformation 165] 273. predf(sK5) [cnf transformation 165] 274. sK4 != sK5 [cnf transformation 165] 280. 2 <=> predi(mary) [avatar definition] 282. predi(mary) <- (2) [avatar component clause 280] 285. 3 <=> predf(sK0) [avatar definition] 287. ~predf(sK0) <- (~3) [avatar component clause 285] 288. ~3 | 2 [avatar split clause 250,280,285] 290. 4 <=> room(sK0) [avatar definition] 292. room(sK0) <- (4) [avatar component clause 290] 293. 4 | 2 [avatar split clause 249,280,290] 313. predf(mary) | ~room(mary) [resolution 256,266] 314. predf(mary) [subsumption resolution 313,246] 315. ~predf(mary) | ~room(mary) <- (2) [resolution 263,282] 316. ~room(mary) <- (2) [subsumption resolution 315,314] 317. $false <- (2) [subsumption resolution 316,246] 318. ~2 [avatar contradiction clause 317] 323. mary = sK0 | paul = sK0 <- (4) [resolution 248,292] 326. mary = sK4 | paul = sK4 [resolution 248,270] 327. mary = sK5 | paul = sK5 [resolution 248,271] 329. 9 <=> paul = sK0 [avatar definition] 331. paul = sK0 <- (9) [avatar component clause 329] 333. 10 <=> mary = sK0 [avatar definition] 335. mary = sK0 <- (10) [avatar component clause 333] 336. 9 | 10 | ~4 [avatar split clause 323,290,333,329] 356. 15 <=> paul = sK4 [avatar definition] 358. paul = sK4 <- (15) [avatar component clause 356] 360. 16 <=> mary = sK4 [avatar definition] 363. 15 | 16 [avatar split clause 326,360,356] 365. 17 <=> paul = sK5 [avatar definition] 367. paul = sK5 <- (17) [avatar component clause 365] 369. 18 <=> mary = sK5 [avatar definition] 371. mary = sK5 <- (18) [avatar component clause 369] 372. 17 | 18 [avatar split clause 327,369,365] 374. predf(paul) <- (17) [backward demodulation 273,367] 385. ~predf(paul) <- (~3, 9) [backward demodulation 287,331] 387. $false <- (~3, 9, 17) [subsumption resolution 385,374] 388. 3 | ~9 | ~17 [avatar contradiction clause 387] 393. ~predf(mary) <- (~3, 10) [backward demodulation 287,335] 397. $false <- (~3, 10) [subsumption resolution 393,314] 398. 3 | ~10 [avatar contradiction clause 397] 406. ~predf(paul) <- (~3, 9) [backward demodulation 287,331] 410. mary != sK4 <- (18) [forward demodulation 274,371] 411. ~16 | ~18 [avatar split clause 410,369,360] 413. predf(paul) <- (15) [backward demodulation 272,358] 414. $false <- (~3, 9, 15) [subsumption resolution 413,406] 415. 3 | ~9 | ~15 [avatar contradiction clause 414] 421. $false [avatar sat refutation 288,293,318,336,363,372,388,398,411,415] % SZS output end Proof for 5054032778879507582914977 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.040 s % ------------------------------ % ------------------------------
0.315227
Everyone in the room does not watche fantasy movies if they hosts regular game nights featuring complex strategy games or plays eSports competitively or both and vice versa. Everyone in the room hosts regular game nights featuring complex strategy games or plays eSports competitively or both if they neither does enjoy trail running nor does not have a tattoo and vice versa. Everyone in the room neither enjoys virtual reality gaming nor hosts regular game nights featuring complex strategy games if they has a tattoo or collects vintage vinyl records or both. Everyone in the room does not watche fantasy movies or does enjoy trail running. No one in the room who does not practice graffiti art or practices graffiti art or both has a tattoo, is a client of Costco and mentors a youth basketball team on weekends. Someone in the room does not have a tattoo.
Everyone in the room does not enjoy trail running.
contradiction
(there_is_a_room)& ((~![X]:(room(X)=>(((does_not_play_eSports_competitively(X))|(enjoys_virtual_reality_gaming(X))))))=>(![X]:(room(X)=>(((enjoys_virtual_reality_gaming(X))<=>(((enjoys_rooftop_gardening(X))&(does_not_make_intricate_hand-cut_paper_art_for_exhibitions(X))&(makes_homemade_pastries(X)))))))))& ((![X]:(room(X)=>(((plays_eSports_competitively(X))|(does_not_enjoy_rooftop_gardening(X))))))<=>(?[X]:(room(X)&(~((mentors_a_youth_basketball_team_on_weekends(X))|(volunteers_for_local_environmental_conservation_projects(X)))))))& ((![X]:(room(X)=>(((cannot_play_the_piano(X))|(enjoys_snowboarding(X))))))<~>(![X]:(room(X)=>(((does_enjoy_trail_running(X))|(does_not_watche_fantasy_movies(X)))))))& (![X]:(room(X)=>(((does_not_watche_fantasy_movies(X))<=>(((hosts_regular_game_nights_featuring_complex_strategy_games(X))|(plays_eSports_competitively(X))))))))& (![X]:(room(X)=>(((((hosts_regular_game_nights_featuring_complex_strategy_games(X))|(plays_eSports_competitively(X))))<=>(~((does_enjoy_trail_running(X))|(does_not_have_a_tattoo(X))))))))& (![X]:(room(X)=>(((((has_a_tattoo(X))|(collects_vintage_vinyl_records(X))))=>(~((enjoys_virtual_reality_gaming(X))|(hosts_regular_game_nights_featuring_complex_strategy_games(X))))))))& (![X]:(room(X)=>(((does_enjoy_trail_running(X))|(does_not_watche_fantasy_movies(X))))))& (![X]:(room(X)=>(((((is_not_a_client_of_Costco(X))|(writes_poetry(X))))<=>(mentors_a_youth_basketball_team_on_weekends(X))))))& (![X]:(room(X)=>(((mentors_a_youth_basketball_team_on_weekends(X))<=>(((does_enjoy_trail_running(X))|(collects_vintage_vinyl_records(X))))))))& (~?[X]:(room(X)=>(((((does_not_practice_graffiti_art(X))|(practices_graffiti_art(X))))=>(((has_a_tattoo(X))&(is_a_client_of_Costco(X))&(mentors_a_youth_basketball_team_on_weekends(X))))))))& (?[X]:(room(X)&(does_not_have_a_tattoo(X))))
(there_is_a_room)& ![X]:(room(X)=>(does_not_enjoy_trail_running(X)))
[ "p4", "p5", "p6", "p7", "p10", "p11", "hypothesis" ]
% SZS status Unsatisfiable for 5295026647732539263505447 % SZS output start Proof for 5295026647732539263505447 48. ! [X0] : (room(X0) => (~predk(X0) <=> (predv(X0) | predz(X0)))) [input p4] 49. ! [X0] : (room(X0) => ((predv(X0) | predz(X0)) <=> ~(~predd(X0) | predm(X0)))) [input p5] 50. ! [X0] : (room(X0) => ((predw(X0) | predd(X0)) => ~(predz(X0) | predr(X0)))) [input p6] 51. ! [X0] : (room(X0) => (~predk(X0) | predm(X0))) [input p7] 54. ~? [X0] : (room(X0) => ((predp(X0) | ~predp(X0)) => (predt(X0) & predy(X0) & predd(X0)))) [input p10] 55. ? [X0] : (~predd(X0) & room(X0)) [input p11] 56. ! [X0] : (room(X0) => ~predm(X0)) & there_is_a_room [input hypothesis] 60. ! [X0] : (room(X0) => ~predm(X0)) [pure predicate removal 56] 140. ! [X0] : ((~predk(X0) <=> (predv(X0) | predz(X0))) | ~room(X0)) [ennf transformation 48] 141. ! [X0] : (((predv(X0) | predz(X0)) <=> (predd(X0) & ~predm(X0))) | ~room(X0)) [ennf transformation 49] 142. ! [X0] : (((~predz(X0) & ~predr(X0)) | (~predw(X0) & ~predd(X0))) | ~room(X0)) [ennf transformation 50] 143. ! [X0] : ((~predz(X0) & ~predr(X0)) | (~predw(X0) & ~predd(X0)) | ~room(X0)) [flattening 142] 144. ! [X0] : ((~predk(X0) | predm(X0)) | ~room(X0)) [ennf transformation 51] 145. ! [X0] : (~predk(X0) | predm(X0) | ~room(X0)) [flattening 144] 148. ! [X0] : (((~predt(X0) | ~predy(X0) | ~predd(X0)) & (predp(X0) | ~predp(X0))) & room(X0)) [ennf transformation 54] 149. ! [X0] : ((~predt(X0) | ~predy(X0) | ~predd(X0)) & (predp(X0) | ~predp(X0)) & room(X0)) [flattening 148] 150. ! [X0] : (~predm(X0) | ~room(X0)) [ennf transformation 60] 170. ! [X0] : (((~predk(X0) | (~predv(X0) & ~predz(X0))) & ((predv(X0) | predz(X0)) | predk(X0))) | ~room(X0)) [nnf transformation 140] 171. ! [X0] : (((~predk(X0) | (~predv(X0) & ~predz(X0))) & (predv(X0) | predz(X0) | predk(X0))) | ~room(X0)) [flattening 170] 172. ! [X0] : ((((predv(X0) | predz(X0)) | (~predd(X0) | predm(X0))) & ((predd(X0) & ~predm(X0)) | (~predv(X0) & ~predz(X0)))) | ~room(X0)) [nnf transformation 141] 173. ! [X0] : (((predv(X0) | predz(X0) | ~predd(X0) | predm(X0)) & ((predd(X0) & ~predm(X0)) | (~predv(X0) & ~predz(X0)))) | ~room(X0)) [flattening 172] 178. ? [X0] : (~predd(X0) & room(X0)) => (~predd(sK5) & room(sK5)) [choice axiom] 179. ~predd(sK5) & room(sK5) [skolemisation 55,178] 282. ~room(X0) | predz(X0) | predk(X0) | predv(X0) [cnf transformation 171] 287. ~predz(X0) | predd(X0) | ~room(X0) [cnf transformation 173] 288. ~predv(X0) | predd(X0) | ~room(X0) [cnf transformation 173] 292. ~predz(X0) | ~predd(X0) | ~room(X0) [cnf transformation 143] 294. ~predk(X0) | predm(X0) | ~room(X0) [cnf transformation 145] 301. room(X0) [cnf transformation 149] 305. ~predd(sK5) [cnf transformation 179] 306. ~predm(X0) | ~room(X0) [cnf transformation 150] 405. 22 <=> ! [X2] : (~predk(X2) | ~room(X2) | predm(X2)) [avatar definition] 406. ~predk(X2) | ~room(X2) | predm(X2) <- (22) [avatar component clause 405] 408. ~predz(X0) | ~room(X0) [subsumption resolution 292,287] 409. 22 [avatar split clause 294,405] 410. ~predm(X0) [subsumption resolution 306,301] 411. ~predk(X2) | predm(X2) <- (22) [subsumption resolution 406,301] 412. ~predk(X2) <- (22) [subsumption resolution 411,410] 420. predz(X0) | predk(X0) | predv(X0) [resolution 282,301] 421. predz(X0) | predv(X0) <- (22) [subsumption resolution 420,412] 425. predv(X3) | ~room(X3) <- (22) [resolution 421,408] 427. predv(X3) <- (22) [subsumption resolution 425,301] 430. predd(X0) | ~room(X0) <- (22) [resolution 427,288] 432. predd(X0) <- (22) [subsumption resolution 430,301] 436. $false <- (22) [resolution 432,305] 438. ~22 [avatar contradiction clause 436] 440. $false [avatar sat refutation 409,438] % SZS output end Proof for 5295026647732539263505447 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.178396
Lisa is the only person in the room. Either “Lisa plays the violin” or “it is not the case that “someone anywhere plays the violin”” but not both. “Everyone in the room has a pet dog if they collects limited-edition art prints from contemporary artists” if “Lisa is an active member of a local robotics club”. Lisa collects limited-edition art prints from contemporary artists. Everyone in the room has a pet dog or does not have a pet dog. Lisa either practices tai chi or owns an extensive assortment of vintage comic book memorabilia but not both. Lisa hosts regular workshops on creative writing. It is true that “Lisa hosts regular workshops on creative writing, does not know morse code or does not enjoy making ceramics”. If someone collects limited-edition art prints from contemporary artists then he/she owns an extensive assortment of vintage comic book memorabilia or owns an Android phone or both and vice versa. Everyone in the room does not collect rare and antique scientific instruments only if they owns an extensive assortment of vintage comic book memorabilia. Everyone in the room is not an active member of a local robotics club or owns an extensive assortment of vintage comic book memorabilia. Lisa does not play the violin. Lisa dreamt that “if someone creates large-scale murals for public art installations then he/she is an active member of a local robotics club and vice versa”. Everyone in the room neither knows morse code nor collects rare and antique scientific instruments. Lisa owns an Android phone.
Lisa hosts themed dinner parties featuring gourmet home-cooked meals.
neutral
room(lisa)&(![X]:(room(X)=>(X='lisa')))& ((plays_the_violin(lisa))<~>(~(?[X]:(anywhere(X)&(plays_the_violin(X))))))& ((is_an_active_member_of_a_local_robotics_club(lisa))=>(![X]:(room(X)=>(((collects_limited-edition_art_prints_from_contemporary_artists(X))=>(has_a_pet_dog(X)))))))& (collects_limited-edition_art_prints_from_contemporary_artists(lisa))& (![X]:(room(X)=>(((does_not_have_a_pet_dog(X))|(has_a_pet_dog(X))))))& (((practices_tai_chi(lisa))<~>(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(lisa))))& (hosts_regular_workshops_on_creative_writing(lisa))& (((hosts_regular_workshops_on_creative_writing(lisa))|(does_not_know_morse_code(lisa))|(does_not_enjoy_making_ceramics(lisa))))& ((![X]:((collects_limited-edition_art_prints_from_contemporary_artists(X))<=>(((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))|(owns_an_Android_phone(X)))))))& (![X]:(room(X)=>(((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))<=(does_not_collect_rare_and_antique_scientific_instruments(X))))))& (![X]:(room(X)=>(((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))|(is_not_an_active_member_of_a_local_robotics_club(X))))))& (does_not_play_the_violin(lisa))& ((lisa_dream=>((![X]:((creates_large-scale_murals_for_public_art_installations(X))<=>(is_an_active_member_of_a_local_robotics_club(X)))))))& (![X]:(room(X)=>(~((knows_morse_code(X))|(collects_rare_and_antique_scientific_instruments(X))))))& (owns_an_Android_phone(lisa))& (![X]:(~room(X)=>(((is_not_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))=>(owns_an_Android_phone(X))))))& (![X]:(room(X)=>(((is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))=>(does_not_host_regular_workshops_on_creative_writing(X))))))& (![X]:(room(X)=>(((((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))|(does_not_play_the_violin(X))|(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))))=>(owns_an_Android_phone(X))))))& (![X]:(room(X)=>(((owns_an_Android_phone(X))=>(owns_a_3D_printer(X))))))& (creates_large-scale_murals_for_public_art_installations(lisa))& (![X]:(room(X)=>(((enjoys_making_ceramics(X))<=>(knows_morse_code(X))))))& (((?[X]:(room(X)&collects_limited-edition_art_prints_from_contemporary_artists(X)))&(![X,Y]:((room(X)&room(Y)&(collects_limited-edition_art_prints_from_contemporary_artists(X))&(collects_limited-edition_art_prints_from_contemporary_artists(Y)))=>(X=Y)))))
room(lisa)&(![X]:(room(X)=>(X='lisa')))& hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(lisa)
[]
null
0
Laura, Sandra, Eduardo, Jean, Miguel are the only persons in the room. “Laura collects vintage vinyl records” if “everyone in the room is a certified scuba diver with advanced underwater photography skills or does not enjoy camping and organizing outdoor survival workshops” and vice versa. “If someone enjoys watercolor painting then he/she reads mystery novels” if “everyone in the room does not enjoy origami or practices tai chi”. “Everyone in the room who collects first edition books hosts regular game nights featuring complex strategy games” unless “everyone in the room is an active member of a local robotics club or does not drive a hybrid car”. “Everyone outside the room does not practice and performs acrobatic dance routines or practices kickboxing” if “everyone in the room does not practice kickboxing or is an avid mountain climber who has scaled several peaks” and vice versa. If “it is not the case that “Sandra does not collect first edition books”” then “Sandra drives a hybrid car”. If “Laura enjoys origami” then “everyone anywhere who does not practice kickboxing does not maintain a personal blog focused on cybersecurity tips”. “If someone hosts a popular podcast about emerging technologies then he/she reads mystery novels and vice versa” unless “Laura is not an active member of a local robotics club”. “Sandra hosts a YouTube channel dedicated to art tutorials, drives a hybrid car and creates YouTube content” unless “Sandra creates YouTube content”. “Everyone in the room either collects first edition books or collects vintage vinyl records but not both if they hosts regular game nights featuring complex strategy games” if “Laura practices kickboxing”. If “Laura does not host regular game nights featuring complex strategy games” then “everyone outside the room who does not watche fantasy movies or drives a hybrid car or both does not have a pet dog”. Everyone in the room collects first edition books.
Everyone in the room does not drive a hybrid car.
contradiction
room(laura)&room(sandra)&room(eduardo)&room(jean)&room(miguel)&(![X]:(room(X)=>(X='laura'|X='sandra'|X='eduardo'|X='jean'|X='miguel')))& ((![X]:(room(X)=>(((does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))|(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))))<=>(collects_vintage_vinyl_records(laura)))& ((![X]:(room(X)=>(((practices_tai_chi(X))|(does_not_enjoy_origami(X))))))=>((![X]:((enjoys_watercolor_painting(X))=>(reads_mystery_novels(X))))))& (~(![X]:(room(X)=>(((does_not_drive_a_hybrid_car(X))|(is_an_active_member_of_a_local_robotics_club(X))))))=>(![X]:(room(X)=>(((collects_first_edition_books(X))=>(hosts_regular_game_nights_featuring_complex_strategy_games(X)))))))& ((![X]:(room(X)=>(((is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))|(does_not_practice_kickboxing(X))))))<=>(![X]:(~room(X)=>(((practices_kickboxing(X))|(does_not_practice_and_performs_acrobatic_dance_routines(X)))))))& ((~(does_not_collect_first_edition_books(sandra)))=>(drives_a_hybrid_car(sandra)))& ((enjoys_origami(laura))=>(![X]:(anywhere(X)=>(((does_not_practice_kickboxing(X))=>(does_not_maintain_a_personal_blog_focused_on_cybersecurity_tips(X)))))))& (~(is_not_an_active_member_of_a_local_robotics_club(laura))=>((![X]:((hosts_a_popular_podcast_about_emerging_technologies(X))<=>(reads_mystery_novels(X))))))& (~(creates_YouTube_content(sandra))=>(((hosts_a_YouTube_channel_dedicated_to_art_tutorials(sandra))&(drives_a_hybrid_car(sandra))&(creates_YouTube_content(sandra)))))& ((practices_kickboxing(laura))=>(![X]:(room(X)=>(((hosts_regular_game_nights_featuring_complex_strategy_games(X))=>(((collects_first_edition_books(X))<~>(collects_vintage_vinyl_records(X)))))))))& ((does_not_host_regular_game_nights_featuring_complex_strategy_games(laura))=>(![X]:(~room(X)=>(((((does_not_watche_fantasy_movies(X))|(drives_a_hybrid_car(X))))=>(does_not_have_a_pet_dog(X)))))))& (~?[X]:(anywhere(X)=>(((does_not_have_a_pet_dog(X))=>(does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))))))& (![X]:(room(X)=>(((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))<=(does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))))))& (![X]:(room(X)=>(((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))<=>(((is_an_active_member_of_a_local_robotics_club(X))|(collects_vintage_vinyl_records(X))|(practices_kickboxing(X))))))))& (((?[X]:(room(X)&((drives_a_hybrid_car(X))|(has_a_pet_dog(X))|(does_not_enjoy_watercolor_painting(X)))))))& (~![X]:(room(X)=>(((((hosts_a_popular_podcast_about_emerging_technologies(X))&(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))&(maintains_a_personal_blog_focused_on_cybersecurity_tips(X))))<=>(is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))))& (![X]:(~room(X)=>(((((does_not_watche_fantasy_movies(X))|(drives_a_hybrid_car(X))))=>(does_not_have_a_pet_dog(X))))))& (![X]:(room(X)=>(((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))=>(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))))& (~![X]:(~room(X)=>(((~((hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))|(hosts_a_popular_podcast_about_emerging_technologies(X))))=>(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))))& (![X]:(room(X)=>(((drives_a_hybrid_car(X))=>(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))))))& (~![X]:(~room(X)=>(((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))=>(collects_first_edition_books(X))))))& (![X]:(room(X)=>(collects_first_edition_books(X))))& ((![X]:((is_a_professional_photographer_specializing_in_portrait_photography(X))=>(enjoys_wildlife_photography(X)))))
room(laura)&room(sandra)&room(eduardo)&room(jean)&room(miguel)&(![X]:(room(X)=>(X='laura'|X='sandra'|X='eduardo'|X='jean'|X='miguel')))& ![X]:(room(X)=>(does_not_drive_a_hybrid_car(X)))
[ "p0", "p5", "p21", "hypothesis" ]
% SZS status Unsatisfiable for 444210797728010520849851 % SZS output start Proof for 444210797728010520849851 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 49. predu(paul) => predi(paul) [input p5] 65. ! [X0] : (room(X0) => predu(X0)) [input p21] 67. ! [X0] : (room(X0) => ~predi(X0)) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 71. ! [X0] : (room(X0) => ~predi(X0)) & ! [X1] : (room(X1) => (john = X1 | alice = X1 | fred = X1 | paul = X1 | mary = X1)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 67] 157. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 158. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 157] 165. predi(paul) | ~predu(paul) [ennf transformation 49] 180. ! [X0] : (predu(X0) | ~room(X0)) [ennf transformation 65] 181. ! [X0] : (~predi(X0) | ~room(X0)) & ! [X1] : ((john = X1 | alice = X1 | fred = X1 | paul = X1 | mary = X1) | ~room(X1)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 71] 182. ! [X0] : (~predi(X0) | ~room(X0)) & ! [X1] : (john = X1 | alice = X1 | fred = X1 | paul = X1 | mary = X1 | ~room(X1)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 181] 289. room(paul) [cnf transformation 158] 305. predi(paul) | ~predu(paul) [cnf transformation 165] 329. ~room(X0) | predu(X0) [cnf transformation 180] 336. ~predi(X0) | ~room(X0) [cnf transformation 182] 404. 16 <=> predu(paul) [avatar definition] 408. 17 <=> predi(paul) [avatar definition] 410. predi(paul) <- (17) [avatar component clause 408] 411. ~16 | 17 [avatar split clause 305,408,404] 457. predu(paul) [resolution 329,289] 466. 16 [avatar split clause 457,404] 467. ~room(paul) <- (17) [resolution 336,410] 468. $false <- (17) [subsumption resolution 467,289] 469. ~17 [avatar contradiction clause 468] 470. $false [avatar sat refutation 411,466,469] % SZS output end Proof for 444210797728010520849851 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0
Eleanor, Winifred are the only persons in the room. “Everyone in the room is not strong” if “someone in the room is not kind” and vice versa. If “it is not the case that “Eleanor and Winifred are respectively calm and tall”” then “it is not the case that “it is not the case that “Eleanor and Winifred are respectively generous and patient”””.
Eleanor is calm.
contradiction
room(eleanor)&room(winidonald)&(![X]:(room(X)=>(X='eleanor'|X='winidonald')))& ((?[X]:(room(X)&(~kind(X))))<=>(![X]:(room(X)=>(~strong(X)))))& (((~((calm(eleanor))&(tall(winidonald))))=>(~(~((generous(eleanor))&(patient(winidonald))))))& ((~(~((generous(eleanor))&(patient(winidonald)))))=>(?[X,Y]:((((quiet(X)&person(X))|(creative(X)&person(X))))&(patient(Y)&person(Y))&(quieter(X,Y))))))& (![X]:(room(X)=>(((~calm(X))&(old(X)&person(X))&(patient(X)&person(X))))))& ((![X]:((creative(X)&person(X))=>(((happy(X)&person(X))|(~(old(X)&person(X))))))))& (?[X,Y]:((((patient(X)&person(X))|(~(strong(X)&person(X)))))&(((~calm(Y))&(tall(Y)&person(Y))&(~(quiet(Y)&person(Y)))))&(richer(X,Y))))& ((![X]:((~tall(X))=>(~creative(X)))))& (?[X,Y]:((((quiet(X)&person(X))|(creative(X)&person(X))))&(patient(Y)&person(Y))&(quieter(X,Y))))& (?[X]:(room(X)&(humble(X)&person(X))))& (![X]:(room(X)=>(happy(X)&person(X))))& ((eleanor_dream=>((~(generous(winidonald)&person(winidonald)))&(~(old(winidonald)&person(winidonald))))))& (![X]:(anywhere(X)=>(happy(X)&person(X))))& ((humble(eleanor))&(kind(winidonald)))& ((![X]:((tall(X)&person(X))=>(~brave(X)))))& (![X]:((room(X)&(X!=eleanor))=>richer(eleanor,X)))& ((![X]:((curious(X)&person(X))<=>(~wise(X)))))& (?[X,Y]:((((~(brave(X)&generous(X)&person(X)))&(tall(X)&person(X))&(funny(X)&person(X))))&(humble(Y)&person(Y))&(older(X,Y))))& (~![X]:(room(X)=>(((~(quiet(X)&person(X)))=>(happy(X)&kind(X)&person(X))))))& (~![X]:(room(X)=>(((kind(X)&person(X))=>(~humble(X))))))
room(eleanor)&room(winidonald)&(![X]:(room(X)=>(X='eleanor'|X='winidonald')))& calm(eleanor)
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 6055414679149440648741116 % SZS output start Proof for 6055414679149440648741116 44. ~! [X0] : (room(X0) => ((person(X0) & kind(X0)) => ~humble(X0))) & ~! [X0] : (room(X0) => (~(person(X0) & quiet(X0)) => (person(X0) & kind(X0) & happy(X0)))) & ? [X0,X1] : (older(X0,X1) & person(X1) & humble(X1) & person(X0) & funny(X0) & person(X0) & tall(X0) & ~(person(X0) & generous(X0) & brave(X0))) & ! [X0] : ((person(X0) & curious(X0)) <=> ~wise(X0)) & ! [X0] : ((mary != X0 & room(X0)) => richer(mary,X0)) & ! [X0] : ((person(X0) & tall(X0)) => ~brave(X0)) & kind(paul) & humble(mary) & ! [X0] : (anywhere(X0) => (person(X0) & happy(X0))) & (mary_dream => (~(person(paul) & old(paul)) & ~(person(paul) & generous(paul)))) & ! [X0] : (room(X0) => (person(X0) & happy(X0))) & ? [X0] : (person(X0) & humble(X0) & room(X0)) & ? [X0,X1] : (quieter(X0,X1) & person(X1) & patient(X1) & ((person(X0) & creative(X0)) | (person(X0) & quiet(X0)))) & ! [X0] : (~tall(X0) => ~creative(X0)) & ? [X0,X1] : (richer(X0,X1) & ~(person(X1) & quiet(X1)) & person(X1) & tall(X1) & ~calm(X1) & (~(person(X0) & strong(X0)) | (person(X0) & patient(X0)))) & ! [X0] : ((person(X0) & creative(X0)) => (~(person(X0) & old(X0)) | (person(X0) & happy(X0)))) & ! [X0] : (room(X0) => (person(X0) & patient(X0) & person(X0) & old(X0) & ~calm(X0))) & (~~(patient(paul) & generous(mary)) => ? [X0,X1] : (quieter(X0,X1) & person(X1) & patient(X1) & ((person(X0) & creative(X0)) | (person(X0) & quiet(X0))))) & (~(tall(paul) & calm(mary)) => ~~(patient(paul) & generous(mary))) & (? [X0] : (~kind(X0) & room(X0)) <=> ! [X0] : (room(X0) => ~strong(X0))) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 45. calm(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 46. ~! [X0] : (room(X0) => ((person(X0) & kind(X0)) => ~humble(X0))) & ~! [X1] : (room(X1) => (~(person(X1) & quiet(X1)) => (person(X1) & kind(X1) & happy(X1)))) & ? [X2,X3] : (older(X2,X3) & person(X3) & humble(X3) & person(X2) & funny(X2) & person(X2) & tall(X2) & ~(person(X2) & generous(X2) & brave(X2))) & ! [X4] : ((person(X4) & curious(X4)) <=> ~wise(X4)) & ! [X5] : ((mary != X5 & room(X5)) => richer(mary,X5)) & ! [X6] : ((person(X6) & tall(X6)) => ~brave(X6)) & kind(paul) & humble(mary) & ! [X7] : (anywhere(X7) => (person(X7) & happy(X7))) & (mary_dream => (~(person(paul) & old(paul)) & ~(person(paul) & generous(paul)))) & ! [X8] : (room(X8) => (person(X8) & happy(X8))) & ? [X9] : (person(X9) & humble(X9) & room(X9)) & ? [X10,X11] : (quieter(X10,X11) & person(X11) & patient(X11) & ((person(X10) & creative(X10)) | (person(X10) & quiet(X10)))) & ! [X12] : (~tall(X12) => ~creative(X12)) & ? [X13,X14] : (richer(X13,X14) & ~(person(X14) & quiet(X14)) & person(X14) & tall(X14) & ~calm(X14) & (~(person(X13) & strong(X13)) | (person(X13) & patient(X13)))) & ! [X15] : ((person(X15) & creative(X15)) => (~(person(X15) & old(X15)) | (person(X15) & happy(X15)))) & ! [X16] : (room(X16) => (person(X16) & patient(X16) & person(X16) & old(X16) & ~calm(X16))) & (~~(patient(paul) & generous(mary)) => ? [X17,X18] : (quieter(X17,X18) & person(X18) & patient(X18) & ((person(X17) & creative(X17)) | (person(X17) & quiet(X17))))) & (~(tall(paul) & calm(mary)) => ~~(patient(paul) & generous(mary))) & (? [X19] : (~kind(X19) & room(X19)) <=> ! [X20] : (room(X20) => ~strong(X20))) & ! [X21] : (room(X21) => (paul = X21 | mary = X21)) & room(paul) & room(mary) [rectify 44] 47. ~! [X0] : (room(X0) => ((person(X0) & kind(X0)) => ~humble(X0))) & ~! [X1] : (room(X1) => (~(person(X1) & quiet(X1)) => (person(X1) & kind(X1) & happy(X1)))) & ? [X2,X3] : (older(X2,X3) & person(X3) & humble(X3) & person(X2) & funny(X2) & person(X2) & tall(X2) & ~(person(X2) & generous(X2) & brave(X2))) & ! [X4] : ((person(X4) & curious(X4)) <=> ~wise(X4)) & ! [X5] : ((mary != X5 & room(X5)) => richer(mary,X5)) & ! [X6] : ((person(X6) & tall(X6)) => ~brave(X6)) & kind(paul) & humble(mary) & ! [X7] : (anywhere(X7) => (person(X7) & happy(X7))) & (mary_dream => (~(person(paul) & old(paul)) & ~(person(paul) & generous(paul)))) & ! [X8] : (room(X8) => (person(X8) & happy(X8))) & ? [X9] : (person(X9) & humble(X9) & room(X9)) & ? [X10,X11] : (quieter(X10,X11) & person(X11) & patient(X11) & ((person(X10) & creative(X10)) | (person(X10) & quiet(X10)))) & ! [X12] : (~tall(X12) => ~creative(X12)) & ? [X13,X14] : (richer(X13,X14) & ~(person(X14) & quiet(X14)) & person(X14) & tall(X14) & ~calm(X14) & (~(person(X13) & strong(X13)) | (person(X13) & patient(X13)))) & ! [X15] : ((person(X15) & creative(X15)) => (~(person(X15) & old(X15)) | (person(X15) & happy(X15)))) & ! [X16] : (room(X16) => (person(X16) & patient(X16) & person(X16) & old(X16) & ~calm(X16))) & ((patient(paul) & generous(mary)) => ? [X17,X18] : (quieter(X17,X18) & person(X18) & patient(X18) & ((person(X17) & creative(X17)) | (person(X17) & quiet(X17))))) & (~(tall(paul) & calm(mary)) => (patient(paul) & generous(mary))) & (? [X19] : (~kind(X19) & room(X19)) <=> ! [X20] : (room(X20) => ~strong(X20))) & ! [X21] : (room(X21) => (paul = X21 | mary = X21)) & room(paul) & room(mary) [flattening 46] 48. ~! [X0] : (room(X0) => ((person(X0) & kind(X0)) => ~humble(X0))) & ~! [X1] : (room(X1) => (~(person(X1) & quiet(X1)) => (person(X1) & kind(X1) & happy(X1)))) & ? [X2,X3] : (older(X2,X3) & person(X3) & humble(X3) & person(X2) & person(X2) & tall(X2) & ~(person(X2) & generous(X2) & brave(X2))) & ! [X4] : ((person(X4) & curious(X4)) <=> ~wise(X4)) & ! [X5] : ((mary != X5 & room(X5)) => richer(mary,X5)) & ! [X6] : ((person(X6) & tall(X6)) => ~brave(X6)) & kind(paul) & humble(mary) & ! [X7] : (anywhere(X7) => (person(X7) & happy(X7))) & (mary_dream => (~(person(paul) & old(paul)) & ~(person(paul) & generous(paul)))) & ! [X8] : (room(X8) => (person(X8) & happy(X8))) & ? [X9] : (person(X9) & humble(X9) & room(X9)) & ? [X10,X11] : (quieter(X10,X11) & person(X11) & patient(X11) & ((person(X10) & creative(X10)) | (person(X10) & quiet(X10)))) & ! [X12] : (~tall(X12) => ~creative(X12)) & ? [X13,X14] : (richer(X13,X14) & ~(person(X14) & quiet(X14)) & person(X14) & tall(X14) & ~calm(X14) & (~(person(X13) & strong(X13)) | (person(X13) & patient(X13)))) & ! [X15] : ((person(X15) & creative(X15)) => (~(person(X15) & old(X15)) | (person(X15) & happy(X15)))) & ! [X16] : (room(X16) => (person(X16) & patient(X16) & person(X16) & old(X16) & ~calm(X16))) & ((patient(paul) & generous(mary)) => ? [X17,X18] : (quieter(X17,X18) & person(X18) & patient(X18) & ((person(X17) & creative(X17)) | (person(X17) & quiet(X17))))) & (~(tall(paul) & calm(mary)) => (patient(paul) & generous(mary))) & (? [X19] : (~kind(X19) & room(X19)) <=> ! [X20] : (room(X20) => ~strong(X20))) & ! [X21] : (room(X21) => (paul = X21 | mary = X21)) & room(paul) & room(mary) [pure predicate removal 47] 49. ~! [X0] : (room(X0) => ((person(X0) & kind(X0)) => ~humble(X0))) & ~! [X1] : (room(X1) => (~(person(X1) & quiet(X1)) => (person(X1) & kind(X1) & happy(X1)))) & ? [X2,X3] : (older(X2,X3) & person(X3) & humble(X3) & person(X2) & person(X2) & tall(X2)) & ! [X4] : ((person(X4) & curious(X4)) <=> ~wise(X4)) & ! [X5] : ((mary != X5 & room(X5)) => richer(mary,X5)) & kind(paul) & humble(mary) & ! [X7] : (anywhere(X7) => (person(X7) & happy(X7))) & (mary_dream => (~(person(paul) & old(paul)) & ~(person(paul) & generous(paul)))) & ! [X8] : (room(X8) => (person(X8) & happy(X8))) & ? [X9] : (person(X9) & humble(X9) & room(X9)) & ? [X10,X11] : (quieter(X10,X11) & person(X11) & patient(X11) & ((person(X10) & creative(X10)) | (person(X10) & quiet(X10)))) & ! [X12] : (~tall(X12) => ~creative(X12)) & ? [X13,X14] : (richer(X13,X14) & ~(person(X14) & quiet(X14)) & person(X14) & tall(X14) & ~calm(X14) & (~(person(X13) & strong(X13)) | (person(X13) & patient(X13)))) & ! [X15] : ((person(X15) & creative(X15)) => (~(person(X15) & old(X15)) | (person(X15) & happy(X15)))) & ! [X16] : (room(X16) => (person(X16) & patient(X16) & person(X16) & old(X16) & ~calm(X16))) & ((patient(paul) & generous(mary)) => ? [X17,X18] : (quieter(X17,X18) & person(X18) & patient(X18) & ((person(X17) & creative(X17)) | (person(X17) & quiet(X17))))) & (~(tall(paul) & calm(mary)) => (patient(paul) & generous(mary))) & (? [X19] : (~kind(X19) & room(X19)) <=> ! [X20] : (room(X20) => ~strong(X20))) & ! [X21] : (room(X21) => (paul = X21 | mary = X21)) & room(paul) & room(mary) [pure predicate removal 48] 50. ~! [X0] : (room(X0) => ((person(X0) & kind(X0)) => ~humble(X0))) & ~! [X1] : (room(X1) => (~(person(X1) & quiet(X1)) => (person(X1) & kind(X1) & happy(X1)))) & ? [X2,X3] : (older(X2,X3) & person(X3) & humble(X3) & person(X2) & person(X2)) & ! [X4] : ((person(X4) & curious(X4)) <=> ~wise(X4)) & ! [X5] : ((mary != X5 & room(X5)) => richer(mary,X5)) & kind(paul) & humble(mary) & ! [X7] : (anywhere(X7) => (person(X7) & happy(X7))) & (mary_dream => (~(person(paul) & old(paul)) & ~(person(paul) & generous(paul)))) & ! [X8] : (room(X8) => (person(X8) & happy(X8))) & ? [X9] : (person(X9) & humble(X9) & room(X9)) & ? [X10,X11] : (quieter(X10,X11) & person(X11) & patient(X11) & ((person(X10) & creative(X10)) | (person(X10) & quiet(X10)))) & ? [X13,X14] : (richer(X13,X14) & ~(person(X14) & quiet(X14)) & person(X14) & ~calm(X14) & (~(person(X13) & strong(X13)) | (person(X13) & patient(X13)))) & ! [X15] : ((person(X15) & creative(X15)) => (~(person(X15) & old(X15)) | (person(X15) & happy(X15)))) & ! [X16] : (room(X16) => (person(X16) & patient(X16) & person(X16) & old(X16) & ~calm(X16))) & ((patient(paul) & generous(mary)) => ? [X17,X18] : (quieter(X17,X18) & person(X18) & patient(X18) & ((person(X17) & creative(X17)) | (person(X17) & quiet(X17))))) & (~calm(mary) => (patient(paul) & generous(mary))) & (? [X19] : (~kind(X19) & room(X19)) <=> ! [X20] : (room(X20) => ~strong(X20))) & ! [X21] : (room(X21) => (paul = X21 | mary = X21)) & room(paul) & room(mary) [pure predicate removal 49] 51. ~! [X0] : (room(X0) => ((person(X0) & kind(X0)) => ~humble(X0))) & ~! [X1] : (room(X1) => (~(person(X1) & quiet(X1)) => (person(X1) & kind(X1) & happy(X1)))) & ? [X2,X3] : (older(X2,X3) & person(X3) & humble(X3) & person(X2) & person(X2)) & ! [X4] : ((person(X4) & curious(X4)) <=> ~wise(X4)) & ! [X5] : ((mary != X5 & room(X5)) => richer(mary,X5)) & kind(paul) & humble(mary) & ! [X7] : (anywhere(X7) => (person(X7) & happy(X7))) & ! [X8] : (room(X8) => (person(X8) & happy(X8))) & ? [X9] : (person(X9) & humble(X9) & room(X9)) & ? [X10,X11] : (quieter(X10,X11) & person(X11) & patient(X11) & ((person(X10) & creative(X10)) | (person(X10) & quiet(X10)))) & ? [X13,X14] : (richer(X13,X14) & ~(person(X14) & quiet(X14)) & person(X14) & ~calm(X14) & (~(person(X13) & strong(X13)) | (person(X13) & patient(X13)))) & ! [X15] : ((person(X15) & creative(X15)) => (~(person(X15) & old(X15)) | (person(X15) & happy(X15)))) & ! [X16] : (room(X16) => (person(X16) & patient(X16) & person(X16) & old(X16) & ~calm(X16))) & ((patient(paul) & generous(mary)) => ? [X17,X18] : (quieter(X17,X18) & person(X18) & patient(X18) & ((person(X17) & creative(X17)) | (person(X17) & quiet(X17))))) & (~calm(mary) => (patient(paul) & generous(mary))) & (? [X19] : (~kind(X19) & room(X19)) <=> ! [X20] : (room(X20) => ~strong(X20))) & ! [X21] : (room(X21) => (paul = X21 | mary = X21)) & room(paul) & room(mary) [pure predicate removal 50] 52. ~! [X0] : (room(X0) => ~(person(X0) & kind(X0))) & ~! [X1] : (room(X1) => (~(person(X1) & quiet(X1)) => (person(X1) & kind(X1) & happy(X1)))) & ? [X2,X3] : (older(X2,X3) & person(X3) & person(X2) & person(X2)) & ! [X4] : ((person(X4) & curious(X4)) <=> ~wise(X4)) & ! [X5] : ((mary != X5 & room(X5)) => richer(mary,X5)) & kind(paul) & ! [X7] : (anywhere(X7) => (person(X7) & happy(X7))) & ! [X8] : (room(X8) => (person(X8) & happy(X8))) & ? [X9] : (person(X9) & room(X9)) & ? [X10,X11] : (quieter(X10,X11) & person(X11) & patient(X11) & ((person(X10) & creative(X10)) | (person(X10) & quiet(X10)))) & ? [X13,X14] : (richer(X13,X14) & ~(person(X14) & quiet(X14)) & person(X14) & ~calm(X14) & (~(person(X13) & strong(X13)) | (person(X13) & patient(X13)))) & ! [X15] : ((person(X15) & creative(X15)) => (~(person(X15) & old(X15)) | (person(X15) & happy(X15)))) & ! [X16] : (room(X16) => (person(X16) & patient(X16) & person(X16) & old(X16) & ~calm(X16))) & ((patient(paul) & generous(mary)) => ? [X17,X18] : (quieter(X17,X18) & person(X18) & patient(X18) & ((person(X17) & creative(X17)) | (person(X17) & quiet(X17))))) & (~calm(mary) => (patient(paul) & generous(mary))) & (? [X19] : (~kind(X19) & room(X19)) <=> ! [X20] : (room(X20) => ~strong(X20))) & ! [X21] : (room(X21) => (paul = X21 | mary = X21)) & room(paul) & room(mary) [pure predicate removal 51] 124. ? [X0] : ((person(X0) & kind(X0)) & room(X0)) & ? [X1] : (((~person(X1) | ~kind(X1) | ~happy(X1)) & (~person(X1) | ~quiet(X1))) & room(X1)) & ? [X2,X3] : (older(X2,X3) & person(X3) & person(X2) & person(X2)) & ! [X4] : ((person(X4) & curious(X4)) <=> ~wise(X4)) & ! [X5] : (richer(mary,X5) | (mary = X5 | ~room(X5))) & kind(paul) & ! [X7] : ((person(X7) & happy(X7)) | ~anywhere(X7)) & ! [X8] : ((person(X8) & happy(X8)) | ~room(X8)) & ? [X9] : (person(X9) & room(X9)) & ? [X10,X11] : (quieter(X10,X11) & person(X11) & patient(X11) & ((person(X10) & creative(X10)) | (person(X10) & quiet(X10)))) & ? [X13,X14] : (richer(X13,X14) & (~person(X14) | ~quiet(X14)) & person(X14) & ~calm(X14) & ((~person(X13) | ~strong(X13)) | (person(X13) & patient(X13)))) & ! [X15] : (((~person(X15) | ~old(X15)) | (person(X15) & happy(X15))) | (~person(X15) | ~creative(X15))) & ! [X16] : ((person(X16) & patient(X16) & person(X16) & old(X16) & ~calm(X16)) | ~room(X16)) & (? [X17,X18] : (quieter(X17,X18) & person(X18) & patient(X18) & ((person(X17) & creative(X17)) | (person(X17) & quiet(X17)))) | (~patient(paul) | ~generous(mary))) & ((patient(paul) & generous(mary)) | calm(mary)) & (? [X19] : (~kind(X19) & room(X19)) <=> ! [X20] : (~strong(X20) | ~room(X20))) & ! [X21] : ((paul = X21 | mary = X21) | ~room(X21)) & room(paul) & room(mary) [ennf transformation 52] 125. ? [X0] : (person(X0) & kind(X0) & room(X0)) & ? [X1] : ((~person(X1) | ~kind(X1) | ~happy(X1)) & (~person(X1) | ~quiet(X1)) & room(X1)) & ? [X2,X3] : (older(X2,X3) & person(X3) & person(X2) & person(X2)) & ! [X4] : ((person(X4) & curious(X4)) <=> ~wise(X4)) & ! [X5] : (richer(mary,X5) | mary = X5 | ~room(X5)) & kind(paul) & ! [X7] : ((person(X7) & happy(X7)) | ~anywhere(X7)) & ! [X8] : ((person(X8) & happy(X8)) | ~room(X8)) & ? [X9] : (person(X9) & room(X9)) & ? [X10,X11] : (quieter(X10,X11) & person(X11) & patient(X11) & ((person(X10) & creative(X10)) | (person(X10) & quiet(X10)))) & ? [X13,X14] : (richer(X13,X14) & (~person(X14) | ~quiet(X14)) & person(X14) & ~calm(X14) & (~person(X13) | ~strong(X13) | (person(X13) & patient(X13)))) & ! [X15] : (~person(X15) | ~old(X15) | (person(X15) & happy(X15)) | ~person(X15) | ~creative(X15)) & ! [X16] : ((person(X16) & patient(X16) & person(X16) & old(X16) & ~calm(X16)) | ~room(X16)) & (? [X17,X18] : (quieter(X17,X18) & person(X18) & patient(X18) & ((person(X17) & creative(X17)) | (person(X17) & quiet(X17)))) | ~patient(paul) | ~generous(mary)) & ((patient(paul) & generous(mary)) | calm(mary)) & (? [X19] : (~kind(X19) & room(X19)) <=> ! [X20] : (~strong(X20) | ~room(X20))) & ! [X21] : (paul = X21 | mary = X21 | ~room(X21)) & room(paul) & room(mary) [flattening 124] 126. calm(mary) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 45] 127. calm(mary) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 126] 129. ? [X0] : (person(X0) & kind(X0) & room(X0)) & ? [X1] : ((~person(X1) | ~kind(X1) | ~happy(X1)) & (~person(X1) | ~quiet(X1)) & room(X1)) & ? [X2,X3] : (older(X2,X3) & person(X3) & person(X2) & person(X2)) & ! [X4] : (((person(X4) & curious(X4)) | wise(X4)) & (~wise(X4) | (~person(X4) | ~curious(X4)))) & ! [X5] : (richer(mary,X5) | mary = X5 | ~room(X5)) & kind(paul) & ! [X7] : ((person(X7) & happy(X7)) | ~anywhere(X7)) & ! [X8] : ((person(X8) & happy(X8)) | ~room(X8)) & ? [X9] : (person(X9) & room(X9)) & ? [X10,X11] : (quieter(X10,X11) & person(X11) & patient(X11) & ((person(X10) & creative(X10)) | (person(X10) & quiet(X10)))) & ? [X13,X14] : (richer(X13,X14) & (~person(X14) | ~quiet(X14)) & person(X14) & ~calm(X14) & (~person(X13) | ~strong(X13) | (person(X13) & patient(X13)))) & ! [X15] : (~person(X15) | ~old(X15) | (person(X15) & happy(X15)) | ~person(X15) | ~creative(X15)) & ! [X16] : ((person(X16) & patient(X16) & person(X16) & old(X16) & ~calm(X16)) | ~room(X16)) & (? [X17,X18] : (quieter(X17,X18) & person(X18) & patient(X18) & ((person(X17) & creative(X17)) | (person(X17) & quiet(X17)))) | ~patient(paul) | ~generous(mary)) & ((patient(paul) & generous(mary)) | calm(mary)) & ((? [X19] : (~kind(X19) & room(X19)) | ? [X20] : (strong(X20) & room(X20))) & (! [X20] : (~strong(X20) | ~room(X20)) | ! [X19] : (kind(X19) | ~room(X19)))) & ! [X21] : (paul = X21 | mary = X21 | ~room(X21)) & room(paul) & room(mary) [nnf transformation 125] 130. ? [X0] : (person(X0) & kind(X0) & room(X0)) & ? [X1] : ((~person(X1) | ~kind(X1) | ~happy(X1)) & (~person(X1) | ~quiet(X1)) & room(X1)) & ? [X2,X3] : (older(X2,X3) & person(X3) & person(X2) & person(X2)) & ! [X4] : (((person(X4) & curious(X4)) | wise(X4)) & (~wise(X4) | ~person(X4) | ~curious(X4))) & ! [X5] : (richer(mary,X5) | mary = X5 | ~room(X5)) & kind(paul) & ! [X7] : ((person(X7) & happy(X7)) | ~anywhere(X7)) & ! [X8] : ((person(X8) & happy(X8)) | ~room(X8)) & ? [X9] : (person(X9) & room(X9)) & ? [X10,X11] : (quieter(X10,X11) & person(X11) & patient(X11) & ((person(X10) & creative(X10)) | (person(X10) & quiet(X10)))) & ? [X13,X14] : (richer(X13,X14) & (~person(X14) | ~quiet(X14)) & person(X14) & ~calm(X14) & (~person(X13) | ~strong(X13) | (person(X13) & patient(X13)))) & ! [X15] : (~person(X15) | ~old(X15) | (person(X15) & happy(X15)) | ~person(X15) | ~creative(X15)) & ! [X16] : ((person(X16) & patient(X16) & person(X16) & old(X16) & ~calm(X16)) | ~room(X16)) & (? [X17,X18] : (quieter(X17,X18) & person(X18) & patient(X18) & ((person(X17) & creative(X17)) | (person(X17) & quiet(X17)))) | ~patient(paul) | ~generous(mary)) & ((patient(paul) & generous(mary)) | calm(mary)) & (? [X19] : (~kind(X19) & room(X19)) | ? [X20] : (strong(X20) & room(X20))) & (! [X20] : (~strong(X20) | ~room(X20)) | ! [X19] : (kind(X19) | ~room(X19))) & ! [X21] : (paul = X21 | mary = X21 | ~room(X21)) & room(paul) & room(mary) [flattening 129] 131. ? [X0] : (person(X0) & kind(X0) & room(X0)) & ? [X1] : ((~person(X1) | ~kind(X1) | ~happy(X1)) & (~person(X1) | ~quiet(X1)) & room(X1)) & ? [X2,X3] : (older(X2,X3) & person(X3) & person(X2) & person(X2)) & ! [X4] : (((person(X4) & curious(X4)) | wise(X4)) & (~wise(X4) | ~person(X4) | ~curious(X4))) & ! [X5] : (richer(mary,X5) | mary = X5 | ~room(X5)) & kind(paul) & ! [X6] : ((person(X6) & happy(X6)) | ~anywhere(X6)) & ! [X7] : ((person(X7) & happy(X7)) | ~room(X7)) & ? [X8] : (person(X8) & room(X8)) & ? [X9,X10] : (quieter(X9,X10) & person(X10) & patient(X10) & ((person(X9) & creative(X9)) | (person(X9) & quiet(X9)))) & ? [X11,X12] : (richer(X11,X12) & (~person(X12) | ~quiet(X12)) & person(X12) & ~calm(X12) & (~person(X11) | ~strong(X11) | (person(X11) & patient(X11)))) & ! [X13] : (~person(X13) | ~old(X13) | (person(X13) & happy(X13)) | ~person(X13) | ~creative(X13)) & ! [X14] : ((person(X14) & patient(X14) & person(X14) & old(X14) & ~calm(X14)) | ~room(X14)) & (? [X15,X16] : (quieter(X15,X16) & person(X16) & patient(X16) & ((person(X15) & creative(X15)) | (person(X15) & quiet(X15)))) | ~patient(paul) | ~generous(mary)) & ((patient(paul) & generous(mary)) | calm(mary)) & (? [X17] : (~kind(X17) & room(X17)) | ? [X18] : (strong(X18) & room(X18))) & (! [X19] : (~strong(X19) | ~room(X19)) | ! [X20] : (kind(X20) | ~room(X20))) & ! [X21] : (paul = X21 | mary = X21 | ~room(X21)) & room(paul) & room(mary) [rectify 130] 132. ? [X0] : (person(X0) & kind(X0) & room(X0)) => (person(sK0) & kind(sK0) & room(sK0)) [choice axiom] 133. ? [X1] : ((~person(X1) | ~kind(X1) | ~happy(X1)) & (~person(X1) | ~quiet(X1)) & room(X1)) => ((~person(sK1) | ~kind(sK1) | ~happy(sK1)) & (~person(sK1) | ~quiet(sK1)) & room(sK1)) [choice axiom] 134. ? [X2,X3] : (older(X2,X3) & person(X3) & person(X2) & person(X2)) => (older(sK2,sK3) & person(sK3) & person(sK2) & person(sK2)) [choice axiom] 135. ? [X8] : (person(X8) & room(X8)) => (person(sK4) & room(sK4)) [choice axiom] 136. ? [X9,X10] : (quieter(X9,X10) & person(X10) & patient(X10) & ((person(X9) & creative(X9)) | (person(X9) & quiet(X9)))) => (quieter(sK5,sK6) & person(sK6) & patient(sK6) & ((person(sK5) & creative(sK5)) | (person(sK5) & quiet(sK5)))) [choice axiom] 137. ? [X11,X12] : (richer(X11,X12) & (~person(X12) | ~quiet(X12)) & person(X12) & ~calm(X12) & (~person(X11) | ~strong(X11) | (person(X11) & patient(X11)))) => (richer(sK7,sK8) & (~person(sK8) | ~quiet(sK8)) & person(sK8) & ~calm(sK8) & (~person(sK7) | ~strong(sK7) | (person(sK7) & patient(sK7)))) [choice axiom] 138. ? [X15,X16] : (quieter(X15,X16) & person(X16) & patient(X16) & ((person(X15) & creative(X15)) | (person(X15) & quiet(X15)))) => (quieter(sK9,sK10) & person(sK10) & patient(sK10) & ((person(sK9) & creative(sK9)) | (person(sK9) & quiet(sK9)))) [choice axiom] 139. ? [X17] : (~kind(X17) & room(X17)) => (~kind(sK11) & room(sK11)) [choice axiom] 140. ? [X18] : (strong(X18) & room(X18)) => (strong(sK12) & room(sK12)) [choice axiom] 141. (person(sK0) & kind(sK0) & room(sK0)) & ((~person(sK1) | ~kind(sK1) | ~happy(sK1)) & (~person(sK1) | ~quiet(sK1)) & room(sK1)) & (older(sK2,sK3) & person(sK3) & person(sK2) & person(sK2)) & ! [X4] : (((person(X4) & curious(X4)) | wise(X4)) & (~wise(X4) | ~person(X4) | ~curious(X4))) & ! [X5] : (richer(mary,X5) | mary = X5 | ~room(X5)) & kind(paul) & ! [X6] : ((person(X6) & happy(X6)) | ~anywhere(X6)) & ! [X7] : ((person(X7) & happy(X7)) | ~room(X7)) & (person(sK4) & room(sK4)) & (quieter(sK5,sK6) & person(sK6) & patient(sK6) & ((person(sK5) & creative(sK5)) | (person(sK5) & quiet(sK5)))) & (richer(sK7,sK8) & (~person(sK8) | ~quiet(sK8)) & person(sK8) & ~calm(sK8) & (~person(sK7) | ~strong(sK7) | (person(sK7) & patient(sK7)))) & ! [X13] : (~person(X13) | ~old(X13) | (person(X13) & happy(X13)) | ~person(X13) | ~creative(X13)) & ! [X14] : ((person(X14) & patient(X14) & person(X14) & old(X14) & ~calm(X14)) | ~room(X14)) & ((quieter(sK9,sK10) & person(sK10) & patient(sK10) & ((person(sK9) & creative(sK9)) | (person(sK9) & quiet(sK9)))) | ~patient(paul) | ~generous(mary)) & ((patient(paul) & generous(mary)) | calm(mary)) & ((~kind(sK11) & room(sK11)) | (strong(sK12) & room(sK12))) & (! [X19] : (~strong(X19) | ~room(X19)) | ! [X20] : (kind(X20) | ~room(X20))) & ! [X21] : (paul = X21 | mary = X21 | ~room(X21)) & room(paul) & room(mary) [skolemisation 131,140,139,138,137,136,135,134,133,132] 223. room(mary) [cnf transformation 141] 240. ~calm(X14) | ~room(X14) [cnf transformation 141] 284. calm(mary) [cnf transformation 127] 357. 15 <=> calm(mary) [avatar definition] 359. calm(mary) <- (15) [avatar component clause 357] 389. 15 [avatar split clause 284,357] 394. ~room(mary) <- (15) [resolution 240,359] 395. $false <- (15) [subsumption resolution 394,223] 396. ~15 [avatar contradiction clause 395] 397. $false [avatar sat refutation 389,396] % SZS output end Proof for 6055414679149440648741116 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.69753
Jane is the only person in the room. If “Jane works on fridays” then “if someone participates in long-distance cycling events across the country then he/she practices and performs acrobatic dance routines”. If someone collects rare and antique scientific instruments then he/she participates in long-distance cycling events across the country and vice versa. Jane can play the harmonica and is an avid hiker. Jane is an avid hiker, does not write a travel blog and volunteers for local environmental conservation projects. Jane is a client of LVMH, volunteers for local environmental conservation projects and can play the flute. Everyone in the room who can play the flute or designs and sews custom cosplay costumes for conventions or both plays eSports competitively.
Jane plays eSports competitively.
entailment
room(jane)&(![X]:(room(X)=>(X='jane')))& ((works_on_fridays(jane))=>((![X]:((participates_in_long-distance_cycling_events_across_the_country(X))=>(practices_and_performs_acrobatic_dance_routines(X))))))& ((![X]:((collects_rare_and_antique_scientific_instruments(X))<=>(participates_in_long-distance_cycling_events_across_the_country(X)))))& (((can_play_the_harmonica(jane))&(is_an_avid_hiker(jane))))& (((is_an_avid_hiker(jane))&(does_not_write_a_travel_blog(jane))&(volunteers_for_local_environmental_conservation_projects(jane))))& (~![X]:(room(X)=>(((is_an_avid_hiker(X))=>(cannot_play_the_flute(X))))))& (![X]:(anywhere(X)=>(((cannot_play_the_flute(X))<=>(writes_a_travel_blog(X))))))& (~(((?[X]:(room(X)&enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))))))& (practices_and_performs_acrobatic_dance_routines(jane))& (![X]:(room(X)=>(((plays_eSports_competitively(X))=>(((can_play_the_harmonica(X))|(does_not_collect_rare_and_antique_scientific_instruments(X))|(participates_in_long-distance_cycling_events_across_the_country(X))))))))& (![X]:(room(X)=>(((participates_in_long-distance_cycling_events_across_the_country(X))=>(cannot_play_the_flute(X))))))& (can_play_the_harmonica(jane))& (((is_a_client_of_LVMH(jane))&(volunteers_for_local_environmental_conservation_projects(jane))&(can_play_the_flute(jane))))& (![X]:(room(X)=>(((((can_play_the_flute(X))|(designs_and_sews_custom_cosplay_costumes_for_conventions(X))))=>(plays_eSports_competitively(X))))))& (((can_play_the_harmonica(jane))&(is_a_client_of_Meta(jane))))& ((can_play_the_harmonica(jane))&(practices_and_performs_acrobatic_dance_routines(jane)))& (does_not_work_on_fridays(jane))& (![X]:(room(X)=>(((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))=>(((does_not_design_and_sews_custom_cosplay_costumes_for_conventions(X))|(works_on_fridays(X))|(does_not_participate_in_long-distance_cycling_events_across_the_country(X))))))))& (![X]:(~room(X)=>(((can_play_the_flute(X))=>(does_not_enjoy_writing_detailed_reviews_of_new_and_classic_board_games(X))))))& (is_a_client_of_LVMH(jane))& (does_not_enjoy_writing_detailed_reviews_of_new_and_classic_board_games(jane))& (![X]:(room(X)=>(((((is_a_client_of_LVMH(X))<~>(collects_comic_books(X))))=>(designs_and_sews_custom_cosplay_costumes_for_conventions(X))))))& (~(collects_comic_books(jane)))
room(jane)&(![X]:(room(X)=>(X='jane')))& plays_eSports_competitively(jane)
[ "p0", "p12", "p13", "hypothesis" ]
% SZS status Unsatisfiable for 4816584885551453610585522 % SZS output start Proof for 4816584885551453610585522 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 56. predp(mary) & predd(mary) & predm(mary) [input p12] 57. ! [X0] : (room(X0) => ((predg(X0) | predp(X0)) => predk(X0))) [input p13] 67. ~(predk(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 77. predp(mary) & predm(mary) [pure predicate removal 56] 161. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 164. ! [X0] : ((predk(X0) | (~predg(X0) & ~predp(X0))) | ~room(X0)) [ennf transformation 57] 165. ! [X0] : (predk(X0) | (~predg(X0) & ~predp(X0)) | ~room(X0)) [flattening 164] 168. ~predk(mary) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 67] 174. ? [X0] : (mary != X0 & room(X0)) => (mary != sK1 & room(sK1)) [choice axiom] 175. ~predk(mary) | (mary != sK1 & room(sK1)) | ~room(mary) [skolemisation 168,174] 257. room(mary) [cnf transformation 161] 258. ~room(X0) | mary = X0 [cnf transformation 161] 265. predp(mary) [cnf transformation 77] 266. ~predp(X0) | predk(X0) | ~room(X0) [cnf transformation 165] 272. ~predk(mary) | room(sK1) | ~room(mary) [cnf transformation 175] 273. ~predk(mary) | mary != sK1 | ~room(mary) [cnf transformation 175] 276. ~predk(mary) | mary != sK1 [subsumption resolution 273,257] 278. 1 <=> mary = sK1 [avatar definition] 280. mary != sK1 <- (~1) [avatar component clause 278] 282. 2 <=> predk(mary) [avatar definition] 285. ~1 | ~2 [avatar split clause 276,282,278] 286. ~predk(mary) | room(sK1) [subsumption resolution 272,257] 288. 3 <=> room(sK1) [avatar definition] 290. room(sK1) <- (3) [avatar component clause 288] 291. 3 | ~2 [avatar split clause 286,282,288] 301. predk(mary) | ~room(mary) [resolution 266,265] 305. predk(mary) [subsumption resolution 301,257] 306. 2 [avatar split clause 305,282] 307. mary = sK1 <- (3) [resolution 290,258] 308. $false <- (~1, 3) [subsumption resolution 307,280] 309. 1 | ~3 [avatar contradiction clause 308] 310. $false [avatar sat refutation 285,291,306,309] % SZS output end Proof for 4816584885551453610585522 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.028042
David is the only person in the room. David designs and sews custom cosplay costumes for conventions. Someone in the room creates augmented reality experiences for mobile applications. If someone enjoys bird watching then he/she enjoys stargazing. David is dedicated to sustainable living and zero-waste practices. If someone uses an ios phone then he/she has a specialized collection of handmade artisan pottery. David has a specialized collection of handmade artisan pottery. If someone creates augmented reality experiences for mobile applications then he/she collects action figures. David owns a smart tv. David is an avid hiker. It is not the case that “someone in the room collects vintage stamps”. David uses an ios phone. David can play the flute. David makes homemade pastries. If someone is an avid hiker then he/she creates augmented reality experiences for mobile applications. David enjoys stargazing. David creates augmented reality experiences for mobile applications. Only one person in the room makes homemade pastries.
David enjoys bird watching.
neutral
room(david)&(![X]:(room(X)=>(X='david')))& (designs_and_sews_custom_cosplay_costumes_for_conventions(david))& (?[X]:(room(X)&(creates_augmented_reality_experiences_for_mobile_applications(X))))& ((![X]:((enjoys_bird_watching(X))=>(enjoys_stargazing(X)))))& (is_dedicated_to_sustainable_living_and_zero-waste_practices(david))& ((![X]:((uses_an_ios_phone(X))=>(has_a_specialized_collection_of_handmade_artisan_pottery(X)))))& (has_a_specialized_collection_of_handmade_artisan_pottery(david))& ((![X]:((creates_augmented_reality_experiences_for_mobile_applications(X))=>(collects_action_figures(X)))))& (owns_a_smart_tv(david))& (is_an_avid_hiker(david))& (~(?[X]:(room(X)&(collects_vintage_stamps(X)))))& (uses_an_ios_phone(david))& (can_play_the_flute(david))& (makes_homemade_pastries(david))& ((![X]:((is_an_avid_hiker(X))=>(creates_augmented_reality_experiences_for_mobile_applications(X)))))& (enjoys_stargazing(david))& (creates_augmented_reality_experiences_for_mobile_applications(david))& (((?[X]:(room(X)&makes_homemade_pastries(X)))&(![X,Y]:((room(X)&room(Y)&(makes_homemade_pastries(X))&(makes_homemade_pastries(Y)))=>(X=Y)))))
room(david)&(![X]:(room(X)=>(X='david')))& enjoys_bird_watching(david)
[]
null
0.60472
Maxine, Eric, Sylvia are the only persons in the room. Either "everyone in the room does not have a piercing or does not regularly goes on multi-day backpacking trips in national parks" or "everyone in the room does not collect limited-edition art prints from contemporary artists or is a dedicated advocate for digital privacy and encryption" but not both.
Everyone in the room does not own a microscope or owns a microscope.
entailment
room(maxine)&room(eric)&room(sylvia)&(![X]:(room(X)=>(X='maxine'|X='eric'|X='sylvia')))& ((![X]:(room(X)=>(((does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))|(does_not_have_a_piercing(X))))))<~>(![X]:(room(X)=>(((is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))|(does_not_collect_limited-edition_art_prints_from_contemporary_artists(X)))))))& ((![X]:(room(X)=>(((regularly_contributes_to_tech_forums_and_online_communities(X))|(does_not_read_mystery_novels(X))))))<~>(![X]:(room(X)=>(((does_not_regularly_contributes_to_tech_forums_and_online_communities(X))|(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X)))))))& ((![X]:(room(X)=>(((collects_historical_artifacts_related_to_ancient_civilizations(X))|(does_not_enjoy_spelunking(X))))))<~>(((is_dedicated_to_sustainable_living_and_zero-waste_practices(eric))&(has_a_piercing(eric))&(is_a_scotch_connoisseur(eric)))))& (~(((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(maxine))&(has_completed_a_triathlon(maxine))&(does_not_regularly_contributes_to_tech_forums_and_online_communities(maxine))))=>(((works_on_fridays(maxine))<~>(does_enjoy_mountain_biking(maxine)))))& ((![X]:(room(X)=>(((does_not_have_completed_a_triathlon(X))|(collects_historical_artifacts_related_to_ancient_civilizations(X))))))=>((does_not_have_completed_a_triathlon(eric))&(regularly_contributes_to_tech_forums_and_online_communities(eric))))& ((![X]:(room(X)=>(((does_not_read_mystery_novels(X))|(works_on_fridays(X))))))=>(((owns_a_microscope(maxine))&(is_a_client_of_Meta(maxine))&(reads_mystery_novels(maxine)))))& (~(![X]:(room(X)=>(((regularly_contributes_to_tech_forums_and_online_communities(X))|(does_not_collect_historical_artifacts_related_to_ancient_civilizations(X))))))=>(((?[X]:(room(X)&does_enjoy_mountain_biking(X))))))& ((![X]:((builds_model_airplanes(X))<=>(practices_zumba(X)))))& ((?[X,Y]:(room(X)&room(Y)&(((collects_limited-edition_art_prints_from_contemporary_artists(X))<~>(enjoys_spelunking(X)))&((collects_limited-edition_art_prints_from_contemporary_artists(Y))<~>(enjoys_spelunking(Y))))&(X!=Y))))& ((enjoys_making_ceramics(maxine))&(collects_limited-edition_art_prints_from_contemporary_artists(maxine)))& (![X]:(room(X)=>(((does_not_build_model_airplanes(X))|(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))))& ((![X]:((practices_pilates(X))=>(collects_vintage_vinyl_records(X)))))& (![X]:(room(X)=>(((does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))|(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))))))& (![X]:(room(X)=>(((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))<=>(composes_and_performs_experimental_electronic_music(X))))))& ((![X]:((participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))=>(does_enjoy_mountain_biking(X)))))& (![X]:(room(X)=>(((composes_and_performs_experimental_electronic_music(X))|(does_not_have_a_piercing(X))))))& (![X]:(anywhere(X)=>(((reads_mystery_novels(X))|(does_not_build_model_airplanes(X))))))& ((![X]:((~((works_on_fridays(X))|(owns_a_microscope(X))))=>(~((collects_historical_artifacts_related_to_ancient_civilizations(X))|(owns_a_microscope(X)))))))& ((![X]:((collects_vintage_vinyl_records(X))=>(has_completed_a_triathlon(X)))))& (![X]:(room(X)=>(((~((practices_pilates(X))|(composes_and_performs_experimental_electronic_music(X))))=>(((regularly_contributes_to_tech_forums_and_online_communities(X))&(collects_limited-edition_art_prints_from_contemporary_artists(X))))))))
room(maxine)&room(eric)&room(sylvia)&(![X]:(room(X)=>(X='maxine'|X='eric'|X='sylvia')))& ![X]:(room(X)=>(((owns_a_microscope(X))|(does_not_own_a_microscope(X)))))
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 7754150606352958839393755 % SZS output start Proof for 7754150606352958839393755 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 65. ~(! [X0] : (room(X0) => (~preda(X0) | preda(X0))) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 69. ~(! [X0] : (room(X0) => (~preda(X0) | preda(X0))) & ! [X1] : (room(X1) => (fred = X1 | paul = X1 | mary = X1)) & room(fred) & room(paul) & room(mary)) [rectify 65] 149. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 150. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 149] 175. ? [X0] : ((preda(X0) & ~preda(X0)) & room(X0)) | ? [X1] : ((fred != X1 & paul != X1 & mary != X1) & room(X1)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 69] 176. ? [X0] : (preda(X0) & ~preda(X0) & room(X0)) | ? [X1] : (fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 175] 179. ? [X1] : (fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~sP1 [predicate definition introduction] 180. ? [X0] : (preda(X0) & ~preda(X0) & room(X0)) | sP1 | ~room(fred) | ~room(paul) | ~room(mary) [definition folding 176,179] 211. ? [X1] : (fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~sP1 [nnf transformation 179] 212. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~sP1 [rectify 211] 213. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK12 & paul != sK12 & mary != sK12 & room(sK12)) [choice axiom] 214. (fred != sK12 & paul != sK12 & mary != sK12 & room(sK12)) | ~sP1 [skolemisation 212,213] 215. ? [X0] : (preda(X0) & ~preda(X0) & room(X0)) => (preda(sK13) & ~preda(sK13) & room(sK13)) [choice axiom] 216. (preda(sK13) & ~preda(sK13) & room(sK13)) | sP1 | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 180,215] 297. room(mary) [cnf transformation 150] 298. room(paul) [cnf transformation 150] 299. room(fred) [cnf transformation 150] 300. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 150] 367. room(sK12) | ~sP1 [cnf transformation 214] 368. mary != sK12 | ~sP1 [cnf transformation 214] 369. paul != sK12 | ~sP1 [cnf transformation 214] 370. fred != sK12 | ~sP1 [cnf transformation 214] 372. ~preda(sK13) | sP1 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 216] 373. preda(sK13) | sP1 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 216] 605. 47 <=> sP1 [avatar definition] 609. 48 <=> fred = sK12 [avatar definition] 611. fred != sK12 <- (~48) [avatar component clause 609] 612. ~47 | ~48 [avatar split clause 370,609,605] 614. 49 <=> paul = sK12 [avatar definition] 616. paul != sK12 <- (~49) [avatar component clause 614] 617. ~47 | ~49 [avatar split clause 369,614,605] 619. 50 <=> mary = sK12 [avatar definition] 621. mary != sK12 <- (~50) [avatar component clause 619] 622. ~47 | ~50 [avatar split clause 368,619,605] 624. 51 <=> room(sK12) [avatar definition] 626. room(sK12) <- (51) [avatar component clause 624] 627. ~47 | 51 [avatar split clause 367,624,605] 628. preda(sK13) | sP1 | ~room(paul) | ~room(mary) [subsumption resolution 373,299] 629. preda(sK13) | sP1 | ~room(mary) [subsumption resolution 628,298] 630. preda(sK13) | sP1 [subsumption resolution 629,297] 632. 52 <=> preda(sK13) [avatar definition] 635. 47 | 52 [avatar split clause 630,632,605] 636. ~preda(sK13) | sP1 | ~room(paul) | ~room(mary) [subsumption resolution 372,299] 637. ~preda(sK13) | sP1 | ~room(mary) [subsumption resolution 636,298] 638. ~preda(sK13) | sP1 [subsumption resolution 637,297] 639. 47 | ~52 [avatar split clause 638,632,605] 867. paul = sK12 | mary = sK12 | fred = sK12 <- (51) [resolution 300,626] 946. mary = sK12 | fred = sK12 <- (~49, 51) [subsumption resolution 867,616] 947. fred = sK12 <- (~49, ~50, 51) [subsumption resolution 946,621] 948. $false <- (~48, ~49, ~50, 51) [subsumption resolution 947,611] 949. 48 | 49 | 50 | ~51 [avatar contradiction clause 948] 950. $false [avatar sat refutation 612,617,622,627,635,639,949] % SZS output end Proof for 7754150606352958839393755 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5500 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.572694
Ronnie, Marcus, Glenn are the only persons in the room. If “someone in the room does not enjoy watercolor painting” then “Marcus who enjoys kayaking and exploring remote waterways is a professional photographer specializing in portrait photography”. Either “Marcus is a certified scuba diver with advanced underwater photography skills” or “Ronnie enjoys watercolor painting or is a certified scuba diver with advanced underwater photography skills or both” but not both. If someone is a cybersecurity expert then he/she knows morse code and vice versa. Marcus knows morse code. Ronnie enjoys watercolor painting or is a certified scuba diver with advanced underwater photography skills or both. If someone does not enjoy watercolor painting then he/she is a cybersecurity expert and vice versa. Marcus does not own an extensive assortment of vintage comic book memorabilia. Ronnie is a professional photographer specializing in portrait photography. It is not the case that “at least one person anywhere enjoys origami”.
Marcus enjoys kayaking and exploring remote waterways.
entailment
room(ronnie)&room(marcus)&room(glenn)&(![X]:(room(X)=>(X='ronnie'|X='marcus'|X='glenn')))& ((?[X]:(room(X)&(does_not_enjoy_watercolor_painting(X))))=>((enjoys_kayaking_and_exploring_remote_waterways(marcus))&(is_a_professional_photographer_specializing_in_portrait_photography(marcus))))& ((is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(marcus))<~>(((enjoys_watercolor_painting(ronnie))|(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(ronnie)))))& ((![X]:((is_a_cybersecurity_expert(X))<=>(knows_morse_code(X)))))& (knows_morse_code(marcus))& (((enjoys_watercolor_painting(ronnie))|(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(ronnie))))& ((![X]:((does_not_enjoy_watercolor_painting(X))<=>(is_a_cybersecurity_expert(X)))))& (does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(marcus))& (is_a_professional_photographer_specializing_in_portrait_photography(ronnie))& (~(((?[X]:(anywhere(X)&enjoys_origami(X))))))
room(ronnie)&room(marcus)&room(glenn)&(![X]:(room(X)=>(X='ronnie'|X='marcus'|X='glenn')))& enjoys_kayaking_and_exploring_remote_waterways(marcus)
[ "p0", "p1", "p3", "p4", "p6", "hypothesis" ]
% SZS status Unsatisfiable for 612670286776661666511585 % SZS output start Proof for 612670286776661666511585 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 45. ? [X0] : (~predk(X0) & room(X0)) => (predf(paul) & predh(paul)) [input p1] 47. ! [X0] : (predd(X0) <=> predb(X0)) [input p3] 48. predb(paul) [input p4] 50. ! [X0] : (~predk(X0) <=> predd(X0)) [input p6] 54. ~(predh(paul) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 58. ? [X0] : (~predk(X0) & room(X0)) => predh(paul) [pure predicate removal 45] 131. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 132. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 131] 133. predh(paul) | ! [X0] : (predk(X0) | ~room(X0)) [ennf transformation 58] 134. ~predh(paul) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 54] 135. ~predh(paul) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 134] 139. ! [X0] : ((predd(X0) | ~predb(X0)) & (predb(X0) | ~predd(X0))) [nnf transformation 47] 140. ! [X0] : ((~predk(X0) | ~predd(X0)) & (predd(X0) | predk(X0))) [nnf transformation 50] 141. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK0 & paul != sK0 & mary != sK0 & room(sK0)) [choice axiom] 142. ~predh(paul) | (fred != sK0 & paul != sK0 & mary != sK0 & room(sK0)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 135,141] 223. room(mary) [cnf transformation 132] 224. room(paul) [cnf transformation 132] 225. room(fred) [cnf transformation 132] 226. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 132] 227. predh(paul) | predk(X0) | ~room(X0) [cnf transformation 133] 232. ~predb(X0) | predd(X0) [cnf transformation 139] 233. predb(paul) [cnf transformation 48] 236. ~predd(X0) | ~predk(X0) [cnf transformation 140] 237. ~predh(paul) | room(sK0) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 142] 238. ~predh(paul) | mary != sK0 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 142] 239. ~predh(paul) | paul != sK0 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 142] 240. ~predh(paul) | fred != sK0 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 142] 242. 1 <=> ! [X0] : (predk(X0) | ~room(X0)) [avatar definition] 243. ~room(X0) | predk(X0) <- (1) [avatar component clause 242] 245. 2 <=> predh(paul) [avatar definition] 248. 1 | 2 [avatar split clause 227,245,242] 265. ~predh(paul) | fred != sK0 | ~room(paul) | ~room(mary) [subsumption resolution 240,225] 266. ~predh(paul) | fred != sK0 | ~room(mary) [subsumption resolution 265,224] 267. ~predh(paul) | fred != sK0 [subsumption resolution 266,223] 269. 6 <=> fred = sK0 [avatar definition] 272. ~6 | ~2 [avatar split clause 267,245,269] 273. ~predh(paul) | paul != sK0 | ~room(paul) | ~room(mary) [subsumption resolution 239,225] 274. ~predh(paul) | paul != sK0 | ~room(mary) [subsumption resolution 273,224] 275. ~predh(paul) | paul != sK0 [subsumption resolution 274,223] 277. 7 <=> paul = sK0 [avatar definition] 279. paul != sK0 <- (~7) [avatar component clause 277] 280. ~7 | ~2 [avatar split clause 275,245,277] 281. ~predh(paul) | mary != sK0 | ~room(paul) | ~room(mary) [subsumption resolution 238,225] 282. ~predh(paul) | mary != sK0 | ~room(mary) [subsumption resolution 281,224] 283. ~predh(paul) | mary != sK0 [subsumption resolution 282,223] 285. 8 <=> mary = sK0 [avatar definition] 287. mary != sK0 <- (~8) [avatar component clause 285] 288. ~8 | ~2 [avatar split clause 283,245,285] 289. ~predh(paul) | room(sK0) | ~room(paul) | ~room(mary) [subsumption resolution 237,225] 290. ~predh(paul) | room(sK0) | ~room(mary) [subsumption resolution 289,224] 291. ~predh(paul) | room(sK0) [subsumption resolution 290,223] 293. 9 <=> room(sK0) [avatar definition] 295. room(sK0) <- (9) [avatar component clause 293] 296. 9 | ~2 [avatar split clause 291,245,293] 297. predd(paul) [resolution 232,233] 301. ~predk(paul) [resolution 236,297] 342. paul = sK0 | mary = sK0 | fred = sK0 <- (9) [resolution 226,295] 343. mary = sK0 | fred = sK0 <- (~7, 9) [subsumption resolution 342,279] 344. fred = sK0 <- (~7, ~8, 9) [subsumption resolution 343,287] 347. 6 | 7 | 8 | ~9 [avatar split clause 344,293,285,277,269] 352. predk(paul) <- (1) [resolution 243,224] 355. $false <- (1) [subsumption resolution 352,301] 356. ~1 [avatar contradiction clause 355] 357. $false [avatar sat refutation 248,272,280,288,296,347,356] % SZS output end Proof for 612670286776661666511585 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.127981
Jestine is the only person in the room. Everyone in the room collects historical artifacts related to ancient civilizations, develops open-source software projects in their free time and trains for and competes in international triathlons if they collects historical artifacts related to ancient civilizations.
It is not the case that “more than one person in the room develops open-source software projects in their free time”.
entailment
room(jestine)&(![X]:(room(X)=>(X='jestine')))& ![X]:(room(X)=>(((collects_historical_artifacts_related_to_ancient_civilizations(X))=>(((collects_historical_artifacts_related_to_ancient_civilizations(X))&(develops_open-source_software_projects_in_their_free_time(X))&(trains_for_and_competes_in_international_triathlons(X)))))))
room(jestine)&(![X]:(room(X)=>(X='jestine')))& ~((?[X,Y]:(room(X)&room(Y)&(develops_open-source_software_projects_in_their_free_time(X)&develops_open-source_software_projects_in_their_free_time(Y))&(X!=Y))))
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 1735241473235393719456464 % SZS output start Proof for 1735241473235393719456464 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 46. ~(~? [X0,X1] : (X0 != X1 & predc(X1) & predc(X0) & room(X1) & room(X0)) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 47. ~(~? [X0,X1] : (X0 != X1 & predc(X1) & predc(X0) & room(X1) & room(X0)) & ! [X2] : (room(X2) => mary = X2) & room(mary)) [rectify 46] 50. ~(~? [X0,X1] : (X0 != X1 & room(X1) & room(X0)) & ! [X2] : (room(X2) => mary = X2) & room(mary)) [pure predicate removal 47] 123. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 126. ? [X0,X1] : (X0 != X1 & room(X1) & room(X0)) | ? [X2] : (mary != X2 & room(X2)) | ~room(mary) [ennf transformation 50] 128. ? [X0,X1] : (X0 != X1 & room(X1) & room(X0)) => (sK0 != sK1 & room(sK1) & room(sK0)) [choice axiom] 129. ? [X2] : (mary != X2 & room(X2)) => (mary != sK2 & room(sK2)) [choice axiom] 130. (sK0 != sK1 & room(sK1) & room(sK0)) | (mary != sK2 & room(sK2)) | ~room(mary) [skolemisation 126,129,128] 211. room(mary) [cnf transformation 123] 212. ~room(X0) | mary = X0 [cnf transformation 123] 214. room(sK0) | room(sK2) | ~room(mary) [cnf transformation 130] 215. room(sK0) | mary != sK2 | ~room(mary) [cnf transformation 130] 216. room(sK1) | room(sK2) | ~room(mary) [cnf transformation 130] 217. room(sK1) | mary != sK2 | ~room(mary) [cnf transformation 130] 218. sK0 != sK1 | room(sK2) | ~room(mary) [cnf transformation 130] 219. sK0 != sK1 | mary != sK2 | ~room(mary) [cnf transformation 130] 220. sK0 != sK1 | mary != sK2 [subsumption resolution 219,211] 222. 1 <=> mary = sK2 [avatar definition] 224. mary != sK2 <- (~1) [avatar component clause 222] 226. 2 <=> sK0 = sK1 [avatar definition] 228. sK0 != sK1 <- (~2) [avatar component clause 226] 229. ~1 | ~2 [avatar split clause 220,226,222] 230. sK0 != sK1 | room(sK2) [subsumption resolution 218,211] 232. 3 <=> room(sK2) [avatar definition] 234. room(sK2) <- (3) [avatar component clause 232] 235. 3 | ~2 [avatar split clause 230,226,232] 236. room(sK1) | mary != sK2 [subsumption resolution 217,211] 238. 4 <=> room(sK1) [avatar definition] 240. room(sK1) <- (4) [avatar component clause 238] 241. ~1 | 4 [avatar split clause 236,238,222] 242. room(sK1) | room(sK2) [subsumption resolution 216,211] 243. 3 | 4 [avatar split clause 242,238,232] 244. room(sK0) | mary != sK2 [subsumption resolution 215,211] 246. 5 <=> room(sK0) [avatar definition] 248. room(sK0) <- (5) [avatar component clause 246] 249. ~1 | 5 [avatar split clause 244,246,222] 250. room(sK0) | room(sK2) [subsumption resolution 214,211] 251. 3 | 5 [avatar split clause 250,246,232] 253. mary = sK2 <- (3) [resolution 212,234] 254. $false <- (~1, 3) [subsumption resolution 253,224] 255. 1 | ~3 [avatar contradiction clause 254] 256. mary = sK1 <- (4) [resolution 240,212] 257. mary != sK0 <- (~2, 4) [backward demodulation 228,256] 259. mary = sK0 <- (5) [resolution 248,212] 260. $false <- (~2, 4, 5) [subsumption resolution 259,257] 261. 2 | ~4 | ~5 [avatar contradiction clause 260] 262. $false [avatar sat refutation 229,235,241,243,249,251,255,261] % SZS output end Proof for 1735241473235393719456464 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.071983
Julio, Malcom, Jeff are the only persons in the room. Everyone anywhere who does not play video games has a tattoo. Everyone in the room is a dedicated volunteer for local community service projects. Everyone in the room who has a tattoo neither is a dedicated volunteer for local community service projects nor is passionate about collecting and restoring classic cars.
Jeff plays video games.
entailment
room(julio)&room(malcom)&room(jeff)&(![X]:(room(X)=>(X='julio'|X='malcom'|X='jeff')))& ((does_not_enjoy_stargazing(julio))<=>(![X]:(room(X)=>(((makes_homemade_pastries(X))|(is_not_a_client_of_Meta(X)))))))& ((![X]:(room(X)=>(((does_not_enjoy_stargazing(X))|(is_passionate_about_collecting_and_restoring_classic_cars(X))))))<~>(![X]:(room(X)=>(((collects_rare_and_antique_scientific_instruments(X))|(does_not_use_an_ios_phone(X)))))))& ((![X]:(room(X)=>(((is_not_a_client_of_Meta(X))|(plays_the_violin(X))))))<~>(![X]:(room(X)=>(((is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))|(does_not_use_an_ios_phone(X)))))))& ((~![X]:(room(X)=>(((enjoys_coding_in_Python(X))|(does_not_enjoy_stargazing(X))))))<=>(![X]:(room(X)=>(((collects_rare_and_antique_scientific_instruments(X))|(does_not_collect_rare_and_antique_scientific_instruments(X)))))))& ((![X]:(anywhere(X)=>(((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))|(is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))))))=>(![X]:(room(X)=>(((is_a_dedicated_volunteer_for_local_community_service_projects(X))=>(has_a_saltwater_aquarium(X)))))))& ((~?[X]:(anywhere(X)=>(((does_enjoy_trail_running(X))|(does_not_have_a_tattoo(X))))))<=>(does_enjoy_trail_running(julio)))& ((![X]:(~room(X)=>(((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))|(does_not_play_video_games(X))))))=>((?[X,Y]:(~room(X)&~room(Y)&(makes_homemade_pastries(X)&makes_homemade_pastries(Y))&(X!=Y)))))& ((?[X]:(room(X)&(is_not_passionate_about_collecting_and_restoring_classic_cars(X))))=>(does_not_make_homemade_pastries(malcom)))& ((![X]:(room(X)=>(((is_a_certified_yoga_instructor_teaching_classes_weekly(X))|(is_not_a_client_of_Meta(X))))))<=>(((is_a_dedicated_volunteer_for_local_community_service_projects(malcom))&(is_a_client_of_Meta(malcom))&(enjoys_cross-country_skiing(malcom)))))& (![X]:(room(X)=>(((collects_rare_and_antique_scientific_instruments(X))|(does_not_use_an_ios_phone(X))))))& (((is_a_client_of_Meta(malcom))|(is_a_dedicated_volunteer_for_local_community_service_projects(malcom))))& (![X]:(anywhere(X)=>(((does_not_play_video_games(X))=>(has_a_tattoo(X))))))& ((enjoys_cross-country_skiing(julio))&(((enjoys_coding_in_Python(julio))<~>(plays_the_violin(julio)))))& (does_enjoy_trail_running(malcom))& ((![X]:((enjoys_coding_in_Python(X))<=>(does_enjoy_trail_running(X)))))& (((is_a_dedicated_volunteer_for_local_community_service_projects(malcom))&(is_a_client_of_Meta(malcom))&(enjoys_cross-country_skiing(malcom))))& (is_a_dedicated_volunteer_for_local_community_service_projects(julio))& (![X]:(room(X)=>(((uses_an_ios_phone(X))=>(plays_the_violin(X))))))& (![X]:(room(X)=>(is_a_dedicated_volunteer_for_local_community_service_projects(X))))& (![X]:(room(X)=>(((((enjoys_coding_in_Python(X))&(plays_the_violin(X))&(is_a_client_of_Meta(X))))=>(has_a_tattoo(X))))))& (![X]:(room(X)=>(((has_a_tattoo(X))=>(~((is_a_dedicated_volunteer_for_local_community_service_projects(X))|(is_passionate_about_collecting_and_restoring_classic_cars(X))))))))& (![X]:(room(X)=>(((has_a_tattoo(X))=>(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))))))& (![X]:(room(X)=>(((((has_a_tattoo(X))&(makes_homemade_pastries(X))))=>(has_a_tattoo(X))))))
room(julio)&room(malcom)&room(jeff)&(![X]:(room(X)=>(X='julio'|X='malcom'|X='jeff')))& plays_video_games(jeff)
[ "b4", "p0", "p12", "p19", "p21", "hypothesis" ]
% SZS status Unsatisfiable for 3743956199213629729718009 % SZS output start Proof for 3743956199213629729718009 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 56. ! [X0] : (anywhere(X0) => (~predg(X0) => preda(X0))) [input p12] 63. ! [X0] : (room(X0) => predl(X0)) [input p19] 65. ! [X0] : (room(X0) => (preda(X0) => ~(predb(X0) | predl(X0)))) [input p21] 68. ~(predg(fred) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 146. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 147. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 146] 165. ! [X0] : ((preda(X0) | predg(X0)) | ~anywhere(X0)) [ennf transformation 56] 166. ! [X0] : (preda(X0) | predg(X0) | ~anywhere(X0)) [flattening 165] 169. ! [X0] : (predl(X0) | ~room(X0)) [ennf transformation 63] 172. ! [X0] : (((~predb(X0) & ~predl(X0)) | ~preda(X0)) | ~room(X0)) [ennf transformation 65] 173. ! [X0] : ((~predb(X0) & ~predl(X0)) | ~preda(X0) | ~room(X0)) [flattening 172] 178. ~predg(fred) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 68] 179. ~predg(fred) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 178] 228. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK15 & paul != sK15 & mary != sK15 & room(sK15)) [choice axiom] 229. ~predg(fred) | (fred != sK15 & paul != sK15 & mary != sK15 & room(sK15)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 179,228] 230. anywhere(X0) [cnf transformation 5] 311. room(mary) [cnf transformation 147] 312. room(paul) [cnf transformation 147] 313. room(fred) [cnf transformation 147] 314. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 147] 370. preda(X0) | predg(X0) | ~anywhere(X0) [cnf transformation 166] 382. ~room(X0) | predl(X0) [cnf transformation 169] 384. ~predl(X0) | ~preda(X0) | ~room(X0) [cnf transformation 173] 388. ~predg(fred) | room(sK15) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 229] 389. ~predg(fred) | mary != sK15 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 229] 390. ~predg(fred) | paul != sK15 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 229] 391. ~predg(fred) | fred != sK15 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 229] 644. predg(X0) | preda(X0) [subsumption resolution 370,230] 658. ~preda(X0) | ~room(X0) [subsumption resolution 384,382] 659. ~predg(fred) | fred != sK15 | ~room(paul) | ~room(mary) [subsumption resolution 391,313] 660. ~predg(fred) | fred != sK15 | ~room(mary) [subsumption resolution 659,312] 661. ~predg(fred) | fred != sK15 [subsumption resolution 660,311] 663. 55 <=> fred = sK15 [avatar definition] 665. fred != sK15 <- (~55) [avatar component clause 663] 667. 56 <=> predg(fred) [avatar definition] 669. ~predg(fred) <- (~56) [avatar component clause 667] 670. ~55 | ~56 [avatar split clause 661,667,663] 671. ~predg(fred) | paul != sK15 | ~room(paul) | ~room(mary) [subsumption resolution 390,313] 672. ~predg(fred) | paul != sK15 | ~room(mary) [subsumption resolution 671,312] 673. ~predg(fred) | paul != sK15 [subsumption resolution 672,311] 675. 57 <=> paul = sK15 [avatar definition] 677. paul != sK15 <- (~57) [avatar component clause 675] 678. ~57 | ~56 [avatar split clause 673,667,675] 679. ~predg(fred) | mary != sK15 | ~room(paul) | ~room(mary) [subsumption resolution 389,313] 680. ~predg(fred) | mary != sK15 | ~room(mary) [subsumption resolution 679,312] 681. ~predg(fred) | mary != sK15 [subsumption resolution 680,311] 683. 58 <=> mary = sK15 [avatar definition] 685. mary != sK15 <- (~58) [avatar component clause 683] 686. ~58 | ~56 [avatar split clause 681,667,683] 687. ~predg(fred) | room(sK15) | ~room(paul) | ~room(mary) [subsumption resolution 388,313] 688. ~predg(fred) | room(sK15) | ~room(mary) [subsumption resolution 687,312] 689. ~predg(fred) | room(sK15) [subsumption resolution 688,311] 691. 59 <=> room(sK15) [avatar definition] 693. room(sK15) <- (59) [avatar component clause 691] 694. 59 | ~56 [avatar split clause 689,667,691] 713. preda(fred) <- (~56) [resolution 644,669] 731. ~room(fred) <- (~56) [resolution 713,658] 733. $false <- (~56) [subsumption resolution 731,313] 734. 56 [avatar contradiction clause 733] 803. paul = sK15 | mary = sK15 | fred = sK15 <- (59) [resolution 314,693] 856. mary = sK15 | fred = sK15 <- (~57, 59) [subsumption resolution 803,677] 857. fred = sK15 <- (~57, ~58, 59) [subsumption resolution 856,685] 858. $false <- (~55, ~57, ~58, 59) [subsumption resolution 857,665] 859. 55 | 57 | 58 | ~59 [avatar contradiction clause 858] 860. $false [avatar sat refutation 670,678,686,694,734,859] % SZS output end Proof for 3743956199213629729718009 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5500 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.08083
There is a room. More than one person anywhere does not have a tattoo or does not enjoy rooftop gardening or both. Everyone in the room either does not have a tattoo or does not enjoy rooftop gardening but not both. Everyone in the room does not use a Windows laptop. Everyone in the room does not enjoy rooftop gardening or does not have a tattoo or both. Everyone in the room does not enjoy rooftop gardening. Everyone in the room does not enjoy rooftop gardening, does not use a Windows laptop and does not have a tattoo. If someone does not use a Windows laptop and does not enjoy rooftop gardening then he/she either does not use a Windows laptop or does not have a tattoo but not both.
Everyone outside the room has a tattoo.
neutral
(there_is_a_room)& ((?[X,Y]:(anywhere(X)&anywhere(Y)&(((does_not_have_a_tattoo(X))|(does_not_enjoy_rooftop_gardening(X)))&((does_not_have_a_tattoo(Y))|(does_not_enjoy_rooftop_gardening(Y))))&(X!=Y))))& (![X]:(room(X)=>(((does_not_have_a_tattoo(X))<~>(does_not_enjoy_rooftop_gardening(X))))))& (![X]:(room(X)=>(does_not_use_a_Windows_laptop(X))))& (![X]:(room(X)=>(((does_not_enjoy_rooftop_gardening(X))|(does_not_have_a_tattoo(X))))))& (![X]:(room(X)=>(does_not_enjoy_rooftop_gardening(X))))& (![X]:(room(X)=>(((does_not_enjoy_rooftop_gardening(X))&(does_not_use_a_Windows_laptop(X))&(does_not_have_a_tattoo(X))))))& ((![X]:((((does_not_use_a_Windows_laptop(X))&(does_not_enjoy_rooftop_gardening(X))))=>(((does_not_use_a_Windows_laptop(X))<~>(does_not_have_a_tattoo(X)))))))& (![X]:(room(X)=>(does_not_have_a_tattoo(X))))& ((gladys_dream=>((![X]:((~((does_not_have_a_tattoo(X))|(does_not_use_a_Windows_laptop(X))))=>(does_not_use_a_Windows_laptop(X)))))))
(there_is_a_room)& ![X]:(~room(X)=>(has_a_tattoo(X)))
[]
null
0.236303
Leonard, Debra, Reginald, Jason, Deborah are the only persons in the room. If everyone in the room neither hosts themed dinner parties featuring gourmet home-cooked meals nor is an avid hiker then everyone in the room who does not write in-depth travel guides for off-the-beaten-path destinations writes in-depth travel guides for off-the-beaten-path destinations. Everyone in the room neither hosts themed dinner parties featuring gourmet home-cooked meals nor is an avid hiker. Leonard does not read mystery novels, does not host a popular podcast about emerging technologies and is a Linux enthusiast. Leonard does enjoy trail running. Everyone in the room hosts themed dinner parties featuring gourmet home-cooked meals if they writes a travel blog. Everyone in the room creates bespoke furniture pieces from reclaimed wood. Everyone in the room owns a telescope or does not drive a hybrid car. Everyone anywhere owns a telescope if they practices pilates and vice versa. Everyone in the room writes in-depth travel guides for off-the-beaten-path destinations or maintains a personal blog focused on cybersecurity tips or both if they practices pilates. Leonard dreamt that everyone outside the room who practices kickboxing does not have a vast collection of first-edition science fiction novels. Everyone anywhere enjoys macrame if they creates bespoke furniture pieces from reclaimed wood and practices kickboxing. Everyone outside the room who reads mystery novels or owns a smartwatch or both practices kickboxing. Everyone outside the room enjoys macrame if they drives a hybrid car or is not an active member of a local robotics club or both and vice versa. If someone enjoys fishing then he/she is an avid hiker. Debra collects first edition books. Everyone in the room collects first edition books. Everyone in the room does not own a smartwatch if they is a chess master who participates in national tournaments. If someone writes a travel blog, hosts themed dinner parties featuring gourmet home-cooked meals or has a pet dog then he/she does not read mystery novels, owns a telescope or enjoys macrame and vice versa. Everyone in the room neither hosts themed dinner parties featuring gourmet home-cooked meals nor writes a travel blog if they practices kickboxing. Everyone in the room is an amateur astronomer who builds and uses custom telescopes if they is a Linux enthusiast. If someone enjoys macrame then he/she enjoys fishing and vice versa.
Debra enjoys fishing.
contradiction
room(leonard)&room(debra)&room(reginald)&room(jason)&room(deborah)&(![X]:(room(X)=>(X='leonard'|X='debra'|X='reginald'|X='jason'|X='deborah')))& ((![X]:(room(X)=>(~((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))|(is_an_avid_hiker(X))))))=>(![X]:(room(X)=>(((does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))=>(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X)))))))& (![X]:(room(X)=>(~((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))|(is_an_avid_hiker(X))))))& (((does_not_read_mystery_novels(leonard))&(does_not_host_a_popular_podcast_about_emerging_technologies(leonard))&(is_a_Linux_enthusiast(leonard))))& (does_enjoy_trail_running(leonard))& (![X]:(room(X)=>(((writes_a_travel_blog(X))=>(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))& (![X]:(room(X)=>(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))& (![X]:(room(X)=>(((does_not_drive_a_hybrid_car(X))|(owns_a_telescope(X))))))& (![X]:(anywhere(X)=>(((owns_a_telescope(X))<=>(practices_pilates(X))))))& (![X]:(room(X)=>(((practices_pilates(X))=>(((writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))|(maintains_a_personal_blog_focused_on_cybersecurity_tips(X))))))))& ((leonard_dream=>(![X]:(~room(X)=>(((practices_kickboxing(X))=>(does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(X))))))))& (![X]:(anywhere(X)=>(((((creates_bespoke_furniture_pieces_from_reclaimed_wood(X))&(practices_kickboxing(X))))=>(enjoys_macrame(X))))))& (![X]:(~room(X)=>(((((reads_mystery_novels(X))|(owns_a_smartwatch(X))))=>(practices_kickboxing(X))))))& (![X]:(~room(X)=>(((enjoys_macrame(X))<=>(((drives_a_hybrid_car(X))|(is_not_an_active_member_of_a_local_robotics_club(X))))))))& ((![X]:((enjoys_fishing(X))=>(is_an_avid_hiker(X)))))& (collects_first_edition_books(debra))& (![X]:(room(X)=>(collects_first_edition_books(X))))& (![X]:(room(X)=>(((is_a_chess_master_who_participates_in_national_tournaments(X))=>(does_not_own_a_smartwatch(X))))))& ((![X]:((((writes_a_travel_blog(X))|(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))|(has_a_pet_dog(X))))<=>(((does_not_read_mystery_novels(X))|(owns_a_telescope(X))|(enjoys_macrame(X)))))))& (![X]:(room(X)=>(((practices_kickboxing(X))=>(~((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))|(writes_a_travel_blog(X))))))))& (![X]:(room(X)=>(((is_a_Linux_enthusiast(X))=>(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))))& ((![X]:((enjoys_macrame(X))<=>(enjoys_fishing(X)))))& (~((enjoys_macrame(leonard))|(practices_kickboxing(leonard))))& ((![X]:((is_a_chess_master_who_participates_in_national_tournaments(X))=>(((enjoys_macrame(X))&(has_a_vast_collection_of_first-edition_science_fiction_novels(X)))))))& (![X]:(room(X)=>(((does_not_enjoy_salsa_dancing(X))<=(~((practices_pilates(X))|(does_enjoy_trail_running(X))))))))& (~![X]:(room(X)=>(((is_a_Linux_enthusiast(X))<=(does_not_enjoy_salsa_dancing(X))))))& (does_practice_yoga(reginald))
room(leonard)&room(debra)&room(reginald)&room(jason)&room(deborah)&(![X]:(room(X)=>(X='leonard'|X='debra'|X='reginald'|X='jason'|X='deborah')))& enjoys_fishing(debra)
[ "p0", "p2", "p14", "hypothesis" ]
% SZS status Unsatisfiable for 4706899545581922017125602 % SZS output start Proof for 4706899545581922017125602 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 46. ! [X0] : (room(X0) => ~(predy(X0) | predw(X0))) [input p2] 58. ! [X0] : (preda(X0) => predy(X0)) [input p14] 71. preda(paul) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 158. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 159. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 158] 160. ! [X0] : ((~predy(X0) & ~predw(X0)) | ~room(X0)) [ennf transformation 46] 172. ! [X0] : (predy(X0) | ~preda(X0)) [ennf transformation 58] 177. preda(paul) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 71] 178. preda(paul) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 177] 270. room(paul) [cnf transformation 159] 276. ~predy(X0) | ~room(X0) [cnf transformation 160] 289. ~preda(X0) | predy(X0) [cnf transformation 172] 310. preda(paul) [cnf transformation 178] 321. predy(paul) [resolution 289,310] 323. ~room(paul) [resolution 321,276] 324. $false [subsumption resolution 323,270] % SZS output end Proof for 4706899545581922017125602 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.039924
James, Nancy, Katherine are the only persons in the room. If “James is an expert in identifying and foraging wild edible plants” then “James trains for and competes in international triathlons or has a vast collection of first-edition science fiction novels or both”. If “Nancy neither enjoys skydiving nor has a vast collection of first-edition science fiction novels” then “Nancy owns a smartwatch”. Either “Nancy enjoys skydiving or maintains a large, organic vegetable garden year-round or both” or “Katherine is a culinary enthusiast who experiments with international cuisines” but not both. If “Katherine trains for and competes in international triathlons or writes poetry or both” then “Nancy collects action figures”. Katherine practices digital art. James has a vast collection of first-edition science fiction novels or trains for and competes in international triathlons or both. If someone is a culinary enthusiast who experiments with international cuisines then he/she enjoys stargazing and vice versa. Nancy neither enjoys skydiving nor has a vast collection of first-edition science fiction novels. Only one person in the room is a culinary enthusiast who experiments with international cuisines.
Nancy neither owns a smartwatch nor collects action figures.
contradiction
room(james)&room(nancy)&room(katherine)&(![X]:(room(X)=>(X='james'|X='nancy'|X='katherine')))& ((is_an_expert_in_identifying_and_foraging_wild_edible_plants(james))=>(((trains_for_and_competes_in_international_triathlons(james))|(has_a_vast_collection_of_first-edition_science_fiction_novels(james)))))& ((~((enjoys_skydiving(nancy))|(has_a_vast_collection_of_first-edition_science_fiction_novels(nancy))))=>(owns_a_smartwatch(nancy)))& ((((enjoys_skydiving(nancy))|(maintains_a_large,_organic_vegetable_garden_year-round(nancy))))<~>(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(katherine)))& ((((trains_for_and_competes_in_international_triathlons(katherine))|(writes_poetry(katherine))))=>(collects_action_figures(nancy)))& (practices_digital_art(katherine))& (((has_a_vast_collection_of_first-edition_science_fiction_novels(james))|(trains_for_and_competes_in_international_triathlons(james))))& ((![X]:((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))<=>(enjoys_stargazing(X)))))& (~((enjoys_skydiving(nancy))|(has_a_vast_collection_of_first-edition_science_fiction_novels(nancy))))& (((?[X]:(room(X)&is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X)))&(![X,Y]:((room(X)&room(Y)&(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))&(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(Y)))=>(X=Y)))))
room(james)&room(nancy)&room(katherine)&(![X]:(room(X)=>(X='james'|X='nancy'|X='katherine')))& ~((owns_a_smartwatch(nancy))|(collects_action_figures(nancy)))
[ "p2", "p8", "hypothesis" ]
% SZS status Unsatisfiable for 4696625725498892826655964 % SZS output start Proof for 4696625725498892826655964 46. ~(predg(paul) | predb(paul)) => predj(paul) [input p2] 52. ~(predg(paul) | predb(paul)) [input p8] 54. ~(predf(paul) | predj(paul)) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 133. predj(paul) | (predg(paul) | predb(paul)) [ennf transformation 46] 134. predj(paul) | predg(paul) | predb(paul) [flattening 133] 136. ~predg(paul) & ~predb(paul) [ennf transformation 52] 139. (~predf(paul) & ~predj(paul)) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 54] 140. ~predf(paul) & ~predj(paul) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 139] 231. predj(paul) | predg(paul) | predb(paul) [cnf transformation 134] 239. ~predb(paul) [cnf transformation 136] 240. ~predg(paul) [cnf transformation 136] 248. ~predj(paul) [cnf transformation 140] 251. 1 <=> predb(paul) [avatar definition] 255. 2 <=> predg(paul) [avatar definition] 259. 3 <=> predj(paul) [avatar definition] 262. 1 | 2 | 3 [avatar split clause 231,259,255,251] 292. ~2 [avatar split clause 240,255] 293. ~1 [avatar split clause 239,251] 295. ~3 [avatar split clause 248,259] 296. $false [avatar sat refutation 262,292,293,295] % SZS output end Proof for 4696625725498892826655964 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.374663
Joseph, Brent, Mel, Carrie, Ted are the only persons in the room. Everyone in the room is kind if everyone anywhere is a tall person and vice versa. Everyone in the room is tall if everyone in the room is a tall person and vice versa. Someone who is a quiet person is richer than someone who is kind unless everyone in the room is quiet. Everyone outside the room is not quiet unless everyone in the room is a quiet person. Everyone in the room either is a quiet person or is a tall person but not both if everyone in the room is a tall person and vice versa. All quiet persons are kind. Joseph is the quietest in the room. Everyone outside the room is kind.
Joseph is kind.
entailment
room(joseph)&room(brent)&room(mel)&room(carrie)&room(ted)&(![X]:(room(X)=>(X='joseph'|X='brent'|X='mel'|X='carrie'|X='ted')))& ((![X]:(anywhere(X)=>(tall(X)&person(X))))<=>(![X]:(room(X)=>(kind(X)))))& ((![X]:(room(X)=>(tall(X)&person(X))))<=>(![X]:(room(X)=>(tall(X)))))& (~(![X]:(room(X)=>(quiet(X))))=>(?[X,Y]:((quiet(X)&person(X))&(kind(Y))&(richer(X,Y)))))& (~(![X]:(room(X)=>(quiet(X)&person(X))))=>(![X]:(~room(X)=>(~quiet(X)))))& ((![X]:(room(X)=>(tall(X)&person(X))))<=>(![X]:(room(X)=>(((quiet(X)&person(X))<~>(tall(X)&person(X)))))))& (![X]:(quiet(X)=>kind(X)))& (![X]:((room(X)&(X!=joseph))=>quieter(X,joseph)))& (![X]:(~room(X)=>(kind(X))))
room(joseph)&room(brent)&room(mel)&room(carrie)&room(ted)&(![X]:(room(X)=>(X='joseph'|X='brent'|X='mel'|X='carrie'|X='ted')))& kind(joseph)
[ "b14", "b42", "p0", "p3", "p4", "p6", "p7", "hypothesis" ]
% SZS status Unsatisfiable for 1538147603224861337949077 % SZS output start Proof for 1538147603224861337949077 15. ! [X0,X1] : (X0 != X1 => ((quiet(X0) & quieter(X0,X1)) => quiet(X1))) [input b14] 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 47. ~! [X0] : (room(X0) => quiet(X0)) => ? [X0,X1] : (richer(X0,X1) & kind(X1) & person(X0) & quiet(X0)) [input p3] 48. ~! [X0] : (room(X0) => (person(X0) & quiet(X0))) => ! [X0] : (~room(X0) => ~quiet(X0)) [input p4] 50. ! [X0] : (quiet(X0) => kind(X0)) [input p6] 51. ! [X0] : ((mary != X0 & room(X0)) => quieter(X0,mary)) [input p7] 53. ~(kind(mary) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 56. ~! [X0] : (room(X0) => quiet(X0)) => ? [X1,X2] : (richer(X1,X2) & kind(X2) & person(X1) & quiet(X1)) [rectify 47] 57. ~! [X0] : (room(X0) => (person(X0) & quiet(X0))) => ! [X1] : (~room(X1) => ~quiet(X1)) [rectify 48] 79. ! [X0,X1] : ((quiet(X1) | (~quiet(X0) | ~quieter(X0,X1))) | X0 = X1) [ennf transformation 15] 80. ! [X0,X1] : (quiet(X1) | ~quiet(X0) | ~quieter(X0,X1) | X0 = X1) [flattening 79] 130. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 131. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 130] 134. ? [X1,X2] : (richer(X1,X2) & kind(X2) & person(X1) & quiet(X1)) | ! [X0] : (quiet(X0) | ~room(X0)) [ennf transformation 56] 135. ! [X1] : (~quiet(X1) | room(X1)) | ! [X0] : ((person(X0) & quiet(X0)) | ~room(X0)) [ennf transformation 57] 137. ! [X0] : (kind(X0) | ~quiet(X0)) [ennf transformation 50] 138. ! [X0] : (quieter(X0,mary) | (mary = X0 | ~room(X0))) [ennf transformation 51] 139. ! [X0] : (quieter(X0,mary) | mary = X0 | ~room(X0)) [flattening 138] 141. ~kind(mary) | ? [X0] : ((john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 53] 142. ~kind(mary) | ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 141] 156. ? [X0,X1] : (richer(X0,X1) & kind(X1) & person(X0) & quiet(X0)) | ! [X2] : (quiet(X2) | ~room(X2)) [rectify 134] 157. ? [X0,X1] : (richer(X0,X1) & kind(X1) & person(X0) & quiet(X0)) => (richer(sK5,sK6) & kind(sK6) & person(sK5) & quiet(sK5)) [choice axiom] 158. (richer(sK5,sK6) & kind(sK6) & person(sK5) & quiet(sK5)) | ! [X2] : (quiet(X2) | ~room(X2)) [skolemisation 156,157] 159. ! [X0] : (~quiet(X0) | room(X0)) | ! [X1] : ((person(X1) & quiet(X1)) | ~room(X1)) [rectify 135] 169. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (john != sK9 & alice != sK9 & fred != sK9 & paul != sK9 & mary != sK9 & room(sK9)) [choice axiom] 170. ~kind(mary) | (john != sK9 & alice != sK9 & fred != sK9 & paul != sK9 & mary != sK9 & room(sK9)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 142,169] 182. ~quieter(X0,X1) | ~quiet(X0) | quiet(X1) | X0 = X1 [cnf transformation 80] 216. mary != paul [cnf transformation 43] 222. mary != fred [cnf transformation 43] 228. mary != alice [cnf transformation 43] 234. mary != john [cnf transformation 43] 252. room(mary) [cnf transformation 131] 253. room(paul) [cnf transformation 131] 254. room(fred) [cnf transformation 131] 255. room(alice) [cnf transformation 131] 256. room(john) [cnf transformation 131] 257. ~room(X0) | alice = X0 | fred = X0 | paul = X0 | mary = X0 | john = X0 [cnf transformation 131] 270. quiet(sK5) | quiet(X2) | ~room(X2) [cnf transformation 158] 274. ~quiet(X0) | room(X0) | quiet(X1) | ~room(X1) [cnf transformation 159] 290. ~quiet(X0) | kind(X0) [cnf transformation 137] 291. quieter(X0,mary) | mary = X0 | ~room(X0) [cnf transformation 139] 293. ~kind(mary) | room(sK9) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 170] 294. ~kind(mary) | mary != sK9 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 170] 295. ~kind(mary) | paul != sK9 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 170] 296. ~kind(mary) | fred != sK9 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 170] 297. ~kind(mary) | alice != sK9 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 170] 298. ~kind(mary) | john != sK9 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 170] 368. 15 <=> ! [X2] : (quiet(X2) | ~room(X2)) [avatar definition] 369. ~room(X2) | quiet(X2) <- (15) [avatar component clause 368] 386. 19 <=> quiet(sK5) [avatar definition] 388. quiet(sK5) <- (19) [avatar component clause 386] 389. 15 | 19 [avatar split clause 270,386,368] 391. 20 <=> ! [X0] : (~quiet(X0) | room(X0)) [avatar definition] 392. ~quiet(X0) | room(X0) <- (20) [avatar component clause 391] 394. 15 | 20 [avatar split clause 274,391,368] 451. ~kind(mary) | john != sK9 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 298,256] 452. ~kind(mary) | john != sK9 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 451,255] 453. ~kind(mary) | john != sK9 | ~room(paul) | ~room(mary) [subsumption resolution 452,254] 454. ~kind(mary) | john != sK9 | ~room(mary) [subsumption resolution 453,253] 455. ~kind(mary) | john != sK9 [subsumption resolution 454,252] 457. 33 <=> john = sK9 [avatar definition] 461. 34 <=> kind(mary) [avatar definition] 464. ~33 | ~34 [avatar split clause 455,461,457] 465. ~kind(mary) | alice != sK9 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 297,256] 466. ~kind(mary) | alice != sK9 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 465,255] 467. ~kind(mary) | alice != sK9 | ~room(paul) | ~room(mary) [subsumption resolution 466,254] 468. ~kind(mary) | alice != sK9 | ~room(mary) [subsumption resolution 467,253] 469. ~kind(mary) | alice != sK9 [subsumption resolution 468,252] 471. 35 <=> alice = sK9 [avatar definition] 473. alice != sK9 <- (~35) [avatar component clause 471] 474. ~35 | ~34 [avatar split clause 469,461,471] 475. ~kind(mary) | fred != sK9 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 296,256] 476. ~kind(mary) | fred != sK9 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 475,255] 477. ~kind(mary) | fred != sK9 | ~room(paul) | ~room(mary) [subsumption resolution 476,254] 478. ~kind(mary) | fred != sK9 | ~room(mary) [subsumption resolution 477,253] 479. ~kind(mary) | fred != sK9 [subsumption resolution 478,252] 481. 36 <=> fred = sK9 [avatar definition] 484. ~36 | ~34 [avatar split clause 479,461,481] 485. ~kind(mary) | paul != sK9 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 295,256] 486. ~kind(mary) | paul != sK9 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 485,255] 487. ~kind(mary) | paul != sK9 | ~room(paul) | ~room(mary) [subsumption resolution 486,254] 488. ~kind(mary) | paul != sK9 | ~room(mary) [subsumption resolution 487,253] 489. ~kind(mary) | paul != sK9 [subsumption resolution 488,252] 491. 37 <=> paul = sK9 [avatar definition] 494. ~37 | ~34 [avatar split clause 489,461,491] 495. ~kind(mary) | mary != sK9 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 294,256] 496. ~kind(mary) | mary != sK9 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 495,255] 497. ~kind(mary) | mary != sK9 | ~room(paul) | ~room(mary) [subsumption resolution 496,254] 498. ~kind(mary) | mary != sK9 | ~room(mary) [subsumption resolution 497,253] 499. ~kind(mary) | mary != sK9 [subsumption resolution 498,252] 501. 38 <=> mary = sK9 [avatar definition] 503. mary != sK9 <- (~38) [avatar component clause 501] 504. ~38 | ~34 [avatar split clause 499,461,501] 505. ~kind(mary) | room(sK9) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 293,256] 506. ~kind(mary) | room(sK9) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 505,255] 507. ~kind(mary) | room(sK9) | ~room(paul) | ~room(mary) [subsumption resolution 506,254] 508. ~kind(mary) | room(sK9) | ~room(mary) [subsumption resolution 507,253] 509. ~kind(mary) | room(sK9) [subsumption resolution 508,252] 511. 39 <=> room(sK9) [avatar definition] 513. room(sK9) <- (39) [avatar component clause 511] 514. 39 | ~34 [avatar split clause 509,461,511] 559. kind(sK5) <- (19) [resolution 388,290] 563. room(sK5) <- (19, 20) [resolution 392,388] 628. 45 <=> quiet(john) [avatar definition] 630. quiet(john) <- (45) [avatar component clause 628] 637. 47 <=> quiet(alice) [avatar definition] 639. quiet(alice) <- (47) [avatar component clause 637] 646. 49 <=> quiet(fred) [avatar definition] 647. ~quiet(fred) <- (~49) [avatar component clause 646] 648. quiet(fred) <- (49) [avatar component clause 646] 655. 51 <=> quiet(paul) [avatar definition] 656. ~quiet(paul) <- (~51) [avatar component clause 655] 657. quiet(paul) <- (51) [avatar component clause 655] 664. 53 <=> quiet(mary) [avatar definition] 666. quiet(mary) <- (53) [avatar component clause 664] 691. quiet(mary) <- (15) [resolution 369,252] 701. 53 | ~15 [avatar split clause 691,368,664] 791. kind(mary) <- (53) [resolution 666,290] 801. ~quiet(X0) | quiet(mary) | mary = X0 | mary = X0 | ~room(X0) [resolution 182,291] 802. ~quiet(X0) | quiet(mary) | mary = X0 | ~room(X0) [duplicate literal removal 801] 869. alice = sK5 | fred = sK5 | paul = sK5 | mary = sK5 | john = sK5 <- (19, 20) [resolution 257,563] 872. alice = sK9 | fred = sK9 | paul = sK9 | mary = sK9 | john = sK9 <- (39) [resolution 257,513] 937. 73 <=> john = sK5 [avatar definition] 939. john = sK5 <- (73) [avatar component clause 937] 941. 74 <=> mary = sK5 [avatar definition] 943. mary = sK5 <- (74) [avatar component clause 941] 945. 75 <=> paul = sK5 [avatar definition] 947. paul = sK5 <- (75) [avatar component clause 945] 949. 76 <=> fred = sK5 [avatar definition] 951. fred = sK5 <- (76) [avatar component clause 949] 953. 77 <=> alice = sK5 [avatar definition] 955. alice = sK5 <- (77) [avatar component clause 953] 956. 73 | 74 | 75 | 76 | 77 | ~19 | ~20 [avatar split clause 869,391,386,953,949,945,941,937] 999. fred = sK9 | paul = sK9 | mary = sK9 | john = sK9 <- (~35, 39) [subsumption resolution 872,473] 1005. 34 | ~53 [avatar split clause 791,664,461] 1023. kind(mary) <- (19, 74) [backward demodulation 559,943] 1026. 34 | ~19 | ~74 [avatar split clause 1023,941,386,461] 1059. 88 <=> ! [X0] : (mary = X0 | ~quiet(X0)) [avatar definition] 1060. ~quiet(X0) | mary = X0 <- (88) [avatar component clause 1059] 1062. ~quiet(X0) | quiet(mary) | mary = X0 <- (20) [subsumption resolution 802,392] 1063. 53 | 88 | ~20 [avatar split clause 1062,391,1059,664] 1069. quiet(alice) <- (19, 77) [backward demodulation 388,955] 1125. mary = paul <- (51, 88) [resolution 1060,657] 1126. mary = fred <- (49, 88) [resolution 1060,648] 1127. mary = alice <- (47, 88) [resolution 1060,639] 1128. $false <- (51, 88) [subsumption resolution 1125,216] 1129. ~51 | ~88 [avatar contradiction clause 1128] 1130. $false <- (49, 88) [subsumption resolution 1126,222] 1131. ~49 | ~88 [avatar contradiction clause 1130] 1132. $false <- (47, 88) [subsumption resolution 1127,228] 1133. ~47 | ~88 [avatar contradiction clause 1132] 1134. fred = sK9 | paul = sK9 | john = sK9 <- (~35, ~38, 39) [subsumption resolution 999,503] 1135. 33 | 37 | 36 | 35 | 38 | ~39 [avatar split clause 1134,511,501,471,481,491,457] 1136. 47 | ~19 | ~77 [avatar split clause 1069,953,386,637] 1142. quiet(john) <- (19, 73) [backward demodulation 388,939] 1151. 45 | ~19 | ~73 [avatar split clause 1142,937,386,628] 1168. mary = john <- (45, 88) [resolution 630,1060] 1171. $false <- (45, 88) [subsumption resolution 1168,234] 1172. ~45 | ~88 [avatar contradiction clause 1171] 1174. quiet(paul) <- (19, 75) [backward demodulation 388,947] 1180. $false <- (19, ~51, 75) [subsumption resolution 1174,656] 1181. ~19 | 51 | ~75 [avatar contradiction clause 1180] 1188. quiet(fred) <- (19, 76) [backward demodulation 388,951] 1195. $false <- (19, ~49, 76) [subsumption resolution 1188,647] 1196. ~19 | 49 | ~76 [avatar contradiction clause 1195] 1197. $false [avatar sat refutation 389,394,464,474,484,494,504,514,701,956,1005,1026,1063,1129,1131,1133,1135,1136,1151,1172,1181,1196] % SZS output end Proof for 1538147603224861337949077 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5628 % Time elapsed: 0.043 s % ------------------------------ % ------------------------------
0.298302
There is a room. If 'no one in the room does not enjoy macrame or owns a smartwatch' then 'everyone in the room who does not enjoy macrame plays video games'. 'Everyone in the room who enjoys macrame is a client of Costco and bakes bread at home' if 'everyone anywhere plays video games'. Everyone in the room does not enjoy macrame if they does not enjoy wildlife photography. Everyone in the room who does not enjoy macrame plays video games. No one in the room either plays video games or owns a smartwatch but not both only if they is a client of Meta. Someone in the room designs and sews custom cosplay costumes for conventions. Someone in the room does not enjoy macrame. Everyone anywhere who owns a smartwatch knows morse code. Everyone in the room who knows morse code does not enjoy macrame and owns an Android phone.
Everyone in the room does not own a smartwatch or bakes bread at home.
entailment
(there_is_a_room)& ((~?[X]:(room(X)=>(((owns_a_smartwatch(X))|(does_not_enjoy_macrame(X))))))=>(![X]:(room(X)=>(((does_not_enjoy_macrame(X))=>(plays_video_games(X)))))))& ((![X]:(anywhere(X)=>(plays_video_games(X))))=>(![X]:(room(X)=>(((enjoys_macrame(X))=>(((is_a_client_of_Costco(X))&(bakes_bread_at_home(X)))))))))& (![X]:(room(X)=>(((does_not_enjoy_wildlife_photography(X))=>(does_not_enjoy_macrame(X))))))& (![X]:(room(X)=>(((does_not_enjoy_macrame(X))=>(plays_video_games(X))))))& (~?[X]:(room(X)=>(((is_a_client_of_Meta(X))<=(((plays_video_games(X))<~>(owns_a_smartwatch(X))))))))& (?[X]:(room(X)&(designs_and_sews_custom_cosplay_costumes_for_conventions(X))))& (?[X]:(room(X)&(does_not_enjoy_macrame(X))))& (![X]:(anywhere(X)=>(((owns_a_smartwatch(X))=>(knows_morse_code(X))))))& (![X]:(room(X)=>(((knows_morse_code(X))=>(((does_not_enjoy_macrame(X))&(owns_an_Android_phone(X))))))))
(there_is_a_room)& ![X]:(room(X)=>(((bakes_bread_at_home(X))|(does_not_own_a_smartwatch(X)))))
[ "b4", "p0", "p4", "p5", "p8", "p9", "hypothesis" ]
% SZS status Unsatisfiable for 4455677240619565586960032 % SZS output start Proof for 4455677240619565586960032 5. ! [X0] : anywhere(X0) [input b4] 44. there_is_a_room [input p0] 48. ! [X0] : (room(X0) => (~prede(X0) => predb(X0))) [input p4] 49. ~? [X0] : (room(X0) => ((predb(X0) <~> predd(X0)) => predl(X0))) [input p5] 52. ! [X0] : (anywhere(X0) => (predd(X0) => predn(X0))) [input p8] 53. ! [X0] : (room(X0) => (predn(X0) => (predg(X0) & ~prede(X0)))) [input p9] 54. ~(! [X0] : (room(X0) => (~predd(X0) | predj(X0))) & there_is_a_room) [input hypothesis] 57. ! [X0] : (room(X0) => (predn(X0) => ~prede(X0))) [pure predicate removal 53] 59. ~? [X0] : (room(X0) => ~(predb(X0) <~> predd(X0))) [pure predicate removal 49] 137. ! [X0] : ((predb(X0) | prede(X0)) | ~room(X0)) [ennf transformation 48] 138. ! [X0] : (predb(X0) | prede(X0) | ~room(X0)) [flattening 137] 139. ! [X0] : ((predb(X0) <~> predd(X0)) & room(X0)) [ennf transformation 59] 140. ! [X0] : ((predn(X0) | ~predd(X0)) | ~anywhere(X0)) [ennf transformation 52] 141. ! [X0] : (predn(X0) | ~predd(X0) | ~anywhere(X0)) [flattening 140] 142. ! [X0] : ((~prede(X0) | ~predn(X0)) | ~room(X0)) [ennf transformation 57] 143. ! [X0] : (~prede(X0) | ~predn(X0) | ~room(X0)) [flattening 142] 144. ? [X0] : ((predd(X0) & ~predj(X0)) & room(X0)) | ~there_is_a_room [ennf transformation 54] 145. ? [X0] : (predd(X0) & ~predj(X0) & room(X0)) | ~there_is_a_room [flattening 144] 153. ! [X0] : (((~predd(X0) | ~predb(X0)) & (predd(X0) | predb(X0))) & room(X0)) [nnf transformation 139] 154. ! [X0] : ((~predd(X0) | ~predb(X0)) & (predd(X0) | predb(X0)) & room(X0)) [flattening 153] 159. ? [X0] : (predd(X0) & ~predj(X0) & room(X0)) => (predd(sK4) & ~predj(sK4) & room(sK4)) [choice axiom] 160. (predd(sK4) & ~predj(sK4) & room(sK4)) | ~there_is_a_room [skolemisation 145,159] 161. anywhere(X0) [cnf transformation 5] 242. there_is_a_room [cnf transformation 44] 246. predb(X0) | prede(X0) | ~room(X0) [cnf transformation 138] 247. room(X0) [cnf transformation 154] 249. ~predb(X0) | ~predd(X0) [cnf transformation 154] 253. predn(X0) | ~predd(X0) | ~anywhere(X0) [cnf transformation 141] 254. ~prede(X0) | ~predn(X0) | ~room(X0) [cnf transformation 143] 257. predd(sK4) | ~there_is_a_room [cnf transformation 160] 271. 4 <=> ! [X0] : (predb(X0) | ~room(X0) | prede(X0)) [avatar definition] 272. predb(X0) | ~room(X0) | prede(X0) <- (4) [avatar component clause 271] 282. 4 [avatar split clause 246,271] 283. ~predd(X0) | predn(X0) [subsumption resolution 253,161] 284. ~predn(X0) | ~prede(X0) [subsumption resolution 254,247] 285. predd(sK4) [subsumption resolution 257,242] 287. predb(X0) | prede(X0) <- (4) [subsumption resolution 272,247] 290. predn(sK4) [resolution 283,285] 292. ~prede(sK4) [resolution 290,284] 294. ~predd(X0) | prede(X0) <- (4) [resolution 287,249] 300. prede(sK4) <- (4) [resolution 294,285] 301. $false <- (4) [subsumption resolution 300,292] 302. ~4 [avatar contradiction clause 301] 303. $false [avatar sat refutation 282,302] % SZS output end Proof for 4455677240619565586960032 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.022 s % ------------------------------ % ------------------------------
0.124588
Lisa, Jose, Cassie, Gail, Joe are the only persons in the room. If “everyone in the room enjoys macrame” then “Lisa does not host a popular podcast about emerging technologies” otherwise “everyone in the room hosts a popular podcast about emerging technologies if they does not host a popular podcast about emerging technologies”. Either “Jose enjoys macrame” or “Jose is an avid mountain climber who has scaled several peaks” but not both. “Jose hosts a popular podcast about emerging technologies” only if “Lisa own a television”. Either “everyone anywhere enjoys macrame or is not an avid mountain climber who has scaled several peaks” or “everyone in the room own a television or does not enjoy macrame” but not both. “Everyone in the room own a television or is not an avid mountain climber who has scaled several peaks” only if “Jose is an avid mountain climber who has scaled several peaks”. “Everyone anywhere does not own a television if they is not an avid mountain climber who has scaled several peaks” unless “everyone outside the room own a television”. Everyone in the room who enjoys macrame hosts a popular podcast about emerging technologies. Jose hosts a popular podcast about emerging technologies. Lisa own a television. Everyone in the room hosts a popular podcast about emerging technologies. Jose enjoys macrame. Everyone outside the room does not enjoy macrame if they hosts a popular podcast about emerging technologies.
Jose hosts a popular podcast about emerging technologies.
entailment
room(lisa)&room(jose)&room(cassie)&room(gail)&room(joe)&(![X]:(room(X)=>(X='lisa'|X='jose'|X='cassie'|X='gail'|X='joe')))& (((![X]:(room(X)=>(enjoys_macrame(X))))=>(does_not_host_a_popular_podcast_about_emerging_technologies(lisa)))&((~(![X]:(room(X)=>(enjoys_macrame(X)))))=>(![X]:(room(X)=>(((does_not_host_a_popular_podcast_about_emerging_technologies(X))=>(hosts_a_popular_podcast_about_emerging_technologies(X))))))))& ((enjoys_macrame(jose))<~>(is_an_avid_mountain_climber_who_has_scaled_several_peaks(jose)))& ((hosts_a_popular_podcast_about_emerging_technologies(jose))=>(own_a_television(lisa)))& ((![X]:(anywhere(X)=>(((is_not_an_avid_mountain_climber_who_has_scaled_several_peaks(X))|(enjoys_macrame(X))))))<~>(![X]:(room(X)=>(((does_not_enjoy_macrame(X))|(own_a_television(X)))))))& ((![X]:(room(X)=>(((is_not_an_avid_mountain_climber_who_has_scaled_several_peaks(X))|(own_a_television(X))))))=>(is_an_avid_mountain_climber_who_has_scaled_several_peaks(jose)))& (~(![X]:(~room(X)=>(own_a_television(X))))=>(![X]:(anywhere(X)=>(((is_not_an_avid_mountain_climber_who_has_scaled_several_peaks(X))=>(does_not_own_a_television(X)))))))& (![X]:(room(X)=>(((enjoys_macrame(X))=>(hosts_a_popular_podcast_about_emerging_technologies(X))))))& (hosts_a_popular_podcast_about_emerging_technologies(jose))& (own_a_television(lisa))& (![X]:(room(X)=>(hosts_a_popular_podcast_about_emerging_technologies(X))))& (enjoys_macrame(jose))& (![X]:(~room(X)=>(((hosts_a_popular_podcast_about_emerging_technologies(X))=>(does_not_enjoy_macrame(X))))))
room(lisa)&room(jose)&room(cassie)&room(gail)&room(joe)&(![X]:(room(X)=>(X='lisa'|X='jose'|X='cassie'|X='gail'|X='joe')))& hosts_a_popular_podcast_about_emerging_technologies(jose)
[ "p0", "p8", "hypothesis" ]
% SZS status Unsatisfiable for 9139927922567675100398248 % SZS output start Proof for 9139927922567675100398248 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 52. predd(paul) [input p8] 57. ~(predd(paul) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 132. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 133. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 132] 148. ~predd(paul) | ? [X0] : ((john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 57] 149. ~predd(paul) | ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 148] 163. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (john != sK4 & alice != sK4 & fred != sK4 & paul != sK4 & mary != sK4 & room(sK4)) [choice axiom] 164. ~predd(paul) | (john != sK4 & alice != sK4 & fred != sK4 & paul != sK4 & mary != sK4 & room(sK4)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 149,163] 246. room(mary) [cnf transformation 133] 247. room(paul) [cnf transformation 133] 248. room(fred) [cnf transformation 133] 249. room(alice) [cnf transformation 133] 250. room(john) [cnf transformation 133] 251. ~room(X0) | alice = X0 | fred = X0 | paul = X0 | mary = X0 | john = X0 [cnf transformation 133] 273. predd(paul) [cnf transformation 52] 278. ~predd(paul) | room(sK4) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 164] 279. ~predd(paul) | mary != sK4 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 164] 280. ~predd(paul) | paul != sK4 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 164] 281. ~predd(paul) | fred != sK4 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 164] 282. ~predd(paul) | alice != sK4 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 164] 283. ~predd(paul) | john != sK4 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 164] 317. 8 <=> predd(paul) [avatar definition] 382. 8 [avatar split clause 273,317] 386. ~predd(paul) | john != sK4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 283,250] 387. ~predd(paul) | john != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 386,249] 388. ~predd(paul) | john != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 387,248] 389. ~predd(paul) | john != sK4 | ~room(mary) [subsumption resolution 388,247] 390. ~predd(paul) | john != sK4 [subsumption resolution 389,246] 392. 22 <=> john = sK4 [avatar definition] 394. john != sK4 <- (~22) [avatar component clause 392] 395. ~22 | ~8 [avatar split clause 390,317,392] 396. ~predd(paul) | alice != sK4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 282,250] 397. ~predd(paul) | alice != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 396,249] 398. ~predd(paul) | alice != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 397,248] 399. ~predd(paul) | alice != sK4 | ~room(mary) [subsumption resolution 398,247] 400. ~predd(paul) | alice != sK4 [subsumption resolution 399,246] 402. 23 <=> alice = sK4 [avatar definition] 404. alice != sK4 <- (~23) [avatar component clause 402] 405. ~23 | ~8 [avatar split clause 400,317,402] 406. ~predd(paul) | fred != sK4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 281,250] 407. ~predd(paul) | fred != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 406,249] 408. ~predd(paul) | fred != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 407,248] 409. ~predd(paul) | fred != sK4 | ~room(mary) [subsumption resolution 408,247] 410. ~predd(paul) | fred != sK4 [subsumption resolution 409,246] 412. 24 <=> fred = sK4 [avatar definition] 414. fred != sK4 <- (~24) [avatar component clause 412] 415. ~24 | ~8 [avatar split clause 410,317,412] 416. ~predd(paul) | paul != sK4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 280,250] 417. ~predd(paul) | paul != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 416,249] 418. ~predd(paul) | paul != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 417,248] 419. ~predd(paul) | paul != sK4 | ~room(mary) [subsumption resolution 418,247] 420. ~predd(paul) | paul != sK4 [subsumption resolution 419,246] 422. 25 <=> paul = sK4 [avatar definition] 424. paul != sK4 <- (~25) [avatar component clause 422] 425. ~25 | ~8 [avatar split clause 420,317,422] 426. ~predd(paul) | mary != sK4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 279,250] 427. ~predd(paul) | mary != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 426,249] 428. ~predd(paul) | mary != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 427,248] 429. ~predd(paul) | mary != sK4 | ~room(mary) [subsumption resolution 428,247] 430. ~predd(paul) | mary != sK4 [subsumption resolution 429,246] 432. 26 <=> mary = sK4 [avatar definition] 434. mary != sK4 <- (~26) [avatar component clause 432] 435. ~26 | ~8 [avatar split clause 430,317,432] 436. ~predd(paul) | room(sK4) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 278,250] 437. ~predd(paul) | room(sK4) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 436,249] 438. ~predd(paul) | room(sK4) | ~room(paul) | ~room(mary) [subsumption resolution 437,248] 439. ~predd(paul) | room(sK4) | ~room(mary) [subsumption resolution 438,247] 440. ~predd(paul) | room(sK4) [subsumption resolution 439,246] 442. 27 <=> room(sK4) [avatar definition] 444. room(sK4) <- (27) [avatar component clause 442] 445. 27 | ~8 [avatar split clause 440,317,442] 522. alice = sK4 | fred = sK4 | paul = sK4 | mary = sK4 | john = sK4 <- (27) [resolution 251,444] 586. fred = sK4 | paul = sK4 | mary = sK4 | john = sK4 <- (~23, 27) [subsumption resolution 522,404] 587. paul = sK4 | mary = sK4 | john = sK4 <- (~23, ~24, 27) [subsumption resolution 586,414] 588. mary = sK4 | john = sK4 <- (~23, ~24, ~25, 27) [subsumption resolution 587,424] 589. john = sK4 <- (~23, ~24, ~25, ~26, 27) [subsumption resolution 588,434] 590. $false <- (~22, ~23, ~24, ~25, ~26, 27) [subsumption resolution 589,394] 591. 22 | 23 | 24 | 25 | 26 | ~27 [avatar contradiction clause 590] 592. $false [avatar sat refutation 382,395,405,415,425,435,445,591] % SZS output end Proof for 9139927922567675100398248 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.218573
Ira, Jim, Rebecca are the only persons in the room. If “not everyone outside the room enjoys watercolor painting” then “Ira who practices graffiti art neither collect rare sneakers nor enjoys fishing”. Either “everyone in the room does not volunteer for local environmental conservation projects or enjoys stargazing” or “everyone in the room practices digital art or is not a certified scuba diver with advanced underwater photography skills” but not both. Everyone in the room collect rare sneakers if they practices digital art. Ira enjoys fishing or enjoys deep-sea diving and exploring underwater caves or both. Everyone in the room enjoys macrame. Jim enjoys fishing. Rebecca watches fantasy movies. Ira has a curated collection of mid-century modern furniture. Everyone in the room neither enjoys deep-sea diving and exploring underwater caves nor collect rare sneakers if they does not watche fantasy movies. Everyone outside the room enjoys coding in Python only if they watches fantasy movies. Everyone in the room does not enjoy deep-sea diving and exploring underwater caves if they watches fantasy movies. Ira enjoys macrame. Rebecca neither enjoys watercolor painting nor enjoys coding in Python. Everyone in the room is a certified scuba diver with advanced underwater photography skills only if they does not watche fantasy movies, enjoys watercolor painting and has a curated collection of mid-century modern furniture.
Rebecca is a certified scuba diver with advanced underwater photography skills.
contradiction
room(ira)&room(jim)&room(rebecca)&(![X]:(room(X)=>(X='ira'|X='jim'|X='rebecca')))& ((~![X]:(~room(X)=>(enjoys_watercolor_painting(X))))=>((practices_graffiti_art(ira))&(~((collect_rare_sneakers(ira))|(enjoys_fishing(ira))))))& ((![X]:(room(X)=>(((enjoys_stargazing(X))|(does_not_volunteer_for_local_environmental_conservation_projects(X))))))<~>(![X]:(room(X)=>(((is_not_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))|(practices_digital_art(X)))))))& (![X]:(room(X)=>(((practices_digital_art(X))=>(collect_rare_sneakers(X))))))& (((enjoys_fishing(ira))|(enjoys_deep-sea_diving_and_exploring_underwater_caves(ira))))& (![X]:(room(X)=>(enjoys_macrame(X))))& (enjoys_fishing(jim))& (watches_fantasy_movies(rebecca))& (has_a_curated_collection_of_mid-century_modern_furniture(ira))& (![X]:(room(X)=>(((does_not_watche_fantasy_movies(X))=>(~((enjoys_deep-sea_diving_and_exploring_underwater_caves(X))|(collect_rare_sneakers(X))))))))& (![X]:(~room(X)=>(((watches_fantasy_movies(X))<=(enjoys_coding_in_Python(X))))))& (![X]:(room(X)=>(((watches_fantasy_movies(X))=>(does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(X))))))& (enjoys_macrame(ira))& (~((enjoys_watercolor_painting(rebecca))|(enjoys_coding_in_Python(rebecca))))& (![X]:(room(X)=>(((enjoys_stargazing(X))|(does_not_volunteer_for_local_environmental_conservation_projects(X))))))& (![X]:(room(X)=>(((((is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))<~>(does_not_enjoy_stargazing(X))))=>(enjoys_fishing(X))))))& (is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(jim))& (![X]:(room(X)=>(((((does_not_watche_fantasy_movies(X))&(enjoys_watercolor_painting(X))&(has_a_curated_collection_of_mid-century_modern_furniture(X))))<=(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))))& (hosts_regular_game_nights_featuring_complex_strategy_games(ira))& ((![X]:((enjoys_fishing(X))<=>(enjoys_stargazing(X)))))& (~![X]:(anywhere(X)=>(((practices_digital_art(X))=>(enjoys_stargazing(X))))))& (enjoys_stargazing(ira))
room(ira)&room(jim)&room(rebecca)&(![X]:(room(X)=>(X='ira'|X='jim'|X='rebecca')))& is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(rebecca)
[ "p0", "p7", "p17", "hypothesis" ]
% SZS status Unsatisfiable for 5440899847519064973636766 % SZS output start Proof for 5440899847519064973636766 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 51. predd(fred) [input p7] 61. ! [X0] : (room(X0) => (predl(X0) => (preda(X0) & predg(X0) & ~predd(X0)))) [input p17] 66. predl(fred) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 72. ! [X0] : (room(X0) => (predl(X0) => (predg(X0) & ~predd(X0)))) [pure predicate removal 61] 149. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 150. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 149] 165. ! [X0] : (((predg(X0) & ~predd(X0)) | ~predl(X0)) | ~room(X0)) [ennf transformation 72] 166. ! [X0] : ((predg(X0) & ~predd(X0)) | ~predl(X0) | ~room(X0)) [flattening 165] 168. predl(fred) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 66] 169. predl(fred) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 168] 262. room(fred) [cnf transformation 150] 279. predd(fred) [cnf transformation 51] 288. ~predd(X0) | ~predl(X0) | ~room(X0) [cnf transformation 166] 299. predl(fred) [cnf transformation 169] 381. ~predl(fred) | ~room(fred) [resolution 288,279] 382. ~room(fred) [subsumption resolution 381,299] 383. $false [subsumption resolution 382,262] % SZS output end Proof for 5440899847519064973636766 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.604253
Bonnie, Rodrick, Elizabeth, Jim are the only persons in the room. “Bonnie is not hated by Robert and does not hate Robert” unless “Rodrick and Robert like each other”. Everyone in the room likes Robert and is not liked by Robert if they is hated by Robert, likes Robert or is liked by Robert. Everyone in the room is not liked by Robert if they likes Robert and is not liked by Robert. Elizabeth and Rodrick do not like Robert. Jim likes Robert or hates Robert or both.
Elizabeth is liked by Robert.
contradiction
room(bonnie)&room(rodrick)&room(elizabeth)&room(jim)&(![X]:(room(X)=>(X='bonnie'|X='rodrick'|X='elizabeth'|X='jim')))& (~((like(rodrick,robert) & like(robert,rodrick)))=>(((~hate(bonnie,robert))&(~hate(robert,bonnie)))))& (![X]:(room(X)=>(((((hate(X,robert))|(like(robert,X))|(like(X,robert))))=>(((like(robert,X))&(~like(X,robert))))))))& (![X]:(room(X)=>(((((like(robert,X))&(~like(X,robert))))=>(~like(X,robert))))))& (~like(robert,elizabeth)&~like(robert,rodrick))& (((like(robert,jim))|(hate(robert,jim))))
room(bonnie)&room(rodrick)&room(elizabeth)&room(jim)&(![X]:(room(X)=>(X='bonnie'|X='rodrick'|X='elizabeth'|X='jim')))& like(elizabeth,robert)
[ "p0", "p2", "hypothesis" ]
% SZS status Unsatisfiable for 1953176985383035413596672 % SZS output start Proof for 1953176985383035413596672 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 46. ! [X0] : (room(X0) => ((like(X0,john) | like(john,X0) | hate(X0,john)) => (~like(X0,john) & like(john,X0)))) [input p2] 50. like(fred,john) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 125. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 126. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 125] 128. ! [X0] : (((~like(X0,john) & like(john,X0)) | (~like(X0,john) & ~like(john,X0) & ~hate(X0,john))) | ~room(X0)) [ennf transformation 46] 129. ! [X0] : ((~like(X0,john) & like(john,X0)) | (~like(X0,john) & ~like(john,X0) & ~hate(X0,john)) | ~room(X0)) [flattening 128] 132. like(fred,john) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 50] 133. like(fred,john) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 132] 219. room(fred) [cnf transformation 126] 231. ~like(X0,john) | ~like(X0,john) | ~room(X0) [cnf transformation 129] 241. like(fred,john) [cnf transformation 133] 242. ~like(X0,john) | ~room(X0) [duplicate literal removal 231] 273. ~room(fred) [resolution 242,241] 274. $false [subsumption resolution 273,219] % SZS output end Proof for 1953176985383035413596672 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.027 s % ------------------------------ % ------------------------------
0.197469
Myrtis, Ray, Leah, Faye are the only persons in the room. Only one person in the room enjoys virtual reality gaming unless not everyone anywhere collects antique jewelry or does not enjoy virtual reality gaming. If everyone in the room does not own a microscope or does not like Erik then Leah either is not a patient person or collects first edition books but not both. Myrtis is a quiet person. If someone does not own a microscope, is not patient or is not a quiet person then he/she is not quiet. Everyone in the room is not a quiet patient person if and only if they is quieter than Erik. Everyone in the room does not own a microscope or does not like Erik. Not everyone in the room collects antique jewelry. Everyone in the room does not own a microscope or is a patient person. Everyone in the room is not a patient quiet person only if they collects antique jewelry. Someone who is quiet is quieter than someone who is liked by Erik. Leah and Myrtis are liked by Erik.
Ray is not patient.
contradiction
room(myrtis)&room(ray)&room(leah)&room(faye)&(![X]:(room(X)=>(X='myrtis'|X='ray'|X='leah'|X='faye')))& (~(~![X]:(anywhere(X)=>(((does_not_enjoy_virtual_reality_gaming(X))|(collects_antique_jewelry(X))))))=>(((?[X]:(room(X)&enjoys_virtual_reality_gaming(X)))&(![X,Y]:((room(X)&room(Y)&(enjoys_virtual_reality_gaming(X))&(enjoys_virtual_reality_gaming(Y)))=>(X=Y))))))& ((![X]:(room(X)=>(((~like(erik,X))|(does_not_own_a_microscope(X))))))=>(((~(patient(leah)&person(leah)))<~>(collects_first_edition_books(leah)))))& (quiet(myrtis)&person(myrtis))& ((![X]:((((does_not_own_a_microscope(X))|(~patient(X))|(~(quiet(X)&person(X)))))=>(~quiet(X)))))& (![X]:(room(X)=>(((~(quiet(X)&patient(X)&person(X)))<=>(quieter(erik,X))))))& (![X]:(room(X)=>(((~like(erik,X))|(does_not_own_a_microscope(X))))))& (~![X]:(room(X)=>(collects_antique_jewelry(X))))& (![X]:(room(X)=>(((patient(X)&person(X))|(does_not_own_a_microscope(X))))))& (![X]:(room(X)=>(((collects_antique_jewelry(X))<=(~(patient(X)&quiet(X)&person(X)))))))& (?[X,Y]:((quiet(X))&(like(Y,erik))&(quieter(X,Y))))& (like(leah,erik)&like(myrtis,erik))
room(myrtis)&room(ray)&room(leah)&room(faye)&(![X]:(room(X)=>(X='myrtis'|X='ray'|X='leah'|X='faye')))& ~patient(ray)
[ "b14", "b15", "b42", "p0", "p4", "p5", "p7", "p9", "hypothesis" ]
% SZS status Unsatisfiable for 256738444273715855917794 % SZS output start Proof for 256738444273715855917794 15. ! [X0,X1] : (X0 != X1 => ((quiet(X0) & quieter(X0,X1)) => quiet(X1))) [input b14] 16. ! [X0,X1] : (X0 != X1 => ((quiet(X1) & ~quiet(X0)) => quieter(X0,X1))) [input b15] 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 48. ! [X0] : ((~(person(X0) & quiet(X0)) | ~patient(X0) | ~predp(X0)) => ~quiet(X0)) [input p4] 49. ! [X0] : (room(X0) => (~(person(X0) & patient(X0) & quiet(X0)) <=> quieter(lucy,X0))) [input p5] 51. ~! [X0] : (room(X0) => predn(X0)) [input p7] 53. ! [X0] : (room(X0) => (~(person(X0) & quiet(X0) & patient(X0)) => predn(X0))) [input p9] 56. ~patient(paul) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 81. ! [X0,X1] : ((quiet(X1) | (~quiet(X0) | ~quieter(X0,X1))) | X0 = X1) [ennf transformation 15] 82. ! [X0,X1] : (quiet(X1) | ~quiet(X0) | ~quieter(X0,X1) | X0 = X1) [flattening 81] 83. ! [X0,X1] : ((quieter(X0,X1) | (~quiet(X1) | quiet(X0))) | X0 = X1) [ennf transformation 16] 84. ! [X0,X1] : (quieter(X0,X1) | ~quiet(X1) | quiet(X0) | X0 = X1) [flattening 83] 132. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 133. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 132] 138. ! [X0] : (~quiet(X0) | ((person(X0) & quiet(X0)) & patient(X0) & predp(X0))) [ennf transformation 48] 139. ! [X0] : (~quiet(X0) | (person(X0) & quiet(X0) & patient(X0) & predp(X0))) [flattening 138] 140. ! [X0] : (((~person(X0) | ~patient(X0) | ~quiet(X0)) <=> quieter(lucy,X0)) | ~room(X0)) [ennf transformation 49] 143. ? [X0] : (~predn(X0) & room(X0)) [ennf transformation 51] 146. ! [X0] : ((predn(X0) | (person(X0) & quiet(X0) & patient(X0))) | ~room(X0)) [ennf transformation 53] 147. ! [X0] : (predn(X0) | (person(X0) & quiet(X0) & patient(X0)) | ~room(X0)) [flattening 146] 148. ~patient(paul) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 56] 149. ~patient(paul) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 148] 162. ! [X0] : ((((~person(X0) | ~patient(X0) | ~quiet(X0)) | ~quieter(lucy,X0)) & (quieter(lucy,X0) | (person(X0) & patient(X0) & quiet(X0)))) | ~room(X0)) [nnf transformation 140] 163. ! [X0] : (((~person(X0) | ~patient(X0) | ~quiet(X0) | ~quieter(lucy,X0)) & (quieter(lucy,X0) | (person(X0) & patient(X0) & quiet(X0)))) | ~room(X0)) [flattening 162] 164. ? [X0] : (~predn(X0) & room(X0)) => (~predn(sK4) & room(sK4)) [choice axiom] 165. ~predn(sK4) & room(sK4) [skolemisation 143,164] 178. ~quieter(X0,X1) | ~quiet(X0) | quiet(X1) | X0 = X1 [cnf transformation 82] 179. quieter(X0,X1) | ~quiet(X1) | quiet(X0) | X0 = X1 [cnf transformation 84] 243. paul != lucy [cnf transformation 43] 249. room(paul) [cnf transformation 133] 268. ~quiet(X0) | patient(X0) [cnf transformation 139] 270. ~quiet(X0) | person(X0) [cnf transformation 139] 272. quieter(lucy,X0) | patient(X0) | ~room(X0) [cnf transformation 163] 274. ~person(X0) | ~patient(X0) | ~quiet(X0) | ~quieter(lucy,X0) | ~room(X0) [cnf transformation 163] 276. room(sK4) [cnf transformation 165] 277. ~predn(sK4) [cnf transformation 165] 281. ~room(X0) | quiet(X0) | predn(X0) [cnf transformation 147] 293. ~patient(paul) [cnf transformation 149] 353. ~patient(X0) | ~quiet(X0) | ~quieter(lucy,X0) | ~room(X0) [subsumption resolution 274,270] 354. ~quieter(lucy,X0) | ~quiet(X0) | ~room(X0) [subsumption resolution 353,268] 386. quiet(sK4) | predn(sK4) [resolution 281,276] 387. quiet(sK4) [subsumption resolution 386,277] 442. ~quiet(lucy) | quiet(X1) | lucy = X1 | patient(X1) | ~room(X1) [resolution 178,272] 451. 19 <=> quiet(lucy) [avatar definition] 453. ~quiet(lucy) <- (~19) [avatar component clause 451] 455. ~quiet(lucy) | lucy = X1 | patient(X1) | ~room(X1) [subsumption resolution 442,268] 457. 20 <=> ! [X1] : (lucy = X1 | ~room(X1) | patient(X1)) [avatar definition] 458. ~room(X1) | lucy = X1 | patient(X1) <- (20) [avatar component clause 457] 459. 20 | ~19 [avatar split clause 455,451,457] 464. ~quiet(X0) | quiet(lucy) | lucy = X0 | ~quiet(X0) | ~room(X0) [resolution 179,354] 471. ~quiet(X0) | quiet(lucy) | lucy = X0 | ~room(X0) [duplicate literal removal 464] 472. ~room(X0) | lucy = X0 | ~quiet(X0) <- (~19) [subsumption resolution 471,453] 477. lucy = sK4 | ~quiet(sK4) <- (~19) [resolution 472,276] 484. lucy = sK4 <- (~19) [subsumption resolution 477,387] 487. quiet(lucy) <- (~19) [backward demodulation 387,484] 491. $false <- (~19) [subsumption resolution 487,453] 492. 19 [avatar contradiction clause 491] 596. paul = lucy | patient(paul) <- (20) [resolution 458,249] 599. patient(paul) <- (20) [subsumption resolution 596,243] 600. $false <- (20) [subsumption resolution 599,293] 601. ~20 [avatar contradiction clause 600] 605. $false [avatar sat refutation 459,492,601] % SZS output end Proof for 256738444273715855917794 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.041665
Victor, Kenneth, Christina are the only persons in the room. Everyone in the room can play the piano if they either is younger than Jimmy or uses an ios phone but not both. Everyone in the room can play the piano only if they is a humble calm european. Everyone in the room is a humble patient european only if they enjoys virtual reality gaming. Kenneth is a patient kind tourist. Jimmy and Kenneth like each other. Everyone in the room is older than Jimmy if they is not old, not humble. If someone is a wine connoisseur with a private cellar of vintage wines then he/she is creative and vice versa. No patient person is curious. Victor is a skilled home brewer experimenting with craft beer recipes, does not hate Geraldine or is a client of Costco. If someone writes a travel blog then he/she neither is louder than Paul nor is richer than Jimmy and vice versa. Paul and Christina like each other. Everyone in the room is a client of Geraldine and is a sibling of Cynthia if they is brave. Everyone in the room is a client of Geraldine and is a sibling of Cynthia if and only if they is a client of Geraldine. Everyone anywhere mentors a youth basketball team on weekends if they is a client of Costco and vice versa. At least one person in the room is a client of Cynthia. Everyone anywhere plays video games. Everyone in the room is not a generous brave person or cannot play the piano. Everyone in the room can play the piano if they is not a generous brave person. Everyone in the room own a television if they can play the piano.
Everyone in the room is not a wine connoisseur with a private cellar of vintage wines or is a wine connoisseur with a private cellar of vintage wines.
entailment
room(victor)&room(kenneth)&room(christina)&(![X]:(room(X)=>(X='victor'|X='kenneth'|X='christina')))& (![X]:(room(X)=>(((((younger(jimmy,X))<~>(uses_an_ios_phone(X))))=>(can_play_the_piano(X))))))& (![X]:(room(X)=>(((humble(X)&calm(X)&european(X))<=(can_play_the_piano(X))))))& (![X]:(room(X)=>(((enjoys_virtual_reality_gaming(X))<=(humble(X)&patient(X)&european(X))))))& (patient(kenneth)&kind(kenneth)&tourist(kenneth))& ((like(jimmy,kenneth) & like(kenneth,jimmy)))& (![X]:(room(X)=>(((~old(X)&~humble(X))=>(older(jimmy,X))))))& ((![X]:((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))<=>(creative(X)))))& (~?[X]:(patient(X)=>curious(X)))& (((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(victor))|(~hate(geraldine,victor))|(is_a_client_of_Costco(victor))))& ((![X]:((writes_a_travel_blog(X))<=>(~((louder(paul,X))|(richer(jimmy,X)))))))& ((like(paul,christina) & like(christina,paul)))& (![X]:(room(X)=>(((brave(X))=>(((client(geraldine,X))&(sibling(cynthia,X))))))))& (![X]:(room(X)=>(((((client(geraldine,X))&(sibling(cynthia,X))))<=>(client(geraldine,X))))))& (![X]:(anywhere(X)=>(((mentors_a_youth_basketball_team_on_weekends(X))<=>(is_a_client_of_Costco(X))))))& (((?[X]:(room(X)&client(cynthia,X)))))& (![X]:(anywhere(X)=>(plays_video_games(X))))& (![X]:(room(X)=>(((cannot_play_the_piano(X))|(~(generous(X)&brave(X)&person(X)))))))& (![X]:(room(X)=>(((~(generous(X)&brave(X)&person(X)))=>(can_play_the_piano(X))))))& (![X]:(room(X)=>(((can_play_the_piano(X))=>(own_a_television(X))))))& (~(((?[X]:(room(X)&happy(X)&person(X))))))& (~(patient(victor)&curious(victor)&tourist(victor)))& (calm(kenneth)&person(kenneth))
room(victor)&room(kenneth)&room(christina)&(![X]:(room(X)=>(X='victor'|X='kenneth'|X='christina')))& ![X]:(room(X)=>(((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))|(is_not_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X)))))
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 2684344244574852414705269 % SZS output start Proof for 2684344244574852414705269 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 67. ~(! [X0] : (room(X0) => (~preda(X0) | preda(X0))) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 68. ~(! [X0] : (room(X0) => (~preda(X0) | preda(X0))) & ! [X1] : (room(X1) => (fred = X1 | paul = X1 | mary = X1)) & room(fred) & room(paul) & room(mary)) [rectify 67] 156. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 157. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 156] 170. ? [X0] : ((preda(X0) & ~preda(X0)) & room(X0)) | ? [X1] : ((fred != X1 & paul != X1 & mary != X1) & room(X1)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 68] 171. ? [X0] : (preda(X0) & ~preda(X0) & room(X0)) | ? [X1] : (fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 170] 172. ? [X1] : (fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~sP0 [predicate definition introduction] 173. ? [X0] : (preda(X0) & ~preda(X0) & room(X0)) | sP0 | ~room(fred) | ~room(paul) | ~room(mary) [definition folding 171,172] 182. ? [X1] : (fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~sP0 [nnf transformation 172] 183. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~sP0 [rectify 182] 184. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK2 & paul != sK2 & mary != sK2 & room(sK2)) [choice axiom] 185. (fred != sK2 & paul != sK2 & mary != sK2 & room(sK2)) | ~sP0 [skolemisation 183,184] 186. ? [X0] : (preda(X0) & ~preda(X0) & room(X0)) => (preda(sK3) & ~preda(sK3) & room(sK3)) [choice axiom] 187. (preda(sK3) & ~preda(sK3) & room(sK3)) | sP0 | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 173,186] 271. room(mary) [cnf transformation 157] 272. room(paul) [cnf transformation 157] 273. room(fred) [cnf transformation 157] 274. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 157] 295. room(sK2) | ~sP0 [cnf transformation 185] 296. mary != sK2 | ~sP0 [cnf transformation 185] 297. paul != sK2 | ~sP0 [cnf transformation 185] 298. fred != sK2 | ~sP0 [cnf transformation 185] 300. ~preda(sK3) | sP0 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 187] 301. preda(sK3) | sP0 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 187] 305. 1 <=> sP0 [avatar definition] 309. 2 <=> fred = sK2 [avatar definition] 311. fred != sK2 <- (~2) [avatar component clause 309] 312. ~1 | ~2 [avatar split clause 298,309,305] 314. 3 <=> paul = sK2 [avatar definition] 316. paul != sK2 <- (~3) [avatar component clause 314] 317. ~1 | ~3 [avatar split clause 297,314,305] 319. 4 <=> mary = sK2 [avatar definition] 321. mary != sK2 <- (~4) [avatar component clause 319] 322. ~1 | ~4 [avatar split clause 296,319,305] 324. 5 <=> room(sK2) [avatar definition] 326. room(sK2) <- (5) [avatar component clause 324] 327. ~1 | 5 [avatar split clause 295,324,305] 328. preda(sK3) | sP0 | ~room(paul) | ~room(mary) [subsumption resolution 301,273] 329. preda(sK3) | sP0 | ~room(mary) [subsumption resolution 328,272] 330. preda(sK3) | sP0 [subsumption resolution 329,271] 332. 6 <=> preda(sK3) [avatar definition] 335. 1 | 6 [avatar split clause 330,332,305] 336. ~preda(sK3) | sP0 | ~room(paul) | ~room(mary) [subsumption resolution 300,273] 337. ~preda(sK3) | sP0 | ~room(mary) [subsumption resolution 336,272] 338. ~preda(sK3) | sP0 [subsumption resolution 337,271] 339. 1 | ~6 [avatar split clause 338,332,305] 482. paul = sK2 | mary = sK2 | fred = sK2 <- (5) [resolution 274,326] 496. mary = sK2 | fred = sK2 <- (~3, 5) [subsumption resolution 482,316] 497. fred = sK2 <- (~3, ~4, 5) [subsumption resolution 496,321] 498. $false <- (~2, ~3, ~4, 5) [subsumption resolution 497,311] 499. 2 | 3 | 4 | ~5 [avatar contradiction clause 498] 500. $false [avatar sat refutation 312,317,322,327,335,339,499] % SZS output end Proof for 2684344244574852414705269 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.034 s % ------------------------------ % ------------------------------
0
Barbara, Gretchen, Sarah, Roger, Kelly are the only persons in the room. It is not the case that “Gretchen is a funny person”. Barbara is the oldest in the room. Gretchen is the least rich in the room. Everyone in the room who is a wise person is a old person. Roger is a curious generous person. Everyone anywhere is patient. All generous persons are tall. Barbara is a wise person. Barbara is not a funny patient creative person. Everyone in the room who is funny is not a calm person. Gretchen is the least quiet in the room. Sarah is not a curious person. Everyone in the room neither is a quiet creative person nor is a generous calm strong person. Everyone in the room who is a quiet person is not curious.
Gretchen is quiet.
contradiction
room(barbara)&room(gretchen)&room(sarah)&room(roger)&room(kelly)&(![X]:(room(X)=>(X='barbara'|X='gretchen'|X='sarah'|X='roger'|X='kelly')))& (~(funny(gretchen)&person(gretchen)))& (![X]:((room(X)&(X!=barbara))=>older(X,barbara)))& (![X]:((room(X)&(X!=gretchen))=>richer(gretchen,X)))& (![X]:(room(X)=>(((wise(X)&person(X))=>(old(X)&person(X))))))& (curious(roger)&generous(roger)&person(roger))& (![X]:(anywhere(X)=>(patient(X))))& (![X]:(generous(X)=>tall(X)))& (wise(barbara)&person(barbara))& (~(funny(barbara)&patient(barbara)&creative(barbara)&person(barbara)))& (![X]:(room(X)=>(((funny(X))=>(~(calm(X)&person(X)))))))& (![X]:((room(X)&(X!=gretchen))=>quieter(gretchen,X)))& (~(curious(sarah)&person(sarah)))& (![X]:(room(X)=>(~((quiet(X)&creative(X)&person(X))|(generous(X)&calm(X)&strong(X)&person(X))))))& (~kind(gretchen)&~tall(gretchen)&~old(gretchen))& (![X]:(room(X)=>(((creative(X))=>(~(tall(X)&calm(X)&strong(X)&person(X)))))))& (![X]:(room(X)=>(((quiet(X)&person(X))=>(~curious(X))))))
room(barbara)&room(gretchen)&room(sarah)&room(roger)&room(kelly)&(![X]:(room(X)=>(X='barbara'|X='gretchen'|X='sarah'|X='roger'|X='kelly')))& quiet(gretchen)
[ "b14", "b42", "p0", "p5", "p11", "p16", "hypothesis" ]
% SZS status Unsatisfiable for 3130471477541867912276341 % SZS output start Proof for 3130471477541867912276341 15. ! [X0,X1] : (X0 != X1 => ((quiet(X0) & quieter(X0,X1)) => quiet(X1))) [input b14] 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 49. person(alice) & generous(alice) & curious(alice) [input p5] 55. ! [X0] : ((paul != X0 & room(X0)) => quieter(paul,X0)) [input p11] 60. ! [X0] : (room(X0) => ((person(X0) & quiet(X0)) => ~curious(X0))) [input p16] 61. quiet(paul) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 91. ! [X0,X1] : ((quiet(X1) | (~quiet(X0) | ~quieter(X0,X1))) | X0 = X1) [ennf transformation 15] 92. ! [X0,X1] : (quiet(X1) | ~quiet(X0) | ~quieter(X0,X1) | X0 = X1) [flattening 91] 142. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 143. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 142] 151. ! [X0] : (quieter(paul,X0) | (paul = X0 | ~room(X0))) [ennf transformation 55] 152. ! [X0] : (quieter(paul,X0) | paul = X0 | ~room(X0)) [flattening 151] 154. ! [X0] : ((~curious(X0) | (~person(X0) | ~quiet(X0))) | ~room(X0)) [ennf transformation 60] 155. ! [X0] : (~curious(X0) | ~person(X0) | ~quiet(X0) | ~room(X0)) [flattening 154] 156. quiet(paul) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 61] 157. quiet(paul) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 156] 169. ~quieter(X0,X1) | ~quiet(X0) | quiet(X1) | X0 = X1 [cnf transformation 92] 216. paul != alice [cnf transformation 43] 242. room(alice) [cnf transformation 143] 249. curious(alice) [cnf transformation 49] 251. person(alice) [cnf transformation 49] 255. quieter(paul,X0) | paul = X0 | ~room(X0) [cnf transformation 152] 259. ~curious(X0) | ~person(X0) | ~quiet(X0) | ~room(X0) [cnf transformation 155] 266. quiet(paul) [cnf transformation 157] 280. ~person(alice) | ~quiet(alice) | ~room(alice) [resolution 259,249] 281. ~quiet(alice) | ~room(alice) [subsumption resolution 280,251] 282. ~quiet(alice) [subsumption resolution 281,242] 337. ~quiet(paul) | quiet(X0) | paul = X0 | paul = X0 | ~room(X0) [resolution 169,255] 338. ~quiet(paul) | quiet(X0) | paul = X0 | ~room(X0) [duplicate literal removal 337] 339. ~room(X0) | paul = X0 | quiet(X0) [subsumption resolution 338,266] 351. paul = alice | quiet(alice) [resolution 339,242] 355. quiet(alice) [subsumption resolution 351,216] 356. $false [subsumption resolution 355,282] % SZS output end Proof for 3130471477541867912276341 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.034 s % ------------------------------ % ------------------------------
0
Lisa is the only person in the room. If “everyone outside the room plays as a goalkeeper for a local amateur soccer team or does not collect first edition books” then “Lisa collects first edition books”. “Everyone in the room who reads mystery novels enjoys logic puzzles” unless “everyone in the room is not an expert in identifying and foraging wild edible plants or trains for and competes in international triathlons”. Either “everyone in the room does not enjoy logic puzzles or is an avid collector of autographed memorabilia from famous musicians” or “everyone in the room is not a dedicated advocate for digital privacy and encryption or creates bespoke furniture pieces from reclaimed wood” but not both. “More than one person in the room is a drone photographer” unless “everyone in the room does not own a 3D printer or is a dedicated advocate for digital privacy and encryption”. Lisa who is an avid collector of autographed memorabilia from famous musicians enjoys landscape photography. Everyone in the room who owns a significant collection of rare gemstones and minerals collects first edition books. Everyone anywhere collects first edition books only if they enjoys landscape photography. Lisa trains for and competes in international triathlons. Everyone in the room who is a coffee connoisseur owns a 3D printer, enjoys watercolor painting or collects vintage stamps. Everyone outside the room who owns a 3D printer, enjoys watercolor painting or collects vintage stamps creates bespoke furniture pieces from reclaimed wood. Lisa is a client of LVMH. Lisa owns a 3D printer. Everyone in the room reads mystery novels or does not collect comic books. Everyone in the room is an amateur astronomer who builds and uses custom telescopes or does not train for and competes in international triathlons. Lisa is an avid collector of autographed memorabilia from famous musicians. Everyone in the room is a client of LVMH only if they reads mystery novels. Lisa does not collect first edition books. Everyone anywhere who is a coffee connoisseur is an avid collector of autographed memorabilia from famous musicians. Everyone in the room trains for and competes in international triathlons or does not create bespoke furniture pieces from reclaimed wood. Everyone in the room is not an amateur astronomer who builds and uses custom telescopes or trains for and competes in international triathlons. Everyone in the room who is not an amateur astronomer who builds and uses custom telescopes has a piercing. Someone anywhere reads mystery novels.
It is not the case that “Lisa collects vintage stamps”.
neutral
room(lisa)&(![X]:(room(X)=>(X='lisa')))& ((![X]:(~room(X)=>(((does_not_collect_first_edition_books(X))|(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))=>(collects_first_edition_books(lisa)))& (~(![X]:(room(X)=>(((trains_for_and_competes_in_international_triathlons(X))|(is_not_an_expert_in_identifying_and_foraging_wild_edible_plants(X))))))=>(![X]:(room(X)=>(((reads_mystery_novels(X))=>(enjoys_logic_puzzles(X)))))))& ((![X]:(room(X)=>(((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))|(does_not_enjoy_logic_puzzles(X))))))<~>(![X]:(room(X)=>(((creates_bespoke_furniture_pieces_from_reclaimed_wood(X))|(is_not_a_dedicated_advocate_for_digital_privacy_and_encryption(X)))))))& (~(![X]:(room(X)=>(((is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))|(does_not_own_a_3D_printer(X))))))=>((?[X,Y]:(room(X)&room(Y)&(is_a_drone_photographer(X)&is_a_drone_photographer(Y))&(X!=Y)))))& ((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(lisa))&(enjoys_landscape_photography(lisa)))& (![X]:(room(X)=>(((owns_a_significant_collection_of_rare_gemstones_and_minerals(X))=>(collects_first_edition_books(X))))))& (![X]:(anywhere(X)=>(((enjoys_landscape_photography(X))<=(collects_first_edition_books(X))))))& (trains_for_and_competes_in_international_triathlons(lisa))& (![X]:(room(X)=>(((is_a_coffee_connoisseur(X))=>(((owns_a_3D_printer(X))|(enjoys_watercolor_painting(X))|(collects_vintage_stamps(X))))))))& (![X]:(~room(X)=>(((((owns_a_3D_printer(X))|(enjoys_watercolor_painting(X))|(collects_vintage_stamps(X))))=>(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))))& (is_a_client_of_LVMH(lisa))& (owns_a_3D_printer(lisa))& (![X]:(room(X)=>(((does_not_collect_comic_books(X))|(reads_mystery_novels(X))))))& (![X]:(room(X)=>(((does_not_train_for_and_competes_in_international_triathlons(X))|(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))))& (is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(lisa))& (![X]:(room(X)=>(((reads_mystery_novels(X))<=(is_a_client_of_LVMH(X))))))& (does_not_collect_first_edition_books(lisa))& (![X]:(anywhere(X)=>(((is_a_coffee_connoisseur(X))=>(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))))& (![X]:(room(X)=>(((does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(X))|(trains_for_and_competes_in_international_triathlons(X))))))& (![X]:(room(X)=>(((trains_for_and_competes_in_international_triathlons(X))|(is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))))& (![X]:(room(X)=>(((is_not_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))=>(has_a_piercing(X))))))& (?[X]:(anywhere(X)&(reads_mystery_novels(X))))& (![X]:(room(X)=>(((collects_first_edition_books(X))=>(enjoys_logic_puzzles(X))))))
room(lisa)&(![X]:(room(X)=>(X='lisa')))& ~(collects_vintage_stamps(lisa))
[]
null
0.07409
Henry is the only person in the room. If “Henry has a curated collection of mid-century modern furniture” then “everyone in the room who neither can play the harmonica nor collects action figures collects action figures”. Either “everyone outside the room collects action figures or does not practice archery” or “everyone in the room has a curated collection of mid-century modern furniture or does not have a curated collection of mid-century modern furniture” but not both. If “everyone in the room can play the harmonica or cannot play the harmonica” then “Henry does not practice archery”. Henry collects action figures. Henry does not practice archery. Henry can play the harmonica.
Henry has a curated collection of mid-century modern furniture.
neutral
room(henry)&(![X]:(room(X)=>(X='henry')))& ((has_a_curated_collection_of_mid-century_modern_furniture(henry))=>(![X]:(room(X)=>(((~((can_play_the_harmonica(X))|(collects_action_figures(X))))=>(collects_action_figures(X)))))))& ((![X]:(~room(X)=>(((does_not_practice_archery(X))|(collects_action_figures(X))))))<~>(![X]:(room(X)=>(((does_not_have_a_curated_collection_of_mid-century_modern_furniture(X))|(has_a_curated_collection_of_mid-century_modern_furniture(X)))))))& ((![X]:(room(X)=>(((cannot_play_the_harmonica(X))|(can_play_the_harmonica(X))))))=>(does_not_practice_archery(henry)))& (collects_action_figures(henry))& (does_not_practice_archery(henry))& (can_play_the_harmonica(henry))
room(henry)&(![X]:(room(X)=>(X='henry')))& has_a_curated_collection_of_mid-century_modern_furniture(henry)
[]
null
0.134478
Sue, Christopher are the only persons in the room. “It is not the case that “Sue is an expert in identifying and foraging wild edible plants”” only if “Christopher plays as a goalkeeper for a local amateur soccer team”. If “Sue is right-handed” then “Christopher is an avid mountain climber who has scaled several peaks”. Someone in the room creates YouTube content. Christopher hosts themed dinner parties featuring gourmet home-cooked meals. No one anywhere who hosts a popular podcast about emerging technologies is an active member of a local robotics club. Sue creates YouTube content. Everyone anywhere who bakes bread at home collects luxury watches. Sue enjoys stargazing. Sue bakes bread at home. Christopher hosts a popular podcast about emerging technologies. Christopher collects vintage vinyl records. Not everyone in the room who hosts a popular podcast about emerging technologies neither builds model airplanes nor creates YouTube content. Christopher does practice yoga. Christopher competes in national level swimming championships. Christopher plays as a goalkeeper for a local amateur soccer team. Everyone outside the room who bakes bread at home hosts themed dinner parties featuring gourmet home-cooked meals.
Sue collects luxury watches.
entailment
room(sue)&room(christopher)&(![X]:(room(X)=>(X='sue'|X='christopher')))& ((~(is_an_expert_in_identifying_and_foraging_wild_edible_plants(sue)))=>(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(christopher)))& ((is_right-handed(sue))=>(is_an_avid_mountain_climber_who_has_scaled_several_peaks(christopher)))& (?[X]:(room(X)&(creates_YouTube_content(X))))& (hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(christopher))& (~?[X]:(anywhere(X)=>(((hosts_a_popular_podcast_about_emerging_technologies(X))=>(is_an_active_member_of_a_local_robotics_club(X))))))& (creates_YouTube_content(sue))& (![X]:(anywhere(X)=>(((bakes_bread_at_home(X))=>(collects_luxury_watches(X))))))& (enjoys_stargazing(sue))& (bakes_bread_at_home(sue))& (hosts_a_popular_podcast_about_emerging_technologies(christopher))& (collects_vintage_vinyl_records(christopher))& (~![X]:(room(X)=>(((hosts_a_popular_podcast_about_emerging_technologies(X))=>(~((builds_model_airplanes(X))|(creates_YouTube_content(X))))))))& (does_practice_yoga(christopher))& (competes_in_national_level_swimming_championships(christopher))& (plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(christopher))& (![X]:(~room(X)=>(((bakes_bread_at_home(X))=>(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))& (writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(christopher))& (is_right-handed(sue))& (hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(sue))
room(sue)&room(christopher)&(![X]:(room(X)=>(X='sue'|X='christopher')))& collects_luxury_watches(sue)
[ "b4", "p0", "p7", "p9", "hypothesis" ]
% SZS status Unsatisfiable for 1340135896364248359342673 % SZS output start Proof for 1340135896364248359342673 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 51. ! [X0] : (anywhere(X0) => (predv(X0) => predh(X0))) [input p7] 53. predv(mary) [input p9] 64. ~(predh(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 155. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 156. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 155] 158. ! [X0] : ((predh(X0) | ~predv(X0)) | ~anywhere(X0)) [ennf transformation 51] 159. ! [X0] : (predh(X0) | ~predv(X0) | ~anywhere(X0)) [flattening 158] 161. ~predh(mary) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 64] 162. ~predh(mary) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 161] 168. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK2 & mary != sK2 & room(sK2)) [choice axiom] 169. ~predh(mary) | (paul != sK2 & mary != sK2 & room(sK2)) | ~room(paul) | ~room(mary) [skolemisation 162,168] 170. anywhere(X0) [cnf transformation 5] 251. room(mary) [cnf transformation 156] 252. room(paul) [cnf transformation 156] 253. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 156] 256. predh(X0) | ~predv(X0) | ~anywhere(X0) [cnf transformation 159] 257. predv(mary) [cnf transformation 53] 259. ~predh(mary) | room(sK2) | ~room(paul) | ~room(mary) [cnf transformation 169] 260. ~predh(mary) | mary != sK2 | ~room(paul) | ~room(mary) [cnf transformation 169] 261. ~predh(mary) | paul != sK2 | ~room(paul) | ~room(mary) [cnf transformation 169] 262. ~predv(X0) | predh(X0) [subsumption resolution 256,170] 263. ~predh(mary) | paul != sK2 | ~room(mary) [subsumption resolution 261,252] 264. ~predh(mary) | paul != sK2 [subsumption resolution 263,251] 266. 1 <=> paul = sK2 [avatar definition] 268. paul != sK2 <- (~1) [avatar component clause 266] 270. 2 <=> predh(mary) [avatar definition] 273. ~1 | ~2 [avatar split clause 264,270,266] 274. ~predh(mary) | mary != sK2 | ~room(mary) [subsumption resolution 260,252] 275. ~predh(mary) | mary != sK2 [subsumption resolution 274,251] 277. 3 <=> mary = sK2 [avatar definition] 279. mary != sK2 <- (~3) [avatar component clause 277] 280. ~3 | ~2 [avatar split clause 275,270,277] 281. ~predh(mary) | room(sK2) | ~room(mary) [subsumption resolution 259,252] 282. ~predh(mary) | room(sK2) [subsumption resolution 281,251] 284. 4 <=> room(sK2) [avatar definition] 286. room(sK2) <- (4) [avatar component clause 284] 287. 4 | ~2 [avatar split clause 282,270,284] 288. predh(mary) [resolution 262,257] 291. 2 [avatar split clause 288,270] 296. mary = sK2 | paul = sK2 <- (4) [resolution 253,286] 315. paul = sK2 <- (~3, 4) [subsumption resolution 296,279] 316. $false <- (~1, ~3, 4) [subsumption resolution 315,268] 317. 1 | 3 | ~4 [avatar contradiction clause 316] 318. $false [avatar sat refutation 273,280,287,291,317] % SZS output end Proof for 1340135896364248359342673 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.50855
Eric, Linda are the only persons in the room. Either “Linda practices graffiti art” or “everyone in the room has a curated collection of mid-century modern furniture or does not own an extensive assortment of vintage comic book memorabilia” but not both. Either “everyone in the room has lived in exactly three countries or does not enjoy trail running” or “not everyone in the room is a cybersecurity expert or does not enjoy trail running” but not both. Either “Linda neither enjoys bird watching nor owns a microscope” or “Linda has a curated collection of mid-century modern furniture” but not both. Either “everyone in the room is an active member of a local robotics club, enjoys stand-up paddleboarding or enjoys spelunking” or “Linda plays the violin, is a scotch connoisseur or frequently participates in hackathons and coding competitions” but not both. Eric enjoys spelunking. Linda does not enjoy trail running. Eric does enjoy trail running. Eric does enjoy trail running, does not frequently participates in hackathons and coding competitions or is a dedicated volunteer for local community service projects. Not everyone anywhere who has a tattoo, is a scotch connoisseur or frequently participates in hackathons and coding competitions enjoys rooftop gardening or streams on Twitch or both. Everyone in the room who enjoys rooftop gardening or streams on Twitch or both enjoys spelunking, streams on Twitch or owns a microscope. Eric neither is an active member of a local robotics club nor enjoys rooftop gardening. Linda plays the drums. Linda enjoys camping and organizing outdoor survival workshops. Eric enjoys rooftop gardening or streams on Twitch or both. Everyone in the room is a scotch connoisseur, has a curated collection of mid-century modern furniture or plays the violin if they neither has lived in exactly three countries nor enjoys stand-up paddleboarding. Everyone anywhere does enjoy trail running if they does not use a Windows laptop, owns an extensive assortment of vintage comic book memorabilia or is a scotch connoisseur. Eric has a tattoo, is a scotch connoisseur or frequently participates in hackathons and coding competitions. If someone enjoys spelunking then he/she enjoys camping and organizing outdoor survival workshops and vice versa. Everyone in the room is a scotch connoisseur if they plays the violin and vice versa. Everyone in the room neither is a certified scuba diver with advanced underwater photography skills nor is a scotch connoisseur if they plays the violin. Everyone in the room neither is a certified scuba diver with advanced underwater photography skills nor is a scotch connoisseur if they owns a microscope and vice versa.
Eric streams on Twitch.
entailment
room(eric)&room(linda)&(![X]:(room(X)=>(X='eric'|X='linda')))& ((practices_graffiti_art(linda))<~>(![X]:(room(X)=>(((does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))|(has_a_curated_collection_of_mid-century_modern_furniture(X)))))))& ((![X]:(room(X)=>(((does_not_enjoy_trail_running(X))|(has_lived_in_exactly_three_countries(X))))))<~>(~![X]:(room(X)=>(((does_not_enjoy_trail_running(X))|(is_a_cybersecurity_expert(X)))))))& ((~((enjoys_bird_watching(linda))|(owns_a_microscope(linda))))<~>(has_a_curated_collection_of_mid-century_modern_furniture(linda)))& ((![X]:(room(X)=>(((is_an_active_member_of_a_local_robotics_club(X))|(enjoys_stand-up_paddleboarding(X))|(enjoys_spelunking(X))))))<~>(((plays_the_violin(linda))|(is_a_scotch_connoisseur(linda))|(frequently_participates_in_hackathons_and_coding_competitions(linda)))))& (enjoys_spelunking(eric))& (does_not_enjoy_trail_running(linda))& (does_enjoy_trail_running(eric))& (((does_enjoy_trail_running(eric))|(does_not_frequently_participates_in_hackathons_and_coding_competitions(eric))|(is_a_dedicated_volunteer_for_local_community_service_projects(eric))))& (~![X]:(anywhere(X)=>(((((has_a_tattoo(X))|(is_a_scotch_connoisseur(X))|(frequently_participates_in_hackathons_and_coding_competitions(X))))=>(((enjoys_rooftop_gardening(X))|(streams_on_Twitch(X))))))))& (![X]:(room(X)=>(((((enjoys_rooftop_gardening(X))|(streams_on_Twitch(X))))=>(((enjoys_spelunking(X))|(streams_on_Twitch(X))|(owns_a_microscope(X))))))))& (~((is_an_active_member_of_a_local_robotics_club(eric))|(enjoys_rooftop_gardening(eric))))& (plays_the_drums(linda))& (enjoys_camping_and_organizing_outdoor_survival_workshops(linda))& (((enjoys_rooftop_gardening(eric))|(streams_on_Twitch(eric))))& (![X]:(room(X)=>(((~((has_lived_in_exactly_three_countries(X))|(enjoys_stand-up_paddleboarding(X))))=>(((is_a_scotch_connoisseur(X))|(has_a_curated_collection_of_mid-century_modern_furniture(X))|(plays_the_violin(X))))))))& (![X]:(anywhere(X)=>(((((does_not_use_a_Windows_laptop(X))|(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))|(is_a_scotch_connoisseur(X))))=>(does_enjoy_trail_running(X))))))& (((has_a_tattoo(eric))|(is_a_scotch_connoisseur(eric))|(frequently_participates_in_hackathons_and_coding_competitions(eric))))& ((![X]:((enjoys_spelunking(X))<=>(enjoys_camping_and_organizing_outdoor_survival_workshops(X)))))& (![X]:(room(X)=>(((is_a_scotch_connoisseur(X))<=>(plays_the_violin(X))))))& (![X]:(room(X)=>(((plays_the_violin(X))=>(~((is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))|(is_a_scotch_connoisseur(X))))))))& (![X]:(room(X)=>(((~((is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))|(is_a_scotch_connoisseur(X))))<=>(owns_a_microscope(X))))))
room(eric)&room(linda)&(![X]:(room(X)=>(X='eric'|X='linda')))& streams_on_Twitch(eric)
[ "p0", "p11", "p14", "hypothesis" ]
% SZS status Unsatisfiable for 773894250117174024851604 % SZS output start Proof for 773894250117174024851604 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 55. ~(predk(mary) | predu(mary)) [input p11] 58. predt(mary) | predk(mary) [input p14] 66. ~(predt(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 144. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 145. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 144] 157. ~predk(mary) & ~predu(mary) [ennf transformation 55] 166. ~predt(mary) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 66] 167. ~predt(mary) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 166] 196. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK6 & mary != sK6 & room(sK6)) [choice axiom] 197. ~predt(mary) | (paul != sK6 & mary != sK6 & room(sK6)) | ~room(paul) | ~room(mary) [skolemisation 167,196] 279. room(mary) [cnf transformation 145] 280. room(paul) [cnf transformation 145] 281. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 145] 319. ~predk(mary) [cnf transformation 157] 321. predt(mary) | predk(mary) [cnf transformation 58] 334. ~predt(mary) | room(sK6) | ~room(paul) | ~room(mary) [cnf transformation 197] 335. ~predt(mary) | mary != sK6 | ~room(paul) | ~room(mary) [cnf transformation 197] 336. ~predt(mary) | paul != sK6 | ~room(paul) | ~room(mary) [cnf transformation 197] 461. predt(mary) [subsumption resolution 321,319] 465. paul != sK6 | ~room(paul) | ~room(mary) [subsumption resolution 336,461] 466. paul != sK6 | ~room(mary) [subsumption resolution 465,280] 467. paul != sK6 [subsumption resolution 466,279] 468. mary != sK6 | ~room(paul) | ~room(mary) [subsumption resolution 335,461] 469. mary != sK6 | ~room(mary) [subsumption resolution 468,280] 470. mary != sK6 [subsumption resolution 469,279] 471. room(sK6) | ~room(paul) | ~room(mary) [subsumption resolution 334,461] 472. room(sK6) | ~room(mary) [subsumption resolution 471,280] 473. room(sK6) [subsumption resolution 472,279] 485. mary = sK6 | paul = sK6 [resolution 281,473] 495. paul = sK6 [subsumption resolution 485,470] 496. $false [subsumption resolution 495,467] % SZS output end Proof for 773894250117174024851604 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.069571
Marsha is the only person in the room. If 'at least one person in the room travels domestically frequently' then 'it is not the case that 'more than one person in the room is a tea enthusiast''. It is true that 'at least one person in the room can play the flute'. Someone in the room is an active member of a local robotics club. At least one person in the room watches fantasy movies. It is not the case that 'at least one person in the room travels domestically frequently'.
Marsha travels domestically frequently.
contradiction
room(marsha)&(![X]:(room(X)=>(X='marsha')))& ((((?[X]:(room(X)&travels_domestically_frequently(X)))))=>(~((?[X,Y]:(room(X)&room(Y)&(is_a_tea_enthusiast(X)&is_a_tea_enthusiast(Y))&(X!=Y))))))& (((?[X]:(room(X)&can_play_the_flute(X)))))& (?[X]:(room(X)&(is_an_active_member_of_a_local_robotics_club(X))))& (((?[X]:(room(X)&watches_fantasy_movies(X)))))& (?[X]:(room(X)&(owns_a_smart_tv(X))))& (~((?[X,Y]:(room(X)&room(Y)&(does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X)&does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(Y))&(X!=Y)))))& (~((?[X,Y]:(room(X)&room(Y)&(is_a_tea_enthusiast(X)&is_a_tea_enthusiast(Y))&(X!=Y)))))& ((practices_tai_chi(marsha))&(is_an_avid_mountain_climber_who_has_scaled_several_peaks(marsha)))& (((is_an_avid_hiker(marsha))|(enjoys_deep-sea_diving_and_exploring_underwater_caves(marsha))))& (~(~(~(((?[X]:(room(X)&((is_a_tea_enthusiast(X))|(does_not_collect_antique_jewelry(X))))))))))& (~(((?[X]:(room(X)&travels_domestically_frequently(X))))))& (enjoys_camping_and_organizing_outdoor_survival_workshops(marsha))& ((![X]:((collects_comic_books(X))<=>(enjoys_landscape_photography(X)))))& (?[X]:(room(X)&(maintains_a_large,_organic_vegetable_garden_year-round(X))))& (is_not_a_certified_yoga_instructor_teaching_classes_weekly(marsha))
room(marsha)&(![X]:(room(X)=>(X='marsha')))& travels_domestically_frequently(marsha)
[ "p0", "p11", "hypothesis" ]
% SZS status Unsatisfiable for 533680647905348244252363 % SZS output start Proof for 533680647905348244252363 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 55. ~? [X0] : (predc(X0) & room(X0)) [input p11] 60. predc(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 150. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 151. ! [X0] : (~predc(X0) | ~room(X0)) [ennf transformation 55] 152. predc(mary) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 60] 244. room(mary) [cnf transformation 150] 250. ~predc(X0) | ~room(X0) [cnf transformation 151] 254. predc(mary) [cnf transformation 152] 255. ~room(mary) [resolution 250,254] 256. $false [subsumption resolution 255,244] % SZS output end Proof for 533680647905348244252363 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.287675
Barbara, Connie, Bettye are the only persons in the room. Bettye is a tall person. Everyone in the room is not a humble person. Barbara and Bettye are patient. Barbara is old or is wise or both.
Barbara is old.
neutral
room(barbara)&room(connie)&room(bettye)&(![X]:(room(X)=>(X='barbara'|X='connie'|X='bettye')))& (tall(bettye)&person(bettye))& (![X]:(room(X)=>(~(humble(X)&person(X)))))& (patient(barbara)&patient(bettye))& (((old(barbara))|(wise(barbara))))& ((curious(connie))&(creative(bettye)))& (![X]:(room(X)=>(~(happy(X)&person(X)))))& (~(creative(barbara)&person(barbara)))& (wise(bettye))
room(barbara)&room(connie)&room(bettye)&(![X]:(room(X)=>(X='barbara'|X='connie'|X='bettye')))& old(barbara)
[]
null
0.057335
Israel, Anthony are the only persons in the room. Israel is old. Ruth is older than Israel. If someone is not happy then he/she is not kind or is richer than Mariana or both and vice versa. Everyone in the room is happy if they is a quiet patient person. Anthony is a calm person. Everyone in the room is not tall if they is older than Ruth. Only one person in the room is creative. It is not the case that "Israel and Anthony are respectively wise and calm". Israel dreamt that "everyone in the room is wise if they is quieter than Ruth". Anthony is quieter than Mariana. Everyone in the room is a kind brave creative person if they is quieter than Mariana and vice versa. Everyone in the room is kind. Anthony is a strong tall person or is not quiet or both. Anthony is older than Ruth.
Israel is quiet.
contradiction
room(israel)&room(anthony)&(![X]:(room(X)=>(X='israel'|X='anthony')))& (old(israel))& (older(israel,ruth))& ((![X]:((~happy(X))<=>(((~kind(X))|(richer(mariana,X)))))))& (![X]:(room(X)=>(((quiet(X)&patient(X)&person(X))=>(happy(X))))))& (calm(anthony)&person(anthony))& (![X]:(room(X)=>(((older(ruth,X))=>(~tall(X))))))& (((?[X]:(room(X)&creative(X)))&(![X,Y]:((room(X)&room(Y)&(creative(X))&(creative(Y)))=>(X=Y)))))& (~((wise(israel))&(calm(anthony))))& ((israel_dream=>(![X]:(room(X)=>(((quieter(ruth,X))=>(wise(X))))))))& (quieter(mariana,anthony))& (![X]:(room(X)=>(((kind(X)&brave(X)&creative(X)&person(X))<=>(quieter(mariana,X))))))& (![X]:(room(X)=>(kind(X))))& ((![X]:((~wise(X))<=>(~patient(X)))))& ((old(israel))&(curious(anthony)))& (wise(anthony)&patient(anthony)&person(anthony))& (![X]:(room(X)=>(((richer(raphael,X))=>(quieter(raphael,X))))))& (((strong(anthony)&tall(anthony)&person(anthony))|(~quiet(anthony))))& (![X]:(room(X)=>(((tall(X))=>(patient(X)&person(X))))))& (![X]:(room(X)=>(((patient(X)&person(X))=>(richer(ruth,X))))))& (![X]:(room(X)=>(((happy(X)&person(X))=>(((generous(X)&curious(X)&humble(X)&person(X))|(patient(X)&person(X))|(quieter(ruth,X))))))))& (older(ruth,anthony))& (![X]:(room(X)=>(((kind(X))=>(((quieter(raphael,X))|(happy(X)&person(X))))))))
room(israel)&room(anthony)&(![X]:(room(X)=>(X='israel'|X='anthony')))& quiet(israel)
[ "b14", "b15", "b42", "p0", "p6", "p7", "p10", "p11", "p17", "p21", "hypothesis" ]
% SZS status Unsatisfiable for 3990558115691700986928641 % SZS output start Proof for 3990558115691700986928641 15. ! [X0,X1] : (X0 != X1 => ((quiet(X0) & quieter(X0,X1)) => quiet(X1))) [input b14] 16. ! [X0,X1] : (X0 != X1 => ((quiet(X1) & ~quiet(X0)) => quieter(X0,X1))) [input b15] 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 50. ! [X0] : (room(X0) => (older(john,X0) => ~tall(X0))) [input p6] 51. ! [X0,X1] : ((creative(X1) & creative(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (creative(X0) & room(X0)) [input p7] 54. quieter(alice,paul) [input p10] 55. ! [X0] : (room(X0) => ((person(X0) & creative(X0) & brave(X0) & kind(X0)) <=> quieter(alice,X0))) [input p11] 61. ~quiet(paul) | (person(paul) & tall(paul) & strong(paul)) [input p17] 65. older(john,paul) [input p21] 67. quiet(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 68. ! [X0,X1] : ((creative(X1) & creative(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (creative(X2) & room(X2)) [rectify 51] 71. ~quiet(paul) | (person(paul) & tall(paul)) [pure predicate removal 61] 96. ! [X0,X1] : ((quiet(X1) | (~quiet(X0) | ~quieter(X0,X1))) | X0 = X1) [ennf transformation 15] 97. ! [X0,X1] : (quiet(X1) | ~quiet(X0) | ~quieter(X0,X1) | X0 = X1) [flattening 96] 98. ! [X0,X1] : ((quieter(X0,X1) | (~quiet(X1) | quiet(X0))) | X0 = X1) [ennf transformation 16] 99. ! [X0,X1] : (quieter(X0,X1) | ~quiet(X1) | quiet(X0) | X0 = X1) [flattening 98] 147. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 148. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 147] 151. ! [X0] : ((~tall(X0) | ~older(john,X0)) | ~room(X0)) [ennf transformation 50] 152. ! [X0] : (~tall(X0) | ~older(john,X0) | ~room(X0)) [flattening 151] 153. ! [X0,X1] : (X0 = X1 | (~creative(X1) | ~creative(X0) | ~room(X1) | ~room(X0))) & ? [X2] : (creative(X2) & room(X2)) [ennf transformation 68] 154. ! [X0,X1] : (X0 = X1 | ~creative(X1) | ~creative(X0) | ~room(X1) | ~room(X0)) & ? [X2] : (creative(X2) & room(X2)) [flattening 153] 156. ! [X0] : (((person(X0) & creative(X0) & brave(X0) & kind(X0)) <=> quieter(alice,X0)) | ~room(X0)) [ennf transformation 55] 168. quiet(mary) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 67] 169. quiet(mary) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 168] 173. ? [X2] : (creative(X2) & room(X2)) => (creative(sK0) & room(sK0)) [choice axiom] 174. ! [X0,X1] : (X0 = X1 | ~creative(X1) | ~creative(X0) | ~room(X1) | ~room(X0)) & (creative(sK0) & room(sK0)) [skolemisation 154,173] 175. ! [X0] : ((((person(X0) & creative(X0) & brave(X0) & kind(X0)) | ~quieter(alice,X0)) & (quieter(alice,X0) | (~person(X0) | ~creative(X0) | ~brave(X0) | ~kind(X0)))) | ~room(X0)) [nnf transformation 156] 176. ! [X0] : ((((person(X0) & creative(X0) & brave(X0) & kind(X0)) | ~quieter(alice,X0)) & (quieter(alice,X0) | ~person(X0) | ~creative(X0) | ~brave(X0) | ~kind(X0))) | ~room(X0)) [flattening 175] 188. ~quieter(X0,X1) | ~quiet(X0) | quiet(X1) | X0 = X1 [cnf transformation 97] 189. quieter(X0,X1) | ~quiet(X1) | quiet(X0) | X0 = X1 [cnf transformation 99] 222. mary != paul [cnf transformation 43] 234. mary != alice [cnf transformation 43] 235. paul != alice [cnf transformation 43] 258. room(mary) [cnf transformation 148] 259. room(paul) [cnf transformation 148] 269. ~older(john,X0) | ~tall(X0) | ~room(X0) [cnf transformation 152] 272. ~creative(X1) | X0 = X1 | ~creative(X0) | ~room(X1) | ~room(X0) [cnf transformation 174] 274. quieter(alice,paul) [cnf transformation 54] 278. ~quieter(alice,X0) | creative(X0) | ~room(X0) [cnf transformation 176] 288. ~quiet(paul) | tall(paul) [cnf transformation 71] 295. older(john,paul) [cnf transformation 65] 301. quiet(mary) [cnf transformation 169] 305. 1 <=> tall(paul) [avatar definition] 309. 2 <=> quiet(paul) [avatar definition] 311. ~quiet(paul) <- (~2) [avatar component clause 309] 312. 1 | ~2 [avatar split clause 288,309,305] 321. ~tall(paul) | ~room(paul) [resolution 269,295] 322. ~tall(paul) [subsumption resolution 321,259] 323. ~1 [avatar split clause 322,305] 327. creative(paul) | ~room(paul) [resolution 278,274] 328. creative(paul) [subsumption resolution 327,259] 409. ~quiet(alice) | quiet(paul) | paul = alice [resolution 188,274] 412. ~quiet(alice) | paul = alice <- (~2) [subsumption resolution 409,311] 413. ~quiet(alice) <- (~2) [subsumption resolution 412,235] 427. ~quiet(X1) | quiet(alice) | alice = X1 | creative(X1) | ~room(X1) [resolution 189,278] 438. ~room(X1) | alice = X1 | creative(X1) | ~quiet(X1) <- (~2) [subsumption resolution 427,413] 510. paul = X0 | ~creative(X0) | ~room(paul) | ~room(X0) [resolution 272,328] 512. ~creative(X0) | paul = X0 | ~room(X0) [subsumption resolution 510,259] 555. mary = alice | creative(mary) | ~quiet(mary) <- (~2) [resolution 438,258] 557. creative(mary) | ~quiet(mary) <- (~2) [subsumption resolution 555,234] 558. creative(mary) <- (~2) [subsumption resolution 557,301] 561. mary = paul | ~room(mary) <- (~2) [resolution 558,512] 563. ~room(mary) <- (~2) [subsumption resolution 561,222] 564. $false <- (~2) [subsumption resolution 563,258] 565. 2 [avatar contradiction clause 564] 567. $false [avatar sat refutation 312,323,565] % SZS output end Proof for 3990558115691700986928641 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.043 s % ------------------------------ % ------------------------------
0.166011
Mike, Ruth are the only persons in the room. “Someone in the room does not hate Willie and is not hated by Kenneth” unless “someone in the room is not hated by Willie”. Mike who does not like Kenneth is not hated by Willie. Mike is not hated by Kenneth. Willie and Mike like each other. William and Ruth hate each other. Someone who is not liked by Kenneth hate someone who is not hated by Willie. Someone in the room is not hated by Willie. If someone is not hated by William then he/she is not liked by Willie. Someone who is not liked by William or does not like Kenneth or both hate someone who is not hated by Willie and does not like Willie. Someone who does not hate Kenneth like someone who does not like William. Someone who is not liked by William like someone who does not hate Kenneth.
Ruth is not hated by Willie.
neutral
room(mike)&room(ruth)&(![X]:(room(X)=>(X='mike'|X='ruth')))& (~(?[X]:(room(X)&(~hate(X,willie))))=>(?[X]:(room(X)&(((~hate(willie,X))&(~hate(X,kenneth)))))))& ((~like(kenneth,mike))&(~hate(mike,willie)))& (~hate(mike,kenneth))& ((like(willie,mike) & like(mike,willie)))& ((hate(william,ruth) & hate(ruth,william)))& (?[X,Y]:((~like(X,kenneth))&(~hate(Y,willie))&(hate(X,Y))))& (?[X]:(room(X)&(~hate(X,willie))))& ((![X]:((~hate(X,william))=>(~like(X,willie)))))& (?[X,Y]:((((~like(X,william))|(~like(kenneth,X))))&(((~hate(Y,willie))&(~like(willie,Y))))&(hate(X,Y))))& (?[X,Y]:((~hate(kenneth,X))&(~like(william,Y))&(like(X,Y))))& (?[X,Y]:((~like(X,william))&(~hate(kenneth,Y))&(like(X,Y))))
room(mike)&room(ruth)&(![X]:(room(X)=>(X='mike'|X='ruth')))& ~hate(ruth,willie)
[]
null
0.294758
Betty, Timothy, Marcelo, Wayne, Doug are the only persons in the room. “Everyone in the room is a sibling of Sharon or does not enjoy wildlife photography” if “Marcelo does not like Kayla” and vice versa. If “Marcelo is quieter than Kayla or is a client of Kayla or both” then “at least one person in the room is a skilled home brewer experimenting with craft beer recipes”. Not everyone in the room is curious if they is a client of Kayla and vice versa. Everyone in the room does not own a television if they is a sibling of Kayla and vice versa. Everyone in the room who is a sibling of Kayla hosts themed dinner parties featuring gourmet home-cooked meals. Doug is not liked by Kayla. Wayne and Doug are respectively humble and tall. Kayla is a sibling of Betty.
Betty hosts themed dinner parties featuring gourmet home-cooked meals.
entailment
room(betty)&room(timothy)&room(marcelo)&room(wayne)&room(doug)&(![X]:(room(X)=>(X='betty'|X='timothy'|X='marcelo'|X='wayne'|X='doug')))& ((~like(kayla,marcelo))<=>(![X]:(room(X)=>(((does_not_enjoy_wildlife_photography(X))|(sibling(sharon,X)))))))& ((((quieter(kayla,marcelo))|(client(kayla,marcelo))))=>(((?[X]:(room(X)&is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))))))& (~![X]:(room(X)=>(((curious(X))<=>(client(kayla,X))))))& (![X]:(room(X)=>(((does_not_own_a_television(X))<=>(sibling(kayla,X))))))& (![X]:(room(X)=>(((sibling(kayla,X))=>(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))& (~like(doug,kayla))& ((humble(wayne))&(tall(doug)))& (![X]:(calm(X)=>quiet(X)))& (is_an_avid_hiker(betty))& (hosts_regular_workshops_on_creative_writing(doug))& (![X]:(room(X)=>(((volunteers_for_local_environmental_conservation_projects(X))<=>(client(sharon,X))))))& (?[X]:(anywhere(X)&(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))& (((~like(kayla,doug))<~>(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(doug))))& (does_not_collect_rare_minerals(doug))& (![X]:(room(X)=>(((client(sharon,X))=>(~hate(sharon,X))))))& (![X]:(~room(X)=>(((~hate(sharon,X))=>(like(sharon,X))))))& (~hate(kayla,wayne))& (![X]:(room(X)=>(((hosts_regular_game_nights_featuring_complex_strategy_games(X))<=(enjoys_stand-up_paddleboarding(X))))))& (sibling(betty,kayla))
room(betty)&room(timothy)&room(marcelo)&room(wayne)&room(doug)&(![X]:(room(X)=>(X='betty'|X='timothy'|X='marcelo'|X='wayne'|X='doug')))& hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(betty)
[ "b5", "b42", "p0", "p4", "p5", "p19", "hypothesis" ]
% SZS status Unsatisfiable for 5668476643585048398290482 % SZS output start Proof for 5668476643585048398290482 6. ! [X0,X1] : (X0 != X1 => (sibling(X0,X1) <=> sibling(X1,X0))) [input b5] 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 48. ! [X0] : (room(X0) => (~predz(X0) <=> sibling(lucy,X0))) [input p4] 49. ! [X0] : (room(X0) => (sibling(lucy,X0) => predv(X0))) [input p5] 63. sibling(mary,lucy) [input p19] 64. ~(predv(mary) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 81. ! [X0,X1] : ((sibling(X0,X1) <=> sibling(X1,X0)) | X0 = X1) [ennf transformation 6] 148. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 149. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 148] 154. ! [X0] : ((~predz(X0) <=> sibling(lucy,X0)) | ~room(X0)) [ennf transformation 48] 155. ! [X0] : ((predv(X0) | ~sibling(lucy,X0)) | ~room(X0)) [ennf transformation 49] 156. ! [X0] : (predv(X0) | ~sibling(lucy,X0) | ~room(X0)) [flattening 155] 162. ~predv(mary) | ? [X0] : ((john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 64] 163. ~predv(mary) | ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 162] 164. ! [X0,X1] : (((sibling(X0,X1) | ~sibling(X1,X0)) & (sibling(X1,X0) | ~sibling(X0,X1))) | X0 = X1) [nnf transformation 81] 175. ! [X0] : (((~predz(X0) | ~sibling(lucy,X0)) & (sibling(lucy,X0) | predz(X0))) | ~room(X0)) [nnf transformation 154] 180. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (john != sK4 & alice != sK4 & fred != sK4 & paul != sK4 & mary != sK4 & room(sK4)) [choice axiom] 181. ~predv(mary) | (john != sK4 & alice != sK4 & fred != sK4 & paul != sK4 & mary != sK4 & room(sK4)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 163,180] 185. ~sibling(X1,X0) | sibling(X0,X1) | X0 = X1 [cnf transformation 164] 258. mary != lucy [cnf transformation 43] 264. room(mary) [cnf transformation 149] 265. room(paul) [cnf transformation 149] 266. room(fred) [cnf transformation 149] 267. room(alice) [cnf transformation 149] 268. room(john) [cnf transformation 149] 269. ~room(X0) | alice = X0 | fred = X0 | paul = X0 | mary = X0 | john = X0 [cnf transformation 149] 279. sibling(lucy,X0) | predz(X0) | ~room(X0) [cnf transformation 175] 280. ~sibling(lucy,X0) | ~predz(X0) | ~room(X0) [cnf transformation 175] 281. ~sibling(lucy,X0) | predv(X0) | ~room(X0) [cnf transformation 156] 291. sibling(mary,lucy) [cnf transformation 63] 292. ~predv(mary) | room(sK4) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 181] 293. ~predv(mary) | mary != sK4 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 181] 294. ~predv(mary) | paul != sK4 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 181] 295. ~predv(mary) | fred != sK4 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 181] 296. ~predv(mary) | alice != sK4 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 181] 297. ~predv(mary) | john != sK4 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 181] 355. ~predv(mary) | john != sK4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 297,268] 356. ~predv(mary) | john != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 355,267] 357. ~predv(mary) | john != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 356,266] 358. ~predv(mary) | john != sK4 | ~room(mary) [subsumption resolution 357,265] 359. ~predv(mary) | john != sK4 [subsumption resolution 358,264] 361. 13 <=> john = sK4 [avatar definition] 363. john != sK4 <- (~13) [avatar component clause 361] 365. 14 <=> predv(mary) [avatar definition] 368. ~13 | ~14 [avatar split clause 359,365,361] 369. ~predv(mary) | alice != sK4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 296,268] 370. ~predv(mary) | alice != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 369,267] 371. ~predv(mary) | alice != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 370,266] 372. ~predv(mary) | alice != sK4 | ~room(mary) [subsumption resolution 371,265] 373. ~predv(mary) | alice != sK4 [subsumption resolution 372,264] 375. 15 <=> alice = sK4 [avatar definition] 377. alice != sK4 <- (~15) [avatar component clause 375] 378. ~15 | ~14 [avatar split clause 373,365,375] 379. ~predv(mary) | fred != sK4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 295,268] 380. ~predv(mary) | fred != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 379,267] 381. ~predv(mary) | fred != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 380,266] 382. ~predv(mary) | fred != sK4 | ~room(mary) [subsumption resolution 381,265] 383. ~predv(mary) | fred != sK4 [subsumption resolution 382,264] 385. 16 <=> fred = sK4 [avatar definition] 387. fred != sK4 <- (~16) [avatar component clause 385] 388. ~16 | ~14 [avatar split clause 383,365,385] 389. ~predv(mary) | paul != sK4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 294,268] 390. ~predv(mary) | paul != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 389,267] 391. ~predv(mary) | paul != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 390,266] 392. ~predv(mary) | paul != sK4 | ~room(mary) [subsumption resolution 391,265] 393. ~predv(mary) | paul != sK4 [subsumption resolution 392,264] 395. 17 <=> paul = sK4 [avatar definition] 397. paul != sK4 <- (~17) [avatar component clause 395] 398. ~17 | ~14 [avatar split clause 393,365,395] 399. ~predv(mary) | mary != sK4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 293,268] 400. ~predv(mary) | mary != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 399,267] 401. ~predv(mary) | mary != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 400,266] 402. ~predv(mary) | mary != sK4 | ~room(mary) [subsumption resolution 401,265] 403. ~predv(mary) | mary != sK4 [subsumption resolution 402,264] 405. 18 <=> mary = sK4 [avatar definition] 407. mary != sK4 <- (~18) [avatar component clause 405] 408. ~18 | ~14 [avatar split clause 403,365,405] 409. ~predv(mary) | room(sK4) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 292,268] 410. ~predv(mary) | room(sK4) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 409,267] 411. ~predv(mary) | room(sK4) | ~room(paul) | ~room(mary) [subsumption resolution 410,266] 412. ~predv(mary) | room(sK4) | ~room(mary) [subsumption resolution 411,265] 413. ~predv(mary) | room(sK4) [subsumption resolution 412,264] 415. 19 <=> room(sK4) [avatar definition] 417. room(sK4) <- (19) [avatar component clause 415] 418. 19 | ~14 [avatar split clause 413,365,415] 421. predv(X0) | ~room(X0) | predz(X0) | ~room(X0) [resolution 281,279] 422. ~room(X0) | predv(X0) | predz(X0) [duplicate literal removal 421] 423. predv(mary) | predz(mary) [resolution 422,264] 490. sibling(lucy,mary) | mary = lucy [resolution 185,291] 492. sibling(lucy,mary) [subsumption resolution 490,258] 494. ~predz(mary) | ~room(mary) [resolution 492,280] 502. ~predz(mary) [subsumption resolution 494,264] 505. predv(mary) [subsumption resolution 423,502] 506. 14 [avatar split clause 505,365] 578. alice = sK4 | fred = sK4 | paul = sK4 | mary = sK4 | john = sK4 <- (19) [resolution 269,417] 621. fred = sK4 | paul = sK4 | mary = sK4 | john = sK4 <- (~15, 19) [subsumption resolution 578,377] 622. paul = sK4 | mary = sK4 | john = sK4 <- (~15, ~16, 19) [subsumption resolution 621,387] 623. mary = sK4 | john = sK4 <- (~15, ~16, ~17, 19) [subsumption resolution 622,397] 624. john = sK4 <- (~15, ~16, ~17, ~18, 19) [subsumption resolution 623,407] 625. $false <- (~13, ~15, ~16, ~17, ~18, 19) [subsumption resolution 624,363] 626. 13 | 15 | 16 | 17 | 18 | ~19 [avatar contradiction clause 625] 627. $false [avatar sat refutation 368,378,388,398,408,418,506,626] % SZS output end Proof for 5668476643585048398290482 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.089122
There is a room. Everyone in the room is a cybersecurity expert or maintains a large, organic vegetable garden year-round or both. Everyone in the room is not a drone photographer, plays as a goalkeeper for a local amateur soccer team or does not own a telescope if they is not a wine connoisseur with a private cellar of vintage wines. Everyone in the room does not practice zumba, does not collect action figures and does not practice graffiti art if they is not a drone photographer, plays as a goalkeeper for a local amateur soccer team or does not own a telescope. Everyone in the room does not practice zumba, does not collect action figures and does not practice graffiti art only if they maintains a large, organic vegetable garden year-round, does not play as a goalkeeper for a local amateur soccer team or is not an avid collector of autographed memorabilia from famous musicians. Everyone in the room is not a cybersecurity expert. Everyone in the room is not a dedicated advocate for digital privacy and encryption, is not right-handed or does not regularly goes on multi-day backpacking trips in national parks. Everyone in the room who practices graffiti art or is a wine connoisseur with a private cellar of vintage wines or both neither is a wine connoisseur with a private cellar of vintage wines nor collect rare sneakers. Not everyone in the room does not have completed a triathlon if they neither is a wine connoisseur with a private cellar of vintage wines nor collect rare sneakers. Everyone in the room is a drone photographer or is not a wine connoisseur with a private cellar of vintage wines or both if they does not have completed a triathlon. No one in the room does not have lived in exactly three countries or plays as a goalkeeper for a local amateur soccer team or both. Everyone in the room is not right-handed. Everyone in the room plays as a goalkeeper for a local amateur soccer team if they does not have lived in exactly three countries. Everyone in the room does not practice kickboxing if they plays as a goalkeeper for a local amateur soccer team. Everyone in the room does not enjoy fishing. If someone does not collect rare sneakers then he/she does not practice zumba. Everyone in the room does not practice kickboxing, does not enjoy fishing and does not enjoy writing detailed reviews of new and classic board games. Everyone in the room does enjoy mountain biking or is not right-handed. Everyone in the room does not regularly goes on multi-day backpacking trips in national parks.
Everyone in the room is not a cybersecurity expert or has completed a triathlon.
entailment
(there_is_a_room)& (![X]:(room(X)=>(((is_a_cybersecurity_expert(X))|(maintains_a_large,_organic_vegetable_garden_year-round(X))))))& (![X]:(room(X)=>(((is_not_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))=>(((is_not_a_drone_photographer(X))|(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))|(does_not_own_a_telescope(X))))))))& (![X]:(room(X)=>(((((is_not_a_drone_photographer(X))|(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))|(does_not_own_a_telescope(X))))=>(((does_not_practice_zumba(X))&(does_not_collect_action_figures(X))&(does_not_practice_graffiti_art(X))))))))& (![X]:(room(X)=>(((((maintains_a_large,_organic_vegetable_garden_year-round(X))|(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))|(is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))<=(((does_not_practice_zumba(X))&(does_not_collect_action_figures(X))&(does_not_practice_graffiti_art(X))))))))& (![X]:(room(X)=>(is_not_a_cybersecurity_expert(X))))& (![X]:(room(X)=>(((is_not_a_dedicated_advocate_for_digital_privacy_and_encryption(X))|(is_not_right-handed(X))|(does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))))& (![X]:(room(X)=>(((((practices_graffiti_art(X))|(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))=>(~((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))|(collect_rare_sneakers(X))))))))& (~![X]:(room(X)=>(((~((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))|(collect_rare_sneakers(X))))=>(does_not_have_completed_a_triathlon(X))))))& (![X]:(room(X)=>(((does_not_have_completed_a_triathlon(X))=>(((is_a_drone_photographer(X))|(is_not_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))))))& (~?[X]:(room(X)=>(((does_not_have_lived_in_exactly_three_countries(X))|(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))& (![X]:(room(X)=>(is_not_right-handed(X))))& (![X]:(room(X)=>(((does_not_have_lived_in_exactly_three_countries(X))=>(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))& (![X]:(room(X)=>(((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))=>(does_not_practice_kickboxing(X))))))& (![X]:(room(X)=>(does_not_enjoy_fishing(X))))& ((![X]:((does_not_collect_rare_sneakers(X))=>(does_not_practice_zumba(X)))))& (![X]:(room(X)=>(((does_not_practice_kickboxing(X))&(does_not_enjoy_fishing(X))&(does_not_enjoy_writing_detailed_reviews_of_new_and_classic_board_games(X))))))& (![X]:(room(X)=>(((is_not_right-handed(X))|(does_enjoy_mountain_biking(X))))))& (![X]:(room(X)=>(does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))
(there_is_a_room)& ![X]:(room(X)=>(((has_completed_a_triathlon(X))|(is_not_a_cybersecurity_expert(X)))))
[ "p0", "p5", "p10", "hypothesis" ]
% SZS status Unsatisfiable for 8734002697722078269981465 % SZS output start Proof for 8734002697722078269981465 44. there_is_a_room [input p0] 49. ! [X0] : (room(X0) => ~predd(X0)) [input p5] 54. ~? [X0] : (room(X0) => (predi(X0) | ~predm(X0))) [input p10] 63. ~(! [X0] : (room(X0) => (~predd(X0) | predj(X0))) & there_is_a_room) [input hypothesis] 71. ~? [X0] : (room(X0) => predi(X0)) [pure predicate removal 54] 82. ~? [X0] : ~room(X0) [pure predicate removal 71] 160. ! [X0] : (~predd(X0) | ~room(X0)) [ennf transformation 49] 162. ! [X0] : room(X0) [ennf transformation 82] 163. ? [X0] : ((predd(X0) & ~predj(X0)) & room(X0)) | ~there_is_a_room [ennf transformation 63] 164. ? [X0] : (predd(X0) & ~predj(X0) & room(X0)) | ~there_is_a_room [flattening 163] 168. ? [X0] : (predd(X0) & ~predj(X0) & room(X0)) => (predd(sK1) & ~predj(sK1) & room(sK1)) [choice axiom] 169. (predd(sK1) & ~predj(sK1) & room(sK1)) | ~there_is_a_room [skolemisation 164,168] 250. there_is_a_room [cnf transformation 44] 251. ~predd(X0) | ~room(X0) [cnf transformation 160] 254. room(X0) [cnf transformation 162] 257. predd(sK1) | ~there_is_a_room [cnf transformation 169] 258. predd(sK1) [subsumption resolution 257,250] 260. ~room(sK1) [resolution 251,258] 261. $false [subsumption resolution 260,254] % SZS output end Proof for 8734002697722078269981465 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.034 s % ------------------------------ % ------------------------------
0.161018
Betty is the only person in the room. If everyone in the room does not write in-depth travel guides for off-the-beaten-path destinations or collects comic books then no one in the room does not write in-depth travel guides for off-the-beaten-path destinations if and only if they enjoys cross-country skiing. If everyone in the room does not enjoy cross-country skiing or is dedicated to sustainable living and zero-waste practices then it is true that Betty who writes in-depth travel guides for off-the-beaten-path destinations is a member of a local theater group specializing in improv. Everyone in the room owns a microscope if they can play the piano and vice versa. Everyone in the room who can play the piano practices digital art or practices pilates or both. Everyone in the room does not practice pilates, is a Linux enthusiast and owns a microscope if they writes in-depth travel guides for off-the-beaten-path destinations. Everyone in the room who practices digital art practices tai chi.
Betty practices tai chi.
entailment
room(betty)&(![X]:(room(X)=>(X='betty')))& ((![X]:(~room(X)=>(((practices_zumba(X))|(does_not_mentor_a_youth_basketball_team_on_weekends(X))))))<=>(((?[X]:(room(X)&((hosts_regular_workshops_on_creative_writing(X))&(practices_zumba(X))))))))& (~(![X]:(room(X)=>(((writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))|(cannot_play_the_piano(X))))))=>(![X]:(room(X)=>(((((has_a_tattoo(X))&(collects_comic_books(X))&(enjoys_origami(X))))=>(uses_contact_lenses(X)))))))& ((![X]:(~room(X)=>(((does_not_practice_digital_art(X))|(is_not_dedicated_to_sustainable_living_and_zero-waste_practices(X))))))=>(![X]:(room(X)=>(((does_not_build_model_airplanes(X))=>(enjoys_origami(X)))))))& ((![X]:(~room(X)=>(((can_play_the_piano(X))|(does_not_enjoy_skydiving(X))))))=>(~?[X]:(room(X)=>(((does_not_enjoy_skydiving(X))=>(streams_on_Twitch(X)))))))& ((![X]:(anywhere(X)=>(((is_a_craft_beer_aficionado(X))|(does_not_mentor_a_youth_basketball_team_on_weekends(X))))))=>(((?[X]:(room(X)&enjoys_skydiving(X)))&(![X,Y]:((room(X)&room(Y)&(enjoys_skydiving(X))&(enjoys_skydiving(Y)))=>(X=Y))))))& ((~?[X]:(room(X)=>(((competes_in_national_level_swimming_championships(X))|(cannot_play_the_piano(X))))))=>(![X]:(room(X)=>(((cannot_play_the_piano(X))=>(practices_pilates(X)))))))& ((![X]:(~room(X)=>(((has_a_specialized_collection_of_handmade_artisan_pottery(X))|(does_not_build_model_airplanes(X))))))=>(![X]:(room(X)=>(((builds_model_airplanes(X))=>(practices_pilates(X)))))))& ((![X]:(room(X)=>(((collects_comic_books(X))|(does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))))))=>(~?[X]:(room(X)=>(((does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))<=>(enjoys_cross-country_skiing(X)))))))& ((![X]:(room(X)=>(((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))|(does_not_enjoy_cross-country_skiing(X))))))=>((writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(betty))&(is_a_member_of_a_local_theater_group_specializing_in_improv(betty))))& (~(![X]:(room(X)=>(((practices_tai_chi(X))|(does_not_collect_vintage_stamps(X))))))=>(![X]:(room(X)=>(((((is_a_member_of_a_local_theater_group_specializing_in_improv(X))<~>(does_not_compete_in_national_level_swimming_championships(X))))<=>(has_a_specialized_collection_of_handmade_artisan_pottery(X)))))))& (![X]:(room(X)=>(((practices_zumba(X))=>(((has_a_tattoo(X))<~>(collects_comic_books(X))))))))& (![X]:(room(X)=>(((owns_a_microscope(X))<=>(can_play_the_piano(X))))))& (![X]:(room(X)=>(((can_play_the_piano(X))=>(((practices_digital_art(X))|(practices_pilates(X))))))))& (![X]:(room(X)=>(((((practices_digital_art(X))|(practices_pilates(X))))=>(((has_a_specialized_collection_of_handmade_artisan_pottery(X))<~>(hosts_regular_workshops_on_creative_writing(X))))))))& (![X]:(room(X)=>(((writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))=>(((does_not_practice_pilates(X))&(is_a_Linux_enthusiast(X))&(owns_a_microscope(X))))))))& (![X]:(anywhere(X)=>(((practices_tai_chi(X))<=(((does_not_practice_pilates(X))&(is_a_Linux_enthusiast(X))&(owns_a_microscope(X))))))))& (![X]:(~room(X)=>(((practices_tai_chi(X))=>(collects_comic_books(X))))))& (![X]:(anywhere(X)=>(((does_not_enjoy_skydiving(X))|(does_not_enjoy_cross-country_skiing(X))))))& ((![X]:((builds_model_airplanes(X))<=>(competes_in_national_level_swimming_championships(X)))))& (![X]:(room(X)=>(((practices_digital_art(X))=>(practices_tai_chi(X))))))& (![X]:(room(X)=>(((practices_tai_chi(X))=>(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))))))& (![X]:(room(X)=>(((writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))=>(does_not_enjoy_cross-country_skiing(X))))))& (((?[X]:(room(X)&mentors_a_youth_basketball_team_on_weekends(X)))&(![X,Y]:((room(X)&room(Y)&(mentors_a_youth_basketball_team_on_weekends(X))&(mentors_a_youth_basketball_team_on_weekends(Y)))=>(X=Y)))))
room(betty)&(![X]:(room(X)=>(X='betty')))& practices_tai_chi(betty)
[ "p0", "p8", "p9", "p12", "p13", "p15", "p20", "hypothesis" ]
% SZS status Unsatisfiable for 2467293105835880803955485 % SZS output start Proof for 2467293105835880803955485 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 52. ! [X0] : (room(X0) => (~predq(X0) | predu(X0))) => ~? [X0] : (room(X0) => (~predq(X0) <=> predt(X0))) [input p8] 53. ! [X0] : (room(X0) => (~predt(X0) | predp(X0))) => (predn(mary) & predq(mary)) [input p9] 56. ! [X0] : (room(X0) => (preda(X0) <=> predm(X0))) [input p12] 57. ! [X0] : (room(X0) => (predm(X0) => (predw(X0) | predd(X0)))) [input p13] 59. ! [X0] : (room(X0) => (predq(X0) => (preda(X0) & predb(X0) & ~predw(X0)))) [input p15] 64. ! [X0] : (room(X0) => (predd(X0) => preds(X0))) [input p20] 68. ~(preds(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 76. ! [X0] : (room(X0) => (~predq(X0) | predu(X0))) => ~? [X1] : (room(X1) => (~predq(X1) <=> predt(X1))) [rectify 52] 80. ! [X0] : (room(X0) => (~predt(X0) | predp(X0))) => predq(mary) [pure predicate removal 53] 85. ! [X0] : (room(X0) => ~predt(X0)) => predq(mary) [pure predicate removal 80] 157. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 168. ! [X1] : ((~predq(X1) <~> predt(X1)) & room(X1)) | ? [X0] : ((predq(X0) & ~predu(X0)) & room(X0)) [ennf transformation 76] 169. ! [X1] : ((~predq(X1) <~> predt(X1)) & room(X1)) | ? [X0] : (predq(X0) & ~predu(X0) & room(X0)) [flattening 168] 170. predq(mary) | ? [X0] : (predt(X0) & room(X0)) [ennf transformation 85] 173. ! [X0] : ((preda(X0) <=> predm(X0)) | ~room(X0)) [ennf transformation 56] 174. ! [X0] : (((predw(X0) | predd(X0)) | ~predm(X0)) | ~room(X0)) [ennf transformation 57] 175. ! [X0] : (predw(X0) | predd(X0) | ~predm(X0) | ~room(X0)) [flattening 174] 178. ! [X0] : (((preda(X0) & predb(X0) & ~predw(X0)) | ~predq(X0)) | ~room(X0)) [ennf transformation 59] 179. ! [X0] : ((preda(X0) & predb(X0) & ~predw(X0)) | ~predq(X0) | ~room(X0)) [flattening 178] 186. ! [X0] : ((preds(X0) | ~predd(X0)) | ~room(X0)) [ennf transformation 64] 187. ! [X0] : (preds(X0) | ~predd(X0) | ~room(X0)) [flattening 186] 194. ~preds(mary) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 68] 197. ? [X0] : (predq(X0) & ~predu(X0) & room(X0)) | ~sP1 [predicate definition introduction] 198. ! [X1] : ((~predq(X1) <~> predt(X1)) & room(X1)) | sP1 [definition folding 169,197] 221. ? [X0] : (predq(X0) & ~predu(X0) & room(X0)) | ~sP1 [nnf transformation 197] 222. ? [X0] : (predq(X0) & ~predu(X0) & room(X0)) => (predq(sK9) & ~predu(sK9) & room(sK9)) [choice axiom] 223. (predq(sK9) & ~predu(sK9) & room(sK9)) | ~sP1 [skolemisation 221,222] 224. ! [X1] : (((~predt(X1) | predq(X1)) & (predt(X1) | ~predq(X1))) & room(X1)) | sP1 [nnf transformation 198] 225. ! [X1] : ((~predt(X1) | predq(X1)) & (predt(X1) | ~predq(X1)) & room(X1)) | sP1 [flattening 224] 226. ! [X0] : ((~predt(X0) | predq(X0)) & (predt(X0) | ~predq(X0)) & room(X0)) | sP1 [rectify 225] 227. ? [X0] : (predt(X0) & room(X0)) => (predt(sK10) & room(sK10)) [choice axiom] 228. predq(mary) | (predt(sK10) & room(sK10)) [skolemisation 170,227] 230. ! [X0] : (((preda(X0) | ~predm(X0)) & (predm(X0) | ~preda(X0))) | ~room(X0)) [nnf transformation 173] 235. ? [X0] : (mary != X0 & room(X0)) => (mary != sK12 & room(sK12)) [choice axiom] 236. ~preds(mary) | (mary != sK12 & room(sK12)) | ~room(mary) [skolemisation 194,235] 318. room(mary) [cnf transformation 157] 319. ~room(X0) | mary = X0 [cnf transformation 157] 344. room(sK9) | ~sP1 [cnf transformation 223] 346. predq(sK9) | ~sP1 [cnf transformation 223] 347. room(X0) | sP1 [cnf transformation 226] 349. ~predt(X0) | predq(X0) | sP1 [cnf transformation 226] 351. predq(mary) | predt(sK10) [cnf transformation 228] 354. ~preda(X0) | predm(X0) | ~room(X0) [cnf transformation 230] 356. ~predm(X0) | predd(X0) | predw(X0) | ~room(X0) [cnf transformation 175] 361. ~predw(X0) | ~predq(X0) | ~room(X0) [cnf transformation 179] 363. ~predq(X0) | preda(X0) | ~room(X0) [cnf transformation 179] 369. ~predd(X0) | preds(X0) | ~room(X0) [cnf transformation 187] 375. ~preds(mary) | room(sK12) | ~room(mary) [cnf transformation 236] 376. ~preds(mary) | mary != sK12 | ~room(mary) [cnf transformation 236] 438. 14 <=> ! [X0] : room(X0) [avatar definition] 439. room(X0) <- (14) [avatar component clause 438] 496. 27 <=> sP1 [avatar definition] 500. 28 <=> predq(sK9) [avatar definition] 502. predq(sK9) <- (28) [avatar component clause 500] 503. ~27 | 28 [avatar split clause 346,500,496] 510. 30 <=> room(sK9) [avatar definition] 512. room(sK9) <- (30) [avatar component clause 510] 513. ~27 | 30 [avatar split clause 344,510,496] 515. 31 <=> ! [X0] : (~predt(X0) | predq(X0)) [avatar definition] 516. ~predt(X0) | predq(X0) <- (31) [avatar component clause 515] 517. 27 | 31 [avatar split clause 349,515,496] 522. 27 | 14 [avatar split clause 347,438,496] 524. 33 <=> predt(sK10) [avatar definition] 526. predt(sK10) <- (33) [avatar component clause 524] 528. 34 <=> predq(mary) [avatar definition] 530. predq(mary) <- (34) [avatar component clause 528] 531. 33 | 34 [avatar split clause 351,528,524] 539. ~preds(mary) | mary != sK12 [subsumption resolution 376,318] 541. 36 <=> mary = sK12 [avatar definition] 543. mary != sK12 <- (~36) [avatar component clause 541] 545. 37 <=> preds(mary) [avatar definition] 548. ~36 | ~37 [avatar split clause 539,545,541] 549. ~preds(mary) | room(sK12) [subsumption resolution 375,318] 551. 38 <=> room(sK12) [avatar definition] 553. room(sK12) <- (38) [avatar component clause 551] 554. 38 | ~37 [avatar split clause 549,545,551] 559. mary = sK9 <- (30) [resolution 319,512] 564. predq(mary) <- (28, 30) [backward demodulation 502,559] 596. 41 <=> predw(mary) [avatar definition] 598. predw(mary) <- (41) [avatar component clause 596] 600. 42 <=> predd(mary) [avatar definition] 602. predd(mary) <- (42) [avatar component clause 600] 604. 34 | ~28 | ~30 [avatar split clause 564,510,500,528] 608. mary = X0 <- (14) [resolution 439,319] 635. predt(mary) <- (14, 33) [backward demodulation 526,608] 653. predq(mary) <- (14, 31, 33) [resolution 516,635] 656. 34 | ~14 | ~31 | ~33 [avatar split clause 653,524,515,438,528] 662. preda(mary) | ~room(mary) <- (34) [resolution 530,363] 664. preda(mary) <- (34) [subsumption resolution 662,318] 666. predm(mary) | ~room(mary) <- (34) [resolution 664,354] 670. predm(mary) <- (34) [subsumption resolution 666,318] 684. predd(mary) | predw(mary) | ~room(mary) <- (34) [resolution 670,356] 686. ~predq(mary) | ~room(mary) <- (41) [resolution 598,361] 687. ~room(mary) <- (34, 41) [subsumption resolution 686,530] 688. $false <- (34, 41) [subsumption resolution 687,318] 689. ~34 | ~41 [avatar contradiction clause 688] 690. predd(mary) | predw(mary) <- (34) [subsumption resolution 684,318] 691. 41 | 42 | ~34 [avatar split clause 690,528,600,596] 698. preds(mary) | ~room(mary) <- (42) [resolution 602,369] 702. preds(mary) <- (42) [subsumption resolution 698,318] 703. 37 | ~42 [avatar split clause 702,600,545] 722. mary = sK12 <- (38) [resolution 553,319] 723. $false <- (~36, 38) [subsumption resolution 722,543] 724. 36 | ~38 [avatar contradiction clause 723] 725. $false [avatar sat refutation 503,513,517,522,531,548,554,604,656,689,691,703,724] % SZS output end Proof for 2467293105835880803955485 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.043 s % ------------------------------ % ------------------------------
0.170443
Pedro, Daniel are the only persons in the room. If “not everyone in the room does not enjoy making ceramics or is an avid collector of autographed memorabilia from famous musicians” then “everyone outside the room who does not enjoy making ceramics writes a travel blog”. “Not everyone in the room does not enjoy salsa dancing if they can play the harmonica” unless “everyone in the room uses a Windows laptop or does not enjoy origami”. Everyone in the room uses a Windows laptop if they is a dedicated advocate for digital privacy and encryption and vice versa. Pedro collects limited-edition art prints from contemporary artists. Everyone in the room does not collect limited-edition art prints from contemporary artists or does not enjoy salsa dancing. Everyone in the room who does not enjoy salsa dancing enjoys logic puzzles. Everyone in the room who enjoys logic puzzles enjoys coding in Python.
It is true that “Pedro enjoys coding in Python”.
entailment
room(pedro)&room(daniel)&(![X]:(room(X)=>(X='pedro'|X='daniel')))& ((~![X]:(room(X)=>(((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))|(does_not_enjoy_making_ceramics(X))))))=>(![X]:(~room(X)=>(((does_not_enjoy_making_ceramics(X))=>(writes_a_travel_blog(X)))))))& (~(![X]:(room(X)=>(((does_not_enjoy_origami(X))|(uses_a_Windows_laptop(X))))))=>(~![X]:(room(X)=>(((can_play_the_harmonica(X))=>(does_not_enjoy_salsa_dancing(X)))))))& (![X]:(room(X)=>(((uses_a_Windows_laptop(X))<=>(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))))))& (![X]:(room(X)=>(((is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))=>(((does_not_write_a_travel_blog(X))&(is_not_a_tea_enthusiast(X))&(hosts_regular_workshops_on_creative_writing(X))))))))& (collects_limited-edition_art_prints_from_contemporary_artists(pedro))& (![X]:(room(X)=>(((does_not_enjoy_origami(X))|(uses_a_Windows_laptop(X))))))& (![X]:(room(X)=>(((does_not_enjoy_salsa_dancing(X))|(does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))))))& ((![X]:((does_practice_yoga(X))<=>(collects_luxury_watches(X)))))& (![X]:(room(X)=>(((does_not_enjoy_salsa_dancing(X))=>(enjoys_logic_puzzles(X))))))& (![X]:(room(X)=>(((enjoys_logic_puzzles(X))=>(enjoys_coding_in_Python(X))))))& (![X]:(room(X)=>(participates_in_long-distance_cycling_events_across_the_country(X))))& (![X]:(room(X)=>(((practices_urban_gardening(X))=>(enjoys_logic_puzzles(X))))))& (practices_urban_gardening(pedro))& ((is_a_tea_enthusiast(pedro))&(participates_in_long-distance_cycling_events_across_the_country(pedro)))& (![X]:(room(X)=>(((enjoys_logic_puzzles(X))|(does_not_use_a_Windows_laptop(X))))))& ((pedro_dream=>(is_a_dedicated_advocate_for_digital_privacy_and_encryption(pedro))))& (![X]:(~room(X)=>(((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))=>(is_not_a_tea_enthusiast(X))))))& (![X]:(room(X)=>(((is_not_a_tea_enthusiast(X))=>(((does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))|(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))))))& ((![X]:((does_not_enjoy_fishing(X))<=>(enjoys_logic_puzzles(X)))))& (![X]:(room(X)=>(((uses_a_Windows_laptop(X))=>(collects_luxury_watches(X))))))& (does_practice_yoga(pedro))& (~![X]:(room(X)=>(((((is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))<~>(practices_urban_gardening(X))))=>(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))))& (![X]:(room(X)=>(((enjoys_making_ceramics(X))=>(collects_luxury_watches(X))))))& (has_a_pet_dog(pedro))
room(pedro)&room(daniel)&(![X]:(room(X)=>(X='pedro'|X='daniel')))& enjoys_coding_in_Python(pedro)
[ "p0", "p5", "p7", "p9", "p10", "hypothesis" ]
% SZS status Unsatisfiable for 1421580824170572526715908 % SZS output start Proof for 1421580824170572526715908 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 49. predy(mary) [input p5] 51. ! [X0] : (room(X0) => (~predy(X0) | ~predm(X0))) [input p7] 53. ! [X0] : (room(X0) => (~predm(X0) => prede(X0))) [input p9] 54. ! [X0] : (room(X0) => (prede(X0) => predn(X0))) [input p10] 69. ~(predn(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 160. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 161. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 160] 167. ! [X0] : ((~predy(X0) | ~predm(X0)) | ~room(X0)) [ennf transformation 51] 168. ! [X0] : (~predy(X0) | ~predm(X0) | ~room(X0)) [flattening 167] 169. ! [X0] : ((prede(X0) | predm(X0)) | ~room(X0)) [ennf transformation 53] 170. ! [X0] : (prede(X0) | predm(X0) | ~room(X0)) [flattening 169] 171. ! [X0] : ((predn(X0) | ~prede(X0)) | ~room(X0)) [ennf transformation 54] 172. ! [X0] : (predn(X0) | ~prede(X0) | ~room(X0)) [flattening 171] 178. ~predn(mary) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 69] 179. ~predn(mary) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 178] 187. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK1 & mary != sK1 & room(sK1)) [choice axiom] 188. ~predn(mary) | (paul != sK1 & mary != sK1 & room(sK1)) | ~room(paul) | ~room(mary) [skolemisation 179,187] 269. room(mary) [cnf transformation 161] 270. room(paul) [cnf transformation 161] 271. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 161] 277. predy(mary) [cnf transformation 49] 278. ~predy(X0) | ~predm(X0) | ~room(X0) [cnf transformation 168] 279. ~room(X0) | predm(X0) | prede(X0) [cnf transformation 170] 280. ~prede(X0) | predn(X0) | ~room(X0) [cnf transformation 172] 288. ~predn(mary) | room(sK1) | ~room(paul) | ~room(mary) [cnf transformation 188] 289. ~predn(mary) | mary != sK1 | ~room(paul) | ~room(mary) [cnf transformation 188] 290. ~predn(mary) | paul != sK1 | ~room(paul) | ~room(mary) [cnf transformation 188] 308. ~predn(mary) | paul != sK1 | ~room(mary) [subsumption resolution 290,270] 309. ~predn(mary) | paul != sK1 [subsumption resolution 308,269] 311. 5 <=> paul = sK1 [avatar definition] 313. paul != sK1 <- (~5) [avatar component clause 311] 315. 6 <=> predn(mary) [avatar definition] 318. ~5 | ~6 [avatar split clause 309,315,311] 319. ~predn(mary) | mary != sK1 | ~room(mary) [subsumption resolution 289,270] 320. ~predn(mary) | mary != sK1 [subsumption resolution 319,269] 322. 7 <=> mary = sK1 [avatar definition] 324. mary != sK1 <- (~7) [avatar component clause 322] 325. ~7 | ~6 [avatar split clause 320,315,322] 326. ~predn(mary) | room(sK1) | ~room(mary) [subsumption resolution 288,270] 327. ~predn(mary) | room(sK1) [subsumption resolution 326,269] 329. 8 <=> room(sK1) [avatar definition] 331. room(sK1) <- (8) [avatar component clause 329] 332. 8 | ~6 [avatar split clause 327,315,329] 335. ~predm(mary) | ~room(mary) [resolution 278,277] 336. ~predm(mary) [subsumption resolution 335,269] 337. predm(mary) | prede(mary) [resolution 279,269] 340. prede(mary) [subsumption resolution 337,336] 359. predn(mary) | ~room(mary) [resolution 340,280] 363. predn(mary) [subsumption resolution 359,269] 364. 6 [avatar split clause 363,315] 385. mary = sK1 | paul = sK1 <- (8) [resolution 271,331] 395. paul = sK1 <- (~7, 8) [subsumption resolution 385,324] 396. $false <- (~5, ~7, 8) [subsumption resolution 395,313] 397. 5 | 7 | ~8 [avatar contradiction clause 396] 398. $false [avatar sat refutation 318,325,332,364,397] % SZS output end Proof for 1421580824170572526715908 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.000047
Laura, David are the only persons in the room. Either “Laura enjoys landscape photography” or “everyone in the room uses an ios phone or is not a tea enthusiast” but not both. If “everyone outside the room owns a 3D printer or does not own a microscope” then “everyone anywhere creates bespoke furniture pieces from reclaimed wood if they owns a 3D printer”. Either “no one in the room can play the guitar or does not collect comic books” or “everyone in the room owns a microscope or does not practice zumba” but not both. If “everyone in the room does not enjoy windsurfing or enjoys landscape photography” then “not everyone in the room who does not enjoy windsurfing own a television”. Either “everyone in the room hosts a popular podcast about emerging technologies or does not collect limited-edition art prints from contemporary artists” or “everyone in the room does not collect luxury watches or plays video games” but not both. Everyone in the room does not collect antique clocks, collects modern art or does not practice calligraphy. Everyone in the room does not enjoy windsurfing or enjoys windsurfing. Not everyone in the room collects modern art. Everyone outside the room neither practices zumba nor does not enjoy landscape photography. Laura uses an ios phone and enjoys windsurfing. Everyone in the room uses an ios phone or is not a client of Costco. Everyone in the room who uses an ios phone does not enjoy landscape photography. Everyone outside the room who does not enjoy landscape photography enjoys windsurfing. Everyone in the room does not enjoy logic puzzles if they enjoys windsurfing. Everyone anywhere does not collect luxury watches and does not volunteer for local environmental conservation projects if they is not a tea enthusiast. Laura who is not a tea enthusiast collect rare sneakers. Everyone in the room does not own a television if they collects antique clocks. Everyone in the room who does not own a television hosts a popular podcast about emerging technologies. Everyone in the room does not own a 3D printer if they hosts a popular podcast about emerging technologies. Everyone in the room does not make homemade pastries or does not volunteer for local environmental conservation projects. Everyone anywhere does not collect comic books if they collects classic novels and vice versa. Everyone in the room who collects classic novels plays video games. Everyone in the room is not a tea enthusiast.
Laura enjoys landscape photography.
contradiction
room(laura)&room(david)&(![X]:(room(X)=>(X='laura'|X='david')))& ((enjoys_landscape_photography(laura))<~>(![X]:(room(X)=>(((is_not_a_tea_enthusiast(X))|(uses_an_ios_phone(X)))))))& ((![X]:(~room(X)=>(((does_not_own_a_microscope(X))|(owns_a_3D_printer(X))))))=>(![X]:(anywhere(X)=>(((owns_a_3D_printer(X))=>(creates_bespoke_furniture_pieces_from_reclaimed_wood(X)))))))& ((~?[X]:(room(X)=>(((does_not_collect_comic_books(X))|(can_play_the_guitar(X))))))<~>(![X]:(room(X)=>(((does_not_practice_zumba(X))|(owns_a_microscope(X)))))))& ((![X]:(room(X)=>(((enjoys_landscape_photography(X))|(does_not_enjoy_windsurfing(X))))))=>(~![X]:(room(X)=>(((does_not_enjoy_windsurfing(X))=>(own_a_television(X)))))))& ((![X]:(room(X)=>(((does_not_collect_limited-edition_art_prints_from_contemporary_artists(X))|(hosts_a_popular_podcast_about_emerging_technologies(X))))))<~>(![X]:(room(X)=>(((plays_video_games(X))|(does_not_collect_luxury_watches(X)))))))& (![X]:(room(X)=>(((does_not_collect_antique_clocks(X))|(collects_modern_art(X))|(does_not_practice_calligraphy(X))))))& (![X]:(room(X)=>(((enjoys_windsurfing(X))|(does_not_enjoy_windsurfing(X))))))& (~![X]:(room(X)=>(collects_modern_art(X))))& (![X]:(~room(X)=>(~((practices_zumba(X))|(does_not_enjoy_landscape_photography(X))))))& (((uses_an_ios_phone(laura))&(enjoys_windsurfing(laura))))& (![X]:(room(X)=>(((is_not_a_client_of_Costco(X))|(uses_an_ios_phone(X))))))& (![X]:(room(X)=>(((uses_an_ios_phone(X))=>(does_not_enjoy_landscape_photography(X))))))& (![X]:(~room(X)=>(((does_not_enjoy_landscape_photography(X))=>(enjoys_windsurfing(X))))))& (![X]:(room(X)=>(((enjoys_windsurfing(X))=>(does_not_enjoy_logic_puzzles(X))))))& (![X]:(anywhere(X)=>(((is_not_a_tea_enthusiast(X))=>(((does_not_collect_luxury_watches(X))&(does_not_volunteer_for_local_environmental_conservation_projects(X))))))))& ((is_not_a_tea_enthusiast(laura))&(collect_rare_sneakers(laura)))& (![X]:(room(X)=>(((collects_antique_clocks(X))=>(does_not_own_a_television(X))))))& (![X]:(room(X)=>(((does_not_own_a_television(X))=>(hosts_a_popular_podcast_about_emerging_technologies(X))))))& (![X]:(room(X)=>(((hosts_a_popular_podcast_about_emerging_technologies(X))=>(does_not_own_a_3D_printer(X))))))& (![X]:(room(X)=>(((does_not_volunteer_for_local_environmental_conservation_projects(X))|(does_not_make_homemade_pastries(X))))))& (![X]:(anywhere(X)=>(((does_not_collect_comic_books(X))<=>(collects_classic_novels(X))))))& (![X]:(room(X)=>(((collects_classic_novels(X))=>(plays_video_games(X))))))& (![X]:(room(X)=>(is_not_a_tea_enthusiast(X))))
room(laura)&room(david)&(![X]:(room(X)=>(X='laura'|X='david')))& enjoys_landscape_photography(laura)
[ "p1", "p23", "hypothesis" ]
% SZS status Unsatisfiable for 6197674629109969583382158 % SZS output start Proof for 6197674629109969583382158 45. preda(mary) <~> ! [X0] : (room(X0) => (predb(X0) | ~predm(X0))) [input p1] 67. ! [X0] : (room(X0) => ~predm(X0)) [input p23] 68. preda(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 156. preda(mary) <~> ! [X0] : ((predb(X0) | ~predm(X0)) | ~room(X0)) [ennf transformation 45] 157. preda(mary) <~> ! [X0] : (predb(X0) | ~predm(X0) | ~room(X0)) [flattening 156] 179. ! [X0] : (~predm(X0) | ~room(X0)) [ennf transformation 67] 180. preda(mary) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 68] 181. preda(mary) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 180] 187. (? [X0] : (~predb(X0) & predm(X0) & room(X0)) | ~preda(mary)) & (! [X0] : (predb(X0) | ~predm(X0) | ~room(X0)) | preda(mary)) [nnf transformation 157] 188. (? [X0] : (~predb(X0) & predm(X0) & room(X0)) | ~preda(mary)) & (! [X1] : (predb(X1) | ~predm(X1) | ~room(X1)) | preda(mary)) [rectify 187] 189. ? [X0] : (~predb(X0) & predm(X0) & room(X0)) => (~predb(sK2) & predm(sK2) & room(sK2)) [choice axiom] 190. ((~predb(sK2) & predm(sK2) & room(sK2)) | ~preda(mary)) & (! [X1] : (predb(X1) | ~predm(X1) | ~room(X1)) | preda(mary)) [skolemisation 188,189] 298. room(sK2) | ~preda(mary) [cnf transformation 190] 299. predm(sK2) | ~preda(mary) [cnf transformation 190] 339. ~predm(X0) | ~room(X0) [cnf transformation 179] 343. preda(mary) [cnf transformation 181] 345. 1 <=> preda(mary) [avatar definition] 354. 3 <=> predm(sK2) [avatar definition] 356. predm(sK2) <- (3) [avatar component clause 354] 357. ~1 | 3 [avatar split clause 299,354,345] 359. 4 <=> room(sK2) [avatar definition] 362. ~1 | 4 [avatar split clause 298,359,345] 492. 1 [avatar split clause 343,345] 495. ~room(sK2) <- (3) [resolution 339,356] 498. ~4 | ~3 [avatar split clause 495,354,359] 500. $false [avatar sat refutation 357,362,492,498] % SZS output end Proof for 6197674629109969583382158 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.088098
Don, Maria, Sarah, Robert are the only persons in the room. Either Don is a chess master who participates in national tournaments or everyone in the room does not collect luxury watches or hosts a YouTube channel dedicated to art tutorials but not both. If everyone anywhere does not enjoy bird watching or builds model airplanes then everyone in the room who does not enjoy bird watching composes and performs experimental electronic music. Everyone in the room who uses an ios phone is a client of LVMH. Everyone outside the room who is a client of LVMH enjoys landscape photography. At least one person in the room plays the violin and enjoys landscape photography. Everyone in the room builds model airplanes if they does enjoy mountain biking. Everyone anywhere who builds model airplanes practices calligraphy.
Don does not play the violin or composes and performs experimental electronic music or both.
neutral
room(don)&room(maria)&room(sarah)&room(robert)&(![X]:(room(X)=>(X='don'|X='maria'|X='sarah'|X='robert')))& ((is_a_chess_master_who_participates_in_national_tournaments(don))<~>(![X]:(room(X)=>(((hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))|(does_not_collect_luxury_watches(X)))))))& ((![X]:(anywhere(X)=>(((builds_model_airplanes(X))|(does_not_enjoy_bird_watching(X))))))=>(![X]:(room(X)=>(((does_not_enjoy_bird_watching(X))=>(composes_and_performs_experimental_electronic_music(X)))))))& (![X]:(room(X)=>(((uses_an_ios_phone(X))=>(is_a_client_of_LVMH(X))))))& (![X]:(~room(X)=>(((is_a_client_of_LVMH(X))=>(enjoys_landscape_photography(X))))))& (((?[X]:(room(X)&((plays_the_violin(X))&(enjoys_landscape_photography(X)))))))& (![X]:(room(X)=>(((does_enjoy_mountain_biking(X))=>(builds_model_airplanes(X))))))& (![X]:(anywhere(X)=>(((builds_model_airplanes(X))=>(practices_calligraphy(X))))))& (![X]:(room(X)=>(((is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))=>(builds_model_airplanes(X))))))& (![X]:(room(X)=>(((builds_model_airplanes(X))=>(does_enjoy_mountain_biking(X))))))& (![X]:(room(X)=>(((does_enjoy_mountain_biking(X))=>(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))))& (plays_the_violin(don))& (~![X]:(room(X)=>(((practices_urban_gardening(X))=>(enjoys_bird_watching(X))))))& (![X]:(room(X)=>(((enjoys_bird_watching(X))=>(practices_calligraphy(X))))))& (![X]:(room(X)=>(((enjoys_kayaking(X))<=(practices_calligraphy(X))))))& (![X]:(room(X)=>(((((practices_calligraphy(X))&(writes_a_travel_blog(X))))<=(enjoys_kayaking(X))))))& ((?[X,Y]:(room(X)&room(Y)&(enjoys_landscape_photography(X)&enjoys_landscape_photography(Y))&(X!=Y))))& (![X]:(room(X)=>(((is_a_chess_master_who_participates_in_national_tournaments(X))=>(practices_calligraphy(X))))))& (![X]:(room(X)=>(((practices_calligraphy(X))=>(collects_foreign_coins(X))))))& (![X]:(anywhere(X)=>(((does_not_enjoy_salsa_dancing(X))|(is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))))))& ((don_dream=>(((?[X]:(room(X)&uses_an_ios_phone(X)))))))& ((![X]:((does_enjoy_mountain_biking(X))<=>(is_an_expert_in_identifying_and_foraging_wild_edible_plants(X)))))& (![X]:(room(X)=>(((does_not_enjoy_bird_watching(X))=>(composes_and_performs_experimental_electronic_music(X))))))& (![X]:(room(X)=>(((writes_a_travel_blog(X))<=(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))))& (![X]:(anywhere(X)=>(((is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))<=(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))))& (![X]:(room(X)=>(((((is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))&(is_a_chess_master_who_participates_in_national_tournaments(X))))<=(is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))))))
room(don)&room(maria)&room(sarah)&room(robert)&(![X]:(room(X)=>(X='don'|X='maria'|X='sarah'|X='robert')))& ((does_not_play_the_violin(don))|(composes_and_performs_experimental_electronic_music(don)))
[]
null
0.70963
Todd, Don are the only persons in the room. Don who is a brave person is not a tall person. Someone who is creative and is tall is a client of someone who either is not a wise person or is a wise person but not both. It is true that 'all creative persons are brave'. Someone who is not a creative person is a client of someone who is a wise person. Todd who is not a wise person is not a brave person.
Todd is creative.
neutral
room(todd)&room(don)&(![X]:(room(X)=>(X='todd'|X='don')))& ((brave(don)&person(don))&(~(tall(don)&person(don))))& (?[X,Y]:((((creative(X))&(tall(X))))&(((~(wise(Y)&person(Y)))<~>(wise(Y)&person(Y))))&(client(X,Y))))& (![X]:(creative(X)=>brave(X)))& (?[X,Y]:((~(creative(X)&person(X)))&(wise(Y)&person(Y))&(client(X,Y))))& ((~(wise(todd)&person(todd)))&(~(brave(todd)&person(todd))))& (![X]:(wise(X)=>brave(X)))& (((?[X]:(~room(X)&tall(X)))&(![X,Y]:((~room(X)&~room(Y)&(tall(X))&(tall(Y)))=>(X=Y)))))& (![X]:(brave(X)=>wise(X)))& (![X]:(brave(X)=>creative(X)))& (?[X,Y]:((~(brave(X)&person(X)))&(((tall(Y)&person(Y))&(creative(Y)&person(Y))))&(client(X,Y))))& (?[X,Y]:((creative(X)&person(X))&(wise(Y)&person(Y))&(client(X,Y))))& (![X]:(wise(X)=>creative(X)))
room(todd)&room(don)&(![X]:(room(X)=>(X='todd'|X='don')))& creative(todd)
[]
null
0.62242
Billie, Robert, Robin are the only persons in the room. If “Robert and Billie are respectively generous and brave” then “Billie is an enthusiastic bird watcher who travels for rare sightings”. If “Robert hosts a YouTube channel dedicated to art tutorials” then “Billie is the oldest in the room”. If “Billie and Robin are respectively calm and strong” then “Robert is not a generous funny person”. If “Robert is not a generous funny person” then “Billie and Robin are not humble, not generous”. If “Robert is patient” then “Robert is the poorest anywhere” otherwise “Billie dreamt that “more than one person in the room is a client of Kathryn””. “Robin is not a tall person” if “Robert practices digital art”. Billie is the quietest in the room. Charles is quieter than Robert. Robin is quiet. It is not the case that “Robin is a sibling of Kathryn or can play the harmonica or both”. Billie who is an avid collector of autographed memorabilia from famous musicians is a client of LVMH. All strong persons are tall. Robin is not a strong brave european. Billie is a strong brave tourist. Robin is a patient humble tourist. Robert is creative. Billie is a sibling of Charles. No quiet person is happy. Robert and Robin are respectively wise and patient.
Robert is funny.
entailment
room(billie)&room(robert)&room(robin)&(![X]:(room(X)=>(X='billie'|X='robert'|X='robin')))& (((generous(robert))&(brave(billie)))=>(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(billie)))& ((hosts_a_YouTube_channel_dedicated_to_art_tutorials(robert))=>(![X]:((room(X)&(X!=billie))=>older(X,billie))))& ((((calm(billie))&(strong(robin)))=>(~(generous(robert)&funny(robert)&person(robert))))& ((~(generous(robert)&funny(robert)&person(robert)))=>(~humble(billie)&~generous(billie)&~humble(robin)&~generous(robin))))& (((patient(robert))=>(![X]:((anywhere(X)&(X!=robert))=>poorer(X,robert))))&((~(patient(robert)))=>((billie_dream=>((?[X,Y]:(room(X)&room(Y)&(client(kathryn,X)&client(kathryn,Y))&(X!=Y))))))))& ((practices_digital_art(robert))=>(~(tall(robin)&person(robin))))& (![X]:((room(X)&(X!=billie))=>quieter(X,billie)))& (quieter(robert,charles))& (quiet(robin))& (~(((sibling(kathryn,robin))|(can_play_the_harmonica(robin)))))& ((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(billie))&(is_a_client_of_LVMH(billie)))& (![X]:(strong(X)=>tall(X)))& (~(strong(robin)&brave(robin)&european(robin)))& (strong(billie)&brave(billie)&tourist(billie))& (patient(robin)&humble(robin)&tourist(robin))& (creative(robert))& (sibling(charles,billie))& (~?[X]:(quiet(X)=>happy(X)))& ((wise(robert))&(patient(robin)))
room(billie)&room(robert)&room(robin)&(![X]:(room(X)=>(X='billie'|X='robert'|X='robin')))& funny(robert)
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 2691960625261122026782805 % SZS output start Proof for 2691960625261122026782805 44. patient(fred) & wise(paul) & ~? [X0] : (quiet(X0) => happy(X0)) & sibling(alice,mary) & creative(paul) & tourist(fred) & humble(fred) & patient(fred) & tourist(mary) & brave(mary) & strong(mary) & ~(european(fred) & brave(fred) & strong(fred)) & ! [X0] : (strong(X0) => tall(X0)) & preda(mary) & predo(mary) & ~(predz(fred) | sibling(john,fred)) & quiet(fred) & quieter(paul,alice) & ! [X0] : ((mary != X0 & room(X0)) => quieter(X0,mary)) & (predm(paul) => ~(person(fred) & tall(fred))) & (~patient(paul) => (mary_dream => ? [X0,X1] : (X0 != X1 & client(john,X1) & client(john,X0) & room(X1) & room(X0)))) & (patient(paul) => ! [X0] : ((paul != X0 & anywhere(X0)) => poorer(X0,paul))) & (~(person(paul) & funny(paul) & generous(paul)) => (~generous(fred) & ~humble(fred) & ~generous(mary) & ~humble(mary))) & ((strong(fred) & calm(mary)) => ~(person(paul) & funny(paul) & generous(paul))) & (predx(paul) => ! [X0] : ((mary != X0 & room(X0)) => older(X0,mary))) & ((brave(mary) & generous(paul)) => predk(mary)) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 45. ~(funny(paul) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 46. patient(fred) & wise(paul) & ~? [X0] : (quiet(X0) => happy(X0)) & sibling(alice,mary) & creative(paul) & tourist(fred) & humble(fred) & patient(fred) & tourist(mary) & brave(mary) & strong(mary) & ~(european(fred) & brave(fred) & strong(fred)) & ! [X1] : (strong(X1) => tall(X1)) & preda(mary) & predo(mary) & ~(predz(fred) | sibling(john,fred)) & quiet(fred) & quieter(paul,alice) & ! [X2] : ((mary != X2 & room(X2)) => quieter(X2,mary)) & (predm(paul) => ~(person(fred) & tall(fred))) & (~patient(paul) => (mary_dream => ? [X3,X4] : (X3 != X4 & client(john,X4) & client(john,X3) & room(X4) & room(X3)))) & (patient(paul) => ! [X5] : ((paul != X5 & anywhere(X5)) => poorer(X5,paul))) & (~(person(paul) & funny(paul) & generous(paul)) => (~generous(fred) & ~humble(fred) & ~generous(mary) & ~humble(mary))) & ((strong(fred) & calm(mary)) => ~(person(paul) & funny(paul) & generous(paul))) & (predx(paul) => ! [X6] : ((mary != X6 & room(X6)) => older(X6,mary))) & ((brave(mary) & generous(paul)) => predk(mary)) & ! [X7] : (room(X7) => (fred = X7 | paul = X7 | mary = X7)) & room(fred) & room(paul) & room(mary) [rectify 44] 47. patient(fred) & ~? [X0] : (quiet(X0) => happy(X0)) & sibling(alice,mary) & creative(paul) & tourist(fred) & humble(fred) & patient(fred) & tourist(mary) & brave(mary) & strong(mary) & ~(european(fred) & brave(fred) & strong(fred)) & ! [X1] : (strong(X1) => tall(X1)) & preda(mary) & predo(mary) & ~(predz(fred) | sibling(john,fred)) & quiet(fred) & quieter(paul,alice) & ! [X2] : ((mary != X2 & room(X2)) => quieter(X2,mary)) & (predm(paul) => ~(person(fred) & tall(fred))) & (~patient(paul) => (mary_dream => ? [X3,X4] : (X3 != X4 & client(john,X4) & client(john,X3) & room(X4) & room(X3)))) & (patient(paul) => ! [X5] : ((paul != X5 & anywhere(X5)) => poorer(X5,paul))) & (~(person(paul) & funny(paul) & generous(paul)) => (~generous(fred) & ~humble(fred) & ~generous(mary) & ~humble(mary))) & ((strong(fred) & calm(mary)) => ~(person(paul) & funny(paul) & generous(paul))) & (predx(paul) => ! [X6] : ((mary != X6 & room(X6)) => older(X6,mary))) & ((brave(mary) & generous(paul)) => predk(mary)) & ! [X7] : (room(X7) => (fred = X7 | paul = X7 | mary = X7)) & room(fred) & room(paul) & room(mary) [pure predicate removal 46] 48. patient(fred) & ~? [X0] : ~quiet(X0) & sibling(alice,mary) & creative(paul) & tourist(fred) & humble(fred) & patient(fred) & tourist(mary) & brave(mary) & strong(mary) & ~(european(fred) & brave(fred) & strong(fred)) & ! [X1] : (strong(X1) => tall(X1)) & preda(mary) & predo(mary) & ~(predz(fred) | sibling(john,fred)) & quiet(fred) & quieter(paul,alice) & ! [X2] : ((mary != X2 & room(X2)) => quieter(X2,mary)) & (predm(paul) => ~(person(fred) & tall(fred))) & (~patient(paul) => (mary_dream => ? [X3,X4] : (X3 != X4 & client(john,X4) & client(john,X3) & room(X4) & room(X3)))) & (patient(paul) => ! [X5] : ((paul != X5 & anywhere(X5)) => poorer(X5,paul))) & (~(person(paul) & funny(paul) & generous(paul)) => (~generous(fred) & ~humble(fred) & ~generous(mary) & ~humble(mary))) & ((strong(fred) & calm(mary)) => ~(person(paul) & funny(paul) & generous(paul))) & (predx(paul) => ! [X6] : ((mary != X6 & room(X6)) => older(X6,mary))) & ((brave(mary) & generous(paul)) => predk(mary)) & ! [X7] : (room(X7) => (fred = X7 | paul = X7 | mary = X7)) & room(fred) & room(paul) & room(mary) [pure predicate removal 47] 49. patient(fred) & ~? [X0] : ~quiet(X0) & sibling(alice,mary) & tourist(fred) & humble(fred) & patient(fred) & tourist(mary) & brave(mary) & strong(mary) & ~(european(fred) & brave(fred) & strong(fred)) & ! [X1] : (strong(X1) => tall(X1)) & preda(mary) & predo(mary) & ~(predz(fred) | sibling(john,fred)) & quiet(fred) & quieter(paul,alice) & ! [X2] : ((mary != X2 & room(X2)) => quieter(X2,mary)) & (predm(paul) => ~(person(fred) & tall(fred))) & (~patient(paul) => (mary_dream => ? [X3,X4] : (X3 != X4 & client(john,X4) & client(john,X3) & room(X4) & room(X3)))) & (patient(paul) => ! [X5] : ((paul != X5 & anywhere(X5)) => poorer(X5,paul))) & (~(person(paul) & funny(paul) & generous(paul)) => (~generous(fred) & ~humble(fred) & ~generous(mary) & ~humble(mary))) & ((strong(fred) & calm(mary)) => ~(person(paul) & funny(paul) & generous(paul))) & (predx(paul) => ! [X6] : ((mary != X6 & room(X6)) => older(X6,mary))) & ((brave(mary) & generous(paul)) => predk(mary)) & ! [X7] : (room(X7) => (fred = X7 | paul = X7 | mary = X7)) & room(fred) & room(paul) & room(mary) [pure predicate removal 48] 50. patient(fred) & ~? [X0] : ~quiet(X0) & sibling(alice,mary) & tourist(fred) & humble(fred) & patient(fred) & tourist(mary) & brave(mary) & strong(mary) & ~(european(fred) & brave(fred) & strong(fred)) & ! [X1] : (strong(X1) => tall(X1)) & predo(mary) & ~(predz(fred) | sibling(john,fred)) & quiet(fred) & quieter(paul,alice) & ! [X2] : ((mary != X2 & room(X2)) => quieter(X2,mary)) & (predm(paul) => ~(person(fred) & tall(fred))) & (~patient(paul) => (mary_dream => ? [X3,X4] : (X3 != X4 & client(john,X4) & client(john,X3) & room(X4) & room(X3)))) & (patient(paul) => ! [X5] : ((paul != X5 & anywhere(X5)) => poorer(X5,paul))) & (~(person(paul) & funny(paul) & generous(paul)) => (~generous(fred) & ~humble(fred) & ~generous(mary) & ~humble(mary))) & ((strong(fred) & calm(mary)) => ~(person(paul) & funny(paul) & generous(paul))) & (predx(paul) => ! [X6] : ((mary != X6 & room(X6)) => older(X6,mary))) & ((brave(mary) & generous(paul)) => predk(mary)) & ! [X7] : (room(X7) => (fred = X7 | paul = X7 | mary = X7)) & room(fred) & room(paul) & room(mary) [pure predicate removal 49] 51. patient(fred) & ~? [X0] : ~quiet(X0) & sibling(alice,mary) & tourist(fred) & humble(fred) & patient(fred) & tourist(mary) & brave(mary) & strong(mary) & ~(european(fred) & brave(fred) & strong(fred)) & ! [X1] : (strong(X1) => tall(X1)) & ~(predz(fred) | sibling(john,fred)) & quiet(fred) & quieter(paul,alice) & ! [X2] : ((mary != X2 & room(X2)) => quieter(X2,mary)) & (predm(paul) => ~(person(fred) & tall(fred))) & (~patient(paul) => (mary_dream => ? [X3,X4] : (X3 != X4 & client(john,X4) & client(john,X3) & room(X4) & room(X3)))) & (patient(paul) => ! [X5] : ((paul != X5 & anywhere(X5)) => poorer(X5,paul))) & (~(person(paul) & funny(paul) & generous(paul)) => (~generous(fred) & ~humble(fred) & ~generous(mary) & ~humble(mary))) & ((strong(fred) & calm(mary)) => ~(person(paul) & funny(paul) & generous(paul))) & (predx(paul) => ! [X6] : ((mary != X6 & room(X6)) => older(X6,mary))) & ((brave(mary) & generous(paul)) => predk(mary)) & ! [X7] : (room(X7) => (fred = X7 | paul = X7 | mary = X7)) & room(fred) & room(paul) & room(mary) [pure predicate removal 50] 52. patient(fred) & ~? [X0] : ~quiet(X0) & sibling(alice,mary) & tourist(fred) & humble(fred) & patient(fred) & tourist(mary) & brave(mary) & strong(mary) & ~(european(fred) & brave(fred) & strong(fred)) & ! [X1] : (strong(X1) => tall(X1)) & ~sibling(john,fred) & quiet(fred) & quieter(paul,alice) & ! [X2] : ((mary != X2 & room(X2)) => quieter(X2,mary)) & (predm(paul) => ~(person(fred) & tall(fred))) & (~patient(paul) => (mary_dream => ? [X3,X4] : (X3 != X4 & client(john,X4) & client(john,X3) & room(X4) & room(X3)))) & (patient(paul) => ! [X5] : ((paul != X5 & anywhere(X5)) => poorer(X5,paul))) & (~(person(paul) & funny(paul) & generous(paul)) => (~generous(fred) & ~humble(fred) & ~generous(mary) & ~humble(mary))) & ((strong(fred) & calm(mary)) => ~(person(paul) & funny(paul) & generous(paul))) & (predx(paul) => ! [X6] : ((mary != X6 & room(X6)) => older(X6,mary))) & ((brave(mary) & generous(paul)) => predk(mary)) & ! [X7] : (room(X7) => (fred = X7 | paul = X7 | mary = X7)) & room(fred) & room(paul) & room(mary) [pure predicate removal 51] 53. patient(fred) & ~? [X0] : ~quiet(X0) & sibling(alice,mary) & tourist(fred) & humble(fred) & patient(fred) & tourist(mary) & brave(mary) & strong(mary) & ~(european(fred) & brave(fred) & strong(fred)) & ! [X1] : (strong(X1) => tall(X1)) & ~sibling(john,fred) & quiet(fred) & quieter(paul,alice) & ! [X2] : ((mary != X2 & room(X2)) => quieter(X2,mary)) & (~patient(paul) => (mary_dream => ? [X3,X4] : (X3 != X4 & client(john,X4) & client(john,X3) & room(X4) & room(X3)))) & (patient(paul) => ! [X5] : ((paul != X5 & anywhere(X5)) => poorer(X5,paul))) & (~(person(paul) & funny(paul) & generous(paul)) => (~generous(fred) & ~humble(fred) & ~generous(mary) & ~humble(mary))) & ((strong(fred) & calm(mary)) => ~(person(paul) & funny(paul) & generous(paul))) & (predx(paul) => ! [X6] : ((mary != X6 & room(X6)) => older(X6,mary))) & ((brave(mary) & generous(paul)) => predk(mary)) & ! [X7] : (room(X7) => (fred = X7 | paul = X7 | mary = X7)) & room(fred) & room(paul) & room(mary) [pure predicate removal 52] 54. patient(fred) & ~? [X0] : ~quiet(X0) & sibling(alice,mary) & tourist(fred) & humble(fred) & patient(fred) & tourist(mary) & brave(mary) & strong(mary) & ~(european(fred) & brave(fred) & strong(fred)) & ~sibling(john,fred) & quiet(fred) & quieter(paul,alice) & ! [X2] : ((mary != X2 & room(X2)) => quieter(X2,mary)) & (~patient(paul) => (mary_dream => ? [X3,X4] : (X3 != X4 & client(john,X4) & client(john,X3) & room(X4) & room(X3)))) & (patient(paul) => ! [X5] : ((paul != X5 & anywhere(X5)) => poorer(X5,paul))) & (~(person(paul) & funny(paul) & generous(paul)) => (~generous(fred) & ~humble(fred) & ~generous(mary) & ~humble(mary))) & ((strong(fred) & calm(mary)) => ~(person(paul) & funny(paul) & generous(paul))) & (predx(paul) => ! [X6] : ((mary != X6 & room(X6)) => older(X6,mary))) & ((brave(mary) & generous(paul)) => predk(mary)) & ! [X7] : (room(X7) => (fred = X7 | paul = X7 | mary = X7)) & room(fred) & room(paul) & room(mary) [pure predicate removal 53] 55. patient(fred) & ~? [X0] : ~quiet(X0) & sibling(alice,mary) & tourist(fred) & humble(fred) & patient(fred) & tourist(mary) & brave(mary) & strong(mary) & ~(european(fred) & brave(fred) & strong(fred)) & ~sibling(john,fred) & quiet(fred) & quieter(paul,alice) & ! [X2] : ((mary != X2 & room(X2)) => quieter(X2,mary)) & (~patient(paul) => (mary_dream => ? [X3,X4] : (X3 != X4 & room(X4) & room(X3)))) & (patient(paul) => ! [X5] : ((paul != X5 & anywhere(X5)) => poorer(X5,paul))) & (~(person(paul) & funny(paul) & generous(paul)) => (~generous(fred) & ~humble(fred) & ~generous(mary) & ~humble(mary))) & ((strong(fred) & calm(mary)) => ~(person(paul) & funny(paul) & generous(paul))) & (predx(paul) => ! [X6] : ((mary != X6 & room(X6)) => older(X6,mary))) & ((brave(mary) & generous(paul)) => predk(mary)) & ! [X7] : (room(X7) => (fred = X7 | paul = X7 | mary = X7)) & room(fred) & room(paul) & room(mary) [pure predicate removal 54] 56. patient(fred) & ~? [X0] : ~quiet(X0) & sibling(alice,mary) & tourist(fred) & humble(fred) & patient(fred) & tourist(mary) & brave(mary) & strong(mary) & ~(european(fred) & brave(fred) & strong(fred)) & ~sibling(john,fred) & quiet(fred) & quieter(paul,alice) & ! [X2] : ((mary != X2 & room(X2)) => quieter(X2,mary)) & (patient(paul) => ! [X5] : ((paul != X5 & anywhere(X5)) => poorer(X5,paul))) & (~(person(paul) & funny(paul) & generous(paul)) => (~generous(fred) & ~humble(fred) & ~generous(mary) & ~humble(mary))) & ((strong(fred) & calm(mary)) => ~(person(paul) & funny(paul) & generous(paul))) & (predx(paul) => ! [X6] : ((mary != X6 & room(X6)) => older(X6,mary))) & ((brave(mary) & generous(paul)) => predk(mary)) & ! [X7] : (room(X7) => (fred = X7 | paul = X7 | mary = X7)) & room(fred) & room(paul) & room(mary) [pure predicate removal 55] 57. patient(fred) & ~? [X0] : ~quiet(X0) & sibling(alice,mary) & tourist(fred) & humble(fred) & patient(fred) & tourist(mary) & brave(mary) & strong(mary) & ~(european(fred) & brave(fred) & strong(fred)) & ~sibling(john,fred) & quiet(fred) & quieter(paul,alice) & ! [X2] : ((mary != X2 & room(X2)) => quieter(X2,mary)) & (patient(paul) => ! [X5] : ((paul != X5 & anywhere(X5)) => poorer(X5,paul))) & (~(person(paul) & funny(paul) & generous(paul)) => (~generous(fred) & ~humble(fred) & ~generous(mary) & ~humble(mary))) & (predx(paul) => ! [X6] : ((mary != X6 & room(X6)) => older(X6,mary))) & ((brave(mary) & generous(paul)) => predk(mary)) & ! [X7] : (room(X7) => (fred = X7 | paul = X7 | mary = X7)) & room(fred) & room(paul) & room(mary) [pure predicate removal 56] 59. patient(fred) & ~? [X0] : ~quiet(X0) & sibling(alice,mary) & tourist(fred) & humble(fred) & patient(fred) & tourist(mary) & brave(mary) & strong(mary) & ~(european(fred) & brave(fred) & strong(fred)) & ~sibling(john,fred) & quiet(fred) & quieter(paul,alice) & ! [X2] : ((mary != X2 & room(X2)) => quieter(X2,mary)) & (patient(paul) => ! [X5] : ((paul != X5 & anywhere(X5)) => poorer(X5,paul))) & (~(funny(paul) & generous(paul)) => (~generous(fred) & ~humble(fred) & ~generous(mary) & ~humble(mary))) & (predx(paul) => ! [X6] : ((mary != X6 & room(X6)) => older(X6,mary))) & ((brave(mary) & generous(paul)) => predk(mary)) & ! [X7] : (room(X7) => (fred = X7 | paul = X7 | mary = X7)) & room(fred) & room(paul) & room(mary) [pure predicate removal 57] 61. patient(fred) & ~? [X0] : ~quiet(X0) & sibling(alice,mary) & humble(fred) & patient(fred) & brave(mary) & strong(mary) & ~(european(fred) & brave(fred) & strong(fred)) & ~sibling(john,fred) & quiet(fred) & quieter(paul,alice) & ! [X2] : ((mary != X2 & room(X2)) => quieter(X2,mary)) & (patient(paul) => ! [X5] : ((paul != X5 & anywhere(X5)) => poorer(X5,paul))) & (~(funny(paul) & generous(paul)) => (~generous(fred) & ~humble(fred) & ~generous(mary) & ~humble(mary))) & (predx(paul) => ! [X6] : ((mary != X6 & room(X6)) => older(X6,mary))) & ((brave(mary) & generous(paul)) => predk(mary)) & ! [X7] : (room(X7) => (fred = X7 | paul = X7 | mary = X7)) & room(fred) & room(paul) & room(mary) [pure predicate removal 59] 62. patient(fred) & ~? [X0] : ~quiet(X0) & sibling(alice,mary) & humble(fred) & patient(fred) & brave(mary) & strong(mary) & ~(european(fred) & brave(fred) & strong(fred)) & ~sibling(john,fred) & quiet(fred) & quieter(paul,alice) & ! [X2] : ((mary != X2 & room(X2)) => quieter(X2,mary)) & (patient(paul) => ! [X5] : ((paul != X5 & anywhere(X5)) => poorer(X5,paul))) & (~(funny(paul) & generous(paul)) => (~generous(fred) & ~humble(fred) & ~generous(mary) & ~humble(mary))) & ((brave(mary) & generous(paul)) => predk(mary)) & ! [X7] : (room(X7) => (fred = X7 | paul = X7 | mary = X7)) & room(fred) & room(paul) & room(mary) [pure predicate removal 61] 63. patient(fred) & ~? [X0] : ~quiet(X0) & sibling(alice,mary) & humble(fred) & patient(fred) & brave(mary) & strong(mary) & ~(european(fred) & brave(fred) & strong(fred)) & ~sibling(john,fred) & quiet(fred) & quieter(paul,alice) & ! [X2] : ((mary != X2 & room(X2)) => quieter(X2,mary)) & (patient(paul) => ! [X5] : ((paul != X5 & anywhere(X5)) => poorer(X5,paul))) & (~(funny(paul) & generous(paul)) => (~generous(fred) & ~humble(fred) & ~generous(mary) & ~humble(mary))) & ! [X7] : (room(X7) => (fred = X7 | paul = X7 | mary = X7)) & room(fred) & room(paul) & room(mary) [pure predicate removal 62] 64. patient(fred) & ~? [X0] : ~quiet(X0) & sibling(alice,mary) & humble(fred) & patient(fred) & brave(mary) & strong(mary) & ~sibling(john,fred) & quiet(fred) & quieter(paul,alice) & ! [X2] : ((mary != X2 & room(X2)) => quieter(X2,mary)) & (patient(paul) => ! [X5] : ((paul != X5 & anywhere(X5)) => poorer(X5,paul))) & (~(funny(paul) & generous(paul)) => (~generous(fred) & ~humble(fred) & ~generous(mary) & ~humble(mary))) & ! [X7] : (room(X7) => (fred = X7 | paul = X7 | mary = X7)) & room(fred) & room(paul) & room(mary) [pure predicate removal 63] 65. patient(fred) & ~? [X0] : ~quiet(X0) & sibling(alice,mary) & humble(fred) & patient(fred) & strong(mary) & ~sibling(john,fred) & quiet(fred) & quieter(paul,alice) & ! [X2] : ((mary != X2 & room(X2)) => quieter(X2,mary)) & (patient(paul) => ! [X5] : ((paul != X5 & anywhere(X5)) => poorer(X5,paul))) & (~(funny(paul) & generous(paul)) => (~generous(fred) & ~humble(fred) & ~generous(mary) & ~humble(mary))) & ! [X7] : (room(X7) => (fred = X7 | paul = X7 | mary = X7)) & room(fred) & room(paul) & room(mary) [pure predicate removal 64] 66. patient(fred) & ~? [X0] : ~quiet(X0) & sibling(alice,mary) & humble(fred) & patient(fred) & ~sibling(john,fred) & quiet(fred) & quieter(paul,alice) & ! [X2] : ((mary != X2 & room(X2)) => quieter(X2,mary)) & (patient(paul) => ! [X5] : ((paul != X5 & anywhere(X5)) => poorer(X5,paul))) & (~(funny(paul) & generous(paul)) => (~generous(fred) & ~humble(fred) & ~generous(mary) & ~humble(mary))) & ! [X7] : (room(X7) => (fred = X7 | paul = X7 | mary = X7)) & room(fred) & room(paul) & room(mary) [pure predicate removal 65] 136. patient(fred) & ! [X0] : quiet(X0) & sibling(alice,mary) & humble(fred) & patient(fred) & ~sibling(john,fred) & quiet(fred) & quieter(paul,alice) & ! [X2] : (quieter(X2,mary) | (mary = X2 | ~room(X2))) & (! [X5] : (poorer(X5,paul) | (paul = X5 | ~anywhere(X5))) | ~patient(paul)) & ((~generous(fred) & ~humble(fred) & ~generous(mary) & ~humble(mary)) | (funny(paul) & generous(paul))) & ! [X7] : ((fred = X7 | paul = X7 | mary = X7) | ~room(X7)) & room(fred) & room(paul) & room(mary) [ennf transformation 66] 137. patient(fred) & ! [X0] : quiet(X0) & sibling(alice,mary) & humble(fred) & patient(fred) & ~sibling(john,fred) & quiet(fred) & quieter(paul,alice) & ! [X2] : (quieter(X2,mary) | mary = X2 | ~room(X2)) & (! [X5] : (poorer(X5,paul) | paul = X5 | ~anywhere(X5)) | ~patient(paul)) & ((~generous(fred) & ~humble(fred) & ~generous(mary) & ~humble(mary)) | (funny(paul) & generous(paul))) & ! [X7] : (fred = X7 | paul = X7 | mary = X7 | ~room(X7)) & room(fred) & room(paul) & room(mary) [flattening 136] 138. ~funny(paul) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 45] 139. ~funny(paul) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 138] 141. patient(fred) & ! [X0] : quiet(X0) & sibling(alice,mary) & humble(fred) & patient(fred) & ~sibling(john,fred) & quiet(fred) & quieter(paul,alice) & ! [X1] : (quieter(X1,mary) | mary = X1 | ~room(X1)) & (! [X2] : (poorer(X2,paul) | paul = X2 | ~anywhere(X2)) | ~patient(paul)) & ((~generous(fred) & ~humble(fred) & ~generous(mary) & ~humble(mary)) | (funny(paul) & generous(paul))) & ! [X3] : (fred = X3 | paul = X3 | mary = X3 | ~room(X3)) & room(fred) & room(paul) & room(mary) [rectify 137] 142. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK0 & paul != sK0 & mary != sK0 & room(sK0)) [choice axiom] 143. ~funny(paul) | (fred != sK0 & paul != sK0 & mary != sK0 & room(sK0)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 139,142] 225. room(mary) [cnf transformation 141] 226. room(paul) [cnf transformation 141] 227. room(fred) [cnf transformation 141] 228. ~room(X3) | paul = X3 | mary = X3 | fred = X3 [cnf transformation 141] 234. ~humble(fred) | funny(paul) [cnf transformation 141] 243. humble(fred) [cnf transformation 141] 247. ~funny(paul) | room(sK0) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 143] 248. ~funny(paul) | mary != sK0 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 143] 249. ~funny(paul) | paul != sK0 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 143] 250. ~funny(paul) | fred != sK0 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 143] 261. 3 <=> funny(paul) [avatar definition] 274. funny(paul) [subsumption resolution 234,243] 275. 3 [avatar split clause 274,261] 290. ~funny(paul) | fred != sK0 | ~room(paul) | ~room(mary) [subsumption resolution 250,227] 291. ~funny(paul) | fred != sK0 | ~room(mary) [subsumption resolution 290,226] 292. ~funny(paul) | fred != sK0 [subsumption resolution 291,225] 294. 8 <=> fred = sK0 [avatar definition] 296. fred != sK0 <- (~8) [avatar component clause 294] 297. ~8 | ~3 [avatar split clause 292,261,294] 298. ~funny(paul) | paul != sK0 | ~room(paul) | ~room(mary) [subsumption resolution 249,227] 299. ~funny(paul) | paul != sK0 | ~room(mary) [subsumption resolution 298,226] 300. ~funny(paul) | paul != sK0 [subsumption resolution 299,225] 302. 9 <=> paul = sK0 [avatar definition] 304. paul != sK0 <- (~9) [avatar component clause 302] 305. ~9 | ~3 [avatar split clause 300,261,302] 306. ~funny(paul) | mary != sK0 | ~room(paul) | ~room(mary) [subsumption resolution 248,227] 307. ~funny(paul) | mary != sK0 | ~room(mary) [subsumption resolution 306,226] 308. ~funny(paul) | mary != sK0 [subsumption resolution 307,225] 310. 10 <=> mary = sK0 [avatar definition] 312. mary != sK0 <- (~10) [avatar component clause 310] 313. ~10 | ~3 [avatar split clause 308,261,310] 314. ~funny(paul) | room(sK0) | ~room(paul) | ~room(mary) [subsumption resolution 247,227] 315. ~funny(paul) | room(sK0) | ~room(mary) [subsumption resolution 314,226] 316. ~funny(paul) | room(sK0) [subsumption resolution 315,225] 318. 11 <=> room(sK0) [avatar definition] 320. room(sK0) <- (11) [avatar component clause 318] 321. 11 | ~3 [avatar split clause 316,261,318] 419. paul = sK0 | mary = sK0 | fred = sK0 <- (11) [resolution 228,320] 420. mary = sK0 | fred = sK0 <- (~9, 11) [subsumption resolution 419,304] 421. fred = sK0 <- (~9, ~10, 11) [subsumption resolution 420,312] 422. $false <- (~8, ~9, ~10, 11) [subsumption resolution 421,296] 423. 8 | 9 | 10 | ~11 [avatar contradiction clause 422] 424. $false [avatar sat refutation 275,297,305,313,321,423] % SZS output end Proof for 2691960625261122026782805 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.032 s % ------------------------------ % ------------------------------
0.219162
If it is not the case that David competes in national level swimming championships and travels domestically frequently then David enjoys writing detailed reviews of new and classic board games and has a saltwater aquarium. If David practices and performs acrobatic dance routines then David is a client of Meta. David practices calligraphy. It is not the case that David owns an Android phone. David who volunteers for local environmental conservation projects, has completed a triathlon and creates YouTube content has a piercing. David can play the piano. David is a drone photographer. David has a saltwater aquarium. David volunteers for local environmental conservation projects.
David is a client of Meta.
neutral
room(david)&(![X]:(room(X)=>(X='david')))& ((~(((competes_in_national_level_swimming_championships(david))&(travels_domestically_frequently(david)))))=>(((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(david))&(has_a_saltwater_aquarium(david)))))& ((practices_and_performs_acrobatic_dance_routines(david))=>(is_a_client_of_Meta(david)))& (practices_calligraphy(david))& (~(owns_an_Android_phone(david)))& ((((volunteers_for_local_environmental_conservation_projects(david))&(has_completed_a_triathlon(david))&(creates_YouTube_content(david))))&(has_a_piercing(david)))& (can_play_the_piano(david))& (is_a_drone_photographer(david))& (has_a_saltwater_aquarium(david))& (volunteers_for_local_environmental_conservation_projects(david))
room(david)&(![X]:(room(X)=>(X='david')))& is_a_client_of_Meta(david)
[]
null
0.612664
There is a room. No one in the room enjoys virtual reality gaming if and only if they is a dedicated advocate for digital privacy and encryption. Everyone in the room is a dedicated advocate for digital privacy and encryption only if they can play the piano. No one in the room can play the piano if and only if they does not make intricate hand-cut paper art for exhibitions. Everyone in the room practices and performs acrobatic dance routines if and only if they neither is allergic to anything nor is a craft beer aficionado. Everyone in the room neither is allergic to anything nor is a craft beer aficionado if and only if they owns a smart tv. If someone is a certified yoga instructor teaching classes weekly then he/she hosts a popular podcast about emerging technologies and vice versa. Everyone in the room neither is allergic to anything nor is an expert in identifying and foraging wild edible plants only if they makes intricate hand-cut paper art for exhibitions and practices and performs acrobatic dance routines. Everyone in the room enjoys fishing if and only if they is a wine connoisseur. Everyone in the room is a wine connoisseur only if they practices and performs acrobatic dance routines. Everyone in the room neither enjoys origami nor collects rare and antique scientific instruments if they practices and performs acrobatic dance routines. Everyone in the room is a certified yoga instructor teaching classes weekly. Everyone anywhere who is a dedicated advocate for digital privacy and encryption owns a smart tv. Everyone in the room owns a smart tv if they is a Linux enthusiast. Someone anywhere does not enjoy salsa dancing. If someone creates augmented reality experiences for mobile applications and enjoys virtual reality gaming then he/she can play the piano and vice versa. If someone does not enjoy stargazing then he/she is a wine connoisseur. More than one person in the room makes intricate hand-cut paper art for exhibitions. Everyone outside the room who makes intricate hand-cut paper art for exhibitions does not have completed a triathlon. Everyone in the room enjoys salsa dancing if they does not have completed a triathlon. Everyone in the room can play the piano if they enjoys salsa dancing.
Everyone in the room is not an expert in identifying and foraging wild edible plants or is a wine connoisseur.
neutral
(there_is_a_room)& (~?[X]:(room(X)=>(((enjoys_virtual_reality_gaming(X))<=>(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))))))& (![X]:(room(X)=>(((can_play_the_piano(X))<=(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))))))& (~?[X]:(room(X)=>(((can_play_the_piano(X))<=>(does_not_make_intricate_hand-cut_paper_art_for_exhibitions(X))))))& (![X]:(room(X)=>(((practices_and_performs_acrobatic_dance_routines(X))<=>(~((is_allergic_to_anything(X))|(is_a_craft_beer_aficionado(X))))))))& (![X]:(room(X)=>(((~((is_allergic_to_anything(X))|(is_a_craft_beer_aficionado(X))))<=>(owns_a_smart_tv(X))))))& ((![X]:((is_a_certified_yoga_instructor_teaching_classes_weekly(X))<=>(hosts_a_popular_podcast_about_emerging_technologies(X)))))& (![X]:(room(X)=>(((((makes_intricate_hand-cut_paper_art_for_exhibitions(X))&(practices_and_performs_acrobatic_dance_routines(X))))<=(~((is_allergic_to_anything(X))|(is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))))))))& (![X]:(room(X)=>(((enjoys_fishing(X))<=>(is_a_wine_connoisseur(X))))))& (![X]:(room(X)=>(((practices_and_performs_acrobatic_dance_routines(X))<=(is_a_wine_connoisseur(X))))))& (![X]:(room(X)=>(((practices_and_performs_acrobatic_dance_routines(X))=>(~((enjoys_origami(X))|(collects_rare_and_antique_scientific_instruments(X))))))))& (![X]:(room(X)=>(is_a_certified_yoga_instructor_teaching_classes_weekly(X))))& (![X]:(anywhere(X)=>(((is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))=>(owns_a_smart_tv(X))))))& (![X]:(room(X)=>(((is_a_Linux_enthusiast(X))=>(owns_a_smart_tv(X))))))& (?[X]:(anywhere(X)&(does_not_enjoy_salsa_dancing(X))))& ((![X]:((((creates_augmented_reality_experiences_for_mobile_applications(X))&(enjoys_virtual_reality_gaming(X))))<=>(can_play_the_piano(X)))))& ((![X]:((does_not_enjoy_stargazing(X))=>(is_a_wine_connoisseur(X)))))& ((?[X,Y]:(room(X)&room(Y)&(makes_intricate_hand-cut_paper_art_for_exhibitions(X)&makes_intricate_hand-cut_paper_art_for_exhibitions(Y))&(X!=Y))))& (![X]:(~room(X)=>(((makes_intricate_hand-cut_paper_art_for_exhibitions(X))=>(does_not_have_completed_a_triathlon(X))))))& (![X]:(room(X)=>(((does_not_have_completed_a_triathlon(X))=>(enjoys_salsa_dancing(X))))))& (![X]:(room(X)=>(((enjoys_salsa_dancing(X))=>(can_play_the_piano(X))))))
(there_is_a_room)& ![X]:(room(X)=>(((is_a_wine_connoisseur(X))|(is_not_an_expert_in_identifying_and_foraging_wild_edible_plants(X)))))
[]
null
0.121281
Megan, Particia are the only persons in the room. Not everyone in the room who is an avid mountain climber who has scaled several peaks has a tattoo. If someone either is a wine connoisseur with a private cellar of vintage wines or enjoys stand-up paddleboarding but not both then he/she does enjoy trail running and vice versa. Everyone in the room who does enjoy mountain biking does enjoy trail running. Everyone in the room is an avid mountain climber who has scaled several peaks if they does enjoy trail running. Not everyone in the room collects action figures if they is an avid mountain climber who has scaled several peaks. Everyone in the room uses an ios phone, is an avid mountain climber who has scaled several peaks and creates augmented reality experiences for mobile applications if they collects action figures. Everyone in the room who uses an ios phone, is an avid mountain climber who has scaled several peaks and creates augmented reality experiences for mobile applications practices kickboxing. No one anywhere who practices kickboxing enjoys salsa dancing and uses an ios phone. Everyone in the room who enjoys salsa dancing and uses an ios phone either does enjoy mountain biking or is a wine connoisseur with a private cellar of vintage wines but not both. Megan uses an ios phone. If someone collects action figures then he/she composes and performs experimental electronic music. If someone does not make homemade pastries then he/she practices kickboxing and vice versa. Everyone outside the room who uses an ios phone does enjoy mountain biking. If someone composes and performs experimental electronic music then he/she does enjoy mountain biking and vice versa. If someone does not collect action figures then he/she has a tattoo and vice versa. Everyone in the room is an avid mountain climber who has scaled several peaks, collects action figures or has a pet dog only if they hosts a popular podcast about emerging technologies.
Everyone in the room is not a wine connoisseur with a private cellar of vintage wines or hosts a popular podcast about emerging technologies.
entailment
room(megan)&room(particia)&(![X]:(room(X)=>(X='megan'|X='particia')))& (~![X]:(room(X)=>(((is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))=>(has_a_tattoo(X))))))& ((![X]:((((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))<~>(enjoys_stand-up_paddleboarding(X))))<=>(does_enjoy_trail_running(X)))))& (![X]:(room(X)=>(((does_enjoy_mountain_biking(X))=>(does_enjoy_trail_running(X))))))& (![X]:(room(X)=>(((does_enjoy_trail_running(X))=>(is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))))& (~![X]:(room(X)=>(((is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))=>(collects_action_figures(X))))))& (![X]:(room(X)=>(((collects_action_figures(X))=>(((uses_an_ios_phone(X))&(is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))&(creates_augmented_reality_experiences_for_mobile_applications(X))))))))& (![X]:(room(X)=>(((((uses_an_ios_phone(X))&(is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))&(creates_augmented_reality_experiences_for_mobile_applications(X))))=>(practices_kickboxing(X))))))& (~?[X]:(anywhere(X)=>(((practices_kickboxing(X))=>(((enjoys_salsa_dancing(X))&(uses_an_ios_phone(X))))))))& (![X]:(room(X)=>(((((enjoys_salsa_dancing(X))&(uses_an_ios_phone(X))))=>(((does_enjoy_mountain_biking(X))<~>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))))))& (uses_an_ios_phone(megan))& ((![X]:((collects_action_figures(X))=>(composes_and_performs_experimental_electronic_music(X)))))& ((![X]:((does_not_make_homemade_pastries(X))<=>(practices_kickboxing(X)))))& (![X]:(~room(X)=>(((uses_an_ios_phone(X))=>(does_enjoy_mountain_biking(X))))))& ((![X]:((composes_and_performs_experimental_electronic_music(X))<=>(does_enjoy_mountain_biking(X)))))& (~![X]:(room(X)=>(((is_not_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))<=(hosts_a_popular_podcast_about_emerging_technologies(X))))))& (![X]:(room(X)=>(((((does_not_host_a_popular_podcast_about_emerging_technologies(X))<~>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))=>(collects_action_figures(X))))))& ((![X]:((does_not_collect_action_figures(X))<=>(has_a_tattoo(X)))))& (![X]:(room(X)=>(((uses_an_ios_phone(X))=>(((is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))|(collects_action_figures(X))|(has_a_pet_dog(X))))))))& (![X]:(room(X)=>(((hosts_a_popular_podcast_about_emerging_technologies(X))<=(((is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))|(collects_action_figures(X))|(has_a_pet_dog(X))))))))& (![X]:(room(X)=>(((hosts_a_popular_podcast_about_emerging_technologies(X))=>(reads_mystery_novels(X))))))
room(megan)&room(particia)&(![X]:(room(X)=>(X='megan'|X='particia')))& ![X]:(room(X)=>(((hosts_a_popular_podcast_about_emerging_technologies(X))|(is_not_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X)))))
[ "p0", "p1", "p5", "p17", "p19", "hypothesis" ]
% SZS status Unsatisfiable for 2181036590337500334550610 % SZS output start Proof for 2181036590337500334550610 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 45. ~! [X0] : (room(X0) => (predh(X0) => predp(X0))) [input p1] 49. ~! [X0] : (room(X0) => (predh(X0) => predc(X0))) [input p5] 61. ! [X0] : (~predc(X0) <=> predp(X0)) [input p17] 63. ! [X0] : (room(X0) => ((predm(X0) | predc(X0) | predh(X0)) => predd(X0))) [input p19] 65. ~(! [X0] : (room(X0) => (~predg(X0) | predd(X0))) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 66. ~(! [X0] : (room(X0) => (~predg(X0) | predd(X0))) & ! [X1] : (room(X1) => (paul = X1 | mary = X1)) & room(paul) & room(mary)) [rectify 65] 147. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 148. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 147] 149. ? [X0] : ((~predp(X0) & predh(X0)) & room(X0)) [ennf transformation 45] 150. ? [X0] : (~predp(X0) & predh(X0) & room(X0)) [flattening 149] 155. ? [X0] : ((~predc(X0) & predh(X0)) & room(X0)) [ennf transformation 49] 156. ? [X0] : (~predc(X0) & predh(X0) & room(X0)) [flattening 155] 169. ! [X0] : ((predd(X0) | (~predm(X0) & ~predc(X0) & ~predh(X0))) | ~room(X0)) [ennf transformation 63] 170. ! [X0] : (predd(X0) | (~predm(X0) & ~predc(X0) & ~predh(X0)) | ~room(X0)) [flattening 169] 171. ? [X0] : ((predg(X0) & ~predd(X0)) & room(X0)) | ? [X1] : ((paul != X1 & mary != X1) & room(X1)) | ~room(paul) | ~room(mary) [ennf transformation 66] 172. ? [X0] : (predg(X0) & ~predd(X0) & room(X0)) | ? [X1] : (paul != X1 & mary != X1 & room(X1)) | ~room(paul) | ~room(mary) [flattening 171] 173. ? [X1] : (paul != X1 & mary != X1 & room(X1)) | ~sP0 [predicate definition introduction] 174. ? [X0] : (predg(X0) & ~predd(X0) & room(X0)) | sP0 | ~room(paul) | ~room(mary) [definition folding 172,173] 176. ? [X0] : (~predp(X0) & predh(X0) & room(X0)) => (~predp(sK1) & predh(sK1) & room(sK1)) [choice axiom] 177. ~predp(sK1) & predh(sK1) & room(sK1) [skolemisation 150,176] 179. ? [X0] : (~predc(X0) & predh(X0) & room(X0)) => (~predc(sK2) & predh(sK2) & room(sK2)) [choice axiom] 180. ~predc(sK2) & predh(sK2) & room(sK2) [skolemisation 156,179] 184. ! [X0] : ((~predc(X0) | ~predp(X0)) & (predp(X0) | predc(X0))) [nnf transformation 61] 185. ? [X1] : (paul != X1 & mary != X1 & room(X1)) | ~sP0 [nnf transformation 173] 186. ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~sP0 [rectify 185] 187. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK4 & mary != sK4 & room(sK4)) [choice axiom] 188. (paul != sK4 & mary != sK4 & room(sK4)) | ~sP0 [skolemisation 186,187] 189. ? [X0] : (predg(X0) & ~predd(X0) & room(X0)) => (predg(sK5) & ~predd(sK5) & room(sK5)) [choice axiom] 190. (predg(sK5) & ~predd(sK5) & room(sK5)) | sP0 | ~room(paul) | ~room(mary) [skolemisation 174,189] 271. room(mary) [cnf transformation 148] 272. room(paul) [cnf transformation 148] 273. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 148] 274. room(sK1) [cnf transformation 177] 275. predh(sK1) [cnf transformation 177] 276. ~predp(sK1) [cnf transformation 177] 283. room(sK2) [cnf transformation 180] 284. predh(sK2) [cnf transformation 180] 285. ~predc(sK2) [cnf transformation 180] 297. predc(X0) | predp(X0) [cnf transformation 184] 300. ~predh(X0) | predd(X0) | ~room(X0) [cnf transformation 170] 303. room(sK4) | ~sP0 [cnf transformation 188] 304. mary != sK4 | ~sP0 [cnf transformation 188] 305. paul != sK4 | ~sP0 [cnf transformation 188] 306. room(sK5) | sP0 | ~room(paul) | ~room(mary) [cnf transformation 190] 307. ~predd(sK5) | sP0 | ~room(paul) | ~room(mary) [cnf transformation 190] 311. 1 <=> sP0 [avatar definition] 315. 2 <=> paul = sK4 [avatar definition] 317. paul != sK4 <- (~2) [avatar component clause 315] 318. ~1 | ~2 [avatar split clause 305,315,311] 320. 3 <=> mary = sK4 [avatar definition] 322. mary != sK4 <- (~3) [avatar component clause 320] 323. ~1 | ~3 [avatar split clause 304,320,311] 325. 4 <=> room(sK4) [avatar definition] 327. room(sK4) <- (4) [avatar component clause 325] 328. ~1 | 4 [avatar split clause 303,325,311] 336. ~predd(sK5) | sP0 | ~room(mary) [subsumption resolution 307,272] 337. ~predd(sK5) | sP0 [subsumption resolution 336,271] 339. 6 <=> predd(sK5) [avatar definition] 341. ~predd(sK5) <- (~6) [avatar component clause 339] 342. 1 | ~6 [avatar split clause 337,339,311] 343. room(sK5) | sP0 | ~room(mary) [subsumption resolution 306,272] 344. room(sK5) | sP0 [subsumption resolution 343,271] 346. 7 <=> room(sK5) [avatar definition] 348. room(sK5) <- (7) [avatar component clause 346] 349. 1 | 7 [avatar split clause 344,346,311] 350. predp(sK2) [resolution 297,285] 384. predd(sK1) | ~room(sK1) [resolution 300,275] 385. predd(sK2) | ~room(sK2) [resolution 300,284] 387. predd(sK1) [subsumption resolution 384,274] 388. predd(sK2) [subsumption resolution 385,283] 392. mary = sK1 | paul = sK1 [resolution 273,274] 393. mary = sK2 | paul = sK2 [resolution 273,283] 395. mary = sK4 | paul = sK4 <- (4) [resolution 273,327] 396. mary = sK5 | paul = sK5 <- (7) [resolution 273,348] 398. 12 <=> paul = sK1 [avatar definition] 400. paul = sK1 <- (12) [avatar component clause 398] 402. 13 <=> mary = sK1 [avatar definition] 404. mary = sK1 <- (13) [avatar component clause 402] 405. 12 | 13 [avatar split clause 392,402,398] 407. 14 <=> paul = sK2 [avatar definition] 409. paul = sK2 <- (14) [avatar component clause 407] 411. 15 <=> mary = sK2 [avatar definition] 413. mary = sK2 <- (15) [avatar component clause 411] 414. 14 | 15 [avatar split clause 393,411,407] 424. paul = sK4 <- (~3, 4) [subsumption resolution 395,322] 425. $false <- (~2, ~3, 4) [subsumption resolution 424,317] 426. 2 | 3 | ~4 [avatar contradiction clause 425] 428. 18 <=> paul = sK5 [avatar definition] 430. paul = sK5 <- (18) [avatar component clause 428] 432. 19 <=> mary = sK5 [avatar definition] 434. mary = sK5 <- (19) [avatar component clause 432] 435. 18 | 19 | ~7 [avatar split clause 396,346,432,428] 436. ~predd(mary) <- (~6, 19) [backward demodulation 341,434] 445. predp(paul) <- (14) [backward demodulation 350,409] 452. ~predp(paul) <- (12) [backward demodulation 276,400] 453. $false <- (12, 14) [subsumption resolution 452,445] 454. ~12 | ~14 [avatar contradiction clause 453] 457. predd(mary) <- (13) [backward demodulation 387,404] 461. $false <- (~6, 13, 19) [subsumption resolution 457,436] 462. 6 | ~13 | ~19 [avatar contradiction clause 461] 470. ~predd(mary) <- (~6, 19) [backward demodulation 341,434] 475. predd(mary) <- (15) [backward demodulation 388,413] 476. predp(mary) <- (15) [backward demodulation 350,413] 480. $false <- (~6, 15, 19) [subsumption resolution 475,470] 481. 6 | ~15 | ~19 [avatar contradiction clause 480] 483. predd(paul) <- (12) [backward demodulation 387,400] 487. ~predd(paul) <- (~6, 18) [backward demodulation 341,430] 491. $false <- (~6, 12, 18) [subsumption resolution 487,483] 492. 6 | ~12 | ~18 [avatar contradiction clause 491] 503. ~predp(mary) <- (13) [backward demodulation 276,404] 504. $false <- (13, 15) [subsumption resolution 503,476] 505. ~13 | ~15 [avatar contradiction clause 504] 507. predd(paul) <- (14) [backward demodulation 388,409] 512. $false <- (~6, 14, 18) [subsumption resolution 507,487] 513. 6 | ~14 | ~18 [avatar contradiction clause 512] 514. $false [avatar sat refutation 318,323,328,342,349,405,414,426,435,454,462,481,492,505,513] % SZS output end Proof for 2181036590337500334550610 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.040 s % ------------------------------ % ------------------------------
0.030632
Rebecca is the only person in the room. If “Rebecca makes homemade pastries and owns a telescope” then “everyone in the room creates augmented reality experiences for mobile applications if they owns a telescope and vice versa” otherwise “everyone in the room enjoys spelunking”. No one anywhere hosts a popular podcast about emerging technologies or does not enjoy stargazing. Everyone in the room who makes homemade pastries and creates augmented reality experiences for mobile applications hosts a popular podcast about emerging technologies. Rebecca owns a telescope.
Rebecca makes homemade pastries.
contradiction
room(rebecca)&(![X]:(room(X)=>(X='rebecca')))& (((((makes_homemade_pastries(rebecca))&(owns_a_telescope(rebecca))))=>(![X]:(room(X)=>(((creates_augmented_reality_experiences_for_mobile_applications(X))<=>(owns_a_telescope(X)))))))&((~(((makes_homemade_pastries(rebecca))&(owns_a_telescope(rebecca)))))=>(![X]:(room(X)=>(enjoys_spelunking(X))))))& ((collect_rare_sneakers(rebecca))=>(![X]:(room(X)=>(((owns_an_Android_phone(X))=>(is_dedicated_to_sustainable_living_and_zero-waste_practices(X)))))))& (((?[X]:(~room(X)&(((enjoys_spelunking(X))|(enjoys_stargazing(X))|(is_an_avid_hiker(X))))))=>(![X]:(room(X)=>(((((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))|(hosts_a_popular_podcast_about_emerging_technologies(X))|(enjoys_stargazing(X))))=>(enjoys_spelunking(X)))))))&((~(?[X]:(~room(X)&(((enjoys_spelunking(X))|(enjoys_stargazing(X))|(is_an_avid_hiker(X)))))))=>(?[X]:(room(X)&(is_not_an_avid_hiker(X))))))& ((~(collect_rare_sneakers(rebecca)))=>((rebecca_dream=>(((designs_and_sews_custom_cosplay_costumes_for_conventions(rebecca))|(hosts_a_popular_podcast_about_emerging_technologies(rebecca))|(makes_homemade_pastries(rebecca)))))))& ((~![X]:(~room(X)=>(((is_not_an_avid_hiker(X))|(collect_rare_sneakers(X))))))=>(owns_an_Android_phone(rebecca)))& ((![X]:(anywhere(X)=>(((does_not_enjoy_stargazing(X))|(creates_augmented_reality_experiences_for_mobile_applications(X))))))=>(is_dedicated_to_sustainable_living_and_zero-waste_practices(rebecca)))& ((((owns_a_telescope(rebecca))|(does_not_host_a_popular_podcast_about_emerging_technologies(rebecca))))=>(![X]:(~room(X)=>(((does_not_collect_rare_sneakers(X))=>(collect_rare_sneakers(X)))))))& (~?[X]:(anywhere(X)=>(((does_not_enjoy_stargazing(X))|(hosts_a_popular_podcast_about_emerging_technologies(X))))))& (![X]:(room(X)=>(((hosts_a_popular_podcast_about_emerging_technologies(X))=>(makes_homemade_pastries(X))))))& (is_dedicated_to_sustainable_living_and_zero-waste_practices(rebecca))& ((![X]:((collect_rare_sneakers(X))=>(designs_and_sews_custom_cosplay_costumes_for_conventions(X)))))& (((enjoys_spelunking(rebecca))|(hosts_a_popular_podcast_about_emerging_technologies(rebecca))|(does_not_create_augmented_reality_experiences_for_mobile_applications(rebecca))))& (collect_rare_sneakers(rebecca))& (![X]:(room(X)=>(((creates_augmented_reality_experiences_for_mobile_applications(X))=>(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))))))& (enjoys_stargazing(rebecca))& (![X]:(room(X)=>(((is_an_avid_hiker(X))=>(enjoys_stargazing(X))))))& ((![X]:((owns_an_Android_phone(X))<=>(makes_homemade_pastries(X)))))& (![X]:(room(X)=>(((owns_an_Android_phone(X))=>(enjoys_spelunking(X))))))& (is_an_avid_hiker(rebecca))& (![X]:(room(X)=>(((((does_not_create_augmented_reality_experiences_for_mobile_applications(X))&(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))&(enjoys_stargazing(X))))=>(makes_homemade_pastries(X))))))& (![X]:(room(X)=>(((makes_homemade_pastries(X))<=(~((owns_an_Android_phone(X))|(owns_a_telescope(X))))))))& (![X]:(room(X)=>(((((collect_rare_sneakers(X))|(hosts_a_popular_podcast_about_emerging_technologies(X))))=>(designs_and_sews_custom_cosplay_costumes_for_conventions(X))))))& (designs_and_sews_custom_cosplay_costumes_for_conventions(rebecca))& (![X]:(room(X)=>(((((makes_homemade_pastries(X))&(creates_augmented_reality_experiences_for_mobile_applications(X))))=>(hosts_a_popular_podcast_about_emerging_technologies(X))))))& (owns_a_telescope(rebecca))
room(rebecca)&(![X]:(room(X)=>(X='rebecca')))& makes_homemade_pastries(rebecca)
[ "p0", "p1", "p8", "p24", "p25", "hypothesis" ]
% SZS status Unsatisfiable for 196773447672611769322303 % SZS output start Proof for 196773447672611769322303 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 45. (~(prede(mary) & predb(mary)) => ! [X0] : (room(X0) => predj(X0))) & ((prede(mary) & predb(mary)) => ! [X0] : (room(X0) => (predd(X0) <=> prede(X0)))) [input p1] 52. ~? [X0] : (anywhere(X0) => (predi(X0) | ~preda(X0))) [input p8] 68. ! [X0] : (room(X0) => ((predd(X0) & predb(X0)) => predi(X0))) [input p24] 69. prede(mary) [input p25] 70. predb(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 71. (~(prede(mary) & predb(mary)) => ! [X0] : (room(X0) => predj(X0))) & ((prede(mary) & predb(mary)) => ! [X1] : (room(X1) => (predd(X1) <=> prede(X1)))) [rectify 45] 78. ~? [X0] : (predi(X0) | ~preda(X0)) [pure predicate removal 52] 151. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 152. (! [X0] : (predj(X0) | ~room(X0)) | (prede(mary) & predb(mary))) & (! [X1] : ((predd(X1) <=> prede(X1)) | ~room(X1)) | (~prede(mary) | ~predb(mary))) [ennf transformation 71] 153. (! [X0] : (predj(X0) | ~room(X0)) | (prede(mary) & predb(mary))) & (! [X1] : ((predd(X1) <=> prede(X1)) | ~room(X1)) | ~prede(mary) | ~predb(mary)) [flattening 152] 163. ! [X0] : (~predi(X0) & preda(X0)) [ennf transformation 78] 176. ! [X0] : ((predi(X0) | (~predd(X0) | ~predb(X0))) | ~room(X0)) [ennf transformation 68] 177. ! [X0] : (predi(X0) | ~predd(X0) | ~predb(X0) | ~room(X0)) [flattening 176] 178. predb(mary) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 70] 182. (! [X0] : (predj(X0) | ~room(X0)) | (prede(mary) & predb(mary))) & (! [X1] : (((predd(X1) | ~prede(X1)) & (prede(X1) | ~predd(X1))) | ~room(X1)) | ~prede(mary) | ~predb(mary)) [nnf transformation 153] 272. room(mary) [cnf transformation 151] 275. predd(X1) | ~prede(X1) | ~room(X1) | ~prede(mary) | ~predb(mary) [cnf transformation 182] 295. ~predi(X0) [cnf transformation 163] 309. predi(X0) | ~predd(X0) | ~predb(X0) | ~room(X0) [cnf transformation 177] 310. prede(mary) [cnf transformation 69] 313. predb(mary) [cnf transformation 178] 317. 1 <=> prede(mary) [avatar definition] 319. prede(mary) <- (1) [avatar component clause 317] 325. 3 <=> predb(mary) [avatar definition] 327. predb(mary) <- (3) [avatar component clause 325] 330. 4 <=> ! [X1] : (predd(X1) | ~room(X1) | ~prede(X1)) [avatar definition] 331. ~prede(X1) | ~room(X1) | predd(X1) <- (4) [avatar component clause 330] 332. ~3 | ~1 | 4 [avatar split clause 275,330,317,325] 439. 29 <=> predd(mary) [avatar definition] 440. predd(mary) <- (29) [avatar component clause 439] 446. ~predd(X0) | ~predb(X0) | ~room(X0) [subsumption resolution 309,295] 447. 1 [avatar split clause 310,317] 448. 3 [avatar split clause 313,325] 500. ~room(mary) | predd(mary) <- (1, 4) [resolution 331,319] 505. ~predb(mary) | ~room(mary) <- (29) [resolution 446,440] 506. ~room(mary) <- (3, 29) [subsumption resolution 505,327] 507. $false <- (3, 29) [subsumption resolution 506,272] 508. ~3 | ~29 [avatar contradiction clause 507] 509. predd(mary) <- (1, 4) [subsumption resolution 500,272] 510. 29 | ~1 | ~4 [avatar split clause 509,330,317,439] 511. $false [avatar sat refutation 332,447,448,508,510] % SZS output end Proof for 196773447672611769322303 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.004661
Tamra is the only person in the room. If "everyone outside the room does not enjoy snowboarding or does not mentor a youth basketball team on weekends" then "everyone in the room collects comic books if they does not enjoy snowboarding" otherwise "everyone in the room enjoys salsa dancing if they collects comic books". If "everyone in the room collects comic books or does not collect comic books" then "Tamra dreamt that "everyone anywhere either practices zumba or maintains a personal blog focused on cybersecurity tips but not both"". If "everyone in the room does not collect luxury watches or collects luxury watches" then "Tamra maintains a personal blog focused on cybersecurity tips". If "Tamra maintains a personal blog focused on cybersecurity tips" then "everyone in the room who enjoys snowboarding is not a night owl". Either "not everyone in the room does not have completed a triathlon or is a night owl" or "everyone in the room does not enjoy macrame or maintains a personal blog focused on cybersecurity tips" but not both. "Everyone in the room does not use a Windows laptop or creates augmented reality experiences for mobile applications" only if "everyone in the room mentors a youth basketball team on weekends if they collects luxury watches". Everyone in the room does not use a Windows laptop. Someone in the room collects vintage stamps. Everyone in the room collects vintage stamps if they uses a Windows laptop, enjoys snowboarding and composes and performs experimental electronic music. Everyone in the room who collects vintage stamps has completed a triathlon. Everyone in the room is a night owl only if they enjoys wildlife photography. Everyone in the room enjoys wildlife photography only if they collects vintage stamps. Everyone in the room enjoys macrame if they does not enjoy salsa dancing. Everyone in the room composes and performs experimental electronic music if they enjoys macrame.
Tamra enjoys snowboarding.
contradiction
room(tamra)&(![X]:(room(X)=>(X='tamra')))& (((![X]:(~room(X)=>(((does_not_mentor_a_youth_basketball_team_on_weekends(X))|(does_not_enjoy_snowboarding(X))))))=>(![X]:(room(X)=>(((does_not_enjoy_snowboarding(X))=>(collects_comic_books(X)))))))&((~(![X]:(~room(X)=>(((does_not_mentor_a_youth_basketball_team_on_weekends(X))|(does_not_enjoy_snowboarding(X)))))))=>(![X]:(room(X)=>(((collects_comic_books(X))=>(enjoys_salsa_dancing(X))))))))& ((![X]:(room(X)=>(((does_not_collect_comic_books(X))|(collects_comic_books(X))))))=>((tamra_dream=>(![X]:(anywhere(X)=>(((practices_zumba(X))<~>(maintains_a_personal_blog_focused_on_cybersecurity_tips(X)))))))))& (((![X]:(room(X)=>(((collects_luxury_watches(X))|(does_not_collect_luxury_watches(X))))))=>(maintains_a_personal_blog_focused_on_cybersecurity_tips(tamra)))& ((maintains_a_personal_blog_focused_on_cybersecurity_tips(tamra))=>(![X]:(room(X)=>(((enjoys_snowboarding(X))=>(is_not_a_night_owl(X))))))))& ((~![X]:(room(X)=>(((is_a_night_owl(X))|(does_not_have_completed_a_triathlon(X))))))<~>(![X]:(room(X)=>(((maintains_a_personal_blog_focused_on_cybersecurity_tips(X))|(does_not_enjoy_macrame(X)))))))& ((![X]:(room(X)=>(((creates_augmented_reality_experiences_for_mobile_applications(X))|(does_not_use_a_Windows_laptop(X))))))=>(![X]:(room(X)=>(((collects_luxury_watches(X))=>(mentors_a_youth_basketball_team_on_weekends(X)))))))& (![X]:(room(X)=>(does_not_use_a_Windows_laptop(X))))& (?[X]:(room(X)&(collects_vintage_stamps(X))))& (![X]:(room(X)=>(((((uses_a_Windows_laptop(X))&(enjoys_snowboarding(X))&(composes_and_performs_experimental_electronic_music(X))))=>(collects_vintage_stamps(X))))))& (![X]:(room(X)=>(((collects_vintage_stamps(X))=>(has_completed_a_triathlon(X))))))& (![X]:(room(X)=>(((enjoys_wildlife_photography(X))<=(is_a_night_owl(X))))))& (![X]:(room(X)=>(((collects_vintage_stamps(X))<=(enjoys_wildlife_photography(X))))))& (![X]:(room(X)=>(((does_not_enjoy_salsa_dancing(X))=>(enjoys_macrame(X))))))& (![X]:(room(X)=>(((enjoys_macrame(X))=>(composes_and_performs_experimental_electronic_music(X))))))
room(tamra)&(![X]:(room(X)=>(X='tamra')))& enjoys_snowboarding(tamra)
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 8669214600899153866923793 % SZS output start Proof for 8669214600899153866923793 44. ! [X0] : (room(X0) => (predw(X0) => predm(X0))) & ! [X0] : (room(X0) => (~predk(X0) => predw(X0))) & ! [X0] : (room(X0) => (predj(X0) => predr(X0))) & ! [X0] : (room(X0) => (predd(X0) => predj(X0))) & ! [X0] : (room(X0) => (predr(X0) => prede(X0))) & ! [X0] : (room(X0) => ((predm(X0) & predc(X0) & predv(X0)) => predr(X0))) & ? [X0] : (predr(X0) & room(X0)) & ! [X0] : (room(X0) => ~predv(X0)) & (! [X0] : (room(X0) => (~predv(X0) | predi(X0))) => ! [X0] : (room(X0) => (predy(X0) => predz(X0)))) & (~! [X0] : (room(X0) => (~prede(X0) | predd(X0))) <~> ! [X0] : (room(X0) => (~predw(X0) | predb(X0)))) & (predb(mary) => ! [X0] : (room(X0) => (predc(X0) => ~predd(X0)))) & (! [X0] : (room(X0) => (~predy(X0) | predy(X0))) => predb(mary)) & (! [X0] : (room(X0) => (predn(X0) | ~predn(X0))) => (mary_dream => ! [X0] : (anywhere(X0) => (preds(X0) <~> predb(X0))))) & (~! [X0] : (~room(X0) => (~predc(X0) | ~predz(X0))) => ! [X0] : (room(X0) => (predn(X0) => predk(X0)))) & (! [X0] : (~room(X0) => (~predc(X0) | ~predz(X0))) => ! [X0] : (room(X0) => (~predc(X0) => predn(X0)))) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 45. predc(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 46. ! [X0] : (room(X0) => (predw(X0) => predm(X0))) & ! [X1] : (room(X1) => (~predk(X1) => predw(X1))) & ! [X2] : (room(X2) => (predj(X2) => predr(X2))) & ! [X3] : (room(X3) => (predd(X3) => predj(X3))) & ! [X4] : (room(X4) => (predr(X4) => prede(X4))) & ! [X5] : (room(X5) => ((predm(X5) & predc(X5) & predv(X5)) => predr(X5))) & ? [X6] : (predr(X6) & room(X6)) & ! [X7] : (room(X7) => ~predv(X7)) & (! [X8] : (room(X8) => (~predv(X8) | predi(X8))) => ! [X9] : (room(X9) => (predy(X9) => predz(X9)))) & (~! [X10] : (room(X10) => (~prede(X10) | predd(X10))) <~> ! [X11] : (room(X11) => (~predw(X11) | predb(X11)))) & (predb(mary) => ! [X12] : (room(X12) => (predc(X12) => ~predd(X12)))) & (! [X13] : (room(X13) => (~predy(X13) | predy(X13))) => predb(mary)) & (! [X14] : (room(X14) => (predn(X14) | ~predn(X14))) => (mary_dream => ! [X15] : (anywhere(X15) => (preds(X15) <~> predb(X15))))) & (~! [X16] : (~room(X16) => (~predc(X16) | ~predz(X16))) => ! [X17] : (room(X17) => (predn(X17) => predk(X17)))) & (! [X18] : (~room(X18) => (~predc(X18) | ~predz(X18))) => ! [X19] : (room(X19) => (~predc(X19) => predn(X19)))) & ! [X20] : (room(X20) => mary = X20) & room(mary) [rectify 44] 47. ! [X0] : (room(X0) => (predw(X0) => predm(X0))) & ! [X1] : (room(X1) => (~predk(X1) => predw(X1))) & ! [X2] : (room(X2) => (predj(X2) => predr(X2))) & ! [X3] : (room(X3) => (predd(X3) => predj(X3))) & ! [X4] : (room(X4) => (predr(X4) => prede(X4))) & ! [X5] : (room(X5) => ((predm(X5) & predc(X5) & predv(X5)) => predr(X5))) & ? [X6] : (predr(X6) & room(X6)) & ! [X7] : (room(X7) => ~predv(X7)) & (! [X8] : (room(X8) => ~predv(X8)) => ! [X9] : (room(X9) => (predy(X9) => predz(X9)))) & (~! [X10] : (room(X10) => (~prede(X10) | predd(X10))) <~> ! [X11] : (room(X11) => (~predw(X11) | predb(X11)))) & (predb(mary) => ! [X12] : (room(X12) => (predc(X12) => ~predd(X12)))) & (! [X13] : (room(X13) => (~predy(X13) | predy(X13))) => predb(mary)) & (! [X14] : (room(X14) => (predn(X14) | ~predn(X14))) => (mary_dream => ! [X15] : (anywhere(X15) => (preds(X15) <~> predb(X15))))) & (~! [X16] : (~room(X16) => (~predc(X16) | ~predz(X16))) => ! [X17] : (room(X17) => (predn(X17) => predk(X17)))) & (! [X18] : (~room(X18) => (~predc(X18) | ~predz(X18))) => ! [X19] : (room(X19) => (~predc(X19) => predn(X19)))) & ! [X20] : (room(X20) => mary = X20) & room(mary) [pure predicate removal 46] 48. ! [X0] : (room(X0) => (predw(X0) => predm(X0))) & ! [X1] : (room(X1) => (~predk(X1) => predw(X1))) & ! [X2] : (room(X2) => (predj(X2) => predr(X2))) & ! [X3] : (room(X3) => (predd(X3) => predj(X3))) & ! [X4] : (room(X4) => (predr(X4) => prede(X4))) & ! [X5] : (room(X5) => ((predm(X5) & predc(X5) & predv(X5)) => predr(X5))) & ? [X6] : (predr(X6) & room(X6)) & ! [X7] : (room(X7) => ~predv(X7)) & (! [X8] : (room(X8) => ~predv(X8)) => ! [X9] : (room(X9) => (predy(X9) => predz(X9)))) & (~! [X10] : (room(X10) => (~prede(X10) | predd(X10))) <~> ! [X11] : (room(X11) => (~predw(X11) | predb(X11)))) & (predb(mary) => ! [X12] : (room(X12) => (predc(X12) => ~predd(X12)))) & (! [X13] : (room(X13) => (~predy(X13) | predy(X13))) => predb(mary)) & (~! [X16] : (~room(X16) => (~predc(X16) | ~predz(X16))) => ! [X17] : (room(X17) => (predn(X17) => predk(X17)))) & (! [X18] : (~room(X18) => (~predc(X18) | ~predz(X18))) => ! [X19] : (room(X19) => (~predc(X19) => predn(X19)))) & ! [X20] : (room(X20) => mary = X20) & room(mary) [pure predicate removal 47] 50. ! [X0] : (room(X0) => (predw(X0) => predm(X0))) & ! [X2] : (room(X2) => (predj(X2) => predr(X2))) & ! [X3] : (room(X3) => (predd(X3) => predj(X3))) & ! [X4] : (room(X4) => (predr(X4) => prede(X4))) & ! [X5] : (room(X5) => ((predm(X5) & predc(X5) & predv(X5)) => predr(X5))) & ? [X6] : (predr(X6) & room(X6)) & ! [X7] : (room(X7) => ~predv(X7)) & (! [X8] : (room(X8) => ~predv(X8)) => ! [X9] : (room(X9) => (predy(X9) => predz(X9)))) & (~! [X10] : (room(X10) => (~prede(X10) | predd(X10))) <~> ! [X11] : (room(X11) => (~predw(X11) | predb(X11)))) & (predb(mary) => ! [X12] : (room(X12) => (predc(X12) => ~predd(X12)))) & (! [X13] : (room(X13) => (~predy(X13) | predy(X13))) => predb(mary)) & (! [X18] : (~room(X18) => (~predc(X18) | ~predz(X18))) => ! [X19] : (room(X19) => (~predc(X19) => predn(X19)))) & ! [X20] : (room(X20) => mary = X20) & room(mary) [pure predicate removal 48] 51. ! [X0] : (room(X0) => (predw(X0) => predm(X0))) & ! [X2] : (room(X2) => (predj(X2) => predr(X2))) & ! [X3] : (room(X3) => (predd(X3) => predj(X3))) & ! [X4] : (room(X4) => (predr(X4) => prede(X4))) & ! [X5] : (room(X5) => ((predm(X5) & predc(X5) & predv(X5)) => predr(X5))) & ? [X6] : (predr(X6) & room(X6)) & ! [X7] : (room(X7) => ~predv(X7)) & (! [X8] : (room(X8) => ~predv(X8)) => ! [X9] : (room(X9) => (predy(X9) => predz(X9)))) & (~! [X10] : (room(X10) => (~prede(X10) | predd(X10))) <~> ! [X11] : (room(X11) => (~predw(X11) | predb(X11)))) & (predb(mary) => ! [X12] : (room(X12) => (predc(X12) => ~predd(X12)))) & (! [X13] : (room(X13) => (~predy(X13) | predy(X13))) => predb(mary)) & ! [X20] : (room(X20) => mary = X20) & room(mary) [pure predicate removal 50] 52. ! [X0] : (room(X0) => (predw(X0) => predm(X0))) & ! [X2] : (room(X2) => (predj(X2) => predr(X2))) & ! [X3] : (room(X3) => (predd(X3) => predj(X3))) & ! [X4] : (room(X4) => (predr(X4) => prede(X4))) & ! [X5] : (room(X5) => ((predm(X5) & predc(X5) & predv(X5)) => predr(X5))) & ? [X6] : (predr(X6) & room(X6)) & ! [X7] : (room(X7) => ~predv(X7)) & (~! [X10] : (room(X10) => (~prede(X10) | predd(X10))) <~> ! [X11] : (room(X11) => (~predw(X11) | predb(X11)))) & (predb(mary) => ! [X12] : (room(X12) => (predc(X12) => ~predd(X12)))) & (! [X13] : (room(X13) => (~predy(X13) | predy(X13))) => predb(mary)) & ! [X20] : (room(X20) => mary = X20) & room(mary) [pure predicate removal 51] 53. ! [X0] : (room(X0) => (predw(X0) => predm(X0))) & ! [X2] : (room(X2) => (predj(X2) => predr(X2))) & ! [X3] : (room(X3) => (predd(X3) => predj(X3))) & ! [X4] : (room(X4) => (predr(X4) => prede(X4))) & ? [X6] : (predr(X6) & room(X6)) & (~! [X10] : (room(X10) => (~prede(X10) | predd(X10))) <~> ! [X11] : (room(X11) => (~predw(X11) | predb(X11)))) & (predb(mary) => ! [X12] : (room(X12) => (predc(X12) => ~predd(X12)))) & (! [X13] : (room(X13) => (~predy(X13) | predy(X13))) => predb(mary)) & ! [X20] : (room(X20) => mary = X20) & room(mary) [pure predicate removal 52] 54. ! [X2] : (room(X2) => (predj(X2) => predr(X2))) & ! [X3] : (room(X3) => (predd(X3) => predj(X3))) & ! [X4] : (room(X4) => (predr(X4) => prede(X4))) & ? [X6] : (predr(X6) & room(X6)) & (~! [X10] : (room(X10) => (~prede(X10) | predd(X10))) <~> ! [X11] : (room(X11) => (~predw(X11) | predb(X11)))) & (predb(mary) => ! [X12] : (room(X12) => (predc(X12) => ~predd(X12)))) & (! [X13] : (room(X13) => (~predy(X13) | predy(X13))) => predb(mary)) & ! [X20] : (room(X20) => mary = X20) & room(mary) [pure predicate removal 53] 126. ! [X2] : ((predr(X2) | ~predj(X2)) | ~room(X2)) & ! [X3] : ((predj(X3) | ~predd(X3)) | ~room(X3)) & ! [X4] : ((prede(X4) | ~predr(X4)) | ~room(X4)) & ? [X6] : (predr(X6) & room(X6)) & (? [X10] : ((prede(X10) & ~predd(X10)) & room(X10)) <~> ! [X11] : ((~predw(X11) | predb(X11)) | ~room(X11))) & (! [X12] : ((~predd(X12) | ~predc(X12)) | ~room(X12)) | ~predb(mary)) & (predb(mary) | ? [X13] : ((predy(X13) & ~predy(X13)) & room(X13))) & ! [X20] : (mary = X20 | ~room(X20)) & room(mary) [ennf transformation 54] 127. ! [X2] : (predr(X2) | ~predj(X2) | ~room(X2)) & ! [X3] : (predj(X3) | ~predd(X3) | ~room(X3)) & ! [X4] : (prede(X4) | ~predr(X4) | ~room(X4)) & ? [X6] : (predr(X6) & room(X6)) & (? [X10] : (prede(X10) & ~predd(X10) & room(X10)) <~> ! [X11] : (~predw(X11) | predb(X11) | ~room(X11))) & (! [X12] : (~predd(X12) | ~predc(X12) | ~room(X12)) | ~predb(mary)) & (predb(mary) | ? [X13] : (predy(X13) & ~predy(X13) & room(X13))) & ! [X20] : (mary = X20 | ~room(X20)) & room(mary) [flattening 126] 128. predc(mary) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 45] 129. sP0 <=> ? [X10] : (prede(X10) & ~predd(X10) & room(X10)) [predicate definition introduction] 130. ! [X2] : (predr(X2) | ~predj(X2) | ~room(X2)) & ! [X3] : (predj(X3) | ~predd(X3) | ~room(X3)) & ! [X4] : (prede(X4) | ~predr(X4) | ~room(X4)) & ? [X6] : (predr(X6) & room(X6)) & (sP0 <~> ! [X11] : (~predw(X11) | predb(X11) | ~room(X11))) & (! [X12] : (~predd(X12) | ~predc(X12) | ~room(X12)) | ~predb(mary)) & (predb(mary) | ? [X13] : (predy(X13) & ~predy(X13) & room(X13))) & ! [X20] : (mary = X20 | ~room(X20)) & room(mary) [definition folding 127,129] 132. (sP0 | ! [X10] : (~prede(X10) | predd(X10) | ~room(X10))) & (? [X10] : (prede(X10) & ~predd(X10) & room(X10)) | ~sP0) [nnf transformation 129] 133. (sP0 | ! [X0] : (~prede(X0) | predd(X0) | ~room(X0))) & (? [X1] : (prede(X1) & ~predd(X1) & room(X1)) | ~sP0) [rectify 132] 134. ? [X1] : (prede(X1) & ~predd(X1) & room(X1)) => (prede(sK1) & ~predd(sK1) & room(sK1)) [choice axiom] 135. (sP0 | ! [X0] : (~prede(X0) | predd(X0) | ~room(X0))) & ((prede(sK1) & ~predd(sK1) & room(sK1)) | ~sP0) [skolemisation 133,134] 136. ! [X2] : (predr(X2) | ~predj(X2) | ~room(X2)) & ! [X3] : (predj(X3) | ~predd(X3) | ~room(X3)) & ! [X4] : (prede(X4) | ~predr(X4) | ~room(X4)) & ? [X6] : (predr(X6) & room(X6)) & ((? [X11] : (predw(X11) & ~predb(X11) & room(X11)) | ~sP0) & (! [X11] : (~predw(X11) | predb(X11) | ~room(X11)) | sP0)) & (! [X12] : (~predd(X12) | ~predc(X12) | ~room(X12)) | ~predb(mary)) & (predb(mary) | ? [X13] : (predy(X13) & ~predy(X13) & room(X13))) & ! [X20] : (mary = X20 | ~room(X20)) & room(mary) [nnf transformation 130] 137. ! [X2] : (predr(X2) | ~predj(X2) | ~room(X2)) & ! [X3] : (predj(X3) | ~predd(X3) | ~room(X3)) & ! [X4] : (prede(X4) | ~predr(X4) | ~room(X4)) & ? [X6] : (predr(X6) & room(X6)) & (? [X11] : (predw(X11) & ~predb(X11) & room(X11)) | ~sP0) & (! [X11] : (~predw(X11) | predb(X11) | ~room(X11)) | sP0) & (! [X12] : (~predd(X12) | ~predc(X12) | ~room(X12)) | ~predb(mary)) & (predb(mary) | ? [X13] : (predy(X13) & ~predy(X13) & room(X13))) & ! [X20] : (mary = X20 | ~room(X20)) & room(mary) [flattening 136] 138. ! [X0] : (predr(X0) | ~predj(X0) | ~room(X0)) & ! [X1] : (predj(X1) | ~predd(X1) | ~room(X1)) & ! [X2] : (prede(X2) | ~predr(X2) | ~room(X2)) & ? [X3] : (predr(X3) & room(X3)) & (? [X4] : (predw(X4) & ~predb(X4) & room(X4)) | ~sP0) & (! [X5] : (~predw(X5) | predb(X5) | ~room(X5)) | sP0) & (! [X6] : (~predd(X6) | ~predc(X6) | ~room(X6)) | ~predb(mary)) & (predb(mary) | ? [X7] : (predy(X7) & ~predy(X7) & room(X7))) & ! [X8] : (mary = X8 | ~room(X8)) & room(mary) [rectify 137] 139. ? [X3] : (predr(X3) & room(X3)) => (predr(sK2) & room(sK2)) [choice axiom] 140. ? [X4] : (predw(X4) & ~predb(X4) & room(X4)) => (predw(sK3) & ~predb(sK3) & room(sK3)) [choice axiom] 141. ? [X7] : (predy(X7) & ~predy(X7) & room(X7)) => (predy(sK4) & ~predy(sK4) & room(sK4)) [choice axiom] 142. ! [X0] : (predr(X0) | ~predj(X0) | ~room(X0)) & ! [X1] : (predj(X1) | ~predd(X1) | ~room(X1)) & ! [X2] : (prede(X2) | ~predr(X2) | ~room(X2)) & (predr(sK2) & room(sK2)) & ((predw(sK3) & ~predb(sK3) & room(sK3)) | ~sP0) & (! [X5] : (~predw(X5) | predb(X5) | ~room(X5)) | sP0) & (! [X6] : (~predd(X6) | ~predc(X6) | ~room(X6)) | ~predb(mary)) & (predb(mary) | (predy(sK4) & ~predy(sK4) & room(sK4))) & ! [X8] : (mary = X8 | ~room(X8)) & room(mary) [skolemisation 138,141,140,139] 226. sP0 | ~prede(X0) | predd(X0) | ~room(X0) [cnf transformation 135] 227. room(mary) [cnf transformation 142] 228. ~room(X8) | mary = X8 [cnf transformation 142] 230. predb(mary) | ~predy(sK4) [cnf transformation 142] 231. predb(mary) | predy(sK4) [cnf transformation 142] 232. ~predd(X6) | ~predc(X6) | ~room(X6) | ~predb(mary) [cnf transformation 142] 234. room(sK3) | ~sP0 [cnf transformation 142] 235. ~predb(sK3) | ~sP0 [cnf transformation 142] 237. room(sK2) [cnf transformation 142] 238. predr(sK2) [cnf transformation 142] 239. ~predr(X2) | prede(X2) | ~room(X2) [cnf transformation 142] 244. predc(mary) [cnf transformation 128] 246. 1 <=> ! [X0] : (~prede(X0) | ~room(X0) | predd(X0)) [avatar definition] 247. ~prede(X0) | ~room(X0) | predd(X0) <- (1) [avatar component clause 246] 249. 2 <=> sP0 [avatar definition] 252. 1 | 2 [avatar split clause 226,249,246] 274. 7 <=> predb(sK3) [avatar definition] 276. ~predb(sK3) <- (~7) [avatar component clause 274] 277. ~2 | ~7 [avatar split clause 235,274,249] 279. 8 <=> room(sK3) [avatar definition] 281. room(sK3) <- (8) [avatar component clause 279] 282. ~2 | 8 [avatar split clause 234,279,249] 288. 10 <=> predb(mary) [avatar definition] 289. predb(mary) <- (10) [avatar component clause 288] 292. 11 <=> ! [X6] : (~predd(X6) | ~room(X6) | ~predc(X6)) [avatar definition] 293. ~predd(X6) | ~room(X6) | ~predc(X6) <- (11) [avatar component clause 292] 294. ~10 | 11 [avatar split clause 232,292,288] 296. 12 <=> predy(sK4) [avatar definition] 299. 12 | 10 [avatar split clause 231,288,296] 300. ~12 | 10 [avatar split clause 230,288,296] 308. mary = sK2 [resolution 228,237] 309. mary = sK3 <- (8) [resolution 228,281] 314. predr(mary) [backward demodulation 238,308] 316. ~predb(mary) <- (~7, 8) [backward demodulation 276,309] 318. $false <- (~7, 8, 10) [subsumption resolution 316,289] 319. 7 | ~8 | ~10 [avatar contradiction clause 318] 321. prede(mary) | ~room(mary) [resolution 239,314] 326. prede(mary) [subsumption resolution 321,227] 330. ~room(mary) | predd(mary) <- (1) [resolution 326,247] 331. predd(mary) <- (1) [subsumption resolution 330,227] 335. ~room(mary) | ~predc(mary) <- (1, 11) [resolution 293,331] 336. ~predc(mary) <- (1, 11) [subsumption resolution 335,227] 337. $false <- (1, 11) [subsumption resolution 336,244] 338. ~1 | ~11 [avatar contradiction clause 337] 339. $false [avatar sat refutation 252,277,282,294,299,300,319,338] % SZS output end Proof for 8669214600899153866923793 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.034 s % ------------------------------ % ------------------------------
0.596093
Archie is the only person in the room. “Archie who enjoys fishing collect rare sneakers” unless “everyone in the room does not enjoy windsurfing or reads mystery novels”. Either “at least one person in the room collects limited-edition art prints from contemporary artists” or “everyone in the room does not enjoy trail running or does not collect rare sneakers” but not both. Archie who enjoys cross-country skiing develops open-source software projects in their free time. Everyone in the room collects limited-edition art prints from contemporary artists if they collect rare sneakers. It is not the case that “Archie uses contact lenses”. Everyone anywhere enjoys cross-country skiing only if they enjoys windsurfing. At least one person in the room either does not enjoy trail running or uses contact lenses but not both.
Archie reads mystery novels.
entailment
room(archie)&(![X]:(room(X)=>(X='archie')))& ((~?[X]:(room(X)=>(((reads_mystery_novels(X))|(does_not_read_mystery_novels(X))))))=>((![X]:((does_not_create_large-scale_murals_for_public_art_installations(X))=>(enjoys_cross-country_skiing(X))))))& ((![X]:(room(X)=>(((enjoys_cross-country_skiing(X))|(does_not_use_contact_lenses(X))))))<~>(?[X]:(room(X)&(((collects_antique_jewelry(X))|(has_a_piercing(X)))))))& (~(![X]:(room(X)=>(((reads_mystery_novels(X))|(does_not_enjoy_windsurfing(X))))))=>((enjoys_fishing(archie))&(collect_rare_sneakers(archie))))& ((collects_foreign_coins(archie))=>(![X]:(room(X)=>(((enjoys_kayaking(X))=>(does_not_enjoy_rooftop_gardening(X)))))))& ((![X]:(room(X)=>(((does_not_collect_foreign_coins(X))|(enjoys_origami(X))))))=>(does_enjoy_trail_running(archie)))& ((collects_limited-edition_art_prints_from_contemporary_artists(archie))=>(?[X]:(room(X)&(((collects_foreign_coins(X))|(enjoys_cross-country_skiing(X)))))))& ((~?[X]:(anywhere(X)=>(((does_not_enjoy_rooftop_gardening(X))|(does_enjoy_trail_running(X))))))=>(~![X]:(anywhere(X)=>(((does_enjoy_trail_running(X))=>(is_a_coffee_connoisseur(X)))))))& ((~(((?[X]:(anywhere(X)&collects_vintage_vinyl_records(X))))))=>(((?[X]:(room(X)&enjoys_cross-country_skiing(X))))))& (~(![X]:(room(X)=>(((does_not_enjoy_rooftop_gardening(X))|(enjoys_stargazing(X))))))=>(enjoys_cross-country_skiing(archie)))& ((![X]:(room(X)=>(((does_not_use_contact_lenses(X))|(does_not_collect_rare_sneakers(X))))))=>(![X]:(room(X)=>(((does_not_collect_rare_sneakers(X))<=>(does_not_enjoy_stargazing(X)))))))& ((((?[X]:(room(X)&collects_limited-edition_art_prints_from_contemporary_artists(X)))))<~>(![X]:(room(X)=>(((does_not_collect_rare_sneakers(X))|(does_not_enjoy_trail_running(X)))))))& ((enjoys_cross-country_skiing(archie))&(develops_open-source_software_projects_in_their_free_time(archie)))& (![X]:(room(X)=>(((collect_rare_sneakers(X))=>(collects_limited-edition_art_prints_from_contemporary_artists(X))))))& (~(uses_contact_lenses(archie)))& (((makes_intricate_hand-cut_paper_art_for_exhibitions(archie))|(has_a_piercing(archie))))& (![X]:(room(X)=>(((does_not_collect_rare_sneakers(X))|(does_not_enjoy_trail_running(X))))))& (develops_open-source_software_projects_in_their_free_time(archie))& (![X]:(room(X)=>(((can_play_the_flute(X))=>(enjoys_origami(X))))))& (![X]:(room(X)=>(((enjoys_origami(X))=>(enjoys_cross-country_skiing(X))))))& (![X]:(anywhere(X)=>(((enjoys_windsurfing(X))<=(enjoys_cross-country_skiing(X))))))& (((?[X]:(room(X)&((does_not_enjoy_trail_running(X))<~>(uses_contact_lenses(X)))))))& (![X]:(room(X)=>(((practices_and_performs_acrobatic_dance_routines(X))=>(collect_rare_sneakers(X))))))& (enjoys_cross-country_skiing(archie))& (((?[X]:(room(X)&enjoys_fishing(X)))))
room(archie)&(![X]:(room(X)=>(X='archie')))& reads_mystery_novels(archie)
[ "b4", "p0", "p3", "p11", "p12", "p13", "p14", "p20", "p21", "hypothesis" ]
% SZS status Unsatisfiable for 6098205331895942415233669 % SZS output start Proof for 6098205331895942415233669 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 47. ~! [X0] : (room(X0) => (~predc(X0) | predf(X0))) => (predk(mary) & predy(mary)) [input p3] 55. ? [X0] : (predp(X0) & room(X0)) <~> ! [X0] : (room(X0) => (~predv(X0) | ~predk(X0))) [input p11] 56. predr(mary) & predj(mary) [input p12] 57. ! [X0] : (room(X0) => (predk(X0) => predp(X0))) [input p13] 58. ~preda(mary) [input p14] 64. ! [X0] : (anywhere(X0) => (predj(X0) => predc(X0))) [input p20] 65. ? [X0] : ((~predv(X0) <~> preda(X0)) & room(X0)) [input p21] 69. ~(predf(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 75. ? [X0] : (predp(X0) & room(X0)) <~> ! [X1] : (room(X1) => (~predv(X1) | ~predk(X1))) [rectify 55] 81. predj(mary) [pure predicate removal 56] 90. ~! [X0] : (room(X0) => (~predc(X0) | predf(X0))) => predk(mary) [pure predicate removal 47] 164. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 167. predk(mary) | ! [X0] : ((~predc(X0) | predf(X0)) | ~room(X0)) [ennf transformation 90] 168. predk(mary) | ! [X0] : (~predc(X0) | predf(X0) | ~room(X0)) [flattening 167] 174. ? [X0] : (predp(X0) & room(X0)) <~> ! [X1] : ((~predv(X1) | ~predk(X1)) | ~room(X1)) [ennf transformation 75] 175. ? [X0] : (predp(X0) & room(X0)) <~> ! [X1] : (~predv(X1) | ~predk(X1) | ~room(X1)) [flattening 174] 176. ! [X0] : ((predp(X0) | ~predk(X0)) | ~room(X0)) [ennf transformation 57] 177. ! [X0] : (predp(X0) | ~predk(X0) | ~room(X0)) [flattening 176] 180. ! [X0] : ((predc(X0) | ~predj(X0)) | ~anywhere(X0)) [ennf transformation 64] 181. ! [X0] : (predc(X0) | ~predj(X0) | ~anywhere(X0)) [flattening 180] 182. ~predf(mary) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 69] 201. (? [X1] : (predv(X1) & predk(X1) & room(X1)) | ! [X0] : (~predp(X0) | ~room(X0))) & (! [X1] : (~predv(X1) | ~predk(X1) | ~room(X1)) | ? [X0] : (predp(X0) & room(X0))) [nnf transformation 175] 202. (? [X0] : (predv(X0) & predk(X0) & room(X0)) | ! [X1] : (~predp(X1) | ~room(X1))) & (! [X2] : (~predv(X2) | ~predk(X2) | ~room(X2)) | ? [X3] : (predp(X3) & room(X3))) [rectify 201] 203. ? [X0] : (predv(X0) & predk(X0) & room(X0)) => (predv(sK7) & predk(sK7) & room(sK7)) [choice axiom] 204. ? [X3] : (predp(X3) & room(X3)) => (predp(sK8) & room(sK8)) [choice axiom] 205. ((predv(sK7) & predk(sK7) & room(sK7)) | ! [X1] : (~predp(X1) | ~room(X1))) & (! [X2] : (~predv(X2) | ~predk(X2) | ~room(X2)) | (predp(sK8) & room(sK8))) [skolemisation 202,204,203] 206. ? [X0] : (((~preda(X0) | predv(X0)) & (preda(X0) | ~predv(X0))) & room(X0)) [nnf transformation 65] 207. ? [X0] : ((~preda(X0) | predv(X0)) & (preda(X0) | ~predv(X0)) & room(X0)) [flattening 206] 208. ? [X0] : ((~preda(X0) | predv(X0)) & (preda(X0) | ~predv(X0)) & room(X0)) => ((~preda(sK9) | predv(sK9)) & (preda(sK9) | ~predv(sK9)) & room(sK9)) [choice axiom] 209. (~preda(sK9) | predv(sK9)) & (preda(sK9) | ~predv(sK9)) & room(sK9) [skolemisation 207,208] 212. ? [X0] : (mary != X0 & room(X0)) => (mary != sK11 & room(sK11)) [choice axiom] 213. ~predf(mary) | (mary != sK11 & room(sK11)) | ~room(mary) [skolemisation 182,212] 214. anywhere(X0) [cnf transformation 5] 295. room(mary) [cnf transformation 164] 296. ~room(X0) | mary = X0 [cnf transformation 164] 305. predk(mary) | ~predc(X0) | predf(X0) | ~room(X0) [cnf transformation 168] 318. room(sK7) | ~predp(X1) | ~room(X1) [cnf transformation 205] 320. predv(sK7) | ~predp(X1) | ~room(X1) [cnf transformation 205] 321. predj(mary) [cnf transformation 81] 322. ~predk(X0) | predp(X0) | ~room(X0) [cnf transformation 177] 323. ~preda(mary) [cnf transformation 58] 325. predc(X0) | ~predj(X0) | ~anywhere(X0) [cnf transformation 181] 326. room(sK9) [cnf transformation 209] 327. preda(sK9) | ~predv(sK9) [cnf transformation 209] 331. ~predf(mary) | room(sK11) | ~room(mary) [cnf transformation 213] 332. ~predf(mary) | mary != sK11 | ~room(mary) [cnf transformation 213] 375. 10 <=> ! [X0] : (~predc(X0) | ~room(X0) | predf(X0)) [avatar definition] 376. ~predc(X0) | ~room(X0) | predf(X0) <- (10) [avatar component clause 375] 378. 11 <=> predk(mary) [avatar definition] 380. predk(mary) <- (11) [avatar component clause 378] 381. 10 | 11 [avatar split clause 305,378,375] 387. 13 <=> predv(mary) [avatar definition] 392. 14 <=> predp(mary) [avatar definition] 393. predp(mary) <- (14) [avatar component clause 392] 425. 21 <=> ! [X1] : (~predp(X1) | ~room(X1)) [avatar definition] 426. ~predp(X1) | ~room(X1) <- (21) [avatar component clause 425] 428. 22 <=> predv(sK7) [avatar definition] 430. predv(sK7) <- (22) [avatar component clause 428] 431. 21 | 22 [avatar split clause 320,428,425] 438. 24 <=> room(sK7) [avatar definition] 440. room(sK7) <- (24) [avatar component clause 438] 441. 21 | 24 [avatar split clause 318,438,425] 456. ~predj(X0) | predc(X0) [subsumption resolution 325,214] 458. 28 <=> predv(sK9) [avatar definition] 459. ~predv(sK9) <- (~28) [avatar component clause 458] 462. 29 <=> preda(sK9) [avatar definition] 463. preda(sK9) <- (29) [avatar component clause 462] 466. ~28 | 29 [avatar split clause 327,462,458] 467. ~predf(mary) | mary != sK11 [subsumption resolution 332,295] 469. 30 <=> mary = sK11 [avatar definition] 471. mary != sK11 <- (~30) [avatar component clause 469] 473. 31 <=> predf(mary) [avatar definition] 475. ~predf(mary) <- (~31) [avatar component clause 473] 476. ~30 | ~31 [avatar split clause 467,473,469] 477. ~predf(mary) | room(sK11) [subsumption resolution 331,295] 479. 32 <=> room(sK11) [avatar definition] 481. room(sK11) <- (32) [avatar component clause 479] 482. 32 | ~31 [avatar split clause 477,473,479] 483. predc(mary) [resolution 456,321] 487. mary = sK9 [resolution 296,326] 496. ~predv(mary) <- (~28) [backward demodulation 459,487] 499. ~13 | 28 [avatar split clause 496,458,387] 503. ~room(mary) | predf(mary) <- (10) [resolution 376,483] 504. predf(mary) <- (10) [subsumption resolution 503,295] 505. $false <- (10, ~31) [subsumption resolution 504,475] 506. ~10 | 31 [avatar contradiction clause 505] 507. predp(mary) | ~room(mary) <- (11) [resolution 380,322] 511. predp(mary) <- (11) [subsumption resolution 507,295] 512. 14 | ~11 [avatar split clause 511,378,392] 513. ~room(mary) <- (14, 21) [resolution 393,426] 514. $false <- (14, 21) [subsumption resolution 513,295] 515. ~14 | ~21 [avatar contradiction clause 514] 518. mary = sK11 <- (32) [resolution 481,296] 519. $false <- (~30, 32) [subsumption resolution 518,471] 520. 30 | ~32 [avatar contradiction clause 519] 524. mary = sK7 <- (24) [resolution 440,296] 526. predv(mary) <- (22, 24) [backward demodulation 430,524] 531. 13 | ~22 | ~24 [avatar split clause 526,438,428,387] 532. preda(mary) <- (29) [forward demodulation 463,487] 533. $false <- (29) [subsumption resolution 532,323] 534. ~29 [avatar contradiction clause 533] 537. $false [avatar sat refutation 381,431,441,466,476,482,499,506,512,515,520,531,534] % SZS output end Proof for 6098205331895942415233669 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.010956
Mildred, Eugene are the only persons in the room. “Everyone in the room does not collect action figures or is an avid mountain climber who has scaled several peaks” if “at least one person in the room practices pilates” and vice versa. If “everyone anywhere does not have a curated collection of mid-century modern furniture or is an amateur astronomer who builds and uses custom telescopes” then “everyone in the room does not write poetry or collects first edition books”. If “everyone in the room does not write poetry or collects first edition books” then “everyone in the room is a dedicated advocate for digital privacy and encryption if they does not write poetry”. Everyone in the room collects action figures. Everyone in the room practices and performs acrobatic dance routines if they develops open-source software projects in their free time and vice versa. Everyone outside the room who develops open-source software projects in their free time writes poetry. Everyone in the room enjoys writing detailed reviews of new and classic board games if they is a chess master who participates in national tournaments. Everyone in the room enjoys writing detailed reviews of new and classic board games. Everyone in the room does not write poetry or collects first edition books. Eugene who is a wine connoisseur, practices and performs acrobatic dance routines and has a curated collection of mid-century modern furniture practices and performs acrobatic dance routines. Everyone outside the room who is a wine connoisseur owns a 3D printer.
Eugene collects action figures.
entailment
room(mildred)&room(eugene)&(![X]:(room(X)=>(X='mildred'|X='eugene')))& ((((?[X]:(room(X)&practices_pilates(X)))))<=>(![X]:(room(X)=>(((is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))|(does_not_collect_action_figures(X)))))))& (((![X]:(anywhere(X)=>(((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))|(does_not_have_a_curated_collection_of_mid-century_modern_furniture(X))))))=>(![X]:(room(X)=>(((collects_first_edition_books(X))|(does_not_write_poetry(X)))))))& ((![X]:(room(X)=>(((collects_first_edition_books(X))|(does_not_write_poetry(X))))))=>(![X]:(room(X)=>(((does_not_write_poetry(X))=>(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))))))))& (![X]:(room(X)=>(collects_action_figures(X))))& (![X]:(room(X)=>(((practices_and_performs_acrobatic_dance_routines(X))<=>(develops_open-source_software_projects_in_their_free_time(X))))))& (![X]:(~room(X)=>(((develops_open-source_software_projects_in_their_free_time(X))=>(writes_poetry(X))))))& (![X]:(room(X)=>(((is_a_chess_master_who_participates_in_national_tournaments(X))=>(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))))))& (![X]:(room(X)=>(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))))& (![X]:(room(X)=>(((collects_first_edition_books(X))|(does_not_write_poetry(X))))))& ((((is_a_wine_connoisseur(eugene))&(practices_and_performs_acrobatic_dance_routines(eugene))&(has_a_curated_collection_of_mid-century_modern_furniture(eugene))))&(practices_and_performs_acrobatic_dance_routines(eugene)))& (![X]:(~room(X)=>(((is_a_wine_connoisseur(X))=>(owns_a_3D_printer(X))))))& (![X]:(room(X)=>(((is_a_wine_connoisseur(X))=>(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))))& (![X]:(room(X)=>(((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))=>(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))))& (![X]:(anywhere(X)=>(((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))=>(collects_antique_clocks(X))))))& (![X]:(room(X)=>(((collects_action_figures(X))<=(collects_antique_clocks(X))))))& (![X]:(room(X)=>(((develops_open-source_software_projects_in_their_free_time(X))=>(((enjoys_logic_puzzles(X))|(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))))))& (~![X]:(room(X)=>(((((enjoys_logic_puzzles(X))|(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))=>(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))))
room(mildred)&room(eugene)&(![X]:(room(X)=>(X='mildred'|X='eugene')))& collects_action_figures(eugene)
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 6756422059324410621835717 % SZS output start Proof for 6756422059324410621835717 44. ~! [X0] : (room(X0) => ((predu(X0) | preda(X0)) => predy(X0))) & ! [X0] : (room(X0) => (predp(X0) => (predu(X0) | preda(X0)))) & ! [X0] : (room(X0) => (predx(X0) => predi(X0))) & ! [X0] : (anywhere(X0) => (predo(X0) => predx(X0))) & ! [X0] : (room(X0) => (predu(X0) => predo(X0))) & ! [X0] : (room(X0) => (predw(X0) => predo(X0))) & ! [X0] : (~room(X0) => (predw(X0) => predb(X0))) & predq(paul) & predf(paul) & predq(paul) & predw(paul) & ! [X0] : (room(X0) => (~predm(X0) | predh(X0))) & ! [X0] : (room(X0) => predt(X0)) & ! [X0] : (room(X0) => (predn(X0) => predt(X0))) & ! [X0] : (~room(X0) => (predp(X0) => predm(X0))) & ! [X0] : (room(X0) => (predq(X0) <=> predp(X0))) & ! [X0] : (room(X0) => predi(X0)) & (! [X0] : (room(X0) => (~predm(X0) | predh(X0))) => ! [X0] : (room(X0) => (~predm(X0) => predg(X0)))) & (! [X0] : (anywhere(X0) => (~predf(X0) | predo(X0))) => ! [X0] : (room(X0) => (~predm(X0) | predh(X0)))) & (? [X0] : (predr(X0) & room(X0)) <=> ! [X0] : (room(X0) => (~predi(X0) | predl(X0)))) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 45. ~(predi(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 46. ~! [X0] : (room(X0) => ((predu(X0) | preda(X0)) => predy(X0))) & ! [X1] : (room(X1) => (predp(X1) => (predu(X1) | preda(X1)))) & ! [X2] : (room(X2) => (predx(X2) => predi(X2))) & ! [X3] : (anywhere(X3) => (predo(X3) => predx(X3))) & ! [X4] : (room(X4) => (predu(X4) => predo(X4))) & ! [X5] : (room(X5) => (predw(X5) => predo(X5))) & ! [X6] : (~room(X6) => (predw(X6) => predb(X6))) & predq(paul) & predf(paul) & predq(paul) & predw(paul) & ! [X7] : (room(X7) => (~predm(X7) | predh(X7))) & ! [X8] : (room(X8) => predt(X8)) & ! [X9] : (room(X9) => (predn(X9) => predt(X9))) & ! [X10] : (~room(X10) => (predp(X10) => predm(X10))) & ! [X11] : (room(X11) => (predq(X11) <=> predp(X11))) & ! [X12] : (room(X12) => predi(X12)) & (! [X13] : (room(X13) => (~predm(X13) | predh(X13))) => ! [X14] : (room(X14) => (~predm(X14) => predg(X14)))) & (! [X15] : (anywhere(X15) => (~predf(X15) | predo(X15))) => ! [X16] : (room(X16) => (~predm(X16) | predh(X16)))) & (? [X17] : (predr(X17) & room(X17)) <=> ! [X18] : (room(X18) => (~predi(X18) | predl(X18)))) & ! [X19] : (room(X19) => (paul = X19 | mary = X19)) & room(paul) & room(mary) [rectify 44] 47. ~! [X0] : (room(X0) => ~(predu(X0) | preda(X0))) & ! [X1] : (room(X1) => (predp(X1) => (predu(X1) | preda(X1)))) & ! [X2] : (room(X2) => (predx(X2) => predi(X2))) & ! [X3] : (anywhere(X3) => (predo(X3) => predx(X3))) & ! [X4] : (room(X4) => (predu(X4) => predo(X4))) & ! [X5] : (room(X5) => (predw(X5) => predo(X5))) & ! [X6] : (~room(X6) => (predw(X6) => predb(X6))) & predq(paul) & predf(paul) & predq(paul) & predw(paul) & ! [X7] : (room(X7) => (~predm(X7) | predh(X7))) & ! [X8] : (room(X8) => predt(X8)) & ! [X9] : (room(X9) => (predn(X9) => predt(X9))) & ! [X10] : (~room(X10) => (predp(X10) => predm(X10))) & ! [X11] : (room(X11) => (predq(X11) <=> predp(X11))) & ! [X12] : (room(X12) => predi(X12)) & (! [X13] : (room(X13) => (~predm(X13) | predh(X13))) => ! [X14] : (room(X14) => (~predm(X14) => predg(X14)))) & (! [X15] : (anywhere(X15) => (~predf(X15) | predo(X15))) => ! [X16] : (room(X16) => (~predm(X16) | predh(X16)))) & (? [X17] : (predr(X17) & room(X17)) <=> ! [X18] : (room(X18) => (~predi(X18) | predl(X18)))) & ! [X19] : (room(X19) => (paul = X19 | mary = X19)) & room(paul) & room(mary) [pure predicate removal 46] 48. ~! [X0] : ~room(X0) & ! [X2] : (room(X2) => (predx(X2) => predi(X2))) & ! [X3] : (anywhere(X3) => (predo(X3) => predx(X3))) & ! [X4] : (room(X4) => (predu(X4) => predo(X4))) & ! [X5] : (room(X5) => (predw(X5) => predo(X5))) & ! [X6] : (~room(X6) => (predw(X6) => predb(X6))) & predq(paul) & predf(paul) & predq(paul) & predw(paul) & ! [X7] : (room(X7) => (~predm(X7) | predh(X7))) & ! [X8] : (room(X8) => predt(X8)) & ! [X9] : (room(X9) => (predn(X9) => predt(X9))) & ! [X10] : (~room(X10) => (predp(X10) => predm(X10))) & ! [X11] : (room(X11) => (predq(X11) <=> predp(X11))) & ! [X12] : (room(X12) => predi(X12)) & (! [X13] : (room(X13) => (~predm(X13) | predh(X13))) => ! [X14] : (room(X14) => (~predm(X14) => predg(X14)))) & (! [X15] : (anywhere(X15) => (~predf(X15) | predo(X15))) => ! [X16] : (room(X16) => (~predm(X16) | predh(X16)))) & (? [X17] : (predr(X17) & room(X17)) <=> ! [X18] : (room(X18) => (~predi(X18) | predl(X18)))) & ! [X19] : (room(X19) => (paul = X19 | mary = X19)) & room(paul) & room(mary) [pure predicate removal 47] 49. ~! [X0] : ~room(X0) & ! [X2] : (room(X2) => (predx(X2) => predi(X2))) & ! [X3] : (anywhere(X3) => (predo(X3) => predx(X3))) & ! [X5] : (room(X5) => (predw(X5) => predo(X5))) & ! [X6] : (~room(X6) => (predw(X6) => predb(X6))) & predq(paul) & predf(paul) & predq(paul) & predw(paul) & ! [X7] : (room(X7) => (~predm(X7) | predh(X7))) & ! [X8] : (room(X8) => predt(X8)) & ! [X9] : (room(X9) => (predn(X9) => predt(X9))) & ! [X10] : (~room(X10) => (predp(X10) => predm(X10))) & ! [X11] : (room(X11) => (predq(X11) <=> predp(X11))) & ! [X12] : (room(X12) => predi(X12)) & (! [X13] : (room(X13) => (~predm(X13) | predh(X13))) => ! [X14] : (room(X14) => (~predm(X14) => predg(X14)))) & (! [X15] : (anywhere(X15) => (~predf(X15) | predo(X15))) => ! [X16] : (room(X16) => (~predm(X16) | predh(X16)))) & (? [X17] : (predr(X17) & room(X17)) <=> ! [X18] : (room(X18) => (~predi(X18) | predl(X18)))) & ! [X19] : (room(X19) => (paul = X19 | mary = X19)) & room(paul) & room(mary) [pure predicate removal 48] 50. ~! [X0] : ~room(X0) & ! [X2] : (room(X2) => (predx(X2) => predi(X2))) & ! [X3] : (anywhere(X3) => (predo(X3) => predx(X3))) & ! [X5] : (room(X5) => (predw(X5) => predo(X5))) & predq(paul) & predf(paul) & predq(paul) & predw(paul) & ! [X7] : (room(X7) => (~predm(X7) | predh(X7))) & ! [X8] : (room(X8) => predt(X8)) & ! [X9] : (room(X9) => (predn(X9) => predt(X9))) & ! [X10] : (~room(X10) => (predp(X10) => predm(X10))) & ! [X11] : (room(X11) => (predq(X11) <=> predp(X11))) & ! [X12] : (room(X12) => predi(X12)) & (! [X13] : (room(X13) => (~predm(X13) | predh(X13))) => ! [X14] : (room(X14) => (~predm(X14) => predg(X14)))) & (! [X15] : (anywhere(X15) => (~predf(X15) | predo(X15))) => ! [X16] : (room(X16) => (~predm(X16) | predh(X16)))) & (? [X17] : (predr(X17) & room(X17)) <=> ! [X18] : (room(X18) => (~predi(X18) | predl(X18)))) & ! [X19] : (room(X19) => (paul = X19 | mary = X19)) & room(paul) & room(mary) [pure predicate removal 49] 51. ~! [X0] : ~room(X0) & ! [X2] : (room(X2) => (predx(X2) => predi(X2))) & ! [X3] : (anywhere(X3) => (predo(X3) => predx(X3))) & ! [X5] : (room(X5) => (predw(X5) => predo(X5))) & predq(paul) & predf(paul) & predq(paul) & predw(paul) & ! [X7] : (room(X7) => (~predm(X7) | predh(X7))) & ! [X10] : (~room(X10) => (predp(X10) => predm(X10))) & ! [X11] : (room(X11) => (predq(X11) <=> predp(X11))) & ! [X12] : (room(X12) => predi(X12)) & (! [X13] : (room(X13) => (~predm(X13) | predh(X13))) => ! [X14] : (room(X14) => (~predm(X14) => predg(X14)))) & (! [X15] : (anywhere(X15) => (~predf(X15) | predo(X15))) => ! [X16] : (room(X16) => (~predm(X16) | predh(X16)))) & (? [X17] : (predr(X17) & room(X17)) <=> ! [X18] : (room(X18) => (~predi(X18) | predl(X18)))) & ! [X19] : (room(X19) => (paul = X19 | mary = X19)) & room(paul) & room(mary) [pure predicate removal 50] 52. ~! [X0] : ~room(X0) & ! [X2] : (room(X2) => (predx(X2) => predi(X2))) & ! [X3] : (anywhere(X3) => (predo(X3) => predx(X3))) & ! [X5] : (room(X5) => (predw(X5) => predo(X5))) & predq(paul) & predf(paul) & predq(paul) & predw(paul) & ! [X7] : (room(X7) => (~predm(X7) | predh(X7))) & ! [X10] : (~room(X10) => (predp(X10) => predm(X10))) & ! [X11] : (room(X11) => (predq(X11) <=> predp(X11))) & ! [X12] : (room(X12) => predi(X12)) & (! [X15] : (anywhere(X15) => (~predf(X15) | predo(X15))) => ! [X16] : (room(X16) => (~predm(X16) | predh(X16)))) & (? [X17] : (predr(X17) & room(X17)) <=> ! [X18] : (room(X18) => (~predi(X18) | predl(X18)))) & ! [X19] : (room(X19) => (paul = X19 | mary = X19)) & room(paul) & room(mary) [pure predicate removal 51] 53. ~! [X0] : ~room(X0) & ! [X2] : (room(X2) => (predx(X2) => predi(X2))) & ! [X3] : (anywhere(X3) => (predo(X3) => predx(X3))) & ! [X5] : (room(X5) => (predw(X5) => predo(X5))) & predq(paul) & predf(paul) & predq(paul) & predw(paul) & ! [X10] : (~room(X10) => (predp(X10) => predm(X10))) & ! [X11] : (room(X11) => (predq(X11) <=> predp(X11))) & ! [X12] : (room(X12) => predi(X12)) & (? [X17] : (predr(X17) & room(X17)) <=> ! [X18] : (room(X18) => (~predi(X18) | predl(X18)))) & ! [X19] : (room(X19) => (paul = X19 | mary = X19)) & room(paul) & room(mary) [pure predicate removal 52] 54. ~! [X0] : ~room(X0) & ! [X2] : (room(X2) => (predx(X2) => predi(X2))) & ! [X3] : (anywhere(X3) => (predo(X3) => predx(X3))) & ! [X5] : (room(X5) => (predw(X5) => predo(X5))) & predq(paul) & predf(paul) & predq(paul) & predw(paul) & ! [X11] : (room(X11) => (predq(X11) <=> predp(X11))) & ! [X12] : (room(X12) => predi(X12)) & (? [X17] : (predr(X17) & room(X17)) <=> ! [X18] : (room(X18) => (~predi(X18) | predl(X18)))) & ! [X19] : (room(X19) => (paul = X19 | mary = X19)) & room(paul) & room(mary) [pure predicate removal 53] 55. ~! [X0] : ~room(X0) & ! [X2] : (room(X2) => (predx(X2) => predi(X2))) & ! [X3] : (anywhere(X3) => (predo(X3) => predx(X3))) & ! [X5] : (room(X5) => (predw(X5) => predo(X5))) & predq(paul) & predq(paul) & predw(paul) & ! [X11] : (room(X11) => (predq(X11) <=> predp(X11))) & ! [X12] : (room(X12) => predi(X12)) & (? [X17] : (predr(X17) & room(X17)) <=> ! [X18] : (room(X18) => (~predi(X18) | predl(X18)))) & ! [X19] : (room(X19) => (paul = X19 | mary = X19)) & room(paul) & room(mary) [pure predicate removal 54] 127. ? [X0] : room(X0) & ! [X2] : ((predi(X2) | ~predx(X2)) | ~room(X2)) & ! [X3] : ((predx(X3) | ~predo(X3)) | ~anywhere(X3)) & ! [X5] : ((predo(X5) | ~predw(X5)) | ~room(X5)) & predq(paul) & predq(paul) & predw(paul) & ! [X11] : ((predq(X11) <=> predp(X11)) | ~room(X11)) & ! [X12] : (predi(X12) | ~room(X12)) & (? [X17] : (predr(X17) & room(X17)) <=> ! [X18] : ((~predi(X18) | predl(X18)) | ~room(X18))) & ! [X19] : ((paul = X19 | mary = X19) | ~room(X19)) & room(paul) & room(mary) [ennf transformation 55] 128. ? [X0] : room(X0) & ! [X2] : (predi(X2) | ~predx(X2) | ~room(X2)) & ! [X3] : (predx(X3) | ~predo(X3) | ~anywhere(X3)) & ! [X5] : (predo(X5) | ~predw(X5) | ~room(X5)) & predq(paul) & predq(paul) & predw(paul) & ! [X11] : ((predq(X11) <=> predp(X11)) | ~room(X11)) & ! [X12] : (predi(X12) | ~room(X12)) & (? [X17] : (predr(X17) & room(X17)) <=> ! [X18] : (~predi(X18) | predl(X18) | ~room(X18))) & ! [X19] : (paul = X19 | mary = X19 | ~room(X19)) & room(paul) & room(mary) [flattening 127] 129. ~predi(paul) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 45] 130. ~predi(paul) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 129] 132. ? [X0] : room(X0) & ! [X2] : (predi(X2) | ~predx(X2) | ~room(X2)) & ! [X3] : (predx(X3) | ~predo(X3) | ~anywhere(X3)) & ! [X5] : (predo(X5) | ~predw(X5) | ~room(X5)) & predq(paul) & predq(paul) & predw(paul) & ! [X11] : (((predq(X11) | ~predp(X11)) & (predp(X11) | ~predq(X11))) | ~room(X11)) & ! [X12] : (predi(X12) | ~room(X12)) & ((? [X17] : (predr(X17) & room(X17)) | ? [X18] : (predi(X18) & ~predl(X18) & room(X18))) & (! [X18] : (~predi(X18) | predl(X18) | ~room(X18)) | ! [X17] : (~predr(X17) | ~room(X17)))) & ! [X19] : (paul = X19 | mary = X19 | ~room(X19)) & room(paul) & room(mary) [nnf transformation 128] 133. ? [X0] : room(X0) & ! [X2] : (predi(X2) | ~predx(X2) | ~room(X2)) & ! [X3] : (predx(X3) | ~predo(X3) | ~anywhere(X3)) & ! [X5] : (predo(X5) | ~predw(X5) | ~room(X5)) & predq(paul) & predq(paul) & predw(paul) & ! [X11] : (((predq(X11) | ~predp(X11)) & (predp(X11) | ~predq(X11))) | ~room(X11)) & ! [X12] : (predi(X12) | ~room(X12)) & (? [X17] : (predr(X17) & room(X17)) | ? [X18] : (predi(X18) & ~predl(X18) & room(X18))) & (! [X18] : (~predi(X18) | predl(X18) | ~room(X18)) | ! [X17] : (~predr(X17) | ~room(X17))) & ! [X19] : (paul = X19 | mary = X19 | ~room(X19)) & room(paul) & room(mary) [flattening 132] 134. ? [X0] : room(X0) & ! [X1] : (predi(X1) | ~predx(X1) | ~room(X1)) & ! [X2] : (predx(X2) | ~predo(X2) | ~anywhere(X2)) & ! [X3] : (predo(X3) | ~predw(X3) | ~room(X3)) & predq(paul) & predq(paul) & predw(paul) & ! [X4] : (((predq(X4) | ~predp(X4)) & (predp(X4) | ~predq(X4))) | ~room(X4)) & ! [X5] : (predi(X5) | ~room(X5)) & (? [X6] : (predr(X6) & room(X6)) | ? [X7] : (predi(X7) & ~predl(X7) & room(X7))) & (! [X8] : (~predi(X8) | predl(X8) | ~room(X8)) | ! [X9] : (~predr(X9) | ~room(X9))) & ! [X10] : (paul = X10 | mary = X10 | ~room(X10)) & room(paul) & room(mary) [rectify 133] 135. ? [X0] : room(X0) => room(sK0) [choice axiom] 136. ? [X6] : (predr(X6) & room(X6)) => (predr(sK1) & room(sK1)) [choice axiom] 137. ? [X7] : (predi(X7) & ~predl(X7) & room(X7)) => (predi(sK2) & ~predl(sK2) & room(sK2)) [choice axiom] 138. room(sK0) & ! [X1] : (predi(X1) | ~predx(X1) | ~room(X1)) & ! [X2] : (predx(X2) | ~predo(X2) | ~anywhere(X2)) & ! [X3] : (predo(X3) | ~predw(X3) | ~room(X3)) & predq(paul) & predq(paul) & predw(paul) & ! [X4] : (((predq(X4) | ~predp(X4)) & (predp(X4) | ~predq(X4))) | ~room(X4)) & ! [X5] : (predi(X5) | ~room(X5)) & ((predr(sK1) & room(sK1)) | (predi(sK2) & ~predl(sK2) & room(sK2))) & (! [X8] : (~predi(X8) | predl(X8) | ~room(X8)) | ! [X9] : (~predr(X9) | ~room(X9))) & ! [X10] : (paul = X10 | mary = X10 | ~room(X10)) & room(paul) & room(mary) [skolemisation 134,137,136,135] 139. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK3 & mary != sK3 & room(sK3)) [choice axiom] 140. ~predi(paul) | (paul != sK3 & mary != sK3 & room(sK3)) | ~room(paul) | ~room(mary) [skolemisation 130,139] 222. room(mary) [cnf transformation 138] 223. room(paul) [cnf transformation 138] 224. ~room(X10) | mary = X10 | paul = X10 [cnf transformation 138] 232. ~room(X5) | predi(X5) [cnf transformation 138] 242. ~predi(paul) | room(sK3) | ~room(paul) | ~room(mary) [cnf transformation 140] 243. ~predi(paul) | mary != sK3 | ~room(paul) | ~room(mary) [cnf transformation 140] 244. ~predi(paul) | paul != sK3 | ~room(paul) | ~room(mary) [cnf transformation 140] 280. ~predi(paul) | paul != sK3 | ~room(mary) [subsumption resolution 244,223] 281. ~predi(paul) | paul != sK3 [subsumption resolution 280,222] 283. 8 <=> paul = sK3 [avatar definition] 285. paul != sK3 <- (~8) [avatar component clause 283] 287. 9 <=> predi(paul) [avatar definition] 290. ~8 | ~9 [avatar split clause 281,287,283] 291. ~predi(paul) | mary != sK3 | ~room(mary) [subsumption resolution 243,223] 292. ~predi(paul) | mary != sK3 [subsumption resolution 291,222] 294. 10 <=> mary = sK3 [avatar definition] 296. mary != sK3 <- (~10) [avatar component clause 294] 297. ~10 | ~9 [avatar split clause 292,287,294] 298. ~predi(paul) | room(sK3) | ~room(mary) [subsumption resolution 242,223] 299. ~predi(paul) | room(sK3) [subsumption resolution 298,222] 301. 11 <=> room(sK3) [avatar definition] 303. room(sK3) <- (11) [avatar component clause 301] 304. 11 | ~9 [avatar split clause 299,287,301] 306. predi(paul) [resolution 232,223] 311. 9 [avatar split clause 306,287] 329. mary = sK3 | paul = sK3 <- (11) [resolution 224,303] 348. paul = sK3 <- (~10, 11) [subsumption resolution 329,296] 349. $false <- (~8, ~10, 11) [subsumption resolution 348,285] 350. 8 | 10 | ~11 [avatar contradiction clause 349] 351. $false [avatar sat refutation 290,297,304,311,350] % SZS output end Proof for 6756422059324410621835717 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.228184
Christopher is the only person in the room. If “at least one person outside the room is poorer than Shawn” then “Christopher is the quietest in the room”. If “Ashley is a client of Christopher” then “Christopher is the youngest in the room”. “Shawn is a client of Christopher” only if “Christopher and Louis hate each other”. If “Christopher and Ruth hate each other” then “at least one person in the room likes Ashley”. If “Ashley is a sibling of Christopher” then “Christopher is the oldest in the room”. “Christopher and Louis hate each other” only if “Christopher and Louis like each other”. If “Christopher and Ruth hate each other” then “Christopher is the oldest in the room”. Christopher is the loudest in the room. Christopher and Tina hate each other. Tina is quieter than Christopher.
Christopher either is a client of Louis or is a client of Ashley but not both.
neutral
room(christopher)&(![X]:(room(X)=>(X='christopher')))& ((((?[X]:(~room(X)&poorer(shawn,X)))))=>(![X]:((room(X)&(X!=christopher))=>quieter(X,christopher))))& ((client(christopher,ashley))=>(![X]:((room(X)&(X!=christopher))=>younger(X,christopher))))& ((client(christopher,shawn))=>((hate(christopher,louis) & hate(louis,christopher))))& (((hate(christopher,ruth) & hate(ruth,christopher)))=>(((?[X]:(room(X)&like(ashley,X))))))& ((sibling(christopher,ashley))=>(![X]:((room(X)&(X!=christopher))=>older(X,christopher))))& (((hate(christopher,louis) & hate(louis,christopher)))=>((like(christopher,louis) & like(louis,christopher))))& (((hate(christopher,ruth) & hate(ruth,christopher)))=>(![X]:((room(X)&(X!=christopher))=>older(X,christopher))))& (![X]:((room(X)&(X!=christopher))=>louder(X,christopher)))& ((hate(christopher,tina) & hate(tina,christopher)))& (quieter(christopher,tina))& (richer(christopher,tina))& (((?[X]:(room(X)&poorer(louis,X)))))& (client(christopher,louis))& (![X]:((room(X)&(X!=christopher))=>older(X,christopher)))& (((?[X]:(~room(X)&poorer(shawn,X)))))& (![X]:((room(X)&(X!=christopher))=>quieter(christopher,X)))& (sibling(christopher,ashley))& ((like(christopher,shawn) & like(shawn,christopher)))& (![X]:((room(X)&(X!=christopher))=>richer(christopher,X)))& (![X]:((~room(X)&(X!=christopher))=>younger(X,christopher)))& (![X]:((room(X)&(X!=christopher))=>older(christopher,X)))& (![X]:((room(X)&(X!=christopher))=>louder(christopher,X)))
room(christopher)&(![X]:(room(X)=>(X='christopher')))& ((client(louis,christopher))<~>(client(ashley,christopher)))
[]
null
0.700465
Cortney, Barbara are the only persons in the room. If “Barbara is not a brave person” then “Barbara is a wise tourist”. If “Barbara is a wise tourist” then “Barbara is not an active member of a local robotics club”. “Cortney is a creative person, is not a happy person and is a quiet european” if “Cortney does not participate in citizen science projects related to wildlife monitoring” and vice versa. “Only one person anywhere is a humble european” if “Cortney is a happy tourist”. “Cortney does not enjoy macrame” if “Barbara is a wise tourist”. Only one person in the room is not a tall european. Only one person in the room is not a wise person. Barbara cannot play the flute. Barbara is not tall. Barbara is a patient person. Barbara is a creative european. Cortney does not own a smart tv. Cortney is not a creative tourist. Barbara is not a brave tourist. Cortney is not happy. It is not the case that “Cortney is a curious tourist”. Cortney is not a curious european. Only one person in the room is not brave. Barbara does not enjoy writing detailed reviews of new and classic board games. It is not the case that “Cortney is not a brave european”.
Barbara is an active member of a local robotics club.
contradiction
room(cortney)&room(barbara)&(![X]:(room(X)=>(X='cortney'|X='barbara')))& (((~(brave(barbara)&person(barbara)))=>(wise(barbara)&tourist(barbara)))& ((wise(barbara)&tourist(barbara))=>(is_not_an_active_member_of_a_local_robotics_club(barbara))))& ((does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(cortney))<=>(((creative(cortney)&person(cortney))&(~(happy(cortney)&person(cortney)))&(quiet(cortney)&european(cortney)))))& ((happy(cortney)&tourist(cortney))=>(((?[X]:(anywhere(X)&humble(X)&european(X)))&(![X,Y]:((anywhere(X)&anywhere(Y)&(humble(X)&european(X))&(humble(Y)&european(Y)))=>(X=Y))))))& ((wise(barbara)&tourist(barbara))=>(does_not_enjoy_macrame(cortney)))& (((?[X]:(room(X)&~(tall(X)&european(X))))&(![X,Y]:((room(X)&room(Y)&(~(tall(X)&european(X)))&(~(tall(Y)&european(Y))))=>(X=Y)))))& (((?[X]:(room(X)&~(wise(X)&person(X))))&(![X,Y]:((room(X)&room(Y)&(~(wise(X)&person(X)))&(~(wise(Y)&person(Y))))=>(X=Y)))))& (cannot_play_the_flute(barbara))& (~tall(barbara))& (patient(barbara)&person(barbara))& (creative(barbara)&european(barbara))& (does_not_own_a_smart_tv(cortney))& (~(creative(cortney)&tourist(cortney)))& (~(brave(barbara)&tourist(barbara)))& (~happy(cortney))& (~(curious(cortney)&tourist(cortney)))& (~(curious(cortney)&european(cortney)))& (((?[X]:(room(X)&~brave(X)))&(![X,Y]:((room(X)&room(Y)&(~brave(X))&(~brave(Y)))=>(X=Y)))))& (does_not_enjoy_writing_detailed_reviews_of_new_and_classic_board_games(barbara))& (~(~(brave(cortney)&european(cortney))))
room(cortney)&room(barbara)&(![X]:(room(X)=>(X='cortney'|X='barbara')))& is_an_active_member_of_a_local_robotics_club(barbara)
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 4386282411162729960471085 % SZS output start Proof for 4386282411162729960471085 44. ~~(european(mary) & brave(mary)) & ~predn(paul) & ! [X0,X1] : ((~brave(X1) & ~brave(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (~brave(X0) & room(X0)) & ~(european(mary) & curious(mary)) & ~(tourist(mary) & curious(mary)) & ~happy(mary) & ~(tourist(paul) & brave(paul)) & ~(tourist(mary) & creative(mary)) & ~prede(mary) & european(paul) & creative(paul) & person(paul) & patient(paul) & ~tall(paul) & ~predz(paul) & ! [X0,X1] : ((~(person(X1) & wise(X1)) & ~(person(X0) & wise(X0)) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (~(person(X0) & wise(X0)) & room(X0)) & ! [X0,X1] : ((~(european(X1) & tall(X1)) & ~(european(X0) & tall(X0)) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (~(european(X0) & tall(X0)) & room(X0)) & ((tourist(paul) & wise(paul)) => ~predc(mary)) & ((tourist(mary) & happy(mary)) => (! [X0,X1] : ((european(X1) & humble(X1) & european(X0) & humble(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X0] : (european(X0) & humble(X0) & anywhere(X0)))) & (~predb(mary) <=> (european(mary) & quiet(mary) & ~(person(mary) & happy(mary)) & person(mary) & creative(mary))) & ((tourist(paul) & wise(paul)) => ~predx(paul)) & (~(person(paul) & brave(paul)) => (tourist(paul) & wise(paul))) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 45. predx(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 46. ~~(european(mary) & brave(mary)) & ~predn(paul) & ! [X0,X1] : ((~brave(X1) & ~brave(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (~brave(X2) & room(X2)) & ~(european(mary) & curious(mary)) & ~(tourist(mary) & curious(mary)) & ~happy(mary) & ~(tourist(paul) & brave(paul)) & ~(tourist(mary) & creative(mary)) & ~prede(mary) & european(paul) & creative(paul) & person(paul) & patient(paul) & ~tall(paul) & ~predz(paul) & ! [X3,X4] : ((~(person(X4) & wise(X4)) & ~(person(X3) & wise(X3)) & room(X4) & room(X3)) => X3 = X4) & ? [X5] : (~(person(X5) & wise(X5)) & room(X5)) & ! [X6,X7] : ((~(european(X7) & tall(X7)) & ~(european(X6) & tall(X6)) & room(X7) & room(X6)) => X6 = X7) & ? [X8] : (~(european(X8) & tall(X8)) & room(X8)) & ((tourist(paul) & wise(paul)) => ~predc(mary)) & ((tourist(mary) & happy(mary)) => (! [X9,X10] : ((european(X10) & humble(X10) & european(X9) & humble(X9) & anywhere(X10) & anywhere(X9)) => X9 = X10) & ? [X11] : (european(X11) & humble(X11) & anywhere(X11)))) & (~predb(mary) <=> (european(mary) & quiet(mary) & ~(person(mary) & happy(mary)) & person(mary) & creative(mary))) & ((tourist(paul) & wise(paul)) => ~predx(paul)) & (~(person(paul) & brave(paul)) => (tourist(paul) & wise(paul))) & ! [X12] : (room(X12) => (paul = X12 | mary = X12)) & room(paul) & room(mary) [rectify 44] 47. (european(mary) & brave(mary)) & ~predn(paul) & ! [X0,X1] : ((~brave(X1) & ~brave(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (~brave(X2) & room(X2)) & ~(european(mary) & curious(mary)) & ~(tourist(mary) & curious(mary)) & ~happy(mary) & ~(tourist(paul) & brave(paul)) & ~(tourist(mary) & creative(mary)) & ~prede(mary) & european(paul) & creative(paul) & person(paul) & patient(paul) & ~tall(paul) & ~predz(paul) & ! [X3,X4] : ((~(person(X4) & wise(X4)) & ~(person(X3) & wise(X3)) & room(X4) & room(X3)) => X3 = X4) & ? [X5] : (~(person(X5) & wise(X5)) & room(X5)) & ! [X6,X7] : ((~(european(X7) & tall(X7)) & ~(european(X6) & tall(X6)) & room(X7) & room(X6)) => X6 = X7) & ? [X8] : (~(european(X8) & tall(X8)) & room(X8)) & ((tourist(paul) & wise(paul)) => ~predc(mary)) & ((tourist(mary) & happy(mary)) => (! [X9,X10] : ((european(X10) & humble(X10) & european(X9) & humble(X9) & anywhere(X10) & anywhere(X9)) => X9 = X10) & ? [X11] : (european(X11) & humble(X11) & anywhere(X11)))) & (~predb(mary) <=> (european(mary) & quiet(mary) & ~(person(mary) & happy(mary)) & person(mary) & creative(mary))) & ((tourist(paul) & wise(paul)) => ~predx(paul)) & (~(person(paul) & brave(paul)) => (tourist(paul) & wise(paul))) & ! [X12] : (room(X12) => (paul = X12 | mary = X12)) & room(paul) & room(mary) [flattening 46] 48. european(mary) & brave(mary) & ! [X0,X1] : ((~brave(X1) & ~brave(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (~brave(X2) & room(X2)) & ~(european(mary) & curious(mary)) & ~(tourist(mary) & curious(mary)) & ~happy(mary) & ~(tourist(paul) & brave(paul)) & ~(tourist(mary) & creative(mary)) & ~prede(mary) & european(paul) & creative(paul) & person(paul) & patient(paul) & ~tall(paul) & ~predz(paul) & ! [X3,X4] : ((~(person(X4) & wise(X4)) & ~(person(X3) & wise(X3)) & room(X4) & room(X3)) => X3 = X4) & ? [X5] : (~(person(X5) & wise(X5)) & room(X5)) & ! [X6,X7] : ((~(european(X7) & tall(X7)) & ~(european(X6) & tall(X6)) & room(X7) & room(X6)) => X6 = X7) & ? [X8] : (~(european(X8) & tall(X8)) & room(X8)) & ((tourist(paul) & wise(paul)) => ~predc(mary)) & ((tourist(mary) & happy(mary)) => (! [X9,X10] : ((european(X10) & humble(X10) & european(X9) & humble(X9) & anywhere(X10) & anywhere(X9)) => X9 = X10) & ? [X11] : (european(X11) & humble(X11) & anywhere(X11)))) & (~predb(mary) <=> (european(mary) & quiet(mary) & ~(person(mary) & happy(mary)) & person(mary) & creative(mary))) & ((tourist(paul) & wise(paul)) => ~predx(paul)) & (~(person(paul) & brave(paul)) => (tourist(paul) & wise(paul))) & ! [X12] : (room(X12) => (paul = X12 | mary = X12)) & room(paul) & room(mary) [pure predicate removal 47] 49. european(mary) & brave(mary) & ! [X0,X1] : ((~brave(X1) & ~brave(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (~brave(X2) & room(X2)) & ~happy(mary) & ~(tourist(paul) & brave(paul)) & ~(tourist(mary) & creative(mary)) & ~prede(mary) & european(paul) & creative(paul) & person(paul) & patient(paul) & ~tall(paul) & ~predz(paul) & ! [X3,X4] : ((~(person(X4) & wise(X4)) & ~(person(X3) & wise(X3)) & room(X4) & room(X3)) => X3 = X4) & ? [X5] : (~(person(X5) & wise(X5)) & room(X5)) & ! [X6,X7] : ((~(european(X7) & tall(X7)) & ~(european(X6) & tall(X6)) & room(X7) & room(X6)) => X6 = X7) & ? [X8] : (~(european(X8) & tall(X8)) & room(X8)) & ((tourist(paul) & wise(paul)) => ~predc(mary)) & ((tourist(mary) & happy(mary)) => (! [X9,X10] : ((european(X10) & humble(X10) & european(X9) & humble(X9) & anywhere(X10) & anywhere(X9)) => X9 = X10) & ? [X11] : (european(X11) & humble(X11) & anywhere(X11)))) & (~predb(mary) <=> (european(mary) & quiet(mary) & ~(person(mary) & happy(mary)) & person(mary) & creative(mary))) & ((tourist(paul) & wise(paul)) => ~predx(paul)) & (~(person(paul) & brave(paul)) => (tourist(paul) & wise(paul))) & ! [X12] : (room(X12) => (paul = X12 | mary = X12)) & room(paul) & room(mary) [pure predicate removal 48] 50. european(mary) & brave(mary) & ! [X0,X1] : ((~brave(X1) & ~brave(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (~brave(X2) & room(X2)) & ~happy(mary) & ~(tourist(paul) & brave(paul)) & ~(tourist(mary) & creative(mary)) & european(paul) & creative(paul) & person(paul) & patient(paul) & ~tall(paul) & ~predz(paul) & ! [X3,X4] : ((~(person(X4) & wise(X4)) & ~(person(X3) & wise(X3)) & room(X4) & room(X3)) => X3 = X4) & ? [X5] : (~(person(X5) & wise(X5)) & room(X5)) & ! [X6,X7] : ((~(european(X7) & tall(X7)) & ~(european(X6) & tall(X6)) & room(X7) & room(X6)) => X6 = X7) & ? [X8] : (~(european(X8) & tall(X8)) & room(X8)) & ((tourist(paul) & wise(paul)) => ~predc(mary)) & ((tourist(mary) & happy(mary)) => (! [X9,X10] : ((european(X10) & humble(X10) & european(X9) & humble(X9) & anywhere(X10) & anywhere(X9)) => X9 = X10) & ? [X11] : (european(X11) & humble(X11) & anywhere(X11)))) & (~predb(mary) <=> (european(mary) & quiet(mary) & ~(person(mary) & happy(mary)) & person(mary) & creative(mary))) & ((tourist(paul) & wise(paul)) => ~predx(paul)) & (~(person(paul) & brave(paul)) => (tourist(paul) & wise(paul))) & ! [X12] : (room(X12) => (paul = X12 | mary = X12)) & room(paul) & room(mary) [pure predicate removal 49] 51. european(mary) & brave(mary) & ! [X0,X1] : ((~brave(X1) & ~brave(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (~brave(X2) & room(X2)) & ~happy(mary) & ~(tourist(paul) & brave(paul)) & ~(tourist(mary) & creative(mary)) & european(paul) & creative(paul) & person(paul) & ~tall(paul) & ~predz(paul) & ! [X3,X4] : ((~(person(X4) & wise(X4)) & ~(person(X3) & wise(X3)) & room(X4) & room(X3)) => X3 = X4) & ? [X5] : (~(person(X5) & wise(X5)) & room(X5)) & ! [X6,X7] : ((~(european(X7) & tall(X7)) & ~(european(X6) & tall(X6)) & room(X7) & room(X6)) => X6 = X7) & ? [X8] : (~(european(X8) & tall(X8)) & room(X8)) & ((tourist(paul) & wise(paul)) => ~predc(mary)) & ((tourist(mary) & happy(mary)) => (! [X9,X10] : ((european(X10) & humble(X10) & european(X9) & humble(X9) & anywhere(X10) & anywhere(X9)) => X9 = X10) & ? [X11] : (european(X11) & humble(X11) & anywhere(X11)))) & (~predb(mary) <=> (european(mary) & quiet(mary) & ~(person(mary) & happy(mary)) & person(mary) & creative(mary))) & ((tourist(paul) & wise(paul)) => ~predx(paul)) & (~(person(paul) & brave(paul)) => (tourist(paul) & wise(paul))) & ! [X12] : (room(X12) => (paul = X12 | mary = X12)) & room(paul) & room(mary) [pure predicate removal 50] 52. european(mary) & brave(mary) & ! [X0,X1] : ((~brave(X1) & ~brave(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (~brave(X2) & room(X2)) & ~happy(mary) & ~(tourist(paul) & brave(paul)) & ~(tourist(mary) & creative(mary)) & european(paul) & creative(paul) & person(paul) & ~tall(paul) & ! [X3,X4] : ((~(person(X4) & wise(X4)) & ~(person(X3) & wise(X3)) & room(X4) & room(X3)) => X3 = X4) & ? [X5] : (~(person(X5) & wise(X5)) & room(X5)) & ! [X6,X7] : ((~(european(X7) & tall(X7)) & ~(european(X6) & tall(X6)) & room(X7) & room(X6)) => X6 = X7) & ? [X8] : (~(european(X8) & tall(X8)) & room(X8)) & ((tourist(paul) & wise(paul)) => ~predc(mary)) & ((tourist(mary) & happy(mary)) => (! [X9,X10] : ((european(X10) & humble(X10) & european(X9) & humble(X9) & anywhere(X10) & anywhere(X9)) => X9 = X10) & ? [X11] : (european(X11) & humble(X11) & anywhere(X11)))) & (~predb(mary) <=> (european(mary) & quiet(mary) & ~(person(mary) & happy(mary)) & person(mary) & creative(mary))) & ((tourist(paul) & wise(paul)) => ~predx(paul)) & (~(person(paul) & brave(paul)) => (tourist(paul) & wise(paul))) & ! [X12] : (room(X12) => (paul = X12 | mary = X12)) & room(paul) & room(mary) [pure predicate removal 51] 53. european(mary) & brave(mary) & ! [X0,X1] : ((~brave(X1) & ~brave(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (~brave(X2) & room(X2)) & ~happy(mary) & ~(tourist(paul) & brave(paul)) & ~(tourist(mary) & creative(mary)) & european(paul) & creative(paul) & person(paul) & ~tall(paul) & ! [X3,X4] : ((~(person(X4) & wise(X4)) & ~(person(X3) & wise(X3)) & room(X4) & room(X3)) => X3 = X4) & ? [X5] : (~(person(X5) & wise(X5)) & room(X5)) & ! [X6,X7] : ((~(european(X7) & tall(X7)) & ~(european(X6) & tall(X6)) & room(X7) & room(X6)) => X6 = X7) & ? [X8] : (~(european(X8) & tall(X8)) & room(X8)) & ((tourist(mary) & happy(mary)) => (! [X9,X10] : ((european(X10) & humble(X10) & european(X9) & humble(X9) & anywhere(X10) & anywhere(X9)) => X9 = X10) & ? [X11] : (european(X11) & humble(X11) & anywhere(X11)))) & (~predb(mary) <=> (european(mary) & quiet(mary) & ~(person(mary) & happy(mary)) & person(mary) & creative(mary))) & ((tourist(paul) & wise(paul)) => ~predx(paul)) & (~(person(paul) & brave(paul)) => (tourist(paul) & wise(paul))) & ! [X12] : (room(X12) => (paul = X12 | mary = X12)) & room(paul) & room(mary) [pure predicate removal 52] 125. european(mary) & brave(mary) & ! [X0,X1] : (X0 = X1 | (brave(X1) | brave(X0) | ~room(X1) | ~room(X0))) & ? [X2] : (~brave(X2) & room(X2)) & ~happy(mary) & (~tourist(paul) | ~brave(paul)) & (~tourist(mary) | ~creative(mary)) & european(paul) & creative(paul) & person(paul) & ~tall(paul) & ! [X3,X4] : (X3 = X4 | ((person(X4) & wise(X4)) | (person(X3) & wise(X3)) | ~room(X4) | ~room(X3))) & ? [X5] : ((~person(X5) | ~wise(X5)) & room(X5)) & ! [X6,X7] : (X6 = X7 | ((european(X7) & tall(X7)) | (european(X6) & tall(X6)) | ~room(X7) | ~room(X6))) & ? [X8] : ((~european(X8) | ~tall(X8)) & room(X8)) & ((! [X9,X10] : (X9 = X10 | (~european(X10) | ~humble(X10) | ~european(X9) | ~humble(X9) | ~anywhere(X10) | ~anywhere(X9))) & ? [X11] : (european(X11) & humble(X11) & anywhere(X11))) | (~tourist(mary) | ~happy(mary))) & (~predb(mary) <=> (european(mary) & quiet(mary) & (~person(mary) | ~happy(mary)) & person(mary) & creative(mary))) & (~predx(paul) | (~tourist(paul) | ~wise(paul))) & ((tourist(paul) & wise(paul)) | (person(paul) & brave(paul))) & ! [X12] : ((paul = X12 | mary = X12) | ~room(X12)) & room(paul) & room(mary) [ennf transformation 53] 126. european(mary) & brave(mary) & ! [X0,X1] : (X0 = X1 | brave(X1) | brave(X0) | ~room(X1) | ~room(X0)) & ? [X2] : (~brave(X2) & room(X2)) & ~happy(mary) & (~tourist(paul) | ~brave(paul)) & (~tourist(mary) | ~creative(mary)) & european(paul) & creative(paul) & person(paul) & ~tall(paul) & ! [X3,X4] : (X3 = X4 | (person(X4) & wise(X4)) | (person(X3) & wise(X3)) | ~room(X4) | ~room(X3)) & ? [X5] : ((~person(X5) | ~wise(X5)) & room(X5)) & ! [X6,X7] : (X6 = X7 | (european(X7) & tall(X7)) | (european(X6) & tall(X6)) | ~room(X7) | ~room(X6)) & ? [X8] : ((~european(X8) | ~tall(X8)) & room(X8)) & ((! [X9,X10] : (X9 = X10 | ~european(X10) | ~humble(X10) | ~european(X9) | ~humble(X9) | ~anywhere(X10) | ~anywhere(X9)) & ? [X11] : (european(X11) & humble(X11) & anywhere(X11))) | ~tourist(mary) | ~happy(mary)) & (~predb(mary) <=> (european(mary) & quiet(mary) & (~person(mary) | ~happy(mary)) & person(mary) & creative(mary))) & (~predx(paul) | ~tourist(paul) | ~wise(paul)) & ((tourist(paul) & wise(paul)) | (person(paul) & brave(paul))) & ! [X12] : (paul = X12 | mary = X12 | ~room(X12)) & room(paul) & room(mary) [flattening 125] 127. predx(paul) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 45] 128. predx(paul) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 127] 130. european(mary) & brave(mary) & ! [X0,X1] : (X0 = X1 | brave(X1) | brave(X0) | ~room(X1) | ~room(X0)) & ? [X2] : (~brave(X2) & room(X2)) & ~happy(mary) & (~tourist(paul) | ~brave(paul)) & (~tourist(mary) | ~creative(mary)) & european(paul) & creative(paul) & person(paul) & ~tall(paul) & ! [X3,X4] : (X3 = X4 | (person(X4) & wise(X4)) | (person(X3) & wise(X3)) | ~room(X4) | ~room(X3)) & ? [X5] : ((~person(X5) | ~wise(X5)) & room(X5)) & ! [X6,X7] : (X6 = X7 | (european(X7) & tall(X7)) | (european(X6) & tall(X6)) | ~room(X7) | ~room(X6)) & ? [X8] : ((~european(X8) | ~tall(X8)) & room(X8)) & ((! [X9,X10] : (X9 = X10 | ~european(X10) | ~humble(X10) | ~european(X9) | ~humble(X9) | ~anywhere(X10) | ~anywhere(X9)) & ? [X11] : (european(X11) & humble(X11) & anywhere(X11))) | ~tourist(mary) | ~happy(mary)) & ((~predb(mary) | (~european(mary) | ~quiet(mary) | (person(mary) & happy(mary)) | ~person(mary) | ~creative(mary))) & ((european(mary) & quiet(mary) & (~person(mary) | ~happy(mary)) & person(mary) & creative(mary)) | predb(mary))) & (~predx(paul) | ~tourist(paul) | ~wise(paul)) & ((tourist(paul) & wise(paul)) | (person(paul) & brave(paul))) & ! [X12] : (paul = X12 | mary = X12 | ~room(X12)) & room(paul) & room(mary) [nnf transformation 126] 131. european(mary) & brave(mary) & ! [X0,X1] : (X0 = X1 | brave(X1) | brave(X0) | ~room(X1) | ~room(X0)) & ? [X2] : (~brave(X2) & room(X2)) & ~happy(mary) & (~tourist(paul) | ~brave(paul)) & (~tourist(mary) | ~creative(mary)) & european(paul) & creative(paul) & person(paul) & ~tall(paul) & ! [X3,X4] : (X3 = X4 | (person(X4) & wise(X4)) | (person(X3) & wise(X3)) | ~room(X4) | ~room(X3)) & ? [X5] : ((~person(X5) | ~wise(X5)) & room(X5)) & ! [X6,X7] : (X6 = X7 | (european(X7) & tall(X7)) | (european(X6) & tall(X6)) | ~room(X7) | ~room(X6)) & ? [X8] : ((~european(X8) | ~tall(X8)) & room(X8)) & ((! [X9,X10] : (X9 = X10 | ~european(X10) | ~humble(X10) | ~european(X9) | ~humble(X9) | ~anywhere(X10) | ~anywhere(X9)) & ? [X11] : (european(X11) & humble(X11) & anywhere(X11))) | ~tourist(mary) | ~happy(mary)) & (~predb(mary) | ~european(mary) | ~quiet(mary) | (person(mary) & happy(mary)) | ~person(mary) | ~creative(mary)) & ((european(mary) & quiet(mary) & (~person(mary) | ~happy(mary)) & person(mary) & creative(mary)) | predb(mary)) & (~predx(paul) | ~tourist(paul) | ~wise(paul)) & ((tourist(paul) & wise(paul)) | (person(paul) & brave(paul))) & ! [X12] : (paul = X12 | mary = X12 | ~room(X12)) & room(paul) & room(mary) [flattening 130] 132. ? [X2] : (~brave(X2) & room(X2)) => (~brave(sK0) & room(sK0)) [choice axiom] 133. ? [X5] : ((~person(X5) | ~wise(X5)) & room(X5)) => ((~person(sK1) | ~wise(sK1)) & room(sK1)) [choice axiom] 134. ? [X8] : ((~european(X8) | ~tall(X8)) & room(X8)) => ((~european(sK2) | ~tall(sK2)) & room(sK2)) [choice axiom] 135. ? [X11] : (european(X11) & humble(X11) & anywhere(X11)) => (european(sK3) & humble(sK3) & anywhere(sK3)) [choice axiom] 136. european(mary) & brave(mary) & ! [X0,X1] : (X0 = X1 | brave(X1) | brave(X0) | ~room(X1) | ~room(X0)) & (~brave(sK0) & room(sK0)) & ~happy(mary) & (~tourist(paul) | ~brave(paul)) & (~tourist(mary) | ~creative(mary)) & european(paul) & creative(paul) & person(paul) & ~tall(paul) & ! [X3,X4] : (X3 = X4 | (person(X4) & wise(X4)) | (person(X3) & wise(X3)) | ~room(X4) | ~room(X3)) & ((~person(sK1) | ~wise(sK1)) & room(sK1)) & ! [X6,X7] : (X6 = X7 | (european(X7) & tall(X7)) | (european(X6) & tall(X6)) | ~room(X7) | ~room(X6)) & ((~european(sK2) | ~tall(sK2)) & room(sK2)) & ((! [X9,X10] : (X9 = X10 | ~european(X10) | ~humble(X10) | ~european(X9) | ~humble(X9) | ~anywhere(X10) | ~anywhere(X9)) & (european(sK3) & humble(sK3) & anywhere(sK3))) | ~tourist(mary) | ~happy(mary)) & (~predb(mary) | ~european(mary) | ~quiet(mary) | (person(mary) & happy(mary)) | ~person(mary) | ~creative(mary)) & ((european(mary) & quiet(mary) & (~person(mary) | ~happy(mary)) & person(mary) & creative(mary)) | predb(mary)) & (~predx(paul) | ~tourist(paul) | ~wise(paul)) & ((tourist(paul) & wise(paul)) | (person(paul) & brave(paul))) & ! [X12] : (paul = X12 | mary = X12 | ~room(X12)) & room(paul) & room(mary) [skolemisation 131,135,134,133,132] 222. ~room(X12) | mary = X12 | paul = X12 [cnf transformation 136] 223. wise(paul) | brave(paul) [cnf transformation 136] 225. tourist(paul) | brave(paul) [cnf transformation 136] 227. ~predx(paul) | ~tourist(paul) | ~wise(paul) [cnf transformation 136] 258. room(sK0) [cnf transformation 136] 259. ~brave(sK0) [cnf transformation 136] 261. brave(mary) [cnf transformation 136] 266. predx(paul) [cnf transformation 128] 268. 1 <=> brave(paul) [avatar definition] 269. brave(paul) <- (1) [avatar component clause 268] 272. 2 <=> tourist(paul) [avatar definition] 322. 12 <=> wise(paul) [avatar definition] 326. 13 <=> predx(paul) [avatar definition] 329. ~12 | ~2 | ~13 [avatar split clause 227,326,272,322] 330. 1 | 2 [avatar split clause 225,272,268] 331. 1 | 12 [avatar split clause 223,322,268] 332. 13 [avatar split clause 266,326] 338. mary = sK0 | paul = sK0 [resolution 222,258] 342. 14 <=> paul = sK0 [avatar definition] 344. paul = sK0 <- (14) [avatar component clause 342] 346. 15 <=> mary = sK0 [avatar definition] 348. mary = sK0 <- (15) [avatar component clause 346] 349. 14 | 15 [avatar split clause 338,346,342] 375. ~brave(paul) <- (14) [backward demodulation 259,344] 376. $false <- (1, 14) [subsumption resolution 375,269] 377. ~1 | ~14 [avatar contradiction clause 376] 379. ~brave(mary) <- (15) [backward demodulation 259,348] 380. $false <- (15) [subsumption resolution 379,261] 381. ~15 [avatar contradiction clause 380] 386. $false [avatar sat refutation 329,330,331,332,349,377,381] % SZS output end Proof for 4386282411162729960471085 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.546265
Stacy, Marlin, Ashley, Jennifer are the only persons in the room. “Stacy is not quiet” if “everyone in the room is not a tall person and is not a quiet person” and vice versa. “Ashley is kind” if “Ashley is a curious person”. “Everyone in the room is not a wise person” only if “Jennifer is humble”. “No brave person is calm” if “someone in the room is not kind”. “Everyone in the room is not a strong person” if “everyone in the room is a brave person”. “Someone in the room is a calm person” only if “someone in the room is a creative person”. “Ashley is not quiet” if “everyone in the room is funny”. Marlin is a calm person. Marlin is a humble person. All wise persons are creative. Marlin is happy. Everyone in the room is a curious person. More than one person in the room is a curious person. Everyone in the room is not a funny person. All strong persons are brave. Everyone in the room is calm.
Marlin is funny.
contradiction
room(stacy)&room(marlin)&room(ashley)&room(jennifer)&(![X]:(room(X)=>(X='stacy'|X='marlin'|X='ashley'|X='jennifer')))& ((![X]:(room(X)=>(((~(tall(X)&person(X)))&(~(quiet(X)&person(X)))))))<=>(~quiet(stacy)))& ((curious(ashley)&person(ashley))=>(kind(ashley)))& ((![X]:(room(X)=>(~(wise(X)&person(X)))))=>(humble(jennifer)))& ((?[X]:(room(X)&(~kind(X))))=>(~?[X]:(brave(X)=>calm(X))))& ((![X]:(room(X)=>(brave(X)&person(X))))=>(![X]:(room(X)=>(~(strong(X)&person(X))))))& ((?[X]:(room(X)&(calm(X)&person(X))))=>(?[X]:(room(X)&(creative(X)&person(X)))))& ((![X]:(room(X)=>(funny(X))))=>(~quiet(ashley)))& (calm(marlin)&person(marlin))& (humble(marlin)&person(marlin))& (![X]:(wise(X)=>creative(X)))& (happy(marlin))& (![X]:(room(X)=>(curious(X)&person(X))))& ((?[X,Y]:(room(X)&room(Y)&(curious(X)&person(X)&curious(Y)&person(Y))&(X!=Y))))& (![X]:(room(X)=>(~(funny(X)&person(X)))))& (![X]:(strong(X)=>brave(X)))& (![X]:(room(X)=>(calm(X))))
room(stacy)&room(marlin)&room(ashley)&room(jennifer)&(![X]:(room(X)=>(X='stacy'|X='marlin'|X='ashley'|X='jennifer')))& funny(marlin)
[ "p0", "p12", "p14", "hypothesis" ]
% SZS status Unsatisfiable for 5288248657386918473811677 % SZS output start Proof for 5288248657386918473811677 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 56. ! [X0] : (room(X0) => (person(X0) & curious(X0))) [input p12] 58. ! [X0] : (room(X0) => ~(person(X0) & funny(X0))) [input p14] 61. funny(paul) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 76. ! [X0] : (room(X0) => person(X0)) [pure predicate removal 56] 150. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 151. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 150] 155. ! [X0] : (person(X0) | ~room(X0)) [ennf transformation 76] 156. ! [X0] : ((~person(X0) | ~funny(X0)) | ~room(X0)) [ennf transformation 58] 157. ! [X0] : (~person(X0) | ~funny(X0) | ~room(X0)) [flattening 156] 159. funny(paul) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 61] 160. funny(paul) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 159] 254. room(paul) [cnf transformation 151] 272. ~room(X0) | person(X0) [cnf transformation 155] 278. ~person(X0) | ~funny(X0) | ~room(X0) [cnf transformation 157] 285. funny(paul) [cnf transformation 160] 347. ~funny(X0) | ~room(X0) [subsumption resolution 278,272] 378. ~room(paul) [resolution 347,285] 379. $false [subsumption resolution 378,254] % SZS output end Proof for 5288248657386918473811677 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.252023
William, Ann are the only persons in the room. If “someone in the room is wise” then “someone who is tall is older than someone who is older than Carol”. If “William and Ann are respectively calm and humble” then “all patient persons are calm”. “William and Ann are respectively wise and calm” if “at least one person anywhere is a happy person” and vice versa. If “William and Ann are respectively generous and kind” then “if someone is richer than Carol then he/she is a kind person” otherwise “it is not the case that “it is true that “it is not the case that “someone in the room is richer than Carol””””. “If someone is a strong creative person then he/she is older than Carol” if “it is not the case that “Carol is quieter than William””. “William and Ann are respectively curious and strong” if “Carol is richer than Ann” and vice versa. If “someone in the room is not a kind person” then “Carol is quieter than Ann”. If “Carol is quieter than Ann” then “someone anywhere is not a strong tall person” otherwise “Ann who is strong is humble”. If someone is not strong, not generous then he/she is not a generous calm humble person and vice versa. Carol is richer than William. If someone is a calm patient person then he/she is creative or is a wise old tall patient generous person or both and vice versa. All humble persons are kind. Someone outside the room is patient. All funny persons are patient. If someone is a patient humble person then he/she is a calm person and vice versa. It is not the case that “someone in the room is humble and is older than Carol”. If someone is a funny strong quiet calm generous person then he/she is a quiet person. It is not the case that “it is not the case that “it is true that “William and Ann are respectively quiet and strong”””. If someone is older than Carol then he/she is a curious person. All humble persons are patient. Someone in the room is a brave patient calm person. Someone who is not a happy person is older than someone who is calm. All calm persons are creative.
All calm persons are humble.
entailment
room(william)&room(ann)&(![X]:(room(X)=>(X='william'|X='ann')))& ((?[X]:(room(X)&(wise(X))))=>(?[X,Y]:((tall(X))&(older(carol,Y))&(older(X,Y)))))& (((calm(william))&(humble(ann)))=>(![X]:(patient(X)=>calm(X))))& ((((?[X]:(anywhere(X)&happy(X)&person(X)))))<=>((wise(william))&(calm(ann))))& ((((generous(william))&(kind(ann)))=>((![X]:((richer(carol,X))=>(kind(X)&person(X))))))&((~((generous(william))&(kind(ann))))=>(~(~(?[X]:(room(X)&(richer(carol,X))))))))& ((~(quieter(william,carol)))=>((![X]:((strong(X)&creative(X)&person(X))=>(older(carol,X))))))& ((richer(ann,carol))<=>((curious(william))&(strong(ann))))& ((?[X]:(room(X)&(~(kind(X)&person(X)))))=>(quieter(ann,carol)))& (((quieter(ann,carol))=>(?[X]:(anywhere(X)&(~(strong(X)&tall(X)&person(X))))))&((~(quieter(ann,carol)))=>((strong(ann))&(humble(ann)))))& ((![X]:((~strong(X)&~generous(X))<=>(~(generous(X)&calm(X)&humble(X)&person(X))))))& (richer(william,carol))& ((![X]:((calm(X)&patient(X)&person(X))<=>(((creative(X))|(wise(X)&old(X)&tall(X)&patient(X)&generous(X)&person(X)))))))& (![X]:(humble(X)=>kind(X)))& (?[X]:(~room(X)&(patient(X))))& (![X]:(funny(X)=>patient(X)))& ((![X]:((patient(X)&humble(X)&person(X))<=>(calm(X)&person(X)))))& (~(?[X]:(room(X)&(((humble(X))&(older(carol,X)))))))& ((![X]:((funny(X)&strong(X)&quiet(X)&calm(X)&generous(X)&person(X))=>(quiet(X)&person(X)))))& (~(~((quiet(william))&(strong(ann)))))& ((![X]:((older(carol,X))=>(curious(X)&person(X)))))& (![X]:(humble(X)=>patient(X)))& (?[X]:(room(X)&(brave(X)&patient(X)&calm(X)&person(X))))& (?[X,Y]:((~(happy(X)&person(X)))&(calm(Y))&(older(X,Y))))& (((?[X]:(room(X)&brave(X)&person(X)))))& (?[X,Y]:((tall(X)&funny(X)&patient(X)&person(X))&(quieter(carol,Y))&(older(X,Y))))& (![X]:(calm(X)=>creative(X)))& (((?[X]:(room(X)&old(X)))&(![X,Y]:((room(X)&room(Y)&(old(X))&(old(Y)))=>(X=Y)))))
room(william)&room(ann)&(![X]:(room(X)=>(X='william'|X='ann')))& ![X]:(calm(X)=>humble(X))
[ "p0", "p11", "p15", "p25", "hypothesis" ]
% SZS status Unsatisfiable for 4805572718900938653695460 % SZS output start Proof for 4805572718900938653695460 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 55. ! [X0] : ((person(X0) & patient(X0) & calm(X0)) <=> ((person(X0) & generous(X0) & patient(X0) & tall(X0) & old(X0) & wise(X0)) | creative(X0))) [input p11] 59. ! [X0] : ((person(X0) & humble(X0) & patient(X0)) <=> (person(X0) & calm(X0))) [input p15] 69. ! [X0] : (calm(X0) => creative(X0)) [input p25] 71. ~(! [X0] : (calm(X0) => humble(X0)) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 77. ~(! [X0] : (calm(X0) => humble(X0)) & ! [X1] : (room(X1) => (paul = X1 | mary = X1)) & room(paul) & room(mary)) [rectify 71] 151. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 152. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 151] 171. ! [X0] : (creative(X0) | ~calm(X0)) [ennf transformation 69] 174. ? [X0] : (~humble(X0) & calm(X0)) | ? [X1] : ((paul != X1 & mary != X1) & room(X1)) | ~room(paul) | ~room(mary) [ennf transformation 77] 175. ? [X0] : (~humble(X0) & calm(X0)) | ? [X1] : (paul != X1 & mary != X1 & room(X1)) | ~room(paul) | ~room(mary) [flattening 174] 178. ! [X0] : (sP1(X0) <=> (person(X0) & patient(X0) & calm(X0))) [predicate definition introduction] 179. ! [X0] : (sP1(X0) <=> ((person(X0) & generous(X0) & patient(X0) & tall(X0) & old(X0) & wise(X0)) | creative(X0))) [definition folding 55,178] 199. ! [X0] : ((sP1(X0) | (~person(X0) | ~patient(X0) | ~calm(X0))) & ((person(X0) & patient(X0) & calm(X0)) | ~sP1(X0))) [nnf transformation 178] 200. ! [X0] : ((sP1(X0) | ~person(X0) | ~patient(X0) | ~calm(X0)) & ((person(X0) & patient(X0) & calm(X0)) | ~sP1(X0))) [flattening 199] 201. ! [X0] : ((sP1(X0) | ((~person(X0) | ~generous(X0) | ~patient(X0) | ~tall(X0) | ~old(X0) | ~wise(X0)) & ~creative(X0))) & (((person(X0) & generous(X0) & patient(X0) & tall(X0) & old(X0) & wise(X0)) | creative(X0)) | ~sP1(X0))) [nnf transformation 179] 202. ! [X0] : ((sP1(X0) | ((~person(X0) | ~generous(X0) | ~patient(X0) | ~tall(X0) | ~old(X0) | ~wise(X0)) & ~creative(X0))) & ((person(X0) & generous(X0) & patient(X0) & tall(X0) & old(X0) & wise(X0)) | creative(X0) | ~sP1(X0))) [flattening 201] 205. ! [X0] : (((person(X0) & humble(X0) & patient(X0)) | (~person(X0) | ~calm(X0))) & ((person(X0) & calm(X0)) | (~person(X0) | ~humble(X0) | ~patient(X0)))) [nnf transformation 59] 206. ! [X0] : (((person(X0) & humble(X0) & patient(X0)) | ~person(X0) | ~calm(X0)) & ((person(X0) & calm(X0)) | ~person(X0) | ~humble(X0) | ~patient(X0))) [flattening 205] 217. ? [X0] : (~humble(X0) & calm(X0)) => (~humble(sK15) & calm(sK15)) [choice axiom] 218. ? [X1] : (paul != X1 & mary != X1 & room(X1)) => (paul != sK16 & mary != sK16 & room(sK16)) [choice axiom] 219. (~humble(sK15) & calm(sK15)) | (paul != sK16 & mary != sK16 & room(sK16)) | ~room(paul) | ~room(mary) [skolemisation 175,218,217] 301. room(mary) [cnf transformation 152] 302. room(paul) [cnf transformation 152] 303. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 152] 340. ~sP1(X0) | person(X0) [cnf transformation 200] 348. ~creative(X0) | sP1(X0) [cnf transformation 202] 357. ~calm(X0) | ~person(X0) | humble(X0) [cnf transformation 206] 382. ~calm(X0) | creative(X0) [cnf transformation 171] 386. calm(sK15) | room(sK16) | ~room(paul) | ~room(mary) [cnf transformation 219] 387. calm(sK15) | mary != sK16 | ~room(paul) | ~room(mary) [cnf transformation 219] 388. calm(sK15) | paul != sK16 | ~room(paul) | ~room(mary) [cnf transformation 219] 389. ~humble(sK15) | room(sK16) | ~room(paul) | ~room(mary) [cnf transformation 219] 390. ~humble(sK15) | mary != sK16 | ~room(paul) | ~room(mary) [cnf transformation 219] 391. ~humble(sK15) | paul != sK16 | ~room(paul) | ~room(mary) [cnf transformation 219] 535. ~humble(sK15) | paul != sK16 | ~room(mary) [subsumption resolution 391,302] 536. ~humble(sK15) | paul != sK16 [subsumption resolution 535,301] 538. 32 <=> paul = sK16 [avatar definition] 542. 33 <=> humble(sK15) [avatar definition] 544. ~humble(sK15) <- (~33) [avatar component clause 542] 545. ~32 | ~33 [avatar split clause 536,542,538] 546. ~humble(sK15) | mary != sK16 | ~room(mary) [subsumption resolution 390,302] 547. ~humble(sK15) | mary != sK16 [subsumption resolution 546,301] 549. 34 <=> mary = sK16 [avatar definition] 551. mary != sK16 <- (~34) [avatar component clause 549] 552. ~34 | ~33 [avatar split clause 547,542,549] 553. ~humble(sK15) | room(sK16) | ~room(mary) [subsumption resolution 389,302] 554. ~humble(sK15) | room(sK16) [subsumption resolution 553,301] 556. 35 <=> room(sK16) [avatar definition] 558. room(sK16) <- (35) [avatar component clause 556] 559. 35 | ~33 [avatar split clause 554,542,556] 560. calm(sK15) | paul != sK16 | ~room(mary) [subsumption resolution 388,302] 561. calm(sK15) | paul != sK16 [subsumption resolution 560,301] 563. 36 <=> calm(sK15) [avatar definition] 565. calm(sK15) <- (36) [avatar component clause 563] 566. ~32 | 36 [avatar split clause 561,563,538] 567. calm(sK15) | mary != sK16 | ~room(mary) [subsumption resolution 387,302] 568. calm(sK15) | mary != sK16 [subsumption resolution 567,301] 569. ~34 | 36 [avatar split clause 568,563,549] 570. calm(sK15) | room(sK16) | ~room(mary) [subsumption resolution 386,302] 571. calm(sK15) | room(sK16) [subsumption resolution 570,301] 572. 35 | 36 [avatar split clause 571,563,556] 640. mary = sK16 | paul = sK16 <- (35) [resolution 303,558] 677. paul = sK16 <- (~34, 35) [subsumption resolution 640,551] 680. 32 | 34 | ~35 [avatar split clause 677,556,549,538] 717. ~person(sK15) | humble(sK15) <- (36) [resolution 565,357] 719. creative(sK15) <- (36) [resolution 565,382] 720. ~person(sK15) <- (~33, 36) [subsumption resolution 717,544] 751. sP1(sK15) <- (36) [resolution 719,348] 952. person(sK15) <- (36) [resolution 751,340] 957. $false <- (~33, 36) [subsumption resolution 952,720] 958. 33 | ~36 [avatar contradiction clause 957] 959. $false [avatar sat refutation 545,552,559,566,569,572,680,958] % SZS output end Proof for 4805572718900938653695460 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5500 % Time elapsed: 0.043 s % ------------------------------ % ------------------------------
0.251721
Ola, Jerry are the only persons in the room. “It is not the case that “Jerry enjoys skydiving”” unless “someone anywhere is a skilled home brewer experimenting with craft beer recipes”. “Ola is younger than Tamara” unless “Jerry is younger than Tamara”. “Ola collects vintage stamps” unless “Jerry is a skilled home brewer experimenting with craft beer recipes”. “Ola composes and performs experimental electronic music” if “Jerry enjoys skydiving” and vice versa. “Tamara is younger than Ola” if “someone in the room is younger than Tamara” and vice versa. If “Tamara is younger than Ola” then “someone in the room enjoys skydiving”. Jerry composes and performs experimental electronic music. If someone enjoys skydiving then he/she composes and performs experimental electronic music. Jerry is the youngest in the room. Ola collects vintage stamps. Jerry is a skilled home brewer experimenting with craft beer recipes. Ola composes and performs experimental electronic music. Ola either is a skilled home brewer experimenting with craft beer recipes or is younger than Tamara but not both. Ola enjoys skydiving.
Jerry collects vintage stamps.
neutral
room(ola)&room(jerry)&(![X]:(room(X)=>(X='ola'|X='jerry')))& (~(?[X]:(anywhere(X)&(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))))=>(~(enjoys_skydiving(jerry))))& (~(younger(tamara,jerry))=>(younger(tamara,ola)))& (~(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(jerry))=>(collects_vintage_stamps(ola)))& ((enjoys_skydiving(jerry))<=>(composes_and_performs_experimental_electronic_music(ola)))& ((?[X]:(room(X)&(younger(tamara,X))))<=>(younger(ola,tamara)))& ((younger(ola,tamara))=>(?[X]:(room(X)&(enjoys_skydiving(X)))))& (composes_and_performs_experimental_electronic_music(jerry))& ((![X]:((enjoys_skydiving(X))=>(composes_and_performs_experimental_electronic_music(X)))))& (![X]:((room(X)&(X!=jerry))=>younger(X,jerry)))& (collects_vintage_stamps(ola))& (is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(jerry))& (composes_and_performs_experimental_electronic_music(ola))& (((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(ola))<~>(younger(tamara,ola))))& (enjoys_skydiving(ola))
room(ola)&room(jerry)&(![X]:(room(X)=>(X='ola'|X='jerry')))& collects_vintage_stamps(jerry)
[]
null
0.458504
Ranae is the only person in the room. Either “Ranae is passionate about collecting and restoring classic cars” or “everyone in the room has a pet dog or is not an avid collector of autographed memorabilia from famous musicians” but not both. If “Ranae is not a professional photographer specializing in portrait photography, creates augmented reality experiences for mobile applications and watches fantasy movies” then “Ranae watches fantasy movies”. Ranae does not host regular workshops on creative writing. Everyone in the room who collects vintage stamps hosts regular workshops on creative writing.
It is not the case that “it is not the case that “Ranae collects vintage stamps””.
contradiction
room(ranae)&(![X]:(room(X)=>(X='ranae')))& ((is_passionate_about_collecting_and_restoring_classic_cars(ranae))<~>(![X]:(room(X)=>(((is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))|(has_a_pet_dog(X)))))))& ((((is_not_a_professional_photographer_specializing_in_portrait_photography(ranae))&(creates_augmented_reality_experiences_for_mobile_applications(ranae))&(watches_fantasy_movies(ranae))))=>(watches_fantasy_movies(ranae)))& (![X]:(anywhere(X)=>(((does_not_host_regular_workshops_on_creative_writing(X))=>(enjoys_fishing(X))))))& (![X]:(room(X)=>(((enjoys_fishing(X))=>(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))))))& (is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(ranae))& (enjoys_kayaking(ranae))& (does_not_host_regular_workshops_on_creative_writing(ranae))& (enjoys_wildlife_photography(ranae))& ((![X]:((hosts_regular_workshops_on_creative_writing(X))<=>(owns_a_high-end_gaming_PC_with_custom-built_components(X)))))& (![X]:(room(X)=>(((is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))=>(collects_vintage_stamps(X))))))& (![X]:(room(X)=>(((collects_vintage_stamps(X))=>(hosts_regular_workshops_on_creative_writing(X))))))& (~((is_a_wine_connoisseur(ranae))|(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(ranae))))& (owns_a_telescope(ranae))
room(ranae)&(![X]:(room(X)=>(X='ranae')))& ~(~(collects_vintage_stamps(ranae)))
[ "p0", "p7", "p11", "hypothesis" ]
% SZS status Unsatisfiable for 6290977344734806462785130 % SZS output start Proof for 6290977344734806462785130 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 51. ~predw(mary) [input p7] 55. ! [X0] : (room(X0) => (preda(X0) => predw(X0))) [input p11] 58. preda(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 141. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 144. ! [X0] : ((predw(X0) | ~preda(X0)) | ~room(X0)) [ennf transformation 55] 145. ! [X0] : (predw(X0) | ~preda(X0) | ~room(X0)) [flattening 144] 146. preda(mary) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 58] 233. room(mary) [cnf transformation 141] 239. ~predw(mary) [cnf transformation 51] 242. ~preda(X0) | predw(X0) | ~room(X0) [cnf transformation 145] 245. preda(mary) [cnf transformation 146] 270. predw(mary) | ~room(mary) [resolution 242,245] 271. ~room(mary) [subsumption resolution 270,239] 272. $false [subsumption resolution 271,233] % SZS output end Proof for 6290977344734806462785130 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.021 s % ------------------------------ % ------------------------------
0.701011
There is a room. "Don dreamt that "someone in the room uses an ios phone"" unless "at least one person in the room creates YouTube content". If "someone in the room is right-handed" then "it is not the case that "someone outside the room enjoys macrame"". "It is true that "at least one person in the room has a vast collection of first-edition science fiction novels"" unless "it is not the case that "someone in the room does not practice kickboxing"".
Everyone outside the room is an active member of a local robotics club.
neutral
(there_is_a_room)& (~(((?[X]:(room(X)&creates_YouTube_content(X)))))=>((don_dream=>(?[X]:(room(X)&(uses_an_ios_phone(X)))))))& ((?[X]:(room(X)&(is_right-handed(X))))=>(~(?[X]:(~room(X)&(enjoys_macrame(X))))))& (~(~(?[X]:(room(X)&(does_not_practice_kickboxing(X)))))=>(((?[X]:(room(X)&has_a_vast_collection_of_first-edition_science_fiction_novels(X))))))& ((~(?[X]:(anywhere(X)&(uses_contact_lenses(X)))))=>(((?[X]:(~room(X)&((collects_luxury_watches(X))<~>(is_a_client_of_Meta(X)))))&(![X,Y]:((~room(X)&~room(Y)&(((collects_luxury_watches(X))<~>(is_a_client_of_Meta(X))))&(((collects_luxury_watches(Y))<~>(is_a_client_of_Meta(Y)))))=>(X=Y))))))& (((?[X]:(room(X)&is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X)))&(![X,Y]:((room(X)&room(Y)&(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))&(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(Y)))=>(X=Y)))))& (?[X]:(room(X)&(((is_a_tea_enthusiast(X))<~>(uses_an_ios_phone(X))))))& (~(((?[X]:(anywhere(X)&is_a_tea_enthusiast(X))))))& (((?[X]:(~room(X)&is_an_active_member_of_a_local_robotics_club(X)))&(![X,Y]:((~room(X)&~room(Y)&(is_an_active_member_of_a_local_robotics_club(X))&(is_an_active_member_of_a_local_robotics_club(Y)))=>(X=Y)))))& (?[X]:(room(X)&(enjoys_macrame(X))))& (~(~(~(((?[X]:(room(X)&does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(X))))))))& (?[X]:(room(X)&(is_right-handed(X))))& (((?[X]:(~room(X)&uses_an_ios_phone(X)))&(![X,Y]:((~room(X)&~room(Y)&(uses_an_ios_phone(X))&(uses_an_ios_phone(Y)))=>(X=Y)))))& (((?[X]:(anywhere(X)&is_right-handed(X)))&(![X,Y]:((anywhere(X)&anywhere(Y)&(is_right-handed(X))&(is_right-handed(Y)))=>(X=Y)))))& (((?[X]:(room(X)&((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))&(has_a_piercing(X))&(is_not_a_coffee_connoisseur(X)))))&(![X,Y]:((room(X)&room(Y)&(((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))&(has_a_piercing(X))&(is_not_a_coffee_connoisseur(X))))&(((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(Y))&(has_a_piercing(Y))&(is_not_a_coffee_connoisseur(Y)))))=>(X=Y)))))& (((?[X]:(room(X)&enjoys_kayaking_and_exploring_remote_waterways(X)))&(![X,Y]:((room(X)&room(Y)&(enjoys_kayaking_and_exploring_remote_waterways(X))&(enjoys_kayaking_and_exploring_remote_waterways(Y)))=>(X=Y)))))& (?[X]:(~room(X)&(((has_a_piercing(X))<~>(enjoys_macrame(X))))))& (((?[X]:(room(X)&has_a_piercing(X)))&(![X,Y]:((room(X)&room(Y)&(has_a_piercing(X))&(has_a_piercing(Y)))=>(X=Y)))))& (((?[X]:(room(X)&is_a_coffee_connoisseur(X)))&(![X,Y]:((room(X)&room(Y)&(is_a_coffee_connoisseur(X))&(is_a_coffee_connoisseur(Y)))=>(X=Y)))))& (~(~(((?[X]:(room(X)&is_an_avid_hiker(X)))))))& (~(((?[X]:(room(X)&enjoys_making_ceramics(X))))))& (((?[X]:(room(X)&is_not_a_coffee_connoisseur(X)))))& (?[X]:(room(X)&(does_not_practice_kickboxing(X))))& (((?[X]:(~room(X)&is_a_client_of_Meta(X)))))& (?[X]:(room(X)&(owns_a_significant_collection_of_rare_gemstones_and_minerals(X))))& (((?[X]:(room(X)&is_not_a_client_of_Meta(X)))&(![X,Y]:((room(X)&room(Y)&(is_not_a_client_of_Meta(X))&(is_not_a_client_of_Meta(Y)))=>(X=Y)))))
(there_is_a_room)& ![X]:(~room(X)=>(is_an_active_member_of_a_local_robotics_club(X)))
[]
null
0.43558
Douglas, Joseph are the only persons in the room. Douglas is a certified yoga instructor teaching classes weekly. Douglas does enjoy mountain biking. Douglas can play the piano. Joseph has a pet dog. Joseph participates in long-distance cycling events across the country. Douglas has completed a triathlon. Joseph who does enjoy mountain biking, is a dedicated advocate for digital privacy and encryption and owns a microscope is a coffee connoisseur. Douglas who owns a microscope does not maintain a personal blog focused on cybersecurity tips. Douglas is not right-handed. Joseph is a wine connoisseur with a private cellar of vintage wines, enjoys making ceramics and travels domestically frequently. At least one person in the room is not right-handed. Douglas owns a high-end gaming PC with custom-built components. Douglas enjoys salsa dancing. Joseph who collects vintage vinyl records does not enjoy camping and organizing outdoor survival workshops. Joseph is a certified yoga instructor teaching classes weekly. Douglas plays the drums. Douglas enjoys virtual reality gaming. Douglas practices archery. Douglas is a dedicated advocate for digital privacy and encryption. It is not the case that "it is not the case that "Douglas has a pet dog"".
Joseph is a coffee connoisseur.
entailment
room(douglas)&room(joseph)&(![X]:(room(X)=>(X='douglas'|X='joseph')))& (is_a_certified_yoga_instructor_teaching_classes_weekly(douglas))& (does_enjoy_mountain_biking(douglas))& (can_play_the_piano(douglas))& (has_a_pet_dog(joseph))& (participates_in_long-distance_cycling_events_across_the_country(joseph))& (has_completed_a_triathlon(douglas))& ((((does_enjoy_mountain_biking(joseph))&(is_a_dedicated_advocate_for_digital_privacy_and_encryption(joseph))&(owns_a_microscope(joseph))))&(is_a_coffee_connoisseur(joseph)))& ((owns_a_microscope(douglas))&(does_not_maintain_a_personal_blog_focused_on_cybersecurity_tips(douglas)))& (is_not_right-handed(douglas))& (((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(joseph))&(enjoys_making_ceramics(joseph))&(travels_domestically_frequently(joseph))))& (((?[X]:(room(X)&is_not_right-handed(X)))))& (owns_a_high-end_gaming_PC_with_custom-built_components(douglas))& (enjoys_salsa_dancing(douglas))& ((collects_vintage_vinyl_records(joseph))&(does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(joseph)))& (is_a_certified_yoga_instructor_teaching_classes_weekly(joseph))& (plays_the_drums(douglas))& (enjoys_virtual_reality_gaming(douglas))& (practices_archery(douglas))& (is_a_dedicated_advocate_for_digital_privacy_and_encryption(douglas))& (~(~(has_a_pet_dog(douglas))))& (enjoys_camping_and_organizing_outdoor_survival_workshops(douglas))& (does_enjoy_mountain_biking(joseph))& (~((is_right-handed(joseph))|(enjoys_virtual_reality_gaming(joseph))))& ((![X]:((does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))=>(does_not_collect_vintage_vinyl_records(X)))))& (enjoys_salsa_dancing(joseph))& (is_a_dedicated_advocate_for_digital_privacy_and_encryption(joseph))
room(douglas)&room(joseph)&(![X]:(room(X)=>(X='douglas'|X='joseph')))& is_a_coffee_connoisseur(joseph)
[ "p0", "p7", "hypothesis" ]
% SZS status Unsatisfiable for 8819745266396388133499750 % SZS output start Proof for 8819745266396388133499750 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 51. predh(paul) & predk(paul) & predd(paul) & preds(paul) [input p7] 71. ~(predh(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 86. predh(paul) & predd(paul) & preds(paul) [pure predicate removal 51] 89. predh(paul) & preds(paul) [pure predicate removal 86] 97. predh(paul) [pure predicate removal 89] 173. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 174. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 173] 176. ~predh(paul) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 71] 177. ~predh(paul) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 176] 181. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK1 & mary != sK1 & room(sK1)) [choice axiom] 182. ~predh(paul) | (paul != sK1 & mary != sK1 & room(sK1)) | ~room(paul) | ~room(mary) [skolemisation 177,181] 263. room(mary) [cnf transformation 174] 264. room(paul) [cnf transformation 174] 265. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 174] 266. predh(paul) [cnf transformation 97] 272. ~predh(paul) | room(sK1) | ~room(paul) | ~room(mary) [cnf transformation 182] 273. ~predh(paul) | mary != sK1 | ~room(paul) | ~room(mary) [cnf transformation 182] 274. ~predh(paul) | paul != sK1 | ~room(paul) | ~room(mary) [cnf transformation 182] 275. paul != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 274,266] 276. paul != sK1 | ~room(mary) [subsumption resolution 275,264] 277. paul != sK1 [subsumption resolution 276,263] 278. mary != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 273,266] 279. mary != sK1 | ~room(mary) [subsumption resolution 278,264] 280. mary != sK1 [subsumption resolution 279,263] 281. room(sK1) | ~room(paul) | ~room(mary) [subsumption resolution 272,266] 282. room(sK1) | ~room(mary) [subsumption resolution 281,264] 283. room(sK1) [subsumption resolution 282,263] 287. mary = sK1 | paul = sK1 [resolution 265,283] 297. paul = sK1 [subsumption resolution 287,280] 298. $false [subsumption resolution 297,277] % SZS output end Proof for 8819745266396388133499750 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.247362
There is a room. 'More than one person in the room is generous' unless 'someone outside the room is not not generous'. 'If someone is generous then he/she either is generous or is not not not generous but not both and vice versa' unless 'at least one person in the room is humble'. At least one person in the room is humble. All humble persons are generous. No humble person is creative.
All creative persons are generous.
entailment
(there_is_a_room)& (~(?[X]:(~room(X)&(~~generous(X))))=>((?[X,Y]:(room(X)&room(Y)&(generous(X)&generous(Y))&(X!=Y)))))& (~(((?[X]:(room(X)&humble(X)))))=>((![X]:((generous(X))<=>(((generous(X))<~>(~~~generous(X))))))))& (((?[X]:(room(X)&humble(X)))))& (![X]:(humble(X)=>generous(X)))& (~?[X]:(humble(X)=>creative(X)))
(there_is_a_room)& ![X]:(creative(X)=>generous(X))
[ "p0", "p5", "hypothesis" ]
% SZS status Unsatisfiable for 6032391032660240694737627 % SZS output start Proof for 6032391032660240694737627 44. there_is_a_room [input p0] 49. ~? [X0] : (humble(X0) => creative(X0)) [input p5] 50. ~(! [X0] : (creative(X0) => generous(X0)) & there_is_a_room) [input hypothesis] 128. ! [X0] : (~creative(X0) & humble(X0)) [ennf transformation 49] 129. ? [X0] : (~generous(X0) & creative(X0)) | ~there_is_a_room [ennf transformation 50] 145. ? [X0] : (~generous(X0) & creative(X0)) => (~generous(sK6) & creative(sK6)) [choice axiom] 146. (~generous(sK6) & creative(sK6)) | ~there_is_a_room [skolemisation 129,145] 227. there_is_a_room [cnf transformation 44] 247. ~creative(X0) [cnf transformation 128] 248. creative(sK6) | ~there_is_a_room [cnf transformation 146] 311. ~there_is_a_room [subsumption resolution 248,247] 312. $false [subsumption resolution 311,227] % SZS output end Proof for 6032391032660240694737627 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.024 s % ------------------------------ % ------------------------------
0.351789
There is a room. Either “no one in the room is a kind person” or “everyone in the room is happy” but not both. “Everyone in the room is kind” unless “someone in the room is a humble person”.
Not everyone in the room is a curious person.
contradiction
(there_is_a_room)& ((~?[X]:(room(X)=>(kind(X)&person(X))))<~>(![X]:(room(X)=>(happy(X)))))& (~(?[X]:(room(X)&(humble(X)&person(X))))=>(![X]:(room(X)=>(kind(X)))))& ((![X]:(room(X)=>(funny(X))))<~>(![X]:(room(X)=>(tall(X)))))& (~(~?[X]:(room(X)=>(strong(X)&person(X))))=>(![X]:(humble(X)=>curious(X))))& (~(![X]:(room(X)=>(((humble(X)&person(X))|(~(tall(X)&person(X)))))))=>(~![X]:(room(X)=>(((brave(X)&person(X))|(~(curious(X)&person(X))))))))& (((![X]:(room(X)=>(old(X))))=>(![X]:(room(X)=>(((humble(X)&person(X))<~>(quiet(X)&person(X)))))))& ((![X]:(room(X)=>(((humble(X)&person(X))<~>(quiet(X)&person(X))))))=>(~?[X]:(old(X)=>brave(X)))))& (![X]:(room(X)=>(tall(X))))& (![X]:(room(X)=>(old(X))))& (~?[X]:(old(X)=>brave(X)))& (((?[X]:(room(X)&happy(X)&person(X)))))& (![X]:(room(X)=>(old(X)&person(X))))& (![X]:(room(X)=>(curious(X)&person(X))))& ((![X]:((wise(X)&person(X))=>(kind(X)))))& ((![X]:((strong(X))<=>(funny(X)&person(X)))))& (![X]:(room(X)=>(humble(X)&person(X))))
(there_is_a_room)& ~![X]:(room(X)=>(curious(X)&person(X)))
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 7427234164906433930646439 % SZS output start Proof for 7427234164906433930646439 44. ! [X0] : (room(X0) => (person(X0) & humble(X0))) & ! [X0] : (strong(X0) <=> (person(X0) & funny(X0))) & ! [X0] : ((person(X0) & wise(X0)) => kind(X0)) & ! [X0] : (room(X0) => (person(X0) & curious(X0))) & ! [X0] : (room(X0) => (person(X0) & old(X0))) & ? [X0] : (person(X0) & happy(X0) & room(X0)) & ~? [X0] : (old(X0) => brave(X0)) & ! [X0] : (room(X0) => old(X0)) & ! [X0] : (room(X0) => tall(X0)) & (! [X0] : (room(X0) => ((person(X0) & humble(X0)) <~> (person(X0) & quiet(X0)))) => ~? [X0] : (old(X0) => brave(X0))) & (! [X0] : (room(X0) => old(X0)) => ! [X0] : (room(X0) => ((person(X0) & humble(X0)) <~> (person(X0) & quiet(X0))))) & (~! [X0] : (room(X0) => (~(person(X0) & tall(X0)) | (person(X0) & humble(X0)))) => ~! [X0] : (room(X0) => (~(person(X0) & curious(X0)) | (person(X0) & brave(X0))))) & (~~? [X0] : (room(X0) => (person(X0) & strong(X0))) => ! [X0] : (humble(X0) => curious(X0))) & (! [X0] : (room(X0) => funny(X0)) <~> ! [X0] : (room(X0) => tall(X0))) & (~? [X0] : (person(X0) & humble(X0) & room(X0)) => ! [X0] : (room(X0) => kind(X0))) & (~? [X0] : (room(X0) => (person(X0) & kind(X0))) <~> ! [X0] : (room(X0) => happy(X0))) & there_is_a_room [input p0] 45. ~! [X0] : (room(X0) => (person(X0) & curious(X0))) & there_is_a_room [input hypothesis] 46. ! [X0] : (room(X0) => (person(X0) & humble(X0))) & ! [X1] : (strong(X1) <=> (person(X1) & funny(X1))) & ! [X2] : ((person(X2) & wise(X2)) => kind(X2)) & ! [X3] : (room(X3) => (person(X3) & curious(X3))) & ! [X4] : (room(X4) => (person(X4) & old(X4))) & ? [X5] : (person(X5) & happy(X5) & room(X5)) & ~? [X6] : (old(X6) => brave(X6)) & ! [X7] : (room(X7) => old(X7)) & ! [X8] : (room(X8) => tall(X8)) & (! [X9] : (room(X9) => ((person(X9) & humble(X9)) <~> (person(X9) & quiet(X9)))) => ~? [X10] : (old(X10) => brave(X10))) & (! [X11] : (room(X11) => old(X11)) => ! [X12] : (room(X12) => ((person(X12) & humble(X12)) <~> (person(X12) & quiet(X12))))) & (~! [X13] : (room(X13) => (~(person(X13) & tall(X13)) | (person(X13) & humble(X13)))) => ~! [X14] : (room(X14) => (~(person(X14) & curious(X14)) | (person(X14) & brave(X14))))) & (~~? [X15] : (room(X15) => (person(X15) & strong(X15))) => ! [X16] : (humble(X16) => curious(X16))) & (! [X17] : (room(X17) => funny(X17)) <~> ! [X18] : (room(X18) => tall(X18))) & (~? [X19] : (person(X19) & humble(X19) & room(X19)) => ! [X20] : (room(X20) => kind(X20))) & (~? [X21] : (room(X21) => (person(X21) & kind(X21))) <~> ! [X22] : (room(X22) => happy(X22))) & there_is_a_room [rectify 44] 47. ! [X0] : (room(X0) => (person(X0) & humble(X0))) & ! [X1] : (strong(X1) <=> (person(X1) & funny(X1))) & ! [X2] : ((person(X2) & wise(X2)) => kind(X2)) & ! [X3] : (room(X3) => (person(X3) & curious(X3))) & ! [X4] : (room(X4) => (person(X4) & old(X4))) & ? [X5] : (person(X5) & happy(X5) & room(X5)) & ~? [X6] : (old(X6) => brave(X6)) & ! [X7] : (room(X7) => old(X7)) & ! [X8] : (room(X8) => tall(X8)) & (! [X9] : (room(X9) => ((person(X9) & humble(X9)) <~> (person(X9) & quiet(X9)))) => ~? [X10] : (old(X10) => brave(X10))) & (! [X11] : (room(X11) => old(X11)) => ! [X12] : (room(X12) => ((person(X12) & humble(X12)) <~> (person(X12) & quiet(X12))))) & (~! [X13] : (room(X13) => (~(person(X13) & tall(X13)) | (person(X13) & humble(X13)))) => ~! [X14] : (room(X14) => (~(person(X14) & curious(X14)) | (person(X14) & brave(X14))))) & (? [X15] : (room(X15) => (person(X15) & strong(X15))) => ! [X16] : (humble(X16) => curious(X16))) & (! [X17] : (room(X17) => funny(X17)) <~> ! [X18] : (room(X18) => tall(X18))) & (~? [X19] : (person(X19) & humble(X19) & room(X19)) => ! [X20] : (room(X20) => kind(X20))) & (~? [X21] : (room(X21) => (person(X21) & kind(X21))) <~> ! [X22] : (room(X22) => happy(X22))) & there_is_a_room [flattening 46] 48. ! [X0] : (room(X0) => (person(X0) & humble(X0))) & ! [X1] : (strong(X1) <=> (person(X1) & funny(X1))) & ! [X3] : (room(X3) => (person(X3) & curious(X3))) & ! [X4] : (room(X4) => (person(X4) & old(X4))) & ? [X5] : (person(X5) & happy(X5) & room(X5)) & ~? [X6] : (old(X6) => brave(X6)) & ! [X7] : (room(X7) => old(X7)) & ! [X8] : (room(X8) => tall(X8)) & (! [X9] : (room(X9) => ((person(X9) & humble(X9)) <~> (person(X9) & quiet(X9)))) => ~? [X10] : (old(X10) => brave(X10))) & (! [X11] : (room(X11) => old(X11)) => ! [X12] : (room(X12) => ((person(X12) & humble(X12)) <~> (person(X12) & quiet(X12))))) & (~! [X13] : (room(X13) => (~(person(X13) & tall(X13)) | (person(X13) & humble(X13)))) => ~! [X14] : (room(X14) => (~(person(X14) & curious(X14)) | (person(X14) & brave(X14))))) & (? [X15] : (room(X15) => (person(X15) & strong(X15))) => ! [X16] : (humble(X16) => curious(X16))) & (! [X17] : (room(X17) => funny(X17)) <~> ! [X18] : (room(X18) => tall(X18))) & (~? [X19] : (person(X19) & humble(X19) & room(X19)) => ! [X20] : (room(X20) => kind(X20))) & (~? [X21] : (room(X21) => (person(X21) & kind(X21))) <~> ! [X22] : (room(X22) => happy(X22))) & there_is_a_room [pure predicate removal 47] 49. ! [X0] : (room(X0) => (person(X0) & humble(X0))) & ! [X1] : (strong(X1) <=> (person(X1) & funny(X1))) & ! [X3] : (room(X3) => (person(X3) & curious(X3))) & ! [X4] : (room(X4) => (person(X4) & old(X4))) & ? [X5] : (person(X5) & happy(X5) & room(X5)) & ~? [X6] : ~old(X6) & ! [X7] : (room(X7) => old(X7)) & ! [X8] : (room(X8) => tall(X8)) & (! [X9] : (room(X9) => ((person(X9) & humble(X9)) <~> (person(X9) & quiet(X9)))) => ~? [X10] : ~old(X10)) & (! [X11] : (room(X11) => old(X11)) => ! [X12] : (room(X12) => ((person(X12) & humble(X12)) <~> (person(X12) & quiet(X12))))) & (~! [X13] : (room(X13) => (~(person(X13) & tall(X13)) | (person(X13) & humble(X13)))) => ~! [X14] : (room(X14) => ~(person(X14) & curious(X14)))) & (? [X15] : (room(X15) => (person(X15) & strong(X15))) => ! [X16] : (humble(X16) => curious(X16))) & (! [X17] : (room(X17) => funny(X17)) <~> ! [X18] : (room(X18) => tall(X18))) & (~? [X19] : (person(X19) & humble(X19) & room(X19)) => ! [X20] : (room(X20) => kind(X20))) & (~? [X21] : (room(X21) => (person(X21) & kind(X21))) <~> ! [X22] : (room(X22) => happy(X22))) & there_is_a_room [pure predicate removal 48] 50. ! [X0] : (room(X0) => (person(X0) & humble(X0))) & ! [X1] : (strong(X1) <=> (person(X1) & funny(X1))) & ! [X3] : (room(X3) => (person(X3) & curious(X3))) & ! [X4] : (room(X4) => (person(X4) & old(X4))) & ? [X5] : (person(X5) & happy(X5) & room(X5)) & ~? [X6] : ~old(X6) & ! [X7] : (room(X7) => old(X7)) & ! [X8] : (room(X8) => tall(X8)) & (! [X9] : (room(X9) => ((person(X9) & humble(X9)) <~> (person(X9) & quiet(X9)))) => ~? [X10] : ~old(X10)) & (! [X11] : (room(X11) => old(X11)) => ! [X12] : (room(X12) => ((person(X12) & humble(X12)) <~> (person(X12) & quiet(X12))))) & (~! [X13] : (room(X13) => (~(person(X13) & tall(X13)) | (person(X13) & humble(X13)))) => ~! [X14] : (room(X14) => ~(person(X14) & curious(X14)))) & (? [X15] : (room(X15) => (person(X15) & strong(X15))) => ! [X16] : (humble(X16) => curious(X16))) & (! [X17] : (room(X17) => funny(X17)) <~> ! [X18] : (room(X18) => tall(X18))) & (~? [X19] : (person(X19) & humble(X19) & room(X19)) => ! [X20] : (room(X20) => kind(X20))) & (~? [X21] : (room(X21) => (person(X21) & kind(X21))) <~> ! [X22] : (room(X22) => happy(X22))) [pure predicate removal 49] 51. ~! [X0] : (room(X0) => (person(X0) & curious(X0))) [pure predicate removal 45] 124. ! [X0] : ((person(X0) & humble(X0)) | ~room(X0)) & ! [X1] : (strong(X1) <=> (person(X1) & funny(X1))) & ! [X3] : ((person(X3) & curious(X3)) | ~room(X3)) & ! [X4] : ((person(X4) & old(X4)) | ~room(X4)) & ? [X5] : (person(X5) & happy(X5) & room(X5)) & ! [X6] : old(X6) & ! [X7] : (old(X7) | ~room(X7)) & ! [X8] : (tall(X8) | ~room(X8)) & (! [X10] : old(X10) | ? [X9] : (((person(X9) & humble(X9)) <=> (person(X9) & quiet(X9))) & room(X9))) & (! [X12] : (((person(X12) & humble(X12)) <~> (person(X12) & quiet(X12))) | ~room(X12)) | ? [X11] : (~old(X11) & room(X11))) & (? [X14] : ((person(X14) & curious(X14)) & room(X14)) | ! [X13] : (((~person(X13) | ~tall(X13)) | (person(X13) & humble(X13))) | ~room(X13))) & (! [X16] : (curious(X16) | ~humble(X16)) | ! [X15] : ((~person(X15) | ~strong(X15)) & room(X15))) & (! [X17] : (funny(X17) | ~room(X17)) <~> ! [X18] : (tall(X18) | ~room(X18))) & (! [X20] : (kind(X20) | ~room(X20)) | ? [X19] : (person(X19) & humble(X19) & room(X19))) & (! [X21] : ((~person(X21) | ~kind(X21)) & room(X21)) <~> ! [X22] : (happy(X22) | ~room(X22))) [ennf transformation 50] 125. ! [X0] : ((person(X0) & humble(X0)) | ~room(X0)) & ! [X1] : (strong(X1) <=> (person(X1) & funny(X1))) & ! [X3] : ((person(X3) & curious(X3)) | ~room(X3)) & ! [X4] : ((person(X4) & old(X4)) | ~room(X4)) & ? [X5] : (person(X5) & happy(X5) & room(X5)) & ! [X6] : old(X6) & ! [X7] : (old(X7) | ~room(X7)) & ! [X8] : (tall(X8) | ~room(X8)) & (! [X10] : old(X10) | ? [X9] : (((person(X9) & humble(X9)) <=> (person(X9) & quiet(X9))) & room(X9))) & (! [X12] : (((person(X12) & humble(X12)) <~> (person(X12) & quiet(X12))) | ~room(X12)) | ? [X11] : (~old(X11) & room(X11))) & (? [X14] : (person(X14) & curious(X14) & room(X14)) | ! [X13] : (~person(X13) | ~tall(X13) | (person(X13) & humble(X13)) | ~room(X13))) & (! [X16] : (curious(X16) | ~humble(X16)) | ! [X15] : ((~person(X15) | ~strong(X15)) & room(X15))) & (! [X17] : (funny(X17) | ~room(X17)) <~> ! [X18] : (tall(X18) | ~room(X18))) & (! [X20] : (kind(X20) | ~room(X20)) | ? [X19] : (person(X19) & humble(X19) & room(X19))) & (! [X21] : ((~person(X21) | ~kind(X21)) & room(X21)) <~> ! [X22] : (happy(X22) | ~room(X22))) [flattening 124] 126. ? [X0] : ((~person(X0) | ~curious(X0)) & room(X0)) [ennf transformation 51] 128. ! [X0] : ((person(X0) & humble(X0)) | ~room(X0)) & ! [X1] : ((strong(X1) | (~person(X1) | ~funny(X1))) & ((person(X1) & funny(X1)) | ~strong(X1))) & ! [X3] : ((person(X3) & curious(X3)) | ~room(X3)) & ! [X4] : ((person(X4) & old(X4)) | ~room(X4)) & ? [X5] : (person(X5) & happy(X5) & room(X5)) & ! [X6] : old(X6) & ! [X7] : (old(X7) | ~room(X7)) & ! [X8] : (tall(X8) | ~room(X8)) & (! [X10] : old(X10) | ? [X9] : ((((person(X9) & humble(X9)) | (~person(X9) | ~quiet(X9))) & ((person(X9) & quiet(X9)) | (~person(X9) | ~humble(X9)))) & room(X9))) & (! [X12] : ((((~person(X12) | ~quiet(X12)) | (~person(X12) | ~humble(X12))) & ((person(X12) & quiet(X12)) | (person(X12) & humble(X12)))) | ~room(X12)) | ? [X11] : (~old(X11) & room(X11))) & (? [X14] : (person(X14) & curious(X14) & room(X14)) | ! [X13] : (~person(X13) | ~tall(X13) | (person(X13) & humble(X13)) | ~room(X13))) & (! [X16] : (curious(X16) | ~humble(X16)) | ! [X15] : ((~person(X15) | ~strong(X15)) & room(X15))) & ((? [X18] : (~tall(X18) & room(X18)) | ? [X17] : (~funny(X17) & room(X17))) & (! [X18] : (tall(X18) | ~room(X18)) | ! [X17] : (funny(X17) | ~room(X17)))) & (! [X20] : (kind(X20) | ~room(X20)) | ? [X19] : (person(X19) & humble(X19) & room(X19))) & ((? [X22] : (~happy(X22) & room(X22)) | ? [X21] : ((person(X21) & kind(X21)) | ~room(X21))) & (! [X22] : (happy(X22) | ~room(X22)) | ! [X21] : ((~person(X21) | ~kind(X21)) & room(X21)))) [nnf transformation 125] 129. ! [X0] : ((person(X0) & humble(X0)) | ~room(X0)) & ! [X1] : ((strong(X1) | ~person(X1) | ~funny(X1)) & ((person(X1) & funny(X1)) | ~strong(X1))) & ! [X3] : ((person(X3) & curious(X3)) | ~room(X3)) & ! [X4] : ((person(X4) & old(X4)) | ~room(X4)) & ? [X5] : (person(X5) & happy(X5) & room(X5)) & ! [X6] : old(X6) & ! [X7] : (old(X7) | ~room(X7)) & ! [X8] : (tall(X8) | ~room(X8)) & (! [X10] : old(X10) | ? [X9] : (((person(X9) & humble(X9)) | ~person(X9) | ~quiet(X9)) & ((person(X9) & quiet(X9)) | ~person(X9) | ~humble(X9)) & room(X9))) & (! [X12] : (((~person(X12) | ~quiet(X12) | ~person(X12) | ~humble(X12)) & ((person(X12) & quiet(X12)) | (person(X12) & humble(X12)))) | ~room(X12)) | ? [X11] : (~old(X11) & room(X11))) & (? [X14] : (person(X14) & curious(X14) & room(X14)) | ! [X13] : (~person(X13) | ~tall(X13) | (person(X13) & humble(X13)) | ~room(X13))) & (! [X16] : (curious(X16) | ~humble(X16)) | ! [X15] : ((~person(X15) | ~strong(X15)) & room(X15))) & (? [X18] : (~tall(X18) & room(X18)) | ? [X17] : (~funny(X17) & room(X17))) & (! [X18] : (tall(X18) | ~room(X18)) | ! [X17] : (funny(X17) | ~room(X17))) & (! [X20] : (kind(X20) | ~room(X20)) | ? [X19] : (person(X19) & humble(X19) & room(X19))) & (? [X22] : (~happy(X22) & room(X22)) | ? [X21] : ((person(X21) & kind(X21)) | ~room(X21))) & (! [X22] : (happy(X22) | ~room(X22)) | ! [X21] : ((~person(X21) | ~kind(X21)) & room(X21))) [flattening 128] 130. ! [X0] : ((person(X0) & humble(X0)) | ~room(X0)) & ! [X1] : ((strong(X1) | ~person(X1) | ~funny(X1)) & ((person(X1) & funny(X1)) | ~strong(X1))) & ! [X2] : ((person(X2) & curious(X2)) | ~room(X2)) & ! [X3] : ((person(X3) & old(X3)) | ~room(X3)) & ? [X4] : (person(X4) & happy(X4) & room(X4)) & ! [X5] : old(X5) & ! [X6] : (old(X6) | ~room(X6)) & ! [X7] : (tall(X7) | ~room(X7)) & (! [X8] : old(X8) | ? [X9] : (((person(X9) & humble(X9)) | ~person(X9) | ~quiet(X9)) & ((person(X9) & quiet(X9)) | ~person(X9) | ~humble(X9)) & room(X9))) & (! [X10] : (((~person(X10) | ~quiet(X10) | ~person(X10) | ~humble(X10)) & ((person(X10) & quiet(X10)) | (person(X10) & humble(X10)))) | ~room(X10)) | ? [X11] : (~old(X11) & room(X11))) & (? [X12] : (person(X12) & curious(X12) & room(X12)) | ! [X13] : (~person(X13) | ~tall(X13) | (person(X13) & humble(X13)) | ~room(X13))) & (! [X14] : (curious(X14) | ~humble(X14)) | ! [X15] : ((~person(X15) | ~strong(X15)) & room(X15))) & (? [X16] : (~tall(X16) & room(X16)) | ? [X17] : (~funny(X17) & room(X17))) & (! [X18] : (tall(X18) | ~room(X18)) | ! [X19] : (funny(X19) | ~room(X19))) & (! [X20] : (kind(X20) | ~room(X20)) | ? [X21] : (person(X21) & humble(X21) & room(X21))) & (? [X22] : (~happy(X22) & room(X22)) | ? [X23] : ((person(X23) & kind(X23)) | ~room(X23))) & (! [X24] : (happy(X24) | ~room(X24)) | ! [X25] : ((~person(X25) | ~kind(X25)) & room(X25))) [rectify 129] 131. ? [X4] : (person(X4) & happy(X4) & room(X4)) => (person(sK0) & happy(sK0) & room(sK0)) [choice axiom] 132. ? [X9] : (((person(X9) & humble(X9)) | ~person(X9) | ~quiet(X9)) & ((person(X9) & quiet(X9)) | ~person(X9) | ~humble(X9)) & room(X9)) => (((person(sK1) & humble(sK1)) | ~person(sK1) | ~quiet(sK1)) & ((person(sK1) & quiet(sK1)) | ~person(sK1) | ~humble(sK1)) & room(sK1)) [choice axiom] 133. ? [X11] : (~old(X11) & room(X11)) => (~old(sK2) & room(sK2)) [choice axiom] 134. ? [X12] : (person(X12) & curious(X12) & room(X12)) => (person(sK3) & curious(sK3) & room(sK3)) [choice axiom] 135. ? [X16] : (~tall(X16) & room(X16)) => (~tall(sK4) & room(sK4)) [choice axiom] 136. ? [X17] : (~funny(X17) & room(X17)) => (~funny(sK5) & room(sK5)) [choice axiom] 137. ? [X21] : (person(X21) & humble(X21) & room(X21)) => (person(sK6) & humble(sK6) & room(sK6)) [choice axiom] 138. ? [X22] : (~happy(X22) & room(X22)) => (~happy(sK7) & room(sK7)) [choice axiom] 139. ? [X23] : ((person(X23) & kind(X23)) | ~room(X23)) => ((person(sK8) & kind(sK8)) | ~room(sK8)) [choice axiom] 140. ! [X0] : ((person(X0) & humble(X0)) | ~room(X0)) & ! [X1] : ((strong(X1) | ~person(X1) | ~funny(X1)) & ((person(X1) & funny(X1)) | ~strong(X1))) & ! [X2] : ((person(X2) & curious(X2)) | ~room(X2)) & ! [X3] : ((person(X3) & old(X3)) | ~room(X3)) & (person(sK0) & happy(sK0) & room(sK0)) & ! [X5] : old(X5) & ! [X6] : (old(X6) | ~room(X6)) & ! [X7] : (tall(X7) | ~room(X7)) & (! [X8] : old(X8) | (((person(sK1) & humble(sK1)) | ~person(sK1) | ~quiet(sK1)) & ((person(sK1) & quiet(sK1)) | ~person(sK1) | ~humble(sK1)) & room(sK1))) & (! [X10] : (((~person(X10) | ~quiet(X10) | ~person(X10) | ~humble(X10)) & ((person(X10) & quiet(X10)) | (person(X10) & humble(X10)))) | ~room(X10)) | (~old(sK2) & room(sK2))) & ((person(sK3) & curious(sK3) & room(sK3)) | ! [X13] : (~person(X13) | ~tall(X13) | (person(X13) & humble(X13)) | ~room(X13))) & (! [X14] : (curious(X14) | ~humble(X14)) | ! [X15] : ((~person(X15) | ~strong(X15)) & room(X15))) & ((~tall(sK4) & room(sK4)) | (~funny(sK5) & room(sK5))) & (! [X18] : (tall(X18) | ~room(X18)) | ! [X19] : (funny(X19) | ~room(X19))) & (! [X20] : (kind(X20) | ~room(X20)) | (person(sK6) & humble(sK6) & room(sK6))) & ((~happy(sK7) & room(sK7)) | ((person(sK8) & kind(sK8)) | ~room(sK8))) & (! [X24] : (happy(X24) | ~room(X24)) | ! [X25] : ((~person(X25) | ~kind(X25)) & room(X25))) [skolemisation 130,139,138,137,136,135,134,133,132,131] 141. ? [X0] : ((~person(X0) | ~curious(X0)) & room(X0)) => ((~person(sK9) | ~curious(sK9)) & room(sK9)) [choice axiom] 142. (~person(sK9) | ~curious(sK9)) & room(sK9) [skolemisation 126,141] 268. ~room(X2) | curious(X2) [cnf transformation 140] 274. ~room(X0) | person(X0) [cnf transformation 140] 275. room(sK9) [cnf transformation 142] 276. ~person(sK9) | ~curious(sK9) [cnf transformation 142] 361. 18 <=> curious(sK9) [avatar definition] 365. 19 <=> person(sK9) [avatar definition] 367. ~person(sK9) <- (~19) [avatar component clause 365] 368. ~18 | ~19 [avatar split clause 276,365,361] 386. curious(sK9) [resolution 268,275] 389. 18 [avatar split clause 386,361] 397. person(sK9) [resolution 274,275] 398. $false <- (~19) [subsumption resolution 397,367] 399. 19 [avatar contradiction clause 398] 400. $false [avatar sat refutation 368,389,399] % SZS output end Proof for 7427234164906433930646439 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.011271
Renee, Cynthia, Zachary are the only persons in the room. Everyone in the room creates large-scale murals for public art installations if they does practice yoga. Everyone in the room does not work on fridays only if they enjoys coding in Python. If someone owns an extensive assortment of vintage comic book memorabilia then he/she owns a 3D printer. Zachary who does not enjoy wildlife photography plays the violin. More than one person anywhere practices and performs acrobatic dance routines. Everyone in the room does not practice yoga, owns a 3D printer and plays the violin if they does practice yoga. Everyone in the room who does not practice yoga, owns a 3D printer and plays the violin owns a microscope. Everyone in the room does not enjoy wildlife photography or owns a microscope. Everyone in the room who does not enjoy wildlife photography owns a microscope. Everyone in the room creates large-scale murals for public art installations if they owns a microscope. Renee who owns an extensive assortment of vintage comic book memorabilia enjoys wildlife photography. Everyone in the room who does not own a microscope enjoys coding in Python. Everyone in the room either owns an extensive assortment of vintage comic book memorabilia or owns a 3D printer but not both if they hosts a popular podcast about emerging technologies and vice versa. Renee does not practice yoga, owns a 3D printer and plays the violin. Cynthia who enjoys wildlife photography practices urban gardening. Everyone in the room practices digital art if they enjoys making ceramics. More than one person in the room plays the violin or creates large-scale murals for public art installations or both. Everyone in the room who practices and performs acrobatic dance routines owns an extensive assortment of vintage comic book memorabilia or collects vintage vinyl records or both. If someone does not practice and performs acrobatic dance routines then he/she enjoys wildlife photography. Zachary creates large-scale murals for public art installations. Cynthia does not work on fridays. Cynthia practices digital art. Everyone in the room works on fridays if they does practice yoga.
Renee neither hosts a popular podcast about emerging technologies nor owns a microscope.
contradiction
room(renee)&room(cynthia)&room(zachary)&(![X]:(room(X)=>(X='renee'|X='cynthia'|X='zachary')))& (![X]:(room(X)=>(((does_practice_yoga(X))=>(creates_large-scale_murals_for_public_art_installations(X))))))& (![X]:(room(X)=>(((enjoys_coding_in_Python(X))<=(does_not_work_on_fridays(X))))))& ((![X]:((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))=>(owns_a_3D_printer(X)))))& ((does_not_enjoy_wildlife_photography(zachary))&(plays_the_violin(zachary)))& ((?[X,Y]:(anywhere(X)&anywhere(Y)&(practices_and_performs_acrobatic_dance_routines(X)&practices_and_performs_acrobatic_dance_routines(Y))&(X!=Y))))& (![X]:(room(X)=>(((does_practice_yoga(X))=>(((does_not_practice_yoga(X))&(owns_a_3D_printer(X))&(plays_the_violin(X))))))))& (![X]:(room(X)=>(((((does_not_practice_yoga(X))&(owns_a_3D_printer(X))&(plays_the_violin(X))))=>(owns_a_microscope(X))))))& (![X]:(room(X)=>(((owns_a_microscope(X))|(does_not_enjoy_wildlife_photography(X))))))& (![X]:(room(X)=>(((does_not_enjoy_wildlife_photography(X))=>(owns_a_microscope(X))))))& (![X]:(room(X)=>(((owns_a_microscope(X))=>(creates_large-scale_murals_for_public_art_installations(X))))))& ((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(renee))&(enjoys_wildlife_photography(renee)))& (![X]:(room(X)=>(((does_not_own_a_microscope(X))=>(enjoys_coding_in_Python(X))))))& (![X]:(room(X)=>(((((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))<~>(owns_a_3D_printer(X))))<=>(hosts_a_popular_podcast_about_emerging_technologies(X))))))& (((does_not_practice_yoga(renee))&(owns_a_3D_printer(renee))&(plays_the_violin(renee))))& ((enjoys_wildlife_photography(cynthia))&(practices_urban_gardening(cynthia)))& (![X]:(room(X)=>(((enjoys_making_ceramics(X))=>(practices_digital_art(X))))))& ((?[X,Y]:(room(X)&room(Y)&(((plays_the_violin(X))|(creates_large-scale_murals_for_public_art_installations(X)))&((plays_the_violin(Y))|(creates_large-scale_murals_for_public_art_installations(Y))))&(X!=Y))))& (![X]:(room(X)=>(((practices_and_performs_acrobatic_dance_routines(X))=>(((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))|(collects_vintage_vinyl_records(X))))))))& ((![X]:((does_not_practice_and_performs_acrobatic_dance_routines(X))=>(enjoys_wildlife_photography(X)))))& (creates_large-scale_murals_for_public_art_installations(zachary))& (does_not_work_on_fridays(cynthia))& (practices_digital_art(cynthia))& (![X]:(room(X)=>(((does_practice_yoga(X))=>(works_on_fridays(X))))))
room(renee)&room(cynthia)&room(zachary)&(![X]:(room(X)=>(X='renee'|X='cynthia'|X='zachary')))& ~((hosts_a_popular_podcast_about_emerging_technologies(renee))|(owns_a_microscope(renee)))
[ "p0", "p8", "p9", "hypothesis" ]
% SZS status Unsatisfiable for 4135899791696222767743957 % SZS output start Proof for 4135899791696222767743957 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 52. ! [X0] : (room(X0) => (~prede(X0) | predb(X0))) [input p8] 53. ! [X0] : (room(X0) => (~prede(X0) => predb(X0))) [input p9] 68. ~(predb(mary) | preda(mary)) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 154. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 155. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 154] 161. ! [X0] : ((~prede(X0) | predb(X0)) | ~room(X0)) [ennf transformation 52] 162. ! [X0] : (~prede(X0) | predb(X0) | ~room(X0)) [flattening 161] 163. ! [X0] : ((predb(X0) | prede(X0)) | ~room(X0)) [ennf transformation 53] 164. ! [X0] : (predb(X0) | prede(X0) | ~room(X0)) [flattening 163] 168. (~predb(mary) & ~preda(mary)) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 68] 169. ~predb(mary) & ~preda(mary) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 168] 256. room(mary) [cnf transformation 155] 268. ~prede(X0) | predb(X0) | ~room(X0) [cnf transformation 162] 269. predb(X0) | prede(X0) | ~room(X0) [cnf transformation 164] 290. ~predb(mary) [cnf transformation 169] 293. ~room(X0) | predb(X0) [subsumption resolution 269,268] 297. predb(mary) [resolution 293,256] 302. $false [subsumption resolution 297,290] % SZS output end Proof for 4135899791696222767743957 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.035 s % ------------------------------ % ------------------------------
0.037246
Jean, Carla, Isreal, Kyle are the only persons in the room. Everyone in the room is quieter than Robyn unless Carla is not tall. No old person is tall if Jean is a quiet person. No one in the room who is a tall person neither is not tall nor is not a old tall person unless it is not the case that someone anywhere is a quiet tall person. If Robyn is older than Jean then someone in the room is richer than Robyn. If Kyle is quieter than Robyn then it is true that Isreal is not a old person. Everyone outside the room is a tall quiet person and is quieter than Robyn if they is quieter than Robyn. Everyone in the room who is a tall quiet person and is quieter than Robyn is a old person. Carla is a tall person.
Robyn is quieter than Kyle.
contradiction
room(jean)&room(carla)&room(isreal)&room(kyle)&(![X]:(room(X)=>(X='jean'|X='carla'|X='isreal'|X='kyle')))& (~(~tall(carla))=>(![X]:(room(X)=>(quieter(robyn,X)))))& ((quiet(jean)&person(jean))=>(~?[X]:(old(X)=>tall(X))))& (~(~(?[X]:(anywhere(X)&(quiet(X)&tall(X)&person(X)))))=>(~?[X]:(room(X)=>(((tall(X)&person(X))=>(~((~tall(X))|(~(old(X)&tall(X)&person(X))))))))))& ((older(jean,robyn))=>(?[X]:(room(X)&(richer(robyn,X)))))& ((quieter(robyn,kyle))=>(~(old(isreal)&person(isreal))))& (![X]:(~room(X)=>(((quieter(robyn,X))=>(((tall(X)&quiet(X)&person(X))&(quieter(robyn,X))))))))& (![X]:(room(X)=>(((((tall(X)&quiet(X)&person(X))&(quieter(robyn,X))))=>(old(X)&person(X))))))& (older(robyn,kyle))& (![X]:(room(X)=>(((((richer(robyn,X))&(~quiet(X)&~old(X))&(tall(X)&old(X)&person(X))))=>(~(old(X)&tall(X)&person(X)))))))& (tall(carla)&person(carla))& (~tall(jean)&~old(jean))& (quieter(robyn,carla))& (![X]:(room(X)=>(((((quieter(robyn,X))&(old(X)&person(X))))=>(quiet(X)&old(X)&person(X))))))& (tall(isreal)&person(isreal))& (quieter(robyn,jean))& (![X]:(room(X)=>(((quieter(robyn,X))=>(richer(robyn,X))))))
room(jean)&room(carla)&room(isreal)&room(kyle)&(![X]:(room(X)=>(X='jean'|X='carla'|X='isreal'|X='kyle')))& quieter(kyle,robyn)
[ "b13", "b42", "p0", "p1", "p10", "hypothesis" ]
% SZS status Unsatisfiable for 5522687045949565572650150 % SZS output start Proof for 5522687045949565572650150 14. ! [X0,X1] : (X0 != X1 => (quieter(X0,X1) => ~quieter(X1,X0))) [input b13] 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 45. tall(paul) => ! [X0] : (room(X0) => quieter(john,X0)) [input p1] 54. person(paul) & tall(paul) [input p10] 61. quieter(alice,john) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 82. ! [X0,X1] : ((~quieter(X1,X0) | ~quieter(X0,X1)) | X0 = X1) [ennf transformation 14] 83. ! [X0,X1] : (~quieter(X1,X0) | ~quieter(X0,X1) | X0 = X1) [flattening 82] 135. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 136. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 135] 137. ! [X0] : (quieter(john,X0) | ~room(X0)) | ~tall(paul) [ennf transformation 45] 155. quieter(alice,john) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 61] 156. quieter(alice,john) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 155] 171. ~quieter(X1,X0) | ~quieter(X0,X1) | X0 = X1 [cnf transformation 83] 227. alice != john [cnf transformation 43] 245. room(alice) [cnf transformation 136] 247. quieter(john,X0) | ~room(X0) | ~tall(paul) [cnf transformation 137] 265. tall(paul) [cnf transformation 54] 282. quieter(alice,john) [cnf transformation 156] 286. 1 <=> tall(paul) [avatar definition] 290. 2 <=> ! [X0] : (quieter(john,X0) | ~room(X0)) [avatar definition] 291. quieter(john,X0) | ~room(X0) <- (2) [avatar component clause 290] 292. ~1 | 2 [avatar split clause 247,290,286] 347. 15 <=> quieter(john,alice) [avatar definition] 349. ~quieter(john,alice) <- (~15) [avatar component clause 347] 359. 1 [avatar split clause 265,286] 392. ~quieter(john,alice) | alice = john [resolution 171,282] 395. ~quieter(john,alice) [subsumption resolution 392,227] 396. ~15 [avatar split clause 395,347] 397. ~room(alice) <- (2, ~15) [resolution 349,291] 398. $false <- (2, ~15) [subsumption resolution 397,245] 399. ~2 | 15 [avatar contradiction clause 398] 400. $false [avatar sat refutation 292,359,396,399] % SZS output end Proof for 5522687045949565572650150 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.040 s % ------------------------------ % ------------------------------
0.543327
Buford, Guy are the only persons in the room. “Not everyone in the room is not a client of Costco or has a vast collection of first-edition science fiction novels” if “Guy makes intricate hand-cut paper art for exhibitions” and vice versa. If “Guy is a professional photographer specializing in portrait photography” then “Buford mentors a youth basketball team on weekends”. Buford mentors a youth basketball team on weekends. Guy creates augmented reality experiences for mobile applications. Guy has a vast collection of first-edition science fiction novels. Buford collects rare and antique scientific instruments. If someone is a cybersecurity expert then he/she works as a freelance web developer specializing in e-commerce sites. Buford neither collect rare sneakers nor makes intricate hand-cut paper art for exhibitions. Guy is a cybersecurity expert. Buford practices calligraphy. Buford is an amateur astronomer who builds and uses custom telescopes. Everyone anywhere practices calligraphy if they has a specialized collection of handmade artisan pottery. Guy collect rare sneakers. Buford has a vast collection of first-edition science fiction novels. Buford works as a freelance web developer specializing in e-commerce sites. Buford has a specialized collection of handmade artisan pottery. Buford is a member of a local theater group specializing in improv. It is not the case that “Guy collects rare and antique scientific instruments”. If someone is an amateur astronomer who builds and uses custom telescopes or practices calligraphy or both then he/she collects rare and antique scientific instruments. Guy plays the drums. Guy is a professional photographer specializing in portrait photography. Buford neither is a cybersecurity expert nor is a professional photographer specializing in portrait photography.
Everyone in the room does not have a specialized collection of handmade artisan pottery and does not have a vast collection of first-edition science fiction novels.
contradiction
room(buford)&room(guy)&(![X]:(room(X)=>(X='buford'|X='guy')))& ((makes_intricate_hand-cut_paper_art_for_exhibitions(guy))<=>(~![X]:(room(X)=>(((has_a_vast_collection_of_first-edition_science_fiction_novels(X))|(is_not_a_client_of_Costco(X)))))))& ((is_a_professional_photographer_specializing_in_portrait_photography(guy))=>(mentors_a_youth_basketball_team_on_weekends(buford)))& (mentors_a_youth_basketball_team_on_weekends(buford))& (creates_augmented_reality_experiences_for_mobile_applications(guy))& (has_a_vast_collection_of_first-edition_science_fiction_novels(guy))& (collects_rare_and_antique_scientific_instruments(buford))& ((![X]:((is_a_cybersecurity_expert(X))=>(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X)))))& (~((collect_rare_sneakers(buford))|(makes_intricate_hand-cut_paper_art_for_exhibitions(buford))))& (is_a_cybersecurity_expert(guy))& (practices_calligraphy(buford))& (is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(buford))& (![X]:(anywhere(X)=>(((has_a_specialized_collection_of_handmade_artisan_pottery(X))=>(practices_calligraphy(X))))))& (collect_rare_sneakers(guy))& (has_a_vast_collection_of_first-edition_science_fiction_novels(buford))& (works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(buford))& (has_a_specialized_collection_of_handmade_artisan_pottery(buford))& (is_a_member_of_a_local_theater_group_specializing_in_improv(buford))& (~(collects_rare_and_antique_scientific_instruments(guy)))& ((![X]:((((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))|(practices_calligraphy(X))))=>(collects_rare_and_antique_scientific_instruments(X)))))& (plays_the_drums(guy))& (is_a_professional_photographer_specializing_in_portrait_photography(guy))& (~((is_a_cybersecurity_expert(buford))|(is_a_professional_photographer_specializing_in_portrait_photography(buford))))& (((?[X]:(room(X)&((creates_augmented_reality_experiences_for_mobile_applications(X))<~>(is_a_client_of_Costco(X)))))&(![X,Y]:((room(X)&room(Y)&(((creates_augmented_reality_experiences_for_mobile_applications(X))<~>(is_a_client_of_Costco(X))))&(((creates_augmented_reality_experiences_for_mobile_applications(Y))<~>(is_a_client_of_Costco(Y)))))=>(X=Y)))))& (is_a_Linux_enthusiast(buford))
room(buford)&room(guy)&(![X]:(room(X)=>(X='buford'|X='guy')))& ![X]:(room(X)=>(((does_not_have_a_specialized_collection_of_handmade_artisan_pottery(X))&(does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(X)))))
[ "p0", "p16", "hypothesis" ]
% SZS status Unsatisfiable for 8225644799530477189250376 % SZS output start Proof for 8225644799530477189250376 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 60. predd(mary) [input p16] 69. ! [X0] : (room(X0) => (~preda(X0) & ~predd(X0))) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 71. ! [X0] : (room(X0) => (~preda(X0) & ~predd(X0))) & ! [X1] : (room(X1) => (paul = X1 | mary = X1)) & room(paul) & room(mary) [rectify 69] 150. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 151. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 150] 161. ! [X0] : ((~preda(X0) & ~predd(X0)) | ~room(X0)) & ! [X1] : ((paul = X1 | mary = X1) | ~room(X1)) & room(paul) & room(mary) [ennf transformation 71] 162. ! [X0] : ((~preda(X0) & ~predd(X0)) | ~room(X0)) & ! [X1] : (paul = X1 | mary = X1 | ~room(X1)) & room(paul) & room(mary) [flattening 161] 253. room(mary) [cnf transformation 151] 271. predd(mary) [cnf transformation 60] 288. ~predd(X0) | ~room(X0) [cnf transformation 162] 326. ~room(mary) [resolution 288,271] 327. $false [subsumption resolution 326,253] % SZS output end Proof for 8225644799530477189250376 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.023 s % ------------------------------ % ------------------------------
0.176654
Tracy is the only person in the room. It is not the case that 'Tracy uses an ios phone'. Someone anywhere collects comic books. At least one person in the room enjoys bird watching. Only one person in the room practices pilates. If someone owns a telescope then he/she does not own a smartwatch. Someone in the room practices pilates. Someone outside the room knows morse code. More than one person anywhere does not travel domestically frequently. Everyone in the room does not collect vintage vinyl records if they knows morse code. If someone practices graffiti art then he/she does not know morse code. Someone in the room does not have a vast collection of first-edition science fiction novels. Tracy who collects comic books is a certified scuba diver with advanced underwater photography skills. If someone collects comic books then he/she travels domestically frequently. If someone owns a smartwatch then he/she uses an ios phone. Everyone anywhere who is a certified scuba diver with advanced underwater photography skills is an avid collector of autographed memorabilia from famous musicians. At least one person in the room practices zumba. At least one person in the room practices graffiti art. Only one person in the room works on fridays. At least one person in the room hosts themed dinner parties featuring gourmet home-cooked meals. Tracy dreamt that 'more than one person in the room does not practice digital art'. If someone does not write poetry then he/she is a certified scuba diver with advanced underwater photography skills. If someone does not collect comic books then he/she owns a telescope. Someone in the room hosts regular workshops on creative writing.
Tracy travels domestically frequently.
entailment
room(tracy)&(![X]:(room(X)=>(X='tracy')))& (~(uses_an_ios_phone(tracy)))& (?[X]:(anywhere(X)&(collects_comic_books(X))))& (((?[X]:(room(X)&enjoys_bird_watching(X)))))& (((?[X]:(room(X)&practices_pilates(X)))&(![X,Y]:((room(X)&room(Y)&(practices_pilates(X))&(practices_pilates(Y)))=>(X=Y)))))& ((![X]:((owns_a_telescope(X))=>(does_not_own_a_smartwatch(X)))))& (?[X]:(room(X)&(practices_pilates(X))))& (?[X]:(~room(X)&(knows_morse_code(X))))& ((?[X,Y]:(anywhere(X)&anywhere(Y)&(does_not_travel_domestically_frequently(X)&does_not_travel_domestically_frequently(Y))&(X!=Y))))& (![X]:(room(X)=>(((knows_morse_code(X))=>(does_not_collect_vintage_vinyl_records(X))))))& ((![X]:((practices_graffiti_art(X))=>(does_not_know_morse_code(X)))))& (?[X]:(room(X)&(does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(X))))& ((collects_comic_books(tracy))&(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(tracy)))& ((![X]:((collects_comic_books(X))=>(travels_domestically_frequently(X)))))& ((![X]:((owns_a_smartwatch(X))=>(uses_an_ios_phone(X)))))& (![X]:(anywhere(X)=>(((is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))=>(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))))& (((?[X]:(room(X)&practices_zumba(X)))))& (((?[X]:(room(X)&practices_graffiti_art(X)))))& (((?[X]:(room(X)&works_on_fridays(X)))&(![X,Y]:((room(X)&room(Y)&(works_on_fridays(X))&(works_on_fridays(Y)))=>(X=Y)))))& (((?[X]:(room(X)&hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X)))))& ((tracy_dream=>((?[X,Y]:(room(X)&room(Y)&(does_not_practice_digital_art(X)&does_not_practice_digital_art(Y))&(X!=Y))))))& ((![X]:((does_not_write_poetry(X))=>(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X)))))& ((![X]:((does_not_collect_comic_books(X))=>(owns_a_telescope(X)))))& (?[X]:(room(X)&(hosts_regular_workshops_on_creative_writing(X))))
room(tracy)&(![X]:(room(X)=>(X='tracy')))& travels_domestically_frequently(tracy)
[ "p0", "p12", "p13", "hypothesis" ]
% SZS status Unsatisfiable for 1988026976009150086183528 % SZS output start Proof for 1988026976009150086183528 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 56. prede(mary) & preda(mary) [input p12] 57. ! [X0] : (preda(X0) => predo(X0)) [input p13] 68. ~(predo(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 78. preda(mary) [pure predicate removal 56] 160. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 164. ! [X0] : (predo(X0) | ~preda(X0)) [ennf transformation 57] 167. ~predo(mary) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 68] 193. ? [X0] : (mary != X0 & room(X0)) => (mary != sK13 & room(sK13)) [choice axiom] 194. ~predo(mary) | (mary != sK13 & room(sK13)) | ~room(mary) [skolemisation 167,193] 275. room(mary) [cnf transformation 160] 276. ~room(X0) | mary = X0 [cnf transformation 160] 291. preda(mary) [cnf transformation 78] 292. ~preda(X0) | predo(X0) [cnf transformation 164] 301. ~predo(mary) | room(sK13) | ~room(mary) [cnf transformation 194] 302. ~predo(mary) | mary != sK13 | ~room(mary) [cnf transformation 194] 303. ~predo(mary) | mary != sK13 [subsumption resolution 302,275] 305. 1 <=> mary = sK13 [avatar definition] 307. mary != sK13 <- (~1) [avatar component clause 305] 309. 2 <=> predo(mary) [avatar definition] 312. ~1 | ~2 [avatar split clause 303,309,305] 313. ~predo(mary) | room(sK13) [subsumption resolution 301,275] 315. 3 <=> room(sK13) [avatar definition] 317. room(sK13) <- (3) [avatar component clause 315] 318. 3 | ~2 [avatar split clause 313,309,315] 321. predo(mary) [resolution 292,291] 324. 2 [avatar split clause 321,309] 335. mary = sK13 <- (3) [resolution 276,317] 350. $false <- (~1, 3) [subsumption resolution 335,307] 351. 1 | ~3 [avatar contradiction clause 350] 352. $false [avatar sat refutation 312,318,324,351] % SZS output end Proof for 1988026976009150086183528 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.029 s % ------------------------------ % ------------------------------
0.420295
There is a room. Everyone in the room either is not a chess master who participates in national tournaments or does not collect rare and antique scientific instruments but not both. Everyone in the room does not enjoy stand-up paddleboarding if they does not collect rare minerals or does not enjoy macrame or both. Everyone in the room does not enjoy origami or does not collect rare and antique scientific instruments or both. If someone does not collect rare and antique scientific instruments or does not collect action figures or both then he/she does not own an Android phone. Everyone in the room does not enjoy landscape photography. No one in the room is not a dedicated advocate for digital privacy and encryption if they does not own a smart tv. If someone is a dedicated advocate for digital privacy and encryption then he/she does not have a piercing. Everyone in the room either does not own an Android phone or is not a Linux enthusiast but not both. Everyone in the room who does not collect action figures enjoys stand-up paddleboarding or owns a smart tv or both. Everyone in the room does not frequently participates in hackathons and coding competitions. Everyone in the room does not collect rare minerals and does not collect vintage stamps if they is not a chess master who participates in national tournaments. If someone does not enjoy stand-up paddleboarding then he/she does not enjoy rooftop gardening. No one in the room is not a chess master who participates in national tournaments.
Everyone in the room does not enjoy macrame or is a Linux enthusiast.
entailment
(there_is_a_room)& (![X]:(room(X)=>(((is_not_a_chess_master_who_participates_in_national_tournaments(X))<~>(does_not_collect_rare_and_antique_scientific_instruments(X))))))& (![X]:(room(X)=>(((((does_not_collect_rare_minerals(X))|(does_not_enjoy_macrame(X))))=>(does_not_enjoy_stand-up_paddleboarding(X))))))& (![X]:(room(X)=>(((does_not_enjoy_origami(X))|(does_not_collect_rare_and_antique_scientific_instruments(X))))))& ((![X]:((((does_not_collect_rare_and_antique_scientific_instruments(X))|(does_not_collect_action_figures(X))))=>(does_not_own_an_Android_phone(X)))))& (![X]:(room(X)=>(does_not_enjoy_landscape_photography(X))))& (~?[X]:(room(X)=>(((does_not_own_a_smart_tv(X))=>(is_not_a_dedicated_advocate_for_digital_privacy_and_encryption(X))))))& ((![X]:((is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))=>(does_not_have_a_piercing(X)))))& (![X]:(room(X)=>(((does_not_own_an_Android_phone(X))<~>(is_not_a_Linux_enthusiast(X))))))& (![X]:(room(X)=>(((does_not_collect_action_figures(X))=>(((enjoys_stand-up_paddleboarding(X))|(owns_a_smart_tv(X))))))))& (![X]:(room(X)=>(does_not_frequently_participates_in_hackathons_and_coding_competitions(X))))& (![X]:(room(X)=>(((is_not_a_chess_master_who_participates_in_national_tournaments(X))=>(((does_not_collect_rare_minerals(X))&(does_not_collect_vintage_stamps(X))))))))& ((![X]:((does_not_enjoy_stand-up_paddleboarding(X))=>(does_not_enjoy_rooftop_gardening(X)))))& ((![X]:((is_a_chess_master_who_participates_in_national_tournaments(X))=>(does_not_enjoy_origami(X)))))& (~?[X]:(room(X)=>(is_not_a_chess_master_who_participates_in_national_tournaments(X))))& (?[X]:(room(X)&(((does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))|(owns_an_Android_phone(X))))))& (?[X]:(anywhere(X)&(does_not_own_an_Android_phone(X))))& (![X]:(room(X)=>(((does_not_write_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))|(is_not_a_chess_master_who_participates_in_national_tournaments(X))))))
(there_is_a_room)& ![X]:(room(X)=>(((is_a_Linux_enthusiast(X))|(does_not_enjoy_macrame(X)))))
[ "p0", "p1", "p4", "p6", "p8", "p14", "hypothesis" ]
% SZS status Unsatisfiable for 289039451679712849312493 % SZS output start Proof for 289039451679712849312493 44. there_is_a_room [input p0] 45. ! [X0] : (room(X0) => (~predt(X0) <~> ~predr(X0))) [input p1] 48. ! [X0] : ((~predg(X0) | ~predr(X0)) => ~prede(X0)) [input p4] 50. ~? [X0] : (room(X0) => (~predb(X0) => ~preds(X0))) [input p6] 52. ! [X0] : (room(X0) => (~prede(X0) <~> ~predj(X0))) [input p8] 58. ~? [X0] : (room(X0) => ~predt(X0)) [input p14] 62. ~(! [X0] : (room(X0) => (~predd(X0) | predj(X0))) & there_is_a_room) [input hypothesis] 69. ~? [X0] : (room(X0) => ~~predb(X0)) [pure predicate removal 50] 71. ! [X0] : (~predr(X0) => ~prede(X0)) [pure predicate removal 48] 73. ~? [X0] : ~room(X0) [pure predicate removal 69] 78. ~(! [X0] : (room(X0) => predj(X0)) & there_is_a_room) [pure predicate removal 62] 152. ! [X0] : ((~predt(X0) <~> ~predr(X0)) | ~room(X0)) [ennf transformation 45] 153. ! [X0] : (~prede(X0) | predr(X0)) [ennf transformation 71] 154. ! [X0] : room(X0) [ennf transformation 73] 155. ! [X0] : ((~prede(X0) <~> ~predj(X0)) | ~room(X0)) [ennf transformation 52] 156. ! [X0] : (predt(X0) & room(X0)) [ennf transformation 58] 157. ? [X0] : (~predj(X0) & room(X0)) | ~there_is_a_room [ennf transformation 78] 159. ! [X0] : (((predr(X0) | predt(X0)) & (~predr(X0) | ~predt(X0))) | ~room(X0)) [nnf transformation 152] 160. ! [X0] : (((predj(X0) | prede(X0)) & (~predj(X0) | ~prede(X0))) | ~room(X0)) [nnf transformation 155] 165. ? [X0] : (~predj(X0) & room(X0)) => (~predj(sK2) & room(sK2)) [choice axiom] 166. (~predj(sK2) & room(sK2)) | ~there_is_a_room [skolemisation 157,165] 247. there_is_a_room [cnf transformation 44] 248. ~predr(X0) | ~predt(X0) | ~room(X0) [cnf transformation 159] 250. ~prede(X0) | predr(X0) [cnf transformation 153] 251. room(X0) [cnf transformation 154] 253. predj(X0) | prede(X0) | ~room(X0) [cnf transformation 160] 255. predt(X0) [cnf transformation 156] 259. ~predj(sK2) | ~there_is_a_room [cnf transformation 166] 260. predj(X0) | prede(X0) [subsumption resolution 253,251] 262. ~predj(sK2) [subsumption resolution 259,247] 263. prede(sK2) [resolution 260,262] 265. predr(sK2) [resolution 263,250] 266. ~predt(sK2) | ~room(sK2) [resolution 265,248] 267. ~room(sK2) [subsumption resolution 266,255] 268. $false [subsumption resolution 267,251] % SZS output end Proof for 289039451679712849312493 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.033031
Mike, Joseph, Donald are the only persons in the room. “Mike is not kind” if “everyone in the room is not a strong tall brave person”. Either “Mike is kind” or “Mike is not wise” but not both. “Mike is not creative” if “Mike is not a generous person” and vice versa. Mike is happy. Mike is not a curious person. Mike is strong. Mike is not a happy person. Mike is not a calm person. Everyone in the room is not a old curious person. Mike either is not a brave happy person or is not humble but not both. Someone in the room is not a happy person. Someone anywhere is not a curious person. Mike is not a calm curious wise person.
Everyone anywhere is not a brave person.
neutral
room(mike)&room(joseph)&room(donald)&(![X]:(room(X)=>(X='mike'|X='joseph'|X='donald')))& ((![X]:(room(X)=>(~(strong(X)&tall(X)&brave(X)&person(X)))))=>(~kind(mike)))& ((kind(mike))<~>(~wise(mike)))& ((~(generous(mike)&person(mike)))<=>(~creative(mike)))& (happy(mike))& (~(curious(mike)&person(mike)))& (strong(mike))& (~(happy(mike)&person(mike)))& (~(calm(mike)&person(mike)))& (![X]:(room(X)=>(~(old(X)&curious(X)&person(X)))))& (((~(brave(mike)&happy(mike)&person(mike)))<~>(~humble(mike))))& (?[X]:(room(X)&(~(happy(X)&person(X)))))& (?[X]:(anywhere(X)&(~(curious(X)&person(X)))))& (~(calm(mike)&curious(mike)&wise(mike)&person(mike)))
room(mike)&room(joseph)&room(donald)&(![X]:(room(X)=>(X='mike'|X='joseph'|X='donald')))& ![X]:(anywhere(X)=>(~(brave(X)&person(X))))
[]
null
0.269536
Laura is the only person in the room. Everyone in the room who is liked by Stephen or is not liked by Stephen or both is hated by Stephen. If someone does not like Stephen and does not hate Adam then he/she is not hated by Stephen and vice versa. Everyone in the room is not hated by Stephen if they does not hate Stephen.
Laura likes Adam.
contradiction
room(laura)&(![X]:(room(X)=>(X='laura')))& (![X]:(room(X)=>(((((like(X,stephen))|(~like(X,stephen))))=>(hate(X,stephen))))))& (![X]:(~room(X)=>(((~hate(X,adam))=>(~hate(X,stephen))))))& ((![X]:((((~like(stephen,X))&(~hate(adam,X))))<=>(~hate(X,stephen)))))& (![X]:(room(X)=>(((~hate(stephen,X))=>(~hate(X,stephen))))))& (![X]:(~room(X)=>(((~like(adam,X))=>(~like(X,stephen))))))& (![X]:(room(X)=>(((~hate(adam,X))=>(hate(X,stephen))))))
room(laura)&(![X]:(room(X)=>(X='laura')))& like(adam,laura)
[ "b0", "b42", "p0", "p1", "p3", "p4", "hypothesis" ]
% SZS status Unsatisfiable for 1326936440299398000422120 % SZS output start Proof for 1326936440299398000422120 1. ! [X0,X1] : (X0 != X1 => (like(X0,X1) => ~hate(X0,X1))) [input b0] 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 45. ! [X0] : (room(X0) => ((~like(X0,paul) | like(X0,paul)) => hate(X0,paul))) [input p1] 47. ! [X0] : ((~hate(fred,X0) & ~like(paul,X0)) <=> ~hate(X0,paul)) [input p3] 48. ! [X0] : (room(X0) => (~hate(paul,X0) => ~hate(X0,paul))) [input p4] 51. like(fred,mary) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 55. ! [X0,X1] : ((~hate(X0,X1) | ~like(X0,X1)) | X0 = X1) [ennf transformation 1] 56. ! [X0,X1] : (~hate(X0,X1) | ~like(X0,X1) | X0 = X1) [flattening 55] 126. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 127. ! [X0] : ((hate(X0,paul) | (like(X0,paul) & ~like(X0,paul))) | ~room(X0)) [ennf transformation 45] 128. ! [X0] : (hate(X0,paul) | (like(X0,paul) & ~like(X0,paul)) | ~room(X0)) [flattening 127] 131. ! [X0] : ((~hate(X0,paul) | hate(paul,X0)) | ~room(X0)) [ennf transformation 48] 132. ! [X0] : (~hate(X0,paul) | hate(paul,X0) | ~room(X0)) [flattening 131] 137. like(fred,mary) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 51] 139. ! [X0] : (((~hate(fred,X0) & ~like(paul,X0)) | hate(X0,paul)) & (~hate(X0,paul) | (hate(fred,X0) | like(paul,X0)))) [nnf transformation 47] 140. ! [X0] : (((~hate(fred,X0) & ~like(paul,X0)) | hate(X0,paul)) & (~hate(X0,paul) | hate(fred,X0) | like(paul,X0))) [flattening 139] 141. ~hate(X0,X1) | ~like(X0,X1) | X0 = X1 [cnf transformation 56] 187. mary != paul [cnf transformation 43] 193. mary != fred [cnf transformation 43] 223. room(mary) [cnf transformation 126] 225. hate(X0,paul) | ~like(X0,paul) | ~room(X0) [cnf transformation 128] 226. hate(X0,paul) | like(X0,paul) | ~room(X0) [cnf transformation 128] 228. ~hate(X0,paul) | hate(fred,X0) | like(paul,X0) [cnf transformation 140] 231. ~hate(X0,paul) | hate(paul,X0) | ~room(X0) [cnf transformation 132] 236. like(fred,mary) [cnf transformation 137] 237. hate(X0,paul) | ~room(X0) [subsumption resolution 225,226] 238. hate(paul,X0) | ~room(X0) [subsumption resolution 231,237] 256. ~like(paul,X2) | paul = X2 | ~room(X2) [resolution 141,238] 258. hate(fred,X1) | like(paul,X1) | ~room(X1) [resolution 228,237] 263. ~like(fred,X1) | ~room(X1) | like(paul,X1) | fred = X1 [resolution 258,141] 429. ~room(mary) | like(paul,mary) | mary = fred [resolution 263,236] 430. like(paul,mary) | mary = fred [subsumption resolution 429,223] 431. like(paul,mary) [subsumption resolution 430,193] 436. mary = paul | ~room(mary) [resolution 431,256] 438. ~room(mary) [subsumption resolution 436,187] 439. $false [subsumption resolution 438,223] % SZS output end Proof for 1326936440299398000422120 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.08738
Maria is the only person in the room. If “everyone anywhere enjoys watercolor painting or does not enjoy logic puzzles” then “everyone in the room who enjoys watercolor painting and is a wine connoisseur collects historical artifacts related to ancient civilizations”. Either “everyone in the room is a chess master who participates in national tournaments or does not own a significant collection of rare gemstones and minerals” or “not everyone in the room plays eSports competitively or does not maintain a large, organic vegetable garden year-round” but not both. If “Maria writes poetry” then “more than one person in the room is a culinary enthusiast who experiments with international cuisines”. If “Maria hosts a popular podcast about emerging technologies” then “everyone in the room who maintains a large, organic vegetable garden year-round owns a significant collection of rare gemstones and minerals”. Either “Maria owns a smartwatch” or “everyone in the room writes poetry or does not enjoy watercolor painting” but not both. Everyone in the room who writes poetry is a wine connoisseur.
Maria practices digital art, uses a Windows laptop and is a chess master who participates in national tournaments.
neutral
room(maria)&(![X]:(room(X)=>(X='maria')))& ((![X]:(anywhere(X)=>(((does_not_enjoy_logic_puzzles(X))|(enjoys_watercolor_painting(X))))))=>(![X]:(room(X)=>(((((enjoys_watercolor_painting(X))&(is_a_wine_connoisseur(X))))=>(collects_historical_artifacts_related_to_ancient_civilizations(X)))))))& ((![X]:(room(X)=>(((does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(X))|(is_a_chess_master_who_participates_in_national_tournaments(X))))))<~>(~![X]:(room(X)=>(((does_not_maintain_a_large,_organic_vegetable_garden_year-round(X))|(plays_eSports_competitively(X)))))))& ((writes_poetry(maria))=>((?[X,Y]:(room(X)&room(Y)&(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X)&is_a_culinary_enthusiast_who_experiments_with_international_cuisines(Y))&(X!=Y)))))& ((hosts_a_popular_podcast_about_emerging_technologies(maria))=>(![X]:(room(X)=>(((maintains_a_large,_organic_vegetable_garden_year-round(X))=>(owns_a_significant_collection_of_rare_gemstones_and_minerals(X)))))))& ((owns_a_smartwatch(maria))<~>(![X]:(room(X)=>(((does_not_enjoy_watercolor_painting(X))|(writes_poetry(X)))))))& (![X]:(room(X)=>(((writes_poetry(X))=>(is_a_wine_connoisseur(X))))))& ((![X]:((writes_poetry(X))=>(~((collects_rare_and_antique_scientific_instruments(X))|(is_a_wine_connoisseur(X)))))))& (is_a_culinary_enthusiast_who_experiments_with_international_cuisines(maria))& (![X]:(anywhere(X)=>(((practices_digital_art(X))=>(uses_a_Windows_laptop(X))))))& ((![X]:((is_a_wine_connoisseur(X))=>(((collects_rare_and_antique_scientific_instruments(X))&(enjoys_skydiving(X))&(can_play_the_guitar(X)))))))& (![X]:(room(X)=>(((collects_rare_and_antique_scientific_instruments(X))=>(practices_digital_art(X))))))& ((?[X,Y]:(~room(X)&~room(Y)&(owns_a_significant_collection_of_rare_gemstones_and_minerals(X)&owns_a_significant_collection_of_rare_gemstones_and_minerals(Y))&(X!=Y))))& (practices_digital_art(maria))& (owns_a_smartwatch(maria))& (uses_a_Windows_laptop(maria))& (~(is_a_wine_connoisseur(maria)))& (collects_rare_and_antique_scientific_instruments(maria))& (owns_a_significant_collection_of_rare_gemstones_and_minerals(maria))
room(maria)&(![X]:(room(X)=>(X='maria')))& ((practices_digital_art(maria))&(uses_a_Windows_laptop(maria))&(is_a_chess_master_who_participates_in_national_tournaments(maria)))
[]
null
0.002977
Dwight, Ronald, Dianne are the only persons in the room. "Ronald is a old person" if "Dianne is a funny european". If "Dwight makes homemade pastries" then "everyone outside the room does not make homemade pastries or is not funny". More than one person in the room is not old. Everyone in the room is a funny person if they is a old european. Ronald is a funny european. Dianne and Ronald are funny persons. Dianne is a funny european. Ronald is the least old outside the room. Dwight is not a funny person. Someone who is a old person is older than someone who is a funny person. Dwight is not a old european. If someone makes homemade pastries then he/she is a funny european.
Dwight is old.
contradiction
room(dwight)&room(ronald)&room(dianne)&(![X]:(room(X)=>(X='dwight'|X='ronald'|X='dianne')))& ((funny(dianne)&european(dianne))=>(old(ronald)&person(ronald)))& ((makes_homemade_pastries(dwight))=>(![X]:(~room(X)=>(((~funny(X))|(does_not_make_homemade_pastries(X)))))))& ((?[X,Y]:(room(X)&room(Y)&(~old(X)&~old(Y))&(X!=Y))))& (![X]:(room(X)=>(((old(X)&european(X))=>(funny(X)&person(X))))))& (funny(ronald)&european(ronald))& (funny(dianne)&person(dianne)&funny(ronald)&person(ronald))& (funny(dianne)&european(dianne))& (![X]:((~room(X)&(X!=ronald))=>older(ronald,X)))& (~(funny(dwight)&person(dwight)))& (?[X,Y]:((old(X)&person(X))&(funny(Y)&person(Y))&(older(X,Y))))& (~(old(dwight)&european(dwight)))& ((![X]:((makes_homemade_pastries(X))=>(funny(X)&european(X)))))
room(dwight)&room(ronald)&room(dianne)&(![X]:(room(X)=>(X='dwight'|X='ronald'|X='dianne')))& old(dwight)
[ "p0", "p1", "p3", "p7", "hypothesis" ]
% SZS status Unsatisfiable for 2172190752951875899185602 % SZS output start Proof for 2172190752951875899185602 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 45. (european(fred) & funny(fred)) => (person(paul) & old(paul)) [input p1] 47. ? [X0,X1] : (X0 != X1 & ~old(X1) & ~old(X0) & room(X1) & room(X0)) [input p3] 51. european(fred) & funny(fred) [input p7] 57. old(mary) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 132. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 133. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 132] 134. (person(paul) & old(paul)) | (~european(fred) | ~funny(fred)) [ennf transformation 45] 135. (person(paul) & old(paul)) | ~european(fred) | ~funny(fred) [flattening 134] 142. old(mary) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 57] 143. old(mary) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 142] 145. ? [X0,X1] : (X0 != X1 & ~old(X1) & ~old(X0) & room(X1) & room(X0)) => (sK0 != sK1 & ~old(sK1) & ~old(sK0) & room(sK1) & room(sK0)) [choice axiom] 146. sK0 != sK1 & ~old(sK1) & ~old(sK0) & room(sK1) & room(sK0) [skolemisation 47,145] 233. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 133] 234. old(paul) | ~european(fred) | ~funny(fred) [cnf transformation 135] 236. room(sK0) [cnf transformation 146] 237. room(sK1) [cnf transformation 146] 238. ~old(sK0) [cnf transformation 146] 239. ~old(sK1) [cnf transformation 146] 240. sK0 != sK1 [cnf transformation 146] 249. funny(fred) [cnf transformation 51] 250. european(fred) [cnf transformation 51] 263. old(mary) [cnf transformation 143] 265. 1 <=> funny(fred) [avatar definition] 269. 2 <=> european(fred) [avatar definition] 278. 4 <=> old(paul) [avatar definition] 280. old(paul) <- (4) [avatar component clause 278] 281. ~1 | ~2 | 4 [avatar split clause 234,278,269,265] 284. 2 [avatar split clause 250,269] 285. 1 [avatar split clause 249,265] 296. 7 <=> old(mary) [avatar definition] 297. old(mary) <- (7) [avatar component clause 296] 304. 7 [avatar split clause 263,296] 425. paul = sK0 | mary = sK0 | fred = sK0 [resolution 233,236] 426. paul = sK1 | mary = sK1 | fred = sK1 [resolution 233,237] 429. 16 <=> fred = sK0 [avatar definition] 433. 17 <=> mary = sK0 [avatar definition] 435. mary = sK0 <- (17) [avatar component clause 433] 437. 18 <=> paul = sK0 [avatar definition] 439. paul = sK0 <- (18) [avatar component clause 437] 440. 16 | 17 | 18 [avatar split clause 425,437,433,429] 442. 19 <=> fred = sK1 [avatar definition] 444. fred = sK1 <- (19) [avatar component clause 442] 446. 20 <=> mary = sK1 [avatar definition] 448. mary = sK1 <- (20) [avatar component clause 446] 450. 21 <=> paul = sK1 [avatar definition] 452. paul = sK1 <- (21) [avatar component clause 450] 453. 19 | 20 | 21 [avatar split clause 426,450,446,442] 456. fred != sK0 <- (19) [backward demodulation 240,444] 457. ~16 | ~19 [avatar split clause 456,442,429] 461. ~old(mary) <- (17) [backward demodulation 238,435] 462. $false <- (7, 17) [subsumption resolution 461,297] 463. ~7 | ~17 [avatar contradiction clause 462] 466. ~old(paul) <- (18) [backward demodulation 238,439] 468. $false <- (4, 18) [subsumption resolution 466,280] 469. ~4 | ~18 [avatar contradiction clause 468] 471. ~old(mary) <- (20) [backward demodulation 239,448] 473. $false <- (7, 20) [subsumption resolution 471,297] 474. ~7 | ~20 [avatar contradiction clause 473] 480. ~old(paul) <- (21) [backward demodulation 239,452] 482. $false <- (4, 21) [subsumption resolution 480,280] 483. ~4 | ~21 [avatar contradiction clause 482] 484. $false [avatar sat refutation 281,284,285,304,440,453,457,463,469,474,483] % SZS output end Proof for 2172190752951875899185602 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.286594
There is a room. If “everyone in the room does not practice graffiti art or is a wine connoisseur with a private cellar of vintage wines” then “everyone in the room enjoys virtual reality gaming if and only if they enjoys snowboarding”. “Everyone outside the room is not right-handed or collects antique clocks” only if “everyone in the room is not right-handed only if they works on fridays”. If “everyone in the room does not enjoy windsurfing or is a coffee connoisseur” then “everyone in the room who makes intricate hand-cut paper art for exhibitions collects rare minerals”. Everyone in the room who collects rare minerals practices graffiti art. Everyone in the room who practices graffiti art enjoys snowboarding. No one in the room who enjoys snowboarding has a saltwater aquarium and works on fridays. Everyone in the room who has a saltwater aquarium and works on fridays practices graffiti art. Everyone in the room who practices graffiti art is an avid hiker. More than one person in the room collect rare sneakers. Someone in the room enjoys windsurfing. Everyone in the room who has a saltwater aquarium enjoys virtual reality gaming. Everyone in the room who enjoys virtual reality gaming enjoys snowboarding. Everyone in the room who either enjoys snowboarding or is an avid mountain climber who has scaled several peaks but not both enjoys virtual reality gaming. Everyone in the room is an avid hiker only if they neither is dedicated to sustainable living and zero-waste practices nor practices graffiti art. Everyone in the room who is dedicated to sustainable living and zero-waste practices has a saltwater aquarium. Everyone in the room has a saltwater aquarium if they is a wine connoisseur with a private cellar of vintage wines and vice versa. Everyone in the room is a wine connoisseur with a private cellar of vintage wines if and only if they enjoys virtual reality gaming. More than one person in the room collect rare sneakers and is a coffee connoisseur. Everyone in the room enjoys windsurfing if and only if they is a wine connoisseur with a private cellar of vintage wines.
Everyone in the room does not collect rare minerals or enjoys virtual reality gaming.
entailment
(there_is_a_room)& ((![X]:(room(X)=>(((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))|(does_not_practice_graffiti_art(X))))))=>(![X]:(room(X)=>(((enjoys_virtual_reality_gaming(X))<=>(enjoys_snowboarding(X)))))))& ((![X]:(~room(X)=>(((collects_antique_clocks(X))|(is_not_right-handed(X))))))=>(![X]:(room(X)=>(((works_on_fridays(X))<=(is_not_right-handed(X)))))))& ((![X]:(room(X)=>(((is_a_coffee_connoisseur(X))|(does_not_enjoy_windsurfing(X))))))=>(![X]:(room(X)=>(((makes_intricate_hand-cut_paper_art_for_exhibitions(X))=>(collects_rare_minerals(X)))))))& (![X]:(room(X)=>(((collects_rare_minerals(X))=>(practices_graffiti_art(X))))))& (![X]:(room(X)=>(((practices_graffiti_art(X))=>(enjoys_snowboarding(X))))))& (~?[X]:(room(X)=>(((enjoys_snowboarding(X))=>(((has_a_saltwater_aquarium(X))&(works_on_fridays(X))))))))& (![X]:(room(X)=>(((((has_a_saltwater_aquarium(X))&(works_on_fridays(X))))=>(practices_graffiti_art(X))))))& (![X]:(room(X)=>(((practices_graffiti_art(X))=>(is_an_avid_hiker(X))))))& ((?[X,Y]:(room(X)&room(Y)&(collect_rare_sneakers(X)&collect_rare_sneakers(Y))&(X!=Y))))& (?[X]:(room(X)&(enjoys_windsurfing(X))))& (![X]:(room(X)=>(((has_a_saltwater_aquarium(X))=>(enjoys_virtual_reality_gaming(X))))))& (![X]:(room(X)=>(((enjoys_virtual_reality_gaming(X))=>(enjoys_snowboarding(X))))))& (![X]:(room(X)=>(((((enjoys_snowboarding(X))<~>(is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))=>(enjoys_virtual_reality_gaming(X))))))& (![X]:(room(X)=>(((~((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))|(practices_graffiti_art(X))))<=(is_an_avid_hiker(X))))))& (![X]:(room(X)=>(((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))=>(has_a_saltwater_aquarium(X))))))& (![X]:(room(X)=>(((has_a_saltwater_aquarium(X))<=>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))))& (![X]:(room(X)=>(((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))<=>(enjoys_virtual_reality_gaming(X))))))& ((?[X,Y]:(room(X)&room(Y)&(((collect_rare_sneakers(X))&(is_a_coffee_connoisseur(X)))&((collect_rare_sneakers(Y))&(is_a_coffee_connoisseur(Y))))&(X!=Y))))& (![X]:(room(X)=>(((enjoys_windsurfing(X))<=>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))))& (![X]:(~room(X)=>(((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))=>(practices_graffiti_art(X))))))& ((![X]:((has_a_saltwater_aquarium(X))<=>(is_an_avid_hiker(X)))))& (![X]:(room(X)=>(((is_an_avid_hiker(X))<=>(is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))))
(there_is_a_room)& ![X]:(room(X)=>(((enjoys_virtual_reality_gaming(X))|(does_not_collect_rare_minerals(X)))))
[ "p0", "p1", "p6", "p8", "p14", "hypothesis" ]
% SZS status Unsatisfiable for 6930891830145485348916231 % SZS output start Proof for 6930891830145485348916231 44. there_is_a_room [input p0] 45. ! [X0] : (room(X0) => (~predn(X0) | prede(X0))) => ! [X0] : (room(X0) => (predj(X0) <=> preda(X0))) [input p1] 50. ~? [X0] : (room(X0) => (preda(X0) => (predg(X0) & predf(X0)))) [input p6] 52. ! [X0] : (room(X0) => (predn(X0) => predi(X0))) [input p8] 58. ! [X0] : (room(X0) => (predi(X0) => ~(predn(X0) | predl(X0)))) [input p14] 67. ~(! [X0] : (room(X0) => (~predd(X0) | predj(X0))) & there_is_a_room) [input hypothesis] 68. ! [X0] : (room(X0) => (~predn(X0) | prede(X0))) => ! [X1] : (room(X1) => (predj(X1) <=> preda(X1))) [rectify 45] 71. ! [X0] : (room(X0) => (predi(X0) => ~predn(X0))) [pure predicate removal 58] 78. ~? [X0] : (room(X0) => ~preda(X0)) [pure predicate removal 50] 152. ! [X1] : ((predj(X1) <=> preda(X1)) | ~room(X1)) | ? [X0] : ((predn(X0) & ~prede(X0)) & room(X0)) [ennf transformation 68] 153. ! [X1] : ((predj(X1) <=> preda(X1)) | ~room(X1)) | ? [X0] : (predn(X0) & ~prede(X0) & room(X0)) [flattening 152] 158. ! [X0] : (preda(X0) & room(X0)) [ennf transformation 78] 159. ! [X0] : ((predi(X0) | ~predn(X0)) | ~room(X0)) [ennf transformation 52] 160. ! [X0] : (predi(X0) | ~predn(X0) | ~room(X0)) [flattening 159] 167. ! [X0] : ((~predn(X0) | ~predi(X0)) | ~room(X0)) [ennf transformation 71] 168. ! [X0] : (~predn(X0) | ~predi(X0) | ~room(X0)) [flattening 167] 175. ? [X0] : ((predd(X0) & ~predj(X0)) & room(X0)) | ~there_is_a_room [ennf transformation 67] 176. ? [X0] : (predd(X0) & ~predj(X0) & room(X0)) | ~there_is_a_room [flattening 175] 178. ! [X1] : (((predj(X1) | ~preda(X1)) & (preda(X1) | ~predj(X1))) | ~room(X1)) | ? [X0] : (predn(X0) & ~prede(X0) & room(X0)) [nnf transformation 153] 179. ! [X0] : (((predj(X0) | ~preda(X0)) & (preda(X0) | ~predj(X0))) | ~room(X0)) | ? [X1] : (predn(X1) & ~prede(X1) & room(X1)) [rectify 178] 180. ? [X1] : (predn(X1) & ~prede(X1) & room(X1)) => (predn(sK0) & ~prede(sK0) & room(sK0)) [choice axiom] 181. ! [X0] : (((predj(X0) | ~preda(X0)) & (preda(X0) | ~predj(X0))) | ~room(X0)) | (predn(sK0) & ~prede(sK0) & room(sK0)) [skolemisation 179,180] 194. ? [X0] : (predd(X0) & ~predj(X0) & room(X0)) => (predd(sK6) & ~predj(sK6) & room(sK6)) [choice axiom] 195. (predd(sK6) & ~predj(sK6) & room(sK6)) | ~there_is_a_room [skolemisation 176,194] 276. there_is_a_room [cnf transformation 44] 282. predj(X0) | ~preda(X0) | ~room(X0) | predn(sK0) [cnf transformation 181] 285. room(X0) [cnf transformation 158] 286. preda(X0) [cnf transformation 158] 287. predi(X0) | ~predn(X0) | ~room(X0) [cnf transformation 160] 297. ~predn(X0) | ~predi(X0) | ~room(X0) [cnf transformation 168] 313. ~predj(sK6) | ~there_is_a_room [cnf transformation 195] 316. 1 <=> predn(sK0) [avatar definition] 318. predn(sK0) <- (1) [avatar component clause 316] 320. 2 <=> ! [X0] : (predj(X0) | ~room(X0) | ~preda(X0)) [avatar definition] 321. predj(X0) | ~room(X0) | ~preda(X0) <- (2) [avatar component clause 320] 322. 1 | 2 [avatar split clause 282,320,316] 339. predi(X0) | ~predn(X0) [subsumption resolution 287,285] 343. ~predn(X0) | ~predi(X0) [subsumption resolution 297,285] 344. ~predn(X0) [subsumption resolution 343,339] 354. ~predj(sK6) [subsumption resolution 313,276] 355. predj(X0) | ~preda(X0) <- (2) [subsumption resolution 321,285] 356. predj(X0) <- (2) [subsumption resolution 355,286] 357. $false <- (2) [resolution 356,354] 358. ~2 [avatar contradiction clause 357] 359. $false <- (1) [subsumption resolution 318,344] 360. ~1 [avatar contradiction clause 359] 361. $false [avatar sat refutation 322,358,360] % SZS output end Proof for 6930891830145485348916231 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.025 s % ------------------------------ % ------------------------------
0.650396
Todd, David are the only persons in the room. If “not everyone outside the room can play the harmonica or does not enjoy skydiving” then “Todd does not create YouTube content”. “Everyone outside the room is not passionate about collecting and restoring classic cars only if they is a client of LVMH” if “someone in the room writes and illustrates their own graphic novels, owns a 3D printer or creates YouTube content”. David does not work on fridays. Everyone in the room who is not right-handed creates large-scale murals for public art installations. Everyone outside the room creates YouTube content if they is a culinary enthusiast who experiments with international cuisines, enjoys skydiving or can play the harmonica. Everyone in the room creates YouTube content if they enjoys camping and organizing outdoor survival workshops and vice versa. Not everyone in the room who enjoys camping and organizing outdoor survival workshops knows morse code. Todd does not create YouTube content. Someone in the room writes and illustrates their own graphic novels, owns a 3D printer or creates YouTube content.
More than one person in the room knows morse code.
contradiction
room(todd)&room(david)&(![X]:(room(X)=>(X='todd'|X='david')))& ((~![X]:(~room(X)=>(((does_not_enjoy_skydiving(X))|(can_play_the_harmonica(X))))))=>(does_not_create_YouTube_content(todd)))& ((?[X]:(room(X)&(((writes_and_illustrates_their_own_graphic_novels(X))|(owns_a_3D_printer(X))|(creates_YouTube_content(X))))))=>(![X]:(~room(X)=>(((is_a_client_of_LVMH(X))<=(is_not_passionate_about_collecting_and_restoring_classic_cars(X)))))))& (does_not_work_on_fridays(david))& (![X]:(room(X)=>(((is_not_right-handed(X))=>(creates_large-scale_murals_for_public_art_installations(X))))))& (![X]:(~room(X)=>(((((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))|(enjoys_skydiving(X))|(can_play_the_harmonica(X))))=>(creates_YouTube_content(X))))))& (![X]:(room(X)=>(((creates_YouTube_content(X))<=>(enjoys_camping_and_organizing_outdoor_survival_workshops(X))))))& (~![X]:(room(X)=>(((enjoys_camping_and_organizing_outdoor_survival_workshops(X))=>(knows_morse_code(X))))))& (does_not_create_YouTube_content(todd))& (?[X]:(room(X)&(((writes_and_illustrates_their_own_graphic_novels(X))|(owns_a_3D_printer(X))|(creates_YouTube_content(X))))))
room(todd)&room(david)&(![X]:(room(X)=>(X='todd'|X='david')))& (?[X,Y]:(room(X)&room(Y)&(knows_morse_code(X)&knows_morse_code(Y))&(X!=Y)))
[ "p0", "p6", "p7", "p8", "hypothesis" ]
% SZS status Unsatisfiable for 191490757124578797264732 % SZS output start Proof for 191490757124578797264732 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 50. ! [X0] : (room(X0) => (predo(X0) <=> predr(X0))) [input p6] 51. ~! [X0] : (room(X0) => (predr(X0) => predf(X0))) [input p7] 52. ~predo(mary) [input p8] 54. ? [X0,X1] : (X0 != X1 & predf(X1) & predf(X0) & room(X1) & room(X0)) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 56. ? [X0,X1] : (X0 != X1 & predf(X1) & predf(X0) & room(X1) & room(X0)) & ! [X2] : (room(X2) => (paul = X2 | mary = X2)) & room(paul) & room(mary) [rectify 54] 137. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 138. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 137] 139. ! [X0] : ((predo(X0) <=> predr(X0)) | ~room(X0)) [ennf transformation 50] 140. ? [X0] : ((~predf(X0) & predr(X0)) & room(X0)) [ennf transformation 51] 141. ? [X0] : (~predf(X0) & predr(X0) & room(X0)) [flattening 140] 142. ? [X0,X1] : (X0 != X1 & predf(X1) & predf(X0) & room(X1) & room(X0)) & ! [X2] : ((paul = X2 | mary = X2) | ~room(X2)) & room(paul) & room(mary) [ennf transformation 56] 143. ? [X0,X1] : (X0 != X1 & predf(X1) & predf(X0) & room(X1) & room(X0)) & ! [X2] : (paul = X2 | mary = X2 | ~room(X2)) & room(paul) & room(mary) [flattening 142] 145. ! [X0] : (((predo(X0) | ~predr(X0)) & (predr(X0) | ~predo(X0))) | ~room(X0)) [nnf transformation 139] 146. ? [X0] : (~predf(X0) & predr(X0) & room(X0)) => (~predf(sK0) & predr(sK0) & room(sK0)) [choice axiom] 147. ~predf(sK0) & predr(sK0) & room(sK0) [skolemisation 141,146] 150. ? [X0,X1] : (X0 != X1 & predf(X1) & predf(X0) & room(X1) & room(X0)) => (sK2 != sK3 & predf(sK3) & predf(sK2) & room(sK3) & room(sK2)) [choice axiom] 151. (sK2 != sK3 & predf(sK3) & predf(sK2) & room(sK3) & room(sK2)) & ! [X2] : (paul = X2 | mary = X2 | ~room(X2)) & room(paul) & room(mary) [skolemisation 143,150] 234. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 138] 236. ~predr(X0) | predo(X0) | ~room(X0) [cnf transformation 145] 237. room(sK0) [cnf transformation 147] 238. predr(sK0) [cnf transformation 147] 239. ~predf(sK0) [cnf transformation 147] 240. ~predo(mary) [cnf transformation 52] 245. room(sK2) [cnf transformation 151] 246. room(sK3) [cnf transformation 151] 247. predf(sK2) [cnf transformation 151] 248. predf(sK3) [cnf transformation 151] 249. sK2 != sK3 [cnf transformation 151] 250. predo(sK0) | ~room(sK0) [resolution 236,238] 251. predo(sK0) [subsumption resolution 250,237] 255. mary = sK0 | paul = sK0 [resolution 234,237] 257. mary = sK2 | paul = sK2 [resolution 234,245] 258. mary = sK3 | paul = sK3 [resolution 234,246] 260. 1 <=> paul = sK0 [avatar definition] 262. paul = sK0 <- (1) [avatar component clause 260] 264. 2 <=> mary = sK0 [avatar definition] 266. mary = sK0 <- (2) [avatar component clause 264] 267. 1 | 2 [avatar split clause 255,264,260] 278. 5 <=> paul = sK2 [avatar definition] 280. paul = sK2 <- (5) [avatar component clause 278] 282. 6 <=> mary = sK2 [avatar definition] 285. 5 | 6 [avatar split clause 257,282,278] 287. 7 <=> paul = sK3 [avatar definition] 289. paul = sK3 <- (7) [avatar component clause 287] 291. 8 <=> mary = sK3 [avatar definition] 293. mary = sK3 <- (8) [avatar component clause 291] 294. 7 | 8 [avatar split clause 258,291,287] 296. predf(paul) <- (7) [backward demodulation 248,289] 302. predo(mary) <- (2) [backward demodulation 251,266] 306. $false <- (2) [subsumption resolution 302,240] 307. ~2 [avatar contradiction clause 306] 314. ~predf(paul) <- (1) [backward demodulation 239,262] 315. $false <- (1, 7) [subsumption resolution 314,296] 316. ~1 | ~7 [avatar contradiction clause 315] 322. mary != sK2 <- (8) [forward demodulation 249,293] 323. ~6 | ~8 [avatar split clause 322,291,282] 325. predf(paul) <- (5) [backward demodulation 247,280] 326. $false <- (1, 5) [subsumption resolution 325,314] 327. ~1 | ~5 [avatar contradiction clause 326] 328. $false [avatar sat refutation 267,285,294,307,316,323,327] % SZS output end Proof for 191490757124578797264732 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0
Lisa, David are the only persons in the room. "Not everyone in the room is a tall kind curious happy person" only if "only one person in the room is a kind brave calm patient tall person". If someone is quieter than Julia, is richer than Julia or is happy then he/she is richer than Julia and vice versa. Julia is richer than Lisa. Lisa is not a quiet calm person, is not a creative person and is not a brave humble person. David is not a quiet calm person, is not a creative person and is not a brave humble person.
All patient persons are humble.
contradiction
room(lisa)&room(david)&(![X]:(room(X)=>(X='lisa'|X='david')))& ((calm(david))=>(~![X]:(room(X)=>(((generous(X))<=(((~(quiet(X)&calm(X)&person(X)))&(~(creative(X)&person(X)))&(~(brave(X)&humble(X)&person(X))))))))))& (~(older(david,julia))=>(![X]:(creative(X)=>calm(X))))& ((old(david))=>(~?[X]:(humble(X)=>happy(X))))& (~(older(lisa,julia))=>(![X]:(room(X)=>(((((humble(X)&person(X))<~>(funny(X))))=>(((richer(julia,X))<~>(patient(X)&person(X)))))))))& ((~![X]:(room(X)=>(tall(X)&kind(X)&curious(X)&happy(X)&person(X))))=>(((?[X]:(room(X)&kind(X)&brave(X)&calm(X)&patient(X)&tall(X)&person(X)))&(![X,Y]:((room(X)&room(Y)&(kind(X)&brave(X)&calm(X)&patient(X)&tall(X)&person(X))&(kind(Y)&brave(Y)&calm(Y)&patient(Y)&tall(Y)&person(Y)))=>(X=Y))))))& ((~(~(humble(lisa)&creative(lisa)&kind(lisa)&person(lisa))))=>(?[X]:(room(X)&(tall(X)))))& ((?[X]:(room(X)&(richer(julia,X))))=>(![X]:((anywhere(X)&(X!=lisa))=>richer(X,lisa))))& ((![X]:((((quieter(julia,X))|(richer(julia,X))|(happy(X))))<=>(richer(julia,X)))))& (richer(lisa,julia))& (![X]:(room(X)=>(((quieter(julia,X))=>(brave(X))))))& (![X]:(room(X)=>(((((older(julia,X))|(~(humble(X)&brave(X)&person(X)))|(creative(X))))<=(~(quiet(X)&creative(X)&person(X)))))))& (((~(quiet(lisa)&calm(lisa)&person(lisa)))&(~(creative(lisa)&person(lisa)))&(~(brave(lisa)&humble(lisa)&person(lisa)))))& (strong(lisa))& (![X]:(happy(X)=>calm(X)))& ((![X]:((wise(X))=>(humble(X)&patient(X)&person(X)))))& (![X]:(room(X)=>(((~curious(X)&~funny(X))=>(~(humble(X)&person(X)))))))& (((~(quiet(david)&calm(david)&person(david)))&(~(creative(david)&person(david)))&(~(brave(david)&humble(david)&person(david)))))
room(lisa)&room(david)&(![X]:(room(X)=>(X='lisa'|X='david')))& ![X]:(patient(X)=>humble(X))
[ "b7", "b42", "p0", "p5", "p8", "p9", "p12", "p17", "hypothesis" ]
% SZS status Unsatisfiable for 5300826038034738967244459 % SZS output start Proof for 5300826038034738967244459 8. ! [X0,X1] : (X0 != X1 => (richer(X0,X1) => ~richer(X1,X0))) [input b7] 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 49. ~! [X0] : (room(X0) => (person(X0) & happy(X0) & curious(X0) & kind(X0) & tall(X0))) => (! [X0,X1] : ((person(X1) & tall(X1) & patient(X1) & calm(X1) & brave(X1) & kind(X1) & person(X0) & tall(X0) & patient(X0) & calm(X0) & brave(X0) & kind(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (person(X0) & tall(X0) & patient(X0) & calm(X0) & brave(X0) & kind(X0) & room(X0))) [input p5] 52. ! [X0] : ((happy(X0) | richer(fred,X0) | quieter(fred,X0)) <=> richer(fred,X0)) [input p8] 53. richer(mary,fred) [input p9] 56. ~(person(mary) & humble(mary) & brave(mary)) & ~(person(mary) & creative(mary)) & ~(person(mary) & calm(mary) & quiet(mary)) [input p12] 61. ~(person(paul) & humble(paul) & brave(paul)) & ~(person(paul) & creative(paul)) & ~(person(paul) & calm(paul) & quiet(paul)) [input p17] 62. ! [X0] : (patient(X0) => humble(X0)) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 63. ~! [X0] : (room(X0) => (person(X0) & happy(X0) & curious(X0) & kind(X0) & tall(X0))) => (! [X1,X2] : ((person(X2) & tall(X2) & patient(X2) & calm(X2) & brave(X2) & kind(X2) & person(X1) & tall(X1) & patient(X1) & calm(X1) & brave(X1) & kind(X1) & room(X2) & room(X1)) => X1 = X2) & ? [X3] : (person(X3) & tall(X3) & patient(X3) & calm(X3) & brave(X3) & kind(X3) & room(X3))) [rectify 49] 66. ! [X0] : (patient(X0) => humble(X0)) & ! [X1] : (room(X1) => (paul = X1 | mary = X1)) & room(paul) & room(mary) [rectify 62] 69. ~! [X0] : (room(X0) => (person(X0) & happy(X0) & kind(X0) & tall(X0))) => (! [X1,X2] : ((person(X2) & tall(X2) & patient(X2) & calm(X2) & brave(X2) & kind(X2) & person(X1) & tall(X1) & patient(X1) & calm(X1) & brave(X1) & kind(X1) & room(X2) & room(X1)) => X1 = X2) & ? [X3] : (person(X3) & tall(X3) & patient(X3) & calm(X3) & brave(X3) & kind(X3) & room(X3))) [pure predicate removal 63] 79. ! [X0,X1] : ((~richer(X1,X0) | ~richer(X0,X1)) | X0 = X1) [ennf transformation 8] 80. ! [X0,X1] : (~richer(X1,X0) | ~richer(X0,X1) | X0 = X1) [flattening 79] 143. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 144. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 143] 151. (! [X1,X2] : (X1 = X2 | (~person(X2) | ~tall(X2) | ~patient(X2) | ~calm(X2) | ~brave(X2) | ~kind(X2) | ~person(X1) | ~tall(X1) | ~patient(X1) | ~calm(X1) | ~brave(X1) | ~kind(X1) | ~room(X2) | ~room(X1))) & ? [X3] : (person(X3) & tall(X3) & patient(X3) & calm(X3) & brave(X3) & kind(X3) & room(X3))) | ! [X0] : ((person(X0) & happy(X0) & kind(X0) & tall(X0)) | ~room(X0)) [ennf transformation 69] 152. (! [X1,X2] : (X1 = X2 | ~person(X2) | ~tall(X2) | ~patient(X2) | ~calm(X2) | ~brave(X2) | ~kind(X2) | ~person(X1) | ~tall(X1) | ~patient(X1) | ~calm(X1) | ~brave(X1) | ~kind(X1) | ~room(X2) | ~room(X1)) & ? [X3] : (person(X3) & tall(X3) & patient(X3) & calm(X3) & brave(X3) & kind(X3) & room(X3))) | ! [X0] : ((person(X0) & happy(X0) & kind(X0) & tall(X0)) | ~room(X0)) [flattening 151] 161. (~person(mary) | ~humble(mary) | ~brave(mary)) & (~person(mary) | ~creative(mary)) & (~person(mary) | ~calm(mary) | ~quiet(mary)) [ennf transformation 56] 163. (~person(paul) | ~humble(paul) | ~brave(paul)) & (~person(paul) | ~creative(paul)) & (~person(paul) | ~calm(paul) | ~quiet(paul)) [ennf transformation 61] 164. ! [X0] : (humble(X0) | ~patient(X0)) & ! [X1] : ((paul = X1 | mary = X1) | ~room(X1)) & room(paul) & room(mary) [ennf transformation 66] 165. ! [X0] : (humble(X0) | ~patient(X0)) & ! [X1] : (paul = X1 | mary = X1 | ~room(X1)) & room(paul) & room(mary) [flattening 164] 168. (! [X1,X2] : (X1 = X2 | ~person(X2) | ~tall(X2) | ~patient(X2) | ~calm(X2) | ~brave(X2) | ~kind(X2) | ~person(X1) | ~tall(X1) | ~patient(X1) | ~calm(X1) | ~brave(X1) | ~kind(X1) | ~room(X2) | ~room(X1)) & ? [X3] : (person(X3) & tall(X3) & patient(X3) & calm(X3) & brave(X3) & kind(X3) & room(X3))) | ~sP1 [predicate definition introduction] 169. sP1 | ! [X0] : ((person(X0) & happy(X0) & kind(X0) & tall(X0)) | ~room(X0)) [definition folding 152,168] 177. (! [X1,X2] : (X1 = X2 | ~person(X2) | ~tall(X2) | ~patient(X2) | ~calm(X2) | ~brave(X2) | ~kind(X2) | ~person(X1) | ~tall(X1) | ~patient(X1) | ~calm(X1) | ~brave(X1) | ~kind(X1) | ~room(X2) | ~room(X1)) & ? [X3] : (person(X3) & tall(X3) & patient(X3) & calm(X3) & brave(X3) & kind(X3) & room(X3))) | ~sP1 [nnf transformation 168] 178. (! [X0,X1] : (X0 = X1 | ~person(X1) | ~tall(X1) | ~patient(X1) | ~calm(X1) | ~brave(X1) | ~kind(X1) | ~person(X0) | ~tall(X0) | ~patient(X0) | ~calm(X0) | ~brave(X0) | ~kind(X0) | ~room(X1) | ~room(X0)) & ? [X2] : (person(X2) & tall(X2) & patient(X2) & calm(X2) & brave(X2) & kind(X2) & room(X2))) | ~sP1 [rectify 177] 179. ? [X2] : (person(X2) & tall(X2) & patient(X2) & calm(X2) & brave(X2) & kind(X2) & room(X2)) => (person(sK3) & tall(sK3) & patient(sK3) & calm(sK3) & brave(sK3) & kind(sK3) & room(sK3)) [choice axiom] 180. (! [X0,X1] : (X0 = X1 | ~person(X1) | ~tall(X1) | ~patient(X1) | ~calm(X1) | ~brave(X1) | ~kind(X1) | ~person(X0) | ~tall(X0) | ~patient(X0) | ~calm(X0) | ~brave(X0) | ~kind(X0) | ~room(X1) | ~room(X0)) & (person(sK3) & tall(sK3) & patient(sK3) & calm(sK3) & brave(sK3) & kind(sK3) & room(sK3))) | ~sP1 [skolemisation 178,179] 184. ! [X0] : (((happy(X0) | richer(fred,X0) | quieter(fred,X0)) | ~richer(fred,X0)) & (richer(fred,X0) | (~happy(X0) & ~richer(fred,X0) & ~quieter(fred,X0)))) [nnf transformation 52] 185. ! [X0] : ((happy(X0) | richer(fred,X0) | quieter(fred,X0) | ~richer(fred,X0)) & (richer(fred,X0) | (~happy(X0) & ~richer(fred,X0) & ~quieter(fred,X0)))) [flattening 184] 190. ~richer(X1,X0) | ~richer(X0,X1) | X0 = X1 [cnf transformation 80] 237. mary != fred [cnf transformation 43] 267. room(mary) [cnf transformation 144] 269. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 144] 283. room(sK3) | ~sP1 [cnf transformation 180] 285. brave(sK3) | ~sP1 [cnf transformation 180] 287. patient(sK3) | ~sP1 [cnf transformation 180] 289. person(sK3) | ~sP1 [cnf transformation 180] 293. sP1 | happy(X0) | ~room(X0) [cnf transformation 169] 300. richer(fred,X0) | ~happy(X0) [cnf transformation 185] 302. richer(mary,fred) [cnf transformation 53] 309. ~person(mary) | ~humble(mary) | ~brave(mary) [cnf transformation 161] 313. ~person(paul) | ~humble(paul) | ~brave(paul) [cnf transformation 163] 317. ~patient(X0) | humble(X0) [cnf transformation 165] 392. 18 <=> sP1 [avatar definition] 400. 20 <=> person(sK3) [avatar definition] 402. person(sK3) <- (20) [avatar component clause 400] 403. ~18 | 20 [avatar split clause 289,400,392] 410. 22 <=> patient(sK3) [avatar definition] 412. patient(sK3) <- (22) [avatar component clause 410] 413. ~18 | 22 [avatar split clause 287,410,392] 420. 24 <=> brave(sK3) [avatar definition] 422. brave(sK3) <- (24) [avatar component clause 420] 423. ~18 | 24 [avatar split clause 285,420,392] 430. 26 <=> room(sK3) [avatar definition] 432. room(sK3) <- (26) [avatar component clause 430] 433. ~18 | 26 [avatar split clause 283,430,392] 439. 28 <=> ! [X0] : (happy(X0) | ~room(X0)) [avatar definition] 440. ~room(X0) | happy(X0) <- (28) [avatar component clause 439] 441. 28 | 18 [avatar split clause 293,392,439] 451. 31 <=> humble(mary) [avatar definition] 463. 34 <=> person(mary) [avatar definition] 485. 39 <=> brave(mary) [avatar definition] 488. ~39 | ~31 | ~34 [avatar split clause 309,463,451,485] 500. 42 <=> brave(paul) [avatar definition] 504. 43 <=> humble(paul) [avatar definition] 508. 44 <=> person(paul) [avatar definition] 511. ~42 | ~43 | ~44 [avatar split clause 313,508,504,500] 522. humble(sK3) <- (22) [resolution 317,412] 526. mary = sK3 | paul = sK3 <- (26) [resolution 269,432] 528. 47 <=> paul = sK3 [avatar definition] 530. paul = sK3 <- (47) [avatar component clause 528] 532. 48 <=> mary = sK3 [avatar definition] 534. mary = sK3 <- (48) [avatar component clause 532] 535. 47 | 48 | ~26 [avatar split clause 526,430,532,528] 576. person(mary) <- (20, 48) [backward demodulation 402,534] 580. brave(mary) <- (24, 48) [backward demodulation 422,534] 583. humble(mary) <- (22, 48) [backward demodulation 522,534] 584. 39 | ~24 | ~48 [avatar split clause 580,532,420,485] 588. 31 | ~22 | ~48 [avatar split clause 583,532,410,451] 589. 34 | ~20 | ~48 [avatar split clause 576,532,400,463] 590. person(paul) <- (20, 47) [backward demodulation 402,530] 594. brave(paul) <- (24, 47) [backward demodulation 422,530] 597. humble(paul) <- (22, 47) [backward demodulation 522,530] 598. 44 | ~20 | ~47 [avatar split clause 590,528,400,508] 600. 42 | ~24 | ~47 [avatar split clause 594,528,420,500] 601. 43 | ~22 | ~47 [avatar split clause 597,528,410,504] 641. happy(mary) <- (28) [resolution 440,267] 643. ~richer(fred,mary) | mary = fred [resolution 190,302] 647. ~richer(fred,mary) [subsumption resolution 643,237] 664. ~happy(mary) [resolution 647,300] 666. $false <- (28) [subsumption resolution 664,641] 667. ~28 [avatar contradiction clause 666] 670. $false [avatar sat refutation 403,413,423,433,441,488,511,535,584,588,589,598,600,601,667] % SZS output end Proof for 5300826038034738967244459 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.043 s % ------------------------------ % ------------------------------
0.001665
Leslie is the only person in the room. “Leslie is not a client of Costco” only if “Leslie practices calligraphy and enjoys camping and organizing outdoor survival workshops”. Either “everyone in the room writes in-depth travel guides for off-the-beaten-path destinations or is not an active member of a local robotics club” or “Leslie watches fantasy movies” but not both. If “Leslie collects rare and antique scientific instruments” then “everyone anywhere who watches fantasy movies uses an ios phone”. Leslie does not own an Android phone. Leslie is not an active member of a local robotics club. Everyone in the room who writes a travel blog does not play video games. Everyone in the room collects rare and antique scientific instruments if they uses an ios phone. Leslie enjoys kayaking. Leslie enjoys coding in Python. Everyone anywhere hosts a YouTube channel dedicated to art tutorials if and only if they writes a travel blog. Leslie does not participate in citizen science projects related to wildlife monitoring. Leslie uses an ios phone. Everyone anywhere who is an active member of a local robotics club and owns an Android phone can play the flute.
Leslie practices calligraphy.
neutral
room(leslie)&(![X]:(room(X)=>(X='leslie')))& ((is_not_a_client_of_Costco(leslie))=>(((practices_calligraphy(leslie))&(enjoys_camping_and_organizing_outdoor_survival_workshops(leslie)))))& ((![X]:(room(X)=>(((is_not_an_active_member_of_a_local_robotics_club(X))|(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))))))<~>(watches_fantasy_movies(leslie)))& ((collects_rare_and_antique_scientific_instruments(leslie))=>(![X]:(anywhere(X)=>(((watches_fantasy_movies(X))=>(uses_an_ios_phone(X)))))))& (does_not_own_an_Android_phone(leslie))& (is_not_an_active_member_of_a_local_robotics_club(leslie))& (![X]:(room(X)=>(((writes_a_travel_blog(X))=>(does_not_play_video_games(X))))))& (![X]:(room(X)=>(((uses_an_ios_phone(X))=>(collects_rare_and_antique_scientific_instruments(X))))))& (enjoys_kayaking(leslie))& (enjoys_coding_in_Python(leslie))& (![X]:(anywhere(X)=>(((hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))<=>(writes_a_travel_blog(X))))))& (does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(leslie))& (uses_an_ios_phone(leslie))& (![X]:(anywhere(X)=>(((((is_an_active_member_of_a_local_robotics_club(X))&(owns_an_Android_phone(X))))=>(can_play_the_flute(X))))))& (is_a_drone_photographer(leslie))& (~(cannot_play_the_flute(leslie)))
room(leslie)&(![X]:(room(X)=>(X='leslie')))& practices_calligraphy(leslie)
[]
null
0.393369
Roberto is the only person in the room. “If someone neither hosts regular game nights featuring complex strategy games nor enjoys camping and organizing outdoor survival workshops then he/she maintains a personal blog focused on cybersecurity tips” unless “Roberto hosts regular game nights featuring complex strategy games”. “Roberto neither cannot play the piano nor does not maintain a personal blog focused on cybersecurity tips” if “everyone anywhere does not enjoy landscape photography or enjoys landscape photography”. Either “Roberto enjoys deep-sea diving and exploring underwater caves” or “Roberto enjoys camping and organizing outdoor survival workshops” but not both. If “Roberto enjoys camping and organizing outdoor survival workshops” then “everyone in the room does not enjoy landscape photography or enjoys landscape photography”. If “everyone outside the room enjoys deep-sea diving and exploring underwater caves or does not host regular game nights featuring complex strategy games” then “Roberto does not enjoy camping and organizing outdoor survival workshops”. “Only one person in the room enjoys camping and organizing outdoor survival workshops” unless “Roberto does not host regular game nights featuring complex strategy games”. Roberto enjoys camping and organizing outdoor survival workshops. Roberto does not enjoy deep-sea diving and exploring underwater caves. Everyone in the room who either does not host regular game nights featuring complex strategy games or hosts regular game nights featuring complex strategy games but not both neither does not maintain a personal blog focused on cybersecurity tips nor enjoys deep-sea diving and exploring underwater caves. Everyone in the room hosts regular game nights featuring complex strategy games and enjoys landscape photography.
Roberto enjoys deep-sea diving and exploring underwater caves.
contradiction
room(roberto)&(![X]:(room(X)=>(X='roberto')))& (~(hosts_regular_game_nights_featuring_complex_strategy_games(roberto))=>((![X]:((~((hosts_regular_game_nights_featuring_complex_strategy_games(X))|(enjoys_camping_and_organizing_outdoor_survival_workshops(X))))=>(maintains_a_personal_blog_focused_on_cybersecurity_tips(X))))))& ((![X]:(anywhere(X)=>(((enjoys_landscape_photography(X))|(does_not_enjoy_landscape_photography(X))))))=>(~((cannot_play_the_piano(roberto))|(does_not_maintain_a_personal_blog_focused_on_cybersecurity_tips(roberto)))))& ((enjoys_deep-sea_diving_and_exploring_underwater_caves(roberto))<~>(enjoys_camping_and_organizing_outdoor_survival_workshops(roberto)))& ((enjoys_camping_and_organizing_outdoor_survival_workshops(roberto))=>(![X]:(room(X)=>(((enjoys_landscape_photography(X))|(does_not_enjoy_landscape_photography(X)))))))& ((![X]:(~room(X)=>(((does_not_host_regular_game_nights_featuring_complex_strategy_games(X))|(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))))))=>(does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(roberto)))& (~(does_not_host_regular_game_nights_featuring_complex_strategy_games(roberto))=>(((?[X]:(room(X)&enjoys_camping_and_organizing_outdoor_survival_workshops(X)))&(![X,Y]:((room(X)&room(Y)&(enjoys_camping_and_organizing_outdoor_survival_workshops(X))&(enjoys_camping_and_organizing_outdoor_survival_workshops(Y)))=>(X=Y))))))& (enjoys_camping_and_organizing_outdoor_survival_workshops(roberto))& (does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(roberto))& (![X]:(room(X)=>(((((does_not_host_regular_game_nights_featuring_complex_strategy_games(X))<~>(hosts_regular_game_nights_featuring_complex_strategy_games(X))))=>(~((does_not_maintain_a_personal_blog_focused_on_cybersecurity_tips(X))|(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))))))))& (![X]:(room(X)=>(((hosts_regular_game_nights_featuring_complex_strategy_games(X))&(enjoys_landscape_photography(X))))))
room(roberto)&(![X]:(room(X)=>(X='roberto')))& enjoys_deep-sea_diving_and_exploring_underwater_caves(roberto)
[ "p8", "hypothesis" ]
% SZS status Unsatisfiable for 8749499629347307594255611 % SZS output start Proof for 8749499629347307594255611 52. ~predd(mary) [input p8] 55. predd(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 143. predd(mary) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 55] 243. ~predd(mary) [cnf transformation 52] 250. predd(mary) [cnf transformation 143] 254. 1 <=> predd(mary) [avatar definition] 297. ~1 [avatar split clause 243,254] 299. 1 [avatar split clause 250,254] 300. $false [avatar sat refutation 297,299] % SZS output end Proof for 8749499629347307594255611 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.269299
There is a room. Neither A tower leans significantly but never falls. nor Not all swans in one park are blue. if A bird does not tweet using morse code. or Mirrors do not fog permanently in one particular house. or both. If neither A tower leans significantly but never falls. nor Mirrors do not fog permanently in one particular house. then it is not the case that A tower does not lean significantly without falling. and A tower leans significantly but never falls. and A bird does not tweet using morse code. otherwise A bridge sings when it is crossed. and A bird does not tweet using morse code.. If Not all swans in one park are blue. or A bridge sings when it is crossed. or both then it is not the case that Mirrors do not fog permanently in one particular house. otherwise Mirrors do not fog permanently in one particular house.. A bird does not tweet using morse code.
A bird does not tweet using morse code. and A bridge sings when it is crossed..
entailment
(there_is_a_room)& ((((A_tower_leans_significantly_but_never_falls.)&(Not_all_swans_in_one_park_are_blue.)))<=>(((Mirrors_do_not_fog_permanently_in_one_particular_house.)&(A_tower_does_not_lean_significantly_without_falling.))))& ((~((All_swans_in_one_park_are_blue.)|(A_bridge_sings_when_it_is_crossed.)))=>(~((A_bird_tweets_using_morse_code.)|(A_tower_leans_significantly_but_never_falls.))))& ((~((A_tower_does_not_lean_significantly_without_falling.)|(A_bird_does_not_tweet_using_morse_code.)))=>(~((A_bridge_does_not_sing_when_it_is_crossed.)|(Mirrors_do_not_fog_permanently_in_one_particular_house.))))& ((((A_bird_does_not_tweet_using_morse_code.)|(Mirrors_do_not_fog_permanently_in_one_particular_house.)))=>(~((A_tower_leans_significantly_but_never_falls.)|(Not_all_swans_in_one_park_are_blue.))))& (((~((A_tower_leans_significantly_but_never_falls.)|(Mirrors_do_not_fog_permanently_in_one_particular_house.)))=>(~(((A_tower_does_not_lean_significantly_without_falling.)&(A_tower_leans_significantly_but_never_falls.)&(A_bird_does_not_tweet_using_morse_code.)))))&((~(~((A_tower_leans_significantly_but_never_falls.)|(Mirrors_do_not_fog_permanently_in_one_particular_house.))))=>(((A_bridge_sings_when_it_is_crossed.)&(A_bird_does_not_tweet_using_morse_code.)))))& ((((A_tower_leans_significantly_but_never_falls.)|(A_bird_does_not_tweet_using_morse_code.)))=>(~(((A_bridge_sings_when_it_is_crossed.)&(Mirrors_fog_permanently_in_one_particular_house.)&(A_bridge_does_not_sing_when_it_is_crossed.)))))& (((((Not_all_swans_in_one_park_are_blue.)|(A_bridge_sings_when_it_is_crossed.)))=>(~(Mirrors_do_not_fog_permanently_in_one_particular_house.)))&((~(((Not_all_swans_in_one_park_are_blue.)|(A_bridge_sings_when_it_is_crossed.))))=>(Mirrors_do_not_fog_permanently_in_one_particular_house.)))& (~(((A_tower_does_not_lean_significantly_without_falling.)|(Mirrors_fog_permanently_in_one_particular_house.)))=>(~((Mirrors_fog_permanently_in_one_particular_house.)|(A_bird_does_not_tweet_using_morse_code.))))& (A_bird_does_not_tweet_using_morse_code.)& (~(((A_tower_does_not_lean_significantly_without_falling.)&(A_tower_leans_significantly_but_never_falls.)&(A_bird_does_not_tweet_using_morse_code.))))& (((A_tower_does_not_lean_significantly_without_falling.)|(Mirrors_fog_permanently_in_one_particular_house.)))
(there_is_a_room)& ((A_bird_does_not_tweet_using_morse_code.)&(A_bridge_sings_when_it_is_crossed.))
[ "p0", "p4", "p5", "p7", "p9", "hypothesis" ]
% SZS status Unsatisfiable for 5030158646992931267964246 % SZS output start Proof for 5030158646992931267964246 44. there_is_a_room [input p0] 48. (~propositionc | ~propositiona) => ~(~propositionb | propositiond) [input p4] 49. (~~(~propositionc | propositiond) => (~propositiona & propositione)) & (~(~propositionc | propositiond) => ~(~propositiona & propositiond & ~propositiond)) [input p5] 51. (~(propositione | ~propositionb) => ~propositionc) & ((propositione | ~propositionb) => propositionc) [input p7] 53. ~propositiona [input p9] 56. ~(propositione & ~propositiona & there_is_a_room) [input hypothesis] 57. ((~propositionc | propositiond) => (~propositiona & propositione)) & (~(~propositionc | propositiond) => ~(~propositiona & propositiond & ~propositiond)) [flattening 49] 134. (propositionb & ~propositiond) | (propositionc & propositiona) [ennf transformation 48] 135. ((~propositiona & propositione) | (propositionc & ~propositiond)) & ((propositiona | ~propositiond | propositiond) | (~propositionc | propositiond)) [ennf transformation 57] 136. ((~propositiona & propositione) | (propositionc & ~propositiond)) & (propositiona | ~propositiond | propositiond | ~propositionc | propositiond) [flattening 135] 139. (~propositionc | (propositione | ~propositionb)) & (propositionc | (~propositione & propositionb)) [ennf transformation 51] 140. (~propositionc | propositione | ~propositionb) & (propositionc | (~propositione & propositionb)) [flattening 139] 144. ~propositione | propositiona | ~there_is_a_room [ennf transformation 56] 228. there_is_a_room [cnf transformation 44] 239. propositionb | propositiona [cnf transformation 134] 243. propositione | propositionc [cnf transformation 136] 250. ~propositionc | propositione | ~propositionb [cnf transformation 140] 253. ~propositiona [cnf transformation 53] 256. ~propositione | propositiona | ~there_is_a_room [cnf transformation 144] 261. 1 <=> propositionc [avatar definition] 269. 3 <=> propositionb [avatar definition] 277. 4 <=> propositione [avatar definition] 282. 5 <=> propositiona [avatar definition] 289. 5 | 3 [avatar split clause 239,269,282] 294. 1 | 4 [avatar split clause 243,277,261] 296. ~3 | 4 | ~1 [avatar split clause 250,261,277,269] 300. ~5 [avatar split clause 253,282] 302. ~propositione | propositiona [subsumption resolution 256,228] 303. 5 | ~4 [avatar split clause 302,277,282] 304. $false [avatar sat refutation 289,294,296,300,303] % SZS output end Proof for 5030158646992931267964246 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.292515
Ilene, Jerry, Barbara, Lawrence are the only persons in the room. All curious persons are old. Everyone in the room is not strong if they is a humble person. Someone who is a happy calm person and is a humble person is quieter than someone who is a humble person. Everyone in the room is a generous person. All patient persons are funny. Everyone in the room is not a generous old kind funny person if they is funny. All happy persons are creative. All patient persons are happy. All creative persons are kind. All kind persons are old.
Ilene is patient.
contradiction
room(ilene)&room(jerry)&room(barbara)&room(lawrence)&(![X]:(room(X)=>(X='ilene'|X='jerry'|X='barbara'|X='lawrence')))& (![X]:(curious(X)=>old(X)))& (![X]:(room(X)=>(((humble(X)&person(X))=>(~strong(X))))))& (?[X,Y]:((((happy(X)&calm(X)&person(X))&(humble(X)&person(X))))&(humble(Y)&person(Y))&(quieter(X,Y))))& ((?[X,Y]:(room(X)&room(Y)&(strong(X)&curious(X)&creative(X)&happy(X)&person(X)&strong(Y)&curious(Y)&creative(Y)&happy(Y)&person(Y))&(X!=Y))))& (![X]:(room(X)=>(generous(X)&person(X))))& (![X]:(anywhere(X)=>(((quiet(X))=>(old(X))))))& (![X]:(room(X)=>(((generous(X))<=(old(X))))))& (![X]:(patient(X)=>funny(X)))& (?[X,Y]:((((kind(X))|(generous(X))))&(((curious(Y)&quiet(Y)&happy(Y)&strong(Y)&patient(Y)&funny(Y)&person(Y))|(~(patient(Y)&person(Y)))))&(quieter(X,Y))))& (![X]:(room(X)=>(((funny(X))=>(~(generous(X)&old(X)&kind(X)&funny(X)&person(X)))))))& (?[X]:(anywhere(X)&(brave(X)&strong(X)&funny(X)&person(X))))& (![X]:(strong(X)=>generous(X)))& (![X]:(room(X)=>(((strong(X))=>(~(brave(X)&curious(X)&person(X)))))))& (![X]:(anywhere(X)=>(((~(brave(X)&curious(X)&person(X)))=>(generous(X)&person(X))))))& (![X]:(happy(X)=>creative(X)))& (![X]:(room(X)=>(((patient(X))=>(patient(X)&person(X))))))& (![X]:(patient(X)=>happy(X)))& (![X]:(~room(X)=>(((((generous(X)&happy(X)&person(X))|(~old(X))))=>(((tall(X)&happy(X)&patient(X)&person(X))|(quiet(X)&person(X))))))))& (?[X,Y]:((strong(X)&person(X))&(~(quiet(Y)&brave(Y)&creative(Y)&person(Y)))&(quieter(X,Y))))& (![X]:(curious(X)=>quiet(X)))& (![X]:(~room(X)=>(((happy(X))=>(humble(X))))))& (![X]:(creative(X)=>kind(X)))& (![X]:(kind(X)=>old(X)))
room(ilene)&room(jerry)&room(barbara)&room(lawrence)&(![X]:(room(X)=>(X='ilene'|X='jerry'|X='barbara'|X='lawrence')))& patient(ilene)
[ "p0", "p5", "p8", "p10", "p15", "p17", "p22", "p23", "hypothesis" ]
% SZS status Unsatisfiable for 2960986645196277514595911 % SZS output start Proof for 2960986645196277514595911 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 49. ! [X0] : (room(X0) => (person(X0) & generous(X0))) [input p5] 52. ! [X0] : (patient(X0) => funny(X0)) [input p8] 54. ! [X0] : (room(X0) => (funny(X0) => ~(person(X0) & funny(X0) & kind(X0) & old(X0) & generous(X0)))) [input p10] 59. ! [X0] : (happy(X0) => creative(X0)) [input p15] 61. ! [X0] : (patient(X0) => happy(X0)) [input p17] 66. ! [X0] : (creative(X0) => kind(X0)) [input p22] 67. ! [X0] : (kind(X0) => old(X0)) [input p23] 68. patient(mary) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 142. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 143. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 142] 147. ! [X0] : ((person(X0) & generous(X0)) | ~room(X0)) [ennf transformation 49] 152. ! [X0] : (funny(X0) | ~patient(X0)) [ennf transformation 52] 155. ! [X0] : (((~person(X0) | ~funny(X0) | ~kind(X0) | ~old(X0) | ~generous(X0)) | ~funny(X0)) | ~room(X0)) [ennf transformation 54] 156. ! [X0] : (~person(X0) | ~funny(X0) | ~kind(X0) | ~old(X0) | ~generous(X0) | ~funny(X0) | ~room(X0)) [flattening 155] 162. ! [X0] : (creative(X0) | ~happy(X0)) [ennf transformation 59] 165. ! [X0] : (happy(X0) | ~patient(X0)) [ennf transformation 61] 172. ! [X0] : (kind(X0) | ~creative(X0)) [ennf transformation 66] 173. ! [X0] : (old(X0) | ~kind(X0)) [ennf transformation 67] 174. patient(mary) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 68] 175. patient(mary) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 174] 271. room(mary) [cnf transformation 143] 298. ~room(X0) | generous(X0) [cnf transformation 147] 299. ~room(X0) | person(X0) [cnf transformation 147] 302. ~patient(X0) | funny(X0) [cnf transformation 152] 312. ~person(X0) | ~funny(X0) | ~kind(X0) | ~old(X0) | ~generous(X0) | ~funny(X0) | ~room(X0) [cnf transformation 156] 326. ~happy(X0) | creative(X0) [cnf transformation 162] 329. ~patient(X0) | happy(X0) [cnf transformation 165] 343. ~creative(X0) | kind(X0) [cnf transformation 172] 344. ~kind(X0) | old(X0) [cnf transformation 173] 350. patient(mary) [cnf transformation 175] 352. ~person(X0) | ~funny(X0) | ~kind(X0) | ~old(X0) | ~generous(X0) | ~room(X0) [duplicate literal removal 312] 391. ~funny(X0) | ~kind(X0) | ~old(X0) | ~generous(X0) | ~room(X0) [subsumption resolution 352,299] 392. ~kind(X0) | ~funny(X0) | ~old(X0) | ~room(X0) [subsumption resolution 391,298] 427. funny(mary) [resolution 302,350] 435. happy(mary) [resolution 329,350] 442. creative(mary) [resolution 435,326] 585. kind(mary) [resolution 442,343] 590. ~funny(mary) | ~old(mary) | ~room(mary) [resolution 585,392] 591. old(mary) [resolution 585,344] 592. ~old(mary) | ~room(mary) [subsumption resolution 590,427] 593. ~old(mary) [subsumption resolution 592,271] 594. $false [subsumption resolution 591,593] % SZS output end Proof for 2960986645196277514595911 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.125577
Elizabeth, Josephine, Raul, Joann, Jimmy are the only persons in the room. If “everyone outside the room does not enjoy snowboarding or is a dedicated volunteer for local community service projects” then “no one in the room who does not enjoy snowboarding collects antique clocks”. If “everyone in the room participates in long-distance cycling events across the country” then “everyone in the room plays video games if they practices zumba”. “It is not the case that “someone in the room cannot play the flute”” unless “someone in the room is a drone photographer, practices zumba and has a vast collection of first-edition science fiction novels”. If “everyone in the room does not play video games or participates in long-distance cycling events across the country” then “Raul has a vast collection of first-edition science fiction novels”. If “someone outside the room is a culinary enthusiast who experiments with international cuisines” then “Elizabeth who does not watche fantasy movies participates in long-distance cycling events across the country”. If someone enjoys snowboarding then he/she participates in long-distance cycling events across the country and vice versa. Elizabeth enjoys skydiving. Someone in the room does enjoy trail running. Everyone in the room who is a scotch connoisseur makes intricate hand-cut paper art for exhibitions. Everyone anywhere has a vast collection of first-edition science fiction novels if and only if they enjoys skydiving. At least one person in the room watches fantasy movies, plays video games and creates bespoke furniture pieces from reclaimed wood. Everyone in the room hosts a YouTube channel dedicated to art tutorials if they enjoys snowboarding. Someone in the room hosts a popular podcast about emerging technologies. Only one person in the room has a vast collection of first-edition science fiction novels. Everyone in the room hosts a popular podcast about emerging technologies if and only if they hosts a YouTube channel dedicated to art tutorials, can play the flute and knows morse code. Only one person in the room enjoys coding in Python. Everyone anywhere who is a drone photographer either hosts a YouTube channel dedicated to art tutorials or is a culinary enthusiast who experiments with international cuisines but not both. At least one person in the room is a drone photographer. Everyone in the room does not make intricate hand-cut paper art for exhibitions or is a scotch connoisseur.
Joann enjoys skydiving.
contradiction
room(elizabeth)&room(josephine)&room(raul)&room(joann)&room(jimmy)&(![X]:(room(X)=>(X='elizabeth'|X='josephine'|X='raul'|X='joann'|X='jimmy')))& ((![X]:(~room(X)=>(((is_a_dedicated_volunteer_for_local_community_service_projects(X))|(does_not_enjoy_snowboarding(X))))))=>(~?[X]:(room(X)=>(((does_not_enjoy_snowboarding(X))=>(collects_antique_clocks(X)))))))& ((![X]:(room(X)=>(participates_in_long-distance_cycling_events_across_the_country(X))))=>(![X]:(room(X)=>(((practices_zumba(X))=>(plays_video_games(X)))))))& (~(?[X]:(room(X)&(((is_a_drone_photographer(X))&(practices_zumba(X))&(has_a_vast_collection_of_first-edition_science_fiction_novels(X))))))=>(~(?[X]:(room(X)&(cannot_play_the_flute(X))))))& ((![X]:(room(X)=>(((participates_in_long-distance_cycling_events_across_the_country(X))|(does_not_play_video_games(X))))))=>(has_a_vast_collection_of_first-edition_science_fiction_novels(raul)))& ((?[X]:(~room(X)&(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))=>((does_not_watche_fantasy_movies(elizabeth))&(participates_in_long-distance_cycling_events_across_the_country(elizabeth))))& ((![X]:((enjoys_snowboarding(X))<=>(participates_in_long-distance_cycling_events_across_the_country(X)))))& (enjoys_skydiving(elizabeth))& (?[X]:(room(X)&(does_enjoy_trail_running(X))))& (![X]:(room(X)=>(((is_a_scotch_connoisseur(X))=>(makes_intricate_hand-cut_paper_art_for_exhibitions(X))))))& (![X]:(anywhere(X)=>(((has_a_vast_collection_of_first-edition_science_fiction_novels(X))<=>(enjoys_skydiving(X))))))& (((?[X]:(room(X)&((watches_fantasy_movies(X))&(plays_video_games(X))&(creates_bespoke_furniture_pieces_from_reclaimed_wood(X)))))))& (![X]:(room(X)=>(((enjoys_snowboarding(X))=>(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))))& (?[X]:(room(X)&(hosts_a_popular_podcast_about_emerging_technologies(X))))& (((?[X]:(room(X)&has_a_vast_collection_of_first-edition_science_fiction_novels(X)))&(![X,Y]:((room(X)&room(Y)&(has_a_vast_collection_of_first-edition_science_fiction_novels(X))&(has_a_vast_collection_of_first-edition_science_fiction_novels(Y)))=>(X=Y)))))& (![X]:(room(X)=>(((hosts_a_popular_podcast_about_emerging_technologies(X))<=>(((hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))&(can_play_the_flute(X))&(knows_morse_code(X))))))))& (((?[X]:(room(X)&enjoys_coding_in_Python(X)))&(![X,Y]:((room(X)&room(Y)&(enjoys_coding_in_Python(X))&(enjoys_coding_in_Python(Y)))=>(X=Y)))))& (![X]:(anywhere(X)=>(((is_a_drone_photographer(X))=>(((hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))<~>(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))))))))& (((?[X]:(room(X)&is_a_drone_photographer(X)))))& (![X]:(room(X)=>(((is_a_scotch_connoisseur(X))|(does_not_make_intricate_hand-cut_paper_art_for_exhibitions(X))))))
room(elizabeth)&room(josephine)&room(raul)&room(joann)&room(jimmy)&(![X]:(room(X)=>(X='elizabeth'|X='josephine'|X='raul'|X='joann'|X='jimmy')))& enjoys_skydiving(joann)
[ "b4", "b42", "p0", "p7", "p10", "p14", "hypothesis" ]
% SZS status Unsatisfiable for 2095958429772142653242297 % SZS output start Proof for 2095958429772142653242297 5. ! [X0] : anywhere(X0) [input b4] 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 51. prede(mary) [input p7] 54. ! [X0] : (anywhere(X0) => (predj(X0) <=> prede(X0))) [input p10] 58. ! [X0,X1] : ((predj(X1) & predj(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (predj(X0) & room(X0)) [input p14] 64. prede(alice) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 68. ! [X0,X1] : ((predj(X1) & predj(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (predj(X2) & room(X2)) [rectify 58] 149. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 150. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 149] 157. ! [X0] : ((predj(X0) <=> prede(X0)) | ~anywhere(X0)) [ennf transformation 54] 160. ! [X0,X1] : (X0 = X1 | (~predj(X1) | ~predj(X0) | ~room(X1) | ~room(X0))) & ? [X2] : (predj(X2) & room(X2)) [ennf transformation 68] 161. ! [X0,X1] : (X0 = X1 | ~predj(X1) | ~predj(X0) | ~room(X1) | ~room(X0)) & ? [X2] : (predj(X2) & room(X2)) [flattening 160] 169. prede(alice) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 64] 170. prede(alice) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 169] 183. ! [X0] : (((predj(X0) | ~prede(X0)) & (prede(X0) | ~predj(X0))) | ~anywhere(X0)) [nnf transformation 157] 188. ? [X2] : (predj(X2) & room(X2)) => (predj(sK6) & room(sK6)) [choice axiom] 189. ! [X0,X1] : (X0 = X1 | ~predj(X1) | ~predj(X0) | ~room(X1) | ~room(X0)) & (predj(sK6) & room(sK6)) [skolemisation 161,188] 197. anywhere(X0) [cnf transformation 5] 254. mary != alice [cnf transformation 43] 278. room(mary) [cnf transformation 150] 281. room(alice) [cnf transformation 150] 297. prede(mary) [cnf transformation 51] 301. predj(X0) | ~prede(X0) | ~anywhere(X0) [cnf transformation 183] 309. ~predj(X1) | X0 = X1 | ~predj(X0) | ~room(X1) | ~room(X0) [cnf transformation 189] 328. prede(alice) [cnf transformation 170] 392. ~prede(X0) | predj(X0) [subsumption resolution 301,197] 408. predj(mary) [resolution 392,297] 409. predj(alice) [resolution 392,328] 479. mary = X0 | ~predj(X0) | ~room(mary) | ~room(X0) [resolution 309,408] 483. ~predj(X0) | mary = X0 | ~room(X0) [subsumption resolution 479,278] 803. mary = alice | ~room(alice) [resolution 483,409] 804. ~room(alice) [subsumption resolution 803,254] 805. $false [subsumption resolution 804,281] % SZS output end Proof for 2095958429772142653242297 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.032 s % ------------------------------ % ------------------------------
0.214493
Jane, Christopher are the only persons in the room. Jane who is creative or is a humble person or both is a brave person or is a kind person or both. Jane is the richest in the room. Everyone in the room is a calm person. Everyone anywhere is tall, is a funny person or is a patient person. Everyone in the room is old. Everyone outside the room is a quiet person. Everyone in the room is patient. All kind persons are humble. Christopher and Jane are respectively generous and calm. All funny persons are tall. Everyone in the room is wise. If someone is a patient person then he/she is a wise person or is a strong person or both and vice versa. Everyone in the room is a curious person.
It is not the case that “it is not the case that “it is not the case that “more than one person in the room is not tall, is a kind person and is a old person”””.
neutral
room(jane)&room(christopher)&(![X]:(room(X)=>(X='jane'|X='christopher')))& ((((creative(jane))|(humble(jane)&person(jane))))&(((brave(jane)&person(jane))|(kind(jane)&person(jane)))))& (![X]:((room(X)&(X!=jane))=>richer(X,jane)))& (![X]:(room(X)=>(calm(X)&person(X))))& (![X]:(anywhere(X)=>(((tall(X))|(funny(X)&person(X))|(patient(X)&person(X))))))& (![X]:(room(X)=>(old(X))))& (![X]:(~room(X)=>(quiet(X)&person(X))))& (![X]:(room(X)=>(patient(X))))& (![X]:(kind(X)=>humble(X)))& ((generous(christopher))&(calm(jane)))& (![X]:(funny(X)=>tall(X)))& (![X]:(room(X)=>(wise(X))))& ((![X]:((patient(X)&person(X))<=>(((wise(X)&person(X))|(strong(X)&person(X)))))))& (![X]:(room(X)=>(curious(X)&person(X))))
room(jane)&room(christopher)&(![X]:(room(X)=>(X='jane'|X='christopher')))& ~(~(~((?[X,Y]:(room(X)&room(Y)&(((~tall(X))&(kind(X)&person(X))&(old(X)&person(X)))&((~tall(Y))&(kind(Y)&person(Y))&(old(Y)&person(Y))))&(X!=Y))))))
[]
null
0.26615
Gladys, Jeffrey are the only persons in the room. If “it is not the case that “Jeffrey practices graffiti art”” then “it is not the case that “Gladys is louder than Gary””. Only one person in the room practices graffiti art and is louder than Gary. It is not the case that “Gladys practices graffiti art”. Jeffrey does practice yoga. Someone who does not practice graffiti art is louder than someone who does practice yoga. Jeffrey practices graffiti art. It is not the case that “it is true that “it is not the case that “Jeffrey does practice yoga”””. Someone who does not practice graffiti art is louder than someone who practices graffiti art. Someone who is louder than Gary is louder than someone who does practice yoga. Gladys is louder than Gary. Only one person outside the room does not practice graffiti art.
Gladys does practice yoga.
neutral
room(gladys)&room(jeffrey)&(![X]:(room(X)=>(X='gladys'|X='jeffrey')))& ((~(practices_graffiti_art(jeffrey)))=>(~(louder(gary,gladys))))& (((?[X]:(room(X)&((practices_graffiti_art(X))&(louder(gary,X)))))&(![X,Y]:((room(X)&room(Y)&(((practices_graffiti_art(X))&(louder(gary,X))))&(((practices_graffiti_art(Y))&(louder(gary,Y)))))=>(X=Y)))))& (~(practices_graffiti_art(gladys)))& (does_practice_yoga(jeffrey))& (?[X,Y]:((does_not_practice_graffiti_art(X))&(does_practice_yoga(Y))&(louder(X,Y))))& (practices_graffiti_art(jeffrey))& (~(~(does_practice_yoga(jeffrey))))& (?[X,Y]:((does_not_practice_graffiti_art(X))&(practices_graffiti_art(Y))&(louder(X,Y))))& (?[X,Y]:((louder(gary,X))&(does_practice_yoga(Y))&(louder(X,Y))))& (louder(gary,gladys))& (((?[X]:(~room(X)&does_not_practice_graffiti_art(X)))&(![X,Y]:((~room(X)&~room(Y)&(does_not_practice_graffiti_art(X))&(does_not_practice_graffiti_art(Y)))=>(X=Y)))))
room(gladys)&room(jeffrey)&(![X]:(room(X)=>(X='gladys'|X='jeffrey')))& does_practice_yoga(gladys)
[]
null
0.626481
There is a room. Everyone in the room practices archery or does not have a specialized collection of handmade artisan pottery if everyone anywhere does not write a travel blog or practices graffiti art. If everyone in the room does not bake bread at home or bakes bread at home then everyone in the room does not bake bread at home only if they hosts regular game nights featuring complex strategy games. Everyone in the room hosts regular game nights featuring complex strategy games, develops open-source software projects in their free time and enjoys wildlife photography only if they enjoys deep-sea diving and exploring underwater caves if someone in the room enjoys wildlife photography. If not everyone in the room enjoys kayaking or is not a certified yoga instructor teaching classes weekly then everyone anywhere who enjoys kayaking hosts regular game nights featuring complex strategy games otherwise not everyone in the room who hosts regular game nights featuring complex strategy games enjoys kayaking.
Everyone in the room enjoys kayaking.
contradiction
(there_is_a_room)& ((![X]:(anywhere(X)=>(((practices_graffiti_art(X))|(does_not_write_a_travel_blog(X))))))=>(![X]:(room(X)=>(((does_not_have_a_specialized_collection_of_handmade_artisan_pottery(X))|(practices_archery(X)))))))& ((![X]:(room(X)=>(((bakes_bread_at_home(X))|(does_not_bake_bread_at_home(X))))))=>(![X]:(room(X)=>(((hosts_regular_game_nights_featuring_complex_strategy_games(X))<=(does_not_bake_bread_at_home(X)))))))& ((?[X]:(room(X)&(enjoys_wildlife_photography(X))))=>(![X]:(room(X)=>(((enjoys_deep-sea_diving_and_exploring_underwater_caves(X))<=(((hosts_regular_game_nights_featuring_complex_strategy_games(X))&(develops_open-source_software_projects_in_their_free_time(X))&(enjoys_wildlife_photography(X)))))))))& (((~![X]:(room(X)=>(((is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))|(enjoys_kayaking(X))))))=>(![X]:(anywhere(X)=>(((enjoys_kayaking(X))=>(hosts_regular_game_nights_featuring_complex_strategy_games(X)))))))&((~(~![X]:(room(X)=>(((is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))|(enjoys_kayaking(X)))))))=>(~![X]:(room(X)=>(((hosts_regular_game_nights_featuring_complex_strategy_games(X))=>(enjoys_kayaking(X))))))))& ((~![X]:(room(X)=>(((enjoys_wildlife_photography(X))|(does_not_enjoy_wildlife_photography(X))))))=>(~?[X]:(room(X)=>(((does_not_enjoy_wildlife_photography(X))=>(((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))&(collects_foreign_coins(X))&(bakes_bread_at_home(X)))))))))& ((~![X]:(room(X)=>(((does_not_practice_archery(X))|(does_not_write_a_travel_blog(X))))))=>(![X]:(room(X)=>(((practices_archery(X))<=(does_not_write_a_travel_blog(X)))))))& (((![X]:(room(X)=>(((is_a_Linux_enthusiast(X))|(is_not_a_Linux_enthusiast(X))))))=>(![X]:(room(X)=>(((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))=>(((is_a_Linux_enthusiast(X))<~>(is_a_coffee_connoisseur(X)))))))))&((~(![X]:(room(X)=>(((is_a_Linux_enthusiast(X))|(is_not_a_Linux_enthusiast(X)))))))=>(~?[X]:(room(X)=>(((((is_a_Linux_enthusiast(X))<~>(is_a_coffee_connoisseur(X))))=>(collects_foreign_coins(X))))))))& ((![X]:(anywhere(X)=>(((bakes_bread_at_home(X))|(is_not_dedicated_to_sustainable_living_and_zero-waste_practices(X))))))=>(![X]:(room(X)=>(((is_not_dedicated_to_sustainable_living_and_zero-waste_practices(X))=>(is_a_certified_yoga_instructor_teaching_classes_weekly(X)))))))& (((![X]:(room(X)=>(((bakes_bread_at_home(X))|(does_not_develop_open-source_software_projects_in_their_free_time(X))))))=>(![X]:(room(X)=>(((does_not_develop_open-source_software_projects_in_their_free_time(X))=>(is_a_client_of_Meta(X)))))))&((~(![X]:(room(X)=>(((bakes_bread_at_home(X))|(does_not_develop_open-source_software_projects_in_their_free_time(X)))))))=>((![X]:((((enjoys_kayaking(X))&(develops_open-source_software_projects_in_their_free_time(X))))=>(is_a_craft_beer_aficionado(X)))))))& (![X]:(~room(X)=>(((is_a_client_of_Meta(X))=>(writes_a_travel_blog(X))))))& (![X]:(room(X)=>(((writes_a_travel_blog(X))=>(has_completed_a_triathlon(X))))))& (![X]:(room(X)=>(((has_completed_a_triathlon(X))|(does_not_host_regular_game_nights_featuring_complex_strategy_games(X))))))& (![X]:(room(X)=>(((practices_graffiti_art(X))<=(does_not_host_regular_game_nights_featuring_complex_strategy_games(X))))))& (((?[X]:(~room(X)&((has_a_vast_collection_of_first-edition_science_fiction_novels(X))<~>(writes_a_travel_blog(X)))))&(![X,Y]:((~room(X)&~room(Y)&(((has_a_vast_collection_of_first-edition_science_fiction_novels(X))<~>(writes_a_travel_blog(X))))&(((has_a_vast_collection_of_first-edition_science_fiction_novels(Y))<~>(writes_a_travel_blog(Y)))))=>(X=Y)))))& (![X]:(room(X)=>(((is_a_coffee_connoisseur(X))|(does_not_collect_foreign_coins(X))))))& (?[X]:(room(X)&(((has_a_specialized_collection_of_handmade_artisan_pottery(X))|(collects_classic_novels(X))|(practices_calligraphy(X))))))& (![X]:(room(X)=>(((enjoys_deep-sea_diving_and_exploring_underwater_caves(X))<=(((develops_open-source_software_projects_in_their_free_time(X))<~>(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))))))))& (![X]:(room(X)=>(((practices_archery(X))<=(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))))))& (![X]:(room(X)=>(((practices_archery(X))|(does_not_have_a_specialized_collection_of_handmade_artisan_pottery(X))))))& (![X]:(room(X)=>(((enjoys_wildlife_photography(X))<=(does_not_have_a_specialized_collection_of_handmade_artisan_pottery(X))))))& (![X]:(room(X)=>(((enjoys_wildlife_photography(X))=>(((has_completed_a_triathlon(X))<~>(has_a_tattoo(X))))))))& (((?[X]:(room(X)&plays_video_games(X)))&(![X,Y]:((room(X)&room(Y)&(plays_video_games(X))&(plays_video_games(Y)))=>(X=Y)))))& (((?[X]:(room(X)&((hosts_regular_game_nights_featuring_complex_strategy_games(X))&(develops_open-source_software_projects_in_their_free_time(X))&(enjoys_wildlife_photography(X)))))&(![X,Y]:((room(X)&room(Y)&(((hosts_regular_game_nights_featuring_complex_strategy_games(X))&(develops_open-source_software_projects_in_their_free_time(X))&(enjoys_wildlife_photography(X))))&(((hosts_regular_game_nights_featuring_complex_strategy_games(Y))&(develops_open-source_software_projects_in_their_free_time(Y))&(enjoys_wildlife_photography(Y)))))=>(X=Y)))))& (![X]:(room(X)=>(((practices_calligraphy(X))=>(((regularly_contributes_to_tech_forums_and_online_communities(X))<~>(develops_open-source_software_projects_in_their_free_time(X))))))))
(there_is_a_room)& ![X]:(room(X)=>(enjoys_kayaking(X)))
[ "p4", "hypothesis" ]
% SZS status Unsatisfiable for 8116909726217569909915524 % SZS output start Proof for 8116909726217569909915524 48. (~~! [X0] : (room(X0) => (predk(X0) | ~predc(X0))) => ~! [X0] : (room(X0) => (predh(X0) => predk(X0)))) & (~! [X0] : (room(X0) => (predk(X0) | ~predc(X0))) => ! [X0] : (anywhere(X0) => (predk(X0) => predh(X0)))) [input p4] 69. ! [X0] : (room(X0) => predk(X0)) & there_is_a_room [input hypothesis] 73. (~~! [X0] : (room(X0) => (predk(X0) | ~predc(X0))) => ~! [X1] : (room(X1) => (predh(X1) => predk(X1)))) & (~! [X2] : (room(X2) => (predk(X2) | ~predc(X2))) => ! [X3] : (anywhere(X3) => (predk(X3) => predh(X3)))) [rectify 48] 74. (! [X0] : (room(X0) => (predk(X0) | ~predc(X0))) => ~! [X1] : (room(X1) => (predh(X1) => predk(X1)))) & (~! [X2] : (room(X2) => (predk(X2) | ~predc(X2))) => ! [X3] : (anywhere(X3) => (predk(X3) => predh(X3)))) [flattening 73] 90. ! [X0] : (room(X0) => predk(X0)) [pure predicate removal 69] 168. (? [X1] : ((~predk(X1) & predh(X1)) & room(X1)) | ? [X0] : ((~predk(X0) & predc(X0)) & room(X0))) & (! [X3] : ((predh(X3) | ~predk(X3)) | ~anywhere(X3)) | ! [X2] : ((predk(X2) | ~predc(X2)) | ~room(X2))) [ennf transformation 74] 169. (? [X1] : (~predk(X1) & predh(X1) & room(X1)) | ? [X0] : (~predk(X0) & predc(X0) & room(X0))) & (! [X3] : (predh(X3) | ~predk(X3) | ~anywhere(X3)) | ! [X2] : (predk(X2) | ~predc(X2) | ~room(X2))) [flattening 168] 204. ! [X0] : (predk(X0) | ~room(X0)) [ennf transformation 90] 205. ? [X0] : (~predk(X0) & predc(X0) & room(X0)) | ~sP0 [predicate definition introduction] 206. (? [X1] : (~predk(X1) & predh(X1) & room(X1)) | sP0) & (! [X3] : (predh(X3) | ~predk(X3) | ~anywhere(X3)) | ! [X2] : (predk(X2) | ~predc(X2) | ~room(X2))) [definition folding 169,205] 215. ? [X0] : (~predk(X0) & predc(X0) & room(X0)) | ~sP0 [nnf transformation 205] 216. ? [X0] : (~predk(X0) & predc(X0) & room(X0)) => (~predk(sK3) & predc(sK3) & room(sK3)) [choice axiom] 217. (~predk(sK3) & predc(sK3) & room(sK3)) | ~sP0 [skolemisation 215,216] 218. (? [X0] : (~predk(X0) & predh(X0) & room(X0)) | sP0) & (! [X1] : (predh(X1) | ~predk(X1) | ~anywhere(X1)) | ! [X2] : (predk(X2) | ~predc(X2) | ~room(X2))) [rectify 206] 219. ? [X0] : (~predk(X0) & predh(X0) & room(X0)) => (~predk(sK4) & predh(sK4) & room(sK4)) [choice axiom] 220. ((~predk(sK4) & predh(sK4) & room(sK4)) | sP0) & (! [X1] : (predh(X1) | ~predk(X1) | ~anywhere(X1)) | ! [X2] : (predk(X2) | ~predc(X2) | ~room(X2))) [skolemisation 218,219] 334. room(sK3) | ~sP0 [cnf transformation 217] 336. ~predk(sK3) | ~sP0 [cnf transformation 217] 338. room(sK4) | sP0 [cnf transformation 220] 340. ~predk(sK4) | sP0 [cnf transformation 220] 386. ~room(X0) | predk(X0) [cnf transformation 204] 423. 9 <=> sP0 [avatar definition] 427. 10 <=> predk(sK3) [avatar definition] 429. ~predk(sK3) <- (~10) [avatar component clause 427] 430. ~9 | ~10 [avatar split clause 336,427,423] 437. 12 <=> room(sK3) [avatar definition] 439. room(sK3) <- (12) [avatar component clause 437] 440. ~9 | 12 [avatar split clause 334,437,423] 442. 13 <=> predk(sK4) [avatar definition] 445. 9 | ~13 [avatar split clause 340,442,423] 452. 15 <=> room(sK4) [avatar definition] 454. room(sK4) <- (15) [avatar component clause 452] 455. 9 | 15 [avatar split clause 338,452,423] 533. predk(sK4) <- (15) [resolution 386,454] 539. 13 | ~15 [avatar split clause 533,452,442] 540. predk(sK3) <- (12) [resolution 439,386] 541. $false <- (~10, 12) [subsumption resolution 540,429] 542. 10 | ~12 [avatar contradiction clause 541] 543. $false [avatar sat refutation 430,440,445,455,539,542] % SZS output end Proof for 8116909726217569909915524 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.025 s % ------------------------------ % ------------------------------
0.018678