premise
stringlengths
12
3.12k
hypothesis
stringlengths
10
236
label
stringclasses
3 values
premise_tptp
stringlengths
51
8k
hypothesis_tptp
stringlengths
41
352
proof_inputs
sequencelengths
0
20
proof
stringlengths
767
76.8k
rule_concentration
float64
0
0.72
Neal is the only person in the room. If “Neal enjoys fishing, enjoys coding in Python and has a vast collection of first-edition science fiction novels” then “Neal enjoys logic puzzles”. “Neal works on fridays” unless “Neal enjoys coding in Python”. If “Neal neither enjoys fishing nor enjoys coding in Python” then “Neal who enjoys deep-sea diving and exploring underwater caves enjoys kayaking”. “Neal writes and illustrates their own graphic novels” if “Neal enjoys fishing”. “At least one person outside the room is a certified scuba diver with advanced underwater photography skills” if “Neal practices pilates”. Neal is a certified scuba diver with advanced underwater photography skills. Neal enjoys fishing. Neal is a wine connoisseur. At least one person in the room enjoys deep-sea diving and exploring underwater caves. Neal who regularly goes on multi-day backpacking trips in national parks practices graffiti art. Neal either works on fridays or regularly goes on multi-day backpacking trips in national parks but not both. Neal enjoys deep-sea diving and exploring underwater caves. Someone in the room enjoys kayaking and exploring remote waterways.
Neal enjoys kayaking.
neutral
room(neal)&(![X]:(room(X)=>(X='neal')))& ((((enjoys_fishing(neal))&(enjoys_coding_in_Python(neal))&(has_a_vast_collection_of_first-edition_science_fiction_novels(neal))))=>(enjoys_logic_puzzles(neal)))& (~(enjoys_coding_in_Python(neal))=>(works_on_fridays(neal)))& ((~((enjoys_fishing(neal))|(enjoys_coding_in_Python(neal))))=>((enjoys_deep-sea_diving_and_exploring_underwater_caves(neal))&(enjoys_kayaking(neal))))& ((enjoys_fishing(neal))=>(writes_and_illustrates_their_own_graphic_novels(neal)))& ((practices_pilates(neal))=>(((?[X]:(~room(X)&is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))))& (is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(neal))& (enjoys_fishing(neal))& (is_a_wine_connoisseur(neal))& (((?[X]:(room(X)&enjoys_deep-sea_diving_and_exploring_underwater_caves(X)))))& ((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(neal))&(practices_graffiti_art(neal)))& (((works_on_fridays(neal))<~>(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(neal))))& (enjoys_deep-sea_diving_and_exploring_underwater_caves(neal))& (?[X]:(room(X)&(enjoys_kayaking_and_exploring_remote_waterways(X))))& (enjoys_logic_puzzles(neal))& (~(?[X]:(room(X)&(((enjoys_coding_in_Python(X))<~>(enjoys_deep-sea_diving_and_exploring_underwater_caves(X)))))))& (hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(neal))& (practices_graffiti_art(neal))& (~(practices_calligraphy(neal)))& (enjoys_coding_in_Python(neal))
room(neal)&(![X]:(room(X)=>(X='neal')))& enjoys_kayaking(neal)
[]
null
0.472564
There is a room. If 'everyone anywhere practices kickboxing or does not work as a freelance web developer specializing in e-commerce sites' then 'everyone anywhere practices kickboxing if they plays the drums and vice versa'. If 'everyone outside the room reads mystery novels or does not play the drums' then 'everyone in the room plays the drums if they reads mystery novels'. 'Everyone in the room does not train for and competes in international triathlons or is not not funny' if 'everyone in the room trains for and competes in international triathlons or does not collect vintage vinyl records' and vice versa. Either 'at least one person in the room is curious' or 'everyone outside the room does not practice kickboxing or does not collect vintage vinyl records' but not both. If 'it is true that 'everyone anywhere does not collect vintage vinyl records or is not strong'' then 'everyone in the room does not collect vintage vinyl records only if they does not read mystery novels'. If 'everyone anywhere does not practice kickboxing or is funny' then 'no strong person is funny'. Everyone in the room is a funny person or does not collect vintage vinyl records. Everyone in the room who collects vintage vinyl records trains for and competes in international triathlons. At least one person in the room practices kickboxing. All generous persons are strong. Everyone in the room who is funny collects vintage vinyl records. Everyone in the room who practices kickboxing is not a strong funny person. Everyone in the room is not strong. Everyone in the room is not a curious funny generous person if they collects vintage vinyl records. Everyone outside the room who reads mystery novels is a strong person. If someone is a strong person then he/she is strong. Everyone in the room who is a funny curious person collects vintage vinyl records. Everyone in the room reads mystery novels if they collects vintage vinyl records.
Not everyone in the room is a curious person.
neutral
(there_is_a_room)& ((![X]:(anywhere(X)=>(((does_not_work_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))|(practices_kickboxing(X))))))=>(![X]:(anywhere(X)=>(((practices_kickboxing(X))<=>(plays_the_drums(X)))))))& ((![X]:(~room(X)=>(((does_not_play_the_drums(X))|(reads_mystery_novels(X))))))=>(![X]:(room(X)=>(((reads_mystery_novels(X))=>(plays_the_drums(X)))))))& ((![X]:(room(X)=>(((does_not_collect_vintage_vinyl_records(X))|(trains_for_and_competes_in_international_triathlons(X))))))<=>(![X]:(room(X)=>(((~~funny(X))|(does_not_train_for_and_competes_in_international_triathlons(X)))))))& ((((?[X]:(room(X)&curious(X)))))<~>(![X]:(~room(X)=>(((does_not_collect_vintage_vinyl_records(X))|(does_not_practice_kickboxing(X)))))))& ((![X]:(anywhere(X)=>(((~strong(X))|(does_not_collect_vintage_vinyl_records(X))))))=>(![X]:(room(X)=>(((does_not_read_mystery_novels(X))<=(does_not_collect_vintage_vinyl_records(X)))))))& ((![X]:(anywhere(X)=>(((funny(X))|(does_not_practice_kickboxing(X))))))=>(~?[X]:(strong(X)=>funny(X))))& (![X]:(room(X)=>(((does_not_collect_vintage_vinyl_records(X))|(funny(X)&person(X))))))& (![X]:(room(X)=>(((collects_vintage_vinyl_records(X))=>(trains_for_and_competes_in_international_triathlons(X))))))& (((?[X]:(room(X)&practices_kickboxing(X)))))& (![X]:(generous(X)=>strong(X)))& (![X]:(room(X)=>(((funny(X))=>(collects_vintage_vinyl_records(X))))))& (![X]:(room(X)=>(((practices_kickboxing(X))=>(~(strong(X)&funny(X)&person(X)))))))& (![X]:(room(X)=>(~strong(X))))& (![X]:(room(X)=>(((collects_vintage_vinyl_records(X))=>(~(curious(X)&funny(X)&generous(X)&person(X)))))))& (![X]:(~room(X)=>(((reads_mystery_novels(X))=>(strong(X)&person(X))))))& ((![X]:((strong(X)&person(X))=>(strong(X)))))& (![X]:(room(X)=>(((funny(X)&curious(X)&person(X))=>(collects_vintage_vinyl_records(X))))))& (![X]:(room(X)=>(((collects_vintage_vinyl_records(X))=>(reads_mystery_novels(X))))))
(there_is_a_room)& ~![X]:(room(X)=>(curious(X)&person(X)))
[]
null
0.066322
Jean, Melissa, Angelica are the only persons in the room. If 'Melissa does enjoy mountain biking' then 'Angelica works as a freelance web developer specializing in e-commerce sites'. If 'Melissa is a client of Costco' then 'Angelica is a client of Costco'. Either 'Melissa is not a client of Costco' or 'it is not the case that 'Jean does enjoy mountain biking'' but not both. If 'Angelica does enjoy mountain biking' then 'Angelica uses an ios phone'. Everyone in the room is a client of Costco if they does not use an ios phone and does enjoy mountain biking. Jean does enjoy mountain biking. It is not the case that 'Melissa makes homemade pastries'. Angelica is a client of Costco. If someone is a client of Costco then he/she does enjoy mountain biking. It is not the case that 'Jean is a client of Costco'.
Angelica works as a freelance web developer specializing in e-commerce sites.
neutral
room(jean)&room(melissa)&room(angelica)&(![X]:(room(X)=>(X='jean'|X='melissa'|X='angelica')))& ((does_enjoy_mountain_biking(melissa))=>(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(angelica)))& ((is_a_client_of_Costco(melissa))=>(is_a_client_of_Costco(angelica)))& ((is_not_a_client_of_Costco(melissa))<~>(~(does_enjoy_mountain_biking(jean))))& ((does_enjoy_mountain_biking(angelica))=>(uses_an_ios_phone(angelica)))& (![X]:(room(X)=>(((((does_not_use_an_ios_phone(X))&(does_enjoy_mountain_biking(X))))=>(is_a_client_of_Costco(X))))))& (does_enjoy_mountain_biking(jean))& (~(makes_homemade_pastries(melissa)))& (is_a_client_of_Costco(angelica))& ((![X]:((is_a_client_of_Costco(X))=>(does_enjoy_mountain_biking(X)))))& (~(is_a_client_of_Costco(jean)))
room(jean)&room(melissa)&room(angelica)&(![X]:(room(X)=>(X='jean'|X='melissa'|X='angelica')))& works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(angelica)
[]
null
0.136993
Audrey, Marion, Patricia are the only persons in the room. “Someone in the room is a sibling of Terri” unless “it is true that “Patricia and Terri hate each other””. “Marion and Terri like each other” if “it is not the case that “Audrey and Robert like each other””. If “Patricia and Audrey are respectively quiet and creative” then “Marion and Patricia are kind patient tourists”. If “Patricia and Dawn like each other” then “Audrey who is not a humble european is a sibling of Robert”. Audrey and Patricia are sibling of Robert. Patricia and Marion are older than Naomi. No quiet person is humble. It is not the case that “Marion and Robert like each other”. Terri is a sibling of Audrey. Only one person in the room composes and performs experimental electronic music or can play the piano or both. More than one person in the room is a calm european. Audrey is a sibling of Dawn. Everyone in the room can play the piano if they does not create bespoke furniture pieces from reclaimed wood. Audrey and Marion are respectively calm and wise. Audrey and Naomi hate each other. Audrey who is not a humble european is a sibling of Robert. Everyone in the room who creates bespoke furniture pieces from reclaimed wood is a sibling of Dawn. Someone who is a client of Naomi, collects comic books and is a sibling of Robert like someone who is a client of Robert.
Patricia is not quiet.
contradiction
room(audrey)&room(marion)&room(patricia)&(![X]:(room(X)=>(X='audrey'|X='marion'|X='patricia')))& (~((hate(patricia,terri) & hate(terri,patricia)))=>(?[X]:(room(X)&(sibling(terri,X)))))& ((~((like(audrey,robert) & like(robert,audrey))))=>((like(marion,terri) & like(terri,marion))))& (((quiet(patricia))&(creative(audrey)))=>(kind(marion)&patient(marion)&tourist(marion)&kind(patricia)&patient(patricia)&tourist(patricia)))& (((like(patricia,dawn) & like(dawn,patricia)))=>((~(humble(audrey)&european(audrey)))&(sibling(robert,audrey))))& (sibling(robert,audrey)&sibling(robert,patricia))& (older(naomi,patricia)&older(naomi,marion))& (~?[X]:(quiet(X)=>humble(X)))& (~((like(marion,robert) & like(robert,marion))))& (sibling(audrey,terri))& (((?[X]:(room(X)&((composes_and_performs_experimental_electronic_music(X))|(can_play_the_piano(X)))))&(![X,Y]:((room(X)&room(Y)&(((composes_and_performs_experimental_electronic_music(X))|(can_play_the_piano(X))))&(((composes_and_performs_experimental_electronic_music(Y))|(can_play_the_piano(Y)))))=>(X=Y)))))& ((?[X,Y]:(room(X)&room(Y)&(calm(X)&european(X)&calm(Y)&european(Y))&(X!=Y))))& (sibling(dawn,audrey))& (![X]:(room(X)=>(((does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(X))=>(can_play_the_piano(X))))))& ((calm(audrey))&(wise(marion)))& ((hate(audrey,naomi) & hate(naomi,audrey)))& ((~(humble(audrey)&european(audrey)))&(sibling(robert,audrey)))& (![X]:(room(X)=>(((creates_bespoke_furniture_pieces_from_reclaimed_wood(X))=>(sibling(dawn,X))))))& (?[X,Y]:((((client(naomi,X))&(collects_comic_books(X))&(sibling(robert,X))))&(client(robert,Y))&(like(X,Y))))
room(audrey)&room(marion)&room(patricia)&(![X]:(room(X)=>(X='audrey'|X='marion'|X='patricia')))& ~quiet(patricia)
[ "p7", "hypothesis" ]
% SZS status Unsatisfiable for 851453110061996623727581 % SZS output start Proof for 851453110061996623727581 51. ~? [X0] : (quiet(X0) => humble(X0)) [input p7] 63. ~quiet(fred) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 70. ~? [X0] : ~quiet(X0) [pure predicate removal 51] 157. ! [X0] : quiet(X0) [ennf transformation 70] 165. ~quiet(fred) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 63] 166. ~quiet(fred) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 165] 275. quiet(X0) [cnf transformation 157] 299. ~quiet(fred) [cnf transformation 166] 373. $false [subsumption resolution 299,275] % SZS output end Proof for 851453110061996623727581 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.383537
Larry is the only person in the room. “Larry is richer than Deborah” if “Martha is richer than Larry” and vice versa. “Larry is richer than Deborah” unless “Larry is richer than Martha”. “Derek is richer than Larry” if “Larry is richer than Deborah”. Larry is richer than Deborah.
Derek is richer than Larry.
entailment
room(larry)&(![X]:(room(X)=>(X='larry')))& ((richer(larry,martha))<=>(richer(deborah,larry)))& (~(richer(martha,larry))=>(richer(deborah,larry)))& ((richer(deborah,larry))=>(richer(larry,derek)))& (richer(deborah,larry))& (?[X,Y]:((richer(deborah,X))&(richer(derek,Y))&(richer(X,Y))))& (![X]:(room(X)=>(((((richer(june,X))&(richer(deborah,X))&(richer(martha,X))))<=>(richer(derek,X))))))& (richer(june,larry))
room(larry)&(![X]:(room(X)=>(X='larry')))& richer(larry,derek)
[ "p0", "p3", "p4", "hypothesis" ]
% SZS status Unsatisfiable for 4640995283235136313617560 % SZS output start Proof for 4640995283235136313617560 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 47. richer(john,mary) => richer(mary,paul) [input p3] 48. richer(john,mary) [input p4] 52. ~(richer(mary,paul) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 125. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 127. richer(mary,paul) | ~richer(john,mary) [ennf transformation 47] 129. ~richer(mary,paul) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 52] 136. ? [X0] : (mary != X0 & room(X0)) => (mary != sK2 & room(sK2)) [choice axiom] 137. ~richer(mary,paul) | (mary != sK2 & room(sK2)) | ~room(mary) [skolemisation 129,136] 218. room(mary) [cnf transformation 125] 219. ~room(X0) | mary = X0 [cnf transformation 125] 223. richer(mary,paul) | ~richer(john,mary) [cnf transformation 127] 224. richer(john,mary) [cnf transformation 48] 233. ~richer(mary,paul) | room(sK2) | ~room(mary) [cnf transformation 137] 234. ~richer(mary,paul) | mary != sK2 | ~room(mary) [cnf transformation 137] 236. 1 <=> richer(john,mary) [avatar definition] 251. 4 <=> richer(mary,paul) [avatar definition] 254. ~1 | 4 [avatar split clause 223,251,236] 255. 1 [avatar split clause 224,236] 256. ~richer(mary,paul) | mary != sK2 [subsumption resolution 234,218] 258. 5 <=> mary = sK2 [avatar definition] 260. mary != sK2 <- (~5) [avatar component clause 258] 261. ~5 | ~4 [avatar split clause 256,251,258] 262. ~richer(mary,paul) | room(sK2) [subsumption resolution 233,218] 264. 6 <=> room(sK2) [avatar definition] 266. room(sK2) <- (6) [avatar component clause 264] 267. 6 | ~4 [avatar split clause 262,251,264] 269. mary = sK2 <- (6) [resolution 219,266] 270. $false <- (~5, 6) [subsumption resolution 269,260] 271. 5 | ~6 [avatar contradiction clause 270] 272. $false [avatar sat refutation 254,255,261,267,271] % SZS output end Proof for 4640995283235136313617560 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.034 s % ------------------------------ % ------------------------------
0.600055
Charles, Mark, Janice, Max are the only persons in the room. Mark owns an extensive assortment of vintage comic book memorabilia. If someone volunteers for local environmental conservation projects then he/she does not enjoy salsa dancing. Everyone in the room uses a Windows laptop if they collects rare and antique scientific instruments. Everyone anywhere practices graffiti art if they is a wine connoisseur. Charles is a wine connoisseur. Charles who owns an extensive assortment of vintage comic book memorabilia and uses a Windows laptop is a tea enthusiast. Everyone in the room owns a telescope or is a wine connoisseur or both only if they is a certified scuba diver with advanced underwater photography skills. Mark who is a wine connoisseur practices digital art. No one anywhere enjoys macrame if and only if they works as a freelance web developer specializing in e-commerce sites. Everyone anywhere does not own a telescope or works as a freelance web developer specializing in e-commerce sites. Everyone outside the room does not own a telescope only if they is a wine connoisseur. Mark volunteers for local environmental conservation projects. Everyone in the room enjoys macrame, uses a Windows laptop or is not a certified scuba diver with advanced underwater photography skills if they is a certified scuba diver with advanced underwater photography skills or practices digital art or both. Everyone in the room who is not a tea enthusiast can play the piano. If someone volunteers for local environmental conservation projects then he/she is a tea enthusiast and vice versa. If someone does not collect rare and antique scientific instruments then he/she neither can play the piano nor uses a Windows laptop and vice versa. Everyone in the room who practices urban gardening owns an extensive assortment of vintage comic book memorabilia. Everyone in the room does not volunteer for local environmental conservation projects or uses a Windows laptop. Someone anywhere is not a tea enthusiast or practices urban gardening or both. Everyone in the room who is a tea enthusiast neither enjoys salsa dancing nor practices urban gardening. It is not the case that "someone in the room does not practice digital art". At least one person in the room collects rare and antique scientific instruments.
Max collects rare and antique scientific instruments.
entailment
room(charles)&room(mark)&room(janice)&room(max)&(![X]:(room(X)=>(X='charles'|X='mark'|X='janice'|X='max')))& (owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(mark))& ((![X]:((volunteers_for_local_environmental_conservation_projects(X))=>(does_not_enjoy_salsa_dancing(X)))))& (![X]:(room(X)=>(((collects_rare_and_antique_scientific_instruments(X))=>(uses_a_Windows_laptop(X))))))& (![X]:(anywhere(X)=>(((is_a_wine_connoisseur(X))=>(practices_graffiti_art(X))))))& (is_a_wine_connoisseur(charles))& ((((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(charles))&(uses_a_Windows_laptop(charles))))&(is_a_tea_enthusiast(charles)))& (![X]:(room(X)=>(((is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))<=(((owns_a_telescope(X))|(is_a_wine_connoisseur(X))))))))& ((is_a_wine_connoisseur(mark))&(practices_digital_art(mark)))& (~?[X]:(anywhere(X)=>(((enjoys_macrame(X))<=>(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))))& (![X]:(anywhere(X)=>(((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))|(does_not_own_a_telescope(X))))))& (![X]:(~room(X)=>(((is_a_wine_connoisseur(X))<=(does_not_own_a_telescope(X))))))& (volunteers_for_local_environmental_conservation_projects(mark))& (![X]:(room(X)=>(((((is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))|(practices_digital_art(X))))=>(((enjoys_macrame(X))|(uses_a_Windows_laptop(X))|(is_not_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))))))& (![X]:(room(X)=>(((is_not_a_tea_enthusiast(X))=>(can_play_the_piano(X))))))& ((![X]:((volunteers_for_local_environmental_conservation_projects(X))<=>(is_a_tea_enthusiast(X)))))& ((![X]:((does_not_collect_rare_and_antique_scientific_instruments(X))<=>(~((can_play_the_piano(X))|(uses_a_Windows_laptop(X)))))))& (![X]:(room(X)=>(((practices_urban_gardening(X))=>(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))))& (![X]:(room(X)=>(((uses_a_Windows_laptop(X))|(does_not_volunteer_for_local_environmental_conservation_projects(X))))))& (?[X]:(anywhere(X)&(((is_not_a_tea_enthusiast(X))|(practices_urban_gardening(X))))))& (![X]:(room(X)=>(((is_a_tea_enthusiast(X))=>(~((enjoys_salsa_dancing(X))|(practices_urban_gardening(X))))))))& (~(?[X]:(room(X)&(does_not_practice_digital_art(X)))))& (((?[X]:(room(X)&collects_rare_and_antique_scientific_instruments(X)))))
room(charles)&room(mark)&room(janice)&room(max)&(![X]:(room(X)=>(X='charles'|X='mark'|X='janice'|X='max')))& collects_rare_and_antique_scientific_instruments(max)
[ "p0", "p14", "p15", "p16", "p18", "hypothesis" ]
% SZS status Unsatisfiable for 562306535450929218967627 % SZS output start Proof for 562306535450929218967627 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 58. ! [X0] : (room(X0) => (~predo(X0) => predg(X0))) [input p14] 59. ! [X0] : (predc(X0) <=> predo(X0)) [input p15] 60. ! [X0] : (~predb(X0) <=> ~(predd(X0) | predg(X0))) [input p16] 62. ! [X0] : (room(X0) => (~predc(X0) | predd(X0))) [input p18] 67. ~(predb(alice) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 145. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 146. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 145] 158. ! [X0] : ((predg(X0) | predo(X0)) | ~room(X0)) [ennf transformation 58] 159. ! [X0] : (predg(X0) | predo(X0) | ~room(X0)) [flattening 158] 160. ! [X0] : (~predb(X0) <=> (~predd(X0) & ~predg(X0))) [ennf transformation 60] 161. ! [X0] : ((~predc(X0) | predd(X0)) | ~room(X0)) [ennf transformation 62] 162. ! [X0] : (~predc(X0) | predd(X0) | ~room(X0)) [flattening 161] 166. ~predb(alice) | ? [X0] : ((alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 67] 167. ~predb(alice) | ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 166] 171. ! [X0] : ((predc(X0) | ~predo(X0)) & (predo(X0) | ~predc(X0))) [nnf transformation 59] 172. ! [X0] : ((~predb(X0) | (predd(X0) | predg(X0))) & ((~predd(X0) & ~predg(X0)) | predb(X0))) [nnf transformation 160] 173. ! [X0] : ((~predb(X0) | predd(X0) | predg(X0)) & ((~predd(X0) & ~predg(X0)) | predb(X0))) [flattening 172] 178. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK2 & fred != sK2 & paul != sK2 & mary != sK2 & room(sK2)) [choice axiom] 179. ~predb(alice) | (alice != sK2 & fred != sK2 & paul != sK2 & mary != sK2 & room(sK2)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 167,178] 261. room(mary) [cnf transformation 146] 262. room(paul) [cnf transformation 146] 263. room(fred) [cnf transformation 146] 264. room(alice) [cnf transformation 146] 265. ~room(X0) | fred = X0 | paul = X0 | mary = X0 | alice = X0 [cnf transformation 146] 282. ~room(X0) | predo(X0) | predg(X0) [cnf transformation 159] 284. ~predo(X0) | predc(X0) [cnf transformation 171] 285. ~predg(X0) | predb(X0) [cnf transformation 173] 286. ~predd(X0) | predb(X0) [cnf transformation 173] 288. ~predc(X0) | predd(X0) | ~room(X0) [cnf transformation 162] 295. ~predb(alice) | room(sK2) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 179] 296. ~predb(alice) | mary != sK2 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 179] 297. ~predb(alice) | paul != sK2 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 179] 298. ~predb(alice) | fred != sK2 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 179] 299. ~predb(alice) | alice != sK2 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 179] 311. ~predb(alice) | alice != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 299,264] 312. ~predb(alice) | alice != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 311,263] 313. ~predb(alice) | alice != sK2 | ~room(mary) [subsumption resolution 312,262] 314. ~predb(alice) | alice != sK2 [subsumption resolution 313,261] 316. 3 <=> alice = sK2 [avatar definition] 318. alice != sK2 <- (~3) [avatar component clause 316] 320. 4 <=> predb(alice) [avatar definition] 323. ~3 | ~4 [avatar split clause 314,320,316] 324. ~predb(alice) | fred != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 298,264] 325. ~predb(alice) | fred != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 324,263] 326. ~predb(alice) | fred != sK2 | ~room(mary) [subsumption resolution 325,262] 327. ~predb(alice) | fred != sK2 [subsumption resolution 326,261] 329. 5 <=> fred = sK2 [avatar definition] 331. fred != sK2 <- (~5) [avatar component clause 329] 332. ~5 | ~4 [avatar split clause 327,320,329] 333. ~predb(alice) | paul != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 297,264] 334. ~predb(alice) | paul != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 333,263] 335. ~predb(alice) | paul != sK2 | ~room(mary) [subsumption resolution 334,262] 336. ~predb(alice) | paul != sK2 [subsumption resolution 335,261] 338. 6 <=> paul = sK2 [avatar definition] 340. paul != sK2 <- (~6) [avatar component clause 338] 341. ~6 | ~4 [avatar split clause 336,320,338] 342. ~predb(alice) | mary != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 296,264] 343. ~predb(alice) | mary != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 342,263] 344. ~predb(alice) | mary != sK2 | ~room(mary) [subsumption resolution 343,262] 345. ~predb(alice) | mary != sK2 [subsumption resolution 344,261] 347. 7 <=> mary = sK2 [avatar definition] 349. mary != sK2 <- (~7) [avatar component clause 347] 350. ~7 | ~4 [avatar split clause 345,320,347] 351. ~predb(alice) | room(sK2) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 295,264] 352. ~predb(alice) | room(sK2) | ~room(paul) | ~room(mary) [subsumption resolution 351,263] 353. ~predb(alice) | room(sK2) | ~room(mary) [subsumption resolution 352,262] 354. ~predb(alice) | room(sK2) [subsumption resolution 353,261] 356. 8 <=> room(sK2) [avatar definition] 358. room(sK2) <- (8) [avatar component clause 356] 359. 8 | ~4 [avatar split clause 354,320,356] 384. predo(alice) | predg(alice) [resolution 282,264] 396. 11 <=> predg(alice) [avatar definition] 398. predg(alice) <- (11) [avatar component clause 396] 400. 12 <=> predo(alice) [avatar definition] 402. predo(alice) <- (12) [avatar component clause 400] 403. 11 | 12 [avatar split clause 384,400,396] 419. predb(alice) <- (11) [resolution 398,285] 422. 4 | ~11 [avatar split clause 419,396,320] 437. predc(alice) <- (12) [resolution 402,284] 445. predd(alice) | ~room(alice) <- (12) [resolution 437,288] 447. predd(alice) <- (12) [subsumption resolution 445,264] 451. predb(alice) <- (12) [resolution 447,286] 454. 4 | ~12 [avatar split clause 451,400,320] 520. fred = sK2 | paul = sK2 | mary = sK2 | alice = sK2 <- (8) [resolution 265,358] 538. paul = sK2 | mary = sK2 | alice = sK2 <- (~5, 8) [subsumption resolution 520,331] 539. mary = sK2 | alice = sK2 <- (~5, ~6, 8) [subsumption resolution 538,340] 540. alice = sK2 <- (~5, ~6, ~7, 8) [subsumption resolution 539,349] 541. $false <- (~3, ~5, ~6, ~7, 8) [subsumption resolution 540,318] 542. 3 | 5 | 6 | 7 | ~8 [avatar contradiction clause 541] 543. $false [avatar sat refutation 323,332,341,350,359,403,422,454,542] % SZS output end Proof for 562306535450929218967627 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.041 s % ------------------------------ % ------------------------------
0.039689
Kristen, Robert, Cindy, Aubrey, George are the only persons in the room. If “Aubrey creates YouTube content” then “Robert is a client of Marilyn”. Aubrey collects vintage vinyl records. Cindy and Cindy hate each other. Robert is a client of Marilyn. Someone who collects comic books is a client of someone who maintains a personal blog focused on cybersecurity tips. All happy persons are old. Everyone in the room is a sibling of Marilyn, does not hate Cindy and is a sibling of Cindy if they collects rare and antique scientific instruments. Someone in the room participates in citizen science projects related to wildlife monitoring. Everyone in the room does not maintain a personal blog focused on cybersecurity tips if and only if they is not a happy wise european. Cindy is a sibling of George. Robert and Cindy like each other. Someone in the room is quieter than Marilyn. Aubrey creates YouTube content.
Not everyone in the room collects rare and antique scientific instruments.
entailment
room(kristen)&room(robert)&room(cindy)&room(aubrey)&room(george)&(![X]:(room(X)=>(X='kristen'|X='robert'|X='cindy'|X='aubrey'|X='george')))& ((creates_YouTube_content(aubrey))=>(client(marilyn,robert)))& (collects_vintage_vinyl_records(aubrey))& ((hate(cindy,cindy) & hate(cindy,cindy)))& (client(marilyn,robert))& (?[X,Y]:((collects_comic_books(X))&(maintains_a_personal_blog_focused_on_cybersecurity_tips(Y))&(client(X,Y))))& (![X]:(happy(X)=>old(X)))& (![X]:(room(X)=>(((collects_rare_and_antique_scientific_instruments(X))=>(((sibling(marilyn,X))&(~hate(cindy,X))&(sibling(cindy,X))))))))& (?[X]:(room(X)&(participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))))& (![X]:(room(X)=>(((does_not_maintain_a_personal_blog_focused_on_cybersecurity_tips(X))<=>(~(happy(X)&wise(X)&european(X)))))))& (sibling(george,cindy))& ((like(robert,cindy) & like(cindy,robert)))& (?[X]:(room(X)&(quieter(marilyn,X))))& (creates_YouTube_content(aubrey))& ((![X]:((((quiet(X)&tourist(X))|(does_not_collect_comic_books(X))))<=>(enjoys_making_ceramics(X)))))& (![X]:(room(X)=>(((funny(X)&european(X))=>(is_a_client_of_Costco(X))))))& (collects_rare_and_antique_scientific_instruments(robert))& (funny(george)&european(george))& ((like(george,cindy) & like(cindy,george)))& (sibling(marilyn,cindy)&sibling(marilyn,aubrey))& (sibling(cindy,george))& ((hate(marilyn,kristen) & hate(kristen,marilyn)))& (client(marilyn,george))& (((?[X]:(room(X)&regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X)))))& (![X]:(~room(X)=>(((is_a_client_of_Costco(X))=>(like(marilyn,X))))))& (~?[X]:(quiet(X)=>patient(X)))& (![X]:(room(X)=>(((wise(X)&person(X))=>(happy(X)&tourist(X))))))& ((humble(cindy))&(brave(george)))
room(kristen)&room(robert)&room(cindy)&room(aubrey)&room(george)&(![X]:(room(X)=>(X='kristen'|X='robert'|X='cindy'|X='aubrey'|X='george')))& ~![X]:(room(X)=>(collects_rare_and_antique_scientific_instruments(X)))
[ "p0", "p3", "p7", "hypothesis" ]
% SZS status Unsatisfiable for 4080252455205928068726620 % SZS output start Proof for 4080252455205928068726620 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 47. hate(susan,fred) & hate(fred,susan) [input p3] 51. ! [X0] : (room(X0) => (predj(X0) => (sibling(susan,X0) & ~hate(susan,X0) & sibling(lucy,X0)))) [input p7] 72. ~(~! [X0] : (room(X0) => predj(X0)) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 73. ~(~! [X0] : (room(X0) => predj(X0)) & ! [X1] : (room(X1) => (john = X1 | alice = X1 | fred = X1 | paul = X1 | mary = X1)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [rectify 72] 160. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 161. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 160] 163. ! [X0] : (((sibling(susan,X0) & ~hate(susan,X0) & sibling(lucy,X0)) | ~predj(X0)) | ~room(X0)) [ennf transformation 51] 164. ! [X0] : ((sibling(susan,X0) & ~hate(susan,X0) & sibling(lucy,X0)) | ~predj(X0) | ~room(X0)) [flattening 163] 173. ! [X0] : (predj(X0) | ~room(X0)) | ? [X1] : ((john != X1 & alice != X1 & fred != X1 & paul != X1 & mary != X1) & room(X1)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 73] 174. ! [X0] : (predj(X0) | ~room(X0)) | ? [X1] : (john != X1 & alice != X1 & fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 173] 187. ? [X1] : (john != X1 & alice != X1 & fred != X1 & paul != X1 & mary != X1 & room(X1)) => (john != sK4 & alice != sK4 & fred != sK4 & paul != sK4 & mary != sK4 & room(sK4)) [choice axiom] 188. ! [X0] : (predj(X0) | ~room(X0)) | (john != sK4 & alice != sK4 & fred != sK4 & paul != sK4 & mary != sK4 & room(sK4)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 174,187] 273. room(mary) [cnf transformation 161] 274. room(paul) [cnf transformation 161] 275. room(fred) [cnf transformation 161] 276. room(alice) [cnf transformation 161] 277. room(john) [cnf transformation 161] 278. ~room(X0) | alice = X0 | fred = X0 | paul = X0 | mary = X0 | john = X0 [cnf transformation 161] 280. hate(susan,fred) [cnf transformation 47] 284. ~hate(susan,X0) | ~predj(X0) | ~room(X0) [cnf transformation 164] 312. predj(X0) | ~room(X0) | room(sK4) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 188] 313. predj(X0) | ~room(X0) | mary != sK4 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 188] 314. predj(X0) | ~room(X0) | paul != sK4 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 188] 315. predj(X0) | ~room(X0) | fred != sK4 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 188] 316. predj(X0) | ~room(X0) | alice != sK4 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 188] 317. predj(X0) | ~room(X0) | john != sK4 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 188] 318. predj(X0) | ~room(X0) | john != sK4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 317,277] 319. predj(X0) | ~room(X0) | john != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 318,276] 320. predj(X0) | ~room(X0) | john != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 319,275] 321. predj(X0) | ~room(X0) | john != sK4 | ~room(mary) [subsumption resolution 320,274] 322. predj(X0) | ~room(X0) | john != sK4 [subsumption resolution 321,273] 324. 1 <=> john = sK4 [avatar definition] 326. john != sK4 <- (~1) [avatar component clause 324] 328. 2 <=> ! [X0] : (predj(X0) | ~room(X0)) [avatar definition] 329. ~room(X0) | predj(X0) <- (2) [avatar component clause 328] 330. ~1 | 2 [avatar split clause 322,328,324] 331. predj(X0) | ~room(X0) | alice != sK4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 316,277] 332. predj(X0) | ~room(X0) | alice != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 331,276] 333. predj(X0) | ~room(X0) | alice != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 332,275] 334. predj(X0) | ~room(X0) | alice != sK4 | ~room(mary) [subsumption resolution 333,274] 335. predj(X0) | ~room(X0) | alice != sK4 [subsumption resolution 334,273] 337. 3 <=> alice = sK4 [avatar definition] 339. alice != sK4 <- (~3) [avatar component clause 337] 340. ~3 | 2 [avatar split clause 335,328,337] 341. predj(X0) | ~room(X0) | fred != sK4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 315,277] 342. predj(X0) | ~room(X0) | fred != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 341,276] 343. predj(X0) | ~room(X0) | fred != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 342,275] 344. predj(X0) | ~room(X0) | fred != sK4 | ~room(mary) [subsumption resolution 343,274] 345. predj(X0) | ~room(X0) | fred != sK4 [subsumption resolution 344,273] 347. 4 <=> fred = sK4 [avatar definition] 349. fred != sK4 <- (~4) [avatar component clause 347] 350. ~4 | 2 [avatar split clause 345,328,347] 351. predj(X0) | ~room(X0) | paul != sK4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 314,277] 352. predj(X0) | ~room(X0) | paul != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 351,276] 353. predj(X0) | ~room(X0) | paul != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 352,275] 354. predj(X0) | ~room(X0) | paul != sK4 | ~room(mary) [subsumption resolution 353,274] 355. predj(X0) | ~room(X0) | paul != sK4 [subsumption resolution 354,273] 357. 5 <=> paul = sK4 [avatar definition] 359. paul != sK4 <- (~5) [avatar component clause 357] 360. ~5 | 2 [avatar split clause 355,328,357] 361. predj(X0) | ~room(X0) | mary != sK4 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 313,277] 362. predj(X0) | ~room(X0) | mary != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 361,276] 363. predj(X0) | ~room(X0) | mary != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 362,275] 364. predj(X0) | ~room(X0) | mary != sK4 | ~room(mary) [subsumption resolution 363,274] 365. predj(X0) | ~room(X0) | mary != sK4 [subsumption resolution 364,273] 367. 6 <=> mary = sK4 [avatar definition] 369. mary != sK4 <- (~6) [avatar component clause 367] 370. ~6 | 2 [avatar split clause 365,328,367] 371. predj(X0) | ~room(X0) | room(sK4) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 312,277] 372. predj(X0) | ~room(X0) | room(sK4) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 371,276] 373. predj(X0) | ~room(X0) | room(sK4) | ~room(paul) | ~room(mary) [subsumption resolution 372,275] 374. predj(X0) | ~room(X0) | room(sK4) | ~room(mary) [subsumption resolution 373,274] 375. predj(X0) | ~room(X0) | room(sK4) [subsumption resolution 374,273] 377. 7 <=> room(sK4) [avatar definition] 379. room(sK4) <- (7) [avatar component clause 377] 380. 7 | 2 [avatar split clause 375,328,377] 384. predj(fred) <- (2) [resolution 329,275] 402. ~predj(fred) | ~room(fred) [resolution 284,280] 403. ~room(fred) <- (2) [subsumption resolution 402,384] 404. $false <- (2) [subsumption resolution 403,275] 405. ~2 [avatar contradiction clause 404] 509. alice = sK4 | fred = sK4 | paul = sK4 | mary = sK4 | john = sK4 <- (7) [resolution 278,379] 573. fred = sK4 | paul = sK4 | mary = sK4 | john = sK4 <- (~3, 7) [subsumption resolution 509,339] 574. paul = sK4 | mary = sK4 | john = sK4 <- (~3, ~4, 7) [subsumption resolution 573,349] 575. mary = sK4 | john = sK4 <- (~3, ~4, ~5, 7) [subsumption resolution 574,359] 576. john = sK4 <- (~3, ~4, ~5, ~6, 7) [subsumption resolution 575,369] 577. $false <- (~1, ~3, ~4, ~5, ~6, 7) [subsumption resolution 576,326] 578. 1 | 3 | 4 | 5 | 6 | ~7 [avatar contradiction clause 577] 579. $false [avatar sat refutation 330,340,350,360,370,380,405,578] % SZS output end Proof for 4080252455205928068726620 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.026 s % ------------------------------ % ------------------------------
0.056419
Jean, David, Sarah, Miguel are the only persons in the room. William and Sarah like each other. Everyone in the room hates William and is hated by William only if they is liked by William or hates William or both. Someone who is not hated by William like someone who is liked by William or likes William or both. Everyone in the room either is hated by William or is liked by William but not both. More than one person in the room either does not like William or is liked by William but not both. Everyone in the room is liked by William only if they either is liked by William or is hated by William but not both. Not everyone in the room hates William if they either is liked by William or is hated by William but not both. Someone who hates William and likes William hate someone who either is not liked by William or is not hated by William but not both.
Miguel is hated by William.
neutral
room(jean)&room(david)&room(sarah)&room(miguel)&(![X]:(room(X)=>(X='jean'|X='david'|X='sarah'|X='miguel')))& ((like(william,sarah) & like(sarah,william)))& (![X]:(room(X)=>(((((like(X,william))|(hate(william,X))))<=(((hate(william,X))&(hate(X,william))))))))& (?[X,Y]:((~hate(X,william))&(((like(Y,william))|(like(william,Y))))&(like(X,Y))))& (![X]:(room(X)=>(((hate(X,william))<~>(like(X,william))))))& ((?[X,Y]:(room(X)&room(Y)&(((~like(william,X))<~>(like(X,william)))&((~like(william,Y))<~>(like(Y,william))))&(X!=Y))))& (![X]:(room(X)=>(((((like(X,william))<~>(hate(X,william))))<=(like(X,william))))))& (~![X]:(room(X)=>(((((like(X,william))<~>(hate(X,william))))=>(hate(william,X))))))& (?[X,Y]:((((hate(william,X))&(like(william,X))))&(((~like(Y,william))<~>(~hate(Y,william))))&(hate(X,Y))))
room(jean)&room(david)&room(sarah)&room(miguel)&(![X]:(room(X)=>(X='jean'|X='david'|X='sarah'|X='miguel')))& hate(miguel,william)
[]
null
0.225334
Mark, Marian, Carlos, Miriam are the only persons in the room. If “everyone in the room does not own an Android phone or owns a 3D printer” then “everyone anywhere who does not own an Android phone writes and illustrates their own graphic novels”. If “not everyone anywhere does not practice and performs acrobatic dance routines or is a professional photographer specializing in portrait photography” then “everyone in the room who is allergic to anything works on fridays”. If “everyone in the room does not play the drums or is a professional photographer specializing in portrait photography” then “everyone outside the room writes and illustrates their own graphic novels if they does not play the drums”. Everyone anywhere plays the violin or has a pet dog or both if they has a pet dog. Not everyone outside the room does not have a pet dog or is a professional photographer specializing in portrait photography. Everyone in the room does not have a pet dog if and only if they does not participate in long-distance cycling events across the country. Marian enjoys skydiving. Everyone in the room is not right-handed or practices and performs acrobatic dance routines. More than one person in the room does not play the drums. Everyone in the room who practices and performs acrobatic dance routines bakes bread at home. Everyone in the room hosts regular workshops on creative writing if they bakes bread at home. Not everyone in the room who creates bespoke furniture pieces from reclaimed wood enjoys skydiving.
Everyone anywhere enjoys skydiving.
contradiction
room(mark)&room(marian)&room(carlos)&room(miriam)&(![X]:(room(X)=>(X='mark'|X='marian'|X='carlos'|X='miriam')))& ((![X]:(room(X)=>(((owns_a_3D_printer(X))|(does_not_own_an_Android_phone(X))))))=>(![X]:(anywhere(X)=>(((does_not_own_an_Android_phone(X))=>(writes_and_illustrates_their_own_graphic_novels(X)))))))& ((~![X]:(anywhere(X)=>(((is_a_professional_photographer_specializing_in_portrait_photography(X))|(does_not_practice_and_performs_acrobatic_dance_routines(X))))))=>(![X]:(room(X)=>(((is_allergic_to_anything(X))=>(works_on_fridays(X)))))))& ((![X]:(room(X)=>(((is_a_professional_photographer_specializing_in_portrait_photography(X))|(does_not_play_the_drums(X))))))=>(![X]:(~room(X)=>(((does_not_play_the_drums(X))=>(writes_and_illustrates_their_own_graphic_novels(X)))))))& (![X]:(anywhere(X)=>(((has_a_pet_dog(X))=>(((plays_the_violin(X))|(has_a_pet_dog(X))))))))& (~![X]:(~room(X)=>(((is_a_professional_photographer_specializing_in_portrait_photography(X))|(does_not_have_a_pet_dog(X))))))& (![X]:(room(X)=>(((does_not_have_a_pet_dog(X))<=>(does_not_participate_in_long-distance_cycling_events_across_the_country(X))))))& (enjoys_skydiving(marian))& (![X]:(room(X)=>(((practices_and_performs_acrobatic_dance_routines(X))|(is_not_right-handed(X))))))& ((?[X,Y]:(room(X)&room(Y)&(does_not_play_the_drums(X)&does_not_play_the_drums(Y))&(X!=Y))))& (![X]:(room(X)=>(((practices_and_performs_acrobatic_dance_routines(X))=>(bakes_bread_at_home(X))))))& (![X]:(room(X)=>(((bakes_bread_at_home(X))=>(hosts_regular_workshops_on_creative_writing(X))))))& (![X]:(~room(X)=>(((is_a_member_of_a_local_theater_group_specializing_in_improv(X))|(does_not_host_regular_workshops_on_creative_writing(X))))))& (~![X]:(room(X)=>(((does_not_host_regular_workshops_on_creative_writing(X))=>(practices_and_performs_acrobatic_dance_routines(X))))))& (![X]:(room(X)=>(((practices_and_performs_acrobatic_dance_routines(X))=>(is_a_professional_photographer_specializing_in_portrait_photography(X))))))& (![X]:(room(X)=>(((is_a_professional_photographer_specializing_in_portrait_photography(X))=>(is_not_right-handed(X))))))& (![X]:(room(X)=>(((enjoys_skydiving(X))=>(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))))& (~![X]:(room(X)=>(((creates_bespoke_furniture_pieces_from_reclaimed_wood(X))=>(enjoys_skydiving(X))))))& (![X]:(room(X)=>(((enjoys_skydiving(X))=>(can_play_the_harmonica(X))))))& (![X]:(room(X)=>(((is_allergic_to_anything(X))=>(works_on_fridays(X))))))& (![X]:(~room(X)=>(((hosts_regular_workshops_on_creative_writing(X))<=(enjoys_wildlife_photography(X))))))
room(mark)&room(marian)&room(carlos)&room(miriam)&(![X]:(room(X)=>(X='mark'|X='marian'|X='carlos'|X='miriam')))& ![X]:(anywhere(X)=>(enjoys_skydiving(X)))
[ "b4", "p17", "hypothesis" ]
% SZS status Unsatisfiable for 7397194659632219169748229 % SZS output start Proof for 7397194659632219169748229 5. ! [X0] : anywhere(X0) [input b4] 61. ~! [X0] : (room(X0) => (predt(X0) => predb(X0))) [input p17] 65. ! [X0] : (anywhere(X0) => predb(X0)) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 69. ! [X0] : (anywhere(X0) => predb(X0)) & ! [X1] : (room(X1) => (alice = X1 | fred = X1 | paul = X1 | mary = X1)) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 65] 73. ~! [X0] : (room(X0) => predb(X0)) [pure predicate removal 61] 166. ? [X0] : (~predb(X0) & room(X0)) [ennf transformation 73] 167. ! [X0] : (predb(X0) | ~anywhere(X0)) & ! [X1] : ((alice = X1 | fred = X1 | paul = X1 | mary = X1) | ~room(X1)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 69] 168. ! [X0] : (predb(X0) | ~anywhere(X0)) & ! [X1] : (alice = X1 | fred = X1 | paul = X1 | mary = X1 | ~room(X1)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 167] 177. ? [X0] : (~predb(X0) & room(X0)) => (~predb(sK4) & room(sK4)) [choice axiom] 178. ~predb(sK4) & room(sK4) [skolemisation 166,177] 179. anywhere(X0) [cnf transformation 5] 275. ~predb(sK4) [cnf transformation 178] 281. predb(X0) | ~anywhere(X0) [cnf transformation 168] 282. predb(X0) [subsumption resolution 281,179] 283. $false [resolution 282,275] % SZS output end Proof for 7397194659632219169748229 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.636316
Ira, Anna, Carina are the only persons in the room. Someone who is not a tall person is older than someone who is a brave person. Everyone outside the room is wise only if they is calm. Everyone in the room is a strong person. Everyone in the room is a kind person. No kind person is wise. Everyone in the room is a creative person. Someone who is a brave person is richer than someone who is a generous person. Everyone in the room is a generous person. Everyone in the room is a funny person. Someone in the room is a generous person. Everyone in the room neither is a happy person nor is a kind person if they is not a funny person. If someone is not a happy person then he/she is a wise person and vice versa. Anna is a old person. Everyone in the room is a quiet person. Anna is a happy person. It is true that “everyone in the room is not a brave person”. If someone is not a brave person then he/she is a patient person and vice versa. If someone is creative then he/she is a strong person and vice versa. Ira who is not a humble person is a tall person.
Ira is humble.
contradiction
room(ira)&room(anna)&room(carina)&(![X]:(room(X)=>(X='ira'|X='anna'|X='carina')))& (?[X,Y]:((~(tall(X)&person(X)))&(brave(Y)&person(Y))&(older(X,Y))))& (![X]:(~room(X)=>(((calm(X))<=(wise(X))))))& (![X]:(room(X)=>(strong(X)&person(X))))& (![X]:(room(X)=>(kind(X)&person(X))))& (~?[X]:(kind(X)=>wise(X)))& (![X]:(room(X)=>(creative(X)&person(X))))& (?[X,Y]:((brave(X)&person(X))&(generous(Y)&person(Y))&(richer(X,Y))))& (![X]:(room(X)=>(generous(X)&person(X))))& (![X]:(room(X)=>(funny(X)&person(X))))& (?[X]:(room(X)&(generous(X)&person(X))))& (![X]:(room(X)=>(((~(funny(X)&person(X)))=>(~((happy(X)&person(X))|(kind(X)&person(X))))))))& ((![X]:((~(happy(X)&person(X)))<=>(wise(X)&person(X)))))& (old(anna)&person(anna))& (![X]:(room(X)=>(quiet(X)&person(X))))& (happy(anna)&person(anna))& (![X]:(room(X)=>(~(brave(X)&person(X)))))& ((![X]:((~(brave(X)&person(X)))<=>(patient(X)&person(X)))))& ((![X]:((creative(X))<=>(strong(X)&person(X)))))& ((~(humble(ira)&person(ira)))&(tall(ira)&person(ira)))
room(ira)&room(anna)&room(carina)&(![X]:(room(X)=>(X='ira'|X='anna'|X='carina')))& humble(ira)
[ "p12", "p19", "hypothesis" ]
% SZS status Unsatisfiable for 6457498813896155772970450 % SZS output start Proof for 6457498813896155772970450 56. ! [X0] : (~(person(X0) & happy(X0)) <=> (person(X0) & wise(X0))) [input p12] 63. person(mary) & tall(mary) & ~(person(mary) & humble(mary)) [input p19] 64. humble(mary) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 157. ! [X0] : ((~person(X0) | ~happy(X0)) <=> (person(X0) & wise(X0))) [ennf transformation 56] 163. person(mary) & tall(mary) & (~person(mary) | ~humble(mary)) [ennf transformation 63] 164. humble(mary) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 64] 165. humble(mary) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 164] 173. ! [X0] : (((~person(X0) | ~happy(X0)) | (~person(X0) | ~wise(X0))) & ((person(X0) & wise(X0)) | (person(X0) & happy(X0)))) [nnf transformation 157] 174. ! [X0] : ((~person(X0) | ~happy(X0) | ~person(X0) | ~wise(X0)) & ((person(X0) & wise(X0)) | (person(X0) & happy(X0)))) [flattening 173] 285. person(X0) | person(X0) [cnf transformation 174] 300. ~person(mary) | ~humble(mary) [cnf transformation 163] 307. humble(mary) [cnf transformation 165] 310. person(X0) [duplicate literal removal 285] 324. ~humble(mary) [subsumption resolution 300,310] 325. $false [subsumption resolution 307,324] % SZS output end Proof for 6457498813896155772970450 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.028 s % ------------------------------ % ------------------------------
0.570115
Cecile is the only person in the room. “Cecile own a television” unless “everyone outside the room does not enjoy salsa dancing or own a television”. Everyone in the room who enjoys landscape photography neither knows morse code nor collects action figures. Everyone in the room does not enjoy coding in Python. Cecile own a television.
Cecile writes poetry.
neutral
room(cecile)&(![X]:(room(X)=>(X='cecile')))& (~(![X]:(~room(X)=>(((own_a_television(X))|(does_not_enjoy_salsa_dancing(X))))))=>(own_a_television(cecile)))& (![X]:(room(X)=>(((enjoys_landscape_photography(X))=>(~((knows_morse_code(X))|(collects_action_figures(X))))))))& (![X]:(room(X)=>(does_not_enjoy_coding_in_Python(X))))& (own_a_television(cecile))& (![X]:(room(X)=>(((does_not_train_for_and_competes_in_international_triathlons(X))=>(enjoys_deep-sea_diving_and_exploring_underwater_caves(X))))))& (![X]:(room(X)=>(((((trains_for_and_competes_in_international_triathlons(X))|(is_a_wine_connoisseur(X))|(competes_in_national_level_swimming_championships(X))))=>(((does_enjoy_mountain_biking(X))&(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))))))))& (((enjoys_deep-sea_diving_and_exploring_underwater_caves(cecile))|(writes_poetry(cecile))|(does_not_maintain_a_large,_organic_vegetable_garden_year-round(cecile))))& (![X]:(~room(X)=>(((own_a_television(X))|(does_not_enjoy_salsa_dancing(X))))))& (?[X]:(room(X)&(enjoys_landscape_photography(X))))& ((cecile_dream=>(writes_poetry(cecile))))& (![X]:(room(X)=>(((hosts_regular_workshops_on_creative_writing(X))<=(enjoys_coding_in_Python(X))))))& (~![X]:(room(X)=>(((maintains_a_large,_organic_vegetable_garden_year-round(X))<=(hosts_regular_workshops_on_creative_writing(X))))))& ((![X]:((knows_morse_code(X))=>(has_a_tattoo(X)))))& (does_not_enjoy_coding_in_Python(cecile))& (~![X]:(room(X)=>(is_a_wine_connoisseur(X))))
room(cecile)&(![X]:(room(X)=>(X='cecile')))& writes_poetry(cecile)
[]
null
0.008063
Holly is the only person in the room. If “Holly knows morse code and collects rare and antique scientific instruments” then “everyone in the room is a skilled home brewer experimenting with craft beer recipes only if they enjoys fishing”. If “Holly owns a telescope” then “everyone in the room who either enjoys fishing or enjoys rooftop gardening but not both bakes bread at home”. “Holly neither writes and illustrates their own graphic novels nor collects classic novels” if “Holly is a certified yoga instructor teaching classes weekly”. If “Holly practices urban gardening” then “someone in the room is a culinary enthusiast who experiments with international cuisines and is right-handed”. “Holly who owns a telescope is a culinary enthusiast who experiments with international cuisines” unless “everyone in the room develops open-source software projects in their free time or does not host regular workshops on creative writing”. Holly does not host regular workshops on creative writing. Not everyone in the room is right-handed only if they either uses a Windows laptop or is right-handed but not both. Everyone in the room can play the piano if they either uses a Windows laptop or is right-handed but not both. Someone in the room is an enthusiastic bird watcher who travels for rare sightings or is a craft beer aficionado or both. Holly collects rare and antique scientific instruments. Holly is a certified yoga instructor teaching classes weekly. Holly is a drone photographer. Everyone in the room enjoys fishing only if they owns a telescope. Holly dreamt that “Holly knows morse code”. Everyone in the room is a craft beer aficionado if they enjoys rooftop gardening. Everyone in the room who enjoys fishing practices urban gardening. Everyone in the room is a craft beer aficionado only if they neither is an enthusiastic bird watcher who travels for rare sightings nor owns a telescope. It is not the case that “Holly neither is a culinary enthusiast who experiments with international cuisines nor knows morse code”. Everyone anywhere who collects classic novels practices graffiti art.
Holly owns a telescope.
neutral
room(holly)&(![X]:(room(X)=>(X='holly')))& ((((knows_morse_code(holly))&(collects_rare_and_antique_scientific_instruments(holly))))=>(![X]:(room(X)=>(((enjoys_fishing(X))<=(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X)))))))& ((owns_a_telescope(holly))=>(![X]:(room(X)=>(((((enjoys_fishing(X))<~>(enjoys_rooftop_gardening(X))))=>(bakes_bread_at_home(X)))))))& ((is_a_certified_yoga_instructor_teaching_classes_weekly(holly))=>(~((writes_and_illustrates_their_own_graphic_novels(holly))|(collects_classic_novels(holly)))))& ((practices_urban_gardening(holly))=>(?[X]:(room(X)&(((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(X))&(is_right-handed(X)))))))& (~(![X]:(room(X)=>(((does_not_host_regular_workshops_on_creative_writing(X))|(develops_open-source_software_projects_in_their_free_time(X))))))=>((owns_a_telescope(holly))&(is_a_culinary_enthusiast_who_experiments_with_international_cuisines(holly))))& (does_not_host_regular_workshops_on_creative_writing(holly))& (~![X]:(room(X)=>(((((uses_a_Windows_laptop(X))<~>(is_right-handed(X))))<=(is_right-handed(X))))))& (![X]:(room(X)=>(((((uses_a_Windows_laptop(X))<~>(is_right-handed(X))))=>(can_play_the_piano(X))))))& (?[X]:(room(X)&(((is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))|(is_a_craft_beer_aficionado(X))))))& (collects_rare_and_antique_scientific_instruments(holly))& (is_a_certified_yoga_instructor_teaching_classes_weekly(holly))& (is_a_drone_photographer(holly))& (![X]:(room(X)=>(((owns_a_telescope(X))<=(enjoys_fishing(X))))))& ((holly_dream=>(knows_morse_code(holly))))& (![X]:(room(X)=>(((enjoys_rooftop_gardening(X))=>(is_a_craft_beer_aficionado(X))))))& (![X]:(room(X)=>(((enjoys_fishing(X))=>(practices_urban_gardening(X))))))& (![X]:(room(X)=>(((~((is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))|(owns_a_telescope(X))))<=(is_a_craft_beer_aficionado(X))))))& (~(~((is_a_culinary_enthusiast_who_experiments_with_international_cuisines(holly))|(knows_morse_code(holly)))))& (![X]:(anywhere(X)=>(((collects_classic_novels(X))=>(practices_graffiti_art(X))))))
room(holly)&(![X]:(room(X)=>(X='holly')))& owns_a_telescope(holly)
[]
null
0.297192
Gladys, James, Rex are the only persons in the room. Gladys collects first edition books. Everyone in the room collects first edition books if they travels domestically frequently. Everyone in the room does not enjoy snowboarding or collects first edition books. Everyone anywhere who either is a client of LVMH or is not an avid mountain climber who has scaled several peaks but not both plays the drums. More than one person in the room travels domestically frequently. Someone anywhere does not play the drums. Gladys enjoys snowboarding. Someone in the room owns a telescope. James collects first edition books. Everyone outside the room is a craft beer aficionado if they does practice yoga. If someone hosts regular workshops on creative writing then he/she does not use an ios phone and vice versa. James uses an ios phone.
James hosts regular workshops on creative writing.
contradiction
room(gladys)&room(james)&room(rex)&(![X]:(room(X)=>(X='gladys'|X='james'|X='rex')))& (collects_first_edition_books(gladys))& (![X]:(room(X)=>(((travels_domestically_frequently(X))=>(collects_first_edition_books(X))))))& (![X]:(room(X)=>(((collects_first_edition_books(X))|(does_not_enjoy_snowboarding(X))))))& (![X]:(anywhere(X)=>(((((is_a_client_of_LVMH(X))<~>(is_not_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))=>(plays_the_drums(X))))))& ((?[X,Y]:(room(X)&room(Y)&(travels_domestically_frequently(X)&travels_domestically_frequently(Y))&(X!=Y))))& (?[X]:(anywhere(X)&(does_not_play_the_drums(X))))& (enjoys_snowboarding(gladys))& (?[X]:(room(X)&(owns_a_telescope(X))))& (collects_first_edition_books(james))& (![X]:(~room(X)=>(((does_practice_yoga(X))=>(is_a_craft_beer_aficionado(X))))))& ((![X]:((hosts_regular_workshops_on_creative_writing(X))<=>(does_not_use_an_ios_phone(X)))))& (uses_an_ios_phone(james))& (hosts_regular_workshops_on_creative_writing(gladys))& (collects_rare_and_antique_scientific_instruments(james))& (travels_domestically_frequently(gladys))& (is_a_client_of_LVMH(gladys))& ((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(gladys))&(collects_first_edition_books(gladys)))& (~![X]:(room(X)=>(((does_not_have_a_vast_collection_of_first-edition_science_fiction_novels(X))=>(~((is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))|(collects_rare_and_antique_scientific_instruments(X))))))))
room(gladys)&room(james)&room(rex)&(![X]:(room(X)=>(X='gladys'|X='james'|X='rex')))& hosts_regular_workshops_on_creative_writing(james)
[ "p11", "p12", "hypothesis" ]
% SZS status Unsatisfiable for 8562508426877595822405137 % SZS output start Proof for 8562508426877595822405137 55. ! [X0] : (preds(X0) <=> ~predp(X0)) [input p11] 56. predp(paul) [input p12] 63. preds(paul) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 64. ! [X0] : (preds(X0) => ~predp(X0)) [unused predicate definition removal 55] 154. ! [X0] : (~predp(X0) | ~preds(X0)) [ennf transformation 64] 156. preds(paul) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 63] 157. preds(paul) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 156] 261. ~predp(X0) | ~preds(X0) [cnf transformation 154] 262. predp(paul) [cnf transformation 56] 270. preds(paul) [cnf transformation 157] 273. ~preds(paul) [resolution 261,262] 274. $false [subsumption resolution 273,270] % SZS output end Proof for 8562508426877595822405137 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0
There is a room. If someone is a drone photographer then he/she is a Linux enthusiast and vice versa. Everyone outside the room practices tai chi if they plays as a goalkeeper for a local amateur soccer team or practices tai chi or both. Everyone in the room collects luxury watches if they practices tai chi. If someone collects vintage stamps then he/she regularly contributes to tech forums and online communities and vice versa. Everyone in the room cannot play the flute or does not enjoy wildlife photography. No one in the room enjoys wildlife photography if they cannot play the guitar. Everyone in the room is not a dedicated advocate for digital privacy and encryption if they collects luxury watches or is a professional photographer specializing in portrait photography or both. Everyone in the room enjoys wildlife photography if they is not a dedicated advocate for digital privacy and encryption.
Everyone in the room practices tai chi.
contradiction
(there_is_a_room)& ((![X]:((is_a_drone_photographer(X))<=>(is_a_Linux_enthusiast(X)))))& (![X]:(~room(X)=>(((((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))|(practices_tai_chi(X))))=>(practices_tai_chi(X))))))& (![X]:(room(X)=>(((practices_tai_chi(X))=>(collects_luxury_watches(X))))))& ((![X]:((collects_vintage_stamps(X))<=>(regularly_contributes_to_tech_forums_and_online_communities(X)))))& (![X]:(room(X)=>(((does_not_enjoy_wildlife_photography(X))|(cannot_play_the_flute(X))))))& (![X]:(room(X)=>(((cannot_play_the_flute(X))=>(collects_antique_clocks(X))))))& (![X]:(room(X)=>(((collects_antique_clocks(X))=>(cannot_play_the_guitar(X))))))& (~?[X]:(room(X)=>(((cannot_play_the_guitar(X))=>(enjoys_wildlife_photography(X))))))& (![X]:(room(X)=>(((enjoys_wildlife_photography(X))=>(practices_tai_chi(X))))))& (![X]:(room(X)=>(((((collects_luxury_watches(X))|(is_a_professional_photographer_specializing_in_portrait_photography(X))))=>(is_not_a_dedicated_advocate_for_digital_privacy_and_encryption(X))))))& (![X]:(room(X)=>(((is_not_a_dedicated_advocate_for_digital_privacy_and_encryption(X))=>(enjoys_wildlife_photography(X))))))& (![X]:(room(X)=>(owns_a_microscope(X))))& (((?[X]:(room(X)&does_not_enjoy_wildlife_photography(X)))))& (![X]:(anywhere(X)=>(((((practices_tai_chi(X))&(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))&(does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(X))))=>(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))& (![X]:(~room(X)=>(((does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))=>(((does_not_collect_antique_clocks(X))&(builds_model_airplanes(X))&(collects_luxury_watches(X))))))))& (~![X]:(room(X)=>(((((does_not_collect_antique_clocks(X))&(builds_model_airplanes(X))&(collects_luxury_watches(X))))|(does_not_have_a_specialized_collection_of_handmade_artisan_pottery(X))))))& (![X]:(room(X)=>(((does_not_have_a_specialized_collection_of_handmade_artisan_pottery(X))=>(((is_not_a_Linux_enthusiast(X))|(is_a_craft_beer_aficionado(X))))))))& (~?[X]:(anywhere(X)=>(((~((is_a_Linux_enthusiast(X))|(enjoys_landscape_photography(X))))=>(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))& (![X]:(anywhere(X)=>(((does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))=>(collects_luxury_watches(X))))))& ((![X]:((enjoys_cross-country_skiing(X))=>(enjoys_origami(X)))))& ((![X]:((((is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))&(enjoys_landscape_photography(X))&(is_not_a_Linux_enthusiast(X))))=>(cannot_play_the_flute(X)))))& (![X]:(anywhere(X)=>(((cannot_play_the_flute(X))=>(((has_a_piercing(X))|(enjoys_origami(X))|(enjoys_kayaking(X))))))))& (![X]:(anywhere(X)=>(((((has_a_piercing(X))|(enjoys_origami(X))|(enjoys_kayaking(X))))=>(((enjoys_deep-sea_diving_and_exploring_underwater_caves(X))&(enjoys_wildlife_photography(X))))))))& (![X]:(room(X)=>(((does_not_have_a_specialized_collection_of_handmade_artisan_pottery(X))<=(((enjoys_deep-sea_diving_and_exploring_underwater_caves(X))&(enjoys_wildlife_photography(X))))))))
(there_is_a_room)& ![X]:(room(X)=>(practices_tai_chi(X)))
[ "p3", "p8", "p10", "p11", "hypothesis" ]
% SZS status Unsatisfiable for 8285346587121226854423309 % SZS output start Proof for 8285346587121226854423309 47. ! [X0] : (room(X0) => (predc(X0) => predb(X0))) [input p3] 52. ~? [X0] : (room(X0) => (~predx(X0) => preda(X0))) [input p8] 54. ! [X0] : (room(X0) => ((predu(X0) | predb(X0)) => ~predi(X0))) [input p10] 55. ! [X0] : (room(X0) => (~predi(X0) => preda(X0))) [input p11] 69. ! [X0] : (room(X0) => predc(X0)) & there_is_a_room [input hypothesis] 76. ! [X0] : (room(X0) => (predb(X0) => ~predi(X0))) [pure predicate removal 54] 78. ~? [X0] : (room(X0) => preda(X0)) [pure predicate removal 52] 80. ! [X0] : (room(X0) => predc(X0)) [pure predicate removal 69] 154. ! [X0] : ((predb(X0) | ~predc(X0)) | ~room(X0)) [ennf transformation 47] 155. ! [X0] : (predb(X0) | ~predc(X0) | ~room(X0)) [flattening 154] 160. ! [X0] : (~preda(X0) & room(X0)) [ennf transformation 78] 163. ! [X0] : ((~predi(X0) | ~predb(X0)) | ~room(X0)) [ennf transformation 76] 164. ! [X0] : (~predi(X0) | ~predb(X0) | ~room(X0)) [flattening 163] 165. ! [X0] : ((preda(X0) | predi(X0)) | ~room(X0)) [ennf transformation 55] 166. ! [X0] : (preda(X0) | predi(X0) | ~room(X0)) [flattening 165] 182. ! [X0] : (predc(X0) | ~room(X0)) [ennf transformation 80] 271. ~predc(X0) | predb(X0) | ~room(X0) [cnf transformation 155] 274. room(X0) [cnf transformation 160] 275. ~preda(X0) [cnf transformation 160] 277. ~predi(X0) | ~predb(X0) | ~room(X0) [cnf transformation 164] 278. preda(X0) | predi(X0) | ~room(X0) [cnf transformation 166] 299. predc(X0) | ~room(X0) [cnf transformation 182] 300. ~predi(X0) | ~predb(X0) [subsumption resolution 277,274] 301. predi(X0) | ~room(X0) [subsumption resolution 278,275] 302. predi(X0) [subsumption resolution 301,274] 325. predc(X0) [subsumption resolution 299,274] 326. ~predb(X0) [resolution 300,302] 328. predb(X0) | ~room(X0) [resolution 271,325] 329. ~room(X0) [subsumption resolution 328,326] 330. $false [subsumption resolution 329,274] % SZS output end Proof for 8285346587121226854423309 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.021 s % ------------------------------ % ------------------------------
0.141453
Joseph, Patricia are the only persons in the room. “If someone makes homemade pastries then he/she is passionate about collecting and restoring classic cars” unless “everyone in the room is not passionate about collecting and restoring classic cars or makes homemade pastries”. If “it is not the case that “at least one person in the room makes homemade pastries”” then “only one person in the room is passionate about collecting and restoring classic cars”. Someone in the room travels domestically frequently. Only one person in the room travels domestically frequently. Joseph is passionate about collecting and restoring classic cars. Only one person in the room is passionate about collecting and restoring classic cars. If someone is passionate about collecting and restoring classic cars then he/she makes homemade pastries and vice versa. Only one person outside the room travels domestically frequently. Someone outside the room travels domestically frequently. Joseph travels domestically frequently. Only one person in the room makes homemade pastries. Someone in the room makes homemade pastries. If someone is passionate about collecting and restoring classic cars then he/she makes homemade pastries. Everyone outside the room who makes homemade pastries is passionate about collecting and restoring classic cars. If someone travels domestically frequently then he/she makes homemade pastries and travels domestically frequently. Everyone outside the room who travels domestically frequently is passionate about collecting and restoring classic cars.
It is true that “Patricia makes homemade pastries”.
contradiction
room(joseph)&room(patricia)&(![X]:(room(X)=>(X='joseph'|X='patricia')))& (~(![X]:(room(X)=>(((makes_homemade_pastries(X))|(is_not_passionate_about_collecting_and_restoring_classic_cars(X))))))=>((![X]:((makes_homemade_pastries(X))=>(is_passionate_about_collecting_and_restoring_classic_cars(X))))))& ((~(((?[X]:(room(X)&makes_homemade_pastries(X))))))=>(((?[X]:(room(X)&is_passionate_about_collecting_and_restoring_classic_cars(X)))&(![X,Y]:((room(X)&room(Y)&(is_passionate_about_collecting_and_restoring_classic_cars(X))&(is_passionate_about_collecting_and_restoring_classic_cars(Y)))=>(X=Y))))))& (?[X]:(room(X)&(travels_domestically_frequently(X))))& (((?[X]:(room(X)&travels_domestically_frequently(X)))&(![X,Y]:((room(X)&room(Y)&(travels_domestically_frequently(X))&(travels_domestically_frequently(Y)))=>(X=Y)))))& (is_passionate_about_collecting_and_restoring_classic_cars(joseph))& (((?[X]:(room(X)&is_passionate_about_collecting_and_restoring_classic_cars(X)))&(![X,Y]:((room(X)&room(Y)&(is_passionate_about_collecting_and_restoring_classic_cars(X))&(is_passionate_about_collecting_and_restoring_classic_cars(Y)))=>(X=Y)))))& ((![X]:((is_passionate_about_collecting_and_restoring_classic_cars(X))<=>(makes_homemade_pastries(X)))))& (((?[X]:(~room(X)&travels_domestically_frequently(X)))&(![X,Y]:((~room(X)&~room(Y)&(travels_domestically_frequently(X))&(travels_domestically_frequently(Y)))=>(X=Y)))))& (?[X]:(~room(X)&(travels_domestically_frequently(X))))& (travels_domestically_frequently(joseph))& (((?[X]:(room(X)&makes_homemade_pastries(X)))&(![X,Y]:((room(X)&room(Y)&(makes_homemade_pastries(X))&(makes_homemade_pastries(Y)))=>(X=Y)))))& (?[X]:(room(X)&(makes_homemade_pastries(X))))& ((![X]:((is_passionate_about_collecting_and_restoring_classic_cars(X))=>(makes_homemade_pastries(X)))))& (![X]:(~room(X)=>(((makes_homemade_pastries(X))=>(is_passionate_about_collecting_and_restoring_classic_cars(X))))))& ((![X]:((travels_domestically_frequently(X))=>(((makes_homemade_pastries(X))&(travels_domestically_frequently(X)))))))& (![X]:(~room(X)=>(((travels_domestically_frequently(X))=>(is_passionate_about_collecting_and_restoring_classic_cars(X))))))
room(joseph)&room(patricia)&(![X]:(room(X)=>(X='joseph'|X='patricia')))& makes_homemade_pastries(patricia)
[ "b42", "p0", "p5", "p7", "p11", "hypothesis" ]
% SZS status Unsatisfiable for 106417335973332482735170 % SZS output start Proof for 106417335973332482735170 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 49. predc(mary) [input p5] 51. ! [X0] : (predc(X0) <=> preda(X0)) [input p7] 55. ! [X0,X1] : ((preda(X1) & preda(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (preda(X0) & room(X0)) [input p11] 61. preda(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 67. ! [X0,X1] : ((preda(X1) & preda(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (preda(X2) & room(X2)) [rectify 55] 140. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 141. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 140] 152. ! [X0,X1] : (X0 = X1 | (~preda(X1) | ~preda(X0) | ~room(X1) | ~room(X0))) & ? [X2] : (preda(X2) & room(X2)) [ennf transformation 67] 153. ! [X0,X1] : (X0 = X1 | ~preda(X1) | ~preda(X0) | ~room(X1) | ~room(X0)) & ? [X2] : (preda(X2) & room(X2)) [flattening 152] 160. preda(paul) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 61] 161. preda(paul) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 160] 174. ! [X0] : ((predc(X0) | ~preda(X0)) & (preda(X0) | ~predc(X0))) [nnf transformation 51] 179. ? [X2] : (preda(X2) & room(X2)) => (preda(sK7) & room(sK7)) [choice axiom] 180. ! [X0,X1] : (X0 = X1 | ~preda(X1) | ~preda(X0) | ~room(X1) | ~room(X0)) & (preda(sK7) & room(sK7)) [skolemisation 153,179] 227. mary != paul [cnf transformation 43] 263. room(mary) [cnf transformation 141] 264. room(paul) [cnf transformation 141] 278. predc(mary) [cnf transformation 49] 282. ~predc(X0) | preda(X0) [cnf transformation 174] 292. ~preda(X1) | X0 = X1 | ~preda(X0) | ~room(X1) | ~room(X0) [cnf transformation 180] 303. preda(paul) [cnf transformation 161] 338. preda(mary) [resolution 282,278] 538. paul = X1 | ~preda(X1) | ~room(paul) | ~room(X1) [resolution 292,303] 542. ~preda(X1) | paul = X1 | ~room(X1) [subsumption resolution 538,264] 559. mary = paul | ~room(mary) [resolution 542,338] 562. ~room(mary) [subsumption resolution 559,227] 563. $false [subsumption resolution 562,263] % SZS output end Proof for 106417335973332482735170 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.040 s % ------------------------------ % ------------------------------
0.215137
There is a room. If “everyone in the room enjoys stargazing or does not enjoy kayaking and exploring remote waterways” then “everyone in the room does not volunteer for local environmental conservation projects if they enjoys stargazing”. Everyone in the room does not create bespoke furniture pieces from reclaimed wood if they does not volunteer for local environmental conservation projects. Not everyone in the room has lived in exactly three countries. Everyone in the room has lived in exactly three countries if they enjoys kayaking and exploring remote waterways. It is true that “everyone outside the room either volunteers for local environmental conservation projects or does not enjoy stargazing but not both if they enjoys stargazing”. Everyone outside the room has lived in exactly three countries if they hosts themed dinner parties featuring gourmet home-cooked meals. Everyone in the room does not enjoy stargazing or does not host themed dinner parties featuring gourmet home-cooked meals. Everyone in the room who neither enjoys stargazing nor hosts themed dinner parties featuring gourmet home-cooked meals hosts themed dinner parties featuring gourmet home-cooked meals. Everyone outside the room who creates bespoke furniture pieces from reclaimed wood neither does not create bespoke furniture pieces from reclaimed wood nor enjoys kayaking and exploring remote waterways. Everyone in the room creates bespoke furniture pieces from reclaimed wood if they neither does not create bespoke furniture pieces from reclaimed wood nor enjoys kayaking and exploring remote waterways.
Everyone in the room enjoys stargazing.
neutral
(there_is_a_room)& ((![X]:(room(X)=>(((does_not_enjoy_kayaking_and_exploring_remote_waterways(X))|(enjoys_stargazing(X))))))=>(![X]:(room(X)=>(((enjoys_stargazing(X))=>(does_not_volunteer_for_local_environmental_conservation_projects(X)))))))& (![X]:(room(X)=>(((does_not_volunteer_for_local_environmental_conservation_projects(X))=>(does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(X))))))& (~![X]:(room(X)=>(has_lived_in_exactly_three_countries(X))))& (![X]:(room(X)=>(((enjoys_kayaking_and_exploring_remote_waterways(X))=>(has_lived_in_exactly_three_countries(X))))))& (![X]:(~room(X)=>(((enjoys_stargazing(X))=>(((volunteers_for_local_environmental_conservation_projects(X))<~>(does_not_enjoy_stargazing(X))))))))& (![X]:(~room(X)=>(((hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))=>(has_lived_in_exactly_three_countries(X))))))& (![X]:(room(X)=>(((does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))|(does_not_enjoy_stargazing(X))))))& (![X]:(room(X)=>(((~((enjoys_stargazing(X))|(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))=>(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))& (![X]:(~room(X)=>(((creates_bespoke_furniture_pieces_from_reclaimed_wood(X))=>(~((does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(X))|(enjoys_kayaking_and_exploring_remote_waterways(X))))))))& (![X]:(room(X)=>(((~((does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(X))|(enjoys_kayaking_and_exploring_remote_waterways(X))))=>(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))))
(there_is_a_room)& ![X]:(room(X)=>(enjoys_stargazing(X)))
[]
null
0.07599
Lisa, Margaret, Lorraine, Roberta, Charles are the only persons in the room. 'Everyone in the room has completed a triathlon or is not an avid collector of autographed memorabilia from famous musicians' if 'everyone in the room is not a scotch connoisseur or does not have a saltwater aquarium' and vice versa. If 'everyone in the room is a scotch connoisseur' then 'everyone in the room who enjoys bird watching has a saltwater aquarium'. Either 'everyone in the room enjoys watercolor painting' or 'everyone in the room bakes bread at home or does not have a saltwater aquarium' but not both. If 'everyone in the room trains for and competes in international triathlons or is not an avid hiker' then 'everyone outside the room has a saltwater aquarium or does not practice pilates'. If 'everyone in the room does not practice tai chi or does not practice urban gardening' then 'everyone in the room who does not practice tai chi builds model airplanes'. If 'no one in the room does not enjoy snowboarding or does not collect rare sneakers' then 'no one in the room maintains a personal blog focused on cybersecurity tips if they does not enjoy snowboarding'. If 'everyone in the room is an avid hiker' then 'everyone anywhere enjoys landscape photography if they designs and sews custom cosplay costumes for conventions'. If 'not everyone in the room has a saltwater aquarium or does not practice archery' then 'Lisa has a saltwater aquarium'. Everyone in the room does not enjoy watercolor painting if they has a saltwater aquarium. Lisa designs and sews custom cosplay costumes for conventions. Everyone in the room collects classic novels if they trains for and competes in international triathlons. Not everyone in the room who collects classic novels collects action figures. Lisa practices archery. Everyone in the room practices archery if they enjoys snowboarding. Everyone in the room practices urban gardening if they enjoys bird watching. Everyone in the room practices pilates and collects antique clocks if they practices urban gardening. If someone practices urban gardening then he/she does not maintain a personal blog focused on cybersecurity tips or participates in long-distance cycling events across the country or both. Everyone in the room enjoys salsa dancing if and only if they does not practice tai chi. Everyone anywhere who collects classic novels enjoys bird watching. Everyone in the room who enjoys bird watching has a saltwater aquarium. Lisa trains for and competes in international triathlons or collects classic novels or both.
Lisa bakes bread at home.
entailment
room(lisa)&room(margaret)&room(lorraine)&room(roberta)&room(charles)&(![X]:(room(X)=>(X='lisa'|X='margaret'|X='lorraine'|X='roberta'|X='charles')))& ((![X]:(room(X)=>(((does_not_have_a_saltwater_aquarium(X))|(is_not_a_scotch_connoisseur(X))))))<=>(![X]:(room(X)=>(((is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))|(has_completed_a_triathlon(X)))))))& ((![X]:(room(X)=>(is_a_scotch_connoisseur(X))))=>(![X]:(room(X)=>(((enjoys_bird_watching(X))=>(has_a_saltwater_aquarium(X)))))))& ((![X]:(room(X)=>(enjoys_watercolor_painting(X))))<~>(![X]:(room(X)=>(((does_not_have_a_saltwater_aquarium(X))|(bakes_bread_at_home(X)))))))& ((![X]:(room(X)=>(((is_not_an_avid_hiker(X))|(trains_for_and_competes_in_international_triathlons(X))))))=>(![X]:(~room(X)=>(((does_not_practice_pilates(X))|(has_a_saltwater_aquarium(X)))))))& ((![X]:(room(X)=>(((does_not_practice_urban_gardening(X))|(does_not_practice_tai_chi(X))))))=>(![X]:(room(X)=>(((does_not_practice_tai_chi(X))=>(builds_model_airplanes(X)))))))& ((~?[X]:(room(X)=>(((does_not_collect_rare_sneakers(X))|(does_not_enjoy_snowboarding(X))))))=>(~?[X]:(room(X)=>(((does_not_enjoy_snowboarding(X))=>(maintains_a_personal_blog_focused_on_cybersecurity_tips(X)))))))& ((![X]:(room(X)=>(is_an_avid_hiker(X))))=>(![X]:(anywhere(X)=>(((designs_and_sews_custom_cosplay_costumes_for_conventions(X))=>(enjoys_landscape_photography(X)))))))& ((~![X]:(room(X)=>(((does_not_practice_archery(X))|(has_a_saltwater_aquarium(X))))))=>(has_a_saltwater_aquarium(lisa)))& (![X]:(room(X)=>(((has_a_saltwater_aquarium(X))=>(does_not_enjoy_watercolor_painting(X))))))& (designs_and_sews_custom_cosplay_costumes_for_conventions(lisa))& (![X]:(room(X)=>(((trains_for_and_competes_in_international_triathlons(X))=>(collects_classic_novels(X))))))& (~![X]:(room(X)=>(((collects_classic_novels(X))=>(collects_action_figures(X))))))& (practices_archery(lisa))& (![X]:(room(X)=>(((enjoys_snowboarding(X))=>(practices_archery(X))))))& (![X]:(room(X)=>(((enjoys_bird_watching(X))=>(practices_urban_gardening(X))))))& (![X]:(room(X)=>(((practices_urban_gardening(X))=>(((practices_pilates(X))&(collects_antique_clocks(X))))))))& ((![X]:((practices_urban_gardening(X))=>(((does_not_maintain_a_personal_blog_focused_on_cybersecurity_tips(X))|(participates_in_long-distance_cycling_events_across_the_country(X)))))))& (![X]:(room(X)=>(((enjoys_salsa_dancing(X))<=>(does_not_practice_tai_chi(X))))))& (![X]:(room(X)=>(((does_not_practice_tai_chi(X))=>(collects_classic_novels(X))))))& (![X]:(anywhere(X)=>(((collects_classic_novels(X))=>(enjoys_bird_watching(X))))))& (is_a_scotch_connoisseur(lisa))& ((![X]:((is_a_scotch_connoisseur(X))=>(enjoys_snowboarding(X)))))& (![X]:(room(X)=>(((enjoys_bird_watching(X))=>(has_a_saltwater_aquarium(X))))))& (((trains_for_and_competes_in_international_triathlons(lisa))|(collects_classic_novels(lisa))))
room(lisa)&room(margaret)&room(lorraine)&room(roberta)&room(charles)&(![X]:(room(X)=>(X='lisa'|X='margaret'|X='lorraine'|X='roberta'|X='charles')))& bakes_bread_at_home(lisa)
[ "b4", "p0", "p3", "p9", "p11", "p20", "p23", "p24", "hypothesis" ]
% SZS status Unsatisfiable for 1959767307559277709542431 % SZS output start Proof for 1959767307559277709542431 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 47. ! [X0] : (room(X0) => predh(X0)) <~> ! [X0] : (room(X0) => (predf(X0) | ~predq(X0))) [input p3] 53. ! [X0] : (room(X0) => (predq(X0) => ~predh(X0))) [input p9] 55. ! [X0] : (room(X0) => (predv(X0) => predr(X0))) [input p11] 64. ! [X0] : (anywhere(X0) => (predr(X0) => predi(X0))) [input p20] 67. ! [X0] : (room(X0) => (predi(X0) => predq(X0))) [input p23] 68. predr(mary) | predv(mary) [input p24] 69. ~(predf(mary) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 72. ! [X0] : (room(X0) => predh(X0)) <~> ! [X1] : (room(X1) => (predf(X1) | ~predq(X1))) [rectify 47] 157. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 158. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 157] 163. ! [X0] : (predh(X0) | ~room(X0)) <~> ! [X1] : ((predf(X1) | ~predq(X1)) | ~room(X1)) [ennf transformation 72] 164. ! [X0] : (predh(X0) | ~room(X0)) <~> ! [X1] : (predf(X1) | ~predq(X1) | ~room(X1)) [flattening 163] 169. ! [X0] : ((~predh(X0) | ~predq(X0)) | ~room(X0)) [ennf transformation 53] 170. ! [X0] : (~predh(X0) | ~predq(X0) | ~room(X0)) [flattening 169] 171. ! [X0] : ((predr(X0) | ~predv(X0)) | ~room(X0)) [ennf transformation 55] 172. ! [X0] : (predr(X0) | ~predv(X0) | ~room(X0)) [flattening 171] 183. ! [X0] : ((predi(X0) | ~predr(X0)) | ~anywhere(X0)) [ennf transformation 64] 184. ! [X0] : (predi(X0) | ~predr(X0) | ~anywhere(X0)) [flattening 183] 186. ! [X0] : ((predq(X0) | ~predi(X0)) | ~room(X0)) [ennf transformation 67] 187. ! [X0] : (predq(X0) | ~predi(X0) | ~room(X0)) [flattening 186] 188. ~predf(mary) | ? [X0] : ((john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 69] 189. ~predf(mary) | ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 188] 199. (? [X1] : (~predf(X1) & predq(X1) & room(X1)) | ? [X0] : (~predh(X0) & room(X0))) & (! [X1] : (predf(X1) | ~predq(X1) | ~room(X1)) | ! [X0] : (predh(X0) | ~room(X0))) [nnf transformation 164] 200. (? [X0] : (~predf(X0) & predq(X0) & room(X0)) | ? [X1] : (~predh(X1) & room(X1))) & (! [X2] : (predf(X2) | ~predq(X2) | ~room(X2)) | ! [X3] : (predh(X3) | ~room(X3))) [rectify 199] 201. ? [X0] : (~predf(X0) & predq(X0) & room(X0)) => (~predf(sK3) & predq(sK3) & room(sK3)) [choice axiom] 202. ? [X1] : (~predh(X1) & room(X1)) => (~predh(sK4) & room(sK4)) [choice axiom] 203. ((~predf(sK3) & predq(sK3) & room(sK3)) | (~predh(sK4) & room(sK4))) & (! [X2] : (predf(X2) | ~predq(X2) | ~room(X2)) | ! [X3] : (predh(X3) | ~room(X3))) [skolemisation 200,202,201] 210. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (john != sK7 & alice != sK7 & fred != sK7 & paul != sK7 & mary != sK7 & room(sK7)) [choice axiom] 211. ~predf(mary) | (john != sK7 & alice != sK7 & fred != sK7 & paul != sK7 & mary != sK7 & room(sK7)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 189,210] 212. anywhere(X0) [cnf transformation 5] 293. room(mary) [cnf transformation 158] 294. room(paul) [cnf transformation 158] 295. room(fred) [cnf transformation 158] 296. room(alice) [cnf transformation 158] 297. room(john) [cnf transformation 158] 298. ~room(X0) | alice = X0 | fred = X0 | paul = X0 | mary = X0 | john = X0 [cnf transformation 158] 307. predf(X2) | ~predq(X2) | ~room(X2) | predh(X3) | ~room(X3) [cnf transformation 203] 317. ~predh(X0) | ~predq(X0) | ~room(X0) [cnf transformation 170] 318. ~predv(X0) | predr(X0) | ~room(X0) [cnf transformation 172] 328. predi(X0) | ~predr(X0) | ~anywhere(X0) [cnf transformation 184] 331. predq(X0) | ~predi(X0) | ~room(X0) [cnf transformation 187] 332. predr(mary) | predv(mary) [cnf transformation 68] 333. ~predf(mary) | room(sK7) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 211] 334. ~predf(mary) | mary != sK7 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 211] 335. ~predf(mary) | paul != sK7 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 211] 336. ~predf(mary) | fred != sK7 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 211] 337. ~predf(mary) | alice != sK7 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 211] 338. ~predf(mary) | john != sK7 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 211] 380. 10 <=> ! [X0] : (predq(X0) | ~room(X0) | ~predi(X0)) [avatar definition] 381. ~predi(X0) | ~room(X0) | predq(X0) <- (10) [avatar component clause 380] 415. 17 <=> ! [X3] : (predh(X3) | ~room(X3)) [avatar definition] 416. ~room(X3) | predh(X3) <- (17) [avatar component clause 415] 418. 18 <=> ! [X2] : (predf(X2) | ~room(X2) | ~predq(X2)) [avatar definition] 419. ~predq(X2) | ~room(X2) | predf(X2) <- (18) [avatar component clause 418] 420. 17 | 18 [avatar split clause 307,418,415] 438. 23 <=> predq(mary) [avatar definition] 440. predq(mary) <- (23) [avatar component clause 438] 442. ~predr(X0) | predi(X0) [subsumption resolution 328,212] 443. 10 [avatar split clause 331,380] 445. 24 <=> predv(mary) [avatar definition] 447. predv(mary) <- (24) [avatar component clause 445] 449. 25 <=> predr(mary) [avatar definition] 451. predr(mary) <- (25) [avatar component clause 449] 452. 24 | 25 [avatar split clause 332,449,445] 453. ~predf(mary) | john != sK7 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 338,297] 454. ~predf(mary) | john != sK7 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 453,296] 455. ~predf(mary) | john != sK7 | ~room(paul) | ~room(mary) [subsumption resolution 454,295] 456. ~predf(mary) | john != sK7 | ~room(mary) [subsumption resolution 455,294] 457. ~predf(mary) | john != sK7 [subsumption resolution 456,293] 459. 26 <=> john = sK7 [avatar definition] 461. john != sK7 <- (~26) [avatar component clause 459] 463. 27 <=> predf(mary) [avatar definition] 466. ~26 | ~27 [avatar split clause 457,463,459] 467. ~predf(mary) | alice != sK7 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 337,297] 468. ~predf(mary) | alice != sK7 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 467,296] 469. ~predf(mary) | alice != sK7 | ~room(paul) | ~room(mary) [subsumption resolution 468,295] 470. ~predf(mary) | alice != sK7 | ~room(mary) [subsumption resolution 469,294] 471. ~predf(mary) | alice != sK7 [subsumption resolution 470,293] 473. 28 <=> alice = sK7 [avatar definition] 475. alice != sK7 <- (~28) [avatar component clause 473] 476. ~28 | ~27 [avatar split clause 471,463,473] 477. ~predf(mary) | fred != sK7 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 336,297] 478. ~predf(mary) | fred != sK7 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 477,296] 479. ~predf(mary) | fred != sK7 | ~room(paul) | ~room(mary) [subsumption resolution 478,295] 480. ~predf(mary) | fred != sK7 | ~room(mary) [subsumption resolution 479,294] 481. ~predf(mary) | fred != sK7 [subsumption resolution 480,293] 483. 29 <=> fred = sK7 [avatar definition] 485. fred != sK7 <- (~29) [avatar component clause 483] 486. ~29 | ~27 [avatar split clause 481,463,483] 487. ~predf(mary) | paul != sK7 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 335,297] 488. ~predf(mary) | paul != sK7 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 487,296] 489. ~predf(mary) | paul != sK7 | ~room(paul) | ~room(mary) [subsumption resolution 488,295] 490. ~predf(mary) | paul != sK7 | ~room(mary) [subsumption resolution 489,294] 491. ~predf(mary) | paul != sK7 [subsumption resolution 490,293] 493. 30 <=> paul = sK7 [avatar definition] 495. paul != sK7 <- (~30) [avatar component clause 493] 496. ~30 | ~27 [avatar split clause 491,463,493] 497. ~predf(mary) | mary != sK7 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 334,297] 498. ~predf(mary) | mary != sK7 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 497,296] 499. ~predf(mary) | mary != sK7 | ~room(paul) | ~room(mary) [subsumption resolution 498,295] 500. ~predf(mary) | mary != sK7 | ~room(mary) [subsumption resolution 499,294] 501. ~predf(mary) | mary != sK7 [subsumption resolution 500,293] 503. 31 <=> mary = sK7 [avatar definition] 505. mary != sK7 <- (~31) [avatar component clause 503] 506. ~31 | ~27 [avatar split clause 501,463,503] 507. ~predf(mary) | room(sK7) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 333,297] 508. ~predf(mary) | room(sK7) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 507,296] 509. ~predf(mary) | room(sK7) | ~room(paul) | ~room(mary) [subsumption resolution 508,295] 510. ~predf(mary) | room(sK7) | ~room(mary) [subsumption resolution 509,294] 511. ~predf(mary) | room(sK7) [subsumption resolution 510,293] 513. 32 <=> room(sK7) [avatar definition] 515. room(sK7) <- (32) [avatar component clause 513] 516. 32 | ~27 [avatar split clause 511,463,513] 518. predh(mary) <- (17) [resolution 416,293] 531. ~predq(mary) | ~room(mary) <- (17) [resolution 317,518] 533. ~predq(mary) <- (17) [subsumption resolution 531,293] 534. ~23 | ~17 [avatar split clause 533,415,438] 535. predr(mary) | ~room(mary) <- (24) [resolution 318,447] 536. predr(mary) <- (24) [subsumption resolution 535,293] 537. 25 | ~24 [avatar split clause 536,445,449] 538. predi(mary) <- (25) [resolution 451,442] 677. ~room(mary) | predq(mary) <- (10, 25) [resolution 538,381] 679. predq(mary) <- (10, 25) [subsumption resolution 677,293] 683. 23 | ~10 | ~25 [avatar split clause 679,449,380,438] 728. ~room(mary) | predf(mary) <- (18, 23) [resolution 419,440] 733. predf(mary) <- (18, 23) [subsumption resolution 728,293] 736. 27 | ~18 | ~23 [avatar split clause 733,438,418,463] 849. alice = sK7 | fred = sK7 | paul = sK7 | mary = sK7 | john = sK7 <- (32) [resolution 298,515] 955. fred = sK7 | paul = sK7 | mary = sK7 | john = sK7 <- (~28, 32) [subsumption resolution 849,475] 956. paul = sK7 | mary = sK7 | john = sK7 <- (~28, ~29, 32) [subsumption resolution 955,485] 957. mary = sK7 | john = sK7 <- (~28, ~29, ~30, 32) [subsumption resolution 956,495] 958. john = sK7 <- (~28, ~29, ~30, ~31, 32) [subsumption resolution 957,505] 959. $false <- (~26, ~28, ~29, ~30, ~31, 32) [subsumption resolution 958,461] 960. 26 | 28 | 29 | 30 | 31 | ~32 [avatar contradiction clause 959] 961. $false [avatar sat refutation 420,443,452,466,476,486,496,506,516,534,537,683,736,960] % SZS output end Proof for 1959767307559277709542431 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5500 % Time elapsed: 0.041 s % ------------------------------ % ------------------------------
0.380045
Lynette is the only person in the room. If “someone in the room collects luxury watches” then “if someone is a scotch connoisseur then he/she creates bespoke furniture pieces from reclaimed wood and vice versa”. If someone is a Linux enthusiast then he/she enjoys windsurfing and vice versa. If someone collects luxury watches then he/she works on fridays and vice versa. Someone in the room trains for and competes in international triathlons. It is not the case that “someone in the room has a piercing”. If someone does practice yoga then he/she is allergic to anything and vice versa. If someone enjoys macrame then he/she competes in national level swimming championships and vice versa. If someone hosts a popular podcast about emerging technologies then he/she is a member of a local theater group specializing in improv and vice versa. It is not the case that “someone in the room is a member of a local theater group specializing in improv”.
Lynette hosts a popular podcast about emerging technologies.
contradiction
room(lynette)&(![X]:(room(X)=>(X='lynette')))& ((?[X]:(room(X)&(collects_luxury_watches(X))))=>((![X]:((is_a_scotch_connoisseur(X))<=>(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))))& ((![X]:((is_a_Linux_enthusiast(X))<=>(enjoys_windsurfing(X)))))& ((![X]:((collects_luxury_watches(X))<=>(works_on_fridays(X)))))& (?[X]:(room(X)&(trains_for_and_competes_in_international_triathlons(X))))& (~(?[X]:(room(X)&(has_a_piercing(X)))))& ((![X]:((does_practice_yoga(X))<=>(is_allergic_to_anything(X)))))& ((![X]:((enjoys_macrame(X))<=>(competes_in_national_level_swimming_championships(X)))))& (~(?[X]:(~room(X)&(has_a_piercing(X)))))& (~(~(?[X]:(room(X)&(enjoys_macrame(X))))))& (~(?[X]:(room(X)&(enjoys_windsurfing(X)))))& (?[X]:(room(X)&(enjoys_stand-up_paddleboarding(X))))& (?[X]:(room(X)&(uses_contact_lenses(X))))& ((![X]:((hosts_a_popular_podcast_about_emerging_technologies(X))<=>(is_a_member_of_a_local_theater_group_specializing_in_improv(X)))))& ((![X]:((practices_zumba(X))<=>(collects_luxury_watches(X)))))& (~(~(~(?[X]:(room(X)&(is_allergic_to_anything(X)))))))& ((![X]:((writes_a_travel_blog(X))<=>(enjoys_camping_and_organizing_outdoor_survival_workshops(X)))))& ((![X]:((hosts_a_popular_podcast_about_emerging_technologies(X))<=>(practices_graffiti_art(X)))))& (~(?[X]:(room(X)&(is_a_member_of_a_local_theater_group_specializing_in_improv(X)))))& (?[X]:(~room(X)&(has_lived_in_exactly_three_countries(X))))
room(lynette)&(![X]:(room(X)=>(X='lynette')))& hosts_a_popular_podcast_about_emerging_technologies(lynette)
[ "p0", "p13", "p18", "hypothesis" ]
% SZS status Unsatisfiable for 247057025411769567299168 % SZS output start Proof for 247057025411769567299168 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 57. ! [X0] : (predi(X0) <=> predf(X0)) [input p13] 62. ~? [X0] : (predf(X0) & room(X0)) [input p18] 64. predi(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 154. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 155. ! [X0] : (~predf(X0) | ~room(X0)) [ennf transformation 62] 156. predi(mary) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 64] 166. ! [X0] : ((predi(X0) | ~predf(X0)) & (predf(X0) | ~predi(X0))) [nnf transformation 57] 250. room(mary) [cnf transformation 154] 256. ~predi(X0) | predf(X0) [cnf transformation 166] 260. ~predf(X0) | ~room(X0) [cnf transformation 155] 264. predi(mary) [cnf transformation 156] 265. predf(mary) [resolution 256,264] 269. ~room(mary) [resolution 260,265] 270. $false [subsumption resolution 269,250] % SZS output end Proof for 247057025411769567299168 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.030 s % ------------------------------ % ------------------------------
0.698486
Geoffrey is the only person in the room. If "Geoffrey either enjoys origami or does not practice zumba but not both" then "Geoffrey enjoys origami". "Geoffrey collects vintage vinyl records" if "Geoffrey either has a piercing or collects vintage vinyl records but not both". Only one person in the room collects rare minerals. Geoffrey designs and sews custom cosplay costumes for conventions. If someone collects modern art then he/she owns a smart tv and vice versa. If someone hosts a popular podcast about emerging technologies then he/she either practices and performs acrobatic dance routines or hosts a YouTube channel dedicated to art tutorials but not both and vice versa. Geoffrey neither enjoys salsa dancing nor is a cybersecurity expert. Geoffrey has completed a triathlon. Geoffrey can play the piano.
Geoffrey collects vintage vinyl records.
neutral
room(geoffrey)&(![X]:(room(X)=>(X='geoffrey')))& ((((enjoys_origami(geoffrey))<~>(does_not_practice_zumba(geoffrey))))=>(enjoys_origami(geoffrey)))& ((((has_a_piercing(geoffrey))<~>(collects_vintage_vinyl_records(geoffrey))))=>(collects_vintage_vinyl_records(geoffrey)))& (((?[X]:(room(X)&collects_rare_minerals(X)))&(![X,Y]:((room(X)&room(Y)&(collects_rare_minerals(X))&(collects_rare_minerals(Y)))=>(X=Y)))))& (designs_and_sews_custom_cosplay_costumes_for_conventions(geoffrey))& ((![X]:((collects_modern_art(X))<=>(owns_a_smart_tv(X)))))& ((![X]:((hosts_a_popular_podcast_about_emerging_technologies(X))<=>(((practices_and_performs_acrobatic_dance_routines(X))<~>(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X)))))))& (~((enjoys_salsa_dancing(geoffrey))|(is_a_cybersecurity_expert(geoffrey))))& (has_completed_a_triathlon(geoffrey))& (can_play_the_piano(geoffrey))
room(geoffrey)&(![X]:(room(X)=>(X='geoffrey')))& collects_vintage_vinyl_records(geoffrey)
[]
null
0.349212
Ron, Daniel, Keith, Mariah are the only persons in the room. Either “it is true that “everyone in the room collects modern art”” or “Daniel owns a microscope” but not both. If “Keith owns a microscope” then “Ron is a certified scuba diver with advanced underwater photography skills” otherwise “Keith does not have completed a triathlon, owns a microscope or collects rare minerals”. “Ron is a client of Costco” only if “Keith does not have completed a triathlon”. “Daniel is not a drone photographer” only if “everyone in the room is not a client of Costco if they drives a hybrid car and vice versa”. Everyone outside the room is not a chess master who participates in national tournaments, collects rare minerals or is a drone photographer if they does not own a microscope. Ron neither is a chess master who participates in national tournaments nor drives a hybrid car. Keith is not a client of Costco. Daniel is not a chess master who participates in national tournaments. Ron does not drive a hybrid car. Keith owns a microscope. Ron is a client of Costco. Daniel is not a drone photographer. Everyone outside the room who is a certified scuba diver with advanced underwater photography skills owns a microscope. If someone does not collect rare minerals then he/she is a drone photographer. Everyone in the room is not a client of Costco if they drives a hybrid car and vice versa. Keith has completed a triathlon, is a drone photographer or does not own a microscope. Ron does not enjoy mountain biking. Keith is a chess master who participates in national tournaments or collects rare minerals or both. Mariah is not a chess master who participates in national tournaments and is a client of Costco.
Keith is a drone photographer.
entailment
room(ron)&room(daniel)&room(keith)&room(mariah)&(![X]:(room(X)=>(X='ron'|X='daniel'|X='keith'|X='mariah')))& ((![X]:(room(X)=>(collects_modern_art(X))))<~>(owns_a_microscope(daniel)))& (((owns_a_microscope(keith))=>(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(ron)))&((~(owns_a_microscope(keith)))=>(((does_not_have_completed_a_triathlon(keith))|(owns_a_microscope(keith))|(collects_rare_minerals(keith))))))& ((is_a_client_of_Costco(ron))=>(does_not_have_completed_a_triathlon(keith)))& ((is_not_a_drone_photographer(daniel))=>(![X]:(room(X)=>(((is_not_a_client_of_Costco(X))<=>(drives_a_hybrid_car(X)))))))& (![X]:(~room(X)=>(((does_not_own_a_microscope(X))=>(((is_not_a_chess_master_who_participates_in_national_tournaments(X))|(collects_rare_minerals(X))|(is_a_drone_photographer(X))))))))& (~((is_a_chess_master_who_participates_in_national_tournaments(ron))|(drives_a_hybrid_car(ron))))& (is_not_a_client_of_Costco(keith))& (is_not_a_chess_master_who_participates_in_national_tournaments(daniel))& (does_not_drive_a_hybrid_car(ron))& (owns_a_microscope(keith))& (is_a_client_of_Costco(ron))& (is_not_a_drone_photographer(daniel))& (![X]:(~room(X)=>(((is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))=>(owns_a_microscope(X))))))& ((![X]:((does_not_collect_rare_minerals(X))=>(is_a_drone_photographer(X)))))& (![X]:(room(X)=>(((is_not_a_client_of_Costco(X))<=>(drives_a_hybrid_car(X))))))& (((has_completed_a_triathlon(keith))|(is_a_drone_photographer(keith))|(does_not_own_a_microscope(keith))))& (does_not_enjoy_mountain_biking(ron))& (((is_a_chess_master_who_participates_in_national_tournaments(keith))|(collects_rare_minerals(keith))))& (((is_not_a_chess_master_who_participates_in_national_tournaments(mariah))&(is_a_client_of_Costco(mariah))))& (collects_rare_minerals(mariah))& (((does_not_have_completed_a_triathlon(ron))|(collects_rare_minerals(ron))))& (((is_not_a_certified_scuba_diver_with_advanced_underwater_photography_skills(keith))|(is_a_drone_photographer(keith))|(does_not_collect_rare_minerals(keith))))
room(ron)&room(daniel)&room(keith)&room(mariah)&(![X]:(room(X)=>(X='ron'|X='daniel'|X='keith'|X='mariah')))& is_a_drone_photographer(keith)
[ "p0", "p3", "p10", "p11", "p16", "hypothesis" ]
% SZS status Unsatisfiable for 368500692292177770353214 % SZS output start Proof for 368500692292177770353214 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 47. predf(mary) => ~predi(fred) [input p3] 54. predh(fred) [input p10] 55. predf(mary) [input p11] 60. ~predh(fred) | predj(fred) | predi(fred) [input p16] 67. ~(predj(fred) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 141. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 142. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 141] 146. ~predi(fred) | ~predf(mary) [ennf transformation 47] 155. ~predj(fred) | ? [X0] : ((alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 67] 156. ~predj(fred) | ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 155] 164. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK1 & fred != sK1 & paul != sK1 & mary != sK1 & room(sK1)) [choice axiom] 165. ~predj(fred) | (alice != sK1 & fred != sK1 & paul != sK1 & mary != sK1 & room(sK1)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 156,164] 246. room(mary) [cnf transformation 142] 247. room(paul) [cnf transformation 142] 248. room(fred) [cnf transformation 142] 249. room(alice) [cnf transformation 142] 250. ~room(X0) | fred = X0 | paul = X0 | mary = X0 | alice = X0 [cnf transformation 142] 256. ~predi(fred) | ~predf(mary) [cnf transformation 146] 265. predh(fred) [cnf transformation 54] 266. predf(mary) [cnf transformation 55] 272. ~predh(fred) | predj(fred) | predi(fred) [cnf transformation 60] 279. ~predj(fred) | room(sK1) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 165] 280. ~predj(fred) | mary != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 165] 281. ~predj(fred) | paul != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 165] 282. ~predj(fred) | fred != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 165] 283. ~predj(fred) | alice != sK1 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 165] 304. 5 <=> predi(fred) [avatar definition] 308. 6 <=> predh(fred) [avatar definition] 322. 9 <=> predf(mary) [avatar definition] 325. ~9 | ~5 [avatar split clause 256,304,322] 338. 6 [avatar split clause 265,308] 339. 9 [avatar split clause 266,322] 344. 13 <=> predj(fred) [avatar definition] 347. 5 | 13 | ~6 [avatar split clause 272,308,344,304] 368. ~predj(fred) | alice != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 283,249] 369. ~predj(fred) | alice != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 368,248] 370. ~predj(fred) | alice != sK1 | ~room(mary) [subsumption resolution 369,247] 371. ~predj(fred) | alice != sK1 [subsumption resolution 370,246] 373. 18 <=> alice = sK1 [avatar definition] 375. alice != sK1 <- (~18) [avatar component clause 373] 376. ~18 | ~13 [avatar split clause 371,344,373] 377. ~predj(fred) | fred != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 282,249] 378. ~predj(fred) | fred != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 377,248] 379. ~predj(fred) | fred != sK1 | ~room(mary) [subsumption resolution 378,247] 380. ~predj(fred) | fred != sK1 [subsumption resolution 379,246] 382. 19 <=> fred = sK1 [avatar definition] 384. fred != sK1 <- (~19) [avatar component clause 382] 385. ~19 | ~13 [avatar split clause 380,344,382] 386. ~predj(fred) | paul != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 281,249] 387. ~predj(fred) | paul != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 386,248] 388. ~predj(fred) | paul != sK1 | ~room(mary) [subsumption resolution 387,247] 389. ~predj(fred) | paul != sK1 [subsumption resolution 388,246] 391. 20 <=> paul = sK1 [avatar definition] 393. paul != sK1 <- (~20) [avatar component clause 391] 394. ~20 | ~13 [avatar split clause 389,344,391] 395. ~predj(fred) | mary != sK1 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 280,249] 396. ~predj(fred) | mary != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 395,248] 397. ~predj(fred) | mary != sK1 | ~room(mary) [subsumption resolution 396,247] 398. ~predj(fred) | mary != sK1 [subsumption resolution 397,246] 400. 21 <=> mary = sK1 [avatar definition] 402. mary != sK1 <- (~21) [avatar component clause 400] 403. ~21 | ~13 [avatar split clause 398,344,400] 404. ~predj(fred) | room(sK1) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 279,249] 405. ~predj(fred) | room(sK1) | ~room(paul) | ~room(mary) [subsumption resolution 404,248] 406. ~predj(fred) | room(sK1) | ~room(mary) [subsumption resolution 405,247] 407. ~predj(fred) | room(sK1) [subsumption resolution 406,246] 409. 22 <=> room(sK1) [avatar definition] 411. room(sK1) <- (22) [avatar component clause 409] 412. 22 | ~13 [avatar split clause 407,344,409] 497. fred = sK1 | paul = sK1 | mary = sK1 | alice = sK1 <- (22) [resolution 250,411] 515. paul = sK1 | mary = sK1 | alice = sK1 <- (~19, 22) [subsumption resolution 497,384] 516. mary = sK1 | alice = sK1 <- (~19, ~20, 22) [subsumption resolution 515,393] 517. alice = sK1 <- (~19, ~20, ~21, 22) [subsumption resolution 516,402] 518. $false <- (~18, ~19, ~20, ~21, 22) [subsumption resolution 517,375] 519. 18 | 19 | 20 | 21 | ~22 [avatar contradiction clause 518] 520. $false [avatar sat refutation 325,338,339,347,376,385,394,403,412,519] % SZS output end Proof for 368500692292177770353214 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.433997
Corey, Ida, Jackie, Steven, Adele are the only persons in the room. Everyone in the room who plays video games does not work on fridays. Everyone in the room who does not work on fridays is a wine connoisseur with a private cellar of vintage wines. Everyone in the room collects comic books if they collects limited-edition art prints from contemporary artists. Everyone in the room is a wine connoisseur with a private cellar of vintage wines if and only if they frequently participates in hackathons and coding competitions. Everyone in the room collects limited-edition art prints from contemporary artists if they frequently participates in hackathons and coding competitions. Everyone in the room collects comic books if they does not play video games.
Ida collects comic books.
entailment
room(corey)&room(ida)&room(jackie)&room(steven)&room(adele)&(![X]:(room(X)=>(X='corey'|X='ida'|X='jackie'|X='steven'|X='adele')))& ((plays_video_games(corey))=>(~![X]:(anywhere(X)=>(((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))=>(plays_video_games(X)))))))& (![X]:(room(X)=>(((plays_video_games(X))=>(does_not_work_on_fridays(X))))))& (![X]:(room(X)=>(((does_not_work_on_fridays(X))=>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))))& (writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(corey))& (frequently_participates_in_hackathons_and_coding_competitions(corey))& (is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(corey))& (![X]:(room(X)=>(((collects_limited-edition_art_prints_from_contemporary_artists(X))=>(collects_comic_books(X))))))& (is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(corey))& (![X]:(room(X)=>(((is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))<=>(frequently_participates_in_hackathons_and_coding_competitions(X))))))& (![X]:(room(X)=>(((frequently_participates_in_hackathons_and_coding_competitions(X))=>(collects_limited-edition_art_prints_from_contemporary_artists(X))))))& (plays_video_games(corey))& (![X]:(room(X)=>(((does_not_play_video_games(X))=>(collects_comic_books(X))))))& (![X]:(room(X)=>(((collects_comic_books(X))=>(((collects_limited-edition_art_prints_from_contemporary_artists(X))&(collects_comic_books(X))))))))& (![X]:(room(X)=>(((works_on_fridays(X))=>(frequently_participates_in_hackathons_and_coding_competitions(X))))))& (((?[X]:(room(X)&writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X)))&(![X,Y]:((room(X)&room(Y)&(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))&(writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(Y)))=>(X=Y)))))& (![X]:(room(X)=>(((((writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))&(bakes_bread_at_home(X))))=>(((writes_in-depth_travel_guides_for_off-the-beaten-path_destinations(X))&(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))))))))& (~![X]:(anywhere(X)=>(((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))=>(plays_video_games(X))))))& (enjoys_origami(corey))
room(corey)&room(ida)&room(jackie)&room(steven)&room(adele)&(![X]:(room(X)=>(X='corey'|X='ida'|X='jackie'|X='steven'|X='adele')))& collects_comic_books(ida)
[ "p0", "p2", "p3", "p7", "p9", "p10", "p12", "hypothesis" ]
% SZS status Unsatisfiable for 2266066584478577742599555 % SZS output start Proof for 2266066584478577742599555 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 46. ! [X0] : (room(X0) => (predd(X0) => ~predb(X0))) [input p2] 47. ! [X0] : (room(X0) => (~predb(X0) => predc(X0))) [input p3] 51. ! [X0] : (room(X0) => (predj(X0) => prede(X0))) [input p7] 53. ! [X0] : (room(X0) => (predc(X0) <=> predf(X0))) [input p9] 54. ! [X0] : (room(X0) => (predf(X0) => predj(X0))) [input p10] 56. ! [X0] : (room(X0) => (~predd(X0) => prede(X0))) [input p12] 63. ~(prede(paul) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 141. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 142. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 141] 144. ! [X0] : ((~predb(X0) | ~predd(X0)) | ~room(X0)) [ennf transformation 46] 145. ! [X0] : (~predb(X0) | ~predd(X0) | ~room(X0)) [flattening 144] 146. ! [X0] : ((predc(X0) | predb(X0)) | ~room(X0)) [ennf transformation 47] 147. ! [X0] : (predc(X0) | predb(X0) | ~room(X0)) [flattening 146] 148. ! [X0] : ((prede(X0) | ~predj(X0)) | ~room(X0)) [ennf transformation 51] 149. ! [X0] : (prede(X0) | ~predj(X0) | ~room(X0)) [flattening 148] 150. ! [X0] : ((predc(X0) <=> predf(X0)) | ~room(X0)) [ennf transformation 53] 151. ! [X0] : ((predj(X0) | ~predf(X0)) | ~room(X0)) [ennf transformation 54] 152. ! [X0] : (predj(X0) | ~predf(X0) | ~room(X0)) [flattening 151] 153. ! [X0] : ((prede(X0) | predd(X0)) | ~room(X0)) [ennf transformation 56] 154. ! [X0] : (prede(X0) | predd(X0) | ~room(X0)) [flattening 153] 162. ~prede(paul) | ? [X0] : ((john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 63] 163. ~prede(paul) | ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 162] 167. ! [X0] : (((predc(X0) | ~predf(X0)) & (predf(X0) | ~predc(X0))) | ~room(X0)) [nnf transformation 150] 172. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (john != sK3 & alice != sK3 & fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) [choice axiom] 173. ~prede(paul) | (john != sK3 & alice != sK3 & fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 163,172] 254. room(mary) [cnf transformation 142] 255. room(paul) [cnf transformation 142] 256. room(fred) [cnf transformation 142] 257. room(alice) [cnf transformation 142] 258. room(john) [cnf transformation 142] 259. ~room(X0) | alice = X0 | fred = X0 | paul = X0 | mary = X0 | john = X0 [cnf transformation 142] 262. ~predb(X0) | ~predd(X0) | ~room(X0) [cnf transformation 145] 263. ~room(X0) | predb(X0) | predc(X0) [cnf transformation 147] 267. ~predj(X0) | prede(X0) | ~room(X0) [cnf transformation 149] 269. ~predc(X0) | predf(X0) | ~room(X0) [cnf transformation 167] 271. ~predf(X0) | predj(X0) | ~room(X0) [cnf transformation 152] 273. ~room(X0) | predd(X0) | prede(X0) [cnf transformation 154] 282. ~prede(paul) | room(sK3) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 173] 283. ~prede(paul) | mary != sK3 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 173] 284. ~prede(paul) | paul != sK3 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 173] 285. ~prede(paul) | fred != sK3 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 173] 286. ~prede(paul) | alice != sK3 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 173] 287. ~prede(paul) | john != sK3 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 173] 303. ~prede(paul) | john != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 287,258] 304. ~prede(paul) | john != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 303,257] 305. ~prede(paul) | john != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 304,256] 306. ~prede(paul) | john != sK3 | ~room(mary) [subsumption resolution 305,255] 307. ~prede(paul) | john != sK3 [subsumption resolution 306,254] 309. 4 <=> john = sK3 [avatar definition] 311. john != sK3 <- (~4) [avatar component clause 309] 313. 5 <=> prede(paul) [avatar definition] 316. ~4 | ~5 [avatar split clause 307,313,309] 317. ~prede(paul) | alice != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 286,258] 318. ~prede(paul) | alice != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 317,257] 319. ~prede(paul) | alice != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 318,256] 320. ~prede(paul) | alice != sK3 | ~room(mary) [subsumption resolution 319,255] 321. ~prede(paul) | alice != sK3 [subsumption resolution 320,254] 323. 6 <=> alice = sK3 [avatar definition] 325. alice != sK3 <- (~6) [avatar component clause 323] 326. ~6 | ~5 [avatar split clause 321,313,323] 327. ~prede(paul) | fred != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 285,258] 328. ~prede(paul) | fred != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 327,257] 329. ~prede(paul) | fred != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 328,256] 330. ~prede(paul) | fred != sK3 | ~room(mary) [subsumption resolution 329,255] 331. ~prede(paul) | fred != sK3 [subsumption resolution 330,254] 333. 7 <=> fred = sK3 [avatar definition] 335. fred != sK3 <- (~7) [avatar component clause 333] 336. ~7 | ~5 [avatar split clause 331,313,333] 337. ~prede(paul) | paul != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 284,258] 338. ~prede(paul) | paul != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 337,257] 339. ~prede(paul) | paul != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 338,256] 340. ~prede(paul) | paul != sK3 | ~room(mary) [subsumption resolution 339,255] 341. ~prede(paul) | paul != sK3 [subsumption resolution 340,254] 343. 8 <=> paul = sK3 [avatar definition] 345. paul != sK3 <- (~8) [avatar component clause 343] 346. ~8 | ~5 [avatar split clause 341,313,343] 347. ~prede(paul) | mary != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 283,258] 348. ~prede(paul) | mary != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 347,257] 349. ~prede(paul) | mary != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 348,256] 350. ~prede(paul) | mary != sK3 | ~room(mary) [subsumption resolution 349,255] 351. ~prede(paul) | mary != sK3 [subsumption resolution 350,254] 353. 9 <=> mary = sK3 [avatar definition] 355. mary != sK3 <- (~9) [avatar component clause 353] 356. ~9 | ~5 [avatar split clause 351,313,353] 357. ~prede(paul) | room(sK3) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 282,258] 358. ~prede(paul) | room(sK3) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 357,257] 359. ~prede(paul) | room(sK3) | ~room(paul) | ~room(mary) [subsumption resolution 358,256] 360. ~prede(paul) | room(sK3) | ~room(mary) [subsumption resolution 359,255] 361. ~prede(paul) | room(sK3) [subsumption resolution 360,254] 363. 10 <=> room(sK3) [avatar definition] 365. room(sK3) <- (10) [avatar component clause 363] 366. 10 | ~5 [avatar split clause 361,313,363] 368. predb(paul) | predc(paul) [resolution 263,255] 374. 11 <=> predc(paul) [avatar definition] 376. predc(paul) <- (11) [avatar component clause 374] 378. 12 <=> predb(paul) [avatar definition] 380. predb(paul) <- (12) [avatar component clause 378] 381. 11 | 12 [avatar split clause 368,378,374] 419. predf(paul) | ~room(paul) <- (11) [resolution 269,376] 420. predf(paul) <- (11) [subsumption resolution 419,255] 431. predd(paul) | prede(paul) [resolution 273,255] 485. predj(paul) | ~room(paul) <- (11) [resolution 420,271] 487. predj(paul) <- (11) [subsumption resolution 485,255] 507. prede(paul) | ~room(paul) <- (11) [resolution 487,267] 511. prede(paul) <- (11) [subsumption resolution 507,255] 512. 5 | ~11 [avatar split clause 511,374,313] 514. 29 <=> predd(paul) [avatar definition] 516. predd(paul) <- (29) [avatar component clause 514] 517. 5 | 29 [avatar split clause 431,514,313] 601. alice = sK3 | fred = sK3 | paul = sK3 | mary = sK3 | john = sK3 <- (10) [resolution 259,365] 602. fred = sK3 | paul = sK3 | mary = sK3 | john = sK3 <- (~6, 10) [subsumption resolution 601,325] 603. paul = sK3 | mary = sK3 | john = sK3 <- (~6, ~7, 10) [subsumption resolution 602,335] 604. mary = sK3 | john = sK3 <- (~6, ~7, ~8, 10) [subsumption resolution 603,345] 605. john = sK3 <- (~6, ~7, ~8, ~9, 10) [subsumption resolution 604,355] 606. $false <- (~4, ~6, ~7, ~8, ~9, 10) [subsumption resolution 605,311] 607. 4 | 6 | 7 | 8 | 9 | ~10 [avatar contradiction clause 606] 621. ~predd(paul) | ~room(paul) <- (12) [resolution 380,262] 623. ~room(paul) <- (12, 29) [subsumption resolution 621,516] 624. $false <- (12, 29) [subsumption resolution 623,255] 625. ~12 | ~29 [avatar contradiction clause 624] 626. $false [avatar sat refutation 316,326,336,346,356,366,381,512,517,607,625] % SZS output end Proof for 2266066584478577742599555 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.213401
Lucrecia, Chantel are the only persons in the room. “Lucrecia is not an avid hiker” unless “Lucrecia does not enjoy bird watching”. If “Lucrecia frequently participates in hackathons and coding competitions and enjoys bird watching” then “Lucrecia who cannot play the guitar makes intricate hand-cut paper art for exhibitions” otherwise “Chantel does not write poetry, is passionate about collecting and restoring classic cars or enjoys coding in Python”. Someone in the room enjoys bird watching, owns a smartwatch and works as a freelance web developer specializing in e-commerce sites. If someone does not enjoy deep-sea diving and exploring underwater caves and writes poetry then he/she makes intricate hand-cut paper art for exhibitions, writes poetry or cannot play the guitar and vice versa. Chantel does not frequently participates in hackathons and coding competitions, owns an Android phone and is a client of Meta.
Chantel owns an Android phone.
entailment
room(lucrecia)&room(chantel)&(![X]:(room(X)=>(X='lucrecia'|X='chantel')))& (~(does_not_enjoy_bird_watching(lucrecia))=>(is_not_an_avid_hiker(lucrecia)))& (((((frequently_participates_in_hackathons_and_coding_competitions(lucrecia))&(enjoys_bird_watching(lucrecia))))=>((cannot_play_the_guitar(lucrecia))&(makes_intricate_hand-cut_paper_art_for_exhibitions(lucrecia))))&((~(((frequently_participates_in_hackathons_and_coding_competitions(lucrecia))&(enjoys_bird_watching(lucrecia)))))=>(((does_not_write_poetry(chantel))|(is_passionate_about_collecting_and_restoring_classic_cars(chantel))|(enjoys_coding_in_Python(chantel))))))& (?[X]:(room(X)&(((enjoys_bird_watching(X))&(owns_a_smartwatch(X))&(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))))& ((![X]:((((does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(X))&(writes_poetry(X))))<=>(((makes_intricate_hand-cut_paper_art_for_exhibitions(X))|(writes_poetry(X))|(cannot_play_the_guitar(X)))))))& (enjoys_coding_in_Python(lucrecia))& (((owns_an_Android_phone(lucrecia))|(does_not_collect_vintage_stamps(lucrecia))|(collects_rare_and_antique_scientific_instruments(lucrecia))))& (![X]:(~room(X)=>(((enjoys_bird_watching(X))|(does_not_make_intricate_hand-cut_paper_art_for_exhibitions(X))))))& (owns_an_Android_phone(lucrecia))& (![X]:(room(X)=>(((((uses_a_Windows_laptop(X))|(does_not_enjoy_deep-sea_diving_and_exploring_underwater_caves(X))|(is_a_member_of_a_local_theater_group_specializing_in_improv(X))))=>(makes_intricate_hand-cut_paper_art_for_exhibitions(X))))))& (((does_not_frequently_participates_in_hackathons_and_coding_competitions(chantel))&(owns_an_Android_phone(chantel))&(is_a_client_of_Meta(chantel))))& (![X]:(room(X)=>(((does_not_enjoy_coding_in_Python(X))=>(((does_not_work_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))&(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))&(collects_vintage_stamps(X))))))))& (((owns_an_Android_phone(chantel))&(enjoys_bird_watching(chantel))))& (makes_intricate_hand-cut_paper_art_for_exhibitions(lucrecia))& (enjoys_deep-sea_diving_and_exploring_underwater_caves(chantel))& (does_not_collect_rare_and_antique_scientific_instruments(chantel))& ((![X]:((does_not_enjoy_coding_in_Python(X))<=>(~((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))|(is_not_an_avid_hiker(X)))))))& (((enjoys_coding_in_Python(chantel))|(does_not_enjoy_kayaking_and_exploring_remote_waterways(chantel))))& (![X]:(room(X)=>(((enjoys_bird_watching(X))=>(owns_an_Android_phone(X))))))& (![X]:(room(X)=>(((does_not_use_a_Windows_laptop(X))|(does_not_collect_rare_and_antique_scientific_instruments(X))|(enjoys_bird_watching(X))))))
room(lucrecia)&room(chantel)&(![X]:(room(X)=>(X='lucrecia'|X='chantel')))& owns_an_Android_phone(chantel)
[ "p0", "p10", "hypothesis" ]
% SZS status Unsatisfiable for 5552210226186637196341686 % SZS output start Proof for 5552210226186637196341686 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 54. prede(paul) & predj(paul) & ~predg(paul) [input p10] 64. ~(predj(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 76. prede(paul) & predj(paul) [pure predicate removal 54] 78. predj(paul) [pure predicate removal 76] 154. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 155. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 154] 162. ~predj(paul) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 64] 163. ~predj(paul) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 162] 169. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK1 & mary != sK1 & room(sK1)) [choice axiom] 170. ~predj(paul) | (paul != sK1 & mary != sK1 & room(sK1)) | ~room(paul) | ~room(mary) [skolemisation 163,169] 251. room(mary) [cnf transformation 155] 252. room(paul) [cnf transformation 155] 253. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 155] 266. predj(paul) [cnf transformation 78] 272. ~predj(paul) | room(sK1) | ~room(paul) | ~room(mary) [cnf transformation 170] 273. ~predj(paul) | mary != sK1 | ~room(paul) | ~room(mary) [cnf transformation 170] 274. ~predj(paul) | paul != sK1 | ~room(paul) | ~room(mary) [cnf transformation 170] 275. paul != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 274,266] 276. paul != sK1 | ~room(mary) [subsumption resolution 275,252] 277. paul != sK1 [subsumption resolution 276,251] 278. mary != sK1 | ~room(paul) | ~room(mary) [subsumption resolution 273,266] 279. mary != sK1 | ~room(mary) [subsumption resolution 278,252] 280. mary != sK1 [subsumption resolution 279,251] 281. room(sK1) | ~room(paul) | ~room(mary) [subsumption resolution 272,266] 282. room(sK1) | ~room(mary) [subsumption resolution 281,252] 283. room(sK1) [subsumption resolution 282,251] 322. mary = sK1 | paul = sK1 [resolution 253,283] 332. paul = sK1 [subsumption resolution 322,280] 333. $false [subsumption resolution 332,277] % SZS output end Proof for 5552210226186637196341686 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.400752
There is a room. “No one outside the room is a chess master who participates in national tournaments if they enjoys skydiving” unless “everyone in the room does not enjoy skydiving or is a chess master who participates in national tournaments”. “Everyone in the room does not have completed a triathlon or enjoys skydiving” only if “if someone does not have completed a triathlon then he/she is a chess master who participates in national tournaments and vice versa”. Everyone in the room does not have completed a triathlon only if they is a chess master who participates in national tournaments. Everyone in the room who is a chess master who participates in national tournaments has completed a triathlon. Everyone in the room has completed a triathlon only if they enjoys skydiving. Everyone in the room who enjoys skydiving is a chess master who participates in national tournaments. Everyone anywhere does not enjoy skydiving if they either enjoys skydiving or is a chess master who participates in national tournaments but not both. Everyone in the room does not enjoy skydiving only if they has completed a triathlon. Everyone in the room who has completed a triathlon is a chess master who participates in national tournaments. Someone anywhere enjoys skydiving. Everyone in the room who is a chess master who participates in national tournaments enjoys skydiving.
Everyone in the room is a chess master who participates in national tournaments.
entailment
(there_is_a_room)& (~(![X]:(room(X)=>(((is_a_chess_master_who_participates_in_national_tournaments(X))|(does_not_enjoy_skydiving(X))))))=>(~?[X]:(~room(X)=>(((enjoys_skydiving(X))=>(is_a_chess_master_who_participates_in_national_tournaments(X)))))))& ((![X]:(room(X)=>(((enjoys_skydiving(X))|(does_not_have_completed_a_triathlon(X))))))=>((![X]:((does_not_have_completed_a_triathlon(X))<=>(is_a_chess_master_who_participates_in_national_tournaments(X))))))& (![X]:(room(X)=>(((is_a_chess_master_who_participates_in_national_tournaments(X))<=(does_not_have_completed_a_triathlon(X))))))& (![X]:(room(X)=>(((is_a_chess_master_who_participates_in_national_tournaments(X))=>(has_completed_a_triathlon(X))))))& (![X]:(room(X)=>(((enjoys_skydiving(X))<=(has_completed_a_triathlon(X))))))& (![X]:(room(X)=>(((enjoys_skydiving(X))=>(is_a_chess_master_who_participates_in_national_tournaments(X))))))& (![X]:(anywhere(X)=>(((((enjoys_skydiving(X))<~>(is_a_chess_master_who_participates_in_national_tournaments(X))))=>(does_not_enjoy_skydiving(X))))))& (![X]:(room(X)=>(((has_completed_a_triathlon(X))<=(does_not_enjoy_skydiving(X))))))& (![X]:(room(X)=>(((has_completed_a_triathlon(X))=>(is_a_chess_master_who_participates_in_national_tournaments(X))))))& (?[X]:(anywhere(X)&(enjoys_skydiving(X))))& (![X]:(room(X)=>(((is_a_chess_master_who_participates_in_national_tournaments(X))=>(enjoys_skydiving(X))))))
(there_is_a_room)& ![X]:(room(X)=>(is_a_chess_master_who_participates_in_national_tournaments(X)))
[ "p0", "p3", "p4", "p5", "p6", "hypothesis" ]
% SZS status Unsatisfiable for 2995205407494559520917691 % SZS output start Proof for 2995205407494559520917691 44. there_is_a_room [input p0] 47. ! [X0] : (room(X0) => (~predb(X0) => predc(X0))) [input p3] 48. ! [X0] : (room(X0) => (predc(X0) => predb(X0))) [input p4] 49. ! [X0] : (room(X0) => (predb(X0) => preda(X0))) [input p5] 50. ! [X0] : (room(X0) => (preda(X0) => predc(X0))) [input p6] 56. ~(! [X0] : (room(X0) => predc(X0)) & there_is_a_room) [input hypothesis] 134. ! [X0] : ((predc(X0) | predb(X0)) | ~room(X0)) [ennf transformation 47] 135. ! [X0] : (predc(X0) | predb(X0) | ~room(X0)) [flattening 134] 136. ! [X0] : ((predb(X0) | ~predc(X0)) | ~room(X0)) [ennf transformation 48] 137. ! [X0] : (predb(X0) | ~predc(X0) | ~room(X0)) [flattening 136] 138. ! [X0] : ((preda(X0) | ~predb(X0)) | ~room(X0)) [ennf transformation 49] 139. ! [X0] : (preda(X0) | ~predb(X0) | ~room(X0)) [flattening 138] 140. ! [X0] : ((predc(X0) | ~preda(X0)) | ~room(X0)) [ennf transformation 50] 141. ! [X0] : (predc(X0) | ~preda(X0) | ~room(X0)) [flattening 140] 150. ? [X0] : (~predc(X0) & room(X0)) | ~there_is_a_room [ennf transformation 56] 160. ? [X0] : (~predc(X0) & room(X0)) => (~predc(sK2) & room(sK2)) [choice axiom] 161. (~predc(sK2) & room(sK2)) | ~there_is_a_room [skolemisation 150,160] 243. there_is_a_room [cnf transformation 44] 253. predc(X0) | predb(X0) | ~room(X0) [cnf transformation 135] 254. predb(X0) | ~predc(X0) | ~room(X0) [cnf transformation 137] 255. preda(X0) | ~predb(X0) | ~room(X0) [cnf transformation 139] 256. predc(X0) | ~preda(X0) | ~room(X0) [cnf transformation 141] 264. room(sK2) | ~there_is_a_room [cnf transformation 161] 265. ~predc(sK2) | ~there_is_a_room [cnf transformation 161] 306. ~room(X0) | predb(X0) [subsumption resolution 254,253] 307. ~room(X0) | preda(X0) [subsumption resolution 255,306] 308. ~room(X0) | predc(X0) [subsumption resolution 256,307] 310. ~predc(sK2) [subsumption resolution 265,243] 311. room(sK2) [subsumption resolution 264,243] 325. predc(sK2) [resolution 308,311] 328. $false [subsumption resolution 325,310] % SZS output end Proof for 2995205407494559520917691 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.126433
Carlene is the only person in the room. If it is not the case that someone in the room regularly goes on multi-day backpacking trips in national parks then if someone is not passionate about collecting and restoring classic cars then he/she collects antique clocks. If someone anywhere is not a client of Costco then someone anywhere is a wine connoisseur with a private cellar of vintage wines. If someone in the room collects vintage vinyl records then more than one person in the room does not collect luxury watches. If someone in the room hosts a popular podcast about emerging technologies then more than one person in the room is a coffee connoisseur. If it is true that someone in the room does enjoy mountain biking and hosts regular workshops on creative writing then it is not the case that it is not the case that more than one person anywhere hosts a YouTube channel dedicated to art tutorials. If it is not the case that it is not the case that someone in the room does not create YouTube content then someone in the room is a member of a local theater group specializing in improv. If someone collects luxury watches then he/she composes and performs experimental electronic music. If someone collects antique jewelry then he/she is a client of Costco. It is not the case that more than one person in the room travels domestically frequently. Someone in the room hosts a YouTube channel dedicated to art tutorials. Someone in the room does not stream on Twitch. Someone in the room does enjoy mountain biking. Someone in the room collects rare minerals. If someone composes and performs experimental electronic music then he/she creates YouTube content. Someone outside the room hosts a popular podcast about emerging technologies. If someone collects comic books then he/she plays video games. It is not the case that someone in the room collects luxury watches. It is not the case that someone in the room is not passionate about collecting and restoring classic cars. Only one person anywhere collects antique clocks. It is not the case that more than one person in the room collects antique jewelry. It is not the case that it is not the case that at least one person anywhere is a member of a local theater group specializing in improv.
Not everyone in the room composes and performs experimental electronic music.
neutral
room(carlene)&(![X]:(room(X)=>(X='carlene')))& ((~(?[X]:(room(X)&(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X)))))=>((![X]:((is_not_passionate_about_collecting_and_restoring_classic_cars(X))=>(collects_antique_clocks(X))))))& ((?[X]:(anywhere(X)&(is_not_a_client_of_Costco(X))))=>(?[X]:(anywhere(X)&(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X)))))& ((?[X]:(room(X)&(collects_vintage_vinyl_records(X))))=>((?[X,Y]:(room(X)&room(Y)&(does_not_collect_luxury_watches(X)&does_not_collect_luxury_watches(Y))&(X!=Y)))))& ((?[X]:(room(X)&(hosts_a_popular_podcast_about_emerging_technologies(X))))=>((?[X,Y]:(room(X)&room(Y)&(is_a_coffee_connoisseur(X)&is_a_coffee_connoisseur(Y))&(X!=Y)))))& ((?[X]:(room(X)&(((does_enjoy_mountain_biking(X))&(hosts_regular_workshops_on_creative_writing(X))))))=>(~(~((?[X,Y]:(anywhere(X)&anywhere(Y)&(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X)&hosts_a_YouTube_channel_dedicated_to_art_tutorials(Y))&(X!=Y)))))))& ((~(~(?[X]:(room(X)&(does_not_create_YouTube_content(X))))))=>(?[X]:(room(X)&(is_a_member_of_a_local_theater_group_specializing_in_improv(X)))))& ((![X]:((collects_luxury_watches(X))=>(composes_and_performs_experimental_electronic_music(X)))))& ((![X]:((collects_antique_jewelry(X))=>(is_a_client_of_Costco(X)))))& (~((?[X,Y]:(room(X)&room(Y)&(travels_domestically_frequently(X)&travels_domestically_frequently(Y))&(X!=Y)))))& (?[X]:(room(X)&(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))& (?[X]:(room(X)&(does_not_stream_on_Twitch(X))))& (?[X]:(room(X)&(does_enjoy_mountain_biking(X))))& (?[X]:(room(X)&(collects_rare_minerals(X))))& ((![X]:((composes_and_performs_experimental_electronic_music(X))=>(creates_YouTube_content(X)))))& (?[X]:(~room(X)&(hosts_a_popular_podcast_about_emerging_technologies(X))))& ((![X]:((collects_comic_books(X))=>(plays_video_games(X)))))& (~(?[X]:(room(X)&(collects_luxury_watches(X)))))& (~(?[X]:(room(X)&(is_not_passionate_about_collecting_and_restoring_classic_cars(X)))))& (((?[X]:(anywhere(X)&collects_antique_clocks(X)))&(![X,Y]:((anywhere(X)&anywhere(Y)&(collects_antique_clocks(X))&(collects_antique_clocks(Y)))=>(X=Y)))))& (~((?[X,Y]:(room(X)&room(Y)&(collects_antique_jewelry(X)&collects_antique_jewelry(Y))&(X!=Y)))))& (~(~(((?[X]:(anywhere(X)&is_a_member_of_a_local_theater_group_specializing_in_improv(X)))))))
room(carlene)&(![X]:(room(X)=>(X='carlene')))& ~![X]:(room(X)=>(composes_and_performs_experimental_electronic_music(X)))
[]
null
0.500049
Barry, Romona, Kenneth, Frank are the only persons in the room. Everyone in the room who has a curated collection of mid-century modern furniture owns a 3D printer or is a dedicated advocate for digital privacy and encryption or both. Everyone anywhere uses an ios phone if they owns a 3D printer or is a dedicated advocate for digital privacy and encryption or both. Not everyone in the room uses an ios phone only if they drives a hybrid car. Everyone anywhere does not participate in citizen science projects related to wildlife monitoring if they drives a hybrid car. Barry creates bespoke furniture pieces from reclaimed wood. Barry enjoys rooftop gardening. If someone does not collect antique clocks then he/she can play the piano. Everyone in the room owns a smart tv if they does not participate in citizen science projects related to wildlife monitoring. It is true that 'everyone anywhere enjoys stargazing if they owns a smart tv'. Everyone outside the room is not a dedicated advocate for digital privacy and encryption or does not enjoy rooftop gardening. Barry has a curated collection of mid-century modern furniture. If someone develops open-source software projects in their free time then he/she owns a smart tv and vice versa. Everyone in the room who owns a smart tv does not enjoy cross-country skiing. Everyone in the room does not enjoy cross-country skiing only if they either does not collect rare and antique scientific instruments or maintains a personal blog focused on cybersecurity tips but not both. Everyone in the room is a wine connoisseur with a private cellar of vintage wines. If someone owns a smart tv then he/she knows morse code. Barry enjoys cross-country skiing.
Barry develops open-source software projects in their free time.
contradiction
room(barry)&room(romona)&room(kenneth)&room(frank)&(![X]:(room(X)=>(X='barry'|X='romona'|X='kenneth'|X='frank')))& (![X]:(room(X)=>(((has_a_curated_collection_of_mid-century_modern_furniture(X))=>(((owns_a_3D_printer(X))|(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))))))))& (![X]:(anywhere(X)=>(((((owns_a_3D_printer(X))|(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))))=>(uses_an_ios_phone(X))))))& (~![X]:(room(X)=>(((drives_a_hybrid_car(X))<=(uses_an_ios_phone(X))))))& (![X]:(anywhere(X)=>(((drives_a_hybrid_car(X))=>(does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(X))))))& (creates_bespoke_furniture_pieces_from_reclaimed_wood(barry))& (enjoys_rooftop_gardening(barry))& ((![X]:((does_not_collect_antique_clocks(X))=>(can_play_the_piano(X)))))& (![X]:(room(X)=>(((does_not_participate_in_citizen_science_projects_related_to_wildlife_monitoring(X))=>(owns_a_smart_tv(X))))))& (![X]:(anywhere(X)=>(((owns_a_smart_tv(X))=>(enjoys_stargazing(X))))))& (![X]:(~room(X)=>(((does_not_enjoy_rooftop_gardening(X))|(is_not_a_dedicated_advocate_for_digital_privacy_and_encryption(X))))))& (has_a_curated_collection_of_mid-century_modern_furniture(barry))& ((![X]:((develops_open-source_software_projects_in_their_free_time(X))<=>(owns_a_smart_tv(X)))))& (![X]:(room(X)=>(((owns_a_smart_tv(X))=>(does_not_enjoy_cross-country_skiing(X))))))& (![X]:(room(X)=>(((((does_not_collect_rare_and_antique_scientific_instruments(X))<~>(maintains_a_personal_blog_focused_on_cybersecurity_tips(X))))<=(does_not_enjoy_cross-country_skiing(X))))))& (![X]:(room(X)=>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))& ((![X]:((owns_a_smart_tv(X))=>(knows_morse_code(X)))))& (enjoys_cross-country_skiing(barry))& (![X]:(anywhere(X)=>(((is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))=>(~((is_a_night_owl(X))|(enjoys_stand-up_paddleboarding(X))))))))
room(barry)&room(romona)&room(kenneth)&room(frank)&(![X]:(room(X)=>(X='barry'|X='romona'|X='kenneth'|X='frank')))& develops_open-source_software_projects_in_their_free_time(barry)
[ "p0", "p12", "p13", "p17", "hypothesis" ]
% SZS status Unsatisfiable for 7925967862039409186504613 % SZS output start Proof for 7925967862039409186504613 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 56. ! [X0] : (predu(X0) <=> predq(X0)) [input p12] 57. ! [X0] : (room(X0) => (predq(X0) => ~predc(X0))) [input p13] 61. predc(mary) [input p17] 63. predu(mary) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 64. ! [X0] : (predu(X0) => predq(X0)) [unused predicate definition removal 56] 153. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 154. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 153] 156. ! [X0] : (predq(X0) | ~predu(X0)) [ennf transformation 64] 157. ! [X0] : ((~predc(X0) | ~predq(X0)) | ~room(X0)) [ennf transformation 57] 158. ! [X0] : (~predc(X0) | ~predq(X0) | ~room(X0)) [flattening 157] 161. predu(mary) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 63] 162. predu(mary) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 161] 247. room(mary) [cnf transformation 154] 253. ~predu(X0) | predq(X0) [cnf transformation 156] 254. ~predc(X0) | ~predq(X0) | ~room(X0) [cnf transformation 158] 257. predc(mary) [cnf transformation 61] 263. predu(mary) [cnf transformation 162] 264. predq(mary) [resolution 253,263] 265. ~predq(mary) | ~room(mary) [resolution 254,257] 266. ~room(mary) [subsumption resolution 265,264] 267. $false [subsumption resolution 266,247] % SZS output end Proof for 7925967862039409186504613 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.035 s % ------------------------------ % ------------------------------
0.100781
There is a room. Everyone in the room enjoys salsa dancing if they writes and illustrates their own graphic novels. Everyone outside the room has lived in exactly three countries, does not practice tai chi or is a certified yoga instructor teaching classes weekly if they enjoys salsa dancing. Everyone in the room who has lived in exactly three countries, does not practice tai chi or is a certified yoga instructor teaching classes weekly collects antique clocks.
Everyone in the room cannot play the guitar or has lived in exactly three countries.
neutral
(there_is_a_room)& (![X]:(room(X)=>(((writes_and_illustrates_their_own_graphic_novels(X))=>(enjoys_salsa_dancing(X))))))& (![X]:(~room(X)=>(((enjoys_salsa_dancing(X))=>(((has_lived_in_exactly_three_countries(X))|(does_not_practice_tai_chi(X))|(is_a_certified_yoga_instructor_teaching_classes_weekly(X))))))))& (![X]:(room(X)=>(((((has_lived_in_exactly_three_countries(X))|(does_not_practice_tai_chi(X))|(is_a_certified_yoga_instructor_teaching_classes_weekly(X))))=>(collects_antique_clocks(X))))))& (![X]:(room(X)=>(((enjoys_watercolor_painting(X))=>(is_a_member_of_a_local_theater_group_specializing_in_improv(X))))))& (![X]:(room(X)=>(((is_a_member_of_a_local_theater_group_specializing_in_improv(X))=>(enjoys_fishing(X))))))& (![X]:(room(X)=>(((does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))|(is_not_a_wine_connoisseur(X))))))& (![X]:(room(X)=>(((is_not_a_wine_connoisseur(X))=>(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))))))& (![X]:(room(X)=>(((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))=>(~((regularly_contributes_to_tech_forums_and_online_communities(X))|(enjoys_fishing(X))))))))& ((?[X,Y]:(room(X)&room(Y)&(enjoys_watercolor_painting(X)&enjoys_watercolor_painting(Y))&(X!=Y))))& (![X]:(room(X)=>(((enjoys_fishing(X))=>(is_not_dedicated_to_sustainable_living_and_zero-waste_practices(X))))))& (![X]:(room(X)=>(((is_not_dedicated_to_sustainable_living_and_zero-waste_practices(X))=>(((is_not_a_wine_connoisseur(X))|(regularly_contributes_to_tech_forums_and_online_communities(X))|(collects_antique_clocks(X))))))))& (![X]:(room(X)=>(((writes_and_illustrates_their_own_graphic_novels(X))|(is_a_member_of_a_local_theater_group_specializing_in_improv(X))|(collects_antique_clocks(X))))))& (![X]:(room(X)=>(((enjoys_kayaking_and_exploring_remote_waterways(X))=>(is_a_certified_yoga_instructor_teaching_classes_weekly(X))))))& (![X]:(room(X)=>(((collects_antique_clocks(X))=>(does_not_regularly_contributes_to_tech_forums_and_online_communities(X))))))& (![X]:(room(X)=>(((does_not_regularly_contributes_to_tech_forums_and_online_communities(X))=>(can_play_the_guitar(X))))))& ((?[X,Y]:(room(X)&room(Y)&(((does_enjoy_trail_running(X))|(collect_rare_sneakers(X))|(is_an_avid_hiker(X)))&((does_enjoy_trail_running(Y))|(collect_rare_sneakers(Y))|(is_an_avid_hiker(Y))))&(X!=Y))))& (~![X]:(room(X)=>(collects_classic_novels(X))))& (![X]:(room(X)=>(((enjoys_fishing(X))=>(writes_and_illustrates_their_own_graphic_novels(X))))))& ((?[X,Y]:(anywhere(X)&anywhere(Y)&(does_enjoy_trail_running(X)&does_enjoy_trail_running(Y))&(X!=Y))))& (![X]:(room(X)=>(((writes_and_illustrates_their_own_graphic_novels(X))=>(does_not_collect_historical_artifacts_related_to_ancient_civilizations(X))))))& (![X]:(anywhere(X)=>(collects_limited-edition_art_prints_from_contemporary_artists(X))))& (![X]:(room(X)=>(((does_not_collect_vintage_stamps(X))=>(enjoys_snowboarding(X))))))& (![X]:(anywhere(X)=>(((enjoys_snowboarding(X))=>(is_a_certified_yoga_instructor_teaching_classes_weekly(X))))))& ((?[X,Y]:(room(X)&room(Y)&(does_enjoy_trail_running(X)&does_enjoy_trail_running(Y))&(X!=Y))))
(there_is_a_room)& ![X]:(room(X)=>(((has_lived_in_exactly_three_countries(X))|(cannot_play_the_guitar(X)))))
[]
null
0.087671
Todd is the only person in the room. Everyone in the room has a piercing. Everyone in the room who has a piercing streams on Twitch. If someone practices digital art then he/she can play the guitar. Someone in the room can play the flute. Everyone in the room who can play the guitar is an amateur astronomer who builds and uses custom telescopes. Everyone in the room who is an amateur astronomer who builds and uses custom telescopes has a piercing. Todd practices digital art. Everyone in the room who either does enjoy trail running or does not have a piercing but not both practices digital art. Todd is an amateur astronomer who builds and uses custom telescopes. Everyone outside the room does not practice digital art if they does not stream on Twitch. Todd can play the flute. Todd owns a telescope. Not everyone in the room collects classic novels if they does enjoy trail running. Everyone in the room cannot play the guitar if they practices archery and practices pilates. Todd has a piercing. Todd streams on Twitch. Todd practices pilates. Everyone in the room has a piercing if they does not collect classic novels. Everyone in the room owns a telescope if they has a piercing. Everyone in the room is an amateur astronomer who builds and uses custom telescopes if they does enjoy trail running.
Todd can play the guitar, practices pilates and is an amateur astronomer who builds and uses custom telescopes.
entailment
room(todd)&(![X]:(room(X)=>(X='todd')))& (![X]:(room(X)=>(has_a_piercing(X))))& (![X]:(room(X)=>(((has_a_piercing(X))=>(streams_on_Twitch(X))))))& ((![X]:((practices_digital_art(X))=>(can_play_the_guitar(X)))))& (?[X]:(room(X)&(can_play_the_flute(X))))& (![X]:(room(X)=>(((can_play_the_guitar(X))=>(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))))& (![X]:(room(X)=>(((is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))=>(has_a_piercing(X))))))& (practices_digital_art(todd))& (![X]:(room(X)=>(((((does_enjoy_trail_running(X))<~>(does_not_have_a_piercing(X))))=>(practices_digital_art(X))))))& (is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(todd))& (![X]:(~room(X)=>(((does_not_stream_on_Twitch(X))=>(does_not_practice_digital_art(X))))))& (can_play_the_flute(todd))& (owns_a_telescope(todd))& (~![X]:(room(X)=>(((does_enjoy_trail_running(X))=>(collects_classic_novels(X))))))& (![X]:(room(X)=>(((((practices_archery(X))&(practices_pilates(X))))=>(cannot_play_the_guitar(X))))))& (has_a_piercing(todd))& (streams_on_Twitch(todd))& (practices_pilates(todd))& (![X]:(room(X)=>(((does_not_collect_classic_novels(X))=>(has_a_piercing(X))))))& (![X]:(room(X)=>(((has_a_piercing(X))=>(owns_a_telescope(X))))))& (![X]:(room(X)=>(((does_enjoy_trail_running(X))=>(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(X))))))
room(todd)&(![X]:(room(X)=>(X='todd')))& ((can_play_the_guitar(todd))&(practices_pilates(todd))&(is_an_amateur_astronomer_who_builds_and_uses_custom_telescopes(todd)))
[ "p0", "p3", "p7", "p9", "p17", "hypothesis" ]
% SZS status Unsatisfiable for 3662185499843464238160191 % SZS output start Proof for 3662185499843464238160191 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 47. ! [X0] : (predc(X0) => prede(X0)) [input p3] 51. predc(mary) [input p7] 53. predb(mary) [input p9] 61. preda(mary) [input p17] 65. ~(predb(mary) & preda(mary) & prede(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 146. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 148. ! [X0] : (prede(X0) | ~predc(X0)) [ennf transformation 47] 161. ~predb(mary) | ~preda(mary) | ~prede(mary) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 65] 168. ? [X0] : (mary != X0 & room(X0)) => (mary != sK2 & room(sK2)) [choice axiom] 169. ~predb(mary) | ~preda(mary) | ~prede(mary) | (mary != sK2 & room(sK2)) | ~room(mary) [skolemisation 161,168] 250. room(mary) [cnf transformation 146] 251. ~room(X0) | mary = X0 [cnf transformation 146] 253. ~predc(X0) | prede(X0) [cnf transformation 148] 257. predc(mary) [cnf transformation 51] 260. predb(mary) [cnf transformation 53] 265. preda(mary) [cnf transformation 61] 268. ~predb(mary) | ~preda(mary) | ~prede(mary) | room(sK2) | ~room(mary) [cnf transformation 169] 269. ~predb(mary) | ~preda(mary) | ~prede(mary) | mary != sK2 | ~room(mary) [cnf transformation 169] 271. ~preda(mary) | ~prede(mary) | mary != sK2 | ~room(mary) [subsumption resolution 269,260] 272. ~prede(mary) | mary != sK2 | ~room(mary) [subsumption resolution 271,265] 273. ~prede(mary) | mary != sK2 [subsumption resolution 272,250] 275. 1 <=> mary = sK2 [avatar definition] 277. mary != sK2 <- (~1) [avatar component clause 275] 279. 2 <=> prede(mary) [avatar definition] 282. ~1 | ~2 [avatar split clause 273,279,275] 283. ~preda(mary) | ~prede(mary) | room(sK2) | ~room(mary) [subsumption resolution 268,260] 284. ~prede(mary) | room(sK2) | ~room(mary) [subsumption resolution 283,265] 285. ~prede(mary) | room(sK2) [subsumption resolution 284,250] 287. 3 <=> room(sK2) [avatar definition] 289. room(sK2) <- (3) [avatar component clause 287] 290. 3 | ~2 [avatar split clause 285,279,287] 294. prede(mary) [resolution 253,257] 297. 2 [avatar split clause 294,279] 302. mary = sK2 <- (3) [resolution 251,289] 309. $false <- (~1, 3) [subsumption resolution 302,277] 310. 1 | ~3 [avatar contradiction clause 309] 311. $false [avatar sat refutation 282,290,297,310] % SZS output end Proof for 3662185499843464238160191 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.035 s % ------------------------------ % ------------------------------
0.172483
Eric, Nancy, Carmen are the only persons in the room. Not everyone in the room does not own a smartwatch if they designs and sews custom cosplay costumes for conventions. Eric who either owns an extensive assortment of vintage comic book memorabilia or collects action figures but not both designs and sews custom cosplay costumes for conventions. Everyone in the room who enjoys making ceramics practices digital art. Not everyone anywhere composes and performs experimental electronic music or is not dedicated to sustainable living and zero-waste practices. More than one person in the room designs and sews custom cosplay costumes for conventions. If someone does not make intricate hand-cut paper art for exhibitions then he/she composes and performs experimental electronic music. Everyone in the room does not own a smartwatch if and only if they owns an extensive assortment of vintage comic book memorabilia. At least one person in the room practices digital art. It is not the case that it is true that more than one person in the room either collects comic books or is a dedicated volunteer for local community service projects but not both. Everyone in the room is a chess master who participates in national tournaments if they neither practices graffiti art nor collects modern art and vice versa. Everyone in the room neither practices graffiti art nor collects modern art if and only if they is a client of LVMH. Everyone in the room is dedicated to sustainable living and zero-waste practices and enjoys kayaking if they is a client of LVMH. Eric is a dedicated volunteer for local community service projects. Eric is a chess master who participates in national tournaments. Everyone in the room enjoys salsa dancing if they collects luxury watches.
Eric enjoys kayaking.
entailment
room(eric)&room(nancy)&room(carmen)&(![X]:(room(X)=>(X='eric'|X='nancy'|X='carmen')))& (~![X]:(room(X)=>(((designs_and_sews_custom_cosplay_costumes_for_conventions(X))=>(does_not_own_a_smartwatch(X))))))& ((((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(eric))<~>(collects_action_figures(eric))))&(designs_and_sews_custom_cosplay_costumes_for_conventions(eric)))& (![X]:(room(X)=>(((enjoys_making_ceramics(X))=>(practices_digital_art(X))))))& (~![X]:(anywhere(X)=>(((is_not_dedicated_to_sustainable_living_and_zero-waste_practices(X))|(composes_and_performs_experimental_electronic_music(X))))))& ((?[X,Y]:(room(X)&room(Y)&(designs_and_sews_custom_cosplay_costumes_for_conventions(X)&designs_and_sews_custom_cosplay_costumes_for_conventions(Y))&(X!=Y))))& ((![X]:((does_not_make_intricate_hand-cut_paper_art_for_exhibitions(X))=>(composes_and_performs_experimental_electronic_music(X)))))& (![X]:(room(X)=>(((does_not_own_a_smartwatch(X))<=>(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))))& (((?[X]:(room(X)&practices_digital_art(X)))))& (~((?[X,Y]:(room(X)&room(Y)&(((collects_comic_books(X))<~>(is_a_dedicated_volunteer_for_local_community_service_projects(X)))&((collects_comic_books(Y))<~>(is_a_dedicated_volunteer_for_local_community_service_projects(Y))))&(X!=Y)))))& (![X]:(room(X)=>(((is_a_chess_master_who_participates_in_national_tournaments(X))<=>(~((practices_graffiti_art(X))|(collects_modern_art(X))))))))& (![X]:(room(X)=>(((~((practices_graffiti_art(X))|(collects_modern_art(X))))<=>(is_a_client_of_LVMH(X))))))& (![X]:(room(X)=>(((is_a_client_of_LVMH(X))=>(((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))&(enjoys_kayaking(X))))))))& (is_a_dedicated_volunteer_for_local_community_service_projects(eric))& (is_a_chess_master_who_participates_in_national_tournaments(eric))& (![X]:(room(X)=>(((collects_luxury_watches(X))=>(enjoys_salsa_dancing(X))))))
room(eric)&room(nancy)&room(carmen)&(![X]:(room(X)=>(X='eric'|X='nancy'|X='carmen')))& enjoys_kayaking(eric)
[ "p0", "p10", "p11", "p12", "p14", "hypothesis" ]
% SZS status Unsatisfiable for 1922594039104195001336425 % SZS output start Proof for 1922594039104195001336425 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 54. ! [X0] : (room(X0) => (predl(X0) <=> ~(predc(X0) | predg(X0)))) [input p10] 55. ! [X0] : (room(X0) => (~(predc(X0) | predg(X0)) <=> predj(X0))) [input p11] 56. ! [X0] : (room(X0) => (predj(X0) => (predq(X0) & predn(X0)))) [input p12] 58. predl(mary) [input p14] 60. ~(predq(mary) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 64. ! [X0] : (room(X0) => (predj(X0) => predq(X0))) [pure predicate removal 56] 144. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 145. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 144] 149. ! [X0] : ((predl(X0) <=> (~predc(X0) & ~predg(X0))) | ~room(X0)) [ennf transformation 54] 150. ! [X0] : (((~predc(X0) & ~predg(X0)) <=> predj(X0)) | ~room(X0)) [ennf transformation 55] 151. ! [X0] : ((predq(X0) | ~predj(X0)) | ~room(X0)) [ennf transformation 64] 152. ! [X0] : (predq(X0) | ~predj(X0) | ~room(X0)) [flattening 151] 153. ~predq(mary) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 60] 154. ~predq(mary) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 153] 165. ! [X0] : (((predl(X0) | (predc(X0) | predg(X0))) & ((~predc(X0) & ~predg(X0)) | ~predl(X0))) | ~room(X0)) [nnf transformation 149] 166. ! [X0] : (((predl(X0) | predc(X0) | predg(X0)) & ((~predc(X0) & ~predg(X0)) | ~predl(X0))) | ~room(X0)) [flattening 165] 167. ! [X0] : ((((~predc(X0) & ~predg(X0)) | ~predj(X0)) & (predj(X0) | (predc(X0) | predg(X0)))) | ~room(X0)) [nnf transformation 150] 168. ! [X0] : ((((~predc(X0) & ~predg(X0)) | ~predj(X0)) & (predj(X0) | predc(X0) | predg(X0))) | ~room(X0)) [flattening 167] 169. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK4 & paul != sK4 & mary != sK4 & room(sK4)) [choice axiom] 170. ~predq(mary) | (fred != sK4 & paul != sK4 & mary != sK4 & room(sK4)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 154,169] 251. room(mary) [cnf transformation 145] 252. room(paul) [cnf transformation 145] 253. room(fred) [cnf transformation 145] 254. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 145] 269. ~predg(X0) | ~predl(X0) | ~room(X0) [cnf transformation 166] 270. ~predc(X0) | ~predl(X0) | ~room(X0) [cnf transformation 166] 272. ~room(X0) | predc(X0) | predg(X0) | predj(X0) [cnf transformation 168] 275. ~predj(X0) | predq(X0) | ~room(X0) [cnf transformation 152] 277. predl(mary) [cnf transformation 58] 278. ~predq(mary) | room(sK4) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 170] 279. ~predq(mary) | mary != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 170] 280. ~predq(mary) | paul != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 170] 281. ~predq(mary) | fred != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 170] 292. ~predq(mary) | fred != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 281,253] 293. ~predq(mary) | fred != sK4 | ~room(mary) [subsumption resolution 292,252] 294. ~predq(mary) | fred != sK4 [subsumption resolution 293,251] 296. 3 <=> fred = sK4 [avatar definition] 298. fred != sK4 <- (~3) [avatar component clause 296] 300. 4 <=> predq(mary) [avatar definition] 303. ~3 | ~4 [avatar split clause 294,300,296] 304. ~predq(mary) | paul != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 280,253] 305. ~predq(mary) | paul != sK4 | ~room(mary) [subsumption resolution 304,252] 306. ~predq(mary) | paul != sK4 [subsumption resolution 305,251] 308. 5 <=> paul = sK4 [avatar definition] 310. paul != sK4 <- (~5) [avatar component clause 308] 311. ~5 | ~4 [avatar split clause 306,300,308] 312. ~predq(mary) | mary != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 279,253] 313. ~predq(mary) | mary != sK4 | ~room(mary) [subsumption resolution 312,252] 314. ~predq(mary) | mary != sK4 [subsumption resolution 313,251] 316. 6 <=> mary = sK4 [avatar definition] 318. mary != sK4 <- (~6) [avatar component clause 316] 319. ~6 | ~4 [avatar split clause 314,300,316] 320. ~predq(mary) | room(sK4) | ~room(paul) | ~room(mary) [subsumption resolution 278,253] 321. ~predq(mary) | room(sK4) | ~room(mary) [subsumption resolution 320,252] 322. ~predq(mary) | room(sK4) [subsumption resolution 321,251] 324. 7 <=> room(sK4) [avatar definition] 326. room(sK4) <- (7) [avatar component clause 324] 327. 7 | ~4 [avatar split clause 322,300,324] 475. predc(mary) | predg(mary) | predj(mary) [resolution 272,251] 483. 36 <=> predj(mary) [avatar definition] 485. predj(mary) <- (36) [avatar component clause 483] 487. 37 <=> predg(mary) [avatar definition] 489. predg(mary) <- (37) [avatar component clause 487] 491. 38 <=> predc(mary) [avatar definition] 493. predc(mary) <- (38) [avatar component clause 491] 494. 36 | 37 | 38 [avatar split clause 475,491,487,483] 591. predq(mary) | ~room(mary) <- (36) [resolution 485,275] 601. predq(mary) <- (36) [subsumption resolution 591,251] 602. 4 | ~36 [avatar split clause 601,483,300] 633. ~predl(mary) | ~room(mary) <- (37) [resolution 489,269] 634. ~room(mary) <- (37) [subsumption resolution 633,277] 635. $false <- (37) [subsumption resolution 634,251] 636. ~37 [avatar contradiction clause 635] 643. ~predl(mary) | ~room(mary) <- (38) [resolution 493,270] 644. ~room(mary) <- (38) [subsumption resolution 643,277] 645. $false <- (38) [subsumption resolution 644,251] 646. ~38 [avatar contradiction clause 645] 666. paul = sK4 | mary = sK4 | fred = sK4 <- (7) [resolution 254,326] 719. mary = sK4 | fred = sK4 <- (~5, 7) [subsumption resolution 666,310] 720. fred = sK4 <- (~5, ~6, 7) [subsumption resolution 719,318] 721. $false <- (~3, ~5, ~6, 7) [subsumption resolution 720,298] 722. 3 | 5 | 6 | ~7 [avatar contradiction clause 721] 723. $false [avatar sat refutation 303,311,319,327,494,602,636,646,722] % SZS output end Proof for 1922594039104195001336425 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0
Jason, Tammi, Paula are the only persons in the room. If someone is not a quiet person then he/she is not quiet, is quiet and is not a quiet person.
Jason is quiet.
entailment
room(jason)&room(tammi)&room(paula)&(![X]:(room(X)=>(X='jason'|X='tammi'|X='paula')))& ((![X]:((~(quiet(X)&person(X)))=>(((~quiet(X))&(quiet(X))&(~(quiet(X)&person(X))))))))
room(jason)&room(tammi)&room(paula)&(![X]:(room(X)=>(X='jason'|X='tammi'|X='paula')))& quiet(jason)
[ "p0", "p1", "hypothesis" ]
% SZS status Unsatisfiable for 3736003657699202135606086 % SZS output start Proof for 3736003657699202135606086 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 45. ! [X0] : (~(person(X0) & quiet(X0)) => (~(person(X0) & quiet(X0)) & quiet(X0) & ~quiet(X0))) [input p1] 46. ~(quiet(mary) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 119. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 120. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 119] 121. ! [X0] : (((~person(X0) | ~quiet(X0)) & quiet(X0) & ~quiet(X0)) | (person(X0) & quiet(X0))) [ennf transformation 45] 122. ~quiet(mary) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 46] 123. ~quiet(mary) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 122] 125. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK0 & paul != sK0 & mary != sK0 & room(sK0)) [choice axiom] 126. ~quiet(mary) | (fred != sK0 & paul != sK0 & mary != sK0 & room(sK0)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 123,125] 207. room(mary) [cnf transformation 120] 208. room(paul) [cnf transformation 120] 209. room(fred) [cnf transformation 120] 210. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 120] 213. quiet(X0) | quiet(X0) [cnf transformation 121] 217. ~quiet(mary) | room(sK0) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 126] 218. ~quiet(mary) | mary != sK0 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 126] 219. ~quiet(mary) | paul != sK0 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 126] 220. ~quiet(mary) | fred != sK0 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 126] 221. quiet(X0) [duplicate literal removal 213] 223. fred != sK0 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 220,221] 224. fred != sK0 | ~room(paul) | ~room(mary) [subsumption resolution 223,209] 225. fred != sK0 | ~room(mary) [subsumption resolution 224,208] 226. fred != sK0 [subsumption resolution 225,207] 227. paul != sK0 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 219,221] 228. paul != sK0 | ~room(paul) | ~room(mary) [subsumption resolution 227,209] 229. paul != sK0 | ~room(mary) [subsumption resolution 228,208] 230. paul != sK0 [subsumption resolution 229,207] 231. mary != sK0 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 218,221] 232. mary != sK0 | ~room(paul) | ~room(mary) [subsumption resolution 231,209] 233. mary != sK0 | ~room(mary) [subsumption resolution 232,208] 234. mary != sK0 [subsumption resolution 233,207] 235. room(sK0) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 217,221] 236. room(sK0) | ~room(paul) | ~room(mary) [subsumption resolution 235,209] 237. room(sK0) | ~room(mary) [subsumption resolution 236,208] 238. room(sK0) [subsumption resolution 237,207] 278. paul = sK0 | mary = sK0 | fred = sK0 [resolution 210,238] 279. mary = sK0 | fred = sK0 [subsumption resolution 278,230] 280. fred = sK0 [subsumption resolution 279,234] 281. $false [subsumption resolution 280,226] % SZS output end Proof for 3736003657699202135606086 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.040 s % ------------------------------ % ------------------------------
0.071547
Margaret, Clara, Alberta are the only persons in the room. “Everyone in the room who does not own an extensive assortment of vintage comic book memorabilia creates bespoke furniture pieces from reclaimed wood” if “everyone in the room does not create bespoke furniture pieces from reclaimed wood or collects vintage stamps”. If “Margaret is calm” then “everyone anywhere is a happy creative brave person if they is a calm person”. All brave persons are calm. Margaret is a quiet creative person. Everyone in the room owns an extensive assortment of vintage comic book memorabilia if they collects vintage stamps. Everyone in the room is brave if they owns an extensive assortment of vintage comic book memorabilia. Everyone in the room who is brave creates bespoke furniture pieces from reclaimed wood. Everyone in the room creates bespoke furniture pieces from reclaimed wood only if they is a creative brave person. Everyone in the room who owns an extensive assortment of vintage comic book memorabilia collects vintage stamps.
Everyone anywhere is not a brave person.
contradiction
room(margaret)&room(clara)&room(alberta)&(![X]:(room(X)=>(X='margaret'|X='clara'|X='alberta')))& ((![X]:(room(X)=>(((collects_vintage_stamps(X))|(does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(X))))))=>(![X]:(room(X)=>(((does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))=>(creates_bespoke_furniture_pieces_from_reclaimed_wood(X)))))))& ((calm(margaret))=>(![X]:(anywhere(X)=>(((calm(X)&person(X))=>(happy(X)&creative(X)&brave(X)&person(X)))))))& (![X]:(brave(X)=>calm(X)))& (quiet(margaret)&creative(margaret)&person(margaret))& (![X]:(room(X)=>(((collects_vintage_stamps(X))=>(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))))& (![X]:(room(X)=>(((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))=>(brave(X))))))& (![X]:(room(X)=>(((brave(X))=>(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))))& (![X]:(room(X)=>(((creative(X)&brave(X)&person(X))<=(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))))& (![X]:(room(X)=>(((owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))=>(collects_vintage_stamps(X))))))
room(margaret)&room(clara)&room(alberta)&(![X]:(room(X)=>(X='margaret'|X='clara'|X='alberta')))& ![X]:(anywhere(X)=>(~(brave(X)&person(X))))
[ "b4", "p0", "p1", "p4", "p6", "p8", "hypothesis" ]
% SZS status Unsatisfiable for 1955095885735019860810143 % SZS output start Proof for 1955095885735019860810143 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 45. ! [X0] : (room(X0) => (~predq(X0) | predt(X0))) => ! [X0] : (room(X0) => (~predc(X0) => predq(X0))) [input p1] 48. person(mary) & creative(mary) & quiet(mary) [input p4] 50. ! [X0] : (room(X0) => (predc(X0) => brave(X0))) [input p6] 52. ! [X0] : (room(X0) => (predq(X0) => (person(X0) & brave(X0) & creative(X0)))) [input p8] 54. ! [X0] : (anywhere(X0) => ~(person(X0) & brave(X0))) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 55. ! [X0] : (room(X0) => (~predq(X0) | predt(X0))) => ! [X1] : (room(X1) => (~predc(X1) => predq(X1))) [rectify 45] 56. ! [X0] : (anywhere(X0) => ~(person(X0) & brave(X0))) & ! [X1] : (room(X1) => (fred = X1 | paul = X1 | mary = X1)) & room(fred) & room(paul) & room(mary) [rectify 54] 57. person(mary) & quiet(mary) [pure predicate removal 48] 59. ! [X0] : (room(X0) => (predq(X0) => (person(X0) & brave(X0)))) [pure predicate removal 52] 132. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 133. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 132] 134. ! [X1] : ((predq(X1) | predc(X1)) | ~room(X1)) | ? [X0] : ((predq(X0) & ~predt(X0)) & room(X0)) [ennf transformation 55] 135. ! [X1] : (predq(X1) | predc(X1) | ~room(X1)) | ? [X0] : (predq(X0) & ~predt(X0) & room(X0)) [flattening 134] 141. ! [X0] : ((brave(X0) | ~predc(X0)) | ~room(X0)) [ennf transformation 50] 142. ! [X0] : (brave(X0) | ~predc(X0) | ~room(X0)) [flattening 141] 145. ! [X0] : (((person(X0) & brave(X0)) | ~predq(X0)) | ~room(X0)) [ennf transformation 59] 146. ! [X0] : ((person(X0) & brave(X0)) | ~predq(X0) | ~room(X0)) [flattening 145] 149. ! [X0] : ((~person(X0) | ~brave(X0)) | ~anywhere(X0)) & ! [X1] : ((fred = X1 | paul = X1 | mary = X1) | ~room(X1)) & room(fred) & room(paul) & room(mary) [ennf transformation 56] 150. ! [X0] : (~person(X0) | ~brave(X0) | ~anywhere(X0)) & ! [X1] : (fred = X1 | paul = X1 | mary = X1 | ~room(X1)) & room(fred) & room(paul) & room(mary) [flattening 149] 152. ! [X0] : (predq(X0) | predc(X0) | ~room(X0)) | ? [X1] : (predq(X1) & ~predt(X1) & room(X1)) [rectify 135] 153. ? [X1] : (predq(X1) & ~predt(X1) & room(X1)) => (predq(sK0) & ~predt(sK0) & room(sK0)) [choice axiom] 154. ! [X0] : (predq(X0) | predc(X0) | ~room(X0)) | (predq(sK0) & ~predt(sK0) & room(sK0)) [skolemisation 152,153] 155. anywhere(X0) [cnf transformation 5] 236. room(mary) [cnf transformation 133] 240. predq(X0) | predc(X0) | ~room(X0) | room(sK0) [cnf transformation 154] 242. predq(X0) | predc(X0) | ~room(X0) | predq(sK0) [cnf transformation 154] 247. person(mary) [cnf transformation 57] 249. ~predc(X0) | brave(X0) | ~room(X0) [cnf transformation 142] 251. ~predq(X0) | brave(X0) | ~room(X0) [cnf transformation 146] 252. ~predq(X0) | person(X0) | ~room(X0) [cnf transformation 146] 258. ~person(X0) | ~brave(X0) | ~anywhere(X0) [cnf transformation 150] 260. 1 <=> predq(sK0) [avatar definition] 262. predq(sK0) <- (1) [avatar component clause 260] 264. 2 <=> ! [X0] : (predq(X0) | ~room(X0) | predc(X0)) [avatar definition] 265. ~room(X0) | predq(X0) | predc(X0) <- (2) [avatar component clause 264] 266. 1 | 2 [avatar split clause 242,264,260] 273. 4 <=> room(sK0) [avatar definition] 275. room(sK0) <- (4) [avatar component clause 273] 276. 4 | 2 [avatar split clause 240,264,273] 286. ~brave(X0) | ~person(X0) [subsumption resolution 258,155] 291. 7 <=> predc(mary) [avatar definition] 293. predc(mary) <- (7) [avatar component clause 291] 295. 8 <=> predq(mary) [avatar definition] 297. predq(mary) <- (8) [avatar component clause 295] 317. person(sK0) | ~room(sK0) <- (1) [resolution 262,252] 318. brave(sK0) | ~room(sK0) <- (1) [resolution 262,251] 319. person(sK0) <- (1, 4) [subsumption resolution 317,275] 320. brave(sK0) <- (1, 4) [subsumption resolution 318,275] 322. ~person(sK0) <- (1, 4) [resolution 320,286] 324. $false <- (1, 4) [subsumption resolution 322,319] 325. ~1 | ~4 [avatar contradiction clause 324] 337. brave(mary) | ~room(mary) <- (7) [resolution 293,249] 339. brave(mary) <- (7) [subsumption resolution 337,236] 340. predq(mary) | predc(mary) <- (2) [resolution 265,236] 353. ~person(mary) <- (7) [resolution 339,286] 357. $false <- (7) [subsumption resolution 353,247] 358. ~7 [avatar contradiction clause 357] 361. 7 | 8 | ~2 [avatar split clause 340,264,295,291] 363. brave(mary) | ~room(mary) <- (8) [resolution 297,251] 364. brave(mary) <- (8) [subsumption resolution 363,236] 395. ~person(mary) <- (8) [resolution 364,286] 397. $false <- (8) [subsumption resolution 395,247] 398. ~8 [avatar contradiction clause 397] 401. $false [avatar sat refutation 266,276,325,358,361,398] % SZS output end Proof for 1955095885735019860810143 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.019765
Erica is the only person in the room. Either “at least one person in the room is an enthusiastic bird watcher who travels for rare sightings” or “Erica enjoys fishing or hosts regular workshops on creative writing or both” but not both. “Erica collects vintage stamps, creates large-scale murals for public art installations and is not a culinary enthusiast who experiments with international cuisines” if “Erica creates large-scale murals for public art installations” and vice versa. Someone in the room reads mystery novels. If someone writes poetry then he/she neither writes poetry nor is an expert in identifying and foraging wild edible plants. Erica has a vast collection of first-edition science fiction novels. Only one person in the room neither hosts regular workshops on creative writing nor is passionate about collecting and restoring classic cars. Erica enjoys kayaking or collects vintage stamps or both. Erica builds model airplanes.
Erica writes poetry.
contradiction
room(erica)&(![X]:(room(X)=>(X='erica')))& ((((?[X]:(room(X)&is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X)))))<~>(((enjoys_fishing(erica))|(hosts_regular_workshops_on_creative_writing(erica)))))& ((creates_large-scale_murals_for_public_art_installations(erica))<=>(((collects_vintage_stamps(erica))&(creates_large-scale_murals_for_public_art_installations(erica))&(is_not_a_culinary_enthusiast_who_experiments_with_international_cuisines(erica)))))& (?[X]:(room(X)&(reads_mystery_novels(X))))& ((![X]:((writes_poetry(X))=>(~((writes_poetry(X))|(is_an_expert_in_identifying_and_foraging_wild_edible_plants(X)))))))& (has_a_vast_collection_of_first-edition_science_fiction_novels(erica))& (((?[X]:(room(X)&~((hosts_regular_workshops_on_creative_writing(X))|(is_passionate_about_collecting_and_restoring_classic_cars(X)))))&(![X,Y]:((room(X)&room(Y)&(~((hosts_regular_workshops_on_creative_writing(X))|(is_passionate_about_collecting_and_restoring_classic_cars(X))))&(~((hosts_regular_workshops_on_creative_writing(Y))|(is_passionate_about_collecting_and_restoring_classic_cars(Y)))))=>(X=Y)))))& (((enjoys_kayaking(erica))|(collects_vintage_stamps(erica))))& (builds_model_airplanes(erica))& (((?[X]:(room(X)&is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X)))))& (((is_an_expert_in_identifying_and_foraging_wild_edible_plants(erica))|(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(erica))))& (![X]:(room(X)=>(((can_play_the_guitar(X))=>(enjoys_kayaking(X))))))& (can_play_the_guitar(erica))& (creates_large-scale_murals_for_public_art_installations(erica))& (![X]:(room(X)=>(((((enjoys_kayaking(X))|(collects_vintage_stamps(X))))<=>(owns_a_telescope(X))))))& (![X]:(~room(X)=>(((owns_a_telescope(X))|(does_not_collect_vintage_stamps(X))))))& (enjoys_logic_puzzles(erica))
room(erica)&(![X]:(room(X)=>(X='erica')))& writes_poetry(erica)
[ "p4", "hypothesis" ]
% SZS status Unsatisfiable for 6115470779519813763214906 % SZS output start Proof for 6115470779519813763214906 48. ! [X0] : (predf(X0) => ~(predj(X0) | predf(X0))) [input p4] 61. predf(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 140. ! [X0] : ((~predj(X0) & ~predf(X0)) | ~predf(X0)) [ennf transformation 48] 148. predf(mary) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 61] 256. ~predf(X0) | ~predf(X0) [cnf transformation 140] 275. predf(mary) [cnf transformation 148] 276. ~predf(X0) [duplicate literal removal 256] 330. $false [subsumption resolution 275,276] % SZS output end Proof for 6115470779519813763214906 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.243853
Sandra, Julia, Aimee are the only persons in the room. “Everyone in the room participates in long-distance cycling events across the country, does enjoy mountain biking or is not a client of Meta” if “everyone in the room does not own an Android phone or collect rare sneakers”. Everyone in the room enjoys kayaking and exploring remote waterways only if they enjoys stand-up paddleboarding. Everyone in the room designs and sews custom cosplay costumes for conventions if they enjoys stand-up paddleboarding. Everyone in the room enjoys skydiving. Everyone in the room either designs and sews custom cosplay costumes for conventions or does not enjoy stand-up paddleboarding but not both if they does not own an Android phone. Everyone outside the room either does not participate in long-distance cycling events across the country or does not collect historical artifacts related to ancient civilizations but not both if they either designs and sews custom cosplay costumes for conventions or does not enjoy stand-up paddleboarding but not both. Everyone anywhere is a certified yoga instructor teaching classes weekly. Everyone in the room either is not a certified yoga instructor teaching classes weekly or is not a client of Meta but not both if they is a Linux enthusiast. Everyone in the room either is not a certified yoga instructor teaching classes weekly or is not a client of Meta but not both only if they is not a client of Meta. Everyone in the room is a client of LVMH. Aimee does not enjoy snowboarding. Julia designs and sews custom cosplay costumes for conventions, is not a client of Meta and does not participate in long-distance cycling events across the country. Sandra neither does not create YouTube content nor is not a certified yoga instructor teaching classes weekly. Everyone in the room is not a client of LVMH if they does not design and sews custom cosplay costumes for conventions. Sandra does not enjoy mountain biking. Everyone outside the room enjoys skydiving, enjoys kayaking and exploring remote waterways or does not collect historical artifacts related to ancient civilizations if they does not collect historical artifacts related to ancient civilizations. Not everyone in the room either is not a certified yoga instructor teaching classes weekly or does not enjoy kayaking and exploring remote waterways but not both if they enjoys skydiving, enjoys kayaking and exploring remote waterways or does not collect historical artifacts related to ancient civilizations. Everyone outside the room does not enjoy snowboarding. Everyone in the room enjoys stand-up paddleboarding if they participates in long-distance cycling events across the country. Everyone outside the room is not a client of LVMH if they enjoys stand-up paddleboarding.
Julia is a client of LVMH.
entailment
room(sandra)&room(julia)&room(aimee)&(![X]:(room(X)=>(X='sandra'|X='julia'|X='aimee')))& ((![X]:(room(X)=>(((collect_rare_sneakers(X))|(does_not_own_an_Android_phone(X))))))=>(![X]:(room(X)=>(((participates_in_long-distance_cycling_events_across_the_country(X))|(does_enjoy_mountain_biking(X))|(is_not_a_client_of_Meta(X)))))))& (![X]:(room(X)=>(((enjoys_stand-up_paddleboarding(X))<=(enjoys_kayaking_and_exploring_remote_waterways(X))))))& (![X]:(room(X)=>(((enjoys_stand-up_paddleboarding(X))=>(designs_and_sews_custom_cosplay_costumes_for_conventions(X))))))& (![X]:(room(X)=>(enjoys_skydiving(X))))& (![X]:(room(X)=>(((does_not_own_an_Android_phone(X))=>(((designs_and_sews_custom_cosplay_costumes_for_conventions(X))<~>(does_not_enjoy_stand-up_paddleboarding(X))))))))& (![X]:(~room(X)=>(((((designs_and_sews_custom_cosplay_costumes_for_conventions(X))<~>(does_not_enjoy_stand-up_paddleboarding(X))))=>(((does_not_participate_in_long-distance_cycling_events_across_the_country(X))<~>(does_not_collect_historical_artifacts_related_to_ancient_civilizations(X))))))))& (![X]:(anywhere(X)=>(is_a_certified_yoga_instructor_teaching_classes_weekly(X))))& (![X]:(room(X)=>(((is_a_Linux_enthusiast(X))=>(((is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))<~>(is_not_a_client_of_Meta(X))))))))& (![X]:(room(X)=>(((is_not_a_client_of_Meta(X))<=(((is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))<~>(is_not_a_client_of_Meta(X))))))))& (![X]:(room(X)=>(is_a_client_of_LVMH(X))))& (does_not_enjoy_snowboarding(aimee))& (((designs_and_sews_custom_cosplay_costumes_for_conventions(julia))&(is_not_a_client_of_Meta(julia))&(does_not_participate_in_long-distance_cycling_events_across_the_country(julia))))& (~((does_not_create_YouTube_content(sandra))|(is_not_a_certified_yoga_instructor_teaching_classes_weekly(sandra))))& (![X]:(room(X)=>(((does_not_design_and_sews_custom_cosplay_costumes_for_conventions(X))=>(is_not_a_client_of_LVMH(X))))))& (does_not_enjoy_mountain_biking(sandra))& (![X]:(~room(X)=>(((does_not_collect_historical_artifacts_related_to_ancient_civilizations(X))=>(((enjoys_skydiving(X))|(enjoys_kayaking_and_exploring_remote_waterways(X))|(does_not_collect_historical_artifacts_related_to_ancient_civilizations(X))))))))& (~![X]:(room(X)=>(((((enjoys_skydiving(X))|(enjoys_kayaking_and_exploring_remote_waterways(X))|(does_not_collect_historical_artifacts_related_to_ancient_civilizations(X))))=>(((is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))<~>(does_not_enjoy_kayaking_and_exploring_remote_waterways(X))))))))& (![X]:(~room(X)=>(does_not_enjoy_snowboarding(X))))& (![X]:(room(X)=>(((participates_in_long-distance_cycling_events_across_the_country(X))=>(enjoys_stand-up_paddleboarding(X))))))& (![X]:(~room(X)=>(((enjoys_stand-up_paddleboarding(X))=>(is_not_a_client_of_LVMH(X))))))& (~![X]:(room(X)=>(((participates_in_long-distance_cycling_events_across_the_country(X))<=(((does_enjoy_mountain_biking(X))<~>(does_not_create_YouTube_content(X))))))))& (![X]:(room(X)=>(((does_not_enjoy_kayaking_and_exploring_remote_waterways(X))<=(participates_in_long-distance_cycling_events_across_the_country(X))))))& (![X]:(room(X)=>(does_not_collect_rare_sneakers(X))))& (![X]:(room(X)=>(((((is_not_a_Linux_enthusiast(X))<~>(does_not_enjoy_kayaking_and_exploring_remote_waterways(X))))=>(does_not_participate_in_long-distance_cycling_events_across_the_country(X))))))& (![X]:(~room(X)=>(((does_not_enjoy_stand-up_paddleboarding(X))<~>(does_not_collect_rare_sneakers(X))))))
room(sandra)&room(julia)&room(aimee)&(![X]:(room(X)=>(X='sandra'|X='julia'|X='aimee')))& is_a_client_of_LVMH(julia)
[ "p0", "p10", "hypothesis" ]
% SZS status Unsatisfiable for 292790418598224270758736 % SZS output start Proof for 292790418598224270758736 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 54. ! [X0] : (room(X0) => predl(X0)) [input p10] 70. ~(predl(paul) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 150. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 151. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 150] 165. ! [X0] : (predl(X0) | ~room(X0)) [ennf transformation 54] 182. ~predl(paul) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 70] 183. ~predl(paul) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 182] 201. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) [choice axiom] 202. ~predl(paul) | (fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 183,201] 284. room(mary) [cnf transformation 151] 285. room(paul) [cnf transformation 151] 286. room(fred) [cnf transformation 151] 287. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 151] 301. ~room(X0) | predl(X0) [cnf transformation 165] 324. ~predl(paul) | room(sK3) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 202] 325. ~predl(paul) | mary != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 202] 326. ~predl(paul) | paul != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 202] 327. ~predl(paul) | fred != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 202] 358. ~predl(paul) | fred != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 327,286] 359. ~predl(paul) | fred != sK3 | ~room(mary) [subsumption resolution 358,285] 360. ~predl(paul) | fred != sK3 [subsumption resolution 359,284] 362. 6 <=> fred = sK3 [avatar definition] 364. fred != sK3 <- (~6) [avatar component clause 362] 366. 7 <=> predl(paul) [avatar definition] 369. ~6 | ~7 [avatar split clause 360,366,362] 370. ~predl(paul) | paul != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 326,286] 371. ~predl(paul) | paul != sK3 | ~room(mary) [subsumption resolution 370,285] 372. ~predl(paul) | paul != sK3 [subsumption resolution 371,284] 374. 8 <=> paul = sK3 [avatar definition] 376. paul != sK3 <- (~8) [avatar component clause 374] 377. ~8 | ~7 [avatar split clause 372,366,374] 378. ~predl(paul) | mary != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 325,286] 379. ~predl(paul) | mary != sK3 | ~room(mary) [subsumption resolution 378,285] 380. ~predl(paul) | mary != sK3 [subsumption resolution 379,284] 382. 9 <=> mary = sK3 [avatar definition] 384. mary != sK3 <- (~9) [avatar component clause 382] 385. ~9 | ~7 [avatar split clause 380,366,382] 386. ~predl(paul) | room(sK3) | ~room(paul) | ~room(mary) [subsumption resolution 324,286] 387. ~predl(paul) | room(sK3) | ~room(mary) [subsumption resolution 386,285] 388. ~predl(paul) | room(sK3) [subsumption resolution 387,284] 390. 10 <=> room(sK3) [avatar definition] 392. room(sK3) <- (10) [avatar component clause 390] 393. 10 | ~7 [avatar split clause 388,366,390] 395. predl(paul) [resolution 301,285] 401. 7 [avatar split clause 395,366] 474. paul = sK3 | mary = sK3 | fred = sK3 <- (10) [resolution 287,392] 501. mary = sK3 | fred = sK3 <- (~8, 10) [subsumption resolution 474,376] 502. fred = sK3 <- (~8, ~9, 10) [subsumption resolution 501,384] 503. $false <- (~6, ~8, ~9, 10) [subsumption resolution 502,364] 504. 6 | 8 | 9 | ~10 [avatar contradiction clause 503] 505. $false [avatar sat refutation 369,377,385,393,401,504] % SZS output end Proof for 292790418598224270758736 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.033 s % ------------------------------ % ------------------------------
0.472974
Eric is the only person in the room. If everyone anywhere practices urban gardening or does not frequently participates in hackathons and coding competitions then everyone in the room who practices urban gardening regularly goes on multi-day backpacking trips in national parks otherwise everyone in the room practices urban gardening if they regularly goes on multi-day backpacking trips in national parks. Everyone in the room maintains a personal blog focused on cybersecurity tips, can play the flute or enjoys skydiving if they practices urban gardening. Everyone in the room cannot play the flute. Everyone in the room is a client of Costco if they is a professional photographer specializing in portrait photography. Everyone in the room owns a 3D printer if they is a client of Costco. Everyone in the room collects action figures if they owns a 3D printer. Everyone anywhere who can play the flute, is a cybersecurity expert or does not participate in long-distance cycling events across the country practices and performs acrobatic dance routines. Everyone in the room is a professional photographer specializing in portrait photography. Everyone in the room does not play the drums if and only if they owns a significant collection of rare gemstones and minerals. Everyone anywhere plays the drums if they owns a significant collection of rare gemstones and minerals. Everyone in the room who plays the drums develops open-source software projects in their free time. Everyone in the room frequently participates in hackathons and coding competitions if they develops open-source software projects in their free time. Everyone anywhere practices graffiti art. Everyone anywhere who owns a 3D printer is an avid mountain climber who has scaled several peaks. Everyone in the room who is an avid mountain climber who has scaled several peaks practices urban gardening. Everyone in the room who practices urban gardening participates in long-distance cycling events across the country. Everyone in the room practices graffiti art if they participates in long-distance cycling events across the country. Everyone in the room is a chess master who participates in national tournaments if they practices graffiti art. Everyone in the room owns a 3D printer. Not everyone in the room is a cybersecurity expert if they does not create augmented reality experiences for mobile applications. Everyone in the room who is a cybersecurity expert neither does enjoy mountain biking nor creates augmented reality experiences for mobile applications. Everyone in the room regularly goes on multi-day backpacking trips in national parks if they is a client of Costco. Everyone in the room either practices archery or is a professional photographer specializing in portrait photography but not both if and only if they neither regularly goes on multi-day backpacking trips in national parks nor creates augmented reality experiences for mobile applications.
Eric does enjoy mountain biking.
neutral
room(eric)&(![X]:(room(X)=>(X='eric')))& (((![X]:(anywhere(X)=>(((does_not_frequently_participates_in_hackathons_and_coding_competitions(X))|(practices_urban_gardening(X))))))=>(![X]:(room(X)=>(((practices_urban_gardening(X))=>(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X)))))))&((~(![X]:(anywhere(X)=>(((does_not_frequently_participates_in_hackathons_and_coding_competitions(X))|(practices_urban_gardening(X)))))))=>(![X]:(room(X)=>(((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))=>(practices_urban_gardening(X))))))))& (![X]:(room(X)=>(((practices_urban_gardening(X))=>(((maintains_a_personal_blog_focused_on_cybersecurity_tips(X))|(can_play_the_flute(X))|(enjoys_skydiving(X))))))))& (![X]:(room(X)=>(cannot_play_the_flute(X))))& (![X]:(room(X)=>(((is_a_professional_photographer_specializing_in_portrait_photography(X))=>(is_a_client_of_Costco(X))))))& (![X]:(room(X)=>(((is_a_client_of_Costco(X))=>(owns_a_3D_printer(X))))))& (![X]:(room(X)=>(((owns_a_3D_printer(X))=>(collects_action_figures(X))))))& (![X]:(anywhere(X)=>(((((can_play_the_flute(X))|(is_a_cybersecurity_expert(X))|(does_not_participate_in_long-distance_cycling_events_across_the_country(X))))=>(practices_and_performs_acrobatic_dance_routines(X))))))& (![X]:(room(X)=>(is_a_professional_photographer_specializing_in_portrait_photography(X))))& (![X]:(room(X)=>(((does_not_play_the_drums(X))<=>(owns_a_significant_collection_of_rare_gemstones_and_minerals(X))))))& (![X]:(anywhere(X)=>(((owns_a_significant_collection_of_rare_gemstones_and_minerals(X))=>(plays_the_drums(X))))))& (![X]:(room(X)=>(((plays_the_drums(X))=>(develops_open-source_software_projects_in_their_free_time(X))))))& (![X]:(room(X)=>(((develops_open-source_software_projects_in_their_free_time(X))=>(frequently_participates_in_hackathons_and_coding_competitions(X))))))& (![X]:(anywhere(X)=>(practices_graffiti_art(X))))& (![X]:(anywhere(X)=>(((owns_a_3D_printer(X))=>(is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))))& (![X]:(room(X)=>(((is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))=>(practices_urban_gardening(X))))))& (![X]:(room(X)=>(((practices_urban_gardening(X))=>(participates_in_long-distance_cycling_events_across_the_country(X))))))& (![X]:(room(X)=>(((participates_in_long-distance_cycling_events_across_the_country(X))=>(practices_graffiti_art(X))))))& (![X]:(room(X)=>(((practices_graffiti_art(X))=>(is_a_chess_master_who_participates_in_national_tournaments(X))))))& (![X]:(room(X)=>(owns_a_3D_printer(X))))& (~![X]:(room(X)=>(((does_not_create_augmented_reality_experiences_for_mobile_applications(X))=>(is_a_cybersecurity_expert(X))))))& (![X]:(room(X)=>(((is_a_cybersecurity_expert(X))=>(~((does_enjoy_mountain_biking(X))|(creates_augmented_reality_experiences_for_mobile_applications(X))))))))& (![X]:(room(X)=>(((is_a_client_of_Costco(X))=>(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))))& (![X]:(room(X)=>(((((practices_archery(X))<~>(is_a_professional_photographer_specializing_in_portrait_photography(X))))<=>(~((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))|(creates_augmented_reality_experiences_for_mobile_applications(X))))))))
room(eric)&(![X]:(room(X)=>(X='eric')))& does_enjoy_mountain_biking(eric)
[]
null
0.021879
Patrick, Dan are the only persons in the room. If “Patrick is not wise” then “everyone in the room is richer than Michael or is older than Michael or both if they is a kind generous person and vice versa”. If “Dan is old and is humble” then “everyone outside the room is kind if they is not a kind person”. “Dan is richer than Michael” only if “Patrick is not generous”. If “Patrick is a funny person” then “all patient persons are old”. If “Patrick is older than William” then “everyone in the room who is not a old person is a calm person”. “Dan is curious” only if “Michael is older than Patrick”. Everyone in the room is quieter than Michael if they is older than William and vice versa. Everyone in the room is older than William only if they is not a brave person. If someone is not curious then he/she is a funny kind happy person and vice versa. If someone is quieter than William then he/she is not calm, not brave, not humble, not old. Dan neither is older than William nor is a calm tall person.
Patrick is not generous.
neutral
room(patrick)&room(dan)&(![X]:(room(X)=>(X='patrick'|X='dan')))& ((~wise(patrick))=>(![X]:(room(X)=>(((((richer(michael,X))|(older(michael,X))))<=>(kind(X)&generous(X)&person(X)))))))& ((((old(dan))&(humble(dan))))=>(![X]:(~room(X)=>(((~(kind(X)&person(X)))=>(kind(X)))))))& ((richer(michael,dan))=>(~generous(patrick)))& ((funny(patrick)&person(patrick))=>(![X]:(patient(X)=>old(X))))& ((older(william,patrick))=>(![X]:(room(X)=>(((~(old(X)&person(X)))=>(calm(X)&person(X)))))))& ((curious(dan))=>(older(patrick,michael)))& (![X]:(room(X)=>(((quieter(michael,X))<=>(older(william,X))))))& (![X]:(room(X)=>(((~(brave(X)&person(X)))<=(older(william,X))))))& ((![X]:((~curious(X))<=>(funny(X)&kind(X)&happy(X)&person(X)))))& ((![X]:((quieter(william,X))=>(~calm(X)&~brave(X)&~humble(X)&~old(X)))))& (~((older(william,dan))|(calm(dan)&tall(dan)&person(dan))))& (quieter(william,patrick))& (richer(william,dan))& (![X]:(room(X)=>(((richer(michael,X))<=(older(william,X))))))& (~happy(patrick)&~tall(patrick)&~wise(patrick))& (![X]:((room(X)&(X!=dan))=>older(X,dan)))& (~![X]:(room(X)=>(((~((quieter(michael,X))|(creative(X)&funny(X)&happy(X)&brave(X)&person(X))))=>(strong(X)&person(X))))))& (![X]:(~room(X)=>(((~(kind(X)&person(X)))=>(kind(X))))))& (funny(patrick)&person(patrick)&funny(dan)&person(dan))& (![X]:(room(X)=>(((quiet(X)&person(X))=>(older(michael,X))))))& (![X]:(room(X)=>(((older(michael,X))=>(funny(X))))))& (~(curious(dan)&quiet(dan)&person(dan))&~(curious(patrick)&quiet(patrick)&person(patrick)))
room(patrick)&room(dan)&(![X]:(room(X)=>(X='patrick'|X='dan')))& ~generous(patrick)
[]
null
0.255383
Kyle, Tanya, Travis are the only persons in the room. “Someone outside the room is a certified scuba diver with advanced underwater photography skills” if “it is not the case that “Kyle either owns a 3D printer or does not create YouTube content but not both””. If “someone in the room competes in national level swimming championships” then “if someone owns a microscope then he/she enjoys cross-country skiing”. If “Travis is a Linux enthusiast” then “Tanya enjoys cross-country skiing”. If “Tanya enjoys cross-country skiing” then “Tanya does not enjoy fishing”. “Everyone in the room either hosts regular game nights featuring complex strategy games or owns a microscope but not both” if “it is not the case that “someone in the room writes poetry””. “Travis enjoys kayaking” if “Kyle regularly goes on multi-day backpacking trips in national parks”. If “Travis creates YouTube content” then “Tanya collects vintage vinyl records”. If “Travis is a Linux enthusiast” then “someone in the room either creates large-scale murals for public art installations or practices digital art but not both”. “It is true that “not everyone in the room enjoys cross-country skiing or is not dedicated to sustainable living and zero-waste practices”” if “no one in the room writes and illustrates their own graphic novels” and vice versa. Someone in the room is a Linux enthusiast. Someone in the room either enjoys logic puzzles or does not collect vintage vinyl records but not both. Travis has completed a triathlon. Kyle enjoys cross-country skiing. If someone writes and illustrates their own graphic novels, trains for and competes in international triathlons or enjoys fishing then he/she has completed a triathlon and vice versa. Tanya either is dedicated to sustainable living and zero-waste practices or practices digital art but not both. Travis practices digital art. More than one person in the room either enjoys fishing or is dedicated to sustainable living and zero-waste practices but not both.
Kyle writes and illustrates their own graphic novels.
contradiction
room(kyle)&room(tanya)&room(travis)&(![X]:(room(X)=>(X='kyle'|X='tanya'|X='travis')))& ((~(((owns_a_3D_printer(kyle))<~>(does_not_create_YouTube_content(kyle)))))=>(?[X]:(~room(X)&(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X)))))& ((?[X]:(room(X)&(competes_in_national_level_swimming_championships(X))))=>((![X]:((owns_a_microscope(X))=>(enjoys_cross-country_skiing(X))))))& (((is_a_Linux_enthusiast(travis))=>(enjoys_cross-country_skiing(tanya)))& ((enjoys_cross-country_skiing(tanya))=>(does_not_enjoy_fishing(tanya))))& ((~(?[X]:(room(X)&(writes_poetry(X)))))=>(![X]:(room(X)=>(((hosts_regular_game_nights_featuring_complex_strategy_games(X))<~>(owns_a_microscope(X)))))))& ((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(kyle))=>(enjoys_kayaking(travis)))& ((creates_YouTube_content(travis))=>(collects_vintage_vinyl_records(tanya)))& ((is_a_Linux_enthusiast(travis))=>(?[X]:(room(X)&(((creates_large-scale_murals_for_public_art_installations(X))<~>(practices_digital_art(X)))))))& ((~?[X]:(room(X)=>(writes_and_illustrates_their_own_graphic_novels(X))))<=>(~![X]:(room(X)=>(((is_not_dedicated_to_sustainable_living_and_zero-waste_practices(X))|(enjoys_cross-country_skiing(X)))))))& (?[X]:(room(X)&(is_a_Linux_enthusiast(X))))& (?[X]:(room(X)&(((enjoys_logic_puzzles(X))<~>(does_not_collect_vintage_vinyl_records(X))))))& (has_completed_a_triathlon(travis))& (enjoys_cross-country_skiing(kyle))& ((![X]:((((writes_and_illustrates_their_own_graphic_novels(X))|(trains_for_and_competes_in_international_triathlons(X))|(enjoys_fishing(X))))<=>(has_completed_a_triathlon(X)))))& (((is_dedicated_to_sustainable_living_and_zero-waste_practices(tanya))<~>(practices_digital_art(tanya))))& (practices_digital_art(travis))& ((?[X,Y]:(room(X)&room(Y)&(((enjoys_fishing(X))<~>(is_dedicated_to_sustainable_living_and_zero-waste_practices(X)))&((enjoys_fishing(Y))<~>(is_dedicated_to_sustainable_living_and_zero-waste_practices(Y))))&(X!=Y))))& (is_not_dedicated_to_sustainable_living_and_zero-waste_practices(travis))& (~((is_not_a_wine_connoisseur(kyle))|(writes_and_illustrates_their_own_graphic_novels(kyle))))& (((?[X]:(room(X)&does_not_collect_foreign_coins(X)))&(![X,Y]:((room(X)&room(Y)&(does_not_collect_foreign_coins(X))&(does_not_collect_foreign_coins(Y)))=>(X=Y)))))& (~![X]:(room(X)=>(((is_a_Linux_enthusiast(X))=>(owns_a_microscope(X))))))
room(kyle)&room(tanya)&room(travis)&(![X]:(room(X)=>(X='kyle'|X='tanya'|X='travis')))& writes_and_illustrates_their_own_graphic_novels(kyle)
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 8288773288906350001268749 % SZS output start Proof for 8288773288906350001268749 44. ~! [X0] : (room(X0) => (predy(X0) => predz(X0))) & ! [X0,X1] : ((~predo(X1) & ~predo(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (~predo(X0) & room(X0)) & ~(predf(mary) | ~predh(mary)) & ~predj(fred) & ? [X0,X1] : (X0 != X1 & (predr(X1) <~> predj(X1)) & (predr(X0) <~> predj(X0)) & room(X1) & room(X0)) & prede(fred) & (predj(paul) <~> prede(paul)) & ! [X0] : ((predr(X0) | predp(X0) | predf(X0)) <=> predx(X0)) & predc(mary) & predx(fred) & ? [X0] : ((predd(X0) <~> ~predg(X0)) & room(X0)) & ? [X0] : (predy(X0) & room(X0)) & (~? [X0] : (room(X0) => predf(X0)) <=> ~! [X0] : (room(X0) => (predc(X0) | ~predj(X0)))) & (predy(fred) => ? [X0] : ((predk(X0) <~> prede(X0)) & room(X0))) & (predn(fred) => predg(paul)) & (predb(mary) => predm(fred)) & (~? [X0] : (predi(X0) & room(X0)) => ! [X0] : (room(X0) => (preds(X0) <~> predz(X0)))) & (predc(paul) => ~predr(paul)) & (predy(fred) => predc(paul)) & (? [X0] : (preda(X0) & room(X0)) => ! [X0] : (predz(X0) => predc(X0))) & (~(predl(mary) <~> ~predn(mary)) => ? [X0] : (predt(X0) & ~room(X0))) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 45. predf(mary) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 46. ~! [X0] : (room(X0) => (predy(X0) => predz(X0))) & ! [X1,X2] : ((~predo(X2) & ~predo(X1) & room(X2) & room(X1)) => X1 = X2) & ? [X3] : (~predo(X3) & room(X3)) & ~(predf(mary) | ~predh(mary)) & ~predj(fred) & ? [X4,X5] : (X4 != X5 & (predr(X5) <~> predj(X5)) & (predr(X4) <~> predj(X4)) & room(X5) & room(X4)) & prede(fred) & (predj(paul) <~> prede(paul)) & ! [X6] : ((predr(X6) | predp(X6) | predf(X6)) <=> predx(X6)) & predc(mary) & predx(fred) & ? [X7] : ((predd(X7) <~> ~predg(X7)) & room(X7)) & ? [X8] : (predy(X8) & room(X8)) & (~? [X9] : (room(X9) => predf(X9)) <=> ~! [X10] : (room(X10) => (predc(X10) | ~predj(X10)))) & (predy(fred) => ? [X11] : ((predk(X11) <~> prede(X11)) & room(X11))) & (predn(fred) => predg(paul)) & (predb(mary) => predm(fred)) & (~? [X12] : (predi(X12) & room(X12)) => ! [X13] : (room(X13) => (preds(X13) <~> predz(X13)))) & (predc(paul) => ~predr(paul)) & (predy(fred) => predc(paul)) & (? [X14] : (preda(X14) & room(X14)) => ! [X15] : (predz(X15) => predc(X15))) & (~(predl(mary) <~> ~predn(mary)) => ? [X16] : (predt(X16) & ~room(X16))) & ! [X17] : (room(X17) => (fred = X17 | paul = X17 | mary = X17)) & room(fred) & room(paul) & room(mary) [rectify 44] 47. ~! [X0] : (room(X0) => (predy(X0) => predz(X0))) & ! [X1,X2] : ((~predo(X2) & ~predo(X1) & room(X2) & room(X1)) => X1 = X2) & ? [X3] : (~predo(X3) & room(X3)) & ~predf(mary) & ~predj(fred) & ? [X4,X5] : (X4 != X5 & (predr(X5) <~> predj(X5)) & (predr(X4) <~> predj(X4)) & room(X5) & room(X4)) & prede(fred) & (predj(paul) <~> prede(paul)) & ! [X6] : ((predr(X6) | predp(X6) | predf(X6)) <=> predx(X6)) & predc(mary) & predx(fred) & ? [X7] : ((predd(X7) <~> ~predg(X7)) & room(X7)) & ? [X8] : (predy(X8) & room(X8)) & (~? [X9] : (room(X9) => predf(X9)) <=> ~! [X10] : (room(X10) => (predc(X10) | ~predj(X10)))) & (predy(fred) => ? [X11] : ((predk(X11) <~> prede(X11)) & room(X11))) & (predn(fred) => predg(paul)) & (predb(mary) => predm(fred)) & (~? [X12] : (predi(X12) & room(X12)) => ! [X13] : (room(X13) => (preds(X13) <~> predz(X13)))) & (predc(paul) => ~predr(paul)) & (predy(fred) => predc(paul)) & (? [X14] : (preda(X14) & room(X14)) => ! [X15] : (predz(X15) => predc(X15))) & (~(predl(mary) <~> ~predn(mary)) => ? [X16] : (predt(X16) & ~room(X16))) & ! [X17] : (room(X17) => (fred = X17 | paul = X17 | mary = X17)) & room(fred) & room(paul) & room(mary) [pure predicate removal 46] 48. ~! [X0] : (room(X0) => (predy(X0) => predz(X0))) & ! [X1,X2] : ((~predo(X2) & ~predo(X1) & room(X2) & room(X1)) => X1 = X2) & ? [X3] : (~predo(X3) & room(X3)) & ~predf(mary) & ~predj(fred) & ? [X4,X5] : (X4 != X5 & (predr(X5) <~> predj(X5)) & (predr(X4) <~> predj(X4)) & room(X5) & room(X4)) & prede(fred) & (predj(paul) <~> prede(paul)) & ! [X6] : ((predr(X6) | predp(X6) | predf(X6)) <=> predx(X6)) & predc(mary) & predx(fred) & ? [X7] : ((predd(X7) <~> ~predg(X7)) & room(X7)) & ? [X8] : (predy(X8) & room(X8)) & (~? [X9] : (room(X9) => predf(X9)) <=> ~! [X10] : (room(X10) => (predc(X10) | ~predj(X10)))) & (predy(fred) => ? [X11] : ((predk(X11) <~> prede(X11)) & room(X11))) & (predn(fred) => predg(paul)) & (~? [X12] : (predi(X12) & room(X12)) => ! [X13] : (room(X13) => (preds(X13) <~> predz(X13)))) & (predc(paul) => ~predr(paul)) & (predy(fred) => predc(paul)) & (? [X14] : (preda(X14) & room(X14)) => ! [X15] : (predz(X15) => predc(X15))) & (~(predl(mary) <~> ~predn(mary)) => ? [X16] : (predt(X16) & ~room(X16))) & ! [X17] : (room(X17) => (fred = X17 | paul = X17 | mary = X17)) & room(fred) & room(paul) & room(mary) [pure predicate removal 47] 49. ~! [X0] : (room(X0) => (predy(X0) => predz(X0))) & ! [X1,X2] : ((~predo(X2) & ~predo(X1) & room(X2) & room(X1)) => X1 = X2) & ? [X3] : (~predo(X3) & room(X3)) & ~predf(mary) & ~predj(fred) & ? [X4,X5] : (X4 != X5 & (predr(X5) <~> predj(X5)) & (predr(X4) <~> predj(X4)) & room(X5) & room(X4)) & prede(fred) & (predj(paul) <~> prede(paul)) & ! [X6] : ((predr(X6) | predp(X6) | predf(X6)) <=> predx(X6)) & predc(mary) & predx(fred) & ? [X7] : ((predd(X7) <~> ~predg(X7)) & room(X7)) & ? [X8] : (predy(X8) & room(X8)) & (~? [X9] : (room(X9) => predf(X9)) <=> ~! [X10] : (room(X10) => (predc(X10) | ~predj(X10)))) & (predy(fred) => ? [X11] : ((predk(X11) <~> prede(X11)) & room(X11))) & (predn(fred) => predg(paul)) & (~? [X12] : room(X12) => ! [X13] : (room(X13) => (preds(X13) <~> predz(X13)))) & (predc(paul) => ~predr(paul)) & (predy(fred) => predc(paul)) & (? [X14] : (preda(X14) & room(X14)) => ! [X15] : (predz(X15) => predc(X15))) & (~(predl(mary) <~> ~predn(mary)) => ? [X16] : (predt(X16) & ~room(X16))) & ! [X17] : (room(X17) => (fred = X17 | paul = X17 | mary = X17)) & room(fred) & room(paul) & room(mary) [pure predicate removal 48] 50. ~! [X0] : (room(X0) => (predy(X0) => predz(X0))) & ! [X1,X2] : ((~predo(X2) & ~predo(X1) & room(X2) & room(X1)) => X1 = X2) & ? [X3] : (~predo(X3) & room(X3)) & ~predf(mary) & ~predj(fred) & ? [X4,X5] : (X4 != X5 & (predr(X5) <~> predj(X5)) & (predr(X4) <~> predj(X4)) & room(X5) & room(X4)) & prede(fred) & (predj(paul) <~> prede(paul)) & ! [X6] : ((predr(X6) | predp(X6) | predf(X6)) <=> predx(X6)) & predc(mary) & predx(fred) & ? [X7] : ((predd(X7) <~> ~predg(X7)) & room(X7)) & ? [X8] : (predy(X8) & room(X8)) & (~? [X9] : (room(X9) => predf(X9)) <=> ~! [X10] : (room(X10) => (predc(X10) | ~predj(X10)))) & (predy(fred) => ? [X11] : ((predk(X11) <~> prede(X11)) & room(X11))) & (predn(fred) => predg(paul)) & (~? [X12] : room(X12) => ! [X13] : (room(X13) => (preds(X13) <~> predz(X13)))) & (predc(paul) => ~predr(paul)) & (predy(fred) => predc(paul)) & (~(predl(mary) <~> ~predn(mary)) => ? [X16] : (predt(X16) & ~room(X16))) & ! [X17] : (room(X17) => (fred = X17 | paul = X17 | mary = X17)) & room(fred) & room(paul) & room(mary) [pure predicate removal 49] 51. ~! [X0] : (room(X0) => (predy(X0) => predz(X0))) & ! [X1,X2] : ((~predo(X2) & ~predo(X1) & room(X2) & room(X1)) => X1 = X2) & ? [X3] : (~predo(X3) & room(X3)) & ~predf(mary) & ~predj(fred) & ? [X4,X5] : (X4 != X5 & (predr(X5) <~> predj(X5)) & (predr(X4) <~> predj(X4)) & room(X5) & room(X4)) & prede(fred) & (predj(paul) <~> prede(paul)) & ! [X6] : ((predr(X6) | predp(X6) | predf(X6)) <=> predx(X6)) & predc(mary) & predx(fred) & ? [X7] : ((predd(X7) <~> ~predg(X7)) & room(X7)) & ? [X8] : (predy(X8) & room(X8)) & (~? [X9] : (room(X9) => predf(X9)) <=> ~! [X10] : (room(X10) => (predc(X10) | ~predj(X10)))) & (predy(fred) => ? [X11] : ((predk(X11) <~> prede(X11)) & room(X11))) & (predn(fred) => predg(paul)) & (~? [X12] : room(X12) => ! [X13] : (room(X13) => (preds(X13) <~> predz(X13)))) & (predc(paul) => ~predr(paul)) & (predy(fred) => predc(paul)) & (~(predl(mary) <~> ~predn(mary)) => ? [X16] : ~room(X16)) & ! [X17] : (room(X17) => (fred = X17 | paul = X17 | mary = X17)) & room(fred) & room(paul) & room(mary) [pure predicate removal 50] 124. ? [X0] : ((~predz(X0) & predy(X0)) & room(X0)) & ! [X1,X2] : (X1 = X2 | (predo(X2) | predo(X1) | ~room(X2) | ~room(X1))) & ? [X3] : (~predo(X3) & room(X3)) & ~predf(mary) & ~predj(fred) & ? [X4,X5] : (X4 != X5 & (predr(X5) <~> predj(X5)) & (predr(X4) <~> predj(X4)) & room(X5) & room(X4)) & prede(fred) & (predj(paul) <~> prede(paul)) & ! [X6] : ((predr(X6) | predp(X6) | predf(X6)) <=> predx(X6)) & predc(mary) & predx(fred) & ? [X7] : ((predd(X7) <~> ~predg(X7)) & room(X7)) & ? [X8] : (predy(X8) & room(X8)) & (! [X9] : (~predf(X9) & room(X9)) <=> ? [X10] : ((~predc(X10) & predj(X10)) & room(X10))) & (? [X11] : ((predk(X11) <~> prede(X11)) & room(X11)) | ~predy(fred)) & (predg(paul) | ~predn(fred)) & (! [X13] : ((preds(X13) <~> predz(X13)) | ~room(X13)) | ? [X12] : room(X12)) & (~predr(paul) | ~predc(paul)) & (predc(paul) | ~predy(fred)) & (? [X16] : ~room(X16) | (predl(mary) <~> ~predn(mary))) & ! [X17] : ((fred = X17 | paul = X17 | mary = X17) | ~room(X17)) & room(fred) & room(paul) & room(mary) [ennf transformation 51] 125. ? [X0] : (~predz(X0) & predy(X0) & room(X0)) & ! [X1,X2] : (X1 = X2 | predo(X2) | predo(X1) | ~room(X2) | ~room(X1)) & ? [X3] : (~predo(X3) & room(X3)) & ~predf(mary) & ~predj(fred) & ? [X4,X5] : (X4 != X5 & (predr(X5) <~> predj(X5)) & (predr(X4) <~> predj(X4)) & room(X5) & room(X4)) & prede(fred) & (predj(paul) <~> prede(paul)) & ! [X6] : ((predr(X6) | predp(X6) | predf(X6)) <=> predx(X6)) & predc(mary) & predx(fred) & ? [X7] : ((predd(X7) <~> ~predg(X7)) & room(X7)) & ? [X8] : (predy(X8) & room(X8)) & (! [X9] : (~predf(X9) & room(X9)) <=> ? [X10] : (~predc(X10) & predj(X10) & room(X10))) & (? [X11] : ((predk(X11) <~> prede(X11)) & room(X11)) | ~predy(fred)) & (predg(paul) | ~predn(fred)) & (! [X13] : ((preds(X13) <~> predz(X13)) | ~room(X13)) | ? [X12] : room(X12)) & (~predr(paul) | ~predc(paul)) & (predc(paul) | ~predy(fred)) & (? [X16] : ~room(X16) | (predl(mary) <~> ~predn(mary))) & ! [X17] : (fred = X17 | paul = X17 | mary = X17 | ~room(X17)) & room(fred) & room(paul) & room(mary) [flattening 124] 126. predf(mary) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 45] 127. predf(mary) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 126] 129. ? [X0] : (~predz(X0) & predy(X0) & room(X0)) & ! [X1,X2] : (X1 = X2 | predo(X2) | predo(X1) | ~room(X2) | ~room(X1)) & ? [X3] : (~predo(X3) & room(X3)) & ~predf(mary) & ~predj(fred) & ? [X4,X5] : (X4 != X5 & ((~predj(X5) | ~predr(X5)) & (predj(X5) | predr(X5))) & ((~predj(X4) | ~predr(X4)) & (predj(X4) | predr(X4))) & room(X5) & room(X4)) & prede(fred) & ((~prede(paul) | ~predj(paul)) & (prede(paul) | predj(paul))) & ! [X6] : (((predr(X6) | predp(X6) | predf(X6)) | ~predx(X6)) & (predx(X6) | (~predr(X6) & ~predp(X6) & ~predf(X6)))) & predc(mary) & predx(fred) & ? [X7] : (((predg(X7) | ~predd(X7)) & (~predg(X7) | predd(X7))) & room(X7)) & ? [X8] : (predy(X8) & room(X8)) & ((! [X9] : (~predf(X9) & room(X9)) | ! [X10] : (predc(X10) | ~predj(X10) | ~room(X10))) & (? [X10] : (~predc(X10) & predj(X10) & room(X10)) | ? [X9] : (predf(X9) | ~room(X9)))) & (? [X11] : (((~prede(X11) | ~predk(X11)) & (prede(X11) | predk(X11))) & room(X11)) | ~predy(fred)) & (predg(paul) | ~predn(fred)) & (! [X13] : (((~predz(X13) | ~preds(X13)) & (predz(X13) | preds(X13))) | ~room(X13)) | ? [X12] : room(X12)) & (~predr(paul) | ~predc(paul)) & (predc(paul) | ~predy(fred)) & (? [X16] : ~room(X16) | ((predn(mary) | ~predl(mary)) & (~predn(mary) | predl(mary)))) & ! [X17] : (fred = X17 | paul = X17 | mary = X17 | ~room(X17)) & room(fred) & room(paul) & room(mary) [nnf transformation 125] 130. ? [X0] : (~predz(X0) & predy(X0) & room(X0)) & ! [X1,X2] : (X1 = X2 | predo(X2) | predo(X1) | ~room(X2) | ~room(X1)) & ? [X3] : (~predo(X3) & room(X3)) & ~predf(mary) & ~predj(fred) & ? [X4,X5] : (X4 != X5 & (~predj(X5) | ~predr(X5)) & (predj(X5) | predr(X5)) & (~predj(X4) | ~predr(X4)) & (predj(X4) | predr(X4)) & room(X5) & room(X4)) & prede(fred) & (~prede(paul) | ~predj(paul)) & (prede(paul) | predj(paul)) & ! [X6] : ((predr(X6) | predp(X6) | predf(X6) | ~predx(X6)) & (predx(X6) | (~predr(X6) & ~predp(X6) & ~predf(X6)))) & predc(mary) & predx(fred) & ? [X7] : ((predg(X7) | ~predd(X7)) & (~predg(X7) | predd(X7)) & room(X7)) & ? [X8] : (predy(X8) & room(X8)) & (! [X9] : (~predf(X9) & room(X9)) | ! [X10] : (predc(X10) | ~predj(X10) | ~room(X10))) & (? [X10] : (~predc(X10) & predj(X10) & room(X10)) | ? [X9] : (predf(X9) | ~room(X9))) & (? [X11] : ((~prede(X11) | ~predk(X11)) & (prede(X11) | predk(X11)) & room(X11)) | ~predy(fred)) & (predg(paul) | ~predn(fred)) & (! [X13] : (((~predz(X13) | ~preds(X13)) & (predz(X13) | preds(X13))) | ~room(X13)) | ? [X12] : room(X12)) & (~predr(paul) | ~predc(paul)) & (predc(paul) | ~predy(fred)) & (? [X16] : ~room(X16) | ((predn(mary) | ~predl(mary)) & (~predn(mary) | predl(mary)))) & ! [X17] : (fred = X17 | paul = X17 | mary = X17 | ~room(X17)) & room(fred) & room(paul) & room(mary) [flattening 129] 131. ? [X0] : (~predz(X0) & predy(X0) & room(X0)) & ! [X1,X2] : (X1 = X2 | predo(X2) | predo(X1) | ~room(X2) | ~room(X1)) & ? [X3] : (~predo(X3) & room(X3)) & ~predf(mary) & ~predj(fred) & ? [X4,X5] : (X4 != X5 & (~predj(X5) | ~predr(X5)) & (predj(X5) | predr(X5)) & (~predj(X4) | ~predr(X4)) & (predj(X4) | predr(X4)) & room(X5) & room(X4)) & prede(fred) & (~prede(paul) | ~predj(paul)) & (prede(paul) | predj(paul)) & ! [X6] : ((predr(X6) | predp(X6) | predf(X6) | ~predx(X6)) & (predx(X6) | (~predr(X6) & ~predp(X6) & ~predf(X6)))) & predc(mary) & predx(fred) & ? [X7] : ((predg(X7) | ~predd(X7)) & (~predg(X7) | predd(X7)) & room(X7)) & ? [X8] : (predy(X8) & room(X8)) & (! [X9] : (~predf(X9) & room(X9)) | ! [X10] : (predc(X10) | ~predj(X10) | ~room(X10))) & (? [X11] : (~predc(X11) & predj(X11) & room(X11)) | ? [X12] : (predf(X12) | ~room(X12))) & (? [X13] : ((~prede(X13) | ~predk(X13)) & (prede(X13) | predk(X13)) & room(X13)) | ~predy(fred)) & (predg(paul) | ~predn(fred)) & (! [X14] : (((~predz(X14) | ~preds(X14)) & (predz(X14) | preds(X14))) | ~room(X14)) | ? [X15] : room(X15)) & (~predr(paul) | ~predc(paul)) & (predc(paul) | ~predy(fred)) & (? [X16] : ~room(X16) | ((predn(mary) | ~predl(mary)) & (~predn(mary) | predl(mary)))) & ! [X17] : (fred = X17 | paul = X17 | mary = X17 | ~room(X17)) & room(fred) & room(paul) & room(mary) [rectify 130] 132. ? [X0] : (~predz(X0) & predy(X0) & room(X0)) => (~predz(sK0) & predy(sK0) & room(sK0)) [choice axiom] 133. ? [X3] : (~predo(X3) & room(X3)) => (~predo(sK1) & room(sK1)) [choice axiom] 134. ? [X4,X5] : (X4 != X5 & (~predj(X5) | ~predr(X5)) & (predj(X5) | predr(X5)) & (~predj(X4) | ~predr(X4)) & (predj(X4) | predr(X4)) & room(X5) & room(X4)) => (sK2 != sK3 & (~predj(sK3) | ~predr(sK3)) & (predj(sK3) | predr(sK3)) & (~predj(sK2) | ~predr(sK2)) & (predj(sK2) | predr(sK2)) & room(sK3) & room(sK2)) [choice axiom] 135. ? [X7] : ((predg(X7) | ~predd(X7)) & (~predg(X7) | predd(X7)) & room(X7)) => ((predg(sK4) | ~predd(sK4)) & (~predg(sK4) | predd(sK4)) & room(sK4)) [choice axiom] 136. ? [X8] : (predy(X8) & room(X8)) => (predy(sK5) & room(sK5)) [choice axiom] 137. ? [X11] : (~predc(X11) & predj(X11) & room(X11)) => (~predc(sK6) & predj(sK6) & room(sK6)) [choice axiom] 138. ? [X12] : (predf(X12) | ~room(X12)) => (predf(sK7) | ~room(sK7)) [choice axiom] 139. ? [X13] : ((~prede(X13) | ~predk(X13)) & (prede(X13) | predk(X13)) & room(X13)) => ((~prede(sK8) | ~predk(sK8)) & (prede(sK8) | predk(sK8)) & room(sK8)) [choice axiom] 140. ? [X15] : room(X15) => room(sK9) [choice axiom] 141. ? [X16] : ~room(X16) => ~room(sK10) [choice axiom] 142. (~predz(sK0) & predy(sK0) & room(sK0)) & ! [X1,X2] : (X1 = X2 | predo(X2) | predo(X1) | ~room(X2) | ~room(X1)) & (~predo(sK1) & room(sK1)) & ~predf(mary) & ~predj(fred) & (sK2 != sK3 & (~predj(sK3) | ~predr(sK3)) & (predj(sK3) | predr(sK3)) & (~predj(sK2) | ~predr(sK2)) & (predj(sK2) | predr(sK2)) & room(sK3) & room(sK2)) & prede(fred) & (~prede(paul) | ~predj(paul)) & (prede(paul) | predj(paul)) & ! [X6] : ((predr(X6) | predp(X6) | predf(X6) | ~predx(X6)) & (predx(X6) | (~predr(X6) & ~predp(X6) & ~predf(X6)))) & predc(mary) & predx(fred) & ((predg(sK4) | ~predd(sK4)) & (~predg(sK4) | predd(sK4)) & room(sK4)) & (predy(sK5) & room(sK5)) & (! [X9] : (~predf(X9) & room(X9)) | ! [X10] : (predc(X10) | ~predj(X10) | ~room(X10))) & ((~predc(sK6) & predj(sK6) & room(sK6)) | (predf(sK7) | ~room(sK7))) & (((~prede(sK8) | ~predk(sK8)) & (prede(sK8) | predk(sK8)) & room(sK8)) | ~predy(fred)) & (predg(paul) | ~predn(fred)) & (! [X14] : (((~predz(X14) | ~preds(X14)) & (predz(X14) | preds(X14))) | ~room(X14)) | room(sK9)) & (~predr(paul) | ~predc(paul)) & (predc(paul) | ~predy(fred)) & (~room(sK10) | ((predn(mary) | ~predl(mary)) & (~predn(mary) | predl(mary)))) & ! [X17] : (fred = X17 | paul = X17 | mary = X17 | ~room(X17)) & room(fred) & room(paul) & room(mary) [skolemisation 131,141,140,139,138,137,136,135,134,133,132] 264. ~predf(mary) [cnf transformation 142] 275. predf(mary) [cnf transformation 127] 414. $false [subsumption resolution 275,264] % SZS output end Proof for 8288773288906350001268749 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.638193
Jeffrey, Jay, Kenneth, Donald are the only persons in the room. If “Kenneth is not a cybersecurity expert” then “Jay enjoys salsa dancing”. If someone is allergic to anything then he/she practices graffiti art and enjoys salsa dancing and vice versa. Everyone in the room enjoys salsa dancing if they practices graffiti art. Jeffrey practices graffiti art. Everyone anywhere is not allergic to anything if they develops open-source software projects in their free time.
Jeffrey develops open-source software projects in their free time.
contradiction
room(jeffrey)&room(jay)&room(kenneth)&room(donald)&(![X]:(room(X)=>(X='jeffrey'|X='jay'|X='kenneth'|X='donald')))& ((is_not_a_cybersecurity_expert(kenneth))=>(enjoys_salsa_dancing(jay)))& ((![X]:((is_allergic_to_anything(X))<=>(((practices_graffiti_art(X))&(enjoys_salsa_dancing(X)))))))& (![X]:(room(X)=>(((practices_graffiti_art(X))=>(enjoys_salsa_dancing(X))))))& (enjoys_rooftop_gardening(jay))& (practices_graffiti_art(jeffrey))& (enjoys_salsa_dancing(jay))& (enjoys_stand-up_paddleboarding(kenneth))& (practices_graffiti_art(kenneth))& (![X]:(room(X)=>(((~((is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))|(enjoys_salsa_dancing(X))))=>(does_not_enjoy_stand-up_paddleboarding(X))))))& (![X]:(anywhere(X)=>(((does_not_enjoy_stand-up_paddleboarding(X))<=>(develops_open-source_software_projects_in_their_free_time(X))))))& (![X]:(room(X)=>(((is_not_a_cybersecurity_expert(X))=>(((does_not_host_a_popular_podcast_about_emerging_technologies(X))&(is_allergic_to_anything(X))))))))& (is_not_a_cybersecurity_expert(jeffrey))& (is_not_a_cybersecurity_expert(jay))& (![X]:(room(X)=>(((enjoys_stand-up_paddleboarding(X))=>(enjoys_rooftop_gardening(X))))))& (![X]:(anywhere(X)=>(((develops_open-source_software_projects_in_their_free_time(X))=>(is_not_allergic_to_anything(X))))))& (![X]:(~room(X)=>(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))))
room(jeffrey)&room(jay)&room(kenneth)&room(donald)&(![X]:(room(X)=>(X='jeffrey'|X='jay'|X='kenneth'|X='donald')))& develops_open-source_software_projects_in_their_free_time(jeffrey)
[ "b4", "p0", "p2", "p3", "p5", "p15", "hypothesis" ]
% SZS status Unsatisfiable for 673442719126402383474720 % SZS output start Proof for 673442719126402383474720 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 46. ! [X0] : (predh(X0) <=> (predj(X0) & predk(X0))) [input p2] 47. ! [X0] : (room(X0) => (predk(X0) => predj(X0))) [input p3] 49. predk(mary) [input p5] 59. ! [X0] : (anywhere(X0) => (predg(X0) => ~predh(X0))) [input p15] 61. predg(mary) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 138. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 139. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 138] 141. ! [X0] : ((predj(X0) | ~predk(X0)) | ~room(X0)) [ennf transformation 47] 142. ! [X0] : (predj(X0) | ~predk(X0) | ~room(X0)) [flattening 141] 146. ! [X0] : ((~predh(X0) | ~predg(X0)) | ~anywhere(X0)) [ennf transformation 59] 147. ! [X0] : (~predh(X0) | ~predg(X0) | ~anywhere(X0)) [flattening 146] 148. predg(mary) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 61] 149. predg(mary) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 148] 151. ! [X0] : ((predh(X0) | (~predj(X0) | ~predk(X0))) & ((predj(X0) & predk(X0)) | ~predh(X0))) [nnf transformation 46] 152. ! [X0] : ((predh(X0) | ~predj(X0) | ~predk(X0)) & ((predj(X0) & predk(X0)) | ~predh(X0))) [flattening 151] 154. anywhere(X0) [cnf transformation 5] 235. room(mary) [cnf transformation 139] 243. ~predk(X0) | ~predj(X0) | predh(X0) [cnf transformation 152] 244. ~predk(X0) | predj(X0) | ~room(X0) [cnf transformation 142] 245. predk(mary) [cnf transformation 49] 254. ~predh(X0) | ~predg(X0) | ~anywhere(X0) [cnf transformation 147] 260. predg(mary) [cnf transformation 149] 273. ~predg(X0) | ~predh(X0) [subsumption resolution 254,154] 276. ~predh(mary) [resolution 273,260] 278. ~predj(mary) | predh(mary) [resolution 243,245] 280. ~predj(mary) [subsumption resolution 278,276] 290. predj(mary) | ~room(mary) [resolution 244,245] 292. ~room(mary) [subsumption resolution 290,280] 293. $false [subsumption resolution 292,235] % SZS output end Proof for 673442719126402383474720 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.033 s % ------------------------------ % ------------------------------
0
Ann, Denver, Lawrence, Robert are the only persons in the room. Someone who is quiet is quieter than someone who is not tall. At least one person in the room is not not quiet. Ann is not tall, not kind, not quiet, not old. Denver neither is tall nor is not not not kind. Robert is not quiet and is not old, not quiet, not tall, not kind. Someone who is not not kind is richer than someone who is tall, is richer than Candida and is quieter than Candida. Ann is not kind, not tall, not old. Denver is not not kind, is kind and is quiet. Lawrence is not tall, not kind, not old, not quiet. Robert neither is not not tall nor is quieter than Candida. Robert is not not not not kind, is not not quiet or is not old.
Denver is quieter than Candida.
neutral
room(ann)&room(denver)&room(lawrence)&room(robert)&(![X]:(room(X)=>(X='ann'|X='denver'|X='lawrence'|X='robert')))& (?[X,Y]:((quiet(X))&(~tall(Y))&(quieter(X,Y))))& (((?[X]:(room(X)&~~quiet(X)))))& (~tall(ann)&~kind(ann)&~quiet(ann)&~old(ann))& (~((tall(denver))|(~~~kind(denver))))& (((~quiet(robert))&(~old(robert)&~quiet(robert)&~tall(robert)&~kind(robert))))& (?[X,Y]:((~~kind(X))&(((tall(Y))&(richer(candida,Y))&(quieter(candida,Y))))&(richer(X,Y))))& (~kind(ann)&~tall(ann)&~old(ann))& (((~~kind(denver))&(kind(denver))&(quiet(denver))))& (~tall(lawrence)&~kind(lawrence)&~old(lawrence)&~quiet(lawrence))& (~((~~tall(robert))|(quieter(candida,robert))))& (((~~~~kind(robert))|(~~quiet(robert))|(~old(robert))))& (kind(denver))& (quiet(denver))& (~tall(ann))
room(ann)&room(denver)&room(lawrence)&room(robert)&(![X]:(room(X)=>(X='ann'|X='denver'|X='lawrence'|X='robert')))& quieter(candida,denver)
[]
null
0.050236
Marian is the only person in the room. Marian collects modern art. Marian is allergic to anything. It is not the case that “Marian is a Linux enthusiast”. Someone in the room owns a smart tv. Marian enjoys watercolor painting. Marian who can play the guitar is a tea enthusiast. Marian is a tea enthusiast. Marian can play the guitar. Marian owns a smart tv. Marian who can play the guitar collects vintage vinyl records.
It is not the case that “Marian collects vintage vinyl records”.
contradiction
room(marian)&(![X]:(room(X)=>(X='marian')))& (collects_modern_art(marian))& (is_allergic_to_anything(marian))& (~(is_a_Linux_enthusiast(marian)))& (?[X]:(room(X)&(owns_a_smart_tv(X))))& (enjoys_watercolor_painting(marian))& ((can_play_the_guitar(marian))&(is_a_tea_enthusiast(marian)))& (is_a_tea_enthusiast(marian))& (can_play_the_guitar(marian))& (owns_a_smart_tv(marian))& (enjoys_cross-country_skiing(marian))& ((can_play_the_guitar(marian))&(collects_vintage_vinyl_records(marian)))& (?[X]:(room(X)&(is_a_tea_enthusiast(X))))& ((participates_in_citizen_science_projects_related_to_wildlife_monitoring(marian))&(collects_modern_art(marian)))& ((marian_dream=>(~((is_a_tea_enthusiast(marian))|(enjoys_cross-country_skiing(marian))))))& (((?[X]:(room(X)&collects_modern_art(X)))&(![X,Y]:((room(X)&room(Y)&(collects_modern_art(X))&(collects_modern_art(Y)))=>(X=Y)))))& (has_a_curated_collection_of_mid-century_modern_furniture(marian))& (?[X]:(room(X)&(is_allergic_to_anything(X))))& (participates_in_citizen_science_projects_related_to_wildlife_monitoring(marian))
room(marian)&(![X]:(room(X)=>(X='marian')))& ~(collects_vintage_vinyl_records(marian))
[ "p11", "hypothesis" ]
% SZS status Unsatisfiable for 2259903408938505683771444 % SZS output start Proof for 2259903408938505683771444 55. preda(mary) & predj(mary) [input p11] 63. ~preda(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 74. preda(mary) [pure predicate removal 55] 157. ~preda(mary) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 63] 251. preda(mary) [cnf transformation 74] 260. ~preda(mary) [cnf transformation 157] 261. $false [subsumption resolution 260,251] % SZS output end Proof for 2259903408938505683771444 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.491902
Holly, Gloria, Rachel, Travis are the only persons in the room. “Everyone outside the room who is a old person is a wise person” if “Holly and Gloria are respectively strong and happy”. Either “someone in the room is a patient person” or “everyone outside the room is a curious person” but not both. If “at least one person anywhere is not humble” then “someone in the room is quiet and is brave” otherwise “someone in the room is not strong”. If “everyone in the room is a funny person” then “not everyone in the room is not a tall person if they is not a wise person or is a happy person or both” otherwise “all happy persons are curious”. Either “everyone in the room is not wise” or “everyone in the room is kind and is not brave” but not both. If “someone in the room is a funny person” then “all creative persons are quiet” otherwise “all strong persons are patient”. “At least one person in the room is not a funny person and is not generous” unless “Rachel and Travis are respectively tall and kind”. Either “everyone anywhere is funny” or “everyone in the room is a strong person” but not both. Holly dreamt that “everyone in the room is a quiet person and is strong”. Someone who is a patient person is richer than someone who is not a wise person or is a happy person or both. Someone who is not brave is quieter than someone who is not strong and is tall. All happy persons are calm. All kind persons are brave. Someone in the room is kind. All creative persons are brave. Someone who is not brave is older than someone who is not kind. Everyone in the room is not funny. Someone in the room is a patient person. Only one person in the room is a old person. Someone who is not kind is older than someone who is not a happy person and is tall. Someone in the room is tall. Everyone in the room is a kind person if they is a happy tall person. Everyone in the room is a kind person only if they is humble.
Holly is patient.
entailment
room(holly)&room(gloria)&room(rachel)&room(travis)&(![X]:(room(X)=>(X='holly'|X='gloria'|X='rachel'|X='travis')))& (((strong(holly))&(happy(gloria)))=>(![X]:(~room(X)=>(((old(X)&person(X))=>(wise(X)&person(X)))))))& ((?[X]:(room(X)&(patient(X)&person(X))))<~>(![X]:(~room(X)=>(curious(X)&person(X)))))& (((((?[X]:(anywhere(X)&~humble(X)))))=>(?[X]:(room(X)&(((quiet(X))&(brave(X)))))))&((~(((?[X]:(anywhere(X)&~humble(X))))))=>(?[X]:(room(X)&(~strong(X))))))& (((![X]:(room(X)=>(funny(X)&person(X))))=>(~![X]:(room(X)=>(((((~(wise(X)&person(X)))|(happy(X)&person(X))))=>(~(tall(X)&person(X))))))))&((~(![X]:(room(X)=>(funny(X)&person(X)))))=>(![X]:(happy(X)=>curious(X)))))& ((![X]:(room(X)=>(~wise(X))))<~>(![X]:(room(X)=>(((kind(X))&(~brave(X)))))))& (((?[X]:(room(X)&(funny(X)&person(X))))=>(![X]:(creative(X)=>quiet(X))))&((~(?[X]:(room(X)&(funny(X)&person(X)))))=>(![X]:(strong(X)=>patient(X)))))& (~((tall(rachel))&(kind(travis)))=>(((?[X]:(room(X)&((~(funny(X)&person(X)))&(~generous(X))))))))& ((![X]:(anywhere(X)=>(funny(X))))<~>(![X]:(room(X)=>(strong(X)&person(X)))))& ((holly_dream=>(![X]:(room(X)=>(((quiet(X)&person(X))&(strong(X))))))))& (?[X,Y]:((patient(X)&person(X))&(((~(wise(Y)&person(Y)))|(happy(Y)&person(Y))))&(richer(X,Y))))& (?[X,Y]:((~brave(X))&(((~strong(Y))&(tall(Y))))&(quieter(X,Y))))& (![X]:(happy(X)=>calm(X)))& (![X]:(kind(X)=>brave(X)))& (?[X]:(room(X)&(kind(X))))& (![X]:(creative(X)=>brave(X)))& (?[X,Y]:((~brave(X))&(~kind(Y))&(older(X,Y))))& (![X]:(room(X)=>(~funny(X))))& (?[X]:(room(X)&(patient(X)&person(X))))& (((?[X]:(room(X)&old(X)&person(X)))&(![X,Y]:((room(X)&room(Y)&(old(X)&person(X))&(old(Y)&person(Y)))=>(X=Y)))))& (?[X,Y]:((~kind(X))&(((~(happy(Y)&person(Y)))&(tall(Y))))&(older(X,Y))))& (?[X]:(room(X)&(tall(X))))& (![X]:(room(X)=>(((happy(X)&tall(X)&person(X))=>(kind(X)&person(X))))))& (![X]:(room(X)=>(((humble(X))<=(kind(X)&person(X))))))& (![X]:(room(X)=>(((wise(X))=>(((brave(X))&(strong(X)&quiet(X)&person(X))))))))& (?[X,Y]:((humble(X))&(generous(Y))&(older(X,Y))))& (![X]:(curious(X)=>quiet(X)))& (![X]:(room(X)=>(((humble(X))=>(strong(X))))))
room(holly)&room(gloria)&room(rachel)&room(travis)&(![X]:(room(X)=>(X='holly'|X='gloria'|X='rachel'|X='travis')))& patient(holly)
[ "b4", "p0", "p6", "p8", "p17", "hypothesis" ]
% SZS status Unsatisfiable for 2916160205370405544692040 % SZS output start Proof for 2916160205370405544692040 5. ! [X0] : anywhere(X0) [input b4] 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 50. (~? [X0] : (person(X0) & funny(X0) & room(X0)) => ! [X0] : (strong(X0) => patient(X0))) & (? [X0] : (person(X0) & funny(X0) & room(X0)) => ! [X0] : (creative(X0) => quiet(X0))) [input p6] 52. ! [X0] : (anywhere(X0) => funny(X0)) <~> ! [X0] : (room(X0) => (person(X0) & strong(X0))) [input p8] 61. ! [X0] : (room(X0) => ~funny(X0)) [input p17] 72. ~(patient(mary) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 77. (~? [X0] : (person(X0) & funny(X0) & room(X0)) => ! [X1] : (strong(X1) => patient(X1))) & (? [X2] : (person(X2) & funny(X2) & room(X2)) => ! [X3] : (creative(X3) => quiet(X3))) [rectify 50] 78. ! [X0] : (anywhere(X0) => funny(X0)) <~> ! [X1] : (room(X1) => (person(X1) & strong(X1))) [rectify 52] 83. ~? [X0] : (person(X0) & funny(X0) & room(X0)) => ! [X1] : (strong(X1) => patient(X1)) [pure predicate removal 77] 155. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 156. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 155] 164. ! [X1] : (patient(X1) | ~strong(X1)) | ? [X0] : (person(X0) & funny(X0) & room(X0)) [ennf transformation 83] 166. ! [X0] : (funny(X0) | ~anywhere(X0)) <~> ! [X1] : ((person(X1) & strong(X1)) | ~room(X1)) [ennf transformation 78] 170. ! [X0] : (~funny(X0) | ~room(X0)) [ennf transformation 61] 183. ~patient(mary) | ? [X0] : ((alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 72] 184. ~patient(mary) | ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 183] 210. ! [X0] : (patient(X0) | ~strong(X0)) | ? [X1] : (person(X1) & funny(X1) & room(X1)) [rectify 164] 211. ? [X1] : (person(X1) & funny(X1) & room(X1)) => (person(sK10) & funny(sK10) & room(sK10)) [choice axiom] 212. ! [X0] : (patient(X0) | ~strong(X0)) | (person(sK10) & funny(sK10) & room(sK10)) [skolemisation 210,211] 215. (? [X1] : ((~person(X1) | ~strong(X1)) & room(X1)) | ? [X0] : (~funny(X0) & anywhere(X0))) & (! [X1] : ((person(X1) & strong(X1)) | ~room(X1)) | ! [X0] : (funny(X0) | ~anywhere(X0))) [nnf transformation 166] 216. (? [X0] : ((~person(X0) | ~strong(X0)) & room(X0)) | ? [X1] : (~funny(X1) & anywhere(X1))) & (! [X2] : ((person(X2) & strong(X2)) | ~room(X2)) | ! [X3] : (funny(X3) | ~anywhere(X3))) [rectify 215] 217. ? [X0] : ((~person(X0) | ~strong(X0)) & room(X0)) => ((~person(sK12) | ~strong(sK12)) & room(sK12)) [choice axiom] 218. ? [X1] : (~funny(X1) & anywhere(X1)) => (~funny(sK13) & anywhere(sK13)) [choice axiom] 219. (((~person(sK12) | ~strong(sK12)) & room(sK12)) | (~funny(sK13) & anywhere(sK13))) & (! [X2] : ((person(X2) & strong(X2)) | ~room(X2)) | ! [X3] : (funny(X3) | ~anywhere(X3))) [skolemisation 216,218,217] 238. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK28 & fred != sK28 & paul != sK28 & mary != sK28 & room(sK28)) [choice axiom] 239. ~patient(mary) | (alice != sK28 & fred != sK28 & paul != sK28 & mary != sK28 & room(sK28)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 184,238] 240. anywhere(X0) [cnf transformation 5] 321. room(mary) [cnf transformation 156] 322. room(paul) [cnf transformation 156] 323. room(fred) [cnf transformation 156] 324. room(alice) [cnf transformation 156] 325. ~room(X0) | fred = X0 | paul = X0 | mary = X0 | alice = X0 [cnf transformation 156] 358. patient(X0) | ~strong(X0) | room(sK10) [cnf transformation 212] 359. patient(X0) | ~strong(X0) | funny(sK10) [cnf transformation 212] 367. strong(X2) | ~room(X2) | funny(X3) | ~anywhere(X3) [cnf transformation 219] 388. ~funny(X0) | ~room(X0) [cnf transformation 170] 414. ~patient(mary) | room(sK28) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 239] 415. ~patient(mary) | mary != sK28 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 239] 416. ~patient(mary) | paul != sK28 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 239] 417. ~patient(mary) | fred != sK28 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 239] 418. ~patient(mary) | alice != sK28 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 239] 420. 1 <=> strong(mary) [avatar definition] 421. strong(mary) <- (1) [avatar component clause 420] 600. 41 <=> ! [X0] : (patient(X0) | ~strong(X0)) [avatar definition] 601. ~strong(X0) | patient(X0) <- (41) [avatar component clause 600] 604. 42 <=> funny(sK10) [avatar definition] 606. funny(sK10) <- (42) [avatar component clause 604] 607. 42 | 41 [avatar split clause 359,600,604] 609. 43 <=> room(sK10) [avatar definition] 611. room(sK10) <- (43) [avatar component clause 609] 612. 43 | 41 [avatar split clause 358,600,609] 663. 54 <=> ! [X3] : funny(X3) [avatar definition] 664. funny(X3) <- (54) [avatar component clause 663] 666. strong(X2) | ~room(X2) | funny(X3) [subsumption resolution 367,240] 668. 55 <=> ! [X2] : (strong(X2) | ~room(X2)) [avatar definition] 669. ~room(X2) | strong(X2) <- (55) [avatar component clause 668] 670. 54 | 55 [avatar split clause 666,668,663] 693. ~patient(mary) | alice != sK28 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 418,324] 694. ~patient(mary) | alice != sK28 | ~room(paul) | ~room(mary) [subsumption resolution 693,323] 695. ~patient(mary) | alice != sK28 | ~room(mary) [subsumption resolution 694,322] 696. ~patient(mary) | alice != sK28 [subsumption resolution 695,321] 698. 61 <=> alice = sK28 [avatar definition] 700. alice != sK28 <- (~61) [avatar component clause 698] 702. 62 <=> patient(mary) [avatar definition] 705. ~61 | ~62 [avatar split clause 696,702,698] 706. ~patient(mary) | fred != sK28 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 417,324] 707. ~patient(mary) | fred != sK28 | ~room(paul) | ~room(mary) [subsumption resolution 706,323] 708. ~patient(mary) | fred != sK28 | ~room(mary) [subsumption resolution 707,322] 709. ~patient(mary) | fred != sK28 [subsumption resolution 708,321] 711. 63 <=> fred = sK28 [avatar definition] 713. fred != sK28 <- (~63) [avatar component clause 711] 714. ~63 | ~62 [avatar split clause 709,702,711] 715. ~patient(mary) | paul != sK28 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 416,324] 716. ~patient(mary) | paul != sK28 | ~room(paul) | ~room(mary) [subsumption resolution 715,323] 717. ~patient(mary) | paul != sK28 | ~room(mary) [subsumption resolution 716,322] 718. ~patient(mary) | paul != sK28 [subsumption resolution 717,321] 720. 64 <=> paul = sK28 [avatar definition] 722. paul != sK28 <- (~64) [avatar component clause 720] 723. ~64 | ~62 [avatar split clause 718,702,720] 724. ~patient(mary) | mary != sK28 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 415,324] 725. ~patient(mary) | mary != sK28 | ~room(paul) | ~room(mary) [subsumption resolution 724,323] 726. ~patient(mary) | mary != sK28 | ~room(mary) [subsumption resolution 725,322] 727. ~patient(mary) | mary != sK28 [subsumption resolution 726,321] 729. 65 <=> mary = sK28 [avatar definition] 731. mary != sK28 <- (~65) [avatar component clause 729] 732. ~65 | ~62 [avatar split clause 727,702,729] 733. ~patient(mary) | room(sK28) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 414,324] 734. ~patient(mary) | room(sK28) | ~room(paul) | ~room(mary) [subsumption resolution 733,323] 735. ~patient(mary) | room(sK28) | ~room(mary) [subsumption resolution 734,322] 736. ~patient(mary) | room(sK28) [subsumption resolution 735,321] 738. 66 <=> room(sK28) [avatar definition] 740. room(sK28) <- (66) [avatar component clause 738] 741. 66 | ~62 [avatar split clause 736,702,738] 748. ~room(X0) <- (54) [resolution 388,664] 749. $false <- (54) [resolution 748,321] 774. ~54 [avatar contradiction clause 749] 796. strong(mary) <- (55) [resolution 669,321] 810. 1 | ~55 [avatar split clause 796,668,420] 817. patient(mary) <- (1, 41) [resolution 421,601] 820. 62 | ~1 | ~41 [avatar split clause 817,600,420,702] 1085. fred = sK28 | paul = sK28 | mary = sK28 | alice = sK28 <- (66) [resolution 325,740] 1273. paul = sK28 | mary = sK28 | alice = sK28 <- (~63, 66) [subsumption resolution 1085,713] 1274. mary = sK28 | alice = sK28 <- (~63, ~64, 66) [subsumption resolution 1273,722] 1275. alice = sK28 <- (~63, ~64, ~65, 66) [subsumption resolution 1274,731] 1276. $false <- (~61, ~63, ~64, ~65, 66) [subsumption resolution 1275,700] 1277. 61 | 63 | 64 | 65 | ~66 [avatar contradiction clause 1276] 1344. ~room(sK10) <- (42) [resolution 606,388] 1345. $false <- (42, 43) [subsumption resolution 1344,611] 1346. ~42 | ~43 [avatar contradiction clause 1345] 1347. $false [avatar sat refutation 607,612,670,705,714,723,732,741,774,810,820,1277,1346] % SZS output end Proof for 2916160205370405544692040 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5756 % Time elapsed: 0.044 s % ------------------------------ % ------------------------------
0.062916
Effie, Aaron are the only persons in the room. If "not everyone in the room is not a calm person" then "Effie who is a patient person is not a curious person" otherwise "everyone in the room is curious, is not a quiet person and is not a creative person". If "everyone in the room is old" then "everyone in the room is a old person" otherwise "everyone in the room is not a calm person". Either "everyone in the room is a curious person" or "everyone in the room is not a quiet person" but not both. Either "everyone in the room is a tall person" or "it is true that "everyone in the room is a funny person or is a kind person or both"" but not both. "No creative person is patient" unless "someone in the room is a funny person". Either "someone in the room either is not generous or is a calm person but not both" or "everyone in the room is a happy person" but not both. Everyone in the room is a funny person. Not everyone in the room is not wise, is not a funny person or is not a wise person. If someone is a curious person, is a creative person and is curious then he/she is happy or is not a old person or both and vice versa. Everyone in the room is strong, is not a patient person or is a quiet person. Everyone in the room is a wise person. Someone in the room is a calm person. Everyone in the room is a creative person.
Aaron is quiet.
contradiction
room(effie)&room(aaron)&(![X]:(room(X)=>(X='effie'|X='aaron')))& (((~![X]:(room(X)=>(~(calm(X)&person(X)))))=>((patient(effie)&person(effie))&(~(curious(effie)&person(effie)))))&((~(~![X]:(room(X)=>(~(calm(X)&person(X))))))=>(![X]:(room(X)=>(((curious(X))&(~(quiet(X)&person(X)))&(~(creative(X)&person(X)))))))))& (((![X]:(room(X)=>(old(X))))=>(![X]:(room(X)=>(old(X)&person(X)))))&((~(![X]:(room(X)=>(old(X)))))=>(![X]:(room(X)=>(~(calm(X)&person(X)))))))& ((![X]:(room(X)=>(curious(X)&person(X))))<~>(![X]:(room(X)=>(~(quiet(X)&person(X))))))& ((![X]:(room(X)=>(tall(X)&person(X))))<~>(![X]:(room(X)=>(((funny(X)&person(X))|(kind(X)&person(X)))))))& (~(?[X]:(room(X)&(funny(X)&person(X))))=>(~?[X]:(creative(X)=>patient(X))))& ((?[X]:(room(X)&(((~generous(X))<~>(calm(X)&person(X))))))<~>(![X]:(room(X)=>(happy(X)&person(X)))))& (![X]:(room(X)=>(funny(X)&person(X))))& (~![X]:(room(X)=>(((~wise(X))|(~(funny(X)&person(X)))|(~(wise(X)&person(X)))))))& ((![X]:((((curious(X)&person(X))&(creative(X)&person(X))&(curious(X))))<=>(((happy(X))|(~(old(X)&person(X))))))))& (![X]:(room(X)=>(((strong(X))|(~(patient(X)&person(X)))|(quiet(X)&person(X))))))& (![X]:(room(X)=>(wise(X)&person(X))))& (?[X]:(room(X)&(calm(X)&person(X))))& (![X]:(room(X)=>(creative(X)&person(X))))
room(effie)&room(aaron)&(![X]:(room(X)=>(X='effie'|X='aaron')))& quiet(aaron)
[ "p0", "p1", "p3", "p9", "p12", "hypothesis" ]
% SZS status Unsatisfiable for 7928141344116342565571130 % SZS output start Proof for 7928141344116342565571130 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 45. (~~! [X0] : (room(X0) => ~(person(X0) & calm(X0))) => ! [X0] : (room(X0) => (~(person(X0) & creative(X0)) & ~(person(X0) & quiet(X0)) & curious(X0)))) & (~! [X0] : (room(X0) => ~(person(X0) & calm(X0))) => (~(person(mary) & curious(mary)) & person(mary) & patient(mary))) [input p1] 47. ! [X0] : (room(X0) => (person(X0) & curious(X0))) <~> ! [X0] : (room(X0) => ~(person(X0) & quiet(X0))) [input p3] 53. ! [X0] : ((curious(X0) & person(X0) & creative(X0) & person(X0) & curious(X0)) <=> (~(person(X0) & old(X0)) | happy(X0))) [input p9] 56. ? [X0] : (person(X0) & calm(X0) & room(X0)) [input p12] 58. quiet(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 59. (~~! [X0] : (room(X0) => ~(person(X0) & calm(X0))) => ! [X1] : (room(X1) => (~(person(X1) & creative(X1)) & ~(person(X1) & quiet(X1)) & curious(X1)))) & (~! [X2] : (room(X2) => ~(person(X2) & calm(X2))) => (~(person(mary) & curious(mary)) & person(mary) & patient(mary))) [rectify 45] 60. (! [X0] : (room(X0) => ~(person(X0) & calm(X0))) => ! [X1] : (room(X1) => (~(person(X1) & creative(X1)) & ~(person(X1) & quiet(X1)) & curious(X1)))) & (~! [X2] : (room(X2) => ~(person(X2) & calm(X2))) => (~(person(mary) & curious(mary)) & person(mary) & patient(mary))) [flattening 59] 62. ! [X0] : (room(X0) => (person(X0) & curious(X0))) <~> ! [X1] : (room(X1) => ~(person(X1) & quiet(X1))) [rectify 47] 141. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 142. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 141] 143. (! [X1] : (((~person(X1) | ~creative(X1)) & (~person(X1) | ~quiet(X1)) & curious(X1)) | ~room(X1)) | ? [X0] : ((person(X0) & calm(X0)) & room(X0))) & (((~person(mary) | ~curious(mary)) & person(mary) & patient(mary)) | ! [X2] : ((~person(X2) | ~calm(X2)) | ~room(X2))) [ennf transformation 60] 144. (! [X1] : (((~person(X1) | ~creative(X1)) & (~person(X1) | ~quiet(X1)) & curious(X1)) | ~room(X1)) | ? [X0] : (person(X0) & calm(X0) & room(X0))) & (((~person(mary) | ~curious(mary)) & person(mary) & patient(mary)) | ! [X2] : (~person(X2) | ~calm(X2) | ~room(X2))) [flattening 143] 147. ! [X0] : ((person(X0) & curious(X0)) | ~room(X0)) <~> ! [X1] : ((~person(X1) | ~quiet(X1)) | ~room(X1)) [ennf transformation 62] 148. ! [X0] : ((person(X0) & curious(X0)) | ~room(X0)) <~> ! [X1] : (~person(X1) | ~quiet(X1) | ~room(X1)) [flattening 147] 156. ! [X0] : ((curious(X0) & person(X0) & creative(X0) & person(X0) & curious(X0)) <=> ((~person(X0) | ~old(X0)) | happy(X0))) [ennf transformation 53] 157. ! [X0] : ((curious(X0) & person(X0) & creative(X0) & person(X0) & curious(X0)) <=> (~person(X0) | ~old(X0) | happy(X0))) [flattening 156] 160. quiet(paul) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 58] 161. quiet(paul) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 160] 162. ? [X0] : (person(X0) & calm(X0) & room(X0)) | ~sP0 [predicate definition introduction] 163. (! [X1] : (((~person(X1) | ~creative(X1)) & (~person(X1) | ~quiet(X1)) & curious(X1)) | ~room(X1)) | sP0) & (((~person(mary) | ~curious(mary)) & person(mary) & patient(mary)) | ! [X2] : (~person(X2) | ~calm(X2) | ~room(X2))) [definition folding 144,162] 168. ! [X0] : (sP3(X0) <=> (curious(X0) & person(X0) & creative(X0) & person(X0) & curious(X0))) [predicate definition introduction] 169. ! [X0] : (sP3(X0) <=> (~person(X0) | ~old(X0) | happy(X0))) [definition folding 157,168] 174. (! [X0] : (((~person(X0) | ~creative(X0)) & (~person(X0) | ~quiet(X0)) & curious(X0)) | ~room(X0)) | sP0) & (((~person(mary) | ~curious(mary)) & person(mary) & patient(mary)) | ! [X1] : (~person(X1) | ~calm(X1) | ~room(X1))) [rectify 163] 178. (? [X1] : (person(X1) & quiet(X1) & room(X1)) | ? [X0] : ((~person(X0) | ~curious(X0)) & room(X0))) & (! [X1] : (~person(X1) | ~quiet(X1) | ~room(X1)) | ! [X0] : ((person(X0) & curious(X0)) | ~room(X0))) [nnf transformation 148] 179. (? [X0] : (person(X0) & quiet(X0) & room(X0)) | ? [X1] : ((~person(X1) | ~curious(X1)) & room(X1))) & (! [X2] : (~person(X2) | ~quiet(X2) | ~room(X2)) | ! [X3] : ((person(X3) & curious(X3)) | ~room(X3))) [rectify 178] 180. ? [X0] : (person(X0) & quiet(X0) & room(X0)) => (person(sK6) & quiet(sK6) & room(sK6)) [choice axiom] 181. ? [X1] : ((~person(X1) | ~curious(X1)) & room(X1)) => ((~person(sK7) | ~curious(sK7)) & room(sK7)) [choice axiom] 182. ((person(sK6) & quiet(sK6) & room(sK6)) | ((~person(sK7) | ~curious(sK7)) & room(sK7))) & (! [X2] : (~person(X2) | ~quiet(X2) | ~room(X2)) | ! [X3] : ((person(X3) & curious(X3)) | ~room(X3))) [skolemisation 179,181,180] 205. ! [X0] : ((sP3(X0) | (~curious(X0) | ~person(X0) | ~creative(X0) | ~person(X0) | ~curious(X0))) & ((curious(X0) & person(X0) & creative(X0) & person(X0) & curious(X0)) | ~sP3(X0))) [nnf transformation 168] 206. ! [X0] : ((sP3(X0) | ~curious(X0) | ~person(X0) | ~creative(X0) | ~person(X0) | ~curious(X0)) & ((curious(X0) & person(X0) & creative(X0) & person(X0) & curious(X0)) | ~sP3(X0))) [flattening 205] 207. ! [X0] : ((sP3(X0) | (person(X0) & old(X0) & ~happy(X0))) & ((~person(X0) | ~old(X0) | happy(X0)) | ~sP3(X0))) [nnf transformation 169] 208. ! [X0] : ((sP3(X0) | (person(X0) & old(X0) & ~happy(X0))) & (~person(X0) | ~old(X0) | happy(X0) | ~sP3(X0))) [flattening 207] 209. ? [X0] : (person(X0) & calm(X0) & room(X0)) => (person(sK14) & calm(sK14) & room(sK14)) [choice axiom] 210. person(sK14) & calm(sK14) & room(sK14) [skolemisation 56,209] 291. room(mary) [cnf transformation 142] 292. room(paul) [cnf transformation 142] 298. person(mary) | ~person(X1) | ~calm(X1) | ~room(X1) [cnf transformation 174] 299. ~person(mary) | ~curious(mary) | ~person(X1) | ~calm(X1) | ~room(X1) [cnf transformation 174] 308. ~person(X2) | ~quiet(X2) | ~room(X2) | curious(X3) | ~room(X3) [cnf transformation 182] 353. ~sP3(X0) | person(X0) [cnf transformation 206] 359. sP3(X0) | person(X0) [cnf transformation 208] 361. room(sK14) [cnf transformation 210] 362. calm(sK14) [cnf transformation 210] 369. quiet(paul) [cnf transformation 161] 396. 6 <=> ! [X0] : (~person(X0) | ~room(X0) | ~quiet(X0)) [avatar definition] 397. ~person(X0) | ~room(X0) | ~quiet(X0) <- (6) [avatar component clause 396] 400. 7 <=> ! [X0] : (curious(X0) | ~room(X0)) [avatar definition] 401. ~room(X0) | curious(X0) <- (7) [avatar component clause 400] 404. 8 <=> ! [X1] : (~person(X1) | ~room(X1) | ~calm(X1)) [avatar definition] 405. ~person(X1) | ~room(X1) | ~calm(X1) <- (8) [avatar component clause 404] 407. 9 <=> curious(mary) [avatar definition] 411. 10 <=> person(mary) [avatar definition] 414. 8 | ~9 | ~10 [avatar split clause 299,411,407,404] 415. 8 | 10 [avatar split clause 298,411,404] 471. 7 | 6 [avatar split clause 308,396,400] 607. person(X0) [subsumption resolution 359,353] 613. ~calm(X1) | ~room(X1) <- (8) [subsumption resolution 405,607] 614. ~room(X0) | ~quiet(X0) <- (6) [subsumption resolution 397,607] 658. curious(mary) <- (7) [resolution 401,291] 668. 9 | ~7 [avatar split clause 658,400,407] 684. ~room(sK14) <- (8) [resolution 613,362] 686. $false <- (8) [subsumption resolution 684,361] 687. ~8 [avatar contradiction clause 686] 691. ~quiet(paul) <- (6) [resolution 614,292] 700. $false <- (6) [subsumption resolution 691,369] 701. ~6 [avatar contradiction clause 700] 702. $false [avatar sat refutation 414,415,471,668,687,701] % SZS output end Proof for 7928141344116342565571130 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.040 s % ------------------------------ % ------------------------------
0.17691
There is a room. If 'everyone anywhere does not own a significant collection of rare gemstones and minerals or is an active member of a local robotics club' then 'everyone in the room owns a significant collection of rare gemstones and minerals if they does not own a significant collection of rare gemstones and minerals'. Everyone in the room who is an active member of a local robotics club neither is a wine connoisseur nor enjoys stand-up paddleboarding. Only one person anywhere is not a wine connoisseur. Everyone in the room does not own a significant collection of rare gemstones and minerals if they neither does not own a significant collection of rare gemstones and minerals nor has a pet dog and vice versa. Everyone in the room either has a pet dog or is a wine connoisseur but not both if they is not an active member of a local robotics club. Everyone in the room is not an active member of a local robotics club if they is an active member of a local robotics club. Everyone in the room enjoys stand-up paddleboarding if they is not an active member of a local robotics club. Everyone in the room enjoys stand-up paddleboarding only if they is a wine connoisseur.
Everyone in the room is an active member of a local robotics club.
entailment
(there_is_a_room)& ((![X]:(anywhere(X)=>(((is_an_active_member_of_a_local_robotics_club(X))|(does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(X))))))=>(![X]:(room(X)=>(((does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(X))=>(owns_a_significant_collection_of_rare_gemstones_and_minerals(X)))))))& (![X]:(room(X)=>(((is_an_active_member_of_a_local_robotics_club(X))=>(~((is_a_wine_connoisseur(X))|(enjoys_stand-up_paddleboarding(X))))))))& (((?[X]:(anywhere(X)&is_not_a_wine_connoisseur(X)))&(![X,Y]:((anywhere(X)&anywhere(Y)&(is_not_a_wine_connoisseur(X))&(is_not_a_wine_connoisseur(Y)))=>(X=Y)))))& (![X]:(room(X)=>(((does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(X))<=>(~((does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(X))|(has_a_pet_dog(X))))))))& (![X]:(room(X)=>(((is_not_an_active_member_of_a_local_robotics_club(X))=>(((has_a_pet_dog(X))<~>(is_a_wine_connoisseur(X))))))))& (![X]:(room(X)=>(((is_an_active_member_of_a_local_robotics_club(X))=>(is_not_an_active_member_of_a_local_robotics_club(X))))))& (![X]:(room(X)=>(((is_not_an_active_member_of_a_local_robotics_club(X))=>(enjoys_stand-up_paddleboarding(X))))))& (![X]:(room(X)=>(((is_a_wine_connoisseur(X))<=(enjoys_stand-up_paddleboarding(X))))))
(there_is_a_room)& ![X]:(room(X)=>(is_an_active_member_of_a_local_robotics_club(X)))
[ "p0", "p2", "p4", "p5", "p6", "p7", "p8", "hypothesis" ]
% SZS status Unsatisfiable for 6333744721060090844468445 % SZS output start Proof for 6333744721060090844468445 44. there_is_a_room [input p0] 46. ! [X0] : (room(X0) => (predc(X0) => ~(prede(X0) | predd(X0)))) [input p2] 48. ! [X0] : (room(X0) => (~predb(X0) <=> ~(preda(X0) | ~predb(X0)))) [input p4] 49. ! [X0] : (room(X0) => (~predc(X0) => (preda(X0) <~> predd(X0)))) [input p5] 50. ! [X0] : (room(X0) => (predc(X0) => ~predc(X0))) [input p6] 51. ! [X0] : (room(X0) => (~predc(X0) => prede(X0))) [input p7] 52. ! [X0] : (room(X0) => (prede(X0) => predd(X0))) [input p8] 53. ~(! [X0] : (room(X0) => predc(X0)) & there_is_a_room) [input hypothesis] 129. ! [X0] : (((~prede(X0) & ~predd(X0)) | ~predc(X0)) | ~room(X0)) [ennf transformation 46] 130. ! [X0] : ((~prede(X0) & ~predd(X0)) | ~predc(X0) | ~room(X0)) [flattening 129] 133. ! [X0] : ((~predb(X0) <=> (~preda(X0) & predb(X0))) | ~room(X0)) [ennf transformation 48] 134. ! [X0] : (((preda(X0) <~> predd(X0)) | predc(X0)) | ~room(X0)) [ennf transformation 49] 135. ! [X0] : ((preda(X0) <~> predd(X0)) | predc(X0) | ~room(X0)) [flattening 134] 136. ! [X0] : ((~predc(X0) | ~predc(X0)) | ~room(X0)) [ennf transformation 50] 137. ! [X0] : (~predc(X0) | ~predc(X0) | ~room(X0)) [flattening 136] 138. ! [X0] : ((prede(X0) | predc(X0)) | ~room(X0)) [ennf transformation 51] 139. ! [X0] : (prede(X0) | predc(X0) | ~room(X0)) [flattening 138] 140. ! [X0] : ((predd(X0) | ~prede(X0)) | ~room(X0)) [ennf transformation 52] 141. ! [X0] : (predd(X0) | ~prede(X0) | ~room(X0)) [flattening 140] 142. ? [X0] : (~predc(X0) & room(X0)) | ~there_is_a_room [ennf transformation 53] 149. ! [X0] : (((~predb(X0) | (preda(X0) | ~predb(X0))) & ((~preda(X0) & predb(X0)) | predb(X0))) | ~room(X0)) [nnf transformation 133] 150. ! [X0] : (((~predb(X0) | preda(X0) | ~predb(X0)) & ((~preda(X0) & predb(X0)) | predb(X0))) | ~room(X0)) [flattening 149] 151. ! [X0] : (((~predd(X0) | ~preda(X0)) & (predd(X0) | preda(X0))) | predc(X0) | ~room(X0)) [nnf transformation 135] 152. ? [X0] : (~predc(X0) & room(X0)) => (~predc(sK2) & room(sK2)) [choice axiom] 153. (~predc(sK2) & room(sK2)) | ~there_is_a_room [skolemisation 142,152] 235. there_is_a_room [cnf transformation 44] 239. ~predd(X0) | ~predc(X0) | ~room(X0) [cnf transformation 130] 244. predb(X0) | predb(X0) | ~room(X0) [cnf transformation 150] 246. ~predb(X0) | preda(X0) | ~predb(X0) | ~room(X0) [cnf transformation 150] 248. ~predd(X0) | ~preda(X0) | predc(X0) | ~room(X0) [cnf transformation 151] 249. ~predc(X0) | ~predc(X0) | ~room(X0) [cnf transformation 137] 250. prede(X0) | predc(X0) | ~room(X0) [cnf transformation 139] 251. predd(X0) | ~prede(X0) | ~room(X0) [cnf transformation 141] 252. room(sK2) | ~there_is_a_room [cnf transformation 153] 254. ~room(X0) | ~predc(X0) [duplicate literal removal 249] 255. predb(X0) | ~room(X0) [duplicate literal removal 244] 256. ~room(X0) | preda(X0) | ~predb(X0) [duplicate literal removal 246] 265. 2 <=> ! [X0] : (predb(X0) | ~room(X0)) [avatar definition] 266. ~room(X0) | predb(X0) <- (2) [avatar component clause 265] 275. 2 [avatar split clause 255,265] 276. ~preda(X0) | ~predd(X0) | ~room(X0) [subsumption resolution 248,239] 277. ~room(X0) | prede(X0) [subsumption resolution 250,254] 278. ~room(X0) | predd(X0) [subsumption resolution 251,277] 280. room(sK2) [subsumption resolution 252,235] 282. predb(sK2) <- (2) [resolution 266,280] 284. predd(sK2) [resolution 278,280] 287. preda(sK2) | ~predb(sK2) [resolution 256,280] 288. preda(sK2) <- (2) [subsumption resolution 287,282] 290. ~predd(sK2) | ~room(sK2) <- (2) [resolution 276,288] 291. ~room(sK2) <- (2) [subsumption resolution 290,284] 292. $false <- (2) [subsumption resolution 291,280] 293. ~2 [avatar contradiction clause 292] 294. $false [avatar sat refutation 275,293] % SZS output end Proof for 6333744721060090844468445 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.077324
Saundra, Nancy, Sebrina, Carmela are the only persons in the room. Either “at least one person in the room is curious” or “Saundra is a creative person” but not both. “Everyone in the room is not a happy person” if “everyone outside the room neither is patient nor is a happy person” and vice versa. Saundra either is curious or is not a patient person but not both. Everyone outside the room is brave. If someone is a calm person then he/she either is a wise person or is not a kind person but not both. Everyone in the room either is a humble person or is brave but not both. It is not the case that “someone in the room is not calm”. Everyone in the room is a creative person and is a wise person. Everyone in the room is not a happy person.
Everyone anywhere neither is a happy person nor is a kind happy person.
entailment
room(saundra)&room(nancy)&room(sebrina)&room(carmela)&(![X]:(room(X)=>(X='saundra'|X='nancy'|X='sebrina'|X='carmela')))& ((((?[X]:(room(X)&curious(X)))))<~>(creative(saundra)&person(saundra)))& ((![X]:(~room(X)=>(~((patient(X))|(happy(X)&person(X))))))<=>(![X]:(room(X)=>(~(happy(X)&person(X))))))& (((curious(saundra))<~>(~(patient(saundra)&person(saundra)))))& (![X]:(~room(X)=>(brave(X))))& ((![X]:((calm(X)&person(X))=>(((wise(X)&person(X))<~>(~(kind(X)&person(X))))))))& (![X]:(room(X)=>(((humble(X)&person(X))<~>(brave(X))))))& (~(?[X]:(room(X)&(~calm(X)))))& (?[X,Y]:((creative(X)&person(X))&(funny(Y)&person(Y))&(richer(X,Y))))& ((saundra_dream=>(![X]:(room(X)=>(generous(X))))))& (creative(saundra)&person(saundra))& (![X]:(room(X)=>(~strong(X))))& ((?[X,Y]:(room(X)&room(Y)&(((happy(X)&person(X))|(calm(X))|(brave(X)))&((happy(Y)&person(Y))|(calm(Y))|(brave(Y))))&(X!=Y))))& (((?[X]:(room(X)&wise(X)&person(X)))))& (((?[X]:(room(X)&wise(X)))))& (![X]:((room(X)&(X!=saundra))=>quieter(saundra,X)))& (calm(saundra)&person(saundra))& ((wise(saundra)&person(saundra))&(creative(saundra)&person(saundra)))& (~(tall(saundra)&person(saundra)))& (![X]:(room(X)=>(old(X))))& (![X]:(room(X)=>(((creative(X)&person(X))&(wise(X)&person(X))))))& (((?[X]:(room(X)&funny(X)&person(X)))))& (![X]:(room(X)=>(~(happy(X)&person(X)))))& (![X]:(anywhere(X)=>(creative(X))))
room(saundra)&room(nancy)&room(sebrina)&room(carmela)&(![X]:(room(X)=>(X='saundra'|X='nancy'|X='sebrina'|X='carmela')))& ![X]:(anywhere(X)=>(~((happy(X)&person(X))|(kind(X)&happy(X)&person(X)))))
[ "p0", "p2", "p20", "p22", "hypothesis" ]
% SZS status Unsatisfiable for 5140467758984771340452004 % SZS output start Proof for 5140467758984771340452004 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 46. ! [X0] : (~room(X0) => ~((person(X0) & happy(X0)) | patient(X0))) <=> ! [X0] : (room(X0) => ~(person(X0) & happy(X0))) [input p2] 64. ! [X0] : (room(X0) => (person(X0) & wise(X0) & person(X0) & creative(X0))) [input p20] 66. ! [X0] : (room(X0) => ~(person(X0) & happy(X0))) [input p22] 68. ~(! [X0] : (anywhere(X0) => ~((person(X0) & happy(X0) & kind(X0)) | (person(X0) & happy(X0)))) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 69. ! [X0] : (~room(X0) => ~((person(X0) & happy(X0)) | patient(X0))) <=> ! [X1] : (room(X1) => ~(person(X1) & happy(X1))) [rectify 46] 70. ~(! [X0] : (anywhere(X0) => ~((person(X0) & happy(X0) & kind(X0)) | (person(X0) & happy(X0)))) & ! [X1] : (room(X1) => (alice = X1 | fred = X1 | paul = X1 | mary = X1)) & room(alice) & room(fred) & room(paul) & room(mary)) [rectify 68] 147. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 148. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 147] 149. ! [X0] : (((~person(X0) | ~happy(X0)) & ~patient(X0)) | room(X0)) <=> ! [X1] : ((~person(X1) | ~happy(X1)) | ~room(X1)) [ennf transformation 69] 150. ! [X0] : (((~person(X0) | ~happy(X0)) & ~patient(X0)) | room(X0)) <=> ! [X1] : (~person(X1) | ~happy(X1) | ~room(X1)) [flattening 149] 160. ! [X0] : ((person(X0) & wise(X0) & person(X0) & creative(X0)) | ~room(X0)) [ennf transformation 64] 161. ! [X0] : ((~person(X0) | ~happy(X0)) | ~room(X0)) [ennf transformation 66] 162. ! [X0] : (~person(X0) | ~happy(X0) | ~room(X0)) [flattening 161] 164. ? [X0] : (((person(X0) & happy(X0) & kind(X0)) | (person(X0) & happy(X0))) & anywhere(X0)) | ? [X1] : ((alice != X1 & fred != X1 & paul != X1 & mary != X1) & room(X1)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 70] 165. ? [X0] : (((person(X0) & happy(X0) & kind(X0)) | (person(X0) & happy(X0))) & anywhere(X0)) | ? [X1] : (alice != X1 & fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 164] 166. sP0 <=> ! [X1] : (~person(X1) | ~happy(X1) | ~room(X1)) [predicate definition introduction] 167. ! [X0] : (((~person(X0) | ~happy(X0)) & ~patient(X0)) | room(X0)) <=> sP0 [definition folding 150,166] 168. ? [X0] : (((person(X0) & happy(X0) & kind(X0)) | (person(X0) & happy(X0))) & anywhere(X0)) | ~sP1 [predicate definition introduction] 169. sP1 | ? [X1] : (alice != X1 & fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [definition folding 165,168] 176. (sP0 | ? [X1] : (person(X1) & happy(X1) & room(X1))) & (! [X1] : (~person(X1) | ~happy(X1) | ~room(X1)) | ~sP0) [nnf transformation 166] 177. (sP0 | ? [X0] : (person(X0) & happy(X0) & room(X0))) & (! [X1] : (~person(X1) | ~happy(X1) | ~room(X1)) | ~sP0) [rectify 176] 178. ? [X0] : (person(X0) & happy(X0) & room(X0)) => (person(sK3) & happy(sK3) & room(sK3)) [choice axiom] 179. (sP0 | (person(sK3) & happy(sK3) & room(sK3))) & (! [X1] : (~person(X1) | ~happy(X1) | ~room(X1)) | ~sP0) [skolemisation 177,178] 180. (! [X0] : (((~person(X0) | ~happy(X0)) & ~patient(X0)) | room(X0)) | ~sP0) & (sP0 | ? [X0] : (((person(X0) & happy(X0)) | patient(X0)) & ~room(X0))) [nnf transformation 167] 181. (! [X0] : (((~person(X0) | ~happy(X0)) & ~patient(X0)) | room(X0)) | ~sP0) & (sP0 | ? [X1] : (((person(X1) & happy(X1)) | patient(X1)) & ~room(X1))) [rectify 180] 182. ? [X1] : (((person(X1) & happy(X1)) | patient(X1)) & ~room(X1)) => (((person(sK4) & happy(sK4)) | patient(sK4)) & ~room(sK4)) [choice axiom] 183. (! [X0] : (((~person(X0) | ~happy(X0)) & ~patient(X0)) | room(X0)) | ~sP0) & (sP0 | (((person(sK4) & happy(sK4)) | patient(sK4)) & ~room(sK4))) [skolemisation 181,182] 200. ? [X0] : (((person(X0) & happy(X0) & kind(X0)) | (person(X0) & happy(X0))) & anywhere(X0)) | ~sP1 [nnf transformation 168] 201. ? [X0] : (((person(X0) & happy(X0) & kind(X0)) | (person(X0) & happy(X0))) & anywhere(X0)) => (((person(sK12) & happy(sK12) & kind(sK12)) | (person(sK12) & happy(sK12))) & anywhere(sK12)) [choice axiom] 202. (((person(sK12) & happy(sK12) & kind(sK12)) | (person(sK12) & happy(sK12))) & anywhere(sK12)) | ~sP1 [skolemisation 200,201] 203. sP1 | ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [rectify 169] 204. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK13 & fred != sK13 & paul != sK13 & mary != sK13 & room(sK13)) [choice axiom] 205. sP1 | (alice != sK13 & fred != sK13 & paul != sK13 & mary != sK13 & room(sK13)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 203,204] 287. room(mary) [cnf transformation 148] 288. room(paul) [cnf transformation 148] 289. room(fred) [cnf transformation 148] 290. room(alice) [cnf transformation 148] 291. ~room(X0) | fred = X0 | paul = X0 | mary = X0 | alice = X0 [cnf transformation 148] 298. sP0 | room(sK3) [cnf transformation 179] 299. sP0 | happy(sK3) [cnf transformation 179] 305. ~person(X0) | ~happy(X0) | room(X0) | ~sP0 [cnf transformation 183] 347. ~room(X0) | person(X0) [cnf transformation 160] 350. ~person(X0) | ~happy(X0) | ~room(X0) [cnf transformation 162] 355. happy(sK12) | happy(sK12) | ~sP1 [cnf transformation 202] 358. person(sK12) | person(sK12) | ~sP1 [cnf transformation 202] 359. sP1 | room(sK13) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 205] 360. sP1 | mary != sK13 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 205] 361. sP1 | paul != sK13 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 205] 362. sP1 | fred != sK13 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 205] 363. sP1 | alice != sK13 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 205] 364. happy(sK12) | ~sP1 [duplicate literal removal 355] 365. person(sK12) | ~sP1 [duplicate literal removal 358] 399. 7 <=> sP0 [avatar definition] 404. 8 <=> happy(sK3) [avatar definition] 406. happy(sK3) <- (8) [avatar component clause 404] 407. 8 | 7 [avatar split clause 299,399,404] 409. 9 <=> room(sK3) [avatar definition] 412. 9 | 7 [avatar split clause 298,399,409] 418. 11 <=> ! [X0] : (~person(X0) | room(X0) | ~happy(X0)) [avatar definition] 419. ~person(X0) | room(X0) | ~happy(X0) <- (11) [avatar component clause 418] 420. ~7 | 11 [avatar split clause 305,418,399] 489. ~happy(X0) | ~room(X0) [subsumption resolution 350,347] 492. 25 <=> sP1 [avatar definition] 496. 26 <=> person(sK12) [avatar definition] 498. person(sK12) <- (26) [avatar component clause 496] 499. ~25 | 26 [avatar split clause 365,496,492] 501. 27 <=> happy(sK12) [avatar definition] 503. happy(sK12) <- (27) [avatar component clause 501] 506. ~25 | 27 [avatar split clause 364,501,492] 513. sP1 | alice != sK13 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 363,290] 514. sP1 | alice != sK13 | ~room(paul) | ~room(mary) [subsumption resolution 513,289] 515. sP1 | alice != sK13 | ~room(mary) [subsumption resolution 514,288] 516. sP1 | alice != sK13 [subsumption resolution 515,287] 518. 29 <=> alice = sK13 [avatar definition] 520. alice != sK13 <- (~29) [avatar component clause 518] 521. ~29 | 25 [avatar split clause 516,492,518] 522. sP1 | fred != sK13 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 362,290] 523. sP1 | fred != sK13 | ~room(paul) | ~room(mary) [subsumption resolution 522,289] 524. sP1 | fred != sK13 | ~room(mary) [subsumption resolution 523,288] 525. sP1 | fred != sK13 [subsumption resolution 524,287] 527. 30 <=> fred = sK13 [avatar definition] 529. fred != sK13 <- (~30) [avatar component clause 527] 530. ~30 | 25 [avatar split clause 525,492,527] 531. sP1 | paul != sK13 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 361,290] 532. sP1 | paul != sK13 | ~room(paul) | ~room(mary) [subsumption resolution 531,289] 533. sP1 | paul != sK13 | ~room(mary) [subsumption resolution 532,288] 534. sP1 | paul != sK13 [subsumption resolution 533,287] 536. 31 <=> paul = sK13 [avatar definition] 538. paul != sK13 <- (~31) [avatar component clause 536] 539. ~31 | 25 [avatar split clause 534,492,536] 540. sP1 | mary != sK13 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 360,290] 541. sP1 | mary != sK13 | ~room(paul) | ~room(mary) [subsumption resolution 540,289] 542. sP1 | mary != sK13 | ~room(mary) [subsumption resolution 541,288] 543. sP1 | mary != sK13 [subsumption resolution 542,287] 545. 32 <=> mary = sK13 [avatar definition] 547. mary != sK13 <- (~32) [avatar component clause 545] 548. ~32 | 25 [avatar split clause 543,492,545] 549. sP1 | room(sK13) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 359,290] 550. sP1 | room(sK13) | ~room(paul) | ~room(mary) [subsumption resolution 549,289] 551. sP1 | room(sK13) | ~room(mary) [subsumption resolution 550,288] 552. sP1 | room(sK13) [subsumption resolution 551,287] 554. 33 <=> room(sK13) [avatar definition] 556. room(sK13) <- (33) [avatar component clause 554] 557. 33 | 25 [avatar split clause 552,492,554] 558. ~happy(X0) | ~person(X0) <- (11) [subsumption resolution 419,489] 613. ~person(sK12) <- (11, 27) [resolution 558,503] 614. $false <- (11, 26, 27) [subsumption resolution 613,498] 615. ~11 | ~26 | ~27 [avatar contradiction clause 614] 616. ~room(sK3) <- (8) [resolution 406,489] 619. ~9 | ~8 [avatar split clause 616,404,409] 758. fred = sK13 | paul = sK13 | mary = sK13 | alice = sK13 <- (33) [resolution 291,556] 844. paul = sK13 | mary = sK13 | alice = sK13 <- (~30, 33) [subsumption resolution 758,529] 845. mary = sK13 | alice = sK13 <- (~30, ~31, 33) [subsumption resolution 844,538] 846. alice = sK13 <- (~30, ~31, ~32, 33) [subsumption resolution 845,547] 847. $false <- (~29, ~30, ~31, ~32, 33) [subsumption resolution 846,520] 848. 29 | 30 | 31 | 32 | ~33 [avatar contradiction clause 847] 849. $false [avatar sat refutation 407,412,420,499,506,521,530,539,548,557,615,619,848] % SZS output end Proof for 5140467758984771340452004 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5500 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.130245
There is a room. Everyone in the room does not practice digital art if they either works as a freelance web developer specializing in e-commerce sites or plays video games but not both. Everyone in the room does not make intricate hand-cut paper art for exhibitions or creates bespoke furniture pieces from reclaimed wood or both if they does not practice digital art. Everyone in the room does not create bespoke furniture pieces from reclaimed wood. Not everyone in the room either does not make homemade pastries or hosts regular workshops on creative writing but not both if and only if they makes homemade pastries. Everyone in the room neither does not play as a goalkeeper for a local amateur soccer team nor does not work as a freelance web developer specializing in e-commerce sites. Everyone outside the room either does not regularly goes on multi-day backpacking trips in national parks or does not collect classic novels but not both if they does not have completed a triathlon or makes homemade pastries or both. Everyone in the room practices digital art or is not a certified scuba diver with advanced underwater photography skills or both if they either does not regularly goes on multi-day backpacking trips in national parks or does not collect classic novels but not both. No one in the room practices digital art or is not a certified scuba diver with advanced underwater photography skills or both if they does not play video games and vice versa. Everyone in the room does not play video games if and only if they is not a member of a local theater group specializing in improv, makes intricate hand-cut paper art for exhibitions or does not compete in national level swimming championships.
Everyone in the room does not play as a goalkeeper for a local amateur soccer team.
contradiction
(there_is_a_room)& (![X]:(room(X)=>(((((works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))<~>(plays_video_games(X))))=>(does_not_practice_digital_art(X))))))& (![X]:(room(X)=>(((does_not_practice_digital_art(X))=>(((does_not_make_intricate_hand-cut_paper_art_for_exhibitions(X))|(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))))))& (![X]:(room(X)=>(does_not_create_bespoke_furniture_pieces_from_reclaimed_wood(X))))& (~![X]:(room(X)=>(((((does_not_make_homemade_pastries(X))<~>(hosts_regular_workshops_on_creative_writing(X))))<=>(makes_homemade_pastries(X))))))& (![X]:(room(X)=>(~((does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))|(does_not_work_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))))& (![X]:(~room(X)=>(((((does_not_have_completed_a_triathlon(X))|(makes_homemade_pastries(X))))=>(((does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))<~>(does_not_collect_classic_novels(X))))))))& (![X]:(room(X)=>(((((does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))<~>(does_not_collect_classic_novels(X))))=>(((practices_digital_art(X))|(is_not_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))))))& (~?[X]:(room(X)=>(((((practices_digital_art(X))|(is_not_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))<=>(does_not_play_video_games(X))))))& (![X]:(room(X)=>(((does_not_play_video_games(X))<=>(((is_not_a_member_of_a_local_theater_group_specializing_in_improv(X))|(makes_intricate_hand-cut_paper_art_for_exhibitions(X))|(does_not_compete_in_national_level_swimming_championships(X))))))))& (~?[X]:(room(X)=>(((is_not_passionate_about_collecting_and_restoring_classic_cars(X))|(is_not_a_cybersecurity_expert(X))))))& (![X]:(anywhere(X)=>(is_a_cybersecurity_expert(X))))& (((?[X]:(room(X)&((does_not_enjoy_stargazing(X))|(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X)))))&(![X,Y]:((room(X)&room(Y)&(((does_not_enjoy_stargazing(X))|(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))&(((does_not_enjoy_stargazing(Y))|(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(Y)))))=>(X=Y)))))& (![X]:(room(X)=>(((collects_first_edition_books(X))|(competes_in_national_level_swimming_championships(X))|(is_not_passionate_about_collecting_and_restoring_classic_cars(X))))))& (![X]:(room(X)=>(((is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))=>(((does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(X))|(collects_antique_clocks(X))))))))& (![X]:(room(X)=>(((((does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(X))|(collects_antique_clocks(X))))<=>(is_not_passionate_about_collecting_and_restoring_classic_cars(X))))))& (![X]:(room(X)=>(((does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))|(does_not_collect_antique_clocks(X))))))& (![X]:(room(X)=>(((~((does_not_create_large-scale_murals_for_public_art_installations(X))|(is_an_active_member_of_a_local_robotics_club(X))))=>(((does_not_create_large-scale_murals_for_public_art_installations(X))|(does_not_have_completed_a_triathlon(X))|(practices_digital_art(X))))))))& ((![X]:((does_not_collect_classic_novels(X))=>(collects_antique_clocks(X)))))& ((?[X,Y]:(room(X)&room(Y)&(does_not_create_large-scale_murals_for_public_art_installations(X)&does_not_create_large-scale_murals_for_public_art_installations(Y))&(X!=Y))))& (![X]:(room(X)=>(((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))|(is_passionate_about_collecting_and_restoring_classic_cars(X))))))& (![X]:(room(X)=>(((does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))|(is_not_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))|(works_as_a_freelance_web_developer_specializing_in_e-commerce_sites(X))))))
(there_is_a_room)& ![X]:(room(X)=>(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X)))
[ "p4", "p5", "p8", "hypothesis" ]
% SZS status Unsatisfiable for 2020552996914268345442216 % SZS output start Proof for 2020552996914268345442216 48. ~! [X0] : (room(X0) => ((~predn(X0) <~> predy(X0)) <=> predn(X0))) [input p4] 49. ! [X0] : (room(X0) => ~(~predb(X0) | ~predm(X0))) [input p5] 52. ~? [X0] : (room(X0) => ((~predx(X0) | predj(X0)) <=> ~predw(X0))) [input p8] 66. ! [X0] : (room(X0) => ~predm(X0)) & there_is_a_room [input hypothesis] 76. ! [X0] : (room(X0) => ~predm(X0)) [pure predicate removal 66] 153. ? [X0] : (((~predn(X0) <~> predy(X0)) <~> predn(X0)) & room(X0)) [ennf transformation 48] 154. ! [X0] : ((predb(X0) & predm(X0)) | ~room(X0)) [ennf transformation 49] 159. ! [X0] : (((~predx(X0) | predj(X0)) <~> ~predw(X0)) & room(X0)) [ennf transformation 52] 174. ! [X0] : (~predm(X0) | ~room(X0)) [ennf transformation 76] 177. ? [X0] : (((~predn(X0) | ((~predn(X0) | ~predy(X0)) & (predy(X0) | predn(X0)))) & (predn(X0) | ((~predy(X0) | predn(X0)) & (predy(X0) | ~predn(X0))))) & room(X0)) [nnf transformation 153] 178. ? [X0] : ((~predn(X0) | ((~predn(X0) | ~predy(X0)) & (predy(X0) | predn(X0)))) & (predn(X0) | ((~predy(X0) | predn(X0)) & (predy(X0) | ~predn(X0)))) & room(X0)) [flattening 177] 179. ? [X0] : ((~predn(X0) | ((~predn(X0) | ~predy(X0)) & (predy(X0) | predn(X0)))) & (predn(X0) | ((~predy(X0) | predn(X0)) & (predy(X0) | ~predn(X0)))) & room(X0)) => ((~predn(sK0) | ((~predn(sK0) | ~predy(sK0)) & (predy(sK0) | predn(sK0)))) & (predn(sK0) | ((~predy(sK0) | predn(sK0)) & (predy(sK0) | ~predn(sK0)))) & room(sK0)) [choice axiom] 180. (~predn(sK0) | ((~predn(sK0) | ~predy(sK0)) & (predy(sK0) | predn(sK0)))) & (predn(sK0) | ((~predy(sK0) | predn(sK0)) & (predy(sK0) | ~predn(sK0)))) & room(sK0) [skolemisation 178,179] 183. ! [X0] : (((predw(X0) | (predx(X0) & ~predj(X0))) & (~predw(X0) | (~predx(X0) | predj(X0)))) & room(X0)) [nnf transformation 159] 184. ! [X0] : ((predw(X0) | (predx(X0) & ~predj(X0))) & (~predw(X0) | ~predx(X0) | predj(X0)) & room(X0)) [flattening 183] 277. room(sK0) [cnf transformation 180] 282. ~room(X0) | predm(X0) [cnf transformation 154] 288. room(X0) [cnf transformation 184] 315. ~predm(X0) | ~room(X0) [cnf transformation 174] 353. ~predm(X0) [subsumption resolution 315,288] 354. predm(sK0) [resolution 282,277] 356. $false [subsumption resolution 354,353] % SZS output end Proof for 2020552996914268345442216 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.035 s % ------------------------------ % ------------------------------
0.032313
Donald, Harold, Virginia are the only persons in the room. All funny persons are curious. Virginia who is a curious person is a creative person or is a happy person or both. Someone who is not a brave person is quieter than someone who is not a strong person. Donald is the least rich anywhere. Only one person in the room is a wise person, is a brave person and is a quiet person. Harold and Donald are respectively calm and curious. Someone who is a creative person is older than someone who is a humble person. If someone is a patient person then he/she is not a calm person. Donald and Virginia are wise persons. Harold is kind, is patient or is not a tall person. Someone who is a kind person is quieter than someone who is quieter than Sharon. Donald who is not a funny person is a old person. Only one person in the room is a kind person. Donald and Harold are respectively brave and old. Harold and Virginia are respectively tall and humble. Donald is the least quiet in the room. Donald who is older than Sharon is a creative person. It is not the case that it is not the case that it is not the case that someone outside the room is a generous person. More than one person in the room is richer than Sharon. If someone is a old person then he/she is not a generous person and vice versa. It is not the case that someone in the room is not a strong person. It is not the case that Virginia and Donald are not a curious persons.
Harold and Donald are not a funny quiet tall generous wise persons.
entailment
room(donald)&room(harold)&room(virginia)&(![X]:(room(X)=>(X='donald'|X='harold'|X='virginia')))& (![X]:(funny(X)=>curious(X)))& ((curious(virginia)&person(virginia))&(((creative(virginia)&person(virginia))|(happy(virginia)&person(virginia)))))& (?[X,Y]:((~(brave(X)&person(X)))&(~(strong(Y)&person(Y)))&(quieter(X,Y))))& (![X]:((anywhere(X)&(X!=donald))=>richer(donald,X)))& (((?[X]:(room(X)&((wise(X)&person(X))&(brave(X)&person(X))&(quiet(X)&person(X)))))&(![X,Y]:((room(X)&room(Y)&(((wise(X)&person(X))&(brave(X)&person(X))&(quiet(X)&person(X))))&(((wise(Y)&person(Y))&(brave(Y)&person(Y))&(quiet(Y)&person(Y)))))=>(X=Y)))))& ((calm(harold))&(curious(donald)))& (?[X,Y]:((creative(X)&person(X))&(humble(Y)&person(Y))&(older(X,Y))))& ((![X]:((patient(X)&person(X))=>(~(calm(X)&person(X))))))& (wise(donald)&person(donald)&wise(virginia)&person(virginia))& (((kind(harold))|(patient(harold))|(~(tall(harold)&person(harold)))))& (?[X,Y]:((kind(X)&person(X))&(quieter(sharon,Y))&(quieter(X,Y))))& ((~(funny(donald)&person(donald)))&(old(donald)&person(donald)))& (((?[X]:(room(X)&kind(X)&person(X)))&(![X,Y]:((room(X)&room(Y)&(kind(X)&person(X))&(kind(Y)&person(Y)))=>(X=Y)))))& ((brave(donald))&(old(harold)))& ((tall(harold))&(humble(virginia)))& (![X]:((room(X)&(X!=donald))=>quieter(donald,X)))& ((older(sharon,donald))&(creative(donald)&person(donald)))& (~(~(~(?[X]:(~room(X)&(generous(X)&person(X)))))))& ((?[X,Y]:(room(X)&room(Y)&(richer(sharon,X)&richer(sharon,Y))&(X!=Y))))& ((![X]:((old(X)&person(X))<=>(~(generous(X)&person(X))))))& (~(?[X]:(room(X)&(~(strong(X)&person(X))))))& (~(~(curious(virginia)&person(virginia))&~(curious(donald)&person(donald))))
room(donald)&room(harold)&room(virginia)&(![X]:(room(X)=>(X='donald'|X='harold'|X='virginia')))& ~(funny(harold)&quiet(harold)&tall(harold)&generous(harold)&wise(harold)&person(harold))&~(funny(donald)&quiet(donald)&tall(donald)&generous(donald)&wise(donald)&person(donald))
[ "p0", "p9", "p12", "p14", "p20", "hypothesis" ]
% SZS status Unsatisfiable for 4101059638398218382825688 % SZS output start Proof for 4101059638398218382825688 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 53. person(fred) & wise(fred) & person(mary) & wise(mary) [input p9] 56. person(mary) & old(mary) & ~(person(mary) & funny(mary)) [input p12] 58. old(paul) & brave(mary) [input p14] 64. ! [X0] : ((person(X0) & old(X0)) <=> ~(person(X0) & generous(X0))) [input p20] 67. ~(~(person(mary) & wise(mary) & generous(mary) & tall(mary) & quiet(mary) & funny(mary)) & ~(person(paul) & wise(paul) & generous(paul) & tall(paul) & quiet(paul) & funny(paul)) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 152. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 153. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 152] 163. person(mary) & old(mary) & (~person(mary) | ~funny(mary)) [ennf transformation 56] 169. ! [X0] : ((person(X0) & old(X0)) <=> (~person(X0) | ~generous(X0))) [ennf transformation 64] 172. (person(mary) & wise(mary) & generous(mary) & tall(mary) & quiet(mary) & funny(mary)) | (person(paul) & wise(paul) & generous(paul) & tall(paul) & quiet(paul) & funny(paul)) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 67] 173. (person(mary) & wise(mary) & generous(mary) & tall(mary) & quiet(mary) & funny(mary)) | (person(paul) & wise(paul) & generous(paul) & tall(paul) & quiet(paul) & funny(paul)) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 172] 174. (person(paul) & wise(paul) & generous(paul) & tall(paul) & quiet(paul) & funny(paul)) | ~sP0 [predicate definition introduction] 175. (person(mary) & wise(mary) & generous(mary) & tall(mary) & quiet(mary) & funny(mary)) | ~sP1 [predicate definition introduction] 176. sP1 | sP0 | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [definition folding 173,175,174] 190. ! [X0] : (((person(X0) & old(X0)) | (person(X0) & generous(X0))) & ((~person(X0) | ~generous(X0)) | (~person(X0) | ~old(X0)))) [nnf transformation 169] 191. ! [X0] : (((person(X0) & old(X0)) | (person(X0) & generous(X0))) & (~person(X0) | ~generous(X0) | ~person(X0) | ~old(X0))) [flattening 190] 192. (person(mary) & wise(mary) & generous(mary) & tall(mary) & quiet(mary) & funny(mary)) | ~sP1 [nnf transformation 175] 193. (person(paul) & wise(paul) & generous(paul) & tall(paul) & quiet(paul) & funny(paul)) | ~sP0 [nnf transformation 174] 194. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK12 & paul != sK12 & mary != sK12 & room(sK12)) [choice axiom] 195. sP1 | sP0 | (fred != sK12 & paul != sK12 & mary != sK12 & room(sK12)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 176,194] 277. room(mary) [cnf transformation 153] 278. room(paul) [cnf transformation 153] 279. room(fred) [cnf transformation 153] 280. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 153] 301. person(mary) [cnf transformation 53] 309. ~person(mary) | ~funny(mary) [cnf transformation 163] 317. old(paul) [cnf transformation 58] 328. ~person(X0) | ~generous(X0) | ~person(X0) | ~old(X0) [cnf transformation 191] 332. person(X0) | person(X0) [cnf transformation 191] 336. funny(mary) | ~sP1 [cnf transformation 192] 345. generous(paul) | ~sP0 [cnf transformation 193] 348. sP1 | sP0 | room(sK12) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 195] 349. sP1 | sP0 | mary != sK12 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 195] 350. sP1 | sP0 | paul != sK12 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 195] 351. sP1 | sP0 | fred != sK12 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 195] 352. ~person(X0) | ~generous(X0) | ~old(X0) [duplicate literal removal 328] 353. person(X0) [duplicate literal removal 332] 393. ~funny(mary) [subsumption resolution 309,301] 395. ~generous(X0) | ~old(X0) [subsumption resolution 352,353] 397. 9 <=> sP1 [avatar definition] 415. ~sP1 [subsumption resolution 336,393] 416. ~9 [avatar split clause 415,397] 418. 13 <=> sP0 [avatar definition] 427. 15 <=> generous(paul) [avatar definition] 429. generous(paul) <- (15) [avatar component clause 427] 430. ~13 | 15 [avatar split clause 345,427,418] 442. sP1 | sP0 | fred != sK12 | ~room(paul) | ~room(mary) [subsumption resolution 351,279] 443. sP1 | sP0 | fred != sK12 | ~room(mary) [subsumption resolution 442,278] 444. sP1 | sP0 | fred != sK12 [subsumption resolution 443,277] 446. 18 <=> fred = sK12 [avatar definition] 448. fred != sK12 <- (~18) [avatar component clause 446] 449. ~18 | 13 | 9 [avatar split clause 444,397,418,446] 450. sP1 | sP0 | paul != sK12 | ~room(paul) | ~room(mary) [subsumption resolution 350,279] 451. sP1 | sP0 | paul != sK12 | ~room(mary) [subsumption resolution 450,278] 452. sP1 | sP0 | paul != sK12 [subsumption resolution 451,277] 454. 19 <=> paul = sK12 [avatar definition] 456. paul != sK12 <- (~19) [avatar component clause 454] 457. ~19 | 13 | 9 [avatar split clause 452,397,418,454] 458. sP1 | sP0 | mary != sK12 | ~room(paul) | ~room(mary) [subsumption resolution 349,279] 459. sP1 | sP0 | mary != sK12 | ~room(mary) [subsumption resolution 458,278] 460. sP1 | sP0 | mary != sK12 [subsumption resolution 459,277] 462. 20 <=> mary = sK12 [avatar definition] 464. mary != sK12 <- (~20) [avatar component clause 462] 465. ~20 | 13 | 9 [avatar split clause 460,397,418,462] 466. sP1 | sP0 | room(sK12) | ~room(paul) | ~room(mary) [subsumption resolution 348,279] 467. sP1 | sP0 | room(sK12) | ~room(mary) [subsumption resolution 466,278] 468. sP1 | sP0 | room(sK12) [subsumption resolution 467,277] 470. 21 <=> room(sK12) [avatar definition] 472. room(sK12) <- (21) [avatar component clause 470] 473. 21 | 13 | 9 [avatar split clause 468,397,418,470] 487. ~old(paul) <- (15) [resolution 395,429] 489. $false <- (15) [subsumption resolution 487,317] 490. ~15 [avatar contradiction clause 489] 795. paul = sK12 | mary = sK12 | fred = sK12 <- (21) [resolution 280,472] 839. mary = sK12 | fred = sK12 <- (~19, 21) [subsumption resolution 795,456] 840. fred = sK12 <- (~19, ~20, 21) [subsumption resolution 839,464] 841. $false <- (~18, ~19, ~20, 21) [subsumption resolution 840,448] 842. 18 | 19 | 20 | ~21 [avatar contradiction clause 841] 843. $false [avatar sat refutation 416,430,449,457,465,473,490,842] % SZS output end Proof for 4101059638398218382825688 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5500 % Time elapsed: 0.040 s % ------------------------------ % ------------------------------
0.561839
Thomas, Shawn, Humberto, Eddie, Alton are the only persons in the room. No quiet person is strong. Thomas neither is creative nor is patient.
Thomas is creative.
contradiction
room(thomas)&room(shawn)&room(humberto)&room(eddie)&room(alton)&(![X]:(room(X)=>(X='thomas'|X='shawn'|X='humberto'|X='eddie'|X='alton')))& (~?[X]:(quiet(X)=>strong(X)))& (((creative(thomas))<~>(~~~~~brave(thomas))))& (funny(thomas))& (((~~~~happy(thomas))<~>(calm(thomas))))& (~~curious(thomas))& (~((wise(thomas))|(old(thomas))))& (~((creative(thomas))|(patient(thomas))))
room(thomas)&room(shawn)&room(humberto)&room(eddie)&room(alton)&(![X]:(room(X)=>(X='thomas'|X='shawn'|X='humberto'|X='eddie'|X='alton')))& creative(thomas)
[ "p7", "hypothesis" ]
% SZS status Unsatisfiable for 6326101887901898690112349 % SZS output start Proof for 6326101887901898690112349 51. ~(patient(mary) | creative(mary)) [input p7] 52. creative(mary) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 53. ~creative(mary) [pure predicate removal 51] 134. ~creative(mary) [ennf transformation 53] 135. creative(mary) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 52] 136. creative(mary) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 135] 232. ~creative(mary) [cnf transformation 134] 239. creative(mary) [cnf transformation 136] 241. 1 <=> creative(mary) [avatar definition] 260. ~1 [avatar split clause 232,241] 261. 1 [avatar split clause 239,241] 262. $false [avatar sat refutation 260,261] % SZS output end Proof for 6326101887901898690112349 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.669904
Kate, Tara are the only persons in the room. All kind persons are funny. Everyone in the room is funny if they is happy. Everyone in the room is a quiet person. Everyone in the room is quiet. Kate and Tara are kind. All kind persons are happy. Not everyone in the room either does not hate Roberta or is quiet but not both if they is a funny person. Kate is a client of Roberta. Not everyone outside the room is a quiet person. Everyone anywhere is a quiet person if they is a happy person. At least one person in the room is funny. At least one person in the room does not hate Roberta. Everyone outside the room is a funny person if they is funny. Everyone in the room is a kind person.
Tara is a client of Roberta.
neutral
room(kate)&room(tara)&(![X]:(room(X)=>(X='kate'|X='tara')))& (![X]:(kind(X)=>funny(X)))& (![X]:(room(X)=>(((happy(X))=>(funny(X))))))& (![X]:(room(X)=>(quiet(X)&person(X))))& (![X]:(room(X)=>(quiet(X))))& (kind(kate)&kind(tara))& (![X]:(kind(X)=>happy(X)))& (~![X]:(room(X)=>(((funny(X)&person(X))=>(((~hate(roberta,X))<~>(quiet(X))))))))& (client(roberta,kate))& (~![X]:(~room(X)=>(quiet(X)&person(X))))& (![X]:(anywhere(X)=>(((happy(X)&person(X))=>(quiet(X)&person(X))))))& (((?[X]:(room(X)&funny(X)))))& (((?[X]:(room(X)&~hate(roberta,X)))))& (![X]:(~room(X)=>(((funny(X))=>(funny(X)&person(X))))))& (![X]:(room(X)=>(kind(X)&person(X))))& (![X]:(room(X)=>(((funny(X)&person(X))=>(~hate(roberta,X))))))& (![X]:(room(X)=>(funny(X))))& (![X]:(room(X)=>(((quiet(X))<=(((quiet(X))<~>(~kind(X))))))))& (?[X,Y]:((~hate(roberta,X))&(((happy(Y))<~>(funny(Y)&person(Y))))&(client(X,Y))))& (![X]:(room(X)=>(((client(roberta,X))=>(quiet(X)&person(X))))))
room(kate)&room(tara)&(![X]:(room(X)=>(X='kate'|X='tara')))& client(roberta,tara)
[]
null
0.017559
Abby, Joleen, Caroline are the only persons in the room. “Everyone in the room collects antique clocks” if “everyone in the room does not drive a hybrid car” and vice versa. “Everyone in the room does not enjoy mountain biking or does enjoy mountain biking” only if “everyone in the room does not enjoy mountain biking if they writes and illustrates their own graphic novels and vice versa”. If “everyone in the room writes a travel blog” then “everyone in the room does not drive a hybrid car”. “Everyone outside the room is a skilled home brewer experimenting with craft beer recipes or does not collect antique clocks” if “everyone in the room writes a travel blog” and vice versa. Everyone in the room has completed a triathlon and enjoys making ceramics. Everyone outside the room does not have a saltwater aquarium if they does not play the drums and vice versa. Everyone in the room who does not play the drums plays the drums. Everyone in the room who plays the drums has a saltwater aquarium. Everyone in the room who has a saltwater aquarium collects antique clocks. Only one person anywhere maintains a large, organic vegetable garden year-round. Everyone outside the room does not host a YouTube channel dedicated to art tutorials only if they collects antique clocks. Everyone in the room who does not play the drums hosts a YouTube channel dedicated to art tutorials. Everyone in the room who either writes and illustrates their own graphic novels or does not enjoy making ceramics but not both either collects antique clocks or is passionate about collecting and restoring classic cars but not both. Everyone in the room does not drive a hybrid car. Everyone in the room is not a skilled home brewer experimenting with craft beer recipes only if they does not write a travel blog.
Caroline collects antique clocks.
entailment
room(abby)&room(joleen)&room(caroline)&(![X]:(room(X)=>(X='abby'|X='joleen'|X='caroline')))& ((![X]:(room(X)=>(does_not_drive_a_hybrid_car(X))))<=>(![X]:(room(X)=>(collects_antique_clocks(X)))))& ((![X]:(room(X)=>(((does_enjoy_mountain_biking(X))|(does_not_enjoy_mountain_biking(X))))))=>(![X]:(room(X)=>(((does_not_enjoy_mountain_biking(X))<=>(writes_and_illustrates_their_own_graphic_novels(X)))))))& ((![X]:(room(X)=>(writes_a_travel_blog(X))))=>(![X]:(room(X)=>(does_not_drive_a_hybrid_car(X)))))& ((![X]:(room(X)=>(writes_a_travel_blog(X))))<=>(![X]:(~room(X)=>(((does_not_collect_antique_clocks(X))|(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X)))))))& (![X]:(room(X)=>(((has_completed_a_triathlon(X))&(enjoys_making_ceramics(X))))))& (![X]:(~room(X)=>(((does_not_have_a_saltwater_aquarium(X))<=>(does_not_play_the_drums(X))))))& (![X]:(room(X)=>(((does_not_play_the_drums(X))=>(plays_the_drums(X))))))& (![X]:(room(X)=>(((plays_the_drums(X))=>(has_a_saltwater_aquarium(X))))))& (![X]:(room(X)=>(((has_a_saltwater_aquarium(X))=>(collects_antique_clocks(X))))))& (((?[X]:(anywhere(X)&maintains_a_large,_organic_vegetable_garden_year-round(X)))&(![X,Y]:((anywhere(X)&anywhere(Y)&(maintains_a_large,_organic_vegetable_garden_year-round(X))&(maintains_a_large,_organic_vegetable_garden_year-round(Y)))=>(X=Y)))))& (![X]:(~room(X)=>(((collects_antique_clocks(X))<=(does_not_host_a_YouTube_channel_dedicated_to_art_tutorials(X))))))& (![X]:(room(X)=>(((does_not_play_the_drums(X))=>(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))))& (![X]:(room(X)=>(((((writes_and_illustrates_their_own_graphic_novels(X))<~>(does_not_enjoy_making_ceramics(X))))=>(((collects_antique_clocks(X))<~>(is_passionate_about_collecting_and_restoring_classic_cars(X))))))))& (![X]:(room(X)=>(does_not_drive_a_hybrid_car(X))))& (![X]:(room(X)=>(((does_not_write_a_travel_blog(X))<=(is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))))))
room(abby)&room(joleen)&room(caroline)&(![X]:(room(X)=>(X='abby'|X='joleen'|X='caroline')))& collects_antique_clocks(caroline)
[ "p0", "p1", "p14", "hypothesis" ]
% SZS status Unsatisfiable for 8706959951267770763729810 % SZS output start Proof for 8706959951267770763729810 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 45. ! [X0] : (room(X0) => ~predi(X0)) <=> ! [X0] : (room(X0) => predm(X0)) [input p1] 58. ! [X0] : (room(X0) => ~predi(X0)) [input p14] 60. ~(predm(fred) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 61. ! [X0] : (room(X0) => ~predi(X0)) <=> ! [X1] : (room(X1) => predm(X1)) [rectify 45] 140. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 141. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 140] 142. ! [X0] : (~predi(X0) | ~room(X0)) <=> ! [X1] : (predm(X1) | ~room(X1)) [ennf transformation 61] 160. ! [X0] : (~predi(X0) | ~room(X0)) [ennf transformation 58] 163. ~predm(fred) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 60] 164. ~predm(fred) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 163] 166. (! [X0] : (~predi(X0) | ~room(X0)) | ? [X1] : (~predm(X1) & room(X1))) & (! [X1] : (predm(X1) | ~room(X1)) | ? [X0] : (predi(X0) & room(X0))) [nnf transformation 142] 167. (! [X0] : (~predi(X0) | ~room(X0)) | ? [X1] : (~predm(X1) & room(X1))) & (! [X2] : (predm(X2) | ~room(X2)) | ? [X3] : (predi(X3) & room(X3))) [rectify 166] 168. ? [X1] : (~predm(X1) & room(X1)) => (~predm(sK0) & room(sK0)) [choice axiom] 169. ? [X3] : (predi(X3) & room(X3)) => (predi(sK1) & room(sK1)) [choice axiom] 170. (! [X0] : (~predi(X0) | ~room(X0)) | (~predm(sK0) & room(sK0))) & (! [X2] : (predm(X2) | ~room(X2)) | (predi(sK1) & room(sK1))) [skolemisation 167,169,168] 187. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK7 & paul != sK7 & mary != sK7 & room(sK7)) [choice axiom] 188. ~predm(fred) | (fred != sK7 & paul != sK7 & mary != sK7 & room(sK7)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 164,187] 270. room(mary) [cnf transformation 141] 271. room(paul) [cnf transformation 141] 272. room(fred) [cnf transformation 141] 273. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 141] 274. predm(X2) | ~room(X2) | room(sK1) [cnf transformation 170] 275. predm(X2) | ~room(X2) | predi(sK1) [cnf transformation 170] 304. ~predi(X0) | ~room(X0) [cnf transformation 160] 306. ~predm(fred) | room(sK7) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 188] 307. ~predm(fred) | mary != sK7 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 188] 308. ~predm(fred) | paul != sK7 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 188] 309. ~predm(fred) | fred != sK7 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 188] 316. 2 <=> ! [X0] : (~predi(X0) | ~room(X0)) [avatar definition] 317. ~predi(X0) | ~room(X0) <- (2) [avatar component clause 316] 325. 4 <=> predi(sK1) [avatar definition] 327. predi(sK1) <- (4) [avatar component clause 325] 329. 5 <=> ! [X2] : (predm(X2) | ~room(X2)) [avatar definition] 330. ~room(X2) | predm(X2) <- (5) [avatar component clause 329] 331. 4 | 5 [avatar split clause 275,329,325] 333. 6 <=> room(sK1) [avatar definition] 336. 6 | 5 [avatar split clause 274,329,333] 403. 2 [avatar split clause 304,316] 404. ~predm(fred) | fred != sK7 | ~room(paul) | ~room(mary) [subsumption resolution 309,272] 405. ~predm(fred) | fred != sK7 | ~room(mary) [subsumption resolution 404,271] 406. ~predm(fred) | fred != sK7 [subsumption resolution 405,270] 408. 20 <=> fred = sK7 [avatar definition] 410. fred != sK7 <- (~20) [avatar component clause 408] 412. 21 <=> predm(fred) [avatar definition] 415. ~20 | ~21 [avatar split clause 406,412,408] 416. ~predm(fred) | paul != sK7 | ~room(paul) | ~room(mary) [subsumption resolution 308,272] 417. ~predm(fred) | paul != sK7 | ~room(mary) [subsumption resolution 416,271] 418. ~predm(fred) | paul != sK7 [subsumption resolution 417,270] 420. 22 <=> paul = sK7 [avatar definition] 422. paul != sK7 <- (~22) [avatar component clause 420] 423. ~22 | ~21 [avatar split clause 418,412,420] 424. ~predm(fred) | mary != sK7 | ~room(paul) | ~room(mary) [subsumption resolution 307,272] 425. ~predm(fred) | mary != sK7 | ~room(mary) [subsumption resolution 424,271] 426. ~predm(fred) | mary != sK7 [subsumption resolution 425,270] 428. 23 <=> mary = sK7 [avatar definition] 430. mary != sK7 <- (~23) [avatar component clause 428] 431. ~23 | ~21 [avatar split clause 426,412,428] 432. ~predm(fred) | room(sK7) | ~room(paul) | ~room(mary) [subsumption resolution 306,272] 433. ~predm(fred) | room(sK7) | ~room(mary) [subsumption resolution 432,271] 434. ~predm(fred) | room(sK7) [subsumption resolution 433,270] 436. 24 <=> room(sK7) [avatar definition] 438. room(sK7) <- (24) [avatar component clause 436] 439. 24 | ~21 [avatar split clause 434,412,436] 448. ~room(sK1) <- (2, 4) [resolution 317,327] 451. ~6 | ~2 | ~4 [avatar split clause 448,325,316,333] 454. predm(fred) <- (5) [resolution 330,272] 457. 21 | ~5 [avatar split clause 454,329,412] 578. paul = sK7 | mary = sK7 | fred = sK7 <- (24) [resolution 273,438] 579. mary = sK7 | fred = sK7 <- (~22, 24) [subsumption resolution 578,422] 580. fred = sK7 <- (~22, ~23, 24) [subsumption resolution 579,430] 581. $false <- (~20, ~22, ~23, 24) [subsumption resolution 580,410] 582. 20 | 22 | 23 | ~24 [avatar contradiction clause 581] 583. $false [avatar sat refutation 331,336,403,415,423,431,439,451,457,582] % SZS output end Proof for 8706959951267770763729810 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.040 s % ------------------------------ % ------------------------------
0.059752
Angelina is the only person in the room. Either “it is not the case that “Angelina trains for and competes in international triathlons and is a certified scuba diver with advanced underwater photography skills”” or “Angelina plays as a goalkeeper for a local amateur soccer team” but not both. If “Angelina trains for and competes in international triathlons” then “Angelina enjoys stargazing”. If “Angelina plays as a goalkeeper for a local amateur soccer team” then “more than one person in the room trains for and competes in international triathlons, plays as a goalkeeper for a local amateur soccer team or collects historical artifacts related to ancient civilizations”. Either “Angelina is a certified scuba diver with advanced underwater photography skills and enjoys stargazing” or “Angelina trains for and competes in international triathlons” but not both. “Angelina trains for and competes in international triathlons” only if “Angelina collects historical artifacts related to ancient civilizations”. More than one person anywhere enjoys stargazing. Only one person anywhere is a certified scuba diver with advanced underwater photography skills. Angelina trains for and competes in international triathlons. Angelina collects historical artifacts related to ancient civilizations. Angelina enjoys stargazing.
Not everyone in the room plays as a goalkeeper for a local amateur soccer team.
entailment
room(angelina)&(![X]:(room(X)=>(X='angelina')))& ((~(((trains_for_and_competes_in_international_triathlons(angelina))&(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(angelina)))))<~>(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(angelina)))& ((trains_for_and_competes_in_international_triathlons(angelina))=>(enjoys_stargazing(angelina)))& ((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(angelina))=>((?[X,Y]:(room(X)&room(Y)&(((trains_for_and_competes_in_international_triathlons(X))|(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))|(collects_historical_artifacts_related_to_ancient_civilizations(X)))&((trains_for_and_competes_in_international_triathlons(Y))|(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(Y))|(collects_historical_artifacts_related_to_ancient_civilizations(Y))))&(X!=Y)))))& ((((is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(angelina))&(enjoys_stargazing(angelina))))<~>(trains_for_and_competes_in_international_triathlons(angelina)))& ((trains_for_and_competes_in_international_triathlons(angelina))=>(collects_historical_artifacts_related_to_ancient_civilizations(angelina)))& ((?[X,Y]:(anywhere(X)&anywhere(Y)&(enjoys_stargazing(X)&enjoys_stargazing(Y))&(X!=Y))))& (((?[X]:(anywhere(X)&is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X)))&(![X,Y]:((anywhere(X)&anywhere(Y)&(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))&(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(Y)))=>(X=Y)))))& (trains_for_and_competes_in_international_triathlons(angelina))& (collects_historical_artifacts_related_to_ancient_civilizations(angelina))& (enjoys_stargazing(angelina))
room(angelina)&(![X]:(room(X)=>(X='angelina')))& ~![X]:(room(X)=>(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X)))
[ "p0", "p1", "p4", "p8", "p10", "hypothesis" ]
% SZS status Unsatisfiable for 4242335324893101153187217 % SZS output start Proof for 4242335324893101153187217 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 45. ~(prede(mary) & preda(mary)) <~> predd(mary) [input p1] 48. (predb(mary) & prede(mary)) <~> preda(mary) [input p4] 52. preda(mary) [input p8] 54. predb(mary) [input p10] 55. ~(~! [X0] : (room(X0) => predd(X0)) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 57. ~(~! [X0] : (room(X0) => predd(X0)) & ! [X1] : (room(X1) => mary = X1) & room(mary)) [rectify 55] 132. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 133. (~prede(mary) | ~preda(mary)) <~> predd(mary) [ennf transformation 45] 138. ! [X0] : (predd(X0) | ~room(X0)) | ? [X1] : (mary != X1 & room(X1)) | ~room(mary) [ennf transformation 57] 140. (~predd(mary) | (prede(mary) & preda(mary))) & (predd(mary) | (~prede(mary) | ~preda(mary))) [nnf transformation 133] 141. (~predd(mary) | (prede(mary) & preda(mary))) & (predd(mary) | ~prede(mary) | ~preda(mary)) [flattening 140] 144. (~preda(mary) | (~predb(mary) | ~prede(mary))) & (preda(mary) | (predb(mary) & prede(mary))) [nnf transformation 48] 145. (~preda(mary) | ~predb(mary) | ~prede(mary)) & (preda(mary) | (predb(mary) & prede(mary))) [flattening 144] 150. ? [X1] : (mary != X1 & room(X1)) => (mary != sK5 & room(sK5)) [choice axiom] 151. ! [X0] : (predd(X0) | ~room(X0)) | (mary != sK5 & room(sK5)) | ~room(mary) [skolemisation 138,150] 233. room(mary) [cnf transformation 132] 234. ~room(X0) | mary = X0 [cnf transformation 132] 237. ~predd(mary) | prede(mary) [cnf transformation 141] 244. ~preda(mary) | ~predb(mary) | ~prede(mary) [cnf transformation 145] 253. preda(mary) [cnf transformation 52] 254. predb(mary) [cnf transformation 54] 255. predd(X0) | ~room(X0) | room(sK5) | ~room(mary) [cnf transformation 151] 256. predd(X0) | ~room(X0) | mary != sK5 | ~room(mary) [cnf transformation 151] 258. 1 <=> prede(mary) [avatar definition] 262. 2 <=> predd(mary) [avatar definition] 264. ~predd(mary) <- (~2) [avatar component clause 262] 265. 1 | ~2 [avatar split clause 237,262,258] 267. 3 <=> preda(mary) [avatar definition] 273. 4 <=> predb(mary) [avatar definition] 292. ~1 | ~4 | ~3 [avatar split clause 244,267,273,258] 297. 3 [avatar split clause 253,267] 298. 4 [avatar split clause 254,273] 299. predd(X0) | ~room(X0) | mary != sK5 [subsumption resolution 256,233] 301. 8 <=> mary = sK5 [avatar definition] 303. mary != sK5 <- (~8) [avatar component clause 301] 305. 9 <=> ! [X0] : (predd(X0) | ~room(X0)) [avatar definition] 306. ~room(X0) | predd(X0) <- (9) [avatar component clause 305] 307. ~8 | 9 [avatar split clause 299,305,301] 308. predd(X0) | ~room(X0) | room(sK5) [subsumption resolution 255,233] 310. 10 <=> room(sK5) [avatar definition] 312. room(sK5) <- (10) [avatar component clause 310] 313. 10 | 9 [avatar split clause 308,305,310] 314. predd(mary) <- (9) [resolution 306,233] 315. $false <- (~2, 9) [subsumption resolution 314,264] 316. 2 | ~9 [avatar contradiction clause 315] 318. mary = sK5 <- (10) [resolution 234,312] 319. $false <- (~8, 10) [subsumption resolution 318,303] 320. 8 | ~10 [avatar contradiction clause 319] 321. $false [avatar sat refutation 265,292,297,298,307,313,316,320] % SZS output end Proof for 4242335324893101153187217 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.024 s % ------------------------------ % ------------------------------
0.620887
Harley, Ellen, Alvin are the only persons in the room. Harley is allergic to anything or owns a 3D printer or both. No one anywhere who plays as a goalkeeper for a local amateur soccer team streams on Twitch. Someone in the room is a tea enthusiast. Everyone anywhere who is allergic to anything drives a hybrid car. Everyone anywhere owns a 3D printer or builds model airplanes or both only if they collects action figures. Someone in the room enjoys stargazing. Everyone in the room streams on Twitch if they owns a significant collection of rare gemstones and minerals. Ellen hosts themed dinner parties featuring gourmet home-cooked meals. Only one person in the room does not drive a hybrid car. Everyone in the room who is not a wine connoisseur with a private cellar of vintage wines mentors a youth basketball team on weekends. It is true that “everyone in the room is passionate about collecting and restoring classic cars only if they hosts a popular podcast about emerging technologies”. Alvin trains for and competes in international triathlons. Everyone anywhere is a scotch connoisseur only if they trains for and competes in international triathlons. Everyone in the room who mentors a youth basketball team on weekends has a tattoo. Harley collects action figures. Everyone in the room hosts themed dinner parties featuring gourmet home-cooked meals if they does not host a popular podcast about emerging technologies. Everyone in the room does not collect action figures if they is an avid hiker.
Alvin trains for and competes in international triathlons or has a tattoo or both.
entailment
room(harley)&room(ellen)&room(alvin)&(![X]:(room(X)=>(X='harley'|X='ellen'|X='alvin')))& (((is_allergic_to_anything(harley))|(owns_a_3D_printer(harley))))& (~?[X]:(anywhere(X)=>(((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))=>(streams_on_Twitch(X))))))& (?[X]:(room(X)&(is_a_tea_enthusiast(X))))& (![X]:(anywhere(X)=>(((is_allergic_to_anything(X))=>(drives_a_hybrid_car(X))))))& (![X]:(anywhere(X)=>(((collects_action_figures(X))<=(((owns_a_3D_printer(X))|(builds_model_airplanes(X))))))))& (?[X]:(room(X)&(enjoys_stargazing(X))))& (![X]:(room(X)=>(((owns_a_significant_collection_of_rare_gemstones_and_minerals(X))=>(streams_on_Twitch(X))))))& (hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(ellen))& (((?[X]:(room(X)&does_not_drive_a_hybrid_car(X)))&(![X,Y]:((room(X)&room(Y)&(does_not_drive_a_hybrid_car(X))&(does_not_drive_a_hybrid_car(Y)))=>(X=Y)))))& (![X]:(room(X)=>(((is_not_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))=>(mentors_a_youth_basketball_team_on_weekends(X))))))& (![X]:(room(X)=>(((hosts_a_popular_podcast_about_emerging_technologies(X))<=(is_passionate_about_collecting_and_restoring_classic_cars(X))))))& (trains_for_and_competes_in_international_triathlons(alvin))& (![X]:(anywhere(X)=>(((trains_for_and_competes_in_international_triathlons(X))<=(is_a_scotch_connoisseur(X))))))& (![X]:(room(X)=>(((mentors_a_youth_basketball_team_on_weekends(X))=>(has_a_tattoo(X))))))& (collects_action_figures(harley))& (![X]:(room(X)=>(((does_not_host_a_popular_podcast_about_emerging_technologies(X))=>(hosts_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))))))& (![X]:(room(X)=>(((is_an_avid_hiker(X))=>(does_not_collect_action_figures(X))))))& (![X]:(~room(X)=>(((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))=>(is_a_tea_enthusiast(X))))))& (![X]:(room(X)=>(((is_a_tea_enthusiast(X))=>(collects_action_figures(X))))))& (drives_a_hybrid_car(ellen))& (~![X]:(room(X)=>(((is_a_chess_master_who_participates_in_national_tournaments(X))=>(drives_a_hybrid_car(X))))))& (![X]:(room(X)=>(((is_not_a_dedicated_advocate_for_digital_privacy_and_encryption(X))|(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))))))& (![X]:(room(X)=>(((is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))=>(is_a_certified_yoga_instructor_teaching_classes_weekly(X))))))& (is_a_chess_master_who_participates_in_national_tournaments(ellen))& (![X]:(room(X)=>(((does_not_drive_a_hybrid_car(X))=>(((is_a_chess_master_who_participates_in_national_tournaments(X))|(is_a_certified_yoga_instructor_teaching_classes_weekly(X))))))))& (![X]:(room(X)=>(((((is_a_chess_master_who_participates_in_national_tournaments(X))|(is_a_certified_yoga_instructor_teaching_classes_weekly(X))))=>(((streams_on_Twitch(X))<~>(is_an_avid_hiker(X))))))))
room(harley)&room(ellen)&room(alvin)&(![X]:(room(X)=>(X='harley'|X='ellen'|X='alvin')))& ((trains_for_and_competes_in_international_triathlons(alvin))|(has_a_tattoo(alvin)))
[ "p0", "p12", "hypothesis" ]
% SZS status Unsatisfiable for 8322533414000842053680465 % SZS output start Proof for 8322533414000842053680465 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 56. predj(fred) [input p12] 71. ~((predq(fred) | predj(fred)) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 78. ~(predj(fred) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [pure predicate removal 71] 154. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 155. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 154] 180. ~predj(fred) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 78] 181. ~predj(fred) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 180] 192. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK4 & paul != sK4 & mary != sK4 & room(sK4)) [choice axiom] 193. ~predj(fred) | (fred != sK4 & paul != sK4 & mary != sK4 & room(sK4)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 181,192] 275. room(mary) [cnf transformation 155] 276. room(paul) [cnf transformation 155] 277. room(fred) [cnf transformation 155] 278. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 155] 291. predj(fred) [cnf transformation 56] 308. ~predj(fred) | room(sK4) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 193] 309. ~predj(fred) | mary != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 193] 310. ~predj(fred) | paul != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 193] 311. ~predj(fred) | fred != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 193] 326. fred != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 311,291] 327. fred != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 326,277] 328. fred != sK4 | ~room(mary) [subsumption resolution 327,276] 329. fred != sK4 [subsumption resolution 328,275] 330. paul != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 310,291] 331. paul != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 330,277] 332. paul != sK4 | ~room(mary) [subsumption resolution 331,276] 333. paul != sK4 [subsumption resolution 332,275] 334. mary != sK4 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 309,291] 335. mary != sK4 | ~room(paul) | ~room(mary) [subsumption resolution 334,277] 336. mary != sK4 | ~room(mary) [subsumption resolution 335,276] 337. mary != sK4 [subsumption resolution 336,275] 338. room(sK4) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 308,291] 339. room(sK4) | ~room(paul) | ~room(mary) [subsumption resolution 338,277] 340. room(sK4) | ~room(mary) [subsumption resolution 339,276] 341. room(sK4) [subsumption resolution 340,275] 514. paul = sK4 | mary = sK4 | fred = sK4 [resolution 278,341] 567. mary = sK4 | fred = sK4 [subsumption resolution 514,333] 568. fred = sK4 [subsumption resolution 567,337] 569. $false [subsumption resolution 568,329] % SZS output end Proof for 8322533414000842053680465 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.032 s % ------------------------------ % ------------------------------
0.181448
There is a room. Everyone in the room is a old person if they is a quiet person if at least one person anywhere is not a kind old person. If everyone in the room is not a kind person then everyone in the room is a kind person if they is not a tall person otherwise if someone is not a quiet person then he/she is a tall person and vice versa. Everyone in the room is not a kind quiet person. Everyone in the room is not old or is a kind person or both if they is not a tall person. No one in the room who is not old or is a kind person or both is a old person. All old persons are quiet. Everyone in the room is a quiet kind person if they is a quiet old kind person. Everyone in the room is a quiet person if they is a old tall person. Everyone in the room is not a quiet person if they is a kind person.
Everyone in the room is a tall person.
entailment
(there_is_a_room)& ((((?[X]:(anywhere(X)&~(kind(X)&old(X)&person(X))))))=>(![X]:(room(X)=>(((quiet(X)&person(X))=>(old(X)&person(X)))))))& (((![X]:(room(X)=>(~(kind(X)&person(X)))))=>(![X]:(room(X)=>(((~(tall(X)&person(X)))=>(kind(X)&person(X)))))))&((~(![X]:(room(X)=>(~(kind(X)&person(X))))))=>((![X]:((~(quiet(X)&person(X)))<=>(tall(X)&person(X)))))))& (![X]:(room(X)=>(~(kind(X)&quiet(X)&person(X)))))& (![X]:(room(X)=>(((~(tall(X)&person(X)))=>(((~old(X))|(kind(X)&person(X))))))))& (~?[X]:(room(X)=>(((((~old(X))|(kind(X)&person(X))))=>(old(X)&person(X))))))& (![X]:(old(X)=>quiet(X)))& (![X]:(room(X)=>(((quiet(X)&old(X)&kind(X)&person(X))=>(quiet(X)&kind(X)&person(X))))))& (![X]:(room(X)=>(((old(X)&tall(X)&person(X))=>(quiet(X)&person(X))))))& (![X]:(room(X)=>(((kind(X)&person(X))=>(~(quiet(X)&person(X)))))))
(there_is_a_room)& ![X]:(room(X)=>(tall(X)&person(X)))
[ "b4", "p0", "p1", "p2", "p5", "hypothesis" ]
% SZS status Unsatisfiable for 7055132435771702702747665 % SZS output start Proof for 7055132435771702702747665 5. ! [X0] : anywhere(X0) [input b4] 44. there_is_a_room [input p0] 45. ? [X0] : (~(person(X0) & old(X0) & kind(X0)) & anywhere(X0)) => ! [X0] : (room(X0) => ((person(X0) & quiet(X0)) => (person(X0) & old(X0)))) [input p1] 46. (~! [X0] : (room(X0) => ~(person(X0) & kind(X0))) => ! [X0] : (~(person(X0) & quiet(X0)) <=> (person(X0) & tall(X0)))) & (! [X0] : (room(X0) => ~(person(X0) & kind(X0))) => ! [X0] : (room(X0) => (~(person(X0) & tall(X0)) => (person(X0) & kind(X0))))) [input p2] 49. ~? [X0] : (room(X0) => (((person(X0) & kind(X0)) | ~old(X0)) => (person(X0) & old(X0)))) [input p5] 54. ~(! [X0] : (room(X0) => (person(X0) & tall(X0))) & there_is_a_room) [input hypothesis] 55. ? [X0] : (~(person(X0) & old(X0) & kind(X0)) & anywhere(X0)) => ! [X1] : (room(X1) => ((person(X1) & quiet(X1)) => (person(X1) & old(X1)))) [rectify 45] 56. (~! [X0] : (room(X0) => ~(person(X0) & kind(X0))) => ! [X1] : (~(person(X1) & quiet(X1)) <=> (person(X1) & tall(X1)))) & (! [X2] : (room(X2) => ~(person(X2) & kind(X2))) => ! [X3] : (room(X3) => (~(person(X3) & tall(X3)) => (person(X3) & kind(X3))))) [rectify 46] 128. ! [X1] : (((person(X1) & old(X1)) | (~person(X1) | ~quiet(X1))) | ~room(X1)) | ! [X0] : ((person(X0) & old(X0) & kind(X0)) | ~anywhere(X0)) [ennf transformation 55] 129. ! [X1] : ((person(X1) & old(X1)) | ~person(X1) | ~quiet(X1) | ~room(X1)) | ! [X0] : ((person(X0) & old(X0) & kind(X0)) | ~anywhere(X0)) [flattening 128] 130. (! [X1] : ((~person(X1) | ~quiet(X1)) <=> (person(X1) & tall(X1))) | ! [X0] : ((~person(X0) | ~kind(X0)) | ~room(X0))) & (! [X3] : (((person(X3) & kind(X3)) | (person(X3) & tall(X3))) | ~room(X3)) | ? [X2] : ((person(X2) & kind(X2)) & room(X2))) [ennf transformation 56] 131. (! [X1] : ((~person(X1) | ~quiet(X1)) <=> (person(X1) & tall(X1))) | ! [X0] : (~person(X0) | ~kind(X0) | ~room(X0))) & (! [X3] : ((person(X3) & kind(X3)) | (person(X3) & tall(X3)) | ~room(X3)) | ? [X2] : (person(X2) & kind(X2) & room(X2))) [flattening 130] 136. ! [X0] : (((~person(X0) | ~old(X0)) & ((person(X0) & kind(X0)) | ~old(X0))) & room(X0)) [ennf transformation 49] 137. ! [X0] : ((~person(X0) | ~old(X0)) & ((person(X0) & kind(X0)) | ~old(X0)) & room(X0)) [flattening 136] 145. ? [X0] : ((~person(X0) | ~tall(X0)) & room(X0)) | ~there_is_a_room [ennf transformation 54] 146. ! [X3] : ((person(X3) & kind(X3)) | (person(X3) & tall(X3)) | ~room(X3)) | ~sP0 [predicate definition introduction] 147. (! [X1] : ((~person(X1) | ~quiet(X1)) <=> (person(X1) & tall(X1))) | ! [X0] : (~person(X0) | ~kind(X0) | ~room(X0))) & (sP0 | ? [X2] : (person(X2) & kind(X2) & room(X2))) [definition folding 131,146] 149. ! [X0] : ((person(X0) & old(X0)) | ~person(X0) | ~quiet(X0) | ~room(X0)) | ! [X1] : ((person(X1) & old(X1) & kind(X1)) | ~anywhere(X1)) [rectify 129] 150. ! [X3] : ((person(X3) & kind(X3)) | (person(X3) & tall(X3)) | ~room(X3)) | ~sP0 [nnf transformation 146] 151. ! [X0] : ((person(X0) & kind(X0)) | (person(X0) & tall(X0)) | ~room(X0)) | ~sP0 [rectify 150] 152. (! [X1] : (((~person(X1) | ~quiet(X1)) | (~person(X1) | ~tall(X1))) & ((person(X1) & tall(X1)) | (person(X1) & quiet(X1)))) | ! [X0] : (~person(X0) | ~kind(X0) | ~room(X0))) & (sP0 | ? [X2] : (person(X2) & kind(X2) & room(X2))) [nnf transformation 147] 153. (! [X1] : ((~person(X1) | ~quiet(X1) | ~person(X1) | ~tall(X1)) & ((person(X1) & tall(X1)) | (person(X1) & quiet(X1)))) | ! [X0] : (~person(X0) | ~kind(X0) | ~room(X0))) & (sP0 | ? [X2] : (person(X2) & kind(X2) & room(X2))) [flattening 152] 154. (! [X0] : ((~person(X0) | ~quiet(X0) | ~person(X0) | ~tall(X0)) & ((person(X0) & tall(X0)) | (person(X0) & quiet(X0)))) | ! [X1] : (~person(X1) | ~kind(X1) | ~room(X1))) & (sP0 | ? [X2] : (person(X2) & kind(X2) & room(X2))) [rectify 153] 155. ? [X2] : (person(X2) & kind(X2) & room(X2)) => (person(sK1) & kind(sK1) & room(sK1)) [choice axiom] 156. (! [X0] : ((~person(X0) | ~quiet(X0) | ~person(X0) | ~tall(X0)) & ((person(X0) & tall(X0)) | (person(X0) & quiet(X0)))) | ! [X1] : (~person(X1) | ~kind(X1) | ~room(X1))) & (sP0 | (person(sK1) & kind(sK1) & room(sK1))) [skolemisation 154,155] 157. ? [X0] : ((~person(X0) | ~tall(X0)) & room(X0)) => ((~person(sK2) | ~tall(sK2)) & room(sK2)) [choice axiom] 158. ((~person(sK2) | ~tall(sK2)) & room(sK2)) | ~there_is_a_room [skolemisation 145,157] 159. anywhere(X0) [cnf transformation 5] 240. there_is_a_room [cnf transformation 44] 242. old(X0) | ~person(X0) | ~quiet(X0) | ~room(X0) | old(X1) | ~anywhere(X1) [cnf transformation 149] 247. kind(X0) | tall(X0) | ~room(X0) | ~sP0 [cnf transformation 151] 250. person(X0) | person(X0) | ~room(X0) | ~sP0 [cnf transformation 151] 252. sP0 | kind(sK1) [cnf transformation 156] 253. sP0 | person(sK1) [cnf transformation 156] 254. tall(X0) | quiet(X0) | ~person(X1) | ~kind(X1) | ~room(X1) [cnf transformation 156] 257. person(X0) | person(X0) | ~person(X1) | ~kind(X1) | ~room(X1) [cnf transformation 156] 264. room(X0) [cnf transformation 137] 266. person(X0) | ~old(X0) [cnf transformation 137] 267. ~old(X0) | ~person(X0) [cnf transformation 137] 276. ~person(sK2) | ~tall(sK2) | ~there_is_a_room [cnf transformation 158] 279. person(X0) | ~person(X1) | ~kind(X1) | ~room(X1) [duplicate literal removal 257] 281. person(X0) | ~room(X0) | ~sP0 [duplicate literal removal 250] 284. 1 <=> ! [X1] : person(X1) [avatar definition] 285. person(X1) <- (1) [avatar component clause 284] 287. 2 <=> ! [X0] : (old(X0) | ~room(X0) | ~quiet(X0) | ~person(X0)) [avatar definition] 288. old(X0) | ~room(X0) | ~quiet(X0) | ~person(X0) <- (2) [avatar component clause 287] 290. old(X0) | ~person(X0) | ~quiet(X0) | ~room(X0) | old(X1) [subsumption resolution 242,159] 292. 3 <=> ! [X1] : old(X1) [avatar definition] 293. old(X1) <- (3) [avatar component clause 292] 294. 3 | 2 [avatar split clause 290,287,292] 301. 5 <=> sP0 [avatar definition] 305. 6 <=> ! [X0] : (person(X0) | ~room(X0)) [avatar definition] 306. person(X0) | ~room(X0) <- (6) [avatar component clause 305] 307. ~5 | 6 [avatar split clause 281,305,301] 317. 9 <=> ! [X0] : (kind(X0) | ~room(X0) | tall(X0)) [avatar definition] 318. kind(X0) | ~room(X0) | tall(X0) <- (9) [avatar component clause 317] 319. ~5 | 9 [avatar split clause 247,317,301] 321. 10 <=> ! [X1] : (~person(X1) | ~room(X1) | ~kind(X1)) [avatar definition] 322. ~person(X1) | ~room(X1) | ~kind(X1) <- (10) [avatar component clause 321] 327. 10 | 1 [avatar split clause 279,284,321] 337. 14 <=> ! [X0] : (tall(X0) | quiet(X0)) [avatar definition] 338. tall(X0) | quiet(X0) <- (14) [avatar component clause 337] 339. 10 | 14 [avatar split clause 254,337,321] 341. 15 <=> person(sK1) [avatar definition] 342. ~person(sK1) <- (~15) [avatar component clause 341] 344. 15 | 5 [avatar split clause 253,301,341] 346. 16 <=> kind(sK1) [avatar definition] 348. kind(sK1) <- (16) [avatar component clause 346] 349. 16 | 5 [avatar split clause 252,301,346] 355. ~old(X0) [subsumption resolution 266,267] 356. ~person(sK2) | ~tall(sK2) [subsumption resolution 276,240] 358. 18 <=> tall(sK2) [avatar definition] 360. ~tall(sK2) <- (~18) [avatar component clause 358] 362. 19 <=> person(sK2) [avatar definition] 364. ~person(sK2) <- (~19) [avatar component clause 362] 365. ~18 | ~19 [avatar split clause 356,362,358] 366. ~kind(X1) | ~person(X1) <- (10) [subsumption resolution 322,264] 367. tall(X0) | kind(X0) <- (9) [subsumption resolution 318,264] 373. ~room(X0) | ~quiet(X0) | ~person(X0) <- (2) [subsumption resolution 288,355] 374. ~quiet(X0) | ~person(X0) <- (2) [subsumption resolution 373,264] 377. ~person(sK1) <- (10, 16) [resolution 366,348] 380. ~15 | ~10 | ~16 [avatar split clause 377,346,321,341] 381. person(X0) <- (6) [subsumption resolution 306,264] 382. 1 | ~6 [avatar split clause 381,305,284] 383. $false <- (1, ~15) [resolution 342,285] 384. ~1 | 15 [avatar contradiction clause 383] 385. $false <- (1, ~19) [resolution 364,285] 386. ~1 | 19 [avatar contradiction clause 385] 388. kind(sK2) <- (9, ~18) [resolution 367,360] 389. ~person(sK2) <- (9, 10, ~18) [resolution 388,366] 390. $false <- (1, 9, 10, ~18) [subsumption resolution 389,285] 391. ~1 | ~9 | ~10 | 18 [avatar contradiction clause 390] 392. quiet(sK2) <- (14, ~18) [resolution 338,360] 394. ~person(sK2) <- (2, 14, ~18) [resolution 374,392] 395. $false <- (1, 2, 14, ~18) [subsumption resolution 394,285] 396. ~1 | ~2 | ~14 | 18 [avatar contradiction clause 395] 398. $false <- (3) [subsumption resolution 293,355] 399. ~3 [avatar contradiction clause 398] 400. $false [avatar sat refutation 294,307,319,327,339,344,349,365,380,382,384,386,391,396,399] % SZS output end Proof for 7055132435771702702747665 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.032 s % ------------------------------ % ------------------------------
0.130055
Alisha is the only person in the room. “It is not the case that “it is not the case that “it is not the case that “Clarence is richer than Alisha”””” only if “someone who is older than Clarence is quieter than someone who is quieter than Elizabeth”. Someone who is older than Clarence is quieter than someone who is quieter than Elizabeth. Mattie is richer than Alisha. If someone is a old person then he/she is a quiet tall old person. Someone who is richer than Clarence is older than someone who is older than Clarence. If someone is a tall person then he/she is older than Mattie and vice versa. If someone is a quiet old tall person then he/she is a tall person. It is not the case that “it is not the case that “it is not the case that “Elizabeth is quieter than Alisha”””. Mattie is older than Alisha. If someone is richer than Elizabeth then he/she is quieter than Mattie. Only one person in the room is quieter than Elizabeth. If someone is older than Mattie then he/she is not old. It is not the case that “Clarence is quieter than Alisha”. Mattie is quieter than Alisha. If someone is older than Clarence then he/she is richer than Clarence and vice versa. Someone who is older than Clarence is quieter than someone who is older than Mattie. Someone who is a quiet tall person is richer than someone who is tall. Elizabeth is older than Alisha.
Alisha is quieter than Clarence.
neutral
room(alisha)&(![X]:(room(X)=>(X='alisha')))& ((~(~(~(richer(alisha,clarence)))))=>(?[X,Y]:((older(clarence,X))&(quieter(elizabeth,Y))&(quieter(X,Y)))))& (?[X,Y]:((older(clarence,X))&(quieter(elizabeth,Y))&(quieter(X,Y))))& (richer(alisha,mattie))& ((![X]:((old(X)&person(X))=>(quiet(X)&tall(X)&old(X)&person(X)))))& (?[X,Y]:((richer(clarence,X))&(older(clarence,Y))&(older(X,Y))))& ((![X]:((tall(X)&person(X))<=>(older(mattie,X)))))& ((![X]:((quiet(X)&old(X)&tall(X)&person(X))=>(tall(X)&person(X)))))& (~(~(~(quieter(alisha,elizabeth)))))& (older(alisha,mattie))& ((![X]:((richer(elizabeth,X))=>(quieter(mattie,X)))))& (((?[X]:(room(X)&quieter(elizabeth,X)))&(![X,Y]:((room(X)&room(Y)&(quieter(elizabeth,X))&(quieter(elizabeth,Y)))=>(X=Y)))))& ((![X]:((older(mattie,X))=>(~old(X)))))& (~(quieter(alisha,clarence)))& (quieter(alisha,mattie))& ((![X]:((older(clarence,X))<=>(richer(clarence,X)))))& (?[X,Y]:((older(clarence,X))&(older(mattie,Y))&(quieter(X,Y))))& (?[X,Y]:((quiet(X)&tall(X)&person(X))&(tall(Y))&(richer(X,Y))))& (older(alisha,elizabeth))
room(alisha)&(![X]:(room(X)=>(X='alisha')))& quieter(clarence,alisha)
[]
null
0.511004
Rogelio, Daniel are the only persons in the room. If someone does not own a telescope then he/she does not practice pilates. If someone does not enjoy camping and organizing outdoor survival workshops then he/she does not collect antique clocks. If someone does not enjoy cross-country skiing, does not use contact lenses and does not enjoy making ceramics then he/she does not enjoy windsurfing, does not host a popular podcast about emerging technologies and is not a wine connoisseur. If someone does not enjoy stargazing then he/she does not use contact lenses. Only one person in the room does not own a telescope. Only one person in the room does not enjoy windsurfing, does not enjoy camping and organizing outdoor survival workshops and does not own a telescope.
Everyone in the room does not enjoy camping and organizing outdoor survival workshops or enjoys kayaking and exploring remote waterways.
neutral
room(rogelio)&room(daniel)&(![X]:(room(X)=>(X='rogelio'|X='daniel')))& ((![X]:((does_not_own_a_telescope(X))=>(does_not_practice_pilates(X)))))& ((![X]:((does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))=>(does_not_collect_antique_clocks(X)))))& ((![X]:((((does_not_enjoy_cross-country_skiing(X))&(does_not_use_contact_lenses(X))&(does_not_enjoy_making_ceramics(X))))=>(((does_not_enjoy_windsurfing(X))&(does_not_host_a_popular_podcast_about_emerging_technologies(X))&(is_not_a_wine_connoisseur(X)))))))& ((![X]:((does_not_enjoy_stargazing(X))=>(does_not_use_contact_lenses(X)))))& (((?[X]:(room(X)&does_not_own_a_telescope(X)))&(![X,Y]:((room(X)&room(Y)&(does_not_own_a_telescope(X))&(does_not_own_a_telescope(Y)))=>(X=Y)))))& (((?[X]:(room(X)&((does_not_enjoy_windsurfing(X))&(does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))&(does_not_own_a_telescope(X)))))&(![X,Y]:((room(X)&room(Y)&(((does_not_enjoy_windsurfing(X))&(does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X))&(does_not_own_a_telescope(X))))&(((does_not_enjoy_windsurfing(Y))&(does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(Y))&(does_not_own_a_telescope(Y)))))=>(X=Y)))))& (((?[X]:(room(X)&((does_not_enjoy_windsurfing(X))&(does_not_collect_antique_clocks(X))&(does_not_practice_pilates(X)))))&(![X,Y]:((room(X)&room(Y)&(((does_not_enjoy_windsurfing(X))&(does_not_collect_antique_clocks(X))&(does_not_practice_pilates(X))))&(((does_not_enjoy_windsurfing(Y))&(does_not_collect_antique_clocks(Y))&(does_not_practice_pilates(Y)))))=>(X=Y)))))& ((![X]:((does_not_collect_antique_jewelry(X))=>(does_not_use_an_ios_phone(X)))))& ((does_not_use_contact_lenses(rogelio))&(does_not_collect_action_figures(rogelio)))& ((does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(daniel))&(does_not_use_an_ios_phone(daniel)))& ((![X]:((does_not_enjoy_cross-country_skiing(X))=>(does_not_make_intricate_hand-cut_paper_art_for_exhibitions(X)))))& ((![X]:((((is_not_a_wine_connoisseur(X))&(does_not_enjoy_kayaking_and_exploring_remote_waterways(X))&(does_not_collect_antique_clocks(X))))=>(does_not_have_lived_in_exactly_three_countries(X)))))& ((![X]:((does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(X))=>(((does_not_have_a_tattoo(X))&(does_not_collect_action_figures(X))&(does_not_use_contact_lenses(X)))))))& ((does_not_frequently_participates_in_hackathons_and_coding_competitions(daniel))&(does_not_enjoy_kayaking_and_exploring_remote_waterways(daniel)))& ((![X]:((((does_not_host_themed_dinner_parties_featuring_gourmet_home-cooked_meals(X))&(does_not_have_a_tattoo(X))&(does_not_collect_antique_clocks(X))))=>(((does_not_collect_antique_clocks(X))&(does_not_enjoy_cross-country_skiing(X))&(does_not_host_a_popular_podcast_about_emerging_technologies(X)))))))& ((![X]:((does_not_collect_action_figures(X))=>(does_not_host_a_YouTube_channel_dedicated_to_art_tutorials(X)))))
room(rogelio)&room(daniel)&(![X]:(room(X)=>(X='rogelio'|X='daniel')))& ![X]:(room(X)=>(((enjoys_kayaking_and_exploring_remote_waterways(X))|(does_not_enjoy_camping_and_organizing_outdoor_survival_workshops(X)))))
[]
null
0.637826
There is a room. If “everyone in the room is a professional photographer specializing in portrait photography or does not write a travel blog” then “everyone in the room is a professional photographer specializing in portrait photography only if they writes a travel blog”. Everyone in the room who writes a travel blog is a professional photographer specializing in portrait photography. Everyone in the room who is a professional photographer specializing in portrait photography plays eSports competitively. Not everyone in the room who plays eSports competitively is a professional photographer specializing in portrait photography. Everyone anywhere plays eSports competitively or does not write a travel blog. Everyone in the room is a professional photographer specializing in portrait photography or does not write a travel blog. Everyone in the room is a professional photographer specializing in portrait photography only if they writes a travel blog. Everyone outside the room who is a professional photographer specializing in portrait photography either is a professional photographer specializing in portrait photography or watches fantasy movies but not both. Everyone in the room who watches fantasy movies writes a travel blog. Everyone in the room who is a professional photographer specializing in portrait photography watches fantasy movies. Everyone outside the room writes a travel blog or is not a professional photographer specializing in portrait photography.
Everyone outside the room is a professional photographer specializing in portrait photography.
neutral
(there_is_a_room)& ((![X]:(room(X)=>(((does_not_write_a_travel_blog(X))|(is_a_professional_photographer_specializing_in_portrait_photography(X))))))=>(![X]:(room(X)=>(((writes_a_travel_blog(X))<=(is_a_professional_photographer_specializing_in_portrait_photography(X)))))))& (![X]:(room(X)=>(((writes_a_travel_blog(X))=>(is_a_professional_photographer_specializing_in_portrait_photography(X))))))& (![X]:(room(X)=>(((is_a_professional_photographer_specializing_in_portrait_photography(X))=>(plays_eSports_competitively(X))))))& (~![X]:(room(X)=>(((plays_eSports_competitively(X))=>(is_a_professional_photographer_specializing_in_portrait_photography(X))))))& (![X]:(anywhere(X)=>(((does_not_write_a_travel_blog(X))|(plays_eSports_competitively(X))))))& (![X]:(room(X)=>(((does_not_write_a_travel_blog(X))|(is_a_professional_photographer_specializing_in_portrait_photography(X))))))& (![X]:(room(X)=>(((writes_a_travel_blog(X))<=(is_a_professional_photographer_specializing_in_portrait_photography(X))))))& (![X]:(~room(X)=>(((is_a_professional_photographer_specializing_in_portrait_photography(X))=>(((is_a_professional_photographer_specializing_in_portrait_photography(X))<~>(watches_fantasy_movies(X))))))))& (![X]:(room(X)=>(((watches_fantasy_movies(X))=>(writes_a_travel_blog(X))))))& (![X]:(room(X)=>(((is_a_professional_photographer_specializing_in_portrait_photography(X))=>(watches_fantasy_movies(X))))))& (![X]:(~room(X)=>(((is_not_a_professional_photographer_specializing_in_portrait_photography(X))|(writes_a_travel_blog(X))))))
(there_is_a_room)& ![X]:(~room(X)=>(is_a_professional_photographer_specializing_in_portrait_photography(X)))
[]
null
0.673407
Terry, Robert, Ricardo, Randy, Alysha are the only persons in the room. Not everyone in the room who participates in citizen science projects related to wildlife monitoring is an avid collector of autographed memorabilia from famous musicians. More than one person anywhere participates in citizen science projects related to wildlife monitoring. Everyone in the room who streams on Twitch hosts a popular podcast about emerging technologies. More than one person in the room travels domestically frequently. More than one person in the room regularly goes on multi-day backpacking trips in national parks. Everyone outside the room who is an avid collector of autographed memorabilia from famous musicians owns a microscope. Someone in the room plays eSports competitively. Robert owns a microscope. Someone in the room travels domestically frequently.
Everyone in the room is not an avid collector of autographed memorabilia from famous musicians or streams on Twitch.
neutral
room(terry)&room(robert)&room(ricardo)&room(randy)&room(alysha)&(![X]:(room(X)=>(X='terry'|X='robert'|X='ricardo'|X='randy'|X='alysha')))& (~![X]:(room(X)=>(((participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))=>(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))))))& ((?[X,Y]:(anywhere(X)&anywhere(Y)&(participates_in_citizen_science_projects_related_to_wildlife_monitoring(X)&participates_in_citizen_science_projects_related_to_wildlife_monitoring(Y))&(X!=Y))))& (![X]:(room(X)=>(((streams_on_Twitch(X))=>(hosts_a_popular_podcast_about_emerging_technologies(X))))))& ((?[X,Y]:(room(X)&room(Y)&(travels_domestically_frequently(X)&travels_domestically_frequently(Y))&(X!=Y))))& ((?[X,Y]:(room(X)&room(Y)&(regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X)&regularly_goes_on_multi-day_backpacking_trips_in_national_parks(Y))&(X!=Y))))& (![X]:(~room(X)=>(((is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))=>(owns_a_microscope(X))))))& (?[X]:(room(X)&(plays_eSports_competitively(X))))& (owns_a_microscope(robert))& (?[X]:(room(X)&(travels_domestically_frequently(X))))
room(terry)&room(robert)&room(ricardo)&room(randy)&room(alysha)&(![X]:(room(X)=>(X='terry'|X='robert'|X='ricardo'|X='randy'|X='alysha')))& ![X]:(room(X)=>(((streams_on_Twitch(X))|(is_not_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X)))))
[]
null
0
Cortney is the only person in the room. It is not the case that “Cortney is not tall”. Cortney is a quiet person. Cortney is richer than Juli. Cortney is older than Robert. Everyone in the room neither is a quiet person nor is older than Robert if they is a tall person, is richer than Juli and is quieter than Robert and vice versa.
Cortney is quieter than Robert.
contradiction
room(cortney)&(![X]:(room(X)=>(X='cortney')))& (((~((quieter(robert,cortney))|(richer(robert,cortney))))=>((![X]:((happy(X))=>(((~(tall(X)&person(X)))|(~(creative(X)&person(X)))))))))&((~(~((quieter(robert,cortney))|(richer(robert,cortney)))))=>(quieter(julio,cortney))))& ((calm(cortney)&person(cortney))<=>(~curious(cortney)))& ((calm(cortney))=>((tall(cortney)&person(cortney))&(((wise(cortney)&calm(cortney)&person(cortney))<~>(generous(cortney)&person(cortney))))))& ((brave(cortney)&person(cortney))=>(~(patient(cortney)&old(cortney)&person(cortney))))& ((curious(cortney))=>(~(~tall(cortney))))& (~(~tall(cortney)))& (![X]:(room(X)=>(((older(robert,X))=>(((humble(X)&strong(X)&person(X))|(~(generous(X)&person(X)))))))))& (quiet(cortney)&person(cortney))& (![X]:(happy(X)=>wise(X)))& ((![X]:((((older(juli,X))<~>(kind(X)&strong(X)&person(X))))<=>(((tall(X)&brave(X)&person(X))|(richer(robert,X)))))))& (![X]:(room(X)=>(~happy(X))))& (![X]:(~room(X)=>(((~(quiet(X)&person(X)))<=>(~generous(X))))))& (richer(juli,cortney))& (![X]:(room(X)=>(((old(X)&wise(X)&person(X))<=>(((quieter(juli,X))<~>(strong(X)&person(X))))))))& (![X]:(room(X)=>(((((quiet(X)&funny(X)&person(X))<~>(humble(X)&curious(X)&person(X))))=>(quieter(julio,X))))))& (older(robert,cortney))& (~((humble(cortney)&curious(cortney)&person(cortney))|(generous(cortney)&person(cortney))))& (![X]:(kind(X)=>funny(X)))& (~strong(cortney))& (![X]:(room(X)=>(((~((quiet(X)&person(X))|(older(robert,X))))<=>(((tall(X)&person(X))&(richer(juli,X))&(quieter(robert,X))))))))& ((![X]:((~(funny(X)&curious(X)&calm(X)&person(X)))=>(((quiet(X))|(quiet(X)&person(X)))))))
room(cortney)&(![X]:(room(X)=>(X='cortney')))& quieter(robert,cortney)
[ "p0", "p6", "p8", "p13", "p16", "p20", "hypothesis" ]
% SZS status Unsatisfiable for 6242332788868442534631355 % SZS output start Proof for 6242332788868442534631355 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 50. tall(mary) [input p6] 52. person(mary) & quiet(mary) [input p8] 57. richer(paul,mary) [input p13] 60. older(alice,mary) [input p16] 64. ! [X0] : (room(X0) => (~(older(alice,X0) | (person(X0) & quiet(X0))) <=> (quieter(alice,X0) & richer(paul,X0) & person(X0) & tall(X0)))) [input p20] 66. quieter(alice,mary) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 144. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 156. ! [X0] : (((~older(alice,X0) & (~person(X0) | ~quiet(X0))) <=> (quieter(alice,X0) & richer(paul,X0) & person(X0) & tall(X0))) | ~room(X0)) [ennf transformation 64] 159. quieter(alice,mary) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 66] 165. ! [X0] : (sP3(X0) <=> (quieter(alice,X0) & richer(paul,X0) & person(X0) & tall(X0))) [predicate definition introduction] 166. ! [X0] : (((~older(alice,X0) & (~person(X0) | ~quiet(X0))) <=> sP3(X0)) | ~sP4(X0)) [predicate definition introduction] 167. ! [X0] : (sP4(X0) | ~room(X0)) [definition folding 156,166,165] 185. ! [X0] : ((((~older(alice,X0) & (~person(X0) | ~quiet(X0))) | ~sP3(X0)) & (sP3(X0) | (older(alice,X0) | (person(X0) & quiet(X0))))) | ~sP4(X0)) [nnf transformation 166] 186. ! [X0] : ((((~older(alice,X0) & (~person(X0) | ~quiet(X0))) | ~sP3(X0)) & (sP3(X0) | older(alice,X0) | (person(X0) & quiet(X0)))) | ~sP4(X0)) [flattening 185] 187. ! [X0] : ((sP3(X0) | (~quieter(alice,X0) | ~richer(paul,X0) | ~person(X0) | ~tall(X0))) & ((quieter(alice,X0) & richer(paul,X0) & person(X0) & tall(X0)) | ~sP3(X0))) [nnf transformation 165] 188. ! [X0] : ((sP3(X0) | ~quieter(alice,X0) | ~richer(paul,X0) | ~person(X0) | ~tall(X0)) & ((quieter(alice,X0) & richer(paul,X0) & person(X0) & tall(X0)) | ~sP3(X0))) [flattening 187] 269. room(mary) [cnf transformation 144] 286. tall(mary) [cnf transformation 50] 291. person(mary) [cnf transformation 52] 308. richer(paul,mary) [cnf transformation 57] 326. older(alice,mary) [cnf transformation 60] 334. ~older(alice,X0) | ~sP3(X0) | ~sP4(X0) [cnf transformation 186] 339. ~quieter(alice,X0) | sP3(X0) | ~richer(paul,X0) | ~person(X0) | ~tall(X0) [cnf transformation 188] 340. ~room(X0) | sP4(X0) [cnf transformation 167] 351. quieter(alice,mary) [cnf transformation 159] 369. 3 <=> quieter(alice,mary) [avatar definition] 370. quieter(alice,mary) <- (3) [avatar component clause 369] 378. 5 <=> person(mary) [avatar definition] 380. person(mary) <- (5) [avatar component clause 378] 403. 9 <=> tall(mary) [avatar definition] 405. tall(mary) <- (9) [avatar component clause 403] 408. 9 [avatar split clause 286,403] 409. 5 [avatar split clause 291,378] 416. 3 [avatar split clause 351,369] 418. sP4(mary) [resolution 340,269] 436. ~sP3(mary) | ~sP4(mary) [resolution 334,326] 437. ~sP3(mary) [subsumption resolution 436,418] 864. sP3(mary) | ~richer(paul,mary) | ~person(mary) | ~tall(mary) <- (3) [resolution 339,370] 867. ~richer(paul,mary) | ~person(mary) | ~tall(mary) <- (3) [subsumption resolution 864,437] 868. ~person(mary) | ~tall(mary) <- (3) [subsumption resolution 867,308] 869. ~tall(mary) <- (3, 5) [subsumption resolution 868,380] 870. $false <- (3, 5, 9) [subsumption resolution 869,405] 871. ~3 | ~5 | ~9 [avatar contradiction clause 870] 873. $false [avatar sat refutation 408,409,416,871] % SZS output end Proof for 6242332788868442534631355 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5500 % Time elapsed: 0.027 s % ------------------------------ % ------------------------------
0.705597
Kirk, Christina, Gerald are the only persons in the room. Everyone in the room neither practices graffiti art nor does not work on fridays if they practices graffiti art, does not host regular workshops on creative writing and is a wine connoisseur. Kirk writes a travel blog. Christina uses contact lenses. Kirk hosts regular workshops on creative writing. Everyone in the room works on fridays, frequently participates in hackathons and coding competitions and plays the drums if they participates in citizen science projects related to wildlife monitoring and vice versa. Gerald does not host a YouTube channel dedicated to art tutorials. Everyone anywhere writes a travel blog if they is a wine connoisseur. Everyone in the room writes a travel blog only if they creates augmented reality experiences for mobile applications. Everyone in the room who creates augmented reality experiences for mobile applications is a coffee connoisseur, is an avid mountain climber who has scaled several peaks and does not use contact lenses. Only one person in the room creates augmented reality experiences for mobile applications. Gerald does not practice graffiti art.
Gerald is a wine connoisseur.
contradiction
room(kirk)&room(christina)&room(gerald)&(![X]:(room(X)=>(X='kirk'|X='christina'|X='gerald')))& (![X]:(room(X)=>(((((practices_graffiti_art(X))&(does_not_host_regular_workshops_on_creative_writing(X))&(is_a_wine_connoisseur(X))))=>(~((practices_graffiti_art(X))|(does_not_work_on_fridays(X))))))))& (writes_a_travel_blog(kirk))& (uses_contact_lenses(christina))& (hosts_regular_workshops_on_creative_writing(kirk))& (![X]:(room(X)=>(((((works_on_fridays(X))&(frequently_participates_in_hackathons_and_coding_competitions(X))&(plays_the_drums(X))))<=>(participates_in_citizen_science_projects_related_to_wildlife_monitoring(X))))))& (does_not_host_a_YouTube_channel_dedicated_to_art_tutorials(gerald))& (![X]:(anywhere(X)=>(((is_a_wine_connoisseur(X))=>(writes_a_travel_blog(X))))))& (![X]:(room(X)=>(((creates_augmented_reality_experiences_for_mobile_applications(X))<=(writes_a_travel_blog(X))))))& (![X]:(room(X)=>(((creates_augmented_reality_experiences_for_mobile_applications(X))=>(((is_a_coffee_connoisseur(X))&(is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))&(does_not_use_contact_lenses(X))))))))& (((?[X]:(room(X)&creates_augmented_reality_experiences_for_mobile_applications(X)))&(![X,Y]:((room(X)&room(Y)&(creates_augmented_reality_experiences_for_mobile_applications(X))&(creates_augmented_reality_experiences_for_mobile_applications(Y)))=>(X=Y)))))& (does_not_practice_graffiti_art(gerald))
room(kirk)&room(christina)&room(gerald)&(![X]:(room(X)=>(X='kirk'|X='christina'|X='gerald')))& is_a_wine_connoisseur(gerald)
[ "b4", "b42", "p0", "p2", "p7", "p8", "p10", "hypothesis" ]
% SZS status Unsatisfiable for 704638965653952112367342 % SZS output start Proof for 704638965653952112367342 5. ! [X0] : anywhere(X0) [input b4] 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 46. predr(mary) [input p2] 51. ! [X0] : (anywhere(X0) => (predl(X0) => predr(X0))) [input p7] 52. ! [X0] : (room(X0) => (predr(X0) => predo(X0))) [input p8] 54. ! [X0,X1] : ((predo(X1) & predo(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (predo(X0) & room(X0)) [input p10] 56. predl(fred) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 57. ! [X0,X1] : ((predo(X1) & predo(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (predo(X2) & room(X2)) [rectify 54] 135. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 136. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 135] 138. ! [X0] : ((predr(X0) | ~predl(X0)) | ~anywhere(X0)) [ennf transformation 51] 139. ! [X0] : (predr(X0) | ~predl(X0) | ~anywhere(X0)) [flattening 138] 140. ! [X0] : ((predo(X0) | ~predr(X0)) | ~room(X0)) [ennf transformation 52] 141. ! [X0] : (predo(X0) | ~predr(X0) | ~room(X0)) [flattening 140] 144. ! [X0,X1] : (X0 = X1 | (~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0))) & ? [X2] : (predo(X2) & room(X2)) [ennf transformation 57] 145. ! [X0,X1] : (X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0)) & ? [X2] : (predo(X2) & room(X2)) [flattening 144] 146. predl(fred) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 56] 147. predl(fred) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 146] 151. ? [X2] : (predo(X2) & room(X2)) => (predo(sK0) & room(sK0)) [choice axiom] 152. ! [X0,X1] : (X0 = X1 | ~predo(X1) | ~predo(X0) | ~room(X1) | ~room(X0)) & (predo(sK0) & room(sK0)) [skolemisation 145,151] 153. anywhere(X0) [cnf transformation 5] 204. mary != fred [cnf transformation 43] 234. room(mary) [cnf transformation 136] 236. room(fred) [cnf transformation 136] 238. predr(mary) [cnf transformation 46] 244. predr(X0) | ~predl(X0) | ~anywhere(X0) [cnf transformation 139] 245. ~predr(X0) | predo(X0) | ~room(X0) [cnf transformation 141] 249. ~predo(X1) | X0 = X1 | ~predo(X0) | ~room(X1) | ~room(X0) [cnf transformation 152] 254. predl(fred) [cnf transformation 147] 255. ~predl(X0) | predr(X0) [subsumption resolution 244,153] 256. predr(fred) [resolution 255,254] 257. predo(mary) | ~room(mary) [resolution 245,238] 258. predo(fred) | ~room(fred) [resolution 245,256] 259. predo(mary) [subsumption resolution 257,234] 260. predo(fred) [subsumption resolution 258,236] 324. mary = X1 | ~predo(X1) | ~room(mary) | ~room(X1) [resolution 249,259] 326. ~predo(X1) | mary = X1 | ~room(X1) [subsumption resolution 324,234] 327. mary = fred | ~room(fred) [resolution 326,260] 329. ~room(fred) [subsumption resolution 327,204] 330. $false [subsumption resolution 329,236] % SZS output end Proof for 704638965653952112367342 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.034 s % ------------------------------ % ------------------------------
0.022609
Juliette, Timothy, Willie, Cesar are the only persons in the room. If “Cesar is old” then “Timothy is the least quiet in the room” otherwise “more than one person in the room is not a tall person”. If “everyone in the room is not a old person” then “Juliette is not quiet” otherwise “everyone in the room is a tall kind quiet old person only if they is not kind, not tall, not old”. “Willie and Juliette are respectively tall and kind” only if “someone who is a old tall quiet person is richer than someone who is a quiet person”. All tall persons are kind. Cesar is not tall. Juliette is a old person. Willie and Timothy are kind tall persons. Juliette is quiet.
Timothy is a quiet old person.
contradiction
room(juliette)&room(timothy)&room(willie)&room(cesar)&(![X]:(room(X)=>(X='juliette'|X='timothy'|X='willie'|X='cesar')))& (((old(cesar))=>(![X]:((room(X)&(X!=timothy))=>quieter(timothy,X))))&((~(old(cesar)))=>((?[X,Y]:(room(X)&room(Y)&(~(tall(X)&person(X))&~(tall(Y)&person(Y)))&(X!=Y))))))& (((![X]:(room(X)=>(~(old(X)&person(X)))))=>(~quiet(juliette)))&((~(![X]:(room(X)=>(~(old(X)&person(X))))))=>(![X]:(room(X)=>(((~kind(X)&~tall(X)&~old(X))<=(tall(X)&kind(X)&quiet(X)&old(X)&person(X))))))))& (((tall(willie))&(kind(juliette)))=>(?[X,Y]:((old(X)&tall(X)&quiet(X)&person(X))&(quiet(Y)&person(Y))&(richer(X,Y)))))& (![X]:(tall(X)=>kind(X)))& (~tall(cesar))& (old(juliette)&person(juliette))& (kind(willie)&tall(willie)&person(willie)&kind(timothy)&tall(timothy)&person(timothy))& (quiet(juliette))
room(juliette)&room(timothy)&room(willie)&room(cesar)&(![X]:(room(X)=>(X='juliette'|X='timothy'|X='willie'|X='cesar')))& quiet(timothy)&old(timothy)&person(timothy)
[ "p0", "p2", "p4", "p7", "hypothesis" ]
% SZS status Unsatisfiable for 4221524323835114595617456 % SZS output start Proof for 4221524323835114595617456 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 46. (~! [X0] : (room(X0) => ~(person(X0) & old(X0))) => ! [X0] : (room(X0) => ((person(X0) & old(X0) & quiet(X0) & kind(X0) & tall(X0)) => (~old(X0) & ~tall(X0) & ~kind(X0))))) & (! [X0] : (room(X0) => ~(person(X0) & old(X0))) => ~quiet(mary)) [input p2] 48. ! [X0] : (tall(X0) => kind(X0)) [input p4] 51. person(paul) & tall(paul) & kind(paul) & person(fred) & tall(fred) & kind(fred) [input p7] 53. person(paul) & old(paul) & quiet(paul) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 55. (~! [X0] : (room(X0) => ~(person(X0) & old(X0))) => ! [X1] : (room(X1) => ((person(X1) & old(X1) & quiet(X1) & kind(X1) & tall(X1)) => (~old(X1) & ~tall(X1) & ~kind(X1))))) & (! [X2] : (room(X2) => ~(person(X2) & old(X2))) => ~quiet(mary)) [rectify 46] 128. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 129. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 128] 132. (! [X1] : (((~old(X1) & ~tall(X1) & ~kind(X1)) | (~person(X1) | ~old(X1) | ~quiet(X1) | ~kind(X1) | ~tall(X1))) | ~room(X1)) | ! [X0] : ((~person(X0) | ~old(X0)) | ~room(X0))) & (~quiet(mary) | ? [X2] : ((person(X2) & old(X2)) & room(X2))) [ennf transformation 55] 133. (! [X1] : ((~old(X1) & ~tall(X1) & ~kind(X1)) | ~person(X1) | ~old(X1) | ~quiet(X1) | ~kind(X1) | ~tall(X1) | ~room(X1)) | ! [X0] : (~person(X0) | ~old(X0) | ~room(X0))) & (~quiet(mary) | ? [X2] : (person(X2) & old(X2) & room(X2))) [flattening 132] 136. ! [X0] : (kind(X0) | ~tall(X0)) [ennf transformation 48] 137. person(paul) & old(paul) & quiet(paul) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 53] 138. person(paul) & old(paul) & quiet(paul) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 137] 142. (! [X0] : ((~old(X0) & ~tall(X0) & ~kind(X0)) | ~person(X0) | ~old(X0) | ~quiet(X0) | ~kind(X0) | ~tall(X0) | ~room(X0)) | ! [X1] : (~person(X1) | ~old(X1) | ~room(X1))) & (~quiet(mary) | ? [X2] : (person(X2) & old(X2) & room(X2))) [rectify 133] 143. ? [X2] : (person(X2) & old(X2) & room(X2)) => (person(sK2) & old(sK2) & room(sK2)) [choice axiom] 144. (! [X0] : ((~old(X0) & ~tall(X0) & ~kind(X0)) | ~person(X0) | ~old(X0) | ~quiet(X0) | ~kind(X0) | ~tall(X0) | ~room(X0)) | ! [X1] : (~person(X1) | ~old(X1) | ~room(X1))) & (~quiet(mary) | (person(sK2) & old(sK2) & room(sK2))) [skolemisation 142,143] 228. room(paul) [cnf transformation 129] 241. ~kind(X0) | ~person(X0) | ~old(X0) | ~quiet(X0) | ~kind(X0) | ~tall(X0) | ~room(X0) | ~person(X1) | ~old(X1) | ~room(X1) [cnf transformation 144] 251. ~tall(X0) | kind(X0) [cnf transformation 136] 259. tall(paul) [cnf transformation 51] 260. person(paul) [cnf transformation 51] 267. quiet(paul) [cnf transformation 138] 268. old(paul) [cnf transformation 138] 270. ~kind(X0) | ~person(X0) | ~old(X0) | ~quiet(X0) | ~tall(X0) | ~room(X0) | ~person(X1) | ~old(X1) | ~room(X1) [duplicate literal removal 241] 315. 10 <=> ! [X1] : (~person(X1) | ~room(X1) | ~old(X1)) [avatar definition] 316. ~room(X1) | ~person(X1) | ~old(X1) <- (10) [avatar component clause 315] 318. 11 <=> ! [X0] : (~old(X0) | ~room(X0) | ~tall(X0) | ~kind(X0) | ~quiet(X0) | ~person(X0)) [avatar definition] 319. ~old(X0) | ~room(X0) | ~tall(X0) | ~kind(X0) | ~quiet(X0) | ~person(X0) <- (11) [avatar component clause 318] 322. 10 | 11 [avatar split clause 270,318,315] 390. ~person(paul) | ~old(paul) <- (10) [resolution 316,228] 399. ~old(paul) <- (10) [subsumption resolution 390,260] 400. $false <- (10) [subsumption resolution 399,268] 401. ~10 [avatar contradiction clause 400] 411. ~tall(X0) | ~room(X0) | ~old(X0) | ~quiet(X0) | ~person(X0) <- (11) [subsumption resolution 319,251] 448. ~room(paul) | ~old(paul) | ~quiet(paul) | ~person(paul) <- (11) [resolution 411,259] 450. ~old(paul) | ~quiet(paul) | ~person(paul) <- (11) [subsumption resolution 448,228] 451. ~quiet(paul) | ~person(paul) <- (11) [subsumption resolution 450,268] 452. ~person(paul) <- (11) [subsumption resolution 451,267] 453. $false <- (11) [subsumption resolution 452,260] 454. ~11 [avatar contradiction clause 453] 466. $false [avatar sat refutation 322,401,454] % SZS output end Proof for 4221524323835114595617456 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.026 s % ------------------------------ % ------------------------------
0.003225
Barbara, Timothy, Jamila are the only persons in the room. If "Barbara does not collect rare minerals" then "everyone outside the room who does not have completed a triathlon has completed a triathlon". "Everyone in the room practices and performs acrobatic dance routines or trains for and competes in international triathlons or both if they does not enjoy macrame" unless "Barbara enjoys macrame or practices and performs acrobatic dance routines or both". Either "someone in the room practices and performs acrobatic dance routines" or "everyone in the room trains for and competes in international triathlons or does not enjoy macrame" but not both. If "Barbara has completed a triathlon" then "Barbara does not practice and performs acrobatic dance routines". "Everyone in the room who does not train for and competes in international triathlons, practices and performs acrobatic dance routines and does not have completed a triathlon does not collect rare minerals" unless "everyone in the room does not train for and competes in international triathlons or does not enjoy macrame". If "everyone in the room does not enjoy macrame or does not train for and competes in international triathlons" then "everyone in the room collects rare minerals". If "Barbara has completed a triathlon" then "Barbara enjoys macrame". Either "everyone in the room does not train for and competes in international triathlons or has completed a triathlon" or "Barbara does not train for and competes in international triathlons" but not both. Not everyone in the room who does not train for and competes in international triathlons has completed a triathlon. Everyone in the room who has completed a triathlon neither enjoys macrame nor has completed a triathlon. Barbara does not collect rare minerals. Barbara dreamt that "Barbara enjoys macrame". If someone trains for and competes in international triathlons then he/she does not practice and performs acrobatic dance routines and vice versa. Only one person in the room does not enjoy macrame. Everyone in the room trains for and competes in international triathlons if they collects rare minerals. Everyone outside the room who trains for and competes in international triathlons enjoys macrame. Barbara practices and performs acrobatic dance routines. Everyone outside the room has completed a triathlon if they trains for and competes in international triathlons. Everyone in the room practices and performs acrobatic dance routines if they has completed a triathlon.
Timothy enjoys macrame.
neutral
room(barbara)&room(timothy)&room(jamila)&(![X]:(room(X)=>(X='barbara'|X='timothy'|X='jamila')))& ((does_not_collect_rare_minerals(barbara))=>(![X]:(~room(X)=>(((does_not_have_completed_a_triathlon(X))=>(has_completed_a_triathlon(X)))))))& (~(((enjoys_macrame(barbara))|(practices_and_performs_acrobatic_dance_routines(barbara))))=>(![X]:(room(X)=>(((does_not_enjoy_macrame(X))=>(((practices_and_performs_acrobatic_dance_routines(X))|(trains_for_and_competes_in_international_triathlons(X)))))))))& ((?[X]:(room(X)&(practices_and_performs_acrobatic_dance_routines(X))))<~>(![X]:(room(X)=>(((does_not_enjoy_macrame(X))|(trains_for_and_competes_in_international_triathlons(X)))))))& ((has_completed_a_triathlon(barbara))=>(does_not_practice_and_performs_acrobatic_dance_routines(barbara)))& (~(![X]:(room(X)=>(((does_not_enjoy_macrame(X))|(does_not_train_for_and_competes_in_international_triathlons(X))))))=>(![X]:(room(X)=>(((((does_not_train_for_and_competes_in_international_triathlons(X))&(practices_and_performs_acrobatic_dance_routines(X))&(does_not_have_completed_a_triathlon(X))))=>(does_not_collect_rare_minerals(X)))))))& ((![X]:(room(X)=>(((does_not_train_for_and_competes_in_international_triathlons(X))|(does_not_enjoy_macrame(X))))))=>(![X]:(room(X)=>(collects_rare_minerals(X)))))& ((has_completed_a_triathlon(barbara))=>(enjoys_macrame(barbara)))& ((![X]:(room(X)=>(((has_completed_a_triathlon(X))|(does_not_train_for_and_competes_in_international_triathlons(X))))))<~>(does_not_train_for_and_competes_in_international_triathlons(barbara)))& (~![X]:(room(X)=>(((does_not_train_for_and_competes_in_international_triathlons(X))=>(has_completed_a_triathlon(X))))))& (![X]:(room(X)=>(((has_completed_a_triathlon(X))=>(~((enjoys_macrame(X))|(has_completed_a_triathlon(X))))))))& (does_not_collect_rare_minerals(barbara))& ((barbara_dream=>(enjoys_macrame(barbara))))& ((![X]:((trains_for_and_competes_in_international_triathlons(X))<=>(does_not_practice_and_performs_acrobatic_dance_routines(X)))))& (((?[X]:(room(X)&does_not_enjoy_macrame(X)))&(![X,Y]:((room(X)&room(Y)&(does_not_enjoy_macrame(X))&(does_not_enjoy_macrame(Y)))=>(X=Y)))))& (![X]:(room(X)=>(((collects_rare_minerals(X))=>(trains_for_and_competes_in_international_triathlons(X))))))& (![X]:(~room(X)=>(((trains_for_and_competes_in_international_triathlons(X))=>(enjoys_macrame(X))))))& (practices_and_performs_acrobatic_dance_routines(barbara))& (![X]:(~room(X)=>(((trains_for_and_competes_in_international_triathlons(X))=>(has_completed_a_triathlon(X))))))& (![X]:(room(X)=>(((has_completed_a_triathlon(X))=>(practices_and_performs_acrobatic_dance_routines(X))))))
room(barbara)&room(timothy)&room(jamila)&(![X]:(room(X)=>(X='barbara'|X='timothy'|X='jamila')))& enjoys_macrame(timothy)
[]
null
0.089888
Linda is the only person in the room. “Linda is a humble tall creative old brave person” only if “Linda is quieter than William”. If “Linda is happy” then “Reginald is richer than Linda”. “Thomas is quieter than Linda” only if “Linda is quieter than William”. Linda is humble. All kind person is patient. All wise person is quiet. Reginald is richer than Linda. Linda is richer than William. Linda is a quiet person. Linda is a brave wise funny person. Someone in the room neither is quieter than William nor is a brave humble tall kind person. Linda is quieter than Sarah. Linda is creative. It is not the case that “Linda is quieter than William”. Linda is older than Sarah. Linda is a calm funny patient person.
Sarah is older than Linda.
contradiction
room(linda)&(![X]:(room(X)=>(X='linda')))& ((humble(linda)&tall(linda)&creative(linda)&old(linda)&brave(linda)&person(linda))=>(quieter(william,linda)))& ((happy(linda))=>(richer(linda,reginald)))& ((quieter(linda,thomas))=>(quieter(william,linda)))& (humble(linda))& (![X]:(kind(X)=>patient(X)))& (![X]:(wise(X)=>quiet(X)))& (richer(linda,reginald))& (richer(william,linda))& (quiet(linda)&person(linda))& (brave(linda)&wise(linda)&funny(linda)&person(linda))& (?[X]:(room(X)&(~((quieter(william,X))|(brave(X)&humble(X)&tall(X)&kind(X)&person(X))))))& (quieter(sarah,linda))& (creative(linda))& (~(quieter(william,linda)))& (older(sarah,linda))& (calm(linda)&funny(linda)&patient(linda)&person(linda))& (richer(thomas,linda))& (![X]:(humble(X)=>strong(X)))& (~~strong(linda))& (older(reginald,linda))& (creative(linda)&person(linda))
room(linda)&(![X]:(room(X)=>(X='linda')))& older(linda,sarah)
[ "b19", "b42", "p15", "hypothesis" ]
% SZS status Unsatisfiable for 7612385311130159946425462 % SZS output start Proof for 7612385311130159946425462 20. ! [X0,X1] : (X0 != X1 => (older(X0,X1) => ~older(X1,X0))) [input b19] 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 59. older(paul,mary) [input p15] 66. older(mary,paul) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input hypothesis] 115. ! [X0,X1] : ((~older(X1,X0) | ~older(X0,X1)) | X0 = X1) [ennf transformation 20] 116. ! [X0,X1] : (~older(X1,X0) | ~older(X0,X1) | X0 = X1) [flattening 115] 161. older(mary,paul) & ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 66] 180. ~older(X1,X0) | ~older(X0,X1) | X0 = X1 [cnf transformation 116] 209. mary != paul [cnf transformation 43] 257. older(paul,mary) [cnf transformation 59] 262. older(mary,paul) [cnf transformation 161] 294. ~older(mary,paul) | mary = paul [resolution 180,257] 297. mary = paul [subsumption resolution 294,262] 298. $false [subsumption resolution 297,209] % SZS output end Proof for 7612385311130159946425462 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.008134
Heidi, Denise, Jerald, Dale, Dale are the only persons in the room. “All patient persons are strong” unless “Shirley and Dale like each other”. ““A pizza does not exist that tastes like ice cream.” or “There is a planet where the oceans are in the sky.” but not both” only if ““A door randomly teleports those who pass through it.” and “Stars are not visible during the daytime only on Sundays.””. “Dale and Dale are quiet tourists” only if ““A door randomly teleports those who pass through it.” or “A door does not randomly teleport those who pass through it.” or both”. If “Dale and Denise are respectively calm and brave” then ““A city has not outlawed the use of round tables.” and “There is a planet where the oceans are in the sky.””. “A door randomly teleports those who pass through it.” and “Stars are not visible during the daytime only on Sundays.”. Denise who is not a kind old wise creative strong person is an avid collector of autographed memorabilia from famous musicians. Dale who enjoys writing detailed reviews of new and classic board games does not drive a hybrid car. If someone is a sibling of Justin then he/she is a generous quiet european and vice versa. Everyone in the room is humble if and only if they is a sibling of Justin. It is not the case that “A door does not randomly teleport those who pass through it.”. “A city has not outlawed the use of round tables.” and “There is a planet where the oceans are in the sky.”. Justin and Dale like each other. Only one person in the room neither is a quiet tourist nor is not a tall curious european. “A door does not randomly teleport those who pass through it.” or “A city has not outlawed the use of round tables.” or both.
Not everyone in the room is not a old person, is quiet and is not quiet.
entailment
room(heidi)&room(denise)&room(jerald)&room(dale)&room(dale)&(![X]:(room(X)=>(X='heidi'|X='denise'|X='jerald'|X='dale'|X='dale')))& (~((like(shirley,dale) & like(dale,shirley)))=>(![X]:(patient(X)=>strong(X))))& ((((A_pizza_does_not_exist_that_tastes_like_ice_cream.)<~>(There_is_a_planet_where_the_oceans_are_in_the_sky.)))=>(((A_door_randomly_teleports_those_who_pass_through_it.)&(Stars_are_not_visible_during_the_daytime_only_on_Sundays.))))& ((quiet(dale)&tourist(dale)&quiet(dale)&tourist(dale))=>(((A_door_randomly_teleports_those_who_pass_through_it.)|(A_door_does_not_randomly_teleport_those_who_pass_through_it.))))& (((calm(dale))&(brave(denise)))=>(((A_city_has_not_outlawed_the_use_of_round_tables.)&(There_is_a_planet_where_the_oceans_are_in_the_sky.))))& (((A_door_randomly_teleports_those_who_pass_through_it.)&(Stars_are_not_visible_during_the_daytime_only_on_Sundays.)))& ((~(kind(denise)&old(denise)&wise(denise)&creative(denise)&strong(denise)&person(denise)))&(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(denise)))& ((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(dale))&(does_not_drive_a_hybrid_car(dale)))& ((![X]:((sibling(justin,X))<=>(generous(X)&quiet(X)&european(X)))))& (![X]:(room(X)=>(((humble(X))<=>(sibling(justin,X))))))& (~(A_door_does_not_randomly_teleport_those_who_pass_through_it.))& (((A_city_has_not_outlawed_the_use_of_round_tables.)&(There_is_a_planet_where_the_oceans_are_in_the_sky.)))& ((like(justin,dale) & like(dale,justin)))& (((?[X]:(room(X)&~((quiet(X)&tourist(X))|(~(tall(X)&curious(X)&european(X))))))&(![X,Y]:((room(X)&room(Y)&(~((quiet(X)&tourist(X))|(~(tall(X)&curious(X)&european(X)))))&(~((quiet(Y)&tourist(Y))|(~(tall(Y)&curious(Y)&european(Y))))))=>(X=Y)))))& (((A_door_does_not_randomly_teleport_those_who_pass_through_it.)|(A_city_has_not_outlawed_the_use_of_round_tables.)))& ((like(shirley,dale) & like(dale,shirley)))& (~(((A_city_has_outlawed_the_use_of_round_tables.)&(Stars_are_not_visible_during_the_daytime_only_on_Sundays.))))& (![X]:(happy(X)=>patient(X)))& ((~hate(justin,dale))&(~(old(dale)&european(dale))))& (((A_door_randomly_teleports_those_who_pass_through_it.)|(A_door_does_not_randomly_teleport_those_who_pass_through_it.)))& (((wise(denise)&creative(denise)&european(denise))|(~like(justin,denise)))&((wise(dale)&creative(dale)&european(dale))|(~like(justin,dale))))
room(heidi)&room(denise)&room(jerald)&room(dale)&room(dale)&(![X]:(room(X)=>(X='heidi'|X='denise'|X='jerald'|X='dale'|X='dale')))& ~![X]:(room(X)=>(((~(old(X)&person(X)))&(quiet(X))&(~quiet(X)))))
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 2812975384976563976923949 % SZS output start Proof for 2812975384976563976923949 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 65. ~(~! [X0] : (room(X0) => (~quiet(X0) & quiet(X0) & ~(person(X0) & old(X0)))) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 67. ~(~! [X0] : (room(X0) => (~quiet(X0) & quiet(X0) & ~(person(X0) & old(X0)))) & ! [X1] : (room(X1) => (john = X1 | alice = X1 | fred = X1 | paul = X1 | mary = X1)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [rectify 65] 156. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 157. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 156] 165. ! [X0] : ((~quiet(X0) & quiet(X0) & (~person(X0) | ~old(X0))) | ~room(X0)) | ? [X1] : ((john != X1 & alice != X1 & fred != X1 & paul != X1 & mary != X1) & room(X1)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 67] 166. ! [X0] : ((~quiet(X0) & quiet(X0) & (~person(X0) | ~old(X0))) | ~room(X0)) | ? [X1] : (john != X1 & alice != X1 & fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 165] 167. ? [X1] : (john != X1 & alice != X1 & fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~sP0 [predicate definition introduction] 168. ! [X0] : ((~quiet(X0) & quiet(X0) & (~person(X0) | ~old(X0))) | ~room(X0)) | sP0 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [definition folding 166,167] 176. ? [X1] : (john != X1 & alice != X1 & fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~sP0 [nnf transformation 167] 177. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~sP0 [rectify 176] 178. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (john != sK2 & alice != sK2 & fred != sK2 & paul != sK2 & mary != sK2 & room(sK2)) [choice axiom] 179. (john != sK2 & alice != sK2 & fred != sK2 & paul != sK2 & mary != sK2 & room(sK2)) | ~sP0 [skolemisation 177,178] 262. room(mary) [cnf transformation 157] 263. room(paul) [cnf transformation 157] 264. room(fred) [cnf transformation 157] 265. room(alice) [cnf transformation 157] 266. room(john) [cnf transformation 157] 267. ~room(X0) | alice = X0 | fred = X0 | paul = X0 | mary = X0 | john = X0 [cnf transformation 157] 297. room(sK2) | ~sP0 [cnf transformation 179] 298. mary != sK2 | ~sP0 [cnf transformation 179] 299. paul != sK2 | ~sP0 [cnf transformation 179] 300. fred != sK2 | ~sP0 [cnf transformation 179] 301. alice != sK2 | ~sP0 [cnf transformation 179] 302. john != sK2 | ~sP0 [cnf transformation 179] 304. quiet(X0) | ~room(X0) | sP0 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 168] 305. ~quiet(X0) | ~room(X0) | sP0 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 168] 353. 10 <=> sP0 [avatar definition] 357. 11 <=> john = sK2 [avatar definition] 359. john != sK2 <- (~11) [avatar component clause 357] 360. ~10 | ~11 [avatar split clause 302,357,353] 362. 12 <=> alice = sK2 [avatar definition] 365. ~10 | ~12 [avatar split clause 301,362,353] 367. 13 <=> fred = sK2 [avatar definition] 369. fred != sK2 <- (~13) [avatar component clause 367] 370. ~10 | ~13 [avatar split clause 300,367,353] 372. 14 <=> paul = sK2 [avatar definition] 374. paul != sK2 <- (~14) [avatar component clause 372] 375. ~10 | ~14 [avatar split clause 299,372,353] 377. 15 <=> mary = sK2 [avatar definition] 379. mary != sK2 <- (~15) [avatar component clause 377] 380. ~10 | ~15 [avatar split clause 298,377,353] 382. 16 <=> room(sK2) [avatar definition] 384. room(sK2) <- (16) [avatar component clause 382] 385. ~10 | 16 [avatar split clause 297,382,353] 386. ~quiet(X0) | ~room(X0) | sP0 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 305,266] 387. ~quiet(X0) | ~room(X0) | sP0 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 386,265] 388. ~quiet(X0) | ~room(X0) | sP0 | ~room(paul) | ~room(mary) [subsumption resolution 387,264] 389. ~quiet(X0) | ~room(X0) | sP0 | ~room(mary) [subsumption resolution 388,263] 390. ~quiet(X0) | ~room(X0) | sP0 [subsumption resolution 389,262] 392. 17 <=> ! [X0] : (~quiet(X0) | ~room(X0)) [avatar definition] 393. ~quiet(X0) | ~room(X0) <- (17) [avatar component clause 392] 394. 10 | 17 [avatar split clause 390,392,353] 395. quiet(X0) | ~room(X0) | sP0 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 304,266] 396. quiet(X0) | ~room(X0) | sP0 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 395,265] 397. quiet(X0) | ~room(X0) | sP0 | ~room(paul) | ~room(mary) [subsumption resolution 396,264] 398. quiet(X0) | ~room(X0) | sP0 | ~room(mary) [subsumption resolution 397,263] 399. quiet(X0) | ~room(X0) | sP0 [subsumption resolution 398,262] 401. 18 <=> ! [X0] : (quiet(X0) | ~room(X0)) [avatar definition] 402. quiet(X0) | ~room(X0) <- (18) [avatar component clause 401] 403. 10 | 18 [avatar split clause 399,401,353] 475. alice = sK2 | fred = sK2 | paul = sK2 | mary = sK2 | john = sK2 <- (16) [resolution 267,384] 503. alice = sK2 | paul = sK2 | mary = sK2 | john = sK2 <- (~13, 16) [subsumption resolution 475,369] 504. alice = sK2 | mary = sK2 | john = sK2 <- (~13, ~14, 16) [subsumption resolution 503,374] 505. alice = sK2 | john = sK2 <- (~13, ~14, ~15, 16) [subsumption resolution 504,379] 506. alice = sK2 <- (~11, ~13, ~14, ~15, 16) [subsumption resolution 505,359] 507. 12 | 11 | 13 | 14 | 15 | ~16 [avatar split clause 506,382,377,372,367,357,362] 514. ~room(X0) <- (17, 18) [subsumption resolution 393,402] 518. $false <- (17, 18) [resolution 514,262] 527. ~17 | ~18 [avatar contradiction clause 518] 528. $false [avatar sat refutation 360,365,370,375,380,385,394,403,507,527] % SZS output end Proof for 2812975384976563976923949 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.029 s % ------------------------------ % ------------------------------
0.346672
Austin is the only person in the room. If “everyone in the room does not own a television” then “if someone designs and sews custom cosplay costumes for conventions then he/she collects first edition books”. If “Austin owns a telescope and practices kickboxing” then “someone anywhere does not own a television and regularly contributes to tech forums and online communities”. If “someone anywhere does not own a television and regularly contributes to tech forums and online communities” then “someone in the room does practice yoga”. Austin maintains a large, organic vegetable garden year-round. Not everyone in the room practices archery if they has completed a triathlon. Austin collects rare and antique scientific instruments. Someone anywhere does not own a television and regularly contributes to tech forums and online communities. Someone in the room does practice yoga. Austin develops open-source software projects in their free time.
Austin has completed a triathlon.
entailment
room(austin)&(![X]:(room(X)=>(X='austin')))& ((![X]:(room(X)=>(does_not_own_a_television(X))))=>((![X]:((designs_and_sews_custom_cosplay_costumes_for_conventions(X))=>(collects_first_edition_books(X))))))& (((((owns_a_telescope(austin))&(practices_kickboxing(austin))))=>(?[X]:(anywhere(X)&(((does_not_own_a_television(X))&(regularly_contributes_to_tech_forums_and_online_communities(X)))))))& ((?[X]:(anywhere(X)&(((does_not_own_a_television(X))&(regularly_contributes_to_tech_forums_and_online_communities(X))))))=>(?[X]:(room(X)&(does_practice_yoga(X))))))& (maintains_a_large,_organic_vegetable_garden_year-round(austin))& (~![X]:(room(X)=>(((has_completed_a_triathlon(X))=>(practices_archery(X))))))& (collects_rare_and_antique_scientific_instruments(austin))& (?[X]:(anywhere(X)&(((does_not_own_a_television(X))&(regularly_contributes_to_tech_forums_and_online_communities(X))))))& (?[X]:(room(X)&(does_practice_yoga(X))))& (develops_open-source_software_projects_in_their_free_time(austin))
room(austin)&(![X]:(room(X)=>(X='austin')))& has_completed_a_triathlon(austin)
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 6283350004940410510703632 % SZS output start Proof for 6283350004940410510703632 44. predu(mary) & ? [X0] : (predw(X0) & room(X0)) & ? [X0] : (predf(X0) & ~predd(X0) & anywhere(X0)) & predk(mary) & ~! [X0] : (room(X0) => (predx(X0) => predb(X0))) & predp(mary) & (? [X0] : (predf(X0) & ~predd(X0) & anywhere(X0)) => ? [X0] : (predw(X0) & room(X0))) & ((predo(mary) & predm(mary)) => ? [X0] : (predf(X0) & ~predd(X0) & anywhere(X0))) & (! [X0] : (room(X0) => ~predd(X0)) => ! [X0] : (predz(X0) => predt(X0))) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 45. ~(predx(mary) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 46. predu(mary) & ? [X0] : (predw(X0) & room(X0)) & ? [X1] : (predf(X1) & ~predd(X1) & anywhere(X1)) & predk(mary) & ~! [X2] : (room(X2) => (predx(X2) => predb(X2))) & predp(mary) & (? [X3] : (predf(X3) & ~predd(X3) & anywhere(X3)) => ? [X4] : (predw(X4) & room(X4))) & ((predo(mary) & predm(mary)) => ? [X5] : (predf(X5) & ~predd(X5) & anywhere(X5))) & (! [X6] : (room(X6) => ~predd(X6)) => ! [X7] : (predz(X7) => predt(X7))) & ! [X8] : (room(X8) => mary = X8) & room(mary) [rectify 44] 47. ? [X0] : (predw(X0) & room(X0)) & ? [X1] : (predf(X1) & ~predd(X1) & anywhere(X1)) & predk(mary) & ~! [X2] : (room(X2) => (predx(X2) => predb(X2))) & predp(mary) & (? [X3] : (predf(X3) & ~predd(X3) & anywhere(X3)) => ? [X4] : (predw(X4) & room(X4))) & ((predo(mary) & predm(mary)) => ? [X5] : (predf(X5) & ~predd(X5) & anywhere(X5))) & (! [X6] : (room(X6) => ~predd(X6)) => ! [X7] : (predz(X7) => predt(X7))) & ! [X8] : (room(X8) => mary = X8) & room(mary) [pure predicate removal 46] 48. ? [X0] : (predw(X0) & room(X0)) & ? [X1] : (predf(X1) & ~predd(X1) & anywhere(X1)) & ~! [X2] : (room(X2) => (predx(X2) => predb(X2))) & predp(mary) & (? [X3] : (predf(X3) & ~predd(X3) & anywhere(X3)) => ? [X4] : (predw(X4) & room(X4))) & ((predo(mary) & predm(mary)) => ? [X5] : (predf(X5) & ~predd(X5) & anywhere(X5))) & (! [X6] : (room(X6) => ~predd(X6)) => ! [X7] : (predz(X7) => predt(X7))) & ! [X8] : (room(X8) => mary = X8) & room(mary) [pure predicate removal 47] 49. ? [X0] : (predw(X0) & room(X0)) & ? [X1] : (predf(X1) & ~predd(X1) & anywhere(X1)) & ~! [X2] : (room(X2) => ~predx(X2)) & predp(mary) & (? [X3] : (predf(X3) & ~predd(X3) & anywhere(X3)) => ? [X4] : (predw(X4) & room(X4))) & ((predo(mary) & predm(mary)) => ? [X5] : (predf(X5) & ~predd(X5) & anywhere(X5))) & (! [X6] : (room(X6) => ~predd(X6)) => ! [X7] : (predz(X7) => predt(X7))) & ! [X8] : (room(X8) => mary = X8) & room(mary) [pure predicate removal 48] 50. ? [X0] : (predw(X0) & room(X0)) & ? [X1] : (predf(X1) & ~predd(X1) & anywhere(X1)) & ~! [X2] : (room(X2) => ~predx(X2)) & (? [X3] : (predf(X3) & ~predd(X3) & anywhere(X3)) => ? [X4] : (predw(X4) & room(X4))) & ((predo(mary) & predm(mary)) => ? [X5] : (predf(X5) & ~predd(X5) & anywhere(X5))) & (! [X6] : (room(X6) => ~predd(X6)) => ! [X7] : (predz(X7) => predt(X7))) & ! [X8] : (room(X8) => mary = X8) & room(mary) [pure predicate removal 49] 51. ? [X0] : room(X0) & ? [X1] : (predf(X1) & ~predd(X1) & anywhere(X1)) & ~! [X2] : (room(X2) => ~predx(X2)) & (? [X3] : (predf(X3) & ~predd(X3) & anywhere(X3)) => ? [X4] : room(X4)) & ((predo(mary) & predm(mary)) => ? [X5] : (predf(X5) & ~predd(X5) & anywhere(X5))) & (! [X6] : (room(X6) => ~predd(X6)) => ! [X7] : (predz(X7) => predt(X7))) & ! [X8] : (room(X8) => mary = X8) & room(mary) [pure predicate removal 50] 52. ? [X0] : room(X0) & ? [X1] : (predf(X1) & ~predd(X1) & anywhere(X1)) & ~! [X2] : (room(X2) => ~predx(X2)) & (? [X3] : (predf(X3) & ~predd(X3) & anywhere(X3)) => ? [X4] : room(X4)) & (! [X6] : (room(X6) => ~predd(X6)) => ! [X7] : (predz(X7) => predt(X7))) & ! [X8] : (room(X8) => mary = X8) & room(mary) [pure predicate removal 51] 53. ? [X0] : room(X0) & ? [X1] : (predf(X1) & ~predd(X1) & anywhere(X1)) & ~! [X2] : (room(X2) => ~predx(X2)) & (? [X3] : (predf(X3) & ~predd(X3) & anywhere(X3)) => ? [X4] : room(X4)) & ! [X8] : (room(X8) => mary = X8) & room(mary) [pure predicate removal 52] 125. ? [X0] : room(X0) & ? [X1] : (predf(X1) & ~predd(X1) & anywhere(X1)) & ? [X2] : (predx(X2) & room(X2)) & (? [X4] : room(X4) | ! [X3] : (~predf(X3) | predd(X3) | ~anywhere(X3))) & ! [X8] : (mary = X8 | ~room(X8)) & room(mary) [ennf transformation 53] 126. ~predx(mary) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 45] 128. ? [X0] : room(X0) & ? [X1] : (predf(X1) & ~predd(X1) & anywhere(X1)) & ? [X2] : (predx(X2) & room(X2)) & (? [X3] : room(X3) | ! [X4] : (~predf(X4) | predd(X4) | ~anywhere(X4))) & ! [X5] : (mary = X5 | ~room(X5)) & room(mary) [rectify 125] 129. ? [X0] : room(X0) => room(sK0) [choice axiom] 130. ? [X1] : (predf(X1) & ~predd(X1) & anywhere(X1)) => (predf(sK1) & ~predd(sK1) & anywhere(sK1)) [choice axiom] 131. ? [X2] : (predx(X2) & room(X2)) => (predx(sK2) & room(sK2)) [choice axiom] 132. ? [X3] : room(X3) => room(sK3) [choice axiom] 133. room(sK0) & (predf(sK1) & ~predd(sK1) & anywhere(sK1)) & (predx(sK2) & room(sK2)) & (room(sK3) | ! [X4] : (~predf(X4) | predd(X4) | ~anywhere(X4))) & ! [X5] : (mary = X5 | ~room(X5)) & room(mary) [skolemisation 128,132,131,130,129] 134. ? [X0] : (mary != X0 & room(X0)) => (mary != sK4 & room(sK4)) [choice axiom] 135. ~predx(mary) | (mary != sK4 & room(sK4)) | ~room(mary) [skolemisation 126,134] 217. room(mary) [cnf transformation 133] 218. ~room(X5) | mary = X5 [cnf transformation 133] 220. room(sK2) [cnf transformation 133] 221. predx(sK2) [cnf transformation 133] 226. ~predx(mary) | room(sK4) | ~room(mary) [cnf transformation 135] 227. ~predx(mary) | mary != sK4 | ~room(mary) [cnf transformation 135] 237. ~predx(mary) | mary != sK4 [subsumption resolution 227,217] 239. 3 <=> mary = sK4 [avatar definition] 241. mary != sK4 <- (~3) [avatar component clause 239] 243. 4 <=> predx(mary) [avatar definition] 246. ~3 | ~4 [avatar split clause 237,243,239] 247. ~predx(mary) | room(sK4) [subsumption resolution 226,217] 249. 5 <=> room(sK4) [avatar definition] 251. room(sK4) <- (5) [avatar component clause 249] 252. 5 | ~4 [avatar split clause 247,243,249] 255. mary = sK2 [resolution 218,220] 259. predx(mary) [backward demodulation 221,255] 263. 4 [avatar split clause 259,243] 264. mary = sK4 <- (5) [resolution 251,218] 265. $false <- (~3, 5) [subsumption resolution 264,241] 266. 3 | ~5 [avatar contradiction clause 265] 267. $false [avatar sat refutation 246,252,263,266] % SZS output end Proof for 6283350004940410510703632 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.035 s % ------------------------------ % ------------------------------
0.144742
There is a room. If everyone in the room does not enjoy salsa dancing or owns a microscope then someone in the room owns a smartwatch. If not everyone in the room owns a high-end gaming PC with custom-built components or does not own a smartwatch then if someone owns a high-end gaming PC with custom-built components then he/she owns a smartwatch and vice versa otherwise if someone owns a microscope then he/she owns a smartwatch and vice versa. Not everyone in the room does not own a smartwatch or owns a microscope only if everyone anywhere owns a smartwatch if and only if they owns a high-end gaming PC with custom-built components. Everyone in the room who owns a high-end gaming PC with custom-built components owns a microscope. Everyone anywhere who owns a microscope enjoys salsa dancing. Everyone in the room enjoys salsa dancing if and only if they owns a smartwatch. Everyone in the room who owns a microscope owns a high-end gaming PC with custom-built components. If someone enjoys salsa dancing then he/she owns a microscope and vice versa. Someone in the room owns a high-end gaming PC with custom-built components, enjoys salsa dancing or owns a smartwatch. Everyone in the room who owns a microscope enjoys salsa dancing.
Everyone outside the room does not own a smartwatch.
neutral
(there_is_a_room)& ((![X]:(room(X)=>(((owns_a_microscope(X))|(does_not_enjoy_salsa_dancing(X))))))=>(?[X]:(room(X)&(owns_a_smartwatch(X)))))& (((~![X]:(room(X)=>(((does_not_own_a_smartwatch(X))|(owns_a_high-end_gaming_PC_with_custom-built_components(X))))))=>((![X]:((owns_a_high-end_gaming_PC_with_custom-built_components(X))<=>(owns_a_smartwatch(X))))))&((~(~![X]:(room(X)=>(((does_not_own_a_smartwatch(X))|(owns_a_high-end_gaming_PC_with_custom-built_components(X)))))))=>((![X]:((owns_a_microscope(X))<=>(owns_a_smartwatch(X)))))))& ((~![X]:(room(X)=>(((owns_a_microscope(X))|(does_not_own_a_smartwatch(X))))))=>(![X]:(anywhere(X)=>(((owns_a_smartwatch(X))<=>(owns_a_high-end_gaming_PC_with_custom-built_components(X)))))))& (![X]:(room(X)=>(((owns_a_high-end_gaming_PC_with_custom-built_components(X))=>(owns_a_microscope(X))))))& (![X]:(anywhere(X)=>(((owns_a_microscope(X))=>(enjoys_salsa_dancing(X))))))& (![X]:(room(X)=>(((enjoys_salsa_dancing(X))<=>(owns_a_smartwatch(X))))))& (![X]:(room(X)=>(((owns_a_microscope(X))=>(owns_a_high-end_gaming_PC_with_custom-built_components(X))))))& ((![X]:((enjoys_salsa_dancing(X))<=>(owns_a_microscope(X)))))& (?[X]:(room(X)&(((owns_a_high-end_gaming_PC_with_custom-built_components(X))|(enjoys_salsa_dancing(X))|(owns_a_smartwatch(X))))))& (![X]:(room(X)=>(((owns_a_microscope(X))=>(enjoys_salsa_dancing(X))))))
(there_is_a_room)& ![X]:(~room(X)=>(does_not_own_a_smartwatch(X)))
[]
null
0.074558
Joseph, Debra, Melissa, Steven, Kathy are the only persons in the room. If 'Joseph is brave' then 'Melissa is generous'. If 'Melissa is generous' then 'all kind persons are happy'. Either 'Debra is a tall person' or 'it is not the case that 'someone in the room is quiet'' but not both. Either 'Joseph neither is humble nor is tall' or 'Joseph is a curious person' but not both. 'Melissa is curious' only if 'Joseph is not curious'. Either 'Joseph is a calm happy person' or 'Melissa is a curious person and is brave' but not both. Melissa is a old person. It is not the case that 'Joseph is strong'. Debra is patient. If someone is a creative person then he/she is tall and vice versa. Joseph and Melissa are respectively wise and humble. Debra is curious. Debra is wise. Melissa is a curious person and is brave. All quiet persons are funny. Melissa is calm. Melissa is patient. Debra neither is a brave person nor is happy. Debra is kind. Joseph is kind. If someone is a strong person then he/she is curious and vice versa. Melissa is wise. Debra is a humble person.
Joseph is tall.
contradiction
room(joseph)&room(debra)&room(melissa)&room(steven)&room(kathy)&(![X]:(room(X)=>(X='joseph'|X='debra'|X='melissa'|X='steven'|X='kathy')))& (((brave(joseph))=>(generous(melissa)))& ((generous(melissa))=>(![X]:(kind(X)=>happy(X)))))& ((tall(debra)&person(debra))<~>(~(?[X]:(room(X)&(quiet(X))))))& ((~((humble(joseph))|(tall(joseph))))<~>(curious(joseph)&person(joseph)))& ((curious(melissa))=>(~curious(joseph)))& ((calm(joseph)&happy(joseph)&person(joseph))<~>(((curious(melissa)&person(melissa))&(brave(melissa)))))& (old(melissa)&person(melissa))& (~(strong(joseph)))& (patient(debra))& ((![X]:((creative(X)&person(X))<=>(tall(X)))))& ((wise(joseph))&(humble(melissa)))& (curious(debra))& (wise(debra))& (((curious(melissa)&person(melissa))&(brave(melissa))))& (![X]:(quiet(X)=>funny(X)))& (calm(melissa))& (patient(melissa))& (~((brave(debra)&person(debra))|(happy(debra))))& (kind(debra))& (kind(joseph))& ((![X]:((strong(X)&person(X))<=>(curious(X)))))& (wise(melissa))& (humble(debra)&person(debra))
room(joseph)&room(debra)&room(melissa)&room(steven)&room(kathy)&(![X]:(room(X)=>(X='joseph'|X='debra'|X='melissa'|X='steven'|X='kathy')))& tall(joseph)
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 9067881780266047510645000 % SZS output start Proof for 9067881780266047510645000 44. person(paul) & humble(paul) & wise(fred) & ! [X0] : ((person(X0) & strong(X0)) <=> curious(X0)) & kind(mary) & kind(paul) & ~(happy(paul) | (person(paul) & brave(paul))) & patient(fred) & calm(fred) & ! [X0] : (quiet(X0) => funny(X0)) & brave(fred) & person(fred) & curious(fred) & wise(paul) & curious(paul) & humble(fred) & wise(mary) & ! [X0] : ((person(X0) & creative(X0)) <=> tall(X0)) & patient(paul) & ~strong(mary) & person(fred) & old(fred) & ((person(mary) & happy(mary) & calm(mary)) <~> (brave(fred) & person(fred) & curious(fred))) & (curious(fred) => ~curious(mary)) & (~(tall(mary) | humble(mary)) <~> (person(mary) & curious(mary))) & ((person(paul) & tall(paul)) <~> ~? [X0] : (quiet(X0) & room(X0))) & (generous(fred) => ! [X0] : (kind(X0) => happy(X0))) & (brave(mary) => generous(fred)) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 45. tall(mary) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 46. person(paul) & humble(paul) & wise(fred) & ! [X0] : ((person(X0) & strong(X0)) <=> curious(X0)) & kind(mary) & kind(paul) & ~(happy(paul) | (person(paul) & brave(paul))) & patient(fred) & calm(fred) & ! [X1] : (quiet(X1) => funny(X1)) & brave(fred) & person(fred) & curious(fred) & wise(paul) & curious(paul) & humble(fred) & wise(mary) & ! [X2] : ((person(X2) & creative(X2)) <=> tall(X2)) & patient(paul) & ~strong(mary) & person(fred) & old(fred) & ((person(mary) & happy(mary) & calm(mary)) <~> (brave(fred) & person(fred) & curious(fred))) & (curious(fred) => ~curious(mary)) & (~(tall(mary) | humble(mary)) <~> (person(mary) & curious(mary))) & ((person(paul) & tall(paul)) <~> ~? [X3] : (quiet(X3) & room(X3))) & (generous(fred) => ! [X4] : (kind(X4) => happy(X4))) & (brave(mary) => generous(fred)) & ! [X5] : (room(X5) => (john = X5 | alice = X5 | fred = X5 | paul = X5 | mary = X5)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 44] 47. person(paul) & humble(paul) & wise(fred) & ! [X0] : ((person(X0) & strong(X0)) <=> curious(X0)) & kind(mary) & kind(paul) & ~(happy(paul) | (person(paul) & brave(paul))) & patient(fred) & calm(fred) & brave(fred) & person(fred) & curious(fred) & wise(paul) & curious(paul) & humble(fred) & wise(mary) & ! [X2] : ((person(X2) & creative(X2)) <=> tall(X2)) & patient(paul) & ~strong(mary) & person(fred) & old(fred) & ((person(mary) & happy(mary) & calm(mary)) <~> (brave(fred) & person(fred) & curious(fred))) & (curious(fred) => ~curious(mary)) & (~(tall(mary) | humble(mary)) <~> (person(mary) & curious(mary))) & ((person(paul) & tall(paul)) <~> ~? [X3] : (quiet(X3) & room(X3))) & (generous(fred) => ! [X4] : (kind(X4) => happy(X4))) & (brave(mary) => generous(fred)) & ! [X5] : (room(X5) => (john = X5 | alice = X5 | fred = X5 | paul = X5 | mary = X5)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 46] 48. person(paul) & humble(paul) & ! [X0] : ((person(X0) & strong(X0)) <=> curious(X0)) & kind(mary) & kind(paul) & ~(happy(paul) | (person(paul) & brave(paul))) & patient(fred) & calm(fred) & brave(fred) & person(fred) & curious(fred) & curious(paul) & humble(fred) & ! [X2] : ((person(X2) & creative(X2)) <=> tall(X2)) & patient(paul) & ~strong(mary) & person(fred) & old(fred) & ((person(mary) & happy(mary) & calm(mary)) <~> (brave(fred) & person(fred) & curious(fred))) & (curious(fred) => ~curious(mary)) & (~(tall(mary) | humble(mary)) <~> (person(mary) & curious(mary))) & ((person(paul) & tall(paul)) <~> ~? [X3] : (quiet(X3) & room(X3))) & (generous(fred) => ! [X4] : (kind(X4) => happy(X4))) & (brave(mary) => generous(fred)) & ! [X5] : (room(X5) => (john = X5 | alice = X5 | fred = X5 | paul = X5 | mary = X5)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 47] 49. person(paul) & humble(paul) & ! [X0] : ((person(X0) & strong(X0)) <=> curious(X0)) & kind(mary) & kind(paul) & ~(happy(paul) | (person(paul) & brave(paul))) & calm(fred) & brave(fred) & person(fred) & curious(fred) & curious(paul) & humble(fred) & ! [X2] : ((person(X2) & creative(X2)) <=> tall(X2)) & ~strong(mary) & person(fred) & old(fred) & ((person(mary) & happy(mary) & calm(mary)) <~> (brave(fred) & person(fred) & curious(fred))) & (curious(fred) => ~curious(mary)) & (~(tall(mary) | humble(mary)) <~> (person(mary) & curious(mary))) & ((person(paul) & tall(paul)) <~> ~? [X3] : (quiet(X3) & room(X3))) & (generous(fred) => ! [X4] : (kind(X4) => happy(X4))) & (brave(mary) => generous(fred)) & ! [X5] : (room(X5) => (john = X5 | alice = X5 | fred = X5 | paul = X5 | mary = X5)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 48] 122. person(paul) & humble(paul) & ! [X0] : ((person(X0) & strong(X0)) <=> curious(X0)) & kind(mary) & kind(paul) & (~happy(paul) & (~person(paul) | ~brave(paul))) & calm(fred) & brave(fred) & person(fred) & curious(fred) & curious(paul) & humble(fred) & ! [X2] : ((person(X2) & creative(X2)) <=> tall(X2)) & ~strong(mary) & person(fred) & old(fred) & ((person(mary) & happy(mary) & calm(mary)) <~> (brave(fred) & person(fred) & curious(fred))) & (~curious(mary) | ~curious(fred)) & ((~tall(mary) & ~humble(mary)) <~> (person(mary) & curious(mary))) & ((person(paul) & tall(paul)) <~> ! [X3] : (~quiet(X3) | ~room(X3))) & (! [X4] : (happy(X4) | ~kind(X4)) | ~generous(fred)) & (generous(fred) | ~brave(mary)) & ! [X5] : ((john = X5 | alice = X5 | fred = X5 | paul = X5 | mary = X5) | ~room(X5)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 49] 123. person(paul) & humble(paul) & ! [X0] : ((person(X0) & strong(X0)) <=> curious(X0)) & kind(mary) & kind(paul) & ~happy(paul) & (~person(paul) | ~brave(paul)) & calm(fred) & brave(fred) & person(fred) & curious(fred) & curious(paul) & humble(fred) & ! [X2] : ((person(X2) & creative(X2)) <=> tall(X2)) & ~strong(mary) & person(fred) & old(fred) & ((person(mary) & happy(mary) & calm(mary)) <~> (brave(fred) & person(fred) & curious(fred))) & (~curious(mary) | ~curious(fred)) & ((~tall(mary) & ~humble(mary)) <~> (person(mary) & curious(mary))) & ((person(paul) & tall(paul)) <~> ! [X3] : (~quiet(X3) | ~room(X3))) & (! [X4] : (happy(X4) | ~kind(X4)) | ~generous(fred)) & (generous(fred) | ~brave(mary)) & ! [X5] : (john = X5 | alice = X5 | fred = X5 | paul = X5 | mary = X5 | ~room(X5)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 122] 124. tall(mary) & ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 45] 125. tall(mary) & ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 124] 127. person(paul) & humble(paul) & ! [X0] : (((person(X0) & strong(X0)) | ~curious(X0)) & (curious(X0) | (~person(X0) | ~strong(X0)))) & kind(mary) & kind(paul) & ~happy(paul) & (~person(paul) | ~brave(paul)) & calm(fred) & brave(fred) & person(fred) & curious(fred) & curious(paul) & humble(fred) & ! [X2] : (((person(X2) & creative(X2)) | ~tall(X2)) & (tall(X2) | (~person(X2) | ~creative(X2)))) & ~strong(mary) & person(fred) & old(fred) & (((~brave(fred) | ~person(fred) | ~curious(fred)) | (~person(mary) | ~happy(mary) | ~calm(mary))) & ((brave(fred) & person(fred) & curious(fred)) | (person(mary) & happy(mary) & calm(mary)))) & (~curious(mary) | ~curious(fred)) & (((~person(mary) | ~curious(mary)) | (tall(mary) | humble(mary))) & ((person(mary) & curious(mary)) | (~tall(mary) & ~humble(mary)))) & ((? [X3] : (quiet(X3) & room(X3)) | (~person(paul) | ~tall(paul))) & (! [X3] : (~quiet(X3) | ~room(X3)) | (person(paul) & tall(paul)))) & (! [X4] : (happy(X4) | ~kind(X4)) | ~generous(fred)) & (generous(fred) | ~brave(mary)) & ! [X5] : (john = X5 | alice = X5 | fred = X5 | paul = X5 | mary = X5 | ~room(X5)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [nnf transformation 123] 128. person(paul) & humble(paul) & ! [X0] : (((person(X0) & strong(X0)) | ~curious(X0)) & (curious(X0) | ~person(X0) | ~strong(X0))) & kind(mary) & kind(paul) & ~happy(paul) & (~person(paul) | ~brave(paul)) & calm(fred) & brave(fred) & person(fred) & curious(fred) & curious(paul) & humble(fred) & ! [X2] : (((person(X2) & creative(X2)) | ~tall(X2)) & (tall(X2) | ~person(X2) | ~creative(X2))) & ~strong(mary) & person(fred) & old(fred) & (~brave(fred) | ~person(fred) | ~curious(fred) | ~person(mary) | ~happy(mary) | ~calm(mary)) & ((brave(fred) & person(fred) & curious(fred)) | (person(mary) & happy(mary) & calm(mary))) & (~curious(mary) | ~curious(fred)) & (~person(mary) | ~curious(mary) | tall(mary) | humble(mary)) & ((person(mary) & curious(mary)) | (~tall(mary) & ~humble(mary))) & (? [X3] : (quiet(X3) & room(X3)) | ~person(paul) | ~tall(paul)) & (! [X3] : (~quiet(X3) | ~room(X3)) | (person(paul) & tall(paul))) & (! [X4] : (happy(X4) | ~kind(X4)) | ~generous(fred)) & (generous(fred) | ~brave(mary)) & ! [X5] : (john = X5 | alice = X5 | fred = X5 | paul = X5 | mary = X5 | ~room(X5)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 127] 129. person(paul) & humble(paul) & ! [X0] : (((person(X0) & strong(X0)) | ~curious(X0)) & (curious(X0) | ~person(X0) | ~strong(X0))) & kind(mary) & kind(paul) & ~happy(paul) & (~person(paul) | ~brave(paul)) & calm(fred) & brave(fred) & person(fred) & curious(fred) & curious(paul) & humble(fred) & ! [X1] : (((person(X1) & creative(X1)) | ~tall(X1)) & (tall(X1) | ~person(X1) | ~creative(X1))) & ~strong(mary) & person(fred) & old(fred) & (~brave(fred) | ~person(fred) | ~curious(fred) | ~person(mary) | ~happy(mary) | ~calm(mary)) & ((brave(fred) & person(fred) & curious(fred)) | (person(mary) & happy(mary) & calm(mary))) & (~curious(mary) | ~curious(fred)) & (~person(mary) | ~curious(mary) | tall(mary) | humble(mary)) & ((person(mary) & curious(mary)) | (~tall(mary) & ~humble(mary))) & (? [X2] : (quiet(X2) & room(X2)) | ~person(paul) | ~tall(paul)) & (! [X3] : (~quiet(X3) | ~room(X3)) | (person(paul) & tall(paul))) & (! [X4] : (happy(X4) | ~kind(X4)) | ~generous(fred)) & (generous(fred) | ~brave(mary)) & ! [X5] : (john = X5 | alice = X5 | fred = X5 | paul = X5 | mary = X5 | ~room(X5)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 128] 130. ? [X2] : (quiet(X2) & room(X2)) => (quiet(sK0) & room(sK0)) [choice axiom] 131. person(paul) & humble(paul) & ! [X0] : (((person(X0) & strong(X0)) | ~curious(X0)) & (curious(X0) | ~person(X0) | ~strong(X0))) & kind(mary) & kind(paul) & ~happy(paul) & (~person(paul) | ~brave(paul)) & calm(fred) & brave(fred) & person(fred) & curious(fred) & curious(paul) & humble(fred) & ! [X1] : (((person(X1) & creative(X1)) | ~tall(X1)) & (tall(X1) | ~person(X1) | ~creative(X1))) & ~strong(mary) & person(fred) & old(fred) & (~brave(fred) | ~person(fred) | ~curious(fred) | ~person(mary) | ~happy(mary) | ~calm(mary)) & ((brave(fred) & person(fred) & curious(fred)) | (person(mary) & happy(mary) & calm(mary))) & (~curious(mary) | ~curious(fred)) & (~person(mary) | ~curious(mary) | tall(mary) | humble(mary)) & ((person(mary) & curious(mary)) | (~tall(mary) & ~humble(mary))) & ((quiet(sK0) & room(sK0)) | ~person(paul) | ~tall(paul)) & (! [X3] : (~quiet(X3) | ~room(X3)) | (person(paul) & tall(paul))) & (! [X4] : (happy(X4) | ~kind(X4)) | ~generous(fred)) & (generous(fred) | ~brave(mary)) & ! [X5] : (john = X5 | alice = X5 | fred = X5 | paul = X5 | mary = X5 | ~room(X5)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [skolemisation 129,130] 225. curious(mary) | ~tall(mary) [cnf transformation 131] 229. ~curious(mary) | ~curious(fred) [cnf transformation 131] 248. curious(fred) [cnf transformation 131] 267. tall(mary) [cnf transformation 125] 285. ~curious(mary) [subsumption resolution 229,248] 291. ~tall(mary) [subsumption resolution 225,285] 327. $false [subsumption resolution 267,291] % SZS output end Proof for 9067881780266047510645000 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.028017
Laura, Brent, Adriana are the only persons in the room. Brent either is not a kind curious person or is not a curious person but not both if Brent is not a strong wise person. No quiet person is curious. More than one person in the room is not a wise person. Adriana neither is not a patient tall strong happy person nor is not a strong person.
All strong persons are wise.
contradiction
room(laura)&room(brent)&room(adriana)&(![X]:(room(X)=>(X='laura'|X='brent'|X='adriana')))& ((~(strong(brent)&wise(brent)&person(brent)))=>(((~(kind(brent)&curious(brent)&person(brent)))<~>(~(curious(brent)&person(brent))))))& (?[X,Y]:((~(strong(X)&tall(X)&person(X)))&(~(creative(Y)&wise(Y)&humble(Y)&person(Y)))&(richer(X,Y))))& (((~(happy(laura)&person(laura)))&(~(tall(laura)&person(laura)))))& (~?[X]:(quiet(X)=>curious(X)))& (((~(calm(laura)&funny(laura)&person(laura)))&(~(tall(laura)&person(laura)))))& (?[X,Y]:((~(curious(X)&calm(X)&person(X)))&(~(calm(Y)&person(Y)))&(quieter(X,Y))))& (((~(curious(adriana)&humble(adriana)&wise(adriana)&person(adriana)))|(~(wise(adriana)&person(adriana)))))& ((?[X,Y]:(room(X)&room(Y)&(~(wise(X)&person(X))&~(wise(Y)&person(Y)))&(X!=Y))))& (?[X,Y]:((((~(patient(X)&old(X)&person(X)))|(~(wise(X)&calm(X)&tall(X)&person(X)))))&(~(humble(Y)&calm(Y)&person(Y)))&(older(X,Y))))& (((~(funny(laura)&tall(laura)&person(laura)))&(~(generous(laura)&person(laura)))))& (~?[X]:(patient(X)=>generous(X)))& (~((~(patient(adriana)&tall(adriana)&strong(adriana)&happy(adriana)&person(adriana)))|(~(strong(adriana)&person(adriana)))))& ((?[X,Y]:(room(X)&room(Y)&(((~(funny(X)&person(X)))<~>(~(kind(X)&strong(X)&person(X))))&((~(funny(Y)&person(Y)))<~>(~(kind(Y)&strong(Y)&person(Y)))))&(X!=Y))))& (~((~(creative(adriana)&person(adriana)))|(~(kind(adriana)&tall(adriana)&person(adriana)))))& (((~(curious(brent)&wise(brent)&person(brent)))|(~(curious(brent)&patient(brent)&person(brent)))))
room(laura)&room(brent)&room(adriana)&(![X]:(room(X)=>(X='laura'|X='brent'|X='adriana')))& ![X]:(strong(X)=>wise(X))
[ "p0", "p1", "p4", "p8", "p12", "hypothesis" ]
% SZS status Unsatisfiable for 2936496556764098394585953 % SZS output start Proof for 2936496556764098394585953 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 45. ~(person(paul) & wise(paul) & strong(paul)) => (~(person(paul) & curious(paul) & kind(paul)) <~> ~(person(paul) & curious(paul))) [input p1] 48. ~? [X0] : (quiet(X0) => curious(X0)) [input p4] 52. ? [X0,X1] : (X0 != X1 & ~(person(X1) & wise(X1)) & ~(person(X0) & wise(X0)) & room(X1) & room(X0)) [input p8] 56. ~(~(person(fred) & strong(fred)) | ~(person(fred) & happy(fred) & strong(fred) & tall(fred) & patient(fred))) [input p12] 60. ! [X0] : (strong(X0) => wise(X0)) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 61. ! [X0] : (strong(X0) => wise(X0)) & ! [X1] : (room(X1) => (fred = X1 | paul = X1 | mary = X1)) & room(fred) & room(paul) & room(mary) [rectify 60] 142. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 143. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 142] 144. ((~person(paul) | ~curious(paul) | ~kind(paul)) <~> (~person(paul) | ~curious(paul))) | (person(paul) & wise(paul) & strong(paul)) [ennf transformation 45] 147. ! [X0] : (~curious(X0) & quiet(X0)) [ennf transformation 48] 149. ? [X0,X1] : (X0 != X1 & (~person(X1) | ~wise(X1)) & (~person(X0) | ~wise(X0)) & room(X1) & room(X0)) [ennf transformation 52] 152. (person(fred) & strong(fred)) & (person(fred) & happy(fred) & strong(fred) & tall(fred) & patient(fred)) [ennf transformation 56] 153. person(fred) & strong(fred) & person(fred) & happy(fred) & strong(fred) & tall(fred) & patient(fred) [flattening 152] 159. ! [X0] : (wise(X0) | ~strong(X0)) & ! [X1] : ((fred = X1 | paul = X1 | mary = X1) | ~room(X1)) & room(fred) & room(paul) & room(mary) [ennf transformation 61] 160. ! [X0] : (wise(X0) | ~strong(X0)) & ! [X1] : (fred = X1 | paul = X1 | mary = X1 | ~room(X1)) & room(fred) & room(paul) & room(mary) [flattening 159] 161. ((~person(paul) | ~curious(paul) | ~kind(paul)) <~> (~person(paul) | ~curious(paul))) | ~sP0 [predicate definition introduction] 162. sP0 | (person(paul) & wise(paul) & strong(paul)) [definition folding 144,161] 164. (((person(paul) & curious(paul)) | (person(paul) & curious(paul) & kind(paul))) & ((~person(paul) | ~curious(paul)) | (~person(paul) | ~curious(paul) | ~kind(paul)))) | ~sP0 [nnf transformation 161] 165. (((person(paul) & curious(paul)) | (person(paul) & curious(paul) & kind(paul))) & (~person(paul) | ~curious(paul) | ~person(paul) | ~curious(paul) | ~kind(paul))) | ~sP0 [flattening 164] 170. ? [X0,X1] : (X0 != X1 & (~person(X1) | ~wise(X1)) & (~person(X0) | ~wise(X0)) & room(X1) & room(X0)) => (sK5 != sK6 & (~person(sK6) | ~wise(sK6)) & (~person(sK5) | ~wise(sK5)) & room(sK6) & room(sK5)) [choice axiom] 171. sK5 != sK6 & (~person(sK6) | ~wise(sK6)) & (~person(sK5) | ~wise(sK5)) & room(sK6) & room(sK5) [skolemisation 149,170] 261. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 143] 264. curious(paul) | curious(paul) | ~sP0 [cnf transformation 165] 270. sP0 | wise(paul) [cnf transformation 162] 271. sP0 | person(paul) [cnf transformation 162] 277. ~curious(X0) [cnf transformation 147] 280. room(sK5) [cnf transformation 171] 281. room(sK6) [cnf transformation 171] 282. ~person(sK5) | ~wise(sK5) [cnf transformation 171] 283. ~person(sK6) | ~wise(sK6) [cnf transformation 171] 284. sK5 != sK6 [cnf transformation 171] 293. strong(fred) [cnf transformation 153] 294. person(fred) [cnf transformation 153] 321. ~strong(X0) | wise(X0) [cnf transformation 160] 328. curious(paul) | ~sP0 [duplicate literal removal 264] 331. 1 <=> sP0 [avatar definition] 335. 2 <=> person(paul) [avatar definition] 337. person(paul) <- (2) [avatar component clause 335] 340. 3 <=> curious(paul) [avatar definition] 342. curious(paul) <- (3) [avatar component clause 340] 350. ~1 | 3 [avatar split clause 328,340,331] 353. 2 | 1 [avatar split clause 271,331,335] 355. 5 <=> wise(paul) [avatar definition] 357. wise(paul) <- (5) [avatar component clause 355] 358. 5 | 1 [avatar split clause 270,331,355] 393. 13 <=> wise(sK6) [avatar definition] 395. ~wise(sK6) <- (~13) [avatar component clause 393] 397. 14 <=> person(sK6) [avatar definition] 399. ~person(sK6) <- (~14) [avatar component clause 397] 400. ~13 | ~14 [avatar split clause 283,397,393] 402. 15 <=> wise(sK5) [avatar definition] 404. ~wise(sK5) <- (~15) [avatar component clause 402] 406. 16 <=> person(sK5) [avatar definition] 408. ~person(sK5) <- (~16) [avatar component clause 406] 409. ~15 | ~16 [avatar split clause 282,406,402] 447. wise(fred) [resolution 321,293] 566. paul = sK5 | mary = sK5 | fred = sK5 [resolution 261,280] 567. paul = sK6 | mary = sK6 | fred = sK6 [resolution 261,281] 571. 33 <=> fred = sK5 [avatar definition] 573. fred = sK5 <- (33) [avatar component clause 571] 575. 34 <=> mary = sK5 [avatar definition] 579. 35 <=> paul = sK5 [avatar definition] 581. paul = sK5 <- (35) [avatar component clause 579] 582. 33 | 34 | 35 [avatar split clause 566,579,575,571] 584. 36 <=> fred = sK6 [avatar definition] 586. fred = sK6 <- (36) [avatar component clause 584] 588. 37 <=> mary = sK6 [avatar definition] 590. mary = sK6 <- (37) [avatar component clause 588] 592. 38 <=> paul = sK6 [avatar definition] 594. paul = sK6 <- (38) [avatar component clause 592] 595. 36 | 37 | 38 [avatar split clause 567,592,588,584] 636. ~wise(fred) <- (~13, 36) [backward demodulation 395,586] 639. $false <- (~13, 36) [subsumption resolution 636,447] 640. 13 | ~36 [avatar contradiction clause 639] 642. ~person(fred) <- (~16, 33) [backward demodulation 408,573] 644. $false <- (~16, 33) [subsumption resolution 642,294] 645. 16 | ~33 [avatar contradiction clause 644] 661. ~person(fred) <- (~14, 36) [forward demodulation 399,586] 662. $false <- (~14, 36) [subsumption resolution 661,294] 663. 14 | ~36 [avatar contradiction clause 662] 677. ~person(paul) <- (~14, 38) [backward demodulation 399,594] 681. $false <- (2, ~14, 38) [subsumption resolution 677,337] 682. ~2 | 14 | ~38 [avatar contradiction clause 681] 684. ~person(paul) <- (~16, 35) [backward demodulation 408,581] 687. $false <- (2, ~16, 35) [subsumption resolution 684,337] 688. ~2 | 16 | ~35 [avatar contradiction clause 687] 701. ~wise(paul) <- (~13, 38) [forward demodulation 395,594] 702. $false <- (5, ~13, 38) [subsumption resolution 701,357] 703. ~5 | 13 | ~38 [avatar contradiction clause 702] 707. mary != sK5 <- (37) [backward demodulation 284,590] 708. ~34 | ~37 [avatar split clause 707,588,575] 711. ~wise(fred) <- (~15, 33) [forward demodulation 404,573] 712. $false <- (~15, 33) [subsumption resolution 711,447] 713. 15 | ~33 [avatar contradiction clause 712] 717. ~wise(paul) <- (~15, 35) [backward demodulation 404,581] 721. ~5 | 15 | ~35 [avatar split clause 717,579,402,355] 723. $false <- (3) [subsumption resolution 342,277] 724. ~3 [avatar contradiction clause 723] 725. $false [avatar sat refutation 350,353,358,400,409,582,595,640,645,663,682,688,703,708,713,721,724] % SZS output end Proof for 2936496556764098394585953 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.023 s % ------------------------------ % ------------------------------
0.67171
There is a room. Everyone anywhere plays the violin if they is allergic to anything. Not everyone in the room who plays the violin collects historical artifacts related to ancient civilizations. Everyone in the room plays the violin if they collects historical artifacts related to ancient civilizations. Everyone in the room does not collect historical artifacts related to ancient civilizations if they plays the violin. Everyone in the room either is allergic to anything or collects historical artifacts related to ancient civilizations but not both. Everyone in the room who is allergic to anything is a certified scuba diver with advanced underwater photography skills. Everyone in the room is allergic to anything if they is a certified scuba diver with advanced underwater photography skills. Everyone in the room who collects historical artifacts related to ancient civilizations is allergic to anything and collects historical artifacts related to ancient civilizations. Everyone in the room who is allergic to anything and collects historical artifacts related to ancient civilizations is not allergic to anything. Everyone in the room plays the violin if they is allergic to anything. If someone is a certified scuba diver with advanced underwater photography skills then he/she is allergic to anything.
Everyone outside the room collects historical artifacts related to ancient civilizations.
neutral
(there_is_a_room)& (![X]:(anywhere(X)=>(((is_allergic_to_anything(X))=>(plays_the_violin(X))))))& (~![X]:(room(X)=>(((plays_the_violin(X))=>(collects_historical_artifacts_related_to_ancient_civilizations(X))))))& (![X]:(room(X)=>(((collects_historical_artifacts_related_to_ancient_civilizations(X))=>(plays_the_violin(X))))))& (![X]:(room(X)=>(((plays_the_violin(X))=>(does_not_collect_historical_artifacts_related_to_ancient_civilizations(X))))))& (![X]:(room(X)=>(((is_allergic_to_anything(X))<~>(collects_historical_artifacts_related_to_ancient_civilizations(X))))))& (![X]:(room(X)=>(((is_allergic_to_anything(X))=>(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))))& (![X]:(room(X)=>(((is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))=>(is_allergic_to_anything(X))))))& (![X]:(room(X)=>(((collects_historical_artifacts_related_to_ancient_civilizations(X))=>(((is_allergic_to_anything(X))&(collects_historical_artifacts_related_to_ancient_civilizations(X))))))))& (![X]:(room(X)=>(((((is_allergic_to_anything(X))&(collects_historical_artifacts_related_to_ancient_civilizations(X))))=>(is_not_allergic_to_anything(X))))))& (![X]:(room(X)=>(((is_allergic_to_anything(X))=>(plays_the_violin(X))))))& ((![X]:((is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))=>(is_allergic_to_anything(X)))))
(there_is_a_room)& ![X]:(~room(X)=>(collects_historical_artifacts_related_to_ancient_civilizations(X)))
[]
null
0.004601
Ramiro is the only person in the room. Samuel and Ramiro like each other if at least one person in the room does not hate Matthew and vice versa. Samuel and Ramiro like each other. Someone who does not like Donna hate someone who hates Donna. At least one person in the room does not hate Matthew. Luann and Ramiro like each other. Someone who is not hated by Matthew, does not hate Matthew and is not liked by Matthew hate someone who is not hated by Luann. Someone in the room is not hated by Luann or does not like Samuel or both.
Ramiro likes Donna.
neutral
room(ramiro)&(![X]:(room(X)=>(X='ramiro')))& ((((?[X]:(room(X)&~hate(matthew,X)))))<=>((like(samuel,ramiro) & like(ramiro,samuel))))& ((like(samuel,ramiro) & like(ramiro,samuel)))& (?[X,Y]:((~like(donna,X))&(hate(donna,Y))&(hate(X,Y))))& (((?[X]:(room(X)&~hate(matthew,X)))))& ((like(luann,ramiro) & like(ramiro,luann)))& (?[X,Y]:((((~hate(X,matthew))&(~hate(matthew,X))&(~like(X,matthew))))&(~hate(Y,luann))&(hate(X,Y))))& (?[X]:(room(X)&(((~hate(X,luann))|(~like(samuel,X))))))
room(ramiro)&(![X]:(room(X)=>(X='ramiro')))& like(donna,ramiro)
[]
null
0.140281
David, Alvaro, Sarah, Ronald, Ian are the only persons in the room. If "not everyone in the room enjoys wildlife photography or does not own a 3D printer" then "it is not the case that "Alvaro is a certified scuba diver with advanced underwater photography skills"". If "no one outside the room does not write poetry or writes poetry" then "if someone practices calligraphy then he/she enjoys wildlife photography". "Sarah plays eSports competitively" unless "Sarah enjoys snowboarding". It is not the case that "someone in the room has a saltwater aquarium". Everyone in the room does not enjoy snowboarding or is a certified scuba diver with advanced underwater photography skills. Everyone in the room who does not enjoy snowboarding enjoys snowboarding and writes poetry. Everyone in the room does not collect rare and antique scientific instruments or enjoys snowboarding and writes poetry. Everyone in the room is not a drone photographer or does not collect rare and antique scientific instruments. Sarah owns a 3D printer. Everyone anywhere who enjoys wildlife photography owns a 3D printer. If someone enjoys snowboarding then he/she regularly contributes to tech forums and online communities and vice versa. No one anywhere plays eSports competitively if and only if they has a saltwater aquarium. Not everyone outside the room writes poetry if and only if they is a drone photographer. Everyone in the room who is a drone photographer enjoys fishing. It is not the case that "Sarah neither writes poetry nor is dedicated to sustainable living and zero-waste practices". Everyone in the room who neither is a drone photographer nor plays eSports competitively enjoys snowboarding. Someone in the room is dedicated to sustainable living and zero-waste practices. Everyone in the room who is a certified scuba diver with advanced underwater photography skills writes poetry. Everyone in the room owns a 3D printer or does not regularly goes on multi-day backpacking trips in national parks. Sarah collects rare and antique scientific instruments. Not everyone in the room who enjoys wildlife photography has a saltwater aquarium.
Sarah enjoys wildlife photography.
entailment
room(david)&room(alvaro)&room(sarah)&room(ronald)&room(ian)&(![X]:(room(X)=>(X='david'|X='alvaro'|X='sarah'|X='ronald'|X='ian')))& ((~![X]:(room(X)=>(((does_not_own_a_3D_printer(X))|(enjoys_wildlife_photography(X))))))=>(~(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(alvaro))))& ((~?[X]:(~room(X)=>(((writes_poetry(X))|(does_not_write_poetry(X))))))=>((![X]:((practices_calligraphy(X))=>(enjoys_wildlife_photography(X))))))& (~(enjoys_snowboarding(sarah))=>(plays_eSports_competitively(sarah)))& (~(?[X]:(room(X)&(has_a_saltwater_aquarium(X)))))& (![X]:(room(X)=>(((is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))|(does_not_enjoy_snowboarding(X))))))& (![X]:(room(X)=>(((does_not_enjoy_snowboarding(X))=>(((enjoys_snowboarding(X))&(writes_poetry(X))))))))& (![X]:(room(X)=>(((((enjoys_snowboarding(X))&(writes_poetry(X))))|(does_not_collect_rare_and_antique_scientific_instruments(X))))))& (![X]:(room(X)=>(((does_not_collect_rare_and_antique_scientific_instruments(X))|(is_not_a_drone_photographer(X))))))& (owns_a_3D_printer(sarah))& (![X]:(anywhere(X)=>(((enjoys_wildlife_photography(X))=>(owns_a_3D_printer(X))))))& ((![X]:((enjoys_snowboarding(X))<=>(regularly_contributes_to_tech_forums_and_online_communities(X)))))& (~?[X]:(anywhere(X)=>(((plays_eSports_competitively(X))<=>(has_a_saltwater_aquarium(X))))))& (~![X]:(~room(X)=>(((writes_poetry(X))<=>(is_a_drone_photographer(X))))))& (![X]:(room(X)=>(((is_a_drone_photographer(X))=>(enjoys_fishing(X))))))& (~(~((writes_poetry(sarah))|(is_dedicated_to_sustainable_living_and_zero-waste_practices(sarah)))))& (![X]:(room(X)=>(((~((is_a_drone_photographer(X))|(plays_eSports_competitively(X))))=>(enjoys_snowboarding(X))))))& (?[X]:(room(X)&(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))))& (![X]:(room(X)=>(((is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))=>(writes_poetry(X))))))& (![X]:(room(X)=>(((does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))|(owns_a_3D_printer(X))))))& (collects_rare_and_antique_scientific_instruments(sarah))& (~![X]:(room(X)=>(((enjoys_wildlife_photography(X))=>(has_a_saltwater_aquarium(X))))))
room(david)&room(alvaro)&room(sarah)&room(ronald)&room(ian)&(![X]:(room(X)=>(X='david'|X='alvaro'|X='sarah'|X='ronald'|X='ian')))& enjoys_wildlife_photography(sarah)
[ "p0", "p1", "p5", "p6", "p9", "hypothesis" ]
% SZS status Unsatisfiable for 6923006384690602265393714 % SZS output start Proof for 6923006384690602265393714 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 45. ~! [X0] : (room(X0) => (predb(X0) | ~predh(X0))) => ~predn(paul) [input p1] 49. ! [X0] : (room(X0) => (~predc(X0) | predn(X0))) [input p5] 50. ! [X0] : (room(X0) => (~predc(X0) => (predj(X0) & predc(X0)))) [input p6] 53. predh(fred) [input p9] 66. ~(predb(fred) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 145. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 146. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 145] 147. ~predn(paul) | ! [X0] : ((predb(X0) | ~predh(X0)) | ~room(X0)) [ennf transformation 45] 148. ~predn(paul) | ! [X0] : (predb(X0) | ~predh(X0) | ~room(X0)) [flattening 147] 151. ! [X0] : ((~predc(X0) | predn(X0)) | ~room(X0)) [ennf transformation 49] 152. ! [X0] : (~predc(X0) | predn(X0) | ~room(X0)) [flattening 151] 153. ! [X0] : (((predj(X0) & predc(X0)) | predc(X0)) | ~room(X0)) [ennf transformation 50] 154. ! [X0] : ((predj(X0) & predc(X0)) | predc(X0) | ~room(X0)) [flattening 153] 169. ~predb(fred) | ? [X0] : ((john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 66] 170. ~predb(fred) | ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 169] 183. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (john != sK3 & alice != sK3 & fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) [choice axiom] 184. ~predb(fred) | (john != sK3 & alice != sK3 & fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 170,183] 266. room(mary) [cnf transformation 146] 267. room(paul) [cnf transformation 146] 268. room(fred) [cnf transformation 146] 269. room(alice) [cnf transformation 146] 270. room(john) [cnf transformation 146] 271. ~room(X0) | alice = X0 | fred = X0 | paul = X0 | mary = X0 | john = X0 [cnf transformation 146] 272. ~predn(paul) | predb(X0) | ~predh(X0) | ~room(X0) [cnf transformation 148] 275. ~predc(X0) | predn(X0) | ~room(X0) [cnf transformation 152] 276. predc(X0) | predc(X0) | ~room(X0) [cnf transformation 154] 281. predh(fred) [cnf transformation 53] 298. ~predb(fred) | room(sK3) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 184] 299. ~predb(fred) | mary != sK3 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 184] 300. ~predb(fred) | paul != sK3 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 184] 301. ~predb(fred) | fred != sK3 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 184] 302. ~predb(fred) | alice != sK3 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 184] 303. ~predb(fred) | john != sK3 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 184] 304. ~room(X0) | predc(X0) [duplicate literal removal 276] 306. 1 <=> ! [X0] : (predb(X0) | ~room(X0) | ~predh(X0)) [avatar definition] 307. ~predh(X0) | ~room(X0) | predb(X0) <- (1) [avatar component clause 306] 309. 2 <=> predn(paul) [avatar definition] 312. 1 | ~2 [avatar split clause 272,309,306] 333. ~predb(fred) | john != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 303,270] 334. ~predb(fred) | john != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 333,269] 335. ~predb(fred) | john != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 334,268] 336. ~predb(fred) | john != sK3 | ~room(mary) [subsumption resolution 335,267] 337. ~predb(fred) | john != sK3 [subsumption resolution 336,266] 339. 7 <=> john = sK3 [avatar definition] 341. john != sK3 <- (~7) [avatar component clause 339] 343. 8 <=> predb(fred) [avatar definition] 346. ~7 | ~8 [avatar split clause 337,343,339] 347. ~predb(fred) | alice != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 302,270] 348. ~predb(fred) | alice != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 347,269] 349. ~predb(fred) | alice != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 348,268] 350. ~predb(fred) | alice != sK3 | ~room(mary) [subsumption resolution 349,267] 351. ~predb(fred) | alice != sK3 [subsumption resolution 350,266] 353. 9 <=> alice = sK3 [avatar definition] 355. alice != sK3 <- (~9) [avatar component clause 353] 356. ~9 | ~8 [avatar split clause 351,343,353] 357. ~predb(fred) | fred != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 301,270] 358. ~predb(fred) | fred != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 357,269] 359. ~predb(fred) | fred != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 358,268] 360. ~predb(fred) | fred != sK3 | ~room(mary) [subsumption resolution 359,267] 361. ~predb(fred) | fred != sK3 [subsumption resolution 360,266] 363. 10 <=> fred = sK3 [avatar definition] 365. fred != sK3 <- (~10) [avatar component clause 363] 366. ~10 | ~8 [avatar split clause 361,343,363] 367. ~predb(fred) | paul != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 300,270] 368. ~predb(fred) | paul != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 367,269] 369. ~predb(fred) | paul != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 368,268] 370. ~predb(fred) | paul != sK3 | ~room(mary) [subsumption resolution 369,267] 371. ~predb(fred) | paul != sK3 [subsumption resolution 370,266] 373. 11 <=> paul = sK3 [avatar definition] 375. paul != sK3 <- (~11) [avatar component clause 373] 376. ~11 | ~8 [avatar split clause 371,343,373] 377. ~predb(fred) | mary != sK3 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 299,270] 378. ~predb(fred) | mary != sK3 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 377,269] 379. ~predb(fred) | mary != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 378,268] 380. ~predb(fred) | mary != sK3 | ~room(mary) [subsumption resolution 379,267] 381. ~predb(fred) | mary != sK3 [subsumption resolution 380,266] 383. 12 <=> mary = sK3 [avatar definition] 385. mary != sK3 <- (~12) [avatar component clause 383] 386. ~12 | ~8 [avatar split clause 381,343,383] 387. ~predb(fred) | room(sK3) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 298,270] 388. ~predb(fred) | room(sK3) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 387,269] 389. ~predb(fred) | room(sK3) | ~room(paul) | ~room(mary) [subsumption resolution 388,268] 390. ~predb(fred) | room(sK3) | ~room(mary) [subsumption resolution 389,267] 391. ~predb(fred) | room(sK3) [subsumption resolution 390,266] 393. 13 <=> room(sK3) [avatar definition] 395. room(sK3) <- (13) [avatar component clause 393] 396. 13 | ~8 [avatar split clause 391,343,393] 403. predc(paul) [resolution 304,267] 414. predn(paul) | ~room(paul) [resolution 275,403] 420. predn(paul) [subsumption resolution 414,267] 421. 2 [avatar split clause 420,309] 445. ~room(fred) | predb(fred) <- (1) [resolution 307,281] 446. predb(fred) <- (1) [subsumption resolution 445,268] 449. 8 | ~1 [avatar split clause 446,306,343] 546. alice = sK3 | fred = sK3 | paul = sK3 | mary = sK3 | john = sK3 <- (13) [resolution 271,395] 589. fred = sK3 | paul = sK3 | mary = sK3 | john = sK3 <- (~9, 13) [subsumption resolution 546,355] 590. paul = sK3 | mary = sK3 | john = sK3 <- (~9, ~10, 13) [subsumption resolution 589,365] 591. mary = sK3 | john = sK3 <- (~9, ~10, ~11, 13) [subsumption resolution 590,375] 592. john = sK3 <- (~9, ~10, ~11, ~12, 13) [subsumption resolution 591,385] 593. $false <- (~7, ~9, ~10, ~11, ~12, 13) [subsumption resolution 592,341] 594. 7 | 9 | 10 | 11 | 12 | ~13 [avatar contradiction clause 593] 595. $false [avatar sat refutation 312,346,356,366,376,386,396,421,449,594] % SZS output end Proof for 6923006384690602265393714 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.040 s % ------------------------------ % ------------------------------
0.5718
Joyce is the only person in the room. If "Joyce is richer than Cathy" then "Joyce is older than Joni". If "Joyce is quieter than Joni" then "Joyce who is older than Cathy neither is older than Joni nor is older than Cathy".
Cathy is richer than Joyce.
neutral
room(joyce)&(![X]:(room(X)=>(X='joyce')))& ((richer(cathy,joyce))=>(older(joni,joyce)))& ((quieter(joni,joyce))=>((older(cathy,joyce))&(~((older(joni,joyce))|(older(cathy,joyce))))))& ((richer(joni,joyce))=>(older(nancy,joyce)))& ((older(nancy,joyce))=>((((older(nancy,joyce))&(older(cathy,joyce))&(quieter(nancy,joyce))))&(richer(joni,joyce))))& ((quieter(joni,joyce))=>(?[X,Y]:((older(joni,X))&(older(cathy,Y))&(richer(X,Y)))))& ((quieter(joni,joyce))=>((older(nancy,joyce))&(richer(joni,joyce))))& ((richer(cathy,joyce))=>(((quieter(nancy,joyce))&(older(cathy,joyce)))))& ((quieter(joni,joyce))=>((![X]:((quieter(joni,X))=>(older(cathy,X))))))& ((richer(cathy,joyce))=>((![X]:((richer(joni,X))<=>(((quieter(nancy,X))&(richer(joni,X))&(older(nancy,X))))))))& ((richer(nancy,joyce))=>(quieter(nancy,joyce)))& ((older(nancy,joyce))=>(?[X]:(anywhere(X)&(older(joni,X)))))& ((![X]:((older(nancy,X))<=>(older(cathy,X)))))& (((?[X]:(room(X)&quieter(nancy,X)))&(![X,Y]:((room(X)&room(Y)&(quieter(nancy,X))&(quieter(nancy,Y)))=>(X=Y)))))& (richer(joyce,joni))& (older(joni,joyce))& (![X]:((room(X)&(X!=joyce))=>richer(joyce,X)))& (![X]:((room(X)&(X!=joyce))=>quieter(joyce,X)))& ((![X]:((older(cathy,X))=>(quieter(nancy,X)))))& (?[X,Y]:((quieter(cathy,X))&(older(cathy,Y))&(quieter(X,Y))))
room(joyce)&(![X]:(room(X)=>(X='joyce')))& richer(joyce,cathy)
[]
null
0.706848
Viola, Elliott, Rex, Adeline, Chad are the only persons in the room. Viola is the least old in the room. Someone in the room is humble. Elliott is the least rich in the room. All humble persons are creative. All happy persons are strong. All quiet persons are calm. If someone is wise then he/she is humble and vice versa. All kind persons are humble. If someone is funny then he/she is wise and vice versa.
All kind persons are funny.
entailment
room(viola)&room(elliott)&room(rex)&room(adeline)&room(chad)&(![X]:(room(X)=>(X='viola'|X='elliott'|X='rex'|X='adeline'|X='chad')))& (![X]:((room(X)&(X!=viola))=>older(viola,X)))& (?[X]:(room(X)&(humble(X))))& (![X]:((room(X)&(X!=elliott))=>richer(elliott,X)))& (![X]:(humble(X)=>creative(X)))& (![X]:(happy(X)=>strong(X)))& (![X]:(quiet(X)=>calm(X)))& (?[X]:(room(X)&(kind(X))))& (((?[X]:(room(X)&calm(X)))))& (?[X]:(~room(X)&(brave(X))))& ((![X]:((wise(X))<=>(humble(X)))))& (![X]:(kind(X)=>humble(X)))& (![X]:(generous(X)=>calm(X)))& (![X]:(calm(X)=>quiet(X)))& (![X]:(calm(X)=>funny(X)))& ((![X]:((funny(X))<=>(wise(X)))))& ((![X]:((~patient(X))=>(strong(X)))))& ((![X]:((kind(X))<=>(brave(X)))))& (((?[X]:(room(X)&kind(X)))))& (![X]:(strong(X)=>curious(X)))& (((?[X]:(~room(X)&kind(X)))))& ((![X]:((~curious(X))<=>(humble(X)))))& (![X]:(creative(X)=>funny(X)))
room(viola)&room(elliott)&room(rex)&room(adeline)&room(chad)&(![X]:(room(X)=>(X='viola'|X='elliott'|X='rex'|X='adeline'|X='chad')))& ![X]:(kind(X)=>funny(X))
[ "p0", "p10", "p11", "p15", "hypothesis" ]
% SZS status Unsatisfiable for 5760917114459810622454706 % SZS output start Proof for 5760917114459810622454706 44. ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 54. ! [X0] : (wise(X0) <=> humble(X0)) [input p10] 55. ! [X0] : (kind(X0) => humble(X0)) [input p11] 59. ! [X0] : (funny(X0) <=> wise(X0)) [input p15] 67. ~(! [X0] : (kind(X0) => funny(X0)) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 68. ~(! [X0] : (kind(X0) => funny(X0)) & ! [X1] : (room(X1) => (john = X1 | alice = X1 | fred = X1 | paul = X1 | mary = X1)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [rectify 67] 147. ! [X0] : ((john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 148. ! [X0] : (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 147] 155. ! [X0] : (humble(X0) | ~kind(X0)) [ennf transformation 55] 159. ? [X0] : (~funny(X0) & kind(X0)) | ? [X1] : ((john != X1 & alice != X1 & fred != X1 & paul != X1 & mary != X1) & room(X1)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 68] 160. ? [X0] : (~funny(X0) & kind(X0)) | ? [X1] : (john != X1 & alice != X1 & fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 159] 161. ? [X1] : (john != X1 & alice != X1 & fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~sP0 [predicate definition introduction] 162. ? [X0] : (~funny(X0) & kind(X0)) | sP0 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [definition folding 160,161] 172. ! [X0] : ((wise(X0) | ~humble(X0)) & (humble(X0) | ~wise(X0))) [nnf transformation 54] 173. ! [X0] : ((funny(X0) | ~wise(X0)) & (wise(X0) | ~funny(X0))) [nnf transformation 59] 179. ? [X1] : (john != X1 & alice != X1 & fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~sP0 [nnf transformation 161] 180. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~sP0 [rectify 179] 181. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (john != sK7 & alice != sK7 & fred != sK7 & paul != sK7 & mary != sK7 & room(sK7)) [choice axiom] 182. (john != sK7 & alice != sK7 & fred != sK7 & paul != sK7 & mary != sK7 & room(sK7)) | ~sP0 [skolemisation 180,181] 183. ? [X0] : (~funny(X0) & kind(X0)) => (~funny(sK8) & kind(sK8)) [choice axiom] 184. (~funny(sK8) & kind(sK8)) | sP0 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 162,183] 265. room(mary) [cnf transformation 148] 266. room(paul) [cnf transformation 148] 267. room(fred) [cnf transformation 148] 268. room(alice) [cnf transformation 148] 269. room(john) [cnf transformation 148] 270. ~room(X0) | alice = X0 | fred = X0 | paul = X0 | mary = X0 | john = X0 [cnf transformation 148] 284. ~humble(X0) | wise(X0) [cnf transformation 172] 285. ~kind(X0) | humble(X0) [cnf transformation 155] 289. ~wise(X0) | funny(X0) [cnf transformation 173] 297. room(sK7) | ~sP0 [cnf transformation 182] 298. mary != sK7 | ~sP0 [cnf transformation 182] 299. paul != sK7 | ~sP0 [cnf transformation 182] 300. fred != sK7 | ~sP0 [cnf transformation 182] 301. alice != sK7 | ~sP0 [cnf transformation 182] 302. john != sK7 | ~sP0 [cnf transformation 182] 303. kind(sK8) | sP0 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 184] 304. ~funny(sK8) | sP0 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 184] 306. 1 <=> sP0 [avatar definition] 310. 2 <=> john = sK7 [avatar definition] 312. john != sK7 <- (~2) [avatar component clause 310] 313. ~1 | ~2 [avatar split clause 302,310,306] 315. 3 <=> alice = sK7 [avatar definition] 317. alice != sK7 <- (~3) [avatar component clause 315] 318. ~1 | ~3 [avatar split clause 301,315,306] 320. 4 <=> fred = sK7 [avatar definition] 322. fred != sK7 <- (~4) [avatar component clause 320] 323. ~1 | ~4 [avatar split clause 300,320,306] 325. 5 <=> paul = sK7 [avatar definition] 327. paul != sK7 <- (~5) [avatar component clause 325] 328. ~1 | ~5 [avatar split clause 299,325,306] 330. 6 <=> mary = sK7 [avatar definition] 332. mary != sK7 <- (~6) [avatar component clause 330] 333. ~1 | ~6 [avatar split clause 298,330,306] 335. 7 <=> room(sK7) [avatar definition] 337. room(sK7) <- (7) [avatar component clause 335] 338. ~1 | 7 [avatar split clause 297,335,306] 339. ~funny(sK8) | sP0 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 304,269] 340. ~funny(sK8) | sP0 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 339,268] 341. ~funny(sK8) | sP0 | ~room(paul) | ~room(mary) [subsumption resolution 340,267] 342. ~funny(sK8) | sP0 | ~room(mary) [subsumption resolution 341,266] 343. ~funny(sK8) | sP0 [subsumption resolution 342,265] 345. 8 <=> funny(sK8) [avatar definition] 347. ~funny(sK8) <- (~8) [avatar component clause 345] 348. 1 | ~8 [avatar split clause 343,345,306] 349. kind(sK8) | sP0 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 303,269] 350. kind(sK8) | sP0 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 349,268] 351. kind(sK8) | sP0 | ~room(paul) | ~room(mary) [subsumption resolution 350,267] 352. kind(sK8) | sP0 | ~room(mary) [subsumption resolution 351,266] 353. kind(sK8) | sP0 [subsumption resolution 352,265] 355. 9 <=> kind(sK8) [avatar definition] 357. kind(sK8) <- (9) [avatar component clause 355] 358. 1 | 9 [avatar split clause 353,355,306] 364. humble(sK8) <- (9) [resolution 285,357] 375. wise(sK8) <- (9) [resolution 364,284] 409. funny(sK8) <- (9) [resolution 375,289] 411. $false <- (~8, 9) [subsumption resolution 409,347] 412. 8 | ~9 [avatar contradiction clause 411] 565. alice = sK7 | fred = sK7 | paul = sK7 | mary = sK7 | john = sK7 <- (7) [resolution 270,337] 634. fred = sK7 | paul = sK7 | mary = sK7 | john = sK7 <- (~3, 7) [subsumption resolution 565,317] 635. paul = sK7 | mary = sK7 | john = sK7 <- (~3, ~4, 7) [subsumption resolution 634,322] 636. mary = sK7 | john = sK7 <- (~3, ~4, ~5, 7) [subsumption resolution 635,327] 637. john = sK7 <- (~3, ~4, ~5, ~6, 7) [subsumption resolution 636,332] 638. $false <- (~2, ~3, ~4, ~5, ~6, 7) [subsumption resolution 637,312] 639. 2 | 3 | 4 | 5 | 6 | ~7 [avatar contradiction clause 638] 640. $false [avatar sat refutation 313,318,323,328,333,338,348,358,412,639] % SZS output end Proof for 5760917114459810622454706 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.706769
Flora, Aaron, Elaine are the only persons in the room. Either "everyone anywhere is a tea enthusiast or does not work on fridays" or "it is true that "someone outside the room enjoys writing detailed reviews of new and classic board games"" but not both. "If someone enjoys writing detailed reviews of new and classic board games then he/she is a tea enthusiast" if "no one in the room is a tea enthusiast or does not enjoy stand-up paddleboarding". Aaron owns an Android phone. Everyone outside the room works on fridays if they does not enjoy stand-up paddleboarding. Everyone in the room is a tea enthusiast if they works on fridays. If someone enjoys stand-up paddleboarding, does not enjoy writing detailed reviews of new and classic board games or works on fridays then he/she enjoys stand-up paddleboarding. Everyone in the room works on fridays if they enjoys writing detailed reviews of new and classic board games. Everyone in the room who works on fridays owns an Android phone. If someone does not own an Android phone then he/she is a tea enthusiast. Everyone in the room is a tea enthusiast or is not a tea enthusiast. Everyone in the room enjoys stand-up paddleboarding if they is a tea enthusiast. Someone in the room is a tea enthusiast. Elaine neither is a tea enthusiast nor enjoys writing detailed reviews of new and classic board games. Flora who enjoys writing detailed reviews of new and classic board games works on fridays. Elaine does not work on fridays.
Everyone anywhere owns an Android phone.
neutral
room(flora)&room(aaron)&room(elaine)&(![X]:(room(X)=>(X='flora'|X='aaron'|X='elaine')))& ((![X]:(anywhere(X)=>(((does_not_work_on_fridays(X))|(is_a_tea_enthusiast(X))))))<~>(?[X]:(~room(X)&(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X)))))& ((~?[X]:(room(X)=>(((does_not_enjoy_stand-up_paddleboarding(X))|(is_a_tea_enthusiast(X))))))=>((![X]:((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))=>(is_a_tea_enthusiast(X))))))& (owns_an_Android_phone(aaron))& (![X]:(~room(X)=>(((does_not_enjoy_stand-up_paddleboarding(X))=>(works_on_fridays(X))))))& (![X]:(room(X)=>(((works_on_fridays(X))=>(is_a_tea_enthusiast(X))))))& ((![X]:((((enjoys_stand-up_paddleboarding(X))|(does_not_enjoy_writing_detailed_reviews_of_new_and_classic_board_games(X))|(works_on_fridays(X))))=>(enjoys_stand-up_paddleboarding(X)))))& (![X]:(room(X)=>(((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))=>(works_on_fridays(X))))))& (![X]:(room(X)=>(((works_on_fridays(X))=>(owns_an_Android_phone(X))))))& ((![X]:((does_not_own_an_Android_phone(X))=>(is_a_tea_enthusiast(X)))))& (![X]:(room(X)=>(((is_not_a_tea_enthusiast(X))|(is_a_tea_enthusiast(X))))))& (![X]:(room(X)=>(((is_a_tea_enthusiast(X))=>(enjoys_stand-up_paddleboarding(X))))))& (?[X]:(room(X)&(is_a_tea_enthusiast(X))))& (~((is_a_tea_enthusiast(elaine))|(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(elaine))))& ((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(flora))&(works_on_fridays(flora)))& (does_not_work_on_fridays(elaine))
room(flora)&room(aaron)&room(elaine)&(![X]:(room(X)=>(X='flora'|X='aaron'|X='elaine')))& ![X]:(anywhere(X)=>(owns_an_Android_phone(X)))
[]
null
0.141861
Barbara is the only person in the room. Miranda is a sibling of Barbara if Barbara and Geraldine hate each other. If Miranda is a sibling of Barbara then Hollis is a client of Barbara. Barbara and Geraldine hate each other. Barbara collects antique jewelry. No funny person is brave. Barbara is the oldest anywhere. If someone is not a funny patient quiet generous person then he/she is not a quiet calm person and vice versa. Barbara owns a 3D printer. Hollis is a client of Barbara. Geraldine is a client of Barbara. Ione is a sibling of Barbara. Barbara is a sibling of Miranda. Miranda and Barbara like each other. Ione and Barbara hate each other.
Barbara is older than Geraldine.
entailment
room(barbara)&(![X]:(room(X)=>(X='barbara')))& (((hate(barbara,geraldine) & hate(geraldine,barbara)))=>(sibling(barbara,miranda)))& ((sibling(barbara,miranda))=>(client(barbara,hollis)))& ((hate(barbara,geraldine) & hate(geraldine,barbara)))& (collects_antique_jewelry(barbara))& (~?[X]:(funny(X)=>brave(X)))& (![X]:((anywhere(X)&(X!=barbara))=>older(X,barbara)))& ((![X]:((~(funny(X)&patient(X)&quiet(X)&generous(X)&person(X)))<=>(~(quiet(X)&calm(X)&person(X))))))& (owns_a_3D_printer(barbara))& (client(barbara,hollis))& (client(barbara,geraldine))& (sibling(barbara,ione))& (sibling(miranda,barbara))& ((like(miranda,barbara) & like(barbara,miranda)))& ((hate(ione,barbara) & hate(barbara,ione)))
room(barbara)&(![X]:(room(X)=>(X='barbara')))& older(geraldine,barbara)
[ "b4", "b42", "p0", "p6", "hypothesis" ]
% SZS status Unsatisfiable for 6666665165267748743742058 % SZS output start Proof for 6666665165267748743742058 5. ! [X0] : anywhere(X0) [input b4] 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 50. ! [X0] : ((mary != X0 & anywhere(X0)) => older(X0,mary)) [input p6] 59. ~(older(john,mary) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 139. ! [X0] : (mary = X0 | ~room(X0)) & room(mary) [ennf transformation 44] 143. ! [X0] : (older(X0,mary) | (mary = X0 | ~anywhere(X0))) [ennf transformation 50] 144. ! [X0] : (older(X0,mary) | mary = X0 | ~anywhere(X0)) [flattening 143] 146. ~older(john,mary) | ? [X0] : (mary != X0 & room(X0)) | ~room(mary) [ennf transformation 59] 150. ? [X0] : (mary != X0 & room(X0)) => (mary != sK0 & room(sK0)) [choice axiom] 151. ~older(john,mary) | (mary != sK0 & room(sK0)) | ~room(mary) [skolemisation 146,150] 154. anywhere(X0) [cnf transformation 5] 217. mary != john [cnf transformation 43] 235. room(mary) [cnf transformation 139] 236. ~room(X0) | mary = X0 [cnf transformation 139] 241. older(X0,mary) | mary = X0 | ~anywhere(X0) [cnf transformation 144] 256. ~older(john,mary) | room(sK0) | ~room(mary) [cnf transformation 151] 257. ~older(john,mary) | mary != sK0 | ~room(mary) [cnf transformation 151] 273. older(X0,mary) | mary = X0 [subsumption resolution 241,154] 275. ~older(john,mary) | mary != sK0 [subsumption resolution 257,235] 277. 4 <=> mary = sK0 [avatar definition] 279. mary != sK0 <- (~4) [avatar component clause 277] 281. 5 <=> older(john,mary) [avatar definition] 283. ~older(john,mary) <- (~5) [avatar component clause 281] 284. ~4 | ~5 [avatar split clause 275,281,277] 285. ~older(john,mary) | room(sK0) [subsumption resolution 256,235] 287. 6 <=> room(sK0) [avatar definition] 289. room(sK0) <- (6) [avatar component clause 287] 290. 6 | ~5 [avatar split clause 285,281,287] 292. mary = john <- (~5) [resolution 273,283] 293. $false <- (~5) [subsumption resolution 292,217] 294. 5 [avatar contradiction clause 293] 295. mary = sK0 <- (6) [resolution 289,236] 296. $false <- (~4, 6) [subsumption resolution 295,279] 297. 4 | ~6 [avatar contradiction clause 296] 298. $false [avatar sat refutation 284,290,294,297] % SZS output end Proof for 6666665165267748743742058 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.009415
Ola, Hugo are the only persons in the room. If “Hugo travels domestically frequently” then “Hugo and Thomas like each other” otherwise “Ola enjoys cross-country skiing”. If “Hugo practices and performs acrobatic dance routines” then “Ola is a patient european”. If “Ola is a patient european” then “Ola who hosts a popular podcast about emerging technologies does not enjoy skydiving”. If “Ola is an expert in identifying and foraging wild edible plants” then “Hugo who participates in citizen science projects related to wildlife monitoring bakes bread at home” otherwise “Hugo writes and illustrates their own graphic novels”. If “Ola participates in citizen science projects related to wildlife monitoring” then “at least one person in the room has a saltwater aquarium”. If “at least one person in the room has a saltwater aquarium” then “it is not the case that “Ola does not enjoy coding in Python””. If “it is not the case that “Hugo is not hated by Marisa”” then “Hugo does not maintain a large, organic vegetable garden year-round”. If “Hugo does not maintain a large, organic vegetable garden year-round” then “Ola creates YouTube content”. If “Ola practices zumba” then “Hugo travels domestically frequently”. If “Hugo travels domestically frequently” then “Ola enjoys macrame”. If “Hugo creates YouTube content” then “Ola who enjoys skydiving likes Michelle” otherwise “Hugo does not own a telescope”. Hugo is a curious tourist.
Hugo enjoys coding in Python.
entailment
room(ola)&room(hugo)&(![X]:(room(X)=>(X='ola'|X='hugo')))& (((travels_domestically_frequently(hugo))=>((like(hugo,thomas) & like(thomas,hugo))))&((~(travels_domestically_frequently(hugo)))=>(enjoys_cross-country_skiing(ola))))& (((practices_and_performs_acrobatic_dance_routines(hugo))=>(patient(ola)&european(ola)))& ((patient(ola)&european(ola))=>((hosts_a_popular_podcast_about_emerging_technologies(ola))&(does_not_enjoy_skydiving(ola)))))& (((is_an_expert_in_identifying_and_foraging_wild_edible_plants(ola))=>((participates_in_citizen_science_projects_related_to_wildlife_monitoring(hugo))&(bakes_bread_at_home(hugo))))&((~(is_an_expert_in_identifying_and_foraging_wild_edible_plants(ola)))=>(writes_and_illustrates_their_own_graphic_novels(hugo))))& (((participates_in_citizen_science_projects_related_to_wildlife_monitoring(ola))=>(((?[X]:(room(X)&has_a_saltwater_aquarium(X))))))& ((((?[X]:(room(X)&has_a_saltwater_aquarium(X)))))=>(~(does_not_enjoy_coding_in_Python(ola)))))& (((~(~hate(hugo,marisa)))=>(does_not_maintain_a_large,_organic_vegetable_garden_year-round(hugo)))& ((does_not_maintain_a_large,_organic_vegetable_garden_year-round(hugo))=>(creates_YouTube_content(ola))))& (((practices_zumba(ola))=>(travels_domestically_frequently(hugo)))& ((travels_domestically_frequently(hugo))=>(enjoys_macrame(ola))))& (((creates_YouTube_content(hugo))=>((enjoys_skydiving(ola))&(like(michelle,ola))))&((~(creates_YouTube_content(hugo)))=>(does_not_own_a_telescope(hugo))))& (curious(hugo)&tourist(hugo))& (is_not_an_expert_in_identifying_and_foraging_wild_edible_plants(hugo))& (is_a_night_owl(hugo))& (?[X,Y]:((bakes_bread_at_home(X))&(enjoys_coding_in_Python(Y))&(sibling(X,Y))))& (is_a_cybersecurity_expert(hugo))& (?[X,Y]:((creative(X)&tourist(X))&(((~hate(Y,thomas))|(enjoys_coding_in_Python(Y))))&(client(X,Y))))& (is_a_member_of_a_local_theater_group_specializing_in_improv(hugo))& (travels_domestically_frequently(ola))& (does_not_practice_zumba(hugo))& (enjoys_stand-up_paddleboarding(hugo))& (is_a_night_owl(ola))& (((?[X]:(anywhere(X)&uses_contact_lenses(X)))&(![X,Y]:((anywhere(X)&anywhere(Y)&(uses_contact_lenses(X))&(uses_contact_lenses(Y)))=>(X=Y)))))& (enjoys_coding_in_Python(hugo))& (patient(hugo)&person(hugo))& (((enjoys_macrame(ola))|(curious(ola)&tourist(ola))))& (makes_homemade_pastries(hugo))& (enjoys_skydiving(ola))& (owns_a_telescope(ola))
room(ola)&room(hugo)&(![X]:(room(X)=>(X='ola'|X='hugo')))& enjoys_coding_in_Python(hugo)
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 809409578127028234751397 % SZS output start Proof for 809409578127028234751397 44. preds(mary) & predk(mary) & predp(paul) & ((tourist(mary) & curious(mary)) | predz(mary)) & person(paul) & patient(paul) & predd(paul) & ! [X0,X1] : ((predt(X1) & predt(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X0] : (predt(X0) & anywhere(X0)) & predh(mary) & predj(paul) & ~predm(paul) & predb(mary) & predl(paul) & ? [X0,X1] : (client(X0,X1) & (predd(X1) | ~hate(X1,fred)) & tourist(X0) & creative(X0)) & predq(paul) & ? [X0,X1] : (sibling(X0,X1) & predd(X1) & predg(X0)) & predh(paul) & ~predu(paul) & tourist(paul) & curious(paul) & (~predr(paul) => ~preds(paul)) & (predr(paul) => (like(lucy,mary) & predk(mary))) & (predb(paul) => predz(mary)) & (predm(mary) => predb(paul)) & (~predn(paul) => predr(mary)) & (hate(paul,alice) => ~predn(paul)) & (? [X0] : (predc(X0) & room(X0)) => predd(mary)) & (predy(mary) => ? [X0] : (predc(X0) & room(X0))) & (~predu(mary) => predx(paul)) & (predu(mary) => (predg(paul) & predy(paul))) & ((european(mary) & patient(mary)) => (~predk(mary) & predf(mary))) & (prede(paul) => (european(mary) & patient(mary))) & (~predb(paul) => predv(mary)) & (predb(paul) => (like(fred,paul) & like(paul,fred))) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 45. ~(predd(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary)) [input hypothesis] 46. preds(mary) & predk(mary) & predp(paul) & ((tourist(mary) & curious(mary)) | predz(mary)) & person(paul) & patient(paul) & predd(paul) & ! [X0,X1] : ((predt(X1) & predt(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (predt(X2) & anywhere(X2)) & predh(mary) & predj(paul) & ~predm(paul) & predb(mary) & predl(paul) & ? [X3,X4] : (client(X3,X4) & (predd(X4) | ~hate(X4,fred)) & tourist(X3) & creative(X3)) & predq(paul) & ? [X5,X6] : (sibling(X5,X6) & predd(X6) & predg(X5)) & predh(paul) & ~predu(paul) & tourist(paul) & curious(paul) & (~predr(paul) => ~preds(paul)) & (predr(paul) => (like(lucy,mary) & predk(mary))) & (predb(paul) => predz(mary)) & (predm(mary) => predb(paul)) & (~predn(paul) => predr(mary)) & (hate(paul,alice) => ~predn(paul)) & (? [X7] : (predc(X7) & room(X7)) => predd(mary)) & (predy(mary) => ? [X8] : (predc(X8) & room(X8))) & (~predu(mary) => predx(paul)) & (predu(mary) => (predg(paul) & predy(paul))) & ((european(mary) & patient(mary)) => (~predk(mary) & predf(mary))) & (prede(paul) => (european(mary) & patient(mary))) & (~predb(paul) => predv(mary)) & (predb(paul) => (like(fred,paul) & like(paul,fred))) & ! [X9] : (room(X9) => (paul = X9 | mary = X9)) & room(paul) & room(mary) [rectify 44] 47. preds(mary) & predk(mary) & ((tourist(mary) & curious(mary)) | predz(mary)) & person(paul) & patient(paul) & predd(paul) & ! [X0,X1] : ((predt(X1) & predt(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (predt(X2) & anywhere(X2)) & predh(mary) & predj(paul) & ~predm(paul) & predb(mary) & predl(paul) & ? [X3,X4] : (client(X3,X4) & (predd(X4) | ~hate(X4,fred)) & tourist(X3) & creative(X3)) & predq(paul) & ? [X5,X6] : (sibling(X5,X6) & predd(X6) & predg(X5)) & predh(paul) & ~predu(paul) & tourist(paul) & curious(paul) & (~predr(paul) => ~preds(paul)) & (predr(paul) => (like(lucy,mary) & predk(mary))) & (predb(paul) => predz(mary)) & (predm(mary) => predb(paul)) & (~predn(paul) => predr(mary)) & (hate(paul,alice) => ~predn(paul)) & (? [X7] : (predc(X7) & room(X7)) => predd(mary)) & (predy(mary) => ? [X8] : (predc(X8) & room(X8))) & (~predu(mary) => predx(paul)) & (predu(mary) => (predg(paul) & predy(paul))) & ((european(mary) & patient(mary)) => (~predk(mary) & predf(mary))) & (prede(paul) => (european(mary) & patient(mary))) & (~predb(paul) => predv(mary)) & (predb(paul) => (like(fred,paul) & like(paul,fred))) & ! [X9] : (room(X9) => (paul = X9 | mary = X9)) & room(paul) & room(mary) [pure predicate removal 46] 48. preds(mary) & predk(mary) & ((tourist(mary) & curious(mary)) | predz(mary)) & person(paul) & patient(paul) & predd(paul) & ! [X0,X1] : ((predt(X1) & predt(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (predt(X2) & anywhere(X2)) & predh(mary) & ~predm(paul) & predb(mary) & predl(paul) & ? [X3,X4] : (client(X3,X4) & (predd(X4) | ~hate(X4,fred)) & tourist(X3) & creative(X3)) & predq(paul) & ? [X5,X6] : (sibling(X5,X6) & predd(X6) & predg(X5)) & predh(paul) & ~predu(paul) & tourist(paul) & curious(paul) & (~predr(paul) => ~preds(paul)) & (predr(paul) => (like(lucy,mary) & predk(mary))) & (predb(paul) => predz(mary)) & (predm(mary) => predb(paul)) & (~predn(paul) => predr(mary)) & (hate(paul,alice) => ~predn(paul)) & (? [X7] : (predc(X7) & room(X7)) => predd(mary)) & (predy(mary) => ? [X8] : (predc(X8) & room(X8))) & (~predu(mary) => predx(paul)) & (predu(mary) => (predg(paul) & predy(paul))) & ((european(mary) & patient(mary)) => (~predk(mary) & predf(mary))) & (prede(paul) => (european(mary) & patient(mary))) & (~predb(paul) => predv(mary)) & (predb(paul) => (like(fred,paul) & like(paul,fred))) & ! [X9] : (room(X9) => (paul = X9 | mary = X9)) & room(paul) & room(mary) [pure predicate removal 47] 49. preds(mary) & predk(mary) & ((tourist(mary) & curious(mary)) | predz(mary)) & person(paul) & patient(paul) & predd(paul) & ! [X0,X1] : ((predt(X1) & predt(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (predt(X2) & anywhere(X2)) & predh(mary) & ~predm(paul) & predb(mary) & ? [X3,X4] : (client(X3,X4) & (predd(X4) | ~hate(X4,fred)) & tourist(X3) & creative(X3)) & predq(paul) & ? [X5,X6] : (sibling(X5,X6) & predd(X6) & predg(X5)) & predh(paul) & ~predu(paul) & tourist(paul) & curious(paul) & (~predr(paul) => ~preds(paul)) & (predr(paul) => (like(lucy,mary) & predk(mary))) & (predb(paul) => predz(mary)) & (predm(mary) => predb(paul)) & (~predn(paul) => predr(mary)) & (hate(paul,alice) => ~predn(paul)) & (? [X7] : (predc(X7) & room(X7)) => predd(mary)) & (predy(mary) => ? [X8] : (predc(X8) & room(X8))) & (~predu(mary) => predx(paul)) & (predu(mary) => (predg(paul) & predy(paul))) & ((european(mary) & patient(mary)) => (~predk(mary) & predf(mary))) & (prede(paul) => (european(mary) & patient(mary))) & (~predb(paul) => predv(mary)) & (predb(paul) => (like(fred,paul) & like(paul,fred))) & ! [X9] : (room(X9) => (paul = X9 | mary = X9)) & room(paul) & room(mary) [pure predicate removal 48] 50. preds(mary) & predk(mary) & ((tourist(mary) & curious(mary)) | predz(mary)) & person(paul) & patient(paul) & predd(paul) & ! [X0,X1] : ((predt(X1) & predt(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (predt(X2) & anywhere(X2)) & predh(mary) & ~predm(paul) & predb(mary) & ? [X3,X4] : ((predd(X4) | ~hate(X4,fred)) & tourist(X3) & creative(X3)) & predq(paul) & ? [X5,X6] : (sibling(X5,X6) & predd(X6) & predg(X5)) & predh(paul) & ~predu(paul) & tourist(paul) & curious(paul) & (~predr(paul) => ~preds(paul)) & (predr(paul) => (like(lucy,mary) & predk(mary))) & (predb(paul) => predz(mary)) & (predm(mary) => predb(paul)) & (~predn(paul) => predr(mary)) & (hate(paul,alice) => ~predn(paul)) & (? [X7] : (predc(X7) & room(X7)) => predd(mary)) & (predy(mary) => ? [X8] : (predc(X8) & room(X8))) & (~predu(mary) => predx(paul)) & (predu(mary) => (predg(paul) & predy(paul))) & ((european(mary) & patient(mary)) => (~predk(mary) & predf(mary))) & (prede(paul) => (european(mary) & patient(mary))) & (~predb(paul) => predv(mary)) & (predb(paul) => (like(fred,paul) & like(paul,fred))) & ! [X9] : (room(X9) => (paul = X9 | mary = X9)) & room(paul) & room(mary) [pure predicate removal 49] 51. preds(mary) & predk(mary) & ((tourist(mary) & curious(mary)) | predz(mary)) & person(paul) & patient(paul) & predd(paul) & ! [X0,X1] : ((predt(X1) & predt(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (predt(X2) & anywhere(X2)) & predh(mary) & ~predm(paul) & predb(mary) & ? [X3,X4] : ((predd(X4) | ~hate(X4,fred)) & tourist(X3)) & predq(paul) & ? [X5,X6] : (sibling(X5,X6) & predd(X6) & predg(X5)) & predh(paul) & ~predu(paul) & tourist(paul) & curious(paul) & (~predr(paul) => ~preds(paul)) & (predr(paul) => (like(lucy,mary) & predk(mary))) & (predb(paul) => predz(mary)) & (predm(mary) => predb(paul)) & (~predn(paul) => predr(mary)) & (hate(paul,alice) => ~predn(paul)) & (? [X7] : (predc(X7) & room(X7)) => predd(mary)) & (predy(mary) => ? [X8] : (predc(X8) & room(X8))) & (~predu(mary) => predx(paul)) & (predu(mary) => (predg(paul) & predy(paul))) & ((european(mary) & patient(mary)) => (~predk(mary) & predf(mary))) & (prede(paul) => (european(mary) & patient(mary))) & (~predb(paul) => predv(mary)) & (predb(paul) => (like(fred,paul) & like(paul,fred))) & ! [X9] : (room(X9) => (paul = X9 | mary = X9)) & room(paul) & room(mary) [pure predicate removal 50] 52. preds(mary) & predk(mary) & ((tourist(mary) & curious(mary)) | predz(mary)) & person(paul) & patient(paul) & predd(paul) & ! [X0,X1] : ((predt(X1) & predt(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (predt(X2) & anywhere(X2)) & predh(mary) & ~predm(paul) & predb(mary) & ? [X3,X4] : ((predd(X4) | ~hate(X4,fred)) & tourist(X3)) & ? [X5,X6] : (sibling(X5,X6) & predd(X6) & predg(X5)) & predh(paul) & ~predu(paul) & tourist(paul) & curious(paul) & (~predr(paul) => ~preds(paul)) & (predr(paul) => (like(lucy,mary) & predk(mary))) & (predb(paul) => predz(mary)) & (predm(mary) => predb(paul)) & (~predn(paul) => predr(mary)) & (hate(paul,alice) => ~predn(paul)) & (? [X7] : (predc(X7) & room(X7)) => predd(mary)) & (predy(mary) => ? [X8] : (predc(X8) & room(X8))) & (~predu(mary) => predx(paul)) & (predu(mary) => (predg(paul) & predy(paul))) & ((european(mary) & patient(mary)) => (~predk(mary) & predf(mary))) & (prede(paul) => (european(mary) & patient(mary))) & (~predb(paul) => predv(mary)) & (predb(paul) => (like(fred,paul) & like(paul,fred))) & ! [X9] : (room(X9) => (paul = X9 | mary = X9)) & room(paul) & room(mary) [pure predicate removal 51] 53. preds(mary) & predk(mary) & ((tourist(mary) & curious(mary)) | predz(mary)) & person(paul) & patient(paul) & predd(paul) & ! [X0,X1] : ((predt(X1) & predt(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (predt(X2) & anywhere(X2)) & ~predm(paul) & predb(mary) & ? [X3,X4] : ((predd(X4) | ~hate(X4,fred)) & tourist(X3)) & ? [X5,X6] : (sibling(X5,X6) & predd(X6) & predg(X5)) & ~predu(paul) & tourist(paul) & curious(paul) & (~predr(paul) => ~preds(paul)) & (predr(paul) => (like(lucy,mary) & predk(mary))) & (predb(paul) => predz(mary)) & (predm(mary) => predb(paul)) & (~predn(paul) => predr(mary)) & (hate(paul,alice) => ~predn(paul)) & (? [X7] : (predc(X7) & room(X7)) => predd(mary)) & (predy(mary) => ? [X8] : (predc(X8) & room(X8))) & (~predu(mary) => predx(paul)) & (predu(mary) => (predg(paul) & predy(paul))) & ((european(mary) & patient(mary)) => (~predk(mary) & predf(mary))) & (prede(paul) => (european(mary) & patient(mary))) & (~predb(paul) => predv(mary)) & (predb(paul) => (like(fred,paul) & like(paul,fred))) & ! [X9] : (room(X9) => (paul = X9 | mary = X9)) & room(paul) & room(mary) [pure predicate removal 52] 54. preds(mary) & predk(mary) & (tourist(mary) | predz(mary)) & person(paul) & patient(paul) & predd(paul) & ! [X0,X1] : ((predt(X1) & predt(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (predt(X2) & anywhere(X2)) & ~predm(paul) & predb(mary) & ? [X3,X4] : ((predd(X4) | ~hate(X4,fred)) & tourist(X3)) & ? [X5,X6] : (sibling(X5,X6) & predd(X6) & predg(X5)) & ~predu(paul) & tourist(paul) & (~predr(paul) => ~preds(paul)) & (predr(paul) => (like(lucy,mary) & predk(mary))) & (predb(paul) => predz(mary)) & (predm(mary) => predb(paul)) & (~predn(paul) => predr(mary)) & (hate(paul,alice) => ~predn(paul)) & (? [X7] : (predc(X7) & room(X7)) => predd(mary)) & (predy(mary) => ? [X8] : (predc(X8) & room(X8))) & (~predu(mary) => predx(paul)) & (predu(mary) => (predg(paul) & predy(paul))) & ((european(mary) & patient(mary)) => (~predk(mary) & predf(mary))) & (prede(paul) => (european(mary) & patient(mary))) & (~predb(paul) => predv(mary)) & (predb(paul) => (like(fred,paul) & like(paul,fred))) & ! [X9] : (room(X9) => (paul = X9 | mary = X9)) & room(paul) & room(mary) [pure predicate removal 53] 55. preds(mary) & predk(mary) & person(paul) & patient(paul) & predd(paul) & ! [X0,X1] : ((predt(X1) & predt(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (predt(X2) & anywhere(X2)) & ~predm(paul) & predb(mary) & ? [X3,X4] : ((predd(X4) | ~hate(X4,fred)) & tourist(X3)) & ? [X5,X6] : (sibling(X5,X6) & predd(X6) & predg(X5)) & ~predu(paul) & tourist(paul) & (~predr(paul) => ~preds(paul)) & (predr(paul) => (like(lucy,mary) & predk(mary))) & (predm(mary) => predb(paul)) & (~predn(paul) => predr(mary)) & (hate(paul,alice) => ~predn(paul)) & (? [X7] : (predc(X7) & room(X7)) => predd(mary)) & (predy(mary) => ? [X8] : (predc(X8) & room(X8))) & (~predu(mary) => predx(paul)) & (predu(mary) => (predg(paul) & predy(paul))) & ((european(mary) & patient(mary)) => (~predk(mary) & predf(mary))) & (prede(paul) => (european(mary) & patient(mary))) & (~predb(paul) => predv(mary)) & (predb(paul) => (like(fred,paul) & like(paul,fred))) & ! [X9] : (room(X9) => (paul = X9 | mary = X9)) & room(paul) & room(mary) [pure predicate removal 54] 56. preds(mary) & predk(mary) & person(paul) & patient(paul) & predd(paul) & ! [X0,X1] : ((predt(X1) & predt(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (predt(X2) & anywhere(X2)) & predb(mary) & ? [X3,X4] : ((predd(X4) | ~hate(X4,fred)) & tourist(X3)) & ? [X5,X6] : (sibling(X5,X6) & predd(X6) & predg(X5)) & ~predu(paul) & tourist(paul) & (~predr(paul) => ~preds(paul)) & (predr(paul) => (like(lucy,mary) & predk(mary))) & (~predn(paul) => predr(mary)) & (hate(paul,alice) => ~predn(paul)) & (? [X7] : (predc(X7) & room(X7)) => predd(mary)) & (predy(mary) => ? [X8] : (predc(X8) & room(X8))) & (~predu(mary) => predx(paul)) & (predu(mary) => (predg(paul) & predy(paul))) & ((european(mary) & patient(mary)) => (~predk(mary) & predf(mary))) & (prede(paul) => (european(mary) & patient(mary))) & (~predb(paul) => predv(mary)) & (predb(paul) => (like(fred,paul) & like(paul,fred))) & ! [X9] : (room(X9) => (paul = X9 | mary = X9)) & room(paul) & room(mary) [pure predicate removal 55] 57. preds(mary) & predk(mary) & person(paul) & patient(paul) & predd(paul) & ! [X0,X1] : ((predt(X1) & predt(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (predt(X2) & anywhere(X2)) & predb(mary) & ? [X3,X4] : ((predd(X4) | ~hate(X4,fred)) & tourist(X3)) & ? [X5,X6] : (sibling(X5,X6) & predd(X6) & predg(X5)) & ~predu(paul) & tourist(paul) & (~predr(paul) => ~preds(paul)) & (predr(paul) => (like(lucy,mary) & predk(mary))) & (~predn(paul) => predr(mary)) & (hate(paul,alice) => ~predn(paul)) & (? [X7] : (predc(X7) & room(X7)) => predd(mary)) & (predy(mary) => ? [X8] : (predc(X8) & room(X8))) & (predu(mary) => (predg(paul) & predy(paul))) & ((european(mary) & patient(mary)) => (~predk(mary) & predf(mary))) & (prede(paul) => (european(mary) & patient(mary))) & (~predb(paul) => predv(mary)) & (predb(paul) => (like(fred,paul) & like(paul,fred))) & ! [X9] : (room(X9) => (paul = X9 | mary = X9)) & room(paul) & room(mary) [pure predicate removal 56] 58. preds(mary) & predk(mary) & person(paul) & patient(paul) & predd(paul) & ! [X0,X1] : ((predt(X1) & predt(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (predt(X2) & anywhere(X2)) & predb(mary) & ? [X3,X4] : ((predd(X4) | ~hate(X4,fred)) & tourist(X3)) & ? [X5,X6] : (sibling(X5,X6) & predd(X6) & predg(X5)) & tourist(paul) & (~predr(paul) => ~preds(paul)) & (predr(paul) => (like(lucy,mary) & predk(mary))) & (~predn(paul) => predr(mary)) & (hate(paul,alice) => ~predn(paul)) & (? [X7] : (predc(X7) & room(X7)) => predd(mary)) & (predy(mary) => ? [X8] : (predc(X8) & room(X8))) & ((european(mary) & patient(mary)) => (~predk(mary) & predf(mary))) & (prede(paul) => (european(mary) & patient(mary))) & (~predb(paul) => predv(mary)) & (predb(paul) => (like(fred,paul) & like(paul,fred))) & ! [X9] : (room(X9) => (paul = X9 | mary = X9)) & room(paul) & room(mary) [pure predicate removal 57] 59. preds(mary) & predk(mary) & person(paul) & patient(paul) & predd(paul) & ! [X0,X1] : ((predt(X1) & predt(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (predt(X2) & anywhere(X2)) & predb(mary) & ? [X3,X4] : ((predd(X4) | ~hate(X4,fred)) & tourist(X3)) & ? [X5,X6] : (sibling(X5,X6) & predd(X6) & predg(X5)) & tourist(paul) & (~predr(paul) => ~preds(paul)) & (predr(paul) => (like(lucy,mary) & predk(mary))) & (~predn(paul) => predr(mary)) & (hate(paul,alice) => ~predn(paul)) & (? [X7] : (predc(X7) & room(X7)) => predd(mary)) & ((european(mary) & patient(mary)) => (~predk(mary) & predf(mary))) & (prede(paul) => (european(mary) & patient(mary))) & (~predb(paul) => predv(mary)) & (predb(paul) => (like(fred,paul) & like(paul,fred))) & ! [X9] : (room(X9) => (paul = X9 | mary = X9)) & room(paul) & room(mary) [pure predicate removal 58] 60. preds(mary) & predk(mary) & person(paul) & patient(paul) & predd(paul) & ! [X0,X1] : ((predt(X1) & predt(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (predt(X2) & anywhere(X2)) & predb(mary) & ? [X3,X4] : ((predd(X4) | ~hate(X4,fred)) & tourist(X3)) & ? [X5,X6] : (sibling(X5,X6) & predd(X6) & predg(X5)) & tourist(paul) & (~predr(paul) => ~preds(paul)) & (predr(paul) => (like(lucy,mary) & predk(mary))) & (~predn(paul) => predr(mary)) & (hate(paul,alice) => ~predn(paul)) & ((european(mary) & patient(mary)) => (~predk(mary) & predf(mary))) & (prede(paul) => (european(mary) & patient(mary))) & (~predb(paul) => predv(mary)) & (predb(paul) => (like(fred,paul) & like(paul,fred))) & ! [X9] : (room(X9) => (paul = X9 | mary = X9)) & room(paul) & room(mary) [pure predicate removal 59] 61. preds(mary) & predk(mary) & person(paul) & patient(paul) & predd(paul) & ! [X0,X1] : ((predt(X1) & predt(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (predt(X2) & anywhere(X2)) & predb(mary) & ? [X3,X4] : ((predd(X4) | ~hate(X4,fred)) & tourist(X3)) & ? [X5,X6] : (sibling(X5,X6) & predd(X6)) & tourist(paul) & (~predr(paul) => ~preds(paul)) & (predr(paul) => (like(lucy,mary) & predk(mary))) & (~predn(paul) => predr(mary)) & (hate(paul,alice) => ~predn(paul)) & ((european(mary) & patient(mary)) => (~predk(mary) & predf(mary))) & (prede(paul) => (european(mary) & patient(mary))) & (~predb(paul) => predv(mary)) & (predb(paul) => (like(fred,paul) & like(paul,fred))) & ! [X9] : (room(X9) => (paul = X9 | mary = X9)) & room(paul) & room(mary) [pure predicate removal 60] 62. preds(mary) & predk(mary) & person(paul) & patient(paul) & predd(paul) & ! [X0,X1] : ((predt(X1) & predt(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (predt(X2) & anywhere(X2)) & predb(mary) & ? [X3,X4] : ((predd(X4) | ~hate(X4,fred)) & tourist(X3)) & ? [X5,X6] : (sibling(X5,X6) & predd(X6)) & tourist(paul) & (~predr(paul) => ~preds(paul)) & (predr(paul) => (like(lucy,mary) & predk(mary))) & (~predn(paul) => predr(mary)) & (hate(paul,alice) => ~predn(paul)) & ((european(mary) & patient(mary)) => ~predk(mary)) & (prede(paul) => (european(mary) & patient(mary))) & (~predb(paul) => predv(mary)) & (predb(paul) => (like(fred,paul) & like(paul,fred))) & ! [X9] : (room(X9) => (paul = X9 | mary = X9)) & room(paul) & room(mary) [pure predicate removal 61] 63. preds(mary) & predk(mary) & person(paul) & patient(paul) & predd(paul) & ! [X0,X1] : ((predt(X1) & predt(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (predt(X2) & anywhere(X2)) & predb(mary) & ? [X3,X4] : ((predd(X4) | ~hate(X4,fred)) & tourist(X3)) & ? [X5,X6] : (sibling(X5,X6) & predd(X6)) & tourist(paul) & (~predr(paul) => ~preds(paul)) & (predr(paul) => (like(lucy,mary) & predk(mary))) & (~predn(paul) => predr(mary)) & (hate(paul,alice) => ~predn(paul)) & ((european(mary) & patient(mary)) => ~predk(mary)) & (~predb(paul) => predv(mary)) & (predb(paul) => (like(fred,paul) & like(paul,fred))) & ! [X9] : (room(X9) => (paul = X9 | mary = X9)) & room(paul) & room(mary) [pure predicate removal 62] 65. preds(mary) & predk(mary) & person(paul) & patient(paul) & predd(paul) & ! [X0,X1] : ((predt(X1) & predt(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (predt(X2) & anywhere(X2)) & predb(mary) & ? [X3,X4] : ((predd(X4) | ~hate(X4,fred)) & tourist(X3)) & ? [X5,X6] : (sibling(X5,X6) & predd(X6)) & tourist(paul) & (~predr(paul) => ~preds(paul)) & (predr(paul) => (like(lucy,mary) & predk(mary))) & (~predn(paul) => predr(mary)) & (hate(paul,alice) => ~predn(paul)) & (~predb(paul) => predv(mary)) & (predb(paul) => (like(fred,paul) & like(paul,fred))) & ! [X9] : (room(X9) => (paul = X9 | mary = X9)) & room(paul) & room(mary) [pure predicate removal 63] 66. preds(mary) & person(paul) & patient(paul) & predd(paul) & ! [X0,X1] : ((predt(X1) & predt(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (predt(X2) & anywhere(X2)) & predb(mary) & ? [X3,X4] : ((predd(X4) | ~hate(X4,fred)) & tourist(X3)) & ? [X5,X6] : (sibling(X5,X6) & predd(X6)) & tourist(paul) & (~predr(paul) => ~preds(paul)) & (predr(paul) => like(lucy,mary)) & (~predn(paul) => predr(mary)) & (hate(paul,alice) => ~predn(paul)) & (~predb(paul) => predv(mary)) & (predb(paul) => (like(fred,paul) & like(paul,fred))) & ! [X9] : (room(X9) => (paul = X9 | mary = X9)) & room(paul) & room(mary) [pure predicate removal 65] 67. preds(mary) & person(paul) & predd(paul) & ! [X0,X1] : ((predt(X1) & predt(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (predt(X2) & anywhere(X2)) & predb(mary) & ? [X3,X4] : ((predd(X4) | ~hate(X4,fred)) & tourist(X3)) & ? [X5,X6] : (sibling(X5,X6) & predd(X6)) & tourist(paul) & (~predr(paul) => ~preds(paul)) & (predr(paul) => like(lucy,mary)) & (~predn(paul) => predr(mary)) & (hate(paul,alice) => ~predn(paul)) & (~predb(paul) => predv(mary)) & (predb(paul) => (like(fred,paul) & like(paul,fred))) & ! [X9] : (room(X9) => (paul = X9 | mary = X9)) & room(paul) & room(mary) [pure predicate removal 66] 68. preds(mary) & person(paul) & predd(paul) & ! [X0,X1] : ((predt(X1) & predt(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (predt(X2) & anywhere(X2)) & predb(mary) & ? [X3,X4] : ((predd(X4) | ~hate(X4,fred)) & tourist(X3)) & ? [X5,X6] : (sibling(X5,X6) & predd(X6)) & tourist(paul) & (~predr(paul) => ~preds(paul)) & (predr(paul) => like(lucy,mary)) & (~predn(paul) => predr(mary)) & (hate(paul,alice) => ~predn(paul)) & (predb(paul) => (like(fred,paul) & like(paul,fred))) & ! [X9] : (room(X9) => (paul = X9 | mary = X9)) & room(paul) & room(mary) [pure predicate removal 67] 70. preds(mary) & predd(paul) & ! [X0,X1] : ((predt(X1) & predt(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (predt(X2) & anywhere(X2)) & predb(mary) & ? [X3,X4] : ((predd(X4) | ~hate(X4,fred)) & tourist(X3)) & ? [X5,X6] : (sibling(X5,X6) & predd(X6)) & tourist(paul) & (~predr(paul) => ~preds(paul)) & (predr(paul) => like(lucy,mary)) & (~predn(paul) => predr(mary)) & (hate(paul,alice) => ~predn(paul)) & (predb(paul) => (like(fred,paul) & like(paul,fred))) & ! [X9] : (room(X9) => (paul = X9 | mary = X9)) & room(paul) & room(mary) [pure predicate removal 68] 71. preds(mary) & predd(paul) & ! [X0,X1] : ((predt(X1) & predt(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (predt(X2) & anywhere(X2)) & predb(mary) & ? [X3,X4] : (predd(X4) | ~hate(X4,fred)) & ? [X5,X6] : (sibling(X5,X6) & predd(X6)) & (~predr(paul) => ~preds(paul)) & (predr(paul) => like(lucy,mary)) & (~predn(paul) => predr(mary)) & (hate(paul,alice) => ~predn(paul)) & (predb(paul) => (like(fred,paul) & like(paul,fred))) & ! [X9] : (room(X9) => (paul = X9 | mary = X9)) & room(paul) & room(mary) [pure predicate removal 70] 73. preds(mary) & predd(paul) & ! [X0,X1] : ((predt(X1) & predt(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (predt(X2) & anywhere(X2)) & predb(mary) & ? [X5,X6] : (sibling(X5,X6) & predd(X6)) & (~predr(paul) => ~preds(paul)) & (predr(paul) => like(lucy,mary)) & (~predn(paul) => predr(mary)) & (predb(paul) => (like(fred,paul) & like(paul,fred))) & ! [X9] : (room(X9) => (paul = X9 | mary = X9)) & room(paul) & room(mary) [pure predicate removal 71] 75. preds(mary) & predd(paul) & ! [X0,X1] : ((predt(X1) & predt(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (predt(X2) & anywhere(X2)) & predb(mary) & ? [X5,X6] : (sibling(X5,X6) & predd(X6)) & (~predr(paul) => ~preds(paul)) & (~predn(paul) => predr(mary)) & ! [X9] : (room(X9) => (paul = X9 | mary = X9)) & room(paul) & room(mary) [pure predicate removal 73] 76. preds(mary) & predd(paul) & ! [X0,X1] : ((predt(X1) & predt(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (predt(X2) & anywhere(X2)) & predb(mary) & ? [X5,X6] : (sibling(X5,X6) & predd(X6)) & ! [X9] : (room(X9) => (paul = X9 | mary = X9)) & room(paul) & room(mary) [pure predicate removal 75] 77. predd(paul) & ! [X0,X1] : ((predt(X1) & predt(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (predt(X2) & anywhere(X2)) & predb(mary) & ? [X5,X6] : (sibling(X5,X6) & predd(X6)) & ! [X9] : (room(X9) => (paul = X9 | mary = X9)) & room(paul) & room(mary) [pure predicate removal 76] 78. predd(paul) & ! [X0,X1] : ((predt(X1) & predt(X0) & anywhere(X1) & anywhere(X0)) => X0 = X1) & ? [X2] : (predt(X2) & anywhere(X2)) & ? [X5,X6] : (sibling(X5,X6) & predd(X6)) & ! [X9] : (room(X9) => (paul = X9 | mary = X9)) & room(paul) & room(mary) [pure predicate removal 77] 146. predd(paul) & ! [X0,X1] : (X0 = X1 | (~predt(X1) | ~predt(X0) | ~anywhere(X1) | ~anywhere(X0))) & ? [X2] : (predt(X2) & anywhere(X2)) & ? [X5,X6] : (sibling(X5,X6) & predd(X6)) & ! [X9] : ((paul = X9 | mary = X9) | ~room(X9)) & room(paul) & room(mary) [ennf transformation 78] 147. predd(paul) & ! [X0,X1] : (X0 = X1 | ~predt(X1) | ~predt(X0) | ~anywhere(X1) | ~anywhere(X0)) & ? [X2] : (predt(X2) & anywhere(X2)) & ? [X5,X6] : (sibling(X5,X6) & predd(X6)) & ! [X9] : (paul = X9 | mary = X9 | ~room(X9)) & room(paul) & room(mary) [flattening 146] 148. ~predd(paul) | ? [X0] : ((paul != X0 & mary != X0) & room(X0)) | ~room(paul) | ~room(mary) [ennf transformation 45] 149. ~predd(paul) | ? [X0] : (paul != X0 & mary != X0 & room(X0)) | ~room(paul) | ~room(mary) [flattening 148] 151. predd(paul) & ! [X0,X1] : (X0 = X1 | ~predt(X1) | ~predt(X0) | ~anywhere(X1) | ~anywhere(X0)) & ? [X2] : (predt(X2) & anywhere(X2)) & ? [X3,X4] : (sibling(X3,X4) & predd(X4)) & ! [X5] : (paul = X5 | mary = X5 | ~room(X5)) & room(paul) & room(mary) [rectify 147] 152. ? [X2] : (predt(X2) & anywhere(X2)) => (predt(sK0) & anywhere(sK0)) [choice axiom] 153. ? [X3,X4] : (sibling(X3,X4) & predd(X4)) => (sibling(sK1,sK2) & predd(sK2)) [choice axiom] 154. predd(paul) & ! [X0,X1] : (X0 = X1 | ~predt(X1) | ~predt(X0) | ~anywhere(X1) | ~anywhere(X0)) & (predt(sK0) & anywhere(sK0)) & (sibling(sK1,sK2) & predd(sK2)) & ! [X5] : (paul = X5 | mary = X5 | ~room(X5)) & room(paul) & room(mary) [skolemisation 151,153,152] 155. ? [X0] : (paul != X0 & mary != X0 & room(X0)) => (paul != sK3 & mary != sK3 & room(sK3)) [choice axiom] 156. ~predd(paul) | (paul != sK3 & mary != sK3 & room(sK3)) | ~room(paul) | ~room(mary) [skolemisation 149,155] 238. room(mary) [cnf transformation 154] 239. room(paul) [cnf transformation 154] 240. ~room(X5) | mary = X5 | paul = X5 [cnf transformation 154] 246. predd(paul) [cnf transformation 154] 247. ~predd(paul) | room(sK3) | ~room(paul) | ~room(mary) [cnf transformation 156] 248. ~predd(paul) | mary != sK3 | ~room(paul) | ~room(mary) [cnf transformation 156] 249. ~predd(paul) | paul != sK3 | ~room(paul) | ~room(mary) [cnf transformation 156] 252. paul != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 249,246] 253. paul != sK3 | ~room(mary) [subsumption resolution 252,239] 254. paul != sK3 [subsumption resolution 253,238] 255. mary != sK3 | ~room(paul) | ~room(mary) [subsumption resolution 248,246] 256. mary != sK3 | ~room(mary) [subsumption resolution 255,239] 257. mary != sK3 [subsumption resolution 256,238] 258. room(sK3) | ~room(paul) | ~room(mary) [subsumption resolution 247,246] 259. room(sK3) | ~room(mary) [subsumption resolution 258,239] 260. room(sK3) [subsumption resolution 259,238] 264. mary = sK3 | paul = sK3 [resolution 240,260] 265. paul = sK3 [subsumption resolution 264,257] 266. $false [subsumption resolution 265,254] % SZS output end Proof for 809409578127028234751397 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.021 s % ------------------------------ % ------------------------------
0.557306
Heidi, Martha are the only persons in the room. "Everyone in the room either is old or is richer than Adan but not both" if "everyone in the room is a old person" and vice versa. "Martha and Heidi are richer than Adan" if "everyone outside the room is a quiet old kind person" and vice versa. Everyone in the room is richer than Adan if they is quieter than Adan. Not everyone in the room who is richer than Adan is a quiet person.
Heidi is kind.
neutral
room(heidi)&room(martha)&(![X]:(room(X)=>(X='heidi'|X='martha')))& ((![X]:(room(X)=>(old(X)&person(X))))<=>(![X]:(room(X)=>(((old(X))<~>(richer(adan,X)))))))& ((![X]:(~room(X)=>(quiet(X)&old(X)&kind(X)&person(X))))<=>(richer(adan,martha)&richer(adan,heidi)))& (![X]:(room(X)=>(((quieter(adan,X))=>(richer(adan,X))))))& (~![X]:(room(X)=>(((richer(adan,X))=>(quiet(X)&person(X))))))& (![X]:(room(X)=>(((quiet(X)&person(X))=>(~(tall(X)&person(X)))))))& (![X]:(room(X)=>(((~quiet(X)&~tall(X))<~>(kind(X)&person(X))))))& (![X]:(~room(X)=>(((((tall(X)&old(X)&person(X))<~>(kind(X)&person(X))))=>(~quiet(X))))))& (![X]:(room(X)=>(((kind(X)&person(X))=>(((kind(X)&person(X))<~>(~kind(X))))))))
room(heidi)&room(martha)&(![X]:(room(X)=>(X='heidi'|X='martha')))& kind(heidi)
[]
null
0.122172
Mark, Monica, Judith, Anna, Walter are the only persons in the room. If "everyone in the room collect rare sneakers or does not develop open-source software projects in their free time" then "Monica uses an ios phone". If "Monica uses an ios phone" then "Judith is a night owl". If "someone in the room practices urban gardening" then "someone in the room collect rare sneakers". At least one person in the room uses a Windows laptop, uses an ios phone or competes in national level swimming championships. Monica is an active member of a local robotics club or is a night owl or both. If someone uses a Windows laptop then he/she plays the violin. Everyone outside the room competes in national level swimming championships, is a night owl or uses a Windows laptop if and only if they collects first edition books. Monica competes in national level swimming championships, is a night owl or uses a Windows laptop. Everyone in the room collect rare sneakers if they collects antique clocks and vice versa. Someone outside the room either makes intricate hand-cut paper art for exhibitions or is a night owl but not both. At least one person anywhere owns a high-end gaming PC with custom-built components. Everyone in the room practices urban gardening and collect rare sneakers if they collects antique clocks and vice versa. Someone in the room uses an ios phone. Mark dreamt that "Anna collects antique clocks". Someone in the room plays the violin. Everyone anywhere collects antique clocks and owns a high-end gaming PC with custom-built components if they uses an ios phone. Everyone anywhere who collects antique clocks and owns a high-end gaming PC with custom-built components collects first edition books. Anna who owns a high-end gaming PC with custom-built components uses an ios phone. Judith either enjoys stand-up paddleboarding or is an active member of a local robotics club but not both.
Judith owns a high-end gaming PC with custom-built components.
entailment
room(mark)&room(monica)&room(judith)&room(anna)&room(walter)&(![X]:(room(X)=>(X='mark'|X='monica'|X='judith'|X='anna'|X='walter')))& (((![X]:(room(X)=>(((does_not_develop_open-source_software_projects_in_their_free_time(X))|(collect_rare_sneakers(X))))))=>(uses_an_ios_phone(monica)))& ((uses_an_ios_phone(monica))=>(is_a_night_owl(judith))))& ((?[X]:(room(X)&(practices_urban_gardening(X))))=>(?[X]:(room(X)&(collect_rare_sneakers(X)))))& (((?[X]:(room(X)&((uses_a_Windows_laptop(X))|(uses_an_ios_phone(X))|(competes_in_national_level_swimming_championships(X)))))))& (((is_an_active_member_of_a_local_robotics_club(monica))|(is_a_night_owl(monica))))& ((![X]:((uses_a_Windows_laptop(X))=>(plays_the_violin(X)))))& (![X]:(~room(X)=>(((((competes_in_national_level_swimming_championships(X))|(is_a_night_owl(X))|(uses_a_Windows_laptop(X))))<=>(collects_first_edition_books(X))))))& (((competes_in_national_level_swimming_championships(monica))|(is_a_night_owl(monica))|(uses_a_Windows_laptop(monica))))& (![X]:(room(X)=>(((collect_rare_sneakers(X))<=>(collects_antique_clocks(X))))))& (?[X]:(~room(X)&(((makes_intricate_hand-cut_paper_art_for_exhibitions(X))<~>(is_a_night_owl(X))))))& (((?[X]:(anywhere(X)&owns_a_high-end_gaming_PC_with_custom-built_components(X)))))& (![X]:(room(X)=>(((((practices_urban_gardening(X))&(collect_rare_sneakers(X))))<=>(collects_antique_clocks(X))))))& (?[X]:(room(X)&(uses_an_ios_phone(X))))& ((mark_dream=>(collects_antique_clocks(anna))))& (?[X]:(room(X)&(plays_the_violin(X))))& (![X]:(anywhere(X)=>(((uses_an_ios_phone(X))=>(((collects_antique_clocks(X))&(owns_a_high-end_gaming_PC_with_custom-built_components(X))))))))& (![X]:(anywhere(X)=>(((((collects_antique_clocks(X))&(owns_a_high-end_gaming_PC_with_custom-built_components(X))))=>(collects_first_edition_books(X))))))& ((owns_a_high-end_gaming_PC_with_custom-built_components(anna))&(uses_an_ios_phone(anna)))& (((enjoys_stand-up_paddleboarding(judith))<~>(is_an_active_member_of_a_local_robotics_club(judith))))& ((uses_an_ios_phone(judith))&(makes_intricate_hand-cut_paper_art_for_exhibitions(judith)))& (uses_an_ios_phone(monica))& (![X]:(room(X)=>(((collects_antique_clocks(X))<=(develops_open-source_software_projects_in_their_free_time(X))))))& ((![X]:((makes_intricate_hand-cut_paper_art_for_exhibitions(X))<=>(owns_a_microscope(X)))))& (uses_an_ios_phone(mark))& (?[X]:(room(X)&(uses_a_Windows_laptop(X))))& ((![X]:((((enjoys_stand-up_paddleboarding(X))&(owns_a_high-end_gaming_PC_with_custom-built_components(X))&(plays_the_violin(X))))<=>(develops_open-source_software_projects_in_their_free_time(X)))))& (![X]:(~room(X)=>(((collect_rare_sneakers(X))=>(is_an_active_member_of_a_local_robotics_club(X))))))& (((?[X]:(room(X)&owns_a_microscope(X)))&(![X,Y]:((room(X)&room(Y)&(owns_a_microscope(X))&(owns_a_microscope(Y)))=>(X=Y)))))& (~![X]:(room(X)=>(((does_not_collect_rare_sneakers(X))|(plays_the_violin(X))))))
room(mark)&room(monica)&room(judith)&room(anna)&room(walter)&(![X]:(room(X)=>(X='mark'|X='monica'|X='judith'|X='anna'|X='walter')))& owns_a_high-end_gaming_PC_with_custom-built_components(judith)
[ "b4", "p0", "hypothesis" ]
% SZS status Unsatisfiable for 562494624822895159947877 % SZS output start Proof for 562494624822895159947877 5. ! [X0] : anywhere(X0) [input b4] 44. ~! [X0] : (room(X0) => (predc(X0) | ~predn(X0))) & ! [X0,X1] : ((predo(X1) & predo(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (predo(X0) & room(X0)) & ! [X0] : (~room(X0) => (predn(X0) => predf(X0))) & ! [X0] : ((predc(X0) & predk(X0) & predm(X0)) <=> predj(X0)) & ? [X0] : (predb(X0) & room(X0)) & predp(mary) & ! [X0] : (predl(X0) <=> predo(X0)) & ! [X0] : (room(X0) => (predj(X0) => predh(X0))) & predp(paul) & predl(fred) & predp(fred) & (predm(fred) <~> predf(fred)) & predp(alice) & predk(alice) & ! [X0] : (anywhere(X0) => ((predk(X0) & predh(X0)) => predd(X0))) & ! [X0] : (anywhere(X0) => (predp(X0) => (predk(X0) & predh(X0)))) & ? [X0] : (predc(X0) & room(X0)) & (mary_dream => predh(alice)) & ? [X0] : (predp(X0) & room(X0)) & ! [X0] : (room(X0) => ((predn(X0) & predi(X0)) <=> predh(X0))) & ? [X0] : (predk(X0) & anywhere(X0)) & ? [X0] : ((predl(X0) <~> predg(X0)) & ~room(X0)) & ! [X0] : (room(X0) => (predn(X0) <=> predh(X0))) & (predb(paul) | predg(paul) | preda(paul)) & ! [X0] : (~room(X0) => ((predb(X0) | predg(X0) | preda(X0)) <=> predd(X0))) & ! [X0] : (predb(X0) => predc(X0)) & (predg(paul) | predf(paul)) & ? [X0] : ((preda(X0) | predp(X0) | predb(X0)) & room(X0)) & (? [X0] : (predi(X0) & room(X0)) => ? [X0] : (predn(X0) & room(X0))) & (predp(paul) => predg(fred)) & (! [X0] : (room(X0) => (predn(X0) | ~predj(X0))) => predp(paul)) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 45. ~(predk(fred) & ! [X0] : (room(X0) => (john = X0 | alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 46. ~! [X0] : (room(X0) => (predc(X0) | ~predn(X0))) & ! [X1,X2] : ((predo(X2) & predo(X1) & room(X2) & room(X1)) => X1 = X2) & ? [X3] : (predo(X3) & room(X3)) & ! [X4] : (~room(X4) => (predn(X4) => predf(X4))) & ! [X5] : ((predc(X5) & predk(X5) & predm(X5)) <=> predj(X5)) & ? [X6] : (predb(X6) & room(X6)) & predp(mary) & ! [X7] : (predl(X7) <=> predo(X7)) & ! [X8] : (room(X8) => (predj(X8) => predh(X8))) & predp(paul) & predl(fred) & predp(fred) & (predm(fred) <~> predf(fred)) & predp(alice) & predk(alice) & ! [X9] : (anywhere(X9) => ((predk(X9) & predh(X9)) => predd(X9))) & ! [X10] : (anywhere(X10) => (predp(X10) => (predk(X10) & predh(X10)))) & ? [X11] : (predc(X11) & room(X11)) & (mary_dream => predh(alice)) & ? [X12] : (predp(X12) & room(X12)) & ! [X13] : (room(X13) => ((predn(X13) & predi(X13)) <=> predh(X13))) & ? [X14] : (predk(X14) & anywhere(X14)) & ? [X15] : ((predl(X15) <~> predg(X15)) & ~room(X15)) & ! [X16] : (room(X16) => (predn(X16) <=> predh(X16))) & (predb(paul) | predg(paul) | preda(paul)) & ! [X17] : (~room(X17) => ((predb(X17) | predg(X17) | preda(X17)) <=> predd(X17))) & ! [X18] : (predb(X18) => predc(X18)) & (predg(paul) | predf(paul)) & ? [X19] : ((preda(X19) | predp(X19) | predb(X19)) & room(X19)) & (? [X20] : (predi(X20) & room(X20)) => ? [X21] : (predn(X21) & room(X21))) & (predp(paul) => predg(fred)) & (! [X22] : (room(X22) => (predn(X22) | ~predj(X22))) => predp(paul)) & ! [X23] : (room(X23) => (john = X23 | alice = X23 | fred = X23 | paul = X23 | mary = X23)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 44] 47. ~! [X0] : (room(X0) => (predc(X0) | ~predn(X0))) & ! [X1,X2] : ((predo(X2) & predo(X1) & room(X2) & room(X1)) => X1 = X2) & ? [X3] : (predo(X3) & room(X3)) & ! [X4] : (~room(X4) => (predn(X4) => predf(X4))) & ! [X5] : ((predc(X5) & predk(X5) & predm(X5)) <=> predj(X5)) & ? [X6] : (predb(X6) & room(X6)) & predp(mary) & ! [X7] : (predl(X7) <=> predo(X7)) & ! [X8] : (room(X8) => (predj(X8) => predh(X8))) & predp(paul) & predl(fred) & predp(fred) & (predm(fred) <~> predf(fred)) & predp(alice) & predk(alice) & ! [X9] : (anywhere(X9) => ((predk(X9) & predh(X9)) => predd(X9))) & ! [X10] : (anywhere(X10) => (predp(X10) => (predk(X10) & predh(X10)))) & ? [X11] : (predc(X11) & room(X11)) & ? [X12] : (predp(X12) & room(X12)) & ! [X13] : (room(X13) => ((predn(X13) & predi(X13)) <=> predh(X13))) & ? [X14] : (predk(X14) & anywhere(X14)) & ? [X15] : ((predl(X15) <~> predg(X15)) & ~room(X15)) & ! [X16] : (room(X16) => (predn(X16) <=> predh(X16))) & (predb(paul) | predg(paul) | preda(paul)) & ! [X17] : (~room(X17) => ((predb(X17) | predg(X17) | preda(X17)) <=> predd(X17))) & ! [X18] : (predb(X18) => predc(X18)) & (predg(paul) | predf(paul)) & ? [X19] : ((preda(X19) | predp(X19) | predb(X19)) & room(X19)) & (? [X20] : (predi(X20) & room(X20)) => ? [X21] : (predn(X21) & room(X21))) & (predp(paul) => predg(fred)) & (! [X22] : (room(X22) => (predn(X22) | ~predj(X22))) => predp(paul)) & ! [X23] : (room(X23) => (john = X23 | alice = X23 | fred = X23 | paul = X23 | mary = X23)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [pure predicate removal 46] 119. ? [X0] : ((~predc(X0) & predn(X0)) & room(X0)) & ! [X1,X2] : (X1 = X2 | (~predo(X2) | ~predo(X1) | ~room(X2) | ~room(X1))) & ? [X3] : (predo(X3) & room(X3)) & ! [X4] : ((predf(X4) | ~predn(X4)) | room(X4)) & ! [X5] : ((predc(X5) & predk(X5) & predm(X5)) <=> predj(X5)) & ? [X6] : (predb(X6) & room(X6)) & predp(mary) & ! [X7] : (predl(X7) <=> predo(X7)) & ! [X8] : ((predh(X8) | ~predj(X8)) | ~room(X8)) & predp(paul) & predl(fred) & predp(fred) & (predm(fred) <~> predf(fred)) & predp(alice) & predk(alice) & ! [X9] : ((predd(X9) | (~predk(X9) | ~predh(X9))) | ~anywhere(X9)) & ! [X10] : (((predk(X10) & predh(X10)) | ~predp(X10)) | ~anywhere(X10)) & ? [X11] : (predc(X11) & room(X11)) & ? [X12] : (predp(X12) & room(X12)) & ! [X13] : (((predn(X13) & predi(X13)) <=> predh(X13)) | ~room(X13)) & ? [X14] : (predk(X14) & anywhere(X14)) & ? [X15] : ((predl(X15) <~> predg(X15)) & ~room(X15)) & ! [X16] : ((predn(X16) <=> predh(X16)) | ~room(X16)) & (predb(paul) | predg(paul) | preda(paul)) & ! [X17] : (((predb(X17) | predg(X17) | preda(X17)) <=> predd(X17)) | room(X17)) & ! [X18] : (predc(X18) | ~predb(X18)) & (predg(paul) | predf(paul)) & ? [X19] : ((preda(X19) | predp(X19) | predb(X19)) & room(X19)) & (? [X21] : (predn(X21) & room(X21)) | ! [X20] : (~predi(X20) | ~room(X20))) & (predg(fred) | ~predp(paul)) & (predp(paul) | ? [X22] : ((~predn(X22) & predj(X22)) & room(X22))) & ! [X23] : ((john = X23 | alice = X23 | fred = X23 | paul = X23 | mary = X23) | ~room(X23)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 47] 120. ? [X0] : (~predc(X0) & predn(X0) & room(X0)) & ! [X1,X2] : (X1 = X2 | ~predo(X2) | ~predo(X1) | ~room(X2) | ~room(X1)) & ? [X3] : (predo(X3) & room(X3)) & ! [X4] : (predf(X4) | ~predn(X4) | room(X4)) & ! [X5] : ((predc(X5) & predk(X5) & predm(X5)) <=> predj(X5)) & ? [X6] : (predb(X6) & room(X6)) & predp(mary) & ! [X7] : (predl(X7) <=> predo(X7)) & ! [X8] : (predh(X8) | ~predj(X8) | ~room(X8)) & predp(paul) & predl(fred) & predp(fred) & (predm(fred) <~> predf(fred)) & predp(alice) & predk(alice) & ! [X9] : (predd(X9) | ~predk(X9) | ~predh(X9) | ~anywhere(X9)) & ! [X10] : ((predk(X10) & predh(X10)) | ~predp(X10) | ~anywhere(X10)) & ? [X11] : (predc(X11) & room(X11)) & ? [X12] : (predp(X12) & room(X12)) & ! [X13] : (((predn(X13) & predi(X13)) <=> predh(X13)) | ~room(X13)) & ? [X14] : (predk(X14) & anywhere(X14)) & ? [X15] : ((predl(X15) <~> predg(X15)) & ~room(X15)) & ! [X16] : ((predn(X16) <=> predh(X16)) | ~room(X16)) & (predb(paul) | predg(paul) | preda(paul)) & ! [X17] : (((predb(X17) | predg(X17) | preda(X17)) <=> predd(X17)) | room(X17)) & ! [X18] : (predc(X18) | ~predb(X18)) & (predg(paul) | predf(paul)) & ? [X19] : ((preda(X19) | predp(X19) | predb(X19)) & room(X19)) & (? [X21] : (predn(X21) & room(X21)) | ! [X20] : (~predi(X20) | ~room(X20))) & (predg(fred) | ~predp(paul)) & (predp(paul) | ? [X22] : (~predn(X22) & predj(X22) & room(X22))) & ! [X23] : (john = X23 | alice = X23 | fred = X23 | paul = X23 | mary = X23 | ~room(X23)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 119] 121. ~predk(fred) | ? [X0] : ((john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 45] 122. ~predk(fred) | ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 121] 124. ? [X0] : (~predc(X0) & predn(X0) & room(X0)) & ! [X1,X2] : (X1 = X2 | ~predo(X2) | ~predo(X1) | ~room(X2) | ~room(X1)) & ? [X3] : (predo(X3) & room(X3)) & ! [X4] : (predf(X4) | ~predn(X4) | room(X4)) & ! [X5] : (((predc(X5) & predk(X5) & predm(X5)) | ~predj(X5)) & (predj(X5) | (~predc(X5) | ~predk(X5) | ~predm(X5)))) & ? [X6] : (predb(X6) & room(X6)) & predp(mary) & ! [X7] : ((predl(X7) | ~predo(X7)) & (predo(X7) | ~predl(X7))) & ! [X8] : (predh(X8) | ~predj(X8) | ~room(X8)) & predp(paul) & predl(fred) & predp(fred) & ((~predf(fred) | ~predm(fred)) & (predf(fred) | predm(fred))) & predp(alice) & predk(alice) & ! [X9] : (predd(X9) | ~predk(X9) | ~predh(X9) | ~anywhere(X9)) & ! [X10] : ((predk(X10) & predh(X10)) | ~predp(X10) | ~anywhere(X10)) & ? [X11] : (predc(X11) & room(X11)) & ? [X12] : (predp(X12) & room(X12)) & ! [X13] : ((((predn(X13) & predi(X13)) | ~predh(X13)) & (predh(X13) | (~predn(X13) | ~predi(X13)))) | ~room(X13)) & ? [X14] : (predk(X14) & anywhere(X14)) & ? [X15] : (((~predg(X15) | ~predl(X15)) & (predg(X15) | predl(X15))) & ~room(X15)) & ! [X16] : (((predn(X16) | ~predh(X16)) & (predh(X16) | ~predn(X16))) | ~room(X16)) & (predb(paul) | predg(paul) | preda(paul)) & ! [X17] : ((((predb(X17) | predg(X17) | preda(X17)) | ~predd(X17)) & (predd(X17) | (~predb(X17) & ~predg(X17) & ~preda(X17)))) | room(X17)) & ! [X18] : (predc(X18) | ~predb(X18)) & (predg(paul) | predf(paul)) & ? [X19] : ((preda(X19) | predp(X19) | predb(X19)) & room(X19)) & (? [X21] : (predn(X21) & room(X21)) | ! [X20] : (~predi(X20) | ~room(X20))) & (predg(fred) | ~predp(paul)) & (predp(paul) | ? [X22] : (~predn(X22) & predj(X22) & room(X22))) & ! [X23] : (john = X23 | alice = X23 | fred = X23 | paul = X23 | mary = X23 | ~room(X23)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [nnf transformation 120] 125. ? [X0] : (~predc(X0) & predn(X0) & room(X0)) & ! [X1,X2] : (X1 = X2 | ~predo(X2) | ~predo(X1) | ~room(X2) | ~room(X1)) & ? [X3] : (predo(X3) & room(X3)) & ! [X4] : (predf(X4) | ~predn(X4) | room(X4)) & ! [X5] : (((predc(X5) & predk(X5) & predm(X5)) | ~predj(X5)) & (predj(X5) | ~predc(X5) | ~predk(X5) | ~predm(X5))) & ? [X6] : (predb(X6) & room(X6)) & predp(mary) & ! [X7] : ((predl(X7) | ~predo(X7)) & (predo(X7) | ~predl(X7))) & ! [X8] : (predh(X8) | ~predj(X8) | ~room(X8)) & predp(paul) & predl(fred) & predp(fred) & (~predf(fred) | ~predm(fred)) & (predf(fred) | predm(fred)) & predp(alice) & predk(alice) & ! [X9] : (predd(X9) | ~predk(X9) | ~predh(X9) | ~anywhere(X9)) & ! [X10] : ((predk(X10) & predh(X10)) | ~predp(X10) | ~anywhere(X10)) & ? [X11] : (predc(X11) & room(X11)) & ? [X12] : (predp(X12) & room(X12)) & ! [X13] : ((((predn(X13) & predi(X13)) | ~predh(X13)) & (predh(X13) | ~predn(X13) | ~predi(X13))) | ~room(X13)) & ? [X14] : (predk(X14) & anywhere(X14)) & ? [X15] : ((~predg(X15) | ~predl(X15)) & (predg(X15) | predl(X15)) & ~room(X15)) & ! [X16] : (((predn(X16) | ~predh(X16)) & (predh(X16) | ~predn(X16))) | ~room(X16)) & (predb(paul) | predg(paul) | preda(paul)) & ! [X17] : (((predb(X17) | predg(X17) | preda(X17) | ~predd(X17)) & (predd(X17) | (~predb(X17) & ~predg(X17) & ~preda(X17)))) | room(X17)) & ! [X18] : (predc(X18) | ~predb(X18)) & (predg(paul) | predf(paul)) & ? [X19] : ((preda(X19) | predp(X19) | predb(X19)) & room(X19)) & (? [X21] : (predn(X21) & room(X21)) | ! [X20] : (~predi(X20) | ~room(X20))) & (predg(fred) | ~predp(paul)) & (predp(paul) | ? [X22] : (~predn(X22) & predj(X22) & room(X22))) & ! [X23] : (john = X23 | alice = X23 | fred = X23 | paul = X23 | mary = X23 | ~room(X23)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 124] 126. ? [X0] : (~predc(X0) & predn(X0) & room(X0)) & ! [X1,X2] : (X1 = X2 | ~predo(X2) | ~predo(X1) | ~room(X2) | ~room(X1)) & ? [X3] : (predo(X3) & room(X3)) & ! [X4] : (predf(X4) | ~predn(X4) | room(X4)) & ! [X5] : (((predc(X5) & predk(X5) & predm(X5)) | ~predj(X5)) & (predj(X5) | ~predc(X5) | ~predk(X5) | ~predm(X5))) & ? [X6] : (predb(X6) & room(X6)) & predp(mary) & ! [X7] : ((predl(X7) | ~predo(X7)) & (predo(X7) | ~predl(X7))) & ! [X8] : (predh(X8) | ~predj(X8) | ~room(X8)) & predp(paul) & predl(fred) & predp(fred) & (~predf(fred) | ~predm(fred)) & (predf(fred) | predm(fred)) & predp(alice) & predk(alice) & ! [X9] : (predd(X9) | ~predk(X9) | ~predh(X9) | ~anywhere(X9)) & ! [X10] : ((predk(X10) & predh(X10)) | ~predp(X10) | ~anywhere(X10)) & ? [X11] : (predc(X11) & room(X11)) & ? [X12] : (predp(X12) & room(X12)) & ! [X13] : ((((predn(X13) & predi(X13)) | ~predh(X13)) & (predh(X13) | ~predn(X13) | ~predi(X13))) | ~room(X13)) & ? [X14] : (predk(X14) & anywhere(X14)) & ? [X15] : ((~predg(X15) | ~predl(X15)) & (predg(X15) | predl(X15)) & ~room(X15)) & ! [X16] : (((predn(X16) | ~predh(X16)) & (predh(X16) | ~predn(X16))) | ~room(X16)) & (predb(paul) | predg(paul) | preda(paul)) & ! [X17] : (((predb(X17) | predg(X17) | preda(X17) | ~predd(X17)) & (predd(X17) | (~predb(X17) & ~predg(X17) & ~preda(X17)))) | room(X17)) & ! [X18] : (predc(X18) | ~predb(X18)) & (predg(paul) | predf(paul)) & ? [X19] : ((preda(X19) | predp(X19) | predb(X19)) & room(X19)) & (? [X20] : (predn(X20) & room(X20)) | ! [X21] : (~predi(X21) | ~room(X21))) & (predg(fred) | ~predp(paul)) & (predp(paul) | ? [X22] : (~predn(X22) & predj(X22) & room(X22))) & ! [X23] : (john = X23 | alice = X23 | fred = X23 | paul = X23 | mary = X23 | ~room(X23)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [rectify 125] 127. ? [X0] : (~predc(X0) & predn(X0) & room(X0)) => (~predc(sK0) & predn(sK0) & room(sK0)) [choice axiom] 128. ? [X3] : (predo(X3) & room(X3)) => (predo(sK1) & room(sK1)) [choice axiom] 129. ? [X6] : (predb(X6) & room(X6)) => (predb(sK2) & room(sK2)) [choice axiom] 130. ? [X11] : (predc(X11) & room(X11)) => (predc(sK3) & room(sK3)) [choice axiom] 131. ? [X12] : (predp(X12) & room(X12)) => (predp(sK4) & room(sK4)) [choice axiom] 132. ? [X14] : (predk(X14) & anywhere(X14)) => (predk(sK5) & anywhere(sK5)) [choice axiom] 133. ? [X15] : ((~predg(X15) | ~predl(X15)) & (predg(X15) | predl(X15)) & ~room(X15)) => ((~predg(sK6) | ~predl(sK6)) & (predg(sK6) | predl(sK6)) & ~room(sK6)) [choice axiom] 134. ? [X19] : ((preda(X19) | predp(X19) | predb(X19)) & room(X19)) => ((preda(sK7) | predp(sK7) | predb(sK7)) & room(sK7)) [choice axiom] 135. ? [X20] : (predn(X20) & room(X20)) => (predn(sK8) & room(sK8)) [choice axiom] 136. ? [X22] : (~predn(X22) & predj(X22) & room(X22)) => (~predn(sK9) & predj(sK9) & room(sK9)) [choice axiom] 137. (~predc(sK0) & predn(sK0) & room(sK0)) & ! [X1,X2] : (X1 = X2 | ~predo(X2) | ~predo(X1) | ~room(X2) | ~room(X1)) & (predo(sK1) & room(sK1)) & ! [X4] : (predf(X4) | ~predn(X4) | room(X4)) & ! [X5] : (((predc(X5) & predk(X5) & predm(X5)) | ~predj(X5)) & (predj(X5) | ~predc(X5) | ~predk(X5) | ~predm(X5))) & (predb(sK2) & room(sK2)) & predp(mary) & ! [X7] : ((predl(X7) | ~predo(X7)) & (predo(X7) | ~predl(X7))) & ! [X8] : (predh(X8) | ~predj(X8) | ~room(X8)) & predp(paul) & predl(fred) & predp(fred) & (~predf(fred) | ~predm(fred)) & (predf(fred) | predm(fred)) & predp(alice) & predk(alice) & ! [X9] : (predd(X9) | ~predk(X9) | ~predh(X9) | ~anywhere(X9)) & ! [X10] : ((predk(X10) & predh(X10)) | ~predp(X10) | ~anywhere(X10)) & (predc(sK3) & room(sK3)) & (predp(sK4) & room(sK4)) & ! [X13] : ((((predn(X13) & predi(X13)) | ~predh(X13)) & (predh(X13) | ~predn(X13) | ~predi(X13))) | ~room(X13)) & (predk(sK5) & anywhere(sK5)) & ((~predg(sK6) | ~predl(sK6)) & (predg(sK6) | predl(sK6)) & ~room(sK6)) & ! [X16] : (((predn(X16) | ~predh(X16)) & (predh(X16) | ~predn(X16))) | ~room(X16)) & (predb(paul) | predg(paul) | preda(paul)) & ! [X17] : (((predb(X17) | predg(X17) | preda(X17) | ~predd(X17)) & (predd(X17) | (~predb(X17) & ~predg(X17) & ~preda(X17)))) | room(X17)) & ! [X18] : (predc(X18) | ~predb(X18)) & (predg(paul) | predf(paul)) & ((preda(sK7) | predp(sK7) | predb(sK7)) & room(sK7)) & ((predn(sK8) & room(sK8)) | ! [X21] : (~predi(X21) | ~room(X21))) & (predg(fred) | ~predp(paul)) & (predp(paul) | (~predn(sK9) & predj(sK9) & room(sK9))) & ! [X23] : (john = X23 | alice = X23 | fred = X23 | paul = X23 | mary = X23 | ~room(X23)) & room(john) & room(alice) & room(fred) & room(paul) & room(mary) [skolemisation 126,136,135,134,133,132,131,130,129,128,127] 138. ? [X0] : (john != X0 & alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (john != sK10 & alice != sK10 & fred != sK10 & paul != sK10 & mary != sK10 & room(sK10)) [choice axiom] 139. ~predk(fred) | (john != sK10 & alice != sK10 & fred != sK10 & paul != sK10 & mary != sK10 & room(sK10)) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 122,138] 140. anywhere(X0) [cnf transformation 5] 221. room(mary) [cnf transformation 137] 222. room(paul) [cnf transformation 137] 223. room(fred) [cnf transformation 137] 224. room(alice) [cnf transformation 137] 225. room(john) [cnf transformation 137] 226. ~room(X23) | alice = X23 | fred = X23 | paul = X23 | mary = X23 | john = X23 [cnf transformation 137] 257. predk(X10) | ~predp(X10) | ~anywhere(X10) [cnf transformation 137] 263. predp(fred) [cnf transformation 137] 283. ~predk(fred) | room(sK10) | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 139] 284. ~predk(fred) | mary != sK10 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 139] 285. ~predk(fred) | paul != sK10 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 139] 286. ~predk(fred) | fred != sK10 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 139] 287. ~predk(fred) | alice != sK10 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 139] 288. ~predk(fred) | john != sK10 | ~room(john) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 139] 300. ~predp(X10) | predk(X10) [subsumption resolution 257,140] 357. ~predk(fred) | john != sK10 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 288,225] 358. ~predk(fred) | john != sK10 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 357,224] 359. ~predk(fred) | john != sK10 | ~room(paul) | ~room(mary) [subsumption resolution 358,223] 360. ~predk(fred) | john != sK10 | ~room(mary) [subsumption resolution 359,222] 361. ~predk(fred) | john != sK10 [subsumption resolution 360,221] 363. 15 <=> john = sK10 [avatar definition] 365. john != sK10 <- (~15) [avatar component clause 363] 367. 16 <=> predk(fred) [avatar definition] 370. ~15 | ~16 [avatar split clause 361,367,363] 371. ~predk(fred) | alice != sK10 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 287,225] 372. ~predk(fred) | alice != sK10 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 371,224] 373. ~predk(fred) | alice != sK10 | ~room(paul) | ~room(mary) [subsumption resolution 372,223] 374. ~predk(fred) | alice != sK10 | ~room(mary) [subsumption resolution 373,222] 375. ~predk(fred) | alice != sK10 [subsumption resolution 374,221] 377. 17 <=> alice = sK10 [avatar definition] 379. alice != sK10 <- (~17) [avatar component clause 377] 380. ~17 | ~16 [avatar split clause 375,367,377] 381. ~predk(fred) | fred != sK10 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 286,225] 382. ~predk(fred) | fred != sK10 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 381,224] 383. ~predk(fred) | fred != sK10 | ~room(paul) | ~room(mary) [subsumption resolution 382,223] 384. ~predk(fred) | fred != sK10 | ~room(mary) [subsumption resolution 383,222] 385. ~predk(fred) | fred != sK10 [subsumption resolution 384,221] 387. 18 <=> fred = sK10 [avatar definition] 389. fred != sK10 <- (~18) [avatar component clause 387] 390. ~18 | ~16 [avatar split clause 385,367,387] 391. ~predk(fred) | paul != sK10 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 285,225] 392. ~predk(fred) | paul != sK10 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 391,224] 393. ~predk(fred) | paul != sK10 | ~room(paul) | ~room(mary) [subsumption resolution 392,223] 394. ~predk(fred) | paul != sK10 | ~room(mary) [subsumption resolution 393,222] 395. ~predk(fred) | paul != sK10 [subsumption resolution 394,221] 397. 19 <=> paul = sK10 [avatar definition] 399. paul != sK10 <- (~19) [avatar component clause 397] 400. ~19 | ~16 [avatar split clause 395,367,397] 401. ~predk(fred) | mary != sK10 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 284,225] 402. ~predk(fred) | mary != sK10 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 401,224] 403. ~predk(fred) | mary != sK10 | ~room(paul) | ~room(mary) [subsumption resolution 402,223] 404. ~predk(fred) | mary != sK10 | ~room(mary) [subsumption resolution 403,222] 405. ~predk(fred) | mary != sK10 [subsumption resolution 404,221] 407. 20 <=> mary = sK10 [avatar definition] 409. mary != sK10 <- (~20) [avatar component clause 407] 410. ~20 | ~16 [avatar split clause 405,367,407] 411. ~predk(fred) | room(sK10) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 283,225] 412. ~predk(fred) | room(sK10) | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 411,224] 413. ~predk(fred) | room(sK10) | ~room(paul) | ~room(mary) [subsumption resolution 412,223] 414. ~predk(fred) | room(sK10) | ~room(mary) [subsumption resolution 413,222] 415. ~predk(fred) | room(sK10) [subsumption resolution 414,221] 417. 21 <=> room(sK10) [avatar definition] 419. room(sK10) <- (21) [avatar component clause 417] 420. 21 | ~16 [avatar split clause 415,367,417] 431. predk(fred) [resolution 300,263] 436. 16 [avatar split clause 431,367] 589. alice = sK10 | fred = sK10 | paul = sK10 | mary = sK10 | john = sK10 <- (21) [resolution 226,419] 716. fred = sK10 | paul = sK10 | mary = sK10 | john = sK10 <- (~17, 21) [subsumption resolution 589,379] 717. paul = sK10 | mary = sK10 | john = sK10 <- (~17, ~18, 21) [subsumption resolution 716,389] 718. mary = sK10 | john = sK10 <- (~17, ~18, ~19, 21) [subsumption resolution 717,399] 719. john = sK10 <- (~17, ~18, ~19, ~20, 21) [subsumption resolution 718,409] 720. $false <- (~15, ~17, ~18, ~19, ~20, 21) [subsumption resolution 719,365] 721. 15 | 17 | 18 | 19 | 20 | ~21 [avatar contradiction clause 720] 722. $false [avatar sat refutation 370,380,390,400,410,420,436,721] % SZS output end Proof for 562494624822895159947877 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.041 s % ------------------------------ % ------------------------------
0.036922
Cathy, Timothy, Frank, Antonio are the only persons in the room. If Cathy plays as a goalkeeper for a local amateur soccer team then if someone collects comic books then he/she is a dedicated advocate for digital privacy and encryption. Only one person in the room is a dedicated advocate for digital privacy and encryption. Cathy who is a professional photographer specializing in portrait photography is a dedicated advocate for digital privacy and encryption. More than one person in the room collects comic books.
Cathy plays as a goalkeeper for a local amateur soccer team.
contradiction
room(cathy)&room(timothy)&room(frank)&room(antonio)&(![X]:(room(X)=>(X='cathy'|X='timothy'|X='frank'|X='antonio')))& ((![X]:(room(X)=>(((is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))|(is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))))))=>((is_dedicated_to_sustainable_living_and_zero-waste_practices(cathy))&(collects_comic_books(cathy))))& ((![X]:(room(X)=>(((is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))|(does_not_have_a_specialized_collection_of_handmade_artisan_pottery(X))))))<=>(?[X]:(room(X)&(does_practice_yoga(X)))))& ((?[X]:(room(X)&(is_allergic_to_anything(X))))=>(?[X]:(room(X)&(((practices_tai_chi(X))|(is_a_certified_yoga_instructor_teaching_classes_weekly(X)))))))& ((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(cathy))=>((![X]:((collects_comic_books(X))=>(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))))))& ((is_a_professional_photographer_specializing_in_portrait_photography(cathy))=>((is_a_professional_photographer_specializing_in_portrait_photography(cathy))&(((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(cathy))<~>(does_practice_yoga(cathy))))))& ((![X]:(room(X)=>(((can_play_the_harmonica(X))|(is_not_allergic_to_anything(X))))))=>((((can_play_the_harmonica(cathy))<~>(has_a_saltwater_aquarium(cathy))))&(can_play_the_harmonica(cathy))))& ((![X]:(room(X)=>(((can_play_the_harmonica(X))|(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))=>((![X]:((((collects_comic_books(X))<~>(can_play_the_harmonica(X))))=>(enjoys_kayaking_and_exploring_remote_waterways(X))))))& ((~(?[X]:(room(X)&(has_a_saltwater_aquarium(X)))))=>(?[X]:(room(X)&(collects_comic_books(X)))))& ((?[X]:(room(X)&(is_a_client_of_Costco(X))))=>((plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(cathy))&(plays_the_drums(cathy))))& (?[X]:(room(X)&(has_a_saltwater_aquarium(X))))& (~(?[X]:(room(X)&(plays_the_drums(X)))))& ((((is_an_active_member_of_a_local_robotics_club(cathy))|(is_a_coffee_connoisseur(cathy))))&(is_an_active_member_of_a_local_robotics_club(cathy)))& ((![X]:((is_a_certified_yoga_instructor_teaching_classes_weekly(X))=>(is_dedicated_to_sustainable_living_and_zero-waste_practices(X)))))& (?[X]:(room(X)&(((collects_action_figures(X))<~>(builds_model_airplanes(X))))))& (?[X]:(room(X)&(collects_action_figures(X))))& (((?[X]:(room(X)&is_a_dedicated_advocate_for_digital_privacy_and_encryption(X)))&(![X,Y]:((room(X)&room(Y)&(is_a_dedicated_advocate_for_digital_privacy_and_encryption(X))&(is_a_dedicated_advocate_for_digital_privacy_and_encryption(Y)))=>(X=Y)))))& ((is_a_professional_photographer_specializing_in_portrait_photography(cathy))&(is_a_dedicated_advocate_for_digital_privacy_and_encryption(cathy)))& ((![X]:((has_a_saltwater_aquarium(X))<=>(collects_comic_books(X)))))& ((![X]:((creates_large-scale_murals_for_public_art_installations(X))<=>(((has_a_specialized_collection_of_handmade_artisan_pottery(X))<~>(is_allergic_to_anything(X)))))))& (((?[X]:(room(X)&enjoys_kayaking_and_exploring_remote_waterways(X)))&(![X,Y]:((room(X)&room(Y)&(enjoys_kayaking_and_exploring_remote_waterways(X))&(enjoys_kayaking_and_exploring_remote_waterways(Y)))=>(X=Y)))))& ((?[X,Y]:(room(X)&room(Y)&(collects_comic_books(X)&collects_comic_books(Y))&(X!=Y))))& (?[X]:(room(X)&(has_a_specialized_collection_of_handmade_artisan_pottery(X))))& (![X]:(room(X)=>(((is_a_coffee_connoisseur(X))<=(has_a_pet_dog(X))))))& ((is_a_dedicated_advocate_for_digital_privacy_and_encryption(cathy))&(is_dedicated_to_sustainable_living_and_zero-waste_practices(cathy)))
room(cathy)&room(timothy)&room(frank)&room(antonio)&(![X]:(room(X)=>(X='cathy'|X='timothy'|X='frank'|X='antonio')))& plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(cathy)
[ "p0", "p4", "p16", "p17", "p21", "hypothesis" ]
% SZS status Unsatisfiable for 3124075781642614815291049 % SZS output start Proof for 3124075781642614815291049 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 48. predn(mary) => ! [X0] : (predt(X0) => predb(X0)) [input p4] 60. ! [X0,X1] : ((predb(X1) & predb(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (predb(X0) & room(X0)) [input p16] 61. predb(mary) & predc(mary) [input p17] 65. ? [X0,X1] : (X0 != X1 & predt(X1) & predt(X0) & room(X1) & room(X0)) [input p21] 69. predn(mary) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 74. ! [X0,X1] : ((predb(X1) & predb(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (predb(X2) & room(X2)) [rectify 60] 158. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 159. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 158] 164. ! [X0] : (predb(X0) | ~predt(X0)) | ~predn(mary) [ennf transformation 48] 171. ! [X0,X1] : (X0 = X1 | (~predb(X1) | ~predb(X0) | ~room(X1) | ~room(X0))) & ? [X2] : (predb(X2) & room(X2)) [ennf transformation 74] 172. ! [X0,X1] : (X0 = X1 | ~predb(X1) | ~predb(X0) | ~room(X1) | ~room(X0)) & ? [X2] : (predb(X2) & room(X2)) [flattening 171] 175. predn(mary) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 69] 176. predn(mary) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 175] 213. ? [X2] : (predb(X2) & room(X2)) => (predb(sK12) & room(sK12)) [choice axiom] 214. ! [X0,X1] : (X0 = X1 | ~predb(X1) | ~predb(X0) | ~room(X1) | ~room(X0)) & (predb(sK12) & room(sK12)) [skolemisation 172,213] 218. ? [X0,X1] : (X0 != X1 & predt(X1) & predt(X0) & room(X1) & room(X0)) => (sK14 != sK15 & predt(sK15) & predt(sK14) & room(sK15) & room(sK14)) [choice axiom] 219. sK14 != sK15 & predt(sK15) & predt(sK14) & room(sK15) & room(sK14) [skolemisation 65,218] 302. room(mary) [cnf transformation 159] 317. predb(X0) | ~predt(X0) | ~predn(mary) [cnf transformation 164] 346. ~predb(X1) | X0 = X1 | ~predb(X0) | ~room(X1) | ~room(X0) [cnf transformation 214] 348. predb(mary) [cnf transformation 61] 354. room(sK14) [cnf transformation 219] 355. room(sK15) [cnf transformation 219] 356. predt(sK14) [cnf transformation 219] 357. predt(sK15) [cnf transformation 219] 358. sK14 != sK15 [cnf transformation 219] 367. predn(mary) [cnf transformation 176] 424. 13 <=> predn(mary) [avatar definition] 428. 14 <=> ! [X0] : (predb(X0) | ~predt(X0)) [avatar definition] 429. ~predt(X0) | predb(X0) <- (14) [avatar component clause 428] 430. ~13 | 14 [avatar split clause 317,428,424] 526. 13 [avatar split clause 367,424] 542. predb(sK14) <- (14) [resolution 429,356] 543. predb(sK15) <- (14) [resolution 429,357] 582. mary = X0 | ~predb(X0) | ~room(mary) | ~room(X0) [resolution 346,348] 588. ~predb(X0) | mary = X0 | ~room(X0) [subsumption resolution 582,302] 598. mary = sK14 | ~room(sK14) <- (14) [resolution 588,542] 599. mary = sK15 | ~room(sK15) <- (14) [resolution 588,543] 616. mary = sK14 <- (14) [subsumption resolution 598,354] 622. mary != sK15 <- (14) [backward demodulation 358,616] 623. ~room(sK15) <- (14) [subsumption resolution 599,622] 624. $false <- (14) [subsumption resolution 623,355] 625. ~14 [avatar contradiction clause 624] 626. $false [avatar sat refutation 430,526,625] % SZS output end Proof for 3124075781642614815291049 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.032 s % ------------------------------ % ------------------------------
0.051071
There is a room. Everyone in the room who creates bespoke furniture pieces from reclaimed wood collects classic novels. Everyone anywhere who collects classic novels plays eSports competitively. Everyone in the room who plays eSports competitively can play the guitar. Someone in the room is right-handed. Everyone in the room who enjoys spelunking enjoys writing detailed reviews of new and classic board games. Everyone in the room who is a scotch connoisseur maintains a personal blog focused on cybersecurity tips. Everyone in the room maintains a large, organic vegetable garden year-round if they maintains a personal blog focused on cybersecurity tips. Everyone anywhere who creates bespoke furniture pieces from reclaimed wood is right-handed and reads mystery novels. Everyone in the room who uses a Windows laptop maintains a large, organic vegetable garden year-round. Everyone anywhere who maintains a large, organic vegetable garden year-round owns a 3D printer. Someone in the room reads mystery novels.
Everyone in the room is not right-handed or enjoys spelunking.
neutral
(there_is_a_room)& (![X]:(room(X)=>(((creates_bespoke_furniture_pieces_from_reclaimed_wood(X))=>(collects_classic_novels(X))))))& (![X]:(anywhere(X)=>(((collects_classic_novels(X))=>(plays_eSports_competitively(X))))))& (![X]:(room(X)=>(((plays_eSports_competitively(X))=>(can_play_the_guitar(X))))))& (?[X]:(room(X)&(is_right-handed(X))))& (![X]:(room(X)=>(((enjoys_spelunking(X))=>(enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))))))& (![X]:(room(X)=>(((is_a_scotch_connoisseur(X))=>(maintains_a_personal_blog_focused_on_cybersecurity_tips(X))))))& (![X]:(room(X)=>(((maintains_a_personal_blog_focused_on_cybersecurity_tips(X))=>(maintains_a_large,_organic_vegetable_garden_year-round(X))))))& (![X]:(anywhere(X)=>(((creates_bespoke_furniture_pieces_from_reclaimed_wood(X))=>(((is_right-handed(X))&(reads_mystery_novels(X))))))))& (![X]:(room(X)=>(((uses_a_Windows_laptop(X))=>(maintains_a_large,_organic_vegetable_garden_year-round(X))))))& (![X]:(anywhere(X)=>(((maintains_a_large,_organic_vegetable_garden_year-round(X))=>(owns_a_3D_printer(X))))))& (?[X]:(room(X)&(reads_mystery_novels(X))))& (![X]:(room(X)=>(((enjoys_stargazing(X))=>(creates_large-scale_murals_for_public_art_installations(X))))))& (![X]:(room(X)=>(((creates_large-scale_murals_for_public_art_installations(X))=>(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))))& (![X]:(room(X)=>(((enjoys_writing_detailed_reviews_of_new_and_classic_board_games(X))<=>(uses_a_Windows_laptop(X))))))& (![X]:(room(X)=>(((is_a_cybersecurity_expert(X))|(does_not_enjoy_stargazing(X))))))& (?[X]:(room(X)&(enjoys_spelunking(X))))& (![X]:(room(X)=>(((has_a_pet_dog(X))=>(uses_a_Windows_laptop(X))))))& (![X]:(anywhere(X)=>(((uses_a_Windows_laptop(X))=>(is_right-handed(X))))))& (![X]:(anywhere(X)=>(((is_right-handed(X))|(does_not_maintain_a_large,_organic_vegetable_garden_year-round(X))))))& (~![X]:(room(X)=>(((((creates_large-scale_murals_for_public_art_installations(X))&(can_play_the_guitar(X))&(does_not_have_a_pet_dog(X))))<=>(owns_a_3D_printer(X))))))& (?[X]:(~room(X)&(((writes_and_illustrates_their_own_graphic_novels(X))&(does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))&(creates_bespoke_furniture_pieces_from_reclaimed_wood(X))))))& (~?[X]:(anywhere(X)=>(((has_a_pet_dog(X))<=>(owns_a_3D_printer(X))))))& (![X]:(room(X)=>(((owns_a_3D_printer(X))<=>(((does_not_maintain_a_personal_blog_focused_on_cybersecurity_tips(X))|(plays_eSports_competitively(X))))))))& ((![X]:((enjoys_spelunking(X))=>(uses_an_ios_phone(X)))))
(there_is_a_room)& ![X]:(room(X)=>(((enjoys_spelunking(X))|(is_not_right-handed(X)))))
[]
null
0.078491
There is a room. “Someone outside the room does not design and sews custom cosplay costumes for conventions and owns a smartwatch” if “everyone in the room is a wine connoisseur or does not collect foreign coins”. “Everyone in the room is a certified yoga instructor teaching classes weekly, collects vintage stamps and is an enthusiastic bird watcher who travels for rare sightings” if “someone in the room mentors a youth basketball team on weekends or does enjoy mountain biking or both” and vice versa. No one in the room is a dedicated volunteer for local community service projects if they is not a skilled home brewer experimenting with craft beer recipes or collects comic books or both and vice versa. Everyone in the room practices calligraphy if and only if they mentors a youth basketball team on weekends, does not practice calligraphy or is a wine connoisseur.
Everyone in the room is an enthusiastic bird watcher who travels for rare sightings.
entailment
(there_is_a_room)& ((![X]:(room(X)=>(((does_not_collect_foreign_coins(X))|(is_a_wine_connoisseur(X))))))=>(?[X]:(~room(X)&(((does_not_design_and_sews_custom_cosplay_costumes_for_conventions(X))&(owns_a_smartwatch(X)))))))& ((?[X]:(room(X)&(((mentors_a_youth_basketball_team_on_weekends(X))|(does_enjoy_mountain_biking(X))))))<=>(![X]:(room(X)=>(((is_a_certified_yoga_instructor_teaching_classes_weekly(X))&(collects_vintage_stamps(X))&(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X)))))))& ((![X]:(room(X)=>(((does_not_practice_digital_art(X))|(is_not_dedicated_to_sustainable_living_and_zero-waste_practices(X))))))<=>(![X]:(room(X)=>(((practices_calligraphy(X))|(is_not_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X)))))))& ((~?[X]:(room(X)=>(((does_not_design_and_sews_custom_cosplay_costumes_for_conventions(X))|(develops_open-source_software_projects_in_their_free_time(X))))))<=>(![X]:(~room(X)=>(((designs_and_sews_custom_cosplay_costumes_for_conventions(X))|(does_not_bake_bread_at_home(X)))))))& ((![X]:(room(X)=>(((is_not_a_craft_beer_aficionado(X))|(does_not_collect_comic_books(X))))))=>(![X]:(room(X)=>(((practices_calligraphy(X))<=>(((mentors_a_youth_basketball_team_on_weekends(X))|(does_not_practice_calligraphy(X))|(is_a_wine_connoisseur(X)))))))))& ((![X]:(room(X)=>(((does_not_enjoy_snowboarding(X))|(is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))))))=>(![X]:(room(X)=>(((is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))<=>(collects_historical_artifacts_related_to_ancient_civilizations(X)))))))& ((![X]:(room(X)=>(((does_not_collect_historical_artifacts_related_to_ancient_civilizations(X))|(does_not_enjoy_snowboarding(X))))))<~>(![X]:(room(X)=>(((collects_vintage_stamps(X))|(is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X)))))))& ((~![X]:(room(X)=>(((does_not_practice_digital_art(X))|(is_a_dedicated_volunteer_for_local_community_service_projects(X))))))=>(~?[X]:(room(X)=>(((is_a_dedicated_volunteer_for_local_community_service_projects(X))<=>(((is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))|(collects_comic_books(X)))))))))& (![X]:(anywhere(X)=>(((((is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))|(collects_comic_books(X))))=>(((is_a_craft_beer_aficionado(X))|(does_enjoy_mountain_biking(X))))))))& (![X]:(room(X)=>(((((is_a_craft_beer_aficionado(X))|(does_enjoy_mountain_biking(X))))=>(((has_a_piercing(X))|(is_not_a_craft_beer_aficionado(X))|(develops_open-source_software_projects_in_their_free_time(X))))))))& (![X]:(~room(X)=>(does_not_use_an_ios_phone(X))))& (![X]:(room(X)=>(((((is_not_dedicated_to_sustainable_living_and_zero-waste_practices(X))|(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))))<=>(~((is_a_wine_connoisseur(X))|(collects_vintage_stamps(X))))))))& (![X]:(anywhere(X)=>(((~((is_a_wine_connoisseur(X))|(collects_vintage_stamps(X))))<=>(((mentors_a_youth_basketball_team_on_weekends(X))&(does_not_design_and_sews_custom_cosplay_costumes_for_conventions(X))))))))& (~?[X]:(room(X)=>(((is_a_dedicated_volunteer_for_local_community_service_projects(X))<=>(((is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))|(collects_comic_books(X))))))))& ((![X]:((((develops_open-source_software_projects_in_their_free_time(X))&(does_not_develop_open-source_software_projects_in_their_free_time(X))&(does_not_own_a_high-end_gaming_PC_with_custom-built_components(X))))<=>(((practices_calligraphy(X))&(does_not_collect_foreign_coins(X))&(is_a_dedicated_volunteer_for_local_community_service_projects(X)))))))& (![X]:(room(X)=>(((practices_calligraphy(X))<=>(((mentors_a_youth_basketball_team_on_weekends(X))|(does_not_practice_calligraphy(X))|(is_a_wine_connoisseur(X))))))))& (?[X]:(room(X)&(((is_a_tea_enthusiast(X))|(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))|(practices_digital_art(X))))))
(there_is_a_room)& ![X]:(room(X)=>(is_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X)))
[ "p0", "p1", "p2", "p14", "p16", "hypothesis" ]
% SZS status Unsatisfiable for 4686231745762749363153144 % SZS output start Proof for 4686231745762749363153144 44. there_is_a_room [input p0] 45. ! [X0] : (room(X0) => (predd(X0) | ~predm(X0))) => ? [X0] : (predg(X0) & ~predj(X0) & ~room(X0)) [input p1] 46. ? [X0] : ((predp(X0) | predx(X0)) & room(X0)) <=> ! [X0] : (room(X0) => (predc(X0) & preds(X0) & predh(X0))) [input p2] 58. ~? [X0] : (room(X0) => (predw(X0) <=> (predt(X0) | ~predu(X0)))) [input p14] 60. ! [X0] : (room(X0) => (predo(X0) <=> (predd(X0) | ~predo(X0) | predx(X0)))) [input p16] 62. ~(! [X0] : (room(X0) => predc(X0)) & there_is_a_room) [input hypothesis] 63. ! [X0] : (room(X0) => (predd(X0) | ~predm(X0))) => ? [X1] : (predg(X1) & ~predj(X1) & ~room(X1)) [rectify 45] 64. ? [X0] : ((predp(X0) | predx(X0)) & room(X0)) <=> ! [X1] : (room(X1) => (predc(X1) & preds(X1) & predh(X1))) [rectify 46] 76. ! [X0] : (room(X0) => (predd(X0) | ~predm(X0))) => ? [X1] : (~predj(X1) & ~room(X1)) [pure predicate removal 63] 148. ? [X1] : (~predj(X1) & ~room(X1)) | ? [X0] : ((~predd(X0) & predm(X0)) & room(X0)) [ennf transformation 76] 149. ? [X1] : (~predj(X1) & ~room(X1)) | ? [X0] : (~predd(X0) & predm(X0) & room(X0)) [flattening 148] 150. ? [X0] : ((predp(X0) | predx(X0)) & room(X0)) <=> ! [X1] : ((predc(X1) & preds(X1) & predh(X1)) | ~room(X1)) [ennf transformation 64] 164. ! [X0] : ((predw(X0) <~> (predt(X0) | ~predu(X0))) & room(X0)) [ennf transformation 58] 165. ! [X0] : ((predo(X0) <=> (predd(X0) | ~predo(X0) | predx(X0))) | ~room(X0)) [ennf transformation 60] 166. ? [X0] : (~predc(X0) & room(X0)) | ~there_is_a_room [ennf transformation 62] 167. sP0 <=> ! [X1] : ((predc(X1) & preds(X1) & predh(X1)) | ~room(X1)) [predicate definition introduction] 168. ? [X0] : ((predp(X0) | predx(X0)) & room(X0)) <=> sP0 [definition folding 150,167] 172. ? [X0] : (~predj(X0) & ~room(X0)) | ? [X1] : (~predd(X1) & predm(X1) & room(X1)) [rectify 149] 173. ? [X0] : (~predj(X0) & ~room(X0)) => (~predj(sK2) & ~room(sK2)) [choice axiom] 174. ? [X1] : (~predd(X1) & predm(X1) & room(X1)) => (~predd(sK3) & predm(sK3) & room(sK3)) [choice axiom] 175. (~predj(sK2) & ~room(sK2)) | (~predd(sK3) & predm(sK3) & room(sK3)) [skolemisation 172,174,173] 176. (sP0 | ? [X1] : ((~predc(X1) | ~preds(X1) | ~predh(X1)) & room(X1))) & (! [X1] : ((predc(X1) & preds(X1) & predh(X1)) | ~room(X1)) | ~sP0) [nnf transformation 167] 177. (sP0 | ? [X0] : ((~predc(X0) | ~preds(X0) | ~predh(X0)) & room(X0))) & (! [X1] : ((predc(X1) & preds(X1) & predh(X1)) | ~room(X1)) | ~sP0) [rectify 176] 178. ? [X0] : ((~predc(X0) | ~preds(X0) | ~predh(X0)) & room(X0)) => ((~predc(sK4) | ~preds(sK4) | ~predh(sK4)) & room(sK4)) [choice axiom] 179. (sP0 | ((~predc(sK4) | ~preds(sK4) | ~predh(sK4)) & room(sK4))) & (! [X1] : ((predc(X1) & preds(X1) & predh(X1)) | ~room(X1)) | ~sP0) [skolemisation 177,178] 180. (? [X0] : ((predp(X0) | predx(X0)) & room(X0)) | ~sP0) & (sP0 | ! [X0] : ((~predp(X0) & ~predx(X0)) | ~room(X0))) [nnf transformation 168] 181. (? [X0] : ((predp(X0) | predx(X0)) & room(X0)) | ~sP0) & (sP0 | ! [X1] : ((~predp(X1) & ~predx(X1)) | ~room(X1))) [rectify 180] 182. ? [X0] : ((predp(X0) | predx(X0)) & room(X0)) => ((predp(sK5) | predx(sK5)) & room(sK5)) [choice axiom] 183. (((predp(sK5) | predx(sK5)) & room(sK5)) | ~sP0) & (sP0 | ! [X1] : ((~predp(X1) & ~predx(X1)) | ~room(X1))) [skolemisation 181,182] 218. ! [X0] : ((((~predt(X0) & predu(X0)) | ~predw(X0)) & ((predt(X0) | ~predu(X0)) | predw(X0))) & room(X0)) [nnf transformation 164] 219. ! [X0] : (((~predt(X0) & predu(X0)) | ~predw(X0)) & (predt(X0) | ~predu(X0) | predw(X0)) & room(X0)) [flattening 218] 222. ! [X0] : (((predo(X0) | (~predd(X0) & predo(X0) & ~predx(X0))) & ((predd(X0) | ~predo(X0) | predx(X0)) | ~predo(X0))) | ~room(X0)) [nnf transformation 165] 223. ! [X0] : (((predo(X0) | (~predd(X0) & predo(X0) & ~predx(X0))) & (predd(X0) | ~predo(X0) | predx(X0) | ~predo(X0))) | ~room(X0)) [flattening 222] 226. ? [X0] : (~predc(X0) & room(X0)) => (~predc(sK15) & room(sK15)) [choice axiom] 227. (~predc(sK15) & room(sK15)) | ~there_is_a_room [skolemisation 166,226] 309. there_is_a_room [cnf transformation 44] 312. ~room(sK2) | ~predd(sK3) [cnf transformation 175] 318. predc(X1) | ~room(X1) | ~sP0 [cnf transformation 179] 321. sP0 | ~predx(X1) | ~room(X1) [cnf transformation 183] 376. room(X0) [cnf transformation 219] 386. predd(X0) | ~predo(X0) | predx(X0) | ~predo(X0) | ~room(X0) [cnf transformation 223] 388. predo(X0) | predo(X0) | ~room(X0) [cnf transformation 223] 392. ~predc(sK15) | ~there_is_a_room [cnf transformation 227] 393. predd(X0) | ~predo(X0) | predx(X0) | ~room(X0) [duplicate literal removal 386] 394. predo(X0) | ~room(X0) [duplicate literal removal 388] 400. 1 <=> predd(sK3) [avatar definition] 402. ~predd(sK3) <- (~1) [avatar component clause 400] 419. 5 <=> room(sK2) [avatar definition] 421. ~room(sK2) <- (~5) [avatar component clause 419] 422. ~1 | ~5 [avatar split clause 312,419,400] 438. 9 <=> sP0 [avatar definition] 448. 11 <=> ! [X1] : (predc(X1) | ~room(X1)) [avatar definition] 449. predc(X1) | ~room(X1) <- (11) [avatar component clause 448] 450. ~9 | 11 [avatar split clause 318,448,438] 478. 18 <=> ! [X1] : (~predx(X1) | ~room(X1)) [avatar definition] 479. ~predx(X1) | ~room(X1) <- (18) [avatar component clause 478] 480. 18 | 9 [avatar split clause 321,438,478] 543. 33 <=> ! [X1] : room(X1) [avatar definition] 544. room(X1) <- (33) [avatar component clause 543] 579. 41 <=> ! [X0] : (predo(X0) | ~room(X0)) [avatar definition] 580. ~room(X0) | predo(X0) <- (41) [avatar component clause 579] 589. 43 <=> ! [X0] : (predd(X0) | ~room(X0) | predx(X0) | ~predo(X0)) [avatar definition] 590. ~predo(X0) | ~room(X0) | predx(X0) | predd(X0) <- (43) [avatar component clause 589] 680. 33 [avatar split clause 376,543] 683. 41 [avatar split clause 394,579] 685. 43 [avatar split clause 393,589] 686. ~predc(sK15) [subsumption resolution 392,309] 691. predc(X1) <- (11, 33) [subsumption resolution 449,544] 692. $false <- (~5, 33) [subsumption resolution 421,544] 693. 5 | ~33 [avatar contradiction clause 692] 702. $false <- (11, 33) [resolution 691,686] 703. ~11 | ~33 [avatar contradiction clause 702] 704. ~predx(X1) <- (18, 33) [subsumption resolution 479,544] 710. predo(X0) <- (33, 41) [resolution 580,544] 749. ~room(X0) | predx(X0) | predd(X0) <- (33, 41, 43) [resolution 590,710] 750. predx(X0) | predd(X0) <- (33, 41, 43) [subsumption resolution 749,544] 751. predd(X0) <- (18, 33, 41, 43) [subsumption resolution 750,704] 752. $false <- (~1, 18, 33, 41, 43) [resolution 751,402] 754. 1 | ~18 | ~33 | ~41 | ~43 [avatar contradiction clause 752] 756. $false [avatar sat refutation 422,450,480,680,683,685,693,703,754] % SZS output end Proof for 4686231745762749363153144 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5500 % Time elapsed: 0.029 s % ------------------------------ % ------------------------------
0.041893
Zora, Gloria, Mathew are the only persons in the room. Zora is a cybersecurity expert if Gloria either practices graffiti art or is dedicated to sustainable living and zero-waste practices but not both. If no one in the room collect rare sneakers or does not play the violin then Gloria collect rare sneakers or is dedicated to sustainable living and zero-waste practices or both. At least one person in the room enjoys virtual reality gaming, owns an extensive assortment of vintage comic book memorabilia or is dedicated to sustainable living and zero-waste practices if Gloria has a tattoo and vice versa. Either everyone in the room owns a telescope or does not practice graffiti art or Gloria collects modern art but not both. If someone enjoys stargazing, enjoys stand-up paddleboarding or does enjoy trail running then he/she enjoys coding in Python and vice versa if everyone in the room hosts a YouTube channel dedicated to art tutorials or does not play the violin. If someone hosts a YouTube channel dedicated to art tutorials then he/she collects modern art, owns a telescope or enjoys stargazing and vice versa if Zora is a cybersecurity expert. If someone collects modern art or does enjoy trail running or both then he/she enjoys coding in Python and vice versa unless Gloria is dedicated to sustainable living and zero-waste practices. If it is not the case that Gloria collects vintage stamps, owns an extensive assortment of vintage comic book memorabilia and enjoys virtual reality gaming then everyone in the room neither practices kickboxing nor does enjoy trail running only if they either can play the piano or practices kickboxing but not both otherwise it is not the case that Gloria does enjoy trail running. It is not the case that at least one person in the room enjoys virtual reality gaming unless Zora enjoys windsurfing or owns a telescope or both. If someone neither hosts a YouTube channel dedicated to art tutorials nor enjoys windsurfing then he/she has a tattoo and vice versa. If someone creates YouTube content then he/she owns an extensive assortment of vintage comic book memorabilia and vice versa. Gloria either practices graffiti art or is dedicated to sustainable living and zero-waste practices but not both. Zora practices kickboxing. Gloria either practices kickboxing or enjoys stargazing but not both. Not everyone in the room neither practices kickboxing nor is a cybersecurity expert only if they creates YouTube content.
Mathew creates YouTube content.
contradiction
room(zora)&room(gloria)&room(mathew)&(![X]:(room(X)=>(X='zora'|X='gloria'|X='mathew')))& ((((practices_graffiti_art(gloria))<~>(is_dedicated_to_sustainable_living_and_zero-waste_practices(gloria))))=>(is_a_cybersecurity_expert(zora)))& ((~?[X]:(room(X)=>(((does_not_play_the_violin(X))|(collect_rare_sneakers(X))))))=>(((collect_rare_sneakers(gloria))|(is_dedicated_to_sustainable_living_and_zero-waste_practices(gloria)))))& ((has_a_tattoo(gloria))<=>(((?[X]:(room(X)&((enjoys_virtual_reality_gaming(X))|(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))|(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))))))))& ((![X]:(room(X)=>(((does_not_practice_graffiti_art(X))|(owns_a_telescope(X))))))<~>(collects_modern_art(gloria)))& ((![X]:(room(X)=>(((does_not_play_the_violin(X))|(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))))))=>((![X]:((((enjoys_stargazing(X))|(enjoys_stand-up_paddleboarding(X))|(does_enjoy_trail_running(X))))<=>(enjoys_coding_in_Python(X))))))& ((is_a_cybersecurity_expert(zora))=>((![X]:((hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))<=>(((collects_modern_art(X))|(owns_a_telescope(X))|(enjoys_stargazing(X))))))))& (~(is_dedicated_to_sustainable_living_and_zero-waste_practices(gloria))=>((![X]:((((collects_modern_art(X))|(does_enjoy_trail_running(X))))<=>(enjoys_coding_in_Python(X))))))& (((~(((collects_vintage_stamps(gloria))&(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(gloria))&(enjoys_virtual_reality_gaming(gloria)))))=>(![X]:(room(X)=>(((((can_play_the_piano(X))<~>(practices_kickboxing(X))))<=(~((practices_kickboxing(X))|(does_enjoy_trail_running(X)))))))))&((~(~(((collects_vintage_stamps(gloria))&(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(gloria))&(enjoys_virtual_reality_gaming(gloria))))))=>(~(does_enjoy_trail_running(gloria)))))& (~(((enjoys_windsurfing(zora))|(owns_a_telescope(zora))))=>(~(((?[X]:(room(X)&enjoys_virtual_reality_gaming(X)))))))& (plays_the_violin(gloria))& ((![X]:((((does_enjoy_trail_running(X))<~>(collects_vintage_stamps(X))))<=>(enjoys_stand-up_paddleboarding(X)))))& ((![X]:((~((hosts_a_YouTube_channel_dedicated_to_art_tutorials(X))|(enjoys_windsurfing(X))))<=>(has_a_tattoo(X)))))& (((practices_kickboxing(zora))<~>(enjoys_windsurfing(zora))))& (((?[X]:(~room(X)&enjoys_stargazing(X)))))& ((![X]:((creates_YouTube_content(X))<=>(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(X)))))& (((practices_graffiti_art(gloria))<~>(is_dedicated_to_sustainable_living_and_zero-waste_practices(gloria))))& (practices_kickboxing(zora))& (((?[X]:(room(X)&((enjoys_virtual_reality_gaming(X))<~>(hosts_a_YouTube_channel_dedicated_to_art_tutorials(X)))))))& ((![X]:((((is_dedicated_to_sustainable_living_and_zero-waste_practices(X))<~>(collect_rare_sneakers(X))))<=>(has_a_tattoo(X)))))& (collects_historical_artifacts_related_to_ancient_civilizations(zora))& (((practices_kickboxing(gloria))<~>(enjoys_stargazing(gloria))))& (~![X]:(room(X)=>(((creates_YouTube_content(X))<=(~((practices_kickboxing(X))|(is_a_cybersecurity_expert(X))))))))& ((![X]:((((is_a_cybersecurity_expert(X))<~>(can_play_the_piano(X))))<=>(plays_the_violin(X)))))& (((enjoys_coding_in_Python(gloria))|(enjoys_windsurfing(gloria))|(plays_the_violin(gloria))))& (((can_play_the_piano(zora))|(plays_the_violin(zora))))& ((does_not_play_the_violin(zora))&(((can_play_the_piano(zora))<~>(is_dedicated_to_sustainable_living_and_zero-waste_practices(zora)))))& ((?[X,Y]:(room(X)&room(Y)&(collects_vintage_stamps(X)&collects_vintage_stamps(Y))&(X!=Y))))
room(zora)&room(gloria)&room(mathew)&(![X]:(room(X)=>(X='zora'|X='gloria'|X='mathew')))& creates_YouTube_content(mathew)
[ "p0", "p1", "p3", "p6", "p12", "p15", "p16", "p17", "p21", "p22", "hypothesis" ]
% SZS status Unsatisfiable for 153709037944747892131117 % SZS output start Proof for 153709037944747892131117 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 45. (predb(paul) <~> predd(paul)) => predq(mary) [input p1] 47. predp(paul) <=> ? [X0] : ((predd(X0) | predc(X0) | predk(X0)) & room(X0)) [input p3] 50. predq(mary) => ! [X0] : (predh(X0) <=> (predi(X0) | preds(X0) | predu(X0))) [input p6] 56. ! [X0] : (~(predo(X0) | predh(X0)) <=> predp(X0)) [input p12] 59. ! [X0] : (predt(X0) <=> predc(X0)) [input p15] 60. predb(paul) <~> predd(paul) [input p16] 61. predr(mary) [input p17] 65. predr(paul) <~> predi(paul) [input p21] 66. ~! [X0] : (room(X0) => (~(predq(X0) | predr(X0)) => predt(X0))) [input p22] 72. predt(fred) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 148. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 149. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 148] 150. predq(mary) | (predb(paul) <=> predd(paul)) [ennf transformation 45] 157. ! [X0] : (predh(X0) <=> (predi(X0) | preds(X0) | predu(X0))) | ~predq(mary) [ennf transformation 50] 163. ! [X0] : ((~predo(X0) & ~predh(X0)) <=> predp(X0)) [ennf transformation 56] 164. ? [X0] : ((~predt(X0) & (~predq(X0) & ~predr(X0))) & room(X0)) [ennf transformation 66] 165. ? [X0] : (~predt(X0) & ~predq(X0) & ~predr(X0) & room(X0)) [flattening 164] 166. predt(fred) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 72] 167. predt(fred) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 166] 171. predq(mary) | ((predb(paul) | ~predd(paul)) & (predd(paul) | ~predb(paul))) [nnf transformation 150] 174. (predp(paul) | ! [X0] : ((~predd(X0) & ~predc(X0) & ~predk(X0)) | ~room(X0))) & (? [X0] : ((predd(X0) | predc(X0) | predk(X0)) & room(X0)) | ~predp(paul)) [nnf transformation 47] 175. (predp(paul) | ! [X0] : ((~predd(X0) & ~predc(X0) & ~predk(X0)) | ~room(X0))) & (? [X1] : ((predd(X1) | predc(X1) | predk(X1)) & room(X1)) | ~predp(paul)) [rectify 174] 176. ? [X1] : ((predd(X1) | predc(X1) | predk(X1)) & room(X1)) => ((predd(sK2) | predc(sK2) | predk(sK2)) & room(sK2)) [choice axiom] 177. (predp(paul) | ! [X0] : ((~predd(X0) & ~predc(X0) & ~predk(X0)) | ~room(X0))) & (((predd(sK2) | predc(sK2) | predk(sK2)) & room(sK2)) | ~predp(paul)) [skolemisation 175,176] 187. ! [X0] : ((predh(X0) | (~predi(X0) & ~preds(X0) & ~predu(X0))) & ((predi(X0) | preds(X0) | predu(X0)) | ~predh(X0))) | ~predq(mary) [nnf transformation 157] 188. ! [X0] : ((predh(X0) | (~predi(X0) & ~preds(X0) & ~predu(X0))) & (predi(X0) | preds(X0) | predu(X0) | ~predh(X0))) | ~predq(mary) [flattening 187] 193. ! [X0] : (((~predo(X0) & ~predh(X0)) | ~predp(X0)) & (predp(X0) | (predo(X0) | predh(X0)))) [nnf transformation 163] 194. ! [X0] : (((~predo(X0) & ~predh(X0)) | ~predp(X0)) & (predp(X0) | predo(X0) | predh(X0))) [flattening 193] 198. ! [X0] : ((predt(X0) | ~predc(X0)) & (predc(X0) | ~predt(X0))) [nnf transformation 59] 199. (~predd(paul) | ~predb(paul)) & (predd(paul) | predb(paul)) [nnf transformation 60] 205. (~predi(paul) | ~predr(paul)) & (predi(paul) | predr(paul)) [nnf transformation 65] 206. ? [X0] : (~predt(X0) & ~predq(X0) & ~predr(X0) & room(X0)) => (~predt(sK7) & ~predq(sK7) & ~predr(sK7) & room(sK7)) [choice axiom] 207. ~predt(sK7) & ~predq(sK7) & ~predr(sK7) & room(sK7) [skolemisation 165,206] 295. room(fred) [cnf transformation 149] 296. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 149] 297. predq(mary) | predd(paul) | ~predb(paul) [cnf transformation 171] 298. predq(mary) | predb(paul) | ~predd(paul) [cnf transformation 171] 303. predp(paul) | ~predc(X0) | ~room(X0) [cnf transformation 177] 319. predh(X0) | ~predi(X0) | ~predq(mary) [cnf transformation 188] 337. ~predh(X0) | ~predp(X0) [cnf transformation 194] 343. ~predt(X0) | predc(X0) [cnf transformation 198] 345. predd(paul) | predb(paul) [cnf transformation 199] 346. ~predd(paul) | ~predb(paul) [cnf transformation 199] 347. predr(mary) [cnf transformation 61] 355. predi(paul) | predr(paul) [cnf transformation 205] 357. room(sK7) [cnf transformation 207] 358. ~predr(sK7) [cnf transformation 207] 360. ~predt(sK7) [cnf transformation 207] 379. predt(fred) [cnf transformation 167] 384. 1 <=> predd(paul) [avatar definition] 388. 2 <=> predb(paul) [avatar definition] 392. 3 <=> predq(mary) [avatar definition] 395. ~1 | 2 | 3 [avatar split clause 298,392,388,384] 396. ~2 | 1 | 3 [avatar split clause 297,392,384,388] 418. 9 <=> predp(paul) [avatar definition] 420. predp(paul) <- (9) [avatar component clause 418] 423. 10 <=> ! [X0] : (~predc(X0) | ~room(X0)) [avatar definition] 424. ~predc(X0) | ~room(X0) <- (10) [avatar component clause 423] 425. 10 | 9 [avatar split clause 303,418,423] 507. 29 <=> ! [X0] : (predh(X0) | ~predi(X0)) [avatar definition] 508. ~predi(X0) | predh(X0) <- (29) [avatar component clause 507] 509. ~3 | 29 [avatar split clause 319,507,392] 564. 42 <=> predr(mary) [avatar definition] 565. predr(mary) <- (42) [avatar component clause 564] 569. ~2 | ~1 [avatar split clause 346,384,388] 570. 2 | 1 [avatar split clause 345,384,388] 571. 42 [avatar split clause 347,564] 583. 45 <=> predr(paul) [avatar definition] 587. 46 <=> predi(paul) [avatar definition] 588. predi(paul) <- (46) [avatar component clause 587] 591. 45 | 46 [avatar split clause 355,587,583] 608. predc(fred) [resolution 343,379] 613. ~room(fred) <- (10) [resolution 424,608] 616. $false <- (10) [subsumption resolution 613,295] 617. ~10 [avatar contradiction clause 616] 792. paul = sK7 | mary = sK7 | fred = sK7 [resolution 296,357] 848. 72 <=> fred = sK7 [avatar definition] 850. fred = sK7 <- (72) [avatar component clause 848] 852. 73 <=> mary = sK7 [avatar definition] 854. mary = sK7 <- (73) [avatar component clause 852] 856. 74 <=> paul = sK7 [avatar definition] 858. paul = sK7 <- (74) [avatar component clause 856] 859. 72 | 73 | 74 [avatar split clause 792,856,852,848] 901. ~predt(fred) <- (72) [backward demodulation 360,850] 902. $false <- (72) [subsumption resolution 901,379] 903. ~72 [avatar contradiction clause 902] 916. ~predr(mary) <- (73) [backward demodulation 358,854] 919. $false <- (42, 73) [subsumption resolution 916,565] 920. ~42 | ~73 [avatar contradiction clause 919] 925. ~predr(paul) <- (74) [backward demodulation 358,858] 933. ~45 | ~74 [avatar split clause 925,856,583] 935. predh(paul) <- (29, 46) [resolution 588,508] 997. ~predp(paul) <- (29, 46) [resolution 935,337] 998. $false <- (9, 29, 46) [subsumption resolution 997,420] 999. ~9 | ~29 | ~46 [avatar contradiction clause 998] 1000. $false [avatar sat refutation 395,396,425,509,569,570,571,591,617,859,903,920,933,999] % SZS output end Proof for 153709037944747892131117 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5628 % Time elapsed: 0.035 s % ------------------------------ % ------------------------------
0.054613
Henry, David are the only persons in the room. If 'not everyone in the room is an expert in identifying and foraging wild edible plants or is not a member of a local theater group specializing in improv' then 'Henry is a member of a local theater group specializing in improv'. If 'Henry is a member of a local theater group specializing in improv' then 'everyone in the room makes intricate hand-cut paper art for exhibitions if they does not collect historical artifacts related to ancient civilizations'. If 'everyone anywhere collect rare sneakers or does not enjoy bird watching' then 'everyone in the room who collect rare sneakers is an expert in identifying and foraging wild edible plants'. If 'everyone anywhere has a curated collection of mid-century modern furniture or does not practice tai chi' then 'everyone in the room does not enjoy stand-up paddleboarding or is a cybersecurity expert'. If 'everyone in the room does not enjoy stand-up paddleboarding or is a cybersecurity expert' then 'David is an avid mountain climber who has scaled several peaks'. If 'Henry does not use contact lenses, collects historical artifacts related to ancient civilizations or is a cybersecurity expert' then 'Henry does not enjoy bird watching'. Everyone in the room who either enjoys landscape photography or plays as a goalkeeper for a local amateur soccer team but not both collects action figures, collects historical artifacts related to ancient civilizations and uses an ios phone. David does not enjoy bird watching. Everyone in the room plays as a goalkeeper for a local amateur soccer team only if they creates bespoke furniture pieces from reclaimed wood. Henry creates bespoke furniture pieces from reclaimed wood. David enjoys logic puzzles. Henry does not enjoy logic puzzles. Henry does not write a travel blog. David writes a travel blog. Everyone in the room writes a travel blog if they collects comic books. Only one person in the room is a professional photographer specializing in portrait photography. Henry dreamt that 'at least one person in the room is a professional photographer specializing in portrait photography'. David designs and sews custom cosplay costumes for conventions. David is a professional photographer specializing in portrait photography, enjoys logic puzzles or writes a travel blog.
Henry writes a travel blog.
contradiction
room(henry)&room(david)&(![X]:(room(X)=>(X='henry'|X='david')))& (((~![X]:(room(X)=>(((is_not_a_member_of_a_local_theater_group_specializing_in_improv(X))|(is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))))))=>(is_a_member_of_a_local_theater_group_specializing_in_improv(henry)))& ((is_a_member_of_a_local_theater_group_specializing_in_improv(henry))=>(![X]:(room(X)=>(((does_not_collect_historical_artifacts_related_to_ancient_civilizations(X))=>(makes_intricate_hand-cut_paper_art_for_exhibitions(X))))))))& ((![X]:(anywhere(X)=>(((does_not_enjoy_bird_watching(X))|(collect_rare_sneakers(X))))))=>(![X]:(room(X)=>(((collect_rare_sneakers(X))=>(is_an_expert_in_identifying_and_foraging_wild_edible_plants(X)))))))& (((![X]:(anywhere(X)=>(((does_not_practice_tai_chi(X))|(has_a_curated_collection_of_mid-century_modern_furniture(X))))))=>(![X]:(room(X)=>(((is_a_cybersecurity_expert(X))|(does_not_enjoy_stand-up_paddleboarding(X)))))))& ((![X]:(room(X)=>(((is_a_cybersecurity_expert(X))|(does_not_enjoy_stand-up_paddleboarding(X))))))=>(is_an_avid_mountain_climber_who_has_scaled_several_peaks(david))))& ((((does_not_use_contact_lenses(henry))|(collects_historical_artifacts_related_to_ancient_civilizations(henry))|(is_a_cybersecurity_expert(henry))))=>(does_not_enjoy_bird_watching(henry)))& (![X]:(room(X)=>(((((enjoys_landscape_photography(X))<~>(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))=>(((collects_action_figures(X))&(collects_historical_artifacts_related_to_ancient_civilizations(X))&(uses_an_ios_phone(X))))))))& (does_not_enjoy_bird_watching(david))& (![X]:(room(X)=>(((creates_bespoke_furniture_pieces_from_reclaimed_wood(X))<=(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))& (creates_bespoke_furniture_pieces_from_reclaimed_wood(henry))& (enjoys_logic_puzzles(david))& (does_not_enjoy_logic_puzzles(henry))& (does_not_write_a_travel_blog(henry))& (writes_a_travel_blog(david))& (![X]:(room(X)=>(((collects_comic_books(X))=>(writes_a_travel_blog(X))))))& (((?[X]:(room(X)&is_a_professional_photographer_specializing_in_portrait_photography(X)))&(![X,Y]:((room(X)&room(Y)&(is_a_professional_photographer_specializing_in_portrait_photography(X))&(is_a_professional_photographer_specializing_in_portrait_photography(Y)))=>(X=Y)))))& ((henry_dream=>(((?[X]:(room(X)&is_a_professional_photographer_specializing_in_portrait_photography(X)))))))& (designs_and_sews_custom_cosplay_costumes_for_conventions(david))& (((is_a_professional_photographer_specializing_in_portrait_photography(david))|(enjoys_logic_puzzles(david))|(writes_a_travel_blog(david))))& (is_a_member_of_a_local_theater_group_specializing_in_improv(david))& (![X]:(room(X)=>(((does_not_collect_historical_artifacts_related_to_ancient_civilizations(X))=>(makes_intricate_hand-cut_paper_art_for_exhibitions(X))))))& (((does_not_use_contact_lenses(henry))|(collects_historical_artifacts_related_to_ancient_civilizations(henry))|(is_a_cybersecurity_expert(henry))))& (~![X]:(room(X)=>(((enjoys_logic_puzzles(X))=>(is_a_professional_photographer_specializing_in_portrait_photography(X))))))& (~(collects_comic_books(henry)))& (![X]:(room(X)=>(does_not_use_contact_lenses(X))))& (![X]:(room(X)=>(((((does_not_host_a_YouTube_channel_dedicated_to_art_tutorials(X))<~>(plays_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))=>(hosts_regular_workshops_on_creative_writing(X))))))& (![X]:(room(X)=>(((hosts_regular_workshops_on_creative_writing(X))=>(is_a_member_of_a_local_theater_group_specializing_in_improv(X))))))& (practices_tai_chi(david))& (![X]:(room(X)=>(((volunteers_for_local_environmental_conservation_projects(X))<=>(((collects_action_figures(X))|(is_a_cybersecurity_expert(X))|(has_a_curated_collection_of_mid-century_modern_furniture(X))))))))& (does_not_enjoy_bird_watching(henry))
room(henry)&room(david)&(![X]:(room(X)=>(X='henry'|X='david')))& writes_a_travel_blog(henry)
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 2672789646929855993293577 % SZS output start Proof for 2672789646929855993293577 44. ~predk(mary) & ! [X0] : (room(X0) => (prede(X0) <=> (predh(X0) | predz(X0) | predo(X0)))) & predg(paul) & ! [X0] : (room(X0) => (preda(X0) => predy(X0))) & ! [X0] : (room(X0) => ((~predc(X0) <~> predb(X0)) => preda(X0))) & ! [X0] : (room(X0) => ~preds(X0)) & ~predv(mary) & ~! [X0] : (room(X0) => (predl(X0) => predr(X0))) & (predz(mary) | predj(mary) | ~preds(mary)) & ! [X0] : (room(X0) => (~predj(X0) => predp(X0))) & predy(paul) & (predq(paul) | predl(paul) | predr(paul)) & predd(paul) & (mary_dream => ? [X0] : (predr(X0) & room(X0))) & ! [X0,X1] : ((predr(X1) & predr(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (predr(X0) & room(X0)) & ! [X0] : (room(X0) => (predv(X0) => predq(X0))) & predq(paul) & ~predq(mary) & ~predl(mary) & predl(paul) & predm(mary) & ! [X0] : (room(X0) => (predb(X0) => predm(X0))) & ~predk(paul) & ! [X0] : (room(X0) => ((predx(X0) <~> predb(X0)) => (predi(X0) & predj(X0) & predo(X0)))) & ((predz(mary) | predj(mary) | ~preds(mary)) => ~predk(mary)) & (! [X0] : (room(X0) => (~predw(X0) | predz(X0))) => predf(paul)) & (! [X0] : (anywhere(X0) => (predh(X0) | ~predg(X0))) => ! [X0] : (room(X0) => (~predw(X0) | predz(X0)))) & (! [X0] : (anywhere(X0) => (predu(X0) | ~predk(X0))) => ! [X0] : (room(X0) => (predu(X0) => predt(X0)))) & (predy(mary) => ! [X0] : (room(X0) => (~predj(X0) => predp(X0)))) & (~! [X0] : (room(X0) => (predt(X0) | ~predy(X0))) => predy(mary)) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 45. predq(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 46. ~predk(mary) & ! [X0] : (room(X0) => (prede(X0) <=> (predh(X0) | predz(X0) | predo(X0)))) & predg(paul) & ! [X1] : (room(X1) => (preda(X1) => predy(X1))) & ! [X2] : (room(X2) => ((~predc(X2) <~> predb(X2)) => preda(X2))) & ! [X3] : (room(X3) => ~preds(X3)) & ~predv(mary) & ~! [X4] : (room(X4) => (predl(X4) => predr(X4))) & (predz(mary) | predj(mary) | ~preds(mary)) & ! [X5] : (room(X5) => (~predj(X5) => predp(X5))) & predy(paul) & (predq(paul) | predl(paul) | predr(paul)) & predd(paul) & (mary_dream => ? [X6] : (predr(X6) & room(X6))) & ! [X7,X8] : ((predr(X8) & predr(X7) & room(X8) & room(X7)) => X7 = X8) & ? [X9] : (predr(X9) & room(X9)) & ! [X10] : (room(X10) => (predv(X10) => predq(X10))) & predq(paul) & ~predq(mary) & ~predl(mary) & predl(paul) & predm(mary) & ! [X11] : (room(X11) => (predb(X11) => predm(X11))) & ~predk(paul) & ! [X12] : (room(X12) => ((predx(X12) <~> predb(X12)) => (predi(X12) & predj(X12) & predo(X12)))) & ((predz(mary) | predj(mary) | ~preds(mary)) => ~predk(mary)) & (! [X13] : (room(X13) => (~predw(X13) | predz(X13))) => predf(paul)) & (! [X14] : (anywhere(X14) => (predh(X14) | ~predg(X14))) => ! [X15] : (room(X15) => (~predw(X15) | predz(X15)))) & (! [X16] : (anywhere(X16) => (predu(X16) | ~predk(X16))) => ! [X17] : (room(X17) => (predu(X17) => predt(X17)))) & (predy(mary) => ! [X18] : (room(X18) => (~predj(X18) => predp(X18)))) & (~! [X19] : (room(X19) => (predt(X19) | ~predy(X19))) => predy(mary)) & ! [X20] : (room(X20) => (paul = X20 | mary = X20)) & room(paul) & room(mary) [rectify 44] 47. ~predk(mary) & ! [X0] : (room(X0) => (prede(X0) <=> (predh(X0) | predz(X0) | predo(X0)))) & predg(paul) & ! [X1] : (room(X1) => (preda(X1) => predy(X1))) & ! [X2] : (room(X2) => ((~predc(X2) <~> predb(X2)) => preda(X2))) & ! [X3] : (room(X3) => ~preds(X3)) & ~predv(mary) & ~! [X4] : (room(X4) => (predl(X4) => predr(X4))) & (predz(mary) | predj(mary) | ~preds(mary)) & ! [X5] : (room(X5) => (~predj(X5) => predp(X5))) & predy(paul) & (predq(paul) | predl(paul) | predr(paul)) & (mary_dream => ? [X6] : (predr(X6) & room(X6))) & ! [X7,X8] : ((predr(X8) & predr(X7) & room(X8) & room(X7)) => X7 = X8) & ? [X9] : (predr(X9) & room(X9)) & ! [X10] : (room(X10) => (predv(X10) => predq(X10))) & predq(paul) & ~predq(mary) & ~predl(mary) & predl(paul) & predm(mary) & ! [X11] : (room(X11) => (predb(X11) => predm(X11))) & ~predk(paul) & ! [X12] : (room(X12) => ((predx(X12) <~> predb(X12)) => (predi(X12) & predj(X12) & predo(X12)))) & ((predz(mary) | predj(mary) | ~preds(mary)) => ~predk(mary)) & (! [X13] : (room(X13) => (~predw(X13) | predz(X13))) => predf(paul)) & (! [X14] : (anywhere(X14) => (predh(X14) | ~predg(X14))) => ! [X15] : (room(X15) => (~predw(X15) | predz(X15)))) & (! [X16] : (anywhere(X16) => (predu(X16) | ~predk(X16))) => ! [X17] : (room(X17) => (predu(X17) => predt(X17)))) & (predy(mary) => ! [X18] : (room(X18) => (~predj(X18) => predp(X18)))) & (~! [X19] : (room(X19) => (predt(X19) | ~predy(X19))) => predy(mary)) & ! [X20] : (room(X20) => (paul = X20 | mary = X20)) & room(paul) & room(mary) [pure predicate removal 46] 48. ~predk(mary) & ! [X0] : (room(X0) => (prede(X0) <=> (predh(X0) | predz(X0) | predo(X0)))) & predg(paul) & ! [X1] : (room(X1) => (preda(X1) => predy(X1))) & ! [X2] : (room(X2) => ((~predc(X2) <~> predb(X2)) => preda(X2))) & ! [X3] : (room(X3) => ~preds(X3)) & ~predv(mary) & ~! [X4] : (room(X4) => (predl(X4) => predr(X4))) & (predz(mary) | predj(mary) | ~preds(mary)) & ! [X5] : (room(X5) => (~predj(X5) => predp(X5))) & predy(paul) & (predq(paul) | predl(paul) | predr(paul)) & ! [X7,X8] : ((predr(X8) & predr(X7) & room(X8) & room(X7)) => X7 = X8) & ? [X9] : (predr(X9) & room(X9)) & ! [X10] : (room(X10) => (predv(X10) => predq(X10))) & predq(paul) & ~predq(mary) & ~predl(mary) & predl(paul) & predm(mary) & ! [X11] : (room(X11) => (predb(X11) => predm(X11))) & ~predk(paul) & ! [X12] : (room(X12) => ((predx(X12) <~> predb(X12)) => (predi(X12) & predj(X12) & predo(X12)))) & ((predz(mary) | predj(mary) | ~preds(mary)) => ~predk(mary)) & (! [X13] : (room(X13) => (~predw(X13) | predz(X13))) => predf(paul)) & (! [X14] : (anywhere(X14) => (predh(X14) | ~predg(X14))) => ! [X15] : (room(X15) => (~predw(X15) | predz(X15)))) & (! [X16] : (anywhere(X16) => (predu(X16) | ~predk(X16))) => ! [X17] : (room(X17) => (predu(X17) => predt(X17)))) & (predy(mary) => ! [X18] : (room(X18) => (~predj(X18) => predp(X18)))) & (~! [X19] : (room(X19) => (predt(X19) | ~predy(X19))) => predy(mary)) & ! [X20] : (room(X20) => (paul = X20 | mary = X20)) & room(paul) & room(mary) [pure predicate removal 47] 49. ~predk(mary) & ! [X0] : (room(X0) => (prede(X0) <=> (predh(X0) | predz(X0) | predo(X0)))) & predg(paul) & ! [X1] : (room(X1) => (preda(X1) => predy(X1))) & ! [X2] : (room(X2) => ((~predc(X2) <~> predb(X2)) => preda(X2))) & ! [X3] : (room(X3) => ~preds(X3)) & ~! [X4] : (room(X4) => (predl(X4) => predr(X4))) & (predz(mary) | predj(mary) | ~preds(mary)) & ! [X5] : (room(X5) => (~predj(X5) => predp(X5))) & predy(paul) & (predq(paul) | predl(paul) | predr(paul)) & ! [X7,X8] : ((predr(X8) & predr(X7) & room(X8) & room(X7)) => X7 = X8) & ? [X9] : (predr(X9) & room(X9)) & predq(paul) & ~predq(mary) & ~predl(mary) & predl(paul) & predm(mary) & ! [X11] : (room(X11) => (predb(X11) => predm(X11))) & ~predk(paul) & ! [X12] : (room(X12) => ((predx(X12) <~> predb(X12)) => (predi(X12) & predj(X12) & predo(X12)))) & ((predz(mary) | predj(mary) | ~preds(mary)) => ~predk(mary)) & (! [X13] : (room(X13) => (~predw(X13) | predz(X13))) => predf(paul)) & (! [X14] : (anywhere(X14) => (predh(X14) | ~predg(X14))) => ! [X15] : (room(X15) => (~predw(X15) | predz(X15)))) & (! [X16] : (anywhere(X16) => (predu(X16) | ~predk(X16))) => ! [X17] : (room(X17) => (predu(X17) => predt(X17)))) & (predy(mary) => ! [X18] : (room(X18) => (~predj(X18) => predp(X18)))) & (~! [X19] : (room(X19) => (predt(X19) | ~predy(X19))) => predy(mary)) & ! [X20] : (room(X20) => (paul = X20 | mary = X20)) & room(paul) & room(mary) [pure predicate removal 48] 50. ~predk(mary) & ! [X0] : (room(X0) => (prede(X0) <=> (predh(X0) | predz(X0) | predo(X0)))) & predg(paul) & ! [X1] : (room(X1) => (preda(X1) => predy(X1))) & ! [X2] : (room(X2) => ((~predc(X2) <~> predb(X2)) => preda(X2))) & ! [X3] : (room(X3) => ~preds(X3)) & ~! [X4] : (room(X4) => (predl(X4) => predr(X4))) & (predz(mary) | predj(mary) | ~preds(mary)) & ! [X5] : (room(X5) => (~predj(X5) => predp(X5))) & predy(paul) & (predq(paul) | predl(paul) | predr(paul)) & ! [X7,X8] : ((predr(X8) & predr(X7) & room(X8) & room(X7)) => X7 = X8) & ? [X9] : (predr(X9) & room(X9)) & predq(paul) & ~predq(mary) & ~predl(mary) & predl(paul) & ~predk(paul) & ! [X12] : (room(X12) => ((predx(X12) <~> predb(X12)) => (predi(X12) & predj(X12) & predo(X12)))) & ((predz(mary) | predj(mary) | ~preds(mary)) => ~predk(mary)) & (! [X13] : (room(X13) => (~predw(X13) | predz(X13))) => predf(paul)) & (! [X14] : (anywhere(X14) => (predh(X14) | ~predg(X14))) => ! [X15] : (room(X15) => (~predw(X15) | predz(X15)))) & (! [X16] : (anywhere(X16) => (predu(X16) | ~predk(X16))) => ! [X17] : (room(X17) => (predu(X17) => predt(X17)))) & (predy(mary) => ! [X18] : (room(X18) => (~predj(X18) => predp(X18)))) & (~! [X19] : (room(X19) => (predt(X19) | ~predy(X19))) => predy(mary)) & ! [X20] : (room(X20) => (paul = X20 | mary = X20)) & room(paul) & room(mary) [pure predicate removal 49] 51. ~predk(mary) & ! [X0] : (room(X0) => (prede(X0) <=> (predh(X0) | predz(X0) | predo(X0)))) & predg(paul) & ! [X1] : (room(X1) => (preda(X1) => predy(X1))) & ! [X2] : (room(X2) => ((~predc(X2) <~> predb(X2)) => preda(X2))) & ! [X3] : (room(X3) => ~preds(X3)) & ~! [X4] : (room(X4) => (predl(X4) => predr(X4))) & (predz(mary) | predj(mary) | ~preds(mary)) & ! [X5] : (room(X5) => (~predj(X5) => predp(X5))) & predy(paul) & (predq(paul) | predl(paul) | predr(paul)) & ! [X7,X8] : ((predr(X8) & predr(X7) & room(X8) & room(X7)) => X7 = X8) & ? [X9] : (predr(X9) & room(X9)) & predq(paul) & ~predq(mary) & ~predl(mary) & predl(paul) & ~predk(paul) & ! [X12] : (room(X12) => ((predx(X12) <~> predb(X12)) => (predj(X12) & predo(X12)))) & ((predz(mary) | predj(mary) | ~preds(mary)) => ~predk(mary)) & (! [X13] : (room(X13) => (~predw(X13) | predz(X13))) => predf(paul)) & (! [X14] : (anywhere(X14) => (predh(X14) | ~predg(X14))) => ! [X15] : (room(X15) => (~predw(X15) | predz(X15)))) & (! [X16] : (anywhere(X16) => (predu(X16) | ~predk(X16))) => ! [X17] : (room(X17) => (predu(X17) => predt(X17)))) & (predy(mary) => ! [X18] : (room(X18) => (~predj(X18) => predp(X18)))) & (~! [X19] : (room(X19) => (predt(X19) | ~predy(X19))) => predy(mary)) & ! [X20] : (room(X20) => (paul = X20 | mary = X20)) & room(paul) & room(mary) [pure predicate removal 50] 52. ~predk(mary) & ! [X0] : (room(X0) => (prede(X0) <=> (predh(X0) | predz(X0) | predo(X0)))) & predg(paul) & ! [X1] : (room(X1) => (preda(X1) => predy(X1))) & ! [X2] : (room(X2) => ((~predc(X2) <~> predb(X2)) => preda(X2))) & ! [X3] : (room(X3) => ~preds(X3)) & ~! [X4] : (room(X4) => (predl(X4) => predr(X4))) & (predz(mary) | predj(mary) | ~preds(mary)) & ! [X5] : (room(X5) => (~predj(X5) => predp(X5))) & predy(paul) & (predq(paul) | predl(paul) | predr(paul)) & ! [X7,X8] : ((predr(X8) & predr(X7) & room(X8) & room(X7)) => X7 = X8) & ? [X9] : (predr(X9) & room(X9)) & predq(paul) & ~predq(mary) & ~predl(mary) & predl(paul) & ~predk(paul) & ! [X12] : (room(X12) => ((predx(X12) <~> predb(X12)) => (predj(X12) & predo(X12)))) & ((predz(mary) | predj(mary) | ~preds(mary)) => ~predk(mary)) & (! [X14] : (anywhere(X14) => (predh(X14) | ~predg(X14))) => ! [X15] : (room(X15) => (~predw(X15) | predz(X15)))) & (! [X16] : (anywhere(X16) => (predu(X16) | ~predk(X16))) => ! [X17] : (room(X17) => (predu(X17) => predt(X17)))) & (predy(mary) => ! [X18] : (room(X18) => (~predj(X18) => predp(X18)))) & (~! [X19] : (room(X19) => (predt(X19) | ~predy(X19))) => predy(mary)) & ! [X20] : (room(X20) => (paul = X20 | mary = X20)) & room(paul) & room(mary) [pure predicate removal 51] 53. ~predk(mary) & ! [X0] : (room(X0) => (prede(X0) <=> (predh(X0) | predz(X0) | predo(X0)))) & predg(paul) & ! [X1] : (room(X1) => (preda(X1) => predy(X1))) & ! [X2] : (room(X2) => ((~predc(X2) <~> predb(X2)) => preda(X2))) & ! [X3] : (room(X3) => ~preds(X3)) & ~! [X4] : (room(X4) => (predl(X4) => predr(X4))) & (predz(mary) | predj(mary) | ~preds(mary)) & ! [X5] : (room(X5) => (~predj(X5) => predp(X5))) & predy(paul) & (predq(paul) | predl(paul) | predr(paul)) & ! [X7,X8] : ((predr(X8) & predr(X7) & room(X8) & room(X7)) => X7 = X8) & ? [X9] : (predr(X9) & room(X9)) & predq(paul) & ~predq(mary) & ~predl(mary) & predl(paul) & ~predk(paul) & ! [X12] : (room(X12) => ((predx(X12) <~> predb(X12)) => (predj(X12) & predo(X12)))) & ((predz(mary) | predj(mary) | ~preds(mary)) => ~predk(mary)) & (! [X16] : (anywhere(X16) => (predu(X16) | ~predk(X16))) => ! [X17] : (room(X17) => (predu(X17) => predt(X17)))) & (predy(mary) => ! [X18] : (room(X18) => (~predj(X18) => predp(X18)))) & (~! [X19] : (room(X19) => (predt(X19) | ~predy(X19))) => predy(mary)) & ! [X20] : (room(X20) => (paul = X20 | mary = X20)) & room(paul) & room(mary) [pure predicate removal 52] 54. ~predk(mary) & ! [X0] : (room(X0) => (prede(X0) <=> (predh(X0) | predz(X0) | predo(X0)))) & ! [X1] : (room(X1) => (preda(X1) => predy(X1))) & ! [X2] : (room(X2) => ((~predc(X2) <~> predb(X2)) => preda(X2))) & ! [X3] : (room(X3) => ~preds(X3)) & ~! [X4] : (room(X4) => (predl(X4) => predr(X4))) & (predz(mary) | predj(mary) | ~preds(mary)) & ! [X5] : (room(X5) => (~predj(X5) => predp(X5))) & predy(paul) & (predq(paul) | predl(paul) | predr(paul)) & ! [X7,X8] : ((predr(X8) & predr(X7) & room(X8) & room(X7)) => X7 = X8) & ? [X9] : (predr(X9) & room(X9)) & predq(paul) & ~predq(mary) & ~predl(mary) & predl(paul) & ~predk(paul) & ! [X12] : (room(X12) => ((predx(X12) <~> predb(X12)) => (predj(X12) & predo(X12)))) & ((predz(mary) | predj(mary) | ~preds(mary)) => ~predk(mary)) & (! [X16] : (anywhere(X16) => (predu(X16) | ~predk(X16))) => ! [X17] : (room(X17) => (predu(X17) => predt(X17)))) & (predy(mary) => ! [X18] : (room(X18) => (~predj(X18) => predp(X18)))) & (~! [X19] : (room(X19) => (predt(X19) | ~predy(X19))) => predy(mary)) & ! [X20] : (room(X20) => (paul = X20 | mary = X20)) & room(paul) & room(mary) [pure predicate removal 53] 55. ~predk(mary) & ! [X0] : (room(X0) => (prede(X0) <=> (predh(X0) | predz(X0) | predo(X0)))) & ! [X1] : (room(X1) => (preda(X1) => predy(X1))) & ! [X2] : (room(X2) => ((~predc(X2) <~> predb(X2)) => preda(X2))) & ! [X3] : (room(X3) => ~preds(X3)) & ~! [X4] : (room(X4) => (predl(X4) => predr(X4))) & (predz(mary) | predj(mary) | ~preds(mary)) & ! [X5] : (room(X5) => (~predj(X5) => predp(X5))) & predy(paul) & (predq(paul) | predl(paul) | predr(paul)) & ! [X7,X8] : ((predr(X8) & predr(X7) & room(X8) & room(X7)) => X7 = X8) & ? [X9] : (predr(X9) & room(X9)) & predq(paul) & ~predq(mary) & ~predl(mary) & predl(paul) & ~predk(paul) & ! [X12] : (room(X12) => ((predx(X12) <~> predb(X12)) => (predj(X12) & predo(X12)))) & ((predz(mary) | predj(mary) | ~preds(mary)) => ~predk(mary)) & (predy(mary) => ! [X18] : (room(X18) => (~predj(X18) => predp(X18)))) & (~! [X19] : (room(X19) => (predt(X19) | ~predy(X19))) => predy(mary)) & ! [X20] : (room(X20) => (paul = X20 | mary = X20)) & room(paul) & room(mary) [pure predicate removal 54] 56. ! [X0] : (room(X0) => (prede(X0) <=> (predh(X0) | predz(X0) | predo(X0)))) & ! [X1] : (room(X1) => (preda(X1) => predy(X1))) & ! [X2] : (room(X2) => ((~predc(X2) <~> predb(X2)) => preda(X2))) & ! [X3] : (room(X3) => ~preds(X3)) & ~! [X4] : (room(X4) => (predl(X4) => predr(X4))) & (predz(mary) | predj(mary) | ~preds(mary)) & ! [X5] : (room(X5) => (~predj(X5) => predp(X5))) & predy(paul) & (predq(paul) | predl(paul) | predr(paul)) & ! [X7,X8] : ((predr(X8) & predr(X7) & room(X8) & room(X7)) => X7 = X8) & ? [X9] : (predr(X9) & room(X9)) & predq(paul) & ~predq(mary) & ~predl(mary) & predl(paul) & ! [X12] : (room(X12) => ((predx(X12) <~> predb(X12)) => (predj(X12) & predo(X12)))) & (predy(mary) => ! [X18] : (room(X18) => (~predj(X18) => predp(X18)))) & (~! [X19] : (room(X19) => (predt(X19) | ~predy(X19))) => predy(mary)) & ! [X20] : (room(X20) => (paul = X20 | mary = X20)) & room(paul) & room(mary) [pure predicate removal 55] 57. ! [X0] : (room(X0) => (prede(X0) <=> (predh(X0) | predz(X0) | predo(X0)))) & ! [X1] : (room(X1) => (preda(X1) => predy(X1))) & ! [X2] : (room(X2) => ((~predc(X2) <~> predb(X2)) => preda(X2))) & ! [X3] : (room(X3) => ~preds(X3)) & ~! [X4] : (room(X4) => (predl(X4) => predr(X4))) & predy(paul) & (predq(paul) | predl(paul) | predr(paul)) & ! [X7,X8] : ((predr(X8) & predr(X7) & room(X8) & room(X7)) => X7 = X8) & ? [X9] : (predr(X9) & room(X9)) & predq(paul) & ~predq(mary) & ~predl(mary) & predl(paul) & ! [X12] : (room(X12) => ((predx(X12) <~> predb(X12)) => predo(X12))) & (~! [X19] : (room(X19) => (predt(X19) | ~predy(X19))) => predy(mary)) & ! [X20] : (room(X20) => (paul = X20 | mary = X20)) & room(paul) & room(mary) [pure predicate removal 56] 58. ! [X0] : (room(X0) => (prede(X0) <=> (predh(X0) | predz(X0) | predo(X0)))) & ! [X1] : (room(X1) => (preda(X1) => predy(X1))) & ! [X2] : (room(X2) => ((~predc(X2) <~> predb(X2)) => preda(X2))) & ~! [X4] : (room(X4) => (predl(X4) => predr(X4))) & predy(paul) & (predq(paul) | predl(paul) | predr(paul)) & ! [X7,X8] : ((predr(X8) & predr(X7) & room(X8) & room(X7)) => X7 = X8) & ? [X9] : (predr(X9) & room(X9)) & predq(paul) & ~predq(mary) & ~predl(mary) & predl(paul) & ! [X12] : (room(X12) => ((predx(X12) <~> predb(X12)) => predo(X12))) & (~! [X19] : (room(X19) => (predt(X19) | ~predy(X19))) => predy(mary)) & ! [X20] : (room(X20) => (paul = X20 | mary = X20)) & room(paul) & room(mary) [pure predicate removal 57] 59. ! [X0] : (room(X0) => (prede(X0) <=> (predh(X0) | predz(X0) | predo(X0)))) & ! [X1] : (room(X1) => (preda(X1) => predy(X1))) & ! [X2] : (room(X2) => ((~predc(X2) <~> predb(X2)) => preda(X2))) & ~! [X4] : (room(X4) => (predl(X4) => predr(X4))) & predy(paul) & (predq(paul) | predl(paul) | predr(paul)) & ! [X7,X8] : ((predr(X8) & predr(X7) & room(X8) & room(X7)) => X7 = X8) & ? [X9] : (predr(X9) & room(X9)) & predq(paul) & ~predq(mary) & ~predl(mary) & predl(paul) & ! [X12] : (room(X12) => ((predx(X12) <~> predb(X12)) => predo(X12))) & ! [X20] : (room(X20) => (paul = X20 | mary = X20)) & room(paul) & room(mary) [pure predicate removal 58] 60. ! [X0] : (room(X0) => (prede(X0) <=> (predh(X0) | predz(X0) | predo(X0)))) & ! [X2] : (room(X2) => ((~predc(X2) <~> predb(X2)) => preda(X2))) & ~! [X4] : (room(X4) => (predl(X4) => predr(X4))) & (predq(paul) | predl(paul) | predr(paul)) & ! [X7,X8] : ((predr(X8) & predr(X7) & room(X8) & room(X7)) => X7 = X8) & ? [X9] : (predr(X9) & room(X9)) & predq(paul) & ~predq(mary) & ~predl(mary) & predl(paul) & ! [X12] : (room(X12) => ((predx(X12) <~> predb(X12)) => predo(X12))) & ! [X20] : (room(X20) => (paul = X20 | mary = X20)) & room(paul) & room(mary) [pure predicate removal 59] 61. ! [X0] : (room(X0) => (prede(X0) <=> (predh(X0) | predz(X0) | predo(X0)))) & ~! [X4] : (room(X4) => (predl(X4) => predr(X4))) & (predq(paul) | predl(paul) | predr(paul)) & ! [X7,X8] : ((predr(X8) & predr(X7) & room(X8) & room(X7)) => X7 = X8) & ? [X9] : (predr(X9) & room(X9)) & predq(paul) & ~predq(mary) & ~predl(mary) & predl(paul) & ! [X12] : (room(X12) => ((predx(X12) <~> predb(X12)) => predo(X12))) & ! [X20] : (room(X20) => (paul = X20 | mary = X20)) & room(paul) & room(mary) [pure predicate removal 60] 134. ! [X0] : ((prede(X0) <=> (predh(X0) | predz(X0) | predo(X0))) | ~room(X0)) & ? [X4] : ((~predr(X4) & predl(X4)) & room(X4)) & (predq(paul) | predl(paul) | predr(paul)) & ! [X7,X8] : (X7 = X8 | (~predr(X8) | ~predr(X7) | ~room(X8) | ~room(X7))) & ? [X9] : (predr(X9) & room(X9)) & predq(paul) & ~predq(mary) & ~predl(mary) & predl(paul) & ! [X12] : ((predo(X12) | (predx(X12) <=> predb(X12))) | ~room(X12)) & ! [X20] : ((paul = X20 | mary = X20) | ~room(X20)) & room(paul) & room(mary) [ennf transformation 61] 135. ! [X0] : ((prede(X0) <=> (predh(X0) | predz(X0) | predo(X0))) | ~room(X0)) & ? [X4] : (~predr(X4) & predl(X4) & room(X4)) & (predq(paul) | predl(paul) | predr(paul)) & ! [X7,X8] : (X7 = X8 | ~predr(X8) | ~predr(X7) | ~room(X8) | ~room(X7)) & ? [X9] : (predr(X9) & room(X9)) & predq(paul) & ~predq(mary) & ~predl(mary) & predl(paul) & ! [X12] : (predo(X12) | (predx(X12) <=> predb(X12)) | ~room(X12)) & ! [X20] : (paul = X20 | mary = X20 | ~room(X20)) & room(paul) & room(mary) [flattening 134] 136. predq(mary) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 45] 137. predq(mary) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 136] 139. ! [X0] : (((prede(X0) | (~predh(X0) & ~predz(X0) & ~predo(X0))) & ((predh(X0) | predz(X0) | predo(X0)) | ~prede(X0))) | ~room(X0)) & ? [X4] : (~predr(X4) & predl(X4) & room(X4)) & (predq(paul) | predl(paul) | predr(paul)) & ! [X7,X8] : (X7 = X8 | ~predr(X8) | ~predr(X7) | ~room(X8) | ~room(X7)) & ? [X9] : (predr(X9) & room(X9)) & predq(paul) & ~predq(mary) & ~predl(mary) & predl(paul) & ! [X12] : (predo(X12) | ((predx(X12) | ~predb(X12)) & (predb(X12) | ~predx(X12))) | ~room(X12)) & ! [X20] : (paul = X20 | mary = X20 | ~room(X20)) & room(paul) & room(mary) [nnf transformation 135] 140. ! [X0] : (((prede(X0) | (~predh(X0) & ~predz(X0) & ~predo(X0))) & (predh(X0) | predz(X0) | predo(X0) | ~prede(X0))) | ~room(X0)) & ? [X4] : (~predr(X4) & predl(X4) & room(X4)) & (predq(paul) | predl(paul) | predr(paul)) & ! [X7,X8] : (X7 = X8 | ~predr(X8) | ~predr(X7) | ~room(X8) | ~room(X7)) & ? [X9] : (predr(X9) & room(X9)) & predq(paul) & ~predq(mary) & ~predl(mary) & predl(paul) & ! [X12] : (predo(X12) | ((predx(X12) | ~predb(X12)) & (predb(X12) | ~predx(X12))) | ~room(X12)) & ! [X20] : (paul = X20 | mary = X20 | ~room(X20)) & room(paul) & room(mary) [flattening 139] 141. ! [X0] : (((prede(X0) | (~predh(X0) & ~predz(X0) & ~predo(X0))) & (predh(X0) | predz(X0) | predo(X0) | ~prede(X0))) | ~room(X0)) & ? [X1] : (~predr(X1) & predl(X1) & room(X1)) & (predq(paul) | predl(paul) | predr(paul)) & ! [X2,X3] : (X2 = X3 | ~predr(X3) | ~predr(X2) | ~room(X3) | ~room(X2)) & ? [X4] : (predr(X4) & room(X4)) & predq(paul) & ~predq(mary) & ~predl(mary) & predl(paul) & ! [X5] : (predo(X5) | ((predx(X5) | ~predb(X5)) & (predb(X5) | ~predx(X5))) | ~room(X5)) & ! [X6] : (paul = X6 | mary = X6 | ~room(X6)) & room(paul) & room(mary) [rectify 140] 142. ? [X1] : (~predr(X1) & predl(X1) & room(X1)) => (~predr(sK0) & predl(sK0) & room(sK0)) [choice axiom] 143. ? [X4] : (predr(X4) & room(X4)) => (predr(sK1) & room(sK1)) [choice axiom] 144. ! [X0] : (((prede(X0) | (~predh(X0) & ~predz(X0) & ~predo(X0))) & (predh(X0) | predz(X0) | predo(X0) | ~prede(X0))) | ~room(X0)) & (~predr(sK0) & predl(sK0) & room(sK0)) & (predq(paul) | predl(paul) | predr(paul)) & ! [X2,X3] : (X2 = X3 | ~predr(X3) | ~predr(X2) | ~room(X3) | ~room(X2)) & (predr(sK1) & room(sK1)) & predq(paul) & ~predq(mary) & ~predl(mary) & predl(paul) & ! [X5] : (predo(X5) | ((predx(X5) | ~predb(X5)) & (predb(X5) | ~predx(X5))) | ~room(X5)) & ! [X6] : (paul = X6 | mary = X6 | ~room(X6)) & room(paul) & room(mary) [skolemisation 141,143,142] 232. ~predq(mary) [cnf transformation 144] 248. predq(mary) [cnf transformation 137] 264. $false [subsumption resolution 248,232] % SZS output end Proof for 2672789646929855993293577 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.240083
Tracy, Rosalie are the only persons in the room. Everyone in the room does not play as a goalkeeper for a local amateur soccer team if they does not host a popular podcast about emerging technologies. Everyone in the room does not enjoy coding in Python if they does not play as a goalkeeper for a local amateur soccer team. Only one person in the room does not collect foreign coins and is not a scotch connoisseur. It is true that everyone in the room is not a night owl and does not train for and competes in international triathlons. Rosalie who does not collect foreign coins does not host a popular podcast about emerging technologies. Everyone in the room does not own a significant collection of rare gemstones and minerals. Everyone in the room is not a night owl. Rosalie who does not host a popular podcast about emerging technologies does not enjoy coding in Python. Everyone in the room is a wine connoisseur with a private cellar of vintage wines. Everyone in the room does not have a saltwater aquarium. Everyone in the room enjoys skydiving. Only one person in the room does not host a popular podcast about emerging technologies. Everyone in the room does not enjoy coding in Python. Everyone in the room does not own an extensive assortment of vintage comic book memorabilia, does not maintain a large, organic vegetable garden year-round and does not enjoy kayaking and exploring remote waterways. Everyone in the room does not have a saltwater aquarium if they is not a member of a local theater group specializing in improv.
Tracy is a scotch connoisseur.
neutral
room(tracy)&room(rosalie)&(![X]:(room(X)=>(X='tracy'|X='rosalie')))& (![X]:(room(X)=>(((does_not_host_a_popular_podcast_about_emerging_technologies(X))=>(does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))))))& (![X]:(room(X)=>(((does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X))=>(does_not_enjoy_coding_in_Python(X))))))& (((?[X]:(room(X)&((does_not_collect_foreign_coins(X))&(is_not_a_scotch_connoisseur(X)))))&(![X,Y]:((room(X)&room(Y)&(((does_not_collect_foreign_coins(X))&(is_not_a_scotch_connoisseur(X))))&(((does_not_collect_foreign_coins(Y))&(is_not_a_scotch_connoisseur(Y)))))=>(X=Y)))))& (![X]:(room(X)=>(((is_not_a_night_owl(X))&(does_not_train_for_and_competes_in_international_triathlons(X))))))& ((does_not_collect_foreign_coins(rosalie))&(does_not_host_a_popular_podcast_about_emerging_technologies(rosalie)))& (![X]:(room(X)=>(does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(X))))& (![X]:(room(X)=>(is_not_a_night_owl(X))))& ((does_not_host_a_popular_podcast_about_emerging_technologies(rosalie))&(does_not_enjoy_coding_in_Python(rosalie)))& (![X]:(room(X)=>(is_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))& (![X]:(room(X)=>(does_not_have_a_saltwater_aquarium(X))))& (![X]:(room(X)=>(enjoys_skydiving(X))))& (((?[X]:(room(X)&does_not_host_a_popular_podcast_about_emerging_technologies(X)))&(![X,Y]:((room(X)&room(Y)&(does_not_host_a_popular_podcast_about_emerging_technologies(X))&(does_not_host_a_popular_podcast_about_emerging_technologies(Y)))=>(X=Y)))))& (![X]:(room(X)=>(does_not_enjoy_coding_in_Python(X))))& (![X]:(room(X)=>(((does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))&(does_not_maintain_a_large,_organic_vegetable_garden_year-round(X))&(does_not_enjoy_kayaking_and_exploring_remote_waterways(X))))))& (![X]:(room(X)=>(((is_not_a_member_of_a_local_theater_group_specializing_in_improv(X))=>(does_not_have_a_saltwater_aquarium(X))))))& (((?[X]:(room(X)&does_not_play_as_a_goalkeeper_for_a_local_amateur_soccer_team(X)))))& (![X]:(room(X)=>(((does_not_have_a_saltwater_aquarium(X))|(does_not_own_an_extensive_assortment_of_vintage_comic_book_memorabilia(X))))))& ((is_not_a_client_of_LVMH(rosalie))&(is_not_a_member_of_a_local_theater_group_specializing_in_improv(rosalie)))
room(tracy)&room(rosalie)&(![X]:(room(X)=>(X='tracy'|X='rosalie')))& is_a_scotch_connoisseur(tracy)
[]
null
0.493636
Corey, David, Clara are the only persons in the room. If “Jason is quieter than David” then “everyone in the room is not tall if they either is older than Jason or is richer than Hazel but not both”. If someone is richer than Jason then he/she is not a kind person. Clara is not a kind old quiet person. No one anywhere is kind if they is not tall. Everyone anywhere is older than Hazel, is quieter than Hazel and is a tall quiet old person if they is not a quiet old person and vice versa. Everyone anywhere who is not a quiet old person is a old person. Clara is quieter than Jason. Corey is the least quiet in the room. Clara is richer than Hazel. Everyone outside the room is quieter than Jason. Everyone in the room is richer than Jason only if they is older than Jason. All kind persons are old. Everyone in the room is a quiet person. Everyone in the room is older than Hazel, is a old person and is quiet if they is not a tall person. If someone is not a old person then he/she is older than Jason. Everyone in the room who is a tall old person is richer than Jason. Corey dreamt that “David is not a quiet person, is older than Jason or is richer than Jason”.
Clara is older than Hazel.
entailment
room(corey)&room(david)&room(clara)&(![X]:(room(X)=>(X='corey'|X='david'|X='clara')))& ((quieter(david,jason))=>(![X]:(room(X)=>(((((older(jason,X))<~>(richer(hazel,X))))=>(~tall(X)))))))& ((![X]:((richer(jason,X))=>(~(kind(X)&person(X))))))& (~(kind(clara)&old(clara)&quiet(clara)&person(clara)))& (~?[X]:(anywhere(X)=>(((~tall(X))=>(kind(X))))))& (![X]:(anywhere(X)=>(((((older(hazel,X))&(quieter(hazel,X))&(tall(X)&quiet(X)&old(X)&person(X))))<=>(~(quiet(X)&old(X)&person(X)))))))& (![X]:(anywhere(X)=>(((~(quiet(X)&old(X)&person(X)))=>(old(X)&person(X))))))& (quieter(jason,clara))& (![X]:((room(X)&(X!=corey))=>quieter(corey,X)))& (richer(hazel,clara))& (![X]:(~room(X)=>(quieter(jason,X))))& (![X]:(room(X)=>(((older(jason,X))<=(richer(jason,X))))))& (![X]:(kind(X)=>old(X)))& (![X]:(room(X)=>(quiet(X)&person(X))))& (![X]:(room(X)=>(((~(tall(X)&person(X)))=>(((older(hazel,X))&(old(X)&person(X))&(quiet(X))))))))& ((![X]:((~(old(X)&person(X)))=>(older(jason,X)))))& (![X]:(room(X)=>(((tall(X)&old(X)&person(X))=>(richer(jason,X))))))& ((corey_dream=>(((~(quiet(david)&person(david)))|(older(jason,david))|(richer(jason,david))))))
room(corey)&room(david)&room(clara)&(![X]:(room(X)=>(X='corey'|X='david'|X='clara')))& older(hazel,clara)
[ "p0", "p4", "p14", "hypothesis" ]
% SZS status Unsatisfiable for 3784592449175029366291914 % SZS output start Proof for 3784592449175029366291914 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 48. ~? [X0] : (anywhere(X0) => (~tall(X0) => kind(X0))) [input p4] 58. ! [X0] : (room(X0) => (~(person(X0) & tall(X0)) => (quiet(X0) & person(X0) & old(X0) & older(john,X0)))) [input p14] 62. ~(older(john,fred) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary)) [input hypothesis] 64. ~? [X0] : (anywhere(X0) => ~~tall(X0)) [pure predicate removal 48] 139. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 140. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 139] 143. ! [X0] : (~tall(X0) & anywhere(X0)) [ennf transformation 64] 153. ! [X0] : (((quiet(X0) & person(X0) & old(X0) & older(john,X0)) | (person(X0) & tall(X0))) | ~room(X0)) [ennf transformation 58] 154. ! [X0] : ((quiet(X0) & person(X0) & old(X0) & older(john,X0)) | (person(X0) & tall(X0)) | ~room(X0)) [flattening 153] 158. ~older(john,fred) | ? [X0] : ((fred != X0 & paul != X0 & mary != X0) & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 62] 159. ~older(john,fred) | ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 158] 169. ? [X0] : (fred != X0 & paul != X0 & mary != X0 & room(X0)) => (fred != sK2 & paul != sK2 & mary != sK2 & room(sK2)) [choice axiom] 170. ~older(john,fred) | (fred != sK2 & paul != sK2 & mary != sK2 & room(sK2)) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 159,169] 252. room(mary) [cnf transformation 140] 253. room(paul) [cnf transformation 140] 254. room(fred) [cnf transformation 140] 255. ~room(X0) | paul = X0 | mary = X0 | fred = X0 [cnf transformation 140] 259. ~tall(X0) [cnf transformation 143] 285. older(john,X0) | tall(X0) | ~room(X0) [cnf transformation 154] 296. ~older(john,fred) | room(sK2) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 170] 297. ~older(john,fred) | mary != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 170] 298. ~older(john,fred) | paul != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 170] 299. ~older(john,fred) | fred != sK2 | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 170] 319. older(john,X0) | ~room(X0) [subsumption resolution 285,259] 320. ~older(john,fred) | fred != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 299,254] 321. ~older(john,fred) | fred != sK2 | ~room(mary) [subsumption resolution 320,253] 322. ~older(john,fred) | fred != sK2 [subsumption resolution 321,252] 324. 4 <=> fred = sK2 [avatar definition] 326. fred != sK2 <- (~4) [avatar component clause 324] 328. 5 <=> older(john,fred) [avatar definition] 330. ~older(john,fred) <- (~5) [avatar component clause 328] 331. ~4 | ~5 [avatar split clause 322,328,324] 332. ~older(john,fred) | paul != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 298,254] 333. ~older(john,fred) | paul != sK2 | ~room(mary) [subsumption resolution 332,253] 334. ~older(john,fred) | paul != sK2 [subsumption resolution 333,252] 336. 6 <=> paul = sK2 [avatar definition] 338. paul != sK2 <- (~6) [avatar component clause 336] 339. ~6 | ~5 [avatar split clause 334,328,336] 340. ~older(john,fred) | mary != sK2 | ~room(paul) | ~room(mary) [subsumption resolution 297,254] 341. ~older(john,fred) | mary != sK2 | ~room(mary) [subsumption resolution 340,253] 342. ~older(john,fred) | mary != sK2 [subsumption resolution 341,252] 344. 7 <=> mary = sK2 [avatar definition] 346. mary != sK2 <- (~7) [avatar component clause 344] 347. ~7 | ~5 [avatar split clause 342,328,344] 348. ~older(john,fred) | room(sK2) | ~room(paul) | ~room(mary) [subsumption resolution 296,254] 349. ~older(john,fred) | room(sK2) | ~room(mary) [subsumption resolution 348,253] 350. ~older(john,fred) | room(sK2) [subsumption resolution 349,252] 352. 8 <=> room(sK2) [avatar definition] 354. room(sK2) <- (8) [avatar component clause 352] 355. 8 | ~5 [avatar split clause 350,328,352] 359. ~room(fred) <- (~5) [resolution 319,330] 360. $false <- (~5) [subsumption resolution 359,254] 361. 5 [avatar contradiction clause 360] 570. paul = sK2 | mary = sK2 | fred = sK2 <- (8) [resolution 255,354] 571. mary = sK2 | fred = sK2 <- (~6, 8) [subsumption resolution 570,338] 572. fred = sK2 <- (~6, ~7, 8) [subsumption resolution 571,346] 573. $false <- (~4, ~6, ~7, 8) [subsumption resolution 572,326] 574. 4 | 6 | 7 | ~8 [avatar contradiction clause 573] 575. $false [avatar sat refutation 331,339,347,355,361,574] % SZS output end Proof for 3784592449175029366291914 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.233848
Barbara, Chris, Gloria, Audrey are the only persons in the room. No one in the room is a old person unless everyone in the room is a quiet person. If everyone in the room is a kind person then Gloria and Chris either are tall persons or are quiet persons but not both otherwise everyone in the room is a tall person. Everyone in the room is a quiet person unless everyone in the room is a tall person. Either not everyone in the room is a quiet person or not everyone in the room is tall, is a kind person and is a quiet person but not both. Everyone in the room is a old person. Someone who is a quiet person is richer than someone who is a tall person. All quiet persons are kind. Everyone in the room is a kind person and is kind if they is a quiet person. Everyone in the room is kind. All old persons are quiet. More than one person in the room is a quiet person. Someone who is a quiet person is richer than someone who is kind. More than one person anywhere is a quiet person.
Gloria and Audrey are respectively tall and old.
contradiction
room(barbara)&room(chris)&room(gloria)&room(audrey)&(![X]:(room(X)=>(X='barbara'|X='chris'|X='gloria'|X='audrey')))& (~(![X]:(room(X)=>(quiet(X)&person(X))))=>(~?[X]:(room(X)=>(old(X)&person(X)))))& (((![X]:(room(X)=>(kind(X)&person(X))))=>(((tall(gloria)&person(gloria))<~>(quiet(gloria)&person(gloria)))&((tall(chris)&person(chris))<~>(quiet(chris)&person(chris)))))&((~(![X]:(room(X)=>(kind(X)&person(X)))))=>(![X]:(room(X)=>(tall(X)&person(X))))))& (~(![X]:(room(X)=>(tall(X)&person(X))))=>(![X]:(room(X)=>(quiet(X)&person(X)))))& ((~![X]:(room(X)=>(quiet(X)&person(X))))<~>(~![X]:(room(X)=>(((tall(X))&(kind(X)&person(X))&(quiet(X)&person(X)))))))& (![X]:(room(X)=>(old(X)&person(X))))& (?[X,Y]:((quiet(X)&person(X))&(tall(Y)&person(Y))&(richer(X,Y))))& (![X]:(quiet(X)=>kind(X)))& (![X]:(room(X)=>(((quiet(X)&person(X))=>(((kind(X)&person(X))&(kind(X))))))))& (![X]:(room(X)=>(kind(X))))& (![X]:(old(X)=>quiet(X)))& ((?[X,Y]:(room(X)&room(Y)&(quiet(X)&person(X)&quiet(Y)&person(Y))&(X!=Y))))& (?[X,Y]:((quiet(X)&person(X))&(kind(Y))&(richer(X,Y))))& ((?[X,Y]:(anywhere(X)&anywhere(Y)&(quiet(X)&person(X)&quiet(Y)&person(Y))&(X!=Y))))
room(barbara)&room(chris)&room(gloria)&room(audrey)&(![X]:(room(X)=>(X='barbara'|X='chris'|X='gloria'|X='audrey')))& (tall(gloria))&(old(audrey))
[ "p0", "p2", "p4", "p5", "p9", "hypothesis" ]
% SZS status Unsatisfiable for 3762164408291223079552416 % SZS output start Proof for 3762164408291223079552416 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 46. (~! [X0] : (room(X0) => (person(X0) & kind(X0))) => ! [X0] : (room(X0) => (person(X0) & tall(X0)))) & (! [X0] : (room(X0) => (person(X0) & kind(X0))) => (((person(paul) & tall(paul)) <~> (person(paul) & quiet(paul))) & ((person(fred) & tall(fred)) <~> (person(fred) & quiet(fred))))) [input p2] 48. ~! [X0] : (room(X0) => (person(X0) & quiet(X0))) <~> ~! [X0] : (room(X0) => (person(X0) & quiet(X0) & person(X0) & kind(X0) & tall(X0))) [input p4] 49. ! [X0] : (room(X0) => (person(X0) & old(X0))) [input p5] 53. ! [X0] : (room(X0) => kind(X0)) [input p9] 58. old(alice) & tall(fred) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 60. (~! [X0] : (room(X0) => (person(X0) & kind(X0))) => ! [X1] : (room(X1) => (person(X1) & tall(X1)))) & (! [X2] : (room(X2) => (person(X2) & kind(X2))) => (((person(paul) & tall(paul)) <~> (person(paul) & quiet(paul))) & ((person(fred) & tall(fred)) <~> (person(fred) & quiet(fred))))) [rectify 46] 62. ~! [X0] : (room(X0) => (person(X0) & quiet(X0))) <~> ~! [X1] : (room(X1) => (person(X1) & quiet(X1) & person(X1) & kind(X1) & tall(X1))) [rectify 48] 136. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 137. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 136] 139. (! [X1] : ((person(X1) & tall(X1)) | ~room(X1)) | ! [X0] : ((person(X0) & kind(X0)) | ~room(X0))) & ((((person(paul) & tall(paul)) <~> (person(paul) & quiet(paul))) & ((person(fred) & tall(fred)) <~> (person(fred) & quiet(fred)))) | ? [X2] : ((~person(X2) | ~kind(X2)) & room(X2))) [ennf transformation 60] 141. ? [X0] : ((~person(X0) | ~quiet(X0)) & room(X0)) <~> ? [X1] : ((~person(X1) | ~quiet(X1) | ~person(X1) | ~kind(X1) | ~tall(X1)) & room(X1)) [ennf transformation 62] 142. ! [X0] : ((person(X0) & old(X0)) | ~room(X0)) [ennf transformation 49] 146. ! [X0] : (kind(X0) | ~room(X0)) [ennf transformation 53] 148. old(alice) & tall(fred) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 58] 149. old(alice) & tall(fred) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 148] 150. (((person(paul) & tall(paul)) <~> (person(paul) & quiet(paul))) & ((person(fred) & tall(fred)) <~> (person(fred) & quiet(fred)))) | ~sP0 [predicate definition introduction] 151. (! [X1] : ((person(X1) & tall(X1)) | ~room(X1)) | ! [X0] : ((person(X0) & kind(X0)) | ~room(X0))) & (sP0 | ? [X2] : ((~person(X2) | ~kind(X2)) & room(X2))) [definition folding 139,150] 152. sP1 <=> ? [X1] : ((~person(X1) | ~quiet(X1) | ~person(X1) | ~kind(X1) | ~tall(X1)) & room(X1)) [predicate definition introduction] 153. ? [X0] : ((~person(X0) | ~quiet(X0)) & room(X0)) <~> sP1 [definition folding 141,152] 156. ((((~person(paul) | ~quiet(paul)) | (~person(paul) | ~tall(paul))) & ((person(paul) & quiet(paul)) | (person(paul) & tall(paul)))) & (((~person(fred) | ~quiet(fred)) | (~person(fred) | ~tall(fred))) & ((person(fred) & quiet(fred)) | (person(fred) & tall(fred))))) | ~sP0 [nnf transformation 150] 157. ((~person(paul) | ~quiet(paul) | ~person(paul) | ~tall(paul)) & ((person(paul) & quiet(paul)) | (person(paul) & tall(paul))) & (~person(fred) | ~quiet(fred) | ~person(fred) | ~tall(fred)) & ((person(fred) & quiet(fred)) | (person(fred) & tall(fred)))) | ~sP0 [flattening 156] 158. (! [X0] : ((person(X0) & tall(X0)) | ~room(X0)) | ! [X1] : ((person(X1) & kind(X1)) | ~room(X1))) & (sP0 | ? [X2] : ((~person(X2) | ~kind(X2)) & room(X2))) [rectify 151] 159. ? [X2] : ((~person(X2) | ~kind(X2)) & room(X2)) => ((~person(sK2) | ~kind(sK2)) & room(sK2)) [choice axiom] 160. (! [X0] : ((person(X0) & tall(X0)) | ~room(X0)) | ! [X1] : ((person(X1) & kind(X1)) | ~room(X1))) & (sP0 | ((~person(sK2) | ~kind(sK2)) & room(sK2))) [skolemisation 158,159] 162. (sP1 | ! [X1] : ((person(X1) & quiet(X1) & person(X1) & kind(X1) & tall(X1)) | ~room(X1))) & (? [X1] : ((~person(X1) | ~quiet(X1) | ~person(X1) | ~kind(X1) | ~tall(X1)) & room(X1)) | ~sP1) [nnf transformation 152] 163. (sP1 | ! [X0] : ((person(X0) & quiet(X0) & person(X0) & kind(X0) & tall(X0)) | ~room(X0))) & (? [X1] : ((~person(X1) | ~quiet(X1) | ~person(X1) | ~kind(X1) | ~tall(X1)) & room(X1)) | ~sP1) [rectify 162] 164. ? [X1] : ((~person(X1) | ~quiet(X1) | ~person(X1) | ~kind(X1) | ~tall(X1)) & room(X1)) => ((~person(sK3) | ~quiet(sK3) | ~person(sK3) | ~kind(sK3) | ~tall(sK3)) & room(sK3)) [choice axiom] 165. (sP1 | ! [X0] : ((person(X0) & quiet(X0) & person(X0) & kind(X0) & tall(X0)) | ~room(X0))) & (((~person(sK3) | ~quiet(sK3) | ~person(sK3) | ~kind(sK3) | ~tall(sK3)) & room(sK3)) | ~sP1) [skolemisation 163,164] 166. (~sP1 | ! [X0] : ((person(X0) & quiet(X0)) | ~room(X0))) & (sP1 | ? [X0] : ((~person(X0) | ~quiet(X0)) & room(X0))) [nnf transformation 153] 167. (~sP1 | ! [X0] : ((person(X0) & quiet(X0)) | ~room(X0))) & (sP1 | ? [X1] : ((~person(X1) | ~quiet(X1)) & room(X1))) [rectify 166] 168. ? [X1] : ((~person(X1) | ~quiet(X1)) & room(X1)) => ((~person(sK4) | ~quiet(sK4)) & room(sK4)) [choice axiom] 169. (~sP1 | ! [X0] : ((person(X0) & quiet(X0)) | ~room(X0))) & (sP1 | ((~person(sK4) | ~quiet(sK4)) & room(sK4))) [skolemisation 167,168] 260. room(fred) [cnf transformation 137] 270. person(fred) | person(fred) | ~sP0 [cnf transformation 157] 271. ~person(fred) | ~quiet(fred) | ~person(fred) | ~tall(fred) | ~sP0 [cnf transformation 157] 277. sP0 | room(sK2) [cnf transformation 160] 278. sP0 | ~person(sK2) | ~kind(sK2) [cnf transformation 160] 292. sP1 | quiet(X0) | ~room(X0) [cnf transformation 165] 296. ~sP1 | quiet(X0) | ~room(X0) [cnf transformation 169] 299. person(X0) | ~room(X0) [cnf transformation 142] 309. kind(X0) | ~room(X0) [cnf transformation 146] 332. tall(fred) [cnf transformation 149] 335. person(fred) | ~sP0 [duplicate literal removal 270] 336. ~person(fred) | ~quiet(fred) | ~tall(fred) | ~sP0 [duplicate literal removal 271] 340. 1 <=> ! [X1] : (person(X1) | ~room(X1)) [avatar definition] 341. ~room(X1) | person(X1) <- (1) [avatar component clause 340] 347. 3 <=> ! [X1] : (quiet(X1) | ~room(X1)) [avatar definition] 348. ~room(X1) | quiet(X1) <- (3) [avatar component clause 347] 356. 5 <=> sP0 [avatar definition] 377. 9 <=> tall(fred) [avatar definition] 381. 10 <=> quiet(fred) [avatar definition] 385. 11 <=> person(fred) [avatar definition] 388. ~5 | ~9 | ~10 | ~11 [avatar split clause 336,385,381,377,356] 389. ~5 | 11 [avatar split clause 335,385,356] 395. 12 <=> ! [X1] : (kind(X1) | ~room(X1)) [avatar definition] 396. ~room(X1) | kind(X1) <- (12) [avatar component clause 395] 404. 14 <=> kind(sK2) [avatar definition] 406. ~kind(sK2) <- (~14) [avatar component clause 404] 408. 15 <=> person(sK2) [avatar definition] 411. ~14 | ~15 | 5 [avatar split clause 278,356,408,404] 413. 16 <=> room(sK2) [avatar definition] 415. room(sK2) <- (16) [avatar component clause 413] 416. 16 | 5 [avatar split clause 277,356,413] 422. 17 <=> sP1 [avatar definition] 426. 3 | 17 [avatar split clause 292,422,347] 453. 3 | ~17 [avatar split clause 296,422,347] 468. 1 [avatar split clause 299,340] 469. 12 [avatar split clause 309,395] 470. 9 [avatar split clause 332,377] 501. quiet(fred) <- (3) [resolution 348,260] 510. 10 | ~3 [avatar split clause 501,347,381] 514. person(sK2) <- (1, 16) [resolution 415,341] 518. 15 | ~1 | ~16 [avatar split clause 514,413,340,408] 528. kind(sK2) <- (12, 16) [resolution 396,415] 532. $false <- (12, ~14, 16) [subsumption resolution 528,406] 533. ~12 | 14 | ~16 [avatar contradiction clause 532] 534. $false [avatar sat refutation 388,389,411,416,426,453,468,469,470,510,518,533] % SZS output end Proof for 3762164408291223079552416 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.041 s % ------------------------------ % ------------------------------
0.487754
Diane, Jeanette, Sharon, Cheryl are the only persons in the room. Jeanette who is a Linux enthusiast or can play the guitar or both neither collects first edition books nor is right-handed. Not everyone outside the room neither has a saltwater aquarium nor is an expert in identifying and foraging wild edible plants if and only if they can play the harmonica or is allergic to anything or both. Jeanette neither has a saltwater aquarium nor is an expert in identifying and foraging wild edible plants. At least one person in the room does practice yoga or enjoys rooftop gardening or both. Jeanette neither owns a microscope nor owns an extensive assortment of vintage comic book memorabilia. Cheryl neither has a saltwater aquarium nor is an expert in identifying and foraging wild edible plants. Cheryl collects classic novels, can play the harmonica or practices and performs acrobatic dance routines. Diane neither own a television nor is right-handed. Sharon who competes in national level swimming championships, does practice yoga or is a dedicated volunteer for local community service projects practices calligraphy and is a night owl. Not everyone outside the room neither is a night owl nor collects classic novels if they own a television or is a night owl or both and vice versa. Diane owns an extensive assortment of vintage comic book memorabilia.
Jeanette collects first edition books.
contradiction
room(diane)&room(jeanette)&room(sharon)&room(cheryl)&(![X]:(room(X)=>(X='diane'|X='jeanette'|X='sharon'|X='cheryl')))& ((((is_a_Linux_enthusiast(jeanette))|(can_play_the_guitar(jeanette))))&(~((collects_first_edition_books(jeanette))|(is_right-handed(jeanette)))))& (~![X]:(~room(X)=>(((~((has_a_saltwater_aquarium(X))|(is_an_expert_in_identifying_and_foraging_wild_edible_plants(X))))<=>(((can_play_the_harmonica(X))|(is_allergic_to_anything(X))))))))& (~((has_a_saltwater_aquarium(jeanette))|(is_an_expert_in_identifying_and_foraging_wild_edible_plants(jeanette))))& (((?[X]:(room(X)&((does_practice_yoga(X))|(enjoys_rooftop_gardening(X)))))))& (~((owns_a_microscope(jeanette))|(owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(jeanette))))& (~((has_a_saltwater_aquarium(cheryl))|(is_an_expert_in_identifying_and_foraging_wild_edible_plants(cheryl))))& (((collects_classic_novels(cheryl))|(can_play_the_harmonica(cheryl))|(practices_and_performs_acrobatic_dance_routines(cheryl))))& (~((own_a_television(diane))|(is_right-handed(diane))))& ((((competes_in_national_level_swimming_championships(sharon))|(does_practice_yoga(sharon))|(is_a_dedicated_volunteer_for_local_community_service_projects(sharon))))&(((practices_calligraphy(sharon))&(is_a_night_owl(sharon)))))& (~![X]:(~room(X)=>(((~((is_a_night_owl(X))|(collects_classic_novels(X))))<=>(((own_a_television(X))|(is_a_night_owl(X))))))))& (owns_an_extensive_assortment_of_vintage_comic_book_memorabilia(diane))
room(diane)&room(jeanette)&room(sharon)&room(cheryl)&(![X]:(room(X)=>(X='diane'|X='jeanette'|X='sharon'|X='cheryl')))& collects_first_edition_books(jeanette)
[ "p1", "hypothesis" ]
% SZS status Unsatisfiable for 3185734072620483436854572 % SZS output start Proof for 3185734072620483436854572 45. ~(predi(paul) | predp(paul)) & (preda(paul) | predn(paul)) [input p1] 56. predp(paul) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 62. ~predp(paul) & (preda(paul) | predn(paul)) [pure predicate removal 45] 64. ~predp(paul) [pure predicate removal 62] 139. ~predp(paul) [ennf transformation 64] 146. predp(paul) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 56] 147. predp(paul) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 146] 244. ~predp(paul) [cnf transformation 139] 269. predp(paul) [cnf transformation 147] 304. $false [subsumption resolution 269,244] % SZS output end Proof for 3185734072620483436854572 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.035 s % ------------------------------ % ------------------------------
0.634034
Joseph is the only person in the room. Everyone in the room who does not enjoy stargazing plays the drums if everyone in the room does not enjoy stargazing or regularly goes on multi-day backpacking trips in national parks. Everyone in the room does not regularly goes on multi-day backpacking trips in national parks only if they plays the drums if everyone in the room does not regularly goes on multi-day backpacking trips in national parks or regularly goes on multi-day backpacking trips in national parks. Everyone outside the room hosts regular workshops on creative writing only if they regularly goes on multi-day backpacking trips in national parks. Only one person in the room enjoys stargazing. Everyone in the room does not regularly goes on multi-day backpacking trips in national parks only if they plays the drums. Everyone in the room who plays the drums hosts regular workshops on creative writing. Everyone in the room does not enjoy stargazing or regularly goes on multi-day backpacking trips in national parks. Everyone in the room who regularly goes on multi-day backpacking trips in national parks enjoys stargazing.
Joseph hosts regular workshops on creative writing.
neutral
room(joseph)&(![X]:(room(X)=>(X='joseph')))& ((![X]:(room(X)=>(((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))|(does_not_enjoy_stargazing(X))))))=>(![X]:(room(X)=>(((does_not_enjoy_stargazing(X))=>(plays_the_drums(X)))))))& ((![X]:(room(X)=>(((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))|(does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))))=>(![X]:(room(X)=>(((plays_the_drums(X))<=(does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X)))))))& (![X]:(~room(X)=>(((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))<=(hosts_regular_workshops_on_creative_writing(X))))))& (((?[X]:(room(X)&enjoys_stargazing(X)))&(![X,Y]:((room(X)&room(Y)&(enjoys_stargazing(X))&(enjoys_stargazing(Y)))=>(X=Y)))))& (![X]:(room(X)=>(((plays_the_drums(X))<=(does_not_regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))))))& (![X]:(room(X)=>(((plays_the_drums(X))=>(hosts_regular_workshops_on_creative_writing(X))))))& (![X]:(room(X)=>(((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))|(does_not_enjoy_stargazing(X))))))& (![X]:(room(X)=>(((regularly_goes_on_multi-day_backpacking_trips_in_national_parks(X))=>(enjoys_stargazing(X))))))
room(joseph)&(![X]:(room(X)=>(X='joseph')))& hosts_regular_workshops_on_creative_writing(joseph)
[]
null
0.693619
Al is the only person in the room. 'More than one person in the room own a television' unless 'Al collects first edition books'. 'Al enjoys virtual reality gaming' if 'everyone in the room does not collect first edition books or competes in national level swimming championships'. If 'no one outside the room does not compete in national level swimming championships or can play the piano' then 'Al creates large-scale murals for public art installations'. 'Everyone in the room practices pilates or does not enjoy virtual reality gaming' if 'someone anywhere either can play the piano or is a night owl but not both'. 'Not everyone in the room collects luxury watches or does not enjoy trail running' unless 'everyone in the room collects first edition books or does not collect first edition books'. Everyone in the room who plays video games maintains a large, organic vegetable garden year-round, is a night owl and creates large-scale murals for public art installations. Everyone in the room who maintains a large, organic vegetable garden year-round, is a night owl and creates large-scale murals for public art installations enjoys bird watching. Everyone in the room who enjoys bird watching creates large-scale murals for public art installations. Al own a television. Everyone in the room who enjoys logic puzzles creates large-scale murals for public art installations. Everyone in the room has lived in exactly three countries only if they plays eSports competitively. Al who maintains a large, organic vegetable garden year-round collects luxury watches. Everyone in the room who has lived in exactly three countries or enjoys snowboarding or both is a night owl. Everyone in the room who is a night owl own a television. Everyone in the room practices digital art or does not play eSports competitively.
Al enjoys bird watching.
neutral
room(al)&(![X]:(room(X)=>(X='al')))& (~(collects_first_edition_books(al))=>((?[X,Y]:(room(X)&room(Y)&(own_a_television(X)&own_a_television(Y))&(X!=Y)))))& ((![X]:(room(X)=>(((competes_in_national_level_swimming_championships(X))|(does_not_collect_first_edition_books(X))))))=>(enjoys_virtual_reality_gaming(al)))& ((~?[X]:(~room(X)=>(((can_play_the_piano(X))|(does_not_compete_in_national_level_swimming_championships(X))))))=>(creates_large-scale_murals_for_public_art_installations(al)))& ((?[X]:(anywhere(X)&(((can_play_the_piano(X))<~>(is_a_night_owl(X))))))=>(![X]:(room(X)=>(((does_not_enjoy_virtual_reality_gaming(X))|(practices_pilates(X)))))))& (~(![X]:(room(X)=>(((does_not_collect_first_edition_books(X))|(collects_first_edition_books(X))))))=>(~![X]:(room(X)=>(((does_not_enjoy_trail_running(X))|(collects_luxury_watches(X)))))))& (![X]:(room(X)=>(((plays_video_games(X))=>(((maintains_a_large,_organic_vegetable_garden_year-round(X))&(is_a_night_owl(X))&(creates_large-scale_murals_for_public_art_installations(X))))))))& (![X]:(room(X)=>(((((maintains_a_large,_organic_vegetable_garden_year-round(X))&(is_a_night_owl(X))&(creates_large-scale_murals_for_public_art_installations(X))))=>(enjoys_bird_watching(X))))))& (![X]:(room(X)=>(((enjoys_bird_watching(X))=>(creates_large-scale_murals_for_public_art_installations(X))))))& (own_a_television(al))& (![X]:(room(X)=>(((enjoys_logic_puzzles(X))=>(creates_large-scale_murals_for_public_art_installations(X))))))& (![X]:(room(X)=>(((plays_eSports_competitively(X))<=(has_lived_in_exactly_three_countries(X))))))& ((maintains_a_large,_organic_vegetable_garden_year-round(al))&(collects_luxury_watches(al)))& (![X]:(room(X)=>(((((has_lived_in_exactly_three_countries(X))|(enjoys_snowboarding(X))))=>(is_a_night_owl(X))))))& (![X]:(room(X)=>(((is_a_night_owl(X))=>(own_a_television(X))))))& (![X]:(room(X)=>(((does_not_play_eSports_competitively(X))|(practices_digital_art(X))))))& (is_allergic_to_anything(al))& (competes_in_national_level_swimming_championships(al))& (collects_first_edition_books(al))& (![X]:(room(X)=>(((has_lived_in_exactly_three_countries(X))=>(((collects_luxury_watches(X))<~>(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))))))))& (![X]:(room(X)=>(((((collects_luxury_watches(X))<~>(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))))=>(practices_pilates(X))))))& (is_dedicated_to_sustainable_living_and_zero-waste_practices(al))& (practices_digital_art(al))& (![X]:(anywhere(X)=>(((((collects_first_edition_books(X))|(collects_rare_minerals(X))))=>(competes_in_national_level_swimming_championships(X))))))& (?[X]:(room(X)&(competes_in_national_level_swimming_championships(X))))& (![X]:(room(X)=>(((creates_bespoke_furniture_pieces_from_reclaimed_wood(X))=>(plays_eSports_competitively(X))))))& (?[X]:(anywhere(X)&(is_a_cybersecurity_expert(X))))& (can_play_the_piano(al))
room(al)&(![X]:(room(X)=>(X='al')))& enjoys_bird_watching(al)
[]
null
0.530088
Ida, Brent are the only persons in the room. Everyone in the room does not collect rare sneakers. Everyone in the room does not use a Windows laptop and is a certified scuba diver with advanced underwater photography skills. Everyone in the room does not write poetry. Ida who does not bake bread at home does not enjoy making ceramics. Not everyone in the room does not collect rare sneakers if and only if they is not a Linux enthusiast. Ida who does not enjoy kayaking and exploring remote waterways, is not a tea enthusiast and does not collect first edition books does not practice archery. Not everyone in the room who does not know morse code and is not a Linux enthusiast neither does not enjoy wildlife photography nor does not write poetry. Everyone in the room does not bake bread at home and does not enjoy making ceramics. Everyone in the room is a certified yoga instructor teaching classes weekly and does not mentor a youth basketball team on weekends if they enjoys making ceramics. Everyone anywhere does not collect comic books, does not enjoy wildlife photography and is a certified yoga instructor teaching classes weekly. Everyone in the room does not use a Windows laptop if they is a Linux enthusiast. If someone writes poetry then he/she is a certified yoga instructor teaching classes weekly. Everyone in the room does not practice archery if they writes poetry. If someone is not a Linux enthusiast and does not develop open-source software projects in their free time then he/she does not use a Windows laptop. Ida who does not know morse code and is not a Linux enthusiast is right-handed. Someone in the room does not enjoy salsa dancing, does not use a Windows laptop and does not enjoy kayaking and exploring remote waterways. Everyone in the room does not bake bread at home and is right-handed if they is a Linux enthusiast. Everyone in the room is right-handed, does not know morse code or is a certified scuba diver with advanced underwater photography skills. Everyone in the room is not a tea enthusiast and does not enjoy salsa dancing if they is a Linux enthusiast. Everyone outside the room mentors a youth basketball team on weekends.
Brent enjoys salsa dancing.
contradiction
room(ida)&room(brent)&(![X]:(room(X)=>(X='ida'|X='brent')))& (![X]:(room(X)=>(does_not_collect_rare_sneakers(X))))& (![X]:(room(X)=>(((does_not_use_a_Windows_laptop(X))&(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))))& (![X]:(room(X)=>(does_not_write_poetry(X))))& ((does_not_bake_bread_at_home(ida))&(does_not_enjoy_making_ceramics(ida)))& (~![X]:(room(X)=>(((does_not_collect_rare_sneakers(X))<=>(is_not_a_Linux_enthusiast(X))))))& ((((does_not_enjoy_kayaking_and_exploring_remote_waterways(ida))&(is_not_a_tea_enthusiast(ida))&(does_not_collect_first_edition_books(ida))))&(does_not_practice_archery(ida)))& (~![X]:(room(X)=>(((((does_not_know_morse_code(X))&(is_not_a_Linux_enthusiast(X))))=>(~((does_not_enjoy_wildlife_photography(X))|(does_not_write_poetry(X))))))))& (![X]:(room(X)=>(((does_not_bake_bread_at_home(X))&(does_not_enjoy_making_ceramics(X))))))& (![X]:(room(X)=>(((enjoys_making_ceramics(X))=>(((is_a_certified_yoga_instructor_teaching_classes_weekly(X))&(does_not_mentor_a_youth_basketball_team_on_weekends(X))))))))& (![X]:(anywhere(X)=>(((does_not_collect_comic_books(X))&(does_not_enjoy_wildlife_photography(X))&(is_a_certified_yoga_instructor_teaching_classes_weekly(X))))))& (![X]:(room(X)=>(((is_a_Linux_enthusiast(X))=>(does_not_use_a_Windows_laptop(X))))))& ((![X]:((writes_poetry(X))=>(is_a_certified_yoga_instructor_teaching_classes_weekly(X)))))& (![X]:(room(X)=>(((writes_poetry(X))=>(does_not_practice_archery(X))))))& ((![X]:((((is_not_a_Linux_enthusiast(X))&(does_not_develop_open-source_software_projects_in_their_free_time(X))))=>(does_not_use_a_Windows_laptop(X)))))& ((((does_not_know_morse_code(ida))&(is_not_a_Linux_enthusiast(ida))))&(is_right-handed(ida)))& (?[X]:(room(X)&(((does_not_enjoy_salsa_dancing(X))&(does_not_use_a_Windows_laptop(X))&(does_not_enjoy_kayaking_and_exploring_remote_waterways(X))))))& (![X]:(room(X)=>(((is_a_Linux_enthusiast(X))=>(((does_not_bake_bread_at_home(X))&(is_right-handed(X))))))))& (![X]:(room(X)=>(((is_right-handed(X))|(does_not_know_morse_code(X))|(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))))& (![X]:(room(X)=>(((is_a_Linux_enthusiast(X))=>(((is_not_a_tea_enthusiast(X))&(does_not_enjoy_salsa_dancing(X))))))))& (![X]:(~room(X)=>(mentors_a_youth_basketball_team_on_weekends(X))))& (![X]:(room(X)=>(does_not_collect_comic_books(X))))& (![X]:(anywhere(X)=>(does_not_know_morse_code(X))))& (![X]:(~room(X)=>(does_not_enjoy_salsa_dancing(X))))& (~![X]:(room(X)=>(((is_not_a_Linux_enthusiast(X))=>(does_not_collect_rare_minerals(X))))))& (![X]:(room(X)=>(cannot_play_the_flute(X))))
room(ida)&room(brent)&(![X]:(room(X)=>(X='ida'|X='brent')))& enjoys_salsa_dancing(brent)
[ "p0", "p1", "p5", "p15", "p19", "hypothesis" ]
% SZS status Unsatisfiable for 8789313281525282490538077 % SZS output start Proof for 8789313281525282490538077 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 45. ! [X0] : (room(X0) => ~predu(X0)) [input p1] 49. ~! [X0] : (room(X0) => (~predu(X0) <=> ~predd(X0))) [input p5] 59. prede(mary) & ~predd(mary) & ~predn(mary) [input p15] 63. ! [X0] : (room(X0) => (predd(X0) => (~predl(X0) & ~predf(X0)))) [input p19] 70. predl(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 73. ~predd(mary) & ~predn(mary) [pure predicate removal 59] 85. ~predd(mary) [pure predicate removal 73] 92. ! [X0] : (room(X0) => (predd(X0) => ~predl(X0))) [pure predicate removal 63] 178. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 179. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 178] 180. ! [X0] : (~predu(X0) | ~room(X0)) [ennf transformation 45] 181. ? [X0] : ((~predu(X0) <~> ~predd(X0)) & room(X0)) [ennf transformation 49] 183. ! [X0] : ((~predl(X0) | ~predd(X0)) | ~room(X0)) [ennf transformation 92] 184. ! [X0] : (~predl(X0) | ~predd(X0) | ~room(X0)) [flattening 183] 187. predl(paul) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 70] 188. predl(paul) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 187] 190. ? [X0] : (((predd(X0) | predu(X0)) & (~predd(X0) | ~predu(X0))) & room(X0)) [nnf transformation 181] 191. ? [X0] : ((predd(X0) | predu(X0)) & (~predd(X0) | ~predu(X0)) & room(X0)) [flattening 190] 192. ? [X0] : ((predd(X0) | predu(X0)) & (~predd(X0) | ~predu(X0)) & room(X0)) => ((predd(sK0) | predu(sK0)) & (~predd(sK0) | ~predu(sK0)) & room(sK0)) [choice axiom] 193. (predd(sK0) | predu(sK0)) & (~predd(sK0) | ~predu(sK0)) & room(sK0) [skolemisation 191,192] 280. room(mary) [cnf transformation 179] 281. room(paul) [cnf transformation 179] 282. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 179] 283. ~predu(X0) | ~room(X0) [cnf transformation 180] 284. room(sK0) [cnf transformation 193] 286. predd(sK0) | predu(sK0) [cnf transformation 193] 289. ~predd(mary) [cnf transformation 85] 292. ~predl(X0) | ~predd(X0) | ~room(X0) [cnf transformation 184] 299. predl(paul) [cnf transformation 188] 301. 1 <=> predu(sK0) [avatar definition] 303. predu(sK0) <- (1) [avatar component clause 301] 305. 2 <=> predd(sK0) [avatar definition] 307. predd(sK0) <- (2) [avatar component clause 305] 308. 1 | 2 [avatar split clause 286,305,301] 311. ~predd(paul) | ~room(paul) [resolution 292,299] 312. ~predd(paul) [subsumption resolution 311,281] 315. mary = sK0 | paul = sK0 [resolution 282,284] 320. 3 <=> paul = sK0 [avatar definition] 322. paul = sK0 <- (3) [avatar component clause 320] 324. 4 <=> mary = sK0 [avatar definition] 326. mary = sK0 <- (4) [avatar component clause 324] 327. 3 | 4 [avatar split clause 315,324,320] 364. predd(paul) <- (2, 3) [backward demodulation 307,322] 366. $false <- (2, 3) [subsumption resolution 364,312] 367. ~2 | ~3 [avatar contradiction clause 366] 372. predd(mary) <- (2, 4) [backward demodulation 307,326] 374. $false <- (2, 4) [subsumption resolution 372,289] 375. ~2 | ~4 [avatar contradiction clause 374] 378. predu(mary) <- (1, 4) [forward demodulation 303,326] 379. ~room(mary) <- (1, 4) [resolution 378,283] 380. $false <- (1, 4) [subsumption resolution 379,280] 381. ~1 | ~4 [avatar contradiction clause 380] 384. predu(paul) <- (1, 3) [backward demodulation 303,322] 385. ~room(paul) <- (1, 3) [resolution 384,283] 386. $false <- (1, 3) [subsumption resolution 385,281] 387. ~1 | ~3 [avatar contradiction clause 386] 388. $false [avatar sat refutation 308,327,367,375,381,387] % SZS output end Proof for 8789313281525282490538077 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.036 s % ------------------------------ % ------------------------------
0.164018
Jeffrey is the only person in the room. Either “everyone in the room is not a professional photographer specializing in portrait photography or is an avid mountain climber who has scaled several peaks” or “everyone outside the room is a night owl or is not right-handed” but not both. If “Jeffrey is right-handed” then “if someone is right-handed then he/she neither is a professional photographer specializing in portrait photography nor is not an avid mountain climber who has scaled several peaks”. If “Jeffrey trains for and competes in international triathlons” then “Jeffrey is an avid mountain climber who has scaled several peaks”. “Jeffrey is not a client of Meta” unless “no one in the room is not a client of Meta or is a professional photographer specializing in portrait photography”. If “Jeffrey is not an avid mountain climber who has scaled several peaks” then “more than one person in the room is right-handed”. Someone in the room owns a smart tv. If someone is an avid mountain climber who has scaled several peaks then he/she is a professional photographer specializing in portrait photography, is a night owl or collects first edition books. Jeffrey frequently participates in hackathons and coding competitions.
Jeffrey trains for and competes in international triathlons.
neutral
room(jeffrey)&(![X]:(room(X)=>(X='jeffrey')))& ((![X]:(room(X)=>(((is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))|(is_not_a_professional_photographer_specializing_in_portrait_photography(X))))))<~>(![X]:(~room(X)=>(((is_not_right-handed(X))|(is_a_night_owl(X)))))))& ((is_right-handed(jeffrey))=>((![X]:((is_right-handed(X))=>(~((is_a_professional_photographer_specializing_in_portrait_photography(X))|(is_not_an_avid_mountain_climber_who_has_scaled_several_peaks(X))))))))& ((trains_for_and_competes_in_international_triathlons(jeffrey))=>(is_an_avid_mountain_climber_who_has_scaled_several_peaks(jeffrey)))& (~(~?[X]:(room(X)=>(((is_a_professional_photographer_specializing_in_portrait_photography(X))|(is_not_a_client_of_Meta(X))))))=>(is_not_a_client_of_Meta(jeffrey)))& ((is_not_an_avid_mountain_climber_who_has_scaled_several_peaks(jeffrey))=>((?[X,Y]:(room(X)&room(Y)&(is_right-handed(X)&is_right-handed(Y))&(X!=Y)))))& (?[X]:(room(X)&(owns_a_smart_tv(X))))& ((![X]:((is_an_avid_mountain_climber_who_has_scaled_several_peaks(X))=>(((is_a_professional_photographer_specializing_in_portrait_photography(X))|(is_a_night_owl(X))|(collects_first_edition_books(X)))))))& (frequently_participates_in_hackathons_and_coding_competitions(jeffrey))
room(jeffrey)&(![X]:(room(X)=>(X='jeffrey')))& trains_for_and_competes_in_international_triathlons(jeffrey)
[]
null
0.189261
Joseph, Jeff, Clara are the only persons in the room. Joseph hosts a popular podcast about emerging technologies. Everyone outside the room is not wise or does not host a popular podcast about emerging technologies. Everyone in the room creates YouTube content only if they is wise. Everyone in the room hosts a popular podcast about emerging technologies only if they either hosts a popular podcast about emerging technologies or is wise but not both.
Joseph creates YouTube content.
contradiction
room(joseph)&room(jeff)&room(clara)&(![X]:(room(X)=>(X='joseph'|X='jeff'|X='clara')))& (hosts_a_popular_podcast_about_emerging_technologies(joseph))& (![X]:(room(X)=>(((patient(X))<=(wise(X))))))& (![X]:(anywhere(X)=>(((does_not_create_YouTube_content(X))|(patient(X))))))& (~![X]:(room(X)=>(~((patient(X))|(hosts_a_popular_podcast_about_emerging_technologies(X))))))& (patient(joseph))& (~![X]:(~room(X)=>(((does_not_create_YouTube_content(X))|(hosts_a_popular_podcast_about_emerging_technologies(X))))))& (![X]:(~room(X)=>(((does_not_host_a_popular_podcast_about_emerging_technologies(X))|(~wise(X))))))& (![X]:(room(X)=>(((wise(X))<=(creates_YouTube_content(X))))))& (![X]:(anywhere(X)=>(((does_not_create_YouTube_content(X))|(creates_YouTube_content(X))))))& (![X]:(room(X)=>(((((hosts_a_popular_podcast_about_emerging_technologies(X))<~>(wise(X))))<=(hosts_a_popular_podcast_about_emerging_technologies(X))))))
room(joseph)&room(jeff)&room(clara)&(![X]:(room(X)=>(X='joseph'|X='jeff'|X='clara')))& creates_YouTube_content(joseph)
[ "p0", "p1", "p7", "p8", "p10", "hypothesis" ]
% SZS status Unsatisfiable for 848997154932847807209993 % SZS output start Proof for 848997154932847807209993 44. ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input p0] 45. predr(mary) [input p1] 51. ! [X0] : (~room(X0) => (~wise(X0) | ~predr(X0))) [input p7] 52. ! [X0] : (room(X0) => (predg(X0) => wise(X0))) [input p8] 54. ! [X0] : (room(X0) => (predr(X0) => (predr(X0) <~> wise(X0)))) [input p10] 55. predg(mary) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 131. ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 132. ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 131] 136. ! [X0] : ((~wise(X0) | ~predr(X0)) | room(X0)) [ennf transformation 51] 137. ! [X0] : (~wise(X0) | ~predr(X0) | room(X0)) [flattening 136] 138. ! [X0] : ((wise(X0) | ~predg(X0)) | ~room(X0)) [ennf transformation 52] 139. ! [X0] : (wise(X0) | ~predg(X0) | ~room(X0)) [flattening 138] 142. ! [X0] : (((predr(X0) <~> wise(X0)) | ~predr(X0)) | ~room(X0)) [ennf transformation 54] 143. ! [X0] : ((predr(X0) <~> wise(X0)) | ~predr(X0) | ~room(X0)) [flattening 142] 144. predg(mary) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 55] 145. predg(mary) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 144] 151. ! [X0] : (((~wise(X0) | ~predr(X0)) & (wise(X0) | predr(X0))) | ~predr(X0) | ~room(X0)) [nnf transformation 143] 233. room(mary) [cnf transformation 132] 237. predr(mary) [cnf transformation 45] 242. ~wise(X0) | ~predr(X0) | room(X0) [cnf transformation 137] 243. ~predg(X0) | wise(X0) | ~room(X0) [cnf transformation 139] 246. ~wise(X0) | ~predr(X0) | ~predr(X0) | ~room(X0) [cnf transformation 151] 251. predg(mary) [cnf transformation 145] 252. ~wise(X0) | ~predr(X0) | ~room(X0) [duplicate literal removal 246] 253. ~wise(X0) | ~predr(X0) [subsumption resolution 252,242] 255. wise(mary) | ~room(mary) [resolution 243,251] 256. wise(mary) [subsumption resolution 255,233] 258. ~predr(mary) [resolution 256,253] 259. $false [subsumption resolution 258,237] % SZS output end Proof for 848997154932847807209993 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.035 s % ------------------------------ % ------------------------------
0.638246
Chris, Jeffrey, Shelley, Marvin are the only persons in the room. “Chris enjoys landscape photography” unless “Chris does not collect foreign coins”. “Everyone outside the room does not practice yoga or does enjoy mountain biking” unless “no one anywhere collects modern art or is not a certified yoga instructor teaching classes weekly”. Everyone anywhere is not a cybersecurity expert if they collects modern art. Everyone in the room does enjoy mountain biking or is not a certified yoga instructor teaching classes weekly. Chris who is a wine connoisseur, is allergic to anything and enjoys origami collects modern art. Chris who enjoys landscape photography, practices tai chi and enjoys stargazing collects historical artifacts related to ancient civilizations. Chris does enjoy mountain biking. Chris is allergic to anything, is a certified yoga instructor teaching classes weekly and enjoys salsa dancing. Chris watches fantasy movies. Everyone in the room enjoys stargazing or does not practice tai chi or both if they does not volunteer for local environmental conservation projects. Only one person in the room does enjoy mountain biking. Chris plays eSports competitively. Everyone in the room who neither owns an Android phone nor practices tai chi plays eSports competitively, does not practice tai chi and does practice yoga. Everyone in the room plays eSports competitively, does not practice tai chi and does practice yoga if they collects modern art, is an avid collector of autographed memorabilia from famous musicians and practices tai chi and vice versa. Chris is a scotch connoisseur, does enjoy mountain biking and mentors a youth basketball team on weekends. Not everyone in the room is not a cybersecurity expert or practices urban gardening. Everyone in the room mentors a youth basketball team on weekends if they is not a cybersecurity expert. At least one person anywhere frequently participates in hackathons and coding competitions, enjoys stargazing and is a skilled home brewer experimenting with craft beer recipes. Chris has a tattoo or is an avid collector of autographed memorabilia from famous musicians or both. Someone in the room mentors a youth basketball team on weekends. Chris does not volunteer for local environmental conservation projects. Chris who enjoys stargazing or is not a certified yoga instructor teaching classes weekly or both is a certified yoga instructor teaching classes weekly. Chris practices pilates. Everyone in the room practices pilates or is not allergic to anything. Everyone in the room who enjoys stargazing, watches fantasy movies and practices urban gardening frequently participates in hackathons and coding competitions. Everyone in the room does not enjoy origami or frequently participates in hackathons and coding competitions.
Jeffrey is a certified yoga instructor teaching classes weekly.
contradiction
room(chris)&room(jeffrey)&room(shelley)&room(marvin)&(![X]:(room(X)=>(X='chris'|X='jeffrey'|X='shelley'|X='marvin')))& (~(does_not_collect_foreign_coins(chris))=>(enjoys_landscape_photography(chris)))& (~(~?[X]:(anywhere(X)=>(((is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))|(collects_modern_art(X))))))=>(![X]:(~room(X)=>(((does_enjoy_mountain_biking(X))|(does_not_practice_yoga(X)))))))& (![X]:(anywhere(X)=>(((collects_modern_art(X))=>(is_not_a_cybersecurity_expert(X))))))& (![X]:(room(X)=>(((is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))|(does_enjoy_mountain_biking(X))))))& ((((is_a_wine_connoisseur(chris))&(is_allergic_to_anything(chris))&(enjoys_origami(chris))))&(collects_modern_art(chris)))& ((((enjoys_landscape_photography(chris))&(practices_tai_chi(chris))&(enjoys_stargazing(chris))))&(collects_historical_artifacts_related_to_ancient_civilizations(chris)))& (does_enjoy_mountain_biking(chris))& (((is_allergic_to_anything(chris))&(is_a_certified_yoga_instructor_teaching_classes_weekly(chris))&(enjoys_salsa_dancing(chris))))& (watches_fantasy_movies(chris))& (![X]:(room(X)=>(((does_not_volunteer_for_local_environmental_conservation_projects(X))=>(((enjoys_stargazing(X))|(does_not_practice_tai_chi(X))))))))& (((?[X]:(room(X)&does_enjoy_mountain_biking(X)))&(![X,Y]:((room(X)&room(Y)&(does_enjoy_mountain_biking(X))&(does_enjoy_mountain_biking(Y)))=>(X=Y)))))& (plays_eSports_competitively(chris))& (![X]:(room(X)=>(((~((owns_an_Android_phone(X))|(practices_tai_chi(X))))=>(((plays_eSports_competitively(X))&(does_not_practice_tai_chi(X))&(does_practice_yoga(X))))))))& (![X]:(room(X)=>(((((plays_eSports_competitively(X))&(does_not_practice_tai_chi(X))&(does_practice_yoga(X))))<=>(((collects_modern_art(X))&(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(X))&(practices_tai_chi(X))))))))& (((is_a_scotch_connoisseur(chris))&(does_enjoy_mountain_biking(chris))&(mentors_a_youth_basketball_team_on_weekends(chris))))& (~![X]:(room(X)=>(((practices_urban_gardening(X))|(is_not_a_cybersecurity_expert(X))))))& (![X]:(room(X)=>(((is_not_a_cybersecurity_expert(X))=>(mentors_a_youth_basketball_team_on_weekends(X))))))& (((?[X]:(anywhere(X)&((frequently_participates_in_hackathons_and_coding_competitions(X))&(enjoys_stargazing(X))&(is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X)))))))& (((has_a_tattoo(chris))|(is_an_avid_collector_of_autographed_memorabilia_from_famous_musicians(chris))))& (?[X]:(room(X)&(mentors_a_youth_basketball_team_on_weekends(X))))& (does_not_volunteer_for_local_environmental_conservation_projects(chris))& ((((enjoys_stargazing(chris))|(is_not_a_certified_yoga_instructor_teaching_classes_weekly(chris))))&(is_a_certified_yoga_instructor_teaching_classes_weekly(chris)))& (practices_pilates(chris))& (![X]:(room(X)=>(((is_not_allergic_to_anything(X))|(practices_pilates(X))))))& (![X]:(room(X)=>(((((enjoys_stargazing(X))&(watches_fantasy_movies(X))&(practices_urban_gardening(X))))=>(frequently_participates_in_hackathons_and_coding_competitions(X))))))& (![X]:(room(X)=>(((frequently_participates_in_hackathons_and_coding_competitions(X))|(does_not_enjoy_origami(X))))))& ((?[X,Y]:(room(X)&room(Y)&(((does_enjoy_mountain_biking(X))|(enjoys_landscape_photography(X)))&((does_enjoy_mountain_biking(Y))|(enjoys_landscape_photography(Y))))&(X!=Y))))
room(chris)&room(jeffrey)&room(shelley)&room(marvin)&(![X]:(room(X)=>(X='chris'|X='jeffrey'|X='shelley'|X='marvin')))& is_a_certified_yoga_instructor_teaching_classes_weekly(jeffrey)
[ "b42", "p0", "p4", "p7", "p11", "hypothesis" ]
% SZS status Unsatisfiable for 8634374787601936485649787 % SZS output start Proof for 8634374787601936485649787 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 48. ! [X0] : (room(X0) => (predi(X0) | ~predj(X0))) [input p4] 51. predi(mary) [input p7] 55. ! [X0,X1] : ((predi(X1) & predi(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (predi(X0) & room(X0)) [input p11] 72. predj(paul) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 75. ! [X0,X1] : ((predi(X1) & predi(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X2] : (predi(X2) & room(X2)) [rectify 55] 175. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 176. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 175] 181. ! [X0] : ((predi(X0) | ~predj(X0)) | ~room(X0)) [ennf transformation 48] 182. ! [X0] : (predi(X0) | ~predj(X0) | ~room(X0)) [flattening 181] 183. ! [X0,X1] : (X0 = X1 | (~predi(X1) | ~predi(X0) | ~room(X1) | ~room(X0))) & ? [X2] : (predi(X2) & room(X2)) [ennf transformation 75] 184. ! [X0,X1] : (X0 = X1 | ~predi(X1) | ~predi(X0) | ~room(X1) | ~room(X0)) & ? [X2] : (predi(X2) & room(X2)) [flattening 183] 187. predj(paul) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 72] 188. predj(paul) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 187] 191. ? [X2] : (predi(X2) & room(X2)) => (predi(sK0) & room(sK0)) [choice axiom] 192. ! [X0,X1] : (X0 = X1 | ~predi(X1) | ~predi(X0) | ~room(X1) | ~room(X0)) & (predi(sK0) & room(sK0)) [skolemisation 184,191] 248. mary != paul [cnf transformation 43] 284. room(mary) [cnf transformation 176] 285. room(paul) [cnf transformation 176] 293. ~predj(X0) | predi(X0) | ~room(X0) [cnf transformation 182] 296. predi(mary) [cnf transformation 51] 300. ~predi(X1) | X0 = X1 | ~predi(X0) | ~room(X1) | ~room(X0) [cnf transformation 192] 322. predj(paul) [cnf transformation 188] 339. predi(paul) | ~room(paul) [resolution 293,322] 340. predi(paul) [subsumption resolution 339,285] 384. mary = X0 | ~predi(X0) | ~room(mary) | ~room(X0) [resolution 300,296] 387. ~predi(X0) | mary = X0 | ~room(X0) [subsumption resolution 384,284] 392. mary = paul | ~room(paul) [resolution 387,340] 397. ~room(paul) [subsumption resolution 392,248] 398. $false [subsumption resolution 397,285] % SZS output end Proof for 8634374787601936485649787 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.211999
Nicolette, Anthony are the only persons in the room. 'Anthony is not a quiet tall person' if 'it is true that 'Nicolette is not a quiet tall old kind person''. If 'John is quieter than Nicolette' then 'John is older than Nicolette'. 'Nicolette is quieter than John' if 'Anthony is not a kind person'. If 'Nicolette is quieter than Joan' then 'Nicolette is richer than John'. All kind persons are quiet. Nicolette is quieter than John. Anthony is quieter than Joan, is richer than Joan or is older than Joan. Nicolette is richer than Thomas and is older than Joan. Someone who is richer than John is older than someone who is older than John. All quiet persons are old. Nicolette is quieter than John or is older than John or both. Nicolette is older than John.
It is not the case that 'it is not the case that 'it is not the case that 'more than one person in the room is not tall, is a kind person and is a old person'''.
neutral
room(nicolette)&room(anthony)&(![X]:(room(X)=>(X='nicolette'|X='anthony')))& ((~(quiet(nicolette)&tall(nicolette)&old(nicolette)&kind(nicolette)&person(nicolette)))=>(~(quiet(anthony)&tall(anthony)&person(anthony))))& ((quieter(nicolette,john))=>(older(nicolette,john)))& ((~(kind(anthony)&person(anthony)))=>(quieter(john,nicolette)))& ((quieter(joan,nicolette))=>(richer(john,nicolette)))& (![X]:(kind(X)=>quiet(X)))& (quieter(john,nicolette))& (((quieter(joan,anthony))|(richer(joan,anthony))|(older(joan,anthony))))& (((richer(thomas,nicolette))&(older(joan,nicolette))))& (?[X,Y]:((richer(john,X))&(older(john,Y))&(older(X,Y))))& (![X]:(quiet(X)=>old(X)))& (((quieter(john,nicolette))|(older(john,nicolette))))& (older(john,nicolette))
room(nicolette)&room(anthony)&(![X]:(room(X)=>(X='nicolette'|X='anthony')))& ~(~(~((?[X,Y]:(room(X)&room(Y)&(((~tall(X))&(kind(X)&person(X))&(old(X)&person(X)))&((~tall(Y))&(kind(Y)&person(Y))&(old(Y)&person(Y))))&(X!=Y))))))
[]
null
0.546299
There is a room. No one in the room either does enjoy trail running or practices tai chi but not both if they does not work on fridays. Everyone in the room either does enjoy trail running or practices tai chi but not both if and only if they hosts a popular podcast about emerging technologies and is a client of LVMH. Everyone in the room is not a chess master who participates in national tournaments or hosts a popular podcast about emerging technologies and is a client of LVMH. No one in the room is not a chess master who participates in national tournaments only if they is an avid hiker. Everyone in the room does not enjoy kayaking or is an avid hiker. Everyone in the room does not enjoy kayaking or works on fridays. Everyone anywhere plays video games or is an avid hiker or both if they can play the piano and is a client of LVMH and vice versa. Everyone in the room who can play the piano and is a client of LVMH does enjoy trail running. Everyone in the room hosts a popular podcast about emerging technologies. Everyone in the room does not enjoy kayaking if they is passionate about collecting and restoring classic cars. Everyone in the room cannot play the piano or does not enjoy kayaking. Everyone outside the room is not a chess master who participates in national tournaments and works on fridays if and only if they either is not an avid hiker or does not design and sews custom cosplay costumes for conventions but not both. Only one person in the room owns a microscope. Everyone in the room is not a chess master who participates in national tournaments and does not enjoy trail running if they cannot play the piano or hosts a popular podcast about emerging technologies or both. Everyone in the room hosts a popular podcast about emerging technologies, is passionate about collecting and restoring classic cars and is an avid hiker if they creates large-scale murals for public art installations, can play the piano and does not enjoy kayaking.
Everyone outside the room does not enjoy kayaking.
entailment
(there_is_a_room)& (~?[X]:(room(X)=>(((does_not_work_on_fridays(X))=>(((does_enjoy_trail_running(X))<~>(practices_tai_chi(X))))))))& (![X]:(room(X)=>(((((does_enjoy_trail_running(X))<~>(practices_tai_chi(X))))<=>(((hosts_a_popular_podcast_about_emerging_technologies(X))&(is_a_client_of_LVMH(X))))))))& (![X]:(room(X)=>(((((hosts_a_popular_podcast_about_emerging_technologies(X))&(is_a_client_of_LVMH(X))))|(is_not_a_chess_master_who_participates_in_national_tournaments(X))))))& (~?[X]:(room(X)=>(((is_an_avid_hiker(X))<=(is_not_a_chess_master_who_participates_in_national_tournaments(X))))))& (![X]:(room(X)=>(((is_an_avid_hiker(X))|(does_not_enjoy_kayaking(X))))))& (![X]:(room(X)=>(((works_on_fridays(X))|(does_not_enjoy_kayaking(X))))))& (![X]:(anywhere(X)=>(((((plays_video_games(X))|(is_an_avid_hiker(X))))<=>(((can_play_the_piano(X))&(is_a_client_of_LVMH(X))))))))& (![X]:(room(X)=>(((((can_play_the_piano(X))&(is_a_client_of_LVMH(X))))=>(does_enjoy_trail_running(X))))))& (![X]:(room(X)=>(hosts_a_popular_podcast_about_emerging_technologies(X))))& (![X]:(room(X)=>(((is_passionate_about_collecting_and_restoring_classic_cars(X))=>(does_not_enjoy_kayaking(X))))))& (![X]:(room(X)=>(((does_not_enjoy_kayaking(X))|(cannot_play_the_piano(X))))))& (![X]:(~room(X)=>(((((is_not_a_chess_master_who_participates_in_national_tournaments(X))&(works_on_fridays(X))))<=>(((is_not_an_avid_hiker(X))<~>(does_not_design_and_sews_custom_cosplay_costumes_for_conventions(X))))))))& (((?[X]:(room(X)&owns_a_microscope(X)))&(![X,Y]:((room(X)&room(Y)&(owns_a_microscope(X))&(owns_a_microscope(Y)))=>(X=Y)))))& (![X]:(room(X)=>(((((cannot_play_the_piano(X))|(hosts_a_popular_podcast_about_emerging_technologies(X))))=>(((is_not_a_chess_master_who_participates_in_national_tournaments(X))&(does_not_enjoy_trail_running(X))))))))& (![X]:(room(X)=>(((((creates_large-scale_murals_for_public_art_installations(X))&(can_play_the_piano(X))&(does_not_enjoy_kayaking(X))))=>(((hosts_a_popular_podcast_about_emerging_technologies(X))&(is_passionate_about_collecting_and_restoring_classic_cars(X))&(is_an_avid_hiker(X))))))))
(there_is_a_room)& ![X]:(~room(X)=>(does_not_enjoy_kayaking(X)))
[ "p0", "p1", "p4", "p5", "hypothesis" ]
% SZS status Unsatisfiable for 4100738295437440338912928 % SZS output start Proof for 4100738295437440338912928 44. there_is_a_room [input p0] 45. ~? [X0] : (room(X0) => (~predh(X0) => (predg(X0) <~> predn(X0)))) [input p1] 48. ~? [X0] : (room(X0) => (~prede(X0) => predd(X0))) [input p4] 49. ! [X0] : (room(X0) => (~preda(X0) | predd(X0))) [input p5] 60. ~(! [X0] : (~room(X0) => ~preda(X0)) & there_is_a_room) [input hypothesis] 135. ! [X0] : (((predg(X0) <=> predn(X0)) & ~predh(X0)) & room(X0)) [ennf transformation 45] 136. ! [X0] : ((predg(X0) <=> predn(X0)) & ~predh(X0) & room(X0)) [flattening 135] 140. ! [X0] : ((~predd(X0) & ~prede(X0)) & room(X0)) [ennf transformation 48] 141. ! [X0] : (~predd(X0) & ~prede(X0) & room(X0)) [flattening 140] 142. ! [X0] : ((~preda(X0) | predd(X0)) | ~room(X0)) [ennf transformation 49] 143. ! [X0] : (~preda(X0) | predd(X0) | ~room(X0)) [flattening 142] 157. ? [X0] : (preda(X0) & ~room(X0)) | ~there_is_a_room [ennf transformation 60] 159. ! [X0] : (((predg(X0) | ~predn(X0)) & (predn(X0) | ~predg(X0))) & ~predh(X0) & room(X0)) [nnf transformation 136] 160. ! [X0] : ((predg(X0) | ~predn(X0)) & (predn(X0) | ~predg(X0)) & ~predh(X0) & room(X0)) [flattening 159] 169. ? [X0] : (preda(X0) & ~room(X0)) => (preda(sK1) & ~room(sK1)) [choice axiom] 170. (preda(sK1) & ~room(sK1)) | ~there_is_a_room [skolemisation 157,169] 252. there_is_a_room [cnf transformation 44] 253. room(X0) [cnf transformation 160] 267. ~predd(X0) [cnf transformation 141] 268. ~preda(X0) | predd(X0) | ~room(X0) [cnf transformation 143] 292. preda(sK1) | ~there_is_a_room [cnf transformation 170] 299. ~preda(X0) | ~room(X0) [subsumption resolution 268,267] 300. ~preda(X0) [subsumption resolution 299,253] 311. ~there_is_a_room [subsumption resolution 292,300] 312. $false [subsumption resolution 311,252] % SZS output end Proof for 4100738295437440338912928 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.037 s % ------------------------------ % ------------------------------
0.208859
Daniel, Ernestine are the only persons in the room. "Someone in the room practices zumba or enjoys bird watching or both" if "no one in the room does not practice zumba or practices tai chi" and vice versa. "No one in the room does not practice tai chi or plays video games" if "everyone in the room enjoys bird watching" and vice versa. Daniel plays video games. Everyone anywhere who is a client of Costco collects vintage vinyl records. Everyone in the room practices zumba if they collects vintage vinyl records. Daniel who collects luxury watches is a cybersecurity expert, does not practice calligraphy or practices tai chi. Everyone in the room does enjoy mountain biking. If someone practices zumba then he/she is a coffee connoisseur. More than one person in the room collects comic books.
Daniel is a client of Costco.
contradiction
room(daniel)&room(ernestine)&(![X]:(room(X)=>(X='daniel'|X='ernestine')))& ((~?[X]:(room(X)=>(((practices_tai_chi(X))|(does_not_practice_zumba(X))))))<=>(?[X]:(room(X)&(((practices_zumba(X))|(enjoys_bird_watching(X)))))))& ((![X]:(room(X)=>(enjoys_bird_watching(X))))<=>(~?[X]:(room(X)=>(((plays_video_games(X))|(does_not_practice_tai_chi(X)))))))& (plays_video_games(daniel))& (![X]:(anywhere(X)=>(((is_a_client_of_Costco(X))=>(collects_vintage_vinyl_records(X))))))& (![X]:(room(X)=>(((collects_vintage_vinyl_records(X))=>(practices_zumba(X))))))& ((collects_luxury_watches(daniel))&(((is_a_cybersecurity_expert(daniel))|(does_not_practice_calligraphy(daniel))|(practices_tai_chi(daniel)))))& (![X]:(room(X)=>(does_enjoy_mountain_biking(X))))& ((![X]:((practices_zumba(X))=>(is_a_coffee_connoisseur(X)))))& ((?[X,Y]:(room(X)&room(Y)&(collects_comic_books(X)&collects_comic_books(Y))&(X!=Y))))& (![X]:(room(X)=>(((((collects_modern_art(X))|(is_a_cybersecurity_expert(X))|(plays_video_games(X))))=>(((is_a_night_owl(X))|(collects_luxury_watches(X))|(is_a_coffee_connoisseur(X))))))))& (![X]:(room(X)=>(((((is_a_night_owl(X))|(collects_luxury_watches(X))|(is_a_coffee_connoisseur(X))))=>(collects_luxury_watches(X))))))& ((![X]:((collects_modern_art(X))=>(plays_video_games(X)))))& (?[X]:(room(X)&(volunteers_for_local_environmental_conservation_projects(X))))& (![X]:(room(X)=>(((((practices_calligraphy(X))&(does_not_collect_luxury_watches(X))&(enjoys_coding_in_Python(X))))=>(((is_passionate_about_collecting_and_restoring_classic_cars(X))<~>(practices_zumba(X))))))))& (![X]:(room(X)=>(((((is_passionate_about_collecting_and_restoring_classic_cars(X))<~>(practices_zumba(X))))=>(enjoys_landscape_photography(X))))))& ((![X]:((is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))=>(collects_comic_books(X)))))& (~![X]:(room(X)=>(((enjoys_landscape_photography(X))=>(volunteers_for_local_environmental_conservation_projects(X))))))& (((?[X]:(room(X)&((collects_luxury_watches(X))|(collects_vintage_vinyl_records(X)))))&(![X,Y]:((room(X)&room(Y)&(((collects_luxury_watches(X))|(collects_vintage_vinyl_records(X))))&(((collects_luxury_watches(Y))|(collects_vintage_vinyl_records(Y)))))=>(X=Y)))))& ((![X]:((collects_vintage_vinyl_records(X))=>(does_enjoy_mountain_biking(X)))))& (practices_digital_art(daniel))& (((does_not_enjoy_wildlife_photography(daniel))|(is_not_a_client_of_Costco(daniel))))& (has_completed_a_triathlon(ernestine))
room(daniel)&room(ernestine)&(![X]:(room(X)=>(X='daniel'|X='ernestine')))& is_a_client_of_Costco(daniel)
[ "b4", "b42", "p0", "p1", "p4", "p5", "hypothesis" ]
% SZS status Unsatisfiable for 8055018480005598241449457 % SZS output start Proof for 8055018480005598241449457 5. ! [X0] : anywhere(X0) [input b4] 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 45. ~? [X0] : (room(X0) => (~preda(X0) | predz(X0))) <=> ? [X0] : ((predc(X0) | preda(X0)) & room(X0)) [input p1] 48. ! [X0] : (anywhere(X0) => (predn(X0) => predm(X0))) [input p4] 49. ! [X0] : (room(X0) => (predm(X0) => preda(X0))) [input p5] 67. predn(mary) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 68. ~? [X0] : (room(X0) => (~preda(X0) | predz(X0))) <=> ? [X1] : ((predc(X1) | preda(X1)) & room(X1)) [rectify 45] 156. ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 44] 157. ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 156] 158. ! [X0] : ((preda(X0) & ~predz(X0)) & room(X0)) <=> ? [X1] : ((predc(X1) | preda(X1)) & room(X1)) [ennf transformation 68] 159. ! [X0] : (preda(X0) & ~predz(X0) & room(X0)) <=> ? [X1] : ((predc(X1) | preda(X1)) & room(X1)) [flattening 158] 162. ! [X0] : ((predm(X0) | ~predn(X0)) | ~anywhere(X0)) [ennf transformation 48] 163. ! [X0] : (predm(X0) | ~predn(X0) | ~anywhere(X0)) [flattening 162] 164. ! [X0] : ((preda(X0) | ~predm(X0)) | ~room(X0)) [ennf transformation 49] 165. ! [X0] : (preda(X0) | ~predm(X0) | ~room(X0)) [flattening 164] 174. predn(mary) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 67] 175. predn(mary) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 174] 177. (! [X0] : (preda(X0) & ~predz(X0) & room(X0)) | ! [X1] : ((~predc(X1) & ~preda(X1)) | ~room(X1))) & (? [X1] : ((predc(X1) | preda(X1)) & room(X1)) | ? [X0] : (~preda(X0) | predz(X0) | ~room(X0))) [nnf transformation 159] 178. (! [X0] : (preda(X0) & ~predz(X0) & room(X0)) | ! [X1] : ((~predc(X1) & ~preda(X1)) | ~room(X1))) & (? [X2] : ((predc(X2) | preda(X2)) & room(X2)) | ? [X3] : (~preda(X3) | predz(X3) | ~room(X3))) [rectify 177] 179. ? [X2] : ((predc(X2) | preda(X2)) & room(X2)) => ((predc(sK0) | preda(sK0)) & room(sK0)) [choice axiom] 180. ? [X3] : (~preda(X3) | predz(X3) | ~room(X3)) => (~preda(sK1) | predz(sK1) | ~room(sK1)) [choice axiom] 181. (! [X0] : (preda(X0) & ~predz(X0) & room(X0)) | ! [X1] : ((~predc(X1) & ~preda(X1)) | ~room(X1))) & (((predc(sK0) | preda(sK0)) & room(sK0)) | (~preda(sK1) | predz(sK1) | ~room(sK1))) [skolemisation 178,180,179] 195. anywhere(X0) [cnf transformation 5] 270. mary != lucy [cnf transformation 43] 271. paul != lucy [cnf transformation 43] 276. room(mary) [cnf transformation 157] 278. ~room(X0) | mary = X0 | paul = X0 [cnf transformation 157] 281. room(X0) | ~preda(X1) | ~room(X1) [cnf transformation 181] 295. predm(X0) | ~predn(X0) | ~anywhere(X0) [cnf transformation 163] 296. ~predm(X0) | preda(X0) | ~room(X0) [cnf transformation 165] 319. predn(mary) [cnf transformation 175] 328. 3 <=> ! [X1] : (~preda(X1) | ~room(X1)) [avatar definition] 329. ~preda(X1) | ~room(X1) <- (3) [avatar component clause 328] 337. 5 <=> ! [X0] : room(X0) [avatar definition] 338. room(X0) <- (5) [avatar component clause 337] 340. 3 | 5 [avatar split clause 281,337,328] 403. ~predn(X0) | predm(X0) [subsumption resolution 295,195] 418. predm(mary) [resolution 403,319] 419. preda(mary) | ~room(mary) [resolution 418,296] 422. paul = X0 | mary = X0 <- (5) [resolution 278,338] 452. paul != paul | mary = lucy <- (5) [superposition 271,422] 467. mary = lucy <- (5) [trivial inequality removal 452] 480. $false <- (5) [subsumption resolution 467,270] 481. ~5 [avatar contradiction clause 480] 569. preda(mary) [subsumption resolution 419,276] 596. ~room(mary) <- (3) [resolution 569,329] 598. $false <- (3) [subsumption resolution 596,276] 599. ~3 [avatar contradiction clause 598] 600. $false [avatar sat refutation 340,481,599] % SZS output end Proof for 8055018480005598241449457 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.022522
Earl, Laura, Keith, Dion are the only persons in the room. Everyone anywhere does not play eSports competitively or does not own a significant collection of rare gemstones and minerals or both. Keith neither is not a drone photographer nor is not an avid mountain climber who has scaled several peaks. If someone neither does not mentor a youth basketball team on weekends nor does not have a curated collection of mid-century modern furniture then he/she neither is not a drone photographer nor does not write and illustrates their own graphic novels. If someone neither does not have a curated collection of mid-century modern furniture nor does not practice zumba then he/she does not practice archery. Everyone in the room does not practice zumba. Dion neither does not own a 3D printer nor does not enjoy logic puzzles. Everyone in the room neither does not write poetry nor is not a drone photographer. Dion neither does not compete in national level swimming championships nor does not enjoy bird watching. Keith is not an enthusiastic bird watcher who travels for rare sightings or does not collect rare and antique scientific instruments or both. Everyone outside the room neither does not practice graffiti art nor is not a wine connoisseur with a private cellar of vintage wines. Everyone anywhere neither does not enjoy bird watching nor does not play eSports competitively. Everyone in the room does not practice graffiti art and does not have a piercing. Earl does not enjoy logic puzzles or does not collect rare and antique scientific instruments or both.
Everyone in the room owns a 3D printer or does not own a 3D printer.
entailment
room(earl)&room(laura)&room(keith)&room(dion)&(![X]:(room(X)=>(X='earl'|X='laura'|X='keith'|X='dion')))& (![X]:(anywhere(X)=>(((does_not_play_eSports_competitively(X))|(does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(X))))))& (~((is_not_a_drone_photographer(keith))|(is_not_an_avid_mountain_climber_who_has_scaled_several_peaks(keith))))& ((![X]:((~((does_not_mentor_a_youth_basketball_team_on_weekends(X))|(does_not_have_a_curated_collection_of_mid-century_modern_furniture(X))))=>(~((is_not_a_drone_photographer(X))|(does_not_write_and_illustrates_their_own_graphic_novels(X)))))))& ((![X]:((~((does_not_have_a_curated_collection_of_mid-century_modern_furniture(X))|(does_not_practice_zumba(X))))=>(does_not_practice_archery(X)))))& (![X]:(room(X)=>(does_not_practice_zumba(X))))& (~((does_not_own_a_3D_printer(dion))|(does_not_enjoy_logic_puzzles(dion))))& (![X]:(room(X)=>(~((does_not_write_poetry(X))|(is_not_a_drone_photographer(X))))))& (~((does_not_compete_in_national_level_swimming_championships(dion))|(does_not_enjoy_bird_watching(dion))))& (((is_not_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(keith))|(does_not_collect_rare_and_antique_scientific_instruments(keith))))& (![X]:(~room(X)=>(~((does_not_practice_graffiti_art(X))|(is_not_a_wine_connoisseur_with_a_private_cellar_of_vintage_wines(X))))))& (![X]:(anywhere(X)=>(~((does_not_enjoy_bird_watching(X))|(does_not_play_eSports_competitively(X))))))& (![X]:(room(X)=>(((does_not_practice_graffiti_art(X))&(does_not_have_a_piercing(X))))))& (((does_not_enjoy_logic_puzzles(earl))|(does_not_collect_rare_and_antique_scientific_instruments(earl))))& (does_not_have_a_curated_collection_of_mid-century_modern_furniture(laura))& (((is_not_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(laura))<~>(does_not_have_a_curated_collection_of_mid-century_modern_furniture(laura))))& (~((does_not_enjoy_bird_watching(dion))|(is_not_a_certified_yoga_instructor_teaching_classes_weekly(dion))))& (![X]:(room(X)=>(does_not_practice_archery(X))))& (![X]:(room(X)=>(does_not_write_and_illustrates_their_own_graphic_novels(X))))& (~![X]:(room(X)=>(does_not_mentor_a_youth_basketball_team_on_weekends(X))))& (((?[X]:(room(X)&~((is_not_an_avid_mountain_climber_who_has_scaled_several_peaks(X))|(cannot_play_the_guitar(X)))))&(![X,Y]:((room(X)&room(Y)&(~((is_not_an_avid_mountain_climber_who_has_scaled_several_peaks(X))|(cannot_play_the_guitar(X))))&(~((is_not_an_avid_mountain_climber_who_has_scaled_several_peaks(Y))|(cannot_play_the_guitar(Y)))))=>(X=Y)))))& (![X]:(room(X)=>(is_not_passionate_about_collecting_and_restoring_classic_cars(X))))
room(earl)&room(laura)&room(keith)&room(dion)&(![X]:(room(X)=>(X='earl'|X='laura'|X='keith'|X='dion')))& ![X]:(room(X)=>(((does_not_own_a_3D_printer(X))|(owns_a_3D_printer(X)))))
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 9104619432036945010725824 % SZS output start Proof for 9104619432036945010725824 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 66. ~(! [X0] : (room(X0) => (predw(X0) | ~predw(X0))) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary)) [input hypothesis] 68. ~(! [X0] : (room(X0) => (predw(X0) | ~predw(X0))) & ! [X1] : (room(X1) => (alice = X1 | fred = X1 | paul = X1 | mary = X1)) & room(alice) & room(fred) & room(paul) & room(mary)) [rectify 66] 161. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 162. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 161] 173. ? [X0] : ((~predw(X0) & predw(X0)) & room(X0)) | ? [X1] : ((alice != X1 & fred != X1 & paul != X1 & mary != X1) & room(X1)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [ennf transformation 68] 174. ? [X0] : (~predw(X0) & predw(X0) & room(X0)) | ? [X1] : (alice != X1 & fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [flattening 173] 175. ? [X1] : (alice != X1 & fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~sP0 [predicate definition introduction] 176. ? [X0] : (~predw(X0) & predw(X0) & room(X0)) | sP0 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [definition folding 174,175] 183. ? [X1] : (alice != X1 & fred != X1 & paul != X1 & mary != X1 & room(X1)) | ~sP0 [nnf transformation 175] 184. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) | ~sP0 [rectify 183] 185. ? [X0] : (alice != X0 & fred != X0 & paul != X0 & mary != X0 & room(X0)) => (alice != sK3 & fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) [choice axiom] 186. (alice != sK3 & fred != sK3 & paul != sK3 & mary != sK3 & room(sK3)) | ~sP0 [skolemisation 184,185] 187. ? [X0] : (~predw(X0) & predw(X0) & room(X0)) => (~predw(sK4) & predw(sK4) & room(sK4)) [choice axiom] 188. (~predw(sK4) & predw(sK4) & room(sK4)) | sP0 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [skolemisation 176,187] 269. room(mary) [cnf transformation 162] 270. room(paul) [cnf transformation 162] 271. room(fred) [cnf transformation 162] 272. room(alice) [cnf transformation 162] 273. ~room(X0) | fred = X0 | paul = X0 | mary = X0 | alice = X0 [cnf transformation 162] 289. room(sK3) | ~sP0 [cnf transformation 186] 290. mary != sK3 | ~sP0 [cnf transformation 186] 291. paul != sK3 | ~sP0 [cnf transformation 186] 292. fred != sK3 | ~sP0 [cnf transformation 186] 293. alice != sK3 | ~sP0 [cnf transformation 186] 295. predw(sK4) | sP0 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 188] 296. ~predw(sK4) | sP0 | ~room(alice) | ~room(fred) | ~room(paul) | ~room(mary) [cnf transformation 188] 299. 1 <=> sP0 [avatar definition] 303. 2 <=> alice = sK3 [avatar definition] 305. alice != sK3 <- (~2) [avatar component clause 303] 306. ~1 | ~2 [avatar split clause 293,303,299] 308. 3 <=> fred = sK3 [avatar definition] 310. fred != sK3 <- (~3) [avatar component clause 308] 311. ~1 | ~3 [avatar split clause 292,308,299] 313. 4 <=> paul = sK3 [avatar definition] 315. paul != sK3 <- (~4) [avatar component clause 313] 316. ~1 | ~4 [avatar split clause 291,313,299] 318. 5 <=> mary = sK3 [avatar definition] 320. mary != sK3 <- (~5) [avatar component clause 318] 321. ~1 | ~5 [avatar split clause 290,318,299] 323. 6 <=> room(sK3) [avatar definition] 325. room(sK3) <- (6) [avatar component clause 323] 326. ~1 | 6 [avatar split clause 289,323,299] 327. ~predw(sK4) | sP0 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 296,272] 328. ~predw(sK4) | sP0 | ~room(paul) | ~room(mary) [subsumption resolution 327,271] 329. ~predw(sK4) | sP0 | ~room(mary) [subsumption resolution 328,270] 330. ~predw(sK4) | sP0 [subsumption resolution 329,269] 332. 7 <=> predw(sK4) [avatar definition] 335. 1 | ~7 [avatar split clause 330,332,299] 336. predw(sK4) | sP0 | ~room(fred) | ~room(paul) | ~room(mary) [subsumption resolution 295,272] 337. predw(sK4) | sP0 | ~room(paul) | ~room(mary) [subsumption resolution 336,271] 338. predw(sK4) | sP0 | ~room(mary) [subsumption resolution 337,270] 339. predw(sK4) | sP0 [subsumption resolution 338,269] 340. 1 | 7 [avatar split clause 339,332,299] 399. fred = sK3 | paul = sK3 | mary = sK3 | alice = sK3 <- (6) [resolution 273,325] 434. paul = sK3 | mary = sK3 | alice = sK3 <- (~3, 6) [subsumption resolution 399,310] 435. mary = sK3 | alice = sK3 <- (~3, ~4, 6) [subsumption resolution 434,315] 436. alice = sK3 <- (~3, ~4, ~5, 6) [subsumption resolution 435,320] 437. $false <- (~2, ~3, ~4, ~5, 6) [subsumption resolution 436,305] 438. 2 | 3 | 4 | 5 | ~6 [avatar contradiction clause 437] 439. $false [avatar sat refutation 306,311,316,321,326,335,340,438] % SZS output end Proof for 9104619432036945010725824 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.035 s % ------------------------------ % ------------------------------
0.098251
Diane, Deborah, Mable, Lucas are the only persons in the room. All old persons are calm. Everyone in the room who is a old calm person is not a patient person. Lucas and Diane are respectively calm and quiet. Not everyone outside the room who is a kind person is richer than Jason, is a wise strong happy person and is a patient person. Diane and Mable are respectively patient and curious. Everyone in the room who is quieter than Jason is a kind generous person. Diane is the quietest in the room. More than one person in the room is a old calm person. Everyone in the room is quieter than Jason if they is a patient wise creative person. Everyone in the room who is older than Jason is older than Jason, is a quiet person and is a patient person. Not everyone in the room is richer than Jason if they is not a curious person and vice versa. Not everyone in the room is richer than Jason if they is not a curious person. Everyone in the room is not wise if they is richer than Jason.
Mable is older than Jason.
contradiction
room(diane)&room(deborah)&room(mable)&room(lucas)&(![X]:(room(X)=>(X='diane'|X='deborah'|X='mable'|X='lucas')))& (![X]:(old(X)=>calm(X)))& (![X]:(room(X)=>(((old(X)&calm(X)&person(X))=>(~(patient(X)&person(X)))))))& ((calm(lucas))&(quiet(diane)))& (~![X]:(~room(X)=>(((kind(X)&person(X))=>(((richer(jason,X))&(wise(X)&strong(X)&happy(X)&person(X))&(patient(X)&person(X))))))))& ((patient(diane))&(curious(mable)))& (![X]:(room(X)=>(((quieter(jason,X))=>(kind(X)&generous(X)&person(X))))))& (![X]:((room(X)&(X!=diane))=>quieter(X,diane)))& ((?[X,Y]:(room(X)&room(Y)&(old(X)&calm(X)&person(X)&old(Y)&calm(Y)&person(Y))&(X!=Y))))& (![X]:(room(X)=>(((patient(X)&wise(X)&creative(X)&person(X))=>(quieter(jason,X))))))& (![X]:(room(X)=>(((older(jason,X))=>(((older(jason,X))&(quiet(X)&person(X))&(patient(X)&person(X))))))))& (~![X]:(room(X)=>(((richer(jason,X))<=>(~(curious(X)&person(X)))))))& (~![X]:(room(X)=>(((~(curious(X)&person(X)))=>(richer(jason,X))))))& (![X]:(room(X)=>(((richer(jason,X))=>(~wise(X))))))& (![X]:(tall(X)=>patient(X)))
room(diane)&room(deborah)&room(mable)&room(lucas)&(![X]:(room(X)=>(X='diane'|X='deborah'|X='mable'|X='lucas')))& older(jason,mable)
[ "b20", "b21", "b42", "p0", "p1", "p2", "p5", "p8", "p10", "hypothesis" ]
% SZS status Unsatisfiable for 3297497649652583234359157 % SZS output start Proof for 3297497649652583234359157 21. ! [X0,X1] : (X0 != X1 => ((old(X0) & older(X0,X1)) => old(X1))) [input b20] 22. ! [X0,X1] : (X0 != X1 => ((old(X1) & ~old(X0)) => older(X0,X1))) [input b21] 43. susan != lucy & john != lucy & alice != lucy & fred != lucy & paul != lucy & mary != lucy & susan != lucy & john != susan & alice != susan & fred != susan & paul != susan & mary != susan & john != lucy & john != susan & alice != john & fred != john & paul != john & mary != john & alice != lucy & alice != susan & alice != john & fred != alice & paul != alice & mary != alice & fred != lucy & fred != susan & fred != john & fred != alice & paul != fred & mary != fred & paul != lucy & paul != susan & paul != john & paul != alice & paul != fred & mary != paul & mary != lucy & mary != susan & mary != john & mary != alice & mary != fred & mary != paul [input b42] 44. ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input p0] 45. ! [X0] : (old(X0) => calm(X0)) [input p1] 46. ! [X0] : (room(X0) => ((person(X0) & calm(X0) & old(X0)) => ~(person(X0) & patient(X0)))) [input p2] 49. curious(fred) & patient(mary) [input p5] 52. ? [X0,X1] : (X0 != X1 & person(X1) & calm(X1) & old(X1) & person(X0) & calm(X0) & old(X0) & room(X1) & room(X0)) [input p8] 54. ! [X0] : (room(X0) => (older(john,X0) => (person(X0) & patient(X0) & person(X0) & quiet(X0) & older(john,X0)))) [input p10] 59. older(john,fred) & ! [X0] : (room(X0) => (alice = X0 | fred = X0 | paul = X0 | mary = X0)) & room(alice) & room(fred) & room(paul) & room(mary) [input hypothesis] 99. ! [X0,X1] : ((old(X1) | (~old(X0) | ~older(X0,X1))) | X0 = X1) [ennf transformation 21] 100. ! [X0,X1] : (old(X1) | ~old(X0) | ~older(X0,X1) | X0 = X1) [flattening 99] 101. ! [X0,X1] : ((older(X0,X1) | (~old(X1) | old(X0))) | X0 = X1) [ennf transformation 22] 102. ! [X0,X1] : (older(X0,X1) | ~old(X1) | old(X0) | X0 = X1) [flattening 101] 139. ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 44] 140. ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 139] 141. ! [X0] : (calm(X0) | ~old(X0)) [ennf transformation 45] 142. ! [X0] : (((~person(X0) | ~patient(X0)) | (~person(X0) | ~calm(X0) | ~old(X0))) | ~room(X0)) [ennf transformation 46] 143. ! [X0] : (~person(X0) | ~patient(X0) | ~person(X0) | ~calm(X0) | ~old(X0) | ~room(X0)) [flattening 142] 149. ! [X0] : (((person(X0) & patient(X0) & person(X0) & quiet(X0) & older(john,X0)) | ~older(john,X0)) | ~room(X0)) [ennf transformation 54] 150. ! [X0] : ((person(X0) & patient(X0) & person(X0) & quiet(X0) & older(john,X0)) | ~older(john,X0) | ~room(X0)) [flattening 149] 154. older(john,fred) & ! [X0] : ((alice = X0 | fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [ennf transformation 59] 155. older(john,fred) & ! [X0] : (alice = X0 | fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(alice) & room(fred) & room(paul) & room(mary) [flattening 154] 159. ? [X0,X1] : (X0 != X1 & person(X1) & calm(X1) & old(X1) & person(X0) & calm(X0) & old(X0) & room(X1) & room(X0)) => (sK1 != sK2 & person(sK2) & calm(sK2) & old(sK2) & person(sK1) & calm(sK1) & old(sK1) & room(sK2) & room(sK1)) [choice axiom] 160. sK1 != sK2 & person(sK2) & calm(sK2) & old(sK2) & person(sK1) & calm(sK1) & old(sK1) & room(sK2) & room(sK1) [skolemisation 52,159] 183. ~older(X0,X1) | ~old(X0) | old(X1) | X0 = X1 [cnf transformation 100] 184. older(X0,X1) | ~old(X1) | old(X0) | X0 = X1 [cnf transformation 102] 229. mary != john [cnf transformation 43] 230. paul != john [cnf transformation 43] 231. fred != john [cnf transformation 43] 247. room(mary) [cnf transformation 140] 248. room(paul) [cnf transformation 140] 249. room(fred) [cnf transformation 140] 251. ~room(X0) | fred = X0 | paul = X0 | mary = X0 | alice = X0 [cnf transformation 140] 252. ~old(X0) | calm(X0) [cnf transformation 141] 253. ~person(X0) | ~patient(X0) | ~person(X0) | ~calm(X0) | ~old(X0) | ~room(X0) [cnf transformation 143] 258. patient(mary) [cnf transformation 49] 262. room(sK1) [cnf transformation 160] 263. room(sK2) [cnf transformation 160] 264. old(sK1) [cnf transformation 160] 266. person(sK1) [cnf transformation 160] 267. old(sK2) [cnf transformation 160] 270. sK1 != sK2 [cnf transformation 160] 274. ~older(john,X0) | patient(X0) | ~room(X0) [cnf transformation 150] 275. ~older(john,X0) | person(X0) | ~room(X0) [cnf transformation 150] 288. older(john,fred) [cnf transformation 155] 289. ~person(X0) | ~patient(X0) | ~calm(X0) | ~old(X0) | ~room(X0) [duplicate literal removal 253] 290. ~patient(X0) | ~person(X0) | ~old(X0) | ~room(X0) [subsumption resolution 289,252] 319. patient(fred) | ~room(fred) [resolution 274,288] 320. patient(fred) [subsumption resolution 319,249] 321. person(fred) | ~room(fred) [resolution 275,288] 322. person(fred) [subsumption resolution 321,249] 327. 6 <=> person(mary) [avatar definition] 328. ~person(mary) <- (~6) [avatar component clause 327] 335. ~person(mary) | ~old(mary) | ~room(mary) [resolution 290,258] 336. ~person(fred) | ~old(fred) | ~room(fred) [resolution 290,320] 337. ~person(mary) | ~old(mary) [subsumption resolution 335,247] 339. 8 <=> old(mary) [avatar definition] 341. ~old(mary) <- (~8) [avatar component clause 339] 342. ~8 | ~6 [avatar split clause 337,327,339] 343. ~old(fred) | ~room(fred) [subsumption resolution 336,322] 344. ~old(fred) [subsumption resolution 343,249] 413. ~old(john) | old(fred) | fred = john [resolution 183,288] 414. ~old(john) | fred = john [subsumption resolution 413,344] 415. ~old(john) [subsumption resolution 414,231] 416. ~old(X0) | old(john) | john = X0 | person(X0) | ~room(X0) [resolution 184,275] 417. ~old(X1) | old(john) | john = X1 | patient(X1) | ~room(X1) [resolution 184,274] 426. ~room(X0) | john = X0 | person(X0) | ~old(X0) [subsumption resolution 416,415] 427. ~room(X1) | john = X1 | patient(X1) | ~old(X1) [subsumption resolution 417,415] 429. mary = john | person(mary) | ~old(mary) [resolution 426,247] 430. paul = john | person(paul) | ~old(paul) [resolution 426,248] 437. person(mary) | ~old(mary) [subsumption resolution 429,229] 438. ~old(mary) <- (~6) [subsumption resolution 437,328] 439. ~8 | 6 [avatar split clause 438,327,339] 440. person(paul) | ~old(paul) [subsumption resolution 430,230] 442. 16 <=> old(paul) [avatar definition] 443. old(paul) <- (16) [avatar component clause 442] 444. ~old(paul) <- (~16) [avatar component clause 442] 446. 17 <=> person(paul) [avatar definition] 448. person(paul) <- (17) [avatar component clause 446] 449. ~16 | 17 [avatar split clause 440,446,442] 518. fred = sK1 | paul = sK1 | mary = sK1 | alice = sK1 [resolution 251,262] 519. fred = sK2 | paul = sK2 | mary = sK2 | alice = sK2 [resolution 251,263] 523. 26 <=> alice = sK1 [avatar definition] 527. 27 <=> mary = sK1 [avatar definition] 529. mary = sK1 <- (27) [avatar component clause 527] 531. 28 <=> paul = sK1 [avatar definition] 533. paul = sK1 <- (28) [avatar component clause 531] 535. 29 <=> fred = sK1 [avatar definition] 537. fred = sK1 <- (29) [avatar component clause 535] 538. 26 | 27 | 28 | 29 [avatar split clause 518,535,531,527,523] 540. 30 <=> alice = sK2 [avatar definition] 542. alice = sK2 <- (30) [avatar component clause 540] 544. 31 <=> mary = sK2 [avatar definition] 546. mary = sK2 <- (31) [avatar component clause 544] 548. 32 <=> paul = sK2 [avatar definition] 550. paul = sK2 <- (32) [avatar component clause 548] 552. 33 <=> fred = sK2 [avatar definition] 554. fred = sK2 <- (33) [avatar component clause 552] 555. 30 | 31 | 32 | 33 [avatar split clause 519,552,548,544,540] 606. alice != sK1 <- (30) [backward demodulation 270,542] 610. ~26 | ~30 [avatar split clause 606,540,523] 632. old(mary) <- (27) [backward demodulation 264,529] 634. person(mary) <- (27) [backward demodulation 266,529] 635. $false <- (~8, 27) [subsumption resolution 632,341] 636. 8 | ~27 [avatar contradiction clause 635] 637. $false <- (~6, 27) [subsumption resolution 634,328] 638. 6 | ~27 [avatar contradiction clause 637] 645. old(paul) <- (28) [backward demodulation 264,533] 654. 16 | ~28 [avatar split clause 645,531,442] 680. paul = john | patient(paul) | ~old(paul) [resolution 427,248] 683. patient(paul) | ~old(paul) [subsumption resolution 680,230] 684. patient(paul) <- (16) [subsumption resolution 683,443] 695. ~person(paul) | ~old(paul) | ~room(paul) <- (16) [resolution 684,290] 696. ~old(paul) | ~room(paul) <- (16, 17) [subsumption resolution 695,448] 697. ~room(paul) <- (16, 17) [subsumption resolution 696,443] 698. $false <- (16, 17) [subsumption resolution 697,248] 699. ~16 | ~17 [avatar contradiction clause 698] 711. old(fred) <- (29) [backward demodulation 264,537] 715. $false <- (29) [subsumption resolution 711,344] 716. ~29 [avatar contradiction clause 715] 718. old(mary) <- (31) [backward demodulation 267,546] 722. $false <- (~8, 31) [subsumption resolution 718,341] 723. 8 | ~31 [avatar contradiction clause 722] 733. old(paul) <- (32) [backward demodulation 267,550] 737. $false <- (~16, 32) [subsumption resolution 733,444] 738. 16 | ~32 [avatar contradiction clause 737] 740. old(fred) <- (33) [backward demodulation 267,554] 744. $false <- (33) [subsumption resolution 740,344] 745. ~33 [avatar contradiction clause 744] 746. $false [avatar sat refutation 342,439,449,538,555,610,636,638,654,699,716,723,738,745] % SZS output end Proof for 3297497649652583234359157 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5373 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.05438
Eric, Donya, Melissa, Bobby, Deanne are the only persons in the room. Eric has completed a triathlon and does not practice yoga if Bobby either does practice yoga or does not practice yoga but not both. Everyone in the room maintains a large, organic vegetable garden year-round. Bobby is a cybersecurity expert. Melissa is a cybersecurity expert and develops open-source software projects in their free time. Everyone in the room neither has completed a triathlon nor is not a certified scuba diver with advanced underwater photography skills only if they maintains a large, organic vegetable garden year-round. Everyone outside the room develops open-source software projects in their free time or does not have completed a triathlon. Donya is a certified scuba diver with advanced underwater photography skills and is not a cybersecurity expert. Donya has completed a triathlon. Everyone in the room does practice yoga if they neither maintains a large, organic vegetable garden year-round nor is a certified scuba diver with advanced underwater photography skills. Everyone anywhere is a certified scuba diver with advanced underwater photography skills or is not a cybersecurity expert. Everyone in the room has completed a triathlon or does not have completed a triathlon. Everyone outside the room does not have completed a triathlon if they has completed a triathlon. Everyone in the room is a cybersecurity expert, maintains a large, organic vegetable garden year-round or does not develop open-source software projects in their free time. Everyone in the room neither does not have completed a triathlon nor is a cybersecurity expert if they does practice yoga. Melissa either maintains a large, organic vegetable garden year-round or has completed a triathlon but not both. Everyone in the room who does not have completed a triathlon maintains a large, organic vegetable garden year-round. Bobby neither has completed a triathlon nor is not a certified scuba diver with advanced underwater photography skills. Deanne either has completed a triathlon or develops open-source software projects in their free time but not both.
Donya develops open-source software projects in their free time.
neutral
room(eric)&room(donya)&room(melissa)&room(bobby)&room(deanne)&(![X]:(room(X)=>(X='eric'|X='donya'|X='melissa'|X='bobby'|X='deanne')))& ((((does_practice_yoga(bobby))<~>(does_not_practice_yoga(bobby))))=>(((has_completed_a_triathlon(eric))&(does_not_practice_yoga(eric)))))& (![X]:(room(X)=>(maintains_a_large,_organic_vegetable_garden_year-round(X))))& (is_a_cybersecurity_expert(bobby))& (((is_a_cybersecurity_expert(melissa))&(develops_open-source_software_projects_in_their_free_time(melissa))))& (![X]:(room(X)=>(((maintains_a_large,_organic_vegetable_garden_year-round(X))<=(~((has_completed_a_triathlon(X))|(is_not_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))))))& (![X]:(~room(X)=>(((does_not_have_completed_a_triathlon(X))|(develops_open-source_software_projects_in_their_free_time(X))))))& (((is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(donya))&(is_not_a_cybersecurity_expert(donya))))& (has_completed_a_triathlon(donya))& (![X]:(room(X)=>(((~((maintains_a_large,_organic_vegetable_garden_year-round(X))|(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))=>(does_practice_yoga(X))))))& (![X]:(anywhere(X)=>(((is_not_a_cybersecurity_expert(X))|(is_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))))& (![X]:(room(X)=>(((does_not_have_completed_a_triathlon(X))|(has_completed_a_triathlon(X))))))& (![X]:(~room(X)=>(((has_completed_a_triathlon(X))=>(does_not_have_completed_a_triathlon(X))))))& (![X]:(room(X)=>(((is_a_cybersecurity_expert(X))|(maintains_a_large,_organic_vegetable_garden_year-round(X))|(does_not_develop_open-source_software_projects_in_their_free_time(X))))))& (![X]:(room(X)=>(((does_practice_yoga(X))=>(~((does_not_have_completed_a_triathlon(X))|(is_a_cybersecurity_expert(X))))))))& (((maintains_a_large,_organic_vegetable_garden_year-round(melissa))<~>(has_completed_a_triathlon(melissa))))& (![X]:(room(X)=>(((does_not_have_completed_a_triathlon(X))=>(maintains_a_large,_organic_vegetable_garden_year-round(X))))))& (~((has_completed_a_triathlon(bobby))|(is_not_a_certified_scuba_diver_with_advanced_underwater_photography_skills(bobby))))& (((has_completed_a_triathlon(deanne))<~>(develops_open-source_software_projects_in_their_free_time(deanne))))& (![X]:(room(X)=>(~((does_practice_yoga(X))|(is_not_a_certified_scuba_diver_with_advanced_underwater_photography_skills(X))))))& (![X]:(room(X)=>(((~((maintains_a_large,_organic_vegetable_garden_year-round(X))|(does_not_have_completed_a_triathlon(X))))<=>(does_practice_yoga(X))))))
room(eric)&room(donya)&room(melissa)&room(bobby)&room(deanne)&(![X]:(room(X)=>(X='eric'|X='donya'|X='melissa'|X='bobby'|X='deanne')))& develops_open-source_software_projects_in_their_free_time(donya)
[]
null
0.106755
Barbara, Sanford, James are the only persons in the room. Sanford builds model airplanes. Sanford neither enjoys windsurfing nor is a professional photographer specializing in portrait photography. Barbara collect rare sneakers. Barbara dreamt that “if someone does not enjoy windsurfing then he/she is a wine connoisseur and vice versa”. Sanford either builds model airplanes or is an avid hiker but not both. Barbara plays eSports competitively. Barbara is a wine connoisseur. Barbara is a skilled home brewer experimenting with craft beer recipes. Barbara builds model airplanes. Sanford participates in citizen science projects related to wildlife monitoring. Sanford is not an expert in identifying and foraging wild edible plants. Sanford collect rare sneakers. Only one person in the room uses a Windows laptop. Sanford plays eSports competitively. Everyone anywhere is an avid hiker or is not an avid hiker. Sanford is not an avid hiker. Sanford enjoys camping and organizing outdoor survival workshops. Sanford either enjoys windsurfing or is a wine connoisseur but not both. Barbara is not an avid hiker. Sanford is a skilled home brewer experimenting with craft beer recipes.
Sanford is a professional photographer specializing in portrait photography.
contradiction
room(barbara)&room(sanford)&room(james)&(![X]:(room(X)=>(X='barbara'|X='sanford'|X='james')))& (builds_model_airplanes(sanford))& (~((enjoys_windsurfing(sanford))|(is_a_professional_photographer_specializing_in_portrait_photography(sanford))))& (collect_rare_sneakers(barbara))& ((barbara_dream=>((![X]:((does_not_enjoy_windsurfing(X))<=>(is_a_wine_connoisseur(X)))))))& (((builds_model_airplanes(sanford))<~>(is_an_avid_hiker(sanford))))& (plays_eSports_competitively(barbara))& (is_a_wine_connoisseur(barbara))& (is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(barbara))& (builds_model_airplanes(barbara))& (participates_in_citizen_science_projects_related_to_wildlife_monitoring(sanford))& (is_not_an_expert_in_identifying_and_foraging_wild_edible_plants(sanford))& (collect_rare_sneakers(sanford))& (((?[X]:(room(X)&uses_a_Windows_laptop(X)))&(![X,Y]:((room(X)&room(Y)&(uses_a_Windows_laptop(X))&(uses_a_Windows_laptop(Y)))=>(X=Y)))))& (plays_eSports_competitively(sanford))& (![X]:(anywhere(X)=>(((is_not_an_avid_hiker(X))|(is_an_avid_hiker(X))))))& (is_not_an_avid_hiker(sanford))& (enjoys_camping_and_organizing_outdoor_survival_workshops(sanford))& (((enjoys_windsurfing(sanford))<~>(is_a_wine_connoisseur(sanford))))& (is_not_an_avid_hiker(barbara))& (is_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(sanford))
room(barbara)&room(sanford)&room(james)&(![X]:(room(X)=>(X='barbara'|X='sanford'|X='james')))& is_a_professional_photographer_specializing_in_portrait_photography(sanford)
[ "p2", "hypothesis" ]
% SZS status Unsatisfiable for 7128020309555246521718813 % SZS output start Proof for 7128020309555246521718813 46. ~(predc(paul) | predh(paul)) [input p2] 65. predc(paul) & ! [X0] : (room(X0) => (fred = X0 | paul = X0 | mary = X0)) & room(fred) & room(paul) & room(mary) [input hypothesis] 150. ~predc(paul) & ~predh(paul) [ennf transformation 46] 155. predc(paul) & ! [X0] : ((fred = X0 | paul = X0 | mary = X0) | ~room(X0)) & room(fred) & room(paul) & room(mary) [ennf transformation 65] 156. predc(paul) & ! [X0] : (fred = X0 | paul = X0 | mary = X0 | ~room(X0)) & room(fred) & room(paul) & room(mary) [flattening 155] 249. ~predc(paul) [cnf transformation 150] 266. predc(paul) [cnf transformation 156] 269. $false [subsumption resolution 266,249] % SZS output end Proof for 7128020309555246521718813 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.038 s % ------------------------------ % ------------------------------
0.00981
Renee, Mark, Christopher, Kenneth are the only persons in the room. Either "Mark does not collect limited-edition art prints from contemporary artists" or "Mark collects first edition books" but not both. If "Christopher is not a client of LVMH" then "Renee writes a travel blog". If "someone in the room is dedicated to sustainable living and zero-waste practices" then "someone in the room does not use a Windows laptop and has a tattoo". Renee is a client of LVMH. Mark enjoys origami. More than one person in the room collects first edition books. Kenneth collects limited-edition art prints from contemporary artists. Kenneth is allergic to anything. Kenneth neither travels domestically frequently nor uses a Windows laptop. Renee is dedicated to sustainable living and zero-waste practices. Renee enjoys origami.
Mark does not collect limited-edition art prints from contemporary artists.
neutral
room(renee)&room(mark)&room(christopher)&room(kenneth)&(![X]:(room(X)=>(X='renee'|X='mark'|X='christopher'|X='kenneth')))& ((does_not_collect_limited-edition_art_prints_from_contemporary_artists(mark))<~>(collects_first_edition_books(mark)))& ((is_not_a_client_of_LVMH(christopher))=>(writes_a_travel_blog(renee)))& ((?[X]:(room(X)&(is_dedicated_to_sustainable_living_and_zero-waste_practices(X))))=>(?[X]:(room(X)&(((does_not_use_a_Windows_laptop(X))&(has_a_tattoo(X)))))))& (is_a_client_of_LVMH(renee))& (enjoys_origami(mark))& ((?[X,Y]:(room(X)&room(Y)&(collects_first_edition_books(X)&collects_first_edition_books(Y))&(X!=Y))))& (collects_limited-edition_art_prints_from_contemporary_artists(kenneth))& (is_allergic_to_anything(kenneth))& (~((travels_domestically_frequently(kenneth))|(uses_a_Windows_laptop(kenneth))))& (is_dedicated_to_sustainable_living_and_zero-waste_practices(renee))& (enjoys_origami(renee))& (collects_antique_clocks(mark))& (uses_a_Windows_laptop(christopher))
room(renee)&room(mark)&room(christopher)&room(kenneth)&(![X]:(room(X)=>(X='renee'|X='mark'|X='christopher'|X='kenneth')))& does_not_collect_limited-edition_art_prints_from_contemporary_artists(mark)
[]
null
0.327189
Tiffany is the only person in the room. If 'everyone in the room is not a skilled home brewer experimenting with craft beer recipes or does not have a piercing' then 'everyone in the room neither is a client of LVMH nor does not have a piercing if they enjoys rooftop gardening and vice versa' otherwise 'if someone is not an avid hiker then he/she has a curated collection of mid-century modern furniture'. If 'Tiffany has a curated collection of mid-century modern furniture' then 'at least one person in the room practices digital art'. If 'at least one person in the room practices digital art' then 'everyone in the room does not enjoy origami or is a cybersecurity expert'. 'Tiffany uses an ios phone' only if 'at least one person in the room practices digital art'. If 'Tiffany has a piercing, collects vintage stamps or creates YouTube content' then 'Tiffany does not have a piercing'. 'If someone uses an ios phone then he/she enjoys rooftop gardening and vice versa' unless 'Tiffany plays the violin'. Either 'everyone in the room enjoys origami or is not a skilled home brewer experimenting with craft beer recipes' or 'everyone in the room does not have a curated collection of mid-century modern furniture or has a curated collection of mid-century modern furniture' but not both. Everyone in the room does not practice digital art or does not have a curated collection of mid-century modern furniture. If someone neither uses an ios phone nor is a client of Costco then he/she uses an ios phone. Everyone anywhere develops open-source software projects in their free time if they enjoys rooftop gardening and vice versa. Everyone in the room does not enjoy rooftop gardening or enjoys rooftop gardening. Tiffany uses an ios phone. Everyone in the room does not have a curated collection of mid-century modern furniture or has a curated collection of mid-century modern furniture. Tiffany practices digital art, enjoys origami or designs and sews custom cosplay costumes for conventions. At least one person in the room creates augmented reality experiences for mobile applications. Everyone in the room is not a client of Costco, uses a Windows laptop or mentors a youth basketball team on weekends.
Everyone in the room does not create augmented reality experiences for mobile applications or creates augmented reality experiences for mobile applications.
entailment
room(tiffany)&(![X]:(room(X)=>(X='tiffany')))& (((![X]:(room(X)=>(((does_not_have_a_piercing(X))|(is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))))))=>(![X]:(room(X)=>(((~((is_a_client_of_LVMH(X))|(does_not_have_a_piercing(X))))<=>(enjoys_rooftop_gardening(X)))))))&((~(![X]:(room(X)=>(((does_not_have_a_piercing(X))|(is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X)))))))=>((![X]:((is_not_an_avid_hiker(X))=>(has_a_curated_collection_of_mid-century_modern_furniture(X)))))))& (((has_a_curated_collection_of_mid-century_modern_furniture(tiffany))=>(((?[X]:(room(X)&practices_digital_art(X))))))& ((((?[X]:(room(X)&practices_digital_art(X)))))=>(![X]:(room(X)=>(((is_a_cybersecurity_expert(X))|(does_not_enjoy_origami(X))))))))& ((uses_an_ios_phone(tiffany))=>(((?[X]:(room(X)&practices_digital_art(X))))))& ((((has_a_piercing(tiffany))|(collects_vintage_stamps(tiffany))|(creates_YouTube_content(tiffany))))=>(does_not_have_a_piercing(tiffany)))& (~(plays_the_violin(tiffany))=>((![X]:((uses_an_ios_phone(X))<=>(enjoys_rooftop_gardening(X))))))& ((![X]:(room(X)=>(((is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X))|(enjoys_origami(X))))))<~>(![X]:(room(X)=>(((has_a_curated_collection_of_mid-century_modern_furniture(X))|(does_not_have_a_curated_collection_of_mid-century_modern_furniture(X)))))))& (![X]:(room(X)=>(((does_not_have_a_curated_collection_of_mid-century_modern_furniture(X))|(does_not_practice_digital_art(X))))))& ((![X]:((~((uses_an_ios_phone(X))|(is_a_client_of_Costco(X))))=>(uses_an_ios_phone(X)))))& (![X]:(anywhere(X)=>(((develops_open-source_software_projects_in_their_free_time(X))<=>(enjoys_rooftop_gardening(X))))))& (![X]:(room(X)=>(((enjoys_rooftop_gardening(X))|(does_not_enjoy_rooftop_gardening(X))))))& (uses_an_ios_phone(tiffany))& (![X]:(room(X)=>(((has_a_curated_collection_of_mid-century_modern_furniture(X))|(does_not_have_a_curated_collection_of_mid-century_modern_furniture(X))))))& (((practices_digital_art(tiffany))|(enjoys_origami(tiffany))|(designs_and_sews_custom_cosplay_costumes_for_conventions(tiffany))))& (((?[X]:(room(X)&creates_augmented_reality_experiences_for_mobile_applications(X)))))& (![X]:(room(X)=>(((is_not_a_client_of_Costco(X))|(uses_a_Windows_laptop(X))|(mentors_a_youth_basketball_team_on_weekends(X))))))
room(tiffany)&(![X]:(room(X)=>(X='tiffany')))& ![X]:(room(X)=>(((creates_augmented_reality_experiences_for_mobile_applications(X))|(does_not_create_augmented_reality_experiences_for_mobile_applications(X)))))
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 747339619121107026497881 % SZS output start Proof for 747339619121107026497881 44. ! [X0] : (room(X0) => (predi(X0) | predd(X0) | ~predr(X0))) & ? [X0] : (predb(X0) & room(X0)) & (predy(mary) | predl(mary) | predp(mary)) & ! [X0] : (room(X0) => (~predj(X0) | predj(X0))) & predh(mary) & ! [X0] : (room(X0) => (~predf(X0) | predf(X0))) & ! [X0] : (anywhere(X0) => (prede(X0) <=> predf(X0))) & ! [X0] : (~(predr(X0) | predh(X0)) => predh(X0)) & ! [X0] : (room(X0) => (~predp(X0) | ~predj(X0))) & (! [X0] : (room(X0) => (predl(X0) | ~predz(X0))) <~> ! [X0] : (room(X0) => (~predj(X0) | predj(X0)))) & (~predk(mary) => ! [X0] : (predh(X0) <=> predf(X0))) & ((predt(mary) | preds(mary) | predn(mary)) => ~predn(mary)) & (predh(mary) => ? [X0] : (predp(X0) & room(X0))) & (? [X0] : (predp(X0) & room(X0)) => ! [X0] : (room(X0) => (~predl(X0) | predu(X0)))) & (predj(mary) => ? [X0] : (predp(X0) & room(X0))) & (~! [X0] : (room(X0) => (~predz(X0) | ~predn(X0))) => ! [X0] : (~predw(X0) => predj(X0))) & (! [X0] : (room(X0) => (~predz(X0) | ~predn(X0))) => ! [X0] : (room(X0) => (~(~predn(X0) | predc(X0)) <=> predf(X0)))) & ! [X0] : (room(X0) => mary = X0) & room(mary) [input p0] 45. ~(! [X0] : (room(X0) => (~predb(X0) | predb(X0))) & ! [X0] : (room(X0) => mary = X0) & room(mary)) [input hypothesis] 46. ! [X0] : (room(X0) => (predi(X0) | predd(X0) | ~predr(X0))) & ? [X1] : (predb(X1) & room(X1)) & (predy(mary) | predl(mary) | predp(mary)) & ! [X2] : (room(X2) => (~predj(X2) | predj(X2))) & predh(mary) & ! [X3] : (room(X3) => (~predf(X3) | predf(X3))) & ! [X4] : (anywhere(X4) => (prede(X4) <=> predf(X4))) & ! [X5] : (~(predr(X5) | predh(X5)) => predh(X5)) & ! [X6] : (room(X6) => (~predp(X6) | ~predj(X6))) & (! [X7] : (room(X7) => (predl(X7) | ~predz(X7))) <~> ! [X8] : (room(X8) => (~predj(X8) | predj(X8)))) & (~predk(mary) => ! [X9] : (predh(X9) <=> predf(X9))) & ((predt(mary) | preds(mary) | predn(mary)) => ~predn(mary)) & (predh(mary) => ? [X10] : (predp(X10) & room(X10))) & (? [X11] : (predp(X11) & room(X11)) => ! [X12] : (room(X12) => (~predl(X12) | predu(X12)))) & (predj(mary) => ? [X13] : (predp(X13) & room(X13))) & (~! [X14] : (room(X14) => (~predz(X14) | ~predn(X14))) => ! [X15] : (~predw(X15) => predj(X15))) & (! [X16] : (room(X16) => (~predz(X16) | ~predn(X16))) => ! [X17] : (room(X17) => (~(~predn(X17) | predc(X17)) <=> predf(X17)))) & ! [X18] : (room(X18) => mary = X18) & room(mary) [rectify 44] 47. ~(! [X0] : (room(X0) => (~predb(X0) | predb(X0))) & ! [X1] : (room(X1) => mary = X1) & room(mary)) [rectify 45] 48. ? [X1] : (predb(X1) & room(X1)) & (predy(mary) | predl(mary) | predp(mary)) & ! [X2] : (room(X2) => (~predj(X2) | predj(X2))) & predh(mary) & ! [X3] : (room(X3) => (~predf(X3) | predf(X3))) & ! [X4] : (anywhere(X4) => (prede(X4) <=> predf(X4))) & ! [X5] : (~(predr(X5) | predh(X5)) => predh(X5)) & ! [X6] : (room(X6) => (~predp(X6) | ~predj(X6))) & (! [X7] : (room(X7) => (predl(X7) | ~predz(X7))) <~> ! [X8] : (room(X8) => (~predj(X8) | predj(X8)))) & (~predk(mary) => ! [X9] : (predh(X9) <=> predf(X9))) & ((predt(mary) | preds(mary) | predn(mary)) => ~predn(mary)) & (predh(mary) => ? [X10] : (predp(X10) & room(X10))) & (? [X11] : (predp(X11) & room(X11)) => ! [X12] : (room(X12) => (~predl(X12) | predu(X12)))) & (predj(mary) => ? [X13] : (predp(X13) & room(X13))) & (~! [X14] : (room(X14) => (~predz(X14) | ~predn(X14))) => ! [X15] : (~predw(X15) => predj(X15))) & (! [X16] : (room(X16) => (~predz(X16) | ~predn(X16))) => ! [X17] : (room(X17) => (~(~predn(X17) | predc(X17)) <=> predf(X17)))) & ! [X18] : (room(X18) => mary = X18) & room(mary) [pure predicate removal 46] 49. ? [X1] : (predb(X1) & room(X1)) & (predy(mary) | predl(mary) | predp(mary)) & ! [X2] : (room(X2) => (~predj(X2) | predj(X2))) & predh(mary) & ! [X3] : (room(X3) => (~predf(X3) | predf(X3))) & ! [X4] : (anywhere(X4) => (prede(X4) <=> predf(X4))) & ! [X6] : (room(X6) => (~predp(X6) | ~predj(X6))) & (! [X7] : (room(X7) => (predl(X7) | ~predz(X7))) <~> ! [X8] : (room(X8) => (~predj(X8) | predj(X8)))) & (~predk(mary) => ! [X9] : (predh(X9) <=> predf(X9))) & ((predt(mary) | preds(mary) | predn(mary)) => ~predn(mary)) & (predh(mary) => ? [X10] : (predp(X10) & room(X10))) & (? [X11] : (predp(X11) & room(X11)) => ! [X12] : (room(X12) => (~predl(X12) | predu(X12)))) & (predj(mary) => ? [X13] : (predp(X13) & room(X13))) & (~! [X14] : (room(X14) => (~predz(X14) | ~predn(X14))) => ! [X15] : (~predw(X15) => predj(X15))) & (! [X16] : (room(X16) => (~predz(X16) | ~predn(X16))) => ! [X17] : (room(X17) => (~(~predn(X17) | predc(X17)) <=> predf(X17)))) & ! [X18] : (room(X18) => mary = X18) & room(mary) [pure predicate removal 48] 50. ? [X1] : (predb(X1) & room(X1)) & ! [X2] : (room(X2) => (~predj(X2) | predj(X2))) & predh(mary) & ! [X3] : (room(X3) => (~predf(X3) | predf(X3))) & ! [X4] : (anywhere(X4) => (prede(X4) <=> predf(X4))) & ! [X6] : (room(X6) => (~predp(X6) | ~predj(X6))) & (! [X7] : (room(X7) => (predl(X7) | ~predz(X7))) <~> ! [X8] : (room(X8) => (~predj(X8) | predj(X8)))) & (~predk(mary) => ! [X9] : (predh(X9) <=> predf(X9))) & ((predt(mary) | preds(mary) | predn(mary)) => ~predn(mary)) & (predh(mary) => ? [X10] : (predp(X10) & room(X10))) & (? [X11] : (predp(X11) & room(X11)) => ! [X12] : (room(X12) => (~predl(X12) | predu(X12)))) & (predj(mary) => ? [X13] : (predp(X13) & room(X13))) & (~! [X14] : (room(X14) => (~predz(X14) | ~predn(X14))) => ! [X15] : (~predw(X15) => predj(X15))) & (! [X16] : (room(X16) => (~predz(X16) | ~predn(X16))) => ! [X17] : (room(X17) => (~(~predn(X17) | predc(X17)) <=> predf(X17)))) & ! [X18] : (room(X18) => mary = X18) & room(mary) [pure predicate removal 49] 51. ? [X1] : (predb(X1) & room(X1)) & ! [X2] : (room(X2) => (~predj(X2) | predj(X2))) & predh(mary) & ! [X3] : (room(X3) => (~predf(X3) | predf(X3))) & ! [X4] : (anywhere(X4) => (prede(X4) <=> predf(X4))) & ! [X6] : (room(X6) => (~predp(X6) | ~predj(X6))) & (! [X7] : (room(X7) => (predl(X7) | ~predz(X7))) <~> ! [X8] : (room(X8) => (~predj(X8) | predj(X8)))) & ((predt(mary) | preds(mary) | predn(mary)) => ~predn(mary)) & (predh(mary) => ? [X10] : (predp(X10) & room(X10))) & (? [X11] : (predp(X11) & room(X11)) => ! [X12] : (room(X12) => (~predl(X12) | predu(X12)))) & (predj(mary) => ? [X13] : (predp(X13) & room(X13))) & (~! [X14] : (room(X14) => (~predz(X14) | ~predn(X14))) => ! [X15] : (~predw(X15) => predj(X15))) & (! [X16] : (room(X16) => (~predz(X16) | ~predn(X16))) => ! [X17] : (room(X17) => (~(~predn(X17) | predc(X17)) <=> predf(X17)))) & ! [X18] : (room(X18) => mary = X18) & room(mary) [pure predicate removal 50] 52. ? [X1] : (predb(X1) & room(X1)) & ! [X2] : (room(X2) => (~predj(X2) | predj(X2))) & predh(mary) & ! [X3] : (room(X3) => (~predf(X3) | predf(X3))) & ! [X4] : (anywhere(X4) => (prede(X4) <=> predf(X4))) & ! [X6] : (room(X6) => (~predp(X6) | ~predj(X6))) & (! [X7] : (room(X7) => (predl(X7) | ~predz(X7))) <~> ! [X8] : (room(X8) => (~predj(X8) | predj(X8)))) & ((preds(mary) | predn(mary)) => ~predn(mary)) & (predh(mary) => ? [X10] : (predp(X10) & room(X10))) & (? [X11] : (predp(X11) & room(X11)) => ! [X12] : (room(X12) => (~predl(X12) | predu(X12)))) & (predj(mary) => ? [X13] : (predp(X13) & room(X13))) & (~! [X14] : (room(X14) => (~predz(X14) | ~predn(X14))) => ! [X15] : (~predw(X15) => predj(X15))) & (! [X16] : (room(X16) => (~predz(X16) | ~predn(X16))) => ! [X17] : (room(X17) => (~(~predn(X17) | predc(X17)) <=> predf(X17)))) & ! [X18] : (room(X18) => mary = X18) & room(mary) [pure predicate removal 51] 53. ? [X1] : (predb(X1) & room(X1)) & ! [X2] : (room(X2) => (~predj(X2) | predj(X2))) & predh(mary) & ! [X3] : (room(X3) => (~predf(X3) | predf(X3))) & ! [X4] : (anywhere(X4) => (prede(X4) <=> predf(X4))) & ! [X6] : (room(X6) => (~predp(X6) | ~predj(X6))) & (! [X7] : (room(X7) => (predl(X7) | ~predz(X7))) <~> ! [X8] : (room(X8) => (~predj(X8) | predj(X8)))) & (predn(mary) => ~predn(mary)) & (predh(mary) => ? [X10] : (predp(X10) & room(X10))) & (? [X11] : (predp(X11) & room(X11)) => ! [X12] : (room(X12) => (~predl(X12) | predu(X12)))) & (predj(mary) => ? [X13] : (predp(X13) & room(X13))) & (~! [X14] : (room(X14) => (~predz(X14) | ~predn(X14))) => ! [X15] : (~predw(X15) => predj(X15))) & (! [X16] : (room(X16) => (~predz(X16) | ~predn(X16))) => ! [X17] : (room(X17) => (~(~predn(X17) | predc(X17)) <=> predf(X17)))) & ! [X18] : (room(X18) => mary = X18) & room(mary) [pure predicate removal 52] 54. ? [X1] : (predb(X1) & room(X1)) & ! [X2] : (room(X2) => (~predj(X2) | predj(X2))) & predh(mary) & ! [X3] : (room(X3) => (~predf(X3) | predf(X3))) & ! [X4] : (anywhere(X4) => (prede(X4) <=> predf(X4))) & ! [X6] : (room(X6) => (~predp(X6) | ~predj(X6))) & (! [X7] : (room(X7) => (predl(X7) | ~predz(X7))) <~> ! [X8] : (room(X8) => (~predj(X8) | predj(X8)))) & (predn(mary) => ~predn(mary)) & (predh(mary) => ? [X10] : (predp(X10) & room(X10))) & (predj(mary) => ? [X13] : (predp(X13) & room(X13))) & (~! [X14] : (room(X14) => (~predz(X14) | ~predn(X14))) => ! [X15] : (~predw(X15) => predj(X15))) & (! [X16] : (room(X16) => (~predz(X16) | ~predn(X16))) => ! [X17] : (room(X17) => (~(~predn(X17) | predc(X17)) <=> predf(X17)))) & ! [X18] : (room(X18) => mary = X18) & room(mary) [pure predicate removal 53] 55. ? [X1] : (predb(X1) & room(X1)) & ! [X2] : (room(X2) => (~predj(X2) | predj(X2))) & predh(mary) & ! [X3] : (room(X3) => (~predf(X3) | predf(X3))) & ! [X4] : (anywhere(X4) => (prede(X4) <=> predf(X4))) & ! [X6] : (room(X6) => (~predp(X6) | ~predj(X6))) & (! [X7] : (room(X7) => (predl(X7) | ~predz(X7))) <~> ! [X8] : (room(X8) => (~predj(X8) | predj(X8)))) & (predn(mary) => ~predn(mary)) & (predh(mary) => ? [X10] : (predp(X10) & room(X10))) & (predj(mary) => ? [X13] : (predp(X13) & room(X13))) & (! [X16] : (room(X16) => (~predz(X16) | ~predn(X16))) => ! [X17] : (room(X17) => (~(~predn(X17) | predc(X17)) <=> predf(X17)))) & ! [X18] : (room(X18) => mary = X18) & room(mary) [pure predicate removal 54] 127. ? [X1] : (predb(X1) & room(X1)) & ! [X2] : ((~predj(X2) | predj(X2)) | ~room(X2)) & predh(mary) & ! [X3] : ((~predf(X3) | predf(X3)) | ~room(X3)) & ! [X4] : ((prede(X4) <=> predf(X4)) | ~anywhere(X4)) & ! [X6] : ((~predp(X6) | ~predj(X6)) | ~room(X6)) & (! [X7] : ((predl(X7) | ~predz(X7)) | ~room(X7)) <~> ! [X8] : ((~predj(X8) | predj(X8)) | ~room(X8))) & (~predn(mary) | ~predn(mary)) & (? [X10] : (predp(X10) & room(X10)) | ~predh(mary)) & (? [X13] : (predp(X13) & room(X13)) | ~predj(mary)) & (! [X17] : (((predn(X17) & ~predc(X17)) <=> predf(X17)) | ~room(X17)) | ? [X16] : ((predz(X16) & predn(X16)) & room(X16))) & ! [X18] : (mary = X18 | ~room(X18)) & room(mary) [ennf transformation 55] 128. ? [X1] : (predb(X1) & room(X1)) & ! [X2] : (~predj(X2) | predj(X2) | ~room(X2)) & predh(mary) & ! [X3] : (~predf(X3) | predf(X3) | ~room(X3)) & ! [X4] : ((prede(X4) <=> predf(X4)) | ~anywhere(X4)) & ! [X6] : (~predp(X6) | ~predj(X6) | ~room(X6)) & (! [X7] : (predl(X7) | ~predz(X7) | ~room(X7)) <~> ! [X8] : (~predj(X8) | predj(X8) | ~room(X8))) & (~predn(mary) | ~predn(mary)) & (? [X10] : (predp(X10) & room(X10)) | ~predh(mary)) & (? [X13] : (predp(X13) & room(X13)) | ~predj(mary)) & (! [X17] : (((predn(X17) & ~predc(X17)) <=> predf(X17)) | ~room(X17)) | ? [X16] : (predz(X16) & predn(X16) & room(X16))) & ! [X18] : (mary = X18 | ~room(X18)) & room(mary) [flattening 127] 129. ? [X0] : ((predb(X0) & ~predb(X0)) & room(X0)) | ? [X1] : (mary != X1 & room(X1)) | ~room(mary) [ennf transformation 47] 130. ? [X0] : (predb(X0) & ~predb(X0) & room(X0)) | ? [X1] : (mary != X1 & room(X1)) | ~room(mary) [flattening 129] 131. ? [X16] : (predz(X16) & predn(X16) & room(X16)) | ~sP0 [predicate definition introduction] 132. ? [X1] : (predb(X1) & room(X1)) & ! [X2] : (~predj(X2) | predj(X2) | ~room(X2)) & predh(mary) & ! [X3] : (~predf(X3) | predf(X3) | ~room(X3)) & ! [X4] : ((prede(X4) <=> predf(X4)) | ~anywhere(X4)) & ! [X6] : (~predp(X6) | ~predj(X6) | ~room(X6)) & (! [X7] : (predl(X7) | ~predz(X7) | ~room(X7)) <~> ! [X8] : (~predj(X8) | predj(X8) | ~room(X8))) & (~predn(mary) | ~predn(mary)) & (? [X10] : (predp(X10) & room(X10)) | ~predh(mary)) & (? [X13] : (predp(X13) & room(X13)) | ~predj(mary)) & (! [X17] : (((predn(X17) & ~predc(X17)) <=> predf(X17)) | ~room(X17)) | sP0) & ! [X18] : (mary = X18 | ~room(X18)) & room(mary) [definition folding 128,131] 138. ? [X1] : (predb(X1) & room(X1)) & ! [X2] : (~predj(X2) | predj(X2) | ~room(X2)) & predh(mary) & ! [X3] : (~predf(X3) | predf(X3) | ~room(X3)) & ! [X4] : (((prede(X4) | ~predf(X4)) & (predf(X4) | ~prede(X4))) | ~anywhere(X4)) & ! [X6] : (~predp(X6) | ~predj(X6) | ~room(X6)) & ((? [X8] : (predj(X8) & ~predj(X8) & room(X8)) | ? [X7] : (~predl(X7) & predz(X7) & room(X7))) & (! [X8] : (~predj(X8) | predj(X8) | ~room(X8)) | ! [X7] : (predl(X7) | ~predz(X7) | ~room(X7)))) & (~predn(mary) | ~predn(mary)) & (? [X10] : (predp(X10) & room(X10)) | ~predh(mary)) & (? [X13] : (predp(X13) & room(X13)) | ~predj(mary)) & (! [X17] : ((((predn(X17) & ~predc(X17)) | ~predf(X17)) & (predf(X17) | (~predn(X17) | predc(X17)))) | ~room(X17)) | sP0) & ! [X18] : (mary = X18 | ~room(X18)) & room(mary) [nnf transformation 132] 139. ? [X1] : (predb(X1) & room(X1)) & ! [X2] : (~predj(X2) | predj(X2) | ~room(X2)) & predh(mary) & ! [X3] : (~predf(X3) | predf(X3) | ~room(X3)) & ! [X4] : (((prede(X4) | ~predf(X4)) & (predf(X4) | ~prede(X4))) | ~anywhere(X4)) & ! [X6] : (~predp(X6) | ~predj(X6) | ~room(X6)) & (? [X8] : (predj(X8) & ~predj(X8) & room(X8)) | ? [X7] : (~predl(X7) & predz(X7) & room(X7))) & (! [X8] : (~predj(X8) | predj(X8) | ~room(X8)) | ! [X7] : (predl(X7) | ~predz(X7) | ~room(X7))) & (~predn(mary) | ~predn(mary)) & (? [X10] : (predp(X10) & room(X10)) | ~predh(mary)) & (? [X13] : (predp(X13) & room(X13)) | ~predj(mary)) & (! [X17] : ((((predn(X17) & ~predc(X17)) | ~predf(X17)) & (predf(X17) | ~predn(X17) | predc(X17))) | ~room(X17)) | sP0) & ! [X18] : (mary = X18 | ~room(X18)) & room(mary) [flattening 138] 140. ? [X0] : (predb(X0) & room(X0)) & ! [X1] : (~predj(X1) | predj(X1) | ~room(X1)) & predh(mary) & ! [X2] : (~predf(X2) | predf(X2) | ~room(X2)) & ! [X3] : (((prede(X3) | ~predf(X3)) & (predf(X3) | ~prede(X3))) | ~anywhere(X3)) & ! [X4] : (~predp(X4) | ~predj(X4) | ~room(X4)) & (? [X5] : (predj(X5) & ~predj(X5) & room(X5)) | ? [X6] : (~predl(X6) & predz(X6) & room(X6))) & (! [X7] : (~predj(X7) | predj(X7) | ~room(X7)) | ! [X8] : (predl(X8) | ~predz(X8) | ~room(X8))) & (~predn(mary) | ~predn(mary)) & (? [X9] : (predp(X9) & room(X9)) | ~predh(mary)) & (? [X10] : (predp(X10) & room(X10)) | ~predj(mary)) & (! [X11] : ((((predn(X11) & ~predc(X11)) | ~predf(X11)) & (predf(X11) | ~predn(X11) | predc(X11))) | ~room(X11)) | sP0) & ! [X12] : (mary = X12 | ~room(X12)) & room(mary) [rectify 139] 141. ? [X0] : (predb(X0) & room(X0)) => (predb(sK2) & room(sK2)) [choice axiom] 142. ? [X5] : (predj(X5) & ~predj(X5) & room(X5)) => (predj(sK3) & ~predj(sK3) & room(sK3)) [choice axiom] 143. ? [X6] : (~predl(X6) & predz(X6) & room(X6)) => (~predl(sK4) & predz(sK4) & room(sK4)) [choice axiom] 144. ? [X9] : (predp(X9) & room(X9)) => (predp(sK5) & room(sK5)) [choice axiom] 145. ? [X10] : (predp(X10) & room(X10)) => (predp(sK6) & room(sK6)) [choice axiom] 146. (predb(sK2) & room(sK2)) & ! [X1] : (~predj(X1) | predj(X1) | ~room(X1)) & predh(mary) & ! [X2] : (~predf(X2) | predf(X2) | ~room(X2)) & ! [X3] : (((prede(X3) | ~predf(X3)) & (predf(X3) | ~prede(X3))) | ~anywhere(X3)) & ! [X4] : (~predp(X4) | ~predj(X4) | ~room(X4)) & ((predj(sK3) & ~predj(sK3) & room(sK3)) | (~predl(sK4) & predz(sK4) & room(sK4))) & (! [X7] : (~predj(X7) | predj(X7) | ~room(X7)) | ! [X8] : (predl(X8) | ~predz(X8) | ~room(X8))) & (~predn(mary) | ~predn(mary)) & ((predp(sK5) & room(sK5)) | ~predh(mary)) & ((predp(sK6) & room(sK6)) | ~predj(mary)) & (! [X11] : ((((predn(X11) & ~predc(X11)) | ~predf(X11)) & (predf(X11) | ~predn(X11) | predc(X11))) | ~room(X11)) | sP0) & ! [X12] : (mary = X12 | ~room(X12)) & room(mary) [skolemisation 140,145,144,143,142,141] 147. ? [X0] : (predb(X0) & ~predb(X0) & room(X0)) => (predb(sK7) & ~predb(sK7) & room(sK7)) [choice axiom] 148. ? [X1] : (mary != X1 & room(X1)) => (mary != sK8 & room(sK8)) [choice axiom] 149. (predb(sK7) & ~predb(sK7) & room(sK7)) | (mary != sK8 & room(sK8)) | ~room(mary) [skolemisation 130,148,147] 234. room(mary) [cnf transformation 146] 235. ~room(X12) | mary = X12 [cnf transformation 146] 264. ~predb(sK7) | room(sK8) | ~room(mary) [cnf transformation 149] 265. ~predb(sK7) | mary != sK8 | ~room(mary) [cnf transformation 149] 266. predb(sK7) | room(sK8) | ~room(mary) [cnf transformation 149] 267. predb(sK7) | mary != sK8 | ~room(mary) [cnf transformation 149] 347. predb(sK7) | mary != sK8 [subsumption resolution 267,234] 349. 16 <=> mary = sK8 [avatar definition] 351. mary != sK8 <- (~16) [avatar component clause 349] 353. 17 <=> predb(sK7) [avatar definition] 356. ~16 | 17 [avatar split clause 347,353,349] 357. predb(sK7) | room(sK8) [subsumption resolution 266,234] 359. 18 <=> room(sK8) [avatar definition] 361. room(sK8) <- (18) [avatar component clause 359] 362. 18 | 17 [avatar split clause 357,353,359] 363. ~predb(sK7) | mary != sK8 [subsumption resolution 265,234] 364. ~16 | ~17 [avatar split clause 363,353,349] 365. ~predb(sK7) | room(sK8) [subsumption resolution 264,234] 366. 18 | ~17 [avatar split clause 365,353,359] 379. mary = sK8 <- (18) [resolution 235,361] 387. $false <- (~16, 18) [subsumption resolution 379,351] 388. 16 | ~18 [avatar contradiction clause 387] 389. $false [avatar sat refutation 356,362,364,366,388] % SZS output end Proof for 747339619121107026497881 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5245 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.071244
Terry is the only person in the room. Someone outside the room is richer than Katherine. Terry is the oldest anywhere. Someone anywhere is richer than Katherine. All quiet person is old. Terry is quiet. Terry is quieter than Katherine and is quiet. All old person is tall. Anthony is quieter than Terry. Terry is quieter than Katherine. All old person is quiet. Terry is richer than Anthony.
Terry is richer than Katherine.
neutral
room(terry)&(![X]:(room(X)=>(X='terry')))& (?[X]:(~room(X)&(richer(katherine,X))))& (![X]:((anywhere(X)&(X!=terry))=>older(X,terry)))& (?[X]:(anywhere(X)&(richer(katherine,X))))& (![X]:(quiet(X)=>old(X)))& (quiet(terry))& (((quieter(katherine,terry))&(quiet(terry))))& (![X]:(old(X)=>tall(X)))& (quieter(terry,anthony))& (quieter(katherine,terry))& (![X]:(old(X)=>quiet(X)))& (richer(anthony,terry))& (?[X]:(room(X)&(older(anthony,X))))& (![X]:((room(X)&(X!=terry))=>quieter(terry,X)))& (![X]:((room(X)&(X!=terry))=>older(terry,X)))
room(terry)&(![X]:(room(X)=>(X='terry')))& richer(katherine,terry)
[]
null
0.612824
Chris, Aurelia are the only persons in the room. If “everyone in the room does not practice zumba” then “everyone in the room practices zumba”. If “everyone in the room practices zumba” then “everyone outside the room is not a night owl if they does not write a travel blog”. “Everyone in the room is not a skilled home brewer experimenting with craft beer recipes only if they either does not use a Windows laptop or is not a drone photographer but not both” if “everyone in the room does not collect foreign coins”. Not everyone in the room neither does not write a travel blog nor creates large-scale murals for public art installations. Everyone in the room is not a drone photographer. Everyone in the room does not collect foreign coins if they does not practice zumba or does not write and illustrates their own graphic novels or both. Only one person in the room does not enjoy logic puzzles. Aurelia competes in national level swimming championships. Not everyone in the room competes in national level swimming championships, is not a certified yoga instructor teaching classes weekly and does not practice zumba. Everyone outside the room does not practice zumba or does not write a travel blog or both. Everyone in the room is a client of Costco if they either cannot play the piano or is not a client of Costco but not both. Chris is a certified yoga instructor teaching classes weekly or does not collect comic books or both. Not everyone in the room is not a cybersecurity expert, does not own a significant collection of rare gemstones and minerals and is a certified yoga instructor teaching classes weekly. Everyone in the room is not an enthusiastic bird watcher who travels for rare sightings if they collects foreign coins. Everyone outside the room either does not write and illustrates their own graphic novels or is not a certified yoga instructor teaching classes weekly but not both if they is not an enthusiastic bird watcher who travels for rare sightings.
Aurelia is a certified yoga instructor teaching classes weekly.
contradiction
room(chris)&room(aurelia)&(![X]:(room(X)=>(X='chris'|X='aurelia')))& (((![X]:(room(X)=>(does_not_practice_zumba(X))))=>(![X]:(room(X)=>(practices_zumba(X)))))& ((![X]:(room(X)=>(practices_zumba(X))))=>(![X]:(~room(X)=>(((does_not_write_a_travel_blog(X))=>(is_not_a_night_owl(X))))))))& ((![X]:(room(X)=>(does_not_collect_foreign_coins(X))))=>(![X]:(room(X)=>(((((does_not_use_a_Windows_laptop(X))<~>(is_not_a_drone_photographer(X))))<=(is_not_a_skilled_home_brewer_experimenting_with_craft_beer_recipes(X)))))))& (~![X]:(room(X)=>(~((does_not_write_a_travel_blog(X))|(creates_large-scale_murals_for_public_art_installations(X))))))& (![X]:(room(X)=>(is_not_a_drone_photographer(X))))& (![X]:(room(X)=>(((((does_not_practice_zumba(X))|(does_not_write_and_illustrates_their_own_graphic_novels(X))))=>(does_not_collect_foreign_coins(X))))))& (((?[X]:(room(X)&does_not_enjoy_logic_puzzles(X)))&(![X,Y]:((room(X)&room(Y)&(does_not_enjoy_logic_puzzles(X))&(does_not_enjoy_logic_puzzles(Y)))=>(X=Y)))))& (competes_in_national_level_swimming_championships(aurelia))& (~![X]:(room(X)=>(((competes_in_national_level_swimming_championships(X))&(is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))&(does_not_practice_zumba(X))))))& (![X]:(~room(X)=>(((does_not_practice_zumba(X))|(does_not_write_a_travel_blog(X))))))& (![X]:(room(X)=>(((((cannot_play_the_piano(X))<~>(is_not_a_client_of_Costco(X))))=>(is_a_client_of_Costco(X))))))& (((is_a_certified_yoga_instructor_teaching_classes_weekly(chris))|(does_not_collect_comic_books(chris))))& (~![X]:(room(X)=>(((is_not_a_cybersecurity_expert(X))&(does_not_own_a_significant_collection_of_rare_gemstones_and_minerals(X))&(is_a_certified_yoga_instructor_teaching_classes_weekly(X))))))& (![X]:(room(X)=>(((collects_foreign_coins(X))=>(is_not_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))))))& (![X]:(~room(X)=>(((is_not_an_enthusiastic_bird_watcher_who_travels_for_rare_sightings(X))=>(((does_not_write_and_illustrates_their_own_graphic_novels(X))<~>(is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))))))))& (~![X]:(room(X)=>(((((does_not_write_and_illustrates_their_own_graphic_novels(X))<~>(is_not_a_certified_yoga_instructor_teaching_classes_weekly(X))))=>(((does_not_use_a_Windows_laptop(X))|(does_not_collect_comic_books(X))))))))& (is_not_a_certified_yoga_instructor_teaching_classes_weekly(aurelia))
room(chris)&room(aurelia)&(![X]:(room(X)=>(X='chris'|X='aurelia')))& is_a_certified_yoga_instructor_teaching_classes_weekly(aurelia)
[ "p0", "hypothesis" ]
% SZS status Unsatisfiable for 3244816864908644455742440 % SZS output start Proof for 3244816864908644455742440 44. ~predq(paul) & ~! [X0] : (room(X0) => ((~predp(X0) <~> ~predq(X0)) => (~preda(X0) | ~preds(X0)))) & ! [X0] : (~room(X0) => (~predk(X0) => (~predp(X0) <~> ~predq(X0)))) & ! [X0] : (room(X0) => (predy(X0) => ~predk(X0))) & ~! [X0] : (room(X0) => (predq(X0) & ~predi(X0) & ~prede(X0))) & (~preda(mary) | predq(mary)) & ! [X0] : (room(X0) => ((~predm(X0) <~> ~predb(X0)) => predb(X0))) & ! [X0] : (~room(X0) => (~predr(X0) | ~predx(X0))) & ~! [X0] : (room(X0) => (~predx(X0) & ~predq(X0) & predg(X0))) & predg(paul) & ! [X0,X1] : ((~predf(X1) & ~predf(X0) & room(X1) & room(X0)) => X0 = X1) & ? [X0] : (~predf(X0) & room(X0)) & ! [X0] : (room(X0) => ((~predp(X0) | ~predx(X0)) => ~predy(X0))) & ! [X0] : (room(X0) => ~predh(X0)) & ~! [X0] : (room(X0) => ~(predv(X0) | ~predr(X0))) & (! [X0] : (room(X0) => ~predy(X0)) => ! [X0] : (room(X0) => (~predu(X0) => (~preds(X0) <~> ~predh(X0))))) & (! [X0] : (room(X0) => predx(X0)) => ! [X0] : (~room(X0) => (~predr(X0) => ~predo(X0)))) & (! [X0] : (room(X0) => ~predx(X0)) => ! [X0] : (room(X0) => predx(X0))) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input p0] 45. predq(paul) & ! [X0] : (room(X0) => (paul = X0 | mary = X0)) & room(paul) & room(mary) [input hypothesis] 46. ~predq(paul) & ~! [X0] : (room(X0) => ((~predp(X0) <~> ~predq(X0)) => (~preda(X0) | ~preds(X0)))) & ! [X1] : (~room(X1) => (~predk(X1) => (~predp(X1) <~> ~predq(X1)))) & ! [X2] : (room(X2) => (predy(X2) => ~predk(X2))) & ~! [X3] : (room(X3) => (predq(X3) & ~predi(X3) & ~prede(X3))) & (~preda(mary) | predq(mary)) & ! [X4] : (room(X4) => ((~predm(X4) <~> ~predb(X4)) => predb(X4))) & ! [X5] : (~room(X5) => (~predr(X5) | ~predx(X5))) & ~! [X6] : (room(X6) => (~predx(X6) & ~predq(X6) & predg(X6))) & predg(paul) & ! [X7,X8] : ((~predf(X8) & ~predf(X7) & room(X8) & room(X7)) => X7 = X8) & ? [X9] : (~predf(X9) & room(X9)) & ! [X10] : (room(X10) => ((~predp(X10) | ~predx(X10)) => ~predy(X10))) & ! [X11] : (room(X11) => ~predh(X11)) & ~! [X12] : (room(X12) => ~(predv(X12) | ~predr(X12))) & (! [X13] : (room(X13) => ~predy(X13)) => ! [X14] : (room(X14) => (~predu(X14) => (~preds(X14) <~> ~predh(X14))))) & (! [X15] : (room(X15) => predx(X15)) => ! [X16] : (~room(X16) => (~predr(X16) => ~predo(X16)))) & (! [X17] : (room(X17) => ~predx(X17)) => ! [X18] : (room(X18) => predx(X18))) & ! [X19] : (room(X19) => (paul = X19 | mary = X19)) & room(paul) & room(mary) [rectify 44] 47. ~predq(paul) & ~! [X0] : (room(X0) => ((~predp(X0) <~> ~predq(X0)) => (~preda(X0) | ~preds(X0)))) & ! [X1] : (~room(X1) => (~predk(X1) => (~predp(X1) <~> ~predq(X1)))) & ! [X2] : (room(X2) => (predy(X2) => ~predk(X2))) & ~! [X3] : ~room(X3) & (~preda(mary) | predq(mary)) & ! [X4] : (room(X4) => ((~predm(X4) <~> ~predb(X4)) => predb(X4))) & ! [X5] : (~room(X5) => (~predr(X5) | ~predx(X5))) & ~! [X6] : (room(X6) => (~predx(X6) & ~predq(X6) & predg(X6))) & predg(paul) & ! [X7,X8] : ((~predf(X8) & ~predf(X7) & room(X8) & room(X7)) => X7 = X8) & ? [X9] : (~predf(X9) & room(X9)) & ! [X10] : (room(X10) => ((~predp(X10) | ~predx(X10)) => ~predy(X10))) & ! [X11] : (room(X11) => ~predh(X11)) & ~! [X12] : (room(X12) => ~(predv(X12) | ~predr(X12))) & (! [X13] : (room(X13) => ~predy(X13)) => ! [X14] : (room(X14) => (~predu(X14) => (~preds(X14) <~> ~predh(X14))))) & (! [X15] : (room(X15) => predx(X15)) => ! [X16] : (~room(X16) => (~predr(X16) => ~predo(X16)))) & (! [X17] : (room(X17) => ~predx(X17)) => ! [X18] : (room(X18) => predx(X18))) & ! [X19] : (room(X19) => (paul = X19 | mary = X19)) & room(paul) & room(mary) [pure predicate removal 46] 48. ~predq(paul) & ~! [X0] : (room(X0) => ((~predp(X0) <~> ~predq(X0)) => (~preda(X0) | ~preds(X0)))) & ! [X1] : (~room(X1) => (~predk(X1) => (~predp(X1) <~> ~predq(X1)))) & ! [X2] : (room(X2) => (predy(X2) => ~predk(X2))) & ~! [X3] : ~room(X3) & (~preda(mary) | predq(mary)) & ! [X4] : (room(X4) => ((~predm(X4) <~> ~predb(X4)) => predb(X4))) & ! [X5] : (~room(X5) => (~predr(X5) | ~predx(X5))) & ~! [X6] : (room(X6) => (~predx(X6) & ~predq(X6) & predg(X6))) & predg(paul) & ! [X7,X8] : ((~predf(X8) & ~predf(X7) & room(X8) & room(X7)) => X7 = X8) & ? [X9] : (~predf(X9) & room(X9)) & ! [X10] : (room(X10) => ((~predp(X10) | ~predx(X10)) => ~predy(X10))) & ! [X11] : (room(X11) => ~predh(X11)) & ~! [X12] : ~room(X12) & (! [X13] : (room(X13) => ~predy(X13)) => ! [X14] : (room(X14) => (~predu(X14) => (~preds(X14) <~> ~predh(X14))))) & (! [X15] : (room(X15) => predx(X15)) => ! [X16] : (~room(X16) => (~predr(X16) => ~predo(X16)))) & (! [X17] : (room(X17) => ~predx(X17)) => ! [X18] : (room(X18) => predx(X18))) & ! [X19] : (room(X19) => (paul = X19 | mary = X19)) & room(paul) & room(mary) [pure predicate removal 47] 49. ~predq(paul) & ~! [X0] : (room(X0) => ((~predp(X0) <~> ~predq(X0)) => (~preda(X0) | ~preds(X0)))) & ! [X1] : (~room(X1) => (~predk(X1) => (~predp(X1) <~> ~predq(X1)))) & ! [X2] : (room(X2) => (predy(X2) => ~predk(X2))) & ~! [X3] : ~room(X3) & (~preda(mary) | predq(mary)) & ! [X4] : (room(X4) => ((~predm(X4) <~> ~predb(X4)) => predb(X4))) & ! [X5] : (~room(X5) => (~predr(X5) | ~predx(X5))) & ~! [X6] : (room(X6) => (~predx(X6) & ~predq(X6) & predg(X6))) & predg(paul) & ! [X7,X8] : ((~predf(X8) & ~predf(X7) & room(X8) & room(X7)) => X7 = X8) & ? [X9] : (~predf(X9) & room(X9)) & ! [X10] : (room(X10) => ((~predp(X10) | ~predx(X10)) => ~predy(X10))) & ! [X11] : (room(X11) => ~predh(X11)) & ~! [X12] : ~room(X12) & (! [X15] : (room(X15) => predx(X15)) => ! [X16] : (~room(X16) => (~predr(X16) => ~predo(X16)))) & (! [X17] : (room(X17) => ~predx(X17)) => ! [X18] : (room(X18) => predx(X18))) & ! [X19] : (room(X19) => (paul = X19 | mary = X19)) & room(paul) & room(mary) [pure predicate removal 48] 50. ~predq(paul) & ~! [X0] : (room(X0) => ((~predp(X0) <~> ~predq(X0)) => (~preda(X0) | ~preds(X0)))) & ! [X1] : (~room(X1) => (~predk(X1) => (~predp(X1) <~> ~predq(X1)))) & ! [X2] : (room(X2) => (predy(X2) => ~predk(X2))) & ~! [X3] : ~room(X3) & (~preda(mary) | predq(mary)) & ! [X4] : (room(X4) => ((~predm(X4) <~> ~predb(X4)) => predb(X4))) & ! [X5] : (~room(X5) => (~predr(X5) | ~predx(X5))) & ~! [X6] : (room(X6) => (~predx(X6) & ~predq(X6) & predg(X6))) & predg(paul) & ! [X7,X8] : ((~predf(X8) & ~predf(X7) & room(X8) & room(X7)) => X7 = X8) & ? [X9] : (~predf(X9) & room(X9)) & ! [X10] : (room(X10) => ((~predp(X10) | ~predx(X10)) => ~predy(X10))) & ~! [X12] : ~room(X12) & (! [X15] : (room(X15) => predx(X15)) => ! [X16] : (~room(X16) => (~predr(X16) => ~predo(X16)))) & (! [X17] : (room(X17) => ~predx(X17)) => ! [X18] : (room(X18) => predx(X18))) & ! [X19] : (room(X19) => (paul = X19 | mary = X19)) & room(paul) & room(mary) [pure predicate removal 49] 51. ~predq(paul) & ~! [X0] : (room(X0) => ((~predp(X0) <~> ~predq(X0)) => ~preda(X0))) & ! [X1] : (~room(X1) => (~predk(X1) => (~predp(X1) <~> ~predq(X1)))) & ! [X2] : (room(X2) => (predy(X2) => ~predk(X2))) & ~! [X3] : ~room(X3) & (~preda(mary) | predq(mary)) & ! [X4] : (room(X4) => ((~predm(X4) <~> ~predb(X4)) => predb(X4))) & ! [X5] : (~room(X5) => (~predr(X5) | ~predx(X5))) & ~! [X6] : (room(X6) => (~predx(X6) & ~predq(X6) & predg(X6))) & predg(paul) & ! [X7,X8] : ((~predf(X8) & ~predf(X7) & room(X8) & room(X7)) => X7 = X8) & ? [X9] : (~predf(X9) & room(X9)) & ! [X10] : (room(X10) => ((~predp(X10) | ~predx(X10)) => ~predy(X10))) & ~! [X12] : ~room(X12) & (! [X15] : (room(X15) => predx(X15)) => ! [X16] : (~room(X16) => (~predr(X16) => ~predo(X16)))) & (! [X17] : (room(X17) => ~predx(X17)) => ! [X18] : (room(X18) => predx(X18))) & ! [X19] : (room(X19) => (paul = X19 | mary = X19)) & room(paul) & room(mary) [pure predicate removal 50] 52. ~predq(paul) & ~! [X0] : (room(X0) => ((~predp(X0) <~> ~predq(X0)) => ~preda(X0))) & ! [X1] : (~room(X1) => (~predk(X1) => (~predp(X1) <~> ~predq(X1)))) & ~! [X3] : ~room(X3) & (~preda(mary) | predq(mary)) & ! [X4] : (room(X4) => ((~predm(X4) <~> ~predb(X4)) => predb(X4))) & ! [X5] : (~room(X5) => (~predr(X5) | ~predx(X5))) & ~! [X6] : (room(X6) => (~predx(X6) & ~predq(X6) & predg(X6))) & predg(paul) & ! [X7,X8] : ((~predf(X8) & ~predf(X7) & room(X8) & room(X7)) => X7 = X8) & ? [X9] : (~predf(X9) & room(X9)) & ~! [X12] : ~room(X12) & (! [X15] : (room(X15) => predx(X15)) => ! [X16] : (~room(X16) => (~predr(X16) => ~predo(X16)))) & (! [X17] : (room(X17) => ~predx(X17)) => ! [X18] : (room(X18) => predx(X18))) & ! [X19] : (room(X19) => (paul = X19 | mary = X19)) & room(paul) & room(mary) [pure predicate removal 51] 53. ~predq(paul) & ~! [X0] : (room(X0) => ((~predp(X0) <~> ~predq(X0)) => ~preda(X0))) & ~! [X3] : ~room(X3) & (~preda(mary) | predq(mary)) & ! [X4] : (room(X4) => ((~predm(X4) <~> ~predb(X4)) => predb(X4))) & ! [X5] : (~room(X5) => (~predr(X5) | ~predx(X5))) & ~! [X6] : (room(X6) => (~predx(X6) & ~predq(X6) & predg(X6))) & predg(paul) & ! [X7,X8] : ((~predf(X8) & ~predf(X7) & room(X8) & room(X7)) => X7 = X8) & ? [X9] : (~predf(X9) & room(X9)) & ~! [X12] : ~room(X12) & (! [X15] : (room(X15) => predx(X15)) => ! [X16] : (~room(X16) => (~predr(X16) => ~predo(X16)))) & (! [X17] : (room(X17) => ~predx(X17)) => ! [X18] : (room(X18) => predx(X18))) & ! [X19] : (room(X19) => (paul = X19 | mary = X19)) & room(paul) & room(mary) [pure predicate removal 52] 54. ~predq(paul) & ~! [X0] : (room(X0) => ((~predp(X0) <~> ~predq(X0)) => ~preda(X0))) & ~! [X3] : ~room(X3) & (~preda(mary) | predq(mary)) & ! [X4] : (room(X4) => ((~predm(X4) <~> ~predb(X4)) => predb(X4))) & ! [X5] : (~room(X5) => (~predr(X5) | ~predx(X5))) & ~! [X6] : (room(X6) => (~predx(X6) & ~predq(X6) & predg(X6))) & predg(paul) & ! [X7,X8] : ((~predf(X8) & ~predf(X7) & room(X8) & room(X7)) => X7 = X8) & ? [X9] : (~predf(X9) & room(X9)) & ~! [X12] : ~room(X12) & (! [X17] : (room(X17) => ~predx(X17)) => ! [X18] : (room(X18) => predx(X18))) & ! [X19] : (room(X19) => (paul = X19 | mary = X19)) & room(paul) & room(mary) [pure predicate removal 53] 55. ~predq(paul) & ~! [X0] : (room(X0) => ((~predp(X0) <~> ~predq(X0)) => ~preda(X0))) & ~! [X3] : ~room(X3) & (~preda(mary) | predq(mary)) & ! [X4] : (room(X4) => ((~predm(X4) <~> ~predb(X4)) => predb(X4))) & ~! [X6] : (room(X6) => (~predx(X6) & ~predq(X6) & predg(X6))) & predg(paul) & ! [X7,X8] : ((~predf(X8) & ~predf(X7) & room(X8) & room(X7)) => X7 = X8) & ? [X9] : (~predf(X9) & room(X9)) & ~! [X12] : ~room(X12) & (! [X17] : (room(X17) => ~predx(X17)) => ! [X18] : (room(X18) => predx(X18))) & ! [X19] : (room(X19) => (paul = X19 | mary = X19)) & room(paul) & room(mary) [pure predicate removal 54] 56. ~predq(paul) & ~! [X0] : (room(X0) => ((~predp(X0) <~> ~predq(X0)) => ~preda(X0))) & ~! [X3] : ~room(X3) & (~preda(mary) | predq(mary)) & ! [X4] : (room(X4) => ((~predm(X4) <~> ~predb(X4)) => predb(X4))) & ~! [X6] : ~room(X6) & predg(paul) & ! [X7,X8] : ((~predf(X8) & ~predf(X7) & room(X8) & room(X7)) => X7 = X8) & ? [X9] : (~predf(X9) & room(X9)) & ~! [X12] : ~room(X12) & ! [X19] : (room(X19) => (paul = X19 | mary = X19)) & room(paul) & room(mary) [pure predicate removal 55] 57. ~predq(paul) & ~! [X0] : (room(X0) => ((~predp(X0) <~> ~predq(X0)) => ~preda(X0))) & ~! [X3] : ~room(X3) & (~preda(mary) | predq(mary)) & ! [X4] : (room(X4) => ((~predm(X4) <~> ~predb(X4)) => predb(X4))) & ~! [X6] : ~room(X6) & ! [X7,X8] : ((~predf(X8) & ~predf(X7) & room(X8) & room(X7)) => X7 = X8) & ? [X9] : (~predf(X9) & room(X9)) & ~! [X12] : ~room(X12) & ! [X19] : (room(X19) => (paul = X19 | mary = X19)) & room(paul) & room(mary) [pure predicate removal 56] 130. ~predq(paul) & ? [X0] : ((preda(X0) & (~predp(X0) <~> ~predq(X0))) & room(X0)) & ? [X3] : room(X3) & (~preda(mary) | predq(mary)) & ! [X4] : ((predb(X4) | (~predm(X4) <=> ~predb(X4))) | ~room(X4)) & ? [X6] : room(X6) & ! [X7,X8] : (X7 = X8 | (predf(X8) | predf(X7) | ~room(X8) | ~room(X7))) & ? [X9] : (~predf(X9) & room(X9)) & ? [X12] : room(X12) & ! [X19] : ((paul = X19 | mary = X19) | ~room(X19)) & room(paul) & room(mary) [ennf transformation 57] 131. ~predq(paul) & ? [X0] : (preda(X0) & (~predp(X0) <~> ~predq(X0)) & room(X0)) & ? [X3] : room(X3) & (~preda(mary) | predq(mary)) & ! [X4] : (predb(X4) | (~predm(X4) <=> ~predb(X4)) | ~room(X4)) & ? [X6] : room(X6) & ! [X7,X8] : (X7 = X8 | predf(X8) | predf(X7) | ~room(X8) | ~room(X7)) & ? [X9] : (~predf(X9) & room(X9)) & ? [X12] : room(X12) & ! [X19] : (paul = X19 | mary = X19 | ~room(X19)) & room(paul) & room(mary) [flattening 130] 132. predq(paul) & ! [X0] : ((paul = X0 | mary = X0) | ~room(X0)) & room(paul) & room(mary) [ennf transformation 45] 133. predq(paul) & ! [X0] : (paul = X0 | mary = X0 | ~room(X0)) & room(paul) & room(mary) [flattening 132] 135. ~predq(paul) & ? [X0] : (preda(X0) & ((predq(X0) | predp(X0)) & (~predq(X0) | ~predp(X0))) & room(X0)) & ? [X3] : room(X3) & (~preda(mary) | predq(mary)) & ! [X4] : (predb(X4) | ((~predm(X4) | predb(X4)) & (~predb(X4) | predm(X4))) | ~room(X4)) & ? [X6] : room(X6) & ! [X7,X8] : (X7 = X8 | predf(X8) | predf(X7) | ~room(X8) | ~room(X7)) & ? [X9] : (~predf(X9) & room(X9)) & ? [X12] : room(X12) & ! [X19] : (paul = X19 | mary = X19 | ~room(X19)) & room(paul) & room(mary) [nnf transformation 131] 136. ~predq(paul) & ? [X0] : (preda(X0) & (predq(X0) | predp(X0)) & (~predq(X0) | ~predp(X0)) & room(X0)) & ? [X3] : room(X3) & (~preda(mary) | predq(mary)) & ! [X4] : (predb(X4) | ((~predm(X4) | predb(X4)) & (~predb(X4) | predm(X4))) | ~room(X4)) & ? [X6] : room(X6) & ! [X7,X8] : (X7 = X8 | predf(X8) | predf(X7) | ~room(X8) | ~room(X7)) & ? [X9] : (~predf(X9) & room(X9)) & ? [X12] : room(X12) & ! [X19] : (paul = X19 | mary = X19 | ~room(X19)) & room(paul) & room(mary) [flattening 135] 137. ~predq(paul) & ? [X0] : (preda(X0) & (predq(X0) | predp(X0)) & (~predq(X0) | ~predp(X0)) & room(X0)) & ? [X1] : room(X1) & (~preda(mary) | predq(mary)) & ! [X2] : (predb(X2) | ((~predm(X2) | predb(X2)) & (~predb(X2) | predm(X2))) | ~room(X2)) & ? [X3] : room(X3) & ! [X4,X5] : (X4 = X5 | predf(X5) | predf(X4) | ~room(X5) | ~room(X4)) & ? [X6] : (~predf(X6) & room(X6)) & ? [X7] : room(X7) & ! [X8] : (paul = X8 | mary = X8 | ~room(X8)) & room(paul) & room(mary) [rectify 136] 138. ? [X0] : (preda(X0) & (predq(X0) | predp(X0)) & (~predq(X0) | ~predp(X0)) & room(X0)) => (preda(sK0) & (predq(sK0) | predp(sK0)) & (~predq(sK0) | ~predp(sK0)) & room(sK0)) [choice axiom] 139. ? [X1] : room(X1) => room(sK1) [choice axiom] 140. ? [X3] : room(X3) => room(sK2) [choice axiom] 141. ? [X6] : (~predf(X6) & room(X6)) => (~predf(sK3) & room(sK3)) [choice axiom] 142. ? [X7] : room(X7) => room(sK4) [choice axiom] 143. ~predq(paul) & (preda(sK0) & (predq(sK0) | predp(sK0)) & (~predq(sK0) | ~predp(sK0)) & room(sK0)) & room(sK1) & (~preda(mary) | predq(mary)) & ! [X2] : (predb(X2) | ((~predm(X2) | predb(X2)) & (~predb(X2) | predm(X2))) | ~room(X2)) & room(sK2) & ! [X4,X5] : (X4 = X5 | predf(X5) | predf(X4) | ~room(X5) | ~room(X4)) & (~predf(sK3) & room(sK3)) & room(sK4) & ! [X8] : (paul = X8 | mary = X8 | ~room(X8)) & room(paul) & room(mary) [skolemisation 137,142,141,140,139,138] 240. ~predq(paul) [cnf transformation 143] 244. predq(paul) [cnf transformation 133] 265. $false [subsumption resolution 244,240] % SZS output end Proof for 3244816864908644455742440 % ------------------------------ % Version: Vampire 4.8 (commit 8d999c135 on 2023-07-12 16:43:10 +0000) % Linked with Z3 4.9.1.0 6ed071b44407cf6623b8d3c0dceb2a8fb7040cee z3-4.8.4-6427-g6ed071b44 % Termination reason: Refutation % Memory used [KB]: 5117 % Time elapsed: 0.039 s % ------------------------------ % ------------------------------
0.110399