Datasets:
tau
/

Modalities:
Text
Libraries:
Datasets
File size: 4,163 Bytes
a5a81e7
 
 
 
3e38ab8
 
a5a81e7
127e3fd
3e38ab8
a5a81e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e38ab8
 
8a2bf29
a5a81e7
 
 
3e38ab8
 
 
 
 
 
a5a81e7
3e38ab8
a5a81e7
 
3e38ab8
 
 
 
c6ded99
 
3e38ab8
 
 
 
 
 
 
 
 
 
a5a81e7
 
3e38ab8
 
 
 
 
a5a81e7
 
3e38ab8
 
 
 
 
a5a81e7
 
3e38ab8
 
 
 
a5a81e7
3e38ab8
 
 
a5a81e7
c6ded99
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# coding=utf-8
# Lint as: python3
"""The SCROLLS benchmark."""

import json
import os
from abc import abstractmethod

import datasets


class FewsionConfig(datasets.BuilderConfig):
    """BuilderConfig for SCROLLS."""

    def __init__(self, data_url, **kwargs):
        """BuilderConfig for SCROLLS.
        Args:
          features: `list[string]`, list of the features that will appear in the
            feature dict. Should not include "label".
          data_url: `string`, url to download the zip file from.
          citation: `string`, citation for the data set.
          url: `string`, url for information about the data set.
          label_classes: `list[string]`, the list of classes for the label if the
            label is present as a string. Non-string labels will be cast to either
            'False' or 'True'.
          **kwargs: keyword arguments forwarded to super.
        """
        super(FewsionConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
        self.data_url = data_url
        self.features = [self.source_column_name, self.target_column_name, self.id_column_name]
        if self.question_column_name:
            self.features.append(self.question_column_name)

    @property
    @abstractmethod
    def source_column_name(self) -> str:
        pass

    @property
    @abstractmethod
    def target_column_name(self) -> str:
        pass

    @property
    @abstractmethod
    def question_column_name(self) -> str:
        pass

    @property
    @abstractmethod
    def id_column_name(self) -> str:
        pass


class ArxivConfig(FewsionConfig):

    @property
    def source_column_name(self) -> str:
        return "article"

    @property
    def target_column_name(self) -> str:
        return "abstract"

    @property
    def question_column_name(self) -> str:
        pass

    @property
    def id_column_name(self) -> str:
        return "article_id"


class Fewsion(datasets.GeneratorBasedBuilder):

    DEFAULT_WRITER_BATCH_SIZE = 1000  # because Narrative QA is a rather large dataset
    BUILDER_CONFIGS = [
        ArxivConfig(
            name="arxiv",
            data_url="https://fewsion.s3.us-east-2.amazonaws.com/arxiv.zip",
        )
    ]

    def _info(self):
        features = {feature: datasets.Value("string") for feature in self.config.features}

        return datasets.DatasetInfo(
            description="",
            features=datasets.Features(features),
            homepage="",
            citation="",
        )

    def _split_generators(self, dl_manager):
        dl_dir = dl_manager.download_and_extract(self.config.data_url)
        task_name = _get_task_name_from_data_url(self.config.data_url)
        dl_dir = os.path.join(dl_dir, task_name)

        data_files = {} if self.config.data_files is not None else None
        if data_files is not None:
            for split, paths in self.config.data_files.items():
                data_files[split] = paths[0]

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "data_file": os.path.join(dl_dir, "train.jsonl"),
                    "split": datasets.Split.TRAIN,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "data_file": os.path.join(dl_dir, "val.jsonl"),
                    "split": datasets.Split.VALIDATION,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "data_file": os.path.join(dl_dir, "test.jsonl") if data_files is None else data_files["test"],
                    "split": datasets.Split.TEST,
                },
            ),
        ]

    def _generate_examples(self, data_file, split):
        with open(data_file, encoding="utf-8") as f:
            for line in f:
                row = json.loads(line)
                yield row[self.config.id_column_name], row


def _get_task_name_from_data_url(data_url):
    return data_url.split("/")[-1].split(".")[0]