Datasets:
tau
/

Modalities:
Text
Libraries:
Datasets
File size: 8,091 Bytes
3e38ab8
 
 
 
 
 
 
b847b51
 
 
 
 
 
1ade361
3e38ab8
 
89c5f61
3e38ab8
1ade361
89c5f61
3e38ab8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1fa43e
2eacbde
1ade361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4316980
1ade361
 
 
 
4316980
 
 
 
 
 
1ade361
 
 
 
 
 
 
 
 
 
 
 
 
 
4316980
 
 
 
1ade361
 
 
4316980
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e38ab8
 
89c5f61
3e38ab8
 
1ade361
3e38ab8
 
1ade361
 
3e38ab8
 
1ade361
3e38ab8
 
a1fa43e
2eacbde
3e38ab8
1ade361
3e38ab8
 
 
89c5f61
3e38ab8
 
a1fa43e
2eacbde
1ade361
 
 
 
 
 
 
 
 
 
3e38ab8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ade361
3e38ab8
10f525a
2eacbde
3e38ab8
 
 
 
 
1ade361
3e38ab8
10f525a
2eacbde
3e38ab8
 
 
 
 
1ade361
 
3e38ab8
10f525a
2eacbde
3e38ab8
 
 
 
2eacbde
3e38ab8
 
 
1ade361
 
4316980
 
8be7166
1ade361
3e38ab8
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# coding=utf-8
# Lint as: python3
"""The SCROLLS benchmark."""

import json
import os
import datasets
from citations_and_descriptions import (
    _SUMM_SCREEN_DESCRIPTION, _SUMM_SCREEN_CITATION,
    _GOV_REPORT_CITATION, _GOV_REPORT_DESCRIPTION,
    _ARXIV_CITATION, _ARXIV_DESCRIPTION,
    _FS_DESCRIPTION, _FS_CITATION
)


class FSConfig(datasets.BuilderConfig):
    """BuilderConfig for FS."""

    def __init__(self, features, data_url, citation, url, max_source_length, tokenizer, **kwargs):
        """BuilderConfig for FS.
        Args:
          features: `list[string]`, list of the features that will appear in the
            feature dict. Should not include "label".
          data_url: `string`, url to download the zip file from.
          citation: `string`, citation for the data set.
          url: `string`, url for information about the data set.
          label_classes: `list[string]`, the list of classes for the label if the
            label is present as a string. Non-string labels will be cast to either
            'False' or 'True'.
          **kwargs: keyword arguments forwarded to super.
        """
        super(FSConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
        self.features = features
        self.data_url = data_url
        self.citation = citation
        self.url = url
        self.max_source_length = max_source_length
        self.tokenizer = tokenizer
        self.prompt = None
        self.input_key = None
        self.output_key = None
        self.redundant_fields = []

        self.train_file = "train.jsonl"
        self.validation_file = "validation.jsonl"
        self.test_file = "test.jsonl"

    def remove_redundant_fields(self, example):
        for field in self.redundant_fields:
            del example[field]

    def process_input(self, s):
        return s.strip()

    def process_output(self, s):
        return s


class ScrollsConfig(FSConfig):
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self.train_file = "train.jsonl"
        self.validation_file = "validation.jsonl"
        self.test_file = "test.jsonl"

        self.input_key = "input"  # TODO I think that we should keep the original fields
        self.output_key = "output"
        self.id_key = "pid"
        self.redundant_fields = [self.input_key, self.output_key, "id"]

    def process_input(self, s):
        prefix = s.strip()
        suffix = "\nSummarize the above:"
        prefix = _truncate_prefix(prefix, suffix, self.max_source_length, self.tokenizer)
        return prefix + suffix


class ArxivConfig(FSConfig):
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self.train_file = "train.txt"
        self.validation_file = "val.txt"
        self.test_file = "test.txt"

        self.input_key = "article_text"
        self.output_key = "abstract_text"
        self.id_key = "article_id"
        self.redundant_fields = [self.input_key, self.output_key, self.id_key, 'labels', 'section_names', 'sections']

    def process_input(self, s):
        prefix = ' '.join(s)
        suffix = "\nSummarize the above:"
        prefix = _truncate_prefix(prefix, suffix, self.max_source_length, self.tokenizer)
        return prefix + suffix

    def process_output(self, s):
        # TODO remove "<S>" and "</S>" ?
        return ' '.join(s).replace("<S>", "").replace("</S>", "")


def _truncate_prefix(prefix, suffix, max_source_length, tokenizer):
    encoded_input = tokenizer.encode(prefix + suffix)

    while len(encoded_input) > max_source_length:
        overflow = len(encoded_input) - max_source_length
        tokenized_prefix = tokenizer.encode(prefix, add_special_tokens=False)
        if overflow > 0:
            tokenized_prefix = tokenized_prefix[:-overflow]
        prefix = tokenizer.decode(tokenized_prefix, skip_special_tokens=False).strip()
        encoded_input = tokenizer.encode(prefix + suffix)

    return prefix


class Fs(datasets.GeneratorBasedBuilder):
    """The SCROLLS benchmark."""

    features = ["pid", "source", "target"]
    DEFAULT_WRITER_BATCH_SIZE = 1000  # because Narrative QA is a rather large dataset
    BUILDER_CONFIGS = [
        ScrollsConfig(
            name="summ_screen_fd_debug",
            description=_SUMM_SCREEN_DESCRIPTION,
            features=features,
            data_url="https://huggingface.co/datasets/tau/fs/resolve/main/data/summ_screen_fd_debug.zip",
            citation=_SUMM_SCREEN_CITATION,
            url="https://github.com/mingdachen/SummScreen",
            max_source_length=None,
            tokenizer=None,
        ),
        ScrollsConfig(
            name="gov_report",
            description=_GOV_REPORT_CITATION,
            features=features,
            data_url="https://huggingface.co/datasets/tau/fs/resolve/main/data/gov_report.zip",
            citation=_GOV_REPORT_DESCRIPTION,
            url="https://gov-report-data.github.io/",
            max_source_length=None,
            tokenizer=None,
        ),
        ArxivConfig(
            name="arxiv_debug",
            description=_ARXIV_CITATION,
            features=features,
            data_url="https://huggingface.co/datasets/tau/fs/resolve/main/data/arxiv_debug.zip",
            citation=_ARXIV_DESCRIPTION,
            url="https://github.com/armancohan/long-summarization",
            max_source_length=None,
            tokenizer=None,
        ),
    ]

    def _info(self):
        features = {feature: datasets.Value("string") for feature in self.config.features}

        return datasets.DatasetInfo(
            description=_FS_DESCRIPTION + self.config.description,
            features=datasets.Features(features),
            homepage=self.config.url,
            citation=self.config.citation + "\n" + _FS_CITATION,
        )

    def _split_generators(self, dl_manager):
        dl_dir = dl_manager.download_and_extract(self.config.data_url)

        data_files = {} if self.config.data_files is not None else None
        if data_files is not None:
            for split, paths in self.config.data_files.items():
                data_files[split] = paths[0]

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "data_file": os.path.join(dl_dir, self.config.train_file),
                    "split": datasets.Split.TRAIN,
                    "max_source_length": self.config.max_source_length,
                    "tokenizer": self.config.tokenizer,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "data_file": os.path.join(dl_dir, self.config.validation_file),
                    "split": datasets.Split.VALIDATION,
                    "max_source_length": self.config.max_source_length,
                    "tokenizer": self.config.tokenizer,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "data_file": os.path.join(dl_dir, self.config.test_file) if data_files is None else data_files[
                        "test"],
                    "split": datasets.Split.TEST,
                    "max_source_length": self.config.max_source_length,
                    "tokenizer": self.config.tokenizer,
                },
            ),
        ]

    def _generate_examples(self, data_file, split, max_source_length, tokenizer):
        with open(data_file, encoding="utf-8") as f:
            for line in f:
                row = json.loads(line)

                row["pid"] = row[self.config.id_key]
                row["source"] = self.config.process_input(row[self.config.input_key])
                row["target"] = self.config.process_output(row[self.config.output_key])

                self.config.remove_redundant_fields(row)
                yield row["pid"], row


def _get_task_name_from_data_url(data_url):
    return data_url.split("/")[-1].split(".")[0]