File size: 8,174 Bytes
3e38ab8 127e3fd 3e38ab8 b847b51 127e3fd b847b51 1ade361 3e38ab8 89c5f61 3e38ab8 127e3fd 89c5f61 3e38ab8 bf19c4f 3e38ab8 a1fa43e 2eacbde 1ade361 127e3fd 1ade361 127e3fd bf19c4f 127e3fd bf19c4f 1ade361 127e3fd 1ade361 4316980 1ade361 127e3fd 1ade361 4316980 1ade361 4316980 3e38ab8 89c5f61 3e38ab8 1ade361 3e38ab8 1ade361 3e38ab8 a1fa43e 2eacbde 3e38ab8 1ade361 3e38ab8 89c5f61 3e38ab8 a1fa43e 2eacbde 1ade361 127e3fd 3e38ab8 1ade361 3e38ab8 1ade361 3e38ab8 1ade361 3e38ab8 127e3fd 3e38ab8 1ade361 bf19c4f 1ade361 3e38ab8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
# coding=utf-8
# Lint as: python3
"""The SCROLLS benchmark."""
import json
import os
from abc import abstractmethod
import datasets
from citations_and_descriptions import (
_SUMM_SCREEN_DESCRIPTION, _SUMM_SCREEN_CITATION,
_GOV_REPORT_CITATION, _GOV_REPORT_DESCRIPTION,
_ARXIV_CITATION, _ARXIV_DESCRIPTION,
_FS_DESCRIPTION, _FS_CITATION,
)
class FSConfig(datasets.BuilderConfig):
"""BuilderConfig for FS."""
def __init__(self, data_url, citation, url, max_source_length, tokenizer, **kwargs):
"""BuilderConfig for FS.
Args:
features: `list[string]`, list of the features that will appear in the
feature dict. Should not include "label".
data_url: `string`, url to download the zip file from.
citation: `string`, citation for the data set.
url: `string`, url for information about the data set.
label_classes: `list[string]`, the list of classes for the label if the
label is present as a string. Non-string labels will be cast to either
'False' or 'True'.
**kwargs: keyword arguments forwarded to super.
"""
super(FSConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
self.features = ["pid", self.source_key, self.target_key]
self.data_url = data_url
self.citation = citation
self.url = url
self.max_source_length = max_source_length
self.tokenizer = tokenizer
def remove_redundant_fields(self, example):
for field in self.redundant_fields:
del example[field]
@abstractmethod
def postprocess(self, s):
pass
@property
@abstractmethod
def original_source_key(self):
pass
@property
@abstractmethod
def original_target_key(self):
pass
@property
@abstractmethod
def train_file(self):
pass
@property
@abstractmethod
def validation_file(self):
pass
@property
@abstractmethod
def test_file(self):
pass
@property
def source_key(self):
return "source"
@property
def target_key(self):
return "target"
@property
@abstractmethod
def id_key(self):
pass
@property
def redundant_fields(self):
return []
def process(self, example): # TODO perhaps we can use this for base
example[self.source_key] = example[self.original_source_key].strip()
example[self.target_key] = example[self.original_target_key].strip() if example[self.original_target_key] else None
class ScrollsConfig(FSConfig):
def __init__(self, **kwargs):
super().__init__(**kwargs)
@property
def original_source_key(self):
return "input"
@property
def original_target_key(self):
return "output"
@property
def train_file(self):
return "train.jsonl"
@property
def validation_file(self):
return "validation.jsonl"
@property
def test_file(self):
return "test.jsonl"
@property
def id_key(self):
return "pid"
@property
def redundant_fields(self):
return [self.original_source_key, self.original_target_key, "id"]
def process_input(self, s):
prefix = s.strip()
suffix = "\nSummarize the above:"
prefix = _truncate_prefix(prefix, suffix, self.max_source_length, self.tokenizer)
return prefix + suffix
class ArxivConfig(FSConfig):
# TODO properties etc...
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.train_file = "train.txt"
self.validation_file = "val.txt"
self.test_file = "test.txt"
self.input_key = "article_text"
self.output_key = "abstract_text"
self.id_key = "article_id"
self.redundant_fields = [self.input_key, self.output_key, self.id_key, 'labels', 'section_names', 'sections']
def process_input(self, s):
prefix = ' '.join(s)
suffix = "\nSummarize the above:"
prefix = _truncate_prefix(prefix, suffix, self.max_source_length, self.tokenizer)
return prefix + suffix
def process_output(self, s):
# TODO remove "<S>" and "</S>" ?
return ' '.join(s).replace("<S>", "").replace("</S>", "")
def _truncate_prefix(prefix, suffix, max_source_length, tokenizer):
encoded_input = tokenizer.encode(prefix + suffix)
while len(encoded_input) > max_source_length:
overflow = len(encoded_input) - max_source_length
tokenized_prefix = tokenizer.encode(prefix, add_special_tokens=False)
if overflow > 0:
tokenized_prefix = tokenized_prefix[:-overflow]
prefix = tokenizer.decode(tokenized_prefix, skip_special_tokens=False).strip()
encoded_input = tokenizer.encode(prefix + suffix)
return prefix
class Fs(datasets.GeneratorBasedBuilder):
"""The SCROLLS benchmark."""
DEFAULT_WRITER_BATCH_SIZE = 1000 # because Narrative QA is a rather large dataset
BUILDER_CONFIGS = [
ScrollsConfig(
name="summ_screen_fd_debug",
description=_SUMM_SCREEN_DESCRIPTION,
data_url="https://huggingface.co/datasets/tau/fs/resolve/main/data/summ_screen_fd_debug.zip",
citation=_SUMM_SCREEN_CITATION,
url="https://github.com/mingdachen/SummScreen",
max_source_length=None,
tokenizer=None,
),
ScrollsConfig(
name="gov_report",
description=_GOV_REPORT_CITATION,
data_url="https://huggingface.co/datasets/tau/fs/resolve/main/data/gov_report.zip",
citation=_GOV_REPORT_DESCRIPTION,
url="https://gov-report-data.github.io/",
max_source_length=None,
tokenizer=None,
),
# ArxivConfig(
# name="arxiv_debug",
# description=_ARXIV_CITATION,
# data_url="https://huggingface.co/datasets/tau/fs/resolve/main/data/arxiv_debug.zip",
# citation=_ARXIV_DESCRIPTION,
# url="https://github.com/armancohan/long-summarization",
# max_source_length=None,
# tokenizer=None,
# ),
]
def _info(self):
features = {feature: datasets.Value("string") for feature in self.config.features}
return datasets.DatasetInfo(
description=_FS_DESCRIPTION + self.config.description,
features=datasets.Features(features),
homepage=self.config.url,
citation=self.config.citation + "\n" + _FS_CITATION,
)
def _split_generators(self, dl_manager):
dl_dir = dl_manager.download_and_extract(self.config.data_url)
data_files = {} if self.config.data_files is not None else None
if data_files is not None:
for split, paths in self.config.data_files.items():
data_files[split] = paths[0]
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_file": os.path.join(dl_dir, self.config.train_file),
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"data_file": os.path.join(dl_dir, self.config.validation_file),
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"data_file": os.path.join(dl_dir, self.config.test_file) if data_files is None else data_files[
"test"],
},
),
]
def _generate_examples(self, data_file):
with open(data_file, encoding="utf-8") as f:
for line in f:
row = json.loads(line)
row["pid"] = row[self.config.id_key]
self.config.process(row)
self.config.remove_redundant_fields(row)
yield row["pid"], row
def _get_task_name_from_data_url(data_url):
return data_url.split("/")[-1].split(".")[0]
|