|
|
|
|
|
"""The SCROLLS benchmark.""" |
|
|
|
import json |
|
import os |
|
from abc import abstractmethod |
|
|
|
import datasets |
|
from citations_and_descriptions import ( |
|
_SUMM_SCREEN_DESCRIPTION, _SUMM_SCREEN_CITATION, |
|
_GOV_REPORT_CITATION, _GOV_REPORT_DESCRIPTION, |
|
_ARXIV_CITATION, _ARXIV_DESCRIPTION, |
|
_FS_DESCRIPTION, _FS_CITATION, |
|
) |
|
|
|
|
|
class FSConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for FS.""" |
|
|
|
def __init__(self, data_url, citation, url, max_source_length, tokenizer, **kwargs): |
|
"""BuilderConfig for FS. |
|
Args: |
|
features: `list[string]`, list of the features that will appear in the |
|
feature dict. Should not include "label". |
|
data_url: `string`, url to download the zip file from. |
|
citation: `string`, citation for the data set. |
|
url: `string`, url for information about the data set. |
|
label_classes: `list[string]`, the list of classes for the label if the |
|
label is present as a string. Non-string labels will be cast to either |
|
'False' or 'True'. |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(FSConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs) |
|
self.features = ["pid", self.source_key, self.target_key] |
|
self.data_url = data_url |
|
self.citation = citation |
|
self.url = url |
|
self.max_source_length = max_source_length |
|
self.tokenizer = tokenizer |
|
|
|
def remove_redundant_fields(self, example): |
|
for field in self.redundant_fields: |
|
del example[field] |
|
|
|
@abstractmethod |
|
def postprocess(self, s): |
|
pass |
|
|
|
@property |
|
@abstractmethod |
|
def original_source_key(self): |
|
pass |
|
|
|
@property |
|
@abstractmethod |
|
def original_target_key(self): |
|
pass |
|
|
|
@property |
|
@abstractmethod |
|
def train_file(self): |
|
pass |
|
|
|
@property |
|
@abstractmethod |
|
def validation_file(self): |
|
pass |
|
|
|
@property |
|
@abstractmethod |
|
def test_file(self): |
|
pass |
|
|
|
@property |
|
def source_key(self): |
|
return "source" |
|
|
|
@property |
|
def target_key(self): |
|
return "target" |
|
|
|
@property |
|
@abstractmethod |
|
def id_key(self): |
|
pass |
|
|
|
@property |
|
def redundant_fields(self): |
|
return [] |
|
|
|
def process(self, example): |
|
example[self.source_key] = example[self.original_source_key].strip() |
|
example[self.target_key] = example[self.original_target_key].strip() if example[self.original_target_key] else None |
|
|
|
|
|
class ScrollsConfig(FSConfig): |
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
@property |
|
def original_source_key(self): |
|
return "input" |
|
|
|
@property |
|
def original_target_key(self): |
|
return "output" |
|
|
|
@property |
|
def train_file(self): |
|
return "train.jsonl" |
|
|
|
@property |
|
def validation_file(self): |
|
return "validation.jsonl" |
|
|
|
@property |
|
def test_file(self): |
|
return "test.jsonl" |
|
|
|
@property |
|
def id_key(self): |
|
return "pid" |
|
|
|
@property |
|
def redundant_fields(self): |
|
return [self.original_source_key, self.original_target_key, "id"] |
|
|
|
|
|
|
|
def process_input(self, s): |
|
prefix = s.strip() |
|
suffix = "\nSummarize the above:" |
|
prefix = _truncate_prefix(prefix, suffix, self.max_source_length, self.tokenizer) |
|
return prefix + suffix |
|
|
|
|
|
class ArxivConfig(FSConfig): |
|
|
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
self.train_file = "train.txt" |
|
self.validation_file = "val.txt" |
|
self.test_file = "test.txt" |
|
|
|
self.input_key = "article_text" |
|
self.output_key = "abstract_text" |
|
self.id_key = "article_id" |
|
self.redundant_fields = [self.input_key, self.output_key, self.id_key, 'labels', 'section_names', 'sections'] |
|
|
|
def process_input(self, s): |
|
prefix = ' '.join(s) |
|
suffix = "\nSummarize the above:" |
|
prefix = _truncate_prefix(prefix, suffix, self.max_source_length, self.tokenizer) |
|
return prefix + suffix |
|
|
|
def process_output(self, s): |
|
|
|
return ' '.join(s).replace("<S>", "").replace("</S>", "") |
|
|
|
|
|
def _truncate_prefix(prefix, suffix, max_source_length, tokenizer): |
|
encoded_input = tokenizer.encode(prefix + suffix) |
|
|
|
while len(encoded_input) > max_source_length: |
|
overflow = len(encoded_input) - max_source_length |
|
tokenized_prefix = tokenizer.encode(prefix, add_special_tokens=False) |
|
if overflow > 0: |
|
tokenized_prefix = tokenized_prefix[:-overflow] |
|
prefix = tokenizer.decode(tokenized_prefix, skip_special_tokens=False).strip() |
|
encoded_input = tokenizer.encode(prefix + suffix) |
|
|
|
return prefix |
|
|
|
|
|
class Fs(datasets.GeneratorBasedBuilder): |
|
"""The SCROLLS benchmark.""" |
|
|
|
DEFAULT_WRITER_BATCH_SIZE = 1000 |
|
BUILDER_CONFIGS = [ |
|
ScrollsConfig( |
|
name="summ_screen_fd_debug", |
|
description=_SUMM_SCREEN_DESCRIPTION, |
|
data_url="https://huggingface.co/datasets/tau/fs/resolve/main/data/summ_screen_fd_debug.zip", |
|
citation=_SUMM_SCREEN_CITATION, |
|
url="https://github.com/mingdachen/SummScreen", |
|
max_source_length=None, |
|
tokenizer=None, |
|
), |
|
ScrollsConfig( |
|
name="gov_report", |
|
description=_GOV_REPORT_CITATION, |
|
data_url="https://huggingface.co/datasets/tau/fs/resolve/main/data/gov_report.zip", |
|
citation=_GOV_REPORT_DESCRIPTION, |
|
url="https://gov-report-data.github.io/", |
|
max_source_length=None, |
|
tokenizer=None, |
|
), |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
] |
|
|
|
def _info(self): |
|
features = {feature: datasets.Value("string") for feature in self.config.features} |
|
|
|
return datasets.DatasetInfo( |
|
description=_FS_DESCRIPTION + self.config.description, |
|
features=datasets.Features(features), |
|
homepage=self.config.url, |
|
citation=self.config.citation + "\n" + _FS_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
dl_dir = dl_manager.download_and_extract(self.config.data_url) |
|
|
|
data_files = {} if self.config.data_files is not None else None |
|
if data_files is not None: |
|
for split, paths in self.config.data_files.items(): |
|
data_files[split] = paths[0] |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data_file": os.path.join(dl_dir, self.config.train_file), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"data_file": os.path.join(dl_dir, self.config.validation_file), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"data_file": os.path.join(dl_dir, self.config.test_file) if data_files is None else data_files[ |
|
"test"], |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, data_file): |
|
with open(data_file, encoding="utf-8") as f: |
|
for line in f: |
|
row = json.loads(line) |
|
|
|
row["pid"] = row[self.config.id_key] |
|
self.config.process(row) |
|
self.config.remove_redundant_fields(row) |
|
yield row["pid"], row |
|
|
|
|
|
def _get_task_name_from_data_url(data_url): |
|
return data_url.split("/")[-1].split(".")[0] |
|
|