Search is not available for this dataset
name
stringlengths
2
112
description
stringlengths
29
13k
source
int64
1
7
difficulty
int64
0
25
solution
stringlengths
7
983k
language
stringclasses
4 values
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const long long MOD = 1000 * 1000 * 1000 + 7; inline long long mod(long long n) { if (n < 0) { return (n % MOD + MOD) % MOD; } else { return n % MOD; } } long long fp(long long a, long long p) { long long ans = 1, cur = a; for (long long i = 0; (1ll << i) <= p; ++i) { if ((p >> i) & 1) ans = mod(ans * cur); cur = mod(cur * cur); } return ans; } long long dv(long long a, long long b) { return mod(a * fp(b, MOD - 2)); } const long long N = 103; long long m[N][N], ans[N][N], t[N][N]; void add(long long a[N][N], long long b[N][N]) { for (long long i = 0; i < N; ++i) { for (long long j = 0; j < N; ++j) { t[i][j] = 0; } } for (long long i = 0; i < N; ++i) { for (long long j = 0; j < N; ++j) { for (long long k = 0; k < N; ++k) { t[i][j] = mod(t[i][j] + a[i][k] * b[k][j]); } } } for (long long i = 0; i < N; ++i) { for (long long j = 0; j < N; ++j) { a[i][j] = t[i][j]; } } } void pw(long long p) { for (long long i = 0; i < N; ++i) ans[i][i] = 1; for (long long i = 0; (1ll << i) <= p; ++i) { if ((p >> i) & 1) add(ans, m); add(m, m); } } bool a[N]; long long cnt[2]; signed main() { ios_base::sync_with_stdio(0); cin.tie(0); long long n, k; cin >> n >> k; for (long long i = 0; i < n; ++i) { cin >> a[i]; ++cnt[a[i]]; } long long l = cnt[0]; long long r = n - l; long long op = n * (n - 1) / 2; for (long long l1 = 0; l1 <= cnt[0] && l1 <= cnt[1]; ++l1) { long long l0 = l - l1; long long r0 = cnt[0] - l0; long long r1 = cnt[1] - l1; m[l1][l1] = op; if (l1) { m[l1][l1 - 1] = mod(l1 * r0); m[l1][l1] = mod(m[l1][l1] - m[l1][l1 - 1]); } m[l1][l1 + 1] = mod(l0 * r1); m[l1][l1] = mod(m[l1][l1] - m[l1][l1 + 1]); } pw(k); long long sum = 0; for (long long i = 0; i < l; ++i) sum += a[i]; cout << dv(ans[sum][0], fp(op, k)) << '\n'; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const int MOD = 1e9 + 7; const int N = 110; long long kOper, n, cnt; long long c[N]; struct Matrix { long long x[N][N]; Matrix() { for (int i = 0; i <= N - 1; ++i) for (int j = 0; j <= N - 1; ++j) x[i][j] = 0; } void show() { for (int i = 0; i <= cnt; ++i) { for (int j = 0; j <= cnt; ++j) cout << x[i][j] << ' '; cout << '\n'; } } } a, b; long long px(long long a, long long q) { if (q == 0) return 1; long long tmp = px(a, q / 2); tmp = (tmp * tmp) % MOD; if (q & 1) tmp = (tmp * a) % MOD; return tmp; } Matrix mul(Matrix &a, Matrix &b) { Matrix c; for (int i = 0; i <= cnt; ++i) for (int j = 0; j <= cnt; ++j) for (int k = 0; k <= cnt; ++k) c.x[i][j] = (c.x[i][j] + a.x[i][k] * b.x[k][j]) % MOD; return c; } Matrix px(Matrix a, long long q) { if (q == 1) return a; Matrix tmp = px(a, q / 2); tmp = mul(tmp, tmp); if (q & 1) tmp = mul(tmp, a); return tmp; } long long sum(long long n) { return n * (n - 1) / 2 % MOD; } void read() { cin >> n >> kOper; for (int i = 1; i <= n; ++i) { cin >> c[i]; cnt += (!c[i]); } int cur = 0; for (int i = 1; i <= cnt; ++i) cur += (!c[i]); a.x[0][cur] = 1; for (int j = 0; j <= cnt; ++j) { b.x[j][j] = (sum(cnt) + sum(n - cnt) + j * (cnt - j) + (cnt - j) * (n - 2 * cnt + j)) % MOD; if (j > 0) b.x[j - 1][j] = (cnt - j + 1) * (cnt - j + 1) % MOD; b.x[j + 1][j] = (j + 1) * (n - 2 * cnt + j + 1) % MOD; } } int main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); read(); b = px(b, kOper); a = mul(a, b); long long sum = 0; for (int i = 0; i <= cnt; ++i) sum = (sum + a.x[0][i]) % MOD; cout << a.x[0][cnt] * px(sum, MOD - 2) % MOD << '\n'; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const long long p = (long long)1e9 + 7; int n, m, k, a[110]; long long f[110][110], C[110][110]; long long qmod(long long base, long long n) { long long res = 1; while (n) { if (n & 1) { res = res * base % p; } base = base * base % p; n >>= 1; } return res; } struct node { int len; long long a[110][110]; node() {} node(int len) { this->len = len; memset(a, 0, sizeof a); } node operator*(const node &other) const { node res = node(len); for (int i = 0; i <= len; ++i) { for (int j = 0; j <= len; ++j) { for (int k = 0; k <= len; ++k) { (res.a[i][j] += a[i][k] * other.a[k][j] % p) %= p; } } } return res; } } base, res; void qmod(node &res, node &base, long long n) { while (n) { if (n & 1) { res = res * base; } base = base * base; n >>= 1; } } int main() { memset(C, 0, sizeof C); C[1][0] = C[1][1] = 1; for (int i = 1; i <= 100; ++i) { for (int j = 0; j <= i; ++j) { (C[i + 1][j + 1] += C[i][j]) %= p; (C[i + 1][j] += C[i][j]) %= p; } } while (scanf("%d%d", &n, &k) != EOF) { m = 0; for (int i = 1; i <= n; ++i) { scanf("%d", a + i); m += (a[i] == 0); } base = node(m); res = node(m); if (m == 0) { res.a[0][0] = 1; } for (int i = 1, j = 0; i <= m; ++i) { j += (a[i] == 1); if (i == m) { res.a[0][j] = 1; } } for (int i = 0; i <= m; ++i) { (base.a[i][i] += C[m][2] + C[n - m][2]) %= p; (base.a[i][i] += i * (n - m - i) % p) %= p; (base.a[i][i] += (m - i) * i % p) %= p; if (i != 0) { (base.a[i - 1][i] += (m - i + 1) * (n - m - i + 1) % p) %= p; } if (i != m) { (base.a[i + 1][i] += (i + 1) * (i + 1) % p) %= p; } } qmod(res, base, k); long long a = res.a[0][0], b = 0; for (int i = 0; i <= m; ++i) { (b += res.a[0][i]) %= p; } printf("%lld\n", a * qmod(b, p - 2) % p); } return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; using ll = long long; using ld = long double; vector<ll> v; vector<vector<ll>> mat; ll poww(ll x, ll y) { if (y == 1) return x; if (y % 2 == 0) { ll powww = poww(x, y / 2); return (powww * powww) % 1000000007; } else { return (poww(x, y - 1) % 1000000007) * x % 1000000007; } } vector<vector<ll>> matmult(vector<vector<ll>> mat1, vector<vector<ll>> mat2) { vector<vector<ll>> mat3; mat3.resize((int)(mat1).size(), vector<ll>((int)(mat1).size())); for (int i = 0; i < (int)(mat1).size(); ++i) { for (int j = 0; j < (int)(mat1).size(); ++j) { ll sum = 0; for (int k = 0; k < (int)(mat1).size(); ++k) { sum += (mat1)[i][k] * (mat2)[k][j] % 1000000007; } mat3[i][j] = sum % 1000000007; } } return mat3; } vector<vector<ll>> powmat(vector<vector<ll>> mat, ll x) { if (x == 1) return mat; if (x % 2 == 0) { vector<vector<ll>> tem = powmat(mat, x / 2); return matmult(tem, tem); } return matmult(powmat(mat, x - 1), mat); } int main() { std::ios::sync_with_stdio(false); int anfl1 = 0; int anz1 = 0; ll x; int k, n; cin >> n >> k; for (int i = 0; i < n; ++i) { cin >> x; if (x == 1) anz1++; v.push_back(x); } for (int i = 0; i < n - anz1; ++i) { if (v[i] == 1) anfl1++; } ll l = n * (n - 1) / 2 + anz1 * (anz1 - n); int mini = min(anz1, n - anz1); if (anz1 == 0 || anz1 == n) { cout << 1 << endl; return 0; } mat.resize(mini + 1, vector<ll>(mini + 1)); for (int i = 0; i <= mini; ++i) { for (int j = max(0, i - 1); j <= min(mini, i + 1); ++j) { if (j == i) { mat[i][j] = l + j * (n - 2 * j); } else if (j + 1 == i) { mat[i][j] = i * i; } else if (j == i + 1) { mat[i][j] = anz1 * (n - anz1) + i * (i - n); } } } mat = powmat(mat, k); ll P = mat[anfl1][0]; ll Q = poww(n * (n - 1) / 2, k); ll Q_ = poww(Q, 1000000005); cout << (P * Q_) % 1000000007 << endl; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; inline long long read() { long long f = 1, x = 0; char ch = getchar(); while (!isdigit(ch)) { if (ch == '-') f = -1; ch = getchar(); } while (isdigit(ch)) { x = x * 10 + ch - '0'; ch = getchar(); } return x * f; } const int MOD = 1e9 + 7; const int N = 100; const int MAXN = N + 5; int pow_mod(int x, int i) { int res = 1; while (i) { if (i & 1) res = (long long)res * x % MOD; x = (long long)x * x % MOD; i >>= 1; } return res; } int n, k, a[MAXN], c; struct Matrix { int a[MAXN][MAXN]; Matrix() { memset(a, 0, sizeof(a)); } } A, B; Matrix operator*(Matrix X, Matrix Y) { Matrix Z; for (int i = 0; i <= N; ++i) { for (int j = 0; j <= N; ++j) { for (int k = 0; k <= N; ++k) { Z.a[i][j] = ((long long)Z.a[i][j] + (long long)X.a[i][k] * Y.a[k][j] % MOD) % MOD; } } } return Z; } Matrix matrix_pow(Matrix X, int i) { Matrix Y; for (int i = 0; i <= N; ++i) Y.a[i][i] = 1; while (i) { if (i & 1) Y = Y * X; X = X * X; i >>= 1; } return Y; } void Print(Matrix X) { for (int i = 0; i <= 10; ++i) { for (int j = 0; j <= 10; ++j) { cout << X.a[i][j] << " "; } cout << endl; } cout << endl; } int main() { ios::sync_with_stdio(0); cin.tie(0); n = read(); k = read(); for (int i = 1; i <= n; ++i) a[i] = read(), c += (a[i] == 0); int t = 0; for (int i = 1; i <= c; ++i) t += (a[i] == 0); A.a[0][t] = 1; for (int i = 0; i <= c; ++i) { if (i != 0) B.a[i - 1][i] = 1LL * (c - (i - 1)) * (c - (i - 1)) % MOD; B.a[i][i] = 1LL * (1LL * i * (c - i) % MOD + 1LL * (c - i) * (n - c - c + i)) % MOD; B.a[i][i] = (B.a[i][i] + 1LL * c * (c - 1) / 2 % MOD) % MOD; B.a[i][i] = (B.a[i][i] + 1LL * (n - c) * (n - c - 1) / 2 % MOD) % MOD; if (i != c) B.a[i + 1][i] = 1LL * (i + 1) * (n - c - c + i + 1) % MOD; } B = matrix_pow(B, k); A = A * B; int ans = A.a[0][c]; t = 0; for (int i = 0; i <= c; ++i) t = ((long long)t + A.a[0][i]) % MOD; ans = ((long long)ans * pow_mod(t, MOD - 2)) % MOD; cout << ans << endl; return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; template <class _Tp> void ckmax(_Tp &a, _Tp b) { if (a < b) a = b; } template <class _Tp> void ckmin(_Tp &a, _Tp b) { if (a > b) a = b; } template <class _Tp> _Tp gcd(_Tp a, _Tp b) { return (b == 0) ? (a) : (gcd(b, a % b)); } int read() { char ch = getchar(); bool f = 1; int x = 0; while ((ch < '0' || ch > '9') && ch != '-') ch = getchar(); if (ch == '-') f = 0, ch = getchar(); while (ch >= '0' && ch <= '9') { x = x * 10 + (ch & 15); ch = getchar(); } return f ? x : -x; } const int inf = 1000000000; const long long Inf = 1000000000000000000ll; const long long mod = 1000000007; void add(int &x, int y) { x += y; if (x > mod) x -= mod; } int n, m, K, zero, C[150][150], a[150]; int qpow(int a, int b) { int res = 1; while (b) { if (b & 1) res = 1ll * res * a % mod; a = 1ll * a * a % mod; b >>= 1; } return res; } struct Mat { int s[150][150]; void clear() { memset(s, 0, sizeof(s)); } void init() { clear(); for (int i = 0; i <= m; ++i) s[i][i] = 1; } int *operator[](int x) { return s[x]; } } A, B; Mat operator*(Mat a, Mat b) { Mat c; c.clear(); for (int i = 0; i <= m; ++i) for (int j = 0; j <= m; ++j) for (int k = 0; k <= m; ++k) c[i][j] = (c[i][j] + 1ll * a[i][k] * b[k][j]) % mod; return c; } Mat qpow(Mat a, int b) { Mat res; res.init(); while (b) { if (b & 1) res = res * a; a = a * a; b >>= 1; } return res; } int main() { n = read(); K = read(); for (int i = 1; i <= n; ++i) a[i] = read(), zero += a[i] ^ 1; for (int i = 0; i <= n; ++i) C[i][0] = 1; for (int i = 1; i <= n; ++i) for (int j = 1; j <= i; ++j) C[i][j] = (C[i - 1][j] + C[i - 1][j - 1]) % mod; int s = 0; for (int i = 1; i <= n; ++i) if (i <= zero && a[i]) ++s; m = min(n - zero, zero); B[0][s] = 1; for (int i = 0; i <= m; ++i) { add(A[i][i], (C[zero][2] + C[n - zero][2]) % mod); add(A[i][i], 1ll * i * (n - zero - i) % mod); add(A[i][i], 1ll * (zero - i) * i % mod); if (i) add(A[i][i - 1], 1ll * i * i % mod); if (i < m) add(A[i][i + 1], 1ll * (zero - i) * (n - zero - i) % mod); } B = B * qpow(A, K); int ans = 1ll * B[0][0] * qpow(qpow(n * (n - 1) / 2, K), mod - 2) % mod; printf("%d\n", ans); return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const int N = 101; const int MOD = 1e9 + 7; template <typename T> inline void read(T &AKNOI) { T x = 0, flag = 1; char ch = getchar(); while (!isdigit(ch)) { if (ch == '-') flag = -1; ch = getchar(); } while (isdigit(ch)) { x = x * 10 + ch - '0'; ch = getchar(); } AKNOI = flag * x; } inline void Inc(int &x, int y) { x += y; if (x >= MOD) x -= MOD; } inline int Add(int x, int y) { Inc(x, y); return x; } int n, K, a[N], t, m, C[N][N]; inline int ksm(int x, int k) { int ret = x; --k; while (k) { if (k & 1) ret = 1LL * ret * x % MOD; x = 1LL * x * x % MOD; k >>= 1; } return ret; } struct Matrix { int a[N][N]; int *operator[](int x) { return a[x]; } } A, F; Matrix operator*(Matrix a, Matrix b) { Matrix ret; for (int i = 0; i <= m; ++i) { for (int j = 0; j <= m; ++j) { long long tmp = 0; for (int k = 0; k <= m; ++k) { tmp = (tmp + 1LL * a[i][k] * b[k][j]) % MOD; } ret[i][j] = tmp; } } return ret; } Matrix Ksm(Matrix x, int k) { Matrix ret = x; --k; while (k) { if (k & 1) ret = ret * x; x = x * x; k >>= 1; } return ret; } void init() { read(n); read(K); for (int i = 1; i <= n; ++i) { read(a[i]); t += (a[i] == 0); } for (int i = 0; i <= n; ++i) { C[i][0] = 1; for (int j = 1; j <= i; ++j) { C[i][j] = Add(C[i - 1][j], C[i - 1][j - 1]); } } } void solve() { int c = 0; for (int i = 1; i <= t; ++i) { c += a[i]; } A[0][c] = 1; m = min(t, n - t); for (int i = 0; i <= m; ++i) { Inc(F[i][i], C[t][2]); Inc(F[i][i], C[n - t][2]); Inc(F[i][i], (t - i) * i); Inc(F[i][i], i * (n - t - i)); if (i) Inc(F[i][i - 1], i * i); if (i < m) Inc(F[i][i + 1], (t - i) * (n - t - i)); } A = A * Ksm(F, K); int ans = 1LL * A[0][0] * ksm(ksm(C[n][2], K), MOD - 2) % MOD; printf("%d\n", ans); } int main() { init(); solve(); return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> #pragma GCC optimize("O3") using namespace std; template <class T> using v2d = vector<vector<T>>; template <class T> bool uin(T& a, T b) { return a > b ? (a = b, true) : false; } template <class T> bool uax(T& a, T b) { return a < b ? (a = b, true) : false; } mt19937 rng(chrono::system_clock::now().time_since_epoch().count()); const int maxN = 1e2 + 10; const long long mod = 1e9 + 7; const int blocksize = 10; struct Matrix { int n, m; vector<vector<long long>> s; Matrix() : n(0), m(0) {} Matrix(vector<vector<long long>>& a) { s = a; n = s.size(); if (n > 0) { m = s[0].size(); } } Matrix(int n, int m) : n(n), m(m) { s = vector<vector<long long>>(n, vector<long long>(m)); } vector<long long>& operator[](int i) { return s[i]; } Matrix operator*(Matrix a) { int p = a.m; vector<vector<long long>>& t = a.s; Matrix r(n, p); for (int i = 0; i < (int)(n); ++i) { for (int k = 0; k < (int)(m); ++k) { long long x = s[i][k]; for (int j = 0; j < (int)(p); ++j) { r[i][j] += x * t[k][j] % mod; if (r[i][j] >= mod) { r[i][j] -= mod; } } } } return r; } Matrix mul(Matrix a) { vector<vector<long long>>& t = a.s; Matrix r(n, n); for (int ii = 0; ii < n; ii += blocksize) { for (int jj = 0; jj < n; jj += blocksize) { for (int kk = 0; kk < n; kk += blocksize) { for (int i = ii; i < min(ii + blocksize, n); ++i) { for (int j = jj; j < min(jj + blocksize, n); ++j) { long long sum = 0; for (int k = kk; k < min(kk + blocksize, n); ++k) { sum += s[i][k] * t[k][j] % mod; if (sum >= mod) { sum -= mod; } } r[i][j] += sum; if (r[i][j] >= mod) { r[i][j] -= mod; } } } } } } return r; } }; Matrix power(Matrix a, long long b) { int n = a.n; Matrix r(n, n); for (int i = 0; i < (int)(n); ++i) { r[i][i] = 1; } while (b) { if (b & 1) { r = r.mul(a); } b >>= 1; a = a.mul(a); } return r; } long long power(long long a, long long b) { long long r = 1; while (b) { if (b & 1) { r = r * a % mod; } b >>= 1; a = a * a % mod; } return r; } long long nC2(int n) { return n * (n - 1) / 2; } long long inv(long long a) { return power(a, mod - 2); } int n, p, a[maxN]; long long k; bool check(int i, int p) { return i <= p && p - i <= n - p; } void solve() { cin >> n >> k; for (int i = 1; i <= (int)(n); ++i) { cin >> a[i]; p += a[i] == 0; } int tmp = 0; for (int i = 1; i <= (int)(p); ++i) { tmp += a[i] == 0; } Matrix b(p + 1, p + 1); long long iv = inv(nC2(n)); for (int i = 0; i < (int)(p + 1); ++i) { if (!check(i, p)) { continue; } if (i >= 1 && check(i - 1, p)) { b[i - 1][i] = (p - i + 1) * (p - i + 1) * iv % mod; } if (i < p && check(i + 1, p)) { b[i + 1][i] = (n - p * 2 + i + 1) % mod * (i + 1) % mod * iv % mod; } b[i][i] = (nC2(p) + nC2(n - p) + i * (p - i) + (p - i) * (n - p * 2 + i)) % mod * iv % mod; } Matrix ans(1, p + 1); ans[0][tmp] = 1; ans = ans * power(b, k); cout << ans[0][p]; } int main() { ios_base::sync_with_stdio(false); cin.tie(nullptr); int T = 1; while (T--) { solve(); } return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const int mod = 1000000007; inline void Add(int &a, int b) { a = a + b >= mod ? a + b - mod : a + b; } inline int ksm(int a, int b) { int res = 1; for (; b; b >>= 1, a = 1ll * a * a % mod) if (b & 1) res = 1ll * res * a % mod; return res; } int N, k, n; struct Matrix { int a[110][110]; Matrix() { memset(a, 0, sizeof(a)); } inline void init() { for (int i = 0; i <= n; i++) a[i][i] = 1; } Matrix operator*(const Matrix &p) const { Matrix ans; for (int i = 0; i <= n; i++) for (int k = 0; k <= n; k++) for (int j = 0; j <= n; j++) Add(ans.a[i][j], 1ll * a[i][k] * p.a[k][j] % mod); return ans; } inline void print() { for (int i = 0; i <= n; i++) { for (int j = 0; j <= n; j++) printf("%d ", a[i][j]); putchar('\n'); } } }; inline Matrix ksm(Matrix a, int b) { Matrix res; res.init(); for (; b; b >>= 1, a = a * a) if (b & 1) res = res * a; return res; } Matrix Base; inline void trans(int x, int y, int k) { Add(Base.a[x][y], k); } int v[110]; int main() { scanf("%d%d", &N, &k); for (int i = 1; i <= N; i++) scanf("%d", v + i), n += (v[i] == 0); if (n == 0) return puts("1"), 0; for (int i = 0; i <= n; i++) { int cnt1 = i, cnt0 = n - i; int rcnt1 = n - i, rcnt0 = N - n - rcnt1; if (rcnt0 < 0) continue; int allv = 1ll * N * (N - 1) / 2 % mod; trans(i, i, (mod + 1 - (1ll * cnt1 * rcnt0 + 1ll * cnt0 * rcnt1) % mod * ksm(allv, mod - 2) % mod) % mod); if (i) trans(i, i - 1, 1ll * cnt1 * rcnt0 % mod * ksm(allv, mod - 2) % mod); if (i < n) trans(i, i + 1, 1ll * cnt0 * rcnt1 % mod * ksm(allv, mod - 2) % mod); } Matrix t = ksm(Base, k); int cnt = 0; for (int i = 1; i <= n; i++) cnt += v[i]; printf("%d\n", t.a[n - cnt][n]); }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; using lli = long long int; using vb = vector<bool>; using vc = vector<char>; using vd = vector<double>; using vi = vector<int>; using vvi = vector<vi>; using vlli = vector<lli>; using vvlli = vector<vlli>; using pi = pair<int, int>; using plli = pair<lli, lli>; void readc(char& q) { scanf("%c", &q); } char readc() { char q; scanf("%c", &q); return q; } void readint(int& q) { scanf("%d", &q); } int readint() { int q; scanf("%d", &q); return q; } void readlong(lli& q) { scanf("%lld", &q); } lli readlong() { lli q; scanf("%lld", &q); return q; } void readdbl(double& q) { scanf("%lf", &q); } double readdbl() { double q; scanf("%lf", &q); return q; } void printint(int q) { printf("%d", q); } void printlong(lli q) { printf("%lld", q); } void printdbl(double q, int p = 6) { printf("%.*lf", p, q); } void readln() { scanf("\n"); } void println() { printf("\n"); } void printsp() { printf(" "); } void print(int q) { printint(q); } void print(long q) { printlong((lli)q); } void print(lli q) { printlong(q); } void print(double q) { printdbl(q); } void print(char c) { printf("%c", c); } void print(pi q) { print(q.first); printsp(); print(q.second); } void print(vi q) { for (int i = 0; i < q.size(); ++i) { print(q[i]); printsp(); } } void print(vlli q) { for (int i = 0; i < q.size(); ++i) { print(q[i]); printsp(); } } void print(vd q) { for (int i = 0; i < q.size(); ++i) { print(q[i]); printsp(); } } template <typename T> void println(T q) { print(q); println(); } template <typename T> T maxim(T first, T second) { return (first > second) ? first : second; } template <typename T> T maxim(T first, T second, T third) { return mndlim(maxim(first, second), third); } template <typename T> T minim(T first, T second) { return (first < second) ? first : second; } template <typename T> T minim(T first, T second, T third) { return minim(minim(first, second), third); } template <typename T> T middle(T first, T second, T third) { return first + second + third - maxim(first, second, third) - minim(first, second, third); } template <typename T> T abs(T arg) { return arg < 0 ? -arg : arg; } const lli modulo = 1000000007; struct Matrix { Matrix(int dimension) { size = dimension; m = new lli*[size]; for (int i = 0; i < size; ++i) { m[i] = new lli[size]; for (int j = 0; j < size; ++j) m[i][j] = 0ll; } } Matrix(const Matrix& other) : size(other.size), m(nullptr) { if (size) { m = new lli*[size]; for (int i = 0; i < size; ++i) { m[i] = new lli[size]; for (int j = 0; j < size; ++j) m[i][j] = other.m[i][j]; } } } friend void swap(Matrix& first, Matrix& second) { using std::swap; swap(first.size, second.size); for (int i = 0; i < first.size; ++i) swap(first.m[i], second.m[i]); } Matrix& operator=(Matrix matrix) { swap(*this, matrix); return *this; } void identity() { for (int i = 0; i < size; ++i) m[i][i] = 1ll; } ~Matrix() { for (int i = 0; i < size; ++i) { delete[] m[i]; } delete[] m; } int size; lli** m = nullptr; }; Matrix multiply(const Matrix& a, const Matrix& b) { Matrix result(a.size); for (int i = 0; i < a.size; ++i) for (int j = 0; j < a.size; ++j) for (lli k = 0; k < a.size; ++k) { result.m[i][j] = (result.m[i][j] + (a.m[i][k] * b.m[k][j]) % modulo) % modulo; } return result; } Matrix power(const Matrix& a, lli p) { Matrix result(a.size); result.identity(); if (p == 0) return result; if (p == 1) return a; if (p % 2 == 1) result = a; Matrix qres = power(a, p / 2); return multiply(result, multiply(qres, qres)); } lli gcd_extended(lli a, lli b, lli* x, lli* y) { if (a == 0) { *x = 0; *y = 1; return b; } lli x1, y1; lli result = gcd_extended(b % a, a, &x1, &y1); *x = y1 - (b / a) * x1; *y = x1; return result; } lli reverse_modulo(lli a) { lli x = 0ll, y = 0ll; gcd_extended(a, modulo, &x, &y); x = (x % modulo + modulo) % modulo; return x; } int main() { long n = readlong(); long k = readlong(); vi a(n); for (int i = 0; i < n; ++i) a[i] = readint(); lli z = 0; for (int i = 0; i < n; ++i) if (a[i] == 0) z++; Matrix A(z + 1); for (int i = 0; i < z + 1; ++i) { A.m[i][i] = n * (n - 1) / 2 - (z * z + 2 * i * i - 4 * z * i + i * n); } for (int i = 0; i < z; ++i) { A.m[i][i + 1] = (i + 1) * (n - 2 * z + i + 1); A.m[i + 1][i] = (z - i) * (z - i); } A = power(A, k); int z0 = 0; for (int i = 0; i < z; ++i) if (a[i] == 0) z0++; vlli d(z + 1); d[z0] = 1; vlli res(z + 1); lli sum = 0; for (int i = 0; i < z + 1; ++i) { for (int j = 0; j < z + 1; ++j) { res[i] = (res[i] + A.m[i][j] * d[j]) % modulo; } sum = (sum + res[i]) % modulo; } sum = reverse_modulo(sum); cout << (res[z] * sum) % modulo << endl; return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const int mod = 1e9 + 7; const int N = 110; int n, a[N], k, cnt; template <typename T> void gi(T &x) { x = 0; register char c = getchar(), pre = 0; for (; c < '0' || c > '9'; pre = c, c = getchar()) ; for (; c >= '0' && c <= '9'; c = getchar()) x = x * 10ll + (c ^ 48); if (pre == '-') x = -x; } inline int add(const int &x, const int &y) { return x + y < mod ? x + y : x + y - mod; } inline int sub(const int &x, const int &y) { return x - y < 0 ? x - y + mod : x - y; } inline int mul(const int &x, const int &y) { return (int)((long long)x * y % mod); } int ksm(int x, int y = mod - 2) { int ss = 1; for (; y; y >>= 1, x = mul(x, x)) if (y & 1) ss = mul(ss, x); return ss; } struct mtrx { int a[N][N]; inline mtrx operator*(const mtrx &yy) const { mtrx res; memset(res.a, 0, sizeof(res.a)); for (int i = (0), ied = (cnt); i <= ied; i++) for (int j = (0), jed = (cnt); j <= jed; j++) for (int k = (0), ked = (cnt); k <= ked; k++) res.a[i][j] = add(res.a[i][j], mul(a[i][k], yy.a[k][j])); return res; } }; mtrx f, g; int main() { gi(n), gi(k); for (int i = (1), ied = (n); i <= ied; i++) gi(a[i]), cnt += (a[i] ^ 1); int All = ksm(mul(mul(n, n - 1), ksm(2))); for (int i = (0), ied = (cnt); i <= ied; i++) { f.a[i][i] = 1; if (i >= 1 && i <= n - cnt) { f.a[i][i - 1] = mul(mul(i, i), All), f.a[i][i] = sub(f.a[i][i], f.a[i][i - 1]); } if (i < cnt && i < n - cnt) { f.a[i][i + 1] = mul(mul(n - cnt - i, cnt - i), All), f.a[i][i] = sub(f.a[i][i], f.a[i][i + 1]); } } g = f, --k; for (; k; k >>= 1, f = f * f) if (k % 2) g = g * f; int sum = 0, ans = 0; for (int i = (1), ied = (cnt); i <= ied; i++) sum += a[i]; printf("%d\n", g.a[sum][0]); return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; int n, k, m, nn; int a[110], dp[110][110]; struct Node { int t[110][110]; } init, ans; inline int fpow(int x, int y) { int cur_ans = 1; while (y) { if (y & 1) cur_ans = 1ll * cur_ans * x % 1000000007; x = 1ll * x * x % 1000000007; y >>= 1; } return cur_ans; } inline Node calc(Node x, Node y) { Node cur_ans; for (int i = 0; i <= nn; i++) for (int j = 0; j <= nn; j++) cur_ans.t[i][j] = 0; for (int i = 0; i <= nn; i++) for (int j = 0; j <= nn; j++) for (int p = 0; p <= nn; p++) { cur_ans.t[i][j] = (cur_ans.t[i][j] + 1ll * x.t[i][p] * y.t[p][j] % 1000000007) % 1000000007; } return cur_ans; } inline Node solve(Node x, int y) { Node cur_ans; for (int i = 0; i <= nn; i++) for (int j = 0; j <= nn; j++) cur_ans.t[i][j] = 0; for (int i = 0; i <= nn; i++) cur_ans.t[i][i] = 1; while (y) { if (y & 1) cur_ans = calc(cur_ans, x); x = calc(x, x); y >>= 1; } return cur_ans; } int main() { cin >> n >> k; for (int i = 1; i <= n; i++) { scanf("%d", &a[i]); if (a[i] == 0) m++; } int cur = 0; for (int i = 1; i <= m; i++) if (a[i] == 1) cur++; int c1 = (1ll * (m - 1) * m / 2) % 1000000007; int c2 = (1ll * (n - m - 1) * (n - m) / 2) % 1000000007; nn = min(n - m, m); for (int i = 0; i <= nn; i++) { init.t[i][i] = (init.t[i][i] + (c1 + c2) % 1000000007) % 1000000007; init.t[i][i] = (init.t[i][i] + (1ll * (m - i) * i) % 1000000007) % 1000000007; init.t[i][i] = (init.t[i][i] + (1ll * (n - m - i) * i % 1000000007)) % 1000000007; if (i + 1 <= nn) init.t[i][i + 1] = (init.t[i][i + 1] + 1ll * (m - i) * (n - m - i) % 1000000007) % 1000000007; if (i - 1 >= 0) init.t[i][i - 1] = (init.t[i][i - 1] + 1ll * i * i % 1000000007) % 1000000007; } init = solve(init, k); ans.t[0][cur] = 1; ans = calc(ans, init); int fn = 1ll * fpow(fpow(n * (n - 1) / 2, k), 1000000007 - 2) % 1000000007; cout << 1ll * ans.t[0][0] * fn % 1000000007 << endl; return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const long long N = 1e2 + 7; const long long mod = 1e9 + 7; long long n, k; void pr(long long x[N][N]) { printf("******\n"); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { printf("%d ", x[i][j]); } printf("\n"); } printf("******\n"); } long long qpow(long long a, long long b) { long long res = 1; while (b) { if (b & 1) res = res * a % mod; b >>= 1; a = a * a % mod; } return res; } void mul(long long a[N][N], long long b[N][N]) { long long c[N][N]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { c[i][j] = 0; for (int k = 0; k < n; k++) { if (a[i][k] > 0 && b[k][j] > 0) c[i][j] = (c[i][j] + a[i][k] * b[k][j] % mod) % mod; } } } memcpy(a, c, sizeof(c)); } long long a[N][N]; long long b[N][N]; long long qpow(long long x) { while (x) { if (x & 1) mul(a, b); x >>= 1; mul(b, b); } } int ar[N]; int main() { int t0 = 0, t1 = 0, tmp = 0; scanf("%lld%lld", &n, &k); for (int i = 1; i <= n; i++) { scanf("%d", &ar[i]); if (ar[i]) t1++; else t0++; } if (t0 == 0 || t1 == 0) { printf("1\n"); return 0; } for (int i = n, j = 1; j <= t1; j++, i--) { if (ar[i] == 1) tmp++; } a[0][tmp] = 1; long long x = n * (n - 1) / 2; b[0][0] = x - t1 * t1; b[1][0] = t0 - (t1 - 1); for (int i = 1; i < t1; i++) { int j = t1 - i; b[i][i] = t0 * (t0 - 1) / 2 + t1 * (t1 - 1) / 2 + i * (t1 - i) + j * (t0 - j); b[i - 1][i] = (t1 - i + 1) * (t1 - i + 1); b[i + 1][i] = (i + 1) * (t0 - (t1 - (i + 1))); } b[t1][t1] = t0 * (t0 - 1) / 2 + t1 * (t1 - 1) / 2; b[t1 - 1][t1] = 1; qpow(k); long long ans = a[0][t1]; ans = ans * qpow(qpow(x, k), mod - 2) % mod; printf("%lld\n", ans); }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; long long n; long long power(long long x, long long k) { long long result = 1; while (k) { if (k & 1) result = (result * x) % 1000000007; x = (x * x) % 1000000007; k = k >> 1; } return result; } class matrix { public: long long a[105][105] = {}; matrix operator*(matrix& P) { matrix R; for (int i = 0; i <= n; i++) { for (int j = 0; j <= n; j++) { for (int k = 0; k <= n; k++) { R.a[i][k] = (R.a[i][k] + 1ll * a[i][j] * P.a[j][k]) % 1000000007; } } } return R; } matrix operator^(long long e) { if (e == 1) { return *this; } matrix T = *this ^ (e / 2); T = T * T; return e % 2 ? T * *this : T; } } T; int main() { ios_base::sync_with_stdio(false); cin.tie(NULL), cout.tie(NULL); long long i, j, k, c = 0; cin >> n >> k; long long a[n + 5], p; for (i = 0; i < n; i++) { cin >> a[i]; if (a[i] == 0) c++; } long long s = 0; for (i = 0; i < c; i++) if (a[i] == 0) s++; for (i = 0; i < c + 1; i++) for (j = 0; j < c + 1; j++) { T.a[i][j] = 0; } for (j = 0; j < c + 1; j++) { T.a[j][j] = ((n - c) * (n - c - 1) / 2 + c * (c - 1) / 2 + (c - j) * (n - 2 * c + j) + j * (c - j)) % 1000000007; if (j != 0) T.a[j][j - 1] = ((c - j + 1) * (c - j + 1)) % 1000000007; if (j != c) T.a[j][j + 1] = ((j + 1) * (n - 2 * c + j + 1)) % 1000000007; } matrix A = T ^ k; p = A.a[c][s]; j = n * (n - 1) / 2; long long q = power(j, k); q = power(q, 1000000007 - 2); long long ans = p * q; ans = ans % 1000000007; cout << ans; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; inline long long read() { char c = getchar(); long long x = 0; bool f = 0; for (; !isdigit(c); c = getchar()) f ^= !(c ^ 45); for (; isdigit(c); c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48); if (f) x = -x; return x; } const long long Mod = 1e9 + 7; const long long M = 110; long long dp[M][M], n, k, t, a[M]; struct node { long long a[M][M]; } ans, aa, res; node mul(node a, node b) { node c; memset(c.a, 0, sizeof(c.a)); for (long long i = 0; i <= t; i++) for (long long j = 0; j <= t; j++) for (long long k = 0; k <= t; k++) c.a[i][j] = (c.a[i][j] + a.a[i][k] * b.a[k][j]) % Mod; return c; } long long poww(long long a, long long b) { long long res = 1; while (b) { if (b & 1) res = res * a % Mod; a = a * a % Mod, b >>= 1; } return res; } long long inv(long long a) { return poww(a, Mod - 2); } node poww2(node a, long long b) { while (b) { if (b & 1) res = mul(res, a); a = mul(a, a), b >>= 1; } return res; } signed main() { n = read(), k = read(); for (long long i = 1; i <= n; i++) a[i] = read(), t += a[i] ^ 1; long long cnt = 0; for (long long i = 1; i <= t; i++) cnt += a[i] ^ 1; ans.a[0][cnt] = 1; for (long long i = 0; i <= t; i++) res.a[i][i] = 1; for (long long i = 0; i <= t; i++) aa.a[i - 1][i] = (t - i + 1) * (t - i + 1) % Mod, aa.a[i][i] = (t * (t - 1) / 2 + (n - t) * (n - t - 1) / 2 + i * (t - i) + (t - i) * (n - 2 * t + i)) % Mod, aa.a[i + 1][i] = (i + 1) * (n - 2 * t + (i + 1)) % Mod; aa = poww2(aa, k); ans = mul(ans, aa); cout << ans.a[0][t] * inv(poww(n * (n - 1) / 2, k)) % Mod; return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
N, T = map(int, input().split()) A = [int(a) for a in input().split()] if sum(A) > N//2: A = [1-a for a in A][::-1] K = sum(A) S = sum(A[-K:]) M = K + 1 P = 10**9+7 inv = pow(N*(N-1)//2, P-2, P) X = [[0]*M for _ in range(M)] for i in range(M): if i > 0: X[i-1][i] = ((K-i+1)**2*inv)%P if i < M-1: X[i+1][i] = (N-2*K+i+1)*(i+1)*inv%P X[i][i] = (1-((K-i)**2*inv)-(N-2*K+i)*(i)*inv)%P def ddd(n): for i in range(1, 100): if (n*i%P) < 100: return (n*i%P), i return -1, -1 def poww(MM, n): if n == 1: return MM if n % 2: return mult(poww(MM, n-1), MM) return poww(mult(MM,MM), n//2) def mult(M1, M2): Y = [[0] * M for _ in range(M)] for i in range(M): for j in range(M): for k in range(M): Y[i][j] += M1[i][k] * M2[k][j] Y[i][j] %= P return Y X = poww(X, T) print(X[S][K])
PYTHON3
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const int MOD = (int)1e9 + 7; struct mint { int n; mint(int n_ = 0) : n(n_ % MOD) { if (n < 0) n += MOD; } }; mint operator+(mint a, mint b) { return (a.n += b.n) >= MOD ? a.n - MOD : a.n; } mint operator-(mint a, mint b) { return (a.n -= b.n) < 0 ? a.n + MOD : a.n; } mint operator*(mint a, mint b) { return 1LL * a.n * b.n % MOD; } mint &operator+=(mint &a, mint b) { return a = a + b; } mint &operator-=(mint &a, mint b) { return a = a - b; } mint &operator*=(mint &a, mint b) { return a = a * b; } ostream &operator<<(ostream &os, mint a) { return os << a.n; } istream &operator>>(istream &is, mint &a) { return is >> a.n; } mint inv(mint x) { long long a = x.n, b = MOD, u = 1, v = 0; while (b) { long long t = a / b; swap((a -= t * b), b); swap((u -= t * v), v); } return mint(u); } mint operator^(mint a, long long n) { mint r = 1; while (n) { if (n & 1) r *= a; a *= a; n >>= 1; } return r; } bool operator<(const mint &a, const mint &b) { return a.n < b.n; } template <class T> ostream &operator<<(ostream &os, const vector<T> &vec) { for (auto &vi : vec) os << vi << " "; return os; } template <class T> struct Matrix { vector<vector<T>> val; Matrix(int n = 1, int m = 1, T x = 0) { val.assign(n, vector<T>(m, x)); } size_t size() const { return val.size(); } vector<T> &operator[](int i) { return val[i]; } const vector<T> &operator[](int i) const { return val[i]; } friend ostream &operator<<(ostream &os, const Matrix<T> M) { for (int i = 0; i < M.size(); ++i) os << M[i] << " \n"[i != M.size() - 1]; return os; } }; template <class T> Matrix<T> operator^(Matrix<T> A, long long n) { Matrix<T> R(A.size(), A.size()); for (int i = 0; i < A.size(); ++i) R[i][i] = 1; while (n > 0) { if (n & 1) R = R * A; A = A * A; n >>= 1; } return R; } template <class T> Matrix<T> operator*(const Matrix<T> &A, const Matrix<T> &B) { Matrix<T> R(A.size(), B[0].size()); for (int i = 0; i < A.size(); ++i) for (int j = 0; j < B[0].size(); ++j) for (int k = 0; k < B.size(); ++k) R[i][j] += A[i][k] * B[k][j]; return R; } template <class T> vector<T> operator*(const Matrix<T> &A, vector<T> &B) { vector<T> v(A.size()); for (int i = 0; i < A.size(); ++i) for (int k = 0; k < B.size(); ++k) v[i] += A[i][k] * B[k]; return v; } int main() { int n, k; cin >> n >> k; vector<int> a(n); for (int &ai : a) cin >> ai; int cnt0 = count(a.begin(), a.end(), 0); int ng1 = count(a.begin(), a.begin() + cnt0, 1); vector<mint> state(cnt0 + 1); state[cnt0 - ng1] = 1; Matrix<mint> trans(cnt0 + 1, cnt0 + 1); mint all_inv = 2 * inv(n * (n - 1)); for (int ok0 = 0; ok0 <= cnt0; ok0++) { mint dec = ok0 * (n + ok0 - 2 * cnt0) * all_inv; mint inc = (cnt0 - ok0) * (cnt0 - ok0) * all_inv; if (ok0 > 0) trans[ok0 - 1][ok0] = dec; trans[ok0][ok0] += 1 - (dec + inc); if (ok0 < cnt0) trans[ok0 + 1][ok0] = inc; } cout << ((trans ^ k) * state)[cnt0] << endl; return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; int n, k, v[102]; int cnt0, cnt1, N; int m[102][102], Ans[102][102]; int lgPow(int a, int b) { int ret = 1; for (int i = 0; (1 << i) <= b; ++i, a = (1LL * a * a) % 1000000007) if (b & (1 << i)) ret = (1LL * ret * a) % 1000000007; return ret; } void mul(int a[102][102], int b[102][102]) { int res[102][102]; for (int i = 0; i <= N; ++i) for (int j = 0; j <= N; ++j) { res[i][j] = 0; for (int k = 0; k <= N; ++k) res[i][j] = (1LL * res[i][j] + 1LL * a[i][k] * b[k][j]) % 1000000007; } memcpy(a, res, sizeof(res)); } int main() { scanf("%d%d", &n, &k); for (int i = 0; i < n; ++i) { scanf("%d", &v[i]); cnt1 += v[i]; cnt0 += (v[i] == 0); } int p = 0; for (int i = 0; i < cnt0; ++i) p += v[i]; int P1 = ((cnt1 - 1) * cnt1) / 2, P0 = ((cnt0 - 1) * cnt0) / 2; N = min(cnt0, cnt1); for (int i = 0; i <= N; ++i) { Ans[i][i] = 1; m[i][i] = i * (cnt0 - i) + P0 + P1 + i * (cnt1 - i); if (i > 0) m[i][i - 1] = i * i; if (i < N) m[i][i + 1] = (cnt1 - i) * (cnt0 - i); } for (int i = 0; (1 << i) <= k; ++i, mul(m, m)) if (k & (1 << i)) mul(Ans, m); int ans = lgPow((n * (n - 1)) / 2, 1000000007 - 1 - k); ans = (1LL * ans * Ans[p][0]) % 1000000007; printf("%d\n", ans); return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const int mod = 1e9 + 7; int p[105]; long long quickpow(long long a, long long x) { long long res = 1; while (x) { if (x & 1) res = (res * a) % mod; x >>= 1; a = (a * a) % mod; } return res; } struct matrix { long long mat[105][105]; matrix() { memset(mat, 0, sizeof(mat)); } }; matrix mul(matrix a, matrix b) { matrix c; for (int i = 0; i < 105; i++) for (int j = 0; j < 105; j++) { c.mat[i][j] = 0; for (int k = 0; k < 105; k++) c.mat[i][j] = (c.mat[i][j] + a.mat[i][k] * b.mat[k][j] % mod) % mod; } return c; } matrix pow(matrix a, long long x) { matrix res; for (int i = 0; i < 105; i++) res.mat[i][i] = 1; while (x) { if (x & 1) res = mul(res, a); x >>= 1; a = mul(a, a); } return res; } int main() { ios::sync_with_stdio(false); int n, k, cnt = 0; cin >> n >> k; for (int i = 1; i <= n; i++) { cin >> p[i]; cnt += (p[i] == 0); } matrix trans, f; f.mat[0][0] = 1; long long all = n * (n - 1) % mod * quickpow(2, mod - 2) % mod; for (int i = 0; i <= min(cnt, n - cnt); i++) { long long temp = 0; if (i) { trans.mat[i][i - 1] = i * i * quickpow(all, mod - 2) % mod; temp = (temp + trans.mat[i][i - 1]) % mod; } if (i < cnt) { trans.mat[i][i + 1] = (cnt - i) * (n - cnt - i) * quickpow(all, mod - 2) % mod; temp = (temp + trans.mat[i][i + 1]) % mod; } trans.mat[i][i] = (1 - temp + mod) % mod; } f = mul(pow(trans, k), f); int now = 0; for (int i = 1; i <= cnt; i++) now += (p[i] == 1); cout << f.mat[now][0]; return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const int N = 105; const int mo = 1e9 + 7; int n, K, kai1[N], m; inline int fix(int x) { if (x >= mo) return x - mo; return x < 0 ? x + mo : x; } inline int hapow1(int x, int y) { int daan = 1; while (y) { if (y & 1) daan = 1ll * daan * x % mo; x = 1ll * x * x % mo; y >>= 1; } return daan; } struct matrix { int ma[N][N]; friend matrix operator*(matrix x, matrix y) { matrix z; for (int i = 0; i <= m; i++) for (int j = 0; j <= m; j++) { z.ma[i][j] = 0; for (int k = 0; k <= m; k++) z.ma[i][j] = fix(z.ma[i][j] + 1ll * x.ma[i][k] * y.ma[k][j] % mo); } return z; } } kai, ans; inline int read() { char ch = getchar(); int x = 0, f = 1; while (!isdigit(ch)) { if (ch == '-') f = -1; ch = getchar(); } while (isdigit(ch)) { x = (x << 3) + (x << 1) + ch - '0'; ch = getchar(); } return x * f; } inline void hapow(int y) { while (y) { if (y & 1) ans = ans * kai; kai = kai * kai; y >>= 1; } } inline int C(int x) { return x * (x - 1) / 2; } int main() { n = read(); K = read(); for (int i = 1; i <= n; i++) kai1[i] = read(), m += (kai1[i] == 0); int hu = 0; for (int i = 1; i <= m; i++) hu += (kai1[i] == 0); ans.ma[0][hu] = 1; int inv = hapow1(n * (n - 1) / 2, mo - 2); for (int i = 0; i <= m; i++) { kai.ma[i][i] = 1ll * inv * (i * (m - i) + (m - i) * (n - 2 * m + i) + C(m) + C(n - m)) % mo; if (i != 0) kai.ma[i][i - 1] = 1ll * inv * i % mo * (n - 2 * m + i) % mo; kai.ma[i][i + 1] = 1ll * inv * (m - i) % mo * (m - i) % mo; } hapow(K); cout << ans.ma[0][m]; return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> inline int read() { int res = 0; bool bo = 0; char c; while (((c = getchar()) < '0' || c > '9') && c != '-') ; if (c == '-') bo = 1; else res = c - 48; while ((c = getchar()) >= '0' && c <= '9') res = (res << 3) + (res << 1) + (c - 48); return bo ? ~res + 1 : res; } const int N = 105, ZZQ = 1e9 + 7; int n, k, a[N], cnt, c0, c1, st, I; int qpow(int a, int b) { int res = 1; while (b) { if (b & 1) res = 1ll * res * a % ZZQ; a = 1ll * a * a % ZZQ; b >>= 1; } return res; } struct matrix { int n, m, a[N][N]; matrix() {} matrix(int _n, int _m) : n(_n), m(_m) { memset(a, 0, sizeof(a)); } friend inline matrix operator*(matrix a, matrix b) { matrix res = matrix(a.n, b.m); for (int i = 1; i <= res.n; i++) for (int j = 1; j <= res.m; j++) for (int k = 1; k <= a.m; k++) res.a[i][j] = (1ll * a.a[i][k] * b.a[k][j] + res.a[i][j]) % ZZQ; return res; } friend inline matrix operator^(matrix a, int b) { matrix res = matrix(a.n, a.m); for (int i = 1; i <= res.n; i++) res.a[i][i] = 1; while (b) { if (b & 1) res = res * a; a = a * a; b >>= 1; } return res; } } A, St; int main() { n = read(); k = read(); for (int i = 1; i <= n; i++) a[i] = read(), cnt += !a[i]; I = qpow(n * (n - 1) >> 1, ZZQ - 2); c0 = cnt; c1 = n - cnt; if (n - cnt < cnt) cnt = n - cnt; A = matrix(cnt + 1, cnt + 1); St = matrix(cnt + 1, 1); for (int i = 1; i <= c0; i++) if (a[i]) st++; St.a[st + 1][1] = 1; for (int i = 0; i <= cnt; i++) { int cur = n * (n - 1) >> 1; if (i) A.a[i][i + 1] = 1ll * i * i * I % ZZQ, cur -= i * i; if (i < cnt) A.a[i + 2][i + 1] = 1ll * (c0 - i) * (c1 - i) * I % ZZQ, cur -= (c0 - i) * (c1 - i); A.a[i + 1][i + 1] = 1ll * cur * I % ZZQ; } std::cout << ((A ^ k) * St).a[1][1] << std::endl; return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const int N = 109; const int mod = 1e9 + 7; int n, a[N], k; int cnt0, cnt1; int b[N][N]; void jzc(int a[][N], int b[][N], int c) { int ans[N][N]; for (int i = 0; i <= cnt0; i++) for (int j = 0; j <= cnt0; j++) ans[i][j] = 0; for (int i = 0; i <= cnt0; i++) for (int j = 0; j <= cnt0; j++) for (int k = 0; k <= cnt0; k++) ans[i][j] = (ans[i][j] + 1ll * a[i][k] * b[k][j]) % mod; for (int i = 0; i <= cnt0; i++) for (int j = 0; j <= cnt0; j++) a[i][j] = ans[i][j]; } void jzksm(int a[][N], int b, int c) { int ans[N][N], base[N][N]; for (int i = 0; i <= cnt0; i++) { for (int j = 0; j <= cnt0; j++) { if (i == j) ans[i][j] = 1; else ans[i][j] = 0; base[i][j] = a[i][j]; } } while (b) { if (b & 1) jzc(ans, base, c); jzc(base, base, c); b >>= 1; } for (int i = 0; i <= cnt0; i++) for (int j = 0; j <= cnt0; j++) a[i][j] = ans[i][j]; } void print() { for (int i = 0; i <= cnt0; i++) { for (int j = 0; j <= cnt0; j++) cout << b[i][j] << " "; cout << endl; } cout << endl; } int poww(int a, int b, int c) { int ans = 1, base = a; while (b) { if (b & 1) ans = 1ll * ans * base % c; base = 1ll * base * base % c; b >>= 1; } return ans; } int main() { ios::sync_with_stdio(0), cin.tie(0), cout.tie(0); cin >> n >> k; for (int i = 1; i <= n; i++) cin >> a[i], cnt0 += (a[i] == 0), cnt1 += (a[i] == 1); int st = 0; for (int i = 1; i <= cnt0; i++) st += (a[i] == 0); for (int i = 0; i <= cnt0; i++) { if (i) b[i - 1][i] = (cnt0 - i + 1) * (cnt0 - i + 1); b[i][i] = cnt0 * (cnt0 - 1) / 2 + (cnt1 - 1) * (cnt1) / 2 + i * (cnt0 - i) + (cnt0 - i) * (cnt1 - cnt0 + i); if (i < cnt0) b[i + 1][i] = (i + 1) * (cnt1 - cnt0 + i + 1); } jzksm(b, k, mod); int sum = n * (n - 1) / 2; sum = poww(sum, k, mod); cout << b[st][cnt0] * 1ll * poww(sum, mod - 2, mod) % mod << endl; return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; int n, v[104], k, nr0; int** mat; int _pow(int a, int b) { if (b == 0) return 1; if (b == 1) return a; if (b % 2 == 0) return _pow(1LL * a * a % 1000000007, b / 2); return 1LL * _pow(1LL * a * a % 1000000007, b / 2) * a % 1000000007; } int** mult(int** A, int** B) { int** ans = new int*[nr0 + 1]; for (int i = 0; i <= nr0; i++) ans[i] = new int[nr0 + 1]; for (int i = 0; i <= nr0; i++) for (int j = 0; j <= nr0; j++) ans[i][j] = 0; for (int i = 0; i <= nr0; i++) for (int j = 0; j <= nr0; j++) { for (int k = 0; k <= nr0; k++) { ans[i][j] = (1LL * A[i][k] * B[k][j] + ans[i][j]) % 1000000007; } } return ans; } int** _pow2(int** mat, int k) { int** mat2 = new int*[nr0 + 1]; for (int i = 0; i <= nr0; i++) mat2[i] = new int[nr0 + 1]; for (int i = 0; i <= nr0; i++) for (int j = 0; j <= nr0; j++) mat2[i][j] = mat[i][j]; if (k == 1) return mat2; int** mat3 = new int*[nr0 + 1]; for (int i = 0; i <= nr0; i++) mat3[i] = new int[nr0 + 1]; for (int i = 0; i <= nr0; i++) for (int j = 0; j <= nr0; j++) mat3[i][j] = mat[i][j]; if (k % 2 == 0) { mat3 = mult(mat3, mat2); return _pow2(mat3, k / 2); } else { mat3 = mult(mat3, mat2); mat3 = _pow2(mat3, k / 2); return mult(mat3, mat2); } } int main() { ios::sync_with_stdio(false); cin >> n >> k; for (int i = 1; i <= n; i++) { cin >> v[i]; if (v[i] == 0) nr0++; } if (nr0 == 0 || nr0 == n) { cout << 1 << '\n'; return 0; } mat = new int*[nr0 + 1]; for (int i = 0; i <= nr0; i++) { mat[i] = new int[nr0 + 1]; for (int j = 0; j <= nr0; j++) { mat[i][j] = 0; } } int mn = max(0, nr0 - (n - nr0)); for (int i = 0; i <= nr0; i++) { if (i > mn) mat[i - 1][i] = 1LL * (nr0 - (i - 1)) * (nr0 - (i - 1)) % 1000000007; mat[i][i] = ((max(0LL, 1LL * nr0 * (nr0 - 1) / 2) + max(0LL, 1LL * (n - nr0) * (n - nr0 - 1) / 2)) % 1000000007 + 1LL * (nr0 - i) * i) % 1000000007; mat[i][i] = (mat[i][i] + 1LL * (nr0 - i) * (n - nr0 - (nr0 - i))) % 1000000007; if (i < nr0) mat[i + 1][i] = 1LL * (i + 1) * (n - nr0 - (nr0 - i - 1)) % 1000000007; } int** ans = _pow2(mat, k); for (int i = 0; i <= nr0; i++) for (int j = 0; j <= nr0; j++) mat[i][j] = 0; int x = 0; for (int i = 1; i <= nr0; i++) if (v[i] == 0) x++; mat[1][x] = 1; int** ans2 = mult(mat, ans); int A = ans2[1][nr0], B = 0; for (int i = 0; i <= nr0; i++) B = (B + ans2[1][i]) % 1000000007; A = (1LL * A * _pow(B, 1000000007 - 2)) % 1000000007; cout << A << '\n'; return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const int maxn = 120; const int mod = 1e9 + 7; int n, k; int um = 0; int a[maxn]; struct Matrix { int mat[maxn][maxn]; } ans, dt, zz; void multi(Matrix &k1, Matrix k2) { for (int i = 0; i <= um; i++) for (int j = 0; j <= um; j++) zz.mat[i][j] = 0; for (int k = 0; k <= um; k++) { for (int i = 0; i <= um; i++) { for (int j = 0; j <= um; j++) { zz.mat[i][j] += 1ll * k1.mat[i][k] * k2.mat[k][j] % mod; zz.mat[i][j] %= mod; } } } for (int i = 0; i <= um; i++) for (int j = 0; j <= um; j++) k1.mat[i][j] = zz.mat[i][j]; } void read() { scanf("%d%d", &n, &k); for (int i = 1; i <= n; i++) scanf("%d", &a[i]); } void fast_pow(int pw) { int bit = 1; for (int i = 0; i <= um; i++) ans.mat[i][i] = 1; while (bit <= pw) { if (bit & pw) { multi(ans, dt); } bit <<= 1; multi(dt, dt); } } int fast_pow(int now, int pw) { int bit = 1, ddt = now, res = 1; while (bit <= pw) { if (bit & pw) { res = 1ll * res * ddt % mod; } ddt = 1ll * ddt * ddt % mod; bit <<= 1; } return res; } void work() { for (int i = 1; i <= n; i++) if (a[i] == 1) um++; for (int i = 0; i <= um; i++) { int z1 = um - i, z0 = n - um - z1; int l1 = i, l0 = um - i; if (z1 < 0 || z0 < 0) continue; dt.mat[i][i] = (1ll * um * (um - 1) / 2 % mod + 1ll * (n - um) * (n - um - 1) / 2 % mod) % mod; dt.mat[i][i] += (1ll * z1 * l1 % mod + 1ll * z0 * l0 % mod) % mod; dt.mat[i][i] %= mod; if (i + 1 <= um) dt.mat[i][i + 1] = 1ll * (i + 1) * (z0 + 1) % mod; if (i - 1 >= 0) dt.mat[i][i - 1] = 1ll * (l0 + 1) * (z1 + 1) % mod; } fast_pow(k); int im = 0; for (int i = 0; i < um; i++) im += a[n - i]; int pm = fast_pow(1ll * n * (n - 1) / 2 % mod, k); pm = fast_pow(pm, mod - 2); int res = 1ll * ans.mat[um][im] * pm % mod; printf("%d\n", res); } int main() { read(); work(); return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const int MOD = 1e9 + 7; const int N = 105; const int inv2 = 5e8 + 4; int I[N][N], ans, sum[2], n, k, inv_tot, cnt; int x[N]; long long fp(long long a, long long b) { a %= MOD; long long res = 1; for (; b; b >>= 1, a = a * a % MOD) { if (b & 1) res = a * res % MOD; } return res; } int calc(int x, int y) { if (abs(x - y) > 1) return 0; if (y == x) { long long ret = (1LL * sum[1] * (sum[1] - 1) % MOD * inv2 % MOD + 1LL * sum[0] * (sum[0] - 1) % MOD * inv2 % MOD); ret = ((ret + 1LL * y * (sum[0] - y) % MOD) % MOD + 1LL * y * (sum[1] - y) % MOD) % MOD; return ret * inv_tot % MOD; } else if (x > y) return 1LL * (sum[0] - y) * (sum[1] - y) % MOD * inv_tot % MOD; else return 1LL * y * y % MOD * inv_tot % MOD; } void matrix_mul(int (&a)[N][N], int (&b)[N][N], int n) { int c[N][N] = {0}; for (int i = 0; i < n; i++) { for (int k = 0; k < n; k++) { if (!a[i][k]) continue; for (int j = 0; j < n; j++) { c[i][j] = (c[i][j] + 1LL * a[i][k] * b[k][j]) % MOD; } } } memcpy(a, c, sizeof(c)); } void matrix_fp(int (&a)[N][N], long long k, int n) { int c[N][N] = {0}; for (int i = 0; i < n; i++) c[i][i] = 1; while (k) { if (k & 1) matrix_mul(c, a, n); matrix_mul(a, a, n); k >>= 1; } memcpy(a, c, sizeof(c)); } int main() { scanf("%d%d", &n, &k); inv_tot = fp(n * (n - 1) / 2, MOD - 2); for (int i = 0; i < n; i++) { scanf("%d", &x[i]); sum[x[i]]++; } for (int i = 0; i < sum[0]; i++) { if (x[i] != 0) cnt++; } for (int i = 0; i <= sum[1]; i++) { for (int j = 0; j <= sum[1]; j++) { I[i][j] = calc(i, j); } } matrix_fp(I, k, sum[1] + 1); printf("%lld\n", I[0][cnt]); }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> std::mt19937 rng( (int)std::chrono::steady_clock::now().time_since_epoch().count()); const int MOD = 1e9 + 7; template <int mod = MOD> struct modBase { modBase(int val = 0) : val((val % mod + mod) % mod) {} int val; modBase<mod> operator*(modBase<mod> o) { return modBase<mod>((long long)val * o.val % mod); } modBase<mod> operator+(modBase<mod> o) { return modBase<mod>((val + o.val) % mod); } }; template <class T> T fexp(T x, long long e) { T ans(1); for (; e > 0; e /= 2) { if (e & 1) ans = ans * x; x = x * x; } return ans; } template <const size_t n, const size_t m, class T = modBase<>> struct Matrix { T v[n][m]; Matrix(int d = 0) { for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { v[i][j] = T(0); } if (i < m) { v[i][i] = T(d); } } } template <size_t mm> Matrix<n, mm, T> operator*(Matrix<m, mm, T> &o) { Matrix<n, mm, T> ans; for (int i = 0; i < n; i++) { for (int j = 0; j < mm; j++) { for (int k = 0; k < m; k++) { ans.v[i][j] = ans.v[i][j] + v[i][k] * o.v[k][j]; } } } return ans; } }; int pairs(int x) { return x * (x - 1) / 2; } int main() { std::ios_base::sync_with_stdio(false); std::cin.tie(NULL); int freq[2] = {0, 0}; int n, k; std::cin >> n >> k; std::vector<int> a(n, 0); for (int i = 0; i < n; i++) { std::cin >> a[i]; freq[a[i]]++; } const int ms = 101; Matrix<ms, ms> bas(0); for (int i = 0; i <= freq[0]; i++) { int z0 = i, o0 = freq[0] - i; int z1 = freq[0] - z0, o1 = freq[1] - o0; if (o0 < 0 || o1 < 0 || z0 < 0 || z1 < 0) continue; if (z0 + z1 != freq[0] || o0 + o1 != freq[1]) continue; if (z0 + o0 != freq[0] || z1 + o1 != freq[1]) continue; auto p = fexp(modBase<>(pairs(n)), MOD - 2); bas.v[i][i] = p * modBase<>(z0 * o0 + z1 * o1 + z0 * z1 + o0 * o1 + pairs(z0) + pairs(z1) + pairs(o0) + pairs(o1)); if (z0 > 0 && o1 > 0) { bas.v[i][i - 1] = p * modBase<>(z0 * o1); } if (o0 > 0 && z1 > 0) { bas.v[i][i + 1] = p * modBase<>(z1 * o0); } } auto ans = fexp(bas, k); int z0 = 0; for (int i = 0; i < freq[0]; i++) { if (a[i] == 0) z0++; } std::cout << ans.v[z0][freq[0]].val << '\n'; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; int N; struct Mat { long long n[55][55] = {}; Mat friend operator*(Mat a, Mat b) { Mat c; for (int j = 0; j <= N; j++) for (int i = 0; i <= N; i++) for (int k = 0; k <= N; k++) c.n[i][k] = (c.n[i][k] + a.n[i][j] * b.n[j][k]) % 1000000007; return c; } } A; int num[105]; long long pow1(long long x, int y) { long long ans = 1; while (y) { if (y % 2) ans = (ans * x) % 1000000007; x = (x * x) % 1000000007; y = y / 2; } return ans; } Mat pow2(int y) { Mat ans; for (int i = 0; i <= N; i++) ans.n[i][i] = 1; while (y) { if (y % 2) ans = ans * A; A = A * A; y = y / 2; } return ans; } int main() { int n, k, sum = 0, now = 0; scanf("%d%d", &n, &k); for (int i = 1; i <= n; i++) { scanf("%d", &num[i]); if (num[i] == 0) sum++; } for (int i = sum + 1; i <= n; i++) { if (num[i] == 0) now++; } N = min(sum, n - sum); for (int i = 0; i <= N; i++) { A.n[i][i] = n * (n - 1) / 2; if (i < N) { A.n[i][i + 1] = (sum - i) * (n - sum - i); A.n[i][i] -= (sum - i) * (n - sum - i); } if (i > 0) { A.n[i][i - 1] = i * i; A.n[i][i] -= i * i; } } A = pow2(k); printf("%lld\n", (A.n[now][0] * pow1(pow1(n * (n - 1) / 2, 1000000007 - 2), k)) % 1000000007); return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const long long MOD = 1e9 + 7; long long powmod(long long a, long long k) { long long ap = a, ans = 1; while (k) { if (k & 1) { ans *= ap; ans %= MOD; } ap = ap * ap; ap %= MOD; k >>= 1; } return ans; } long long inv(long long a) { return powmod(a, MOD - 2); } vector<vector<long long>> matrixmul(int l, int m, int n, vector<vector<long long>> a, vector<vector<long long>> b) { vector<vector<long long>> c; for (int i = 0; i < l; i++) { vector<long long> v; for (int j = 0; j < n; j++) { long long x = 0; for (int k = 0; k < m; k++) { x += (a[i][k] * b[k][j]); x %= MOD; } v.push_back(x); } c.push_back(v); } return c; } vector<vector<long long>> matrixpow(int n, vector<vector<long long>> a, long long k) { vector<vector<long long>> ap = a, ans; for (int i = 0; i < n; i++) { vector<long long> v; for (int j = 0; j < n; j++) { if (i == j) { v.push_back(1); } else { v.push_back(0); } } ans.push_back(v); } while (k) { if (k & 1) ans = matrixmul(n, n, n, ap, ans); ap = matrixmul(n, n, n, ap, ap); k >>= 1; } return ans; } int main() { int n; long long k; cin >> n >> k; int a[101]; int c = 0; for (int i = 0; i < n; i++) { cin >> a[i]; if (a[i] == 1) c++; } if (c == 0 || c == n) { cout << 1 << endl; return 0; } int t = 0; for (int i = n - c; i < n; i++) { if (a[i] == 1) t++; } vector<vector<long long>> mat; long long invn = inv(n * (n - 1) / 2); for (int i = 0; i <= c; i++) { vector<long long> v(c + 1); mat.push_back(v); } for (long long i = 0; i <= c; i++) { long long x = i * (n - 2 * c + i) * invn % MOD; long long y = (c - i) * (c - i) * invn % MOD; if (i > 0) mat[i - 1][i] = x; if (i < c) mat[i + 1][i] = y; mat[i][i] = (1 - x - y + 2 * MOD) % MOD; } vector<vector<long long>> mp = matrixpow(c + 1, mat, k); cout << mp[c][t] << endl; return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const int mod = 1000000007; struct MATRIX { int n; long long a[105][105]; MATRIX(int n) : n(n) { for (int i = 0; i <= n; ++i) for (int j = 0; j <= n; ++j) a[i][j] = 0; } MATRIX operator*(const MATRIX &b) { MATRIX c(n); for (int i = 0; i <= n; ++i) for (int j = 0; j <= n; ++j) for (int k = 0; k <= n; ++k) c.a[i][j] = (c.a[i][j] + a[i][k] * b.a[k][j]) % mod; return c; } }; int n, k, a[105], zero, one; inline int nC2(int n) { return (n * (n - 1) / 2) % mod; } MATRIX matPow(MATRIX a, int n) { MATRIX res(zero), t = a; for (int i = 0; i <= zero; ++i) res.a[i][i] = 1; while (n) { if (n & 1) res = res * t; t = t * t; n >>= 1; } return res; } long long pow(long long a, int n) { long long res = 1LL, t = a; while (n) { if (n & 1) res = res * t % mod; t = t * t % mod; n >>= 1; } return res; } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); cin >> n >> k; for (int i = 1; i <= n; ++i) { cin >> a[i]; if (a[i] == 0) ++zero; else ++one; } MATRIX mat(zero); for (int zeroA = 0; zeroA <= zero; ++zeroA) { int oneA = zero - zeroA, zeroB = oneA, oneB = one - oneA; if (oneB < 0) continue; if (zeroA > 0 && oneA < one && zeroB < zero) mat.a[zeroA - 1][zeroA] = (oneA + 1) * (zeroB + 1) % mod; mat.a[zeroA][zeroA] = (nC2(zero) + nC2(one) + (oneA * zeroA) + (oneB * zeroB)) % mod; if (zeroA < zero && oneB < one) mat.a[zeroA + 1][zeroA] = (zeroA + 1) * (oneB + 1) % mod; } MATRIX res = matPow(mat, k); int zeroA = 0; for (int i = 1; i <= zero; ++i) zeroA += (a[i] == 0); long long sum = 0LL; for (int j = 0; j <= zero; ++j) sum = (sum + res.a[zeroA][j]) % mod; cout << 1LL * res.a[zeroA][zero] * pow(sum, mod - 2) % mod; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const int maxN = 110; const long long mod = 1e9 + 7; int n; long long k; long long x, y; int a[maxN]; struct SquareMatrix { SquareMatrix(int _n) : n(_n) { data.assign(_n, vector<long long>(_n, 0)); } vector<long long> &operator[](int i) { return data[i]; } const vector<long long> &operator[](int i) const { return data[i]; } SquareMatrix operator*(const SquareMatrix &other) const { assert(n == other.n); SquareMatrix ret(n); for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { for (int k = 0; k < n; ++k) { ret[i][j] = (ret[i][j] + data[i][k] * other[k][j]) % mod; } } } return ret; } vector<vector<long long>> data; int n; }; SquareMatrix quickpower(SquareMatrix m, int p) { int n = m.n; SquareMatrix ret(n); for (int i = 0; i < n; ++i) ret[i][i] = 1; while (p) { if (p & 1) { ret = ret * m; } m = m * m; p >>= 1; } return ret; } long long powmod(long long base, long long times) { long long res = 1; while (times) { if (times % 2) res = (res * base) % mod; times /= 2; base = (base * base) % mod; } return res; } int main() { scanf("%d %lld", &n, &k); for (int i = 1; i <= n; i++) scanf("%d", &a[i]); for (int i = 1; i <= n; i++) if (a[i] == 0) x++; y = n - x; long long tmp0 = 0; for (int i = 1; i <= x; i++) if (a[i] == 0) tmp0++; long long tmp1 = y - x + tmp0; if (x > y) { swap(x, y); swap(tmp0, tmp1); } SquareMatrix m(x + 1); for (int i = 0; i <= x; i++) { m[i][i] = x * (x - 1) / 2 + y * (y - 1) / 2 + i * (x - i) + (x - i) * (y - x + i); if (i > 0) m[i - 1][i] = (x - i + 1) * (x - i + 1); if (i < x) m[i + 1][i] = (i + 1) * (y - x + i + 1); } m = quickpower(m, k); long long zi = m[tmp0][x]; long long mu = 0; for (int i = 0; i <= x; i++) mu = (mu + m[tmp0][i]) % mod; cout << (zi * powmod(mu, mod - 2)) % mod << endl; return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; template <class T> struct Matrix { struct VirtualVector { vector<T> &R; int off; VirtualVector(vector<T> &R, const int off) : R(R), off(off) {} T &operator[](int k) { return R[off + k]; } }; vector<T> MAT; int N, M; Matrix(int N, int M) { this->N = N; this->M = M; MAT = vector<T>(N * M); } static Matrix<T> identity(int N) { Matrix<T> A(N, N); for (int i = 0; i < N; ++i) A[i][i] = 1; return A; } Matrix<T> operator+(Matrix<T> &M) { Matrix<T> A(this->rows(), M.cols()); for (int i = 0; i < this->rows(); ++i) { for (int j = 0; j < this->cols(); ++j) { A[i][j] = ((*this)[i][j] + M[i][j]); } } return A; } Matrix<T> operator*(Matrix<T> &MA) { Matrix<T> A(this->rows(), MA.cols()); if (this->cols() != MA.rows()) return A; for (int i = 0; i < this->rows(); ++i) { for (int j = 0; j < MA.cols(); ++j) { A[i][j] = 0; for (int k = 0; k < this->cols(); ++k) { A[i][j] = (A[i][j] + MAT[i * M + k] * MA[k][j]); } } } return A; } Matrix<T> operator*(int &n) { Matrix<T> A(this->rows(), this->cols()); for (int i = 0; i < this->rows(); ++i) { for (int j = 0; j < this->cols(); ++j) { A[i][j] = (1LL * n * (*this)[i][j]); } } return A; } Matrix<T> pow(int n) { Matrix<T> A = identity((*this).rows()); for (int b = (1 << 30); b >= 1; b >>= 1) { A = A * A; if (b & n) A = A * (*this); } return A; } VirtualVector operator[](int i) { return VirtualVector(MAT, i * M); } int rows() { return N; } int cols() { return M; } string toString() { string ans = "{\n"; for (int i = 0; i < this->rows(); ++i) { ans += "["; for (int j = 0; j < this->cols(); ++j) { stringstream st; string app = (j == 0 ? "" : " "); st << (*this)[i][j]; app += st.str(); ans += app; } ans += "]\n"; } ans += "}"; return ans; } }; template <long long MOD> struct ModInt { int n; ModInt(const ModInt<MOD> &v) : n(v.n) {} ModInt() : n(0) {} ModInt(long long nn) { if (nn < -MOD || nn >= MOD) nn %= MOD; if (nn < 0) nn += MOD; n = nn; } ModInt<MOD> operator+(const ModInt<MOD> &M) const { int r = (n + M.n); if (r >= MOD) r -= MOD; return ModInt::safe(r); } ModInt<MOD> operator-(const ModInt<MOD> &M) const { int r = (n - M.n); if (r < 0) r += MOD; return ModInt::safe(r); } ModInt<MOD> operator*(const ModInt<MOD> &M) const { return ModInt::safe(((long long)n * M.n) % MOD); } ModInt<MOD> operator+=(const ModInt<MOD> &M) { return ModInt::safe(n = ((*this) + (M)).n); } ModInt<MOD> operator-=(const ModInt<MOD> &M) { return ModInt::safe(n = ((*this) - (M)).n); } ModInt<MOD> operator/(const ModInt<MOD> &B) const { long long a = B.n, b = MOD; long long r = a, o_r = b; long long s = 0, o_s = 1; long long t = 1, o_t = 0; while (r != 0) { long long q = o_r / r; long long tem; tem = r; r = o_r - r * q; o_r = tem; tem = o_s; o_s = o_s - s * q; o_s = tem; tem = t; t = o_t - t * q; o_t = tem; } return (*this) * ModInt(o_t); } ModInt<MOD> power(const ModInt<MOD - 1> &B) { if (B.n == 0) return 1; ModInt<MOD> sq = power(B.n / 2); sq = sq * sq; if (B.n & 1) sq = sq * (*this); return sq; } inline static ModInt<MOD> safe(long long n) { ModInt<MOD> m; m.n = n; return m; } friend ostream &operator<<(ostream &os, const ModInt &anInt) { os << "n: " << anInt.n; return os; } }; int main() { int N, K; cin >> N >> K; vector<int> V(N); for (int i = 0; i < N; ++i) { cin >> V[i]; } int L = count(V.begin(), V.end(), 0); int R = count(V.begin(), V.end(), 1); int X = count(V.begin(), V.begin() + L, 1); Matrix<ModInt<1000000007> > MAT(min(L, R) + 1, min(L, R) + 1); for (int onesLeft = 0; onesLeft <= min(L, R); ++onesLeft) { ModInt<1000000007> tot = N * (N - 1) / 2; ModInt<1000000007> probInc = ModInt<1000000007>(L - onesLeft) * ModInt<1000000007>(R - onesLeft) / tot; ModInt<1000000007> probDec = ModInt<1000000007>(onesLeft) * ModInt<1000000007>(onesLeft) / tot; ModInt<1000000007> probSame = ModInt<1000000007>(1) - probInc - probDec; if (onesLeft < L && onesLeft < R) { MAT[onesLeft + 1][onesLeft] = probInc; } if (onesLeft > 0) { MAT[onesLeft - 1][onesLeft] = probDec; } MAT[onesLeft][onesLeft] = probSame; } Matrix<ModInt<1000000007> > ST(min(L, R) + 1, 1); ST[X][0] = 1; cout << (MAT.pow(K) * ST)[0][0].n << endl; return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const long long MOD = 1000 * 1000 * 1000 + 7; long long mod(long long n) { if (n < 0) { return (n % MOD + MOD) % MOD; } else { if (n < MOD) return n; else if (n < (MOD << 1)) return n - MOD; else if (n < (MOD << 1) + MOD) return n - (MOD << 1); else return n % MOD; } } long long fp(long long a, long long p) { long long ans = 1, cur = a; for (long long i = 0; (1 << i) <= p; ++i) { if ((p >> i) & 1) ans = mod(ans * cur); cur = mod(cur * cur); } return ans; } long long dv(long long a, long long b) { return mod(a * fp(b, MOD - 2)); } const long long N = 101; long long m[N][N], ans[N][N], t[N][N]; void add(long long a[N][N], long long b[N][N]) { for (long long i = 0; i < N; ++i) { for (long long j = 0; j < N; ++j) { t[i][j] = 0; } } for (long long i = 0; i < N; ++i) { for (long long j = 0; j < N; ++j) { for (long long k = 0; k < N; ++k) { t[i][j] = mod(t[i][j] + a[i][k] * b[k][j]); } } } for (long long i = 0; i < N; ++i) { for (long long j = 0; j < N; ++j) { a[i][j] = t[i][j]; } } } void pw(long long p) { for (long long i = 0; i < N; ++i) ans[i][i] = 1; for (long long i = 0; (1 << i) <= p; ++i) { if ((p >> i) & 1) add(ans, m); add(m, m); } } bool a[N]; long long cnt[2]; signed main() { ios_base::sync_with_stdio(0); cin.tie(0); long long n, k; cin >> n >> k; for (long long i = 0; i < n; ++i) { cin >> a[i]; ++cnt[a[i]]; } long long l = cnt[0]; long long r = n - l; long long op = n * (n - 1) / 2; for (long long l1 = 0; l1 <= cnt[0] && l1 <= cnt[1]; ++l1) { long long l0 = l - l1; long long r0 = cnt[0] - l0; long long r1 = cnt[1] - l1; m[l1][l1] = op; if (l1) { m[l1][l1 - 1] = mod(l1 * r0); m[l1][l1] = mod(m[l1][l1] - m[l1][l1 - 1]); } m[l1][l1 + 1] = mod(l0 * r1); m[l1][l1] = mod(m[l1][l1] - m[l1][l1 + 1]); } pw(k); long long sum = 0; for (long long i = 0; i < l; ++i) sum += a[i]; cout << dv(ans[sum][0], fp(op, k)) << '\n'; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const int mod = 1e9 + 7; int n, k, a[105], sum, Q; struct Mat { int s[105][105]; Mat() { memset(s, 0, sizeof s); } Mat operator*(const Mat &B) { Mat ret; for (int k = 0; k <= sum; k++) for (int i = 0; i <= sum; i++) if (s[i][k]) for (int j = 0; j <= sum; j++) if (B.s[k][j]) ret.s[i][j] = (ret.s[i][j] + 1ll * s[i][k] * B.s[k][j]) % mod; return ret; } } f, g; inline int ksm(int a, int b) { int s = 1; for (; b; b >>= 1, a = 1ll * a * a % mod) if (b & 1) s = 1ll * s * a % mod; return s; } int main() { scanf("%d%d", &n, &k), Q = 1ll * (n - 1) * n / 2 % mod; for (int i = 1; i <= n; i++) scanf("%d", &a[i]), sum += (a[i] == 0); int tmp = 0; for (int i = 1; i <= sum; i++) tmp += (a[i] == 0); f.s[0][tmp] = 1; for (int i = 0, x, y; i <= sum; i++) { x = y = 0; if (i) g.s[i][i - 1] = x = 1ll * i * (n - sum - (sum - i)) % mod; if (i < sum) g.s[i][i + 1] = y = 1ll * (sum - i) * (sum - i) % mod; g.s[i][i] = (Q - x - y + mod) % mod; } for (tmp = k; tmp; tmp >>= 1, g = g * g) if (tmp & 1) f = f * g; printf("%d\n", 1ll * f.s[0][sum] * ksm(ksm(Q, k), mod - 2) % mod); }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const int N = 102; long long int mod = 1e9 + 7, b[N]; struct matrix { long long int n, m; long long int a[N][N]; matrix(int nn, int mm) { n = nn; m = mm; } void ide() { for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { a[i][j] = (i == j); } } } void emp() { for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { a[i][j] = 0; } } } }; void out(matrix o) { cout << o.n << ' ' << o.m << '\n'; for (int i = 0; i < o.n; i++) { for (int j = 0; j < o.m; j++) { cout << o.a[i][j] << ' '; } cout << '\n'; } cout << '\n'; } long long int wop(long long int x, long long int y) { long long int ret = 1; for (; y >= 1; y /= 2) { if (y & 1) ret *= x; x *= x; ret %= mod; x %= mod; } return ret; } matrix operator*(matrix A, matrix B) { matrix ret(A.n, B.m); ret.emp(); for (int i = 0; i < A.n; i++) { for (int j = 0; j < B.m; j++) { for (int k = 0; k < A.m; k++) { ret.a[i][j] += (A.a[i][k] * B.a[k][j]) % mod; ret.a[i][j] %= mod; } } } return ret; } matrix mult(matrix x, long long int k) { matrix ret(x.n, x.m); ret.ide(); for (; k >= 1; k /= 2) { if (k & 1) ret = ret * x; x = x * x; } return ret; } long long int kasr(long long int sor, long long int mag) { return (sor * wop(mag, mod - 2)) % mod; } int ze = 0, on, fr; bool not_valid(int x) { return ze - x <= on; } long long int chos(long long int x) { return (x * (x - 1)) / 2; } int main() { int t, k; cin >> t >> k; for (int i = 0; i < t; i++) { cin >> b[i]; ze += (b[i] == 0); } on = t - ze; fr = 0; for (int i = 0; i < ze; i++) { fr += b[i] == 0; } matrix mat(ze + 1, ze + 1); mat.emp(); for (int i = 0; i <= ze; i++) { if (!not_valid(i)) continue; mat.a[i][i] += kasr((i * (ze - i)) + ((ze - i) * (on - (ze - i))), chos(t)); mat.a[i][i] %= mod; mat.a[i][i] += kasr(chos(on), chos(t)); mat.a[i][i] %= mod; mat.a[i][i] += kasr(chos(ze), chos(t)); mat.a[i][i] %= mod; if (i != ze) { mat.a[i][i + 1] += kasr((ze - i) * (ze - i), chos(t)); mat.a[i][i + 1] %= mod; } if (i - 1 >= 0) { mat.a[i][i - 1] += kasr((on - (ze - i)) * i, chos(t)); mat.a[i][i - 1] %= mod; } } matrix ans = mult(mat, k); cout << (ans.a[fr][ze]); }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const int P = 1e9 + 7; int n, k, a[102], now, o, z, t, i; struct M { int a[102][102]; friend M operator*(M x, M y) { M z; memset(z.a, 0, sizeof(z.a)); for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) for (int k = 0; k < n; k++) z.a[i][j] = (z.a[i][j] + 1ll * x.a[i][k] * y.a[k][j]) % P; return z; } friend M operator^(M x, int y) { M z; for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) z.a[i][j] = i == j; for (; y; y >>= 1, x = x * x) if (y & 1) z = z * x; return z; } } A; int pw(int x, int y) { int z = 1; for (; y; y >>= 1, x = 1ll * x * x % P) if (y & 1) z = 1ll * z * x % P; return z; } int main() { scanf("%d%d", &n, &k); for (i = 1; i <= n; i++) scanf("%d", &a[i]), z += !a[i]; o = n - z; for (i = 1; i <= z; i++) now += !a[i]; for (i = 0; i <= z; i++) { A.a[i][i] = z * (z - 1) / 2 + o * (o - 1) / 2 + i * (z - i) + (z - i) * (o - z + i); if (i < z) A.a[i][i + 1] = (z - i) * (z - i); if (i) A.a[i][i - 1] = i * (o - z + i); } t = pw(pw(n * (n - 1) / 2, k), P - 2); n = z + 1, A = A ^ k; printf("%I64d", 1ll * A.a[now][z] * t % P); }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; long long chu(long long a, long long b) { long long res = 1, p = 1000000007 - 2; while (p) { if (p & 1) { res = res * b % 1000000007; } b = b * b % 1000000007; p >>= 1; } return a * res % 1000000007; } int n, x, y, i, j, k, ac, wa, n0, n1, sb[666], nn; long long res, jb; struct Mat { long long mat[55][55] = {0}; void print() { int i, j; for (i = 0; i <= n; i++) { for (j = 0; j <= n; j++) { printf("%lld ", mat[i][j]); } puts(""); } puts(""); } } a, ans; Mat operator*(Mat A, Mat B) { Mat temp; for (int i = 0; i <= n; i++) { for (int j = 0; j <= n; j++) { for (int k = 0; k <= n; k++) { temp.mat[i][j] = (temp.mat[i][j] + A.mat[i][k] * B.mat[k][j]) % 1000000007; } } } return temp; } Mat operator^(Mat A, int k) { Mat base; for (int i = 0; i <= n; i++) base.mat[i][i] = 1; while (k) { if (k & 1) base = base * A; A = A * A; k = k >> 1; } return base; } int main() { scanf("%d%d", &n, &k); jb = chu(1, n * (n - 1) / 2); for (i = 1; i <= n; i++) { scanf("%d", &sb[i]); if (sb[i]) { n1++; } else { n0++; } } for (i = 1; i <= n0; i++) { if (sb[i]) { wa++; } else { ac++; } } for (i = n0 + 1; i <= n; i++) { if (sb[i]) { ac++; } else { wa++; } } ac /= 2; wa /= 2; n /= 2; ans.mat[0][wa] = 1; a.mat[0][1] = n0 * n1 * jb % 1000000007; a.mat[0][0] = (1 - a.mat[0][1] + 1000000007) % 1000000007; for (i = 1; i <= n - 1; i++) { nn++; n0 = max(0, n0 - 1); n1 = max(0, n1 - 1); a.mat[i][i - 1] = nn * nn * jb % 1000000007; a.mat[i][i + 1] = n0 * n1 * jb % 1000000007; a.mat[i][i] = (1 - a.mat[i][i + 1] - a.mat[i][i - 1] + 1000000007 + 1000000007) % 1000000007; } nn++; n0 = max(0, n0 - 1); n1 = max(0, n1 - 1); a.mat[n][n - 1] = nn * nn * jb % 1000000007; a.mat[n][n] = (1 - a.mat[n][n - 1] + 1000000007) % 1000000007; a = a ^ k; ans = ans * a; printf("%lld", ans.mat[0][0]); }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; long long int n, arr[105], hell = pow(10, 9) + 7; long long int add(long long int a, long long int b) { a += b; if (a > hell) a -= hell; return a; } long long int pw(long long int x, long long int y) { long long int res = 1; x %= hell; while (y > 0) { if (y & 1) res = (res * x) % hell; y >>= 1; x = (x * x) % hell; } return res; } void mul(vector<vector<long long int>> &a, vector<vector<long long int>> &b) { long long int temp[n][n]; for (long long int i = 0; i < n; i++) for (long long int j = 0; j < n; j++) { temp[i][j] = 0; for (long long int k = 0; k < n; k++) temp[i][j] = add(temp[i][j], (a[i][k] * b[k][j]) % hell); } for (long long int i = 0; i < n; i++) for (long long int j = 0; j < n; j++) a[i][j] = temp[i][j]; } void exp(long long int y, vector<vector<long long int>> &res, vector<vector<long long int>> &mat) { while (y > 0) { if (y & 1) mul(res, mat); y >>= 1; mul(mat, mat); } } void solve() { long long int k, cnt = 0; cin >> n >> k; for (long long int i = 1; i <= n; i++) { cin >> arr[i]; if (!arr[i]) cnt++; } long long int inv = pw(n * (n - 1) / 2, hell - 2); vector<vector<long long int>> res(n + 5, vector<long long int>(n + 5, 0)); vector<vector<long long int>> mat(n + 5, vector<long long int>(n + 5, 0)); for (long long int i = 0; i < n; i++) res[i][i] = 1; for (long long int i = 0; i <= min(cnt, n - cnt); i++) { if (i > 0) mat[i - 1][i] = (i * i * inv) % hell; mat[i][i] = (((cnt * (cnt - 1) + (n - cnt) * (n - cnt - 1)) / 2 + i * (n - 2 * i)) * inv) % hell; mat[i + 1][i] = ((cnt - i) * (n - cnt - i) * inv) % hell; } exp(k, res, mat); long long int tr = 0; for (long long int i = 1; i <= cnt; i++) if (arr[i]) tr++; cout << res[0][tr]; } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); long long int qc = 1; for (long long int i = 1; i <= qc; i++) solve(); }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; long long mod = 1e9 + 7; int n, k, zero, one, cnt; int a[105]; long long A[105][105], A_k[105][105]; void mult(long long M[105][105], long long N[105][105]) { long long ret[105][105]; memset(ret, 0, sizeof ret); for (int i = 0; i <= zero; ++i) for (int j = 0; j <= zero; ++j) if (M[i][j]) for (int k = 0; k <= zero; ++k) ret[i][k] = (ret[i][k] + M[i][j] * N[j][k] % mod) % mod; for (int i = 0; i <= zero; ++i) for (int j = 0; j <= zero; ++j) M[i][j] = ret[i][j]; } int main() { ios::sync_with_stdio(0); cin >> n >> k; for (int i = 0; i < n; ++i) { cin >> a[i]; if (a[i]) one++; else zero++; } if (zero == 0 || one == 0) { cout << 1; return 0; } for (int i = 0; i < zero; ++i) if (a[i] == 0) cnt++; ; for (int i = max(zero - one, 0); i <= zero; ++i) { A[i][i] = zero * (zero - 1) / 2 + one * (one - 1) / 2 + i * (zero - i) + (zero - i) * (one - zero + i); if (i) A[i][i - 1] = (zero - i + 1) * (zero - i + 1); if (zero - i) A[i][i + 1] = (i + 1) * (one - zero + i + 1); } for (int i = 0; i <= zero; ++i) A_k[i][i] = 1; for (; k; k >>= 1) { if (k & 1) mult(A_k, A); mult(A, A); } long long ans = A_k[zero][cnt], down = 0; for (int i = 0; i <= zero; ++i) down = (down + A_k[i][cnt]) % mod; for (long long pow = mod - 2; pow; pow >>= 1) { if (pow & 1) ans = ans * down % mod; down = down * down % mod; } cout << ans; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> #pragma GCC optimize(3, "Ofast", "inline") void err() { std::cout << std::endl; } template <typename T, typename... Args> void err(T a, Args... args) { std::cout << a << ' '; err(args...); } using namespace std; mt19937 rng_32(chrono::steady_clock::now().time_since_epoch().count()); const int mod = 1e9 + 7; const int seed = 233; const double PI = acos(-1.0); const int inf = 0x3f3f3f3f; const int max_n = 100005; namespace { inline int Add(int x, int y) { return (x += y) >= mod ? x - mod : x; } inline int Sub(int x, int y) { return (x -= y) < 0 ? x + mod : x; } inline int Mul(int x, int y) { return 1ll * x * y % mod; } inline int Pow(int x, int y = mod - 2) { int res = 1; while (y) { if (y & 1) res = 1ll * res * x % mod; x = 1ll * x * x % mod; y >>= 1; } return res; } } // namespace struct mat { int n, m; int a[105][105]; mat(int _n = 0, int _m = 0) { n = _n, m = _m; memset(a, 0, sizeof(a)); } mat operator*(mat b) { mat c(n, b.m); for (int i = 0; i < n; i++) { for (int j = 0; j < b.m; j++) { c.a[i][j] = 0; for (int k = 0; k < m; k++) { c.a[i][j] = Add(c.a[i][j], Mul(a[i][k], b.a[k][j])); } } } return c; } void unit() { for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) a[i][j] = (i == j); } } }; mat quick_pow(mat a, long long n) { mat c(a.n, a.m); c.unit(); while (n) { if (n & 1) c = c * a; a = a * a; n >>= 1; } return c; } int C(int n) { return 1ll * n * (n - 1) / 2 % mod; } int n, k; int a[max_n]; int c[2]; int main() { scanf("%d%d", &n, &k); for (int i = 1; i <= n; i++) scanf("%d", a + i), c[a[i]]++; int cnt = 0; for (int i = 1; i <= n; i++) { if (a[i] == 0 && i <= c[0]) cnt++; if (a[i] == 1 && i > c[0]) cnt++; } mat s(n + 1, 1); s.a[(n - cnt) / 2][0] = 1; mat A(n + 1, n + 1); for (int i = 0; i <= n; i++) { if (i) A.a[i][i - 1] = 1ll * (c[0] + mod - (i - 1)) * (c[1] + mod - (i - 1)) % mod; if (i != n) A.a[i][i + 1] = (i + 1) * (i + 1); A.a[i][i] = C(n) - i * i - (c[0] - i) * (c[1] - i); A.a[i][i] += mod, A.a[i][i] %= mod; } A = quick_pow(A, k); s = A * s; long long y = Pow(C(n), k); y = Pow(y); y = 1ll * y * s.a[0][0] % mod; printf("%lld\n", y); return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; using ll = long long; using vi = vector<int>; using vl = vector<long long>; using pii = pair<int, int>; using vpii = vector<pair<int, int>>; template <class T> inline bool ckmin(T &a, T b) { return b < a ? a = b, 1 : 0; } template <class T> inline bool ckmax(T &a, T b) { return b > a ? a = b, 1 : 0; } mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); const char nl = '\n'; const int mxN = 102; const int MOD = 1e9 + 7; const long long infLL = 1e18; int fact[mxN]; int add(int x, int y) { x += y; while (x >= MOD) x -= MOD; while (x < 0) x += MOD; return x; } void ad(int &x, int y) { x = add(x, y); } int sub(int x, int y) { x -= y; while (x >= MOD) x -= MOD; while (x < 0) x += MOD; return x; } void sb(int &x, int y) { x = sub(x, y); } int mul(int x, int y) { return ((int64_t)x * (int64_t)y) % MOD; } void ml(int &x, int y) { x = mul(x, y); } int binpow(int x, int y) { int z = 1; while (y > 0) { if (y % 2 == 1) z = mul(z, x); x = mul(x, x); y /= 2; } return z; } int inv(int x) { return binpow(x, MOD - 2); } int divide(int x, int y) { return mul(x, inv(y)); } void precalc() { fact[0] = 1; for (int i = 1; i < mxN; i++) fact[i] = mul(i, fact[i - 1]); } int choose(int n, int k) { if (k > n) return 0; return divide(fact[n], mul(fact[n - k], fact[k])); } template <class T, int N> struct Mat { array<array<T, N>, N> d{}; Mat operator*(const Mat &m) const { Mat a; for (int i = (0); i < (N); i++) for (int j = (0); j < (N); j++) for (int k = (0); k < (N); k++) { ad(a.d[i][j], mul(d[i][k], m.d[k][j])); } return a; }; vector<T> operator*(const vector<T> &vec) { vector<T> ret(N); for (int i = (0); i < (N); i++) for (int j = (0); j < (N); j++) ret[i] += d[i][j] * vec[j]; return ret; }; Mat operator^(ll p) { Mat a, b(*this); for (int i = (0); i < (N); i++) a.d[i][i] = 1; while (p) { if (p & 1) a = a * b; b = b * b; p /= 2; } return a; }; }; int n, k; int a[mxN]; int cnt[2]; Mat<int, mxN> M; int cnt0; int32_t main() { ios_base::sync_with_stdio(0); cin.tie(0); cin >> n >> k; for (int i = (0); i < (n); i++) { cin >> a[i]; cnt[a[i]]++; } for (int i = (0); i < (cnt[0]); i++) { if (a[i] == 0) cnt0++; } for (int i = (0); i < (cnt[0] + 1); i++) { for (int j = (0); j < (cnt[0] + 1); j++) { int c0 = i; int d0 = cnt[0] - c0; int c1 = cnt[0] - i; int d1 = cnt[1] - c1; if (min({c0, d0, c1, d1}) < 0) continue; if (i == j) { M.d[i][j] = c0 * d0 + c1 * d1 + cnt[0] * (cnt[0] - 1) / 2 + (n - cnt[0]) * (n - cnt[0] - 1) / 2; } else if (i + 1 == j) { M.d[i][j] = c1 * d0; } else if (i - 1 == j) { M.d[i][j] = c0 * d1; } } } Mat<int, mxN> res = M ^ k; int tot = 0; for (int i = (0); i < (n + 1); i++) { ad(tot, res.d[cnt0][i]); } if (tot == 0) { cout << 0 << nl; } else { cout << divide(res.d[cnt0][cnt[0]], tot) << nl; } return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const int MOD = (int)1e9 + 7; const double eps = (double)1e-8; const int maxn = (int)2e5 + 20; int n, m; int a[105]; struct mat { int n; int a[105][105]; mat operator*(const mat &t) const { mat res; res.n = n; for (int i = 0; i <= n; i++) for (int j = 0; j <= n; j++) res.a[i][j] = 0; for (int i = 0; i <= n; i++) for (int k = 0; k <= n; k++) if (a[i][k]) for (int j = 0; j <= n; j++) if (t.a[k][j]) res.a[i][j] = ((long long)a[i][k] * t.a[k][j] + res.a[i][j]) % MOD; return res; } }; mat fp(mat a, int n) { mat res; res.n = a.n; for (int i = 0; i <= res.n; i++) for (int j = 0; j <= res.n; j++) res.a[i][j] = 0; for (int i = 0; i <= res.n; i++) res.a[i][i] = 1; while (n) { if (n & 1) res = res * a; a = a * a; n >>= 1; } return res; } int fp(int a, int n) { int res = 1; while (n) { if (n & 1) res = ((long long)res * a) % MOD; a = ((long long)a * a) % MOD; n >>= 1; } return res; } void work() { cin >> n >> m; for (int i = 1; i <= n; i++) cin >> a[i]; int t = 0; for (int i = 1; i <= n; i++) t += !a[i]; int s = 0; for (int i = 1; i <= t; i++) s += !a[i]; mat base; base.n = t; for (int i = 0; i <= t; i++) for (int j = 0; j <= t; j++) base.a[i][j] = 0; for (int i = 0; i <= t; i++) { int a, b, c, d; a = i; b = t - a; c = b; d = n - a - b - c; base.a[i][i] = t * (t - 1) / 2 + (n - t) * (n - t - 1) / 2 + a * c + b * d; if (i != 0) base.a[i][i - 1] = a * d; if (i != t) base.a[i][i + 1] = b * c; } mat ans = fp(base, m); cout << ((long long)ans.a[s][t] * fp(fp(n * (n - 1) / 2, MOD - 2), m)) % MOD << endl; } int main() { int tc = 1; for (int ca = 1; ca <= tc; ca++) { work(); } return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const int MOD = 1000000007; long long POW(long long a, long long b, long long MMM = MOD) { long long ret = 1; for (; b; b >>= 1, a = (a * a) % MMM) if (b & 1) ret = (ret * a) % MMM; return ret; } long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; } long long lcm(long long a, long long b) { if (a == 0 || b == 0) return a + b; return a * (b / gcd(a, b)); } int dx[] = {0, 1, 0, -1, 1, 1, -1, -1}, dy[] = {1, 0, -1, 0, 1, -1, 1, -1}; int ddx[] = {-1, -2, 1, -2, 2, -1, 2, 1}, ddy[] = {-2, -1, -2, 1, -1, 2, 1, 2}; vector<vector<long long> > operator*(const vector<vector<long long> >& A, const vector<vector<long long> >& B) { int n = A.size(), m = A[0].size(); int N = B.size(), M = B[0].size(); vector<vector<long long> > C = vector<vector<long long> >(n, vector<long long>(M)); if (m != N) return C; for (int(i) = (0); (i) <= (n - 1); (i) += (1)) { for (int(j) = (0); (j) <= (M - 1); (j) += (1)) { for (int(k) = (0); (k) <= (m - 1); (k) += (1)) C[i][j] = (C[i][j] + A[i][k] * B[k][j]) % MOD; } } return C; } vector<vector<long long> > mul(vector<vector<long long> >& A, int k) { if (k == 1) return A; if (k & 1) return mul(A, k - 1) * A; vector<vector<long long> > t = mul(A, k / 2); return t * t; } int c0, c1; int a[100]; int n, K; int main() { scanf("%d%d", &n, &K); for (int(i) = (0); (i) <= (n - 1); (i) += (1)) scanf("%d", a + i); for (int(i) = (0); (i) <= (n - 1); (i) += (1)) { if (a[i] == 0) c0++; else c1++; } long long p, q = n * (n - 1) / 2; q = POW(q, K); int T = min(c0, c1); vector<vector<long long> > A = vector<vector<long long> >(T + 1, vector<long long>(T + 1)); for (int(k) = (0); (k) <= (T); (k) += (1)) { if (k < T) A[k][k + 1] = (c0 - k) * (c1 - k); A[k][k] = (c0 - k) * k + (c1 - k) * k + c0 * (c0 - 1) / 2 + c1 * (c1 - 1) / 2; if (k > 0) A[k][k - 1] = k * k; } A = mul(A, K); int k = 0; for (int(i) = (0); (i) <= (c0 - 1); (i) += (1)) if (a[i] == 1) k++; p = A[k][0]; printf("%lld\n", (p * POW(q, MOD - 2)) % MOD); }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; long long n, k; int arr[100]; long long len = 0; long long us(long long a, long long b) { long long ans = 1; while (b) { if (b & 1) { ans *= a; ans %= 1000000007; } b >>= 1; a *= a; a %= 1000000007; } return ans; } long long md(long long a) { return ((a % 1000000007) + 1000000007) % 1000000007; } long long fa[101], fb[101], fc[101]; long long solarr[103]; typedef struct mtr { long long mat[103][103]; } mtr; mtr *nmat; long long f(int num0, int remk) { if (remk == 0) return num0 == len; long long ans = 0; ans += (fa[num0] * f(num0, remk - 1)) % 1000000007; ans %= 1000000007; ans += (fb[num0] * f(num0 - 1, remk - 1)) % 1000000007; ans %= 1000000007; ans += (fc[num0] * f(num0 + 1, remk - 1)) % 1000000007; ans %= 1000000007; return ans; } void carp(mtr *mat1, mtr *mat2) { mtr *tmp = (mtr *)malloc(sizeof(mtr)); for (int i = 0; i < n + 3; i++) { for (int j = 0; j < n + 3; j++) { long long top = 0; for (int k = 0; k < n + 3; k++) { top += (mat1->mat[i][k] * mat2->mat[k][j]) % 1000000007; top %= 1000000007; } tmp->mat[i][j] = top; } } for (int i = 0; i < n + 3; i++) { for (int j = 0; j < n + 3; j++) { mat1->mat[i][j] = tmp->mat[i][j]; } } free(tmp); } void matexp(mtr *mat, long long us) { mtr *tmp = (mtr *)malloc(sizeof(mtr)); for (int i = 0; i < n + 3; i++) { for (int j = 0; j < n + 3; j++) { tmp->mat[i][j] = i == j; } } while (us) { if (us & 1) { carp(tmp, mat); } us >>= 1; carp(mat, mat); } for (int i = 0; i < n + 3; i++) { for (int j = 0; j < n + 3; j++) { mat->mat[i][j] = tmp->mat[i][j]; } } free(tmp); } void printmat(mtr *mat) { for (int i = 0; i < n + 3; i++) { for (int j = 0; j < n + 3; j++) { cout << nmat->mat[i][j] << " "; } cout << endl; } cout << endl; } int main() { cin >> n >> k; for (int i = 0; i < n; i++) { cin >> arr[i]; if (arr[i] == 0) len++; } for (int i = 0; i <= n; i++) { long long l0 = i; long long r0 = len - i; long long l1 = len - i; long long r1 = n - len - len + i; if (l0 < 0 || r0 < 0 || l1 < 0 || r1 < 0) { fa[i] = 0; fb[i] = 0; fc[i] = 0; continue; } long long a = ((md(md(len * (len - 1)) * 500000004) + md(md((n - len) * (n - len - 1)) * 500000004)) % 1000000007 + md(r0 * l0) + md(r1 * l1)) % 1000000007; long long b = ((i) * (n - len - len + i)) % 1000000007; long long c = ((len - i) * (len - i)) % 1000000007; fa[i] = a; fb[i] = b; fc[i] = c; } nmat = (mtr *)malloc(sizeof(mtr)); for (int i = 0; i < n + 3; i++) { for (int j = 0; j < n + 3; j++) { if (i == 0) nmat->mat[i][j] = 0; else if (i == n + 2) nmat->mat[i][j] = 0; else { long long num = n + 1 - i; if (num + j == n) nmat->mat[i][j] = fc[num]; else if (num + j == n + 1) nmat->mat[i][j] = fa[num]; else if (num + j == n + 2) nmat->mat[i][j] = fb[num]; else nmat->mat[i][j] = 0; } } } matexp(nmat, k % 1000000007); solarr[0] = 0; solarr[n + 2] = 0; for (int i = 1; i < n + 2; i++) { long long num = n + 1 - i; solarr[i] = (num == len); } long long cur0 = 0; for (int i = 0; i < len; i++) if (arr[i] == 0) cur0++; long long ind = n + 1 - cur0; long long pay = 0; for (int j = 0; j < n + 3; j++) { pay += (nmat->mat[ind][j] * solarr[j]) % 1000000007; pay %= 1000000007; } long long payda = us((n * (n - 1)) / 2, k % 1000000007); pay *= us(payda, 1000000007 - 2); pay %= 1000000007; cout << pay << endl; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const int mod = 1e9 + 7; int n, k, sum; int a[105]; struct matrix { long long a[105][105]; int n; matrix(int n = 0) : n(n) { memset(a, 0, sizeof(a)); } void init() { for (int i = 0; i <= n; ++i) a[i][i] = 1; } matrix operator*(matrix b) const { matrix c(n); for (int i = 0; i <= n; ++i) for (int j = 0; j <= n; ++j) for (int k = 0; k <= n; ++k) c.a[i][j] = (c.a[i][j] + a[i][k] * b.a[k][j] % mod) % mod; return c; } } trans, base; long long power(long long a, int b) { long long res = 1; while (b) { if (b & 1) res = res * a % mod; a = a * a % mod; b >>= 1; } return res; } matrix power(matrix a, int b) { matrix res(a.n); res.init(); while (b) { if (b & 1) res = res * a; a = a * a; b >>= 1; } return res; } int read() { char c = getchar(); int x = 0; while (!isdigit(c)) c = getchar(); while (isdigit(c)) { x = (x << 3) + (x << 1) + c - '0'; c = getchar(); } return x; } void build() { for (int j = 0; j <= sum; ++j) { if (j) trans.a[j - 1][j] = 1ll * (sum - j + 1) * (sum - j + 1) % mod; if (j != sum) trans.a[j + 1][j] = 1ll * (j + 1) * (n - 2 * sum + j + 1) % mod; trans.a[j][j] = (1ll * j * (sum - j) % mod + 1ll * (sum - j) * (n - 2 * sum + j) % mod + 1ll * sum * (sum - 1) % mod * power(2, mod - 2) % mod + 1ll * (n - sum) * (n - sum - 1) % mod * power(2, mod - 2) % mod) % mod; } } int main() { n = read(); k = read(); for (int i = 1; i <= n; ++i) { a[i] = read(); sum += !a[i]; } int total = 0; for (int i = 1; i <= sum; ++i) total += !a[i]; base = trans = matrix(sum); build(); base.a[0][total] = 1; base = base * power(trans, k); printf("%I64d\n", base.a[0][sum] * power(power(n * (n - 1) / 2, mod - 2), k) % mod); }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; template <typename T> ostream& operator<<(ostream& s, vector<T> const& v) { s << '{'; for (int i = 0; i < int(v.size()); i++) s << (i ? "," : "") << v[i]; return s << '}'; } template <typename S, typename T> ostream& operator<<(ostream& s, pair<S, T> const& p) { return s << '(' << p.first << ',' << p.second << ')'; } constexpr long long MOD = 1000000007; long long ch2(long long n) { return ((n * (n - 1)) / 2) % MOD; } struct MAT { long long A[51][51] = {}; }; MAT operator*(MAT const& m1, MAT const& m2) { MAT m; for (int i = 0; i < int(51); i++) for (int j = 0; j < int(51); j++) for (int k = 0; k < int(51); k++) { m.A[i][j] += m1.A[i][k] * m2.A[k][j]; m.A[i][j] %= MOD; } return m; } MAT identity() { MAT m; for (int i = 0; i < int(51); i++) m.A[i][i] = 1; return m; } long long gx, gy, gd; void gcd(long long a, long long b) { if (b == 0) { gx = 1; gy = 0; gd = a; return; } gcd(b, a % b); gx -= gy * (a / b); swap(gx, gy); } long long modinv(long long x) { gcd(x, MOD); return gx % MOD; } int main() { int N, K, N0 = 0, N1 = 0; scanf("%d%d", &N, &K); bool A[100] = {}; for (int n = 0; n < int(N); n++) { char c; scanf(" %c", &c); A[n] = (c == '1'); if (A[n]) ++N1; else ++N0; } MAT m; int MI = min(N0, N1); long long ssame = (ch2(N0) + ch2(N1)) % MOD; for (int i = 0; i < int(MI + 1); i++) { long long& ss = m.A[i][i]; ss += ssame; if (i > 0) { m.A[i - 1][i] += (i * i) % MOD; ss = (ss + i * (N0 - i)) % MOD; ss = (ss + i * (N1 - i)) % MOD; } if (i < MI) { m.A[i + 1][i] += ((N0 - i) * (N1 - i)) % MOD; } } int ep = K; MAT ans = identity(); while (ep) { if (ep % 2) { ans = ans * m; ep--; } m = m * m; ep /= 2; } int istate = 0; for (int n = 0; n < int(N0); n++) if (A[n]) ++istate; long long ians = ans.A[0][istate]; long long den = 0; for (int i = 0; i < int(MI + 1); i++) den = (den + ans.A[i][istate]) % MOD; long long qans = ians * modinv(den); qans = (qans % MOD + MOD) % MOD; printf("%d\n", int(qans)); }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; using ll = long long; const int MOD = 1e9 + 7; struct matrix { vector<vector<ll>> mat; matrix() {} matrix(int n, ll v) : mat(n, vector<ll>(n)) { for (int i = 0; i < n; ++i) mat[i][i] = v; } void resize(int n) { mat.resize(n); for (auto &it : mat) it.resize(n); } }; int n, k; vector<int> a; ll ones, zeros; int min_in_place; vector<int> decrease, increase, notchange; int mat_size; matrix base_mat; ll mod_exp(ll b, ll e) { ll res = 1; while (e) { if (e & 1) res = (res * b) % MOD; b = (b * b) % MOD; e >>= 1; } return res; } matrix mat_mul(matrix a, matrix b) { matrix res(mat_size, 0); for (int i = 0; i < mat_size; ++i) { for (int j = 0; j < mat_size; ++j) { for (int k = 0; k < mat_size; ++k) { res.mat[i][j] = (res.mat[i][j] + a.mat[i][k] * b.mat[k][j]) % MOD; } } } return res; } matrix mat_exp(matrix b, ll e) { matrix res(mat_size, 1); while (e) { if (e & 1) res = mat_mul(res, b); b = mat_mul(b, b); e >>= 1; } return res; } void build() { increase.resize(ones + 1); decrease.resize(ones + 1); notchange.resize(ones + 1); min_in_place = max(0, 2 * (int)ones - n); mat_size = ones - min_in_place + 1; base_mat.resize(mat_size); for (int state = min_in_place; state <= ones; ++state) { ll inv_nn1 = (mod_exp(n, MOD - 2) * mod_exp(n - 1, MOD - 2)) % MOD; base_mat.mat[state - min_in_place][state - min_in_place] = ((ones * (ones - 1 + MOD) + zeros * (zeros - 1 + MOD) + 2 * state * (ones - state) + 2 * (ones - state) * (zeros - (ones - state) + MOD)) % MOD) * inv_nn1 % MOD; if (state > min_in_place) { base_mat.mat[state - min_in_place - 1][state - min_in_place] = (2 * state * (zeros - (ones - state) + MOD) % MOD) * inv_nn1 % MOD; } if (state < ones) { base_mat.mat[state - min_in_place + 1][state - min_in_place] = 2 * (ones - state) * (ones - state) * inv_nn1 % MOD; } } } int main() { cin >> n >> k; a.resize(n); for (auto &it : a) { cin >> it; if (it) ++ones; else ++zeros; } build(); matrix final_mat = mat_exp(base_mat, k); int initial_state = 0; for (int i = n - ones; i < n; ++i) initial_state += a[i]; cout << final_mat.mat[ones - min_in_place][initial_state - min_in_place] << "\n"; return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const int MODULO = 1000000007; int gcd(int a, int b, int& ax, int& bx) { if (b == 0) { ax = 1; bx = 0; return b; } int g = gcd(b, a % b, bx, ax); bx = (bx - (long long)(a / b) * ax % MODULO + MODULO) % MODULO; return g; } int inv(int x) { int ax, bx; gcd(x, MODULO, ax, bx); return ax; } vector<vector<int>> matmul(const vector<vector<int>>& a, const vector<vector<int>>& b) { int n = (int)a.size(); vector<vector<int>> re(n, vector<int>(n)); for (int i = 0; i < n; ++i) for (int k = 0; k < n; ++k) { int tmp = 0; for (int j = 0; j < n; ++j) { tmp = (tmp + a[i][j] * (long long)b[j][k] % MODULO) % MODULO; } re[i][k] = tmp; } return re; } vector<vector<int>> pow(const vector<vector<int>>& a, int k) { if (k == 1) { return a; } vector<vector<int>> b = pow(a, k / 2); b = matmul(b, b); if (k % 2 == 1) b = matmul(a, b); return b; } int main() { std::ios::sync_with_stdio(false); int n, k; cin >> n >> k; int invn = inv(n); int invnm1 = inv(n - 1); vector<int> a(n); vector<int> count(2); for (int i = 0; i < n; ++i) { cin >> a[i]; ++count[a[i]]; } int misplaced = 0; for (int i = 0; i < n; ++i) { if (a[i] == 0 && i >= count[0] || a[i] == 1 && i < count[0]) { ++misplaced; } } int misplaced_pair = misplaced / 2; int m = std::min(count[0], count[1]) + 1; vector<vector<int>> matrix(m, vector<int>(m)); for (int i = 0; i < m; ++i) { int total = 0; if (i - 1 >= 0) { int cur = (long long)i * i % MODULO * 2ll % MODULO * (long long)invn % MODULO * (long long)invnm1 % MODULO; matrix[i][i - 1] = cur; total = (total + cur) % MODULO; } if (i + 1 < m) { int cur = (long long)(count[0] - i) * (count[1] - i) % MODULO * 2ll % MODULO * (long long)invn % MODULO * (long long)invnm1 % MODULO; matrix[i][i + 1] = cur; total = (total + cur) % MODULO; } matrix[i][i] = (1 - total + MODULO) % MODULO; } vector<vector<int>> p = pow(matrix, k); cout << p[misplaced_pair][0] << endl; return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const long long maxn = (long long)100 + 5; const long long mod = (long long)1e9 + 7; struct mat { long long a[maxn][maxn]; mat() { memset(a, 0, sizeof(a)); } }; long long n, k; long long zero = 0, one = 0; long long now = 0; long long quick_pow_mod(long long a, long long b, long long c) { long long res = 1; while (b) { if (b & 1) { res = (res * a) % c; } a = (a * a) % c; b = b >> 1; } return res; } mat mul(mat a, mat b) { mat res; for (long long(i) = 0; (i) <= zero; ++(i)) { for (long long j = 0; j <= zero; ++j) { for (long long k = 0; k <= zero; ++k) { res.a[i][j] = (res.a[i][j] + (a.a[i][k] * b.a[k][j]) % mod) % mod; } } } return res; } mat qpow(mat a, long long k) { mat res; for (long long i = 0; i <= zero; i++) { res.a[i][i] = 1; } while (k) { if (k & 1) { res = mul(res, a); } a = mul(a, a); k >>= 1; } return res; } long long a[maxn]; mat dp; signed main() { ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); cin >> n >> k; for (long long i = 1; i <= n; i++) { cin >> a[i]; if (a[i] == 0) zero++; else one++; } for (long long i = 1; i <= zero; i++) { if (a[i] == 0) now++; } for (long long i = 0; i <= zero; i++) { dp.a[i][i] = (zero * (zero - 1) / 2 + one * (one - 1) / 2 + (zero - i) * (one - zero + i) + i * (zero - i)) % mod; if (i - 1 >= 0) { dp.a[i][i - 1] = ((zero - i + 1) * (zero - i + 1)) % mod; } if (i + 1 <= zero) { dp.a[i][i + 1] = ((i + 1) * (one - zero + i + 1)) % mod; } } mat res = qpow(dp, k); long long ans = 0; ans = (res.a[zero][now] * quick_pow_mod(quick_pow_mod(n * (n - 1) / 2, k, mod), mod - 2, mod)) % mod; cout << ans << '\n'; return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const long long mod = 1e9 + 7; const int INF = 110; long long zero, size; struct Matrix { long long g[INF][INF]; Matrix() { memset(g, 0, sizeof(g)); } Matrix operator*(const Matrix& a) { Matrix cur; for (int k = 0; k < size; k++) { for (int i = 0; i < size; i++) { for (int j = 0; j < size; j++) { cur.g[i][j] = (cur.g[i][j] + g[i][k] * a.g[k][j] % mod) % mod; } } } return cur; } }; Matrix mat, ans; long long c[110][110]; int a[INF]; long long quick(long long a, long long b) { long long ans = 1; while (b) { if (b & 1) ans = ans * a % mod; a = a * a % mod; b >>= 1; } return ans; } void mquick(int b) { for (int i = 0; i < size; i++) { ans.g[i][i] = 1; } while (b) { if (b & 1) ans = ans * mat; mat = mat * mat; b >>= 1; } } int main() { ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); for (int i = 0; i <= 100; i++) { for (int j = 0; j <= i; j++) { if (j == 0) c[i][j] = 1; else c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % mod; } } int n, k; cin >> n >> k; for (int i = 0; i < n; i++) { cin >> a[i]; if (!a[i]) zero++; } size = zero + 1; long long revcn2 = quick(c[n][2], mod - 2); for (long long i = 0; i <= zero; i++) { int j = i; mat.g[i][j] = (c[zero][2] + c[n - zero][2] + i * (zero - i) + (zero - i) * (n - 2 * zero + i + mod) % mod) * revcn2 % mod; if (i > 0) mat.g[i][i - 1] = (zero - i + 1) * (zero - i + 1) * revcn2 % mod; if (i < zero) mat.g[i][i + 1] = (i + 1) * (n + i + 1 - 2 * zero) * revcn2 % mod; } mquick(k); long long res = 0; int count = 0; for (int i = 0; i < zero; i++) { if (!a[i]) count++; } res = ans.g[zero][count]; cout << res; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; inline int read() { int x = 0, f = 1; char ch = getchar(); while (!isdigit(ch)) f = ch ^ 45, ch = getchar(); while (isdigit(ch)) x = (x << 1) + (x << 3) + (ch ^ 48), ch = getchar(); return f ? x : -x; } int n, m, c, inv; const int mod = 1e9 + 7; struct mat { int a[105][105]; inline mat operator*(const mat &t) { mat res; for (int i = 0; i <= c; ++i) for (int j = 0; j <= c; ++j) { res.a[i][j] = 0; for (int k = 0; k <= c; ++k) res.a[i][j] = (res.a[i][j] + 1ll * a[i][k] * t.a[k][j]) % mod; } return res; } } A, B, C, I; int a[105]; inline int ksm(int b, int x) { int res = 1; while (x) { if (x & 1) res = 1ll * res * b % mod; b = 1ll * b * b % mod; x >>= 1; } return res; } inline mat qpow(mat b, int x) { mat res = I; while (x) { if (x & 1) res = res * b; b = b * b; x >>= 1; } return res; } int main() { n = read(); m = read(); for (int i = 1; i <= n; ++i) a[i] = read(); for (int i = 1; i <= n; ++i) c += (!a[i]); int cnt = 0; for (int i = 1; i <= c; ++i) cnt += (!a[i]); A.a[0][cnt] = 1; int inv = ksm(n * (n - 1) >> 1, mod - 2); for (int i = 0; i <= c; ++i) { I.a[i][i] = 1; if (n - 2 * c + i < 0) continue; B.a[i][i + 1] = 1ll * (c - i) * (c - i) * inv % mod; B.a[i][i - 1] = 1ll * i * (n - 2 * c + i) * inv % mod; B.a[i][i] = (mod + mod + 1 - B.a[i][i + 1] - B.a[i][i - 1]) % mod; } A = A * qpow(B, m); cout << A.a[0][c]; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#!/usr/bin/env python # -*- coding: utf-8 -*- """Codeforces Round #553 (Div. 2) Problem F. Sonya and Informatics :author: Kitchen Tong :mail: [email protected] Please feel free to contact me if you have any question regarding the implementation below. """ __version__ = '1.8' __date__ = '2019-04-21' import sys def binom_dp(): dp = [[-1 for j in range(110)] for i in range(110)] def calculate(n, k): if n < k: return 0 if n == k or k == 0: return 1 if dp[n][k] > 0: return dp[n][k] else: dp[n][k] = calculate(n-1, k-1) + calculate(n-1, k) return dp[n][k] return calculate def egcd(a, b): if a == 0: return (b, 0, 1) else: g, y, x = egcd(b % a, a) return (g, x - (b // a) * y, y) def modinv(a, m): g, x, y = egcd(a, m) if g != 1: raise Exception('modular inverse does not exist') else: return x % m def multiply(A, B, mod): if not hasattr(B[0], '__len__'): C = [sum(aij * B[j] % mod for j, aij in enumerate(ai)) for ai in A] else: C = [[0 for col in range(len(B[0]))] for row in range(len(A))] len_A = len(A) len_B = len(B) for row in range(len_A): if sum(A[row]) == 0: continue for col in range(len_B): C[row][col] = sum(A[row][k] * B[k][col] for k in range(len_B)) % mod return C def memoize(func): memo = {} def wrapper(*args): M, n, mod = args if n not in memo: memo[n] = func(M, n, mod) return memo[n] return wrapper @memoize def matrix_pow(M, n, mod): # print(f'n is {n}') if n == 2: return multiply(M, M, mod) if n == 1: return M sub_M = matrix_pow(M, n//2, mod) if n % 2 == 0: return multiply(sub_M, sub_M, mod) return multiply(sub_M, matrix_pow(M, n - n//2, mod), mod) def solve(n, k, a, binom, mod): ones = sum(a) zeros = n - ones M = [[0 for col in range(zeros+1)] for row in range(zeros+1)] for row in range(max(0, zeros-ones), zeros+1): pre_zeros = row pre_ones = zeros - pre_zeros post_zeros = pre_ones post_ones = ones - pre_ones M[row][row] = (pre_ones * post_ones + pre_zeros * post_zeros + binom(zeros, 2) + binom(ones, 2)) if row > max(0, zeros-ones): M[row-1][row] = pre_zeros * post_ones if row < zeros: M[row+1][row] = post_zeros * pre_ones M = [matrix_pow(M, k, mod)[-1]] b = [0] * (zeros + 1) b[zeros - sum(a[:zeros])] = 1 C = multiply(M, b, mod) return C[-1] def main(argv=None): mod = int(1e9) + 7 n, k = list(map(int, input().split())) a = list(map(int, input().split())) binom = binom_dp() P = solve(n, k, a, binom, mod) if P == 0: print(0) else: Q = pow(binom(n, 2), k, mod) print(P * modinv(Q, mod) % mod) return 0 if __name__ == "__main__": STATUS = main() sys.exit(STATUS)
PYTHON3
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; int NN; struct mat { long long a[105][105]; mat() { memset(a, 0, sizeof(a)); } mat operator*(const mat& m1) const { mat ret; for (int i = 0; i <= NN; i++) { for (int j = 0; j <= NN; j++) { for (int k = 0; k <= NN; k++) { ret.a[i][j] = (ret.a[i][j] + a[i][k] * m1.a[k][j] % int(1e9 + 7)) % int(1e9 + 7); } } } return ret; } void print() { cout << "======== print" << endl; for (int i = 0; i <= NN; i++) { for (int j = 0; j <= NN; j++) cout << a[i][j] << " "; cout << endl; } } }; mat pow(mat x, long long n) { mat ret; for (int i = 0; i <= NN; i++) { ret.a[i][i] = 1; } while (n) { if (n & 1) ret = ret * x; x = x * x; n /= 2; } return ret; } long long qpow(long long x, long long n) { long long ans = 1; while (n) { if (n & 1) ans = ans * x % int(1e9 + 7); x = x * x % int(1e9 + 7); n /= 2; } return ans; } int N, M, K; int a[105]; long long fac[105], ifac[105], iN2; long long comb(long long n, long long k) { if (n < k) return 0; return fac[n] * ifac[n - k] % int(1e9 + 7) * ifac[k] % int(1e9 + 7); } void init() { fac[0] = ifac[0] = 1; for (int i = 1; i <= N; i++) { fac[i] = fac[i - 1] * i % int(1e9 + 7); ifac[i] = qpow(fac[i], int(1e9 + 7) - 2); } iN2 = qpow(comb(N, 2), int(1e9 + 7) - 2); } int main() { ios::sync_with_stdio(0); cin >> N >> M; for (int i = 1; i <= N; i++) { cin >> a[i]; if (a[i]) ++K; } int k = 0; for (int i = 1; i <= N; i++) { if (a[i] && i >= N - K + 1) ++k; } NN = K; init(); mat A, res; for (int i = 0; i <= NN; i++) { if (i < K) A.a[i][i + 1] = (K - i) * (K - i) % int(1e9 + 7) * iN2 % int(1e9 + 7); if (i > 0) A.a[i][i - 1] = i * max(0, N - 2 * K + i) % int(1e9 + 7) * iN2 % int(1e9 + 7); A.a[i][i] = (1 - A.a[i][i + 1] - (i > 0 ? A.a[i][i - 1] : 0) + 2 * int(1e9 + 7)) % int(1e9 + 7); } res = pow(A, M); long long ans = res.a[k][K]; cout << ans << endl; return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; inline long long read() { long long f = 1, x = 0; char ch = getchar(); while (!isdigit(ch)) { if (ch == '-') f = -1; ch = getchar(); } while (isdigit(ch)) { x = x * 10 + ch - '0'; ch = getchar(); } return x * f; } const int MOD = 1e9 + 7; const int N = 100; const int MAXN = N + 5; int pow_mod(int x, int i) { int res = 1; while (i) { if (i & 1) res = (long long)res * x % MOD; x = (long long)x * x % MOD; i >>= 1; } return res; } int n, k, a[MAXN], c; struct Matrix { int a[MAXN][MAXN]; Matrix() { memset(a, 0, sizeof(a)); } } A, B; Matrix operator*(Matrix X, Matrix Y) { Matrix Z; for (int i = 0; i <= N; ++i) { for (int j = 0; j <= N; ++j) { for (int k = 0; k <= N; ++k) { Z.a[i][j] = ((long long)Z.a[i][j] + (long long)X.a[i][k] * Y.a[k][j] % MOD) % MOD; } } } return Z; } Matrix matrix_pow(Matrix X, int i) { Matrix Y; for (int i = 0; i <= N; ++i) Y.a[i][i] = 1; while (i) { if (i & 1) Y = Y * X; X = X * X; i >>= 1; } return Y; } void Print(Matrix X) { for (int i = 0; i <= 10; ++i) { for (int j = 0; j <= 10; ++j) { cout << X.a[i][j] << " "; } cout << endl; } cout << endl; } int main() { ios::sync_with_stdio(0); cin.tie(0); n = read(); k = read(); for (int i = 1; i <= n; ++i) a[i] = read(), c += (a[i] == 0); int t = 0; for (int i = 1; i <= c; ++i) t += (a[i] == 0); A.a[0][t] = 1; for (int i = 0; i <= c; ++i) { if (i != 0) B.a[i - 1][i] = 1LL * (c - (i - 1)) * (c - (i - 1)) % MOD; B.a[i][i] = 1LL * (1LL * i * (c - i) % MOD + 1LL * (c - i) * (n - c - c + i)) % MOD; B.a[i][i] = (B.a[i][i] + 1LL * c * (c - 1) / 2 % MOD) % MOD; B.a[i][i] = (B.a[i][i] + 1LL * (n - c) * (n - c - 1) / 2 % MOD) % MOD; if (i != c) B.a[i + 1][i] = 1LL * (i + 1) * (n - c - c + i + 1) % MOD; } B = matrix_pow(B, k); A = A * B; int ans = A.a[0][c]; t = 0; for (int i = 0; i <= c; ++i) t = ((long long)t + A.a[0][i]) % MOD; ans = ((long long)ans * pow_mod(t, MOD - 2)) % MOD; cout << ans << endl; return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const int INF = 0x3f3f3f3f, M = 1e9 + 7; const long long LINF = 0x3f3f3f3f3f3f3f3f; const double PI = acos(-1), EPS = 1e-9; const int N = 101; long long b[N]; long long o; int n, k; template <class T> T fm(T a, T b) { return (-b < a and a < b) ? a : a % b; } template <int m = M> struct modArit { modArit(int v = 0) : v(fm(v, m)) {} modArit(long long v) : v(fm(v, (long long)m)) {} int v; modArit<m> operator+(modArit<m> r) const { return modArit<m>(v + r.v); } modArit<m> operator-(modArit<m> r) const { return modArit<m>(v - r.v); } modArit<m> operator*(modArit<m> r) const { return modArit<m>((long long)v * r.v); } modArit<m> operator/(modArit<m> r) const { return *this * inv(r); } modArit<m> operator/(int r) const { return modArit<m>(v / r); } }; template <class T = modArit<>> struct Matrix { T a[N][N] = {}; Matrix(int d = 0) { for (int i = 0; i < n; i++) a[i][i] = d; } Matrix<T> operator*(const Matrix<T> r) { Matrix<T> ans; for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) for (int k = 0; k < n; k++) ans.a[i][j] = ans.a[i][j] + a[i][k] * r.a[k][j]; return ans; } }; template <class T> T fexp(T b, long long e) { T r = 1; while (e) { if (e & 1) r = r * b; b = b * b, e /= 2; } return r; } template <int m> modArit<m> inv(modArit<m> x) { return fexp(x, m - 2); } int main() { ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); ; cin >> n >> k; auto f = inv<M>((n * (n - 1) / 2)); for (int i = 0; i < n; i++) { cin >> b[i]; if (b[i]) o++; } Matrix<> m; auto t = min(n - o, o); modArit<> nn = n, oo = o; for (int i = 0; i <= t; i++) { modArit<> ii = i; m.a[i][i] = (nn * (nn - 1) / 2 - ii * ii - (oo - ii) * (nn - oo - ii)) * f; if (i > 0) m.a[i][i - 1] = ii * ii * f; m.a[i][i + 1] = (oo - ii) * (nn - oo - ii) * f; } Matrix<> a = fexp(m, k); int id = 0; for (int i = 0; i < n - o; i++) if (b[i]) id++; cout << fexp(m, k).a[id][0].v << endl; return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const long long MOD = 1000000007; struct Matrix { long long ma[110][110]; int n; Matrix() {} Matrix(int _n) { n = _n; for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) ma[i][j] = 0; } Matrix operator*(const Matrix &b) const { Matrix ret = Matrix(n); for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) for (int k = 0; k < n; k++) { ret.ma[i][j] += ma[i][k] * b.ma[k][j]; ret.ma[i][j] %= MOD; } return ret; } void set_one() { for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) ma[i][j] = (i == j); } }; void Mapow(Matrix &a, Matrix &ans, long long n) { ans.set_one(); while (n) { if (n & 1) ans = ans * a; a = a * a; n >>= 1; } } long long Pow(long long base, long long n) { long long res = 1; while (n) { if (n & 1) res = res * base % MOD; base = base * base % MOD; n >>= 1; } return res; } int a[110]; int main() { int n, k, cnt0 = 0, cnt1 = 0, cur = 0; scanf("%d%d", &n, &k); for (int i = 1; i <= n; i++) { scanf("%d", &a[i]); if (a[i]) cnt1++; else cnt0++; } for (int i = 1; i <= cnt0; i++) if (a[i]) cur++; if (cnt0 == 0 || cnt1 == 0) return 0 * printf("1\n"); int lim = min(cnt0, cnt1); Matrix a(lim + 1), ans(lim + 1); long long f1 = Pow((n * (n - 1)) >> 1, MOD - 2); for (int i = 0; i <= lim; i++) { long long tmp = 0; if (i < lim) { a.ma[i][i + 1] = (cnt0 - i) * (cnt1 - i) % MOD * f1 % MOD; tmp += a.ma[i][i + 1]; } if (i > 0) { a.ma[i][i - 1] = i * i % MOD * f1 % MOD; tmp += a.ma[i][i - 1]; } tmp %= MOD; a.ma[i][i] = (1 + MOD - tmp) % MOD; } Mapow(a, ans, k); printf("%lld\n", ans.ma[cur][0]); }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const long long N = 105; const long long mod = 1e9 + 7; long long mul[N][N][35], dp[N], ar[N], dp1[N]; long long binpow(long long x, long long y) { long long tich = 1; while (y) { if (y % 2 == 1) { tich *= x; tich %= mod; } x *= x; x %= mod; y >>= 1; } return tich; } long long inv(long long x) { return binpow(x, mod - 2); } signed main() { long long n, i, j, k, l, m, now = 0; cin >> n >> m; for (i = 1; i <= n; i++) { cin >> ar[i]; if (ar[i] == 0) { now++; } } j = 0; for (i = 1; i <= now; i++) { if (ar[i] == 0) { j++; } } dp[j] = 1; k = (inv(n) * inv(n - 1)) % mod; for (i = 0; i <= now; i++) { mul[i][i + 1][0] = max(0ll, (2 * (now - i) * (now - i) * k) % mod); mul[i][i][0] = (((now * (now - 1) + (n - now) * (n - now - 1) + 2 * i * (now - i) + max(0ll, 2 * (now - i) * (n + i - 2 * now))) % mod) * k) % mod; if (i) { mul[i][i - 1][0] = max(0ll, (2 * i * (n + i - 2 * now) * k) % mod); } } for (i = 1; i <= 30; i++) { for (j = 0; j <= now; j++) { for (k = 0; k <= now; k++) { for (l = 0; l <= now; l++) { mul[j][k][i] += mul[j][l][i - 1] * mul[l][k][i - 1]; mul[j][k][i] %= mod; } } } } for (i = 30; i >= 0; i--) { if (m >= (1 << i)) { m -= (1 << i); for (j = 0; j <= now; j++) { dp1[j] = 0; } for (j = 0; j <= now; j++) { for (k = 0; k <= now; k++) { dp1[j] += (dp[k] * mul[k][j][i]); dp1[j] %= mod; } } for (j = 0; j <= now; j++) { dp[j] = dp1[j]; } } } j = 0; for (i = 0; i <= now; i++) { j += dp[i]; j %= mod; } cout << (dp[now] * inv(j)) % mod; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const int N = 105, M = 1e9 + 7; int n, k, a[N], ze; struct mat { int mt[N][N]; mat() { memset(mt, 0, sizeof(mt)); } mat operator*(const mat &t) const { mat ans; for (int i = 0; i <= ze; i++) for (int j = 0; j <= ze; j++) for (int k = 0; k <= ze; k++) ans.mt[i][j] = (1ll * mt[i][k] * t.mt[k][j] % M + ans.mt[i][j]) % M; return ans; } } beg, ope, ans; mat qpow(mat x, int y) { mat sum; for (int i = 0; i <= ze; i++) sum.mt[i][i] = 1; while (y) { if (y & 1) sum = sum * x; y >>= 1, x = x * x; } return sum; } int qpow(int x, int y) { int sum = 1; while (y) { if (y & 1) sum = 1ll * sum * x % M; y >>= 1, x = 1ll * x * x % M; } return sum; } int main() { scanf("%d%d", &n, &k); for (int i = 1; i <= n; i++) { scanf("%d", &a[i]); ze += (a[i] == 0); } int lc = 0; for (int i = 1; i <= ze; i++) lc += (a[i] == 0); beg.mt[lc][0] = 1; for (int i = 0; i <= ze; i++) { ope.mt[i][i] = (1ll * ze * (ze - 1) / 2 + 1ll * (n - ze) * (n - ze - 1) / 2 + 1ll * i * (ze - i)) % M; if (i >= 2 * ze - n) ope.mt[i][i] = (ope.mt[i][i] + 1ll * (ze - i) * (n - 2 * ze + i) % M) % M; if (i) ope.mt[i][i - 1] = 1ll * (ze - i + 1) * (ze - i + 1) % M; if (i != ze && n - 2 * ze + i + 1 >= 0) ope.mt[i][i + 1] = 1ll * (i + 1) * (n - 2 * ze + i + 1) % M; } ans = qpow(ope, k) * beg; int res = 0; for (int i = 0; i <= ze; i++) res = (res + ans.mt[i][0]) % M; res = 1ll * qpow(res, M - 2) * ans.mt[ze][0] % M; printf("%d\n", res); return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const int p = 1000000007; struct matrix { int a[105][105]; } b; int tot, st, a[105], ans[105]; int read() { char c = getchar(); int x = 0, f = 1; while (c < '0' || c > '9') { if (c == '-') f = -1; c = getchar(); } while (c >= '0' && c <= '9') { x = x * 10 + c - '0'; c = getchar(); } return x * f; } int pow_mod(int x, int k) { int ans = 1; while (k) { if (k & 1) ans = 1LL * ans * x % p; x = 1LL * x * x % p; k >>= 1; } return ans; } matrix times(matrix x, matrix y) { matrix ans; memset(ans.a, 0, sizeof(ans.a)); for (int i = 0; i <= tot; i++) { for (int j = 0; j <= tot; j++) { for (int k = 0; k <= tot; k++) { ans.a[i][k] = (ans.a[i][k] + 1LL * x.a[i][j] * y.a[j][k]) % p; } } } return ans; } matrix fpow(matrix x, int k) { --k; matrix ans = x; while (k) { if (k & 1) ans = times(ans, x); x = times(x, x); k >>= 1; } return ans; } int main() { int n = read(), k = read(); tot = 0, st = 0; for (int i = 1; i <= n; i++) { a[i] = read(); if (a[i] == 0) ++tot; } for (int i = 1; i <= tot; i++) if (a[i] == 0) ++st; int t = 1LL * n * (n - 1) / 2 % p; t = pow_mod(t, p - 2); for (int i = 0; i <= tot; i++) { int a0 = i, a1 = tot - i, b0 = tot - i, b1 = n - a0 - a1 - b0; if (i < tot) b.a[i][i + 1] = 1LL * a1 * b0 % p * t % p; if (i > 0) b.a[i][i - 1] = 1LL * a0 * b1 % p * t % p; b.a[i][i] = (1 + p - 1LL * a1 * b0 % p * t % p + p - 1LL * a0 * b1 % p * t % p) % p; } b = fpow(b, k); int sum = 0; for (int i = 0; i <= tot; i++) { sum += b.a[st][i]; if (sum >= p) sum -= p; } printf("%d\n", 1LL * b.a[st][tot] * pow_mod(sum, p - 2) % p); return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const int N = 102; long long int mod = 1e9 + 7, b[N]; struct matrix { long long int n, m; long long int a[N][N]; matrix(int nn, int mm) { n = nn; m = mm; } void ide() { for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { a[i][j] = (i == j); } } } void emp() { for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { a[i][j] = 0; } } } }; void out(matrix o) { cout << o.n << ' ' << o.m << '\n'; for (int i = 0; i < o.n; i++) { for (int j = 0; j < o.m; j++) { cout << o.a[i][j] << ' '; } cout << '\n'; } cout << '\n'; } long long int wop(long long int x, long long int y) { long long int ret = 1; for (; y >= 1; y /= 2) { if (y & 1) ret *= x; x *= x; ret %= mod; x %= mod; } return ret; } matrix operator*(matrix A, matrix B) { matrix ret(A.n, B.m); ret.emp(); for (int i = 0; i < A.n; i++) { for (int j = 0; j < B.m; j++) { for (int k = 0; k < A.m; k++) { ret.a[i][j] += (A.a[i][k] * B.a[k][j]) % mod; ret.a[i][j] %= mod; } } } return ret; } matrix mult(matrix x, long long int k) { matrix ret(x.n, x.m); ret.ide(); for (; k >= 1; k /= 2) { if (k & 1) ret = ret * x; x = x * x; } return ret; } long long int kasr(long long int sor, long long int mag) { return (sor * wop(mag, mod - 2)) % mod; } int ze = 0, on, fr; bool not_valid(int x) { return ze - x <= on; } long long int chos(long long int x) { return (x * (x - 1)) / 2; } int main() { int t, k; cin >> t >> k; for (int i = 0; i < t; i++) { cin >> b[i]; ze += (b[i] == 0); } on = t - ze; fr = 0; for (int i = 0; i < ze; i++) { fr += b[i] == 0; } matrix mat(ze + 1, ze + 1); mat.emp(); for (int i = 0; i <= ze; i++) { if (!not_valid(i)) continue; mat.a[i][i] += kasr( chos(ze) + chos(on) + (i * (ze - i)) + ((ze - i) * (on - (ze - i))), chos(t)); mat.a[i][i] %= mod; if (i != ze) { mat.a[i][i + 1] += kasr((ze - i) * (ze - i), chos(t)); mat.a[i][i + 1] %= mod; } if (i - 1 >= 0) { mat.a[i][i - 1] += kasr((on - (ze - i)) * i, chos(t)); mat.a[i][i - 1] %= mod; } } matrix ans = mult(mat, k); cout << (ans.a[fr][ze]); }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; namespace debug { template <class T1, class T2> void pr(const pair<T1, T2> &x); template <class T, size_t SZ> void pr(const array<T, SZ> &x); template <class T> void pr(const vector<T> &x); template <class T> void pr(const set<T> &x); template <class T1, class T2> void pr(const map<T1, T2> &x); template <class T> void pr(const T &x) { cout << x; } template <class T, class... Ts> void pr(const T &first, const Ts &...rest) { pr(first), pr(rest...); } template <class T1, class T2> void pr(const pair<T1, T2> &x) { pr("{", x.first, ", ", x.second, "}"); } template <class T> void prIn(const T &x) { pr("{"); bool fst = 1; for (auto &a : x) { pr(fst ? "" : ", ", a), fst = 0; } pr("}"); } template <class T, size_t SZ> void pr(const array<T, SZ> &x) { prIn(x); } template <class T> void pr(const vector<T> &x) { prIn(x); } template <class T> void pr(const set<T> &x) { prIn(x); } template <class T1, class T2> void pr(const map<T1, T2> &x) { prIn(x); } void ps() { pr("\n"); } template <class Arg, class... Args> void ps(const Arg &first, const Args &...rest) { pr(first, " "); ps(rest...); } } // namespace debug using namespace debug; const int MOD = 1000000007; namespace binexp { long long bPow(long long b, long long p = MOD - 2) { b %= MOD; long long c = 1; while (p) { if (p & 1) { c = c * b % MOD; } b = b * b % MOD; p >>= 1; } return c; } } // namespace binexp using namespace binexp; int N, K; int a[105]; long long mat[105][105]; void mult(long long a[105][105], long long b[105][105], long long res[105][105]) { memset(res, 0, 8 * 105 * 105); for (int i = 0; i < 105; i++) { for (int j = 0; j < 105; j++) { for (int k = 0; k < 105; k++) { res[i][j] = (res[i][j] + a[i][k] * b[k][j]) % MOD; } } } } long long exp(int p, int x, int y) { long long c[105][105]; memset(c, 0, sizeof(c)); for (int i = 0; i < 105; i++) { c[i][i] = 1; } long long b[105][105]; memcpy(b, mat, sizeof(mat)); long long tmp[105][105]; while (p > 0) { if (p & 1) { mult(c, b, tmp); memcpy(c, tmp, sizeof(tmp)); } mult(b, b, tmp); memcpy(b, tmp, sizeof(tmp)); p >>= 1; } return c[x][y]; } int main() { cin >> N >> K; int cnt = 0; for (int i = 0; i < N; i++) { cin >> a[i]; if (a[i] == 0) { cnt++; } } int oo = 0; for (int i = 0; i < cnt; i++) { if (a[i] == 1) { oo++; } } memset(mat, 0, sizeof(mat)); for (int i = 0; i <= min(cnt, N - cnt); i++) { if (i + 1 <= N) { mat[i][i + 1] = 1LL * (cnt - i) * (N - cnt - i) % MOD; } if (i - 1 >= 0) { mat[i][i - 1] = 1LL * i * i % MOD; } mat[i][i] = (1LL * cnt * (cnt - 1) / 2) % MOD; mat[i][i] = (mat[i][i] + 1LL * (N - cnt) * (N - cnt - 1) / 2) % MOD; mat[i][i] = (mat[i][i] + 1LL * i * (N - cnt - i)) % MOD; mat[i][i] = (mat[i][i] + 1LL * (cnt - i) * (i)) % MOD; } long long num = exp(K, oo, 0); long long ch2 = (N * (N - 1LL) / 2) % MOD; long long den = bPow(ch2, K); long long iDen = bPow(den); cout << num * iDen % MOD << endl; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const int N = 1e2 + 5; const long long MOD = 1e9 + 7; int a[N]; struct Matrix { long long a[N][N]; }; long long fpow(long long a, long long b) { long long rtn = 1; while (b) { if (b & 1) rtn = (rtn * a) % MOD; b >>= 1; a = (a * a) % MOD; } return rtn; } void mmul(Matrix& a, Matrix b, int n) { Matrix rtn; for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { rtn.a[i][j] = 0; for (int k = 0; k < n; ++k) rtn.a[i][j] = (rtn.a[i][j] + a.a[i][k] * b.a[k][j] % MOD) % MOD; } } a = rtn; } void mfpow(Matrix& mat, int k, int n) { Matrix rtn; for (int i = 0; i < n; ++i) { rtn.a[i][i] = 1; } while (k) { if (k & 1) mmul(rtn, mat, n); mmul(mat, mat, n); k >>= 1; } mat = rtn; } int main() { ios::sync_with_stdio(false); cin.tie(0); int n, k; cin >> n >> k; int n1 = 0, WA = 0; for (int i = 0; i < n; ++i) { cin >> a[i]; if (a[i]) n1++; } for (int i = 0; i < n; ++i) { if (i < n - n1 && a[i]) WA++; } int n0 = n - n1; long long invc = fpow(1LL * n * (n - 1) / 2, MOD - 2); int top = min(n1, n0); Matrix mat; for (int i = 0; i <= top; ++i) { long long pre = 0; for (int j = 0; j <= top; ++j) { if (i == j + 1) { pre += 1LL * (n0 - i + 1) * (n1 - i + 1); mat.a[i][j] = 1LL * (n0 - i + 1) * (n1 - i + 1) * invc % MOD; } else if (i == j - 1) { pre += 1LL * (i + 1) * (i + 1); mat.a[i][j] = 1LL * (i + 1) * (i + 1) * invc % MOD; } } mat.a[i][i] = 1LL * (n * (n - 1) / 2 - i * i - (n0 - i) * (n1 - i)) * invc % MOD; } mfpow(mat, k, top + 1); cout << mat.a[0][WA] << endl; return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
import java.io.*; import java.util.*; public class Main { public static void main(String[] args) throws Exception { new Main().go(); } PrintWriter out; Reader in; BufferedReader br; Main() throws IOException { try { //br = new BufferedReader( new FileReader("input.txt") ); //in = new Reader("input.txt"); in = new Reader("input.txt"); out = new PrintWriter( new BufferedWriter(new FileWriter("output.txt")) ); } catch (Exception e) { //br = new BufferedReader( new InputStreamReader( System.in ) ); in = new Reader(); out = new PrintWriter( new BufferedWriter(new OutputStreamWriter(System.out)) ); } } void go() throws Exception { //int t = in.nextInt(); int t = 1; while (t > 0) { solve(); t--; } out.flush(); out.close(); } int inf = 2000000000; int mod = 1000000007; double eps = 0.000000001; int n; int m; ArrayList<Pair>[] g; void solve() throws IOException { int n = in.nextInt(); int k = in.nextInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = in.nextInt(); int cnt1 = 0; for (int i = 0; i < n; i++) { cnt1 += a[i]; } int cnt0 = n - cnt1; int pref1 = 0; for (int i = 0; i < cnt0; i++) pref1 += a[i]; int pref0 = cnt0 - pref1; int[][] cost = new int[n + 1][n + 1]; for (int i = 0; i <= n; i++) { if (i > cnt0) continue; cost[i][i] = cnt1 * (cnt1 - 1) / 2; cost[i][i] += cnt0 * (cnt0 - 1) / 2; cost[i][i] += i * (cnt0 - i); cost[i][i] += (cnt0 - i) * (cnt1 - (cnt0 - i)); if (i - 1 >= 0) { int cnt = cnt0 - (i - 1); if (cnt <= cnt1) cost[i - 1][i] = cnt * cnt; } if (i + 1 <= cnt0) { int onesPref = cnt0 - (i + 1); int onesSuf = cnt1 - onesPref; if (onesPref + onesSuf == cnt1) cost[i + 1][i] = (i + 1) * onesSuf; } } int[][] c = pow(cost, k); int[] d = new int[n + 1]; d[pref0] = 1; int[] res = new int[n + 1]; for (int i = 0; i <= n; i++) for (int j = 0; j <= n; j++) res[i] = (res[i] + d[j] * c[j][i]) % mod; long sum = 0; for (int i = 0; i <= n; i++) sum = (sum + res[i]) % mod; System.err.println(res[cnt0]); long ans = (long) res[cnt0] * pow(sum, mod - 2); ans %= mod; out.println(ans); } int[][] mult(int[][] a, int[][] b) { int n = a[0].length; int[][] c = new int[n][n]; for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) for (int k = 0; k < n; k++) c[i][j] = (int)((c[i][j] + (long) a[i][k] * b[k][j]) % mod); return c; } int[][] pow(int[][] a, int n) { if (n == 1) return a; if (n % 2 == 1) return mult(a, pow(a, n - 1)); int[][] res = pow(a, n / 2); return mult(res, res); } long pow(long x, int n) { if (n == 0) return 1; if (n % 2 == 1) return (x * pow(x, n - 1)) % mod; long res = pow(x, n / 2); return (res * res) % mod; } class Pair implements Comparable<Pair> { int a; int b; Pair(int a, int b) { this.a = a; this.b = b; } public int compareTo(Pair p) { if (a != p.a) return Integer.compare(a, p.a); else return Integer.compare(b, p.b); } } class Item { int a; int b; int c; Item(int a, int b, int c) { this.a = a; this.b = b; this.c = c; } } class Reader { BufferedReader br; StringTokenizer tok; Reader(String file) throws IOException { br = new BufferedReader( new FileReader(file) ); } Reader() throws IOException { br = new BufferedReader( new InputStreamReader(System.in) ); } String next() throws IOException { while (tok == null || !tok.hasMoreElements()) tok = new StringTokenizer(br.readLine()); return tok.nextToken(); } int nextInt() throws NumberFormatException, IOException { return Integer.valueOf(next()); } long nextLong() throws NumberFormatException, IOException { return Long.valueOf(next()); } double nextDouble() throws NumberFormatException, IOException { return Double.valueOf(next()); } String nextLine() throws IOException { return br.readLine(); } } static class InputReader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public InputReader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public InputReader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[64]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } }
JAVA
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const long long MOD = 1000 * 1000 * 1000 + 7; long long mod(long long n) { if (n < 0) { return (n % MOD + MOD) % MOD; } else { if (n < MOD) return n; else if (n < (MOD << 1)) return n - MOD; else return n % MOD; } } long long fp(long long a, long long p) { long long ans = 1, cur = a; for (long long i = 0; (1 << i) <= p; ++i) { if ((p >> i) & 1) ans = mod(ans * cur); cur = mod(cur * cur); } return ans; } long long dv(long long a, long long b) { return mod(a * fp(b, MOD - 2)); } const long long N = 101; long long m[N][N], ans[N][N], t[N][N]; void add(long long a[N][N], long long b[N][N]) { for (long long i = 0; i < N; ++i) { for (long long j = 0; j < N; ++j) { t[i][j] = 0; } } for (long long i = 0; i < N; ++i) { for (long long j = 0; j < N; ++j) { for (long long k = 0; k < N; ++k) { t[i][j] = mod(t[i][j] + a[i][k] * b[k][j]); } } } for (long long i = 0; i < N; ++i) { for (long long j = 0; j < N; ++j) { a[i][j] = t[i][j]; } } } void pw(long long p) { for (long long i = 0; i < N; ++i) ans[i][i] = 1; for (long long i = 0; (1 << i) <= p; ++i) { if ((p >> i) & 1) add(ans, m); add(m, m); } } bool a[N]; long long cnt[2]; signed main() { ios_base::sync_with_stdio(0); cin.tie(0); long long n, k; cin >> n >> k; for (long long i = 0; i < n; ++i) { cin >> a[i]; ++cnt[a[i]]; } long long l = cnt[0]; long long r = n - l; long long op = n * (n - 1) / 2; for (long long l1 = 0; l1 <= cnt[0] && l1 <= cnt[1]; ++l1) { long long l0 = l - l1; long long r0 = cnt[0] - l0; long long r1 = cnt[1] - l1; m[l1][l1] = op; if (l1) { m[l1][l1 - 1] = mod(l1 * r0); m[l1][l1] = mod(m[l1][l1] - m[l1][l1 - 1]); } m[l1][l1 + 1] = mod(l0 * r1); m[l1][l1] = mod(m[l1][l1] - m[l1][l1 + 1]); } pw(k); long long sum = 0; for (long long i = 0; i < l; ++i) sum += a[i]; cout << dv(ans[sum][0], fp(op, k)) << '\n'; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const int N = 105, MOD = 1e9 + 7; struct mat { int a[N][N]; mat() { memset(a, 0, sizeof(a)); } }; int n, cnt[2]; mat operator*(const mat &a, const mat &b) { mat c = mat(); for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { for (int k = 0; k < n; ++k) { (c.a[i][k] += 1LL * a.a[i][j] * b.a[j][k] % MOD) %= MOD; } } } return c; } mat pow(mat x, int m) { mat res = mat(); for (int i = 0; i < n; ++i) res.a[i][i] = 1; while (m) { if (m & 1) res = res * x; x = x * x; m >>= 1; } return res; } int npow(int x, int m) { int res = 1; while (m) { if (m & 1) res = 1LL * res * x % MOD; x = 1LL * x * x % MOD; m >>= 1; } return res; } int a[N]; int main() { int n, m; scanf("%d%d", &n, &m); for (int i = 0; i < n; ++i) { scanf("%d", &a[i]); cnt[a[i]]++; } int x0 = 0; for (int i = n - cnt[1]; i < n; ++i) { x0 += (a[i] == 1); } mat p0 = mat(); p0.a[0][x0] = 1; int ans = npow(npow(n * (n - 1) / 2, m), MOD - 2); mat p = mat(); ::n = cnt[1] + 1; for (int i = 0; i <= cnt[1]; ++i) { vector<int> x = {i, cnt[1] - i, cnt[1] - i, cnt[0] - cnt[1] + i}; for (int a = 0; a < 4; ++a) { for (int b = a + 1; b < 4; ++b) { int j = i; if (a == 0 && b == 3) j--; if (a == 1 && b == 2) j++; if (j >= 0 && j <= cnt[1]) (p.a[i][j] += x[a] * x[b]) %= MOD; } (p.a[i][i] += x[a] * (x[a] - 1) / 2) %= MOD; } } mat res = p0 * pow(p, m); ans = 1LL * res.a[0][cnt[1]] * ans % MOD; printf("%d\n", ans); }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const int maxn = 100 + 5; const int mod = 1e9 + 7; struct Matrix { int val[maxn][maxn]; int height, width; Matrix(int h, int w) { height = h; width = w; memset(val, 0, sizeof val); } Matrix operator*(const Matrix& other) const { assert(width == other.height); Matrix ret(height, other.width); for (int i = 1; i <= height; i++) { for (int j = 1; j <= other.width; j++) { for (int k = 1; k <= width; k++) { (ret.val[i][j] += 1ll * val[i][k] * other.val[k][j] % mod) %= mod; } } } return ret; } void print() { for (int i = 1; i <= height; i++) { for (int j = 1; j <= width; j++) { printf("%d ", val[i][j]); } puts(""); } } }; int C[maxn][maxn]; int n, k; int a[maxn]; int ans[maxn]; int powmod(int x, int y) { int res = 1; while (y) { if (y & 1) { res = 1ll * res * x % mod; } y >>= 1; x = 1ll * x * x % mod; } return res; } Matrix powmod(Matrix trans, int y) { Matrix res(trans.height, trans.width); for (int i = 1; i <= trans.height; i++) { res.val[i][i] = 1; } while (y) { if (y & 1) { res = res * trans; } y >>= 1; trans = trans * trans; } return res; } int main() { C[0][0] = 1; for (int i = 1; i < maxn; i++) { C[i][0] = C[i][i] = 1; for (int j = 1; j < i; j++) { C[i][j] = (C[i - 1][j] + C[i - 1][j - 1]) % mod; } } scanf("%d%d", &n, &k); int cnt0 = 0; for (int i = 1; i <= n; i++) { scanf("%d", a + i); cnt0 += a[i] == 0; } int my0 = 0; for (int i = 1; i <= cnt0; i++) { my0 += a[i] == 0; } Matrix trans(cnt0 + 1, cnt0 + 1); for (int i = 0; i <= cnt0; i++) { if (cnt0 - i > n - cnt0) continue; if (i - 1 >= 0 && cnt0 - i + 1 <= n - cnt0) { trans.val[i + 1][i] = 1ll * (cnt0 - i + 1) * (cnt0 - i + 1) % mod; } trans.val[i + 1][i + 1] = 1ll * (C[cnt0][2] + C[n - cnt0][2] + 1ll * i * (cnt0 - i) % mod + 1ll * (cnt0 - i) * (n - 2 * cnt0 + i) % mod) % mod; if (i + 1 <= cnt0 && n - 2 * cnt0 + i + 1 > 0) { trans.val[i + 1][i + 2] = 1ll * (i + 1) * (n - 2 * cnt0 + i + 1) % mod; } } Matrix final_trans = powmod(trans, k); for (int i = 1; i <= cnt0 + 1; i++) { ans[i - 1] = final_trans.val[i][my0 + 1]; } int p = ans[cnt0], q = 0; for (int i = 0; i <= cnt0; i++) { (q += ans[i]) %= mod; } cout << 1ll * p * powmod(powmod(C[n][2], k), mod - 2) % mod << endl; return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> #pragma GCC optimize("Ofast") using namespace std; const long double eps = 1e-7; const int inf = 1000000010; const long long INF = 10000000000000010LL; const int mod = 1000000007; const int MAXN = 110; struct MAT { long long a[MAXN][MAXN]; MAT() { for (int i = 0; i < MAXN; i++) for (int j = 0; j < MAXN; j++) a[i][j] = 0; } void relax() { for (int i = 0; i < MAXN; i++) for (int j = 0; j < MAXN; j++) a[i][j] %= mod; } } T; void zarb(MAT &m1, MAT &m2) { MAT tmp; for (int i = 0; i < MAXN; i++) for (int j = 0; j < MAXN; j++) for (int k = 0; k < MAXN; k++) tmp.a[i][j] += m1.a[i][k] * m2.a[k][j] % mod; tmp.relax(); for (int i = 0; i < MAXN; i++) for (int j = 0; j < MAXN; j++) m1.a[i][j] = tmp.a[i][j]; } void tavan(MAT &M, long long x) { if (x == 0) { for (int i = 0; i < MAXN; i++) for (int j = 0; j < MAXN; j++) M.a[i][j] = (i == j); return; } MAT tmp; for (int i = 0; i < MAXN; i++) for (int j = 0; j < MAXN; j++) tmp.a[i][j] = M.a[i][j]; x--; for (; x; x >>= 1, zarb(tmp, tmp)) if (x & 1) zarb(M, tmp); } long long powmod(long long a, long long b) { if (!b) return 1; if (b & 1) return a * powmod(a * a % mod, b >> 1) % mod; return powmod(a * a % mod, b >> 1); } long long n, m, k, u, v, x, y, t, c0, c1, ans, bad; int A[MAXN]; int main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); cin >> n >> k; for (int i = 1; i <= n; i++) { cin >> A[i]; if (A[i]) c1++; else c0++; } for (int i = 1; i <= c0; i++) bad += A[i]; if (!c1 || !c0) return cout << 1 << '\n', 0; cerr << "bad" << '=' << bad << endl; for (long long i = 0; i <= n; i++) { T.a[i][i] = (c1 * (c1 - 1) + c0 * (c0 - 1)) / 2 - 2 * i * i + n * i; if (i) T.a[i][i - 1] = i * i; if (i < n) T.a[i][i + 1] = (c1 - i) * (c0 - i); } tavan(T, k); ans = (T.a[bad][0] + mod) % mod; cout << (ans * powmod(n * (n - 1) / 2, mod - k - 1)) % mod << '\n'; cerr << "ans" << '=' << ans << endl; return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const long long maxm = 105; const long long mod = 1e9 + 7; long long a[maxm]; struct Node { long long a[maxm][maxm]; Node operator*(const Node& x) const { Node ans; for (long long i = 0; i < maxm; i++) for (long long j = 0; j < maxm; j++) ans.a[i][j] = 0; for (long long k = 0; k < maxm; k++) { for (long long i = 0; i < maxm; i++) { for (long long j = 0; j < maxm; j++) { ans.a[i][j] = (ans.a[i][j] + a[i][k] * x.a[k][j]) % mod; } } } return ans; } }; long long ppow(long long a, long long b, long long mod) { long long ans = 1 % mod; a %= mod; while (b) { if (b & 1) ans = ans * a % mod; a = a * a % mod; b >>= 1; } return ans; } Node Node_pow(Node a, long long b) { Node ans; for (long long i = 0; i < maxm; i++) for (long long j = 0; j < maxm; j++) ans.a[i][j] = (i == j); while (b) { if (b & 1) ans = ans * a; a = a * a; b >>= 1; } return ans; } signed main() { long long n, k; cin >> n >> k; long long x = 0; for (long long i = 1; i <= n; i++) { cin >> a[i]; if (!a[i]) x++; } Node base; for (long long i = 0; i < maxm; i++) for (long long j = 0; j < maxm; j++) base.a[i][j] = 0; for (long long i = 0; i <= x; i++) { base.a[i][i] += x * (x - 1) / 2; base.a[i][i] += (n - x) * (n - x - 1) / 2; base.a[i][i] += i * (x - i) + (x - i) * (n - x - x + i); base.a[i][i] %= mod; if (i > 0) { base.a[i - 1][i] += (x - (i - 1)) * (x - (i - 1)); base.a[i - 1][i] %= mod; } if (i < x) { base.a[i + 1][i] += (i + 1) * (n - x - x + (i + 1)); base.a[i + 1][i] %= mod; } } long long inv = ppow(n * (n - 1) / 2, mod - 2, mod); for (long long i = 0; i <= x; i++) { for (long long j = 0; j <= x; j++) { base.a[i][j] *= inv; base.a[i][j] %= mod; } } Node temp = Node_pow(base, k); long long c = 0; for (long long i = 1; i <= x; i++) if (!a[i]) c++; Node ans; for (long long i = 0; i < maxm; i++) for (long long j = 0; j < maxm; j++) ans.a[i][j] = 0; ans.a[0][c] = 1; ans = ans * temp; cout << ans.a[0][x] << endl; return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; struct Matrix { int size; long long **a; Matrix(int sz) { size = sz; a = new long long *[sz]; for (int i = 0; i < size; i++) a[i] = new long long[sz]; for (int i = 0; i < size; i++) for (int j = 0; j < size; j++) a[i][j] = 0; } Matrix operator*(Matrix B) { Matrix C = Matrix(size); for (int i = 0; i < size; i++) for (int j = 0; j < size; j++) for (int k = 0; k < size; k++) { C.a[i][j] += a[i][k] * B.a[k][j] % 1000000007; if (C.a[i][j] >= 1000000007) C.a[i][j] -= 1000000007; } return C; } Matrix print() { for (int i = 0; i < size; i++) for (int j = 0; j < size; j++) cout << a[i][j] << " \n"[j == size - 1]; } }; int a[110], z; long long denom, inv_denom; long long power(long long x, long long n) { long long res = 1, now = x; for (; n; n >>= 1, now = now * now % 1000000007) if (n & 1) res = res * now % 1000000007; return res; } Matrix power(Matrix x, long long n) { Matrix res = Matrix(x.size), now = x; for (int i = 0; i < x.size; i++) res.a[i][i] = 1; for (; n; n >>= 1, now = now * now) if (n & 1) res = res * now; return res; } int main() { ios_base::sync_with_stdio(0); int n, k; cin >> n >> k; for (int i = 0; i < n; i++) { cin >> a[i]; z += (a[i] == 0); } int t = 0; for (int i = 0; i < z; i++) t += (a[i] == 0); denom = n * (n - 1) % 1000000007 * 500000004LL % 1000000007; inv_denom = power(n * (n - 1) % 1000000007 * 500000004LL % 1000000007, 1000000007 - 2); Matrix A = Matrix(z + 1); for (int i = 0; i <= z; i++) { if (i) A.a[i - 1][i] = i * (n + i - 2 * z) % 1000000007 * inv_denom % 1000000007; A.a[i][i] = (denom - (z - i) * (z - i) % 1000000007 - i * (n + i - 2 * z) % 1000000007 + 2 * 1000000007) % 1000000007 * inv_denom % 1000000007; if (i < z) A.a[i + 1][i] = (z - i) * (z - i) % 1000000007 * inv_denom % 1000000007; } cout << power(A, k).a[z][t] << endl; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const int M = 105; const int mod = 1000000007; struct Matrix { long long int val[M][M]; } I; Matrix mul(Matrix A, Matrix B) { Matrix C; for (int i = 0; i < M; i++) for (int j = 0; j < M; j++) { C.val[i][j] = 0; for (int k = 0; k < M; k++) { C.val[i][j] += A.val[i][k] * B.val[k][j] % mod; } C.val[i][j] %= mod; } return C; } Matrix poww(Matrix A, int b) { Matrix tmp = I; while (b) { if (b & 1) { tmp = mul(tmp, A); } b >>= 1; A = mul(A, A); } return tmp; } long long int poww(long long int a, long long int b) { if (!a) return 0; long long int tmp = 1; while (b) { if (b & 1) { tmp = tmp * a % mod; } b >>= 1; a = a * a % mod; } return tmp; } int main() { for (int i = 0; i < M; i++) { I.val[i][i] = 1; } long long int n, k; scanf("%lld%lld", &n, &k); int zero = 0; int one = 0; int start; vector<int> arr; for (int i = 0; i < n; i++) { int first; scanf("%d", &first); arr.push_back(first); if (first == 0) { zero++; } else { one++; } } for (int i = 0; i < zero; i++) { if (arr[i] == 0) { start++; } } Matrix mat; memset(mat.val, 0, sizeof(mat.val)); for (int i = 0; i <= zero; i++) { long long int inc = (zero - i) * (zero - i); long long int dec = i * (one - zero + i); long long int same = n * (n - 1) / 2 - inc - dec; mat.val[i][i] = same % mod * poww(n * (n - 1) / 2, mod - 2) % mod; if (i < zero) mat.val[i + 1][i] = inc % mod * poww(n * (n - 1) / 2, mod - 2) % mod; if (i > 0) mat.val[i - 1][i] = dec % mod * poww(n * (n - 1) / 2, mod - 2) % mod; ; } mat = poww(mat, k); cout << mat.val[zero][start] << endl; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; inline int read() { char ch = getchar(); int x = 0, f = 1; while (ch < '0' || ch > '9') { if (ch == '-') f = -1; ch = getchar(); } while ('0' <= ch && ch <= '9') { x = x * 10 + ch - '0'; ch = getchar(); } return x * f; } int n, k; int sum0, sum1; struct mat { int a[110][110]; mat() { memset(a, 0, sizeof(a)); } inline mat operator*(const mat& rhs) const { mat ret; for (int i = (0); i <= (sum0); ++i) for (int j = (0); j <= (sum0); ++j) { for (int k = (0); k <= (sum0); ++k) { ret.a[i][j] += 1ll * a[i][k] * rhs.a[k][j] % 1000000007; if (ret.a[i][j] >= 1000000007) ret.a[i][j] -= 1000000007; } } return ret; } } bas; int c[110]; inline mat Power(mat x, int y) { mat ret; ret = x; --y; while (y) { if (y & 1) ret = ret * x; x = x * x; y >>= 1; } return ret; } inline int Power(int x, int y) { int ret = 1; while (y) { if (y & 1) ret = 1ll * ret * x % 1000000007; x = 1ll * x * x % 1000000007; y >>= 1; } return ret; } int main() { n = read(), k = read(); for (int i = (1); i <= (n); ++i) c[i] = read(); sum0 = 0, sum1 = 0; int a = 0, st = 0; for (int i = (1); i <= (n); ++i) { if (c[i]) { ++sum1; } else { ++sum0; ++a; } } for (int i = (1); i <= (a); ++i) { if (!c[i]) ++st; } for (int j = (0); j <= (sum0); ++j) { int inv = Power(n * (n - 1) / 2, 1000000007 - 2); bas.a[j][j] = 1ll * (a * (a - 1) / 2 + (n - a) * (n - a - 1) / 2 + j * (sum0 - j) + (a - j) * (sum1 - a + j)) * inv % 1000000007; if (j) bas.a[j][j - 1] = 1ll * j * (sum1 - a + j) * inv % 1000000007; if (j < sum0) { bas.a[j][j + 1] = 1ll * (a - j) * (sum0 - j) % 1000000007 * inv % 1000000007; } } mat p; p.a[0][st] = 1; p = p * Power(bas, k); printf("%d\n", p.a[0][sum0]); }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; inline int read() { int x = 0, f = 1, c = getchar(); while (!isdigit(c)) { if (c == '-') f = -1; c = getchar(); } while (isdigit(c)) { x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); } return f == 1 ? x : -x; } const int mod = 1e9 + 7, inv2 = (mod + 1) >> 1; inline int fix(int x) { return x + ((x >> 31) & mod); } inline int add(int x, int y) { return fix(x + y - mod); } inline int dec(int x, int y) { return fix(x - y); } inline int mul(int x, int y) { return int((long long)x * y % mod); } inline void ADD(int &x, int y) { x = fix(x + y - mod); } inline void DEC(int &x, int y) { x = fix(x - y); } inline void MUL(int &x, int y) { x = int((long long)x * y % mod); } inline int ksm(int x, int r) { int ret = 1; for (int i = 0; (1ll << i) <= r; i++) { if ((r >> i) & 1) MUL(ret, x); MUL(x, x); } return ret; } const int N = 104; int n, m, k, st, a[N]; struct matrix { int a[N][N]; inline matrix operator*(const matrix &x) const { static matrix ret; for (int i = 0; i <= k; i++) for (int j = 0; j <= k; j++) { ret.a[i][j] = 0; for (int u = 0; u <= k; u++) ADD(ret.a[i][j], mul(a[i][u], x.a[u][j])); } return ret; } inline void clear() { for (int i = 0; i <= k; i++) a[i][i] = 1; } } res, tmp; int main() { n = read(); m = read(); for (int i = 1; i <= n; i++) { a[i] = read(); if (!a[i]) k++; } for (int i = 1; i <= k; i++) if (a[i]) st++; for (int i = 0, x = ksm(n * (n - 1) / 2, mod - 2); i <= k; i++) { if (i) tmp.a[i][i - 1] = mul(x, i * i); tmp.a[i][i + 1] = mul(x, (k - i) * (n - k - i)); tmp.a[i][i] = dec(1, add(i ? tmp.a[i][i - 1] : 0, tmp.a[i][i + 1])); } res.clear(); for (int i = 0; (1ll << i) <= m; i++) { if ((m >> i) & 1) res = res * tmp; tmp = tmp * tmp; } cout << res.a[st][0] << "\n"; return (0 - 0); }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const long long MOD = 1000 * 1000 * 1000 + 7; long long mod(long long n) { if (n < 0) { return (n % MOD + MOD) % MOD; } else { if (n < MOD) return n; else if (n < 2 * MOD) return n - MOD; else return n % MOD; } } long long fp(long long a, long long p) { long long ans = 1, cur = a; for (long long i = 0; (1 << i) <= p; ++i) { if ((p >> i) & 1) ans = mod(ans * cur); cur = mod(cur * cur); } return ans; } long long dv(long long a, long long b) { return mod(a * fp(b, MOD - 2)); } const long long N = 101; long long m[N][N], ans[N][N], t[N][N]; void add(long long a[N][N], long long b[N][N]) { for (long long i = 0; i < N; ++i) { for (long long j = 0; j < N; ++j) { t[i][j] = 0; } } for (long long i = 0; i < N; ++i) { for (long long j = 0; j < N; ++j) { for (long long k = 0; k < N; ++k) { t[i][j] = mod(t[i][j] + a[i][k] * b[k][j]); } } } for (long long i = 0; i < N; ++i) { for (long long j = 0; j < N; ++j) { a[i][j] = t[i][j]; } } } void pw(long long p) { for (long long i = 0; i < N; ++i) ans[i][i] = 1; for (long long i = 0; (1 << i) <= p; ++i) { if ((p >> i) & 1) add(ans, m); add(m, m); } } bool a[N]; long long cnt[2]; signed main() { ios_base::sync_with_stdio(0); cin.tie(0); long long n, k; cin >> n >> k; for (long long i = 0; i < n; ++i) { cin >> a[i]; ++cnt[a[i]]; } long long l = cnt[0]; long long r = n - l; long long op = n * (n - 1) / 2; for (long long l1 = 0; l1 <= cnt[0] && l1 <= cnt[1]; ++l1) { long long l0 = l - l1; long long r0 = cnt[0] - l0; long long r1 = cnt[1] - l1; m[l1][l1] = op; if (l1) { m[l1][l1 - 1] = mod(l1 * r0); m[l1][l1] = mod(m[l1][l1] - m[l1][l1 - 1]); } m[l1][l1 + 1] = mod(l0 * r1); m[l1][l1] = mod(m[l1][l1] - m[l1][l1 + 1]); } pw(k); long long sum = 0; for (long long i = 0; i < l; ++i) sum += a[i]; cout << dv(ans[sum][0], fp(op, k)) << '\n'; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; struct matrix { int row, col; long long v[102][102]; }; matrix mul(matrix mat, matrix mat2) { matrix r; r.row = mat.row; r.col = mat.col; for (int i = 0; i < r.row; i++) { for (int j = 0; j < r.col; j++) { long long sum = 0; for (int k = 0; k < mat.col; k++) { sum += mat.v[i][k] * mat2.v[k][j]; sum %= 1000000007; } r.v[i][j] = sum; } } return r; } matrix po(matrix mat, int p) { if (p == 1) return mat; if (p & 1) { matrix r = po(mat, p - 1); r = mul(mat, r); return r; } matrix r = po(mat, p / 2); r = mul(r, r); return r; } long long bigmod(int v, int po) { if (po == 1) return v; if (po & 1) { int g = bigmod(v, po - 1); return (1LL * g * v) % 1000000007; } int g = bigmod(v, po / 2); return (1LL * g * g) % 1000000007; } int ara[200]; int main() { int i, j, k, l, m, n, zero = 0, one = 0, ase = 0; scanf("%d%d", &n, &k); for (int i = 1; i <= n; i++) { scanf("%d", &ara[i]); if (ara[i] == 1) one++; else zero++; } for (int i = 1; i <= zero; i++) { if (ara[i] == 0) ase++; } matrix mat; mat.row = mat.col = zero + 1; memset(mat.v, 0, sizeof mat.v); long long hor = bigmod((n * (n - 1)) / 2, 1000000007 - 2); for (int i = 0; i <= zero; i++) { if ((n - zero) < (zero - i)) continue; int rem0 = zero - i; int vone = zero - i; int bone = one - vone; ; if (vone > one) continue; if ((bone + rem0) > (n - zero)) continue; for (int j = i - 1; j <= min(i + 1, zero); j++) { if (j == -1) continue; int sum; if (j == i) { sum = (zero * (zero - 1)) / 2 + i * rem0 + vone * bone + ((n - zero) * (n - zero - 1)) / 2; ; mat.v[i][j] = (hor * sum) % 1000000007; continue; } if (j == i + 1) { sum = vone * rem0; mat.v[i][j] = (hor * sum) % 1000000007; continue; } if (j == i - 1) { mat.v[i][j] = (hor * bone * i) % 1000000007; } } } mat = po(mat, k); long long ans = mat.v[ase][zero], sum = 0; for (int i = 0; i <= zero; i++) { sum += mat.v[ase][i]; sum %= 1000000007; } cout << ans << endl; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const int mod = 1000000007; int a[105], n, K, sn; struct Mat { int a[105][105]; Mat() { memset(a, 0, sizeof(a)); } Mat operator*(const Mat &b) const { Mat c = Mat(); for (int i = 0; i <= sn; i++) for (int j = 0; j <= sn; j++) for (int k = 0; k <= sn; k++) c.a[i][j] = (c.a[i][j] + (long long)a[i][k] * b.a[k][j]) % mod; return c; } } ret, mp; int q_pow(int x, int n) { int ret = 1; for (; n; n >>= 1, x = (long long)x * x % mod) if (n & 1) ret = (long long)ret * x % mod; return ret; } void q_pow(int K) { for (; K; K >>= 1, mp = mp * mp) if (K & 1) ret = ret * mp; } int main() { scanf("%d%d", &n, &K); int now = 0; for (int i = 1; i <= n; i++) scanf("%d", &a[i]), sn += a[i] == 1; for (int i = n - sn + 1; i <= n; i++) now += a[i] == 1; ret.a[0][now] = 1; for (int i = 0; i <= sn; i++) { mp.a[i][i - 1] = i * (n - sn * 2 + i); mp.a[i][i + 1] = (sn - i) * (sn - i); mp.a[i][i] = (n * (n - 1) >> 1) - i * (n - sn * 2 + i) - (sn - i) * (sn - i); } q_pow(K); printf("%lld\n", ((long long)ret.a[0][sn] * q_pow(q_pow(n * (n - 1) >> 1, mod - 2), K) % mod + mod) % mod); return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const long long mod = 1e9 + 7; const long long N = 105; long long m; struct node { long long row, col; long long data[N][N]; node(long long n, long long m) { row = n; col = m; for (long long i = 0; i <= n; i++) for (long long j = 0; j <= n; j++) data[i][j] = 0; } node operator*(node b) { node t(this->row, b.col); for (long long i = 0; i <= t.row; i++) { for (long long j = 0; j <= t.col; j++) { for (long long k = 0; k <= this->col; k++) { t.data[i][j] = (t.data[i][j] + this->data[i][k] * b.data[k][j] % mod) % mod; } } } return t; } }; inline long long ksm(long long a, long long b) { long long ret = 1; while (b) { if (b & 1) ret = ret * a % mod; a = a * a % mod; b >>= 1; } return ret; } long long n, k, t, a[N]; inline long long f1(long long x) { return (x * (n - 2 * m + x) % mod + mod) % mod; } inline long long f3(long long x) { return ((m - x) * (m - x) % mod + mod) % mod; } inline long long f2(long long x) { return ((n * (n - 1) / 2 - f1(x) - f3(x)) % mod + mod) % mod; } signed main() { scanf("%lld%lld", &n, &k); for (long long i = 1; i <= n; i++) { scanf("%lld", &a[i]); if (!a[i]) m++; } node ma(m, m); node ans(m, m); for (long long i = 1; i <= m; i++) if (!a[i]) t++; for (long long i = 0; i <= m; i++) { if (i != 0) ma.data[i - 1][i] = f1(i); ma.data[i][i] = f2(i); if (i != m) ma.data[i + 1][i] = f3(i); } for (long long i = 0; i <= m; i++) ans.data[i][i] = 1; while (k) { if (k & 1) { ans = ans * ma; } ma = ma * ma; k /= 2; } long long total = 0; for (long long i = 0; i <= m; i++) { total = (total + ans.data[i][t]) % mod; } printf("%lld\n", ans.data[m][t] * ksm(total, mod - 2) % mod); return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; vector<vector<long long>> matrix_multiply(vector<vector<long long>> a, vector<vector<long long>> b) { long long x = a.size(), y = a[0].size(), z = b[0].size(), i, j, k; vector<vector<long long>> ans(x, vector<long long>(z, 0)); for (i = 0; i < x; i++) { for (j = 0; j < z; j++) for (k = 0; k < y; k++) ans[i][j] = (ans[i][j] + a[i][k] * b[k][j]) % 1000000007; } return ans; } long long gcd(long long a, long long b) { while (b != 0) { long long t = b; b = a % b; a = t; } return a; } long long mul_inv(long long a, long long b) { long long b0 = b, t, q; long long x0 = 0, x1 = 1; if (b == 1) return 1; while (a > 1) { q = a / b; t = b, b = a % b, a = t; t = x0, x0 = x1 - q * x0, x1 = t; } if (x1 < 0) x1 += b0; return x1; } long long division(long long a, long long b, long long p) { long long ans, inv; inv = mul_inv(b, p); ans = ((a % p) * inv) % p; return ans; } int main() { ios::sync_with_stdio(false); cin.tie(0); long long n, q, i, j, k, c, x, aa, bb, xx, g, ans; cin >> n >> q; vector<int> a(n); c = 0; for (i = 0; i < n; i++) { cin >> a[i]; if (a[i] == 0) c++; } x = 0; for (i = 0; i < c; i++) { if (a[i] == 0) x++; } xx = x; vector<vector<long long>> t(n + 1, vector<long long>(n + 1, 0)); for (x = 0; x <= n; x++) { if (x < n) { t[x][x + 1] = (c - x) * (c - x); aa = t[x][x + 1]; } else aa = 0; if (x > 0) { t[x][x - 1] = x * (n - c - c + x); bb = t[x][x - 1]; } else bb = 0; t[x][x] = n * (n - 1) / 2 - aa - bb; } vector<vector<vector<long long>>> cc(33); vector<long long> total(33); cc[0] = t; total[0] = n * (n - 1) / 2; for (i = 1; i < 33; i++) { cc[i] = matrix_multiply(cc[i - 1], cc[i - 1]); total[i] = (total[i - 1] * total[i - 1]) % 1000000007; } vector<vector<long long>> z(1, vector<long long>(n + 1, 0)); z[0][xx] = 1; bb = 1; for (i = 0; i < 33; i++) { if ((1LL << i) & q) { z = matrix_multiply(z, cc[i]); bb = (bb * total[i]) % 1000000007; } } aa = z[0][c]; g = gcd(aa, bb); aa /= g; bb /= g; ans = division(aa, bb, 1000000007); cout << ans << "\n"; return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
import sys; input=sys.stdin.readline # print(input()) N, T = map(int, input().split()) A = [int(a) for a in input().split()] if sum(A) > N//2: A = [1-a for a in A][::-1] K = sum(A) S = sum(A[-K:]) M = K + 1 P = 10**9+7 inv = pow(N*(N-1)//2, P-2, P) X = [[0]*M for _ in range(M)] for i in range(M): if i > 0: X[i-1][i] = ((K-i+1)**2*inv)%P if i < M-1: X[i+1][i] = (N-2*K+i+1)*(i+1)*inv%P X[i][i] = (1-((K-i)**2*inv)-(N-2*K+i)*(i)*inv)%P # def ddd(n): # for i in range(1, 100): # if (n*i%P) < 100: # return (n*i%P), i # return -1, -1 def poww(MM, n): if n == 1: return MM if n % 2: return mult(poww(MM, n-1), MM) return poww(mult(MM,MM), n//2) def mult(M1, M2): Y = [[0] * M for _ in range(M)] for i in range(M): for j in range(M): for k in range(M): Y[i][j] += M1[i][k] * M2[k][j] Y[i][j] %= P return Y X = poww(X, T) print(X[S][K])
PYTHON3
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
//package round553; import java.io.ByteArrayInputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.InputMismatchException; public class F { InputStream is; PrintWriter out; String INPUT = ""; void solve() { int n = ni(), K = ni(); int[] a = na(n); int o = 0; for(int i = 0;i < n;i++)o += a[i]; int s = 0; for(int i = 0;i < o;i++)s += a[n-1-i]; // o-i/n-o i/o int[][] M = new int[o+1][o+1]; long all = n*(n-1); long iall = invl(all, mod); for(int i = 0;i <= o;i++){ for(int j = -1;j <= 1;j++){ int t = i+j; if(t >= 0 && t <= o){ if(j == 1){ M[t][i] = (int)(2*(o-i)*(o-i)*iall%mod); }else if(j == -1){ M[t][i] = (int)(2*((n-o)-(o-i))*i*iall%mod); }else{ M[t][i] = (int)((all-2*(o-i)*(o-i)-2*((n-o)-(o-i))*i)*iall%mod); } } } } int[] v = new int[o+1]; v[s] = 1; out.println(pow(M, v, K)[o]); } public static long invl(long a, long mod) { long b = mod; long p = 1, q = 0; while (b > 0) { long c = a / b; long d; d = a; a = b; b = d % b; d = p; p = q; q = d - c * q; } return p < 0 ? p + mod : p; } ///////// begin public static final int mod = 1000000007; public static final long m2 = (long)mod*mod; public static final long BIG = 8L*m2; // A^e*v public static int[] pow(int[][] A, int[] v, long e) { for(int i = 0;i < v.length;i++){ if(v[i] >= mod)v[i] %= mod; } int[][] MUL = A; for(;e > 0;e>>>=1) { if((e&1)==1)v = mul(MUL, v); MUL = p2(MUL); } return v; } // int matrix*int vector public static int[] mul(int[][] A, int[] v) { int m = A.length; int n = v.length; int[] w = new int[m]; for(int i = 0;i < m;i++){ long sum = 0; for(int k = 0;k < n;k++){ sum += (long)A[i][k] * v[k]; if(sum >= BIG)sum -= BIG; } w[i] = (int)(sum % mod); } return w; } // int matrix^2 (be careful about negative value) public static int[][] p2(int[][] A) { int n = A.length; int[][] C = new int[n][n]; for(int i = 0;i < n;i++){ long[] sum = new long[n]; for(int k = 0;k < n;k++){ for(int j = 0;j < n;j++){ sum[j] += (long)A[i][k] * A[k][j]; if(sum[j] >= BIG)sum[j] -= BIG; } } for(int j = 0;j < n;j++){ C[i][j] = (int)(sum[j] % mod); } } return C; } void run() throws Exception { is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes()); out = new PrintWriter(System.out); long s = System.currentTimeMillis(); solve(); out.flush(); tr(System.currentTimeMillis()-s+"ms"); } public static void main(String[] args) throws Exception { new F().run(); } private byte[] inbuf = new byte[1024]; public int lenbuf = 0, ptrbuf = 0; private int readByte() { if(lenbuf == -1)throw new InputMismatchException(); if(ptrbuf >= lenbuf){ ptrbuf = 0; try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); } if(lenbuf <= 0)return -1; } return inbuf[ptrbuf++]; } private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; } private double nd() { return Double.parseDouble(ns()); } private char nc() { return (char)skip(); } private String ns() { int b = skip(); StringBuilder sb = new StringBuilder(); while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } private char[] ns(int n) { char[] buf = new char[n]; int b = skip(), p = 0; while(p < n && !(isSpaceChar(b))){ buf[p++] = (char)b; b = readByte(); } return n == p ? buf : Arrays.copyOf(buf, p); } private char[][] nm(int n, int m) { char[][] map = new char[n][]; for(int i = 0;i < n;i++)map[i] = ns(m); return map; } private int[] na(int n) { int[] a = new int[n]; for(int i = 0;i < n;i++)a[i] = ni(); return a; } private int ni() { int num = 0, b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private long nl() { long num = 0; int b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private boolean oj = System.getProperty("ONLINE_JUDGE") != null; private void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); } }
JAVA
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
import java.io.IOException; import java.io.PrintWriter; import java.util.ArrayDeque; import java.util.ArrayList; import java.util.Comparator; import java.util.HashSet; import java.util.NoSuchElementException; import java.util.Objects; import java.util.PriorityQueue; import java.util.TreeSet; import java.util.function.BiFunction; public class Main{ static int n; static int mod = 1000000007; static long[][] A; public static void main(String[] args){ FastScanner sc = new FastScanner(); Mathplus mp = new Mathplus(); PrintWriter out = new PrintWriter(System.out); n = sc.nextInt(); int k = sc.nextInt(); int num = 0; int[] a = new int[n]; for(int i=0;i<n;i++){ a[i] = sc.nextInt(); num+=a[i]; } int d = 0; for(int i=0;i<n-num;i++){ if(a[i]==1) d ++; } long alle = n*(n-1)/2; long mot = mp.rev(alle); A = new long[n+1][n+1]; for(int i=0;i<=n;i++){ if(i!=0){ A[i][i-1] = i * i * mot%mod; } if(i!=n){ A[i][i+1] =Math.max(0,(n-num-i)) * Math.max(0,num-i) * mot % mod; } A[i][i] = Math.max(alle - i * i-Math.max(0,n-num-i) * Math.max(0,num-i),0)*mot%mod; } long[][] ans = pow(A,k); for(int i=0;i<=n;i++){ for(int j=0;j<=n;j++){ if(A[i][j]<0){ System.out.println("out"+i+" "+j); } } } System.out.println(ans[d][0]); } private static long[][] pow(long[][] a2, long k) { if(k==1){ return a2; }else{ if(k%2==0){ long[][] val = pow(a2,k/2); return mul(val,val); }else{ return mul(pow(a2,k-1),A); } } } private static long[][] mul(long[][] a, long[][] b) { long[][] c = new long[n+1][n+1]; for(int i=0;i<n+1;i++){ for(int j=0;j<n+1;j++){ for(int k=0;k<n+1;k++){ c[i][j] += a[i][k] * b[k][j]; c[i][j] %= mod; } } } return c; } } class SegmentTree<T,E>{ int N; BiFunction<T,T,T> f; BiFunction<T,E,T> g; T d1; ArrayList<T> dat; SegmentTree(BiFunction<T,T,T> F,BiFunction<T,E,T> G,T D1,T[] v){ int n = v.length; f = F; g = G; d1 = D1; init(n); build(v); } void init(int n) { N = 1; while(N<n)N*=2; dat = new ArrayList<T>(); } void build(T[] v) { for(int i=0;i<2*N;i++) { dat.add(d1); } for(int i=0;i<v.length;i++) { dat.set(N+i-1,v[i]); } for(int i=N-2;i>=0;i--) { dat.set(i,f.apply(dat.get(i*2+1),dat.get(i*2+2))); } } void update(int k,E a) { k += N-1; dat.set(k,g.apply(dat.get(k),a)); while(k>0){ k = (k-1)/2; dat.set(k,f.apply(dat.get(k*2+1),dat.get(k*2+2))); } } T query(int a,int b, int k, int l ,int r) { if(r<=a||b<=l) return d1; if(a<=l&&r<=b) return dat.get(k); T vl = query(a,b,k*2+1,l,(l+r)/2); T vr = query(a,b,k*2+2,(l+r)/2,r); return f.apply(vl, vr); } T query(int a,int b){ return query(a,b,0,0,N); } } class LazySegmentTree<T,E> extends SegmentTree<T,E>{ BiFunction<E,E,E> h; BiFunction<E,Integer,E> p = (E a,Integer b) ->{return a;}; E d0; ArrayList<E> laz; LazySegmentTree(BiFunction<T,T,T> F,BiFunction<T,E,T> G,BiFunction<E,E,E> H,T D1,E D0,T[] v){ super(F,G,D1,v); int n = v.length; h = H; d0 = D0; Init(n); } void build() { } void Init(int n){ laz = new ArrayList<E>(); for(int i=0;i<2*N;i++) { laz.add(d0); } } void eval(int len,int k) { if(laz.get(k).equals(d0)) return; if(k*2+1<N*2-1) { laz.set(k*2+1,h.apply(laz.get(k*2+1),laz.get(k))); laz.set(k*2+2,h.apply(laz.get(k*2+2),laz.get(k))); } dat.set(k,g.apply(dat.get(k), p.apply(laz.get(k), len))); laz.set(k,d0); } T update(int a,int b,E x,int k,int l,int r) { eval(r-l,k); if(r<=a||b<=l) { return dat.get(k); } if(a<=l&&r<=b) { laz.set(k,h.apply(laz.get(k),x)); return g.apply(dat.get(k),p.apply(laz.get(k),r-l)); } T vl = update(a,b,x,k*2+1,l,(l+r)/2); T vr = update(a,b,x,k*2+2,(l+r)/2,r); dat.set(k,f.apply(vl,vr)); return dat.get(k); } T update(int a,int b,E x) { return update(a,b,x,0,0,N); } T query(int a,int b,int k,int l,int r) { eval(r-l,k); if(r<=a||b<=l) return d1; if(a<=l&&r<=b) return dat.get(k); T vl = query(a,b,k*2+1,l,(l+r)/2); T vr = query(a,b,k*2+2,(l+r)/2,r); return f.apply(vl, vr); } T query(int a,int b){ return query(a,b,0,0,N); } } class UnionFindTree { int[] root; int[] rank; int[] size; UnionFindTree(int N){ root = new int[N]; rank = new int[N]; size = new int[N]; for(int i=0;i<N;i++){ root[i] = i; size[i] = 1; } } public int find(int x){ if(root[x]==x){ return x; }else{ return find(root[x]); } } public void unite(int x,int y){ x = find(x); y = find(y); if(x==y){ return; }else{ if(rank[x]<rank[y]){ root[x] = y; size[y] += size[x]; }else{ root[y] = x; size[x] += size[y]; if(rank[x]==rank[y]){ rank[x]++; } } } } public boolean same(int x,int y){ return find(x)==find(y); } } class ParticalEternalLastingUnionFindTree extends UnionFindTree{ int[] time; int now; ParticalEternalLastingUnionFindTree(int N){ super(N); time = new int[N]; for(int i=0;i<N;i++) { time[i] = 1000000007; } } public int find(int t,int i) { if(time[i]>t) { return i; }else { return find(t,root[i]); } } public void unite(int x,int y,int t) { now = t; x = find(t,x); y = find(t,y); if(x==y)return; if(rank[x]<rank[y]){ root[x] = y; size[y] += size[x]; time[x] = t; }else{ root[y] = x; size[x] += size[y]; if(rank[x]==rank[y]){ rank[x]++; } time[y] = t; } } public int sametime(int x,int y) { if(find(now,x)!=find(now,y)) return -1; int ok = now; int ng = 0; while(ok-ng>1) { int mid = (ok+ng)/2; if(find(mid,x)==find(mid,y)) { ok = mid; }else { ng = mid; } } return ok; } } class Graph { ArrayList<Edge>[] list; int size; TreeSet<LinkEdge> Edges = new TreeSet<LinkEdge>(new LinkEdgeComparator()); @SuppressWarnings("unchecked") Graph(int N){ size = N; list = new ArrayList[N]; for(int i=0;i<N;i++){ list[i] = new ArrayList<Edge>(); } } void addEdge(int a,int b){ list[a].add(new Edge(b,1)); } void addWeightedEdge(int a,int b,long c){ list[a].add(new Edge(b,c)); } void addEgdes(int[] a,int[] b){ int size = a.length; for(int i=0;i<size;i++){ list[a[i]].add(new Edge(b[i],1)); } } void addWeighterEdges(int[] a ,int[] b ,int[] c){ int size = a.length; for(int i=0;i<size;i++){ list[a[i]].add(new Edge(b[i],c[1])); } } long[] bfs(int s){ long[] L = new long[size]; for(int i=0;i<size;i++){ L[i] = -1; } L[s] = 0; ArrayDeque<Integer> Q = new ArrayDeque<Integer>(); Q.add(s); while(!Q.isEmpty()){ int v = Q.poll(); for(Edge e:list[v]){ int w = e.to; long c = e.cost; if(L[w]==-1){ L[w] = L[v] + c; Q.add(w); } } } return L; } long[] dijkstra(int s){ long[] L = new long[size]; for(int i=0;i<size;i++){ L[i] = -1; } int[] visited = new int[size]; L[s] = 0; PriorityQueue<Pair> Q = new PriorityQueue<Pair>(new SampleComparator()); Q.add(new Pair(0,s)); while(!Q.isEmpty()){ Pair C = Q.poll(); if(visited[(int)C.b]==0){ L[(int)C.b] = C.a; visited[(int) C.b] = 1; for(Edge D:list[(int) C.b]){ Q.add(new Pair(L[(int)C.b]+D.cost,D.to)); } } } return L; } long[] maxtra(int s,long l){ long[] L = new long[size]; for(int i=0;i<size;i++){ L[i] = -1; } int[] visited = new int[size]; L[s] = -1; ; PriorityQueue<Pair> Q = new PriorityQueue<Pair>(new SampleComparator()); Q.add(new Pair(l,s)); while(!Q.isEmpty()){ Pair C = Q.poll(); if(visited[(int)C.b]==0){ L[(int)C.b] = C.a; visited[(int) C.b] = 1; for(Edge D:list[(int) C.b]){ Q.add(new Pair(Math.max(L[(int)C.b],D.cost),D.to)); } } } return L; } long Kruskal(){ long ans = 0; for(int i=0;i<size;i++) { for(Edge e:list[i]) { Edges.add(new LinkEdge(e.cost,i,e.to)); } } UnionFindTree UF = new UnionFindTree(size); for(LinkEdge e:Edges){ if(e.a>=0&&e.b>=0) { if(!UF.same(e.a,e.b)){ ans += e.L; UF.unite(e.a,e.b); } } } return ans; } ArrayList<Integer> Kahntsort(){ ArrayList<Integer> ans = new ArrayList<Integer>(); PriorityQueue<Integer> q = new PriorityQueue<Integer>(); int[] in = new int[size]; for(int i=0;i<size;i++) { for(Edge e:list[i]) { in[e.to]++; } } for(int i=0;i<size;i++) { if(in[i]==0) { q.add(i); } } while(!q.isEmpty()) { int v = q.poll(); ans.add(v); for(Edge e:list[v]) { in[e.to]--; if(in[e.to]==0) { q.add(e.to); } } } for(int i=0;i<size;i++) { if(in[i]>0)return new ArrayList<Integer>(); } return ans; } RootedTree dfsTree(int i) { int[] used = new int[size]; RootedTree r = new RootedTree(size); dfsTree(i,used,r); return r; } private void dfsTree(int i, int[] used, RootedTree r) { used[i] = 1; for(Edge e:list[i]) { if(used[e.to]==0) { r.list[i].add(e); used[e.to] = 1; dfsTree(i,used,r); } } } } class Tree extends Graph{ public Tree(int N) { super(N); } long[] tyokkei(){ long[] a = bfs(0); System.out.println(); int maxdex = -1; long max = 0; for(int i=0;i<size;i++){ if(max<a[i]){ max = a[i]; maxdex = i; } } long[] b = bfs(maxdex); System.out.println(); int maxdex2 = -1; long max2 = 0; for(int i=0;i<size;i++){ if(max2<b[i]){ max2 = b[i]; maxdex2 = i; } } long[] ans = {max2,maxdex,maxdex2}; return ans; } } class RootedTree extends Graph{ RootedTree(int N){ super(N); } } class LinkEdge{ long L; int a ; int b; LinkEdge(long l,int A,int B){ L = l; a = A; b = B; } public boolean equals(Object o){ LinkEdge O = (LinkEdge) o; if(O.a==this.a&&O.b==this.b&&O.L==this.L){ return true; }else{ return false; } } public int hashCode(){ return Objects.hash(L,a,b); } } class Edge{ int to; long cost; Edge(int a,long b){ to = a; cost = b; } } class LinkEdgeComparator implements Comparator<LinkEdge>{ public int compare(LinkEdge P, LinkEdge Q) { long temp = P.L-Q.L; if(temp==0){ if(P.a>Q.a){ return 1; }else{ if(P.b>Q.b){ return 1; }else{ return -1; } } } if(temp>=0){ return 1; }else{ return -1; } } } class Pair{ long a; long b; Pair(long p,long q){ this.a = p; this.b = q; } public boolean equals(Object o){ Pair O = (Pair) o; if(O.a==this.a&&O.b==this.b){ return true; }else{ return false; } } public int hashCode(){ return Objects.hash(a,b); } } class SampleComparator implements Comparator<Pair>{ public int compare(Pair P, Pair Q) { long temp = P.a-Q.a; if(temp==0){ if(P.b>Q.b){ return 1; }else{ return -1; } } if(temp>=0){ return 1; }else{ return -1; } } } class LongIntPair{ long a; int b; LongIntPair(long p,int q){ this.a = p; this.b = q; } public boolean equals(Object o){ Pair O = (Pair) o; if(O.a==this.a&&O.b==this.b){ return true; }else{ return false; } } public int hashCode(){ return Objects.hash(a,b); } } class LongIntSampleComparator implements Comparator<LongIntPair>{ public int compare(LongIntPair P, LongIntPair Q) { long temp = P.a-Q.a; if(temp==0){ if(P.b>Q.b){ return 1; }else{ return -1; } } if(temp>=0){ return 1; }else{ return -1; } } } class FastScanner { private final java.io.InputStream in = System.in; private final byte[] buffer = new byte[1024]; private int ptr = 0; private int buflen = 0; private boolean hasNextByte() { if (ptr < buflen) { return true; }else{ ptr = 0; try { buflen = in.read(buffer); } catch (IOException e) { e.printStackTrace(); } if (buflen <= 0) { return false; } } return true; } private int readByte() { if (hasNextByte()) return buffer[ptr++]; else return -1;} private static boolean isPrintableChar(int c) { return 33 <= c && c <= 126;} private void skipUnprintable() { while(hasNextByte() && !isPrintableChar(buffer[ptr])) ptr++;} public boolean hasNext() { skipUnprintable(); return hasNextByte();} public String next() { if (!hasNext()) throw new NoSuchElementException(); StringBuilder sb = new StringBuilder(); int b = readByte(); while(isPrintableChar(b)) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } public long nextLong() { if (!hasNext()) throw new NoSuchElementException(); long n = 0; boolean minus = false; int b = readByte(); if (b == '-') { minus = true; b = readByte(); } if (b < '0' || '9' < b) { throw new NumberFormatException(); } while(true){ if ('0' <= b && b <= '9') { n *= 10; n += b - '0'; }else if(b == -1 || !isPrintableChar(b)){ return (minus ? -n : n); }else{ throw new NumberFormatException(); } b = readByte(); } } public int nextInt() { if (!hasNext()) throw new NoSuchElementException(); long n = 0; boolean minus = false; int b = readByte(); if (b == '-') { minus = true; b = readByte(); } if (b < '0' || '9' < b) { throw new NumberFormatException(); } while(true){ if ('0' <= b && b <= '9') { n *= 10; n += b - '0'; }else if(b == -1 || !isPrintableChar(b)){ return (int) (minus ? -n : n); }else{ throw new NumberFormatException(); } b = readByte(); } } } class Mathplus{ int mod = 1000000007; long[] fac = new long[1000001]; long[][] combt = new long[2001][2001]; long[][] permt = new long[2001][2001]; boolean isBuild = false; boolean isBuildc = false; boolean isBuildp = false; int mindex = -1; int maxdex = -1; void buildFac(){ fac[0] = 1; for(int i=1;i<=1000000;i++){ fac[i] = (fac[i-1] * i)%mod; } isBuild = true; } void buildComb() { for(int i=0;i<=2000;i++) { combt[i][0] = 1; } for(int j=1;j<=2000;j++) { combt[j][j] = 1; for(int i=j+1;i<=2000;i++) { combt[i][j] = combt[i-1][j-1] + combt[i-1][j]; if(combt[i][j]>=mod)combt[i][j]-=mod; } } isBuildc = false; } void buildPerm() { for(int i=0;i<=2000;i++) { permt[i][0] = 1; } if(!isBuild)buildFac(); for(int i=1;i<=2000;i++) { for(int j=1;j<=i;j++) { permt[i][j] = permt[i][j-1]*(i-j+1); permt[i][j] %= mod; } } isBuildp = true; } public int isBigger(int[] d, int i) { int ok = d.length; int ng = -1; while(Math.abs(ok-ng)>1) { int mid = (ok+ng)/2; if(d[mid]>i) { ok = mid; }else { ng = mid; } } return ok; } public int isSmaller(int[] d, int i) { int ok = -1; int ng = d.length; while(Math.abs(ok-ng)>1) { int mid = (ok+ng)/2; if(d[mid]<i) { ok = mid; }else { ng = mid; } } return ok; } public HashSet<Integer> primetable(int m) { HashSet<Integer> pt = new HashSet<Integer>(); for(int i=2;i<=m;i++) { boolean b = true; for(int d:pt) { if(i%d==0) { b = false; break; } } if(b) { pt.add(i); } } return pt; } long max(long[] a){ long max = 0; for(int i=0;i<a.length;i++){ if(max<a[i]){ max =a[i]; maxdex = i; } } return max; } int max(int[] a){ int max = 0; for(int i=0;i<a.length;i++){ if(max<a[i]){ max =a[i]; maxdex = i; } } return max; } long min(long[] a){ long min = Long.MAX_VALUE; for(int i=0;i<a.length;i++){ if(min>a[i]){ min =a[i]; mindex = i; } } return min; } int min(int[] a){ int min = Integer.MAX_VALUE; for(int i=0;i<a.length;i++){ if(min>a[i]){ min =a[i]; mindex = i; } } return min; } long sum(long[] a){ long sum = 0; for(int i=0;i<a.length;i++){ sum += a[i]; } return sum; } long sum(int[] a){ long sum = 0; for(int i=0;i<a.length;i++){ sum += a[i]; } return sum; } long gcd(long a, long b){ if(a<b){ a^=b; b^=a; a^=b; } if(a%b==0){ return b; }else{ return gcd(b,a%b); } } long lcm(long a, long b){ return a / gcd(a,b) * b; } public long perm(int a,int num) { if(a<2000&&num<2000) { if(!isBuildp) { buildPerm(); isBuildp = true; } return permt[a][num]; } if(!isBuild) { buildFac(); } return fac[a] * (rev(fac[a-num]))%mod; } public long comb(int a,int num){ if(a<2000&&num<2000) { if(!isBuildc) { buildComb(); isBuildc = true; } return combt[a][num]; } if(!isBuild){ buildFac(); } return fac[a] * (rev(fac[num])*rev(fac[a-num])%mod)%mod; } long rev(long l) { return pow(l,mod-2); } long pow(long l, int i) { if(i==0){ return 1; }else{ if(i%2==0){ long val = pow(l,i/2); return val * val % mod; }else{ return pow(l,i-1) * l % mod; } } } }
JAVA
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> #pragma GCC optimize("-O2") using namespace std; void err(istream_iterator<string> it) { cerr << endl; } template <typename T, typename... Args> void err(istream_iterator<string> it, T a, Args... args) { cerr << *it << " = " << a << "\t"; err(++it, args...); } template <typename T1, typename T2> ostream& operator<<(ostream& c, pair<T1, T2>& v) { c << "(" << v.first << "," << v.second << ")"; return c; } template <template <class...> class TT, class... T> ostream& operator<<(ostream& out, TT<T...>& c) { out << "{ "; for (auto& x : c) out << x << " "; out << "}"; return out; } const int LIM = 1e5 + 5, MOD = 1e9 + 7; const long double EPS = 1e-9; const long long MAX_N = 105; struct Matrix { long long mat[MAX_N][MAX_N]; }; Matrix matMul(Matrix a, Matrix b) { Matrix ans; int i, j, k; for (i = 0; i < MAX_N; i++) for (j = 0; j < MAX_N; j++) for (ans.mat[i][j] = k = 0; k < MAX_N; k++) { ans.mat[i][j] += (a.mat[i][k] * b.mat[k][j]) % MOD; ans.mat[i][j] %= MOD; } return ans; } Matrix matPow(Matrix base, long long p) { p %= MOD; Matrix ans; long long i, j; for (i = 0; i < MAX_N; i++) for (j = 0; j < MAX_N; j++) ans.mat[i][j] = (i == j); while (p) { if (p & 1) ans = matMul(ans, base); base = matMul(base, base); p >>= 1; } return ans; } int fpow(int a, int p) { if (p == 0) return 1; long long z = fpow(a, p / 2); z = (z * z) % MOD; if (p % 2) z = (z * a) % MOD; return z; } signed main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); int n, k; cin >> n >> k; vector<int> v; for (int i = 0; i < n; ++i) { int x; cin >> x; v.push_back(x); } reverse(v.begin(), v.end()); long long tot = 0; for (int i = 0; i < n; ++i) { if (v[i]) tot++; } long long cnt = 0; for (int i = 0; i < tot; ++i) { if (v[i]) cnt++; } Matrix m; for (int i = 0; i < tot + 1; ++i) { for (int j = 0; j < tot + 1; ++j) { if (i + n - tot < tot) { m.mat[i][j] = 0; continue; } if (abs(i - j) > 1) m.mat[i][j] = 0; else if (i == j) { m.mat[i][j] = tot * (tot - 1) / 2 + (n - tot) * (n - tot - 1) / 2 + i * (tot - i) + (tot - i) * (n - 2 * tot + i); } else if (i - j == 1) { m.mat[i][j] = (i) * (n - 2 * tot + i); } else if (j - i == 1) { m.mat[i][j] = (tot - i) * (tot - i); } m.mat[i][j] %= MOD; } } Matrix ans = matPow(m, k); long long a1 = 0, a2 = 0; a1 = ans.mat[cnt][tot]; for (int i = 0; i < tot + 1; ++i) { a2 += ans.mat[cnt][i]; a2 %= MOD; } long long ansf = 0; ansf = a1; ansf *= fpow(a2, MOD - 2); cout << (ansf) % MOD << '\n'; return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const long long mod = 1e9 + 7; const long long N = 105; long long m; struct node { long long data[N][N]; node operator*(node b) { node t; for (long long i = 0; i <= m; i++) { for (long long j = 0; j <= m; j++) { t.data[i][j] = 0; } } for (long long i = 0; i <= m; i++) { for (long long j = 0; j <= m; j++) { for (long long k = 0; k <= m; k++) { t.data[i][j] = (t.data[i][j] + data[i][k] * b.data[k][j] % mod) % mod; } } } return t; } }; inline long long ksm(long long a, long long b) { long long ret = 1; while (b) { if (b & 1) ret = ret * a % mod; a = a * a % mod; b >>= 1; } return ret; } long long n, k, t, a[N]; inline long long f1(long long x) { return (x * (n - 2 * m + x) % mod + mod) % mod; } inline long long f3(long long x) { return ((m - x) * (m - x) % mod + mod) % mod; } inline long long f2(long long x) { return ((n * (n - 1) / 2 - f1(x) - f3(x)) % mod + mod) % mod; } node ma, ans; signed main() { scanf("%lld%lld", &n, &k); for (long long i = 1; i <= n; i++) { scanf("%lld", &a[i]); if (!a[i]) m++; } for (long long i = 1; i <= m; i++) if (!a[i]) t++; for (long long i = 0; i <= m; i++) { if (i != 0) ma.data[i - 1][i] = f1(i); ma.data[i][i] = f2(i); if (i != m) ma.data[i + 1][i] = f3(i); } for (long long i = 0; i <= m; i++) ans.data[i][i] = 1; while (k) { if (k & 1) { ans = ans * ma; } ma = ma * ma; k >>= 1; } long long total = 0; for (long long i = 0; i <= m; i++) { total = (total + ans.data[i][t]) % mod; } printf("%lld\n", ans.data[m][t] * ksm(total, mod - 2) % mod); return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const int M = 105; const int mod = 1000000007; struct Matrix { long long int val[M][M]; } I; Matrix mul(Matrix A, Matrix B) { Matrix C; for (int i = 0; i < M; i++) for (int j = 0; j < M; j++) { C.val[i][j] = 0; for (int k = 0; k < M; k++) { C.val[i][j] += A.val[i][k] * B.val[k][j] % mod; C.val[i][j] %= mod; } } return C; } Matrix poww(Matrix A, int b) { Matrix tmp = I; while (b) { if (b & 1) { tmp = mul(tmp, A); } b >>= 1; A = mul(A, A); } return tmp; } long long int poww(long long int a, long long int b) { if (!a) return 0; long long int tmp = 1; while (b) { if (b & 1) { tmp = tmp * a % mod; } b >>= 1; a = a * a % mod; } return tmp; } int main() { for (int i = 0; i < M; i++) { I.val[i][i] = 1; } long long int n, k; scanf("%lld%lld", &n, &k); int zero = 0; int one = 0; int start; vector<int> arr; for (int i = 0; i < n; i++) { int first; scanf("%d", &first); arr.push_back(first); if (first == 0) { zero++; } else { one++; } } for (int i = 0; i < zero; i++) { if (arr[i] == 0) { start++; } } Matrix mat; memset(mat.val, 0, sizeof(mat.val)); for (int i = 0; i <= zero; i++) { long long int inc = (zero - i) * (zero - i); long long int dec = i * (one - zero + i); long long int same = n * (n - 1) / 2 - inc - dec; mat.val[i][i] = same % mod * poww(n * (n - 1) / 2, mod - 2) % mod; if (i < zero) mat.val[i + 1][i] = inc % mod * poww(n * (n - 1) / 2, mod - 2) % mod; if (i > 0) mat.val[i - 1][i] = dec % mod * poww(n * (n - 1) / 2, mod - 2) % mod; ; } mat = poww(mat, k); cout << mat.val[zero][start] << endl; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; template <class T> inline T sqr(T x) { return x * x; } template <class T> inline bool isSquare(T x) { T y = sqrt(x + 0.5); return (y * y) == x; } template <class T1, class T2> inline T1 gcd(T1 a, T2 b) { return b ? gcd(b, a % b) : a; } template <class T1, class T2> inline T1 eqMin(T1 &x, const T2 &y) { if (T1(y) < x) return x = y; return x; } template <class T1, class T2> inline T1 eqMax(T1 &x, const T2 &y) { if (T1(y) > x) return x = y; return x; } template <class T1, class T2> inline T1 min(const T1 &x, const T2 &y) { return x < (T1)y ? x : (T1)y; } template <class T1, class T2> inline T1 max(T1 &x, const T2 &y) { return x > (T1)y ? x : (T1)y; } template <typename T> inline T getint() { T x = 0, p = 1; char ch; do { ch = getchar(); } while (ch <= ' '); if (ch == '-') p = -1, ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * p; } struct _flag_t { string val; } const _1d{", "}, _2d{"\n "}; _flag_t _flag = _1d; ostream &operator<<(ostream &os, _flag_t flag) { _flag = flag; return os; } template <class It> ostream &_out(ostream &os, It f, It l) { if (f == l) return os << "{}"; _flag_t cur_flag = _flag; os << _1d << "{ " << *f; for (; ++f != l; os << cur_flag.val << *f) ; return os << " }"; } template <class C> auto operator<<(ostream &os, C const &cont) -> decltype(begin(cont), end(cont), cont.size(), declval<ostream &>()) { return _out(os, begin(cont), end(cont)); } ostream &operator<<(ostream &os, string const &s) { return os << s.data(); } template <class X, class Y> ostream &operator<<(ostream &os, pair<X, Y> const &p) { return os << "[" << p.first << ", " << p.second << "]"; } const double PI = acos(-1); const double EPS = 1e-8; const int INF = (int)2e9; const int MOD = (int)1e9 + 7; const int MAXN = (int)200; struct KArs { vector<vector<long long>> dp; int n; KArs() {} KArs(int _n) { n = _n; dp = vector<vector<long long>>(n + 1, vector<long long>(n + 1, 0)); } KArs operator*(const KArs &o) const { KArs res(n); for (int i = 0; i <= n; i++) { for (int j = 0; j <= n; j++) { for (int k = 0; k <= n; k++) { res.dp[i][k] += dp[i][j] * o.dp[j][k]; res.dp[i][k] %= MOD; } } } for (int i = 0; i <= n; i++) { for (int j = 0; j <= n; j++) { res.dp[i][j] %= MOD; } } return res; } }; int n, k; int arr[MAXN]; int zeros, ones, Z; KArs mat; void input() { cin >> n >> k; for (int i = 1; i <= n; i++) { cin >> arr[i]; zeros += arr[i] == 0; ones += arr[i] == 1; } for (int i = 1; i <= zeros; i++) { Z += arr[i] == 0; } } KArs power(int step) { KArs res(mat.n); KArs x = mat; for (int i = 0; i <= mat.n; i++) { res.dp[i][i] = 1; } for (; step; x = x * x, step >>= 1) { if (step & 1) res = res * x; } return res; } long long f(long long x) { return x * (x - 1) / 2; } void init() { mat = KArs(zeros); for (long long prefZ = 0; prefZ <= zeros; prefZ++) { long long prefO = zeros - prefZ; long long sufZ = zeros - prefZ; long long sufO = ones - prefO; mat.dp[prefZ][prefZ] = (prefZ * sufZ + prefO * sufO + f(prefZ) + f(sufZ) + f(prefO) + f(sufO) + prefZ * prefO + sufZ * sufO) % MOD; if (prefZ > 0) mat.dp[prefZ][prefZ - 1] = prefZ * sufO; if (prefZ != zeros) { mat.dp[prefZ][prefZ + 1] = prefO * sufZ; } } } long long power(long long x, long long step) { long long res = 1; for (; step; step >>= 1, x = (x * x) % MOD) { if (step & 1) { res = (res * x) % MOD; } } return res; } int main() { ios_base::sync_with_stdio(false); input(); init(); KArs a = power(k); long long x = 0, y = 0; for (int i = 0; i <= zeros; i++) { y += a.dp[Z][i]; } y %= MOD; x = a.dp[Z][zeros]; cout << (x * power(y, MOD - 2)) % MOD; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; long long mod = 1e9 + 7; int n, m, t; int a[105]; long long cnt[2]; long long inv2; long long inv; struct matrix { long long f[51][51]; matrix() { memset(f, 0, sizeof(f)); }; }; matrix e; matrix f; matrix h; matrix add(matrix x, matrix y) { int i, j; matrix ret; for (i = 0; i <= 50; i++) { for (j = 0; j <= 50; j++) { ret.f[i][j] = (x.f[i][j] + y.f[i][j]) % mod; } } return ret; } matrix mul(matrix x, matrix y) { int i, j, k; matrix ret; for (i = 0; i <= 50; i++) { for (j = 0; j <= 50; j++) { for (k = 0; k <= 50; k++) { ret.f[i][j] = (ret.f[i][j] + x.f[i][k] * y.f[k][j]) % mod; } } } return ret; } matrix qpow(matrix b, long long x) { matrix ret = e; while (x) { if (x & 1) { ret = mul(ret, b); } b = mul(b, b); x >>= 1; } return ret; } long long qpow(long long b, long long x) { long long ret = 1; while (x) { if (x & 1) { ret = ret * b % mod; } b = b * b % mod; x >>= 1; } return ret; } long long getc(long long x) { if (x <= 0) return 0; return x * (x - 1) % mod * inv2 % mod; } int read() { int x; scanf("%d", &x); return x; } int main() { long long i, j; long long x, y; inv2 = qpow(2, mod - 2); for (i = 0; i <= 50; i++) { e.f[i][i] = 1; } n = read(); m = read(); for (i = 1; i <= n; i++) { a[i] = read(); cnt[a[i]]++; } inv = qpow(getc(n), mod - 2); x = min(cnt[0], cnt[1]); y = 0; for (i = 1; i <= cnt[0]; i++) { if (a[i] != 0) y++; } for (i = 0; i <= x; i++) { if (i - 1 >= 0) h.f[i][i - 1] = 1ll * i * i * inv % mod; h.f[i][i] = 1ll * (getc(cnt[0]) + getc(cnt[1]) + i * (cnt[0] - i) + i * (cnt[1] - i)) * inv % mod; if (i + 1 <= x) h.f[i][i + 1] = 1ll * (cnt[0] - i) * (cnt[1] - i) * inv % mod; } f.f[0][y] = 1; printf("%lld\n", mul(f, qpow(h, m)).f[0][0]); return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const long long MOD = 1000 * 1000 * 1000 + 7; long long mod(long long n) { if (n < 0) { return (n % MOD + MOD) % MOD; } else { if (n < MOD) return n; else if (n < 2 * MOD) return n - MOD; else return n % MOD; } } long long fp(long long a, long long p) { long long ans = 1, cur = a; for (long long i = 0; (1ll << i) <= p; ++i) { if ((p >> i) & 1) ans = mod(ans * cur); cur = mod(cur * cur); } return ans; } long long dv(long long a, long long b) { return mod(a * fp(b, MOD - 2)); } const long long N = 101; long long m[N][N], ans[N][N], t[N][N]; void add(long long a[N][N], long long b[N][N]) { for (long long i = 0; i < N; ++i) { for (long long j = 0; j < N; ++j) { t[i][j] = 0; } } for (long long i = 0; i < N; ++i) { for (long long j = 0; j < N; ++j) { for (long long k = 0; k < N; ++k) { t[i][j] = mod(t[i][j] + a[i][k] * b[k][j]); } } } for (long long i = 0; i < N; ++i) { for (long long j = 0; j < N; ++j) { a[i][j] = t[i][j]; } } } void pw(long long p) { for (long long i = 0; i < N; ++i) ans[i][i] = 1; for (long long i = 0; (1ll << i) <= p; ++i) { if ((p >> i) & 1) add(ans, m); add(m, m); } } bool a[N]; long long cnt[2]; signed main() { ios_base::sync_with_stdio(0); cin.tie(0); long long n, k; cin >> n >> k; for (long long i = 0; i < n; ++i) { cin >> a[i]; ++cnt[a[i]]; } long long l = cnt[0]; long long r = n - l; long long op = n * (n - 1) / 2; for (long long l1 = 0; l1 <= cnt[0] && l1 <= cnt[1]; ++l1) { long long l0 = l - l1; long long r0 = cnt[0] - l0; long long r1 = cnt[1] - l1; m[l1][l1] = op; if (l1) { m[l1][l1 - 1] = mod(l1 * r0); m[l1][l1] = mod(m[l1][l1] - m[l1][l1 - 1]); } m[l1][l1 + 1] = mod(l0 * r1); m[l1][l1] = mod(m[l1][l1] - m[l1][l1 + 1]); } pw(k); long long sum = 0; for (long long i = 0; i < l; ++i) sum += a[i]; cout << dv(ans[sum][0], fp(op, k)) << '\n'; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const int N = 100 + 5, MOD = 1e9 + 7; long long fact[N], fact_inv[N]; long long mul(long long a, long long b) { return a * b % MOD; } long long add(long long a, long long b) { return (a + b) % MOD; } long long power(long long a, long long b) { if (!b) return 1; long long r = power(a, b / 2); r = mul(r, r); if (b & 1) return mul(r, a); return r; } long long mod_inv(long long x) { return power(x, MOD - 2); } long long nCr(long long n, long long r) { if (!r) return 1; if (r > n) return 0; return mul(fact[n], mul(fact_inv[n - r], fact_inv[r])); } void pre() { fact[0] = fact_inv[0] = 1; for (int i = 1; i < N; i++) { fact[i] = mul(fact[i - 1], i); fact_inv[i] = mod_inv(fact[i]); } } using row = vector<long long>; using mat = vector<row>; mat operator*(const mat &a, const mat &b) { mat ret = mat(a.size(), row(b[0].size())); for (int i = 0; i < ret.size(); i++) for (int j = 0; j < ret[i].size(); j++) for (int k = 0; k < ret[i].size(); k++) ret[i][j] = add(ret[i][j], mul(a[i][k], b[k][j])); return ret; } mat operator^(mat a, long long b) { mat ans(a.size(), row(a[0].size())); for (int i = 0; i < a.size(); i++) ans[i][i] = 1; for (; b; b >>= 1, a = a * a) if (b & 1) ans = ans * a; return ans; } int pairs(int n) { return mul(n, mul(n - 1, mod_inv(2))); } int main() { ios::sync_with_stdio(0), cin.tie(0), cout.tie(0); pre(); int n, k; cin >> n >> k; int cnt[2] = {}; vector<int> A(n); for (auto &a : A) { cin >> a; cnt[a]++; } int all = mod_inv(pairs(n)); mat p(cnt[1] + 1, row(cnt[1] + 1, 0)); for (int good1 = 0; good1 <= cnt[1]; good1++) { int bad1 = cnt[1] - good1; int bad0 = bad1; int good0 = cnt[0] - bad0; int same = add(pairs(cnt[1]), pairs(cnt[0])); same = add(same, add(mul(good1, bad0), mul(bad1, good0))); int plus = mul(bad1, bad0); int minus = mul(good1, good0); p[good1][good1] = mul(same, all); if (good1) p[good1][good1 - 1] = mul(minus, all); if (good1 + 1 <= cnt[1]) p[good1][good1 + 1] = mul(plus, all); } auto B = A; sort(B.begin(), B.end()); int good = 0; for (int i = 0; i < n; i++) good += A[i] == B[i] && B[i] == 1; p = p ^ k; cout << p[good][cnt[1]]; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> #pragma GCC optimize("-Ofast") using namespace std; void err(istream_iterator<string> it) { cerr << endl; } template <typename T, typename... Args> void err(istream_iterator<string> it, T a, Args... args) { cerr << *it << " = " << a << "\t"; err(++it, args...); } template <typename T1, typename T2> ostream& operator<<(ostream& c, pair<T1, T2>& v) { c << "(" << v.first << "," << v.second << ")"; return c; } template <template <class...> class TT, class... T> ostream& operator<<(ostream& out, TT<T...>& c) { out << "{ "; for (auto& x : c) out << x << " "; out << "}"; return out; } const int LIM = 1e5 + 5, MOD = 1e9 + 7; const long double EPS = 1e-9; const long long MAX_N = 105; struct Matrix { long long mat[MAX_N][MAX_N]; }; Matrix matMul(Matrix a, Matrix b) { Matrix ans; int i, j, k; for (i = 0; i < MAX_N; i++) for (j = 0; j < MAX_N; j++) for (ans.mat[i][j] = k = 0; k < MAX_N; k++) { ans.mat[i][j] += (a.mat[i][k] * b.mat[k][j]) % MOD; ans.mat[i][j] %= MOD; } return ans; } Matrix matPow(Matrix base, long long p) { p %= MOD; Matrix ans; long long i, j; for (i = 0; i < MAX_N; i++) for (j = 0; j < MAX_N; j++) ans.mat[i][j] = (i == j); while (p) { if (p & 1) ans = matMul(ans, base); base = matMul(base, base); p >>= 1; } return ans; } int fpow(int a, int p) { if (p == 0) return 1; long long z = fpow(a, p / 2); z = (z * z) % MOD; if (p % 2) z = (z * a) % MOD; return z; } signed main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); int n, k; cin >> n >> k; vector<int> v; for (int i = 0; i < n; ++i) { int x; cin >> x; v.push_back(x); } reverse(v.begin(), v.end()); long long tot = 0; for (int i = 0; i < n; ++i) { if (v[i]) tot++; } long long cnt = 0; for (int i = 0; i < tot; ++i) { if (v[i]) cnt++; } Matrix m; for (int i = 0; i < tot + 1; ++i) { for (int j = 0; j < tot + 1; ++j) { if (i + n - tot < tot) { m.mat[i][j] = 0; continue; } if (abs(i - j) > 1) m.mat[i][j] = 0; else if (i == j) { m.mat[i][j] = tot * (tot - 1) / 2 + (n - tot) * (n - tot - 1) / 2 + i * (tot - i) + (tot - i) * (n - 2 * tot + i); } else if (i - j == 1) { m.mat[i][j] = (i) * (n - 2 * tot + i); } else if (j - i == 1) { m.mat[i][j] = (tot - i) * (tot - i); } m.mat[i][j] %= MOD; } } Matrix ans = matPow(m, k); long long a1 = 0, a2 = 0; a1 = ans.mat[cnt][tot]; for (int i = 0; i < tot + 1; ++i) { a2 += ans.mat[cnt][i]; a2 %= MOD; } long long ansf = 0; ansf = a1; ansf *= fpow(a2, MOD - 2); cout << (ansf) % MOD << '\n'; return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; long long mpow(long long x, long long y, long long m) { long long res = 1; while (y > 0) { if (y & 1) res = res * x % m; y = y >> 1; x = x * x % m; } return res; } long long sz; const long long M = 100; long long mat[100][100], fin[100][100]; void mult1() { long long temp[sz][sz]; memset(temp, 0, sizeof(temp)); for (long long i = (0); i < (sz); i++) { for (long long j = (0); j < (sz); j++) { for (long long k = (0); k < (sz); k++) temp[i][j] += mat[i][k] * mat[k][j] % 1000000007; temp[i][j] %= 1000000007; } } for (long long i = (0); i < (sz); i++) { for (long long j = (0); j < (sz); j++) mat[i][j] = temp[i][j]; } } void mult2() { long long temp[sz][sz]; memset(temp, 0, sizeof(temp)); for (long long i = (0); i < (sz); i++) { for (long long j = (0); j < (sz); j++) { for (long long k = (0); k < (sz); k++) temp[i][j] += fin[i][k] * mat[k][j] % 1000000007; temp[i][j] %= 1000000007; } } for (long long i = (0); i < (sz); i++) { for (long long j = (0); j < (sz); j++) fin[i][j] = temp[i][j]; } } void matexp(long long p) { while (p != 0) { if (p & 1) mult2(); mult1(); p >>= 1; } } void solve() { long long n, k; cin >> n >> k; long long a[n]; for (long long i = (0); i < (n); i++) cin >> a[i]; long long ones = 0; for (long long i = (0); i < (n); i++) { if (a[i] == 1) ones++; } long long w = ones <= n / 2 ? 0 : ones - (n - ones); sz = ones - w + 1; long long tcb = n * (n - 1) / 2; for (long long i = (0); i < (sz); i++) { mat[i][i] = tcb - w * (n + w - 2 * ones) - (ones - w) * (ones - w); if (i != 0) mat[i][i - 1] = (ones - w + 1) * (ones - w + 1); if (i != sz - 1) mat[i][i + 1] = (w + 1) * (n + w + 1 - 2 * ones); w++; } for (long long i = (0); i < (sz); i++) fin[i][i] = 1; matexp(k); w = ones <= n / 2 ? 0 : ones - (n - ones); long long x = 0; for (long long i = (n - 1); i > (n - ones - 1); i--) { if (a[i] == 1) x++; } long long num = fin[sz - 1][x - w], den = mpow(tcb, k, 1000000007); cout << num * mpow(den, 1000000007 - 2, 1000000007) % 1000000007; } signed main() { ios_base::sync_with_stdio(false); cin.tie(NULL); long long t = 1; for (long long i = (1); i < (t + 1); i++) { solve(); cout << "\n"; } }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> int n, k, m, t, a[105]; struct mat { long long d[105][105]; }; mat ans, f, c; long long fm, fm_ni; const int p = 1e9 + 7; inline long long ni(long long x) { if (x <= 1) return x; return (p - p / x) * ni(p % x) % p; } inline void mul(mat &a, mat &b) { for (int i = 0; i <= m; i++) for (int j = 0; j <= m; j++) { c.d[i][j] = 0; for (int k = 0; k <= m; k++) c.d[i][j] += a.d[i][k] * b.d[k][j] % p; c.d[i][j] %= p; } a = c; } int main() { scanf("%d%d", &n, &k); for (int i = 1; i <= n; i++) { scanf("%d", &a[i]); a[i] ^= 1; if (a[i]) m++; } for (int i = 1; i <= m; i++) if (a[i]) t++; fm = n * (n - 1) / 2; fm_ni = ni(fm); for (int j = 0; j <= m; j++) { if (j) f.d[j][j - 1] = (j * (n - m - (m - j))) * fm_ni % p; f.d[j][j] = (m * (m - 1) / 2 + (n - m) * (n - m - 1) / 2 + j * (m - j) + (m - j) * (n - m - (m - j))) * fm_ni % p; if (j < m) f.d[j][j + 1] = ((m - j) * (m - j)) * fm_ni % p; } for (int i = 0; i <= m; i++) ans.d[i][i] = 1; while (k) { if (k & 1) mul(ans, f); mul(f, f); k >>= 1; } printf("%I64d\n", ans.d[t][m]); return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> inline void read(long long &x) { short negative = 1; x = 0; char c = getchar(); while (c < '0' || c > '9') { if (c == '-') negative = -1; c = getchar(); } while (c >= '0' && c <= '9') x = (x << 3) + (x << 1) + (c ^ 48), c = getchar(); x *= negative; } inline void print(long long x) { if (x < 0) putchar('-'), x = -x; if (x > 9) print(x / 10); putchar(x % 10 + '0'); } class Matrix { private: long long n, m; public: long long a[105][105]; inline Matrix() { memset(a, 0, sizeof(a)); } inline Matrix(long long x, long long y) { n = x, m = y; memset(a, 0, sizeof(a)); } inline Matrix(long long x, long long y, long long arr[105][105]) { n = x, m = y; for (long long i = 0; i < n; i++) for (long long j = 0; j < m; j++) a[i][j] = arr[i][j]; } inline Matrix(long long x) { this->n = x; this->m = x; for (long long i = 0; i < n; i++) for (long long j = 0; j < m; j++) if (i == j) a[i][j] = 1; else a[i][j] = 0; } Matrix operator+(const Matrix &b) const { Matrix res(n, m); for (long long i = 0; i < n; i++) for (long long j = 0; j < n; j++) res.a[i][j] = (this->a[i][j] + b.a[i][j]) % 1000000007; return res; } Matrix operator-(const Matrix &b) const { Matrix res(n, m); for (long long i = 0; i < n; i++) for (long long j = 0; j < n; j++) res.a[i][j] = (this->a[i][j] + 1000000007 - b.a[i][j]) % 1000000007; return res; } Matrix operator*(const Matrix &b) const { Matrix res(this->n, b.m); for (long long i = 0; i < n; i++) for (long long j = 0; j < m; j++) for (long long k = 0; k < m; k++) res.a[i][j] = (res.a[i][j] + (this->a[i][k] * b.a[k][j]) % 1000000007) % 1000000007; return res; } Matrix operator=(const Matrix &b) { this->n = b.n; this->m = b.m; for (long long i = 0; i < n; i++) for (long long j = 0; j < m; j++) this->a[i][j] = b.a[i][j]; return *this; } Matrix operator^(long long x) { Matrix a(*this); Matrix ans(this->n); while (x) { if (x % 2) ans = ans * a; a = a * a; x /= 2; } return ans; } inline void show() { for (long long i = 0; i < n; i++) { for (long long j = 0; j < m; j++) print(this->a[i][j]), putchar(' '); putchar('\n'); } } }; inline long long ksm(long long x, long long y) { long long ret = 1; while (y) { if (y & 1) ret = ret * x % 1000000007; x = x * x % 1000000007; y >>= 1; } return ret; } inline long long inv(long long x) { return ksm(x, 1000000007 - 2); } long long n, k, i, one, zero, start, aim, res, a[105]; signed main(void) { read(n), read(k); for (i = 0; i < n; i++) { read(a[i]); if (a[i]) one++; else zero++; } for (i = 0; i < zero; i++) if (!a[i]) start++; aim = zero; Matrix mat(zero + 1, zero + 1); for (i = 0; i <= zero; i++) { if (one - zero + i >= 0) mat.a[i][i] = zero * (zero - 1) / 2 + one * (one - 1) / 2 + i * (zero - i) + (zero - i) * (one - zero + i); if (i && one - zero + i >= 0) mat.a[i][i - 1] = i * (one - zero + i); if (i + 1 <= zero) mat.a[i][i + 1] = (zero - i) * (zero - i); } mat = mat ^ k; res = mat.a[start][aim] * ksm(2, k) % 1000000007 * ksm(inv(n * (n - 1)), k) % 1000000007; print(res); return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const long long N = 100; const long long M = 1e4; const long long mod = 1e9 + 7; const long long inf = 1e9; long long read() { long long s = 0; register bool neg = 0; register char c = getchar(); for (; c < '0' || c > '9'; c = getchar()) neg |= (c == '-'); for (; c >= '0' && c <= '9'; s = s * 10 + (c ^ 48), c = getchar()) ; s = (neg ? -s : s); return s; } long long a, b, inv[N + 5], s[N + 5]; struct mat { long long s[105][105], n, m; mat(long long _n = 0, long long _m = 0) { n = _n, m = _m, memset(s, 0, sizeof(s)); } mat operator*(const mat &o) const { mat res(n, o.m); for (long long i = (0); i <= (n); ++i) for (long long j = (0); j <= (o.m); ++j) for (long long k = (0); k <= (m); ++k) (res.s[i][j] += s[i][k] * o.s[k][j] % mod) %= mod; return res; } void print() { for (long long i = 0; i <= n; ++i, puts("")) for (long long j = (0); j <= (m); ++j) printf("%lld ", s[i][j]); } } S; mat operator^(mat n, long long m) { mat res = n; --m; for (; m; m >>= 1) { if (m & 1) res = res * n; n = n * n; } return res; } void init() { inv[0] = inv[1] = 1; for (long long i = (2); i <= (N); ++i) inv[i] = (mod - mod / i) * inv[mod % i] % mod; } signed main() { init(); a = read(); b = read(); long long p[2] = {0, 0}, q = 0; for (long long i = (1); i <= (a); ++i) s[i] = read(), p[s[i]]++; S.n = p[0]; S.m = p[0]; for (long long i = (1); i <= (p[0]); ++i) q += s[i]; long long tmp = inv[a] % mod * inv[a - 1] * 2 % mod; for (long long i = (0); i <= (min(p[1], p[0])); ++i) { long long sum = 0; if (i) S.s[i][i - 1] = i * i * tmp % mod, (sum += S.s[i][i - 1]) %= mod; if (i != p[0]) S.s[i][i + 1] = (p[0] - i) * (p[1] - i) * tmp % mod, (sum += S.s[i][i + 1]) %= mod; S.s[i][i] = (1 - sum + mod) % mod; } S = S ^ b; printf("%lld", S.s[q][0]); return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const int INF = 2e9; const int MOD = 1e9 + 7; const int MAX = 1e5 + 10; const long long LNF = 2e18; int n, k, A[110], st, C[2]; class matrix { public: int X[101][101] = {}; matrix operator*(matrix &P) { matrix R; for (int i = 0; i <= n; i++) for (int j = 0; j <= n; j++) for (int k = 0; k <= n; k++) R.X[i][k] = (R.X[i][k] + 1LL * X[i][j] * P.X[j][k]) % MOD; return R; } matrix operator^(int e) { if (e == 1) return *this; matrix T = *this ^ e / 2; T = T * T; return (e % 2 ? T * *this : T); } } T; long long pw(long long a, int e) { if (e == 0) return 1; long long t = pw(a, e / 2); t = t * t % MOD; return (e % 2 ? t * a % MOD : t); } long long inv(long long x) { return pw(x % MOD, MOD - 2); } int main() { ios::sync_with_stdio(0); cin.tie(0); cin >> n >> k; for (int i = 1; i <= n; i++) cin >> A[i], C[A[i]]++; for (int i = 1; i <= C[0]; i++) st += A[i] == 0; long long s = n * (n - 1) / 2, u = inv(s); for (int i = 0; i <= C[0]; i++) { long long p = i * (C[1] - (C[0] - i)), r = (C[0] - i) * (C[0] - i), q = s - p - r; if (i > 0) T.X[i - 1][i] = p * u % MOD; if (i < C[0]) T.X[i + 1][i] = r * u % MOD; T.X[i][i] = q * u % MOD; } matrix R = T ^ k; cout << R.X[C[0]][st] << '\n'; return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
M = 10 ** 9 + 7 n, k = map(int, input().split()) a = list(map(int, input().split())) z, o = a.count(0), a.count(1) d = pow(n * (n - 1) // 2, M - 2, M) if z > o: o, z = z, o a = [1 - x for x in a][::-1] res = [[0] * (z + 1) for i in range(z + 1)] tf = [[0] * (z + 1) for i in range(z + 1)] for i in range(z + 1): res[i][i] = 1 tf[i][i] = (z * (z - 1) // 2 + o * (o - 1) // 2 + i * (z - i) + (z - i) * (o - z + i)) * d % M if i < z: tf[i + 1][i] = (z - i) * (z - i) * d % M if i: tf[i - 1][i] = i * (o - z + i) * d % M def mul(a, b): t = [[0] * (z + 1) for i in range(z + 1)] for i in range(z + 1): for k in range(z + 1): for j in range(z + 1): t[i][j] = (t[i][j] + a[i][k] * b[k][j]) % M return t while k: if k & 1: res = mul(res, tf) tf = mul(tf, tf) k >>= 1 print(res[-1][a[:z].count(0)])
PYTHON3
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> int n, i, j, k, z, o; bool b[105]; long long anti; struct matrix { int n, m; long long mt[55][55]; } a; matrix operator*(matrix a, matrix b) { int i, j, k; matrix ans; for (i = 0; i < a.n; i++) for (j = 0; j < b.m; j++) for (k = ans.mt[i][j] = 0; k < a.m; k++) ans.mt[i][j] = (ans.mt[i][j] + a.mt[i][k] * b.mt[k][j]) % 1000000007LL; ans.n = a.n; ans.m = b.m; return ans; } long long pow(long long d, long long x) { if (x == 0) return 1; long long ret = pow(d, x >> 1); ret = ret * ret % 1000000007LL; if (x & 1) ret = ret * d % 1000000007LL; return ret; } matrix pow(int x) { if (x == 1) return a; matrix ret = pow(x >> 1); ret = ret * ret; if (x & 1) ret = ret * a; return ret; } inline long long min(long long a, long long b) { return a < b ? a : b; } int main() { for (scanf("%d%d", &n, &k), i = 0; i < n; i++) { scanf("%d", &j); b[i] = (j ? true : false); if (b[i]) o++; else z++; } anti = pow(n * (n - 1), 1000000007LL - 2); a.m = a.n = min(z, o) + 1; for (i = 0; i <= min(z, o); i++) { if (i != 0) a.mt[i - 1][i] = 2 * i * i * anti % 1000000007LL; a.mt[i][i] = (o * o + z * z - n + 2 * i * n - 4 * i * i) * anti % 1000000007LL; if (i != min(z, o)) a.mt[i + 1][i] = 2 * (o - i) * (z - i) * anti % 1000000007LL; } matrix ggg = pow(k); for (i = j = 0; i < z; i++) if (b[i]) j++; printf("%I64d\n", ggg.mt[0][j]); return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const long long mo = 1e9 + 7; void add(long long &x, long long y) { x += y; if (x >= mo) x -= mo; } struct matrix { long long c[105][105], n, m; matrix() { memset(c, 0, sizeof(c)); n = m = 0; } matrix operator*(const matrix &rhs) const { matrix res; res.n = n; res.m = rhs.m; for (int i = 0; i < n; i++) for (int k = 0; k < m; k++) for (int j = 0; j < rhs.m; j++) add(res.c[i][j], c[i][k] * rhs.c[k][j] % mo); return res; } void print() { for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) printf("%lld ", c[i][j]); puts(""); } } } A, B; matrix qkpow(matrix a, long long t) { matrix res; res.n = res.m = a.n; for (int i = 0; i < res.n; i++) res.c[i][i] = 1; while (t) { if (t & 1LL) res = res * a; a = a * a; t >>= 1; } return res; } long long qpow(long long a, long long s) { long long t = 1; while (s) { if (s & 1) t = t * a % mo; a = a * a % mo; s >>= 1; } return t; } long long n, a[105], k, ans, c, t; signed main() { scanf("%lld %lld", &n, &k); for (int i = 1; i <= n; i++) scanf("%lld", &a[i]), c += (a[i] == 0); for (int i = 1; i <= c; i++) t += (a[i] == 0); A.n = 1; A.m = c + 1; A.c[0][t] = 1; B.n = B.m = c + 1; for (int i = 0; i <= c; i++) { if (i != 0) B.c[i - 1][i] = 1ll * (c - i + 1) * (c - i + 1) % mo; B.c[i][i] = (1ll * i * (c - i) % mo + 1ll * (c - i) * (n - 2ll * c + i) % mo) % mo; B.c[i][i] = (B.c[i][i] + 1ll * c * (c - 1) / 2ll % mo) % mo; B.c[i][i] = (B.c[i][i] + 1ll * (n - c) * (n - c - 1) / 2ll % mo) % mo; if (i != c) B.c[i + 1][i] = 1ll * (i + 1) * (n - 2ll * c + i + 1) % mo; } A = A * qkpow(B, k); ans = A.c[0][c]; t = 0; for (int i = 0; i <= c; i++) t = (t + A.c[0][i]) % mo; ans = ans * qpow(t, mo - 2) % mo; printf("%lld\n", ans); return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; long long n, k; int a[105]; int N = 100; long long mod = 1e9 + 7; struct node { long long mat[105][105]; friend node operator*(node x, node y) { node c; for (int i = 0; i <= N; i++) { for (int j = 0; j <= N; j++) { c.mat[i][j] = 0; for (int k = 0; k <= N; k++) { c.mat[i][j] += (x.mat[i][k] * y.mat[k][j]) % mod; } c.mat[i][j] %= mod; } } return c; } } sta, p, anss; node powd(node x, long long y) { node ans; for (int i = 0; i <= N; i++) for (int j = 0; j <= N; j++) if (i == j) ans.mat[i][j] = 1; else ans.mat[i][j] = 0; while (y > 0) { if (y % 2 == 1) ans = ans * x; x = x * x; y /= 2; } return ans; } long long powd(long long x, long long y) { long long ans = 1; while (y > 0) { if (y % 2 == 1) ans = ans * x % mod; x = x * x % mod; y /= 2; } return ans; } long long afac(long long x) { return powd(x, mod - 2); } int main() { while (~scanf("%lld%lld", &n, &k)) { int sum = 0; for (int i = 1; i <= n; i++) scanf("%d", &a[i]), sum += a[i]; long long x = n - sum, y = sum; long long sum1 = 0, sum2 = 0; for (int i = 1; i <= x; i++) { if (a[i] == 1) sum1++; } sum2 = sum - sum1; long long ac = afac(n * (n - 1) / 2); for (int i = 0; i <= N; i++) { for (int j = 0; j <= N; j++) { if (j == 0 && i == sum1) sta.mat[i][j] = 1; else sta.mat[i][j] = 0; p.mat[i][j] = 0; if (i > x || j > x) continue; long long p1, p2; p1 = (x - j) * (sum - j) % mod; p1 = p1 * ac % mod; p2 = j * (j) % mod; p2 = p2 * ac % mod; if (j == i) { p.mat[i][j] = (1 - p1 - p2) % mod; } else if (j == i - 1) { p.mat[i][j] = p1; } else if (j == i + 1) { p.mat[i][j] = p2; } } } anss = powd(p, k) * sta; long long tans = anss.mat[0][0] % mod; tans = (tans + mod) % mod; printf("%lld\n", tans); } return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const int maxn = 1e2 + 1; const int md = 1e9 + 7; void inc(int &x, int y) { x = x + y >= md ? x + y - md : x + y; } int len; struct Mat { int a[maxn][maxn]; Mat() { memset(a, 0, sizeof(a)); } Mat operator*(const Mat &x) const { Mat res = Mat(); for (int i = 0; i <= len; ++i) for (int j = 0; j <= len; ++j) for (int k = 0; k <= len; ++k) inc(res.a[i][j], 1ll * a[i][k] * x.a[k][j] % md); return res; } void print() { for (int i = 0; i <= len; ++i, cout << endl) for (int j = 0; j <= len; ++j) cout << a[i][j] << " "; } } res, mp; int qpow(long long a, long long b) { long long res = 1; while (b) { if (b & 1) res = res * a % md; a = a * a % md; b >>= 1; } return res; } void qpow(int k) { while (k) { if (k & 1) res = res * mp; mp = mp * mp; k >>= 1; } } int n, k, a[maxn]; int main() { scanf("%d%d", &n, &k); for (int i = 1; i <= n; ++i) scanf("%d", a + i), len += a[i] == 1; int now = 0; for (int i = n - len + 1; i <= n; ++i) now += a[i] == 1; res.a[0][now] = 1; for (int i = 0; i <= len; ++i) { mp.a[i][i - 1] = i * (n - len * 2 + i); mp.a[i][i + 1] = (len - i) * (len - i); mp.a[i][i] = (n * (n - 1) >> 1) - i * (n - len * 2 + i) - (len - i) * (len - i); } qpow(k); printf("%I64d\n", ((long long)res.a[0][len] * qpow(qpow(n * (n - 1) >> 1, md - 2), k) % md + md) % md); }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const int p = 1000000007; struct matrix { int a[105][105]; } b; int tot, st, a[105], ans[105]; int read() { char c = getchar(); int x = 0, f = 1; while (c < '0' || c > '9') { if (c == '-') f = -1; c = getchar(); } while (c >= '0' && c <= '9') { x = x * 10 + c - '0'; c = getchar(); } return x * f; } int pow_mod(int x, int k) { int ans = 1; while (k) { if (k & 1) ans = 1LL * ans * x % p; x = 1LL * x * x % p; k >>= 1; } return ans; } matrix times(matrix x, matrix y) { matrix ans; memset(ans.a, 0, sizeof(ans.a)); for (int i = 0; i <= tot; i++) { for (int j = 0; j <= tot; j++) { for (int k = 0; k <= tot; k++) { ans.a[i][k] = (ans.a[i][k] + 1LL * x.a[i][j] * y.a[j][k]) % p; } } } return ans; } matrix fpow(matrix x, int k) { --k; matrix ans = x; while (k) { if (k & 1) ans = times(ans, x); x = times(x, x); k >>= 1; } return ans; } int main() { int n = read(), k = read(); tot = 0, st = 0; for (int i = 1; i <= n; i++) { a[i] = read(); if (a[i] == 0) ++tot; } for (int i = 1; i <= tot; i++) if (a[i] == 0) ++st; int t = 1LL * n * (n - 1) / 2 % p; t = pow_mod(t, p - 2); for (int i = 0; i <= tot; i++) { int a0 = i, a1 = tot - i, b0 = tot - i, b1 = n - a0 - a1 - b0; if (i < tot) b.a[i][i + 1] = 1LL * a1 * b0 % p * t % p; if (i > 0) b.a[i][i - 1] = 1LL * a0 * b1 % p * t % p; b.a[i][i] = (1 + p - 1LL * a1 * b0 % p * t % p + p - 1LL * a0 * b1 % p * t % p) % p; } b = fpow(b, k); int sum = 0; for (int i = 0; i <= tot; i++) { sum += b.a[st][i]; if (sum >= p) sum -= p; } printf("%d\n", 1LL * b.a[st][tot] * pow_mod(sum, p - 2) % p); return 0; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const long long N = 110; const long long Mod = 1e9 + 7; long long Fact[N]; long long add(long long x, long long y) { x %= Mod, y %= Mod; return (x + y) % Mod; } long long sub(long long x, long long y) { x %= Mod, y %= Mod; return (x - y + Mod) % Mod; } long long mul(long long x, long long y) { x %= Mod, y %= Mod; return x * y % Mod; } void add_self(long long& x, long long y) { x = add(x, y); } void sub_self(long long& x, long long y) { x = sub(x, y); } void mul_self(long long& x, long long y) { x = mul(x, y); } long long fp(long long x, long long y) { if (!y) return 1; long long Res = fp(x, y / 2); mul_self(Res, Res); if (y & 1) mul_self(Res, x); return Res; } long long GCD(long long x, long long y) { return y ? GCD(y, x % y) : x; } long long inv(long long y) { return fp(y, Mod - 2); } long long inv(long long x, long long y) { return mul(x, inv(y)); } long long C(long long n, long long r) { if (n < 0 || r < 0 || n < r) return 0; return inv(Fact[n], mul(Fact[r], Fact[n - r])); } vector<vector<long long> > Zero(long long n, long long m) { return vector<vector<long long> >(n, vector<long long>(m, 0)); } vector<vector<long long> > Identity(long long n) { vector<vector<long long> > Res = Zero(n, n); for (long long i = 0; i < n; i++) Res[i][i] = 1; return Res; } vector<vector<long long> > Muliply(const vector<vector<long long> >& A, const vector<vector<long long> >& B) { vector<vector<long long> > Res = Zero(A.size(), B[0].size()); for (long long i = 0; i < A.size(); i++) for (long long k = 0; k < B.size(); k++) if (A[i][k]) for (long long j = 0; j < B[0].size(); j++) add_self(Res[i][j], mul(A[i][k], B[k][j])); return Res; } vector<vector<long long> > Power(const vector<vector<long long> >& A, long long k) { if (!k) return Identity(A.size()); if (k & 1) return Muliply(A, Power(A, k - 1)); return Power(Muliply(A, A), k >> 1); } long long a[N]; int main() { Fact[0] = 1; for (long long i = 1; i < N; i++) Fact[i] = mul(i, Fact[i - 1]); long long n, k; scanf("%I64d%I64d", &n, &k); for (long long i = 0; i < n; i++) scanf("%I64d", a + i); long long c0 = 0, c1 = 0, ok0 = 0; for (long long i = 0; i < n; i++) a[i] ? c1++ : c0++; for (long long i = 0; i < c0; i++) if (!a[i]) ok0++; vector<vector<long long> > Init = Zero(1, n + 1); vector<vector<long long> > Trans = Zero(n + 1, n + 1); Init[0][ok0] = 1; for (long long i = 0; i < n + 1; i++) { long long L0 = i, R0 = c0 - i; long long L1 = c0 - i, R1 = c1 - c0 + i; if (L0 < 0 || R0 < 0 || L1 < 0 || R1 < 0) continue; add_self(Trans[i][i], C(c0, 2)); add_self(Trans[i][i], C(c1, 2)); add_self(Trans[i][i], mul(L0, R0)); add_self(Trans[i][i], mul(L1, R1)); if (i + 1 < n + 1) add_self(Trans[i][i + 1], mul(L1, R0)); if (i - 1 >= 0) add_self(Trans[i][i - 1], mul(L0, R1)); } vector<vector<long long> > Staff = Muliply(Init, Power(Trans, k)); long long P = Staff[0][c0]; long long Q = fp(C(n, 2), k); long long G = GCD(P, Q); P /= G, Q /= G; long long Ans = inv(P, Q); cout << Ans; }
CPP
1151_F. Sonya and Informatics
A girl named Sonya is studying in the scientific lyceum of the Kingdom of Kremland. The teacher of computer science (Sonya's favorite subject!) invented a task for her. Given an array a of length n, consisting only of the numbers 0 and 1, and the number k. Exactly k times the following happens: * Two numbers i and j are chosen equiprobable such that (1 ≤ i < j ≤ n). * The numbers in the i and j positions are swapped. Sonya's task is to find the probability that after all the operations are completed, the a array will be sorted in non-decreasing order. She turned to you for help. Help Sonya solve this problem. It can be shown that the desired probability is either 0 or it can be represented as P/Q, where P and Q are coprime integers and Q not≡ 0~\pmod {10^9+7}. Input The first line contains two integers n and k (2 ≤ n ≤ 100, 1 ≤ k ≤ 10^9) — the length of the array a and the number of operations. The second line contains n integers a_1, a_2, …, a_n (0 ≤ a_i ≤ 1) — the description of the array a. Output If the desired probability is 0, print 0, otherwise print the value P ⋅ Q^{-1} \pmod {10^9+7}, where P and Q are defined above. Examples Input 3 2 0 1 0 Output 333333336 Input 5 1 1 1 1 0 0 Output 0 Input 6 4 1 0 0 1 1 0 Output 968493834 Note In the first example, all possible variants of the final array a, after applying exactly two operations: (0, 1, 0), (0, 0, 1), (1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1), (1, 0, 0), (0, 1, 0). Therefore, the answer is 3/9=1/3. In the second example, the array will not be sorted in non-decreasing order after one operation, therefore the answer is 0.
2
12
#include <bits/stdc++.h> using namespace std; const long long N = 107; const long long MOD = 1000 * 1000 * 1000 + 7; inline long long mod(long long n) { if (n < MOD) return n; else return n % MOD; } long long fp(long long a, long long p) { long long ans = 1, cur = a; for (long long i = 0; (1ll << i) <= p; ++i) { if ((p >> i) & 1) ans = mod(ans * cur); cur = mod(cur * cur); } return ans; } long long dv(long long a, long long b) { return mod(a * fp(b, MOD - 2)); } struct md { long long n; md(long long x) { n = mod(x); } md() {} md operator+(md x) { return md(n + x.n); } md operator*(md x) { return md(n * x.n); } md operator/(md x) { return md(dv(n, x.n)); } }; long long cnt[2]; bool a[N]; md m[N][N], ans[N][N], t[N][N]; void add(md a[N][N], md b[N][N]) { for (long long i = 0; i < N; ++i) { for (long long j = 0; j < N; ++j) { t[i][j].n = 0; } } for (long long i = 0; i < N; ++i) { for (long long j = 0; j < N; ++j) { for (long long k = 0; k < N; ++k) { t[i][j] = t[i][j] + a[i][k] * b[k][j]; } } } for (long long i = 0; i < N; ++i) { for (long long j = 0; j < N; ++j) { a[i][j] = t[i][j]; } } } void pw(long long p) { for (long long i = 0; i < N; ++i) { ans[i][i].n = 1; } for (long long i = 0; (1ll << i) <= p; ++i) { if ((p >> i) & 1) add(ans, m); add(m, m); } } md all(long long n, long long k) { return md(fp(n * (n - 1) / 2, k)); } signed main() { ios_base::sync_with_stdio(0); cin.tie(0); long long n, k; cin >> n >> k; for (long long i = 0; i < n; ++i) { cin >> a[i]; ++cnt[a[i]]; } for (long long i = 0; i <= cnt[0] && i <= cnt[1]; ++i) { long long l = cnt[0]; long long r = n - l; long long l1 = i; long long l0 = l - l1; long long r0 = cnt[0] - l0; long long r1 = cnt[1] - l1; if (i) m[i][i - 1] = md(l1 * r0); m[i][i + 1] = md(l0 * r1); m[i][i] = md(l * (l - 1) / 2 + r * (r - 1) / 2 + l0 * r0 + l1 * r1); } pw(k); long long sum = 0; for (long long i = 0; i < cnt[0]; ++i) { sum += a[i]; } cout << (ans[sum][0] / all(n, k)).n << '\n'; }
CPP