desc
stringlengths 3
26.7k
| decl
stringlengths 11
7.89k
| bodies
stringlengths 8
553k
|
---|---|---|
'Extracts features from preprocessed inputs.
This function is responsible for extracting feature maps from preprocessed
images.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]'
| @abstractmethod
def extract_features(self, preprocessed_inputs):
| pass
|
'SSDMetaArch Constructor.
TODO: group NMS parameters + score converter into
a class and loss parameters into a class and write config protos for
postprocessing and losses.
Args:
is_training: A boolean indicating whether the training version of the
computation graph should be constructed.
anchor_generator: an anchor_generator.AnchorGenerator object.
box_predictor: a box_predictor.BoxPredictor object.
box_coder: a box_coder.BoxCoder object.
feature_extractor: a SSDFeatureExtractor object.
matcher: a matcher.Matcher object.
region_similarity_calculator: a
region_similarity_calculator.RegionSimilarityCalculator object.
image_resizer_fn: a callable for image resizing. This callable always
takes a rank-3 image tensor (corresponding to a single image) and
returns a rank-3 image tensor, possibly with new spatial dimensions.
See builders/image_resizer_builder.py.
non_max_suppression_fn: batch_multiclass_non_max_suppression
callable that takes `boxes`, `scores` and optional `clip_window`
inputs (with all other inputs already set) and returns a dictionary
hold tensors with keys: `detection_boxes`, `detection_scores`,
`detection_classes` and `num_detections`. See `post_processing.
batch_multiclass_non_max_suppression` for the type and shape of these
tensors.
score_conversion_fn: callable elementwise nonlinearity (that takes tensors
as inputs and returns tensors). This is usually used to convert logits
to probabilities.
classification_loss: an object_detection.core.losses.Loss object.
localization_loss: a object_detection.core.losses.Loss object.
classification_loss_weight: float
localization_loss_weight: float
normalize_loss_by_num_matches: boolean
hard_example_miner: a losses.HardExampleMiner object (can be None)
add_summaries: boolean (default: True) controlling whether summary ops
should be added to tensorflow graph.'
| def __init__(self, is_training, anchor_generator, box_predictor, box_coder, feature_extractor, matcher, region_similarity_calculator, image_resizer_fn, non_max_suppression_fn, score_conversion_fn, classification_loss, localization_loss, classification_loss_weight, localization_loss_weight, normalize_loss_by_num_matches, hard_example_miner, add_summaries=True):
| super(SSDMetaArch, self).__init__(num_classes=box_predictor.num_classes)
self._is_training = is_training
self._extract_features_scope = 'FeatureExtractor'
self._anchor_generator = anchor_generator
self._box_predictor = box_predictor
self._box_coder = box_coder
self._feature_extractor = feature_extractor
self._matcher = matcher
self._region_similarity_calculator = region_similarity_calculator
unmatched_cls_target = None
unmatched_cls_target = tf.constant(([1] + (self.num_classes * [0])), tf.float32)
self._target_assigner = target_assigner.TargetAssigner(self._region_similarity_calculator, self._matcher, self._box_coder, positive_class_weight=1.0, negative_class_weight=1.0, unmatched_cls_target=unmatched_cls_target)
self._classification_loss = classification_loss
self._localization_loss = localization_loss
self._classification_loss_weight = classification_loss_weight
self._localization_loss_weight = localization_loss_weight
self._normalize_loss_by_num_matches = normalize_loss_by_num_matches
self._hard_example_miner = hard_example_miner
self._image_resizer_fn = image_resizer_fn
self._non_max_suppression_fn = non_max_suppression_fn
self._score_conversion_fn = score_conversion_fn
self._anchors = None
self._add_summaries = add_summaries
|
'Feature-extractor specific preprocessing.
See base class.
Args:
inputs: a [batch, height_in, width_in, channels] float tensor representing
a batch of images with values between 0 and 255.0.
Returns:
preprocessed_inputs: a [batch, height_out, width_out, channels] float
tensor representing a batch of images.
Raises:
ValueError: if inputs tensor does not have type tf.float32'
| def preprocess(self, inputs):
| if (inputs.dtype is not tf.float32):
raise ValueError('`preprocess` expects a tf.float32 tensor')
with tf.name_scope('Preprocessor'):
resized_inputs = tf.map_fn(self._image_resizer_fn, elems=inputs, dtype=tf.float32)
return self._feature_extractor.preprocess(resized_inputs)
|
'Predicts unpostprocessed tensors from input tensor.
This function takes an input batch of images and runs it through the forward
pass of the network to yield unpostprocessesed predictions.
A side effect of calling the predict method is that self._anchors is
populated with a box_list.BoxList of anchors. These anchors must be
constructed before the postprocess or loss functions can be called.
Args:
preprocessed_inputs: a [batch, height, width, channels] image tensor.
Returns:
prediction_dict: a dictionary holding "raw" prediction tensors:
1) box_encodings: 4-D float tensor of shape [batch_size, num_anchors,
box_code_dimension] containing predicted boxes.
2) class_predictions_with_background: 3-D float tensor of shape
[batch_size, num_anchors, num_classes+1] containing class predictions
(logits) for each of the anchors. Note that this tensor *includes*
background class predictions (at class index 0).
3) feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i].'
| def predict(self, preprocessed_inputs):
| with tf.variable_scope(None, self._extract_features_scope, [preprocessed_inputs]):
feature_maps = self._feature_extractor.extract_features(preprocessed_inputs)
feature_map_spatial_dims = self._get_feature_map_spatial_dims(feature_maps)
self._anchors = self._anchor_generator.generate(feature_map_spatial_dims)
(box_encodings, class_predictions_with_background) = self._add_box_predictions_to_feature_maps(feature_maps)
predictions_dict = {'box_encodings': box_encodings, 'class_predictions_with_background': class_predictions_with_background, 'feature_maps': feature_maps}
return predictions_dict
|
'Adds box predictors to each feature map and returns concatenated results.
Args:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
Returns:
box_encodings: 4-D float tensor of shape [batch_size, num_anchors,
box_code_dimension] containing predicted boxes.
class_predictions_with_background: 2-D float tensor of shape
[batch_size, num_anchors, num_classes+1] containing class predictions
(logits) for each of the anchors. Note that this tensor *includes*
background class predictions (at class index 0).
Raises:
RuntimeError: if the number of feature maps extracted via the
extract_features method does not match the length of the
num_anchors_per_locations list that was passed to the constructor.
RuntimeError: if box_encodings from the box_predictor does not have
shape of the form [batch_size, num_anchors, 1, code_size].'
| def _add_box_predictions_to_feature_maps(self, feature_maps):
| num_anchors_per_location_list = self._anchor_generator.num_anchors_per_location()
if (len(feature_maps) != len(num_anchors_per_location_list)):
raise RuntimeError('the number of feature maps must match the length of self.anchors.NumAnchorsPerLocation().')
box_encodings_list = []
cls_predictions_with_background_list = []
for (idx, (feature_map, num_anchors_per_location)) in enumerate(zip(feature_maps, num_anchors_per_location_list)):
box_predictor_scope = 'BoxPredictor_{}'.format(idx)
box_predictions = self._box_predictor.predict(feature_map, num_anchors_per_location, box_predictor_scope)
box_encodings = box_predictions[bpredictor.BOX_ENCODINGS]
cls_predictions_with_background = box_predictions[bpredictor.CLASS_PREDICTIONS_WITH_BACKGROUND]
box_encodings_shape = box_encodings.get_shape().as_list()
if ((len(box_encodings_shape) != 4) or (box_encodings_shape[2] != 1)):
raise RuntimeError('box_encodings from the box_predictor must be of shape `[batch_size, num_anchors, 1, code_size]`; actual shape', box_encodings_shape)
box_encodings = tf.squeeze(box_encodings, axis=2)
box_encodings_list.append(box_encodings)
cls_predictions_with_background_list.append(cls_predictions_with_background)
num_predictions = sum([tf.shape(box_encodings)[1] for box_encodings in box_encodings_list])
num_anchors = self.anchors.num_boxes()
anchors_assert = tf.assert_equal(num_anchors, num_predictions, ['Mismatch: number of anchors vs number of predictions', num_anchors, num_predictions])
with tf.control_dependencies([anchors_assert]):
box_encodings = tf.concat(box_encodings_list, 1)
class_predictions_with_background = tf.concat(cls_predictions_with_background_list, 1)
return (box_encodings, class_predictions_with_background)
|
'Return list of spatial dimensions for each feature map in a list.
Args:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i].
Returns:
a list of pairs (height, width) for each feature map in feature_maps'
| def _get_feature_map_spatial_dims(self, feature_maps):
| feature_map_shapes = [shape_utils.combined_static_and_dynamic_shape(feature_map) for feature_map in feature_maps]
return [(shape[1], shape[2]) for shape in feature_map_shapes]
|
'Converts prediction tensors to final detections.
This function converts raw predictions tensors to final detection results by
slicing off the background class, decoding box predictions and applying
non max suppression and clipping to the image window.
See base class for output format conventions. Note also that by default,
scores are to be interpreted as logits, but if a score_conversion_fn is
used, then scores are remapped (and may thus have a different
interpretation).
Args:
prediction_dict: a dictionary holding prediction tensors with
1) box_encodings: 4-D float tensor of shape [batch_size, num_anchors,
box_code_dimension] containing predicted boxes.
2) class_predictions_with_background: 2-D float tensor of shape
[batch_size, num_anchors, num_classes+1] containing class predictions
(logits) for each of the anchors. Note that this tensor *includes*
background class predictions.
Returns:
detections: a dictionary containing the following fields
detection_boxes: [batch, max_detection, 4]
detection_scores: [batch, max_detections]
detection_classes: [batch, max_detections]
num_detections: [batch]
Raises:
ValueError: if prediction_dict does not contain `box_encodings` or
`class_predictions_with_background` fields.'
| def postprocess(self, prediction_dict):
| if (('box_encodings' not in prediction_dict) or ('class_predictions_with_background' not in prediction_dict)):
raise ValueError('prediction_dict does not contain expected entries.')
with tf.name_scope('Postprocessor'):
box_encodings = prediction_dict['box_encodings']
class_predictions = prediction_dict['class_predictions_with_background']
detection_boxes = self._batch_decode(box_encodings)
detection_boxes = tf.expand_dims(detection_boxes, axis=2)
class_predictions_without_background = tf.slice(class_predictions, [0, 0, 1], [(-1), (-1), (-1)])
detection_scores = self._score_conversion_fn(class_predictions_without_background)
clip_window = tf.constant([0, 0, 1, 1], tf.float32)
(nmsed_boxes, nmsed_scores, nmsed_classes, _, num_detections) = self._non_max_suppression_fn(detection_boxes, detection_scores, clip_window=clip_window)
return {'detection_boxes': nmsed_boxes, 'detection_scores': nmsed_scores, 'detection_classes': nmsed_classes, 'num_detections': tf.to_float(num_detections)}
|
'Compute scalar loss tensors with respect to provided groundtruth.
Calling this function requires that groundtruth tensors have been
provided via the provide_groundtruth function.
Args:
prediction_dict: a dictionary holding prediction tensors with
1) box_encodings: 4-D float tensor of shape [batch_size, num_anchors,
box_code_dimension] containing predicted boxes.
2) class_predictions_with_background: 2-D float tensor of shape
[batch_size, num_anchors, num_classes+1] containing class predictions
(logits) for each of the anchors. Note that this tensor *includes*
background class predictions.
scope: Optional scope name.
Returns:
a dictionary mapping loss keys (`localization_loss` and
`classification_loss`) to scalar tensors representing corresponding loss
values.'
| def loss(self, prediction_dict, scope=None):
| with tf.name_scope(scope, 'Loss', prediction_dict.values()):
(batch_cls_targets, batch_cls_weights, batch_reg_targets, batch_reg_weights, match_list) = self._assign_targets(self.groundtruth_lists(fields.BoxListFields.boxes), self.groundtruth_lists(fields.BoxListFields.classes))
if self._add_summaries:
self._summarize_input(self.groundtruth_lists(fields.BoxListFields.boxes), match_list)
num_matches = tf.stack([match.num_matched_columns() for match in match_list])
location_losses = self._localization_loss(prediction_dict['box_encodings'], batch_reg_targets, weights=batch_reg_weights)
cls_losses = self._classification_loss(prediction_dict['class_predictions_with_background'], batch_cls_targets, weights=batch_cls_weights)
localization_loss = tf.reduce_sum(location_losses)
classification_loss = tf.reduce_sum(cls_losses)
if self._hard_example_miner:
(localization_loss, classification_loss) = self._apply_hard_mining(location_losses, cls_losses, prediction_dict, match_list)
if self._add_summaries:
self._hard_example_miner.summarize()
normalizer = tf.constant(1.0, dtype=tf.float32)
if self._normalize_loss_by_num_matches:
normalizer = tf.maximum(tf.to_float(tf.reduce_sum(num_matches)), 1.0)
loss_dict = {'localization_loss': ((self._localization_loss_weight / normalizer) * localization_loss), 'classification_loss': ((self._classification_loss_weight / normalizer) * classification_loss)}
return loss_dict
|
'Assign groundtruth targets.
Adds a background class to each one-hot encoding of groundtruth classes
and uses target assigner to obtain regression and classification targets.
Args:
groundtruth_boxes_list: a list of 2-D tensors of shape [num_boxes, 4]
containing coordinates of the groundtruth boxes.
Groundtruth boxes are provided in [y_min, x_min, y_max, x_max]
format and assumed to be normalized and clipped
relative to the image window with y_min <= y_max and x_min <= x_max.
groundtruth_classes_list: a list of 2-D one-hot (or k-hot) tensors of
shape [num_boxes, num_classes] containing the class targets with the 0th
index assumed to map to the first non-background class.
Returns:
batch_cls_targets: a tensor with shape [batch_size, num_anchors,
num_classes],
batch_cls_weights: a tensor with shape [batch_size, num_anchors],
batch_reg_targets: a tensor with shape [batch_size, num_anchors,
box_code_dimension]
batch_reg_weights: a tensor with shape [batch_size, num_anchors],
match_list: a list of matcher.Match objects encoding the match between
anchors and groundtruth boxes for each image of the batch,
with rows of the Match objects corresponding to groundtruth boxes
and columns corresponding to anchors.'
| def _assign_targets(self, groundtruth_boxes_list, groundtruth_classes_list):
| groundtruth_boxlists = [box_list.BoxList(boxes) for boxes in groundtruth_boxes_list]
groundtruth_classes_with_background_list = [tf.pad(one_hot_encoding, [[0, 0], [1, 0]], mode='CONSTANT') for one_hot_encoding in groundtruth_classes_list]
return target_assigner.batch_assign_targets(self._target_assigner, self.anchors, groundtruth_boxlists, groundtruth_classes_with_background_list)
|
'Creates tensorflow summaries for the input boxes and anchors.
This function creates four summaries corresponding to the average
number (over images in a batch) of (1) groundtruth boxes, (2) anchors
marked as positive, (3) anchors marked as negative, and (4) anchors marked
as ignored.
Args:
groundtruth_boxes_list: a list of 2-D tensors of shape [num_boxes, 4]
containing corners of the groundtruth boxes.
match_list: a list of matcher.Match objects encoding the match between
anchors and groundtruth boxes for each image of the batch,
with rows of the Match objects corresponding to groundtruth boxes
and columns corresponding to anchors.'
| def _summarize_input(self, groundtruth_boxes_list, match_list):
| num_boxes_per_image = tf.stack([tf.shape(x)[0] for x in groundtruth_boxes_list])
pos_anchors_per_image = tf.stack([match.num_matched_columns() for match in match_list])
neg_anchors_per_image = tf.stack([match.num_unmatched_columns() for match in match_list])
ignored_anchors_per_image = tf.stack([match.num_ignored_columns() for match in match_list])
tf.summary.scalar('Input/AvgNumGroundtruthBoxesPerImage', tf.reduce_mean(tf.to_float(num_boxes_per_image)))
tf.summary.scalar('Input/AvgNumPositiveAnchorsPerImage', tf.reduce_mean(tf.to_float(pos_anchors_per_image)))
tf.summary.scalar('Input/AvgNumNegativeAnchorsPerImage', tf.reduce_mean(tf.to_float(neg_anchors_per_image)))
tf.summary.scalar('Input/AvgNumIgnoredAnchorsPerImage', tf.reduce_mean(tf.to_float(ignored_anchors_per_image)))
|
'Applies hard mining to anchorwise losses.
Args:
location_losses: Float tensor of shape [batch_size, num_anchors]
representing anchorwise location losses.
cls_losses: Float tensor of shape [batch_size, num_anchors]
representing anchorwise classification losses.
prediction_dict: p a dictionary holding prediction tensors with
1) box_encodings: 4-D float tensor of shape [batch_size, num_anchors,
box_code_dimension] containing predicted boxes.
2) class_predictions_with_background: 2-D float tensor of shape
[batch_size, num_anchors, num_classes+1] containing class predictions
(logits) for each of the anchors. Note that this tensor *includes*
background class predictions.
match_list: a list of matcher.Match objects encoding the match between
anchors and groundtruth boxes for each image of the batch,
with rows of the Match objects corresponding to groundtruth boxes
and columns corresponding to anchors.
Returns:
mined_location_loss: a float scalar with sum of localization losses from
selected hard examples.
mined_cls_loss: a float scalar with sum of classification losses from
selected hard examples.'
| def _apply_hard_mining(self, location_losses, cls_losses, prediction_dict, match_list):
| class_pred_shape = [(-1), self.anchors.num_boxes_static(), self.num_classes]
class_predictions = tf.reshape(tf.slice(prediction_dict['class_predictions_with_background'], [0, 0, 1], class_pred_shape), class_pred_shape)
decoded_boxes = self._batch_decode(prediction_dict['box_encodings'])
decoded_box_tensors_list = tf.unstack(decoded_boxes)
class_prediction_list = tf.unstack(class_predictions)
decoded_boxlist_list = []
for (box_location, box_score) in zip(decoded_box_tensors_list, class_prediction_list):
decoded_boxlist = box_list.BoxList(box_location)
decoded_boxlist.add_field('scores', box_score)
decoded_boxlist_list.append(decoded_boxlist)
return self._hard_example_miner(location_losses=location_losses, cls_losses=cls_losses, decoded_boxlist_list=decoded_boxlist_list, match_list=match_list)
|
'Decodes a batch of box encodings with respect to the anchors.
Args:
box_encodings: A float32 tensor of shape
[batch_size, num_anchors, box_code_size] containing box encodings.
Returns:
decoded_boxes: A float32 tensor of shape
[batch_size, num_anchors, 4] containing the decoded boxes.'
| def _batch_decode(self, box_encodings):
| combined_shape = shape_utils.combined_static_and_dynamic_shape(box_encodings)
batch_size = combined_shape[0]
tiled_anchor_boxes = tf.tile(tf.expand_dims(self.anchors.get(), 0), [batch_size, 1, 1])
tiled_anchors_boxlist = box_list.BoxList(tf.reshape(tiled_anchor_boxes, [(-1), self._box_coder.code_size]))
decoded_boxes = self._box_coder.decode(tf.reshape(box_encodings, [(-1), self._box_coder.code_size]), tiled_anchors_boxlist)
return tf.reshape(decoded_boxes.get(), tf.stack([combined_shape[0], combined_shape[1], 4]))
|
'Returns a map of variables to load from a foreign checkpoint.
See parent class for details.
Args:
from_detection_checkpoint: whether to restore from a full detection
checkpoint (with compatible variable names) or to restore from a
classification checkpoint for initialization prior to training.
Returns:
A dict mapping variable names (to load from a checkpoint) to variables in
the model graph.'
| def restore_map(self, from_detection_checkpoint=True):
| variables_to_restore = {}
for variable in tf.all_variables():
if variable.op.name.startswith(self._extract_features_scope):
var_name = variable.op.name
if (not from_detection_checkpoint):
var_name = re.split((('^' + self._extract_features_scope) + '/'), var_name)[(-1)]
variables_to_restore[var_name] = variable
return variables_to_restore
|
'RFCNMetaArch Constructor.
Args:
is_training: A boolean indicating whether the training version of the
computation graph should be constructed.
num_classes: Number of classes. Note that num_classes *does not*
include the background category, so if groundtruth labels take values
in {0, 1, .., K-1}, num_classes=K (and not K+1, even though the
assigned classification targets can range from {0,... K}).
image_resizer_fn: A callable for image resizing. This callable always
takes a rank-3 image tensor (corresponding to a single image) and
returns a rank-3 image tensor, possibly with new spatial dimensions.
See builders/image_resizer_builder.py.
feature_extractor: A FasterRCNNFeatureExtractor object.
first_stage_only: Whether to construct only the Region Proposal Network
(RPN) part of the model.
first_stage_anchor_generator: An anchor_generator.AnchorGenerator object
(note that currently we only support
grid_anchor_generator.GridAnchorGenerator objects)
first_stage_atrous_rate: A single integer indicating the atrous rate for
the single convolution op which is applied to the `rpn_features_to_crop`
tensor to obtain a tensor to be used for box prediction. Some feature
extractors optionally allow for producing feature maps computed at
denser resolutions. The atrous rate is used to compensate for the
denser feature maps by using an effectively larger receptive field.
(This should typically be set to 1).
first_stage_box_predictor_arg_scope: Slim arg_scope for conv2d,
separable_conv2d and fully_connected ops for the RPN box predictor.
first_stage_box_predictor_kernel_size: Kernel size to use for the
convolution op just prior to RPN box predictions.
first_stage_box_predictor_depth: Output depth for the convolution op
just prior to RPN box predictions.
first_stage_minibatch_size: The "batch size" to use for computing the
objectness and location loss of the region proposal network. This
"batch size" refers to the number of anchors selected as contributing
to the loss function for any given image within the image batch and is
only called "batch_size" due to terminology from the Faster R-CNN paper.
first_stage_positive_balance_fraction: Fraction of positive examples
per image for the RPN. The recommended value for Faster RCNN is 0.5.
first_stage_nms_score_threshold: Score threshold for non max suppression
for the Region Proposal Network (RPN). This value is expected to be in
[0, 1] as it is applied directly after a softmax transformation. The
recommended value for Faster R-CNN is 0.
first_stage_nms_iou_threshold: The Intersection Over Union (IOU) threshold
for performing Non-Max Suppression (NMS) on the boxes predicted by the
Region Proposal Network (RPN).
first_stage_max_proposals: Maximum number of boxes to retain after
performing Non-Max Suppression (NMS) on the boxes predicted by the
Region Proposal Network (RPN).
first_stage_localization_loss_weight: A float
first_stage_objectness_loss_weight: A float
second_stage_rfcn_box_predictor: RFCN box predictor to use for
second stage.
second_stage_batch_size: The batch size used for computing the
classification and refined location loss of the box classifier. This
"batch size" refers to the number of proposals selected as contributing
to the loss function for any given image within the image batch and is
only called "batch_size" due to terminology from the Faster R-CNN paper.
second_stage_balance_fraction: Fraction of positive examples to use
per image for the box classifier. The recommended value for Faster RCNN
is 0.25.
second_stage_non_max_suppression_fn: batch_multiclass_non_max_suppression
callable that takes `boxes`, `scores`, optional `clip_window` and
optional (kwarg) `mask` inputs (with all other inputs already set)
and returns a dictionary containing tensors with keys:
`detection_boxes`, `detection_scores`, `detection_classes`,
`num_detections`, and (optionally) `detection_masks`. See
`post_processing.batch_multiclass_non_max_suppression` for the type and
shape of these tensors.
second_stage_score_conversion_fn: Callable elementwise nonlinearity
(that takes tensors as inputs and returns tensors). This is usually
used to convert logits to probabilities.
second_stage_localization_loss_weight: A float
second_stage_classification_loss_weight: A float
hard_example_miner: A losses.HardExampleMiner object (can be None).
parallel_iterations: (Optional) The number of iterations allowed to run
in parallel for calls to tf.map_fn.
Raises:
ValueError: If `second_stage_batch_size` > `first_stage_max_proposals`
ValueError: If first_stage_anchor_generator is not of type
grid_anchor_generator.GridAnchorGenerator.'
| def __init__(self, is_training, num_classes, image_resizer_fn, feature_extractor, first_stage_only, first_stage_anchor_generator, first_stage_atrous_rate, first_stage_box_predictor_arg_scope, first_stage_box_predictor_kernel_size, first_stage_box_predictor_depth, first_stage_minibatch_size, first_stage_positive_balance_fraction, first_stage_nms_score_threshold, first_stage_nms_iou_threshold, first_stage_max_proposals, first_stage_localization_loss_weight, first_stage_objectness_loss_weight, second_stage_rfcn_box_predictor, second_stage_batch_size, second_stage_balance_fraction, second_stage_non_max_suppression_fn, second_stage_score_conversion_fn, second_stage_localization_loss_weight, second_stage_classification_loss_weight, hard_example_miner, parallel_iterations=16):
| super(RFCNMetaArch, self).__init__(is_training, num_classes, image_resizer_fn, feature_extractor, first_stage_only, first_stage_anchor_generator, first_stage_atrous_rate, first_stage_box_predictor_arg_scope, first_stage_box_predictor_kernel_size, first_stage_box_predictor_depth, first_stage_minibatch_size, first_stage_positive_balance_fraction, first_stage_nms_score_threshold, first_stage_nms_iou_threshold, first_stage_max_proposals, first_stage_localization_loss_weight, first_stage_objectness_loss_weight, None, None, None, None, second_stage_batch_size, second_stage_balance_fraction, second_stage_non_max_suppression_fn, second_stage_score_conversion_fn, second_stage_localization_loss_weight, second_stage_classification_loss_weight, hard_example_miner, parallel_iterations)
self._rfcn_box_predictor = second_stage_rfcn_box_predictor
|
'Predicts the output tensors from 2nd stage of FasterRCNN.
Args:
rpn_box_encodings: 4-D float tensor of shape
[batch_size, num_valid_anchors, self._box_coder.code_size] containing
predicted boxes.
rpn_objectness_predictions_with_background: 2-D float tensor of shape
[batch_size, num_valid_anchors, 2] containing class
predictions (logits) for each of the anchors. Note that this
tensor *includes* background class predictions (at class index 0).
rpn_features: A 4-D float32 tensor with shape
[batch_size, height, width, depth] representing image features from the
RPN.
anchors: 2-D float tensor of shape
[num_anchors, self._box_coder.code_size].
image_shape: A 1D int32 tensors of size [4] containing the image shape.
Returns:
prediction_dict: a dictionary holding "raw" prediction tensors:
1) refined_box_encodings: a 3-D tensor with shape
[total_num_proposals, num_classes, 4] representing predicted
(final) refined box encodings, where
total_num_proposals=batch_size*self._max_num_proposals
2) class_predictions_with_background: a 3-D tensor with shape
[total_num_proposals, num_classes + 1] containing class
predictions (logits) for each of the anchors, where
total_num_proposals=batch_size*self._max_num_proposals.
Note that this tensor *includes* background class predictions
(at class index 0).
3) num_proposals: An int32 tensor of shape [batch_size] representing the
number of proposals generated by the RPN. `num_proposals` allows us
to keep track of which entries are to be treated as zero paddings and
which are not since we always pad the number of proposals to be
`self.max_num_proposals` for each image.
4) proposal_boxes: A float32 tensor of shape
[batch_size, self.max_num_proposals, 4] representing
decoded proposal bounding boxes (in absolute coordinates).'
| def _predict_second_stage(self, rpn_box_encodings, rpn_objectness_predictions_with_background, rpn_features, anchors, image_shape):
| (proposal_boxes_normalized, _, num_proposals) = self._postprocess_rpn(rpn_box_encodings, rpn_objectness_predictions_with_background, anchors, image_shape)
box_classifier_features = self._feature_extractor.extract_box_classifier_features(rpn_features, scope=self.second_stage_feature_extractor_scope)
box_predictions = self._rfcn_box_predictor.predict(box_classifier_features, num_predictions_per_location=1, scope=self.second_stage_box_predictor_scope, proposal_boxes=proposal_boxes_normalized)
refined_box_encodings = tf.squeeze(box_predictions[box_predictor.BOX_ENCODINGS], axis=1)
class_predictions_with_background = tf.squeeze(box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND], axis=1)
absolute_proposal_boxes = ops.normalized_to_image_coordinates(proposal_boxes_normalized, image_shape, parallel_iterations=self._parallel_iterations)
prediction_dict = {'refined_box_encodings': refined_box_encodings, 'class_predictions_with_background': class_predictions_with_background, 'num_proposals': num_proposals, 'proposal_boxes': absolute_proposal_boxes}
return prediction_dict
|
'Set up mock SSD model.
Here we set up a simple mock SSD model that will always predict 4
detections that happen to always be exactly the anchors that are set up
in the above MockAnchorGenerator. Because we let max_detections=5,
we will also always end up with an extra padded row in the detection
results.'
| def setUp(self):
| is_training = False
self._num_classes = 1
mock_anchor_generator = MockAnchorGenerator2x2()
mock_box_predictor = test_utils.MockBoxPredictor(is_training, self._num_classes)
mock_box_coder = test_utils.MockBoxCoder()
fake_feature_extractor = FakeSSDFeatureExtractor()
mock_matcher = test_utils.MockMatcher()
region_similarity_calculator = sim_calc.IouSimilarity()
def image_resizer_fn(image):
return tf.identity(image)
classification_loss = losses.WeightedSigmoidClassificationLoss(anchorwise_output=True)
localization_loss = losses.WeightedSmoothL1LocalizationLoss(anchorwise_output=True)
non_max_suppression_fn = functools.partial(post_processing.batch_multiclass_non_max_suppression, score_thresh=(-20.0), iou_thresh=1.0, max_size_per_class=5, max_total_size=5)
classification_loss_weight = 1.0
localization_loss_weight = 1.0
normalize_loss_by_num_matches = False
hard_example_miner = losses.HardExampleMiner(num_hard_examples=None, iou_threshold=1.0)
self._num_anchors = 4
self._code_size = 4
self._model = ssd_meta_arch.SSDMetaArch(is_training, mock_anchor_generator, mock_box_predictor, mock_box_coder, fake_feature_extractor, mock_matcher, region_similarity_calculator, image_resizer_fn, non_max_suppression_fn, tf.identity, classification_loss, localization_loss, classification_loss_weight, localization_loss_weight, normalize_loss_by_num_matches, hard_example_miner)
|
'Create a GRU object.
Args:
num_units: Number of units in the GRU
forget_bias (optional): Hack to help learning.
weight_scale (optional): weights are scaled by ws/sqrt(#inputs), with
ws being the weight scale.
clip_value (optional): if the recurrent values grow above this value,
clip them.
collections (optional): List of additonal collections variables should
belong to.'
| def __init__(self, num_units, forget_bias=1.0, weight_scale=1.0, clip_value=np.inf, collections=None):
| self._num_units = num_units
self._forget_bias = forget_bias
self._weight_scale = weight_scale
self._clip_value = clip_value
self._collections = collections
|
'Return the output portion of the state.'
| def output_from_state(self, state):
| return state
|
'Gated recurrent unit (GRU) function.
Args:
inputs: A 2D batch x input_dim tensor of inputs.
state: The previous state from the last time step.
scope (optional): TF variable scope for defined GRU variables.
Returns:
A tuple (state, state), where state is the newly computed state at time t.
It is returned twice to respect an interface that works for LSTMs.'
| def __call__(self, inputs, state, scope=None):
| x = inputs
h = state
if (inputs is not None):
xh = tf.concat(axis=1, values=[x, h])
else:
xh = h
with tf.variable_scope((scope or type(self).__name__)):
with tf.variable_scope('Gates'):
(r, u) = tf.split(axis=1, num_or_size_splits=2, value=linear(xh, (2 * self._num_units), alpha=self._weight_scale, name='xh_2_ru', collections=self._collections))
(r, u) = (tf.sigmoid(r), tf.sigmoid((u + self._forget_bias)))
with tf.variable_scope('Candidate'):
xrh = tf.concat(axis=1, values=[x, (r * h)])
c = tf.tanh(linear(xrh, self._num_units, name='xrh_2_c', collections=self._collections))
new_h = ((u * h) + ((1 - u) * c))
new_h = tf.clip_by_value(new_h, (- self._clip_value), self._clip_value)
return (new_h, new_h)
|
'Create a GRU object.
Args:
num_units: Number of units in the GRU
forget_bias (optional): Hack to help learning.
input_weight_scale (optional): weights are scaled ws/sqrt(#inputs), with
ws being the weight scale.
rec_weight_scale (optional): weights are scaled ws/sqrt(#inputs),
with ws being the weight scale.
clip_value (optional): if the recurrent values grow above this value,
clip them.
input_collections (optional): List of additonal collections variables
that input->rec weights should belong to.
recurrent_collections (optional): List of additonal collections variables
that rec->rec weights should belong to.'
| def __init__(self, num_units, forget_bias=1.0, input_weight_scale=1.0, rec_weight_scale=1.0, clip_value=np.inf, input_collections=None, recurrent_collections=None):
| self._num_units = num_units
self._forget_bias = forget_bias
self._input_weight_scale = input_weight_scale
self._rec_weight_scale = rec_weight_scale
self._clip_value = clip_value
self._input_collections = input_collections
self._rec_collections = recurrent_collections
|
'Return the output portion of the state.'
| def output_from_state(self, state):
| return state
|
'Gated recurrent unit (GRU) function.
Args:
inputs: A 2D batch x input_dim tensor of inputs.
state: The previous state from the last time step.
scope (optional): TF variable scope for defined GRU variables.
Returns:
A tuple (state, state), where state is the newly computed state at time t.
It is returned twice to respect an interface that works for LSTMs.'
| def __call__(self, inputs, state, scope=None):
| x = inputs
h = state
with tf.variable_scope((scope or type(self).__name__)):
with tf.variable_scope('Gates'):
r_x = u_x = 0.0
if (x is not None):
(r_x, u_x) = tf.split(axis=1, num_or_size_splits=2, value=linear(x, (2 * self._num_units), alpha=self._input_weight_scale, do_bias=False, name='x_2_ru', normalized=False, collections=self._input_collections))
(r_h, u_h) = tf.split(axis=1, num_or_size_splits=2, value=linear(h, (2 * self._num_units), do_bias=True, alpha=self._rec_weight_scale, name='h_2_ru', collections=self._rec_collections))
r = (r_x + r_h)
u = (u_x + u_h)
(r, u) = (tf.sigmoid(r), tf.sigmoid((u + self._forget_bias)))
with tf.variable_scope('Candidate'):
c_x = 0.0
if (x is not None):
c_x = linear(x, self._num_units, name='x_2_c', do_bias=False, alpha=self._input_weight_scale, normalized=False, collections=self._input_collections)
c_rh = linear((r * h), self._num_units, name='rh_2_c', do_bias=True, alpha=self._rec_weight_scale, collections=self._rec_collections)
c = tf.tanh((c_x + c_rh))
new_h = ((u * h) + ((1 - u) * c))
new_h = tf.clip_by_value(new_h, (- self._clip_value), self._clip_value)
return (new_h, new_h)
|
'Create an LFADS model.
train - a model for training, sampling of posteriors is used
posterior_sample_and_average - sample from the posterior, this is used
for evaluating the expected value of the outputs of LFADS, given a
specific input, by averaging over multiple samples from the approx
posterior. Also used for the lower bound on the negative
log-likelihood using IWAE error (Importance Weighed Auto-encoder).
This is the denoising operation.
prior_sample - a model for generation - sampling from priors is used
Args:
hps: The dictionary of hyper parameters.
kind: the type of model to build (see above).
datasets: a dictionary of named data_dictionaries, see top of lfads.py'
| def __init__(self, hps, kind='train', datasets=None):
| print('Building graph...')
all_kinds = ['train', 'posterior_sample_and_average', 'prior_sample']
assert (kind in all_kinds), 'Wrong kind'
if (hps.feedback_factors_or_rates == 'rates'):
assert (len(hps.dataset_names) == 1), 'Multiple datasets not supported for rate feedback.'
num_steps = hps.num_steps
ic_dim = hps.ic_dim
co_dim = hps.co_dim
ext_input_dim = hps.ext_input_dim
cell_class = GRU
gen_cell_class = GenGRU
def makelambda(v):
return (lambda : v)
self.dataName = tf.placeholder(tf.string, shape=())
if (hps.output_dist == 'poisson'):
assert np.issubdtype(datasets[hps.dataset_names[0]]['train_data'].dtype, int), 'Data dtype must be int for poisson output distribution'
data_dtype = tf.int32
elif (hps.output_dist == 'gaussian'):
assert np.issubdtype(datasets[hps.dataset_names[0]]['train_data'].dtype, float), 'Data dtype must be float for gaussian output dsitribution'
data_dtype = tf.float32
else:
assert False, 'NIY'
self.dataset_ph = dataset_ph = tf.placeholder(data_dtype, [None, num_steps, None], name='data')
self.train_step = tf.get_variable('global_step', [], tf.int64, tf.zeros_initializer(), trainable=False)
self.hps = hps
ndatasets = hps.ndatasets
factors_dim = hps.factors_dim
self.preds = preds = ([None] * ndatasets)
self.fns_in_fac_Ws = fns_in_fac_Ws = ([None] * ndatasets)
self.fns_in_fatcor_bs = fns_in_fac_bs = ([None] * ndatasets)
self.fns_out_fac_Ws = fns_out_fac_Ws = ([None] * ndatasets)
self.fns_out_fac_bs = fns_out_fac_bs = ([None] * ndatasets)
self.datasetNames = dataset_names = hps.dataset_names
self.ext_inputs = ext_inputs = None
if (len(dataset_names) == 1):
if ('alignment_matrix_cxf' in datasets[dataset_names[0]].keys()):
used_in_factors_dim = factors_dim
in_identity_if_poss = False
else:
used_in_factors_dim = hps.dataset_dims[dataset_names[0]]
in_identity_if_poss = True
else:
used_in_factors_dim = factors_dim
in_identity_if_poss = False
for (d, name) in enumerate(dataset_names):
data_dim = hps.dataset_dims[name]
in_mat_cxf = None
in_bias_1xf = None
align_bias_1xc = None
if (datasets and ('alignment_matrix_cxf' in datasets[name].keys())):
dataset = datasets[name]
print('Using alignment matrix provided for dataset:', name)
in_mat_cxf = dataset['alignment_matrix_cxf'].astype(np.float32)
if (in_mat_cxf.shape != (data_dim, factors_dim)):
raise ValueError(('Alignment matrix must have dimensions %d x %d\n (data_dim x factors_dim), but currently has %d x %d.' % (data_dim, factors_dim, in_mat_cxf.shape[0], in_mat_cxf.shape[1])))
if (datasets and ('alignment_bias_c' in datasets[name].keys())):
dataset = datasets[name]
print('Using alignment bias provided for dataset:', name)
align_bias_c = dataset['alignment_bias_c'].astype(np.float32)
align_bias_1xc = np.expand_dims(align_bias_c, axis=0)
if (align_bias_1xc.shape[1] != data_dim):
raise ValueError(('Alignment bias must have dimensions %d\n (data_dim), but currently has %d.' % (data_dim, in_mat_cxf.shape[0])))
if ((in_mat_cxf is not None) and (align_bias_1xc is not None)):
in_bias_1xf = (- np.dot(align_bias_1xc, in_mat_cxf))
in_fac_lin = init_linear(data_dim, used_in_factors_dim, do_bias=True, mat_init_value=in_mat_cxf, bias_init_value=in_bias_1xf, identity_if_possible=in_identity_if_poss, normalized=False, name=('x_2_infac_' + name), collections=['IO_transformations'])
(in_fac_W, in_fac_b) = in_fac_lin
fns_in_fac_Ws[d] = makelambda(in_fac_W)
fns_in_fac_bs[d] = makelambda(in_fac_b)
with tf.variable_scope('glm'):
out_identity_if_poss = False
if ((len(dataset_names) == 1) and (factors_dim == hps.dataset_dims[dataset_names[0]])):
out_identity_if_poss = True
for (d, name) in enumerate(dataset_names):
data_dim = hps.dataset_dims[name]
in_mat_cxf = None
if (datasets and ('alignment_matrix_cxf' in datasets[name].keys())):
dataset = datasets[name]
in_mat_cxf = dataset['alignment_matrix_cxf'].astype(np.float32)
if (datasets and ('alignment_bias_c' in datasets[name].keys())):
dataset = datasets[name]
align_bias_c = dataset['alignment_bias_c'].astype(np.float32)
align_bias_1xc = np.expand_dims(align_bias_c, axis=0)
out_mat_fxc = None
out_bias_1xc = None
if (in_mat_cxf is not None):
out_mat_fxc = np.linalg.pinv(in_mat_cxf)
if (align_bias_1xc is not None):
out_bias_1xc = align_bias_1xc
if (hps.output_dist == 'poisson'):
out_fac_lin = init_linear(factors_dim, data_dim, do_bias=True, mat_init_value=out_mat_fxc, bias_init_value=out_bias_1xc, identity_if_possible=out_identity_if_poss, normalized=False, name=('fac_2_logrates_' + name), collections=['IO_transformations'])
(out_fac_W, out_fac_b) = out_fac_lin
elif (hps.output_dist == 'gaussian'):
out_fac_lin_mean = init_linear(factors_dim, data_dim, do_bias=True, mat_init_value=out_mat_fxc, bias_init_value=out_bias_1xc, normalized=False, name=('fac_2_means_' + name), collections=['IO_transformations'])
(out_fac_W_mean, out_fac_b_mean) = out_fac_lin_mean
mat_init_value = np.zeros([factors_dim, data_dim]).astype(np.float32)
bias_init_value = np.ones([1, data_dim]).astype(np.float32)
out_fac_lin_logvar = init_linear(factors_dim, data_dim, do_bias=True, mat_init_value=mat_init_value, bias_init_value=bias_init_value, normalized=False, name=('fac_2_logvars_' + name), collections=['IO_transformations'])
(out_fac_W_mean, out_fac_b_mean) = out_fac_lin_mean
(out_fac_W_logvar, out_fac_b_logvar) = out_fac_lin_logvar
out_fac_W = tf.concat(axis=1, values=[out_fac_W_mean, out_fac_W_logvar])
out_fac_b = tf.concat(axis=1, values=[out_fac_b_mean, out_fac_b_logvar])
else:
assert False, 'NIY'
preds[d] = tf.equal(tf.constant(name), self.dataName)
data_dim = hps.dataset_dims[name]
fns_out_fac_Ws[d] = makelambda(out_fac_W)
fns_out_fac_bs[d] = makelambda(out_fac_b)
pf_pairs_in_fac_Ws = zip(preds, fns_in_fac_Ws)
pf_pairs_in_fac_bs = zip(preds, fns_in_fac_bs)
pf_pairs_out_fac_Ws = zip(preds, fns_out_fac_Ws)
pf_pairs_out_fac_bs = zip(preds, fns_out_fac_bs)
def _case_with_no_default(pairs):
def _default_value_fn():
with tf.control_dependencies([tf.Assert(False, ['Reached default'])]):
return tf.identity(pairs[0][1]())
return tf.case(pairs, _default_value_fn, exclusive=True)
this_in_fac_W = _case_with_no_default(pf_pairs_in_fac_Ws)
this_in_fac_b = _case_with_no_default(pf_pairs_in_fac_bs)
this_out_fac_W = _case_with_no_default(pf_pairs_out_fac_Ws)
this_out_fac_b = _case_with_no_default(pf_pairs_out_fac_bs)
if (hps.ext_input_dim > 0):
self.ext_input = tf.placeholder(tf.float32, [None, num_steps, ext_input_dim], name='ext_input')
else:
self.ext_input = None
ext_input_bxtxi = self.ext_input
self.keep_prob = keep_prob = tf.placeholder(tf.float32, [], 'keep_prob')
self.batch_size = batch_size = int(hps.batch_size)
self.learning_rate = tf.Variable(float(hps.learning_rate_init), trainable=False, name='learning_rate')
self.learning_rate_decay_op = self.learning_rate.assign((self.learning_rate * hps.learning_rate_decay_factor))
dataset_do_bxtxd = tf.nn.dropout(tf.to_float(dataset_ph), keep_prob)
if (hps.ext_input_dim > 0):
ext_input_do_bxtxi = tf.nn.dropout(ext_input_bxtxi, keep_prob)
else:
ext_input_do_bxtxi = None
def encode_data(dataset_bxtxd, enc_cell, name, forward_or_reverse, num_steps_to_encode):
'Encode data for LFADS\n Args:\n dataset_bxtxd - the data to encode, as a 3 tensor, with dims\n time x batch x data dims.\n enc_cell: encoder cell\n name: name of encoder\n forward_or_reverse: string, encode in forward or reverse direction\n num_steps_to_encode: number of steps to encode, 0:num_steps_to_encode\n Returns:\n encoded data as a list with num_steps_to_encode items, in order\n '
if (forward_or_reverse == 'forward'):
dstr = '_fwd'
time_fwd_or_rev = range(num_steps_to_encode)
else:
dstr = '_rev'
time_fwd_or_rev = reversed(range(num_steps_to_encode))
with tf.variable_scope(((name + '_enc') + dstr), reuse=False):
enc_state = tf.tile(tf.Variable(tf.zeros([1, enc_cell.state_size]), name=((name + '_enc_t0') + dstr)), tf.stack([batch_size, 1]))
enc_state.set_shape([None, enc_cell.state_size])
enc_outs = ([None] * num_steps_to_encode)
for (i, t) in enumerate(time_fwd_or_rev):
with tf.variable_scope(((name + '_enc') + dstr), reuse=(True if (i > 0) else None)):
dataset_t_bxd = dataset_bxtxd[:, t, :]
in_fac_t_bxf = (tf.matmul(dataset_t_bxd, this_in_fac_W) + this_in_fac_b)
in_fac_t_bxf.set_shape([None, used_in_factors_dim])
if ((ext_input_dim > 0) and (not hps.inject_ext_input_to_gen)):
ext_input_t_bxi = ext_input_do_bxtxi[:, t, :]
enc_input_t_bxfpe = tf.concat(axis=1, values=[in_fac_t_bxf, ext_input_t_bxi])
else:
enc_input_t_bxfpe = in_fac_t_bxf
(enc_out, enc_state) = enc_cell(enc_input_t_bxfpe, enc_state)
enc_outs[t] = enc_out
return enc_outs
self.ic_enc_fwd = ([None] * num_steps)
self.ic_enc_rev = ([None] * num_steps)
if (ic_dim > 0):
enc_ic_cell = cell_class(hps.ic_enc_dim, weight_scale=hps.cell_weight_scale, clip_value=hps.cell_clip_value)
ic_enc_fwd = encode_data(dataset_do_bxtxd, enc_ic_cell, 'ic', 'forward', hps.num_steps_for_gen_ic)
ic_enc_rev = encode_data(dataset_do_bxtxd, enc_ic_cell, 'ic', 'reverse', hps.num_steps_for_gen_ic)
self.ic_enc_fwd = ic_enc_fwd
self.ic_enc_rev = ic_enc_rev
self.ci_enc_fwd = ([None] * num_steps)
self.ci_enc_rev = ([None] * num_steps)
if (co_dim > 0):
enc_ci_cell = cell_class(hps.ci_enc_dim, weight_scale=hps.cell_weight_scale, clip_value=hps.cell_clip_value)
ci_enc_fwd = encode_data(dataset_do_bxtxd, enc_ci_cell, 'ci', 'forward', hps.num_steps)
if hps.do_causal_controller:
ci_enc_rev = None
else:
ci_enc_rev = encode_data(dataset_do_bxtxd, enc_ci_cell, 'ci', 'reverse', hps.num_steps)
self.ci_enc_fwd = ci_enc_fwd
self.ci_enc_rev = ci_enc_rev
with tf.variable_scope('z', reuse=False):
self.prior_zs_g0 = None
self.posterior_zs_g0 = None
self.g0s_val = None
if (ic_dim > 0):
self.prior_zs_g0 = LearnableDiagonalGaussian(batch_size, ic_dim, name='prior_g0', mean_init=0.0, var_min=hps.ic_prior_var_min, var_init=hps.ic_prior_var_scale, var_max=hps.ic_prior_var_max)
ic_enc = tf.concat(axis=1, values=[ic_enc_fwd[(-1)], ic_enc_rev[0]])
ic_enc = tf.nn.dropout(ic_enc, keep_prob)
self.posterior_zs_g0 = DiagonalGaussianFromInput(ic_enc, ic_dim, 'ic_enc_2_post_g0', var_min=hps.ic_post_var_min)
if (kind in ['train', 'posterior_sample_and_average']):
zs_g0 = self.posterior_zs_g0
else:
zs_g0 = self.prior_zs_g0
if (kind in ['train', 'posterior_sample_and_average', 'prior_sample']):
self.g0s_val = zs_g0.sample
else:
self.g0s_val = zs_g0.mean
self.prior_zs_co = prior_zs_co = ([None] * num_steps)
self.posterior_zs_co = posterior_zs_co = ([None] * num_steps)
self.zs_co = zs_co = ([None] * num_steps)
self.prior_zs_ar_con = None
if (co_dim > 0):
autocorrelation_taus = [hps.prior_ar_atau for x in range(hps.co_dim)]
noise_variances = [hps.prior_ar_nvar for x in range(hps.co_dim)]
self.prior_zs_ar_con = prior_zs_ar_con = LearnableAutoRegressive1Prior(batch_size, hps.co_dim, autocorrelation_taus, noise_variances, hps.do_train_prior_ar_atau, hps.do_train_prior_ar_nvar, num_steps, 'u_prior_ar1')
self.controller_outputs = u_t = ([None] * num_steps)
self.con_ics = con_state = None
self.con_states = con_states = ([None] * num_steps)
self.con_outs = con_outs = ([None] * num_steps)
self.gen_inputs = gen_inputs = ([None] * num_steps)
if (co_dim > 0):
con_cell = gen_cell_class(hps.con_dim, input_weight_scale=hps.cell_weight_scale, rec_weight_scale=hps.cell_weight_scale, clip_value=hps.cell_clip_value, recurrent_collections=['l2_con_reg'])
with tf.variable_scope('con', reuse=False):
self.con_ics = tf.tile(tf.Variable(tf.zeros([1, (hps.con_dim * con_cell.state_multiplier)]), name='c0'), tf.stack([batch_size, 1]))
self.con_ics.set_shape([None, con_cell.state_size])
con_states[(-1)] = self.con_ics
gen_cell = gen_cell_class(hps.gen_dim, input_weight_scale=hps.gen_cell_input_weight_scale, rec_weight_scale=hps.gen_cell_rec_weight_scale, clip_value=hps.cell_clip_value, recurrent_collections=['l2_gen_reg'])
with tf.variable_scope('gen', reuse=False):
if (ic_dim == 0):
self.gen_ics = tf.tile(tf.Variable(tf.zeros([1, gen_cell.state_size]), name='g0'), tf.stack([batch_size, 1]))
else:
self.gen_ics = linear(self.g0s_val, gen_cell.state_size, identity_if_possible=True, name='g0_2_gen_ic')
self.gen_states = gen_states = ([None] * num_steps)
self.gen_outs = gen_outs = ([None] * num_steps)
gen_states[(-1)] = self.gen_ics
gen_outs[(-1)] = gen_cell.output_from_state(gen_states[(-1)])
self.factors = factors = ([None] * num_steps)
factors[(-1)] = linear(gen_outs[(-1)], factors_dim, do_bias=False, normalized=True, name='gen_2_fac')
self.rates = rates = ([None] * num_steps)
with tf.variable_scope('glm', reuse=False):
if (hps.output_dist == 'poisson'):
log_rates_t0 = (tf.matmul(factors[(-1)], this_out_fac_W) + this_out_fac_b)
log_rates_t0.set_shape([None, None])
rates[(-1)] = tf.exp(log_rates_t0)
rates[(-1)].set_shape([None, hps.dataset_dims[hps.dataset_names[0]]])
elif (hps.output_dist == 'gaussian'):
mean_n_logvars = (tf.matmul(factors[(-1)], this_out_fac_W) + this_out_fac_b)
mean_n_logvars.set_shape([None, None])
(means_t_bxd, logvars_t_bxd) = tf.split(axis=1, num_or_size_splits=2, value=mean_n_logvars)
rates[(-1)] = means_t_bxd
else:
assert False, 'NIY'
self.output_dist_params = dist_params = ([None] * num_steps)
self.log_p_xgz_b = log_p_xgz_b = 0.0
for t in range(num_steps):
if (co_dim > 0):
tlag = (t - hps.controller_input_lag)
if (tlag < 0):
con_in_f_t = tf.zeros_like(ci_enc_fwd[0])
else:
con_in_f_t = ci_enc_fwd[tlag]
if hps.do_causal_controller:
con_in_list_t = [con_in_f_t]
else:
tlag_rev = (t + hps.controller_input_lag)
if (tlag_rev >= num_steps):
con_in_r_t = tf.zeros_like(ci_enc_rev[0])
else:
con_in_r_t = ci_enc_rev[tlag_rev]
con_in_list_t = [con_in_f_t, con_in_r_t]
if hps.do_feed_factors_to_controller:
if (hps.feedback_factors_or_rates == 'factors'):
con_in_list_t.append(factors[(t - 1)])
elif (hps.feedback_factors_or_rates == 'rates'):
con_in_list_t.append(rates[(t - 1)])
else:
assert False, 'NIY'
con_in_t = tf.concat(axis=1, values=con_in_list_t)
con_in_t = tf.nn.dropout(con_in_t, keep_prob)
with tf.variable_scope('con', reuse=(True if (t > 0) else None)):
(con_outs[t], con_states[t]) = con_cell(con_in_t, con_states[(t - 1)])
posterior_zs_co[t] = DiagonalGaussianFromInput(con_outs[t], co_dim, name='con_to_post_co')
if (kind == 'train'):
u_t[t] = posterior_zs_co[t].sample
elif (kind == 'posterior_sample_and_average'):
u_t[t] = posterior_zs_co[t].sample
else:
u_t[t] = prior_zs_ar_con.samples_t[t]
if ((ext_input_dim > 0) and hps.inject_ext_input_to_gen):
ext_input_t_bxi = ext_input_do_bxtxi[:, t, :]
if (co_dim > 0):
gen_inputs[t] = tf.concat(axis=1, values=[u_t[t], ext_input_t_bxi])
else:
gen_inputs[t] = ext_input_t_bxi
else:
gen_inputs[t] = u_t[t]
data_t_bxd = dataset_ph[:, t, :]
with tf.variable_scope('gen', reuse=(True if (t > 0) else None)):
(gen_outs[t], gen_states[t]) = gen_cell(gen_inputs[t], gen_states[(t - 1)])
gen_outs[t] = tf.nn.dropout(gen_outs[t], keep_prob)
with tf.variable_scope('gen', reuse=True):
factors[t] = linear(gen_outs[t], factors_dim, do_bias=False, normalized=True, name='gen_2_fac')
with tf.variable_scope('glm', reuse=(True if (t > 0) else None)):
if (hps.output_dist == 'poisson'):
log_rates_t = (tf.matmul(factors[t], this_out_fac_W) + this_out_fac_b)
log_rates_t.set_shape([None, None])
rates[t] = dist_params[t] = tf.exp(log_rates_t)
rates[t].set_shape([None, hps.dataset_dims[hps.dataset_names[0]]])
loglikelihood_t = Poisson(log_rates_t).logp(data_t_bxd)
elif (hps.output_dist == 'gaussian'):
mean_n_logvars = (tf.matmul(factors[t], this_out_fac_W) + this_out_fac_b)
mean_n_logvars.set_shape([None, None])
(means_t_bxd, logvars_t_bxd) = tf.split(axis=1, num_or_size_splits=2, value=mean_n_logvars)
rates[t] = means_t_bxd
dist_params[t] = tf.concat(axis=1, values=[means_t_bxd, tf.exp(logvars_t_bxd)])
loglikelihood_t = diag_gaussian_log_likelihood(data_t_bxd, means_t_bxd, logvars_t_bxd)
else:
assert False, 'NIY'
log_p_xgz_b += tf.reduce_sum(loglikelihood_t, [1])
self.corr_cost = tf.constant(0.0)
if (hps.co_mean_corr_scale > 0.0):
all_sum_corr = []
for i in range(hps.co_dim):
for j in range((i + 1), hps.co_dim):
sum_corr_ij = tf.constant(0.0)
for t in range(num_steps):
u_mean_t = posterior_zs_co[t].mean
sum_corr_ij += (u_mean_t[:, i] * u_mean_t[:, j])
all_sum_corr.append((0.5 * tf.square(sum_corr_ij)))
self.corr_cost = tf.reduce_mean(all_sum_corr)
kl_cost_g0_b = tf.zeros_like(batch_size, dtype=tf.float32)
kl_cost_co_b = tf.zeros_like(batch_size, dtype=tf.float32)
self.kl_cost = tf.constant(0.0)
self.recon_cost = tf.constant(0.0)
self.nll_bound_vae = tf.constant(0.0)
self.nll_bound_iwae = tf.constant(0.0)
if (kind in ['train', 'posterior_sample_and_average']):
kl_cost_g0_b = 0.0
kl_cost_co_b = 0.0
if (ic_dim > 0):
g0_priors = [self.prior_zs_g0]
g0_posts = [self.posterior_zs_g0]
kl_cost_g0_b = KLCost_GaussianGaussian(g0_posts, g0_priors).kl_cost_b
kl_cost_g0_b = (hps.kl_ic_weight * kl_cost_g0_b)
if (co_dim > 0):
kl_cost_co_b = KLCost_GaussianGaussianProcessSampled(posterior_zs_co, prior_zs_ar_con).kl_cost_b
kl_cost_co_b = (hps.kl_co_weight * kl_cost_co_b)
self.recon_cost = (- tf.reduce_mean(log_p_xgz_b))
self.kl_cost = tf.reduce_mean((kl_cost_g0_b + kl_cost_co_b))
lb_on_ll_b = ((log_p_xgz_b - kl_cost_g0_b) - kl_cost_co_b)
self.nll_bound_vae = (- tf.reduce_mean(lb_on_ll_b))
k = tf.cast(tf.shape(log_p_xgz_b)[0], tf.float32)
iwae_lb_on_ll = ((- tf.log(k)) + log_sum_exp(lb_on_ll_b))
self.nll_bound_iwae = (- iwae_lb_on_ll)
self.l2_cost = tf.constant(0.0)
if ((self.hps.l2_gen_scale > 0.0) or (self.hps.l2_con_scale > 0.0)):
l2_costs = []
l2_numels = []
l2_reg_var_lists = [tf.get_collection('l2_gen_reg'), tf.get_collection('l2_con_reg')]
l2_reg_scales = [self.hps.l2_gen_scale, self.hps.l2_con_scale]
for (l2_reg_vars, l2_scale) in zip(l2_reg_var_lists, l2_reg_scales):
for v in l2_reg_vars:
numel = tf.reduce_prod(tf.concat(axis=0, values=tf.shape(v)))
numel_f = tf.cast(numel, tf.float32)
l2_numels.append(numel_f)
v_l2 = tf.reduce_sum((v * v))
l2_costs.append(((0.5 * l2_scale) * v_l2))
self.l2_cost = (tf.add_n(l2_costs) / tf.add_n(l2_numels))
self.kl_decay_step = tf.maximum((self.train_step - hps.kl_start_step), 0)
self.l2_decay_step = tf.maximum((self.train_step - hps.l2_start_step), 0)
kl_decay_step_f = tf.cast(self.kl_decay_step, tf.float32)
l2_decay_step_f = tf.cast(self.l2_decay_step, tf.float32)
kl_increase_steps_f = tf.cast(hps.kl_increase_steps, tf.float32)
l2_increase_steps_f = tf.cast(hps.l2_increase_steps, tf.float32)
self.kl_weight = kl_weight = tf.minimum((kl_decay_step_f / kl_increase_steps_f), 1.0)
self.l2_weight = l2_weight = tf.minimum((l2_decay_step_f / l2_increase_steps_f), 1.0)
self.timed_kl_cost = (kl_weight * self.kl_cost)
self.timed_l2_cost = (l2_weight * self.l2_cost)
self.weight_corr_cost = (hps.co_mean_corr_scale * self.corr_cost)
self.cost = (((self.recon_cost + self.timed_kl_cost) + self.timed_l2_cost) + self.weight_corr_cost)
if (kind != 'train'):
self.seso_saver = tf.train.Saver(tf.global_variables(), max_to_keep=hps.max_ckpt_to_keep)
self.lve_saver = tf.train.Saver(tf.global_variables(), max_to_keep=hps.max_ckpt_to_keep_lve)
return
if (not self.hps.do_train_io_only):
self.train_vars = tvars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=tf.get_variable_scope().name)
else:
self.train_vars = tvars = tf.get_collection('IO_transformations', scope=tf.get_variable_scope().name)
print('done.')
print('Model Variables (to be optimized): ')
total_params = 0
for i in range(len(tvars)):
shape = tvars[i].get_shape().as_list()
print(' ', i, tvars[i].name, shape)
total_params += np.prod(shape)
print('Total model parameters: ', total_params)
grads = tf.gradients(self.cost, tvars)
(grads, grad_global_norm) = tf.clip_by_global_norm(grads, hps.max_grad_norm)
opt = tf.train.AdamOptimizer(self.learning_rate, beta1=0.9, beta2=0.999, epsilon=0.1)
self.grads = grads
self.grad_global_norm = grad_global_norm
self.train_op = opt.apply_gradients(zip(grads, tvars), global_step=self.train_step)
self.seso_saver = tf.train.Saver(tf.global_variables(), max_to_keep=hps.max_ckpt_to_keep)
self.lve_saver = tf.train.Saver(tf.global_variables(), max_to_keep=hps.max_ckpt_to_keep)
self.example_image = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='image_tensor')
self.example_summ = tf.summary.image('LFADS example', self.example_image, collections=['example_summaries'])
self.lr_summ = tf.summary.scalar('Learning rate', self.learning_rate)
self.kl_weight_summ = tf.summary.scalar('KL weight', self.kl_weight)
self.l2_weight_summ = tf.summary.scalar('L2 weight', self.l2_weight)
self.corr_cost_summ = tf.summary.scalar('Corr cost', self.weight_corr_cost)
self.grad_global_norm_summ = tf.summary.scalar('Gradient global norm', self.grad_global_norm)
if (hps.co_dim > 0):
self.atau_summ = ([None] * hps.co_dim)
self.pvar_summ = ([None] * hps.co_dim)
for c in range(hps.co_dim):
self.atau_summ[c] = tf.summary.scalar(('AR Autocorrelation taus ' + str(c)), tf.exp(self.prior_zs_ar_con.logataus_1xu[(0, c)]))
self.pvar_summ[c] = tf.summary.scalar(('AR Variances ' + str(c)), tf.exp(self.prior_zs_ar_con.logpvars_1xu[(0, c)]))
kl_cost_ph = tf.placeholder(tf.float32, shape=[], name='kl_cost_ph')
self.kl_t_cost_summ = tf.summary.scalar('KL cost (train)', kl_cost_ph, collections=['train_summaries'])
self.kl_v_cost_summ = tf.summary.scalar('KL cost (valid)', kl_cost_ph, collections=['valid_summaries'])
l2_cost_ph = tf.placeholder(tf.float32, shape=[], name='l2_cost_ph')
self.l2_cost_summ = tf.summary.scalar('L2 cost', l2_cost_ph, collections=['train_summaries'])
recon_cost_ph = tf.placeholder(tf.float32, shape=[], name='recon_cost_ph')
self.recon_t_cost_summ = tf.summary.scalar('Reconstruction cost (train)', recon_cost_ph, collections=['train_summaries'])
self.recon_v_cost_summ = tf.summary.scalar('Reconstruction cost (valid)', recon_cost_ph, collections=['valid_summaries'])
total_cost_ph = tf.placeholder(tf.float32, shape=[], name='total_cost_ph')
self.cost_t_summ = tf.summary.scalar('Total cost (train)', total_cost_ph, collections=['train_summaries'])
self.cost_v_summ = tf.summary.scalar('Total cost (valid)', total_cost_ph, collections=['valid_summaries'])
self.kl_cost_ph = kl_cost_ph
self.l2_cost_ph = l2_cost_ph
self.recon_cost_ph = recon_cost_ph
self.total_cost_ph = total_cost_ph
self.merged_examples = tf.summary.merge_all(key='example_summaries')
self.merged_generic = tf.summary.merge_all()
self.merged_train = tf.summary.merge_all(key='train_summaries')
self.merged_valid = tf.summary.merge_all(key='valid_summaries')
session = tf.get_default_session()
self.logfile = os.path.join(hps.lfads_save_dir, 'lfads_log')
self.writer = tf.summary.FileWriter(self.logfile)
|
'Build the feed dictionary, handles cases where there is no value defined.
Args:
train_name: The key into the datasets, to set the tf.case statement for
the proper readin / readout matrices.
data_bxtxd: The data tensor
ext_input_bxtxi (optional): The external input tensor
keep_prob: The drop out keep probability.
Returns:
The feed dictionary with TF tensors as keys and data as values, for use
with tf.Session.run()'
| def build_feed_dict(self, train_name, data_bxtxd, ext_input_bxtxi=None, keep_prob=None):
| feed_dict = {}
(B, T, _) = data_bxtxd.shape
feed_dict[self.dataName] = train_name
feed_dict[self.dataset_ph] = data_bxtxd
if ((self.ext_input is not None) and (ext_input_bxtxi is not None)):
feed_dict[self.ext_input] = ext_input_bxtxi
if (keep_prob is None):
feed_dict[self.keep_prob] = self.hps.keep_prob
else:
feed_dict[self.keep_prob] = keep_prob
return feed_dict
|
'Get a batch of data, either randomly chosen, or specified directly.
Args:
data_extxd: The data to model, numpy tensors with shape:
# examples x # time steps x # dimensions
ext_input_extxi (optional): The external inputs, numpy tensor with shape:
# examples x # time steps x # external input dimensions
batch_size: The size of the batch to return
example_idxs (optional): The example indices used to select examples.
Returns:
A tuple with two parts:
1. Batched data numpy tensor with shape:
batch_size x # time steps x # dimensions
2. Batched external input numpy tensor with shape:
batch_size x # time steps x # external input dims'
| @staticmethod
def get_batch(data_extxd, ext_input_extxi=None, batch_size=None, example_idxs=None):
| assert ((batch_size is not None) or (example_idxs is not None)), 'Problems'
(E, T, D) = data_extxd.shape
if (example_idxs is None):
example_idxs = np.random.choice(E, batch_size)
ext_input_bxtxi = None
if (ext_input_extxi is not None):
ext_input_bxtxi = ext_input_extxi[example_idxs, :, :]
return (data_extxd[example_idxs, :, :], ext_input_bxtxi)
|
'Given a number of examples, E, and a batch_size, B, generate indices
[0, 1, 2, ... B-1;
[B, B+1, ... 2*B-1;
returning those indices as a 2-dim tensor shaped like E/B x B. Note that
shape is only correct if E % B == 0. If not, then an extra row is generated
so that the remainder of examples is included. The extra examples are
explicitly to to the zero index (see randomize_example_idxs_mod_batch_size)
for randomized behavior.
Args:
nexamples: The number of examples to batch up.
batch_size: The size of the batch.
Returns:
2-dim tensor as described above.'
| @staticmethod
def example_idxs_mod_batch_size(nexamples, batch_size):
| bmrem = (batch_size - (nexamples % batch_size))
bmrem_examples = []
if (bmrem < batch_size):
ridxs = np.random.permutation(nexamples)[0:bmrem].astype(np.int32)
bmrem_examples = np.sort(ridxs)
example_idxs = (range(nexamples) + list(bmrem_examples))
example_idxs_e_x_edivb = np.reshape(example_idxs, [(-1), batch_size])
return (example_idxs_e_x_edivb, bmrem)
|
'Indices 1:nexamples, randomized, in 2D form of
shape = (nexamples / batch_size) x batch_size. The remainder
is managed by drawing randomly from 1:nexamples.
Args:
nexamples: number of examples to randomize
batch_size: number of elements in batch
Returns:
The randomized, properly shaped indicies.'
| @staticmethod
def randomize_example_idxs_mod_batch_size(nexamples, batch_size):
| assert (nexamples > batch_size), 'Problems'
bmrem = (batch_size - (nexamples % batch_size))
bmrem_examples = []
if (bmrem < batch_size):
bmrem_examples = np.random.choice(range(nexamples), size=bmrem, replace=False)
example_idxs = (range(nexamples) + list(bmrem_examples))
mixed_example_idxs = np.random.permutation(example_idxs)
example_idxs_e_x_edivb = np.reshape(mixed_example_idxs, [(-1), batch_size])
return (example_idxs_e_x_edivb, bmrem)
|
'Shuffle the spikes in the temporal dimension. This is useful to
help the LFADS system avoid overfitting to individual spikes or fast
oscillations found in the data that are irrelevant to behavior. A
pure \'tabula rasa\' approach would avoid this, but LFADS is sensitive
enough to pick up dynamics that you may not want.
Args:
data_bxtxd: numpy array of spike count data to be shuffled.
Returns:
S_bxtxd, a numpy array with the same dimensions and contents as
data_bxtxd, but shuffled appropriately.'
| def shuffle_spikes_in_time(self, data_bxtxd):
| (B, T, N) = data_bxtxd.shape
w = self.hps.temporal_spike_jitter_width
if (w == 0):
return data_bxtxd
max_counts = np.max(data_bxtxd)
S_bxtxd = np.zeros([B, T, N])
for mc in range(1, (max_counts + 1)):
idxs = np.nonzero((data_bxtxd >= mc))
data_ones = np.zeros_like(data_bxtxd)
data_ones[(data_bxtxd >= mc)] = 1
nfound = len(idxs[0])
shuffles_incrs_in_time = np.random.randint((- w), w, size=nfound)
shuffle_tidxs = idxs[1].copy()
shuffle_tidxs += shuffles_incrs_in_time
shuffle_tidxs[(shuffle_tidxs < 0)] = (- shuffle_tidxs[(shuffle_tidxs < 0)])
shuffle_tidxs[(shuffle_tidxs > (T - 1))] = ((T - 1) - (shuffle_tidxs[(shuffle_tidxs > (T - 1))] - (T - 1)))
for iii in zip(idxs[0], shuffle_tidxs, idxs[2]):
S_bxtxd[iii] += 1
return S_bxtxd
|
'Since LFADS supports multiple datasets in the same dynamical model,
we have to be careful to use all the data in a single training epoch. But
since the datasets my have different data dimensionality, we cannot batch
examples from data dictionaries together. Instead, we generate random
batches within each data dictionary, and then randomize these batches
while holding onto the dataname, so that when it\'s time to feed
the graph, the correct in/out matrices can be selected, per batch.
Args:
datasets: A dict of data dicts. The dataset dict is simply a
name(string)-> data dictionary mapping (See top of lfads.py).
kind: \'train\' or \'valid\'
Returns:
A flat list, in which each element is a pair (\'name\', indices).'
| def shuffle_and_flatten_datasets(self, datasets, kind='train'):
| batch_size = self.hps.batch_size
ndatasets = len(datasets)
random_example_idxs = {}
epoch_idxs = {}
all_name_example_idx_pairs = []
kind_data = (kind + '_data')
for (name, data_dict) in datasets.items():
(nexamples, ntime, data_dim) = data_dict[kind_data].shape
epoch_idxs[name] = 0
(random_example_idxs, _) = self.randomize_example_idxs_mod_batch_size(nexamples, batch_size)
epoch_size = random_example_idxs.shape[0]
names = ([name] * epoch_size)
all_name_example_idx_pairs += zip(names, random_example_idxs)
np.random.shuffle(all_name_example_idx_pairs)
return all_name_example_idx_pairs
|
'Train the model through the entire dataset once.
Args:
datasets: A dict of data dicts. The dataset dict is simply a
name(string)-> data dictionary mapping (See top of lfads.py).
batch_size (optional): The batch_size to use
do_save_ckpt (optional): Should the routine save a checkpoint on this
training epoch?
Returns:
A tuple with 6 float values:
(total cost of the epoch, epoch reconstruction cost,
epoch kl cost, KL weight used this training epoch,
total l2 cost on generator, and the corresponding weight).'
| def train_epoch(self, datasets, batch_size=None, do_save_ckpt=True):
| ops_to_eval = [self.cost, self.recon_cost, self.kl_cost, self.kl_weight, self.l2_cost, self.l2_weight, self.train_op]
collected_op_values = self.run_epoch(datasets, ops_to_eval, kind='train')
total_cost = total_recon_cost = total_kl_cost = 0.0
epoch_size = len(collected_op_values)
for op_values in collected_op_values:
total_cost += op_values[0]
total_recon_cost += op_values[1]
total_kl_cost += op_values[2]
kl_weight = collected_op_values[(-1)][3]
l2_cost = collected_op_values[(-1)][4]
l2_weight = collected_op_values[(-1)][5]
epoch_total_cost = (total_cost / epoch_size)
epoch_recon_cost = (total_recon_cost / epoch_size)
epoch_kl_cost = (total_kl_cost / epoch_size)
if do_save_ckpt:
session = tf.get_default_session()
checkpoint_path = os.path.join(self.hps.lfads_save_dir, (self.hps.checkpoint_name + '.ckpt'))
self.seso_saver.save(session, checkpoint_path, global_step=self.train_step)
return (epoch_total_cost, epoch_recon_cost, epoch_kl_cost, kl_weight, l2_cost, l2_weight)
|
'Run the model through the entire dataset once.
Args:
datasets: A dict of data dicts. The dataset dict is simply a
name(string)-> data dictionary mapping (See top of lfads.py).
ops_to_eval: A list of tensorflow operations that will be evaluated in
the tf.session.run() call.
batch_size (optional): The batch_size to use
do_collect (optional): Should the routine collect all session.run
output as a list, and return it?
keep_prob (optional): The dropout keep probability.
Returns:
A list of lists, the internal list is the return for the ops for each
session.run() call. The outer list collects over the epoch.'
| def run_epoch(self, datasets, ops_to_eval, kind='train', batch_size=None, do_collect=True, keep_prob=None):
| hps = self.hps
all_name_example_idx_pairs = self.shuffle_and_flatten_datasets(datasets, kind)
kind_data = (kind + '_data')
kind_ext_input = (kind + '_ext_input')
total_cost = total_recon_cost = total_kl_cost = 0.0
session = tf.get_default_session()
epoch_size = len(all_name_example_idx_pairs)
evaled_ops_list = []
for (name, example_idxs) in all_name_example_idx_pairs:
data_dict = datasets[name]
data_extxd = data_dict[kind_data]
if ((hps.output_dist == 'poisson') and (hps.temporal_spike_jitter_width > 0)):
data_extxd = self.shuffle_spikes_in_time(data_extxd)
ext_input_extxi = data_dict[kind_ext_input]
(data_bxtxd, ext_input_bxtxi) = self.get_batch(data_extxd, ext_input_extxi, example_idxs=example_idxs)
feed_dict = self.build_feed_dict(name, data_bxtxd, ext_input_bxtxi, keep_prob=keep_prob)
evaled_ops_np = session.run(ops_to_eval, feed_dict=feed_dict)
if do_collect:
evaled_ops_list.append(evaled_ops_np)
return evaled_ops_list
|
'Plot and summarize stuff in tensorboard.
Note that everything done in the current function is otherwise done on
a single, randomly selected dataset (except for summary_values, which are
passed in.)
Args:
datasets, the dictionary of datasets used in the study.
summary_values: These summary values are created from the training loop,
and so summarize the entire set of datasets.'
| def summarize_all(self, datasets, summary_values):
| hps = self.hps
tr_kl_cost = summary_values['tr_kl_cost']
tr_recon_cost = summary_values['tr_recon_cost']
tr_total_cost = summary_values['tr_total_cost']
kl_weight = summary_values['kl_weight']
l2_weight = summary_values['l2_weight']
l2_cost = summary_values['l2_cost']
has_any_valid_set = summary_values['has_any_valid_set']
i = summary_values['nepochs']
session = tf.get_default_session()
(train_summ, train_step) = session.run([self.merged_train, self.train_step], feed_dict={self.l2_cost_ph: l2_cost, self.kl_cost_ph: tr_kl_cost, self.recon_cost_ph: tr_recon_cost, self.total_cost_ph: tr_total_cost})
self.writer.add_summary(train_summ, train_step)
if has_any_valid_set:
ev_kl_cost = summary_values['ev_kl_cost']
ev_recon_cost = summary_values['ev_recon_cost']
ev_total_cost = summary_values['ev_total_cost']
eval_summ = session.run(self.merged_valid, feed_dict={self.kl_cost_ph: ev_kl_cost, self.recon_cost_ph: ev_recon_cost, self.total_cost_ph: ev_total_cost})
self.writer.add_summary(eval_summ, train_step)
print(('Epoch:%d, step:%d (TRAIN, VALID): total: %.2f, %.2f recon: %.2f, %.2f, kl: %.2f, %.2f, l2: %.5f, kl weight: %.2f, l2 weight: %.2f' % (i, train_step, tr_total_cost, ev_total_cost, tr_recon_cost, ev_recon_cost, tr_kl_cost, ev_kl_cost, l2_cost, kl_weight, l2_weight)))
csv_outstr = ('epoch,%d, step,%d, total,%.2f,%.2f, recon,%.2f,%.2f, kl,%.2f,%.2f, l2,%.5f, klweight,%.2f, l2weight,%.2f\n' % (i, train_step, tr_total_cost, ev_total_cost, tr_recon_cost, ev_recon_cost, tr_kl_cost, ev_kl_cost, l2_cost, kl_weight, l2_weight))
else:
print(('Epoch:%d, step:%d TRAIN: total: %.2f recon: %.2f, kl: %.2f, l2: %.5f, kl weight: %.2f, l2 weight: %.2f' % (i, train_step, tr_total_cost, tr_recon_cost, tr_kl_cost, l2_cost, kl_weight, l2_weight)))
csv_outstr = ('epoch,%d, step,%d, total,%.2f, recon,%.2f, kl,%.2f, l2,%.5f, klweight,%.2f, l2weight,%.2f\n' % (i, train_step, tr_total_cost, tr_recon_cost, tr_kl_cost, l2_cost, kl_weight, l2_weight))
if self.hps.csv_log:
csv_file = os.path.join(self.hps.lfads_save_dir, (self.hps.csv_log + '.csv'))
with open(csv_file, 'a') as myfile:
myfile.write(csv_outstr)
|
'Plot an image relating to a randomly chosen, specific example. We use
posterior sample and average by taking one example, and filling a whole
batch with that example, sample from the posterior, and then average the
quantities.'
| def plot_single_example(self, datasets):
| hps = self.hps
all_data_names = datasets.keys()
data_name = np.random.permutation(all_data_names)[0]
data_dict = datasets[data_name]
has_valid_set = (True if (data_dict['valid_data'] is not None) else False)
cf = 1.0
(E, _, _) = data_dict['train_data'].shape
eidx = np.random.choice(E)
example_idxs = (eidx * np.ones(hps.batch_size, dtype=np.int32))
(train_data_bxtxd, train_ext_input_bxtxi) = self.get_batch(data_dict['train_data'], data_dict['train_ext_input'], example_idxs=example_idxs)
truth_train_data_bxtxd = None
if (('train_truth' in data_dict) and (data_dict['train_truth'] is not None)):
(truth_train_data_bxtxd, _) = self.get_batch(data_dict['train_truth'], example_idxs=example_idxs)
cf = data_dict['conversion_factor']
train_model_values = self.eval_model_runs_batch(data_name, train_data_bxtxd, train_ext_input_bxtxi, do_average_batch=False)
train_step = train_model_values['train_steps']
feed_dict = self.build_feed_dict(data_name, train_data_bxtxd, train_ext_input_bxtxi, keep_prob=1.0)
session = tf.get_default_session()
generic_summ = session.run(self.merged_generic, feed_dict=feed_dict)
self.writer.add_summary(generic_summ, train_step)
valid_data_bxtxd = valid_model_values = valid_ext_input_bxtxi = None
truth_valid_data_bxtxd = None
if has_valid_set:
(E, _, _) = data_dict['valid_data'].shape
eidx = np.random.choice(E)
example_idxs = (eidx * np.ones(hps.batch_size, dtype=np.int32))
(valid_data_bxtxd, valid_ext_input_bxtxi) = self.get_batch(data_dict['valid_data'], data_dict['valid_ext_input'], example_idxs=example_idxs)
if (('valid_truth' in data_dict) and (data_dict['valid_truth'] is not None)):
(truth_valid_data_bxtxd, _) = self.get_batch(data_dict['valid_truth'], example_idxs=example_idxs)
else:
truth_valid_data_bxtxd = None
valid_model_values = self.eval_model_runs_batch(data_name, valid_data_bxtxd, valid_ext_input_bxtxi, do_average_batch=False)
example_image = plot_lfads(train_bxtxd=train_data_bxtxd, train_model_vals=train_model_values, train_ext_input_bxtxi=train_ext_input_bxtxi, train_truth_bxtxd=truth_train_data_bxtxd, valid_bxtxd=valid_data_bxtxd, valid_model_vals=valid_model_values, valid_ext_input_bxtxi=valid_ext_input_bxtxi, valid_truth_bxtxd=truth_valid_data_bxtxd, bidx=None, cf=cf, output_dist=hps.output_dist)
example_image = np.expand_dims(example_image, axis=0)
example_summ = session.run(self.merged_examples, feed_dict={self.example_image: example_image})
self.writer.add_summary(example_summ)
|
'Train the model, print per-epoch information, and save checkpoints.
Loop over training epochs. The function that actually does the
training is train_epoch. This function iterates over the training
data, one epoch at a time. The learning rate schedule is such
that it will stay the same until the cost goes up in comparison to
the last few values, then it will drop.
Args:
datasets: A dict of data dicts. The dataset dict is simply a
name(string)-> data dictionary mapping (See top of lfads.py).'
| def train_model(self, datasets):
| hps = self.hps
has_any_valid_set = False
for data_dict in datasets.values():
if (data_dict['valid_data'] is not None):
has_any_valid_set = True
break
session = tf.get_default_session()
lr = session.run(self.learning_rate)
lr_stop = hps.learning_rate_stop
i = (-1)
train_costs = []
valid_costs = []
ev_total_cost = ev_recon_cost = ev_kl_cost = 0.0
lowest_ev_cost = np.Inf
while True:
i += 1
do_save_ckpt = (True if ((i % 10) == 0) else False)
(tr_total_cost, tr_recon_cost, tr_kl_cost, kl_weight, l2_cost, l2_weight) = self.train_epoch(datasets, do_save_ckpt=do_save_ckpt)
if has_any_valid_set:
(ev_total_cost, ev_recon_cost, ev_kl_cost) = self.eval_cost_epoch(datasets, kind='valid')
valid_costs.append(ev_total_cost)
n_lve = 1
run_avg_lve = np.mean(valid_costs[(- n_lve):])
if ((kl_weight >= 1.0) and ((l2_weight >= 1.0) or ((self.hps.l2_gen_scale == 0.0) and (self.hps.l2_con_scale == 0.0))) and ((len(valid_costs) > n_lve) and (run_avg_lve < lowest_ev_cost))):
lowest_ev_cost = run_avg_lve
checkpoint_path = os.path.join(self.hps.lfads_save_dir, (self.hps.checkpoint_name + '_lve.ckpt'))
self.lve_saver.save(session, checkpoint_path, global_step=self.train_step, latest_filename='checkpoint_lve')
values = {'nepochs': i, 'has_any_valid_set': has_any_valid_set, 'tr_total_cost': tr_total_cost, 'ev_total_cost': ev_total_cost, 'tr_recon_cost': tr_recon_cost, 'ev_recon_cost': ev_recon_cost, 'tr_kl_cost': tr_kl_cost, 'ev_kl_cost': ev_kl_cost, 'l2_weight': l2_weight, 'kl_weight': kl_weight, 'l2_cost': l2_cost}
self.summarize_all(datasets, values)
self.plot_single_example(datasets)
train_res = tr_total_cost
n_lr = hps.learning_rate_n_to_compare
if ((len(train_costs) > n_lr) and (train_res > np.max(train_costs[(- n_lr):]))):
_ = session.run(self.learning_rate_decay_op)
lr = session.run(self.learning_rate)
print((' Decreasing learning rate to %f.' % lr))
train_costs.append(np.inf)
else:
train_costs.append(train_res)
if (lr < lr_stop):
print('Stopping optimization based on learning rate criteria.')
break
|
'Evaluate the cost of the epoch.
Args:
data_dict: The dictionary of data (training and validation) used for
training and evaluation of the model, respectively.
Returns:
a 3 tuple of costs:
(epoch total cost, epoch reconstruction cost, epoch KL cost)'
| def eval_cost_epoch(self, datasets, kind='train', ext_input_extxi=None, batch_size=None):
| ops_to_eval = [self.cost, self.recon_cost, self.kl_cost]
collected_op_values = self.run_epoch(datasets, ops_to_eval, kind=kind, keep_prob=1.0)
total_cost = total_recon_cost = total_kl_cost = 0.0
epoch_size = len(collected_op_values)
for op_values in collected_op_values:
total_cost += op_values[0]
total_recon_cost += op_values[1]
total_kl_cost += op_values[2]
epoch_total_cost = (total_cost / epoch_size)
epoch_recon_cost = (total_recon_cost / epoch_size)
epoch_kl_cost = (total_kl_cost / epoch_size)
return (epoch_total_cost, epoch_recon_cost, epoch_kl_cost)
|
'Returns all the goodies for the entire model, per batch.
Args:
data_name: The name of the data dict, to select which in/out matrices
to use.
data_bxtxd: Numpy array training data with shape:
batch_size x # time steps x # dimensions
ext_input_bxtxi: Numpy array training external input with shape:
batch_size x # time steps x # external input dims
do_eval_cost (optional): If true, the IWAE (Importance Weighted
Autoencoder) log likeihood bound, instead of the VAE version.
do_average_batch (optional): average over the batch, useful for getting
good IWAE costs, and model outputs for a single data point.
Returns:
A dictionary with the outputs of the model decoder, namely:
prior g0 mean, prior g0 variance, approx. posterior mean, approx
posterior mean, the generator initial conditions, the control inputs (if
enabled), the state of the generator, the factors, and the rates.'
| def eval_model_runs_batch(self, data_name, data_bxtxd, ext_input_bxtxi=None, do_eval_cost=False, do_average_batch=False):
| session = tf.get_default_session()
feed_dict = self.build_feed_dict(data_name, data_bxtxd, ext_input_bxtxi, keep_prob=1.0)
tf_vals = [self.gen_ics, self.gen_states, self.factors, self.output_dist_params]
tf_vals.append(self.cost)
tf_vals.append(self.nll_bound_vae)
tf_vals.append(self.nll_bound_iwae)
tf_vals.append(self.train_step)
if (self.hps.ic_dim > 0):
tf_vals += [self.prior_zs_g0.mean, self.prior_zs_g0.logvar, self.posterior_zs_g0.mean, self.posterior_zs_g0.logvar]
if (self.hps.co_dim > 0):
tf_vals.append(self.controller_outputs)
(tf_vals_flat, fidxs) = flatten(tf_vals)
np_vals_flat = session.run(tf_vals_flat, feed_dict=feed_dict)
ff = 0
gen_ics = [np_vals_flat[f] for f in fidxs[ff]]
ff += 1
gen_states = [np_vals_flat[f] for f in fidxs[ff]]
ff += 1
factors = [np_vals_flat[f] for f in fidxs[ff]]
ff += 1
out_dist_params = [np_vals_flat[f] for f in fidxs[ff]]
ff += 1
costs = [np_vals_flat[f] for f in fidxs[ff]]
ff += 1
nll_bound_vaes = [np_vals_flat[f] for f in fidxs[ff]]
ff += 1
nll_bound_iwaes = [np_vals_flat[f] for f in fidxs[ff]]
ff += 1
train_steps = [np_vals_flat[f] for f in fidxs[ff]]
ff += 1
if (self.hps.ic_dim > 0):
prior_g0_mean = [np_vals_flat[f] for f in fidxs[ff]]
ff += 1
prior_g0_logvar = [np_vals_flat[f] for f in fidxs[ff]]
ff += 1
post_g0_mean = [np_vals_flat[f] for f in fidxs[ff]]
ff += 1
post_g0_logvar = [np_vals_flat[f] for f in fidxs[ff]]
ff += 1
if (self.hps.co_dim > 0):
controller_outputs = [np_vals_flat[f] for f in fidxs[ff]]
ff += 1
gen_ics = gen_ics[0]
costs = costs[0]
nll_bound_vaes = nll_bound_vaes[0]
nll_bound_iwaes = nll_bound_iwaes[0]
train_steps = train_steps[0]
gen_states = list_t_bxn_to_tensor_bxtxn(gen_states)
factors = list_t_bxn_to_tensor_bxtxn(factors)
out_dist_params = list_t_bxn_to_tensor_bxtxn(out_dist_params)
if (self.hps.ic_dim > 0):
prior_g0_mean = prior_g0_mean[0]
prior_g0_logvar = prior_g0_logvar[0]
post_g0_mean = post_g0_mean[0]
post_g0_logvar = post_g0_logvar[0]
if (self.hps.co_dim > 0):
controller_outputs = list_t_bxn_to_tensor_bxtxn(controller_outputs)
if do_average_batch:
gen_ics = np.mean(gen_ics, axis=0)
gen_states = np.mean(gen_states, axis=0)
factors = np.mean(factors, axis=0)
out_dist_params = np.mean(out_dist_params, axis=0)
if (self.hps.ic_dim > 0):
prior_g0_mean = np.mean(prior_g0_mean, axis=0)
prior_g0_logvar = np.mean(prior_g0_logvar, axis=0)
post_g0_mean = np.mean(post_g0_mean, axis=0)
post_g0_logvar = np.mean(post_g0_logvar, axis=0)
if (self.hps.co_dim > 0):
controller_outputs = np.mean(controller_outputs, axis=0)
model_vals = {}
model_vals['gen_ics'] = gen_ics
model_vals['gen_states'] = gen_states
model_vals['factors'] = factors
model_vals['output_dist_params'] = out_dist_params
model_vals['costs'] = costs
model_vals['nll_bound_vaes'] = nll_bound_vaes
model_vals['nll_bound_iwaes'] = nll_bound_iwaes
model_vals['train_steps'] = train_steps
if (self.hps.ic_dim > 0):
model_vals['prior_g0_mean'] = prior_g0_mean
model_vals['prior_g0_logvar'] = prior_g0_logvar
model_vals['post_g0_mean'] = post_g0_mean
model_vals['post_g0_logvar'] = post_g0_logvar
if (self.hps.co_dim > 0):
model_vals['controller_outputs'] = controller_outputs
return model_vals
|
'Returns all the expected value for goodies for the entire model.
The expected value is taken over hidden (z) variables, namely the initial
conditions and the control inputs. The expected value is approximate, and
accomplished via sampling (batch_size) samples for every examples.
Args:
data_name: The name of the data dict, to select which in/out matrices
to use.
data_extxd: Numpy array training data with shape:
# examples x # time steps x # dimensions
ext_input_extxi (optional): Numpy array training external input with
shape: # examples x # time steps x # external input dims
Returns:
A dictionary with the averaged outputs of the model decoder, namely:
prior g0 mean, prior g0 variance, approx. posterior mean, approx
posterior mean, the generator initial conditions, the control inputs (if
enabled), the state of the generator, the factors, and the output
distribution parameters, e.g. (rates or mean and variances).'
| def eval_model_runs_avg_epoch(self, data_name, data_extxd, ext_input_extxi=None):
| hps = self.hps
batch_size = hps.batch_size
(E, T, D) = data_extxd.shape
E_to_process = hps.ps_nexamples_to_process
if (E_to_process > E):
print('Setting number of posterior samples to process to : ', E)
E_to_process = E
if (hps.ic_dim > 0):
prior_g0_mean = np.zeros([E_to_process, hps.ic_dim])
prior_g0_logvar = np.zeros([E_to_process, hps.ic_dim])
post_g0_mean = np.zeros([E_to_process, hps.ic_dim])
post_g0_logvar = np.zeros([E_to_process, hps.ic_dim])
if (hps.co_dim > 0):
controller_outputs = np.zeros([E_to_process, T, hps.co_dim])
gen_ics = np.zeros([E_to_process, hps.gen_dim])
gen_states = np.zeros([E_to_process, T, hps.gen_dim])
factors = np.zeros([E_to_process, T, hps.factors_dim])
if (hps.output_dist == 'poisson'):
out_dist_params = np.zeros([E_to_process, T, D])
elif (hps.output_dist == 'gaussian'):
out_dist_params = np.zeros([E_to_process, T, (D + D)])
else:
assert False, 'NIY'
costs = np.zeros(E_to_process)
nll_bound_vaes = np.zeros(E_to_process)
nll_bound_iwaes = np.zeros(E_to_process)
train_steps = np.zeros(E_to_process)
for es_idx in range(E_to_process):
print(('Running %d of %d.' % ((es_idx + 1), E_to_process)))
example_idxs = (es_idx * np.ones(batch_size, dtype=np.int32))
(data_bxtxd, ext_input_bxtxi) = self.get_batch(data_extxd, ext_input_extxi, batch_size=batch_size, example_idxs=example_idxs)
model_values = self.eval_model_runs_batch(data_name, data_bxtxd, ext_input_bxtxi, do_eval_cost=True, do_average_batch=True)
if (self.hps.ic_dim > 0):
prior_g0_mean[es_idx, :] = model_values['prior_g0_mean']
prior_g0_logvar[es_idx, :] = model_values['prior_g0_logvar']
post_g0_mean[es_idx, :] = model_values['post_g0_mean']
post_g0_logvar[es_idx, :] = model_values['post_g0_logvar']
gen_ics[es_idx, :] = model_values['gen_ics']
if (self.hps.co_dim > 0):
controller_outputs[es_idx, :, :] = model_values['controller_outputs']
gen_states[es_idx, :, :] = model_values['gen_states']
factors[es_idx, :, :] = model_values['factors']
out_dist_params[es_idx, :, :] = model_values['output_dist_params']
costs[es_idx] = model_values['costs']
nll_bound_vaes[es_idx] = model_values['nll_bound_vaes']
nll_bound_iwaes[es_idx] = model_values['nll_bound_iwaes']
train_steps[es_idx] = model_values['train_steps']
print(('bound nll(vae): %.3f, bound nll(iwae): %.3f' % (nll_bound_vaes[es_idx], nll_bound_iwaes[es_idx])))
model_runs = {}
if (self.hps.ic_dim > 0):
model_runs['prior_g0_mean'] = prior_g0_mean
model_runs['prior_g0_logvar'] = prior_g0_logvar
model_runs['post_g0_mean'] = post_g0_mean
model_runs['post_g0_logvar'] = post_g0_logvar
model_runs['gen_ics'] = gen_ics
if (self.hps.co_dim > 0):
model_runs['controller_outputs'] = controller_outputs
model_runs['gen_states'] = gen_states
model_runs['factors'] = factors
model_runs['output_dist_params'] = out_dist_params
model_runs['costs'] = costs
model_runs['nll_bound_vaes'] = nll_bound_vaes
model_runs['nll_bound_iwaes'] = nll_bound_iwaes
model_runs['train_steps'] = train_steps
return model_runs
|
'Run the model on the data in data_dict, and save the computed values.
LFADS generates a number of outputs for each examples, and these are all
saved. They are:
The mean and variance of the prior of g0.
The mean and variance of approximate posterior of g0.
The control inputs (if enabled)
The initial conditions, g0, for all examples.
The generator states for all time.
The factors for all time.
The output distribution parameters (e.g. rates) for all time.
Args:
datasets: a dictionary of named data_dictionaries, see top of lfads.py
output_fname: a file name stem for the output files.'
| def write_model_runs(self, datasets, output_fname=None):
| hps = self.hps
kind = hps.kind
for (data_name, data_dict) in datasets.items():
data_tuple = [('train', data_dict['train_data'], data_dict['train_ext_input']), ('valid', data_dict['valid_data'], data_dict['valid_ext_input'])]
for (data_kind, data_extxd, ext_input_extxi) in data_tuple:
if (not output_fname):
fname = ((((('model_runs_' + data_name) + '_') + data_kind) + '_') + kind)
else:
fname = (((((output_fname + data_name) + '_') + data_kind) + '_') + kind)
print(('Writing data for %s data and kind %s.' % (data_name, data_kind)))
model_runs = self.eval_model_runs_avg_epoch(data_name, data_extxd, ext_input_extxi)
full_fname = os.path.join(hps.lfads_save_dir, fname)
write_data(full_fname, model_runs, compression='gzip')
print('Done.')
|
'Use the prior distribution to generate batch_size number of samples
from the model.
LFADS generates a number of outputs for each sample, and these are all
saved. They are:
The mean and variance of the prior of g0.
The control inputs (if enabled)
The initial conditions, g0, for all examples.
The generator states for all time.
The factors for all time.
The output distribution parameters (e.g. rates) for all time.
Args:
dataset_name: The name of the dataset to grab the factors -> rates
alignment matrices from.
output_fname: The name of the file in which to save the generated
samples.'
| def write_model_samples(self, dataset_name, output_fname=None):
| hps = self.hps
batch_size = hps.batch_size
print(('Generating %d samples' % batch_size))
tf_vals = [self.factors, self.gen_states, self.gen_ics, self.cost, self.output_dist_params]
if (hps.ic_dim > 0):
tf_vals += [self.prior_zs_g0.mean, self.prior_zs_g0.logvar]
if (hps.co_dim > 0):
tf_vals += [self.prior_zs_ar_con.samples_t]
(tf_vals_flat, fidxs) = flatten(tf_vals)
session = tf.get_default_session()
feed_dict = {}
feed_dict[self.dataName] = dataset_name
feed_dict[self.keep_prob] = 1.0
np_vals_flat = session.run(tf_vals_flat, feed_dict=feed_dict)
ff = 0
factors = [np_vals_flat[f] for f in fidxs[ff]]
ff += 1
gen_states = [np_vals_flat[f] for f in fidxs[ff]]
ff += 1
gen_ics = [np_vals_flat[f] for f in fidxs[ff]]
ff += 1
costs = [np_vals_flat[f] for f in fidxs[ff]]
ff += 1
output_dist_params = [np_vals_flat[f] for f in fidxs[ff]]
ff += 1
if (hps.ic_dim > 0):
prior_g0_mean = [np_vals_flat[f] for f in fidxs[ff]]
ff += 1
prior_g0_logvar = [np_vals_flat[f] for f in fidxs[ff]]
ff += 1
if (hps.co_dim > 0):
prior_zs_ar_con = [np_vals_flat[f] for f in fidxs[ff]]
ff += 1
gen_ics = gen_ics[0]
costs = costs[0]
gen_states = list_t_bxn_to_tensor_bxtxn(gen_states)
factors = list_t_bxn_to_tensor_bxtxn(factors)
output_dist_params = list_t_bxn_to_tensor_bxtxn(output_dist_params)
if (hps.ic_dim > 0):
prior_g0_mean = prior_g0_mean[0]
prior_g0_logvar = prior_g0_logvar[0]
if (hps.co_dim > 0):
prior_zs_ar_con = list_t_bxn_to_tensor_bxtxn(prior_zs_ar_con)
model_vals = {}
model_vals['gen_ics'] = gen_ics
model_vals['gen_states'] = gen_states
model_vals['factors'] = factors
model_vals['output_dist_params'] = output_dist_params
model_vals['costs'] = costs.reshape(1)
if (hps.ic_dim > 0):
model_vals['prior_g0_mean'] = prior_g0_mean
model_vals['prior_g0_logvar'] = prior_g0_logvar
if (hps.co_dim > 0):
model_vals['prior_zs_ar_con'] = prior_zs_ar_con
full_fname = os.path.join(hps.lfads_save_dir, output_fname)
write_data(full_fname, model_vals, compression='gzip')
print('Done.')
|
'Evaluate and return all of the TF variables in the model.
Args:
use_nested (optional): For returning values, use a nested dictoinary, based
on variable scoping, or return all variables in a flat dictionary.
include_strs (optional): A list of strings to use as a filter, to reduce the
number of variables returned. A variable name must contain at least one
string in include_strs as a sub-string in order to be returned.
Returns:
The parameters of the model. This can be in a flat
dictionary, or a nested dictionary, where the nesting is by variable
scope.'
| @staticmethod
def eval_model_parameters(use_nested=True, include_strs=None):
| all_tf_vars = tf.global_variables()
session = tf.get_default_session()
all_tf_vars_eval = session.run(all_tf_vars)
vars_dict = {}
strs = ['LFADS']
if include_strs:
strs += include_strs
for (i, (var, var_eval)) in enumerate(zip(all_tf_vars, all_tf_vars_eval)):
if any(((s in include_strs) for s in var.name)):
if (not isinstance(var_eval, np.ndarray)):
print(var.name, ' is not numpy array, saving as numpy array\n with value: ', var_eval, type(var_eval))
e = np.array(var_eval)
print(e, type(e))
else:
e = var_eval
vars_dict[var.name] = e
if (not use_nested):
return vars_dict
var_names = vars_dict.keys()
nested_vars_dict = {}
current_dict = nested_vars_dict
for (v, var_name) in enumerate(var_names):
var_split_name_list = var_name.split('/')
split_name_list_len = len(var_split_name_list)
current_dict = nested_vars_dict
for (p, part) in enumerate(var_split_name_list):
if (p < (split_name_list_len - 1)):
if (part in current_dict):
current_dict = current_dict[part]
else:
current_dict[part] = {}
current_dict = current_dict[part]
else:
current_dict[part] = vars_dict[var_name]
return nested_vars_dict
|
'Randomly spikify underlying rates according a Poisson distribution
Args:
rates_bxtxd: a numpy tensor with shape:
Returns:
A numpy array with the same shape as rates_bxtxd, but with the event
counts.'
| @staticmethod
def spikify_rates(rates_bxtxd):
| (B, T, N) = rates_bxtxd.shape
assert all([(B > 0), (N > 0)]), 'problems'
spikes_bxtxd = np.zeros([B, T, N], dtype=np.int32)
for b in range(B):
for t in range(T):
for n in range(N):
rate = rates_bxtxd[(b, t, n)]
count = np.random.poisson(rate)
spikes_bxtxd[(b, t, n)] = count
return spikes_bxtxd
|
'Create Poisson distributions with log_rates parameters.
Args:
log_rates: a tensor-like list of log rates underlying the Poisson dist.'
| def __init__(self, log_rates):
| self.logr = log_rates
|
'Compute the log probability for the counts in the bin, under the model.
Args:
bin_counts: array-like integer counts
Returns:
The log-probability under the Poisson models for each element of
bin_counts.'
| def logp(self, bin_counts):
| k = tf.to_float(bin_counts)
return (((k * self.logr) - tf.exp(self.logr)) - tf.lgamma((k + 1)))
|
'Create a diagonal gaussian distribution.
Args:
batch_size: The size of the batch, i.e. 0th dim in 2D tensor of samples.
z_size: The dimension of the distribution, i.e. 1st dim in 2D tensor.
mean: The N-D mean of the distribution.
logvar: The N-D log variance of the diagonal distribution.'
| def __init__(self, batch_size, z_size, mean, logvar):
| size__xz = [None, z_size]
self.mean = mean
self.logvar = logvar
self.noise = noise = tf.random_normal(tf.shape(logvar))
self.sample = (mean + (tf.exp((0.5 * logvar)) * noise))
mean.set_shape(size__xz)
logvar.set_shape(size__xz)
self.sample.set_shape(size__xz)
|
'Compute the log-likelihood under the distribution.
Args:
z (optional): value to compute likelihood for, if None, use sample.
Returns:
The likelihood of z under the model.'
| def logp(self, z=None):
| if (z is None):
z = self.sample
if (z == self.sample):
return gaussian_pos_log_likelihood(self.mean, self.logvar, self.noise)
return diag_gaussian_log_likelihood(z, self.mean, self.logvar)
|
'Create a learnable diagonal gaussian distribution.
Args:
batch_size: The size of the batch, i.e. 0th dim in 2D tensor of samples.
z_size: The dimension of the distribution, i.e. 1st dim in 2D tensor.
name: prefix name for the mean and log TF variables.
mean_init (optional): The N-D mean initialization of the distribution.
var_init (optional): The N-D variance initialization of the diagonal
distribution.
var_min (optional): The minimum value the learned variance can take in any
dimension.
var_max (optional): The maximum value the learned variance can take in any
dimension.'
| def __init__(self, batch_size, z_size, name, mean_init=0.0, var_init=1.0, var_min=0.0, var_max=1000000.0):
| size_1xn = [1, z_size]
size__xn = [None, z_size]
size_bx1 = tf.stack([batch_size, 1])
assert (var_init > 0.0), 'Problems'
assert (var_max >= var_min), 'Problems'
assert (var_init >= var_min), 'Problems'
assert (var_max >= var_init), 'Problems'
z_mean_1xn = tf.get_variable(name=(name + '/mean'), shape=size_1xn, initializer=tf.constant_initializer(mean_init))
self.mean_bxn = mean_bxn = tf.tile(z_mean_1xn, size_bx1)
mean_bxn.set_shape(size__xn)
log_var_init = np.log(var_init)
if (var_max > var_min):
var_is_trainable = True
else:
var_is_trainable = False
z_logvar_1xn = tf.get_variable(name=(name + '/logvar'), shape=size_1xn, initializer=tf.constant_initializer(log_var_init), trainable=var_is_trainable)
if var_is_trainable:
z_logit_var_1xn = tf.exp(z_logvar_1xn)
z_var_1xn = ((tf.nn.sigmoid(z_logit_var_1xn) * (var_max - var_min)) + var_min)
z_logvar_1xn = tf.log(z_var_1xn)
logvar_bxn = tf.tile(z_logvar_1xn, size_bx1)
self.logvar_bxn = logvar_bxn
self.noise_bxn = noise_bxn = tf.random_normal(tf.shape(logvar_bxn))
self.sample_bxn = (mean_bxn + (tf.exp((0.5 * logvar_bxn)) * noise_bxn))
|
'Compute the log-likelihood under the distribution.
Args:
z (optional): value to compute likelihood for, if None, use sample.
Returns:
The likelihood of z under the model.'
| def logp(self, z=None):
| if (z is None):
z = self.sample
if (z == self.sample_bxn):
return gaussian_pos_log_likelihood(self.mean_bxn, self.logvar_bxn, self.noise_bxn)
return diag_gaussian_log_likelihood(z, self.mean_bxn, self.logvar_bxn)
|
'Create an input dependent diagonal Gaussian distribution.
Args:
x: The input tensor from which the mean and variance are computed,
via a linear transformation of x. I.e.
mu = Wx + b, log(var) = Mx + c
z_size: The size of the distribution.
name: The name to prefix to learned variables.
var_min (optional): Minimal variance allowed. This is an additional
way to control the amount of information getting through the stochastic
layer.'
| def __init__(self, x_bxu, z_size, name, var_min=0.0):
| size_bxn = tf.stack([tf.shape(x_bxu)[0], z_size])
self.mean_bxn = mean_bxn = linear(x_bxu, z_size, name=(name + '/mean'))
logvar_bxn = linear(x_bxu, z_size, name=(name + '/logvar'))
if (var_min > 0.0):
logvar_bxn = tf.log((tf.exp(logvar_bxn) + var_min))
self.logvar_bxn = logvar_bxn
self.noise_bxn = noise_bxn = tf.random_normal(size_bxn)
self.noise_bxn.set_shape([None, z_size])
self.sample_bxn = (mean_bxn + (tf.exp((0.5 * logvar_bxn)) * noise_bxn))
|
'Compute the log-likelihood under the distribution.
Args:
z (optional): value to compute likelihood for, if None, use sample.
Returns:
The likelihood of z under the model.'
| def logp(self, z=None):
| if (z is None):
z = self.sample
if (z == self.sample_bxn):
return gaussian_pos_log_likelihood(self.mean_bxn, self.logvar_bxn, self.noise_bxn)
return diag_gaussian_log_likelihood(z, self.mean_bxn, self.logvar_bxn)
|
'Create a learnable autoregressive (1) process.
Args:
batch_size: The size of the batch, i.e. 0th dim in 2D tensor of samples.
z_size: The dimension of the distribution, i.e. 1st dim in 2D tensor.
autocorrelation_taus: The auto correlation time constant of the AR(1)
process.
A value of 0 is uncorrelated gaussian noise.
noise_variances: The variance of the additive noise, *not* the process
variance.
do_train_prior_ar_atau: Train or leave as constant, the autocorrelation?
do_train_prior_ar_nvar: Train or leave as constant, the noise variance?
num_steps: Number of steps to run the process.
name: The name to prefix to learned TF variables.'
| def __init__(self, batch_size, z_size, autocorrelation_taus, noise_variances, do_train_prior_ar_atau, do_train_prior_ar_nvar, num_steps, name):
| size_bx1 = tf.stack([batch_size, 1])
size__xu = [None, z_size]
log_evar_inits_1xu = tf.expand_dims(tf.log(noise_variances), 0)
self.logevars_1xu = logevars_1xu = tf.Variable(log_evar_inits_1xu, name=(name + '/logevars'), dtype=tf.float32, trainable=do_train_prior_ar_nvar)
self.logevars_bxu = logevars_bxu = tf.tile(logevars_1xu, size_bx1)
logevars_bxu.set_shape(size__xu)
log_atau_inits_1xu = tf.expand_dims(tf.log(autocorrelation_taus), 0)
self.logataus_1xu = logataus_1xu = tf.Variable(log_atau_inits_1xu, name=(name + '/logatau'), dtype=tf.float32, trainable=do_train_prior_ar_atau)
phis_1xu = tf.exp((- tf.exp((- logataus_1xu))))
self.phis_bxu = phis_bxu = tf.tile(phis_1xu, size_bx1)
phis_bxu.set_shape(size__xu)
self.logpvars_1xu = ((logevars_1xu - tf.log((1.0 - phis_1xu))) - tf.log((1.0 + phis_1xu)))
self.logpvars_bxu = logpvars_bxu = tf.tile(self.logpvars_1xu, size_bx1)
logpvars_bxu.set_shape(size__xu)
self.pmeans_bxu = pmeans_bxu = tf.zeros_like(phis_bxu)
self.means_t = means_t = ([None] * num_steps)
self.logvars_t = logvars_t = ([None] * num_steps)
self.samples_t = samples_t = ([None] * num_steps)
self.gaussians_t = gaussians_t = ([None] * num_steps)
sample_bxu = tf.zeros_like(phis_bxu)
for t in range(num_steps):
if (t == 0):
logvar_pt_bxu = self.logpvars_bxu
else:
logvar_pt_bxu = self.logevars_bxu
z_mean_pt_bxu = (pmeans_bxu + (phis_bxu * sample_bxu))
gaussians_t[t] = DiagonalGaussian(batch_size, z_size, mean=z_mean_pt_bxu, logvar=logvar_pt_bxu)
sample_bxu = gaussians_t[t].sample
samples_t[t] = sample_bxu
logvars_t[t] = logvar_pt_bxu
means_t[t] = z_mean_pt_bxu
|
'Compute the log-likelihood under the distribution for a given time t,
not the whole sequence.
Args:
z_t_bxu: sample to compute likelihood for at time t.
z_tm1_bxu (optional): sample condition probability of z_t upon.
Returns:
The likelihood of p_t under the model at time t. i.e.
p(z_t|z_tm1) = N(z_tm1 * phis, eps^2)'
| def logp_t(self, z_t_bxu, z_tm1_bxu=None):
| if (z_tm1_bxu is None):
return diag_gaussian_log_likelihood(z_t_bxu, self.pmeans_bxu, self.logpvars_bxu)
else:
means_t_bxu = (self.pmeans_bxu + (self.phis_bxu * z_tm1_bxu))
logp_tgtm1_bxu = diag_gaussian_log_likelihood(z_t_bxu, means_t_bxu, self.logevars_bxu)
return logp_tgtm1_bxu
|
'Create a lower bound in three parts, normalized reconstruction
cost, normalized KL divergence cost, and their sum.
E_q[ln p(z_i | z_{i+1}) / q(z_i | x)
\int q(z) ln p(z) dz = - 0.5 ln(2pi) - 0.5 \sum (ln(sigma_p^2) + sigma_q^2 / sigma_p^2 + (mean_p - mean_q)^2 / sigma_p^2)
\int q(z) ln q(z) dz = - 0.5 ln(2pi) - 0.5 \sum (ln(sigma_q^2) + 1)
Args:
zs: posterior z ~ q(z|x)
prior_zs: prior zs'
| def __init__(self, zs, prior_zs):
| kl_b = 0.0
for (z, prior_z) in zip(zs, prior_zs):
assert isinstance(z, Gaussian)
assert isinstance(prior_z, Gaussian)
kl_b += (0.5 * tf.reduce_sum(((((prior_z.logvar - z.logvar) + tf.exp((z.logvar - prior_z.logvar))) + tf.square(((z.mean - prior_z.mean) / tf.exp((0.5 * prior_z.logvar))))) - 1.0), [1]))
self.kl_cost_b = kl_b
self.kl_cost = tf.reduce_mean(kl_b)
|
'Create a lower bound in three parts, normalized reconstruction
cost, normalized KL divergence cost, and their sum.
Args:
post_zs: posterior z ~ q(z|x)
prior_z_process: prior AR(1) process'
| def __init__(self, post_zs, prior_z_process):
| assert (len(post_zs) > 1), 'GP is for time, need more than 1 time step.'
assert isinstance(prior_z_process, GaussianProcess), 'Must use GP.'
z0_bxu = post_zs[0].sample
logq_bxu = post_zs[0].logp(z0_bxu)
logp_bxu = prior_z_process.logp_t(z0_bxu)
z_tm1_bxu = z0_bxu
for z_t in post_zs[1:]:
z_t_bxu = z_t.sample
logq_bxu += z_t.logp(z_t_bxu)
logp_bxu += prior_z_process.logp_t(z_t_bxu, z_tm1_bxu)
z_tm1 = z_t_bxu
kl_bxu = (logq_bxu - logp_bxu)
kl_b = tf.reduce_sum(kl_bxu, [1])
self.kl_cost_b = kl_b
self.kl_cost = tf.reduce_mean(kl_b)
|
'ResNet constructor.
Args:
hps: Hyperparameters.
images: Batches of images. [batch_size, image_size, image_size, 3]
labels: Batches of labels. [batch_size, num_classes]
mode: One of \'train\' and \'eval\'.'
| def __init__(self, hps, images, labels, mode):
| self.hps = hps
self._images = images
self.labels = labels
self.mode = mode
self._extra_train_ops = []
|
'Build a whole graph for the model.'
| def build_graph(self):
| self.global_step = tf.contrib.framework.get_or_create_global_step()
self._build_model()
if (self.mode == 'train'):
self._build_train_op()
self.summaries = tf.summary.merge_all()
|
'Map a stride scalar to the stride array for tf.nn.conv2d.'
| def _stride_arr(self, stride):
| return [1, stride, stride, 1]
|
'Build the core model within the graph.'
| def _build_model(self):
| with tf.variable_scope('init'):
x = self._images
x = self._conv('init_conv', x, 3, 3, 16, self._stride_arr(1))
strides = [1, 2, 2]
activate_before_residual = [True, False, False]
if self.hps.use_bottleneck:
res_func = self._bottleneck_residual
filters = [16, 64, 128, 256]
else:
res_func = self._residual
filters = [16, 16, 32, 64]
with tf.variable_scope('unit_1_0'):
x = res_func(x, filters[0], filters[1], self._stride_arr(strides[0]), activate_before_residual[0])
for i in six.moves.range(1, self.hps.num_residual_units):
with tf.variable_scope(('unit_1_%d' % i)):
x = res_func(x, filters[1], filters[1], self._stride_arr(1), False)
with tf.variable_scope('unit_2_0'):
x = res_func(x, filters[1], filters[2], self._stride_arr(strides[1]), activate_before_residual[1])
for i in six.moves.range(1, self.hps.num_residual_units):
with tf.variable_scope(('unit_2_%d' % i)):
x = res_func(x, filters[2], filters[2], self._stride_arr(1), False)
with tf.variable_scope('unit_3_0'):
x = res_func(x, filters[2], filters[3], self._stride_arr(strides[2]), activate_before_residual[2])
for i in six.moves.range(1, self.hps.num_residual_units):
with tf.variable_scope(('unit_3_%d' % i)):
x = res_func(x, filters[3], filters[3], self._stride_arr(1), False)
with tf.variable_scope('unit_last'):
x = self._batch_norm('final_bn', x)
x = self._relu(x, self.hps.relu_leakiness)
x = self._global_avg_pool(x)
with tf.variable_scope('logit'):
logits = self._fully_connected(x, self.hps.num_classes)
self.predictions = tf.nn.softmax(logits)
with tf.variable_scope('costs'):
xent = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=self.labels)
self.cost = tf.reduce_mean(xent, name='xent')
self.cost += self._decay()
tf.summary.scalar('cost', self.cost)
|
'Build training specific ops for the graph.'
| def _build_train_op(self):
| self.lrn_rate = tf.constant(self.hps.lrn_rate, tf.float32)
tf.summary.scalar('learning_rate', self.lrn_rate)
trainable_variables = tf.trainable_variables()
grads = tf.gradients(self.cost, trainable_variables)
if (self.hps.optimizer == 'sgd'):
optimizer = tf.train.GradientDescentOptimizer(self.lrn_rate)
elif (self.hps.optimizer == 'mom'):
optimizer = tf.train.MomentumOptimizer(self.lrn_rate, 0.9)
apply_op = optimizer.apply_gradients(zip(grads, trainable_variables), global_step=self.global_step, name='train_step')
train_ops = ([apply_op] + self._extra_train_ops)
self.train_op = tf.group(*train_ops)
|
'Batch normalization.'
| def _batch_norm(self, name, x):
| with tf.variable_scope(name):
params_shape = [x.get_shape()[(-1)]]
beta = tf.get_variable('beta', params_shape, tf.float32, initializer=tf.constant_initializer(0.0, tf.float32))
gamma = tf.get_variable('gamma', params_shape, tf.float32, initializer=tf.constant_initializer(1.0, tf.float32))
if (self.mode == 'train'):
(mean, variance) = tf.nn.moments(x, [0, 1, 2], name='moments')
moving_mean = tf.get_variable('moving_mean', params_shape, tf.float32, initializer=tf.constant_initializer(0.0, tf.float32), trainable=False)
moving_variance = tf.get_variable('moving_variance', params_shape, tf.float32, initializer=tf.constant_initializer(1.0, tf.float32), trainable=False)
self._extra_train_ops.append(moving_averages.assign_moving_average(moving_mean, mean, 0.9))
self._extra_train_ops.append(moving_averages.assign_moving_average(moving_variance, variance, 0.9))
else:
mean = tf.get_variable('moving_mean', params_shape, tf.float32, initializer=tf.constant_initializer(0.0, tf.float32), trainable=False)
variance = tf.get_variable('moving_variance', params_shape, tf.float32, initializer=tf.constant_initializer(1.0, tf.float32), trainable=False)
tf.summary.histogram(mean.op.name, mean)
tf.summary.histogram(variance.op.name, variance)
y = tf.nn.batch_normalization(x, mean, variance, beta, gamma, 0.001)
y.set_shape(x.get_shape())
return y
|
'Residual unit with 2 sub layers.'
| def _residual(self, x, in_filter, out_filter, stride, activate_before_residual=False):
| if activate_before_residual:
with tf.variable_scope('shared_activation'):
x = self._batch_norm('init_bn', x)
x = self._relu(x, self.hps.relu_leakiness)
orig_x = x
else:
with tf.variable_scope('residual_only_activation'):
orig_x = x
x = self._batch_norm('init_bn', x)
x = self._relu(x, self.hps.relu_leakiness)
with tf.variable_scope('sub1'):
x = self._conv('conv1', x, 3, in_filter, out_filter, stride)
with tf.variable_scope('sub2'):
x = self._batch_norm('bn2', x)
x = self._relu(x, self.hps.relu_leakiness)
x = self._conv('conv2', x, 3, out_filter, out_filter, [1, 1, 1, 1])
with tf.variable_scope('sub_add'):
if (in_filter != out_filter):
orig_x = tf.nn.avg_pool(orig_x, stride, stride, 'VALID')
orig_x = tf.pad(orig_x, [[0, 0], [0, 0], [0, 0], [((out_filter - in_filter) // 2), ((out_filter - in_filter) // 2)]])
x += orig_x
tf.logging.debug('image after unit %s', x.get_shape())
return x
|
'Bottleneck residual unit with 3 sub layers.'
| def _bottleneck_residual(self, x, in_filter, out_filter, stride, activate_before_residual=False):
| if activate_before_residual:
with tf.variable_scope('common_bn_relu'):
x = self._batch_norm('init_bn', x)
x = self._relu(x, self.hps.relu_leakiness)
orig_x = x
else:
with tf.variable_scope('residual_bn_relu'):
orig_x = x
x = self._batch_norm('init_bn', x)
x = self._relu(x, self.hps.relu_leakiness)
with tf.variable_scope('sub1'):
x = self._conv('conv1', x, 1, in_filter, (out_filter / 4), stride)
with tf.variable_scope('sub2'):
x = self._batch_norm('bn2', x)
x = self._relu(x, self.hps.relu_leakiness)
x = self._conv('conv2', x, 3, (out_filter / 4), (out_filter / 4), [1, 1, 1, 1])
with tf.variable_scope('sub3'):
x = self._batch_norm('bn3', x)
x = self._relu(x, self.hps.relu_leakiness)
x = self._conv('conv3', x, 1, (out_filter / 4), out_filter, [1, 1, 1, 1])
with tf.variable_scope('sub_add'):
if (in_filter != out_filter):
orig_x = self._conv('project', orig_x, 1, in_filter, out_filter, stride)
x += orig_x
tf.logging.info('image after unit %s', x.get_shape())
return x
|
'L2 weight decay loss.'
| def _decay(self):
| costs = []
for var in tf.trainable_variables():
if (var.op.name.find('DW') > 0):
costs.append(tf.nn.l2_loss(var))
return tf.multiply(self.hps.weight_decay_rate, tf.add_n(costs))
|
'Convolution.'
| def _conv(self, name, x, filter_size, in_filters, out_filters, strides):
| with tf.variable_scope(name):
n = ((filter_size * filter_size) * out_filters)
kernel = tf.get_variable('DW', [filter_size, filter_size, in_filters, out_filters], tf.float32, initializer=tf.random_normal_initializer(stddev=np.sqrt((2.0 / n))))
return tf.nn.conv2d(x, kernel, strides, padding='SAME')
|
'Relu, with optional leaky support.'
| def _relu(self, x, leakiness=0.0):
| return tf.where(tf.less(x, 0.0), (leakiness * x), x, name='leaky_relu')
|
'FullyConnected layer for final output.'
| def _fully_connected(self, x, out_dim):
| x = tf.reshape(x, [self.hps.batch_size, (-1)])
w = tf.get_variable('DW', [x.get_shape()[1], out_dim], initializer=tf.uniform_unit_scaling_initializer(factor=1.0))
b = tf.get_variable('biases', [out_dim], initializer=tf.constant_initializer())
return tf.nn.xw_plus_b(x, w, b)
|
'Create the deterministic transformation between stochastic layers.
If self.hparam.nonlinear:
2 x tanh layers
Else:
1 x linear layer'
| def _create_transformation(self, input, n_output, reuse, scope_prefix):
| if self.hparams.nonlinear:
h = slim.fully_connected(input, self.hparams.n_hidden, reuse=reuse, activation_fn=tf.nn.tanh, scope=('%s_nonlinear_1' % scope_prefix))
h = slim.fully_connected(h, self.hparams.n_hidden, reuse=reuse, activation_fn=tf.nn.tanh, scope=('%s_nonlinear_2' % scope_prefix))
h = slim.fully_connected(h, n_output, reuse=reuse, activation_fn=None, scope=('%s' % scope_prefix))
else:
h = slim.fully_connected(input, n_output, reuse=reuse, activation_fn=None, scope=('%s' % scope_prefix))
return h
|
'x values -> samples from Q and return log Q(h|x).'
| def _recognition_network(self, sampler=None, log_likelihood_func=None):
| samples = {}
reuse = (None if (not self.run_recognition_network) else True)
if (sampler is None):
sampler = self._random_sample
if (log_likelihood_func is None):
log_likelihood_func = (lambda sample, log_params: U.binary_log_likelihood(sample['activation'], log_params))
logQ = []
if (self.hparams.task in ['sbn', 'omni']):
samples[(-1)] = {'activation': self._x}
if (self.mean_xs is not None):
samples[(-1)]['activation'] -= self.mean_xs
samples[(-1)]['activation'] = ((samples[(-1)]['activation'] + 1) / 2.0)
with slim.arg_scope([slim.fully_connected], weights_initializer=slim.variance_scaling_initializer(), variables_collections=[Q_COLLECTION]):
for i in xrange(self.hparams.n_layer):
input = ((2.0 * samples[(i - 1)]['activation']) - 1.0)
h = self._create_transformation(input, n_output=self.hparams.n_hidden, reuse=reuse, scope_prefix=('q_%d' % i))
samples[i] = sampler(h, self.uniform_samples[i], i)
logQ.append(log_likelihood_func(samples[i], h))
self.run_recognition_network = True
return (logQ, samples)
elif (self.hparams.task == 'sp'):
samples[(-1)] = {'activation': tf.split(self._x, num_or_size_splits=2, axis=1)[0]}
if (self.mean_xs is not None):
samples[(-1)]['activation'] -= np.split(self.mean_xs, 2, 0)[0]
samples[(-1)]['activation'] = ((samples[(-1)]['activation'] + 1) / 2.0)
with slim.arg_scope([slim.fully_connected], weights_initializer=slim.variance_scaling_initializer(), variables_collections=[Q_COLLECTION]):
for i in xrange(self.hparams.n_layer):
input = ((2.0 * samples[(i - 1)]['activation']) - 1.0)
h = self._create_transformation(input, n_output=self.hparams.n_hidden, reuse=reuse, scope_prefix=('q_%d' % i))
samples[i] = sampler(h, self.uniform_samples[i], i)
logQ.append(log_likelihood_func(samples[i], h))
self.run_recognition_network = True
return (logQ, samples)
|
'Returns learning signal and function.
This is the implementation for SBNs for the ELBO.
Args:
samples: dictionary of sampled latent variables
logQ: list of log q(h_i) terms
log_likelihood_func: function used to compute log probs for the latent
variables
Returns:
learning_signal: the "reward" function
function_term: part of the function that depends on the parameters
and needs to have the gradient taken through'
| def _generator_network(self, samples, logQ, log_likelihood_func=None):
| reuse = (None if (not self.run_generator_network) else True)
if (self.hparams.task in ['sbn', 'omni']):
if (log_likelihood_func is None):
log_likelihood_func = (lambda sample, log_params: U.binary_log_likelihood(sample['activation'], log_params))
logPPrior = log_likelihood_func(samples[(self.hparams.n_layer - 1)], tf.expand_dims(self.prior, 0))
with slim.arg_scope([slim.fully_connected], weights_initializer=slim.variance_scaling_initializer(), variables_collections=[P_COLLECTION]):
for i in reversed(xrange(self.hparams.n_layer)):
if (i == 0):
n_output = self.hparams.n_input
else:
n_output = self.hparams.n_hidden
input = ((2.0 * samples[i]['activation']) - 1.0)
h = self._create_transformation(input, n_output, reuse=reuse, scope_prefix=('p_%d' % i))
if (i == 0):
logP = U.binary_log_likelihood(self._x, (h + self.train_bias))
else:
logPPrior += log_likelihood_func(samples[(i - 1)], h)
self.run_generator_network = True
return (((logP + logPPrior) - tf.add_n(logQ)), (logP + logPPrior))
elif (self.hparams.task == 'sp'):
with slim.arg_scope([slim.fully_connected], weights_initializer=slim.variance_scaling_initializer(), variables_collections=[P_COLLECTION]):
n_output = int((self.hparams.n_input / 2))
i = (self.hparams.n_layer - 1)
input = ((2.0 * samples[i]['activation']) - 1.0)
h = self._create_transformation(input, n_output, reuse=reuse, scope_prefix=('p_%d' % i))
logP = U.binary_log_likelihood(tf.split(self._x, num_or_size_splits=2, axis=1)[1], (h + np.split(self.train_bias, 2, 0)[1]))
self.run_generator_network = True
return (logP, logP)
|
'Compute the mean per component variance.
Use a moving average to estimate the required moments.'
| def compute_tensor_variance(self, t):
| t_sq = tf.reduce_mean(tf.square(t))
self.maintain_ema_ops.append(self.ema.apply([t, t_sq]))
variance_estimator = (self.ema.average(t_sq) - tf.reduce_mean(tf.square(self.ema.average(t))))
return variance_estimator
|
'Args:
grads_and_vars: gradients to apply and compute running average variance
extra_grads_and_vars: gradients to apply (not used to compute average variance)'
| def _create_train_op(self, grads_and_vars, extra_grads_and_vars=[]):
| first_moment = U.vectorize(grads_and_vars, skip_none=True)
second_moment = tf.square(first_moment)
self.maintain_ema_ops.append(self.ema.apply([first_moment, second_moment]))
if (len(self.baseline_loss) > 0):
mean_baseline_loss = tf.reduce_mean(tf.add_n(self.baseline_loss))
extra_grads_and_vars += self.optimizer_class.compute_gradients(mean_baseline_loss, var_list=tf.get_collection('BASELINE'))
extra_optimizer = tf.train.AdamOptimizer(learning_rate=(10 * self.hparams.learning_rate), beta2=self.hparams.beta2)
with tf.control_dependencies([tf.group(*[g for (g, _) in (grads_and_vars + extra_grads_and_vars) if (g is not None)])]):
if self.eval_mode:
grads_and_vars = [(g, v) for (g, v) in grads_and_vars if (v not in tf.get_collection(P_COLLECTION))]
train_op = self.optimizer_class.apply_gradients(grads_and_vars, global_step=self.global_step)
if (len(extra_grads_and_vars) > 0):
extra_train_op = extra_optimizer.apply_gradients(extra_grads_and_vars)
else:
extra_train_op = tf.no_op()
self.optimizer = tf.group(train_op, extra_train_op, *self.maintain_ema_ops)
variance_estimator = (self.ema.average(second_moment) - tf.square(self.ema.average(first_moment)))
self.grad_variance = tf.reduce_mean(variance_estimator)
|
'Returns mean of random variables parameterized by log_alpha.'
| def _mean_sample(self, log_alpha, _, layer):
| mu = tf.nn.sigmoid(log_alpha)
return {'preactivation': mu, 'activation': mu, 'log_param': log_alpha}
|
'Convert u to tied randomness in v.'
| def _u_to_v(self, log_alpha, u, eps=1e-08):
| u_prime = tf.nn.sigmoid((- log_alpha))
v_1 = ((u - u_prime) / tf.clip_by_value((1 - u_prime), eps, 1))
v_1 = tf.clip_by_value(v_1, 0, 1)
v_1 = tf.stop_gradient(v_1)
v_1 = ((v_1 * (1 - u_prime)) + u_prime)
v_0 = (u / tf.clip_by_value(u_prime, eps, 1))
v_0 = tf.clip_by_value(v_0, 0, 1)
v_0 = tf.stop_gradient(v_0)
v_0 = (v_0 * u_prime)
v = tf.where((u > u_prime), v_1, v_0)
v = tf.check_numerics(v, 'v sampling is not numerically stable.')
v = (v + tf.stop_gradient(((- v) + u)))
return v
|
'Returns sampled random variables parameterized by log_alpha.'
| def _random_sample(self, log_alpha, u, layer):
| if (layer not in self.uniform_samples_v):
self.uniform_samples_v[layer] = self._u_to_v(log_alpha, u)
x = ((log_alpha + U.safe_log_prob(u)) - U.safe_log_prob((1 - u)))
samples = tf.stop_gradient(tf.to_float((x > 0)))
return {'preactivation': x, 'activation': samples, 'log_param': log_alpha}
|
'Returns sampled random variables parameterized by log_alpha.'
| def _random_sample_soft(self, log_alpha, u, layer, temperature=None):
| if (temperature is None):
temperature = self.hparams.temperature
x = ((log_alpha + U.safe_log_prob(u)) - U.safe_log_prob((1 - u)))
x /= tf.expand_dims(temperature, (-1))
if self.hparams.muprop_relaxation:
y = tf.nn.sigmoid((x + (log_alpha * tf.expand_dims((temperature / (temperature + 1)), (-1)))))
else:
y = tf.nn.sigmoid(x)
return {'preactivation': x, 'activation': y, 'log_param': log_alpha}
|
'Returns sampled random variables parameterized by log_alpha.'
| def _random_sample_soft_v(self, log_alpha, _, layer, temperature=None):
| v = self.uniform_samples_v[layer]
return self._random_sample_soft(log_alpha, v, layer, temperature)
|
'Run partial discrete, then continuous path.
Args:
switch_layer: this layer and beyond will be continuous'
| def _random_sample_switch(self, log_alpha, u, layer, switch_layer, temperature=None):
| if (layer < switch_layer):
return self._random_sample(log_alpha, u, layer)
else:
return self._random_sample_soft(log_alpha, u, layer, temperature)
|
'Run partial discrete, then continuous path.
Args:
switch_layer: this layer and beyond will be continuous'
| def _random_sample_switch_v(self, log_alpha, u, layer, switch_layer, temperature=None):
| if (layer < switch_layer):
return self._random_sample(log_alpha, u, layer)
else:
return self._random_sample_soft_v(log_alpha, u, layer, temperature)
|
'Compute the NVIL gradient.'
| def get_nvil_gradient(self):
| (logQHard, samples) = self._recognition_network()
(ELBO, reinforce_model_grad) = self._generator_network(samples, logQHard)
logQHard = tf.add_n(logQHard)
learning_signal = (tf.stop_gradient(ELBO) - self._create_baseline())
self.baseline_loss.append(tf.square(learning_signal))
optimizerLoss = (- ((tf.stop_gradient(learning_signal) * logQHard) + reinforce_model_grad))
optimizerLoss = tf.reduce_mean(optimizerLoss)
nvil_gradient = self.optimizer_class.compute_gradients(optimizerLoss)
debug = {'ELBO': ELBO, 'RMS of centered learning signal': U.rms(learning_signal)}
return (nvil_gradient, debug)
|
'Computes the simple muprop gradient.
This muprop control variate does not include the linear term.'
| def get_simple_muprop_gradient(self):
| (logQHard, hardSamples) = self._recognition_network()
(hardELBO, reinforce_model_grad) = self._generator_network(hardSamples, logQHard)
(logQ, muSamples) = self._recognition_network(sampler=self._mean_sample)
(muELBO, _) = self._generator_network(muSamples, logQ)
scaling_baseline = self._create_eta(collection='BASELINE')
learning_signal = ((hardELBO - (scaling_baseline * muELBO)) - self._create_baseline())
self.baseline_loss.append(tf.square(learning_signal))
optimizerLoss = (- ((tf.stop_gradient(learning_signal) * tf.add_n(logQHard)) + reinforce_model_grad))
optimizerLoss = tf.reduce_mean(optimizerLoss)
simple_muprop_gradient = self.optimizer_class.compute_gradients(optimizerLoss)
debug = {'ELBO': hardELBO, 'muELBO': muELBO, 'RMS': U.rms(learning_signal)}
return (simple_muprop_gradient, debug)
|
'random sample function that actually returns mean
new forward pass that returns logQ as a list
can get x_i from samples'
| def get_muprop_gradient(self):
| (logQHard, hardSamples) = self._recognition_network()
(hardELBO, reinforce_model_grad) = self._generator_network(hardSamples, logQHard)
(logQ, muSamples) = self._recognition_network(sampler=self._mean_sample)
(muELBO, _) = self._generator_network(muSamples, logQ)
muELBOGrads = tf.gradients(tf.reduce_sum(muELBO), [muSamples[i]['activation'] for i in xrange(self.hparams.n_layer)])
learning_signal = hardELBO
optimizerLoss = 0.0
learning_signals = []
for i in xrange(self.hparams.n_layer):
dfDiff = tf.reduce_sum((muELBOGrads[i] * (hardSamples[i]['activation'] - muSamples[i]['activation'])), axis=1)
dfMu = tf.reduce_sum((tf.stop_gradient(muELBOGrads[i]) * tf.nn.sigmoid(hardSamples[i]['log_param'])), axis=1)
scaling_baseline_0 = self._create_eta(collection='BASELINE')
scaling_baseline_1 = self._create_eta(collection='BASELINE')
learning_signals.append((((learning_signal - (scaling_baseline_0 * muELBO)) - (scaling_baseline_1 * dfDiff)) - self._create_baseline()))
self.baseline_loss.append(tf.square(learning_signals[i]))
optimizerLoss += ((logQHard[i] * tf.stop_gradient(learning_signals[i])) + (tf.stop_gradient(scaling_baseline_1) * dfMu))
optimizerLoss += reinforce_model_grad
optimizerLoss *= (-1)
optimizerLoss = tf.reduce_mean(optimizerLoss)
muprop_gradient = self.optimizer_class.compute_gradients(optimizerLoss)
debug = {'ELBO': hardELBO, 'muELBO': muELBO}
debug.update(dict([(('RMS learning signal layer %d' % i), U.rms(learning_signal)) for (i, learning_signal) in enumerate(learning_signals)]))
return (muprop_gradient, debug)
|
'Calculate gumbel control variate.'
| def _create_gumbel_control_variate(self, logQHard, temperature=None):
| if (temperature is None):
temperature = self.hparams.temperature
(logQ, softSamples) = self._recognition_network(sampler=functools.partial(self._random_sample_soft, temperature=temperature))
(softELBO, _) = self._generator_network(softSamples, logQ)
logQ = tf.add_n(logQ)
(logQ_v, softSamples_v) = self._recognition_network(sampler=functools.partial(self._random_sample_soft_v, temperature=temperature))
(softELBO_v, _) = self._generator_network(softSamples_v, logQ_v)
logQ_v = tf.add_n(logQ_v)
learning_signal = tf.stop_gradient(softELBO_v)
h = (((tf.stop_gradient(learning_signal) * tf.add_n(logQHard)) - softELBO) + softELBO_v)
extra = (softELBO_v, ((- softELBO) + softELBO_v))
return (h, extra)
|
'Calculate gumbel control variate.'
| def _create_gumbel_control_variate_quadratic(self, logQHard, temperature=None):
| if (temperature is None):
temperature = self.hparams.temperature
h = 0
extra = []
for layer in xrange(self.hparams.n_layer):
(logQ, softSamples) = self._recognition_network(sampler=functools.partial(self._random_sample_switch, switch_layer=layer, temperature=temperature))
(softELBO, _) = self._generator_network(softSamples, logQ)
(logQ_v, softSamples_v) = self._recognition_network(sampler=functools.partial(self._random_sample_switch_v, switch_layer=layer, temperature=temperature))
(softELBO_v, _) = self._generator_network(softSamples_v, logQ_v)
learning_signal = tf.stop_gradient(softELBO_v)
h += (((tf.stop_gradient(learning_signal) * logQHard[layer]) - softELBO) + softELBO_v)
extra.append((softELBO_v, ((- softELBO) + softELBO_v)))
return (h, extra)
|
'Get the dynamic rebar gradient (t, eta optimized).'
| def get_dynamic_rebar_gradient(self):
| tiled_pre_temperature = tf.tile([self.pre_temperature_variable], [self.batch_size])
temperature = tf.exp(tiled_pre_temperature)
(hardELBO, nvil_gradient, logQHard) = self._create_hard_elbo()
if self.hparams.quadratic:
(gumbel_cv, extra) = self._create_gumbel_control_variate_quadratic(logQHard, temperature=temperature)
else:
(gumbel_cv, extra) = self._create_gumbel_control_variate(logQHard, temperature=temperature)
f_grads = self.optimizer_class.compute_gradients(tf.reduce_mean((- nvil_gradient)))
eta = {}
(h_grads, eta_statistics) = self.multiply_by_eta_per_layer(self.optimizer_class.compute_gradients(tf.reduce_mean(gumbel_cv)), eta)
model_grads = U.add_grads_and_vars(f_grads, h_grads)
total_grads = model_grads
g = U.vectorize(model_grads, set_none_to_zero=True)
self.maintain_ema_ops.append(self.ema.apply([g]))
gbar = 0
variance_objective = tf.reduce_mean(tf.square((g - gbar)))
reinf_g_t = 0
if self.hparams.quadratic:
for layer in xrange(self.hparams.n_layer):
(gumbel_learning_signal, _) = extra[layer]
df_dt = tf.gradients(gumbel_learning_signal, tiled_pre_temperature)[0]
(reinf_g_t_i, _) = self.multiply_by_eta_per_layer(self.optimizer_class.compute_gradients(tf.reduce_mean((tf.stop_gradient(df_dt) * logQHard[layer]))), eta)
reinf_g_t += U.vectorize(reinf_g_t_i, set_none_to_zero=True)
reparam = tf.add_n([reparam_i for (_, reparam_i) in extra])
else:
(gumbel_learning_signal, reparam) = extra
df_dt = tf.gradients(gumbel_learning_signal, tiled_pre_temperature)[0]
(reinf_g_t, _) = self.multiply_by_eta_per_layer(self.optimizer_class.compute_gradients(tf.reduce_mean((tf.stop_gradient(df_dt) * tf.add_n(logQHard)))), eta)
reinf_g_t = U.vectorize(reinf_g_t, set_none_to_zero=True)
(reparam_g, _) = self.multiply_by_eta_per_layer(self.optimizer_class.compute_gradients(tf.reduce_mean(reparam)), eta)
reparam_g = U.vectorize(reparam_g, set_none_to_zero=True)
reparam_g_t = tf.gradients(tf.reduce_mean(((2 * tf.stop_gradient((g - gbar))) * reparam_g)), self.pre_temperature_variable)[0]
variance_objective_grad = (tf.reduce_mean(((2 * (g - gbar)) * reinf_g_t)) + reparam_g_t)
debug = {'ELBO': hardELBO, 'etas': eta_statistics, 'variance_objective': variance_objective}
return (total_grads, debug, variance_objective, variance_objective_grad)
|
'Get the rebar gradient.'
| def get_rebar_gradient(self):
| (hardELBO, nvil_gradient, logQHard) = self._create_hard_elbo()
if self.hparams.quadratic:
(gumbel_cv, _) = self._create_gumbel_control_variate_quadratic(logQHard)
else:
(gumbel_cv, _) = self._create_gumbel_control_variate(logQHard)
f_grads = self.optimizer_class.compute_gradients(tf.reduce_mean((- nvil_gradient)))
eta = {}
(h_grads, eta_statistics) = self.multiply_by_eta_per_layer(self.optimizer_class.compute_gradients(tf.reduce_mean(gumbel_cv)), eta)
model_grads = U.add_grads_and_vars(f_grads, h_grads)
total_grads = model_grads
variance_objective = tf.reduce_mean(tf.square(U.vectorize(model_grads, set_none_to_zero=True)))
debug = {'ELBO': hardELBO, 'etas': eta_statistics, 'variance_objective': variance_objective}
return (total_grads, debug, variance_objective)
|
'Returns sampled random variables parameterized by log_alpha.'
| def _random_sample_soft(self, log_alpha, u, layer, temperature=None):
| if (temperature is None):
temperature = self.hparams.temperature
x = ((log_alpha + U.safe_log_prob(u)) - U.safe_log_prob((1 - u)))
x /= temperature
if self.hparams.muprop_relaxation:
x += ((temperature / (temperature + 1)) * log_alpha)
y = tf.nn.sigmoid(x)
return {'preactivation': x, 'activation': y, 'log_param': log_alpha}
|
'Add episodes to buffer.'
| def add(self, episodes, *args):
| idx = 0
while ((self.cur_size < self.max_size) and (idx < len(episodes))):
self.buffer[self.cur_size] = episodes[idx]
self.cur_size += 1
idx += 1
if (idx < len(episodes)):
remove_idxs = self.remove_n((len(episodes) - idx))
for remove_idx in remove_idxs:
self.buffer[remove_idx] = episodes[idx]
idx += 1
assert (len(self.buffer) == self.cur_size)
|
'Get n items for removal.'
| def remove_n(self, n):
| idxs = random.sample(xrange(self.init_length, self.cur_size), n)
return idxs
|
'Get batch of episodes to train on.'
| def get_batch(self, n):
| idxs = random.sample(xrange(self.cur_size), n)
return ([self.buffer[idx] for idx in idxs], None)
|
'Add episodes to buffer.'
| def add(self, episodes, priorities, new_idxs=None):
| if (new_idxs is None):
idx = 0
new_idxs = []
while ((self.cur_size < self.max_size) and (idx < len(episodes))):
self.buffer[self.cur_size] = episodes[idx]
new_idxs.append(self.cur_size)
self.cur_size += 1
idx += 1
if (idx < len(episodes)):
remove_idxs = self.remove_n((len(episodes) - idx))
for remove_idx in remove_idxs:
self.buffer[remove_idx] = episodes[idx]
new_idxs.append(remove_idx)
idx += 1
else:
assert (len(new_idxs) == len(episodes))
for (new_idx, ep) in zip(new_idxs, episodes):
self.buffer[new_idx] = ep
self.priorities[new_idxs] = priorities
self.priorities[0:self.init_length] = np.max(self.priorities[self.init_length:])
assert (len(self.buffer) == self.cur_size)
return new_idxs
|
'Get n items for removal.'
| def remove_n(self, n):
| assert ((self.init_length + n) <= self.cur_size)
if (self.eviction_strategy == 'rand'):
idxs = random.sample(xrange(self.init_length, self.cur_size), n)
elif (self.eviction_strategy == 'fifo'):
idxs = [(self.init_length + ((self.remove_idx + i) % (self.max_size - self.init_length))) for i in xrange(n)]
self.remove_idx = ((idxs[(-1)] + 1) - self.init_length)
elif (self.eviction_strategy == 'rank'):
idxs = np.argpartition(self.priorities, n)[:n]
return idxs
|
'Get batch of episodes to train on.'
| def get_batch(self, n):
| p = self.sampling_distribution()
idxs = np.random.choice(self.cur_size, size=n, replace=False, p=p)
self.last_batch = idxs
return ([self.buffer[idx] for idx in idxs], p[idxs])
|
'Update last batch idxs with new priority.'
| def update_last_batch(self, delta):
| self.priorities[self.last_batch] = np.abs(delta)
self.priorities[0:self.init_length] = np.max(self.priorities[self.init_length:])
|
'Optimizer for gradient descent ops.'
| def get_optimizer(self, learning_rate):
| return tf.train.AdamOptimizer(learning_rate=learning_rate, epsilon=0.0002)
|
'Gradient ops.'
| def training_ops(self, loss, learning_rate=None):
| opt = self.get_optimizer(learning_rate)
params = tf.trainable_variables()
grads = tf.gradients(loss, params)
if self.clip_norm:
(grads, global_norm) = tf.clip_by_global_norm(grads, self.clip_norm)
tf.summary.scalar('grad_global_norm', global_norm)
return opt.apply_gradients(zip(grads, params))
|
'Get objective calculations.'
| def get(self, rewards, pads, values, final_values, log_probs, prev_log_probs, target_log_probs, entropies, logits):
| raise NotImplementedError()
|
'Exploration bonus.'
| def get_bonus(self, total_rewards, total_log_probs):
| return ((- self.tau) * total_log_probs)
|
'Exploration bonus.'
| def get_bonus(self, total_rewards, total_log_probs):
| discrepancy = ((total_rewards / self.tau) - total_log_probs)
normalized_d = (self.num_samples * tf.nn.softmax(discrepancy))
return (self.tau * normalized_d)
|
'Get RNN cell.'
| def get_cell(self):
| self.cell_input_dim = (self.internal_dim // 2)
cell = tf.contrib.rnn.LSTMCell(self.cell_input_dim, state_is_tuple=False, reuse=tf.get_variable_scope().reuse)
cell = tf.contrib.rnn.OutputProjectionWrapper(cell, self.output_dim, reuse=tf.get_variable_scope().reuse)
return cell
|
'Core neural network taking in inputs and outputting sampling
distribution parameters.'
| def core(self, obs, prev_internal_state, prev_actions):
| batch_size = tf.shape(obs[0])[0]
if (not self.recurrent):
prev_internal_state = tf.zeros([batch_size, self.rnn_state_dim])
cell = self.get_cell()
b = tf.get_variable('input_bias', [self.cell_input_dim], initializer=self.vector_init)
cell_input = tf.nn.bias_add(tf.zeros([batch_size, self.cell_input_dim]), b)
for (i, (obs_dim, obs_type)) in enumerate(self.env_spec.obs_dims_and_types):
w = tf.get_variable(('w_state%d' % i), [obs_dim, self.cell_input_dim], initializer=self.matrix_init)
if self.env_spec.is_discrete(obs_type):
cell_input += tf.matmul(tf.one_hot(obs[i], obs_dim), w)
elif self.env_spec.is_box(obs_type):
cell_input += tf.matmul(obs[i], w)
else:
assert False
if self.input_prev_actions:
if self.env_spec.combine_actions:
prev_action = prev_actions[0]
for (i, action_dim) in enumerate(self.env_spec.orig_act_dims):
act = tf.mod(prev_action, action_dim)
w = tf.get_variable(('w_prev_action%d' % i), [action_dim, self.cell_input_dim], initializer=self.matrix_init)
cell_input += tf.matmul(tf.one_hot(act, action_dim), w)
prev_action = tf.to_int32((prev_action / action_dim))
else:
for (i, (act_dim, act_type)) in enumerate(self.env_spec.act_dims_and_types):
w = tf.get_variable(('w_prev_action%d' % i), [act_dim, self.cell_input_dim], initializer=self.matrix_init)
if self.env_spec.is_discrete(act_type):
cell_input += tf.matmul(tf.one_hot(prev_actions[i], act_dim), w)
elif self.env_spec.is_box(act_type):
cell_input += tf.matmul(prev_actions[i], w)
else:
assert False
(output, next_state) = cell(cell_input, prev_internal_state)
return (output, next_state)
|
'Sample an action from a distribution.'
| def sample_action(self, logits, sampling_dim, act_dim, act_type, greedy=False):
| if self.env_spec.is_discrete(act_type):
if greedy:
act = tf.argmax(logits, 1)
else:
act = tf.reshape(tf.multinomial(logits, 1), [(-1)])
elif self.env_spec.is_box(act_type):
means = logits[:, :(sampling_dim / 2)]
std = logits[:, (sampling_dim / 2):]
if greedy:
act = means
else:
batch_size = tf.shape(logits)[0]
act = (means + (std * tf.random_normal([batch_size, act_dim])))
else:
assert False
return act
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.