desc
stringlengths 3
26.7k
| decl
stringlengths 11
7.89k
| bodies
stringlengths 8
553k
|
---|---|---|
'Sets up the main loop. This is also called at the start of the
main loop, so you need only call it if you\'re using a driver
script that replaces the main loop with something else.'
| def setup(self):
| self.model.monitor = Monitor.get_monitor(self.model)
self.model.monitor.time_budget_exceeded = False
if (self.algorithm is not None):
self.algorithm.setup(model=self.model, dataset=self.dataset)
self.setup_extensions()
self.model.enforce_constraints()
|
'Repeatedly runs an epoch of the training algorithm, runs any
epoch-level callbacks, and saves the model.
Parameters
time_budget : int, optional
The maximum number of seconds before interrupting
training. Default is `None`, no time limit.'
| def main_loop(self, time_budget=None):
| t0 = datetime.now()
self.setup()
if (self.algorithm is None):
extension_continue = self.run_callbacks_and_monitoring()
continue_learning = (self.model.continue_learning() and extension_continue)
assert (continue_learning in [True, False, 0, 1])
while continue_learning:
if self.exceeded_time_budget(t0, time_budget):
break
rval = self.model.train_all(dataset=self.dataset)
if (rval is not None):
raise ValueError('Model.train_all should not return anything. Use Model.continue_learning to control whether learning continues.')
self.model.monitor.report_epoch()
extension_continue = self.run_callbacks_and_monitoring()
freq = self.save_freq
if ((freq > 0) and ((self.model.monitor.get_epochs_seen() % freq) == 0)):
self.save()
continue_learning = (self.model.continue_learning() and extension_continue)
assert (continue_learning in [True, False, 0, 1])
else:
if (not hasattr(self.model, 'monitor')):
raise RuntimeError('The algorithm is responsible for setting up the Monitor, but failed to.')
if (len(self.model.monitor._datasets) > 0):
self.training_seconds.__doc__ = 'The number of seconds that were spent in actual training during the most\nrecent epoch. This excludes seconds that were spent running callbacks for\nthe extensions, computing monitoring channels, etc.'
self.model.monitor.add_channel(name='training_seconds_this_epoch', ipt=None, val=self.training_seconds, data_specs=(NullSpace(), ''), dataset=self.model.monitor._datasets[0])
self.total_seconds.__doc__ = 'The number of seconds that were spent on the entirety of processing for the\nprevious epoch. This includes not only training but also the computation of\nthe monitoring channels, running TrainExtension callbacks, etc. This value\nis reported for the *previous* epoch because the amount of time spent on\nmonitoring for this epoch is not known until the monitoring channels have\nalready been reported.'
self.model.monitor.add_channel(name='total_seconds_last_epoch', ipt=None, val=self.total_seconds, data_specs=(NullSpace(), ''), dataset=self.model.monitor._datasets[0])
extension_continue = self.run_callbacks_and_monitoring()
continue_learning = (self.algorithm.continue_learning(self.model) and extension_continue)
assert (continue_learning in [True, False, 0, 1])
while continue_learning:
if self.exceeded_time_budget(t0, time_budget):
break
with log_timing(log, None, level=logging.DEBUG, callbacks=[self.total_seconds.set_value]):
with log_timing(log, None, final_msg='Time this epoch:', callbacks=[self.training_seconds.set_value]):
rval = self.algorithm.train(dataset=self.dataset)
if (rval is not None):
raise ValueError('TrainingAlgorithm.train should not return anything. Use TrainingAlgorithm.continue_learning to control whether learning continues.')
self.model.monitor.report_epoch()
extension_continue = self.run_callbacks_and_monitoring()
if ((self.save_freq > 0) and ((self.model.monitor.get_epochs_seen() % self.save_freq) == 0)):
self.save()
continue_learning = (self.algorithm.continue_learning(self.model) and extension_continue)
assert (continue_learning in [True, False, 0, 1])
self.model.monitor.training_succeeded = True
if (self.save_freq > 0):
self.save()
|
'Runs the monitor, then calls Extension.on_monitor for all extensions.
Returns
continue_learning : bool
If `False`, signals that at least one train
extension wants to stop learning.'
| def run_callbacks_and_monitoring(self):
| self.model.monitor()
continue_learning = True
for extension in self.extensions:
try:
extension.on_monitor(self.model, self.dataset, self.algorithm)
except TypeError:
logging.warning(('Failure during callback ' + str(extension)))
raise
except StopIteration:
log.info('Extension requested training halt.')
continue_learning = False
return continue_learning
|
'Saves the model.'
| def save(self):
| for extension in self.extensions:
extension.on_save(self.model, self.dataset, self.algorithm)
if (self.save_path is not None):
with log_timing(log, ('Saving to ' + self.save_path)):
if (self.first_save and (not self.allow_overwrite) and os.path.exists(self.save_path)):
raise IOError('Trying to overwrite file when not allowed.')
try:
self.dataset._serialization_guard = SerializationGuard()
serial.save(self.save_path, self.model, on_overwrite='backup')
finally:
self.dataset._serialization_guard = None
self.first_save = False
|
'This method is called when someone attempts to serialize the object.
This method raises an exception to prevent the serialization from
occurring.'
| def __getstate__(self):
| raise IOError('You tried to serialize something that should not be serialized.')
|
'Initializes the formatter given the number of max labels.'
| def __init__(self, max_labels, dtype=None):
| try:
np.empty(max_labels)
except (ValueError, TypeError):
reraise_as(ValueError(("%s got bad max_labels argument '%s'" % (self.__class__.__name__, str(max_labels)))))
self._max_labels = max_labels
if (dtype is None):
self._dtype = config.floatX
else:
try:
np.dtype(dtype)
except TypeError:
reraise_as(TypeError(('%s got bad dtype identifier %s' % (self.__class__.__name__, str(dtype)))))
self._dtype = dtype
|
'Formats a given array of target labels into a one-hot
vector. If labels appear multiple times, their value
in the one-hot vector is incremented.
Parameters
targets : ndarray
A 1D array of targets, or a batch (2D array) where
each row is a list of targets.
mode : string
The way in which to convert the labels to arrays. Takes
three different options:
- "concatenate" : concatenates the one-hot vectors from
multiple labels
- "stack" : returns a matrix where each row is the
one-hot vector of a label
- "merge" : merges the one-hot vectors together to
form a vector where the elements are
the result of an indicator function
NB: As the result of an indicator function
the result is the same in case a label
is duplicated in the input.
sparse : bool
If true then the return value is sparse matrix. Note that
if sparse is True, then mode cannot be \'stack\' because
sparse matrices need to be 2D
Returns
one_hot : a NumPy array (can be 1D-3D depending on settings)
where normally the first axis are the different batch items,
the second axis the labels, the third axis the one_hot
vectors. Can be dense or sparse.'
| def format(self, targets, mode='stack', sparse=False):
| if (mode not in ('concatenate', 'stack', 'merge')):
raise ValueError(("%s got bad mode argument '%s'" % (self.__class__.__name__, str(self._max_labels))))
elif ((mode == 'stack') and sparse):
raise ValueError('Sparse matrices need to be 2D, hence theycannot be stacked')
if (targets.ndim > 2):
raise ValueError(('Targets needs to be 1D or 2D, but received %d dimensions' % targets.ndim))
if ('int' not in str(targets.dtype)):
raise TypeError('need an integer array for targets')
if sparse:
if (not scipy_available):
raise RuntimeError('The converting of indices to a sparse one-hot vector requires scipy to be installed')
if (mode == 'concatenate'):
one_hot = scipy.sparse.csr_matrix((np.ones(targets.size, dtype=self._dtype), ((targets.flatten() + (np.arange(targets.size) * self._max_labels)) % (self._max_labels * targets.shape[1])), (np.arange((targets.shape[0] + 1)) * targets.shape[1])), (targets.shape[0], (self._max_labels * targets.shape[1])))
elif (mode == 'merge'):
one_hot = scipy.sparse.csr_matrix((np.ones(targets.size), targets.flatten(), (np.arange((targets.shape[0] + 1)) * targets.shape[1])), (targets.shape[0], self._max_labels))
else:
one_hot = np.zeros((targets.shape + (self._max_labels,)), dtype=self._dtype)
shape = (np.prod(one_hot.shape[:(-1)]), one_hot.shape[(-1)])
one_hot.reshape(shape)[(np.arange(shape[0]), targets.flatten())] = 1
if (mode == 'concatenate'):
shape = (one_hot.shape[(-3):(-2)] + (reduce(mul, one_hot.shape[(-2):], 1),))
one_hot = one_hot.reshape(shape)
elif (mode == 'merge'):
one_hot = np.minimum(one_hot.sum(axis=(one_hot.ndim - 2)), 1)
return one_hot
|
'Return the one-hot transformation as a symbolic expression.
If labels appear multiple times, their value in the one-hot
vector is incremented.
Parameters
targets : tensor_like, 1- or 2-dimensional, integer dtype
A symbolic tensor representing labels as integers
between 0 and `max_labels` - 1, `max_labels` supplied
at formatter construction.
mode : string
The way in which to convert the labels to arrays. Takes
three different options:
- "concatenate" : concatenates the one-hot vectors from
multiple labels
- "stack" : returns a matrix where each row is the
one-hot vector of a label
- "merge" : merges the one-hot vectors together to
form a vector where the elements are
the result of an indicator function
NB: As the result of an indicator function
the result is the same in case a label
is duplicated in the input.
sparse : bool
If true then the return value is sparse matrix. Note that
if sparse is True, then mode cannot be \'stack\' because
sparse matrices need to be 2D
Returns
one_hot : TensorVariable, 1, 2 or 3-dimensional, sparse or dense
A symbolic tensor representing a one-hot encoding of the
supplied labels.'
| def theano_expr(self, targets, mode='stack', sparse=False):
| if (mode not in ('concatenate', 'stack', 'merge')):
raise ValueError(("%s got bad mode argument '%s'" % (self.__class__.__name__, str(self._max_labels))))
elif ((mode == 'stack') and sparse):
raise ValueError('Sparse matrices need to be 2D, hence theycannot be stacked')
squeeze_required = False
if (targets.ndim != 2):
if (targets.ndim == 1):
squeeze_required = True
targets = targets.dimshuffle('x', 0)
else:
raise ValueError('targets tensor must be 1 or 2-dimensional')
if ('int' not in str(targets.dtype)):
raise TypeError('need an integer tensor for targets')
if sparse:
if (mode == 'concatenate'):
one_hot = theano.sparse.CSR(tensor.ones_like(targets, dtype=self._dtype).flatten(), ((targets.flatten() + (tensor.arange(targets.size) * self._max_labels)) % (self._max_labels * targets.shape[1])), (tensor.arange((targets.shape[0] + 1)) * targets.shape[1]), tensor.stack(targets.shape[0], (self._max_labels * targets.shape[1])))
else:
one_hot = theano.sparse.CSR(tensor.ones_like(targets, dtype=self._dtype).flatten(), targets.flatten(), (tensor.arange((targets.shape[0] + 1)) * targets.shape[1]), tensor.stack(targets.shape[0], self._max_labels))
else:
if (mode == 'concatenate'):
one_hot = tensor.zeros(((targets.shape[0] * targets.shape[1]), self._max_labels), dtype=self._dtype)
one_hot = tensor.set_subtensor(one_hot[(tensor.arange(targets.size), targets.flatten())], 1)
one_hot = one_hot.reshape((targets.shape[0], (targets.shape[1] * self._max_labels)))
elif (mode == 'merge'):
one_hot = tensor.zeros((targets.shape[0], self._max_labels), dtype=self._dtype)
one_hot = tensor.set_subtensor(one_hot[((tensor.arange(targets.size) % targets.shape[0]), targets.T.flatten())], 1)
else:
one_hot = tensor.zeros((targets.shape[0], targets.shape[1], self._max_labels), dtype=self._dtype)
one_hot = tensor.set_subtensor(one_hot[(tensor.arange(targets.shape[0]).reshape((targets.shape[0], 1)), tensor.arange(targets.shape[1]), targets)], 1)
if squeeze_required:
if (one_hot.ndim == 2):
one_hot = one_hot.reshape((one_hot.shape[1],))
if (one_hot.ndim == 3):
one_hot = one_hot.reshape((one_hot.shape[1], one_hot.shape[2]))
return one_hot
|
'.. todo::
WRITEME'
| def __getstate__(self):
| state = self.__dict__.copy()
if ('_compiled_functions' in state):
del state['_compiled_functions']
return state
|
'Builds a nested tuple of integers representing the mapping
Parameters
space : WRITEME
source : WRITEME
Returns
WRITEME'
| def _fill_mapping(self, space, source):
| if isinstance(space, NullSpace):
assert (source == '')
return None
elif (not isinstance(space, CompositeSpace)):
if isinstance(source, (tuple, list)):
(source,) = source
if ((space, source) in self.specs_to_index):
spec_index = self.specs_to_index[(space, source)]
else:
spec_index = self.n_unique_specs
self.specs_to_index[(space, source)] = spec_index
self.n_unique_specs += 1
return spec_index
else:
spec_mapping = tuple((self._fill_mapping(sub_space, sub_source) for (sub_space, sub_source) in safe_zip(space.components, source)))
return spec_mapping
|
'Auxiliary recursive function used by self.flatten
Parameters
nested : WRITEME
mapping : WRITEME
rval : WRITEME
Returns
WRITEME'
| def _fill_flat(self, nested, mapping, rval):
| if isinstance(nested, CompositeSpace):
nested = tuple(nested.components)
if (mapping is None):
if (not isinstance(nested, NullSpace)):
assert (not nested), ('The following element is mapped to NullSpace, so it should evaluate to False (for instance, None, an empty string or an empty tuple), but is %s' % nested)
return
if isinstance(mapping, int):
idx = mapping
if isinstance(nested, (tuple, list)):
if (len(nested) != 1):
raise ValueError(((('When mapping is an int, we expect nested to be a single element. But mapping is ' + str(mapping)) + ' and nested is a tuple of length ') + str(len(nested))))
(nested,) = nested
if (rval[idx] is None):
rval[idx] = nested
else:
assert (rval[idx] == nested), ('This mapping was built with the same element occurring more than once in the nested representation, but current nested sequence has different values (%s and %s) at these positions.' % (rval[idx], nested))
else:
for (sub_nested, sub_mapping) in safe_zip(nested, mapping):
self._fill_flat(sub_nested, sub_mapping, rval)
|
'Iterate jointly through nested and spec_mapping, returns a flat tuple.
The integer in spec_mapping corresponding to each element in nested
represents the index of that element in the returned sequence.
If the original data_specs had duplicate elements at different places,
then "nested" also have to have equal elements at these positions.
"nested" can be a nested tuple, or composite space. If it is a
composite space, a flattened composite space will be returned.
If `return_tuple` is True, a tuple is always returned (tuple of
non-composite Spaces if nested is a Space, empty tuple if all
Spaces are NullSpaces, length-1 tuple if there is only one
non-composite Space, etc.).
Parameters
nested : WRITEME
return_tuple : WRITEME
Returns
WRITEME'
| def flatten(self, nested, return_tuple=False):
| rval = ([None] * self.n_unique_specs)
self._fill_flat(nested, self.spec_mapping, rval)
assert (None not in rval), ('This mapping is invalid, as it did not contain all numbers from 0 to %i (or None was in nested), nested: %s' % ((self.n_unique_specs - 1), nested))
if return_tuple:
return tuple(rval)
if (len(rval) == 1):
return rval[0]
if isinstance(nested, (tuple, list)):
return tuple(rval)
elif isinstance(nested, Space):
return CompositeSpace(rval)
|
'Auxiliary recursive function used by self.nest
Parameters
flat : WRITEME
mapping : WRITEME
Returns
WRITEME'
| def _make_nested_tuple(self, flat, mapping):
| if (mapping is None):
return None
if isinstance(mapping, int):
idx = mapping
if isinstance(flat, (tuple, list)):
assert (0 <= idx < len(flat))
return flat[idx]
else:
assert (idx == 0)
return flat
else:
return tuple((self._make_nested_tuple(flat, sub_mapping) for sub_mapping in mapping))
|
'Auxiliary recursive function used by self.nest
Parameters
flat : WRITEME
mapping : WRITEME
Returns
WRITEME'
| def _make_nested_space(self, flat, mapping):
| if isinstance(mapping, int):
idx = mapping
if isinstance(flat, CompositeSpace):
assert (0 <= idx < len(flat.components))
return flat.components[idx]
else:
assert (idx == 0)
return flat
else:
return CompositeSpace([self._make_nested_space(flat, sub_mapping) for sub_mapping in mapping])
|
'Iterate through spec_mapping, building a nested tuple from "flat".
The length of "flat" should be equal to self.n_unique_specs.
Parameters
flat : Space or tuple
WRITEME
Returns
WRITEME'
| def nest(self, flat):
| if isinstance(flat, Space):
if isinstance(flat, CompositeSpace):
assert (len(flat.components) == self.n_unique_specs)
else:
assert (self.n_unique_specs == 1)
return self._make_nested_space(flat, self.spec_mapping)
else:
if isinstance(flat, (list, tuple)):
assert (len(flat) == self.n_unique_specs)
else:
assert (self.n_unique_specs == 1)
return self._make_nested_tuple(flat, self.spec_mapping)
|
'.. todo::
WRITEME'
| def __eq__(self, other):
| return ((type(self) == type(other)) and (self.ndim == other.ndim) and (self.axis == other.axis) and (self.fill == other.fill))
|
'.. todo::
WRITEME'
| def __hash__(self):
| return (((hash(type(self)) ^ hash(self.ndim)) ^ hash(self.axis)) ^ hash(self.fill))
|
'.. todo::
WRITEME'
| def make_node(self, x, new_length, insert_at):
| x_ = tensor.as_tensor_variable(x)
new_length_ = tensor.as_tensor_variable(new_length)
insert_at_ = tensor.as_tensor_variable(insert_at)
assert (x_.ndim == self.ndim), ('%s instance expected x.ndim = %d, got %d' % (self.__class__.__name__, self.ndim, x.ndim))
assert (new_length_.ndim == 0), 'new_length must be a scalar'
assert (insert_at_.ndim == 1), 'insert_at must be vector'
assert (new_length_.dtype.startswith('int') or new_length.dtype.startswith('uint')), 'new_length must be integer type'
assert (insert_at_.dtype.startswith('int') or insert_at_.dtype.startswith('uint')), 'insert_at must be integer type'
return theano.Apply(self, inputs=[x_, new_length_, insert_at_], outputs=[x_.type()])
|
'.. todo::
WRITEME'
| def perform(self, node, inputs, output_storage):
| (x, new_length, nonconstants) = inputs
nonconstant_set = set(nonconstants)
constant = sorted((set(xrange(new_length)) - nonconstant_set))
assert (x.shape[self.axis] == len(nonconstant_set)), ('x.shape[%d] != len(set(nonconstants))' % self.axis)
assert (new_length >= x.shape[self.axis]), 'number of items along axis in new array is less than old array'
new_shape = ((x.shape[:self.axis] + (int(new_length),)) + x.shape[(self.axis + 1):])
z = output_storage[0][0] = np.empty(new_shape, dtype=x.dtype)
z[index_along_axis(nonconstants, self.ndim, self.axis)] = x
z[index_along_axis(constant, self.ndim, self.axis)] = self.fill
|
'.. todo::
WRITEME'
| def grad(self, inputs, gradients):
| (x, new_length, nonconstants) = inputs
d_out = gradients[0]
swap = list(range(self.ndim))
swap.remove(self.axis)
swap.insert(0, self.axis)
return [d_out.dimshuffle(swap)[nonconstants].dimshuffle(swap), grad_not_implemented(self, 1, new_length), grad_not_implemented(self, 2, nonconstants)]
|
'.. todo::
WRITEME'
| def __str__(self):
| return ('%s{ndim=%d,axis=%d,fill=%s}' % (self.__class__.__name__, self.ndim, self.axis, str(self.fill)))
|
'.. todo::
WRITEME'
| def __enter__(self):
| if isinstance(self._f, six.string_types):
self._handle = open(self._f, self._mode, self._buffering)
else:
self._handle = self._f
return self._handle
|
'.. todo::
WRITEME'
| def __exit__(self, exc_type, exc_value, traceback):
| if (self._handle is not self._f):
self._handle.close()
|
'.. todo::
WRITEME'
| def make_node(self, xin):
| xout = xin.type.make_variable()
return theano.gof.Apply(op=self, inputs=[xin], outputs=[xout])
|
'.. todo::
WRITEME'
| def perform(self, node, inputs, output_storage):
| (xin,) = inputs
(xout,) = output_storage
xout[0] = xin
self.callback(xin)
|
'.. todo::
WRITEME'
| def grad(self, inputs, output_gradients):
| return output_gradients
|
'.. todo::
WRITEME'
| def R_op(self, inputs, eval_points):
| return [x for x in eval_points]
|
'.. todo::
WRITEME'
| def __eq__(self, other):
| return ((type(self) == type(other)) and (self.callback == other.callback))
|
'.. todo::
WRITEME'
| def hash(self):
| return hash(self.callback)
|
'.. todo::
WRITEME'
| def __hash__(self):
| return self.hash()
|
'Report being disconnected to all inputs in order to have no gradient
at all.
Parameters
node : WRITEME'
| def connection_pattern(self, node):
| return [[False]]
|
'Report being disconnected to all inputs in order to have no gradient
at all.
Parameters
inputs : WRITEME
output_gradients : WRITEME'
| def grad(self, inputs, output_gradients):
| return [theano.gradient.DisconnectedType()()]
|
'Retrieves description of the next batch of examples.
Returns
next_batch : `slice` or list of int
An object describing the indices in the dataset of
a batch of data. Either a `slice` object or a list
of integers specifying individual indices of
examples.
Raises
StopIteration
When there are no more batches to return.'
| def next(self):
| raise NotImplementedError()
|
'The (maximum) number of examples in each batch.
Returns
batch_size : int
The (maximum) number of examples in each batch. This is
either as specified via the constructor, or inferred from
the dataset size and the number of batches requested.'
| @property
def batch_size(self):
| return self._batch_size
|
'The total number of batches that the iterator will ever return.
Returns
num_batches : int
The total number of batches the iterator will ever return.
This is either as specified via the constructor, or
inferred from the dataset size and the batch size.'
| @property
def num_batches(self):
| return self._num_batches
|
'The total number of examples over which the iterator operates.
Returns
num_examples : int
The total number of examples over which the iterator operates.
May be less than the dataset size.'
| @property
def num_examples(self):
| return (self.batch_size * self.num_batches)
|
'Whether every batch will be the same size.
Returns
uneven : bool
`True` if returned batches may be of differing sizes,
`False` otherwise.'
| @property
def uneven(self):
| raise NotImplementedError()
|
'Number of examples that will be visited
by the iterator. (May be lower than dataset_size)'
| @property
def num_examples(self):
| product = (self.batch_size * self.num_batches)
if (product > self._dataset_size):
return (self.batch_size * (self.num_batches - 1))
else:
return product
|
'Returns next batch of _base_iterator
Raises
StopException
When _base_iterator reachs the end of the dataset
Notes
Uneven batches may be discarded and StopException
will be raised without having iterated throught
every examples.'
| def next(self):
| length = (-1)
while (length != self.batch_size):
batch = self._base_iterator.next()
if isinstance(batch, slice):
length = (batch.stop - batch.start)
else:
length = len(batch)
return batch
|
'Retrieves the next batch of examples.
Returns
next_batch : object
An object representing a mini-batch of data, conforming
to the space specified in the `data_specs` constructor
argument to this iterator. Will be a tuple if more
than one data source was specified or if the constructor
parameter `return_tuple` was `True`.
Raises
StopIteration
When there are no more batches to return.'
| @wraps(SubsetIterator.next)
def next(self):
| next_index = self._subset_iterator.next()
if hasattr(self._dataset, 'get'):
rval = self._next(next_index)
else:
rval = self._fallback_next(next_index)
if ((not self._return_tuple) and (len(rval) == 1)):
(rval,) = rval
return rval
|
'Get information about the experimental environment such as the
cpu, os and the hostname of the machine on which the experiment
is running.'
| def _get_exp_env_info(self):
| self.exp_env_info['host'] = socket.gethostname()
self.exp_env_info['cpu'] = platform.processor()
self.exp_env_info['os'] = platform.platform()
if ('theano' in sys.modules):
self.exp_env_info['theano_config'] = sys.modules['theano'].config
else:
self.exp_env_info['theano_config'] = None
|
'Get version of Python packages.'
| def _get_lib_versions(self):
| repos = os.getenv('PYLEARN2_TRACK_MODULES', '')
default_repos = 'pylearn2:theano:numpy:scipy'
repos = ((default_repos + ':') + repos)
repos = set(repos.split(':'))
for repo in repos:
try:
if (repo == ''):
continue
__import__(repo)
if hasattr(sys.modules[repo], '__version__'):
v = sys.modules[repo].__version__
if (v != 'unknown'):
self.versions[repo] = v
continue
self.versions[repo] = self._get_git_version(self._get_module_parent_path(sys.modules[repo]))
except ImportError:
self.versions[repo] = None
known = copy.copy(self.versions)
unknown = [k for (k, w) in known.items() if (not w)]
known = dict(((k, w) for (k, w) in known.items() if w))
self.str_versions = ' | '.join(([('%s:%s' % (k, w)) for (k, w) in sorted(six.iteritems(known))] + [('%s:?' % ','.join(sorted(unknown)))]))
|
'Return version of the Python packages as a string.
e.g. numpy:1.6.1 | pylearn:a6e634b83d | pylearn2:57a156beb0'
| def __str__(self):
| return self.str_versions
|
'Return the git revision of a repository with the letter \'M\'
appended to the revision if the repo was modified.
e.g. 10d3046e85 M
Parameters
root : str
Root folder of the repository
Returns
rval : str or None
A string with the revision hash, or None if it could not be
retrieved (e.g. if it is not actually a git repository)'
| def _get_git_version(self, root):
| if (not os.path.isdir(os.path.join(root, '.git'))):
return None
cwd_backup = os.getcwd()
try:
os.chdir(root)
sub_p = subprocess.Popen(['git', 'rev-parse', 'HEAD'], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
version = sub_p.communicate()[0][0:10].strip()
sub_p = subprocess.Popen(['git', 'diff', '--name-only'], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
modified = sub_p.communicate()[0]
if len(modified):
version += ' M'
return version
except Exception:
pass
finally:
try:
os.chdir(cwd_backup)
except Exception:
warnings.warn(('Could not chdir back to ' + cwd_backup))
|
'Same as `get_git_version` but for a Mercurial repository.'
| def _get_hg_version(self, root):
| if (not os.path.isdir(os.path.join(root, '.hg'))):
return None
cwd_backup = os.getcwd()
try:
os.chdir(root)
sub_p = subprocess.Popen(['hg', 'parents'], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
sub_p_output = sub_p.communicate()[0]
finally:
os.chdir(cwd_backup)
first_line = sub_p_output.split('\n')[0]
return first_line.split(':')[2][0:10]
|
'Return path to a given module.'
| def _get_module_path(self, module):
| return os.path.realpath(module.__path__[0])
|
'Return path to the parent directory of a given module.'
| def _get_module_parent_path(self, module):
| return os.path.dirname(self._get_module_path(module))
|
'Print version of the Python packages as a string.
e.g. numpy:1.6.1 | pylearn:a6e634b83d | pylearn2:57a156beb0'
| def print_versions(self):
| logger.info(self.__str__())
|
'Return basic information about the experiment setup such as
the hostname of the machine the experiment was run on, the
operating system installed on the machine.
Parameters
print_theano_config : bool, optional
If True, information about the theano configuration will be
displayed.'
| def print_exp_env_info(self, print_theano_config=False):
| logger.info('HOST: {0}'.format(self.exp_env_info['host']))
logger.info('CPU: {0}'.format(self.exp_env_info['cpu']))
logger.info('OS: {0}'.format(self.exp_env_info['os']))
if print_theano_config:
logger.info(self.exp_env_info['theano_config'])
|
'Generator function to iterate through all minibatches'
| def __iter__(self):
| counter = [0, 0, 0]
for chosen in self.permut:
index = counter[chosen]
minibatch = self.dataset[chosen][(index * self.batch_size):((index + 1) * self.batch_size)]
counter[chosen] = ((counter[chosen] + 1) % self.limit[chosen])
(yield minibatch)
|
'Return length of the weighted union'
| def __len__(self):
| return self.length
|
'Same generator as __iter__, but yield only the chosen indexes'
| def by_index(self):
| counter = [0, 0, 0]
for chosen in self.permut:
index = counter[chosen]
counter[chosen] = ((counter[chosen] + 1) % self.limit[chosen])
(yield (chosen, index))
|
'Format the specified record as text.
Parameters
record : object
A LogRecord object with the appropriate attributes.
Returns
s : str
A string containing the formatted log message.
Notes
The record\'s attribute dictionary is used as the operand to a
string formatting operation which yields the returned string.
Before formatting the dictionary, a couple of preparatory
steps are carried out. The message attribute of the record is
computed using LogRecord.getMessage(). If the formatting
string uses the time (as determined by a call to usesTime(),
formatTime() is called to format the event time. If there is
exception information, it is formatted using formatException()
and appended to the message.'
| def format(self, record):
| record.message = record.getMessage()
if (hasattr(self, 'usesTime') and self.usesTime()):
record.asctime = self.formatTime(record, self.datefmt)
emit_special = ((self._only_from is None) or record.name.startswith(self._only_from))
if ((record.levelno == logging.INFO) and emit_special):
s = (self._info_fmt % record.__dict__)
else:
s = (self._fmt % record.__dict__)
if record.exc_info:
if (not record.exc_text):
record.exc_text = self.formatException(record.exc_info)
if record.exc_text:
if (s[(-1):] != '\n'):
s = (s + '\n')
try:
s = (s + record.exc_text)
except UnicodeError:
s = (s + record.exc_text.decode(sys.getfilesystemencoding()))
return s
|
'.. todo::
WRITEME'
| @property
def stdout(self):
| return (sys.stdout if (self._stdout is None) else self._stdout)
|
'.. todo::
WRITEME'
| @property
def stderr(self):
| return (sys.stderr if (self._stderr is None) else self._stderr)
|
'Flushes the stream.'
| def flush(self):
| for stream in (self.stdout, self.stderr):
stream.flush()
|
'Emit a record.
If a formatter is specified, it is used to format the record.
The record is then written to the stream with a trailing newline. If
exception information is present, it is formatted using
traceback.print_exception and appended to the stream. If the stream
has an \'encoding\' attribute, it is used to determine how to do the
output to the stream.
Parameters
record : WRITEME'
| def emit(self, record):
| try:
msg = self.format(record)
if (record.levelno > logging.INFO):
stream = self.stderr
else:
stream = self.stdout
fs = u'%s\n'
if (not getattr(logging, '_unicode', True)):
stream.write((fs % msg))
else:
try:
if (isinstance(msg, six.text_type) and getattr(stream, 'encoding', None)):
try:
stream.write((fs % msg))
except UnicodeEncodeError:
stream.write((fs % msg).encode(stream.encoding))
else:
stream.write((fs % msg))
except (UnicodeError, TypeError):
stream.write((fs % msg).encode('UTF-8'))
self.flush()
except (KeyboardInterrupt, SystemExit):
raise
except:
self.handleError(record)
|
'Initialize the dA class by specifying the number of visible units (the
dimension d of the input ), the number of hidden units ( the dimension
d\' of the latent or hidden space ) and the corruption level. The
constructor also receives symbolic variables for the input, weights and
bias. Such a symbolic variables are useful when, for example the input
is the result of some computations, or when weights are shared between
the dA and an MLP layer. When dealing with SdAs this always happens,
the dA on layer 2 gets as input the output of the dA on layer 1,
and the weights of the dA are used in the second stage of training
to construct an MLP.
:type numpy_rng: numpy.random.RandomState
:param numpy_rng: number random generator used to generate weights
:type theano_rng: theano.tensor.shared_randomstreams.RandomStreams
:param theano_rng: Theano random generator; if None is given one is
generated based on a seed drawn from `rng`
:type input: theano.tensor.TensorType
:param input: a symbolic description of the input or None for
standalone dA
:type n_visible: int
:param n_visible: number of visible units
:type n_hidden: int
:param n_hidden: number of hidden units
:type W: theano.tensor.TensorType
:param W: Theano variable pointing to a set of weights that should be
shared belong the dA and another architecture; if dA should
be standalone set this to None
:type bhid: theano.tensor.TensorType
:param bhid: Theano variable pointing to a set of biases values (for
hidden units) that should be shared belong dA and another
architecture; if dA should be standalone set this to None
:type bvis: theano.tensor.TensorType
:param bvis: Theano variable pointing to a set of biases values (for
visible units) that should be shared belong dA and another
architecture; if dA should be standalone set this to None'
| def __init__(self, numpy_rng, theano_rng=None, input=None, n_visible=784, n_hidden=500, W=None, bhid=None, bvis=None):
| self.n_visible = n_visible
self.n_hidden = n_hidden
if (not theano_rng):
theano_rng = RandomStreams(numpy_rng.randint((2 ** 30)))
if (not W):
initial_W = numpy.asarray(numpy_rng.uniform(low=((-4) * numpy.sqrt((6.0 / (n_hidden + n_visible)))), high=(4 * numpy.sqrt((6.0 / (n_hidden + n_visible)))), size=(n_visible, n_hidden)), dtype=theano.config.floatX)
W = theano.shared(value=initial_W, name='W', borrow=True)
if (not bvis):
bvis = theano.shared(value=numpy.zeros(n_visible, dtype=theano.config.floatX), borrow=True)
if (not bhid):
bhid = theano.shared(value=numpy.zeros(n_hidden, dtype=theano.config.floatX), name='b', borrow=True)
self.W = W
self.b = bhid
self.b_prime = bvis
self.W_prime = self.W.T
self.theano_rng = theano_rng
if (input is None):
self.x = T.dmatrix(name='input')
else:
self.x = input
self.params = [self.W, self.b, self.b_prime]
|
'This function keeps ``1-corruption_level`` entries of the inputs the
same and zero-out randomly selected subset of size ``corruption_level``
Note : first argument of theano.rng.binomial is the shape(size) of
random numbers that it should produce
second argument is the number of trials
third argument is the probability of success of any trial
this will produce an array of 0s and 1s where 1 has a
probability of 1 - ``corruption_level`` and 0 with
``corruption_level``
The binomial function return int64 data type by
default. int64 multiplicated by the input
type(floatX) always return float64. To keep all data
in floatX when floatX is float32, we set the dtype of
the binomial to floatX. As in our case the value of
the binomial is always 0 or 1, this don\'t change the
result. This is needed to allow the gpu to work
correctly as it only support float32 for now.'
| def get_corrupted_input(self, input, corruption_level):
| return (self.theano_rng.binomial(size=input.shape, n=1, p=(1 - corruption_level), dtype=theano.config.floatX) * input)
|
'Computes the values of the hidden layer'
| def get_hidden_values(self, input):
| return T.nnet.sigmoid((T.dot(input, self.W) + self.b))
|
'Computes the reconstructed input given the values of the
hidden layer'
| def get_reconstructed_input(self, hidden):
| return T.nnet.sigmoid((T.dot(hidden, self.W_prime) + self.b_prime))
|
'This function computes the cost and the updates for one trainng
step of the dA'
| def get_cost_updates(self, corruption_level, learning_rate):
| tilde_x = self.get_corrupted_input(self.x, corruption_level)
y = self.get_hidden_values(tilde_x)
z = self.get_reconstructed_input(y)
L = (- T.sum(((self.x * T.log(z)) + ((1 - self.x) * T.log((1 - z)))), axis=1))
cost = T.mean(L)
gparams = T.grad(cost, self.params)
updates = [(param, (param - (learning_rate * gparam))) for (param, gparam) in zip(self.params, gparams)]
return (cost, updates)
|
'RBM constructor. Defines the parameters of the model along with
basic operations for inferring hidden from visible (and vice-versa),
as well as for performing CD updates.
:param input: None for standalone RBMs or symbolic variable if RBM is
part of a larger graph.
:param n_visible: number of visible units
:param n_hidden: number of hidden units
:param W: None for standalone RBMs or symbolic variable pointing to a
shared weight matrix in case RBM is part of a DBN network; in a DBN,
the weights are shared between RBMs and layers of a MLP
:param hbias: None for standalone RBMs or symbolic variable pointing
to a shared hidden units bias vector in case RBM is part of a
different network
:param vbias: None for standalone RBMs or a symbolic variable
pointing to a shared visible units bias'
| def __init__(self, input=None, n_visible=784, n_hidden=500, W=None, hbias=None, vbias=None, numpy_rng=None, theano_rng=None):
| self.n_visible = n_visible
self.n_hidden = n_hidden
if (numpy_rng is None):
numpy_rng = numpy.random.RandomState(1234)
if (theano_rng is None):
theano_rng = RandomStreams(numpy_rng.randint((2 ** 30)))
if (W is None):
initial_W = numpy.asarray(numpy_rng.uniform(low=((-4) * numpy.sqrt((6.0 / (n_hidden + n_visible)))), high=(4 * numpy.sqrt((6.0 / (n_hidden + n_visible)))), size=(n_visible, n_hidden)), dtype=theano.config.floatX)
W = theano.shared(value=initial_W, name='W', borrow=True)
if (hbias is None):
hbias = theano.shared(value=numpy.zeros(n_hidden, dtype=theano.config.floatX), name='hbias', borrow=True)
if (vbias is None):
vbias = theano.shared(value=numpy.zeros(n_visible, dtype=theano.config.floatX), name='vbias', borrow=True)
self.input = input
if (not input):
self.input = T.matrix('input')
self.W = W
self.hbias = hbias
self.vbias = vbias
self.theano_rng = theano_rng
self.params = [self.W, self.hbias, self.vbias]
|
'Function to compute the free energy'
| def free_energy(self, v_sample):
| wx_b = (T.dot(v_sample, self.W) + self.hbias)
vbias_term = T.dot(v_sample, self.vbias)
hidden_term = T.sum(T.log((1 + T.exp(wx_b))), axis=1)
return ((- hidden_term) - vbias_term)
|
'This function propagates the visible units activation upwards to
the hidden units
Note that we return also the pre-sigmoid activation of the
layer. As it will turn out later, due to how Theano deals with
optimizations, this symbolic variable will be needed to write
down a more stable computational graph (see details in the
reconstruction cost function)'
| def propup(self, vis):
| pre_sigmoid_activation = (T.dot(vis, self.W) + self.hbias)
return [pre_sigmoid_activation, T.nnet.sigmoid(pre_sigmoid_activation)]
|
'This function infers state of hidden units given visible units'
| def sample_h_given_v(self, v0_sample):
| (pre_sigmoid_h1, h1_mean) = self.propup(v0_sample)
h1_sample = self.theano_rng.binomial(size=h1_mean.shape, n=1, p=h1_mean, dtype=theano.config.floatX)
return [pre_sigmoid_h1, h1_mean, h1_sample]
|
'This function propagates the hidden units activation downwards to
the visible units
Note that we return also the pre_sigmoid_activation of the
layer. As it will turn out later, due to how Theano deals with
optimizations, this symbolic variable will be needed to write
down a more stable computational graph (see details in the
reconstruction cost function)'
| def propdown(self, hid):
| pre_sigmoid_activation = (T.dot(hid, self.W.T) + self.vbias)
return [pre_sigmoid_activation, T.nnet.sigmoid(pre_sigmoid_activation)]
|
'This function infers state of visible units given hidden units'
| def sample_v_given_h(self, h0_sample):
| (pre_sigmoid_v1, v1_mean) = self.propdown(h0_sample)
v1_sample = self.theano_rng.binomial(size=v1_mean.shape, n=1, p=v1_mean, dtype=theano.config.floatX)
return [pre_sigmoid_v1, v1_mean, v1_sample]
|
'This function implements one step of Gibbs sampling,
starting from the hidden state'
| def gibbs_hvh(self, h0_sample):
| (pre_sigmoid_v1, v1_mean, v1_sample) = self.sample_v_given_h(h0_sample)
(pre_sigmoid_h1, h1_mean, h1_sample) = self.sample_h_given_v(v1_sample)
return [pre_sigmoid_v1, v1_mean, v1_sample, pre_sigmoid_h1, h1_mean, h1_sample]
|
'This function implements one step of Gibbs sampling,
starting from the visible state'
| def gibbs_vhv(self, v0_sample):
| (pre_sigmoid_h1, h1_mean, h1_sample) = self.sample_h_given_v(v0_sample)
(pre_sigmoid_v1, v1_mean, v1_sample) = self.sample_v_given_h(h1_sample)
return [pre_sigmoid_h1, h1_mean, h1_sample, pre_sigmoid_v1, v1_mean, v1_sample]
|
'This functions implements one step of CD-k or PCD-k
:param lr: learning rate used to train the RBM
:param persistent: None for CD. For PCD, shared variable
containing old state of Gibbs chain. This must be a shared
variable of size (batch size, number of hidden units).
:param k: number of Gibbs steps to do in CD-k/PCD-k
Returns a proxy for the cost and the updates dictionary. The
dictionary contains the update rules for weights and biases but
also an update of the shared variable used to store the persistent
chain, if one is used.'
| def get_cost_updates(self, lr=0.1, persistent=None, k=1):
| (pre_sigmoid_ph, ph_mean, ph_sample) = self.sample_h_given_v(self.input)
if (persistent is None):
chain_start = ph_sample
else:
chain_start = persistent
([pre_sigmoid_nvs, nv_means, nv_samples, pre_sigmoid_nhs, nh_means, nh_samples], updates) = theano.scan(self.gibbs_hvh, outputs_info=[None, None, None, None, None, chain_start], n_steps=k, name='gibbs_hvh')
chain_end = nv_samples[(-1)]
cost = (T.mean(self.free_energy(self.input)) - T.mean(self.free_energy(chain_end)))
gparams = T.grad(cost, self.params, consider_constant=[chain_end])
for (gparam, param) in zip(gparams, self.params):
updates[param] = (param - (gparam * T.cast(lr, dtype=theano.config.floatX)))
if persistent:
updates[persistent] = nh_samples[(-1)]
monitoring_cost = self.get_pseudo_likelihood_cost(updates)
else:
monitoring_cost = self.get_reconstruction_cost(updates, pre_sigmoid_nvs[(-1)])
return (monitoring_cost, updates)
|
'Stochastic approximation to the pseudo-likelihood'
| def get_pseudo_likelihood_cost(self, updates):
| bit_i_idx = theano.shared(value=0, name='bit_i_idx')
xi = T.round(self.input)
fe_xi = self.free_energy(xi)
xi_flip = T.set_subtensor(xi[:, bit_i_idx], (1 - xi[:, bit_i_idx]))
fe_xi_flip = self.free_energy(xi_flip)
cost = T.mean((self.n_visible * T.log(T.nnet.sigmoid((fe_xi_flip - fe_xi)))))
updates[bit_i_idx] = ((bit_i_idx + 1) % self.n_visible)
return cost
|
'Approximation to the reconstruction error
Note that this function requires the pre-sigmoid activation as
input. To understand why this is so you need to understand a
bit about how Theano works. Whenever you compile a Theano
function, the computational graph that you pass as input gets
optimized for speed and stability. This is done by changing
several parts of the subgraphs with others. One such
optimization expresses terms of the form log(sigmoid(x)) in
terms of softplus. We need this optimization for the
cross-entropy since sigmoid of numbers larger than 30. (or
even less then that) turn to 1. and numbers smaller than
-30. turn to 0 which in terms will force theano to compute
log(0) and therefore we will get either -inf or NaN as
cost. If the value is expressed in terms of softplus we do not
get this undesirable behaviour. This optimization usually
works fine, but here we have a special case. The sigmoid is
applied inside the scan op, while the log is
outside. Therefore Theano will only see log(scan(..)) instead
of log(sigmoid(..)) and will not apply the wanted
optimization. We can not go and replace the sigmoid in scan
with something else also, because this only needs to be done
on the last step. Therefore the easiest and more efficient way
is to get also the pre-sigmoid activation as an output of
scan, and apply both the log and sigmoid outside scan such
that Theano can catch and optimize the expression.'
| def get_reconstruction_cost(self, updates, pre_sigmoid_nv):
| cross_entropy = T.mean(T.sum(((self.input * T.log(T.nnet.sigmoid(pre_sigmoid_nv))) + ((1 - self.input) * T.log((1 - T.nnet.sigmoid(pre_sigmoid_nv))))), axis=1))
return cross_entropy
|
'Initialize the cA class by specifying the number of visible units
(the dimension d of the input), the number of hidden units (the
dimension d\' of the latent or hidden space) and the contraction level.
The constructor also receives symbolic variables for the input, weights
and bias.
:type numpy_rng: numpy.random.RandomState
:param numpy_rng: number random generator used to generate weights
:type theano_rng: theano.tensor.shared_randomstreams.RandomStreams
:param theano_rng: Theano random generator; if None is given
one is generated based on a seed drawn from `rng`
:type input: theano.tensor.TensorType
:param input: a symbolic description of the input or None for
standalone cA
:type n_visible: int
:param n_visible: number of visible units
:type n_hidden: int
:param n_hidden: number of hidden units
:type n_batchsize int
:param n_batchsize: number of examples per batch
:type W: theano.tensor.TensorType
:param W: Theano variable pointing to a set of weights that should be
shared belong the dA and another architecture; if dA should
be standalone set this to None
:type bhid: theano.tensor.TensorType
:param bhid: Theano variable pointing to a set of biases values (for
hidden units) that should be shared belong dA and another
architecture; if dA should be standalone set this to None
:type bvis: theano.tensor.TensorType
:param bvis: Theano variable pointing to a set of biases values (for
visible units) that should be shared belong dA and another
architecture; if dA should be standalone set this to None'
| def __init__(self, numpy_rng, input=None, n_visible=784, n_hidden=100, n_batchsize=1, W=None, bhid=None, bvis=None):
| self.n_visible = n_visible
self.n_hidden = n_hidden
self.n_batchsize = n_batchsize
if (not W):
initial_W = numpy.asarray(numpy_rng.uniform(low=((-4) * numpy.sqrt((6.0 / (n_hidden + n_visible)))), high=(4 * numpy.sqrt((6.0 / (n_hidden + n_visible)))), size=(n_visible, n_hidden)), dtype=theano.config.floatX)
W = theano.shared(value=initial_W, name='W', borrow=True)
if (not bvis):
bvis = theano.shared(value=numpy.zeros(n_visible, dtype=theano.config.floatX), borrow=True)
if (not bhid):
bhid = theano.shared(value=numpy.zeros(n_hidden, dtype=theano.config.floatX), name='b', borrow=True)
self.W = W
self.b = bhid
self.b_prime = bvis
self.W_prime = self.W.T
if (input is None):
self.x = T.dmatrix(name='input')
else:
self.x = input
self.params = [self.W, self.b, self.b_prime]
|
'Computes the values of the hidden layer'
| def get_hidden_values(self, input):
| return T.nnet.sigmoid((T.dot(input, self.W) + self.b))
|
'Computes the jacobian of the hidden layer with respect to
the input, reshapes are necessary for broadcasting the
element-wise product on the right axis'
| def get_jacobian(self, hidden, W):
| return (T.reshape((hidden * (1 - hidden)), (self.n_batchsize, 1, self.n_hidden)) * T.reshape(W, (1, self.n_visible, self.n_hidden)))
|
'Computes the reconstructed input given the values of the
hidden layer'
| def get_reconstructed_input(self, hidden):
| return T.nnet.sigmoid((T.dot(hidden, self.W_prime) + self.b_prime))
|
'This function computes the cost and the updates for one trainng
step of the cA'
| def get_cost_updates(self, contraction_level, learning_rate):
| y = self.get_hidden_values(self.x)
z = self.get_reconstructed_input(y)
J = self.get_jacobian(y, self.W)
self.L_rec = (- T.sum(((self.x * T.log(z)) + ((1 - self.x) * T.log((1 - z)))), axis=1))
self.L_jacob = (T.sum((J ** 2)) // self.n_batchsize)
cost = (T.mean(self.L_rec) + (contraction_level * T.mean(self.L_jacob)))
gparams = T.grad(cost, self.params)
updates = []
for (param, gparam) in zip(self.params, gparams):
updates.append((param, (param - (learning_rate * gparam))))
return (cost, updates)
|
':param shared_positions: theano ndarray shared var with
many particle [initial] positions
:param energy_fn:
callable such that energy_fn(positions)
returns theano vector of energies.
The len of this vector is the batchsize.
The sum of this energy vector must be differentiable (with
theano.tensor.grad) with respect to the positions for HMC
sampling to work.'
| @classmethod
def new_from_shared_positions(cls, shared_positions, energy_fn, initial_stepsize=0.01, target_acceptance_rate=0.9, n_steps=20, stepsize_dec=0.98, stepsize_min=0.001, stepsize_max=0.25, stepsize_inc=1.02, avg_acceptance_slowness=0.9, seed=12345):
| stepsize = sharedX(initial_stepsize, 'hmc_stepsize')
avg_acceptance_rate = sharedX(target_acceptance_rate, 'avg_acceptance_rate')
s_rng = theano.sandbox.rng_mrg.MRG_RandomStreams(seed)
(accept, final_pos) = hmc_move(s_rng, shared_positions, energy_fn, stepsize, n_steps)
simulate_updates = hmc_updates(shared_positions, stepsize, avg_acceptance_rate, final_pos=final_pos, accept=accept, stepsize_min=stepsize_min, stepsize_max=stepsize_max, stepsize_inc=stepsize_inc, stepsize_dec=stepsize_dec, target_acceptance_rate=target_acceptance_rate, avg_acceptance_slowness=avg_acceptance_slowness)
simulate = function([], [], updates=simulate_updates)
return cls(positions=shared_positions, stepsize=stepsize, stepsize_min=stepsize_min, stepsize_max=stepsize_max, avg_acceptance_rate=avg_acceptance_rate, target_acceptance_rate=target_acceptance_rate, s_rng=s_rng, _updates=simulate_updates, simulate=simulate)
|
'Returns a new position obtained after `n_steps` of HMC simulation.
Parameters
kwargs: dictionary
The `kwargs` dictionary is passed to the shared variable
(self.positions) `get_value()` function. For example, to avoid
copying the shared variable value, consider passing `borrow=True`.
Returns
rval: numpy matrix
Numpy matrix whose of dimensions similar to `initial_position`.'
| def draw(self, **kwargs):
| self.simulate()
return self.positions.get_value(borrow=False)
|
'This class is made to support a variable number of layers.
:type numpy_rng: numpy.random.RandomState
:param numpy_rng: numpy random number generator used to draw initial
weights
:type theano_rng: theano.tensor.shared_randomstreams.RandomStreams
:param theano_rng: Theano random generator; if None is given one is
generated based on a seed drawn from `rng`
:type n_ins: int
:param n_ins: dimension of the input to the DBN
:type hidden_layers_sizes: list of ints
:param hidden_layers_sizes: intermediate layers size, must contain
at least one value
:type n_outs: int
:param n_outs: dimension of the output of the network'
| def __init__(self, numpy_rng, theano_rng=None, n_ins=784, hidden_layers_sizes=[500, 500], n_outs=10):
| self.sigmoid_layers = []
self.rbm_layers = []
self.params = []
self.n_layers = len(hidden_layers_sizes)
assert (self.n_layers > 0)
if (not theano_rng):
theano_rng = MRG_RandomStreams(numpy_rng.randint((2 ** 30)))
self.x = T.matrix('x')
self.y = T.ivector('y')
for i in range(self.n_layers):
if (i == 0):
input_size = n_ins
else:
input_size = hidden_layers_sizes[(i - 1)]
if (i == 0):
layer_input = self.x
else:
layer_input = self.sigmoid_layers[(-1)].output
sigmoid_layer = HiddenLayer(rng=numpy_rng, input=layer_input, n_in=input_size, n_out=hidden_layers_sizes[i], activation=T.nnet.sigmoid)
self.sigmoid_layers.append(sigmoid_layer)
self.params.extend(sigmoid_layer.params)
rbm_layer = RBM(numpy_rng=numpy_rng, theano_rng=theano_rng, input=layer_input, n_visible=input_size, n_hidden=hidden_layers_sizes[i], W=sigmoid_layer.W, hbias=sigmoid_layer.b)
self.rbm_layers.append(rbm_layer)
self.logLayer = LogisticRegression(input=self.sigmoid_layers[(-1)].output, n_in=hidden_layers_sizes[(-1)], n_out=n_outs)
self.params.extend(self.logLayer.params)
self.finetune_cost = self.logLayer.negative_log_likelihood(self.y)
self.errors = self.logLayer.errors(self.y)
|
'Generates a list of functions, for performing one step of
gradient descent at a given layer. The function will require
as input the minibatch index, and to train an RBM you just
need to iterate, calling the corresponding function on all
minibatch indexes.
:type train_set_x: theano.tensor.TensorType
:param train_set_x: Shared var. that contains all datapoints used
for training the RBM
:type batch_size: int
:param batch_size: size of a [mini]batch
:param k: number of Gibbs steps to do in CD-k / PCD-k'
| def pretraining_functions(self, train_set_x, batch_size, k):
| index = T.lscalar('index')
learning_rate = T.scalar('lr')
batch_begin = (index * batch_size)
batch_end = (batch_begin + batch_size)
pretrain_fns = []
for rbm in self.rbm_layers:
(cost, updates) = rbm.get_cost_updates(learning_rate, persistent=None, k=k)
fn = theano.function(inputs=[index, theano.In(learning_rate, value=0.1)], outputs=cost, updates=updates, givens={self.x: train_set_x[batch_begin:batch_end]})
pretrain_fns.append(fn)
return pretrain_fns
|
'Generates a function `train` that implements one step of
finetuning, a function `validate` that computes the error on a
batch from the validation set, and a function `test` that
computes the error on a batch from the testing set
:type datasets: list of pairs of theano.tensor.TensorType
:param datasets: It is a list that contain all the datasets;
the has to contain three pairs, `train`,
`valid`, `test` in this order, where each pair
is formed of two Theano variables, one for the
datapoints, the other for the labels
:type batch_size: int
:param batch_size: size of a minibatch
:type learning_rate: float
:param learning_rate: learning rate used during finetune stage'
| def build_finetune_functions(self, datasets, batch_size, learning_rate):
| (train_set_x, train_set_y) = datasets[0]
(valid_set_x, valid_set_y) = datasets[1]
(test_set_x, test_set_y) = datasets[2]
n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
n_valid_batches //= batch_size
n_test_batches = test_set_x.get_value(borrow=True).shape[0]
n_test_batches //= batch_size
index = T.lscalar('index')
gparams = T.grad(self.finetune_cost, self.params)
updates = []
for (param, gparam) in zip(self.params, gparams):
updates.append((param, (param - (gparam * learning_rate))))
train_fn = theano.function(inputs=[index], outputs=self.finetune_cost, updates=updates, givens={self.x: train_set_x[(index * batch_size):((index + 1) * batch_size)], self.y: train_set_y[(index * batch_size):((index + 1) * batch_size)]})
test_score_i = theano.function([index], self.errors, givens={self.x: test_set_x[(index * batch_size):((index + 1) * batch_size)], self.y: test_set_y[(index * batch_size):((index + 1) * batch_size)]})
valid_score_i = theano.function([index], self.errors, givens={self.x: valid_set_x[(index * batch_size):((index + 1) * batch_size)], self.y: valid_set_y[(index * batch_size):((index + 1) * batch_size)]})
def valid_score():
return [valid_score_i(i) for i in range(n_valid_batches)]
def test_score():
return [test_score_i(i) for i in range(n_test_batches)]
return (train_fn, valid_score, test_score)
|
'nh :: dimension of the hidden layer
nc :: number of classes
ne :: number of word embeddings in the vocabulary
de :: dimension of the word embeddings
cs :: word window context size'
| def __init__(self, nh, nc, ne, de, cs):
| self.emb = theano.shared(name='embeddings', value=(0.2 * numpy.random.uniform((-1.0), 1.0, ((ne + 1), de)).astype(theano.config.floatX)))
self.wx = theano.shared(name='wx', value=(0.2 * numpy.random.uniform((-1.0), 1.0, ((de * cs), nh)).astype(theano.config.floatX)))
self.wh = theano.shared(name='wh', value=(0.2 * numpy.random.uniform((-1.0), 1.0, (nh, nh)).astype(theano.config.floatX)))
self.w = theano.shared(name='w', value=(0.2 * numpy.random.uniform((-1.0), 1.0, (nh, nc)).astype(theano.config.floatX)))
self.bh = theano.shared(name='bh', value=numpy.zeros(nh, dtype=theano.config.floatX))
self.b = theano.shared(name='b', value=numpy.zeros(nc, dtype=theano.config.floatX))
self.h0 = theano.shared(name='h0', value=numpy.zeros(nh, dtype=theano.config.floatX))
self.params = [self.emb, self.wx, self.wh, self.w, self.bh, self.b, self.h0]
idxs = T.imatrix()
x = self.emb[idxs].reshape((idxs.shape[0], (de * cs)))
y_sentence = T.ivector('y_sentence')
def recurrence(x_t, h_tm1):
h_t = T.nnet.sigmoid(((T.dot(x_t, self.wx) + T.dot(h_tm1, self.wh)) + self.bh))
s_t = T.nnet.softmax((T.dot(h_t, self.w) + self.b))
return [h_t, s_t]
([h, s], _) = theano.scan(fn=recurrence, sequences=x, outputs_info=[self.h0, None], n_steps=x.shape[0])
p_y_given_x_sentence = s[:, 0, :]
y_pred = T.argmax(p_y_given_x_sentence, axis=1)
lr = T.scalar('lr')
sentence_nll = (- T.mean(T.log(p_y_given_x_sentence)[(T.arange(x.shape[0]), y_sentence)]))
sentence_gradients = T.grad(sentence_nll, self.params)
sentence_updates = OrderedDict(((p, (p - (lr * g))) for (p, g) in zip(self.params, sentence_gradients)))
self.classify = theano.function(inputs=[idxs], outputs=y_pred)
self.sentence_train = theano.function(inputs=[idxs, y_sentence, lr], outputs=sentence_nll, updates=sentence_updates)
self.normalize = theano.function(inputs=[], updates={self.emb: (self.emb / T.sqrt((self.emb ** 2).sum(axis=1)).dimshuffle(0, 'x'))})
|
'Allocate a LeNetConvPoolLayer with shared variable internal parameters.
:type rng: numpy.random.RandomState
:param rng: a random number generator used to initialize weights
:type input: theano.tensor.dtensor4
:param input: symbolic image tensor, of shape image_shape
:type filter_shape: tuple or list of length 4
:param filter_shape: (number of filters, num input feature maps,
filter height, filter width)
:type image_shape: tuple or list of length 4
:param image_shape: (batch size, num input feature maps,
image height, image width)
:type poolsize: tuple or list of length 2
:param poolsize: the downsampling (pooling) factor (#rows, #cols)'
| def __init__(self, rng, input, filter_shape, image_shape, poolsize=(2, 2)):
| assert (image_shape[1] == filter_shape[1])
self.input = input
fan_in = numpy.prod(filter_shape[1:])
fan_out = ((filter_shape[0] * numpy.prod(filter_shape[2:])) // numpy.prod(poolsize))
W_bound = numpy.sqrt((6.0 / (fan_in + fan_out)))
self.W = theano.shared(numpy.asarray(rng.uniform(low=(- W_bound), high=W_bound, size=filter_shape), dtype=theano.config.floatX), borrow=True)
b_values = numpy.zeros((filter_shape[0],), dtype=theano.config.floatX)
self.b = theano.shared(value=b_values, borrow=True)
conv_out = conv2d(input=input, filters=self.W, filter_shape=filter_shape, input_shape=image_shape)
pooled_out = pool.pool_2d(input=conv_out, ds=poolsize, ignore_border=True)
self.output = T.tanh((pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')))
self.params = [self.W, self.b]
self.input = input
|
'Constructs and compiles Theano functions for training and sequence
generation.
n_hidden : integer
Number of hidden units of the conditional RBMs.
n_hidden_recurrent : integer
Number of hidden units of the RNN.
lr : float
Learning rate
r : (integer, integer) tuple
Specifies the pitch range of the piano-roll in MIDI note numbers,
including r[0] but not r[1], such that r[1]-r[0] is the number of
visible units of the RBM at a given time step. The default (21,
109) corresponds to the full range of piano (88 notes).
dt : float
Sampling period when converting the MIDI files into piano-rolls, or
equivalently the time difference between consecutive time steps.'
| def __init__(self, n_hidden=150, n_hidden_recurrent=100, lr=0.001, r=(21, 109), dt=0.3):
| self.r = r
self.dt = dt
(v, v_sample, cost, monitor, params, updates_train, v_t, updates_generate) = build_rnnrbm((r[1] - r[0]), n_hidden, n_hidden_recurrent)
gradient = T.grad(cost, params, consider_constant=[v_sample])
updates_train.update(((p, (p - (lr * g))) for (p, g) in zip(params, gradient)))
self.train_function = theano.function([v], monitor, updates=updates_train)
self.generate_function = theano.function([], v_t, updates=updates_generate)
|
'Train the RNN-RBM via stochastic gradient descent (SGD) using MIDI
files converted to piano-rolls.
files : list of strings
List of MIDI files that will be loaded as piano-rolls for training.
batch_size : integer
Training sequences will be split into subsequences of at most this
size before applying the SGD updates.
num_epochs : integer
Number of epochs (pass over the training set) performed. The user
can safely interrupt training with Ctrl+C at any time.'
| def train(self, files, batch_size=100, num_epochs=200):
| assert (len(files) > 0), 'Training set is empty! (did you download the data files?)'
dataset = [midiread(f, self.r, self.dt).piano_roll.astype(theano.config.floatX) for f in files]
try:
for epoch in range(num_epochs):
numpy.random.shuffle(dataset)
costs = []
for (s, sequence) in enumerate(dataset):
for i in range(0, len(sequence), batch_size):
cost = self.train_function(sequence[i:(i + batch_size)])
costs.append(cost)
print(('Epoch %i/%i' % ((epoch + 1), num_epochs)))
print(numpy.mean(costs))
sys.stdout.flush()
except KeyboardInterrupt:
print('Interrupted by user.')
|
'Generate a sample sequence, plot the resulting piano-roll and save
it as a MIDI file.
filename : string
A MIDI file will be created at this location.
show : boolean
If True, a piano-roll of the generated sequence will be shown.'
| def generate(self, filename, show=True):
| piano_roll = self.generate_function()
midiwrite(filename, piano_roll, self.r, self.dt)
if show:
extent = ((0, (self.dt * len(piano_roll))) + self.r)
pylab.figure()
pylab.imshow(piano_roll.T, origin='lower', aspect='auto', interpolation='nearest', cmap=pylab.cm.gray_r, extent=extent)
pylab.xlabel('time (s)')
pylab.ylabel('MIDI note number')
pylab.title('generated piano-roll')
|
'Initialize the parameters of the logistic regression
:type input: theano.tensor.TensorType
:param input: symbolic variable that describes the input of the
architecture ( one minibatch)
:type n_in: int
:param n_in: number of input units, the dimension of the space in
which the datapoint lies
:type n_out: int
:param n_out: number of output units, the dimension of the space in
which the target lies'
| def __init__(self, input, n_in, n_out):
| self.theta = theano.shared(value=numpy.zeros(((n_in * n_out) + n_out), dtype=theano.config.floatX), name='theta', borrow=True)
self.W = self.theta[0:(n_in * n_out)].reshape((n_in, n_out))
self.b = self.theta[(n_in * n_out):((n_in * n_out) + n_out)]
self.p_y_given_x = T.nnet.softmax((T.dot(input, self.W) + self.b))
self.y_pred = T.argmax(self.p_y_given_x, axis=1)
self.input = input
|
'Return the negative log-likelihood of the prediction of this model
under a given target distribution.
.. math::
rac{1}{|\mathcal{D}|}\mathcal{L} ( heta=\{W,b\}, \mathcal{D}) =
rac{1}{|\mathcal{D}|}\sum_{i=0}^{|\mathcal{D}|}
\log(P(Y=y^{(i)}|x^{(i)}, W,b)) \
\ell ( heta=\{W,b\}, \mathcal{D})
:type y: theano.tensor.TensorType
:param y: corresponds to a vector that gives for each example the
correct label'
| def negative_log_likelihood(self, y):
| return (- T.mean(T.log(self.p_y_given_x)[(T.arange(y.shape[0]), y)]))
|
'Return a float representing the number of errors in the minibatch
over the total number of examples of the minibatch
:type y: theano.tensor.TensorType
:param y: corresponds to a vector that gives for each example
the correct label'
| def errors(self, y):
| if (y.ndim != self.y_pred.ndim):
raise TypeError('y should have the same shape as self.y_pred', ('y', y.type, 'y_pred', self.y_pred.type))
if y.dtype.startswith('int'):
return T.mean(T.neq(self.y_pred, y))
else:
raise NotImplementedError()
|
'Typical hidden layer of a MLP: units are fully-connected and have
sigmoidal activation function. Weight matrix W is of shape (n_in,n_out)
and the bias vector b is of shape (n_out,).
NOTE : The nonlinearity used here is tanh
Hidden unit activation is given by: tanh(dot(input,W) + b)
:type rng: numpy.random.RandomState
:param rng: a random number generator used to initialize weights
:type input: theano.tensor.dmatrix
:param input: a symbolic tensor of shape (n_examples, n_in)
:type n_in: int
:param n_in: dimensionality of input
:type n_out: int
:param n_out: number of hidden units
:type activation: theano.Op or function
:param activation: Non linearity to be applied in the hidden
layer'
| def __init__(self, rng, input, n_in, n_out, W=None, b=None, activation=T.tanh):
| self.input = input
if (W is None):
W_values = numpy.asarray(rng.uniform(low=(- numpy.sqrt((6.0 / (n_in + n_out)))), high=numpy.sqrt((6.0 / (n_in + n_out))), size=(n_in, n_out)), dtype=theano.config.floatX)
if (activation == theano.tensor.nnet.sigmoid):
W_values *= 4
W = theano.shared(value=W_values, name='W', borrow=True)
if (b is None):
b_values = numpy.zeros((n_out,), dtype=theano.config.floatX)
b = theano.shared(value=b_values, name='b', borrow=True)
self.W = W
self.b = b
lin_output = (T.dot(input, self.W) + self.b)
self.output = (lin_output if (activation is None) else activation(lin_output))
self.params = [self.W, self.b]
|
'Initialize the parameters for the multilayer perceptron
:type rng: numpy.random.RandomState
:param rng: a random number generator used to initialize weights
:type input: theano.tensor.TensorType
:param input: symbolic variable that describes the input of the
architecture (one minibatch)
:type n_in: int
:param n_in: number of input units, the dimension of the space in
which the datapoints lie
:type n_hidden: int
:param n_hidden: number of hidden units
:type n_out: int
:param n_out: number of output units, the dimension of the space in
which the labels lie'
| def __init__(self, rng, input, n_in, n_hidden, n_out):
| self.hiddenLayer = HiddenLayer(rng=rng, input=input, n_in=n_in, n_out=n_hidden, activation=T.tanh)
self.logRegressionLayer = LogisticRegression(input=self.hiddenLayer.output, n_in=n_hidden, n_out=n_out)
self.L1 = (abs(self.hiddenLayer.W).sum() + abs(self.logRegressionLayer.W).sum())
self.L2_sqr = ((self.hiddenLayer.W ** 2).sum() + (self.logRegressionLayer.W ** 2).sum())
self.negative_log_likelihood = self.logRegressionLayer.negative_log_likelihood
self.errors = self.logRegressionLayer.errors
self.params = (self.hiddenLayer.params + self.logRegressionLayer.params)
self.input = input
|
'This class is made to support a variable number of layers.
:type numpy_rng: numpy.random.RandomState
:param numpy_rng: numpy random number generator used to draw initial
weights
:type theano_rng: theano.tensor.shared_randomstreams.RandomStreams
:param theano_rng: Theano random generator; if None is given one is
generated based on a seed drawn from `rng`
:type n_ins: int
:param n_ins: dimension of the input to the sdA
:type hidden_layers_sizes: list of ints
:param hidden_layers_sizes: intermediate layers size, must contain
at least one value
:type n_outs: int
:param n_outs: dimension of the output of the network
:type corruption_levels: list of float
:param corruption_levels: amount of corruption to use for each
layer'
| def __init__(self, numpy_rng, theano_rng=None, n_ins=784, hidden_layers_sizes=[500, 500], n_outs=10, corruption_levels=[0.1, 0.1]):
| self.sigmoid_layers = []
self.dA_layers = []
self.params = []
self.n_layers = len(hidden_layers_sizes)
assert (self.n_layers > 0)
if (not theano_rng):
theano_rng = RandomStreams(numpy_rng.randint((2 ** 30)))
self.x = T.matrix('x')
self.y = T.ivector('y')
for i in range(self.n_layers):
if (i == 0):
input_size = n_ins
else:
input_size = hidden_layers_sizes[(i - 1)]
if (i == 0):
layer_input = self.x
else:
layer_input = self.sigmoid_layers[(-1)].output
sigmoid_layer = HiddenLayer(rng=numpy_rng, input=layer_input, n_in=input_size, n_out=hidden_layers_sizes[i], activation=T.nnet.sigmoid)
self.sigmoid_layers.append(sigmoid_layer)
self.params.extend(sigmoid_layer.params)
dA_layer = dA(numpy_rng=numpy_rng, theano_rng=theano_rng, input=layer_input, n_visible=input_size, n_hidden=hidden_layers_sizes[i], W=sigmoid_layer.W, bhid=sigmoid_layer.b)
self.dA_layers.append(dA_layer)
self.logLayer = LogisticRegression(input=self.sigmoid_layers[(-1)].output, n_in=hidden_layers_sizes[(-1)], n_out=n_outs)
self.params.extend(self.logLayer.params)
self.finetune_cost = self.logLayer.negative_log_likelihood(self.y)
self.errors = self.logLayer.errors(self.y)
|
'Generates a list of functions, each of them implementing one
step in trainnig the dA corresponding to the layer with same index.
The function will require as input the minibatch index, and to train
a dA you just need to iterate, calling the corresponding function on
all minibatch indexes.
:type train_set_x: theano.tensor.TensorType
:param train_set_x: Shared variable that contains all datapoints used
for training the dA
:type batch_size: int
:param batch_size: size of a [mini]batch
:type learning_rate: float
:param learning_rate: learning rate used during training for any of
the dA layers'
| def pretraining_functions(self, train_set_x, batch_size):
| index = T.lscalar('index')
corruption_level = T.scalar('corruption')
learning_rate = T.scalar('lr')
batch_begin = (index * batch_size)
batch_end = (batch_begin + batch_size)
pretrain_fns = []
for dA in self.dA_layers:
(cost, updates) = dA.get_cost_updates(corruption_level, learning_rate)
fn = theano.function(inputs=[index, theano.In(corruption_level, value=0.2), theano.In(learning_rate, value=0.1)], outputs=cost, updates=updates, givens={self.x: train_set_x[batch_begin:batch_end]})
pretrain_fns.append(fn)
return pretrain_fns
|
'Generates a function `train` that implements one step of
finetuning, a function `validate` that computes the error on
a batch from the validation set, and a function `test` that
computes the error on a batch from the testing set
:type datasets: list of pairs of theano.tensor.TensorType
:param datasets: It is a list that contain all the datasets;
the has to contain three pairs, `train`,
`valid`, `test` in this order, where each pair
is formed of two Theano variables, one for the
datapoints, the other for the labels
:type batch_size: int
:param batch_size: size of a minibatch
:type learning_rate: float
:param learning_rate: learning rate used during finetune stage'
| def build_finetune_functions(self, datasets, batch_size, learning_rate):
| (train_set_x, train_set_y) = datasets[0]
(valid_set_x, valid_set_y) = datasets[1]
(test_set_x, test_set_y) = datasets[2]
n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
n_valid_batches //= batch_size
n_test_batches = test_set_x.get_value(borrow=True).shape[0]
n_test_batches //= batch_size
index = T.lscalar('index')
gparams = T.grad(self.finetune_cost, self.params)
updates = [(param, (param - (gparam * learning_rate))) for (param, gparam) in zip(self.params, gparams)]
train_fn = theano.function(inputs=[index], outputs=self.finetune_cost, updates=updates, givens={self.x: train_set_x[(index * batch_size):((index + 1) * batch_size)], self.y: train_set_y[(index * batch_size):((index + 1) * batch_size)]}, name='train')
test_score_i = theano.function([index], self.errors, givens={self.x: test_set_x[(index * batch_size):((index + 1) * batch_size)], self.y: test_set_y[(index * batch_size):((index + 1) * batch_size)]}, name='test')
valid_score_i = theano.function([index], self.errors, givens={self.x: valid_set_x[(index * batch_size):((index + 1) * batch_size)], self.y: valid_set_y[(index * batch_size):((index + 1) * batch_size)]}, name='valid')
def valid_score():
return [valid_score_i(i) for i in range(n_valid_batches)]
def test_score():
return [test_score_i(i) for i in range(n_test_batches)]
return (train_fn, valid_score, test_score)
|
'Initialize the parameters of the logistic regression
:type input: theano.tensor.TensorType
:param input: symbolic variable that describes the input of the
architecture (one minibatch)
:type n_in: int
:param n_in: number of input units, the dimension of the space in
which the datapoints lie
:type n_out: int
:param n_out: number of output units, the dimension of the space in
which the labels lie'
| def __init__(self, input, n_in, n_out):
| self.W = theano.shared(value=numpy.zeros((n_in, n_out), dtype=theano.config.floatX), name='W', borrow=True)
self.b = theano.shared(value=numpy.zeros((n_out,), dtype=theano.config.floatX), name='b', borrow=True)
self.p_y_given_x = T.nnet.softmax((T.dot(input, self.W) + self.b))
self.y_pred = T.argmax(self.p_y_given_x, axis=1)
self.params = [self.W, self.b]
self.input = input
|
'Return the mean of the negative log-likelihood of the prediction
of this model under a given target distribution.
.. math::
rac{1}{|\mathcal{D}|} \mathcal{L} ( heta=\{W,b\}, \mathcal{D}) =
rac{1}{|\mathcal{D}|} \sum_{i=0}^{|\mathcal{D}|}
\log(P(Y=y^{(i)}|x^{(i)}, W,b)) \
\ell ( heta=\{W,b\}, \mathcal{D})
:type y: theano.tensor.TensorType
:param y: corresponds to a vector that gives for each example the
correct label
Note: we use the mean instead of the sum so that
the learning rate is less dependent on the batch size'
| def negative_log_likelihood(self, y):
| return (- T.mean(T.log(self.p_y_given_x)[(T.arange(y.shape[0]), y)]))
|
'Return a float representing the number of errors in the minibatch
over the total number of examples of the minibatch ; zero one
loss over the size of the minibatch
:type y: theano.tensor.TensorType
:param y: corresponds to a vector that gives for each example the
correct label'
| def errors(self, y):
| if (y.ndim != self.y_pred.ndim):
raise TypeError('y should have the same shape as self.y_pred', ('y', y.type, 'y_pred', self.y_pred.type))
if y.dtype.startswith('int'):
return T.mean(T.neq(self.y_pred, y))
else:
raise NotImplementedError()
|
'Construct a DataSet.
Arguments:
width, height - image size
max_steps - the number of time steps to store
phi_length - number of images to concatenate into a state
rng - initialized numpy random number generator, used to
choose random minibatches'
| def __init__(self, width, height, rng, max_steps=1000, phi_length=4):
| self.width = width
self.height = height
self.max_steps = max_steps
self.phi_length = phi_length
self.rng = rng
self.imgs = np.zeros((max_steps, height, width), dtype='uint8')
self.actions = np.zeros(max_steps, dtype='int32')
self.rewards = np.zeros(max_steps, dtype=floatX)
self.terminal = np.zeros(max_steps, dtype='bool')
self.bottom = 0
self.top = 0
self.size = 0
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.