title
stringlengths 1
544
โ | parent
stringlengths 0
57
โ | created
stringlengths 11
12
โ | editor
stringclasses 1
value | creator
stringclasses 4
values | edited
stringlengths 11
12
โ | refs
stringlengths 0
536
โ | text
stringlengths 1
26k
| id
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|
Bayes Theorem | null | null | null | null | null | null |
## Bayes's rule
**์ฌํํ๋ฅ ์ ์ฌ์ ํ๋ฅ ๊ณผ likelihood๋ฅผ ์ด์ฉํ์ฌ ๊ณ์ฐํ๋ ๋ฐฉ๋ฒ**
ํ๋ฅ ์ ์ฌ๊ณ ๋ฐฉ์์ ํํํ๋ ๊ณต์์ผ ๋ฟ [Conditional probability](https://texonom.com/conditional-probability-89f109f0347b4a68b7f31e27dcd0794d), [Joint Probability](https://texonom.com/joint-probability-ddefdc8d4f8d4b3eb3d8dafb5706b8e5), [Marginalization](https://texonom.com/marginalization-de8a54419bb842ba8bbb0ecb951caae7) ์ ์๋ก ์ ๋๋๋ ํ ํํ
๊ด์ธก๋๊ธฐ ์ ๊ณผ ํ์ ๋ชจ๋ธ์ ํ๋ผ๋ฏธํฐ์ ๋ํ ํ๋ฅ ๋ถํฌ๊ฐ ์ด๋ป๊ฒ ๋ณํ๋์ง์ ๋ฐ๋ผ ์ฐจ์ด
๊ทธ๋์ ์๋์ฐจ ์ด๊ธฐ ์์๊ฐ ๋ฒ ์ด์ฆ ํ๋ฅ ์ ์ ์ค๋ช
ํด์ฃผ๋ ์ฌ๋ก
prior probability๊ณผ ์๋ก์ด ์ฆ๊ฑฐevidence์ ๋ฐ๋ฅธ ์
๋ฐ์ดํธ๋ ๋ฏฟ์์ ์ ๋๋ฅผ ๊ณ์ฐํ๋ ๊ณต์
์ฌํํ๋ฅ ์ ๊ณ์ฐํ๊ธฐ ์ํด ์กฐ๊ฑด๋ถํ๋ฅ ์ ์ฌ์ฉ
likelihood is probability that fits evidence among target prior
$$posterior = \frac{prior * marginal \; likelihood}{data \; prior}$$
$$P(A|B) := \frac{P(B|A)P(A)}{P(B)} = P(B|A)P(A) (if B \ne P(A))$$

We can chain $\alpha, \beta$ is [Hyperparameter](https://texonom.com/hyperparameter-ef7e34566add4e98b673d4cef59fca90) used to determine prior and $P(D|\theta )$ not $P(D|\theta, \alpha, \beta)$ is the reason that ํ์ดํผํ๋ผ๋ฏธํฐ ์ํ์ ๋ฒ ํ๊ฐ ์ฌ์ ํ๋ฅ ๋ถํฌ๋ฅผ ๊ฒฐ์ ํ๋ ๋ฐ ์ฌ์ฉ๋์ง๋ง, ๋ฐ์ดํฐ D์ ๋ชจ๋ธ ํ๋ผ๋ฏธํฐ theta ๊ฐ์ ๊ด๊ณ์๋ ์ํฅ์ ๋ฏธ์น์ง ์๋๋ค
$$P(\theta|D, \alpha, \beta) = \frac{P(\theta|\alpha, \beta)P(D|\theta)}{P(D|\alpha, \beta)}$$
### Bayes Theorem Notion
|Title|
|:-:|
|[Posterior](https://texonom.com/posterior-87e0f5df288140c7ba475b0629bdda05)|
|[Prior Probability](https://texonom.com/prior-probability-34585174a5cd42bbae9094138713932b)|
|[Odds](https://texonom.com/odds-fc52380a1eb842c8b76a1089ae85311c)|
|[Bayes Factor](https://texonom.com/bayes-factor-d73be6d93c004384b454957f98e13aad)|
|[Likelihood](https://texonom.com/likelihood-7a4315f7502440cfbb93b4a469cfe55b)|
|[Evidence](https://texonom.com/evidence-80ff49d6ff4f44d8a0a212a75012908f)|


> [Bayes theorem, the geometry of changing beliefs](https://www.youtube.com/watch?v=HZGCoVF3YvM)
| e512b6c0308f4270aaae9ae53060ccab |
**Markovย Chain** | Bayesian Statistics Notion | Apr 3, 2022 | Alan Jo | Alan Jo | Sep 10, 2023 | [Gradient Descent](https://texonom.com/gradient-descent-c1342b13182f4fb6959023a75b5e2ff8) |
### ์ฌ๋ฌ State๋ฅผ ๊ฐ๋ Chain ํํ์ ๊ตฌ์กฐ
**ํน์ ์์ ์ ์ํ ํ๋ฅ ์ ๋จ์ง ๊ทธ ์ด์ ์ํ์๋ง ์์กดํ๋ค๋ ๊ฒ์ด ํต์ฌ**
**Markovย assumption ์ ๋ฐ๋ฅด๋ ์ด์ฐ ์๊ฐ ํ๋ฅ ๊ณผ์ **
๋ง์ฝํ ๊ฐ์ ์ ๋ฌ์์ ์ํ์ ๋ง์ฝํ๊ฐ 1913๋
๊ฒฝ์ ๋ฌ์์์ด ๋ฌธํ์ ๋์ค๋ ๊ธ์๋ค์ ์์์ ๊ดํ ๋ชจ๋ธ์ ๊ตฌ์ถํ๊ธฐ ์ํด ์ ์๋ ๊ฐ๋
[Stationary distribution](https://texonom.com/stationary-distribution-33dad1d30cb44491be6156020969c62c)
> [[Machine learning] Markov Chain, Gibbs Sampling, ๋ง๋ฅด์ฝํ ์ฒด์ธ, ๊น์ค ์ํ๋ง (day2 / 201010)](https://huidea.tistory.com/128)
> [Markov Chain Monte Carlo Without all the Bullshit](https://jeremykun.com/2015/04/06/markov-chain-monte-carlo-without-all-the-bullshit/)
> [Markov Chain & Stationary Distribution](https://kim-hjun.medium.com/markov-chain-stationary-distribution-5198941234f6)
| 497b662ec8cd4bba84c4d947067d717f |
Metropolis Algorithm | Bayesian Statistics Notion | Apr 3, 2022 | Alan Jo | Alan Jo | Jun 2, 2022 |
### **MetropolisโHastings algorithm**
> [Metropolis-Hastings algorithm - Wikipedia](https://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm)
| 5af42c3e93a64159a2016705eb71ef4c |
|
Continuous Joint Probability Distribution | Bayesian Statistics Usages | Feb 3, 2020 | Alan Jo | Alan Jo | Apr 3, 2022 |
> [๋ฒ ์ด์ง์ธ ๋ฌ๋ 5 - ์ฐ์ํ ๊ฒฐํฉํ๋ฅ ๋ถํฌ(Continuous Joint Probability Distribution)](https://www.youtube.com/watch?v=yPU93luXiLw)
| 82734d0b70f04ebabef90d2e1395c980 |
|
**MCMC** | Bayesian Statistics Usages | Apr 3, 2022 | Alan Jo | Alan Jo | Apr 3, 2022 | [Markovย Chain](https://texonom.com/markovchain-497b662ec8cd4bba84c4d947067d717f) [Monte Carlo Method](https://texonom.com/monte-carlo-method-9e3e9708b973488eb0f6f3e5c66c852e) [Metropolis Algorithm](https://texonom.com/metropolis-algorithm-5af42c3e93a64159a2016705eb71ef4c) |
## **Markov chain Monte Carlo**
ํต๊ณ์ ์ธ ํน์ฑ์ ์ด์ฉํด ๋ฌด์ํ ๋ญ๊ฐ๋ฅผ ๋ง์ด ์๋ํด๋ณธ๋ค๋ ์๋ฏธ๋ก Monte Carlo๋ผ๋ ์ด๋ฆ
ํต๊ณํ์ ํน์ฑ ์ ๋ฌดํํ ๋ง์ [Simulation](https://texonom.com/simulation-e039940aa59f4efc8f6b4cefbe1d2673)์ ๊ฑฐ์ณ์ผ๋ง ์ง์ง ์ ๋ต์ด ๋ญ์ง ์ ์ ์์ง๋ง, ๊ทธ๋ ๊ฒ ํ๊ธฐ๊ฐ ํ์ค์ ์ผ๋ก ์ด๋ ต๊ธฐ ๋๋ฌธ์ Finite ์๋๋ง์ผ๋ก ์ ๋ต์ ์ถ์ ํ์
์ฒซ ์ํ์ ๋๋คํ๊ฒ ์ ์ ํ ๋ค, ์ฒซ ์ํ์ ์ํด ๊ทธ ๋ค์๋ฒ ์ํ์ด ์ถ์ฒ๋๋ ๋ฐฉ์์ ์๋ ๋ฐ๋ณต
์ฌ๊ธฐ์ ์ถ์ฒ๋๋ ๋ฐฉ์์ด ๊ฐ์ ๋ค๋ฅด๊ณ Markov chain์์ Monte Carlo๋ Metropolis Algorithm ์ด์ฉ
### **MCMC Notion**
|Title|
|:-:|
> [Markov Chain Monte Carlo](https://angeloyeo.github.io/2020/09/17/MCMC.html)
> [Untitled](https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo)
| 80063d374ddd4a3381edc04748063826 |
Bias | null | null | null | null | null | null |
### Can be come from intrinsic not due to the lack of data
rather caused by that the **family of models** fundamentally cannot approximate the ground truth not data
| ba063cd622a54deb8a677e8fb87dfdc8 |
Bias-Variance Trade-off | Probability theory Notion | May 9, 2023 | Alan Jo | Alan Jo | May 11, 2023 | [Bias](https://texonom.com/bias-ba063cd622a54deb8a677e8fb87dfdc8) [Variance](https://texonom.com/variance-08c1eccc7dc84957afbb815ad6b41280) |
### Determine model complexity
because this is perspective of model
If a model is too simple and has very few parameters, then it may have large bias and small variance
> It may typically suffer from underfitting
If a model is too complex and has very many parameters, then it may suffer from largevariance but small bias and thus overfitting
### Theoretical background
mean squared error or risk = bias^2 + variance

| 753e9b8d891f4f6e9e3e595024ac546e |
Correlation | null | null | null | null | null | null |
$$-1 \leq corr(X, Y) = \frac{cov(X, Y)}{\sigma_X\sigma_Y} \leq 1$$
### Difference with [Convolution](https://texonom.com/convolution-54def9d34de64e199ea46393675af2ce) is flip
$$(f \ast g) (x, y) = \int f(i,j) I(x+i, y+j)$$
### Correlations
|Title|
|:-:|
|[Pearson correlation coefficient](https://texonom.com/pearson-correlation-coefficient-7a5a92a34f8944efb0d2c28dce89f913)|
> [Correlation](https://en.wikipedia.org/wiki/Correlation)
| d75ea902ec294bf19e1180b6bfd22137 |
Covariance | null | null | null | null | null | null |
### a measure of correlation
$$cov(X, Y) = E[(x - E[X])(Y - E[Y])] \newline = E[XY] - E[X]E[Y]$$
- positively correlated
- uncorrelated
- negatively correlated
| f3b864d48bf14625a4415c8f0500e688 |
Deviation | Probability theory Notion | Mar 16, 2023 | Alan Jo | Alan Jo | Jun 6, 2023 |
## ํธ์ฐจ
### Deviations
|Title|
|:-:|
|[Standard Deviation](https://texonom.com/standard-deviation-792bf99f68174ae38bb95a0721831fe8)|
| 6637194ca1b046ac9b681c550e6b853b |
|
Expectation value | Probability theory Notion | Mar 9, 2023 | Alan Jo | Alan Jo | Jun 5, 2023 | [Expectation](https://texonom.com/expectation-e1e2f11d2f864805a5cb8a673bbfb774) |
$$E[X] = \Sigma_x{xP(X= x)} = \int{xf(x)dx}$$
### k-th moment of X
defined as the expected value of x raised to the power of k
$$E[X^k] =\Sigma_xx^kP(X = x)$$
### If only X, Y is independence, $E[XY] = E[X]E[Y]$
$E[X]=0$ does not means $E[X^2] = 0$
| 3e14abcd31734ddea3fa0d1c92e3d63f |
Mean | Probability theory Notion | Mar 7, 2023 | Alan Jo | Alan Jo | Mar 7, 2023 |
### Mean Usages
|Title|
|:-:|
|[Sample Mean](https://texonom.com/sample-mean-3e3c5fd01f72460aacfd4c11c94e781b)|
| 1ea2a9d53da24baab2bc057d4d781e41 |
|
Probability | Probability theory Notion | Apr 1, 2021 | Alan Jo | Alan Jo | Mar 7, 2023 |
### Probability Notion
|Title|
|:-:|
|[Probability Space](https://texonom.com/probability-space-3fd335842e494992b50cc2c3a2b38c8b)|
|[Continuous Probability](https://texonom.com/continuous-probability-858f49fcb68f43eaa7d2be67e6abca45)|
|[Joint Distribution](https://texonom.com/joint-distribution-939ae5cbac404e9eb369afb843f9ba75)|
### Probability Properties
|Title|
|:-:|
|[Conditional probability](https://texonom.com/conditional-probability-89f109f0347b4a68b7f31e27dcd0794d)|
|[Marginalization](https://texonom.com/marginalization-de8a54419bb842ba8bbb0ecb951caae7)|
|[Joint Probability](https://texonom.com/joint-probability-ddefdc8d4f8d4b3eb3d8dafb5706b8e5)|
|[Marginal Probability](https://texonom.com/marginal-probability-ee22b391f7f44fab8b821400cf67e63d)|
|[Probability Independence](https://texonom.com/probability-independence-0be53b596155414ab2819b0cd525d50d)|
| 6b1e766c2c6442c7a599b558453300e4 |
|
**Probability distribution** | null | null | null | null | null | null |
> [Probability distribution - Wikipedia](https://en.wikipedia.org/wiki/Probability_distribution)
| 2d33768bdc43438794829b004dd37804 |
Random Variable | Probability theory Notion | Mar 7, 2023 | Alan Jo | Alan Jo | Jun 11, 2023 |
### Random Variable Notion
|Title|
|:-:|
|[Random Vector](https://texonom.com/random-vector-7e1c3cbc223d4f939e5dd65bb0da384f)|
|[Indicator random variable](https://texonom.com/indicator-random-variable-cac27017b7ba4e0db0242d305884e37d)|
|[Random number](https://texonom.com/random-number-23cec3dc46b74275a70c50875d9708cc)|
| 0bc19e0582784ec3a6e0de5b91296212 |
|
Variance | null | null | null | null | null | null |
### spurious Pattern Comes from randomness of dataset
Variance captures how the **random nature of the finite dataset** not family of model
i.e. the sensitivity of the model to the randomness in the dataset
$$Var(X) = E[(X - E[X])^2] \newline= E[X^2] - 2E[X]E[X] + E[X]^2 \newline = E[X^2] - E[X]^2$$
$$Var(X) = Cov(X, X)$$
### Variance Usages
|Title|
|:-:|
|[ANOVA](https://texonom.com/anova-aad04dffd648401c8c44525003c6f083)|
|[law of total variance](https://texonom.com/law-of-total-variance-481cd44bdfde4e069f7f5f6913e17eb8)|
| 08c1eccc7dc84957afbb815ad6b41280 |
**Pearson correlation coefficient** | Correlations | May 2, 2023 | Alan Jo | Alan Jo | May 2, 2023 |
## **PCC**
- **the correlation coefficient**
- **Pearson product-moment correlation coefficient**
- **PPMCC**
- **bivariate correlation**
- **Pearson'sย r**
### Property
- ranges from โ1 to 1

> [Pearson correlation coefficient](https://en.wikipedia.org/wiki/Pearson_correlation_coefficient)
| 7a5a92a34f8944efb0d2c28dce89f913 |
|
Standard Deviation | null | null | null | null | null | null |
### SD
| 792bf99f68174ae38bb95a0721831fe8 |
Sample Mean | Mean Usages | Mar 7, 2023 | Alan Jo | Alan Jo | Mar 7, 2023 |
### Sample Mean Notion
|Title|
|:-:|
|[The law of Large number](https://texonom.com/the-law-of-large-number-a2eeb851d5e242bea80d7a122e4f8e78)|
| 3e3c5fd01f72460aacfd4c11c94e781b |
|
The law of Large number | null | null | null | null | null | null |
## Laplace Theorem
๋ชจ์ง๋จ์์ ๋ฌด์์๋ก ๋ฝ์ ํ๋ณธ์ ํ๊ท ์ด ํฐ์๋ก ๊ฐ์๋ก ์ ์ฒด ๋ชจ์ง๋จ์ ํ๊ท ์ผ๋ก ๊ทผ์ฌํ๋ค
[de Moivre - Laplace Theorem](https://texonom.com/de-moivre--laplace-theorem-67212a2c48ee4220ad4bd709ea2982dd)
| a2eeb851d5e242bea80d7a122e4f8e78 |
Continuous Probability | Probability Notion | Mar 7, 2023 | Alan Jo | Alan Jo | Mar 7, 2023 |
single point is always zero
need integral
### Continuous Probability Notion
|Title|
|:-:|
|[Probability Density Function](https://texonom.com/probability-density-function-8c4790cbb52e485586d767f4f499da49)|
|[Cumulative Distribution Function](https://texonom.com/cumulative-distribution-function-379072b12ae0492abdb3178913c1a5a9)|
| 858f49fcb68f43eaa7d2be67e6abca45 |
|
Joint Distribution | Probability Notion | Mar 15, 2023 | Alan Jo | Alan Jo | Mar 15, 2023 |
It describes the likelihood of occurrence of two or more random variables
| 939ae5cbac404e9eb369afb843f9ba75 |
|
Probability Space | Probability Notion | Mar 7, 2023 | Alan Jo | Alan Jo | Mar 27, 2023 |
### defined by triplet
- sample space $\Omega$ set of all possible outcomes
- $\sigma$- Field F (set of subset with sample space for the probability case) $F \subset 2^{\Omega}$
- Probability P : F โ [0, 1]
### event E is subset of Omega
> [Probability spaces and random variables](https://www.youtube.com/watch?v=DqGUwoz4d4M)
| 3fd335842e494992b50cc2c3a2b38c8b |
|
Cumulative Distribution Function | Continuous Probability Notion | Mar 7, 2023 | Alan Jo | Alan Jo | Mar 7, 2023 |
### CDF
| 379072b12ae0492abdb3178913c1a5a9 |
|
Probability Density Function | Continuous Probability Notion | Mar 7, 2023 | Alan Jo | Alan Jo | Mar 7, 2023 |
### PDF
can be greater than 1 at a particular point
| 8c4790cbb52e485586d767f4f499da49 |
|
Conditional probability | null | null | null | null | null | null |
### Pipe | is typically read as โgiven thatโ however can also indicate Conditional Probability
$$P(A|B) = P(A, B) / P(B)$$
์ต์ ๊ฐ์ ๊ตฌํ๋ ค๊ณ ํ๋ ๊ฒ ํญ์ ์กฐ๊ฑด์ ๊ฐ๋ค
### Semicolon ; is grand kind of comma
> [What does a semicolon denote in the context of probability and statistics?](https://math.stackexchange.com/questions/2559085/what-does-a-semicolon-denote-in-the-context-of-probability-and-statistics)
> [What do vertical bars mean in statistical distributions?](https://stats.stackexchange.com/questions/110194/what-do-vertical-bars-mean-in-statistical-distributions)
| 89f109f0347b4a68b7f31e27dcd0794d |
Joint Probability | null | null | null | null | null | null | ddefdc8d4f8d4b3eb3d8dafb5706b8e5 |
|
Marginal Probability | null | null | null | null | null | null |
### ๋ค๋ฅธ ํ๋ฅ ๋ณ์์ ๊ฐ์ ๋ฌด์ํ ๋ถ๋ถ ์งํฉ ์์ ํ๋ฅ ๋ณ์์ ๋ถํฌ
calculated by summing or integrating the joint probability distribution function over all possible values of the variables
probability distribution of a single variable without taking into account the values of other variables
๊ทธ ๋ถ๋ถ ์งํฉ์ ์ํ ํ๋ฅ ๋ณ์๋ค์ ํ๋ฅ ๋ถํฌ
์์ ๋ถ๋ถ ์งํฉ์ ์ํ ํ๋ฅ ๋ณ์๋ค์ Marginal Variable
| ee22b391f7f44fab8b821400cf67e63d |
Marginalization | null | null | null | null | null | null |
## Law of total Probability
์กฐ๊ฑด๋ถ ํ๋ฅ ๋ก๋ถํฐ ์กฐ๊ฑด์ด ๋ถ์ง ์์ ํ๋ฅ ์ ๊ณ์ฐํ ๋
$P(A) = \Sigma{P(A, B_i)} = \Sigma{P(A|B_i)}P(B_i)$
After that we can decide independence
| de8a54419bb842ba8bbb0ecb951caae7 |
Probability Independence | null | null | null | null | null | null |
### Difference Between mutual independent and pairwise independent
์๋ก์๋ก ๋์์ ์ํฅ ์์ค๋ค๊ณ ํฉ์ณ์ก์ ๋ ์ํฅ ์๋ ๊ฒ์ ์๋
$P(A, B) = P(A)P(B)$
[Conditionally Independent](https://texonom.com/conditionally-independent-8fe069550d0b4a28b031eed8293a7392)
| 0be53b596155414ab2819b0cd525d50d |
Conditionally Independent | Probability Independence | null | null | null | null | null |
A is conditionally independent of B given C if,
$$P(A|B, C) = P(A|C)$$
A, B are conditionally independent given C if,
$$P(A, B|C) = P(A|C) \cdot P(B|C)$$
| 8fe069550d0b4a28b031eed8293a7392 |
Random Vector | Random Variable Notion | Mar 9, 2023 | Alan Jo | Alan Jo | Mar 9, 2023 | 7e1c3cbc223d4f939e5dd65bb0da384f |
||
chi Square | Probability theory Usages | Jan 23, 2022 | Alan Jo | Alan Jo | Apr 3, 2022 |
### ํฉ์ ์ด์ฉํด์ ์ค์ฐจ ๋๋ ํธ์ฐจ๋ฅผ ์ ์
์์ ๋๋ ๋ช๊ฐ์ ํ์ค์ ๊ท๋ถํฌ ๋ณ์๋ฅผ ๋ํ๊ฑด๊ฐ
1. ๊ฐ ํ์ค์ ๊ท๋ถํฌ ์ํ ํ๋ ์ถ์ถ
2. ์ ๊ณฑํฉํ ๊ฐ์ ์์น ๋ถํฌ
์ฐ๋ฆฌ๊ฐ ์ป์ ๋ฐ์ดํฐ๋ค์ ๋ชจ๋ธ์ ์ถ๋ ฅ๊ฐ์ ์ค์ฌ์ผ๋ก ํ๋ ์ ๊ท๋ถํฌ์์ ๋๋คํ๊ฒ ์ํ๋ง๋์ด ์ป์ ๊ฐ์ด๋ผ๊ณ ๋ณด๊ณ error๋ฅผ ์ ๊ท๋ถํฌ๋ก ์ค๊ณํ๋ค๋ ์
### chi Square Notion
|Title|
|:-:|
|[chi Square Distribution](https://texonom.com/chi-square-distribution-014792b9b4f849f38edcbe52e9d8deb1)|
|[chi Square Test](https://texonom.com/chi-square-test-a34793e6d05e432f968f1249c09b505b)|
|[Pearson's chi-squared statistics](https://texonom.com/pearsons-chi-squared-statistics-954324a08d9e4a8494a62493a56ea3e7)|
> [์นด์ด์ ๊ณฑ ๋ถํฌ์ ๊ฒ์ ](https://www.youtube.com/watch?v=_GrdeYtYLO4)
> [์นด์ด์ ๊ณฑ ๋ถํฌ์ ๊ฒ์ ](https://angeloyeo.github.io/2021/12/13/chi_square.html)
| 697c74917a0b4a9c83b1856d89bde6af |
|
The Goodhart's Law | Probability theory Usages | May 31, 2021 | Alan Jo | Alan Jo | May 2, 2023 | [Gamification](https://texonom.com/gamification-ffc99e95fb57466fbcf5e13ee4ebbed6) [Overfitting](https://texonom.com/overfitting-24c3b183372845e8999ad7f7a0ba5035) |
### ์ธก์ ๊ฐ์ด ๋ชฉํ๊ฐ ๋๋ฉด ๋ ์ด์ ์ข์ ์ธก์ ๊ฐ์ด ์๋๋ค
๊ด์ธก๋ ํต๊ณ์ ๊ท์น์ฑ์ ๊ทธ๊ฒ์ ์กฐ์ข
ํ ๋ชฉ์ ์ผ๋ก ๊ฐ์
ํ ๊ฒฝ์ฐ ์ฌ๋ผ์ ธ๋ฒ๋ฆฌ๋ ๊ฒฝํฅ
ํน์ ์์น๋ฅผ ๋ง์กฑ์ํค๊ธฐ ์ํด ์์คํ
์ "๊ฒ์ํ"ํจ์ผ๋ก์จ ๊ตญ์์ ์ผ๋ก๋ง ์ต์ ํํ๋ ๊ฒฝํฅ
์๊ตญ์ ๊ฒฝ์ ํ์ Charles Goodhart์ ์ด๋ฆ์ ๋ฐ์ ๋ช
๋ช
| ccece645e5e3484381fe0721d6ba2cd8 |
chi Square Distribution | chi Square Notion | Jan 23, 2022 | Alan Jo | Alan Jo | Jan 23, 2022 | 014792b9b4f849f38edcbe52e9d8deb1 |
||
chi Square Test | chi Square Notion | Jan 23, 2022 | Alan Jo | Alan Jo | Jan 23, 2022 |
์ค์ฐจ๋ฅผ ๊ฒ์ฆํ๋ ค๋ ๊ฒ์์
์ฐ์ฐํ ๋ฐ์ํ ๊ฒ์ธ์ง ์จ๊ฒจ์ง ์๋ฏธ๊ฐ ์๋์ง ํ๋ณ๊ฐ๋ฅ
[Goodness of fit Test](https://texonom.com/goodness-of-fit-test-6c9fc48cd54c47d0accec760b8e1beb3)
[Cross Tabulation Analysis](https://texonom.com/cross-tabulation-analysis-379ac6e0176146ecbfcc09fb487696ab)
| a34793e6d05e432f968f1249c09b505b |
|
Pearson's chi-squared statistics | chi Square Notion | Jan 23, 2022 | Alan Jo | Alan Jo | Jan 23, 2022 |
์ธํธ ๊ฐ ๊ด์ธก ๋ ์ฐจ์ด๊ฐ ์ฐ์ฐํ ๋ฐ์ํ์ ๊ฐ๋ฅ์ฑ์ ํ๊ฐ
์นด์ด ์ ๊ณฑ ๋ถํฌ๋ฅผ ์ฐธ์กฐํ์ฌ ๊ฒฐ๊ณผ๋ฅผ ํ๊ฐํ๋ ํต๊ณ ์ ์ฐจ ์ธ ์ฌ๋ฌ ์นด์ด ์ ๊ณฑ ๊ฒ์ ์ค ๊ฐ์ฅ ๋๋ฆฌ ์ฌ์ฉ
ํธ์ฐจ์ ์ ๊ณฑ์ ๊ธฐ๋๊ฐ์ผ๋ก ๋๋ ์ ๊ทํ
ํ์คํธ์ฐจ๋ก ๋๋์ง ๋ชปํ๋ ์ด์ ๋ ํต๊ณ๋ ์ฆ๋ช
๊ณผ์ ์์ ์๋ค
> [์นด์ด์ ๊ณฑ ๋ถํฌ์ ๊ฒ์ ](https://www.youtube.com/watch?v=_GrdeYtYLO4)
| 954324a08d9e4a8494a62493a56ea3e7 |
|
Cross Tabulation Analysis | chi Square Test | null | null | null | null | null |
๊ต์ฐจ๋ถ์
๋ฒ์ฃผํ ๋ณ์๊ฐ ์ฌ๋ฌ ๊ฐ์ธ ๊ฒฝ์ฐ ์ ์ฉ
์ฌ๋ฌ ๋ฒ์ฃผํ ๋ณ์์ ๋ฒ์ฃผ๊ฐ ์ฐจ์ด๊ฐ ๊ธฐ๋๊ฐ์์ ์ ์๋ฏธํ๊ฒ ๋ฒ์ด๋๋์ง
| 379ac6e0176146ecbfcc09fb487696ab |
Goodness of fit Test | chi Square Test | null | null | null | null | null |
์ ํฉ๋ ๊ฒ์
๋ฒ์ฃผํ ๋ณ์(๋
๋ฆฝ)๊ฐ ํ๋์ด๊ณ ์ด๋ก ์ ์ผ๋ก ๊ธฐ๋๋๋ ๋น๋์ ๋ถํฌ(frequency distribution)์ ๊ด์ฐฐํ ๋น๋์ ๋ถํฌ๋ฅผ ๋น๊ตํ๊ธฐ ์ํด
| 6c9fc48cd54c47d0accec760b8e1beb3 |
**Autoregressive** | null | null | null | null | null | null |
์๊ฐ์ ๋ฐ๋ผ ๋ณํ๋ ํน์ ํ๋ก์ธ์ค๋ฅผ ์ค๋ช
์ถ๋ ฅ ๋ณ์๊ฐ ์์ ์ ์ด์ ๊ฐ๊ณผ ํ๋ฅ ์ ํญ์ ์ ํ์ ์ผ๋ก ์์กดํจ์ ์๋ฏธ
| 93cf5710b4b54730a7e7efcc6e0fc642 |
Bayesian | null | null | null | null | null | null |
## Subjectivism, epistemic, logical probability
Bayesian school
ํ๋ฅ ์ ์ ๋ขฐ๋๋ก ํด์ํ๊ณ ๊ทธ์ ๊ธฐ๋ฐํ๋ค
๋ฐ์ ๊ฐ๋ฅ์ฑ์ ๋ํด ์๊ณ ์์๋, ์ด๋ฅผ ์ง์ ์ ์ผ๋ก ์ด์ฉํ์ฌ ๊ณ์ฐ
## Relative probability
| abfa2017bb054f3a9dfcbc9a6c1042f6 |
BP | Statistics Terms | Mar 27, 2022 | Alan Jo | Alan Jo | Jun 6, 2023 |
### BPS
### Basic Point
0.01%
| 512f1e376cbc4448adec9a1f5acb66a6 |
|
Degrees of Freedom | Statistics Terms | Jan 22, 2022 | Alan Jo | Alan Jo | Jun 6, 2023 |
### ์์ ๋
๋
๋ฆฝ์ ์ผ๋ก ๋ฌ๋ผ์ง ์์๋ ์์คํ
์ ๋งค๊ฐ ๋ณ์์ ์
ํ๋ฉด์ ํ ์ ์ ๋ณํ์ ๋ํด ๋ ๊ฐ์ ์์ ๋๋ฅผ ๊ฐ๋๋ค
number of values in the final calculation of aย [statistic](https://en.wikipedia.org/wiki/Statistic)ย that are free to vary
ํต๊ณ์ ์ ํ์ ๋ฐ์ง ์๊ณ ์์ ๋กญ๊ฒ ๋ณํ๋ฅผ ์ค์ ์๋ ๋
๋ฆฝ ์์์ ์
> [Degrees of freedom (statistics) - Wikipedia](https://en.wikipedia.org/wiki/Degrees_of_freedom_(statistics))
> [ํต๊ณ์ ์์ ๋(degree of freedom : df)](https://wiserloner.tistory.com/1013)
| 35beaefd93fd46d58172097155eedab9 |
|
Frequentist | null | null | null | null | null | null |
### Frequentism, Classical Probability, Frequentist school
no [Posterior](https://texonom.com/posterior-87e0f5df288140c7ba475b0629bdda05) [Prior Probability](https://texonom.com/prior-probability-34585174a5cd42bbae9094138713932b)
ํ๋ฅ ์ ๋น๋๋ก ํด์
๊ด์ฐฐ๋ ๋ฐ์ดํฐ์ ๊ด์ฐฐ๋์ง ์์ ๋ฐ์ดํฐ๋ค์ ์ํ ์ฐ๋์ ์์กด
๊ณ์ฐ๋์ด ์ ๋ค
| c7636520ad8d4ae3ba69b8c24f516ab1 |
Mean | Statistics Terms | May 2, 2023 | Alan Jo | Alan Jo | Jun 6, 2023 |
## Average
### Averages
|Title|
|:-:|
|[Arithmetic Average](https://texonom.com/arithmetic-average-86fa34b8da344ec38c89ceff73b67a60)|
|[Geometric Average](https://texonom.com/geometric-average-8dcca049c6a94778815ec6b114d89125)|
| e903056370974e0082893cb8ea8952dd |
|
**p-value** | Statistics Terms | Jun 6, 2023 | Alan Jo | Alan Jo | Jun 6, 2023 | [t-value](https://texonom.com/t-value-4f1e6fb2b0034235910718dd48de8096) |
### **์ฐ๋ฆฌ๊ฐ ์ป์ ๊ฒ์ ํต๊ณ๋๋ณด๋ค ํฌ๊ฑฐ๋ ๊ฐ์ ๊ฐ์ ์ป์ ์ ์์ ํ๋ฅ **
๊ณ์ฐํ๋ ๊ฒ์ ํต๊ณ๋๋ค์ ๊ฑฐ์ ๋๋ถ๋ถ์ดย [Null Hypothesis](https://texonom.com/null-hypothesis-ce9a2477f77f48b09553e7a0c47da050) **์ ๊ฐ์ **ํ๊ณ ์ป๊ฒ๋๋ ๊ฐ
๋ค์ ๋งํด ๋ ํ๋ณธ ํ๊ท ์ ์ฐจ์ด๋ฅผ ๊ฒ์ฆํ๋ค๊ณ ํ ๋, ๋ ํ๋ณธ ์ง๋จ์ ๋ชจ์ง๋จ์ ๊ฐ๋ค๋ ๊ฐ์ ์ ์ ์
๋ ํ๋ณธ ์ง๋จ์ ํน์ง๊ฐ์ ํ๊ท ์ด ํต๊ณ์ ์ผ๋ก ์ ์ํ ์ฐจ์ด๊ฐ ์๋์ง ๊ฒ์ฆ
p-value๋ ์ด [t-value](https://texonom.com/t-value-4f1e6fb2b0034235910718dd48de8096) ์ ๊ดํ ํ๋ฅ
๋ณดํต์ 5% ๊ธฐ์ค์ ๋ง์ด ์ฌ์ฉํ๋ค. ๊ทธ๋์ p-value๊ฐ 5%๋ณด๋ค ์์ผ๋ฉด ์ ์ํ ์ฐจ์ด๊ฐ ์๋ค๊ณ ์๊ธฐ
ํจ๊ณผ์ ํฌ๊ธฐ(effect size)์ ํ๋ณธ์ ํฌ๊ธฐ(n ์)์ ์ ๋ณด๋ฅผ ํ๊บผ๋ฒ์ ๋ด๊ณ ์๋ค
์ฆ ์ค์ ๋ก ํ ๋ชจ์ง๋จ์์ ๋ ํ๋ณธ ์ง๋จ์ด ๋์์์๋ n์ ์ฐจ์ด๋ก p-value๋ 0.05๋ณด๋ค ๋ฎ์ ์ ์๋ค
๊ทธ๋ฌ๋ฏ๋ก p-value๋ฅผ ๋งน์ ํ์ง ๋ง์์ผ ํ๋ค
> [p-value์ ์๋ฏธ - ๊ณต๋์ด์ ์ํ์ ๋ฆฌ๋
ธํธ (Angelo's Math Notes)](https://angeloyeo.github.io/2020/03/29/p_value.html)
| 73c98ef557494f86a7ae0c1dba8f81df |
Percent | Statistics Terms | Mar 27, 2022 | Alan Jo | Alan Jo | Jun 6, 2023 |
> [๋น์ ์ด ๋ฏธ์ฒ ๋ชฐ๋๋ ํ๋ฅ ๊ฐ๋
](https://youtube.com/watch?v=Exjc8D8drP0&feature=shares)
| f4c541ab49fe4ffb92ec673995898108 |
|
Robust | Statistics Terms | Jun 28, 2021 | Alan Jo | Alan Jo | Jun 6, 2023 |
์ด์๊ฐ์ ์ํฅ์ ์ ๊ฒ ๋ฐ๋ ํต๊ณ๋์ ๋ก๋ฒ์คํธํ ํต๊ณ๋
> [๋ก๋ฒ์คํธ(robust) ํ๋ค?](https://m.blog.naver.com/vnf3751/220827101273)
| 062dfadfcdd64fff9b828cca5442a684 |
|
**Statistical parameter** | Statistics Terms | Jun 6, 2023 | Alan Jo | Alan Jo | Jun 25, 2023 |
### Parameter
์ ์ฒด ์ง๋จ์ ๋ชจ๋ ๋ฐ์ดํฐ๋ฅผ ์์ง ๋ชปํ๋๋ผ๋ ์ํ์ ์ผ๋ก ๊ทธ ๋ถํฌ๋ฅผ ๊ธฐ์ ํ ์ ์๋ ํน์ฑ๊ฐ๋ค์ ์ ์๋ง ์๋ค๋ฉด ๊ทธ๊ฑธ ๋ชจ์๋ผ๊ณ ํจ
- [Expectation value](https://texonom.com/expectation-value-3e14abcd31734ddea3fa0d1c92e3d63f)
- [Variance](https://texonom.com/variance-08c1eccc7dc84957afbb815ad6b41280)
- [Standard Deviation](https://texonom.com/standard-deviation-792bf99f68174ae38bb95a0721831fe8)
### **Statistical parameter Notion**
|Title|
|:-:|
|[Confidence interval](https://texonom.com/confidence-interval-68004b3ce6204c808b5994a38464c4a2)|
|[Confidence Level](https://texonom.com/confidence-level-046400554651433cac5f5dec69f542f0)|
|[Effect Size](https://texonom.com/effect-size-14b3f7443cfb49fd94ccb2604bc16434)|
> [ํ๋ณธ๊ณผ ํ์ค ์ค์ฐจ์ ์๋ฏธ - ๊ณต๋์ด์ ์ํ์ ๋ฆฌ๋
ธํธ (Angelo's Math Notes)](https://angeloyeo.github.io/2020/02/12/standard_error.html)
| 0e888c61f6cd48b7a2df1217087f07d1 |
|
**Statistical **Population | Statistics Terms | Jun 6, 2023 | Alan Jo | Alan Jo | Jun 25, 2023 |
### ****๋ชจ์ง๋จ****
๊ด์ฌ ๋์์ ์ ์ฒด ์งํฉ
[Statistical parameter](https://texonom.com/statistical-parameter-0e888c61f6cd48b7a2df1217087f07d1)
> [ํ๋ณธ๊ณผ ํ์ค ์ค์ฐจ์ ์๋ฏธ - ๊ณต๋์ด์ ์ํ์ ๋ฆฌ๋
ธํธ (Angelo's Math Notes)](https://angeloyeo.github.io/2020/02/12/standard_error.html)
| f2a529ec04b646b1af86335b788a2030 |
|
**Test statistic** | Statistics Terms | Jun 6, 2023 | Alan Jo | Alan Jo | Jun 6, 2023 |
## ๊ฒ์ ํต๊ณ๋
**ํต๊ณ์ ๊ฐ์ค์ ์ง์ ์ฌ๋ถ๋ฅผ ๊ฒ์ ํ๊ธฐ ์ํด** ํ๋ณธ์ผ๋ก ๋ถํฐ ๊ณ์ฐํ๋ ํต๊ณ๋
์ฆ **ํ๋ณธ ํต๊ณ๋์ 2์ฐจ ๊ฐ๊ณตํ ๊ฒ**
### **Test statistics**
|Title|
|:-:|
|[t-value](https://texonom.com/t-value-4f1e6fb2b0034235910718dd48de8096)|
|[f test](https://texonom.com/f-test-60ca3e84894c4929b6b1dbecb61f3385)|
> [Test statistic](https://en.wikipedia.org/wiki/Test_statistic)
| 11746f80eefb4309b516bc06160718d6 |
|
Arithmetic Average | Averages | May 2, 2023 | Alan Jo | Alan Jo | May 2, 2023 | null | 86fa34b8da344ec38c89ceff73b67a60 |
|
Geometric Average | Averages | May 2, 2023 | Alan Jo | Alan Jo | May 2, 2023 | null |
$$(\Pi a_i)^{1/n}$$
[compounding effect](https://texonom.com/compounding-effect-4c3ebe3d22a0458b8518c5a87bc1130d)
compounding effect ๋ฐ์๊ฐ
| 8dcca049c6a94778815ec6b114d89125 |
compounding effect | Geometric Average | null | null | null | null | null | 4c3ebe3d22a0458b8518c5a87bc1130d |
|
**Confidence interval** | Statistical parameter Notion | Jun 6, 2023 | Alan Jo | Alan Jo | Jun 6, 2023 |
> [Confidence interval](https://en.wikipedia.org/wiki/Confidence_interval)
| 68004b3ce6204c808b5994a38464c4a2 |
|
**Confidence Level** | Statistical parameter Notion | Jun 6, 2023 | Alan Jo | Alan Jo | Jun 6, 2023 | 046400554651433cac5f5dec69f542f0 |
||
Effect Size | Statistical parameter Notion | Jun 6, 2023 | Alan Jo | Alan Jo | Jun 6, 2023 |
### Effect Size Types
|Title|
|:-:|
|[Cohen's D](https://texonom.com/cohens-d-e406e8e0848d457188a631df615b8755)|
> [Effect size](https://en.wikipedia.org/wiki/Effect_size)
| 14b3f7443cfb49fd94ccb2604bc16434 |
|
Cohen's D | Effect Size Types | Jun 6, 2023 | Alan Jo | Alan Jo | Jun 6, 2023 | null | e406e8e0848d457188a631df615b8755 |
|
f test | Test statistics | Jul 13, 2023 | Alan Jo | Alan Jo | Jul 13, 2023 | [F Distribution](https://texonom.com/f-distribution-491a1836300446499b51b79e388b9e80) | 60ca3e84894c4929b6b1dbecb61f3385 |
|
t-value | Test statistics | Jun 6, 2023 | Alan Jo | Alan Jo | Jun 6, 2023 |
### Pairedย *t*-test

> [t-value์ ์๋ฏธ์ ์คํ๋ํธ์ T ํ
์คํธ - ๊ณต๋์ด์ ์ํ์ ๋ฆฌ๋
ธํธ (Angelo's Math Notes)](https://angeloyeo.github.io/2020/02/13/Students_t_test.html)
| 4f1e6fb2b0034235910718dd48de8096 |
|
Statistical Inference | null | null | null | null | null | null |

> [Statistical inference - Wikipedia](https://en.wikipedia.org/wiki/Statistical_inference)
> [ํต๊ณ์ ์ถ๋ก - Big Picture](https://angeloyeo.github.io/2020/02/11/big_picture_stats_infer.html)
| 168ef97c06d24b44bb49653d70516e73 |
Statistics Tool | Statistics Usages | Oct 6, 2021 | Alan Jo | Alan Jo | Apr 3, 2022 |
### Statistics Tools
|Title|
|:-:|
|[statsmodels](https://texonom.com/statsmodels-96fb7be66a01419cbd417f6342f384d6)|
|[numpy](https://texonom.com/numpy-8a514dfb88ef49c19959f85d43b2fafc)|
|[Pandas](https://texonom.com/pandas-c7aa68bdc16545418519cf18e791c346)|
|[scikit-learn](https://texonom.com/scikit-learn-e37a30b2d2ac4edea30825c8be0c7ddf)|
|[StatsForecast](https://texonom.com/statsforecast-17a112dd5c554673be0b654758ba92fb)|
| cd8ad9a0f6be46b4979d8e302c6dbd52 |
|
numpy | Statistics Tools | Sep 24, 2020 | Alan Jo | Alan Jo | Aug 19, 2023 |
### numpy Usages
|Title|
|:-:|
|[numpy subsampling](https://texonom.com/numpy-subsampling-567f9cfa79d5415ea17b357c71d59ebc)|
|[numpy.sqrt](https://texonom.com/numpysqrt-9a01904b3df24cce877c513b3a133f1d)|
|[numpy.pad](https://texonom.com/numpypad-3ec51ac35c954b6294a5b37099655261)|
|[numpy.ones](https://texonom.com/numpyones-121a1bfaa2274e06b0b2d521057af876)|
|[numpy.zeros_like](https://texonom.com/numpyzeroslike-caa460eb53c44c84821e77344ee7d29b)|
|[numpy.sum](https://texonom.com/numpysum-63171863a2064059825bd42833f31aad)|
|[numpy.dstack](https://texonom.com/numpydstack-261094d453194bb6aff5526b4bb11c5a)|
|[np.conj](https://texonom.com/npconj-b8fa8274980447deb35dc20ff7a2c2fe)|
|[numpy.arrange](https://texonom.com/numpyarrange-5abc5c6dd50b4af5be9c5d9e86557037)|
|[numpy.reshape](https://texonom.com/numpyreshape-d9797e899197489981b55c67849e710f)|
|[numpy.full()](https://texonom.com/numpyfull-8e57ff0d90854ab6a7747ca384e4a6fa)|
|[numpy.empty()](https://texonom.com/numpyempty-3a55645bdeee4266920c3e415d9525fc)|
|[numpy.memmap](https://texonom.com/numpymemmap-a26cd2ad2e4f49338d8d5d1d5cdd1d31)|
### numpy Notion
|Title|
|:-:|
|[numpy Boolean Indexing](https://texonom.com/numpy-boolean-indexing-55e814616d504e4cb921d506f8110713)|
|[numpy broadcasting semantic](https://texonom.com/numpy-broadcasting-semantic-9ac806088cbe4a869f6e5676f4e91b2d)|
> [NumPy documentation โ NumPy v1.24 Manual](https://numpy.org/doc/stable/index.html)
| 8a514dfb88ef49c19959f85d43b2fafc |
|
Pandas | Statistics Tools | Nov 5, 2019 | Alan Jo | Seong-lae Cho | May 1, 2023 |
append ๋ ๊ทธ๋ฅ return ๋ง ํ๊ณ ์๋ ์
๋ฐ์ดํธ ์ํด์ ์ข ๋ป์งํ๋ค..
pandas ์์ฒด ์ฑ๊ฒฉ์ด ๊ทธ๋ฐ๋ฏ
### Pandas Notion
|Title|
|:-:|
|[Pandas Class](https://texonom.com/pandas-class-54f6fe2fea2b4faf82041da11e8d33dc)|
### pandas Usages
|Title|
|:-:|
|[polars](https://texonom.com/polars-2df74bdc72e44bbfa0b2e0e816f8651e)|
|[](https://texonom.com/95f186e7c7174acba2d8b0e1c3729e6c)|
|[pandas AI](https://texonom.com/pandas-ai-46da363d6b444fe7955bab2f60085f2c)|
> [Python| Pandas dataframe.append() - GeeksforGeeks](https://www.geeksforgeeks.org/python-pandas-dataframe-append/)
| c7aa68bdc16545418519cf18e791c346 |
|
scikit-learn | Statistics Tools | Oct 16, 2021 | Alan Jo | Alan Jo | May 24, 2023 |
### scikit-learn Usages
|Title|
|:-:|
|[scikit-llm](https://texonom.com/scikit-llm-5f9754697e81460eaa6aab50031f2088)|
| e37a30b2d2ac4edea30825c8be0c7ddf |
|
StatsForecast | Statistics Tools | Aug 21, 2022 | Alan Jo | Alan Jo | Aug 21, 2022 | [Numba](https://texonom.com/numba-92b190dc95ab40308495541afc11a0d1) |
[statsforecast](https://github.com/Nixtla/statsforecast)
| 17a112dd5c554673be0b654758ba92fb |
statsmodels | Statistics Tools | Oct 6, 2021 | Alan Jo | Alan Jo | Oct 6, 2021 |
### statsmodels Usage
|Title|
|:-:|
> [Introduction - statsmodels](https://www.statsmodels.org/stable/index.html)
> [Untitled](https://notebook.community/zzsza/Datascience_School/13.%20Scikit-Learn%2C%20Statsmodel/05.%20statsmodels%20%ED%8C%A8%ED%82%A4%EC%A7%80%20%EC%86%8C%EA%B0%9C)
| 96fb7be66a01419cbd417f6342f384d6 |
|
numpy Boolean Indexing | numpy Notion | Sep 24, 2020 | Alan Jo | Alan Jo | Aug 19, 2023 |
```typea[b > 0] = b[b > 0]```
| 55e814616d504e4cb921d506f8110713 |
|
numpy broadcasting semantic | numpy Notion | May 25, 2023 | Alan Jo | Alan Jo | Aug 19, 2023 |
data copy ์์ด
### **In-place semantics**
broadcasting์ ๋ฐ๋ผ in-place tensor์ ๋ชจ์์ด ๋ณ๊ฒฝ๋์ง ์๋๋ค

1์ฐจ์์ broadcasting๋๋๋ฐ 2์ฐจ์๋ถํฐ ์๋๋๊น 1์ฐจ์๋ง ๋๋ ์ด์
์ฐจ์ ์๋ค๋ฉด ๋ค๋ถํฐ ๋๋ค

์ฆ ์ ์ฒซ ์ผ์ด์ค์์ 3์ ์ค๊ฐ์ ๋ ์ ์๋ค
### **Backwards compatibility**
> [How does pytorch broadcasting work?](https://stackoverflow.com/questions/51371070/how-does-pytorch-broadcasting-work)
> [pytorch broadcasting](https://velog.io/@optjyy/pytorch-broad-casting)
| 9ac806088cbe4a869f6e5676f4e91b2d |
|
np.conj | numpy Usages | Apr 14, 2023 | Alan Jo | Alan Jo | Apr 26, 2023 |
### np.conjugate
Return the complex conjugate
| b8fa8274980447deb35dc20ff7a2c2fe |
|
numpy subsampling | numpy Usages | Oct 20, 2020 | Alan Jo | Alan Jo | Apr 13, 2023 |
```type[start::jump]```
or random
> [subsampling every nth entry in a numpy array](https://stackoverflow.com/questions/25876640/subsampling-every-nth-entry-in-a-numpy-array)
| 567f9cfa79d5415ea17b357c71d59ebc |
|
numpy.arrange | numpy Usages | Apr 19, 2023 | Alan Jo | Alan Jo | Apr 19, 2023 |
like range function
> [(ํ์ด์ฌ) numpy.arange](https://codepractice.tistory.com/88)
| 5abc5c6dd50b4af5be9c5d9e86557037 |
|
numpy.dstack | numpy Usages | Apr 13, 2023 | Alan Jo | Alan Jo | Apr 13, 2023 | 261094d453194bb6aff5526b4bb11c5a |
||
numpy.empty() | numpy Usages | May 29, 2023 | Alan Jo | Alan Jo | May 29, 2023 | 3a55645bdeee4266920c3e415d9525fc |
||
numpy.full() | numpy Usages | May 29, 2023 | Alan Jo | Alan Jo | May 29, 2023 | 8e57ff0d90854ab6a7747ca384e4a6fa |
||
numpy.ones | numpy Usages | Apr 13, 2023 | Alan Jo | Alan Jo | Apr 13, 2023 |
create array which has all components 1
| 121a1bfaa2274e06b0b2d521057af876 |
|
numpy.pad | numpy Usages | Oct 20, 2020 | Alan Jo | Alan Jo | Apr 13, 2023 | [Matrix Padding](https://texonom.com/matrix-padding-0f44aaaee9d54bb3a6960130541ac90a) |
### Padding
```typenumpy.pad```
| 3ec51ac35c954b6294a5b37099655261 |
numpy.reshape | numpy Usages | Apr 19, 2023 | Alan Jo | Alan Jo | Apr 19, 2023 | d9797e899197489981b55c67849e710f |
||
numpy.sqrt | numpy Usages | Sep 24, 2020 | Alan Jo | Alan Jo | Apr 13, 2023 |
> [numpy.sqrt - NumPy v1.19 Manual](https://numpy.org/doc/stable/reference/generated/numpy.sqrt.html)
| 9a01904b3df24cce877c513b3a133f1d |
|
numpy.sum | numpy Usages | Apr 13, 2023 | Alan Jo | Alan Jo | Apr 13, 2023 | 63171863a2064059825bd42833f31aad |
||
numpy.zeros_like | numpy Usages | Apr 13, 2023 | Alan Jo | Alan Jo | Apr 13, 2023 | caa460eb53c44c84821e77344ee7d29b |
||
Pandas Class | Pandas Notion | Nov 5, 2019 | Alan Jo | Seong-lae Cho | Jun 2, 2023 |
### Pandas Classes
|Title|
|:-:|
|[Pandas DataFrame](https://texonom.com/pandas-dataframe-ade738f428f542b0a5e884467b841290)|
|[Pandas Series](https://texonom.com/pandas-series-6dc9909d3e98499896b66ffc41542fbb)|
| 54f6fe2fea2b4faf82041da11e8d33dc |
|
Pandas DataFrame | Pandas Classes | Nov 5, 2019 | Alan Jo | Seong-lae Cho | Jun 2, 2023 |
```typepd.DataFrame(data)```
list of dictionary can be converted directly
### Add same value column
```typedf['Name'] = 'abc'```
### Pandas DataFrame Usages
|Title|
|:-:|
|[Dataframe to list of dict](https://texonom.com/dataframe-to-list-of-dict-04751c84aabb4a41a7444b0fbff4fe2d)|
|[lance rs](https://texonom.com/lance-rs-d2dc40c991944ef2b1e0e35392d809cf)|
|[Draft py](https://texonom.com/draft-py-077240b76a714c99b317025991bfc2f3)|
> [Untitled](https://stackoverflow.com/questions/29517072/add-column-to-dataframe-with-default-value)
> [Convert list of dictionaries to a pandas DataFrame](https://stackoverflow.com/questions/20638006/convert-list-of-dictionaries-to-a-pandas-dataframe)
| ade738f428f542b0a5e884467b841290 |
|
Pandas Series | Pandas Classes | Nov 5, 2019 | Alan Jo | Seong-lae Cho | Jun 2, 2023 |
1์ฐจ์ | 6dc9909d3e98499896b66ffc41542fbb |
|
Dataframe to list of dict | Pandas DataFrame Usages | Sep 10, 2020 | Alan Jo | Alan Jo | Jun 2, 2023 |
```typedf.to_dict('records'):```
> [Pandas DataFrame to List of Dictionaries](https://stackoverflow.com/questions/29815129/pandas-dataframe-to-list-of-dictionaries)
| 04751c84aabb4a41a7444b0fbff4fe2d |
|
Draft py | Pandas DataFrame Usages | Jun 11, 2023 | Alan Jo | Alan Jo | Jun 11, 2023 |
[Daft](https://github.com/Eventual-Inc/Daft)
| 077240b76a714c99b317025991bfc2f3 |
|
lance rs | Pandas DataFrame Usages | Jun 2, 2023 | Alan Jo | Alan Jo | Jun 2, 2023 | [lance](https://github.com/lancedb/lance) | d2dc40c991944ef2b1e0e35392d809cf |
|
[pygwalker](https://github.com/Kanaries/pygwalker) | pandas Usages | Jul 15, 2022 | Alan Jo | Alan Jo | May 1, 2023 | 95f186e7c7174acba2d8b0e1c3729e6c |
||
pandas AI | pandas Usages | May 1, 2023 | Alan Jo | Alan Jo | May 1, 2023 |
[pandas-ai](https://github.com/gventuri/pandas-ai)
| 46da363d6b444fe7955bab2f60085f2c |
|
polars | pandas Usages | Jul 15, 2022 | Alan Jo | Alan Jo | May 1, 2023 |
rust. and py | 2df74bdc72e44bbfa0b2e0e816f8651e |
|
scikit-llm | scikit-learn Usages | May 24, 2023 | Alan Jo | Alan Jo | May 24, 2023 | โฃ | 5f9754697e81460eaa6aab50031f2088 |
|
Algebra | null | null | null | null | null | null |
### Algebra Areas
|Title|
|:-:|
|[Linear Algebra](https://texonom.com/linear-algebra-a5879da463c442d89c51891d124f97ac)|
|[Lie Algebra](https://texonom.com/lie-algebra-77e6ab22461948778fff08818171cdae)|
|[Universal algebra](https://texonom.com/universal-algebra-8f94ab573ea2438b84deac618daafeda)|
|[Algebraic Structure](https://texonom.com/algebraic-structure-4fb610f539064ec18d3edf2b310b7759)|
| e7024eed5b654acbaae54725ccc6b15f |
Arithmetic | Math fields | Dec 17, 2021 | Alan Jo | Alan Jo | Jun 6, 2023 | [Number Theory](https://texonom.com/number-theory-0bf9f82f550d43d382ba1c67ebb7dae2) |
### ์ซ์๊ฐ ๋ค์ด๊ฐ๋ ์๊ฐ ์ด๋์ ๋์ ์ด์ฐ์ฑ์ด ์ฃผ์
๋๋ค
์ฐ์ ์ ์ํ์ ๊ฐ์ฅ ์ญ์ฌ ๊น์ ๋ถ์ผ๋ก, ์์ ๊ฐ๋
์ด๋ ์์ ๋ํ์ฌ ๊ฐ๋จํ ๊ณ์ฐ์ ํ๋ ๋ฐฉ๋ฒ, ๊ทธ ์ฑ์ง์ด๋ ๊ณ์ฐ์ ๋ฒ์น ๋ฑ์ ์ด๋ก ์ ์ธ ๋ฐฉ๋ฒ์ ๋ค๋ฃจ๋ ํ๋ฌธ
ํนํ ์ ์, ์ ๋ฆฌ์, ์ค์, ๋ณต์์๋ฅผ ์ฌ์ฉํ์ฌ ๊ณ์ฐํ๋ ๋ฐฉ๋ฒ
### Arithmetic Notion
|Title|
|:-:|
|[Number Theory](https://texonom.com/number-theory-0bf9f82f550d43d382ba1c67ebb7dae2)|
|[Fixed-point arithmetic](https://texonom.com/fixed-point-arithmetic-c46e0722c58c4e2fbc1d2f7027bf6fbe)|
|[Arithmetic Precision](https://texonom.com/arithmetic-precision-baffc5389f06430eb20806e985685c9b)|
|[Elementary arithmetic](https://texonom.com/elementary-arithmetic-57a9f00b3f30433299816f32b4d49fbd)|
|[Exponentiation](https://texonom.com/exponentiation-760c53a791ee4d6696e819b079afe066)|
| 0c758b320acb4e919df40892427248d0 |
Calculus | null | null | null | null | null | null |
### ์ธ๊ฐ์๊ฒ ์ฐ์์ ์ธ ๊ฒ์ ์ง๊ด์ ์ผ๋ก ์ดํด์ํจ ๋ฐฉ๋ฒ๋ก
### Calculus Notion
|Title|
|:-:|
|[Derivation](https://texonom.com/derivation-79d0547aee0d45ce93cdae0f26bc3ce6)|
|[Integral](https://texonom.com/integral-ed91b8e9d33d49bfa6a32e93f7bfdfca)|
|[Inflection point](https://texonom.com/inflection-point-6448287d912942cea85ee85a981505d6)|
|[Vector Calculus](https://texonom.com/vector-calculus-77976c6127ad49c9a6611e16a40f337f)|
|[Explicit Function](https://texonom.com/explicit-function-df8104e2876c42e9b112f6308718e3bc)|
|[Implicit Function](https://texonom.com/implicit-function-1e383ff61a8b4831abca72e4c37649bd)|
|[Local extremum point](https://texonom.com/local-extremum-point-f7a7579a29474436b2a8670a28fed921)|
|[Convex Point](https://texonom.com/convex-point-160b14cc61114a8a9be9797578e11c7a)|
|[Concave Point](https://texonom.com/concave-point-c3f6835eb9ef4378830d3b916da3f074)|
### Calculus Examples
|Title|
|:-:|
|[The Tower Function](https://texonom.com/the-tower-function-7a63cab2617a402782fbf88c9055d43c)|
| 8e37e7dac61e435da6a6970da7296f73 |
Chaos Theory | null | null | null | null | null | null |
์กฐ๊ทธ๋ง ๋ณํ๋ก ํฌ๊ฒ ๋ณํ
### Chaos Theory Notion
|Title|
|:-:|
|[Lorenz Attractor](https://texonom.com/lorenz-attractor-b3249a819200420797f82e204cc9d58c)|
|[Butterfly Effect](https://texonom.com/butterfly-effect-62e1b65850da4b3ab2d429292473f8a1)|
|[Complex System](https://texonom.com/complex-system-b2457d8f6fcc4fe2abffd71828908a1f)|
| 2fbd6b2c5e474a63b6f07a90803b8f9d |
Discrete Math | null | null | null | null | null | null |
### Discrete Math Topics
|Title|
|:-:|
|[Pigeonhole principle](https://texonom.com/pigeonhole-principle-998c7a67c04e43d28b132eaa02d5f0d8)|
|[Order Theory](https://texonom.com/order-theory-8c7e8fb9638f41b19b6829d686fc6f9b)|
|[Combinatorics](https://texonom.com/combinatorics-887b47c6bb1c46388a8387d89bd304cf)|
| 6cd7d73a0fe94fd981f0d59b2c906714 |
**Ergodic theory** | Math fields | Apr 3, 2022 | Alan Jo | Alan Jo | Apr 5, 2022 |
### **Ergodic theory Notion**
|Title|
|:-:|
|[Poincare Recurrence Theorem](https://texonom.com/poincare-recurrence-theorem-1aca4c4a3d2446c1892de56b1071953c)|
|[Dynamical System](https://texonom.com/dynamical-system-a4e33185067b49b28e8f62454028f7b1)|
> [Ergodic theory - Wikipedia](https://en.wikipedia.org/wiki/Ergodic_theory)
| ead101eaed774cacbd95b2497b8837c6 |
|
**Foundations of Mathematics** | Math fields | Jun 19, 2022 | Alan Jo | Alan Jo | May 13, 2023 | [Mathematical Logic](https://texonom.com/mathematical-logic-dc5a5765623c4cef9f76a78cca288960) [Set Theory](https://texonom.com/set-theory-a74b3919af5e4e6e885862f6f76103f9) |
### **Foundations of Mathematics Notion**
|Title|
|:-:|
|[Gรถdelโs incompleteness theorem](https://texonom.com/gdels-incompleteness-theorem-820d082fd9bf424f8125dda3bf9e859b)|
|[Langlands program](https://texonom.com/langlands-program-629d720ec59b4bf4a42c0b066675b220)|
|[Set Theory](https://texonom.com/set-theory-a74b3919af5e4e6e885862f6f76103f9)|
|[Type Theory](https://texonom.com/type-theory-a6967220456b47498b951f11598381f7)|
|[Category Theory](https://texonom.com/category-theory-1b6594b7d4ce4c128ec2f9aed95d9f3c)|
> [๋น์ ์ด ์ํ์ ๋ชจ๋ฅด๋ ์ด์ . (feat. ๋ถ์์ ์ฑ์ ์ ๋ฆฌ)](https://www.youtube.com/watch?v=oippSXvxUlw&t=590s)
| 62157cb1d60a461cace32359d099137f |
Measure Theory | null | null | null | null | null | null |
### Measure Theory Notion
|Title|
|:-:|
|[Lebesgue Theorem](https://texonom.com/lebesgue-theorem-50dd4d0d814244799c6b43126d669c5d)|
|[Null Set](https://texonom.com/null-set-1f83671ec46848a4b8232daad30419bd)|
|[Measure Zero](https://texonom.com/measure-zero-84f55b9439c743f390eb69ddbd5f4a5b)|
> [๋น์ ์ด ์ํ์ ๋ชจ๋ฅด๋ ์ด์ . (feat. ๋ถ์์ ์ฑ์ ์ ๋ฆฌ)](https://youtu.be/oippSXvxUlw)
> [๋น์ ์ด ๋ฏธ์ฒ ๋ชฐ๋๋ ํ๋ฅ ๊ฐ๋
](https://youtube.com/watch?v=Exjc8D8drP0&feature=shares)
| 4fb6210801ea4d7abcb937cd068ba461 |
Number Theory | Arithmetic Notion | Nov 5, 2019 | Alan Jo | Seong-lae Cho | Sep 3, 2023 | [Arithmetic](https://texonom.com/arithmetic-0c758b320acb4e919df40892427248d0) [Harmonic Analysis](https://texonom.com/harmonic-analysis-e1e54ebeffd0407088bebab57acbfd53) |
### Number Theory Notion
|Title|
|:-:|
|[Infinite](https://texonom.com/infinite-f4d16a6949084f6c9c9763e78492486b)|
|[Number System](https://texonom.com/number-system-4bfd6d8ac2e34aef9e0c847ccd7c1378)|
|[Factorial](https://texonom.com/factorial-5b4059c4407b4c2f9c3be0f8357ae7ae)|
|[Real Number](https://texonom.com/real-number-2c5c6fff21ab429da38ba685b40bacf3)|
|[Integer](https://texonom.com/integer-e87e20fb8fb94fe98202d49d95aefbdc)|
### Number Theory Example
|Title|
|:-:|
|[Analytic number theory](https://texonom.com/analytic-number-theory-2ca0555c60b344aba8890dc7741bf191)|
|[๋จ์ง์ด๋ก ](https://texonom.com/742ac0cefcaa43018afea17a47f3ef34)|
|[Collatz conjecture](https://texonom.com/collatz-conjecture-d6e27f23c9d34778a8f072bcf28edc81)|
|[BCD](https://texonom.com/bcd-1d73c802caab457486434bb9e661aa95)|
| 0bf9f82f550d43d382ba1c67ebb7dae2 |
Subsets and Splits