title
stringlengths 1
544
โ | parent
stringlengths 0
57
โ | created
stringlengths 11
12
โ | editor
stringclasses 1
value | creator
stringclasses 4
values | edited
stringlengths 11
12
โ | refs
stringlengths 0
536
โ | text
stringlengths 1
26k
| id
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|
**Equinumerosity** | Set Theory Notion | Apr 5, 2022 | Alan Jo | Alan Jo | Apr 5, 2022 |
์ผ๋์ผ ๋์์ด ์กด์ฌํ๋ ๊ฒฝ์ฐ
| 907dd17f4fab4b9b8212011bc680e5bf |
|
Finite Set | Set Theory Notion | Apr 5, 2022 | Alan Jo | Alan Jo | Apr 5, 2022 | 63ed2bdb689946429effb738e5422255 |
||
Infinite Set | Set Theory Notion | Apr 5, 2022 | Alan Jo | Alan Jo | Apr 5, 2022 | 93755bd42acf41e2ac688467ad687885 |
||
Infinite Set | Set Theory Notion | Apr 5, 2022 | Alan Jo | Alan Jo | Apr 5, 2022 | 971d3736190a4752a1ee3d1e2fea7028 |
||
Naive set theory | Set Theory Notion | Apr 5, 2022 | Alan Jo | Alan Jo | Apr 5, 2022 |
์์ฐ ์ธ์ด๋ก ์ ์
| 67e68d75439f41bb8eb032834706044d |
|
Poset | Set Theory Notion | Feb 25, 2023 | Alan Jo | Alan Jo | Feb 25, 2023 |
> [๊ทธ๋ด ๊ฒ ๊ฐ์๋ฐ.. ์๋๋ผ๊ณ ?](https://youtube.com/watch?v=DPOYCjgvQ2o&feature=shares)
| 9a126737d3414bfc9225fe391603b9ad |
|
Power Set | Set Theory Notion | Apr 5, 2022 | Alan Jo | Alan Jo | Apr 5, 2022 |
์ฃผ์ด์ง ์งํฉ์ ๋ชจ๋ ๋ถ๋ถ์งํฉ๋ค๋ก ๊ตฌ์ฑ๋ ์งํฉ
| 58038c26c9ef49e1bf59cae859c90394 |
|
Russell'sย ***paradox*** | null | null | null | null | null | null |
### **์๊ธฐ์ธ๊ธ**์ ์ญ์ค
์งํจ๋ก ์ ์ค๋ฅ ์ง์
์งํฉ์ ๋ชจ๋ ๊ฒ์ ํฌํจํ ์ ์๋ค๋ ๊ณต๋ฆฌ์์ ๋น๋กฏ๋์๋ค
์งํฉ์ ์งํฉ์ ๋์ด์ ์งํฉ์ผ๋ก ์ฌ๊ธฐ์ง ์๋๋ค๋ ๊ณต๋ฆฌ๋ก ํด๊ฒฐ
> [๋น์ ์ด ์ํ์ ๋ชจ๋ฅด๋ ์ด์ . (feat. ๋ถ์์ ์ฑ์ ์ ๋ฆฌ)](https://www.youtube.com/watch?v=oippSXvxUlw&t=590s)
| 7ecbb574edd24c5ab9066b8a5fcc6dea |
Symmetric difference | Set Theory Notion | Dec 5, 2022 | Alan Jo | Alan Jo | Dec 5, 2022 |
๋์นญ์ฐจ
$$A \triangle B$$
| 07bdea8546c04dabb5cd4ec7fd61b67b |
|
Uncountable Set | Set Theory Notion | Apr 5, 2022 | Alan Jo | Alan Jo | Apr 5, 2022 |
์์ฐ์์ ๋ฉฑ์งํฉ์ด๋ ๋ฌด๋ฆฌ์์ ์งํฉ์ด ๋น๊ฐ์ฐ
๋ฌด๋ฆฌ์ ๋น๊ฐ์ฐ์ด๋ ๋น์ฐํ ์ค์๋ ๋น๊ฐ์ฐ
| 287e751cba3c466e92f123ca2f04e13f |
|
ZFC | Set Theory Notion | Jul 29, 2023 | Alan Jo | Alan Jo | Jul 29, 2023 | [Axiom](https://texonom.com/axiom-01147181157e4e68a84a5af85ffdd035) |
### ZFC Axioms
|Title|
|:-:|
|[Axiom of Choice](https://texonom.com/axiom-of-choice-a872716df36a48dcbb45a7a633c56071)|
| f844451d3f134288a92febc7b8e8257b |
Cantor function | Cantor set | null | null | null | null | null |
> [์นธํ ์ด ํจ์ - ์ํค๋ฐฑ๊ณผ, ์ฐ๋ฆฌ ๋ชจ๋์ ๋ฐฑ๊ณผ์ฌ์ ](https://ko.wikipedia.org/wiki/%EC%B9%B8%ED%86%A0%EC%96%B4_%ED%95%A8%EC%88%98)
| bab4b944c0cb44bdb0089d40ec6b1542 |
Axiom of Choice | ZFC Axioms | Jul 29, 2023 | Alan Jo | Alan Jo | Jul 29, 2023 |
ํ์์ถฉ๋ถ
[Well ordering theorem](https://texonom.com/well-ordering-theorem-cd609c76a0f04e3d889ef64d34860b47)
[Zornโs Lemma](https://texonom.com/zorns-lemma-7bbd0f0a383e4800baf7bdfde87612c6)
> [์ถฉ๊ฒฉ์ ์ธ ๋ฉ๋ถ ํฌ์ธํธ. ์ด๋ณด๋ค ์ฌ์ธ ์ ์๋ค!](https://youtu.be/Y37xTQArewo)
| a872716df36a48dcbb45a7a633c56071 |
|
Well ordering theorem | Axiom of Choice | null | null | null | null | null |
์ด๋ค ์งํฉ์์๋ ์์๊ฐ๋ฅ | cd609c76a0f04e3d889ef64d34860b47 |
Zornโs Lemma | Axiom of Choice | null | null | null | null | null | 7bbd0f0a383e4800baf7bdfde87612c6 |
|
Lebesgue Theorem | Measure Theory Notion | Apr 5, 2022 | Alan Jo | Alan Jo | Apr 5, 2022 |
**๋ฅด๋ฒ ๊ทธ ๋ฏธ๋ถ๊ฐ๋ฅ์ฑ ์ ๋ฆฌ**
๋จ์กฐํจ์์ ๋ฏธ๋ถ๊ฐ๋ฅ์ฑ์ ๋ณด์ฅํด ์ฃผ๋ ๋งค์ฐ ๊ฐ๋ ฅํ ์ ๋ฆฌ
| 50dd4d0d814244799c6b43126d669c5d |
|
Measure Zero | Measure Theory Notion | Apr 5, 2022 | Alan Jo | Alan Jo | Apr 5, 2022 | [Null Set](https://texonom.com/null-set-1f83671ec46848a4b8232daad30419bd) | 84f55b9439c743f390eb69ddbd5f4a5b |
|
Null Set | Measure Theory Notion | Apr 5, 2022 | Alan Jo | Alan Jo | Apr 5, 2022 |
๋งค์ฐ ์์ ๋ฌด์ํ ์ ์๋
| 1f83671ec46848a4b8232daad30419bd |
|
๋จ์ง์ด๋ก | Number Theory Example | Jan 5, 2021 | Alan Jo | Seong-lae Cho | Jan 16, 2022 |
๊ทธ๋์ด์ ์
| 742ac0cefcaa43018afea17a47f3ef34 |
|
Analytic number theory | Number Theory Example | Feb 22, 2022 | Alan Jo | Alan Jo | Feb 22, 2022 |
### Analytic number theory Topics
|Title|
|:-:|
|[Goldbach's conjecture](https://texonom.com/goldbachs-conjecture-4d4a15ceede54e8494dbfc65099f02a4)|
|[Riemann hypothesis](https://texonom.com/riemann-hypothesis-014b08e38ba14b358aeffb997f2c94af)|
| 2ca0555c60b344aba8890dc7741bf191 |
|
BCD | Number Theory Example | May 5, 2021 | Alan Jo | Alan Jo | Jan 16, 2022 |
## Binary-coded decimal
์ด์งํ ์ญ์ง๋ฒ
์ญ์ง์์ฒ๋ผ ์ฝ๋ฉ๋ ์ด์ง์
8421 code
์ด์ง์ ๋ค ์๋ฆฌ๋ฅผ ๋ฌถ์ด ์ญ์ง์ ํ ์๋ฆฌ๋ก ์ฌ์ฉํ๋ ๊ธฐ์
[EBCDIC](https://texonom.com/ebcdic-47243ad2398d47eca866395c6857b675)
### pros and cons
> [[BCD,8421์ฝ๋ ์ด์ ๋ฆฌ]BCD์ฝ๋๋ ์ธ์ ์ฌ์ฉํ ๊น, BCD ์ฅ์ , BCD๊ฐ์ฐ๋ฒ, ๊ณ์ฐํ๋ ๋ฒ, ์ 6์ ๋ํ๋๊ฐ? ์ด์งํ ์ญ์ง๋ฒ ํน์ง](https://jhnyang.tistory.com/232)
| 1d73c802caab457486434bb9e661aa95 |
|
Collatz conjecture | Number Theory Example | Jan 16, 2022 | Alan Jo | Alan Jo | Jan 16, 2022 |
1937๋
์ ์ฒ์์ผ๋ก ์ด ์ถ์ธก์ ์ ๊ธฐํ ๋กํ๋ฅด ์ฝ๋ผ์ธ ์ ์ด๋ฆ์ ๋ด ๊ฒ์ผ๋ก 3n+1 ์ถ์ธก, ์ธ๋ ์ถ์ธก, ํน์ ํค์ผ์คํค ์์ด ๋ฑ ์ฌ๋ฌ ์ด๋ฆ
์์์ ์์ฐ์๊ฐ ๋ค์ ์กฐ์์ ๊ฑฐ์ณ ํญ์ 1์ด ๋๋ค๋ ์ถ์ธก
1. ์ง์๋ผ๋ฉด 2๋ก ๋๋๋ค.
2. ํ์๋ผ๋ฉด 3์ ๊ณฑํ๊ณ 1์ ๋ํ๋ค.
3. 1์ด๋ฉด ์กฐ์์ ๋ฉ์ถ๊ณ , 1์ด ์๋๋ฉด ์ฒซ ๋ฒ์งธ ๋จ๊ณ๋ก ๋์๊ฐ๋ค.
| d6e27f23c9d34778a8f072bcf28edc81 |
|
Goldbach's conjecture | Analytic number theory Topics | Dec 29, 2019 | Alan Jo | Alan Jo | Feb 22, 2022 | 4d4a15ceede54e8494dbfc65099f02a4 |
||
Riemann hypothesis | Analytic number theory Topics | Feb 22, 2022 | Alan Jo | Alan Jo | Mar 28, 2023 | [Bernhard Riemann](https://texonom.com/bernhard-riemann-166d61214be5439ca5f7ba1090063a3e) |
### Riemann hypothesis Notion
|Title|
|:-:|
|[Riemann Zeta Function](https://texonom.com/riemann-zeta-function-0cf40635bf4940a0a7067a73f998ddda)|
> [Mathematician Yitang Zhang Confirms Partial Solution to Riemann Hypothesis](https://pandaily.com/mathematician-yitang-zhang-confirms-partial-solution-to-riemann-hypothesis/)
| 014b08e38ba14b358aeffb997f2c94af |
Riemann Zeta Function | Riemann hypothesis Notion | Feb 22, 2022 | Alan Jo | Alan Jo | Feb 22, 2022 | 0cf40635bf4940a0a7067a73f998ddda |
||
EBCDIC | BCD | null | null | null | null | null |
## Extended Binary Coded Decimal Interchange Code
ํ์ฅ ์ด์งํ ์ญ์ง๋ฒ ๊ตํ ๋ถํธ(
> [ํ์ฅ ์ด์งํ ์ญ์ง๋ฒ ๊ตํ ๋ถํธ - ์ํค๋ฐฑ๊ณผ, ์ฐ๋ฆฌ ๋ชจ๋์ ๋ฐฑ๊ณผ์ฌ์ ](https://ko.wikipedia.org/wiki/%ED%99%95%EC%9E%A5_%EC%9D%B4%EC%A7%84%ED%99%94_%EC%8B%AD%EC%A7%84%EB%B2%95_%EA%B5%90%ED%99%98_%EB%B6%80%ED%98%B8)
| 47243ad2398d47eca866395c6857b675 |
Factorial | Number Theory Notion | Mar 17, 2023 | Alan Jo | Alan Jo | Mar 17, 2023 |
[Stirlingโs Formula](https://texonom.com/stirlings-formula-e41933453d844d278269dc90647d8b96)
> [99% ๋ชจ๋ฅด๋ ํฉํ ๋ฆฌ์ผ์ ๋น๋ฐ!](https://youtube.com/watch?v=9Ti8EhK4eRw&feature=shares)
| 5b4059c4407b4c2f9c3be0f8357ae7ae |
|
Infinite | Number Theory Notion | May 5, 2021 | Alan Jo | Alan Jo | Jan 16, 2022 |
๋ฌดํ ์์์ ๋ชจ๋ ์ ํํ ๊ฐ์ 0์ด๋๊ธฐ๋ ํ์ง๋ง ๋ฌดํ ์์์ ๋ชจ๋ ๊ฐ๋ฅ์ฑ์ด ๊ฐ๋ฅํด์ง๋ค ์์ญ์ด๊ฐ ๋ฌดํํ๊ฒ ํ์๋ฅผ ์น๋ ๊ฒ ์์ ๋ชจ๋ ๋ฌธํ์ด ์๋ ๊ฒ์ฒ๋ผ
๋ฌดํ์ ์ซ์๋ณด๋ค ๊ณผ์ ์ด๋ผ๊ณ ์ฌ๊ฒจ์ผ
| f4d16a6949084f6c9c9763e78492486b |
|
Number System | Number Theory Notion | Feb 22, 2022 | Alan Jo | Alan Jo | Feb 22, 2022 |
### Number Systems
|Title|
|:-:|
|[Binary Number](https://texonom.com/binary-number-a28fb645048d4737afb24dcf3f69858d)|
|[Complex Number](https://texonom.com/complex-number-f3fcb42a92474099b8359581af59bde1)|
| 4bfd6d8ac2e34aef9e0c847ccd7c1378 |
|
Real Number | Number Theory Notion | Apr 19, 2023 | Alan Jo | Alan Jo | Sep 3, 2023 |
unlike [Complex Number](https://texonom.com/complex-number-f3fcb42a92474099b8359581af59bde1), real number system is not [Algebraically Closed Field](https://texonom.com/algebraically-closed-field-a7ae2a1584f04bcfab20c148c98113cd)
### Real Number Type
|Title|
|:-:|
|[Rational Number](https://texonom.com/rational-number-131e8af784874e9a9eb4cd4a39d517b6)|
|[Irrational Number](https://texonom.com/irrational-number-1da708bf326a4e6cb8938e54179cb6bc)|
| 2c5c6fff21ab429da38ba685b40bacf3 |
|
Stirlingโs Formula | Factorial | null | null | null | null | null |
### ****Stirling's approximation****
$$ln(n!) = nln\;n - n + O(ln\;n)$$
> [Stirling's approximation](https://en.wikipedia.org/wiki/Stirling's_approximation)
> [99% ๋ชจ๋ฅด๋ ํฉํ ๋ฆฌ์ผ์ ๋น๋ฐ!](https://youtube.com/watch?v=9Ti8EhK4eRw&feature=shares)
| e41933453d844d278269dc90647d8b96 |
Binary Number | Number Systems | Feb 22, 2022 | Alan Jo | Alan Jo | Feb 22, 2022 | a28fb645048d4737afb24dcf3f69858d |
||
Complex Number | Number Systems | Apr 19, 2023 | Alan Jo | Alan Jo | Jun 7, 2023 | [Euler's Formula](https://texonom.com/eulers-formula-71f5337221904ba5b26e1398af5de0ab) [Field](https://texonom.com/field-a539c71297824a56a0a7139c871aaa08) |
### [Algebraically Closed Field](https://texonom.com/algebraically-closed-field-a7ae2a1584f04bcfab20c148c98113cd)
$$z = re^{i\theta}$$
### Complex Number Notion
|Title|
|:-:|
|[Imaginary Number](https://texonom.com/imaginary-number-0c4b551380914570ba48a73039f9fc96)|
|[Complex Polar Coordinate](https://texonom.com/complex-polar-coordinate-53f5972726ff4d79b59c6f037ccf863a)|
|[Complex Function](https://texonom.com/complex-function-fa0da3f578d0479495020b48ea3fe290)|
|[Complex conjugate](https://texonom.com/complex-conjugate-251d154b491f499cae0d769f2529eaf0)|
> [์ธ์์์ ๊ฐ์ฅ ์๋ฆ๋ค์ด ์์์ ์ดํดํด๋ณด์ (์ด๊ณผ์ฉ)](https://www.youtube.com/watch?v=kgTSUZjVqas)
| f3fcb42a92474099b8359581af59bde1 |
**Complex conjugate** | Complex Number Notion | May 13, 2023 | Alan Jo | Alan Jo | May 13, 2023 |
## ์ผค๋
### **Complex conjugate Notion**
|Title|
|:-:|
|[Conjugate Symmetric](https://texonom.com/conjugate-symmetric-dccf53586f444e49b9bd84efe348bdf3)|
| 251d154b491f499cae0d769f2529eaf0 |
|
Complex Function | Complex Number Notion | May 13, 2023 | Alan Jo | Alan Jo | May 13, 2023 |
### Complex Functions
|Title|
|:-:|
|[Hermitian function](https://texonom.com/hermitian-function-af9c5415235f4d3da67d4e0e15389cff)|
| fa0da3f578d0479495020b48ea3fe290 |
|
Complex Polar Coordinate | Complex Number Notion | Apr 19, 2023 | Alan Jo | Alan Jo | Apr 19, 2023 | [Polar Coordinate](https://texonom.com/polar-coordinate-affa11aeb26241cdabf2a592e73daf91) |
### Normal Coordinate
$R + Ii$ can be expressed in normal coordinate $(R, I)$
### Polar Coordinate
let $\theta = tan^{-1}\frac{I}{R}, r = \sqrt{R^2+I^2}$, then $R + Ii = r(cos\theta + isin\theta)$
by [Euler's Formula](https://texonom.com/eulers-formula-71f5337221904ba5b26e1398af5de0ab) $r(cos\theta + isin\theta) = re^{j\theta}$
| 53f5972726ff4d79b59c6f037ccf863a |
Imaginary Number | Complex Number Notion | Apr 19, 2023 | Alan Jo | Alan Jo | Apr 19, 2023 |
i ๋๋ j๋ก ์ฌ์ฉํ๋ค
์ ๋ฅ(I)๋ ํท๊ฐ๋ฆฌ๊ฑฐ๋ ๋ณ์๋ช
์ผ๋ก i๋ง์ด ์จ์ j์ฐ๋ ๊ณณ์ด ์ค๋ฌด์์ ๋ง๋ค
MatLab์ด๋ python๋ฑ
| 0c4b551380914570ba48a73039f9fc96 |
|
Conjugate Symmetric | Complex conjugate Notion | May 13, 2023 | Alan Jo | Alan Jo | May 13, 2023 |
## Hermitian Symmetry
๊ณต์ก ๋์นญ
| dccf53586f444e49b9bd84efe348bdf3 |
|
**Hermitian function** | Complex Functions | May 13, 2023 | Alan Jo | Alan Jo | Jun 25, 2023 |
[Complex conjugate](https://texonom.com/complex-conjugate-251d154b491f499cae0d769f2529eaf0) is equal to the original function
| af9c5415235f4d3da67d4e0e15389cff |
|
**Recurrence relation** | Sequence Theory Notion | Oct 17, 2022 | Alan Jo | Alan Jo | Sep 14, 2023 | [Mathematical induction](https://texonom.com/mathematical-induction-428dbeddb59940dca2267474cb23631c) |
## ์ ํ์
1. Guess the form of the solution
2. Verify by induction
3. Solve for constants
or [The Master Method](https://texonom.com/the-master-method-26345dcafc17491ca0f75b6e137647db)
### **Recurrence relation Notion**
|Title|
|:-:|
|[Recursion-tree method](https://texonom.com/recursion-tree-method-e45153b2672b4ff2ba0abea475c3b898)|
| 1c0b90005c30437fa61c5e049782e4be |
Sequence | Sequence Theory Notion | Oct 3, 2021 | Alan Jo | Alan Jo | Sep 12, 2023 |
### ์์ด
### Sequences
|Title|
|:-:|
|[Fibonacci sequence](https://texonom.com/fibonacci-sequence-830af82ec2bf49cc90da16fd1a201b14)|
| 638838659a104ce3acc741ff806adf79 |
|
Series | Sequence Theory Notion | Oct 3, 2021 | Alan Jo | Alan Jo | Aug 29, 2023 |
### Sum of every sequence
### Famous Series
|Title|
|:-:|
|[Taylor Series](https://texonom.com/taylor-series-66da8b67bfb041b2bdff0d16d12cf25a)|
|[Fourier Series](https://texonom.com/fourier-series-034521e2dae346b8bf6b9095a602c9a7)|
|[Power Series](https://texonom.com/power-series-c191ba27a1de41d8b2ea7e33b56fe9f6)|
### Series Notion
|Title|
|:-:|
|[Convergent series](https://texonom.com/convergent-series-bd6d5a85531d4b89b7979707fe48b100)|
|[Divergent series](https://texonom.com/divergent-series-1a5c65d9e0644d53a46f1b416fcabcc6)|
| da206bccff4241e7afb1c73a3aac306d |
|
Fourier Series | Famous Series | Mar 16, 2023 | Alan Jo | Alan Jo | Sep 13, 2023 | [Fourier Transform](https://texonom.com/fourier-transform-5ee1f9063a9743dd9846ddc600286d5a) [Wave](https://texonom.com/wave-0b508bdcc4ac46759240dbc9b37d7994) [Periodic Function](https://texonom.com/periodic-function-3fa775a544934003bfbf39101551d1e1) |
### Fourier Series Notion
|Title|
|:-:|
|[CTFS](https://texonom.com/ctfs-bfcd6b43900e44d983ae5c6537338b8b)|
|[DTFS](https://texonom.com/dtfs-924b5dfa43dd46638de66cc15f61b538)|
|[Fourier Series Basis](https://texonom.com/fourier-series-basis-64de5af81a8643c3a9f92f8e8e9bb2bb)|
|[Parseval's theorem](https://texonom.com/parsevals-theorem-d132edfc5b734643934a11b42bcdc075)|
|[Fourier Series Tilda function](https://texonom.com/fourier-series-tilda-function-b8495f56f23a4f58897df1dadacbce11)|
> [Fourier series](https://en.wikipedia.org/wiki/Fourier_series)
| 034521e2dae346b8bf6b9095a602c9a7 |
Taylor Series | Famous Series | Oct 3, 2021 | Alan Jo | Alan Jo | Aug 29, 2023 | [Calculus](https://texonom.com/calculus-8e37e7dac61e435da6a6970da7296f73) |
๋ํจ์๋ค์ ํ ์ ์์์ ๊ฐ์ผ๋ก ๊ณ์ฐ๋ ํญ์ ๋ฌดํํฉ์ผ๋ก ํด์ํจ์๋ฅผ ๋ํ๋ด๋ ๋ฐฉ๋ฒ
### Taylor Series Notion
|Title|
|:-:|
|[Taylor's Theorem](https://texonom.com/taylors-theorem-ecb251f43b1744a6a0ac5fe53a9d28d4)|
|[Taylor series expansion](https://texonom.com/taylor-series-expansion-f83425f12a0e4d7e9122395a85e300e3)|
| 66da8b67bfb041b2bdff0d16d12cf25a |
Square wave | Non-sinusoidal waveforms | Mar 21, 2023 | Alan Jo | Alan Jo | Sep 20, 2023 |
### [Fourier Series](https://texonom.com/fourier-series-034521e2dae346b8bf6b9095a602c9a7)
$$A\Sigma_{k=1}^\infty\frac{1}{k}sin(2\pi kx)$$
### Template Gallery
|Title|
|:-:|
|[Boxcar function](https://texonom.com/boxcar-function-fdf2d3b368f540bbbdaab928819f8da4)|
> [Square wave](https://en.wikipedia.org/wiki/Square_wave)
| f730f0419f3843c389357eecc59f8d94 |
|
Taylor's Theorem | Taylor Series Notion | Oct 3, 2021 | Alan Jo | Alan Jo | Aug 29, 2023 | ecb251f43b1744a6a0ac5fe53a9d28d4 |
||
Taylor series expansion | Taylor Series Notion | Oct 3, 2021 | Alan Jo | Alan Jo | Aug 29, 2023 |
[quadratic approximation](https://texonom.com/quadratic-approximation-3bd053180ba547e6a97ecf6b57f9af2d)
| f83425f12a0e4d7e9122395a85e300e3 |
|
quadratic approximation | Taylor series expansion | null | null | null | null | null |
second-orderTaylor series expansion | 3bd053180ba547e6a97ecf6b57f9af2d |
Convergent series | Series Notion | Mar 7, 2023 | Alan Jo | Alan Jo | Jun 11, 2023 | bd6d5a85531d4b89b7979707fe48b100 |
||
Divergent series | Series Notion | Mar 9, 2023 | Alan Jo | Alan Jo | Jun 11, 2023 |
swing (oscillate) or go infinite
| 1a5c65d9e0644d53a46f1b416fcabcc6 |
|
Closure | Topology Notion | Jun 4, 2023 | Alan Jo | Alan Jo | Jun 4, 2023 | f8ea031aff2a42e28ce310accdd3f38a |
||
Compactness | Topology Notion | Jun 4, 2023 | Alan Jo | Alan Jo | Jun 4, 2023 | 4548634a95f645d2bf9f2027de247d5d |
||
Euclidean Topology | Topology Notion | Jun 4, 2023 | Alan Jo | Alan Jo | Jun 4, 2023 | d6b8e43b16264d8aaa37f576522e7063 |
||
Heine Borel Theorem | Topology Notion | Jun 4, 2023 | Alan Jo | Alan Jo | Jun 4, 2023 | 9364af6db0584563850234356131360e |
||
M***anifold*** | Topology Notion | Apr 30, 2023 | Alan Jo | Alan Jo | Jul 12, 2023 |
### ๋ค์์ฒด
**๊ตญ์์ ์ผ๋กย ์ ํด๋ฆฌ๋ ๊ณต๊ฐ๊ณผ ๋ฎ์ ์์ ๊ณต๊ฐ**
์๊ณ์์ 3์์ 9์ ์ฌ์ด ์๊ฐ ์ฐจ์ด๋ฅผ ๊ฑฐ๋ฆฌ๊ฐ ์๋๋ผ ์์ ๊ฑฐ๋ฆฌ์ธ ๊ฐ์ผ๋ก ์ฌ๋ ๊ฒ์ฒ๋ผ 2์ฐจ์์ด ์๋๋ผ 1์ฐจ์
### M***anifold Notion***
|Title|
|:-:|
|[Manifold hypothesis](https://texonom.com/manifold-hypothesis-0cb18ad52c9049eea1cdb57a52e6ef93)|
|[Latent Manifold](https://texonom.com/latent-manifold-849d5f347d0848808fa05cd904106782)|
|[Kรคhler manifold](https://texonom.com/khler-manifold-fca18f34330d4e6b8e74083f19eef2c5)|
> [Manifold](https://en.wikipedia.org/wiki/Manifold)
| c6aa008ada9148309693c43c5033ad18 |
|
Poincare Conjecture | Topology Notion | Jun 4, 2023 | Alan Jo | Alan Jo | Jun 4, 2023 | ed72bbeef3774339adc4c3dfc7e83282 |
||
Kรคhler manifold | Manifold Notion | Jul 12, 2023 | Alan Jo | Alan Jo | Jul 12, 2023 |
### Kรคhler manifold Notion
|Title|
|:-:|
|[Hodge Theory](https://texonom.com/hodge-theory-b69cbfba28e74a219b577372752bffae)|
| fca18f34330d4e6b8e74083f19eef2c5 |
|
Latent Manifold | null | null | null | null | null | null | 849d5f347d0848808fa05cd904106782 |
|
M***anifold *****hypothesis** | Manifold Notion | May 24, 2023 | Alan Jo | Alan Jo | Jun 1, 2023 | [Distance Algorithm](https://texonom.com/distance-algorithm-9b12bb4903424559a97f32c00f5ec351) |
assume that data is concentrated around a low-dimensional manifold
๊ธฐ์กด ์ฐจ์๋ณด๋ค manifolded dimension distance๊ฐ ๋ ์ค์
> [Manifold hypothesis](https://en.wikipedia.org/wiki/Manifold_hypothesis)
| 0cb18ad52c9049eea1cdb57a52e6ef93 |
Hodge Theory | Kรคhler manifold Notion | Jul 12, 2023 | Alan Jo | Alan Jo | Jul 12, 2023 |
### **Hodge theory Notion**
|Title|
|:-:|
|[Hodge conjecture](https://texonom.com/hodge-conjecture-9c13dfb6c4fe4aafa9a6faabf24415f0)|
| b69cbfba28e74a219b577372752bffae |
|
**Hodge conjecture** | Hodge theory Notion | Jul 12, 2023 | Alan Jo | Alan Jo | Jul 12, 2023 |
> [Hodge conjecture](https://en.wikipedia.org/wiki/Hodge_conjecture)
> [[๋์ ] ํธ์ง์ถ์ธก Hodge conjecture](https://www.youtube.com/watch?v=_OgxpHAbqAE)
| 9c13dfb6c4fe4aafa9a6faabf24415f0 |
|
archimedes cattle problem | Math Conundrums | Jun 13, 2020 | Alan Jo | Alan Jo | Aug 17, 2021 | e2e3467d3cba449cb999fa65d3d1020d |
||
**Asymptotic analysis** | Analysis Types | Sep 7, 2023 | Alan Jo | Alan Jo | Sep 7, 2023 |
### **Asymptotic analysis Notion**
|Title|
|:-:|
|[Asymptotic Notation](https://texonom.com/asymptotic-notation-44f31e0bfbaa455cb26f55423ed292a7)|
|[The Master Method](https://texonom.com/the-master-method-26345dcafc17491ca0f75b6e137647db)|
> [Asymptotic analysis](https://en.wikipedia.org/wiki/Asymptotic_analysis)
| 017e73c405534be58baf14dde7824082 |
|
**Asymptotic Notation** | null | null | null | null | null | null |
### They are set of functions
non-tight bounds
lower case notation means less than or greater than (not equal)
### **Asymptotic Notations**
|Title|
|:-:|
|[Big ฮ](https://texonom.com/big-06ed557ed5c042c0b3b590320b4cf119)|
|[Big O](https://texonom.com/big-o-a4d2742321a248b7b13068b1c4eb3215)|
|[Big ฮฉ](https://texonom.com/big-f4152bdb293042eca409b2e9f4f6b986)|
| 44f31e0bfbaa455cb26f55423ed292a7 |
The Master Method | Asymptotic analysis Notion | Sep 7, 2023 | Alan Jo | Alan Jo | Sep 10, 2023 | [Divide and Conquer paradigm](https://texonom.com/divide-and-conquer-paradigm-9b10e85e70214b9b8f0bd293f5c297bd) [Recurrence relation](https://texonom.com/recurrence-relation-1c0b90005c30437fa61c5e049782e4be) |
### The master method applies to recurrences of the form
$$T(n) = aT(n/b) + f(n)$$
where $a\ge 1, b\ge1$, and $f$ is [Asympotically positive](https://texonom.com/asympotically-positive-b0f0899d95154b9a9a5d0620f0786f2b)
### The Master Method Notion
|Title|
|:-:|
|[The Master Method Case](https://texonom.com/the-master-method-case-e93bcfbae2cf4ca3a4bd9b297fa45ec6)|
|[Asympotically positive](https://texonom.com/asympotically-positive-b0f0899d95154b9a9a5d0620f0786f2b)|
> [Master theorem (analysis of algorithms)](https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms))
| 26345dcafc17491ca0f75b6e137647db |
Big ฮ | null | null | null | null | null | null |
$$\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$$
### satisfy both upper bound and lower bound
After a certain point the requirement matches, we can say Big ฮธ
$\Theta(n^2) = \Theta(1000n^2)$ theoretically but practically, it matters
### Big ฮธ Notion
|Title|
|:-:|
> [Big-ฮธ (๋น
์ธํ) ํ๊ธฐ๋ฒ (๊ฐ๋
์ดํดํ๊ธฐ) | ์๊ณ ๋ฆฌ์ฆ | Khan Academy](https://ko.khanacademy.org/computing/computer-science/algorithms/asymptotic-notation/a/big-big-theta-notation)
> [https://velog.io/@wan088/์๊ฐ-๋ณต์ก๋-big-O-big-big-](https://velog.io/@wan088/์๊ฐ-๋ณต์ก๋-big-O-big-big-)
| 06ed557ed5c042c0b3b590320b4cf119 |
Big ฮฉ | Asymptotic Notations | Sep 7, 2023 | Alan Jo | Alan Jo | Sep 10, 2023 |
### Non-tight Lower bound
We write $f(n) = O(g(n))$ if there exist constants $c>0, n_0>0$ such that $0 \le cg(n) \le f(n) $ for all $n \ge n_0$
> [https://velog.io/@wan088/์๊ฐ-๋ณต์ก๋-big-O-big-big-](https://velog.io/@wan088/์๊ฐ-๋ณต์ก๋-big-O-big-big-)
| f4152bdb293042eca409b2e9f4f6b986 |
|
Big O | null | null | null | null | null | null |
### Non-tight Upper bound
We write $f(n) = O(g(n))$ if there exist constants $c>0, n_0>0$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$
### Big O Notion
|Title|
|:-:|
|[Time Complexity](https://texonom.com/time-complexity-cd2b4611ca52442fa7a77c1af0f91b2f)|
|[Space Complexity](https://texonom.com/space-complexity-d873465dea934141a0edfd11c6df65c5)|
> [์๊ฐ ๋ณต์ก๋ (big-O, big-ฮฉ, big-ฮธ)](https://velog.io/@wan088/์๊ฐ-๋ณต์ก๋-big-O-big-big-)
| a4d2742321a248b7b13068b1c4eb3215 |
Space Complexity | Big O Notion | Apr 29, 2021 | Alan Jo | Alan Jo | Sep 7, 2023 | d873465dea934141a0edfd11c6df65c5 |
||
Time Complexity | Big O Notion | Apr 29, 2021 | Alan Jo | Alan Jo | Sep 7, 2023 |
### Time Complexities
|Title|
|:-:|
|[Best case time complexity](https://texonom.com/best-case-time-complexity-b1172d189af5470e85d7c988940dcc81)|
|[Average case time complexity](https://texonom.com/average-case-time-complexity-92e4cbb0014a4f5689e1e616f42e0fdd)|
|[Best case time complexity](https://texonom.com/best-case-time-complexity-6667e4f2a30a473991033732aa7d75e4)|
### Time Complexity Notion
|Title|
|:-:|
|[Complexity growth pattern](https://texonom.com/complexity-growth-pattern-c40a6ab140fa46df99db601e07aaa962)|
| cd2b4611ca52442fa7a77c1af0f91b2f |
|
Average case time complexity | Time Complexities | Sep 7, 2023 | Alan Jo | Alan Jo | Sep 17, 2023 | [Random Variable](https://texonom.com/random-variable-0bc19e0582784ec3a6e0de5b91296212) |
## **expected complexity**
> [Average-case complexity](https://en.wikipedia.org/wiki/Average-case_complexity)
| 92e4cbb0014a4f5689e1e616f42e0fdd |
Best case time complexity | Time Complexities | Sep 7, 2023 | Alan Jo | Alan Jo | Sep 7, 2023 |
๋ณดํต ์๋ฏธ์๋ค
| 6667e4f2a30a473991033732aa7d75e4 |
|
Best case time complexity | Time Complexities | Sep 7, 2023 | Alan Jo | Alan Jo | Sep 7, 2023 | b1172d189af5470e85d7c988940dcc81 |
||
Complexity growth pattern | null | null | null | null | null | null | c40a6ab140fa46df99db601e07aaa962 |
|
Asympotically positive | The Master Method Notion | Sep 10, 2023 | Alan Jo | Alan Jo | Sep 10, 2023 |
### A function if there exists an $N$ such that $f(n) \gt 0$ for all $n\ge N$
| b0f0899d95154b9a9a5d0620f0786f2b |
|
The Master Method Case | The Master Method Notion | Sep 7, 2023 | Alan Jo | Alan Jo | Sep 12, 2023 |
### Proof is on [Introduction to Algorithm](https://texonom.com/introduction-to-algorithm-e7e86c2968934959b53c2c2160bec4c6)
proof is easy to understand


if $f(n)$ does not meet regularity condition, you canโt use the master theorem in the third case
### Example

> [Master theorem (analysis of algorithms)](https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms))
| e93bcfbae2cf4ca3a4bd9b297fa45ec6 |
|
Extrapolation | Regression analysis Notion | Apr 12, 2023 | Alan Jo | Alan Jo | Apr 12, 2023 |
> [Extrapolation](https://en.wikipedia.org/wiki/Extrapolation)
> [์ธ์ฝ๋ฒ (Extrapolation)](https://m.blog.naver.com/bisanghara/120183969936)
| b3788658ec7745a0a41d41b54d22c66b |
|
Loss Function | null | null | null | null | null | null |
### Gradient Available
ํ๋์ input data์ ๋ํด์ ์ค์ฐจ๋ฅผ ๊ณ์ฐํ๋ ํจ์
- [KL Divergence](https://texonom.com/kl-divergence-c7964872f5184a7baaf312605405aef6)
- [Cross Entropy](https://texonom.com/cross-entropy-fefc71fd930a41a7842f39bccb3abcc9)
decision-theoretic object that we are bringing in to quantify the negative consequences of error
### Loss Functions
|Title|
|:-:|
|[Mean Squared Error](https://texonom.com/mean-squared-error-18a36a7c349f495e9f960c7b605ad8ed)|
|[RMSE](https://texonom.com/rmse-f61d17a91b174155bd3562c23e67b804)|
|[Binary Crossentropy](https://texonom.com/binary-crossentropy-a0d2492e4aee49c2b7926653041a541a)|
|[Categorical Crossentropy](https://texonom.com/categorical-crossentropy-b883d1401ffc426daea9bac208c8c5df)|
|[L1 Loss Function](https://texonom.com/l1-loss-function-809f81be29194faaa6adfb9057327bbb)|
|[Zero-One Loss](https://texonom.com/zero-one-loss-077d869edbfc4c09ac4441d0e547e961)|
|[Hinge Loss](https://texonom.com/hinge-loss-7ccd3c37b1c64cf5b27a6b1d36067c1a)|
### Loss Function Notion
|Title|
|:-:|
|[Test Loss](https://texonom.com/test-loss-9148d37e324240d19e41f9319fa8a0ab)|
|[Training Loss](https://texonom.com/training-loss-3316afa9758643118624ad288b809861)|
> [0023 Loss & Metric - Deepest Documentation](https://deepestdocs.readthedocs.io/en/latest/002_deep_learning_part_1/0023/)
### Difference by Example
> [What is the difference between a loss function and an error function?](https://stats.stackexchange.com/questions/359043/what-is-the-difference-between-a-loss-function-and-an-error-function)
### Loss Functions
> [Module: tf.keras.losses ย |ย TensorFlow v2.12.0](https://www.tensorflow.org/api_docs/python/tf/keras/losses)
> [Objective Function, Loss Function, Cost Function์ ์ฐจ์ด](https://ganghee-lee.tistory.com/28)
[https://deepestdocs.readthedocs.io/en/latest/002_deep_learning_part_1/0023/](https://deepestdocs.readthedocs.io/en/latest/002_deep_learning_part_1/0023/) | e8f6343914494828988137987cf459f9 |
Ordinary Least Squares | Regression analysis Notion | Jun 25, 2023 | Alan Jo | Alan Jo | Jun 25, 2023 |
## OLS
> [Ordinary least squares](https://en.wikipedia.org/wiki/Ordinary_least_squares)
| d19e8054a63141ad8b53e4efb974f2b3 |
|
Regression | Regression analysis Notion | Oct 6, 2021 | Alan Jo | Alan Jo | Apr 18, 2023 | [Optimization](https://texonom.com/optimization-984100dcbc454057bffd1b97be6ef134) [Data Classification](https://texonom.com/data-classification-0ed6ffa3555b4879be09f0501f0b580c) |
### the target variable is continuous
### Regressions
|Title|
|:-:|
|[Linear Regression](https://texonom.com/linear-regression-0137f4fba64746f6bc28e059d0aa6dd1)|
|[Logistic Regression](https://texonom.com/logistic-regression-8ed39aeb672648b1933df8911996d5d7)|
### Regression Notion
|Title|
|:-:|
|[Cost Function](https://texonom.com/cost-function-66c21423cc7347909016b3423f2ada7e)|
|[IRLS](https://texonom.com/irls-ca318bd9d30e4054b87415503e34c0f3)|
|[Multi-Class Regression](https://texonom.com/multi-class-regression-b0971c1ace5240abb9d6032522766455)|
| d43885ba8cd044f4942cb591bdf1a612 |
****Regularization**** | Regression analysis Notion | Mar 27, 2023 | Alan Jo | Alan Jo | Mar 27, 2023 |
## simpler
[Regularization](https://texonom.com/regularization-c85433c8c0554eba8edf0035b7fd334c) concept is first adapted to [Ridge regression](https://texonom.com/ridge-regression-8520dc9911234f62bc6fa25976af0972) model
Norm is ์ ๋๊ฐ
### ****Regularization Norms****
|Title|
|:-:|
|[L0 Norm](https://texonom.com/l0-norm-47471a6f6dea484fbf30a4c46cde8152)|
|[L1 Norm](https://texonom.com/l1-norm-d316024c475e4eb691785783756bce57)|
|[L2 Norm](https://texonom.com/l2-norm-38c15917350a4c82a11003474ac7d280)|
| c85433c8c0554eba8edf0035b7fd334c |
|
**Residual Sum of Squares** | Regression analysis Notion | Jun 25, 2023 | Alan Jo | Alan Jo | Jun 25, 2023 |
## RSS
> [Residual sum of squares](https://en.wikipedia.org/wiki/Residual_sum_of_squares)
| 343bc935d5264d209c2adb3eea06ca60 |
|
Test Loss | Loss Function Notion | May 9, 2023 | Alan Jo | Alan Jo | May 9, 2023 | 9148d37e324240d19e41f9319fa8a0ab |
||
Training Loss | Loss Function Notion | May 9, 2023 | Alan Jo | Alan Jo | May 9, 2023 | 3316afa9758643118624ad288b809861 |
||
****Binary Crossentropy**** | Loss Functions | Mar 27, 2023 | Alan Jo | Alan Jo | May 9, 2023 | a0d2492e4aee49c2b7926653041a541a |
||
****Categorical Crossentropy**** | Loss Functions | Mar 27, 2023 | Alan Jo | Alan Jo | May 9, 2023 | b883d1401ffc426daea9bac208c8c5df |
||
Hinge Loss | Loss Functions | Jun 7, 2023 | Alan Jo | Alan Jo | Jun 7, 2023 | 7ccd3c37b1c64cf5b27a6b1d36067c1a |
||
L1 Loss Function | Loss Functions | Mar 27, 2023 | Alan Jo | Alan Jo | May 9, 2023 |

> [L1, L2 Norm, Loss, Regularization?](https://junklee.tistory.com/29)
| 809f81be29194faaa6adfb9057327bbb |
|
Mean Squared Error | Loss Functions | Mar 27, 2023 | Alan Jo | Alan Jo | Jun 13, 2023 | [L2 Norm](https://texonom.com/l2-norm-38c15917350a4c82a11003474ac7d280) |
## L2

> [Mean squared error](https://en.wikipedia.org/wiki/Mean_squared_error)
> [[๋ฅ๋ฌ๋] ๋ชฉ์ /์์ค ํจ์(Loss Function) ์ดํด ๋ฐ ์ข
๋ฅ](https://needjarvis.tistory.com/567)
| 18a36a7c349f495e9f960c7b605ad8ed |
RMSE | Loss Functions | Mar 27, 2023 | Alan Jo | Alan Jo | May 16, 2023 | [L2 Norm](https://texonom.com/l2-norm-38c15917350a4c82a11003474ac7d280) |
### Root mean squared Error
| f61d17a91b174155bd3562c23e67b804 |
Zero-One Loss | Loss Functions | Jun 7, 2023 | Alan Jo | Alan Jo | Jun 7, 2023 | 077d869edbfc4c09ac4441d0e547e961 |
||
Cost Function | null | null | null | null | null | null |
## Error Function, J function
๋ชจ๋ input dataset์ ๋ํด์ ์ค์ฐจ๋ฅผ ๊ณ์ฐํ๋ ํจ์
each parameter
$$J(\theta) = \frac{1}{2}\Sigma_{i=1}^n(h_\theta(x^{(i)}) - y^{(i)})^2$$
### Matrix Vector notation
$$J(\theta) = \frac{1}{2}(X\theta - \vec{y})^T(X\theta - \vec{y})$$
### Lest squares cost function
> [Objective Function, Loss Function, Cost Function์ ์ฐจ์ด](https://ganghee-lee.tistory.com/28)
[Least Squares Error](https://texonom.com/least-squares-error-93b101745714452aa1656b71320e08b6)
| 66c21423cc7347909016b3423f2ada7e |
IRLS | Regression Notion | Mar 16, 2023 | Alan Jo | Alan Jo | Apr 18, 2023 | [NewtonโRaphson method](https://texonom.com/newtonraphson-method-0bc249bfb0fe4e498829110bf785eb6c) |
### **Iterative Re-weighted Least Squares**
Iterative re-weighted least squares (IRLS) is an optimization algorithm used to solve nonlinear least squares problems. It is an iterative algorithm that updates the solution in each step until convergence is achieved. In each iteration, the algorithm re-weights the observations based on the current estimate of the solution. This makes the algorithm more robust to outliers and can help it converge more quickly.
update rule is similar with
| ca318bd9d30e4054b87415503e34c0f3 |
Multi-Class Regression | Regression Notion | Mar 21, 2023 | Alan Jo | Alan Jo | Mar 21, 2023 | b0971c1ace5240abb9d6032522766455 |
||
Least Squares Error | Cost Function | null | null | null | null | null |
$$E_{LS}$$
์ต์ ํ๋ฅผ ์ํํ๋ ๋๊ตฌ๋ก ์ฌ์ฉํ๋ ๊ฒ์ด Least Squares
๊ด์ฐฐ๊ฐ๋ค์ ๋งค๋ฒ Noise๊ฐ ์กด์ฌํ ์ ์๋ค. ์ด๋ฐ ๊ฒฝ์ฐ ์ ํํ parameter๊ฐ์ ๊ตฌํ๋๋ฐ error๊ฐ ์ต์ํ๋๋๋ก ๊ตฌํ๋ ๋ฐฉ๋ฒ
error๋ ๋ณดํต ๊ด์ฐฐ๊ฐ๊ณผ ์ถ์ ๊ฐ์ ์ ๊ณฑ์ผ๋ก ํํ
์ด๋ค ์์์ ๊ตฌํด์ผํ parameter๊ฐ 4๊ฐ์ผ ๋, ์ด ๋ ์คํ์ 5๋ฒ ์งํ๋์ด ๊ด์ฐฐ๋๋ ๊ฐ์ด parameter๋ณด๋ค ๋ง์ ๋ ์ ํํ parameter ๊ฐ์ ๊ตฌํ๊ธฐ ์ํ์ฌ ์ฌ์ฉํ๋ ์ต์ ํ ๋ฐฉ๋ฒ์ด ๋ฐ๋ก Least Squares
> [Untitled](https://taeyoung96.github.io/slam/SLAM_02/)
| 93b101745714452aa1656b71320e08b6 |
Linear Regression | Regressions | Mar 9, 2023 | Alan Jo | Alan Jo | Jun 7, 2023 | [Objective function](https://texonom.com/objective-function-5bf6c1fc7c854b5aaaacd17d5e094464) |
### Linear Predictor (minimal [Perceptron](https://texonom.com/perceptron-1deb66f486d54c93bb928d8afba1864c))
$$h(x) = \Sigma_{i=0}^{d}\theta_ix_i = \theta^Tx$$
in Linear Regression there is always global optimum
- update $\theta$ - [Gradient Descent](https://texonom.com/gradient-descent-c1342b13182f4fb6959023a75b5e2ff8) like algorithms
> - add gradient of derivative of cost function J
$$J(\theta) = \frac{1}{2}\Sigma_{i=1}^n(h_\theta(x^{(i)}) - y^{(i)})^2 = \frac{1}{2}(X\theta - \vec{y})^T(X\theta - \vec{y})$$
$$\theta := \theta + \alpha \Sigma(y_i - h_\theta(x_i))x_i$$
- Closed form - solve equation - assume $X^TX$ is invertible
$$\theta = (X^TX)^{-1}X^T\vec{y}$$
### Linear Regression Notion
|Title|
|:-:|
|[Basis Function](https://texonom.com/basis-function-994de24f84dd437d9d563ca2a87652d6)|
|[Locally weighted Linear Regression](https://texonom.com/locally-weighted-linear-regression-6f405fcc12f64e0b9ec061c87d81e1e2)|
|[Ridge regression](https://texonom.com/ridge-regression-8520dc9911234f62bc6fa25976af0972)|
|[Lassoย Regression](https://texonom.com/lassoregression-01bff5049e0e40faa3c1ce3fb68f1c76)|
|[LMS](https://texonom.com/lms-3646b634f8974a51b8184a23f3defa1d)|
> [์ ํํ๊ท - ๊ณต๋์ด์ ์ํ์ ๋ฆฌ๋
ธํธ](https://angeloyeo.github.io/2020/08/24/linear_regression.html)
| 0137f4fba64746f6bc28e059d0aa6dd1 |
Logistic Regression | Regressions | Mar 16, 2023 | Alan Jo | Alan Jo | May 21, 2023 | [Sigmoid Function](https://texonom.com/sigmoid-function-417e17b995cf40c996cec78f699ea59b) [Logit Function](https://texonom.com/logit-function-104e55a12b234813a020cb09ec51c754) [Gaussian Discriminant Analysis](https://texonom.com/gaussian-discriminant-analysis-67ec78f9fd6944e68671c610aeadb079) [Data Classification](https://texonom.com/data-classification-0ed6ffa3555b4879be09f0501f0b580c) |
Sigmoid ํจ์๋ฅผ ์ฌ์ฉํ์ฌ 0๊ณผ 1 ์ฌ์ด์ ๊ฐ์ ์ถ๋ ฅ, log-likelihood๋ฅผ ์ต๋ํ

to make convex cost function

### Logistic Regression Notion
|Title|
|:-:|
|[Multi-Class Logistic Regression](https://texonom.com/multi-class-logistic-regression-545d3a376a4d49dd8845111405909327)|
$$h_\theta(x) = g(\theta^Tx) = \frac{1}{1 + e^{-\theta^Tx}}$$
This leads to $p(u|x;\theta)$ described by [Bernoulli Distribution](https://texonom.com/bernoulli-distribution-bddaf7e81c9a4df8ab389521fc56e676)
$$p(y|x;\theta) = (h_\theta(x))^y(1 - h_\theta(x))^{1 - y}$$
the [Likelihood function](https://texonom.com/likelihood-function-0750726af35a45bb86036dbc7507f725) is
$$l(\theta) = logL(\theta) = \Sigma_{i=1}^ny^{(i)}logh(x^{(i)}) + (1 - y^{(i)})log(1 - h(x^{(i)}))$$
But ๋ก์ง์คํฑ ํ๊ท์ y๊ฐ์
you can use [NewtonโRaphson method](https://texonom.com/newtonraphson-method-0bc249bfb0fe4e498829110bf785eb6c) or [Stochastic Gradient Descent](https://texonom.com/stochastic-gradient-descent-d8b8d008e0a34f4bb55175ffba21db44) and prior one achieves **faster convergence** or [IRLS](https://texonom.com/irls-ca318bd9d30e4054b87415503e34c0f3) is much faster
difference between [Linear Regression](https://texonom.com/linear-regression-0137f4fba64746f6bc28e059d0aa6dd1) is that usage of sigmoid function or logistic function
| 8ed39aeb672648b1933df8911996d5d7 |
Basis Function | Linear Regression Notion | Mar 14, 2023 | Alan Jo | Alan Jo | Apr 6, 2023 | [Overfitting](https://texonom.com/overfitting-24c3b183372845e8999ad7f7a0ba5035) |
## Feature Map $\phi(x)$, Basis Function $h(x)$
$$h_\theta(x) = \Sigma_{l=1}^L\theta_l\phi_l(x) = \theta^T\phi(x)$$
we can extend the linear regression into a linear combination of basis functions
$${R^d \rightarrow R} \;\; (x \in R^d)$$
- polynomial basis $x^l$
- gaussian basis $exp(-\frac{||x - \mu_l||^2}{2\sigma^2})$
### Using nonlinear basis functions, we allow the function to be nonlinear
| 994de24f84dd437d9d563ca2a87652d6 |
****Lassoย Regression**** | Linear Regression Notion | Mar 27, 2023 | Alan Jo | Alan Jo | Mar 27, 2023 | [L1 Norm](https://texonom.com/l1-norm-d316024c475e4eb691785783756bce57) |
> [Regularization(์ ๊ทํ): Ridge regression/LASSO](https://sanghyu.tistory.com/13)
> [Ridge regression(๋ฆฟ์ง ํ๊ท)์ Lasso regression(๋ผ์ ํ๊ท) ์ฝ๊ฒ ์ดํดํ๊ธฐ](https://rk1993.tistory.com/entry/Ridge-regression์-Lasso-regression-์ฝ๊ฒ-์ดํดํ๊ธฐ)
| 01bff5049e0e40faa3c1ce3fb68f1c76 |
LMS | Linear Regression Notion | Apr 6, 2023 | Alan Jo | Alan Jo | Apr 6, 2023 |
## Least Mean Square
$\alpha$ is hyperparameter for fastness of learning
### LMS Notion
|Title|
|:-:|
|[LMS with Kernel Trick](https://texonom.com/lms-with-kernel-trick-b2130bc9ef1d41bbb779435512612157)|
| 3646b634f8974a51b8184a23f3defa1d |
Subsets and Splits