text
stringlengths 0
828
|
---|
slaves = len(gauge) |
oper['O'] = np.array([spin_gen(slaves, i, c) for i, c in enumerate(gauge)]) |
oper['O_d'] = np.transpose(oper['O'], (0, 2, 1)) |
oper['O_dO'] = np.einsum('...ij,...jk->...ik', oper['O_d'], oper['O']) |
oper['Sfliphop'] = spinflipandhop(slaves)" |
4871,"def set_filling(self, populations): |
""""""Sets the orbital enenergies for on the reference of the free case. |
By setting the desired local populations on every orbital. |
Then generate the necesary operators to respect such configuraion"""""" |
populations = np.asarray(populations) |
# |
# self.param['orbital_e'] -= bethe_findfill_zeroT( \ |
# self.param['avg_particles'], |
# self.param['orbital_e'], |
# self.param['hopping']) |
efermi = - bethe_find_crystalfield( |
populations, self.param['hopping']) |
self.param['populations'] = populations |
# fermion_avg(efermi, self.param['hopping'], 'ocupation') |
self.param['ekin'] = fermion_avg(efermi, self.param['hopping'], 'ekin') |
spin_gen_op(self.oper, estimate_gauge(populations))" |
4872,"def reset(self, populations, lag, mu, u_int, j_coup, mean_f): |
""""""Resets the system into the last known state as given by the input |
values"""""" |
self.set_filling(populations) |
self.param['lambda'] = lag |
self.param['orbital_e'] = mu |
self.selfconsistency(u_int, j_coup, mean_f)" |
4873,"def update_H(self, mean_field, l): |
""""""Updates the spin hamiltonian and recalculates its eigenbasis"""""" |
self.H_s = self.spin_hamiltonian(mean_field, l) |
try: |
self.eig_energies, self.eig_states = diagonalize(self.H_s) |
except np.linalg.linalg.LinAlgError: |
np.savez('errorhamil', H=self.H_s, fiel=mean_field, lamb=l) |
raise |
except ValueError: |
np.savez('errorhamil', H=self.H_s, fiel=mean_field, lamb=l) |
print(mean_field, l) |
raise" |
4874,"def spin_hamiltonian(self, h, l): |
""""""Constructs the single site spin Hamiltonian"""""" |
h_spin = np.einsum('i,ijk', h[1], self.oper['O']) |
h_spin += np.einsum('i,ijk', h[0], self.oper['O_d']) |
h_spin += np.einsum('i,ijk', l, self.oper['Sz+1/2']) |
h_spin += self.oper['Hint'] |
return h_spin" |
4875,"def inter_spin_hamiltonian(self, u_int, J_coup): |
""""""Calculates the interaction Hamiltonian. The Hund coupling is a |
fraction of the coulom interaction"""""" |
J_coup *= u_int |
h_int = (u_int - 2*J_coup)/2.*self.oper['sumSz2'] |
h_int += J_coup*self.oper['sumSz-sp2'] |
h_int -= J_coup/2.*self.oper['sumSz-or2'] |
h_int -= J_coup*self.oper['Sfliphop'] |
return h_int" |
4876,"def expected(self, observable, beta=1e5): |
""""""Wrapper to the expected_value function to fix the eigenbasis"""""" |
return expected_value(observable, |
self.eig_energies, |
self.eig_states, |
beta)" |
4877,"def quasiparticle_weight(self): |
""""""Calculates quasiparticle weight"""""" |
return np.array([self.expected(op)**2 for op in self.oper['O']])" |
4878,"def mean_field(self): |
""""""Calculates mean field"""""" |
mean_field = [] |
for sp_oper in [self.oper['O'], self.oper['O_d']]: |
avgO = np.array([self.expected(op) for op in sp_oper]) |
avgO[abs(avgO) < 1e-10] = 0. |
mean_field.append(avgO*self.param['ekin']) |
return np.array(mean_field)" |
4879,"def selfconsistency(self, u_int, J_coup, mean_field_prev=None): |
""""""Iterates over the hamiltonian to get the stable selfcosistent one"""""" |
if mean_field_prev is None: |
mean_field_prev = np.array([self.param['ekin']]*2) |
hlog = [mean_field_prev] |
self.oper['Hint'] = self.inter_spin_hamiltonian(u_int, J_coup) |
converging = True |
half_fill = (self.param['populations'] == 0.5).all() |
while converging: |
if half_fill: |
self.update_H(hlog[-1], self.param['lambda']) |
else: |
res = root(self.restriction, self.param['lambda'], (hlog[-1]))#, method='lm') |
if not res.success: |
res.x = res.x * 0.5 + 0.5*self.param['lambda'] |
self.update_H(self.mean_field()*0.5 + 0.5*hlog[-1], res.x) |
print('fail', self.param['populations'][3:5]) |
if (self.quasiparticle_weight() < 0.001).all(): |
return hlog |
self.param['lambda'] = res.x |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.