text
stringlengths
0
828
e.g., `[1, 2, 4, 8, 16]`.
jitter (float): A factor between `-1.0` and `1.0`, used to
uniformly randomize and thus spread out timeouts in a distributed
system, avoiding rhythm effects. Positive values use the base
backoff curve as a maximum, negative values use the curve as a
minimum. Set to 1.0 or `True` for a jitter approximating
Ethernet's time-tested backoff solution. Defaults to `False`.
""""""
start = float(start)
stop = float(stop)
factor = float(factor)
if start < 0.0:
raise ValueError('expected start >= 0, not %r' % start)
if factor < 1.0:
raise ValueError('expected factor >= 1.0, not %r' % factor)
if stop == 0.0:
raise ValueError('expected stop >= 0')
if stop < start:
raise ValueError('expected stop >= start, not %r' % stop)
if count is None:
denom = start if start else 1
count = 1 + math.ceil(math.log(stop/denom, factor))
count = count if start else count + 1
if count != 'repeat' and count < 0:
raise ValueError('count must be positive or ""repeat"", not %r' % count)
if jitter:
jitter = float(jitter)
if not (-1.0 <= jitter <= 1.0):
raise ValueError('expected jitter -1 <= j <= 1, not: %r' % jitter)
cur, i = start, 0
while count == 'repeat' or i < count:
if not jitter:
cur_ret = cur
elif jitter:
cur_ret = cur - (cur * jitter * random.random())
yield cur_ret
i += 1
if cur == 0:
cur = 1
elif cur < stop:
cur *= factor
if cur > stop:
cur = stop
return"
4967,"def bucketize(src, key=None, value_transform=None, key_filter=None):
""""""Group values in the *src* iterable by the value returned by *key*,
which defaults to :class:`bool`, grouping values by truthiness.
>>> bucketize(range(5))
{False: [0], True: [1, 2, 3, 4]}
>>> is_odd = lambda x: x % 2 == 1
>>> bucketize(range(5), is_odd)
{False: [0, 2, 4], True: [1, 3]}
Value lists are not deduplicated:
>>> bucketize([None, None, None, 'hello'])
{False: [None, None, None], True: ['hello']}
Bucketize into more than 3 groups
>>> bucketize(range(10), lambda x: x % 3)
{0: [0, 3, 6, 9], 1: [1, 4, 7], 2: [2, 5, 8]}
``bucketize`` has a couple of advanced options useful in certain
cases. *value_transform* can be used to modify values as they are
added to buckets, and *key_filter* will allow excluding certain
buckets from being collected.
>>> bucketize(range(5), value_transform=lambda x: x*x)
{False: [0], True: [1, 4, 9, 16]}
>>> bucketize(range(10), key=lambda x: x % 3, key_filter=lambda k: k % 3 != 1)
{0: [0, 3, 6, 9], 2: [2, 5, 8]}
Note in some of these examples there were at most two keys, ``True`` and
``False``, and each key present has a list with at least one
item. See :func:`partition` for a version specialized for binary
use cases.
""""""
if not is_iterable(src):
raise TypeError('expected an iterable')
if key is None:
key = bool
if not callable(key):
raise TypeError('expected callable key function')
if value_transform is None:
value_transform = lambda x: x
if not callable(value_transform):
raise TypeError('expected callable value transform function')
ret = {}
for val in src:
key_of_val = key(val)
if key_filter is None or key_filter(key_of_val):
ret.setdefault(key_of_val, []).append(value_transform(val))
return ret"