text
stringlengths 0
828
|
---|
topcore = sorted(resultdict.items(), key=operator.itemgetter(1), reverse=True) |
# If there are no results, populate negative results |
if not resultdict: |
sample[analysistype].blastresults = 'NA' |
# If results, add a string of the best number of hits, and a string of the total number of genes |
# This is currently 1013. If this changes, I may re-implement a dynamic method of determining |
# this value |
else: |
sample[analysistype].blastresults[topcore[0][0]] = (str(topcore[0][1]), str(1013)) |
except FileNotFoundError: |
sample[analysistype].blastresults = 'NA' |
return metadata" |
84,"def reporter(metadata, analysistype, reportpath): |
"""""" |
Create the core genome report |
:param metadata: type LIST: List of metadata objects |
:param analysistype: type STR: Current analysis type |
:param reportpath: type STR: Absolute path to folder in which the reports are to be created |
:return: |
"""""" |
header = 'Strain,ClosestRef,GenesPresent/Total,\n' |
data = str() |
for sample in metadata: |
try: |
if sample[analysistype].blastresults != 'NA': |
if sample.general.closestrefseqgenus == 'Listeria': |
# Write the sample name, closest ref genome, and the # of genes found / total # of genes |
closestref = list(sample[analysistype].blastresults.items())[0][0] |
coregenes = list(sample[analysistype].blastresults.items())[0][1][0] |
# Find the closest reference file |
try: |
ref = glob(os.path.join(sample[analysistype].targetpath, '{fasta}*' |
.format(fasta=closestref)))[0] |
except IndexError: |
# Replace underscores with dashes to find files |
closestref = closestref.replace('_', '-') |
ref = glob(os.path.join(sample[analysistype].targetpath, '{fasta}*' |
.format(fasta=closestref)))[0] |
# Determine the number of core genes present in the closest reference file |
totalcore = 0 |
for _ in SeqIO.parse(ref, 'fasta'): |
totalcore += 1 |
# Add the data to the object |
sample[analysistype].targetspresent = coregenes |
sample[analysistype].totaltargets = totalcore |
sample[analysistype].coreresults = '{cg}/{tc}'.format(cg=coregenes, |
tc=totalcore) |
row = '{sn},{cr},{cg}/{tc}\n'.format(sn=sample.name, |
cr=closestref, |
cg=coregenes, |
tc=totalcore) |
# Open the report |
with open(os.path.join(sample[analysistype].reportdir, |
'{sn}_{at}.csv'.format(sn=sample.name, |
at=analysistype)), 'w') as report: |
# Write the row to the report |
report.write(header) |
report.write(row) |
data += row |
else: |
sample[analysistype].targetspresent = 'NA' |
sample[analysistype].totaltargets = 'NA' |
sample[analysistype].coreresults = 'NA' |
except KeyError: |
sample[analysistype].targetspresent = 'NA' |
sample[analysistype].totaltargets = 'NA' |
sample[analysistype].coreresults = 'NA' |
with open(os.path.join(reportpath, 'coregenome.csv'), 'w') as report: |
# Write the data to the report |
report.write(header) |
report.write(data)" |
85,"def annotatedcore(self): |
"""""" |
Calculates the core genome of organisms using custom databases |
"""""" |
logging.info('Calculating annotated core') |
# Determine the total number of core genes |
self.total_core() |
# Iterate through all the samples, and process all Escherichia |
for sample in self.metadata: |
if sample.general.bestassemblyfile != 'NA': |
# Create a set to store the names of all the core genes in this strain |
sample[self.analysistype].coreset = set() |
if sample.general.referencegenus == 'Escherichia': |
# Add the Escherichia sample to the runmetadata |
self.runmetadata.samples.append(sample) |
# Parse the BLAST report |
try: |
report = sample[self.analysistype].report |
self.blastparser(report=report, |
sample=sample, |
fieldnames=self.fieldnames) |
except KeyError: |
sample[self.analysistype].coreset = list() |
# Create the report |
self.reporter()" |
86,"def total_core(self): |
"""""" |
Determine the total number of core genes present |
"""""" |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.