text
stringlengths 0
828
|
---|
else: |
self.current_id_meta = 1 |
if spectra: |
c.execute('SELECT max(id) FROM library_spectra') |
last_id_spectra = c.fetchone()[0] |
if last_id_spectra: |
self.current_id_spectra = last_id_spectra + 1 |
else: |
self.current_id_spectra = 1 |
if spectra_annotation: |
c.execute('SELECT max(id) FROM library_spectra_annotation') |
last_id_spectra_annotation = c.fetchone()[0] |
if last_id_spectra_annotation: |
self.current_id_spectra_annotation = last_id_spectra_annotation + 1 |
else: |
self.current_id_spectra_annotation = 1" |
156,"def _parse_files(self, msp_pth, chunk, db_type, celery_obj=False): |
""""""Parse the MSP files and insert into database |
Args: |
msp_pth (str): path to msp file or directory [required] |
db_type (str): The type of database to submit to (either 'sqlite', 'mysql' or 'django_mysql') [required] |
chunk (int): Chunks of spectra to parse data (useful to control memory usage) [required] |
celery_obj (boolean): If using Django a Celery task object can be used to keep track on ongoing tasks |
[default False] |
"""""" |
if os.path.isdir(msp_pth): |
c = 0 |
for folder, subs, files in sorted(os.walk(msp_pth)): |
for msp_file in sorted(files): |
msp_file_pth = os.path.join(folder, msp_file) |
if os.path.isdir(msp_file_pth) or not msp_file_pth.lower().endswith(('txt', 'msp')): |
continue |
print('MSP FILE PATH', msp_file_pth) |
self.num_lines = line_count(msp_file_pth) |
# each file is processed separately but we want to still process in chunks so we save the number |
# of spectra currently being processed with the c variable |
with open(msp_file_pth, ""r"") as f: |
c = self._parse_lines(f, chunk, db_type, celery_obj, c) |
else: |
self.num_lines = line_count(msp_pth) |
with open(msp_pth, ""r"") as f: |
self._parse_lines(f, chunk, db_type, celery_obj) |
self.insert_data(remove_data=True, db_type=db_type)" |
157,"def _parse_lines(self, f, chunk, db_type, celery_obj=False, c=0): |
""""""Parse the MSP files and insert into database |
Args: |
f (file object): the opened file object |
db_type (str): The type of database to submit to (either 'sqlite', 'mysql' or 'django_mysql') [required] |
chunk (int): Chunks of spectra to parse data (useful to control memory usage) [required] |
celery_obj (boolean): If using Django a Celery task object can be used to keep track on ongoing tasks |
[default False] |
c (int): Number of spectra currently processed (will reset to 0 after that chunk of spectra has been |
inserted into the database |
"""""" |
old = 0 |
for i, line in enumerate(f): |
line = line.rstrip() |
if i == 0: |
old = self.current_id_meta |
self._update_libdata(line) |
if self.current_id_meta > old: |
old = self.current_id_meta |
c += 1 |
if c > chunk: |
if celery_obj: |
celery_obj.update_state(state='current spectra {}'.format(str(i)), |
meta={'current': i, 'total': self.num_lines}) |
print(self.current_id_meta) |
self.insert_data(remove_data=True, db_type=db_type) |
self.update_source = False |
c = 0 |
return c" |
158,"def _update_libdata(self, line): |
""""""Update the library meta data from the current line being parsed |
Args: |
line (str): The current line of the of the file being parsed |
"""""" |
#################################################### |
# parse MONA Comments line |
#################################################### |
# The mona msp files contain a ""comments"" line that contains lots of other information normally separated |
# into by """" |
if re.match('^Comment.*$', line, re.IGNORECASE): |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.