text
stringlengths 0
828
|
---|
""""""Sets plot labels, according to predefined options |
:param name: The type of plot to create labels for. Options: calibration, tuning, anything else labels for spike counts |
:type name: str |
"""""" |
if name == ""calibration"": |
self.setWindowTitle(""Calibration Curve"") |
self.setTitle(""Calibration Curve"") |
self.setLabel('bottom', ""Frequency"", units='Hz') |
self.setLabel('left', 'Recorded Intensity (dB SPL)') |
elif name == ""tuning"": |
self.setWindowTitle(""Tuning Curve"") |
self.setTitle(""Tuning Curve"") |
self.setLabel('bottom', ""Frequency"", units=""Hz"") |
self.setLabel('left', ""Spike Count (mean)"") |
else: |
self.setWindowTitle(""Spike Counts"") |
self.setTitle(""Spike Counts"") |
self.setLabel('bottom', ""Test Number"", units='') |
self.setLabel('left', ""Spike Count (mean)"", units='')" |
42,"def loadCurve(data, groups, thresholds, absvals, fs, xlabels): |
""""""Accepts a data set from a whole test, averages reps and re-creates the |
progress plot as the same as it was during live plotting. Number of thresholds |
must match the size of the channel dimension"""""" |
xlims = (xlabels[0], xlabels[-1]) |
pw = ProgressWidget(groups, xlims) |
spike_counts = [] |
# skip control |
for itrace in range(data.shape[0]): |
count = 0 |
for ichan in range(data.shape[2]): |
flat_reps = data[itrace,:,ichan,:].flatten() |
count += len(spikestats.spike_times(flat_reps, thresholds[ichan], fs, absvals[ichan])) |
spike_counts.append(count/(data.shape[1]*data.shape[2])) #mean spikes per rep |
i = 0 |
for g in groups: |
for x in xlabels: |
pw.setPoint(x, g, spike_counts[i]) |
i +=1 |
return pw" |
43,"def setBins(self, bins): |
""""""Sets the bin centers (x values) |
:param bins: time bin centers |
:type bins: numpy.ndarray |
"""""" |
self._bins = bins |
self._counts = np.zeros_like(self._bins) |
bar_width = bins[0]*1.5 |
self.histo.setOpts(x=bins, height=self._counts, width=bar_width) |
self.setXlim((0, bins[-1]))" |
44,"def clearData(self): |
""""""Clears all histograms (keeps bins)"""""" |
self._counts = np.zeros_like(self._bins) |
self.histo.setOpts(height=self._counts)" |
45,"def appendData(self, bins, repnum=None): |
""""""Increases the values at bins (indexes) |
:param bins: bin center values to increment counts for, to increment a time bin more than once include multiple items in list with that bin center value |
:type bins: numpy.ndarray |
"""""" |
# only if the last sample was above threshold, but last-1 one wasn't |
bins[bins >= len(self._counts)] = len(self._counts) -1 |
bin_totals = np.bincount(bins) |
self._counts[:len(bin_totals)] += bin_totals |
self.histo.setOpts(height=np.array(self._counts))" |
46,"def processData(self, times, response, test_num, trace_num, rep_num): |
""""""Calulate spike times from raw response data"""""" |
# invert polarity affects spike counting |
response = response * self._polarity |
if rep_num == 0: |
# reset |
self.spike_counts = [] |
self.spike_latencies = [] |
self.spike_rates = [] |
fs = 1./(times[1] - times[0]) |
# process response; calculate spike times |
spike_times = spikestats.spike_times(response, self._threshold, fs) |
self.spike_counts.append(len(spike_times)) |
if len(spike_times) > 0: |
self.spike_latencies.append(spike_times[0]) |
else: |
self.spike_latencies.append(np.nan) |
self.spike_rates.append(spikestats.firing_rate(spike_times, times)) |
binsz = self._bins[1] - self._bins[0] |
response_bins = spikestats.bin_spikes(spike_times, binsz) |
# self.putnotify('spikes_found', (response_bins, rep_num)) |
self.appendData(response_bins, rep_num)" |
47,"def setSr(self, fs): |
""""""Sets the samplerate of the input operation being plotted"""""" |
self.tracePlot.setSr(fs) |
self.stimPlot.setSr(fs)" |
48,"def setWindowSize(self, winsz): |
""""""Sets the size of scroll window"""""" |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.