repo_name
stringlengths
5
100
ref
stringlengths
12
67
path
stringlengths
4
244
copies
stringlengths
1
8
content
stringlengths
0
1.05M
flavour/cert
refs/heads/master
modules/s3/pyvttbl/dictset.py
4
# Copyright (c) 2011, Roger Lew [see LICENSE.txt] # This software is funded in part by NIH Grant P20 RR016454. """This module contains the DictSet class""" # Python 2 to 3 workarounds import sys if sys.version_info[0] == 2: _xrange = xrange elif sys.version_info[0] == 3: from functools import reduce _xrange = range from copy import copy, deepcopy import collections # for unique_combinations method def _rep_generator(A, times, each): """like r's rep function, but returns a generator Examples: >>> g=_rep_generator([1,2,3],times=1,each=3) >>> [v for v in g] [1, 1, 1, 2, 2, 2, 3, 3, 3] >>> g=_rep_generator([1,2,3],times=3,each=1) >>> [v for v in g] [1, 2, 3, 1, 2, 3, 1, 2, 3] >>> g=_rep_generator([1,2,3],times=2,each=2) >>> [v for v in g] [1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3] """ return (a for t in _xrange(times) for a in A for e in _xrange(each)) class DictSet(dict): """A dictionary of sets that behaves like a set.""" def __init__(*args, **kwds): # args[0] -> 'self' """ DictSet() -> new empty dictionary of sets DictSet(mapping) -> new dictionary of sets initialized from a mapping object's (key, value) pairs. Because the values become sets they must be iterable DictSet(iterable) -> new dictionary of sets initialized as if via: d = DictSet() for k, v in iterable: d[k] = set(v) DictSet(**kwargs) -> new dictionary of sets initialized with the name=value pairs in the keyword argument list. For example: DictSet(one=[1], two=[2]) """ # passing self with *args ensures that we can use # self as keyword for initializing a DictSet # Example: DictSet(self='abc', other='efg') # call update or complain about having too many arguments if len(args) == 1: args[0].update({}, **kwds) elif len(args) == 2: args[0].update(args[1], **kwds) elif len(args) > 2: raise TypeError( 'DictSet expected at most 1 arguments, got %d' % (len(args) - 1)) def update(*args, **kwds): # args[0] -> 'self' """ DS.update(E, **F) -> None. Update DS from the union of DictSet/dict/iterable E and F. If E has a .keys() method, does: for k in E: DS[k] |= set(E[k]) If E lacks .keys() method, does: for (k, v) in E: DS[k] |= set(v) In either case, this is followed by: for k in F: DS[k] |= set(F[k]) DS|=E <==> DS.update(E) """ # check the length of args if len(args) > 2: raise TypeError( 'DictSet expected at most 1 arguments, got %d' % (len(args) - 1)) # Make sure args can be mapped to a DictSet before # we start adding them. elif len(args) == 2: obj = args[1] # if obj is a DictType we can avoid checking # to make sure it is hashable an iterable if type(obj) == DictSet: pass # Check using duck typing elif hasattr(obj, '__getitem__'): # obj is dict or dict subclass if hasattr(obj, 'keys'): for k, val in obj.items(): if not isinstance(k, collections.Hashable): raise TypeError( "unhashable type: '%s'" % type(k).__name__) if not hasattr(val,'__iter__'): if not isinstance(val, str): raise TypeError( "'%s' object is not iterable" % type(val).__name__) # obj is list/tuple or list/tuple subclass else: for item in obj: try: (k, val)=item except: raise TypeError( 'could not unpack arg to key/value pairs') if not isinstance(k, collections.Hashable): raise TypeError( "unhashable type: '%s'" % type(k).__name__) if not hasattr(val,'__iter__'): if not isinstance(val, str): raise TypeError( "'%s' object is not iterable" % type(val).__name__) # obj is not iterable, e.g. an int, float, etc. else: raise TypeError( "'%s' object is not iterable" % type(obj).__name__) # check the keyword arguments for (k, val) in kwds.items(): # unhashable keyword argumnents don't make it to the point # so we just need to check that the values are iterable if not hasattr(val,'__iter__'): if not isinstance(val, str): raise TypeError( "'%s' object is not iterable" % type(val).__name__) # At this point we can be fairly certain the args and kwds # will successfully initialize. Now we can go back through # args and kwds and add them to ds if len(args) == 2: obj = args[1] # obj is dict or dict subclass if hasattr(obj, 'keys'): for k, val in obj.items(): if not k in args[0].keys(): args[0][k] = set(val) args[0][k] |= set(val) # obj is list/tuple or list/tuple subclass else: for item in obj: (k, val) = item if not k in args[0].keys(): args[0][k] = set(val) args[0][k] |= set(val) # Now add keyword arguments for (k, val) in kwds.items(): if not k in args[0].keys(): args[0][k] = set(val) args[0][k] |= set(val) def __ior__(self, E): # overloads |= """ DS.update(E, **F) -> None. Update DS from the union of DictSet/dict/iterable E and F. If E has a .keys() method, does: for k in E: DS[k] |= set(E[k]) If E lacks .keys() method, does: for (k, v) in E: DS[k] |= set(v) In either case, this is followed by: for k in F: DS[k] |= set(F[k]) DS|=E <==> DS.update(E) """ if not isinstance(E, DictSet): E = DictSet(copy(E)) return self.union(E) def __eq__(self, E): # overloads == """ Returns the equality comparison of DS with E typed as a DictSet. If E cannot be broadcast into a DictSet returns False. DS==E <==> DS.__eq__(E) """ # Fails of d is not mappable with iterable values try: E = DictSet(E) except: return False # check to see if self and E have the same keys # if they don't we know they aren't equal and # can return False if len(set(k for (k, v) in self.items() if len(v) != 0) ^ set(k for (k, v) in E.items() if len(v) != 0)) > 0: return False # at this point we know they have the same keys # if all the non-empty set differences have 0 cardinality # the sets are equal s = 0 for k in self.keys(): s += len(self.get(k, []) ^ E.get(k, [])) return s == 0 def __ne__(self, E): # overloads != """ Returns the non-equality comparison of ES with E type as a DictSet. If E cannot be broadcast into a DictSet returns False. DS==E <==> DS.__ne__(E) """ # Fails of d is not mappable with iterable values try: E = DictSet(E) except: return True # check to see if self and d have the same keys # if they don't we know they aren't equal and # can return False if len(set(k for (k, v) in self.items() if len(v) != 0) ^ set(k for (k, v) in E.items() if len(v) != 0)) > 0: return True # at this point we know they have the same keys # if all the set differences have 0 cardinality # the sets are equal s = 0 for k in self.keys(): s += len(self.get(k, []) ^ E.get(k, [])) return s != 0 def issubset(self, E): """ Report whether all the sets of this DictSet are subsets of the E. DS<=E <==> DS.issubset(E) """ if not isinstance(E, DictSet): E = DictSet(copy(E)) if self == E == {}: return True b = True for k in set(self) | set(E): if not self.get(k, []) <= E.get(k, []): b = False return b def __le__(self, E): # overloads <= """ Report whether all the sets of this DictSet are subsets of the E. DS<=E <==> DS.issubset(E) """ return self.issubset(E) def issuperset(self, E): """ Report whether all the sets of this DictSet are supersets of the E. DS>=E <==> DS.issuperset(E) """ if not isinstance(E, DictSet): E = DictSet(copy(E)) if self == E == {}: return True b = True for k in set(self) | set(E): if not self.get(k, []) >= E.get(k, []): b = False return b def __ge__(self, E): # overloads >= """ Report whether all the sets of this DictSet are supersets of the E. DS>=E <==> DS.issuperset(E) """ return self.issuperset(E) def union(self, E): """ Return the union of the sets of self with the sets of E. (i.e. all elements that are in either sets of the DictSets.) DS|E <==> DS.union(E) """ if not isinstance(E, DictSet): E = DictSet(copy(E)) foo = deepcopy(self) for k in set(foo.keys()) | set(E.keys()): foo.setdefault(k, []) foo[k].update(E.get(k, [])) if not foo[k]: del foo[k] # delete if empty set return foo def __or__(self, E): # overloads | """ Return the union of the sets of self with the sets of E. (i.e. all elements that are in either sets of the DictSets.) DS|E <==> DS.union(E) """ return self.union(E) def intersection(self, E): """ Return the intersection of the sets of self with the sets of E. (i.e. elements that are common to all of the sets of the DictSets.) DS&E <==> DS.intersection(E) """ if not isinstance(E, DictSet): E = DictSet(copy(E)) # handle case where d=={} if E == {}: return DictSet() foo = deepcopy(self) for k in set(foo.keys()) | set(E.keys()): foo.setdefault(k, []) foo[k].intersection_update(E.get(k, [])) if not foo[k]: del foo[k] # delete if empty set return foo def __and__(self, E): # overloads & """ Return the intersection of the sets of self with the sets of E. (i.e. elements that are common to all of the sets of the DictSets.) DS&E <==> DS.intersection(E) """ return self.intersection(E) def difference(self, E): """ Return the difference of the sets of self with the sets of E. (i.e. all elements that are in the sets of this DictSet but not the others.) DS-E <==> DS.difference(E) """ if not isinstance(E, DictSet): E = DictSet(copy(E)) foo = deepcopy(self) for k in set(foo.keys()) | set(E.keys()): foo.setdefault(k, []) foo[k].difference_update(E.get(k, [])) if not foo[k]: del foo[k] # delete if empty set return foo def __sub__(self, E): # overloads - """ Return the difference of the sets of self with the sets of E. (i.e. all elements that are in the sets of this DictSet but not the others.) DS-E <==> DS.difference(E) """ return self.difference(E) def symmetric_difference(self, E): """ Return the symmetric difference of the sets of self with the sets of E. (i.e. for each DictSet all elements that are in exactly one of the sets .) DS^E <==> DS.symmetric_difference(E) """ if not isinstance(E, DictSet): E = DictSet(copy(E)) foo = deepcopy(self) for k in set(foo.keys()) | set(E.keys()): foo.setdefault(k, []) foo[k].symmetric_difference_update(E.get(k, [])) if not foo[k]: del foo[k] # delete if empty set return foo def __xor__(self, E): # overloads ^ """ Return the symmetric difference of the sets of self with the sets of E. (i.e. for each DictSet all elements that are in exactly one of the sets .) DS^E <==> DS.symmetric_difference(E) """ return self.symmetric_difference(E) def intersection_update(self, E): """ Update a DictSet with the intersection of itself and E. DS&=E <==> DS.intersection_update(E) """ if not isinstance(E, DictSet): E = DictSet(copy(E)) for k in set(self) | set(E): self.setdefault(k, []) self[k].intersection_update(E.get(k, [])) if len(self[k]) == 0: del self[k] def __iand__(self, E): # overloads &= """ Update a DictSet with the intersection of itself and E. DS&=E <==> DS.intersection_update(E) """ return self.intersection(E) def difference_update(self, E): """ Update a DictSet with the difference of itself and E. DS-=E <==> DS.difference_update(E) """ if not isinstance(E, DictSet): E = DictSet(copy(E)) for k in set(self)|set(E): self.setdefault(k, []) self[k].difference_update(E.get(k, [])) if len(self[k]) == 0: del self[k] def __isub__(self, E): # overloads -= """ Update a DictSet with the difference of itself and E. DS-=E <==> DS.difference_update(E) """ return self.difference(E) def symmetric_difference_update(self, E): """ Update a DictSet with the symmetric difference of itself and E. DS^=E <==> DS.symmetric_difference_update(E) """ if not isinstance(E, DictSet): E = DictSet(copy(E)) for k in set(self) | set(E): self.setdefault(k, []) self[k].symmetric_difference_update(E.get(k, [])) if len(self[k]) == 0: del self[k] def __ixor__(self, E): # overloads ^= """ Update a DictSet with the symmetric difference of itself and E. DS^=E <==> DS.symmetric_difference_update(E) """ return self.symmetric_difference(E) def add(self, k, v=None): """ Add an element v to a set DS[k]. This has no effect if the element v is already present in DS[k]. When v is not supplied adds a new set at DS[k]. Raises KeyError if k is not hashable. """ if k not in self.keys(): self[k] = set() if v != None: self[k].add(v) def __setitem__(self, k, v): """DS.__setitem__(k, v) <==> x[k]=set(v)""" if isinstance(v, set): super(DictSet, self).__setitem__(k, v) else: try: super(DictSet, self).__setitem__(k, set(v)) except: raise def __contains__(self, k): """ True if DS has a key k and len(DS[k])!=0, else False DS.__contains__(k) <==> k in D """ return k in [key for (key, val) in self.items() if len(val) > 0] def __iter__(self): """ Iterate over keys with non-zero lengths. DS.__iter__(k) <==> for k in D """ for (key, val) in self.items(): if len(val) > 0: yield key def get(self, k, v=None): """ DS.get(k[,v]) -> DS[v] if k in DS, else set(v). v defaults to None. """ if k in self: return self[k] if v == None: return try: return set(v) except: raise def setdefault(self, k, v=None): """ DS.setdefault(k[,v]) -> DS.get(k, v), also set DS[k]=set(v) if k not in D. v defaults to None. """ if k in self: return self[k] if v == None: return else: try: super(DictSet, self).__setitem__(k, set(v)) except: raise return self[k] def copy(self): """DS.copy() -> a shallow copy of DS.""" return copy(self) def remove(self, k, v=None): """ Remove element v from a set DS[k]; it must be a member. If the element v is not a member of D[k], raise a KeyError. If v is not supplied removes DS[k]; it must be an item. if D[k] is not an item, raise a KeyError. """ if k not in self.keys(): raise KeyError(k) if v != None: self[k].remove(v) else: del self[k] def discard(self, k, v=None): """ Remove element v from a set DS[k]; it must be a member. If the element v is not a member of D[k], do nothing. If v is not supplied removes DS[k]. If D[k] is not an item, raise a KeyError. """ if v != None: try: self[k].discard(v) except: pass else: try: del self[k] except: pass # borrowed from the collections.OrderedDict in the standard library def __repr__(self): """DS.__repr__() <==> repr(DS)""" if not self: return '%s()' % (self.__class__.__name__,) return '%s(%r)' % (self.__class__.__name__, list(self.items())) def unique_combinations(self, keys=None): """ Returns a generator yielding the unique combination of elements. Both the keys of DS and the elements of the sets are sorted. When a key list (the keys argument) is supplied only the unique combinations of the sets specified by the keys are yielded by the generator. The combinations are sorted by slowest repeating to fastest repeating. """ # it the keys argument is not supplied assume the # user wants the unique combinations of all the # elements of all the sets if keys == None: keys = sorted(self.keys()) # eliminate keys to sets that have zero cardinality try: keys = [k for k in keys if k in self] except: raise TypeError("'%s' object is not iterable" %type(keys).__name__) # if the keys list is empty we can return an empty generator if len(keys) == 0: yield else: # the number of unique combinations is the product # of the cardinalities of the non-zero sets N = reduce(int.__mul__,(len(self[k]) for k in keys)) # now we need to build a dict of generators so we # can build a generator or generators. To do this # we need to figure out the each and times # parameters to pass to rep() gen_dict = {} each = 1 times = 0 prev_n = 0 for i, k in enumerate(reversed(keys)): if i != 0: each *= prev_n times = N / (len(self[k]) * each) prev_n = len(self[k]) gen_dict[k] = _rep_generator(sorted(self[k]), int(times),int(each)) # Now we just have to yield the results for i in _xrange(N): yield [next(gen_dict[k]) for k in keys] @classmethod def fromkeys(cls, seq, values=None): """ Create a new DictSet with keys from seq and values set to set(values). When values is not supplied the values are initialized as empty sets. """ d = cls() for key in seq: if values == None: d[key] = set() else: d[key] = set(values) return d
Belgabor/django
refs/heads/master
django/contrib/gis/db/backends/spatialite/models.py
403
""" The GeometryColumns and SpatialRefSys models for the SpatiaLite backend. """ from django.db import models from django.contrib.gis.db.backends.base import SpatialRefSysMixin class GeometryColumns(models.Model): """ The 'geometry_columns' table from SpatiaLite. """ f_table_name = models.CharField(max_length=256) f_geometry_column = models.CharField(max_length=256) type = models.CharField(max_length=30) coord_dimension = models.IntegerField() srid = models.IntegerField(primary_key=True) spatial_index_enabled = models.IntegerField() class Meta: db_table = 'geometry_columns' managed = False @classmethod def table_name_col(cls): """ Returns the name of the metadata column used to store the the feature table name. """ return 'f_table_name' @classmethod def geom_col_name(cls): """ Returns the name of the metadata column used to store the the feature geometry column. """ return 'f_geometry_column' def __unicode__(self): return "%s.%s - %dD %s field (SRID: %d)" % \ (self.f_table_name, self.f_geometry_column, self.coord_dimension, self.type, self.srid) class SpatialRefSys(models.Model, SpatialRefSysMixin): """ The 'spatial_ref_sys' table from SpatiaLite. """ srid = models.IntegerField(primary_key=True) auth_name = models.CharField(max_length=256) auth_srid = models.IntegerField() ref_sys_name = models.CharField(max_length=256) proj4text = models.CharField(max_length=2048) @property def wkt(self): from django.contrib.gis.gdal import SpatialReference return SpatialReference(self.proj4text).wkt class Meta: db_table = 'spatial_ref_sys' managed = False
daspecster/google-cloud-python
refs/heads/master
language/unit_tests/test_entity.py
1
# Copyright 2016 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest class TestEntity(unittest.TestCase): @staticmethod def _get_target_class(): from google.cloud.language.entity import Entity return Entity def _make_one(self, *args, **kw): return self._get_target_class()(*args, **kw) def test_constructor_defaults(self): from google.cloud.language.entity import Mention from google.cloud.language.entity import MentionType from google.cloud.language.entity import TextSpan name = 'Italian' entity_type = 'LOCATION' wiki_url = 'http://en.wikipedia.org/wiki/Italy' metadata = { 'foo': 'bar', 'wikipedia_url': wiki_url, } salience = 0.19960518 mentions = [Mention( mention_type=MentionType.PROPER, text=TextSpan(content='Italian', begin_offset=0), )] entity = self._make_one(name, entity_type, metadata, salience, mentions) self.assertEqual(entity.name, name) self.assertEqual(entity.entity_type, entity_type) self.assertEqual(entity.metadata, metadata) self.assertEqual(entity.salience, salience) self.assertEqual(entity.mentions, mentions) def test_from_api_repr(self): from google.cloud.language.entity import EntityType from google.cloud.language.entity import Mention from google.cloud.language.entity import MentionType klass = self._get_target_class() name = 'Italy' entity_type = EntityType.LOCATION salience = 0.223 wiki_url = 'http://en.wikipedia.org/wiki/Italy' mention1 = 'Italy' mention2 = 'To Italy' mention3 = 'From Italy' payload = { 'name': name, 'type': entity_type, 'salience': salience, 'metadata': {'wikipedia_url': wiki_url}, 'mentions': [ {'text': {'content': mention1, 'beginOffset': 3}, 'type': 'PROPER'}, {'text': {'content': mention2, 'beginOffset': 5}, 'type': 'PROPER'}, {'text': {'content': mention3, 'beginOffset': 8}, 'type': 'PROPER'}, ], } entity = klass.from_api_repr(payload) self.assertEqual(entity.name, name) self.assertEqual(entity.entity_type, entity_type) self.assertEqual(entity.salience, salience) self.assertEqual(entity.metadata, {'wikipedia_url': wiki_url}) # Assert that we got back Mention objects for each mention. self.assertIsInstance(entity.mentions[0], Mention) self.assertIsInstance(entity.mentions[1], Mention) self.assertIsInstance(entity.mentions[2], Mention) # Assert that the text (and string coercison) are correct. self.assertEqual([str(i) for i in entity.mentions], [mention1, mention2, mention3]) # Assert that the begin offsets are preserved. self.assertEqual([i.text.begin_offset for i in entity.mentions], [3, 5, 8]) # Assert that the mention types are preserved. for mention in entity.mentions: self.assertEqual(mention.mention_type, MentionType.PROPER) class TestMention(unittest.TestCase): PAYLOAD = { 'text': {'content': 'Greece', 'beginOffset': 42}, 'type': 'PROPER', } def test_constructor(self): from google.cloud.language.entity import Mention from google.cloud.language.entity import MentionType from google.cloud.language.entity import TextSpan mention = Mention( text=TextSpan(content='snails', begin_offset=90), mention_type=MentionType.COMMON, ) self.assertIsInstance(mention.text, TextSpan) self.assertEqual(mention.text.content, 'snails') self.assertEqual(mention.text.begin_offset, 90) self.assertEqual(mention.mention_type, MentionType.COMMON) def test_from_api_repr(self): from google.cloud.language.entity import Mention from google.cloud.language.entity import MentionType from google.cloud.language.entity import TextSpan mention = Mention.from_api_repr(self.PAYLOAD) self.assertIsInstance(mention, Mention) self.assertIsInstance(mention.text, TextSpan) self.assertEqual(mention.text.content, 'Greece') self.assertEqual(mention.text.begin_offset, 42) self.assertEqual(mention.mention_type, MentionType.PROPER) def test_dunder_str(self): from google.cloud.language.entity import Mention mention = Mention.from_api_repr(self.PAYLOAD) self.assertEqual(str(mention), 'Greece') class TestTextSpan(unittest.TestCase): def test_constructor(self): from google.cloud.language.entity import TextSpan text = TextSpan(content='Winston Churchill', begin_offset=1945) self.assertIsInstance(text, TextSpan) self.assertEqual(text.content, str(text), 'Winston Churchill') self.assertEqual(text.begin_offset, 1945) def test_from_api_repr(self): from google.cloud.language.entity import TextSpan text = TextSpan.from_api_repr({ 'beginOffset': 1953, 'content': 'Queen Elizabeth', }) self.assertIsInstance(text, TextSpan) self.assertEqual(text.content, str(text), 'Queen Elizabeth') self.assertEqual(text.begin_offset, 1953)
Laurawly/tvm-1
refs/heads/master
tests/python/contrib/test_rpc_tracker.py
4
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm from tvm import te import logging import numpy as np import time import multiprocessing from tvm import rpc def check_server_drop(): """test when server drops""" try: from tvm.rpc import tracker, proxy, base from tvm.rpc.base import TrackerCode @tvm.register_func("rpc.test2.addone") def addone(x): return x + 1 def _put(tclient, value): base.sendjson(tclient._sock, value) base.recvjson(tclient._sock) tserver = tracker.Tracker("localhost", 8888) tproxy = proxy.Proxy("localhost", 8881, tracker_addr=("localhost", tserver.port)) tclient = rpc.connect_tracker("localhost", tserver.port) server0 = rpc.Server( "localhost", port=9099, tracker_addr=("localhost", tserver.port), key="abc" ) server1 = rpc.Server( "localhost", port=9099, tracker_addr=("localhost", tserver.port), key="xyz" ) server2 = rpc.Server("localhost", tproxy.port, is_proxy=True, key="xyz") server3 = rpc.Server("localhost", tproxy.port, is_proxy=True, key="xyz1") # Fault tolerence to un-handled requested value _put(tclient, [TrackerCode.REQUEST, "abc", "", 1]) _put(tclient, [TrackerCode.REQUEST, "xyz1", "", 1]) # Fault tolerence to stale worker value _put(tclient, [TrackerCode.PUT, "xyz", (server1.port, "abc")]) _put(tclient, [TrackerCode.PUT, "xyz", (server1.port, "abcxxx")]) _put(tclient, [TrackerCode.PUT, "xyz", (tproxy.port, "abcxxx11")]) # Fault tolerence server timeout def check_timeout(timeout, sleeptime): def myfunc(remote): time.sleep(sleeptime) f1 = remote.get_function("rpc.test2.addone") assert f1(10) == 11 try: tclient.request_and_run("xyz", myfunc, session_timeout=timeout) except RuntimeError: pass print(tclient.text_summary()) try: remote = tclient.request("xyz", priority=0, session_timeout=timeout) remote2 = tclient.request("xyz", session_timeout=timeout) time.sleep(sleeptime) f1 = remote.get_function("rpc.test2.addone") assert f1(10) == 11 f1 = remote2.get_function("rpc.test2.addone") assert f1(10) == 11 except tvm.error.TVMError as e: pass remote3 = tclient.request("abc") f1 = remote3.get_function("rpc.test2.addone") remote3 = tclient.request("xyz1") f1 = remote3.get_function("rpc.test2.addone") assert f1(10) == 11 check_timeout(0.01, 0.1) check_timeout(2, 0) tserver.terminate() server0.terminate() server1.terminate() server2.terminate() server3.terminate() tproxy.terminate() except ImportError: print("Skip because tornado is not available") if __name__ == "__main__": logging.basicConfig(level=logging.INFO) check_server_drop()
Frozenball/alembic
refs/heads/master
alembic/command.py
9
import os from .script import ScriptDirectory from .environment import EnvironmentContext from . import util, autogenerate as autogen def list_templates(config): """List available templates""" config.print_stdout("Available templates:\n") for tempname in os.listdir(config.get_template_directory()): with open(os.path.join( config.get_template_directory(), tempname, 'README')) as readme: synopsis = next(readme) config.print_stdout("%s - %s", tempname, synopsis) config.print_stdout("\nTemplates are used via the 'init' command, e.g.:") config.print_stdout("\n alembic init --template pylons ./scripts") def init(config, directory, template='generic'): """Initialize a new scripts directory.""" if os.access(directory, os.F_OK): raise util.CommandError("Directory %s already exists" % directory) template_dir = os.path.join(config.get_template_directory(), template) if not os.access(template_dir, os.F_OK): raise util.CommandError("No such template %r" % template) util.status("Creating directory %s" % os.path.abspath(directory), os.makedirs, directory) versions = os.path.join(directory, 'versions') util.status("Creating directory %s" % os.path.abspath(versions), os.makedirs, versions) script = ScriptDirectory(directory) for file_ in os.listdir(template_dir): file_path = os.path.join(template_dir, file_) if file_ == 'alembic.ini.mako': config_file = os.path.abspath(config.config_file_name) if os.access(config_file, os.F_OK): util.msg("File %s already exists, skipping" % config_file) else: script._generate_template( file_path, config_file, script_location=directory ) elif os.path.isfile(file_path): output_file = os.path.join(directory, file_) script._copy_file( file_path, output_file ) util.msg("Please edit configuration/connection/logging "\ "settings in %r before proceeding." % config_file) def revision(config, message=None, autogenerate=False, sql=False): """Create a new revision file.""" script = ScriptDirectory.from_config(config) template_args = { 'config': config # Let templates use config for # e.g. multiple databases } imports = set() environment = util.asbool( config.get_main_option("revision_environment") ) if autogenerate: environment = True def retrieve_migrations(rev, context): if script.get_revision(rev) is not script.get_revision("head"): raise util.CommandError("Target database is not up to date.") autogen._produce_migration_diffs(context, template_args, imports) return [] elif environment: def retrieve_migrations(rev, context): return [] if environment: with EnvironmentContext( config, script, fn=retrieve_migrations, as_sql=sql, template_args=template_args, ): script.run_env() script.generate_revision(util.rev_id(), message, **template_args) def upgrade(config, revision, sql=False, tag=None): """Upgrade to a later version.""" script = ScriptDirectory.from_config(config) starting_rev = None if ":" in revision: if not sql: raise util.CommandError("Range revision not allowed") starting_rev, revision = revision.split(':', 2) def upgrade(rev, context): return script._upgrade_revs(revision, rev) with EnvironmentContext( config, script, fn=upgrade, as_sql=sql, starting_rev=starting_rev, destination_rev=revision, tag=tag ): script.run_env() def downgrade(config, revision, sql=False, tag=None): """Revert to a previous version.""" script = ScriptDirectory.from_config(config) starting_rev = None if ":" in revision: if not sql: raise util.CommandError("Range revision not allowed") starting_rev, revision = revision.split(':', 2) elif sql: raise util.CommandError("downgrade with --sql requires <fromrev>:<torev>") def downgrade(rev, context): return script._downgrade_revs(revision, rev) with EnvironmentContext( config, script, fn=downgrade, as_sql=sql, starting_rev=starting_rev, destination_rev=revision, tag=tag ): script.run_env() def history(config, rev_range=None): """List changeset scripts in chronological order.""" script = ScriptDirectory.from_config(config) if rev_range is not None: if ":" not in rev_range: raise util.CommandError( "History range requires [start]:[end], " "[start]:, or :[end]") base, head = rev_range.strip().split(":") else: base = head = None def _display_history(config, script, base, head): for sc in script.walk_revisions( base=base or "base", head=head or "head"): if sc.is_head: config.print_stdout("") config.print_stdout(sc.log_entry) def _display_history_w_current(config, script, base=None, head=None): def _display_current_history(rev, context): if head is None: _display_history(config, script, base, rev) elif base is None: _display_history(config, script, rev, head) return [] with EnvironmentContext( config, script, fn=_display_current_history ): script.run_env() if base == "current": _display_history_w_current(config, script, head=head) elif head == "current": _display_history_w_current(config, script, base=base) else: _display_history(config, script, base, head) def branches(config): """Show current un-spliced branch points""" script = ScriptDirectory.from_config(config) for sc in script.walk_revisions(): if sc.is_branch_point: config.print_stdout(sc) for rev in sc.nextrev: config.print_stdout("%s -> %s", " " * len(str(sc.down_revision)), script.get_revision(rev) ) def current(config, head_only=False): """Display the current revision for each database.""" script = ScriptDirectory.from_config(config) def display_version(rev, context): rev = script.get_revision(rev) if head_only: config.print_stdout("%s%s" % ( rev.revision if rev else None, " (head)" if rev and rev.is_head else "")) else: config.print_stdout("Current revision for %s: %s", util.obfuscate_url_pw( context.connection.engine.url), rev) return [] with EnvironmentContext( config, script, fn=display_version ): script.run_env() def stamp(config, revision, sql=False, tag=None): """'stamp' the revision table with the given revision; don't run any migrations.""" script = ScriptDirectory.from_config(config) def do_stamp(rev, context): if sql: current = False else: current = context._current_rev() dest = script.get_revision(revision) if dest is not None: dest = dest.revision context._update_current_rev(current, dest) return [] with EnvironmentContext( config, script, fn=do_stamp, as_sql=sql, destination_rev=revision, tag=tag ): script.run_env() def splice(config, parent, child): """'splice' two branches, creating a new revision file. this command isn't implemented right now. """ raise NotImplementedError()
usmschuck/canvas
refs/heads/custom
vendor/bundle/ruby/1.9.1/gems/pygments.rb-0.5.2/vendor/simplejson/scripts/make_docs.py
44
#!/usr/bin/env python import os import subprocess import shutil SPHINX_BUILD = 'sphinx-build' DOCTREES_DIR = 'build/doctrees' HTML_DIR = 'docs' for dirname in DOCTREES_DIR, HTML_DIR: if not os.path.exists(dirname): os.makedirs(dirname) open(os.path.join(HTML_DIR, '.nojekyll'), 'w').close() res = subprocess.call([ SPHINX_BUILD, '-d', DOCTREES_DIR, '-b', 'html', '.', 'docs', ]) raise SystemExit(res)
stuntman723/rap-analyzer
refs/heads/master
rap_analyzer/lib/python2.7/site-packages/django/db/backends/postgresql_psycopg2/schema.py
30
import psycopg2 from django.db.backends.base.schema import BaseDatabaseSchemaEditor class DatabaseSchemaEditor(BaseDatabaseSchemaEditor): sql_create_sequence = "CREATE SEQUENCE %(sequence)s" sql_delete_sequence = "DROP SEQUENCE IF EXISTS %(sequence)s CASCADE" sql_set_sequence_max = "SELECT setval('%(sequence)s', MAX(%(column)s)) FROM %(table)s" sql_create_varchar_index = "CREATE INDEX %(name)s ON %(table)s (%(columns)s varchar_pattern_ops)%(extra)s" sql_create_text_index = "CREATE INDEX %(name)s ON %(table)s (%(columns)s text_pattern_ops)%(extra)s" def quote_value(self, value): return psycopg2.extensions.adapt(value) def _model_indexes_sql(self, model): output = super(DatabaseSchemaEditor, self)._model_indexes_sql(model) if not model._meta.managed or model._meta.proxy or model._meta.swapped: return output for field in model._meta.local_fields: db_type = field.db_type(connection=self.connection) if db_type is not None and (field.db_index or field.unique): # Fields with database column types of `varchar` and `text` need # a second index that specifies their operator class, which is # needed when performing correct LIKE queries outside the # C locale. See #12234. # # The same doesn't apply to array fields such as varchar[size] # and text[size], so skip them. if '[' in db_type: continue if db_type.startswith('varchar'): output.append(self._create_index_sql( model, [field], suffix='_like', sql=self.sql_create_varchar_index)) elif db_type.startswith('text'): output.append(self._create_index_sql( model, [field], suffix='_like', sql=self.sql_create_text_index)) return output def _alter_column_type_sql(self, table, old_field, new_field, new_type): """ Makes ALTER TYPE with SERIAL make sense. """ if new_type.lower() == "serial": column = new_field.column sequence_name = "%s_%s_seq" % (table, column) return ( ( self.sql_alter_column_type % { "column": self.quote_name(column), "type": "integer", }, [], ), [ ( self.sql_delete_sequence % { "sequence": self.quote_name(sequence_name), }, [], ), ( self.sql_create_sequence % { "sequence": self.quote_name(sequence_name), }, [], ), ( self.sql_alter_column % { "table": self.quote_name(table), "changes": self.sql_alter_column_default % { "column": self.quote_name(column), "default": "nextval('%s')" % self.quote_name(sequence_name), } }, [], ), ( self.sql_set_sequence_max % { "table": self.quote_name(table), "column": self.quote_name(column), "sequence": self.quote_name(sequence_name), }, [], ), ], ) else: return super(DatabaseSchemaEditor, self)._alter_column_type_sql( table, old_field, new_field, new_type )
tictakk/servo
refs/heads/ticbranch
tests/wpt/web-platform-tests/tools/pywebsocket/src/example/cookie_wsh.py
451
# Copyright 2014 Google Inc. All rights reserved. # # Use of this source code is governed by a BSD-style # license that can be found in the COPYING file or at # https://developers.google.com/open-source/licenses/bsd import urlparse def _add_set_cookie(request, value): request.extra_headers.append(('Set-Cookie', value)) def web_socket_do_extra_handshake(request): components = urlparse.urlparse(request.uri) command = components[4] ONE_DAY_LIFE = 'Max-Age=86400' if command == 'set': _add_set_cookie(request, '; '.join(['foo=bar', ONE_DAY_LIFE])) elif command == 'set_httponly': _add_set_cookie(request, '; '.join(['httpOnlyFoo=bar', ONE_DAY_LIFE, 'httpOnly'])) elif command == 'clear': _add_set_cookie(request, 'foo=0; Max-Age=0') _add_set_cookie(request, 'httpOnlyFoo=0; Max-Age=0') def web_socket_transfer_data(request): pass
mmcdermo/helpinghand
refs/heads/master
server/venv/lib/python2.7/site-packages/django/core/files/utils.py
901
class FileProxyMixin(object): """ A mixin class used to forward file methods to an underlaying file object. The internal file object has to be called "file":: class FileProxy(FileProxyMixin): def __init__(self, file): self.file = file """ encoding = property(lambda self: self.file.encoding) fileno = property(lambda self: self.file.fileno) flush = property(lambda self: self.file.flush) isatty = property(lambda self: self.file.isatty) newlines = property(lambda self: self.file.newlines) read = property(lambda self: self.file.read) readinto = property(lambda self: self.file.readinto) readline = property(lambda self: self.file.readline) readlines = property(lambda self: self.file.readlines) seek = property(lambda self: self.file.seek) softspace = property(lambda self: self.file.softspace) tell = property(lambda self: self.file.tell) truncate = property(lambda self: self.file.truncate) write = property(lambda self: self.file.write) writelines = property(lambda self: self.file.writelines) xreadlines = property(lambda self: self.file.xreadlines) def __iter__(self): return iter(self.file)
akrherz/dep
refs/heads/main
scripts/util/convergance.py
2
import matplotlib.pyplot as plt import random import numpy as np (fig, ax) = plt.subplots(1, 1) x = [] y = [] cnts = [] data = [] for i in range(250): x.append(i) data.append(random.randint(0, 100)) std = np.std(data) avg = np.average(data) y.append(avg) cnt = np.sum(np.where(data > (avg + std * 2), 1, 0)) cnt += np.sum(np.where(data < (avg - std * 2), 1, 0)) cnts.append((len(data) - cnt) / float(len(data)) * 100.0) ax.plot(x, y) ax2 = ax.twinx() ax2.plot(x, cnts, color="r") ax2.set_ylabel("Percentage within 2 sigma [%]", color="r") ax2.set_ylim(0, 102) ax.set_xlabel("Random Sample Size Increase") ax.set_ylabel("Average", color="b") ax.set_ylim(0, 102) ax.set_title("Random Sampling between 0 and 100") ax.grid(True) ax.set_yticks([0, 25, 50, 75, 100]) fig.savefig("test.png")
KagamiChan/shadowsocks
refs/heads/master
shadowsocks/local.py
10
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) 2014 clowwindy # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from __future__ import absolute_import, division, print_function, \ with_statement import sys import os import logging import signal sys.path.insert(0, os.path.join(os.path.dirname(__file__), '../')) from shadowsocks import utils, daemon, encrypt, eventloop, tcprelay, udprelay,\ asyncdns def main(): utils.check_python() # fix py2exe if hasattr(sys, "frozen") and sys.frozen in \ ("windows_exe", "console_exe"): p = os.path.dirname(os.path.abspath(sys.executable)) os.chdir(p) config = utils.get_config(True) daemon.daemon_exec(config) utils.print_shadowsocks() encrypt.try_cipher(config['password'], config['method']) try: logging.info("starting local at %s:%d" % (config['local_address'], config['local_port'])) dns_resolver = asyncdns.DNSResolver() tcp_server = tcprelay.TCPRelay(config, dns_resolver, True) udp_server = udprelay.UDPRelay(config, dns_resolver, True) loop = eventloop.EventLoop() dns_resolver.add_to_loop(loop) tcp_server.add_to_loop(loop) udp_server.add_to_loop(loop) def handler(signum, _): logging.warn('received SIGQUIT, doing graceful shutting down..') tcp_server.close(next_tick=True) udp_server.close(next_tick=True) signal.signal(getattr(signal, 'SIGQUIT', signal.SIGTERM), handler) def int_handler(signum, _): sys.exit(1) signal.signal(signal.SIGINT, int_handler) loop.run() except (KeyboardInterrupt, IOError, OSError) as e: logging.error(e) if config['verbose']: import traceback traceback.print_exc() os._exit(1) if __name__ == '__main__': main()
calfonso/ansible
refs/heads/devel
lib/ansible/modules/network/system/net_logging.py
57
#!/usr/bin/python # -*- coding: utf-8 -*- # (c) 2017, Ansible by Red Hat, inc # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'network'} DOCUMENTATION = """ --- module: net_logging version_added: "2.4" author: "Ganesh Nalawade (@ganeshrn)" short_description: Manage logging on network devices description: - This module provides declarative management of logging on network devices. options: dest: description: - Destination of the logs. choices: ['console', 'host'] name: description: - If value of C(dest) is I(host) it indicates file-name the host name to be notified. facility: description: - Set logging facility. level: description: - Set logging severity levels. aggregate: description: List of logging definitions. purge: description: - Purge logging not defined in the I(aggregate) parameter. default: no state: description: - State of the logging configuration. default: present choices: ['present', 'absent'] """ EXAMPLES = """ - name: configure console logging net_logging: dest: console facility: any level: critical - name: remove console logging configuration net_logging: dest: console state: absent - name: configure host logging net_logging: dest: host name: 1.1.1.1 facility: kernel level: critical - name: Configure file logging using aggregate net_logging: dest: file aggregate: - name: test-1 facility: pfe level: critical - name: test-2 facility: kernel level: emergency - name: Delete file logging using aggregate net_logging: dest: file aggregate: - name: test-1 facility: pfe level: critical - name: test-2 facility: kernel level: emergency state: absent """ RETURN = """ commands: description: The list of configuration mode commands to send to the device returned: always, except for the platforms that use Netconf transport to manage the device. type: list sample: - logging console critical """
foss-transportationmodeling/rettina-server
refs/heads/master
.env/local/lib/python2.7/encodings/mac_greek.py
593
""" Python Character Mapping Codec mac_greek generated from 'MAPPINGS/VENDORS/APPLE/GREEK.TXT' with gencodec.py. """#" import codecs ### Codec APIs class Codec(codecs.Codec): def encode(self,input,errors='strict'): return codecs.charmap_encode(input,errors,encoding_table) def decode(self,input,errors='strict'): return codecs.charmap_decode(input,errors,decoding_table) class IncrementalEncoder(codecs.IncrementalEncoder): def encode(self, input, final=False): return codecs.charmap_encode(input,self.errors,encoding_table)[0] class IncrementalDecoder(codecs.IncrementalDecoder): def decode(self, input, final=False): return codecs.charmap_decode(input,self.errors,decoding_table)[0] class StreamWriter(Codec,codecs.StreamWriter): pass class StreamReader(Codec,codecs.StreamReader): pass ### encodings module API def getregentry(): return codecs.CodecInfo( name='mac-greek', encode=Codec().encode, decode=Codec().decode, incrementalencoder=IncrementalEncoder, incrementaldecoder=IncrementalDecoder, streamreader=StreamReader, streamwriter=StreamWriter, ) ### Decoding Table decoding_table = ( u'\x00' # 0x00 -> CONTROL CHARACTER u'\x01' # 0x01 -> CONTROL CHARACTER u'\x02' # 0x02 -> CONTROL CHARACTER u'\x03' # 0x03 -> CONTROL CHARACTER u'\x04' # 0x04 -> CONTROL CHARACTER u'\x05' # 0x05 -> CONTROL CHARACTER u'\x06' # 0x06 -> CONTROL CHARACTER u'\x07' # 0x07 -> CONTROL CHARACTER u'\x08' # 0x08 -> CONTROL CHARACTER u'\t' # 0x09 -> CONTROL CHARACTER u'\n' # 0x0A -> CONTROL CHARACTER u'\x0b' # 0x0B -> CONTROL CHARACTER u'\x0c' # 0x0C -> CONTROL CHARACTER u'\r' # 0x0D -> CONTROL CHARACTER u'\x0e' # 0x0E -> CONTROL CHARACTER u'\x0f' # 0x0F -> CONTROL CHARACTER u'\x10' # 0x10 -> CONTROL CHARACTER u'\x11' # 0x11 -> CONTROL CHARACTER u'\x12' # 0x12 -> CONTROL CHARACTER u'\x13' # 0x13 -> CONTROL CHARACTER u'\x14' # 0x14 -> CONTROL CHARACTER u'\x15' # 0x15 -> CONTROL CHARACTER u'\x16' # 0x16 -> CONTROL CHARACTER u'\x17' # 0x17 -> CONTROL CHARACTER u'\x18' # 0x18 -> CONTROL CHARACTER u'\x19' # 0x19 -> CONTROL CHARACTER u'\x1a' # 0x1A -> CONTROL CHARACTER u'\x1b' # 0x1B -> CONTROL CHARACTER u'\x1c' # 0x1C -> CONTROL CHARACTER u'\x1d' # 0x1D -> CONTROL CHARACTER u'\x1e' # 0x1E -> CONTROL CHARACTER u'\x1f' # 0x1F -> CONTROL CHARACTER u' ' # 0x20 -> SPACE u'!' # 0x21 -> EXCLAMATION MARK u'"' # 0x22 -> QUOTATION MARK u'#' # 0x23 -> NUMBER SIGN u'$' # 0x24 -> DOLLAR SIGN u'%' # 0x25 -> PERCENT SIGN u'&' # 0x26 -> AMPERSAND u"'" # 0x27 -> APOSTROPHE u'(' # 0x28 -> LEFT PARENTHESIS u')' # 0x29 -> RIGHT PARENTHESIS u'*' # 0x2A -> ASTERISK u'+' # 0x2B -> PLUS SIGN u',' # 0x2C -> COMMA u'-' # 0x2D -> HYPHEN-MINUS u'.' # 0x2E -> FULL STOP u'/' # 0x2F -> SOLIDUS u'0' # 0x30 -> DIGIT ZERO u'1' # 0x31 -> DIGIT ONE u'2' # 0x32 -> DIGIT TWO u'3' # 0x33 -> DIGIT THREE u'4' # 0x34 -> DIGIT FOUR u'5' # 0x35 -> DIGIT FIVE u'6' # 0x36 -> DIGIT SIX u'7' # 0x37 -> DIGIT SEVEN u'8' # 0x38 -> DIGIT EIGHT u'9' # 0x39 -> DIGIT NINE u':' # 0x3A -> COLON u';' # 0x3B -> SEMICOLON u'<' # 0x3C -> LESS-THAN SIGN u'=' # 0x3D -> EQUALS SIGN u'>' # 0x3E -> GREATER-THAN SIGN u'?' # 0x3F -> QUESTION MARK u'@' # 0x40 -> COMMERCIAL AT u'A' # 0x41 -> LATIN CAPITAL LETTER A u'B' # 0x42 -> LATIN CAPITAL LETTER B u'C' # 0x43 -> LATIN CAPITAL LETTER C u'D' # 0x44 -> LATIN CAPITAL LETTER D u'E' # 0x45 -> LATIN CAPITAL LETTER E u'F' # 0x46 -> LATIN CAPITAL LETTER F u'G' # 0x47 -> LATIN CAPITAL LETTER G u'H' # 0x48 -> LATIN CAPITAL LETTER H u'I' # 0x49 -> LATIN CAPITAL LETTER I u'J' # 0x4A -> LATIN CAPITAL LETTER J u'K' # 0x4B -> LATIN CAPITAL LETTER K u'L' # 0x4C -> LATIN CAPITAL LETTER L u'M' # 0x4D -> LATIN CAPITAL LETTER M u'N' # 0x4E -> LATIN CAPITAL LETTER N u'O' # 0x4F -> LATIN CAPITAL LETTER O u'P' # 0x50 -> LATIN CAPITAL LETTER P u'Q' # 0x51 -> LATIN CAPITAL LETTER Q u'R' # 0x52 -> LATIN CAPITAL LETTER R u'S' # 0x53 -> LATIN CAPITAL LETTER S u'T' # 0x54 -> LATIN CAPITAL LETTER T u'U' # 0x55 -> LATIN CAPITAL LETTER U u'V' # 0x56 -> LATIN CAPITAL LETTER V u'W' # 0x57 -> LATIN CAPITAL LETTER W u'X' # 0x58 -> LATIN CAPITAL LETTER X u'Y' # 0x59 -> LATIN CAPITAL LETTER Y u'Z' # 0x5A -> LATIN CAPITAL LETTER Z u'[' # 0x5B -> LEFT SQUARE BRACKET u'\\' # 0x5C -> REVERSE SOLIDUS u']' # 0x5D -> RIGHT SQUARE BRACKET u'^' # 0x5E -> CIRCUMFLEX ACCENT u'_' # 0x5F -> LOW LINE u'`' # 0x60 -> GRAVE ACCENT u'a' # 0x61 -> LATIN SMALL LETTER A u'b' # 0x62 -> LATIN SMALL LETTER B u'c' # 0x63 -> LATIN SMALL LETTER C u'd' # 0x64 -> LATIN SMALL LETTER D u'e' # 0x65 -> LATIN SMALL LETTER E u'f' # 0x66 -> LATIN SMALL LETTER F u'g' # 0x67 -> LATIN SMALL LETTER G u'h' # 0x68 -> LATIN SMALL LETTER H u'i' # 0x69 -> LATIN SMALL LETTER I u'j' # 0x6A -> LATIN SMALL LETTER J u'k' # 0x6B -> LATIN SMALL LETTER K u'l' # 0x6C -> LATIN SMALL LETTER L u'm' # 0x6D -> LATIN SMALL LETTER M u'n' # 0x6E -> LATIN SMALL LETTER N u'o' # 0x6F -> LATIN SMALL LETTER O u'p' # 0x70 -> LATIN SMALL LETTER P u'q' # 0x71 -> LATIN SMALL LETTER Q u'r' # 0x72 -> LATIN SMALL LETTER R u's' # 0x73 -> LATIN SMALL LETTER S u't' # 0x74 -> LATIN SMALL LETTER T u'u' # 0x75 -> LATIN SMALL LETTER U u'v' # 0x76 -> LATIN SMALL LETTER V u'w' # 0x77 -> LATIN SMALL LETTER W u'x' # 0x78 -> LATIN SMALL LETTER X u'y' # 0x79 -> LATIN SMALL LETTER Y u'z' # 0x7A -> LATIN SMALL LETTER Z u'{' # 0x7B -> LEFT CURLY BRACKET u'|' # 0x7C -> VERTICAL LINE u'}' # 0x7D -> RIGHT CURLY BRACKET u'~' # 0x7E -> TILDE u'\x7f' # 0x7F -> CONTROL CHARACTER u'\xc4' # 0x80 -> LATIN CAPITAL LETTER A WITH DIAERESIS u'\xb9' # 0x81 -> SUPERSCRIPT ONE u'\xb2' # 0x82 -> SUPERSCRIPT TWO u'\xc9' # 0x83 -> LATIN CAPITAL LETTER E WITH ACUTE u'\xb3' # 0x84 -> SUPERSCRIPT THREE u'\xd6' # 0x85 -> LATIN CAPITAL LETTER O WITH DIAERESIS u'\xdc' # 0x86 -> LATIN CAPITAL LETTER U WITH DIAERESIS u'\u0385' # 0x87 -> GREEK DIALYTIKA TONOS u'\xe0' # 0x88 -> LATIN SMALL LETTER A WITH GRAVE u'\xe2' # 0x89 -> LATIN SMALL LETTER A WITH CIRCUMFLEX u'\xe4' # 0x8A -> LATIN SMALL LETTER A WITH DIAERESIS u'\u0384' # 0x8B -> GREEK TONOS u'\xa8' # 0x8C -> DIAERESIS u'\xe7' # 0x8D -> LATIN SMALL LETTER C WITH CEDILLA u'\xe9' # 0x8E -> LATIN SMALL LETTER E WITH ACUTE u'\xe8' # 0x8F -> LATIN SMALL LETTER E WITH GRAVE u'\xea' # 0x90 -> LATIN SMALL LETTER E WITH CIRCUMFLEX u'\xeb' # 0x91 -> LATIN SMALL LETTER E WITH DIAERESIS u'\xa3' # 0x92 -> POUND SIGN u'\u2122' # 0x93 -> TRADE MARK SIGN u'\xee' # 0x94 -> LATIN SMALL LETTER I WITH CIRCUMFLEX u'\xef' # 0x95 -> LATIN SMALL LETTER I WITH DIAERESIS u'\u2022' # 0x96 -> BULLET u'\xbd' # 0x97 -> VULGAR FRACTION ONE HALF u'\u2030' # 0x98 -> PER MILLE SIGN u'\xf4' # 0x99 -> LATIN SMALL LETTER O WITH CIRCUMFLEX u'\xf6' # 0x9A -> LATIN SMALL LETTER O WITH DIAERESIS u'\xa6' # 0x9B -> BROKEN BAR u'\u20ac' # 0x9C -> EURO SIGN # before Mac OS 9.2.2, was SOFT HYPHEN u'\xf9' # 0x9D -> LATIN SMALL LETTER U WITH GRAVE u'\xfb' # 0x9E -> LATIN SMALL LETTER U WITH CIRCUMFLEX u'\xfc' # 0x9F -> LATIN SMALL LETTER U WITH DIAERESIS u'\u2020' # 0xA0 -> DAGGER u'\u0393' # 0xA1 -> GREEK CAPITAL LETTER GAMMA u'\u0394' # 0xA2 -> GREEK CAPITAL LETTER DELTA u'\u0398' # 0xA3 -> GREEK CAPITAL LETTER THETA u'\u039b' # 0xA4 -> GREEK CAPITAL LETTER LAMDA u'\u039e' # 0xA5 -> GREEK CAPITAL LETTER XI u'\u03a0' # 0xA6 -> GREEK CAPITAL LETTER PI u'\xdf' # 0xA7 -> LATIN SMALL LETTER SHARP S u'\xae' # 0xA8 -> REGISTERED SIGN u'\xa9' # 0xA9 -> COPYRIGHT SIGN u'\u03a3' # 0xAA -> GREEK CAPITAL LETTER SIGMA u'\u03aa' # 0xAB -> GREEK CAPITAL LETTER IOTA WITH DIALYTIKA u'\xa7' # 0xAC -> SECTION SIGN u'\u2260' # 0xAD -> NOT EQUAL TO u'\xb0' # 0xAE -> DEGREE SIGN u'\xb7' # 0xAF -> MIDDLE DOT u'\u0391' # 0xB0 -> GREEK CAPITAL LETTER ALPHA u'\xb1' # 0xB1 -> PLUS-MINUS SIGN u'\u2264' # 0xB2 -> LESS-THAN OR EQUAL TO u'\u2265' # 0xB3 -> GREATER-THAN OR EQUAL TO u'\xa5' # 0xB4 -> YEN SIGN u'\u0392' # 0xB5 -> GREEK CAPITAL LETTER BETA u'\u0395' # 0xB6 -> GREEK CAPITAL LETTER EPSILON u'\u0396' # 0xB7 -> GREEK CAPITAL LETTER ZETA u'\u0397' # 0xB8 -> GREEK CAPITAL LETTER ETA u'\u0399' # 0xB9 -> GREEK CAPITAL LETTER IOTA u'\u039a' # 0xBA -> GREEK CAPITAL LETTER KAPPA u'\u039c' # 0xBB -> GREEK CAPITAL LETTER MU u'\u03a6' # 0xBC -> GREEK CAPITAL LETTER PHI u'\u03ab' # 0xBD -> GREEK CAPITAL LETTER UPSILON WITH DIALYTIKA u'\u03a8' # 0xBE -> GREEK CAPITAL LETTER PSI u'\u03a9' # 0xBF -> GREEK CAPITAL LETTER OMEGA u'\u03ac' # 0xC0 -> GREEK SMALL LETTER ALPHA WITH TONOS u'\u039d' # 0xC1 -> GREEK CAPITAL LETTER NU u'\xac' # 0xC2 -> NOT SIGN u'\u039f' # 0xC3 -> GREEK CAPITAL LETTER OMICRON u'\u03a1' # 0xC4 -> GREEK CAPITAL LETTER RHO u'\u2248' # 0xC5 -> ALMOST EQUAL TO u'\u03a4' # 0xC6 -> GREEK CAPITAL LETTER TAU u'\xab' # 0xC7 -> LEFT-POINTING DOUBLE ANGLE QUOTATION MARK u'\xbb' # 0xC8 -> RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK u'\u2026' # 0xC9 -> HORIZONTAL ELLIPSIS u'\xa0' # 0xCA -> NO-BREAK SPACE u'\u03a5' # 0xCB -> GREEK CAPITAL LETTER UPSILON u'\u03a7' # 0xCC -> GREEK CAPITAL LETTER CHI u'\u0386' # 0xCD -> GREEK CAPITAL LETTER ALPHA WITH TONOS u'\u0388' # 0xCE -> GREEK CAPITAL LETTER EPSILON WITH TONOS u'\u0153' # 0xCF -> LATIN SMALL LIGATURE OE u'\u2013' # 0xD0 -> EN DASH u'\u2015' # 0xD1 -> HORIZONTAL BAR u'\u201c' # 0xD2 -> LEFT DOUBLE QUOTATION MARK u'\u201d' # 0xD3 -> RIGHT DOUBLE QUOTATION MARK u'\u2018' # 0xD4 -> LEFT SINGLE QUOTATION MARK u'\u2019' # 0xD5 -> RIGHT SINGLE QUOTATION MARK u'\xf7' # 0xD6 -> DIVISION SIGN u'\u0389' # 0xD7 -> GREEK CAPITAL LETTER ETA WITH TONOS u'\u038a' # 0xD8 -> GREEK CAPITAL LETTER IOTA WITH TONOS u'\u038c' # 0xD9 -> GREEK CAPITAL LETTER OMICRON WITH TONOS u'\u038e' # 0xDA -> GREEK CAPITAL LETTER UPSILON WITH TONOS u'\u03ad' # 0xDB -> GREEK SMALL LETTER EPSILON WITH TONOS u'\u03ae' # 0xDC -> GREEK SMALL LETTER ETA WITH TONOS u'\u03af' # 0xDD -> GREEK SMALL LETTER IOTA WITH TONOS u'\u03cc' # 0xDE -> GREEK SMALL LETTER OMICRON WITH TONOS u'\u038f' # 0xDF -> GREEK CAPITAL LETTER OMEGA WITH TONOS u'\u03cd' # 0xE0 -> GREEK SMALL LETTER UPSILON WITH TONOS u'\u03b1' # 0xE1 -> GREEK SMALL LETTER ALPHA u'\u03b2' # 0xE2 -> GREEK SMALL LETTER BETA u'\u03c8' # 0xE3 -> GREEK SMALL LETTER PSI u'\u03b4' # 0xE4 -> GREEK SMALL LETTER DELTA u'\u03b5' # 0xE5 -> GREEK SMALL LETTER EPSILON u'\u03c6' # 0xE6 -> GREEK SMALL LETTER PHI u'\u03b3' # 0xE7 -> GREEK SMALL LETTER GAMMA u'\u03b7' # 0xE8 -> GREEK SMALL LETTER ETA u'\u03b9' # 0xE9 -> GREEK SMALL LETTER IOTA u'\u03be' # 0xEA -> GREEK SMALL LETTER XI u'\u03ba' # 0xEB -> GREEK SMALL LETTER KAPPA u'\u03bb' # 0xEC -> GREEK SMALL LETTER LAMDA u'\u03bc' # 0xED -> GREEK SMALL LETTER MU u'\u03bd' # 0xEE -> GREEK SMALL LETTER NU u'\u03bf' # 0xEF -> GREEK SMALL LETTER OMICRON u'\u03c0' # 0xF0 -> GREEK SMALL LETTER PI u'\u03ce' # 0xF1 -> GREEK SMALL LETTER OMEGA WITH TONOS u'\u03c1' # 0xF2 -> GREEK SMALL LETTER RHO u'\u03c3' # 0xF3 -> GREEK SMALL LETTER SIGMA u'\u03c4' # 0xF4 -> GREEK SMALL LETTER TAU u'\u03b8' # 0xF5 -> GREEK SMALL LETTER THETA u'\u03c9' # 0xF6 -> GREEK SMALL LETTER OMEGA u'\u03c2' # 0xF7 -> GREEK SMALL LETTER FINAL SIGMA u'\u03c7' # 0xF8 -> GREEK SMALL LETTER CHI u'\u03c5' # 0xF9 -> GREEK SMALL LETTER UPSILON u'\u03b6' # 0xFA -> GREEK SMALL LETTER ZETA u'\u03ca' # 0xFB -> GREEK SMALL LETTER IOTA WITH DIALYTIKA u'\u03cb' # 0xFC -> GREEK SMALL LETTER UPSILON WITH DIALYTIKA u'\u0390' # 0xFD -> GREEK SMALL LETTER IOTA WITH DIALYTIKA AND TONOS u'\u03b0' # 0xFE -> GREEK SMALL LETTER UPSILON WITH DIALYTIKA AND TONOS u'\xad' # 0xFF -> SOFT HYPHEN # before Mac OS 9.2.2, was undefined ) ### Encoding table encoding_table=codecs.charmap_build(decoding_table)
sureshthalamati/spark
refs/heads/master
examples/src/main/python/ml/feature_hasher_example.py
67
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import print_function from pyspark.sql import SparkSession # $example on$ from pyspark.ml.feature import FeatureHasher # $example off$ if __name__ == "__main__": spark = SparkSession\ .builder\ .appName("FeatureHasherExample")\ .getOrCreate() # $example on$ dataset = spark.createDataFrame([ (2.2, True, "1", "foo"), (3.3, False, "2", "bar"), (4.4, False, "3", "baz"), (5.5, False, "4", "foo") ], ["real", "bool", "stringNum", "string"]) hasher = FeatureHasher(inputCols=["real", "bool", "stringNum", "string"], outputCol="features") featurized = hasher.transform(dataset) featurized.show(truncate=False) # $example off$ spark.stop()
corbinmunce/domoticz
refs/heads/development
plugins/examples/Pinger.py
14
# ICMP Plugin # # Author: Dnpwwo, 2017 - 2018 # """ <plugin key="ICMP" name="Pinger (ICMP)" author="dnpwwo" version="3.1.1"> <description> ICMP Pinger Plugin.<br/><br/> Specify comma delimted addresses (IP or DNS names) of devices that are to be pinged.<br/> When remote devices are found a matching Domoticz device is created in the Devices tab. </description> <params> <param field="Address" label="Address(es) comma separated" width="300px" required="true" default="127.0.0.1"/> <param field="Mode1" label="Ping Frequency" width="40px"> <options> <option label="2" value="2"/> <option label="3" value="3"/> <option label="4" value="4"/> <option label="5" value="5"/> <option label="6" value="6"/> <option label="8" value="8"/> <option label="10" value="10" default="true" /> <option label="12" value="12"/> <option label="14" value="14"/> <option label="16" value="16"/> <option label="18" value="18"/> <option label="20" value="20"/> </options> </param> <param field="Mode5" label="Time Out Lost Devices" width="75px"> <options> <option label="True" value="True" default="true"/> <option label="False" value="False" /> </options> </param> <param field="Mode6" label="Debug" width="150px"> <options> <option label="None" value="0" default="true" /> <option label="Python Only" value="2"/> <option label="Basic Debugging" value="62"/> <option label="Basic+Messages" value="126"/> <option label="Connections Only" value="16"/> <option label="Connections+Python" value="18"/> <option label="Connections+Queue" value="144"/> <option label="All" value="-1"/> </options> </param> </params> </plugin> """ import Domoticz from datetime import datetime class IcmpDevice: Address = "" icmpConn = None def __init__(self, destination): self.Address = destination self.Open() def __str__(self): if (self.icmpConn != None): return str(self.icmpConn) else: return "None" def Open(self): if (self.icmpConn != None): self.Close() self.icmpConn = Domoticz.Connection(Name=self.Address, Transport="ICMP/IP", Protocol="ICMP", Address=self.Address) self.icmpConn.Listen() def Send(self): if (self.icmpConn == None): self.Open() else: self.icmpConn.Send("Domoticz") def Close(self): self.icmpConn = None class BasePlugin: icmpConn = None icmpList = [] nextDev = 0 def onStart(self): if Parameters["Mode6"] != "0": DumpConfigToLog() Domoticz.Debugging(int(Parameters["Mode6"])) Domoticz.Heartbeat(int(Parameters["Mode1"])) # Find devices that already exist, create those that don't self.icmpList = Parameters["Address"].replace(" ", "").split(",") for destination in self.icmpList: Domoticz.Debug("Endpoint '"+destination+"' found.") deviceFound = False for Device in Devices: if (("Name" in Devices[Device].Options) and (Devices[Device].Options["Name"] == destination)): deviceFound = True if (deviceFound == False): Domoticz.Device(Name=destination, Unit=len(Devices)+1, Type=243, Subtype=31, Image=17, Options={"Custom":"1;ms"}).Create() Domoticz.Device(Name=destination, Unit=len(Devices)+1, Type=17, Subtype=0, Image=17, Options={"Name":destination,"Related":str(len(Devices))}).Create() # Mark all devices as connection lost if requested deviceLost = 0 if Parameters["Mode5"] == "True": deviceLost = 1 for Device in Devices: UpdateDevice(Device, Devices[Device].nValue, Devices[Device].sValue, deviceLost) def onConnect(self, Connection, Status, Description): if (Status == 0): Domoticz.Log("Successful connect to: "+Connection.Address+" which is surprising because ICMP is connectionless.") else: Domoticz.Log("Failed to connect to: "+Connection.Address+", Description: "+Description) self.icmpConn = None def onMessage(self, Connection, Data): Domoticz.Debug("onMessage called for connection: '"+Connection.Name+"'") if Parameters["Mode6"] == "1": DumpICMPResponseToLog(Data) if isinstance(Data, dict) and (Data["Status"] == 0): iUnit = -1 for Device in Devices: if ("Name" in Devices[Device].Options): Domoticz.Debug("Checking: '"+Connection.Name+"' against '"+Devices[Device].Options["Name"]+"'") if (Devices[Device].Options["Name"] == Connection.Name): iUnit = Device break if (iUnit > 0): # Device found, set it to On and if elapsed time suplied update related device UpdateDevice(iUnit, 1, "On", 0) relatedDevice = int(Devices[iUnit].Options["Related"]) if ("ElapsedMs" in Data): UpdateDevice(relatedDevice, Data["ElapsedMs"], str(Data["ElapsedMs"]), 0) else: Domoticz.Log("Device: '"+Connection.Name+"' returned '"+Data["Description"]+"'.") if Parameters["Mode6"] == "1": DumpICMPResponseToLog(Data) TimedOut = 0 if Parameters["Mode5"] == "True": TimedOut = 1 for Device in Devices: if (("Name" in Devices[Device].Options) and (Devices[Device].Options["Name"] == Connection.Name)): UpdateDevice(Device, 0, "Off", TimedOut) self.icmpConn = None def onHeartbeat(self): Domoticz.Debug("Heartbeating...") # No response to previous heartbeat so mark as Off if (self.icmpConn != None): for Device in Devices: if (("Name" in Devices[Device].Options) and (Devices[Device].Options["Name"] == self.icmpConn.Name)): Domoticz.Log("Device: '"+Devices[Device].Options["Name"]+"' address '"+self.icmpConn.Address+"' - No response.") TimedOut = 0 if Parameters["Mode5"] == "True": TimedOut = 1 UpdateDevice(Device, 0, "Off", TimedOut) break self.icmpConn = None Domoticz.Debug("Heartbeating '"+self.icmpList[self.nextDev]+"'") self.icmpConn = IcmpDevice(self.icmpList[self.nextDev]) self.nextDev += 1 if (self.nextDev >= len(self.icmpList)): self.nextDev = 0 global _plugin _plugin = BasePlugin() def onStart(): global _plugin _plugin.onStart() def onConnect(Connection, Status, Description): global _plugin _plugin.onConnect(Connection, Status, Description) def onMessage(Connection, Data): global _plugin _plugin.onMessage(Connection, Data) def onHeartbeat(): global _plugin _plugin.onHeartbeat() def UpdateDevice(Unit, nValue, sValue, TimedOut): # Make sure that the Domoticz device still exists (they can be deleted) before updating it if (Unit in Devices): if (Devices[Unit].nValue != nValue) or (Devices[Unit].sValue != sValue) or (Devices[Unit].TimedOut != TimedOut): Devices[Unit].Update(nValue=nValue, sValue=str(sValue), TimedOut=TimedOut) Domoticz.Log("Update "+str(nValue)+":'"+str(sValue)+"' ("+Devices[Unit].Name+")") return def DumpConfigToLog(): for x in Parameters: if Parameters[x] != "": Domoticz.Log( "'" + x + "':'" + str(Parameters[x]) + "'") Domoticz.Log("Device count: " + str(len(Devices))) for x in Devices: Domoticz.Log("Device: " + str(x) + " - " + str(Devices[x])) Domoticz.Log("Device ID: '" + str(Devices[x].ID) + "'") Domoticz.Log("Device Name: '" + Devices[x].Name + "'") Domoticz.Log("Device nValue: " + str(Devices[x].nValue)) Domoticz.Log("Device sValue: '" + Devices[x].sValue + "'") Domoticz.Log("Device LastLevel: " + str(Devices[x].LastLevel)) return def DumpICMPResponseToLog(icmpList): if isinstance(icmpList, dict): Domoticz.Log("ICMP Details ("+str(len(icmpList))+"):") for x in icmpList: if isinstance(icmpList[x], dict): Domoticz.Log("--->'"+x+" ("+str(len(icmpList[x]))+"):") for y in icmpList[x]: Domoticz.Log("------->'" + y + "':'" + str(icmpList[x][y]) + "'") else: Domoticz.Log("--->'" + x + "':'" + str(icmpList[x]) + "'") else: Domoticz.Log(Data.decode("utf-8", "ignore"))
fnouama/intellij-community
refs/heads/master
python/lib/Lib/site-packages/django/contrib/localflavor/se/forms.py
311
# -*- coding: utf-8 -*- """ Swedish specific Form helpers """ import re from django import forms from django.utils.translation import ugettext_lazy as _ from django.core.validators import EMPTY_VALUES from django.contrib.localflavor.se.utils import (id_number_checksum, validate_id_birthday, format_personal_id_number, valid_organisation, format_organisation_number) __all__ = ('SECountySelect', 'SEOrganisationNumberField', 'SEPersonalIdentityNumberField', 'SEPostalCodeField') SWEDISH_ID_NUMBER = re.compile(r'^(?P<century>\d{2})?(?P<year>\d{2})(?P<month>\d{2})(?P<day>\d{2})(?P<sign>[\-+])?(?P<serial>\d{3})(?P<checksum>\d)$') SE_POSTAL_CODE = re.compile(r'^[1-9]\d{2} ?\d{2}$') class SECountySelect(forms.Select): """ A Select form widget that uses a list of the Swedish counties (län) as its choices. The cleaned value is the official county code -- see http://en.wikipedia.org/wiki/Counties_of_Sweden for a list. """ def __init__(self, attrs=None): from se_counties import COUNTY_CHOICES super(SECountySelect, self).__init__(attrs=attrs, choices=COUNTY_CHOICES) class SEOrganisationNumberField(forms.CharField): """ A form field that validates input as a Swedish organisation number (organisationsnummer). It accepts the same input as SEPersonalIdentityField (for sole proprietorships (enskild firma). However, co-ordination numbers are not accepted. It also accepts ordinary Swedish organisation numbers with the format NNNNNNNNNN. The return value will be YYYYMMDDXXXX for sole proprietors, and NNNNNNNNNN for other organisations. """ default_error_messages = { 'invalid': _('Enter a valid Swedish organisation number.'), } def clean(self, value): value = super(SEOrganisationNumberField, self).clean(value) if value in EMPTY_VALUES: return u'' match = SWEDISH_ID_NUMBER.match(value) if not match: raise forms.ValidationError(self.error_messages['invalid']) gd = match.groupdict() # Compare the calculated value with the checksum if id_number_checksum(gd) != int(gd['checksum']): raise forms.ValidationError(self.error_messages['invalid']) # First: check if this is a real organisation_number if valid_organisation(gd): return format_organisation_number(gd) # Is this a single properitor (enskild firma)? try: birth_day = validate_id_birthday(gd, False) return format_personal_id_number(birth_day, gd) except ValueError: raise forms.ValidationError(self.error_messages['invalid']) class SEPersonalIdentityNumberField(forms.CharField): """ A form field that validates input as a Swedish personal identity number (personnummer). The correct formats are YYYYMMDD-XXXX, YYYYMMDDXXXX, YYMMDD-XXXX, YYMMDDXXXX and YYMMDD+XXXX. A + indicates that the person is older than 100 years, which will be taken into consideration when the date is validated. The checksum will be calculated and checked. The birth date is checked to be a valid date. By default, co-ordination numbers (samordningsnummer) will be accepted. To only allow real personal identity numbers, pass the keyword argument coordination_number=False to the constructor. The cleaned value will always have the format YYYYMMDDXXXX. """ def __init__(self, coordination_number=True, *args, **kwargs): self.coordination_number = coordination_number super(SEPersonalIdentityNumberField, self).__init__(*args, **kwargs) default_error_messages = { 'invalid': _('Enter a valid Swedish personal identity number.'), 'coordination_number': _('Co-ordination numbers are not allowed.'), } def clean(self, value): value = super(SEPersonalIdentityNumberField, self).clean(value) if value in EMPTY_VALUES: return u'' match = SWEDISH_ID_NUMBER.match(value) if match is None: raise forms.ValidationError(self.error_messages['invalid']) gd = match.groupdict() # compare the calculated value with the checksum if id_number_checksum(gd) != int(gd['checksum']): raise forms.ValidationError(self.error_messages['invalid']) # check for valid birthday try: birth_day = validate_id_birthday(gd) except ValueError: raise forms.ValidationError(self.error_messages['invalid']) # make sure that co-ordination numbers do not pass if not allowed if not self.coordination_number and int(gd['day']) > 60: raise forms.ValidationError(self.error_messages['coordination_number']) return format_personal_id_number(birth_day, gd) class SEPostalCodeField(forms.RegexField): """ A form field that validates input as a Swedish postal code (postnummer). Valid codes consist of five digits (XXXXX). The number can optionally be formatted with a space after the third digit (XXX XX). The cleaned value will never contain the space. """ default_error_messages = { 'invalid': _('Enter a Swedish postal code in the format XXXXX.'), } def __init__(self, *args, **kwargs): super(SEPostalCodeField, self).__init__(SE_POSTAL_CODE, *args, **kwargs) def clean(self, value): return super(SEPostalCodeField, self).clean(value).replace(' ', '')
ezcall-net-tw/EZCall
refs/heads/master
jni/pjsip/sources/tests/pjsua/scripts-media-playrec/100_resample_lf_11_8.py
59
# $Id: 100_resample_lf_11_8.py 2052 2008-06-25 18:18:32Z nanang $ # from inc_cfg import * # simple test test_param = TestParam( "Resample (large filter) 11 KHZ to 8 KHZ", [ InstanceParam("endpt", "--null-audio --quality 10 --clock-rate 8000 --play-file wavs/input.11.wav --rec-file wavs/tmp.8.wav") ] )
4eek/edx-platform
refs/heads/master
lms/djangoapps/commerce/tests/test_views.py
85
""" Tests for commerce views. """ import json from uuid import uuid4 from nose.plugins.attrib import attr import ddt from django.conf import settings from django.core.urlresolvers import reverse from django.test import TestCase import mock from student.tests.factories import UserFactory class UserMixin(object): """ Mixin for tests involving users. """ def setUp(self): super(UserMixin, self).setUp() self.user = UserFactory() def _login(self): """ Log into LMS. """ self.client.login(username=self.user.username, password='test') @attr('shard_1') @ddt.ddt class ReceiptViewTests(UserMixin, TestCase): """ Tests for the receipt view. """ def test_login_required(self): """ The view should redirect to the login page if the user is not logged in. """ self.client.logout() response = self.client.post(reverse('commerce:checkout_receipt')) self.assertEqual(response.status_code, 302) def post_to_receipt_page(self, post_data): """ DRY helper """ response = self.client.post(reverse('commerce:checkout_receipt'), params={'basket_id': 1}, data=post_data) self.assertEqual(response.status_code, 200) return response @ddt.data('decision', 'reason_code', 'signed_field_names', None) def test_is_cybersource(self, post_key): """ Ensure the view uses three specific POST keys to detect a request initiated by Cybersource. """ self._login() post_data = {'decision': 'REJECT', 'reason_code': '200', 'signed_field_names': 'dummy'} if post_key is not None: # a key will be missing; we will not expect the receipt page to handle a cybersource decision del post_data[post_key] expected_pattern = r"<title>(\s+)Receipt" else: expected_pattern = r"<title>(\s+)Payment Failed" response = self.post_to_receipt_page(post_data) self.assertRegexpMatches(response.content, expected_pattern) @ddt.data('ACCEPT', 'REJECT', 'ERROR') def test_cybersource_decision(self, decision): """ Ensure the view renders a page appropriately depending on the Cybersource decision. """ self._login() post_data = {'decision': decision, 'reason_code': '200', 'signed_field_names': 'dummy'} expected_pattern = r"<title>(\s+)Receipt" if decision == 'ACCEPT' else r"<title>(\s+)Payment Failed" response = self.post_to_receipt_page(post_data) self.assertRegexpMatches(response.content, expected_pattern) @ddt.data(True, False) @mock.patch('commerce.views.is_user_payment_error') def test_cybersource_message(self, is_user_message_expected, mock_is_user_payment_error): """ Ensure that the page displays the right message for the reason_code (it may be a user error message or a system error message). """ mock_is_user_payment_error.return_value = is_user_message_expected self._login() response = self.post_to_receipt_page({'decision': 'REJECT', 'reason_code': '99', 'signed_field_names': 'dummy'}) self.assertTrue(mock_is_user_payment_error.called) self.assertTrue(mock_is_user_payment_error.call_args[0][0], '99') user_message = "There was a problem with this transaction" system_message = "A system error occurred while processing your payment" self.assertRegexpMatches(response.content, user_message if is_user_message_expected else system_message) self.assertNotRegexpMatches(response.content, user_message if not is_user_message_expected else system_message) @mock.patch.dict(settings.FEATURES, {"IS_EDX_DOMAIN": True}) def test_hide_nav_header(self): self._login() post_data = {'decision': 'ACCEPT', 'reason_code': '200', 'signed_field_names': 'dummy'} response = self.post_to_receipt_page(post_data) # Verify that the header navigation links are hidden for the edx.org version self.assertNotContains(response, "How it Works") self.assertNotContains(response, "Find courses") self.assertNotContains(response, "Schools & Partners")
0xddaa/pwndbg
refs/heads/stable
pwndbg/elftypes.py
5
#!/usr/bin/env python # -*- coding: utf-8 -*- # # mayhem/datatypes/elf.py # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of the project nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import ctypes import sys import six import pwndbg.arch import pwndbg.ctypes import pwndbg.events Elf32_Addr = ctypes.c_uint32 Elf32_Half = ctypes.c_uint16 Elf32_Off = ctypes.c_uint32 Elf32_Sword = ctypes.c_int32 Elf32_Word = ctypes.c_uint32 Elf64_Addr = ctypes.c_uint64 Elf64_Half = ctypes.c_uint16 Elf64_SHalf = ctypes.c_int16 Elf64_Off = ctypes.c_uint64 Elf64_Sword = ctypes.c_int32 Elf64_Word = ctypes.c_uint32 Elf64_Xword = ctypes.c_uint64 Elf64_Sxword = ctypes.c_int64 AT_CONSTANTS = { 0 : 'AT_NULL', # /* End of vector */ 1 : 'AT_IGNORE', # /* Entry should be ignored */ 2 : 'AT_EXECFD', # /* File descriptor of program */ 3 : 'AT_PHDR', # /* Program headers for program */ 4 : 'AT_PHENT', # /* Size of program header entry */ 5 : 'AT_PHNUM', # /* Number of program headers */ 6 : 'AT_PAGESZ', # /* System page size */ 7 : 'AT_BASE', # /* Base address of interpreter */ 8 : 'AT_FLAGS', # /* Flags */ 9 : 'AT_ENTRY', # /* Entry point of program */ 10: 'AT_NOTELF', # /* Program is not ELF */ 11: 'AT_UID', # /* Real uid */ 12: 'AT_EUID', # /* Effective uid */ 13: 'AT_GID', # /* Real gid */ 14: 'AT_EGID', # /* Effective gid */ 15: 'AT_PLATFORM', # /* String identifying platform */ 16: 'AT_HWCAP', # /* Machine dependent hints about processor capabilities */ 17: 'AT_CLKTCK', # /* Frequency of times() */ 18: 'AT_FPUCW', 19: 'AT_DCACHEBSIZE', 20: 'AT_ICACHEBSIZE', 21: 'AT_UCACHEBSIZE', 22: 'AT_IGNOREPPC', 23: 'AT_SECURE', 24: 'AT_BASE_PLATFORM', # String identifying real platforms 25: 'AT_RANDOM', # Address of 16 random bytes 31: 'AT_EXECFN', # Filename of executable 32: 'AT_SYSINFO', 33: 'AT_SYSINFO_EHDR', 34: 'AT_L1I_CACHESHAPE', 35: 'AT_L1D_CACHESHAPE', 36: 'AT_L2_CACHESHAPE', 37: 'AT_L3_CACHESHAPE', } class constants: EI_MAG0 = 0 EI_MAG1 = 1 EI_MAG2 = 2 EI_MAG3 = 3 EI_CLASS = 4 EI_DATA = 5 EI_VERSION = 6 EI_OSABI = 7 EI_ABIVERSION = 8 EI_PAD = 9 EI_NIDENT = 16 ELFMAG0 = 0x7f ELFMAG1 = ord('E') ELFMAG2 = ord('L') ELFMAG3 = ord('F') ELFCLASSNONE = 0 ELFCLASS32 = 1 ELFCLASS64 = 2 ELFDATANONE = 0 ELFDATA2LSB = 1 ELFDATA2MSB = 2 # Legal values for Elf_Phdr.p_type (segment type). PT_NULL = 0 PT_LOAD = 1 PT_DYNAMIC = 2 PT_INTERP = 3 PT_NOTE = 4 PT_SHLIB = 5 PT_PHDR = 6 PT_TLS = 7 # Legal values for Elf_Ehdr.e_type (object file type). ET_NONE = 0 ET_REL = 1 ET_EXEC = 2 ET_DYN = 3 ET_CORE = 4 # Legal values for Elf_Dyn.d_tag (dynamic entry type). DT_NULL = 0 DT_NEEDED = 1 DT_PLTRELSZ = 2 DT_PLTGOT = 3 DT_HASH = 4 DT_STRTAB = 5 DT_SYMTAB = 6 DT_RELA = 7 DT_RELASZ = 8 DT_RELAENT = 9 DT_STRSZ = 10 DT_SYMENT = 11 DT_INIT = 12 DT_FINI = 13 DT_SONAME = 14 DT_RPATH = 15 DT_SYMBOLIC = 16 DT_REL = 17 DT_RELSZ = 18 DT_RELENT = 19 DT_PLTREL = 20 DT_DEBUG = 21 DT_TEXTREL = 22 DT_JMPREL = 23 DT_ENCODING = 32 # Legal values for Elf_Shdr.sh_type (section type). SHT_NULL = 0 SHT_PROGBITS = 1 SHT_SYMTAB = 2 SHT_STRTAB = 3 SHT_RELA = 4 SHT_HASH = 5 SHT_DYNAMIC = 6 SHT_NOTE = 7 SHT_NOBITS = 8 SHT_REL = 9 SHT_SHLIB = 10 SHT_DYNSYM = 11 SHT_NUM = 12 # Legal values for ST_TYPE subfield of Elf_Sym.st_info (symbol type). STT_NOTYPE = 0 STT_OBJECT = 1 STT_FUNC = 2 STT_SECTION = 3 STT_FILE = 4 STT_COMMON = 5 STT_TLS = 6 # # Notes used in ET_CORE. Architectures export some of the arch register sets # using the corresponding note types via the PTRACE_GETREGSET and # PTRACE_SETREGSET requests. # NT_PRSTATUS = 1 NT_PRFPREG = 2 NT_PRPSINFO = 3 NT_TASKSTRUCT = 4 NT_AUXV = 6 # # Note to userspace developers: size of NT_SIGINFO note may increase # in the future to accomodate more fields, don't assume it is fixed! # NT_SIGINFO = 0x53494749 NT_FILE = 0x46494c45 NT_PRXFPREG = 0x46e62b7f NT_PPC_VMX = 0x100 NT_PPC_SPE = 0x101 NT_PPC_VSX = 0x102 NT_386_TLS = 0x200 NT_386_IOPERM = 0x201 NT_X86_XSTATE = 0x202 NT_S390_HIGH_GPRS = 0x300 NT_S390_TIMER = 0x301 NT_S390_TODCMP = 0x302 NT_S390_TODPREG = 0x303 NT_S390_CTRS = 0x304 NT_S390_PREFIX = 0x305 NT_S390_LAST_BREAK = 0x306 NT_S390_SYSTEM_CALL = 0x307 NT_S390_TDB = 0x308 NT_ARM_VFP = 0x400 NT_ARM_TLS = 0x401 NT_ARM_HW_BREAK = 0x402 NT_ARM_HW_WATCH = 0x403 NT_METAG_CBUF = 0x500 NT_METAG_RPIPE = 0x501 NT_METAG_TLS = 0x502 AT_NULL = 0 AT_IGNORE = 1 AT_EXECFD = 2 AT_PHDR = 3 AT_PHENT = 4 AT_PHNUM = 5 AT_PAGESZ = 6 AT_BASE = 7 AT_FLAGS = 8 AT_ENTRY = 9 AT_NOTELF = 10 AT_UID = 11 AT_EUID = 12 AT_GID = 13 AT_EGID = 14 AT_PLATFORM = 15 AT_HWCAP = 16 AT_CLKTCK = 17 AT_FPUCW = 18 AT_DCACHEBSIZE = 19 AT_ICACHEBSIZE = 20 AT_UCACHEBSIZE = 21 AT_IGNOREPPC = 22 AT_SECURE = 23 AT_BASE_PLATFORM = 24 AT_RANDOM = 25 AT_EXECFN = 31 AT_SYSINFO = 32 AT_SYSINFO_EHDR = 33 AT_L1I_CACHESHAPE = 34 AT_L1D_CACHESHAPE = 35 AT_L2_CACHESHAPE = 36 AT_L3_CACHESHAPE = 37 class Elf32_Ehdr(pwndbg.ctypes.Structure): _fields_ = [("e_ident", (ctypes.c_ubyte * 16)), ("e_type", Elf32_Half), ("e_machine", Elf32_Half), ("e_version", Elf32_Word), ("e_entry", Elf32_Addr), ("e_phoff", Elf32_Off), ("e_shoff", Elf32_Off), ("e_flags", Elf32_Word), ("e_ehsize", Elf32_Half), ("e_phentsize", Elf32_Half), ("e_phnum", Elf32_Half), ("e_shentsize", Elf32_Half), ("e_shnum", Elf32_Half), ("e_shstrndx", Elf32_Half),] class Elf64_Ehdr(pwndbg.ctypes.Structure): _fields_ = [("e_ident", (ctypes.c_ubyte * 16)), ("e_type", Elf64_Half), ("e_machine", Elf64_Half), ("e_version", Elf64_Word), ("e_entry", Elf64_Addr), ("e_phoff", Elf64_Off), ("e_shoff", Elf64_Off), ("e_flags", Elf64_Word), ("e_ehsize", Elf64_Half), ("e_phentsize", Elf64_Half), ("e_phnum", Elf64_Half), ("e_shentsize", Elf64_Half), ("e_shnum", Elf64_Half), ("e_shstrndx", Elf64_Half),] class Elf32_Phdr(pwndbg.ctypes.Structure): _fields_ = [("p_type", Elf32_Word), ("p_offset", Elf32_Off), ("p_vaddr", Elf32_Addr), ("p_paddr", Elf32_Addr), ("p_filesz", Elf32_Word), ("p_memsz", Elf32_Word), ("p_flags", Elf32_Word), ("p_align", Elf32_Word),] class Elf64_Phdr(pwndbg.ctypes.Structure): _fields_ = [("p_type", Elf64_Word), ("p_flags", Elf64_Word), ("p_offset", Elf64_Off), ("p_vaddr", Elf64_Addr), ("p_paddr", Elf64_Addr), ("p_filesz", Elf64_Xword), ("p_memsz", Elf64_Xword), ("p_align", Elf64_Xword),]
rjschwei/azure-sdk-for-python
refs/heads/master
azure-batch/azure/batch/models/file_delete_from_task_options.py
3
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class FileDeleteFromTaskOptions(Model): """Additional parameters for the File_delete_from_task operation. :param timeout: The maximum time that the server can spend processing the request, in seconds. The default is 30 seconds. Default value: 30 . :type timeout: int :param client_request_id: The caller-generated request identity, in the form of a GUID with no decoration such as curly braces, e.g. 9C4D50EE-2D56-4CD3-8152-34347DC9F2B0. :type client_request_id: str :param return_client_request_id: Whether the server should return the client-request-id in the response. Default value: False . :type return_client_request_id: bool :param ocp_date: The time the request was issued. Client libraries typically set this to the current system clock time; set it explicitly if you are calling the REST API directly. :type ocp_date: datetime """ def __init__(self, timeout=30, client_request_id=None, return_client_request_id=False, ocp_date=None): self.timeout = timeout self.client_request_id = client_request_id self.return_client_request_id = return_client_request_id self.ocp_date = ocp_date
UrLab/beta402
refs/heads/master
telepathy/templatetags/__init__.py
107
# -*- coding: utf-8 -*- from __future__ import unicode_literals
kymbert/behave
refs/heads/master
more.features/steps/tutorial_steps.py
15
# -*- coding: utf-8 -*- """Step implementations for tutorial example.""" from behave import * @given('we have behave installed') def step_impl(context): pass @when('we implement a test') def step_impl(context): assert True is not False @then('behave will test it for us!') def step_impl(context): assert context.failed is False
digitvaran/digitvaran
refs/heads/master
resources/views.py
1
from django.shortcuts import render from resources import models def home(request): "Homepage for requests" data={} template='resources/home.html' return render(request,template,data) def search(request): "Searching for resources" data={} template='resources/search.html' if request.method=='GET': data['placeholder']='Search' if request.method=='POST': searchstr=request.POST.get('searchstring') data['placeholder']=searchstr data['results']=models.Audiobook.objects.filter(description__icontains=searchstr) return render(request,template,data) def browse(request): "Browse resources" data={} template='resources/browse.html' data['resources']=models.Audiobook.objects.all() return render(request,template,data)
aftabnaveed/virtual-work-monitor
refs/heads/master
MainGui.py
1
from PyQt4 import QtCore, QtGui import time class SaveScreenshotThread(QtCore.QThread): capture = QtCore.pyqtSignal(object) gui = None def __init__(self, gui): QtCore.QThread.__init__(self) self.gui = gui def run(self): print "Saving " + self.gui.fileName self.gui.saveScreenshotButton.setDisabled(True) self.capture.emit(self.gui) #self.gui.show() class MainGui(QtGui.QWidget): fileName = 'screenshot' def __init__(self): super(MainGui, self).__init__() self.screenshotLabel = QtGui.QLabel() self.screenshotLabel.setSizePolicy(QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Expanding) self.screenshotLabel.setAlignment(QtCore.Qt.AlignCenter) self.screenshotLabel.setMinimumSize(240, 160) self.timer = QtCore.QTimer() self.timer.timeout.connect(self.captureAndSaveScreen) #enabling below would execute the time only once, #self.timer.setSingleShot(True) self.timer.start(5000) def createOptionsGroupBox(self): optionsGroupBox = QtGui.QGroupBox("Options") self.delaySpinBox = QtGui.QSpinBox() self.delaySpinBox.setSuffix(" s") self.delaySpinBox.setMaximum(60) self.delayBoxLabel = QtGui.QLabel("Screenshot Delay") self.hideThisWindowCheckBox = QtGui.QCheckBox("Hide This Window") optionsGroupBoxLayout = QtGui.QGridLayout() optionsGroupBoxLayout.addWidget(self.delayBoxLabel, 0, 0) optionsGroupBoxLayout.addWidget(self.delaySpinBox, 0, 1) optionsGroupBoxLayout.addWidget(self.hideThisWindowCheckBox, 1, 0, 1, 2) optionsGroupBox.setLayout(optionsGroupBoxLayout) return optionsGroupBox def createButtonsLayout(self): self.newScreenshotButton = self.createButton("New Screenshot", self.newScreenshot) self.saveScreenshotButton = self.createButton("Save Screenshot", self.saveScreenshot) self.quitScreenshotButton = self.createButton("Quit", self.close) self.buttonsLayout = QtGui.QHBoxLayout() self.buttonsLayout.addStretch() self.buttonsLayout.addWidget(self.newScreenshotButton) self.buttonsLayout.addWidget(self.saveScreenshotButton) self.buttonsLayout.addWidget(self.quitScreenshotButton) return self.buttonsLayout def shootScreen(self): #if self.delaySpinBox.value() != 0: QtGui.qApp.beep() self.originalPixmap = None self.originalPixmap = QtGui.QPixmap.grabWindow(QtGui.QApplication.desktop().winId()) return self.updateScreenshotLabel() def updateScreenshotLabel(self): self.screenshotLabel.setPixmap(self.originalPixmap.scaled(self.screenshotLabel.size(), QtCore.Qt.KeepAspectRatio, QtCore.Qt.SmoothTransformation)) return self.screenshotLabel def createButton(self, text, member): button = QtGui.QPushButton(text) button.clicked.connect(member) return button def newScreenshot(self): pass def saveScreenshot(self): format = 'png' initialPath = QtCore.QDir.currentPath() + "untitled." + format #fileName = QtGui.QFileDialog.getSaveFileName(self, "Save As", initialPath, "%s Files(*.%s);;All Files(*)" % (format.upper(), format)) self.saveThread = SaveScreenshotThread(self) self.saveThread.capture.connect(self.captureAndSaveScreen) self.saveThread.start() def captureAndSaveScreen(self): self.fileName = "screenshot_" + str(time.time()) + ".png" self.originalPixmap = None self.originalPixmap = QtGui.QPixmap.grabWindow(QtGui.QApplication.desktop().winId()) self.originalPixmap.save(self.fileName, 'png') self.saveScreenshotButton.setDisabled(False) def quitScreenshotButton(self): pass
abdullah2891/remo
refs/heads/master
remo/profiles/migrations/0048_rename_remobot.py
3
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import DataMigration from django.db import models class Migration(DataMigration): def forwards(self, orm): """Rename the display name of Remo bot.""" # Note: Don't use "from appname.models import ModelName". # Use orm.ModelName to refer to models in this application, # and orm['appname.ModelName'] for models in other applications. remobot = orm['profiles.UserProfile'].objects.get(user__username='remobot') remobot.display_name = 'ReMoBot' remobot.save() def backwards(self, orm): "Write your backwards methods here." pass models = { u'auth.group': { 'Meta': {'object_name': 'Group'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, u'auth.permission': { 'Meta': {'ordering': "(u'content_type__app_label', u'content_type__model', u'codename')", 'unique_together': "((u'content_type', u'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, u'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, u'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, u'profiles.functionalarea': { 'Meta': {'ordering': "['name']", 'object_name': 'FunctionalArea'}, 'active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '100'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '100', 'blank': 'True'}) }, u'profiles.useravatar': { 'Meta': {'object_name': 'UserAvatar'}, 'avatar_url': ('django.db.models.fields.URLField', [], {'default': "''", 'max_length': '400'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last_update': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2014, 7, 20, 0, 0)', 'auto_now': 'True', 'blank': 'True'}), 'user': ('django.db.models.fields.related.OneToOneField', [], {'to': u"orm['auth.User']", 'unique': 'True'}) }, u'profiles.userprofile': { 'Meta': {'object_name': 'UserProfile'}, 'added_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'users_added'", 'null': 'True', 'to': u"orm['auth.User']"}), 'bio': ('django.db.models.fields.TextField', [], {'default': "''", 'blank': 'True'}), 'birth_date': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'city': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '50'}), 'country': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '50'}), 'current_streak_start': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'date_joined_program': ('django.db.models.fields.DateField', [], {'blank': 'True'}), 'diaspora_url': ('django.db.models.fields.URLField', [], {'default': "''", 'max_length': '200', 'blank': 'True'}), 'display_name': ('django.db.models.fields.CharField', [], {'default': "''", 'unique': 'True', 'max_length': '50', 'blank': 'True'}), 'facebook_url': ('django.db.models.fields.URLField', [], {'default': "''", 'max_length': '200', 'blank': 'True'}), 'first_report_notification': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'functional_areas': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'users_matching'", 'symmetrical': 'False', 'to': u"orm['profiles.FunctionalArea']"}), 'gender': ('django.db.models.fields.NullBooleanField', [], {'default': 'None', 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'irc_channels': ('django.db.models.fields.TextField', [], {'default': "''", 'blank': 'True'}), 'irc_name': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '50'}), 'is_unavailable': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'jabber_id': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '50', 'blank': 'True'}), 'lat': ('django.db.models.fields.FloatField', [], {'null': 'True'}), 'linkedin_url': ('django.db.models.fields.URLField', [], {'default': "''", 'max_length': '200', 'blank': 'True'}), 'local_name': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '100', 'blank': 'True'}), 'lon': ('django.db.models.fields.FloatField', [], {'null': 'True'}), 'longest_streak_end': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'longest_streak_start': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'mentor': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'mentees'", 'null': 'True', 'on_delete': 'models.SET_NULL', 'to': u"orm['auth.User']"}), 'mozillian_username': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '40', 'blank': 'True'}), 'mozillians_profile_url': ('django.db.models.fields.URLField', [], {'max_length': '200'}), 'personal_blog_feed': ('django.db.models.fields.URLField', [], {'default': "''", 'max_length': '200', 'blank': 'True'}), 'personal_website_url': ('django.db.models.fields.URLField', [], {'default': "''", 'max_length': '200', 'blank': 'True'}), 'private_email': ('django.db.models.fields.EmailField', [], {'default': "''", 'max_length': '75', 'null': 'True'}), 'receive_email_on_add_comment': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'receive_email_on_add_event_comment': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'receive_email_on_add_voting_comment': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'region': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '50'}), 'registration_complete': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'second_report_notification': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'timezone': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '100', 'blank': 'True'}), 'tracked_functional_areas': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'users_tracking'", 'symmetrical': 'False', 'to': u"orm['profiles.FunctionalArea']"}), 'twitter_account': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '16', 'blank': 'True'}), 'unavailability_task_id': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '256', 'null': 'True', 'blank': 'True'}), 'user': ('django.db.models.fields.related.OneToOneField', [], {'to': u"orm['auth.User']", 'unique': 'True'}), 'wiki_profile_url': ('django.db.models.fields.URLField', [], {'default': "''", 'max_length': '200'}) }, u'profiles.userstatus': { 'Meta': {'ordering': "['-expected_date', '-created_on']", 'object_name': 'UserStatus'}, 'created_on': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'expected_date': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'replacement_rep': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'replaced_rep'", 'null': 'True', 'to': u"orm['auth.User']"}), 'return_date': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'status'", 'to': u"orm['auth.User']"}) } } complete_apps = ['profiles'] symmetrical = True
rosmo/ansible
refs/heads/devel
lib/ansible/modules/storage/netapp/na_elementsw_account.py
16
#!/usr/bin/python # (c) 2018, NetApp, Inc # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) """ Element Software Account Manager """ from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'certified'} DOCUMENTATION = ''' module: na_elementsw_account short_description: NetApp Element Software Manage Accounts extends_documentation_fragment: - netapp.solidfire version_added: '2.7' author: NetApp Ansible Team (@carchi8py) <[email protected]> description: - Create, destroy, or update accounts on Element SW options: state: description: - Whether the specified account should exist or not. required: true choices: ['present', 'absent'] element_username: description: - Unique username for this account. (May be 1 to 64 characters in length). required: true aliases: - account_id from_name: description: - ID or Name of the account to rename. - Required to create an account called 'element_username' by renaming 'from_name'. version_added: '2.8' initiator_secret: description: - CHAP secret to use for the initiator. Should be 12-16 characters long and impenetrable. - The CHAP initiator secrets must be unique and cannot be the same as the target CHAP secret. - If not specified, a random secret is created. target_secret: description: - CHAP secret to use for the target (mutual CHAP authentication). - Should be 12-16 characters long and impenetrable. - The CHAP target secrets must be unique and cannot be the same as the initiator CHAP secret. - If not specified, a random secret is created. attributes: description: List of Name/Value pairs in JSON object format. status: description: - Status of the account. ''' EXAMPLES = """ - name: Create Account na_elementsw_account: hostname: "{{ elementsw_hostname }}" username: "{{ elementsw_username }}" password: "{{ elementsw_password }}" state: present element_username: TenantA - name: Modify Account na_elementsw_account: hostname: "{{ elementsw_hostname }}" username: "{{ elementsw_username }}" password: "{{ elementsw_password }}" state: present status: locked element_username: TenantA - name: Rename Account na_elementsw_account: hostname: "{{ elementsw_hostname }}" username: "{{ elementsw_username }}" password: "{{ elementsw_password }}" state: present element_username: TenantA_Renamed from_name: TenantA - name: Rename and modify Account na_elementsw_account: hostname: "{{ elementsw_hostname }}" username: "{{ elementsw_username }}" password: "{{ elementsw_password }}" state: present status: locked element_username: TenantA_Renamed from_name: TenantA - name: Delete Account na_elementsw_account: hostname: "{{ elementsw_hostname }}" username: "{{ elementsw_username }}" password: "{{ elementsw_password }}" state: absent element_username: TenantA_Renamed """ RETURN = """ """ import traceback from ansible.module_utils.basic import AnsibleModule from ansible.module_utils._text import to_native import ansible.module_utils.netapp as netapp_utils from ansible.module_utils.netapp_elementsw_module import NaElementSWModule HAS_SF_SDK = netapp_utils.has_sf_sdk() class ElementSWAccount(object): """ Element SW Account """ def __init__(self): self.argument_spec = netapp_utils.ontap_sf_host_argument_spec() self.argument_spec.update(dict( state=dict(required=True, choices=['present', 'absent']), element_username=dict(required=True, aliases=["account_id"], type='str'), from_name=dict(required=False, default=None), initiator_secret=dict(required=False, type='str'), target_secret=dict(required=False, type='str'), attributes=dict(required=False, type='dict'), status=dict(required=False, type='str'), )) self.module = AnsibleModule( argument_spec=self.argument_spec, supports_check_mode=True ) params = self.module.params # set up state variables self.state = params.get('state') self.element_username = params.get('element_username') self.from_name = params.get('from_name') self.initiator_secret = params.get('initiator_secret') self.target_secret = params.get('target_secret') self.attributes = params.get('attributes') self.status = params.get('status') if HAS_SF_SDK is False: self.module.fail_json(msg="Unable to import the Element SW Python SDK") else: self.sfe = netapp_utils.create_sf_connection(module=self.module) self.elementsw_helper = NaElementSWModule(self.sfe) # add telemetry attributes if self.attributes is not None: self.attributes.update(self.elementsw_helper.set_element_attributes(source='na_elementsw_account')) else: self.attributes = self.elementsw_helper.set_element_attributes(source='na_elementsw_account') def get_account(self, username): """ Get Account :description: Get Account object from account id or name :return: Details about the account. None if not found. :rtype: object (Account object) """ account_list = self.sfe.list_accounts() for account in account_list.accounts: # Check and get account object for a given name if str(account.account_id) == username: return account elif account.username == username: return account return None def create_account(self): """ Create the Account """ try: self.sfe.add_account(username=self.element_username, initiator_secret=self.initiator_secret, target_secret=self.target_secret, attributes=self.attributes) except Exception as e: self.module.fail_json(msg='Error creating account %s: %s' % (self.element_username, to_native(e)), exception=traceback.format_exc()) def delete_account(self): """ Delete the Account """ try: self.sfe.remove_account(account_id=self.account_id) except Exception as e: self.module.fail_json(msg='Error deleting account %s: %s' % (self.account_id, to_native(e)), exception=traceback.format_exc()) def rename_account(self): """ Rename the Account """ try: self.sfe.modify_account(account_id=self.account_id, username=self.element_username, status=self.status, initiator_secret=self.initiator_secret, target_secret=self.target_secret, attributes=self.attributes) except Exception as e: self.module.fail_json(msg='Error renaming account %s: %s' % (self.account_id, to_native(e)), exception=traceback.format_exc()) def update_account(self): """ Update the Account if account already exists """ try: self.sfe.modify_account(account_id=self.account_id, status=self.status, initiator_secret=self.initiator_secret, target_secret=self.target_secret, attributes=self.attributes) except Exception as e: self.module.fail_json(msg='Error updating account %s: %s' % (self.account_id, to_native(e)), exception=traceback.format_exc()) def apply(self): """ Process the account operation on the Element OS Cluster """ changed = False update_account = False account_detail = self.get_account(self.element_username) if account_detail is None and self.state == 'present': changed = True elif account_detail is not None: # If account found self.account_id = account_detail.account_id if self.state == 'absent': changed = True else: # If state - present, check for any parameter of exising account needs modification. if account_detail.username is not None and self.element_username is not None and \ account_detail.username != self.element_username: update_account = True changed = True elif account_detail.status is not None and self.status is not None \ and account_detail.status != self.status: update_account = True changed = True elif account_detail.initiator_secret is not None and self.initiator_secret is not None \ and account_detail.initiator_secret != self.initiator_secret: update_account = True changed = True elif account_detail.target_secret is not None and self.target_secret is not None \ and account_detail.target_secret != self.target_secret: update_account = True changed = True elif account_detail.attributes is not None and self.attributes is not None \ and account_detail.attributes != self.attributes: update_account = True changed = True if changed: if self.module.check_mode: # Skipping the changes pass else: if self.state == 'present': if update_account: self.update_account() else: if self.from_name is not None: # If from_name is defined account_exists = self.get_account(self.from_name) if account_exists is not None: # If resource pointed by from_name exists, rename the account to name self.account_id = account_exists.account_id self.rename_account() else: # If resource pointed by from_name does not exists, error out self.module.fail_json(msg="Resource does not exist : %s" % self.from_name) else: # If from_name is not defined, create from scratch. self.create_account() elif self.state == 'absent': self.delete_account() self.module.exit_json(changed=changed) def main(): """ Main function """ na_elementsw_account = ElementSWAccount() na_elementsw_account.apply() if __name__ == '__main__': main()
laosiaudi/tensorflow
refs/heads/master
tensorflow/python/kernel_tests/random_gamma_test.py
21
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow.ops.random_ops.random_gamma.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import numpy as np from six.moves import xrange # pylint: disable=redefined-builtin import tensorflow as tf class RandomGammaTest(tf.test.TestCase): """This is a medium test due to the moments computation taking some time.""" def setUp(self): np.random.seed(137) tf.set_random_seed(137) def _Sampler(self, num, alpha, beta, dtype, use_gpu, seed=None): def func(): with self.test_session(use_gpu=use_gpu, graph=tf.Graph()) as sess: rng = tf.random_gamma([num], alpha, beta=beta, dtype=dtype, seed=seed) ret = np.empty([10, num]) for i in xrange(10): ret[i, :] = sess.run(rng) return ret return func def testMomentsFloat32(self): self._testMoments(tf.float32) def testMomentsFloat64(self): self._testMoments(tf.float64) def _testMoments(self, dt): try: from scipy import stats # pylint: disable=g-import-not-at-top except ImportError as e: tf.logging.warn("Cannot test moments: %s" % e) return # Check the given array of samples matches the given theoretical moment # function at different orders. The test is considered passing if the # z-tests of all statistical moments are all below z_limit. # Parameters: # max_moments: the largest moments of the distribution to be tested # stride: the distance between samples to check for statistical properties # 0 means the n-th moment of each sample # any other strides tests for spatial correlation between samples; # z_limit: the maximum z-test we would consider the test to pass; # The moments test is a z-value test. This is the largest z-value # we want to tolerate. Since the z-test approximates a unit normal # distribution, it should almost definitely never exceed 6. z_limit = 6.0 for stride in 0, 1, 4, 17: alphas = [0.2, 1.0, 3.0] if dt == tf.float64: alphas = [0.01] + alphas for alpha in alphas: for scale in 9, 17: # Gamma moments only defined for values less than the scale param. max_moment = min(6, scale // 2) sampler = self._Sampler( 20000, alpha, 1 / scale, dt, use_gpu=False, seed=12345) moments = [0] * (max_moment + 1) moments_sample_count = [0] * (max_moment + 1) x = np.array(sampler().flat) # sampler does 10x samples for k in range(len(x)): moment = 1. for i in range(max_moment + 1): index = k + i * stride if index >= len(x): break moments[i] += moment moments_sample_count[i] += 1 moment *= x[index] for i in range(max_moment + 1): moments[i] /= moments_sample_count[i] for i in range(1, max_moment + 1): g = stats.gamma(alpha, scale=scale) if stride == 0: moments_i_mean = g.moment(i) moments_i_squared = g.moment(2 * i) else: moments_i_mean = pow(g.moment(1), i) moments_i_squared = pow(g.moment(2), i) # Calculate moment variance safely: # This is just # (moments_i_squared - moments_i_mean**2) / moments_sample_count[i] normalized_moments_i_var = ( moments_i_mean / moments_sample_count[i] * ( moments_i_squared/moments_i_mean - moments_i_mean)) # Assume every operation has a small numerical error. # It takes i multiplications to calculate one i-th moment. error_per_moment = i * np.finfo(dt.as_numpy_dtype).eps total_variance = ( normalized_moments_i_var + error_per_moment) tiny = np.finfo(dt.as_numpy_dtype).tiny self.assertGreaterEqual(total_variance, 0) if total_variance < tiny: total_variance = tiny # z_test is approximately a unit normal distribution. z_test = abs( (moments[i] - moments_i_mean) / math.sqrt(total_variance)) self.assertLess(z_test, z_limit) def _testZeroDensity(self, alpha): """Zero isn't in the support of the gamma distribution. But quantized floating point math has its limits. TODO(bjp): Implement log-gamma sampler for small-shape distributions. Args: alpha: float shape value to test """ try: from scipy import stats # pylint: disable=g-import-not-at-top except ImportError as e: tf.logging.warn("Cannot test zero density proportions: %s" % e) return allowable_zeros = { tf.float16: stats.gamma(alpha).cdf(np.finfo(np.float16).tiny), tf.float32: stats.gamma(alpha).cdf(np.finfo(np.float32).tiny), tf.float64: stats.gamma(alpha).cdf(np.finfo(np.float64).tiny) } failures = [] for use_gpu in [False, True]: for dt in tf.float16, tf.float32, tf.float64: sampler = self._Sampler( 10000, alpha, 1.0, dt, use_gpu=use_gpu, seed=12345) x = sampler() allowable = allowable_zeros[dt] * x.size allowable = allowable * 2 if allowable < 10 else allowable * 1.05 if np.sum(x <= 0) > allowable: failures += [(use_gpu, dt)] self.assertEqual([], failures) def testNonZeroSmallShape(self): self._testZeroDensity(0.01) def testNonZeroSmallishShape(self): self._testZeroDensity(0.35) # Asserts that different trials (1000 samples per trial) is unlikely # to see the same sequence of values. Will catch buggy # implementations which uses the same random number seed. def testDistinct(self): for use_gpu in [False, True]: for dt in tf.float16, tf.float32, tf.float64: sampler = self._Sampler(1000, 2.0, 1.0, dt, use_gpu=use_gpu) x = sampler() y = sampler() # Number of different samples. count = (x == y).sum() count_limit = 20 if dt == tf.float16 else 10 if count >= count_limit: print(use_gpu, dt) print("x = ", x) print("y = ", y) print("count = ", count) self.assertLess(count, count_limit) # Checks that the CPU and GPU implementation returns the same results, # given the same random seed def testCPUGPUMatch(self): for dt in tf.float16, tf.float32, tf.float64: results = {} for use_gpu in [False, True]: sampler = self._Sampler(1000, 0.0, 1.0, dt, use_gpu=use_gpu, seed=12345) results[use_gpu] = sampler() if dt == tf.float16: self.assertAllClose(results[False], results[True], rtol=1e-3, atol=1e-3) else: self.assertAllClose(results[False], results[True], rtol=1e-6, atol=1e-6) def testSeed(self): for use_gpu in [False, True]: for dt in tf.float16, tf.float32, tf.float64: sx = self._Sampler(1000, 0.0, 1.0, dt, use_gpu=use_gpu, seed=345) sy = self._Sampler(1000, 0.0, 1.0, dt, use_gpu=use_gpu, seed=345) self.assertAllEqual(sx(), sy()) def testNoCSE(self): """CSE = constant subexpression eliminator. SetIsStateful() should prevent two identical random ops from getting merged. """ for dtype in tf.float16, tf.float32, tf.float64: for use_gpu in [False, True]: with self.test_session(use_gpu=use_gpu): rnd1 = tf.random_gamma([24], 2.0, dtype=dtype) rnd2 = tf.random_gamma([24], 2.0, dtype=dtype) diff = rnd2 - rnd1 self.assertGreater(np.linalg.norm(diff.eval()), 0.1) def testShape(self): # Fully known shape. rnd = tf.random_gamma([150], 2.0) self.assertEqual([150], rnd.get_shape().as_list()) rnd = tf.random_gamma([150], 2.0, beta=[3.0, 4.0]) self.assertEqual([150, 2], rnd.get_shape().as_list()) rnd = tf.random_gamma([150], tf.ones([1, 2, 3])) self.assertEqual([150, 1, 2, 3], rnd.get_shape().as_list()) rnd = tf.random_gamma([20, 30], tf.ones([1, 2, 3])) self.assertEqual([20, 30, 1, 2, 3], rnd.get_shape().as_list()) rnd = tf.random_gamma([123], tf.placeholder(tf.float32, shape=(2,))) self.assertEqual([123, 2], rnd.get_shape().as_list()) # Partially known shape. rnd = tf.random_gamma(tf.placeholder(tf.int32, shape=(1,)), tf.ones([7, 3])) self.assertEqual([None, 7, 3], rnd.get_shape().as_list()) rnd = tf.random_gamma(tf.placeholder(tf.int32, shape=(3,)), tf.ones([9, 6])) self.assertEqual([None, None, None, 9, 6], rnd.get_shape().as_list()) # Unknown shape. rnd = tf.random_gamma(tf.placeholder(tf.int32), tf.placeholder(tf.float32)) self.assertIs(None, rnd.get_shape().ndims) rnd = tf.random_gamma([50], tf.placeholder(tf.float32)) self.assertIs(None, rnd.get_shape().ndims) if __name__ == "__main__": tf.test.main()
entpy/eb-django
refs/heads/master
essere_benessere/essere_benessere/urls.py
1
from django.conf.urls import patterns, include, url from django.conf import settings from django.conf.urls.static import static from django.contrib import admin admin.autodiscover() urlpatterns = patterns('', # frontend URLs url(r'^$', 'website.views.index', name='index'), url(r'^chi-siamo/', 'website.views.about_us', name='about_us'), url(r'^i-nostri-servizi/', 'website.views.our_services', name='our_services'), url(r'^contatti/', 'website.views.contacts', name='contacts'), url(r'^le-nostre-offerte/', 'website.views.our_offers', name='our_offers'), url(r'^ricevi-offerte/', 'website.views.get_offers', name='get_offers'), url(r'^sbiancamento-dentale/', 'website.views.dental_whitening', name='dental_whitening'), url(r'^termini-di-utilizzo/', 'website.views.terms_of_use', name='terms_of_use'), url(r'^cookie-policy/', 'website.views.cookie_policy', name='cookie_policy'), # admin URLs url(r'^admin/', include(admin.site.urls)), ) + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
gareging/SDN_Framework
refs/heads/master
ryu/tests/unit/lib/test_mod/ddd/__init__.py
26
# Copyright (C) 2016 Nippon Telegraph and Telephone Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License.
gsingh93/rust
refs/heads/master
src/etc/regex-match-tests.py
58
#!/usr/bin/env python2 # Copyright 2014 The Rust Project Developers. See the COPYRIGHT # file at the top-level directory of this distribution and at # http://rust-lang.org/COPYRIGHT. # # Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or # http://www.apache.org/licenses/LICENSE-2.0> or the MIT license # <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your # option. This file may not be copied, modified, or distributed # except according to those terms. from __future__ import absolute_import, division, print_function import argparse import datetime import os.path as path def print_tests(tests): print('\n'.join([test_tostr(t) for t in tests])) def read_tests(f): basename, _ = path.splitext(path.basename(f)) tests = [] for lineno, line in enumerate(open(f), 1): fields = filter(None, map(str.strip, line.split('\t'))) if not (4 <= len(fields) <= 5) \ or 'E' not in fields[0] or fields[0][0] == '#': continue opts, pat, text, sgroups = fields[0:4] groups = [] # groups as integer ranges if sgroups == 'NOMATCH': groups = [None] elif ',' in sgroups: noparen = map(lambda s: s.strip('()'), sgroups.split(')(')) for g in noparen: s, e = map(str.strip, g.split(',')) if s == '?' and e == '?': groups.append(None) else: groups.append((int(s), int(e))) else: # This skips tests that should result in an error. # There aren't many, so I think we can just capture those # manually. Possibly fix this in future. continue if pat == 'SAME': pat = tests[-1][1] if '$' in opts: pat = pat.decode('string_escape') text = text.decode('string_escape') if 'i' in opts: pat = '(?i)%s' % pat name = '%s_%d' % (basename, lineno) tests.append((name, pat, text, groups)) return tests def test_tostr(t): lineno, pat, text, groups = t options = map(group_tostr, groups) return 'mat!{match_%s, r"%s", r"%s", %s}' \ % (lineno, pat, '' if text == "NULL" else text, ', '.join(options)) def group_tostr(g): if g is None: return 'None' else: return 'Some((%d, %d))' % (g[0], g[1]) if __name__ == '__main__': parser = argparse.ArgumentParser( description='Generate match tests from an AT&T POSIX test file.') aa = parser.add_argument aa('files', nargs='+', help='A list of dat AT&T POSIX test files. See src/libregexp/testdata') args = parser.parse_args() tests = [] for f in args.files: tests += read_tests(f) tpl = '''// Copyright 2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your // option. This file may not be copied, modified, or distributed // except according to those terms. // ignore-tidy-linelength // DO NOT EDIT. Automatically generated by 'src/etc/regexp-match-tests' // on {date}. ''' print(tpl.format(date=str(datetime.datetime.now()))) for f in args.files: print('// Tests from %s' % path.basename(f)) print_tests(read_tests(f)) print('')
BTCLITE/BitcoinLITE-BTCL
refs/heads/master
share/qt/make_spinner.py
4415
#!/usr/bin/env python # W.J. van der Laan, 2011 # Make spinning .mng animation from a .png # Requires imagemagick 6.7+ from __future__ import division from os import path from PIL import Image from subprocess import Popen SRC='img/reload_scaled.png' DST='../../src/qt/res/movies/update_spinner.mng' TMPDIR='/tmp' TMPNAME='tmp-%03i.png' NUMFRAMES=35 FRAMERATE=10.0 CONVERT='convert' CLOCKWISE=True DSIZE=(16,16) im_src = Image.open(SRC) if CLOCKWISE: im_src = im_src.transpose(Image.FLIP_LEFT_RIGHT) def frame_to_filename(frame): return path.join(TMPDIR, TMPNAME % frame) frame_files = [] for frame in xrange(NUMFRAMES): rotation = (frame + 0.5) / NUMFRAMES * 360.0 if CLOCKWISE: rotation = -rotation im_new = im_src.rotate(rotation, Image.BICUBIC) im_new.thumbnail(DSIZE, Image.ANTIALIAS) outfile = frame_to_filename(frame) im_new.save(outfile, 'png') frame_files.append(outfile) p = Popen([CONVERT, "-delay", str(FRAMERATE), "-dispose", "2"] + frame_files + [DST]) p.communicate()
vlachoudis/sl4a
refs/heads/master
python/src/Doc/includes/sqlite3/executescript.py
140
import sqlite3 con = sqlite3.connect(":memory:") cur = con.cursor() cur.executescript(""" create table person( firstname, lastname, age ); create table book( title, author, published ); insert into book(title, author, published) values ( 'Dirk Gently''s Holistic Detective Agency', 'Douglas Adams', 1987 ); """)
Azure/azure-sdk-for-python
refs/heads/sync-eng/common-js-nightly-docs-2-1768-ForTestPipeline
sdk/network/azure-mgmt-privatedns/azure/mgmt/privatedns/operations/_record_sets_operations.py
1
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.mgmt.core.exceptions import ARMErrorFormat from .. import models as _models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar, Union T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class RecordSetsOperations(object): """RecordSetsOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.privatedns.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def create_or_update( self, resource_group_name, # type: str private_zone_name, # type: str record_type, # type: Union[str, "_models.RecordType"] relative_record_set_name, # type: str parameters, # type: "_models.RecordSet" if_match=None, # type: Optional[str] if_none_match=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> "_models.RecordSet" """Creates or updates a record set within a Private DNS zone. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param private_zone_name: The name of the Private DNS zone (without a terminating dot). :type private_zone_name: str :param record_type: The type of DNS record in this record set. Record sets of type SOA can be updated but not created (they are created when the Private DNS zone is created). :type record_type: str or ~azure.mgmt.privatedns.models.RecordType :param relative_record_set_name: The name of the record set, relative to the name of the zone. :type relative_record_set_name: str :param parameters: Parameters supplied to the CreateOrUpdate operation. :type parameters: ~azure.mgmt.privatedns.models.RecordSet :param if_match: The ETag of the record set. Omit this value to always overwrite the current record set. Specify the last-seen ETag value to prevent accidentally overwriting any concurrent changes. :type if_match: str :param if_none_match: Set to '*' to allow a new record set to be created, but to prevent updating an existing record set. Other values will be ignored. :type if_none_match: str :keyword callable cls: A custom type or function that will be passed the direct response :return: RecordSet, or the result of cls(response) :rtype: ~azure.mgmt.privatedns.models.RecordSet :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.RecordSet"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-09-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.create_or_update.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'privateZoneName': self._serialize.url("private_zone_name", private_zone_name, 'str'), 'recordType': self._serialize.url("record_type", record_type, 'str'), 'relativeRecordSetName': self._serialize.url("relative_record_set_name", relative_record_set_name, 'str', skip_quote=True), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] if if_match is not None: header_parameters['If-Match'] = self._serialize.header("if_match", if_match, 'str') if if_none_match is not None: header_parameters['If-None-Match'] = self._serialize.header("if_none_match", if_none_match, 'str') header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'RecordSet') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('RecordSet', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('RecordSet', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/privateDnsZones/{privateZoneName}/{recordType}/{relativeRecordSetName}'} # type: ignore def update( self, resource_group_name, # type: str private_zone_name, # type: str record_type, # type: Union[str, "_models.RecordType"] relative_record_set_name, # type: str parameters, # type: "_models.RecordSet" if_match=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> "_models.RecordSet" """Updates a record set within a Private DNS zone. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param private_zone_name: The name of the Private DNS zone (without a terminating dot). :type private_zone_name: str :param record_type: The type of DNS record in this record set. :type record_type: str or ~azure.mgmt.privatedns.models.RecordType :param relative_record_set_name: The name of the record set, relative to the name of the zone. :type relative_record_set_name: str :param parameters: Parameters supplied to the Update operation. :type parameters: ~azure.mgmt.privatedns.models.RecordSet :param if_match: The ETag of the record set. Omit this value to always overwrite the current record set. Specify the last-seen ETag value to prevent accidentally overwriting concurrent changes. :type if_match: str :keyword callable cls: A custom type or function that will be passed the direct response :return: RecordSet, or the result of cls(response) :rtype: ~azure.mgmt.privatedns.models.RecordSet :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.RecordSet"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-09-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.update.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'privateZoneName': self._serialize.url("private_zone_name", private_zone_name, 'str'), 'recordType': self._serialize.url("record_type", record_type, 'str'), 'relativeRecordSetName': self._serialize.url("relative_record_set_name", relative_record_set_name, 'str', skip_quote=True), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] if if_match is not None: header_parameters['If-Match'] = self._serialize.header("if_match", if_match, 'str') header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'RecordSet') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('RecordSet', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/privateDnsZones/{privateZoneName}/{recordType}/{relativeRecordSetName}'} # type: ignore def delete( self, resource_group_name, # type: str private_zone_name, # type: str record_type, # type: Union[str, "_models.RecordType"] relative_record_set_name, # type: str if_match=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> None """Deletes a record set from a Private DNS zone. This operation cannot be undone. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param private_zone_name: The name of the Private DNS zone (without a terminating dot). :type private_zone_name: str :param record_type: The type of DNS record in this record set. Record sets of type SOA cannot be deleted (they are deleted when the Private DNS zone is deleted). :type record_type: str or ~azure.mgmt.privatedns.models.RecordType :param relative_record_set_name: The name of the record set, relative to the name of the zone. :type relative_record_set_name: str :param if_match: The ETag of the record set. Omit this value to always delete the current record set. Specify the last-seen ETag value to prevent accidentally deleting any concurrent changes. :type if_match: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-09-01" accept = "application/json" # Construct URL url = self.delete.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'privateZoneName': self._serialize.url("private_zone_name", private_zone_name, 'str'), 'recordType': self._serialize.url("record_type", record_type, 'str'), 'relativeRecordSetName': self._serialize.url("relative_record_set_name", relative_record_set_name, 'str', skip_quote=True), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] if if_match is not None: header_parameters['If-Match'] = self._serialize.header("if_match", if_match, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/privateDnsZones/{privateZoneName}/{recordType}/{relativeRecordSetName}'} # type: ignore def get( self, resource_group_name, # type: str private_zone_name, # type: str record_type, # type: Union[str, "_models.RecordType"] relative_record_set_name, # type: str **kwargs # type: Any ): # type: (...) -> "_models.RecordSet" """Gets a record set. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param private_zone_name: The name of the Private DNS zone (without a terminating dot). :type private_zone_name: str :param record_type: The type of DNS record in this record set. :type record_type: str or ~azure.mgmt.privatedns.models.RecordType :param relative_record_set_name: The name of the record set, relative to the name of the zone. :type relative_record_set_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: RecordSet, or the result of cls(response) :rtype: ~azure.mgmt.privatedns.models.RecordSet :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.RecordSet"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-09-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'privateZoneName': self._serialize.url("private_zone_name", private_zone_name, 'str'), 'recordType': self._serialize.url("record_type", record_type, 'str'), 'relativeRecordSetName': self._serialize.url("relative_record_set_name", relative_record_set_name, 'str', skip_quote=True), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('RecordSet', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/privateDnsZones/{privateZoneName}/{recordType}/{relativeRecordSetName}'} # type: ignore def list_by_type( self, resource_group_name, # type: str private_zone_name, # type: str record_type, # type: Union[str, "_models.RecordType"] top=None, # type: Optional[int] recordsetnamesuffix=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> Iterable["_models.RecordSetListResult"] """Lists the record sets of a specified type in a Private DNS zone. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param private_zone_name: The name of the Private DNS zone (without a terminating dot). :type private_zone_name: str :param record_type: The type of record sets to enumerate. :type record_type: str or ~azure.mgmt.privatedns.models.RecordType :param top: The maximum number of record sets to return. If not specified, returns up to 100 record sets. :type top: int :param recordsetnamesuffix: The suffix label of the record set name to be used to filter the record set enumeration. If this parameter is specified, the returned enumeration will only contain records that end with ".:code:`<recordsetnamesuffix>`". :type recordsetnamesuffix: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either RecordSetListResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.privatedns.models.RecordSetListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.RecordSetListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-09-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_by_type.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'privateZoneName': self._serialize.url("private_zone_name", private_zone_name, 'str'), 'recordType': self._serialize.url("record_type", record_type, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] if top is not None: query_parameters['$top'] = self._serialize.query("top", top, 'int') if recordsetnamesuffix is not None: query_parameters['$recordsetnamesuffix'] = self._serialize.query("recordsetnamesuffix", recordsetnamesuffix, 'str') query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('RecordSetListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list_by_type.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/privateDnsZones/{privateZoneName}/{recordType}'} # type: ignore def list( self, resource_group_name, # type: str private_zone_name, # type: str top=None, # type: Optional[int] recordsetnamesuffix=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> Iterable["_models.RecordSetListResult"] """Lists all record sets in a Private DNS zone. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param private_zone_name: The name of the Private DNS zone (without a terminating dot). :type private_zone_name: str :param top: The maximum number of record sets to return. If not specified, returns up to 100 record sets. :type top: int :param recordsetnamesuffix: The suffix label of the record set name to be used to filter the record set enumeration. If this parameter is specified, the returned enumeration will only contain records that end with ".:code:`<recordsetnamesuffix>`". :type recordsetnamesuffix: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either RecordSetListResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.privatedns.models.RecordSetListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.RecordSetListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-09-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'privateZoneName': self._serialize.url("private_zone_name", private_zone_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] if top is not None: query_parameters['$top'] = self._serialize.query("top", top, 'int') if recordsetnamesuffix is not None: query_parameters['$recordsetnamesuffix'] = self._serialize.query("recordsetnamesuffix", recordsetnamesuffix, 'str') query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('RecordSetListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/privateDnsZones/{privateZoneName}/ALL'} # type: ignore
abought/osf.io
refs/heads/develop
website/notifications/constants.py
4
NODE_SUBSCRIPTIONS_AVAILABLE = { 'comments': 'Comments added', 'file_updated': 'Files updated' } # Note: if the subscription starts with 'global_', it will be treated like a default # subscription. If no notification type has been assigned, the user subscription # will default to 'email_transactional'. USER_SUBSCRIPTIONS_AVAILABLE = { 'global_comment_replies': 'Replies to your comments', 'global_comments': 'Comments added', 'global_file_updated': 'Files updated' } # Note: the python value None mean inherit from parent NOTIFICATION_TYPES = { 'email_transactional': 'Email when a change occurs', 'email_digest': 'Daily email digest of all changes to this project', 'none': 'None' } # Formatted file provider names for notification emails PROVIDERS = { 'osfstorage': 'OSF Storage', 'box': 'Box', 'dataverse': 'Dataverse', 'dropbox': 'Dropbox', 'figshare': 'figshare', 'github': 'GitHub', 'googledrive': 'Google Drive', 's3': 'Amazon S3' }
adsabs/kibtools
refs/heads/master
kibtools/tests/stub_data.py
2
import json all_dashboards = { "_shards": { "failed": 0, "successful": 1, "total": 1 }, "hits": { "hits": [ { "_id": "GETDash", "_index": ".kibana", "_score": 1.0, "_source": { "description": "", "hits": 0, "kibanaSavedObjectMeta": { "searchSourceJSON": "{\"filter\":[{\"query\":{\"query_string\":{\"query\":\"*\",\"analyze_wildcard\":true}}}]}" }, "panelsJSON": "[{\"id\":\"GETViz\",\"type\":\"visualization\",\"size_x\":3,\"size_y\":2,\"col\":1,\"row\":1}]", "title": "GETDash", "version": 1 }, "_type": "dashboard" }, { "_id": "GETDash2", "_index": ".kibana", "_score": 1.0, "_source": { "description": "", "hits": 0, "kibanaSavedObjectMeta": { "searchSourceJSON": "{\"filter\":[{\"query\":{\"query_string\":{\"query\":\"*\",\"analyze_wildcard\":true}}}]}" }, "panelsJSON": "[{\"id\":\"GETViz\",\"type\":\"visualization\",\"size_x\":3,\"size_y\":2,\"col\":1,\"row\":1}]", "title": "GETDash2", "version": 1 }, "_type": "dashboard" } ], "max_score": 1.0, "total": 2 }, "timed_out": False, "took": 1 } all_visualizations = { "_shards": { "failed": 0, "successful": 1, "total": 1 }, "hits": { "hits": [ { "_id": "GETViz", "_index": ".kibana", "_score": 1.0, "_source": { "description": "", "kibanaSavedObjectMeta": { "searchSourceJSON": "{\"filter\":[]}" }, "savedSearchId": "GET", "title": "GETViz", "version": 1, "visState": "{\"aggs\":[{\"id\":\"1\",\"params\":{},\"schema\":\"metric\",\"type\":\"count\"},{\"id\":\"2\",\"params\":{\"extended_bounds\":{},\"field\":\"@timestamp\",\"interval\":\"auto\",\"min_doc_count\":1},\"schema\":\"segment\",\"type\":\"date_histogram\"}],\"listeners\":{},\"params\":{\"addLegend\":true,\"addTooltip\":true,\"defaultYExtents\":false,\"mode\":\"stacked\",\"shareYAxis\":true},\"type\":\"area\"}" }, "_type": "visualization" } ], "max_score": 1.0, "total": 1 }, "timed_out": False, "took": 1 } all_searches = { "_shards": { "failed": 0, "successful": 1, "total": 1 }, "hits": { "hits": [ { "_id": "GET", "_index": ".kibana", "_score": 1.0, "_source": { "columns": [ "_source" ], "description": "", "hits": 0, "kibanaSavedObjectMeta": { "searchSourceJSON": "{\"index\":\"[logstash-]YYYY.MM.DD\",\"highlight\":{\"pre_tags\":[\"@kibana-highlighted-field@\"],\"post_tags\":[\"@/kibana-highlighted-field@\"],\"fields\":{\"*\":{}}},\"filter\":[],\"query\":{\"query_string\":{\"query\":\"GET\",\"analyze_wildcard\":true}}}" }, "sort": [ "@timestamp", "desc" ], "title": "GET", "version": 1 }, "_type": "search" } ], "max_score": 1.0, "total": 1 }, "timed_out": False, "took": 1 } stub_data = { '_search/dashboard': all_dashboards, '_search/visualization': all_visualizations, '_search/search': all_searches, }
PaddlePaddle/models
refs/heads/develop
PaddleCV/video/models/nonlocal_model/nonlocal_helper.py
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. from __future__ import division from __future__ import print_function from __future__ import unicode_literals import paddle import paddle.fluid as fluid from paddle.fluid import ParamAttr # 3d spacetime nonlocal (v1, spatial downsample) def spacetime_nonlocal(blob_in, dim_in, dim_out, batch_size, prefix, dim_inner, cfg, \ test_mode = False, max_pool_stride = 2): #------------ cur = blob_in # we do projection to convert each spacetime location to a feature # theta original size # e.g., (8, 1024, 4, 14, 14) => (8, 1024, 4, 14, 14) theta = fluid.layers.conv3d( input=cur, num_filters=dim_inner, filter_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], param_attr=ParamAttr( name=prefix + '_theta' + "_w", initializer=fluid.initializer.Normal( loc=0.0, scale=cfg.NONLOCAL.conv_init_std)), bias_attr=ParamAttr( name=prefix + '_theta' + "_b", initializer=fluid.initializer.Constant(value=0.)) if (cfg.NONLOCAL.no_bias == 0) else False, name=prefix + '_theta') theta_shape = theta.shape # phi and g: half spatial size # e.g., (8, 1024, 4, 14, 14) => (8, 1024, 4, 7, 7) if cfg.NONLOCAL.use_maxpool: max_pool = fluid.layers.pool3d( input=cur, pool_size=[1, max_pool_stride, max_pool_stride], pool_type='max', pool_stride=[1, max_pool_stride, max_pool_stride], pool_padding=[0, 0, 0], name=prefix + '_pool') else: max_pool = cur phi = fluid.layers.conv3d( input=max_pool, num_filters=dim_inner, filter_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], param_attr=ParamAttr( name=prefix + '_phi' + "_w", initializer=fluid.initializer.Normal( loc=0.0, scale=cfg.NONLOCAL.conv_init_std)), bias_attr=ParamAttr( name=prefix + '_phi' + "_b", initializer=fluid.initializer.Constant(value=0.)) if (cfg.NONLOCAL.no_bias == 0) else False, name=prefix + '_phi') phi_shape = phi.shape g = fluid.layers.conv3d( input=max_pool, num_filters=dim_inner, filter_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], param_attr=ParamAttr( name=prefix + '_g' + "_w", initializer=fluid.initializer.Normal( loc=0.0, scale=cfg.NONLOCAL.conv_init_std)), bias_attr=ParamAttr( name=prefix + '_g' + "_b", initializer=fluid.initializer.Constant(value=0.)) if (cfg.NONLOCAL.no_bias == 0) else False, name=prefix + '_g') g_shape = g.shape # we have to use explicit batch size (to support arbitrary spacetime size) # e.g. (8, 1024, 4, 14, 14) => (8, 1024, 784) theta = fluid.layers.reshape( theta, [-1, 0, theta_shape[2] * theta_shape[3] * theta_shape[4]]) theta = fluid.layers.transpose(theta, [0, 2, 1]) phi = fluid.layers.reshape( phi, [-1, 0, phi_shape[2] * phi_shape[3] * phi_shape[4]]) theta_phi = fluid.layers.matmul(theta, phi, name=prefix + '_affinity') g = fluid.layers.reshape(g, [-1, 0, g_shape[2] * g_shape[3] * g_shape[4]]) if cfg.NONLOCAL.use_softmax: if cfg.NONLOCAL.use_scale is True: theta_phi_sc = fluid.layers.scale(theta_phi, scale=dim_inner**-.5) else: theta_phi_sc = theta_phi p = fluid.layers.softmax( theta_phi_sc, name=prefix + '_affinity' + '_prob') else: # not clear about what is doing in xlw's code p = None # not implemented raise "Not implemented when not use softmax" # note g's axis[2] corresponds to p's axis[2] # e.g. g(8, 1024, 784_2) * p(8, 784_1, 784_2) => (8, 1024, 784_1) p = fluid.layers.transpose(p, [0, 2, 1]) t = fluid.layers.matmul(g, p, name=prefix + '_y') # reshape back # e.g. (8, 1024, 784) => (8, 1024, 4, 14, 14) t_shape = t.shape # print(t_shape) # print(theta_shape) t_re = fluid.layers.reshape(t, shape=list(theta_shape)) blob_out = t_re blob_out = fluid.layers.conv3d( input=blob_out, num_filters=dim_out, filter_size=[1, 1, 1], stride=[1, 1, 1], padding=[0, 0, 0], param_attr=ParamAttr( name=prefix + '_out' + "_w", initializer=fluid.initializer.Constant(value=0.) if cfg.NONLOCAL.use_zero_init_conv else fluid.initializer.Normal( loc=0.0, scale=cfg.NONLOCAL.conv_init_std)), bias_attr=ParamAttr( name=prefix + '_out' + "_b", initializer=fluid.initializer.Constant(value=0.)) if (cfg.NONLOCAL.no_bias == 0) else False, name=prefix + '_out') blob_out_shape = blob_out.shape if cfg.NONLOCAL.use_bn is True: bn_name = prefix + "_bn" blob_out = fluid.layers.batch_norm( blob_out, is_test=test_mode, momentum=cfg.NONLOCAL.bn_momentum, epsilon=cfg.NONLOCAL.bn_epsilon, name=bn_name, param_attr=ParamAttr( name=bn_name + "_scale", initializer=fluid.initializer.Constant( value=cfg.NONLOCAL.bn_init_gamma), regularizer=fluid.regularizer.L2Decay( cfg.TRAIN.weight_decay_bn)), bias_attr=ParamAttr( name=bn_name + "_offset", regularizer=fluid.regularizer.L2Decay( cfg.TRAIN.weight_decay_bn)), moving_mean_name=bn_name + "_mean", moving_variance_name=bn_name + "_variance") # add bn if cfg.NONLOCAL.use_affine is True: affine_scale = fluid.layers.create_parameter( shape=[blob_out_shape[1]], dtype=blob_out.dtype, attr=ParamAttr(name=prefix + '_affine' + '_s'), default_initializer=fluid.initializer.Constant(value=1.)) affine_bias = fluid.layers.create_parameter( shape=[blob_out_shape[1]], dtype=blob_out.dtype, attr=ParamAttr(name=prefix + '_affine' + '_b'), default_initializer=fluid.initializer.Constant(value=0.)) blob_out = fluid.layers.affine_channel( blob_out, scale=affine_scale, bias=affine_bias, name=prefix + '_affine') # add affine return blob_out def add_nonlocal(blob_in, dim_in, dim_out, batch_size, prefix, dim_inner, cfg, test_mode=False): blob_out = spacetime_nonlocal(blob_in, \ dim_in, dim_out, batch_size, prefix, dim_inner, cfg, test_mode = test_mode) blob_out = fluid.layers.elementwise_add( blob_out, blob_in, name=prefix + '_sum') return blob_out # this is to reduce memory usage if the feature maps are big # devide the feature maps into groups in the temporal dimension, # and perform non-local operations inside each group. def add_nonlocal_group(blob_in, dim_in, dim_out, batch_size, pool_stride, height, width, group_size, prefix, dim_inner, cfg, test_mode=False): group_num = int(pool_stride / group_size) assert (pool_stride % group_size == 0), \ 'nonlocal block {}: pool_stride({}) should be divided by group size({})'.format(prefix, pool_stride, group_size) if group_num > 1: blob_in = fluid.layers.transpose( blob_in, [0, 2, 1, 3, 4], name=prefix + '_pre_trans1') blob_in = fluid.layers.reshape( blob_in, [batch_size * group_num, group_size, dim_in, height, width], name=prefix + '_pre_reshape1') blob_in = fluid.layers.transpose( blob_in, [0, 2, 1, 3, 4], name=prefix + '_pre_trans2') blob_out = spacetime_nonlocal( blob_in, dim_in, dim_out, batch_size, prefix, dim_inner, cfg, test_mode=test_mode) blob_out = fluid.layers.elementwise_add( blob_out, blob_in, name=prefix + '_sum') if group_num > 1: blob_out = fluid.layers.transpose( blob_out, [0, 2, 1, 3, 4], name=prefix + '_post_trans1') blob_out = fluid.layers.reshape( blob_out, [batch_size, group_num * group_size, dim_out, height, width], name=prefix + '_post_reshape1') blob_out = fluid.layers.transpose( blob_out, [0, 2, 1, 3, 4], name=prefix + '_post_trans2') return blob_out
navotsil/Open-Knesset
refs/heads/master
notify/management/commands/notify.py
8
from __future__ import absolute_import from django.core.management.base import NoArgsCommand from django.contrib.auth.models import User,Group from django.contrib.contenttypes.models import ContentType from django.contrib.sites.models import Site from django.utils.translation import ugettext as _ from django.utils import translation from django.template.loader import render_to_string from django.template import TemplateDoesNotExist from django.conf import settings from django.core.cache import cache import datetime from optparse import make_option import logging logger = logging.getLogger("open-knesset.notify") from actstream.models import Follow, Action from mailer import send_html_mail from mks.models import Member from laws.models import Bill, get_debated_bills from agendas.models import Agenda from notify.models import LastSent from user.models import UserProfile from committees.models import Topic class Command(NoArgsCommand): help = "Send e-mail notification to users that requested it." requires_model_validation = False update_models = [Member, Bill, Agenda, Topic, None] from_email = getattr(settings, 'DEFAULT_FROM_EMAIL', '[email protected]') days_back = getattr(settings, 'DEFAULT_NOTIFICATION_DAYS_BACK', 10) lang = getattr(settings, 'LANGUAGE_CODE', 'he') @property def domain(self): if not hasattr(self, '_domain'): self._domain = Site.objects.get_current().domain return self._domain option_list = NoArgsCommand.option_list + ( make_option('--daily', action='store_true', dest='daily', help="send notifications to users that requested a daily update"), make_option('--weekly', action='store_true', dest='weekly', help="send notifications to users that requested a weekly update")) def agenda_update(self, agenda): ''' generate the general update email for this agenda. this will be called, and its output added to the email, if and only if there has been some update in it's data. ''' mks = agenda.selected_instances(Member) template_name = 'notify/agenda_update' update_txt = render_to_string(template_name + '.txt', {'mks':mks, 'domain':self.domain}) update_html = render_to_string(template_name + '.html', {'mks':mks, 'domain':self.domain}) return (update_txt,update_html) @classmethod def get_model_headers(cls, model): ''' for a given model this function returns a tuple with (model, text_header, html_header) ''' try: template_name = 'notify/%s_section' % model.__name__.lower() return (model, render_to_string(template_name + '.txt'), render_to_string(template_name + '.html')) except TemplateDoesNotExist: return (model, model._meta.verbose_name_plural, '<h2>%s</h2>' % model._meta.verbose_name_plural.format()) except AttributeError: return (model, _('Other Updates'), '<h2>%s</h2>' % _('Other Updates')) def get_email_for_user(self, user): ''' return the body text and html for a user's email ''' updates = dict(zip(self.update_models, ([] for x in self.update_models))) # will contain the updates to be sent updates_html = dict(zip(self.update_models, ([] for x in self.update_models))) follows = Follow.objects.filter(user=user) # everything this user is following # sometime a user follows something several times. we want to filter that out: follows = set([f.actor for f in follows]) for f in follows: if not f: logger.warning('Follow object with None actor. ignoring') continue model_class = f.__class__ model_template = f.__class__.__name__.lower() try: model_name = f.__class__._meta.verbose_name except AttributeError: logger.warning('follows %d has no __class__?' % f.id) model_name = "" content_type = ContentType.objects.get_for_model(f) if model_class in updates: key = model_class else: key = None # put all updates for 'other' classes at the 'None' group try: # get actions that happened since last update last_sent = LastSent.objects.get(user=user, content_type=content_type, object_pk=f.id) last_sent_time = last_sent.time stream = Action.objects.filter(actor_content_type = content_type, actor_object_id = f.id, timestamp__gt=last_sent_time, ).order_by('-timestamp') if stream: # if there are updates to be sent, last_sent.save() # update timestamp of last sent except LastSent.DoesNotExist: # never updated about this actor, send some updates stream = Action.objects.filter(actor_content_type = content_type, actor_object_id = f.id, timestamp__gt=datetime.datetime.now()-datetime.timedelta(self.days_back), ).order_by('-timestamp') last_sent = LastSent.objects.create(user=user,content_type=content_type, object_pk=f.id) if stream: # this actor has some updates try: # genereate the appropriate header for this actor class header = render_to_string(('notify/%(model)s_header.txt' % {'model': model_template}),{'model':model_name,'object':f}) except TemplateDoesNotExist: header = render_to_string(('notify/model_header.txt'),{'model':model_name,'object':f}) try: header_html = render_to_string(('notify/%(model)s_header.html' % {'model': model_template}),{'model':model_name,'object':f,'domain':self.domain}) except TemplateDoesNotExist: header_html = render_to_string(('notify/model_header.html'),{'model':model_name,'object':f,'domain':self.domain}) updates[key].append(header) updates_html[key].append(header_html) for action_instance in stream: # now generate the updates themselves try: action_output = render_to_string(('activity/%(verb)s/action_email.txt' % { 'verb':action_instance.verb.replace(' ','_') }),{ 'action':action_instance },None) except TemplateDoesNotExist: # fallback to the generic template action_output = render_to_string(('activity/action_email.txt'),{ 'action':action_instance },None) try: action_output_html = render_to_string(('activity/%(verb)s/action_email.html' % { 'verb':action_instance.verb.replace(' ','_') }),{ 'action':action_instance,'domain':self.domain },None) except TemplateDoesNotExist: # fallback to the generic template action_output_html = render_to_string(('activity/action_email.html'),{ 'action':action_instance,'domain':self.domain },None) updates[key].append(action_output) updates_html[key].append(action_output_html) if model_class == Agenda: txt,html = self.agenda_update(f) updates[key].append(txt) updates_html[key].append(html) email_body = [] email_body_html = [] # Add the updates for followed models for (model_class,title,title_html) in map(self.get_model_headers, self.update_models): if updates[model_class]: # this model has some updates, add it to the email email_body.append(title.format()) email_body.append('\n'.join(updates[model_class])) email_body_html.append(title_html.format()) email_body_html.append(''.join(updates_html[model_class])) if email_body or email_body_html: # Generate party membership section if needed up = UserProfile.objects.filter(user=user).select_related('party') if up: up = up[0] party = up.party if party: num_members = cache.get('party_num_members_%d' % party.id, None) if not num_members: num_members = party.userprofile_set.count() cache.set('party_num_members_%d' % party.id, num_members, settings.LONG_CACHE_TIME) else: num_members = None debated_bills = get_debated_bills() or [] template_name = 'notify/party_membership' party_membership_txt = render_to_string(template_name + '.txt', {'user':user, 'userprofile':up, 'num_members':num_members, 'bills':debated_bills, 'domain':self.domain}) party_membership_html = render_to_string(template_name + '.html', {'user':user, 'userprofile':up, 'num_members':num_members, 'bills':debated_bills, 'domain':self.domain}) else: logger.warning('Can\'t find user profile') if email_body: email_body.insert(0, party_membership_txt) if email_body_html: email_body_html.insert(0, party_membership_html) return (email_body, email_body_html) def handle_noargs(self, **options): daily = options.get('daily', False) weekly = options.get('weekly', False) if not daily and not weekly: print "use --daily or --weekly" return translation.activate(self.lang) email_notification = [] if daily: email_notification.append('D') if weekly: email_notification.append('W') queued = 0 g = Group.objects.get(name='Valid Email') for user in User.objects.filter(groups=g, profiles__isnull=False)\ .exclude(email=''): try: user_profile = user.get_profile() except UserProfile.DoesNotExist: logger.warn('can\'t access user %d userprofile' % user.id) continue if (user_profile.email_notification in email_notification): # if this user has requested emails in the frequency we are # handling now email_body, email_body_html = self.get_email_for_user(user) if email_body: # there are some updates. generate email header = render_to_string(('notify/header.txt'),{ 'user':user }) footer = render_to_string(('notify/footer.txt'),{ 'user':user,'domain':self.domain }) header_html = render_to_string(('notify/header.html'),{ 'user':user }) footer_html = render_to_string(('notify/footer.html'),{ 'user':user,'domain':self.domain }) send_html_mail(_('Open Knesset Updates'), "%s\n%s\n%s" % (header, '\n'.join(email_body), footer), "%s\n%s\n%s" % (header_html, ''.join(email_body_html), footer_html), self.from_email, [user.email], ) queued += 1 logger.info("%d email notifications queued for sending" % queued) translation.deactivate()
shepdelacreme/ansible
refs/heads/devel
lib/ansible/plugins/lookup/cartesian.py
141
# (c) 2013, Bradley Young <[email protected]> # (c) 2017 Ansible Project # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import (absolute_import, division, print_function) __metaclass__ = type DOCUMENTATION = """ lookup: cartesian version_added: "2.1" short_description: returns the cartesian product of lists description: - Takes the input lists and returns a list that represents the product of the input lists. - It is clearer with an example, it turns [1, 2, 3], [a, b] into [1, a], [1, b], [2, a], [2, b], [3, a], [3, b]. You can see the exact syntax in the examples section. options: _raw: description: - a set of lists required: True """ EXAMPLES = """ - name: Example of the change in the description debug: msg="{{ [1,2,3]|lookup('cartesian', [a, b])}}" - name: loops over the cartesian product of the supplied lists debug: msg="{{item}}" with_cartesian: - "{{list1}}" - "{{list2}}" - [1,2,3,4,5,6] """ RETURN = """ _list: description: - list of lists composed of elements of the input lists type: lists """ from itertools import product from ansible.errors import AnsibleError from ansible.plugins.lookup import LookupBase from ansible.utils.listify import listify_lookup_plugin_terms class LookupModule(LookupBase): """ Create the cartesian product of lists """ def _lookup_variables(self, terms): """ Turn this: terms == ["1,2,3", "a,b"] into this: terms == [[1,2,3], [a, b]] """ results = [] for x in terms: intermediate = listify_lookup_plugin_terms(x, templar=self._templar, loader=self._loader) results.append(intermediate) return results def run(self, terms, variables=None, **kwargs): terms = self._lookup_variables(terms) my_list = terms[:] if len(my_list) == 0: raise AnsibleError("with_cartesian requires at least one element in each list") return [self._flatten(x) for x in product(*my_list)]
bitifirefly/edx-platform
refs/heads/master
lms/djangoapps/bulk_email/migrations/0009_force_unique_course_ids.py
114
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding unique constraint on 'CourseAuthorization', fields ['course_id'] db.create_unique('bulk_email_courseauthorization', ['course_id']) def backwards(self, orm): # Removing unique constraint on 'CourseAuthorization', fields ['course_id'] db.delete_unique('bulk_email_courseauthorization', ['course_id']) models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'bulk_email.courseauthorization': { 'Meta': {'object_name': 'CourseAuthorization'}, 'course_id': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '255', 'db_index': 'True'}), 'email_enabled': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, 'bulk_email.courseemail': { 'Meta': {'object_name': 'CourseEmail'}, 'course_id': ('django.db.models.fields.CharField', [], {'max_length': '255', 'db_index': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'html_message': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'sender': ('django.db.models.fields.related.ForeignKey', [], {'default': '1', 'to': "orm['auth.User']", 'null': 'True', 'blank': 'True'}), 'slug': ('django.db.models.fields.CharField', [], {'max_length': '128', 'db_index': 'True'}), 'subject': ('django.db.models.fields.CharField', [], {'max_length': '128', 'blank': 'True'}), 'text_message': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'to_option': ('django.db.models.fields.CharField', [], {'default': "'myself'", 'max_length': '64'}) }, 'bulk_email.courseemailtemplate': { 'Meta': {'object_name': 'CourseEmailTemplate'}, 'html_template': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'plain_template': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}) }, 'bulk_email.optout': { 'Meta': {'unique_together': "(('user', 'course_id'),)", 'object_name': 'Optout'}, 'course_id': ('django.db.models.fields.CharField', [], {'max_length': '255', 'db_index': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']", 'null': 'True'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) } } complete_apps = ['bulk_email']
majintao0131/yaml-cpp.core
refs/heads/master
test/gmock-1.7.0/gtest/test/gtest_break_on_failure_unittest.py
2140
#!/usr/bin/env python # # Copyright 2006, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Unit test for Google Test's break-on-failure mode. A user can ask Google Test to seg-fault when an assertion fails, using either the GTEST_BREAK_ON_FAILURE environment variable or the --gtest_break_on_failure flag. This script tests such functionality by invoking gtest_break_on_failure_unittest_ (a program written with Google Test) with different environments and command line flags. """ __author__ = '[email protected] (Zhanyong Wan)' import gtest_test_utils import os import sys # Constants. IS_WINDOWS = os.name == 'nt' # The environment variable for enabling/disabling the break-on-failure mode. BREAK_ON_FAILURE_ENV_VAR = 'GTEST_BREAK_ON_FAILURE' # The command line flag for enabling/disabling the break-on-failure mode. BREAK_ON_FAILURE_FLAG = 'gtest_break_on_failure' # The environment variable for enabling/disabling the throw-on-failure mode. THROW_ON_FAILURE_ENV_VAR = 'GTEST_THROW_ON_FAILURE' # The environment variable for enabling/disabling the catch-exceptions mode. CATCH_EXCEPTIONS_ENV_VAR = 'GTEST_CATCH_EXCEPTIONS' # Path to the gtest_break_on_failure_unittest_ program. EXE_PATH = gtest_test_utils.GetTestExecutablePath( 'gtest_break_on_failure_unittest_') environ = gtest_test_utils.environ SetEnvVar = gtest_test_utils.SetEnvVar # Tests in this file run a Google-Test-based test program and expect it # to terminate prematurely. Therefore they are incompatible with # the premature-exit-file protocol by design. Unset the # premature-exit filepath to prevent Google Test from creating # the file. SetEnvVar(gtest_test_utils.PREMATURE_EXIT_FILE_ENV_VAR, None) def Run(command): """Runs a command; returns 1 if it was killed by a signal, or 0 otherwise.""" p = gtest_test_utils.Subprocess(command, env=environ) if p.terminated_by_signal: return 1 else: return 0 # The tests. class GTestBreakOnFailureUnitTest(gtest_test_utils.TestCase): """Tests using the GTEST_BREAK_ON_FAILURE environment variable or the --gtest_break_on_failure flag to turn assertion failures into segmentation faults. """ def RunAndVerify(self, env_var_value, flag_value, expect_seg_fault): """Runs gtest_break_on_failure_unittest_ and verifies that it does (or does not) have a seg-fault. Args: env_var_value: value of the GTEST_BREAK_ON_FAILURE environment variable; None if the variable should be unset. flag_value: value of the --gtest_break_on_failure flag; None if the flag should not be present. expect_seg_fault: 1 if the program is expected to generate a seg-fault; 0 otherwise. """ SetEnvVar(BREAK_ON_FAILURE_ENV_VAR, env_var_value) if env_var_value is None: env_var_value_msg = ' is not set' else: env_var_value_msg = '=' + env_var_value if flag_value is None: flag = '' elif flag_value == '0': flag = '--%s=0' % BREAK_ON_FAILURE_FLAG else: flag = '--%s' % BREAK_ON_FAILURE_FLAG command = [EXE_PATH] if flag: command.append(flag) if expect_seg_fault: should_or_not = 'should' else: should_or_not = 'should not' has_seg_fault = Run(command) SetEnvVar(BREAK_ON_FAILURE_ENV_VAR, None) msg = ('when %s%s, an assertion failure in "%s" %s cause a seg-fault.' % (BREAK_ON_FAILURE_ENV_VAR, env_var_value_msg, ' '.join(command), should_or_not)) self.assert_(has_seg_fault == expect_seg_fault, msg) def testDefaultBehavior(self): """Tests the behavior of the default mode.""" self.RunAndVerify(env_var_value=None, flag_value=None, expect_seg_fault=0) def testEnvVar(self): """Tests using the GTEST_BREAK_ON_FAILURE environment variable.""" self.RunAndVerify(env_var_value='0', flag_value=None, expect_seg_fault=0) self.RunAndVerify(env_var_value='1', flag_value=None, expect_seg_fault=1) def testFlag(self): """Tests using the --gtest_break_on_failure flag.""" self.RunAndVerify(env_var_value=None, flag_value='0', expect_seg_fault=0) self.RunAndVerify(env_var_value=None, flag_value='1', expect_seg_fault=1) def testFlagOverridesEnvVar(self): """Tests that the flag overrides the environment variable.""" self.RunAndVerify(env_var_value='0', flag_value='0', expect_seg_fault=0) self.RunAndVerify(env_var_value='0', flag_value='1', expect_seg_fault=1) self.RunAndVerify(env_var_value='1', flag_value='0', expect_seg_fault=0) self.RunAndVerify(env_var_value='1', flag_value='1', expect_seg_fault=1) def testBreakOnFailureOverridesThrowOnFailure(self): """Tests that gtest_break_on_failure overrides gtest_throw_on_failure.""" SetEnvVar(THROW_ON_FAILURE_ENV_VAR, '1') try: self.RunAndVerify(env_var_value=None, flag_value='1', expect_seg_fault=1) finally: SetEnvVar(THROW_ON_FAILURE_ENV_VAR, None) if IS_WINDOWS: def testCatchExceptionsDoesNotInterfere(self): """Tests that gtest_catch_exceptions doesn't interfere.""" SetEnvVar(CATCH_EXCEPTIONS_ENV_VAR, '1') try: self.RunAndVerify(env_var_value='1', flag_value='1', expect_seg_fault=1) finally: SetEnvVar(CATCH_EXCEPTIONS_ENV_VAR, None) if __name__ == '__main__': gtest_test_utils.Main()
rosmo/aurora
refs/heads/master
src/main/python/apache/thermos/monitoring/__init__.py
296
# # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #
jigpu/input
refs/heads/master
scripts/gdb/linux/dmesg.py
249
# # gdb helper commands and functions for Linux kernel debugging # # kernel log buffer dump # # Copyright (c) Siemens AG, 2011, 2012 # # Authors: # Jan Kiszka <[email protected]> # # This work is licensed under the terms of the GNU GPL version 2. # import gdb from linux import utils class LxDmesg(gdb.Command): """Print Linux kernel log buffer.""" def __init__(self): super(LxDmesg, self).__init__("lx-dmesg", gdb.COMMAND_DATA) def invoke(self, arg, from_tty): log_buf_addr = int(str(gdb.parse_and_eval("log_buf")).split()[0], 16) log_first_idx = int(gdb.parse_and_eval("log_first_idx")) log_next_idx = int(gdb.parse_and_eval("log_next_idx")) log_buf_len = int(gdb.parse_and_eval("log_buf_len")) inf = gdb.inferiors()[0] start = log_buf_addr + log_first_idx if log_first_idx < log_next_idx: log_buf_2nd_half = -1 length = log_next_idx - log_first_idx log_buf = utils.read_memoryview(inf, start, length).tobytes() else: log_buf_2nd_half = log_buf_len - log_first_idx a = utils.read_memoryview(inf, start, log_buf_2nd_half) b = utils.read_memoryview(inf, log_buf_addr, log_next_idx) log_buf = a.tobytes() + b.tobytes() pos = 0 while pos < log_buf.__len__(): length = utils.read_u16(log_buf[pos + 8:pos + 10]) if length == 0: if log_buf_2nd_half == -1: gdb.write("Corrupted log buffer!\n") break pos = log_buf_2nd_half continue text_len = utils.read_u16(log_buf[pos + 10:pos + 12]) text = log_buf[pos + 16:pos + 16 + text_len].decode() time_stamp = utils.read_u64(log_buf[pos:pos + 8]) for line in text.splitlines(): gdb.write("[{time:12.6f}] {line}\n".format( time=time_stamp / 1000000000.0, line=line)) pos += length LxDmesg()
kakwa/dnscherry
refs/heads/master
dnscherry/auth/modNone.py
1
# -*- coding: utf-8 -*- # vim:set expandtab tabstop=4 shiftwidth=4: # The MIT License (MIT) # DnsCherry # Copyright (c) 2014 Carpentier Pierre-Francois import cherrypy import dnscherry.auth class Auth(dnscherry.auth.Auth): def __init__(self, config, logger=None): # no need for a logout button self.logout_button = False if 'auth.user_header_name' in config: self.user_header_name = config['auth.none.user_header_name'] else: self.user_header_name = None def check_auth(self): if self.user_header_name is None: return 'unknown user' else: if self.user_header_name in cherrypy.request.headers: return cherrypy.request.headers[self.user_header_name] else: raise cherrypy.HTTPError( "403 Forbidden", "You are not allowed to access this resource." )
GustavoHennig/ansible
refs/heads/devel
lib/ansible/modules/network/nxos/nxos_vpc.py
19
#!/usr/bin/python # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # ANSIBLE_METADATA = {'metadata_version': '1.0', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: nxos_vpc extends_documentation_fragment: nxos version_added: "2.2" short_description: Manages global VPC configuration description: - Manages global VPC configuration author: - Jason Edelman (@jedelman8) - Gabriele Gerbino (@GGabriele) notes: - The feature vpc must be enabled before this module can be used - If not using management vrf, vrf must be globally on the device before using in the pkl config - Although source IP isn't required on the command line it is required when using this module. The PKL VRF must also be configured prior to using this module. - Both pkl_src and pkl_dest are needed when changing PKL VRF. options: domain: description: - VPC domain required: true role_priority: description: - Role priority for device. Remember lower is better. required: false default: null system_priority: description: - System priority device. Remember they must match between peers. required: false default: null pkl_src: description: - Source IP address used for peer keepalive link required: false default: null pkl_dest: description: - Destination (remote) IP address used for peer keepalive link required: false default: null pkl_vrf: description: - VRF used for peer keepalive link required: false default: management peer_gw: description: - Enables/Disables peer gateway required: true choices: ['true','false'] auto_recovery: description: - Enables/Disables auto recovery required: true choices: ['true','false'] delay_restore: description: - manages delay restore command and config value in seconds required: false default: null state: description: - Manages desired state of the resource required: true choices: ['present','absent'] ''' EXAMPLES = ''' # configure a simple asn - nxos_vpc: domain: 100 role_priority: 1000 system_priority: 2000 pkl_dest: 192.168.100.4 pkl_src: 10.1.100.20 peer_gw: true auto_recovery: true username: "{{ un }}" password: "{{ pwd }}" host: "{{ inventory_hostname }}" ''' RETURN = ''' proposed: description: k/v pairs of parameters passed into module returned: always type: dict sample: {"auto_recovery": true, "domain": "100", "peer_gw": true, "pkl_dest": "192.168.100.4", "pkl_src": "10.1.100.20", "pkl_vrf": "management", "role_priority": "1000", "system_priority": "2000"} existing: description: k/v pairs of existing VPC configuration type: dict sample: {"auto_recovery": true, "delay_restore": null, "domain": "100", "peer_gw": true, "pkl_dest": "192.168.100.2", "pkl_src": "10.1.100.20", "pkl_vrf": "management", "role_priority": "1000", "system_priority": "2000"} end_state: description: k/v pairs of VPC configuration after module execution returned: always type: dict sample: {"auto_recovery": true, "domain": "100", "peer_gw": true, "pkl_dest": "192.168.100.4", "pkl_src": "10.1.100.20", "pkl_vrf": "management", "role_priority": "1000", "system_priority": "2000"} updates: description: commands sent to the device returned: always type: list sample: ["vpc domain 100", "peer-keepalive destination 192.168.100.4 source 10.1.100.20 vrf management", "auto-recovery", "peer-gateway"] changed: description: check to see if a change was made on the device returned: always type: boolean sample: true ''' from ansible.module_utils.nxos import get_config, load_config, run_commands from ansible.module_utils.nxos import nxos_argument_spec, check_args from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.netcfg import CustomNetworkConfig def execute_show_command(command, module, command_type='cli_show'): if module.params['transport'] == 'cli': if "section" not in command: command += ' | json' cmds = [command] body = run_commands(module, cmds) elif module.params['transport'] == 'nxapi': cmds = [command] body = run_commands(module, cmds) return body def flatten_list(command_lists): flat_command_list = [] for command in command_lists: if isinstance(command, list): flat_command_list.extend(command) else: flat_command_list.append(command) return flat_command_list def get_vrf_list(module): command = 'show vrf all' vrf_table = None body = execute_show_command(command, module) try: vrf_table = body[0]['TABLE_vrf']['ROW_vrf'] except (KeyError, AttributeError): return [] vrf_list = [] if vrf_table: for each in vrf_table: vrf_list.append(str(each['vrf_name'].lower())) return vrf_list def get_autorecovery(auto): auto_recovery = auto.split(' ')[0] if 'enabled' in auto_recovery.lower(): return True else: return False def get_vpc_running_config(module): command = 'show running section vpc' body = execute_show_command(command, module, command_type='cli_show_ascii') return body def get_vpc(module): vpc = {} command = 'show vpc' body = execute_show_command(command, module)[0] domain = str(body['vpc-domain-id']) auto_recovery = get_autorecovery(str( body['vpc-auto-recovery-status'])) if domain != 'not configured': delay_restore = None pkl_src = None role_priority = None system_priority = None pkl_dest = None pkl_vrf = None peer_gw = False run = get_vpc_running_config(module)[0] if run: vpc_list = run.split('\n') for each in vpc_list: if 'delay restore' in each: line = each.split() if len(line) == 5: delay_restore = line[-1] if 'peer-keepalive destination' in each: line = each.split() pkl_dest = line[2] for word in line: if 'source' in word: index = line.index(word) pkl_src = line[index + 1] if 'role priority' in each: line = each.split() role_priority = line[-1] if 'system-priority' in each: line = each.split() system_priority = line[-1] if 'peer-gateway' in each: peer_gw = True command = 'show vpc peer-keepalive' body = execute_show_command(command, module)[0] if body: pkl_dest = body['vpc-keepalive-dest'] if 'N/A' in pkl_dest: pkl_dest = None elif len(pkl_dest) == 2: pkl_dest = pkl_dest[0] pkl_vrf = str(body['vpc-keepalive-vrf']) vpc['domain'] = domain vpc['auto_recovery'] = auto_recovery vpc['delay_restore'] = delay_restore vpc['pkl_src'] = pkl_src vpc['role_priority'] = role_priority vpc['system_priority'] = system_priority vpc['pkl_dest'] = pkl_dest vpc['pkl_vrf'] = pkl_vrf vpc['peer_gw'] = peer_gw else: vpc = {} return vpc def get_commands_to_config_vpc(module, vpc, domain, existing): vpc = dict(vpc) domain_only = vpc.get('domain') pkl_src = vpc.get('pkl_src') pkl_dest = vpc.get('pkl_dest') pkl_vrf = vpc.get('pkl_vrf') or existing.get('pkl_vrf') vpc['pkl_vrf'] = pkl_vrf commands = [] if pkl_src or pkl_dest: if pkl_src is None: vpc['pkl_src'] = existing.get('pkl_src') elif pkl_dest is None: vpc['pkl_dest'] = existing.get('pkl_dest') pkl_command = 'peer-keepalive destination {pkl_dest}'.format(**vpc) \ + ' source {pkl_src} vrf {pkl_vrf}'.format(**vpc) commands.append(pkl_command) elif pkl_vrf: pkl_src = existing.get('pkl_src') pkl_dest = existing.get('pkl_dest') if pkl_src and pkl_dest: pkl_command = ('peer-keepalive destination {0}' ' source {1} vrf {2}'.format(pkl_dest, pkl_src, pkl_vrf)) commands.append(pkl_command) if vpc.get('auto_recovery') is False: vpc['auto_recovery'] = 'no' else: vpc['auto_recovery'] = '' if vpc.get('peer_gw') is False: vpc['peer_gw'] = 'no' else: vpc['peer_gw'] = '' CONFIG_ARGS = { 'role_priority': 'role priority {role_priority}', 'system_priority': 'system-priority {system_priority}', 'delay_restore': 'delay restore {delay_restore}', 'peer_gw': '{peer_gw} peer-gateway', 'auto_recovery': '{auto_recovery} auto-recovery', } for param, value in vpc.items(): command = CONFIG_ARGS.get(param, 'DNE').format(**vpc) if command and command != 'DNE': commands.append(command.strip()) command = None if commands or domain_only: commands.insert(0, 'vpc domain {0}'.format(domain)) return commands def get_commands_to_remove_vpc_interface(portchannel, config_value): commands = [] command = 'no vpc {0}'.format(config_value) commands.append(command) commands.insert(0, 'interface port-channel{0}'.format(portchannel)) return commands def main(): argument_spec = dict( domain=dict(required=True, type='str'), role_priority=dict(required=False, type='str'), system_priority=dict(required=False, type='str'), pkl_src=dict(required=False), pkl_dest=dict(required=False), pkl_vrf=dict(required=False, default='management'), peer_gw=dict(required=True, type='bool'), auto_recovery=dict(required=True, type='bool'), delay_restore=dict(required=False, type='str'), state=dict(choices=['absent', 'present'], default='present'), include_defaults=dict(default=False), config=dict(), save=dict(type='bool', default=False) ) argument_spec.update(nxos_argument_spec) module = AnsibleModule(argument_spec=argument_spec, supports_check_mode=True) warnings = list() check_args(module, warnings) domain = module.params['domain'] role_priority = module.params['role_priority'] system_priority = module.params['system_priority'] pkl_src = module.params['pkl_src'] pkl_dest = module.params['pkl_dest'] pkl_vrf = module.params['pkl_vrf'] peer_gw = module.params['peer_gw'] auto_recovery = module.params['auto_recovery'] delay_restore = module.params['delay_restore'] state = module.params['state'] args = dict(domain=domain, role_priority=role_priority, system_priority=system_priority, pkl_src=pkl_src, pkl_dest=pkl_dest, pkl_vrf=pkl_vrf, peer_gw=peer_gw, auto_recovery=auto_recovery, delay_restore=delay_restore) if not (pkl_src and pkl_dest and pkl_vrf): # if only the source or dest is set, it'll fail and ask to set the # other if pkl_src or pkl_dest: module.fail_json(msg='source AND dest IP for pkl are required at ' 'this time (although source is technically not ' ' required by the device.)') args.pop('pkl_src') args.pop('pkl_dest') args.pop('pkl_vrf') if pkl_vrf: if pkl_vrf.lower() not in get_vrf_list(module): module.fail_json(msg='The VRF you are trying to use for the peer ' 'keepalive link is not on device yet. Add it' ' first, please.') proposed = dict((k, v) for k, v in args.items() if v is not None) changed = False existing = get_vpc(module) end_state = existing commands = [] if state == 'present': delta = set(proposed.items()).difference(existing.items()) if delta: command = get_commands_to_config_vpc(module, delta, domain, existing) commands.append(command) elif state == 'absent': if existing: if domain != existing['domain']: module.fail_json(msg="You are trying to remove a domain that " "does not exist on the device") else: commands.append('no vpc domain {0}'.format(domain)) cmds = flatten_list(commands) if cmds: if module.check_mode: module.exit_json(changed=True, commands=cmds) else: changed = True load_config(module, cmds) end_state = get_vpc(module) if 'configure' in cmds: cmds.pop(0) results = {} results['proposed'] = proposed results['existing'] = existing results['end_state'] = end_state results['updates'] = cmds results['changed'] = changed results['warnings'] = warnings module.exit_json(**results) if __name__ == '__main__': main()
Intel-Corporation/tensorflow
refs/heads/master
tensorflow/contrib/mpi_collectives/python/ops/mpi_ops.py
46
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """Inter-process communication using MPI.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from tensorflow.contrib.mpi_collectives.ops import gen_mpi_ops from tensorflow.contrib.util import loader from tensorflow.python.framework import ops from tensorflow.python.platform import resource_loader _mpi_ops_so = loader.load_op_library( resource_loader.get_path_to_datafile('_mpi_ops.so')) def size(name=None): """An op which returns the number of MPI processes. This is equivalent to running `MPI_Comm_size(MPI_COMM_WORLD, ...)` to get the size of the global communicator. Returns: An integer scalar containing the number of MPI processes. """ return gen_mpi_ops.mpi_size(name=name) ops.NotDifferentiable('MPISize') def rank(name=None): """An op which returns the MPI rank of the calling process. This is equivalent to running `MPI_Comm_rank(MPI_COMM_WORLD, ...)` to get the rank of the current process in the global communicator. Returns: An integer scalar with the MPI rank of the calling process. """ return gen_mpi_ops.mpi_rank(name=name) ops.NotDifferentiable('MPIRank') def init(name=None): """An op which initializes MPI on the device on which it is run. All future MPI ops must be run on the same device that the `init` op was run on. """ return gen_mpi_ops.mpi_init(name=name) ops.NotDifferentiable('MPIInit') def local_rank(name=None): """An op which returns the local MPI rank of the calling process, within the node that it is running on. For example, if there are seven processes running on a node, their local ranks will be zero through six, inclusive. This is equivalent to running `MPI_Comm_rank(...)` on a new communicator which only includes processes on the same node. Returns: An integer scalar with the local MPI rank of the calling process. """ return gen_mpi_ops.mpi_local_rank(name=name) ops.NotDifferentiable('MPILocalRank') def _allreduce(tensor, name=None): """An op which sums an input tensor over all the MPI processes. The reduction operation is keyed by the name of the op. The tensor type and shape must be the same on all MPI processes for a given name. The reduction will not start until all processes are ready to send and receive the tensor. Returns: A tensor of the same shape and type as `tensor`, summed across all processes. """ return gen_mpi_ops.mpi_allreduce(tensor, name=name) ops.NotDifferentiable('MPIAllreduce') def allgather(tensor, name=None): """An op which concatenates the input tensor with the same input tensor on all other MPI processes. The concatenation is done on the first dimension, so the input tensors on the different processes must have the same rank and shape, except for the first dimension, which is allowed to be different. Returns: A tensor of the same type as `tensor`, concatenated on dimension zero across all processes. The shape is identical to the input shape, except for the first dimension, which may be greater and is the sum of all first dimensions of the tensors in different MPI processes. """ # Specify that first allgather is to collect the tensor gather sizes, # indicated by passing in a scalar (0-D tensor) of value 0 sizes_flag = tf.constant(0, dtype=tf.int64, name='size_flag_const') my_size = tf.slice( tf.shape(tensor, out_type=tf.int64), [0], [1], name='size_slice') if name is None: name = 'allgather' sizing_name = '{}_sizing'.format(name) sizes = gen_mpi_ops.mpi_allgather(my_size, sizes_flag, name=sizing_name) return gen_mpi_ops.mpi_allgather(tensor, sizes, name=name) ops.NotDifferentiable('MPIAllgather')
jormaral/aifh
refs/heads/master
vol1/python-examples/examples/example_nm_xor.py
6
#!/usr/bin/env python """ Artificial Intelligence for Humans Volume 1: Fundamental Algorithms Python Version http://www.aifh.org http://www.jeffheaton.com Code repository: https://github.com/jeffheaton/aifh Copyright 2013 by Jeff Heaton Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. For more information on Heaton Research copyrights, licenses and trademarks visit: http://www.heatonresearch.com/copyright ============================================================================================================ This example makes use of the scipy minimize function's Nelder Mead optimization to fit an RBF network to the XOR data set. The minimize function does not provide any means of getting iteration updates. As a result, we simply display the score each time the score function finds a new "best score". This is why we only see score output while training. The output is shown here. It is also important to notice the output does not match the XOR exactly. For most XOR problems, this will be the case. However, the output is close. For [0,0] and [1,1] we are much closer to 0 output than [1,0] and [0,1]. Optimization terminated successfully. Current function value: 0.003416 Iterations: 3765 Function evaluations: 4879 [ 0. 0.] -> [0.058260150820555356] [ 1. 0.] -> [0.97475248185226793] [ 0. 1.] -> [0.90381500730453324] [ 1. 1.] -> [0.019476173693234511] """ __author__ = 'jheaton' import os import sys import numpy as np from scipy.optimize import minimize # Find the AIFH core files aifh_dir = os.path.dirname(os.path.abspath(__file__)) aifh_dir = os.path.abspath(aifh_dir + os.sep + ".." + os.sep + "lib" + os.sep + "aifh") sys.path.append(aifh_dir) from normalize import Normalize from rbf_network import RbfNetwork from error import ErrorCalculation # The input for the XOR operator. training_input = np.array([ [0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]]) # The ideal output for the XOR operator. Each row corresponds to a row in the training_input. training_ideal = np.array([ [0.0], [1.0], [1.0], [0.0], ]) # Create the network. Two inputs, one output. network = RbfNetwork(2, 5, 1) network.reset() def score_funct(x): """ The score function. Calculate the MSE error between the actual network output and the ideal values for the XOR. @param x: The long term memory that we are to score. @return: The MSE error. """ network.copy_memory(x) actual_output = [] for input_data in training_input: output_data = network.compute_regression(input_data) actual_output.append(output_data) return ErrorCalculation.mse(np.array(actual_output), training_ideal) # Use Nelder Mead to train. x0 = list(network.long_term_memory) res = minimize(score_funct, x0, method='nelder-mead', options={'disp': True, 'maxiter': 10000}) # Display the output for the XOR. XOR will not be trained perfectly. You should see that the (0,1) and (1,0) inputs # are both close to 1.0, whereas the (1,1) and (0,0) are close to 0.0. for input_data in training_input: output_data = network.compute_regression(input_data) print(str(input_data) + " -> " + str(output_data))
mattjjohnson007/ChromeWebLab
refs/heads/master
Sketchbots/sw/labqueue/lask/server/http/misc_handlers.py
7
# Copyright 2013 Google Inc # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Part of Lask, the Web Lab Task management system. Handlers for the LASK HTTP server. """ import webapp2 import time import datetime import calendar from lask.core.model import * ##################################################################### # # Miscellaneous handlers # class HelloWorldHandler(webapp2.RequestHandler): def get(self): creds = UserCredentials.get_current() self.response.write('OK') class TestHandler(webapp2.RequestHandler): def get(self): pass class TimeHandler(webapp2.RequestHandler): __init_time_ts = None def __init__(self, *args, **kwargs): super(self.__class__, self).__init__(*args, **kwargs) self.__init_time_ts = time.clock() def options(self,*args): self.response.headers.add_header('Access-Control-Allow-Origin', '*') self.response.headers.add_header('Access-Control-Allow-Methods', 'OPTIONS, GET'); self.response.headers.add_header('Access-Control-Allow-Headers', 'Content-Type, Depth, User-Agent, Cache-Control, Authorization'); self.response.status_int = 200 def get(self): now_time_ts = time.clock() now = datetime.datetime.utcnow() self.response.write('{"result":{"server_time_utc":'+str(calendar.timegm(now.timetuple()))+',"server_time_utc_human":"'+str(now)+'","runtime":'+str(now_time_ts-self.__init_time_ts)+'}}')
cdsteinkuehler/MachineKit
refs/heads/MachineKit-ubc
lib/python/gladevcp/hal_graph.py
39
# vim: sts=4 sw=4 et # GladeVcp Widgets # # Copyright (c) 2010 Pavel Shramov <[email protected]> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. import gtk import gobject import cairo import math import gtk.glade import time from collections import deque from hal_widgets import _HalWidgetBase, hal MAX_INT = 0x7fffffff def gdk_color_tuple(c): if not c: return 0, 0, 0 return c.red_float, c.green_float, c.blue_float def mround(v, m): vm = v % m if vm == 0: if v > 0: return v - m if v < 0: return v + m return 0 if v > 0: return v - vm if v < 0: return v - vm + m return 0 class HAL_Graph(gtk.DrawingArea, _HalWidgetBase): __gtype_name__ = 'HAL_Graph' __gproperties__ = { 'min' : ( gobject.TYPE_FLOAT, 'Min', 'Minimum value', -MAX_INT, MAX_INT, 0, gobject.PARAM_READWRITE | gobject.PARAM_CONSTRUCT), 'max' : ( gobject.TYPE_FLOAT, 'Max', 'Maximum value', -MAX_INT, MAX_INT, 100, gobject.PARAM_READWRITE | gobject.PARAM_CONSTRUCT), 'autoscale' : ( gobject.TYPE_BOOLEAN, 'Autoscale', 'Autoscale Y axis', False, gobject.PARAM_READWRITE | gobject.PARAM_CONSTRUCT), 'period' : ( gobject.TYPE_FLOAT, 'Period', 'TIme period to display', -MAX_INT, MAX_INT, 60, gobject.PARAM_READWRITE | gobject.PARAM_CONSTRUCT), 'tick' : ( gobject.TYPE_INT, 'Tick period', 'Data acquarison pariod in ms', 100, 10000, 500, gobject.PARAM_READWRITE | gobject.PARAM_CONSTRUCT), 'zero' : ( gobject.TYPE_FLOAT, 'Zero', 'Zero value', -MAX_INT, MAX_INT, 0, gobject.PARAM_READWRITE | gobject.PARAM_CONSTRUCT), 'value' : ( gobject.TYPE_FLOAT, 'Value', 'Current meter value (for glade testing)', -MAX_INT, MAX_INT, 0, gobject.PARAM_READWRITE | gobject.PARAM_CONSTRUCT), 'yticks' : ( gobject.TYPE_FLOAT, 'Y Tick scale', 'Ticks on Y scale', 0, MAX_INT, 10, gobject.PARAM_READWRITE | gobject.PARAM_CONSTRUCT), 'xticks' : ( gobject.TYPE_FLOAT, 'X Tick scale', 'Ticks on X scale (in seconds)', 0, MAX_INT, 10, gobject.PARAM_READWRITE | gobject.PARAM_CONSTRUCT), 'fg_color' : ( gtk.gdk.Color.__gtype__, 'Graph color', "Set graphing color", gobject.PARAM_READWRITE), 'bg_color' : ( gtk.gdk.Color.__gtype__, 'Background', "Choose background color", gobject.PARAM_READWRITE), 'fg_fill' : ( gobject.TYPE_BOOLEAN, 'Fill graph', 'Fill area covered with graph', False, gobject.PARAM_READWRITE | gobject.PARAM_CONSTRUCT), 'force_width' : ( gobject.TYPE_INT, 'Forced width', 'Force bar width not dependent on widget size. -1 to disable', -1, MAX_INT, -1, gobject.PARAM_READWRITE | gobject.PARAM_CONSTRUCT), 'force_height' : ( gobject.TYPE_INT, 'Forced height', 'Force bar height not dependent on widget size. -1 to disable', -1, MAX_INT, -1, gobject.PARAM_READWRITE | gobject.PARAM_CONSTRUCT), 'time_format' : ( gobject.TYPE_STRING, 'Time format', 'Time format to display. Use any strftime capable formatting', "%M:%S", gobject.PARAM_READWRITE|gobject.PARAM_CONSTRUCT), 'label' : ( gobject.TYPE_STRING, 'Graph label', 'Label to display', "", gobject.PARAM_READWRITE|gobject.PARAM_CONSTRUCT), 'sublabel' : ( gobject.TYPE_STRING, 'Graph sub label', 'Sub text to display', "", gobject.PARAM_READWRITE|gobject.PARAM_CONSTRUCT), } __gproperties = __gproperties__ def __init__(self): super(HAL_Graph, self).__init__() self.bg_color = gtk.gdk.Color('white') self.fg_color = gtk.gdk.Color('red') self.force_radius = None self.ticks = deque() self.ticks_saved = [] self.time_strings = {} self.tick_period = 0.1 self.connect("button-press-event", self.snapshot) self.connect("expose-event", self.expose) self.add_events(gtk.gdk.BUTTON_PRESS_MASK) self.tick = 500 self.tick_idx = 0 self.hal_pin = 0 gobject.timeout_add(self.tick, self.tick_poll, self.tick_idx) def _hal_init(self): _HalWidgetBase._hal_init(self) self.hal_pin = self.hal.newpin(self.hal_name, hal.HAL_FLOAT, hal.HAL_IN) def tick_poll(self, idx): if self.tick_idx != idx: return False v = self.hal_pin and self.hal_pin.get() now = time.time() for (t,_) in list(self.ticks): if t >= now - self.period: break self.ticks.popleft() self.ticks.append((now, v)) self.queue_draw() return True def snapshot(self, widget, event): if event.button != 1: return if self.ticks_saved: self.ticks_saved = [] else: self.ticks_saved = list(self.ticks) def expose(self, widget, event): w = self.allocation.width h = self.allocation.height fw = self.force_width fh = self.force_height aw = max(w, fw) ah = max(h, fh) #self.set_size_request(aw, ah) if fw != -1: w = fw if fh != -1: h = fh cr = widget.window.cairo_create() cr.set_line_width(2) cr.set_source_rgb(0, 0, 0) #print w, h, aw, ah, fw, fh cr.set_line_width(2) cr.translate((aw - w) / 2, (ah - h) / 2) cr.rectangle(0, 0, w, h) cr.clip_preserve() cr.stroke() cr.translate(1, 1) w, h = w - 2, h - 2 cr.set_line_width(1) cr.set_source_color(self.bg_color) cr.rectangle(0, 0, w, h) cr.stroke_preserve() cr.fill() #tw = self.tick_period * w / self.period tnow = now = time.time() if self.ticks_saved: now = max(map(lambda x: x[0], self.ticks_saved)) cr.set_source_rgb(0, 0, 0) def t2x(t, n=now): p = (t - n + self.period) / self.period if p < 0 or p > 1: return None return w * p font_small = max(h/20, 10) font_large = max(h/10, 20) cr.set_font_size(font_small) ymin, ymax = self.min, self.max yticks = self.yticks if self.autoscale: tv = map(lambda x: x[1], self.ticks_saved + list(self.ticks)) if tv: ymin, ymax = min(tv), max(tv) ymin -= abs(ymin) * 0.1 ymax += abs(ymax) * 0.1 else: ymin, ymax = -1.1, 1.1 yticks = 0 if not yticks: if ymin == ymax: ymin -= max(1, abs(ymin) * 0.1) ymax += max(1, abs(ymax) * 0.1) #print ymax, ymin, ymax - ymin yround = 10 ** math.floor(math.log10((ymax - ymin) / 10)) yticks = mround((ymax - ymin) / 10, yround) self.draw_xticks(cr, w, h, self.xticks, now, t2x) self.draw_yticks(cr, w, h, ymin, ymax, yticks) cr.set_source_rgb(0, 0, 0) cr.set_font_size(font_large) self.text_at(cr, self.label, w/2, font_large, yalign='top') cr.set_font_size(font_small) self.text_at(cr, self.sublabel, w/2, 2.5 * font_large, yalign='top') cr.set_source_color(self.fg_color) if self.ticks_saved: self.draw_graph(cr, w, h, ymin, ymax, self.ticks_saved, t2x) cr.set_source_rgba(*(gdk_color_tuple(self.fg_color) + (0.3,))) self.draw_graph(cr, w, h, ymin, ymax, self.ticks, lambda t: t2x(t, tnow)) if not (self.flags() & gtk.PARENT_SENSITIVE): cr.set_source_rgba(0, 0, 0, 0.3) cr.set_operator(cairo.OPERATOR_DEST_OUT) cr.rectangle(0, 0, w, h) cr.stroke_preserve() cr.fill() return True def text_at(self, cr, text, x, y, xalign='center', yalign='center'): xbearing, ybearing, width, height, xadvance, yadvance = cr.text_extents(text) #print xbearing, ybearing, width, height, xadvance, yadvance if xalign == 'center': x = x - width/2 elif xalign == 'right': x = x - width if yalign == 'center': y = y + height/2 elif yalign == 'top': y = y + height cr.move_to(x, y) cr.show_text(text) def draw_graph(self, cr, w, h, ymin, ymax, ticks, t2x): move = True for (t, v) in ticks: if v is None: move = True continue v = min(max(v, ymin), ymax) x = t2x(t) if x is None: move = True continue y = h * (1 - (v - ymin)/(ymax - ymin)) if move: cr.move_to(x, y) move = False cr.line_to(x, y) cr.stroke() def draw_xticks(self, cr, w, h, xticks, now, t2x): rnow = mround(now, xticks) for t in range(0, int(self.period / xticks)): ts = int(rnow - t * xticks) x = t2x(ts) if x is None: continue cr.move_to(x, h) cr.line_to(x, 0.98 * h) s = self.time_string(ts) self.text_at(cr, s, x, 0.96 * h, yalign='bottom') cr.stroke() def draw_yticks(self, cr, w, h, ymin, ymax, yticks): ysize = ymax - ymin rmax = mround(ymax, yticks) rmin = mround(ymin, yticks) rsize = rmax - rmin for t in range(0, int(rsize / yticks) + 1): v = rmin + yticks * t y = h * (1 - (v - ymin)/ ysize) cr.move_to(0, y) cr.line_to(w/100, y) cr.move_to(w, y) cr.line_to(w - w/100, y) self.text_at(cr, str(v), 0.02 * w, y, xalign='left', yalign='center') cr.stroke() cr.set_source_rgba(0.5, 0.5, 0.5, 0.5) for t in range(0, int(rsize / yticks) + 1): v = rmin + yticks * t y = h * (1 - (v - ymin)/ ysize) cr.move_to(0.1*w, y) cr.line_to(0.9*w, y) cr.stroke() def time_string(self, ts): if ts in self.time_strings: return self.time_strings[ts] s = time.strftime(self.time_format, time.localtime(ts)) self.time_strings[ts] = s return s def time_strings_clean(self, now): for k in filter(lambda k: k < now): del self.time_strings[k] def set_value(self, v): self.value = v self.queue_draw() def do_get_property(self, property): name = property.name.replace('-', '_') if name in self.__gproperties.keys(): return getattr(self, name) else: raise AttributeError('unknown property %s' % property.name) def do_set_property(self, property, value): name = property.name.replace('-', '_') if name == 'tick': self.tick_idx += 1 gobject.timeout_add(value, self.tick_poll, self.tick_idx) if name in ['bg_color', 'fg_color']: if not value: return False if name in self.__gproperties.keys(): setattr(self, name, value) self.queue_draw() else: raise AttributeError('unknown property %s' % property.name) if name in ['force_size', 'force_size']: #print "Forcing size request %s" % name self.set_size_request(self.force_size, self.force_size) self.queue_draw() return True
gnowxilef/youtube-dl
refs/heads/master
youtube_dl/extractor/firstpost.py
60
from __future__ import unicode_literals from .common import InfoExtractor class FirstpostIE(InfoExtractor): _VALID_URL = r'https?://(?:www\.)?firstpost\.com/[^/]+/.*-(?P<id>[0-9]+)\.html' _TEST = { 'url': 'http://www.firstpost.com/india/india-to-launch-indigenous-aircraft-carrier-monday-1025403.html', 'md5': 'ee9114957692f01fb1263ed87039112a', 'info_dict': { 'id': '1025403', 'ext': 'mp4', 'title': 'India to launch indigenous aircraft carrier INS Vikrant today', 'description': 'md5:feef3041cb09724e0bdc02843348f5f4', } } def _real_extract(self, url): video_id = self._match_id(url) page = self._download_webpage(url, video_id) title = self._html_search_meta('twitter:title', page, 'title', fatal=True) description = self._html_search_meta('twitter:description', page, 'title') data = self._download_xml( 'http://www.firstpost.com/getvideoxml-%s.xml' % video_id, video_id, 'Downloading video XML') item = data.find('./playlist/item') thumbnail = item.find('./image').text formats = [ { 'url': details.find('./file').text, 'format_id': details.find('./label').text.strip(), 'width': int(details.find('./width').text.strip()), 'height': int(details.find('./height').text.strip()), } for details in item.findall('./source/file_details') if details.find('./file').text ] self._sort_formats(formats) return { 'id': video_id, 'title': title, 'description': description, 'thumbnail': thumbnail, 'formats': formats, }
derekjchow/models
refs/heads/master
research/lfads/lfads.py
3
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ============================================================================== """ LFADS - Latent Factor Analysis via Dynamical Systems. LFADS is an unsupervised method to decompose time series data into various factors, such as an initial condition, a generative dynamical system, control inputs to that generator, and a low dimensional description of the observed data, called the factors. Additionally, the observations have a noise model (in this case Poisson), so a denoised version of the observations is also created (e.g. underlying rates of a Poisson distribution given the observed event counts). The main data structure being passed around is a dataset. This is a dictionary of data dictionaries. DATASET: The top level dictionary is simply name (string -> dictionary). The nested dictionary is the DATA DICTIONARY, which has the following keys: 'train_data' and 'valid_data', whose values are the corresponding training and validation data with shape ExTxD, E - # examples, T - # time steps, D - # dimensions in data. The data dictionary also has a few more keys: 'train_ext_input' and 'valid_ext_input', if there are know external inputs to the system being modeled, these take on dimensions: ExTxI, E - # examples, T - # time steps, I = # dimensions in input. 'alignment_matrix_cxf' - If you are using multiple days data, it's possible that one can align the channels (see manuscript). If so each dataset will contain this matrix, which will be used for both the input adapter and the output adapter for each dataset. These matrices, if provided, must be of size [data_dim x factors] where data_dim is the number of neurons recorded on that day, and factors is chosen and set through the '--factors' flag. 'alignment_bias_c' - See alignment_matrix_cxf. This bias will used to the offset for the alignment transformation. It will *subtract* off the bias from the data, so pca style inits can align factors across sessions. If one runs LFADS on data where the true rates are known for some trials, (say simulated, testing data, as in the example shipped with the paper), then one can add three more fields for plotting purposes. These are 'train_truth' and 'valid_truth', and 'conversion_factor'. These have the same dimensions as 'train_data', and 'valid_data' but represent the underlying rates of the observations. Finally, if one needs to convert scale for plotting the true underlying firing rates, there is the 'conversion_factor' key. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import os import tensorflow as tf from distributions import LearnableDiagonalGaussian, DiagonalGaussianFromInput from distributions import diag_gaussian_log_likelihood from distributions import KLCost_GaussianGaussian, Poisson from distributions import LearnableAutoRegressive1Prior from distributions import KLCost_GaussianGaussianProcessSampled from utils import init_linear, linear, list_t_bxn_to_tensor_bxtxn, write_data from utils import log_sum_exp, flatten from plot_lfads import plot_lfads class GRU(object): """Gated Recurrent Unit cell (cf. http://arxiv.org/abs/1406.1078). """ def __init__(self, num_units, forget_bias=1.0, weight_scale=1.0, clip_value=np.inf, collections=None): """Create a GRU object. Args: num_units: Number of units in the GRU forget_bias (optional): Hack to help learning. weight_scale (optional): weights are scaled by ws/sqrt(#inputs), with ws being the weight scale. clip_value (optional): if the recurrent values grow above this value, clip them. collections (optional): List of additonal collections variables should belong to. """ self._num_units = num_units self._forget_bias = forget_bias self._weight_scale = weight_scale self._clip_value = clip_value self._collections = collections @property def state_size(self): return self._num_units @property def output_size(self): return self._num_units @property def state_multiplier(self): return 1 def output_from_state(self, state): """Return the output portion of the state.""" return state def __call__(self, inputs, state, scope=None): """Gated recurrent unit (GRU) function. Args: inputs: A 2D batch x input_dim tensor of inputs. state: The previous state from the last time step. scope (optional): TF variable scope for defined GRU variables. Returns: A tuple (state, state), where state is the newly computed state at time t. It is returned twice to respect an interface that works for LSTMs. """ x = inputs h = state if inputs is not None: xh = tf.concat(axis=1, values=[x, h]) else: xh = h with tf.variable_scope(scope or type(self).__name__): # "GRU" with tf.variable_scope("Gates"): # Reset gate and update gate. # We start with bias of 1.0 to not reset and not update. r, u = tf.split(axis=1, num_or_size_splits=2, value=linear(xh, 2 * self._num_units, alpha=self._weight_scale, name="xh_2_ru", collections=self._collections)) r, u = tf.sigmoid(r), tf.sigmoid(u + self._forget_bias) with tf.variable_scope("Candidate"): xrh = tf.concat(axis=1, values=[x, r * h]) c = tf.tanh(linear(xrh, self._num_units, name="xrh_2_c", collections=self._collections)) new_h = u * h + (1 - u) * c new_h = tf.clip_by_value(new_h, -self._clip_value, self._clip_value) return new_h, new_h class GenGRU(object): """Gated Recurrent Unit cell (cf. http://arxiv.org/abs/1406.1078). This version is specialized for the generator, but isn't as fast, so we have two. Note this allows for l2 regularization on the recurrent weights, but also implicitly rescales the inputs via the 1/sqrt(input) scaling in the linear helper routine to be large magnitude, if there are fewer inputs than recurrent state. """ def __init__(self, num_units, forget_bias=1.0, input_weight_scale=1.0, rec_weight_scale=1.0, clip_value=np.inf, input_collections=None, recurrent_collections=None): """Create a GRU object. Args: num_units: Number of units in the GRU forget_bias (optional): Hack to help learning. input_weight_scale (optional): weights are scaled ws/sqrt(#inputs), with ws being the weight scale. rec_weight_scale (optional): weights are scaled ws/sqrt(#inputs), with ws being the weight scale. clip_value (optional): if the recurrent values grow above this value, clip them. input_collections (optional): List of additonal collections variables that input->rec weights should belong to. recurrent_collections (optional): List of additonal collections variables that rec->rec weights should belong to. """ self._num_units = num_units self._forget_bias = forget_bias self._input_weight_scale = input_weight_scale self._rec_weight_scale = rec_weight_scale self._clip_value = clip_value self._input_collections = input_collections self._rec_collections = recurrent_collections @property def state_size(self): return self._num_units @property def output_size(self): return self._num_units @property def state_multiplier(self): return 1 def output_from_state(self, state): """Return the output portion of the state.""" return state def __call__(self, inputs, state, scope=None): """Gated recurrent unit (GRU) function. Args: inputs: A 2D batch x input_dim tensor of inputs. state: The previous state from the last time step. scope (optional): TF variable scope for defined GRU variables. Returns: A tuple (state, state), where state is the newly computed state at time t. It is returned twice to respect an interface that works for LSTMs. """ x = inputs h = state with tf.variable_scope(scope or type(self).__name__): # "GRU" with tf.variable_scope("Gates"): # Reset gate and update gate. # We start with bias of 1.0 to not reset and not update. r_x = u_x = 0.0 if x is not None: r_x, u_x = tf.split(axis=1, num_or_size_splits=2, value=linear(x, 2 * self._num_units, alpha=self._input_weight_scale, do_bias=False, name="x_2_ru", normalized=False, collections=self._input_collections)) r_h, u_h = tf.split(axis=1, num_or_size_splits=2, value=linear(h, 2 * self._num_units, do_bias=True, alpha=self._rec_weight_scale, name="h_2_ru", collections=self._rec_collections)) r = r_x + r_h u = u_x + u_h r, u = tf.sigmoid(r), tf.sigmoid(u + self._forget_bias) with tf.variable_scope("Candidate"): c_x = 0.0 if x is not None: c_x = linear(x, self._num_units, name="x_2_c", do_bias=False, alpha=self._input_weight_scale, normalized=False, collections=self._input_collections) c_rh = linear(r*h, self._num_units, name="rh_2_c", do_bias=True, alpha=self._rec_weight_scale, collections=self._rec_collections) c = tf.tanh(c_x + c_rh) new_h = u * h + (1 - u) * c new_h = tf.clip_by_value(new_h, -self._clip_value, self._clip_value) return new_h, new_h class LFADS(object): """LFADS - Latent Factor Analysis via Dynamical Systems. LFADS is an unsupervised method to decompose time series data into various factors, such as an initial condition, a generative dynamical system, inferred inputs to that generator, and a low dimensional description of the observed data, called the factors. Additoinally, the observations have a noise model (in this case Poisson), so a denoised version of the observations is also created (e.g. underlying rates of a Poisson distribution given the observed event counts). """ def __init__(self, hps, kind="train", datasets=None): """Create an LFADS model. train - a model for training, sampling of posteriors is used posterior_sample_and_average - sample from the posterior, this is used for evaluating the expected value of the outputs of LFADS, given a specific input, by averaging over multiple samples from the approx posterior. Also used for the lower bound on the negative log-likelihood using IWAE error (Importance Weighed Auto-encoder). This is the denoising operation. prior_sample - a model for generation - sampling from priors is used Args: hps: The dictionary of hyper parameters. kind: the type of model to build (see above). datasets: a dictionary of named data_dictionaries, see top of lfads.py """ print("Building graph...") all_kinds = ['train', 'posterior_sample_and_average', 'posterior_push_mean', 'prior_sample'] assert kind in all_kinds, 'Wrong kind' if hps.feedback_factors_or_rates == "rates": assert len(hps.dataset_names) == 1, \ "Multiple datasets not supported for rate feedback." num_steps = hps.num_steps ic_dim = hps.ic_dim co_dim = hps.co_dim ext_input_dim = hps.ext_input_dim cell_class = GRU gen_cell_class = GenGRU def makelambda(v): # Used with tf.case return lambda: v # Define the data placeholder, and deal with all parts of the graph # that are dataset dependent. self.dataName = tf.placeholder(tf.string, shape=()) # The batch_size to be inferred from data, as normal. # Additionally, the data_dim will be inferred as well, allowing for a # single placeholder for all datasets, regardless of data dimension. if hps.output_dist == 'poisson': # Enforce correct dtype assert np.issubdtype( datasets[hps.dataset_names[0]]['train_data'].dtype, int), \ "Data dtype must be int for poisson output distribution" data_dtype = tf.int32 elif hps.output_dist == 'gaussian': assert np.issubdtype( datasets[hps.dataset_names[0]]['train_data'].dtype, float), \ "Data dtype must be float for gaussian output dsitribution" data_dtype = tf.float32 else: assert False, "NIY" self.dataset_ph = dataset_ph = tf.placeholder(data_dtype, [None, num_steps, None], name="data") self.train_step = tf.get_variable("global_step", [], tf.int64, tf.zeros_initializer(), trainable=False) self.hps = hps ndatasets = hps.ndatasets factors_dim = hps.factors_dim self.preds = preds = [None] * ndatasets self.fns_in_fac_Ws = fns_in_fac_Ws = [None] * ndatasets self.fns_in_fatcor_bs = fns_in_fac_bs = [None] * ndatasets self.fns_out_fac_Ws = fns_out_fac_Ws = [None] * ndatasets self.fns_out_fac_bs = fns_out_fac_bs = [None] * ndatasets self.datasetNames = dataset_names = hps.dataset_names self.ext_inputs = ext_inputs = None if len(dataset_names) == 1: # single session if 'alignment_matrix_cxf' in datasets[dataset_names[0]].keys(): used_in_factors_dim = factors_dim in_identity_if_poss = False else: used_in_factors_dim = hps.dataset_dims[dataset_names[0]] in_identity_if_poss = True else: # multisession used_in_factors_dim = factors_dim in_identity_if_poss = False for d, name in enumerate(dataset_names): data_dim = hps.dataset_dims[name] in_mat_cxf = None in_bias_1xf = None align_bias_1xc = None if datasets and 'alignment_matrix_cxf' in datasets[name].keys(): dataset = datasets[name] if hps.do_train_readin: print("Initializing trainable readin matrix with alignment matrix" \ " provided for dataset:", name) else: print("Setting non-trainable readin matrix to alignment matrix" \ " provided for dataset:", name) in_mat_cxf = dataset['alignment_matrix_cxf'].astype(np.float32) if in_mat_cxf.shape != (data_dim, factors_dim): raise ValueError("""Alignment matrix must have dimensions %d x %d (data_dim x factors_dim), but currently has %d x %d."""% (data_dim, factors_dim, in_mat_cxf.shape[0], in_mat_cxf.shape[1])) if datasets and 'alignment_bias_c' in datasets[name].keys(): dataset = datasets[name] if hps.do_train_readin: print("Initializing trainable readin bias with alignment bias " \ "provided for dataset:", name) else: print("Setting non-trainable readin bias to alignment bias " \ "provided for dataset:", name) align_bias_c = dataset['alignment_bias_c'].astype(np.float32) align_bias_1xc = np.expand_dims(align_bias_c, axis=0) if align_bias_1xc.shape[1] != data_dim: raise ValueError("""Alignment bias must have dimensions %d (data_dim), but currently has %d."""% (data_dim, in_mat_cxf.shape[0])) if in_mat_cxf is not None and align_bias_1xc is not None: # (data - alignment_bias) * W_in # data * W_in - alignment_bias * W_in # So b = -alignment_bias * W_in to accommodate PCA style offset. in_bias_1xf = -np.dot(align_bias_1xc, in_mat_cxf) if hps.do_train_readin: # only add to IO transformations collection only if we want it to be # learnable, because IO_transformations collection will be trained # when do_train_io_only collections_readin=['IO_transformations'] else: collections_readin=None in_fac_lin = init_linear(data_dim, used_in_factors_dim, do_bias=True, mat_init_value=in_mat_cxf, bias_init_value=in_bias_1xf, identity_if_possible=in_identity_if_poss, normalized=False, name="x_2_infac_"+name, collections=collections_readin, trainable=hps.do_train_readin) in_fac_W, in_fac_b = in_fac_lin fns_in_fac_Ws[d] = makelambda(in_fac_W) fns_in_fac_bs[d] = makelambda(in_fac_b) with tf.variable_scope("glm"): out_identity_if_poss = False if len(dataset_names) == 1 and \ factors_dim == hps.dataset_dims[dataset_names[0]]: out_identity_if_poss = True for d, name in enumerate(dataset_names): data_dim = hps.dataset_dims[name] in_mat_cxf = None if datasets and 'alignment_matrix_cxf' in datasets[name].keys(): dataset = datasets[name] in_mat_cxf = dataset['alignment_matrix_cxf'].astype(np.float32) if datasets and 'alignment_bias_c' in datasets[name].keys(): dataset = datasets[name] align_bias_c = dataset['alignment_bias_c'].astype(np.float32) align_bias_1xc = np.expand_dims(align_bias_c, axis=0) out_mat_fxc = None out_bias_1xc = None if in_mat_cxf is not None: out_mat_fxc = in_mat_cxf.T if align_bias_1xc is not None: out_bias_1xc = align_bias_1xc if hps.output_dist == 'poisson': out_fac_lin = init_linear(factors_dim, data_dim, do_bias=True, mat_init_value=out_mat_fxc, bias_init_value=out_bias_1xc, identity_if_possible=out_identity_if_poss, normalized=False, name="fac_2_logrates_"+name, collections=['IO_transformations']) out_fac_W, out_fac_b = out_fac_lin elif hps.output_dist == 'gaussian': out_fac_lin_mean = \ init_linear(factors_dim, data_dim, do_bias=True, mat_init_value=out_mat_fxc, bias_init_value=out_bias_1xc, normalized=False, name="fac_2_means_"+name, collections=['IO_transformations']) out_fac_W_mean, out_fac_b_mean = out_fac_lin_mean mat_init_value = np.zeros([factors_dim, data_dim]).astype(np.float32) bias_init_value = np.ones([1, data_dim]).astype(np.float32) out_fac_lin_logvar = \ init_linear(factors_dim, data_dim, do_bias=True, mat_init_value=mat_init_value, bias_init_value=bias_init_value, normalized=False, name="fac_2_logvars_"+name, collections=['IO_transformations']) out_fac_W_mean, out_fac_b_mean = out_fac_lin_mean out_fac_W_logvar, out_fac_b_logvar = out_fac_lin_logvar out_fac_W = tf.concat( axis=1, values=[out_fac_W_mean, out_fac_W_logvar]) out_fac_b = tf.concat( axis=1, values=[out_fac_b_mean, out_fac_b_logvar]) else: assert False, "NIY" preds[d] = tf.equal(tf.constant(name), self.dataName) data_dim = hps.dataset_dims[name] fns_out_fac_Ws[d] = makelambda(out_fac_W) fns_out_fac_bs[d] = makelambda(out_fac_b) pf_pairs_in_fac_Ws = zip(preds, fns_in_fac_Ws) pf_pairs_in_fac_bs = zip(preds, fns_in_fac_bs) pf_pairs_out_fac_Ws = zip(preds, fns_out_fac_Ws) pf_pairs_out_fac_bs = zip(preds, fns_out_fac_bs) this_in_fac_W = tf.case(pf_pairs_in_fac_Ws, exclusive=True) this_in_fac_b = tf.case(pf_pairs_in_fac_bs, exclusive=True) this_out_fac_W = tf.case(pf_pairs_out_fac_Ws, exclusive=True) this_out_fac_b = tf.case(pf_pairs_out_fac_bs, exclusive=True) # External inputs (not changing by dataset, by definition). if hps.ext_input_dim > 0: self.ext_input = tf.placeholder(tf.float32, [None, num_steps, ext_input_dim], name="ext_input") else: self.ext_input = None ext_input_bxtxi = self.ext_input self.keep_prob = keep_prob = tf.placeholder(tf.float32, [], "keep_prob") self.batch_size = batch_size = int(hps.batch_size) self.learning_rate = tf.Variable(float(hps.learning_rate_init), trainable=False, name="learning_rate") self.learning_rate_decay_op = self.learning_rate.assign( self.learning_rate * hps.learning_rate_decay_factor) # Dropout the data. dataset_do_bxtxd = tf.nn.dropout(tf.to_float(dataset_ph), keep_prob) if hps.ext_input_dim > 0: ext_input_do_bxtxi = tf.nn.dropout(ext_input_bxtxi, keep_prob) else: ext_input_do_bxtxi = None # ENCODERS def encode_data(dataset_bxtxd, enc_cell, name, forward_or_reverse, num_steps_to_encode): """Encode data for LFADS Args: dataset_bxtxd - the data to encode, as a 3 tensor, with dims time x batch x data dims. enc_cell: encoder cell name: name of encoder forward_or_reverse: string, encode in forward or reverse direction num_steps_to_encode: number of steps to encode, 0:num_steps_to_encode Returns: encoded data as a list with num_steps_to_encode items, in order """ if forward_or_reverse == "forward": dstr = "_fwd" time_fwd_or_rev = range(num_steps_to_encode) else: dstr = "_rev" time_fwd_or_rev = reversed(range(num_steps_to_encode)) with tf.variable_scope(name+"_enc"+dstr, reuse=False): enc_state = tf.tile( tf.Variable(tf.zeros([1, enc_cell.state_size]), name=name+"_enc_t0"+dstr), tf.stack([batch_size, 1])) enc_state.set_shape([None, enc_cell.state_size]) # tile loses shape enc_outs = [None] * num_steps_to_encode for i, t in enumerate(time_fwd_or_rev): with tf.variable_scope(name+"_enc"+dstr, reuse=True if i > 0 else None): dataset_t_bxd = dataset_bxtxd[:,t,:] in_fac_t_bxf = tf.matmul(dataset_t_bxd, this_in_fac_W) + this_in_fac_b in_fac_t_bxf.set_shape([None, used_in_factors_dim]) if ext_input_dim > 0 and not hps.inject_ext_input_to_gen: ext_input_t_bxi = ext_input_do_bxtxi[:,t,:] enc_input_t_bxfpe = tf.concat( axis=1, values=[in_fac_t_bxf, ext_input_t_bxi]) else: enc_input_t_bxfpe = in_fac_t_bxf enc_out, enc_state = enc_cell(enc_input_t_bxfpe, enc_state) enc_outs[t] = enc_out return enc_outs # Encode initial condition means and variances # ([x_T, x_T-1, ... x_0] and [x_0, x_1, ... x_T] -> g0/c0) self.ic_enc_fwd = [None] * num_steps self.ic_enc_rev = [None] * num_steps if ic_dim > 0: enc_ic_cell = cell_class(hps.ic_enc_dim, weight_scale=hps.cell_weight_scale, clip_value=hps.cell_clip_value) ic_enc_fwd = encode_data(dataset_do_bxtxd, enc_ic_cell, "ic", "forward", hps.num_steps_for_gen_ic) ic_enc_rev = encode_data(dataset_do_bxtxd, enc_ic_cell, "ic", "reverse", hps.num_steps_for_gen_ic) self.ic_enc_fwd = ic_enc_fwd self.ic_enc_rev = ic_enc_rev # Encoder control input means and variances, bi-directional encoding so: # ([x_T, x_T-1, ..., x_0] and [x_0, x_1 ... x_T] -> u_t) self.ci_enc_fwd = [None] * num_steps self.ci_enc_rev = [None] * num_steps if co_dim > 0: enc_ci_cell = cell_class(hps.ci_enc_dim, weight_scale=hps.cell_weight_scale, clip_value=hps.cell_clip_value) ci_enc_fwd = encode_data(dataset_do_bxtxd, enc_ci_cell, "ci", "forward", hps.num_steps) if hps.do_causal_controller: ci_enc_rev = None else: ci_enc_rev = encode_data(dataset_do_bxtxd, enc_ci_cell, "ci", "reverse", hps.num_steps) self.ci_enc_fwd = ci_enc_fwd self.ci_enc_rev = ci_enc_rev # STOCHASTIC LATENT VARIABLES, priors and posteriors # (initial conditions g0, and control inputs, u_t) # Note that zs represent all the stochastic latent variables. with tf.variable_scope("z", reuse=False): self.prior_zs_g0 = None self.posterior_zs_g0 = None self.g0s_val = None if ic_dim > 0: self.prior_zs_g0 = \ LearnableDiagonalGaussian(batch_size, ic_dim, name="prior_g0", mean_init=0.0, var_min=hps.ic_prior_var_min, var_init=hps.ic_prior_var_scale, var_max=hps.ic_prior_var_max) ic_enc = tf.concat(axis=1, values=[ic_enc_fwd[-1], ic_enc_rev[0]]) ic_enc = tf.nn.dropout(ic_enc, keep_prob) self.posterior_zs_g0 = \ DiagonalGaussianFromInput(ic_enc, ic_dim, "ic_enc_2_post_g0", var_min=hps.ic_post_var_min) if kind in ["train", "posterior_sample_and_average", "posterior_push_mean"]: zs_g0 = self.posterior_zs_g0 else: zs_g0 = self.prior_zs_g0 if kind in ["train", "posterior_sample_and_average", "prior_sample"]: self.g0s_val = zs_g0.sample else: self.g0s_val = zs_g0.mean # Priors for controller, 'co' for controller output self.prior_zs_co = prior_zs_co = [None] * num_steps self.posterior_zs_co = posterior_zs_co = [None] * num_steps self.zs_co = zs_co = [None] * num_steps self.prior_zs_ar_con = None if co_dim > 0: # Controller outputs autocorrelation_taus = [hps.prior_ar_atau for x in range(hps.co_dim)] noise_variances = [hps.prior_ar_nvar for x in range(hps.co_dim)] self.prior_zs_ar_con = prior_zs_ar_con = \ LearnableAutoRegressive1Prior(batch_size, hps.co_dim, autocorrelation_taus, noise_variances, hps.do_train_prior_ar_atau, hps.do_train_prior_ar_nvar, num_steps, "u_prior_ar1") # CONTROLLER -> GENERATOR -> RATES # (u(t) -> gen(t) -> factors(t) -> rates(t) -> p(x_t|z_t) ) self.controller_outputs = u_t = [None] * num_steps self.con_ics = con_state = None self.con_states = con_states = [None] * num_steps self.con_outs = con_outs = [None] * num_steps self.gen_inputs = gen_inputs = [None] * num_steps if co_dim > 0: # gen_cell_class here for l2 penalty recurrent weights # didn't split the cell_weight scale here, because I doubt it matters con_cell = gen_cell_class(hps.con_dim, input_weight_scale=hps.cell_weight_scale, rec_weight_scale=hps.cell_weight_scale, clip_value=hps.cell_clip_value, recurrent_collections=['l2_con_reg']) with tf.variable_scope("con", reuse=False): self.con_ics = tf.tile( tf.Variable(tf.zeros([1, hps.con_dim*con_cell.state_multiplier]), name="c0"), tf.stack([batch_size, 1])) self.con_ics.set_shape([None, con_cell.state_size]) # tile loses shape con_states[-1] = self.con_ics gen_cell = gen_cell_class(hps.gen_dim, input_weight_scale=hps.gen_cell_input_weight_scale, rec_weight_scale=hps.gen_cell_rec_weight_scale, clip_value=hps.cell_clip_value, recurrent_collections=['l2_gen_reg']) with tf.variable_scope("gen", reuse=False): if ic_dim == 0: self.gen_ics = tf.tile( tf.Variable(tf.zeros([1, gen_cell.state_size]), name="g0"), tf.stack([batch_size, 1])) else: self.gen_ics = linear(self.g0s_val, gen_cell.state_size, identity_if_possible=True, name="g0_2_gen_ic") self.gen_states = gen_states = [None] * num_steps self.gen_outs = gen_outs = [None] * num_steps gen_states[-1] = self.gen_ics gen_outs[-1] = gen_cell.output_from_state(gen_states[-1]) self.factors = factors = [None] * num_steps factors[-1] = linear(gen_outs[-1], factors_dim, do_bias=False, normalized=True, name="gen_2_fac") self.rates = rates = [None] * num_steps # rates[-1] is collected to potentially feed back to controller with tf.variable_scope("glm", reuse=False): if hps.output_dist == 'poisson': log_rates_t0 = tf.matmul(factors[-1], this_out_fac_W) + this_out_fac_b log_rates_t0.set_shape([None, None]) rates[-1] = tf.exp(log_rates_t0) # rate rates[-1].set_shape([None, hps.dataset_dims[hps.dataset_names[0]]]) elif hps.output_dist == 'gaussian': mean_n_logvars = tf.matmul(factors[-1],this_out_fac_W) + this_out_fac_b mean_n_logvars.set_shape([None, None]) means_t_bxd, logvars_t_bxd = tf.split(axis=1, num_or_size_splits=2, value=mean_n_logvars) rates[-1] = means_t_bxd else: assert False, "NIY" # We support multiple output distributions, for example Poisson, and also # Gaussian. In these two cases respectively, there are one and two # parameters (rates vs. mean and variance). So the output_dist_params # tensor will variable sizes via tf.concat and tf.split, along the 1st # dimension. So in the case of gaussian, for example, it'll be # batch x (D+D), where each D dims is the mean, and then variances, # respectively. For a distribution with 3 parameters, it would be # batch x (D+D+D). self.output_dist_params = dist_params = [None] * num_steps self.log_p_xgz_b = log_p_xgz_b = 0.0 # log P(x|z) for t in range(num_steps): # Controller if co_dim > 0: # Build inputs for controller tlag = t - hps.controller_input_lag if tlag < 0: con_in_f_t = tf.zeros_like(ci_enc_fwd[0]) else: con_in_f_t = ci_enc_fwd[tlag] if hps.do_causal_controller: # If controller is causal (wrt to data generation process), then it # cannot see future data. Thus, excluding ci_enc_rev[t] is obvious. # Less obvious is the need to exclude factors[t-1]. This arises # because information flows from g0 through factors to the controller # input. The g0 encoding is backwards, so we must necessarily exclude # the factors in order to keep the controller input purely from a # forward encoding (however unlikely it is that # g0->factors->controller channel might actually be used in this way). con_in_list_t = [con_in_f_t] else: tlag_rev = t + hps.controller_input_lag if tlag_rev >= num_steps: # better than zeros con_in_r_t = tf.zeros_like(ci_enc_rev[0]) else: con_in_r_t = ci_enc_rev[tlag_rev] con_in_list_t = [con_in_f_t, con_in_r_t] if hps.do_feed_factors_to_controller: if hps.feedback_factors_or_rates == "factors": con_in_list_t.append(factors[t-1]) elif hps.feedback_factors_or_rates == "rates": con_in_list_t.append(rates[t-1]) else: assert False, "NIY" con_in_t = tf.concat(axis=1, values=con_in_list_t) con_in_t = tf.nn.dropout(con_in_t, keep_prob) with tf.variable_scope("con", reuse=True if t > 0 else None): con_outs[t], con_states[t] = con_cell(con_in_t, con_states[t-1]) posterior_zs_co[t] = \ DiagonalGaussianFromInput(con_outs[t], co_dim, name="con_to_post_co") if kind == "train": u_t[t] = posterior_zs_co[t].sample elif kind == "posterior_sample_and_average": u_t[t] = posterior_zs_co[t].sample elif kind == "posterior_push_mean": u_t[t] = posterior_zs_co[t].mean else: u_t[t] = prior_zs_ar_con.samples_t[t] # Inputs to the generator (controller output + external input) if ext_input_dim > 0 and hps.inject_ext_input_to_gen: ext_input_t_bxi = ext_input_do_bxtxi[:,t,:] if co_dim > 0: gen_inputs[t] = tf.concat(axis=1, values=[u_t[t], ext_input_t_bxi]) else: gen_inputs[t] = ext_input_t_bxi else: gen_inputs[t] = u_t[t] # Generator data_t_bxd = dataset_ph[:,t,:] with tf.variable_scope("gen", reuse=True if t > 0 else None): gen_outs[t], gen_states[t] = gen_cell(gen_inputs[t], gen_states[t-1]) gen_outs[t] = tf.nn.dropout(gen_outs[t], keep_prob) with tf.variable_scope("gen", reuse=True): # ic defined it above factors[t] = linear(gen_outs[t], factors_dim, do_bias=False, normalized=True, name="gen_2_fac") with tf.variable_scope("glm", reuse=True if t > 0 else None): if hps.output_dist == 'poisson': log_rates_t = tf.matmul(factors[t], this_out_fac_W) + this_out_fac_b log_rates_t.set_shape([None, None]) rates[t] = dist_params[t] = tf.exp(log_rates_t) # rates feed back rates[t].set_shape([None, hps.dataset_dims[hps.dataset_names[0]]]) loglikelihood_t = Poisson(log_rates_t).logp(data_t_bxd) elif hps.output_dist == 'gaussian': mean_n_logvars = tf.matmul(factors[t],this_out_fac_W) + this_out_fac_b mean_n_logvars.set_shape([None, None]) means_t_bxd, logvars_t_bxd = tf.split(axis=1, num_or_size_splits=2, value=mean_n_logvars) rates[t] = means_t_bxd # rates feed back to controller dist_params[t] = tf.concat( axis=1, values=[means_t_bxd, tf.exp(logvars_t_bxd)]) loglikelihood_t = \ diag_gaussian_log_likelihood(data_t_bxd, means_t_bxd, logvars_t_bxd) else: assert False, "NIY" log_p_xgz_b += tf.reduce_sum(loglikelihood_t, [1]) # Correlation of inferred inputs cost. self.corr_cost = tf.constant(0.0) if hps.co_mean_corr_scale > 0.0: all_sum_corr = [] for i in range(hps.co_dim): for j in range(i+1, hps.co_dim): sum_corr_ij = tf.constant(0.0) for t in range(num_steps): u_mean_t = posterior_zs_co[t].mean sum_corr_ij += u_mean_t[:,i]*u_mean_t[:,j] all_sum_corr.append(0.5 * tf.square(sum_corr_ij)) self.corr_cost = tf.reduce_mean(all_sum_corr) # div by batch and by n*(n-1)/2 pairs # Variational Lower Bound on posterior, p(z|x), plus reconstruction cost. # KL and reconstruction costs are normalized only by batch size, not by # dimension, or by time steps. kl_cost_g0_b = tf.zeros_like(batch_size, dtype=tf.float32) kl_cost_co_b = tf.zeros_like(batch_size, dtype=tf.float32) self.kl_cost = tf.constant(0.0) # VAE KL cost self.recon_cost = tf.constant(0.0) # VAE reconstruction cost self.nll_bound_vae = tf.constant(0.0) self.nll_bound_iwae = tf.constant(0.0) # for eval with IWAE cost. if kind in ["train", "posterior_sample_and_average", "posterior_push_mean"]: kl_cost_g0_b = 0.0 kl_cost_co_b = 0.0 if ic_dim > 0: g0_priors = [self.prior_zs_g0] g0_posts = [self.posterior_zs_g0] kl_cost_g0_b = KLCost_GaussianGaussian(g0_posts, g0_priors).kl_cost_b kl_cost_g0_b = hps.kl_ic_weight * kl_cost_g0_b if co_dim > 0: kl_cost_co_b = \ KLCost_GaussianGaussianProcessSampled( posterior_zs_co, prior_zs_ar_con).kl_cost_b kl_cost_co_b = hps.kl_co_weight * kl_cost_co_b # L = -KL + log p(x|z), to maximize bound on likelihood # -L = KL - log p(x|z), to minimize bound on NLL # so 'reconstruction cost' is negative log likelihood self.recon_cost = - tf.reduce_mean(log_p_xgz_b) self.kl_cost = tf.reduce_mean(kl_cost_g0_b + kl_cost_co_b) lb_on_ll_b = log_p_xgz_b - kl_cost_g0_b - kl_cost_co_b # VAE error averages outside the log self.nll_bound_vae = -tf.reduce_mean(lb_on_ll_b) # IWAE error averages inside the log k = tf.cast(tf.shape(log_p_xgz_b)[0], tf.float32) iwae_lb_on_ll = -tf.log(k) + log_sum_exp(lb_on_ll_b) self.nll_bound_iwae = -iwae_lb_on_ll # L2 regularization on the generator, normalized by number of parameters. self.l2_cost = tf.constant(0.0) if self.hps.l2_gen_scale > 0.0 or self.hps.l2_con_scale > 0.0: l2_costs = [] l2_numels = [] l2_reg_var_lists = [tf.get_collection('l2_gen_reg'), tf.get_collection('l2_con_reg')] l2_reg_scales = [self.hps.l2_gen_scale, self.hps.l2_con_scale] for l2_reg_vars, l2_scale in zip(l2_reg_var_lists, l2_reg_scales): for v in l2_reg_vars: numel = tf.reduce_prod(tf.concat(axis=0, values=tf.shape(v))) numel_f = tf.cast(numel, tf.float32) l2_numels.append(numel_f) v_l2 = tf.reduce_sum(v*v) l2_costs.append(0.5 * l2_scale * v_l2) self.l2_cost = tf.add_n(l2_costs) / tf.add_n(l2_numels) # Compute the cost for training, part of the graph regardless. # The KL cost can be problematic at the beginning of optimization, # so we allow an exponential increase in weighting the KL from 0 # to 1. self.kl_decay_step = tf.maximum(self.train_step - hps.kl_start_step, 0) self.l2_decay_step = tf.maximum(self.train_step - hps.l2_start_step, 0) kl_decay_step_f = tf.cast(self.kl_decay_step, tf.float32) l2_decay_step_f = tf.cast(self.l2_decay_step, tf.float32) kl_increase_steps_f = tf.cast(hps.kl_increase_steps, tf.float32) l2_increase_steps_f = tf.cast(hps.l2_increase_steps, tf.float32) self.kl_weight = kl_weight = \ tf.minimum(kl_decay_step_f / kl_increase_steps_f, 1.0) self.l2_weight = l2_weight = \ tf.minimum(l2_decay_step_f / l2_increase_steps_f, 1.0) self.timed_kl_cost = kl_weight * self.kl_cost self.timed_l2_cost = l2_weight * self.l2_cost self.weight_corr_cost = hps.co_mean_corr_scale * self.corr_cost self.cost = self.recon_cost + self.timed_kl_cost + \ self.timed_l2_cost + self.weight_corr_cost if kind != "train": # save every so often self.seso_saver = tf.train.Saver(tf.global_variables(), max_to_keep=hps.max_ckpt_to_keep) # lowest validation error self.lve_saver = tf.train.Saver(tf.global_variables(), max_to_keep=hps.max_ckpt_to_keep_lve) return # OPTIMIZATION # train the io matrices only if self.hps.do_train_io_only: self.train_vars = tvars = \ tf.get_collection('IO_transformations', scope=tf.get_variable_scope().name) # train the encoder only elif self.hps.do_train_encoder_only: tvars1 = \ tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='LFADS/ic_enc_*') tvars2 = \ tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='LFADS/z/ic_enc_*') self.train_vars = tvars = tvars1 + tvars2 # train all variables else: self.train_vars = tvars = \ tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=tf.get_variable_scope().name) print("done.") print("Model Variables (to be optimized): ") total_params = 0 for i in range(len(tvars)): shape = tvars[i].get_shape().as_list() print(" ", i, tvars[i].name, shape) total_params += np.prod(shape) print("Total model parameters: ", total_params) grads = tf.gradients(self.cost, tvars) grads, grad_global_norm = tf.clip_by_global_norm(grads, hps.max_grad_norm) opt = tf.train.AdamOptimizer(self.learning_rate, beta1=0.9, beta2=0.999, epsilon=1e-01) self.grads = grads self.grad_global_norm = grad_global_norm self.train_op = opt.apply_gradients( zip(grads, tvars), global_step=self.train_step) self.seso_saver = tf.train.Saver(tf.global_variables(), max_to_keep=hps.max_ckpt_to_keep) # lowest validation error self.lve_saver = tf.train.Saver(tf.global_variables(), max_to_keep=hps.max_ckpt_to_keep) # SUMMARIES, used only during training. # example summary self.example_image = tf.placeholder(tf.float32, shape=[1,None,None,3], name='image_tensor') self.example_summ = tf.summary.image("LFADS example", self.example_image, collections=["example_summaries"]) # general training summaries self.lr_summ = tf.summary.scalar("Learning rate", self.learning_rate) self.kl_weight_summ = tf.summary.scalar("KL weight", self.kl_weight) self.l2_weight_summ = tf.summary.scalar("L2 weight", self.l2_weight) self.corr_cost_summ = tf.summary.scalar("Corr cost", self.weight_corr_cost) self.grad_global_norm_summ = tf.summary.scalar("Gradient global norm", self.grad_global_norm) if hps.co_dim > 0: self.atau_summ = [None] * hps.co_dim self.pvar_summ = [None] * hps.co_dim for c in range(hps.co_dim): self.atau_summ[c] = \ tf.summary.scalar("AR Autocorrelation taus " + str(c), tf.exp(self.prior_zs_ar_con.logataus_1xu[0,c])) self.pvar_summ[c] = \ tf.summary.scalar("AR Variances " + str(c), tf.exp(self.prior_zs_ar_con.logpvars_1xu[0,c])) # cost summaries, separated into different collections for # training vs validation. We make placeholders for these, because # even though the graph computes these costs on a per-batch basis, # we want to report the more reliable metric of per-epoch cost. kl_cost_ph = tf.placeholder(tf.float32, shape=[], name='kl_cost_ph') self.kl_t_cost_summ = tf.summary.scalar("KL cost (train)", kl_cost_ph, collections=["train_summaries"]) self.kl_v_cost_summ = tf.summary.scalar("KL cost (valid)", kl_cost_ph, collections=["valid_summaries"]) l2_cost_ph = tf.placeholder(tf.float32, shape=[], name='l2_cost_ph') self.l2_cost_summ = tf.summary.scalar("L2 cost", l2_cost_ph, collections=["train_summaries"]) recon_cost_ph = tf.placeholder(tf.float32, shape=[], name='recon_cost_ph') self.recon_t_cost_summ = tf.summary.scalar("Reconstruction cost (train)", recon_cost_ph, collections=["train_summaries"]) self.recon_v_cost_summ = tf.summary.scalar("Reconstruction cost (valid)", recon_cost_ph, collections=["valid_summaries"]) total_cost_ph = tf.placeholder(tf.float32, shape=[], name='total_cost_ph') self.cost_t_summ = tf.summary.scalar("Total cost (train)", total_cost_ph, collections=["train_summaries"]) self.cost_v_summ = tf.summary.scalar("Total cost (valid)", total_cost_ph, collections=["valid_summaries"]) self.kl_cost_ph = kl_cost_ph self.l2_cost_ph = l2_cost_ph self.recon_cost_ph = recon_cost_ph self.total_cost_ph = total_cost_ph # Merged summaries, for easy coding later. self.merged_examples = tf.summary.merge_all(key="example_summaries") self.merged_generic = tf.summary.merge_all() # default key is 'summaries' self.merged_train = tf.summary.merge_all(key="train_summaries") self.merged_valid = tf.summary.merge_all(key="valid_summaries") session = tf.get_default_session() self.logfile = os.path.join(hps.lfads_save_dir, "lfads_log") self.writer = tf.summary.FileWriter(self.logfile) def build_feed_dict(self, train_name, data_bxtxd, ext_input_bxtxi=None, keep_prob=None): """Build the feed dictionary, handles cases where there is no value defined. Args: train_name: The key into the datasets, to set the tf.case statement for the proper readin / readout matrices. data_bxtxd: The data tensor ext_input_bxtxi (optional): The external input tensor keep_prob: The drop out keep probability. Returns: The feed dictionary with TF tensors as keys and data as values, for use with tf.Session.run() """ feed_dict = {} B, T, _ = data_bxtxd.shape feed_dict[self.dataName] = train_name feed_dict[self.dataset_ph] = data_bxtxd if self.ext_input is not None and ext_input_bxtxi is not None: feed_dict[self.ext_input] = ext_input_bxtxi if keep_prob is None: feed_dict[self.keep_prob] = self.hps.keep_prob else: feed_dict[self.keep_prob] = keep_prob return feed_dict @staticmethod def get_batch(data_extxd, ext_input_extxi=None, batch_size=None, example_idxs=None): """Get a batch of data, either randomly chosen, or specified directly. Args: data_extxd: The data to model, numpy tensors with shape: # examples x # time steps x # dimensions ext_input_extxi (optional): The external inputs, numpy tensor with shape: # examples x # time steps x # external input dimensions batch_size: The size of the batch to return example_idxs (optional): The example indices used to select examples. Returns: A tuple with two parts: 1. Batched data numpy tensor with shape: batch_size x # time steps x # dimensions 2. Batched external input numpy tensor with shape: batch_size x # time steps x # external input dims """ assert batch_size is not None or example_idxs is not None, "Problems" E, T, D = data_extxd.shape if example_idxs is None: example_idxs = np.random.choice(E, batch_size) ext_input_bxtxi = None if ext_input_extxi is not None: ext_input_bxtxi = ext_input_extxi[example_idxs,:,:] return data_extxd[example_idxs,:,:], ext_input_bxtxi @staticmethod def example_idxs_mod_batch_size(nexamples, batch_size): """Given a number of examples, E, and a batch_size, B, generate indices [0, 1, 2, ... B-1; [B, B+1, ... 2*B-1; ... ] returning those indices as a 2-dim tensor shaped like E/B x B. Note that shape is only correct if E % B == 0. If not, then an extra row is generated so that the remainder of examples is included. The extra examples are explicitly to to the zero index (see randomize_example_idxs_mod_batch_size) for randomized behavior. Args: nexamples: The number of examples to batch up. batch_size: The size of the batch. Returns: 2-dim tensor as described above. """ bmrem = batch_size - (nexamples % batch_size) bmrem_examples = [] if bmrem < batch_size: #bmrem_examples = np.zeros(bmrem, dtype=np.int32) ridxs = np.random.permutation(nexamples)[0:bmrem].astype(np.int32) bmrem_examples = np.sort(ridxs) example_idxs = range(nexamples) + list(bmrem_examples) example_idxs_e_x_edivb = np.reshape(example_idxs, [-1, batch_size]) return example_idxs_e_x_edivb, bmrem @staticmethod def randomize_example_idxs_mod_batch_size(nexamples, batch_size): """Indices 1:nexamples, randomized, in 2D form of shape = (nexamples / batch_size) x batch_size. The remainder is managed by drawing randomly from 1:nexamples. Args: nexamples: number of examples to randomize batch_size: number of elements in batch Returns: The randomized, properly shaped indicies. """ assert nexamples > batch_size, "Problems" bmrem = batch_size - nexamples % batch_size bmrem_examples = [] if bmrem < batch_size: bmrem_examples = np.random.choice(range(nexamples), size=bmrem, replace=False) example_idxs = range(nexamples) + list(bmrem_examples) mixed_example_idxs = np.random.permutation(example_idxs) example_idxs_e_x_edivb = np.reshape(mixed_example_idxs, [-1, batch_size]) return example_idxs_e_x_edivb, bmrem def shuffle_spikes_in_time(self, data_bxtxd): """Shuffle the spikes in the temporal dimension. This is useful to help the LFADS system avoid overfitting to individual spikes or fast oscillations found in the data that are irrelevant to behavior. A pure 'tabula rasa' approach would avoid this, but LFADS is sensitive enough to pick up dynamics that you may not want. Args: data_bxtxd: numpy array of spike count data to be shuffled. Returns: S_bxtxd, a numpy array with the same dimensions and contents as data_bxtxd, but shuffled appropriately. """ B, T, N = data_bxtxd.shape w = self.hps.temporal_spike_jitter_width if w == 0: return data_bxtxd max_counts = np.max(data_bxtxd) S_bxtxd = np.zeros([B,T,N]) # Intuitively, shuffle spike occurances, 0 or 1, but since we have counts, # Do it over and over again up to the max count. for mc in range(1,max_counts+1): idxs = np.nonzero(data_bxtxd >= mc) data_ones = np.zeros_like(data_bxtxd) data_ones[data_bxtxd >= mc] = 1 nfound = len(idxs[0]) shuffles_incrs_in_time = np.random.randint(-w, w, size=nfound) shuffle_tidxs = idxs[1].copy() shuffle_tidxs += shuffles_incrs_in_time # Reflect on the boundaries to not lose mass. shuffle_tidxs[shuffle_tidxs < 0] = -shuffle_tidxs[shuffle_tidxs < 0] shuffle_tidxs[shuffle_tidxs > T-1] = \ (T-1)-(shuffle_tidxs[shuffle_tidxs > T-1] -(T-1)) for iii in zip(idxs[0], shuffle_tidxs, idxs[2]): S_bxtxd[iii] += 1 return S_bxtxd def shuffle_and_flatten_datasets(self, datasets, kind='train'): """Since LFADS supports multiple datasets in the same dynamical model, we have to be careful to use all the data in a single training epoch. But since the datasets my have different data dimensionality, we cannot batch examples from data dictionaries together. Instead, we generate random batches within each data dictionary, and then randomize these batches while holding onto the dataname, so that when it's time to feed the graph, the correct in/out matrices can be selected, per batch. Args: datasets: A dict of data dicts. The dataset dict is simply a name(string)-> data dictionary mapping (See top of lfads.py). kind: 'train' or 'valid' Returns: A flat list, in which each element is a pair ('name', indices). """ batch_size = self.hps.batch_size ndatasets = len(datasets) random_example_idxs = {} epoch_idxs = {} all_name_example_idx_pairs = [] kind_data = kind + '_data' for name, data_dict in datasets.items(): nexamples, ntime, data_dim = data_dict[kind_data].shape epoch_idxs[name] = 0 random_example_idxs, _ = \ self.randomize_example_idxs_mod_batch_size(nexamples, batch_size) epoch_size = random_example_idxs.shape[0] names = [name] * epoch_size all_name_example_idx_pairs += zip(names, random_example_idxs) np.random.shuffle(all_name_example_idx_pairs) # shuffle in place return all_name_example_idx_pairs def train_epoch(self, datasets, batch_size=None, do_save_ckpt=True): """Train the model through the entire dataset once. Args: datasets: A dict of data dicts. The dataset dict is simply a name(string)-> data dictionary mapping (See top of lfads.py). batch_size (optional): The batch_size to use do_save_ckpt (optional): Should the routine save a checkpoint on this training epoch? Returns: A tuple with 6 float values: (total cost of the epoch, epoch reconstruction cost, epoch kl cost, KL weight used this training epoch, total l2 cost on generator, and the corresponding weight). """ ops_to_eval = [self.cost, self.recon_cost, self.kl_cost, self.kl_weight, self.l2_cost, self.l2_weight, self.train_op] collected_op_values = self.run_epoch(datasets, ops_to_eval, kind="train") total_cost = total_recon_cost = total_kl_cost = 0.0 # normalizing by batch done in distributions.py epoch_size = len(collected_op_values) for op_values in collected_op_values: total_cost += op_values[0] total_recon_cost += op_values[1] total_kl_cost += op_values[2] kl_weight = collected_op_values[-1][3] l2_cost = collected_op_values[-1][4] l2_weight = collected_op_values[-1][5] epoch_total_cost = total_cost / epoch_size epoch_recon_cost = total_recon_cost / epoch_size epoch_kl_cost = total_kl_cost / epoch_size if do_save_ckpt: session = tf.get_default_session() checkpoint_path = os.path.join(self.hps.lfads_save_dir, self.hps.checkpoint_name + '.ckpt') self.seso_saver.save(session, checkpoint_path, global_step=self.train_step) return epoch_total_cost, epoch_recon_cost, epoch_kl_cost, \ kl_weight, l2_cost, l2_weight def run_epoch(self, datasets, ops_to_eval, kind="train", batch_size=None, do_collect=True, keep_prob=None): """Run the model through the entire dataset once. Args: datasets: A dict of data dicts. The dataset dict is simply a name(string)-> data dictionary mapping (See top of lfads.py). ops_to_eval: A list of tensorflow operations that will be evaluated in the tf.session.run() call. batch_size (optional): The batch_size to use do_collect (optional): Should the routine collect all session.run output as a list, and return it? keep_prob (optional): The dropout keep probability. Returns: A list of lists, the internal list is the return for the ops for each session.run() call. The outer list collects over the epoch. """ hps = self.hps all_name_example_idx_pairs = \ self.shuffle_and_flatten_datasets(datasets, kind) kind_data = kind + '_data' kind_ext_input = kind + '_ext_input' total_cost = total_recon_cost = total_kl_cost = 0.0 session = tf.get_default_session() epoch_size = len(all_name_example_idx_pairs) evaled_ops_list = [] for name, example_idxs in all_name_example_idx_pairs: data_dict = datasets[name] data_extxd = data_dict[kind_data] if hps.output_dist == 'poisson' and hps.temporal_spike_jitter_width > 0: data_extxd = self.shuffle_spikes_in_time(data_extxd) ext_input_extxi = data_dict[kind_ext_input] data_bxtxd, ext_input_bxtxi = self.get_batch(data_extxd, ext_input_extxi, example_idxs=example_idxs) feed_dict = self.build_feed_dict(name, data_bxtxd, ext_input_bxtxi, keep_prob=keep_prob) evaled_ops_np = session.run(ops_to_eval, feed_dict=feed_dict) if do_collect: evaled_ops_list.append(evaled_ops_np) return evaled_ops_list def summarize_all(self, datasets, summary_values): """Plot and summarize stuff in tensorboard. Note that everything done in the current function is otherwise done on a single, randomly selected dataset (except for summary_values, which are passed in.) Args: datasets, the dictionary of datasets used in the study. summary_values: These summary values are created from the training loop, and so summarize the entire set of datasets. """ hps = self.hps tr_kl_cost = summary_values['tr_kl_cost'] tr_recon_cost = summary_values['tr_recon_cost'] tr_total_cost = summary_values['tr_total_cost'] kl_weight = summary_values['kl_weight'] l2_weight = summary_values['l2_weight'] l2_cost = summary_values['l2_cost'] has_any_valid_set = summary_values['has_any_valid_set'] i = summary_values['nepochs'] session = tf.get_default_session() train_summ, train_step = session.run([self.merged_train, self.train_step], feed_dict={self.l2_cost_ph:l2_cost, self.kl_cost_ph:tr_kl_cost, self.recon_cost_ph:tr_recon_cost, self.total_cost_ph:tr_total_cost}) self.writer.add_summary(train_summ, train_step) if has_any_valid_set: ev_kl_cost = summary_values['ev_kl_cost'] ev_recon_cost = summary_values['ev_recon_cost'] ev_total_cost = summary_values['ev_total_cost'] eval_summ = session.run(self.merged_valid, feed_dict={self.kl_cost_ph:ev_kl_cost, self.recon_cost_ph:ev_recon_cost, self.total_cost_ph:ev_total_cost}) self.writer.add_summary(eval_summ, train_step) print("Epoch:%d, step:%d (TRAIN, VALID): total: %.2f, %.2f\ recon: %.2f, %.2f, kl: %.2f, %.2f, l2: %.5f,\ kl weight: %.2f, l2 weight: %.2f" % \ (i, train_step, tr_total_cost, ev_total_cost, tr_recon_cost, ev_recon_cost, tr_kl_cost, ev_kl_cost, l2_cost, kl_weight, l2_weight)) csv_outstr = "epoch,%d, step,%d, total,%.2f,%.2f, \ recon,%.2f,%.2f, kl,%.2f,%.2f, l2,%.5f, \ klweight,%.2f, l2weight,%.2f\n"% \ (i, train_step, tr_total_cost, ev_total_cost, tr_recon_cost, ev_recon_cost, tr_kl_cost, ev_kl_cost, l2_cost, kl_weight, l2_weight) else: print("Epoch:%d, step:%d TRAIN: total: %.2f recon: %.2f, kl: %.2f,\ l2: %.5f, kl weight: %.2f, l2 weight: %.2f" % \ (i, train_step, tr_total_cost, tr_recon_cost, tr_kl_cost, l2_cost, kl_weight, l2_weight)) csv_outstr = "epoch,%d, step,%d, total,%.2f, recon,%.2f, kl,%.2f, \ l2,%.5f, klweight,%.2f, l2weight,%.2f\n"% \ (i, train_step, tr_total_cost, tr_recon_cost, tr_kl_cost, l2_cost, kl_weight, l2_weight) if self.hps.csv_log: csv_file = os.path.join(self.hps.lfads_save_dir, self.hps.csv_log+'.csv') with open(csv_file, "a") as myfile: myfile.write(csv_outstr) def plot_single_example(self, datasets): """Plot an image relating to a randomly chosen, specific example. We use posterior sample and average by taking one example, and filling a whole batch with that example, sample from the posterior, and then average the quantities. """ hps = self.hps all_data_names = datasets.keys() data_name = np.random.permutation(all_data_names)[0] data_dict = datasets[data_name] has_valid_set = True if data_dict['valid_data'] is not None else False cf = 1.0 # plotting concern # posterior sample and average here E, _, _ = data_dict['train_data'].shape eidx = np.random.choice(E) example_idxs = eidx * np.ones(hps.batch_size, dtype=np.int32) train_data_bxtxd, train_ext_input_bxtxi = \ self.get_batch(data_dict['train_data'], data_dict['train_ext_input'], example_idxs=example_idxs) truth_train_data_bxtxd = None if 'train_truth' in data_dict and data_dict['train_truth'] is not None: truth_train_data_bxtxd, _ = self.get_batch(data_dict['train_truth'], example_idxs=example_idxs) cf = data_dict['conversion_factor'] # plotter does averaging train_model_values = self.eval_model_runs_batch(data_name, train_data_bxtxd, train_ext_input_bxtxi, do_average_batch=False) train_step = train_model_values['train_steps'] feed_dict = self.build_feed_dict(data_name, train_data_bxtxd, train_ext_input_bxtxi, keep_prob=1.0) session = tf.get_default_session() generic_summ = session.run(self.merged_generic, feed_dict=feed_dict) self.writer.add_summary(generic_summ, train_step) valid_data_bxtxd = valid_model_values = valid_ext_input_bxtxi = None truth_valid_data_bxtxd = None if has_valid_set: E, _, _ = data_dict['valid_data'].shape eidx = np.random.choice(E) example_idxs = eidx * np.ones(hps.batch_size, dtype=np.int32) valid_data_bxtxd, valid_ext_input_bxtxi = \ self.get_batch(data_dict['valid_data'], data_dict['valid_ext_input'], example_idxs=example_idxs) if 'valid_truth' in data_dict and data_dict['valid_truth'] is not None: truth_valid_data_bxtxd, _ = self.get_batch(data_dict['valid_truth'], example_idxs=example_idxs) else: truth_valid_data_bxtxd = None # plotter does averaging valid_model_values = self.eval_model_runs_batch(data_name, valid_data_bxtxd, valid_ext_input_bxtxi, do_average_batch=False) example_image = plot_lfads(train_bxtxd=train_data_bxtxd, train_model_vals=train_model_values, train_ext_input_bxtxi=train_ext_input_bxtxi, train_truth_bxtxd=truth_train_data_bxtxd, valid_bxtxd=valid_data_bxtxd, valid_model_vals=valid_model_values, valid_ext_input_bxtxi=valid_ext_input_bxtxi, valid_truth_bxtxd=truth_valid_data_bxtxd, bidx=None, cf=cf, output_dist=hps.output_dist) example_image = np.expand_dims(example_image, axis=0) example_summ = session.run(self.merged_examples, feed_dict={self.example_image : example_image}) self.writer.add_summary(example_summ) def train_model(self, datasets): """Train the model, print per-epoch information, and save checkpoints. Loop over training epochs. The function that actually does the training is train_epoch. This function iterates over the training data, one epoch at a time. The learning rate schedule is such that it will stay the same until the cost goes up in comparison to the last few values, then it will drop. Args: datasets: A dict of data dicts. The dataset dict is simply a name(string)-> data dictionary mapping (See top of lfads.py). """ hps = self.hps has_any_valid_set = False for data_dict in datasets.values(): if data_dict['valid_data'] is not None: has_any_valid_set = True break session = tf.get_default_session() lr = session.run(self.learning_rate) lr_stop = hps.learning_rate_stop i = -1 train_costs = [] valid_costs = [] ev_total_cost = ev_recon_cost = ev_kl_cost = 0.0 lowest_ev_cost = np.Inf while True: i += 1 do_save_ckpt = True if i % 10 ==0 else False tr_total_cost, tr_recon_cost, tr_kl_cost, kl_weight, l2_cost, l2_weight = \ self.train_epoch(datasets, do_save_ckpt=do_save_ckpt) # Evaluate the validation cost, and potentially save. Note that this # routine will not save a validation checkpoint until the kl weight and # l2 weights are equal to 1.0. if has_any_valid_set: ev_total_cost, ev_recon_cost, ev_kl_cost = \ self.eval_cost_epoch(datasets, kind='valid') valid_costs.append(ev_total_cost) # > 1 may give more consistent results, but not the actual lowest vae. # == 1 gives the lowest vae seen so far. n_lve = 1 run_avg_lve = np.mean(valid_costs[-n_lve:]) # conditions for saving checkpoints: # KL weight must have finished stepping (>=1.0), AND # L2 weight must have finished stepping OR L2 is not being used, AND # the current run has a lower LVE than previous runs AND # len(valid_costs > n_lve) (not sure what that does) if kl_weight >= 1.0 and \ (l2_weight >= 1.0 or \ (self.hps.l2_gen_scale == 0.0 and self.hps.l2_con_scale == 0.0)) \ and (len(valid_costs) > n_lve and run_avg_lve < lowest_ev_cost): lowest_ev_cost = run_avg_lve checkpoint_path = os.path.join(self.hps.lfads_save_dir, self.hps.checkpoint_name + '_lve.ckpt') self.lve_saver.save(session, checkpoint_path, global_step=self.train_step, latest_filename='checkpoint_lve') # Plot and summarize. values = {'nepochs':i, 'has_any_valid_set': has_any_valid_set, 'tr_total_cost':tr_total_cost, 'ev_total_cost':ev_total_cost, 'tr_recon_cost':tr_recon_cost, 'ev_recon_cost':ev_recon_cost, 'tr_kl_cost':tr_kl_cost, 'ev_kl_cost':ev_kl_cost, 'l2_weight':l2_weight, 'kl_weight':kl_weight, 'l2_cost':l2_cost} self.summarize_all(datasets, values) self.plot_single_example(datasets) # Manage learning rate. train_res = tr_total_cost n_lr = hps.learning_rate_n_to_compare if len(train_costs) > n_lr and train_res > np.max(train_costs[-n_lr:]): _ = session.run(self.learning_rate_decay_op) lr = session.run(self.learning_rate) print(" Decreasing learning rate to %f." % lr) # Force the system to run n_lr times while at this lr. train_costs.append(np.inf) else: train_costs.append(train_res) if lr < lr_stop: print("Stopping optimization based on learning rate criteria.") break def eval_cost_epoch(self, datasets, kind='train', ext_input_extxi=None, batch_size=None): """Evaluate the cost of the epoch. Args: data_dict: The dictionary of data (training and validation) used for training and evaluation of the model, respectively. Returns: a 3 tuple of costs: (epoch total cost, epoch reconstruction cost, epoch KL cost) """ ops_to_eval = [self.cost, self.recon_cost, self.kl_cost] collected_op_values = self.run_epoch(datasets, ops_to_eval, kind=kind, keep_prob=1.0) total_cost = total_recon_cost = total_kl_cost = 0.0 # normalizing by batch done in distributions.py epoch_size = len(collected_op_values) for op_values in collected_op_values: total_cost += op_values[0] total_recon_cost += op_values[1] total_kl_cost += op_values[2] epoch_total_cost = total_cost / epoch_size epoch_recon_cost = total_recon_cost / epoch_size epoch_kl_cost = total_kl_cost / epoch_size return epoch_total_cost, epoch_recon_cost, epoch_kl_cost def eval_model_runs_batch(self, data_name, data_bxtxd, ext_input_bxtxi=None, do_eval_cost=False, do_average_batch=False): """Returns all the goodies for the entire model, per batch. If data_bxtxd and ext_input_bxtxi can have fewer than batch_size along dim 1 in which case this handles the padding and truncating automatically Args: data_name: The name of the data dict, to select which in/out matrices to use. data_bxtxd: Numpy array training data with shape: batch_size x # time steps x # dimensions ext_input_bxtxi: Numpy array training external input with shape: batch_size x # time steps x # external input dims do_eval_cost (optional): If true, the IWAE (Importance Weighted Autoencoder) log likeihood bound, instead of the VAE version. do_average_batch (optional): average over the batch, useful for getting good IWAE costs, and model outputs for a single data point. Returns: A dictionary with the outputs of the model decoder, namely: prior g0 mean, prior g0 variance, approx. posterior mean, approx posterior mean, the generator initial conditions, the control inputs (if enabled), the state of the generator, the factors, and the rates. """ session = tf.get_default_session() # if fewer than batch_size provided, pad to batch_size hps = self.hps batch_size = hps.batch_size E, _, _ = data_bxtxd.shape if E < hps.batch_size: data_bxtxd = np.pad(data_bxtxd, ((0, hps.batch_size-E), (0, 0), (0, 0)), mode='constant', constant_values=0) if ext_input_bxtxi is not None: ext_input_bxtxi = np.pad(ext_input_bxtxi, ((0, hps.batch_size-E), (0, 0), (0, 0)), mode='constant', constant_values=0) feed_dict = self.build_feed_dict(data_name, data_bxtxd, ext_input_bxtxi, keep_prob=1.0) # Non-temporal signals will be batch x dim. # Temporal signals are list length T with elements batch x dim. tf_vals = [self.gen_ics, self.gen_states, self.factors, self.output_dist_params] tf_vals.append(self.cost) tf_vals.append(self.nll_bound_vae) tf_vals.append(self.nll_bound_iwae) tf_vals.append(self.train_step) # not train_op! if self.hps.ic_dim > 0: tf_vals += [self.prior_zs_g0.mean, self.prior_zs_g0.logvar, self.posterior_zs_g0.mean, self.posterior_zs_g0.logvar] if self.hps.co_dim > 0: tf_vals.append(self.controller_outputs) tf_vals_flat, fidxs = flatten(tf_vals) np_vals_flat = session.run(tf_vals_flat, feed_dict=feed_dict) ff = 0 gen_ics = [np_vals_flat[f] for f in fidxs[ff]]; ff += 1 gen_states = [np_vals_flat[f] for f in fidxs[ff]]; ff += 1 factors = [np_vals_flat[f] for f in fidxs[ff]]; ff += 1 out_dist_params = [np_vals_flat[f] for f in fidxs[ff]]; ff += 1 costs = [np_vals_flat[f] for f in fidxs[ff]]; ff += 1 nll_bound_vaes = [np_vals_flat[f] for f in fidxs[ff]]; ff += 1 nll_bound_iwaes = [np_vals_flat[f] for f in fidxs[ff]]; ff +=1 train_steps = [np_vals_flat[f] for f in fidxs[ff]]; ff +=1 if self.hps.ic_dim > 0: prior_g0_mean = [np_vals_flat[f] for f in fidxs[ff]]; ff +=1 prior_g0_logvar = [np_vals_flat[f] for f in fidxs[ff]]; ff += 1 post_g0_mean = [np_vals_flat[f] for f in fidxs[ff]]; ff += 1 post_g0_logvar = [np_vals_flat[f] for f in fidxs[ff]]; ff += 1 if self.hps.co_dim > 0: controller_outputs = [np_vals_flat[f] for f in fidxs[ff]]; ff += 1 # [0] are to take out the non-temporal items from lists gen_ics = gen_ics[0] costs = costs[0] nll_bound_vaes = nll_bound_vaes[0] nll_bound_iwaes = nll_bound_iwaes[0] train_steps = train_steps[0] # Convert to full tensors, not lists of tensors in time dim. gen_states = list_t_bxn_to_tensor_bxtxn(gen_states) factors = list_t_bxn_to_tensor_bxtxn(factors) out_dist_params = list_t_bxn_to_tensor_bxtxn(out_dist_params) if self.hps.ic_dim > 0: # select first time point prior_g0_mean = prior_g0_mean[0] prior_g0_logvar = prior_g0_logvar[0] post_g0_mean = post_g0_mean[0] post_g0_logvar = post_g0_logvar[0] if self.hps.co_dim > 0: controller_outputs = list_t_bxn_to_tensor_bxtxn(controller_outputs) # slice out the trials in case < batch_size provided if E < hps.batch_size: idx = np.arange(E) gen_ics = gen_ics[idx, :] gen_states = gen_states[idx, :] factors = factors[idx, :, :] out_dist_params = out_dist_params[idx, :, :] if self.hps.ic_dim > 0: prior_g0_mean = prior_g0_mean[idx, :] prior_g0_logvar = prior_g0_logvar[idx, :] post_g0_mean = post_g0_mean[idx, :] post_g0_logvar = post_g0_logvar[idx, :] if self.hps.co_dim > 0: controller_outputs = controller_outputs[idx, :, :] if do_average_batch: gen_ics = np.mean(gen_ics, axis=0) gen_states = np.mean(gen_states, axis=0) factors = np.mean(factors, axis=0) out_dist_params = np.mean(out_dist_params, axis=0) if self.hps.ic_dim > 0: prior_g0_mean = np.mean(prior_g0_mean, axis=0) prior_g0_logvar = np.mean(prior_g0_logvar, axis=0) post_g0_mean = np.mean(post_g0_mean, axis=0) post_g0_logvar = np.mean(post_g0_logvar, axis=0) if self.hps.co_dim > 0: controller_outputs = np.mean(controller_outputs, axis=0) model_vals = {} model_vals['gen_ics'] = gen_ics model_vals['gen_states'] = gen_states model_vals['factors'] = factors model_vals['output_dist_params'] = out_dist_params model_vals['costs'] = costs model_vals['nll_bound_vaes'] = nll_bound_vaes model_vals['nll_bound_iwaes'] = nll_bound_iwaes model_vals['train_steps'] = train_steps if self.hps.ic_dim > 0: model_vals['prior_g0_mean'] = prior_g0_mean model_vals['prior_g0_logvar'] = prior_g0_logvar model_vals['post_g0_mean'] = post_g0_mean model_vals['post_g0_logvar'] = post_g0_logvar if self.hps.co_dim > 0: model_vals['controller_outputs'] = controller_outputs return model_vals def eval_model_runs_avg_epoch(self, data_name, data_extxd, ext_input_extxi=None): """Returns all the expected value for goodies for the entire model. The expected value is taken over hidden (z) variables, namely the initial conditions and the control inputs. The expected value is approximate, and accomplished via sampling (batch_size) samples for every examples. Args: data_name: The name of the data dict, to select which in/out matrices to use. data_extxd: Numpy array training data with shape: # examples x # time steps x # dimensions ext_input_extxi (optional): Numpy array training external input with shape: # examples x # time steps x # external input dims Returns: A dictionary with the averaged outputs of the model decoder, namely: prior g0 mean, prior g0 variance, approx. posterior mean, approx posterior mean, the generator initial conditions, the control inputs (if enabled), the state of the generator, the factors, and the output distribution parameters, e.g. (rates or mean and variances). """ hps = self.hps batch_size = hps.batch_size E, T, D = data_extxd.shape E_to_process = hps.ps_nexamples_to_process if E_to_process > E: E_to_process = E if hps.ic_dim > 0: prior_g0_mean = np.zeros([E_to_process, hps.ic_dim]) prior_g0_logvar = np.zeros([E_to_process, hps.ic_dim]) post_g0_mean = np.zeros([E_to_process, hps.ic_dim]) post_g0_logvar = np.zeros([E_to_process, hps.ic_dim]) if hps.co_dim > 0: controller_outputs = np.zeros([E_to_process, T, hps.co_dim]) gen_ics = np.zeros([E_to_process, hps.gen_dim]) gen_states = np.zeros([E_to_process, T, hps.gen_dim]) factors = np.zeros([E_to_process, T, hps.factors_dim]) if hps.output_dist == 'poisson': out_dist_params = np.zeros([E_to_process, T, D]) elif hps.output_dist == 'gaussian': out_dist_params = np.zeros([E_to_process, T, D+D]) else: assert False, "NIY" costs = np.zeros(E_to_process) nll_bound_vaes = np.zeros(E_to_process) nll_bound_iwaes = np.zeros(E_to_process) train_steps = np.zeros(E_to_process) for es_idx in range(E_to_process): print("Running %d of %d." % (es_idx+1, E_to_process)) example_idxs = es_idx * np.ones(batch_size, dtype=np.int32) data_bxtxd, ext_input_bxtxi = self.get_batch(data_extxd, ext_input_extxi, batch_size=batch_size, example_idxs=example_idxs) model_values = self.eval_model_runs_batch(data_name, data_bxtxd, ext_input_bxtxi, do_eval_cost=True, do_average_batch=True) if self.hps.ic_dim > 0: prior_g0_mean[es_idx,:] = model_values['prior_g0_mean'] prior_g0_logvar[es_idx,:] = model_values['prior_g0_logvar'] post_g0_mean[es_idx,:] = model_values['post_g0_mean'] post_g0_logvar[es_idx,:] = model_values['post_g0_logvar'] gen_ics[es_idx,:] = model_values['gen_ics'] if self.hps.co_dim > 0: controller_outputs[es_idx,:,:] = model_values['controller_outputs'] gen_states[es_idx,:,:] = model_values['gen_states'] factors[es_idx,:,:] = model_values['factors'] out_dist_params[es_idx,:,:] = model_values['output_dist_params'] costs[es_idx] = model_values['costs'] nll_bound_vaes[es_idx] = model_values['nll_bound_vaes'] nll_bound_iwaes[es_idx] = model_values['nll_bound_iwaes'] train_steps[es_idx] = model_values['train_steps'] print('bound nll(vae): %.3f, bound nll(iwae): %.3f' \ % (nll_bound_vaes[es_idx], nll_bound_iwaes[es_idx])) model_runs = {} if self.hps.ic_dim > 0: model_runs['prior_g0_mean'] = prior_g0_mean model_runs['prior_g0_logvar'] = prior_g0_logvar model_runs['post_g0_mean'] = post_g0_mean model_runs['post_g0_logvar'] = post_g0_logvar model_runs['gen_ics'] = gen_ics if self.hps.co_dim > 0: model_runs['controller_outputs'] = controller_outputs model_runs['gen_states'] = gen_states model_runs['factors'] = factors model_runs['output_dist_params'] = out_dist_params model_runs['costs'] = costs model_runs['nll_bound_vaes'] = nll_bound_vaes model_runs['nll_bound_iwaes'] = nll_bound_iwaes model_runs['train_steps'] = train_steps return model_runs def eval_model_runs_push_mean(self, data_name, data_extxd, ext_input_extxi=None): """Returns values of interest for the model by pushing the means through The mean values for both initial conditions and the control inputs are pushed through the model instead of sampling (as is done in eval_model_runs_avg_epoch). This is a quick and approximate version of estimating these values instead of sampling from the posterior many times and then averaging those values of interest. Internally, a total of batch_size trials are run through the model at once. Args: data_name: The name of the data dict, to select which in/out matrices to use. data_extxd: Numpy array training data with shape: # examples x # time steps x # dimensions ext_input_extxi (optional): Numpy array training external input with shape: # examples x # time steps x # external input dims Returns: A dictionary with the estimated outputs of the model decoder, namely: prior g0 mean, prior g0 variance, approx. posterior mean, approx posterior mean, the generator initial conditions, the control inputs (if enabled), the state of the generator, the factors, and the output distribution parameters, e.g. (rates or mean and variances). """ hps = self.hps batch_size = hps.batch_size E, T, D = data_extxd.shape E_to_process = hps.ps_nexamples_to_process if E_to_process > E: print("Setting number of posterior samples to process to : ", E) E_to_process = E if hps.ic_dim > 0: prior_g0_mean = np.zeros([E_to_process, hps.ic_dim]) prior_g0_logvar = np.zeros([E_to_process, hps.ic_dim]) post_g0_mean = np.zeros([E_to_process, hps.ic_dim]) post_g0_logvar = np.zeros([E_to_process, hps.ic_dim]) if hps.co_dim > 0: controller_outputs = np.zeros([E_to_process, T, hps.co_dim]) gen_ics = np.zeros([E_to_process, hps.gen_dim]) gen_states = np.zeros([E_to_process, T, hps.gen_dim]) factors = np.zeros([E_to_process, T, hps.factors_dim]) if hps.output_dist == 'poisson': out_dist_params = np.zeros([E_to_process, T, D]) elif hps.output_dist == 'gaussian': out_dist_params = np.zeros([E_to_process, T, D+D]) else: assert False, "NIY" costs = np.zeros(E_to_process) nll_bound_vaes = np.zeros(E_to_process) nll_bound_iwaes = np.zeros(E_to_process) train_steps = np.zeros(E_to_process) # generator that will yield 0:N in groups of per items, e.g. # (0:per-1), (per:2*per-1), ..., with the last group containing <= per items # this will be used to feed per=batch_size trials into the model at a time def trial_batches(N, per): for i in range(0, N, per): yield np.arange(i, min(i+per, N), dtype=np.int32) for batch_idx, es_idx in enumerate(trial_batches(E_to_process, hps.batch_size)): print("Running trial batch %d with %d trials" % (batch_idx+1, len(es_idx))) data_bxtxd, ext_input_bxtxi = self.get_batch(data_extxd, ext_input_extxi, batch_size=batch_size, example_idxs=es_idx) model_values = self.eval_model_runs_batch(data_name, data_bxtxd, ext_input_bxtxi, do_eval_cost=True, do_average_batch=False) if self.hps.ic_dim > 0: prior_g0_mean[es_idx,:] = model_values['prior_g0_mean'] prior_g0_logvar[es_idx,:] = model_values['prior_g0_logvar'] post_g0_mean[es_idx,:] = model_values['post_g0_mean'] post_g0_logvar[es_idx,:] = model_values['post_g0_logvar'] gen_ics[es_idx,:] = model_values['gen_ics'] if self.hps.co_dim > 0: controller_outputs[es_idx,:,:] = model_values['controller_outputs'] gen_states[es_idx,:,:] = model_values['gen_states'] factors[es_idx,:,:] = model_values['factors'] out_dist_params[es_idx,:,:] = model_values['output_dist_params'] # TODO # model_values['costs'] and other costs come out as scalars, summed over # all the trials in the batch. what we want is the per-trial costs costs[es_idx] = model_values['costs'] nll_bound_vaes[es_idx] = model_values['nll_bound_vaes'] nll_bound_iwaes[es_idx] = model_values['nll_bound_iwaes'] train_steps[es_idx] = model_values['train_steps'] model_runs = {} if self.hps.ic_dim > 0: model_runs['prior_g0_mean'] = prior_g0_mean model_runs['prior_g0_logvar'] = prior_g0_logvar model_runs['post_g0_mean'] = post_g0_mean model_runs['post_g0_logvar'] = post_g0_logvar model_runs['gen_ics'] = gen_ics if self.hps.co_dim > 0: model_runs['controller_outputs'] = controller_outputs model_runs['gen_states'] = gen_states model_runs['factors'] = factors model_runs['output_dist_params'] = out_dist_params # You probably do not want the LL associated values when pushing the mean # instead of sampling. model_runs['costs'] = costs model_runs['nll_bound_vaes'] = nll_bound_vaes model_runs['nll_bound_iwaes'] = nll_bound_iwaes model_runs['train_steps'] = train_steps return model_runs def write_model_runs(self, datasets, output_fname=None, push_mean=False): """Run the model on the data in data_dict, and save the computed values. LFADS generates a number of outputs for each examples, and these are all saved. They are: The mean and variance of the prior of g0. The mean and variance of approximate posterior of g0. The control inputs (if enabled) The initial conditions, g0, for all examples. The generator states for all time. The factors for all time. The output distribution parameters (e.g. rates) for all time. Args: datasets: a dictionary of named data_dictionaries, see top of lfads.py output_fname: a file name stem for the output files. push_mean: if False (default), generates batch_size samples for each trial and averages the results. if True, runs each trial once without noise, pushing the posterior mean initial conditions and control inputs through the trained model. False is used for posterior_sample_and_average, True is used for posterior_push_mean. """ hps = self.hps kind = hps.kind for data_name, data_dict in datasets.items(): data_tuple = [('train', data_dict['train_data'], data_dict['train_ext_input']), ('valid', data_dict['valid_data'], data_dict['valid_ext_input'])] for data_kind, data_extxd, ext_input_extxi in data_tuple: if not output_fname: fname = "model_runs_" + data_name + '_' + data_kind + '_' + kind else: fname = output_fname + data_name + '_' + data_kind + '_' + kind print("Writing data for %s data and kind %s." % (data_name, data_kind)) if push_mean: model_runs = self.eval_model_runs_push_mean(data_name, data_extxd, ext_input_extxi) else: model_runs = self.eval_model_runs_avg_epoch(data_name, data_extxd, ext_input_extxi) full_fname = os.path.join(hps.lfads_save_dir, fname) write_data(full_fname, model_runs, compression='gzip') print("Done.") def write_model_samples(self, dataset_name, output_fname=None): """Use the prior distribution to generate batch_size number of samples from the model. LFADS generates a number of outputs for each sample, and these are all saved. They are: The mean and variance of the prior of g0. The control inputs (if enabled) The initial conditions, g0, for all examples. The generator states for all time. The factors for all time. The output distribution parameters (e.g. rates) for all time. Args: dataset_name: The name of the dataset to grab the factors -> rates alignment matrices from. output_fname: The name of the file in which to save the generated samples. """ hps = self.hps batch_size = hps.batch_size print("Generating %d samples" % (batch_size)) tf_vals = [self.factors, self.gen_states, self.gen_ics, self.cost, self.output_dist_params] if hps.ic_dim > 0: tf_vals += [self.prior_zs_g0.mean, self.prior_zs_g0.logvar] if hps.co_dim > 0: tf_vals += [self.prior_zs_ar_con.samples_t] tf_vals_flat, fidxs = flatten(tf_vals) session = tf.get_default_session() feed_dict = {} feed_dict[self.dataName] = dataset_name feed_dict[self.keep_prob] = 1.0 np_vals_flat = session.run(tf_vals_flat, feed_dict=feed_dict) ff = 0 factors = [np_vals_flat[f] for f in fidxs[ff]]; ff += 1 gen_states = [np_vals_flat[f] for f in fidxs[ff]]; ff += 1 gen_ics = [np_vals_flat[f] for f in fidxs[ff]]; ff += 1 costs = [np_vals_flat[f] for f in fidxs[ff]]; ff += 1 output_dist_params = [np_vals_flat[f] for f in fidxs[ff]]; ff += 1 if hps.ic_dim > 0: prior_g0_mean = [np_vals_flat[f] for f in fidxs[ff]]; ff += 1 prior_g0_logvar = [np_vals_flat[f] for f in fidxs[ff]]; ff += 1 if hps.co_dim > 0: prior_zs_ar_con = [np_vals_flat[f] for f in fidxs[ff]]; ff += 1 # [0] are to take out the non-temporal items from lists gen_ics = gen_ics[0] costs = costs[0] # Convert to full tensors, not lists of tensors in time dim. gen_states = list_t_bxn_to_tensor_bxtxn(gen_states) factors = list_t_bxn_to_tensor_bxtxn(factors) output_dist_params = list_t_bxn_to_tensor_bxtxn(output_dist_params) if hps.ic_dim > 0: prior_g0_mean = prior_g0_mean[0] prior_g0_logvar = prior_g0_logvar[0] if hps.co_dim > 0: prior_zs_ar_con = list_t_bxn_to_tensor_bxtxn(prior_zs_ar_con) model_vals = {} model_vals['gen_ics'] = gen_ics model_vals['gen_states'] = gen_states model_vals['factors'] = factors model_vals['output_dist_params'] = output_dist_params model_vals['costs'] = costs.reshape(1) if hps.ic_dim > 0: model_vals['prior_g0_mean'] = prior_g0_mean model_vals['prior_g0_logvar'] = prior_g0_logvar if hps.co_dim > 0: model_vals['prior_zs_ar_con'] = prior_zs_ar_con full_fname = os.path.join(hps.lfads_save_dir, output_fname) write_data(full_fname, model_vals, compression='gzip') print("Done.") @staticmethod def eval_model_parameters(use_nested=True, include_strs=None): """Evaluate and return all of the TF variables in the model. Args: use_nested (optional): For returning values, use a nested dictoinary, based on variable scoping, or return all variables in a flat dictionary. include_strs (optional): A list of strings to use as a filter, to reduce the number of variables returned. A variable name must contain at least one string in include_strs as a sub-string in order to be returned. Returns: The parameters of the model. This can be in a flat dictionary, or a nested dictionary, where the nesting is by variable scope. """ all_tf_vars = tf.global_variables() session = tf.get_default_session() all_tf_vars_eval = session.run(all_tf_vars) vars_dict = {} strs = ["LFADS"] if include_strs: strs += include_strs for i, (var, var_eval) in enumerate(zip(all_tf_vars, all_tf_vars_eval)): if any(s in include_strs for s in var.name): if not isinstance(var_eval, np.ndarray): # for H5PY print(var.name, """ is not numpy array, saving as numpy array with value: """, var_eval, type(var_eval)) e = np.array(var_eval) print(e, type(e)) else: e = var_eval vars_dict[var.name] = e if not use_nested: return vars_dict var_names = vars_dict.keys() nested_vars_dict = {} current_dict = nested_vars_dict for v, var_name in enumerate(var_names): var_split_name_list = var_name.split('/') split_name_list_len = len(var_split_name_list) current_dict = nested_vars_dict for p, part in enumerate(var_split_name_list): if p < split_name_list_len - 1: if part in current_dict: current_dict = current_dict[part] else: current_dict[part] = {} current_dict = current_dict[part] else: current_dict[part] = vars_dict[var_name] return nested_vars_dict @staticmethod def spikify_rates(rates_bxtxd): """Randomly spikify underlying rates according a Poisson distribution Args: rates_bxtxd: a numpy tensor with shape: Returns: A numpy array with the same shape as rates_bxtxd, but with the event counts. """ B,T,N = rates_bxtxd.shape assert all([B > 0, N > 0]), "problems" # Because the rates are changing, there is nesting spikes_bxtxd = np.zeros([B,T,N], dtype=np.int32) for b in range(B): for t in range(T): for n in range(N): rate = rates_bxtxd[b,t,n] count = np.random.poisson(rate) spikes_bxtxd[b,t,n] = count return spikes_bxtxd
andela-ooladayo/django
refs/heads/master
django/db/backends/base/validation.py
393
class BaseDatabaseValidation(object): """ This class encapsulates all backend-specific model validation. """ def __init__(self, connection): self.connection = connection def check_field(self, field, **kwargs): return []
briancline/pyruse
refs/heads/master
setup.py
1
from setuptools import setup from pyruse.version import version_str setup( name='pyruse', version=version_str, author='Brian Cline', author_email='[email protected]', description=('Peruse metadata about Python releases (namely version ' 'information).'), long_description=open('README.rst').read(), license='MIT', keywords='python release metadata version', url='https://github.com/briancline/pyruse', packages=['pyruse'], install_requires=open('requirements.txt').readlines(), test_suite='nose.collector', entry_points={ 'console_scripts': [ 'pyruse-versions=pyruse.commands:versions_main' ] }, classifiers=[ 'Development Status :: 4 - Beta', 'License :: OSI Approved :: MIT License', 'Intended Audience :: Developers', 'Intended Audience :: System Administrators', 'Natural Language :: English', 'Environment :: Console', 'Operating System :: POSIX :: Linux', 'Operating System :: POSIX :: AIX', 'Operating System :: POSIX :: HP-UX', 'Operating System :: POSIX :: IRIX', 'Operating System :: POSIX :: SunOS/Solaris', 'Operating System :: POSIX :: BSD :: BSD/OS', 'Operating System :: POSIX :: BSD :: FreeBSD', 'Operating System :: POSIX :: BSD :: NetBSD', 'Operating System :: POSIX :: BSD :: OpenBSD', 'Operating System :: Unix', 'Programming Language :: Python', ], )
dbckz/ansible
refs/heads/devel
lib/ansible/modules/cloud/amazon/ec2_elb_lb.py
28
#!/usr/bin/python # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. ANSIBLE_METADATA = {'metadata_version': '1.0', 'status': ['stableinterface'], 'supported_by': 'curated'} DOCUMENTATION = """ --- module: ec2_elb_lb description: - Returns information about the load balancer. - Will be marked changed when called only if state is changed. short_description: Creates or destroys Amazon ELB. version_added: "1.5" author: - "Jim Dalton (@jsdalton)" options: state: description: - Create or destroy the ELB choices: ["present", "absent"] required: true name: description: - The name of the ELB required: true listeners: description: - List of ports/protocols for this ELB to listen on (see example) required: false purge_listeners: description: - Purge existing listeners on ELB that are not found in listeners required: false default: true instance_ids: description: - List of instance ids to attach to this ELB required: false default: false version_added: "2.1" purge_instance_ids: description: - Purge existing instance ids on ELB that are not found in instance_ids required: false default: false version_added: "2.1" zones: description: - List of availability zones to enable on this ELB required: false purge_zones: description: - Purge existing availability zones on ELB that are not found in zones required: false default: false security_group_ids: description: - A list of security groups to apply to the elb required: false default: None version_added: "1.6" security_group_names: description: - A list of security group names to apply to the elb required: false default: None version_added: "2.0" health_check: description: - An associative array of health check configuration settings (see example) required: false default: None access_logs: description: - An associative array of access logs configuration settings (see example) required: false default: None version_added: "2.0" subnets: description: - A list of VPC subnets to use when creating ELB. Zones should be empty if using this. required: false default: None aliases: [] version_added: "1.7" purge_subnets: description: - Purge existing subnet on ELB that are not found in subnets required: false default: false version_added: "1.7" scheme: description: - The scheme to use when creating the ELB. For a private VPC-visible ELB use 'internal'. required: false default: 'internet-facing' version_added: "1.7" validate_certs: description: - When set to "no", SSL certificates will not be validated for boto versions >= 2.6.0. required: false default: "yes" choices: ["yes", "no"] aliases: [] version_added: "1.5" connection_draining_timeout: description: - Wait a specified timeout allowing connections to drain before terminating an instance required: false aliases: [] version_added: "1.8" idle_timeout: description: - ELB connections from clients and to servers are timed out after this amount of time required: false version_added: "2.0" cross_az_load_balancing: description: - Distribute load across all configured Availability Zones required: false default: "no" choices: ["yes", "no"] aliases: [] version_added: "1.8" stickiness: description: - An associative array of stickiness policy settings. Policy will be applied to all listeners ( see example ) required: false version_added: "2.0" wait: description: - When specified, Ansible will check the status of the load balancer to ensure it has been successfully removed from AWS. required: false default: no choices: ["yes", "no"] version_added: "2.1" wait_timeout: description: - Used in conjunction with wait. Number of seconds to wait for the elb to be terminated. A maximum of 600 seconds (10 minutes) is allowed. required: false default: 60 version_added: "2.1" tags: description: - An associative array of tags. To delete all tags, supply an empty dict. required: false version_added: "2.1" extends_documentation_fragment: - aws - ec2 """ EXAMPLES = """ # Note: None of these examples set aws_access_key, aws_secret_key, or region. # It is assumed that their matching environment variables are set. # Basic provisioning example (non-VPC) - local_action: module: ec2_elb_lb name: "test-please-delete" state: present zones: - us-east-1a - us-east-1d listeners: - protocol: http # options are http, https, ssl, tcp load_balancer_port: 80 instance_port: 80 proxy_protocol: True - protocol: https load_balancer_port: 443 instance_protocol: http # optional, defaults to value of protocol setting instance_port: 80 # ssl certificate required for https or ssl ssl_certificate_id: "arn:aws:iam::123456789012:server-certificate/company/servercerts/ProdServerCert" # Internal ELB example - local_action: module: ec2_elb_lb name: "test-vpc" scheme: internal state: present instance_ids: - i-abcd1234 purge_instance_ids: true subnets: - subnet-abcd1234 - subnet-1a2b3c4d listeners: - protocol: http # options are http, https, ssl, tcp load_balancer_port: 80 instance_port: 80 # Configure a health check and the access logs - local_action: module: ec2_elb_lb name: "test-please-delete" state: present zones: - us-east-1d listeners: - protocol: http load_balancer_port: 80 instance_port: 80 health_check: ping_protocol: http # options are http, https, ssl, tcp ping_port: 80 ping_path: "/index.html" # not required for tcp or ssl response_timeout: 5 # seconds interval: 30 # seconds unhealthy_threshold: 2 healthy_threshold: 10 access_logs: interval: 5 # minutes (defaults to 60) s3_location: "my-bucket" # This value is required if access_logs is set s3_prefix: "logs" # Ensure ELB is gone - local_action: module: ec2_elb_lb name: "test-please-delete" state: absent # Ensure ELB is gone and wait for check (for default timeout) - local_action: module: ec2_elb_lb name: "test-please-delete" state: absent wait: yes # Ensure ELB is gone and wait for check with timeout value - local_action: module: ec2_elb_lb name: "test-please-delete" state: absent wait: yes wait_timeout: 600 # Normally, this module will purge any listeners that exist on the ELB # but aren't specified in the listeners parameter. If purge_listeners is # false it leaves them alone - local_action: module: ec2_elb_lb name: "test-please-delete" state: present zones: - us-east-1a - us-east-1d listeners: - protocol: http load_balancer_port: 80 instance_port: 80 purge_listeners: no # Normally, this module will leave availability zones that are enabled # on the ELB alone. If purge_zones is true, then any extraneous zones # will be removed - local_action: module: ec2_elb_lb name: "test-please-delete" state: present zones: - us-east-1a - us-east-1d listeners: - protocol: http load_balancer_port: 80 instance_port: 80 purge_zones: yes # Creates a ELB and assigns a list of subnets to it. - local_action: module: ec2_elb_lb state: present name: 'New ELB' security_group_ids: 'sg-123456, sg-67890' region: us-west-2 subnets: 'subnet-123456,subnet-67890' purge_subnets: yes listeners: - protocol: http load_balancer_port: 80 instance_port: 80 # Create an ELB with connection draining, increased idle timeout and cross availability # zone load balancing - local_action: module: ec2_elb_lb name: "New ELB" state: present connection_draining_timeout: 60 idle_timeout: 300 cross_az_load_balancing: "yes" region: us-east-1 zones: - us-east-1a - us-east-1d listeners: - protocol: http load_balancer_port: 80 instance_port: 80 # Create an ELB with load balancer stickiness enabled - local_action: module: ec2_elb_lb name: "New ELB" state: present region: us-east-1 zones: - us-east-1a - us-east-1d listeners: - protocol: http load_balancer_port: 80 instance_port: 80 stickiness: type: loadbalancer enabled: yes expiration: 300 # Create an ELB with application stickiness enabled - local_action: module: ec2_elb_lb name: "New ELB" state: present region: us-east-1 zones: - us-east-1a - us-east-1d listeners: - protocol: http load_balancer_port: 80 instance_port: 80 stickiness: type: application enabled: yes cookie: SESSIONID # Create an ELB and add tags - local_action: module: ec2_elb_lb name: "New ELB" state: present region: us-east-1 zones: - us-east-1a - us-east-1d listeners: - protocol: http load_balancer_port: 80 instance_port: 80 tags: Name: "New ELB" stack: "production" client: "Bob" # Delete all tags from an ELB - local_action: module: ec2_elb_lb name: "New ELB" state: present region: us-east-1 zones: - us-east-1a - us-east-1d listeners: - protocol: http load_balancer_port: 80 instance_port: 80 tags: {} """ try: import boto import boto.ec2.elb import boto.ec2.elb.attributes import boto.vpc from boto.ec2.elb.healthcheck import HealthCheck from boto.ec2.tag import Tag HAS_BOTO = True except ImportError: HAS_BOTO = False import time import random from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.ec2 import ec2_argument_spec, connect_to_aws, AnsibleAWSError from ansible.module_utils.ec2 import get_aws_connection_info def _throttleable_operation(max_retries): def _operation_wrapper(op): def _do_op(*args, **kwargs): retry = 0 while True: try: return op(*args, **kwargs) except boto.exception.BotoServerError as e: if retry < max_retries and e.code in \ ("Throttling", "RequestLimitExceeded"): retry = retry + 1 time.sleep(min(random.random() * (2 ** retry), 300)) continue else: raise return _do_op return _operation_wrapper def _get_vpc_connection(module, region, aws_connect_params): try: return connect_to_aws(boto.vpc, region, **aws_connect_params) except (boto.exception.NoAuthHandlerFound, AnsibleAWSError) as e: module.fail_json(msg=str(e)) _THROTTLING_RETRIES = 5 class ElbManager(object): """Handles ELB creation and destruction""" def __init__(self, module, name, listeners=None, purge_listeners=None, zones=None, purge_zones=None, security_group_ids=None, health_check=None, subnets=None, purge_subnets=None, scheme="internet-facing", connection_draining_timeout=None, idle_timeout=None, cross_az_load_balancing=None, access_logs=None, stickiness=None, wait=None, wait_timeout=None, tags=None, region=None, instance_ids=None, purge_instance_ids=None, **aws_connect_params): self.module = module self.name = name self.listeners = listeners self.purge_listeners = purge_listeners self.instance_ids = instance_ids self.purge_instance_ids = purge_instance_ids self.zones = zones self.purge_zones = purge_zones self.security_group_ids = security_group_ids self.health_check = health_check self.subnets = subnets self.purge_subnets = purge_subnets self.scheme = scheme self.connection_draining_timeout = connection_draining_timeout self.idle_timeout = idle_timeout self.cross_az_load_balancing = cross_az_load_balancing self.access_logs = access_logs self.stickiness = stickiness self.wait = wait self.wait_timeout = wait_timeout self.tags = tags self.aws_connect_params = aws_connect_params self.region = region self.changed = False self.status = 'gone' self.elb_conn = self._get_elb_connection() self.elb = self._get_elb() self.ec2_conn = self._get_ec2_connection() @_throttleable_operation(_THROTTLING_RETRIES) def ensure_ok(self): """Create the ELB""" if not self.elb: # Zones and listeners will be added at creation self._create_elb() else: self._set_zones() self._set_security_groups() self._set_elb_listeners() self._set_subnets() self._set_health_check() # boto has introduced support for some ELB attributes in # different versions, so we check first before trying to # set them to avoid errors if self._check_attribute_support('connection_draining'): self._set_connection_draining_timeout() if self._check_attribute_support('connecting_settings'): self._set_idle_timeout() if self._check_attribute_support('cross_zone_load_balancing'): self._set_cross_az_load_balancing() if self._check_attribute_support('access_log'): self._set_access_log() # add sitcky options self.select_stickiness_policy() # ensure backend server policies are correct self._set_backend_policies() # set/remove instance ids self._set_instance_ids() self._set_tags() def ensure_gone(self): """Destroy the ELB""" if self.elb: self._delete_elb() if self.wait: elb_removed = self._wait_for_elb_removed() # Unfortunately even though the ELB itself is removed quickly # the interfaces take longer so reliant security groups cannot # be deleted until the interface has registered as removed. elb_interface_removed = self._wait_for_elb_interface_removed() if not (elb_removed and elb_interface_removed): self.module.fail_json(msg='Timed out waiting for removal of load balancer.') def get_info(self): try: check_elb = self.elb_conn.get_all_load_balancers(self.name)[0] except: check_elb = None if not check_elb: info = { 'name': self.name, 'status': self.status, 'region': self.region } else: try: lb_cookie_policy = check_elb.policies.lb_cookie_stickiness_policies[0].__dict__['policy_name'] except: lb_cookie_policy = None try: app_cookie_policy = check_elb.policies.app_cookie_stickiness_policies[0].__dict__['policy_name'] except: app_cookie_policy = None info = { 'name': check_elb.name, 'dns_name': check_elb.dns_name, 'zones': check_elb.availability_zones, 'security_group_ids': check_elb.security_groups, 'status': self.status, 'subnets': self.subnets, 'scheme': check_elb.scheme, 'hosted_zone_name': check_elb.canonical_hosted_zone_name, 'hosted_zone_id': check_elb.canonical_hosted_zone_name_id, 'lb_cookie_policy': lb_cookie_policy, 'app_cookie_policy': app_cookie_policy, 'proxy_policy': self._get_proxy_protocol_policy(), 'backends': self._get_backend_policies(), 'instances': [instance.id for instance in check_elb.instances], 'out_of_service_count': 0, 'in_service_count': 0, 'unknown_instance_state_count': 0, 'region': self.region } # status of instances behind the ELB if info['instances']: info['instance_health'] = [ dict( instance_id = instance_state.instance_id, reason_code = instance_state.reason_code, state = instance_state.state ) for instance_state in self.elb_conn.describe_instance_health(self.name)] else: info['instance_health'] = [] # instance state counts: InService or OutOfService if info['instance_health']: for instance_state in info['instance_health']: if instance_state['state'] == "InService": info['in_service_count'] += 1 elif instance_state['state'] == "OutOfService": info['out_of_service_count'] += 1 else: info['unknown_instance_state_count'] += 1 if check_elb.health_check: info['health_check'] = { 'target': check_elb.health_check.target, 'interval': check_elb.health_check.interval, 'timeout': check_elb.health_check.timeout, 'healthy_threshold': check_elb.health_check.healthy_threshold, 'unhealthy_threshold': check_elb.health_check.unhealthy_threshold, } if check_elb.listeners: info['listeners'] = [self._api_listener_as_tuple(l) for l in check_elb.listeners] elif self.status == 'created': # When creating a new ELB, listeners don't show in the # immediately returned result, so just include the # ones that were added info['listeners'] = [self._listener_as_tuple(l) for l in self.listeners] else: info['listeners'] = [] if self._check_attribute_support('connection_draining'): info['connection_draining_timeout'] = int(self.elb_conn.get_lb_attribute(self.name, 'ConnectionDraining').timeout) if self._check_attribute_support('connecting_settings'): info['idle_timeout'] = self.elb_conn.get_lb_attribute(self.name, 'ConnectingSettings').idle_timeout if self._check_attribute_support('cross_zone_load_balancing'): is_cross_az_lb_enabled = self.elb_conn.get_lb_attribute(self.name, 'CrossZoneLoadBalancing') if is_cross_az_lb_enabled: info['cross_az_load_balancing'] = 'yes' else: info['cross_az_load_balancing'] = 'no' # return stickiness info? info['tags'] = self.tags return info @_throttleable_operation(_THROTTLING_RETRIES) def _wait_for_elb_removed(self): polling_increment_secs = 15 max_retries = (self.wait_timeout / polling_increment_secs) status_achieved = False for x in range(0, max_retries): try: self.elb_conn.get_all_lb_attributes(self.name) except (boto.exception.BotoServerError, StandardError) as e: if "LoadBalancerNotFound" in e.code: status_achieved = True break else: time.sleep(polling_increment_secs) return status_achieved @_throttleable_operation(_THROTTLING_RETRIES) def _wait_for_elb_interface_removed(self): polling_increment_secs = 15 max_retries = (self.wait_timeout / polling_increment_secs) status_achieved = False elb_interfaces = self.ec2_conn.get_all_network_interfaces( filters={'attachment.instance-owner-id': 'amazon-elb', 'description': 'ELB {0}'.format(self.name) }) for x in range(0, max_retries): for interface in elb_interfaces: try: result = self.ec2_conn.get_all_network_interfaces(interface.id) if result == []: status_achieved = True break else: time.sleep(polling_increment_secs) except (boto.exception.BotoServerError, StandardError) as e: if 'InvalidNetworkInterfaceID' in e.code: status_achieved = True break else: self.module.fail_json(msg=str(e)) return status_achieved @_throttleable_operation(_THROTTLING_RETRIES) def _get_elb(self): elbs = self.elb_conn.get_all_load_balancers() for elb in elbs: if self.name == elb.name: self.status = 'ok' return elb def _get_elb_connection(self): try: return connect_to_aws(boto.ec2.elb, self.region, **self.aws_connect_params) except (boto.exception.NoAuthHandlerFound, AnsibleAWSError) as e: self.module.fail_json(msg=str(e)) def _get_ec2_connection(self): try: return connect_to_aws(boto.ec2, self.region, **self.aws_connect_params) except (boto.exception.NoAuthHandlerFound, StandardError) as e: self.module.fail_json(msg=str(e)) @_throttleable_operation(_THROTTLING_RETRIES) def _delete_elb(self): # True if succeeds, exception raised if not result = self.elb_conn.delete_load_balancer(name=self.name) if result: self.changed = True self.status = 'deleted' def _create_elb(self): listeners = [self._listener_as_tuple(l) for l in self.listeners] self.elb = self.elb_conn.create_load_balancer(name=self.name, zones=self.zones, security_groups=self.security_group_ids, complex_listeners=listeners, subnets=self.subnets, scheme=self.scheme) if self.elb: # HACK: Work around a boto bug in which the listeners attribute is # always set to the listeners argument to create_load_balancer, and # not the complex_listeners # We're not doing a self.elb = self._get_elb here because there # might be eventual consistency issues and it doesn't necessarily # make sense to wait until the ELB gets returned from the EC2 API. # This is necessary in the event we hit the throttling errors and # need to retry ensure_ok # See https://github.com/boto/boto/issues/3526 self.elb.listeners = self.listeners self.changed = True self.status = 'created' def _create_elb_listeners(self, listeners): """Takes a list of listener tuples and creates them""" # True if succeeds, exception raised if not self.changed = self.elb_conn.create_load_balancer_listeners(self.name, complex_listeners=listeners) def _delete_elb_listeners(self, listeners): """Takes a list of listener tuples and deletes them from the elb""" ports = [l[0] for l in listeners] # True if succeeds, exception raised if not self.changed = self.elb_conn.delete_load_balancer_listeners(self.name, ports) def _set_elb_listeners(self): """ Creates listeners specified by self.listeners; overwrites existing listeners on these ports; removes extraneous listeners """ listeners_to_add = [] listeners_to_remove = [] listeners_to_keep = [] # Check for any listeners we need to create or overwrite for listener in self.listeners: listener_as_tuple = self._listener_as_tuple(listener) # First we loop through existing listeners to see if one is # already specified for this port existing_listener_found = None for existing_listener in self.elb.listeners: # Since ELB allows only one listener on each incoming port, a # single match on the incoming port is all we're looking for if existing_listener[0] == int(listener['load_balancer_port']): existing_listener_found = self._api_listener_as_tuple(existing_listener) break if existing_listener_found: # Does it match exactly? if listener_as_tuple != existing_listener_found: # The ports are the same but something else is different, # so we'll remove the existing one and add the new one listeners_to_remove.append(existing_listener_found) listeners_to_add.append(listener_as_tuple) else: # We already have this listener, so we're going to keep it listeners_to_keep.append(existing_listener_found) else: # We didn't find an existing listener, so just add the new one listeners_to_add.append(listener_as_tuple) # Check for any extraneous listeners we need to remove, if desired if self.purge_listeners: for existing_listener in self.elb.listeners: existing_listener_tuple = self._api_listener_as_tuple(existing_listener) if existing_listener_tuple in listeners_to_remove: # Already queued for removal continue if existing_listener_tuple in listeners_to_keep: # Keep this one around continue # Since we're not already removing it and we don't need to keep # it, let's get rid of it listeners_to_remove.append(existing_listener_tuple) if listeners_to_remove: self._delete_elb_listeners(listeners_to_remove) if listeners_to_add: self._create_elb_listeners(listeners_to_add) def _api_listener_as_tuple(self, listener): """Adds ssl_certificate_id to ELB API tuple if present""" base_tuple = listener.get_complex_tuple() if listener.ssl_certificate_id and len(base_tuple) < 5: return base_tuple + (listener.ssl_certificate_id,) return base_tuple def _listener_as_tuple(self, listener): """Formats listener as a 4- or 5-tuples, in the order specified by the ELB API""" # N.B. string manipulations on protocols below (str(), upper()) is to # ensure format matches output from ELB API listener_list = [ int(listener['load_balancer_port']), int(listener['instance_port']), str(listener['protocol'].upper()), ] # Instance protocol is not required by ELB API; it defaults to match # load balancer protocol. We'll mimic that behavior here if 'instance_protocol' in listener: listener_list.append(str(listener['instance_protocol'].upper())) else: listener_list.append(str(listener['protocol'].upper())) if 'ssl_certificate_id' in listener: listener_list.append(str(listener['ssl_certificate_id'])) return tuple(listener_list) def _enable_zones(self, zones): try: self.elb.enable_zones(zones) except boto.exception.BotoServerError as e: if "Invalid Availability Zone" in e.error_message: self.module.fail_json(msg=e.error_message) else: self.module.fail_json(msg="an unknown server error occurred, please try again later") self.changed = True def _disable_zones(self, zones): try: self.elb.disable_zones(zones) except boto.exception.BotoServerError as e: if "Invalid Availability Zone" in e.error_message: self.module.fail_json(msg=e.error_message) else: self.module.fail_json(msg="an unknown server error occurred, please try again later") self.changed = True def _attach_subnets(self, subnets): self.elb_conn.attach_lb_to_subnets(self.name, subnets) self.changed = True def _detach_subnets(self, subnets): self.elb_conn.detach_lb_from_subnets(self.name, subnets) self.changed = True def _set_subnets(self): """Determine which subnets need to be attached or detached on the ELB""" if self.subnets: if self.purge_subnets: subnets_to_detach = list(set(self.elb.subnets) - set(self.subnets)) subnets_to_attach = list(set(self.subnets) - set(self.elb.subnets)) else: subnets_to_detach = None subnets_to_attach = list(set(self.subnets) - set(self.elb.subnets)) if subnets_to_attach: self._attach_subnets(subnets_to_attach) if subnets_to_detach: self._detach_subnets(subnets_to_detach) def _set_zones(self): """Determine which zones need to be enabled or disabled on the ELB""" if self.zones: if self.purge_zones: zones_to_disable = list(set(self.elb.availability_zones) - set(self.zones)) zones_to_enable = list(set(self.zones) - set(self.elb.availability_zones)) else: zones_to_disable = None zones_to_enable = list(set(self.zones) - set(self.elb.availability_zones)) if zones_to_enable: self._enable_zones(zones_to_enable) # N.B. This must come second, in case it would have removed all zones if zones_to_disable: self._disable_zones(zones_to_disable) def _set_security_groups(self): if self.security_group_ids is not None and set(self.elb.security_groups) != set(self.security_group_ids): self.elb_conn.apply_security_groups_to_lb(self.name, self.security_group_ids) self.changed = True def _set_health_check(self): """Set health check values on ELB as needed""" if self.health_check: # This just makes it easier to compare each of the attributes # and look for changes. Keys are attributes of the current # health_check; values are desired values of new health_check health_check_config = { "target": self._get_health_check_target(), "timeout": self.health_check['response_timeout'], "interval": self.health_check['interval'], "unhealthy_threshold": self.health_check['unhealthy_threshold'], "healthy_threshold": self.health_check['healthy_threshold'], } update_health_check = False # The health_check attribute is *not* set on newly created # ELBs! So we have to create our own. if not self.elb.health_check: self.elb.health_check = HealthCheck() for attr, desired_value in health_check_config.items(): if getattr(self.elb.health_check, attr) != desired_value: setattr(self.elb.health_check, attr, desired_value) update_health_check = True if update_health_check: self.elb.configure_health_check(self.elb.health_check) self.changed = True def _check_attribute_support(self, attr): return hasattr(boto.ec2.elb.attributes.LbAttributes(), attr) def _set_cross_az_load_balancing(self): attributes = self.elb.get_attributes() if self.cross_az_load_balancing: if not attributes.cross_zone_load_balancing.enabled: self.changed = True attributes.cross_zone_load_balancing.enabled = True else: if attributes.cross_zone_load_balancing.enabled: self.changed = True attributes.cross_zone_load_balancing.enabled = False self.elb_conn.modify_lb_attribute(self.name, 'CrossZoneLoadBalancing', attributes.cross_zone_load_balancing.enabled) def _set_access_log(self): attributes = self.elb.get_attributes() if self.access_logs: if 's3_location' not in self.access_logs: self.module.fail_json(msg='s3_location information required') access_logs_config = { "enabled": True, "s3_bucket_name": self.access_logs['s3_location'], "s3_bucket_prefix": self.access_logs.get('s3_prefix', ''), "emit_interval": self.access_logs.get('interval', 60), } update_access_logs_config = False for attr, desired_value in access_logs_config.items(): if getattr(attributes.access_log, attr) != desired_value: setattr(attributes.access_log, attr, desired_value) update_access_logs_config = True if update_access_logs_config: self.elb_conn.modify_lb_attribute(self.name, 'AccessLog', attributes.access_log) self.changed = True elif attributes.access_log.enabled: attributes.access_log.enabled = False self.changed = True self.elb_conn.modify_lb_attribute(self.name, 'AccessLog', attributes.access_log) def _set_connection_draining_timeout(self): attributes = self.elb.get_attributes() if self.connection_draining_timeout is not None: if not attributes.connection_draining.enabled or \ attributes.connection_draining.timeout != self.connection_draining_timeout: self.changed = True attributes.connection_draining.enabled = True attributes.connection_draining.timeout = self.connection_draining_timeout self.elb_conn.modify_lb_attribute(self.name, 'ConnectionDraining', attributes.connection_draining) else: if attributes.connection_draining.enabled: self.changed = True attributes.connection_draining.enabled = False self.elb_conn.modify_lb_attribute(self.name, 'ConnectionDraining', attributes.connection_draining) def _set_idle_timeout(self): attributes = self.elb.get_attributes() if self.idle_timeout is not None: if attributes.connecting_settings.idle_timeout != self.idle_timeout: self.changed = True attributes.connecting_settings.idle_timeout = self.idle_timeout self.elb_conn.modify_lb_attribute(self.name, 'ConnectingSettings', attributes.connecting_settings) def _policy_name(self, policy_type): return __file__.split('/')[-1].split('.')[0].replace('_', '-') + '-' + policy_type def _create_policy(self, policy_param, policy_meth, policy): getattr(self.elb_conn, policy_meth )(policy_param, self.elb.name, policy) def _delete_policy(self, elb_name, policy): self.elb_conn.delete_lb_policy(elb_name, policy) def _update_policy(self, policy_param, policy_meth, policy_attr, policy): self._delete_policy(self.elb.name, policy) self._create_policy(policy_param, policy_meth, policy) def _set_listener_policy(self, listeners_dict, policy=[]): for listener_port in listeners_dict: if listeners_dict[listener_port].startswith('HTTP'): self.elb_conn.set_lb_policies_of_listener(self.elb.name, listener_port, policy) def _set_stickiness_policy(self, elb_info, listeners_dict, policy, **policy_attrs): for p in getattr(elb_info.policies, policy_attrs['attr']): if str(p.__dict__['policy_name']) == str(policy[0]): if str(p.__dict__[policy_attrs['dict_key']]) != str(policy_attrs['param_value'] or 0): self._set_listener_policy(listeners_dict) self._update_policy(policy_attrs['param_value'], policy_attrs['method'], policy_attrs['attr'], policy[0]) self.changed = True break else: self._create_policy(policy_attrs['param_value'], policy_attrs['method'], policy[0]) self.changed = True self._set_listener_policy(listeners_dict, policy) def select_stickiness_policy(self): if self.stickiness: if 'cookie' in self.stickiness and 'expiration' in self.stickiness: self.module.fail_json(msg='\'cookie\' and \'expiration\' can not be set at the same time') elb_info = self.elb_conn.get_all_load_balancers(self.elb.name)[0] d = {} for listener in elb_info.listeners: d[listener[0]] = listener[2] listeners_dict = d if self.stickiness['type'] == 'loadbalancer': policy = [] policy_type = 'LBCookieStickinessPolicyType' if self.module.boolean(self.stickiness['enabled']): if 'expiration' not in self.stickiness: self.module.fail_json(msg='expiration must be set when type is loadbalancer') expiration = self.stickiness['expiration'] if self.stickiness['expiration'] is not 0 else None policy_attrs = { 'type': policy_type, 'attr': 'lb_cookie_stickiness_policies', 'method': 'create_lb_cookie_stickiness_policy', 'dict_key': 'cookie_expiration_period', 'param_value': expiration } policy.append(self._policy_name(policy_attrs['type'])) self._set_stickiness_policy(elb_info, listeners_dict, policy, **policy_attrs) elif not self.module.boolean(self.stickiness['enabled']): if len(elb_info.policies.lb_cookie_stickiness_policies): if elb_info.policies.lb_cookie_stickiness_policies[0].policy_name == self._policy_name(policy_type): self.changed = True else: self.changed = False self._set_listener_policy(listeners_dict) self._delete_policy(self.elb.name, self._policy_name(policy_type)) elif self.stickiness['type'] == 'application': policy = [] policy_type = 'AppCookieStickinessPolicyType' if self.module.boolean(self.stickiness['enabled']): if 'cookie' not in self.stickiness: self.module.fail_json(msg='cookie must be set when type is application') policy_attrs = { 'type': policy_type, 'attr': 'app_cookie_stickiness_policies', 'method': 'create_app_cookie_stickiness_policy', 'dict_key': 'cookie_name', 'param_value': self.stickiness['cookie'] } policy.append(self._policy_name(policy_attrs['type'])) self._set_stickiness_policy(elb_info, listeners_dict, policy, **policy_attrs) elif not self.module.boolean(self.stickiness['enabled']): if len(elb_info.policies.app_cookie_stickiness_policies): if elb_info.policies.app_cookie_stickiness_policies[0].policy_name == self._policy_name(policy_type): self.changed = True self._set_listener_policy(listeners_dict) self._delete_policy(self.elb.name, self._policy_name(policy_type)) else: self._set_listener_policy(listeners_dict) def _get_backend_policies(self): """Get a list of backend policies""" policies = [] if self.elb.backends is not None: for backend in self.elb.backends: if backend.policies is not None: for policy in backend.policies: policies.append(str(backend.instance_port) + ':' + policy.policy_name) return policies def _set_backend_policies(self): """Sets policies for all backends""" ensure_proxy_protocol = False replace = [] backend_policies = self._get_backend_policies() # Find out what needs to be changed for listener in self.listeners: want = False if 'proxy_protocol' in listener and listener['proxy_protocol']: ensure_proxy_protocol = True want = True if str(listener['instance_port']) + ':ProxyProtocol-policy' in backend_policies: if not want: replace.append({'port': listener['instance_port'], 'policies': []}) elif want: replace.append({'port': listener['instance_port'], 'policies': ['ProxyProtocol-policy']}) # enable or disable proxy protocol if ensure_proxy_protocol: self._set_proxy_protocol_policy() # Make the backend policies so for item in replace: self.elb_conn.set_lb_policies_of_backend_server(self.elb.name, item['port'], item['policies']) self.changed = True def _get_proxy_protocol_policy(self): """Find out if the elb has a proxy protocol enabled""" if self.elb.policies is not None and self.elb.policies.other_policies is not None: for policy in self.elb.policies.other_policies: if policy.policy_name == 'ProxyProtocol-policy': return policy.policy_name return None def _set_proxy_protocol_policy(self): """Install a proxy protocol policy if needed""" proxy_policy = self._get_proxy_protocol_policy() if proxy_policy is None: self.elb_conn.create_lb_policy( self.elb.name, 'ProxyProtocol-policy', 'ProxyProtocolPolicyType', {'ProxyProtocol': True} ) self.changed = True # TODO: remove proxy protocol policy if not needed anymore? There is no side effect to leaving it there def _diff_list(self, a, b): """Find the entries in list a that are not in list b""" b = set(b) return [aa for aa in a if aa not in b] def _get_instance_ids(self): """Get the current list of instance ids installed in the elb""" instances = [] if self.elb.instances is not None: for instance in self.elb.instances: instances.append(instance.id) return instances def _set_instance_ids(self): """Register or deregister instances from an lb instance""" assert_instances = self.instance_ids or [] has_instances = self._get_instance_ids() add_instances = self._diff_list(assert_instances, has_instances) if add_instances: self.elb_conn.register_instances(self.elb.name, add_instances) self.changed = True if self.purge_instance_ids: remove_instances = self._diff_list(has_instances, assert_instances) if remove_instances: self.elb_conn.deregister_instances(self.elb.name, remove_instances) self.changed = True def _set_tags(self): """Add/Delete tags""" if self.tags is None: return params = {'LoadBalancerNames.member.1': self.name} tagdict = dict() # get the current list of tags from the ELB, if ELB exists if self.elb: current_tags = self.elb_conn.get_list('DescribeTags', params, [('member', Tag)]) tagdict = dict((tag.Key, tag.Value) for tag in current_tags if hasattr(tag, 'Key')) # Add missing tags dictact = dict(set(self.tags.items()) - set(tagdict.items())) if dictact: for i, key in enumerate(dictact): params['Tags.member.%d.Key' % (i + 1)] = key params['Tags.member.%d.Value' % (i + 1)] = dictact[key] self.elb_conn.make_request('AddTags', params) self.changed=True # Remove extra tags dictact = dict(set(tagdict.items()) - set(self.tags.items())) if dictact: for i, key in enumerate(dictact): params['Tags.member.%d.Key' % (i + 1)] = key self.elb_conn.make_request('RemoveTags', params) self.changed=True def _get_health_check_target(self): """Compose target string from healthcheck parameters""" protocol = self.health_check['ping_protocol'].upper() path = "" if protocol in ['HTTP', 'HTTPS'] and 'ping_path' in self.health_check: path = self.health_check['ping_path'] return "%s:%s%s" % (protocol, self.health_check['ping_port'], path) def main(): argument_spec = ec2_argument_spec() argument_spec.update(dict( state={'required': True, 'choices': ['present', 'absent']}, name={'required': True}, listeners={'default': None, 'required': False, 'type': 'list'}, purge_listeners={'default': True, 'required': False, 'type': 'bool'}, instance_ids={'default': None, 'required': False, 'type': 'list'}, purge_instance_ids={'default': False, 'required': False, 'type': 'bool'}, zones={'default': None, 'required': False, 'type': 'list'}, purge_zones={'default': False, 'required': False, 'type': 'bool'}, security_group_ids={'default': None, 'required': False, 'type': 'list'}, security_group_names={'default': None, 'required': False, 'type': 'list'}, health_check={'default': None, 'required': False, 'type': 'dict'}, subnets={'default': None, 'required': False, 'type': 'list'}, purge_subnets={'default': False, 'required': False, 'type': 'bool'}, scheme={'default': 'internet-facing', 'required': False}, connection_draining_timeout={'default': None, 'required': False, 'type': 'int'}, idle_timeout={'default': None, 'type': 'int', 'required': False}, cross_az_load_balancing={'default': None, 'type': 'bool', 'required': False}, stickiness={'default': None, 'required': False, 'type': 'dict'}, access_logs={'default': None, 'required': False, 'type': 'dict'}, wait={'default': False, 'type': 'bool', 'required': False}, wait_timeout={'default': 60, 'type': 'int', 'required': False}, tags={'default': None, 'required': False, 'type': 'dict'} ) ) module = AnsibleModule( argument_spec=argument_spec, mutually_exclusive = [['security_group_ids', 'security_group_names']] ) if not HAS_BOTO: module.fail_json(msg='boto required for this module') region, ec2_url, aws_connect_params = get_aws_connection_info(module) if not region: module.fail_json(msg="Region must be specified as a parameter, in EC2_REGION or AWS_REGION environment variables or in boto configuration file") name = module.params['name'] state = module.params['state'] listeners = module.params['listeners'] purge_listeners = module.params['purge_listeners'] instance_ids = module.params['instance_ids'] purge_instance_ids = module.params['purge_instance_ids'] zones = module.params['zones'] purge_zones = module.params['purge_zones'] security_group_ids = module.params['security_group_ids'] security_group_names = module.params['security_group_names'] health_check = module.params['health_check'] access_logs = module.params['access_logs'] subnets = module.params['subnets'] purge_subnets = module.params['purge_subnets'] scheme = module.params['scheme'] connection_draining_timeout = module.params['connection_draining_timeout'] idle_timeout = module.params['idle_timeout'] cross_az_load_balancing = module.params['cross_az_load_balancing'] stickiness = module.params['stickiness'] wait = module.params['wait'] wait_timeout = module.params['wait_timeout'] tags = module.params['tags'] if state == 'present' and not listeners: module.fail_json(msg="At least one listener is required for ELB creation") if state == 'present' and not (zones or subnets): module.fail_json(msg="At least one availability zone or subnet is required for ELB creation") if wait_timeout > 600: module.fail_json(msg='wait_timeout maximum is 600 seconds') if security_group_names: security_group_ids = [] try: ec2 = connect_to_aws(boto.ec2, region, **aws_connect_params) if subnets: # We have at least one subnet, ergo this is a VPC vpc_conn = _get_vpc_connection(module=module, region=region, aws_connect_params=aws_connect_params) vpc_id = vpc_conn.get_all_subnets([subnets[0]])[0].vpc_id filters = {'vpc_id': vpc_id} else: filters = None grp_details = ec2.get_all_security_groups(filters=filters) for group_name in security_group_names: if isinstance(group_name, basestring): group_name = [group_name] group_id = [ str(grp.id) for grp in grp_details if str(grp.name) in group_name ] security_group_ids.extend(group_id) except boto.exception.NoAuthHandlerFound as e: module.fail_json(msg = str(e)) elb_man = ElbManager(module, name, listeners, purge_listeners, zones, purge_zones, security_group_ids, health_check, subnets, purge_subnets, scheme, connection_draining_timeout, idle_timeout, cross_az_load_balancing, access_logs, stickiness, wait, wait_timeout, tags, region=region, instance_ids=instance_ids, purge_instance_ids=purge_instance_ids, **aws_connect_params) # check for unsupported attributes for this version of boto if cross_az_load_balancing and not elb_man._check_attribute_support('cross_zone_load_balancing'): module.fail_json(msg="You must install boto >= 2.18.0 to use the cross_az_load_balancing attribute") if connection_draining_timeout and not elb_man._check_attribute_support('connection_draining'): module.fail_json(msg="You must install boto >= 2.28.0 to use the connection_draining_timeout attribute") if idle_timeout and not elb_man._check_attribute_support('connecting_settings'): module.fail_json(msg="You must install boto >= 2.33.0 to use the idle_timeout attribute") if state == 'present': elb_man.ensure_ok() elif state == 'absent': elb_man.ensure_gone() ansible_facts = {'ec2_elb': 'info'} ec2_facts_result = dict(changed=elb_man.changed, elb=elb_man.get_info(), ansible_facts=ansible_facts) module.exit_json(**ec2_facts_result) if __name__ == '__main__': main()
roscoeZA/GeoGigSync
refs/heads/master
pycharm-debug.egg_FILES/third_party/pep8/lib2to3/lib2to3/pgen2/pgen.py
321
# Copyright 2004-2005 Elemental Security, Inc. All Rights Reserved. # Licensed to PSF under a Contributor Agreement. # Pgen imports from . import grammar, token, tokenize class PgenGrammar(grammar.Grammar): pass class ParserGenerator(object): def __init__(self, filename, stream=None): close_stream = None if stream is None: stream = open(filename) close_stream = stream.close self.filename = filename self.stream = stream self.generator = tokenize.generate_tokens(stream.readline) self.gettoken() # Initialize lookahead self.dfas, self.startsymbol = self.parse() if close_stream is not None: close_stream() self.first = {} # map from symbol name to set of tokens self.addfirstsets() def make_grammar(self): c = PgenGrammar() names = self.dfas.keys() names.sort() names.remove(self.startsymbol) names.insert(0, self.startsymbol) for name in names: i = 256 + len(c.symbol2number) c.symbol2number[name] = i c.number2symbol[i] = name for name in names: dfa = self.dfas[name] states = [] for state in dfa: arcs = [] for label, next in state.arcs.iteritems(): arcs.append((self.make_label(c, label), dfa.index(next))) if state.isfinal: arcs.append((0, dfa.index(state))) states.append(arcs) c.states.append(states) c.dfas[c.symbol2number[name]] = (states, self.make_first(c, name)) c.start = c.symbol2number[self.startsymbol] return c def make_first(self, c, name): rawfirst = self.first[name] first = {} for label in rawfirst: ilabel = self.make_label(c, label) ##assert ilabel not in first # XXX failed on <> ... != first[ilabel] = 1 return first def make_label(self, c, label): # XXX Maybe this should be a method on a subclass of converter? ilabel = len(c.labels) if label[0].isalpha(): # Either a symbol name or a named token if label in c.symbol2number: # A symbol name (a non-terminal) if label in c.symbol2label: return c.symbol2label[label] else: c.labels.append((c.symbol2number[label], None)) c.symbol2label[label] = ilabel return ilabel else: # A named token (NAME, NUMBER, STRING) itoken = getattr(token, label, None) assert isinstance(itoken, int), label assert itoken in token.tok_name, label if itoken in c.tokens: return c.tokens[itoken] else: c.labels.append((itoken, None)) c.tokens[itoken] = ilabel return ilabel else: # Either a keyword or an operator assert label[0] in ('"', "'"), label value = eval(label) if value[0].isalpha(): # A keyword if value in c.keywords: return c.keywords[value] else: c.labels.append((token.NAME, value)) c.keywords[value] = ilabel return ilabel else: # An operator (any non-numeric token) itoken = grammar.opmap[value] # Fails if unknown token if itoken in c.tokens: return c.tokens[itoken] else: c.labels.append((itoken, None)) c.tokens[itoken] = ilabel return ilabel def addfirstsets(self): names = self.dfas.keys() names.sort() for name in names: if name not in self.first: self.calcfirst(name) #print name, self.first[name].keys() def calcfirst(self, name): dfa = self.dfas[name] self.first[name] = None # dummy to detect left recursion state = dfa[0] totalset = {} overlapcheck = {} for label, next in state.arcs.iteritems(): if label in self.dfas: if label in self.first: fset = self.first[label] if fset is None: raise ValueError("recursion for rule %r" % name) else: self.calcfirst(label) fset = self.first[label] totalset.update(fset) overlapcheck[label] = fset else: totalset[label] = 1 overlapcheck[label] = {label: 1} inverse = {} for label, itsfirst in overlapcheck.iteritems(): for symbol in itsfirst: if symbol in inverse: raise ValueError("rule %s is ambiguous; %s is in the" " first sets of %s as well as %s" % (name, symbol, label, inverse[symbol])) inverse[symbol] = label self.first[name] = totalset def parse(self): dfas = {} startsymbol = None # MSTART: (NEWLINE | RULE)* ENDMARKER while self.type != token.ENDMARKER: while self.type == token.NEWLINE: self.gettoken() # RULE: NAME ':' RHS NEWLINE name = self.expect(token.NAME) self.expect(token.OP, ":") a, z = self.parse_rhs() self.expect(token.NEWLINE) #self.dump_nfa(name, a, z) dfa = self.make_dfa(a, z) #self.dump_dfa(name, dfa) oldlen = len(dfa) self.simplify_dfa(dfa) newlen = len(dfa) dfas[name] = dfa #print name, oldlen, newlen if startsymbol is None: startsymbol = name return dfas, startsymbol def make_dfa(self, start, finish): # To turn an NFA into a DFA, we define the states of the DFA # to correspond to *sets* of states of the NFA. Then do some # state reduction. Let's represent sets as dicts with 1 for # values. assert isinstance(start, NFAState) assert isinstance(finish, NFAState) def closure(state): base = {} addclosure(state, base) return base def addclosure(state, base): assert isinstance(state, NFAState) if state in base: return base[state] = 1 for label, next in state.arcs: if label is None: addclosure(next, base) states = [DFAState(closure(start), finish)] for state in states: # NB states grows while we're iterating arcs = {} for nfastate in state.nfaset: for label, next in nfastate.arcs: if label is not None: addclosure(next, arcs.setdefault(label, {})) for label, nfaset in arcs.iteritems(): for st in states: if st.nfaset == nfaset: break else: st = DFAState(nfaset, finish) states.append(st) state.addarc(st, label) return states # List of DFAState instances; first one is start def dump_nfa(self, name, start, finish): print "Dump of NFA for", name todo = [start] for i, state in enumerate(todo): print " State", i, state is finish and "(final)" or "" for label, next in state.arcs: if next in todo: j = todo.index(next) else: j = len(todo) todo.append(next) if label is None: print " -> %d" % j else: print " %s -> %d" % (label, j) def dump_dfa(self, name, dfa): print "Dump of DFA for", name for i, state in enumerate(dfa): print " State", i, state.isfinal and "(final)" or "" for label, next in state.arcs.iteritems(): print " %s -> %d" % (label, dfa.index(next)) def simplify_dfa(self, dfa): # This is not theoretically optimal, but works well enough. # Algorithm: repeatedly look for two states that have the same # set of arcs (same labels pointing to the same nodes) and # unify them, until things stop changing. # dfa is a list of DFAState instances changes = True while changes: changes = False for i, state_i in enumerate(dfa): for j in range(i+1, len(dfa)): state_j = dfa[j] if state_i == state_j: #print " unify", i, j del dfa[j] for state in dfa: state.unifystate(state_j, state_i) changes = True break def parse_rhs(self): # RHS: ALT ('|' ALT)* a, z = self.parse_alt() if self.value != "|": return a, z else: aa = NFAState() zz = NFAState() aa.addarc(a) z.addarc(zz) while self.value == "|": self.gettoken() a, z = self.parse_alt() aa.addarc(a) z.addarc(zz) return aa, zz def parse_alt(self): # ALT: ITEM+ a, b = self.parse_item() while (self.value in ("(", "[") or self.type in (token.NAME, token.STRING)): c, d = self.parse_item() b.addarc(c) b = d return a, b def parse_item(self): # ITEM: '[' RHS ']' | ATOM ['+' | '*'] if self.value == "[": self.gettoken() a, z = self.parse_rhs() self.expect(token.OP, "]") a.addarc(z) return a, z else: a, z = self.parse_atom() value = self.value if value not in ("+", "*"): return a, z self.gettoken() z.addarc(a) if value == "+": return a, z else: return a, a def parse_atom(self): # ATOM: '(' RHS ')' | NAME | STRING if self.value == "(": self.gettoken() a, z = self.parse_rhs() self.expect(token.OP, ")") return a, z elif self.type in (token.NAME, token.STRING): a = NFAState() z = NFAState() a.addarc(z, self.value) self.gettoken() return a, z else: self.raise_error("expected (...) or NAME or STRING, got %s/%s", self.type, self.value) def expect(self, type, value=None): if self.type != type or (value is not None and self.value != value): self.raise_error("expected %s/%s, got %s/%s", type, value, self.type, self.value) value = self.value self.gettoken() return value def gettoken(self): tup = self.generator.next() while tup[0] in (tokenize.COMMENT, tokenize.NL): tup = self.generator.next() self.type, self.value, self.begin, self.end, self.line = tup #print token.tok_name[self.type], repr(self.value) def raise_error(self, msg, *args): if args: try: msg = msg % args except: msg = " ".join([msg] + map(str, args)) raise SyntaxError(msg, (self.filename, self.end[0], self.end[1], self.line)) class NFAState(object): def __init__(self): self.arcs = [] # list of (label, NFAState) pairs def addarc(self, next, label=None): assert label is None or isinstance(label, str) assert isinstance(next, NFAState) self.arcs.append((label, next)) class DFAState(object): def __init__(self, nfaset, final): assert isinstance(nfaset, dict) assert isinstance(iter(nfaset).next(), NFAState) assert isinstance(final, NFAState) self.nfaset = nfaset self.isfinal = final in nfaset self.arcs = {} # map from label to DFAState def addarc(self, next, label): assert isinstance(label, str) assert label not in self.arcs assert isinstance(next, DFAState) self.arcs[label] = next def unifystate(self, old, new): for label, next in self.arcs.iteritems(): if next is old: self.arcs[label] = new def __eq__(self, other): # Equality test -- ignore the nfaset instance variable assert isinstance(other, DFAState) if self.isfinal != other.isfinal: return False # Can't just return self.arcs == other.arcs, because that # would invoke this method recursively, with cycles... if len(self.arcs) != len(other.arcs): return False for label, next in self.arcs.iteritems(): if next is not other.arcs.get(label): return False return True __hash__ = None # For Py3 compatibility. def generate_grammar(filename="Grammar.txt"): p = ParserGenerator(filename) return p.make_grammar()
izawaryu/venture
refs/heads/master
venture.py
1
# Ryu Izawa # Written 2017-10-15 # Last updated 2017-10-31 import csv import math import json import string import random import os.path import numpy as np import pandas as pd import urllib, urllib2 start_latitude = 40.433183 start_longitude = -74.199800 # Google Maps API Keys key = "&key=" + 'AIzaSyA_phpapSMniXBO2AfGjxp3ZfAD64wyh1s' # Verdi #key = "&key=" + 'AIzaSyBXOIFAVM65wlaVsRjD-q6YnWQ4V0HpgZQ' # Dreamfish step_size = 0.0001 search_radius = 0.01 locations=[] locations_limit = 100000 def get_nearest_pano(coord): base = "https://maps.googleapis.com/maps/api/streetview/metadata?" arg_location = 'location=' + coord arg_heading = '&heading=' + '0' full_URL = base + arg_location + arg_heading + key req = urllib2.urlopen(full_URL) reply = req.read() json_parsed = json.loads(reply) json_status = json_parsed['status'] if (json_status=='OK'): json_date = json_parsed['date'] json_pano_id = json_parsed['pano_id'] json_latitude = json_parsed['location']['lat'] json_longitude = json_parsed['location']['lng'] return [json_date, json_pano_id, json_latitude, json_longitude, 0] else: return None def there_exists_a_new_pano_at(some_location): visited_pano_ids = [pano[1] for pano in locations] if some_location is not None and some_location[1] not in visited_pano_ids: return True else: return False def distance_between_panos(first_pano, second_pano): if second_pano is not None and first_pano is not None: scalar_distance = ((second_pano[2]-first_pano[2])**2 \ + (second_pano[3]-first_pano[3])**2) \ ** (1.0/2.0) else: scalar_distance = 1 return scalar_distance def some_point_to_relative_bearing(observer_position, observer_track, relative_bearing): # Given an observer's position, observer's track and some measure of distance, # return a pano in the direction of the relative bearing, the given distance away. # Return None if none exists. steps = 1 new_point = None absolute_bearing = observer_track + relative_bearing lat_increment = math.sin(absolute_bearing) lon_increment = math.cos(absolute_bearing) while new_point is None: steps += 1 if steps > 9: break latitude_of_the_new_point = observer_position[2] + (lat_increment * step_size * steps) longitude_of_the_new_point = observer_position[3] + (lon_increment * step_size * steps) coordinates_of_the_new_point = ('{},{}'.format(latitude_of_the_new_point, longitude_of_the_new_point)) new_point = get_nearest_pano(coordinates_of_the_new_point) # Record the direction of travel. if new_point is not None: new_point[4] = math.degrees(observer_track) if there_exists_a_new_pano_at(new_point) and distance_between_panos(observer_position, new_point) < step_size: new_point = None return new_point def continue_along_path(prior_point, current_point): lat_track = current_point[2] - prior_point[2] lon_track = current_point[3] - prior_point[3] # When working with this trig, consider '0' often runs horizontally # to the right in a conventional cartesian grid, with angles increasing counter-clockwise. # We're using an absolute lat/lon grid, so '0' is geo-north and angles increase clockwise. current_track = (math.atan2(lon_track,lat_track)+2*math.pi)%(2*math.pi) # Do not iterate beyond the limiting number of locations. if len(locations) <= locations_limit: # Determine some point ahead of the current position and track. # 'Ahead' here means some distance away in an arbitrary direction, # but not in reverse along the current track. # In this case, I'm checking all angles from fore to aft # along either side, in a fashion similar to breast stroke. # Angles are checked every pi/4 radians. # We do not consider checking panos in reverse. for relative_bearing in [math.pi * 0.0/6.0, \ math.pi * 1.0/6.0, \ math.pi * 11.0/6.0, \ math.pi * 2.0/6.0, \ math.pi * 10.0/6.0, \ math.pi * 3.0/6.0, \ math.pi * 9.0/6.0, \ math.pi * 4.0/6.0, \ math.pi * 8.0/6.0]: some_new_direction_of_travel = some_point_to_relative_bearing(current_point, current_track, relative_bearing) # If there is a new direction of travel (excluding reverse), follow it. if distance_between_panos(some_new_direction_of_travel, start_point) <= search_radius and \ some_new_direction_of_travel is not None: if there_exists_a_new_pano_at(some_new_direction_of_travel): locations.append(some_new_direction_of_travel) df = pd.DataFrame(some_new_direction_of_travel).T df.to_csv('venture.csv', mode='a', header=False, index=False) print('{}: travelling {:3.0f} from {:.4f}, {:.4f}'.format(len(locations), math.degrees(current_track), some_new_direction_of_travel[2], some_new_direction_of_travel[3])) if distance_between_panos(current_point, some_new_direction_of_travel) >= step_size: continue_along_path(current_point, some_new_direction_of_travel) else: continue_along_path(prior_point, some_new_direction_of_travel) return None def venture_outward_from_location(latitude, longitude): # Starting at a given location, # move outward along paths of extisting GSV panoramas. if os.path.isfile('./venture.csv'): with open('venture.csv', 'rb') as v: reader = csv.reader(v) locations = list(reader) latitude = locations[-1][2] longitude = locations[-1][3] else: locations=[] df = pd.DataFrame(locations, columns=['date', 'pano_id', 'latitude', 'longitude', 'comment']) df.to_csv('venture.csv', index=False) coordinates = ('{},{}'.format(latitude, longitude)) try: # Find the nearest panorama to the starting point, A. global start_point start_point = get_nearest_pano(coordinates) # Find another nearby panorama, B. next_point = some_point_to_relative_bearing(start_point, 0.0, 0.0) except ValueError: print('*** failure at venture_outward_from_location({})'.format(coordinates)) locations.append(start_point) sp = pd.DataFrame(start_point).T sp.to_csv('venture.csv', mode='a', header=False, index=False) locations.append(next_point) np = pd.DataFrame(next_point).T np.to_csv('venture.csv', mode='a', header=False, index=False) continue_along_path(start_point, next_point) venture_outward_from_location(start_latitude, start_longitude)
uliss/quneiform
refs/heads/master
tests/py/lpod/frame.py
1
# -*- coding: UTF-8 -*- # # Copyright (c) 2009 Ars Aperta, Itaapy, Pierlis, Talend. # # Authors: David Versmisse <[email protected]> # Hervé Cauwelier <[email protected]> # # This file is part of Lpod (see: http://lpod-project.org). # Lpod is free software; you can redistribute it and/or modify it under # the terms of either: # # a) the GNU General Public License as published by the Free Software # Foundation, either version 3 of the License, or (at your option) # any later version. # Lpod is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with Lpod. If not, see <http://www.gnu.org/licenses/>. # # b) the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Import from lpod from image import odf_create_image from element import odf_create_element, odf_element, register_element_class from paragraph import odf_create_paragraph def odf_create_frame(name=None, size=('1cm', '1cm'), anchor_type='paragraph', page_number=None, position=None, style=None): """Create a frame element of the given size. If positioned by page, give the page number and the x, y position. Size is a (width, height) tuple and position is a (left, top) tuple; items are strings including the unit, e.g. ('10cm', '15cm'). Frames are not useful by themselves. You should consider calling odf_create_image_frame or odf_create_text_frame directly. Arguments: name -- unicode size -- (str, str) anchor_type -- 'page', 'frame', 'paragraph' (default), 'char' or 'as-char' page_number -- int (when anchor_type == 'page') position -- (str, str) style -- unicode Return: odf_element """ element = odf_create_element('draw:frame') element.set_frame_size(size) element.set_frame_anchor_type(anchor_type, page_number=page_number) if name: element.set_attribute('draw:name', name) if position is not None: element.set_frame_position(position) if style is not None: element.set_attribute('draw:style-name', style) return element def odf_create_image_frame(uri, text=None, size=('1cm', '1cm'), anchor_type='paragraph', page_number=None, position=None, style=None): """Create a ready-to-use image, since it must be embedded in a frame. The optionnal text will appear above the image. Size is a (width, height) tuple and position is a (left, top) tuple; items are strings including the unit, e.g. ('21cm', '29.7cm'). Arguments: uri -- str text -- unicode size -- (str, str) anchor_type -- 'page', 'frame', 'paragraph', 'char' or 'as-char' page_number -- int (when anchor_type == 'page') position -- (str, str) style -- unicode Return: odf_element """ frame = odf_create_frame(size=size, anchor_type=anchor_type, page_number=page_number, position=position, style=style) image = odf_create_image(uri) if text: image.set_text_content(text) frame.append(image) return frame def odf_create_text_frame(text_or_element, size=('1cm', '1cm'), anchor_type='paragraph', page_number=None, position=None, style=None, text_style=None): """Create a ready-to-use text box, since it must be embedded in a frame. Size is a (width, height) tuple and position is a (left, top) tuple; items are strings including the unit, e.g. ('21cm', '29.7cm'). Arguments: text_or_element -- unicode or odf_element size -- (str, str) anchor_type -- 'page', 'frame', 'paragraph', 'char' or 'as-char' page_number -- int (when anchor_type == 'page') position -- (str, str) style -- unicode text_style -- unicode Return: odf_element """ frame = odf_create_frame(size=size, anchor_type=anchor_type, page_number=page_number, position=position, style=style) if text_style: frame.set_attribute('draw:text-style-name', text_style) text_box = odf_create_element('draw:text-box') if not isinstance(text_or_element, (list, tuple)): text_or_element = [text_or_element] for item in text_or_element: if type(item) is unicode: item = odf_create_paragraph(item, style=text_style) text_box.append(item) frame.append(text_box) return frame class odf_frame(odf_element): def get_frame_name(self): return self.get_attribute('draw:name') def set_frame_name(self, name): self.set_attribute('draw:name', name) def get_frame_size(self): """Get the size of the frame. Size is a (width, height) tuple with items including the unit, e.g. ('10cm', '15cm'). Return: (str, str) """ get_attr = self.get_attribute return get_attr('svg:width'), get_attr('svg:height') def set_frame_size(self, size): """Set the size of the frame. Size is a (width, height) tuple with items including the unit, e.g. ('10cm', '15cm'). The dimensions can be None. Arguments: size -- (str, str) """ self.set_attribute('svg:width', size[0]) self.set_attribute('svg:height', size[1]) def get_frame_position(self): """Get the position of the frame relative to its anchor point. Position is a (left, top) tuple with items including the unit, e.g. ('10cm', '15cm'). Return: (str, str) """ get_attr = self.get_attribute return get_attr('svg:x'), get_attr('svg:y') def set_frame_position(self, position): """Set the position of the frame relative to its anchor point. Position is a (left, top) tuple with items including the unit, e.g. ('10cm', '15cm'). Arguments: position -- (str, str) """ self.set_attribute('svg:x', position[0]) self.set_attribute('svg:y', position[1]) def get_frame_anchor_type(self): """Get how the frame is attached to its environment. Return: 'page', 'frame', 'paragraph', 'char' or 'as-char' """ return self.get_attribute('text:anchor-type') def set_frame_anchor_type(self, anchor_type, page_number=None): """Set how the frame is attached to its environment. When the type is 'page', you can give the number of the page where to attach. Arguments: anchor_type -- 'page', 'frame', 'paragraph', 'char' or 'as-char' page_number -- int (when anchor_type == 'page') """ self.set_attribute('text:anchor-type', anchor_type) if anchor_type == 'page' and page_number: self.set_frame_page_number(page_number) def get_frame_page_number(self): """Get the number of the page where the frame is attached when the anchor type is 'page'. Return: int """ page_number = self.get_attribute('text:anchor-page-number') if page_number is None: return None return int(page_number) def set_frame_page_number(self, page_number): """Set the number of the page where the frame is attached when the anchor type is 'page', or None to delete it Arguments: page_number -- int or None """ if page_number is None: self.set_attribute('text:anchor-page-number', None) self.set_attribute('text:anchor-page-number', str(page_number)) def get_formatted_text(self, context): result = [] for element in self.get_children(): tag = element.get_tag() if tag == 'draw:image': if context['rst_mode']: result.append(u'\n.. image:: %s\n' % element.get_attribute('xlink:href')) else: result.append(u'[Image %s]\n' % element.get_attribute('xlink:href')) elif tag == 'draw:text-box': subresult = [u' '] for element in element.get_children(): subresult.append(element.get_formatted_text(context)) subresult = u''.join(subresult) subresult = subresult.replace(u'\n', u'\n ') subresult.rstrip(' ') result.append(subresult) else: result.append(element.get_formatted_text(context)) result.append(u'\n') return u''.join(result) register_element_class('draw:frame', odf_frame)
kuiwei/kuiwei
refs/heads/master
common/lib/xmodule/xmodule/tests/test_progress.py
54
"""Module progress tests""" import unittest from mock import Mock from xblock.field_data import DictFieldData from xmodule.progress import Progress from xmodule import x_module from . import get_test_system class ProgressTest(unittest.TestCase): ''' Test that basic Progress objects work. A Progress represents a fraction between 0 and 1. ''' not_started = Progress(0, 17) part_done = Progress(2, 6) half_done = Progress(3, 6) also_half_done = Progress(1, 2) done = Progress(7, 7) def test_create_object(self): # These should work: p = Progress(0, 2) p = Progress(1, 2) p = Progress(2, 2) p = Progress(2.5, 5.0) p = Progress(3.7, 12.3333) # These shouldn't self.assertRaises(ValueError, Progress, 0, 0) self.assertRaises(ValueError, Progress, 2, 0) self.assertRaises(ValueError, Progress, 1, -2) self.assertRaises(TypeError, Progress, 0, "all") # check complex numbers just for the heck of it :) self.assertRaises(TypeError, Progress, 2j, 3) def test_clamp(self): self.assertEqual((2, 2), Progress(3, 2).frac()) self.assertEqual((0, 2), Progress(-2, 2).frac()) def test_frac(self): p = Progress(1, 2) (a, b) = p.frac() self.assertEqual(a, 1) self.assertEqual(b, 2) def test_percent(self): self.assertEqual(self.not_started.percent(), 0) self.assertAlmostEqual(self.part_done.percent(), 33.33333333333333) self.assertEqual(self.half_done.percent(), 50) self.assertEqual(self.done.percent(), 100) self.assertEqual(self.half_done.percent(), self.also_half_done.percent()) def test_started(self): self.assertFalse(self.not_started.started()) self.assertTrue(self.part_done.started()) self.assertTrue(self.half_done.started()) self.assertTrue(self.done.started()) def test_inprogress(self): # only true if working on it self.assertFalse(self.done.inprogress()) self.assertFalse(self.not_started.inprogress()) self.assertTrue(self.part_done.inprogress()) self.assertTrue(self.half_done.inprogress()) def test_done(self): self.assertTrue(self.done.done()) self.assertFalse(self.half_done.done()) self.assertFalse(self.not_started.done()) def test_str(self): self.assertEqual(str(self.not_started), "0/17") self.assertEqual(str(self.part_done), "2/6") self.assertEqual(str(self.done), "7/7") def test_ternary_str(self): self.assertEqual(self.not_started.ternary_str(), "none") self.assertEqual(self.half_done.ternary_str(), "in_progress") self.assertEqual(self.done.ternary_str(), "done") def test_to_js_status(self): '''Test the Progress.to_js_status_str() method''' self.assertEqual(Progress.to_js_status_str(self.not_started), "none") self.assertEqual(Progress.to_js_status_str(self.half_done), "in_progress") self.assertEqual(Progress.to_js_status_str(self.done), "done") self.assertEqual(Progress.to_js_status_str(None), "0") def test_to_js_detail_str(self): '''Test the Progress.to_js_detail_str() method''' f = Progress.to_js_detail_str for p in (self.not_started, self.half_done, self.done): self.assertEqual(f(p), str(p)) # But None should be encoded as 0 self.assertEqual(f(None), "0") def test_add(self): '''Test the Progress.add_counts() method''' p = Progress(0, 2) p2 = Progress(1, 3) p3 = Progress(2, 5) pNone = None add = lambda a, b: Progress.add_counts(a, b).frac() self.assertEqual(add(p, p), (0, 4)) self.assertEqual(add(p, p2), (1, 5)) self.assertEqual(add(p2, p3), (3, 8)) self.assertEqual(add(p2, pNone), p2.frac()) self.assertEqual(add(pNone, p2), p2.frac()) def test_equality(self): '''Test that comparing Progress objects for equality works correctly.''' p = Progress(1, 2) p2 = Progress(2, 4) p3 = Progress(1, 2) self.assertTrue(p == p3) self.assertFalse(p == p2) # Check != while we're at it self.assertTrue(p != p2) self.assertFalse(p != p3) class ModuleProgressTest(unittest.TestCase): ''' Test that get_progress() does the right thing for the different modules ''' def test_xmodule_default(self): '''Make sure default get_progress exists, returns None''' xm = x_module.XModule(Mock(), get_test_system(), DictFieldData({'location': 'a://b/c/d/e'}), Mock()) p = xm.get_progress() self.assertEqual(p, None)
sanguinariojoe/FreeCAD
refs/heads/master
src/Mod/Fem/femviewprovider/view_element_geometry2D.py
12
# *************************************************************************** # * Copyright (c) 2015 Bernd Hahnebach <[email protected]> * # * * # * This file is part of the FreeCAD CAx development system. * # * * # * This program is free software; you can redistribute it and/or modify * # * it under the terms of the GNU Lesser General Public License (LGPL) * # * as published by the Free Software Foundation; either version 2 of * # * the License, or (at your option) any later version. * # * for detail see the LICENCE text file. * # * * # * This program is distributed in the hope that it will be useful, * # * but WITHOUT ANY WARRANTY; without even the implied warranty of * # * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * # * GNU Library General Public License for more details. * # * * # * You should have received a copy of the GNU Library General Public * # * License along with this program; if not, write to the Free Software * # * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 * # * USA * # * * # *************************************************************************** __title__ = "FreeCAD FEM element geometry 2D ViewProvider for the document object" __author__ = "Bernd Hahnebach" __url__ = "https://www.freecadweb.org" ## @package view_element_geometry2D # \ingroup FEM # \brief view provider for element geometry 2D object from femtaskpanels import task_element_geometry2D from . import view_base_femconstraint class VPElementGeometry2D(view_base_femconstraint.VPBaseFemConstraint): """ A View Provider for the ElementGeometry2D object """ def setEdit(self, vobj, mode=0): view_base_femconstraint.VPBaseFemConstraint.setEdit( self, vobj, mode, task_element_geometry2D._TaskPanel )
vertigo235/Sick-Beard-XEM
refs/heads/master
lib/html5lib/treewalkers/__init__.py
133
"""A collection of modules for iterating through different kinds of tree, generating tokens identical to those produced by the tokenizer module. To create a tree walker for a new type of tree, you need to do implement a tree walker object (called TreeWalker by convention) that implements a 'serialize' method taking a tree as sole argument and returning an iterator generating tokens. """ treeWalkerCache = {} def getTreeWalker(treeType, implementation=None, **kwargs): """Get a TreeWalker class for various types of tree with built-in support treeType - the name of the tree type required (case-insensitive). Supported values are "simpletree", "dom", "etree" and "beautifulsoup" "simpletree" - a built-in DOM-ish tree type with support for some more pythonic idioms. "dom" - The xml.dom.minidom DOM implementation "pulldom" - The xml.dom.pulldom event stream "etree" - A generic walker for tree implementations exposing an elementtree-like interface (known to work with ElementTree, cElementTree and lxml.etree). "lxml" - Optimized walker for lxml.etree "beautifulsoup" - Beautiful soup (if installed) "genshi" - a Genshi stream implementation - (Currently applies to the "etree" tree type only). A module implementing the tree type e.g. xml.etree.ElementTree or cElementTree.""" treeType = treeType.lower() if treeType not in treeWalkerCache: if treeType in ("dom", "pulldom", "simpletree"): mod = __import__(treeType, globals()) treeWalkerCache[treeType] = mod.TreeWalker elif treeType == "genshi": import genshistream treeWalkerCache[treeType] = genshistream.TreeWalker elif treeType == "beautifulsoup": import soup treeWalkerCache[treeType] = soup.TreeWalker elif treeType == "lxml": import lxmletree treeWalkerCache[treeType] = lxmletree.TreeWalker elif treeType == "etree": import etree # XXX: NEVER cache here, caching is done in the etree submodule return etree.getETreeModule(implementation, **kwargs).TreeWalker return treeWalkerCache.get(treeType)
dneg/cortex
refs/heads/master
test/IECoreRI/MotionTest.py
7
########################################################################## # # Copyright (c) 2009-2013, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # * Neither the name of Image Engine Design nor the names of any # other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## from __future__ import with_statement import unittest import IECore import IECoreRI import os.path import os class MotionTest( IECoreRI.TestCase ) : def test( self ) : r = IECoreRI.Renderer( "test/IECoreRI/output/motionTest.rib" ) with IECore.WorldBlock( r ) : with IECore.MotionBlock( r, [ 1.75, 2.25 ] ) : r.concatTransform( IECore.M44f.createTranslated( IECore.V3f( 0 ) ) ) r.concatTransform( IECore.M44f.createTranslated( IECore.V3f( 1 ) ) ) l = "\n".join( file( "test/IECoreRI/output/motionTest.rib" ).readlines() ) self.assert_( "MotionBegin [ 1.75 2.25 ]" in l ) self.assert_( "MotionEnd" in l ) if __name__ == "__main__": unittest.main()
draugiskisprendimai/odoo
refs/heads/8.0
openerp/addons/base/__init__.py
379
# -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # Copyright (C) 2004-2009 Tiny SPRL (<http://tiny.be>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## import ir import workflow import module import res import report import tests # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
rosmo/ansible
refs/heads/devel
lib/ansible/modules/network/fortios/fortios_firewall_vipgrp64.py
24
#!/usr/bin/python from __future__ import (absolute_import, division, print_function) # Copyright 2018 Fortinet, Inc. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <https://www.gnu.org/licenses/>. # # the lib use python logging can get it if the following is set in your # Ansible config. __metaclass__ = type ANSIBLE_METADATA = {'status': ['preview'], 'supported_by': 'community', 'metadata_version': '1.1'} DOCUMENTATION = ''' --- module: fortios_firewall_vipgrp64 short_description: Configure IPv6 to IPv4 virtual IP groups in Fortinet's FortiOS and FortiGate. description: - This module is able to configure a FortiGate or FortiOS by allowing the user to configure firewall feature and vipgrp64 category. Examples includes all options and need to be adjusted to datasources before usage. Tested with FOS v6.0.2 version_added: "2.8" author: - Miguel Angel Munoz (@mamunozgonzalez) - Nicolas Thomas (@thomnico) notes: - Requires fortiosapi library developed by Fortinet - Run as a local_action in your playbook requirements: - fortiosapi>=0.9.8 options: host: description: - FortiOS or FortiGate ip address. required: true username: description: - FortiOS or FortiGate username. required: true password: description: - FortiOS or FortiGate password. default: "" vdom: description: - Virtual domain, among those defined previously. A vdom is a virtual instance of the FortiGate that can be configured and used as a different unit. default: root https: description: - Indicates if the requests towards FortiGate must use HTTPS protocol type: bool default: false firewall_vipgrp64: description: - Configure IPv6 to IPv4 virtual IP groups. default: null suboptions: state: description: - Indicates whether to create or remove the object choices: - present - absent color: description: - Integer value to determine the color of the icon in the GUI (range 1 to 32, default = 0, which sets the value to 1). comments: description: - Comment. member: description: - Member VIP objects of the group (Separate multiple objects with a space). suboptions: name: description: - VIP64 name. Source firewall.vip64.name. required: true name: description: - VIP64 group name. required: true uuid: description: - Universally Unique Identifier (UUID; automatically assigned but can be manually reset). ''' EXAMPLES = ''' - hosts: localhost vars: host: "192.168.122.40" username: "admin" password: "" vdom: "root" tasks: - name: Configure IPv6 to IPv4 virtual IP groups. fortios_firewall_vipgrp64: host: "{{ host }}" username: "{{ username }}" password: "{{ password }}" vdom: "{{ vdom }}" firewall_vipgrp64: state: "present" color: "3" comments: "<your_own_value>" member: - name: "default_name_6 (source firewall.vip64.name)" name: "default_name_7" uuid: "<your_own_value>" ''' RETURN = ''' build: description: Build number of the fortigate image returned: always type: str sample: '1547' http_method: description: Last method used to provision the content into FortiGate returned: always type: str sample: 'PUT' http_status: description: Last result given by FortiGate on last operation applied returned: always type: str sample: "200" mkey: description: Master key (id) used in the last call to FortiGate returned: success type: str sample: "key1" name: description: Name of the table used to fulfill the request returned: always type: str sample: "urlfilter" path: description: Path of the table used to fulfill the request returned: always type: str sample: "webfilter" revision: description: Internal revision number returned: always type: str sample: "17.0.2.10658" serial: description: Serial number of the unit returned: always type: str sample: "FGVMEVYYQT3AB5352" status: description: Indication of the operation's result returned: always type: str sample: "success" vdom: description: Virtual domain used returned: always type: str sample: "root" version: description: Version of the FortiGate returned: always type: str sample: "v5.6.3" ''' from ansible.module_utils.basic import AnsibleModule fos = None def login(data): host = data['host'] username = data['username'] password = data['password'] fos.debug('on') if 'https' in data and not data['https']: fos.https('off') else: fos.https('on') fos.login(host, username, password) def filter_firewall_vipgrp64_data(json): option_list = ['color', 'comments', 'member', 'name', 'uuid'] dictionary = {} for attribute in option_list: if attribute in json and json[attribute] is not None: dictionary[attribute] = json[attribute] return dictionary def firewall_vipgrp64(data, fos): vdom = data['vdom'] firewall_vipgrp64_data = data['firewall_vipgrp64'] filtered_data = filter_firewall_vipgrp64_data(firewall_vipgrp64_data) if firewall_vipgrp64_data['state'] == "present": return fos.set('firewall', 'vipgrp64', data=filtered_data, vdom=vdom) elif firewall_vipgrp64_data['state'] == "absent": return fos.delete('firewall', 'vipgrp64', mkey=filtered_data['name'], vdom=vdom) def fortios_firewall(data, fos): login(data) methodlist = ['firewall_vipgrp64'] for method in methodlist: if data[method]: resp = eval(method)(data, fos) break fos.logout() return not resp['status'] == "success", resp['status'] == "success", resp def main(): fields = { "host": {"required": True, "type": "str"}, "username": {"required": True, "type": "str"}, "password": {"required": False, "type": "str", "no_log": True}, "vdom": {"required": False, "type": "str", "default": "root"}, "https": {"required": False, "type": "bool", "default": "False"}, "firewall_vipgrp64": { "required": False, "type": "dict", "options": { "state": {"required": True, "type": "str", "choices": ["present", "absent"]}, "color": {"required": False, "type": "int"}, "comments": {"required": False, "type": "str"}, "member": {"required": False, "type": "list", "options": { "name": {"required": True, "type": "str"} }}, "name": {"required": True, "type": "str"}, "uuid": {"required": False, "type": "str"} } } } module = AnsibleModule(argument_spec=fields, supports_check_mode=False) try: from fortiosapi import FortiOSAPI except ImportError: module.fail_json(msg="fortiosapi module is required") global fos fos = FortiOSAPI() is_error, has_changed, result = fortios_firewall(module.params, fos) if not is_error: module.exit_json(changed=has_changed, meta=result) else: module.fail_json(msg="Error in repo", meta=result) if __name__ == '__main__': main()
edx/edx-enterprise
refs/heads/master
integrated_channels/moodle/migrations/0003_auto_20201006_1706.py
1
# Generated by Django 2.2.16 on 2020-10-06 17:06 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('moodle', '0002_moodlelearnerdatatransmissionaudit'), ] operations = [ migrations.AlterField( model_name='historicalmoodleenterprisecustomerconfiguration', name='transmission_chunk_size', field=models.IntegerField(default=4, help_text='The maximum number of data items to transmit to the integrated channel with each request.'), ), migrations.AlterField( model_name='moodleenterprisecustomerconfiguration', name='transmission_chunk_size', field=models.IntegerField(default=4, help_text='The maximum number of data items to transmit to the integrated channel with each request.'), ), ]
sometallgit/AutoUploader
refs/heads/master
Python27/Lib/site-packages/pip/req/__init__.py
806
from __future__ import absolute_import from .req_install import InstallRequirement from .req_set import RequirementSet, Requirements from .req_file import parse_requirements __all__ = [ "RequirementSet", "Requirements", "InstallRequirement", "parse_requirements", ]
rimbalinux/MSISDNArea
refs/heads/master
djangoappengine/build/lib/djangoappengine/tests/not_return_sets.py
5
from .testmodels import FieldsWithOptionsModel, OrderedModel, SelfReferenceModel import datetime from django.test import TestCase from django.core.exceptions import ObjectDoesNotExist, MultipleObjectsReturned class NonReturnSetsTest(TestCase): floats = [5.3, 2.6, 9.1, 1.58, 2.4] emails = ['[email protected]', '[email protected]', '[email protected]', '[email protected]', '[email protected]'] def setUp(self): for index, (float, email) in enumerate(zip(NonReturnSetsTest.floats, NonReturnSetsTest.emails)): self.last_save_time = datetime.datetime.now().time() ordered_instance = OrderedModel(priority=index, pk=index + 1) ordered_instance.save() model = FieldsWithOptionsModel(floating_point=float, integer=int(float), email=email, time=self.last_save_time, foreign_key=ordered_instance) model.save() def test_get(self): self.assertEquals(FieldsWithOptionsModel.objects.get( email='[email protected]') .email, '[email protected]') # test exception when matching multiple entities self.assertRaises(MultipleObjectsReturned, FieldsWithOptionsModel.objects .get, integer=2) # test exception when entity does not exist self.assertRaises(ObjectDoesNotExist, FieldsWithOptionsModel.objects .get, floating_point=5.2) # TODO: test create when djangos model.save_base is refactored # TODO: test get_or_create when refactored def test_count(self): self.assertEquals(FieldsWithOptionsModel.objects.filter( integer=2).count(), 2) def test_in_bulk(self): self.assertEquals([key in ['[email protected]', '[email protected]'] for key in FieldsWithOptionsModel.objects.in_bulk( ['[email protected]', '[email protected]']).keys()], [True, ]*2) def test_latest(self): self.assertEquals('[email protected]', FieldsWithOptionsModel.objects .latest('time').email) def test_exists(self): self.assertEquals(True, FieldsWithOptionsModel.objects.exists()) def test_deletion(self): # TODO: ForeignKeys will not be deleted! This has to be done via # background tasks self.assertEquals(FieldsWithOptionsModel.objects.count(), 5) FieldsWithOptionsModel.objects.get(email='[email protected]').delete() self.assertEquals(FieldsWithOptionsModel.objects.count(), 4) FieldsWithOptionsModel.objects.filter(email__in=['[email protected]', '[email protected]', '[email protected]', ]).delete() self.assertEquals(FieldsWithOptionsModel.objects.count(), 2) def test_selfref_deletion(self): entity = SelfReferenceModel() entity.save() entity.delete() def test_foreign_key_fetch(self): # test fetching the ForeignKey ordered_instance = OrderedModel.objects.get(priority=2) self.assertEquals(FieldsWithOptionsModel.objects.get(integer=9).foreign_key, ordered_instance) def test_foreign_key_backward(self): entity = OrderedModel.objects.all()[0] self.assertEquals(entity.keys.count(), 1) # TODO: add should save the added instance transactional via for example # force_insert new_foreign_key = FieldsWithOptionsModel(floating_point=5.6, integer=3, email='[email protected]', time=datetime.datetime.now()) entity.keys.add(new_foreign_key) self.assertEquals(entity.keys.count(), 2) # TODO: add test for create entity.keys.remove(new_foreign_key) self.assertEquals(entity.keys.count(), 1) entity.keys.clear() self.assertTrue(not entity.keys.exists()) entity.keys = [new_foreign_key, new_foreign_key] self.assertEquals(entity.keys.count(), 1) self.assertEquals(entity.keys.all()[0].integer, 3)
claudejrogers/RNASEQR
refs/heads/master
interval_tree.py
1
''' This code is copied from package bpbio -- simple bioinformatics scripts http://code.google.com/p/bpbio/ (Oct 03, 2009) Some code for inmporting psyco was removed, since RNASEQR runs on the 64bits system, and psyco is for the 32 bits systems. Some minor modifications. ''' import operator class IntervalTree(object): __slots__ = ('intervals', 'left', 'right', 'center') def __init__(self, intervals, depth=16, minbucket=64, _extent=None, maxbucket=512): """\ `intervals` a list of intervals *with start and stop* attributes. `depth` the depth of the tree `minbucket` if any node in the tree has fewer than minbucket elements, make it a leaf node `maxbucket` even it at specifined `depth`, if the number of intervals > maxbucket, split the node, make the tree deeper. depth and minbucket usually do not need to be changed. if dealing with large numbers (> 1M) of intervals, the depth could be increased to 24. Useage: >>> ivals = [Interval(2, 3), Interval(1, 8), Interval(3, 6)] >>> tree = IntervalTree(ivals) >>> sorted(tree.find(1, 2)) [Interval(2, 3), Interval(1, 8)] this provides an extreme and satisfying performance improvement over searching manually over all 3 elements in the list (like a sucker). the IntervalTree class now also supports the iterator protocol so it's easy to loop over all elements in the tree: >>> import operator >>> sorted([iv for iv in tree], key=operator.attrgetter('start')) [Interval(1, 8), Interval(2, 3), Interval(3, 6)] NOTE: any object with start and stop attributes can be used in the incoming intervals list. """ depth -= 1 if (len(intervals) < minbucket) or (depth==0 and len(intervals) < maxbucket): intervals.sort(key=operator.attrgetter('start')) self.intervals = intervals self.left = self.right = None return if _extent is None: # sorting the first time through allows it to get # better performance in searching later. intervals.sort(key=operator.attrgetter('start')) left, right = _extent or \ (intervals[0].start, max(i.stop for i in intervals)) #center = intervals[len(intervals)/ 2].stop center = (left + right) / 2.0 self.intervals = [] lefts, rights = [], [] for interval in intervals: if interval.stop < center: lefts.append(interval) elif interval.start > center: rights.append(interval) else: # overlapping. self.intervals.append(interval) self.left = lefts and IntervalTree(lefts, depth, minbucket, (intervals[0].start, center)) or None self.right = rights and IntervalTree(rights, depth, minbucket, (center, right)) or None self.center = center def find(self, start, stop): """find all elements between (or overlapping) start and stop""" if self.intervals and not stop < self.intervals[0].start: overlapping = [i for i in self.intervals if i.stop >= start and i.start <= stop] else: overlapping = [] if self.left and start <= self.center: overlapping += self.left.find(start, stop) if self.right and stop >= self.center: overlapping += self.right.find(start, stop) return overlapping def __iter__(self): if self.left: for l in self.left: yield l for i in self.intervals: yield i if self.right: for r in self.right: yield r # methods to allow un/pickling (by pzs): def __getstate__(self): return { 'intervals' : self.intervals, 'left' : self.left, 'right' : self.right, 'center' : self.center } def __setstate__(self, state): for key,value in state.iteritems(): setattr(self, key, value) class Interval(object): __slots__ = ('id','start', 'stop') def __init__(self, start, stop,id=""): self.id=id self.start = start self.stop = stop def __repr__(self): return "Interval(%i, %i)" % (self.start, self.stop) def __getstate__(self): return {'start': self.start, 'stop': self.stop } def __setstate__(self, state): for k, v in state.iteritems(): setattr(self, k, v) def get_id(self): return self.id if __name__ == '__main__': def brute_force_find(intervals, start, stop): return [i for i in intervals if i.stop >= start and i.start <= stop] import random, time def rand(): s = random.randint(1, 2000000) return Interval(s, s + random.randint(200, 6000)) intervals = [rand() for i in xrange(300000)] START, STOP = 390000, 400000 intervals.append(Interval(0, 500000)) tries = 100 tree = IntervalTree(intervals) t = time.time() for i in range(tries): res = tree.find(START, STOP) treetime = time.time() - t t = time.time() print treetime """ for i in range(tries): bf = [i for i in intervals if i.stop >= START and i.start <= STOP] btime = time.time() - t assert not set(bf).symmetric_difference(res) , (len(bf), len(res), set(bf).difference(res), START, STOP) print treetime, btime, btime/treetime assert sum(1 for x in tree) == len(intervals), "iterator not working?" intervals = [rand() for i in xrange(300)] atree = IntervalTree(intervals) import cPickle btree = cPickle.loads(cPickle.dumps(atree, -1)) af = atree.find(START, STOP) bf = btree.find(START, STOP) assert len(af) == len(bf) for a, b in zip(af, bf): assert a.start == b.start assert a.stop == b.stop import doctest doctest.testmod() """
mbernasocchi/QGIS
refs/heads/master
python/plugins/processing/algs/gdal/rasterize_over.py
14
# -*- coding: utf-8 -*- """ *************************************************************************** rasterize_over.py --------------------- Date : September 2013 Copyright : (C) 2013 by Alexander Bruy Email : alexander dot bruy at gmail dot com *************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * *************************************************************************** """ __author__ = 'Alexander Bruy' __date__ = 'September 2013' __copyright__ = '(C) 2013, Alexander Bruy' import os from qgis.PyQt.QtGui import QIcon from qgis.core import (QgsRasterFileWriter, QgsProcessingException, QgsProcessingParameterDefinition, QgsProcessingParameterFeatureSource, QgsProcessingParameterField, QgsProcessingParameterRasterLayer, QgsProcessingParameterNumber, QgsProcessingParameterString, QgsProcessingParameterBoolean, QgsProcessingOutputRasterLayer) from processing.algs.gdal.GdalAlgorithm import GdalAlgorithm from processing.algs.gdal.GdalUtils import GdalUtils pluginPath = os.path.split(os.path.split(os.path.dirname(__file__))[0])[0] class rasterize_over(GdalAlgorithm): INPUT = 'INPUT' FIELD = 'FIELD' INPUT_RASTER = 'INPUT_RASTER' ADD = 'ADD' EXTRA = 'EXTRA' OUTPUT = 'OUTPUT' def __init__(self): super().__init__() def initAlgorithm(self, config=None): self.addParameter(QgsProcessingParameterFeatureSource(self.INPUT, self.tr('Input vector layer'))) self.addParameter(QgsProcessingParameterRasterLayer(self.INPUT_RASTER, self.tr('Input raster layer'))) self.addParameter(QgsProcessingParameterField(self.FIELD, self.tr('Field to use for burn in value'), None, self.INPUT, QgsProcessingParameterField.Numeric, optional=False)) params = [ QgsProcessingParameterBoolean(self.ADD, self.tr('Add burn in values to existing raster values'), defaultValue=False, ), QgsProcessingParameterString(self.EXTRA, self.tr('Additional command-line parameters'), defaultValue=None, optional=True) ] for p in params: p.setFlags(p.flags() | QgsProcessingParameterDefinition.FlagAdvanced) self.addParameter(p) self.addOutput(QgsProcessingOutputRasterLayer(self.OUTPUT, self.tr('Rasterized'))) def name(self): return 'rasterize_over' def displayName(self): return self.tr('Rasterize (overwrite with attribute)') def group(self): return self.tr('Vector conversion') def groupId(self): return 'vectorconversion' def icon(self): return QIcon(os.path.join(pluginPath, 'images', 'gdaltools', 'rasterize.png')) def commandName(self): return 'gdal_rasterize' def getConsoleCommands(self, parameters, context, feedback, executing=True): ogrLayer, layerName = self.getOgrCompatibleSource(self.INPUT, parameters, context, feedback, executing) inLayer = self.parameterAsRasterLayer(parameters, self.INPUT_RASTER, context) if inLayer is None: raise QgsProcessingException(self.invalidRasterError(parameters, self.INPUT_RASTER)) fieldName = self.parameterAsString(parameters, self.FIELD, context) self.setOutputValue(self.OUTPUT, inLayer.source()) arguments = [ '-l', layerName, '-a', fieldName ] if self.parameterAsBool(parameters, self.ADD, context): arguments.append('-add') if self.EXTRA in parameters and parameters[self.EXTRA] not in (None, ''): extra = self.parameterAsString(parameters, self.EXTRA, context) arguments.append(extra) arguments.append(ogrLayer) arguments.append(inLayer.source()) return [self.commandName(), GdalUtils.escapeAndJoin(arguments)]
JLJTECH/TutorialTesting
refs/heads/master
CodeWars/2016/SillyCase-7k.py
1
#Create a function that takes a string and returns that string with the first half lowercased and the last half uppercased. def sillycase(silly): mid = (len(silly)+1) // 2 #add 1 to make divisible midpoint return silly[:mid].lower() + silly[mid:].upper()
salguarnieri/intellij-community
refs/heads/master
python/testData/quickFixes/PyUpdatePropertySignatureQuickFixTest/setterLessParam.py
80
class A(Aa): @property def <warning descr="Getter signature should be (self)">x</warning>(self, r): return r @x.setter def <warning descr="Setter signature should be (self, value)">x<caret></warning>(): self._x = ""
RudoCris/horizon
refs/heads/master
horizon/test/tests/views.py
69
# Copyright 2015 Cisco Systems, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from horizon.test import helpers as test from horizon import views from django import forms from django.test import client from django.utils.translation import ugettext_lazy as _ from django.views import generic FAKENAME = "FakeName" class ViewData(object): template_name = 'fake' def get_context_data(self, **kwargs): context = super(ViewData, self).get_context_data(**kwargs) context['object'] = {'name': 'myName'} return context class PageWithNoTitle(ViewData, views.HorizonTemplateView): pass class PageWithTitle(ViewData, views.HorizonTemplateView): page_title = "A Title" class PageWithTitleData(ViewData, views.HorizonTemplateView): page_title = "A Title: {{ object.name }}" class FormWithTitle(ViewData, views.HorizonFormView): form_class = forms.Form page_title = "A Title: {{ object.name }}" class ViewWithTitle(views.PageTitleMixin, generic.TemplateView): page_title = "Fake" class ViewWithTransTitle(views.PageTitleMixin, generic.TemplateView): page_title = _("Fake") class PageTitleTests(test.TestCase): def setUp(self): super(PageTitleTests, self).setUp() self.request = client.RequestFactory().get('fake') def _dispatch(self, viewClass): p = viewClass() p.request = self.request return p.dispatch(self.request) def test_render_context_with_title(self): tm = ViewWithTitle() context = tm.render_context_with_title({}) self.assertEqual("Fake", context['page_title']) def test_render_context_with_title_override(self): tm = ViewWithTitle() context = tm.render_context_with_title({'page_title': "ekaF"}) self.assertEqual("ekaF", context['page_title']) def test_render_context_with_title_lazy_translations(self): tm = ViewWithTransTitle() context = tm.render_context_with_title({}) self.assertEqual("Fake", context['page_title']) def test_no_title_set(self): res = self._dispatch(PageWithNoTitle) self.assertEqual("", res.context_data['page_title']) def test_title_set(self): res = self._dispatch(PageWithTitle) self.assertEqual("A Title", res.context_data['page_title']) def test_title_with_data(self): res = self._dispatch(PageWithTitleData) self.assertEqual("A Title: myName", res.context_data['page_title']) def test_form_with_title(self): res = self._dispatch(FormWithTitle) self.assertEqual("A Title: myName", res.context_data['page_title'])
sgerhart/ansible
refs/heads/maintenance_policy_module
lib/ansible/utils/module_docs_fragments/eos.py
58
# # (c) 2015, Peter Sprygada <[email protected]> # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. class ModuleDocFragment(object): # Standard files documentation fragment DOCUMENTATION = """ options: authorize: description: - B(Deprecated) - "Starting with Ansible 2.5 we recommend using C(connection: network_cli) and C(become: yes)." - This option is only required if you are using eAPI. - For more information please see the L(EOS Platform Options guide, ../network/user_guide/platform_eos.html). - HORIZONTALLINE - Instructs the module to enter privileged mode on the remote device before sending any commands. If not specified, the device will attempt to execute all commands in non-privileged mode. If the value is not specified in the task, the value of environment variable C(ANSIBLE_NET_AUTHORIZE) will be used instead. type: bool default: 'no' auth_pass: description: - B(Deprecated) - "Starting with Ansible 2.5 we recommend using C(connection: network_cli) and C(become: yes) with C(become_pass)." - This option is only required if you are using eAPI. - For more information please see the L(EOS Platform Options guide, ../network/user_guide/platform_eos.html). - HORIZONTALLINE - Specifies the password to use if required to enter privileged mode on the remote device. If I(authorize) is false, then this argument does nothing. If the value is not specified in the task, the value of environment variable C(ANSIBLE_NET_AUTH_PASS) will be used instead. provider: description: - B(Deprecated) - "Starting with Ansible 2.5 we recommend using C(connection: network_cli)." - This option is only required if you are using eAPI. - For more information please see the L(EOS Platform Options guide, ../network/user_guide/platform_eos.html). - HORIZONTALLINE - A dict object containing connection details. suboptions: host: description: - Specifies the DNS host name or address for connecting to the remote device over the specified transport. The value of host is used as the destination address for the transport. required: true port: description: - Specifies the port to use when building the connection to the remote device. This value applies to either I(cli) or I(eapi). The port value will default to the appropriate transport common port if none is provided in the task. (cli=22, http=80, https=443). default: 0 (use common port) username: description: - Configures the username to use to authenticate the connection to the remote device. This value is used to authenticate either the CLI login or the eAPI authentication depending on which transport is used. If the value is not specified in the task, the value of environment variable C(ANSIBLE_NET_USERNAME) will be used instead. password: description: - Specifies the password to use to authenticate the connection to the remote device. This is a common argument used for either I(cli) or I(eapi) transports. If the value is not specified in the task, the value of environment variable C(ANSIBLE_NET_PASSWORD) will be used instead. timeout: description: - Specifies the timeout in seconds for communicating with the network device for either connecting or sending commands. If the timeout is exceeded before the operation is completed, the module will error. default: 10 ssh_keyfile: description: - Specifies the SSH keyfile to use to authenticate the connection to the remote device. This argument is only used for I(cli) transports. If the value is not specified in the task, the value of environment variable C(ANSIBLE_NET_SSH_KEYFILE) will be used instead. authorize: description: - Instructs the module to enter privileged mode on the remote device before sending any commands. If not specified, the device will attempt to execute all commands in non-privileged mode. If the value is not specified in the task, the value of environment variable C(ANSIBLE_NET_AUTHORIZE) will be used instead. type: bool default: 'no' auth_pass: description: - Specifies the password to use if required to enter privileged mode on the remote device. If I(authorize) is false, then this argument does nothing. If the value is not specified in the task, the value of environment variable C(ANSIBLE_NET_AUTH_PASS) will be used instead. transport: description: - Configures the transport connection to use when connecting to the remote device. required: true choices: - eapi - cli default: cli use_ssl: description: - Configures the I(transport) to use SSL if set to true only when the C(transport=eapi). If the transport argument is not eapi, this value is ignored. type: bool default: 'yes' validate_certs: description: - If C(no), SSL certificates will not be validated. This should only be used on personally controlled sites using self-signed certificates. If the transport argument is not eapi, this value is ignored. type: bool use_proxy: description: - If C(no), the environment variables C(http_proxy) and C(https_proxy) will be ignored. type: bool default: 'yes' version_added: "2.5" notes: - For information on using CLI, eAPI and privileged mode see the :ref:`EOS Platform Options guide <eos_platform_options>` - For more information on using Ansible to manage network devices see the :ref:`Ansible Network Guide <network_guide>` - For more information on using Ansible to manage Arista EOS devices see the `Arista integration page <https://www.ansible.com/ansible-arista-networks>`_. """
jank3/django
refs/heads/master
tests/version/tests.py
352
from unittest import TestCase from django import get_version from django.utils import six class VersionTests(TestCase): def test_development(self): ver_tuple = (1, 4, 0, 'alpha', 0) # This will return a different result when it's run within or outside # of a git clone: 1.4.devYYYYMMDDHHMMSS or 1.4. ver_string = get_version(ver_tuple) six.assertRegex(self, ver_string, r'1\.4(\.dev[0-9]+)?') def test_releases(self): tuples_to_strings = ( ((1, 4, 0, 'alpha', 1), '1.4a1'), ((1, 4, 0, 'beta', 1), '1.4b1'), ((1, 4, 0, 'rc', 1), '1.4c1'), ((1, 4, 0, 'final', 0), '1.4'), ((1, 4, 1, 'rc', 2), '1.4.1c2'), ((1, 4, 1, 'final', 0), '1.4.1'), ) for ver_tuple, ver_string in tuples_to_strings: self.assertEqual(get_version(ver_tuple), ver_string)
taxigps/xbmc-addons-chinese
refs/heads/master
plugin.video.bdyun/resources/modules/get_auth.py
3
#!/usr/bin/python # -*- coding: utf-8 -*- import xbmc, xbmcgui, xbmcaddon, xbmcvfs import os, sys, re, json from resources.modules import auth dialog = xbmcgui.Dialog() class VcodeWindow(xbmcgui.WindowDialog): def __init__(self, cookie, tokens, vcodetype, codeString, vcode_path): self.cookie = cookie self.tokens = tokens self.vcodetype = vcodetype self.codeString = codeString self.vcode_path = vcode_path # windowItems self.image = xbmcgui.ControlImage(80, 100, 500, 200, self.vcode_path) self.buttonInput = xbmcgui.ControlButton( 100, 330, 220, 50, label=u'输入验证码', alignment=6, font='font13', textColor='0xFFFFFFFF' ) self.buttonRefresh = xbmcgui.ControlButton( 290, 330, 220, 50, label=u'刷新验证码', alignment=6, font='font13', textColor='0xFFFFFFFF' ) self.addControls([self.image, self.buttonInput, self.buttonRefresh]) self.buttonInput.controlRight(self.buttonRefresh) self.buttonRefresh.controlLeft(self.buttonInput) self.setFocus(self.buttonInput) def onControl(self, event): if event == self.buttonInput: self.close() elif event == self.buttonRefresh: (self.codeString, self.vcode_path) = auth.refresh_vcode(self.cookie, self.tokens, self.vcodetype) if self.codeString and self.vcode_path: self.removeControl(self.image) self.image = xbmcgui.ControlImage(80, 100, 500, 200, self.vcode_path) self.addControl(self.image) else: dialog.ok('Error', u'无法刷新验证码,请重试') # Authorisation Process def run(username,password): cookie = auth.get_BAIDUID() token = auth.get_token(cookie) tokens = {'token': token} ubi = auth.get_UBI(cookie,tokens) cookie = auth.add_cookie(cookie,ubi,['UBI','PASSID']) key_data = auth.get_public_key(cookie,tokens) pubkey = key_data['pubkey'] rsakey = key_data['key'] password_enc = auth.RSA_encrypt(pubkey, password) err_no,query = auth.post_login(cookie,tokens,username,password_enc,rsakey) if err_no == 257: vcodetype = query['vcodetype'] codeString = query['codeString'] vcode_path = auth.get_signin_vcode(cookie, codeString) win = VcodeWindow(cookie, tokens, vcodetype, codeString, vcode_path) win.doModal() codeString = win.codeString verifycode = dialog.input(heading=u'验证码') if verifycode: err_no,query = auth.post_login(cookie,tokens,username,password_enc,rsakey,verifycode,codeString) if err_no == 0: temp_cookie = query auth_cookie, bdstoken = auth.get_bdstoken(temp_cookie) if bdstoken: tokens['bdstoken'] = bdstoken return auth_cookie,tokens elif err_no == 4: dialog.ok('Error',u'密码错误') elif err_no == 6: dialog.ok('Error',u'验证码错误') else: dialog.ok('Error',u'未知错误,请重试') else: dialog.ok('Error',u'请输入验证码') elif err_no == 4: dialog.ok('Error',u'密码错误') elif err_no == 0: auth_cookie = query bdstoken = auth.get_bdstoken(auth_cookie) if bdstoken: tokens['bdstoken'] = bdstoken return auth_cookie,tokens else: dialog.ok('Error',u'未知错误,请重试') return None,None
johan--/python_koans
refs/heads/master
python2/koans/local_module_with_all_defined.py
127
#!/usr/bin/env python # -*- coding: utf-8 -*- __all__ = ( 'Goat', '_Velociraptor' ) class Goat(object): @property def name(self): return "George" class _Velociraptor(object): @property def name(self): return "Cuddles" class SecretDuck(object): @property def name(self): return "None of your business"
akaihola/django
refs/heads/master
django/contrib/formtools/tests/wizard/namedwizardtests/urls.py
320
from django.conf.urls import patterns, url from django.contrib.formtools.tests.wizard.namedwizardtests.forms import ( SessionContactWizard, CookieContactWizard, Page1, Page2, Page3, Page4) def get_named_session_wizard(): return SessionContactWizard.as_view( [('form1', Page1), ('form2', Page2), ('form3', Page3), ('form4', Page4)], url_name='nwiz_session', done_step_name='nwiz_session_done' ) def get_named_cookie_wizard(): return CookieContactWizard.as_view( [('form1', Page1), ('form2', Page2), ('form3', Page3), ('form4', Page4)], url_name='nwiz_cookie', done_step_name='nwiz_cookie_done' ) urlpatterns = patterns('', url(r'^nwiz_session/(?P<step>.+)/$', get_named_session_wizard(), name='nwiz_session'), url(r'^nwiz_session/$', get_named_session_wizard(), name='nwiz_session_start'), url(r'^nwiz_cookie/(?P<step>.+)/$', get_named_cookie_wizard(), name='nwiz_cookie'), url(r'^nwiz_cookie/$', get_named_cookie_wizard(), name='nwiz_cookie_start'), )
Vassyli/biofragmentor
refs/heads/master
gui/mainwindow.py
1
import sys from PyQt5.QtWidgets import QApplication, QMainWindow from PyQt5 import uic class MainWindow(QMainWindow): app = None def __init__(self): self.app = QApplication(sys.argv) super().__init__() self.ui = uic.loadUi("gui/main.ui") self.ui.show() self.app.exec_()
scanny/python-pptx
refs/heads/master
pptx/oxml/shapes/shared.py
1
# encoding: utf-8 """Common shape-related oxml objects.""" from __future__ import absolute_import, division, print_function, unicode_literals from pptx.dml.fill import CT_GradientFillProperties from pptx.enum.shapes import PP_PLACEHOLDER from pptx.oxml.ns import qn from pptx.oxml.simpletypes import ( ST_Angle, ST_Coordinate, ST_Direction, ST_DrawingElementId, ST_LineWidth, ST_PlaceholderSize, ST_PositiveCoordinate, XsdBoolean, XsdString, XsdUnsignedInt, ) from pptx.oxml.xmlchemy import ( BaseOxmlElement, Choice, OptionalAttribute, OxmlElement, RequiredAttribute, ZeroOrOne, ZeroOrOneChoice, ) from pptx.util import Emu class BaseShapeElement(BaseOxmlElement): """ Provides common behavior for shape element classes like CT_Shape, CT_Picture, etc. """ @property def cx(self): return self._get_xfrm_attr("cx") @cx.setter def cx(self, value): self._set_xfrm_attr("cx", value) @property def cy(self): return self._get_xfrm_attr("cy") @cy.setter def cy(self, value): self._set_xfrm_attr("cy", value) @property def flipH(self): return bool(self._get_xfrm_attr("flipH")) @flipH.setter def flipH(self, value): self._set_xfrm_attr("flipH", value) @property def flipV(self): return bool(self._get_xfrm_attr("flipV")) @flipV.setter def flipV(self, value): self._set_xfrm_attr("flipV", value) def get_or_add_xfrm(self): """ Return the ``<a:xfrm>`` grandchild element, newly-added if not present. This version works for ``<p:sp>``, ``<p:cxnSp>``, and ``<p:pic>`` elements, others will need to override. """ return self.spPr.get_or_add_xfrm() @property def has_ph_elm(self): """ True if this shape element has a ``<p:ph>`` descendant, indicating it is a placeholder shape. False otherwise. """ return self.ph is not None @property def ph(self): """ The ``<p:ph>`` descendant element if there is one, None otherwise. """ ph_elms = self.xpath("./*[1]/p:nvPr/p:ph") if len(ph_elms) == 0: return None return ph_elms[0] @property def ph_idx(self): """ Integer value of placeholder idx attribute. Raises |ValueError| if shape is not a placeholder. """ ph = self.ph if ph is None: raise ValueError("not a placeholder shape") return ph.idx @property def ph_orient(self): """ Placeholder orientation, e.g. 'vert'. Raises |ValueError| if shape is not a placeholder. """ ph = self.ph if ph is None: raise ValueError("not a placeholder shape") return ph.orient @property def ph_sz(self): """ Placeholder size, e.g. ST_PlaceholderSize.HALF, None if shape has no ``<p:ph>`` descendant. """ ph = self.ph if ph is None: raise ValueError("not a placeholder shape") return ph.sz @property def ph_type(self): """ Placeholder type, e.g. ST_PlaceholderType.TITLE ('title'), none if shape has no ``<p:ph>`` descendant. """ ph = self.ph if ph is None: raise ValueError("not a placeholder shape") return ph.type @property def rot(self): """ Float representing degrees this shape is rotated clockwise. """ xfrm = self.xfrm if xfrm is None: return 0.0 return xfrm.rot @rot.setter def rot(self, value): self.get_or_add_xfrm().rot = value @property def shape_id(self): """ Integer id of this shape """ return self._nvXxPr.cNvPr.id @property def shape_name(self): """ Name of this shape """ return self._nvXxPr.cNvPr.name @property def txBody(self): """ Child ``<p:txBody>`` element, None if not present """ return self.find(qn("p:txBody")) @property def x(self): return self._get_xfrm_attr("x") @x.setter def x(self, value): self._set_xfrm_attr("x", value) @property def xfrm(self): """ The ``<a:xfrm>`` grandchild element or |None| if not found. This version works for ``<p:sp>``, ``<p:cxnSp>``, and ``<p:pic>`` elements, others will need to override. """ return self.spPr.xfrm @property def y(self): return self._get_xfrm_attr("y") @y.setter def y(self, value): self._set_xfrm_attr("y", value) @property def _nvXxPr(self): """ Required non-visual shape properties element for this shape. Actual name depends on the shape type, e.g. ``<p:nvPicPr>`` for picture shape. """ return self.xpath("./*[1]")[0] def _get_xfrm_attr(self, name): xfrm = self.xfrm if xfrm is None: return None return getattr(xfrm, name) def _set_xfrm_attr(self, name, value): xfrm = self.get_or_add_xfrm() setattr(xfrm, name, value) class CT_ApplicationNonVisualDrawingProps(BaseOxmlElement): """ ``<p:nvPr>`` element """ ph = ZeroOrOne( "p:ph", successors=( "a:audioCd", "a:wavAudioFile", "a:audioFile", "a:videoFile", "a:quickTimeFile", "p:custDataLst", "p:extLst", ), ) class CT_LineProperties(BaseOxmlElement): """Custom element class for <a:ln> element""" _tag_seq = ( "a:noFill", "a:solidFill", "a:gradFill", "a:pattFill", "a:prstDash", "a:custDash", "a:round", "a:bevel", "a:miter", "a:headEnd", "a:tailEnd", "a:extLst", ) eg_lineFillProperties = ZeroOrOneChoice( ( Choice("a:noFill"), Choice("a:solidFill"), Choice("a:gradFill"), Choice("a:pattFill"), ), successors=_tag_seq[4:], ) prstDash = ZeroOrOne("a:prstDash", successors=_tag_seq[5:]) custDash = ZeroOrOne("a:custDash", successors=_tag_seq[6:]) del _tag_seq w = OptionalAttribute("w", ST_LineWidth, default=Emu(0)) @property def eg_fillProperties(self): """ Required to fulfill the interface used by dml.fill. """ return self.eg_lineFillProperties @property def prstDash_val(self): """Return value of `val` attribute of `a:prstDash` child. Return |None| if not present. """ prstDash = self.prstDash if prstDash is None: return None return prstDash.val @prstDash_val.setter def prstDash_val(self, val): self._remove_custDash() prstDash = self.get_or_add_prstDash() prstDash.val = val class CT_NonVisualDrawingProps(BaseOxmlElement): """ ``<p:cNvPr>`` custom element class. """ _tag_seq = ("a:hlinkClick", "a:hlinkHover", "a:extLst") hlinkClick = ZeroOrOne("a:hlinkClick", successors=_tag_seq[1:]) hlinkHover = ZeroOrOne("a:hlinkHover", successors=_tag_seq[2:]) id = RequiredAttribute("id", ST_DrawingElementId) name = RequiredAttribute("name", XsdString) del _tag_seq class CT_Placeholder(BaseOxmlElement): """ ``<p:ph>`` custom element class. """ type = OptionalAttribute("type", PP_PLACEHOLDER, default=PP_PLACEHOLDER.OBJECT) orient = OptionalAttribute("orient", ST_Direction, default=ST_Direction.HORZ) sz = OptionalAttribute("sz", ST_PlaceholderSize, default=ST_PlaceholderSize.FULL) idx = OptionalAttribute("idx", XsdUnsignedInt, default=0) class CT_Point2D(BaseOxmlElement): """ Custom element class for <a:off> element. """ x = RequiredAttribute("x", ST_Coordinate) y = RequiredAttribute("y", ST_Coordinate) class CT_PositiveSize2D(BaseOxmlElement): """ Custom element class for <a:ext> element. """ cx = RequiredAttribute("cx", ST_PositiveCoordinate) cy = RequiredAttribute("cy", ST_PositiveCoordinate) class CT_ShapeProperties(BaseOxmlElement): """Custom element class for `p:spPr` element. Shared by `p:sp`, `p:cxnSp`, and `p:pic` elements as well as a few more obscure ones. """ _tag_seq = ( "a:xfrm", "a:custGeom", "a:prstGeom", "a:noFill", "a:solidFill", "a:gradFill", "a:blipFill", "a:pattFill", "a:grpFill", "a:ln", "a:effectLst", "a:effectDag", "a:scene3d", "a:sp3d", "a:extLst", ) xfrm = ZeroOrOne("a:xfrm", successors=_tag_seq[1:]) custGeom = ZeroOrOne("a:custGeom", successors=_tag_seq[2:]) prstGeom = ZeroOrOne("a:prstGeom", successors=_tag_seq[3:]) eg_fillProperties = ZeroOrOneChoice( ( Choice("a:noFill"), Choice("a:solidFill"), Choice("a:gradFill"), Choice("a:blipFill"), Choice("a:pattFill"), Choice("a:grpFill"), ), successors=_tag_seq[9:], ) ln = ZeroOrOne("a:ln", successors=_tag_seq[10:]) effectLst = ZeroOrOne("a:effectLst", successors=_tag_seq[11:]) del _tag_seq @property def cx(self): """ Shape width as an instance of Emu, or None if not present. """ cx_str_lst = self.xpath("./a:xfrm/a:ext/@cx") if not cx_str_lst: return None return Emu(cx_str_lst[0]) @property def cy(self): """ Shape height as an instance of Emu, or None if not present. """ cy_str_lst = self.xpath("./a:xfrm/a:ext/@cy") if not cy_str_lst: return None return Emu(cy_str_lst[0]) @property def x(self): """ The offset of the left edge of the shape from the left edge of the slide, as an instance of Emu. Corresponds to the value of the `./xfrm/off/@x` attribute. None if not present. """ x_str_lst = self.xpath("./a:xfrm/a:off/@x") if not x_str_lst: return None return Emu(x_str_lst[0]) @property def y(self): """ The offset of the top of the shape from the top of the slide, as an instance of Emu. None if not present. """ y_str_lst = self.xpath("./a:xfrm/a:off/@y") if not y_str_lst: return None return Emu(y_str_lst[0]) def _new_gradFill(self): return CT_GradientFillProperties.new_gradFill() class CT_Transform2D(BaseOxmlElement): """`a:xfrm` custom element class. NOTE: this is a composite including CT_GroupTransform2D, which appears with the `a:xfrm` tag in a group shape (including a slide `p:spTree`). """ _tag_seq = ("a:off", "a:ext", "a:chOff", "a:chExt") off = ZeroOrOne("a:off", successors=_tag_seq[1:]) ext = ZeroOrOne("a:ext", successors=_tag_seq[2:]) chOff = ZeroOrOne("a:chOff", successors=_tag_seq[3:]) chExt = ZeroOrOne("a:chExt", successors=_tag_seq[4:]) del _tag_seq rot = OptionalAttribute("rot", ST_Angle, default=0.0) flipH = OptionalAttribute("flipH", XsdBoolean, default=False) flipV = OptionalAttribute("flipV", XsdBoolean, default=False) @property def x(self): off = self.off if off is None: return None return off.x @x.setter def x(self, value): off = self.get_or_add_off() off.x = value @property def y(self): off = self.off if off is None: return None return off.y @y.setter def y(self, value): off = self.get_or_add_off() off.y = value @property def cx(self): ext = self.ext if ext is None: return None return ext.cx @cx.setter def cx(self, value): ext = self.get_or_add_ext() ext.cx = value @property def cy(self): ext = self.ext if ext is None: return None return ext.cy @cy.setter def cy(self, value): ext = self.get_or_add_ext() ext.cy = value def _new_ext(self): ext = OxmlElement("a:ext") ext.cx = 0 ext.cy = 0 return ext def _new_off(self): off = OxmlElement("a:off") off.x = 0 off.y = 0 return off
D4wN/brickv
refs/heads/master
src/build_data/windows/OpenGL/raw/GL/EXT/separate_shader_objects.py
3
'''OpenGL extension EXT.separate_shader_objects Automatically generated by the get_gl_extensions script, do not edit! ''' from OpenGL import platform, constants, constant, arrays from OpenGL import extensions from OpenGL.GL import glget import ctypes EXTENSION_NAME = 'GL_EXT_separate_shader_objects' _DEPRECATED = False GL_ACTIVE_PROGRAM_EXT = constant.Constant( 'GL_ACTIVE_PROGRAM_EXT', 0x8B8D ) glUseShaderProgramEXT = platform.createExtensionFunction( 'glUseShaderProgramEXT',dll=platform.GL, extension=EXTENSION_NAME, resultType=None, argTypes=(constants.GLenum,constants.GLuint,), doc='glUseShaderProgramEXT(GLenum(type), GLuint(program)) -> None', argNames=('type','program',), deprecated=_DEPRECATED, ) glActiveProgramEXT = platform.createExtensionFunction( 'glActiveProgramEXT',dll=platform.GL, extension=EXTENSION_NAME, resultType=None, argTypes=(constants.GLuint,), doc='glActiveProgramEXT(GLuint(program)) -> None', argNames=('program',), deprecated=_DEPRECATED, ) glCreateShaderProgramEXT = platform.createExtensionFunction( 'glCreateShaderProgramEXT',dll=platform.GL, extension=EXTENSION_NAME, resultType=constants.GLuint, argTypes=(constants.GLenum,arrays.GLcharArray,), doc='glCreateShaderProgramEXT(GLenum(type), GLcharArray(string)) -> constants.GLuint', argNames=('type','string',), deprecated=_DEPRECATED, ) def glInitSeparateShaderObjectsEXT(): '''Return boolean indicating whether this extension is available''' return extensions.hasGLExtension( EXTENSION_NAME )
kmoocdev2/edx-platform
refs/heads/real_2019
lms/djangoapps/discussion_api/pagination.py
16
""" Discussion API pagination support """ from rest_framework.utils.urls import replace_query_param from edx_rest_framework_extensions.paginators import NamespacedPageNumberPagination class _Page(object): """ Implements just enough of the django.core.paginator.Page interface to allow PaginationSerializer to work. """ def __init__(self, page_num, num_pages): """ Create a new page containing the given objects, with the given page number and number of pages """ self.page_num = page_num self.num_pages = num_pages def has_next(self): """Returns True if there is a page after this one, otherwise False""" return self.page_num < self.num_pages def has_previous(self): """Returns True if there is a page before this one, otherwise False""" return self.page_num > 1 def next_page_number(self): """Returns the number of the next page""" return self.page_num + 1 def previous_page_number(self): """Returns the number of the previous page""" return self.page_num - 1 class DiscussionAPIPagination(NamespacedPageNumberPagination): """ Subclasses NamespacedPageNumberPagination to provide custom implementation of pagination metadata by overriding it's methods """ def __init__(self, request, page_num, num_pages, result_count=0): """ Overrides parent constructor to take information from discussion api essential for the parent method """ self.page = _Page(page_num, num_pages) self.base_url = request.build_absolute_uri() self.count = result_count super(DiscussionAPIPagination, self).__init__() def get_result_count(self): """ Returns total number of results """ return self.count def get_num_pages(self): """ Returns total number of pages the response is divided into """ return self.page.num_pages def get_next_link(self): """ Returns absolute url of the next page if there's a next page available otherwise returns None """ next_url = None if self.page.has_next(): next_url = replace_query_param(self.base_url, "page", self.page.next_page_number()) return next_url def get_previous_link(self): """ Returns absolute url of the previous page if there's a previous page available otherwise returns None """ previous_url = None if self.page.has_previous(): previous_url = replace_query_param(self.base_url, "page", self.page.previous_page_number()) return previous_url
thisispuneet/potato-blog
refs/heads/master
django/contrib/gis/db/backends/spatialite/introspection.py
401
from django.contrib.gis.gdal import OGRGeomType from django.db.backends.sqlite3.introspection import DatabaseIntrospection, FlexibleFieldLookupDict class GeoFlexibleFieldLookupDict(FlexibleFieldLookupDict): """ Sublcass that includes updates the `base_data_types_reverse` dict for geometry field types. """ base_data_types_reverse = FlexibleFieldLookupDict.base_data_types_reverse.copy() base_data_types_reverse.update( {'point' : 'GeometryField', 'linestring' : 'GeometryField', 'polygon' : 'GeometryField', 'multipoint' : 'GeometryField', 'multilinestring' : 'GeometryField', 'multipolygon' : 'GeometryField', 'geometrycollection' : 'GeometryField', }) class SpatiaLiteIntrospection(DatabaseIntrospection): data_types_reverse = GeoFlexibleFieldLookupDict() def get_geometry_type(self, table_name, geo_col): cursor = self.connection.cursor() try: # Querying the `geometry_columns` table to get additional metadata. cursor.execute('SELECT "coord_dimension", "srid", "type" ' 'FROM "geometry_columns" ' 'WHERE "f_table_name"=%s AND "f_geometry_column"=%s', (table_name, geo_col)) row = cursor.fetchone() if not row: raise Exception('Could not find a geometry column for "%s"."%s"' % (table_name, geo_col)) # OGRGeomType does not require GDAL and makes it easy to convert # from OGC geom type name to Django field. field_type = OGRGeomType(row[2]).django # Getting any GeometryField keyword arguments that are not the default. dim = row[0] srid = row[1] field_params = {} if srid != 4326: field_params['srid'] = srid if isinstance(dim, basestring) and 'Z' in dim: field_params['dim'] = 3 finally: cursor.close() return field_type, field_params
rfosterslo/wagtailplus
refs/heads/master
wagtailplus/wagtaillinks/tests/test_views.py
2
""" Contains view unit tests. """ from django.core.urlresolvers import reverse from wagtailplus.tests import views from ..models import Link class TestLinkIndexView(views.BaseTestIndexView): url_namespace = 'wagtaillinks' template_dir = 'wagtaillinks/links' def _create_sequential_instance(self, index): Link.objects.create( link_type = Link.LINK_TYPE_EXTERNAL, title = 'Link #{0}'.format(index), external_url = 'http://www.site-{0}.com'.format(index) ) class TestLinkCreateView(views.BaseTestCreateView): url_namespace = 'wagtaillinks' template_dir = 'wagtaillinks/links' model_class = Link filter_keys = ['title'] def _get_post_data(self): return { 'link_type': Link.LINK_TYPE_EXTERNAL, 'title': 'Test Link', 'external_url': 'http://www.test.com/' } class TestLinkUpdateView(views.BaseTestUpdateView): url_namespace = 'wagtaillinks' template_dir = 'wagtaillinks/links' model_class = Link def _get_instance(self): return Link.objects.create( link_type = Link.LINK_TYPE_EXTERNAL, title = 'Test Link', external_url = 'http://www.test.com/' ) def _get_post_data(self): return { 'link_type': Link.LINK_TYPE_EXTERNAL, 'title': 'Test Link Changed', 'external_url': 'http://www.test.com/' } class TestLinkDeleteView(views.BaseTestDeleteView): url_namespace = 'wagtaillinks' template_dir = 'wagtaillinks/links' model_class = Link def _get_instance(self): return Link.objects.create( link_type = Link.LINK_TYPE_EXTERNAL, title = 'Test Link', external_url = 'http://www.test.com/' ) class TestEmailLinkChooserView(views.BaseTestChooserView): url_namespace = 'wagtaillinks' template_dir = 'wagtaillinks/chooser' model_class = Link def _create_sequential_instance(self, index): return Link.objects.create( link_type = Link.LINK_TYPE_EMAIL, title = 'Test Email #{0}'.format(index), email = 'somebody-{0}@something.com'.format(index) ) def get(self, params=None): if not params: params = {} return self.client.get( reverse('wagtailadmin_choose_page_email_link'), params ) class TestExternalLinkChooserView(views.BaseTestChooserView): url_namespace = 'wagtaillinks' template_dir = 'wagtaillinks/chooser' model_class = Link def _create_sequential_instance(self, index): return Link.objects.create( link_type = Link.LINK_TYPE_EXTERNAL, title = 'Test Link #{0}'.format(index), external_url = 'http://www.site-{0}.com'.format(index) ) def get(self, params=None): if not params: params = {} return self.client.get( reverse('wagtailadmin_choose_page_external_link'), params ) class TestEmailLinkChosenView(views.BaseTestChosenView): url_namespace = 'wagtaillinks' template_dir = 'wagtaillinks/chooser' model_class = Link def _get_instance(self): return Link.objects.create( link_type = Link.LINK_TYPE_EMAIL, title = 'Test Email', email = '[email protected]' ) class TestExternalLinkChosenView(views.BaseTestChosenView): url_namespace = 'wagtaillinks' template_dir = 'wagtaillinks/chooser' model_class = Link def _get_instance(self): return Link.objects.create( link_type = Link.LINK_TYPE_EXTERNAL, title = 'Test Link', external_url = 'http://www.test.com/' ) class TestChooserCreateEmailLinkView(views.BaseTestChooserCreateView): url_namespace = 'wagtaillinks' template_dir = 'wagtaillinks/chooser' model_class = Link def _get_post_data(self): return { 'link_type': Link.LINK_TYPE_EMAIL, 'title': 'Test Email', 'email': '[email protected]', } def test_get(self): # Generate the response. response = self.client.get( reverse('wagtailadmin_choose_page_email_link') ) # Check assertions. self.assertEqual(response.status_code, 200) self.assertTemplateUsed( response, '{0}/chooser.html'.format(self.template_dir) ) self.assertTemplateUsed( response, '{0}/results.html'.format(self.template_dir) ) self.assertTemplateUsed( response, '{0}/chooser.js'.format(self.template_dir) ) def test_post(self): # Get POST data. data = self._get_post_data() # Generate the response. response = self.client.post( reverse('wagtailadmin_choose_page_email_link'), data ) # Check assertions. self.assertTemplateUsed( response, '{0}/chosen.js'.format(self.template_dir) ) self.assertContains( response, 'modal.respond' ) self.assertTrue( self.model_class.objects.filter(**data).exists() ) class TestChooserCreateExternalLinkView(views.BaseTestChooserCreateView): url_namespace = 'wagtaillinks' template_dir = 'wagtaillinks/chooser' model_class = Link def _get_post_data(self): return { 'link_type': Link.LINK_TYPE_EXTERNAL, 'title': 'Test Link', 'external_url': 'http://www.test.com/', } def test_get(self): # Generate the response. response = self.client.get( reverse('wagtailadmin_choose_page_external_link') ) # Check assertions. self.assertEqual(response.status_code, 200) self.assertTemplateUsed( response, '{0}/chooser.html'.format(self.template_dir) ) self.assertTemplateUsed( response, '{0}/results.html'.format(self.template_dir) ) self.assertTemplateUsed( response, '{0}/chooser.js'.format(self.template_dir) ) def test_post(self): # Get POST data. data = self._get_post_data() # Generate the response. response = self.client.post( reverse('wagtailadmin_choose_page_external_link'), data ) # Check assertions. self.assertTemplateUsed( response, '{0}/chosen.js'.format(self.template_dir) ) self.assertContains( response, 'modal.respond' ) self.assertTrue( self.model_class.objects.filter(**data).exists() )
doheekim/chuizonetest
refs/heads/master
lib/sqlalchemy/dialects/postgresql/pg8000.py
10
# postgresql/pg8000.py # Copyright (C) 2005-2014 the SQLAlchemy authors and contributors <see AUTHORS # file> # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php """ .. dialect:: postgresql+pg8000 :name: pg8000 :dbapi: pg8000 :connectstring: \ postgresql+pg8000://user:password@host:port/dbname[?key=value&key=value...] :url: https://pythonhosted.org/pg8000/ Unicode ------- When communicating with the server, pg8000 **always uses the server-side character set**. SQLAlchemy has no ability to modify what character set pg8000 chooses to use, and additionally SQLAlchemy does no unicode conversion of any kind with the pg8000 backend. The origin of the client encoding setting is ultimately the CLIENT_ENCODING setting in postgresql.conf. It is not necessary, though is also harmless, to pass the "encoding" parameter to :func:`.create_engine` when using pg8000. .. _pg8000_isolation_level: pg8000 Transaction Isolation Level ------------------------------------- The pg8000 dialect offers the same isolation level settings as that of the :ref:`psycopg2 <psycopg2_isolation_level>` dialect: * ``READ COMMITTED`` * ``READ UNCOMMITTED`` * ``REPEATABLE READ`` * ``SERIALIZABLE`` * ``AUTOCOMMIT`` .. versionadded:: 0.9.5 support for AUTOCOMMIT isolation level when using pg8000. .. seealso:: :ref:`postgresql_isolation_level` :ref:`psycopg2_isolation_level` """ from ... import util, exc import decimal from ... import processors from ... import types as sqltypes from .base import ( PGDialect, PGCompiler, PGIdentifierPreparer, PGExecutionContext, _DECIMAL_TYPES, _FLOAT_TYPES, _INT_TYPES) class _PGNumeric(sqltypes.Numeric): def result_processor(self, dialect, coltype): if self.asdecimal: if coltype in _FLOAT_TYPES: return processors.to_decimal_processor_factory( decimal.Decimal, self._effective_decimal_return_scale) elif coltype in _DECIMAL_TYPES or coltype in _INT_TYPES: # pg8000 returns Decimal natively for 1700 return None else: raise exc.InvalidRequestError( "Unknown PG numeric type: %d" % coltype) else: if coltype in _FLOAT_TYPES: # pg8000 returns float natively for 701 return None elif coltype in _DECIMAL_TYPES or coltype in _INT_TYPES: return processors.to_float else: raise exc.InvalidRequestError( "Unknown PG numeric type: %d" % coltype) class _PGNumericNoBind(_PGNumeric): def bind_processor(self, dialect): return None class PGExecutionContext_pg8000(PGExecutionContext): pass class PGCompiler_pg8000(PGCompiler): def visit_mod_binary(self, binary, operator, **kw): return self.process(binary.left, **kw) + " %% " + \ self.process(binary.right, **kw) def post_process_text(self, text): if '%%' in text: util.warn("The SQLAlchemy postgresql dialect " "now automatically escapes '%' in text() " "expressions to '%%'.") return text.replace('%', '%%') class PGIdentifierPreparer_pg8000(PGIdentifierPreparer): def _escape_identifier(self, value): value = value.replace(self.escape_quote, self.escape_to_quote) return value.replace('%', '%%') class PGDialect_pg8000(PGDialect): driver = 'pg8000' supports_unicode_statements = True supports_unicode_binds = True default_paramstyle = 'format' supports_sane_multi_rowcount = False execution_ctx_cls = PGExecutionContext_pg8000 statement_compiler = PGCompiler_pg8000 preparer = PGIdentifierPreparer_pg8000 description_encoding = 'use_encoding' colspecs = util.update_copy( PGDialect.colspecs, { sqltypes.Numeric: _PGNumericNoBind, sqltypes.Float: _PGNumeric } ) @classmethod def dbapi(cls): return __import__('pg8000') def create_connect_args(self, url): opts = url.translate_connect_args(username='user') if 'port' in opts: opts['port'] = int(opts['port']) opts.update(url.query) return ([], opts) def is_disconnect(self, e, connection, cursor): return "connection is closed" in str(e) def set_isolation_level(self, connection, level): level = level.replace('_', ' ') # adjust for ConnectionFairy possibly being present if hasattr(connection, 'connection'): connection = connection.connection if level == 'AUTOCOMMIT': connection.autocommit = True elif level in self._isolation_lookup: connection.autocommit = False cursor = connection.cursor() cursor.execute( "SET SESSION CHARACTERISTICS AS TRANSACTION " "ISOLATION LEVEL %s" % level) cursor.execute("COMMIT") cursor.close() else: raise exc.ArgumentError( "Invalid value '%s' for isolation_level. " "Valid isolation levels for %s are %s or AUTOCOMMIT" % (level, self.name, ", ".join(self._isolation_lookup)) ) dialect = PGDialect_pg8000
wskplho/sl4a
refs/heads/master
python-build/python-libs/gdata/src/gdata/Crypto/Hash/__init__.py
271
"""Hashing algorithms Hash functions take arbitrary strings as input, and produce an output of fixed size that is dependent on the input; it should never be possible to derive the input data given only the hash function's output. Hash functions can be used simply as a checksum, or, in association with a public-key algorithm, can be used to implement digital signatures. The hashing modules here all support the interface described in PEP 247, "API for Cryptographic Hash Functions". Submodules: Crypto.Hash.HMAC RFC 2104: Keyed-Hashing for Message Authentication Crypto.Hash.MD2 Crypto.Hash.MD4 Crypto.Hash.MD5 Crypto.Hash.RIPEMD Crypto.Hash.SHA """ __all__ = ['HMAC', 'MD2', 'MD4', 'MD5', 'RIPEMD', 'SHA', 'SHA256'] __revision__ = "$Id: __init__.py,v 1.6 2003/12/19 14:24:25 akuchling Exp $"
pandeydivesh15/Farmers-Portal
refs/heads/master
crop/migrations/0002_auto_20171031_1011.py
1
# -*- coding: utf-8 -*- # Generated by Django 1.11.5 on 2017-10-31 10:11 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('crop', '0001_initial'), ] operations = [ migrations.RenameField( model_name='fertilizer', old_name='dis_id', new_name='ferti_id', ), ]
fengbaicanhe/intellij-community
refs/heads/master
python/testData/formatter/lambdaColon.py
83
lambda o:o.fullName()
codeaudit/pattern-1
refs/heads/master
pattern/web/cache/__init__.py
21
#### PATTERN | CACHE ############################################################################### # Copyright (c) 2010 University of Antwerp, Belgium # Author: Tom De Smedt <[email protected]> # License: BSD (see LICENSE.txt for details). # http://www.clips.ua.ac.be/pages/pattern try: import hashlib; md5=hashlib.md5 except: import md5; md5=md5.new #### UNICODE ####################################################################################### def decode_string(v, encoding="utf-8"): """ Returns the given value as a Unicode string (if possible). """ if isinstance(encoding, basestring): encoding = ((encoding,),) + (("windows-1252",), ("utf-8", "ignore")) if isinstance(v, str): for e in encoding: try: return v.decode(*e) except: pass return v return unicode(v) def encode_string(v, encoding="utf-8"): """ Returns the given value as a Python byte string (if possible). """ if isinstance(encoding, basestring): encoding = ((encoding,),) + (("windows-1252",), ("utf-8", "ignore")) if isinstance(v, unicode): for e in encoding: try: return v.encode(*e) except: pass return v return str(v) decode_utf8 = decode_string encode_utf8 = encode_string #### CACHE ######################################################################################### # Caching is implemented in URL.download(), which is used by all other downloaders. import os import glob import tempfile import codecs import datetime try: MODULE = os.path.dirname(os.path.realpath(__file__)) except: MODULE = "" TMP = os.path.join(tempfile.gettempdir(), "pattern_web") def date_now(): return datetime.datetime.today() def date_modified(path): return datetime.datetime.fromtimestamp(os.stat(path)[8]) class Cache(object): def __init__(self, path=os.path.join(MODULE, "tmp")): """ Cache with data stored as files with hashed filenames. Content retrieved from URLs and search engines are stored in cache for performance. The path where the cache is stored can be given. This way you can manage persistent sets of downloaded data. If path=TMP, cached items are stored in a temporary folder. """ self.path = path def _get_path(self): return self._path def _set_path(self, path): if not os.path.isdir(path): os.makedirs(path) self._path = path path = property(_get_path, _set_path) def _hash(self, k): k = encode_utf8(k) # MD5 works on Python byte strings. return os.path.join(self.path, md5(k).hexdigest()) def __len__(self): return len(glob.glob(os.path.join(self.path, "*"))) def __contains__(self, k): return os.path.exists(self._hash(k)) def __getitem__(self, k): return self.get(k) def __setitem__(self, k, v): f = open(self._hash(k), "wb") f.write(codecs.BOM_UTF8) f.write(encode_utf8(v)) f.close() def __delitem__(self, k): try: os.unlink(self._hash(k)) except OSError: pass def get(self, k, unicode=True): """ Returns the data stored with the given id. With unicode=True, returns a Unicode string. """ if k in self: f = open(self._hash(k), "rb"); v=f.read().lstrip(codecs.BOM_UTF8) f.close() if unicode is True: return decode_utf8(v) else: return v raise KeyError(k) def age(self, k): """ Returns the age of the cached item, in days. """ p = self._hash(k) return os.path.exists(p) and (date_now() - date_modified(p)).days or 0 def clear(self, age=None): """ Clears all items from the cache (whose age is the given amount of days or older). """ n = date_now() for p in glob.glob(os.path.join(self.path, "*")): if age is None or (n - date_modified(p)).days >= age: os.unlink(p) cache = Cache()
msphair/django_echo_bridge
refs/heads/master
Device.py
1
import json class Device: def __init__(self, name, deviceType, offUrl, onUrl, httpVerb, contentType, contentBody): self.name = name self.deviceType = deviceType self.offUrl = offUrl self.onUrl = onUrl self.httpVerb = httpVerb self.contentBody = contentBody self.contentType = contentType def encode(self): return { '__type__': 'Device', 'name': self.name, 'devicetype': self.deviceType, 'offurl': self.offUrl, 'onurl': self.onUrl, 'httpverb': self.httpVerb, 'contentbody': self.contentBody, 'contenttype': self.contentType } def decodeDevice(jsonObj): if '__type__' in jsonObj and jsonObj['__type__'] == 'Device': return Device(jsonObj['name'], jsonObj['devicetype'], jsonObj['offurl'], jsonObj['onurl'], jsonObj['httpverb'], jsonObj['contentbody'], jsonObj['contenttype']) return jsonObj
dstiert/Wox
refs/heads/master
PythonHome/Lib/site-packages/pip/_vendor/requests/certs.py
961
#!/usr/bin/env python # -*- coding: utf-8 -*- """ certs.py ~~~~~~~~ This module returns the preferred default CA certificate bundle. If you are packaging Requests, e.g., for a Linux distribution or a managed environment, you can change the definition of where() to return a separately packaged CA bundle. """ import os.path def where(): """Return the preferred certificate bundle.""" # vendored bundle inside Requests return os.path.join(os.path.dirname(__file__), 'cacert.pem') if __name__ == '__main__': print(where())
youprofit/NewsBlur
refs/heads/master
apps/search/views.py
6027
# Create your views here.
tienfuc/gdcmdtools
refs/heads/master
gdmount.py
45
#!/usr/bin/env python # -*- coding: utf-8 -*-
JioCloud/keystone
refs/heads/master
keystone/common/sql/migrate_repo/versions/041_add_remaining_uses_count_to_trusts.py
14
# Copyright (c) 2014 Matthieu Huin <[email protected]> # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import sqlalchemy def downgrade_trust_table_with_column_drop(meta, migrate_engine): trust_table = sqlalchemy.Table('trust', meta, autoload=True) # delete trusts with a limited use count, we are downgrading so uses # will not be tracked anymore. d = trust_table.delete(trust_table.c.remaining_uses >= 0) d.execute() trust_table.drop_column('remaining_uses') def upgrade_trust_table(meta, migrate_engine): trust_table = sqlalchemy.Table('trust', meta, autoload=True) trust_table.create_column(sqlalchemy.Column('remaining_uses', sqlalchemy.Integer(), nullable=True)) def upgrade(migrate_engine): meta = sqlalchemy.MetaData() meta.bind = migrate_engine upgrade_trust_table(meta, migrate_engine) def downgrade(migrate_engine): meta = sqlalchemy.MetaData() meta.bind = migrate_engine downgrade_trust_table_with_column_drop(meta, migrate_engine)
mattuuh7/incubator-airflow
refs/heads/master
tests/ti_deps/deps/test_not_in_retry_period_dep.py
31
# -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from datetime import datetime, timedelta from freezegun import freeze_time from mock import Mock from airflow.models import TaskInstance from airflow.ti_deps.deps.not_in_retry_period_dep import NotInRetryPeriodDep from airflow.utils.state import State class NotInRetryPeriodDepTest(unittest.TestCase): def _get_task_instance(self, state, end_date=None, retry_delay=timedelta(minutes=15)): task = Mock(retry_delay=retry_delay, retry_exponential_backoff=False) ti = TaskInstance(task=task, state=state, execution_date=None) ti.end_date = end_date return ti @freeze_time('2016-01-01 15:44') def test_still_in_retry_period(self): """ Task instances that are in their retry period should fail this dep """ ti = self._get_task_instance(State.UP_FOR_RETRY, end_date=datetime(2016, 1, 1, 15, 30)) self.assertTrue(ti.is_premature) self.assertFalse(NotInRetryPeriodDep().is_met(ti=ti)) @freeze_time('2016-01-01 15:46') def test_retry_period_finished(self): """ Task instance's that have had their retry period elapse should pass this dep """ ti = self._get_task_instance(State.UP_FOR_RETRY, end_date=datetime(2016, 1, 1)) self.assertFalse(ti.is_premature) self.assertTrue(NotInRetryPeriodDep().is_met(ti=ti)) def test_not_in_retry_period(self): """ Task instance's that are not up for retry can not be in their retry period """ ti = self._get_task_instance(State.SUCCESS) self.assertTrue(NotInRetryPeriodDep().is_met(ti=ti))
intgr/django
refs/heads/master
tests/m2m_signals/tests.py
84
""" Testing signals emitted on changing m2m relations. """ from django.db import models from django.test import TestCase from .models import Car, Part, Person, SportsCar class ManyToManySignalsTest(TestCase): def m2m_changed_signal_receiver(self, signal, sender, **kwargs): message = { 'instance': kwargs['instance'], 'action': kwargs['action'], 'reverse': kwargs['reverse'], 'model': kwargs['model'], } if kwargs['pk_set']: message['objects'] = list( kwargs['model'].objects.filter(pk__in=kwargs['pk_set']) ) self.m2m_changed_messages.append(message) def setUp(self): self.m2m_changed_messages = [] self.vw = Car.objects.create(name='VW') self.bmw = Car.objects.create(name='BMW') self.toyota = Car.objects.create(name='Toyota') self.wheelset = Part.objects.create(name='Wheelset') self.doors = Part.objects.create(name='Doors') self.engine = Part.objects.create(name='Engine') self.airbag = Part.objects.create(name='Airbag') self.sunroof = Part.objects.create(name='Sunroof') self.alice = Person.objects.create(name='Alice') self.bob = Person.objects.create(name='Bob') self.chuck = Person.objects.create(name='Chuck') self.daisy = Person.objects.create(name='Daisy') def tearDown(self): # disconnect all signal handlers models.signals.m2m_changed.disconnect( self.m2m_changed_signal_receiver, Car.default_parts.through ) models.signals.m2m_changed.disconnect( self.m2m_changed_signal_receiver, Car.optional_parts.through ) models.signals.m2m_changed.disconnect( self.m2m_changed_signal_receiver, Person.fans.through ) models.signals.m2m_changed.disconnect( self.m2m_changed_signal_receiver, Person.friends.through ) def _initialize_signal_car(self, add_default_parts_before_set_signal=False): """ Install a listener on the two m2m relations. """ models.signals.m2m_changed.connect( self.m2m_changed_signal_receiver, Car.optional_parts.through ) if add_default_parts_before_set_signal: # adding a default part to our car - no signal listener installed self.vw.default_parts.add(self.sunroof) models.signals.m2m_changed.connect( self.m2m_changed_signal_receiver, Car.default_parts.through ) def test_m2m_relations_add_remove_clear(self): expected_messages = [] self._initialize_signal_car(add_default_parts_before_set_signal=True) self.vw.default_parts.add(self.wheelset, self.doors, self.engine) expected_messages.append({ 'instance': self.vw, 'action': 'pre_add', 'reverse': False, 'model': Part, 'objects': [self.doors, self.engine, self.wheelset], }) expected_messages.append({ 'instance': self.vw, 'action': 'post_add', 'reverse': False, 'model': Part, 'objects': [self.doors, self.engine, self.wheelset], }) self.assertEqual(self.m2m_changed_messages, expected_messages) # give the BMW and Toyota some doors as well self.doors.car_set.add(self.bmw, self.toyota) expected_messages.append({ 'instance': self.doors, 'action': 'pre_add', 'reverse': True, 'model': Car, 'objects': [self.bmw, self.toyota], }) expected_messages.append({ 'instance': self.doors, 'action': 'post_add', 'reverse': True, 'model': Car, 'objects': [self.bmw, self.toyota], }) self.assertEqual(self.m2m_changed_messages, expected_messages) def test_m2m_relations_signals_remove_relation(self): self._initialize_signal_car() # remove the engine from the self.vw and the airbag (which is not set # but is returned) self.vw.default_parts.remove(self.engine, self.airbag) self.assertEqual(self.m2m_changed_messages, [ { 'instance': self.vw, 'action': 'pre_remove', 'reverse': False, 'model': Part, 'objects': [self.airbag, self.engine], }, { 'instance': self.vw, 'action': 'post_remove', 'reverse': False, 'model': Part, 'objects': [self.airbag, self.engine], } ]) def test_m2m_relations_signals_give_the_self_vw_some_optional_parts(self): expected_messages = [] self._initialize_signal_car() # give the self.vw some optional parts (second relation to same model) self.vw.optional_parts.add(self.airbag, self.sunroof) expected_messages.append({ 'instance': self.vw, 'action': 'pre_add', 'reverse': False, 'model': Part, 'objects': [self.airbag, self.sunroof], }) expected_messages.append({ 'instance': self.vw, 'action': 'post_add', 'reverse': False, 'model': Part, 'objects': [self.airbag, self.sunroof], }) self.assertEqual(self.m2m_changed_messages, expected_messages) # add airbag to all the cars (even though the self.vw already has one) self.airbag.cars_optional.add(self.vw, self.bmw, self.toyota) expected_messages.append({ 'instance': self.airbag, 'action': 'pre_add', 'reverse': True, 'model': Car, 'objects': [self.bmw, self.toyota], }) expected_messages.append({ 'instance': self.airbag, 'action': 'post_add', 'reverse': True, 'model': Car, 'objects': [self.bmw, self.toyota], }) self.assertEqual(self.m2m_changed_messages, expected_messages) def test_m2m_relations_signals_reverse_relation_with_custom_related_name(self): self._initialize_signal_car() # remove airbag from the self.vw (reverse relation with custom # related_name) self.airbag.cars_optional.remove(self.vw) self.assertEqual(self.m2m_changed_messages, [ { 'instance': self.airbag, 'action': 'pre_remove', 'reverse': True, 'model': Car, 'objects': [self.vw], }, { 'instance': self.airbag, 'action': 'post_remove', 'reverse': True, 'model': Car, 'objects': [self.vw], } ]) def test_m2m_relations_signals_clear_all_parts_of_the_self_vw(self): self._initialize_signal_car() # clear all parts of the self.vw self.vw.default_parts.clear() self.assertEqual(self.m2m_changed_messages, [ { 'instance': self.vw, 'action': 'pre_clear', 'reverse': False, 'model': Part, }, { 'instance': self.vw, 'action': 'post_clear', 'reverse': False, 'model': Part, } ]) def test_m2m_relations_signals_all_the_doors_off_of_cars(self): self._initialize_signal_car() # take all the doors off of cars self.doors.car_set.clear() self.assertEqual(self.m2m_changed_messages, [ { 'instance': self.doors, 'action': 'pre_clear', 'reverse': True, 'model': Car, }, { 'instance': self.doors, 'action': 'post_clear', 'reverse': True, 'model': Car, } ]) def test_m2m_relations_signals_reverse_relation(self): self._initialize_signal_car() # take all the airbags off of cars (clear reverse relation with custom # related_name) self.airbag.cars_optional.clear() self.assertEqual(self.m2m_changed_messages, [ { 'instance': self.airbag, 'action': 'pre_clear', 'reverse': True, 'model': Car, }, { 'instance': self.airbag, 'action': 'post_clear', 'reverse': True, 'model': Car, } ]) def test_m2m_relations_signals_alternative_ways(self): expected_messages = [] self._initialize_signal_car() # alternative ways of setting relation: self.vw.default_parts.create(name='Windows') p6 = Part.objects.get(name='Windows') expected_messages.append({ 'instance': self.vw, 'action': 'pre_add', 'reverse': False, 'model': Part, 'objects': [p6], }) expected_messages.append({ 'instance': self.vw, 'action': 'post_add', 'reverse': False, 'model': Part, 'objects': [p6], }) self.assertEqual(self.m2m_changed_messages, expected_messages) # direct assignment clears the set first, then adds self.vw.default_parts.set([self.wheelset, self.doors, self.engine]) expected_messages.append({ 'instance': self.vw, 'action': 'pre_remove', 'reverse': False, 'model': Part, 'objects': [p6], }) expected_messages.append({ 'instance': self.vw, 'action': 'post_remove', 'reverse': False, 'model': Part, 'objects': [p6], }) expected_messages.append({ 'instance': self.vw, 'action': 'pre_add', 'reverse': False, 'model': Part, 'objects': [self.doors, self.engine, self.wheelset], }) expected_messages.append({ 'instance': self.vw, 'action': 'post_add', 'reverse': False, 'model': Part, 'objects': [self.doors, self.engine, self.wheelset], }) self.assertEqual(self.m2m_changed_messages, expected_messages) def test_m2m_relations_signals_clearing_removing(self): expected_messages = [] self._initialize_signal_car(add_default_parts_before_set_signal=True) # set by clearing. self.vw.default_parts.set([self.wheelset, self.doors, self.engine], clear=True) expected_messages.append({ 'instance': self.vw, 'action': 'pre_clear', 'reverse': False, 'model': Part, }) expected_messages.append({ 'instance': self.vw, 'action': 'post_clear', 'reverse': False, 'model': Part, }) expected_messages.append({ 'instance': self.vw, 'action': 'pre_add', 'reverse': False, 'model': Part, 'objects': [self.doors, self.engine, self.wheelset], }) expected_messages.append({ 'instance': self.vw, 'action': 'post_add', 'reverse': False, 'model': Part, 'objects': [self.doors, self.engine, self.wheelset], }) self.assertEqual(self.m2m_changed_messages, expected_messages) # set by only removing what's necessary. self.vw.default_parts.set([self.wheelset, self.doors], clear=False) expected_messages.append({ 'instance': self.vw, 'action': 'pre_remove', 'reverse': False, 'model': Part, 'objects': [self.engine], }) expected_messages.append({ 'instance': self.vw, 'action': 'post_remove', 'reverse': False, 'model': Part, 'objects': [self.engine], }) self.assertEqual(self.m2m_changed_messages, expected_messages) def test_m2m_relations_signals_when_inheritance(self): expected_messages = [] self._initialize_signal_car(add_default_parts_before_set_signal=True) # Signals still work when model inheritance is involved c4 = SportsCar.objects.create(name='Bugatti', price='1000000') c4b = Car.objects.get(name='Bugatti') c4.default_parts.set([self.doors]) expected_messages.append({ 'instance': c4, 'action': 'pre_add', 'reverse': False, 'model': Part, 'objects': [self.doors], }) expected_messages.append({ 'instance': c4, 'action': 'post_add', 'reverse': False, 'model': Part, 'objects': [self.doors], }) self.assertEqual(self.m2m_changed_messages, expected_messages) self.engine.car_set.add(c4) expected_messages.append({ 'instance': self.engine, 'action': 'pre_add', 'reverse': True, 'model': Car, 'objects': [c4b], }) expected_messages.append({ 'instance': self.engine, 'action': 'post_add', 'reverse': True, 'model': Car, 'objects': [c4b], }) self.assertEqual(self.m2m_changed_messages, expected_messages) def _initialize_signal_person(self): # Install a listener on the two m2m relations. models.signals.m2m_changed.connect( self.m2m_changed_signal_receiver, Person.fans.through ) models.signals.m2m_changed.connect( self.m2m_changed_signal_receiver, Person.friends.through ) def test_m2m_relations_with_self_add_friends(self): self._initialize_signal_person() self.alice.friends.set([self.bob, self.chuck]) self.assertEqual(self.m2m_changed_messages, [ { 'instance': self.alice, 'action': 'pre_add', 'reverse': False, 'model': Person, 'objects': [self.bob, self.chuck], }, { 'instance': self.alice, 'action': 'post_add', 'reverse': False, 'model': Person, 'objects': [self.bob, self.chuck], } ]) def test_m2m_relations_with_self_add_fan(self): self._initialize_signal_person() self.alice.fans.set([self.daisy]) self.assertEqual(self.m2m_changed_messages, [ { 'instance': self.alice, 'action': 'pre_add', 'reverse': False, 'model': Person, 'objects': [self.daisy], }, { 'instance': self.alice, 'action': 'post_add', 'reverse': False, 'model': Person, 'objects': [self.daisy], } ]) def test_m2m_relations_with_self_add_idols(self): self._initialize_signal_person() self.chuck.idols.set([self.alice, self.bob]) self.assertEqual(self.m2m_changed_messages, [ { 'instance': self.chuck, 'action': 'pre_add', 'reverse': True, 'model': Person, 'objects': [self.alice, self.bob], }, { 'instance': self.chuck, 'action': 'post_add', 'reverse': True, 'model': Person, 'objects': [self.alice, self.bob], } ])
ymero/learn-python3
refs/heads/master
samples/packages/pil/use_pil_resize.py
20
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from PIL import Image # 打开一个jpg图像文件,注意是当前路径: im = Image.open('test.jpg') # 获得图像尺寸: w, h = im.size print('Original image size: %sx%s' % (w, h)) # 缩放到50%: im.thumbnail((w//2, h//2)) print('Resize image to: %sx%s' % (w//2, h//2)) # 把缩放后的图像用jpeg格式保存: im.save('thumbnail.jpg', 'jpeg')
gwq5210/litlib
refs/heads/master
thirdparty/sources/boost_1_60_0/tools/build/src/tools/types/exe.py
75
# Copyright David Abrahams 2004. Distributed under the Boost # Software License, Version 1.0. (See accompanying # file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) from b2.build import type def register (): type.register_type ('EXE', ['exe'], None, ['NT', 'CYGWIN']) type.register_type ('EXE', [], None, []) register ()
markeTIC/OCB
refs/heads/8.0
openerp/modules/loading.py
7
# -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # Copyright (C) 2004-2009 Tiny SPRL (<http://tiny.be>). # Copyright (C) 2010-2014 OpenERP s.a. (<http://openerp.com>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## """ Modules (also called addons) management. """ import itertools import logging import os import sys import threading import time import openerp import openerp.modules.db import openerp.modules.graph import openerp.modules.migration import openerp.modules.registry import openerp.osv as osv import openerp.tools as tools from openerp import SUPERUSER_ID from openerp.tools.translate import _ from openerp.modules.module import initialize_sys_path, \ load_openerp_module, init_module_models, adapt_version from module import runs_post_install _logger = logging.getLogger(__name__) _test_logger = logging.getLogger('openerp.tests') def load_module_graph(cr, graph, status=None, perform_checks=True, skip_modules=None, report=None): """Migrates+Updates or Installs all module nodes from ``graph`` :param graph: graph of module nodes to load :param status: deprecated parameter, unused, left to avoid changing signature in 8.0 :param perform_checks: whether module descriptors should be checked for validity (prints warnings for same cases) :param skip_modules: optional list of module names (packages) which have previously been loaded and can be skipped :return: list of modules that were installed or updated """ def load_test(module_name, idref, mode): cr.commit() try: _load_data(cr, module_name, idref, mode, 'test') return True except Exception: _test_logger.exception( 'module %s: an exception occurred in a test', module_name) return False finally: if tools.config.options['test_commit']: cr.commit() else: cr.rollback() # avoid keeping stale xml_id, etc. in cache openerp.modules.registry.RegistryManager.clear_caches(cr.dbname) def _get_files_of_kind(kind): if kind == 'demo': kind = ['demo_xml', 'demo'] elif kind == 'data': kind = ['init_xml', 'update_xml', 'data'] if isinstance(kind, str): kind = [kind] files = [] for k in kind: for f in package.data[k]: files.append(f) if k.endswith('_xml') and not (k == 'init_xml' and not f.endswith('.xml')): # init_xml, update_xml and demo_xml are deprecated except # for the case of init_xml with yaml, csv and sql files as # we can't specify noupdate for those file. correct_key = 'demo' if k.count('demo') else 'data' _logger.warning( "module %s: key '%s' is deprecated in favor of '%s' for file '%s'.", package.name, k, correct_key, f ) return files def _load_data(cr, module_name, idref, mode, kind): """ kind: data, demo, test, init_xml, update_xml, demo_xml. noupdate is False, unless it is demo data or it is csv data in init mode. """ try: if kind in ('demo', 'test'): threading.currentThread().testing = True for filename in _get_files_of_kind(kind): _logger.info("loading %s/%s", module_name, filename) noupdate = False if kind in ('demo', 'demo_xml') or (filename.endswith('.csv') and kind in ('init', 'init_xml')): noupdate = True tools.convert_file(cr, module_name, filename, idref, mode, noupdate, kind, report) finally: if kind in ('demo', 'test'): threading.currentThread().testing = False processed_modules = [] loaded_modules = [] registry = openerp.registry(cr.dbname) migrations = openerp.modules.migration.MigrationManager(cr, graph) _logger.info('loading %d modules...', len(graph)) registry.clear_manual_fields() # register, instantiate and initialize models for each modules t0 = time.time() t0_sql = openerp.sql_db.sql_counter for index, package in enumerate(graph): module_name = package.name module_id = package.id if skip_modules and module_name in skip_modules: continue migrations.migrate_module(package, 'pre') load_openerp_module(package.name) new_install = package.state == 'to install' if new_install: py_module = sys.modules['openerp.addons.%s' % (module_name,)] pre_init = package.info.get('pre_init_hook') if pre_init: getattr(py_module, pre_init)(cr) models = registry.load(cr, package) loaded_modules.append(package.name) if hasattr(package, 'init') or hasattr(package, 'update') or package.state in ('to install', 'to upgrade'): registry.setup_models(cr, partial=True) init_module_models(cr, package.name, models) idref = {} mode = 'update' if hasattr(package, 'init') or package.state == 'to install': mode = 'init' if hasattr(package, 'init') or hasattr(package, 'update') or package.state in ('to install', 'to upgrade'): # Can't put this line out of the loop: ir.module.module will be # registered by init_module_models() above. modobj = registry['ir.module.module'] if perform_checks: modobj.check(cr, SUPERUSER_ID, [module_id]) if package.state=='to upgrade': # upgrading the module information modobj.write(cr, SUPERUSER_ID, [module_id], modobj.get_values_from_terp(package.data)) _load_data(cr, module_name, idref, mode, kind='data') has_demo = hasattr(package, 'demo') or (package.dbdemo and package.state != 'installed') if has_demo: _load_data(cr, module_name, idref, mode, kind='demo') cr.execute('update ir_module_module set demo=%s where id=%s', (True, module_id)) modobj.invalidate_cache(cr, SUPERUSER_ID, ['demo'], [module_id]) migrations.migrate_module(package, 'post') if new_install: post_init = package.info.get('post_init_hook') if post_init: getattr(py_module, post_init)(cr, registry) registry._init_modules.add(package.name) # validate all the views at a whole registry['ir.ui.view']._validate_module_views(cr, SUPERUSER_ID, module_name) if has_demo: # launch tests only in demo mode, allowing tests to use demo data. if tools.config.options['test_enable']: # Yamel test report.record_result(load_test(module_name, idref, mode)) # Python tests ir_http = registry['ir.http'] if hasattr(ir_http, '_routing_map'): # Force routing map to be rebuilt between each module test suite del(ir_http._routing_map) report.record_result(openerp.modules.module.run_unit_tests(module_name, cr.dbname)) processed_modules.append(package.name) ver = adapt_version(package.data['version']) # Set new modules and dependencies modobj.write(cr, SUPERUSER_ID, [module_id], {'state': 'installed', 'latest_version': ver}) # Update translations for all installed languages modobj.update_translations(cr, SUPERUSER_ID, [module_id], None, {'overwrite': openerp.tools.config["overwrite_existing_translations"]}) package.state = 'installed' for kind in ('init', 'demo', 'update'): if hasattr(package, kind): delattr(package, kind) registry._init_modules.add(package.name) cr.commit() _logger.log(25, "%s modules loaded in %.2fs, %s queries", len(graph), time.time() - t0, openerp.sql_db.sql_counter - t0_sql) registry.clear_manual_fields() cr.commit() return loaded_modules, processed_modules def _check_module_names(cr, module_names): mod_names = set(module_names) if 'base' in mod_names: # ignore dummy 'all' module if 'all' in mod_names: mod_names.remove('all') if mod_names: cr.execute("SELECT count(id) AS count FROM ir_module_module WHERE name in %s", (tuple(mod_names),)) if cr.dictfetchone()['count'] != len(mod_names): # find out what module name(s) are incorrect: cr.execute("SELECT name FROM ir_module_module") incorrect_names = mod_names.difference([x['name'] for x in cr.dictfetchall()]) _logger.warning('invalid module names, ignored: %s', ", ".join(incorrect_names)) def load_marked_modules(cr, graph, states, force, progressdict, report, loaded_modules, perform_checks): """Loads modules marked with ``states``, adding them to ``graph`` and ``loaded_modules`` and returns a list of installed/upgraded modules.""" processed_modules = [] while True: cr.execute("SELECT name from ir_module_module WHERE state IN %s" ,(tuple(states),)) module_list = [name for (name,) in cr.fetchall() if name not in graph] if not module_list: break graph.add_modules(cr, module_list, force) _logger.debug('Updating graph with %d more modules', len(module_list)) loaded, processed = load_module_graph(cr, graph, progressdict, report=report, skip_modules=loaded_modules, perform_checks=perform_checks) processed_modules.extend(processed) loaded_modules.extend(loaded) if not processed: break return processed_modules def load_modules(db, force_demo=False, status=None, update_module=False): initialize_sys_path() force = [] if force_demo: force.append('demo') cr = db.cursor() try: if not openerp.modules.db.is_initialized(cr): _logger.info("init db") openerp.modules.db.initialize(cr) update_module = True # process auto-installed modules tools.config["init"]["all"] = 1 tools.config['update']['all'] = 1 if not tools.config['without_demo']: tools.config["demo"]['all'] = 1 # This is a brand new registry, just created in # openerp.modules.registry.RegistryManager.new(). registry = openerp.registry(cr.dbname) if 'base' in tools.config['update'] or 'all' in tools.config['update']: cr.execute("update ir_module_module set state=%s where name=%s and state=%s", ('to upgrade', 'base', 'installed')) # STEP 1: LOAD BASE (must be done before module dependencies can be computed for later steps) graph = openerp.modules.graph.Graph() graph.add_module(cr, 'base', force) if not graph: _logger.critical('module base cannot be loaded! (hint: verify addons-path)') raise osv.osv.except_osv(_('Could not load base module'), _('module base cannot be loaded! (hint: verify addons-path)')) # processed_modules: for cleanup step after install # loaded_modules: to avoid double loading report = registry._assertion_report loaded_modules, processed_modules = load_module_graph(cr, graph, status, perform_checks=update_module, report=report) if tools.config['load_language'] or update_module: # some base models are used below, so make sure they are set up registry.setup_models(cr, partial=True) if tools.config['load_language']: for lang in tools.config['load_language'].split(','): tools.load_language(cr, lang) # STEP 2: Mark other modules to be loaded/updated if update_module: modobj = registry['ir.module.module'] _logger.info('updating modules list') modobj.update_list(cr, SUPERUSER_ID) _check_module_names(cr, itertools.chain(tools.config['init'].keys(), tools.config['update'].keys())) mods = [k for k in tools.config['init'] if tools.config['init'][k]] if mods: ids = modobj.search(cr, SUPERUSER_ID, ['&', ('state', '=', 'uninstalled'), ('name', 'in', mods)]) if ids: modobj.button_install(cr, SUPERUSER_ID, ids) mods = [k for k in tools.config['update'] if tools.config['update'][k]] if mods: ids = modobj.search(cr, SUPERUSER_ID, ['&', ('state', '=', 'installed'), ('name', 'in', mods)]) if ids: modobj.button_upgrade(cr, SUPERUSER_ID, ids) cr.execute("update ir_module_module set state=%s where name=%s", ('installed', 'base')) modobj.invalidate_cache(cr, SUPERUSER_ID, ['state']) # STEP 3: Load marked modules (skipping base which was done in STEP 1) # IMPORTANT: this is done in two parts, first loading all installed or # partially installed modules (i.e. installed/to upgrade), to # offer a consistent system to the second part: installing # newly selected modules. # We include the modules 'to remove' in the first step, because # they are part of the "currently installed" modules. They will # be dropped in STEP 6 later, before restarting the loading # process. # IMPORTANT 2: We have to loop here until all relevant modules have been # processed, because in some rare cases the dependencies have # changed, and modules that depend on an uninstalled module # will not be processed on the first pass. # It's especially useful for migrations. previously_processed = -1 while previously_processed < len(processed_modules): previously_processed = len(processed_modules) processed_modules += load_marked_modules(cr, graph, ['installed', 'to upgrade', 'to remove'], force, status, report, loaded_modules, update_module) if update_module: processed_modules += load_marked_modules(cr, graph, ['to install'], force, status, report, loaded_modules, update_module) registry.setup_models(cr) # STEP 4: Finish and cleanup installations if processed_modules: cr.execute("""select model,name from ir_model where id NOT IN (select distinct model_id from ir_model_access)""") for (model, name) in cr.fetchall(): if model in registry and not registry[model].is_transient() and not isinstance(registry[model], openerp.osv.orm.AbstractModel): _logger.warning('The model %s has no access rules, consider adding one. E.g. access_%s,access_%s,model_%s,,1,0,0,0', model, model.replace('.', '_'), model.replace('.', '_'), model.replace('.', '_')) # Temporary warning while we remove access rights on osv_memory objects, as they have # been replaced by owner-only access rights cr.execute("""select distinct mod.model, mod.name from ir_model_access acc, ir_model mod where acc.model_id = mod.id""") for (model, name) in cr.fetchall(): if model in registry and registry[model].is_transient(): _logger.warning('The transient model %s (%s) should not have explicit access rules!', model, name) cr.execute("SELECT model from ir_model") for (model,) in cr.fetchall(): if model in registry: registry[model]._check_removed_columns(cr, log=True) else: _logger.warning("Model %s is declared but cannot be loaded! (Perhaps a module was partially removed or renamed)", model) # Cleanup orphan records registry['ir.model.data']._process_end(cr, SUPERUSER_ID, processed_modules) for kind in ('init', 'demo', 'update'): tools.config[kind] = {} cr.commit() # STEP 5: Cleanup menus # Remove menu items that are not referenced by any of other # (child) menu item, ir_values, or ir_model_data. # TODO: This code could be a method of ir_ui_menu. Remove menu without actions of children if update_module: while True: cr.execute('''delete from ir_ui_menu where (id not IN (select parent_id from ir_ui_menu where parent_id is not null)) and (id not IN (select res_id from ir_values where model='ir.ui.menu')) and (id not IN (select res_id from ir_model_data where model='ir.ui.menu'))''') cr.commit() if not cr.rowcount: break else: _logger.info('removed %d unused menus', cr.rowcount) # STEP 6: Uninstall modules to remove if update_module: # Remove records referenced from ir_model_data for modules to be # removed (and removed the references from ir_model_data). cr.execute("SELECT name, id FROM ir_module_module WHERE state=%s", ('to remove',)) modules_to_remove = dict(cr.fetchall()) if modules_to_remove: pkgs = reversed([p for p in graph if p.name in modules_to_remove]) for pkg in pkgs: uninstall_hook = pkg.info.get('uninstall_hook') if uninstall_hook: py_module = sys.modules['openerp.addons.%s' % (pkg.name,)] getattr(py_module, uninstall_hook)(cr, registry) registry['ir.module.module'].module_uninstall(cr, SUPERUSER_ID, modules_to_remove.values()) # Recursive reload, should only happen once, because there should be no # modules to remove next time cr.commit() _logger.info('Reloading registry once more after uninstalling modules') openerp.api.Environment.reset() return openerp.modules.registry.RegistryManager.new(cr.dbname, force_demo, status, update_module) # STEP 7: verify custom views on every model if update_module: Views = registry['ir.ui.view'] custom_view_test = True for model in registry.models.keys(): if not Views._validate_custom_views(cr, SUPERUSER_ID, model): custom_view_test = False _logger.error('invalid custom view(s) for model %s', model) report.record_result(custom_view_test) if report.failures: _logger.error('At least one test failed when loading the modules.') else: _logger.info('Modules loaded.') # STEP 8: call _register_hook on every model for model in registry.models.values(): model._register_hook(cr) # STEP 9: Run the post-install tests cr.commit() t0 = time.time() t0_sql = openerp.sql_db.sql_counter if openerp.tools.config['test_enable']: if update_module: cr.execute("SELECT name FROM ir_module_module WHERE state='installed' and name = ANY(%s)", (processed_modules,)) else: cr.execute("SELECT name FROM ir_module_module WHERE state='installed'") for module_name in cr.fetchall(): report.record_result(openerp.modules.module.run_unit_tests(module_name[0], cr.dbname, position=runs_post_install)) _logger.log(25, "All post-tested in %.2fs, %s queries", time.time() - t0, openerp.sql_db.sql_counter - t0_sql) finally: cr.close() # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
tgsmith61591/pyramid
refs/heads/master
pmdarima/arima/tests/test_context.py
1
# -*- coding: utf-8 -*- from pmdarima.arima.auto import StepwiseContext, auto_arima from pmdarima.arima._context import ContextStore, ContextType from pmdarima.arima import _context as context_lib from pmdarima.datasets import load_lynx, load_wineind from unittest import mock import threading import collections import pytest import warnings lynx = load_lynx() wineind = load_wineind() # test StepwiseContext parameter validation @pytest.mark.parametrize( 'max_steps,max_dur', [ pytest.param(-1, None), pytest.param(0, None), pytest.param(1001, None), pytest.param(1100, None), pytest.param(None, -1), pytest.param(None, 0), ]) def test_stepwise_context_args(max_steps, max_dur): with pytest.raises(ValueError): StepwiseContext(max_steps=max_steps, max_dur=max_dur) # test auto_arima stepwise run with StepwiseContext def test_auto_arima_with_stepwise_context(): samp = lynx[:8] with StepwiseContext(max_steps=3, max_dur=30): with pytest.warns(UserWarning) as uw: auto_arima(samp, suppress_warnings=False, stepwise=True, error_action='ignore') # assert that max_steps were taken assert any(str(w.message) .startswith('stepwise search has reached the ' 'maximum number of tries') for w in uw) # test effective context info in nested context scenario def test_nested_context(): ctx1_data = {'max_dur': 30} ctx2_data = {'max_steps': 5} ctx1 = StepwiseContext(**ctx1_data) ctx2 = StepwiseContext(**ctx2_data) with ctx1, ctx2: effective_ctx_data = ContextStore.get_or_empty( ContextType.STEPWISE) expected_ctx_data = ctx1_data.copy() expected_ctx_data.update(ctx2_data) assert all(effective_ctx_data[key] == expected_ctx_data[key] for key in expected_ctx_data.keys()) assert all(effective_ctx_data[key] == expected_ctx_data[key] for key in effective_ctx_data.keys()) # Test a context honors the max duration def test_max_dur(): # set arbitrarily low to guarantee will always pass after one iter with StepwiseContext(max_dur=.5), \ pytest.warns(UserWarning) as uw: auto_arima(lynx, stepwise=True) # assert that max_dur was reached assert any(str(w.message) .startswith('early termination') for w in uw) # Test that a context after the first will not inherit the first's attrs def test_subsequent_contexts(): # Force a very fast fit with StepwiseContext(max_dur=.5), \ pytest.warns(UserWarning): auto_arima(lynx, stepwise=True) # Out of scope, should be EMPTY ctx = ContextStore.get_or_empty(ContextType.STEPWISE) assert ctx.get_type() is ContextType.EMPTY # Now show that we DON'T hit early termination by time here with StepwiseContext(max_steps=100), \ warnings.catch_warnings(record=True) as uw: ctx = ContextStore.get_or_empty(ContextType.STEPWISE) assert ctx.get_type() is ContextType.STEPWISE assert ctx.max_dur is None auto_arima(lynx, stepwise=True) # assert that max_dur was NOT reached if uw: assert not any(str(w.message) .startswith('early termination') for w in uw) # test param validation of ContextStore's add, get and remove members def test_add_get_remove_context_args(): with pytest.raises(ValueError): ContextStore._add_context(None) with pytest.raises(ValueError): ContextStore._remove_context(None) with pytest.raises(ValueError): ContextStore.get_context(None) def test_context_store_accessible_across_threads(): # Make sure it's completely empty by patching it d = {} with mock.patch('pmdarima.arima._context._ctx.store', d): # pushes onto the Context Store def push(n): # n is the number of times this has been executed before. If > 0, # assert there is a context there if n > 0: assert len(context_lib._ctx.store[ContextType.STEPWISE]) == n else: context_lib._ctx.store[ContextType.STEPWISE] = \ collections.deque() new_ctx = StepwiseContext() context_lib._ctx.store[ContextType.STEPWISE].append(new_ctx) assert len(context_lib._ctx.store[ContextType.STEPWISE]) == n + 1 for i in range(5): t = threading.Thread(target=push, args=(i,)) t.start() t.join(1) # it shouldn't take even close to this time # Assert the mock has lifted assert context_lib._ctx.store is not d
mollstam/UnrealPy
refs/heads/master
UnrealPyEmbed/Development/Python/2015.08.07-Python2710-x64-Source-vs2015/Python27/Source/cffi-1.1.2/testing/support.py
5
import sys if sys.version_info < (3,): __all__ = ['u'] class U(object): def __add__(self, other): return eval('u'+repr(other).replace(r'\\u', r'\u') .replace(r'\\U', r'\U')) u = U() assert u+'a\x00b' == eval(r"u'a\x00b'") assert u+'a\u1234b' == eval(r"u'a\u1234b'") assert u+'a\U00012345b' == eval(r"u'a\U00012345b'") else: __all__ = ['u', 'unicode', 'long'] u = "" unicode = str long = int
bukepo/openthread
refs/heads/master
tests/toranj/test-603-channel-manager-announce-recovery.py
7
#!/usr/bin/env python3 # # Copyright (c) 2018, The OpenThread Authors. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. from wpan import verify import wpan import time # ----------------------------------------------------------------------------------------------------------------------- # Test description: Orphaned node attach through MLE Announcement test_name = __file__[:-3] if __file__.endswith('.py') else __file__ print('-' * 120) print('Starting \'{}\''.format(test_name)) def verify_channel(nodes, new_channel, wait_time=20): """ This function checks the channel on a given list of `nodes` and verifies that all nodes switch to a given `new_channel` (as int) within certain `wait_time` (int and in seconds) """ start_time = time.time() while not all([(new_channel == int(node.get(wpan.WPAN_CHANNEL), 0)) for node in nodes]): if time.time() - start_time > wait_time: print('Took too long to switch to channel {} ({}>{} sec)'.format(new_channel, time.time() - start_time, wait_time)) exit(1) time.sleep(0.1) # ----------------------------------------------------------------------------------------------------------------------- # Creating `wpan.Nodes` instances router = wpan.Node() c1 = wpan.Node() c2 = wpan.Node() all_nodes = [router, c1, c2] # ----------------------------------------------------------------------------------------------------------------------- # Init all nodes wpan.Node.init_all_nodes() # ----------------------------------------------------------------------------------------------------------------------- # Build network topology router.form('announce-tst', channel=11) c1.join_node(router, node_type=wpan.JOIN_TYPE_SLEEPY_END_DEVICE) c2.join_node(router, node_type=wpan.JOIN_TYPE_SLEEPY_END_DEVICE) c1.set(wpan.WPAN_POLL_INTERVAL, '500') c2.set(wpan.WPAN_POLL_INTERVAL, '500') c1.set(wpan.WPAN_THREAD_DEVICE_MODE, '5') c2.set(wpan.WPAN_THREAD_DEVICE_MODE, '5') # ----------------------------------------------------------------------------------------------------------------------- # Test implementation # Reset c2 and keep it in detached state c2.set('Daemon:AutoAssociateAfterReset', 'false') c2.reset() # Switch the rest of network to channel 26 router.set(wpan.WPAN_CHANNEL_MANAGER_NEW_CHANNEL, '26') verify_channel([router, c1], 26) # Now re-enable c2 and verify that it does attach to router and is on channel 26 # c2 would go through the ML Announce recovery. c2.set('Daemon:AutoAssociateAfterReset', 'true') c2.reset() verify(int(c2.get(wpan.WPAN_CHANNEL), 0) == 11) # wait for 20s for c2 to be attached/associated def check_c2_is_associated(): verify(c2.is_associated()) wpan.verify_within(check_c2_is_associated, 20) # Check that c2 is now on channel 26. verify(int(c2.get(wpan.WPAN_CHANNEL), 0) == 26) # ----------------------------------------------------------------------------------------------------------------------- # Test finished wpan.Node.finalize_all_nodes() print('\'{}\' passed.'.format(test_name))
tntnatbry/tensorflow
refs/heads/master
tensorflow/contrib/learn/python/learn/estimators/__init__.py
5
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """An estimator is a rule for calculating an estimate of a given quantity. # Estimators * **Estimators** are used to train and evaluate TensorFlow models. They support regression and classification problems. * **Classifiers** are functions that have discrete outcomes. * **Regressors** are functions that predict continuous values. ## Choosing the correct estimator * For **Regression** problems use one of the following: * `LinearRegressor`: Uses linear model. * `DNNRegressor`: Uses DNN. * `DNNLinearCombinedRegressor`: Uses Wide & Deep. * `TensorForestEstimator`: Uses RandomForest. See tf.contrib.tensor_forest.client.random_forest.TensorForestEstimator. * `Estimator`: Use when you need a custom model. * For **Classification** problems use one of the following: * `LinearClassifier`: Multiclass classifier using Linear model. * `DNNClassifier`: Multiclass classifier using DNN. * `DNNLinearCombinedClassifier`: Multiclass classifier using Wide & Deep. * `TensorForestEstimator`: Uses RandomForest. See tf.contrib.tensor_forest.client.random_forest.TensorForestEstimator. * `SVM`: Binary classifier using linear SVMs. * `LogisticRegressor`: Use when you need custom model for binary classification. * `Estimator`: Use when you need custom model for N class classification. ## Pre-canned Estimators Pre-canned estimators are machine learning estimators premade for general purpose problems. If you need more customization, you can always write your own custom estimator as described in the section below. Pre-canned estimators are tested and optimized for speed and quality. ### Define the feature columns Here are some possible types of feature columns used as inputs to a pre-canned estimator. Feature columns may vary based on the estimator used. So you can see which feature columns are fed to each estimator in the below section. ```python sparse_feature_a = sparse_column_with_keys( column_name="sparse_feature_a", keys=["AB", "CD", ...]) embedding_feature_a = embedding_column( sparse_id_column=sparse_feature_a, dimension=3, combiner="sum") sparse_feature_b = sparse_column_with_hash_bucket( column_name="sparse_feature_b", hash_bucket_size=1000) embedding_feature_b = embedding_column( sparse_id_column=sparse_feature_b, dimension=16, combiner="sum") crossed_feature_a_x_b = crossed_column( columns=[sparse_feature_a, sparse_feature_b], hash_bucket_size=10000) real_feature = real_valued_column("real_feature") real_feature_buckets = bucketized_column( source_column=real_feature, boundaries=[18, 25, 30, 35, 40, 45, 50, 55, 60, 65]) ``` ### Create the pre-canned estimator DNNClassifier, DNNRegressor, and DNNLinearCombinedClassifier are all pretty similar to each other in how you use them. You can easily plug in an optimizer and/or regularization to those estimators. #### DNNClassifier A classifier for TensorFlow DNN models. ```python my_features = [embedding_feature_a, embedding_feature_b] estimator = DNNClassifier( feature_columns=my_features, hidden_units=[1024, 512, 256], optimizer=tf.train.ProximalAdagradOptimizer( learning_rate=0.1, l1_regularization_strength=0.001 )) ``` #### DNNRegressor A regressor for TensorFlow DNN models. ```python my_features = [embedding_feature_a, embedding_feature_b] estimator = DNNRegressor( feature_columns=my_features, hidden_units=[1024, 512, 256]) # Or estimator using the ProximalAdagradOptimizer optimizer with # regularization. estimator = DNNRegressor( feature_columns=my_features, hidden_units=[1024, 512, 256], optimizer=tf.train.ProximalAdagradOptimizer( learning_rate=0.1, l1_regularization_strength=0.001 )) ``` #### DNNLinearCombinedClassifier A classifier for TensorFlow Linear and DNN joined training models. * Wide and deep model * Multi class (2 by default) ```python my_linear_features = [crossed_feature_a_x_b] my_deep_features = [embedding_feature_a, embedding_feature_b] estimator = DNNLinearCombinedClassifier( # Common settings n_classes=n_classes, weight_column_name=weight_column_name, # Wide settings linear_feature_columns=my_linear_features, linear_optimizer=tf.train.FtrlOptimizer(...), # Deep settings dnn_feature_columns=my_deep_features, dnn_hidden_units=[1000, 500, 100], dnn_optimizer=tf.train.AdagradOptimizer(...)) ``` #### LinearClassifier Train a linear model to classify instances into one of multiple possible classes. When number of possible classes is 2, this is binary classification. ```python my_features = [sparse_feature_b, crossed_feature_a_x_b] estimator = LinearClassifier( feature_columns=my_features, optimizer=tf.train.FtrlOptimizer( learning_rate=0.1, l1_regularization_strength=0.001 )) ``` #### LinearRegressor Train a linear regression model to predict a label value given observation of feature values. ```python my_features = [sparse_feature_b, crossed_feature_a_x_b] estimator = LinearRegressor( feature_columns=my_features) ``` ### LogisticRegressor Logistic regression estimator for binary classification. ```python # See tf.contrib.learn.Estimator(...) for details on model_fn structure def my_model_fn(...): pass estimator = LogisticRegressor(model_fn=my_model_fn) # Input builders def input_fn_train: pass estimator.fit(input_fn=input_fn_train) estimator.predict(x=x) ``` #### SVM - Support Vector Machine Support Vector Machine (SVM) model for binary classification. Currently only linear SVMs are supported. ```python my_features = [real_feature, sparse_feature_a] estimator = SVM( example_id_column='example_id', feature_columns=my_features, l2_regularization=10.0) ``` #### DynamicRnnEstimator An `Estimator` that uses a recurrent neural network with dynamic unrolling. ```python problem_type = ProblemType.CLASSIFICATION # or REGRESSION prediction_type = PredictionType.SINGLE_VALUE # or MULTIPLE_VALUE estimator = DynamicRnnEstimator(problem_type, prediction_type, my_feature_columns) ``` ### Use the estimator There are two main functions for using estimators, one of which is for training, and one of which is for evaluation. You can specify different data sources for each one in order to use different datasets for train and eval. ```python # Input builders def input_fn_train: # returns x, Y ... estimator.fit(input_fn=input_fn_train) def input_fn_eval: # returns x, Y ... estimator.evaluate(input_fn=input_fn_eval) estimator.predict(x=x) ``` ## Creating Custom Estimator To create a custom `Estimator`, provide a function to `Estimator`'s constructor that builds your model (`model_fn`, below): ```python estimator = tf.contrib.learn.Estimator( model_fn=model_fn, model_dir=model_dir) # Where the model's data (e.g., checkpoints) # are saved. ``` Here is a skeleton of this function, with descriptions of its arguments and return values in the accompanying tables: ```python def model_fn(features, targets, mode, params): # Logic to do the following: # 1. Configure the model via TensorFlow operations # 2. Define the loss function for training/evaluation # 3. Define the training operation/optimizer # 4. Generate predictions return predictions, loss, train_op ``` You may use `mode` and check against `tf.contrib.learn.ModeKeys.{TRAIN, EVAL, INFER}` to parameterize `model_fn`. In the Further Reading section below, there is an end-to-end TensorFlow tutorial for building a custom estimator. ## Additional Estimators There is an additional estimators under `tensorflow.contrib.factorization.python.ops`: * Gaussian mixture model (GMM) clustering ## Further reading For further reading, there are several tutorials with relevant topics, including: * [Overview of linear models](../../../tutorials/linear/overview.md) * [Linear model tutorial](../../../tutorials/wide/index.md) * [Wide and deep learning tutorial](../../../tutorials/wide_and_deep/index.md) * [Custom estimator tutorial](../../../tutorials/estimators/index.md) * [Building input functions](../../../tutorials/input_fn/index.md) """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.learn.python.learn.estimators._sklearn import NotFittedError from tensorflow.contrib.learn.python.learn.estimators.constants import ProblemType from tensorflow.contrib.learn.python.learn.estimators.dnn import DNNClassifier from tensorflow.contrib.learn.python.learn.estimators.dnn import DNNRegressor from tensorflow.contrib.learn.python.learn.estimators.dnn_linear_combined import DNNLinearCombinedClassifier from tensorflow.contrib.learn.python.learn.estimators.dnn_linear_combined import DNNLinearCombinedRegressor from tensorflow.contrib.learn.python.learn.estimators.dynamic_rnn_estimator import DynamicRnnEstimator from tensorflow.contrib.learn.python.learn.estimators.estimator import BaseEstimator from tensorflow.contrib.learn.python.learn.estimators.estimator import Estimator from tensorflow.contrib.learn.python.learn.estimators.estimator import infer_real_valued_columns_from_input from tensorflow.contrib.learn.python.learn.estimators.estimator import infer_real_valued_columns_from_input_fn from tensorflow.contrib.learn.python.learn.estimators.estimator import SKCompat from tensorflow.contrib.learn.python.learn.estimators.kmeans import KMeansClustering from tensorflow.contrib.learn.python.learn.estimators.linear import LinearClassifier from tensorflow.contrib.learn.python.learn.estimators.linear import LinearRegressor from tensorflow.contrib.learn.python.learn.estimators.logistic_regressor import LogisticRegressor from tensorflow.contrib.learn.python.learn.estimators.metric_key import MetricKey from tensorflow.contrib.learn.python.learn.estimators.model_fn import ModeKeys from tensorflow.contrib.learn.python.learn.estimators.model_fn import ModelFnOps from tensorflow.contrib.learn.python.learn.estimators.prediction_key import PredictionKey from tensorflow.contrib.learn.python.learn.estimators.run_config import ClusterConfig from tensorflow.contrib.learn.python.learn.estimators.run_config import Environment from tensorflow.contrib.learn.python.learn.estimators.run_config import RunConfig from tensorflow.contrib.learn.python.learn.estimators.run_config import TaskType from tensorflow.contrib.learn.python.learn.estimators.svm import SVM