from pathlib import Path | |
from torch_uncertainty.models.resnet import resnet | |
from safetensors.torch import load_file | |
def load_model(version: int): | |
"""Load the model corresponding to the given version.""" | |
model = resnet( | |
arch=18, | |
num_classes=200, | |
in_channels=3, | |
style="cifar", | |
conv_bias=False, | |
) | |
path = Path( | |
f"tiny-imagenet-resnet18/tiny-imagenet-resnet18-0-1023/version_{version}.safetensors" | |
) | |
if not path.exists(): | |
raise ValueError("File does not exist") | |
state_dict = load_file(path) | |
model.load_state_dict(state_dict=state_dict) | |
return model | |
from torch_uncertainty.datamodules.classification.tiny_imagenet import TinyImageNetDataModule | |
from torchmetrics import Accuracy | |
# Compute the accuracy using the first checkpoint | |
acc = Accuracy("multiclass", num_classes=200) | |
data_module = TinyImageNetDataModule( | |
root="data", | |
batch_size=32, | |
) | |
model = load_model(0) | |
model.eval() | |
data_module.setup("test") | |
for batch in data_module.test_dataloader()[0]: | |
x, y = batch | |
y_hat = model(x) | |
acc.update(y_hat, y) | |
print(f"Accuracy on the test set: {acc.compute():.3%}") |