text
stringlengths
8
1.72M
id
stringlengths
22
143
metadata
dict
__index_level_0__
int64
0
104
# Conditional flow for switch scenario This example is a conditional flow for switch scenario. By following this example, you will learn how to create a conditional flow using the `activate config`. ## Flow description In this flow, we set the background to the search function of a certain mall, use `activate config` to implement switch logic and determine user intent based on the input queries to achieve dynamic processing and generate user-oriented output. - The `classify_with_llm` node analyzes user intent based on input query and provides one of the following results: "product_recommendation," "order_search," or "product_info". - The `class_check` node generates the correctly formatted user intent. - The `product_recommendation`, `order_search`, and `product_info` nodes are configured with activate config and are only executed when the output from `class_check` meets the specified conditions. - The `generate_response` node generates user-facing output. For example, as the shown below, the input query is "When will my order be shipped" and the LLM node classifies the user intent as "order_search", resulting in both the `product_info` and `product_recommendation` nodes being bypassed and only the `order_search` node being executed, and then generating the outputs. ![conditional_flow_for_switch](conditional_flow_for_switch.png) ## Prerequisites Install promptflow sdk and other dependencies: ```bash pip install -r requirements.txt ``` ## Setup connection Prepare your Azure Open AI resource follow this [instruction](https://learn.microsoft.com/en-us/azure/cognitive-services/openai/how-to/create-resource?pivots=web-portal) and get your `api_key` if you don't have one. Note in this example, we are using [chat api](https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/chatgpt?pivots=programming-language-chat-completions), please use `gpt-35-turbo` or `gpt-4` model deployment. Create connection if you haven't done that. Ensure you have put your azure open ai endpoint key in [azure_openai.yml](../../../connections/azure_openai.yml) file. ```bash # Override keys with --set to avoid yaml file changes pf connection create -f ../../../connections/azure_openai.yml --name open_ai_connection --set api_key=<your_api_key> api_base=<your_api_base> ``` Note in [flow.dag.yaml](flow.dag.yaml) we are using connection named `open_ai_connection`. ```bash # show registered connection pf connection show --name open_ai_connection ``` ## Run flow - Test flow ```bash # test with default input value in flow.dag.yaml pf flow test --flow . # test with flow inputs pf flow test --flow . --inputs query="When will my order be shipped?" ``` - Create run with multiple lines of data ```bash # create a random run name run_name="conditional_flow_for_switch_"$(openssl rand -hex 12) # create run pf run create --flow . --data ./data.jsonl --column-mapping query='${data.query}' --stream --name $run_name ``` - List and show run metadata ```bash # list created run pf run list # show specific run detail pf run show --name $run_name # show output pf run show-details --name $run_name # visualize run in browser pf run visualize --name $run_name ```
promptflow/examples/flows/standard/conditional-flow-for-switch/README.md/0
{ "file_path": "promptflow/examples/flows/standard/conditional-flow-for-switch/README.md", "repo_id": "promptflow", "token_count": 925 }
17
import os from promptflow import tool from promptflow.connections import CustomConnection from intent import extract_intent @tool def extract_intent_tool(chat_prompt, connection: CustomConnection) -> str: # set environment variables for key, value in dict(connection).items(): os.environ[key] = value # call the entry function return extract_intent( chat_prompt=chat_prompt, )
promptflow/examples/flows/standard/customer-intent-extraction/extract_intent_tool.py/0
{ "file_path": "promptflow/examples/flows/standard/customer-intent-extraction/extract_intent_tool.py", "repo_id": "promptflow", "token_count": 134 }
18
import logging import re from typing import List class Settings: divide_file = { "py": r"(?<!.)(class|def)", } divide_func = { "py": r"((\n {,6})|^)(class|def)\s+(\S+(?=\())\s*(\([^)]*\))?\s*(->[^:]*:|:) *" } class Divider: language = 'py' @classmethod def divide_file(cls, text) -> List[str]: matches = list(re.finditer(Settings.divide_file[Divider.language], text)) splitted_content = [] min_pos = matches[0].start() if len(matches) > 0 else len(text) for i in range(len(matches)): start = matches[i].start() end = matches[i + 1].start() if i + 1 < len(matches) else len(text) splitted_content.append(text[start:end]) if min_pos != 0: splitted_content.insert(0, text[0:min_pos]) return splitted_content @classmethod def divide_half(cls, text) -> List[str]: """ Divide the content into two parts, but ensure that the function body is not split. """ _, pos = Divider.get_functions_and_pos(text) if len(pos) > 1: # Divide the code into two parts and every part start with a function. i = len(pos) // 2 return [text[0:pos[i][0]], text[pos[i][0]:]] if len(pos) == 1: # Divide the code into two parts, [function define + body, other body]. body = text[pos[0][1]:] body_lines = body.split('\n') body_ten_lines = '\n'.join(body_lines[0:10]) return [text[0:pos[0][1]] + body_ten_lines, body[len(body_ten_lines):]] return [text] @classmethod def get_functions_and_pos(cls, text): matches = re.finditer(Settings.divide_func[Divider.language], text) functions = [] pos = [] for match in matches: matched_text = match.group().replace('\n', '') func = re.sub(r' +', ' ', matched_text).replace(' :', ':') func = re.sub(r'[\s,]+\)', ')', func) func = re.sub(r'\([\s,]+', '(', func) functions.append(func.strip()) pos.append((match.start(), match.end())) return functions, pos @classmethod def combine(cls, divided: List[str]): return ''.join(divided) @classmethod def merge_doc2code(cls, docstring: str, origin_code: str) -> str: funcs1, pos1 = Divider.get_functions_and_pos(docstring) funcs2, pos2 = Divider.get_functions_and_pos(origin_code) pattern = r'""".*?"""' code = origin_code if len(funcs2) == 0 else origin_code[0:pos2[0][0]] pos1.append((len(docstring), len(docstring))) # avoid index out of range pos2.append((len(origin_code), len(origin_code))) # avoid index out of range for i2 in range(len(funcs2)): # add docstring for each function in origin_code part_full_code = origin_code[pos2[i2][0]:pos2[i2 + 1][0]] try: i1 = funcs1.index(funcs2[i2]) except ValueError: logging.warning(f"No docstring found for {funcs2[i2]}") code += part_full_code continue new_doc = re.findall(pattern, docstring[pos1[i1][1]:pos1[i1 + 1][0]], re.DOTALL) if new_doc: func_line = origin_code[pos2[i2][0]:pos2[i2][1]].replace('\n', '') empty_line_num = (len(func_line) - len(func_line.lstrip()) + 4) func_body = origin_code[pos2[i2][1]:pos2[i2 + 1][0]] code_doc = list(re.finditer(pattern, func_body, re.DOTALL)) format_new_doc = Divider.format_indentation(new_doc[0], empty_line_num) is_replace_doc = len(code_doc) > 0 and (re.sub(r'\s+', '', func_body[0:code_doc[0].start()]) == '') if is_replace_doc: code += part_full_code.replace(code_doc[0].group(), format_new_doc.strip(), 1) else: code += origin_code[pos2[i2][0]:pos2[i2][1]] + '\n' + format_new_doc + '\n' + origin_code[ pos2[i2][1]: pos2[i2 + 1][0]] else: code += part_full_code return code @classmethod def format_indentation(cls, text, empty_line_num): lines = text.splitlines() last_line_space_num = len(lines[-1]) - len(lines[-1].lstrip()) need_add_space = max(empty_line_num - last_line_space_num, 0) * ' ' lines[0] = last_line_space_num * ' ' + lines[0].lstrip() # Align the first row to the last row indented_lines = [(need_add_space + line).rstrip() for line in lines] indented_string = '\n'.join(indented_lines) return indented_string @classmethod def has_class_or_func(cls, text): funcs, _ = Divider.get_functions_and_pos(text) return len(funcs) > 0
promptflow/examples/flows/standard/gen-docstring/divider.py/0
{ "file_path": "promptflow/examples/flows/standard/gen-docstring/divider.py", "repo_id": "promptflow", "token_count": 2530 }
19
from promptflow import tool @tool def prepare_example(): return [ { "question": "What is 37593 * 67?", "code": "{\n \"code\": \"print(37593 * 67)\"\n}", "answer": "2512641", }, { "question": "What is the value of x in the equation 2x + 3 = 11?", "code": "{\n \"code\": \"print((11-3)/2)\"\n}", "answer": "4", }, { "question": "How many of the integers between 0 and 99 inclusive are divisible by 8?", "code": "{\n \"code\": \"count = 0\\nfor i in range(100):\\n \ if i % 8 == 0:\\n count += 1\\nprint(count)\"\n}", "answer": "10", }, { "question": "Janet's ducks lay 16 eggs per day. \ She eats three for breakfast every morning and bakes muffins for her friends every day with four.\ She sells the remainder at the farmers' market daily for $2 per fresh duck egg. \ How much in dollars does she make every day at the farmers' market?", "code": "{\n \"code\": \"print((16-3-4)*2)\"\n}", "answer": "18", }, { "question": "What is the sum of the powers of 3 (3^i) that are smaller than 100?", "code": "{\n \"code\": \"sum = 0\\ni = 0\n\ while 3**i < 100:\\n sum += 3**i\\n i += 1\\nprint(sum)\"\n}", "answer": "40", }, { "question": "Carla is downloading a 200 GB file. She can download 2 GB/minute, \ but 40% of the way through the download, the download fails.\ Then Carla has to restart the download from the beginning. \ How load did it take her to download the file in minutes?", "code": "{\n \"code\": \"print(200/2*1.4)\"\n}", "answer": "140", }, { "question": "What is the sum of the 10 first positive integers?", "code": "{\n \"code\": \"print(sum(range(1,11)))\"\n}", "answer": "55", } ]
promptflow/examples/flows/standard/maths-to-code/math_example.py/0
{ "file_path": "promptflow/examples/flows/standard/maths-to-code/math_example.py", "repo_id": "promptflow", "token_count": 907 }
20
import json from promptflow import tool @tool def convert_to_dict(input_str: str): try: return json.loads(input_str) except Exception as e: print("The input is not valid, error: {}".format(e)) return {"category": "None", "evidence": "None"}
promptflow/examples/flows/standard/web-classification/convert_to_dict.py/0
{ "file_path": "promptflow/examples/flows/standard/web-classification/convert_to_dict.py", "repo_id": "promptflow", "token_count": 105 }
21
my_tool_package.tools.tool_with_dynamic_list_input.my_tool: function: my_tool inputs: input_prefix: type: - string input_text: type: - list dynamic_list: func_path: my_tool_package.tools.tool_with_dynamic_list_input.my_list_func func_kwargs: - name: prefix # argument name to be passed to the function type: - string # if optional is not specified, default to false. # this is for UX pre-validaton. If optional is false, but no input. UX can throw error in advanced. optional: true reference: ${inputs.input_prefix} # dynamic reference to another input parameter - name: size # another argument name to be passed to the function type: - int optional: true default: 10 # enum and dynamic list may need below setting. # allow user to enter input value manually, default false. allow_manual_entry: true # allow user to select multiple values, default false. is_multi_select: true endpoint_name: type: - string dynamic_list: func_path: my_tool_package.tools.tool_with_dynamic_list_input.list_endpoint_names func_kwargs: - name: prefix type: - string optional: true reference: ${inputs.input_prefix} allow_manual_entry: false is_multi_select: false module: my_tool_package.tools.tool_with_dynamic_list_input name: My Tool with Dynamic List Input description: This is my tool with dynamic list input type: python
promptflow/examples/tools/tool-package-quickstart/my_tool_package/yamls/tool_with_dynamic_list_input.yaml/0
{ "file_path": "promptflow/examples/tools/tool-package-quickstart/my_tool_package/yamls/tool_with_dynamic_list_input.yaml", "repo_id": "promptflow", "token_count": 672 }
22
--- resources: examples/tutorials/flow-deploy/create-service-with-flow --- # Create service with flow This example shows how to create a simple service with flow. You can create your own service by utilize `flow-as-function`. This folder contains a example on how to build a service with a flow. Reference [here](./simple_score.py) for a minimal service example. The output of score.py will be a json serialized dictionary. You can use json parser to parse the output. ## 1. Start the service and put in background ```bash nohup python simple_score.py & # Note: added this to run in our CI pipeline, not needed for user. sleep 10 ``` ## 2. Test the service with request Executing the following command to send a request to execute a flow. ```bash curl -X POST http://127.0.0.1:5000/score --header "Content-Type: application/json" --data '{"flow_input": "some_flow_input", "node_input": "some_node_input"}' ``` Sample output of the request: ```json { "output": { "value": "some_flow_input" } } ``` Reference [here](./simple_score.py) for more.
promptflow/examples/tutorials/flow-deploy/create-service-with-flow/README.md/0
{ "file_path": "promptflow/examples/tutorials/flow-deploy/create-service-with-flow/README.md", "repo_id": "promptflow", "token_count": 327 }
23
<jupyter_start><jupyter_text>Use Flow as Component in Pipeline**Requirements** - In order to benefit from this tutorial, you will need:- A basic understanding of Machine Learning- An Azure account with an active subscription - [Create an account for free](https://azure.microsoft.com/free/?WT.mc_id=A261C142F)- An Azure ML workspace with computer cluster - [Configure workspace](../../configuration.ipynb)- A python environment- Installed Azure Machine Learning Python SDK v2 - [install instructions](../../../README.md) - check the getting started section**Learning Objectives** - By the end of this tutorial, you should be able to:- Connect to your AML workspace from the Python SDK- Create `Pipeline` with a component loaded from `flow.dag.yaml`**Motivations** - This notebook explains how to run a pipeline with distributed training component. 1. Connect to Azure Machine Learning WorkspaceThe [workspace](https://docs.microsoft.com/en-us/azure/machine-learning/concept-workspace) is the top-level resource for Azure Machine Learning, providing a centralized place to work with all the artifacts you create when you use Azure Machine Learning. In this section we will connect to the workspace in which the job will be run. 1.1 Import the required libraries<jupyter_code># import required libraries from azure.identity import DefaultAzureCredential, InteractiveBrowserCredential from azure.ai.ml import MLClient, load_component, Input from azure.ai.ml.constants import AssetTypes from azure.ai.ml.dsl import pipeline<jupyter_output><empty_output><jupyter_text>1.2 Configure credentialWe are using `DefaultAzureCredential` to get access to workspace. `DefaultAzureCredential` should be capable of handling most Azure SDK authentication scenarios. Reference for more available credentials if it does not work for you: [configure credential example](../../configuration.ipynb), [azure-identity reference doc](https://docs.microsoft.com/en-us/python/api/azure-identity/azure.identity?view=azure-python).<jupyter_code>try: credential = DefaultAzureCredential() # Check if given credential can get token successfully. credential.get_token("https://management.azure.com/.default") except Exception as ex: # Fall back to InteractiveBrowserCredential in case DefaultAzureCredential not work credential = InteractiveBrowserCredential()<jupyter_output><empty_output><jupyter_text>1.3 Get a handle to the workspaceWe use config file to connect to a workspace. The Azure ML workspace should be configured with computer cluster. [Check this notebook for configure a workspace](../../configuration.ipynb)<jupyter_code># Get a handle to workspace ml_client = MLClient.from_config(credential=credential) # Retrieve an already attached Azure Machine Learning Compute. cluster_name = "cpu-cluster" print(ml_client.compute.get(cluster_name))<jupyter_output><empty_output><jupyter_text>2. Load flow as componentWe suppose that there has already been a flow authored with Promptflow SDK/CLI/portal. Then we can load its flow dag yaml as a component like regular component specs.<jupyter_code>flow_component = load_component("../../flows/standard/web-classification/flow.dag.yaml")<jupyter_output><empty_output><jupyter_text>3. Pipeline job 3.1 Build pipeline<jupyter_code>data_input = Input( path="../../flows/standard/web-classification/data.jsonl", type=AssetTypes.URI_FILE ) @pipeline() def pipeline_func_with_flow(data): flow_node = flow_component( data=data, url="${data.url}", connections={ "summarize_text_content": { "connection": "azure_open_ai_connection", "deployment_name": "gpt-35-turbo", }, "classify_with_llm": { "connection": "azure_open_ai_connection", "deployment_name": "gpt-35-turbo", }, }, ) flow_node.compute = "cpu-cluster" # create pipeline instance pipeline_job = pipeline_func_with_flow(data=data_input)<jupyter_output><empty_output><jupyter_text>3.2 Submit pipeline job<jupyter_code># submit job to workspace pipeline_job = ml_client.jobs.create_or_update( pipeline_job, experiment_name="pipeline_samples" ) pipeline_job # Wait until the job completes ml_client.jobs.stream(pipeline_job.name)<jupyter_output><empty_output>
promptflow/examples/tutorials/flow-in-pipeline/pipeline.ipynb/0
{ "file_path": "promptflow/examples/tutorials/flow-in-pipeline/pipeline.ipynb", "repo_id": "promptflow", "token_count": 1361 }
24
name: release-env channels: - defaults - conda-forge dependencies: - python=3.8 - pip - pip: - setuptools - twine==4.0.0 - azure-storage-blob==12.16.0
promptflow/scripts/distributing/configs/promptflow-tools-release-env.yaml/0
{ "file_path": "promptflow/scripts/distributing/configs/promptflow-tools-release-env.yaml", "repo_id": "promptflow", "token_count": 81 }
25
<?xml version="1.0" encoding="UTF-8"?> <Wix xmlns="http://schemas.microsoft.com/wix/2006/wi"> <?define ProductVersion="$(env.CLI_VERSION)" ?> <?define ProductName = "promptflow" ?> <?define ProductDescription = "Command-line tools for prompt flow." ?> <?define ProductAuthor = "Microsoft Corporation" ?> <?define ProductResources = ".\resources\" ?> <?define UpgradeCode32 = "8b748161-e07a-48f2-8cdf-401480df4694" ?> <?if $(var.Platform) = "x64" ?> <?define PromptflowCliRegistryGuid = "0efd984f-9eec-425b-b230-a3994b69649a" ?> <?define PromptflowServiceGuid = "d4e99207-77be-4bdf-a430-b08632c5aa2b" ?> <?define PromptflowSystemPathGuid = "4c321045-d4e0-4446-bda4-8c19eaa42af1" ?> <?define ProgramFilesFolder = "ProgramFiles64Folder" ?> <?define RemovePromptflowFolderGuid = "ee843aa5-2b72-4958-be84-53dbac17efc7" ?> <?define UpgradeCode = "772aa21f-f8d4-4771-b910-1dbce3f1920c" ?> <?define Architecture = "64-bit" ?> <?elseif $(var.Platform) = "x86" ?> <?define PromptflowCliRegistryGuid = "7c2c792d-c395-44a1-8222-8e4ea006abb9" ?> <?define PromptflowServiceGuid = "f706b208-a15d-4ae7-9185-cfcc43656570" ?> <?define PromptflowSystemPathGuid = "9661fe6a-ff48-4e7c-a60d-fc34c2d06ef3" ?> <?define ProgramFilesFolder = "ProgramFilesFolder" ?> <?define RemovePromptflowFolderGuid = "588ca5e1-38c6-4659-8b38-762df7ed5b28" ?> <?define UpgradeCode = $(var.UpgradeCode32) ?> <?define Architecture = "32-bit" ?> <?else ?> <?error Unsupported platform "$(var.Platform)" ?> <?endif ?> <Product Id="*" Name="$(var.ProductName) ($(var.Architecture))" Language="1033" Version="$(var.ProductVersion)" Manufacturer="$(var.ProductAuthor)" UpgradeCode="$(var.UpgradeCode)"> <Package InstallerVersion="200" Compressed="yes" InstallScope="perUser" /> <Upgrade Id="$(var.UpgradeCode)"> <UpgradeVersion Property="WIX_UPGRADE_DETECTED" Maximum="$(var.ProductVersion)" IncludeMaximum="no" MigrateFeatures="yes" /> <UpgradeVersion Property="WIX_DOWNGRADE_DETECTED" Minimum="$(var.ProductVersion)" IncludeMinimum="no" OnlyDetect="yes" /> </Upgrade> <InstallExecuteSequence> <RemoveExistingProducts After="InstallExecute" /> </InstallExecuteSequence> <!-- New product architectures should upgrade the original x86 product - even of the same version. --> <?if $(var.UpgradeCode) != $(var.UpgradeCode32) ?> <Upgrade Id="$(var.UpgradeCode32)"> <UpgradeVersion Property="WIX_X86_UPGRADE_DETECTED" Maximum="$(var.ProductVersion)" IncludeMaximum="yes" MigrateFeatures="yes" /> <UpgradeVersion Property="WIX_X86_DOWNGRADE_DETECTED" Minimum="$(var.ProductVersion)" IncludeMinimum="no" OnlyDetect="yes" /> </Upgrade> <Condition Message="A newer version of $(var.ProductName) is already installed.">NOT (WIX_DOWNGRADE_DETECTED OR WIX_X86_DOWNGRADE_DETECTED)</Condition> <?else ?> <Condition Message="A newer version of $(var.ProductName) is already installed.">NOT WIX_DOWNGRADE_DETECTED</Condition> <?endif ?> <Media Id="1" Cabinet="promptflow.cab" EmbedCab="yes" CompressionLevel="high" /> <Icon Id="PromptflowIcon" SourceFile="$(var.ProductResources)logo32.ico" /> <Property Id="ARPPRODUCTICON" Value="PromptflowIcon" /> <Property Id="ARPHELPLINK" Value="https://microsoft.github.io/promptflow/how-to-guides/quick-start.html" /> <Property Id="ARPURLINFOABOUT" Value="https://microsoft.github.io/promptflow/how-to-guides/quick-start.html" /> <Property Id="ARPURLUPDATEINFO" Value="https://microsoft.github.io/promptflow/how-to-guides/quick-start.html" /> <Property Id="MSIFASTINSTALL" Value="7" /> <Property Id="ApplicationFolderName" Value="promptflow" /> <Property Id="WixAppFolder" Value="WixPerUserFolder" /> <Feature Id="ProductFeature" Title="promptflow" Level="1" AllowAdvertise="no"> <ComponentGroupRef Id="ProductComponents" /> </Feature> <!--Custom action to propagate path env variable change--> <CustomActionRef Id="WixBroadcastEnvironmentChange" /> <!-- User Interface --> <WixVariable Id="WixUILicenseRtf" Value="$(var.ProductResources)CLI_LICENSE.rtf"/> <UIRef Id="WixUI_ErrorProgressText"/> <!-- Show message to restart any terminals only if the PATH is changed --> <CustomAction Id="Set_WIXUI_EXITDIALOGOPTIONALTEXT" Property="WIXUI_EXITDIALOGOPTIONALTEXT" Value="Please close and reopen any active terminal window to use prompt flow." /> <InstallUISequence> <Custom Action="Set_WIXUI_EXITDIALOGOPTIONALTEXT" After="CostFinalize">NOT Installed AND NOT WIX_UPGRADE_DETECTED</Custom> </InstallUISequence> <CustomAction Id="StartPromptFlowService" Directory="APPLICATIONFOLDER" Execute="deferred" ExeCommand="wscript.exe promptflow_service.vbs" Return="asyncNoWait" /> <InstallExecuteSequence> <Custom Action="StartPromptFlowService" Before="InstallFinalize">NOT Installed OR WIX_UPGRADE_DETECTED</Custom> </InstallExecuteSequence> </Product> <Fragment> <Directory Id="TARGETDIR" Name="SourceDir"> <Directory Id="$(var.ProgramFilesFolder)"> <Directory Id="APPLICATIONFOLDER" Name="promptflow" /> </Directory> <Directory Id="StartupFolder" /> </Directory> <UIRef Id="WixUI_Advanced" /> </Fragment> <Fragment> <ComponentGroup Id="PromptflowCliSettingsGroup"> <Component Id="RemovePromptflowFolder" Directory="APPLICATIONFOLDER" Guid="$(var.RemovePromptflowFolderGuid)"> <RemoveFolder Id="APPLICATIONFOLDER" On="uninstall" /> </Component> <Component Id="PromptflowSystemPath" Directory="APPLICATIONFOLDER" Guid="$(var.PromptflowSystemPathGuid)"> <Environment Id="PromptflowAddedToPATH" Name="PATH" Value="[APPLICATIONFOLDER]" Permanent="no" Part="first" Action="set" System="no" /> <CreateFolder /> </Component> <Component Id="promptflow_service.vbs" Directory="APPLICATIONFOLDER" Guid="$(var.PromptflowServiceGuid)"> <File Id="promptflow_service.vbs" Source="scripts\promptflow_service.vbs" KeyPath="yes" Checksum="yes"/> </Component> <Component Id="ApplicationShortcut" Directory="StartupFolder" Guid="$(var.PromptflowCliRegistryGuid)"> <Shortcut Id="ApplicationStartMenuShortcut" Name="Prompt flow service" Description="Prompt Flow Service" Target="[#promptflow_service.vbs]" WorkingDirectory="APPLICATIONFOLDER" Advertise="no"> <Icon Id="PromptflowServiceIcon" SourceFile="$(var.ProductResources)logo32.ico" /> </Shortcut> <RemoveFile Id="CleanUpShortCut" Directory="StartupFolder" Name="Prompt flow service" On="uninstall"/> <RegistryKey Root="HKCU" Key="Software\Microsoft\$(var.ProductName)" Action="createAndRemoveOnUninstall"> <RegistryValue Name="installed" Type="integer" Value="1" /> <RegistryValue Name="version" Type="string" Value="$(var.ProductVersion)" KeyPath="yes"/> </RegistryKey> </Component> </ComponentGroup> <ComponentGroup Id="ProductComponents"> <ComponentGroupRef Id="PromptflowCliComponentGroup"/> <ComponentGroupRef Id="PromptflowCliSettingsGroup"/> </ComponentGroup> </Fragment> </Wix>
promptflow/scripts/installer/windows/product.wxs/0
{ "file_path": "promptflow/scripts/installer/windows/product.wxs", "repo_id": "promptflow", "token_count": 3455 }
26
FROM mcr.microsoft.com/azureml/promptflow/promptflow-runtime:latest COPY ./requirements.txt ./ RUN pip install --no-cache-dir -r requirements.txt
promptflow/scripts/runtime_mgmt/runtime-env/context/Dockerfile/0
{ "file_path": "promptflow/scripts/runtime_mgmt/runtime-env/context/Dockerfile", "repo_id": "promptflow", "token_count": 51 }
27
{{ package_name }}.tools.{{ tool_name }}.{{ function_name }}: function: {{ function_name }} inputs: connection: type: - CustomConnection input_text: type: - string module: {{ package_name }}.tools.{{ tool_name }} name: Hello World Tool description: This is hello world tool type: python
promptflow/scripts/tool/templates/tool.yaml.j2/0
{ "file_path": "promptflow/scripts/tool/templates/tool.yaml.j2", "repo_id": "promptflow", "token_count": 119 }
28
# Avoid circular dependencies: Use import 'from promptflow._internal' instead of 'from promptflow' # since the code here is in promptflow namespace as well from promptflow._internal import tool from promptflow.tools.common import render_jinja_template @tool def render_template_jinja2(template: str, **kwargs) -> str: return render_jinja_template(template, trim_blocks=True, keep_trailing_newline=True, **kwargs)
promptflow/src/promptflow-tools/promptflow/tools/template_rendering.py/0
{ "file_path": "promptflow/src/promptflow-tools/promptflow/tools/template_rendering.py", "repo_id": "promptflow", "token_count": 117 }
29
import pytest from promptflow.contracts.multimedia import Image from promptflow.tools.common import ChatAPIInvalidFunctions, validate_functions, process_function_call, \ parse_chat, find_referenced_image_set, preprocess_template_string, convert_to_chat_list, ChatInputList class TestCommon: @pytest.mark.parametrize( "functions, error_message", [ ([], "functions cannot be an empty list"), (["str"], "is not a dict. Here is a valid function example"), ([{"name": "func1"}], "does not have 'parameters' property"), ([{"name": "func1", "parameters": "param1"}], "should be described as a JSON Schema object"), ([{"name": "func1", "parameters": {"type": "int", "properties": {}}}], "parameters 'type' should be 'object'"), ([{"name": "func1", "parameters": {"type": "object", "properties": []}}], "should be described as a JSON Schema object"), ], ) def test_chat_api_invalid_functions(self, functions, error_message): error_codes = "UserError/ToolValidationError/ChatAPIInvalidFunctions" with pytest.raises(ChatAPIInvalidFunctions) as exc_info: validate_functions(functions) assert error_message in exc_info.value.message assert exc_info.value.error_codes == error_codes.split("/") @pytest.mark.parametrize( "function_call, error_message", [ ("123", "function_call parameter '123' must be a dict"), ({"name1": "get_current_weather"}, 'function_call parameter {"name1": "get_current_weather"} must ' 'contain "name" field'), ], ) def test_chat_api_invalid_function_call(self, function_call, error_message): error_codes = "UserError/ToolValidationError/ChatAPIInvalidFunctions" with pytest.raises(ChatAPIInvalidFunctions) as exc_info: process_function_call(function_call) assert error_message in exc_info.value.message assert exc_info.value.error_codes == error_codes.split("/") @pytest.mark.parametrize( "chat_str, images, expected_result", [ ("system:\nthis is my function:\ndef hello", None, [ {'role': 'system', 'content': 'this is my function:\ndef hello'}]), ("#system:\nthis is my ##function:\ndef hello", None, [ {'role': 'system', 'content': 'this is my ##function:\ndef hello'}]), (" \n system:\nthis is my function:\ndef hello", None, [ {'role': 'system', 'content': 'this is my function:\ndef hello'}]), (" \n # system:\nthis is my function:\ndef hello", None, [ {'role': 'system', 'content': 'this is my function:\ndef hello'}]), ("user:\nhi\nassistant:\nanswer\nfunction:\nname:\nn\ncontent:\nc", None, [ {'role': 'user', 'content': 'hi'}, {'role': 'assistant', 'content': 'answer'}, {'role': 'function', 'name': 'n', 'content': 'c'}]), ("#user :\nhi\n #assistant:\nanswer\n# function:\n##name:\nn\n##content:\nc", None, [ {'role': 'user', 'content': 'hi'}, {'role': 'assistant', 'content': 'answer'}, {'role': 'function', 'name': 'n', 'content': 'c'}]), ("\nsystem:\nfirst\n\nsystem:\nsecond", None, [ {'role': 'system', 'content': 'first'}, {'role': 'system', 'content': 'second'}]), ("\n#system:\nfirst\n\n#system:\nsecond", None, [ {'role': 'system', 'content': 'first'}, {'role': 'system', 'content': 'second'}]), ("\n#system:\nfirst\n#assistant:\n#user:\nsecond", None, [ {'role': 'system', 'content': 'first'}, {'role': 'assistant', 'content': ''}, {'role': 'user', 'content': 'second'} ]), # todo: enable this test case after we support image_url officially # ("#user:\ntell me about the images\nImage(1edf82c2)\nImage(9b65b0f4)", [ # Image("image1".encode()), Image("image2".encode(), "image/png", "https://image_url")], [ # {'role': 'user', 'content': [ # {'type': 'text', 'text': 'tell me about the images'}, # {'type': 'image_url', 'image_url': {'url': ''}}, # {'type': 'image_url', 'image_url': 'https://image_url'}]}, # ]) ] ) def test_success_parse_role_prompt(self, chat_str, images, expected_result): actual_result = parse_chat(chat_str, images) assert actual_result == expected_result @pytest.mark.parametrize( "chat_str, expected_result", [ ("\n#system:\n##name:\nAI \n content:\nfirst\n\n#user:\nsecond", [ {'role': 'system', 'name': 'AI', 'content': 'first'}, {'role': 'user', 'content': 'second'}]), ("\nuser:\nname:\n\nperson\n content:\n", [ {'role': 'user', 'name': 'person', 'content': ''}]), ("\nsystem:\nname:\n\n content:\nfirst", [ {'role': 'system', 'content': 'name:\n\n content:\nfirst'}]), ("\nsystem:\nname:\n\n", [ {'role': 'system', 'content': 'name:'}]) ] ) def test_parse_chat_with_name_in_role_prompt(self, chat_str, expected_result): actual_result = parse_chat(chat_str) assert actual_result == expected_result @pytest.mark.parametrize( "kwargs, expected_result", [ ({}, set()), ({"image_1": Image("image1".encode()), "image_2": Image("image2".encode()), "t1": "text"}, { Image("image1".encode()), Image("image2".encode()) }), ({"images": [Image("image1".encode()), Image("image2".encode())]}, { Image("image1".encode()), Image("image2".encode()) }), ({"image_1": Image("image1".encode()), "image_2": Image("image1".encode())}, { Image("image1".encode()) }), ({"images": {"image_1": Image("image1".encode()), "image_2": Image("image2".encode())}}, { Image("image1".encode()), Image("image2".encode()) }) ] ) def test_find_referenced_image_set(self, kwargs, expected_result): actual_result = find_referenced_image_set(kwargs) assert actual_result == expected_result @pytest.mark.parametrize( "input_string, expected_output", [ ("![image]({{img1}})", "\n{{img1}}\n"), ("![image]({{img1}})![image]({{img2}})", "\n{{img1}}\n\n{{img2}}\n"), ("No image here", "No image here"), ("![image]({{img1}}) Some text ![image]({{img2}})", "\n{{img1}}\n Some text \n{{img2}}\n"), ], ) def test_preprocess_template_string(self, input_string, expected_output): actual_result = preprocess_template_string(input_string) assert actual_result == expected_output @pytest.mark.parametrize( "input_data, expected_output", [ ({}, {}), ({"key": "value"}, {"key": "value"}), (["item1", "item2"], ChatInputList(["item1", "item2"])), ({"key": ["item1", "item2"]}, {"key": ChatInputList(["item1", "item2"])}), (["item1", ["nested_item1", "nested_item2"]], ChatInputList(["item1", ChatInputList(["nested_item1", "nested_item2"])])), ], ) def test_convert_to_chat_list(self, input_data, expected_output): actual_result = convert_to_chat_list(input_data) assert actual_result == expected_output
promptflow/src/promptflow-tools/tests/test_common.py/0
{ "file_path": "promptflow/src/promptflow-tools/tests/test_common.py", "repo_id": "promptflow", "token_count": 3626 }
30
include promptflow/azure/resources/* include promptflow/_sdk/_serving/static/* recursive-include promptflow/_cli/data * recursive-include promptflow/_sdk/data *
promptflow/src/promptflow/MANIFEST.in/0
{ "file_path": "promptflow/src/promptflow/MANIFEST.in", "repo_id": "promptflow", "token_count": 47 }
31
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import argparse import json from typing import Callable, Dict, List, Optional, Tuple from promptflow._cli._params import ( add_param_all_results, add_param_archived_only, add_param_columns_mapping, add_param_connections, add_param_environment_variables, add_param_include_archived, add_param_max_results, add_param_output_format, add_param_run_name, add_param_set, add_param_yes, add_parser_build, base_params, ) from promptflow._cli._utils import ( _output_result_list_with_format, activate_action, confirm, exception_handler, list_of_dict_to_dict, list_of_dict_to_nested_dict, pretty_print_dataframe_as_table, ) from promptflow._sdk._constants import MAX_SHOW_DETAILS_RESULTS, get_list_view_type from promptflow._sdk._load_functions import load_run from promptflow._sdk._pf_client import PFClient from promptflow._sdk._run_functions import _create_run from promptflow._sdk._utils import safe_parse_object_list from promptflow._sdk.entities import Run from promptflow.exceptions import UserErrorException def add_run_parser(subparsers): run_parser = subparsers.add_parser("run", description="A CLI tool to manage runs for prompt flow.", help="pf run") subparsers = run_parser.add_subparsers() add_run_create(subparsers) # add_run_cancel(subparsers) add_run_update(subparsers) add_run_stream(subparsers) add_run_list(subparsers) add_run_show(subparsers) add_run_show_details(subparsers) add_run_show_metrics(subparsers) add_run_visualize(subparsers) add_run_archive(subparsers) add_run_restore(subparsers) add_run_delete(subparsers) add_parser_build(subparsers, "run") run_parser.set_defaults(action="run") def add_run_create_common(subparsers, add_param_list, epilog: Optional[str] = None): # pf run create --file batch_run.yaml [--stream] add_param_file = lambda parser: parser.add_argument( # noqa: E731 "-f", "--file", dest="file", type=str, help="Local path to the YAML file containing the run definition. " "Reference https://azuremlschemas.azureedge.net/promptflow/latest/Run.schema.json for the schema.", ) add_param_stream = lambda parser: parser.add_argument( # noqa: E731 "-s", "--stream", action="store_true", default=False, help="Indicates whether to stream the run's logs to the console.", ) add_param_flow = lambda parser: parser.add_argument( # noqa: E731 "--flow", type=str, help="Local path to the flow directory." "If --file is provided, this path should be relative path to the file.", ) add_param_variant = lambda parser: parser.add_argument( # noqa: E731 "--variant", type=str, help="Node & variant name in format of ${node_name.variant_name}." ) add_param_run = lambda parser: parser.add_argument( # noqa: E731 "--run", type=str, help="Referenced flow run name referenced by current run. " "For example, you can run an evaluation flow against an existing run.", ) add_param_name = lambda parser: parser.add_argument("-n", "--name", type=str, help="Name of the run.") # noqa: E731 add_params = [ add_param_file, add_param_stream, add_param_flow, add_param_variant, add_param_run, add_param_name, add_param_columns_mapping, # add env var overwrite add_param_environment_variables, add_param_connections, add_param_set, ] + base_params add_params.extend(add_param_list) create_parser = activate_action( name="create", description=None, epilog=epilog or "pf run create --file <local-path-to-yaml> [--stream]", add_params=add_params, subparsers=subparsers, help_message="Create a run.", action_param_name="sub_action", ) return create_parser def add_run_create(subparsers): epilog = """ Examples: # Create a run with YAML file: pf run create -f <yaml-filename> # Create a run with YAML file and replace another data in the YAML file: pf run create -f <yaml-filename> --data <path-to-new-data-file-relative-to-yaml-file> # Create a run from flow directory and reference a run: pf run create --flow <path-to-flow-directory> --data <path-to-data-file> --column-mapping groundtruth='${data.answer}' prediction='${run.outputs.category}' --run <run-name> --variant "${summarize_text_content.variant_0}" --stream # noqa: E501 # Create a run from an existing run record folder pf run create --source <path-to-run-folder> """ # data for pf has different help doc than pfazure def add_param_data(parser): parser.add_argument( "--data", type=str, help="Local path to the data file." "If --file is provided, this path should be relative path to the file.", ) def add_param_source(parser): parser.add_argument("--source", type=str, help="Local path to the existing run record folder.") add_run_create_common(subparsers, [add_param_data, add_param_source], epilog=epilog) def add_run_cancel(subparsers): epilog = """ Example: # Cancel a run: pf run cancel --name <name> """ add_params = [add_param_run_name] + base_params activate_action( name="cancel", description=None, epilog=epilog, add_params=add_params, subparsers=subparsers, help_message="Cancel a run.", action_param_name="sub_action", ) def add_run_update(subparsers): epilog = """ Example: # Update a run metadata: pf run update --name <name> --set display_name="<display-name>" description="<description>" tags.key="<value>" """ add_params = [ add_param_run_name, add_param_set, ] + base_params activate_action( name="update", description=None, epilog=epilog, add_params=add_params, subparsers=subparsers, help_message="Update a run metadata, including display name, description and tags.", action_param_name="sub_action", ) def add_run_stream(subparsers): epilog = """ Example: # Stream run logs: pf run stream --name <name> """ add_params = [add_param_run_name] + base_params activate_action( name="stream", description=None, epilog=epilog, add_params=add_params, subparsers=subparsers, help_message="Stream run logs to the console.", action_param_name="sub_action", ) def add_run_list(subparsers): epilog = """ Examples: # List runs status: pf run list # List most recent 10 runs status: pf run list --max-results 10 # List active and archived runs status: pf run list --include-archived # List archived runs status only: pf run list --archived-only # List all runs status: pf run list --all-results # List all runs status as table: pf run list --output table """ add_params = [ add_param_max_results, add_param_all_results, add_param_archived_only, add_param_include_archived, add_param_output_format, ] + base_params activate_action( name="list", description=None, epilog=epilog, add_params=add_params, subparsers=subparsers, help_message="List runs.", action_param_name="sub_action", ) def add_run_show(subparsers): epilog = """ Example: # Show the status of a run: pf run show --name <name> """ add_params = [add_param_run_name] + base_params activate_action( name="show", description=None, epilog=epilog, add_params=add_params, subparsers=subparsers, help_message="Show details for a run.", action_param_name="sub_action", ) def add_run_show_details(subparsers): epilog = """ Example: # View input(s) and output(s) of a run: pf run show-details --name <name> """ add_param_max_results = lambda parser: parser.add_argument( # noqa: E731 "-r", "--max-results", dest="max_results", type=int, default=MAX_SHOW_DETAILS_RESULTS, help=f"Number of lines to show. Default is {MAX_SHOW_DETAILS_RESULTS}.", ) add_params = [add_param_max_results, add_param_run_name, add_param_all_results] + base_params activate_action( name="show-details", description=None, epilog=epilog, add_params=add_params, subparsers=subparsers, help_message="Preview a run's input(s) and output(s).", action_param_name="sub_action", ) def add_run_show_metrics(subparsers): epilog = """ Example: # View metrics of a run: pf run show-metrics --name <name> """ add_params = [add_param_run_name] + base_params activate_action( name="show-metrics", description=None, epilog=epilog, add_params=add_params, subparsers=subparsers, help_message="Print run metrics to the console.", action_param_name="sub_action", ) def add_run_visualize(subparsers): epilog = """ Examples: # Visualize a run: pf run visualize -n <name> # Visualize runs: pf run visualize --names "<name1,name2>" pf run visualize --names "<name1>, <name2>" """ add_param_name = lambda parser: parser.add_argument( # noqa: E731 "-n", "--names", type=str, required=True, help="Name of the runs, comma separated." ) add_param_html_path = lambda parser: parser.add_argument( # noqa: E731 "--html-path", type=str, default=None, help=argparse.SUPPRESS ) add_params = [add_param_name, add_param_html_path] + base_params activate_action( name="visualize", description=None, epilog=epilog, add_params=add_params, subparsers=subparsers, help_message="Visualize a run.", action_param_name="sub_action", ) def add_run_delete(subparsers): epilog = """ Example: # Caution: pf run delete is irreversible. # This operation will delete the run permanently from your local disk. # Both run entity and output data will be deleted. # Delete a run: pf run delete -n "<name>" """ add_params = [add_param_run_name, add_param_yes] + base_params activate_action( name="delete", description=None, epilog=epilog, add_params=add_params, subparsers=subparsers, help_message="Delete a run irreversible.", action_param_name="sub_action", ) def add_run_archive(subparsers): epilog = """ Example: # Archive a run: pf run archive --name <name> """ add_params = [add_param_run_name] + base_params activate_action( name="archive", description=None, epilog=epilog, add_params=add_params, subparsers=subparsers, help_message="Archive a run.", action_param_name="sub_action", ) def add_run_restore(subparsers): epilog = """ Example: # Restore an archived run: pf run restore --name <name> """ add_params = [add_param_run_name] + base_params activate_action( name="restore", description=None, epilog=epilog, add_params=add_params, subparsers=subparsers, help_message="Restore an archived run.", action_param_name="sub_action", ) def dispatch_run_commands(args: argparse.Namespace): if args.sub_action == "create": create_run(create_func=_create_run, args=args) elif args.sub_action == "update": update_run(name=args.name, params=args.params_override) elif args.sub_action == "stream": stream_run(name=args.name) elif args.sub_action == "list": list_runs( max_results=args.max_results, all_results=args.all_results, archived_only=args.archived_only, include_archived=args.include_archived, output=args.output, ) elif args.sub_action == "show": show_run(name=args.name) elif args.sub_action == "show-details": show_run_details(name=args.name, max_results=args.max_results, all_results=args.all_results) elif args.sub_action == "show-metrics": show_run_metrics(name=args.name) elif args.sub_action == "visualize": visualize_run(names=args.names, html_path=args.html_path) elif args.sub_action == "archive": archive_run(name=args.name) elif args.sub_action == "restore": restore_run(name=args.name) elif args.sub_action == "export": export_run(args) elif args.sub_action == "delete": delete_run(args.name, args.yes) else: raise ValueError(f"Unrecognized command: {args.sub_action}") def _parse_metadata_args(params: List[Dict[str, str]]) -> Tuple[Optional[str], Optional[str], Optional[Dict[str, str]]]: display_name, description, tags = None, None, {} for param in params: for k, v in param.items(): if k == "display_name": if display_name is not None: raise ValueError("Duplicate argument: 'display_name'.") display_name = v elif k == "description": if description is not None: raise ValueError("Duplicate argument: 'description'.") description = v elif k.startswith("tags."): tag_key = k.replace("tags.", "") if tag_key in tags: raise ValueError(f"Duplicate argument: 'tags.{tag_key}'.") tags[tag_key] = v if len(tags) == 0: tags = None return display_name, description, tags @exception_handler("Update run") def update_run(name: str, params: List[Dict[str, str]]) -> None: # params_override can have multiple items when user specifies with # `--set key1=value1 key2=value` # so we need to merge them first. display_name, description, tags = _parse_metadata_args(params) pf_client = PFClient() run = pf_client.runs.update( name=name, display_name=display_name, description=description, tags=tags, ) print(json.dumps(run._to_dict(), indent=4)) @exception_handler("Stream run") def stream_run(name: str) -> None: pf_client = PFClient() run = pf_client.runs.stream(name=name) print(json.dumps(run._to_dict(), indent=4)) @exception_handler("List runs") def list_runs( max_results: int, all_results: bool, archived_only: bool, include_archived: bool, output, ): pf_client = PFClient() # aligned behaviour with v2 SDK, all_results will overwrite max_results if all_results: max_results = None runs = pf_client.runs.list( max_results=max_results, list_view_type=get_list_view_type(archived_only=archived_only, include_archived=include_archived), ) # hide additional info and debug info in run list for better user experience parser = lambda run: run._to_dict(exclude_additional_info=True, exclude_debug_info=True) # noqa: E731 json_list = safe_parse_object_list( obj_list=runs, parser=parser, message_generator=lambda x: f"Error parsing run {x.name!r}, skipped.", ) _output_result_list_with_format(result_list=json_list, output_format=output) return runs @exception_handler("Show run") def show_run(name: str) -> None: pf_client = PFClient() run = pf_client.runs.get(name=name) print(json.dumps(run._to_dict(), indent=4)) @exception_handler("Show run details") def show_run_details(name: str, max_results: int, all_results: bool) -> None: pf_client = PFClient() details = pf_client.runs.get_details(name=name, max_results=max_results, all_results=all_results) pretty_print_dataframe_as_table(details) @exception_handler("Show run metrics") def show_run_metrics(name: str) -> None: pf_client = PFClient() metrics = pf_client.runs.get_metrics(name=name) print(json.dumps(metrics, indent=4)) @exception_handler("Visualize run") def visualize_run(names: str, html_path: Optional[str] = None) -> None: run_names = [name.strip() for name in names.split(",")] pf_client = PFClient() pf_client.runs.visualize(run_names, html_path=html_path) @exception_handler("Archive run") def archive_run(name: str) -> None: pf_client = PFClient() run = pf_client.runs.archive(name=name) print(json.dumps(run._to_dict(), indent=4)) @exception_handler("Restore run") def restore_run(name: str) -> None: pf_client = PFClient() run = pf_client.runs.restore(name=name) print(json.dumps(run._to_dict(), indent=4)) def _parse_kv_pair(kv_pairs: str) -> Dict[str, str]: result = {} for kv_pairs in kv_pairs.split(","): kv_pair = kv_pairs.strip() if "=" not in kv_pair: raise ValueError(f"Invalid key-value pair: {kv_pair}") key, value = kv_pair.split("=", 1) result[key] = value return result @exception_handler("Create run") def create_run(create_func: Callable, args): file = args.file flow = args.flow run_source = getattr(args, "source", None) # source is only available for pf args, not pfazure. data = args.data column_mapping = args.column_mapping variant = args.variant name = args.name run = args.run stream = args.stream environment_variables = args.environment_variables connections = args.connections params_override = args.params_override or [] if environment_variables: environment_variables = list_of_dict_to_dict(environment_variables) if connections: connections = list_of_dict_to_nested_dict(connections) if column_mapping: column_mapping = list_of_dict_to_dict(column_mapping) if file: for param_key, param in { "name": name, "flow": flow, "variant": variant, "data": data, "column_mapping": column_mapping, "run": run, "environment_variables": environment_variables, "connections": connections, }.items(): if not param: continue params_override.append({param_key: param}) run = load_run(source=file, params_override=params_override) elif flow: run_data = { "name": name, "flow": flow, "data": data, "column_mapping": column_mapping, "run": run, "variant": variant, "environment_variables": environment_variables, "connections": connections, } # remove empty fields run_data = {k: v for k, v in run_data.items() if v is not None} run = Run._load(data=run_data, params_override=params_override) elif run_source: display_name, description, tags = _parse_metadata_args(params_override) processed_params = { "display_name": display_name, "description": description, "tags": tags, } run = Run._load_from_source(source=run_source, params_override=processed_params) else: raise UserErrorException("To create a run, one of [file, flow, source] must be specified.") run = create_func(run=run, stream=stream) if stream: print("\n") # change new line to show run info print(json.dumps(run._to_dict(), indent=4)) @exception_handler("Delete run") def delete_run(name: str, skip_confirm: bool = False) -> None: if confirm("Are you sure to delete run irreversibly?", skip_confirm): pf_client = PFClient() pf_client.runs.delete(name=name) else: print("The delete operation was canceled.") def export_run(args): raise NotImplementedError()
promptflow/src/promptflow/promptflow/_cli/_pf/_run.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_cli/_pf/_run.py", "repo_id": "promptflow", "token_count": 8431 }
32
$schema: https://azuremlschemas.azureedge.net/promptflow/latest/AzureOpenAIConnection.schema.json name: {{ connection }} type: azure_open_ai api_key: "<user-input>" api_base: "<user-input>" api_type: "azure"
promptflow/src/promptflow/promptflow/_cli/data/chat_flow/template/azure_openai.yaml.jinja2/0
{ "file_path": "promptflow/src/promptflow/promptflow/_cli/data/chat_flow/template/azure_openai.yaml.jinja2", "repo_id": "promptflow", "token_count": 83 }
33
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import inspect from typing import Callable class MetricLoggerManager: _instance = None def __init__(self): self._metric_loggers = [] @staticmethod def get_instance() -> "MetricLoggerManager": if MetricLoggerManager._instance is None: MetricLoggerManager._instance = MetricLoggerManager() return MetricLoggerManager._instance def log_metric(self, key, value, variant_id=None): for logger in self._metric_loggers: if len(inspect.signature(logger).parameters) == 2: logger(key, value) # If the logger only accepts two parameters, we don't pass variant_id else: logger(key, value, variant_id) def add_metric_logger(self, logger_func: Callable): existing_logger = next((logger for logger in self._metric_loggers if logger is logger_func), None) if existing_logger: return if not callable(logger_func): return sign = inspect.signature(logger_func) # We accept two kinds of metric loggers: # def log_metric(k, v) # def log_metric(k, v, variant_id) if len(sign.parameters) not in [2, 3]: return self._metric_loggers.append(logger_func) def remove_metric_logger(self, logger_func: Callable): self._metric_loggers.remove(logger_func) def log_metric(key, value, variant_id=None): """Log a metric for current promptflow run. :param key: Metric name. :type key: str :param value: Metric value. :type value: float :param variant_id: Variant id for the metric. :type variant_id: str """ MetricLoggerManager.get_instance().log_metric(key, value, variant_id) def add_metric_logger(logger_func: Callable): MetricLoggerManager.get_instance().add_metric_logger(logger_func) def remove_metric_logger(logger_func: Callable): MetricLoggerManager.get_instance().remove_metric_logger(logger_func)
promptflow/src/promptflow/promptflow/_core/metric_logger.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_core/metric_logger.py", "repo_id": "promptflow", "token_count": 838 }
34
# flake8: noqa """Put some imports here for mlflow promptflow flavor usage. DO NOT change the module names in "all" list. If the interface has changed in source code, wrap it here and keep original function/module names the same as before, otherwise mldesigner will be broken by this change. """ from promptflow._sdk._constants import DAG_FILE_NAME from promptflow._sdk._serving.flow_invoker import FlowInvoker from promptflow._sdk._submitter import remove_additional_includes from promptflow._sdk._utils import _merge_local_code_and_additional_includes from promptflow._sdk.entities._flow import Flow __all__ = [ "Flow", "FlowInvoker", "remove_additional_includes", "_merge_local_code_and_additional_includes", "DAG_FILE_NAME", ]
promptflow/src/promptflow/promptflow/_sdk/_mlflow.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/_mlflow.py", "repo_id": "promptflow", "token_count": 236 }
35
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import logging from logging.handlers import RotatingFileHandler from flask import Blueprint, Flask, jsonify from werkzeug.exceptions import HTTPException from promptflow._sdk._constants import HOME_PROMPT_FLOW_DIR, PF_SERVICE_LOG_FILE from promptflow._sdk._service import Api from promptflow._sdk._service.apis.connection import api as connection_api from promptflow._sdk._service.apis.run import api as run_api from promptflow._sdk._service.apis.telemetry import api as telemetry_api from promptflow._sdk._service.utils.utils import FormattedException from promptflow._sdk._utils import get_promptflow_sdk_version, read_write_by_user def heartbeat(): response = {"promptflow": get_promptflow_sdk_version()} return jsonify(response) def create_app(): app = Flask(__name__) app.add_url_rule("/heartbeat", view_func=heartbeat) with app.app_context(): api_v1 = Blueprint("Prompt Flow Service", __name__, url_prefix="/v1.0") # Registers resources from namespace for current instance of api api = Api(api_v1, title="Prompt Flow Service", version="1.0") api.add_namespace(connection_api) api.add_namespace(run_api) api.add_namespace(telemetry_api) app.register_blueprint(api_v1) # Disable flask-restx set X-Fields in header. https://flask-restx.readthedocs.io/en/latest/mask.html#usage app.config["RESTX_MASK_SWAGGER"] = False # Enable log app.logger.setLevel(logging.INFO) log_file = HOME_PROMPT_FLOW_DIR / PF_SERVICE_LOG_FILE log_file.touch(mode=read_write_by_user(), exist_ok=True) # Create a rotating file handler with a max size of 1 MB and keeping up to 1 backup files handler = RotatingFileHandler(filename=log_file, maxBytes=1_000_000, backupCount=1) formatter = logging.Formatter("[%(asctime)s][%(name)s][%(levelname)s] - %(message)s") handler.setFormatter(formatter) app.logger.addHandler(handler) # Basic error handler @api.errorhandler(Exception) def handle_exception(e): """When any error occurs on the server, return a formatted error message.""" from dataclasses import asdict if isinstance(e, HTTPException): return asdict(FormattedException(e), dict_factory=lambda x: {k: v for (k, v) in x if v}), e.code app.logger.error(e, exc_info=True, stack_info=True) formatted_exception = FormattedException(e) return ( asdict(formatted_exception, dict_factory=lambda x: {k: v for (k, v) in x if v}), formatted_exception.status_code, ) return app, api
promptflow/src/promptflow/promptflow/_sdk/_service/app.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/_service/app.py", "repo_id": "promptflow", "token_count": 1100 }
36
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- from enum import Enum from promptflow._sdk._serving.extension.default_extension import AppExtension class ExtensionType(Enum): """Extension type used to identify which extension to load in serving app.""" Default = "local" AzureML = "azureml" class ExtensionFactory: """ExtensionFactory is used to create extension based on extension type.""" @staticmethod def create_extension(logger, **kwargs) -> AppExtension: """Create extension based on extension type.""" extension_type_str = kwargs.get("extension_type", ExtensionType.Default.value) if not extension_type_str: extension_type_str = ExtensionType.Default.value extension_type = ExtensionType(extension_type_str.lower()) if extension_type == ExtensionType.AzureML: from promptflow._sdk._serving.extension.azureml_extension import AzureMLExtension return AzureMLExtension(logger=logger, **kwargs) else: from promptflow._sdk._serving.extension.default_extension import DefaultAppExtension return DefaultAppExtension(logger=logger, **kwargs)
promptflow/src/promptflow/promptflow/_sdk/_serving/extension/extension_factory.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/_serving/extension/extension_factory.py", "repo_id": "promptflow", "token_count": 424 }
37
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- # this file is a middle layer between the local SDK and executor. import contextlib import logging from pathlib import Path from types import GeneratorType from typing import Any, Mapping, Union from promptflow._internal import ConnectionManager from promptflow._sdk._constants import PROMPT_FLOW_DIR_NAME from promptflow._sdk._utils import dump_flow_result, parse_variant from promptflow._sdk.entities._flow import FlowContext, ProtectedFlow from promptflow._sdk.operations._local_storage_operations import LoggerOperations from promptflow._utils.context_utils import _change_working_dir from promptflow._utils.exception_utils import ErrorResponse from promptflow._utils.multimedia_utils import persist_multimedia_data from promptflow.batch._csharp_executor_proxy import CSharpExecutorProxy from promptflow.contracts.flow import Flow as ExecutableFlow from promptflow.contracts.run_info import Status from promptflow.exceptions import UserErrorException from promptflow.executor._result import LineResult from promptflow.storage._run_storage import DefaultRunStorage from ..._utils.async_utils import async_run_allowing_running_loop from ..._utils.logger_utils import get_cli_sdk_logger from ..entities._eager_flow import EagerFlow from .utils import ( SubmitterHelper, print_chat_output, resolve_generator, show_node_log_and_output, variant_overwrite_context, ) logger = get_cli_sdk_logger() class TestSubmitter: def __init__(self, flow: Union[ProtectedFlow, EagerFlow], flow_context: FlowContext, client=None): self.flow = flow self.entry = flow.entry if isinstance(flow, EagerFlow) else None self._origin_flow = flow self._dataplane_flow = None self.flow_context = flow_context # TODO: remove this self._variant = flow_context.variant from .._pf_client import PFClient self._client = client if client else PFClient() @property def dataplane_flow(self): if not self._dataplane_flow: self._dataplane_flow = ExecutableFlow.from_yaml(flow_file=self.flow.path, working_dir=self.flow.code) return self._dataplane_flow @contextlib.contextmanager def init(self): if isinstance(self.flow, EagerFlow): flow_content_manager = self._eager_flow_init else: flow_content_manager = self._dag_flow_init with flow_content_manager() as submitter: yield submitter @contextlib.contextmanager def _eager_flow_init(self): # no variant overwrite for eager flow # no connection overwrite for eager flow # TODO(2897147): support additional includes with _change_working_dir(self.flow.code): self._tuning_node = None self._node_variant = None yield self self._dataplane_flow = None @contextlib.contextmanager def _dag_flow_init(self): if self.flow_context.variant: tuning_node, node_variant = parse_variant(self.flow_context.variant) else: tuning_node, node_variant = None, None with variant_overwrite_context( flow_path=self._origin_flow.code, tuning_node=tuning_node, variant=node_variant, connections=self.flow_context.connections, overrides=self.flow_context.overrides, ) as temp_flow: # TODO execute flow test in a separate process. with _change_working_dir(temp_flow.code): self.flow = temp_flow self._tuning_node = tuning_node self._node_variant = node_variant yield self self.flow = self._origin_flow self._dataplane_flow = None self._tuning_node = None self._node_variant = None def resolve_data( self, node_name: str = None, inputs: dict = None, chat_history_name: str = None, dataplane_flow=None ): """ Resolve input to flow/node test inputs. Raise user error when missing required inputs. And log warning when unknown inputs appeared. :param node_name: Node name. :type node_name: str :param inputs: Inputs of flow/node test. :type inputs: dict :param chat_history_name: Chat history name. :type chat_history_name: str :return: Dict of flow inputs, Dict of reference node output. :rtype: dict, dict """ from promptflow.contracts.flow import InputValueType # TODO: only store dataplane flow in context resolver dataplane_flow = dataplane_flow or self.dataplane_flow inputs = (inputs or {}).copy() flow_inputs, dependency_nodes_outputs, merged_inputs = {}, {}, {} missing_inputs = [] # Using default value of inputs as flow input if node_name: node = next(filter(lambda item: item.name == node_name, dataplane_flow.nodes), None) if not node: raise UserErrorException(f"Cannot find {node_name} in the flow.") for name, value in node.inputs.items(): if value.value_type == InputValueType.NODE_REFERENCE: input_name = ( f"{value.value}.{value.section}.{value.property}" if value.property else f"{value.value}.{value.section}" ) if input_name in inputs: dependency_input = inputs.pop(input_name) elif name in inputs: dependency_input = inputs.pop(name) else: missing_inputs.append(name) continue if value.property: dependency_nodes_outputs[value.value] = dependency_nodes_outputs.get(value.value, {}) if isinstance(dependency_input, dict) and value.property in dependency_input: dependency_nodes_outputs[value.value][value.property] = dependency_input[value.property] elif dependency_input: dependency_nodes_outputs[value.value][value.property] = dependency_input else: dependency_nodes_outputs[value.value] = dependency_input merged_inputs[name] = dependency_input elif value.value_type == InputValueType.FLOW_INPUT: input_name = f"{value.prefix}{value.value}" if input_name in inputs: flow_input = inputs.pop(input_name) elif name in inputs: flow_input = inputs.pop(name) else: flow_input = dataplane_flow.inputs[value.value].default if flow_input is None: missing_inputs.append(name) continue flow_inputs[value.value] = flow_input merged_inputs[name] = flow_input else: flow_inputs[name] = inputs.pop(name) if name in inputs else value.value merged_inputs[name] = flow_inputs[name] else: for name, value in dataplane_flow.inputs.items(): if name in inputs: flow_inputs[name] = inputs.pop(name) merged_inputs[name] = flow_inputs[name] else: if value.default is None: # When the flow is a chat flow and chat_history has no default value, set an empty list for it if chat_history_name and name == chat_history_name: flow_inputs[name] = [] else: missing_inputs.append(name) else: flow_inputs[name] = value.default merged_inputs[name] = flow_inputs[name] prefix = node_name or "flow" if missing_inputs: raise UserErrorException(f'Required input(s) {missing_inputs} are missing for "{prefix}".') if inputs: logger.warning(f"Unknown input(s) of {prefix}: {inputs}") flow_inputs.update(inputs) merged_inputs.update(inputs) logger.info(f"{prefix} input(s): {merged_inputs}") return flow_inputs, dependency_nodes_outputs def flow_test( self, inputs: Mapping[str, Any], environment_variables: dict = None, stream_log: bool = True, allow_generator_output: bool = False, # TODO: remove this connections: dict = None, # executable connections dict, to avoid http call each time in chat mode stream_output: bool = True, ): from promptflow.executor.flow_executor import execute_flow if not connections: connections = SubmitterHelper.resolve_connections(flow=self.flow, client=self._client) credential_list = ConnectionManager(connections).get_secret_list() # resolve environment variables environment_variables = SubmitterHelper.load_and_resolve_environment_variables( flow=self.flow, environment_variables=environment_variables, client=self._client ) environment_variables = environment_variables if environment_variables else {} SubmitterHelper.init_env(environment_variables=environment_variables) with LoggerOperations( file_path=self.flow.code / PROMPT_FLOW_DIR_NAME / "flow.log", stream=stream_log, credential_list=credential_list, ): storage = DefaultRunStorage(base_dir=self.flow.code, sub_dir=Path(".promptflow/intermediate")) line_result = execute_flow( flow_file=self.flow.path, working_dir=self.flow.code, output_dir=Path(".promptflow/output"), connections=connections, inputs=inputs, enable_stream_output=stream_output, allow_generator_output=allow_generator_output, entry=self.entry, storage=storage, ) if isinstance(line_result.output, dict): generator_outputs = self._get_generator_outputs(line_result.output) if generator_outputs: logger.info(f"Some streaming outputs in the result, {generator_outputs.keys()}") return line_result def node_test( self, node_name: str, flow_inputs: Mapping[str, Any], dependency_nodes_outputs: Mapping[str, Any], environment_variables: dict = None, stream: bool = True, ): from promptflow.executor import FlowExecutor connections = SubmitterHelper.resolve_connections(flow=self.flow, client=self._client) credential_list = ConnectionManager(connections).get_secret_list() # resolve environment variables environment_variables = SubmitterHelper.load_and_resolve_environment_variables( flow=self.flow, environment_variables=environment_variables, client=self._client ) SubmitterHelper.init_env(environment_variables=environment_variables) with LoggerOperations( file_path=self.flow.code / PROMPT_FLOW_DIR_NAME / f"{node_name}.node.log", stream=stream, credential_list=credential_list, ): storage = DefaultRunStorage(base_dir=self.flow.code, sub_dir=Path(".promptflow/intermediate")) result = FlowExecutor.load_and_exec_node( self.flow.path, node_name, flow_inputs=flow_inputs, dependency_nodes_outputs=dependency_nodes_outputs, connections=connections, working_dir=self.flow.code, storage=storage, ) return result def _chat_flow(self, inputs, chat_history_name, environment_variables: dict = None, show_step_output=False): """ Interact with Chat Flow. Do the following: 1. Combine chat_history and user input as the input for each round of the chat flow. 2. Each round of chat is executed once flow test. 3. Prefix the output for distinction. """ from colorama import Fore, init @contextlib.contextmanager def change_logger_level(level): origin_level = logger.level logger.setLevel(level) yield logger.setLevel(origin_level) init(autoreset=True) chat_history = [] generator_record = {} input_name = next( filter(lambda key: self.dataplane_flow.inputs[key].is_chat_input, self.dataplane_flow.inputs.keys()) ) output_name = next( filter( lambda key: self.dataplane_flow.outputs[key].is_chat_output, self.dataplane_flow.outputs.keys(), ) ) # Pass connections to avoid duplicate calculation (especially http call) connections = SubmitterHelper.resolve_connections(flow=self.flow, client=self._client) while True: try: print(f"{Fore.GREEN}User: ", end="") input_value = input() if not input_value.strip(): continue except (KeyboardInterrupt, EOFError): print("Terminate the chat.") break inputs = inputs or {} inputs[input_name] = input_value inputs[chat_history_name] = chat_history with change_logger_level(level=logging.WARNING): chat_inputs, _ = self.resolve_data(inputs=inputs) flow_result = self.flow_test( inputs=chat_inputs, environment_variables=environment_variables, stream_log=False, allow_generator_output=True, connections=connections, stream_output=True, ) self._raise_error_when_test_failed(flow_result, show_trace=True) show_node_log_and_output(flow_result.node_run_infos, show_step_output, generator_record) print(f"{Fore.YELLOW}Bot: ", end="") print_chat_output(flow_result.output[output_name], generator_record) flow_result = resolve_generator(flow_result, generator_record) flow_outputs = {k: v for k, v in flow_result.output.items()} history = {"inputs": {input_name: input_value}, "outputs": flow_outputs} chat_history.append(history) dump_flow_result(flow_folder=self._origin_flow.code, flow_result=flow_result, prefix="chat") @staticmethod def _raise_error_when_test_failed(test_result, show_trace=False): from promptflow.executor._result import LineResult test_status = test_result.run_info.status if isinstance(test_result, LineResult) else test_result.status if test_status == Status.Failed: error_dict = test_result.run_info.error if isinstance(test_result, LineResult) else test_result.error error_response = ErrorResponse.from_error_dict(error_dict) user_execution_error = error_response.get_user_execution_error_info() error_message = error_response.message stack_trace = user_execution_error.get("traceback", "") error_type = user_execution_error.get("type", "Exception") if show_trace: print(stack_trace) raise UserErrorException(f"{error_type}: {error_message}") @staticmethod def _get_generator_outputs(outputs): outputs = outputs or {} return {key: outputs for key, output in outputs.items() if isinstance(output, GeneratorType)} class TestSubmitterViaProxy(TestSubmitter): def __init__(self, flow: ProtectedFlow, flow_context: FlowContext, client=None): super().__init__(flow, flow_context, client) def flow_test( self, inputs: Mapping[str, Any], environment_variables: dict = None, stream_log: bool = True, allow_generator_output: bool = False, connections: dict = None, # executable connections dict, to avoid http call each time in chat mode stream_output: bool = True, ): from promptflow._constants import LINE_NUMBER_KEY if not connections: connections = SubmitterHelper.resolve_used_connections( flow=self.flow, tools_meta=CSharpExecutorProxy.get_tool_metadata( flow_file=self.flow.flow_dag_path, working_dir=self.flow.code, ), client=self._client, ) credential_list = ConnectionManager(connections).get_secret_list() # resolve environment variables environment_variables = SubmitterHelper.load_and_resolve_environment_variables( flow=self.flow, environment_variables=environment_variables, client=self._client ) environment_variables = environment_variables if environment_variables else {} SubmitterHelper.init_env(environment_variables=environment_variables) log_path = self.flow.code / PROMPT_FLOW_DIR_NAME / "flow.log" with LoggerOperations( file_path=log_path, stream=stream_log, credential_list=credential_list, ): try: storage = DefaultRunStorage(base_dir=self.flow.code, sub_dir=Path(".promptflow/intermediate")) flow_executor: CSharpExecutorProxy = async_run_allowing_running_loop( CSharpExecutorProxy.create, self.flow.path, self.flow.code, connections=connections, storage=storage, log_path=log_path, ) line_result: LineResult = async_run_allowing_running_loop( flow_executor.exec_line_async, inputs, index=0 ) line_result.output = persist_multimedia_data( line_result.output, base_dir=self.flow.code, sub_dir=Path(".promptflow/output") ) if line_result.aggregation_inputs: # Convert inputs of aggregation to list type flow_inputs = {k: [v] for k, v in inputs.items()} aggregation_inputs = {k: [v] for k, v in line_result.aggregation_inputs.items()} aggregation_results = async_run_allowing_running_loop( flow_executor.exec_aggregation_async, flow_inputs, aggregation_inputs ) line_result.node_run_infos.update(aggregation_results.node_run_infos) line_result.run_info.metrics = aggregation_results.metrics if isinstance(line_result.output, dict): # Remove line_number from output line_result.output.pop(LINE_NUMBER_KEY, None) generator_outputs = self._get_generator_outputs(line_result.output) if generator_outputs: logger.info(f"Some streaming outputs in the result, {generator_outputs.keys()}") return line_result finally: async_run_allowing_running_loop(flow_executor.destroy) def exec_with_inputs(self, inputs): from promptflow._constants import LINE_NUMBER_KEY connections = SubmitterHelper.resolve_used_connections( flow=self.flow, tools_meta=CSharpExecutorProxy.get_tool_metadata( flow_file=self.flow.path, working_dir=self.flow.code, ), client=self._client, ) storage = DefaultRunStorage(base_dir=self.flow.code, sub_dir=Path(".promptflow/intermediate")) flow_executor = CSharpExecutorProxy.create( flow_file=self.flow.path, working_dir=self.flow.code, connections=connections, storage=storage, ) try: # validate inputs flow_inputs, _ = self.resolve_data(inputs=inputs, dataplane_flow=self.dataplane_flow) line_result = async_run_allowing_running_loop(flow_executor.exec_line_async, inputs, index=0) # line_result = flow_executor.exec_line(inputs, index=0) if isinstance(line_result.output, dict): # Remove line_number from output line_result.output.pop(LINE_NUMBER_KEY, None) return line_result finally: flow_executor.destroy()
promptflow/src/promptflow/promptflow/_sdk/_submitter/test_submitter.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/_submitter/test_submitter.py", "repo_id": "promptflow", "token_count": 9673 }
38
#! /bin/bash CONDA_ENV_PATH="$(conda info --base)/envs/{{env.conda_env_name}}" export PATH="$CONDA_ENV_PATH/bin:$PATH" {% if connection_yaml_paths %} {% if show_comment %} # hack: for some unknown reason, without this ls, the connection creation will be failed {% endif %} ls ls /connections {% endif %} {% for connection_yaml_path in connection_yaml_paths %} pf connection create --file /{{ connection_yaml_path }} {% endfor %} echo "start promptflow serving with worker_num: 8, worker_threads: 1" cd /flow gunicorn -w 8 --threads 1 -b "0.0.0.0:8080" --timeout 300 "promptflow._sdk._serving.app:create_app()"
promptflow/src/promptflow/promptflow/_sdk/data/docker/runit/promptflow-serve/run.jinja2/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/data/docker/runit/promptflow-serve/run.jinja2", "repo_id": "promptflow", "token_count": 230 }
39
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- # isort: skip_file # skip to avoid circular import __path__ = __import__("pkgutil").extend_path(__path__, __name__) # type: ignore from ._connection import ( AzureContentSafetyConnection, AzureOpenAIConnection, CognitiveSearchConnection, CustomConnection, OpenAIConnection, SerpConnection, QdrantConnection, WeaviateConnection, FormRecognizerConnection, CustomStrongTypeConnection, ) from ._run import Run from ._validation import ValidationResult from ._flow import FlowContext __all__ = [ # region: Connection "AzureContentSafetyConnection", "AzureOpenAIConnection", "OpenAIConnection", "CustomConnection", "CustomStrongTypeConnection", "CognitiveSearchConnection", "SerpConnection", "QdrantConnection", "WeaviateConnection", "FormRecognizerConnection", # endregion # region Run "Run", "ValidationResult", # endregion # region Flow "FlowContext", # endregion ]
promptflow/src/promptflow/promptflow/_sdk/entities/__init__.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/entities/__init__.py", "repo_id": "promptflow", "token_count": 372 }
40
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import re from typing import List from promptflow._sdk._constants import AZURE_WORKSPACE_REGEX_FORMAT, MAX_LIST_CLI_RESULTS from promptflow._sdk._telemetry import ActivityType, WorkspaceTelemetryMixin, monitor_operation from promptflow._sdk._utils import interactive_credential_disabled, is_from_cli, is_github_codespaces, print_red_error from promptflow._sdk.entities._connection import _Connection from promptflow._utils.logger_utils import get_cli_sdk_logger from promptflow.azure._utils.gerneral import get_arm_token logger = get_cli_sdk_logger() class LocalAzureConnectionOperations(WorkspaceTelemetryMixin): def __init__(self, connection_provider, **kwargs): self._subscription_id, self._resource_group, self._workspace_name = self._extract_workspace(connection_provider) self._credential = kwargs.pop("credential", None) or self._get_credential() super().__init__( subscription_id=self._subscription_id, resource_group_name=self._resource_group, workspace_name=self._workspace_name, **kwargs, ) # Lazy init client as ml_client initialization require workspace read permission self._pfazure_client = None self._user_agent = kwargs.pop("user_agent", None) @property def _client(self): if self._pfazure_client is None: from promptflow.azure._pf_client import PFClient as PFAzureClient self._pfazure_client = PFAzureClient( # TODO: disable interactive credential when starting as a service credential=self._credential, subscription_id=self._subscription_id, resource_group_name=self._resource_group, workspace_name=self._workspace_name, user_agent=self._user_agent, ) return self._pfazure_client @classmethod def _get_credential(cls): from azure.ai.ml._azure_environments import AzureEnvironments, EndpointURLS, _get_cloud, _get_default_cloud_name from azure.identity import DefaultAzureCredential, DeviceCodeCredential if is_from_cli(): try: # Try getting token for cli without interactive login cloud_name = _get_default_cloud_name() if cloud_name != AzureEnvironments.ENV_DEFAULT: cloud = _get_cloud(cloud=cloud_name) authority = cloud.get(EndpointURLS.ACTIVE_DIRECTORY_ENDPOINT) credential = DefaultAzureCredential(authority=authority, exclude_shared_token_cache_credential=True) else: credential = DefaultAzureCredential() get_arm_token(credential=credential) except Exception: print_red_error( "Please run 'az login' or 'az login --use-device-code' to set up account. " "See https://docs.microsoft.com/cli/azure/authenticate-azure-cli for more details." ) exit(1) if interactive_credential_disabled(): return DefaultAzureCredential(exclude_interactive_browser_credential=True) if is_github_codespaces(): # For code spaces, append device code credential as the fallback option. credential = DefaultAzureCredential() credential.credentials = (*credential.credentials, DeviceCodeCredential()) return credential return DefaultAzureCredential(exclude_interactive_browser_credential=False) @classmethod def _extract_workspace(cls, connection_provider): match = re.match(AZURE_WORKSPACE_REGEX_FORMAT, connection_provider) if not match or len(match.groups()) != 5: raise ValueError( "Malformed connection provider string, expected azureml:/subscriptions/<subscription_id>/" "resourceGroups/<resource_group>/providers/Microsoft.MachineLearningServices/" f"workspaces/<workspace_name>, got {connection_provider}" ) subscription_id = match.group(1) resource_group = match.group(3) workspace_name = match.group(5) return subscription_id, resource_group, workspace_name @monitor_operation(activity_name="pf.connections.azure.list", activity_type=ActivityType.PUBLICAPI) def list( self, max_results: int = MAX_LIST_CLI_RESULTS, all_results: bool = False, ) -> List[_Connection]: """List connections. :return: List of run objects. :rtype: List[~promptflow.sdk.entities._connection._Connection] """ if max_results != MAX_LIST_CLI_RESULTS or all_results: logger.warning( "max_results and all_results are not supported for workspace connection and will be ignored." ) return self._client._connections.list() @monitor_operation(activity_name="pf.connections.azure.get", activity_type=ActivityType.PUBLICAPI) def get(self, name: str, **kwargs) -> _Connection: """Get a connection entity. :param name: Name of the connection. :type name: str :return: connection object retrieved from the database. :rtype: ~promptflow.sdk.entities._connection._Connection """ with_secrets = kwargs.get("with_secrets", False) if with_secrets: # Do not use pfazure_client here as it requires workspace read permission # Get secrets from arm only requires workspace listsecrets permission from promptflow.azure.operations._arm_connection_operations import ArmConnectionOperations return ArmConnectionOperations._direct_get( name, self._subscription_id, self._resource_group, self._workspace_name, self._credential ) return self._client._connections.get(name) @monitor_operation(activity_name="pf.connections.azure.delete", activity_type=ActivityType.PUBLICAPI) def delete(self, name: str) -> None: """Delete a connection entity. :param name: Name of the connection. :type name: str """ raise NotImplementedError( "Delete workspace connection is not supported in promptflow, " "please manage it in workspace portal, az ml cli or AzureML SDK." ) @monitor_operation(activity_name="pf.connections.azure.create_or_update", activity_type=ActivityType.PUBLICAPI) def create_or_update(self, connection: _Connection, **kwargs): """Create or update a connection. :param connection: Run object to create or update. :type connection: ~promptflow.sdk.entities._connection._Connection """ raise NotImplementedError( "Create or update workspace connection is not supported in promptflow, " "please manage it in workspace portal, az ml cli or AzureML SDK." )
promptflow/src/promptflow/promptflow/_sdk/operations/_local_azure_connection_operations.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/operations/_local_azure_connection_operations.py", "repo_id": "promptflow", "token_count": 2867 }
41
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import re class CredentialScrubber: """Scrub sensitive information in string.""" PLACE_HOLDER = "**data_scrubbed**" LENGTH_THRESHOLD = 2 def __init__(self): self.default_regex_set = set( [ r"(?<=sig=)[^\s;&]+", # Replace signature. r"(?<=key=)[^\s;&]+", # Replace key. ] ) self.default_str_set = set() self.custom_regex_set = set() self.custom_str_set = set() def scrub(self, input: str): """Replace sensitive information in input string with PLACE_HOLDER. For example, for input string: "print accountkey=accountKey", the output will be: "print accountkey=**data_scrubbed**" """ output = input regex_set = self.default_regex_set.union(self.custom_regex_set) for regex in regex_set: output = re.sub(regex, self.PLACE_HOLDER, output, flags=re.IGNORECASE) str_set = self.default_str_set.union(self.custom_str_set) for s in str_set: output = output.replace(s, self.PLACE_HOLDER) return output def add_regex(self, pattern: str): # policy: http://policheck.azurewebsites.net/Pages/TermInfo.aspx?LCID=9&TermID=79458 """Add regex pattern to checklist.""" self.custom_regex_set.add(pattern) def add_str(self, s: str): """Add string to checklist. Only scrub string with length > LENGTH_THRESHOLD. """ if s is None: return if len(s) <= self.LENGTH_THRESHOLD: return self.custom_str_set.add(s) def clear(self): """Clear custom regex and string set.""" self.custom_regex_set = set() self.custom_str_set = set()
promptflow/src/promptflow/promptflow/_utils/credential_scrubber.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_utils/credential_scrubber.py", "repo_id": "promptflow", "token_count": 856 }
42
from io import StringIO from os import PathLike from typing import IO, AnyStr, Dict, Optional, Union from ruamel.yaml import YAML, YAMLError from promptflow._constants import DEFAULT_ENCODING from promptflow._utils._errors import YamlParseError def load_yaml(source: Optional[Union[AnyStr, PathLike, IO]]) -> Dict: # null check - just return an empty dict. # Certain CLI commands rely on this behavior to produce a resource # via CLI, which is then populated through CLArgs. """Load a local YAML file or a readable stream object. .. note:: 1. For a local file yaml .. code-block:: python yaml_path = "path/to/yaml" content = load_yaml(yaml_path) 2. For a readable stream object .. code-block:: python with open("path/to/yaml", "r", encoding="utf-8") as f: content = load_yaml(f) :param source: The relative or absolute path to the local file, or a readable stream object. :type source: str :return: A dictionary representation of the local file's contents. :rtype: Dict """ if source is None: return {} # pylint: disable=redefined-builtin input = None must_open_file = False try: # check source type by duck-typing it as an IOBase readable = source.readable() if not readable: # source is misformatted stream or file msg = "File Permissions Error: The already-open \n\n inputted file is not readable." raise Exception(msg) # source is an already-open stream or file, we can read() from it directly. input = source except AttributeError: # source has no writable() function, assume it's a string or file path. must_open_file = True if must_open_file: # If supplied a file path, open it. try: input = open(source, "r", encoding=DEFAULT_ENCODING) except OSError: # FileNotFoundError introduced in Python 3 msg = "No such file or directory: {}" raise Exception(msg.format(source)) # input should now be a readable file or stream. Parse it. cfg = {} try: yaml = YAML() yaml.preserve_quotes = True cfg = yaml.load(input) except YAMLError as e: msg = f"Error while parsing yaml file: {source} \n\n {str(e)}" raise Exception(msg) finally: if must_open_file: input.close() return cfg def load_yaml_string(yaml_string: str): """Load a yaml string. .. code-block:: python yaml_string = "some yaml string" object = load_yaml_string(yaml_string) :param yaml_string: A yaml string. :type yaml_string: str """ yaml = YAML() yaml.preserve_quotes = True return yaml.load(yaml_string) def dump_yaml(*args, **kwargs): """Dump data to a yaml string or stream. .. note:: 1. Dump to a yaml string .. code-block:: python data = {"key": "value"} yaml_string = dump_yaml(data) 2. Dump to a stream .. code-block:: python data = {"key": "value"} with open("path/to/yaml", "w", encoding="utf-8") as f: dump_yaml(data, f) """ yaml = YAML() yaml.default_flow_style = False # when using with no stream parameter but just the data, dump to yaml string and return if len(args) == 1: string_stream = StringIO() yaml.dump(args[0], string_stream, **kwargs) output_string = string_stream.getvalue() string_stream.close() return output_string # when using with stream parameter, dump to stream. e.g.: # open('test.yaml', 'w', encoding='utf-8') as f: # dump_yaml(data, f) elif len(args) == 2: return yaml.dump(*args, **kwargs) else: raise YamlParseError("Only 1 or 2 positional arguments are allowed for dump yaml util function.")
promptflow/src/promptflow/promptflow/_utils/yaml_utils.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_utils/yaml_utils.py", "repo_id": "promptflow", "token_count": 1625 }
43
# coding=utf-8 # -------------------------------------------------------------------------- # Code generated by Microsoft (R) AutoRest Code Generator (autorest: 3.8.0, generator: @autorest/[email protected]) # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING from azure.core.configuration import Configuration from azure.core.pipeline import policies if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Optional VERSION = "unknown" class AzureMachineLearningDesignerServiceClientConfiguration(Configuration): """Configuration for AzureMachineLearningDesignerServiceClient. Note that all parameters used to create this instance are saved as instance attributes. :param api_version: Api Version. The default value is "1.0.0". :type api_version: str """ def __init__( self, api_version="1.0.0", # type: Optional[str] **kwargs # type: Any ): # type: (...) -> None super(AzureMachineLearningDesignerServiceClientConfiguration, self).__init__(**kwargs) self.api_version = api_version kwargs.setdefault('sdk_moniker', 'azuremachinelearningdesignerserviceclient/{}'.format(VERSION)) self._configure(**kwargs) def _configure( self, **kwargs # type: Any ): # type: (...) -> None self.user_agent_policy = kwargs.get('user_agent_policy') or policies.UserAgentPolicy(**kwargs) self.headers_policy = kwargs.get('headers_policy') or policies.HeadersPolicy(**kwargs) self.proxy_policy = kwargs.get('proxy_policy') or policies.ProxyPolicy(**kwargs) self.logging_policy = kwargs.get('logging_policy') or policies.NetworkTraceLoggingPolicy(**kwargs) self.http_logging_policy = kwargs.get('http_logging_policy') or policies.HttpLoggingPolicy(**kwargs) self.retry_policy = kwargs.get('retry_policy') or policies.RetryPolicy(**kwargs) self.custom_hook_policy = kwargs.get('custom_hook_policy') or policies.CustomHookPolicy(**kwargs) self.redirect_policy = kwargs.get('redirect_policy') or policies.RedirectPolicy(**kwargs) self.authentication_policy = kwargs.get('authentication_policy')
promptflow/src/promptflow/promptflow/azure/_restclient/flow/_configuration.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/azure/_restclient/flow/_configuration.py", "repo_id": "promptflow", "token_count": 812 }
44
# coding=utf-8 # -------------------------------------------------------------------------- # Code generated by Microsoft (R) AutoRest Code Generator (autorest: 3.8.0, generator: @autorest/[email protected]) # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import functools from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from msrest import Serializer from .. import models as _models from .._vendor import _convert_request, _format_url_section if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, List, Optional, TypeVar, Union T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] _SERIALIZER = Serializer() _SERIALIZER.client_side_validation = False # fmt: off def build_create_flow_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest content_type = kwargs.pop('content_type', None) # type: Optional[str] experiment_id = kwargs.pop('experiment_id', None) # type: Optional[str] accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] if experiment_id is not None: query_parameters['experimentId'] = _SERIALIZER.query("experiment_id", experiment_id, 'str') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] if content_type is not None: header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str') header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="POST", url=url, params=query_parameters, headers=header_parameters, **kwargs ) def build_list_flows_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest experiment_id = kwargs.pop('experiment_id', None) # type: Optional[str] owned_only = kwargs.pop('owned_only', None) # type: Optional[bool] flow_type = kwargs.pop('flow_type', None) # type: Optional[Union[str, "_models.FlowType"]] list_view_type = kwargs.pop('list_view_type', None) # type: Optional[Union[str, "_models.ListViewType"]] accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] if experiment_id is not None: query_parameters['experimentId'] = _SERIALIZER.query("experiment_id", experiment_id, 'str') if owned_only is not None: query_parameters['ownedOnly'] = _SERIALIZER.query("owned_only", owned_only, 'bool') if flow_type is not None: query_parameters['flowType'] = _SERIALIZER.query("flow_type", flow_type, 'str') if list_view_type is not None: query_parameters['listViewType'] = _SERIALIZER.query("list_view_type", list_view_type, 'str') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=url, params=query_parameters, headers=header_parameters, **kwargs ) def build_clone_flow_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_id, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest content_type = kwargs.pop('content_type', None) # type: Optional[str] experiment_id = kwargs.pop('experiment_id') # type: str accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/{flowId}/clone') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), "flowId": _SERIALIZER.url("flow_id", flow_id, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] query_parameters['experimentId'] = _SERIALIZER.query("experiment_id", experiment_id, 'str') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] if content_type is not None: header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str') header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="POST", url=url, params=query_parameters, headers=header_parameters, **kwargs ) def build_create_flow_from_sample_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest content_type = kwargs.pop('content_type', None) # type: Optional[str] experiment_id = kwargs.pop('experiment_id', None) # type: Optional[str] accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/fromsample') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] if experiment_id is not None: query_parameters['experimentId'] = _SERIALIZER.query("experiment_id", experiment_id, 'str') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] if content_type is not None: header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str') header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="POST", url=url, params=query_parameters, headers=header_parameters, **kwargs ) def build_update_flow_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_id, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest content_type = kwargs.pop('content_type', None) # type: Optional[str] experiment_id = kwargs.pop('experiment_id') # type: str accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/{flowId}') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), "flowId": _SERIALIZER.url("flow_id", flow_id, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] query_parameters['experimentId'] = _SERIALIZER.query("experiment_id", experiment_id, 'str') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] if content_type is not None: header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str') header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="PUT", url=url, params=query_parameters, headers=header_parameters, **kwargs ) def build_patch_flow_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_id, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest content_type = kwargs.pop('content_type', None) # type: Optional[str] experiment_id = kwargs.pop('experiment_id') # type: str accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/{flowId}') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), "flowId": _SERIALIZER.url("flow_id", flow_id, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] query_parameters['experimentId'] = _SERIALIZER.query("experiment_id", experiment_id, 'str') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] if content_type is not None: header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str') header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="PATCH", url=url, params=query_parameters, headers=header_parameters, **kwargs ) def build_get_flow_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_id, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest experiment_id = kwargs.pop('experiment_id') # type: str accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/{flowId}') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), "flowId": _SERIALIZER.url("flow_id", flow_id, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] query_parameters['experimentId'] = _SERIALIZER.query("experiment_id", experiment_id, 'str') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=url, params=query_parameters, headers=header_parameters, **kwargs ) def build_submit_flow_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest content_type = kwargs.pop('content_type', None) # type: Optional[str] experiment_id = kwargs.pop('experiment_id') # type: str endpoint_name = kwargs.pop('endpoint_name', None) # type: Optional[str] accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/submit') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] query_parameters['experimentId'] = _SERIALIZER.query("experiment_id", experiment_id, 'str') if endpoint_name is not None: query_parameters['endpointName'] = _SERIALIZER.query("endpoint_name", endpoint_name, 'str') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] if content_type is not None: header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str') header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="POST", url=url, params=query_parameters, headers=header_parameters, **kwargs ) def build_get_flow_run_status_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_id, # type: str flow_run_id, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest experiment_id = kwargs.pop('experiment_id', None) # type: Optional[str] accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/{flowId}/{flowRunId}/status') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), "flowId": _SERIALIZER.url("flow_id", flow_id, 'str'), "flowRunId": _SERIALIZER.url("flow_run_id", flow_run_id, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] if experiment_id is not None: query_parameters['experimentId'] = _SERIALIZER.query("experiment_id", experiment_id, 'str') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=url, params=query_parameters, headers=header_parameters, **kwargs ) def build_get_flow_run_info_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_id, # type: str flow_run_id, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest experiment_id = kwargs.pop('experiment_id') # type: str accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/{flowId}/runs/{flowRunId}') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), "flowId": _SERIALIZER.url("flow_id", flow_id, 'str'), "flowRunId": _SERIALIZER.url("flow_run_id", flow_run_id, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] query_parameters['experimentId'] = _SERIALIZER.query("experiment_id", experiment_id, 'str') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=url, params=query_parameters, headers=header_parameters, **kwargs ) def build_get_flow_child_runs_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_id, # type: str flow_run_id, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest index = kwargs.pop('index', None) # type: Optional[int] start_index = kwargs.pop('start_index', None) # type: Optional[int] end_index = kwargs.pop('end_index', None) # type: Optional[int] accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/{flowId}/runs/{flowRunId}/childRuns') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), "flowId": _SERIALIZER.url("flow_id", flow_id, 'str'), "flowRunId": _SERIALIZER.url("flow_run_id", flow_run_id, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] if index is not None: query_parameters['index'] = _SERIALIZER.query("index", index, 'int') if start_index is not None: query_parameters['startIndex'] = _SERIALIZER.query("start_index", start_index, 'int') if end_index is not None: query_parameters['endIndex'] = _SERIALIZER.query("end_index", end_index, 'int') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=url, params=query_parameters, headers=header_parameters, **kwargs ) def build_get_flow_node_runs_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_id, # type: str flow_run_id, # type: str node_name, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest index = kwargs.pop('index', None) # type: Optional[int] start_index = kwargs.pop('start_index', None) # type: Optional[int] end_index = kwargs.pop('end_index', None) # type: Optional[int] aggregation = kwargs.pop('aggregation', False) # type: Optional[bool] accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/{flowId}/runs/{flowRunId}/nodeRuns/{nodeName}') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), "flowId": _SERIALIZER.url("flow_id", flow_id, 'str'), "flowRunId": _SERIALIZER.url("flow_run_id", flow_run_id, 'str'), "nodeName": _SERIALIZER.url("node_name", node_name, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] if index is not None: query_parameters['index'] = _SERIALIZER.query("index", index, 'int') if start_index is not None: query_parameters['startIndex'] = _SERIALIZER.query("start_index", start_index, 'int') if end_index is not None: query_parameters['endIndex'] = _SERIALIZER.query("end_index", end_index, 'int') if aggregation is not None: query_parameters['aggregation'] = _SERIALIZER.query("aggregation", aggregation, 'bool') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=url, params=query_parameters, headers=header_parameters, **kwargs ) def build_get_flow_node_run_base_path_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_id, # type: str flow_run_id, # type: str node_name, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/{flowId}/runs/{flowRunId}/nodeRuns/{nodeName}/basePath') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), "flowId": _SERIALIZER.url("flow_id", flow_id, 'str'), "flowRunId": _SERIALIZER.url("flow_run_id", flow_run_id, 'str'), "nodeName": _SERIALIZER.url("node_name", node_name, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=url, headers=header_parameters, **kwargs ) def build_clone_flow_from_flow_run_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_id, # type: str flow_run_id, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest content_type = kwargs.pop('content_type', None) # type: Optional[str] experiment_id = kwargs.pop('experiment_id') # type: str accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/{flowId}/runs/{flowRunId}/clone') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), "flowId": _SERIALIZER.url("flow_id", flow_id, 'str'), "flowRunId": _SERIALIZER.url("flow_run_id", flow_run_id, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] query_parameters['experimentId'] = _SERIALIZER.query("experiment_id", experiment_id, 'str') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] if content_type is not None: header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str') header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="POST", url=url, params=query_parameters, headers=header_parameters, **kwargs ) def build_list_bulk_tests_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_id, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest experiment_id = kwargs.pop('experiment_id', None) # type: Optional[str] accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/{flowId}/bulkTests') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), "flowId": _SERIALIZER.url("flow_id", flow_id, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] if experiment_id is not None: query_parameters['experimentId'] = _SERIALIZER.query("experiment_id", experiment_id, 'str') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=url, params=query_parameters, headers=header_parameters, **kwargs ) def build_get_bulk_test_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_id, # type: str bulk_test_id, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/{flowId}/bulkTests/{bulkTestId}') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), "flowId": _SERIALIZER.url("flow_id", flow_id, 'str'), "bulkTestId": _SERIALIZER.url("bulk_test_id", bulk_test_id, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=url, headers=header_parameters, **kwargs ) def build_get_samples_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest use_snapshot = kwargs.pop('use_snapshot', False) # type: Optional[bool] accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/samples') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] if use_snapshot is not None: query_parameters['useSnapshot'] = _SERIALIZER.query("use_snapshot", use_snapshot, 'bool') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=url, params=query_parameters, headers=header_parameters, **kwargs ) def build_get_evaluate_flow_samples_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest use_snapshot = kwargs.pop('use_snapshot', False) # type: Optional[bool] accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/evaluateSamples') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] if use_snapshot is not None: query_parameters['useSnapshot'] = _SERIALIZER.query("use_snapshot", use_snapshot, 'bool') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=url, params=query_parameters, headers=header_parameters, **kwargs ) def build_get_flow_deploy_reserved_environment_variable_names_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/DeployReservedEnvironmentVariableNames') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=url, headers=header_parameters, **kwargs ) def build_deploy_flow_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest content_type = kwargs.pop('content_type', None) # type: Optional[str] async_call = kwargs.pop('async_call', False) # type: Optional[bool] msi_token = kwargs.pop('msi_token', False) # type: Optional[bool] accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/deploy') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] if async_call is not None: query_parameters['asyncCall'] = _SERIALIZER.query("async_call", async_call, 'bool') if msi_token is not None: query_parameters['msiToken'] = _SERIALIZER.query("msi_token", msi_token, 'bool') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] if content_type is not None: header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str') header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="POST", url=url, params=query_parameters, headers=header_parameters, **kwargs ) def build_get_flow_run_log_content_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_id, # type: str flow_run_id, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/{flowId}/runs/{flowRunId}/logContent') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), "flowId": _SERIALIZER.url("flow_id", flow_id, 'str'), "flowRunId": _SERIALIZER.url("flow_run_id", flow_run_id, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=url, headers=header_parameters, **kwargs ) def build_cancel_flow_run_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_run_id, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest accept = "text/plain, application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/runs/{flowRunId}/cancel') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), "flowRunId": _SERIALIZER.url("flow_run_id", flow_run_id, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="POST", url=url, headers=header_parameters, **kwargs ) def build_cancel_flow_test_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_id, # type: str flow_run_id, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest accept = "text/plain, application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/{flowId}/flowTests/{flowRunId}/cancel') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), "flowId": _SERIALIZER.url("flow_id", flow_id, 'str'), "flowRunId": _SERIALIZER.url("flow_run_id", flow_run_id, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="POST", url=url, headers=header_parameters, **kwargs ) def build_cancel_bulk_test_run_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str bulk_test_run_id, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest accept = "text/plain, application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/bulkTests/{bulkTestRunId}/cancel') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), "bulkTestRunId": _SERIALIZER.url("bulk_test_run_id", bulk_test_run_id, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="POST", url=url, headers=header_parameters, **kwargs ) def build_get_flow_snapshot_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest content_type = kwargs.pop('content_type', None) # type: Optional[str] accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/FlowSnapshot') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] if content_type is not None: header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str') header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="POST", url=url, headers=header_parameters, **kwargs ) def build_get_connection_override_settings_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest content_type = kwargs.pop('content_type', None) # type: Optional[str] runtime_name = kwargs.pop('runtime_name', None) # type: Optional[str] accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/connectionOverride') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] if runtime_name is not None: query_parameters['runtimeName'] = _SERIALIZER.query("runtime_name", runtime_name, 'str') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] if content_type is not None: header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str') header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="POST", url=url, params=query_parameters, headers=header_parameters, **kwargs ) def build_get_flow_inputs_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest content_type = kwargs.pop('content_type', None) # type: Optional[str] accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/flowInputs') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] if content_type is not None: header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str') header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="POST", url=url, headers=header_parameters, **kwargs ) def build_load_as_component_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest content_type = kwargs.pop('content_type', None) # type: Optional[str] accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/LoadAsComponent') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] if content_type is not None: header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str') header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="POST", url=url, headers=header_parameters, **kwargs ) def build_get_flow_tools_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_id, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest experiment_id = kwargs.pop('experiment_id') # type: str flow_runtime_name = kwargs.pop('flow_runtime_name', None) # type: Optional[str] accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/{flowId}/flowTools') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), "flowId": _SERIALIZER.url("flow_id", flow_id, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] if flow_runtime_name is not None: query_parameters['flowRuntimeName'] = _SERIALIZER.query("flow_runtime_name", flow_runtime_name, 'str') query_parameters['experimentId'] = _SERIALIZER.query("experiment_id", experiment_id, 'str') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=url, params=query_parameters, headers=header_parameters, **kwargs ) def build_setup_flow_session_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_id, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest content_type = kwargs.pop('content_type', None) # type: Optional[str] experiment_id = kwargs.pop('experiment_id') # type: str accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/{flowId}/sessions') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), "flowId": _SERIALIZER.url("flow_id", flow_id, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] query_parameters['experimentId'] = _SERIALIZER.query("experiment_id", experiment_id, 'str') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] if content_type is not None: header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str') header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="POST", url=url, params=query_parameters, headers=header_parameters, **kwargs ) def build_delete_flow_session_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_id, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest experiment_id = kwargs.pop('experiment_id') # type: str accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/{flowId}/sessions') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), "flowId": _SERIALIZER.url("flow_id", flow_id, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] query_parameters['experimentId'] = _SERIALIZER.query("experiment_id", experiment_id, 'str') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="DELETE", url=url, params=query_parameters, headers=header_parameters, **kwargs ) def build_get_flow_session_status_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_id, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest experiment_id = kwargs.pop('experiment_id') # type: str accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/{flowId}/sessions/status') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), "flowId": _SERIALIZER.url("flow_id", flow_id, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] query_parameters['experimentId'] = _SERIALIZER.query("experiment_id", experiment_id, 'str') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="GET", url=url, params=query_parameters, headers=header_parameters, **kwargs ) # fmt: on class FlowsOperations(object): """FlowsOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~flow.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config @distributed_trace def create_flow( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str experiment_id=None, # type: Optional[str] body=None, # type: Optional["_models.CreateFlowRequest"] **kwargs # type: Any ): # type: (...) -> "_models.FlowDto" """create_flow. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param experiment_id: :type experiment_id: str :param body: :type body: ~flow.models.CreateFlowRequest :keyword callable cls: A custom type or function that will be passed the direct response :return: FlowDto, or the result of cls(response) :rtype: ~flow.models.FlowDto :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.FlowDto"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] if body is not None: _json = self._serialize.body(body, 'CreateFlowRequest') else: _json = None request = build_create_flow_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, content_type=content_type, json=_json, experiment_id=experiment_id, template_url=self.create_flow.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('FlowDto', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized create_flow.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows'} # type: ignore @distributed_trace def list_flows( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str experiment_id=None, # type: Optional[str] owned_only=None, # type: Optional[bool] flow_type=None, # type: Optional[Union[str, "_models.FlowType"]] list_view_type=None, # type: Optional[Union[str, "_models.ListViewType"]] **kwargs # type: Any ): # type: (...) -> List["_models.FlowBaseDto"] """list_flows. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param experiment_id: :type experiment_id: str :param owned_only: :type owned_only: bool :param flow_type: :type flow_type: str or ~flow.models.FlowType :param list_view_type: :type list_view_type: str or ~flow.models.ListViewType :keyword callable cls: A custom type or function that will be passed the direct response :return: list of FlowBaseDto, or the result of cls(response) :rtype: list[~flow.models.FlowBaseDto] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[List["_models.FlowBaseDto"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_list_flows_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, experiment_id=experiment_id, owned_only=owned_only, flow_type=flow_type, list_view_type=list_view_type, template_url=self.list_flows.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('[FlowBaseDto]', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized list_flows.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows'} # type: ignore @distributed_trace def clone_flow( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_id, # type: str experiment_id, # type: str body=None, # type: Optional["_models.CreateFlowRequest"] **kwargs # type: Any ): # type: (...) -> "_models.FlowDto" """clone_flow. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param flow_id: :type flow_id: str :param experiment_id: :type experiment_id: str :param body: :type body: ~flow.models.CreateFlowRequest :keyword callable cls: A custom type or function that will be passed the direct response :return: FlowDto, or the result of cls(response) :rtype: ~flow.models.FlowDto :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.FlowDto"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] if body is not None: _json = self._serialize.body(body, 'CreateFlowRequest') else: _json = None request = build_clone_flow_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, flow_id=flow_id, content_type=content_type, experiment_id=experiment_id, json=_json, template_url=self.clone_flow.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('FlowDto', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized clone_flow.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/{flowId}/clone'} # type: ignore @distributed_trace def create_flow_from_sample( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str experiment_id=None, # type: Optional[str] body=None, # type: Optional["_models.CreateFlowFromSampleRequest"] **kwargs # type: Any ): # type: (...) -> "_models.FlowDto" """create_flow_from_sample. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param experiment_id: :type experiment_id: str :param body: :type body: ~flow.models.CreateFlowFromSampleRequest :keyword callable cls: A custom type or function that will be passed the direct response :return: FlowDto, or the result of cls(response) :rtype: ~flow.models.FlowDto :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.FlowDto"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] if body is not None: _json = self._serialize.body(body, 'CreateFlowFromSampleRequest') else: _json = None request = build_create_flow_from_sample_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, content_type=content_type, json=_json, experiment_id=experiment_id, template_url=self.create_flow_from_sample.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('FlowDto', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized create_flow_from_sample.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/fromsample'} # type: ignore @distributed_trace def update_flow( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_id, # type: str experiment_id, # type: str body=None, # type: Optional["_models.UpdateFlowRequest"] **kwargs # type: Any ): # type: (...) -> str """update_flow. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param flow_id: :type flow_id: str :param experiment_id: :type experiment_id: str :param body: :type body: ~flow.models.UpdateFlowRequest :keyword callable cls: A custom type or function that will be passed the direct response :return: str, or the result of cls(response) :rtype: str :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[str] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] if body is not None: _json = self._serialize.body(body, 'UpdateFlowRequest') else: _json = None request = build_update_flow_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, flow_id=flow_id, content_type=content_type, experiment_id=experiment_id, json=_json, template_url=self.update_flow.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('str', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized update_flow.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/{flowId}'} # type: ignore @distributed_trace def patch_flow( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_id, # type: str experiment_id, # type: str body=None, # type: Optional["_models.PatchFlowRequest"] **kwargs # type: Any ): # type: (...) -> str """patch_flow. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param flow_id: :type flow_id: str :param experiment_id: :type experiment_id: str :param body: :type body: ~flow.models.PatchFlowRequest :keyword callable cls: A custom type or function that will be passed the direct response :return: str, or the result of cls(response) :rtype: str :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[str] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json-patch+json") # type: Optional[str] if body is not None: _json = self._serialize.body(body, 'PatchFlowRequest') else: _json = None request = build_patch_flow_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, flow_id=flow_id, content_type=content_type, experiment_id=experiment_id, json=_json, template_url=self.patch_flow.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('str', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized patch_flow.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/{flowId}'} # type: ignore @distributed_trace def get_flow( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_id, # type: str experiment_id, # type: str **kwargs # type: Any ): # type: (...) -> "_models.FlowDto" """get_flow. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param flow_id: :type flow_id: str :param experiment_id: :type experiment_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: FlowDto, or the result of cls(response) :rtype: ~flow.models.FlowDto :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.FlowDto"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_get_flow_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, flow_id=flow_id, experiment_id=experiment_id, template_url=self.get_flow.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('FlowDto', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_flow.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/{flowId}'} # type: ignore @distributed_trace def submit_flow( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str experiment_id, # type: str endpoint_name=None, # type: Optional[str] body=None, # type: Optional["_models.SubmitFlowRequest"] **kwargs # type: Any ): # type: (...) -> "_models.FlowRunResult" """submit_flow. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param experiment_id: :type experiment_id: str :param endpoint_name: :type endpoint_name: str :param body: :type body: ~flow.models.SubmitFlowRequest :keyword callable cls: A custom type or function that will be passed the direct response :return: FlowRunResult, or the result of cls(response) :rtype: ~flow.models.FlowRunResult :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.FlowRunResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] if body is not None: _json = self._serialize.body(body, 'SubmitFlowRequest') else: _json = None request = build_submit_flow_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, content_type=content_type, experiment_id=experiment_id, json=_json, endpoint_name=endpoint_name, template_url=self.submit_flow.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('FlowRunResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized submit_flow.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/submit'} # type: ignore @distributed_trace def get_flow_run_status( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_id, # type: str flow_run_id, # type: str experiment_id=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> "_models.FlowRunResult" """get_flow_run_status. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param flow_id: :type flow_id: str :param flow_run_id: :type flow_run_id: str :param experiment_id: :type experiment_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: FlowRunResult, or the result of cls(response) :rtype: ~flow.models.FlowRunResult :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.FlowRunResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_get_flow_run_status_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, flow_id=flow_id, flow_run_id=flow_run_id, experiment_id=experiment_id, template_url=self.get_flow_run_status.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('FlowRunResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_flow_run_status.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/{flowId}/{flowRunId}/status'} # type: ignore @distributed_trace def get_flow_run_info( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_id, # type: str flow_run_id, # type: str experiment_id, # type: str **kwargs # type: Any ): # type: (...) -> "_models.FlowRunInfo" """get_flow_run_info. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param flow_id: :type flow_id: str :param flow_run_id: :type flow_run_id: str :param experiment_id: :type experiment_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: FlowRunInfo, or the result of cls(response) :rtype: ~flow.models.FlowRunInfo :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.FlowRunInfo"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_get_flow_run_info_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, flow_id=flow_id, flow_run_id=flow_run_id, experiment_id=experiment_id, template_url=self.get_flow_run_info.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('FlowRunInfo', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_flow_run_info.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/{flowId}/runs/{flowRunId}'} # type: ignore @distributed_trace def get_flow_child_runs( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_id, # type: str flow_run_id, # type: str index=None, # type: Optional[int] start_index=None, # type: Optional[int] end_index=None, # type: Optional[int] **kwargs # type: Any ): # type: (...) -> List[Any] """get_flow_child_runs. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param flow_id: :type flow_id: str :param flow_run_id: :type flow_run_id: str :param index: :type index: int :param start_index: :type start_index: int :param end_index: :type end_index: int :keyword callable cls: A custom type or function that will be passed the direct response :return: list of any, or the result of cls(response) :rtype: list[any] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[List[Any]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_get_flow_child_runs_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, flow_id=flow_id, flow_run_id=flow_run_id, index=index, start_index=start_index, end_index=end_index, template_url=self.get_flow_child_runs.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('[object]', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_flow_child_runs.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/{flowId}/runs/{flowRunId}/childRuns'} # type: ignore @distributed_trace def get_flow_node_runs( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_id, # type: str flow_run_id, # type: str node_name, # type: str index=None, # type: Optional[int] start_index=None, # type: Optional[int] end_index=None, # type: Optional[int] aggregation=False, # type: Optional[bool] **kwargs # type: Any ): # type: (...) -> List[Any] """get_flow_node_runs. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param flow_id: :type flow_id: str :param flow_run_id: :type flow_run_id: str :param node_name: :type node_name: str :param index: :type index: int :param start_index: :type start_index: int :param end_index: :type end_index: int :param aggregation: :type aggregation: bool :keyword callable cls: A custom type or function that will be passed the direct response :return: list of any, or the result of cls(response) :rtype: list[any] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[List[Any]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_get_flow_node_runs_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, flow_id=flow_id, flow_run_id=flow_run_id, node_name=node_name, index=index, start_index=start_index, end_index=end_index, aggregation=aggregation, template_url=self.get_flow_node_runs.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('[object]', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_flow_node_runs.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/{flowId}/runs/{flowRunId}/nodeRuns/{nodeName}'} # type: ignore @distributed_trace def get_flow_node_run_base_path( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_id, # type: str flow_run_id, # type: str node_name, # type: str **kwargs # type: Any ): # type: (...) -> "_models.FlowRunBasePath" """get_flow_node_run_base_path. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param flow_id: :type flow_id: str :param flow_run_id: :type flow_run_id: str :param node_name: :type node_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: FlowRunBasePath, or the result of cls(response) :rtype: ~flow.models.FlowRunBasePath :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.FlowRunBasePath"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_get_flow_node_run_base_path_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, flow_id=flow_id, flow_run_id=flow_run_id, node_name=node_name, template_url=self.get_flow_node_run_base_path.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('FlowRunBasePath', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_flow_node_run_base_path.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/{flowId}/runs/{flowRunId}/nodeRuns/{nodeName}/basePath'} # type: ignore @distributed_trace def clone_flow_from_flow_run( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_id, # type: str flow_run_id, # type: str experiment_id, # type: str body=None, # type: Optional["_models.CreateFlowRequest"] **kwargs # type: Any ): # type: (...) -> "_models.FlowDto" """clone_flow_from_flow_run. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param flow_id: :type flow_id: str :param flow_run_id: :type flow_run_id: str :param experiment_id: :type experiment_id: str :param body: :type body: ~flow.models.CreateFlowRequest :keyword callable cls: A custom type or function that will be passed the direct response :return: FlowDto, or the result of cls(response) :rtype: ~flow.models.FlowDto :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.FlowDto"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] if body is not None: _json = self._serialize.body(body, 'CreateFlowRequest') else: _json = None request = build_clone_flow_from_flow_run_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, flow_id=flow_id, flow_run_id=flow_run_id, content_type=content_type, experiment_id=experiment_id, json=_json, template_url=self.clone_flow_from_flow_run.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('FlowDto', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized clone_flow_from_flow_run.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/{flowId}/runs/{flowRunId}/clone'} # type: ignore @distributed_trace def list_bulk_tests( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_id, # type: str experiment_id=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> List["_models.BulkTestDto"] """list_bulk_tests. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param flow_id: :type flow_id: str :param experiment_id: :type experiment_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: list of BulkTestDto, or the result of cls(response) :rtype: list[~flow.models.BulkTestDto] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[List["_models.BulkTestDto"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_list_bulk_tests_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, flow_id=flow_id, experiment_id=experiment_id, template_url=self.list_bulk_tests.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('[BulkTestDto]', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized list_bulk_tests.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/{flowId}/bulkTests'} # type: ignore @distributed_trace def get_bulk_test( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_id, # type: str bulk_test_id, # type: str **kwargs # type: Any ): # type: (...) -> "_models.BulkTestDto" """get_bulk_test. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param flow_id: :type flow_id: str :param bulk_test_id: :type bulk_test_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: BulkTestDto, or the result of cls(response) :rtype: ~flow.models.BulkTestDto :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.BulkTestDto"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_get_bulk_test_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, flow_id=flow_id, bulk_test_id=bulk_test_id, template_url=self.get_bulk_test.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('BulkTestDto', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_bulk_test.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/{flowId}/bulkTests/{bulkTestId}'} # type: ignore @distributed_trace def get_samples( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str use_snapshot=False, # type: Optional[bool] **kwargs # type: Any ): # type: (...) -> Dict[str, "_models.FlowSampleDto"] """get_samples. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param use_snapshot: :type use_snapshot: bool :keyword callable cls: A custom type or function that will be passed the direct response :return: dict mapping str to FlowSampleDto, or the result of cls(response) :rtype: dict[str, ~flow.models.FlowSampleDto] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[Dict[str, "_models.FlowSampleDto"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_get_samples_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, use_snapshot=use_snapshot, template_url=self.get_samples.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('{FlowSampleDto}', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_samples.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/samples'} # type: ignore @distributed_trace def get_evaluate_flow_samples( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str use_snapshot=False, # type: Optional[bool] **kwargs # type: Any ): # type: (...) -> Dict[str, "_models.FlowSampleDto"] """get_evaluate_flow_samples. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param use_snapshot: :type use_snapshot: bool :keyword callable cls: A custom type or function that will be passed the direct response :return: dict mapping str to FlowSampleDto, or the result of cls(response) :rtype: dict[str, ~flow.models.FlowSampleDto] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[Dict[str, "_models.FlowSampleDto"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_get_evaluate_flow_samples_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, use_snapshot=use_snapshot, template_url=self.get_evaluate_flow_samples.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('{FlowSampleDto}', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_evaluate_flow_samples.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/evaluateSamples'} # type: ignore @distributed_trace def get_flow_deploy_reserved_environment_variable_names( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str **kwargs # type: Any ): # type: (...) -> List[str] """get_flow_deploy_reserved_environment_variable_names. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: list of str, or the result of cls(response) :rtype: list[str] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[List[str]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_get_flow_deploy_reserved_environment_variable_names_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, template_url=self.get_flow_deploy_reserved_environment_variable_names.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('[str]', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_flow_deploy_reserved_environment_variable_names.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/DeployReservedEnvironmentVariableNames'} # type: ignore @distributed_trace def deploy_flow( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str async_call=False, # type: Optional[bool] msi_token=False, # type: Optional[bool] body=None, # type: Optional["_models.DeployFlowRequest"] **kwargs # type: Any ): # type: (...) -> str """deploy_flow. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param async_call: :type async_call: bool :param msi_token: :type msi_token: bool :param body: :type body: ~flow.models.DeployFlowRequest :keyword callable cls: A custom type or function that will be passed the direct response :return: str, or the result of cls(response) :rtype: str :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[str] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] if body is not None: _json = self._serialize.body(body, 'DeployFlowRequest') else: _json = None request = build_deploy_flow_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, content_type=content_type, json=_json, async_call=async_call, msi_token=msi_token, template_url=self.deploy_flow.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('str', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized deploy_flow.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/deploy'} # type: ignore @distributed_trace def get_flow_run_log_content( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_id, # type: str flow_run_id, # type: str **kwargs # type: Any ): # type: (...) -> str """get_flow_run_log_content. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param flow_id: :type flow_id: str :param flow_run_id: :type flow_run_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: str, or the result of cls(response) :rtype: str :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[str] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_get_flow_run_log_content_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, flow_id=flow_id, flow_run_id=flow_run_id, template_url=self.get_flow_run_log_content.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('str', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_flow_run_log_content.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/{flowId}/runs/{flowRunId}/logContent'} # type: ignore @distributed_trace def cancel_flow_run( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_run_id, # type: str **kwargs # type: Any ): # type: (...) -> str """cancel_flow_run. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param flow_run_id: :type flow_run_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: str, or the result of cls(response) :rtype: str :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[str] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_cancel_flow_run_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, flow_run_id=flow_run_id, template_url=self.cancel_flow_run.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('str', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized cancel_flow_run.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/runs/{flowRunId}/cancel'} # type: ignore @distributed_trace def cancel_flow_test( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_id, # type: str flow_run_id, # type: str **kwargs # type: Any ): # type: (...) -> str """cancel_flow_test. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param flow_id: :type flow_id: str :param flow_run_id: :type flow_run_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: str, or the result of cls(response) :rtype: str :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[str] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_cancel_flow_test_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, flow_id=flow_id, flow_run_id=flow_run_id, template_url=self.cancel_flow_test.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('str', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized cancel_flow_test.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/{flowId}/flowTests/{flowRunId}/cancel'} # type: ignore @distributed_trace def cancel_bulk_test_run( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str bulk_test_run_id, # type: str **kwargs # type: Any ): # type: (...) -> str """cancel_bulk_test_run. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param bulk_test_run_id: :type bulk_test_run_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: str, or the result of cls(response) :rtype: str :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[str] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_cancel_bulk_test_run_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, bulk_test_run_id=bulk_test_run_id, template_url=self.cancel_bulk_test_run.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('str', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized cancel_bulk_test_run.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/bulkTests/{bulkTestRunId}/cancel'} # type: ignore @distributed_trace def get_flow_snapshot( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str body=None, # type: Optional["_models.CreateFlowRequest"] **kwargs # type: Any ): # type: (...) -> "_models.FlowSnapshot" """get_flow_snapshot. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param body: :type body: ~flow.models.CreateFlowRequest :keyword callable cls: A custom type or function that will be passed the direct response :return: FlowSnapshot, or the result of cls(response) :rtype: ~flow.models.FlowSnapshot :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.FlowSnapshot"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] if body is not None: _json = self._serialize.body(body, 'CreateFlowRequest') else: _json = None request = build_get_flow_snapshot_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, content_type=content_type, json=_json, template_url=self.get_flow_snapshot.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('FlowSnapshot', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_flow_snapshot.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/FlowSnapshot'} # type: ignore @distributed_trace def get_connection_override_settings( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str runtime_name=None, # type: Optional[str] body=None, # type: Optional["_models.FlowGraphReference"] **kwargs # type: Any ): # type: (...) -> List["_models.ConnectionOverrideSetting"] """get_connection_override_settings. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param runtime_name: :type runtime_name: str :param body: :type body: ~flow.models.FlowGraphReference :keyword callable cls: A custom type or function that will be passed the direct response :return: list of ConnectionOverrideSetting, or the result of cls(response) :rtype: list[~flow.models.ConnectionOverrideSetting] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[List["_models.ConnectionOverrideSetting"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] if body is not None: _json = self._serialize.body(body, 'FlowGraphReference') else: _json = None request = build_get_connection_override_settings_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, content_type=content_type, json=_json, runtime_name=runtime_name, template_url=self.get_connection_override_settings.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('[ConnectionOverrideSetting]', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_connection_override_settings.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/connectionOverride'} # type: ignore @distributed_trace def get_flow_inputs( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str body=None, # type: Optional["_models.FlowGraphReference"] **kwargs # type: Any ): # type: (...) -> Dict[str, "_models.FlowInputDefinition"] """get_flow_inputs. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param body: :type body: ~flow.models.FlowGraphReference :keyword callable cls: A custom type or function that will be passed the direct response :return: dict mapping str to FlowInputDefinition, or the result of cls(response) :rtype: dict[str, ~flow.models.FlowInputDefinition] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[Dict[str, "_models.FlowInputDefinition"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] if body is not None: _json = self._serialize.body(body, 'FlowGraphReference') else: _json = None request = build_get_flow_inputs_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, content_type=content_type, json=_json, template_url=self.get_flow_inputs.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('{FlowInputDefinition}', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_flow_inputs.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/flowInputs'} # type: ignore @distributed_trace def load_as_component( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str body=None, # type: Optional["_models.LoadFlowAsComponentRequest"] **kwargs # type: Any ): # type: (...) -> str """load_as_component. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param body: :type body: ~flow.models.LoadFlowAsComponentRequest :keyword callable cls: A custom type or function that will be passed the direct response :return: str, or the result of cls(response) :rtype: str :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[str] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] if body is not None: _json = self._serialize.body(body, 'LoadFlowAsComponentRequest') else: _json = None request = build_load_as_component_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, content_type=content_type, json=_json, template_url=self.load_as_component.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('str', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized load_as_component.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/LoadAsComponent'} # type: ignore @distributed_trace def get_flow_tools( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_id, # type: str experiment_id, # type: str flow_runtime_name=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> "_models.FlowToolsDto" """get_flow_tools. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param flow_id: :type flow_id: str :param experiment_id: :type experiment_id: str :param flow_runtime_name: :type flow_runtime_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: FlowToolsDto, or the result of cls(response) :rtype: ~flow.models.FlowToolsDto :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.FlowToolsDto"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_get_flow_tools_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, flow_id=flow_id, experiment_id=experiment_id, flow_runtime_name=flow_runtime_name, template_url=self.get_flow_tools.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('FlowToolsDto', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_flow_tools.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/{flowId}/flowTools'} # type: ignore @distributed_trace def setup_flow_session( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_id, # type: str experiment_id, # type: str body=None, # type: Optional["_models.SetupFlowSessionRequest"] **kwargs # type: Any ): # type: (...) -> Any """setup_flow_session. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param flow_id: :type flow_id: str :param experiment_id: :type experiment_id: str :param body: :type body: ~flow.models.SetupFlowSessionRequest :keyword callable cls: A custom type or function that will be passed the direct response :return: any, or the result of cls(response) :rtype: any :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[Any] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] if body is not None: _json = self._serialize.body(body, 'SetupFlowSessionRequest') else: _json = None request = build_setup_flow_session_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, flow_id=flow_id, content_type=content_type, experiment_id=experiment_id, json=_json, template_url=self.setup_flow_session.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) if response.status_code == 200: deserialized = self._deserialize('object', pipeline_response) if response.status_code == 202: deserialized = self._deserialize('object', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized setup_flow_session.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/{flowId}/sessions'} # type: ignore @distributed_trace def delete_flow_session( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_id, # type: str experiment_id, # type: str **kwargs # type: Any ): # type: (...) -> Any """delete_flow_session. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param flow_id: :type flow_id: str :param experiment_id: :type experiment_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: any, or the result of cls(response) :rtype: any :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[Any] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_delete_flow_session_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, flow_id=flow_id, experiment_id=experiment_id, template_url=self.delete_flow_session.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) if response.status_code == 200: deserialized = self._deserialize('object', pipeline_response) if response.status_code == 202: deserialized = self._deserialize('object', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized delete_flow_session.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/{flowId}/sessions'} # type: ignore @distributed_trace def get_flow_session_status( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str flow_id, # type: str experiment_id, # type: str **kwargs # type: Any ): # type: (...) -> "_models.FlowSessionDto" """get_flow_session_status. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param flow_id: :type flow_id: str :param experiment_id: :type experiment_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: FlowSessionDto, or the result of cls(response) :rtype: ~flow.models.FlowSessionDto :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.FlowSessionDto"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_get_flow_session_status_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, flow_id=flow_id, experiment_id=experiment_id, template_url=self.get_flow_session_status.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('FlowSessionDto', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_flow_session_status.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/Flows/{flowId}/sessions/status'} # type: ignore
promptflow/src/promptflow/promptflow/azure/_restclient/flow/operations/_flows_operations.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/azure/_restclient/flow/operations/_flows_operations.py", "repo_id": "promptflow", "token_count": 59142 }
45
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- from typing import Dict from azure.ai.ml._scope_dependent_operations import ( OperationConfig, OperationsContainer, OperationScope, _ScopeDependentOperations, ) from promptflow._sdk._utils import safe_parse_object_list from promptflow._sdk.entities._connection import _Connection from promptflow._utils.logger_utils import get_cli_sdk_logger from promptflow.azure._entities._workspace_connection_spec import WorkspaceConnectionSpec from promptflow.azure._restclient.flow_service_caller import FlowServiceCaller logger = get_cli_sdk_logger() class ConnectionOperations(_ScopeDependentOperations): """ConnectionOperations. You should not instantiate this class directly. Instead, you should create an PFClient instance that instantiates it for you and attaches it as an attribute. """ def __init__( self, operation_scope: OperationScope, operation_config: OperationConfig, all_operations: OperationsContainer, credential, service_caller: FlowServiceCaller, **kwargs: Dict, ): super(ConnectionOperations, self).__init__(operation_scope, operation_config) self._all_operations = all_operations self._service_caller = service_caller self._credential = credential def create_or_update(self, connection, **kwargs): rest_conn = connection._to_rest_object() # create flow draft rest_conn_result = self._service_caller.create_connection( subscription_id=self._operation_scope.subscription_id, resource_group_name=self._operation_scope.resource_group_name, workspace_name=self._operation_scope.workspace_name, connection_name=connection.name, body=rest_conn, ) return _Connection._from_mt_rest_object(rest_conn_result) def get(self, name, **kwargs): rest_conn = self._service_caller.get_connection( subscription_id=self._operation_scope.subscription_id, resource_group_name=self._operation_scope.resource_group_name, workspace_name=self._operation_scope.workspace_name, connection_name=name, **kwargs, ) return _Connection._from_mt_rest_object(rest_conn) def delete(self, name, **kwargs): return self._service_caller.delete_connection( subscription_id=self._operation_scope.subscription_id, resource_group_name=self._operation_scope.resource_group_name, workspace_name=self._operation_scope.workspace_name, connection_name=name, **kwargs, ) def list(self, **kwargs): rest_connections = self._service_caller.list_connections( subscription_id=self._operation_scope.subscription_id, resource_group_name=self._operation_scope.resource_group_name, workspace_name=self._operation_scope.workspace_name, **kwargs, ) return safe_parse_object_list( obj_list=rest_connections, parser=_Connection._from_mt_rest_object, message_generator=lambda x: f"Failed to load connection {x.connection_name}, skipped.", ) def list_connection_specs(self, **kwargs): results = self._service_caller.list_connection_specs( subscription_id=self._operation_scope.subscription_id, resource_group_name=self._operation_scope.resource_group_name, workspace_name=self._operation_scope.workspace_name, **kwargs, ) return [WorkspaceConnectionSpec._from_rest_object(spec) for spec in results]
promptflow/src/promptflow/promptflow/azure/operations/_connection_operations.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/azure/operations/_connection_operations.py", "repo_id": "promptflow", "token_count": 1476 }
46
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import json from dataclasses import dataclass from typing import Any, Dict, List, Optional from promptflow._sdk._constants import VIS_JS_BUNDLE_FILENAME @dataclass class RunDetail: flow_runs: List[dict] node_runs: List[dict] @dataclass class RunMetadata: name: str display_name: str create_time: str flow_path: str output_path: str tags: Optional[List[Dict[str, str]]] lineage: Optional[str] metrics: Optional[Dict[str, Any]] dag: Optional[str] flow_tools_json: Optional[dict] mode: Optional[str] = "" @dataclass class VisualizationConfig: # use camel name here to fit contract requirement from js availableIDEList: List[str] @dataclass class RunVisualization: detail: List[RunDetail] metadata: List[RunMetadata] config: List[VisualizationConfig] @dataclass class VisualizationRender: data: dict js_path: str = VIS_JS_BUNDLE_FILENAME def __post_init__(self): self.data = json.dumps(json.dumps(self.data)) # double json.dumps to match JS requirements
promptflow/src/promptflow/promptflow/contracts/_run_management.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/contracts/_run_management.py", "repo_id": "promptflow", "token_count": 421 }
47
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import asyncio import contextvars import inspect import threading from concurrent import futures from concurrent.futures import Future, ThreadPoolExecutor from typing import Dict, List, Optional, Tuple from promptflow._core.flow_execution_context import FlowExecutionContext from promptflow._core.tools_manager import ToolsManager from promptflow._utils.logger_utils import flow_logger from promptflow._utils.utils import set_context from promptflow.contracts.flow import Node from promptflow.executor._dag_manager import DAGManager from promptflow.executor._errors import LineExecutionTimeoutError, NoNodeExecutedError RUN_FLOW_NODES_LINEARLY = 1 DEFAULT_CONCURRENCY_BULK = 2 DEFAULT_CONCURRENCY_FLOW = 16 class FlowNodesScheduler: def __init__( self, tools_manager: ToolsManager, inputs: Dict, nodes_from_invoker: List[Node], node_concurrency: int, context: FlowExecutionContext, ) -> None: self._tools_manager = tools_manager self._future_to_node: Dict[Future, Node] = {} self._node_concurrency = min(node_concurrency, DEFAULT_CONCURRENCY_FLOW) flow_logger.info(f"Start to run {len(nodes_from_invoker)} nodes with concurrency level {node_concurrency}.") self._dag_manager = DAGManager(nodes_from_invoker, inputs) self._context = context def wait_within_timeout(self, execution_event: threading.Event, timeout: int): flow_logger.info(f"Timeout task is scheduled to wait for {timeout} seconds.") signal = execution_event.wait(timeout=timeout) if signal: flow_logger.info("Timeout task is cancelled because the execution is finished.") else: flow_logger.warning(f"Timeout task timeouted after waiting for {timeout} seconds.") def execute( self, line_timeout_sec: Optional[int] = None, ) -> Tuple[dict, dict]: parent_context = contextvars.copy_context() with ThreadPoolExecutor( max_workers=self._node_concurrency, initializer=set_context, initargs=(parent_context,) ) as executor: self._execute_nodes(executor) timeout_task = None event = threading.Event() if line_timeout_sec is not None: timeout_task = executor.submit(self.wait_within_timeout, event, line_timeout_sec) try: while not self._dag_manager.completed(): if not self._future_to_node: raise NoNodeExecutedError("No nodes are ready for execution, but the flow is not completed.") tasks_to_wait = list(self._future_to_node.keys()) if timeout_task is not None: tasks_to_wait.append(timeout_task) completed_futures_with_wait, _ = futures.wait(tasks_to_wait, return_when=futures.FIRST_COMPLETED) completed_futures = [f for f in completed_futures_with_wait if f in self._future_to_node] self._dag_manager.complete_nodes(self._collect_outputs(completed_futures)) for each_future in completed_futures: del self._future_to_node[each_future] if timeout_task and timeout_task.done(): raise LineExecutionTimeoutError(self._context._line_number, line_timeout_sec) self._execute_nodes(executor) except Exception as e: err_msg = "Flow execution has failed." if isinstance(e, LineExecutionTimeoutError): err_msg = f"Line execution timeout after {line_timeout_sec} seconds." self._context.cancel_node_runs(err_msg) node_names = ",".join(node.name for node in self._future_to_node.values()) flow_logger.error(f"{err_msg} Cancelling all running nodes: {node_names}.") for unfinished_future in self._future_to_node.keys(): # We can't cancel running tasks here, only pending tasks could be cancelled. unfinished_future.cancel() # Even we raise exception here, still need to wait all running jobs finish to exit. raise e finally: # Cancel timeout task no matter the execution is finished or failed. event.set() for node in self._dag_manager.bypassed_nodes: self._dag_manager.completed_nodes_outputs[node] = None return self._dag_manager.completed_nodes_outputs, self._dag_manager.bypassed_nodes def _execute_nodes(self, executor: ThreadPoolExecutor): # Skip nodes and update node run info until there are no nodes to bypass nodes_to_bypass = self._dag_manager.pop_bypassable_nodes() while nodes_to_bypass: for node in nodes_to_bypass: self._context.bypass_node(node) nodes_to_bypass = self._dag_manager.pop_bypassable_nodes() # Submit nodes that are ready to run nodes_to_exec = self._dag_manager.pop_ready_nodes() if nodes_to_exec: self._submit_nodes(executor, nodes_to_exec) def _collect_outputs(self, completed_futures: List[Future]): completed_nodes_outputs = {} for each_future in completed_futures: each_node_result = each_future.result() each_node = self._future_to_node[each_future] completed_nodes_outputs[each_node.name] = each_node_result return completed_nodes_outputs def _submit_nodes(self, executor: ThreadPoolExecutor, nodes): for each_node in nodes: future = executor.submit(self._exec_single_node_in_thread, (each_node, self._dag_manager)) self._future_to_node[future] = each_node def _exec_single_node_in_thread(self, args: Tuple[Node, DAGManager]): node, dag_manager = args # We are using same run tracker and cache manager for all threads, which may not thread safe. # But for bulk run scenario, we've doing this for a long time, and it works well. context = self._context f = self._tools_manager.get_tool(node.name) kwargs = dag_manager.get_node_valid_inputs(node, f) if inspect.iscoroutinefunction(f): # TODO: Run async functions in flow level event loop result = asyncio.run(context.invoke_tool_async(node, f, kwargs=kwargs)) else: result = context.invoke_tool(node, f, kwargs=kwargs) return result
promptflow/src/promptflow/promptflow/executor/_flow_nodes_scheduler.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/executor/_flow_nodes_scheduler.py", "repo_id": "promptflow", "token_count": 2820 }
48
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- from functools import partial from pathlib import Path from typing import Union from promptflow._utils.multimedia_utils import _process_recursively, get_file_reference_encoder from promptflow.contracts.multimedia import Image from promptflow.contracts.run_info import FlowRunInfo from promptflow.contracts.run_info import RunInfo as NodeRunInfo class AbstractRunStorage: def persist_node_run(self, run_info: NodeRunInfo): """Write the node run info to somewhere immediately after the node is executed. :param run_info: The run info of the node. :type run_info: ~promptflow.contracts.run_info.RunInfo """ raise NotImplementedError("AbstractRunStorage is an abstract class, no implementation for persist_node_run.") def persist_flow_run(self, run_info: FlowRunInfo): """Write the flow run info to somewhere immediately after one line data is executed for the flow. :param run_info: The run info of the node. :type run_info: ~promptflow.contracts.run_info.RunInfo """ raise NotImplementedError("AbstractRunStorage is an abstract class, no implementation for persist_flow_run.") class DummyRunStorage(AbstractRunStorage): def persist_node_run(self, run_info: NodeRunInfo): """Dummy implementation for persist_node_run :param run_info: The run info of the node. :type run_info: ~promptflow.contracts.run_info.RunInfo """ pass def persist_flow_run(self, run_info: FlowRunInfo): """Dummy implementation for persist_flow_run :param run_info: The run info of the node. :type run_info: ~promptflow.contracts.run_info.RunInfo """ pass class DefaultRunStorage(AbstractRunStorage): def __init__(self, base_dir: Path = None, sub_dir: Path = None): """Initialize the default run storage. :param base_dir: The base directory to store the multimedia data. :type base_dir: Path :param sub_dir: The sub directory to store the multimedia data. :type sub_dir: Path """ self._base_dir = base_dir self._sub_dir = sub_dir def persist_run_info(self, run_info: Union[FlowRunInfo, NodeRunInfo]): """Persist the multimedia data in run info after execution. :param run_info: The run info of the node or flow. :type run_info: ~promptflow.contracts.run_info.RunInfo or ~promptflow.contracts.run_info.FlowRunInfo """ # Persist and convert images in inputs to path dictionaries. # This replaces any image objects with their corresponding file path dictionaries. if run_info.inputs: run_info.inputs = self._persist_and_convert_images_to_path_dicts(run_info.inputs) # Persist and convert images in output to path dictionaries. # This replaces any image objects with their corresponding file path dictionaries. if run_info.output: serialized_output = self._persist_and_convert_images_to_path_dicts(run_info.output) run_info.output = serialized_output run_info.result = serialized_output # Persist and convert images in api_calls to path dictionaries. # The `inplace=True` parameter is used here to ensure that the original list structure holding generator outputs # is maintained. This allows us to keep tracking the list as it dynamically changes when the generator is # consumed. It is crucial to process the api_calls list in place to avoid losing the reference to the list that # holds the generator items, which is essential for tracing generator execution. if run_info.api_calls: run_info.api_calls = self._persist_and_convert_images_to_path_dicts(run_info.api_calls, inplace=True) def persist_node_run(self, run_info: NodeRunInfo): """Persist the multimedia data in node run info after the node is executed. This method now delegates to the shared persist_run_info method. :param run_info: The run info of the node. :type run_info: NodeRunInfo """ self.persist_run_info(run_info) def persist_flow_run(self, run_info: FlowRunInfo): """Persist the multimedia data in flow run info after one line data is executed for the flow. This method now delegates to the shared persist_run_info method. :param run_info: The run info of the flow. :type run_info: FlowRunInfo """ self.persist_run_info(run_info) def _persist_and_convert_images_to_path_dicts(self, value, inplace=False): """Persist image objects within a Python object to disk and convert them to path dictionaries. This function recursively processes a given Python object, which can be a list, a dictionary, or a nested combination of these, searching for image objects. Each image object encountered is serialized and saved to disk in a pre-defined location using the `_base_dir` and `_sub_dir` attributes. The image object within the original data structure is then replaced with a dictionary that indicates the file path of the serialized image, following the format: `{'data:image/<ext>;path': '.promptflow/intermediate/<image_uuid>.<ext>'}`. The operation can be performed in-place on the original object or on a new copy, depending on the value of the `inplace` parameter. When `inplace` is set to `True`, the original object is modified; when set to `False`, a new object with the converted path dictionaries is returned. :param value: The Python object to be processed, potentially containing image objects. :type value: Any :param inplace: Whether to modify the original object in place (True) or to create a new object with converted path dictionaries (False). :type inplace: bool :return: The original object with converted path dictionaries if `inplace` is True, otherwise a new object with the conversions. :rtype: Any """ if self._base_dir: pfbytes_file_reference_encoder = get_file_reference_encoder( folder_path=self._base_dir, relative_path=self._sub_dir, ) else: pfbytes_file_reference_encoder = None serialization_funcs = {Image: partial(Image.serialize, **{"encoder": pfbytes_file_reference_encoder})} return _process_recursively(value, process_funcs=serialization_funcs, inplace=inplace)
promptflow/src/promptflow/promptflow/storage/_run_storage.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/storage/_run_storage.py", "repo_id": "promptflow", "token_count": 2371 }
49
import pytest from promptflow.contracts.run_info import Status from promptflow.executor import FlowExecutor from ..utils import ( get_yaml_file, ) SAMPLE_FLOW = "web_classification_no_variants" SAMPLE_EVAL_FLOW = "classification_accuracy_evaluation" SAMPLE_FLOW_WITH_PARTIAL_FAILURE = "python_tool_partial_failure" SAMPLE_FLOW_WITH_LANGCHAIN_TRACES = "flow_with_langchain_traces" expected_stack_traces = { "sync_tools_failures": """Traceback (most recent call last): sync_fail.py", line 11, in raise_an_exception raise_exception(s) sync_fail.py", line 5, in raise_exception raise Exception(msg) Exception: In raise_exception: dummy_input The above exception was the direct cause of the following exception: Traceback (most recent call last): sync_fail.py", line 13, in raise_an_exception raise Exception(f"In tool raise_an_exception: {s}") from e Exception: In tool raise_an_exception: dummy_input """.split("\n"), "async_tools_failures": """Traceback (most recent call last): async_fail.py", line 11, in raise_an_exception_async await raise_exception_async(s) async_fail.py", line 5, in raise_exception_async raise Exception(msg) Exception: In raise_exception_async: dummy_input The above exception was the direct cause of the following exception: Traceback (most recent call last): in raise_an_exception_async raise Exception(f"In tool raise_an_exception_async: {s}") from e Exception: In tool raise_an_exception_async: dummy_input """.split("\n"), } @pytest.mark.e2etest class TestExecutorFailures: @pytest.mark.parametrize( "flow_folder, node_name, message", [ ("sync_tools_failures", "sync_fail", "In tool raise_an_exception: dummy_input"), ("async_tools_failures", "async_fail", "In tool raise_an_exception_async: dummy_input"), ], ) def test_executor_exec_node_fail(self, flow_folder, node_name, message): yaml_file = get_yaml_file(flow_folder) run_info = FlowExecutor.load_and_exec_node(yaml_file, node_name) assert run_info.output is None assert run_info.status == Status.Failed assert isinstance(run_info.api_calls, list) assert len(run_info.api_calls) == 1 assert run_info.node == node_name assert run_info.system_metrics["duration"] >= 0 assert run_info.error is not None assert f"Execution failure in '{node_name}'" in run_info.error["message"] assert len(run_info.error["additionalInfo"]) == 1 user_error_info_dict = run_info.error["additionalInfo"][0] assert "ToolExecutionErrorDetails" == user_error_info_dict["type"] user_error_info = user_error_info_dict["info"] assert message == user_error_info["message"] # Make sure the stack trace is as expected stacktrace = user_error_info["traceback"].split("\n") expected_stack_trace = expected_stack_traces[flow_folder] assert len(stacktrace) == len(expected_stack_trace) for expected_item, actual_item in zip(expected_stack_trace, stacktrace): assert expected_item in actual_item @pytest.mark.parametrize( "flow_folder, failed_node_name, message", [ ("sync_tools_failures", "sync_fail", "In tool raise_an_exception: dummy_input"), ("async_tools_failures", "async_fail", "In tool raise_an_exception_async: dummy_input"), ], ) def test_executor_exec_line_fail(self, flow_folder, failed_node_name, message): yaml_file = get_yaml_file(flow_folder) executor = FlowExecutor.create(yaml_file, {}, raise_ex=False) line_result = executor.exec_line({}) run_info = line_result.run_info assert run_info.output is None assert run_info.status == Status.Failed assert isinstance(run_info.api_calls, list) assert len(run_info.api_calls) == 1 assert run_info.system_metrics["duration"] >= 0 assert run_info.error is not None assert f"Execution failure in '{failed_node_name}'" in run_info.error["message"] assert len(run_info.error["additionalInfo"]) == 1 user_error_info_dict = run_info.error["additionalInfo"][0] assert "ToolExecutionErrorDetails" == user_error_info_dict["type"] user_error_info = user_error_info_dict["info"] assert message == user_error_info["message"] # Make sure the stack trace is as expected stacktrace = user_error_info["traceback"].split("\n") expected_stack_trace = expected_stack_traces[flow_folder] assert len(stacktrace) == len(expected_stack_trace) for expected_item, actual_item in zip(expected_stack_trace, stacktrace): assert expected_item in actual_item
promptflow/src/promptflow/tests/executor/e2etests/test_executor_execution_failures.py/0
{ "file_path": "promptflow/src/promptflow/tests/executor/e2etests/test_executor_execution_failures.py", "repo_id": "promptflow", "token_count": 1879 }
50
inputs: text: type: string outputs: output: type: string reference: ${custom_llm_tool_with_duplicated_inputs.output} nodes: - name: custom_llm_tool_with_duplicated_inputs type: custom_llm source: type: package_with_prompt tool: custom_llm_tool.TestCustomLLMTool.call path: ./prompt_with_duplicated_inputs.jinja2 inputs: connection: azure_open_ai_connection api: completion text: ${inputs.text}
promptflow/src/promptflow/tests/executor/package_tools/custom_llm_tool_with_duplicated_inputs/flow.dag.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/executor/package_tools/custom_llm_tool_with_duplicated_inputs/flow.dag.yaml", "repo_id": "promptflow", "token_count": 181 }
51
import threading import pytest from promptflow._core.operation_context import OperationContext from promptflow._version import VERSION from promptflow.contracts.run_mode import RunMode def set_run_mode(context: OperationContext, run_mode: RunMode): """This method simulates the runtime.execute_request() It is aimed to set the run_mode into operation context. """ context.run_mode = run_mode.name if run_mode is not None else "" @pytest.mark.unittest class TestOperationContext: def test_get_user_agent(self): operation_context = OperationContext() assert operation_context.get_user_agent() == f"promptflow/{VERSION}" operation_context.user_agent = "test_agent/0.0.2" assert operation_context.get_user_agent() == f"test_agent/0.0.2 promptflow/{VERSION}" @pytest.mark.parametrize( "run_mode, expected", [ (RunMode.Test, "Test"), (RunMode.SingleNode, "SingleNode"), (RunMode.Batch, "Batch"), ], ) def test_run_mode(self, run_mode, expected): context = OperationContext() set_run_mode(context, run_mode) assert context.run_mode == expected def test_context_dict(self): context = OperationContext() context.run_mode = "Flow" context.user_agent = "test_agent/0.0.2" context.none_value = None context_dict = context.get_context_dict() assert context_dict["run_mode"] == "Flow" assert context_dict["user_agent"] == "test_agent/0.0.2" assert context_dict["none_value"] is None def test_setattr(self): context = OperationContext() context.run_mode = "Flow" assert context["run_mode"] == "Flow" def test_setattr_non_primitive(self): # Test set non-primitive type context = OperationContext() with pytest.raises(TypeError): context.foo = [1, 2, 3] def test_getattr(self): context = OperationContext() context["run_mode"] = "Flow" assert context.run_mode == "Flow" def test_getattr_missing(self): context = OperationContext() with pytest.raises(AttributeError): context.foo def test_delattr(self): # test that delattr works as expected context = OperationContext() context.foo = "bar" del context.foo assert "foo" not in context # test that delattr raises AttributeError for non-existent name with pytest.raises(AttributeError): del context.baz def test_append_user_agent(self): context = OperationContext() user_agent = ' ' + context.user_agent if 'user_agent' in context else '' context.append_user_agent("test_agent/0.0.2") assert context.user_agent == "test_agent/0.0.2" + user_agent context.append_user_agent("test_agent/0.0.3") assert context.user_agent == "test_agent/0.0.2 test_agent/0.0.3" + user_agent def test_get_instance(self): context1 = OperationContext.get_instance() context2 = OperationContext.get_instance() assert context1 is context2 def test_set_batch_input_source_from_inputs_mapping_run(self): input_mapping = {"input1": "${run.outputs.output1}", "input2": "${run.outputs.output2}"} context = OperationContext() context.set_batch_input_source_from_inputs_mapping(input_mapping) assert context.batch_input_source == "Run" def test_set_batch_input_source_from_inputs_mapping_data(self): input_mapping = {"url": "${data.url}"} context = OperationContext() context.set_batch_input_source_from_inputs_mapping(input_mapping) assert context.batch_input_source == "Data" def test_set_batch_input_source_from_inputs_mapping_none(self): input_mapping = None context = OperationContext() assert not hasattr(context, "batch_input_source") context.set_batch_input_source_from_inputs_mapping(input_mapping) assert context.batch_input_source == "Data" def test_set_batch_input_source_from_inputs_mapping_empty(self): input_mapping = {} context = OperationContext() assert not hasattr(context, "batch_input_source") context.set_batch_input_source_from_inputs_mapping(input_mapping) assert context.batch_input_source == "Data" def test_different_thread_have_different_instance(self): # create a list to store the OperationContext instances from each thread instances = [] # define a function that gets the OperationContext instance and appends it to the list def get_instance(): instance = OperationContext.get_instance() instances.append(instance) # create two threads and run the function in each thread thread1 = threading.Thread(target=get_instance) thread2 = threading.Thread(target=get_instance) thread1.start() thread2.start() thread1.join() thread2.join() # assert that the list has two elements and they are different objects assert len(instances) == 2 assert instances[0] is not instances[1]
promptflow/src/promptflow/tests/executor/unittests/_core/test_operation_context.py/0
{ "file_path": "promptflow/src/promptflow/tests/executor/unittests/_core/test_operation_context.py", "repo_id": "promptflow", "token_count": 2081 }
52
import re import sys import time from io import StringIO from logging import WARNING, Logger, StreamHandler import pytest from promptflow._utils.thread_utils import RepeatLogTimer from promptflow._utils.utils import generate_elapsed_time_messages class DummyException(Exception): pass @pytest.mark.skipif(sys.platform == "darwin", reason="Skip on Mac") @pytest.mark.unittest class TestRepeatLogTimer: def test_context_manager(self): s = StringIO() logger = Logger("test_repeat_log_timer") logger.addHandler(StreamHandler(s)) interval_seconds = 1 start_time = time.perf_counter() with RepeatLogTimer( interval_seconds=interval_seconds, logger=logger, level=WARNING, log_message_function=generate_elapsed_time_messages, args=("Test", start_time, interval_seconds, None), ): time.sleep(10.5) logs = s.getvalue().split("\n") logs = [log for log in logs if log] log_pattern = re.compile( r"^Test has been running for [0-9]+ seconds, thread None cannot be found in sys._current_frames, " r"maybe it has been terminated due to unexpected errors.$" ) assert logs, "Logs are empty." for log in logs: assert re.match(log_pattern, log), f"The wrong log: {log}"
promptflow/src/promptflow/tests/executor/unittests/_utils/test_thread_utils.py/0
{ "file_path": "promptflow/src/promptflow/tests/executor/unittests/_utils/test_thread_utils.py", "repo_id": "promptflow", "token_count": 561 }
53
import pytest from promptflow.contracts.types import AssistantDefinition, Secret, PromptTemplate, FilePath from promptflow.executor._assistant_tool_invoker import AssistantToolInvoker @pytest.mark.unittest def test_secret(): secret = Secret('my_secret') secret.set_secret_name('secret_name') assert secret.secret_name == 'secret_name' @pytest.mark.unittest def test_prompt_template(): prompt = PromptTemplate('my_prompt') assert isinstance(prompt, str) assert str(prompt) == 'my_prompt' @pytest.mark.unittest def test_file_path(): file_path = FilePath('my_file_path') assert isinstance(file_path, str) @pytest.mark.unittest def test_assistant_definition(): data = {"model": "model", "instructions": "instructions", "tools": []} assistant_definition = AssistantDefinition.deserialize(data) assert isinstance(assistant_definition, AssistantDefinition) assert assistant_definition.model == "model" assert assistant_definition.instructions == "instructions" assert assistant_definition.tools == [] assert assistant_definition.serialize() == data assert isinstance(assistant_definition.init_tool_invoker(), AssistantToolInvoker)
promptflow/src/promptflow/tests/executor/unittests/contracts/test_types.py/0
{ "file_path": "promptflow/src/promptflow/tests/executor/unittests/contracts/test_types.py", "repo_id": "promptflow", "token_count": 382 }
54
import json from datetime import datetime import pytest from promptflow._utils.dataclass_serializer import serialize from promptflow.contracts.run_info import FlowRunInfo, RunInfo, Status from promptflow.storage.run_records import LineRunRecord, NodeRunRecord @pytest.mark.unittest def test_line_record(): start_time = datetime(2023, 7, 12) end_time = datetime(2023, 7, 13) flow_run_info = FlowRunInfo( run_id=None, status=Status.Completed, error=None, inputs=None, output=None, metrics=None, request=None, parent_run_id=None, root_run_id=None, source_run_id=None, flow_id=None, start_time=start_time, end_time=end_time, index=0, variant_id=None, ) line_record = LineRunRecord.from_run_info(flow_run_info) assert line_record.line_number == 0 assert line_record.start_time == start_time.isoformat() assert line_record.end_time == end_time.isoformat() assert line_record.status == Status.Completed.value assert line_record.run_info == serialize(flow_run_info) @pytest.mark.unittest def test_line_serialize(): start_time = datetime(2023, 7, 12) end_time = datetime(2023, 7, 13) flow_run_info = FlowRunInfo( run_id=None, status=Status.Completed, error=None, inputs=None, output=None, metrics=None, request=None, parent_run_id=None, root_run_id=None, source_run_id=None, flow_id=None, start_time=start_time, end_time=end_time, index=0, variant_id=None, ) line_record = LineRunRecord.from_run_info(flow_run_info) result = line_record.serialize() expected_result = json.dumps(line_record.__dict__) assert result == expected_result @pytest.mark.unittest def test_node_record(): start_time = datetime(2023, 7, 12) end_time = datetime(2023, 7, 13) node_run_info = RunInfo( node=None, run_id=None, flow_run_id=None, status=Status.Completed, inputs=None, output=None, metrics=None, error=None, parent_run_id=None, start_time=start_time, end_time=end_time, index=0, ) node_record = NodeRunRecord.from_run_info(node_run_info) assert node_record.line_number == 0 assert node_record.start_time == start_time.isoformat() assert node_record.end_time == end_time.isoformat() assert node_record.status == Status.Completed.value assert node_record.run_info == serialize(node_run_info) @pytest.mark.unittest def test_node_serialize(): start_time = datetime(2023, 7, 12) end_time = datetime(2023, 7, 13) node_run_info = RunInfo( node=None, run_id=None, flow_run_id=None, status=Status.Completed, inputs=None, output=None, metrics=None, error=None, parent_run_id=None, start_time=start_time, end_time=end_time, index=0, ) node_record = NodeRunRecord.from_run_info(node_run_info) result = node_record.serialize() expected_result = json.dumps(node_record.__dict__) assert result == expected_result
promptflow/src/promptflow/tests/executor/unittests/storage/test_run_records.py/0
{ "file_path": "promptflow/src/promptflow/tests/executor/unittests/storage/test_run_records.py", "repo_id": "promptflow", "token_count": 1479 }
55
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import contextlib import os import shutil import sys import tempfile import uuid from logging import Logger from pathlib import Path from typing import Callable from unittest.mock import MagicMock, patch import pydash import pytest from promptflow import load_run from promptflow._constants import PF_USER_AGENT from promptflow._core.operation_context import OperationContext from promptflow._sdk._configuration import Configuration from promptflow._sdk._errors import RunNotFoundError from promptflow._sdk._telemetry import ( ActivityType, PromptFlowSDKLogHandler, get_appinsights_log_handler, get_telemetry_logger, is_telemetry_enabled, log_activity, ) from promptflow._sdk._utils import ClientUserAgentUtil, call_from_extension from promptflow._utils.utils import environment_variable_overwrite, parse_ua_to_dict from .._azure_utils import DEFAULT_TEST_TIMEOUT, PYTEST_TIMEOUT_METHOD @contextlib.contextmanager def cli_consent_config_overwrite(val): config = Configuration.get_instance() original_consent = config.get_telemetry_consent() config.set_telemetry_consent(val) try: yield finally: if original_consent: config.set_telemetry_consent(original_consent) else: config.set_telemetry_consent(True) @contextlib.contextmanager def extension_consent_config_overwrite(val): config = Configuration.get_instance() original_consent = config.get_config(key=Configuration.EXTENSION_COLLECT_TELEMETRY) config.set_config(key=Configuration.EXTENSION_COLLECT_TELEMETRY, value=val) try: yield finally: if original_consent: config.set_config(key=Configuration.EXTENSION_COLLECT_TELEMETRY, value=original_consent) else: config.set_config(key=Configuration.EXTENSION_COLLECT_TELEMETRY, value=True) RUNS_DIR = "./tests/test_configs/runs" FLOWS_DIR = "./tests/test_configs/flows" @pytest.mark.timeout(timeout=DEFAULT_TEST_TIMEOUT, method=PYTEST_TIMEOUT_METHOD) @pytest.mark.usefixtures("mock_set_headers_with_user_aml_token", "single_worker_thread_pool", "vcr_recording") @pytest.mark.e2etest class TestTelemetry: def test_logging_handler(self): # override environment variable with cli_consent_config_overwrite(True): handler = get_appinsights_log_handler() assert isinstance(handler, PromptFlowSDKLogHandler) assert handler._is_telemetry_enabled is True with cli_consent_config_overwrite(False): handler = get_appinsights_log_handler() assert isinstance(handler, PromptFlowSDKLogHandler) assert handler._is_telemetry_enabled is False def test_call_from_extension(self): from promptflow._core.operation_context import OperationContext assert call_from_extension() is False with environment_variable_overwrite(PF_USER_AGENT, "prompt-flow-extension/1.0.0"): assert call_from_extension() is True # remove extension ua in context context = OperationContext().get_instance() context.user_agent = context.user_agent.replace("prompt-flow-extension/1.0.0", "") def test_custom_event(self, pf): from promptflow._sdk._telemetry.logging_handler import PromptFlowSDKLogHandler def log_event(*args, **kwargs): record = args[0] assert record.custom_dimensions is not None logger = get_telemetry_logger() handler = logger.handlers[0] assert isinstance(handler, PromptFlowSDKLogHandler) envelope = handler.log_record_to_envelope(record) custom_dimensions = pydash.get(envelope, "data.baseData.properties") assert isinstance(custom_dimensions, dict) # Note: need privacy review if we add new fields. if "start" in record.message: assert custom_dimensions.keys() == { "request_id", "activity_name", "activity_type", "subscription_id", "resource_group_name", "workspace_name", "level", "python_version", "user_agent", "installation_id", "first_call", "from_ci", } elif "complete" in record.message: assert custom_dimensions.keys() == { "request_id", "activity_name", "activity_type", "subscription_id", "resource_group_name", "workspace_name", "completion_status", "duration_ms", "level", "python_version", "user_agent", "installation_id", "first_call", "from_ci", } else: raise ValueError("Invalid message: {}".format(record.message)) assert record.message.startswith("pfazure.runs.get") with patch.object(PromptFlowSDKLogHandler, "emit") as mock_logger: mock_logger.side_effect = log_event # mock_error_logger.side_effect = log_event try: pf.runs.get("not_exist") except RunNotFoundError: pass def test_default_logging_behavior(self): assert is_telemetry_enabled() is True # default enable telemetry logger = get_telemetry_logger() handler = logger.handlers[0] assert isinstance(handler, PromptFlowSDKLogHandler) assert handler._is_telemetry_enabled is True def test_close_logging_handler(self): with cli_consent_config_overwrite(False): logger = get_telemetry_logger() handler = logger.handlers[0] assert isinstance(handler, PromptFlowSDKLogHandler) assert handler._is_telemetry_enabled is False with extension_consent_config_overwrite(False): with environment_variable_overwrite(PF_USER_AGENT, "prompt-flow-extension/1.0.0"): logger = get_telemetry_logger() handler = logger.handlers[0] assert isinstance(handler, PromptFlowSDKLogHandler) assert handler._is_telemetry_enabled is False # default enable telemetry logger = get_telemetry_logger() handler = logger.handlers[0] assert isinstance(handler, PromptFlowSDKLogHandler) assert handler._is_telemetry_enabled is True def test_cached_logging_handler(self): # should get same logger & handler instance if called multiple times logger = get_telemetry_logger() handler = next((h for h in logger.handlers if isinstance(h, PromptFlowSDKLogHandler)), None) another_logger = get_telemetry_logger() another_handler = next((h for h in another_logger.handlers if isinstance(h, PromptFlowSDKLogHandler)), None) assert logger is another_logger assert handler is another_handler def test_sdk_telemetry_ua(self, pf): from promptflow import PFClient from promptflow.azure import PFClient as PFAzureClient # log activity will pick correct ua def assert_ua(*args, **kwargs): ua = pydash.get(kwargs, "extra.custom_dimensions.user_agent", None) ua_dict = parse_ua_to_dict(ua) assert ua_dict.keys() == {"promptflow-sdk"} logger = MagicMock() logger.info = MagicMock() logger.info.side_effect = assert_ua # clear user agent before test context = OperationContext().get_instance() context.user_agent = "" # get telemetry logger from SDK should not have extension ua # start a clean local SDK client with environment_variable_overwrite(PF_USER_AGENT, ""): PFClient() user_agent = ClientUserAgentUtil.get_user_agent() ua_dict = parse_ua_to_dict(user_agent) assert ua_dict.keys() == {"promptflow-sdk"} # Call log_activity with log_activity(logger, "test_activity", activity_type=ActivityType.PUBLICAPI): # Perform some activity pass # start a clean Azure SDK client with environment_variable_overwrite(PF_USER_AGENT, ""): PFAzureClient( ml_client=pf._ml_client, subscription_id=pf._ml_client.subscription_id, resource_group_name=pf._ml_client.resource_group_name, workspace_name=pf._ml_client.workspace_name, ) user_agent = ClientUserAgentUtil.get_user_agent() ua_dict = parse_ua_to_dict(user_agent) assert ua_dict.keys() == {"promptflow-sdk"} # Call log_activity with log_activity(logger, "test_activity", activity_type=ActivityType.PUBLICAPI): # Perform some activity pass PFAzureClient( ml_client=pf._ml_client, subscription_id=pf._ml_client.subscription_id, resource_group_name=pf._ml_client.resource_group_name, workspace_name=pf._ml_client.workspace_name, user_agent="a/1.0.0", ) user_agent = ClientUserAgentUtil.get_user_agent() ua_dict = parse_ua_to_dict(user_agent) assert ua_dict.keys() == {"promptflow-sdk", "a"} context = OperationContext().get_instance() context.user_agent = "" def test_inner_function_call(self, pf, runtime: str, randstr: Callable[[str], str]): request_ids = set() first_sdk_calls = [] def check_inner_call(*args, **kwargs): if "extra" in kwargs: request_id = pydash.get(kwargs, "extra.custom_dimensions.request_id") first_sdk_call = pydash.get(kwargs, "extra.custom_dimensions.first_call") request_ids.add(request_id) first_sdk_calls.append(first_sdk_call) with patch.object(Logger, "info") as mock_logger: mock_logger.side_effect = check_inner_call run = load_run( source=f"{RUNS_DIR}/run_with_env.yaml", params_override=[{"runtime": runtime}], ) run.name = randstr("name") pf.runs.create_or_update(run=run) # only 1 request id assert len(request_ids) == 1 # only 1 and last call is public call assert first_sdk_calls[0] is True assert first_sdk_calls[-1] is True assert set(first_sdk_calls[1:-1]) == {False} def test_different_request_id(self): from promptflow import PFClient pf = PFClient() request_ids = set() first_sdk_calls = [] def check_inner_call(*args, **kwargs): if "extra" in kwargs: request_id = pydash.get(kwargs, "extra.custom_dimensions.request_id") first_sdk_call = pydash.get(kwargs, "extra.custom_dimensions.first_call") request_ids.add(request_id) first_sdk_calls.append(first_sdk_call) with patch.object(Logger, "info") as mock_logger: mock_logger.side_effect = check_inner_call run = load_run( source=f"{RUNS_DIR}/run_with_env.yaml", ) # create 2 times will get 2 request ids run.name = str(uuid.uuid4()) pf.runs.create_or_update(run=run) run.name = str(uuid.uuid4()) pf.runs.create_or_update(run=run) # only 1 request id assert len(request_ids) == 2 # 1 and last call is public call assert first_sdk_calls[0] is True assert first_sdk_calls[-1] is True def test_scrub_fields(self): from promptflow import PFClient pf = PFClient() from promptflow._sdk._telemetry.logging_handler import PromptFlowSDKLogHandler def log_event(*args, **kwargs): record = args[0] assert record.custom_dimensions is not None logger = get_telemetry_logger() handler = logger.handlers[0] assert isinstance(handler, PromptFlowSDKLogHandler) envelope = handler.log_record_to_envelope(record) # device name removed assert "ai.cloud.roleInstance" not in envelope.tags assert "ai.device.id" not in envelope.tags # role name should be scrubbed or kept in whitelist assert envelope.tags["ai.cloud.role"] in [os.path.basename(sys.argv[0]), "***"] with patch.object(PromptFlowSDKLogHandler, "emit") as mock_logger: mock_logger.side_effect = log_event # mock_error_logger.side_effect = log_event try: pf.runs.get("not_exist") except RunNotFoundError: pass def test_different_event_for_node_run(self): from promptflow import PFClient pf = PFClient() from promptflow._sdk._telemetry.logging_handler import PromptFlowSDKLogHandler def assert_node_run(*args, **kwargs): record = args[0] assert record.msg.startswith("pf.flows.node_test") assert record.custom_dimensions["activity_name"] == "pf.flows.node_test" def assert_flow_test(*args, **kwargs): record = args[0] assert record.msg.startswith("pf.flows.test") assert record.custom_dimensions["activity_name"] == "pf.flows.test" with tempfile.TemporaryDirectory() as temp_dir: shutil.copytree((Path(FLOWS_DIR) / "print_env_var").resolve().as_posix(), temp_dir, dirs_exist_ok=True) with patch.object(PromptFlowSDKLogHandler, "emit") as mock_logger: mock_logger.side_effect = assert_node_run pf.flows.test(temp_dir, node="print_env", inputs={"key": "API_BASE"}) with patch.object(PromptFlowSDKLogHandler, "emit") as mock_logger: mock_logger.side_effect = assert_flow_test pf.flows.test(temp_dir, inputs={"key": "API_BASE"})
promptflow/src/promptflow/tests/sdk_cli_azure_test/e2etests/test_telemetry.py/0
{ "file_path": "promptflow/src/promptflow/tests/sdk_cli_azure_test/e2etests/test_telemetry.py", "repo_id": "promptflow", "token_count": 6615 }
56
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import shutil from pathlib import Path from tempfile import TemporaryDirectory from unittest.mock import Mock import pytest from promptflow._sdk.entities import Run from promptflow._utils.flow_utils import get_flow_lineage_id from promptflow.exceptions import UserErrorException PROMOTFLOW_ROOT = Path(__file__) / "../../../.." TEST_ROOT = Path(__file__).parent.parent.parent MODEL_ROOT = TEST_ROOT / "test_configs/e2e_samples" CONNECTION_FILE = (PROMOTFLOW_ROOT / "connections.json").resolve().absolute().as_posix() FLOWS_DIR = "./tests/test_configs/flows" RUNS_DIR = "./tests/test_configs/runs" DATAS_DIR = "./tests/test_configs/datas" @pytest.mark.unittest class TestRun: def test_input_mapping_types(self, pf): data_path = f"{DATAS_DIR}/webClassification3.jsonl" flow_path = Path(f"{FLOWS_DIR}/flow_with_dict_input") # run with dict inputs run = Run( flow=flow_path, data=data_path, column_mapping=dict(key={"a": 1}), ) rest_run = run._to_rest_object() assert rest_run.inputs_mapping == {"key": '{"a": 1}'} # run with list inputs run = Run( flow=flow_path, data=data_path, column_mapping=dict(key=["a", "b"]), ) rest_run = run._to_rest_object() assert rest_run.inputs_mapping == {"key": '["a", "b"]'} # unsupported inputs run = Run( flow=flow_path, data=data_path, column_mapping=dict(key=Mock()), ) with pytest.raises(UserErrorException): run._to_rest_object() run = Run(flow=flow_path, data=data_path, column_mapping="str") with pytest.raises(UserErrorException): run._to_rest_object() def test_flow_id(self): # same flow id for same flow in same GIT repo flow_path = Path(f"{FLOWS_DIR}/flow_with_dict_input") # run with dict inputs session_id1 = get_flow_lineage_id(flow_path) session_id2 = get_flow_lineage_id(flow_path) assert session_id1 == session_id2 # same flow id for same flow in same device with TemporaryDirectory() as tmp_dir: shutil.copytree(f"{FLOWS_DIR}/flow_with_dict_input", f"{tmp_dir}/flow_with_dict_input") session_id3 = get_flow_lineage_id(f"{tmp_dir}/flow_with_dict_input") session_id4 = get_flow_lineage_id(f"{tmp_dir}/flow_with_dict_input") assert session_id3 == session_id4 assert session_id3 != session_id1
promptflow/src/promptflow/tests/sdk_cli_azure_test/unittests/test_run_entity.py/0
{ "file_path": "promptflow/src/promptflow/tests/sdk_cli_azure_test/unittests/test_run_entity.py", "repo_id": "promptflow", "token_count": 1208 }
57
from pathlib import Path import pytest from ruamel.yaml import YAML from promptflow import PFClient from promptflow._sdk._constants import ExperimentStatus, RunStatus from promptflow._sdk._load_functions import load_common from promptflow._sdk.entities._experiment import ( CommandNode, Experiment, ExperimentData, ExperimentInput, ExperimentTemplate, FlowNode, ) TEST_ROOT = Path(__file__).parent.parent.parent EXP_ROOT = TEST_ROOT / "test_configs/experiments" FLOW_ROOT = TEST_ROOT / "test_configs/flows" yaml = YAML(typ="safe") @pytest.mark.e2etest @pytest.mark.usefixtures("setup_experiment_table") class TestExperiment: def test_experiment_from_template(self): template_path = EXP_ROOT / "basic-no-script-template" / "basic.exp.yaml" # Load template and create experiment template = load_common(ExperimentTemplate, source=template_path) experiment = Experiment.from_template(template) # Assert experiment parts are resolved assert len(experiment.nodes) == 2 assert all(isinstance(n, FlowNode) for n in experiment.nodes) assert len(experiment.data) == 1 assert isinstance(experiment.data[0], ExperimentData) assert len(experiment.inputs) == 1 assert isinstance(experiment.inputs[0], ExperimentInput) # Assert type is resolved assert experiment.inputs[0].default == 1 # Pop schema and resolve path expected = dict(yaml.load(open(template_path, "r", encoding="utf-8").read())) expected.pop("$schema") expected["data"][0]["path"] = (FLOW_ROOT / "web_classification" / "data.jsonl").absolute().as_posix() expected["nodes"][0]["path"] = (experiment._output_dir / "snapshots" / "main").absolute().as_posix() expected["nodes"][1]["path"] = (experiment._output_dir / "snapshots" / "eval").absolute().as_posix() experiment_dict = experiment._to_dict() assert experiment_dict["data"][0].items() == expected["data"][0].items() assert experiment_dict["nodes"][0].items() == expected["nodes"][0].items() assert experiment_dict["nodes"][1].items() == expected["nodes"][1].items() assert experiment_dict.items() >= expected.items() def test_experiment_from_template_with_script_node(self): template_path = EXP_ROOT / "basic-script-template" / "basic-script.exp.yaml" # Load template and create experiment template = load_common(ExperimentTemplate, source=template_path) experiment = Experiment.from_template(template) # Assert command node load correctly assert len(experiment.nodes) == 4 expected = dict(yaml.load(open(template_path, "r", encoding="utf-8").read())) experiment_dict = experiment._to_dict() assert isinstance(experiment.nodes[0], CommandNode) assert isinstance(experiment.nodes[1], FlowNode) assert isinstance(experiment.nodes[2], FlowNode) assert isinstance(experiment.nodes[3], CommandNode) gen_data_snapshot_path = experiment._output_dir / "snapshots" / "gen_data" echo_snapshot_path = experiment._output_dir / "snapshots" / "echo" expected["nodes"][0]["code"] = gen_data_snapshot_path.absolute().as_posix() expected["nodes"][3]["code"] = echo_snapshot_path.absolute().as_posix() expected["nodes"][3]["environment_variables"] = {} assert experiment_dict["nodes"][0].items() == expected["nodes"][0].items() assert experiment_dict["nodes"][3].items() == expected["nodes"][3].items() # Assert snapshots assert gen_data_snapshot_path.exists() file_count = len(list(gen_data_snapshot_path.rglob("*"))) assert file_count == 1 assert (gen_data_snapshot_path / "generate_data.py").exists() # Assert no file exists in echo path assert echo_snapshot_path.exists() file_count = len(list(echo_snapshot_path.rglob("*"))) assert file_count == 0 def test_experiment_create_and_get(self): template_path = EXP_ROOT / "basic-no-script-template" / "basic.exp.yaml" # Load template and create experiment template = load_common(ExperimentTemplate, source=template_path) experiment = Experiment.from_template(template) client = PFClient() exp = client._experiments.create_or_update(experiment) assert len(client._experiments.list()) > 0 exp_get = client._experiments.get(name=exp.name) assert exp_get._to_dict() == exp._to_dict() @pytest.mark.usefixtures("use_secrets_config_file", "recording_injection", "setup_local_connection") def test_experiment_start(self): template_path = EXP_ROOT / "basic-no-script-template" / "basic.exp.yaml" # Load template and create experiment template = load_common(ExperimentTemplate, source=template_path) experiment = Experiment.from_template(template) client = PFClient() exp = client._experiments.create_or_update(experiment) exp = client._experiments.start(exp.name) assert exp.status == ExperimentStatus.TERMINATED # Assert main run assert len(exp.node_runs["main"]) > 0 main_run = client.runs.get(name=exp.node_runs["main"][0]["name"]) assert main_run.status == RunStatus.COMPLETED assert main_run.variant == "${summarize_text_content.variant_0}" assert main_run.display_name == "main" assert len(exp.node_runs["eval"]) > 0 # Assert eval run and metrics eval_run = client.runs.get(name=exp.node_runs["eval"][0]["name"]) assert eval_run.status == RunStatus.COMPLETED assert eval_run.display_name == "eval" metrics = client.runs.get_metrics(name=eval_run.name) assert "accuracy" in metrics @pytest.mark.usefixtures("use_secrets_config_file", "recording_injection", "setup_local_connection") def test_experiment_with_script_start(self): template_path = EXP_ROOT / "basic-script-template" / "basic-script.exp.yaml" # Load template and create experiment template = load_common(ExperimentTemplate, source=template_path) experiment = Experiment.from_template(template) client = PFClient() exp = client._experiments.create_or_update(experiment) exp = client._experiments.start(exp.name) assert exp.status == ExperimentStatus.TERMINATED assert len(exp.node_runs) == 4 for key, val in exp.node_runs.items(): assert val[0]["status"] == RunStatus.COMPLETED, f"Node {key} run failed"
promptflow/src/promptflow/tests/sdk_cli_test/e2etests/test_experiment.py/0
{ "file_path": "promptflow/src/promptflow/tests/sdk_cli_test/e2etests/test_experiment.py", "repo_id": "promptflow", "token_count": 2569 }
58
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- from pathlib import Path from unittest.mock import patch import pytest from promptflow._cli._pf._connection import validate_and_interactive_get_secrets from promptflow._sdk._constants import SCRUBBED_VALUE, CustomStrongTypeConnectionConfigs from promptflow._sdk._load_functions import _load_env_to_connection from promptflow._sdk.entities._connection import ( AzureContentSafetyConnection, AzureOpenAIConnection, CognitiveSearchConnection, CustomConnection, FormRecognizerConnection, OpenAIConnection, QdrantConnection, SerpConnection, WeaviateConnection, _Connection, ) from promptflow._utils.yaml_utils import load_yaml from promptflow.exceptions import UserErrorException TEST_ROOT = Path(__file__).parent.parent.parent CONNECTION_ROOT = TEST_ROOT / "test_configs/connections" @pytest.mark.unittest class TestConnection: @pytest.mark.parametrize( "file_name, class_name, init_param, expected", [ ( "azure_openai_connection.yaml", AzureOpenAIConnection, { "name": "my_azure_open_ai_connection", "api_type": "azure", "api_version": "2023-07-01-preview", "api_key": "<to-be-replaced>", "api_base": "aoai-api-endpoint", }, { "module": "promptflow.connections", "type": "azure_open_ai", }, ), ( "openai_connection.yaml", OpenAIConnection, { "name": "my_open_ai_connection", "api_key": "<to-be-replaced>", "organization": "org", }, { "module": "promptflow.connections", "type": "open_ai", }, ), ( "openai_connection_base_url.yaml", OpenAIConnection, { "name": "my_open_ai_connection", "api_key": "<to-be-replaced>", "organization": "org", "base_url": "custom_base_url", }, { "module": "promptflow.connections", "type": "open_ai", }, ), ( "custom_connection.yaml", CustomConnection, { "name": "my_custom_connection", "configs": {"key1": "test1"}, "secrets": {"key2": "test2"}, }, { "module": "promptflow.connections", "type": "custom", }, ), ( "azure_content_safety_connection.yaml", AzureContentSafetyConnection, { "name": "my_azure_content_safety_connection", "api_key": "<to-be-replaced>", "endpoint": "endpoint", "api_version": "2023-04-30-preview", "api_type": "Content Safety", }, { "module": "promptflow.connections", "type": "azure_content_safety", }, ), ( "cognitive_search_connection.yaml", CognitiveSearchConnection, { "name": "my_cognitive_search_connection", "api_key": "<to-be-replaced>", "api_base": "endpoint", "api_version": "2023-07-01-Preview", }, { "module": "promptflow.connections", "type": "cognitive_search", }, ), ( "serp_connection.yaml", SerpConnection, { "name": "my_serp_connection", "api_key": "<to-be-replaced>", }, { "module": "promptflow.connections", "type": "serp", }, ), ( "form_recognizer_connection.yaml", FormRecognizerConnection, { "name": "my_form_recognizer_connection", "api_key": "<to-be-replaced>", "endpoint": "endpoint", "api_version": "2023-07-31", "api_type": "Form Recognizer", }, { "module": "promptflow.connections", "type": "form_recognizer", }, ), ( "qdrant_connection.yaml", QdrantConnection, { "name": "my_qdrant_connection", "api_key": "<to-be-replaced>", "api_base": "endpoint", }, { "module": "promptflow_vectordb.connections", "type": "qdrant", }, ), ( "weaviate_connection.yaml", WeaviateConnection, { "name": "my_weaviate_connection", "api_key": "<to-be-replaced>", "api_base": "endpoint", }, { "module": "promptflow_vectordb.connections", "type": "weaviate", }, ), ], ) def test_connection_load_dump(self, file_name, class_name, init_param, expected): conn = _Connection._load(data=load_yaml(CONNECTION_ROOT / file_name)) expected = {**expected, **init_param} assert dict(conn._to_dict()) == expected assert class_name(**init_param)._to_dict() == expected def test_connection_load_from_env(self): connection = _load_env_to_connection(source=CONNECTION_ROOT / ".env", params_override=[{"name": "env_conn"}]) assert connection._to_dict() == { "name": "env_conn", "module": "promptflow.connections", "type": "custom", "configs": {}, "secrets": {"aaa": "bbb", "ccc": "ddd"}, } assert ( connection.__str__() == """name: env_conn module: promptflow.connections type: custom configs: {} secrets: aaa: bbb ccc: ddd """ ) def test_connection_load_from_env_file_bad_case(self): # Test file not found with pytest.raises(FileNotFoundError) as e: _load_env_to_connection(source=CONNECTION_ROOT / "mock.env", params_override=[{"name": "env_conn"}]) assert "not found" in str(e.value) # Test file empty with pytest.raises(Exception) as e: _load_env_to_connection(source=CONNECTION_ROOT / "empty.env", params_override=[{"name": "env_conn"}]) assert "Load nothing" in str(e.value) def test_to_execution_connection_dict(self): # Assert custom connection build connection = CustomConnection(name="test_connection", configs={"a": "1"}, secrets={"b": "2"}) assert connection._to_execution_connection_dict() == { "module": "promptflow.connections", "secret_keys": ["b"], "type": "CustomConnection", "value": {"a": "1", "b": "2"}, } # Assert strong type - AzureOpenAI connection = AzureOpenAIConnection( name="test_connection_1", type="AzureOpenAI", api_key="test_key", api_base="test_base", api_type="azure", api_version="2023-07-01-preview", ) assert connection._to_execution_connection_dict() == { "module": "promptflow.connections", "secret_keys": ["api_key"], "type": "AzureOpenAIConnection", "value": { "api_base": "test_base", "api_key": "test_key", "api_type": "azure", "api_version": "2023-07-01-preview", }, } # Assert strong type - OpenAI connection = OpenAIConnection( name="test_connection_1", type="AzureOpenAI", api_key="test_key", organization="test_org", ) assert connection._to_execution_connection_dict() == { "module": "promptflow.connections", "secret_keys": ["api_key"], "type": "OpenAIConnection", "value": {"api_key": "test_key", "organization": "test_org"}, } def test_validate_and_interactive_get_secrets(self): # Path 1: Create connection = CustomConnection( name="test_connection", secrets={"key1": SCRUBBED_VALUE, "key2": "", "key3": "<no-change>", "key4": "<user-input>", "key5": "**"}, ) with patch("promptflow._cli._pf._connection.get_secret_input", new=lambda prompt: "test_value"): validate_and_interactive_get_secrets(connection, is_update=False) assert connection.secrets == { "key1": "test_value", "key2": "test_value", "key3": "test_value", "key4": "test_value", "key5": "test_value", } # Path 2: Update # Scrubbed value will be filled in _validate_and_encrypt_secrets for update, so no changes here. connection = CustomConnection( name="test_connection", secrets={"key1": SCRUBBED_VALUE, "key2": "", "key3": "<no-change>", "key4": "<user-input>", "key5": "**"}, ) with patch("promptflow._cli._pf._connection.get_secret_input", new=lambda prompt: "test_value"): validate_and_interactive_get_secrets(connection, is_update=True) assert connection.secrets == { "key1": SCRUBBED_VALUE, "key2": "", "key3": "<no-change>", "key4": "test_value", "key5": "**", } def test_validate_and_encrypt_secrets(self): # Path 1: Create connection = CustomConnection( name="test_connection", secrets={"key1": SCRUBBED_VALUE, "key2": "", "key3": "<no-change>", "key4": "<user-input>", "key5": "**"}, ) with pytest.raises(Exception) as e: connection._validate_and_encrypt_secrets() assert "secrets ['key1', 'key2', 'key3', 'key4', 'key5'] value invalid, please fill them" in str(e.value) # Path 2: Update connection._secrets = {"key1": "val1", "key2": "val2", "key4": "val4", "key5": "*"} # raise error for key3 as original value missing. # raise error for key5 as original value still scrubbed. # raise error for key4 even if it was in _secrets, because it requires <user-input>. with pytest.raises(Exception) as e: connection._validate_and_encrypt_secrets() assert "secrets ['key3', 'key4', 'key5'] value invalid, please fill them" in str(e.value) def test_convert_to_custom_strong_type(self, install_custom_tool_pkg): module_name = "my_tool_package.tools.my_tool_2" custom_conn_type = "MyFirstConnection" import importlib module = importlib.import_module(module_name) # Connection created by custom strong type connection template for package tool connection = CustomConnection( name="test_connection", configs={ "a": "1", CustomStrongTypeConnectionConfigs.PROMPTFLOW_MODULE_KEY: module_name, CustomStrongTypeConnectionConfigs.PROMPTFLOW_TYPE_KEY: custom_conn_type, }, secrets={"b": "2"}, ) res = connection._convert_to_custom_strong_type() assert isinstance(res, module.MyFirstConnection) assert res.secrets == {"b": "2"} # Connection created by custom connection template for script tool connection = CustomConnection(name="test_connection", configs={"a": "1"}, secrets={"b": "2"}) res = connection._convert_to_custom_strong_type(module=module, to_class=custom_conn_type) assert isinstance(res, module.MyFirstConnection) assert res.configs == {"a": "1"} # Connection created with custom connection type in portal for package tool connection._convert_to_custom_strong_type(module=module_name, to_class=custom_conn_type) assert isinstance(res, module.MyFirstConnection) assert res.configs == {"a": "1"} # Invalid module module_name = "not_existing_module" with pytest.raises(ModuleNotFoundError, match=r".*No module named 'not_existing_module'*"): connection._convert_to_custom_strong_type(module=module_name, to_class=custom_conn_type) module_name = None with pytest.raises( UserErrorException, match=r".*Failed to convert to custom strong type connection because of invalid module or class*", ): connection._convert_to_custom_strong_type(module=module_name, to_class=custom_conn_type) custom_conn_type = None with pytest.raises( UserErrorException, match=r".*Failed to convert to custom strong type connection because of invalid module or class*", ): connection._convert_to_custom_strong_type(module=module_name, to_class=custom_conn_type)
promptflow/src/promptflow/tests/sdk_cli_test/unittests/test_connection.py/0
{ "file_path": "promptflow/src/promptflow/tests/sdk_cli_test/unittests/test_connection.py", "repo_id": "promptflow", "token_count": 7157 }
59
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import subprocess import sys from time import sleep import pytest import requests from promptflow._sdk._service.entry import main from promptflow._sdk._service.utils.utils import get_port_from_config, get_random_port, kill_exist_service @pytest.mark.e2etest class TestPromptflowServiceCLI: def _run_pfs_command(self, *args): """Run a pfs command with the given arguments.""" origin_argv = sys.argv try: sys.argv = ["pfs"] + list(args) main() finally: sys.argv = origin_argv def _test_start_service(self, port=None, force=False): command = f"pfs start --port {port}" if port else "pfs start" if force: command = f"{command} --force" start_pfs = subprocess.Popen(command, shell=True) # Wait for service to be started sleep(5) assert self._is_service_healthy() start_pfs.terminate() start_pfs.wait(10) def _is_service_healthy(self, port=None): port = port or get_port_from_config() response = requests.get(f"http://localhost:{port}/heartbeat") return response.status_code == 200 def test_start_service(self): try: # start pfs by pf.yaml self._test_start_service() # Start pfs by specified port random_port = get_random_port() self._test_start_service(port=random_port, force=True) # Force start pfs start_pfs = subprocess.Popen("pfs start", shell=True) # Wait for service to be started sleep(5) self._test_start_service(force=True) # previous pfs is killed assert start_pfs.poll() is not None finally: port = get_port_from_config() kill_exist_service(port=port) def test_show_service_status(self, capsys): with pytest.raises(SystemExit): self._run_pfs_command("show-status") start_pfs = subprocess.Popen("pfs start", shell=True) # Wait for service to be started sleep(5) self._run_pfs_command("show-status") output, _ = capsys.readouterr() assert str(get_port_from_config()) in output start_pfs.terminate() start_pfs.wait(10)
promptflow/src/promptflow/tests/sdk_pfs_test/e2etests/test_cli.py/0
{ "file_path": "promptflow/src/promptflow/tests/sdk_pfs_test/e2etests/test_cli.py", "repo_id": "promptflow", "token_count": 1061 }
60
$schema: https://azuremlschemas.azureedge.net/promptflow/latest/FormRecognizerConnection.schema.json name: my_form_recognizer_connection type: form_recognizer api_key: "<to-be-replaced>" endpoint: "endpoint" api_version: "2023-07-31" api_type: Form Recognizer
promptflow/src/promptflow/tests/test_configs/connections/form_recognizer_connection.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/connections/form_recognizer_connection.yaml", "repo_id": "promptflow", "token_count": 96 }
61
{"text":"data_0000"} {"text":"data_0001"} {"text":"data_0002"} {"text":"data_0003"} {"text":"data_0004"} {"text":"data_0005"} {"text":"data_0006"} {"text":"data_0007"} {"text":"data_0008"} {"text":"data_0009"} {"text":"data_0010"} {"text":"data_0011"} {"text":"data_0012"} {"text":"data_0013"} {"text":"data_0014"} {"text":"data_0015"} {"text":"data_0016"} {"text":"data_0017"} {"text":"data_0018"} {"text":"data_0019"} {"text":"data_0020"} {"text":"data_0021"} {"text":"data_0022"} {"text":"data_0023"} {"text":"data_0024"} {"text":"data_0025"} {"text":"data_0026"} {"text":"data_0027"} {"text":"data_0028"} {"text":"data_0029"} {"text":"data_0030"} {"text":"data_0031"} {"text":"data_0032"} {"text":"data_0033"} {"text":"data_0034"} {"text":"data_0035"} {"text":"data_0036"} {"text":"data_0037"} {"text":"data_0038"} {"text":"data_0039"} {"text":"data_0040"} {"text":"data_0041"} {"text":"data_0042"} {"text":"data_0043"} {"text":"data_0044"} {"text":"data_0045"} {"text":"data_0046"} {"text":"data_0047"} {"text":"data_0048"} {"text":"data_0049"} {"text":"data_0050"} {"text":"data_0051"} {"text":"data_0052"} {"text":"data_0053"} {"text":"data_0054"} {"text":"data_0055"} {"text":"data_0056"} {"text":"data_0057"} {"text":"data_0058"} {"text":"data_0059"} {"text":"data_0060"} {"text":"data_0061"} {"text":"data_0062"} {"text":"data_0063"} {"text":"data_0064"} {"text":"data_0065"} {"text":"data_0066"} {"text":"data_0067"} {"text":"data_0068"} {"text":"data_0069"} {"text":"data_0070"} {"text":"data_0071"} {"text":"data_0072"} {"text":"data_0073"} {"text":"data_0074"} {"text":"data_0075"} {"text":"data_0076"} {"text":"data_0077"} {"text":"data_0078"} {"text":"data_0079"} {"text":"data_0080"} {"text":"data_0081"} {"text":"data_0082"} {"text":"data_0083"} {"text":"data_0084"} {"text":"data_0085"} {"text":"data_0086"} {"text":"data_0087"} {"text":"data_0088"} {"text":"data_0089"} {"text":"data_0090"} {"text":"data_0091"} {"text":"data_0092"} {"text":"data_0093"} {"text":"data_0094"} {"text":"data_0095"} {"text":"data_0096"} {"text":"data_0097"} {"text":"data_0098"} {"text":"data_0099"} {"text":"data_0100"} {"text":"data_0101"} {"text":"data_0102"} {"text":"data_0103"} {"text":"data_0104"} {"text":"data_0105"} {"text":"data_0106"} {"text":"data_0107"} {"text":"data_0108"} {"text":"data_0109"} {"text":"data_0110"} {"text":"data_0111"} {"text":"data_0112"} {"text":"data_0113"} {"text":"data_0114"} {"text":"data_0115"} {"text":"data_0116"} {"text":"data_0117"} {"text":"data_0118"} {"text":"data_0119"} {"text":"data_0120"} {"text":"data_0121"} {"text":"data_0122"} {"text":"data_0123"} {"text":"data_0124"} {"text":"data_0125"} {"text":"data_0126"} {"text":"data_0127"} {"text":"data_0128"} {"text":"data_0129"} {"text":"data_0130"} {"text":"data_0131"} {"text":"data_0132"} {"text":"data_0133"} {"text":"data_0134"} {"text":"data_0135"} {"text":"data_0136"} {"text":"data_0137"} {"text":"data_0138"} {"text":"data_0139"} {"text":"data_0140"} {"text":"data_0141"} {"text":"data_0142"} {"text":"data_0143"} {"text":"data_0144"} {"text":"data_0145"} {"text":"data_0146"} {"text":"data_0147"} {"text":"data_0148"} {"text":"data_0149"} {"text":"data_0150"} {"text":"data_0151"} {"text":"data_0152"} {"text":"data_0153"} {"text":"data_0154"} {"text":"data_0155"} {"text":"data_0156"} {"text":"data_0157"} {"text":"data_0158"} {"text":"data_0159"} {"text":"data_0160"} {"text":"data_0161"} {"text":"data_0162"} {"text":"data_0163"} {"text":"data_0164"} {"text":"data_0165"} {"text":"data_0166"} {"text":"data_0167"} {"text":"data_0168"} {"text":"data_0169"} {"text":"data_0170"} {"text":"data_0171"} {"text":"data_0172"} {"text":"data_0173"} {"text":"data_0174"} {"text":"data_0175"} {"text":"data_0176"} {"text":"data_0177"} {"text":"data_0178"} {"text":"data_0179"} {"text":"data_0180"} {"text":"data_0181"} {"text":"data_0182"} {"text":"data_0183"} {"text":"data_0184"} {"text":"data_0185"} {"text":"data_0186"} {"text":"data_0187"} {"text":"data_0188"} {"text":"data_0189"} {"text":"data_0190"} {"text":"data_0191"} {"text":"data_0192"} {"text":"data_0193"} {"text":"data_0194"} {"text":"data_0195"} {"text":"data_0196"} {"text":"data_0197"} {"text":"data_0198"} {"text":"data_0199"} {"text":"data_0200"} {"text":"data_0201"} {"text":"data_0202"} {"text":"data_0203"} {"text":"data_0204"} {"text":"data_0205"} {"text":"data_0206"} {"text":"data_0207"} {"text":"data_0208"} {"text":"data_0209"} {"text":"data_0210"} {"text":"data_0211"} {"text":"data_0212"} {"text":"data_0213"} {"text":"data_0214"} {"text":"data_0215"} {"text":"data_0216"} {"text":"data_0217"} {"text":"data_0218"} {"text":"data_0219"} {"text":"data_0220"} {"text":"data_0221"} {"text":"data_0222"} {"text":"data_0223"} {"text":"data_0224"} {"text":"data_0225"} {"text":"data_0226"} {"text":"data_0227"} {"text":"data_0228"} {"text":"data_0229"} {"text":"data_0230"} {"text":"data_0231"} {"text":"data_0232"} {"text":"data_0233"} {"text":"data_0234"} {"text":"data_0235"} {"text":"data_0236"} {"text":"data_0237"} {"text":"data_0238"} {"text":"data_0239"} {"text":"data_0240"} {"text":"data_0241"} {"text":"data_0242"} {"text":"data_0243"} {"text":"data_0244"} {"text":"data_0245"} {"text":"data_0246"} {"text":"data_0247"} {"text":"data_0248"} {"text":"data_0249"} {"text":"data_0250"} {"text":"data_0251"} {"text":"data_0252"} {"text":"data_0253"} {"text":"data_0254"} {"text":"data_0255"} {"text":"data_0256"} {"text":"data_0257"} {"text":"data_0258"} {"text":"data_0259"} {"text":"data_0260"} {"text":"data_0261"} {"text":"data_0262"} {"text":"data_0263"} {"text":"data_0264"} {"text":"data_0265"} {"text":"data_0266"} {"text":"data_0267"} {"text":"data_0268"} {"text":"data_0269"} {"text":"data_0270"} {"text":"data_0271"} {"text":"data_0272"} {"text":"data_0273"} {"text":"data_0274"} {"text":"data_0275"} {"text":"data_0276"} {"text":"data_0277"} {"text":"data_0278"} {"text":"data_0279"} {"text":"data_0280"} {"text":"data_0281"} {"text":"data_0282"} {"text":"data_0283"} {"text":"data_0284"} {"text":"data_0285"} {"text":"data_0286"} {"text":"data_0287"} {"text":"data_0288"} {"text":"data_0289"} {"text":"data_0290"} {"text":"data_0291"} {"text":"data_0292"} {"text":"data_0293"} {"text":"data_0294"} {"text":"data_0295"} {"text":"data_0296"} {"text":"data_0297"} {"text":"data_0298"} {"text":"data_0299"} {"text":"data_0300"} {"text":"data_0301"} {"text":"data_0302"} {"text":"data_0303"} {"text":"data_0304"} {"text":"data_0305"} {"text":"data_0306"} {"text":"data_0307"} {"text":"data_0308"} {"text":"data_0309"} {"text":"data_0310"} {"text":"data_0311"} {"text":"data_0312"} {"text":"data_0313"} {"text":"data_0314"} {"text":"data_0315"} {"text":"data_0316"} {"text":"data_0317"} {"text":"data_0318"} {"text":"data_0319"} {"text":"data_0320"} {"text":"data_0321"} {"text":"data_0322"} {"text":"data_0323"} {"text":"data_0324"} {"text":"data_0325"} {"text":"data_0326"} {"text":"data_0327"} {"text":"data_0328"} {"text":"data_0329"} {"text":"data_0330"} {"text":"data_0331"} {"text":"data_0332"} {"text":"data_0333"} {"text":"data_0334"} {"text":"data_0335"} {"text":"data_0336"} {"text":"data_0337"} {"text":"data_0338"} {"text":"data_0339"} {"text":"data_0340"} {"text":"data_0341"} {"text":"data_0342"} {"text":"data_0343"} {"text":"data_0344"} {"text":"data_0345"} {"text":"data_0346"} {"text":"data_0347"} {"text":"data_0348"} {"text":"data_0349"} {"text":"data_0350"} {"text":"data_0351"} {"text":"data_0352"} {"text":"data_0353"} {"text":"data_0354"} {"text":"data_0355"} {"text":"data_0356"} {"text":"data_0357"} {"text":"data_0358"} {"text":"data_0359"} {"text":"data_0360"} {"text":"data_0361"} {"text":"data_0362"} {"text":"data_0363"} {"text":"data_0364"} {"text":"data_0365"} {"text":"data_0366"} {"text":"data_0367"} {"text":"data_0368"} {"text":"data_0369"} {"text":"data_0370"} {"text":"data_0371"} {"text":"data_0372"} {"text":"data_0373"} {"text":"data_0374"} {"text":"data_0375"} {"text":"data_0376"} {"text":"data_0377"} {"text":"data_0378"} {"text":"data_0379"} {"text":"data_0380"} {"text":"data_0381"} {"text":"data_0382"} {"text":"data_0383"} {"text":"data_0384"} {"text":"data_0385"} {"text":"data_0386"} {"text":"data_0387"} {"text":"data_0388"} {"text":"data_0389"} {"text":"data_0390"} {"text":"data_0391"} {"text":"data_0392"} {"text":"data_0393"} {"text":"data_0394"} {"text":"data_0395"} {"text":"data_0396"} {"text":"data_0397"} {"text":"data_0398"} {"text":"data_0399"} {"text":"data_0400"} {"text":"data_0401"} {"text":"data_0402"} {"text":"data_0403"} {"text":"data_0404"} {"text":"data_0405"} {"text":"data_0406"} {"text":"data_0407"} {"text":"data_0408"} {"text":"data_0409"} {"text":"data_0410"} {"text":"data_0411"} {"text":"data_0412"} {"text":"data_0413"} {"text":"data_0414"} {"text":"data_0415"} {"text":"data_0416"} {"text":"data_0417"} {"text":"data_0418"} {"text":"data_0419"} {"text":"data_0420"} {"text":"data_0421"} {"text":"data_0422"} {"text":"data_0423"} {"text":"data_0424"} {"text":"data_0425"} {"text":"data_0426"} {"text":"data_0427"} {"text":"data_0428"} {"text":"data_0429"} {"text":"data_0430"} {"text":"data_0431"} {"text":"data_0432"} {"text":"data_0433"} {"text":"data_0434"} {"text":"data_0435"} {"text":"data_0436"} {"text":"data_0437"} {"text":"data_0438"} {"text":"data_0439"} {"text":"data_0440"} {"text":"data_0441"} {"text":"data_0442"} {"text":"data_0443"} {"text":"data_0444"} {"text":"data_0445"} {"text":"data_0446"} {"text":"data_0447"} {"text":"data_0448"} {"text":"data_0449"} {"text":"data_0450"} {"text":"data_0451"} {"text":"data_0452"} {"text":"data_0453"} {"text":"data_0454"} {"text":"data_0455"} {"text":"data_0456"} {"text":"data_0457"} {"text":"data_0458"} {"text":"data_0459"} {"text":"data_0460"} {"text":"data_0461"} {"text":"data_0462"} {"text":"data_0463"} {"text":"data_0464"} {"text":"data_0465"} {"text":"data_0466"} {"text":"data_0467"} {"text":"data_0468"} {"text":"data_0469"} {"text":"data_0470"} {"text":"data_0471"} {"text":"data_0472"} {"text":"data_0473"} {"text":"data_0474"} {"text":"data_0475"} {"text":"data_0476"} {"text":"data_0477"} {"text":"data_0478"} {"text":"data_0479"} {"text":"data_0480"} {"text":"data_0481"} {"text":"data_0482"} {"text":"data_0483"} {"text":"data_0484"} {"text":"data_0485"} {"text":"data_0486"} {"text":"data_0487"} {"text":"data_0488"} {"text":"data_0489"} {"text":"data_0490"} {"text":"data_0491"} {"text":"data_0492"} {"text":"data_0493"} {"text":"data_0494"} {"text":"data_0495"} {"text":"data_0496"} {"text":"data_0497"} {"text":"data_0498"} {"text":"data_0499"} {"text":"data_0500"} {"text":"data_0501"} {"text":"data_0502"} {"text":"data_0503"} {"text":"data_0504"} {"text":"data_0505"} {"text":"data_0506"} {"text":"data_0507"} {"text":"data_0508"} {"text":"data_0509"} {"text":"data_0510"} {"text":"data_0511"} {"text":"data_0512"} {"text":"data_0513"} {"text":"data_0514"} {"text":"data_0515"} {"text":"data_0516"} {"text":"data_0517"} {"text":"data_0518"} {"text":"data_0519"} {"text":"data_0520"} {"text":"data_0521"} {"text":"data_0522"} {"text":"data_0523"} {"text":"data_0524"} {"text":"data_0525"} {"text":"data_0526"} {"text":"data_0527"} {"text":"data_0528"} {"text":"data_0529"} {"text":"data_0530"} {"text":"data_0531"} {"text":"data_0532"} {"text":"data_0533"} {"text":"data_0534"} {"text":"data_0535"} {"text":"data_0536"} {"text":"data_0537"} {"text":"data_0538"} {"text":"data_0539"} {"text":"data_0540"} {"text":"data_0541"} {"text":"data_0542"} {"text":"data_0543"} {"text":"data_0544"} {"text":"data_0545"} {"text":"data_0546"} {"text":"data_0547"} {"text":"data_0548"} {"text":"data_0549"} {"text":"data_0550"} {"text":"data_0551"} {"text":"data_0552"} {"text":"data_0553"} {"text":"data_0554"} {"text":"data_0555"} {"text":"data_0556"} {"text":"data_0557"} {"text":"data_0558"} {"text":"data_0559"} {"text":"data_0560"} {"text":"data_0561"} {"text":"data_0562"} {"text":"data_0563"} {"text":"data_0564"} {"text":"data_0565"} {"text":"data_0566"} {"text":"data_0567"} {"text":"data_0568"} {"text":"data_0569"} {"text":"data_0570"} {"text":"data_0571"} {"text":"data_0572"} {"text":"data_0573"} {"text":"data_0574"} {"text":"data_0575"} {"text":"data_0576"} {"text":"data_0577"} {"text":"data_0578"} {"text":"data_0579"} {"text":"data_0580"} {"text":"data_0581"} {"text":"data_0582"} {"text":"data_0583"} {"text":"data_0584"} {"text":"data_0585"} {"text":"data_0586"} {"text":"data_0587"} {"text":"data_0588"} {"text":"data_0589"} {"text":"data_0590"} {"text":"data_0591"} {"text":"data_0592"} {"text":"data_0593"} {"text":"data_0594"} {"text":"data_0595"} {"text":"data_0596"} {"text":"data_0597"} {"text":"data_0598"} {"text":"data_0599"} {"text":"data_0600"} {"text":"data_0601"} {"text":"data_0602"} {"text":"data_0603"} {"text":"data_0604"} {"text":"data_0605"} {"text":"data_0606"} {"text":"data_0607"} {"text":"data_0608"} {"text":"data_0609"} {"text":"data_0610"} {"text":"data_0611"} {"text":"data_0612"} {"text":"data_0613"} {"text":"data_0614"} {"text":"data_0615"} {"text":"data_0616"} {"text":"data_0617"} {"text":"data_0618"} {"text":"data_0619"} {"text":"data_0620"} {"text":"data_0621"} {"text":"data_0622"} {"text":"data_0623"} {"text":"data_0624"} {"text":"data_0625"} {"text":"data_0626"} {"text":"data_0627"} {"text":"data_0628"} {"text":"data_0629"} {"text":"data_0630"} {"text":"data_0631"} {"text":"data_0632"} {"text":"data_0633"} {"text":"data_0634"} {"text":"data_0635"} {"text":"data_0636"} {"text":"data_0637"} {"text":"data_0638"} {"text":"data_0639"} {"text":"data_0640"} {"text":"data_0641"} {"text":"data_0642"} {"text":"data_0643"} {"text":"data_0644"} {"text":"data_0645"} {"text":"data_0646"} {"text":"data_0647"} {"text":"data_0648"} {"text":"data_0649"} {"text":"data_0650"} {"text":"data_0651"} {"text":"data_0652"} {"text":"data_0653"} {"text":"data_0654"} {"text":"data_0655"} {"text":"data_0656"} {"text":"data_0657"} {"text":"data_0658"} {"text":"data_0659"} {"text":"data_0660"} {"text":"data_0661"} {"text":"data_0662"} {"text":"data_0663"} {"text":"data_0664"} {"text":"data_0665"} {"text":"data_0666"} {"text":"data_0667"} {"text":"data_0668"} {"text":"data_0669"} {"text":"data_0670"} {"text":"data_0671"} {"text":"data_0672"} {"text":"data_0673"} {"text":"data_0674"} {"text":"data_0675"} {"text":"data_0676"} {"text":"data_0677"} {"text":"data_0678"} {"text":"data_0679"} {"text":"data_0680"} {"text":"data_0681"} {"text":"data_0682"} {"text":"data_0683"} {"text":"data_0684"} {"text":"data_0685"} {"text":"data_0686"} {"text":"data_0687"} {"text":"data_0688"} {"text":"data_0689"} {"text":"data_0690"} {"text":"data_0691"} {"text":"data_0692"} {"text":"data_0693"} {"text":"data_0694"} {"text":"data_0695"} {"text":"data_0696"} {"text":"data_0697"} {"text":"data_0698"} {"text":"data_0699"} {"text":"data_0700"} {"text":"data_0701"} {"text":"data_0702"} {"text":"data_0703"} {"text":"data_0704"} {"text":"data_0705"} {"text":"data_0706"} {"text":"data_0707"} {"text":"data_0708"} {"text":"data_0709"} {"text":"data_0710"} {"text":"data_0711"} {"text":"data_0712"} {"text":"data_0713"} {"text":"data_0714"} {"text":"data_0715"} {"text":"data_0716"} {"text":"data_0717"} {"text":"data_0718"} {"text":"data_0719"} {"text":"data_0720"} {"text":"data_0721"} {"text":"data_0722"} {"text":"data_0723"} {"text":"data_0724"} {"text":"data_0725"} {"text":"data_0726"} {"text":"data_0727"} {"text":"data_0728"} {"text":"data_0729"} {"text":"data_0730"} {"text":"data_0731"} {"text":"data_0732"} {"text":"data_0733"} {"text":"data_0734"} {"text":"data_0735"} {"text":"data_0736"} {"text":"data_0737"} {"text":"data_0738"} {"text":"data_0739"} {"text":"data_0740"} {"text":"data_0741"} {"text":"data_0742"} {"text":"data_0743"} {"text":"data_0744"} {"text":"data_0745"} {"text":"data_0746"} {"text":"data_0747"} {"text":"data_0748"} {"text":"data_0749"} {"text":"data_0750"} {"text":"data_0751"} {"text":"data_0752"} {"text":"data_0753"} {"text":"data_0754"} {"text":"data_0755"} {"text":"data_0756"} {"text":"data_0757"} {"text":"data_0758"} {"text":"data_0759"} {"text":"data_0760"} {"text":"data_0761"} {"text":"data_0762"} {"text":"data_0763"} {"text":"data_0764"} {"text":"data_0765"} {"text":"data_0766"} {"text":"data_0767"} {"text":"data_0768"} {"text":"data_0769"} {"text":"data_0770"} {"text":"data_0771"} {"text":"data_0772"} {"text":"data_0773"} {"text":"data_0774"} {"text":"data_0775"} {"text":"data_0776"} {"text":"data_0777"} {"text":"data_0778"} {"text":"data_0779"} {"text":"data_0780"} {"text":"data_0781"} {"text":"data_0782"} {"text":"data_0783"} {"text":"data_0784"} {"text":"data_0785"} {"text":"data_0786"} {"text":"data_0787"} {"text":"data_0788"} {"text":"data_0789"} {"text":"data_0790"} {"text":"data_0791"} {"text":"data_0792"} {"text":"data_0793"} {"text":"data_0794"} {"text":"data_0795"} {"text":"data_0796"} {"text":"data_0797"} {"text":"data_0798"} {"text":"data_0799"} {"text":"data_0800"} {"text":"data_0801"} {"text":"data_0802"} {"text":"data_0803"} {"text":"data_0804"} {"text":"data_0805"} {"text":"data_0806"} {"text":"data_0807"} {"text":"data_0808"} {"text":"data_0809"} {"text":"data_0810"} {"text":"data_0811"} {"text":"data_0812"} {"text":"data_0813"} {"text":"data_0814"} {"text":"data_0815"} {"text":"data_0816"} {"text":"data_0817"} {"text":"data_0818"} {"text":"data_0819"} {"text":"data_0820"} {"text":"data_0821"} {"text":"data_0822"} {"text":"data_0823"} {"text":"data_0824"} {"text":"data_0825"} {"text":"data_0826"} {"text":"data_0827"} {"text":"data_0828"} {"text":"data_0829"} {"text":"data_0830"} {"text":"data_0831"} {"text":"data_0832"} {"text":"data_0833"} {"text":"data_0834"} {"text":"data_0835"} {"text":"data_0836"} {"text":"data_0837"} {"text":"data_0838"} {"text":"data_0839"} {"text":"data_0840"} {"text":"data_0841"} {"text":"data_0842"} {"text":"data_0843"} {"text":"data_0844"} {"text":"data_0845"} {"text":"data_0846"} {"text":"data_0847"} {"text":"data_0848"} {"text":"data_0849"} {"text":"data_0850"} {"text":"data_0851"} {"text":"data_0852"} {"text":"data_0853"} {"text":"data_0854"} {"text":"data_0855"} {"text":"data_0856"} {"text":"data_0857"} {"text":"data_0858"} {"text":"data_0859"} {"text":"data_0860"} {"text":"data_0861"} {"text":"data_0862"} {"text":"data_0863"} {"text":"data_0864"} {"text":"data_0865"} {"text":"data_0866"} {"text":"data_0867"} {"text":"data_0868"} {"text":"data_0869"} {"text":"data_0870"} {"text":"data_0871"} {"text":"data_0872"} {"text":"data_0873"} {"text":"data_0874"} {"text":"data_0875"} {"text":"data_0876"} {"text":"data_0877"} {"text":"data_0878"} {"text":"data_0879"} {"text":"data_0880"} {"text":"data_0881"} {"text":"data_0882"} {"text":"data_0883"} {"text":"data_0884"} {"text":"data_0885"} {"text":"data_0886"} {"text":"data_0887"} {"text":"data_0888"} {"text":"data_0889"} {"text":"data_0890"} {"text":"data_0891"} {"text":"data_0892"} {"text":"data_0893"} {"text":"data_0894"} {"text":"data_0895"} {"text":"data_0896"} {"text":"data_0897"} {"text":"data_0898"} {"text":"data_0899"} {"text":"data_0900"} {"text":"data_0901"} {"text":"data_0902"} {"text":"data_0903"} {"text":"data_0904"} {"text":"data_0905"} {"text":"data_0906"} {"text":"data_0907"} {"text":"data_0908"} {"text":"data_0909"} {"text":"data_0910"} {"text":"data_0911"} {"text":"data_0912"} {"text":"data_0913"} {"text":"data_0914"} {"text":"data_0915"} {"text":"data_0916"} {"text":"data_0917"} {"text":"data_0918"} {"text":"data_0919"} {"text":"data_0920"} {"text":"data_0921"} {"text":"data_0922"} {"text":"data_0923"} {"text":"data_0924"} {"text":"data_0925"} {"text":"data_0926"} {"text":"data_0927"} {"text":"data_0928"} {"text":"data_0929"} {"text":"data_0930"} {"text":"data_0931"} {"text":"data_0932"} {"text":"data_0933"} {"text":"data_0934"} {"text":"data_0935"} {"text":"data_0936"} {"text":"data_0937"} {"text":"data_0938"} {"text":"data_0939"} {"text":"data_0940"} {"text":"data_0941"} {"text":"data_0942"} {"text":"data_0943"} {"text":"data_0944"} {"text":"data_0945"} {"text":"data_0946"} {"text":"data_0947"} {"text":"data_0948"} {"text":"data_0949"} {"text":"data_0950"} {"text":"data_0951"} {"text":"data_0952"} {"text":"data_0953"} {"text":"data_0954"} {"text":"data_0955"} {"text":"data_0956"} {"text":"data_0957"} {"text":"data_0958"} {"text":"data_0959"} {"text":"data_0960"} {"text":"data_0961"} {"text":"data_0962"} {"text":"data_0963"} {"text":"data_0964"} {"text":"data_0965"} {"text":"data_0966"} {"text":"data_0967"} {"text":"data_0968"} {"text":"data_0969"} {"text":"data_0970"} {"text":"data_0971"} {"text":"data_0972"} {"text":"data_0973"} {"text":"data_0974"} {"text":"data_0975"} {"text":"data_0976"} {"text":"data_0977"} {"text":"data_0978"} {"text":"data_0979"} {"text":"data_0980"} {"text":"data_0981"} {"text":"data_0982"} {"text":"data_0983"} {"text":"data_0984"} {"text":"data_0985"} {"text":"data_0986"} {"text":"data_0987"} {"text":"data_0988"} {"text":"data_0989"} {"text":"data_0990"} {"text":"data_0991"} {"text":"data_0992"} {"text":"data_0993"} {"text":"data_0994"} {"text":"data_0995"} {"text":"data_0996"} {"text":"data_0997"} {"text":"data_0998"} {"text":"data_0999"} {"text":"data_1000"} {"text":"data_1001"} {"text":"data_1002"} {"text":"data_1003"} {"text":"data_1004"} {"text":"data_1005"} {"text":"data_1006"} {"text":"data_1007"} {"text":"data_1008"} {"text":"data_1009"} {"text":"data_1010"} {"text":"data_1011"} {"text":"data_1012"} {"text":"data_1013"} {"text":"data_1014"} {"text":"data_1015"} {"text":"data_1016"} {"text":"data_1017"} {"text":"data_1018"} {"text":"data_1019"} {"text":"data_1020"} {"text":"data_1021"} {"text":"data_1022"} {"text":"data_1023"} {"text":"data_1024"} {"text":"data_1025"} {"text":"data_1026"} {"text":"data_1027"} {"text":"data_1028"} {"text":"data_1029"} {"text":"data_1030"} {"text":"data_1031"} {"text":"data_1032"} {"text":"data_1033"} {"text":"data_1034"} {"text":"data_1035"} {"text":"data_1036"} {"text":"data_1037"} {"text":"data_1038"} {"text":"data_1039"} {"text":"data_1040"} {"text":"data_1041"} {"text":"data_1042"} {"text":"data_1043"} {"text":"data_1044"} {"text":"data_1045"} {"text":"data_1046"} {"text":"data_1047"} {"text":"data_1048"} {"text":"data_1049"} {"text":"data_1050"} {"text":"data_1051"} {"text":"data_1052"} {"text":"data_1053"} {"text":"data_1054"} {"text":"data_1055"} {"text":"data_1056"} {"text":"data_1057"} {"text":"data_1058"} {"text":"data_1059"} {"text":"data_1060"} {"text":"data_1061"} {"text":"data_1062"} {"text":"data_1063"} {"text":"data_1064"} {"text":"data_1065"} {"text":"data_1066"} {"text":"data_1067"} {"text":"data_1068"} {"text":"data_1069"} {"text":"data_1070"} {"text":"data_1071"} {"text":"data_1072"} {"text":"data_1073"} {"text":"data_1074"} {"text":"data_1075"} {"text":"data_1076"} {"text":"data_1077"} {"text":"data_1078"} {"text":"data_1079"} {"text":"data_1080"} {"text":"data_1081"} {"text":"data_1082"} {"text":"data_1083"} {"text":"data_1084"} {"text":"data_1085"} {"text":"data_1086"} {"text":"data_1087"} {"text":"data_1088"} {"text":"data_1089"} {"text":"data_1090"} {"text":"data_1091"} {"text":"data_1092"} {"text":"data_1093"} {"text":"data_1094"} {"text":"data_1095"} {"text":"data_1096"} {"text":"data_1097"} {"text":"data_1098"} {"text":"data_1099"} {"text":"data_1100"} {"text":"data_1101"} {"text":"data_1102"} {"text":"data_1103"} {"text":"data_1104"} {"text":"data_1105"} {"text":"data_1106"} {"text":"data_1107"} {"text":"data_1108"} {"text":"data_1109"} {"text":"data_1110"} {"text":"data_1111"} {"text":"data_1112"} {"text":"data_1113"} {"text":"data_1114"} {"text":"data_1115"} {"text":"data_1116"} {"text":"data_1117"} {"text":"data_1118"} {"text":"data_1119"} {"text":"data_1120"} {"text":"data_1121"} {"text":"data_1122"} {"text":"data_1123"} {"text":"data_1124"} {"text":"data_1125"} {"text":"data_1126"} {"text":"data_1127"} {"text":"data_1128"} {"text":"data_1129"} {"text":"data_1130"} {"text":"data_1131"} {"text":"data_1132"} {"text":"data_1133"} {"text":"data_1134"} {"text":"data_1135"} {"text":"data_1136"} {"text":"data_1137"} {"text":"data_1138"} {"text":"data_1139"} {"text":"data_1140"} {"text":"data_1141"} {"text":"data_1142"} {"text":"data_1143"} {"text":"data_1144"} {"text":"data_1145"} {"text":"data_1146"} {"text":"data_1147"} {"text":"data_1148"} {"text":"data_1149"} {"text":"data_1150"} {"text":"data_1151"} {"text":"data_1152"} {"text":"data_1153"} {"text":"data_1154"} {"text":"data_1155"} {"text":"data_1156"} {"text":"data_1157"} {"text":"data_1158"} {"text":"data_1159"} {"text":"data_1160"} {"text":"data_1161"} {"text":"data_1162"} {"text":"data_1163"} {"text":"data_1164"} {"text":"data_1165"} {"text":"data_1166"} {"text":"data_1167"} {"text":"data_1168"} {"text":"data_1169"} {"text":"data_1170"} {"text":"data_1171"} {"text":"data_1172"} {"text":"data_1173"} {"text":"data_1174"} {"text":"data_1175"} {"text":"data_1176"} {"text":"data_1177"} {"text":"data_1178"} {"text":"data_1179"} {"text":"data_1180"} {"text":"data_1181"} {"text":"data_1182"} {"text":"data_1183"} {"text":"data_1184"} {"text":"data_1185"} {"text":"data_1186"} {"text":"data_1187"} {"text":"data_1188"} {"text":"data_1189"} {"text":"data_1190"} {"text":"data_1191"} {"text":"data_1192"} {"text":"data_1193"} {"text":"data_1194"} {"text":"data_1195"} {"text":"data_1196"} {"text":"data_1197"} {"text":"data_1198"} {"text":"data_1199"} {"text":"data_1200"} {"text":"data_1201"} {"text":"data_1202"} {"text":"data_1203"} {"text":"data_1204"} {"text":"data_1205"} {"text":"data_1206"} {"text":"data_1207"} {"text":"data_1208"} {"text":"data_1209"} {"text":"data_1210"} {"text":"data_1211"} {"text":"data_1212"} {"text":"data_1213"} {"text":"data_1214"} {"text":"data_1215"} {"text":"data_1216"} {"text":"data_1217"} {"text":"data_1218"} {"text":"data_1219"} {"text":"data_1220"} {"text":"data_1221"} {"text":"data_1222"} {"text":"data_1223"} {"text":"data_1224"} {"text":"data_1225"} {"text":"data_1226"} {"text":"data_1227"} {"text":"data_1228"} {"text":"data_1229"} {"text":"data_1230"} {"text":"data_1231"} {"text":"data_1232"} {"text":"data_1233"} {"text":"data_1234"} {"text":"data_1235"} {"text":"data_1236"} {"text":"data_1237"} {"text":"data_1238"} {"text":"data_1239"} {"text":"data_1240"} {"text":"data_1241"} {"text":"data_1242"} {"text":"data_1243"} {"text":"data_1244"} {"text":"data_1245"} {"text":"data_1246"} {"text":"data_1247"} {"text":"data_1248"} {"text":"data_1249"} {"text":"data_1250"} {"text":"data_1251"} {"text":"data_1252"} {"text":"data_1253"} {"text":"data_1254"} {"text":"data_1255"} {"text":"data_1256"} {"text":"data_1257"} {"text":"data_1258"} {"text":"data_1259"} {"text":"data_1260"} {"text":"data_1261"} {"text":"data_1262"} {"text":"data_1263"} {"text":"data_1264"} {"text":"data_1265"} {"text":"data_1266"} {"text":"data_1267"} {"text":"data_1268"} {"text":"data_1269"} {"text":"data_1270"} {"text":"data_1271"} {"text":"data_1272"} {"text":"data_1273"} {"text":"data_1274"} {"text":"data_1275"} {"text":"data_1276"} {"text":"data_1277"} {"text":"data_1278"} {"text":"data_1279"} {"text":"data_1280"} {"text":"data_1281"} {"text":"data_1282"} {"text":"data_1283"} {"text":"data_1284"} {"text":"data_1285"} {"text":"data_1286"} {"text":"data_1287"} {"text":"data_1288"} {"text":"data_1289"} {"text":"data_1290"} {"text":"data_1291"} {"text":"data_1292"} {"text":"data_1293"} {"text":"data_1294"} {"text":"data_1295"} {"text":"data_1296"} {"text":"data_1297"} {"text":"data_1298"} {"text":"data_1299"} {"text":"data_1300"} {"text":"data_1301"} {"text":"data_1302"} {"text":"data_1303"} {"text":"data_1304"} {"text":"data_1305"} {"text":"data_1306"} {"text":"data_1307"} {"text":"data_1308"} {"text":"data_1309"} {"text":"data_1310"} {"text":"data_1311"} {"text":"data_1312"} {"text":"data_1313"} {"text":"data_1314"} {"text":"data_1315"} {"text":"data_1316"} {"text":"data_1317"} {"text":"data_1318"} {"text":"data_1319"} {"text":"data_1320"} {"text":"data_1321"} {"text":"data_1322"} {"text":"data_1323"} {"text":"data_1324"} {"text":"data_1325"} {"text":"data_1326"} {"text":"data_1327"} {"text":"data_1328"} {"text":"data_1329"} {"text":"data_1330"} {"text":"data_1331"} {"text":"data_1332"} {"text":"data_1333"} {"text":"data_1334"} {"text":"data_1335"} {"text":"data_1336"} {"text":"data_1337"} {"text":"data_1338"} {"text":"data_1339"} {"text":"data_1340"} {"text":"data_1341"} {"text":"data_1342"} {"text":"data_1343"} {"text":"data_1344"} {"text":"data_1345"} {"text":"data_1346"} {"text":"data_1347"} {"text":"data_1348"} {"text":"data_1349"} {"text":"data_1350"} {"text":"data_1351"} {"text":"data_1352"} {"text":"data_1353"} {"text":"data_1354"} {"text":"data_1355"} {"text":"data_1356"} {"text":"data_1357"} {"text":"data_1358"} {"text":"data_1359"} {"text":"data_1360"} {"text":"data_1361"} {"text":"data_1362"} {"text":"data_1363"} {"text":"data_1364"} {"text":"data_1365"} {"text":"data_1366"} {"text":"data_1367"} {"text":"data_1368"} {"text":"data_1369"} {"text":"data_1370"} {"text":"data_1371"} {"text":"data_1372"} {"text":"data_1373"} {"text":"data_1374"} {"text":"data_1375"} {"text":"data_1376"} {"text":"data_1377"} {"text":"data_1378"} {"text":"data_1379"} {"text":"data_1380"} {"text":"data_1381"} {"text":"data_1382"} {"text":"data_1383"} {"text":"data_1384"} {"text":"data_1385"} {"text":"data_1386"} {"text":"data_1387"} {"text":"data_1388"} {"text":"data_1389"} {"text":"data_1390"} {"text":"data_1391"} {"text":"data_1392"} {"text":"data_1393"} {"text":"data_1394"} {"text":"data_1395"} {"text":"data_1396"} {"text":"data_1397"} {"text":"data_1398"} {"text":"data_1399"} {"text":"data_1400"} {"text":"data_1401"} {"text":"data_1402"} {"text":"data_1403"} {"text":"data_1404"} {"text":"data_1405"} {"text":"data_1406"} {"text":"data_1407"} {"text":"data_1408"} {"text":"data_1409"} {"text":"data_1410"} {"text":"data_1411"} {"text":"data_1412"} {"text":"data_1413"} {"text":"data_1414"} {"text":"data_1415"} {"text":"data_1416"} {"text":"data_1417"} {"text":"data_1418"} {"text":"data_1419"} {"text":"data_1420"} {"text":"data_1421"} {"text":"data_1422"} {"text":"data_1423"} {"text":"data_1424"} {"text":"data_1425"} {"text":"data_1426"} {"text":"data_1427"} {"text":"data_1428"} {"text":"data_1429"} {"text":"data_1430"} {"text":"data_1431"} {"text":"data_1432"} {"text":"data_1433"} {"text":"data_1434"} {"text":"data_1435"} {"text":"data_1436"} {"text":"data_1437"} {"text":"data_1438"} {"text":"data_1439"} {"text":"data_1440"} {"text":"data_1441"} {"text":"data_1442"} {"text":"data_1443"} {"text":"data_1444"} {"text":"data_1445"} {"text":"data_1446"} {"text":"data_1447"} {"text":"data_1448"} {"text":"data_1449"} {"text":"data_1450"} {"text":"data_1451"} {"text":"data_1452"} {"text":"data_1453"} {"text":"data_1454"} {"text":"data_1455"} {"text":"data_1456"} {"text":"data_1457"} {"text":"data_1458"} {"text":"data_1459"} {"text":"data_1460"} {"text":"data_1461"} {"text":"data_1462"} {"text":"data_1463"} {"text":"data_1464"} {"text":"data_1465"} {"text":"data_1466"} {"text":"data_1467"} {"text":"data_1468"} {"text":"data_1469"} {"text":"data_1470"} {"text":"data_1471"} {"text":"data_1472"} {"text":"data_1473"} {"text":"data_1474"} {"text":"data_1475"} {"text":"data_1476"} {"text":"data_1477"} {"text":"data_1478"} {"text":"data_1479"} {"text":"data_1480"} {"text":"data_1481"} {"text":"data_1482"} {"text":"data_1483"} {"text":"data_1484"} {"text":"data_1485"} {"text":"data_1486"} {"text":"data_1487"} {"text":"data_1488"} {"text":"data_1489"} {"text":"data_1490"} {"text":"data_1491"} {"text":"data_1492"} {"text":"data_1493"} {"text":"data_1494"} {"text":"data_1495"} {"text":"data_1496"} {"text":"data_1497"} {"text":"data_1498"} {"text":"data_1499"} {"text":"data_1500"} {"text":"data_1501"} {"text":"data_1502"} {"text":"data_1503"} {"text":"data_1504"} {"text":"data_1505"} {"text":"data_1506"} {"text":"data_1507"} {"text":"data_1508"} {"text":"data_1509"} {"text":"data_1510"} {"text":"data_1511"} {"text":"data_1512"} {"text":"data_1513"} {"text":"data_1514"} {"text":"data_1515"} {"text":"data_1516"} {"text":"data_1517"} {"text":"data_1518"} {"text":"data_1519"} {"text":"data_1520"} {"text":"data_1521"} {"text":"data_1522"} {"text":"data_1523"} {"text":"data_1524"} {"text":"data_1525"} {"text":"data_1526"} {"text":"data_1527"} {"text":"data_1528"} {"text":"data_1529"} {"text":"data_1530"} {"text":"data_1531"} {"text":"data_1532"} {"text":"data_1533"} {"text":"data_1534"} {"text":"data_1535"} {"text":"data_1536"} {"text":"data_1537"} {"text":"data_1538"} {"text":"data_1539"} {"text":"data_1540"} {"text":"data_1541"} {"text":"data_1542"} {"text":"data_1543"} {"text":"data_1544"} {"text":"data_1545"} {"text":"data_1546"} {"text":"data_1547"} {"text":"data_1548"} {"text":"data_1549"} {"text":"data_1550"} {"text":"data_1551"} {"text":"data_1552"} {"text":"data_1553"} {"text":"data_1554"} {"text":"data_1555"} {"text":"data_1556"} {"text":"data_1557"} {"text":"data_1558"} {"text":"data_1559"} {"text":"data_1560"} {"text":"data_1561"} {"text":"data_1562"} {"text":"data_1563"} {"text":"data_1564"} {"text":"data_1565"} {"text":"data_1566"} {"text":"data_1567"} {"text":"data_1568"} {"text":"data_1569"} {"text":"data_1570"} {"text":"data_1571"} {"text":"data_1572"} {"text":"data_1573"} {"text":"data_1574"} {"text":"data_1575"} {"text":"data_1576"} {"text":"data_1577"} {"text":"data_1578"} {"text":"data_1579"} {"text":"data_1580"} {"text":"data_1581"} {"text":"data_1582"} {"text":"data_1583"} {"text":"data_1584"} {"text":"data_1585"} {"text":"data_1586"} {"text":"data_1587"} {"text":"data_1588"} {"text":"data_1589"} {"text":"data_1590"} {"text":"data_1591"} {"text":"data_1592"} {"text":"data_1593"} {"text":"data_1594"} {"text":"data_1595"} {"text":"data_1596"} {"text":"data_1597"} {"text":"data_1598"} {"text":"data_1599"} {"text":"data_1600"} {"text":"data_1601"} {"text":"data_1602"} {"text":"data_1603"} {"text":"data_1604"} {"text":"data_1605"} {"text":"data_1606"} {"text":"data_1607"} {"text":"data_1608"} {"text":"data_1609"} {"text":"data_1610"} {"text":"data_1611"} {"text":"data_1612"} {"text":"data_1613"} {"text":"data_1614"} {"text":"data_1615"} {"text":"data_1616"} {"text":"data_1617"} {"text":"data_1618"} {"text":"data_1619"} {"text":"data_1620"} {"text":"data_1621"} {"text":"data_1622"} {"text":"data_1623"} {"text":"data_1624"} {"text":"data_1625"} {"text":"data_1626"} {"text":"data_1627"} {"text":"data_1628"} {"text":"data_1629"} {"text":"data_1630"} {"text":"data_1631"} {"text":"data_1632"} {"text":"data_1633"} {"text":"data_1634"} {"text":"data_1635"} {"text":"data_1636"} {"text":"data_1637"} {"text":"data_1638"} {"text":"data_1639"} {"text":"data_1640"} {"text":"data_1641"} {"text":"data_1642"} {"text":"data_1643"} {"text":"data_1644"} {"text":"data_1645"} {"text":"data_1646"} {"text":"data_1647"} {"text":"data_1648"} {"text":"data_1649"} {"text":"data_1650"} {"text":"data_1651"} {"text":"data_1652"} {"text":"data_1653"} {"text":"data_1654"} {"text":"data_1655"} {"text":"data_1656"} {"text":"data_1657"} {"text":"data_1658"} {"text":"data_1659"} {"text":"data_1660"} {"text":"data_1661"} {"text":"data_1662"} {"text":"data_1663"} {"text":"data_1664"} {"text":"data_1665"} {"text":"data_1666"} {"text":"data_1667"} {"text":"data_1668"} {"text":"data_1669"} {"text":"data_1670"} {"text":"data_1671"} {"text":"data_1672"} {"text":"data_1673"} {"text":"data_1674"} {"text":"data_1675"} {"text":"data_1676"} {"text":"data_1677"} {"text":"data_1678"} {"text":"data_1679"} {"text":"data_1680"} {"text":"data_1681"} {"text":"data_1682"} {"text":"data_1683"} {"text":"data_1684"} {"text":"data_1685"} {"text":"data_1686"} {"text":"data_1687"} {"text":"data_1688"} {"text":"data_1689"} {"text":"data_1690"} {"text":"data_1691"} {"text":"data_1692"} {"text":"data_1693"} {"text":"data_1694"} {"text":"data_1695"} {"text":"data_1696"} {"text":"data_1697"} {"text":"data_1698"} {"text":"data_1699"} {"text":"data_1700"} {"text":"data_1701"} {"text":"data_1702"} {"text":"data_1703"} {"text":"data_1704"} {"text":"data_1705"} {"text":"data_1706"} {"text":"data_1707"} {"text":"data_1708"} {"text":"data_1709"} {"text":"data_1710"} {"text":"data_1711"} {"text":"data_1712"} {"text":"data_1713"} {"text":"data_1714"} {"text":"data_1715"} {"text":"data_1716"} {"text":"data_1717"} {"text":"data_1718"} {"text":"data_1719"} {"text":"data_1720"} {"text":"data_1721"} {"text":"data_1722"} {"text":"data_1723"} {"text":"data_1724"} {"text":"data_1725"} {"text":"data_1726"} {"text":"data_1727"} {"text":"data_1728"} {"text":"data_1729"} {"text":"data_1730"} {"text":"data_1731"} {"text":"data_1732"} {"text":"data_1733"} {"text":"data_1734"} {"text":"data_1735"} {"text":"data_1736"} {"text":"data_1737"} {"text":"data_1738"} {"text":"data_1739"} {"text":"data_1740"} {"text":"data_1741"} {"text":"data_1742"} {"text":"data_1743"} {"text":"data_1744"} {"text":"data_1745"} {"text":"data_1746"} {"text":"data_1747"} {"text":"data_1748"} {"text":"data_1749"} {"text":"data_1750"} {"text":"data_1751"} {"text":"data_1752"} {"text":"data_1753"} {"text":"data_1754"} {"text":"data_1755"} {"text":"data_1756"} {"text":"data_1757"} {"text":"data_1758"} {"text":"data_1759"} {"text":"data_1760"} {"text":"data_1761"} {"text":"data_1762"} {"text":"data_1763"} {"text":"data_1764"} {"text":"data_1765"} {"text":"data_1766"} {"text":"data_1767"} {"text":"data_1768"} {"text":"data_1769"} {"text":"data_1770"} {"text":"data_1771"} {"text":"data_1772"} {"text":"data_1773"} {"text":"data_1774"} {"text":"data_1775"} {"text":"data_1776"} {"text":"data_1777"} {"text":"data_1778"} {"text":"data_1779"} {"text":"data_1780"} {"text":"data_1781"} {"text":"data_1782"} {"text":"data_1783"} {"text":"data_1784"} {"text":"data_1785"} {"text":"data_1786"} {"text":"data_1787"} {"text":"data_1788"} {"text":"data_1789"} {"text":"data_1790"} {"text":"data_1791"} {"text":"data_1792"} {"text":"data_1793"} {"text":"data_1794"} {"text":"data_1795"} {"text":"data_1796"} {"text":"data_1797"} {"text":"data_1798"} {"text":"data_1799"} {"text":"data_1800"} {"text":"data_1801"} {"text":"data_1802"} {"text":"data_1803"} {"text":"data_1804"} {"text":"data_1805"} {"text":"data_1806"} {"text":"data_1807"} {"text":"data_1808"} {"text":"data_1809"} {"text":"data_1810"} {"text":"data_1811"} {"text":"data_1812"} {"text":"data_1813"} {"text":"data_1814"} {"text":"data_1815"} {"text":"data_1816"} {"text":"data_1817"} {"text":"data_1818"} {"text":"data_1819"} {"text":"data_1820"} {"text":"data_1821"} {"text":"data_1822"} {"text":"data_1823"} {"text":"data_1824"} {"text":"data_1825"} {"text":"data_1826"} {"text":"data_1827"} {"text":"data_1828"} {"text":"data_1829"} {"text":"data_1830"} {"text":"data_1831"} {"text":"data_1832"} {"text":"data_1833"} {"text":"data_1834"} {"text":"data_1835"} {"text":"data_1836"} {"text":"data_1837"} {"text":"data_1838"} {"text":"data_1839"} {"text":"data_1840"} {"text":"data_1841"} {"text":"data_1842"} {"text":"data_1843"} {"text":"data_1844"} {"text":"data_1845"} {"text":"data_1846"} {"text":"data_1847"} {"text":"data_1848"} {"text":"data_1849"} {"text":"data_1850"} {"text":"data_1851"} {"text":"data_1852"} {"text":"data_1853"} {"text":"data_1854"} {"text":"data_1855"} {"text":"data_1856"} {"text":"data_1857"} {"text":"data_1858"} {"text":"data_1859"} {"text":"data_1860"} {"text":"data_1861"} {"text":"data_1862"} {"text":"data_1863"} {"text":"data_1864"} {"text":"data_1865"} {"text":"data_1866"} {"text":"data_1867"} {"text":"data_1868"} {"text":"data_1869"} {"text":"data_1870"} {"text":"data_1871"} {"text":"data_1872"} {"text":"data_1873"} {"text":"data_1874"} {"text":"data_1875"} {"text":"data_1876"} {"text":"data_1877"} {"text":"data_1878"} {"text":"data_1879"} {"text":"data_1880"} {"text":"data_1881"} {"text":"data_1882"} {"text":"data_1883"} {"text":"data_1884"} {"text":"data_1885"} {"text":"data_1886"} {"text":"data_1887"} {"text":"data_1888"} {"text":"data_1889"} {"text":"data_1890"} {"text":"data_1891"} {"text":"data_1892"} {"text":"data_1893"} {"text":"data_1894"} {"text":"data_1895"} {"text":"data_1896"} {"text":"data_1897"} {"text":"data_1898"} {"text":"data_1899"} {"text":"data_1900"} {"text":"data_1901"} {"text":"data_1902"} {"text":"data_1903"} {"text":"data_1904"} {"text":"data_1905"} {"text":"data_1906"} {"text":"data_1907"} {"text":"data_1908"} {"text":"data_1909"} {"text":"data_1910"} {"text":"data_1911"} {"text":"data_1912"} {"text":"data_1913"} {"text":"data_1914"} {"text":"data_1915"} {"text":"data_1916"} {"text":"data_1917"} {"text":"data_1918"} {"text":"data_1919"} {"text":"data_1920"} {"text":"data_1921"} {"text":"data_1922"} {"text":"data_1923"} {"text":"data_1924"} {"text":"data_1925"} {"text":"data_1926"} {"text":"data_1927"} {"text":"data_1928"} {"text":"data_1929"} {"text":"data_1930"} {"text":"data_1931"} {"text":"data_1932"} {"text":"data_1933"} {"text":"data_1934"} {"text":"data_1935"} {"text":"data_1936"} {"text":"data_1937"} {"text":"data_1938"} {"text":"data_1939"} {"text":"data_1940"} {"text":"data_1941"} {"text":"data_1942"} {"text":"data_1943"} {"text":"data_1944"} {"text":"data_1945"} {"text":"data_1946"} {"text":"data_1947"} {"text":"data_1948"} {"text":"data_1949"} {"text":"data_1950"} {"text":"data_1951"} {"text":"data_1952"} {"text":"data_1953"} {"text":"data_1954"} {"text":"data_1955"} {"text":"data_1956"} {"text":"data_1957"} {"text":"data_1958"} {"text":"data_1959"} {"text":"data_1960"} {"text":"data_1961"} {"text":"data_1962"} {"text":"data_1963"} {"text":"data_1964"} {"text":"data_1965"} {"text":"data_1966"} {"text":"data_1967"} {"text":"data_1968"} {"text":"data_1969"} {"text":"data_1970"} {"text":"data_1971"} {"text":"data_1972"} {"text":"data_1973"} {"text":"data_1974"} {"text":"data_1975"} {"text":"data_1976"} {"text":"data_1977"} {"text":"data_1978"} {"text":"data_1979"} {"text":"data_1980"} {"text":"data_1981"} {"text":"data_1982"} {"text":"data_1983"} {"text":"data_1984"} {"text":"data_1985"} {"text":"data_1986"} {"text":"data_1987"} {"text":"data_1988"} {"text":"data_1989"} {"text":"data_1990"} {"text":"data_1991"} {"text":"data_1992"} {"text":"data_1993"} {"text":"data_1994"} {"text":"data_1995"} {"text":"data_1996"} {"text":"data_1997"} {"text":"data_1998"} {"text":"data_1999"} {"text":"data_2000"} {"text":"data_2001"} {"text":"data_2002"} {"text":"data_2003"} {"text":"data_2004"} {"text":"data_2005"} {"text":"data_2006"} {"text":"data_2007"} {"text":"data_2008"} {"text":"data_2009"} {"text":"data_2010"} {"text":"data_2011"} {"text":"data_2012"} {"text":"data_2013"} {"text":"data_2014"} {"text":"data_2015"} {"text":"data_2016"} {"text":"data_2017"} {"text":"data_2018"} {"text":"data_2019"} {"text":"data_2020"} {"text":"data_2021"} {"text":"data_2022"} {"text":"data_2023"} {"text":"data_2024"} {"text":"data_2025"} {"text":"data_2026"} {"text":"data_2027"} {"text":"data_2028"} {"text":"data_2029"} {"text":"data_2030"} {"text":"data_2031"} {"text":"data_2032"} {"text":"data_2033"} {"text":"data_2034"} {"text":"data_2035"} {"text":"data_2036"} {"text":"data_2037"} {"text":"data_2038"} {"text":"data_2039"} {"text":"data_2040"} {"text":"data_2041"} {"text":"data_2042"} {"text":"data_2043"} {"text":"data_2044"} {"text":"data_2045"} {"text":"data_2046"} {"text":"data_2047"} {"text":"data_2048"} {"text":"data_2049"} {"text":"data_2050"} {"text":"data_2051"} {"text":"data_2052"} {"text":"data_2053"} {"text":"data_2054"} {"text":"data_2055"} {"text":"data_2056"} {"text":"data_2057"} {"text":"data_2058"} {"text":"data_2059"} {"text":"data_2060"} {"text":"data_2061"} {"text":"data_2062"} {"text":"data_2063"} {"text":"data_2064"} {"text":"data_2065"} {"text":"data_2066"} {"text":"data_2067"} {"text":"data_2068"} {"text":"data_2069"} {"text":"data_2070"} {"text":"data_2071"} {"text":"data_2072"} {"text":"data_2073"} {"text":"data_2074"} {"text":"data_2075"} {"text":"data_2076"} {"text":"data_2077"} {"text":"data_2078"} {"text":"data_2079"} {"text":"data_2080"} {"text":"data_2081"} {"text":"data_2082"} {"text":"data_2083"} {"text":"data_2084"} {"text":"data_2085"} {"text":"data_2086"} {"text":"data_2087"} {"text":"data_2088"} {"text":"data_2089"} {"text":"data_2090"} {"text":"data_2091"} {"text":"data_2092"} {"text":"data_2093"} {"text":"data_2094"} {"text":"data_2095"} {"text":"data_2096"} {"text":"data_2097"} {"text":"data_2098"} {"text":"data_2099"} {"text":"data_2100"} {"text":"data_2101"} {"text":"data_2102"} {"text":"data_2103"} {"text":"data_2104"} {"text":"data_2105"} {"text":"data_2106"} {"text":"data_2107"} {"text":"data_2108"} {"text":"data_2109"} {"text":"data_2110"} {"text":"data_2111"} {"text":"data_2112"} {"text":"data_2113"} {"text":"data_2114"} {"text":"data_2115"} {"text":"data_2116"} {"text":"data_2117"} {"text":"data_2118"} {"text":"data_2119"} {"text":"data_2120"} {"text":"data_2121"} {"text":"data_2122"} {"text":"data_2123"} {"text":"data_2124"} {"text":"data_2125"} {"text":"data_2126"} {"text":"data_2127"} {"text":"data_2128"} {"text":"data_2129"} {"text":"data_2130"} {"text":"data_2131"} {"text":"data_2132"} {"text":"data_2133"} {"text":"data_2134"} {"text":"data_2135"} {"text":"data_2136"} {"text":"data_2137"} {"text":"data_2138"} {"text":"data_2139"} {"text":"data_2140"} {"text":"data_2141"} {"text":"data_2142"} {"text":"data_2143"} {"text":"data_2144"} {"text":"data_2145"} {"text":"data_2146"} {"text":"data_2147"} {"text":"data_2148"} {"text":"data_2149"} {"text":"data_2150"} {"text":"data_2151"} {"text":"data_2152"} {"text":"data_2153"} {"text":"data_2154"} {"text":"data_2155"} {"text":"data_2156"} {"text":"data_2157"} {"text":"data_2158"} {"text":"data_2159"} {"text":"data_2160"} {"text":"data_2161"} {"text":"data_2162"} {"text":"data_2163"} {"text":"data_2164"} {"text":"data_2165"} {"text":"data_2166"} {"text":"data_2167"} {"text":"data_2168"} {"text":"data_2169"} {"text":"data_2170"} {"text":"data_2171"} {"text":"data_2172"} {"text":"data_2173"} {"text":"data_2174"} {"text":"data_2175"} {"text":"data_2176"} {"text":"data_2177"} {"text":"data_2178"} {"text":"data_2179"} {"text":"data_2180"} {"text":"data_2181"} {"text":"data_2182"} {"text":"data_2183"} {"text":"data_2184"} {"text":"data_2185"} {"text":"data_2186"} {"text":"data_2187"} {"text":"data_2188"} {"text":"data_2189"} {"text":"data_2190"} {"text":"data_2191"} {"text":"data_2192"} {"text":"data_2193"} {"text":"data_2194"} {"text":"data_2195"} {"text":"data_2196"} {"text":"data_2197"} {"text":"data_2198"} {"text":"data_2199"} {"text":"data_2200"} {"text":"data_2201"} {"text":"data_2202"} {"text":"data_2203"} {"text":"data_2204"} {"text":"data_2205"} {"text":"data_2206"} {"text":"data_2207"} {"text":"data_2208"} {"text":"data_2209"} {"text":"data_2210"} {"text":"data_2211"} {"text":"data_2212"} {"text":"data_2213"} {"text":"data_2214"} {"text":"data_2215"} {"text":"data_2216"} {"text":"data_2217"} {"text":"data_2218"} {"text":"data_2219"} {"text":"data_2220"} {"text":"data_2221"} {"text":"data_2222"} {"text":"data_2223"} {"text":"data_2224"} {"text":"data_2225"} {"text":"data_2226"} {"text":"data_2227"} {"text":"data_2228"} {"text":"data_2229"} {"text":"data_2230"} {"text":"data_2231"} {"text":"data_2232"} {"text":"data_2233"} {"text":"data_2234"} {"text":"data_2235"} {"text":"data_2236"} {"text":"data_2237"} {"text":"data_2238"} {"text":"data_2239"} {"text":"data_2240"} {"text":"data_2241"} {"text":"data_2242"} {"text":"data_2243"} {"text":"data_2244"} {"text":"data_2245"} {"text":"data_2246"} {"text":"data_2247"} {"text":"data_2248"} {"text":"data_2249"} {"text":"data_2250"} {"text":"data_2251"} {"text":"data_2252"} {"text":"data_2253"} {"text":"data_2254"} {"text":"data_2255"} {"text":"data_2256"} {"text":"data_2257"} {"text":"data_2258"} {"text":"data_2259"} {"text":"data_2260"} {"text":"data_2261"} {"text":"data_2262"} {"text":"data_2263"} {"text":"data_2264"} {"text":"data_2265"} {"text":"data_2266"} {"text":"data_2267"} {"text":"data_2268"} {"text":"data_2269"} {"text":"data_2270"} {"text":"data_2271"} {"text":"data_2272"} {"text":"data_2273"} {"text":"data_2274"} {"text":"data_2275"} {"text":"data_2276"} {"text":"data_2277"} {"text":"data_2278"} {"text":"data_2279"} {"text":"data_2280"} {"text":"data_2281"} {"text":"data_2282"} {"text":"data_2283"} {"text":"data_2284"} {"text":"data_2285"} {"text":"data_2286"} {"text":"data_2287"} {"text":"data_2288"} {"text":"data_2289"} {"text":"data_2290"} {"text":"data_2291"} {"text":"data_2292"} {"text":"data_2293"} {"text":"data_2294"} {"text":"data_2295"} {"text":"data_2296"} {"text":"data_2297"} {"text":"data_2298"} {"text":"data_2299"} {"text":"data_2300"} {"text":"data_2301"} {"text":"data_2302"} {"text":"data_2303"} {"text":"data_2304"} {"text":"data_2305"} {"text":"data_2306"} {"text":"data_2307"} {"text":"data_2308"} {"text":"data_2309"} {"text":"data_2310"} {"text":"data_2311"} {"text":"data_2312"} {"text":"data_2313"} {"text":"data_2314"} {"text":"data_2315"} {"text":"data_2316"} {"text":"data_2317"} {"text":"data_2318"} {"text":"data_2319"} {"text":"data_2320"} {"text":"data_2321"} {"text":"data_2322"} {"text":"data_2323"} {"text":"data_2324"} {"text":"data_2325"} {"text":"data_2326"} {"text":"data_2327"} {"text":"data_2328"} {"text":"data_2329"} {"text":"data_2330"} {"text":"data_2331"} {"text":"data_2332"} {"text":"data_2333"} {"text":"data_2334"} {"text":"data_2335"} {"text":"data_2336"} {"text":"data_2337"} {"text":"data_2338"} {"text":"data_2339"} {"text":"data_2340"} {"text":"data_2341"} {"text":"data_2342"} {"text":"data_2343"} {"text":"data_2344"} {"text":"data_2345"} {"text":"data_2346"} {"text":"data_2347"} {"text":"data_2348"} {"text":"data_2349"} {"text":"data_2350"} {"text":"data_2351"} {"text":"data_2352"} {"text":"data_2353"} {"text":"data_2354"} {"text":"data_2355"} {"text":"data_2356"} {"text":"data_2357"} {"text":"data_2358"} {"text":"data_2359"} {"text":"data_2360"} {"text":"data_2361"} {"text":"data_2362"} {"text":"data_2363"} {"text":"data_2364"} {"text":"data_2365"} {"text":"data_2366"} {"text":"data_2367"} {"text":"data_2368"} {"text":"data_2369"} {"text":"data_2370"} {"text":"data_2371"} {"text":"data_2372"} {"text":"data_2373"} {"text":"data_2374"} {"text":"data_2375"} {"text":"data_2376"} {"text":"data_2377"} {"text":"data_2378"} {"text":"data_2379"} {"text":"data_2380"} {"text":"data_2381"} {"text":"data_2382"} {"text":"data_2383"} {"text":"data_2384"} {"text":"data_2385"} {"text":"data_2386"} {"text":"data_2387"} {"text":"data_2388"} {"text":"data_2389"} {"text":"data_2390"} {"text":"data_2391"} {"text":"data_2392"} {"text":"data_2393"} {"text":"data_2394"} {"text":"data_2395"} {"text":"data_2396"} {"text":"data_2397"} {"text":"data_2398"} {"text":"data_2399"} {"text":"data_2400"} {"text":"data_2401"} {"text":"data_2402"} {"text":"data_2403"} {"text":"data_2404"} {"text":"data_2405"} {"text":"data_2406"} {"text":"data_2407"} {"text":"data_2408"} {"text":"data_2409"} {"text":"data_2410"} {"text":"data_2411"} {"text":"data_2412"} {"text":"data_2413"} {"text":"data_2414"} {"text":"data_2415"} {"text":"data_2416"} {"text":"data_2417"} {"text":"data_2418"} {"text":"data_2419"} {"text":"data_2420"} {"text":"data_2421"} {"text":"data_2422"} {"text":"data_2423"} {"text":"data_2424"} {"text":"data_2425"} {"text":"data_2426"} {"text":"data_2427"} {"text":"data_2428"} {"text":"data_2429"} {"text":"data_2430"} {"text":"data_2431"} {"text":"data_2432"} {"text":"data_2433"} {"text":"data_2434"} {"text":"data_2435"} {"text":"data_2436"} {"text":"data_2437"} {"text":"data_2438"} {"text":"data_2439"} {"text":"data_2440"} {"text":"data_2441"} {"text":"data_2442"} {"text":"data_2443"} {"text":"data_2444"} {"text":"data_2445"} {"text":"data_2446"} {"text":"data_2447"} {"text":"data_2448"} {"text":"data_2449"} {"text":"data_2450"} {"text":"data_2451"} {"text":"data_2452"} {"text":"data_2453"} {"text":"data_2454"} {"text":"data_2455"} {"text":"data_2456"} {"text":"data_2457"} {"text":"data_2458"} {"text":"data_2459"} {"text":"data_2460"} {"text":"data_2461"} {"text":"data_2462"} {"text":"data_2463"} {"text":"data_2464"} {"text":"data_2465"} {"text":"data_2466"} {"text":"data_2467"} {"text":"data_2468"} {"text":"data_2469"} {"text":"data_2470"} {"text":"data_2471"} {"text":"data_2472"} {"text":"data_2473"} {"text":"data_2474"} {"text":"data_2475"} {"text":"data_2476"} {"text":"data_2477"} {"text":"data_2478"} {"text":"data_2479"} {"text":"data_2480"} {"text":"data_2481"} {"text":"data_2482"} {"text":"data_2483"} {"text":"data_2484"} {"text":"data_2485"} {"text":"data_2486"} {"text":"data_2487"} {"text":"data_2488"} {"text":"data_2489"} {"text":"data_2490"} {"text":"data_2491"} {"text":"data_2492"} {"text":"data_2493"} {"text":"data_2494"} {"text":"data_2495"} {"text":"data_2496"} {"text":"data_2497"} {"text":"data_2498"} {"text":"data_2499"} {"text":"data_2500"} {"text":"data_2501"} {"text":"data_2502"} {"text":"data_2503"} {"text":"data_2504"} {"text":"data_2505"} {"text":"data_2506"} {"text":"data_2507"} {"text":"data_2508"} {"text":"data_2509"} {"text":"data_2510"} {"text":"data_2511"} {"text":"data_2512"} {"text":"data_2513"} {"text":"data_2514"} {"text":"data_2515"} {"text":"data_2516"} {"text":"data_2517"} {"text":"data_2518"} {"text":"data_2519"} {"text":"data_2520"} {"text":"data_2521"} {"text":"data_2522"} {"text":"data_2523"} {"text":"data_2524"} {"text":"data_2525"} {"text":"data_2526"} {"text":"data_2527"} {"text":"data_2528"} {"text":"data_2529"} {"text":"data_2530"} {"text":"data_2531"} {"text":"data_2532"} {"text":"data_2533"} {"text":"data_2534"} {"text":"data_2535"} {"text":"data_2536"} {"text":"data_2537"} {"text":"data_2538"} {"text":"data_2539"} {"text":"data_2540"} {"text":"data_2541"} {"text":"data_2542"} {"text":"data_2543"} {"text":"data_2544"} {"text":"data_2545"} {"text":"data_2546"} {"text":"data_2547"} {"text":"data_2548"} {"text":"data_2549"} {"text":"data_2550"} {"text":"data_2551"} {"text":"data_2552"} {"text":"data_2553"} {"text":"data_2554"} {"text":"data_2555"} {"text":"data_2556"} {"text":"data_2557"} {"text":"data_2558"} {"text":"data_2559"} {"text":"data_2560"} {"text":"data_2561"} {"text":"data_2562"} {"text":"data_2563"} {"text":"data_2564"} {"text":"data_2565"} {"text":"data_2566"} {"text":"data_2567"} {"text":"data_2568"} {"text":"data_2569"} {"text":"data_2570"} {"text":"data_2571"} {"text":"data_2572"} {"text":"data_2573"} {"text":"data_2574"} {"text":"data_2575"} {"text":"data_2576"} {"text":"data_2577"} {"text":"data_2578"} {"text":"data_2579"} {"text":"data_2580"} {"text":"data_2581"} {"text":"data_2582"} {"text":"data_2583"} {"text":"data_2584"} {"text":"data_2585"} {"text":"data_2586"} {"text":"data_2587"} {"text":"data_2588"} {"text":"data_2589"} {"text":"data_2590"} {"text":"data_2591"} {"text":"data_2592"} {"text":"data_2593"} {"text":"data_2594"} {"text":"data_2595"} {"text":"data_2596"} {"text":"data_2597"} {"text":"data_2598"} {"text":"data_2599"} {"text":"data_2600"} {"text":"data_2601"} {"text":"data_2602"} {"text":"data_2603"} {"text":"data_2604"} {"text":"data_2605"} {"text":"data_2606"} {"text":"data_2607"} {"text":"data_2608"} {"text":"data_2609"} {"text":"data_2610"} {"text":"data_2611"} {"text":"data_2612"} {"text":"data_2613"} {"text":"data_2614"} {"text":"data_2615"} {"text":"data_2616"} {"text":"data_2617"} {"text":"data_2618"} {"text":"data_2619"} {"text":"data_2620"} {"text":"data_2621"} {"text":"data_2622"} {"text":"data_2623"} {"text":"data_2624"} {"text":"data_2625"} {"text":"data_2626"} {"text":"data_2627"} {"text":"data_2628"} {"text":"data_2629"} {"text":"data_2630"} {"text":"data_2631"} {"text":"data_2632"} {"text":"data_2633"} {"text":"data_2634"} {"text":"data_2635"} {"text":"data_2636"} {"text":"data_2637"} {"text":"data_2638"} {"text":"data_2639"} {"text":"data_2640"} {"text":"data_2641"} {"text":"data_2642"} {"text":"data_2643"} {"text":"data_2644"} {"text":"data_2645"} {"text":"data_2646"} {"text":"data_2647"} {"text":"data_2648"} {"text":"data_2649"} {"text":"data_2650"} {"text":"data_2651"} {"text":"data_2652"} {"text":"data_2653"} {"text":"data_2654"} {"text":"data_2655"} {"text":"data_2656"} {"text":"data_2657"} {"text":"data_2658"} {"text":"data_2659"} {"text":"data_2660"} {"text":"data_2661"} {"text":"data_2662"} {"text":"data_2663"} {"text":"data_2664"} {"text":"data_2665"} {"text":"data_2666"} {"text":"data_2667"} {"text":"data_2668"} {"text":"data_2669"} {"text":"data_2670"} {"text":"data_2671"} {"text":"data_2672"} {"text":"data_2673"} {"text":"data_2674"} {"text":"data_2675"} {"text":"data_2676"} {"text":"data_2677"} {"text":"data_2678"} {"text":"data_2679"} {"text":"data_2680"} {"text":"data_2681"} {"text":"data_2682"} {"text":"data_2683"} {"text":"data_2684"} {"text":"data_2685"} {"text":"data_2686"} {"text":"data_2687"} {"text":"data_2688"} {"text":"data_2689"} {"text":"data_2690"} {"text":"data_2691"} {"text":"data_2692"} {"text":"data_2693"} {"text":"data_2694"} {"text":"data_2695"} {"text":"data_2696"} {"text":"data_2697"} {"text":"data_2698"} {"text":"data_2699"} {"text":"data_2700"} {"text":"data_2701"} {"text":"data_2702"} {"text":"data_2703"} {"text":"data_2704"} {"text":"data_2705"} {"text":"data_2706"} {"text":"data_2707"} {"text":"data_2708"} {"text":"data_2709"} {"text":"data_2710"} {"text":"data_2711"} {"text":"data_2712"} {"text":"data_2713"} {"text":"data_2714"} {"text":"data_2715"} {"text":"data_2716"} {"text":"data_2717"} {"text":"data_2718"} {"text":"data_2719"} {"text":"data_2720"} {"text":"data_2721"} {"text":"data_2722"} {"text":"data_2723"} {"text":"data_2724"} {"text":"data_2725"} {"text":"data_2726"} {"text":"data_2727"} {"text":"data_2728"} {"text":"data_2729"} {"text":"data_2730"} {"text":"data_2731"} {"text":"data_2732"} {"text":"data_2733"} {"text":"data_2734"} {"text":"data_2735"} {"text":"data_2736"} {"text":"data_2737"} {"text":"data_2738"} {"text":"data_2739"} {"text":"data_2740"} {"text":"data_2741"} {"text":"data_2742"} {"text":"data_2743"} {"text":"data_2744"} {"text":"data_2745"} {"text":"data_2746"} {"text":"data_2747"} {"text":"data_2748"} {"text":"data_2749"} {"text":"data_2750"} {"text":"data_2751"} {"text":"data_2752"} {"text":"data_2753"} {"text":"data_2754"} {"text":"data_2755"} {"text":"data_2756"} {"text":"data_2757"} {"text":"data_2758"} {"text":"data_2759"} {"text":"data_2760"} {"text":"data_2761"} {"text":"data_2762"} {"text":"data_2763"} {"text":"data_2764"} {"text":"data_2765"} {"text":"data_2766"} {"text":"data_2767"} {"text":"data_2768"} {"text":"data_2769"} {"text":"data_2770"} {"text":"data_2771"} {"text":"data_2772"} {"text":"data_2773"} {"text":"data_2774"} {"text":"data_2775"} {"text":"data_2776"} {"text":"data_2777"} {"text":"data_2778"} {"text":"data_2779"} {"text":"data_2780"} {"text":"data_2781"} {"text":"data_2782"} {"text":"data_2783"} {"text":"data_2784"} {"text":"data_2785"} {"text":"data_2786"} {"text":"data_2787"} {"text":"data_2788"} {"text":"data_2789"} {"text":"data_2790"} {"text":"data_2791"} {"text":"data_2792"} {"text":"data_2793"} {"text":"data_2794"} {"text":"data_2795"} {"text":"data_2796"} {"text":"data_2797"} {"text":"data_2798"} {"text":"data_2799"} {"text":"data_2800"} {"text":"data_2801"} {"text":"data_2802"} {"text":"data_2803"} {"text":"data_2804"} {"text":"data_2805"} {"text":"data_2806"} {"text":"data_2807"} {"text":"data_2808"} {"text":"data_2809"} {"text":"data_2810"} {"text":"data_2811"} {"text":"data_2812"} {"text":"data_2813"} {"text":"data_2814"} {"text":"data_2815"} {"text":"data_2816"} {"text":"data_2817"} {"text":"data_2818"} {"text":"data_2819"} {"text":"data_2820"} {"text":"data_2821"} {"text":"data_2822"} {"text":"data_2823"} {"text":"data_2824"} {"text":"data_2825"} {"text":"data_2826"} {"text":"data_2827"} {"text":"data_2828"} {"text":"data_2829"} {"text":"data_2830"} {"text":"data_2831"} {"text":"data_2832"} {"text":"data_2833"} {"text":"data_2834"} {"text":"data_2835"} {"text":"data_2836"} {"text":"data_2837"} {"text":"data_2838"} {"text":"data_2839"} {"text":"data_2840"} {"text":"data_2841"} {"text":"data_2842"} {"text":"data_2843"} {"text":"data_2844"} {"text":"data_2845"} {"text":"data_2846"} {"text":"data_2847"} {"text":"data_2848"} {"text":"data_2849"} {"text":"data_2850"} {"text":"data_2851"} {"text":"data_2852"} {"text":"data_2853"} {"text":"data_2854"} {"text":"data_2855"} {"text":"data_2856"} {"text":"data_2857"} {"text":"data_2858"} {"text":"data_2859"} {"text":"data_2860"} {"text":"data_2861"} {"text":"data_2862"} {"text":"data_2863"} {"text":"data_2864"} {"text":"data_2865"} {"text":"data_2866"} {"text":"data_2867"} {"text":"data_2868"} {"text":"data_2869"} {"text":"data_2870"} {"text":"data_2871"} {"text":"data_2872"} {"text":"data_2873"} {"text":"data_2874"} {"text":"data_2875"} {"text":"data_2876"} {"text":"data_2877"} {"text":"data_2878"} {"text":"data_2879"} {"text":"data_2880"} {"text":"data_2881"} {"text":"data_2882"} {"text":"data_2883"} {"text":"data_2884"} {"text":"data_2885"} {"text":"data_2886"} {"text":"data_2887"} {"text":"data_2888"} {"text":"data_2889"} {"text":"data_2890"} {"text":"data_2891"} {"text":"data_2892"} {"text":"data_2893"} {"text":"data_2894"} {"text":"data_2895"} {"text":"data_2896"} {"text":"data_2897"} {"text":"data_2898"} {"text":"data_2899"} {"text":"data_2900"} {"text":"data_2901"} {"text":"data_2902"} {"text":"data_2903"} {"text":"data_2904"} {"text":"data_2905"} {"text":"data_2906"} {"text":"data_2907"} {"text":"data_2908"} {"text":"data_2909"} {"text":"data_2910"} {"text":"data_2911"} {"text":"data_2912"} {"text":"data_2913"} {"text":"data_2914"} {"text":"data_2915"} {"text":"data_2916"} {"text":"data_2917"} {"text":"data_2918"} {"text":"data_2919"} {"text":"data_2920"} {"text":"data_2921"} {"text":"data_2922"} {"text":"data_2923"} {"text":"data_2924"} {"text":"data_2925"} {"text":"data_2926"} {"text":"data_2927"} {"text":"data_2928"} {"text":"data_2929"} {"text":"data_2930"} {"text":"data_2931"} {"text":"data_2932"} {"text":"data_2933"} {"text":"data_2934"} {"text":"data_2935"} {"text":"data_2936"} {"text":"data_2937"} {"text":"data_2938"} {"text":"data_2939"} {"text":"data_2940"} {"text":"data_2941"} {"text":"data_2942"} {"text":"data_2943"} {"text":"data_2944"} {"text":"data_2945"} {"text":"data_2946"} {"text":"data_2947"} {"text":"data_2948"} {"text":"data_2949"} {"text":"data_2950"} {"text":"data_2951"} {"text":"data_2952"} {"text":"data_2953"} {"text":"data_2954"} {"text":"data_2955"} {"text":"data_2956"} {"text":"data_2957"} {"text":"data_2958"} {"text":"data_2959"} {"text":"data_2960"} {"text":"data_2961"} {"text":"data_2962"} {"text":"data_2963"} {"text":"data_2964"} {"text":"data_2965"} {"text":"data_2966"} {"text":"data_2967"} {"text":"data_2968"} {"text":"data_2969"} {"text":"data_2970"} {"text":"data_2971"} {"text":"data_2972"} {"text":"data_2973"} {"text":"data_2974"} {"text":"data_2975"} {"text":"data_2976"} {"text":"data_2977"} {"text":"data_2978"} {"text":"data_2979"} {"text":"data_2980"} {"text":"data_2981"} {"text":"data_2982"} {"text":"data_2983"} {"text":"data_2984"} {"text":"data_2985"} {"text":"data_2986"} {"text":"data_2987"} {"text":"data_2988"} {"text":"data_2989"} {"text":"data_2990"} {"text":"data_2991"} {"text":"data_2992"} {"text":"data_2993"} {"text":"data_2994"} {"text":"data_2995"} {"text":"data_2996"} {"text":"data_2997"} {"text":"data_2998"} {"text":"data_2999"} {"text":"data_3000"} {"text":"data_3001"} {"text":"data_3002"} {"text":"data_3003"} {"text":"data_3004"} {"text":"data_3005"} {"text":"data_3006"} {"text":"data_3007"} {"text":"data_3008"} {"text":"data_3009"} {"text":"data_3010"} {"text":"data_3011"} {"text":"data_3012"} {"text":"data_3013"} {"text":"data_3014"} {"text":"data_3015"} {"text":"data_3016"} {"text":"data_3017"} {"text":"data_3018"} {"text":"data_3019"} {"text":"data_3020"} {"text":"data_3021"} {"text":"data_3022"} {"text":"data_3023"} {"text":"data_3024"} {"text":"data_3025"} {"text":"data_3026"} {"text":"data_3027"} {"text":"data_3028"} {"text":"data_3029"} {"text":"data_3030"} {"text":"data_3031"} {"text":"data_3032"} {"text":"data_3033"} {"text":"data_3034"} {"text":"data_3035"} {"text":"data_3036"} {"text":"data_3037"} {"text":"data_3038"} {"text":"data_3039"} {"text":"data_3040"} {"text":"data_3041"} {"text":"data_3042"} {"text":"data_3043"} {"text":"data_3044"} {"text":"data_3045"} {"text":"data_3046"} {"text":"data_3047"} {"text":"data_3048"} {"text":"data_3049"} {"text":"data_3050"} {"text":"data_3051"} {"text":"data_3052"} {"text":"data_3053"} {"text":"data_3054"} {"text":"data_3055"} {"text":"data_3056"} {"text":"data_3057"} {"text":"data_3058"} {"text":"data_3059"} {"text":"data_3060"} {"text":"data_3061"} {"text":"data_3062"} {"text":"data_3063"} {"text":"data_3064"} {"text":"data_3065"} {"text":"data_3066"} {"text":"data_3067"} {"text":"data_3068"} {"text":"data_3069"} {"text":"data_3070"} {"text":"data_3071"} {"text":"data_3072"} {"text":"data_3073"} {"text":"data_3074"} {"text":"data_3075"} {"text":"data_3076"} {"text":"data_3077"} {"text":"data_3078"} {"text":"data_3079"} {"text":"data_3080"} {"text":"data_3081"} {"text":"data_3082"} {"text":"data_3083"} {"text":"data_3084"} {"text":"data_3085"} {"text":"data_3086"} {"text":"data_3087"} {"text":"data_3088"} {"text":"data_3089"} {"text":"data_3090"} {"text":"data_3091"} {"text":"data_3092"} {"text":"data_3093"} {"text":"data_3094"} {"text":"data_3095"} {"text":"data_3096"} {"text":"data_3097"} {"text":"data_3098"} {"text":"data_3099"} {"text":"data_3100"} {"text":"data_3101"} {"text":"data_3102"} {"text":"data_3103"} {"text":"data_3104"} {"text":"data_3105"} {"text":"data_3106"} {"text":"data_3107"} {"text":"data_3108"} {"text":"data_3109"} {"text":"data_3110"} {"text":"data_3111"} {"text":"data_3112"} {"text":"data_3113"} {"text":"data_3114"} {"text":"data_3115"} {"text":"data_3116"} {"text":"data_3117"} {"text":"data_3118"} {"text":"data_3119"} {"text":"data_3120"} {"text":"data_3121"} {"text":"data_3122"} {"text":"data_3123"} {"text":"data_3124"} {"text":"data_3125"} {"text":"data_3126"} {"text":"data_3127"} {"text":"data_3128"} {"text":"data_3129"} {"text":"data_3130"} {"text":"data_3131"} {"text":"data_3132"} {"text":"data_3133"} {"text":"data_3134"} {"text":"data_3135"} {"text":"data_3136"} {"text":"data_3137"} {"text":"data_3138"} {"text":"data_3139"} {"text":"data_3140"} {"text":"data_3141"} {"text":"data_3142"} {"text":"data_3143"} {"text":"data_3144"} {"text":"data_3145"} {"text":"data_3146"} {"text":"data_3147"} {"text":"data_3148"} {"text":"data_3149"} {"text":"data_3150"} {"text":"data_3151"} {"text":"data_3152"} {"text":"data_3153"} {"text":"data_3154"} {"text":"data_3155"} {"text":"data_3156"} {"text":"data_3157"} {"text":"data_3158"} {"text":"data_3159"} {"text":"data_3160"} {"text":"data_3161"} {"text":"data_3162"} {"text":"data_3163"} {"text":"data_3164"} {"text":"data_3165"} {"text":"data_3166"} {"text":"data_3167"} {"text":"data_3168"} {"text":"data_3169"} {"text":"data_3170"} {"text":"data_3171"} {"text":"data_3172"} {"text":"data_3173"} {"text":"data_3174"} {"text":"data_3175"} {"text":"data_3176"} {"text":"data_3177"} {"text":"data_3178"} {"text":"data_3179"} {"text":"data_3180"} {"text":"data_3181"} {"text":"data_3182"} {"text":"data_3183"} {"text":"data_3184"} {"text":"data_3185"} {"text":"data_3186"} {"text":"data_3187"} {"text":"data_3188"} {"text":"data_3189"} {"text":"data_3190"} {"text":"data_3191"} {"text":"data_3192"} {"text":"data_3193"} {"text":"data_3194"} {"text":"data_3195"} {"text":"data_3196"} {"text":"data_3197"} {"text":"data_3198"} {"text":"data_3199"} {"text":"data_3200"} {"text":"data_3201"} {"text":"data_3202"} {"text":"data_3203"} {"text":"data_3204"} {"text":"data_3205"} {"text":"data_3206"} {"text":"data_3207"} {"text":"data_3208"} {"text":"data_3209"} {"text":"data_3210"} {"text":"data_3211"} {"text":"data_3212"} {"text":"data_3213"} {"text":"data_3214"} {"text":"data_3215"} {"text":"data_3216"} {"text":"data_3217"} {"text":"data_3218"} {"text":"data_3219"} {"text":"data_3220"} {"text":"data_3221"} {"text":"data_3222"} {"text":"data_3223"} {"text":"data_3224"} {"text":"data_3225"} {"text":"data_3226"} {"text":"data_3227"} {"text":"data_3228"} {"text":"data_3229"} {"text":"data_3230"} {"text":"data_3231"} {"text":"data_3232"} {"text":"data_3233"} {"text":"data_3234"} {"text":"data_3235"} {"text":"data_3236"} {"text":"data_3237"} {"text":"data_3238"} {"text":"data_3239"} {"text":"data_3240"} {"text":"data_3241"} {"text":"data_3242"} {"text":"data_3243"} {"text":"data_3244"} {"text":"data_3245"} {"text":"data_3246"} {"text":"data_3247"} {"text":"data_3248"} {"text":"data_3249"} {"text":"data_3250"} {"text":"data_3251"} {"text":"data_3252"} {"text":"data_3253"} {"text":"data_3254"} {"text":"data_3255"} {"text":"data_3256"} {"text":"data_3257"} {"text":"data_3258"} {"text":"data_3259"} {"text":"data_3260"} {"text":"data_3261"} {"text":"data_3262"} {"text":"data_3263"} {"text":"data_3264"} {"text":"data_3265"} {"text":"data_3266"} {"text":"data_3267"} {"text":"data_3268"} {"text":"data_3269"} {"text":"data_3270"} {"text":"data_3271"} {"text":"data_3272"} {"text":"data_3273"} {"text":"data_3274"} {"text":"data_3275"} {"text":"data_3276"} {"text":"data_3277"} {"text":"data_3278"} {"text":"data_3279"} {"text":"data_3280"} {"text":"data_3281"} {"text":"data_3282"} {"text":"data_3283"} {"text":"data_3284"} {"text":"data_3285"} {"text":"data_3286"} {"text":"data_3287"} {"text":"data_3288"} {"text":"data_3289"} {"text":"data_3290"} {"text":"data_3291"} {"text":"data_3292"} {"text":"data_3293"} {"text":"data_3294"} {"text":"data_3295"} {"text":"data_3296"} {"text":"data_3297"} {"text":"data_3298"} {"text":"data_3299"} {"text":"data_3300"} {"text":"data_3301"} {"text":"data_3302"} {"text":"data_3303"} {"text":"data_3304"} {"text":"data_3305"} {"text":"data_3306"} {"text":"data_3307"} {"text":"data_3308"} {"text":"data_3309"} {"text":"data_3310"} {"text":"data_3311"} {"text":"data_3312"} {"text":"data_3313"} {"text":"data_3314"} {"text":"data_3315"} {"text":"data_3316"} {"text":"data_3317"} {"text":"data_3318"} {"text":"data_3319"} {"text":"data_3320"} {"text":"data_3321"} {"text":"data_3322"} {"text":"data_3323"} {"text":"data_3324"} {"text":"data_3325"} {"text":"data_3326"} {"text":"data_3327"} {"text":"data_3328"} {"text":"data_3329"} {"text":"data_3330"} {"text":"data_3331"} {"text":"data_3332"} {"text":"data_3333"} {"text":"data_3334"} {"text":"data_3335"} {"text":"data_3336"} {"text":"data_3337"} {"text":"data_3338"} {"text":"data_3339"} {"text":"data_3340"} {"text":"data_3341"} {"text":"data_3342"} {"text":"data_3343"} {"text":"data_3344"} {"text":"data_3345"} {"text":"data_3346"} {"text":"data_3347"} {"text":"data_3348"} {"text":"data_3349"} {"text":"data_3350"} {"text":"data_3351"} {"text":"data_3352"} {"text":"data_3353"} {"text":"data_3354"} {"text":"data_3355"} {"text":"data_3356"} {"text":"data_3357"} {"text":"data_3358"} {"text":"data_3359"} {"text":"data_3360"} {"text":"data_3361"} {"text":"data_3362"} {"text":"data_3363"} {"text":"data_3364"} {"text":"data_3365"} {"text":"data_3366"} {"text":"data_3367"} {"text":"data_3368"} {"text":"data_3369"} {"text":"data_3370"} {"text":"data_3371"} {"text":"data_3372"} {"text":"data_3373"} {"text":"data_3374"} {"text":"data_3375"} {"text":"data_3376"} {"text":"data_3377"} {"text":"data_3378"} {"text":"data_3379"} {"text":"data_3380"} {"text":"data_3381"} {"text":"data_3382"} {"text":"data_3383"} {"text":"data_3384"} {"text":"data_3385"} {"text":"data_3386"} {"text":"data_3387"} {"text":"data_3388"} {"text":"data_3389"} {"text":"data_3390"} {"text":"data_3391"} {"text":"data_3392"} {"text":"data_3393"} {"text":"data_3394"} {"text":"data_3395"} {"text":"data_3396"} {"text":"data_3397"} {"text":"data_3398"} {"text":"data_3399"} {"text":"data_3400"} {"text":"data_3401"} {"text":"data_3402"} {"text":"data_3403"} {"text":"data_3404"} {"text":"data_3405"} {"text":"data_3406"} {"text":"data_3407"} {"text":"data_3408"} {"text":"data_3409"} {"text":"data_3410"} {"text":"data_3411"} {"text":"data_3412"} {"text":"data_3413"} {"text":"data_3414"} {"text":"data_3415"} {"text":"data_3416"} {"text":"data_3417"} {"text":"data_3418"} {"text":"data_3419"} {"text":"data_3420"} {"text":"data_3421"} {"text":"data_3422"} {"text":"data_3423"} {"text":"data_3424"} {"text":"data_3425"} {"text":"data_3426"} {"text":"data_3427"} {"text":"data_3428"} {"text":"data_3429"} {"text":"data_3430"} {"text":"data_3431"} {"text":"data_3432"} {"text":"data_3433"} {"text":"data_3434"} {"text":"data_3435"} {"text":"data_3436"} {"text":"data_3437"} {"text":"data_3438"} {"text":"data_3439"} {"text":"data_3440"} {"text":"data_3441"} {"text":"data_3442"} {"text":"data_3443"} {"text":"data_3444"} {"text":"data_3445"} {"text":"data_3446"} {"text":"data_3447"} {"text":"data_3448"} {"text":"data_3449"} {"text":"data_3450"} {"text":"data_3451"} {"text":"data_3452"} {"text":"data_3453"} {"text":"data_3454"} {"text":"data_3455"} {"text":"data_3456"} {"text":"data_3457"} {"text":"data_3458"} {"text":"data_3459"} {"text":"data_3460"} {"text":"data_3461"} {"text":"data_3462"} {"text":"data_3463"} {"text":"data_3464"} {"text":"data_3465"} {"text":"data_3466"} {"text":"data_3467"} {"text":"data_3468"} {"text":"data_3469"} {"text":"data_3470"} {"text":"data_3471"} {"text":"data_3472"} {"text":"data_3473"} {"text":"data_3474"} {"text":"data_3475"} {"text":"data_3476"} {"text":"data_3477"} {"text":"data_3478"} {"text":"data_3479"} {"text":"data_3480"} {"text":"data_3481"} {"text":"data_3482"} {"text":"data_3483"} {"text":"data_3484"} {"text":"data_3485"} {"text":"data_3486"} {"text":"data_3487"} {"text":"data_3488"} {"text":"data_3489"} {"text":"data_3490"} {"text":"data_3491"} {"text":"data_3492"} {"text":"data_3493"} {"text":"data_3494"} {"text":"data_3495"} {"text":"data_3496"} {"text":"data_3497"} {"text":"data_3498"} {"text":"data_3499"} {"text":"data_3500"} {"text":"data_3501"} {"text":"data_3502"} {"text":"data_3503"} {"text":"data_3504"} {"text":"data_3505"} {"text":"data_3506"} {"text":"data_3507"} {"text":"data_3508"} {"text":"data_3509"} {"text":"data_3510"} {"text":"data_3511"} {"text":"data_3512"} {"text":"data_3513"} {"text":"data_3514"} {"text":"data_3515"} {"text":"data_3516"} {"text":"data_3517"} {"text":"data_3518"} {"text":"data_3519"} {"text":"data_3520"} {"text":"data_3521"} {"text":"data_3522"} {"text":"data_3523"} {"text":"data_3524"} {"text":"data_3525"} {"text":"data_3526"} {"text":"data_3527"} {"text":"data_3528"} {"text":"data_3529"} {"text":"data_3530"} {"text":"data_3531"} {"text":"data_3532"} {"text":"data_3533"} {"text":"data_3534"} {"text":"data_3535"} {"text":"data_3536"} {"text":"data_3537"} {"text":"data_3538"} {"text":"data_3539"} {"text":"data_3540"} {"text":"data_3541"} {"text":"data_3542"} {"text":"data_3543"} {"text":"data_3544"} {"text":"data_3545"} {"text":"data_3546"} {"text":"data_3547"} {"text":"data_3548"} {"text":"data_3549"} {"text":"data_3550"} {"text":"data_3551"} {"text":"data_3552"} {"text":"data_3553"} {"text":"data_3554"} {"text":"data_3555"} {"text":"data_3556"} {"text":"data_3557"} {"text":"data_3558"} {"text":"data_3559"} {"text":"data_3560"} {"text":"data_3561"} {"text":"data_3562"} {"text":"data_3563"} {"text":"data_3564"} {"text":"data_3565"} {"text":"data_3566"} {"text":"data_3567"} {"text":"data_3568"} {"text":"data_3569"} {"text":"data_3570"} {"text":"data_3571"} {"text":"data_3572"} {"text":"data_3573"} {"text":"data_3574"} {"text":"data_3575"} {"text":"data_3576"} {"text":"data_3577"} {"text":"data_3578"} {"text":"data_3579"} {"text":"data_3580"} {"text":"data_3581"} {"text":"data_3582"} {"text":"data_3583"} {"text":"data_3584"} {"text":"data_3585"} {"text":"data_3586"} {"text":"data_3587"} {"text":"data_3588"} {"text":"data_3589"} {"text":"data_3590"} {"text":"data_3591"} {"text":"data_3592"} {"text":"data_3593"} {"text":"data_3594"} {"text":"data_3595"} {"text":"data_3596"} {"text":"data_3597"} {"text":"data_3598"} {"text":"data_3599"} {"text":"data_3600"} {"text":"data_3601"} {"text":"data_3602"} {"text":"data_3603"} {"text":"data_3604"} {"text":"data_3605"} {"text":"data_3606"} {"text":"data_3607"} {"text":"data_3608"} {"text":"data_3609"} {"text":"data_3610"} {"text":"data_3611"} {"text":"data_3612"} {"text":"data_3613"} {"text":"data_3614"} {"text":"data_3615"} {"text":"data_3616"} {"text":"data_3617"} {"text":"data_3618"} {"text":"data_3619"} {"text":"data_3620"} {"text":"data_3621"} {"text":"data_3622"} {"text":"data_3623"} {"text":"data_3624"} {"text":"data_3625"} {"text":"data_3626"} {"text":"data_3627"} {"text":"data_3628"} {"text":"data_3629"} {"text":"data_3630"} {"text":"data_3631"} {"text":"data_3632"} {"text":"data_3633"} {"text":"data_3634"} {"text":"data_3635"} {"text":"data_3636"} {"text":"data_3637"} {"text":"data_3638"} {"text":"data_3639"} {"text":"data_3640"} {"text":"data_3641"} {"text":"data_3642"} {"text":"data_3643"} {"text":"data_3644"} {"text":"data_3645"} {"text":"data_3646"} {"text":"data_3647"} {"text":"data_3648"} {"text":"data_3649"} {"text":"data_3650"} {"text":"data_3651"} {"text":"data_3652"} {"text":"data_3653"} {"text":"data_3654"} {"text":"data_3655"} {"text":"data_3656"} {"text":"data_3657"} {"text":"data_3658"} {"text":"data_3659"} {"text":"data_3660"} {"text":"data_3661"} {"text":"data_3662"} {"text":"data_3663"} {"text":"data_3664"} {"text":"data_3665"} {"text":"data_3666"} {"text":"data_3667"} {"text":"data_3668"} {"text":"data_3669"} {"text":"data_3670"} {"text":"data_3671"} {"text":"data_3672"} {"text":"data_3673"} {"text":"data_3674"} {"text":"data_3675"} {"text":"data_3676"} {"text":"data_3677"} {"text":"data_3678"} {"text":"data_3679"} {"text":"data_3680"} {"text":"data_3681"} {"text":"data_3682"} {"text":"data_3683"} {"text":"data_3684"} {"text":"data_3685"} {"text":"data_3686"} {"text":"data_3687"} {"text":"data_3688"} {"text":"data_3689"} {"text":"data_3690"} {"text":"data_3691"} {"text":"data_3692"} {"text":"data_3693"} {"text":"data_3694"} {"text":"data_3695"} {"text":"data_3696"} {"text":"data_3697"} {"text":"data_3698"} {"text":"data_3699"} {"text":"data_3700"} {"text":"data_3701"} {"text":"data_3702"} {"text":"data_3703"} {"text":"data_3704"} {"text":"data_3705"} {"text":"data_3706"} {"text":"data_3707"} {"text":"data_3708"} {"text":"data_3709"} {"text":"data_3710"} {"text":"data_3711"} {"text":"data_3712"} {"text":"data_3713"} {"text":"data_3714"} {"text":"data_3715"} {"text":"data_3716"} {"text":"data_3717"} {"text":"data_3718"} {"text":"data_3719"} {"text":"data_3720"} {"text":"data_3721"} {"text":"data_3722"} {"text":"data_3723"} {"text":"data_3724"} {"text":"data_3725"} {"text":"data_3726"} {"text":"data_3727"} {"text":"data_3728"} {"text":"data_3729"} {"text":"data_3730"} {"text":"data_3731"} {"text":"data_3732"} {"text":"data_3733"} {"text":"data_3734"} {"text":"data_3735"} {"text":"data_3736"} {"text":"data_3737"} {"text":"data_3738"} {"text":"data_3739"} {"text":"data_3740"} {"text":"data_3741"} {"text":"data_3742"} {"text":"data_3743"} {"text":"data_3744"} {"text":"data_3745"} {"text":"data_3746"} {"text":"data_3747"} {"text":"data_3748"} {"text":"data_3749"} {"text":"data_3750"} {"text":"data_3751"} {"text":"data_3752"} {"text":"data_3753"} {"text":"data_3754"} {"text":"data_3755"} {"text":"data_3756"} {"text":"data_3757"} {"text":"data_3758"} {"text":"data_3759"} {"text":"data_3760"} {"text":"data_3761"} {"text":"data_3762"} {"text":"data_3763"} {"text":"data_3764"} {"text":"data_3765"} {"text":"data_3766"} {"text":"data_3767"} {"text":"data_3768"} {"text":"data_3769"} {"text":"data_3770"} {"text":"data_3771"} {"text":"data_3772"} {"text":"data_3773"} {"text":"data_3774"} {"text":"data_3775"} {"text":"data_3776"} {"text":"data_3777"} {"text":"data_3778"} {"text":"data_3779"} {"text":"data_3780"} {"text":"data_3781"} {"text":"data_3782"} {"text":"data_3783"} {"text":"data_3784"} {"text":"data_3785"} {"text":"data_3786"} {"text":"data_3787"} {"text":"data_3788"} {"text":"data_3789"} {"text":"data_3790"} {"text":"data_3791"} {"text":"data_3792"} {"text":"data_3793"} {"text":"data_3794"} {"text":"data_3795"} {"text":"data_3796"} {"text":"data_3797"} {"text":"data_3798"} {"text":"data_3799"} {"text":"data_3800"} {"text":"data_3801"} {"text":"data_3802"} {"text":"data_3803"} {"text":"data_3804"} {"text":"data_3805"} {"text":"data_3806"} {"text":"data_3807"} {"text":"data_3808"} {"text":"data_3809"} {"text":"data_3810"} {"text":"data_3811"} {"text":"data_3812"} {"text":"data_3813"} {"text":"data_3814"} {"text":"data_3815"} {"text":"data_3816"} {"text":"data_3817"} {"text":"data_3818"} {"text":"data_3819"} {"text":"data_3820"} {"text":"data_3821"} {"text":"data_3822"} {"text":"data_3823"} {"text":"data_3824"} {"text":"data_3825"} {"text":"data_3826"} {"text":"data_3827"} {"text":"data_3828"} {"text":"data_3829"} {"text":"data_3830"} {"text":"data_3831"} {"text":"data_3832"} {"text":"data_3833"} {"text":"data_3834"} {"text":"data_3835"} {"text":"data_3836"} {"text":"data_3837"} {"text":"data_3838"} {"text":"data_3839"} {"text":"data_3840"} {"text":"data_3841"} {"text":"data_3842"} {"text":"data_3843"} {"text":"data_3844"} {"text":"data_3845"} {"text":"data_3846"} {"text":"data_3847"} {"text":"data_3848"} {"text":"data_3849"} {"text":"data_3850"} {"text":"data_3851"} {"text":"data_3852"} {"text":"data_3853"} {"text":"data_3854"} {"text":"data_3855"} {"text":"data_3856"} {"text":"data_3857"} {"text":"data_3858"} {"text":"data_3859"} {"text":"data_3860"} {"text":"data_3861"} {"text":"data_3862"} {"text":"data_3863"} {"text":"data_3864"} {"text":"data_3865"} {"text":"data_3866"} {"text":"data_3867"} {"text":"data_3868"} {"text":"data_3869"} {"text":"data_3870"} {"text":"data_3871"} {"text":"data_3872"} {"text":"data_3873"} {"text":"data_3874"} {"text":"data_3875"} {"text":"data_3876"} {"text":"data_3877"} {"text":"data_3878"} {"text":"data_3879"} {"text":"data_3880"} {"text":"data_3881"} {"text":"data_3882"} {"text":"data_3883"} {"text":"data_3884"} {"text":"data_3885"} {"text":"data_3886"} {"text":"data_3887"} {"text":"data_3888"} {"text":"data_3889"} {"text":"data_3890"} {"text":"data_3891"} {"text":"data_3892"} {"text":"data_3893"} {"text":"data_3894"} {"text":"data_3895"} {"text":"data_3896"} {"text":"data_3897"} {"text":"data_3898"} {"text":"data_3899"} {"text":"data_3900"} {"text":"data_3901"} {"text":"data_3902"} {"text":"data_3903"} {"text":"data_3904"} {"text":"data_3905"} {"text":"data_3906"} {"text":"data_3907"} {"text":"data_3908"} {"text":"data_3909"} {"text":"data_3910"} {"text":"data_3911"} {"text":"data_3912"} {"text":"data_3913"} {"text":"data_3914"} {"text":"data_3915"} {"text":"data_3916"} {"text":"data_3917"} {"text":"data_3918"} {"text":"data_3919"} {"text":"data_3920"} {"text":"data_3921"} {"text":"data_3922"} {"text":"data_3923"} {"text":"data_3924"} {"text":"data_3925"} {"text":"data_3926"} {"text":"data_3927"} {"text":"data_3928"} {"text":"data_3929"} {"text":"data_3930"} {"text":"data_3931"} {"text":"data_3932"} {"text":"data_3933"} {"text":"data_3934"} {"text":"data_3935"} {"text":"data_3936"} {"text":"data_3937"} {"text":"data_3938"} {"text":"data_3939"} {"text":"data_3940"} {"text":"data_3941"} {"text":"data_3942"} {"text":"data_3943"} {"text":"data_3944"} {"text":"data_3945"} {"text":"data_3946"} {"text":"data_3947"} {"text":"data_3948"} {"text":"data_3949"} {"text":"data_3950"} {"text":"data_3951"} {"text":"data_3952"} {"text":"data_3953"} {"text":"data_3954"} {"text":"data_3955"} {"text":"data_3956"} {"text":"data_3957"} {"text":"data_3958"} {"text":"data_3959"} {"text":"data_3960"} {"text":"data_3961"} {"text":"data_3962"} {"text":"data_3963"} {"text":"data_3964"} {"text":"data_3965"} {"text":"data_3966"} {"text":"data_3967"} {"text":"data_3968"} {"text":"data_3969"} {"text":"data_3970"} {"text":"data_3971"} {"text":"data_3972"} {"text":"data_3973"} {"text":"data_3974"} {"text":"data_3975"} {"text":"data_3976"} {"text":"data_3977"} {"text":"data_3978"} {"text":"data_3979"} {"text":"data_3980"} {"text":"data_3981"} {"text":"data_3982"} {"text":"data_3983"} {"text":"data_3984"} {"text":"data_3985"} {"text":"data_3986"} {"text":"data_3987"} {"text":"data_3988"} {"text":"data_3989"} {"text":"data_3990"} {"text":"data_3991"} {"text":"data_3992"} {"text":"data_3993"} {"text":"data_3994"} {"text":"data_3995"} {"text":"data_3996"} {"text":"data_3997"} {"text":"data_3998"} {"text":"data_3999"} {"text":"data_4000"} {"text":"data_4001"} {"text":"data_4002"} {"text":"data_4003"} {"text":"data_4004"} {"text":"data_4005"} {"text":"data_4006"} {"text":"data_4007"} {"text":"data_4008"} {"text":"data_4009"} {"text":"data_4010"} {"text":"data_4011"} {"text":"data_4012"} {"text":"data_4013"} {"text":"data_4014"} {"text":"data_4015"} {"text":"data_4016"} {"text":"data_4017"} {"text":"data_4018"} {"text":"data_4019"} {"text":"data_4020"} {"text":"data_4021"} {"text":"data_4022"} {"text":"data_4023"} {"text":"data_4024"} {"text":"data_4025"} {"text":"data_4026"} {"text":"data_4027"} {"text":"data_4028"} {"text":"data_4029"} {"text":"data_4030"} {"text":"data_4031"} {"text":"data_4032"} {"text":"data_4033"} {"text":"data_4034"} {"text":"data_4035"} {"text":"data_4036"} {"text":"data_4037"} {"text":"data_4038"} {"text":"data_4039"} {"text":"data_4040"} {"text":"data_4041"} {"text":"data_4042"} {"text":"data_4043"} {"text":"data_4044"} {"text":"data_4045"} {"text":"data_4046"} {"text":"data_4047"} {"text":"data_4048"} {"text":"data_4049"} {"text":"data_4050"} {"text":"data_4051"} {"text":"data_4052"} {"text":"data_4053"} {"text":"data_4054"} {"text":"data_4055"} {"text":"data_4056"} {"text":"data_4057"} {"text":"data_4058"} {"text":"data_4059"} {"text":"data_4060"} {"text":"data_4061"} {"text":"data_4062"} {"text":"data_4063"} {"text":"data_4064"} {"text":"data_4065"} {"text":"data_4066"} {"text":"data_4067"} {"text":"data_4068"} {"text":"data_4069"} {"text":"data_4070"} {"text":"data_4071"} {"text":"data_4072"} {"text":"data_4073"} {"text":"data_4074"} {"text":"data_4075"} {"text":"data_4076"} {"text":"data_4077"} {"text":"data_4078"} {"text":"data_4079"} {"text":"data_4080"} {"text":"data_4081"} {"text":"data_4082"} {"text":"data_4083"} {"text":"data_4084"} {"text":"data_4085"} {"text":"data_4086"} {"text":"data_4087"} {"text":"data_4088"} {"text":"data_4089"} {"text":"data_4090"} {"text":"data_4091"} {"text":"data_4092"} {"text":"data_4093"} {"text":"data_4094"} {"text":"data_4095"} {"text":"data_4096"} {"text":"data_4097"} {"text":"data_4098"} {"text":"data_4099"} {"text":"data_4100"} {"text":"data_4101"} {"text":"data_4102"} {"text":"data_4103"} {"text":"data_4104"} {"text":"data_4105"} {"text":"data_4106"} {"text":"data_4107"} {"text":"data_4108"} {"text":"data_4109"} {"text":"data_4110"} {"text":"data_4111"} {"text":"data_4112"} {"text":"data_4113"} {"text":"data_4114"} {"text":"data_4115"} {"text":"data_4116"} {"text":"data_4117"} {"text":"data_4118"} {"text":"data_4119"} {"text":"data_4120"} {"text":"data_4121"} {"text":"data_4122"} {"text":"data_4123"} {"text":"data_4124"} {"text":"data_4125"} {"text":"data_4126"} {"text":"data_4127"} {"text":"data_4128"} {"text":"data_4129"} {"text":"data_4130"} {"text":"data_4131"} {"text":"data_4132"} {"text":"data_4133"} {"text":"data_4134"} {"text":"data_4135"} {"text":"data_4136"} {"text":"data_4137"} {"text":"data_4138"} {"text":"data_4139"} {"text":"data_4140"} {"text":"data_4141"} {"text":"data_4142"} {"text":"data_4143"} {"text":"data_4144"} {"text":"data_4145"} {"text":"data_4146"} {"text":"data_4147"} {"text":"data_4148"} {"text":"data_4149"} {"text":"data_4150"} {"text":"data_4151"} {"text":"data_4152"} {"text":"data_4153"} {"text":"data_4154"} {"text":"data_4155"} {"text":"data_4156"} {"text":"data_4157"} {"text":"data_4158"} {"text":"data_4159"} {"text":"data_4160"} {"text":"data_4161"} {"text":"data_4162"} {"text":"data_4163"} {"text":"data_4164"} {"text":"data_4165"} {"text":"data_4166"} {"text":"data_4167"} {"text":"data_4168"} {"text":"data_4169"} {"text":"data_4170"} {"text":"data_4171"} {"text":"data_4172"} {"text":"data_4173"} {"text":"data_4174"} {"text":"data_4175"} {"text":"data_4176"} {"text":"data_4177"} {"text":"data_4178"} {"text":"data_4179"} {"text":"data_4180"} {"text":"data_4181"} {"text":"data_4182"} {"text":"data_4183"} {"text":"data_4184"} {"text":"data_4185"} {"text":"data_4186"} {"text":"data_4187"} {"text":"data_4188"} {"text":"data_4189"} {"text":"data_4190"} {"text":"data_4191"} {"text":"data_4192"} {"text":"data_4193"} {"text":"data_4194"} {"text":"data_4195"} {"text":"data_4196"} {"text":"data_4197"} {"text":"data_4198"} {"text":"data_4199"} {"text":"data_4200"} {"text":"data_4201"} {"text":"data_4202"} {"text":"data_4203"} {"text":"data_4204"} {"text":"data_4205"} {"text":"data_4206"} {"text":"data_4207"} {"text":"data_4208"} {"text":"data_4209"} {"text":"data_4210"} {"text":"data_4211"} {"text":"data_4212"} {"text":"data_4213"} {"text":"data_4214"} {"text":"data_4215"} {"text":"data_4216"} {"text":"data_4217"} {"text":"data_4218"} {"text":"data_4219"} {"text":"data_4220"} {"text":"data_4221"} {"text":"data_4222"} {"text":"data_4223"} {"text":"data_4224"} {"text":"data_4225"} {"text":"data_4226"} {"text":"data_4227"} {"text":"data_4228"} {"text":"data_4229"} {"text":"data_4230"} {"text":"data_4231"} {"text":"data_4232"} {"text":"data_4233"} {"text":"data_4234"} {"text":"data_4235"} {"text":"data_4236"} {"text":"data_4237"} {"text":"data_4238"} {"text":"data_4239"} {"text":"data_4240"} {"text":"data_4241"} {"text":"data_4242"} {"text":"data_4243"} {"text":"data_4244"} {"text":"data_4245"} {"text":"data_4246"} {"text":"data_4247"} {"text":"data_4248"} {"text":"data_4249"} {"text":"data_4250"} {"text":"data_4251"} {"text":"data_4252"} {"text":"data_4253"} {"text":"data_4254"} {"text":"data_4255"} {"text":"data_4256"} {"text":"data_4257"} {"text":"data_4258"} {"text":"data_4259"} {"text":"data_4260"} {"text":"data_4261"} {"text":"data_4262"} {"text":"data_4263"} {"text":"data_4264"} {"text":"data_4265"} {"text":"data_4266"} {"text":"data_4267"} {"text":"data_4268"} {"text":"data_4269"} {"text":"data_4270"} {"text":"data_4271"} {"text":"data_4272"} {"text":"data_4273"} {"text":"data_4274"} {"text":"data_4275"} {"text":"data_4276"} {"text":"data_4277"} {"text":"data_4278"} {"text":"data_4279"} {"text":"data_4280"} {"text":"data_4281"} {"text":"data_4282"} {"text":"data_4283"} {"text":"data_4284"} {"text":"data_4285"} {"text":"data_4286"} {"text":"data_4287"} {"text":"data_4288"} {"text":"data_4289"} {"text":"data_4290"} {"text":"data_4291"} {"text":"data_4292"} {"text":"data_4293"} {"text":"data_4294"} {"text":"data_4295"} {"text":"data_4296"} {"text":"data_4297"} {"text":"data_4298"} {"text":"data_4299"} {"text":"data_4300"} {"text":"data_4301"} {"text":"data_4302"} {"text":"data_4303"} {"text":"data_4304"} {"text":"data_4305"} {"text":"data_4306"} {"text":"data_4307"} {"text":"data_4308"} {"text":"data_4309"} {"text":"data_4310"} {"text":"data_4311"} {"text":"data_4312"} {"text":"data_4313"} {"text":"data_4314"} {"text":"data_4315"} {"text":"data_4316"} {"text":"data_4317"} {"text":"data_4318"} {"text":"data_4319"} {"text":"data_4320"} {"text":"data_4321"} {"text":"data_4322"} {"text":"data_4323"} {"text":"data_4324"} {"text":"data_4325"} {"text":"data_4326"} {"text":"data_4327"} {"text":"data_4328"} {"text":"data_4329"} {"text":"data_4330"} {"text":"data_4331"} {"text":"data_4332"} {"text":"data_4333"} {"text":"data_4334"} {"text":"data_4335"} {"text":"data_4336"} {"text":"data_4337"} {"text":"data_4338"} {"text":"data_4339"} {"text":"data_4340"} {"text":"data_4341"} {"text":"data_4342"} {"text":"data_4343"} {"text":"data_4344"} {"text":"data_4345"} {"text":"data_4346"} {"text":"data_4347"} {"text":"data_4348"} {"text":"data_4349"} {"text":"data_4350"} {"text":"data_4351"} {"text":"data_4352"} {"text":"data_4353"} {"text":"data_4354"} {"text":"data_4355"} {"text":"data_4356"} {"text":"data_4357"} {"text":"data_4358"} {"text":"data_4359"} {"text":"data_4360"} {"text":"data_4361"} {"text":"data_4362"} {"text":"data_4363"} {"text":"data_4364"} {"text":"data_4365"} {"text":"data_4366"} {"text":"data_4367"} {"text":"data_4368"} {"text":"data_4369"} {"text":"data_4370"} {"text":"data_4371"} {"text":"data_4372"} {"text":"data_4373"} {"text":"data_4374"} {"text":"data_4375"} {"text":"data_4376"} {"text":"data_4377"} {"text":"data_4378"} {"text":"data_4379"} {"text":"data_4380"} {"text":"data_4381"} {"text":"data_4382"} {"text":"data_4383"} {"text":"data_4384"} {"text":"data_4385"} {"text":"data_4386"} {"text":"data_4387"} {"text":"data_4388"} {"text":"data_4389"} {"text":"data_4390"} {"text":"data_4391"} {"text":"data_4392"} {"text":"data_4393"} {"text":"data_4394"} {"text":"data_4395"} {"text":"data_4396"} {"text":"data_4397"} {"text":"data_4398"} {"text":"data_4399"} {"text":"data_4400"} {"text":"data_4401"} {"text":"data_4402"} {"text":"data_4403"} {"text":"data_4404"} {"text":"data_4405"} {"text":"data_4406"} {"text":"data_4407"} {"text":"data_4408"} {"text":"data_4409"} {"text":"data_4410"} {"text":"data_4411"} {"text":"data_4412"} {"text":"data_4413"} {"text":"data_4414"} {"text":"data_4415"} {"text":"data_4416"} {"text":"data_4417"} {"text":"data_4418"} {"text":"data_4419"} {"text":"data_4420"} {"text":"data_4421"} {"text":"data_4422"} {"text":"data_4423"} {"text":"data_4424"} {"text":"data_4425"} {"text":"data_4426"} {"text":"data_4427"} {"text":"data_4428"} {"text":"data_4429"} {"text":"data_4430"} {"text":"data_4431"} {"text":"data_4432"} {"text":"data_4433"} {"text":"data_4434"} {"text":"data_4435"} {"text":"data_4436"} {"text":"data_4437"} {"text":"data_4438"} {"text":"data_4439"} {"text":"data_4440"} {"text":"data_4441"} {"text":"data_4442"} {"text":"data_4443"} {"text":"data_4444"} {"text":"data_4445"} {"text":"data_4446"} {"text":"data_4447"} {"text":"data_4448"} {"text":"data_4449"} {"text":"data_4450"} {"text":"data_4451"} {"text":"data_4452"} {"text":"data_4453"} {"text":"data_4454"} {"text":"data_4455"} {"text":"data_4456"} {"text":"data_4457"} {"text":"data_4458"} {"text":"data_4459"} {"text":"data_4460"} {"text":"data_4461"} {"text":"data_4462"} {"text":"data_4463"} {"text":"data_4464"} {"text":"data_4465"} {"text":"data_4466"} {"text":"data_4467"} {"text":"data_4468"} {"text":"data_4469"} {"text":"data_4470"} {"text":"data_4471"} {"text":"data_4472"} {"text":"data_4473"} {"text":"data_4474"} {"text":"data_4475"} {"text":"data_4476"} {"text":"data_4477"} {"text":"data_4478"} {"text":"data_4479"} {"text":"data_4480"} {"text":"data_4481"} {"text":"data_4482"} {"text":"data_4483"} {"text":"data_4484"} {"text":"data_4485"} {"text":"data_4486"} {"text":"data_4487"} {"text":"data_4488"} {"text":"data_4489"} {"text":"data_4490"} {"text":"data_4491"} {"text":"data_4492"} {"text":"data_4493"} {"text":"data_4494"} {"text":"data_4495"} {"text":"data_4496"} {"text":"data_4497"} {"text":"data_4498"} {"text":"data_4499"} {"text":"data_4500"} {"text":"data_4501"} {"text":"data_4502"} {"text":"data_4503"} {"text":"data_4504"} {"text":"data_4505"} {"text":"data_4506"} {"text":"data_4507"} {"text":"data_4508"} {"text":"data_4509"} {"text":"data_4510"} {"text":"data_4511"} {"text":"data_4512"} {"text":"data_4513"} {"text":"data_4514"} {"text":"data_4515"} {"text":"data_4516"} {"text":"data_4517"} {"text":"data_4518"} {"text":"data_4519"} {"text":"data_4520"} {"text":"data_4521"} {"text":"data_4522"} {"text":"data_4523"} {"text":"data_4524"} {"text":"data_4525"} {"text":"data_4526"} {"text":"data_4527"} {"text":"data_4528"} {"text":"data_4529"} {"text":"data_4530"} {"text":"data_4531"} {"text":"data_4532"} {"text":"data_4533"} {"text":"data_4534"} {"text":"data_4535"} {"text":"data_4536"} {"text":"data_4537"} {"text":"data_4538"} {"text":"data_4539"} {"text":"data_4540"} {"text":"data_4541"} {"text":"data_4542"} {"text":"data_4543"} {"text":"data_4544"} {"text":"data_4545"} {"text":"data_4546"} {"text":"data_4547"} {"text":"data_4548"} {"text":"data_4549"} {"text":"data_4550"} {"text":"data_4551"} {"text":"data_4552"} {"text":"data_4553"} {"text":"data_4554"} {"text":"data_4555"} {"text":"data_4556"} {"text":"data_4557"} {"text":"data_4558"} {"text":"data_4559"} {"text":"data_4560"} {"text":"data_4561"} {"text":"data_4562"} {"text":"data_4563"} {"text":"data_4564"} {"text":"data_4565"} {"text":"data_4566"} {"text":"data_4567"} {"text":"data_4568"} {"text":"data_4569"} {"text":"data_4570"} {"text":"data_4571"} {"text":"data_4572"} {"text":"data_4573"} {"text":"data_4574"} {"text":"data_4575"} {"text":"data_4576"} {"text":"data_4577"} {"text":"data_4578"} {"text":"data_4579"} {"text":"data_4580"} {"text":"data_4581"} {"text":"data_4582"} {"text":"data_4583"} {"text":"data_4584"} {"text":"data_4585"} {"text":"data_4586"} {"text":"data_4587"} {"text":"data_4588"} {"text":"data_4589"} {"text":"data_4590"} {"text":"data_4591"} {"text":"data_4592"} {"text":"data_4593"} {"text":"data_4594"} {"text":"data_4595"} {"text":"data_4596"} {"text":"data_4597"} {"text":"data_4598"} {"text":"data_4599"} {"text":"data_4600"} {"text":"data_4601"} {"text":"data_4602"} {"text":"data_4603"} {"text":"data_4604"} {"text":"data_4605"} {"text":"data_4606"} {"text":"data_4607"} {"text":"data_4608"} {"text":"data_4609"} {"text":"data_4610"} {"text":"data_4611"} {"text":"data_4612"} {"text":"data_4613"} {"text":"data_4614"} {"text":"data_4615"} {"text":"data_4616"} {"text":"data_4617"} {"text":"data_4618"} {"text":"data_4619"} {"text":"data_4620"} {"text":"data_4621"} {"text":"data_4622"} {"text":"data_4623"} {"text":"data_4624"} {"text":"data_4625"} {"text":"data_4626"} {"text":"data_4627"} {"text":"data_4628"} {"text":"data_4629"} {"text":"data_4630"} {"text":"data_4631"} {"text":"data_4632"} {"text":"data_4633"} {"text":"data_4634"} {"text":"data_4635"} {"text":"data_4636"} {"text":"data_4637"} {"text":"data_4638"} {"text":"data_4639"} {"text":"data_4640"} {"text":"data_4641"} {"text":"data_4642"} {"text":"data_4643"} {"text":"data_4644"} {"text":"data_4645"} {"text":"data_4646"} {"text":"data_4647"} {"text":"data_4648"} {"text":"data_4649"} {"text":"data_4650"} {"text":"data_4651"} {"text":"data_4652"} {"text":"data_4653"} {"text":"data_4654"} {"text":"data_4655"} {"text":"data_4656"} {"text":"data_4657"} {"text":"data_4658"} {"text":"data_4659"} {"text":"data_4660"} {"text":"data_4661"} {"text":"data_4662"} {"text":"data_4663"} {"text":"data_4664"} {"text":"data_4665"} {"text":"data_4666"} {"text":"data_4667"} {"text":"data_4668"} {"text":"data_4669"} {"text":"data_4670"} {"text":"data_4671"} {"text":"data_4672"} {"text":"data_4673"} {"text":"data_4674"} {"text":"data_4675"} {"text":"data_4676"} {"text":"data_4677"} {"text":"data_4678"} {"text":"data_4679"} {"text":"data_4680"} {"text":"data_4681"} {"text":"data_4682"} {"text":"data_4683"} {"text":"data_4684"} {"text":"data_4685"} {"text":"data_4686"} {"text":"data_4687"} {"text":"data_4688"} {"text":"data_4689"} {"text":"data_4690"} {"text":"data_4691"} {"text":"data_4692"} {"text":"data_4693"} {"text":"data_4694"} {"text":"data_4695"} {"text":"data_4696"} {"text":"data_4697"} {"text":"data_4698"} {"text":"data_4699"} {"text":"data_4700"} {"text":"data_4701"} {"text":"data_4702"} {"text":"data_4703"} {"text":"data_4704"} {"text":"data_4705"} {"text":"data_4706"} {"text":"data_4707"} {"text":"data_4708"} {"text":"data_4709"} {"text":"data_4710"} {"text":"data_4711"} {"text":"data_4712"} {"text":"data_4713"} {"text":"data_4714"} {"text":"data_4715"} {"text":"data_4716"} {"text":"data_4717"} {"text":"data_4718"} {"text":"data_4719"} {"text":"data_4720"} {"text":"data_4721"} {"text":"data_4722"} {"text":"data_4723"} {"text":"data_4724"} {"text":"data_4725"} {"text":"data_4726"} {"text":"data_4727"} {"text":"data_4728"} {"text":"data_4729"} {"text":"data_4730"} {"text":"data_4731"} {"text":"data_4732"} {"text":"data_4733"} {"text":"data_4734"} {"text":"data_4735"} {"text":"data_4736"} {"text":"data_4737"} {"text":"data_4738"} {"text":"data_4739"} {"text":"data_4740"} {"text":"data_4741"} {"text":"data_4742"} {"text":"data_4743"} {"text":"data_4744"} {"text":"data_4745"} {"text":"data_4746"} {"text":"data_4747"} {"text":"data_4748"} {"text":"data_4749"} {"text":"data_4750"} {"text":"data_4751"} {"text":"data_4752"} {"text":"data_4753"} {"text":"data_4754"} {"text":"data_4755"} {"text":"data_4756"} {"text":"data_4757"} {"text":"data_4758"} {"text":"data_4759"} {"text":"data_4760"} {"text":"data_4761"} {"text":"data_4762"} {"text":"data_4763"} {"text":"data_4764"} {"text":"data_4765"} {"text":"data_4766"} {"text":"data_4767"} {"text":"data_4768"} {"text":"data_4769"} {"text":"data_4770"} {"text":"data_4771"} {"text":"data_4772"} {"text":"data_4773"} {"text":"data_4774"} {"text":"data_4775"} {"text":"data_4776"} {"text":"data_4777"} {"text":"data_4778"} {"text":"data_4779"} {"text":"data_4780"} {"text":"data_4781"} {"text":"data_4782"} {"text":"data_4783"} {"text":"data_4784"} {"text":"data_4785"} {"text":"data_4786"} {"text":"data_4787"} {"text":"data_4788"} {"text":"data_4789"} {"text":"data_4790"} {"text":"data_4791"} {"text":"data_4792"} {"text":"data_4793"} {"text":"data_4794"} {"text":"data_4795"} {"text":"data_4796"} {"text":"data_4797"} {"text":"data_4798"} {"text":"data_4799"} {"text":"data_4800"} {"text":"data_4801"} {"text":"data_4802"} {"text":"data_4803"} {"text":"data_4804"} {"text":"data_4805"} {"text":"data_4806"} {"text":"data_4807"} {"text":"data_4808"} {"text":"data_4809"} {"text":"data_4810"} {"text":"data_4811"} {"text":"data_4812"} {"text":"data_4813"} {"text":"data_4814"} {"text":"data_4815"} {"text":"data_4816"} {"text":"data_4817"} {"text":"data_4818"} {"text":"data_4819"} {"text":"data_4820"} {"text":"data_4821"} {"text":"data_4822"} {"text":"data_4823"} {"text":"data_4824"} {"text":"data_4825"} {"text":"data_4826"} {"text":"data_4827"} {"text":"data_4828"} {"text":"data_4829"} {"text":"data_4830"} {"text":"data_4831"} {"text":"data_4832"} {"text":"data_4833"} {"text":"data_4834"} {"text":"data_4835"} {"text":"data_4836"} {"text":"data_4837"} {"text":"data_4838"} {"text":"data_4839"} {"text":"data_4840"} {"text":"data_4841"} {"text":"data_4842"} {"text":"data_4843"} {"text":"data_4844"} {"text":"data_4845"} {"text":"data_4846"} {"text":"data_4847"} {"text":"data_4848"} {"text":"data_4849"} {"text":"data_4850"} {"text":"data_4851"} {"text":"data_4852"} {"text":"data_4853"} {"text":"data_4854"} {"text":"data_4855"} {"text":"data_4856"} {"text":"data_4857"} {"text":"data_4858"} {"text":"data_4859"} {"text":"data_4860"} {"text":"data_4861"} {"text":"data_4862"} {"text":"data_4863"} {"text":"data_4864"} {"text":"data_4865"} {"text":"data_4866"} {"text":"data_4867"} {"text":"data_4868"} {"text":"data_4869"} {"text":"data_4870"} {"text":"data_4871"} {"text":"data_4872"} {"text":"data_4873"} {"text":"data_4874"} {"text":"data_4875"} {"text":"data_4876"} {"text":"data_4877"} {"text":"data_4878"} {"text":"data_4879"} {"text":"data_4880"} {"text":"data_4881"} {"text":"data_4882"} {"text":"data_4883"} {"text":"data_4884"} {"text":"data_4885"} {"text":"data_4886"} {"text":"data_4887"} {"text":"data_4888"} {"text":"data_4889"} {"text":"data_4890"} {"text":"data_4891"} {"text":"data_4892"} {"text":"data_4893"} {"text":"data_4894"} {"text":"data_4895"} {"text":"data_4896"} {"text":"data_4897"} {"text":"data_4898"} {"text":"data_4899"} {"text":"data_4900"} {"text":"data_4901"} {"text":"data_4902"} {"text":"data_4903"} {"text":"data_4904"} {"text":"data_4905"} {"text":"data_4906"} {"text":"data_4907"} {"text":"data_4908"} {"text":"data_4909"} {"text":"data_4910"} {"text":"data_4911"} {"text":"data_4912"} {"text":"data_4913"} {"text":"data_4914"} {"text":"data_4915"} {"text":"data_4916"} {"text":"data_4917"} {"text":"data_4918"} {"text":"data_4919"} {"text":"data_4920"} {"text":"data_4921"} {"text":"data_4922"} {"text":"data_4923"} {"text":"data_4924"} {"text":"data_4925"} {"text":"data_4926"} {"text":"data_4927"} {"text":"data_4928"} {"text":"data_4929"} {"text":"data_4930"} {"text":"data_4931"} {"text":"data_4932"} {"text":"data_4933"} {"text":"data_4934"} {"text":"data_4935"} {"text":"data_4936"} {"text":"data_4937"} {"text":"data_4938"} {"text":"data_4939"} {"text":"data_4940"} {"text":"data_4941"} {"text":"data_4942"} {"text":"data_4943"} {"text":"data_4944"} {"text":"data_4945"} {"text":"data_4946"} {"text":"data_4947"} {"text":"data_4948"} {"text":"data_4949"} {"text":"data_4950"} {"text":"data_4951"} {"text":"data_4952"} {"text":"data_4953"} {"text":"data_4954"} {"text":"data_4955"} {"text":"data_4956"} {"text":"data_4957"} {"text":"data_4958"} {"text":"data_4959"} {"text":"data_4960"} {"text":"data_4961"} {"text":"data_4962"} {"text":"data_4963"} {"text":"data_4964"} {"text":"data_4965"} {"text":"data_4966"} {"text":"data_4967"} {"text":"data_4968"} {"text":"data_4969"} {"text":"data_4970"} {"text":"data_4971"} {"text":"data_4972"} {"text":"data_4973"} {"text":"data_4974"} {"text":"data_4975"} {"text":"data_4976"} {"text":"data_4977"} {"text":"data_4978"} {"text":"data_4979"} {"text":"data_4980"} {"text":"data_4981"} {"text":"data_4982"} {"text":"data_4983"} {"text":"data_4984"} {"text":"data_4985"} {"text":"data_4986"} {"text":"data_4987"} {"text":"data_4988"} {"text":"data_4989"} {"text":"data_4990"} {"text":"data_4991"} {"text":"data_4992"} {"text":"data_4993"} {"text":"data_4994"} {"text":"data_4995"} {"text":"data_4996"} {"text":"data_4997"} {"text":"data_4998"} {"text":"data_4999"}
promptflow/src/promptflow/tests/test_configs/datas/load_data_cases/10k/5k.1.jsonl/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/datas/load_data_cases/10k/5k.1.jsonl", "repo_id": "promptflow", "token_count": 44913 }
62
[ { "expected_node_count": 3, "expected_outputs": { "output": "Node A not executed. Node B not executed." }, "expected_bypassed_nodes": [ "nodeA", "nodeB" ] } ]
promptflow/src/promptflow/tests/test_configs/flows/activate_condition_always_met/expected_result.json/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/activate_condition_always_met/expected_result.json", "repo_id": "promptflow", "token_count": 140 }
63
from promptflow import tool @tool def line_process(groundtruth: str, prediction: str): processed_result = groundtruth + prediction return processed_result
promptflow/src/promptflow/tests/test_configs/flows/aggregation_node_failed/line_process.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/aggregation_node_failed/line_process.py", "repo_id": "promptflow", "token_count": 45 }
64
# Chat with Calorie Assistant This sample demonstrates how to chat with the PromptFlow Assistant tool facilitates calorie calculations by considering your location, the duration of your exercise, and the type of sport. Currently, it supports two types of sports: jogging and swimming. Tools used in this flow: - `add_message_and_run` tool, assistant tool, provisioned with below inner functions: - `get_current_location``: get current city - `get_temperature(location)``: get temperature of the city - `get_calorie_by_jogging(duration, temperature)``: calculate calorie for jogging exercise - `get_calorie_by_jogging(duration, temperature)``: calculate calorie for swimming exercise ## Prerequisites Install promptflow sdk and other dependencies in this folder: ```sh pip install -r requirements.txt ``` ## What you will learn In this flow, you will understand how assistant tools within PromptFlow are triggered by user prompts. The assistant tool decides which internal functions or tools to invoke based on the input provided. Your responsibility involves implementing each of these tools and registering them in the `assistant_definition`. Additionally, be aware that the tools may have dependencies on each other, affecting the order and manner of their invocation. ## Getting started ### 1. Create assistant connection (openai) Go to "Prompt flow" "Connections" tab. Click on "Create" button, select one of assistant tool supported connection types and fill in the configurations. Currently, only "Open AI" connection type are supported for assistant tool. Please refer to [OpenAI](https://platform.openai.com/) for more details. ```bash # Override keys with --set to avoid yaml file changes pf connection create --file ../../../connections/openai.yml --set api_key=<your_api_key> ``` Note in [flow.dag.yaml](flow.dag.yaml) we are using connection named `open_ai_connection`. ```bash # show registered connection pf connection show --name open_ai_connection ``` ### 2. Create or get assistant/thread Navigate to the OpenAI Assistant page and create an assistant if you haven't already. Once created, click on the 'Test' button to enter the assistant's playground. Make sure to note down the assistant_id. **[Optional]** Start a chat session to create thread automatically. Keep track of the thread_id. ### 3. run the flow ```bash # run chat flow with default question in flow.dag.yaml pf flow test --flow . --interactive --multi-modal --user-agent "prompt-flow-extension/1.8.0 (win32; x64) VSCode/1.85.1" ```
promptflow/src/promptflow/tests/test_configs/flows/chat-with-assistant-no-file/README.md/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/chat-with-assistant-no-file/README.md", "repo_id": "promptflow", "token_count": 663 }
65
[ { "expected_node_count": 9, "expected_outputs":{ "investigation_method": { "first": "Skip job info extractor", "second": "Execute incident info extractor" } }, "expected_bypassed_nodes":["job_info_extractor", "icm_retriever"] }, { "expected_node_count": 9, "expected_outputs":{ "investigation_method": { "first": "Execute job info extractor", "second": "Skip incident info extractor" } }, "expected_bypassed_nodes":["incident_info_extractor", "icm_retriever", "kql_tsg_retriever", "tsg_retriever", "investigation_steps", "retriever_summary"] }, { "expected_node_count": 9, "expected_outputs":{ "investigation_method": { "first": "Skip job info extractor", "second": "Execute incident info extractor" } }, "expected_bypassed_nodes":["job_info_extractor", "kql_tsg_retriever", "tsg_retriever"] } ]
promptflow/src/promptflow/tests/test_configs/flows/conditional_flow_with_activate/expected_result.json/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/conditional_flow_with_activate/expected_result.json", "repo_id": "promptflow", "token_count": 554 }
66
[ { "expected_node_count": 3, "expected_outputs":{ "output":{ "double": 2, "square": "" } }, "expected_bypassed_nodes":["square"] }, { "expected_node_count": 3, "expected_outputs":{ "output":{ "double": 4, "square": "" } }, "expected_bypassed_nodes":["square"] }, { "expected_node_count": 3, "expected_outputs":{ "output":{ "double": null, "square": 9 } }, "expected_bypassed_nodes":["double"] }, { "expected_node_count": 3, "expected_outputs":{ "output":{ "double": null, "square": 16 } }, "expected_bypassed_nodes":["double"] } ]
promptflow/src/promptflow/tests/test_configs/flows/conditional_flow_with_aggregate_bypassed/expected_result.json/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/conditional_flow_with_aggregate_bypassed/expected_result.json", "repo_id": "promptflow", "token_count": 567 }
67
from promptflow import tool from promptflow.connections import CustomConnection @tool def get_val(key, conn: CustomConnection): # get from env var print(key) if not isinstance(key, dict): raise TypeError(f"key must be a dict, got {type(key)}") return {"value": f"{key}: {type(key)}"}
promptflow/src/promptflow/tests/test_configs/flows/flow_with_dict_input_with_variant/print_val.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/flow_with_dict_input_with_variant/print_val.py", "repo_id": "promptflow", "token_count": 109 }
68
{ "data": "code_first_input.csv" }
promptflow/src/promptflow/tests/test_configs/flows/flow_with_langchain_traces/data_inputs.json/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/flow_with_langchain_traces/data_inputs.json", "repo_id": "promptflow", "token_count": 19 }
69
import sys from promptflow import tool @tool def get_val(key): # get from env var print(key) print("user log") print("error log", file=sys.stderr)
promptflow/src/promptflow/tests/test_configs/flows/flow_with_user_output/print_val.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/flow_with_user_output/print_val.py", "repo_id": "promptflow", "token_count": 64 }
70
$schema: https://azuremlschemas.azureedge.net/latest/flow.schema.json name: classification_accuracy_eval display_name: Classification Accuracy Evaluation type: evaluate path: azureml://datastores/workspaceworkingdirectory/paths/Users/wanhan/a/flow.dag.yaml description: Measuring the performance of a classification system by comparing its outputs to groundtruth. properties: promptflow.stage: prod promptflow.details.type: markdown promptflow.details.source: README.md promptflow.batch_inputs: samples.json
promptflow/src/promptflow/tests/test_configs/flows/meta_files/remote_flow_short_path.meta.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/meta_files/remote_flow_short_path.meta.yaml", "repo_id": "promptflow", "token_count": 150 }
71
[{"idx": 5}, {"idx": 5}]
promptflow/src/promptflow/tests/test_configs/flows/one_line_of_bulktest_timeout/samples_all_timeout.json/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/one_line_of_bulktest_timeout/samples_all_timeout.json", "repo_id": "promptflow", "token_count": 14 }
72
inputs: text: type: string outputs: output_text: type: string reference: ${print_input.output} nodes: - name: print_input type: python source: type: code path: print_input.py inputs: text: ${inputs.text}
promptflow/src/promptflow/tests/test_configs/flows/print_input_flow/flow.dag.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/print_input_flow/flow.dag.yaml", "repo_id": "promptflow", "token_count": 99 }
73
{"mod": 2, "mod_2": 5} {"mod": 2, "mod_2": 5} {"mod": 2, "mod_2": 5} {"mod": 2, "mod_2": 5} {"mod": 2, "mod_2": 5} {"mod": 2, "mod_2": 5} {"mod": 2, "mod_2": 5}
promptflow/src/promptflow/tests/test_configs/flows/python_tool_partial_failure/inputs/data.jsonl/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/python_tool_partial_failure/inputs/data.jsonl", "repo_id": "promptflow", "token_count": 90 }
74
from promptflow import tool @tool def passthrough(x: str): return x
promptflow/src/promptflow/tests/test_configs/flows/script_with_import/dummy_utils/util_tool.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/script_with_import/dummy_utils/util_tool.py", "repo_id": "promptflow", "token_count": 26 }
75
inputs: num: type: int outputs: content: type: string reference: ${divide_num.output} aggregate_content: type: string reference: ${aggregate_num.output} nodes: - name: divide_num type: python source: type: code path: divide_num.py inputs: num: ${inputs.num} - name: aggregate_num type: python source: type: code path: aggregate_num.py inputs: num: ${divide_num.output} aggregation: True
promptflow/src/promptflow/tests/test_configs/flows/simple_flow_with_python_tool_and_aggregate/flow.dag.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/simple_flow_with_python_tool_and_aggregate/flow.dag.yaml", "repo_id": "promptflow", "token_count": 183 }
76
interactions: - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 promptflow/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/api-version=2023-08-01-preview response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000", "name": "00000", "type": "Microsoft.MachineLearningServices/workspaces", "location": "eastus", "tags": {}, "etag": null, "kind": "Default", "sku": {"name": "Basic", "tier": "Basic"}, "properties": {"discoveryUrl": "https://eastus.api.azureml.ms/discovery"}}' headers: cache-control: - no-cache content-length: - '3630' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains vary: - Accept-Encoding x-cache: - CONFIG_NOCACHE x-content-type-options: - nosniff x-request-time: - '0.017' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 promptflow/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores?api-version=2023-04-01-preview&count=30&isDefault=true&orderByAsc=false response: body: string: '{"value": [{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}]}' headers: cache-control: - no-cache content-length: - '1372' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains vary: - Accept-Encoding x-cache: - CONFIG_NOCACHE x-content-type-options: - nosniff x-request-time: - '0.070' status: code: 200 message: OK - request: body: null headers: Accept: - '*/*' Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - python-requests/2.31.0 method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/connections/azure_open_ai_connection/listsecrets?api-version=2023-04-01-preview response: body: string: '{"tags": null, "location": null, "id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/connections/azure_open_ai_connection", "name": "azure_open_ai_connection", "type": "Microsoft.MachineLearningServices/workspaces/connections", "properties": {"authType": "ApiKey", "credentials": {"key": "_"}, "group": "AzureAI", "category": "AzureOpenAI", "expiryTime": null, "target": "_", "createdByWorkspaceArmId": null, "isSharedToAll": false, "sharedUserList": [], "metadata": {"azureml.flow.connection_type": "AzureOpenAI", "azureml.flow.module": "promptflow.connections", "ApiType": "azure", "ApiVersion": "2023-07-01-preview", "ResourceId": null, "DeploymentApiVersion": "2023-10-01-preview"}}, "systemData": {"createdAt": "2023-08-22T10:15:34.5762053Z", "createdBy": "[email protected]", "createdByType": "User", "lastModifiedAt": "2023-08-22T10:15:34.5762053Z", "lastModifiedBy": "[email protected]", "lastModifiedByType": "User"}}' headers: cache-control: - no-cache content-length: - '1246' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains vary: - Accept-Encoding x-cache: - CONFIG_NOCACHE x-content-type-options: - nosniff x-request-time: - '0.072' status: code: 200 message: OK - request: body: null headers: Accept: - '*/*' Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - python-requests/2.31.0 method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/connections/custom_connection/listsecrets?api-version=2023-04-01-preview response: body: string: '{"tags": null, "location": null, "id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/connections/custom_connection", "name": "custom_connection", "type": "Microsoft.MachineLearningServices/workspaces/connections", "properties": {"authType": "CustomKeys", "credentials": {"keys": {}}, "group": "AzureAI", "category": "CustomKeys", "expiryTime": null, "target": "_", "createdByWorkspaceArmId": null, "isSharedToAll": false, "sharedUserList": [], "metadata": {"azureml.flow.connection_type": "Custom", "azureml.flow.module": "promptflow.connections"}}, "systemData": {"createdAt": "2023-06-19T20:56:12.0353964Z", "createdBy": "[email protected]", "createdByType": "User", "lastModifiedAt": "2023-06-19T20:56:12.0353964Z", "lastModifiedBy": "[email protected]", "lastModifiedByType": "User"}}' headers: cache-control: - no-cache content-length: - '1275' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains vary: - Accept-Encoding x-cache: - CONFIG_NOCACHE x-content-type-options: - nosniff x-request-time: - '0.075' status: code: 200 message: OK version: 1
promptflow/src/promptflow/tests/test_configs/recordings/test_arm_connection_operations_TestArmConnectionOperations_test_get_connection.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/recordings/test_arm_connection_operations_TestArmConnectionOperations_test_get_connection.yaml", "repo_id": "promptflow", "token_count": 3426 }
77
interactions: - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000 response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000", "name": "00000", "type": "Microsoft.MachineLearningServices/workspaces", "location": "eastus2euap", "tags": {}, "etag": null, "kind": "Default", "sku": {"name": "Basic", "tier": "Basic"}, "properties": {"discoveryUrl": "https://eastus.api.azureml.ms/discovery"}}' headers: cache-control: - no-cache content-length: - '3601' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.019' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores?count=30&isDefault=true&orderByAsc=false response: body: string: '{"value": [{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-09-22T05:26:30.7527337+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-09-22T05:26:31.3199607+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}]}' headers: cache-control: - no-cache content-length: - '1378' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.628' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-09-22T05:26:30.7527337+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-09-22T05:26:31.3199607+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1233' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.069' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.114' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Fri, 05 Jan 2024 08:28:55 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/env_var_names.jsonl response: body: string: '' headers: accept-ranges: - bytes content-length: - '49' content-md5: - quXiEreYvPinSj0HsaNa/g== content-type: - application/octet-stream last-modified: - Tue, 26 Dec 2023 02:27:07 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Tue, 26 Dec 2023 02:27:07 GMT x-ms-meta-name: - bcc45cd4-c343-4bd0-8bdd-cecfafea742d x-ms-meta-upload_status: - completed x-ms-meta-version: - be87bd84-d39b-442b-af5a-e8c209d6d10c x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Fri, 05 Jan 2024 08:28:56 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/env_var_names.jsonl response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-09-22T05:26:30.7527337+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-09-22T05:26:31.3199607+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1233' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.068' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.106' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Fri, 05 Jan 2024 08:29:00 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/print_env_var/flow.dag.yaml response: body: string: '' headers: accept-ranges: - bytes content-length: - '245' content-md5: - F+JA0a3CxcLYZ0ANRdlZbA== content-type: - application/octet-stream last-modified: - Tue, 26 Dec 2023 02:27:07 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Tue, 26 Dec 2023 02:27:07 GMT x-ms-meta-name: - 5541d425-c3dc-4f2e-b818-956634d8a470 x-ms-meta-upload_status: - completed x-ms-meta-version: - '1' x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Fri, 05 Jan 2024 08:29:01 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/print_env_var/flow.dag.yaml response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-09-22T05:26:30.7527337+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-09-22T05:26:31.3199607+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1233' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.058' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.085' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Fri, 05 Jan 2024 08:29:09 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/env_var_names.jsonl response: body: string: '' headers: accept-ranges: - bytes content-length: - '49' content-md5: - quXiEreYvPinSj0HsaNa/g== content-type: - application/octet-stream last-modified: - Tue, 26 Dec 2023 02:27:07 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Tue, 26 Dec 2023 02:27:07 GMT x-ms-meta-name: - bcc45cd4-c343-4bd0-8bdd-cecfafea742d x-ms-meta-upload_status: - completed x-ms-meta-version: - be87bd84-d39b-442b-af5a-e8c209d6d10c x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Fri, 05 Jan 2024 08:29:10 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/env_var_names.jsonl response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-09-22T05:26:30.7527337+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-09-22T05:26:31.3199607+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1233' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.097' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.083' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Fri, 05 Jan 2024 08:29:13 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/print_env_var/flow.dag.yaml response: body: string: '' headers: accept-ranges: - bytes content-length: - '245' content-md5: - F+JA0a3CxcLYZ0ANRdlZbA== content-type: - application/octet-stream last-modified: - Tue, 26 Dec 2023 02:27:07 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Tue, 26 Dec 2023 02:27:07 GMT x-ms-meta-name: - 5541d425-c3dc-4f2e-b818-956634d8a470 x-ms-meta-upload_status: - completed x-ms-meta-version: - '1' x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Fri, 05 Jan 2024 08:29:14 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/print_env_var/flow.dag.yaml response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. version: 1
promptflow/src/promptflow/tests/test_configs/recordings/test_run_operations_TestFlowRun_test_automatic_runtime.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/recordings/test_run_operations_TestFlowRun_test_automatic_runtime.yaml", "repo_id": "promptflow", "token_count": 12047 }
78
interactions: - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 promptflow/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000 response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000", "name": "00000", "type": "Microsoft.MachineLearningServices/workspaces", "location": "eastus", "tags": {}, "etag": null, "kind": "Default", "sku": {"name": "Basic", "tier": "Basic"}, "properties": {"discoveryUrl": "https://eastus.api.azureml.ms/discovery"}}' headers: cache-control: - no-cache content-length: - '3630' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains vary: - Accept-Encoding x-cache: - CONFIG_NOCACHE x-content-type-options: - nosniff x-request-time: - '0.022' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 promptflow/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores?count=30&isDefault=true&orderByAsc=false response: body: string: '{"value": [{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}]}' headers: cache-control: - no-cache content-length: - '1372' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains vary: - Accept-Encoding x-cache: - CONFIG_NOCACHE x-content-type-options: - nosniff x-request-time: - '0.055' status: code: 200 message: OK - request: body: '{"filters": [{"field": "type", "operator": "eq", "values": ["runs"]}, {"field": "annotations/archived", "operator": "eq", "values": ["false"]}, {"field": "properties/runType", "operator": "contains", "values": ["azureml.promptflow.FlowRun", "azureml.promptflow.EvaluationRun", "azureml.promptflow.PairwiseEvaluationRun"]}], "freeTextSearch": "", "order": [{"direction": "Desc", "field": "properties/creationContext/createdTime"}], "pageSize": 10, "skip": 0, "includeTotalResultCount": true, "searchBuilder": "AppendPrefix"}' headers: Accept: - '*/*' Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '523' Content-Type: - application/json User-Agent: - python-requests/2.31.0 method: POST uri: https://eastus.api.azureml.ms/index/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/entities response: body: string: '{"totalCount": 146558, "value": [{"relevancyScore": 0.28867513, "entityResourceName": "promptflow-eastus", "highlights": {}, "usage": {"totalCount": 0}, "schemaId": "974ab09e-bfc2-56a6-9be4-97bcfe3d33ca", "entityId": "azureml://location/eastus/workspaceId/3e123da1-f9a5-4c91-9234-8d9ffbb39ff5/type/runs/objectId/2283afa6-deed-415c-aac4-490205cf23dd", "kind": "Unversioned", "annotations": {"archived": false, "tags": {}, "displayName": "b7989f3e-5409-4e57-adc3-34ac2a615527", "status": "Completed", "primaryMetricName": null, "estimatedCost": null, "primaryMetricSummary": null, "metrics": {}, "parameters": {}, "settings": {}, "modifiedTime": "2023-11-29T08:58:33.4780914Z", "retainForLifetimeOfWorkspace": false, "error": {"code": null, "errorCodeHierarchy": null, "message": null, "time": null, "componentName": null, "severity": null, "detailsUri": null, "referenceCode": null}, "resourceMetricSummary": {"gpuUtilizationPercentLastHour": null, "gpuMemoryUtilizationPercentLastHour": null, "gpuEnergyJoules": null, "resourceMetricNames": null}, "jobCost": {"chargedCpuCoreSeconds": null, "chargedCpuMemoryMegabyteSeconds": null, "chargedGpuSeconds": null, "chargedNodeUtilizationSeconds": null}, "computeDuration": "00:00:08.3614863", "computeDurationMilliseconds": 8361.4863, "effectiveStartTimeUtc": null, "name": null, "description": null}, "properties": {"updatedTime": "0001-01-01T00:00:00+00:00", "creationContext": {"createdTime": "2023-11-29T08:58:12.0723876+00:00", "createdBy": {"userObjectId": "4e60fbf3-0338-41a8-bed5-fc341be556f8", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587"}, "creationSource": null}, "dataContainerId": "dcid.b7989f3e-5409-4e57-adc3-34ac2a615527", "targetName": null, "runName": null, "experimentName": "web_classification", "runId": "b7989f3e-5409-4e57-adc3-34ac2a615527", "parentRunId": null, "rootRunId": "b7989f3e-5409-4e57-adc3-34ac2a615527", "runType": "azureml.promptflow.FlowRun", "runTypeV2": {"orchestrator": null, "traits": {}, "attribution": "PromptFlow", "computeType": "MIR_v2"}, "scriptName": null, "experimentId": "d30efbeb-f81d-4cfa-b5cc-a0570a049009", "runUuid": "2283afa6-deed-415c-aac4-490205cf23dd", "parentRunUuid": null, "runNumber": 1701248292, "startTime": "2023-11-29T08:58:25.0794582Z", "endTime": "2023-11-29T08:58:33.4409445Z", "computeRequest": null, "compute": null, "userProperties": {"azureml.promptflow.runtime_name": "demo-mir", "azureml.promptflow.runtime_version": "20231011.v2", "azureml.promptflow.definition_file_name": "flow.dag.yaml", "azureml.promptflow.session_id": "4dd8f4d5f44dfeb817d3438cf84bd739215d87afd9458597", "azureml.promptflow.flow_lineage_id": "af1a6951de9be2ce13d3b58b23dbd8b6a0cd8fd4918ad9cb22b28fb8395fbcb0", "azureml.promptflow.node_variant": "${summarize_text_content.variant_0}", "azureml.promptflow.flow_definition_datastore_name": "workspaceblobstore", "azureml.promptflow.flow_definition_blob_path": "LocalUpload/7c59ad67129b552538ca09362171cc15/web_classification/flow.dag.yaml", "azureml.promptflow.input_data": "azureml:webClassification1:1", "azureml.promptflow.inputs_mapping": "{\"url\":\"${data.url}\"}", "azureml.promptflow.snapshot_id": "7d0b4037-9946-4054-928b-a2266f333eb5", "_azureml.evaluation_run": "promptflow.BatchRun", "azureml.promptflow.total_tokens": "858"}, "actionUris": {}, "duration": "00:00:08.3614863", "durationMilliseconds": 8361.4863}, "internal": {}, "updateSequence": 5, "type": "runs", "version": null, "entityContainerId": "3e123da1-f9a5-4c91-9234-8d9ffbb39ff5", "entityObjectId": "2283afa6-deed-415c-aac4-490205cf23dd", "resourceType": "Workspace", "relationships": [{"relationType": "CreatedBy", "targetEntityId": null, "assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_b7989f3e-5409-4e57-adc3-34ac2a615527_output_data_debug_info/versions/1", "entityType": "data", "direction": "Output", "entityContainerId": "3e123da1-f9a5-4c91-9234-8d9ffbb39ff5"}, {"relationType": "CreatedBy", "targetEntityId": null, "assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_b7989f3e-5409-4e57-adc3-34ac2a615527_output_data_flow_outputs/versions/1", "entityType": "data", "direction": "Output", "entityContainerId": "3e123da1-f9a5-4c91-9234-8d9ffbb39ff5"}]}, {"relevancyScore": 0.28867513, "entityResourceName": "promptflow-eastus", "highlights": {}, "usage": {"totalCount": 0}, "schemaId": "974ab09e-bfc2-56a6-9be4-97bcfe3d33ca", "entityId": "azureml://location/eastus/workspaceId/3e123da1-f9a5-4c91-9234-8d9ffbb39ff5/type/runs/objectId/fa3a6d13-5bab-490d-8372-6836b44385bd", "kind": "Unversioned", "annotations": {"archived": false, "tags": {}, "displayName": "9232169c-e77a-4a7b-8410-00390061c303", "status": "Completed", "primaryMetricName": null, "estimatedCost": null, "primaryMetricSummary": null, "metrics": {"__pf__.nodes.fetch_text_content_from_url.completed": {"count": 1, "lastValue": 1.0, "minimumValue": 1.0, "maximumValue": 1.0, "metricType": "azureml.v1.scalar"}, "__pf__.nodes.prepare_examples.completed": {"count": 1, "lastValue": 1.0, "minimumValue": 1.0, "maximumValue": 1.0, "metricType": "azureml.v1.scalar"}, "__pf__.nodes.summarize_text_content.completed": {"count": 1, "lastValue": 1.0, "minimumValue": 1.0, "maximumValue": 1.0, "metricType": "azureml.v1.scalar"}, "__pf__.nodes.classify_with_llm.completed": {"count": 1, "lastValue": 1.0, "minimumValue": 1.0, "maximumValue": 1.0, "metricType": "azureml.v1.scalar"}, "__pf__.nodes.convert_to_dict.completed": {"count": 1, "lastValue": 1.0, "minimumValue": 1.0, "maximumValue": 1.0, "metricType": "azureml.v1.scalar"}, "__pf__.lines.completed": {"count": 1, "lastValue": 1.0, "minimumValue": 1.0, "maximumValue": 1.0, "metricType": "azureml.v1.scalar"}, "__pf__.lines.failed": {"count": 1, "lastValue": 0.0, "minimumValue": 0.0, "maximumValue": 0.0, "metricType": "azureml.v1.scalar"}}, "parameters": {}, "settings": {}, "modifiedTime": "2023-11-29T08:57:38.7208614Z", "retainForLifetimeOfWorkspace": false, "error": {"code": null, "errorCodeHierarchy": null, "message": null, "time": null, "componentName": null, "severity": null, "detailsUri": null, "referenceCode": null}, "resourceMetricSummary": {"gpuUtilizationPercentLastHour": null, "gpuMemoryUtilizationPercentLastHour": null, "gpuEnergyJoules": null, "resourceMetricNames": null}, "jobCost": {"chargedCpuCoreSeconds": null, "chargedCpuMemoryMegabyteSeconds": null, "chargedGpuSeconds": null, "chargedNodeUtilizationSeconds": null}, "computeDuration": "00:00:07.6293709", "computeDurationMilliseconds": 7629.3709, "effectiveStartTimeUtc": null, "name": null, "description": null}, "properties": {"updatedTime": "0001-01-01T00:00:00+00:00", "creationContext": {"createdTime": "2023-11-29T08:57:17.6541225+00:00", "createdBy": {"userObjectId": "4e60fbf3-0338-41a8-bed5-fc341be556f8", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587"}, "creationSource": null}, "dataContainerId": "dcid.9232169c-e77a-4a7b-8410-00390061c303", "targetName": null, "runName": null, "experimentName": "web_classification", "runId": "9232169c-e77a-4a7b-8410-00390061c303", "parentRunId": null, "rootRunId": "9232169c-e77a-4a7b-8410-00390061c303", "runType": "azureml.promptflow.FlowRun", "runTypeV2": {"orchestrator": null, "traits": {}, "attribution": "PromptFlow", "computeType": "MIR_v2"}, "scriptName": null, "experimentId": "d30efbeb-f81d-4cfa-b5cc-a0570a049009", "runUuid": "fa3a6d13-5bab-490d-8372-6836b44385bd", "parentRunUuid": null, "runNumber": 1701248237, "startTime": "2023-11-29T08:57:31.0659361Z", "endTime": "2023-11-29T08:57:38.695307Z", "computeRequest": null, "compute": null, "userProperties": {"azureml.promptflow.runtime_name": "demo-mir", "azureml.promptflow.runtime_version": "20231011.v2", "azureml.promptflow.definition_file_name": "flow.dag.yaml", "azureml.promptflow.session_id": "4dd8f4d5f44dfeb817d3438cf84bd739215d87afd9458597", "azureml.promptflow.flow_lineage_id": "af1a6951de9be2ce13d3b58b23dbd8b6a0cd8fd4918ad9cb22b28fb8395fbcb0", "azureml.promptflow.node_variant": "${summarize_text_content.variant_0}", "azureml.promptflow.flow_definition_datastore_name": "workspaceblobstore", "azureml.promptflow.flow_definition_blob_path": "LocalUpload/7c59ad67129b552538ca09362171cc15/web_classification/flow.dag.yaml", "azureml.promptflow.input_data": "azureml:/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/data/webClassification1/versions/1", "azureml.promptflow.inputs_mapping": "{\"url\":\"${data.url}\"}", "azureml.promptflow.snapshot_id": "363446e5-2e0b-49fe-a9ac-894be75cd2fc", "_azureml.evaluation_run": "promptflow.BatchRun", "azureml.promptflow.total_tokens": "784"}, "actionUris": {}, "duration": "00:00:07.6293709", "durationMilliseconds": 7629.3709}, "internal": {}, "updateSequence": 5, "type": "runs", "version": null, "entityContainerId": "3e123da1-f9a5-4c91-9234-8d9ffbb39ff5", "entityObjectId": "fa3a6d13-5bab-490d-8372-6836b44385bd", "resourceType": "Workspace", "relationships": [{"relationType": "CreatedBy", "targetEntityId": null, "assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_9232169c-e77a-4a7b-8410-00390061c303_output_data_debug_info/versions/1", "entityType": "data", "direction": "Output", "entityContainerId": "3e123da1-f9a5-4c91-9234-8d9ffbb39ff5"}, {"relationType": "CreatedBy", "targetEntityId": null, "assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_9232169c-e77a-4a7b-8410-00390061c303_output_data_flow_outputs/versions/1", "entityType": "data", "direction": "Output", "entityContainerId": "3e123da1-f9a5-4c91-9234-8d9ffbb39ff5"}]}, {"relevancyScore": 0.28867513, "entityResourceName": "promptflow-eastus", "highlights": {}, "usage": {"totalCount": 0}, "schemaId": "974ab09e-bfc2-56a6-9be4-97bcfe3d33ca", "entityId": "azureml://location/eastus/workspaceId/3e123da1-f9a5-4c91-9234-8d9ffbb39ff5/type/runs/objectId/45bc17a9-381d-4be1-8b9f-6bc7afdf3b5e", "kind": "Unversioned", "annotations": {"archived": false, "tags": {}, "displayName": "740436db-a664-47ec-843a-322888b7dcda", "status": "Completed", "primaryMetricName": null, "estimatedCost": null, "primaryMetricSummary": null, "metrics": {"__pf__.nodes.print_env.completed": {"count": 1, "lastValue": 1.0, "minimumValue": 1.0, "maximumValue": 1.0, "metricType": "azureml.v1.scalar"}, "__pf__.lines.completed": {"count": 1, "lastValue": 1.0, "minimumValue": 1.0, "maximumValue": 1.0, "metricType": "azureml.v1.scalar"}, "__pf__.lines.failed": {"count": 1, "lastValue": 0.0, "minimumValue": 0.0, "maximumValue": 0.0, "metricType": "azureml.v1.scalar"}}, "parameters": {}, "settings": {}, "modifiedTime": "2023-11-29T08:57:15.6923897Z", "retainForLifetimeOfWorkspace": false, "error": {"code": null, "errorCodeHierarchy": null, "message": null, "time": null, "componentName": null, "severity": null, "detailsUri": null, "referenceCode": null}, "resourceMetricSummary": {"gpuUtilizationPercentLastHour": null, "gpuMemoryUtilizationPercentLastHour": null, "gpuEnergyJoules": null, "resourceMetricNames": null}, "jobCost": {"chargedCpuCoreSeconds": null, "chargedCpuMemoryMegabyteSeconds": null, "chargedGpuSeconds": null, "chargedNodeUtilizationSeconds": null}, "computeDuration": "00:00:19.9853113", "computeDurationMilliseconds": 19985.3113, "effectiveStartTimeUtc": null, "name": null, "description": null}, "properties": {"updatedTime": "0001-01-01T00:00:00+00:00", "creationContext": {"createdTime": "2023-11-29T08:56:41.8575651+00:00", "createdBy": {"userObjectId": "4e60fbf3-0338-41a8-bed5-fc341be556f8", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587"}, "creationSource": null}, "dataContainerId": "dcid.740436db-a664-47ec-843a-322888b7dcda", "targetName": null, "runName": null, "experimentName": "print_env_var", "runId": "740436db-a664-47ec-843a-322888b7dcda", "parentRunId": null, "rootRunId": "740436db-a664-47ec-843a-322888b7dcda", "runType": "azureml.promptflow.FlowRun", "runTypeV2": {"orchestrator": null, "traits": {}, "attribution": "PromptFlow", "computeType": "MIR_v2"}, "scriptName": null, "experimentId": "6a87c3ae-5a75-4c5d-9eb9-5203b0062282", "runUuid": "45bc17a9-381d-4be1-8b9f-6bc7afdf3b5e", "parentRunUuid": null, "runNumber": 1701248201, "startTime": "2023-11-29T08:56:55.6708784Z", "endTime": "2023-11-29T08:57:15.6561897Z", "computeRequest": null, "compute": null, "userProperties": {"azureml.promptflow.runtime_name": "demo-mir", "azureml.promptflow.runtime_version": "20231011.v2", "azureml.promptflow.definition_file_name": "flow.dag.yaml", "azureml.promptflow.session_id": "62adccc385dd5d078797bdd0d2e1c55e120f3d5216885b81", "azureml.promptflow.flow_lineage_id": "f1efdb93dcf9b3c17e246e7bcf0e2c7398d7bc289f8dd2c3d8f808eacc63c31f", "azureml.promptflow.flow_definition_datastore_name": "workspaceblobstore", "azureml.promptflow.flow_definition_blob_path": "LocalUpload/3360ae705933fb90bcd290241ca0ece9/print_env_var/flow.dag.yaml", "azureml.promptflow.input_data": "azureml://datastores/workspaceblobstore/paths/LocalUpload/c32a61842e439cecc022ebcff5dc0da4/env_var_names.jsonl", "azureml.promptflow.snapshot_id": "95d3a45f-4a34-4ce2-a5ac-a9dae21618fd", "_azureml.evaluation_run": "promptflow.BatchRun", "azureml.promptflow.total_tokens": "0"}, "actionUris": {}, "duration": "00:00:19.9853113", "durationMilliseconds": 19985.3113}, "internal": {}, "updateSequence": 5, "type": "runs", "version": null, "entityContainerId": "3e123da1-f9a5-4c91-9234-8d9ffbb39ff5", "entityObjectId": "45bc17a9-381d-4be1-8b9f-6bc7afdf3b5e", "resourceType": "Workspace", "relationships": [{"relationType": "CreatedBy", "targetEntityId": null, "assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_740436db-a664-47ec-843a-322888b7dcda_output_data_debug_info/versions/1", "entityType": "data", "direction": "Output", "entityContainerId": "3e123da1-f9a5-4c91-9234-8d9ffbb39ff5"}, {"relationType": "CreatedBy", "targetEntityId": null, "assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_740436db-a664-47ec-843a-322888b7dcda_output_data_flow_outputs/versions/1", "entityType": "data", "direction": "Output", "entityContainerId": "3e123da1-f9a5-4c91-9234-8d9ffbb39ff5"}]}, {"relevancyScore": 0.28867513, "entityResourceName": "promptflow-eastus", "highlights": {}, "usage": {"totalCount": 0}, "schemaId": "974ab09e-bfc2-56a6-9be4-97bcfe3d33ca", "entityId": "azureml://location/eastus/workspaceId/3e123da1-f9a5-4c91-9234-8d9ffbb39ff5/type/runs/objectId/b38b90c3-8766-4d1f-8ea4-4a1863d7aa34", "kind": "Unversioned", "annotations": {"archived": false, "tags": {}, "displayName": "my_display_name_variant_0_202311290856", "status": "Completed", "primaryMetricName": null, "estimatedCost": null, "primaryMetricSummary": null, "metrics": {"__pf__.nodes.print_env.completed": {"count": 1, "lastValue": 1.0, "minimumValue": 1.0, "maximumValue": 1.0, "metricType": "azureml.v1.scalar"}, "__pf__.lines.completed": {"count": 1, "lastValue": 1.0, "minimumValue": 1.0, "maximumValue": 1.0, "metricType": "azureml.v1.scalar"}, "__pf__.lines.failed": {"count": 1, "lastValue": 0.0, "minimumValue": 0.0, "maximumValue": 0.0, "metricType": "azureml.v1.scalar"}}, "parameters": {}, "settings": {}, "modifiedTime": "2023-11-29T08:56:40.3364816Z", "retainForLifetimeOfWorkspace": false, "error": {"code": null, "errorCodeHierarchy": null, "message": null, "time": null, "componentName": null, "severity": null, "detailsUri": null, "referenceCode": null}, "resourceMetricSummary": {"gpuUtilizationPercentLastHour": null, "gpuMemoryUtilizationPercentLastHour": null, "gpuEnergyJoules": null, "resourceMetricNames": null}, "jobCost": {"chargedCpuCoreSeconds": null, "chargedCpuMemoryMegabyteSeconds": null, "chargedGpuSeconds": null, "chargedNodeUtilizationSeconds": null}, "computeDuration": "00:00:21.0025046", "computeDurationMilliseconds": 21002.5046, "effectiveStartTimeUtc": null, "name": null, "description": null}, "properties": {"updatedTime": "0001-01-01T00:00:00+00:00", "creationContext": {"createdTime": "2023-11-29T08:56:05.6175926+00:00", "createdBy": {"userObjectId": "4e60fbf3-0338-41a8-bed5-fc341be556f8", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587"}, "creationSource": null}, "dataContainerId": "dcid.95e3cd29-751d-4697-82c1-02c876845d6e", "targetName": null, "runName": null, "experimentName": "print_env_var", "runId": "95e3cd29-751d-4697-82c1-02c876845d6e", "parentRunId": null, "rootRunId": "95e3cd29-751d-4697-82c1-02c876845d6e", "runType": "azureml.promptflow.FlowRun", "runTypeV2": {"orchestrator": null, "traits": {}, "attribution": "PromptFlow", "computeType": "MIR_v2"}, "scriptName": null, "experimentId": "6a87c3ae-5a75-4c5d-9eb9-5203b0062282", "runUuid": "b38b90c3-8766-4d1f-8ea4-4a1863d7aa34", "parentRunUuid": null, "runNumber": 1701248165, "startTime": "2023-11-29T08:56:19.2722436Z", "endTime": "2023-11-29T08:56:40.2747482Z", "computeRequest": null, "compute": null, "userProperties": {"azureml.promptflow.runtime_name": "demo-mir", "azureml.promptflow.runtime_version": "20231011.v2", "azureml.promptflow.definition_file_name": "flow.dag.yaml", "azureml.promptflow.session_id": "62adccc385dd5d078797bdd0d2e1c55e120f3d5216885b81", "azureml.promptflow.flow_lineage_id": "f1efdb93dcf9b3c17e246e7bcf0e2c7398d7bc289f8dd2c3d8f808eacc63c31f", "azureml.promptflow.flow_definition_datastore_name": "workspaceblobstore", "azureml.promptflow.flow_definition_blob_path": "LocalUpload/3360ae705933fb90bcd290241ca0ece9/print_env_var/flow.dag.yaml", "azureml.promptflow.input_data": "azureml://datastores/workspaceblobstore/paths/LocalUpload/c32a61842e439cecc022ebcff5dc0da4/env_var_names.jsonl", "azureml.promptflow.snapshot_id": "96d73260-c033-464f-af3a-bd14c40ec7ea", "_azureml.evaluation_run": "promptflow.BatchRun", "azureml.promptflow.total_tokens": "0"}, "actionUris": {}, "duration": "00:00:21.0025046", "durationMilliseconds": 21002.5046}, "internal": {}, "updateSequence": 5, "type": "runs", "version": null, "entityContainerId": "3e123da1-f9a5-4c91-9234-8d9ffbb39ff5", "entityObjectId": "b38b90c3-8766-4d1f-8ea4-4a1863d7aa34", "resourceType": "Workspace", "relationships": [{"relationType": "CreatedBy", "targetEntityId": null, "assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_95e3cd29-751d-4697-82c1-02c876845d6e_output_data_debug_info/versions/1", "entityType": "data", "direction": "Output", "entityContainerId": "3e123da1-f9a5-4c91-9234-8d9ffbb39ff5"}, {"relationType": "CreatedBy", "targetEntityId": null, "assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_95e3cd29-751d-4697-82c1-02c876845d6e_output_data_flow_outputs/versions/1", "entityType": "data", "direction": "Output", "entityContainerId": "3e123da1-f9a5-4c91-9234-8d9ffbb39ff5"}]}, {"relevancyScore": 0.28867513, "entityResourceName": "promptflow-eastus", "highlights": {}, "usage": {"totalCount": 0}, "schemaId": "974ab09e-bfc2-56a6-9be4-97bcfe3d33ca", "entityId": "azureml://location/eastus/workspaceId/3e123da1-f9a5-4c91-9234-8d9ffbb39ff5/type/runs/objectId/9e2d06ac-cc88-4ae0-bc67-50e4dc53e7de", "kind": "Unversioned", "annotations": {"archived": false, "tags": {}, "displayName": "0730e814-465b-46a8-9378-ac4d33f9925d", "status": "Completed", "primaryMetricName": null, "estimatedCost": null, "primaryMetricSummary": null, "metrics": {"__pf__.nodes.print_env.completed": {"count": 1, "lastValue": 1.0, "minimumValue": 1.0, "maximumValue": 1.0, "metricType": "azureml.v1.scalar"}, "__pf__.lines.completed": {"count": 1, "lastValue": 1.0, "minimumValue": 1.0, "maximumValue": 1.0, "metricType": "azureml.v1.scalar"}, "__pf__.lines.failed": {"count": 1, "lastValue": 0.0, "minimumValue": 0.0, "maximumValue": 0.0, "metricType": "azureml.v1.scalar"}}, "parameters": {}, "settings": {}, "modifiedTime": "2023-11-29T08:56:02.4358462Z", "retainForLifetimeOfWorkspace": false, "error": {"code": null, "errorCodeHierarchy": null, "message": null, "time": null, "componentName": null, "severity": null, "detailsUri": null, "referenceCode": null}, "resourceMetricSummary": {"gpuUtilizationPercentLastHour": null, "gpuMemoryUtilizationPercentLastHour": null, "gpuEnergyJoules": null, "resourceMetricNames": null}, "jobCost": {"chargedCpuCoreSeconds": null, "chargedCpuMemoryMegabyteSeconds": null, "chargedGpuSeconds": null, "chargedNodeUtilizationSeconds": null}, "computeDuration": "00:00:19.9540921", "computeDurationMilliseconds": 19954.0921, "effectiveStartTimeUtc": null, "name": null, "description": null}, "properties": {"updatedTime": "0001-01-01T00:00:00+00:00", "creationContext": {"createdTime": "2023-11-29T08:55:29.1814714+00:00", "createdBy": {"userObjectId": "4e60fbf3-0338-41a8-bed5-fc341be556f8", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587"}, "creationSource": null}, "dataContainerId": "dcid.0730e814-465b-46a8-9378-ac4d33f9925d", "targetName": null, "runName": null, "experimentName": "print_env_var", "runId": "0730e814-465b-46a8-9378-ac4d33f9925d", "parentRunId": null, "rootRunId": "0730e814-465b-46a8-9378-ac4d33f9925d", "runType": "azureml.promptflow.FlowRun", "runTypeV2": {"orchestrator": null, "traits": {}, "attribution": "PromptFlow", "computeType": "MIR_v2"}, "scriptName": null, "experimentId": "6a87c3ae-5a75-4c5d-9eb9-5203b0062282", "runUuid": "9e2d06ac-cc88-4ae0-bc67-50e4dc53e7de", "parentRunUuid": null, "runNumber": 1701248129, "startTime": "2023-11-29T08:55:42.4538208Z", "endTime": "2023-11-29T08:56:02.4079129Z", "computeRequest": null, "compute": null, "userProperties": {"azureml.promptflow.runtime_name": "demo-mir", "azureml.promptflow.runtime_version": "20231011.v2", "azureml.promptflow.definition_file_name": "flow.dag.yaml", "azureml.promptflow.session_id": "62adccc385dd5d078797bdd0d2e1c55e120f3d5216885b81", "azureml.promptflow.flow_lineage_id": "f1efdb93dcf9b3c17e246e7bcf0e2c7398d7bc289f8dd2c3d8f808eacc63c31f", "azureml.promptflow.flow_definition_datastore_name": "workspaceblobstore", "azureml.promptflow.flow_definition_blob_path": "LocalUpload/3360ae705933fb90bcd290241ca0ece9/print_env_var/flow.dag.yaml", "azureml.promptflow.input_data": "azureml://datastores/workspaceblobstore/paths/LocalUpload/c32a61842e439cecc022ebcff5dc0da4/env_var_names.jsonl", "azureml.promptflow.snapshot_id": "253cf774-f77d-405e-b6c8-936d8167e6c2", "_azureml.evaluation_run": "promptflow.BatchRun", "azureml.promptflow.total_tokens": "0"}, "actionUris": {}, "duration": "00:00:19.9540921", "durationMilliseconds": 19954.0921}, "internal": {}, "updateSequence": 5, "type": "runs", "version": null, "entityContainerId": "3e123da1-f9a5-4c91-9234-8d9ffbb39ff5", "entityObjectId": "9e2d06ac-cc88-4ae0-bc67-50e4dc53e7de", "resourceType": "Workspace", "relationships": [{"relationType": "CreatedBy", "targetEntityId": null, "assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_0730e814-465b-46a8-9378-ac4d33f9925d_output_data_debug_info/versions/1", "entityType": "data", "direction": "Output", "entityContainerId": "3e123da1-f9a5-4c91-9234-8d9ffbb39ff5"}, {"relationType": "CreatedBy", "targetEntityId": null, "assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_0730e814-465b-46a8-9378-ac4d33f9925d_output_data_flow_outputs/versions/1", "entityType": "data", "direction": "Output", "entityContainerId": "3e123da1-f9a5-4c91-9234-8d9ffbb39ff5"}]}, {"relevancyScore": 0.28867513, "entityResourceName": "promptflow-eastus", "highlights": {}, "usage": {"totalCount": 0}, "schemaId": "974ab09e-bfc2-56a6-9be4-97bcfe3d33ca", "entityId": "azureml://location/eastus/workspaceId/3e123da1-f9a5-4c91-9234-8d9ffbb39ff5/type/runs/objectId/4d3fae7b-440b-4160-a222-446d3fd7d9fd", "kind": "Unversioned", "annotations": {"archived": false, "tags": {}, "displayName": "49405488-bade-4678-83ae-54eaadf36812", "status": "Completed", "primaryMetricName": null, "estimatedCost": null, "primaryMetricSummary": null, "metrics": {"__pf__.nodes.fetch_text_content_from_url.completed": {"count": 1, "lastValue": 1.0, "minimumValue": 1.0, "maximumValue": 1.0, "metricType": "azureml.v1.scalar"}, "__pf__.nodes.prepare_examples.completed": {"count": 1, "lastValue": 1.0, "minimumValue": 1.0, "maximumValue": 1.0, "metricType": "azureml.v1.scalar"}, "__pf__.nodes.summarize_text_content.completed": {"count": 1, "lastValue": 1.0, "minimumValue": 1.0, "maximumValue": 1.0, "metricType": "azureml.v1.scalar"}, "__pf__.nodes.classify_with_llm.completed": {"count": 1, "lastValue": 1.0, "minimumValue": 1.0, "maximumValue": 1.0, "metricType": "azureml.v1.scalar"}, "__pf__.nodes.convert_to_dict.completed": {"count": 1, "lastValue": 1.0, "minimumValue": 1.0, "maximumValue": 1.0, "metricType": "azureml.v1.scalar"}, "__pf__.lines.completed": {"count": 1, "lastValue": 1.0, "minimumValue": 1.0, "maximumValue": 1.0, "metricType": "azureml.v1.scalar"}, "__pf__.lines.failed": {"count": 1, "lastValue": 0.0, "minimumValue": 0.0, "maximumValue": 0.0, "metricType": "azureml.v1.scalar"}}, "parameters": {}, "settings": {}, "modifiedTime": "2023-11-29T08:55:16.7524129Z", "retainForLifetimeOfWorkspace": false, "error": {"code": null, "errorCodeHierarchy": null, "message": null, "time": null, "componentName": null, "severity": null, "detailsUri": null, "referenceCode": null}, "resourceMetricSummary": {"gpuUtilizationPercentLastHour": null, "gpuMemoryUtilizationPercentLastHour": null, "gpuEnergyJoules": null, "resourceMetricNames": null}, "jobCost": {"chargedCpuCoreSeconds": null, "chargedCpuMemoryMegabyteSeconds": null, "chargedGpuSeconds": null, "chargedNodeUtilizationSeconds": null}, "computeDuration": "00:00:09.8764537", "computeDurationMilliseconds": 9876.4537, "effectiveStartTimeUtc": null, "name": null, "description": null}, "properties": {"updatedTime": "0001-01-01T00:00:00+00:00", "creationContext": {"createdTime": "2023-11-29T08:54:53.2174798+00:00", "createdBy": {"userObjectId": "4e60fbf3-0338-41a8-bed5-fc341be556f8", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587"}, "creationSource": null}, "dataContainerId": "dcid.49405488-bade-4678-83ae-54eaadf36812", "targetName": null, "runName": null, "experimentName": "web_classification", "runId": "49405488-bade-4678-83ae-54eaadf36812", "parentRunId": null, "rootRunId": "49405488-bade-4678-83ae-54eaadf36812", "runType": "azureml.promptflow.FlowRun", "runTypeV2": {"orchestrator": null, "traits": {}, "attribution": "PromptFlow", "computeType": "MIR_v2"}, "scriptName": null, "experimentId": "d30efbeb-f81d-4cfa-b5cc-a0570a049009", "runUuid": "4d3fae7b-440b-4160-a222-446d3fd7d9fd", "parentRunUuid": null, "runNumber": 1701248093, "startTime": "2023-11-29T08:55:06.8461037Z", "endTime": "2023-11-29T08:55:16.7225574Z", "computeRequest": null, "compute": null, "userProperties": {"azureml.promptflow.runtime_name": "demo-mir", "azureml.promptflow.runtime_version": "20231011.v2", "azureml.promptflow.definition_file_name": "flow.dag.yaml", "azureml.promptflow.session_id": "4dd8f4d5f44dfeb817d3438cf84bd739215d87afd9458597", "azureml.promptflow.flow_lineage_id": "af1a6951de9be2ce13d3b58b23dbd8b6a0cd8fd4918ad9cb22b28fb8395fbcb0", "azureml.promptflow.node_variant": "${summarize_text_content.variant_0}", "azureml.promptflow.flow_definition_datastore_name": "workspaceblobstore", "azureml.promptflow.flow_definition_blob_path": "LocalUpload/7c59ad67129b552538ca09362171cc15/web_classification/flow.dag.yaml", "azureml.promptflow.input_data": "azureml://datastores/workspaceblobstore/paths/LocalUpload/107bd3498e44deb2dccc53d2208d32b2/webClassification1.jsonl", "azureml.promptflow.inputs_mapping": "{\"url\":\"${data.url}\"}", "azureml.promptflow.snapshot_id": "87e7369f-31cd-47c9-99d5-30d88d86b5ac", "_azureml.evaluation_run": "promptflow.BatchRun", "azureml.promptflow.total_tokens": "854"}, "actionUris": {}, "duration": "00:00:09.8764537", "durationMilliseconds": 9876.4537}, "internal": {}, "updateSequence": 5, "type": "runs", "version": null, "entityContainerId": "3e123da1-f9a5-4c91-9234-8d9ffbb39ff5", "entityObjectId": "4d3fae7b-440b-4160-a222-446d3fd7d9fd", "resourceType": "Workspace", "relationships": [{"relationType": "CreatedBy", "targetEntityId": null, "assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_49405488-bade-4678-83ae-54eaadf36812_output_data_debug_info/versions/1", "entityType": "data", "direction": "Output", "entityContainerId": "3e123da1-f9a5-4c91-9234-8d9ffbb39ff5"}, {"relationType": "CreatedBy", "targetEntityId": null, "assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_49405488-bade-4678-83ae-54eaadf36812_output_data_flow_outputs/versions/1", "entityType": "data", "direction": "Output", "entityContainerId": "3e123da1-f9a5-4c91-9234-8d9ffbb39ff5"}]}, {"relevancyScore": 0.28867513, "entityResourceName": "promptflow-eastus", "highlights": {}, "usage": {"totalCount": 0}, "schemaId": "974ab09e-bfc2-56a6-9be4-97bcfe3d33ca", "entityId": "azureml://location/eastus/workspaceId/3e123da1-f9a5-4c91-9234-8d9ffbb39ff5/type/runs/objectId/50710cad-1dea-406e-a6c2-104892f5a554", "kind": "Unversioned", "annotations": {"archived": false, "tags": {}, "displayName": "b4c70ce2-98a4-49df-b537-ffa9c9249340", "status": "Completed", "primaryMetricName": null, "estimatedCost": null, "primaryMetricSummary": null, "metrics": {"__pf__.nodes.hello_world.completed": {"count": 1, "lastValue": 1.0, "minimumValue": 1.0, "maximumValue": 1.0, "metricType": "azureml.v1.scalar"}, "__pf__.lines.completed": {"count": 1, "lastValue": 1.0, "minimumValue": 1.0, "maximumValue": 1.0, "metricType": "azureml.v1.scalar"}, "__pf__.lines.failed": {"count": 1, "lastValue": 0.0, "minimumValue": 0.0, "maximumValue": 0.0, "metricType": "azureml.v1.scalar"}}, "parameters": {}, "settings": {}, "modifiedTime": "2023-11-29T08:54:35.9414902Z", "retainForLifetimeOfWorkspace": false, "error": {"code": null, "errorCodeHierarchy": null, "message": null, "time": null, "componentName": null, "severity": null, "detailsUri": null, "referenceCode": null}, "resourceMetricSummary": {"gpuUtilizationPercentLastHour": null, "gpuMemoryUtilizationPercentLastHour": null, "gpuEnergyJoules": null, "resourceMetricNames": null}, "jobCost": {"chargedCpuCoreSeconds": null, "chargedCpuMemoryMegabyteSeconds": null, "chargedGpuSeconds": null, "chargedNodeUtilizationSeconds": null}, "computeDuration": "00:00:04.1365326", "computeDurationMilliseconds": 4136.5326, "effectiveStartTimeUtc": null, "name": null, "description": null}, "properties": {"updatedTime": "0001-01-01T00:00:00+00:00", "creationContext": {"createdTime": "2023-11-29T08:54:18.2213481+00:00", "createdBy": {"userObjectId": "4e60fbf3-0338-41a8-bed5-fc341be556f8", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587"}, "creationSource": null}, "dataContainerId": "dcid.b4c70ce2-98a4-49df-b537-ffa9c9249340", "targetName": null, "runName": null, "experimentName": "simple_hello_world", "runId": "b4c70ce2-98a4-49df-b537-ffa9c9249340", "parentRunId": null, "rootRunId": "b4c70ce2-98a4-49df-b537-ffa9c9249340", "runType": "azureml.promptflow.FlowRun", "runTypeV2": {"orchestrator": null, "traits": {}, "attribution": "PromptFlow", "computeType": "MIR_v2"}, "scriptName": null, "experimentId": "e57eb79e-3e83-45f1-810c-ee22c20b2ebd", "runUuid": "50710cad-1dea-406e-a6c2-104892f5a554", "parentRunUuid": null, "runNumber": 1701248058, "startTime": "2023-11-29T08:54:31.7697586Z", "endTime": "2023-11-29T08:54:35.9062912Z", "computeRequest": null, "compute": null, "userProperties": {"azureml.promptflow.runtime_name": "demo-mir", "azureml.promptflow.runtime_version": "20231011.v2", "azureml.promptflow.definition_file_name": "flow.dag.yaml", "azureml.promptflow.session_id": "simple_hello_world", "azureml.promptflow.flow_lineage_id": "simple_hello_world", "azureml.promptflow.flow_definition_resource_id": "azureml://registries/promptflow-preview/models/simple_hello_world/versions/202311241", "azureml.promptflow.input_data": "azureml://datastores/workspaceblobstore/paths/LocalUpload/79f088fae0e502653c43146c9682f425/simple_hello_world.jsonl", "azureml.promptflow.inputs_mapping": "{\"name\":\"${data.name}\"}", "azureml.promptflow.snapshot_id": "6df06b41-50a3-49d4-8d88-c745050f2a78", "_azureml.evaluation_run": "promptflow.BatchRun", "azureml.promptflow.total_tokens": "0"}, "actionUris": {}, "duration": "00:00:04.1365326", "durationMilliseconds": 4136.5326}, "internal": {}, "updateSequence": 5, "type": "runs", "version": null, "entityContainerId": "3e123da1-f9a5-4c91-9234-8d9ffbb39ff5", "entityObjectId": "50710cad-1dea-406e-a6c2-104892f5a554", "resourceType": "Workspace", "relationships": [{"relationType": "CreatedBy", "targetEntityId": null, "assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_b4c70ce2-98a4-49df-b537-ffa9c9249340_output_data_debug_info/versions/1", "entityType": "data", "direction": "Output", "entityContainerId": "3e123da1-f9a5-4c91-9234-8d9ffbb39ff5"}, {"relationType": "CreatedBy", "targetEntityId": null, "assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_b4c70ce2-98a4-49df-b537-ffa9c9249340_output_data_flow_outputs/versions/1", "entityType": "data", "direction": "Output", "entityContainerId": "3e123da1-f9a5-4c91-9234-8d9ffbb39ff5"}]}, {"relevancyScore": 0.28867513, "entityResourceName": "promptflow-eastus", "highlights": {}, "usage": {"totalCount": 0}, "schemaId": "974ab09e-bfc2-56a6-9be4-97bcfe3d33ca", "entityId": "azureml://location/eastus/workspaceId/3e123da1-f9a5-4c91-9234-8d9ffbb39ff5/type/runs/objectId/cb83b450-eb49-424a-b2ee-e08fa742b6a7", "kind": "Unversioned", "annotations": {"archived": false, "tags": {}, "displayName": "b8188c7f-fd92-4e64-bb9c-608731bc0279", "status": "Completed", "primaryMetricName": null, "estimatedCost": null, "primaryMetricSummary": null, "metrics": {"__pf__.nodes.hello_world.completed": {"count": 1, "lastValue": 1.0, "minimumValue": 1.0, "maximumValue": 1.0, "metricType": "azureml.v1.scalar"}, "__pf__.lines.completed": {"count": 1, "lastValue": 1.0, "minimumValue": 1.0, "maximumValue": 1.0, "metricType": "azureml.v1.scalar"}, "__pf__.lines.failed": {"count": 1, "lastValue": 0.0, "minimumValue": 0.0, "maximumValue": 0.0, "metricType": "azureml.v1.scalar"}}, "parameters": {}, "settings": {}, "modifiedTime": "2023-11-29T08:54:09.8110604Z", "retainForLifetimeOfWorkspace": false, "error": {"code": null, "errorCodeHierarchy": null, "message": null, "time": null, "componentName": null, "severity": null, "detailsUri": null, "referenceCode": null}, "resourceMetricSummary": {"gpuUtilizationPercentLastHour": null, "gpuMemoryUtilizationPercentLastHour": null, "gpuEnergyJoules": null, "resourceMetricNames": null}, "jobCost": {"chargedCpuCoreSeconds": null, "chargedCpuMemoryMegabyteSeconds": null, "chargedGpuSeconds": null, "chargedNodeUtilizationSeconds": null}, "computeDuration": "00:00:04.2052292", "computeDurationMilliseconds": 4205.2292, "effectiveStartTimeUtc": null, "name": null, "description": null}, "properties": {"updatedTime": "0001-01-01T00:00:00+00:00", "creationContext": {"createdTime": "2023-11-29T08:53:51.9217991+00:00", "createdBy": {"userObjectId": "4e60fbf3-0338-41a8-bed5-fc341be556f8", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587"}, "creationSource": null}, "dataContainerId": "dcid.b8188c7f-fd92-4e64-bb9c-608731bc0279", "targetName": null, "runName": null, "experimentName": "9370c311-e0d5-44a5-8802-7974f3eacb76", "runId": "b8188c7f-fd92-4e64-bb9c-608731bc0279", "parentRunId": null, "rootRunId": "b8188c7f-fd92-4e64-bb9c-608731bc0279", "runType": "azureml.promptflow.FlowRun", "runTypeV2": {"orchestrator": null, "traits": {}, "attribution": "PromptFlow", "computeType": "MIR_v2"}, "scriptName": null, "experimentId": "2c90f6b2-c0f5-42b7-a11e-f6d43ee205be", "runUuid": "cb83b450-eb49-424a-b2ee-e08fa742b6a7", "parentRunUuid": null, "runNumber": 1701248031, "startTime": "2023-11-29T08:54:05.5637286Z", "endTime": "2023-11-29T08:54:09.7689578Z", "computeRequest": null, "compute": null, "userProperties": {"azureml.promptflow.runtime_name": "demo-mir", "azureml.promptflow.runtime_version": "20231011.v2", "azureml.promptflow.definition_file_name": "flow.dag.yaml", "azureml.promptflow.session_id": "9370c311-e0d5-44a5-8802-7974f3eacb76", "azureml.promptflow.flow_lineage_id": "9370c311-e0d5-44a5-8802-7974f3eacb76", "azureml.promptflow.flow_definition_resource_id": "azureml://locations/eastus/workspaces/00000/flows/9370c311-e0d5-44a5-8802-7974f3eacb76", "azureml.promptflow.input_data": "azureml://datastores/workspaceblobstore/paths/LocalUpload/79f088fae0e502653c43146c9682f425/simple_hello_world.jsonl", "azureml.promptflow.inputs_mapping": "{\"name\":\"${data.name}\"}", "azureml.promptflow.snapshot_id": "1ce3b7c6-dc4e-4a48-92bf-36be28eb6084", "_azureml.evaluation_run": "promptflow.BatchRun", "azureml.promptflow.total_tokens": "0"}, "actionUris": {}, "duration": "00:00:04.2052292", "durationMilliseconds": 4205.2292}, "internal": {}, "updateSequence": 5, "type": "runs", "version": null, "entityContainerId": "3e123da1-f9a5-4c91-9234-8d9ffbb39ff5", "entityObjectId": "cb83b450-eb49-424a-b2ee-e08fa742b6a7", "resourceType": "Workspace", "relationships": [{"relationType": "CreatedBy", "targetEntityId": null, "assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_b8188c7f-fd92-4e64-bb9c-608731bc0279_output_data_debug_info/versions/1", "entityType": "data", "direction": "Output", "entityContainerId": "3e123da1-f9a5-4c91-9234-8d9ffbb39ff5"}, {"relationType": "CreatedBy", "targetEntityId": null, "assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_b8188c7f-fd92-4e64-bb9c-608731bc0279_output_data_flow_outputs/versions/1", "entityType": "data", "direction": "Output", "entityContainerId": "3e123da1-f9a5-4c91-9234-8d9ffbb39ff5"}]}, {"relevancyScore": 0.28867513, "entityResourceName": "promptflow-eastus", "highlights": {}, "usage": {"totalCount": 0}, "schemaId": "974ab09e-bfc2-56a6-9be4-97bcfe3d33ca", "entityId": "azureml://location/eastus/workspaceId/3e123da1-f9a5-4c91-9234-8d9ffbb39ff5/type/runs/objectId/82d60584-a4dd-463f-a1e2-8f7ce1ba46f5", "kind": "Unversioned", "annotations": {"archived": false, "tags": {}, "displayName": "9113bb55-3f3e-4a49-92c7-515bed79fa66", "status": "Completed", "primaryMetricName": null, "estimatedCost": null, "primaryMetricSummary": null, "metrics": {"__pf__.nodes.grade.completed": {"count": 1, "lastValue": 3.0, "minimumValue": 3.0, "maximumValue": 3.0, "metricType": "azureml.v1.scalar"}, "__pf__.nodes.calculate_accuracy.completed": {"count": 1, "lastValue": 1.0, "minimumValue": 1.0, "maximumValue": 1.0, "metricType": "azureml.v1.scalar"}, "__pf__.lines.completed": {"count": 1, "lastValue": 3.0, "minimumValue": 3.0, "maximumValue": 3.0, "metricType": "azureml.v1.scalar"}, "__pf__.lines.failed": {"count": 1, "lastValue": 0.0, "minimumValue": 0.0, "maximumValue": 0.0, "metricType": "azureml.v1.scalar"}, "accuracy": {"count": 1, "lastValue": 1.0, "minimumValue": 1.0, "maximumValue": 1.0, "metricType": "azureml.v1.scalar"}}, "parameters": {}, "settings": {}, "modifiedTime": "2023-11-29T08:47:37.5128714Z", "retainForLifetimeOfWorkspace": false, "error": {"code": null, "errorCodeHierarchy": null, "message": null, "time": null, "componentName": null, "severity": null, "detailsUri": null, "referenceCode": null}, "resourceMetricSummary": {"gpuUtilizationPercentLastHour": null, "gpuMemoryUtilizationPercentLastHour": null, "gpuEnergyJoules": null, "resourceMetricNames": null}, "jobCost": {"chargedCpuCoreSeconds": null, "chargedCpuMemoryMegabyteSeconds": null, "chargedGpuSeconds": null, "chargedNodeUtilizationSeconds": null}, "computeDuration": "00:00:05.1390317", "computeDurationMilliseconds": 5139.0317, "effectiveStartTimeUtc": null, "name": null, "description": null}, "properties": {"updatedTime": "0001-01-01T00:00:00+00:00", "creationContext": {"createdTime": "2023-11-29T08:47:18.9653925+00:00", "createdBy": {"userObjectId": "4e60fbf3-0338-41a8-bed5-fc341be556f8", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587"}, "creationSource": null}, "dataContainerId": "dcid.9113bb55-3f3e-4a49-92c7-515bed79fa66", "targetName": null, "runName": null, "experimentName": "eval_classification_accuracy", "runId": "9113bb55-3f3e-4a49-92c7-515bed79fa66", "parentRunId": null, "rootRunId": "9113bb55-3f3e-4a49-92c7-515bed79fa66", "runType": "azureml.promptflow.FlowRun", "runTypeV2": {"orchestrator": null, "traits": {}, "attribution": "PromptFlow", "computeType": "MIR_v2"}, "scriptName": null, "experimentId": "7bdec279-f99c-4ed3-b0b8-dd75698b8fd0", "runUuid": "82d60584-a4dd-463f-a1e2-8f7ce1ba46f5", "parentRunUuid": null, "runNumber": 1701247638, "startTime": "2023-11-29T08:47:32.3452199Z", "endTime": "2023-11-29T08:47:37.4842516Z", "computeRequest": null, "compute": null, "userProperties": {"azureml.promptflow.runtime_name": "demo-mir", "azureml.promptflow.runtime_version": "20231011.v2", "azureml.promptflow.definition_file_name": "flow.dag.yaml", "azureml.promptflow.session_id": "f8e4236a4e78e7f7125bbd811ec7976cb330412723a530f8", "azureml.promptflow.flow_lineage_id": "26c575d863a85371ef937096728441d8c68c3e737b5a1bfeae5ac8f3b9ccb048", "azureml.promptflow.flow_definition_datastore_name": "workspaceblobstore", "azureml.promptflow.flow_definition_blob_path": "LocalUpload/1aa3064d06f6170abbc488cc35c713b9/eval-classification-accuracy/flow.dag.yaml", "azureml.promptflow.input_data": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl", "azureml.promptflow.input_run_id": "fe987530-fca6-4741-81c0-f28a2701aa6d", "azureml.promptflow.inputs_mapping": "{\"groundtruth\":\"${data.answer}\",\"prediction\":\"${run.outputs.category}\"}", "azureml.promptflow.snapshot_id": "12e71b5e-ae43-4776-89a5-9d7144c3902e", "_azureml.evaluation_run": "promptflow.BatchRun", "azureml.promptflow.total_tokens": "0"}, "actionUris": {}, "duration": "00:00:05.1390317", "durationMilliseconds": 5139.0317}, "internal": {}, "updateSequence": 5, "type": "runs", "version": null, "entityContainerId": "3e123da1-f9a5-4c91-9234-8d9ffbb39ff5", "entityObjectId": "82d60584-a4dd-463f-a1e2-8f7ce1ba46f5", "resourceType": "Workspace", "relationships": [{"relationType": "CreatedBy", "targetEntityId": null, "assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_9113bb55-3f3e-4a49-92c7-515bed79fa66_output_data_debug_info/versions/1", "entityType": "data", "direction": "Output", "entityContainerId": "3e123da1-f9a5-4c91-9234-8d9ffbb39ff5"}, {"relationType": "CreatedBy", "targetEntityId": null, "assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_9113bb55-3f3e-4a49-92c7-515bed79fa66_output_data_flow_outputs/versions/1", "entityType": "data", "direction": "Output", "entityContainerId": "3e123da1-f9a5-4c91-9234-8d9ffbb39ff5"}]}, {"relevancyScore": 0.28867513, "entityResourceName": "promptflow-eastus", "highlights": {}, "usage": {"totalCount": 0}, "schemaId": "974ab09e-bfc2-56a6-9be4-97bcfe3d33ca", "entityId": "azureml://location/eastus/workspaceId/3e123da1-f9a5-4c91-9234-8d9ffbb39ff5/type/runs/objectId/688f1eff-a2b1-49f6-a89b-ae00bfc61e1c", "kind": "Unversioned", "annotations": {"archived": false, "tags": {}, "displayName": "fe987530-fca6-4741-81c0-f28a2701aa6d", "status": "Completed", "primaryMetricName": null, "estimatedCost": null, "primaryMetricSummary": null, "metrics": {"__pf__.nodes.fetch_text_content_from_url.completed": {"count": 1, "lastValue": 3.0, "minimumValue": 3.0, "maximumValue": 3.0, "metricType": "azureml.v1.scalar"}, "__pf__.nodes.prepare_examples.completed": {"count": 1, "lastValue": 3.0, "minimumValue": 3.0, "maximumValue": 3.0, "metricType": "azureml.v1.scalar"}, "__pf__.nodes.summarize_text_content.completed": {"count": 1, "lastValue": 3.0, "minimumValue": 3.0, "maximumValue": 3.0, "metricType": "azureml.v1.scalar"}, "__pf__.nodes.classify_with_llm.completed": {"count": 1, "lastValue": 3.0, "minimumValue": 3.0, "maximumValue": 3.0, "metricType": "azureml.v1.scalar"}, "__pf__.nodes.convert_to_dict.completed": {"count": 1, "lastValue": 3.0, "minimumValue": 3.0, "maximumValue": 3.0, "metricType": "azureml.v1.scalar"}, "__pf__.lines.completed": {"count": 1, "lastValue": 3.0, "minimumValue": 3.0, "maximumValue": 3.0, "metricType": "azureml.v1.scalar"}, "__pf__.lines.failed": {"count": 1, "lastValue": 0.0, "minimumValue": 0.0, "maximumValue": 0.0, "metricType": "azureml.v1.scalar"}}, "parameters": {}, "settings": {}, "modifiedTime": "2023-11-29T08:46:39.9700654Z", "retainForLifetimeOfWorkspace": false, "error": {"code": null, "errorCodeHierarchy": null, "message": null, "time": null, "componentName": null, "severity": null, "detailsUri": null, "referenceCode": null}, "resourceMetricSummary": {"gpuUtilizationPercentLastHour": null, "gpuMemoryUtilizationPercentLastHour": null, "gpuEnergyJoules": null, "resourceMetricNames": null}, "jobCost": {"chargedCpuCoreSeconds": null, "chargedCpuMemoryMegabyteSeconds": null, "chargedGpuSeconds": null, "chargedNodeUtilizationSeconds": null}, "computeDuration": "00:00:13.6812734", "computeDurationMilliseconds": 13681.2734, "effectiveStartTimeUtc": null, "name": null, "description": null}, "properties": {"updatedTime": "0001-01-01T00:00:00+00:00", "creationContext": {"createdTime": "2023-11-29T08:46:12.5308144+00:00", "createdBy": {"userObjectId": "4e60fbf3-0338-41a8-bed5-fc341be556f8", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587"}, "creationSource": null}, "dataContainerId": "dcid.fe987530-fca6-4741-81c0-f28a2701aa6d", "targetName": null, "runName": null, "experimentName": "web_classification", "runId": "fe987530-fca6-4741-81c0-f28a2701aa6d", "parentRunId": null, "rootRunId": "fe987530-fca6-4741-81c0-f28a2701aa6d", "runType": "azureml.promptflow.FlowRun", "runTypeV2": {"orchestrator": null, "traits": {}, "attribution": "PromptFlow", "computeType": "MIR_v2"}, "scriptName": null, "experimentId": "d30efbeb-f81d-4cfa-b5cc-a0570a049009", "runUuid": "688f1eff-a2b1-49f6-a89b-ae00bfc61e1c", "parentRunUuid": null, "runNumber": 1701247572, "startTime": "2023-11-29T08:46:26.2582802Z", "endTime": "2023-11-29T08:46:39.9395536Z", "computeRequest": null, "compute": null, "userProperties": {"azureml.promptflow.runtime_name": "demo-mir", "azureml.promptflow.runtime_version": "20231011.v2", "azureml.promptflow.definition_file_name": "flow.dag.yaml", "azureml.promptflow.session_id": "4dd8f4d5f44dfeb817d3438cf84bd739215d87afd9458597", "azureml.promptflow.flow_lineage_id": "af1a6951de9be2ce13d3b58b23dbd8b6a0cd8fd4918ad9cb22b28fb8395fbcb0", "azureml.promptflow.node_variant": "${summarize_text_content.variant_0}", "azureml.promptflow.flow_definition_datastore_name": "workspaceblobstore", "azureml.promptflow.flow_definition_blob_path": "LocalUpload/7c59ad67129b552538ca09362171cc15/web_classification/flow.dag.yaml", "azureml.promptflow.input_data": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl", "azureml.promptflow.inputs_mapping": "{\"url\":\"${data.url}\"}", "azureml.promptflow.snapshot_id": "ab880004-3c1e-4e56-937c-8208cf567021", "_azureml.evaluation_run": "promptflow.BatchRun", "azureml.promptflow.total_tokens": "2522"}, "actionUris": {}, "duration": "00:00:13.6812734", "durationMilliseconds": 13681.2734}, "internal": {}, "updateSequence": 5, "type": "runs", "version": null, "entityContainerId": "3e123da1-f9a5-4c91-9234-8d9ffbb39ff5", "entityObjectId": "688f1eff-a2b1-49f6-a89b-ae00bfc61e1c", "resourceType": "Workspace", "relationships": [{"relationType": "CreatedBy", "targetEntityId": null, "assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_fe987530-fca6-4741-81c0-f28a2701aa6d_output_data_debug_info/versions/1", "entityType": "data", "direction": "Output", "entityContainerId": "3e123da1-f9a5-4c91-9234-8d9ffbb39ff5"}, {"relationType": "CreatedBy", "targetEntityId": null, "assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_fe987530-fca6-4741-81c0-f28a2701aa6d_output_data_flow_outputs/versions/1", "entityType": "data", "direction": "Output", "entityContainerId": "3e123da1-f9a5-4c91-9234-8d9ffbb39ff5"}]}], "nextSkip": 10, "entityContainerIdsToEntityContainerMetadata": {"3e123da1-f9a5-4c91-9234-8d9ffbb39ff5": {"resourceId": "3e123da1-f9a5-4c91-9234-8d9ffbb39ff5", "subscriptionId": "96aede12-2f73-41cb-b983-6d11a904839b", "resourceGroup": "promptflow", "resourceName": "promptflow-eastus", "entityContainerType": "Workspace", "regions": [{"regionName": "eastus", "isPrimaryRegion": true}], "tenantId": "00000000-0000-0000-0000-000000000000", "immutableResourceId": "3e123da1-f9a5-4c91-9234-8d9ffbb39ff5", "isPublicResource": false}}, "resourcesNotQueriedReasons": {}, "numberOfEntityContainersNotQueried": 0, "fanoutData": {"Multitenant": {"nextSkip": 10, "isShardDone": false, "didShardFail": false, "totalCount": 146558, "resourceIdsOnShardThisPage": ["3e123da1-f9a5-4c91-9234-8d9ffbb39ff5"]}}, "regionalFanoutState": {"shardFanoutStates": [{"shardId": "Multitenant", "nextSkip": 10, "isPlanExecutionDone": false, "didPlanExecutionFail": false, "totalCount": 146558, "resourceIdsOnShardThisPage": ["3e123da1-f9a5-4c91-9234-8d9ffbb39ff5"]}], "firstPageStartTime": null}, "shardErrors": {}, "canSupportSkip": true}' headers: connection: - keep-alive content-length: - '47750' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.158' status: code: 200 message: OK version: 1
promptflow/src/promptflow/tests/test_configs/recordings/test_run_operations_TestFlowRun_test_list_runs.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/recordings/test_run_operations_TestFlowRun_test_list_runs.yaml", "repo_id": "promptflow", "token_count": 26972 }
79
flow: ../flows/classification_accuracy_evaluation column_mapping: groundtruth: "${data.answer}" prediction: "${run.outputs.category}" run: flow_run_20230629_101205 # ./sample_bulk_run.yaml # run config: env related environment_variables: .env # optional connections: node_1: connection: test_llm_connection deployment_name: gpt-35-turbo
promptflow/src/promptflow/tests/test_configs/runs/illegal/missing_data.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/runs/illegal/missing_data.yaml", "repo_id": "promptflow", "token_count": 133 }
80
from setuptools import find_packages, setup PACKAGE_NAME = "tool_package" setup( name=PACKAGE_NAME, version="0.0.1", description="This is my tools package", packages=find_packages(), entry_points={ "package_tools": ["tool_func = tool_package.utils:list_package_tools"], }, install_requires=[ "promptflow", "promptflow-tools" ] )
promptflow/src/promptflow/tests/test_configs/tools/tool_package/setup.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/tools/tool_package/setup.py", "repo_id": "promptflow", "token_count": 159 }
81
name: node_wrong_reference inputs: text: type: string outputs: result: type: string reference: ${second_node} nodes: - name: first_node type: python source: type: code path: test.py inputs: text: ${inputs.text} aggregation: true - name: second_node type: python source: type: code path: test.py inputs: text: ${third_node} aggregation: true
promptflow/src/promptflow/tests/test_configs/wrong_flows/wrong_node_reference/flow.dag.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/wrong_flows/wrong_node_reference/flow.dag.yaml", "repo_id": "promptflow", "token_count": 158 }
82
{ "version": "0.2", "language": "en", "languageId": "python", "dictionaries": [ "powershell", "python", "go", "css", "html", "bash", "npm", "softwareTerms", "en_us", "en-gb" ], "ignorePaths": [ "**/*.js", "**/*.pyc", "**/*.log", "**/*.jsonl", "**/*.xml", "**/*.txt", ".gitignore", "scripts/docs/_build/**", "src/promptflow/promptflow/azure/_restclient/flow/**", "src/promptflow/promptflow/azure/_restclient/swagger.json", "src/promptflow/tests/**", "src/promptflow-tools/tests/**", "**/flow.dag.yaml", "**/setup.py", "scripts/installer/curl_install_pypi/**", "scripts/installer/windows/**", "src/promptflow/promptflow/_sdk/_service/pfsvc.py" ], "words": [ "aoai", "amlignore", "mldesigner", "faiss", "serp", "azureml", "mlflow", "vnet", "openai", "pfazure", "eastus", "azureai", "vectordb", "Qdrant", "Weaviate", "env", "e2etests", "e2etest", "tablefmt", "logprobs", "logit", "hnsw", "chatml", "UNLCK", "KHTML", "numlines", "azurecr", "centralus", "Policheck", "azuremlsdktestpypi", "rediraffe", "pydata", "ROBOCOPY", "undoc", "retriable", "pfcli", "pfutil", "mgmt", "wsid", "westus", "msrest", "cref", "msal", "pfbytes", "Apim", "junit", "nunit", "astext", "Likert", "pfsvc" ], "ignoreWords": [ "openmpi", "ipynb", "xdist", "pydash", "tqdm", "rtype", "epocs", "fout", "funcs", "todos", "fstring", "creds", "zipp", "gmtime", "pyjwt", "nbconvert", "nbformat", "pypandoc", "dotenv", "miniconda", "datas", "tcgetpgrp", "yamls", "fmt", "serpapi", "genutils", "metadatas", "tiktoken", "bfnrt", "orelse", "thead", "sympy", "ghactions", "esac", "MSRC", "pycln", "strictyaml", "psutil", "getch", "tcgetattr", "TCSADRAIN", "stringio", "jsonify", "werkzeug", "continuumio", "pydantic", "iterrows", "dtype", "fillna", "nlines", "aggr", "tcsetattr", "pysqlite", "AADSTS700082", "Pyinstaller", "runsvdir", "runsv", "levelno", "LANCZOS", "Mobius", "ruamel", "gunicorn", "pkill", "pgrep", "Hwfoxydrg", "llms", "vcrpy", "uionly", "llmops", "Abhishek", "restx", "httpx", "tiiuae", "nohup", "metagenai", "WBITS", "laddr", "nrows", "Dumpable", "XCLASS" ], "flagWords": [ "Prompt Flow" ], "allowCompoundWords": true }
promptflow/.cspell.json/0
{ "file_path": "promptflow/.cspell.json", "repo_id": "promptflow", "token_count": 1564 }
0
# Support ## How to file issues and get help This project uses GitHub Issues to track bugs and feature requests. Please search the existing issues before filing new issues to avoid duplicates. For new issues, file your bug or feature request as a new Issue. ## Microsoft Support Policy Support for this **PROJECT or PRODUCT** is limited to the resources listed above.
promptflow/SUPPORT.md/0
{ "file_path": "promptflow/SUPPORT.md", "repo_id": "promptflow", "token_count": 84 }
1
# Dev Setup ## Set up process - First create a new [conda](https://conda.io/projects/conda/en/latest/user-guide/getting-started.html) environment. Please specify python version as 3.9. `conda create -n <env_name> python=3.9`. - Activate the env you created. - Set environment variable `PYTHONPATH` in your new conda environment. `conda env config vars set PYTHONPATH=<path-to-src>\promptflow`. Once you have set the environment variable, you have to reactivate your environment. `conda activate <env_name>`. - In root folder, run `python scripts/building/dev_setup.py --promptflow-extra-deps azure` to install the package and dependencies. ## How to run tests ### Set up your secrets `dev-connections.json.example` is a template about connections provided in `src/promptflow`. You can follow these steps to refer to this template to configure your connection for the test cases: 1. `cd ./src/promptflow` 2. Run the command `cp dev-connections.json.example connections.json`; 3. Replace the values in the json file with your connection info; 4. Set the environment `PROMPTFLOW_CONNECTIONS='connections.json'`; After above setup process is finished. You can use `pytest` command to run test, for example in root folder you can: ### Run tests via command - Run all tests under a folder: `pytest src/promptflow/tests -v` - Run a single test: ` pytest src/promptflow/tests/promptflow_test/e2etests/test_executor.py::TestExecutor::test_executor_basic_flow -v` ### Run tests in VSCode 1. Set up your python interperter - Open the Command Palette (Ctrl+Shift+P) and select `Python: Select Interpreter`. ![img0](../media/dev_setup/set_up_vscode_0.png) - Select existing conda env which you created previously. ![img1](../media/dev_setup/set_up_vscode_1.png) 2. Set up your test framework and directory - Open the Command Palette (Ctrl+Shift+P) and select `Python: Configure Tests`. ![img2](../media/dev_setup/set_up_vscode_2.png) - Select `pytest` as test framework. ![img3](../media/dev_setup/set_up_vscode_3.png) - Select `Root directory` as test directory. ![img4](../media/dev_setup/set_up_vscode_4.png) 3. Exclude specific test folders. You can exclude specific test folders if you don't have some extra dependency to avoid VS Code's test discovery fail. For example, if you don't have azure dependency, you can exclude `sdk_cli_azure_test`. Open `.vscode/settings.json`, write `"--ignore=src/promptflow/tests/sdk_cli_azure_test"` to `"python.testing.pytestArgs"`. ![img6](../media/dev_setup/set_up_vscode_6.png) 4. Click the `Run Test` button on the left ![img5](../media/dev_setup/set_up_vscode_5.png) ### Run tests in pycharm 1. Set up your pycharm python interpreter ![img0](../media/dev_setup/set_up_pycharm_0.png) 2. Select existing conda env which you created previously ![img1](../media/dev_setup/set_up_pycharm_1.png) 3. Run test, right-click the test name to run, or click the green arrow button on the left. ![img2](../media/dev_setup/set_up_pycharm_2.png) ### Record and replay tests Please refer to [Replay End-to-End Tests](./replay-e2e-test.md) to learn how to record and replay tests. ## How to write docstring. A clear and consistent API documentation is crucial for the usability and maintainability of our codebase. Please refer to [API Documentation Guidelines](./documentation_guidelines.md) to learn how to write docstring when developing the project. ## How to write tests - Put all test data/configs under `src/promptflow/tests/test_configs`. - Write unit tests: - Flow run: `src/promptflow/tests/sdk_cli_test/unittest/` - Flow run in azure: `src/promptflow/tests/sdk_cli_azure_test/unittest/` - Write e2e tests: - Flow run: `src/promptflow/tests/sdk_cli_test/e2etests/` - Flow run in azure: `src/promptflow/tests/sdk_cli_azure_test/e2etests/` - Test file name and the test case name all start with `test_`. - A basic test example, see [test_connection.py](../../src/promptflow/tests/sdk_cli_test/e2etests/test_connection.py). ### Test structure Currently all tests are under `src/promptflow/tests/` folder: - tests/ - promptflow/ - sdk_cli_test/ - e2etests/ - unittests/ - sdk_cli_azure_test/ - e2etests/ - unittests/ - test_configs/ - connections/ - datas/ - flows/ - runs/ - wrong_flows/ - wrong_tools/ When you want to add tests for a new feature, you can add new test file let's say a e2e test file `test_construction.py` under `tests/promptflow/**/e2etests/`. Once the project gets more complicated or anytime you find it necessary to add new test folder and test configs for a specific feature, feel free to split the `promptflow` to more folders, for example: - tests/ - (Test folder name)/ - e2etests/ - test_xxx.py - unittests/ - test_xxx.py - test_configs/ - (Data or config folder name)/
promptflow/docs/dev/dev_setup.md/0
{ "file_path": "promptflow/docs/dev/dev_setup.md", "repo_id": "promptflow", "token_count": 1669 }
2
# Create and Use Tool Package In this document, we will guide you through the process of developing your own tool package, offering detailed steps and advice on how to utilize your creation. The custom tool is the prompt flow tool developed by yourself. If you find it useful, you can follow this guidance to make it a tool package. This will enable you to conveniently reuse it, share it with your team, or distribute it to anyone in the world. After successful installation of the package, your custom "tool" will show up in VSCode extension as below: ![custom-tool-list](../../media/how-to-guides/develop-a-tool//custom-tool-list-in-extension.png) ## Create your own tool package Your tool package should be a python package. To try it quickly, just use [my-tools-package 0.0.1](https://pypi.org/project/my-tools-package/) and skip this section. ### Prerequisites Create a new conda environment using python 3.9 or 3.10. Run below command to install PromptFlow dependencies: ``` pip install promptflow ``` Install Pytest packages for running tests: ``` pip install pytest pytest-mock ``` Clone the PromptFlow repository from GitHub using the following command: ``` git clone https://github.com/microsoft/promptflow.git ``` ### Create custom tool package Run below command under the root folder to create your tool project quickly: ``` python <promptflow github repo>\scripts\tool\generate_tool_package_template.py --destination <your-tool-project> --package-name <your-package-name> --tool-name <your-tool-name> --function-name <your-tool-function-name> ``` For example: ``` python D:\proj\github\promptflow\scripts\tool\generate_tool_package_template.py --destination hello-world-proj --package-name hello-world --tool-name hello_world_tool --function-name get_greeting_message ``` This auto-generated script will create one tool for you. The parameters _destination_ and _package-name_ are mandatory. The parameters _tool-name_ and _function-name_ are optional. If left unfilled, the _tool-name_ will default to _hello_world_tool_, and the _function-name_ will default to _tool-name_. The command will generate the tool project as follows with one tool `hello_world_tool.py` in it: ``` hello-world-proj/ │ ├── hello_world/ │ ├── tools/ │ │ ├── __init__.py │ │ ├── hello_world_tool.py │ │ └── utils.py │ ├── yamls/ │ │ └── hello_world_tool.yaml │ └── __init__.py │ ├── tests/ │ ├── __init__.py │ └── test_hello_world_tool.py │ ├── MANIFEST.in │ └── setup.py ``` ```The points outlined below explain the purpose of each folder/file in the package. If your aim is to develop multiple tools within your package, please make sure to closely examine point 2 and 5.``` 1. **hello-world-proj**: This is the source directory. All of your project's source code should be placed in this directory. 2. **hello-world/tools**: This directory contains the individual tools for your project. Your tool package can contain either one tool or many tools. When adding a new tool, you should create another *_tool.py under the `tools` folder. 3. **hello-world/tools/hello_world_tool.py**: Develop your tool within the def function. Use the `@tool` decorator to identify the function as a tool. > [!Note] There are two ways to write a tool. The default and recommended way is the function implemented way. You can also use the class implementation way, referring to [my_tool_2.py](https://github.com/microsoft/promptflow/blob/main/examples/tools/tool-package-quickstart/my_tool_package/tools/my_tool_2.py) as an example. 4. **hello-world/tools/utils.py**: This file implements the tool list method, which collects all the tools defined. It is required to have this tool list method, as it allows the User Interface (UI) to retrieve your tools and display them within the UI. > [!Note] There's no need to create your own list method if you maintain the existing folder structure. You can simply use the auto-generated list method provided in the `utils.py` file. 5. **hello_world/yamls/hello_world_tool.yaml**: Tool YAMLs defines the metadata of the tool. The tool list method, as outlined in the `utils.py`, fetches these tool YAMLs. > [!Note] If you create a new tool, don't forget to also create the corresponding tool YAML. You can run below command under your tool project to auto generate your tool YAML. You may want to specify `-n` for `name` and `-d` for `description`, which would be displayed as the tool name and tooltip in prompt flow UI. ``` python <promptflow github repo>\scripts\tool\generate_package_tool_meta.py -m <tool_module> -o <tool_yaml_path> -n <tool_name> -d <tool_description> ``` For example: ``` python D:\proj\github\promptflow\scripts\tool\generate_package_tool_meta.py -m hello_world.tools.hello_world_tool -o hello_world\yamls\hello_world_tool.yaml -n "Hello World Tool" -d "This is my hello world tool." ``` To populate your tool module, adhere to the pattern \<package_name\>.tools.\<tool_name\>, which represents the folder path to your tool within the package. 6. **tests**: This directory contains all your tests, though they are not required for creating your custom tool package. When adding a new tool, you can also create corresponding tests and place them in this directory. Run below command under your tool project: ``` pytest tests ``` 7. **MANIFEST.in**: This file is used to determine which files to include in the distribution of the project. Tool YAML files should be included in MANIFEST.in so that your tool YAMLs would be packaged and your tools can show in the UI. > [!Note] There's no need to update this file if you maintain the existing folder structure. 8. **setup.py**: This file contains metadata about your project like the name, version, author, and more. Additionally, the entry point is automatically configured for you in the `generate_tool_package_template.py` script. In Python, configuring the entry point in `setup.py` helps establish the primary execution point for a package, streamlining its integration with other software. The `package_tools` entry point together with the tool list method are used to retrieve all the tools and display them in the UI. ```python entry_points={ "package_tools": ["<your_tool_name> = <list_module>:<list_method>"], }, ``` > [!Note] There's no need to update this file if you maintain the existing folder structure. ## Build and share the tool package Execute the following command in the tool package root directory to build your tool package: ``` python setup.py sdist bdist_wheel ``` This will generate a tool package `<your-package>-0.0.1.tar.gz` and corresponding `whl file` inside the `dist` folder. Create an account on PyPI if you don't already have one, and install `twine` package by running `pip install twine`. Upload your package to PyPI by running `twine upload dist/*`, this will prompt you for your Pypi username and password, and then upload your package on PyPI. Once your package is uploaded to PyPI, others can install it using pip by running `pip install your-package-name`. Make sure to replace `your-package-name` with the name of your package as it appears on PyPI. If you only want to put it on Test PyPI, upload your package by running `twine upload --repository-url https://test.pypi.org/legacy/ dist/*`. Once your package is uploaded to Test PyPI, others can install it using pip by running `pip install --index-url https://test.pypi.org/simple/ your-package-name`. ## Use your tool from VSCode Extension * Step1: Install [Prompt flow for VS Code extension](https://marketplace.visualstudio.com/items?itemName=prompt-flow.prompt-flow). * Step2: Go to terminal and install your tool package in conda environment of the extension. Assume your conda env name is `prompt-flow`. ``` (local_test) PS D:\projects\promptflow\tool-package-quickstart> conda activate prompt-flow (prompt-flow) PS D:\projects\promptflow\tool-package-quickstart> pip install .\dist\my_tools_package-0.0.1-py3-none-any.whl ``` * Step3: Go to the extension and open one flow folder. Click 'flow.dag.yaml' and preview the flow. Next, click `+` button and you will see your tools. You may need to reload the windows to clean previous cache if you don't see your tool in the list. ![auto-list-tool-in-extension](../../media/how-to-guides/develop-a-tool/auto-list-tool-in-extension.png) ## FAQs ### Why is my custom tool not showing up in the UI? Confirm that the tool YAML files are included in your custom tool package. You can add the YAML files to [MANIFEST.in](https://github.com/microsoft/promptflow/blob/main/examples/tools/tool-package-quickstart/MANIFEST.in) and include the package data in [setup.py](https://github.com/microsoft/promptflow/blob/main/examples/tools/tool-package-quickstart/setup.py). Alternatively, you can test your tool package using the script below to ensure that you've packaged your tool YAML files and configured the package tool entry point correctly. 1. Make sure to install the tool package in your conda environment before executing this script. 2. Create a python file anywhere and copy the content below into it. ```python import importlib import importlib.metadata def test(): """List all package tools information using the `package-tools` entry point. This function iterates through all entry points registered under the group "package_tools." For each tool, it imports the associated module to ensure its validity and then prints information about the tool. Note: - Make sure your package is correctly packed to appear in the list. - The module is imported to validate its presence and correctness. Example of tool information printed: ----identifier {'module': 'module_name', 'package': 'package_name', 'package_version': 'package_version', ...} """ entry_points = importlib.metadata.entry_points() if isinstance(entry_points, list): entry_points = entry_points.select(group=PACKAGE_TOOLS_ENTRY) else: entry_points = entry_points.get(PACKAGE_TOOLS_ENTRY, []) for entry_point in entry_points: list_tool_func = entry_point.load() package_tools = list_tool_func() for identifier, tool in package_tools.items(): importlib.import_module(tool["module"]) # Import the module to ensure its validity print(f"----{identifier}\n{tool}") if __name__ == "__main__": test() ``` 3. Run this script in your conda environment. This will return the metadata of all tools installed in your local environment, and you should verify that your tools are listed. ### Why am I unable to upload package to PyPI? * Make sure that the entered username and password of your PyPI account are accurate. * If you encounter a `403 Forbidden Error`, it's likely due to a naming conflict with an existing package. You will need to choose a different name. Package names must be unique on PyPI to avoid confusion and conflicts among users. Before creating a new package, it's recommended to search PyPI (https://pypi.org/) to verify that your chosen name is not already taken. If the name you want is unavailable, consider selecting an alternative name or a variation that clearly differentiates your package from the existing one. ## Advanced features - [Add a Tool Icon](add-a-tool-icon.md) - [Add Category and Tags for Tool](add-category-and-tags-for-tool.md) - [Create and Use Your Own Custom Strong Type Connection](create-your-own-custom-strong-type-connection.md) - [Customize an LLM Tool](customize_an_llm_tool.md) - [Use File Path as Tool Input](use-file-path-as-tool-input.md) - [Create a Dynamic List Tool Input](create-dynamic-list-tool-input.md) - [Create Cascading Tool Inputs](create-cascading-tool-inputs.md)
promptflow/docs/how-to-guides/develop-a-tool/create-and-use-tool-package.md/0
{ "file_path": "promptflow/docs/how-to-guides/develop-a-tool/create-and-use-tool-package.md", "repo_id": "promptflow", "token_count": 3697 }
3
# Run and evaluate a flow :::{admonition} Experimental feature This is an experimental feature, and may change at any time. Learn [more](../faq.md#stable-vs-experimental). ::: After you have developed and tested the flow in [init and test a flow](../init-and-test-a-flow.md), this guide will help you learn how to run a flow with a larger dataset and then evaluate the flow you have created. ## Create a batch run Since you have run your flow successfully with a small set of data, you might want to test if it performs well in large set of data, you can run a batch test and check the outputs. A bulk test allows you to run your flow with a large dataset and generate outputs for each data row, and the run results will be recorded in local db so you can use [pf commands](../../reference/pf-command-reference.md) to view the run results at anytime. (e.g. `pf run list`) Let's create a run with flow [web-classification](https://github.com/microsoft/promptflow/tree/main/examples/flows/standard/web-classification). It is a flow demonstrating multi-class classification with LLM. Given an url, it will classify the url into one web category with just a few shots, simple summarization and classification prompts. To begin with the guide, you need: - Git clone the sample repository(above flow link) and set the working directory to `<path-to-the-sample-repo>/examples/flows/`. - Make sure you have already created the necessary connection following [Create necessary connections](../quick-start.md#create-necessary-connections). ::::{tab-set} :::{tab-item} CLI :sync: CLI Create the run with flow and data, can add `--stream` to stream the run. ```sh pf run create --flow standard/web-classification --data standard/web-classification/data.jsonl --column-mapping url='${data.url}' --stream ``` Note `column-mapping` is a mapping from flow input name to specified values, see more details in [Use column mapping](https://aka.ms/pf/column-mapping). You can also name the run by specifying `--name my_first_run` in above command, otherwise the run name will be generated in a certain pattern which has timestamp inside. ![q_0](../../media/how-to-guides/quick-start/flow-run-create-output-cli.png) With a run name, you can easily view or visualize the run details using below commands: ```sh pf run show-details -n my_first_run ``` ![q_0](../../media/how-to-guides/quick-start/flow-run-show-details-output-cli.png) ```sh pf run visualize -n my_first_run ``` ![q_0](../../media/how-to-guides/quick-start/flow-run-visualize-single-run.png) More details can be found with `pf run --help` ::: :::{tab-item} SDK :sync: SDK ```python from promptflow import PFClient # Please protect the entry point by using `if __name__ == '__main__':`, # otherwise it would cause unintended side effect when promptflow spawn worker processes. # Ref: https://docs.python.org/3/library/multiprocessing.html#the-spawn-and-forkserver-start-methods if __name__ == "__main__": # PFClient can help manage your runs and connections. pf = PFClient() # Set flow path and run input data flow = "standard/web-classification" # set the flow directory data= "standard/web-classification/data.jsonl" # set the data file # create a run, stream it until it's finished base_run = pf.run( flow=flow, data=data, stream=True, # map the url field from the data to the url input of the flow column_mapping={"url": "${data.url}"}, ) ``` ![q_0](../../media/how-to-guides/quick-start/flow-run-create-with-stream-output-sdk.png) ```python # get the inputs/outputs details of a finished run. details = pf.get_details(base_run) details.head(10) ``` ![q_0](../../media/how-to-guides/quick-start/flow-run-show-details-output-sdk.png) ```python # visualize the run in a web browser pf.visualize(base_run) ``` ![q_0](../../media/how-to-guides/quick-start/flow-run-visualize-single-run.png) Feel free to check [Promptflow Python Library Reference](../../reference/python-library-reference/promptflow.md) for all SDK public interfaces. ::: :::{tab-item} VS Code Extension :sync: VS Code Extension Use the code lens action on the top of the yaml editor to trigger batch run ![dag_yaml_flow_test](../../media/how-to-guides/quick-start/batch_run_dag_yaml.png) Click the bulk test button on the top of the visual editor to trigger flow test. ![visual_editor_flow_test](../../media/how-to-guides/quick-start/bulk_run_visual_editor.png) ::: :::: We also have a more detailed documentation [Manage runs](../manage-runs.md) demonstrating how to manage your finished runs with CLI, SDK and VS Code Extension. ## Evaluate your flow You can use an evaluation method to evaluate your flow. The evaluation methods are also flows which use Python or LLM etc., to calculate metrics like accuracy, relevance score. Please refer to [Develop evaluation flow](../develop-a-flow/develop-evaluation-flow.md) to learn how to develop an evaluation flow. In this guide, we use [eval-classification-accuracy](https://github.com/microsoft/promptflow/tree/main/examples/flows/evaluation/eval-classification-accuracy) flow to evaluate. This is a flow illustrating how to evaluate the performance of a classification system. It involves comparing each prediction to the groundtruth and assigns a `Correct` or `Incorrect` grade, and aggregating the results to produce metrics such as `accuracy`, which reflects how good the system is at classifying the data. ### Run evaluation flow against run ::::{tab-set} :::{tab-item} CLI :sync: CLI **Evaluate the finished flow run** After the run is finished, you can evaluate the run with below command, compared with the normal run create command, note there are two extra arguments: - `column-mapping`: A mapping from flow input name to specified data values. Reference [here](https://aka.ms/pf/column-mapping) for detailed information. - `run`: The run name of the flow run to be evaluated. More details can be found in [Use column mapping](https://aka.ms/pf/column-mapping). ```sh pf run create --flow evaluation/eval-classification-accuracy --data standard/web-classification/data.jsonl --column-mapping groundtruth='${data.answer}' prediction='${run.outputs.category}' --run my_first_run --stream ``` Same as the previous run, you can specify the evaluation run name with `--name my_first_eval_run` in above command. You can also stream or view the run details with: ```sh pf run stream -n my_first_eval_run # same as "--stream" in command "run create" pf run show-details -n my_first_eval_run pf run show-metrics -n my_first_eval_run ``` Since now you have two different runs `my_first_run` and `my_first_eval_run`, you can visualize the two runs at the same time with below command. ```sh pf run visualize -n "my_first_run,my_first_eval_run" ``` A web browser will be opened to show the visualization result. ![q_0](../../media/how-to-guides/run_visualize.png) ::: :::{tab-item} SDK :sync: SDK **Evaluate the finished flow run** After the run is finished, you can evaluate the run with below command, compared with the normal run create command, note there are two extra arguments: - `column-mapping`: A dictionary represents sources of the input data that are needed for the evaluation method. The sources can be from the flow run output or from your test dataset. - If the data column is in your test dataset, then it is specified as `${data.<column_name>}`. - If the data column is from your flow output, then it is specified as `${run.outputs.<output_name>}`. - `run`: The run name or run instance of the flow run to be evaluated. More details can be found in [Use column mapping](https://aka.ms/pf/column-mapping). ```python from promptflow import PFClient # PFClient can help manage your runs and connections. pf = PFClient() # set eval flow path eval_flow = "evaluation/eval-classification-accuracy" data= "standard/web-classification/data.jsonl" # run the flow with existing run eval_run = pf.run( flow=eval_flow, data=data, run=base_run, column_mapping={ # map the url field from the data to the url input of the flow "groundtruth": "${data.answer}", "prediction": "${run.outputs.category}", } ) # stream the run until it's finished pf.stream(eval_run) # get the inputs/outputs details of a finished run. details = pf.get_details(eval_run) details.head(10) # view the metrics of the eval run metrics = pf.get_metrics(eval_run) print(json.dumps(metrics, indent=4)) # visualize both the base run and the eval run pf.visualize([base_run, eval_run]) ``` A web browser will be opened to show the visualization result. ![q_0](../../media/how-to-guides/run_visualize.png) ::: :::{tab-item} VS Code Extension :sync: VS Code Extension There are actions to trigger local batch runs. To perform an evaluation you can use the run against "existing runs" actions. ![img](../../media/how-to-guides/vscode_against_run.png) ![img](../../media/how-to-guides/vscode_against_run_2.png) ::: :::: ## Next steps Learn more about: - [Tune prompts with variants](../tune-prompts-with-variants.md) - [Deploy a flow](../deploy-a-flow/index.md) - [Manage runs](../manage-runs.md) - [Python library reference](../../reference/python-library-reference/promptflow.md) ```{toctree} :maxdepth: 1 :hidden: use-column-mapping ```
promptflow/docs/how-to-guides/run-and-evaluate-a-flow/index.md/0
{ "file_path": "promptflow/docs/how-to-guides/run-and-evaluate-a-flow/index.md", "repo_id": "promptflow", "token_count": 2884 }
4
# Embedding ## Introduction OpenAI's embedding models convert text into dense vector representations for various NLP tasks. See the [OpenAI Embeddings API](https://platform.openai.com/docs/api-reference/embeddings) for more information. ## Prerequisite Create OpenAI resources: - **OpenAI** Sign up account [OpenAI website](https://openai.com/) Login and [Find personal API key](https://platform.openai.com/account/api-keys) - **Azure OpenAI (AOAI)** Create Azure OpenAI resources with [instruction](https://learn.microsoft.com/en-us/azure/cognitive-services/openai/how-to/create-resource?pivots=web-portal) ## **Connections** Setup connections to provide resources in embedding tool. | Type | Name | API KEY | API Type | API Version | |-------------|----------|----------|----------|-------------| | OpenAI | Required | Required | - | - | | AzureOpenAI | Required | Required | Required | Required | ## Inputs | Name | Type | Description | Required | |------------------------|-------------|-----------------------------------------------------------------------|----------| | input | string | the input text to embed | Yes | | connection | string | the connection for the embedding tool use to provide resources | Yes | | model/deployment_name | string | instance of the text-embedding engine to use. Fill in model name if you use OpenAI connection, or deployment name if use Azure OpenAI connection. | Yes | ## Outputs | Return Type | Description | |-------------|------------------------------------------| | list | The vector representations for inputs | The following is an example response returned by the embedding tool: <details> <summary>Output</summary> ``` [-0.005744616035372019, -0.007096089422702789, -0.00563855143263936, -0.005272455979138613, -0.02355326898396015, 0.03955197334289551, -0.014260607771575451, -0.011810848489403725, -0.023170066997408867, -0.014739611186087132, ...] ``` </details>
promptflow/docs/reference/tools-reference/embedding_tool.md/0
{ "file_path": "promptflow/docs/reference/tools-reference/embedding_tool.md", "repo_id": "promptflow", "token_count": 851 }
5
$schema: https://azuremlschemas.azureedge.net/promptflow/latest/AzureOpenAIConnection.schema.json name: open_ai_connection type: azure_open_ai api_key: "<user-input>" api_base: "aoai-api-endpoint" api_type: "azure"
promptflow/examples/connections/azure_openai.yml/0
{ "file_path": "promptflow/examples/connections/azure_openai.yml", "repo_id": "promptflow", "token_count": 89 }
6
system: You are an assistant to calculate the answer to the provided math problems. Please return the final numerical answer only, without any accompanying reasoning or explanation. {% for item in chat_history %} user: {{item.inputs.question}} assistant: {{item.outputs.answer}} {% endfor %} user: {{question}}
promptflow/examples/flows/chat/chat-math-variant/chat.jinja2/0
{ "file_path": "promptflow/examples/flows/chat/chat-math-variant/chat.jinja2", "repo_id": "promptflow", "token_count": 87 }
7
import os from typing import Iterable, List, Optional from dataclasses import dataclass from faiss import Index import faiss import pickle import numpy as np from .oai import OAIEmbedding as Embedding @dataclass class SearchResultEntity: text: str = None vector: List[float] = None score: float = None original_entity: dict = None metadata: dict = None INDEX_FILE_NAME = "index.faiss" DATA_FILE_NAME = "index.pkl" class FAISSIndex: def __init__(self, index: Index, embedding: Embedding) -> None: self.index = index self.docs = {} # id -> doc, doc is (text, metadata) self.embedding = embedding def insert_batch( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None ) -> None: documents = [] vectors = [] for i, text in enumerate(texts): metadata = metadatas[i] if metadatas else {} vector = self.embedding.generate(text) documents.append((text, metadata)) vectors.append(vector) self.index.add(np.array(vectors, dtype=np.float32)) self.docs.update( {i: doc for i, doc in enumerate(documents, start=len(self.docs))} ) pass def query(self, text: str, top_k: int = 10) -> List[SearchResultEntity]: vector = self.embedding.generate(text) scores, indices = self.index.search(np.array([vector], dtype=np.float32), top_k) docs = [] for j, i in enumerate(indices[0]): if i == -1: # This happens when not enough docs are returned. continue doc = self.docs[i] docs.append( SearchResultEntity(text=doc[0], metadata=doc[1], score=scores[0][j]) ) return docs def save(self, path: str) -> None: faiss.write_index(self.index, os.path.join(path, INDEX_FILE_NAME)) # dump docs to pickle file with open(os.path.join(path, DATA_FILE_NAME), "wb") as f: pickle.dump(self.docs, f) pass def load(self, path: str) -> None: self.index = faiss.read_index(os.path.join(path, INDEX_FILE_NAME)) with open(os.path.join(path, DATA_FILE_NAME), "rb") as f: self.docs = pickle.load(f) pass
promptflow/examples/flows/chat/chat-with-pdf/chat_with_pdf/utils/index.py/0
{ "file_path": "promptflow/examples/flows/chat/chat-with-pdf/chat_with_pdf/utils/index.py", "repo_id": "promptflow", "token_count": 1014 }
8
# All the values should be string type, please use "123" instead of 123 or "True" instead of True. $schema: https://azuremlschemas.azureedge.net/promptflow/latest/OpenAIConnection.schema.json name: open_ai_connection type: open_ai api_key: "<open-ai-api-key>" organization: "" # Note: # The connection information will be stored in a local database with api_key encrypted for safety. # Prompt flow will ONLY use the connection information (incl. keys) when instructed by you, e.g. manage connections, use connections to run flow etc.
promptflow/examples/flows/chat/chat-with-pdf/openai.yaml/0
{ "file_path": "promptflow/examples/flows/chat/chat-with-pdf/openai.yaml", "repo_id": "promptflow", "token_count": 158 }
9
import random import time from concurrent.futures import ThreadPoolExecutor from functools import partial import bs4 import requests from promptflow import tool session = requests.Session() def decode_str(string): return string.encode().decode("unicode-escape").encode("latin1").decode("utf-8") def get_page_sentence(page, count: int = 10): # find all paragraphs paragraphs = page.split("\n") paragraphs = [p.strip() for p in paragraphs if p.strip()] # find all sentence sentences = [] for p in paragraphs: sentences += p.split(". ") sentences = [s.strip() + "." for s in sentences if s.strip()] # get first `count` number of sentences return " ".join(sentences[:count]) def fetch_text_content_from_url(url: str, count: int = 10): # Send a request to the URL try: headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) " "Chrome/113.0.0.0 Safari/537.36 Edg/113.0.1774.35" } delay = random.uniform(0, 0.5) time.sleep(delay) response = session.get(url, headers=headers) if response.status_code == 200: # Parse the HTML content using BeautifulSoup soup = bs4.BeautifulSoup(response.text, "html.parser") page_content = [p_ul.get_text().strip() for p_ul in soup.find_all("p") + soup.find_all("ul")] page = "" for content in page_content: if len(content.split(" ")) > 2: page += decode_str(content) if not content.endswith("\n"): page += "\n" text = get_page_sentence(page, count=count) return (url, text) else: msg = ( f"Get url failed with status code {response.status_code}.\nURL: {url}\nResponse: " f"{response.text[:100]}" ) print(msg) return (url, "No available content") except Exception as e: print("Get url failed with error: {}".format(e)) return (url, "No available content") @tool def search_result_from_url(url_list: list, count: int = 10): results = [] partial_func_of_fetch_text_content_from_url = partial(fetch_text_content_from_url, count=count) with ThreadPoolExecutor(max_workers=5) as executor: futures = executor.map(partial_func_of_fetch_text_content_from_url, url_list) for feature in futures: results.append(feature) return results
promptflow/examples/flows/chat/chat-with-wikipedia/search_result_from_url.py/0
{ "file_path": "promptflow/examples/flows/chat/chat-with-wikipedia/search_result_from_url.py", "repo_id": "promptflow", "token_count": 1117 }
10
$schema: https://azuremlschemas.azureedge.net/promptflow/latest/Flow.schema.json inputs: entities: type: list default: - software engineer - CEO ground_truth: type: string default: '"CEO, Software Engineer, Finance Manager"' outputs: match_cnt: type: object reference: ${match.output} nodes: - name: cleansing type: python source: type: code path: cleansing.py inputs: entities_str: ${inputs.ground_truth} - name: match type: python source: type: code path: match.py inputs: answer: ${inputs.entities} ground_truth: ${cleansing.output} - name: log_metrics type: python source: type: code path: log_metrics.py inputs: match_counts: ${match.output} aggregation: true environment: python_requirements_txt: requirements.txt
promptflow/examples/flows/evaluation/eval-entity-match-rate/flow.dag.yaml/0
{ "file_path": "promptflow/examples/flows/evaluation/eval-entity-match-rate/flow.dag.yaml", "repo_id": "promptflow", "token_count": 313 }
11
user: # Instructions * There are many chatbots that can answer users questions based on the context given from different sources like search results, or snippets from books/papers. They try to understand users's question and then get context by either performing search from search engines, databases or books/papers for relevant content. Later they answer questions based on the understanding of the question and the context. * Perceived intelligence is the degree to which a bot can impress the user with its responses, by showing originality, insight, creativity, knowledge, and adaptability. Perceived intelligence can be influenced by various factors, such as the content, tone, style, and structure of the bot's responses, the relevance, coherence, and accuracy of the information the bot provides, the creativity, originality, and wit of the bot's expressions, the depth, breadth, and insight of the bot's knowledge, and the ability of the bot to adapt, learn, and use feedback. * Your goal is to score the answer for given question and context from 1 to 10 based on perceived intelligence described above: * Score 10 means the answer is excellent for perceived intelligence * Score 1 means the answer is poor for perceived intelligence * Score 5 means the answer is normal for perceived intelligence * Just respond with the score, nothing else. # Real work ## Question {{question}} ## Answer {{answer}} ## Context {{context}} ## Score
promptflow/examples/flows/evaluation/eval-perceived-intelligence/gpt_perceived_intelligence.md/0
{ "file_path": "promptflow/examples/flows/evaluation/eval-perceived-intelligence/gpt_perceived_intelligence.md", "repo_id": "promptflow", "token_count": 315 }
12
from promptflow import tool @tool def select_metrics(metrics: str) -> str: supported_metrics = ('gpt_coherence', 'gpt_similarity', 'gpt_fluency', 'gpt_relevance', 'gpt_groundedness', 'f1_score', 'ada_similarity') user_selected_metrics = [metric.strip() for metric in metrics.split(',') if metric] metric_selection_dict = {} for metric in supported_metrics: if metric in user_selected_metrics: metric_selection_dict[metric] = True else: metric_selection_dict[metric] = False return metric_selection_dict
promptflow/examples/flows/evaluation/eval-qna-non-rag/select_metrics.py/0
{ "file_path": "promptflow/examples/flows/evaluation/eval-qna-non-rag/select_metrics.py", "repo_id": "promptflow", "token_count": 244 }
13
# Integrations Folder This folder contains flow examples contributed by various contributors. Each flow example should have a README.md file that provides a comprehensive introduction to the flow and includes contact information for the flow owner. # Guideline for README.md of flows To ensure consistency and clarity, please follow the guidelines below when creating the README.md file for your flow example. You can also refer to the [README.md](../standard/web-classification/README.md) file in the [web-classification](../standard/web-classification) flow example as a reference. Note: Above sample README.md may not have contact information because it's a shared example and people can open issues to this repository if they have any questions about the flow example. For integration samples, **please make sure to include contact information in your README.md file**. ## Introduction (Required) Provide a detailed description of the flow, including its components, inputs, outputs, and any dependencies. Explain how the flow works and what problem it solves. This section should give users a clear understanding of the flow's functionality and how it can be used. ## Tools Used in this Flow (Required) List all the tools (functions) used in the flow. This can include both standard tools provided by prompt flow and any custom tools created specifically for the flow. Include a brief description of each tool and its purpose within the flow. ## Pre-requisites (Required) List any pre-requisites that are required to run the flow. This can include any specific versions of prompt flow or other dependencies. If there are any specific configurations or settings that need to be applied, make sure to mention them in this section. ## Getting Started (Required) Provide step-by-step instructions on how to get started with the flow. This should include any necessary setup or configuration steps, such as installing dependencies or setting up connections. If there are specific requirements or prerequisites, make sure to mention them in this section. ## Usage Examples Include usage examples that demonstrate how to run the flow and provide input data. This can include command-line instructions or code snippets. Show users how to execute the flow and explain the expected output or results. ## Troubleshooting If there are any known issues or troubleshooting tips related to the flow, include them in this section. Provide solutions or workarounds for common problems that users may encounter. This will help users troubleshoot issues on their own and reduce the need for support. ## Contribution Guidelines If you would like to encourage other users to contribute to your flow or provide guidelines for contributing to the integration folder, include a section with contribution guidelines. This can include instructions on how to submit pull requests, guidelines for code formatting, or any other relevant information. ## Contact (Required) Specify the flow owner and provide contact information in the README.md file. This can include an email address, GitHub username, or any other preferred method of contact. By including this information, users will be able to reach out to the owner with any questions or issues related to the flow. # Conclusion By following these guidelines, you can create a well-structured and informative README.md file for your flow example. This will help users understand and utilize your flow effectively. If you have any further questions or need assistance, please don't hesitate to reach out. Happy contributing!
promptflow/examples/flows/integrations/README.md/0
{ "file_path": "promptflow/examples/flows/integrations/README.md", "repo_id": "promptflow", "token_count": 747 }
14
# Autonomous Agent This is a flow showcasing how to construct a AutoGPT agent with promptflow to autonomously figures out how to apply the given functions to solve the goal, which is film trivia that provides accurate and up-to-date information about movies, directors, actors, and more in this sample. It involves inferring next executed function and user intent with LLM, and then use the function to generate observation. The observation above will be used as augmented prompt which is the input of next LLM inferring loop until the inferred function is the signal that you have finished all your objectives. The functions set used in the flow contains Wikipedia search function that can search the web to find answer about current events and PythonREPL python function that can run python code in a REPL. For the sample input about movie introduction, the AutoGPT usually runs 4 rounds to finish the task. The first round is searching for the movie name, the second round is searching for the movie director, the third round is calculating director age, and the last round is outputting finishing signal. It takes 30s~40s to finish the task, but may take longer time if you use "gpt-3.5" or encounter Azure OpenAI rate limit. You could use "gpt-4" or go to https://aka.ms/oai/quotaincrease if you would like to further increase the default rate limit. Note: This is just a sample introducing how to use promptflow to build a simple AutoGPT. You can go to https://github.com/Significant-Gravitas/Auto-GPT to get more concepts about AutoGPT. ## What you will learn In this flow, you will learn - how to use prompt tool. - how to compose an AutoGPT flow using functions. ## Prerequisites Install prompt-flow sdk and other dependencies: ```bash pip install -r requirements.txt ``` ## Getting Started ### 1 Create Azure OpenAI or OpenAI connection ```bash # Override keys with --set to avoid yaml file changes pf connection create --file ../../../connections/azure_openai.yml --set api_key=<your_api_key> api_base=<your_api_base> ``` Note that you need to use "2023-07-01-preview" as Azure OpenAI connection API version when using function calling. See <a href='https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/function-calling' target='_blank'>How to use function calling with Azure OpenAI Service</a> for more details. ### 2. Configure the flow with your connection `flow.dag.yaml` is already configured with connection named `open_ai_connection`. It is recommended to use "gpt-4" model for stable performance. Using "gpt-3.5-turbo" may lead to the model getting stuck in the agent inner loop due to its suboptimal and unstable performance. ### 3. Test flow with single line data ```bash # test with default input value in flow.dag.yaml pf flow test --flow . ``` ### 4. Run with multi-line data ```bash # create run using command line args pf run create --flow . --data ./data.jsonl --column-mapping name='${data.name}' role='${data.role}' goals='${data.goals}' --stream ``` You can also skip providing `column-mapping` if provided data has same column name as the flow. Reference [here](https://aka.ms/pf/column-mapping) for default behavior when `column-mapping` not provided in CLI. ## Disclaimer LLM systems are susceptible to prompt injection, and you can gain a deeper understanding of this issue in the [technical blog](https://developer.nvidia.com/blog/securing-llm-systems-against-prompt-injection/). As an illustration, the PythonREPL function might execute harmful code if provided with a malicious prompt within the provided sample. Furthermore, we cannot guarantee that implementing AST validations solely within the PythonREPL function will reliably elevate the sample's security to an enterprise level. We kindly remind you to refrain from utilizing this in a production environment.
promptflow/examples/flows/standard/autonomous-agent/README.md/0
{ "file_path": "promptflow/examples/flows/standard/autonomous-agent/README.md", "repo_id": "promptflow", "token_count": 1005 }
15
$schema: https://azuremlschemas.azureedge.net/promptflow/latest/Flow.schema.json inputs: text: type: string default: Python Hello World! outputs: output: type: string reference: ${llm.output} nodes: - name: hello_prompt type: prompt inputs: text: ${inputs.text} source: type: code path: hello.jinja2 - name: llm type: llm inputs: prompt: ${hello_prompt.output} # This is to easily switch between openai and azure openai. # deployment_name is required by azure openai, model is required by openai. deployment_name: gpt-35-turbo model: gpt-3.5-turbo max_tokens: '120' source: type: code path: hello.jinja2 connection: open_ai_connection api: chat node_variants: {} environment: python_requirements_txt: requirements.txt
promptflow/examples/flows/standard/basic-with-builtin-llm/flow.dag.yaml/0
{ "file_path": "promptflow/examples/flows/standard/basic-with-builtin-llm/flow.dag.yaml", "repo_id": "promptflow", "token_count": 313 }
16
{"query": "When will my order be shipped?"} {"query": "Can you help me find information about this T-shirt?"} {"query": "Can you recommend me a useful prompt tool?"}
promptflow/examples/flows/standard/conditional-flow-for-switch/data.jsonl/0
{ "file_path": "promptflow/examples/flows/standard/conditional-flow-for-switch/data.jsonl", "repo_id": "promptflow", "token_count": 45 }
17
# Flow with symlinks User sometimes need to reference some common files or folders, this sample demos how to solve the problem using symlinks. But it has the following limitations. It is recommended to use **additional include**. Learn more: [flow-with-additional-includes](../flow-with-additional-includes/README.md) 1. For Windows user, by default need Administrator role to create symlinks. 2. For Windows user, directly copy the folder with symlinks, it will deep copy the contents to the location. 3. Need to update the git config to support symlinks. **Notes**: - For Windows user, please grant user permission to [create symbolic links without administrator role](https://learn.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/create-symbolic-links). 1. Open your `Local Security Policy` 2. Find `Local Policies` -> `User Rights Assignment` -> `Create symbolic links` 3. Add you user name to this policy then reboot the compute. **Attention**: - For git operations, need to set: `git config core.symlinks true` ## Tools used in this flow - LLM Tool - Python Tool ## What you will learn In this flow, you will learn - how to use symlinks in the flow ## Prerequisites Install promptflow sdk and other dependencies: ```bash pip install -r requirements.txt ``` ## Getting Started ### 1. Create symbolic links in the flow ```bash python ./create_symlinks.py ``` ### 2. Test & run the flow with symlinks In this sample, this flow will references some files in the [web-classification](../web-classification/README.md) flow, and assume you already have required connection setup. You can execute this flow or submit it to cloud. #### Test flow with single line data ```bash # test flow with default input value in flow.dag.yaml pf flow test --flow . # test flow with input pf flow test --flow . --inputs url=https://www.youtube.com/watch?v=o5ZQyXaAv1g answer=Channel evidence=Url # test node in the flow pf flow test --flow . --node convert_to_dict --inputs classify_with_llm.output='{"category": "App", "evidence": "URL"}' ``` #### Run with multi-line data ```bash # create run using command line args pf run create --flow . --data ./data.jsonl --column-mapping url='${data.url}' --stream # create run using yaml file pf run create --file run.yml --stream ``` You can also skip providing `column-mapping` if provided data has same column name as the flow. Reference [here](https://aka.ms/pf/column-mapping) for default behavior when `column-mapping` not provided in CLI. #### Submit run to cloud ``` bash # create run pfazure run create --flow . --data ./data.jsonl --column-mapping url='${data.url}' --stream --subscription <your_subscription_id> -g <your_resource_group_name> -w <your_workspace_name> # set default workspace az account set -s <your_subscription_id> az configure --defaults group=<your_resource_group_name> workspace=<your_workspace_name> pfazure run create --file run.yml --stream ```
promptflow/examples/flows/standard/flow-with-symlinks/README.md/0
{ "file_path": "promptflow/examples/flows/standard/flow-with-symlinks/README.md", "repo_id": "promptflow", "token_count": 870 }
18
import ast import asyncio import logging import os import sys from typing import Union, List from promptflow import tool from azure_open_ai import ChatLLM from divider import Divider from prompt import docstring_prompt, PromptLimitException from promptflow.connections import AzureOpenAIConnection, OpenAIConnection def get_imports(content): tree = ast.parse(content) import_statements = [] for node in ast.walk(tree): if isinstance(node, ast.Import): for n in node.names: import_statements.append(f"import {n.name}") elif isinstance(node, ast.ImportFrom): module_name = node.module for n in node.names: import_statements.append(f"from {module_name} import {n.name}") return import_statements async def async_generate_docstring(divided: List[str]): llm = ChatLLM() divided = list(reversed(divided)) all_divided = [] # If too many imports result in tokens exceeding the limit, please set an empty string. modules = '' # '\n'.join(get_imports(divided[-1])) modules_tokens = llm.count_tokens(modules) if modules_tokens > 300: logging.warning(f'Too many imports, the number of tokens is {modules_tokens}') if modules_tokens > 500: logging.warning(f'Too many imports, the number of tokens is {modules_tokens}, will set an empty string.') modules = '' # Divide the code into two parts if the global class/function is too long. while len(divided): item = divided.pop() try: llm.validate_tokens(llm.create_prompt(docstring_prompt(code=item, module=modules))) except PromptLimitException as e: logging.warning(e.message + ', will divide the code into two parts.') divided_tmp = Divider.divide_half(item) if len(divided_tmp) > 1: divided.extend(list(reversed(divided_tmp))) continue except Exception as e: logging.warning(e) all_divided.append(item) tasks = [] last_code = '' for item in all_divided: if Divider.has_class_or_func(item): tasks.append(llm.async_query(docstring_prompt(last_code=last_code, code=item, module=modules))) else: # If the code has not function or class, no need to generate docstring. tasks.append(asyncio.sleep(0)) last_code = item res_doc = await asyncio.gather(*tasks) new_code = [] for i in range(len(all_divided)): if type(res_doc[i]) is str: new_code.append(Divider.merge_doc2code(res_doc[i], all_divided[i])) else: new_code.append(all_divided[i]) return new_code @tool def generate_docstring(divided: List[str], connection: Union[AzureOpenAIConnection, OpenAIConnection] = None, model: str = None): if isinstance(connection, AzureOpenAIConnection): os.environ["OPENAI_API_KEY"] = connection.api_key os.environ["OPENAI_API_BASE"] = connection.api_base os.environ["OPENAI_API_VERSION"] = connection.api_version os.environ["API_TYPE"] = connection.api_type elif isinstance(connection, OpenAIConnection): os.environ["OPENAI_API_KEY"] = connection.api_key os.environ["ORGANIZATION"] = connection.organization if model: os.environ["MODEL"] = model if sys.platform.startswith("win"): asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy()) return asyncio.run(async_generate_docstring(divided))
promptflow/examples/flows/standard/gen-docstring/generate_docstring_tool.py/0
{ "file_path": "promptflow/examples/flows/standard/gen-docstring/generate_docstring_tool.py", "repo_id": "promptflow", "token_count": 1511 }
19
<jupyter_start><jupyter_code># Setup execution path and pf client import os import promptflow root = os.path.join(os.getcwd(), "../") flow_path = os.path.join(root, "named-entity-recognition") data_path = os.path.join(flow_path, "data.jsonl") eval_match_rate_flow_path = os.path.join(root, "../evaluation/eval-entity-match-rate") pf = promptflow.PFClient() # Run flow against test data run = pf.run( flow=flow_path, data=data_path, column_mapping={ "text": "${data.text}", "entity_type": "${data.entity_type}" }, display_name="ner_bulk_run", tags={"unittest": "true"}, stream=True) # Show output of flow run pf.get_details(run) # Evaluate the match rate of the entity recognition result of the flow run eval = pf.run( flow=eval_match_rate_flow_path, run=run, data=data_path, column_mapping={ "entities": "${run.outputs.entities}", "ground_truth": "${data.results}" }, display_name="eval_match_rate", tags={"unittest": "true"}, stream=True) pf.get_details(eval) # Get metrics of the evaluation flow run pf.get_metrics(eval) # Visualize the flow run and evaluation run with HTML pf.visualize([run, eval])<jupyter_output><empty_output>
promptflow/examples/flows/standard/named-entity-recognition/NER-test.ipynb/0
{ "file_path": "promptflow/examples/flows/standard/named-entity-recognition/NER-test.ipynb", "repo_id": "promptflow", "token_count": 494 }
20
from promptflow import tool @tool def prepare_examples(): return [ { "url": "https://play.google.com/store/apps/details?id=com.spotify.music", "text_content": "Spotify is a free music and podcast streaming app with millions of songs, albums, and " "original podcasts. It also offers audiobooks, so users can enjoy thousands of stories. " "It has a variety of features such as creating and sharing music playlists, discovering " "new music, and listening to popular and exclusive podcasts. It also has a Premium " "subscription option which allows users to download and listen offline, and access " "ad-free music. It is available on all devices and has a variety of genres and artists " "to choose from.", "category": "App", "evidence": "Both", }, { "url": "https://www.youtube.com/channel/UC_x5XG1OV2P6uZZ5FSM9Ttw", "text_content": "NFL Sunday Ticket is a service offered by Google LLC that allows users to watch NFL " "games on YouTube. It is available in 2023 and is subject to the terms and privacy policy " "of Google LLC. It is also subject to YouTube's terms of use and any applicable laws.", "category": "Channel", "evidence": "URL", }, { "url": "https://arxiv.org/abs/2303.04671", "text_content": "Visual ChatGPT is a system that enables users to interact with ChatGPT by sending and " "receiving not only languages but also images, providing complex visual questions or " "visual editing instructions, and providing feedback and asking for corrected results. " "It incorporates different Visual Foundation Models and is publicly available. Experiments " "show that Visual ChatGPT opens the door to investigating the visual roles of ChatGPT with " "the help of Visual Foundation Models.", "category": "Academic", "evidence": "Text content", }, { "url": "https://ab.politiaromana.ro/", "text_content": "There is no content available for this text.", "category": "None", "evidence": "None", }, ]
promptflow/examples/flows/standard/web-classification/prepare_examples.py/0
{ "file_path": "promptflow/examples/flows/standard/web-classification/prepare_examples.py", "repo_id": "promptflow", "token_count": 899 }
21
from enum import Enum from promptflow import tool class UserType(str, Enum): STUDENT = "student" TEACHER = "teacher" @tool def my_tool(user_type: Enum, student_id: str = "", teacher_id: str = "") -> str: """This is a dummy function to support cascading inputs. :param user_type: user type, student or teacher. :param student_id: student id. :param teacher_id: teacher id. :return: id of the user. If user_type is student, return student_id. If user_type is teacher, return teacher_id. """ if user_type == UserType.STUDENT: return student_id elif user_type == UserType.TEACHER: return teacher_id else: raise Exception("Invalid user.")
promptflow/examples/tools/tool-package-quickstart/my_tool_package/tools/tool_with_cascading_inputs.py/0
{ "file_path": "promptflow/examples/tools/tool-package-quickstart/my_tool_package/tools/tool_with_cascading_inputs.py", "repo_id": "promptflow", "token_count": 267 }
22
$schema: https://azuremlschemas.azureedge.net/promptflow/latest/CustomStrongTypeConnection.schema.json name: "my_custom_connection" type: custom custom_type: MyCustomConnection module: my_tool_package.tools.tool_with_custom_strong_type_connection package: my-tools-package package_version: 0.0.5 configs: api_base: "This is a fake api base." # String type. The api base. secrets: # must-have api_key: "to_replace_with_api_key" # Secret type. The api key get from "https://xxx.com".
promptflow/examples/tools/use-cases/custom-strong-type-connection-package-tool-showcase/my_custom_connection.yml/0
{ "file_path": "promptflow/examples/tools/use-cases/custom-strong-type-connection-package-tool-showcase/my_custom_connection.yml", "repo_id": "promptflow", "token_count": 171 }
23
$schema: https://azuremlschemas.azureedge.net/promptflow/latest/Flow.schema.json inputs: input: type: string default: Microsoft outputs: output: type: string reference: ${Tool_with_FilePath_Input.output} nodes: - name: Tool_with_FilePath_Input type: python source: type: package tool: my_tool_package.tools.tool_with_file_path_input.my_tool inputs: input_text: ${inputs.input} input_file: hello_method.py
promptflow/examples/tools/use-cases/filepath-input-tool-showcase/flow.dag.yaml/0
{ "file_path": "promptflow/examples/tools/use-cases/filepath-input-tool-showcase/flow.dag.yaml", "repo_id": "promptflow", "token_count": 177 }
24
--- resources: examples/connections/azure_openai.yml, examples/flows/standard/web-classification --- # Distribute flow as executable app This example demos how to package flow as a executable app. We will use [web-classification](../../../flows/standard/web-classification/README.md) as example in this tutorial. Please ensure that you have installed all the required dependencies. You can refer to the "Prerequisites" section in the README of the [web-classification](https://github.com/microsoft/promptflow/tree/main/examples/flows/standard/web-classification/) for a comprehensive list of prerequisites and installation instructions. And we recommend you to add a `requirements.txt` to indicate all the required dependencies for each flow. [Pyinstaller](https://pyinstaller.org/en/stable/installation.html) is a popular tool used for converting Python applications into standalone executables. It allows you to package your Python scripts into a single executable file, which can be run on a target machine without requiring the Python interpreter to be installed. [Streamlit](https://docs.streamlit.io/library/get-started) is an open-source Python library used for creating web applications quickly and easily. It's designed for data scientists and engineers who want to turn data scripts into shareable web apps with minimal effort. We use Pyinstaller to package the flow and Streamlit to create custom web apps. Prior to distributing the workflow, kindly ensure that you have installed them. In this example, we use PyInstaller version 5.13.2 and Streamlit version 1.26.0 within a Python 3.10.8 environment. ## Build a flow as executable format Note that all dependent connections must be created before building as executable. ```bash # create connection if not created before pf connection create --file ../../../connections/azure_openai.yml --set api_key=<your_api_key> api_base=<your_api_base> --name open_ai_connection ``` Use the command below to build a flow as executable format app: ```shell pf flow build --source ../../../flows/standard/web-classification --output target --format executable ``` ## Executable format folder structure Exported files & its dependencies are located in the same folder. The structure is as below: - flow: the folder contains all the flow files. - connections: the folder contains yaml files to create all related connections. - app.py: the entry file is included as the entry point for the bundled application. - app.spec: the spec file tells PyInstaller how to process your script. - main.py: it will start Streamlit service and be called by the entry file. - settings.json: a json file to store the settings of the executable application. - build: a folder contains various log and working files. - dist: a folder contains the executable application. - README.md: Simple introduction of the files. ### A template script of the entry file PyInstaller reads a spec file or Python script written by you. It analyzes your code to discover every other module and library your script needs in order to execute. Then it collects copies of all those files, including the active Python interpreter, and puts them with your script in a single folder, or optionally in a single executable file. We provide a Python entry script named `app.py` as the entry point for the bundled app, which enables you to serve a flow folder as an endpoint. ```python import os import sys from promptflow._cli._pf._connection import create_connection from streamlit.web import cli as st_cli from streamlit.runtime import exists from main import start def is_yaml_file(file_path): _, file_extension = os.path.splitext(file_path) return file_extension.lower() in ('.yaml', '.yml') def create_connections(directory_path) -> None: for root, dirs, files in os.walk(directory_path): for file in files: file_path = os.path.join(root, file) if is_yaml_file(file_path): create_connection(file_path) if __name__ == "__main__": create_connections(os.path.join(os.path.dirname(__file__), "connections")) if exists(): start() else: main_script = os.path.join(os.path.dirname(__file__), "main.py") sys.argv = ["streamlit", "run", main_script, "--global.developmentMode=false"] st_cli.main(prog_name="streamlit") ``` ::: ### A template script of the spec file The spec file tells PyInstaller how to process your script. It encodes the script names and most of the options you give to the pyinstaller command. The spec file is actually executable Python code. PyInstaller builds the app by executing the contents of the spec file. To streamline this process, we offer a `app.spec` spec file that bundles the application into a single file. For additional information on spec files, you can refer to the [Using Spec Files](https://pyinstaller.org/en/stable/spec-files.html). Please replace {{streamlit_runtime_interpreter_path}} with the path of streamlit runtime interpreter in your environment. ```spec # -*- mode: python ; coding: utf-8 -*- from PyInstaller.utils.hooks import collect_data_files from PyInstaller.utils.hooks import copy_metadata datas = [('connections', 'connections'), ('flow', 'flow'), ('settings.json', '.'), ('main.py', '.'), ('{{streamlit_runtime_interpreter_path}}', './streamlit/runtime')] datas += collect_data_files('streamlit') datas += copy_metadata('streamlit') datas += collect_data_files('keyrings.alt', include_py_files=True) datas += copy_metadata('keyrings.alt') block_cipher = None a = Analysis( ['app.py', 'main.py'], pathex=[], binaries=[], datas=datas, hiddenimports=['bs4'], hookspath=[], hooksconfig={}, runtime_hooks=[], excludes=[], win_no_prefer_redirects=False, win_private_assemblies=False, cipher=block_cipher, noarchive=False, ) pyz = PYZ(a.pure, a.zipped_data, cipher=block_cipher) exe = EXE( pyz, a.scripts, a.binaries, a.zipfiles, a.datas, [], name='app', debug=False, bootloader_ignore_signals=False, strip=False, upx=True, upx_exclude=[], runtime_tmpdir=None, console=True, disable_windowed_traceback=False, argv_emulation=False, target_arch=None, codesign_identity=None, entitlements_file=None, ) ``` ### The bundled application using Pyinstaller Once you've build a flow as executable format following [Build a flow as executable format](#build-a-flow-as-executable-format). It will create two folders named `build` and `dist` within your specified output directory, denoted as <your-output-dir>. The `build` folder houses various log and working files, while the `dist` folder contains the `app` executable application. #### Connections If the service involves connections, all related connections will be exported as yaml files and recreated in the executable package. Secrets in connections won't be exported directly. Instead, we will export them as a reference to environment variables: ```yaml $schema: https://azuremlschemas.azureedge.net/promptflow/latest/OpenAIConnection.schema.json type: open_ai name: open_ai_connection module: promptflow.connections api_key: ${env:OPEN_AI_CONNECTION_API_KEY} # env reference ``` ## Test the endpoint Finally, You can distribute the bundled application `app` to other people. They can execute your program by double clicking the executable file, e.g. `app.exe` in Windows system or running the binary file, e.g. `app` in Linux system. The development server has a built-in web page they can use to test the flow by opening 'http://localhost:8501' in the browser. The expected result is as follows: if the flow served successfully, the process will keep alive until it is killed manually. To your users, the app is self-contained. They do not need to install any particular version of Python or any modules. They do not need to have Python installed at all. **Note**: The executable generated is not cross-platform. One platform (e.g. Windows) packaged executable can't run on others (Mac, Linux). ## Known issues 1. Note that Python 3.10.0 contains a bug making it unsupportable by PyInstaller. PyInstaller will also not work with beta releases of Python 3.13.
promptflow/examples/tutorials/flow-deploy/distribute-flow-as-executable-app/README.md/0
{ "file_path": "promptflow/examples/tutorials/flow-deploy/distribute-flow-as-executable-app/README.md", "repo_id": "promptflow", "token_count": 2383 }
25
<svg width="512" height="512" viewBox="0 0 512 512" fill="none" xmlns="http://www.w3.org/2000/svg"> <g clip-path="url(#clip0_699_15212)"> <path fill-rule="evenodd" clip-rule="evenodd" d="M237 39.0408V461.693C237 469.397 228.655 474.208 221.988 470.346L151.918 429.764C130.306 417.247 117 394.164 117 369.19V148.892C117 123.917 130.306 100.834 151.918 88.3177L237 39.0408Z" fill="url(#paint0_linear_699_15212)"/> <path d="M395.075 127.51L237 39V167.541L283.451 192.041L395.075 127.51Z" fill="url(#paint1_linear_699_15212)"/> <path d="M395.075 127.51L237 39V167.541L283.451 192.041L395.075 127.51Z" fill="url(#paint2_linear_699_15212)"/> <path fill-rule="evenodd" clip-rule="evenodd" d="M255.5 231.426C255.5 217.184 263.073 204.017 275.382 196.854L395 127.248V216.101C395 241.03 381.742 264.078 360.193 276.611L270.528 328.76C263.861 332.637 255.5 327.828 255.5 320.116L255.5 231.426Z" fill="url(#paint3_linear_699_15212)"/> </g> <defs> <linearGradient id="paint0_linear_699_15212" x1="196.286" y1="183.041" x2="270.786" y2="92.5087" gradientUnits="userSpaceOnUse"> <stop stop-color="#3272ED"/> <stop offset="1" stop-color="#AF7BD6"/> </linearGradient> <linearGradient id="paint1_linear_699_15212" x1="457.98" y1="131.313" x2="260.351" y2="133.014" gradientUnits="userSpaceOnUse"> <stop stop-color="#DA7ED0"/> <stop offset="0.05" stop-color="#B77BD4"/> <stop offset="0.11" stop-color="#9079DA"/> <stop offset="0.18" stop-color="#6E77DF"/> <stop offset="0.25" stop-color="#5175E3"/> <stop offset="0.33" stop-color="#3973E7"/> <stop offset="0.42" stop-color="#2772E9"/> <stop offset="0.54" stop-color="#1A71EB"/> <stop offset="0.813361" stop-color="#1371EC"/> <stop offset="1" stop-color="#064495"/> </linearGradient> <linearGradient id="paint2_linear_699_15212" x1="210.18" y1="4.19164" x2="307.181" y2="175.949" gradientUnits="userSpaceOnUse"> <stop stop-color="#712575"/> <stop offset="0.09" stop-color="#9A2884"/> <stop offset="0.18" stop-color="#BF2C92"/> <stop offset="0.27" stop-color="#DA2E9C"/> <stop offset="0.34" stop-color="#EB30A2"/> <stop offset="0.4" stop-color="#F131A5"/> <stop offset="0.5" stop-color="#EC30A3"/> <stop offset="0.61" stop-color="#DF2F9E"/> <stop offset="0.72" stop-color="#C92D96"/> <stop offset="0.83" stop-color="#AA2A8A"/> <stop offset="0.95" stop-color="#83267C"/> <stop offset="1" stop-color="#712575"/> </linearGradient> <linearGradient id="paint3_linear_699_15212" x1="308" y1="260.041" x2="307.043" y2="133.204" gradientUnits="userSpaceOnUse"> <stop stop-color="#1D5CD6"/> <stop offset="1" stop-color="#787BE5"/> </linearGradient> <clipPath id="clip0_699_15212"> <rect width="512" height="512" fill="white"/> </clipPath> </defs> </svg>
promptflow/scripts/docs/_static/logo.svg/0
{ "file_path": "promptflow/scripts/docs/_static/logo.svg", "repo_id": "promptflow", "token_count": 1155 }
26
@echo off setlocal SET PF_INSTALLER=MSI set MAIN_EXE=%~dp0.\pfcli.exe "%MAIN_EXE%" pf %*
promptflow/scripts/installer/windows/scripts/pf.bat/0
{ "file_path": "promptflow/scripts/installer/windows/scripts/pf.bat", "repo_id": "promptflow", "token_count": 49 }
27
import io import re from pathlib import Path import panflute import pypandoc from .readme_step import ReadmeStepsManage def strip_comments(code): code = str(code) code = re.sub(r"(?m)^ *#.*\n?", "", code) # remove comments splits = [ll.rstrip() for ll in code.splitlines() if ll.strip()] # remove empty splits_no_interactive = [ split for split in splits if "interactive" not in split and "pf flow serve" not in split and "pf connection delete" not in split ] # remove --interactive and pf flow serve and pf export docker text = "\n".join([ll.rstrip() for ll in splits_no_interactive]) # replacements text = text.replace("<your_api_key>", "$aoai_api_key") text = text.replace("<your_api_base>", "$aoai_api_endpoint") text = text.replace("<your_subscription_id>", "$test_workspace_sub_id") text = text.replace("<your_resource_group_name>", "$test_workspace_rg") text = text.replace("<your_workspace_name>", "$test_workspace_name") return text def prepare(doc): doc.full_text = "" def action(elem, doc): if isinstance(elem, panflute.CodeBlock) and "bash" in elem.classes: doc.full_text = "\n".join([doc.full_text, strip_comments(elem.text)]) def readme_parser(filename: str): real_filename = Path(ReadmeStepsManage.git_base_dir()) / filename data = pypandoc.convert_file(str(real_filename), "json") f = io.StringIO(data) doc = panflute.load(f) panflute.run_filter(action, prepare, doc=doc) return doc.full_text
promptflow/scripts/readme/ghactions_driver/readme_parse.py/0
{ "file_path": "promptflow/scripts/readme/ghactions_driver/readme_parse.py", "repo_id": "promptflow", "token_count": 609 }
28
{% extends "workflow_skeleton.yml.jinja2" %} {% block steps %} runs-on: ubuntu-latest steps: - name: Checkout repository uses: actions/checkout@v4 - name: Azure Login uses: azure/login@v1 with: creds: ${{ '{{' }} secrets.AZURE_CREDENTIALS }} - name: Setup Python 3.9 environment uses: actions/setup-python@v4 with: python-version: "3.9" - name: Prepare requirements run: | python -m pip install --upgrade pip pip install -r ${{ '{{' }} github.workspace }}/examples/requirements.txt pip install -r ${{ '{{' }} github.workspace }}/examples/dev_requirements.txt - name: Create Aoai Connection run: pf connection create -f ${{ '{{' }} github.workspace }}/examples/connections/azure_openai.yml --set api_key="${{ '{{' }} secrets.AOAI_API_KEY_TEST }}" api_base="${{ '{{' }} secrets.AOAI_API_ENDPOINT_TEST }}" - name: Test Notebook working-directory: {{ gh_working_dir }} run: | papermill -k python {{ name }}.ipynb {{ name }}.output.ipynb - name: Upload artifact if: ${{ '{{' }} always() }} uses: actions/upload-artifact@v3 with: name: artifact path: {{ gh_working_dir }} {% endblock steps %}
promptflow/scripts/readme/ghactions_driver/workflow_templates/basic_workflow.yml.jinja2/0
{ "file_path": "promptflow/scripts/readme/ghactions_driver/workflow_templates/basic_workflow.yml.jinja2", "repo_id": "promptflow", "token_count": 478 }
29
import argparse import base64 import os import io from PIL import Image SUPPORT_IMAGE_TYPES = ["png", "jpg", "jpeg", "bmp"] def get_image_size(image_path): with Image.open(image_path) as img: width, height = img.size return width, height def get_image_storage_size(image_path): file_size_bytes = os.path.getsize(image_path) file_size_mb = file_size_bytes / (1024 * 1024) return file_size_mb def image_to_data_url(image_path): with open(image_path, "rb") as image_file: # Create a BytesIO object from the image file image_data = io.BytesIO(image_file.read()) # Open the image and resize it img = Image.open(image_data) if img.size != (16, 16): img = img.resize((16, 16), Image.Resampling.LANCZOS) # Save the resized image to a data URL buffered = io.BytesIO() img.save(buffered, format="PNG") img_str = base64.b64encode(buffered.getvalue()) data_url = 'data:image/png;base64,' + img_str.decode('utf-8') return data_url def create_html_file(data_uri, output_path): html_content = '<html>\n<body>\n<img src="{}" alt="My Image">\n</body>\n</html>'.format(data_uri) with open(output_path, 'w') as file: file.write(html_content) def check_image_type(image_path): file_extension = image_path.lower().split('.')[-1] if file_extension not in SUPPORT_IMAGE_TYPES: raise ValueError("Only png, jpg or bmp image types are supported.") def check_image_type_and_generate_data_url(image_path): check_image_type(image_path) return image_to_data_url(image_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--image-path", type=str, required=True, help="Your image input path", ) parser.add_argument( "--output", "-o", type=str, required=True, help="Your image output path", ) args = parser.parse_args() data_url = check_image_type_and_generate_data_url(args.image_path) print("Your image data uri: \n{}".format(data_url)) create_html_file(data_url, args.output)
promptflow/scripts/tool/convert_image_to_data_url.py/0
{ "file_path": "promptflow/scripts/tool/convert_image_to_data_url.py", "repo_id": "promptflow", "token_count": 895 }
30
import argparse from utils.secret_manager import get_secret_client, upload_secret if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--tenant_id", type=str, required=True, help="The tenant id of the service principal", ) parser.add_argument( "--client_id", type=str, required=True, help="The client id of the service principal", ) parser.add_argument( "--client_secret", type=str, required=True, help="The client secret of the service principal", ) parser.add_argument( "--secret_name", type=str, required=True, ) parser.add_argument( "--secret_value", type=str, required=True, ) args = parser.parse_args() secret_client = get_secret_client( args.tenant_id, args.client_id, args.client_secret ) upload_secret(secret_client, args.secret_name, args.secret_value)
promptflow/scripts/tool/upload_tool_secret.py/0
{ "file_path": "promptflow/scripts/tool/upload_tool_secret.py", "repo_id": "promptflow", "token_count": 448 }
31
from .aoai import AzureOpenAI # noqa: F401 from .openai import OpenAI # noqa: F401 from .serpapi import SerpAPI # noqa: F401
promptflow/src/promptflow-tools/promptflow/tools/__init__.py/0
{ "file_path": "promptflow/src/promptflow-tools/promptflow/tools/__init__.py", "repo_id": "promptflow", "token_count": 48 }
32
promptflow.tools.open_model_llm.OpenModelLLM.call: name: Open Model LLM description: Use an open model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls. icon:  type: custom_llm module: promptflow.tools.open_model_llm class_name: OpenModelLLM function: call inputs: endpoint_name: type: - string dynamic_list: func_path: promptflow.tools.open_model_llm.list_endpoint_names allow_manual_entry: true # Allow the user to clear this field is_multi_select: false deployment_name: default: '' type: - string dynamic_list: func_path: promptflow.tools.open_model_llm.list_deployment_names func_kwargs: - name: endpoint type: - string optional: true reference: ${inputs.endpoint} allow_manual_entry: true is_multi_select: false api: enum: - chat - completion type: - string temperature: default: 1.0 type: - double max_new_tokens: default: 500 type: - int top_p: default: 1.0 advanced: true type: - double model_kwargs: default: "{}" advanced: true type: - object
promptflow/src/promptflow-tools/promptflow/tools/yamls/open_model_llm.yaml/0
{ "file_path": "promptflow/src/promptflow-tools/promptflow/tools/yamls/open_model_llm.yaml", "repo_id": "promptflow", "token_count": 1312 }
33