text
stringlengths
8
1.72M
id
stringlengths
22
143
metadata
dict
__index_level_0__
int64
0
104
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- # pylint: disable=wrong-import-position import json import time from promptflow._cli._pf._experiment import add_experiment_parser, dispatch_experiment_commands from promptflow._cli._utils import _get_cli_activity_name from promptflow._sdk._configuration import Configuration from promptflow._sdk._telemetry import ActivityType, get_telemetry_logger, log_activity from promptflow._sdk._telemetry.activity import update_activity_name # Log the start time start_time = time.perf_counter() # E402 module level import not at top of file import argparse # noqa: E402 import logging # noqa: E402 import sys # noqa: E402 from promptflow._cli._pf._config import add_config_parser, dispatch_config_commands # noqa: E402 from promptflow._cli._pf._connection import add_connection_parser, dispatch_connection_commands # noqa: E402 from promptflow._cli._pf._flow import add_flow_parser, dispatch_flow_commands # noqa: E402 from promptflow._cli._pf._run import add_run_parser, dispatch_run_commands # noqa: E402 from promptflow._cli._pf._tool import add_tool_parser, dispatch_tool_commands # noqa: E402 from promptflow._cli._pf.help import show_privacy_statement, show_welcome_message # noqa: E402 from promptflow._cli._pf._upgrade import add_upgrade_parser, upgrade_version # noqa: E402 from promptflow._cli._user_agent import USER_AGENT # noqa: E402 from promptflow._sdk._utils import ( # noqa: E402 get_promptflow_sdk_version, print_pf_version, setup_user_agent_to_operation_context, ) from promptflow._utils.logger_utils import get_cli_sdk_logger # noqa: E402 # get logger for CLI logger = get_cli_sdk_logger() def run_command(args): # Log the init finish time init_finish_time = time.perf_counter() try: # --verbose, enable info logging if hasattr(args, "verbose") and args.verbose: for handler in logger.handlers: handler.setLevel(logging.INFO) # --debug, enable debug logging if hasattr(args, "debug") and args.debug: for handler in logger.handlers: handler.setLevel(logging.DEBUG) if args.version: print_pf_version() elif args.action == "flow": dispatch_flow_commands(args) elif args.action == "connection": dispatch_connection_commands(args) elif args.action == "run": dispatch_run_commands(args) elif args.action == "config": dispatch_config_commands(args) elif args.action == "tool": dispatch_tool_commands(args) elif args.action == "upgrade": upgrade_version(args) elif args.action == "experiment": dispatch_experiment_commands(args) except KeyboardInterrupt as ex: logger.debug("Keyboard interrupt is captured.") # raise UserErrorException(error=ex) # Cant't raise UserErrorException due to the code exit(1) of promptflow._cli._utils.py line 368. raise ex except SystemExit as ex: # some code directly call sys.exit, this is to make sure command metadata is logged exit_code = ex.code if ex.code is not None else 1 logger.debug(f"Code directly call sys.exit with code {exit_code}") # raise UserErrorException(error=ex) # Cant't raise UserErrorException due to the code exit(1) of promptflow._cli._utils.py line 368. raise ex except Exception as ex: logger.debug(f"Command {args} execute failed. {str(ex)}") # raise UserErrorException(error=ex) # Cant't raise UserErrorException due to the code exit(1) of promptflow._cli._utils.py line 368. raise ex finally: # Log the invoke finish time invoke_finish_time = time.perf_counter() logger.info( "Command ran in %.3f seconds (init: %.3f, invoke: %.3f)", invoke_finish_time - start_time, init_finish_time - start_time, invoke_finish_time - init_finish_time, ) def get_parser_args(argv): parser = argparse.ArgumentParser( prog="pf", formatter_class=argparse.RawDescriptionHelpFormatter, description="pf: manage prompt flow assets. Learn more: https://microsoft.github.io/promptflow.", ) parser.add_argument( "-v", "--version", dest="version", action="store_true", help="show current CLI version and exit" ) subparsers = parser.add_subparsers() add_upgrade_parser(subparsers) add_flow_parser(subparsers) add_connection_parser(subparsers) add_run_parser(subparsers) add_config_parser(subparsers) add_tool_parser(subparsers) if Configuration.get_instance().is_internal_features_enabled(): add_experiment_parser(subparsers) return parser.prog, parser.parse_args(argv) def entry(argv): """ Control plane CLI tools for promptflow. """ prog, args = get_parser_args(argv) if hasattr(args, "user_agent"): setup_user_agent_to_operation_context(args.user_agent) logger = get_telemetry_logger() activity_name = _get_cli_activity_name(cli=prog, args=args) activity_name = update_activity_name(activity_name, args=args) with log_activity( logger, activity_name, activity_type=ActivityType.PUBLICAPI, ): run_command(args) def main(): """Entrance of pf CLI.""" command_args = sys.argv[1:] if len(command_args) == 1 and command_args[0] == "version": version_dict = {"promptflow": get_promptflow_sdk_version()} version_dict_string = json.dumps(version_dict, ensure_ascii=False, indent=2, sort_keys=True, separators=(",", ": ")) + "\n" print(version_dict_string) return if len(command_args) == 0: # print privacy statement & welcome message like azure-cli show_privacy_statement() show_welcome_message() command_args.append("-h") elif len(command_args) == 1: # pf only has "pf --version" with 1 layer if command_args[0] not in ["--version", "-v", "upgrade"]: command_args.append("-h") setup_user_agent_to_operation_context(USER_AGENT) entry(command_args) if __name__ == "__main__": main()
promptflow/src/promptflow/promptflow/_cli/_pf/entry.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_cli/_pf/entry.py", "repo_id": "promptflow", "token_count": 2529 }
26
$schema: https://azuremlschemas.azureedge.net/promptflow/latest/Flow.schema.json inputs: {% for arg, typ in flow_inputs.items() %} {{ arg }}: type: {{ typ }} {% endfor %} outputs: output: type: string reference: {% raw %}${{% endraw %}{{ main_node_name }}.output} nodes: {% for param_name, file in prompt_params.items() %} - name: {{ param_name }} type: prompt source: type: code path: {{ file }} inputs: # Please check the generated prompt inputs {% for arg in prompt_inputs[param_name].keys() %} {{ arg }}: ${inputs.{{ arg }}} {% endfor %} {% endfor %} - name: {{ main_node_name }} type: python source: type: code path: {{ tool_file }} inputs: {# Below are node inputs link to flow inputs #} {% for arg in func_params.keys() %} {{ arg }}: ${inputs.{{ arg }}} {% endfor %} {# Below are node prompt template inputs from prompt nodes #} {% for param_name, file in prompt_params.items() %} {{ param_name }}: {% raw %}${{% endraw %}{{ param_name }}.output} {% endfor %} connection: custom_connection {% if setup_sh or python_requirements_txt %} environment: {% if setup_sh %} setup_sh: {{ setup_sh }} {% endif %} {% if python_requirements_txt %} python_requirements_txt: {{ python_requirements_txt }} {% endif %} {% endif %}
promptflow/src/promptflow/promptflow/_cli/data/entry_flow/flow.dag.yaml.jinja2/0
{ "file_path": "promptflow/src/promptflow/promptflow/_cli/data/entry_flow/flow.dag.yaml.jinja2", "repo_id": "promptflow", "token_count": 517 }
27
{"text": "Hello World!"}
promptflow/src/promptflow/promptflow/_cli/data/standard_flow/data.jsonl/0
{ "file_path": "promptflow/src/promptflow/promptflow/_cli/data/standard_flow/data.jsonl", "repo_id": "promptflow", "token_count": 9 }
28
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import asyncio import json from contextvars import ContextVar from datetime import datetime, timezone from types import GeneratorType from typing import Any, Dict, List, Mapping, Optional, Union from promptflow._core._errors import FlowOutputUnserializable, RunRecordNotFound, ToolCanceledError from promptflow._core.log_manager import NodeLogManager from promptflow._core.thread_local_singleton import ThreadLocalSingleton from promptflow._utils.dataclass_serializer import serialize from promptflow._utils.exception_utils import ExceptionPresenter from promptflow._utils.logger_utils import flow_logger from promptflow._utils.multimedia_utils import default_json_encoder from promptflow._utils.openai_metrics_calculator import OpenAIMetricsCalculator from promptflow.contracts.run_info import FlowRunInfo, RunInfo, Status from promptflow.contracts.run_mode import RunMode from promptflow.contracts.tool import ConnectionType from promptflow.exceptions import ErrorTarget from promptflow.storage import AbstractRunStorage from promptflow.storage._run_storage import DummyRunStorage class RunTracker(ThreadLocalSingleton): RUN_CONTEXT_NAME = "CurrentRun" CONTEXT_VAR_NAME = "RunTracker" context_var = ContextVar(CONTEXT_VAR_NAME, default=None) @staticmethod def init_dummy() -> "RunTracker": return RunTracker(DummyRunStorage()) def __init__(self, run_storage: AbstractRunStorage, run_mode: RunMode = RunMode.Test, node_log_manager=None): self._node_runs: Dict[str, RunInfo] = {} self._flow_runs: Dict[str, FlowRunInfo] = {} self._current_run_id = "" self._run_context = ContextVar(self.RUN_CONTEXT_NAME, default="") self._storage = run_storage self._debug = True # TODO: Make this configurable self.node_log_manager = node_log_manager or NodeLogManager() self._has_failed_root_run = False self._run_mode = run_mode self._allow_generator_types = False @property def allow_generator_types(self): return self._allow_generator_types @allow_generator_types.setter def allow_generator_types(self, value: bool): self._allow_generator_types = value @property def node_run_list(self): # Add list() to make node_run_list a new list object, # therefore avoid iterating over a dictionary, which might be updated by another thread. return list(self._node_runs.values()) @property def flow_run_list(self): # Add list() to make flow_run_list a new list object, # therefore avoid iterating over a dictionary, which might be updated by another thread. return list(self._flow_runs.values()) def set_current_run_in_context(self, run_id: str): self._run_context.set(run_id) def get_current_run_in_context(self) -> str: return self._run_context.get() def start_flow_run( self, flow_id, root_run_id, run_id, parent_run_id="", inputs=None, index=None, variant_id="", ) -> FlowRunInfo: """Create a flow run and save to run storage on demand.""" run_info = FlowRunInfo( run_id=run_id, status=Status.Running, error=None, inputs=inputs, output=None, metrics=None, request=None, parent_run_id=parent_run_id, root_run_id=root_run_id, source_run_id=None, flow_id=flow_id, start_time=datetime.utcnow(), end_time=None, index=index, variant_id=variant_id, ) self.persist_flow_run(run_info) self._flow_runs[run_id] = run_info self._current_run_id = run_id return run_info def start_node_run( self, node, flow_run_id, parent_run_id, run_id, index, ): run_info = RunInfo( node=node, run_id=run_id, flow_run_id=flow_run_id, status=Status.Running, inputs=None, output=None, metrics=None, error=None, parent_run_id=parent_run_id, start_time=datetime.utcnow(), end_time=None, ) self._node_runs[run_id] = run_info self._current_run_id = run_id self.set_current_run_in_context(run_id) self.node_log_manager.set_node_context(run_id, node, index) return run_info def bypass_node_run( self, node, flow_run_id, parent_run_id, run_id, index, variant_id, ): run_info = RunInfo( node=node, run_id=run_id, flow_run_id=flow_run_id, parent_run_id=parent_run_id, status=Status.Bypassed, inputs=None, output=None, metrics=None, error=None, start_time=datetime.utcnow(), end_time=datetime.utcnow(), result=None, index=index, variant_id=variant_id, api_calls=[], ) self._node_runs[run_id] = run_info return run_info def _flow_run_postprocess(self, run_info: FlowRunInfo, output, ex: Optional[Exception]): if output: try: self._assert_flow_output_serializable(output) except Exception as e: output, ex = None, e self._common_postprocess(run_info, output, ex) def _update_flow_run_info_with_node_runs(self, run_info: FlowRunInfo): run_id = run_info.run_id child_run_infos = self.collect_child_node_runs(run_id) run_info.system_metrics = run_info.system_metrics or {} run_info.system_metrics.update(self.collect_metrics(child_run_infos, self.OPENAI_AGGREGATE_METRICS)) # TODO: Refactor Tracer to support flow level tracing, # then we can remove the hard-coded root level api_calls here. # It has to be a list for UI backward compatibility. # TODO: Add input, output, error to top level. Adding them would require # the same technique of handingling image and generator in Tracer, # which introduces duplicated logic. We should do it in the refactoring. start_timestamp = run_info.start_time.astimezone(timezone.utc).timestamp() if run_info.start_time else None end_timestamp = run_info.end_time.astimezone(timezone.utc).timestamp() if run_info.end_time else None run_info.api_calls = [ { "name": "flow", "node_name": "flow", "type": "Flow", "start_time": start_timestamp, "end_time": end_timestamp, "children": self._collect_traces_from_nodes(run_id), "system_metrics": run_info.system_metrics, } ] def _node_run_postprocess(self, run_info: RunInfo, output, ex: Optional[Exception]): run_id = run_info.run_id self.set_openai_metrics(run_id) logs = self.node_log_manager.get_logs(run_id) run_info.logs = logs self.node_log_manager.clear_node_context(run_id) if run_info.inputs: run_info.inputs = self._ensure_inputs_is_json_serializable(run_info.inputs, run_info.node) if output is not None: msg = f"Output of {run_info.node} is not json serializable, use str to store it." output = self._ensure_serializable_value(output, msg) self._common_postprocess(run_info, output, ex) def _common_postprocess(self, run_info, output, ex): if output is not None: # Duplicated fields for backward compatibility. run_info.result = output run_info.output = output if ex is not None: self._enrich_run_info_with_exception(run_info=run_info, ex=ex) else: run_info.status = Status.Completed run_info.end_time = datetime.utcnow() if not isinstance(run_info.start_time, datetime): flow_logger.warning( f"Run start time {run_info.start_time} for {run_info.run_id} is not a datetime object, " f"got {run_info.start_time}, type={type(run_info.start_time)}." ) else: duration = (run_info.end_time - run_info.start_time).total_seconds() run_info.system_metrics = run_info.system_metrics or {} run_info.system_metrics["duration"] = duration def cancel_node_runs(self, msg: str, flow_run_id): node_runs = self.collect_node_runs(flow_run_id) for node_run_info in node_runs: if node_run_info.status != Status.Running: continue msg = msg.rstrip(".") # Avoid duplicated "." in the end of the message. err = ToolCanceledError( message_format="Tool execution is canceled because of the error: {msg}.", msg=msg, target=ErrorTarget.EXECUTOR, ) self.end_run(node_run_info.run_id, ex=err) node_run_info.status = Status.Canceled self.persist_node_run(node_run_info) def end_run( self, run_id: str, *, result: Optional[dict] = None, ex: Optional[Exception] = None, traces: Optional[List] = None, ): run_info = self._flow_runs.get(run_id) or self._node_runs.get(run_id) if run_info is None: raise RunRecordNotFound( message_format=( "Run record with ID '{run_id}' was not tracked in promptflow execution. " "Please contact support for further assistance." ), target=ErrorTarget.RUN_TRACKER, run_id=run_id, ) # If the run is already canceled, do nothing. if run_info.status == Status.Canceled: return run_info if isinstance(run_info, FlowRunInfo): self._flow_run_postprocess(run_info, result, ex) if traces: run_info.api_calls = traces elif isinstance(run_info, RunInfo): run_info.api_calls = traces self._node_run_postprocess(run_info, result, ex) return run_info def _ensure_serializable_value(self, val, warning_msg: Optional[str] = None): if ConnectionType.is_connection_value(val): return ConnectionType.serialize_conn(val) if self.allow_generator_types and isinstance(val, GeneratorType): return str(val) try: json.dumps(val, default=default_json_encoder) return val except Exception: if not warning_msg: raise flow_logger.warning(warning_msg) return repr(val) def _ensure_inputs_is_json_serializable(self, inputs: dict, node_name: str) -> dict: return { k: self._ensure_serializable_value( v, f"Input '{k}' of {node_name} is not json serializable, use str to store it." ) for k, v in inputs.items() } def _assert_flow_output_serializable(self, output: Any) -> Any: def _wrap_serializable_error(value): try: return self._ensure_serializable_value(value) except Exception as e: # If a specific key-value pair is not serializable, raise an exception with the key. error_type_and_message = f"({e.__class__.__name__}) {e}" message_format = ( "The output '{output_name}' for flow is incorrect. The output value is not JSON serializable. " "JSON dump failed: {error_type_and_message}. Please verify your flow output and " "make sure the value serializable." ) raise FlowOutputUnserializable( message_format=message_format, target=ErrorTarget.FLOW_EXECUTOR, output_name=k, error_type_and_message=error_type_and_message, ) from e # support primitive outputs in eager mode if not isinstance(output, dict): return _wrap_serializable_error(output) serializable_output = {} for k, v in output.items(): serializable_output[k] = _wrap_serializable_error(v) return serializable_output def _enrich_run_info_with_exception(self, run_info: Union[RunInfo, FlowRunInfo], ex: Exception): """Update exception details into run info.""" # Update status to Cancelled the run terminates because of KeyboardInterruption or CancelledError. if isinstance(ex, KeyboardInterrupt) or isinstance(ex, asyncio.CancelledError): run_info.status = Status.Canceled else: run_info.error = ExceptionPresenter.create(ex).to_dict(include_debug_info=self._debug) run_info.status = Status.Failed def collect_all_run_infos_as_dicts(self) -> Mapping[str, List[Mapping[str, Any]]]: flow_runs = self.flow_run_list node_runs = self.node_run_list return { "flow_runs": [serialize(run) for run in flow_runs], "node_runs": [serialize(run) for run in node_runs], } def collect_node_runs(self, flow_run_id: Optional[str] = None) -> List[RunInfo]: """If flow_run_id is None, return all node runs.""" if flow_run_id: return [run_info for run_info in self.node_run_list if run_info.flow_run_id == flow_run_id] return [run_info for run_info in self.node_run_list] def collect_child_node_runs(self, parent_run_id: str) -> List[RunInfo]: return [run_info for run_info in self.node_run_list if run_info.parent_run_id == parent_run_id] def ensure_run_info(self, run_id: str) -> Union[RunInfo, FlowRunInfo]: run_info = self._node_runs.get(run_id) or self._flow_runs.get(run_id) if run_info is None: raise RunRecordNotFound( message_format=( "Run record with ID '{run_id}' was not tracked in promptflow execution. " "Please contact support for further assistance." ), target=ErrorTarget.RUN_TRACKER, run_id=run_id, ) return run_info def set_inputs(self, run_id: str, inputs: Mapping[str, Any]): run_info = self.ensure_run_info(run_id) run_info.inputs = inputs def set_openai_metrics(self, run_id: str): # TODO: Provide a common implementation for different internal metrics run_info = self.ensure_run_info(run_id) calls = run_info.api_calls or [] total_metrics = {} calculator = OpenAIMetricsCalculator(flow_logger) for call in calls: metrics = calculator.get_openai_metrics_from_api_call(call) calculator.merge_metrics_dict(total_metrics, metrics) run_info.system_metrics = run_info.system_metrics or {} run_info.system_metrics.update(total_metrics) def _collect_traces_from_nodes(self, run_id): child_run_infos = self.collect_child_node_runs(run_id) traces = [] for node_run_info in child_run_infos: traces.extend(node_run_info.api_calls or []) return traces OPENAI_AGGREGATE_METRICS = ["prompt_tokens", "completion_tokens", "total_tokens"] def collect_metrics(self, run_infos: List[RunInfo], aggregate_metrics: List[str] = []): if not aggregate_metrics: return {} total_metrics = {} for run_info in run_infos: if not run_info.system_metrics: continue for metric in aggregate_metrics: total_metrics[metric] = total_metrics.get(metric, 0) + run_info.system_metrics.get(metric, 0) return total_metrics def get_run(self, run_id): return self._node_runs.get(run_id) or self._flow_runs.get(run_id) def persist_node_run(self, run_info: RunInfo): self._storage.persist_node_run(run_info) def persist_selected_node_runs(self, run_info: FlowRunInfo, node_names: List[str]): """ Persists the node runs for the specified node names. :param run_info: The flow run information. :type run_info: FlowRunInfo :param node_names: The names of the nodes to persist. :type node_names: List[str] :returns: None """ run_id = run_info.run_id selected_node_run_info = ( run_info for run_info in self.collect_child_node_runs(run_id) if run_info.node in node_names ) for node_run_info in selected_node_run_info: self.persist_node_run(node_run_info) def persist_flow_run(self, run_info: FlowRunInfo): self._storage.persist_flow_run(run_info) def get_status_summary(self, run_id: str): node_run_infos = self.collect_node_runs(run_id) status_summary = {} for run_info in node_run_infos: node_name = run_info.node if run_info.index is not None: # Only consider Completed, Bypassed and Failed status, because the UX only support three status. if run_info.status in (Status.Completed, Status.Bypassed, Status.Failed): node_status_key = f"__pf__.nodes.{node_name}.{run_info.status.value.lower()}" status_summary[node_status_key] = status_summary.setdefault(node_status_key, 0) + 1 # For reduce node, the index is None. else: status_summary[f"__pf__.nodes.{node_name}.completed"] = 1 if run_info.status == Status.Completed else 0 # Runtime will start root flow run with run_id == root_run_id, # line flow run will have run id f"{root_run_id}_{line_number}" # We filter out root flow run accordingly. line_flow_run_infos = [ flow_run_info for flow_run_info in self.flow_run_list if flow_run_info.root_run_id == run_id and flow_run_info.run_id != run_id ] total_lines = len(line_flow_run_infos) completed_lines = len( [flow_run_info for flow_run_info in line_flow_run_infos if flow_run_info.status == Status.Completed] ) status_summary["__pf__.lines.completed"] = completed_lines status_summary["__pf__.lines.failed"] = total_lines - completed_lines return status_summary def persist_status_summary(self, status_summary: Dict[str, int], run_id: str): self._storage.persist_status_summary(status_summary, run_id)
promptflow/src/promptflow/promptflow/_core/run_tracker.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_core/run_tracker.py", "repo_id": "promptflow", "token_count": 8635 }
29
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import datetime from enum import Enum from typing import List, Optional, Union from sqlalchemy import TEXT, Boolean, Column, Index from sqlalchemy.exc import IntegrityError from sqlalchemy.orm import declarative_base from promptflow._sdk._constants import EXPERIMENT_CREATED_ON_INDEX_NAME, EXPERIMENT_TABLE_NAME, ListViewType from promptflow._sdk._errors import ExperimentExistsError, ExperimentNotFoundError from .retry import sqlite_retry from .session import mgmt_db_session from ...exceptions import UserErrorException, ErrorTarget Base = declarative_base() class Experiment(Base): __tablename__ = EXPERIMENT_TABLE_NAME name = Column(TEXT, primary_key=True) created_on = Column(TEXT, nullable=False) # ISO8601("YYYY-MM-DD HH:MM:SS.SSS"), string status = Column(TEXT, nullable=False) description = Column(TEXT) # updated by users properties = Column(TEXT) archived = Column(Boolean, default=False) nodes = Column(TEXT) # json(list of json) string node_runs = Column(TEXT) # json(list of json) string # NOTE: please always add columns to the tail, so that we can easily handle schema changes; # also don't forget to update `__pf_schema_version__` when you change the schema # NOTE: keep in mind that we need to well handle runs with legacy schema; # normally new fields will be `None`, remember to handle them properly last_start_time = Column(TEXT) # ISO8601("YYYY-MM-DD HH:MM:SS.SSS"), string last_end_time = Column(TEXT) # ISO8601("YYYY-MM-DD HH:MM:SS.SSS"), string data = Column(TEXT) # json string of data (list of dict) inputs = Column(TEXT) # json string of inputs (list of dict) __table_args__ = (Index(EXPERIMENT_CREATED_ON_INDEX_NAME, "created_on"),) # schema version, increase the version number when you change the schema __pf_schema_version__ = "1" @sqlite_retry def dump(self) -> None: with mgmt_db_session() as session: try: session.add(self) session.commit() except IntegrityError as e: # catch "sqlite3.IntegrityError: UNIQUE constraint failed: run_info.name" to raise RunExistsError # otherwise raise the original error if "UNIQUE constraint failed" not in str(e): raise raise ExperimentExistsError(f"Experiment name {self.name!r} already exists.") except Exception as e: raise UserErrorException(target=ErrorTarget.CONTROL_PLANE_SDK, message=str(e), error=e) @sqlite_retry def archive(self) -> None: if self.archived is True: return self.archived = True with mgmt_db_session() as session: session.query(Experiment).filter(Experiment.name == self.name).update({"archived": self.archived}) session.commit() @sqlite_retry def restore(self) -> None: if self.archived is False: return self.archived = False with mgmt_db_session() as session: session.query(Experiment).filter(Experiment.name == self.name).update({"archived": self.archived}) session.commit() @sqlite_retry def update( self, *, status: Optional[str] = None, description: Optional[str] = None, last_start_time: Optional[Union[str, datetime.datetime]] = None, last_end_time: Optional[Union[str, datetime.datetime]] = None, node_runs: Optional[str] = None, ) -> None: update_dict = {} if status is not None: self.status = status update_dict["status"] = self.status if description is not None: self.description = description update_dict["description"] = self.description if last_start_time is not None: self.last_start_time = last_start_time if isinstance(last_start_time, str) else last_start_time.isoformat() update_dict["last_start_time"] = self.last_start_time if last_end_time is not None: self.last_end_time = last_end_time if isinstance(last_end_time, str) else last_end_time.isoformat() update_dict["last_end_time"] = self.last_end_time if node_runs is not None: self.node_runs = node_runs update_dict["node_runs"] = self.node_runs with mgmt_db_session() as session: session.query(Experiment).filter(Experiment.name == self.name).update(update_dict) session.commit() @staticmethod @sqlite_retry def get(name: str) -> "Experiment": with mgmt_db_session() as session: run_info = session.query(Experiment).filter(Experiment.name == name).first() if run_info is None: raise ExperimentNotFoundError(f"Experiment {name!r} cannot be found.") return run_info @staticmethod @sqlite_retry def list(max_results: Optional[int], list_view_type: ListViewType) -> List["Experiment"]: with mgmt_db_session() as session: basic_statement = session.query(Experiment) # filter by archived list_view_type = list_view_type.value if isinstance(list_view_type, Enum) else list_view_type if list_view_type == ListViewType.ACTIVE_ONLY.value: basic_statement = basic_statement.filter(Experiment.archived == False) # noqa: E712 elif list_view_type == ListViewType.ARCHIVED_ONLY.value: basic_statement = basic_statement.filter(Experiment.archived == True) # noqa: E712 basic_statement = basic_statement.order_by(Experiment.created_on.desc()) if isinstance(max_results, int): return [result for result in basic_statement.limit(max_results)] else: return [result for result in basic_statement.all()] @staticmethod @sqlite_retry def delete(name: str) -> None: with mgmt_db_session() as session: result = session.query(Experiment).filter(Experiment.name == name).first() if result is not None: session.delete(result) session.commit() else: raise ExperimentNotFoundError(f"Experiment {name!r} cannot be found.")
promptflow/src/promptflow/promptflow/_sdk/_orm/experiment.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/_orm/experiment.py", "repo_id": "promptflow", "token_count": 2618 }
30
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- from promptflow._sdk._service.entry import main import sys import win32serviceutil # ServiceFramework and commandline helper import win32service # Events import servicemanager # Simple setup and logging class PromptFlowService: """Silly little application stub""" def stop(self): """Stop the service""" self.running = False def run(self): """Main service loop. This is where work is done!""" self.running = True while self.running: main() # Important work servicemanager.LogInfoMsg("Service running...") class PromptFlowServiceFramework(win32serviceutil.ServiceFramework): _svc_name_ = 'PromptFlowService' _svc_display_name_ = 'Prompt Flow Service' def SvcStop(self): """Stop the service""" self.ReportServiceStatus(win32service.SERVICE_STOP_PENDING) self.service_impl.stop() self.ReportServiceStatus(win32service.SERVICE_STOPPED) def SvcDoRun(self): """Start the service; does not return until stopped""" self.ReportServiceStatus(win32service.SERVICE_START_PENDING) self.service_impl = PromptFlowService() self.ReportServiceStatus(win32service.SERVICE_RUNNING) # Run the service self.service_impl.run() def init(): if len(sys.argv) == 1: servicemanager.Initialize() servicemanager.PrepareToHostSingle(PromptFlowServiceFramework) servicemanager.StartServiceCtrlDispatcher() else: win32serviceutil.HandleCommandLine(PromptFlowServiceFramework) if __name__ == '__main__': init()
promptflow/src/promptflow/promptflow/_sdk/_service/pfsvc.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/_service/pfsvc.py", "repo_id": "promptflow", "token_count": 630 }
31
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import contextlib import functools import threading import uuid from contextvars import ContextVar from datetime import datetime from typing import Any, Dict from promptflow._sdk._telemetry.telemetry import TelemetryMixin from promptflow._sdk._utils import ClientUserAgentUtil from promptflow.exceptions import _ErrorInfo class ActivityType(object): """The type of activity (code) monitored. The default type is "PublicAPI". """ PUBLICAPI = "PublicApi" # incoming public API call (default) INTERNALCALL = "InternalCall" # internal (function) call CLIENTPROXY = "ClientProxy" # an outgoing service API call class ActivityCompletionStatus(object): """The activity (code) completion status, success, or failure.""" SUCCESS = "Success" FAILURE = "Failure" request_id_context = ContextVar("request_id_context", default=None) def log_activity_start(activity_info: Dict[str, Any], logger) -> None: """Log activity start. Sample activity_info: { "request_id": "request_id", "first_call": True, "activity_name": "activity_name", "activity_type": "activity_type", "user_agent": "user_agent", } :param activity_info: The custom properties of the activity to record. :type activity_info: dict :param logger: The logger adapter. :type logger: logging.LoggerAdapter """ message = f"{activity_info['activity_name']}.start" logger.info(message, extra={"custom_dimensions": activity_info}) pass def log_activity_end(activity_info: Dict[str, Any], logger) -> None: """Log activity end. Sample activity_info for success (start info plus run info): { ..., "duration_ms": 1000 "completion_status": "Success", } Sample activity_info for failure (start info plus error info): { ..., "duration_ms": 1000 "completion_status": "Failure", "error_category": "error_category", "error_type": "error_type", "error_target": "error_target", "error_message": "error_message", "error_detail": "error_detail" } Error target & error type can be found in the following link: https://github.com/microsoft/promptflow/blob/main/src/promptflow/promptflow/exceptions.py :param activity_info: The custom properties of the activity. :type activity_info: dict :param logger: The logger adapter. :type logger: logging.LoggerAdapter """ try: # we will fail this log if activity_name/completion_status is not in activity_info, so directly use get() message = f"{activity_info['activity_name']}.complete" if activity_info["completion_status"] == ActivityCompletionStatus.FAILURE: logger.error(message, extra={"custom_dimensions": activity_info}) else: logger.info(message, extra={"custom_dimensions": activity_info}) except Exception: # pylint: disable=broad-except # skip if logger failed to log pass # pylint: disable=lost-exception def generate_request_id(): return str(uuid.uuid4()) @contextlib.contextmanager def log_activity( logger, activity_name, activity_type=ActivityType.INTERNALCALL, custom_dimensions=None, ): """Log an activity. An activity is a logical block of code that consumers want to monitor. To monitor, wrap the logical block of code with the ``log_activity()`` method. As an alternative, you can also use the ``@monitor_with_activity`` decorator. :param logger: The logger adapter. :type logger: logging.LoggerAdapter :param activity_name: The name of the activity. The name should be unique per the wrapped logical code block. :type activity_name: str :param activity_type: One of PUBLICAPI, INTERNALCALL, or CLIENTPROXY which represent an incoming API call, an internal (function) call, or an outgoing API call. If not specified, INTERNALCALL is used. :type activity_type: str :param custom_dimensions: The custom properties of the activity. :type custom_dimensions: dict :return: None """ if not custom_dimensions: custom_dimensions = {} user_agent = ClientUserAgentUtil.get_user_agent() request_id = request_id_context.get() if not request_id: # public function call first_call = True request_id = generate_request_id() request_id_context.set(request_id) else: first_call = False activity_info = { "request_id": request_id, "first_call": first_call, "activity_name": activity_name, "activity_type": activity_type, "user_agent": user_agent, } activity_info.update(custom_dimensions) start_time = datetime.utcnow() completion_status = ActivityCompletionStatus.SUCCESS log_activity_start(activity_info, logger) exception = None try: yield logger except BaseException as e: # pylint: disable=broad-except exception = e completion_status = ActivityCompletionStatus.FAILURE error_category, error_type, error_target, error_message, error_detail = _ErrorInfo.get_error_info(exception) activity_info["error_category"] = error_category activity_info["error_type"] = error_type activity_info["error_target"] = error_target activity_info["error_message"] = error_message activity_info["error_detail"] = error_detail finally: if first_call: # recover request id in global storage request_id_context.set(None) end_time = datetime.utcnow() duration_ms = round((end_time - start_time).total_seconds() * 1000, 2) activity_info["completion_status"] = completion_status activity_info["duration_ms"] = duration_ms log_activity_end(activity_info, logger) # raise the exception to align with the behavior of the with statement if exception: raise exception def extract_telemetry_info(self): """Extract pf telemetry info from given telemetry mix-in instance.""" result = {} try: if isinstance(self, TelemetryMixin): return self._get_telemetry_values() except Exception: pass return result def update_activity_name(activity_name, kwargs=None, args=None): """Update activity name according to kwargs. For flow test, we want to know if it's node test.""" if activity_name == "pf.flows.test": # SDK if kwargs.get("node", None): activity_name = "pf.flows.node_test" elif activity_name == "pf.flow.test": # CLI if getattr(args, "node", None): activity_name = "pf.flow.node_test" return activity_name def monitor_operation( activity_name, activity_type=ActivityType.INTERNALCALL, custom_dimensions=None, ): """A wrapper for monitoring an activity in operations class. To monitor, use the ``@monitor_operation`` decorator. Note: this decorator should only use in operations class methods. :param activity_name: The name of the activity. The name should be unique per the wrapped logical code block. :type activity_name: str :param activity_type: One of PUBLICAPI, INTERNALCALL, or CLIENTPROXY which represent an incoming API call, an internal (function) call, or an outgoing API call. If not specified, INTERNALCALL is used. :type activity_type: str :param custom_dimensions: The custom properties of the activity. :type custom_dimensions: dict :return: """ if not custom_dimensions: custom_dimensions = {} def monitor(f): @functools.wraps(f) def wrapper(self, *args, **kwargs): from promptflow._sdk._telemetry.telemetry import get_telemetry_logger from promptflow._utils.version_hint_utils import HINT_ACTIVITY_NAME, check_latest_version, hint_for_update logger = get_telemetry_logger() custom_dimensions.update(extract_telemetry_info(self)) # update activity name according to kwargs. _activity_name = update_activity_name(activity_name, kwargs=kwargs) with log_activity(logger, _activity_name, activity_type, custom_dimensions): if _activity_name in HINT_ACTIVITY_NAME: hint_for_update() # set check_latest_version as deamon thread to avoid blocking main thread thread = threading.Thread(target=check_latest_version, daemon=True) thread.start() return f(self, *args, **kwargs) return wrapper return monitor
promptflow/src/promptflow/promptflow/_sdk/_telemetry/activity.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/_telemetry/activity.py", "repo_id": "promptflow", "token_count": 3256 }
32
Exported Dockerfile & its dependencies are located in the same folder. The structure is as below: - flow: the folder contains all the flow files - ... - connections: the folder contains yaml files to create all related connections - ... - Dockerfile: the dockerfile to build the image - settings.json: a json file to store the settings of the docker image - README.md: the readme file to describe how to use the dockerfile Please refer to [official doc](https://microsoft.github.io/promptflow/how-to-guides/deploy-and-export-a-flow.html#export-a-flow) for more details about how to use the exported dockerfile and scripts.
promptflow/src/promptflow/promptflow/_sdk/data/docker_csharp/README.md/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/data/docker_csharp/README.md", "repo_id": "promptflow", "token_count": 165 }
33
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import copy import datetime import json import shutil import uuid from os import PathLike from pathlib import Path from typing import Any, Dict, List, Optional, Union from marshmallow import Schema from promptflow._sdk._constants import ( BASE_PATH_CONTEXT_KEY, PARAMS_OVERRIDE_KEY, PROMPT_FLOW_DIR_NAME, PROMPT_FLOW_EXP_DIR_NAME, ExperimentNodeType, ExperimentStatus, ) from promptflow._sdk._errors import ExperimentValidationError, ExperimentValueError from promptflow._sdk._orm.experiment import Experiment as ORMExperiment from promptflow._sdk._submitter import remove_additional_includes from promptflow._sdk._utils import _merge_local_code_and_additional_includes, _sanitize_python_variable_name from promptflow._sdk.entities import Run from promptflow._sdk.entities._validation import MutableValidationResult, SchemaValidatableMixin from promptflow._sdk.entities._yaml_translatable import YAMLTranslatableMixin from promptflow._sdk.schemas._experiment import ( CommandNodeSchema, ExperimentDataSchema, ExperimentInputSchema, ExperimentSchema, ExperimentTemplateSchema, FlowNodeSchema, ) from promptflow._utils.logger_utils import get_cli_sdk_logger from promptflow.contracts.tool import ValueType logger = get_cli_sdk_logger() class ExperimentData(YAMLTranslatableMixin): def __init__(self, name, path, **kwargs): self.name = name self.path = path @classmethod def _get_schema_cls(cls): return ExperimentDataSchema class ExperimentInput(YAMLTranslatableMixin): def __init__(self, name, default, type, **kwargs): self.name = name self.type, self.default = self._resolve_type_and_default(type, default) @classmethod def _get_schema_cls(cls): return ExperimentInputSchema def _resolve_type_and_default(self, typ, default): supported_types = [ ValueType.INT, ValueType.STRING, ValueType.DOUBLE, ValueType.LIST, ValueType.OBJECT, ValueType.BOOL, ] value_type: ValueType = next((i for i in supported_types if typ.lower() == i.value.lower()), None) if value_type is None: raise ExperimentValueError(f"Unknown experiment input type {typ!r}, supported are {supported_types}.") return value_type.value, value_type.parse(default) if default is not None else None @classmethod def _load_from_dict(cls, data: Dict, context: Dict, additional_message: str = None, **kwargs): # Override this to avoid 'type' got pop out schema_cls = cls._get_schema_cls() try: loaded_data = schema_cls(context=context).load(data, **kwargs) except Exception as e: raise Exception(f"Load experiment input failed with {str(e)}. f{(additional_message or '')}.") return cls(base_path=context[BASE_PATH_CONTEXT_KEY], **loaded_data) class FlowNode(YAMLTranslatableMixin): def __init__( self, path: Union[Path, str], name: str, # input fields are optional since it's not stored in DB data: Optional[str] = None, variant: Optional[str] = None, run: Optional[Union["Run", str]] = None, inputs: Optional[dict] = None, display_name: Optional[str] = None, description: Optional[str] = None, tags: Optional[List[Dict[str, str]]] = None, environment_variables: Optional[Dict[str, str]] = None, connections: Optional[Dict[str, Dict]] = None, properties: Optional[Dict[str, Any]] = None, **kwargs, ): self.type = ExperimentNodeType.FLOW self.data = data self.inputs = inputs self.display_name = display_name self.description = description self.tags = tags self.variant = variant self.run = run self.environment_variables = environment_variables or {} self.connections = connections or {} self._properties = properties or {} # init here to make sure those fields initialized in all branches. self.path = path # default run name: flow directory name + timestamp self.name = name self._runtime = kwargs.get("runtime", None) self._resources = kwargs.get("resources", None) @classmethod def _get_schema_cls(cls): return FlowNodeSchema def _save_snapshot(self, target): """Save flow source to experiment snapshot.""" # Resolve additional includes in flow from promptflow import load_flow Path(target).mkdir(parents=True, exist_ok=True) flow = load_flow(source=self.path) saved_flow_path = Path(target) / self.name with _merge_local_code_and_additional_includes(code_path=flow.code) as resolved_flow_dir: remove_additional_includes(Path(resolved_flow_dir)) shutil.copytree(src=resolved_flow_dir, dst=saved_flow_path) logger.debug(f"Flow source saved to {saved_flow_path}.") self.path = saved_flow_path.resolve().absolute().as_posix() class CommandNode(YAMLTranslatableMixin): def __init__( self, command, name, inputs=None, outputs=None, runtime=None, environment_variables=None, code=None, display_name=None, **kwargs, ): self.type = ExperimentNodeType.COMMAND self.name = name self.display_name = display_name self.code = code self.command = command self.inputs = inputs or {} self.outputs = outputs or {} self.runtime = runtime self.environment_variables = environment_variables or {} @classmethod def _get_schema_cls(cls): return CommandNodeSchema def _save_snapshot(self, target): """Save command source to experiment snapshot.""" Path(target).mkdir(parents=True, exist_ok=True) saved_path = Path(target) / self.name if not self.code: # Create an empty folder saved_path.mkdir(parents=True, exist_ok=True) self.code = saved_path.resolve().absolute().as_posix() return code = Path(self.code) if not code.exists(): raise ExperimentValueError(f"Command node code {code} does not exist.") if code.is_dir(): shutil.copytree(src=self.code, dst=saved_path) else: saved_path.mkdir(parents=True, exist_ok=True) shutil.copy(src=self.code, dst=saved_path) logger.debug(f"Command node source saved to {saved_path}.") self.code = saved_path.resolve().absolute().as_posix() class ExperimentTemplate(YAMLTranslatableMixin, SchemaValidatableMixin): def __init__(self, nodes, name=None, description=None, data=None, inputs=None, **kwargs): self._base_path = kwargs.get(BASE_PATH_CONTEXT_KEY, Path(".")) self.name = name or self._generate_name() self.description = description self.nodes = nodes self.data = data or [] self.inputs = inputs or [] self._source_path = None @classmethod # pylint: disable=unused-argument def _resolve_cls_and_type(cls, **kwargs): return cls, "experiment_template" @classmethod def _get_schema_cls(cls): return ExperimentTemplateSchema @classmethod def _load( cls, data: Optional[Dict] = None, yaml_path: Optional[Union[PathLike, str]] = None, params_override: Optional[list] = None, **kwargs, ): data = data or {} params_override = params_override or [] context = { BASE_PATH_CONTEXT_KEY: Path(yaml_path).parent if yaml_path else Path("./"), PARAMS_OVERRIDE_KEY: params_override, } logger.debug(f"Loading class object with data {data}, params_override {params_override}, context {context}.") exp = cls._load_from_dict( data=data, context=context, additional_message="Failed to load experiment", **kwargs, ) if yaml_path: exp._source_path = yaml_path return exp def _generate_name(self) -> str: """Generate a template name.""" try: folder_name = Path(self._base_path).resolve().absolute().name return _sanitize_python_variable_name(folder_name) except Exception as e: logger.debug(f"Failed to generate template name, error: {e}, use uuid.") return str(uuid.uuid4()) @classmethod def _load_from_dict(cls, data: Dict, context: Dict, additional_message: str = None, **kwargs): schema_cls = cls._get_schema_cls() try: loaded_data = schema_cls(context=context).load(data, **kwargs) except Exception as e: raise Exception(f"Load experiment template failed with {str(e)}. f{(additional_message or '')}.") return cls(base_path=context[BASE_PATH_CONTEXT_KEY], **loaded_data) @classmethod def _create_schema_for_validation(cls, context) -> Schema: return cls._get_schema_cls()(context=context) def _default_context(self) -> dict: return {BASE_PATH_CONTEXT_KEY: self._base_path} @classmethod def _create_validation_error(cls, message: str, no_personal_data_message: str) -> Exception: return ExperimentValidationError( message=message, no_personal_data_message=no_personal_data_message, ) def _customized_validate(self) -> MutableValidationResult: """Validate the resource with customized logic. Override this method to add customized validation logic. :return: The customized validation result :rtype: MutableValidationResult """ pass class Experiment(ExperimentTemplate): def __init__( self, nodes, name=None, data=None, inputs=None, status=ExperimentStatus.NOT_STARTED, node_runs=None, properties=None, **kwargs, ): self.name = name or self._generate_name() self.status = status self.node_runs = node_runs or {} self.properties = properties or {} self.created_on = kwargs.get("created_on", datetime.datetime.now().isoformat()) self.last_start_time = kwargs.get("last_start_time", None) self.last_end_time = kwargs.get("last_end_time", None) self.is_archived = kwargs.get("is_archived", False) self._output_dir = Path.home() / PROMPT_FLOW_DIR_NAME / PROMPT_FLOW_EXP_DIR_NAME / self.name super().__init__(nodes, name=self.name, data=data, inputs=inputs, **kwargs) @classmethod def _get_schema_cls(cls): return ExperimentSchema @classmethod # pylint: disable=unused-argument def _resolve_cls_and_type(cls, **kwargs): return cls, "experiment" def _generate_name(self) -> str: """Generate a experiment name.""" try: folder_name = Path(self._base_path).resolve().absolute().name timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S_%f") exp_name = f"{folder_name}_{timestamp}" return _sanitize_python_variable_name(exp_name) except Exception as e: logger.debug(f"Failed to generate experiment name, error: {e}, use uuid.") return str(uuid.uuid4()) def _save_snapshot_and_update_node( self, ): """Save node source to experiment snapshot, update node path.""" snapshot_dir = self._output_dir / "snapshots" for node in self.nodes: node._save_snapshot(snapshot_dir) def _append_node_run(self, node_name, run: Run): """Append node run to experiment.""" if node_name not in self.node_runs or not isinstance(self.node_runs[node_name], list): self.node_runs[node_name] = [] # TODO: Review this self.node_runs[node_name].append({"name": run.name, "status": run.status}) def _to_orm_object(self): """Convert to ORM object.""" result = ORMExperiment( name=self.name, description=self.description, status=self.status, created_on=self.created_on, archived=self.is_archived, last_start_time=self.last_start_time, last_end_time=self.last_end_time, properties=json.dumps(self.properties), data=json.dumps([item._to_dict() for item in self.data]), inputs=json.dumps([input._to_dict() for input in self.inputs]), nodes=json.dumps([node._to_dict() for node in self.nodes]), node_runs=json.dumps(self.node_runs), ) logger.debug(f"Experiment to ORM object: {result.__dict__}") return result @classmethod def _from_orm_object(cls, obj: ORMExperiment) -> "Experiment": """Create a experiment object from ORM object.""" nodes = [] context = {BASE_PATH_CONTEXT_KEY: "./"} for node_dict in json.loads(obj.nodes): if node_dict["type"] == ExperimentNodeType.FLOW: nodes.append( FlowNode._load_from_dict(node_dict, context=context, additional_message="Failed to load node.") ) elif node_dict["type"] == ExperimentNodeType.COMMAND: nodes.append( CommandNode._load_from_dict(node_dict, context=context, additional_message="Failed to load node.") ) else: raise Exception(f"Unknown node type {node_dict['type']}") data = [ ExperimentData._load_from_dict(item, context=context, additional_message="Failed to load experiment data") for item in json.loads(obj.data) ] inputs = [ ExperimentInput._load_from_dict( item, context=context, additional_message="Failed to load experiment inputs" ) for item in json.loads(obj.inputs) ] return cls( name=obj.name, description=obj.description, status=obj.status, created_on=obj.created_on, last_start_time=obj.last_start_time, last_end_time=obj.last_end_time, is_archived=obj.archived, properties=json.loads(obj.properties), data=data, inputs=inputs, nodes=nodes, node_runs=json.loads(obj.node_runs), ) @classmethod def from_template(cls, template: ExperimentTemplate, name=None): """Create a experiment object from template.""" timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S_%f") exp_name = name or f"{template.name}_{timestamp}" experiment = cls( name=exp_name, description=template.description, data=copy.deepcopy(template.data), inputs=copy.deepcopy(template.inputs), nodes=copy.deepcopy(template.nodes), base_path=template._base_path, ) logger.debug("Start saving snapshot and update node.") experiment._save_snapshot_and_update_node() return experiment
promptflow/src/promptflow/promptflow/_sdk/entities/_experiment.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/entities/_experiment.py", "repo_id": "promptflow", "token_count": 6676 }
34
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import importlib.util import inspect import io import json import logging import pkgutil from dataclasses import asdict from os import PathLike from pathlib import Path from types import ModuleType from typing import Union import jsonschema from promptflow._core.tool_meta_generator import ( ToolValidationError, _parse_tool_from_function, asdict_without_none, is_tool, ) from promptflow._core.tools_manager import PACKAGE_TOOLS_ENTRY, collect_package_tools from promptflow._sdk._constants import ICON, ICON_DARK, ICON_LIGHT, LOGGER_NAME, SKIP_FUNC_PARAMS, TOOL_SCHEMA from promptflow._sdk._telemetry import ActivityType, monitor_operation from promptflow._sdk.entities._validation import ValidationResult, ValidationResultBuilder from promptflow._utils.multimedia_utils import convert_multimedia_data_to_base64 from promptflow.contracts.multimedia import Image from promptflow.exceptions import UserErrorException TOTAL_COUNT = "total_count" INVALID_COUNT = "invalid_count" logger = logging.getLogger(LOGGER_NAME) class ToolOperations: """ToolOperations.""" def __init__(self): self._tool_schema_dict = None @property def _tool_schema(self): if not self._tool_schema_dict: with open(TOOL_SCHEMA, "r") as f: self._tool_schema_dict = json.load(f) return self._tool_schema_dict def _merge_validate_result(self, target, source): target.merge_with(source) target._set_extra_info( TOTAL_COUNT, target._get_extra_info(TOTAL_COUNT, 0) + source._get_extra_info(TOTAL_COUNT, 0), ) target._set_extra_info( INVALID_COUNT, target._get_extra_info(INVALID_COUNT, 0) + source._get_extra_info(INVALID_COUNT, 0), ) def _list_tools_in_package(self, package_name: str, raise_error: bool = False): """ List the meta of all tools in the package. Raise user error if raise_error=True and found incorrect tools. :param package_name: Package name :type package_name: str :param raise_error: Whether to raise the error. :type raise_error: bool :return: Dict of tools meta :rtype: Dict[str, Dict] """ package_tools, validate_result = self._list_tool_meta_in_package(package_name=package_name) if not validate_result.passed: if raise_error: def tool_validate_error_func(msg, _): return ToolValidationError(message=msg, validate_result=validate_result) validate_result.try_raise(raise_error=raise_error, error_func=tool_validate_error_func) else: logger.warning(f"Found invalid tool(s):\n {repr(validate_result)}") return package_tools def _list_tool_meta_in_package(self, package_name: str): """ List the meta of all tools in the package. :param package_name: Package name :type package_name: str :return: Dict of tools meta, validation result :rtype: Dict[str, Dict], ValidationResult """ package_tools = {} validate_result = ValidationResultBuilder.success() try: package = __import__(package_name) module_list = pkgutil.walk_packages(package.__path__, prefix=package.__name__ + ".") for module in module_list: module_tools, module_validate_result = self._generate_tool_meta(importlib.import_module(module.name)) package_tools.update(module_tools) self._merge_validate_result(validate_result, module_validate_result) except ImportError as e: raise UserErrorException(f"Cannot find the package {package_name}, {e}.") return package_tools, validate_result def _generate_tool_meta(self, tool_module): """ Generate tools meta in the module. :param tool_module: The module needs to generate tools meta :type tool_module: object :return: Dict of tools meta, validation result :rtype: Dict[str, Dict], ValidationResult """ tool_functions = self._collect_tool_functions_in_module(tool_module) tool_methods = self._collect_tool_class_methods_in_module(tool_module) construct_tools = {} invalid_tool_count = 0 tool_validate_result = ValidationResultBuilder.success() for f in tool_functions: tool, input_settings, extra_info = self._parse_tool_from_func(f) construct_tool, validate_result = self._serialize_tool(tool, input_settings, extra_info, f) if validate_result.passed: tool_name = self._get_tool_name(tool) construct_tools[tool_name] = construct_tool else: invalid_tool_count = invalid_tool_count + 1 tool_validate_result.merge_with(validate_result) for (f, initialize_inputs) in tool_methods: tool, input_settings, extra_info = self._parse_tool_from_func(f, initialize_inputs) construct_tool, validate_result = self._serialize_tool(tool, input_settings, extra_info, f) if validate_result.passed: tool_name = self._get_tool_name(tool) construct_tools[tool_name] = construct_tool else: invalid_tool_count = invalid_tool_count + 1 tool_validate_result.merge_with(validate_result) # The generated dict cannot be dumped as yaml directly since yaml cannot handle string enum. tools = json.loads(json.dumps(construct_tools)) tool_validate_result._set_extra_info(TOTAL_COUNT, len(tool_functions) + len(tool_methods)) tool_validate_result._set_extra_info(INVALID_COUNT, invalid_tool_count) return tools, tool_validate_result @staticmethod def _collect_tool_functions_in_module(tool_module): tools = [] for _, obj in inspect.getmembers(tool_module): if is_tool(obj): # Note that the tool should be in defined in exec but not imported in exec, # so it should also have the same module with the current function. if getattr(obj, "__module__", "") != tool_module.__name__: continue tools.append(obj) return tools @staticmethod def _collect_tool_class_methods_in_module(tool_module): from promptflow._core.tool import ToolProvider tools = [] for _, obj in inspect.getmembers(tool_module): if isinstance(obj, type) and issubclass(obj, ToolProvider) and obj.__module__ == tool_module.__name__: for _, method in inspect.getmembers(obj): if is_tool(method): initialize_inputs = obj.get_initialize_inputs() tools.append((method, initialize_inputs)) return tools def _get_tool_name(self, tool): tool_name = ( f"{tool.module}.{tool.class_name}.{tool.function}" if tool.class_name is not None else f"{tool.module}.{tool.function}" ) return tool_name def _parse_tool_from_func(self, tool_func, initialize_inputs=None): """ Parse tool from tool function :param tool_func: The tool function :type tool_func: callable :param initialize_inputs: Initialize inputs of tool :type initialize_inputs: Dict[str, obj] :return: tool object, tool input settings, extra info about the tool :rtype: Tool, Dict[str, InputSetting], Dict[str, obj] """ tool = _parse_tool_from_function( tool_func, initialize_inputs=initialize_inputs, gen_custom_type_conn=True, skip_prompt_template=True ) extra_info = getattr(tool_func, "__extra_info") input_settings = getattr(tool_func, "__input_settings") return tool, input_settings, extra_info def _validate_tool_function(self, tool, input_settings, extra_info, func_name=None, func_path=None): """ Check whether the icon and input settings of the tool are legitimate. :param tool: The tool object :type tool: Tool :param input_settings: Input settings of the tool :type input_settings: Dict[str, InputSetting] :param extra_info: Extra info about the tool :type extra_info: Dict[str, obj] :param func_name: Function name of the tool :type func_name: str :param func_path: Script path of the tool :type func_path: str :return: Validation result of the tool :rtype: ValidationResult """ validate_result = ValidationResultBuilder.success() if extra_info: if ICON in extra_info: if ICON_LIGHT in extra_info or ICON_DARK in extra_info: validate_result.append_error( yaml_path=None, message=f"Cannot provide both `icon` and `{ICON_LIGHT}` or `{ICON_DARK}`.", function_name=func_name, location=func_path, key="function_name", ) if input_settings: input_settings_validate_result = self._validate_input_settings( tool.inputs, input_settings, func_name, func_path ) validate_result.merge_with(input_settings_validate_result) return validate_result def _validate_tool_schema(self, tool_dict, func_name=None, func_path=None): """ Check whether the generated schema of the tool are legitimate. :param tool_dict: The generated tool dict :type tool_dict: Dict[str, obj] :param func_name: Function name of the tool :type func_name: str :param func_path: Script path of the tool :type func_path: str :return: Validation result of the tool :rtype: ValidationResult """ validate_result = ValidationResultBuilder.success() try: jsonschema.validate(instance=tool_dict, schema=self._tool_schema) except jsonschema.exceptions.ValidationError as e: validate_result.append_error( message=str(e), yaml_path=None, function_name=func_name, location=func_path, key="function_name" ) return validate_result def _validate_input_settings(self, tool_inputs, input_settings, func_name=None, func_path=None): """ Check whether input settings of the tool are legitimate. :param tool_inputs: Tool inputs :type tool_inputs: Dict[str, obj] :param input_settings: Input settings of the tool :type input_settings: Dict[str, InputSetting] :param extra_info: Extra info about the tool :type extra_info: Dict[str, obj] :param func_name: Function name of the tool :type func_name: str :param func_path: Script path of the tool :type func_path: str :return: Validation result of the tool :rtype: ValidationResult """ validate_result = ValidationResultBuilder.success() for input_name, settings in input_settings.items(): if input_name not in tool_inputs: validate_result.append_error( yaml_path=None, message=f"Cannot find {input_name} in tool inputs.", function_name=func_name, location=func_path, key="function_name", ) if settings.enabled_by and settings.enabled_by not in tool_inputs: validate_result.append_error( yaml_path=None, message=f'Cannot find the input "{settings.enabled_by}" for the enabled_by of {input_name}.', function_name=func_name, location=func_path, key="function_name", ) if settings.dynamic_list: dynamic_func_inputs = inspect.signature(settings.dynamic_list._func_obj).parameters has_kwargs = any([param.kind == param.VAR_KEYWORD for param in dynamic_func_inputs.values()]) required_inputs = [ k for k, v in dynamic_func_inputs.items() if v.default is inspect.Parameter.empty and v.kind != v.VAR_KEYWORD and k not in SKIP_FUNC_PARAMS ] if settings.dynamic_list._input_mapping: # Validate input mapping in dynamic_list for func_input, reference_input in settings.dynamic_list._input_mapping.items(): # Check invalid input name of dynamic list function if not has_kwargs and func_input not in dynamic_func_inputs: validate_result.append_error( yaml_path=None, message=f"Cannot find {func_input} in the inputs of " f"dynamic_list func {settings.dynamic_list.func_path}", function_name=func_name, location=func_path, key="function_name", ) # Check invalid input name of tool if reference_input not in tool_inputs: validate_result.append_error( yaml_path=None, message=f"Cannot find {reference_input} in the tool inputs.", function_name=func_name, location=func_path, key="function_name", ) if func_input in required_inputs: required_inputs.remove(func_input) # Check required input of dynamic_list function if len(required_inputs) != 0: validate_result.append_error( yaml_path=None, message=f"Missing required input(s) of dynamic_list function: {required_inputs}", function_name=func_name, location=func_path, key="function_name", ) return validate_result def _serialize_tool(self, tool, input_settings, extra_info, tool_func): """ Serialize tool obj to dict. :param tool_func: Package tool function :type tool_func: callable :param initialize_inputs: Initialize inputs of package tool :type initialize_inputs: Dict[str, obj] :return: package tool name, serialized tool :rtype: str, Dict[str, str] """ tool_func_name = tool_func.__name__ tool_script_path = inspect.getsourcefile(getattr(tool_func, "__original_function", tool_func)) validate_result = self._validate_tool_function( tool, input_settings, extra_info, tool_func_name, tool_script_path ) if validate_result.passed: construct_tool = asdict(tool, dict_factory=lambda x: {k: v for (k, v) in x if v}) if extra_info: if ICON in extra_info: extra_info[ICON] = self._serialize_icon_data(extra_info["icon"]) if ICON_LIGHT in extra_info: icon = extra_info.get("icon", {}) icon["light"] = self._serialize_icon_data(extra_info[ICON_LIGHT]) extra_info[ICON] = icon if ICON_DARK in extra_info: icon = extra_info.get("icon", {}) icon["dark"] = self._serialize_icon_data(extra_info[ICON_DARK]) extra_info[ICON] = icon construct_tool.update(extra_info) # Update tool input settings if input_settings: tool_inputs = construct_tool.get("inputs", {}) generated_by_inputs = {} for input_name, settings in input_settings.items(): tool_inputs[input_name].update(asdict_without_none(settings)) if settings.generated_by: generated_by_inputs.update(settings.generated_by._input_settings) tool_inputs.update(generated_by_inputs) schema_validate_result = self._validate_tool_schema(construct_tool, tool_func_name, tool_script_path) validate_result.merge_with(schema_validate_result) return construct_tool, validate_result else: return {}, validate_result def _serialize_icon_data(self, icon): if not Path(icon).exists(): raise UserErrorException(f"Cannot find the icon path {icon}.") return self._serialize_image_data(icon) @staticmethod def _serialize_image_data(image_path): """Serialize image to base64.""" from PIL import Image as PIL_Image with open(image_path, "rb") as image_file: # Create a BytesIO object from the image file image_data = io.BytesIO(image_file.read()) # Open the image and resize it img = PIL_Image.open(image_data) if img.size != (16, 16): img = img.resize((16, 16), PIL_Image.Resampling.LANCZOS) buffered = io.BytesIO() img.save(buffered, format="PNG") icon_image = Image(buffered.getvalue(), mime_type="image/png") image_url = convert_multimedia_data_to_base64(icon_image, with_type=True) return image_url @staticmethod def _is_package_tool(package) -> bool: import pkg_resources try: distribution = pkg_resources.get_distribution(package.__name__) entry_points = distribution.get_entry_map() return PACKAGE_TOOLS_ENTRY in entry_points except Exception as e: logger.debug(f"Failed to check {package.__name__} is a package tool, raise {e}") return False @monitor_operation(activity_name="pf.tools.list", activity_type=ActivityType.PUBLICAPI) def list( self, flow: Union[str, PathLike] = None, ): """ List all package tools in the environment and code tools in the flow. :param flow: path to the flow directory :type flow: Union[str, PathLike] :return: Dict of package tools and code tools info. :rtype: Dict[str, Dict] """ from promptflow._sdk._pf_client import PFClient local_client = PFClient() package_tools = collect_package_tools() if flow: tools, _ = local_client.flows._generate_tools_meta(flow) else: tools = {"package": {}, "code": {}} tools["package"].update(package_tools) return tools @monitor_operation(activity_name="pf.tools.validate", activity_type=ActivityType.PUBLICAPI) def validate( self, source: Union[str, callable, PathLike], *, raise_error: bool = False, **kwargs ) -> ValidationResult: """ Validate tool. :param source: path to the package tool directory or tool script :type source: Union[str, callable, PathLike] :param raise_error: whether raise error when validation failed :type raise_error: bool :return: a validation result object :rtype: ValidationResult """ def validate_tool_function(tool_func, init_inputs=None): tool, input_settings, extra_info = self._parse_tool_from_func(tool_func, init_inputs) _, validate_result = self._serialize_tool(tool, input_settings, extra_info, source) validate_result._set_extra_info(TOTAL_COUNT, 1) validate_result._set_extra_info(INVALID_COUNT, 0 if validate_result.passed else 1) return validate_result if callable(source): from promptflow._core.tool import ToolProvider if isinstance(source, type) and issubclass(source, ToolProvider): # Validate tool class validate_result = ValidationResultBuilder.success() for _, method in inspect.getmembers(source): if is_tool(method): initialize_inputs = source.get_initialize_inputs() func_validate_result = validate_tool_function(method, initialize_inputs) self._merge_validate_result(validate_result, func_validate_result) else: # Validate tool function validate_result = validate_tool_function(source) elif isinstance(source, (str, PathLike)): # Validate tool script if not Path(source).exists(): raise UserErrorException(f"Cannot find the tool script {source}") # Load the module from the file path module_name = Path(source).stem spec = importlib.util.spec_from_file_location(module_name, source) module = importlib.util.module_from_spec(spec) # Load the module's code spec.loader.exec_module(module) _, validate_result = self._generate_tool_meta(module) elif isinstance(source, ModuleType): # Validate package tool if not self._is_package_tool(source): raise UserErrorException("Invalid package tool.") _, validate_result = self._list_tool_meta_in_package(package_name=source.__name__) else: raise UserErrorException( "Provide invalid source, tool validation source supports script tool, " "package tool and tool script path." ) def tool_validate_error_func(msg, _): return ToolValidationError(message=msg) validate_result.try_raise(raise_error=raise_error, error_func=tool_validate_error_func) return validate_result
promptflow/src/promptflow/promptflow/_sdk/operations/_tool_operations.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/operations/_tool_operations.py", "repo_id": "promptflow", "token_count": 10170 }
35
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- from typing import AbstractSet, Any, Dict, List, Mapping from promptflow._utils.logger_utils import logger from promptflow.contracts.flow import Flow, FlowInputDefinition, InputValueType from promptflow.contracts.run_info import FlowRunInfo, Status def apply_default_value_for_input(inputs: Dict[str, FlowInputDefinition], line_inputs: Mapping) -> Dict[str, Any]: updated_inputs = dict(line_inputs or {}) for key, value in inputs.items(): if key not in updated_inputs and (value and value.default is not None): updated_inputs[key] = value.default return updated_inputs def handle_line_failures(run_infos: List[FlowRunInfo], raise_on_line_failure: bool = False): """Handle line failures in batch run""" failed = [i for i, r in enumerate(run_infos) if r.status == Status.Failed] failed_msg = None if len(failed) > 0: failed_indexes = ",".join([str(i) for i in failed]) first_fail_exception = run_infos[failed[0]].error["message"] if raise_on_line_failure: failed_msg = "Flow run failed due to the error: " + first_fail_exception raise Exception(failed_msg) failed_msg = ( f"{len(failed)}/{len(run_infos)} flow run failed, indexes: [{failed_indexes}]," f" exception of index {failed[0]}: {first_fail_exception}" ) logger.error(failed_msg) def get_aggregation_inputs_properties(flow: Flow) -> AbstractSet[str]: """Return the serialized InputAssignment of the aggregation nodes inputs. For example, an aggregation node refers the outputs of a node named "grade", then this function will return set("${grade.output}"). """ normal_node_names = {node.name for node in flow.nodes if flow.is_normal_node(node.name)} properties = set() for node in flow.nodes: if node.name in normal_node_names: continue for value in node.inputs.values(): if not value.value_type == InputValueType.NODE_REFERENCE: continue if value.value in normal_node_names: properties.add(value.serialize()) return properties def collect_lines(indexes: List[int], kvs: Mapping[str, List]) -> Mapping[str, List]: """Collect the values from the kvs according to the indexes.""" return {k: [v[i] for i in indexes] for k, v in kvs.items()}
promptflow/src/promptflow/promptflow/_utils/execution_utils.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_utils/execution_utils.py", "repo_id": "promptflow", "token_count": 923 }
36
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- __path__ = __import__("pkgutil").extend_path(__path__, __name__) # type: ignore from ._component import COMMAND_COMPONENT_SPEC_TEMPLATE, DEFAULT_PYTHON_VERSION from ._flow import FlowJobType, FlowType __all__ = ["FlowJobType", "FlowType", "DEFAULT_PYTHON_VERSION", "COMMAND_COMPONENT_SPEC_TEMPLATE"]
promptflow/src/promptflow/promptflow/azure/_constants/__init__.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/azure/_constants/__init__.py", "repo_id": "promptflow", "token_count": 138 }
37
# coding=utf-8 # -------------------------------------------------------------------------- # Code generated by Microsoft (R) AutoRest Code Generator (autorest: 3.8.0, generator: @autorest/[email protected]) # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- try: from ._models_py3 import ACIAdvanceSettings from ._models_py3 import AEVAComputeConfiguration from ._models_py3 import AEVAResourceConfiguration from ._models_py3 import AISuperComputerConfiguration from ._models_py3 import AISuperComputerScalePolicy from ._models_py3 import AISuperComputerStorageReferenceConfiguration from ._models_py3 import AKSAdvanceSettings from ._models_py3 import AKSReplicaStatus from ._models_py3 import AMLComputeConfiguration from ._models_py3 import APCloudConfiguration from ._models_py3 import Activate from ._models_py3 import AdditionalErrorInfo from ._models_py3 import AdhocTriggerScheduledCommandJobRequest from ._models_py3 import AdhocTriggerScheduledSparkJobRequest from ._models_py3 import AetherAPCloudConfiguration from ._models_py3 import AetherAmlDataset from ._models_py3 import AetherAmlSparkCloudSetting from ._models_py3 import AetherArgumentAssignment from ._models_py3 import AetherAssetDefinition from ._models_py3 import AetherAssetOutputSettings from ._models_py3 import AetherAutoFeaturizeConfiguration from ._models_py3 import AetherAutoMLComponentConfiguration from ._models_py3 import AetherAutoTrainConfiguration from ._models_py3 import AetherAzureBlobReference from ._models_py3 import AetherAzureDataLakeGen2Reference from ._models_py3 import AetherAzureDataLakeReference from ._models_py3 import AetherAzureDatabaseReference from ._models_py3 import AetherAzureFilesReference from ._models_py3 import AetherBatchAiComputeInfo from ._models_py3 import AetherBuildArtifactInfo from ._models_py3 import AetherCloudBuildDropPathInfo from ._models_py3 import AetherCloudBuildInfo from ._models_py3 import AetherCloudBuildQueueInfo from ._models_py3 import AetherCloudPrioritySetting from ._models_py3 import AetherCloudSettings from ._models_py3 import AetherColumnTransformer from ._models_py3 import AetherComputeConfiguration from ._models_py3 import AetherComputeSetting from ._models_py3 import AetherControlInput from ._models_py3 import AetherControlOutput from ._models_py3 import AetherCopyDataTask from ._models_py3 import AetherCosmosReference from ._models_py3 import AetherCreatedBy from ._models_py3 import AetherCustomReference from ._models_py3 import AetherDBFSReference from ._models_py3 import AetherDataLocation from ._models_py3 import AetherDataLocationReuseCalculationFields from ._models_py3 import AetherDataPath from ._models_py3 import AetherDataReference from ._models_py3 import AetherDataSetDefinition from ._models_py3 import AetherDataSetDefinitionValue from ._models_py3 import AetherDataSettings from ._models_py3 import AetherDataTransferCloudConfiguration from ._models_py3 import AetherDataTransferSink from ._models_py3 import AetherDataTransferSource from ._models_py3 import AetherDataTransferV2CloudSetting from ._models_py3 import AetherDatabaseSink from ._models_py3 import AetherDatabaseSource from ._models_py3 import AetherDatabricksComputeInfo from ._models_py3 import AetherDatasetOutput from ._models_py3 import AetherDatasetOutputOptions from ._models_py3 import AetherDatasetRegistration from ._models_py3 import AetherDatastoreSetting from ._models_py3 import AetherDoWhileControlFlowInfo from ._models_py3 import AetherDoWhileControlFlowRunSettings from ._models_py3 import AetherDockerSettingConfiguration from ._models_py3 import AetherEntityInterfaceDocumentation from ._models_py3 import AetherEntrySetting from ._models_py3 import AetherEnvironmentConfiguration from ._models_py3 import AetherEsCloudConfiguration from ._models_py3 import AetherExportDataTask from ._models_py3 import AetherFeaturizationSettings from ._models_py3 import AetherFileSystem from ._models_py3 import AetherForecastHorizon from ._models_py3 import AetherForecastingSettings from ._models_py3 import AetherGeneralSettings from ._models_py3 import AetherGlobsOptions from ._models_py3 import AetherGraphControlNode from ._models_py3 import AetherGraphControlReferenceNode from ._models_py3 import AetherGraphDatasetNode from ._models_py3 import AetherGraphEdge from ._models_py3 import AetherGraphEntity from ._models_py3 import AetherGraphModuleNode from ._models_py3 import AetherGraphReferenceNode from ._models_py3 import AetherHdfsReference from ._models_py3 import AetherHdiClusterComputeInfo from ._models_py3 import AetherHdiRunConfiguration from ._models_py3 import AetherHyperDriveConfiguration from ._models_py3 import AetherIdentitySetting from ._models_py3 import AetherImportDataTask from ._models_py3 import AetherInputSetting from ._models_py3 import AetherInteractiveConfig from ._models_py3 import AetherK8SConfiguration from ._models_py3 import AetherLegacyDataPath from ._models_py3 import AetherLimitSettings from ._models_py3 import AetherMlcComputeInfo from ._models_py3 import AetherModuleEntity from ._models_py3 import AetherModuleExtendedProperties from ._models_py3 import AetherNCrossValidations from ._models_py3 import AetherOutputSetting from ._models_py3 import AetherParallelForControlFlowInfo from ._models_py3 import AetherParameterAssignment from ._models_py3 import AetherPhillyHdfsReference from ._models_py3 import AetherPortInfo from ._models_py3 import AetherPriorityConfig from ._models_py3 import AetherPriorityConfiguration from ._models_py3 import AetherRegisteredDataSetReference from ._models_py3 import AetherRemoteDockerComputeInfo from ._models_py3 import AetherResourceAssignment from ._models_py3 import AetherResourceAttributeAssignment from ._models_py3 import AetherResourceAttributeDefinition from ._models_py3 import AetherResourceConfig from ._models_py3 import AetherResourceConfiguration from ._models_py3 import AetherResourceModel from ._models_py3 import AetherResourcesSetting from ._models_py3 import AetherSavedDataSetReference from ._models_py3 import AetherScopeCloudConfiguration from ._models_py3 import AetherSeasonality from ._models_py3 import AetherSqlDataPath from ._models_py3 import AetherStackEnsembleSettings from ._models_py3 import AetherStoredProcedureParameter from ._models_py3 import AetherStructuredInterface from ._models_py3 import AetherStructuredInterfaceInput from ._models_py3 import AetherStructuredInterfaceOutput from ._models_py3 import AetherStructuredInterfaceParameter from ._models_py3 import AetherSubGraphConfiguration from ._models_py3 import AetherSweepEarlyTerminationPolicy from ._models_py3 import AetherSweepSettings from ._models_py3 import AetherSweepSettingsLimits from ._models_py3 import AetherTargetLags from ._models_py3 import AetherTargetRollingWindowSize from ._models_py3 import AetherTargetSelectorConfiguration from ._models_py3 import AetherTestDataSettings from ._models_py3 import AetherTorchDistributedConfiguration from ._models_py3 import AetherTrainingOutput from ._models_py3 import AetherTrainingSettings from ._models_py3 import AetherUIAzureOpenAIDeploymentNameSelector from ._models_py3 import AetherUIAzureOpenAIModelCapabilities from ._models_py3 import AetherUIColumnPicker from ._models_py3 import AetherUIJsonEditor from ._models_py3 import AetherUIParameterHint from ._models_py3 import AetherUIPromptFlowConnectionSelector from ._models_py3 import AetherValidationDataSettings from ._models_py3 import AetherVsoBuildArtifactInfo from ._models_py3 import AetherVsoBuildDefinitionInfo from ._models_py3 import AetherVsoBuildInfo from ._models_py3 import AmlDataset from ._models_py3 import AmlK8SConfiguration from ._models_py3 import AmlK8SPriorityConfiguration from ._models_py3 import AmlSparkCloudSetting from ._models_py3 import ApiAndParameters from ._models_py3 import ApplicationEndpointConfiguration from ._models_py3 import ArgumentAssignment from ._models_py3 import Asset from ._models_py3 import AssetDefinition from ._models_py3 import AssetNameAndVersionIdentifier from ._models_py3 import AssetOutputSettings from ._models_py3 import AssetOutputSettingsParameter from ._models_py3 import AssetPublishResult from ._models_py3 import AssetPublishSingleRegionResult from ._models_py3 import AssetTypeMetaInfo from ._models_py3 import AssetVersionPublishRequest from ._models_py3 import AssignedUser from ._models_py3 import AuthKeys from ._models_py3 import AutoClusterComputeSpecification from ._models_py3 import AutoDeleteSetting from ._models_py3 import AutoFeaturizeConfiguration from ._models_py3 import AutoMLComponentConfiguration from ._models_py3 import AutoScaler from ._models_py3 import AutoTrainConfiguration from ._models_py3 import AutologgerSettings from ._models_py3 import AvailabilityResponse from ._models_py3 import AzureBlobReference from ._models_py3 import AzureDataLakeGen2Reference from ._models_py3 import AzureDataLakeReference from ._models_py3 import AzureDatabaseReference from ._models_py3 import AzureFilesReference from ._models_py3 import AzureMLModuleVersionDescriptor from ._models_py3 import AzureOpenAIDeploymentDto from ._models_py3 import AzureOpenAIModelCapabilities from ._models_py3 import BatchAiComputeInfo from ._models_py3 import BatchDataInput from ._models_py3 import BatchExportComponentSpecResponse from ._models_py3 import BatchExportRawComponentResponse from ._models_py3 import BatchGetComponentHashesRequest from ._models_py3 import BatchGetComponentRequest from ._models_py3 import Binding from ._models_py3 import BulkTestDto from ._models_py3 import CloudError from ._models_py3 import CloudPrioritySetting from ._models_py3 import CloudSettings from ._models_py3 import ColumnTransformer from ._models_py3 import CommandJob from ._models_py3 import CommandJobLimits from ._models_py3 import CommandReturnCodeConfig from ._models_py3 import ComponentConfiguration from ._models_py3 import ComponentInput from ._models_py3 import ComponentJob from ._models_py3 import ComponentJobInput from ._models_py3 import ComponentJobOutput from ._models_py3 import ComponentNameAndDefaultVersion from ._models_py3 import ComponentNameMetaInfo from ._models_py3 import ComponentOutput from ._models_py3 import ComponentPreflightResult from ._models_py3 import ComponentSpecMetaInfo from ._models_py3 import ComponentUpdateRequest from ._models_py3 import ComponentValidationRequest from ._models_py3 import ComponentValidationResponse from ._models_py3 import Compute from ._models_py3 import ComputeConfiguration from ._models_py3 import ComputeContract from ._models_py3 import ComputeIdentityContract from ._models_py3 import ComputeIdentityDto from ._models_py3 import ComputeInfo from ._models_py3 import ComputeProperties from ._models_py3 import ComputeRPUserAssignedIdentity from ._models_py3 import ComputeRequest from ._models_py3 import ComputeSetting from ._models_py3 import ComputeStatus from ._models_py3 import ComputeStatusDetail from ._models_py3 import ComputeWarning from ._models_py3 import ConnectionConfigSpec from ._models_py3 import ConnectionDto from ._models_py3 import ConnectionEntity from ._models_py3 import ConnectionOverrideSetting from ._models_py3 import ConnectionSpec from ._models_py3 import ContainerInstanceConfiguration from ._models_py3 import ContainerRegistry from ._models_py3 import ContainerResourceRequirements from ._models_py3 import ControlInput from ._models_py3 import ControlOutput from ._models_py3 import CopyDataTask from ._models_py3 import CreateFlowFromSampleRequest from ._models_py3 import CreateFlowRequest from ._models_py3 import CreateFlowRuntimeRequest from ._models_py3 import CreateFlowSessionRequest from ._models_py3 import CreateInferencePipelineRequest from ._models_py3 import CreateOrUpdateConnectionRequest from ._models_py3 import CreateOrUpdateConnectionRequestDto from ._models_py3 import CreatePipelineDraftRequest from ._models_py3 import CreatePipelineJobScheduleDto from ._models_py3 import CreatePublishedPipelineRequest from ._models_py3 import CreateRealTimeEndpointRequest from ._models_py3 import CreatedBy from ._models_py3 import CreatedFromDto from ._models_py3 import CreationContext from ._models_py3 import Cron from ._models_py3 import CustomConnectionConfig from ._models_py3 import CustomReference from ._models_py3 import DBFSReference from ._models_py3 import Data from ._models_py3 import DataInfo from ._models_py3 import DataLocation from ._models_py3 import DataPath from ._models_py3 import DataPathParameter from ._models_py3 import DataPortDto from ._models_py3 import DataReference from ._models_py3 import DataReferenceConfiguration from ._models_py3 import DataSetDefinition from ._models_py3 import DataSetDefinitionValue from ._models_py3 import DataSetPathParameter from ._models_py3 import DataSettings from ._models_py3 import DataTransferCloudConfiguration from ._models_py3 import DataTransferSink from ._models_py3 import DataTransferSource from ._models_py3 import DataTransferV2CloudSetting from ._models_py3 import DataTypeCreationInfo from ._models_py3 import DatabaseSink from ._models_py3 import DatabaseSource from ._models_py3 import DatabricksComputeInfo from ._models_py3 import DatabricksConfiguration from ._models_py3 import DatacacheConfiguration from ._models_py3 import DatasetIdentifier from ._models_py3 import DatasetInputDetails from ._models_py3 import DatasetLineage from ._models_py3 import DatasetOutput from ._models_py3 import DatasetOutputDetails from ._models_py3 import DatasetOutputOptions from ._models_py3 import DatasetRegistration from ._models_py3 import DatasetRegistrationOptions from ._models_py3 import DatastoreSetting from ._models_py3 import DbfsStorageInfoDto from ._models_py3 import DebugInfoResponse from ._models_py3 import DeployFlowRequest from ._models_py3 import DeploymentInfo from ._models_py3 import DistributionConfiguration from ._models_py3 import DistributionParameter from ._models_py3 import DoWhileControlFlowInfo from ._models_py3 import DoWhileControlFlowRunSettings from ._models_py3 import DockerBuildContext from ._models_py3 import DockerConfiguration from ._models_py3 import DockerImagePlatform from ._models_py3 import DockerSection from ._models_py3 import DockerSettingConfiguration from ._models_py3 import DownloadResourceInfo from ._models_py3 import EPRPipelineRunErrorClassificationRequest from ._models_py3 import EndpointSetting from ._models_py3 import EntityInterface from ._models_py3 import EntrySetting from ._models_py3 import EnumParameterRule from ._models_py3 import EnvironmentConfiguration from ._models_py3 import EnvironmentDefinition from ._models_py3 import EnvironmentDefinitionDto from ._models_py3 import ErrorAdditionalInfo from ._models_py3 import ErrorResponse from ._models_py3 import EsCloudConfiguration from ._models_py3 import EvaluationFlowRunSettings from ._models_py3 import ExampleRequest from ._models_py3 import ExecutionContextDto from ._models_py3 import ExecutionDataLocation from ._models_py3 import ExecutionDataPath from ._models_py3 import ExecutionGlobsOptions from ._models_py3 import ExperimentComputeMetaInfo from ._models_py3 import ExperimentInfo from ._models_py3 import ExportComponentMetaInfo from ._models_py3 import ExportDataTask from ._models_py3 import FeaturizationSettings from ._models_py3 import FeedDto from ._models_py3 import FeedDtoSupportedAssetTypes from ._models_py3 import FileSystem from ._models_py3 import Flow from ._models_py3 import FlowAnnotations from ._models_py3 import FlowBaseDto from ._models_py3 import FlowDto from ._models_py3 import FlowEnvironment from ._models_py3 import FlowFeature from ._models_py3 import FlowFeatureState from ._models_py3 import FlowGraph from ._models_py3 import FlowGraphAnnotationNode from ._models_py3 import FlowGraphLayout from ._models_py3 import FlowGraphReference from ._models_py3 import FlowIndexEntity from ._models_py3 import FlowInputDefinition from ._models_py3 import FlowNode from ._models_py3 import FlowNodeLayout from ._models_py3 import FlowNodeVariant from ._models_py3 import FlowOutputDefinition from ._models_py3 import FlowProperties from ._models_py3 import FlowRunBasePath from ._models_py3 import FlowRunInfo from ._models_py3 import FlowRunResult from ._models_py3 import FlowRunSettings from ._models_py3 import FlowRuntimeCapability from ._models_py3 import FlowRuntimeDto from ._models_py3 import FlowSampleDto from ._models_py3 import FlowSessionDto from ._models_py3 import FlowSnapshot from ._models_py3 import FlowSubmitRunSettings from ._models_py3 import FlowTestInfo from ._models_py3 import FlowTestStorageSetting from ._models_py3 import FlowToolSettingParameter from ._models_py3 import FlowToolsDto from ._models_py3 import FlowVariantNode from ._models_py3 import ForecastHorizon from ._models_py3 import ForecastingSettings from ._models_py3 import GeneralSettings from ._models_py3 import GeneratePipelineComponentRequest from ._models_py3 import GenerateToolMetaRequest from ._models_py3 import GetDynamicListRequest from ._models_py3 import GetRunDataResultDto from ._models_py3 import GetTrainingSessionDto from ._models_py3 import GlobalJobDispatcherConfiguration from ._models_py3 import GlobsOptions from ._models_py3 import GraphAnnotationNode from ._models_py3 import GraphControlNode from ._models_py3 import GraphControlReferenceNode from ._models_py3 import GraphDatasetNode from ._models_py3 import GraphDraftEntity from ._models_py3 import GraphEdge from ._models_py3 import GraphLayout from ._models_py3 import GraphLayoutCreationInfo from ._models_py3 import GraphModuleNode from ._models_py3 import GraphModuleNodeRunSetting from ._models_py3 import GraphModuleNodeUIInputSetting from ._models_py3 import GraphNodeStatusInfo from ._models_py3 import GraphReferenceNode from ._models_py3 import HdfsReference from ._models_py3 import HdiClusterComputeInfo from ._models_py3 import HdiConfiguration from ._models_py3 import HdiRunConfiguration from ._models_py3 import HistoryConfiguration from ._models_py3 import HyperDriveConfiguration from ._models_py3 import ICheckableLongRunningOperationResponse from ._models_py3 import IdentityConfiguration from ._models_py3 import IdentitySetting from ._models_py3 import ImportDataTask from ._models_py3 import IndexedErrorResponse from ._models_py3 import InitScriptInfoDto from ._models_py3 import InnerErrorDetails from ._models_py3 import InnerErrorResponse from ._models_py3 import InputAsset from ._models_py3 import InputData from ._models_py3 import InputDataBinding from ._models_py3 import InputDefinition from ._models_py3 import InputOutputPortMetadata from ._models_py3 import InputSetting from ._models_py3 import IntellectualPropertyPublisherInformation from ._models_py3 import InteractiveConfig from ._models_py3 import InteractiveConfiguration from ._models_py3 import JobCost from ._models_py3 import JobEndpoint from ._models_py3 import JobInput from ._models_py3 import JobOutput from ._models_py3 import JobOutputArtifacts from ._models_py3 import JobScheduleDto from ._models_py3 import K8SConfiguration from ._models_py3 import KeyValuePairComponentNameMetaInfoErrorResponse from ._models_py3 import KeyValuePairComponentNameMetaInfoModuleDto from ._models_py3 import KeyValuePairStringObject from ._models_py3 import KubernetesConfiguration from ._models_py3 import Kwarg from ._models_py3 import LegacyDataPath from ._models_py3 import LimitSettings from ._models_py3 import LinkedADBWorkspaceMetadata from ._models_py3 import LinkedPipelineInfo from ._models_py3 import LoadFlowAsComponentRequest from ._models_py3 import LogRunTerminatedEventDto from ._models_py3 import LongRunningOperationUriResponse from ._models_py3 import LongRunningUpdateRegistryComponentRequest from ._models_py3 import ManagedServiceIdentity from ._models_py3 import MavenLibraryDto from ._models_py3 import MetricProperties from ._models_py3 import MetricSchemaDto from ._models_py3 import MetricSchemaPropertyDto from ._models_py3 import MetricV2Dto from ._models_py3 import MetricV2Value from ._models_py3 import MfeInternalAutologgerSettings from ._models_py3 import MfeInternalIdentityConfiguration from ._models_py3 import MfeInternalNodes from ._models_py3 import MfeInternalOutputData from ._models_py3 import MfeInternalSecretConfiguration from ._models_py3 import MfeInternalUriReference from ._models_py3 import MfeInternalV20211001ComponentJob from ._models_py3 import MinMaxParameterRule from ._models_py3 import MlcComputeInfo from ._models_py3 import ModelDto from ._models_py3 import ModelManagementErrorResponse from ._models_py3 import ModifyPipelineJobScheduleDto from ._models_py3 import ModuleDto from ._models_py3 import ModuleDtoWithErrors from ._models_py3 import ModuleDtoWithValidateStatus from ._models_py3 import ModuleEntity from ._models_py3 import ModulePythonInterface from ._models_py3 import MpiConfiguration from ._models_py3 import NCrossValidations from ._models_py3 import Node from ._models_py3 import NodeInputPort from ._models_py3 import NodeLayout from ._models_py3 import NodeOutputPort from ._models_py3 import NodePortInterface from ._models_py3 import NodeSource from ._models_py3 import NodeTelemetryMetaInfo from ._models_py3 import NodeVariant from ._models_py3 import Nodes from ._models_py3 import NoteBookTaskDto from ._models_py3 import NotificationSetting from ._models_py3 import ODataError from ._models_py3 import ODataErrorDetail from ._models_py3 import ODataErrorResponse from ._models_py3 import ODataInnerError from ._models_py3 import OutputData from ._models_py3 import OutputDataBinding from ._models_py3 import OutputDatasetLineage from ._models_py3 import OutputDefinition from ._models_py3 import OutputOptions from ._models_py3 import OutputSetting from ._models_py3 import OutputSettingSpec from ._models_py3 import PaginatedDataInfoList from ._models_py3 import PaginatedModelDtoList from ._models_py3 import PaginatedModuleDtoList from ._models_py3 import PaginatedPipelineDraftSummaryList from ._models_py3 import PaginatedPipelineEndpointSummaryList from ._models_py3 import PaginatedPipelineRunSummaryList from ._models_py3 import PaginatedPublishedPipelineSummaryList from ._models_py3 import ParallelForControlFlowInfo from ._models_py3 import ParallelTaskConfiguration from ._models_py3 import Parameter from ._models_py3 import ParameterAssignment from ._models_py3 import ParameterDefinition from ._models_py3 import PatchFlowRequest from ._models_py3 import Pipeline from ._models_py3 import PipelineDraft from ._models_py3 import PipelineDraftStepDetails from ._models_py3 import PipelineDraftSummary from ._models_py3 import PipelineEndpoint from ._models_py3 import PipelineEndpointSummary from ._models_py3 import PipelineGraph from ._models_py3 import PipelineInput from ._models_py3 import PipelineJob from ._models_py3 import PipelineJobRuntimeBasicSettings from ._models_py3 import PipelineJobScheduleDto from ._models_py3 import PipelineOutput from ._models_py3 import PipelineRun from ._models_py3 import PipelineRunGraphDetail from ._models_py3 import PipelineRunGraphStatus from ._models_py3 import PipelineRunProfile from ._models_py3 import PipelineRunStatus from ._models_py3 import PipelineRunStepDetails from ._models_py3 import PipelineRunSummary from ._models_py3 import PipelineStatus from ._models_py3 import PipelineStepRun from ._models_py3 import PipelineStepRunOutputs from ._models_py3 import PipelineSubDraft from ._models_py3 import PolicyValidationResponse from ._models_py3 import PortInfo from ._models_py3 import PortOutputInfo from ._models_py3 import PriorityConfig from ._models_py3 import PriorityConfiguration from ._models_py3 import PromoteDataSetRequest from ._models_py3 import ProviderEntity from ._models_py3 import PublishedPipeline from ._models_py3 import PublishedPipelineSummary from ._models_py3 import PyTorchConfiguration from ._models_py3 import PythonInterfaceMapping from ._models_py3 import PythonPyPiOrRCranLibraryDto from ._models_py3 import PythonSection from ._models_py3 import QueueingInfo from ._models_py3 import RCranPackage from ._models_py3 import RGitHubPackage from ._models_py3 import RSection from ._models_py3 import RawComponentDto from ._models_py3 import RayConfiguration from ._models_py3 import RealTimeEndpoint from ._models_py3 import RealTimeEndpointInfo from ._models_py3 import RealTimeEndpointStatus from ._models_py3 import RealTimeEndpointSummary from ._models_py3 import RealTimeEndpointTestRequest from ._models_py3 import Recurrence from ._models_py3 import RecurrencePattern from ._models_py3 import RecurrenceSchedule from ._models_py3 import RegenerateServiceKeysRequest from ._models_py3 import RegisterComponentMetaInfo from ._models_py3 import RegisterComponentMetaInfoExtraHashes from ._models_py3 import RegisterComponentMetaInfoIdentifierHashes from ._models_py3 import RegisterRegistryComponentMetaInfo from ._models_py3 import RegisterRegistryComponentMetaInfoExtraHashes from ._models_py3 import RegisterRegistryComponentMetaInfoIdentifierHashes from ._models_py3 import RegisteredDataSetReference from ._models_py3 import RegistrationOptions from ._models_py3 import RegistryBlobReferenceData from ._models_py3 import RegistryIdentity from ._models_py3 import Relationship from ._models_py3 import RemoteDockerComputeInfo from ._models_py3 import ResourceConfig from ._models_py3 import ResourceConfiguration from ._models_py3 import ResourcesSetting from ._models_py3 import RetrieveToolFuncResultRequest from ._models_py3 import RetryConfiguration from ._models_py3 import RootError from ._models_py3 import RunAnnotations from ._models_py3 import RunConfiguration from ._models_py3 import RunDatasetReference from ._models_py3 import RunDefinition from ._models_py3 import RunDetailsDto from ._models_py3 import RunDetailsWarningDto from ._models_py3 import RunDto from ._models_py3 import RunIndexEntity from ._models_py3 import RunIndexMetricSummary from ._models_py3 import RunIndexMetricSummarySystemObject from ._models_py3 import RunIndexResourceMetricSummary from ._models_py3 import RunMetricDto from ._models_py3 import RunMetricsTypesDto from ._models_py3 import RunProperties from ._models_py3 import RunSettingParameter from ._models_py3 import RunSettingParameterAssignment from ._models_py3 import RunSettingUIParameterHint from ._models_py3 import RunStatusPeriod from ._models_py3 import RunTypeV2 from ._models_py3 import RunTypeV2Index from ._models_py3 import RuntimeConfiguration from ._models_py3 import SampleMeta from ._models_py3 import SavePipelineDraftRequest from ._models_py3 import SavedDataSetReference from ._models_py3 import ScheduleBase from ._models_py3 import SchemaContractsCreatedBy from ._models_py3 import ScopeCloudConfiguration from ._models_py3 import Seasonality from ._models_py3 import SecretConfiguration from ._models_py3 import SegmentedResult1 from ._models_py3 import ServiceLogRequest from ._models_py3 import SessionApplication from ._models_py3 import SessionApplicationRunCommandResult from ._models_py3 import SessionProperties from ._models_py3 import SetupFlowSessionRequest from ._models_py3 import SharingScope from ._models_py3 import Snapshot from ._models_py3 import SnapshotInfo from ._models_py3 import SourceCodeDataReference from ._models_py3 import SparkConfiguration from ._models_py3 import SparkJarTaskDto from ._models_py3 import SparkJob from ._models_py3 import SparkJobEntry from ._models_py3 import SparkMavenPackage from ._models_py3 import SparkPythonTaskDto from ._models_py3 import SparkResourceConfiguration from ._models_py3 import SparkSection from ._models_py3 import SparkSubmitTaskDto from ._models_py3 import SqlDataPath from ._models_py3 import StackEnsembleSettings from ._models_py3 import StandbyPoolProperties from ._models_py3 import StandbyPoolResourceStatus from ._models_py3 import StartRunResult from ._models_py3 import StepRunProfile from ._models_py3 import StorageInfo from ._models_py3 import StoredProcedureParameter from ._models_py3 import Stream from ._models_py3 import StructuredInterface from ._models_py3 import StructuredInterfaceInput from ._models_py3 import StructuredInterfaceOutput from ._models_py3 import StructuredInterfaceParameter from ._models_py3 import StudioMigrationInfo from ._models_py3 import SubGraphConcatenateAssignment from ._models_py3 import SubGraphConfiguration from ._models_py3 import SubGraphConnectionInfo from ._models_py3 import SubGraphDataPathParameterAssignment from ._models_py3 import SubGraphInfo from ._models_py3 import SubGraphParameterAssignment from ._models_py3 import SubGraphPortInfo from ._models_py3 import SubPipelineDefinition from ._models_py3 import SubPipelineParameterAssignment from ._models_py3 import SubPipelinesInfo from ._models_py3 import SubStatusPeriod from ._models_py3 import SubmitBulkRunRequest from ._models_py3 import SubmitBulkRunResponse from ._models_py3 import SubmitFlowRequest from ._models_py3 import SubmitPipelineRunRequest from ._models_py3 import SweepEarlyTerminationPolicy from ._models_py3 import SweepSettings from ._models_py3 import SweepSettingsLimits from ._models_py3 import SystemData from ._models_py3 import SystemMeta from ._models_py3 import SystemMetaExtraHashes from ._models_py3 import SystemMetaIdentifierHashes from ._models_py3 import TargetLags from ._models_py3 import TargetRollingWindowSize from ._models_py3 import TargetSelectorConfiguration from ._models_py3 import Task from ._models_py3 import TaskControlFlowInfo from ._models_py3 import TaskReuseInfo from ._models_py3 import TensorflowConfiguration from ._models_py3 import TestDataSettings from ._models_py3 import Tool from ._models_py3 import ToolFuncResponse from ._models_py3 import ToolInputDynamicList from ._models_py3 import ToolInputGeneratedBy from ._models_py3 import ToolMetaDto from ._models_py3 import ToolSetting from ._models_py3 import ToolSourceMeta from ._models_py3 import TorchDistributedConfiguration from ._models_py3 import TrainingDiagnosticConfiguration from ._models_py3 import TrainingOutput from ._models_py3 import TrainingSettings from ._models_py3 import TriggerAsyncOperationStatus from ._models_py3 import TuningNodeSetting from ._models_py3 import TypedAssetReference from ._models_py3 import UIAzureOpenAIDeploymentNameSelector from ._models_py3 import UIAzureOpenAIModelCapabilities from ._models_py3 import UIColumnPicker from ._models_py3 import UIComputeSelection from ._models_py3 import UIHyperparameterConfiguration from ._models_py3 import UIInputSetting from ._models_py3 import UIJsonEditor from ._models_py3 import UIParameterHint from ._models_py3 import UIPromptFlowConnectionSelector from ._models_py3 import UIWidgetMetaInfo from ._models_py3 import UIYamlEditor from ._models_py3 import UnversionedEntityRequestDto from ._models_py3 import UnversionedEntityResponseDto from ._models_py3 import UnversionedRebuildIndexDto from ._models_py3 import UnversionedRebuildResponseDto from ._models_py3 import UpdateComponentRequest from ._models_py3 import UpdateFlowRequest from ._models_py3 import UpdateFlowRuntimeRequest from ._models_py3 import UpdateRegistryComponentRequest from ._models_py3 import UploadOptions from ._models_py3 import UriReference from ._models_py3 import User from ._models_py3 import UserAssignedIdentity from ._models_py3 import ValidationDataSettings from ._models_py3 import VariantNode from ._models_py3 import WebServiceComputeMetaInfo from ._models_py3 import WebServicePort from ._models_py3 import Webhook from ._models_py3 import WorkspaceConnectionSpec except (SyntaxError, ImportError): from ._models import ACIAdvanceSettings # type: ignore from ._models import AEVAComputeConfiguration # type: ignore from ._models import AEVAResourceConfiguration # type: ignore from ._models import AISuperComputerConfiguration # type: ignore from ._models import AISuperComputerScalePolicy # type: ignore from ._models import AISuperComputerStorageReferenceConfiguration # type: ignore from ._models import AKSAdvanceSettings # type: ignore from ._models import AKSReplicaStatus # type: ignore from ._models import AMLComputeConfiguration # type: ignore from ._models import APCloudConfiguration # type: ignore from ._models import Activate # type: ignore from ._models import AdditionalErrorInfo # type: ignore from ._models import AdhocTriggerScheduledCommandJobRequest # type: ignore from ._models import AdhocTriggerScheduledSparkJobRequest # type: ignore from ._models import AetherAPCloudConfiguration # type: ignore from ._models import AetherAmlDataset # type: ignore from ._models import AetherAmlSparkCloudSetting # type: ignore from ._models import AetherArgumentAssignment # type: ignore from ._models import AetherAssetDefinition # type: ignore from ._models import AetherAssetOutputSettings # type: ignore from ._models import AetherAutoFeaturizeConfiguration # type: ignore from ._models import AetherAutoMLComponentConfiguration # type: ignore from ._models import AetherAutoTrainConfiguration # type: ignore from ._models import AetherAzureBlobReference # type: ignore from ._models import AetherAzureDataLakeGen2Reference # type: ignore from ._models import AetherAzureDataLakeReference # type: ignore from ._models import AetherAzureDatabaseReference # type: ignore from ._models import AetherAzureFilesReference # type: ignore from ._models import AetherBatchAiComputeInfo # type: ignore from ._models import AetherBuildArtifactInfo # type: ignore from ._models import AetherCloudBuildDropPathInfo # type: ignore from ._models import AetherCloudBuildInfo # type: ignore from ._models import AetherCloudBuildQueueInfo # type: ignore from ._models import AetherCloudPrioritySetting # type: ignore from ._models import AetherCloudSettings # type: ignore from ._models import AetherColumnTransformer # type: ignore from ._models import AetherComputeConfiguration # type: ignore from ._models import AetherComputeSetting # type: ignore from ._models import AetherControlInput # type: ignore from ._models import AetherControlOutput # type: ignore from ._models import AetherCopyDataTask # type: ignore from ._models import AetherCosmosReference # type: ignore from ._models import AetherCreatedBy # type: ignore from ._models import AetherCustomReference # type: ignore from ._models import AetherDBFSReference # type: ignore from ._models import AetherDataLocation # type: ignore from ._models import AetherDataLocationReuseCalculationFields # type: ignore from ._models import AetherDataPath # type: ignore from ._models import AetherDataReference # type: ignore from ._models import AetherDataSetDefinition # type: ignore from ._models import AetherDataSetDefinitionValue # type: ignore from ._models import AetherDataSettings # type: ignore from ._models import AetherDataTransferCloudConfiguration # type: ignore from ._models import AetherDataTransferSink # type: ignore from ._models import AetherDataTransferSource # type: ignore from ._models import AetherDataTransferV2CloudSetting # type: ignore from ._models import AetherDatabaseSink # type: ignore from ._models import AetherDatabaseSource # type: ignore from ._models import AetherDatabricksComputeInfo # type: ignore from ._models import AetherDatasetOutput # type: ignore from ._models import AetherDatasetOutputOptions # type: ignore from ._models import AetherDatasetRegistration # type: ignore from ._models import AetherDatastoreSetting # type: ignore from ._models import AetherDoWhileControlFlowInfo # type: ignore from ._models import AetherDoWhileControlFlowRunSettings # type: ignore from ._models import AetherDockerSettingConfiguration # type: ignore from ._models import AetherEntityInterfaceDocumentation # type: ignore from ._models import AetherEntrySetting # type: ignore from ._models import AetherEnvironmentConfiguration # type: ignore from ._models import AetherEsCloudConfiguration # type: ignore from ._models import AetherExportDataTask # type: ignore from ._models import AetherFeaturizationSettings # type: ignore from ._models import AetherFileSystem # type: ignore from ._models import AetherForecastHorizon # type: ignore from ._models import AetherForecastingSettings # type: ignore from ._models import AetherGeneralSettings # type: ignore from ._models import AetherGlobsOptions # type: ignore from ._models import AetherGraphControlNode # type: ignore from ._models import AetherGraphControlReferenceNode # type: ignore from ._models import AetherGraphDatasetNode # type: ignore from ._models import AetherGraphEdge # type: ignore from ._models import AetherGraphEntity # type: ignore from ._models import AetherGraphModuleNode # type: ignore from ._models import AetherGraphReferenceNode # type: ignore from ._models import AetherHdfsReference # type: ignore from ._models import AetherHdiClusterComputeInfo # type: ignore from ._models import AetherHdiRunConfiguration # type: ignore from ._models import AetherHyperDriveConfiguration # type: ignore from ._models import AetherIdentitySetting # type: ignore from ._models import AetherImportDataTask # type: ignore from ._models import AetherInputSetting # type: ignore from ._models import AetherInteractiveConfig # type: ignore from ._models import AetherK8SConfiguration # type: ignore from ._models import AetherLegacyDataPath # type: ignore from ._models import AetherLimitSettings # type: ignore from ._models import AetherMlcComputeInfo # type: ignore from ._models import AetherModuleEntity # type: ignore from ._models import AetherModuleExtendedProperties # type: ignore from ._models import AetherNCrossValidations # type: ignore from ._models import AetherOutputSetting # type: ignore from ._models import AetherParallelForControlFlowInfo # type: ignore from ._models import AetherParameterAssignment # type: ignore from ._models import AetherPhillyHdfsReference # type: ignore from ._models import AetherPortInfo # type: ignore from ._models import AetherPriorityConfig # type: ignore from ._models import AetherPriorityConfiguration # type: ignore from ._models import AetherRegisteredDataSetReference # type: ignore from ._models import AetherRemoteDockerComputeInfo # type: ignore from ._models import AetherResourceAssignment # type: ignore from ._models import AetherResourceAttributeAssignment # type: ignore from ._models import AetherResourceAttributeDefinition # type: ignore from ._models import AetherResourceConfig # type: ignore from ._models import AetherResourceConfiguration # type: ignore from ._models import AetherResourceModel # type: ignore from ._models import AetherResourcesSetting # type: ignore from ._models import AetherSavedDataSetReference # type: ignore from ._models import AetherScopeCloudConfiguration # type: ignore from ._models import AetherSeasonality # type: ignore from ._models import AetherSqlDataPath # type: ignore from ._models import AetherStackEnsembleSettings # type: ignore from ._models import AetherStoredProcedureParameter # type: ignore from ._models import AetherStructuredInterface # type: ignore from ._models import AetherStructuredInterfaceInput # type: ignore from ._models import AetherStructuredInterfaceOutput # type: ignore from ._models import AetherStructuredInterfaceParameter # type: ignore from ._models import AetherSubGraphConfiguration # type: ignore from ._models import AetherSweepEarlyTerminationPolicy # type: ignore from ._models import AetherSweepSettings # type: ignore from ._models import AetherSweepSettingsLimits # type: ignore from ._models import AetherTargetLags # type: ignore from ._models import AetherTargetRollingWindowSize # type: ignore from ._models import AetherTargetSelectorConfiguration # type: ignore from ._models import AetherTestDataSettings # type: ignore from ._models import AetherTorchDistributedConfiguration # type: ignore from ._models import AetherTrainingOutput # type: ignore from ._models import AetherTrainingSettings # type: ignore from ._models import AetherUIAzureOpenAIDeploymentNameSelector # type: ignore from ._models import AetherUIAzureOpenAIModelCapabilities # type: ignore from ._models import AetherUIColumnPicker # type: ignore from ._models import AetherUIJsonEditor # type: ignore from ._models import AetherUIParameterHint # type: ignore from ._models import AetherUIPromptFlowConnectionSelector # type: ignore from ._models import AetherValidationDataSettings # type: ignore from ._models import AetherVsoBuildArtifactInfo # type: ignore from ._models import AetherVsoBuildDefinitionInfo # type: ignore from ._models import AetherVsoBuildInfo # type: ignore from ._models import AmlDataset # type: ignore from ._models import AmlK8SConfiguration # type: ignore from ._models import AmlK8SPriorityConfiguration # type: ignore from ._models import AmlSparkCloudSetting # type: ignore from ._models import ApiAndParameters # type: ignore from ._models import ApplicationEndpointConfiguration # type: ignore from ._models import ArgumentAssignment # type: ignore from ._models import Asset # type: ignore from ._models import AssetDefinition # type: ignore from ._models import AssetNameAndVersionIdentifier # type: ignore from ._models import AssetOutputSettings # type: ignore from ._models import AssetOutputSettingsParameter # type: ignore from ._models import AssetPublishResult # type: ignore from ._models import AssetPublishSingleRegionResult # type: ignore from ._models import AssetTypeMetaInfo # type: ignore from ._models import AssetVersionPublishRequest # type: ignore from ._models import AssignedUser # type: ignore from ._models import AuthKeys # type: ignore from ._models import AutoClusterComputeSpecification # type: ignore from ._models import AutoDeleteSetting # type: ignore from ._models import AutoFeaturizeConfiguration # type: ignore from ._models import AutoMLComponentConfiguration # type: ignore from ._models import AutoScaler # type: ignore from ._models import AutoTrainConfiguration # type: ignore from ._models import AutologgerSettings # type: ignore from ._models import AvailabilityResponse # type: ignore from ._models import AzureBlobReference # type: ignore from ._models import AzureDataLakeGen2Reference # type: ignore from ._models import AzureDataLakeReference # type: ignore from ._models import AzureDatabaseReference # type: ignore from ._models import AzureFilesReference # type: ignore from ._models import AzureMLModuleVersionDescriptor # type: ignore from ._models import AzureOpenAIDeploymentDto # type: ignore from ._models import AzureOpenAIModelCapabilities # type: ignore from ._models import BatchAiComputeInfo # type: ignore from ._models import BatchDataInput # type: ignore from ._models import BatchExportComponentSpecResponse # type: ignore from ._models import BatchExportRawComponentResponse # type: ignore from ._models import BatchGetComponentHashesRequest # type: ignore from ._models import BatchGetComponentRequest # type: ignore from ._models import Binding # type: ignore from ._models import BulkTestDto # type: ignore from ._models import CloudError # type: ignore from ._models import CloudPrioritySetting # type: ignore from ._models import CloudSettings # type: ignore from ._models import ColumnTransformer # type: ignore from ._models import CommandJob # type: ignore from ._models import CommandJobLimits # type: ignore from ._models import CommandReturnCodeConfig # type: ignore from ._models import ComponentConfiguration # type: ignore from ._models import ComponentInput # type: ignore from ._models import ComponentJob # type: ignore from ._models import ComponentJobInput # type: ignore from ._models import ComponentJobOutput # type: ignore from ._models import ComponentNameAndDefaultVersion # type: ignore from ._models import ComponentNameMetaInfo # type: ignore from ._models import ComponentOutput # type: ignore from ._models import ComponentPreflightResult # type: ignore from ._models import ComponentSpecMetaInfo # type: ignore from ._models import ComponentUpdateRequest # type: ignore from ._models import ComponentValidationRequest # type: ignore from ._models import ComponentValidationResponse # type: ignore from ._models import Compute # type: ignore from ._models import ComputeConfiguration # type: ignore from ._models import ComputeContract # type: ignore from ._models import ComputeIdentityContract # type: ignore from ._models import ComputeIdentityDto # type: ignore from ._models import ComputeInfo # type: ignore from ._models import ComputeProperties # type: ignore from ._models import ComputeRPUserAssignedIdentity # type: ignore from ._models import ComputeRequest # type: ignore from ._models import ComputeSetting # type: ignore from ._models import ComputeStatus # type: ignore from ._models import ComputeStatusDetail # type: ignore from ._models import ComputeWarning # type: ignore from ._models import ConnectionConfigSpec # type: ignore from ._models import ConnectionDto # type: ignore from ._models import ConnectionEntity # type: ignore from ._models import ConnectionOverrideSetting # type: ignore from ._models import ConnectionSpec # type: ignore from ._models import ContainerInstanceConfiguration # type: ignore from ._models import ContainerRegistry # type: ignore from ._models import ContainerResourceRequirements # type: ignore from ._models import ControlInput # type: ignore from ._models import ControlOutput # type: ignore from ._models import CopyDataTask # type: ignore from ._models import CreateFlowFromSampleRequest # type: ignore from ._models import CreateFlowRequest # type: ignore from ._models import CreateFlowRuntimeRequest # type: ignore from ._models import CreateFlowSessionRequest # type: ignore from ._models import CreateInferencePipelineRequest # type: ignore from ._models import CreateOrUpdateConnectionRequest # type: ignore from ._models import CreateOrUpdateConnectionRequestDto # type: ignore from ._models import CreatePipelineDraftRequest # type: ignore from ._models import CreatePipelineJobScheduleDto # type: ignore from ._models import CreatePublishedPipelineRequest # type: ignore from ._models import CreateRealTimeEndpointRequest # type: ignore from ._models import CreatedBy # type: ignore from ._models import CreatedFromDto # type: ignore from ._models import CreationContext # type: ignore from ._models import Cron # type: ignore from ._models import CustomConnectionConfig # type: ignore from ._models import CustomReference # type: ignore from ._models import DBFSReference # type: ignore from ._models import Data # type: ignore from ._models import DataInfo # type: ignore from ._models import DataLocation # type: ignore from ._models import DataPath # type: ignore from ._models import DataPathParameter # type: ignore from ._models import DataPortDto # type: ignore from ._models import DataReference # type: ignore from ._models import DataReferenceConfiguration # type: ignore from ._models import DataSetDefinition # type: ignore from ._models import DataSetDefinitionValue # type: ignore from ._models import DataSetPathParameter # type: ignore from ._models import DataSettings # type: ignore from ._models import DataTransferCloudConfiguration # type: ignore from ._models import DataTransferSink # type: ignore from ._models import DataTransferSource # type: ignore from ._models import DataTransferV2CloudSetting # type: ignore from ._models import DataTypeCreationInfo # type: ignore from ._models import DatabaseSink # type: ignore from ._models import DatabaseSource # type: ignore from ._models import DatabricksComputeInfo # type: ignore from ._models import DatabricksConfiguration # type: ignore from ._models import DatacacheConfiguration # type: ignore from ._models import DatasetIdentifier # type: ignore from ._models import DatasetInputDetails # type: ignore from ._models import DatasetLineage # type: ignore from ._models import DatasetOutput # type: ignore from ._models import DatasetOutputDetails # type: ignore from ._models import DatasetOutputOptions # type: ignore from ._models import DatasetRegistration # type: ignore from ._models import DatasetRegistrationOptions # type: ignore from ._models import DatastoreSetting # type: ignore from ._models import DbfsStorageInfoDto # type: ignore from ._models import DebugInfoResponse # type: ignore from ._models import DeployFlowRequest # type: ignore from ._models import DeploymentInfo # type: ignore from ._models import DistributionConfiguration # type: ignore from ._models import DistributionParameter # type: ignore from ._models import DoWhileControlFlowInfo # type: ignore from ._models import DoWhileControlFlowRunSettings # type: ignore from ._models import DockerBuildContext # type: ignore from ._models import DockerConfiguration # type: ignore from ._models import DockerImagePlatform # type: ignore from ._models import DockerSection # type: ignore from ._models import DockerSettingConfiguration # type: ignore from ._models import DownloadResourceInfo # type: ignore from ._models import EPRPipelineRunErrorClassificationRequest # type: ignore from ._models import EndpointSetting # type: ignore from ._models import EntityInterface # type: ignore from ._models import EntrySetting # type: ignore from ._models import EnumParameterRule # type: ignore from ._models import EnvironmentConfiguration # type: ignore from ._models import EnvironmentDefinition # type: ignore from ._models import EnvironmentDefinitionDto # type: ignore from ._models import ErrorAdditionalInfo # type: ignore from ._models import ErrorResponse # type: ignore from ._models import EsCloudConfiguration # type: ignore from ._models import EvaluationFlowRunSettings # type: ignore from ._models import ExampleRequest # type: ignore from ._models import ExecutionContextDto # type: ignore from ._models import ExecutionDataLocation # type: ignore from ._models import ExecutionDataPath # type: ignore from ._models import ExecutionGlobsOptions # type: ignore from ._models import ExperimentComputeMetaInfo # type: ignore from ._models import ExperimentInfo # type: ignore from ._models import ExportComponentMetaInfo # type: ignore from ._models import ExportDataTask # type: ignore from ._models import FeaturizationSettings # type: ignore from ._models import FeedDto # type: ignore from ._models import FeedDtoSupportedAssetTypes # type: ignore from ._models import FileSystem # type: ignore from ._models import Flow # type: ignore from ._models import FlowAnnotations # type: ignore from ._models import FlowBaseDto # type: ignore from ._models import FlowDto # type: ignore from ._models import FlowEnvironment # type: ignore from ._models import FlowFeature # type: ignore from ._models import FlowFeatureState # type: ignore from ._models import FlowGraph # type: ignore from ._models import FlowGraphAnnotationNode # type: ignore from ._models import FlowGraphLayout # type: ignore from ._models import FlowGraphReference # type: ignore from ._models import FlowIndexEntity # type: ignore from ._models import FlowInputDefinition # type: ignore from ._models import FlowNode # type: ignore from ._models import FlowNodeLayout # type: ignore from ._models import FlowNodeVariant # type: ignore from ._models import FlowOutputDefinition # type: ignore from ._models import FlowProperties # type: ignore from ._models import FlowRunBasePath # type: ignore from ._models import FlowRunInfo # type: ignore from ._models import FlowRunResult # type: ignore from ._models import FlowRunSettings # type: ignore from ._models import FlowRuntimeCapability # type: ignore from ._models import FlowRuntimeDto # type: ignore from ._models import FlowSampleDto # type: ignore from ._models import FlowSessionDto # type: ignore from ._models import FlowSnapshot # type: ignore from ._models import FlowSubmitRunSettings # type: ignore from ._models import FlowTestInfo # type: ignore from ._models import FlowTestStorageSetting # type: ignore from ._models import FlowToolSettingParameter # type: ignore from ._models import FlowToolsDto # type: ignore from ._models import FlowVariantNode # type: ignore from ._models import ForecastHorizon # type: ignore from ._models import ForecastingSettings # type: ignore from ._models import GeneralSettings # type: ignore from ._models import GeneratePipelineComponentRequest # type: ignore from ._models import GenerateToolMetaRequest # type: ignore from ._models import GetDynamicListRequest # type: ignore from ._models import GetRunDataResultDto # type: ignore from ._models import GetTrainingSessionDto # type: ignore from ._models import GlobalJobDispatcherConfiguration # type: ignore from ._models import GlobsOptions # type: ignore from ._models import GraphAnnotationNode # type: ignore from ._models import GraphControlNode # type: ignore from ._models import GraphControlReferenceNode # type: ignore from ._models import GraphDatasetNode # type: ignore from ._models import GraphDraftEntity # type: ignore from ._models import GraphEdge # type: ignore from ._models import GraphLayout # type: ignore from ._models import GraphLayoutCreationInfo # type: ignore from ._models import GraphModuleNode # type: ignore from ._models import GraphModuleNodeRunSetting # type: ignore from ._models import GraphModuleNodeUIInputSetting # type: ignore from ._models import GraphNodeStatusInfo # type: ignore from ._models import GraphReferenceNode # type: ignore from ._models import HdfsReference # type: ignore from ._models import HdiClusterComputeInfo # type: ignore from ._models import HdiConfiguration # type: ignore from ._models import HdiRunConfiguration # type: ignore from ._models import HistoryConfiguration # type: ignore from ._models import HyperDriveConfiguration # type: ignore from ._models import ICheckableLongRunningOperationResponse # type: ignore from ._models import IdentityConfiguration # type: ignore from ._models import IdentitySetting # type: ignore from ._models import ImportDataTask # type: ignore from ._models import IndexedErrorResponse # type: ignore from ._models import InitScriptInfoDto # type: ignore from ._models import InnerErrorDetails # type: ignore from ._models import InnerErrorResponse # type: ignore from ._models import InputAsset # type: ignore from ._models import InputData # type: ignore from ._models import InputDataBinding # type: ignore from ._models import InputDefinition # type: ignore from ._models import InputOutputPortMetadata # type: ignore from ._models import InputSetting # type: ignore from ._models import IntellectualPropertyPublisherInformation # type: ignore from ._models import InteractiveConfig # type: ignore from ._models import InteractiveConfiguration # type: ignore from ._models import JobCost # type: ignore from ._models import JobEndpoint # type: ignore from ._models import JobInput # type: ignore from ._models import JobOutput # type: ignore from ._models import JobOutputArtifacts # type: ignore from ._models import JobScheduleDto # type: ignore from ._models import K8SConfiguration # type: ignore from ._models import KeyValuePairComponentNameMetaInfoErrorResponse # type: ignore from ._models import KeyValuePairComponentNameMetaInfoModuleDto # type: ignore from ._models import KeyValuePairStringObject # type: ignore from ._models import KubernetesConfiguration # type: ignore from ._models import Kwarg # type: ignore from ._models import LegacyDataPath # type: ignore from ._models import LimitSettings # type: ignore from ._models import LinkedADBWorkspaceMetadata # type: ignore from ._models import LinkedPipelineInfo # type: ignore from ._models import LoadFlowAsComponentRequest # type: ignore from ._models import LogRunTerminatedEventDto # type: ignore from ._models import LongRunningOperationUriResponse # type: ignore from ._models import LongRunningUpdateRegistryComponentRequest # type: ignore from ._models import ManagedServiceIdentity # type: ignore from ._models import MavenLibraryDto # type: ignore from ._models import MetricProperties # type: ignore from ._models import MetricSchemaDto # type: ignore from ._models import MetricSchemaPropertyDto # type: ignore from ._models import MetricV2Dto # type: ignore from ._models import MetricV2Value # type: ignore from ._models import MfeInternalAutologgerSettings # type: ignore from ._models import MfeInternalIdentityConfiguration # type: ignore from ._models import MfeInternalNodes # type: ignore from ._models import MfeInternalOutputData # type: ignore from ._models import MfeInternalSecretConfiguration # type: ignore from ._models import MfeInternalUriReference # type: ignore from ._models import MfeInternalV20211001ComponentJob # type: ignore from ._models import MinMaxParameterRule # type: ignore from ._models import MlcComputeInfo # type: ignore from ._models import ModelDto # type: ignore from ._models import ModelManagementErrorResponse # type: ignore from ._models import ModifyPipelineJobScheduleDto # type: ignore from ._models import ModuleDto # type: ignore from ._models import ModuleDtoWithErrors # type: ignore from ._models import ModuleDtoWithValidateStatus # type: ignore from ._models import ModuleEntity # type: ignore from ._models import ModulePythonInterface # type: ignore from ._models import MpiConfiguration # type: ignore from ._models import NCrossValidations # type: ignore from ._models import Node # type: ignore from ._models import NodeInputPort # type: ignore from ._models import NodeLayout # type: ignore from ._models import NodeOutputPort # type: ignore from ._models import NodePortInterface # type: ignore from ._models import NodeSource # type: ignore from ._models import NodeTelemetryMetaInfo # type: ignore from ._models import NodeVariant # type: ignore from ._models import Nodes # type: ignore from ._models import NoteBookTaskDto # type: ignore from ._models import NotificationSetting # type: ignore from ._models import ODataError # type: ignore from ._models import ODataErrorDetail # type: ignore from ._models import ODataErrorResponse # type: ignore from ._models import ODataInnerError # type: ignore from ._models import OutputData # type: ignore from ._models import OutputDataBinding # type: ignore from ._models import OutputDatasetLineage # type: ignore from ._models import OutputDefinition # type: ignore from ._models import OutputOptions # type: ignore from ._models import OutputSetting # type: ignore from ._models import OutputSettingSpec # type: ignore from ._models import PaginatedDataInfoList # type: ignore from ._models import PaginatedModelDtoList # type: ignore from ._models import PaginatedModuleDtoList # type: ignore from ._models import PaginatedPipelineDraftSummaryList # type: ignore from ._models import PaginatedPipelineEndpointSummaryList # type: ignore from ._models import PaginatedPipelineRunSummaryList # type: ignore from ._models import PaginatedPublishedPipelineSummaryList # type: ignore from ._models import ParallelForControlFlowInfo # type: ignore from ._models import ParallelTaskConfiguration # type: ignore from ._models import Parameter # type: ignore from ._models import ParameterAssignment # type: ignore from ._models import ParameterDefinition # type: ignore from ._models import PatchFlowRequest # type: ignore from ._models import Pipeline # type: ignore from ._models import PipelineDraft # type: ignore from ._models import PipelineDraftStepDetails # type: ignore from ._models import PipelineDraftSummary # type: ignore from ._models import PipelineEndpoint # type: ignore from ._models import PipelineEndpointSummary # type: ignore from ._models import PipelineGraph # type: ignore from ._models import PipelineInput # type: ignore from ._models import PipelineJob # type: ignore from ._models import PipelineJobRuntimeBasicSettings # type: ignore from ._models import PipelineJobScheduleDto # type: ignore from ._models import PipelineOutput # type: ignore from ._models import PipelineRun # type: ignore from ._models import PipelineRunGraphDetail # type: ignore from ._models import PipelineRunGraphStatus # type: ignore from ._models import PipelineRunProfile # type: ignore from ._models import PipelineRunStatus # type: ignore from ._models import PipelineRunStepDetails # type: ignore from ._models import PipelineRunSummary # type: ignore from ._models import PipelineStatus # type: ignore from ._models import PipelineStepRun # type: ignore from ._models import PipelineStepRunOutputs # type: ignore from ._models import PipelineSubDraft # type: ignore from ._models import PolicyValidationResponse # type: ignore from ._models import PortInfo # type: ignore from ._models import PortOutputInfo # type: ignore from ._models import PriorityConfig # type: ignore from ._models import PriorityConfiguration # type: ignore from ._models import PromoteDataSetRequest # type: ignore from ._models import ProviderEntity # type: ignore from ._models import PublishedPipeline # type: ignore from ._models import PublishedPipelineSummary # type: ignore from ._models import PyTorchConfiguration # type: ignore from ._models import PythonInterfaceMapping # type: ignore from ._models import PythonPyPiOrRCranLibraryDto # type: ignore from ._models import PythonSection # type: ignore from ._models import QueueingInfo # type: ignore from ._models import RCranPackage # type: ignore from ._models import RGitHubPackage # type: ignore from ._models import RSection # type: ignore from ._models import RawComponentDto # type: ignore from ._models import RayConfiguration # type: ignore from ._models import RealTimeEndpoint # type: ignore from ._models import RealTimeEndpointInfo # type: ignore from ._models import RealTimeEndpointStatus # type: ignore from ._models import RealTimeEndpointSummary # type: ignore from ._models import RealTimeEndpointTestRequest # type: ignore from ._models import Recurrence # type: ignore from ._models import RecurrencePattern # type: ignore from ._models import RecurrenceSchedule # type: ignore from ._models import RegenerateServiceKeysRequest # type: ignore from ._models import RegisterComponentMetaInfo # type: ignore from ._models import RegisterComponentMetaInfoExtraHashes # type: ignore from ._models import RegisterComponentMetaInfoIdentifierHashes # type: ignore from ._models import RegisterRegistryComponentMetaInfo # type: ignore from ._models import RegisterRegistryComponentMetaInfoExtraHashes # type: ignore from ._models import RegisterRegistryComponentMetaInfoIdentifierHashes # type: ignore from ._models import RegisteredDataSetReference # type: ignore from ._models import RegistrationOptions # type: ignore from ._models import RegistryBlobReferenceData # type: ignore from ._models import RegistryIdentity # type: ignore from ._models import Relationship # type: ignore from ._models import RemoteDockerComputeInfo # type: ignore from ._models import ResourceConfig # type: ignore from ._models import ResourceConfiguration # type: ignore from ._models import ResourcesSetting # type: ignore from ._models import RetrieveToolFuncResultRequest # type: ignore from ._models import RetryConfiguration # type: ignore from ._models import RootError # type: ignore from ._models import RunAnnotations # type: ignore from ._models import RunConfiguration # type: ignore from ._models import RunDatasetReference # type: ignore from ._models import RunDefinition # type: ignore from ._models import RunDetailsDto # type: ignore from ._models import RunDetailsWarningDto # type: ignore from ._models import RunDto # type: ignore from ._models import RunIndexEntity # type: ignore from ._models import RunIndexMetricSummary # type: ignore from ._models import RunIndexMetricSummarySystemObject # type: ignore from ._models import RunIndexResourceMetricSummary # type: ignore from ._models import RunMetricDto # type: ignore from ._models import RunMetricsTypesDto # type: ignore from ._models import RunProperties # type: ignore from ._models import RunSettingParameter # type: ignore from ._models import RunSettingParameterAssignment # type: ignore from ._models import RunSettingUIParameterHint # type: ignore from ._models import RunStatusPeriod # type: ignore from ._models import RunTypeV2 # type: ignore from ._models import RunTypeV2Index # type: ignore from ._models import RuntimeConfiguration # type: ignore from ._models import SampleMeta # type: ignore from ._models import SavePipelineDraftRequest # type: ignore from ._models import SavedDataSetReference # type: ignore from ._models import ScheduleBase # type: ignore from ._models import SchemaContractsCreatedBy # type: ignore from ._models import ScopeCloudConfiguration # type: ignore from ._models import Seasonality # type: ignore from ._models import SecretConfiguration # type: ignore from ._models import SegmentedResult1 # type: ignore from ._models import ServiceLogRequest # type: ignore from ._models import SessionApplication # type: ignore from ._models import SessionApplicationRunCommandResult # type: ignore from ._models import SessionProperties # type: ignore from ._models import SetupFlowSessionRequest # type: ignore from ._models import SharingScope # type: ignore from ._models import Snapshot # type: ignore from ._models import SnapshotInfo # type: ignore from ._models import SourceCodeDataReference # type: ignore from ._models import SparkConfiguration # type: ignore from ._models import SparkJarTaskDto # type: ignore from ._models import SparkJob # type: ignore from ._models import SparkJobEntry # type: ignore from ._models import SparkMavenPackage # type: ignore from ._models import SparkPythonTaskDto # type: ignore from ._models import SparkResourceConfiguration # type: ignore from ._models import SparkSection # type: ignore from ._models import SparkSubmitTaskDto # type: ignore from ._models import SqlDataPath # type: ignore from ._models import StackEnsembleSettings # type: ignore from ._models import StandbyPoolProperties # type: ignore from ._models import StandbyPoolResourceStatus # type: ignore from ._models import StartRunResult # type: ignore from ._models import StepRunProfile # type: ignore from ._models import StorageInfo # type: ignore from ._models import StoredProcedureParameter # type: ignore from ._models import Stream # type: ignore from ._models import StructuredInterface # type: ignore from ._models import StructuredInterfaceInput # type: ignore from ._models import StructuredInterfaceOutput # type: ignore from ._models import StructuredInterfaceParameter # type: ignore from ._models import StudioMigrationInfo # type: ignore from ._models import SubGraphConcatenateAssignment # type: ignore from ._models import SubGraphConfiguration # type: ignore from ._models import SubGraphConnectionInfo # type: ignore from ._models import SubGraphDataPathParameterAssignment # type: ignore from ._models import SubGraphInfo # type: ignore from ._models import SubGraphParameterAssignment # type: ignore from ._models import SubGraphPortInfo # type: ignore from ._models import SubPipelineDefinition # type: ignore from ._models import SubPipelineParameterAssignment # type: ignore from ._models import SubPipelinesInfo # type: ignore from ._models import SubStatusPeriod # type: ignore from ._models import SubmitBulkRunRequest # type: ignore from ._models import SubmitBulkRunResponse # type: ignore from ._models import SubmitFlowRequest # type: ignore from ._models import SubmitPipelineRunRequest # type: ignore from ._models import SweepEarlyTerminationPolicy # type: ignore from ._models import SweepSettings # type: ignore from ._models import SweepSettingsLimits # type: ignore from ._models import SystemData # type: ignore from ._models import SystemMeta # type: ignore from ._models import SystemMetaExtraHashes # type: ignore from ._models import SystemMetaIdentifierHashes # type: ignore from ._models import TargetLags # type: ignore from ._models import TargetRollingWindowSize # type: ignore from ._models import TargetSelectorConfiguration # type: ignore from ._models import Task # type: ignore from ._models import TaskControlFlowInfo # type: ignore from ._models import TaskReuseInfo # type: ignore from ._models import TensorflowConfiguration # type: ignore from ._models import TestDataSettings # type: ignore from ._models import Tool # type: ignore from ._models import ToolFuncResponse # type: ignore from ._models import ToolInputDynamicList # type: ignore from ._models import ToolInputGeneratedBy # type: ignore from ._models import ToolMetaDto # type: ignore from ._models import ToolSetting # type: ignore from ._models import ToolSourceMeta # type: ignore from ._models import TorchDistributedConfiguration # type: ignore from ._models import TrainingDiagnosticConfiguration # type: ignore from ._models import TrainingOutput # type: ignore from ._models import TrainingSettings # type: ignore from ._models import TriggerAsyncOperationStatus # type: ignore from ._models import TuningNodeSetting # type: ignore from ._models import TypedAssetReference # type: ignore from ._models import UIAzureOpenAIDeploymentNameSelector # type: ignore from ._models import UIAzureOpenAIModelCapabilities # type: ignore from ._models import UIColumnPicker # type: ignore from ._models import UIComputeSelection # type: ignore from ._models import UIHyperparameterConfiguration # type: ignore from ._models import UIInputSetting # type: ignore from ._models import UIJsonEditor # type: ignore from ._models import UIParameterHint # type: ignore from ._models import UIPromptFlowConnectionSelector # type: ignore from ._models import UIWidgetMetaInfo # type: ignore from ._models import UIYamlEditor # type: ignore from ._models import UnversionedEntityRequestDto # type: ignore from ._models import UnversionedEntityResponseDto # type: ignore from ._models import UnversionedRebuildIndexDto # type: ignore from ._models import UnversionedRebuildResponseDto # type: ignore from ._models import UpdateComponentRequest # type: ignore from ._models import UpdateFlowRequest # type: ignore from ._models import UpdateFlowRuntimeRequest # type: ignore from ._models import UpdateRegistryComponentRequest # type: ignore from ._models import UploadOptions # type: ignore from ._models import UriReference # type: ignore from ._models import User # type: ignore from ._models import UserAssignedIdentity # type: ignore from ._models import ValidationDataSettings # type: ignore from ._models import VariantNode # type: ignore from ._models import WebServiceComputeMetaInfo # type: ignore from ._models import WebServicePort # type: ignore from ._models import Webhook # type: ignore from ._models import WorkspaceConnectionSpec # type: ignore from ._azure_machine_learning_designer_service_client_enums import ( AEVAAssetType, AEVADataStoreMode, AEVAIdentityType, ActionType, AetherArgumentValueType, AetherAssetType, AetherBuildSourceType, AetherComputeType, AetherControlFlowType, AetherControlInputValue, AetherDataCopyMode, AetherDataLocationStorageType, AetherDataReferenceType, AetherDataStoreMode, AetherDataTransferStorageType, AetherDataTransferTaskType, AetherDatasetType, AetherEarlyTerminationPolicyType, AetherEntityStatus, AetherExecutionEnvironment, AetherExecutionPhase, AetherFeaturizationMode, AetherFileBasedPathType, AetherForecastHorizonMode, AetherIdentityType, AetherLogVerbosity, AetherModuleDeploymentSource, AetherModuleHashVersion, AetherModuleType, AetherNCrossValidationMode, AetherParameterType, AetherParameterValueType, AetherPrimaryMetrics, AetherRepositoryType, AetherResourceOperator, AetherResourceValueType, AetherSamplingAlgorithmType, AetherSeasonalityMode, AetherShortSeriesHandlingConfiguration, AetherStackMetaLearnerType, AetherStoredProcedureParameterType, AetherTabularTrainingMode, AetherTargetAggregationFunction, AetherTargetLagsMode, AetherTargetRollingWindowSizeMode, AetherTaskType, AetherTrainingOutputType, AetherUIScriptLanguageEnum, AetherUIWidgetTypeEnum, AetherUploadState, AetherUseStl, ApplicationEndpointType, ArgumentValueType, AssetScopeTypes, AssetSourceType, AssetType, AutoDeleteCondition, BuildContextLocationType, Communicator, ComponentRegistrationTypeEnum, ComponentType, ComputeEnvironmentType, ComputeTargetType, ComputeType, ConfigValueType, ConnectionCategory, ConnectionScope, ConnectionSourceType, ConnectionType, ConsumeMode, ControlFlowType, ControlInputValue, DataBindingMode, DataCategory, DataCopyMode, DataLocationStorageType, DataPortType, DataReferenceType, DataSourceType, DataStoreMode, DataTransferStorageType, DataTransferTaskType, DataTypeMechanism, DatasetAccessModes, DatasetConsumptionType, DatasetDeliveryMechanism, DatasetOutputType, DatasetType, DeliveryMechanism, DistributionParameterEnum, DistributionType, EarlyTerminationPolicyType, EmailNotificationEnableType, EndpointAuthMode, EntityKind, EntityStatus, ErrorHandlingMode, ExecutionPhase, FeaturizationMode, FlowFeatureStateEnum, FlowLanguage, FlowPatchOperationType, FlowRunMode, FlowRunTypeEnum, FlowRuntimeSubmissionApiVersion, FlowTestMode, FlowType, ForecastHorizonMode, Framework, Frequency, GlobalJobDispatcherSupportedComputeType, GraphComponentsMode, GraphDatasetsLoadModes, GraphSdkCodeType, HttpStatusCode, IdentityType, InputType, IntellectualPropertyAccessMode, JobInputType, JobLimitsType, JobOutputType, JobProvisioningState, JobStatus, JobType, KeyType, ListViewType, LogLevel, LogVerbosity, LongRunningUpdateType, MLFlowAutologgerState, ManagedServiceIdentityType, MetricValueType, MfeInternalIdentityType, MfeInternalMLFlowAutologgerState, MfeInternalScheduleStatus, ModuleDtoFields, ModuleInfoFromYamlStatusEnum, ModuleRunSettingTypes, ModuleScope, ModuleSourceType, ModuleType, ModuleUpdateOperationType, ModuleWorkingMechanism, NCrossValidationMode, NodeCompositionMode, NodesValueType, Orientation, OutputMechanism, ParameterType, ParameterValueType, PipelineDraftMode, PipelineRunStatusCode, PipelineStatusCode, PipelineType, PortAction, PrimaryMetrics, ProvisioningState, RealTimeEndpointInternalStepCode, RealTimeEndpointOpCode, RealTimeEndpointOpStatusCode, RecurrenceFrequency, RunDisplayNameGenerationType, RunSettingParameterType, RunSettingUIWidgetTypeEnum, RunStatus, RunType, RuntimeStatusEnum, RuntimeType, SamplingAlgorithmType, ScheduleProvisioningStatus, ScheduleStatus, ScheduleType, ScopeType, ScriptType, SeasonalityMode, Section, SessionSetupModeEnum, SetupFlowSessionAction, SeverityLevel, ShortSeriesHandlingConfiguration, StackMetaLearnerType, StorageAuthType, StoredProcedureParameterType, SuccessfulCommandReturnCode, TabularTrainingMode, TargetAggregationFunction, TargetLagsMode, TargetRollingWindowSizeMode, TaskCreationOptions, TaskStatus, TaskStatusCode, TaskType, ToolFuncCallScenario, ToolState, ToolType, TrainingOutputType, TriggerOperationType, TriggerType, UIInputDataDeliveryMode, UIScriptLanguageEnum, UIWidgetTypeEnum, UploadState, UseStl, UserType, ValidationStatus, ValueType, VmPriority, WebServiceState, WeekDays, Weekday, YarnDeployMode, ) __all__ = [ 'ACIAdvanceSettings', 'AEVAComputeConfiguration', 'AEVAResourceConfiguration', 'AISuperComputerConfiguration', 'AISuperComputerScalePolicy', 'AISuperComputerStorageReferenceConfiguration', 'AKSAdvanceSettings', 'AKSReplicaStatus', 'AMLComputeConfiguration', 'APCloudConfiguration', 'Activate', 'AdditionalErrorInfo', 'AdhocTriggerScheduledCommandJobRequest', 'AdhocTriggerScheduledSparkJobRequest', 'AetherAPCloudConfiguration', 'AetherAmlDataset', 'AetherAmlSparkCloudSetting', 'AetherArgumentAssignment', 'AetherAssetDefinition', 'AetherAssetOutputSettings', 'AetherAutoFeaturizeConfiguration', 'AetherAutoMLComponentConfiguration', 'AetherAutoTrainConfiguration', 'AetherAzureBlobReference', 'AetherAzureDataLakeGen2Reference', 'AetherAzureDataLakeReference', 'AetherAzureDatabaseReference', 'AetherAzureFilesReference', 'AetherBatchAiComputeInfo', 'AetherBuildArtifactInfo', 'AetherCloudBuildDropPathInfo', 'AetherCloudBuildInfo', 'AetherCloudBuildQueueInfo', 'AetherCloudPrioritySetting', 'AetherCloudSettings', 'AetherColumnTransformer', 'AetherComputeConfiguration', 'AetherComputeSetting', 'AetherControlInput', 'AetherControlOutput', 'AetherCopyDataTask', 'AetherCosmosReference', 'AetherCreatedBy', 'AetherCustomReference', 'AetherDBFSReference', 'AetherDataLocation', 'AetherDataLocationReuseCalculationFields', 'AetherDataPath', 'AetherDataReference', 'AetherDataSetDefinition', 'AetherDataSetDefinitionValue', 'AetherDataSettings', 'AetherDataTransferCloudConfiguration', 'AetherDataTransferSink', 'AetherDataTransferSource', 'AetherDataTransferV2CloudSetting', 'AetherDatabaseSink', 'AetherDatabaseSource', 'AetherDatabricksComputeInfo', 'AetherDatasetOutput', 'AetherDatasetOutputOptions', 'AetherDatasetRegistration', 'AetherDatastoreSetting', 'AetherDoWhileControlFlowInfo', 'AetherDoWhileControlFlowRunSettings', 'AetherDockerSettingConfiguration', 'AetherEntityInterfaceDocumentation', 'AetherEntrySetting', 'AetherEnvironmentConfiguration', 'AetherEsCloudConfiguration', 'AetherExportDataTask', 'AetherFeaturizationSettings', 'AetherFileSystem', 'AetherForecastHorizon', 'AetherForecastingSettings', 'AetherGeneralSettings', 'AetherGlobsOptions', 'AetherGraphControlNode', 'AetherGraphControlReferenceNode', 'AetherGraphDatasetNode', 'AetherGraphEdge', 'AetherGraphEntity', 'AetherGraphModuleNode', 'AetherGraphReferenceNode', 'AetherHdfsReference', 'AetherHdiClusterComputeInfo', 'AetherHdiRunConfiguration', 'AetherHyperDriveConfiguration', 'AetherIdentitySetting', 'AetherImportDataTask', 'AetherInputSetting', 'AetherInteractiveConfig', 'AetherK8SConfiguration', 'AetherLegacyDataPath', 'AetherLimitSettings', 'AetherMlcComputeInfo', 'AetherModuleEntity', 'AetherModuleExtendedProperties', 'AetherNCrossValidations', 'AetherOutputSetting', 'AetherParallelForControlFlowInfo', 'AetherParameterAssignment', 'AetherPhillyHdfsReference', 'AetherPortInfo', 'AetherPriorityConfig', 'AetherPriorityConfiguration', 'AetherRegisteredDataSetReference', 'AetherRemoteDockerComputeInfo', 'AetherResourceAssignment', 'AetherResourceAttributeAssignment', 'AetherResourceAttributeDefinition', 'AetherResourceConfig', 'AetherResourceConfiguration', 'AetherResourceModel', 'AetherResourcesSetting', 'AetherSavedDataSetReference', 'AetherScopeCloudConfiguration', 'AetherSeasonality', 'AetherSqlDataPath', 'AetherStackEnsembleSettings', 'AetherStoredProcedureParameter', 'AetherStructuredInterface', 'AetherStructuredInterfaceInput', 'AetherStructuredInterfaceOutput', 'AetherStructuredInterfaceParameter', 'AetherSubGraphConfiguration', 'AetherSweepEarlyTerminationPolicy', 'AetherSweepSettings', 'AetherSweepSettingsLimits', 'AetherTargetLags', 'AetherTargetRollingWindowSize', 'AetherTargetSelectorConfiguration', 'AetherTestDataSettings', 'AetherTorchDistributedConfiguration', 'AetherTrainingOutput', 'AetherTrainingSettings', 'AetherUIAzureOpenAIDeploymentNameSelector', 'AetherUIAzureOpenAIModelCapabilities', 'AetherUIColumnPicker', 'AetherUIJsonEditor', 'AetherUIParameterHint', 'AetherUIPromptFlowConnectionSelector', 'AetherValidationDataSettings', 'AetherVsoBuildArtifactInfo', 'AetherVsoBuildDefinitionInfo', 'AetherVsoBuildInfo', 'AmlDataset', 'AmlK8SConfiguration', 'AmlK8SPriorityConfiguration', 'AmlSparkCloudSetting', 'ApiAndParameters', 'ApplicationEndpointConfiguration', 'ArgumentAssignment', 'Asset', 'AssetDefinition', 'AssetNameAndVersionIdentifier', 'AssetOutputSettings', 'AssetOutputSettingsParameter', 'AssetPublishResult', 'AssetPublishSingleRegionResult', 'AssetTypeMetaInfo', 'AssetVersionPublishRequest', 'AssignedUser', 'AuthKeys', 'AutoClusterComputeSpecification', 'AutoDeleteSetting', 'AutoFeaturizeConfiguration', 'AutoMLComponentConfiguration', 'AutoScaler', 'AutoTrainConfiguration', 'AutologgerSettings', 'AvailabilityResponse', 'AzureBlobReference', 'AzureDataLakeGen2Reference', 'AzureDataLakeReference', 'AzureDatabaseReference', 'AzureFilesReference', 'AzureMLModuleVersionDescriptor', 'AzureOpenAIDeploymentDto', 'AzureOpenAIModelCapabilities', 'BatchAiComputeInfo', 'BatchDataInput', 'BatchExportComponentSpecResponse', 'BatchExportRawComponentResponse', 'BatchGetComponentHashesRequest', 'BatchGetComponentRequest', 'Binding', 'BulkTestDto', 'CloudError', 'CloudPrioritySetting', 'CloudSettings', 'ColumnTransformer', 'CommandJob', 'CommandJobLimits', 'CommandReturnCodeConfig', 'ComponentConfiguration', 'ComponentInput', 'ComponentJob', 'ComponentJobInput', 'ComponentJobOutput', 'ComponentNameAndDefaultVersion', 'ComponentNameMetaInfo', 'ComponentOutput', 'ComponentPreflightResult', 'ComponentSpecMetaInfo', 'ComponentUpdateRequest', 'ComponentValidationRequest', 'ComponentValidationResponse', 'Compute', 'ComputeConfiguration', 'ComputeContract', 'ComputeIdentityContract', 'ComputeIdentityDto', 'ComputeInfo', 'ComputeProperties', 'ComputeRPUserAssignedIdentity', 'ComputeRequest', 'ComputeSetting', 'ComputeStatus', 'ComputeStatusDetail', 'ComputeWarning', 'ConnectionConfigSpec', 'ConnectionDto', 'ConnectionEntity', 'ConnectionOverrideSetting', 'ConnectionSpec', 'ContainerInstanceConfiguration', 'ContainerRegistry', 'ContainerResourceRequirements', 'ControlInput', 'ControlOutput', 'CopyDataTask', 'CreateFlowFromSampleRequest', 'CreateFlowRequest', 'CreateFlowRuntimeRequest', 'CreateFlowSessionRequest', 'CreateInferencePipelineRequest', 'CreateOrUpdateConnectionRequest', 'CreateOrUpdateConnectionRequestDto', 'CreatePipelineDraftRequest', 'CreatePipelineJobScheduleDto', 'CreatePublishedPipelineRequest', 'CreateRealTimeEndpointRequest', 'CreatedBy', 'CreatedFromDto', 'CreationContext', 'Cron', 'CustomConnectionConfig', 'CustomReference', 'DBFSReference', 'Data', 'DataInfo', 'DataLocation', 'DataPath', 'DataPathParameter', 'DataPortDto', 'DataReference', 'DataReferenceConfiguration', 'DataSetDefinition', 'DataSetDefinitionValue', 'DataSetPathParameter', 'DataSettings', 'DataTransferCloudConfiguration', 'DataTransferSink', 'DataTransferSource', 'DataTransferV2CloudSetting', 'DataTypeCreationInfo', 'DatabaseSink', 'DatabaseSource', 'DatabricksComputeInfo', 'DatabricksConfiguration', 'DatacacheConfiguration', 'DatasetIdentifier', 'DatasetInputDetails', 'DatasetLineage', 'DatasetOutput', 'DatasetOutputDetails', 'DatasetOutputOptions', 'DatasetRegistration', 'DatasetRegistrationOptions', 'DatastoreSetting', 'DbfsStorageInfoDto', 'DebugInfoResponse', 'DeployFlowRequest', 'DeploymentInfo', 'DistributionConfiguration', 'DistributionParameter', 'DoWhileControlFlowInfo', 'DoWhileControlFlowRunSettings', 'DockerBuildContext', 'DockerConfiguration', 'DockerImagePlatform', 'DockerSection', 'DockerSettingConfiguration', 'DownloadResourceInfo', 'EPRPipelineRunErrorClassificationRequest', 'EndpointSetting', 'EntityInterface', 'EntrySetting', 'EnumParameterRule', 'EnvironmentConfiguration', 'EnvironmentDefinition', 'EnvironmentDefinitionDto', 'ErrorAdditionalInfo', 'ErrorResponse', 'EsCloudConfiguration', 'EvaluationFlowRunSettings', 'ExampleRequest', 'ExecutionContextDto', 'ExecutionDataLocation', 'ExecutionDataPath', 'ExecutionGlobsOptions', 'ExperimentComputeMetaInfo', 'ExperimentInfo', 'ExportComponentMetaInfo', 'ExportDataTask', 'FeaturizationSettings', 'FeedDto', 'FeedDtoSupportedAssetTypes', 'FileSystem', 'Flow', 'FlowAnnotations', 'FlowBaseDto', 'FlowDto', 'FlowEnvironment', 'FlowFeature', 'FlowFeatureState', 'FlowGraph', 'FlowGraphAnnotationNode', 'FlowGraphLayout', 'FlowGraphReference', 'FlowIndexEntity', 'FlowInputDefinition', 'FlowNode', 'FlowNodeLayout', 'FlowNodeVariant', 'FlowOutputDefinition', 'FlowProperties', 'FlowRunBasePath', 'FlowRunInfo', 'FlowRunResult', 'FlowRunSettings', 'FlowRuntimeCapability', 'FlowRuntimeDto', 'FlowSampleDto', 'FlowSessionDto', 'FlowSnapshot', 'FlowSubmitRunSettings', 'FlowTestInfo', 'FlowTestStorageSetting', 'FlowToolSettingParameter', 'FlowToolsDto', 'FlowVariantNode', 'ForecastHorizon', 'ForecastingSettings', 'GeneralSettings', 'GeneratePipelineComponentRequest', 'GenerateToolMetaRequest', 'GetDynamicListRequest', 'GetRunDataResultDto', 'GetTrainingSessionDto', 'GlobalJobDispatcherConfiguration', 'GlobsOptions', 'GraphAnnotationNode', 'GraphControlNode', 'GraphControlReferenceNode', 'GraphDatasetNode', 'GraphDraftEntity', 'GraphEdge', 'GraphLayout', 'GraphLayoutCreationInfo', 'GraphModuleNode', 'GraphModuleNodeRunSetting', 'GraphModuleNodeUIInputSetting', 'GraphNodeStatusInfo', 'GraphReferenceNode', 'HdfsReference', 'HdiClusterComputeInfo', 'HdiConfiguration', 'HdiRunConfiguration', 'HistoryConfiguration', 'HyperDriveConfiguration', 'ICheckableLongRunningOperationResponse', 'IdentityConfiguration', 'IdentitySetting', 'ImportDataTask', 'IndexedErrorResponse', 'InitScriptInfoDto', 'InnerErrorDetails', 'InnerErrorResponse', 'InputAsset', 'InputData', 'InputDataBinding', 'InputDefinition', 'InputOutputPortMetadata', 'InputSetting', 'IntellectualPropertyPublisherInformation', 'InteractiveConfig', 'InteractiveConfiguration', 'JobCost', 'JobEndpoint', 'JobInput', 'JobOutput', 'JobOutputArtifacts', 'JobScheduleDto', 'K8SConfiguration', 'KeyValuePairComponentNameMetaInfoErrorResponse', 'KeyValuePairComponentNameMetaInfoModuleDto', 'KeyValuePairStringObject', 'KubernetesConfiguration', 'Kwarg', 'LegacyDataPath', 'LimitSettings', 'LinkedADBWorkspaceMetadata', 'LinkedPipelineInfo', 'LoadFlowAsComponentRequest', 'LogRunTerminatedEventDto', 'LongRunningOperationUriResponse', 'LongRunningUpdateRegistryComponentRequest', 'ManagedServiceIdentity', 'MavenLibraryDto', 'MetricProperties', 'MetricSchemaDto', 'MetricSchemaPropertyDto', 'MetricV2Dto', 'MetricV2Value', 'MfeInternalAutologgerSettings', 'MfeInternalIdentityConfiguration', 'MfeInternalNodes', 'MfeInternalOutputData', 'MfeInternalSecretConfiguration', 'MfeInternalUriReference', 'MfeInternalV20211001ComponentJob', 'MinMaxParameterRule', 'MlcComputeInfo', 'ModelDto', 'ModelManagementErrorResponse', 'ModifyPipelineJobScheduleDto', 'ModuleDto', 'ModuleDtoWithErrors', 'ModuleDtoWithValidateStatus', 'ModuleEntity', 'ModulePythonInterface', 'MpiConfiguration', 'NCrossValidations', 'Node', 'NodeInputPort', 'NodeLayout', 'NodeOutputPort', 'NodePortInterface', 'NodeSource', 'NodeTelemetryMetaInfo', 'NodeVariant', 'Nodes', 'NoteBookTaskDto', 'NotificationSetting', 'ODataError', 'ODataErrorDetail', 'ODataErrorResponse', 'ODataInnerError', 'OutputData', 'OutputDataBinding', 'OutputDatasetLineage', 'OutputDefinition', 'OutputOptions', 'OutputSetting', 'OutputSettingSpec', 'PaginatedDataInfoList', 'PaginatedModelDtoList', 'PaginatedModuleDtoList', 'PaginatedPipelineDraftSummaryList', 'PaginatedPipelineEndpointSummaryList', 'PaginatedPipelineRunSummaryList', 'PaginatedPublishedPipelineSummaryList', 'ParallelForControlFlowInfo', 'ParallelTaskConfiguration', 'Parameter', 'ParameterAssignment', 'ParameterDefinition', 'PatchFlowRequest', 'Pipeline', 'PipelineDraft', 'PipelineDraftStepDetails', 'PipelineDraftSummary', 'PipelineEndpoint', 'PipelineEndpointSummary', 'PipelineGraph', 'PipelineInput', 'PipelineJob', 'PipelineJobRuntimeBasicSettings', 'PipelineJobScheduleDto', 'PipelineOutput', 'PipelineRun', 'PipelineRunGraphDetail', 'PipelineRunGraphStatus', 'PipelineRunProfile', 'PipelineRunStatus', 'PipelineRunStepDetails', 'PipelineRunSummary', 'PipelineStatus', 'PipelineStepRun', 'PipelineStepRunOutputs', 'PipelineSubDraft', 'PolicyValidationResponse', 'PortInfo', 'PortOutputInfo', 'PriorityConfig', 'PriorityConfiguration', 'PromoteDataSetRequest', 'ProviderEntity', 'PublishedPipeline', 'PublishedPipelineSummary', 'PyTorchConfiguration', 'PythonInterfaceMapping', 'PythonPyPiOrRCranLibraryDto', 'PythonSection', 'QueueingInfo', 'RCranPackage', 'RGitHubPackage', 'RSection', 'RawComponentDto', 'RayConfiguration', 'RealTimeEndpoint', 'RealTimeEndpointInfo', 'RealTimeEndpointStatus', 'RealTimeEndpointSummary', 'RealTimeEndpointTestRequest', 'Recurrence', 'RecurrencePattern', 'RecurrenceSchedule', 'RegenerateServiceKeysRequest', 'RegisterComponentMetaInfo', 'RegisterComponentMetaInfoExtraHashes', 'RegisterComponentMetaInfoIdentifierHashes', 'RegisterRegistryComponentMetaInfo', 'RegisterRegistryComponentMetaInfoExtraHashes', 'RegisterRegistryComponentMetaInfoIdentifierHashes', 'RegisteredDataSetReference', 'RegistrationOptions', 'RegistryBlobReferenceData', 'RegistryIdentity', 'Relationship', 'RemoteDockerComputeInfo', 'ResourceConfig', 'ResourceConfiguration', 'ResourcesSetting', 'RetrieveToolFuncResultRequest', 'RetryConfiguration', 'RootError', 'RunAnnotations', 'RunConfiguration', 'RunDatasetReference', 'RunDefinition', 'RunDetailsDto', 'RunDetailsWarningDto', 'RunDto', 'RunIndexEntity', 'RunIndexMetricSummary', 'RunIndexMetricSummarySystemObject', 'RunIndexResourceMetricSummary', 'RunMetricDto', 'RunMetricsTypesDto', 'RunProperties', 'RunSettingParameter', 'RunSettingParameterAssignment', 'RunSettingUIParameterHint', 'RunStatusPeriod', 'RunTypeV2', 'RunTypeV2Index', 'RuntimeConfiguration', 'SampleMeta', 'SavePipelineDraftRequest', 'SavedDataSetReference', 'ScheduleBase', 'SchemaContractsCreatedBy', 'ScopeCloudConfiguration', 'Seasonality', 'SecretConfiguration', 'SegmentedResult1', 'ServiceLogRequest', 'SessionApplication', 'SessionApplicationRunCommandResult', 'SessionProperties', 'SetupFlowSessionRequest', 'SharingScope', 'Snapshot', 'SnapshotInfo', 'SourceCodeDataReference', 'SparkConfiguration', 'SparkJarTaskDto', 'SparkJob', 'SparkJobEntry', 'SparkMavenPackage', 'SparkPythonTaskDto', 'SparkResourceConfiguration', 'SparkSection', 'SparkSubmitTaskDto', 'SqlDataPath', 'StackEnsembleSettings', 'StandbyPoolProperties', 'StandbyPoolResourceStatus', 'StartRunResult', 'StepRunProfile', 'StorageInfo', 'StoredProcedureParameter', 'Stream', 'StructuredInterface', 'StructuredInterfaceInput', 'StructuredInterfaceOutput', 'StructuredInterfaceParameter', 'StudioMigrationInfo', 'SubGraphConcatenateAssignment', 'SubGraphConfiguration', 'SubGraphConnectionInfo', 'SubGraphDataPathParameterAssignment', 'SubGraphInfo', 'SubGraphParameterAssignment', 'SubGraphPortInfo', 'SubPipelineDefinition', 'SubPipelineParameterAssignment', 'SubPipelinesInfo', 'SubStatusPeriod', 'SubmitBulkRunRequest', 'SubmitBulkRunResponse', 'SubmitFlowRequest', 'SubmitPipelineRunRequest', 'SweepEarlyTerminationPolicy', 'SweepSettings', 'SweepSettingsLimits', 'SystemData', 'SystemMeta', 'SystemMetaExtraHashes', 'SystemMetaIdentifierHashes', 'TargetLags', 'TargetRollingWindowSize', 'TargetSelectorConfiguration', 'Task', 'TaskControlFlowInfo', 'TaskReuseInfo', 'TensorflowConfiguration', 'TestDataSettings', 'Tool', 'ToolFuncResponse', 'ToolInputDynamicList', 'ToolInputGeneratedBy', 'ToolMetaDto', 'ToolSetting', 'ToolSourceMeta', 'TorchDistributedConfiguration', 'TrainingDiagnosticConfiguration', 'TrainingOutput', 'TrainingSettings', 'TriggerAsyncOperationStatus', 'TuningNodeSetting', 'TypedAssetReference', 'UIAzureOpenAIDeploymentNameSelector', 'UIAzureOpenAIModelCapabilities', 'UIColumnPicker', 'UIComputeSelection', 'UIHyperparameterConfiguration', 'UIInputSetting', 'UIJsonEditor', 'UIParameterHint', 'UIPromptFlowConnectionSelector', 'UIWidgetMetaInfo', 'UIYamlEditor', 'UnversionedEntityRequestDto', 'UnversionedEntityResponseDto', 'UnversionedRebuildIndexDto', 'UnversionedRebuildResponseDto', 'UpdateComponentRequest', 'UpdateFlowRequest', 'UpdateFlowRuntimeRequest', 'UpdateRegistryComponentRequest', 'UploadOptions', 'UriReference', 'User', 'UserAssignedIdentity', 'ValidationDataSettings', 'VariantNode', 'WebServiceComputeMetaInfo', 'WebServicePort', 'Webhook', 'WorkspaceConnectionSpec', 'AEVAAssetType', 'AEVADataStoreMode', 'AEVAIdentityType', 'ActionType', 'AetherArgumentValueType', 'AetherAssetType', 'AetherBuildSourceType', 'AetherComputeType', 'AetherControlFlowType', 'AetherControlInputValue', 'AetherDataCopyMode', 'AetherDataLocationStorageType', 'AetherDataReferenceType', 'AetherDataStoreMode', 'AetherDataTransferStorageType', 'AetherDataTransferTaskType', 'AetherDatasetType', 'AetherEarlyTerminationPolicyType', 'AetherEntityStatus', 'AetherExecutionEnvironment', 'AetherExecutionPhase', 'AetherFeaturizationMode', 'AetherFileBasedPathType', 'AetherForecastHorizonMode', 'AetherIdentityType', 'AetherLogVerbosity', 'AetherModuleDeploymentSource', 'AetherModuleHashVersion', 'AetherModuleType', 'AetherNCrossValidationMode', 'AetherParameterType', 'AetherParameterValueType', 'AetherPrimaryMetrics', 'AetherRepositoryType', 'AetherResourceOperator', 'AetherResourceValueType', 'AetherSamplingAlgorithmType', 'AetherSeasonalityMode', 'AetherShortSeriesHandlingConfiguration', 'AetherStackMetaLearnerType', 'AetherStoredProcedureParameterType', 'AetherTabularTrainingMode', 'AetherTargetAggregationFunction', 'AetherTargetLagsMode', 'AetherTargetRollingWindowSizeMode', 'AetherTaskType', 'AetherTrainingOutputType', 'AetherUIScriptLanguageEnum', 'AetherUIWidgetTypeEnum', 'AetherUploadState', 'AetherUseStl', 'ApplicationEndpointType', 'ArgumentValueType', 'AssetScopeTypes', 'AssetSourceType', 'AssetType', 'AutoDeleteCondition', 'BuildContextLocationType', 'Communicator', 'ComponentRegistrationTypeEnum', 'ComponentType', 'ComputeEnvironmentType', 'ComputeTargetType', 'ComputeType', 'ConfigValueType', 'ConnectionCategory', 'ConnectionScope', 'ConnectionSourceType', 'ConnectionType', 'ConsumeMode', 'ControlFlowType', 'ControlInputValue', 'DataBindingMode', 'DataCategory', 'DataCopyMode', 'DataLocationStorageType', 'DataPortType', 'DataReferenceType', 'DataSourceType', 'DataStoreMode', 'DataTransferStorageType', 'DataTransferTaskType', 'DataTypeMechanism', 'DatasetAccessModes', 'DatasetConsumptionType', 'DatasetDeliveryMechanism', 'DatasetOutputType', 'DatasetType', 'DeliveryMechanism', 'DistributionParameterEnum', 'DistributionType', 'EarlyTerminationPolicyType', 'EmailNotificationEnableType', 'EndpointAuthMode', 'EntityKind', 'EntityStatus', 'ErrorHandlingMode', 'ExecutionPhase', 'FeaturizationMode', 'FlowFeatureStateEnum', 'FlowLanguage', 'FlowPatchOperationType', 'FlowRunMode', 'FlowRunTypeEnum', 'FlowRuntimeSubmissionApiVersion', 'FlowTestMode', 'FlowType', 'ForecastHorizonMode', 'Framework', 'Frequency', 'GlobalJobDispatcherSupportedComputeType', 'GraphComponentsMode', 'GraphDatasetsLoadModes', 'GraphSdkCodeType', 'HttpStatusCode', 'IdentityType', 'InputType', 'IntellectualPropertyAccessMode', 'JobInputType', 'JobLimitsType', 'JobOutputType', 'JobProvisioningState', 'JobStatus', 'JobType', 'KeyType', 'ListViewType', 'LogLevel', 'LogVerbosity', 'LongRunningUpdateType', 'MLFlowAutologgerState', 'ManagedServiceIdentityType', 'MetricValueType', 'MfeInternalIdentityType', 'MfeInternalMLFlowAutologgerState', 'MfeInternalScheduleStatus', 'ModuleDtoFields', 'ModuleInfoFromYamlStatusEnum', 'ModuleRunSettingTypes', 'ModuleScope', 'ModuleSourceType', 'ModuleType', 'ModuleUpdateOperationType', 'ModuleWorkingMechanism', 'NCrossValidationMode', 'NodeCompositionMode', 'NodesValueType', 'Orientation', 'OutputMechanism', 'ParameterType', 'ParameterValueType', 'PipelineDraftMode', 'PipelineRunStatusCode', 'PipelineStatusCode', 'PipelineType', 'PortAction', 'PrimaryMetrics', 'ProvisioningState', 'RealTimeEndpointInternalStepCode', 'RealTimeEndpointOpCode', 'RealTimeEndpointOpStatusCode', 'RecurrenceFrequency', 'RunDisplayNameGenerationType', 'RunSettingParameterType', 'RunSettingUIWidgetTypeEnum', 'RunStatus', 'RunType', 'RuntimeStatusEnum', 'RuntimeType', 'SamplingAlgorithmType', 'ScheduleProvisioningStatus', 'ScheduleStatus', 'ScheduleType', 'ScopeType', 'ScriptType', 'SeasonalityMode', 'Section', 'SessionSetupModeEnum', 'SetupFlowSessionAction', 'SeverityLevel', 'ShortSeriesHandlingConfiguration', 'StackMetaLearnerType', 'StorageAuthType', 'StoredProcedureParameterType', 'SuccessfulCommandReturnCode', 'TabularTrainingMode', 'TargetAggregationFunction', 'TargetLagsMode', 'TargetRollingWindowSizeMode', 'TaskCreationOptions', 'TaskStatus', 'TaskStatusCode', 'TaskType', 'ToolFuncCallScenario', 'ToolState', 'ToolType', 'TrainingOutputType', 'TriggerOperationType', 'TriggerType', 'UIInputDataDeliveryMode', 'UIScriptLanguageEnum', 'UIWidgetTypeEnum', 'UploadState', 'UseStl', 'UserType', 'ValidationStatus', 'ValueType', 'VmPriority', 'WebServiceState', 'WeekDays', 'Weekday', 'YarnDeployMode', ]
promptflow/src/promptflow/promptflow/azure/_restclient/flow/models/__init__.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/azure/_restclient/flow/models/__init__.py", "repo_id": "promptflow", "token_count": 33469 }
38
# Marker file for PEP 561.
promptflow/src/promptflow/promptflow/azure/_restclient/flow/py.typed/0
{ "file_path": "promptflow/src/promptflow/promptflow/azure/_restclient/flow/py.typed", "repo_id": "promptflow", "token_count": 10 }
39
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import asyncio import concurrent import copy import hashlib import json import os import shutil import sys import time from concurrent.futures import ThreadPoolExecutor from functools import cached_property from pathlib import Path from typing import Any, Dict, List, Optional, Union import requests from azure.ai.ml._artifacts._artifact_utilities import _upload_and_generate_remote_uri from azure.ai.ml._scope_dependent_operations import ( OperationConfig, OperationsContainer, OperationScope, _ScopeDependentOperations, ) from azure.ai.ml.constants._common import AssetTypes, AzureMLResourceType from azure.ai.ml.entities import Workspace from azure.ai.ml.operations import DataOperations from azure.ai.ml.operations._operation_orchestrator import OperationOrchestrator from promptflow._constants import LANGUAGE_KEY, FlowLanguage from promptflow._sdk._constants import ( LINE_NUMBER, MAX_RUN_LIST_RESULTS, MAX_SHOW_DETAILS_RESULTS, PROMPT_FLOW_DIR_NAME, PROMPT_FLOW_RUNS_DIR_NAME, REGISTRY_URI_PREFIX, VIS_PORTAL_URL_TMPL, AzureRunTypes, ListViewType, RunDataKeys, RunHistoryKeys, RunStatus, ) from promptflow._sdk._errors import InvalidRunStatusError, RunNotFoundError, RunOperationParameterError from promptflow._sdk._telemetry import ActivityType, WorkspaceTelemetryMixin, monitor_operation from promptflow._sdk._utils import in_jupyter_notebook, incremental_print, is_remote_uri, print_red_error from promptflow._sdk.entities import Run from promptflow._utils.async_utils import async_run_allowing_running_loop from promptflow._utils.flow_utils import get_flow_lineage_id from promptflow._utils.logger_utils import get_cli_sdk_logger from promptflow.azure._constants._flow import AUTOMATIC_RUNTIME, AUTOMATIC_RUNTIME_NAME, CLOUD_RUNS_PAGE_SIZE from promptflow.azure._load_functions import load_flow from promptflow.azure._restclient.flow_service_caller import FlowServiceCaller from promptflow.azure._utils.gerneral import get_authorization, get_user_alias_from_credential from promptflow.azure.operations._flow_operations import FlowOperations from promptflow.exceptions import UserErrorException RUNNING_STATUSES = RunStatus.get_running_statuses() logger = get_cli_sdk_logger() class RunRequestException(Exception): """RunRequestException.""" def __init__(self, message): super().__init__(message) class RunOperations(WorkspaceTelemetryMixin, _ScopeDependentOperations): """RunOperations that can manage runs. You should not instantiate this class directly. Instead, you should create an :class:`~promptflow.azure.PFClient` instance and this operation is available as the instance's attribute. """ def __init__( self, operation_scope: OperationScope, operation_config: OperationConfig, all_operations: OperationsContainer, flow_operations: FlowOperations, credential, service_caller: FlowServiceCaller, workspace: Workspace, **kwargs: Dict, ): super().__init__( operation_scope=operation_scope, operation_config=operation_config, workspace_name=operation_scope.workspace_name, subscription_id=operation_scope.subscription_id, resource_group_name=operation_scope.resource_group_name, ) self._operation_scope = operation_scope self._all_operations = all_operations self._service_caller = service_caller self._workspace = workspace self._credential = credential self._flow_operations = flow_operations self._orchestrators = OperationOrchestrator(self._all_operations, self._operation_scope, self._operation_config) self._workspace_default_datastore = self._datastore_operations.get_default() @property def _data_operations(self): return self._all_operations.get_operation(AzureMLResourceType.DATA, lambda x: isinstance(x, DataOperations)) @property def _datastore_operations(self) -> "DatastoreOperations": return self._all_operations.all_operations[AzureMLResourceType.DATASTORE] @cached_property def _run_history_endpoint_url(self): """Get the endpoint url for the workspace.""" endpoint = self._service_caller._service_endpoint return endpoint + "history/v1.0" + self._service_caller._common_azure_url_pattern def _get_run_portal_url(self, run_id: str): """Get the portal url for the run.""" portal_url, run_info = None, None try: run_info = self._get_run_from_pfs(run_id=run_id) except Exception as e: logger.warning(f"Failed to get run portal url from pfs for run {run_id!r}: {str(e)}") if run_info and hasattr(run_info, "studio_portal_endpoint"): portal_url = run_info.studio_portal_endpoint return portal_url def _get_headers(self): custom_header = { "Authorization": get_authorization(credential=self._credential), "Content-Type": "application/json", } return custom_header @monitor_operation(activity_name="pfazure.runs.create_or_update", activity_type=ActivityType.PUBLICAPI) def create_or_update(self, run: Run, **kwargs) -> Run: """Create or update a run. :param run: Run object to create or update. :type run: ~promptflow.entities.Run :return: Run object created or updated. :rtype: ~promptflow.entities.Run """ stream = kwargs.pop("stream", False) reset = kwargs.pop("reset_runtime", False) # validate the run object run._validate_for_run_create_operation() rest_obj = self._resolve_dependencies_in_parallel(run=run, runtime=kwargs.get("runtime"), reset=reset) self._service_caller.submit_bulk_run( subscription_id=self._operation_scope.subscription_id, resource_group_name=self._operation_scope.resource_group_name, workspace_name=self._operation_scope.workspace_name, body=rest_obj, ) if in_jupyter_notebook(): print(f"Portal url: {self._get_run_portal_url(run_id=run.name)}") if stream: self.stream(run=run.name) return self.get(run=run.name) @monitor_operation(activity_name="pfazure.runs.list", activity_type=ActivityType.PUBLICAPI) def list( self, max_results: int = MAX_RUN_LIST_RESULTS, list_view_type: ListViewType = ListViewType.ACTIVE_ONLY, **kwargs ) -> List[Run]: """List runs in the workspace. :param max_results: The max number of runs to return, defaults to 50, max is 100 :type max_results: int :param list_view_type: The list view type, defaults to ListViewType.ACTIVE_ONLY :type list_view_type: ListViewType :return: The list of runs. :rtype: List[~promptflow.entities.Run] """ if not isinstance(max_results, int) or max_results < 0: raise RunOperationParameterError(f"'max_results' must be a positive integer, got {max_results!r}") headers = self._get_headers() filter_archived = [] if list_view_type == ListViewType.ACTIVE_ONLY: filter_archived = ["false"] elif list_view_type == ListViewType.ARCHIVED_ONLY: filter_archived = ["true"] elif list_view_type == ListViewType.ALL: filter_archived = ["true", "false"] else: raise RunOperationParameterError( f"Invalid list view type: {list_view_type!r}, expecting one of ['ActiveOnly', 'ArchivedOnly', 'All']" ) pay_load = { "filters": [ {"field": "type", "operator": "eq", "values": ["runs"]}, {"field": "annotations/archived", "operator": "eq", "values": filter_archived}, { "field": "properties/runType", "operator": "contains", "values": [ AzureRunTypes.BATCH, AzureRunTypes.EVALUATION, AzureRunTypes.PAIRWISE_EVALUATE, ], }, ], "freeTextSearch": "", "order": [{"direction": "Desc", "field": "properties/creationContext/createdTime"}], # index service can return 100 results at most "pageSize": min(max_results, 100), "skip": 0, "includeTotalResultCount": True, "searchBuilder": "AppendPrefix", } endpoint = self._run_history_endpoint_url.replace("/history", "/index") url = endpoint + "/entities" response = requests.post(url, headers=headers, json=pay_load) if response.status_code == 200: entities = json.loads(response.text) runs = entities["value"] else: raise RunRequestException( f"Failed to get runs from service. Code: {response.status_code}, text: {response.text}" ) refined_runs = [] for run in runs: refined_runs.append(Run._from_index_service_entity(run)) return refined_runs @monitor_operation(activity_name="pfazure.runs.get_metrics", activity_type=ActivityType.PUBLICAPI) def get_metrics(self, run: Union[str, Run], **kwargs) -> dict: """Get the metrics from the run. :param run: The run or the run object :type run: Union[str, ~promptflow.entities.Run] :return: The metrics :rtype: dict """ run = Run._validate_and_return_run_name(run) self._check_cloud_run_completed(run_name=run) metrics = self._get_metrics_from_metric_service(run) return metrics @monitor_operation(activity_name="pfazure.runs.get_details", activity_type=ActivityType.PUBLICAPI) def get_details( self, run: Union[str, Run], max_results: int = MAX_SHOW_DETAILS_RESULTS, all_results: bool = False, **kwargs ) -> "DataFrame": """Get the details from the run. .. note:: If `all_results` is set to True, `max_results` will be overwritten to sys.maxsize. :param run: The run name or run object :type run: Union[str, ~promptflow.sdk.entities.Run] :param max_results: The max number of runs to return, defaults to 100 :type max_results: int :param all_results: Whether to return all results, defaults to False :type all_results: bool :raises RunOperationParameterError: If `max_results` is not a positive integer. :return: The details data frame. :rtype: pandas.DataFrame """ from pandas import DataFrame # if all_results is True, set max_results to sys.maxsize if all_results: max_results = sys.maxsize if not isinstance(max_results, int) or max_results < 1: raise RunOperationParameterError(f"'max_results' must be a positive integer, got {max_results!r}") run = Run._validate_and_return_run_name(run) self._check_cloud_run_completed(run_name=run) child_runs = self._get_flow_runs_pagination(run, max_results=max_results) inputs, outputs = self._get_inputs_outputs_from_child_runs(child_runs) # if there is any line run failed, the number of inputs and outputs will be different # this will result in pandas raising ValueError, so we need to handle mismatched case # if all line runs are failed, no need to fill the outputs if len(outputs) > 0: # get total number of line runs from inputs num_line_runs = len(list(inputs.values())[0]) num_outputs = len(list(outputs.values())[0]) if num_line_runs > num_outputs: # build full set with None as placeholder filled_outputs = {} output_keys = list(outputs.keys()) for k in output_keys: filled_outputs[k] = [None] * num_line_runs filled_outputs[LINE_NUMBER] = list(range(num_line_runs)) for i in range(num_outputs): line_number = outputs[LINE_NUMBER][i] for k in output_keys: filled_outputs[k][line_number] = outputs[k][i] # replace defective outputs with full set outputs = copy.deepcopy(filled_outputs) data = {} columns = [] for k in inputs: new_k = f"inputs.{k}" data[new_k] = copy.deepcopy(inputs[k]) columns.append(new_k) for k in outputs: new_k = f"outputs.{k}" data[new_k] = copy.deepcopy(outputs[k]) columns.append(new_k) df = DataFrame(data).reindex(columns=columns) if f"outputs.{LINE_NUMBER}" in columns: df = df.set_index(f"outputs.{LINE_NUMBER}") return df def _check_cloud_run_completed(self, run_name: str) -> bool: """Check if the cloud run is completed.""" run = self.get(run=run_name) run._check_run_status_is_completed() def _get_flow_runs_pagination(self, name: str, max_results: int) -> List[dict]: # call childRuns API with pagination to avoid PFS OOM # different from UX, run status should be completed here flow_runs = [] start_index, end_index = 0, CLOUD_RUNS_PAGE_SIZE - 1 while start_index < max_results: current_flow_runs = self._service_caller.get_child_runs( subscription_id=self._operation_scope.subscription_id, resource_group_name=self._operation_scope.resource_group_name, workspace_name=self._operation_scope.workspace_name, flow_run_id=name, start_index=start_index, end_index=end_index, ) # no data in current page if len(current_flow_runs) == 0: break start_index, end_index = start_index + CLOUD_RUNS_PAGE_SIZE, end_index + CLOUD_RUNS_PAGE_SIZE flow_runs += current_flow_runs return flow_runs[0:max_results] def _extract_metrics_from_metric_service_response(self, values) -> dict: """Get metrics from the metric service response.""" refined_metrics = {} metric_list = values.get("value", []) if not metric_list: return refined_metrics for metric in metric_list: metric_name = metric["name"] if self._is_system_metric(metric_name): continue refined_metrics[metric_name] = metric["value"][0]["data"][metric_name] return refined_metrics def _get_metrics_from_metric_service(self, run_id) -> dict: """Get the metrics from metric service.""" headers = self._get_headers() # refer to MetricController: https://msdata.visualstudio.com/Vienna/_git/vienna?path=/src/azureml-api/src/Metric/EntryPoints/Api/Controllers/MetricController.cs&version=GBmaster # noqa: E501 endpoint = self._run_history_endpoint_url.replace("/history/v1.0", "/metric/v2.0") url = endpoint + f"/runs/{run_id}/lastvalues" response = requests.post(url, headers=headers, json={}) if response.status_code == 200: values = response.json() return self._extract_metrics_from_metric_service_response(values) else: raise RunRequestException( f"Failed to get metrics from service. Code: {response.status_code}, text: {response.text}" ) @staticmethod def _is_system_metric(metric: str) -> bool: """Check if the metric is system metric. Current we have some system metrics like: __pf__.lines.completed, __pf__.lines.bypassed, __pf__.lines.failed, __pf__.nodes.xx.completed """ return ( metric.endswith(".completed") or metric.endswith(".bypassed") or metric.endswith(".failed") or metric.endswith(".is_completed") ) @monitor_operation(activity_name="pfazure.runs.get", activity_type=ActivityType.PUBLICAPI) def get(self, run: Union[str, Run], **kwargs) -> Run: """Get a run. :param run: The run name :type run: Union[str, ~promptflow.entities.Run] :return: The run object :rtype: ~promptflow.entities.Run """ run = Run._validate_and_return_run_name(run) return self._get_run_from_run_history(flow_run_id=run, **kwargs) def _get_run_from_run_history(self, flow_run_id, original_form=False, **kwargs): """Get run info from run history""" headers = self._get_headers() url = self._run_history_endpoint_url + "/rundata" payload = { "runId": flow_run_id, "selectRunMetadata": True, "selectRunDefinition": True, "selectJobSpecification": True, } response = requests.post(url, headers=headers, json=payload) if response.status_code == 200: run = response.json() # if original_form is True, return the original run data from run history, mainly for test use if original_form: return run run_data = self._refine_run_data_from_run_history(run) run = Run._from_run_history_entity(run_data) return run elif response.status_code == 404: raise RunNotFoundError(f"Run {flow_run_id!r} not found.") else: raise RunRequestException( f"Failed to get run from service. Code: {response.status_code}, text: {response.text}" ) def _refine_run_data_from_run_history(self, run_data: dict) -> dict: """Refine the run data from run history. Generate the portal url, input and output value from run history data. """ run_data = run_data[RunHistoryKeys.RunMetaData] # add cloud run url run_data[RunDataKeys.PORTAL_URL] = self._get_run_portal_url(run_id=run_data["runId"]) # get input and output value # TODO: Unify below values to the same pattern - azureml://xx properties = run_data["properties"] input_data = properties.pop("azureml.promptflow.input_data", None) input_run_id = properties.pop("azureml.promptflow.input_run_id", None) output_data = run_data["outputs"] if output_data: output_data = output_data.get("flow_outputs", {}).get("assetId", None) run_data[RunDataKeys.DATA] = input_data run_data[RunDataKeys.RUN] = input_run_id run_data[RunDataKeys.OUTPUT] = output_data return run_data def _get_run_from_index_service(self, flow_run_id, **kwargs): """Get run info from index service""" headers = self._get_headers() payload = { "filters": [ {"field": "type", "operator": "eq", "values": ["runs"]}, {"field": "annotations/archived", "operator": "eq", "values": ["false"]}, {"field": "properties/runId", "operator": "eq", "values": [flow_run_id]}, ], "order": [{"direction": "Desc", "field": "properties/startTime"}], "pageSize": 50, } endpoint = self._run_history_endpoint_url.replace("/history", "/index") url = endpoint + "/entities" response = requests.post(url, json=payload, headers=headers) if response.status_code == 200: runs = response.json().get("value", None) if not runs: raise RunRequestException( f"Could not found run with run id {flow_run_id!r}, please double check the run id and try again." ) run = runs[0] return Run._from_index_service_entity(run) else: raise RunRequestException( f"Failed to get run metrics from service. Code: {response.status_code}, text: {response.text}" ) def _get_run_from_pfs(self, run_id, **kwargs): """Get run info from pfs""" return self._service_caller.get_flow_run( subscription_id=self._operation_scope.subscription_id, resource_group_name=self._operation_scope.resource_group_name, workspace_name=self._operation_scope.workspace_name, flow_run_id=run_id, ) @monitor_operation(activity_name="pfazure.runs.archive", activity_type=ActivityType.PUBLICAPI) def archive(self, run: Union[str, Run]) -> Run: """Archive a run. :param run: The run name or run object :type run: Union[str, ~promptflow.entities.Run] :return: The run object :rtype: ~promptflow.entities.Run """ run = Run._validate_and_return_run_name(run) payload = { RunHistoryKeys.HIDDEN: True, } return self._modify_run_in_run_history(run_id=run, payload=payload) @monitor_operation(activity_name="pfazure.runs.restore", activity_type=ActivityType.PUBLICAPI) def restore(self, run: Union[str, Run]) -> Run: """Restore a run. :param run: The run name or run object :type run: Union[str, ~promptflow.entities.Run] :return: The run object :rtype: ~promptflow.entities.Run """ run = Run._validate_and_return_run_name(run) payload = { RunHistoryKeys.HIDDEN: False, } return self._modify_run_in_run_history(run_id=run, payload=payload) def _get_log(self, flow_run_id: str) -> str: return self._service_caller.caller.bulk_runs.get_flow_run_log_content( subscription_id=self._operation_scope.subscription_id, resource_group_name=self._operation_scope.resource_group_name, workspace_name=self._operation_scope.workspace_name, flow_run_id=flow_run_id, headers=self._get_headers(), ) @monitor_operation(activity_name="pfazure.runs.update", activity_type=ActivityType.PUBLICAPI) def update( self, run: Union[str, Run], display_name: Optional[str] = None, description: Optional[str] = None, tags: Optional[Dict[str, str]] = None, ) -> Optional[Run]: """Update a run. May update the display name, description or tags. .. note:: - Display name and description are strings, and tags is a dictionary of key-value pairs, both key and value are also strings. - Tags is a dictionary of key-value pairs. Updating tags will overwrite the existing key-value pair, but will not delete the existing key-value pairs. :param run: The run name or run object :type run: Union[str, ~promptflow.entities.Run] :param display_name: The display name :type display_name: Optional[str] :param description: The description :type description: Optional[str] :param tags: The tags :type tags: Optional[Dict[str, str]] :raises UpdateRunError: If nothing or wrong type values provided to update the run. :return: The run object :rtype: Optional[~promptflow.entities.Run] """ run = Run._validate_and_return_run_name(run) if display_name is None and description is None and tags is None: logger.warning("Nothing provided to update the run.") return None payload = {} if isinstance(display_name, str): payload["displayName"] = display_name elif display_name is not None: logger.warning(f"Display name must be a string, got {type(display_name)!r}: {display_name!r}.") if isinstance(description, str): payload["description"] = description elif description is not None: logger.warning(f"Description must be a string, got {type(description)!r}: {description!r}.") # check if the tags type is Dict[str, str] if isinstance(tags, dict) and all( isinstance(key, str) and isinstance(value, str) for key, value in tags.items() ): payload["tags"] = tags elif tags is not None: logger.warning(f"Tags type must be 'Dict[str, str]', got non-dict or non-string key/value in tags: {tags}.") return self._modify_run_in_run_history(run_id=run, payload=payload) @monitor_operation(activity_name="pfazure.runs.stream", activity_type=ActivityType.PUBLICAPI) def stream(self, run: Union[str, Run], raise_on_error: bool = True) -> Run: """Stream the logs of a run. :param run: The run name or run object :type run: Union[str, ~promptflow.entities.Run] :param raise_on_error: Raises an exception if a run fails or canceled. :type raise_on_error: bool :return: The run object :rtype: ~promptflow.entities.Run """ run = self.get(run=run) # TODO: maybe we need to make this configurable file_handler = sys.stdout # different from Azure ML job, flow job can run very fast, so it might not print anything; # use below variable to track this behavior, and at least print something to the user. try: printed = 0 stream_count = 0 start = time.time() while run.status in RUNNING_STATUSES or run.status == RunStatus.FINALIZING: file_handler.flush() stream_count += 1 # print prompt every 3 times, in case there is no log printed if stream_count % 3 == 0: # print prompt every 3 times file_handler.write(f"(Run status is {run.status!r}, continue streaming...)\n") # if the run is not started for 5 minutes, print an error message and break the loop if run.status == RunStatus.NOT_STARTED: current = time.time() if current - start > 300: file_handler.write( f"The run {run.name!r} is in status 'NotStarted' for 5 minutes, streaming is stopped." "Please make sure you are using the latest runtime.\n" ) break available_logs = self._get_log(flow_run_id=run.name) printed = incremental_print(available_logs, printed, file_handler) time.sleep(10) run = self.get(run=run.name) # ensure all logs are printed file_handler.flush() available_logs = self._get_log(flow_run_id=run.name) incremental_print(available_logs, printed, file_handler) file_handler.write("======= Run Summary =======\n") duration = None if run._start_time and run._end_time: duration = str(run._end_time - run._start_time) file_handler.write( f'Run name: "{run.name}"\n' f'Run status: "{run.status}"\n' f'Start time: "{run._start_time}"\n' f'Duration: "{duration}"\n' f'Run url: "{self._get_run_portal_url(run_id=run.name)}"' ) except KeyboardInterrupt: error_message = ( "The output streaming for the flow run was interrupted.\n" "But the run is still executing on the cloud.\n" ) print(error_message) if run.status == RunStatus.FAILED or run.status == RunStatus.CANCELED: if run.status == RunStatus.FAILED: try: error_message = run._error["error"]["message"] except Exception: # pylint: disable=broad-except error_message = "Run fails with unknown error." else: error_message = "Run is canceled." if raise_on_error: raise InvalidRunStatusError(error_message) else: print_red_error(error_message) return run def _resolve_data_to_asset_id(self, run: Run): # Skip if no data provided if run.data is None: return test_data = run.data def _get_data_type(_data): if os.path.isdir(_data): return AssetTypes.URI_FOLDER else: return AssetTypes.URI_FILE if is_remote_uri(test_data): # Pass through ARM id or remote url return test_data if os.path.exists(test_data): # absolute local path, upload, transform to remote url data_type = _get_data_type(test_data) test_data = _upload_and_generate_remote_uri( self._operation_scope, self._datastore_operations, test_data, datastore_name=self._workspace_default_datastore.name, show_progress=self._show_progress, ) if data_type == AssetTypes.URI_FOLDER and test_data and not test_data.endswith("/"): test_data = test_data + "/" else: raise ValueError( f"Local path {test_data!r} not exist. " "If it's remote data, only data with azureml prefix or remote url is supported." ) return test_data def _resolve_flow(self, run: Run): if run._use_remote_flow: return self._resolve_flow_definition_resource_id(run=run) flow = load_flow(run.flow) self._flow_operations._resolve_arm_id_or_upload_dependencies( flow=flow, # ignore .promptflow/dag.tools.json only for run submission scenario in python ignore_tools_json=flow._flow_dict.get(LANGUAGE_KEY, None) != FlowLanguage.CSharp, ) return flow.path def _get_session_id(self, flow): try: user_alias = get_user_alias_from_credential(self._credential) except Exception: # fall back to unknown user when failed to get credential. user_alias = "unknown_user" flow_id = get_flow_lineage_id(flow_dir=flow) session_id = f"{user_alias}_{flow_id}" # hash and truncate to avoid the session id getting too long # backend has a 64 bit limit for session id. # use hexdigest to avoid non-ascii characters in session id session_id = str(hashlib.sha256(session_id.encode()).hexdigest())[:48] return session_id def _get_inputs_outputs_from_child_runs(self, runs: List[Dict[str, Any]]): """Get the inputs and outputs from the child runs.""" inputs = {} outputs = {} outputs[LINE_NUMBER] = [] runs.sort(key=lambda x: x["index"]) # 1st loop, until have all outputs keys outputs_keys = [] for run in runs: run_outputs = run["output"] if isinstance(run_outputs, dict): for k in run_outputs: outputs_keys.append(k) break # 2nd complete loop, get values for run in runs: index, run_inputs, run_outputs = run["index"], run["inputs"], run["output"] # input should always available as a dict for k, v in run_inputs.items(): if k not in inputs: inputs[k] = [] inputs[k].append(v) # output outputs[LINE_NUMBER].append(index) # for failed line run, output is None, instead of a dict # in this case, we append an empty line if not isinstance(run_outputs, dict): for k in outputs_keys: if k == LINE_NUMBER: continue if k not in outputs: outputs[k] = [] outputs[k].append(None) else: for k, v in run_outputs.items(): if k not in outputs: outputs[k] = [] outputs[k].append(v) return inputs, outputs @monitor_operation(activity_name="pfazure.runs.visualize", activity_type=ActivityType.PUBLICAPI) def visualize(self, runs: Union[str, Run, List[str], List[Run]], **kwargs) -> None: """Visualize run(s) using Azure AI portal. :param runs: Names of the runs, or list of run objects. :type runs: Union[str, ~promptflow.sdk.entities.Run, List[str], List[~promptflow.sdk.entities.Run]] """ if not isinstance(runs, list): runs = [runs] validated_runs = [] for run in runs: run_name = Run._validate_and_return_run_name(run) validated_runs.append(run_name) subscription_id = self._operation_scope.subscription_id resource_group_name = self._operation_scope.resource_group_name workspace_name = self._operation_scope.workspace_name names = ",".join(validated_runs) portal_url = VIS_PORTAL_URL_TMPL.format( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, names=names, ) print(f"Web View: {portal_url}") def _resolve_automatic_runtime(self): logger.warning( f"You're using {AUTOMATIC_RUNTIME}, if it's first time you're using it, " "it may take a while to build runtime and you may see 'NotStarted' status for a while. " ) runtime_name = AUTOMATIC_RUNTIME_NAME return runtime_name def _resolve_runtime(self, run, flow_path, runtime): runtime = run._runtime or runtime # for remote flow case, use flow name as session id # for local flow case, use flow path to calculate session id session_id = run._flow_name if run._use_remote_flow else self._get_session_id(flow=flow_path) if runtime is None or runtime == AUTOMATIC_RUNTIME_NAME: runtime = self._resolve_automatic_runtime() elif not isinstance(runtime, str): raise TypeError(f"runtime should be a string, got {type(runtime)} for {runtime}") return runtime, session_id def _resolve_dependencies_in_parallel(self, run, runtime, reset=None): flow_path = run.flow with ThreadPoolExecutor() as pool: tasks = [ pool.submit(self._resolve_data_to_asset_id, run=run), pool.submit(self._resolve_flow, run=run), ] concurrent.futures.wait(tasks, return_when=concurrent.futures.ALL_COMPLETED) task_results = [task.result() for task in tasks] run.data = task_results[0] run.flow = task_results[1] runtime, session_id = self._resolve_runtime(run=run, flow_path=flow_path, runtime=runtime) rest_obj = run._to_rest_object() rest_obj.runtime_name = runtime rest_obj.session_id = session_id # TODO(2884482): support force reset & force install if runtime == "None": # HARD CODE for office scenario, use workspace default runtime when specified None rest_obj.runtime_name = None return rest_obj def _refine_payload_for_run_update(self, payload: dict, key: str, value, expected_type: type) -> dict: """Refine the payload for run update.""" if value is not None: payload[key] = value return payload def _modify_run_in_run_history(self, run_id: str, payload: dict) -> Run: """Modify run info in run history.""" headers = self._get_headers() url = self._run_history_endpoint_url + f"/runs/{run_id}/modify" response = requests.patch(url, headers=headers, json=payload) if response.status_code == 200: # the modify api returns different data format compared with get api, so we use get api here to # return standard Run object return self.get(run=run_id) else: raise RunRequestException( f"Failed to modify run in run history. Code: {response.status_code}, text: {response.text}" ) def _resolve_flow_definition_resource_id(self, run: Run): """Resolve the flow definition resource id.""" # for registry flow pattern, the flow uri can be passed as flow definition resource id directly if run.flow.startswith(REGISTRY_URI_PREFIX): return run.flow # for workspace flow pattern, generate the flow definition resource id workspace_id = self._workspace._workspace_id location = self._workspace.location return f"azureml://locations/{location}/workspaces/{workspace_id}/flows/{run._flow_name}" @monitor_operation(activity_name="pfazure.runs.download", activity_type=ActivityType.PUBLICAPI) def download( self, run: Union[str, Run], output: Optional[Union[str, Path]] = None, overwrite: Optional[bool] = False ) -> str: """Download the data of a run, including input, output, snapshot and other run information. .. note:: After the download is finished, you can use ``pf run create --source <run-info-local-folder>`` to register this run as a local run record, then you can use commands like ``pf run show/visualize`` to inspect the run just like a run that was created from local flow. :param run: The run name or run object :type run: Union[str, ~promptflow.entities.Run] :param output: The output directory. Default to be default to be "~/.promptflow/.runs" folder. :type output: Optional[str] :param overwrite: Whether to overwrite the existing run folder. Default to be False. :type overwrite: Optional[bool] :return: The run directory path :rtype: str """ import platform from promptflow.azure.operations._async_run_downloader import AsyncRunDownloader run = Run._validate_and_return_run_name(run) run_folder = self._validate_for_run_download(run=run, output=output, overwrite=overwrite) run_downloader = AsyncRunDownloader._from_run_operations(run_ops=self, run=run, output_folder=run_folder) if platform.system().lower() == "windows": # Reference: https://stackoverflow.com/questions/45600579/asyncio-event-loop-is-closed-when-getting-loop # On Windows seems to be a problem with EventLoopPolicy, use this snippet to work around it asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy()) async_run_allowing_running_loop(run_downloader.download) result_path = run_folder.resolve().as_posix() logger.info(f"Successfully downloaded run {run!r} to {result_path!r}.") return result_path def _validate_for_run_download(self, run: Union[str, Run], output: Optional[Union[str, Path]], overwrite): """Validate the run download parameters.""" run = Run._validate_and_return_run_name(run) # process the output path if output is None: # default to be "~/.promptflow/.runs" folder output_directory = Path.home() / PROMPT_FLOW_DIR_NAME / PROMPT_FLOW_RUNS_DIR_NAME else: output_directory = Path(output) # validate the run folder run_folder = output_directory / run if run_folder.exists(): if overwrite is True: logger.warning("Removing existing run folder %r.", run_folder.resolve().as_posix()) shutil.rmtree(run_folder) else: raise UserErrorException( f"Run folder {run_folder.resolve().as_posix()!r} already exists, please specify a new output path " f"or set the overwrite flag to be true." ) # check the run status, only download the completed run run = self.get(run=run) if run.status != RunStatus.COMPLETED: raise UserErrorException( f"Can only download the run with status {RunStatus.COMPLETED!r} " f"while {run.name!r}'s status is {run.status!r}." ) run_folder.mkdir(parents=True) return run_folder @monitor_operation(activity_name="pfazure.runs.cancel", activity_type=ActivityType.PUBLICAPI) def cancel(self, run: Union[str, Run], **kwargs) -> None: """Cancel a run. :param run: The run name or run object :type run: Union[str, ~promptflow.entities.Run] """ run = Run._validate_and_return_run_name(run) self._service_caller.cancel_flow_run( subscription_id=self._operation_scope.subscription_id, resource_group_name=self._operation_scope.resource_group_name, workspace_name=self._operation_scope.workspace_name, flow_run_id=run, )
promptflow/src/promptflow/promptflow/azure/operations/_run_operations.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/azure/operations/_run_operations.py", "repo_id": "promptflow", "token_count": 18051 }
40
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- from dataclasses import dataclass from datetime import datetime from enum import Enum from typing import Any, Dict, List, Mapping, Optional from dateutil import parser class Status(Enum): """An enumeration class for different types of run status.""" Running = "Running" Preparing = "Preparing" Completed = "Completed" Failed = "Failed" Bypassed = "Bypassed" Canceled = "Canceled" NotStarted = "NotStarted" CancelRequested = "CancelRequested" @staticmethod def is_terminated(status): """Check if a given status is terminated. :param status: The status to be checked :type status: str or :class:`Status` :return: True if the status is terminated, False otherwise :rtype: bool """ if isinstance(status, Status): status = status.value return status in {s.value for s in {Status.Completed, Status.Failed, Status.Bypassed, Status.Canceled}} @dataclass class RunInfo: """A dataclass representing the run information. :param node: Node name :type node: str :param flow_run_id: The id of the flow run :type flow_run_id: str :param run_id: The id of the run, which equals ``flow_run_id:step_run_id`` :type run_id: str :param status: Status of the run :type status: ~promptflow.contracts.run_info.Status :param inputs: List of inputs for the run :type inputs: list :param output: Output of the run :type output: object :param metrics: Metrics of the run :type metrics: Dict[str, Any] :param error: Errors occurred during the run :type error: Dict[str, Any] :param parent_run_id: Parent run id :type parent_run_id: str :param start_time: Start time of the run :type start_time: datetime :param end_time: End time of the run :type end_time: datetime :param index: Index of the run :type index: Optional[int] :param api_calls: API calls made during the run :type api_calls: Optional[List[Dict[str, Any]]] :param variant_id: Variant id of the run :type variant_id: Optional[str] :param cached_run_id: Cached run id :type cached_run_id: Optional[str] :param cached_flow_run_id: Cached flow run id :type cached_flow_run_id: Optional[str] :param logs: Logs of the run :type logs: Optional[Dict[str, str]] :param system_metrics: System metrics of the run :type system_metrics: Optional[Dict[str, Any]] :param result: Result of the run :type result: Optional[object] """ node: str flow_run_id: str run_id: str status: Status inputs: Mapping[str, Any] output: object metrics: Dict[str, Any] error: Dict[str, Any] parent_run_id: str start_time: datetime end_time: datetime index: Optional[int] = None api_calls: Optional[List[Dict[str, Any]]] = None variant_id: str = "" cached_run_id: str = None cached_flow_run_id: str = None logs: Optional[Dict[str, str]] = None system_metrics: Dict[str, Any] = None result: object = None @staticmethod def deserialize(data: dict) -> "RunInfo": """Deserialize the RunInfo from a dict.""" run_info = RunInfo( node=data.get("node"), flow_run_id=data.get("flow_run_id"), run_id=data.get("run_id"), status=Status(data.get("status")), inputs=data.get("inputs", None), output=data.get("output", None), metrics=data.get("metrics", None), error=data.get("error", None), parent_run_id=data.get("parent_run_id", None), start_time=parser.parse(data.get("start_time")).replace(tzinfo=None), end_time=parser.parse(data.get("end_time")).replace(tzinfo=None), index=data.get("index", None), api_calls=data.get("api_calls", None), variant_id=data.get("variant_id", ""), cached_run_id=data.get("cached_run_id", None), cached_flow_run_id=data.get("cached_flow_run_id", None), logs=data.get("logs", None), system_metrics=data.get("system_metrics", None), result=data.get("result", None), ) return run_info @dataclass class FlowRunInfo: """A dataclass representing the run information. :param run_id: The id of the run, which equals ``flow_run_id:child_flow_run_id`` :type run_id: str :param status: Status of the flow run :type status: ~promptflow.contracts.run_info.Status :param error: Errors occurred during the flow run :type error: Dict[str, Any] :param inputs: Inputs for the flow run :type inputs: object :param output: Output of the flow run :type output: object :param metrics: Metrics of the flow run :type metrics: Dict[str, Any] :param request: Request made for the flow run :type request: object :param parent_run_id: Parent run id of the flow run :type parent_run_id: str :param root_run_id: Root run id of the flow run :type root_run_id: str :param source_run_id: The run id of the run that triggered the flow run :type source_run_id: str :param flow_id: Flow id of the flow run :type flow_id: str :param start_time: Start time of the flow run :type start_time: datetime :param end_time: End time of the flow run :type end_time: datetime :param index: Index of the flow run (used for bulk test mode) :type index: Optional[int] :param api_calls: API calls made during the flow run :type api_calls: Optional[List[Dict[str, Any]]] :param variant_id: Variant id of the flow run :type variant_id: Optional[str] :param name: Name of the flow run :type name: Optional[str] :param description: Description of the flow run :type description: Optional[str] :param tags: Tags of the flow run :type tags: Optional[Dict[str, str]] :param system_metrics: System metrics of the flow run :type system_metrics: Optional[Dict[str, Any]] :param result: Result of the flow run :type result: Optional[object] :param upload_metrics: Flag indicating whether to upload metrics for the flow run :type upload_metrics: Optional[bool] """ run_id: str status: Status error: object inputs: object output: object metrics: Dict[str, Any] request: object parent_run_id: str root_run_id: str source_run_id: str flow_id: str start_time: datetime end_time: datetime index: Optional[int] = None api_calls: Optional[List[Dict[str, Any]]] = None variant_id: str = "" name: str = "" description: str = "" tags: Optional[Mapping[str, str]] = None system_metrics: Dict[str, Any] = None result: object = None upload_metrics: bool = False # only set as true for root runs in bulk test mode and evaluation mode @staticmethod def deserialize(data: dict) -> "FlowRunInfo": """Deserialize the FlowRunInfo from a dict.""" flow_run_info = FlowRunInfo( run_id=data.get("run_id"), status=Status(data.get("status")), error=data.get("error", None), inputs=data.get("inputs", None), output=data.get("output", None), metrics=data.get("metrics", None), request=data.get("request", None), parent_run_id=data.get("parent_run_id", None), root_run_id=data.get("root_run_id", None), source_run_id=data.get("source_run_id", None), flow_id=data.get("flow_id"), start_time=parser.parse(data.get("start_time")).replace(tzinfo=None), end_time=parser.parse(data.get("end_time")).replace(tzinfo=None), index=data.get("index", None), api_calls=data.get("api_calls", None), variant_id=data.get("variant_id", ""), name=data.get("name", ""), description=data.get("description", ""), tags=data.get("tags", None), system_metrics=data.get("system_metrics", None), result=data.get("result", None), upload_metrics=data.get("upload_metrics", False), ) return flow_run_info @staticmethod def create_with_error(start_time, inputs, index, run_id, error): return FlowRunInfo( run_id=run_id, status=Status.Failed, error=error, inputs=inputs, output=None, metrics=None, request=None, parent_run_id=run_id, root_run_id=run_id, source_run_id=run_id, flow_id="default_flow_id", start_time=start_time, end_time=datetime.utcnow(), index=index, )
promptflow/src/promptflow/promptflow/contracts/run_info.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/contracts/run_info.py", "repo_id": "promptflow", "token_count": 3703 }
41
import multiprocessing import queue import signal from dataclasses import dataclass from enum import Enum from functools import partial from multiprocessing import Queue from typing import List import psutil from promptflow._core.operation_context import OperationContext from promptflow._utils.logger_utils import LogContext, bulk_logger from promptflow.executor._errors import SpawnedForkProcessManagerStartFailure from promptflow.executor.flow_executor import FlowExecutor @dataclass class ProcessInfo: index: int process_id: str process_name: str class ProcessControlSignal(str, Enum): START = "start" RESTART = "restart" END = "end" class AbstractProcessManager: """ AbstractProcessManager is a base class for managing processes. :param input_queues: Queues for providing input data to the processes. :type input_queues: List[multiprocessing.Queue] :param output_queues: Queues for receiving execution results of the processes. :type output_queues: List[multiprocessing.Queue] :param process_info: Dictionary to store information about the processes. :type process_info: dict :param process_target_func: The target function that the processes will execute. :param raise_ex: Flag to determine whether to raise exceptions or not. :type raise_ex: bool """ def __init__( self, input_queues: List[Queue], output_queues: List[Queue], process_info: dict, process_target_func, *args, **kwargs, ) -> None: self._input_queues = input_queues self._output_queues = output_queues self._process_info = process_info self._process_target_func = process_target_func current_log_context = LogContext.get_current() self._log_context_initialization_func = current_log_context.get_initializer() if current_log_context else None self._current_operation_context = OperationContext.get_instance().get_context_dict() def new_process(self, i): """ Create and start a new process. :param i: Index of the new process to start. :type i: int """ raise NotImplementedError("AbstractProcessManager is an abstract class, no implementation for new_process.") def restart_process(self, i): """ Restarts a specified process :param i: Index of the process to restart. :type i: int """ raise NotImplementedError("AbstractProcessManager is an abstract class, no implementation for restart_process.") def end_process(self, i): """ Terminates a specified process. :param i: Index of the process to terminate. :type i: int """ raise NotImplementedError("AbstractProcessManager is an abstract class, no implementation for end_process.") def ensure_healthy(self): """ Checks the health of the managed processes. This method should be implemented in subclasses to provide specific health check mechanisms. """ raise NotImplementedError("AbstractProcessManager is an abstract class, no implementation for end_process.") class SpawnProcessManager(AbstractProcessManager): """ SpawnProcessManager extends AbstractProcessManager to specifically manage processes using the 'spawn' start method. :param executor_creation_func: Function to create an executor for each process. :param args: Additional positional arguments for the AbstractProcessManager. :param kwargs: Additional keyword arguments for the AbstractProcessManager. """ def __init__(self, executor_creation_func, *args, **kwargs): super().__init__(*args, **kwargs) self._executor_creation_func = executor_creation_func self.context = multiprocessing.get_context("spawn") def start_processes(self): """ Initiates processes. """ for i in range(len(self._input_queues)): self.new_process(i) def new_process(self, i): """ Create and start a new process using the 'spawn' context. :param i: Index of the input and output queue for the new process. :type i: int """ process = self.context.Process( target=self._process_target_func, args=( self._executor_creation_func, self._input_queues[i], self._output_queues[i], self._log_context_initialization_func, self._current_operation_context, ), # Set the process as a daemon process to automatically terminated and release system resources # when the main process exits. daemon=True, ) process.start() try: self._process_info[i] = ProcessInfo( index=i, process_id=process.pid, process_name=process.name, ) except Exception as e: bulk_logger.warning( f"Unexpected error occurred while creating ProcessInfo for index {i} and process id {process.pid}. " f"Exception: {e}" ) return process def restart_process(self, i): """ Restarts a specified process by first terminating it then creating a new one. :param i: Index of the process to restart. :type i: int """ self.end_process(i) self.new_process(i) def end_process(self, i): """ Terminates a specified process. :param i: Index of the process to terminate. :type i: int """ try: pid = self._process_info[i].process_id process = psutil.Process(pid) process.terminate() process.wait() self._process_info.pop(i) except psutil.NoSuchProcess: bulk_logger.warning(f"Process {pid} had been terminated") except Exception as e: bulk_logger.warning( f"Unexpected error occurred while end process for index {i} and process id {process.pid}. " f"Exception: {e}" ) def ensure_healthy(self): """ Checks the health of the managed processes. Note: Health checks for spawn mode processes are currently not performed. Add detailed checks in this function if needed in the future. """ pass class ForkProcessManager(AbstractProcessManager): ''' ForkProcessManager extends AbstractProcessManager to manage processes using the 'fork' method in a spawned process. :param control_signal_queue: A queue for controlling signals to manage process operations. :type control_signal_queue: multiprocessing.Queue :param flow_file: The path to the flow file. :type flow_file: Path :param connections: The connections to be used for the flow. :type connections: dict :param working_dir: The working directory to be used for the flow. :type working_dir: str :param args: Additional positional arguments for the AbstractProcessManager. :param kwargs: Additional keyword arguments for the AbstractProcessManager. """ ''' def __init__(self, control_signal_queue: Queue, flow_create_kwargs, *args, **kwargs): super().__init__(*args, **kwargs) self._control_signal_queue = control_signal_queue self._flow_create_kwargs = flow_create_kwargs def start_processes(self): """ Initiates a process with "spawn" method to establish a clean environment. """ context = multiprocessing.get_context("spawn") process = context.Process( target=create_spawned_fork_process_manager, args=( self._log_context_initialization_func, self._current_operation_context, self._input_queues, self._output_queues, self._control_signal_queue, self._flow_create_kwargs, self._process_info, self._process_target_func, ), ) process.start() self._spawned_fork_process_manager_pid = process.pid def restart_process(self, i): """ Sends a signal to restart a specific process. :param i: Index of the process to restart. :type i: int """ self._control_signal_queue.put((ProcessControlSignal.RESTART, i)) def end_process(self, i): """ Sends a signal to terminate a specific process. :param i: Index of the process to terminate. :type i: int """ self._control_signal_queue.put((ProcessControlSignal.END, i)) def new_process(self, i): """ Sends a signal to start a new process. :param i: Index of the new process to start. :type i: int """ self._control_signal_queue.put((ProcessControlSignal.START, i)) def ensure_healthy(self): # A 'zombie' process is a process that has finished running but still remains in # the process table, waiting for its parent process to collect and handle its exit status. # The normal state of the spawned process is 'running'. If the process does not start successfully # or exit unexpectedly, its state will be 'zombie'. if psutil.Process(self._spawned_fork_process_manager_pid).status() == "zombie": bulk_logger.error("The spawned fork process manager failed to start.") ex = SpawnedForkProcessManagerStartFailure() raise ex class SpawnedForkProcessManager(AbstractProcessManager): """ SpawnedForkProcessManager extends AbstractProcessManager to manage processes using 'fork' method in a spawned process. :param control_signal_queue: A queue for controlling signals to manage process operations. :type control_signal_queue: multiprocessing.Queue :param executor_creation_func: Function to create an executor for each process. :type executor_creation_func: Callable :param args: Additional positional arguments for the AbstractProcessManager. :param kwargs: Additional keyword arguments for the AbstractProcessManager. """ def __init__( self, log_context_initialization_func, current_operation_context, control_signal_queue, executor_creation_func, *args, **kwargs, ): super().__init__(*args, **kwargs) self._log_context_initialization_func = log_context_initialization_func self._current_operation_context = current_operation_context self._control_signal_queue = control_signal_queue self._executor_creation_func = executor_creation_func self.context = multiprocessing.get_context("fork") def new_process(self, i): """ Create and start a new process using the 'fork' context. :param i: Index of the input and output queue for the new process. :type i: int """ process = self.context.Process( target=self._process_target_func, args=( self._executor_creation_func, self._input_queues[i], self._output_queues[i], self._log_context_initialization_func, self._current_operation_context, ), daemon=True, ) process.start() try: self._process_info[i] = ProcessInfo( index=i, process_id=process.pid, process_name=process.name, ) except Exception as e: bulk_logger.warning( f"Unexpected error occurred while creating ProcessInfo for index {i} and process id {process.pid}. " f"Exception: {e}" ) return process def end_process(self, i): """ Terminates a specified process. :param i: Index of the process to terminate. :type i: int """ try: pid = self._process_info[i].process_id process = psutil.Process(pid) process.terminate() process.wait() self._process_info.pop(i) except psutil.NoSuchProcess: bulk_logger.warning(f"Process {pid} had been terminated") except Exception as e: bulk_logger.warning( f"Unexpected error occurred while end process for index {i} and process id {process.pid}. " f"Exception: {e}" ) def restart_process(self, i): """ Restarts a specified process by first terminating it then creating a new one. :param i: Index of the process to restart. :type i: int """ self.end_process(i) self.new_process(i) def handle_signals(self, control_signal, i): """ Handles control signals for processes, performing actions such as starting, ending, or restarting them based on the received signal. :param control_signal: The control signal indicating the desired action. It can be 'start', 'end', or 'restart'. :type control_signal: str :param i: Index of the process to control. :type i: int """ if control_signal == ProcessControlSignal.END: self.end_process(i) elif control_signal == ProcessControlSignal.RESTART: self.restart_process(i) elif control_signal == ProcessControlSignal.START: self.new_process(i) def create_spawned_fork_process_manager( log_context_initialization_func, current_operation_context, input_queues, output_queues, control_signal_queue, flow_create_kwargs, process_info, process_target_func, ): """ Manages the creation, termination, and signaling of processes using the 'fork' context. """ # Set up signal handling for process interruption. from promptflow.executor._line_execution_process_pool import create_executor_fork, signal_handler signal.signal(signal.SIGINT, signal_handler) # Create flow executor. executor = FlowExecutor.create(**flow_create_kwargs) # When using fork, we use this method to create the executor to avoid reloading the flow # which will introduce a lot more memory. executor_creation_func = partial(create_executor_fork, flow_executor=executor) manager = SpawnedForkProcessManager( log_context_initialization_func, current_operation_context, control_signal_queue, executor_creation_func, input_queues, output_queues, process_info, process_target_func, ) # Initialize processes. for i in range(len(input_queues)): manager.new_process(i) # Main loop to handle control signals and manage process lifecycle. while True: all_processes_stopped = True try: process_info_list = process_info.items() except Exception as e: bulk_logger.warning(f"Unexpected error occurred while get process info list. Exception: {e}") break for _, info in list(process_info_list): pid = info.process_id # Check if at least one process is alive. if psutil.pid_exists(pid): process = psutil.Process(pid) if process.status() != "zombie": all_processes_stopped = False else: # If do not call wait(), the child process may become a zombie process, # and psutil.pid_exists(pid) is always true, which will cause spawn proces # never exit. process.wait() # If all fork child processes exit, exit the loop. if all_processes_stopped: break try: control_signal, i = control_signal_queue.get(timeout=1) manager.handle_signals(control_signal, i) except queue.Empty: # Do nothing until the process_queue have not content or process is killed pass
promptflow/src/promptflow/promptflow/executor/_process_manager.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/executor/_process_manager.py", "repo_id": "promptflow", "token_count": 6562 }
42
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import os import re from pathlib import Path from typing import Any, Match, cast from setuptools import find_packages, setup PACKAGE_NAME = "promptflow" PACKAGE_FOLDER_PATH = Path(__file__).parent / "promptflow" with open(os.path.join(PACKAGE_FOLDER_PATH, "_version.py"), encoding="utf-8") as f: version = cast(Match[Any], re.search(r'^VERSION\s*=\s*[\'"]([^\'"]*)[\'"]', f.read(), re.MULTILINE)).group(1) with open("README.md", encoding="utf-8") as f: readme = f.read() with open("CHANGELOG.md", encoding="utf-8") as f: changelog = f.read() REQUIRES = [ "psutil", # get process information when bulk run "httpx>=0.25.1", # used to send http requests asynchronously "openai", # promptflow._core.api_injector "flask>=2.2.3,<4.0.0", # Serving endpoint requirements "sqlalchemy>=1.4.48,<3.0.0", # sqlite requirements # note that pandas 1.5.3 is the only version to test in ci before promptflow 0.1.0b7 is released # and pandas 2.x.x will be the only version to test in ci after that. "pandas>=1.5.3,<3.0.0", # load data requirements "python-dotenv>=1.0.0,<2.0.0", # control plane sdk requirements, to load .env file "keyring>=24.2.0,<25.0.0", # control plane sdk requirements, to access system keyring service "pydash>=6.0.0,<8.0.0", # control plane sdk requirements, to support parameter overrides in schema. # vulnerability: https://github.com/advisories/GHSA-5cpq-8wj7-hf2v "cryptography>=41.0.3,<42.0.0", # control plane sdk requirements to support connection encryption "colorama>=0.4.6,<0.5.0", # producing colored terminal text for testing chat flow "tabulate>=0.9.0,<1.0.0", # control plane sdk requirements, to print table in console "filelock>=3.4.0,<4.0.0", # control plane sdk requirements, to lock for multiprocessing # We need to pin the version due to the issue: https://github.com/hwchase17/langchain/issues/5113 "marshmallow>=3.5,<4.0.0", "gitpython>=3.1.24,<4.0.0", # used git info to generate flow id "tiktoken>=0.4.0", "strictyaml>=1.5.0,<2.0.0", # used to identify exact location of validation error "waitress>=2.1.2,<3.0.0", # used to serve local service "opencensus-ext-azure<2.0.0", # configure opencensus to send telemetry to azure monitor "ruamel.yaml>=0.17.10,<1.0.0", # used to generate connection templates with preserved comments "pyarrow>=14.0.1,<15.0.0", # used to read parquet file with pandas.read_parquet "pillow>=10.1.0,<11.0.0", # used to generate icon data URI for package tool "filetype>=1.2.0", # used to detect the mime type for mulitmedia input "jsonschema>=4.0.0,<5.0.0", # used to validate tool "docutils", # used to generate description for tools ] setup( name=PACKAGE_NAME, version=version, description="Prompt flow Python SDK - build high-quality LLM apps", long_description_content_type="text/markdown", long_description=readme + "\n\n" + changelog, license="MIT License", author="Microsoft Corporation", author_email="[email protected]", url="https://github.com/microsoft/promptflow", classifiers=[ "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3 :: Only", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Programming Language :: Python :: 3.11", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires="<4.0,>=3.8", install_requires=REQUIRES, extras_require={ "azure": [ "azure-core>=1.26.4,<2.0.0", "azure-storage-blob[aio]>=12.13.0,<13.0.0", # add [aio] for async run download feature "azure-identity>=1.12.0,<2.0.0", "azure-ai-ml>=1.11.0,<2.0.0", "pyjwt>=2.4.0,<3.0.0", # requirement of control plane SDK ], "executable": ["pyinstaller>=5.13.2", "streamlit>=1.26.0", "streamlit-quill<0.1.0", "bs4"], "pfs": [ "flask-restx>=1.2.0,<2.0.0", ], "azureml-serving": [ # AzureML connection dependencies "azure-identity>=1.12.0,<2.0.0", "azure-ai-ml>=1.11.0,<2.0.0", # OTel dependencies for monitoring "opentelemetry-api>=1.21.0,<2.0.0", "opentelemetry-sdk>=1.21.0,<2.0.0", "azure-monitor-opentelemetry>=1.1.1,<2.0.0", # MDC dependencies for monitoring "azureml-ai-monitoring>=0.1.0b3,<1.0.0", ], }, packages=find_packages(), scripts=[ 'pf', 'pf.bat' ], entry_points={ "console_scripts": [ "pfazure = promptflow._cli._pf_azure.entry:main", "pfs = promptflow._sdk._service.entry:main", ], }, include_package_data=True, project_urls={ "Bug Reports": "https://github.com/microsoft/promptflow/issues", "Source": "https://github.com/microsoft/promptflow", }, )
promptflow/src/promptflow/setup.py/0
{ "file_path": "promptflow/src/promptflow/setup.py", "repo_id": "promptflow", "token_count": 2306 }
43
import os from pathlib import Path from tempfile import mkdtemp import pytest from promptflow._utils.multimedia_utils import MIME_PATTERN, _create_image_from_file, _is_url, is_multimedia_dict from promptflow.batch._batch_engine import OUTPUT_FILE_NAME, BatchEngine from promptflow.batch._result import BatchResult from promptflow.contracts.multimedia import Image from promptflow.contracts.run_info import FlowRunInfo, RunInfo, Status from promptflow.executor import FlowExecutor from promptflow.storage._run_storage import DefaultRunStorage from ..utils import get_flow_folder, get_yaml_file, is_image_file, is_jsonl_file, load_jsonl SIMPLE_IMAGE_FLOW = "python_tool_with_simple_image" SAMPLE_IMAGE_FLOW_WITH_DEFAULT = "python_tool_with_simple_image_with_default" SIMPLE_IMAGE_WITH_INVALID_DEFAULT_VALUE_FLOW = "python_tool_with_invalid_default_value" COMPOSITE_IMAGE_FLOW = "python_tool_with_composite_image" CHAT_FLOW_WITH_IMAGE = "chat_flow_with_image" EVAL_FLOW_WITH_SIMPLE_IMAGE = "eval_flow_with_simple_image" EVAL_FLOW_WITH_COMPOSITE_IMAGE = "eval_flow_with_composite_image" NESTED_API_CALLS_FLOW = "python_tool_with_image_nested_api_calls" IMAGE_URL = ( "https://raw.githubusercontent.com/microsoft/promptflow/main/src/promptflow/tests/test_configs/datas/logo.jpg" ) def get_test_cases_for_simple_input(flow_folder): working_dir = get_flow_folder(flow_folder) image = _create_image_from_file(working_dir / "logo.jpg") inputs = [ {"data:image/jpg;path": str(working_dir / "logo.jpg")}, {"data:image/jpg;base64": image.to_base64()}, {"data:image/jpg;url": IMAGE_URL}, str(working_dir / "logo.jpg"), image.to_base64(), IMAGE_URL, ] return [(flow_folder, {"image": input}) for input in inputs] def get_test_cases_for_composite_input(flow_folder): working_dir = get_flow_folder(flow_folder) image_1 = _create_image_from_file(working_dir / "logo.jpg") image_2 = _create_image_from_file(working_dir / "logo_2.png") inputs = [ [ {"data:image/jpg;path": str(working_dir / "logo.jpg")}, {"data:image/png;path": str(working_dir / "logo_2.png")}, ], [{"data:image/jpg;base64": image_1.to_base64()}, {"data:image/png;base64": image_2.to_base64()}], [{"data:image/jpg;url": IMAGE_URL}, {"data:image/png;url": IMAGE_URL}], ] return [ (flow_folder, {"image_list": input, "image_dict": {"image_1": input[0], "image_2": input[1]}}) for input in inputs ] def get_test_cases_for_node_run(): image = {"data:image/jpg;path": str(get_flow_folder(SIMPLE_IMAGE_FLOW) / "logo.jpg")} simple_image_input = {"image": image} image_list = [{"data:image/jpg;path": "logo.jpg"}, {"data:image/png;path": "logo_2.png"}] image_dict = { "image_dict": { "image_1": {"data:image/jpg;path": "logo.jpg"}, "image_2": {"data:image/png;path": "logo_2.png"}, } } composite_image_input = {"image_list": image_list, "image_dcit": image_dict} return [ (SIMPLE_IMAGE_FLOW, "python_node", simple_image_input, None), (SIMPLE_IMAGE_FLOW, "python_node_2", simple_image_input, {"python_node": image}), (COMPOSITE_IMAGE_FLOW, "python_node", composite_image_input, None), (COMPOSITE_IMAGE_FLOW, "python_node_2", composite_image_input, None), ( COMPOSITE_IMAGE_FLOW, "python_node_3", composite_image_input, {"python_node": image_list, "python_node_2": image_dict}, ), ] def contain_image_reference(value, parent_path="temp"): if isinstance(value, (FlowRunInfo, RunInfo)): assert contain_image_reference(value.api_calls, parent_path) assert contain_image_reference(value.inputs, parent_path) assert contain_image_reference(value.output, parent_path) return True assert not isinstance(value, Image) if isinstance(value, list): return any(contain_image_reference(item, parent_path) for item in value) if isinstance(value, dict): if is_multimedia_dict(value): v = list(value.values())[0] assert isinstance(v, str) assert _is_url(v) or str(Path(v).parent) == parent_path return True return any(contain_image_reference(v, parent_path) for v in value.values()) return False def contain_image_object(value): if isinstance(value, list): return any(contain_image_object(item) for item in value) elif isinstance(value, dict): assert not is_multimedia_dict(value) return any(contain_image_object(v) for v in value.values()) else: return isinstance(value, Image) @pytest.mark.usefixtures("dev_connections") @pytest.mark.e2etest class TestExecutorWithImage: @pytest.mark.parametrize( "flow_folder, inputs", get_test_cases_for_simple_input(SIMPLE_IMAGE_FLOW) + get_test_cases_for_composite_input(COMPOSITE_IMAGE_FLOW) + [(CHAT_FLOW_WITH_IMAGE, {}), (NESTED_API_CALLS_FLOW, {})], ) def test_executor_exec_line_with_image(self, flow_folder, inputs, dev_connections): working_dir = get_flow_folder(flow_folder) os.chdir(working_dir) storage = DefaultRunStorage(base_dir=working_dir, sub_dir=Path("./temp")) executor = FlowExecutor.create(get_yaml_file(flow_folder), dev_connections, storage=storage) flow_result = executor.exec_line(inputs) assert isinstance(flow_result.output, dict) assert contain_image_object(flow_result.output) # Assert output also contains plain text. assert any(isinstance(v, str) for v in flow_result.output) assert flow_result.run_info.status == Status.Completed assert contain_image_reference(flow_result.run_info) for _, node_run_info in flow_result.node_run_infos.items(): assert node_run_info.status == Status.Completed assert contain_image_reference(node_run_info) @pytest.mark.parametrize( "flow_folder, node_name, flow_inputs, dependency_nodes_outputs", get_test_cases_for_node_run() ) def test_executor_exec_node_with_image( self, flow_folder, node_name, flow_inputs, dependency_nodes_outputs, dev_connections ): working_dir = get_flow_folder(flow_folder) os.chdir(working_dir) storage = DefaultRunStorage(base_dir=working_dir, sub_dir=Path("./temp")) run_info = FlowExecutor.load_and_exec_node( get_yaml_file(flow_folder), node_name, flow_inputs=flow_inputs, dependency_nodes_outputs=dependency_nodes_outputs, connections=dev_connections, storage=storage, raise_ex=True, ) assert run_info.status == Status.Completed assert contain_image_reference(run_info) # Assert image could be persisted to the specified path. @pytest.mark.parametrize( "output_sub_dir, assign_storage, expected_path", [ ("test_path", True, "test_storage"), ("test_path", False, "test_path"), (None, True, "test_storage"), (None, False, "."), ], ) def test_executor_exec_node_with_image_storage_and_path(self, output_sub_dir, assign_storage, expected_path): flow_folder = SIMPLE_IMAGE_FLOW node_name = "python_node" image = {"data:image/jpg;path": str(get_flow_folder(SIMPLE_IMAGE_FLOW) / "logo.jpg")} flow_inputs = {"image": image} working_dir = get_flow_folder(flow_folder) os.chdir(working_dir) storage = DefaultRunStorage(base_dir=working_dir, sub_dir=Path("./test_storage")) run_info = FlowExecutor.load_and_exec_node( get_yaml_file(flow_folder), node_name, flow_inputs=flow_inputs, dependency_nodes_outputs=None, connections=None, storage=storage if assign_storage else None, output_sub_dir=output_sub_dir, raise_ex=True, ) assert run_info.status == Status.Completed assert contain_image_reference(run_info, parent_path=expected_path) @pytest.mark.parametrize( "flow_folder, node_name, flow_inputs, dependency_nodes_outputs", [ ( SIMPLE_IMAGE_WITH_INVALID_DEFAULT_VALUE_FLOW, "python_node_2", {}, { "python_node": { "data:image/jpg;path": str( get_flow_folder(SIMPLE_IMAGE_WITH_INVALID_DEFAULT_VALUE_FLOW) / "logo.jpg" ) } }, ) ], ) def test_executor_exec_node_with_invalid_default_value( self, flow_folder, node_name, flow_inputs, dependency_nodes_outputs, dev_connections ): working_dir = get_flow_folder(flow_folder) os.chdir(working_dir) storage = DefaultRunStorage(base_dir=working_dir, sub_dir=Path("./temp")) run_info = FlowExecutor.load_and_exec_node( get_yaml_file(flow_folder), node_name, flow_inputs=flow_inputs, dependency_nodes_outputs=dependency_nodes_outputs, connections=dev_connections, storage=storage, raise_ex=True, ) assert run_info.status == Status.Completed assert contain_image_reference(run_info) @pytest.mark.parametrize( "flow_folder, input_dirs, inputs_mapping, output_key, expected_outputs_number, has_aggregation_node", [ ( SIMPLE_IMAGE_FLOW, {"data": "."}, {"image": "${data.image}"}, "output", 4, False, ), ( SAMPLE_IMAGE_FLOW_WITH_DEFAULT, {"data": "."}, {"image_2": "${data.image_2}"}, "output", 4, False, ), ( COMPOSITE_IMAGE_FLOW, {"data": "inputs.jsonl"}, {"image_list": "${data.image_list}", "image_dict": "${data.image_dict}"}, "output", 2, False, ), ( CHAT_FLOW_WITH_IMAGE, {"data": "inputs.jsonl"}, {"question": "${data.question}", "chat_history": "${data.chat_history}"}, "answer", 2, False, ), ( EVAL_FLOW_WITH_SIMPLE_IMAGE, {"data": "inputs.jsonl"}, {"image": "${data.image}"}, "output", 2, True, ), ( EVAL_FLOW_WITH_COMPOSITE_IMAGE, {"data": "inputs.jsonl"}, {"image_list": "${data.image_list}", "image_dict": "${data.image_dict}"}, "output", 2, True, ), ], ) def test_batch_engine_with_image( self, flow_folder, input_dirs, inputs_mapping, output_key, expected_outputs_number, has_aggregation_node ): flow_file = get_yaml_file(flow_folder) working_dir = get_flow_folder(flow_folder) output_dir = Path(mkdtemp()) batch_result = BatchEngine(flow_file, working_dir).run( input_dirs, inputs_mapping, output_dir, max_lines_count=4 ) assert isinstance(batch_result, BatchResult) assert batch_result.completed_lines == expected_outputs_number assert all(is_jsonl_file(output_file) or is_image_file(output_file) for output_file in output_dir.iterdir()) outputs = load_jsonl(output_dir / OUTPUT_FILE_NAME) assert len(outputs) == expected_outputs_number for i, output in enumerate(outputs): assert isinstance(output, dict) assert "line_number" in output, f"line_number is not in {i}th output {output}" assert output["line_number"] == i, f"line_number is not correct in {i}th output {output}" result = output[output_key][0] if isinstance(output[output_key], list) else output[output_key] assert all(MIME_PATTERN.search(key) for key in result), f"image is not in {i}th output {output}" @pytest.mark.parametrize( "flow_folder, inputs", get_test_cases_for_simple_input(EVAL_FLOW_WITH_SIMPLE_IMAGE) + get_test_cases_for_composite_input(EVAL_FLOW_WITH_COMPOSITE_IMAGE), ) def test_executor_exec_aggregation_with_image(self, flow_folder, inputs, dev_connections): working_dir = get_flow_folder(flow_folder) os.chdir(working_dir) storage = DefaultRunStorage(base_dir=working_dir, sub_dir=Path("./temp")) executor = FlowExecutor.create(get_yaml_file(flow_folder), dev_connections, storage=storage) flow_result = executor.exec_line(inputs, index=0) flow_inputs = {k: [v] for k, v in inputs.items()} aggregation_inputs = {k: [v] for k, v in flow_result.aggregation_inputs.items()} aggregation_results = executor.exec_aggregation(flow_inputs, aggregation_inputs=aggregation_inputs) for _, node_run_info in aggregation_results.node_run_infos.items(): assert node_run_info.status == Status.Completed assert contain_image_reference(node_run_info) def test_batch_run_then_eval_with_image(self): # submit a flow in batch mode fisrt batch_flow_folder = get_flow_folder(COMPOSITE_IMAGE_FLOW) batch_flow_file = get_yaml_file(batch_flow_folder) batch_working_dir = get_flow_folder(batch_flow_folder) batch_output_dir = Path(mkdtemp()) batch_input_dirs = {"data": "inputs.jsonl"} batch_inputs_mapping = {"image_list": "${data.image_list}", "image_dict": "${data.image_dict}"} batch_result = BatchEngine(batch_flow_file, batch_working_dir).run( batch_input_dirs, batch_inputs_mapping, batch_output_dir ) assert batch_result.completed_lines == batch_result.total_lines # use the output of batch run as input of eval flow eval_flow_folder = get_flow_folder(EVAL_FLOW_WITH_COMPOSITE_IMAGE) eval_flow_file = get_yaml_file(eval_flow_folder) eval_working_dir = get_flow_folder(eval_flow_folder) eval_output_dir = Path(mkdtemp()) eval_input_dirs = { "data": batch_flow_folder / "inputs.jsonl", "run.outputs": batch_output_dir / OUTPUT_FILE_NAME, } eval_inputs_mapping = {"image_list": "${run.outputs.output}", "image_dict": "${data.image_dict}"} eval_result = BatchEngine(eval_flow_file, eval_working_dir).run( eval_input_dirs, eval_inputs_mapping, eval_output_dir ) assert eval_result.completed_lines == eval_result.total_lines
promptflow/src/promptflow/tests/executor/e2etests/test_image.py/0
{ "file_path": "promptflow/src/promptflow/tests/executor/e2etests/test_image.py", "repo_id": "promptflow", "token_count": 7025 }
44
from dataclasses import dataclass from promptflow import tool from promptflow._core.tools_manager import register_connections from promptflow.contracts.types import Secret @dataclass class TestConnection: name: str secret: Secret register_connections(TestConnection) @tool def tool_with_test_conn(conn: TestConnection): assert isinstance(conn, TestConnection) return conn.name + conn.secret
promptflow/src/promptflow/tests/executor/package_tools/tool_with_connection.py/0
{ "file_path": "promptflow/src/promptflow/tests/executor/package_tools/tool_with_connection.py", "repo_id": "promptflow", "token_count": 121 }
45
import textwrap from pathlib import Path from unittest.mock import patch import pytest from mock import MagicMock from promptflow import tool from promptflow._core._errors import InputTypeMismatch, InvalidSource, PackageToolNotFoundError from promptflow._core.tools_manager import ( BuiltinsManager, ToolLoader, collect_package_tools, collect_package_tools_and_connections, ) from promptflow._utils.yaml_utils import load_yaml_string from promptflow.contracts.flow import InputAssignment, InputValueType, Node, ToolSource, ToolSourceType from promptflow.contracts.tool import Tool, ToolType from promptflow.exceptions import UserErrorException @pytest.mark.unittest class TestToolLoader: def test_load_tool_for_node_with_invalid_node(self): tool_loader = ToolLoader(working_dir="test_working_dir") node: Node = Node(name="test", tool="test_tool", inputs={}, type=ToolType.PYTHON) with pytest.raises(UserErrorException, match="Node test does not have source defined."): tool_loader.load_tool_for_node(node) node: Node = Node( name="test", tool="test_tool", inputs={}, type=ToolType.PYTHON, source=ToolSource(type="invalid_type") ) with pytest.raises( NotImplementedError, match="Tool source type invalid_type for python tool is not supported yet." ): tool_loader.load_tool_for_node(node) node: Node = Node( name="test", tool="test_tool", inputs={}, type=ToolType.CUSTOM_LLM, source=ToolSource(type="invalid_type") ) with pytest.raises( NotImplementedError, match="Tool source type invalid_type for custom_llm tool is not supported yet." ): tool_loader.load_tool_for_node(node) node: Node = Node( name="test", tool="test_tool", inputs={}, type="invalid_type", source=ToolSource(type=ToolSourceType.Code) ) with pytest.raises(NotImplementedError, match="Tool type invalid_type is not supported yet."): tool_loader.load_tool_for_node(node) def test_load_tool_for_package_node(self, mocker): package_tools = {"test_tool": Tool(name="test_tool", type=ToolType.PYTHON, inputs={}).serialize()} mocker.patch("promptflow._core.tools_manager.collect_package_tools", return_value=package_tools) tool_loader = ToolLoader( working_dir="test_working_dir", package_tool_keys=["promptflow._core.tools_manager.collect_package_tools"] ) node: Node = Node( name="test", tool="test_tool", inputs={}, type=ToolType.PYTHON, source=ToolSource(type=ToolSourceType.Package, tool="test_tool"), ) tool = tool_loader.load_tool_for_node(node) assert tool.name == "test_tool" node: Node = Node( name="test", tool="test_tool", inputs={}, type=ToolType.PYTHON, source=ToolSource(type=ToolSourceType.Package, tool="invalid_tool"), ) msg = ( "Package tool 'invalid_tool' is not found in the current environment. " "All available package tools are: ['test_tool']." ) with pytest.raises(PackageToolNotFoundError) as ex: tool_loader.load_tool_for_node(node) assert str(ex.value) == msg def test_load_tool_for_package_node_with_legacy_tool_id(self, mocker): package_tools = { "new_tool_1": Tool( name="new tool 1", type=ToolType.PYTHON, inputs={}, deprecated_tools=["old_tool_1"] ).serialize(), "new_tool_2": Tool( name="new tool 1", type=ToolType.PYTHON, inputs={}, deprecated_tools=["old_tool_2"] ).serialize(), "old_tool_2": Tool(name="old tool 2", type=ToolType.PYTHON, inputs={}).serialize(), } mocker.patch("promptflow._core.tools_manager.collect_package_tools", return_value=package_tools) tool_loader = ToolLoader(working_dir="test_working_dir", package_tool_keys=list(package_tools.keys())) node_with_legacy_tool: Node = Node( name="test_legacy_tool", tool="old_tool_1", inputs={}, type=ToolType.PYTHON, source=ToolSource(type=ToolSourceType.Package, tool="old_tool_1"), ) assert tool_loader.load_tool_for_node(node_with_legacy_tool).name == "new tool 1" node_with_legacy_tool_but_in_package_tools: Node = Node( name="test_legacy_tool_but_in_package_tools", tool="old_tool_2", inputs={}, type=ToolType.PYTHON, source=ToolSource(type=ToolSourceType.Package, tool="old_tool_2"), ) assert tool_loader.load_tool_for_node(node_with_legacy_tool_but_in_package_tools).name == "old tool 2" def test_load_tool_for_script_node(self): working_dir = Path(__file__).parent tool_loader = ToolLoader(working_dir=working_dir) file = "test_tools_manager.py" node: Node = Node( name="test", tool="sample_tool", inputs={}, type=ToolType.PYTHON, source=ToolSource(type=ToolSourceType.Code, path=file), ) tool = tool_loader.load_tool_for_node(node) assert tool.name == "sample_tool" @pytest.mark.parametrize( "source_path, error_message", [ (None, "Load tool failed for node 'test'. The source path is 'None'."), ("invalid_file.py", "Load tool failed for node 'test'. Tool file 'invalid_file.py' can not be found."), ], ) def test_load_tool_for_script_node_exception(self, source_path, error_message): working_dir = Path(__file__).parent tool_loader = ToolLoader(working_dir=working_dir) node: Node = Node( name="test", tool="sample_tool", inputs={}, type=ToolType.PYTHON, source=ToolSource(type=ToolSourceType.Code, path=source_path), ) with pytest.raises(InvalidSource) as ex: tool_loader.load_tool_for_script_node(node) assert str(ex.value) == error_message # This tool is for testing tools_manager.ToolLoader.load_tool_for_script_node @tool def sample_tool(input: str): return input @pytest.mark.unittest class TestToolsManager: def test_collect_package_tools_if_node_source_tool_is_legacy(self): legacy_node_source_tools = ["content_safety_text.tools.content_safety_text_tool.analyze_text"] package_tools = collect_package_tools(legacy_node_source_tools) assert "promptflow.tools.azure_content_safety.analyze_text" in package_tools.keys() def test_collect_package_tools_and_connections(self, install_custom_tool_pkg): keys = ["my_tool_package.tools.my_tool_2.MyTool.my_tool"] tools, specs, templates = collect_package_tools_and_connections(keys) assert len(tools) == 1 assert specs == { "my_tool_package.connections.MyFirstConnection": { "connectionCategory": "CustomKeys", "flowValueType": "CustomConnection", "connectionType": "MyFirstConnection", "ConnectionTypeDisplayName": "MyFirstConnection", "configSpecs": [ {"name": "api_key", "displayName": "Api Key", "configValueType": "Secret", "isOptional": False}, {"name": "api_base", "displayName": "Api Base", "configValueType": "str", "isOptional": True}, ], "module": "my_tool_package.connections", "package": "test-custom-tools", "package_version": "0.0.2", } } expected_template = { "$schema": "https://azuremlschemas.azureedge.net/promptflow/latest/CustomStrongTypeConnection.schema.json", "name": "to_replace_with_connection_name", "type": "custom", "custom_type": "MyFirstConnection", "module": "my_tool_package.connections", "package": "test-custom-tools", "package_version": "0.0.2", "configs": {"api_base": "This is my first connection."}, "secrets": {"api_key": "to_replace_with_api_key"}, } loaded_yaml = load_yaml_string(templates["my_tool_package.connections.MyFirstConnection"]) assert loaded_yaml == expected_template keys = ["my_tool_package.tools.my_tool_with_custom_strong_type_connection.my_tool"] tools, specs, templates = collect_package_tools_and_connections(keys) assert len(templates) == 1 expected_template = """ name: "to_replace_with_connection_name" type: custom custom_type: MyCustomConnection module: my_tool_package.tools.my_tool_with_custom_strong_type_connection package: test-custom-tools package_version: 0.0.2 configs: api_url: "This is a fake api url." # String type. The api url. secrets: # must-have api_key: "to_replace_with_api_key" # String type. The api key. """ content = templates["my_tool_package.tools.my_tool_with_custom_strong_type_connection.MyCustomConnection"] expected_template_str = textwrap.dedent(expected_template) assert expected_template_str in content def test_gen_dynamic_list(self, mocked_ws_triple, mock_module_with_list_func): from promptflow._sdk._utils import _gen_dynamic_list func_path = "my_tool_package.tools.tool_with_dynamic_list_input.my_list_func" func_kwargs = {"prefix": "My"} result = _gen_dynamic_list({"func_path": func_path, "func_kwargs": func_kwargs}) assert len(result) == 2 # test gen_dynamic_list with ws_triple. with patch("promptflow._cli._utils.get_workspace_triad_from_local", return_value=mocked_ws_triple): result = _gen_dynamic_list({"func_path": func_path, "func_kwargs": func_kwargs}) assert len(result) == 2 @pytest.mark.unittest class TestBuiltinsManager: def test_load_tool_from_module( self, ): # Test case 1: When class_name is None module = MagicMock() tool_name = "test_tool" module_name = "test_module" class_name = None method_name = "test_method" node_inputs = {"input1": InputAssignment(value_type=InputValueType.LITERAL, value="value1")} # Mock the behavior of the module and class module.test_method = MagicMock() # Call the method api, init_inputs = BuiltinsManager._load_tool_from_module( module, tool_name, module_name, class_name, method_name, node_inputs ) # Assertions assert api == module.test_method assert init_inputs == {} # Non literal input for init parameter will raise exception. module = MagicMock() tool_name = "test_tool" module_name = "test_module" class_name = "TestClass" method_name = "test_method" node_inputs = {"input1": InputAssignment(value_type=InputValueType.FLOW_INPUT, value="value1")} # Mock the behavior of the module and class module.TestClass = MagicMock() module.TestClass.get_initialize_inputs = MagicMock(return_value=["input1"]) module.TestClass.get_required_initialize_inputs = MagicMock(return_value=["input1"]) module.TestClass.test_method = MagicMock() # Call the method with pytest.raises(InputTypeMismatch) as ex: BuiltinsManager._load_tool_from_module(module, tool_name, module_name, class_name, method_name, node_inputs) expected_message = ( "Invalid input for 'test_tool': Initialization input 'input1' requires a literal value, " "but ${flow.value1} was received." ) assert expected_message == str(ex.value)
promptflow/src/promptflow/tests/executor/unittests/_core/test_tools_manager.py/0
{ "file_path": "promptflow/src/promptflow/tests/executor/unittests/_core/test_tools_manager.py", "repo_id": "promptflow", "token_count": 5269 }
46
import pytest from promptflow.contracts.flow import ActivateCondition, InputAssignment, Node from promptflow.executor._dag_manager import DAGManager def create_test_node(name, input, activate=None): input = InputAssignment.deserialize(input) activate = ActivateCondition.deserialize(activate, name) if activate else None return Node( name=name, tool="test_tool", connection="azure_open_ai_connection", inputs={"test_input": input, "test_input2": InputAssignment("hello world")}, provider="test_provider", api="test_api", activate=activate, ) def pop_ready_node_names(dag_manager: DAGManager): return {node.name for node in dag_manager.pop_ready_nodes()} def pop_bypassed_node_names(dag_manager: DAGManager): return {node.name for node in dag_manager.pop_bypassable_nodes()} @pytest.mark.unittest class TestDAGManager: def test_pop_ready_nodes(self): nodes = [ create_test_node("node1", input="value1"), create_test_node("node2", input="${node1.output}"), create_test_node("node3", input="${node1.output}"), ] dag_manager = DAGManager(nodes, flow_inputs={}) assert pop_ready_node_names(dag_manager) == {"node1"} dag_manager.complete_nodes({"node1": None}) assert pop_ready_node_names(dag_manager) == {"node2", "node3"} dag_manager.complete_nodes({"node2": None, "node3": None}) def test_pop_bypassed_nodes(self): nodes = [ create_test_node("node1", input="value1"), create_test_node("node2", input="${inputs.text}", activate={"when": "${inputs.text}", "is": "world"}), create_test_node("node3", input="${node1.output}"), create_test_node("node4", input="${node2.output}"), ] flow_inputs = {"text": "hello"} dag_manager = DAGManager(nodes, flow_inputs) expected_bypassed_nodes = {"node2", "node4"} assert pop_bypassed_node_names(dag_manager) == expected_bypassed_nodes assert dag_manager.bypassed_nodes.keys() == expected_bypassed_nodes def test_complete_nodes(self): nodes = [create_test_node("node1", input="value1")] dag_manager = DAGManager(nodes, flow_inputs={}) dag_manager.complete_nodes({"node1": {"output1": "value1"}}) assert len(dag_manager.completed_nodes_outputs) == 1 assert dag_manager.completed_nodes_outputs["node1"] == {"output1": "value1"} def test_completed(self): nodes = [ create_test_node("node1", input="${inputs.text}", activate={"when": "${inputs.text}", "is": "hello"}), create_test_node("node2", input="${node1.output}"), ] flow_inputs = {"text": "hello"} dag_manager = DAGManager(nodes, flow_inputs) assert pop_ready_node_names(dag_manager) == {"node1"} dag_manager.complete_nodes({"node1": {"output1": "value1"}}) assert pop_ready_node_names(dag_manager) == {"node2"} dag_manager.complete_nodes({"node2": {"output1": "value1"}}) assert dag_manager.completed_nodes_outputs.keys() == {"node1", "node2"} assert dag_manager.completed() def test_get_node_valid_inputs(self): nodes = [ create_test_node("node1", input="value1"), create_test_node("node2", input="${node1.output}"), ] def f(input): return input flow_inputs = {} dag_manager = DAGManager(nodes, flow_inputs) dag_manager.complete_nodes({"node1": {"output1": "value1"}}) valid_inputs = dag_manager.get_node_valid_inputs(nodes[1], f) assert valid_inputs == {"test_input": {"output1": "value1"}, "test_input2": "hello world"}
promptflow/src/promptflow/tests/executor/unittests/executor/test_dag_manager.py/0
{ "file_path": "promptflow/src/promptflow/tests/executor/unittests/executor/test_dag_manager.py", "repo_id": "promptflow", "token_count": 1632 }
47
import signal from azure.identity import AzureCliCredential, DefaultAzureCredential def get_cred(): """get credential for azure storage""" # resolve requests try: credential = AzureCliCredential() token = credential.get_token("https://management.azure.com/.default") except Exception: credential = DefaultAzureCredential() # ensure we can get token token = credential.get_token("https://management.azure.com/.default") assert token is not None return credential PYTEST_TIMEOUT_METHOD = "signal" if hasattr(signal, "SIGALRM") else "thread" # use signal when os support SIGALRM DEFAULT_TEST_TIMEOUT = 10 * 60 # 10mins
promptflow/src/promptflow/tests/sdk_cli_azure_test/_azure_utils.py/0
{ "file_path": "promptflow/src/promptflow/tests/sdk_cli_azure_test/_azure_utils.py", "repo_id": "promptflow", "token_count": 242 }
48
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- ENVIRON_TEST_MODE = "PROMPT_FLOW_TEST_MODE" class TestMode: LIVE = "live" RECORD = "record" REPLAY = "replay" FILTER_HEADERS = [ "aml-user-token", "authorization", "date", "etag", "request-context", "x-aml-cluster", "x-ms-access-tier", "x-ms-access-tier-inferred", "x-ms-client-request-id", "x-ms-client-session-id", "x-ms-client-user-type", "x-ms-correlation-request-id", "x-ms-file-permission-key", "x-ms-lease-state", "x-ms-lease-status", "x-ms-server-encrypted", "x-ms-ratelimit-remaining-subscription-reads", "x-ms-ratelimit-remaining-subscription-writes", "x-ms-response-type", "x-ms-request-id", "x-ms-routing-request-id", "x-msedge-ref", ] class SanitizedValues: UUID = "00000000-0000-0000-0000-000000000000" SUBSCRIPTION_ID = "00000000-0000-0000-0000-000000000000" RESOURCE_GROUP_NAME = "00000" WORKSPACE_NAME = "00000" WORKSPACE_ID = "00000000-0000-0000-0000-000000000000" TENANT_ID = "00000000-0000-0000-0000-000000000000" USER_OBJECT_ID = "00000000-0000-0000-0000-000000000000" # workspace DISCOVERY_URL = "https://eastus.api.azureml.ms/discovery" # datastore FAKE_KEY = "this is fake key" FAKE_ACCOUNT_NAME = "fake_account_name" FAKE_CONTAINER_NAME = "fake-container-name" FAKE_FILE_SHARE_NAME = "fake-file-share-name" # aoai connection FAKE_API_BASE = "https://fake.openai.azure.com" # storage UPLOAD_HASH = "000000000000000000000000000000000000" BLOB_STORAGE_REQUEST_HOST = "fake_account_name.blob.core.windows.net" FILE_SHARE_REQUEST_HOST = "fake_account_name.file.core.windows.net" # PFS RUNTIME_NAME = "fake-runtime-name" SESSION_ID = "000000000000000000000000000000000000000000000000" FLOW_LINEAGE_ID = "0000000000000000000000000000000000000000000000000000000000000000" REGION = "fake-region" FLOW_ID = "00000000-0000-0000-0000-000000000000" # trick: "unknown_user" is the value when client fails to get username # use this value so that we don't do extra logic when replay USERNAME = "unknown_user" # MISC EMAIL_USERNAME = "username" class AzureMLResourceTypes: CONNECTION = "Microsoft.MachineLearningServices/workspaces/connections" DATASTORE = "Microsoft.MachineLearningServices/workspaces/datastores" WORKSPACE = "Microsoft.MachineLearningServices/workspaces" TEST_CLASSES_FOR_RUN_INTEGRATION_TEST_RECORDING = [ "TestCliWithAzure", "TestFlowRun", "TestFlow", "TestTelemetry", "TestAzureCliPerf", ]
promptflow/src/promptflow/tests/sdk_cli_azure_test/recording_utilities/constants.py/0
{ "file_path": "promptflow/src/promptflow/tests/sdk_cli_azure_test/recording_utilities/constants.py", "repo_id": "promptflow", "token_count": 1086 }
49
import os import shutil import sys import tempfile import uuid from pathlib import Path import numpy as np import pandas as pd import pytest from marshmallow import ValidationError from pytest_mock import MockerFixture from promptflow import PFClient from promptflow._constants import PROMPTFLOW_CONNECTIONS from promptflow._sdk._constants import ( FLOW_DIRECTORY_MACRO_IN_CONFIG, PROMPT_FLOW_DIR_NAME, FlowRunProperties, LocalStorageFilenames, RunStatus, ) from promptflow._sdk._errors import ( ConnectionNotFoundError, InvalidFlowError, InvalidRunError, InvalidRunStatusError, RunExistsError, RunNotFoundError, ) from promptflow._sdk._load_functions import load_flow, load_run from promptflow._sdk._run_functions import create_yaml_run from promptflow._sdk._submitter.utils import SubmitterHelper from promptflow._sdk._utils import _get_additional_includes from promptflow._sdk.entities import Run from promptflow._sdk.operations._local_storage_operations import LocalStorageOperations from promptflow.connections import AzureOpenAIConnection from promptflow.exceptions import UserErrorException from ..recording_utilities import RecordStorage PROMOTFLOW_ROOT = Path(__file__) / "../../../.." TEST_ROOT = Path(__file__).parent.parent.parent MODEL_ROOT = TEST_ROOT / "test_configs/e2e_samples" CONNECTION_FILE = (PROMOTFLOW_ROOT / "connections.json").resolve().absolute().as_posix() FLOWS_DIR = "./tests/test_configs/flows" EAGER_FLOWS_DIR = "./tests/test_configs/eager_flows" RUNS_DIR = "./tests/test_configs/runs" DATAS_DIR = "./tests/test_configs/datas" def create_run_against_multi_line_data(client) -> Run: return client.run( flow=f"{FLOWS_DIR}/web_classification", data=f"{DATAS_DIR}/webClassification3.jsonl", column_mapping={"url": "${data.url}"}, ) def create_run_against_multi_line_data_without_llm(client: PFClient) -> Run: return client.run( flow=f"{FLOWS_DIR}/print_env_var", data=f"{DATAS_DIR}/env_var_names.jsonl", ) def create_run_against_run(client, run: Run) -> Run: return client.run( flow=f"{FLOWS_DIR}/classification_accuracy_evaluation", data=f"{DATAS_DIR}/webClassification3.jsonl", run=run.name, column_mapping={ "groundtruth": "${data.answer}", "prediction": "${run.outputs.category}", "variant_id": "${data.variant_id}", }, ) def assert_run_with_invalid_column_mapping(client: PFClient, run: Run) -> None: assert run.status == RunStatus.FAILED with pytest.raises(InvalidRunStatusError): client.stream(run.name) local_storage = LocalStorageOperations(run) assert os.path.exists(local_storage._exception_path) exception = local_storage.load_exception() assert "The input for batch run is incorrect. Couldn't find these mapping relations" in exception["message"] assert exception["code"] == "UserError" assert exception["innerError"]["innerError"]["code"] == "BulkRunException" @pytest.mark.usefixtures( "use_secrets_config_file", "recording_injection", "setup_local_connection", "install_custom_tool_pkg" ) @pytest.mark.sdk_test @pytest.mark.e2etest class TestFlowRun: def test_basic_flow_bulk_run(self, azure_open_ai_connection: AzureOpenAIConnection, pf) -> None: data_path = f"{DATAS_DIR}/webClassification3.jsonl" pf.run(flow=f"{FLOWS_DIR}/web_classification", data=data_path) # Test repeated execute flow run pf.run(flow=f"{FLOWS_DIR}/web_classification", data=data_path) pf.run(flow=f"{FLOWS_DIR}/web_classification_v1", data=data_path) pf.run(flow=f"{FLOWS_DIR}/web_classification_v2", data=data_path) # TODO: check details # df = pf.show_details(baseline, v1, v2) def test_basic_run_bulk(self, azure_open_ai_connection: AzureOpenAIConnection, local_client, pf): result = pf.run( flow=f"{FLOWS_DIR}/web_classification", data=f"{DATAS_DIR}/webClassification1.jsonl", column_mapping={"url": "${data.url}"}, ) local_storage = LocalStorageOperations(result) detail = local_storage.load_detail() tuning_node = next((x for x in detail["node_runs"] if x["node"] == "summarize_text_content"), None) # used default variant config assert tuning_node["inputs"]["temperature"] == 0.3 assert "variant_0" in result.name run = local_client.runs.get(name=result.name) assert run.status == "Completed" # write to user_dir/.promptflow/.runs assert ".promptflow" in run.properties["output_path"] def test_local_storage_delete(self, pf): result = pf.run(flow=f"{FLOWS_DIR}/print_env_var", data=f"{DATAS_DIR}/env_var_names.jsonl") local_storage = LocalStorageOperations(result) local_storage.delete() assert not os.path.exists(local_storage._outputs_path) def test_flow_run_delete(self, pf): result = pf.run(flow=f"{FLOWS_DIR}/print_env_var", data=f"{DATAS_DIR}/env_var_names.jsonl") local_storage = LocalStorageOperations(result) output_path = local_storage.path # delete new created run by name pf.runs.delete(result.name) # check folders and dbs are deleted assert not os.path.exists(output_path) from promptflow._sdk._orm import RunInfo as ORMRun pytest.raises(RunNotFoundError, lambda: ORMRun.get(result.name)) pytest.raises(RunNotFoundError, lambda: pf.runs.get(result.name)) def test_flow_run_delete_fake_id_raise(self, pf: PFClient): run = "fake_run_id" # delete new created run by name pytest.raises(RunNotFoundError, lambda: pf.runs.delete(name=run)) @pytest.mark.skipif(sys.platform == "win32", reason="Windows doesn't support chmod, just test permission errors") def test_flow_run_delete_invalid_permission_raise(self, pf: PFClient): result = pf.run(flow=f"{FLOWS_DIR}/print_env_var", data=f"{DATAS_DIR}/env_var_names.jsonl") local_storage = LocalStorageOperations(result) output_path = local_storage.path os.chmod(output_path, 0o555) # delete new created run by name pytest.raises(InvalidRunError, lambda: pf.runs.delete(name=result.name)) # Change folder permission back os.chmod(output_path, 0o755) pf.runs.delete(name=result.name) assert not os.path.exists(output_path) def test_visualize_run_with_referenced_run_deleted(self, pf: PFClient): run_id = str(uuid.uuid4()) run = load_run( source=f"{RUNS_DIR}/sample_bulk_run.yaml", params_override=[{"name": run_id}], ) run_a = pf.runs.create_or_update(run=run) local_storage_a = LocalStorageOperations(run_a) output_path_a = local_storage_a.path run = load_run(source=f"{RUNS_DIR}/sample_eval_run.yaml", params_override=[{"run": run_id}]) run_b = pf.runs.create_or_update(run=run) local_storage_b = LocalStorageOperations(run_b) output_path_b = local_storage_b.path pf.runs.delete(run_a.name) assert not os.path.exists(output_path_a) assert os.path.exists(output_path_b) # visualize doesn't raise error pf.runs.visualize(run_b.name) def test_basic_flow_with_variant(self, azure_open_ai_connection: AzureOpenAIConnection, local_client, pf) -> None: result = pf.run( flow=f"{FLOWS_DIR}/web_classification", data=f"{DATAS_DIR}/webClassification1.jsonl", column_mapping={"url": "${data.url}"}, variant="${summarize_text_content.variant_0}", ) local_storage = LocalStorageOperations(result) detail = local_storage.load_detail() tuning_node = next((x for x in detail["node_runs"] if x["node"] == "summarize_text_content"), None) assert "variant_0" in result.name # used variant_0 config assert tuning_node["inputs"]["temperature"] == 0.2 result = pf.run( flow=f"{FLOWS_DIR}/web_classification", data=f"{DATAS_DIR}/webClassification1.jsonl", column_mapping={"url": "${data.url}"}, variant="${summarize_text_content.variant_1}", ) local_storage = LocalStorageOperations(result) detail = local_storage.load_detail() tuning_node = next((x for x in detail["node_runs"] if x["node"] == "summarize_text_content"), None) assert "variant_1" in result.name # used variant_1 config assert tuning_node["inputs"]["temperature"] == 0.3 def test_run_bulk_error(self, pf): # path not exist with pytest.raises(FileNotFoundError) as e: pf.run( flow=f"{MODEL_ROOT}/not_exist", data=f"{DATAS_DIR}/webClassification3.jsonl", column_mapping={"question": "${data.question}", "context": "${data.context}"}, variant="${summarize_text_content.variant_0}", ) assert "not exist" in str(e.value) # tuning_node not exist with pytest.raises(InvalidFlowError) as e: pf.run( flow=f"{FLOWS_DIR}/web_classification", data=f"{DATAS_DIR}/webClassification3.jsonl", column_mapping={"question": "${data.question}", "context": "${data.context}"}, variant="${not_exist.variant_0}", ) assert "Node not_exist not found in flow" in str(e.value) # invalid variant format with pytest.raises(UserErrorException) as e: pf.run( flow=f"{FLOWS_DIR}/web_classification", data=f"{DATAS_DIR}/webClassification3.jsonl", column_mapping={"question": "${data.question}", "context": "${data.context}"}, variant="v", ) assert "Invalid variant format: v, variant should be in format of ${TUNING_NODE.VARIANT}" in str(e.value) def test_basic_evaluation(self, azure_open_ai_connection: AzureOpenAIConnection, local_client, pf): result = pf.run( flow=f"{FLOWS_DIR}/print_env_var", data=f"{DATAS_DIR}/env_var_names.jsonl", ) assert local_client.runs.get(result.name).status == "Completed" eval_result = pf.run( flow=f"{FLOWS_DIR}/classification_accuracy_evaluation", run=result.name, column_mapping={ "prediction": "${run.outputs.output}", # evaluation reference run.inputs # NOTE: we need this value to guard behavior when a run reference another run's inputs "variant_id": "${run.inputs.key}", # can reference other columns in data which doesn't exist in base run's inputs "groundtruth": "${run.inputs.extra_key}", }, ) assert local_client.runs.get(eval_result.name).status == "Completed" def test_flow_demo(self, azure_open_ai_connection, pf): data_path = f"{DATAS_DIR}/webClassification3.jsonl" column_mapping = { "groundtruth": "${data.answer}", "prediction": "${run.outputs.category}", "variant_id": "${data.variant_id}", } metrics = {} for flow_name, output_key in [ ("web_classification", "baseline"), ("web_classification_v1", "v1"), ("web_classification_v2", "v2"), ]: v = pf.run(flow=f"{FLOWS_DIR}/web_classification", data=data_path) metrics[output_key] = pf.run( flow=f"{FLOWS_DIR}/classification_accuracy_evaluation", data=data_path, run=v, column_mapping=column_mapping, ) def test_submit_run_from_yaml(self, local_client, pf): run_id = str(uuid.uuid4()) run = create_yaml_run(source=f"{RUNS_DIR}/sample_bulk_run.yaml", params_override=[{"name": run_id}]) assert local_client.runs.get(run.name).status == "Completed" eval_run = create_yaml_run( source=f"{RUNS_DIR}/sample_eval_run.yaml", params_override=[{"run": run_id}], ) assert local_client.runs.get(eval_run.name).status == "Completed" @pytest.mark.usefixtures("enable_logger_propagate") def test_submit_run_with_extra_params(self, pf, caplog): run_id = str(uuid.uuid4()) run = create_yaml_run(source=f"{RUNS_DIR}/extra_field.yaml", params_override=[{"name": run_id}]) assert pf.runs.get(run.name).status == "Completed" assert "Run schema validation warnings. Unknown fields found" in caplog.text def test_run_with_connection(self, local_client, local_aoai_connection, pf): # remove connection file to test connection resolving os.environ.pop(PROMPTFLOW_CONNECTIONS) result = pf.run( flow=f"{FLOWS_DIR}/web_classification", data=f"{DATAS_DIR}/webClassification1.jsonl", column_mapping={"url": "${data.url}"}, ) local_storage = LocalStorageOperations(result) detail = local_storage.load_detail() tuning_node = next((x for x in detail["node_runs"] if x["node"] == "summarize_text_content"), None) # used default variant config assert tuning_node["inputs"]["temperature"] == 0.3 run = local_client.runs.get(name=result.name) assert run.status == "Completed" def test_run_with_connection_overwrite(self, local_client, local_aoai_connection, local_alt_aoai_connection, pf): result = pf.run( flow=f"{FLOWS_DIR}/web_classification", data=f"{DATAS_DIR}/webClassification1.jsonl", connections={"classify_with_llm": {"connection": "new_ai_connection"}}, ) run = local_client.runs.get(name=result.name) assert run.status == "Completed" def test_custom_connection_overwrite(self, local_client, local_custom_connection, pf): result = pf.run( flow=f"{FLOWS_DIR}/custom_connection_flow", data=f"{DATAS_DIR}/env_var_names.jsonl", connections={"print_env": {"connection": "test_custom_connection"}}, ) run = local_client.runs.get(name=result.name) assert run.status == "Completed" # overwrite non-exist connection with pytest.raises(InvalidFlowError) as e: pf.run( flow=f"{FLOWS_DIR}/custom_connection_flow", data=f"{DATAS_DIR}/env_var_names.jsonl", connections={"print_env": {"new_connection": "test_custom_connection"}}, ) assert "Connection with name new_connection not found" in str(e.value) def test_basic_flow_with_package_tool_with_custom_strong_type_connection( self, install_custom_tool_pkg, local_client, pf ): result = pf.run( flow=f"{FLOWS_DIR}/flow_with_package_tool_with_custom_strong_type_connection", data=f"{FLOWS_DIR}/flow_with_package_tool_with_custom_strong_type_connection/data.jsonl", connections={"My_First_Tool_00f8": {"connection": "custom_strong_type_connection"}}, ) run = local_client.runs.get(name=result.name) assert run.status == "Completed" def test_basic_flow_with_script_tool_with_custom_strong_type_connection( self, install_custom_tool_pkg, local_client, pf ): # Prepare custom connection from promptflow.connections import CustomConnection conn = CustomConnection(name="custom_connection_2", secrets={"api_key": "test"}, configs={"api_url": "test"}) local_client.connections.create_or_update(conn) result = pf.run( flow=f"{FLOWS_DIR}/flow_with_script_tool_with_custom_strong_type_connection", data=f"{FLOWS_DIR}/flow_with_script_tool_with_custom_strong_type_connection/data.jsonl", ) run = local_client.runs.get(name=result.name) assert run.status == "Completed" def test_run_with_connection_overwrite_non_exist(self, local_client, local_aoai_connection, pf): # overwrite non_exist connection with pytest.raises(ConnectionNotFoundError): pf.run( flow=f"{FLOWS_DIR}/web_classification", data=f"{DATAS_DIR}/webClassification1.jsonl", connections={"classify_with_llm": {"connection": "Not_exist"}}, ) def test_run_reference_failed_run(self, pf): failed_run = pf.run( flow=f"{FLOWS_DIR}/failed_flow", data=f"{DATAS_DIR}/webClassification1.jsonl", column_mapping={"text": "${data.url}"}, ) # "update" run status to failed since currently all run will be completed unless there's bug pf.runs.update( name=failed_run.name, status="Failed", ) run_name = str(uuid.uuid4()) with pytest.raises(UserErrorException) as e: pf.run( name=run_name, flow=f"{FLOWS_DIR}/custom_connection_flow", run=failed_run, connections={"print_env": {"connection": "test_custom_connection"}}, ) assert "is not completed, got status" in str(e.value) # run should not be created with pytest.raises(RunNotFoundError): pf.runs.get(name=run_name) def test_referenced_output_not_exist(self, pf: PFClient) -> None: # failed run won't generate output failed_run = pf.run( flow=f"{FLOWS_DIR}/failed_flow", data=f"{DATAS_DIR}/webClassification1.jsonl", column_mapping={"text": "${data.url}"}, ) run_name = str(uuid.uuid4()) run = pf.run( name=run_name, run=failed_run, flow=f"{FLOWS_DIR}/failed_flow", column_mapping={"text": "${run.outputs.text}"}, ) assert_run_with_invalid_column_mapping(pf, run) def test_connection_overwrite_file(self, local_client, local_aoai_connection): run = create_yaml_run( source=f"{RUNS_DIR}/run_with_connections.yaml", ) run = local_client.runs.get(name=run.name) assert run.status == "Completed" def test_connection_overwrite_model(self, local_client, local_aoai_connection): run = create_yaml_run( source=f"{RUNS_DIR}/run_with_connections_model.yaml", ) run = local_client.runs.get(name=run.name) assert run.status == "Completed" def test_resolve_connection(self, local_client, local_aoai_connection): flow = load_flow(f"{FLOWS_DIR}/web_classification_no_variants") connections = SubmitterHelper.resolve_connections(flow, local_client) assert local_aoai_connection.name in connections def test_run_with_env_overwrite(self, local_client, local_aoai_connection): run = create_yaml_run( source=f"{RUNS_DIR}/run_with_env.yaml", ) outputs = local_client.runs._get_outputs(run=run) assert outputs["output"][0] == local_aoai_connection.api_base def test_pf_run_with_env_overwrite(self, local_client, local_aoai_connection, pf): run = pf.run( flow=f"{FLOWS_DIR}/print_env_var", data=f"{DATAS_DIR}/env_var_names.jsonl", environment_variables={"API_BASE": "${azure_open_ai_connection.api_base}"}, ) outputs = local_client.runs._get_outputs(run=run) assert outputs["output"][0] == local_aoai_connection.api_base def test_eval_run_not_exist(self, pf): name = str(uuid.uuid4()) with pytest.raises(RunNotFoundError) as e: pf.runs.create_or_update( run=Run( name=name, flow=Path(f"{FLOWS_DIR}/classification_accuracy_evaluation"), run="not_exist", column_mapping={ "groundtruth": "${data.answer}", "prediction": "${run.outputs.category}", # evaluation reference run.inputs "url": "${run.inputs.url}", }, ) ) assert "Run name 'not_exist' cannot be found" in str(e.value) # run should not be created with pytest.raises(RunNotFoundError): pf.runs.get(name=name) def test_eval_run_data_deleted(self, pf): with tempfile.TemporaryDirectory() as temp_dir: shutil.copy(f"{DATAS_DIR}/env_var_names.jsonl", temp_dir) result = pf.run( flow=f"{FLOWS_DIR}/print_env_var", data=f"{temp_dir}/env_var_names.jsonl", ) assert pf.runs.get(result.name).status == "Completed" # delete original run's input data os.remove(f"{temp_dir}/env_var_names.jsonl") with pytest.raises(UserErrorException) as e: pf.run( flow=f"{FLOWS_DIR}/classification_accuracy_evaluation", run=result.name, column_mapping={ "prediction": "${run.outputs.output}", # evaluation reference run.inputs # NOTE: we need this value to guard behavior when a run reference another run's inputs "variant_id": "${run.inputs.key}", # can reference other columns in data which doesn't exist in base run's inputs "groundtruth": "${run.inputs.extra_key}", }, ) assert "Please make sure it exists and not deleted." in str(e.value) def test_eval_run_data_not_exist(self, pf): base_run = pf.run( flow=f"{FLOWS_DIR}/print_env_var", data=f"{DATAS_DIR}/env_var_names.jsonl", ) assert pf.runs.get(base_run.name).status == "Completed" eval_run = pf.run( flow=f"{FLOWS_DIR}/classification_accuracy_evaluation", run=base_run.name, column_mapping={ "prediction": "${run.outputs.output}", # evaluation reference run.inputs # NOTE: we need this value to guard behavior when a run reference another run's inputs "variant_id": "${run.inputs.key}", # can reference other columns in data which doesn't exist in base run's inputs "groundtruth": "${run.inputs.extra_key}", }, ) result = pf.run( flow=f"{FLOWS_DIR}/classification_accuracy_evaluation", run=eval_run.name, column_mapping={ "prediction": "${run.outputs.output}", # evaluation reference run.inputs # NOTE: we need this value to guard behavior when a run reference another run's inputs "variant_id": "${run.inputs.key}", # can reference other columns in data which doesn't exist in base run's inputs "groundtruth": "${run.inputs.extra_key}", }, ) # Run failed because run inputs data is None, and error will be in the run output error.json assert result.status == "Failed" def test_create_run_with_tags(self, pf): name = str(uuid.uuid4()) display_name = "test_run_with_tags" tags = {"key1": "tag1"} run = pf.run( name=name, display_name=display_name, tags=tags, flow=f"{FLOWS_DIR}/print_env_var", data=f"{DATAS_DIR}/env_var_names.jsonl", environment_variables={"API_BASE": "${azure_open_ai_connection.api_base}"}, ) assert run.name == name assert "test_run_with_tags" == run.display_name assert run.tags == tags def test_run_display_name(self, pf): # use run name if not specify display_name run = pf.runs.create_or_update( run=Run( flow=Path(f"{FLOWS_DIR}/print_env_var"), data=f"{DATAS_DIR}/env_var_names.jsonl", environment_variables={"API_BASE": "${azure_open_ai_connection.api_base}"}, ) ) assert run.display_name == run.name assert "print_env_var" in run.display_name # will respect if specified in run base_run = pf.runs.create_or_update( run=Run( flow=Path(f"{FLOWS_DIR}/print_env_var"), data=f"{DATAS_DIR}/env_var_names.jsonl", environment_variables={"API_BASE": "${azure_open_ai_connection.api_base}"}, display_name="my_run", ) ) assert base_run.display_name == "my_run" run = pf.runs.create_or_update( run=Run( flow=Path(f"{FLOWS_DIR}/print_env_var"), data=f"{DATAS_DIR}/env_var_names.jsonl", environment_variables={"API_BASE": "${azure_open_ai_connection.api_base}"}, display_name="my_run_${variant_id}_${run}", run=base_run, ) ) assert run.display_name == f"my_run_variant_0_{base_run.name}" run = pf.runs.create_or_update( run=Run( flow=Path(f"{FLOWS_DIR}/print_env_var"), data=f"{DATAS_DIR}/env_var_names.jsonl", environment_variables={"API_BASE": "${azure_open_ai_connection.api_base}"}, display_name="my_run_${timestamp}", run=base_run, ) ) assert "${timestamp}" not in run.display_name def test_run_dump(self, azure_open_ai_connection: AzureOpenAIConnection, pf) -> None: data_path = f"{DATAS_DIR}/webClassification3.jsonl" run = pf.run(flow=f"{FLOWS_DIR}/web_classification", data=data_path) # in fact, `pf.run` will internally query the run from db in `RunSubmitter` # explicitly call ORM get here to emphasize the dump operatoin # if no dump operation, a RunNotFoundError will be raised here pf.runs.get(run.name) def test_run_list(self, azure_open_ai_connection: AzureOpenAIConnection, pf) -> None: # create a run to ensure there is at least one run in the db data_path = f"{DATAS_DIR}/webClassification3.jsonl" pf.run(flow=f"{FLOWS_DIR}/web_classification", data=data_path) # not specify `max_result` here, so that if there are legacy runs in the db # list runs API can collect them, and can somehow cover legacy schema runs = pf.runs.list() assert len(runs) >= 1 def test_stream_run_summary(self, azure_open_ai_connection: AzureOpenAIConnection, local_client, capfd, pf) -> None: data_path = f"{DATAS_DIR}/webClassification3.jsonl" run = pf.run(flow=f"{FLOWS_DIR}/web_classification", data=data_path) local_client.runs.stream(run.name) out, _ = capfd.readouterr() print(out) assert 'Run status: "Completed"' in out assert "Output path: " in out def test_stream_incomplete_run_summary( self, azure_open_ai_connection: AzureOpenAIConnection, local_client, capfd, pf ) -> None: # use wrong data to create a failed run data_path = f"{DATAS_DIR}/webClassification3.jsonl" name = str(uuid.uuid4()) run = pf.run( flow=f"{FLOWS_DIR}/failed_flow", data=data_path, column_mapping={"text": "${data.url}"}, name=name, ) local_client.runs.stream(run.name) # assert error message in stream API out, _ = capfd.readouterr() assert 'Run status: "Completed"' in out # won't print exception, use can get it from run._to_dict() # assert "failed with exception" in out def test_run_data_not_provided(self, pf): with pytest.raises(ValueError) as e: pf.run( flow=f"{FLOWS_DIR}/web_classification", ) assert "at least one of data or run must be provided" in str(e) def test_get_details(self, azure_open_ai_connection: AzureOpenAIConnection, pf) -> None: data_path = f"{DATAS_DIR}/webClassification3.jsonl" run = pf.run( flow=f"{FLOWS_DIR}/web_classification", data=data_path, column_mapping={"url": "${data.url}"}, ) from promptflow._sdk.operations._local_storage_operations import LocalStorageOperations local_storage = LocalStorageOperations(run) # there should be line_number in original DataFrame, but not in details DataFrame # as we will set index on line_number to ensure the order outputs = pd.read_json(local_storage._outputs_path, orient="records", lines=True) details = pf.get_details(run) assert "line_number" in outputs and "line_number" not in details def test_visualize_run(self, azure_open_ai_connection: AzureOpenAIConnection, pf) -> None: data_path = f"{DATAS_DIR}/webClassification3.jsonl" run1 = pf.run( flow=f"{FLOWS_DIR}/web_classification", data=data_path, column_mapping={"url": "${data.url}"}, ) run2 = pf.run( flow=f"{FLOWS_DIR}/classification_accuracy_evaluation", data=data_path, run=run1.name, column_mapping={ "groundtruth": "${data.answer}", "prediction": "${run.outputs.category}", "variant_id": "${data.variant_id}", }, ) pf.visualize([run1, run2]) def test_incomplete_run_visualize( self, azure_open_ai_connection: AzureOpenAIConnection, pf, capfd: pytest.CaptureFixture ) -> None: failed_run = pf.run( flow=f"{FLOWS_DIR}/failed_flow", data=f"{DATAS_DIR}/webClassification1.jsonl", column_mapping={"text": "${data.url}"}, ) # "update" run status to failed since currently all run will be completed unless there's bug pf.runs.update( name=failed_run.name, status="Failed", ) # patch logger.error to print, so that we can capture the error message using capfd from promptflow._sdk.operations import _run_operations _run_operations.logger.error = print pf.visualize(failed_run) captured = capfd.readouterr() expected_error_message = ( f"Cannot visualize non-completed run. Run {failed_run.name!r} is not completed, the status is 'Failed'." ) assert expected_error_message in captured.out def test_flow_bulk_run_with_additional_includes(self, azure_open_ai_connection: AzureOpenAIConnection, pf): data_path = f"{DATAS_DIR}/webClassification3.jsonl" run = pf.run(flow=f"{FLOWS_DIR}/web_classification_with_additional_include", data=data_path) additional_includes = _get_additional_includes(run.flow / "flow.dag.yaml") snapshot_path = Path.home() / ".promptflow" / ".runs" / run.name / "snapshot" for item in additional_includes: assert (snapshot_path / Path(item).name).exists() # Addition includes in snapshot is removed additional_includes = _get_additional_includes(snapshot_path / "flow.dag.yaml") assert not additional_includes def test_input_mapping_source_not_found_error(self, azure_open_ai_connection: AzureOpenAIConnection, pf): # input_mapping source not found error won't create run name = str(uuid.uuid4()) data_path = f"{DATAS_DIR}/webClassification3.jsonl" run = pf.run( flow=f"{FLOWS_DIR}/web_classification", data=data_path, column_mapping={"not_exist": "${data.not_exist_key}"}, name=name, ) assert_run_with_invalid_column_mapping(pf, run) def test_input_mapping_with_dict(self, azure_open_ai_connection: AzureOpenAIConnection, pf): data_path = f"{DATAS_DIR}/webClassification3.jsonl" run = pf.run( flow=f"{FLOWS_DIR}/flow_with_dict_input", data=data_path, column_mapping={"key": {"value": "1"}, "url": "${data.url}"}, ) outputs = pf.runs._get_outputs(run=run) assert "dict" in outputs["output"][0] def test_run_exist_error(self, pf): name = str(uuid.uuid4()) data_path = f"{DATAS_DIR}/webClassification3.jsonl" pf.run( name=name, flow=f"{FLOWS_DIR}/flow_with_dict_input", data=data_path, column_mapping={"key": {"value": "1"}, "url": "${data.url}"}, ) # create a new run won't affect original run with pytest.raises(RunExistsError): pf.run( name=name, flow=f"{FLOWS_DIR}/flow_with_dict_input", data=data_path, column_mapping={"key": {"value": "1"}, "url": "${data.url}"}, ) run = pf.runs.get(name) assert run.status == RunStatus.COMPLETED assert not os.path.exists(run._output_path / LocalStorageFilenames.EXCEPTION) def test_run_local_storage_structure(self, local_client, pf) -> None: run = create_run_against_multi_line_data(pf) local_storage = LocalStorageOperations(local_client.runs.get(run.name)) run_output_path = local_storage.path assert (Path(run_output_path) / "flow_outputs").is_dir() assert (Path(run_output_path) / "flow_outputs" / "output.jsonl").is_file() assert (Path(run_output_path) / "flow_artifacts").is_dir() # 3 line runs for webClassification3.jsonl assert len([_ for _ in (Path(run_output_path) / "flow_artifacts").iterdir()]) == 3 assert (Path(run_output_path) / "node_artifacts").is_dir() # 5 nodes web classification flow DAG assert len([_ for _ in (Path(run_output_path) / "node_artifacts").iterdir()]) == 5 def test_run_snapshot_with_flow_tools_json(self, local_client, pf) -> None: run = create_run_against_multi_line_data(pf) local_storage = LocalStorageOperations(local_client.runs.get(run.name)) assert (local_storage._snapshot_folder_path / ".promptflow").is_dir() assert (local_storage._snapshot_folder_path / ".promptflow" / "flow.tools.json").is_file() def test_get_metrics_format(self, local_client, pf) -> None: run1 = create_run_against_multi_line_data(pf) run2 = create_run_against_run(pf, run1) # ensure the result is a flatten dict assert local_client.runs.get_metrics(run2.name).keys() == {"accuracy"} def test_get_detail_format(self, local_client, pf) -> None: run = create_run_against_multi_line_data(pf) # data is a jsonl file, so we can know the number of line runs with open(f"{DATAS_DIR}/webClassification3.jsonl", "r") as f: data = f.readlines() number_of_lines = len(data) local_storage = LocalStorageOperations(local_client.runs.get(run.name)) detail = local_storage.load_detail() assert isinstance(detail, dict) # flow runs assert "flow_runs" in detail assert isinstance(detail["flow_runs"], list) assert len(detail["flow_runs"]) == number_of_lines # node runs assert "node_runs" in detail assert isinstance(detail["node_runs"], list) def test_run_logs(self, pf): data_path = f"{DATAS_DIR}/webClassification3.jsonl" run = pf.run( flow=f"{FLOWS_DIR}/flow_with_user_output", data=data_path, column_mapping={"key": {"value": "1"}, "url": "${data.url}"}, ) local_storage = LocalStorageOperations(run=run) logs = local_storage.logger.get_logs() # For Batch run, the executor uses bulk logger to print logs, and only prints the error log of the nodes. existing_keywords = ["execution", "execution.bulk", "WARNING", "error log"] assert all([keyword in logs for keyword in existing_keywords]) non_existing_keywords = ["execution.flow", "user log"] assert all([keyword not in logs for keyword in non_existing_keywords]) def test_get_detail_against_partial_fail_run(self, pf) -> None: run = pf.run( flow=f"{FLOWS_DIR}/partial_fail", data=f"{FLOWS_DIR}/partial_fail/data.jsonl", ) detail = pf.runs.get_details(name=run.name) detail.fillna("", inplace=True) assert len(detail) == 3 def test_flow_with_only_static_values(self, pf): name = str(uuid.uuid4()) data_path = f"{DATAS_DIR}/webClassification3.jsonl" with pytest.raises(UserErrorException) as e: pf.run( flow=f"{FLOWS_DIR}/flow_with_dict_input", data=data_path, column_mapping={"key": {"value": "1"}}, name=name, ) assert "Column mapping must contain at least one mapping binding" in str(e.value) # run should not be created with pytest.raises(RunNotFoundError): pf.runs.get(name=name) def test_error_message_dump(self, pf): failed_run = pf.run( flow=f"{FLOWS_DIR}/failed_flow", data=f"{DATAS_DIR}/webClassification1.jsonl", column_mapping={"text": "${data.url}"}, ) # even if all lines failed, the bulk run's status is completed. assert failed_run.status == "Completed" # error messages will store in local local_storage = LocalStorageOperations(failed_run) assert os.path.exists(local_storage._exception_path) exception = local_storage.load_exception() assert "Failed to run 1/1 lines. First error message is" in exception["message"] # line run failures will be stored in additionalInfo assert len(exception["additionalInfo"][0]["info"]["errors"]) == 1 # show run will get error message run = pf.runs.get(name=failed_run.name) run_dict = run._to_dict() assert "error" in run_dict assert run_dict["error"] == exception @pytest.mark.skipif(RecordStorage.is_replaying_mode(), reason="System metrics not supported in replaying mode") def test_system_metrics_in_properties(self, pf) -> None: run = create_run_against_multi_line_data(pf) assert FlowRunProperties.SYSTEM_METRICS in run.properties assert isinstance(run.properties[FlowRunProperties.SYSTEM_METRICS], dict) assert "total_tokens" in run.properties[FlowRunProperties.SYSTEM_METRICS] def test_run_get_inputs(self, pf): # inputs should be persisted when defaults are used run = pf.run( flow=f"{FLOWS_DIR}/default_input", data=f"{DATAS_DIR}/webClassification1.jsonl", ) inputs = pf.runs._get_inputs(run=run) assert inputs == { "line_number": [0], "input_bool": [False], "input_dict": [{}], "input_list": [[]], "input_str": ["input value from default"], } # inputs should be persisted when data value are used run = pf.run( flow=f"{FLOWS_DIR}/flow_with_dict_input", data=f"{DATAS_DIR}/dictInput1.jsonl", ) inputs = pf.runs._get_inputs(run=run) assert inputs == {"key": [{"key": "value in data"}], "line_number": [0]} # inputs should be persisted when column-mapping are used run = pf.run( flow=f"{FLOWS_DIR}/flow_with_dict_input", data=f"{DATAS_DIR}/webClassification1.jsonl", column_mapping={"key": {"value": "value in column-mapping"}, "url": "${data.url}"}, ) inputs = pf.runs._get_inputs(run=run) assert inputs == { "key": [{"value": "value in column-mapping"}], "line_number": [0], "url": ["https://www.youtube.com/watch?v=o5ZQyXaAv1g"], } def test_executor_logs_in_batch_run_logs(self, pf) -> None: run = create_run_against_multi_line_data_without_llm(pf) local_storage = LocalStorageOperations(run=run) logs = local_storage.logger.get_logs() # below warning is printed by executor before the batch run executed # the warning message results from we do not use column mapping # so it is expected to be printed here assert "Starting run without column mapping may lead to unexpected results." in logs def test_basic_image_flow_bulk_run(self, pf, local_client) -> None: image_flow_path = f"{FLOWS_DIR}/python_tool_with_simple_image" data_path = f"{image_flow_path}/image_inputs/inputs.jsonl" result = pf.run(flow=image_flow_path, data=data_path, column_mapping={"image": "${data.image}"}) run = local_client.runs.get(name=result.name) assert run.status == "Completed" assert "error" not in run._to_dict() def test_python_tool_with_composite_image(self, pf) -> None: image_flow_path = f"{FLOWS_DIR}/python_tool_with_composite_image" data_path = f"{image_flow_path}/inputs.jsonl" result = pf.run( flow=image_flow_path, data=data_path, column_mapping={ "image_list": "${data.image_list}", "image_dict": "${data.image_dict}", }, ) run = pf.runs.get(name=result.name) assert run.status == "Completed" # no error when processing lines assert "error" not in run._to_dict() # test input from output result = pf.run( run=result, flow=image_flow_path, column_mapping={ "image_list": "${run.outputs.output}" # image dict will use default value, which is relative to flow's folder }, ) run = pf.runs.get(name=result.name) assert run.status == "Completed" # no error when processing lines assert "error" not in run._to_dict() def test_image_without_default(self, pf): image_flow_path = f"{FLOWS_DIR}/python_tool_with_simple_image_without_default" data_path = f"{DATAS_DIR}/image_inputs" result = pf.run( flow=image_flow_path, data=data_path, column_mapping={ "image_1": "${data.image}", "image_2": "${data.image}", }, ) run = pf.runs.get(name=result.name) assert run.status == "Completed", run.name # no error when processing lines assert "error" not in run._to_dict(), run.name def test_get_details_for_image_in_flow(self, pf) -> None: image_flow_path = f"{FLOWS_DIR}/python_tool_with_simple_image" data_path = f"{image_flow_path}/image_inputs/inputs.jsonl" run = pf.run( flow=image_flow_path, data=data_path, column_mapping={"image": "${data.image}"}, ) details = pf.get_details(run.name) for i in range(len(details)): input_image_path = details["inputs.image"][i]["data:image/png;path"] assert Path(input_image_path).is_absolute() output_image_path = details["outputs.output"][i]["data:image/png;path"] assert Path(output_image_path).is_absolute() def test_stream_raise_on_error_false(self, pf: PFClient, capfd: pytest.CaptureFixture) -> None: data_path = f"{DATAS_DIR}/webClassification3.jsonl" run = pf.run( flow=f"{FLOWS_DIR}/web_classification", data=data_path, column_mapping={"not_exist": "${data.not_exist_key}"}, name=str(uuid.uuid4()), ) # raise_on_error=False, will print error message in stdout pf.stream(run.name, raise_on_error=False) out, _ = capfd.readouterr() assert "The input for batch run is incorrect. Couldn't find these mapping relations" in out def test_stream_canceled_run(self, pf: PFClient, capfd: pytest.CaptureFixture) -> None: run = create_run_against_multi_line_data_without_llm(pf) pf.runs.update(name=run.name, status=RunStatus.CANCELED) # (default) raise_on_error=True with pytest.raises(InvalidRunStatusError): pf.stream(run.name) # raise_on_error=False pf.stream(run.name, raise_on_error=False) out, _ = capfd.readouterr() assert "Run is canceled." in out def test_specify_run_output_path(self, pf: PFClient, mocker: MockerFixture) -> None: # mock to imitate user specify config run.output_path specified_run_output_path = (Path.home() / PROMPT_FLOW_DIR_NAME / ".mock").resolve().as_posix() with mocker.patch( "promptflow._sdk._configuration.Configuration.get_run_output_path", return_value=specified_run_output_path, ): run = create_run_against_multi_line_data_without_llm(pf) local_storage = LocalStorageOperations(run=run) expected_output_path_prefix = (Path(specified_run_output_path) / run.name).resolve().as_posix() assert local_storage.outputs_folder.as_posix().startswith(expected_output_path_prefix) def test_override_run_output_path_in_pf_client(self) -> None: specified_run_output_path = (Path.home() / PROMPT_FLOW_DIR_NAME / ".another_mock").resolve().as_posix() pf = PFClient(config={"run.output_path": specified_run_output_path}) run = create_run_against_multi_line_data_without_llm(pf) local_storage = LocalStorageOperations(run=run) expected_output_path_prefix = (Path(specified_run_output_path) / run.name).resolve().as_posix() assert local_storage.outputs_folder.as_posix().startswith(expected_output_path_prefix) def test_specify_run_output_path_with_macro(self, pf: PFClient, mocker: MockerFixture) -> None: # mock to imitate user specify invalid config run.output_path with mocker.patch( "promptflow._sdk._configuration.Configuration.get_run_output_path", return_value=f"{FLOW_DIRECTORY_MACRO_IN_CONFIG}/.promptflow", ): for _ in range(3): run = create_run_against_multi_line_data_without_llm(pf) local_storage = LocalStorageOperations(run=run) expected_path_prefix = Path(FLOWS_DIR) / "print_env_var" / ".promptflow" / run.name expected_path_prefix = expected_path_prefix.resolve().as_posix() assert local_storage.outputs_folder.as_posix().startswith(expected_path_prefix) def test_specify_run_output_path_with_invalid_macro(self, pf: PFClient, mocker: MockerFixture) -> None: # mock to imitate user specify invalid config run.output_path with mocker.patch( "promptflow._sdk._configuration.Configuration.get_run_output_path", # this case will happen when user manually modifies ~/.promptflow/pf.yaml return_value=f"{FLOW_DIRECTORY_MACRO_IN_CONFIG}", ): run = create_run_against_multi_line_data_without_llm(pf) # as the specified run output path is invalid # the actual run output path will be the default value local_storage = LocalStorageOperations(run=run) expected_output_path_prefix = (Path.home() / PROMPT_FLOW_DIR_NAME / ".runs" / run.name).resolve().as_posix() assert local_storage.outputs_folder.as_posix().startswith(expected_output_path_prefix) def test_failed_run_to_dict_exclude(self, pf): failed_run = pf.run( flow=f"{FLOWS_DIR}/failed_flow", data=f"{DATAS_DIR}/webClassification1.jsonl", column_mapping={"text": "${data.url}"}, ) default = failed_run._to_dict() # CLI will exclude additional info and debug info exclude = failed_run._to_dict(exclude_additional_info=True, exclude_debug_info=True) assert "additionalInfo" in default["error"] and "additionalInfo" not in exclude["error"] assert "debugInfo" in default["error"] and "debugInfo" not in exclude["error"] def test_create_run_with_existing_run_folder(self, pf): # TODO: Should use fixture to create an run and download it to be used here. run_name = "web_classification_variant_0_20231205_120253_104100" # clean the run if exists from promptflow._cli._utils import _try_delete_existing_run_record _try_delete_existing_run_record(run_name) # assert the run doesn't exist with pytest.raises(RunNotFoundError): pf.runs.get(run_name) # create the run with run folder run_folder = f"{RUNS_DIR}/{run_name}" run = Run._load_from_source(source=run_folder) pf.runs.create_or_update(run) # test with other local run operations run = pf.runs.get(run_name) assert run.name == run_name details = pf.get_details(run_name) assert details.shape == (3, 5) metrics = pf.runs.get_metrics(run_name) assert metrics == {} pf.stream(run_name) pf.visualize([run_name]) def test_aggregation_node_failed(self, pf): failed_run = pf.run( flow=f"{FLOWS_DIR}/aggregation_node_failed", data=f"{FLOWS_DIR}/aggregation_node_failed/data.jsonl", ) # even if all lines failed, the bulk run's status is completed. assert failed_run.status == "Completed" # error messages will store in local local_storage = LocalStorageOperations(failed_run) assert os.path.exists(local_storage._exception_path) exception = local_storage.load_exception() assert "First error message is" in exception["message"] # line run failures will be stored in additionalInfo assert len(exception["additionalInfo"][0]["info"]["errors"]) == 1 # show run will get error message run = pf.runs.get(name=failed_run.name) run_dict = run._to_dict() assert "error" in run_dict assert run_dict["error"] == exception def test_get_details_against_partial_completed_run(self, pf: PFClient, monkeypatch) -> None: # TODO: remove this patch after executor switch to default spawn monkeypatch.setenv("PF_BATCH_METHOD", "spawn") flow_mod2 = f"{FLOWS_DIR}/mod-n/two" flow_mod3 = f"{FLOWS_DIR}/mod-n/three" data_path = f"{DATAS_DIR}/numbers.jsonl" # batch run against data run1 = pf.run( flow=flow_mod2, data=data_path, column_mapping={"number": "${data.value}"}, ) pf.runs.stream(run1) details1 = pf.get_details(run1) assert len(details1) == 20 assert len(details1.loc[details1["outputs.output"] != "(Failed)"]) == 10 # assert to ensure inputs and outputs are aligned for _, row in details1.iterrows(): if str(row["outputs.output"]) != "(Failed)": assert int(row["inputs.number"]) == int(row["outputs.output"]) # batch run against previous run run2 = pf.run( flow=flow_mod3, run=run1, column_mapping={"number": "${run.outputs.output}"}, ) pf.runs.stream(run2) details2 = pf.get_details(run2) assert len(details2) == 10 assert len(details2.loc[details2["outputs.output"] != "(Failed)"]) == 4 # assert to ensure inputs and outputs are aligned for _, row in details2.iterrows(): if str(row["outputs.output"]) != "(Failed)": assert int(row["inputs.number"]) == int(row["outputs.output"]) monkeypatch.delenv("PF_BATCH_METHOD") def test_flow_with_nan_inf(self, pf: PFClient, monkeypatch) -> None: # TODO: remove this patch after executor switch to default spawn monkeypatch.setenv("PF_BATCH_METHOD", "spawn") run = pf.run( flow=f"{FLOWS_DIR}/flow-with-nan-inf", data=f"{DATAS_DIR}/numbers.jsonl", column_mapping={"number": "${data.value}"}, ) pf.stream(run) local_storage = LocalStorageOperations(run=run) # default behavior: no special logic for nan and inf detail = local_storage.load_detail() first_line_run_output = detail["flow_runs"][0]["output"]["output"] assert isinstance(first_line_run_output["nan"], float) assert np.isnan(first_line_run_output["nan"]) assert isinstance(first_line_run_output["inf"], float) assert np.isinf(first_line_run_output["inf"]) # handles nan and inf, which is real scenario during visualize detail = local_storage.load_detail(parse_const_as_str=True) first_line_run_output = detail["flow_runs"][0]["output"]["output"] assert isinstance(first_line_run_output["nan"], str) assert first_line_run_output["nan"] == "NaN" assert isinstance(first_line_run_output["inf"], str) assert first_line_run_output["inf"] == "Infinity" monkeypatch.delenv("PF_BATCH_METHOD") @pytest.mark.skip("Enable this when executor change merges") def test_eager_flow_run_without_yaml(self, pf): # TODO(2898455): support this flow_path = Path(f"{EAGER_FLOWS_DIR}/simple_without_yaml/entry.py") run = pf.run( flow=flow_path, entry="my_flow", data=f"{DATAS_DIR}/simple_eager_flow_data.jsonl", ) assert run.status == "Completed" def test_eager_flow_run_with_yaml(self, pf): flow_path = Path(f"{EAGER_FLOWS_DIR}/simple_with_yaml") run = pf.run( flow=flow_path, data=f"{DATAS_DIR}/simple_eager_flow_data.jsonl", ) assert run.status == "Completed" def test_eager_flow_test_invalid_cases(self, pf): # no entry provided flow_path = Path(f"{EAGER_FLOWS_DIR}/simple_without_yaml/entry.py") with pytest.raises(UserErrorException) as e: pf.run( flow=flow_path, data=f"{DATAS_DIR}/simple_eager_flow_data.jsonl", ) assert "Entry function is not specified" in str(e.value) # no path provided flow_path = Path(f"{EAGER_FLOWS_DIR}/invalid_no_path/") with pytest.raises(ValidationError) as e: pf.run( flow=flow_path, data=f"{DATAS_DIR}/simple_eager_flow_data.jsonl", ) assert "'path': ['Missing data for required field.']" in str(e.value) def test_get_incomplete_run(self, local_client, pf) -> None: with tempfile.TemporaryDirectory() as temp_dir: shutil.copytree(f"{FLOWS_DIR}/print_env_var", f"{temp_dir}/print_env_var") run = pf.run( flow=f"{temp_dir}/print_env_var", data=f"{DATAS_DIR}/env_var_names.jsonl", ) # remove run dag shutil.rmtree(f"{temp_dir}/print_env_var") # can still get run operations LocalStorageOperations(run=run) # can to_dict run._to_dict()
promptflow/src/promptflow/tests/sdk_cli_test/e2etests/test_flow_run.py/0
{ "file_path": "promptflow/src/promptflow/tests/sdk_cli_test/e2etests/test_flow_run.py", "repo_id": "promptflow", "token_count": 25678 }
50
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- from pathlib import Path import pytest from promptflow._sdk._serving._errors import UnexpectedConnectionProviderReturn, UnsupportedConnectionProvider from promptflow._sdk._serving.flow_invoker import FlowInvoker from promptflow.exceptions import UserErrorException PROMOTFLOW_ROOT = Path(__file__).parent.parent.parent.parent FLOWS_DIR = Path(PROMOTFLOW_ROOT / "tests/test_configs/flows") EXAMPLE_FLOW = FLOWS_DIR / "web_classification" @pytest.mark.sdk_test @pytest.mark.unittest class TestFlowInvoker: # Note: e2e test of flow invoker has been covered by test_flow_serve. def test_flow_invoker_unsupported_connection_provider(self): with pytest.raises(UnsupportedConnectionProvider): FlowInvoker(flow=EXAMPLE_FLOW, connection_provider=[]) with pytest.raises(UserErrorException): FlowInvoker(flow=EXAMPLE_FLOW, connection_provider="unsupported") def test_flow_invoker_custom_connection_provider(self): # Return is not a list with pytest.raises(UnexpectedConnectionProviderReturn) as e: FlowInvoker(flow=EXAMPLE_FLOW, connection_provider=lambda: {}) assert "should return a list of connections" in str(e.value) # Return is not connection type with pytest.raises(UnexpectedConnectionProviderReturn) as e: FlowInvoker(flow=EXAMPLE_FLOW, connection_provider=lambda: [1, 2]) assert "should be connection type" in str(e.value)
promptflow/src/promptflow/tests/sdk_cli_test/unittests/test_flow_invoker.py/0
{ "file_path": "promptflow/src/promptflow/tests/sdk_cli_test/unittests/test_flow_invoker.py", "repo_id": "promptflow", "token_count": 550 }
51
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import json import uuid from dataclasses import fields from pathlib import Path import pytest from promptflow import PFClient from promptflow._sdk.entities import Run from promptflow._sdk.operations._local_storage_operations import LocalStorageOperations from promptflow.contracts._run_management import RunMetadata from ..utils import PFSOperations, check_activity_end_telemetry FLOW_PATH = "./tests/test_configs/flows/print_env_var" DATA_PATH = "./tests/test_configs/datas/env_var_names.jsonl" def create_run_against_multi_line_data(client: PFClient) -> Run: return client.run(flow=FLOW_PATH, data=DATA_PATH) @pytest.mark.usefixtures("use_secrets_config_file") @pytest.mark.e2etest class TestRunAPIs: @pytest.fixture(autouse=True) def _submit_run(self, pf_client): self.run = create_run_against_multi_line_data(pf_client) def test_list_runs(self, pfs_op: PFSOperations) -> None: with check_activity_end_telemetry(activity_name="pf.runs.list"): response = pfs_op.list_runs(status_code=200).json assert len(response) >= 1 @pytest.mark.skip(reason="Task 2917711: cli command will give strange stdout in ci; re-enable after switch to sdk") def test_submit_run(self, pfs_op: PFSOperations) -> None: # run submit is done via cli, so no telemetry will be detected here with check_activity_end_telemetry(expected_activities=[]): response = pfs_op.submit_run( { "flow": Path(FLOW_PATH).absolute().as_posix(), "data": Path(DATA_PATH).absolute().as_posix(), }, status_code=200, ) with check_activity_end_telemetry(activity_name="pf.runs.get"): run_from_pfs = pfs_op.get_run(name=response.json["name"]).json assert run_from_pfs def update_run(self, pfs_op: PFSOperations) -> None: display_name = "new_display_name" tags = {"key": "value"} with check_activity_end_telemetry(activity_name="pf.runs.update"): run_from_pfs = pfs_op.update_run( name=self.run.name, display_name=display_name, tags=json.dumps(tags), status_code=200 ).json assert run_from_pfs["display_name"] == display_name assert run_from_pfs["tags"] == tags def test_archive_restore_run(self, pf_client: PFClient, pfs_op: PFSOperations) -> None: run = create_run_against_multi_line_data(pf_client) with check_activity_end_telemetry( expected_activities=[ {"activity_name": "pf.runs.get", "first_call": False}, {"activity_name": "pf.runs.archive"}, ] ): pfs_op.archive_run(name=run.name, status_code=200) runs = pfs_op.list_runs().json assert not any([item["name"] == run.name for item in runs]) with check_activity_end_telemetry( expected_activities=[ {"activity_name": "pf.runs.get", "first_call": False}, {"activity_name": "pf.runs.restore"}, ] ): pfs_op.restore_run(name=run.name, status_code=200) runs = pfs_op.list_runs().json assert any([item["name"] == run.name for item in runs]) def test_delete_run(self, pf_client: PFClient, pfs_op: PFSOperations) -> None: run = create_run_against_multi_line_data(pf_client) local_storage = LocalStorageOperations(run) path = local_storage.path assert path.exists() with check_activity_end_telemetry( expected_activities=[ {"activity_name": "pf.runs.get", "first_call": False}, {"activity_name": "pf.runs.delete"}, ] ): pfs_op.delete_run(name=run.name, status_code=204) runs = pfs_op.list_runs().json assert not any([item["name"] == run.name for item in runs]) assert not path.exists() def test_visualize_run(self, pfs_op: PFSOperations) -> None: with check_activity_end_telemetry( expected_activities=[ {"activity_name": "pf.runs.get", "first_call": False}, {"activity_name": "pf.runs.get", "first_call": False}, {"activity_name": "pf.runs.get_metrics", "first_call": False}, {"activity_name": "pf.runs.visualize"}, ] ): response = pfs_op.get_run_visualize(name=self.run.name, status_code=200) assert response.data def test_get_not_exist_run(self, pfs_op: PFSOperations) -> None: random_name = str(uuid.uuid4()) with check_activity_end_telemetry(activity_name="pf.runs.get", completion_status="Failure"): response = pfs_op.get_run(name=random_name) assert response.status_code == 404 def test_get_run(self, pfs_op: PFSOperations) -> None: with check_activity_end_telemetry(activity_name="pf.runs.get"): run_from_pfs = pfs_op.get_run(name=self.run.name, status_code=200).json assert run_from_pfs["name"] == self.run.name def test_get_child_runs(self, pfs_op: PFSOperations) -> None: with check_activity_end_telemetry(activity_name="pf.runs.get"): run_from_pfs = pfs_op.get_child_runs(name=self.run.name, status_code=200).json assert len(run_from_pfs) == 1 assert run_from_pfs[0]["parent_run_id"] == self.run.name def test_get_node_runs(self, pfs_op: PFSOperations) -> None: with check_activity_end_telemetry(activity_name="pf.runs.get"): run_from_pfs = pfs_op.get_node_runs(name=self.run.name, node_name="print_env", status_code=200).json assert len(run_from_pfs) == 1 assert run_from_pfs[0]["node"] == "print_env" def test_get_run_log(self, pfs_op: PFSOperations, pf_client: PFClient) -> None: with check_activity_end_telemetry(activity_name="pf.runs.get"): log = pfs_op.get_run_log(name=self.run.name, status_code=200) assert not log.data.decode("utf-8").startswith('"') def test_get_run_metrics(self, pfs_op: PFSOperations) -> None: with check_activity_end_telemetry(activity_name="pf.runs.get"): metrics = pfs_op.get_run_metrics(name=self.run.name, status_code=200).json assert metrics is not None def test_get_run_metadata(self, pfs_op: PFSOperations) -> None: with check_activity_end_telemetry(activity_name="pf.runs.get"): metadata = pfs_op.get_run_metadata(name=self.run.name, status_code=200).json for field in fields(RunMetadata): assert field.name in metadata assert metadata["name"] == self.run.name
promptflow/src/promptflow/tests/sdk_pfs_test/e2etests/test_run_apis.py/0
{ "file_path": "promptflow/src/promptflow/tests/sdk_pfs_test/e2etests/test_run_apis.py", "repo_id": "promptflow", "token_count": 3037 }
52
$schema: https://azuremlschemas.azureedge.net/promptflow/latest/QdrantConnection.schema.json name: my_qdrant_connection type: qdrant api_key: "<to-be-replaced>" api_base: "endpoint"
promptflow/src/promptflow/tests/test_configs/connections/qdrant_connection.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/connections/qdrant_connection.yaml", "repo_id": "promptflow", "token_count": 73 }
53
{"text": "text"} {"text": "text"}
promptflow/src/promptflow/tests/test_configs/eager_flows/dummy_flow_with_exception/inputs.jsonl/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/eager_flows/dummy_flow_with_exception/inputs.jsonl", "repo_id": "promptflow", "token_count": 13 }
54
from promptflow import tool @tool def pass_through(input1: str) -> str: return 'hello ' + input1
promptflow/src/promptflow/tests/test_configs/flows/activate_condition_always_met/pass_through.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/activate_condition_always_met/pass_through.py", "repo_id": "promptflow", "token_count": 33 }
55
inputs: text: type: string default: hi outputs: output: type: string reference: ${nodeB.output} nodes: - name: nodeA type: python source: type: code path: pass_through.py inputs: input1: ${inputs.text} activate: when: ${inputs.text} is: world - name: nodeB type: python source: type: code path: pass_through.py inputs: input1: ${nodeA.output} activate: when: ${inputs.text} is: hi
promptflow/src/promptflow/tests/test_configs/flows/all_depedencies_bypassed_with_activate_met/flow.dag.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/all_depedencies_bypassed_with_activate_met/flow.dag.yaml", "repo_id": "promptflow", "token_count": 199 }
56
from promptflow import tool async def raise_exception_async(s): msg = f"In raise_exception_async: {s}" raise Exception(msg) @tool async def raise_an_exception_async(s: str): try: await raise_exception_async(s) except Exception as e: raise Exception(f"In tool raise_an_exception_async: {s}") from e
promptflow/src/promptflow/tests/test_configs/flows/async_tools_failures/async_fail.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/async_tools_failures/async_fail.py", "repo_id": "promptflow", "token_count": 137 }
57
from promptflow import tool @tool def icm_retriever(content: str) -> str: return "ICM: " + content
promptflow/src/promptflow/tests/test_configs/flows/conditional_flow_with_activate/icm_retriever.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/conditional_flow_with_activate/icm_retriever.py", "repo_id": "promptflow", "token_count": 35 }
58
[ { "case": "double", "value": 1 }, { "case": "double", "value": 2 }, { "case": "square", "value": 3 }, { "case": "square", "value": 4 } ]
promptflow/src/promptflow/tests/test_configs/flows/conditional_flow_with_aggregate_bypassed/inputs.json/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/conditional_flow_with_aggregate_bypassed/inputs.json", "repo_id": "promptflow", "token_count": 147 }
59
$schema: https://azuremlschemas.azureedge.net/promptflow/latest/CustomConnection.schema.json type: custom name: custom_connection configs: CHAT_DEPLOYMENT_NAME: gpt-35-turbo AZURE_OPENAI_API_BASE: https://gpt-test-eus.openai.azure.com/ secrets: AZURE_OPENAI_API_KEY: ${env:CUSTOM_CONNECTION_AZURE_OPENAI_API_KEY} module: promptflow.connections
promptflow/src/promptflow/tests/test_configs/flows/export/linux/connections/custom_connection.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/export/linux/connections/custom_connection.yaml", "repo_id": "promptflow", "token_count": 144 }
60
from promptflow import tool @tool def character_generator(text: str): """Generate characters from a string.""" for char in text: yield char
promptflow/src/promptflow/tests/test_configs/flows/generator_tools/char_generator.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/generator_tools/char_generator.py", "repo_id": "promptflow", "token_count": 57 }
61
{"question": "What is the capital of the United States of America?", "chat_history": [], "stream": true} {"question": "What is the capital of the United States of America?", "chat_history": [], "stream": false}
promptflow/src/promptflow/tests/test_configs/flows/openai_chat_api_flow/inputs.jsonl/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/openai_chat_api_flow/inputs.jsonl", "repo_id": "promptflow", "token_count": 56 }
62
inputs: key: type: string default: text outputs: output: type: string reference: ${print_secret.output} nodes: - name: print_secret type: python source: type: code path: print_secret.py inputs: connection: custom_connection text: ${inputs.key}
promptflow/src/promptflow/tests/test_configs/flows/print_secret_flow/flow.dag.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/print_secret_flow/flow.dag.yaml", "repo_id": "promptflow", "token_count": 113 }
63
[ {"idx": 1, "mod": 3, "mod_2": 5}, {"idx": 2, "mod": 3, "mod_2": 5}, {"idx": 3, "mod": 3, "mod_2": 5}, {"idx": 4, "mod": 3, "mod_2": 5}, {"idx": 5, "mod": 3, "mod_2": 5}, {"idx": 6, "mod": 3, "mod_2": 5}, {"idx": 7, "mod": 3, "mod_2": 5}, {"idx": 8, "mod": 3, "mod_2": 5}, {"idx": 9, "mod": 3, "mod_2": 5}, {"idx": 10, "mod": 3, "mod_2": 5} ]
promptflow/src/promptflow/tests/test_configs/flows/python_tool_partial_failure/samples.json/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/python_tool_partial_failure/samples.json", "repo_id": "promptflow", "token_count": 223 }
64
[ { "question": "How about London next week?" } ]
promptflow/src/promptflow/tests/test_configs/flows/sample_flow_with_functions/samples.json/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/sample_flow_with_functions/samples.json", "repo_id": "promptflow", "token_count": 31 }
65
{ "name": "script_with_special_character", "type": "python", "inputs": { "input1": { "type": [ "string" ] } }, "source": "script_with_special_character.py", "function": "print_special_character" }
promptflow/src/promptflow/tests/test_configs/flows/script_with_special_character/script_with_special_character.meta.json/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/script_with_special_character/script_with_special_character.meta.json", "repo_id": "promptflow", "token_count": 105 }
66
from promptflow import tool import time @tool def python_node(input: str, index: int) -> str: time.sleep(index + 5) return input
promptflow/src/promptflow/tests/test_configs/flows/simple_flow_with_ten_inputs/python_node.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/simple_flow_with_ten_inputs/python_node.py", "repo_id": "promptflow", "token_count": 48 }
67
interactions: - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000 response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000", "name": "00000", "type": "Microsoft.MachineLearningServices/workspaces", "location": "eastus", "tags": {}, "etag": null, "kind": "Default", "sku": {"name": "Basic", "tier": "Basic"}, "properties": {"discoveryUrl": "https://eastus.api.azureml.ms/discovery"}}' headers: cache-control: - no-cache content-length: - '3630' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.027' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores?count=30&isDefault=true&orderByAsc=false response: body: string: '{"value": [{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}]}' headers: cache-control: - no-cache content-length: - '1372' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.085' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.097' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.087' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:18:40 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/webClassification3.jsonl response: body: string: '' headers: accept-ranges: - bytes content-length: - '379' content-md5: - lI/pz9jzTQ7Td3RHPL7y7w== content-type: - application/octet-stream last-modified: - Mon, 06 Nov 2023 08:30:18 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Mon, 06 Nov 2023 08:30:18 GMT x-ms-meta-name: - 94331215-cf7f-452a-9f1a-1d276bc9b0e4 x-ms-meta-upload_status: - completed x-ms-meta-version: - 3f163752-edb0-4afc-a6f5-b0a670bd7c24 x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:18:41 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/webClassification3.jsonl response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.103' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.110' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:18:44 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/web_classification/classify_with_llm.jinja2 response: body: string: '' headers: accept-ranges: - bytes content-length: - '853' content-md5: - ylTeNqjvuOvtzEZJ/X5n3A== content-type: - application/octet-stream last-modified: - Fri, 12 Jan 2024 08:13:57 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Fri, 12 Jan 2024 08:13:56 GMT x-ms-meta-name: - 950201e8-c52c-4b15-ada1-5e58de9b2f4d x-ms-meta-upload_status: - completed x-ms-meta-version: - '1' x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:18:45 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/web_classification/classify_with_llm.jinja2 response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: '{"flowDefinitionDataStoreName": "workspaceblobstore", "flowDefinitionBlobPath": "LocalUpload/000000000000000000000000000000000000/web_classification/flow.dag.yaml", "runId": "batch_run_name", "runDisplayName": "batch_run_name", "runExperimentName": "", "nodeVariant": "${summarize_text_content.variant_0}", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/000000000000000000000000000000000000/webClassification3.jsonl"}, "inputsMapping": {"url": "${data.url}"}, "connections": {}, "environmentVariables": {}, "runtimeName": "fake-runtime-name", "sessionId": "000000000000000000000000000000000000000000000000", "sessionSetupMode": "SystemWait", "flowLineageId": "0000000000000000000000000000000000000000000000000000000000000000", "runDisplayNameGenerationType": "UserProvidedMacro"}' headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '873' Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/submit response: body: string: '"batch_run_name"' headers: connection: - keep-alive content-length: - '38' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload x-content-type-options: - nosniff x-request-time: - '6.550' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "fetch_text_content_from_url", "type": "python", "source": {"type": "code", "path": "fetch_text_content_from_url.py"}, "inputs": {"fetch_url": "${inputs.url}"}, "tool": "fetch_text_content_from_url.py", "reduce": false}, {"name": "prepare_examples", "type": "python", "source": {"type": "code", "path": "prepare_examples.py"}, "inputs": {}, "tool": "prepare_examples.py", "reduce": false}, {"name": "classify_with_llm", "type": "llm", "source": {"type": "code", "path": "classify_with_llm.jinja2"}, "inputs": {"deployment_name": "gpt-35-turbo", "suffix": "", "max_tokens": "128", "temperature": "0.1", "top_p": "1.0", "logprobs": "", "echo": "False", "stop": "", "presence_penalty": "0", "frequency_penalty": "0", "best_of": "1", "logit_bias": "", "url": "${inputs.url}", "examples": "${prepare_examples.output}", "text_content": "${summarize_text_content.output}"}, "tool": "classify_with_llm.jinja2", "reduce": false, "api": "chat", "provider": "AzureOpenAI", "connection": "azure_open_ai_connection", "module": "promptflow.tools.aoai"}, {"name": "convert_to_dict", "type": "python", "source": {"type": "code", "path": "convert_to_dict.py"}, "inputs": {"input_str": "${classify_with_llm.output}"}, "tool": "convert_to_dict.py", "reduce": false}, {"name": "summarize_text_content", "type": "llm", "source": {"type": "code", "path": "summarize_text_content.jinja2"}, "inputs": {"deployment_name": "gpt-35-turbo", "suffix": "", "max_tokens": "128", "temperature": "0.2", "top_p": "1.0", "logprobs": "", "echo": "False", "stop": "", "presence_penalty": "0", "frequency_penalty": "0", "best_of": "1", "logit_bias": "", "text": "${fetch_text_content_from_url.output}"}, "tool": "summarize_text_content.jinja2", "reduce": false, "api": "chat", "provider": "AzureOpenAI", "connection": "azure_open_ai_connection", "module": "promptflow.tools.aoai"}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "classify_with_llm.jinja2", "type": "prompt", "inputs": {"examples": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_content": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "url": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "classify_with_llm.jinja2", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "convert_to_dict.py", "type": "python", "inputs": {"input_str": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "convert_to_dict.py", "function": "convert_to_dict", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "fetch_text_content_from_url.py", "type": "python", "inputs": {"fetch_url": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "fetch_text_content_from_url.py", "function": "fetch_text_content_from_url", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "prepare_examples.py", "type": "python", "source": "prepare_examples.py", "function": "prepare_examples", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "summarize_text_content.jinja2", "type": "prompt", "inputs": {"text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "summarize_text_content.jinja2", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "summarize_text_content__variant_1.jinja2", "type": "prompt", "inputs": {"text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "summarize_text_content__variant_1.jinja2", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"url": {"type": "string", "default": "https://www.microsoft.com/en-us/d/xbox-wireless-controller-stellar-shift-special-edition/94fbjc7h0h6h", "is_chat_input": false}}, "outputs": {"category": {"type": "string", "reference": "${convert_to_dict.output.category}", "evaluation_only": false, "is_chat_output": false}, "evidence": {"type": "string", "reference": "${convert_to_dict.output.evidence}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/batch_run_name/flowRuns/batch_run_name", "flowRunId": "batch_run_name", "flowRunDisplayName": "batch_run_name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"url": "${data.url}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/batch_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "c956855e-d291-4714-a3df-91c99c974de9", "studioPortalEndpoint": "https://ml.azure.com/runs/batch_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '16239' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.455' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "fetch_text_content_from_url", "type": "python", "source": {"type": "code", "path": "fetch_text_content_from_url.py"}, "inputs": {"fetch_url": "${inputs.url}"}, "tool": "fetch_text_content_from_url.py", "reduce": false}, {"name": "prepare_examples", "type": "python", "source": {"type": "code", "path": "prepare_examples.py"}, "inputs": {}, "tool": "prepare_examples.py", "reduce": false}, {"name": "classify_with_llm", "type": "llm", "source": {"type": "code", "path": "classify_with_llm.jinja2"}, "inputs": {"deployment_name": "gpt-35-turbo", "suffix": "", "max_tokens": "128", "temperature": "0.1", "top_p": "1.0", "logprobs": "", "echo": "False", "stop": "", "presence_penalty": "0", "frequency_penalty": "0", "best_of": "1", "logit_bias": "", "url": "${inputs.url}", "examples": "${prepare_examples.output}", "text_content": "${summarize_text_content.output}"}, "tool": "classify_with_llm.jinja2", "reduce": false, "api": "chat", "provider": "AzureOpenAI", "connection": "azure_open_ai_connection", "module": "promptflow.tools.aoai"}, {"name": "convert_to_dict", "type": "python", "source": {"type": "code", "path": "convert_to_dict.py"}, "inputs": {"input_str": "${classify_with_llm.output}"}, "tool": "convert_to_dict.py", "reduce": false}, {"name": "summarize_text_content", "type": "llm", "source": {"type": "code", "path": "summarize_text_content.jinja2"}, "inputs": {"deployment_name": "gpt-35-turbo", "suffix": "", "max_tokens": "128", "temperature": "0.2", "top_p": "1.0", "logprobs": "", "echo": "False", "stop": "", "presence_penalty": "0", "frequency_penalty": "0", "best_of": "1", "logit_bias": "", "text": "${fetch_text_content_from_url.output}"}, "tool": "summarize_text_content.jinja2", "reduce": false, "api": "chat", "provider": "AzureOpenAI", "connection": "azure_open_ai_connection", "module": "promptflow.tools.aoai"}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "classify_with_llm.jinja2", "type": "prompt", "inputs": {"examples": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_content": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "url": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "classify_with_llm.jinja2", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "convert_to_dict.py", "type": "python", "inputs": {"input_str": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "convert_to_dict.py", "function": "convert_to_dict", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "fetch_text_content_from_url.py", "type": "python", "inputs": {"fetch_url": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "fetch_text_content_from_url.py", "function": "fetch_text_content_from_url", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "prepare_examples.py", "type": "python", "source": "prepare_examples.py", "function": "prepare_examples", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "summarize_text_content.jinja2", "type": "prompt", "inputs": {"text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "summarize_text_content.jinja2", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "summarize_text_content__variant_1.jinja2", "type": "prompt", "inputs": {"text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "summarize_text_content__variant_1.jinja2", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"url": {"type": "string", "default": "https://www.microsoft.com/en-us/d/xbox-wireless-controller-stellar-shift-special-edition/94fbjc7h0h6h", "is_chat_input": false}}, "outputs": {"category": {"type": "string", "reference": "${convert_to_dict.output.category}", "evaluation_only": false, "is_chat_output": false}, "evidence": {"type": "string", "reference": "${convert_to_dict.output.evidence}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/batch_run_name/flowRuns/batch_run_name", "flowRunId": "batch_run_name", "flowRunDisplayName": "batch_run_name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"url": "${data.url}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/batch_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "c956855e-d291-4714-a3df-91c99c974de9", "studioPortalEndpoint": "https://ml.azure.com/runs/batch_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '16239' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.471' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "fetch_text_content_from_url", "type": "python", "source": {"type": "code", "path": "fetch_text_content_from_url.py"}, "inputs": {"fetch_url": "${inputs.url}"}, "tool": "fetch_text_content_from_url.py", "reduce": false}, {"name": "prepare_examples", "type": "python", "source": {"type": "code", "path": "prepare_examples.py"}, "inputs": {}, "tool": "prepare_examples.py", "reduce": false}, {"name": "classify_with_llm", "type": "llm", "source": {"type": "code", "path": "classify_with_llm.jinja2"}, "inputs": {"deployment_name": "gpt-35-turbo", "suffix": "", "max_tokens": "128", "temperature": "0.1", "top_p": "1.0", "logprobs": "", "echo": "False", "stop": "", "presence_penalty": "0", "frequency_penalty": "0", "best_of": "1", "logit_bias": "", "url": "${inputs.url}", "examples": "${prepare_examples.output}", "text_content": "${summarize_text_content.output}"}, "tool": "classify_with_llm.jinja2", "reduce": false, "api": "chat", "provider": "AzureOpenAI", "connection": "azure_open_ai_connection", "module": "promptflow.tools.aoai"}, {"name": "convert_to_dict", "type": "python", "source": {"type": "code", "path": "convert_to_dict.py"}, "inputs": {"input_str": "${classify_with_llm.output}"}, "tool": "convert_to_dict.py", "reduce": false}, {"name": "summarize_text_content", "type": "llm", "source": {"type": "code", "path": "summarize_text_content.jinja2"}, "inputs": {"deployment_name": "gpt-35-turbo", "suffix": "", "max_tokens": "128", "temperature": "0.2", "top_p": "1.0", "logprobs": "", "echo": "False", "stop": "", "presence_penalty": "0", "frequency_penalty": "0", "best_of": "1", "logit_bias": "", "text": "${fetch_text_content_from_url.output}"}, "tool": "summarize_text_content.jinja2", "reduce": false, "api": "chat", "provider": "AzureOpenAI", "connection": "azure_open_ai_connection", "module": "promptflow.tools.aoai"}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "classify_with_llm.jinja2", "type": "prompt", "inputs": {"examples": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_content": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "url": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "classify_with_llm.jinja2", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "convert_to_dict.py", "type": "python", "inputs": {"input_str": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "convert_to_dict.py", "function": "convert_to_dict", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "fetch_text_content_from_url.py", "type": "python", "inputs": {"fetch_url": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "fetch_text_content_from_url.py", "function": "fetch_text_content_from_url", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "prepare_examples.py", "type": "python", "source": "prepare_examples.py", "function": "prepare_examples", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "summarize_text_content.jinja2", "type": "prompt", "inputs": {"text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "summarize_text_content.jinja2", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "summarize_text_content__variant_1.jinja2", "type": "prompt", "inputs": {"text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "summarize_text_content__variant_1.jinja2", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"url": {"type": "string", "default": "https://www.microsoft.com/en-us/d/xbox-wireless-controller-stellar-shift-special-edition/94fbjc7h0h6h", "is_chat_input": false}}, "outputs": {"category": {"type": "string", "reference": "${convert_to_dict.output.category}", "evaluation_only": false, "is_chat_output": false}, "evidence": {"type": "string", "reference": "${convert_to_dict.output.evidence}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/batch_run_name/flowRuns/batch_run_name", "flowRunId": "batch_run_name", "flowRunDisplayName": "batch_run_name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"url": "${data.url}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/batch_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "c956855e-d291-4714-a3df-91c99c974de9", "studioPortalEndpoint": "https://ml.azure.com/runs/batch_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '16239' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.374' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "fetch_text_content_from_url", "type": "python", "source": {"type": "code", "path": "fetch_text_content_from_url.py"}, "inputs": {"fetch_url": "${inputs.url}"}, "tool": "fetch_text_content_from_url.py", "reduce": false}, {"name": "prepare_examples", "type": "python", "source": {"type": "code", "path": "prepare_examples.py"}, "inputs": {}, "tool": "prepare_examples.py", "reduce": false}, {"name": "classify_with_llm", "type": "llm", "source": {"type": "code", "path": "classify_with_llm.jinja2"}, "inputs": {"deployment_name": "gpt-35-turbo", "suffix": "", "max_tokens": "128", "temperature": "0.1", "top_p": "1.0", "logprobs": "", "echo": "False", "stop": "", "presence_penalty": "0", "frequency_penalty": "0", "best_of": "1", "logit_bias": "", "url": "${inputs.url}", "examples": "${prepare_examples.output}", "text_content": "${summarize_text_content.output}"}, "tool": "classify_with_llm.jinja2", "reduce": false, "api": "chat", "provider": "AzureOpenAI", "connection": "azure_open_ai_connection", "module": "promptflow.tools.aoai"}, {"name": "convert_to_dict", "type": "python", "source": {"type": "code", "path": "convert_to_dict.py"}, "inputs": {"input_str": "${classify_with_llm.output}"}, "tool": "convert_to_dict.py", "reduce": false}, {"name": "summarize_text_content", "type": "llm", "source": {"type": "code", "path": "summarize_text_content.jinja2"}, "inputs": {"deployment_name": "gpt-35-turbo", "suffix": "", "max_tokens": "128", "temperature": "0.2", "top_p": "1.0", "logprobs": "", "echo": "False", "stop": "", "presence_penalty": "0", "frequency_penalty": "0", "best_of": "1", "logit_bias": "", "text": "${fetch_text_content_from_url.output}"}, "tool": "summarize_text_content.jinja2", "reduce": false, "api": "chat", "provider": "AzureOpenAI", "connection": "azure_open_ai_connection", "module": "promptflow.tools.aoai"}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "classify_with_llm.jinja2", "type": "prompt", "inputs": {"examples": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_content": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "url": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "classify_with_llm.jinja2", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "convert_to_dict.py", "type": "python", "inputs": {"input_str": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "convert_to_dict.py", "function": "convert_to_dict", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "fetch_text_content_from_url.py", "type": "python", "inputs": {"fetch_url": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "fetch_text_content_from_url.py", "function": "fetch_text_content_from_url", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "prepare_examples.py", "type": "python", "source": "prepare_examples.py", "function": "prepare_examples", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "summarize_text_content.jinja2", "type": "prompt", "inputs": {"text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "summarize_text_content.jinja2", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "summarize_text_content__variant_1.jinja2", "type": "prompt", "inputs": {"text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "summarize_text_content__variant_1.jinja2", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"url": {"type": "string", "default": "https://www.microsoft.com/en-us/d/xbox-wireless-controller-stellar-shift-special-edition/94fbjc7h0h6h", "is_chat_input": false}}, "outputs": {"category": {"type": "string", "reference": "${convert_to_dict.output.category}", "evaluation_only": false, "is_chat_output": false}, "evidence": {"type": "string", "reference": "${convert_to_dict.output.evidence}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/batch_run_name/flowRuns/batch_run_name", "flowRunId": "batch_run_name", "flowRunDisplayName": "batch_run_name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"url": "${data.url}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/batch_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "c956855e-d291-4714-a3df-91c99c974de9", "studioPortalEndpoint": "https://ml.azure.com/runs/batch_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '16239' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.458' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.109' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.134' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:19:32 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/eval-classification-accuracy/calculate_accuracy.py response: body: string: '' headers: accept-ranges: - bytes content-length: - '409' content-md5: - OyENtlqGVUTrY5zKuzo8XA== content-type: - application/octet-stream last-modified: - Tue, 21 Nov 2023 08:03:40 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Tue, 21 Nov 2023 08:03:39 GMT x-ms-meta-name: - fd932777-4f3a-4c1d-9c3a-24d45835d7e1 x-ms-meta-upload_status: - completed x-ms-meta-version: - '1' x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:19:33 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/eval-classification-accuracy/calculate_accuracy.py response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: '{"flowDefinitionDataStoreName": "workspaceblobstore", "flowDefinitionBlobPath": "LocalUpload/000000000000000000000000000000000000/eval-classification-accuracy/flow.dag.yaml", "runId": "eval_run_name", "runDisplayName": "eval_run_name", "runExperimentName": "", "variantRunId": "batch_run_name", "batchDataInput": {}, "inputsMapping": {"groundtruth": "${run.inputs.url}", "prediction": "${run.outputs.category}"}, "connections": {}, "environmentVariables": {}, "runtimeName": "fake-runtime-name", "sessionId": "000000000000000000000000000000000000000000000000", "sessionSetupMode": "SystemWait", "flowLineageId": "0000000000000000000000000000000000000000000000000000000000000000", "runDisplayNameGenerationType": "UserProvidedMacro"}' headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '822' Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/submit response: body: string: '"eval_run_name"' headers: connection: - keep-alive content-length: - '38' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload x-content-type-options: - nosniff x-request-time: - '6.239' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/eval_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "grade", "type": "python", "source": {"type": "code", "path": "grade.py"}, "inputs": {"groundtruth": "${inputs.groundtruth}", "prediction": "${inputs.prediction}"}, "tool": "grade.py", "reduce": false}, {"name": "calculate_accuracy", "type": "python", "source": {"type": "code", "path": "calculate_accuracy.py"}, "inputs": {"grades": "${grade.output}"}, "tool": "calculate_accuracy.py", "reduce": true}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "calculate_accuracy.py", "type": "python", "inputs": {"grades": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "calculate_accuracy.py", "function": "calculate_accuracy", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "grade.py", "type": "python", "inputs": {"groundtruth": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "prediction": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "grade.py", "function": "grade", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"groundtruth": {"type": "string", "default": "APP", "description": "Please specify the groundtruth column, which contains the true label to the outputs that your flow produces.", "is_chat_input": false}, "prediction": {"type": "string", "default": "APP", "description": "Please specify the prediction column, which contains the predicted outputs that your flow produces.", "is_chat_input": false}}, "outputs": {"grade": {"type": "string", "reference": "${grade.output}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/eval_run_name/flowRuns/eval_run_name", "flowRunId": "eval_run_name", "flowRunDisplayName": "eval_run_name", "batchDataInput": {}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"groundtruth": "${run.inputs.url}", "prediction": "${run.outputs.category}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/eval_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "07c78456-f714-4df6-9398-0dc36e95ed2c", "studioPortalEndpoint": "https://ml.azure.com/runs/eval_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '13745' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.237' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/eval_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "grade", "type": "python", "source": {"type": "code", "path": "grade.py"}, "inputs": {"groundtruth": "${inputs.groundtruth}", "prediction": "${inputs.prediction}"}, "tool": "grade.py", "reduce": false}, {"name": "calculate_accuracy", "type": "python", "source": {"type": "code", "path": "calculate_accuracy.py"}, "inputs": {"grades": "${grade.output}"}, "tool": "calculate_accuracy.py", "reduce": true}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "calculate_accuracy.py", "type": "python", "inputs": {"grades": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "calculate_accuracy.py", "function": "calculate_accuracy", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "grade.py", "type": "python", "inputs": {"groundtruth": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "prediction": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "grade.py", "function": "grade", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"groundtruth": {"type": "string", "default": "APP", "description": "Please specify the groundtruth column, which contains the true label to the outputs that your flow produces.", "is_chat_input": false}, "prediction": {"type": "string", "default": "APP", "description": "Please specify the prediction column, which contains the predicted outputs that your flow produces.", "is_chat_input": false}}, "outputs": {"grade": {"type": "string", "reference": "${grade.output}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/eval_run_name/flowRuns/eval_run_name", "flowRunId": "eval_run_name", "flowRunDisplayName": "eval_run_name", "batchDataInput": {}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"groundtruth": "${run.inputs.url}", "prediction": "${run.outputs.category}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/eval_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "07c78456-f714-4df6-9398-0dc36e95ed2c", "studioPortalEndpoint": "https://ml.azure.com/runs/eval_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '13745' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.206' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/eval_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "grade", "type": "python", "source": {"type": "code", "path": "grade.py"}, "inputs": {"groundtruth": "${inputs.groundtruth}", "prediction": "${inputs.prediction}"}, "tool": "grade.py", "reduce": false}, {"name": "calculate_accuracy", "type": "python", "source": {"type": "code", "path": "calculate_accuracy.py"}, "inputs": {"grades": "${grade.output}"}, "tool": "calculate_accuracy.py", "reduce": true}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "calculate_accuracy.py", "type": "python", "inputs": {"grades": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "calculate_accuracy.py", "function": "calculate_accuracy", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "grade.py", "type": "python", "inputs": {"groundtruth": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "prediction": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "grade.py", "function": "grade", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"groundtruth": {"type": "string", "default": "APP", "description": "Please specify the groundtruth column, which contains the true label to the outputs that your flow produces.", "is_chat_input": false}, "prediction": {"type": "string", "default": "APP", "description": "Please specify the prediction column, which contains the predicted outputs that your flow produces.", "is_chat_input": false}}, "outputs": {"grade": {"type": "string", "reference": "${grade.output}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/eval_run_name/flowRuns/eval_run_name", "flowRunId": "eval_run_name", "flowRunDisplayName": "eval_run_name", "batchDataInput": {}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"groundtruth": "${run.inputs.url}", "prediction": "${run.outputs.category}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/eval_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "07c78456-f714-4df6-9398-0dc36e95ed2c", "studioPortalEndpoint": "https://ml.azure.com/runs/eval_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '13745' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.333' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/eval_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "grade", "type": "python", "source": {"type": "code", "path": "grade.py"}, "inputs": {"groundtruth": "${inputs.groundtruth}", "prediction": "${inputs.prediction}"}, "tool": "grade.py", "reduce": false}, {"name": "calculate_accuracy", "type": "python", "source": {"type": "code", "path": "calculate_accuracy.py"}, "inputs": {"grades": "${grade.output}"}, "tool": "calculate_accuracy.py", "reduce": true}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "calculate_accuracy.py", "type": "python", "inputs": {"grades": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "calculate_accuracy.py", "function": "calculate_accuracy", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}, {"name": "grade.py", "type": "python", "inputs": {"groundtruth": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "prediction": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "grade.py", "function": "grade", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"groundtruth": {"type": "string", "default": "APP", "description": "Please specify the groundtruth column, which contains the true label to the outputs that your flow produces.", "is_chat_input": false}, "prediction": {"type": "string", "default": "APP", "description": "Please specify the prediction column, which contains the predicted outputs that your flow produces.", "is_chat_input": false}}, "outputs": {"grade": {"type": "string", "reference": "${grade.output}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/eval_run_name/flowRuns/eval_run_name", "flowRunId": "eval_run_name", "flowRunDisplayName": "eval_run_name", "batchDataInput": {}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"groundtruth": "${run.inputs.url}", "prediction": "${run.outputs.category}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/eval_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "07c78456-f714-4df6-9398-0dc36e95ed2c", "studioPortalEndpoint": "https://ml.azure.com/runs/eval_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '13745' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.225' status: code: 200 message: OK - request: body: '{"runId": "batch_run_name", "selectRunMetadata": true, "selectRunDefinition": true, "selectJobSpecification": true}' headers: Accept: - '*/*' Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '137' Content-Type: - application/json User-Agent: - python-requests/2.31.0 method: POST uri: https://eastus.api.azureml.ms/history/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/rundata response: body: string: '{"runMetadata": {"runNumber": 1705047531, "rootRunId": "batch_run_name", "createdUtc": "2024-01-12T08:18:51.407626+00:00", "createdBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587", "upn": null}, "userId": "00000000-0000-0000-0000-000000000000", "token": null, "tokenExpiryTimeUtc": null, "error": null, "warnings": null, "revision": 6, "statusRevision": 3, "runUuid": "9c4b2e54-2cee-4251-bafd-721d0ce00cde", "parentRunUuid": null, "rootRunUuid": "9c4b2e54-2cee-4251-bafd-721d0ce00cde", "lastStartTimeUtc": null, "currentComputeTime": null, "computeDuration": "00:00:06.6774532", "effectiveStartTimeUtc": null, "lastModifiedBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "18a66f5f-dbdf-4c17-9dd7-1634712a9cbe", "upn": null}, "lastModifiedUtc": "2024-01-12T08:19:14.3434706+00:00", "duration": "00:00:06.6774532", "cancelationReason": null, "currentAttemptId": 1, "runId": "batch_run_name", "parentRunId": null, "experimentId": "d30efbeb-f81d-4cfa-b5cc-a0570a049009", "status": "Completed", "startTimeUtc": "2024-01-12T08:19:08.511381+00:00", "endTimeUtc": "2024-01-12T08:19:15.1888342+00:00", "scheduleId": null, "displayName": "batch_run_name", "name": null, "dataContainerId": "dcid.batch_run_name", "description": null, "hidden": false, "runType": "azureml.promptflow.FlowRun", "runTypeV2": {"orchestrator": null, "traits": [], "attribution": "PromptFlow", "computeType": "AmlcDsi"}, "properties": {"azureml.promptflow.runtime_name": "test-runtime-ci", "azureml.promptflow.runtime_version": "20231204.v4", "azureml.promptflow.definition_file_name": "flow.dag.yaml", "azureml.promptflow.session_id": "4dd8f4d5f44dfeb817d3438cf84bd739215d87afd9458597", "azureml.promptflow.flow_lineage_id": "af1a6951de9be2ce13d3b58b23dbd8b6a0cd8fd4918ad9cb22b28fb8395fbcb0", "azureml.promptflow.node_variant": "${summarize_text_content.variant_0}", "azureml.promptflow.flow_definition_datastore_name": "workspaceblobstore", "azureml.promptflow.flow_definition_blob_path": "LocalUpload/a1fa6ef1ead7ff3ce76b36250f6f5461/web_classification/flow.dag.yaml", "azureml.promptflow.input_data": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl", "azureml.promptflow.inputs_mapping": "{\"url\":\"${data.url}\"}", "_azureml.evaluation_run": "promptflow.BatchRun", "azureml.promptflow.snapshot_id": "c956855e-d291-4714-a3df-91c99c974de9", "azureml.promptflow.total_tokens": "2403", "_azureml.evaluate_artifacts": "[{\"path\": \"instance_results.jsonl\", \"type\": \"table\"}]"}, "parameters": {}, "actionUris": {}, "scriptName": null, "target": null, "uniqueChildRunComputeTargets": [], "tags": {}, "settings": {}, "services": {}, "inputDatasets": [], "outputDatasets": [], "runDefinition": null, "jobSpecification": null, "primaryMetricName": null, "createdFrom": null, "cancelUri": null, "completeUri": null, "diagnosticsUri": null, "computeRequest": null, "compute": null, "retainForLifetimeOfWorkspace": false, "queueingInfo": null, "inputs": null, "outputs": {"debug_info": {"assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_batch_run_name_output_data_debug_info/versions/1", "type": "UriFolder"}, "flow_outputs": {"assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_batch_run_name_output_data_flow_outputs/versions/1", "type": "UriFolder"}}}, "runDefinition": null, "jobSpecification": null, "systemSettings": null}' headers: connection: - keep-alive content-length: - '4730' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.046' status: code: 200 message: OK - request: body: '{"runId": "eval_run_name", "selectRunMetadata": true, "selectRunDefinition": true, "selectJobSpecification": true}' headers: Accept: - '*/*' Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '137' Content-Type: - application/json User-Agent: - python-requests/2.31.0 method: POST uri: https://eastus.api.azureml.ms/history/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/rundata response: body: string: '{"runMetadata": {"runNumber": 1705047579, "rootRunId": "eval_run_name", "createdUtc": "2024-01-12T08:19:39.1600906+00:00", "createdBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587", "upn": null}, "userId": "00000000-0000-0000-0000-000000000000", "token": null, "tokenExpiryTimeUtc": null, "error": null, "warnings": null, "revision": 6, "statusRevision": 3, "runUuid": "603a145c-daa6-48f3-bde4-94d59fa20de4", "parentRunUuid": null, "rootRunUuid": "603a145c-daa6-48f3-bde4-94d59fa20de4", "lastStartTimeUtc": null, "currentComputeTime": null, "computeDuration": "00:00:04.9882119", "effectiveStartTimeUtc": null, "lastModifiedBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "18a66f5f-dbdf-4c17-9dd7-1634712a9cbe", "upn": null}, "lastModifiedUtc": "2024-01-12T08:20:00.8511921+00:00", "duration": "00:00:04.9882119", "cancelationReason": null, "currentAttemptId": 1, "runId": "eval_run_name", "parentRunId": null, "experimentId": "7bdec279-f99c-4ed3-b0b8-dd75698b8fd0", "status": "Completed", "startTimeUtc": "2024-01-12T08:19:56.9171272+00:00", "endTimeUtc": "2024-01-12T08:20:01.9053391+00:00", "scheduleId": null, "displayName": "eval_run_name", "name": null, "dataContainerId": "dcid.eval_run_name", "description": null, "hidden": false, "runType": "azureml.promptflow.FlowRun", "runTypeV2": {"orchestrator": null, "traits": [], "attribution": "PromptFlow", "computeType": "AmlcDsi"}, "properties": {"azureml.promptflow.runtime_name": "test-runtime-ci", "azureml.promptflow.runtime_version": "20231204.v4", "azureml.promptflow.definition_file_name": "flow.dag.yaml", "azureml.promptflow.session_id": "f8e4236a4e78e7f7125bbd811ec7976cb330412723a530f8", "azureml.promptflow.flow_lineage_id": "26c575d863a85371ef937096728441d8c68c3e737b5a1bfeae5ac8f3b9ccb048", "azureml.promptflow.flow_definition_datastore_name": "workspaceblobstore", "azureml.promptflow.flow_definition_blob_path": "LocalUpload/1aa3064d06f6170abbc488cc35c713b9/eval-classification-accuracy/flow.dag.yaml", "azureml.promptflow.input_run_id": "batch_run_name", "azureml.promptflow.inputs_mapping": "{\"groundtruth\":\"${run.inputs.url}\",\"prediction\":\"${run.outputs.category}\"}", "_azureml.evaluation_run": "promptflow.BatchRun", "azureml.promptflow.snapshot_id": "07c78456-f714-4df6-9398-0dc36e95ed2c", "azureml.promptflow.total_tokens": "0", "_azureml.evaluate_artifacts": "[{\"path\": \"instance_results.jsonl\", \"type\": \"table\"}]"}, "parameters": {}, "actionUris": {}, "scriptName": null, "target": null, "uniqueChildRunComputeTargets": [], "tags": {}, "settings": {}, "services": {}, "inputDatasets": [], "outputDatasets": [], "runDefinition": null, "jobSpecification": null, "primaryMetricName": null, "createdFrom": null, "cancelUri": null, "completeUri": null, "diagnosticsUri": null, "computeRequest": null, "compute": null, "retainForLifetimeOfWorkspace": false, "queueingInfo": null, "inputs": null, "outputs": {"debug_info": {"assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_eval_run_name_output_data_debug_info/versions/1", "type": "UriFolder"}, "flow_outputs": {"assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_eval_run_name_output_data_flow_outputs/versions/1", "type": "UriFolder"}}}, "runDefinition": null, "jobSpecification": null, "systemSettings": null}' headers: connection: - keep-alive content-length: - '4639' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.040' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name/logContent response: body: string: '"2024-01-12 08:18:56 +0000 134 promptflow-runtime INFO [batch_run_name] Receiving v2 bulk run request 76a57ee3-bb6d-4468-aa09-8cf32cd9cbc9: {\"flow_id\": \"batch_run_name\", \"flow_run_id\": \"batch_run_name\", \"flow_source\": {\"flow_source_type\": 1, \"flow_source_info\": {\"snapshot_id\": \"c956855e-d291-4714-a3df-91c99c974de9\"}, \"flow_dag_file\": \"flow.dag.yaml\"}, \"connections\": \"**data_scrubbed**\", \"log_path\": \"https://promptfloweast4063704120.blob.core.windows.net/azureml/ExperimentRun/dcid.batch_run_name/logs/azureml/executionlogs.txt?sv=2019-07-07&sr=b&sig=**data_scrubbed**&skoid=55b92eba-d7c7-4afd-ab76-7bb1cd345283&sktid=00000000-0000-0000-0000-000000000000&skt=2024-01-12T07%3A46%3A24Z&ske=2024-01-13T15%3A56%3A24Z&sks=b&skv=2019-07-07&st=2024-01-12T08%3A08%3A55Z&se=2024-01-12T16%3A18%3A55Z&sp=rcw\", \"app_insights_instrumentation_key\": \"InstrumentationKey=**data_scrubbed**;IngestionEndpoint=https://eastus-6.in.applicationinsights.azure.com/;LiveEndpoint=https://eastus.livediagnostics.monitor.azure.com/\", \"data_inputs\": {\"data\": \"azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl\"}, \"inputs_mapping\": {\"url\": \"${data.url}\"}, \"azure_storage_setting\": {\"azure_storage_mode\": 1, \"storage_account_name\": \"promptfloweast4063704120\", \"blob_container_name\": \"azureml-blobstore-3e123da1-f9a5-4c91-9234-8d9ffbb39ff5\", \"flow_artifacts_root_path\": \"promptflow/PromptFlowArtifacts/batch_run_name\", \"blob_container_sas_token\": \"?sv=2019-07-07&sr=c&sig=**data_scrubbed**&skoid=55b92eba-d7c7-4afd-ab76-7bb1cd345283&sktid=00000000-0000-0000-0000-000000000000&skt=2024-01-12T08%3A18%3A55Z&ske=2024-01-19T08%3A18%3A55Z&sks=b&skv=2019-07-07&se=2024-01-19T08%3A18%3A55Z&sp=racwl\", \"output_datastore_name\": \"workspaceblobstore\"}}\n2024-01-12 08:18:56 +0000 134 promptflow-runtime INFO Runtime version: 20231204.v4. PromptFlow version: 1.2.0rc1\n2024-01-12 08:18:56 +0000 134 promptflow-runtime INFO Updating batch_run_name to Status.Preparing...\n2024-01-12 08:18:56 +0000 134 promptflow-runtime INFO Downloading snapshot to /mnt/host/service/app/38343/requests/batch_run_name\n2024-01-12 08:18:56 +0000 134 promptflow-runtime INFO Get snapshot sas url for c956855e-d291-4714-a3df-91c99c974de9...\n2024-01-12 08:19:02 +0000 134 promptflow-runtime INFO Downloading snapshot c956855e-d291-4714-a3df-91c99c974de9 from uri https://promptfloweast4063704120.blob.core.windows.net/snapshotzips/promptflow-eastus:3e123da1-f9a5-4c91-9234-8d9ffbb39ff5:snapshotzip/c956855e-d291-4714-a3df-91c99c974de9.zip...\n2024-01-12 08:19:02 +0000 134 promptflow-runtime INFO Downloaded file /mnt/host/service/app/38343/requests/batch_run_name/c956855e-d291-4714-a3df-91c99c974de9.zip with size 5027 for snapshot c956855e-d291-4714-a3df-91c99c974de9.\n2024-01-12 08:19:02 +0000 134 promptflow-runtime INFO Download snapshot c956855e-d291-4714-a3df-91c99c974de9 completed.\n2024-01-12 08:19:02 +0000 134 promptflow-runtime INFO Successfully download snapshot to /mnt/host/service/app/38343/requests/batch_run_name\n2024-01-12 08:19:02 +0000 134 promptflow-runtime INFO About to execute a python flow.\n2024-01-12 08:19:02 +0000 134 promptflow-runtime INFO Use spawn method to start child process.\n2024-01-12 08:19:03 +0000 134 promptflow-runtime INFO Starting to check process 4227 status for run batch_run_name\n2024-01-12 08:19:03 +0000 134 promptflow-runtime INFO Start checking run status for run batch_run_name\n2024-01-12 08:19:06 +0000 4227 promptflow-runtime INFO [134--4227] Start processing flowV2......\n2024-01-12 08:19:07 +0000 4227 promptflow-runtime INFO Runtime version: 20231204.v4. PromptFlow version: 1.2.0rc1\n2024-01-12 08:19:07 +0000 4227 promptflow-runtime INFO Setting mlflow tracking uri...\n2024-01-12 08:19:07 +0000 4227 promptflow-runtime INFO Validating ''AzureML Data Scientist'' user authentication...\n2024-01-12 08:19:07 +0000 4227 promptflow-runtime INFO Successfully validated ''AzureML Data Scientist'' user authentication.\n2024-01-12 08:19:07 +0000 4227 promptflow-runtime INFO Using AzureMLRunStorageV2\n2024-01-12 08:19:07 +0000 4227 promptflow-runtime INFO Setting mlflow tracking uri to ''azureml://eastus.api.azureml.ms/mlflow/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/promptflow-eastus''\n2024-01-12 08:19:07 +0000 4227 promptflow-runtime INFO Initialized blob service client for AzureMLRunTracker.\n2024-01-12 08:19:07 +0000 4227 promptflow-runtime INFO Setting mlflow tracking uri to ''azureml://eastus.api.azureml.ms/mlflow/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/promptflow-eastus''\n2024-01-12 08:19:08 +0000 4227 promptflow-runtime INFO Resolve data from url finished in 0.49149388913065195 seconds\n2024-01-12 08:19:08 +0000 4227 promptflow-runtime INFO Starting the aml run ''batch_run_name''...\n2024-01-12 08:19:08 +0000 4227 execution.bulk INFO Using fork, process count: 3\n2024-01-12 08:19:08 +0000 4270 execution.bulk INFO Process 4270 started.\n2024-01-12 08:19:08 +0000 4274 execution.bulk INFO Process 4274 started.\n2024-01-12 08:19:08 +0000 4279 execution.bulk INFO Process 4279 started.\n2024-01-12 08:19:08 +0000 4227 execution.bulk INFO Process name: ForkProcess-42:3, Process id: 4270, Line number: 0 start execution.\n2024-01-12 08:19:08 +0000 4227 execution.bulk INFO Process name: ForkProcess-42:2, Process id: 4274, Line number: 1 start execution.\n2024-01-12 08:19:08 +0000 4227 execution.bulk INFO Process name: ForkProcess-42:4, Process id: 4279, Line number: 2 start execution.\n2024-01-12 08:19:10 +0000 4227 execution.bulk INFO Process name: ForkProcess-42:2, Process id: 4274, Line number: 1 completed.\n2024-01-12 08:19:10 +0000 4227 execution.bulk INFO Finished 1 / 3 lines.\n2024-01-12 08:19:10 +0000 4227 execution.bulk INFO Average execution time for completed lines: 1.61 seconds. Estimated time for incomplete lines: 3.22 seconds.\n2024-01-12 08:19:10 +0000 4227 execution.bulk INFO Process name: ForkProcess-42:4, Process id: 4279, Line number: 2 completed.\n2024-01-12 08:19:10 +0000 4227 execution.bulk INFO Finished 2 / 3 lines.\n2024-01-12 08:19:10 +0000 4227 execution.bulk INFO Average execution time for completed lines: 0.82 seconds. Estimated time for incomplete lines: 0.82 seconds.\n2024-01-12 08:19:10 +0000 4227 execution.bulk INFO Process name: ForkProcess-42:3, Process id: 4270, Line number: 0 completed.\n2024-01-12 08:19:10 +0000 4227 execution.bulk INFO Finished 3 / 3 lines.\n2024-01-12 08:19:10 +0000 4227 execution.bulk INFO Average execution time for completed lines: 0.62 seconds. Estimated time for incomplete lines: 0.0 seconds.\n2024-01-12 08:19:14 +0000 4227 execution.bulk INFO Upload status summary metrics for run batch_run_name finished in 2.5736593334004283 seconds\n2024-01-12 08:19:14 +0000 4227 promptflow-runtime INFO Successfully write run properties {\"azureml.promptflow.total_tokens\": 2403, \"_azureml.evaluate_artifacts\": \"[{\\\"path\\\": \\\"instance_results.jsonl\\\", \\\"type\\\": \\\"table\\\"}]\"} with run id ''batch_run_name''\n2024-01-12 08:19:14 +0000 4227 execution.bulk INFO Upload RH properties for run batch_run_name finished in 0.06843763962388039 seconds\n2024-01-12 08:19:14 +0000 4227 promptflow-runtime INFO Creating unregistered output Asset for Run batch_run_name...\n2024-01-12 08:19:14 +0000 4227 promptflow-runtime INFO Created debug_info Asset: azureml://locations/eastus/workspaces/00000/data/azureml_batch_run_name_output_data_debug_info/versions/1\n2024-01-12 08:19:14 +0000 4227 promptflow-runtime INFO Creating unregistered output Asset for Run batch_run_name...\n2024-01-12 08:19:14 +0000 4227 promptflow-runtime INFO Created flow_outputs output Asset: azureml://locations/eastus/workspaces/00000/data/azureml_batch_run_name_output_data_flow_outputs/versions/1\n2024-01-12 08:19:14 +0000 4227 promptflow-runtime INFO Creating Artifact for Run batch_run_name...\n2024-01-12 08:19:14 +0000 4227 promptflow-runtime INFO Created instance_results.jsonl Artifact.\n2024-01-12 08:19:14 +0000 4227 promptflow-runtime INFO Patching batch_run_name...\n2024-01-12 08:19:15 +0000 4227 promptflow-runtime INFO Ending the aml run ''batch_run_name'' with status ''Completed''...\n2024-01-12 08:19:16 +0000 134 promptflow-runtime INFO Process 4227 finished\n2024-01-12 08:19:16 +0000 134 promptflow-runtime INFO [134] Child process finished!\n2024-01-12 08:19:16 +0000 134 promptflow-runtime INFO [batch_run_name] End processing bulk run\n2024-01-12 08:19:16 +0000 134 promptflow-runtime INFO Cleanup working dir /mnt/host/service/app/38343/requests/batch_run_name for bulk run\n"' headers: connection: - keep-alive content-length: - '9863' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.695' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/eval_run_name/logContent response: body: string: '"2024-01-12 08:19:43 +0000 134 promptflow-runtime INFO [eval_run_name] Receiving v2 bulk run request 32c97496-d3ae-4e08-a6f2-758a0c6e418f: {\"flow_id\": \"eval_run_name\", \"flow_run_id\": \"eval_run_name\", \"flow_source\": {\"flow_source_type\": 1, \"flow_source_info\": {\"snapshot_id\": \"07c78456-f714-4df6-9398-0dc36e95ed2c\"}, \"flow_dag_file\": \"flow.dag.yaml\"}, \"log_path\": \"https://promptfloweast4063704120.blob.core.windows.net/azureml/ExperimentRun/dcid.eval_run_name/logs/azureml/executionlogs.txt?sv=2019-07-07&sr=b&sig=**data_scrubbed**&skoid=55b92eba-d7c7-4afd-ab76-7bb1cd345283&sktid=00000000-0000-0000-0000-000000000000&skt=2024-01-12T08%3A01%3A10Z&ske=2024-01-13T16%3A11%3A10Z&sks=b&skv=2019-07-07&st=2024-01-12T08%3A09%3A42Z&se=2024-01-12T16%3A19%3A42Z&sp=rcw\", \"app_insights_instrumentation_key\": \"InstrumentationKey=**data_scrubbed**;IngestionEndpoint=https://eastus-6.in.applicationinsights.azure.com/;LiveEndpoint=https://eastus.livediagnostics.monitor.azure.com/\", \"data_inputs\": {\"run.outputs\": \"azureml:/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/data/azureml_batch_run_name_output_data_flow_outputs/versions/1\", \"run.inputs\": \"azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl\"}, \"inputs_mapping\": {\"groundtruth\": \"${run.inputs.url}\", \"prediction\": \"${run.outputs.category}\"}, \"azure_storage_setting\": {\"azure_storage_mode\": 1, \"storage_account_name\": \"promptfloweast4063704120\", \"blob_container_name\": \"azureml-blobstore-3e123da1-f9a5-4c91-9234-8d9ffbb39ff5\", \"flow_artifacts_root_path\": \"promptflow/PromptFlowArtifacts/eval_run_name\", \"blob_container_sas_token\": \"?sv=2019-07-07&sr=c&sig=**data_scrubbed**&skoid=55b92eba-d7c7-4afd-ab76-7bb1cd345283&sktid=00000000-0000-0000-0000-000000000000&skt=2024-01-12T08%3A19%3A43Z&ske=2024-01-19T08%3A19%3A43Z&sks=b&skv=2019-07-07&se=2024-01-19T08%3A19%3A43Z&sp=racwl\", \"output_datastore_name\": \"workspaceblobstore\"}}\n2024-01-12 08:19:43 +0000 134 promptflow-runtime INFO Runtime version: 20231204.v4. PromptFlow version: 1.2.0rc1\n2024-01-12 08:19:43 +0000 134 promptflow-runtime INFO Updating eval_run_name to Status.Preparing...\n2024-01-12 08:19:43 +0000 134 promptflow-runtime INFO Downloading snapshot to /mnt/host/service/app/38343/requests/eval_run_name\n2024-01-12 08:19:43 +0000 134 promptflow-runtime INFO Get snapshot sas url for 07c78456-f714-4df6-9398-0dc36e95ed2c...\n2024-01-12 08:19:50 +0000 134 promptflow-runtime INFO Downloading snapshot 07c78456-f714-4df6-9398-0dc36e95ed2c from uri https://promptfloweast4063704120.blob.core.windows.net/snapshotzips/promptflow-eastus:3e123da1-f9a5-4c91-9234-8d9ffbb39ff5:snapshotzip/07c78456-f714-4df6-9398-0dc36e95ed2c.zip...\n2024-01-12 08:19:50 +0000 134 promptflow-runtime INFO Downloaded file /mnt/host/service/app/38343/requests/eval_run_name/07c78456-f714-4df6-9398-0dc36e95ed2c.zip with size 1243 for snapshot 07c78456-f714-4df6-9398-0dc36e95ed2c.\n2024-01-12 08:19:50 +0000 134 promptflow-runtime INFO Download snapshot 07c78456-f714-4df6-9398-0dc36e95ed2c completed.\n2024-01-12 08:19:50 +0000 134 promptflow-runtime INFO Successfully download snapshot to /mnt/host/service/app/38343/requests/eval_run_name\n2024-01-12 08:19:50 +0000 134 promptflow-runtime INFO About to execute a python flow.\n2024-01-12 08:19:50 +0000 134 promptflow-runtime INFO Use spawn method to start child process.\n2024-01-12 08:19:50 +0000 134 promptflow-runtime INFO Starting to check process 4351 status for run eval_run_name\n2024-01-12 08:19:50 +0000 134 promptflow-runtime INFO Start checking run status for run eval_run_name\n2024-01-12 08:19:54 +0000 4351 promptflow-runtime INFO [134--4351] Start processing flowV2......\n2024-01-12 08:19:54 +0000 4351 promptflow-runtime INFO Runtime version: 20231204.v4. PromptFlow version: 1.2.0rc1\n2024-01-12 08:19:54 +0000 4351 promptflow-runtime INFO Setting mlflow tracking uri...\n2024-01-12 08:19:54 +0000 4351 promptflow-runtime INFO Validating ''AzureML Data Scientist'' user authentication...\n2024-01-12 08:19:55 +0000 4351 promptflow-runtime INFO Successfully validated ''AzureML Data Scientist'' user authentication.\n2024-01-12 08:19:55 +0000 4351 promptflow-runtime INFO Using AzureMLRunStorageV2\n2024-01-12 08:19:55 +0000 4351 promptflow-runtime INFO Setting mlflow tracking uri to ''azureml://eastus.api.azureml.ms/mlflow/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/promptflow-eastus''\n2024-01-12 08:19:55 +0000 4351 promptflow-runtime INFO Initialized blob service client for AzureMLRunTracker.\n2024-01-12 08:19:55 +0000 4351 promptflow-runtime INFO Setting mlflow tracking uri to ''azureml://eastus.api.azureml.ms/mlflow/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/promptflow-eastus''\n2024-01-12 08:19:56 +0000 4351 promptflow-runtime INFO Resolve data from url finished in 0.6869602408260107 seconds\n2024-01-12 08:19:56 +0000 4351 promptflow-runtime INFO Resolve data from url finished in 0.5102318925783038 seconds\n2024-01-12 08:19:56 +0000 4351 promptflow-runtime INFO Starting the aml run ''eval_run_name''...\n2024-01-12 08:19:57 +0000 4351 execution.bulk INFO Using fork, process count: 3\n2024-01-12 08:19:57 +0000 4398 execution.bulk INFO Process 4398 started.\n2024-01-12 08:19:57 +0000 4394 execution.bulk INFO Process 4394 started.\n2024-01-12 08:19:57 +0000 4403 execution.bulk INFO Process 4403 started.\n2024-01-12 08:19:57 +0000 4351 execution.bulk INFO Process name: ForkProcess-44:4, Process id: 4398, Line number: 0 start execution.\n2024-01-12 08:19:57 +0000 4351 execution.bulk INFO Process name: ForkProcess-44:2, Process id: 4394, Line number: 1 start execution.\n2024-01-12 08:19:57 +0000 4351 execution.bulk INFO Process name: ForkProcess-44:3, Process id: 4403, Line number: 2 start execution.\n2024-01-12 08:19:57 +0000 4351 execution.bulk INFO Process name: ForkProcess-44:4, Process id: 4398, Line number: 0 completed.\n2024-01-12 08:19:57 +0000 4351 execution.bulk INFO Finished 1 / 3 lines.\n2024-01-12 08:19:57 +0000 4351 execution.bulk INFO Average execution time for completed lines: 0.24 seconds. Estimated time for incomplete lines: 0.48 seconds.\n2024-01-12 08:19:57 +0000 4351 execution.bulk INFO Process name: ForkProcess-44:3, Process id: 4403, Line number: 2 completed.\n2024-01-12 08:19:57 +0000 4351 execution.bulk INFO Process name: ForkProcess-44:2, Process id: 4394, Line number: 1 completed.\n2024-01-12 08:19:57 +0000 4351 execution.bulk INFO Finished 3 / 3 lines.\n2024-01-12 08:19:57 +0000 4351 execution.bulk INFO Finished 3 / 3 lines.\n2024-01-12 08:19:57 +0000 4351 execution.bulk INFO Average execution time for completed lines: 0.1 seconds. Estimated time for incomplete lines: 0.0 seconds.\n2024-01-12 08:19:57 +0000 4351 execution.bulk INFO Average execution time for completed lines: 0.11 seconds. Estimated time for incomplete lines: 0.0 seconds.\n2024-01-12 08:19:58 +0000 4351 execution.bulk INFO Executing aggregation nodes...\n2024-01-12 08:19:58 +0000 4351 execution.bulk INFO Finish executing aggregation nodes.\n2024-01-12 08:20:00 +0000 4351 execution.bulk INFO Upload status summary metrics for run eval_run_name finished in 1.5121951373293996 seconds\n2024-01-12 08:20:00 +0000 4351 execution.bulk INFO Upload metrics for run eval_run_name finished in 0.3903973773121834 seconds\n2024-01-12 08:20:00 +0000 4351 promptflow-runtime INFO Successfully write run properties {\"azureml.promptflow.total_tokens\": 0, \"_azureml.evaluate_artifacts\": \"[{\\\"path\\\": \\\"instance_results.jsonl\\\", \\\"type\\\": \\\"table\\\"}]\"} with run id ''eval_run_name''\n2024-01-12 08:20:00 +0000 4351 execution.bulk INFO Upload RH properties for run eval_run_name finished in 0.08290723245590925 seconds\n2024-01-12 08:20:00 +0000 4351 promptflow-runtime INFO Creating unregistered output Asset for Run eval_run_name...\n2024-01-12 08:20:01 +0000 4351 promptflow-runtime INFO Created debug_info Asset: azureml://locations/eastus/workspaces/00000/data/azureml_eval_run_name_output_data_debug_info/versions/1\n2024-01-12 08:20:01 +0000 4351 promptflow-runtime INFO Creating unregistered output Asset for Run eval_run_name...\n2024-01-12 08:20:01 +0000 4351 promptflow-runtime INFO Created flow_outputs output Asset: azureml://locations/eastus/workspaces/00000/data/azureml_eval_run_name_output_data_flow_outputs/versions/1\n2024-01-12 08:20:01 +0000 4351 promptflow-runtime INFO Creating Artifact for Run eval_run_name...\n2024-01-12 08:20:01 +0000 4351 promptflow-runtime INFO Created instance_results.jsonl Artifact.\n2024-01-12 08:20:01 +0000 4351 promptflow-runtime INFO Patching eval_run_name...\n2024-01-12 08:20:01 +0000 4351 promptflow-runtime INFO Ending the aml run ''eval_run_name'' with status ''Completed''...\n2024-01-12 08:20:03 +0000 134 promptflow-runtime INFO Process 4351 finished\n2024-01-12 08:20:03 +0000 134 promptflow-runtime INFO [134] Child process finished!\n2024-01-12 08:20:03 +0000 134 promptflow-runtime INFO [eval_run_name] End processing bulk run\n2024-01-12 08:20:03 +0000 134 promptflow-runtime INFO Cleanup working dir /mnt/host/service/app/38343/requests/eval_run_name for bulk run\n"' headers: connection: - keep-alive content-length: - '10628' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.856' status: code: 200 message: OK version: 1
promptflow/src/promptflow/tests/test_configs/recordings/test_run_operations_TestFlowRun_test_basic_evaluation_without_data.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/recordings/test_run_operations_TestFlowRun_test_basic_evaluation_without_data.yaml", "repo_id": "promptflow", "token_count": 85951 }
68
interactions: - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000 response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000", "name": "00000", "type": "Microsoft.MachineLearningServices/workspaces", "location": "eastus", "tags": {}, "etag": null, "kind": "Default", "sku": {"name": "Basic", "tier": "Basic"}, "properties": {"discoveryUrl": "https://eastus.api.azureml.ms/discovery"}}' headers: cache-control: - no-cache content-length: - '3630' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.030' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores?count=30&isDefault=true&orderByAsc=false response: body: string: '{"value": [{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}]}' headers: cache-control: - no-cache content-length: - '1372' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.060' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.067' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.085' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Fri, 19 Jan 2024 08:10:47 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/env_var_names.jsonl response: body: string: '' headers: accept-ranges: - bytes content-length: - '49' content-md5: - quXiEreYvPinSj0HsaNa/g== content-type: - application/octet-stream last-modified: - Wed, 08 Nov 2023 04:26:09 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Wed, 08 Nov 2023 04:26:09 GMT x-ms-meta-name: - c4092674-5e53-4c17-b78d-75353ae0edb6 x-ms-meta-upload_status: - completed x-ms-meta-version: - 579021dc-8ac8-4c73-8110-4642bd00c69b x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Fri, 19 Jan 2024 08:10:50 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/env_var_names.jsonl response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.074' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.122' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Fri, 19 Jan 2024 08:11:02 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/code_with_additional_includes/flow.dag.yaml response: body: string: '' headers: accept-ranges: - bytes content-length: - '300' content-md5: - JM5HFMAvpAmurbiHjn4gTg== content-type: - application/octet-stream last-modified: - Fri, 19 Jan 2024 08:00:00 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Fri, 19 Jan 2024 07:59:59 GMT x-ms-meta-name: - 10fdeb53-9a64-43e0-8211-9f82a8918f9e x-ms-meta-upload_status: - completed x-ms-meta-version: - '1' x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Fri, 19 Jan 2024 08:11:05 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/code_with_additional_includes/flow.dag.yaml response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: '{"flowDefinitionDataStoreName": "workspaceblobstore", "flowDefinitionBlobPath": "LocalUpload/000000000000000000000000000000000000/code_with_additional_includes/flow.dag.yaml", "runId": "name", "runDisplayName": "name", "runExperimentName": "", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/000000000000000000000000000000000000/env_var_names.jsonl"}, "inputsMapping": {}, "connections": {}, "environmentVariables": {}, "runtimeName": "fake-runtime-name", "sessionId": "000000000000000000000000000000000000000000000000", "sessionSetupMode": "SystemWait", "flowLineageId": "0000000000000000000000000000000000000000000000000000000000000000", "runDisplayNameGenerationType": "UserProvidedMacro"}' headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '813' Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.11.5 (Windows-10-10.0.22621-SP0) method: POST uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/submit response: body: string: '"name"' headers: connection: - keep-alive content-length: - '38' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload x-content-type-options: - nosniff x-request-time: - '18.310' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name response: body: string: '{"flowGraph": {"nodes": [{"name": "print_env", "type": "python", "source": {"type": "code", "path": "print_env.py"}, "inputs": {"key": "${inputs.key}"}, "tool": "print_env.py", "reduce": false}], "tools": [{"name": "Azure OpenAI GPT-4 Turbo with Vision", "type": "custom_llm", "inputs": {"connection": {"type": ["AzureOpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": 512, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure OpenAI GPT-4 Turbo with Vision to leverage AOAI vision ability.", "module": "promptflow.tools.aoai_gpt4v", "class_name": "AzureOpenAI", "function": "chat", "icon": {"dark": "", "light": ""}, "is_builtin": true, "package": "promptflow-tools", "package_version": "1.1.0rc2", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "preview"}, {"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "1.1.0rc2", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "1.1.0rc2", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Model LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "default": "", "dynamic_list": {"func_path": "promptflow.tools.open_model_llm.list_deployment_names", "func_kwargs": [{"name": "endpoint", "optional": true, "reference": "${inputs.endpoint}", "type": ["string"]}]}, "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "dynamic_list": {"func_path": "promptflow.tools.open_model_llm.list_endpoint_names"}, "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an open model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_model_llm", "class_name": "OpenModelLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "1.1.0rc2", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": 512, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "icon": {"dark": "", "light": ""}, "is_builtin": true, "package": "promptflow-tools", "package_version": "1.1.0rc2", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "preview"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "1.1.0rc2", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Index Lookup", "type": "python", "inputs": {"acs_content_field": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_acs_index_fields", "func_kwargs": [{"name": "acs_connection", "optional": false, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}, {"name": "acs_index_name", "optional": false, "reference": "${inputs.acs_index_name}", "type": ["string"]}, {"default": "Edm.String", "name": "field_data_type", "optional": false, "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "acs_embedding_field": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_acs_index_fields", "func_kwargs": [{"name": "acs_connection", "optional": false, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}, {"name": "acs_index_name", "optional": false, "reference": "${inputs.acs_index_name}", "type": ["string"]}, {"default": "Collection(Edm.Single)", "name": "field_data_type", "optional": false, "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "acs_index_connection": {"type": ["CognitiveSearchConnection"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "acs_index_name": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_acs_indices", "func_kwargs": [{"name": "acs_connection", "optional": false, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "acs_metadata_field": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_acs_index_fields", "func_kwargs": [{"name": "acs_connection", "optional": false, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}, {"name": "acs_index_name", "optional": false, "reference": "${inputs.acs_index_name}", "type": ["string"]}, {"default": "Edm.String", "name": "field_data_type", "optional": false, "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "aoai_embedding_connection": {"type": ["AzureOpenAIConnection"], "enabled_by": "embedding_type", "enabled_by_value": ["Azure OpenAI"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "embedding_deployment": {"type": ["string"], "enabled_by": "embedding_type", "enabled_by_value": ["Azure OpenAI"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_aoai_embedding_deployments", "func_kwargs": [{"name": "aoai_connection", "optional": false, "reference": "${inputs.aoai_embedding_connection}", "type": ["AzurOpenAIConnection"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "embedding_model": {"type": ["string"], "enabled_by": "embedding_type", "enabled_by_value": ["OpenAI", "Hugging Face"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_embedding_models", "func_kwargs": [{"name": "embedding_type", "optional": false, "reference": "${inputs.embedding_type}", "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "embedding_type": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search", "FAISS", "Pinecone"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_available_embedding_types", "func_kwargs": [{"name": "index_type", "optional": false, "reference": "${inputs.index_type}", "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "faiss_index_path": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["FAISS"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "index_type": {"type": ["string"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_available_index_types"}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "mlindex_asset_id": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Registered Index"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_registered_mlindices"}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "mlindex_content": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "generated_by": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.forward_mapping", "func_kwargs": [{"name": "index_type", "reference": "${inputs.index_type}", "type": ["string"]}, {"name": "mlindex_asset_id", "optional": true, "reference": "${inputs.mlindex_asset_id}", "type": ["string"]}, {"name": "mlindex_path", "optional": true, "reference": "${inputs.mlindex_path}", "type": ["string"]}, {"name": "acs_index_connection", "optional": true, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}, {"name": "acs_index_name", "optional": true, "reference": "${inputs.acs_index_name}", "type": ["string"]}, {"name": "acs_content_field", "optional": true, "reference": "${inputs.acs_content_field}", "type": ["string"]}, {"name": "acs_embedding_field", "optional": true, "reference": "${inputs.acs_embedding_field}", "type": ["string"]}, {"name": "acs_metadata_field", "optional": true, "reference": "${inputs.acs_metadata_field}", "type": ["string"]}, {"name": "semantic_configuration", "optional": true, "reference": "${inputs.semantic_configuration}", "type": ["string"]}, {"name": "faiss_index_path", "optional": true, "reference": "${inputs.faiss_index_path}", "type": ["string"]}, {"name": "pinecone_index_connection", "optional": true, "reference": "${inputs.pinecone_index_connection}", "type": ["string"]}, {"name": "pinecone_index_name", "optional": true, "reference": "${inputs.pinecone_index_name}", "type": ["string"]}, {"name": "pinecone_content_field", "optional": true, "reference": "${inputs.pinecone_content_field}", "type": ["string"]}, {"name": "pinecone_metadata_field", "optional": true, "reference": "${inputs.pinecone_metadata_field}", "type": ["string"]}, {"name": "embedding_type", "optional": true, "reference": "${inputs.embedding_type}", "type": ["string"]}, {"name": "aoai_embedding_connection", "optional": true, "reference": "${inputs.aoai_embedding_connection}", "type": ["AzureOpenAIConnection"]}, {"name": "oai_embedding_connection", "optional": true, "reference": "${inputs.oai_embedding_connection}", "type": ["string"]}, {"name": "embedding_model", "optional": true, "reference": "${inputs.embedding_model}", "type": ["string"]}, {"name": "embedding_deployment", "optional": true, "reference": "${inputs.embedding_deployment}", "type": ["string"]}], "reverse_func_path": "promptflow_vectordb.tool.common_index_lookup_utils.reverse_mapping"}, "input_type": "default"}, "mlindex_path": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["MLIndex file from path"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "oai_embedding_connection": {"type": ["OpenAIConnection"], "enabled_by": "embedding_type", "enabled_by_value": ["OpenAI"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "pinecone_content_field": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Pinecone"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "pinecone_index_connection": {"type": ["PineconeConnection"], "enabled_by": "index_type", "enabled_by_value": ["Pinecone"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_pinecone_connections"}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "pinecone_index_name": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Pinecone"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_pinecone_indices", "func_kwargs": [{"name": "pinecone_connection_name", "optional": false, "reference": "${inputs.pinecone_index_connection}", "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "pinecone_metadata_field": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Pinecone"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "queries": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query_type": {"type": ["string"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_available_query_types", "func_kwargs": [{"name": "mlindex_content", "optional": false, "reference": "${inputs.mlindex_content}", "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "semantic_configuration": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_acs_index_semantic_configurations", "func_kwargs": [{"name": "acs_connection", "optional": false, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}, {"name": "acs_index_name", "optional": false, "reference": "${inputs.acs_index_name}", "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "top_k": {"type": ["int"], "default": 3, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search an AzureML Vector Index for relevant results using one or more text queries.", "module": "promptflow_vectordb.tool.common_index_lookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "preview"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "print_env.py", "type": "python", "inputs": {"key": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "print_env.py", "function": "get_env_var", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"key": {"type": "string", "is_chat_input": false}}, "outputs": {"output": {"type": "string", "reference": "${print_env.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/name/flowRuns/name", "flowRunId": "name", "flowRunDisplayName": "name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/c32a61842e439cecc022ebcff5dc0da4/env_var_names.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "automatic", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "f70ec21e-2e5f-4f8a-8877-19d060899638", "studioPortalEndpoint": "https://ml.azure.com/runs/name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '26127' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '1.474' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name response: body: string: '{"flowGraph": {"nodes": [{"name": "print_env", "type": "python", "source": {"type": "code", "path": "print_env.py"}, "inputs": {"key": "${inputs.key}"}, "tool": "print_env.py", "reduce": false}], "tools": [{"name": "Azure OpenAI GPT-4 Turbo with Vision", "type": "custom_llm", "inputs": {"connection": {"type": ["AzureOpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": 512, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure OpenAI GPT-4 Turbo with Vision to leverage AOAI vision ability.", "module": "promptflow.tools.aoai_gpt4v", "class_name": "AzureOpenAI", "function": "chat", "icon": {"dark": "", "light": ""}, "is_builtin": true, "package": "promptflow-tools", "package_version": "1.1.0rc2", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "preview"}, {"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "1.1.0rc2", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "1.1.0rc2", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Model LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "default": "", "dynamic_list": {"func_path": "promptflow.tools.open_model_llm.list_deployment_names", "func_kwargs": [{"name": "endpoint", "optional": true, "reference": "${inputs.endpoint}", "type": ["string"]}]}, "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "dynamic_list": {"func_path": "promptflow.tools.open_model_llm.list_endpoint_names"}, "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an open model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_model_llm", "class_name": "OpenModelLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "1.1.0rc2", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": 512, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "icon": {"dark": "", "light": ""}, "is_builtin": true, "package": "promptflow-tools", "package_version": "1.1.0rc2", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "preview"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "1.1.0rc2", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Index Lookup", "type": "python", "inputs": {"acs_content_field": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_acs_index_fields", "func_kwargs": [{"name": "acs_connection", "optional": false, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}, {"name": "acs_index_name", "optional": false, "reference": "${inputs.acs_index_name}", "type": ["string"]}, {"default": "Edm.String", "name": "field_data_type", "optional": false, "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "acs_embedding_field": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_acs_index_fields", "func_kwargs": [{"name": "acs_connection", "optional": false, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}, {"name": "acs_index_name", "optional": false, "reference": "${inputs.acs_index_name}", "type": ["string"]}, {"default": "Collection(Edm.Single)", "name": "field_data_type", "optional": false, "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "acs_index_connection": {"type": ["CognitiveSearchConnection"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "acs_index_name": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_acs_indices", "func_kwargs": [{"name": "acs_connection", "optional": false, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "acs_metadata_field": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_acs_index_fields", "func_kwargs": [{"name": "acs_connection", "optional": false, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}, {"name": "acs_index_name", "optional": false, "reference": "${inputs.acs_index_name}", "type": ["string"]}, {"default": "Edm.String", "name": "field_data_type", "optional": false, "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "aoai_embedding_connection": {"type": ["AzureOpenAIConnection"], "enabled_by": "embedding_type", "enabled_by_value": ["Azure OpenAI"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "embedding_deployment": {"type": ["string"], "enabled_by": "embedding_type", "enabled_by_value": ["Azure OpenAI"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_aoai_embedding_deployments", "func_kwargs": [{"name": "aoai_connection", "optional": false, "reference": "${inputs.aoai_embedding_connection}", "type": ["AzurOpenAIConnection"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "embedding_model": {"type": ["string"], "enabled_by": "embedding_type", "enabled_by_value": ["OpenAI", "Hugging Face"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_embedding_models", "func_kwargs": [{"name": "embedding_type", "optional": false, "reference": "${inputs.embedding_type}", "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "embedding_type": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search", "FAISS", "Pinecone"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_available_embedding_types", "func_kwargs": [{"name": "index_type", "optional": false, "reference": "${inputs.index_type}", "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "faiss_index_path": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["FAISS"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "index_type": {"type": ["string"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_available_index_types"}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "mlindex_asset_id": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Registered Index"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_registered_mlindices"}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "mlindex_content": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "generated_by": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.forward_mapping", "func_kwargs": [{"name": "index_type", "reference": "${inputs.index_type}", "type": ["string"]}, {"name": "mlindex_asset_id", "optional": true, "reference": "${inputs.mlindex_asset_id}", "type": ["string"]}, {"name": "mlindex_path", "optional": true, "reference": "${inputs.mlindex_path}", "type": ["string"]}, {"name": "acs_index_connection", "optional": true, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}, {"name": "acs_index_name", "optional": true, "reference": "${inputs.acs_index_name}", "type": ["string"]}, {"name": "acs_content_field", "optional": true, "reference": "${inputs.acs_content_field}", "type": ["string"]}, {"name": "acs_embedding_field", "optional": true, "reference": "${inputs.acs_embedding_field}", "type": ["string"]}, {"name": "acs_metadata_field", "optional": true, "reference": "${inputs.acs_metadata_field}", "type": ["string"]}, {"name": "semantic_configuration", "optional": true, "reference": "${inputs.semantic_configuration}", "type": ["string"]}, {"name": "faiss_index_path", "optional": true, "reference": "${inputs.faiss_index_path}", "type": ["string"]}, {"name": "pinecone_index_connection", "optional": true, "reference": "${inputs.pinecone_index_connection}", "type": ["string"]}, {"name": "pinecone_index_name", "optional": true, "reference": "${inputs.pinecone_index_name}", "type": ["string"]}, {"name": "pinecone_content_field", "optional": true, "reference": "${inputs.pinecone_content_field}", "type": ["string"]}, {"name": "pinecone_metadata_field", "optional": true, "reference": "${inputs.pinecone_metadata_field}", "type": ["string"]}, {"name": "embedding_type", "optional": true, "reference": "${inputs.embedding_type}", "type": ["string"]}, {"name": "aoai_embedding_connection", "optional": true, "reference": "${inputs.aoai_embedding_connection}", "type": ["AzureOpenAIConnection"]}, {"name": "oai_embedding_connection", "optional": true, "reference": "${inputs.oai_embedding_connection}", "type": ["string"]}, {"name": "embedding_model", "optional": true, "reference": "${inputs.embedding_model}", "type": ["string"]}, {"name": "embedding_deployment", "optional": true, "reference": "${inputs.embedding_deployment}", "type": ["string"]}], "reverse_func_path": "promptflow_vectordb.tool.common_index_lookup_utils.reverse_mapping"}, "input_type": "default"}, "mlindex_path": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["MLIndex file from path"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "oai_embedding_connection": {"type": ["OpenAIConnection"], "enabled_by": "embedding_type", "enabled_by_value": ["OpenAI"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "pinecone_content_field": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Pinecone"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "pinecone_index_connection": {"type": ["PineconeConnection"], "enabled_by": "index_type", "enabled_by_value": ["Pinecone"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_pinecone_connections"}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "pinecone_index_name": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Pinecone"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_pinecone_indices", "func_kwargs": [{"name": "pinecone_connection_name", "optional": false, "reference": "${inputs.pinecone_index_connection}", "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "pinecone_metadata_field": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Pinecone"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "queries": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query_type": {"type": ["string"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_available_query_types", "func_kwargs": [{"name": "mlindex_content", "optional": false, "reference": "${inputs.mlindex_content}", "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "semantic_configuration": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_acs_index_semantic_configurations", "func_kwargs": [{"name": "acs_connection", "optional": false, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}, {"name": "acs_index_name", "optional": false, "reference": "${inputs.acs_index_name}", "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "top_k": {"type": ["int"], "default": 3, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search an AzureML Vector Index for relevant results using one or more text queries.", "module": "promptflow_vectordb.tool.common_index_lookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "preview"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "print_env.py", "type": "python", "inputs": {"key": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "print_env.py", "function": "get_env_var", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"key": {"type": "string", "is_chat_input": false}}, "outputs": {"output": {"type": "string", "reference": "${print_env.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/name/flowRuns/name", "flowRunId": "name", "flowRunDisplayName": "name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/c32a61842e439cecc022ebcff5dc0da4/env_var_names.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "automatic", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "f70ec21e-2e5f-4f8a-8877-19d060899638", "studioPortalEndpoint": "https://ml.azure.com/runs/name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '26127' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.426' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name response: body: string: '{"flowGraph": {"nodes": [{"name": "print_env", "type": "python", "source": {"type": "code", "path": "print_env.py"}, "inputs": {"key": "${inputs.key}"}, "tool": "print_env.py", "reduce": false}], "tools": [{"name": "Azure OpenAI GPT-4 Turbo with Vision", "type": "custom_llm", "inputs": {"connection": {"type": ["AzureOpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": 512, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure OpenAI GPT-4 Turbo with Vision to leverage AOAI vision ability.", "module": "promptflow.tools.aoai_gpt4v", "class_name": "AzureOpenAI", "function": "chat", "icon": {"dark": "", "light": ""}, "is_builtin": true, "package": "promptflow-tools", "package_version": "1.1.0rc2", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "preview"}, {"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "1.1.0rc2", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "1.1.0rc2", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Model LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "default": "", "dynamic_list": {"func_path": "promptflow.tools.open_model_llm.list_deployment_names", "func_kwargs": [{"name": "endpoint", "optional": true, "reference": "${inputs.endpoint}", "type": ["string"]}]}, "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "dynamic_list": {"func_path": "promptflow.tools.open_model_llm.list_endpoint_names"}, "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an open model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_model_llm", "class_name": "OpenModelLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "1.1.0rc2", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": 512, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "icon": {"dark": "", "light": ""}, "is_builtin": true, "package": "promptflow-tools", "package_version": "1.1.0rc2", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "preview"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "1.1.0rc2", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Index Lookup", "type": "python", "inputs": {"acs_content_field": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_acs_index_fields", "func_kwargs": [{"name": "acs_connection", "optional": false, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}, {"name": "acs_index_name", "optional": false, "reference": "${inputs.acs_index_name}", "type": ["string"]}, {"default": "Edm.String", "name": "field_data_type", "optional": false, "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "acs_embedding_field": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_acs_index_fields", "func_kwargs": [{"name": "acs_connection", "optional": false, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}, {"name": "acs_index_name", "optional": false, "reference": "${inputs.acs_index_name}", "type": ["string"]}, {"default": "Collection(Edm.Single)", "name": "field_data_type", "optional": false, "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "acs_index_connection": {"type": ["CognitiveSearchConnection"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "acs_index_name": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_acs_indices", "func_kwargs": [{"name": "acs_connection", "optional": false, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "acs_metadata_field": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_acs_index_fields", "func_kwargs": [{"name": "acs_connection", "optional": false, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}, {"name": "acs_index_name", "optional": false, "reference": "${inputs.acs_index_name}", "type": ["string"]}, {"default": "Edm.String", "name": "field_data_type", "optional": false, "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "aoai_embedding_connection": {"type": ["AzureOpenAIConnection"], "enabled_by": "embedding_type", "enabled_by_value": ["Azure OpenAI"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "embedding_deployment": {"type": ["string"], "enabled_by": "embedding_type", "enabled_by_value": ["Azure OpenAI"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_aoai_embedding_deployments", "func_kwargs": [{"name": "aoai_connection", "optional": false, "reference": "${inputs.aoai_embedding_connection}", "type": ["AzurOpenAIConnection"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "embedding_model": {"type": ["string"], "enabled_by": "embedding_type", "enabled_by_value": ["OpenAI", "Hugging Face"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_embedding_models", "func_kwargs": [{"name": "embedding_type", "optional": false, "reference": "${inputs.embedding_type}", "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "embedding_type": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search", "FAISS", "Pinecone"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_available_embedding_types", "func_kwargs": [{"name": "index_type", "optional": false, "reference": "${inputs.index_type}", "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "faiss_index_path": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["FAISS"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "index_type": {"type": ["string"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_available_index_types"}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "mlindex_asset_id": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Registered Index"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_registered_mlindices"}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "mlindex_content": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "generated_by": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.forward_mapping", "func_kwargs": [{"name": "index_type", "reference": "${inputs.index_type}", "type": ["string"]}, {"name": "mlindex_asset_id", "optional": true, "reference": "${inputs.mlindex_asset_id}", "type": ["string"]}, {"name": "mlindex_path", "optional": true, "reference": "${inputs.mlindex_path}", "type": ["string"]}, {"name": "acs_index_connection", "optional": true, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}, {"name": "acs_index_name", "optional": true, "reference": "${inputs.acs_index_name}", "type": ["string"]}, {"name": "acs_content_field", "optional": true, "reference": "${inputs.acs_content_field}", "type": ["string"]}, {"name": "acs_embedding_field", "optional": true, "reference": "${inputs.acs_embedding_field}", "type": ["string"]}, {"name": "acs_metadata_field", "optional": true, "reference": "${inputs.acs_metadata_field}", "type": ["string"]}, {"name": "semantic_configuration", "optional": true, "reference": "${inputs.semantic_configuration}", "type": ["string"]}, {"name": "faiss_index_path", "optional": true, "reference": "${inputs.faiss_index_path}", "type": ["string"]}, {"name": "pinecone_index_connection", "optional": true, "reference": "${inputs.pinecone_index_connection}", "type": ["string"]}, {"name": "pinecone_index_name", "optional": true, "reference": "${inputs.pinecone_index_name}", "type": ["string"]}, {"name": "pinecone_content_field", "optional": true, "reference": "${inputs.pinecone_content_field}", "type": ["string"]}, {"name": "pinecone_metadata_field", "optional": true, "reference": "${inputs.pinecone_metadata_field}", "type": ["string"]}, {"name": "embedding_type", "optional": true, "reference": "${inputs.embedding_type}", "type": ["string"]}, {"name": "aoai_embedding_connection", "optional": true, "reference": "${inputs.aoai_embedding_connection}", "type": ["AzureOpenAIConnection"]}, {"name": "oai_embedding_connection", "optional": true, "reference": "${inputs.oai_embedding_connection}", "type": ["string"]}, {"name": "embedding_model", "optional": true, "reference": "${inputs.embedding_model}", "type": ["string"]}, {"name": "embedding_deployment", "optional": true, "reference": "${inputs.embedding_deployment}", "type": ["string"]}], "reverse_func_path": "promptflow_vectordb.tool.common_index_lookup_utils.reverse_mapping"}, "input_type": "default"}, "mlindex_path": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["MLIndex file from path"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "oai_embedding_connection": {"type": ["OpenAIConnection"], "enabled_by": "embedding_type", "enabled_by_value": ["OpenAI"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "pinecone_content_field": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Pinecone"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "pinecone_index_connection": {"type": ["PineconeConnection"], "enabled_by": "index_type", "enabled_by_value": ["Pinecone"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_pinecone_connections"}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "pinecone_index_name": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Pinecone"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_pinecone_indices", "func_kwargs": [{"name": "pinecone_connection_name", "optional": false, "reference": "${inputs.pinecone_index_connection}", "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "pinecone_metadata_field": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Pinecone"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "queries": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query_type": {"type": ["string"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_available_query_types", "func_kwargs": [{"name": "mlindex_content", "optional": false, "reference": "${inputs.mlindex_content}", "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "semantic_configuration": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_acs_index_semantic_configurations", "func_kwargs": [{"name": "acs_connection", "optional": false, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}, {"name": "acs_index_name", "optional": false, "reference": "${inputs.acs_index_name}", "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "top_k": {"type": ["int"], "default": 3, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search an AzureML Vector Index for relevant results using one or more text queries.", "module": "promptflow_vectordb.tool.common_index_lookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "preview"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "print_env.py", "type": "python", "inputs": {"key": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "print_env.py", "function": "get_env_var", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"key": {"type": "string", "is_chat_input": false}}, "outputs": {"output": {"type": "string", "reference": "${print_env.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/name/flowRuns/name", "flowRunId": "name", "flowRunDisplayName": "name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/c32a61842e439cecc022ebcff5dc0da4/env_var_names.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "automatic", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "f70ec21e-2e5f-4f8a-8877-19d060899638", "studioPortalEndpoint": "https://ml.azure.com/runs/name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '26127' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.361' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name response: body: string: '{"flowGraph": {"nodes": [{"name": "print_env", "type": "python", "source": {"type": "code", "path": "print_env.py"}, "inputs": {"key": "${inputs.key}"}, "tool": "print_env.py", "reduce": false}], "tools": [{"name": "Azure OpenAI GPT-4 Turbo with Vision", "type": "custom_llm", "inputs": {"connection": {"type": ["AzureOpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": 512, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure OpenAI GPT-4 Turbo with Vision to leverage AOAI vision ability.", "module": "promptflow.tools.aoai_gpt4v", "class_name": "AzureOpenAI", "function": "chat", "icon": {"dark": "", "light": ""}, "is_builtin": true, "package": "promptflow-tools", "package_version": "1.1.0rc2", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "preview"}, {"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "1.1.0rc2", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "1.1.0rc2", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Model LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "default": "", "dynamic_list": {"func_path": "promptflow.tools.open_model_llm.list_deployment_names", "func_kwargs": [{"name": "endpoint", "optional": true, "reference": "${inputs.endpoint}", "type": ["string"]}]}, "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "dynamic_list": {"func_path": "promptflow.tools.open_model_llm.list_endpoint_names"}, "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an open model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_model_llm", "class_name": "OpenModelLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "1.1.0rc2", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": 512, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "icon": {"dark": "", "light": ""}, "is_builtin": true, "package": "promptflow-tools", "package_version": "1.1.0rc2", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "preview"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "1.1.0rc2", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Index Lookup", "type": "python", "inputs": {"acs_content_field": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_acs_index_fields", "func_kwargs": [{"name": "acs_connection", "optional": false, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}, {"name": "acs_index_name", "optional": false, "reference": "${inputs.acs_index_name}", "type": ["string"]}, {"default": "Edm.String", "name": "field_data_type", "optional": false, "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "acs_embedding_field": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_acs_index_fields", "func_kwargs": [{"name": "acs_connection", "optional": false, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}, {"name": "acs_index_name", "optional": false, "reference": "${inputs.acs_index_name}", "type": ["string"]}, {"default": "Collection(Edm.Single)", "name": "field_data_type", "optional": false, "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "acs_index_connection": {"type": ["CognitiveSearchConnection"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "acs_index_name": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_acs_indices", "func_kwargs": [{"name": "acs_connection", "optional": false, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "acs_metadata_field": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_acs_index_fields", "func_kwargs": [{"name": "acs_connection", "optional": false, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}, {"name": "acs_index_name", "optional": false, "reference": "${inputs.acs_index_name}", "type": ["string"]}, {"default": "Edm.String", "name": "field_data_type", "optional": false, "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "aoai_embedding_connection": {"type": ["AzureOpenAIConnection"], "enabled_by": "embedding_type", "enabled_by_value": ["Azure OpenAI"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "embedding_deployment": {"type": ["string"], "enabled_by": "embedding_type", "enabled_by_value": ["Azure OpenAI"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_aoai_embedding_deployments", "func_kwargs": [{"name": "aoai_connection", "optional": false, "reference": "${inputs.aoai_embedding_connection}", "type": ["AzurOpenAIConnection"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "embedding_model": {"type": ["string"], "enabled_by": "embedding_type", "enabled_by_value": ["OpenAI", "Hugging Face"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_embedding_models", "func_kwargs": [{"name": "embedding_type", "optional": false, "reference": "${inputs.embedding_type}", "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "embedding_type": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search", "FAISS", "Pinecone"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_available_embedding_types", "func_kwargs": [{"name": "index_type", "optional": false, "reference": "${inputs.index_type}", "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "faiss_index_path": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["FAISS"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "index_type": {"type": ["string"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_available_index_types"}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "mlindex_asset_id": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Registered Index"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_registered_mlindices"}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "mlindex_content": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "generated_by": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.forward_mapping", "func_kwargs": [{"name": "index_type", "reference": "${inputs.index_type}", "type": ["string"]}, {"name": "mlindex_asset_id", "optional": true, "reference": "${inputs.mlindex_asset_id}", "type": ["string"]}, {"name": "mlindex_path", "optional": true, "reference": "${inputs.mlindex_path}", "type": ["string"]}, {"name": "acs_index_connection", "optional": true, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}, {"name": "acs_index_name", "optional": true, "reference": "${inputs.acs_index_name}", "type": ["string"]}, {"name": "acs_content_field", "optional": true, "reference": "${inputs.acs_content_field}", "type": ["string"]}, {"name": "acs_embedding_field", "optional": true, "reference": "${inputs.acs_embedding_field}", "type": ["string"]}, {"name": "acs_metadata_field", "optional": true, "reference": "${inputs.acs_metadata_field}", "type": ["string"]}, {"name": "semantic_configuration", "optional": true, "reference": "${inputs.semantic_configuration}", "type": ["string"]}, {"name": "faiss_index_path", "optional": true, "reference": "${inputs.faiss_index_path}", "type": ["string"]}, {"name": "pinecone_index_connection", "optional": true, "reference": "${inputs.pinecone_index_connection}", "type": ["string"]}, {"name": "pinecone_index_name", "optional": true, "reference": "${inputs.pinecone_index_name}", "type": ["string"]}, {"name": "pinecone_content_field", "optional": true, "reference": "${inputs.pinecone_content_field}", "type": ["string"]}, {"name": "pinecone_metadata_field", "optional": true, "reference": "${inputs.pinecone_metadata_field}", "type": ["string"]}, {"name": "embedding_type", "optional": true, "reference": "${inputs.embedding_type}", "type": ["string"]}, {"name": "aoai_embedding_connection", "optional": true, "reference": "${inputs.aoai_embedding_connection}", "type": ["AzureOpenAIConnection"]}, {"name": "oai_embedding_connection", "optional": true, "reference": "${inputs.oai_embedding_connection}", "type": ["string"]}, {"name": "embedding_model", "optional": true, "reference": "${inputs.embedding_model}", "type": ["string"]}, {"name": "embedding_deployment", "optional": true, "reference": "${inputs.embedding_deployment}", "type": ["string"]}], "reverse_func_path": "promptflow_vectordb.tool.common_index_lookup_utils.reverse_mapping"}, "input_type": "default"}, "mlindex_path": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["MLIndex file from path"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "oai_embedding_connection": {"type": ["OpenAIConnection"], "enabled_by": "embedding_type", "enabled_by_value": ["OpenAI"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "pinecone_content_field": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Pinecone"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "pinecone_index_connection": {"type": ["PineconeConnection"], "enabled_by": "index_type", "enabled_by_value": ["Pinecone"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_pinecone_connections"}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "pinecone_index_name": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Pinecone"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_pinecone_indices", "func_kwargs": [{"name": "pinecone_connection_name", "optional": false, "reference": "${inputs.pinecone_index_connection}", "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "pinecone_metadata_field": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Pinecone"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "queries": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query_type": {"type": ["string"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_available_query_types", "func_kwargs": [{"name": "mlindex_content", "optional": false, "reference": "${inputs.mlindex_content}", "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "semantic_configuration": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_acs_index_semantic_configurations", "func_kwargs": [{"name": "acs_connection", "optional": false, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}, {"name": "acs_index_name", "optional": false, "reference": "${inputs.acs_index_name}", "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "top_k": {"type": ["int"], "default": 3, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search an AzureML Vector Index for relevant results using one or more text queries.", "module": "promptflow_vectordb.tool.common_index_lookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "preview"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "print_env.py", "type": "python", "inputs": {"key": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "print_env.py", "function": "get_env_var", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"key": {"type": "string", "is_chat_input": false}}, "outputs": {"output": {"type": "string", "reference": "${print_env.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/name/flowRuns/name", "flowRunId": "name", "flowRunDisplayName": "name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/c32a61842e439cecc022ebcff5dc0da4/env_var_names.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "automatic", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "f70ec21e-2e5f-4f8a-8877-19d060899638", "studioPortalEndpoint": "https://ml.azure.com/runs/name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '26127' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '1.342' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name response: body: string: '{"flowGraph": {"nodes": [{"name": "print_env", "type": "python", "source": {"type": "code", "path": "print_env.py"}, "inputs": {"key": "${inputs.key}"}, "tool": "print_env.py", "reduce": false}], "tools": [{"name": "Azure OpenAI GPT-4 Turbo with Vision", "type": "custom_llm", "inputs": {"connection": {"type": ["AzureOpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": 512, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure OpenAI GPT-4 Turbo with Vision to leverage AOAI vision ability.", "module": "promptflow.tools.aoai_gpt4v", "class_name": "AzureOpenAI", "function": "chat", "icon": {"dark": "", "light": ""}, "is_builtin": true, "package": "promptflow-tools", "package_version": "1.1.0rc2", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "preview"}, {"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "1.1.0rc2", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "1.1.0rc2", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Model LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "default": "", "dynamic_list": {"func_path": "promptflow.tools.open_model_llm.list_deployment_names", "func_kwargs": [{"name": "endpoint", "optional": true, "reference": "${inputs.endpoint}", "type": ["string"]}]}, "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "dynamic_list": {"func_path": "promptflow.tools.open_model_llm.list_endpoint_names"}, "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an open model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_model_llm", "class_name": "OpenModelLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "1.1.0rc2", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": 512, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "icon": {"dark": "", "light": ""}, "is_builtin": true, "package": "promptflow-tools", "package_version": "1.1.0rc2", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "preview"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "1.1.0rc2", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Index Lookup", "type": "python", "inputs": {"acs_content_field": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_acs_index_fields", "func_kwargs": [{"name": "acs_connection", "optional": false, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}, {"name": "acs_index_name", "optional": false, "reference": "${inputs.acs_index_name}", "type": ["string"]}, {"default": "Edm.String", "name": "field_data_type", "optional": false, "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "acs_embedding_field": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_acs_index_fields", "func_kwargs": [{"name": "acs_connection", "optional": false, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}, {"name": "acs_index_name", "optional": false, "reference": "${inputs.acs_index_name}", "type": ["string"]}, {"default": "Collection(Edm.Single)", "name": "field_data_type", "optional": false, "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "acs_index_connection": {"type": ["CognitiveSearchConnection"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "acs_index_name": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_acs_indices", "func_kwargs": [{"name": "acs_connection", "optional": false, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "acs_metadata_field": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_acs_index_fields", "func_kwargs": [{"name": "acs_connection", "optional": false, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}, {"name": "acs_index_name", "optional": false, "reference": "${inputs.acs_index_name}", "type": ["string"]}, {"default": "Edm.String", "name": "field_data_type", "optional": false, "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "aoai_embedding_connection": {"type": ["AzureOpenAIConnection"], "enabled_by": "embedding_type", "enabled_by_value": ["Azure OpenAI"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "embedding_deployment": {"type": ["string"], "enabled_by": "embedding_type", "enabled_by_value": ["Azure OpenAI"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_aoai_embedding_deployments", "func_kwargs": [{"name": "aoai_connection", "optional": false, "reference": "${inputs.aoai_embedding_connection}", "type": ["AzurOpenAIConnection"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "embedding_model": {"type": ["string"], "enabled_by": "embedding_type", "enabled_by_value": ["OpenAI", "Hugging Face"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_embedding_models", "func_kwargs": [{"name": "embedding_type", "optional": false, "reference": "${inputs.embedding_type}", "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "embedding_type": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search", "FAISS", "Pinecone"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_available_embedding_types", "func_kwargs": [{"name": "index_type", "optional": false, "reference": "${inputs.index_type}", "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "faiss_index_path": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["FAISS"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "index_type": {"type": ["string"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_available_index_types"}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "mlindex_asset_id": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Registered Index"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_registered_mlindices"}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "mlindex_content": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "generated_by": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.forward_mapping", "func_kwargs": [{"name": "index_type", "reference": "${inputs.index_type}", "type": ["string"]}, {"name": "mlindex_asset_id", "optional": true, "reference": "${inputs.mlindex_asset_id}", "type": ["string"]}, {"name": "mlindex_path", "optional": true, "reference": "${inputs.mlindex_path}", "type": ["string"]}, {"name": "acs_index_connection", "optional": true, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}, {"name": "acs_index_name", "optional": true, "reference": "${inputs.acs_index_name}", "type": ["string"]}, {"name": "acs_content_field", "optional": true, "reference": "${inputs.acs_content_field}", "type": ["string"]}, {"name": "acs_embedding_field", "optional": true, "reference": "${inputs.acs_embedding_field}", "type": ["string"]}, {"name": "acs_metadata_field", "optional": true, "reference": "${inputs.acs_metadata_field}", "type": ["string"]}, {"name": "semantic_configuration", "optional": true, "reference": "${inputs.semantic_configuration}", "type": ["string"]}, {"name": "faiss_index_path", "optional": true, "reference": "${inputs.faiss_index_path}", "type": ["string"]}, {"name": "pinecone_index_connection", "optional": true, "reference": "${inputs.pinecone_index_connection}", "type": ["string"]}, {"name": "pinecone_index_name", "optional": true, "reference": "${inputs.pinecone_index_name}", "type": ["string"]}, {"name": "pinecone_content_field", "optional": true, "reference": "${inputs.pinecone_content_field}", "type": ["string"]}, {"name": "pinecone_metadata_field", "optional": true, "reference": "${inputs.pinecone_metadata_field}", "type": ["string"]}, {"name": "embedding_type", "optional": true, "reference": "${inputs.embedding_type}", "type": ["string"]}, {"name": "aoai_embedding_connection", "optional": true, "reference": "${inputs.aoai_embedding_connection}", "type": ["AzureOpenAIConnection"]}, {"name": "oai_embedding_connection", "optional": true, "reference": "${inputs.oai_embedding_connection}", "type": ["string"]}, {"name": "embedding_model", "optional": true, "reference": "${inputs.embedding_model}", "type": ["string"]}, {"name": "embedding_deployment", "optional": true, "reference": "${inputs.embedding_deployment}", "type": ["string"]}], "reverse_func_path": "promptflow_vectordb.tool.common_index_lookup_utils.reverse_mapping"}, "input_type": "default"}, "mlindex_path": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["MLIndex file from path"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "oai_embedding_connection": {"type": ["OpenAIConnection"], "enabled_by": "embedding_type", "enabled_by_value": ["OpenAI"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "pinecone_content_field": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Pinecone"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "pinecone_index_connection": {"type": ["PineconeConnection"], "enabled_by": "index_type", "enabled_by_value": ["Pinecone"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_pinecone_connections"}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "pinecone_index_name": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Pinecone"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_pinecone_indices", "func_kwargs": [{"name": "pinecone_connection_name", "optional": false, "reference": "${inputs.pinecone_index_connection}", "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "pinecone_metadata_field": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Pinecone"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "queries": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query_type": {"type": ["string"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_available_query_types", "func_kwargs": [{"name": "mlindex_content", "optional": false, "reference": "${inputs.mlindex_content}", "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "semantic_configuration": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_acs_index_semantic_configurations", "func_kwargs": [{"name": "acs_connection", "optional": false, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}, {"name": "acs_index_name", "optional": false, "reference": "${inputs.acs_index_name}", "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "top_k": {"type": ["int"], "default": 3, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search an AzureML Vector Index for relevant results using one or more text queries.", "module": "promptflow_vectordb.tool.common_index_lookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "preview"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "print_env.py", "type": "python", "inputs": {"key": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "print_env.py", "function": "get_env_var", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"key": {"type": "string", "is_chat_input": false}}, "outputs": {"output": {"type": "string", "reference": "${print_env.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/name/flowRuns/name", "flowRunId": "name", "flowRunDisplayName": "name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/c32a61842e439cecc022ebcff5dc0da4/env_var_names.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "automatic", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "f70ec21e-2e5f-4f8a-8877-19d060899638", "studioPortalEndpoint": "https://ml.azure.com/runs/name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '26127' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.299' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name response: body: string: '{"flowGraph": {"nodes": [{"name": "print_env", "type": "python", "source": {"type": "code", "path": "print_env.py"}, "inputs": {"key": "${inputs.key}"}, "tool": "print_env.py", "reduce": false}], "tools": [{"name": "Azure OpenAI GPT-4 Turbo with Vision", "type": "custom_llm", "inputs": {"connection": {"type": ["AzureOpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": 512, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure OpenAI GPT-4 Turbo with Vision to leverage AOAI vision ability.", "module": "promptflow.tools.aoai_gpt4v", "class_name": "AzureOpenAI", "function": "chat", "icon": {"dark": "", "light": ""}, "is_builtin": true, "package": "promptflow-tools", "package_version": "1.1.0rc2", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "preview"}, {"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "1.1.0rc2", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "1.1.0rc2", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Model LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "default": "", "dynamic_list": {"func_path": "promptflow.tools.open_model_llm.list_deployment_names", "func_kwargs": [{"name": "endpoint", "optional": true, "reference": "${inputs.endpoint}", "type": ["string"]}]}, "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "dynamic_list": {"func_path": "promptflow.tools.open_model_llm.list_endpoint_names"}, "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an open model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_model_llm", "class_name": "OpenModelLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "1.1.0rc2", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": 512, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "icon": {"dark": "", "light": ""}, "is_builtin": true, "package": "promptflow-tools", "package_version": "1.1.0rc2", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "preview"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "1.1.0rc2", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Index Lookup", "type": "python", "inputs": {"acs_content_field": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_acs_index_fields", "func_kwargs": [{"name": "acs_connection", "optional": false, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}, {"name": "acs_index_name", "optional": false, "reference": "${inputs.acs_index_name}", "type": ["string"]}, {"default": "Edm.String", "name": "field_data_type", "optional": false, "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "acs_embedding_field": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_acs_index_fields", "func_kwargs": [{"name": "acs_connection", "optional": false, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}, {"name": "acs_index_name", "optional": false, "reference": "${inputs.acs_index_name}", "type": ["string"]}, {"default": "Collection(Edm.Single)", "name": "field_data_type", "optional": false, "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "acs_index_connection": {"type": ["CognitiveSearchConnection"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "acs_index_name": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_acs_indices", "func_kwargs": [{"name": "acs_connection", "optional": false, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "acs_metadata_field": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_acs_index_fields", "func_kwargs": [{"name": "acs_connection", "optional": false, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}, {"name": "acs_index_name", "optional": false, "reference": "${inputs.acs_index_name}", "type": ["string"]}, {"default": "Edm.String", "name": "field_data_type", "optional": false, "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "aoai_embedding_connection": {"type": ["AzureOpenAIConnection"], "enabled_by": "embedding_type", "enabled_by_value": ["Azure OpenAI"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "embedding_deployment": {"type": ["string"], "enabled_by": "embedding_type", "enabled_by_value": ["Azure OpenAI"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_aoai_embedding_deployments", "func_kwargs": [{"name": "aoai_connection", "optional": false, "reference": "${inputs.aoai_embedding_connection}", "type": ["AzurOpenAIConnection"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "embedding_model": {"type": ["string"], "enabled_by": "embedding_type", "enabled_by_value": ["OpenAI", "Hugging Face"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_embedding_models", "func_kwargs": [{"name": "embedding_type", "optional": false, "reference": "${inputs.embedding_type}", "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "embedding_type": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search", "FAISS", "Pinecone"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_available_embedding_types", "func_kwargs": [{"name": "index_type", "optional": false, "reference": "${inputs.index_type}", "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "faiss_index_path": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["FAISS"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "index_type": {"type": ["string"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_available_index_types"}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "mlindex_asset_id": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Registered Index"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_registered_mlindices"}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "mlindex_content": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "generated_by": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.forward_mapping", "func_kwargs": [{"name": "index_type", "reference": "${inputs.index_type}", "type": ["string"]}, {"name": "mlindex_asset_id", "optional": true, "reference": "${inputs.mlindex_asset_id}", "type": ["string"]}, {"name": "mlindex_path", "optional": true, "reference": "${inputs.mlindex_path}", "type": ["string"]}, {"name": "acs_index_connection", "optional": true, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}, {"name": "acs_index_name", "optional": true, "reference": "${inputs.acs_index_name}", "type": ["string"]}, {"name": "acs_content_field", "optional": true, "reference": "${inputs.acs_content_field}", "type": ["string"]}, {"name": "acs_embedding_field", "optional": true, "reference": "${inputs.acs_embedding_field}", "type": ["string"]}, {"name": "acs_metadata_field", "optional": true, "reference": "${inputs.acs_metadata_field}", "type": ["string"]}, {"name": "semantic_configuration", "optional": true, "reference": "${inputs.semantic_configuration}", "type": ["string"]}, {"name": "faiss_index_path", "optional": true, "reference": "${inputs.faiss_index_path}", "type": ["string"]}, {"name": "pinecone_index_connection", "optional": true, "reference": "${inputs.pinecone_index_connection}", "type": ["string"]}, {"name": "pinecone_index_name", "optional": true, "reference": "${inputs.pinecone_index_name}", "type": ["string"]}, {"name": "pinecone_content_field", "optional": true, "reference": "${inputs.pinecone_content_field}", "type": ["string"]}, {"name": "pinecone_metadata_field", "optional": true, "reference": "${inputs.pinecone_metadata_field}", "type": ["string"]}, {"name": "embedding_type", "optional": true, "reference": "${inputs.embedding_type}", "type": ["string"]}, {"name": "aoai_embedding_connection", "optional": true, "reference": "${inputs.aoai_embedding_connection}", "type": ["AzureOpenAIConnection"]}, {"name": "oai_embedding_connection", "optional": true, "reference": "${inputs.oai_embedding_connection}", "type": ["string"]}, {"name": "embedding_model", "optional": true, "reference": "${inputs.embedding_model}", "type": ["string"]}, {"name": "embedding_deployment", "optional": true, "reference": "${inputs.embedding_deployment}", "type": ["string"]}], "reverse_func_path": "promptflow_vectordb.tool.common_index_lookup_utils.reverse_mapping"}, "input_type": "default"}, "mlindex_path": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["MLIndex file from path"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "oai_embedding_connection": {"type": ["OpenAIConnection"], "enabled_by": "embedding_type", "enabled_by_value": ["OpenAI"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "pinecone_content_field": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Pinecone"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "pinecone_index_connection": {"type": ["PineconeConnection"], "enabled_by": "index_type", "enabled_by_value": ["Pinecone"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_pinecone_connections"}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "pinecone_index_name": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Pinecone"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_pinecone_indices", "func_kwargs": [{"name": "pinecone_connection_name", "optional": false, "reference": "${inputs.pinecone_index_connection}", "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "pinecone_metadata_field": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Pinecone"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "queries": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query_type": {"type": ["string"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_available_query_types", "func_kwargs": [{"name": "mlindex_content", "optional": false, "reference": "${inputs.mlindex_content}", "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "semantic_configuration": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_acs_index_semantic_configurations", "func_kwargs": [{"name": "acs_connection", "optional": false, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}, {"name": "acs_index_name", "optional": false, "reference": "${inputs.acs_index_name}", "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "top_k": {"type": ["int"], "default": 3, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search an AzureML Vector Index for relevant results using one or more text queries.", "module": "promptflow_vectordb.tool.common_index_lookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "preview"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "print_env.py", "type": "python", "inputs": {"key": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "print_env.py", "function": "get_env_var", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"key": {"type": "string", "is_chat_input": false}}, "outputs": {"output": {"type": "string", "reference": "${print_env.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/name/flowRuns/name", "flowRunId": "name", "flowRunDisplayName": "name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/c32a61842e439cecc022ebcff5dc0da4/env_var_names.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "automatic", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "f70ec21e-2e5f-4f8a-8877-19d060899638", "studioPortalEndpoint": "https://ml.azure.com/runs/name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '26127' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '1.342' status: code: 200 message: OK - request: body: '{}' headers: Accept: - '*/*' Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '2' Content-Type: - application/json User-Agent: - python-requests/2.31.0 method: POST uri: https://eastus.api.azureml.ms/metric/v2.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/runs/name/lastvalues response: body: string: '{"value": [{"dataContainerId": "dcid.name", "name": "__pf__.nodes.print_env.completed", "columns": {"__pf__.nodes.print_env.completed": "Double"}, "properties": {"uxMetricType": "azureml.v1.scalar", "dataLocation": null}, "namespace": null, "standardSchemaId": null, "value": [{"metricId": "01092792-6bd6-45aa-868a-973271205a28", "createdUtc": "2024-01-19T08:11:45.231+00:00", "step": 0, "data": {"__pf__.nodes.print_env.completed": 1.0}}]}, {"dataContainerId": "dcid.name", "name": "__pf__.lines.completed", "columns": {"__pf__.lines.completed": "Double"}, "properties": {"uxMetricType": "azureml.v1.scalar", "dataLocation": null}, "namespace": null, "standardSchemaId": null, "value": [{"metricId": "6dc08009-42ee-4619-90ab-9a43b1b5912b", "createdUtc": "2024-01-19T08:11:45.607+00:00", "step": 0, "data": {"__pf__.lines.completed": 1.0}}]}, {"dataContainerId": "dcid.name", "name": "__pf__.lines.failed", "columns": {"__pf__.lines.failed": "Double"}, "properties": {"uxMetricType": "azureml.v1.scalar", "dataLocation": null}, "namespace": null, "standardSchemaId": null, "value": [{"metricId": "4339576f-f2a2-4246-aca2-e899080b64c4", "createdUtc": "2024-01-19T08:11:46.017+00:00", "step": 0, "data": {"__pf__.lines.failed": 0.0}}]}]}' headers: connection: - keep-alive content-length: - '1885' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.060' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name response: body: string: '{"flowGraph": {"nodes": [{"name": "print_env", "type": "python", "source": {"type": "code", "path": "print_env.py"}, "inputs": {"key": "${inputs.key}"}, "tool": "print_env.py", "reduce": false}], "tools": [{"name": "Azure OpenAI GPT-4 Turbo with Vision", "type": "custom_llm", "inputs": {"connection": {"type": ["AzureOpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": 512, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure OpenAI GPT-4 Turbo with Vision to leverage AOAI vision ability.", "module": "promptflow.tools.aoai_gpt4v", "class_name": "AzureOpenAI", "function": "chat", "icon": {"dark": "", "light": ""}, "is_builtin": true, "package": "promptflow-tools", "package_version": "1.1.0rc2", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "preview"}, {"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "1.1.0rc2", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "1.1.0rc2", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Model LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "default": "", "dynamic_list": {"func_path": "promptflow.tools.open_model_llm.list_deployment_names", "func_kwargs": [{"name": "endpoint", "optional": true, "reference": "${inputs.endpoint}", "type": ["string"]}]}, "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "dynamic_list": {"func_path": "promptflow.tools.open_model_llm.list_endpoint_names"}, "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an open model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_model_llm", "class_name": "OpenModelLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "1.1.0rc2", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": 512, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "icon": {"dark": "", "light": ""}, "is_builtin": true, "package": "promptflow-tools", "package_version": "1.1.0rc2", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "preview"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "1.1.0rc2", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Index Lookup", "type": "python", "inputs": {"acs_content_field": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_acs_index_fields", "func_kwargs": [{"name": "acs_connection", "optional": false, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}, {"name": "acs_index_name", "optional": false, "reference": "${inputs.acs_index_name}", "type": ["string"]}, {"default": "Edm.String", "name": "field_data_type", "optional": false, "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "acs_embedding_field": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_acs_index_fields", "func_kwargs": [{"name": "acs_connection", "optional": false, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}, {"name": "acs_index_name", "optional": false, "reference": "${inputs.acs_index_name}", "type": ["string"]}, {"default": "Collection(Edm.Single)", "name": "field_data_type", "optional": false, "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "acs_index_connection": {"type": ["CognitiveSearchConnection"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "acs_index_name": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_acs_indices", "func_kwargs": [{"name": "acs_connection", "optional": false, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "acs_metadata_field": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_acs_index_fields", "func_kwargs": [{"name": "acs_connection", "optional": false, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}, {"name": "acs_index_name", "optional": false, "reference": "${inputs.acs_index_name}", "type": ["string"]}, {"default": "Edm.String", "name": "field_data_type", "optional": false, "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "aoai_embedding_connection": {"type": ["AzureOpenAIConnection"], "enabled_by": "embedding_type", "enabled_by_value": ["Azure OpenAI"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "embedding_deployment": {"type": ["string"], "enabled_by": "embedding_type", "enabled_by_value": ["Azure OpenAI"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_aoai_embedding_deployments", "func_kwargs": [{"name": "aoai_connection", "optional": false, "reference": "${inputs.aoai_embedding_connection}", "type": ["AzurOpenAIConnection"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "embedding_model": {"type": ["string"], "enabled_by": "embedding_type", "enabled_by_value": ["OpenAI", "Hugging Face"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_embedding_models", "func_kwargs": [{"name": "embedding_type", "optional": false, "reference": "${inputs.embedding_type}", "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "embedding_type": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search", "FAISS", "Pinecone"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_available_embedding_types", "func_kwargs": [{"name": "index_type", "optional": false, "reference": "${inputs.index_type}", "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "faiss_index_path": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["FAISS"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "index_type": {"type": ["string"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_available_index_types"}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "mlindex_asset_id": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Registered Index"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_registered_mlindices"}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "mlindex_content": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "generated_by": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.forward_mapping", "func_kwargs": [{"name": "index_type", "reference": "${inputs.index_type}", "type": ["string"]}, {"name": "mlindex_asset_id", "optional": true, "reference": "${inputs.mlindex_asset_id}", "type": ["string"]}, {"name": "mlindex_path", "optional": true, "reference": "${inputs.mlindex_path}", "type": ["string"]}, {"name": "acs_index_connection", "optional": true, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}, {"name": "acs_index_name", "optional": true, "reference": "${inputs.acs_index_name}", "type": ["string"]}, {"name": "acs_content_field", "optional": true, "reference": "${inputs.acs_content_field}", "type": ["string"]}, {"name": "acs_embedding_field", "optional": true, "reference": "${inputs.acs_embedding_field}", "type": ["string"]}, {"name": "acs_metadata_field", "optional": true, "reference": "${inputs.acs_metadata_field}", "type": ["string"]}, {"name": "semantic_configuration", "optional": true, "reference": "${inputs.semantic_configuration}", "type": ["string"]}, {"name": "faiss_index_path", "optional": true, "reference": "${inputs.faiss_index_path}", "type": ["string"]}, {"name": "pinecone_index_connection", "optional": true, "reference": "${inputs.pinecone_index_connection}", "type": ["string"]}, {"name": "pinecone_index_name", "optional": true, "reference": "${inputs.pinecone_index_name}", "type": ["string"]}, {"name": "pinecone_content_field", "optional": true, "reference": "${inputs.pinecone_content_field}", "type": ["string"]}, {"name": "pinecone_metadata_field", "optional": true, "reference": "${inputs.pinecone_metadata_field}", "type": ["string"]}, {"name": "embedding_type", "optional": true, "reference": "${inputs.embedding_type}", "type": ["string"]}, {"name": "aoai_embedding_connection", "optional": true, "reference": "${inputs.aoai_embedding_connection}", "type": ["AzureOpenAIConnection"]}, {"name": "oai_embedding_connection", "optional": true, "reference": "${inputs.oai_embedding_connection}", "type": ["string"]}, {"name": "embedding_model", "optional": true, "reference": "${inputs.embedding_model}", "type": ["string"]}, {"name": "embedding_deployment", "optional": true, "reference": "${inputs.embedding_deployment}", "type": ["string"]}], "reverse_func_path": "promptflow_vectordb.tool.common_index_lookup_utils.reverse_mapping"}, "input_type": "default"}, "mlindex_path": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["MLIndex file from path"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "oai_embedding_connection": {"type": ["OpenAIConnection"], "enabled_by": "embedding_type", "enabled_by_value": ["OpenAI"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "pinecone_content_field": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Pinecone"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "pinecone_index_connection": {"type": ["PineconeConnection"], "enabled_by": "index_type", "enabled_by_value": ["Pinecone"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_pinecone_connections"}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "pinecone_index_name": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Pinecone"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_pinecone_indices", "func_kwargs": [{"name": "pinecone_connection_name", "optional": false, "reference": "${inputs.pinecone_index_connection}", "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "pinecone_metadata_field": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Pinecone"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "queries": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query_type": {"type": ["string"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_available_query_types", "func_kwargs": [{"name": "mlindex_content", "optional": false, "reference": "${inputs.mlindex_content}", "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "semantic_configuration": {"type": ["string"], "enabled_by": "index_type", "enabled_by_value": ["Azure AI Search"], "dynamic_list": {"func_path": "promptflow_vectordb.tool.common_index_lookup_utils.list_acs_index_semantic_configurations", "func_kwargs": [{"name": "acs_connection", "optional": false, "reference": "${inputs.acs_index_connection}", "type": ["CognitiveSearchConnection"]}, {"name": "acs_index_name", "optional": false, "reference": "${inputs.acs_index_name}", "type": ["string"]}]}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "uionly_hidden"}, "top_k": {"type": ["int"], "default": 3, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search an AzureML Vector Index for relevant results using one or more text queries.", "module": "promptflow_vectordb.tool.common_index_lookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "preview"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "print_env.py", "type": "python", "inputs": {"key": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "print_env.py", "function": "get_env_var", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"key": {"type": "string", "is_chat_input": false}}, "outputs": {"output": {"type": "string", "reference": "${print_env.output.value}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/name/flowRuns/name", "flowRunId": "name", "flowRunDisplayName": "name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/c32a61842e439cecc022ebcff5dc0da4/env_var_names.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "automatic", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "f70ec21e-2e5f-4f8a-8877-19d060899638", "studioPortalEndpoint": "https://ml.azure.com/runs/name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '26127' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.365' status: code: 200 message: OK - request: body: '{"value": "azureml://locations/eastus/workspaces/00000/data/azureml_name_output_data_debug_info/versions/1"}' headers: accept: - '*/*' accept-encoding: - gzip, deflate connection: - keep-alive content-length: - '171' content-type: - application/json host: - eastus.api.azureml.ms user-agent: - python-httpx/0.26.0 method: POST uri: https://eastus.api.azureml.ms/data/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/dataversion/getByAssetId response: content: '{"dataVersion": {"assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_name_output_data_debug_info/versions/1", "dataContainerName": "azureml_name_output_data_debug_info", "dataType": "UriFolder", "dataUri": "azureml://subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/workspaces/00000/datastores/workspaceblobstore/paths/promptflow/PromptFlowArtifacts/name/", "versionId": "1", "mutableProps": {"dataExpiryTime": null, "description": null, "tags": null, "isArchived": false, "stage": "Logged", "autoDeleteSetting": null}, "referencedDataUris": null, "properties": null, "initialAssetId": "azureml://locations/eastus/workspaces/00000/data/azureml_name_output_data_debug_info/versions/1", "isRegistered": false, "runId": "name", "originAssetId": null}, "entityMetadata": {"etag": "\"2f00b525-0000-0100-0000-65aa2ecc0000\"", "createdTime": "2024-01-19T08:11:56.5286266+00:00", "modifiedTime": "2024-01-19T08:11:56.5367895+00:00", "createdBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": "100320005227D154", "userIdp": null, "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "Han Wang", "upn": "[email protected]"}, "modifiedBy": null}, "legacyDatasetId": "04ab4f78-3116-4f3f-b6f5-dd98f4d14ff8", "isV2": true, "legacyDatasetType": null, "legacyDataflowType": null, "legacyDataflow": null, "legacySavedDatasetId": null, "putAssetLROResponseDto": null}' headers: connection: - keep-alive content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.039' http_version: HTTP/1.1 status_code: 200 - request: body: '{"snapshotOrAssetId": "f70ec21e-2e5f-4f8a-8877-19d060899638"}' headers: accept: - '*/*' accept-encoding: - gzip, deflate connection: - keep-alive content-length: - '61' content-type: - application/json host: - eastus.api.azureml.ms user-agent: - python-httpx/0.26.0 method: POST uri: https://eastus.api.azureml.ms/content/v2.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/snapshots/sas response: content: '{"name": "", "hash": null, "type": "Directory", "timestamp": "0001-01-01T00:00:00+00:00", "sasUrl": null, "absoluteUrl": null, "sizeBytes": 0, "sizeSet": false, "children": {"flow.dag.yaml": {"name": "flow.dag.yaml", "hash": "24CE4714C02FA409AEADB8878E7E204E", "type": "File", "timestamp": "0001-01-01T00:00:00+00:00", "sasUrl": "https://promptfloweast4063704120.blob.core.windows.net/azureml-blobstore-3e123da1-f9a5-4c91-9234-8d9ffbb39ff5/runs/name/flow.dag.yaml?sv=2019-07-07&sr=b&sig=IrX0ZM%2FdLL%2BgZS75bUdarEhFwZYtQ8Etksmtrw%2FQpi0%3D&st=2024-01-19T08%3A03%3A36Z&se=2024-01-19T16%3A13%3A36Z&sp=r&rscd=filename%3Dflow.dag.yaml", "absoluteUrl": "https://promptfloweast4063704120.blob.core.windows.net/azureml-blobstore-3e123da1-f9a5-4c91-9234-8d9ffbb39ff5/runs/name/flow.dag.yaml", "sizeBytes": 300, "sizeSet": true, "children": {}}, "print_env.py": {"name": "print_env.py", "hash": "B668E4950699A7A20D8129DC61D34581", "type": "File", "timestamp": "0001-01-01T00:00:00+00:00", "sasUrl": "https://promptfloweast4063704120.blob.core.windows.net/azureml-blobstore-3e123da1-f9a5-4c91-9234-8d9ffbb39ff5/runs/name/print_env.py?sv=2019-07-07&sr=b&sig=tGiNZjTCTMAQ%2BLE3YSC%2F4NemP0qBbNI9Alyc7JPoztw%3D&st=2024-01-19T08%3A03%3A36Z&se=2024-01-19T16%3A13%3A36Z&sp=r&rscd=filename%3Dprint_env.py", "absoluteUrl": "https://promptfloweast4063704120.blob.core.windows.net/azureml-blobstore-3e123da1-f9a5-4c91-9234-8d9ffbb39ff5/runs/name/print_env.py", "sizeBytes": 248, "sizeSet": true, "children": {}}, "requirements": {"name": "requirements", "hash": "2C39BC19B761AC36DC046245D1D47FE6", "type": "File", "timestamp": "0001-01-01T00:00:00+00:00", "sasUrl": "https://promptfloweast4063704120.blob.core.windows.net/azureml-blobstore-3e123da1-f9a5-4c91-9234-8d9ffbb39ff5/runs/name/requirements?sv=2019-07-07&sr=b&sig=FKorDxRbWkYZkpIH2%2Bbh%2FjFXW5wb62Re4sMqlEl5F%2B4%3D&st=2024-01-19T08%3A03%3A36Z&se=2024-01-19T16%3A13%3A36Z&sp=r&rscd=filename%3Drequirements", "absoluteUrl": "https://promptfloweast4063704120.blob.core.windows.net/azureml-blobstore-3e123da1-f9a5-4c91-9234-8d9ffbb39ff5/runs/name/requirements", "sizeBytes": 10, "sizeSet": true, "children": {}}}}' headers: connection: - keep-alive content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.048' http_version: HTTP/1.1 status_code: 200 - request: body: null headers: Accept: - application/xml User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Fri, 19 Jan 2024 08:13:40 GMT x-ms-range: - bytes=0-33554431 x-ms-version: - '2023-11-03' method: GET uri: https://fake_account_name.blob.core.windows.net/fake-container-name/runs/name/flow.dag.yaml response: body: string: "inputs:\r\n key:\r\n type: string\r\noutputs:\r\n output:\r\n \ type: string\r\n reference: ${print_env.output.value}\r\nnodes:\r\n- name: print_env\r\n type: python\r\n source:\r\n type: code\r\n path: print_env.py\r\n inputs:\r\n key: ${inputs.key}\r\nenvironment:\r\n python_requirements_txt: requirements\r\n" headers: accept-ranges: - bytes content-length: - '300' content-range: - bytes 0-299/300 content-type: - application/octet-stream last-modified: - Fri, 19 Jan 2024 08:11:29 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-content-md5: - JM5HFMAvpAmurbiHjn4gTg== x-ms-blob-type: - BlockBlob x-ms-copy-completion-time: - Fri, 19 Jan 2024 08:11:29 GMT x-ms-copy-id: - 7c4d31aa-4ce9-45c1-83da-0aa076508ac7 x-ms-copy-progress: - 300/300 x-ms-copy-source: - https://promptfloweast4063704120.blob.core.windows.net/azureml-blobstore-3e123da1-f9a5-4c91-9234-8d9ffbb39ff5/LocalUpload/74854f49405e7ffcddc484d043cf0ef3/code_with_additional_includes/flow.dag.yaml x-ms-copy-status: - success x-ms-creation-time: - Fri, 19 Jan 2024 08:11:29 GMT x-ms-meta-name: - 10fdeb53-9a64-43e0-8211-9f82a8918f9e x-ms-meta-upload_status: - completed x-ms-meta-version: - '1' x-ms-version: - '2023-11-03' status: code: 206 message: Partial Content - request: body: null headers: Accept: - application/xml User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Fri, 19 Jan 2024 08:13:40 GMT x-ms-range: - bytes=0-33554431 x-ms-version: - '2023-11-03' method: GET uri: https://fake_account_name.blob.core.windows.net/fake-container-name/runs/name/requirements response: body: string: tensorflow headers: accept-ranges: - bytes content-length: - '10' content-range: - bytes 0-9/10 content-type: - application/octet-stream last-modified: - Fri, 19 Jan 2024 08:11:29 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-content-md5: - LDm8GbdhrDbcBGJF0dR/5g== x-ms-blob-type: - BlockBlob x-ms-copy-completion-time: - Fri, 19 Jan 2024 08:11:29 GMT x-ms-copy-id: - fdd5ec4f-d3ab-4e64-9c48-63daf3e9bb2b x-ms-copy-progress: - 10/10 x-ms-copy-source: - https://promptfloweast4063704120.blob.core.windows.net/azureml-blobstore-3e123da1-f9a5-4c91-9234-8d9ffbb39ff5/LocalUpload/74854f49405e7ffcddc484d043cf0ef3/code_with_additional_includes/requirements x-ms-copy-status: - success x-ms-creation-time: - Fri, 19 Jan 2024 08:11:29 GMT x-ms-version: - '2023-11-03' status: code: 206 message: Partial Content - request: body: null headers: Accept: - application/xml User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Fri, 19 Jan 2024 08:13:40 GMT x-ms-range: - bytes=0-33554431 x-ms-version: - '2023-11-03' method: GET uri: https://fake_account_name.blob.core.windows.net/fake-container-name/runs/name/print_env.py response: body: string: "import os\r\n\r\nfrom promptflow import tool\r\n\r\n\r\n@tool\r\ndef get_env_var(key: str):\r\n from tensorflow import __version__\r\n\r\n print(__version__)\r\n \ print(os.environ.get(key))\r\n\r\n # get from env var\r\n return {\"value\": os.environ.get(key)}\r\n" headers: accept-ranges: - bytes content-length: - '248' content-range: - bytes 0-247/248 content-type: - application/octet-stream last-modified: - Fri, 19 Jan 2024 08:11:29 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-content-md5: - tmjklQaZp6INgSncYdNFgQ== x-ms-blob-type: - BlockBlob x-ms-copy-completion-time: - Fri, 19 Jan 2024 08:11:29 GMT x-ms-copy-id: - a3ba9cb2-712b-4175-9a78-e135ed562c7d x-ms-copy-progress: - 248/248 x-ms-copy-source: - https://promptfloweast4063704120.blob.core.windows.net/azureml-blobstore-3e123da1-f9a5-4c91-9234-8d9ffbb39ff5/LocalUpload/74854f49405e7ffcddc484d043cf0ef3/code_with_additional_includes/print_env.py x-ms-copy-status: - success x-ms-creation-time: - Fri, 19 Jan 2024 08:11:29 GMT x-ms-version: - '2023-11-03' status: code: 206 message: Partial Content - request: body: null headers: Accept: - application/xml User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Fri, 19 Jan 2024 08:13:36 GMT x-ms-version: - '2023-11-03' method: GET uri: https://fake_account_name.blob.core.windows.net/fake-container-name?comp=list&prefix=promptflow%2FPromptFlowArtifacts%2Fname%2F&restype=container response: body: string: "\uFEFF<?xml version=\"1.0\" encoding=\"utf-8\"?><EnumerationResults ServiceEndpoint=\"https://promptfloweast4063704120.blob.core.windows.net/\" ContainerName=\"azureml-blobstore-3e123da1-f9a5-4c91-9234-8d9ffbb39ff5\"><Prefix>promptflow/PromptFlowArtifacts/name/</Prefix><Blobs><Blob><Name>promptflow/PromptFlowArtifacts/name/flow_artifacts/000000000_000000024.jsonl</Name><Properties><Creation-Time>Fri, 19 Jan 2024 08:11:44 GMT</Creation-Time><Last-Modified>Fri, 19 Jan 2024 08:11:44 GMT</Last-Modified><Etag>0x8DC18C6464190D9</Etag><Content-Length>1432</Content-Length><Content-Type>application/octet-stream</Content-Type><Content-Encoding /><Content-Language /><Content-CRC64 /><Content-MD5 /><Cache-Control /><Content-Disposition /><BlobType>AppendBlob</BlobType><LeaseStatus>unlocked</LeaseStatus><LeaseState>available</LeaseState><ServerEncrypted>true</ServerEncrypted></Properties><OrMetadata /></Blob><Blob><Name>promptflow/PromptFlowArtifacts/name/flow_outputs/output.jsonl</Name><Properties><Creation-Time>Fri, 19 Jan 2024 08:11:56 GMT</Creation-Time><Last-Modified>Fri, 19 Jan 2024 08:11:56 GMT</Last-Modified><Etag>0x8DC18C64DB586D4</Etag><Content-Length>35</Content-Length><Content-Type>application/octet-stream</Content-Type><Content-Encoding /><Content-Language /><Content-CRC64 /><Content-MD5>/e0Zn1phO4FyeGCAse5gGw==</Content-MD5><Cache-Control /><Content-Disposition /><BlobType>BlockBlob</BlobType><AccessTier>Hot</AccessTier><AccessTierInferred>true</AccessTierInferred><LeaseStatus>unlocked</LeaseStatus><LeaseState>available</LeaseState><ServerEncrypted>true</ServerEncrypted></Properties><OrMetadata /></Blob><Blob><Name>promptflow/PromptFlowArtifacts/name/instance_results.jsonl</Name><Properties><Creation-Time>Fri, 19 Jan 2024 08:11:44 GMT</Creation-Time><Last-Modified>Fri, 19 Jan 2024 08:11:44 GMT</Last-Modified><Etag>0x8DC18C64645F8A6</Etag><Content-Length>109</Content-Length><Content-Type>application/octet-stream</Content-Type><Content-Encoding /><Content-Language /><Content-CRC64 /><Content-MD5 /><Cache-Control /><Content-Disposition /><BlobType>AppendBlob</BlobType><LeaseStatus>unlocked</LeaseStatus><LeaseState>available</LeaseState><ServerEncrypted>true</ServerEncrypted></Properties><OrMetadata /></Blob><Blob><Name>promptflow/PromptFlowArtifacts/name/meta.json</Name><Properties><Creation-Time>Fri, 19 Jan 2024 08:11:40 GMT</Creation-Time><Last-Modified>Fri, 19 Jan 2024 08:11:40 GMT</Last-Modified><Etag>0x8DC18C64419CAF1</Etag><Content-Length>18</Content-Length><Content-Type>application/octet-stream</Content-Type><Content-Encoding /><Content-Language /><Content-CRC64 /><Content-MD5>/u1NXUpgXMFDmZEw835qnw==</Content-MD5><Cache-Control /><Content-Disposition /><BlobType>BlockBlob</BlobType><AccessTier>Hot</AccessTier><AccessTierInferred>true</AccessTierInferred><LeaseStatus>unlocked</LeaseStatus><LeaseState>available</LeaseState><ServerEncrypted>true</ServerEncrypted></Properties><OrMetadata /></Blob><Blob><Name>promptflow/PromptFlowArtifacts/name/node_artifacts/print_env/000000000.jsonl</Name><Properties><Creation-Time>Fri, 19 Jan 2024 08:11:44 GMT</Creation-Time><Last-Modified>Fri, 19 Jan 2024 08:11:44 GMT</Last-Modified><Etag>0x8DC18C6463C18AF</Etag><Content-Length>1141</Content-Length><Content-Type>application/octet-stream</Content-Type><Content-Encoding /><Content-Language /><Content-CRC64 /><Content-MD5>rDx89XmW939YhK5e8LOGYQ==</Content-MD5><Cache-Control /><Content-Disposition /><BlobType>BlockBlob</BlobType><AccessTier>Hot</AccessTier><AccessTierInferred>true</AccessTierInferred><LeaseStatus>unlocked</LeaseStatus><LeaseState>available</LeaseState><ServerEncrypted>true</ServerEncrypted></Properties><OrMetadata /></Blob></Blobs><NextMarker /></EnumerationResults>" headers: content-type: - application/xml server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Fri, 19 Jan 2024 08:13:43 GMT x-ms-range: - bytes=0-33554431 x-ms-version: - '2023-11-03' method: GET uri: https://fake_account_name.blob.core.windows.net/fake-container-name/promptflow/PromptFlowArtifacts/name/flow_artifacts/000000000_000000024.jsonl response: body: string: '{"line_number": 0, "run_info": {"run_id": "name_0", "status": "Completed", "error": null, "inputs": {"key": "API_BASE", "line_number": 0}, "output": {"output": null}, "metrics": null, "request": null, "parent_run_id": "name", "root_run_id": "name", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-19T08:11:41.857673Z", "end_time": "2024-01-19T08:11:44.056761Z", "index": 0, "api_calls": [{"name": "flow", "node_name": "flow", "type": "Flow", "start_time": 1705651901.857673, "end_time": 1705651904.056761, "children": [{"name": "get_env_var", "type": "Tool", "inputs": {"key": "API_BASE"}, "output": {"value": null}, "start_time": 1705651901.861366, "end_time": 1705651904.054938, "error": null, "children": [], "node_name": "print_env", "parent_id": "", "id": "d9302caf-a93e-469c-9dc9-86c788dcc0b5", "system_metrics": {}}], "system_metrics": {"duration": 2.199088, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 2.199088, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"output": null}, "upload_metrics": false}, "start_time": "2024-01-19T08:11:41.857673", "end_time": "2024-01-19T08:11:44.056761", "name": "", "description": "", "status": "Completed", "tags": null} ' headers: accept-ranges: - bytes content-length: - '1432' content-range: - bytes 0-1431/1432 content-type: - application/octet-stream last-modified: - Fri, 19 Jan 2024 08:11:44 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-committed-block-count: - '1' x-ms-blob-type: - AppendBlob x-ms-creation-time: - Fri, 19 Jan 2024 08:11:44 GMT x-ms-version: - '2023-11-03' status: code: 206 message: Partial Content - request: body: null headers: Accept: - application/xml User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Fri, 19 Jan 2024 08:13:43 GMT x-ms-range: - bytes=0-33554431 x-ms-version: - '2023-11-03' method: GET uri: https://fake_account_name.blob.core.windows.net/fake-container-name/promptflow/PromptFlowArtifacts/name/flow_outputs/output.jsonl response: body: string: '{"line_number": 0, "output": null} ' headers: accept-ranges: - bytes content-length: - '35' content-range: - bytes 0-34/35 content-type: - application/octet-stream last-modified: - Fri, 19 Jan 2024 08:11:56 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-content-md5: - /e0Zn1phO4FyeGCAse5gGw== x-ms-blob-type: - BlockBlob x-ms-creation-time: - Fri, 19 Jan 2024 08:11:56 GMT x-ms-version: - '2023-11-03' status: code: 206 message: Partial Content - request: body: null headers: Accept: - application/xml User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Fri, 19 Jan 2024 08:13:43 GMT x-ms-range: - bytes=0-33554431 x-ms-version: - '2023-11-03' method: GET uri: https://fake_account_name.blob.core.windows.net/fake-container-name/promptflow/PromptFlowArtifacts/name/instance_results.jsonl response: body: string: '{"line_number": 0, "status": "Completed", "inputs.key": "API_BASE", "inputs.line_number": 0, "output": null} ' headers: accept-ranges: - bytes content-length: - '109' content-range: - bytes 0-108/109 content-type: - application/octet-stream last-modified: - Fri, 19 Jan 2024 08:11:44 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-committed-block-count: - '1' x-ms-blob-type: - AppendBlob x-ms-creation-time: - Fri, 19 Jan 2024 08:11:44 GMT x-ms-version: - '2023-11-03' status: code: 206 message: Partial Content - request: body: null headers: Accept: - application/xml User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Fri, 19 Jan 2024 08:13:43 GMT x-ms-range: - bytes=0-33554431 x-ms-version: - '2023-11-03' method: GET uri: https://fake_account_name.blob.core.windows.net/fake-container-name/promptflow/PromptFlowArtifacts/name/meta.json response: body: string: '{"batch_size": 25}' headers: accept-ranges: - bytes content-length: - '18' content-range: - bytes 0-17/18 content-type: - application/octet-stream last-modified: - Fri, 19 Jan 2024 08:11:40 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-content-md5: - /u1NXUpgXMFDmZEw835qnw== x-ms-blob-type: - BlockBlob x-ms-creation-time: - Fri, 19 Jan 2024 08:11:40 GMT x-ms-version: - '2023-11-03' status: code: 206 message: Partial Content - request: body: null headers: Accept: - application/xml User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Fri, 19 Jan 2024 08:13:43 GMT x-ms-range: - bytes=0-33554431 x-ms-version: - '2023-11-03' method: GET uri: https://fake_account_name.blob.core.windows.net/fake-container-name/promptflow/PromptFlowArtifacts/name/node_artifacts/print_env/000000000.jsonl response: body: string: '{"node_name": "print_env", "line_number": 0, "run_info": {"node": "print_env", "flow_run_id": "name", "run_id": "name_print_env_0", "status": "Completed", "inputs": {"key": "API_BASE"}, "output": {"value": null}, "metrics": null, "error": null, "parent_run_id": "name_0", "start_time": "2024-01-19T08:11:41.860384Z", "end_time": "2024-01-19T08:11:44.055422Z", "index": 0, "api_calls": [{"name": "get_env_var", "type": "Tool", "inputs": {"key": "API_BASE"}, "output": {"value": null}, "start_time": 1705651901.861366, "end_time": 1705651904.054938, "error": null, "children": [], "node_name": "print_env", "parent_id": "", "id": "d9302caf-a93e-469c-9dc9-86c788dcc0b5", "system_metrics": {}}], "variant_id": "", "cached_run_id": null, "cached_flow_run_id": null, "logs": {"stdout": "[2024-01-19T08:11:44+0000] 2.15.0\n[2024-01-19T08:11:44+0000] None\n", "stderr": ""}, "system_metrics": {"duration": 2.195038}, "result": {"value": null}}, "start_time": "2024-01-19T08:11:41.860384", "end_time": "2024-01-19T08:11:44.055422", "status": "Completed"}' headers: accept-ranges: - bytes content-length: - '1141' content-range: - bytes 0-1140/1141 content-type: - application/octet-stream last-modified: - Fri, 19 Jan 2024 08:11:44 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-content-md5: - rDx89XmW939YhK5e8LOGYQ== x-ms-blob-type: - BlockBlob x-ms-creation-time: - Fri, 19 Jan 2024 08:11:44 GMT x-ms-version: - '2023-11-03' status: code: 206 message: Partial Content - request: body: '{"runId": "name", "selectRunMetadata": true, "selectRunDefinition": true, "selectJobSpecification": true}' headers: accept: - '*/*' accept-encoding: - gzip, deflate connection: - keep-alive content-length: - '137' content-type: - application/json host: - eastus.api.azureml.ms user-agent: - python-httpx/0.26.0 method: POST uri: https://eastus.api.azureml.ms/history/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/rundata response: content: '{"runMetadata": {"runNumber": 1705651879, "rootRunId": "name", "createdUtc": "2024-01-19T08:11:19.8397061+00:00", "createdBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": "100320005227D154", "userIdp": null, "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "Han Wang", "upn": null}, "userId": "00000000-0000-0000-0000-000000000000", "token": null, "tokenExpiryTimeUtc": null, "error": null, "warnings": null, "revision": 6, "statusRevision": 3, "runUuid": "2dcd6208-7f09-4ef0-884e-f99c0c1aa73e", "parentRunUuid": null, "rootRunUuid": "2dcd6208-7f09-4ef0-884e-f99c0c1aa73e", "lastStartTimeUtc": null, "currentComputeTime": null, "computeDuration": "00:00:15.8157799", "effectiveStartTimeUtc": null, "lastModifiedBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": "100320005227D154", "userIdp": null, "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "Han Wang", "upn": "[email protected]"}, "lastModifiedUtc": "2024-01-19T08:11:50.5800828+00:00", "duration": "00:00:15.8157799", "cancelationReason": null, "currentAttemptId": 1, "runId": "name", "parentRunId": null, "experimentId": "e366b94e-bc01-491b-95af-7881c0f5996c", "status": "Completed", "startTimeUtc": "2024-01-19T08:11:41.4356867+00:00", "endTimeUtc": "2024-01-19T08:11:57.2514666+00:00", "scheduleId": null, "displayName": "name", "name": null, "dataContainerId": "dcid.name", "description": null, "hidden": false, "runType": "azureml.promptflow.FlowRun", "runTypeV2": {"orchestrator": null, "traits": [], "attribution": "PromptFlow", "computeType": null}, "properties": {"azureml.promptflow.runtime_name": "automatic", "azureml.promptflow.runtime_version": "20240116.v1", "azureml.promptflow.definition_file_name": "flow.dag.yaml", "azureml.promptflow.session_id": "17c09ed8548069d9bd446905de3053ccbf23ff6fa8b7bef7", "azureml.promptflow.flow_lineage_id": "d840b60c94e02e27c7f8e15df8562a32fd8bd4dfe1f5951f1a01fe8efcf3be8f", "azureml.promptflow.flow_definition_datastore_name": "workspaceblobstore", "azureml.promptflow.flow_definition_blob_path": "LocalUpload/74854f49405e7ffcddc484d043cf0ef3/code_with_additional_includes/flow.dag.yaml", "azureml.promptflow.input_data": "azureml://datastores/workspaceblobstore/paths/LocalUpload/c32a61842e439cecc022ebcff5dc0da4/env_var_names.jsonl", "_azureml.evaluation_run": "promptflow.BatchRun", "azureml.promptflow.snapshot_id": "f70ec21e-2e5f-4f8a-8877-19d060899638", "azureml.promptflow.total_tokens": "0", "_azureml.evaluate_artifacts": "[{\"path\": \"instance_results.jsonl\", \"type\": \"table\"}]"}, "parameters": {}, "actionUris": {}, "scriptName": null, "target": null, "uniqueChildRunComputeTargets": [], "tags": {}, "settings": {}, "services": {}, "inputDatasets": [], "outputDatasets": [], "runDefinition": null, "jobSpecification": null, "primaryMetricName": null, "createdFrom": null, "cancelUri": null, "completeUri": null, "diagnosticsUri": null, "computeRequest": null, "compute": null, "retainForLifetimeOfWorkspace": false, "queueingInfo": null, "inputs": null, "outputs": {"debug_info": {"assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_name_output_data_debug_info/versions/1", "type": "UriFolder"}, "flow_outputs": {"assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_name_output_data_flow_outputs/versions/1", "type": "UriFolder"}}}, "runDefinition": null, "jobSpecification": null, "systemSettings": null}' headers: connection: - keep-alive content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.061' http_version: HTTP/1.1 status_code: 200 - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name/logContent response: body: string: '"2024-01-19 08:11:34 +0000 49 promptflow-runtime INFO [name] Receiving v2 bulk run request 700358bb-ca8a-4d06-90aa-712a335034e2: {\"flow_id\": \"name\", \"flow_run_id\": \"name\", \"flow_source\": {\"flow_source_type\": 1, \"flow_source_info\": {\"snapshot_id\": \"f70ec21e-2e5f-4f8a-8877-19d060899638\"}, \"flow_dag_file\": \"flow.dag.yaml\"}, \"log_path\": \"https://promptfloweast4063704120.blob.core.windows.net/azureml/ExperimentRun/dcid.name/logs/azureml/executionlogs.txt?sv=2019-07-07&sr=b&sig=**data_scrubbed**&skoid=55b92eba-d7c7-4afd-ab76-7bb1cd345283&sktid=00000000-0000-0000-0000-000000000000&skt=2024-01-19T07%3A50%3A15Z&ske=2024-01-20T16%3A00%3A15Z&sks=b&skv=2019-07-07&st=2024-01-19T08%3A01%3A33Z&se=2024-01-19T16%3A11%3A33Z&sp=rcw\", \"app_insights_instrumentation_key\": \"InstrumentationKey=**data_scrubbed**;IngestionEndpoint=https://eastus-6.in.applicationinsights.azure.com/;LiveEndpoint=https://eastus.livediagnostics.monitor.azure.com/\", \"data_inputs\": {\"data\": \"azureml://datastores/workspaceblobstore/paths/LocalUpload/c32a61842e439cecc022ebcff5dc0da4/env_var_names.jsonl\"}, \"azure_storage_setting\": {\"azure_storage_mode\": 1, \"storage_account_name\": \"promptfloweast4063704120\", \"blob_container_name\": \"azureml-blobstore-3e123da1-f9a5-4c91-9234-8d9ffbb39ff5\", \"flow_artifacts_root_path\": \"promptflow/PromptFlowArtifacts/name\", \"blob_container_sas_token\": \"?sv=2019-07-07&sr=c&sig=**data_scrubbed**&skoid=55b92eba-d7c7-4afd-ab76-7bb1cd345283&sktid=00000000-0000-0000-0000-000000000000&skt=2024-01-19T08%3A11%3A33Z&ske=2024-01-26T08%3A11%3A33Z&sks=b&skv=2019-07-07&se=2024-01-26T08%3A11%3A33Z&sp=racwl\", \"output_datastore_name\": \"workspaceblobstore\"}}\n2024-01-19 08:11:35 +0000 49 promptflow-runtime INFO Runtime version: 20240116.v1. PromptFlow version: 1.4.0rc3\n2024-01-19 08:11:35 +0000 49 promptflow-runtime INFO Updating name to Status.Preparing...\n2024-01-19 08:11:35 +0000 49 promptflow-runtime INFO Downloading snapshot to /mnt/host/service/app/45731/requests/name\n2024-01-19 08:11:35 +0000 49 promptflow-runtime INFO Get snapshot sas url for f70ec21e-2e5f-4f8a-8877-19d060899638.\n2024-01-19 08:11:35 +0000 49 promptflow-runtime INFO Snapshot f70ec21e-2e5f-4f8a-8877-19d060899638 contains 3 files.\n2024-01-19 08:11:35 +0000 49 promptflow-runtime INFO Download snapshot f70ec21e-2e5f-4f8a-8877-19d060899638 completed.\n2024-01-19 08:11:35 +0000 49 promptflow-runtime INFO Successfully download snapshot to /mnt/host/service/app/45731/requests/name\n2024-01-19 08:11:35 +0000 49 promptflow-runtime INFO About to execute a python flow.\n2024-01-19 08:11:35 +0000 49 promptflow-runtime INFO Use spawn method to start child process.\n2024-01-19 08:11:35 +0000 49 promptflow-runtime INFO Starting to check process 388 status for run name\n2024-01-19 08:11:35 +0000 49 promptflow-runtime INFO Start checking run status for run name\n2024-01-19 08:11:39 +0000 388 promptflow-runtime INFO [49--388] Start processing flowV2......\n2024-01-19 08:11:39 +0000 388 promptflow-runtime INFO Runtime version: 20240116.v1. PromptFlow version: 1.4.0rc3\n2024-01-19 08:11:40 +0000 388 promptflow-runtime INFO Setting mlflow tracking uri...\n2024-01-19 08:11:40 +0000 388 promptflow-runtime INFO Validating ''AzureML Data Scientist'' user authentication...\n2024-01-19 08:11:40 +0000 388 promptflow-runtime INFO Successfully validated ''AzureML Data Scientist'' user authentication.\n2024-01-19 08:11:40 +0000 388 promptflow-runtime INFO Using AzureMLRunStorageV2\n2024-01-19 08:11:40 +0000 388 promptflow-runtime INFO Setting mlflow tracking uri to ''azureml://eastus.api.azureml.ms/mlflow/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/promptflow-eastus''\n2024-01-19 08:11:40 +0000 388 promptflow-runtime INFO Initialized blob service client for AzureMLRunTracker.\n2024-01-19 08:11:40 +0000 388 promptflow-runtime INFO Setting mlflow tracking uri to ''azureml://eastus.api.azureml.ms/mlflow/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/promptflow-eastus''\n2024-01-19 08:11:41 +0000 388 promptflow-runtime INFO Resolve data from url finished in 0.5640277000002243 seconds\n2024-01-19 08:11:41 +0000 388 promptflow-runtime INFO Starting the aml run ''name''...\n2024-01-19 08:11:41 +0000 388 execution WARNING Starting run without column mapping may lead to unexpected results. Please consult the following documentation for more information: https://aka.ms/pf/column-mapping\n2024-01-19 08:11:41 +0000 388 execution.bulk INFO Set process count to 1 by taking the minimum value among the factors of {''default_worker_count'': 16, ''row_count'': 1}.\n2024-01-19 08:11:41 +0000 429 execution.bulk INFO Process 429 started.\n2024-01-19 08:11:41 +0000 388 execution.bulk INFO Process name: ForkProcess-4:2, Process id: 429, Line number: 0 start execution.\n2024-01-19 08:11:44 +0000 388 execution.bulk INFO Process name: ForkProcess-4:2, Process id: 429, Line number: 0 completed.\n2024-01-19 08:11:44 +0000 388 execution.bulk INFO Finished 1 / 1 lines.\n2024-01-19 08:11:44 +0000 388 execution.bulk INFO Average execution time for completed lines: 2.38 seconds. Estimated time for incomplete lines: 0.0 seconds.\n2024-01-19 08:11:45 +0000 388 promptflow-runtime INFO Post processing batch result...\n2024-01-19 08:11:50 +0000 388 execution.bulk INFO Upload status summary metrics for run name finished in 5.290677923999283 seconds\n2024-01-19 08:11:50 +0000 388 promptflow-runtime INFO Successfully write run properties {\"azureml.promptflow.total_tokens\": 0, \"_azureml.evaluate_artifacts\": \"[{\\\"path\\\": \\\"instance_results.jsonl\\\", \\\"type\\\": \\\"table\\\"}]\"} with run id ''name''\n2024-01-19 08:11:50 +0000 388 execution.bulk INFO Upload RH properties for run name finished in 0.08102953700017679 seconds\n2024-01-19 08:11:50 +0000 388 promptflow-runtime INFO Creating unregistered output Asset for Run name...\n2024-01-19 08:11:56 +0000 388 promptflow-runtime INFO Created debug_info Asset: azureml://locations/eastus/workspaces/00000/data/azureml_name_output_data_debug_info/versions/1\n2024-01-19 08:11:56 +0000 388 promptflow-runtime INFO Creating unregistered output Asset for Run name...\n2024-01-19 08:11:56 +0000 388 promptflow-runtime INFO Created flow_outputs output Asset: azureml://locations/eastus/workspaces/00000/data/azureml_name_output_data_flow_outputs/versions/1\n2024-01-19 08:11:56 +0000 388 promptflow-runtime INFO Creating Artifact for Run name...\n2024-01-19 08:11:56 +0000 388 promptflow-runtime INFO Created instance_results.jsonl Artifact.\n2024-01-19 08:11:57 +0000 388 promptflow-runtime INFO Patching name...\n2024-01-19 08:11:57 +0000 388 promptflow-runtime INFO Ending the aml run ''name'' with status ''Completed''...\n2024-01-19 08:12:41 +0000 49 promptflow-runtime INFO Process 388 finished\n2024-01-19 08:12:41 +0000 49 promptflow-runtime INFO [49] Child process finished!\n2024-01-19 08:12:41 +0000 49 promptflow-runtime INFO [name] End processing bulk run\n2024-01-19 08:12:41 +0000 49 promptflow-runtime INFO Cleanup working dir /mnt/host/service/app/45731/requests/name for bulk run\n"' headers: connection: - keep-alive content-length: - '8472' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.467' status: code: 200 message: OK version: 1
promptflow/src/promptflow/tests/test_configs/recordings/test_run_operations_TestFlowRun_test_requirements_in_additional_includes.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/recordings/test_run_operations_TestFlowRun_test_requirements_in_additional_includes.yaml", "repo_id": "promptflow", "token_count": 117214 }
69
interactions: - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000 response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000", "name": "00000", "type": "Microsoft.MachineLearningServices/workspaces", "location": "eastus", "tags": {}, "etag": null, "kind": "Default", "sku": {"name": "Basic", "tier": "Basic"}, "properties": {"discoveryUrl": "https://eastus.api.azureml.ms/discovery"}}' headers: cache-control: - no-cache content-length: - '3630' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.023' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores?count=30&isDefault=true&orderByAsc=false response: body: string: '{"value": [{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}]}' headers: cache-control: - no-cache content-length: - '1372' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.077' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.110' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.150' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 07:54:16 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/webClassification3.jsonl response: body: string: '' headers: accept-ranges: - bytes content-length: - '379' content-md5: - lI/pz9jzTQ7Td3RHPL7y7w== content-type: - application/octet-stream last-modified: - Mon, 06 Nov 2023 08:30:18 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Mon, 06 Nov 2023 08:30:18 GMT x-ms-meta-name: - 94331215-cf7f-452a-9f1a-1d276bc9b0e4 x-ms-meta-upload_status: - completed x-ms-meta-version: - 3f163752-edb0-4afc-a6f5-b0a670bd7c24 x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 07:54:17 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/webClassification3.jsonl response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.079' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.122' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 07:54:19 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/hello-world/flow.dag.yaml response: body: string: '' headers: accept-ranges: - bytes content-length: - '266' content-md5: - UZm3TyOoKWjSR23+Up6qUA== content-type: - application/octet-stream last-modified: - Tue, 19 Dec 2023 06:05:25 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Tue, 19 Dec 2023 06:05:25 GMT x-ms-meta-name: - 7b68bf5e-6ef4-4eb3-9f49-28f9a5baad87 x-ms-meta-upload_status: - completed x-ms-meta-version: - '1' x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 07:54:21 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/hello-world/flow.dag.yaml response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: '{"flowDefinitionDataStoreName": "workspaceblobstore", "flowDefinitionBlobPath": "LocalUpload/000000000000000000000000000000000000/hello-world/flow.dag.yaml", "runId": "batch_run_name", "runDisplayName": "sdk-cli-test-fixture-batch-run-without-llm", "runExperimentName": "", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/000000000000000000000000000000000000/webClassification3.jsonl"}, "inputsMapping": {"name": "${data.url}"}, "connections": {}, "environmentVariables": {}, "runtimeName": "fake-runtime-name", "sessionId": "000000000000000000000000000000000000000000000000", "sessionSetupMode": "SystemWait", "flowLineageId": "0000000000000000000000000000000000000000000000000000000000000000", "runDisplayNameGenerationType": "UserProvidedMacro"}' headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '812' Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/submit response: body: string: '"batch_run_name"' headers: connection: - keep-alive content-length: - '38' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload x-content-type-options: - nosniff x-request-time: - '6.861' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "hello_world", "type": "python", "source": {"type": "code", "path": "hello_world.py"}, "inputs": {"name": "${inputs.name}"}, "tool": "hello_world.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "hello_world.py", "type": "python", "inputs": {"name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "hello_world.py", "function": "hello_world", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"name": {"type": "string", "default": "hod", "is_chat_input": false}}, "outputs": {"result": {"type": "string", "reference": "${hello_world.output}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/batch_run_name/flowRuns/batch_run_name", "flowRunId": "batch_run_name", "flowRunDisplayName": "sdk-cli-test-fixture-batch-run-without-llm", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"name": "${data.url}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/batch_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "85a4b96f-edcb-4164-acea-98bd08d40e22", "studioPortalEndpoint": "https://ml.azure.com/runs/batch_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12912' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.509' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "hello_world", "type": "python", "source": {"type": "code", "path": "hello_world.py"}, "inputs": {"name": "${inputs.name}"}, "tool": "hello_world.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "hello_world.py", "type": "python", "inputs": {"name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "hello_world.py", "function": "hello_world", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"name": {"type": "string", "default": "hod", "is_chat_input": false}}, "outputs": {"result": {"type": "string", "reference": "${hello_world.output}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/batch_run_name/flowRuns/batch_run_name", "flowRunId": "batch_run_name", "flowRunDisplayName": "sdk-cli-test-fixture-batch-run-without-llm", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"name": "${data.url}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/batch_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "85a4b96f-edcb-4164-acea-98bd08d40e22", "studioPortalEndpoint": "https://ml.azure.com/runs/batch_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12912' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.406' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "hello_world", "type": "python", "source": {"type": "code", "path": "hello_world.py"}, "inputs": {"name": "${inputs.name}"}, "tool": "hello_world.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "hello_world.py", "type": "python", "inputs": {"name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "hello_world.py", "function": "hello_world", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"name": {"type": "string", "default": "hod", "is_chat_input": false}}, "outputs": {"result": {"type": "string", "reference": "${hello_world.output}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/batch_run_name/flowRuns/batch_run_name", "flowRunId": "batch_run_name", "flowRunDisplayName": "sdk-cli-test-fixture-batch-run-without-llm", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"name": "${data.url}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/batch_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "85a4b96f-edcb-4164-acea-98bd08d40e22", "studioPortalEndpoint": "https://ml.azure.com/runs/batch_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12912' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.537' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "hello_world", "type": "python", "source": {"type": "code", "path": "hello_world.py"}, "inputs": {"name": "${inputs.name}"}, "tool": "hello_world.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "hello_world.py", "type": "python", "inputs": {"name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "hello_world.py", "function": "hello_world", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"name": {"type": "string", "default": "hod", "is_chat_input": false}}, "outputs": {"result": {"type": "string", "reference": "${hello_world.output}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/batch_run_name/flowRuns/batch_run_name", "flowRunId": "batch_run_name", "flowRunDisplayName": "sdk-cli-test-fixture-batch-run-without-llm", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"name": "${data.url}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/batch_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "85a4b96f-edcb-4164-acea-98bd08d40e22", "studioPortalEndpoint": "https://ml.azure.com/runs/batch_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12912' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.221' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "hello_world", "type": "python", "source": {"type": "code", "path": "hello_world.py"}, "inputs": {"name": "${inputs.name}"}, "tool": "hello_world.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "hello_world.py", "type": "python", "inputs": {"name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "hello_world.py", "function": "hello_world", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"name": {"type": "string", "default": "hod", "is_chat_input": false}}, "outputs": {"result": {"type": "string", "reference": "${hello_world.output}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/batch_run_name/flowRuns/batch_run_name", "flowRunId": "batch_run_name", "flowRunDisplayName": "sdk-cli-test-fixture-batch-run-without-llm", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"name": "${data.url}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/batch_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "85a4b96f-edcb-4164-acea-98bd08d40e22", "studioPortalEndpoint": "https://ml.azure.com/runs/batch_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12912' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.192' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name/childRuns?endIndex=24&startIndex=0 response: body: string: '[{"run_id": "batch_run_name_0", "status": "Completed", "error": null, "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g", "line_number": 0}, "output": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "metrics": null, "request": null, "parent_run_id": "batch_run_name", "root_run_id": "batch_run_name", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T07:54:44.493902Z", "end_time": "2024-01-12T07:54:44.50176Z", "index": 0, "api_calls": [{"name": "hello_world", "type": "Tool", "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g"}, "output": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!", "start_time": 1705046084.496958, "end_time": 1705046084.497766, "error": null, "children": null, "node_name": "hello_world"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.007858, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "upload_metrics": false}, {"run_id": "batch_run_name_1", "status": "Completed", "error": null, "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g", "line_number": 1}, "output": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "metrics": null, "request": null, "parent_run_id": "batch_run_name", "root_run_id": "batch_run_name", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T07:54:44.50188Z", "end_time": "2024-01-12T07:54:44.507707Z", "index": 1, "api_calls": [{"name": "hello_world", "type": "Tool", "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g"}, "output": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!", "start_time": 1705046084.504962, "end_time": 1705046084.505848, "error": null, "children": null, "node_name": "hello_world"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.005827, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "upload_metrics": false}, {"run_id": "batch_run_name_2", "status": "Completed", "error": null, "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g", "line_number": 2}, "output": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "metrics": null, "request": null, "parent_run_id": "batch_run_name", "root_run_id": "batch_run_name", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T07:54:44.620862Z", "end_time": "2024-01-12T07:54:44.62622Z", "index": 2, "api_calls": [{"name": "hello_world", "type": "Tool", "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g"}, "output": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!", "start_time": 1705046084.623683, "end_time": 1705046084.624476, "error": null, "children": null, "node_name": "hello_world"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.005358, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "upload_metrics": false}]' headers: connection: - keep-alive content-length: - '3229' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.825' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "hello_world", "type": "python", "source": {"type": "code", "path": "hello_world.py"}, "inputs": {"name": "${inputs.name}"}, "tool": "hello_world.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "hello_world.py", "type": "python", "inputs": {"name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "hello_world.py", "function": "hello_world", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"name": {"type": "string", "default": "hod", "is_chat_input": false}}, "outputs": {"result": {"type": "string", "reference": "${hello_world.output}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/batch_run_name/flowRuns/batch_run_name", "flowRunId": "batch_run_name", "flowRunDisplayName": "sdk-cli-test-fixture-batch-run-without-llm", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"name": "${data.url}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/batch_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "85a4b96f-edcb-4164-acea-98bd08d40e22", "studioPortalEndpoint": "https://ml.azure.com/runs/batch_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12912' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.266' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name/childRuns?endIndex=24&startIndex=0 response: body: string: '[{"run_id": "batch_run_name_0", "status": "Completed", "error": null, "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g", "line_number": 0}, "output": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "metrics": null, "request": null, "parent_run_id": "batch_run_name", "root_run_id": "batch_run_name", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T07:54:44.493902Z", "end_time": "2024-01-12T07:54:44.50176Z", "index": 0, "api_calls": [{"name": "hello_world", "type": "Tool", "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g"}, "output": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!", "start_time": 1705046084.496958, "end_time": 1705046084.497766, "error": null, "children": null, "node_name": "hello_world"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.007858, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "upload_metrics": false}, {"run_id": "batch_run_name_1", "status": "Completed", "error": null, "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g", "line_number": 1}, "output": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "metrics": null, "request": null, "parent_run_id": "batch_run_name", "root_run_id": "batch_run_name", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T07:54:44.50188Z", "end_time": "2024-01-12T07:54:44.507707Z", "index": 1, "api_calls": [{"name": "hello_world", "type": "Tool", "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g"}, "output": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!", "start_time": 1705046084.504962, "end_time": 1705046084.505848, "error": null, "children": null, "node_name": "hello_world"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.005827, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "upload_metrics": false}, {"run_id": "batch_run_name_2", "status": "Completed", "error": null, "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g", "line_number": 2}, "output": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "metrics": null, "request": null, "parent_run_id": "batch_run_name", "root_run_id": "batch_run_name", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T07:54:44.620862Z", "end_time": "2024-01-12T07:54:44.62622Z", "index": 2, "api_calls": [{"name": "hello_world", "type": "Tool", "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g"}, "output": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!", "start_time": 1705046084.623683, "end_time": 1705046084.624476, "error": null, "children": null, "node_name": "hello_world"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.005358, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "upload_metrics": false}]' headers: connection: - keep-alive content-length: - '3229' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.920' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "hello_world", "type": "python", "source": {"type": "code", "path": "hello_world.py"}, "inputs": {"name": "${inputs.name}"}, "tool": "hello_world.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "hello_world.py", "type": "python", "inputs": {"name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "hello_world.py", "function": "hello_world", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"name": {"type": "string", "default": "hod", "is_chat_input": false}}, "outputs": {"result": {"type": "string", "reference": "${hello_world.output}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/batch_run_name/flowRuns/batch_run_name", "flowRunId": "batch_run_name", "flowRunDisplayName": "sdk-cli-test-fixture-batch-run-without-llm", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"name": "${data.url}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/batch_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "85a4b96f-edcb-4164-acea-98bd08d40e22", "studioPortalEndpoint": "https://ml.azure.com/runs/batch_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12912' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.210' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name/childRuns?endIndex=24&startIndex=0 response: body: string: '[{"run_id": "batch_run_name_0", "status": "Completed", "error": null, "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g", "line_number": 0}, "output": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "metrics": null, "request": null, "parent_run_id": "batch_run_name", "root_run_id": "batch_run_name", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T07:54:44.493902Z", "end_time": "2024-01-12T07:54:44.50176Z", "index": 0, "api_calls": [{"name": "hello_world", "type": "Tool", "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g"}, "output": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!", "start_time": 1705046084.496958, "end_time": 1705046084.497766, "error": null, "children": null, "node_name": "hello_world"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.007858, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "upload_metrics": false}, {"run_id": "batch_run_name_1", "status": "Completed", "error": null, "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g", "line_number": 1}, "output": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "metrics": null, "request": null, "parent_run_id": "batch_run_name", "root_run_id": "batch_run_name", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T07:54:44.50188Z", "end_time": "2024-01-12T07:54:44.507707Z", "index": 1, "api_calls": [{"name": "hello_world", "type": "Tool", "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g"}, "output": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!", "start_time": 1705046084.504962, "end_time": 1705046084.505848, "error": null, "children": null, "node_name": "hello_world"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.005827, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "upload_metrics": false}, {"run_id": "batch_run_name_2", "status": "Completed", "error": null, "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g", "line_number": 2}, "output": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "metrics": null, "request": null, "parent_run_id": "batch_run_name", "root_run_id": "batch_run_name", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T07:54:44.620862Z", "end_time": "2024-01-12T07:54:44.62622Z", "index": 2, "api_calls": [{"name": "hello_world", "type": "Tool", "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g"}, "output": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!", "start_time": 1705046084.623683, "end_time": 1705046084.624476, "error": null, "children": null, "node_name": "hello_world"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.005358, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "upload_metrics": false}]' headers: connection: - keep-alive content-length: - '3229' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '1.005' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name/childRuns?endIndex=49&startIndex=25 response: body: string: '[]' headers: connection: - keep-alive content-length: - '2' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload x-content-type-options: - nosniff x-request-time: - '0.708' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "hello_world", "type": "python", "source": {"type": "code", "path": "hello_world.py"}, "inputs": {"name": "${inputs.name}"}, "tool": "hello_world.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "hello_world.py", "type": "python", "inputs": {"name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "hello_world.py", "function": "hello_world", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"name": {"type": "string", "default": "hod", "is_chat_input": false}}, "outputs": {"result": {"type": "string", "reference": "${hello_world.output}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/batch_run_name/flowRuns/batch_run_name", "flowRunId": "batch_run_name", "flowRunDisplayName": "sdk-cli-test-fixture-batch-run-without-llm", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"name": "${data.url}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/batch_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "85a4b96f-edcb-4164-acea-98bd08d40e22", "studioPortalEndpoint": "https://ml.azure.com/runs/batch_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12912' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.214' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name/childRuns?endIndex=24&startIndex=0 response: body: string: '[{"run_id": "batch_run_name_0", "status": "Completed", "error": null, "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g", "line_number": 0}, "output": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "metrics": null, "request": null, "parent_run_id": "batch_run_name", "root_run_id": "batch_run_name", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T07:54:44.493902Z", "end_time": "2024-01-12T07:54:44.50176Z", "index": 0, "api_calls": [{"name": "hello_world", "type": "Tool", "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g"}, "output": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!", "start_time": 1705046084.496958, "end_time": 1705046084.497766, "error": null, "children": null, "node_name": "hello_world"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.007858, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "upload_metrics": false}, {"run_id": "batch_run_name_1", "status": "Completed", "error": null, "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g", "line_number": 1}, "output": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "metrics": null, "request": null, "parent_run_id": "batch_run_name", "root_run_id": "batch_run_name", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T07:54:44.50188Z", "end_time": "2024-01-12T07:54:44.507707Z", "index": 1, "api_calls": [{"name": "hello_world", "type": "Tool", "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g"}, "output": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!", "start_time": 1705046084.504962, "end_time": 1705046084.505848, "error": null, "children": null, "node_name": "hello_world"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.005827, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "upload_metrics": false}, {"run_id": "batch_run_name_2", "status": "Completed", "error": null, "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g", "line_number": 2}, "output": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "metrics": null, "request": null, "parent_run_id": "batch_run_name", "root_run_id": "batch_run_name", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-12T07:54:44.620862Z", "end_time": "2024-01-12T07:54:44.62622Z", "index": 2, "api_calls": [{"name": "hello_world", "type": "Tool", "inputs": {"name": "https://www.youtube.com/watch?v=o5ZQyXaAv1g"}, "output": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!", "start_time": 1705046084.623683, "end_time": 1705046084.624476, "error": null, "children": null, "node_name": "hello_world"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.005358, "prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}, "result": {"result": "Hello World https://www.youtube.com/watch?v=o5ZQyXaAv1g!"}, "upload_metrics": false}]' headers: connection: - keep-alive content-length: - '3229' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.993' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name/childRuns?endIndex=49&startIndex=25 response: body: string: '[]' headers: connection: - keep-alive content-length: - '2' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload x-content-type-options: - nosniff x-request-time: - '0.748' status: code: 200 message: OK - request: body: '{"runId": "batch_run_name", "selectRunMetadata": true, "selectRunDefinition": true, "selectJobSpecification": true}' headers: Accept: - '*/*' Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '137' Content-Type: - application/json User-Agent: - python-requests/2.31.0 method: POST uri: https://eastus.api.azureml.ms/history/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/rundata response: body: string: '{"runMetadata": {"runNumber": 1705046067, "rootRunId": "batch_run_name", "createdUtc": "2024-01-12T07:54:27.159305+00:00", "createdBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587", "upn": null}, "userId": "00000000-0000-0000-0000-000000000000", "token": null, "tokenExpiryTimeUtc": null, "error": null, "warnings": null, "revision": 6, "statusRevision": 3, "runUuid": "605728ab-d8cb-4ce5-a40c-67625a2b9471", "parentRunUuid": null, "rootRunUuid": "605728ab-d8cb-4ce5-a40c-67625a2b9471", "lastStartTimeUtc": null, "currentComputeTime": null, "computeDuration": "00:00:03.6893368", "effectiveStartTimeUtc": null, "lastModifiedBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "18a66f5f-dbdf-4c17-9dd7-1634712a9cbe", "upn": null}, "lastModifiedUtc": "2024-01-12T07:54:46.9642623+00:00", "duration": "00:00:03.6893368", "cancelationReason": null, "currentAttemptId": 1, "runId": "batch_run_name", "parentRunId": null, "experimentId": "b1e733a1-2a5f-4c17-bc34-4d66d2858228", "status": "Completed", "startTimeUtc": "2024-01-12T07:54:44.1317315+00:00", "endTimeUtc": "2024-01-12T07:54:47.8210683+00:00", "scheduleId": null, "displayName": "sdk-cli-test-fixture-batch-run-without-llm", "name": null, "dataContainerId": "dcid.batch_run_name", "description": null, "hidden": false, "runType": "azureml.promptflow.FlowRun", "runTypeV2": {"orchestrator": null, "traits": [], "attribution": "PromptFlow", "computeType": "AmlcDsi"}, "properties": {"azureml.promptflow.runtime_name": "test-runtime-ci", "azureml.promptflow.runtime_version": "20231204.v4", "azureml.promptflow.definition_file_name": "flow.dag.yaml", "azureml.promptflow.session_id": "bee356189f7e7f18671a79369c78df4cfb1bbd0c99069074", "azureml.promptflow.flow_lineage_id": "f7ee724d91e4f4a7501bdc0b66995bc8b57f86b3a526fa2a81c34ebcccbbd912", "azureml.promptflow.flow_definition_datastore_name": "workspaceblobstore", "azureml.promptflow.flow_definition_blob_path": "LocalUpload/36774154bc3ecde4aa21054b3052221f/hello-world/flow.dag.yaml", "azureml.promptflow.input_data": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl", "azureml.promptflow.inputs_mapping": "{\"name\":\"${data.url}\"}", "_azureml.evaluation_run": "promptflow.BatchRun", "azureml.promptflow.snapshot_id": "85a4b96f-edcb-4164-acea-98bd08d40e22", "azureml.promptflow.total_tokens": "0", "_azureml.evaluate_artifacts": "[{\"path\": \"instance_results.jsonl\", \"type\": \"table\"}]"}, "parameters": {}, "actionUris": {}, "scriptName": null, "target": null, "uniqueChildRunComputeTargets": [], "tags": {}, "settings": {}, "services": {}, "inputDatasets": [], "outputDatasets": [], "runDefinition": null, "jobSpecification": null, "primaryMetricName": null, "createdFrom": null, "cancelUri": null, "completeUri": null, "diagnosticsUri": null, "computeRequest": null, "compute": null, "retainForLifetimeOfWorkspace": false, "queueingInfo": null, "inputs": null, "outputs": {"debug_info": {"assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_batch_run_name_output_data_debug_info/versions/1", "type": "UriFolder"}, "flow_outputs": {"assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_batch_run_name_output_data_flow_outputs/versions/1", "type": "UriFolder"}}}, "runDefinition": null, "jobSpecification": null, "systemSettings": null}' headers: connection: - keep-alive content-length: - '4648' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.041' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name/logContent response: body: string: '"2024-01-12 07:54:31 +0000 49 promptflow-runtime INFO [batch_run_name] Receiving v2 bulk run request a234ccdf-0cdb-4a6d-b615-45a49ec26dcc: {\"flow_id\": \"batch_run_name\", \"flow_run_id\": \"batch_run_name\", \"flow_source\": {\"flow_source_type\": 1, \"flow_source_info\": {\"snapshot_id\": \"85a4b96f-edcb-4164-acea-98bd08d40e22\"}, \"flow_dag_file\": \"flow.dag.yaml\"}, \"log_path\": \"https://promptfloweast4063704120.blob.core.windows.net/azureml/ExperimentRun/dcid.batch_run_name/logs/azureml/executionlogs.txt?sv=2019-07-07&sr=b&sig=**data_scrubbed**&skoid=55b92eba-d7c7-4afd-ab76-7bb1cd345283&sktid=00000000-0000-0000-0000-000000000000&skt=2024-01-12T07%3A43%3A15Z&ske=2024-01-13T15%3A53%3A15Z&sks=b&skv=2019-07-07&st=2024-01-12T07%3A44%3A30Z&se=2024-01-12T15%3A54%3A30Z&sp=rcw\", \"app_insights_instrumentation_key\": \"InstrumentationKey=**data_scrubbed**;IngestionEndpoint=https://eastus-6.in.applicationinsights.azure.com/;LiveEndpoint=https://eastus.livediagnostics.monitor.azure.com/\", \"data_inputs\": {\"data\": \"azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl\"}, \"inputs_mapping\": {\"name\": \"${data.url}\"}, \"azure_storage_setting\": {\"azure_storage_mode\": 1, \"storage_account_name\": \"promptfloweast4063704120\", \"blob_container_name\": \"azureml-blobstore-3e123da1-f9a5-4c91-9234-8d9ffbb39ff5\", \"flow_artifacts_root_path\": \"promptflow/PromptFlowArtifacts/batch_run_name\", \"blob_container_sas_token\": \"?sv=2019-07-07&sr=c&sig=**data_scrubbed**&skoid=55b92eba-d7c7-4afd-ab76-7bb1cd345283&sktid=00000000-0000-0000-0000-000000000000&skt=2024-01-12T07%3A54%3A31Z&ske=2024-01-19T07%3A54%3A31Z&sks=b&skv=2019-07-07&se=2024-01-19T07%3A54%3A31Z&sp=racwl\", \"output_datastore_name\": \"workspaceblobstore\"}}\n2024-01-12 07:54:31 +0000 49 promptflow-runtime INFO Runtime version: 20231204.v4. PromptFlow version: 1.2.0rc1\n2024-01-12 07:54:31 +0000 49 promptflow-runtime INFO Updating batch_run_name to Status.Preparing...\n2024-01-12 07:54:31 +0000 49 promptflow-runtime INFO Downloading snapshot to /mnt/host/service/app/39649/requests/batch_run_name\n2024-01-12 07:54:32 +0000 49 promptflow-runtime INFO Get snapshot sas url for 85a4b96f-edcb-4164-acea-98bd08d40e22...\n2024-01-12 07:54:38 +0000 49 promptflow-runtime INFO Downloading snapshot 85a4b96f-edcb-4164-acea-98bd08d40e22 from uri https://promptfloweast4063704120.blob.core.windows.net/snapshotzips/promptflow-eastus:3e123da1-f9a5-4c91-9234-8d9ffbb39ff5:snapshotzip/85a4b96f-edcb-4164-acea-98bd08d40e22.zip...\n2024-01-12 07:54:38 +0000 49 promptflow-runtime INFO Downloaded file /mnt/host/service/app/39649/requests/batch_run_name/85a4b96f-edcb-4164-acea-98bd08d40e22.zip with size 495 for snapshot 85a4b96f-edcb-4164-acea-98bd08d40e22.\n2024-01-12 07:54:38 +0000 49 promptflow-runtime INFO Download snapshot 85a4b96f-edcb-4164-acea-98bd08d40e22 completed.\n2024-01-12 07:54:38 +0000 49 promptflow-runtime INFO Successfully download snapshot to /mnt/host/service/app/39649/requests/batch_run_name\n2024-01-12 07:54:38 +0000 49 promptflow-runtime INFO About to execute a python flow.\n2024-01-12 07:54:38 +0000 49 promptflow-runtime INFO Use spawn method to start child process.\n2024-01-12 07:54:38 +0000 49 promptflow-runtime INFO Starting to check process 3015 status for run batch_run_name\n2024-01-12 07:54:38 +0000 49 promptflow-runtime INFO Start checking run status for run batch_run_name\n2024-01-12 07:54:42 +0000 3015 promptflow-runtime INFO [49--3015] Start processing flowV2......\n2024-01-12 07:54:42 +0000 3015 promptflow-runtime INFO Runtime version: 20231204.v4. PromptFlow version: 1.2.0rc1\n2024-01-12 07:54:42 +0000 3015 promptflow-runtime INFO Setting mlflow tracking uri...\n2024-01-12 07:54:42 +0000 3015 promptflow-runtime INFO Validating ''AzureML Data Scientist'' user authentication...\n2024-01-12 07:54:43 +0000 3015 promptflow-runtime INFO Successfully validated ''AzureML Data Scientist'' user authentication.\n2024-01-12 07:54:43 +0000 3015 promptflow-runtime INFO Using AzureMLRunStorageV2\n2024-01-12 07:54:43 +0000 3015 promptflow-runtime INFO Setting mlflow tracking uri to ''azureml://eastus.api.azureml.ms/mlflow/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/promptflow-eastus''\n2024-01-12 07:54:43 +0000 3015 promptflow-runtime INFO Initialized blob service client for AzureMLRunTracker.\n2024-01-12 07:54:43 +0000 3015 promptflow-runtime INFO Setting mlflow tracking uri to ''azureml://eastus.api.azureml.ms/mlflow/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/promptflow-eastus''\n2024-01-12 07:54:43 +0000 3015 promptflow-runtime INFO Resolve data from url finished in 0.5407421309500933 seconds\n2024-01-12 07:54:43 +0000 3015 promptflow-runtime INFO Starting the aml run ''batch_run_name''...\n2024-01-12 07:54:44 +0000 3015 execution.bulk INFO Using fork, process count: 3\n2024-01-12 07:54:44 +0000 3062 execution.bulk INFO Process 3062 started.\n2024-01-12 07:54:44 +0000 3056 execution.bulk INFO Process 3056 started.\n2024-01-12 07:54:44 +0000 3015 execution.bulk INFO Process name: ForkProcess-36:3, Process id: 3062, Line number: 0 start execution.\n2024-01-12 07:54:44 +0000 3015 execution.bulk INFO Process name: ForkProcess-36:2, Process id: 3056, Line number: 1 start execution.\n2024-01-12 07:54:44 +0000 3015 execution.bulk INFO Process name: ForkProcess-36:3, Process id: 3062, Line number: 0 completed.\n2024-01-12 07:54:44 +0000 3067 execution.bulk INFO Process 3067 started.\n2024-01-12 07:54:44 +0000 3015 execution.bulk INFO Finished 1 / 3 lines.\n2024-01-12 07:54:44 +0000 3015 execution.bulk INFO Process name: ForkProcess-36:4, Process id: 3067, Line number: 2 start execution.\n2024-01-12 07:54:44 +0000 3015 execution.bulk INFO Average execution time for completed lines: 0.22 seconds. Estimated time for incomplete lines: 0.44 seconds.\n2024-01-12 07:54:44 +0000 3015 execution.bulk INFO Process name: ForkProcess-36:2, Process id: 3056, Line number: 1 completed.\n2024-01-12 07:54:44 +0000 3015 execution.bulk INFO Finished 2 / 3 lines.\n2024-01-12 07:54:44 +0000 3015 execution.bulk INFO Average execution time for completed lines: 0.14 seconds. Estimated time for incomplete lines: 0.14 seconds.\n2024-01-12 07:54:44 +0000 3015 execution.bulk INFO Process name: ForkProcess-36:4, Process id: 3067, Line number: 2 completed.\n2024-01-12 07:54:44 +0000 3015 execution.bulk INFO Finished 3 / 3 lines.\n2024-01-12 07:54:44 +0000 3015 execution.bulk INFO Average execution time for completed lines: 0.12 seconds. Estimated time for incomplete lines: 0.0 seconds.\n2024-01-12 07:54:46 +0000 3015 execution.bulk INFO Upload status summary metrics for run batch_run_name finished in 1.1236545331776142 seconds\n2024-01-12 07:54:46 +0000 3015 promptflow-runtime INFO Successfully write run properties {\"azureml.promptflow.total_tokens\": 0, \"_azureml.evaluate_artifacts\": \"[{\\\"path\\\": \\\"instance_results.jsonl\\\", \\\"type\\\": \\\"table\\\"}]\"} with run id ''batch_run_name''\n2024-01-12 07:54:46 +0000 3015 execution.bulk INFO Upload RH properties for run batch_run_name finished in 0.07583864592015743 seconds\n2024-01-12 07:54:47 +0000 3015 promptflow-runtime INFO Creating unregistered output Asset for Run batch_run_name...\n2024-01-12 07:54:47 +0000 3015 promptflow-runtime INFO Created debug_info Asset: azureml://locations/eastus/workspaces/00000/data/azureml_batch_run_name_output_data_debug_info/versions/1\n2024-01-12 07:54:47 +0000 3015 promptflow-runtime INFO Creating unregistered output Asset for Run batch_run_name...\n2024-01-12 07:54:47 +0000 3015 promptflow-runtime INFO Created flow_outputs output Asset: azureml://locations/eastus/workspaces/00000/data/azureml_batch_run_name_output_data_flow_outputs/versions/1\n2024-01-12 07:54:47 +0000 3015 promptflow-runtime INFO Creating Artifact for Run batch_run_name...\n2024-01-12 07:54:47 +0000 3015 promptflow-runtime INFO Created instance_results.jsonl Artifact.\n2024-01-12 07:54:47 +0000 3015 promptflow-runtime INFO Patching batch_run_name...\n2024-01-12 07:54:47 +0000 3015 promptflow-runtime INFO Ending the aml run ''batch_run_name'' with status ''Completed''...\n2024-01-12 07:54:48 +0000 49 promptflow-runtime INFO Process 3015 finished\n2024-01-12 07:54:49 +0000 49 promptflow-runtime INFO [49] Child process finished!\n2024-01-12 07:54:49 +0000 49 promptflow-runtime INFO [batch_run_name] End processing bulk run\n2024-01-12 07:54:49 +0000 49 promptflow-runtime INFO Cleanup working dir /mnt/host/service/app/39649/requests/batch_run_name for bulk run\n"' headers: connection: - keep-alive content-length: - '9817' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.661' status: code: 200 message: OK version: 1
promptflow/src/promptflow/tests/test_configs/recordings/test_run_operations_TestFlowRun_test_show_run_details.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/recordings/test_run_operations_TestFlowRun_test_show_run_details.yaml", "repo_id": "promptflow", "token_count": 76292 }
70
flow: ../flows/web_classification data: ../datas/webClassification1.jsonl column_mapping: url: "${data.url}" variant: ${summarize_text_content.variant_0} # run config: env related environment_variables: env_file connections: classify_with_llm: connection: new_ai_connection
promptflow/src/promptflow/tests/test_configs/runs/run_with_connections.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/runs/run_with_connections.yaml", "repo_id": "promptflow", "token_count": 106 }
71
inputs: groundtruth: type: string prediction: type: string outputs: grade: type: string reference: ${grade.output} nodes: - name: grade type: python source: type: code path: grade.py inputs: groundtruth: ${inputs.groundtruth} prediction: ${inputs.prediction} - name: calculate_accuracy type: python source: type: code path: calculate_accuracy.py inputs: grades: ${grade.output} aggregation: true - name: test_node type: python source: type: code path: test_node.py inputs: input1: ${calculate_accuracy.output}
promptflow/src/promptflow/tests/test_configs/wrong_flows/non_aggregation_reference_aggregation/flow.dag.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/wrong_flows/non_aggregation_reference_aggregation/flow.dag.yaml", "repo_id": "promptflow", "token_count": 229 }
72
With prompt flow, you can use variants to tune your prompt. In this article, you'll learn the prompt flow variants concept. # Variants A variant refers to a specific version of a tool node that has distinct settings. Currently, variants are supported only in the LLM tool. For example, in the LLM tool, a new variant can represent either a different prompt content or different connection settings. Suppose you want to generate a summary of a news article. You can set different variants of prompts and settings like this: | Variants | Prompt | Connection settings | | --------- | ------------------------------------------------------------ | ------------------- | | Variant 0 | `Summary: {{input sentences}}` | Temperature = 1 | | Variant 1 | `Summary: {{input sentences}}` | Temperature = 0.7 | | Variant 2 | `What is the main point of this article? {{input sentences}}` | Temperature = 1 | | Variant 3 | `What is the main point of this article? {{input sentences}}` | Temperature = 0.7 | By utilizing different variants of prompts and settings, you can explore how the model responds to various inputs and outputs, enabling you to discover the most suitable combination for your requirements. ## Benefits of using variants - **Enhance the quality of your LLM generation**: By creating multiple variants of the same LLM node with diverse prompts and configurations, you can identify the optimal combination that produces high-quality content aligned with your needs. - **Save time and effort**: Even slight modifications to a prompt can yield significantly different results. It's crucial to track and compare the performance of each prompt version. With variants, you can easily manage the historical versions of your LLM nodes, facilitating updates based on any variant without the risk of forgetting previous iterations. This saves you time and effort in managing prompt tuning history. - **Boost productivity**: Variants streamline the optimization process for LLM nodes, making it simpler to create and manage multiple variations. You can achieve improved results in less time, thereby increasing your overall productivity. - **Facilitate easy comparison**: You can effortlessly compare the results obtained from different variants side by side, enabling you to make data-driven decisions regarding the variant that generates the best outcomes. ## Next steps - [Tune prompts with variants](../how-to-guides/tune-prompts-with-variants.md)
promptflow/docs/concepts/concept-variants.md/0
{ "file_path": "promptflow/docs/concepts/concept-variants.md", "repo_id": "promptflow", "token_count": 642 }
0
# Referencing external files/folders in a flow Sometimes, pre-existing code assets are essential for the flow reference. In most cases, you can accomplish this by importing a Python package into your flow. However, if a Python package is not available or it is heavy to create a package, you can still reference external files or folders located outside of the current flow folder by using our **additional includes** feature in your flow configuration. This feature provides an efficient mechanism to list relative file or folder paths that are outside of the flow folder, integrating them seamlessly into your flow.dag.yaml. For example: ```yaml additional_includes: - ../web-classification/classify_with_llm.jinja2 - ../web-classification/convert_to_dict.py - ../web-classification/fetch_text_content_from_url.py - ../web-classification/prepare_examples.py - ../web-classification/summarize_text_content.jinja2 - ../web-classification/summarize_text_content__variant_1.jinja2 ``` You can add this field `additional_includes` into the flow.dag.yaml. The value of this field is a list of the **relative file/folder path** to the flow folder. Just as with the common definition of the tool node entry, you can define the tool node entry in the flow.dag.yaml using only the file name, eliminating the need to specify the relative path again. For example: ```yaml nodes: - name: fetch_text_content_from_url type: python source: type: code path: fetch_text_content_from_url.py inputs: url: ${inputs.url} - name: summarize_text_content use_variants: true - name: prepare_examples type: python source: type: code path: prepare_examples.py inputs: {} ``` The entry file "fetch_text_content_from_url.py" of the tool node "fetch_text_content_from_url" is located in "../web-classification/fetch_text_content_from_url.py", as specified in the additional_includes field. The same applies to the "summarize_text_content" tool nodes. > **Note**: > > 1. If you have two files with the same name located in different folders specified in the `additional_includes` field, and the file name is also specified as the entry of a tool node, the system will reference the **last one** it encounters in the `additional_includes` field. > > 1. If you have a file in the flow folder with the same name as a file specified in the `additional_includes` field, the system will prioritize the file listed in the `additional_includes` field. Take the following YAML structure as an example: ```yaml additional_includes: - ../web-classification/prepare_examples.py - ../tmp/prepare_examples.py ... nodes: - name: summarize_text_content use_variants: true - name: prepare_examples type: python source: type: code path: prepare_examples.py inputs: {} ``` In this case, the system will use "../tmp/prepare_examples.py" as the entry file for the tool node "prepare_examples". Even if there is a file named "prepare_examples.py" in the flow folder, the system will still use the file "../tmp/prepare_examples.py" specified in the `additional_includes` field. > Tips: > The additional includes feature can significantly streamline your workflow by eliminating the need to manually handle these references. > 1. To get a hands-on experience with this feature, practice with our sample [flow-with-additional-includes](https://github.com/microsoft/promptflow/tree/main/examples/flows/standard/flow-with-additional-includes). > 1. You can learn more about [How the 'additional includes' flow operates during the transition to the cloud](../../cloud/azureai/quick-start.md#run-snapshot-of-the-flow-with-additional-includes).
promptflow/docs/how-to-guides/develop-a-flow/referencing-external-files-or-folders-in-a-flow.md/0
{ "file_path": "promptflow/docs/how-to-guides/develop-a-flow/referencing-external-files-or-folders-in-a-flow.md", "repo_id": "promptflow", "token_count": 1053 }
1
# Manage runs :::{admonition} Experimental feature This is an experimental feature, and may change at any time. Learn [more](faq.md#stable-vs-experimental). ::: This documentation will walk you through how to manage your runs with CLI, SDK and VS Code Extension. In general: - For `CLI`, you can run `pf/pfazure run --help` in terminal to see the help messages. - For `SDK`, you can refer to [Promptflow Python Library Reference](../reference/python-library-reference/promptflow.md) and check `PFClient.runs` for more run operations. Let's take a look at the following topics: - [Manage runs](#manage-runs) - [Create a run](#create-a-run) - [Get a run](#get-a-run) - [Show run details](#show-run-details) - [Show run metrics](#show-run-metrics) - [Visualize a run](#visualize-a-run) - [List runs](#list-runs) - [Update a run](#update-a-run) - [Archive a run](#archive-a-run) - [Restore a run](#restore-a-run) - [Delete a run](#delete-a-run) ## Create a run ::::{tab-set} :::{tab-item} CLI :sync: CLI To create a run against bulk inputs, you can write the following YAML file. ```yaml $schema: https://azuremlschemas.azureedge.net/promptflow/latest/Run.schema.json flow: ../web_classification data: ../webClassification1.jsonl column_mapping: url: "${data.url}" variant: ${summarize_text_content.variant_0} ``` To create a run against existing run, you can write the following YAML file. ```yaml $schema: https://azuremlschemas.azureedge.net/promptflow/latest/Run.schema.json flow: ../classification_accuracy_evaluation data: ../webClassification1.jsonl column_mapping: groundtruth: "${data.answer}" prediction: "${run.outputs.category}" run: <existing-flow-run-name> ``` Reference [here](https://aka.ms/pf/column-mapping) for detailed information for column mapping. You can find additional information about flow yaml schema in [Run YAML Schema](../reference/run-yaml-schema-reference.md). After preparing the yaml file, use the CLI command below to create them: ```bash # create the flow run pf run create -f <path-to-flow-run> # create the flow run and stream output pf run create -f <path-to-flow-run> --stream ``` The expected result is as follows if the run is created successfully. ![img](../media/how-to-guides/run_create.png) ::: :::{tab-item} SDK :sync: SDK Using SDK, create `Run` object and submit it with `PFClient`. The following code snippet shows how to import the required class and create the run: ```python from promptflow import PFClient from promptflow.entities import Run # Get a pf client to manage runs pf = PFClient() # Initialize an Run object run = Run( flow="<path-to-local-flow>", # run flow against local data or existing run, only one of data & run can be specified. data="<path-to-data>", run="<existing-run-name>", column_mapping={"url": "${data.url}"}, variant="${summarize_text_content.variant_0}" ) # Create the run result = pf.runs.create_or_update(run) print(result) ``` ::: :::{tab-item} VS Code Extension :sync: VS Code Extension You can click on the actions on the top of the default yaml editor or the visual editor for the flow.dag.yaml files to trigger flow batch runs. ![img](../media/how-to-guides/vscode_batch_run_yaml.png) ![img](../media/how-to-guides/vscode_batch_run_visual.png) ::: :::: ## Get a run ::::{tab-set} :::{tab-item} CLI :sync: CLI Get a run in CLI with JSON format. ```bash pf run show --name <run-name> ``` ![img](../media/how-to-guides/run_show.png) ::: :::{tab-item} SDK :sync: SDK Show run with `PFClient` ```python from promptflow import PFClient # Get a pf client to manage runs pf = PFClient() # Get and print the run run = pf.runs.get(name="<run-name>") print(run) ``` ::: :::{tab-item} VS Code Extension :sync: VSC ![img](../media/how-to-guides/vscode_run_detail.png) ::: :::: ## Show run details ::::{tab-set} :::{tab-item} CLI :sync: CLI Get run details with TABLE format. ```bash pf run show --name <run-name> ``` ![img](../media/how-to-guides/run_show_details.png) ::: :::{tab-item} SDK :sync: SDK Show run details with `PFClient` ```python from promptflow import PFClient from tabulate import tabulate # Get a pf client to manage runs pf = PFClient() # Get and print the run-details run_details = pf.runs.get_details(name="<run-name>") print(tabulate(details.head(max_results), headers="keys", tablefmt="grid")) ``` ::: :::{tab-item} VS Code Extension :sync: VSC ![img](../media/how-to-guides/vscode_run_detail.png) ::: :::: ## Show run metrics ::::{tab-set} :::{tab-item} CLI :sync: CLI Get run metrics with JSON format. ```bash pf run show-metrics --name <run-name> ``` ![img](../media/how-to-guides/run_show_metrics.png) ::: :::{tab-item} SDK :sync: SDK Show run metrics with `PFClient` ```python from promptflow import PFClient import json # Get a pf client to manage runs pf = PFClient() # Get and print the run-metrics run_details = pf.runs.get_metrics(name="<run-name>") print(json.dumps(metrics, indent=4)) ``` ::: :::: ## Visualize a run ::::{tab-set} :::{tab-item} CLI :sync: CLI Visualize run in browser. ```bash pf run visualize --names <run-name> ``` A browser will open and display run outputs. ![img](../media/how-to-guides/run_visualize.png) ::: :::{tab-item} SDK :sync: SDK Visualize run with `PFClient` ```python from promptflow import PFClient # Get a pf client to manage runs pf = PFClient() # Visualize the run client.runs.visualize(runs="<run-name>") ``` ::: :::{tab-item} VS Code Extension :sync: VSC On the VS Code primary sidebar > the prompt flow pane, there is a run list. It will list all the runs on your machine. Select one or more items and click the "visualize" button on the top-right to visualize the local runs. ![img](../media/how-to-guides/vscode_run_actions.png) ::: :::: ## List runs ::::{tab-set} :::{tab-item} CLI :sync: CLI List runs with JSON format. ```bash pf run list ``` ![img](../media/how-to-guides/run_list.png) ::: :::{tab-item} SDK :sync: SDK List with `PFClient` ```python from promptflow import PFClient # Get a pf client to manage runs pf = PFClient() # list runs runs = pf.runs.list() print(runs) ``` ::: :::{tab-item} VS Code Extension :sync: VSC On the VS Code primary sidebar > the prompt flow pane, there is a run list. It will list all the runs on your machine. Hover on it to view more details. ![img](../media/how-to-guides/vscode_list_runs.png) ::: :::: ## Update a run ::::{tab-set} :::{tab-item} CLI :sync: CLI Get run metrics with JSON format. ```bash pf run update --name <run-name> --set display_name=new_display_name ``` ::: :::{tab-item} SDK :sync: SDK Update run with `PFClient` ```python from promptflow import PFClient # Get a pf client to manage runs pf = PFClient() # Get and print the run-metrics run = pf.runs.update(name="<run-name>", display_name="new_display_name") print(run) ``` ::: :::: ## Archive a run ::::{tab-set} :::{tab-item} CLI :sync: CLI Archive the run so it won't show in run list results. ```bash pf run archive --name <run-name> ``` ::: :::{tab-item} SDK :sync: SDK Archive with `PFClient` ```python from promptflow import PFClient # Get a pf client to manage runs pf = PFClient() # archive a run client.runs.archive(name="<run-name>") ``` ::: :::{tab-item} VS Code Extension :sync: VSC ![img](../media/how-to-guides/vscode_run_actions.png) ::: :::: ## Restore a run ::::{tab-set} :::{tab-item} CLI :sync: CLI Restore an archived run so it can show in run list results. ```bash pf run restore --name <run-name> ``` ::: :::{tab-item} SDK :sync: SDK Restore with `PFClient` ```python from promptflow import PFClient # Get a pf client to manage runs pf = PFClient() # restore a run client.runs.restore(name="<run-name>") ``` ::: :::: ## Delete a run ::::{tab-set} :::{tab-item} CLI :sync: CLI Caution: pf run delete is irreversible. This operation will delete the run permanently from your local disk. Both run entity and output data will be deleted. Delete will fail if the run name is not valid. ```bash pf run delete --name <run-name> ``` ::: :::{tab-item} SDK :sync: SDK Delete with `PFClient` ```python from promptflow import PFClient # Get a pf client to manage runs pf = PFClient() # delete a run client.runs.delete(name="run-name") ``` ::: ::::
promptflow/docs/how-to-guides/manage-runs.md/0
{ "file_path": "promptflow/docs/how-to-guides/manage-runs.md", "repo_id": "promptflow", "token_count": 2998 }
2
api_key=<your_api_key>
promptflow/examples/connections/.env.example/0
{ "file_path": "promptflow/examples/connections/.env.example", "repo_id": "promptflow", "token_count": 11 }
3
import sys import os sys.path.append( os.path.join(os.path.dirname(os.path.abspath(__file__)), "chat_with_pdf") )
promptflow/examples/flows/chat/chat-with-pdf/__init__.py/0
{ "file_path": "promptflow/examples/flows/chat/chat-with-pdf/__init__.py", "repo_id": "promptflow", "token_count": 52 }
4
# Azure OpenAI, uncomment below section if you want to use Azure OpenAI # Note: EMBEDDING_MODEL_DEPLOYMENT_NAME and CHAT_MODEL_DEPLOYMENT_NAME are deployment names for Azure OpenAI OPENAI_API_TYPE=azure OPENAI_API_BASE=<your_AOAI_endpoint> OPENAI_API_KEY=<your_AOAI_key> OPENAI_API_VERSION=2023-05-15 EMBEDDING_MODEL_DEPLOYMENT_NAME=text-embedding-ada-002 CHAT_MODEL_DEPLOYMENT_NAME=gpt-4 # OpenAI, uncomment below section if you want to use OpenAI # Note: EMBEDDING_MODEL_DEPLOYMENT_NAME and CHAT_MODEL_DEPLOYMENT_NAME are model names for OpenAI #OPENAI_API_KEY=<your_openai_key> #OPENAI_ORG_ID=<your_openai_org_id> # this is optional #EMBEDDING_MODEL_DEPLOYMENT_NAME=text-embedding-ada-002 #CHAT_MODEL_DEPLOYMENT_NAME=gpt-4 PROMPT_TOKEN_LIMIT=2000 MAX_COMPLETION_TOKENS=1024 CHUNK_SIZE=256 CHUNK_OVERLAP=16 VERBOSE=True
promptflow/examples/flows/chat/chat-with-pdf/chat_with_pdf/.env.example/0
{ "file_path": "promptflow/examples/flows/chat/chat-with-pdf/chat_with_pdf/.env.example", "repo_id": "promptflow", "token_count": 353 }
5
You are able to reason from previous conversation and the recent question, to come up with a rewrite of the question which is concise but with enough information that people without knowledge of previous conversation can understand the question. A few examples: # Example 1 ## Previous conversation user: Who is Bill Clinton? assistant: Bill Clinton is an American politician who served as the 42nd President of the United States from 1993 to 2001. ## Question user: When was he born? ## Rewritten question When was Bill Clinton born? # Example 2 ## Previous conversation user: What is BERT? assistant: BERT stands for "Bidirectional Encoder Representations from Transformers." It is a natural language processing (NLP) model developed by Google. user: What data was used for its training? assistant: The BERT (Bidirectional Encoder Representations from Transformers) model was trained on a large corpus of publicly available text from the internet. It was trained on a combination of books, articles, websites, and other sources to learn the language patterns and relationships between words. ## Question user: What NLP tasks can it perform well? ## Rewritten question What NLP tasks can BERT perform well? Now comes the actual work - please respond with the rewritten question in the same language as the question, nothing else. ## Previous conversation {% for item in history %} {{item["role"]}}: {{item["content"]}} {% endfor %} ## Question {{question}} ## Rewritten question
promptflow/examples/flows/chat/chat-with-pdf/chat_with_pdf/rewrite_question_prompt.md/0
{ "file_path": "promptflow/examples/flows/chat/chat-with-pdf/chat_with_pdf/rewrite_question_prompt.md", "repo_id": "promptflow", "token_count": 342 }
6
$schema: https://azuremlschemas.azureedge.net/promptflow/latest/Flow.schema.json inputs: chat_history: type: list default: [] pdf_url: type: string default: https://arxiv.org/pdf/1810.04805.pdf question: type: string is_chat_input: true default: what is BERT? config: type: object default: EMBEDDING_MODEL_DEPLOYMENT_NAME: text-embedding-ada-002 CHAT_MODEL_DEPLOYMENT_NAME: gpt-4 PROMPT_TOKEN_LIMIT: 3000 MAX_COMPLETION_TOKENS: 1024 VERBOSE: true CHUNK_SIZE: 1024 CHUNK_OVERLAP: 64 outputs: answer: type: string is_chat_output: true reference: ${qna_tool.output.answer} context: type: string reference: ${find_context_tool.output.context} nodes: - name: setup_env type: python source: type: code path: setup_env.py inputs: connection: open_ai_connection config: ${inputs.config} - name: download_tool type: python source: type: code path: download_tool.py inputs: url: ${inputs.pdf_url} env_ready_signal: ${setup_env.output} - name: build_index_tool type: python source: type: code path: build_index_tool.py inputs: pdf_path: ${download_tool.output} - name: find_context_tool type: python source: type: code path: find_context_tool.py inputs: question: ${rewrite_question_tool.output} index_path: ${build_index_tool.output} - name: qna_tool type: python source: type: code path: qna_tool.py inputs: prompt: ${find_context_tool.output.prompt} history: ${inputs.chat_history} - name: rewrite_question_tool type: python source: type: code path: rewrite_question_tool.py inputs: question: ${inputs.question} history: ${inputs.chat_history} env_ready_signal: ${setup_env.output} environment: python_requirements_txt: requirements.txt
promptflow/examples/flows/chat/chat-with-pdf/flow.dag.yaml/0
{ "file_path": "promptflow/examples/flows/chat/chat-with-pdf/flow.dag.yaml", "repo_id": "promptflow", "token_count": 778 }
7
import re import bs4 import requests from promptflow import tool def decode_str(string): return string.encode().decode("unicode-escape").encode("latin1").decode("utf-8") def remove_nested_parentheses(string): pattern = r"\([^()]+\)" while re.search(pattern, string): string = re.sub(pattern, "", string) return string @tool def get_wiki_url(entity: str, count=2): # Send a request to the URL url = f"https://en.wikipedia.org/w/index.php?search={entity}" url_list = [] try: headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) " "Chrome/113.0.0.0 Safari/537.36 Edg/113.0.1774.35" } response = requests.get(url, headers=headers) if response.status_code == 200: # Parse the HTML content using BeautifulSoup soup = bs4.BeautifulSoup(response.text, "html.parser") mw_divs = soup.find_all("div", {"class": "mw-search-result-heading"}) if mw_divs: # mismatch result_titles = [decode_str(div.get_text().strip()) for div in mw_divs] result_titles = [remove_nested_parentheses(result_title) for result_title in result_titles] print(f"Could not find {entity}. Similar entity: {result_titles[:count]}.") url_list.extend( [f"https://en.wikipedia.org/w/index.php?search={result_title}" for result_title in result_titles] ) else: page_content = [p_ul.get_text().strip() for p_ul in soup.find_all("p") + soup.find_all("ul")] if any("may refer to:" in p for p in page_content): url_list.extend(get_wiki_url("[" + entity + "]")) else: url_list.append(url) else: msg = ( f"Get url failed with status code {response.status_code}.\nURL: {url}\nResponse: " f"{response.text[:100]}" ) print(msg) return url_list[:count] except Exception as e: print("Get url failed with error: {}".format(e)) return url_list
promptflow/examples/flows/chat/chat-with-wikipedia/get_wiki_url.py/0
{ "file_path": "promptflow/examples/flows/chat/chat-with-wikipedia/get_wiki_url.py", "repo_id": "promptflow", "token_count": 1054 }
8
{"groundtruth": "Tomorrow's weather will be sunny.","prediction": "The weather will be sunny tomorrow."}
promptflow/examples/flows/evaluation/eval-basic/data.jsonl/0
{ "file_path": "promptflow/examples/flows/evaluation/eval-basic/data.jsonl", "repo_id": "promptflow", "token_count": 25 }
9
# Entity match rate evaluation This is a flow evaluates: entity match rate. Tools used in this flow: - `python` tool ## Prerequisites Install promptflow sdk and other dependencies: ```bash pip install -r requirements.txt ``` ### 1. Test flow/node ```bash # test with default input value in flow.dag.yaml pf flow test --flow . ``` ### 2. create flow run with multi line data ```bash pf run create --flow . --data ./data.jsonl --column-mapping ground_truth='${data.ground_truth}' entities='${data.entities}' --stream ``` You can also skip providing `column-mapping` if provided data has same column name as the flow. Reference [here](https://aka.ms/pf/column-mapping) for default behavior when `column-mapping` not provided in CLI.
promptflow/examples/flows/evaluation/eval-entity-match-rate/README.md/0
{ "file_path": "promptflow/examples/flows/evaluation/eval-entity-match-rate/README.md", "repo_id": "promptflow", "token_count": 227 }
10
from typing import List from promptflow import tool @tool def aggregate(perceived_intelligence_score: List[float]): aggregated_results = {"perceived_intelligence_score": 0.0, "count": 0} # Calculate average perceived_intelligence_score for i in range(len(perceived_intelligence_score)): aggregated_results["perceived_intelligence_score"] += perceived_intelligence_score[i] aggregated_results["count"] += 1 aggregated_results["perceived_intelligence_score"] /= aggregated_results["count"] # Log metric for each variant from promptflow import log_metric log_metric(key="perceived_intelligence_score", value=aggregated_results["perceived_intelligence_score"]) return aggregated_results
promptflow/examples/flows/evaluation/eval-perceived-intelligence/aggregate.py/0
{ "file_path": "promptflow/examples/flows/evaluation/eval-perceived-intelligence/aggregate.py", "repo_id": "promptflow", "token_count": 225 }
11
system: You are an AI assistant. You will be given the definition of an evaluation metric for assessing the quality of an answer in a question-answering task. Your job is to compute an accurate evaluation score using the provided evaluation metric. user: Relevance measures how well the answer addresses the main aspects of the question, based on the context. Consider whether all and only the important aspects are contained in the answer when evaluating relevance. Given the context and question, score the relevance of the answer between one to five stars using the following rating scale: One star: the answer completely lacks relevance Two stars: the answer mostly lacks relevance Three stars: the answer is partially relevant Four stars: the answer is mostly relevant Five stars: the answer has perfect relevance This rating value should always be an integer between 1 and 5. So the rating produced should be 1 or 2 or 3 or 4 or 5. context: Marie Curie was a Polish-born physicist and chemist who pioneered research on radioactivity and was the first woman to win a Nobel Prize. question: What field did Marie Curie excel in? answer: Marie Curie was a renowned painter who focused mainly on impressionist styles and techniques. stars: 1 context: The Beatles were an English rock band formed in Liverpool in 1960, and they are widely regarded as the most influential music band in history. question: Where were The Beatles formed? answer: The band The Beatles began their journey in London, England, and they changed the history of music. stars: 2 context: The recent Mars rover, Perseverance, was launched in 2020 with the main goal of searching for signs of ancient life on Mars. The rover also carries an experiment called MOXIE, which aims to generate oxygen from the Martian atmosphere. question: What are the main goals of Perseverance Mars rover mission? answer: The Perseverance Mars rover mission focuses on searching for signs of ancient life on Mars. stars: 3 context: The Mediterranean diet is a commonly recommended dietary plan that emphasizes fruits, vegetables, whole grains, legumes, lean proteins, and healthy fats. Studies have shown that it offers numerous health benefits, including a reduced risk of heart disease and improved cognitive health. question: What are the main components of the Mediterranean diet? answer: The Mediterranean diet primarily consists of fruits, vegetables, whole grains, and legumes. stars: 4 context: The Queen's Royal Castle is a well-known tourist attraction in the United Kingdom. It spans over 500 acres and contains extensive gardens and parks. The castle was built in the 15th century and has been home to generations of royalty. question: What are the main attractions of the Queen's Royal Castle? answer: The main attractions of the Queen's Royal Castle are its expansive 500-acre grounds, extensive gardens, parks, and the historical castle itself, which dates back to the 15th century and has housed generations of royalty. stars: 5 context: {{context}} question: {{question}} answer: {{answer}} stars:
promptflow/examples/flows/evaluation/eval-qna-non-rag/gpt_relevance_prompt.jinja2/0
{ "file_path": "promptflow/examples/flows/evaluation/eval-qna-non-rag/gpt_relevance_prompt.jinja2", "repo_id": "promptflow", "token_count": 648 }
12
system: Your task is to break down compound sentences into separate sentences. For simple sentences just repeat the user input. Remember to use a json array for the output. user: The output must be a json array. Here are a few examples: user input: Play Eric Clapton and turn down the volume. OUTPUT: ["Play Eric Clapton.","Turn down the volume."] user input: Play some Pink Floyd OUTPUT: ["Play some Pink Floyd."] user input: Change the radio station and turn on the seat heating. OUTPUT: ["Change the radio station.","Turn on the seat heating."] Process the given user input : user input: {{question}} OUTPUT:
promptflow/examples/flows/integrations/azure-ai-language/multi_intent_conversational_language_understanding/chat.jinja2/0
{ "file_path": "promptflow/examples/flows/integrations/azure-ai-language/multi_intent_conversational_language_understanding/chat.jinja2", "repo_id": "promptflow", "token_count": 166 }
13
from bs4 import BeautifulSoup import re import requests def decode_str(string): return string.encode().decode("unicode-escape").encode("latin1").decode("utf-8") def get_page_sentence(page, count: int = 10): # find all paragraphs paragraphs = page.split("\n") paragraphs = [p.strip() for p in paragraphs if p.strip()] # find all sentence sentences = [] for p in paragraphs: sentences += p.split('. ') sentences = [s.strip() + '.' for s in sentences if s.strip()] # get first `count` number of sentences return ' '.join(sentences[:count]) def remove_nested_parentheses(string): pattern = r'\([^()]+\)' while re.search(pattern, string): string = re.sub(pattern, '', string) return string def search(entity: str, count: int = 10): """ The input is an exact entity name. The action will search this entity name on Wikipedia and returns the first count sentences if it exists. If not, it will return some related entities to search next. """ entity_ = entity.replace(" ", "+") search_url = f"https://en.wikipedia.org/w/index.php?search={entity_}" headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) " "Chrome/113.0.0.0 Safari/537.36 Edg/113.0.1774.35" } response_text = requests.get(search_url, headers=headers).text soup = BeautifulSoup(response_text, features="html.parser") result_divs = soup.find_all("div", {"class": "mw-search-result-heading"}) if result_divs: # mismatch result_titles = [decode_str(div.get_text().strip()) for div in result_divs] result_titles = [remove_nested_parentheses(result_title) for result_title in result_titles] obs = f"Could not find {entity}. Similar: {result_titles[:5]}." else: page_content = [p_ul.get_text().strip() for p_ul in soup.find_all("p") + soup.find_all("ul")] if any("may refer to:" in p for p in page_content): obs = search("[" + entity + "]") else: page = "" for content in page_content: if len(content.split(" ")) > 2: page += decode_str(content) if not content.endswith("\n"): page += "\n" obs = get_page_sentence(page, count=count) return obs
promptflow/examples/flows/standard/autonomous-agent/wiki_search.py/0
{ "file_path": "promptflow/examples/flows/standard/autonomous-agent/wiki_search.py", "repo_id": "promptflow", "token_count": 975 }
14
$schema: https://azuremlschemas.azureedge.net/promptflow/latest/Flow.schema.json environment: python_requirements_txt: requirements.txt inputs: text: type: string default: Hello World! outputs: output: type: string reference: ${llm.output} nodes: - name: hello_prompt type: prompt source: type: code path: hello.jinja2 inputs: text: ${inputs.text} - name: llm type: python source: type: code path: hello.py inputs: prompt: ${hello_prompt.output} deployment_name: text-davinci-003 max_tokens: "120"
promptflow/examples/flows/standard/basic/flow.dag.yaml/0
{ "file_path": "promptflow/examples/flows/standard/basic/flow.dag.yaml", "repo_id": "promptflow", "token_count": 230 }
15
from promptflow import tool @tool def class_check(llm_result: str) -> str: intentions_list = ["order_search", "product_info", "product_recommendation"] matches = [intention for intention in intentions_list if intention in llm_result.lower()] return matches[0] if matches else "unknown"
promptflow/examples/flows/standard/conditional-flow-for-switch/class_check.py/0
{ "file_path": "promptflow/examples/flows/standard/conditional-flow-for-switch/class_check.py", "repo_id": "promptflow", "token_count": 91 }
16
This is the docstring style of sphinx: """Description of the function. :param [ParamName]: [ParamDescription](, defaults to [DefaultParamVal].) :type [ParamName]: [ParamType](, optional) ... :raises [ErrorType]: [ErrorDescription] ... :return: [ReturnDescription] :rtype: [ReturnType] """ Note: For custom class types, please use the full path, for example: "~azure.ai.ml.entities._inputs_outputs.Input" is full path for "Input" because of "from azure.ai.ml.entities._inputs_outputs import Input, Output" "~import_node.Import" is full path for "Import" because of "import import_node.Import" Complete function docstring example: from azure.ai.ml.entities._inputs_outputs import Input, Output from azure.ai.ml.constants import JobType def output(input: Input, import_node: Import, startHnd=1, endHnd=None, uuids=None) -> Output: """Create an Output object. :param input: The input object. :type input: ~azure.ai.ml.entities._inputs_outputs.Input :param import_node: The Import object. :type import_node: ~import_node.Import :param startHnd: Start index, defaults to 1 :type startHnd: int, optional :param endHnd: End index, defaults to None :type endHnd: int, optional :return: The Output object. :rtype: ~azure.ai.ml.entities._inputs_outputs.Output """ pass Here's some code for you: {{module}} {{code}} Please follow the sphinx style and refer above complete function docstring example, then output the docstring for the following class/functions. Please replace "{docstring}" with the actual docstring. {% for func in functions %} {{func}} {docstring} pass {% endfor %}
promptflow/examples/flows/standard/gen-docstring/doc_format.jinja2/0
{ "file_path": "promptflow/examples/flows/standard/gen-docstring/doc_format.jinja2", "repo_id": "promptflow", "token_count": 534 }
17
<jupyter_start><jupyter_code># setup pf client and execution path from promptflow import PFClient import json import os pf = PFClient() root = os.path.join(os.getcwd(), "../") flow = os.path.join(root, "maths-to-code") data = os.path.join(flow, "math_data.jsonl") eval_flow = os.path.join(root, "../evaluation/eval-accuracy-maths-to-code") # start batch run of maths-to-code base_run = pf.run( flow = flow, data = data, column_mapping={"math_question": "${data.question}"}, display_name="maths_to_code_batch_run", stream=True ) # Show output of flow run pf.get_details(base_run) # evaluate against the batch run and groundtruth data eval_run = pf.run( flow = eval_flow, data = data, run = base_run, column_mapping={"groundtruth": "${data.answer}", "prediction": "${run.outputs.answer}"}, display_name="maths_to_code_eval_run", stream=True ) pf.get_details(eval_run) # Get metrics of the evaluation flow run pf.get_metrics(eval_run) # Visualize the flow run and evaluation run with HTML pf.visualize([base_run, eval_run])<jupyter_output><empty_output><jupyter_text>Run on AzureIf you want to run and evaluate your flow on Azure, you can using following example to setup your Azure ML workspace<jupyter_code>from azure.identity import DefaultAzureCredential, InteractiveBrowserCredential # init credential try: credential = DefaultAzureCredential() # Check if given credential can get token successfully. credential.get_token("https://management.azure.com/.default") except Exception as ex: # Fall back to InteractiveBrowserCredential in case DefaultAzureCredential not work credential = InteractiveBrowserCredential() from promptflow.azure import PFClient try: pf = PFClient.from_config(credential=credential) except Exception as ex: # NOTE: Update following workspace information if not correctly configure before client_config = { "subscription_id": "<SUBSCRIPTION_ID>", "resource_group": "<RESOURCE_GROUP>", "workspace_name": "<AML_WORKSPACE_NAME>", } if client_config["subscription_id"].startswith("<"): print( "please update your <SUBSCRIPTION_ID> <RESOURCE_GROUP> <AML_WORKSPACE_NAME> in notebook cell" ) raise ex else: # write and reload from config file import json, os config_path = "../.azureml/config.json" os.makedirs(os.path.dirname(config_path), exist_ok=True) with open(config_path, "w") as fo: fo.write(json.dumps(client_config)) pf = PFClient.from_config(credential=credential, path=config_path) print(pf) # NOTE: note that you need to replace <open_ai_connection> and <gpt-35-turbo> with your own connection and deployment name in your Azure Machine Learning workspace connection_mapping = {"code_gen": {"connection": "<my_azure_open_ai_connection>", "deployment_name": "<gpt-35-turbo>"}} # batch run of maths to code base_run = pf.run( flow = flow, data = data, column_mapping = {"math_question": "${data.question}"}, connections = connection_mapping, stream = True, ) # get output of flow run pf.get_details(base_run) # evaluation run against base run eval_run = pf.run( flow = eval_flow, data = data, run = base_run, column_mapping={"groundtruth": "${data.answer}", "prediction": "${run.outputs.answer}"}, stream = True, ) # get output of evaluation run pf.get_details(eval_run) metrics = pf.get_metrics(eval_run) print(json.dumps(metrics, indent=4))<jupyter_output>{ "accuracy": 0.9, "error_rate": 0.1 }
promptflow/examples/flows/standard/maths-to-code/math_test.ipynb/0
{ "file_path": "promptflow/examples/flows/standard/maths-to-code/math_test.ipynb", "repo_id": "promptflow", "token_count": 1340 }
18
my_tool_package.tools.tool_with_file_path_input.my_tool: function: my_tool inputs: input_file: type: - file_path input_text: type: - string module: my_tool_package.tools.tool_with_file_path_input name: Tool with FilePath Input description: This is a tool to demonstrate the usage of FilePath input type: python
promptflow/examples/tools/tool-package-quickstart/my_tool_package/yamls/tool_with_file_path_input.yaml/0
{ "file_path": "promptflow/examples/tools/tool-package-quickstart/my_tool_package/yamls/tool_with_file_path_input.yaml", "repo_id": "promptflow", "token_count": 135 }
19
# Basic flow with tool using a dynamic list input This is a flow demonstrating how to use a tool with a dynamic list input. Tools used in this flow: - `python` Tool Connections used in this flow: - None ## Prerequisites Install promptflow sdk and other dependencies: ```bash pip install -r requirements.txt ``` ## Run flow - Test flow ```bash pf flow test --flow . ```
promptflow/examples/tools/use-cases/dynamic-list-input-tool-showcase/README.md/0
{ "file_path": "promptflow/examples/tools/use-cases/dynamic-list-input-tool-showcase/README.md", "repo_id": "promptflow", "token_count": 111 }
20
from promptflow import tool from promptflow.connections import AzureOpenAIConnection @tool def echo_connection(flow_input: str, node_input: str, connection: AzureOpenAIConnection): print(f"Flow input: {flow_input}") print(f"Node input: {node_input}") print(f"Flow connection: {connection._to_dict()}") # get from env var return {"value": flow_input}
promptflow/examples/tutorials/flow-deploy/create-service-with-flow/echo_connection_flow/echo_connection.py/0
{ "file_path": "promptflow/examples/tutorials/flow-deploy/create-service-with-flow/echo_connection_flow/echo_connection.py", "repo_id": "promptflow", "token_count": 128 }
21
<jupyter_start><jupyter_text>Execute flow as a function**Requirements** - In order to benefit from this tutorial, you will need:- A python environment- Installed prompt flow SDK**Learning Objectives** - By the end of this tutorial, you should be able to:- Execute a flow as a function- Execute a flow function with in-memory connection object override- Execute a flow function with fields override- Execute a flow function with streaming output**Motivations** - This guide will walk you through the main scenarios of executing flow as a function. You will learn how to consume flow as a function in different scenarios for more pythonnic usage. Example1: Load flow as a function with inputs<jupyter_code>from promptflow import load_flow flow_path = "../../flows/standard/web-classification" sample_url = "https://www.youtube.com/watch?v=o5ZQyXaAv1g" f = load_flow(source=flow_path) result = f(url=sample_url) print(result)<jupyter_output><empty_output><jupyter_text>Example2: Load flow as a function with in-memory connection override You will need to have a connection named "new_ai_connection" to run flow with new connection.<jupyter_code># provide parameters to create connection conn_name = "new_ai_connection" api_key = "<user-input>" api_base = "<user-input>" api_version = "<user-input>" # create needed connection import promptflow from promptflow.entities import AzureOpenAIConnection, OpenAIConnection # Follow https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/create-resource?pivots=web-portal to create an Azure Open AI resource. connection = AzureOpenAIConnection( name=conn_name, api_key=api_key, api_base=api_base, api_type="azure", api_version=api_version, ) # use this if you have an existing OpenAI account # connection = OpenAIConnection( # name=conn_name, # api_key=api_key, # ) f = load_flow( source=flow_path, ) # directly use connection created above f.context.connections = {"classify_with_llm": {"connection": connection}} result = f(url=sample_url) print(result)<jupyter_output><empty_output><jupyter_text>Example 3: Local flow as a function with flow inputs override<jupyter_code>from promptflow.entities import FlowContext f = load_flow(source=flow_path) f.context = FlowContext( # node "fetch_text_content_from_url" will take inputs from the following command instead of from flow input overrides={"nodes.fetch_text_content_from_url.inputs.url": sample_url}, ) # the url="unknown" will not take effect result = f(url="unknown") print(result)<jupyter_output><empty_output><jupyter_text>Example 4: Load flow as a function with streaming output<jupyter_code>f = load_flow(source="../../flows/chat/basic-chat") f.context.streaming = True result = f( chat_history=[ { "inputs": {"chat_input": "Hi"}, "outputs": {"chat_output": "Hello! How can I assist you today?"}, } ], question="How are you?", ) answer = "" # the result will be a generator, iterate it to get the result for r in result["answer"]: answer += r print(answer)<jupyter_output><empty_output>
promptflow/examples/tutorials/get-started/flow-as-function.ipynb/0
{ "file_path": "promptflow/examples/tutorials/get-started/flow-as-function.ipynb", "repo_id": "promptflow", "token_count": 1011 }
22
import argparse import json import os import re from datetime import datetime, timedelta from azure.storage.blob import ( AccountSasPermissions, BlobServiceClient, ContentSettings, ResourceTypes, generate_account_sas, ) def get_connection_string(storage_account, storage_key): return f"DefaultEndpointsProtocol=https;AccountName={storage_account};AccountKey={storage_key};EndpointSuffix=core.windows.net" # noqa: E501 def get_object_sas_token(storage_account, storage_key): sas_token = generate_account_sas( account_name=storage_account, account_key=storage_key, resource_types=ResourceTypes(object=True), permission=AccountSasPermissions(read=True), expiry=datetime.utcnow() + timedelta(days=365), ) return sas_token def get_wheel_distribution_name(package_name): """The wheel filename is {distribution}-{version}(-{build tag})?-{python tag}-{abi tag}-{platform tag}.whl. The distribution name is normalized from the package name.""" return package_name.replace(".", "_").replace("-", "_").replace(" ", "_") def package_name_based_blob_prefix(package_name): """Convert package name to a valid blob prefix.""" prefix = package_name.replace(".", "-") prefix = prefix.replace("_", "-") prefix = prefix.lower() return prefix def override_version_with_latest(distribution_name): return re.sub("-([0-9.]*)-", "-latest-", distribution_name, count=1) def publish_package_internal(package_dir_path, storage_key, release_config): index = release_config["index"] index_config = config_json["targets"][index] storage_account = index_config["storage_account"] packages_container = index_config["packages_container"] index_container = index_config["index_container"] blob_prefix = index_config["blob_prefix"] pypi_endpoint = index_config["endpoint"] account_url = f"https://{storage_account}.blob.core.windows.net" wheel_pattern = re.compile(r".+\.whl$") whl_distributions = [d for d in os.listdir(package_dir_path) if wheel_pattern.match(d)] if len(whl_distributions) != 1: print( f"[Error] Found {len(whl_distributions)} wheel distributions in {package_dir_path}. " "There should be exactly one." ) exit(1) whl_distribution = whl_distributions[0] # Create the BlobServiceClient with connection string blob_service_client = BlobServiceClient.from_connection_string(get_connection_string(storage_account, storage_key)) container_client = blob_service_client.get_container_client(packages_container) # Upload the wheel package to blob storage package_blob = os.path.join(blob_prefix, whl_distribution) package_blob_client = blob_service_client.get_blob_client(container=packages_container, blob=package_blob) upload_file_path = os.path.join(package_dir_path, whl_distribution) with open(file=upload_file_path, mode="rb") as package_file: print(f"[Debug] Uploading {whl_distribution} to container: {packages_container}, blob: {package_blob}...") package_blob_client.upload_blob(package_file, overwrite=True) if upload_as_latest: latest_distribution = override_version_with_latest(whl_distribution) latest_package_blob = os.path.join(blob_prefix, latest_distribution) latest_package_blob_client = blob_service_client.get_blob_client( container=packages_container, blob=latest_package_blob ) upload_file_path = os.path.join(package_dir_path, whl_distribution) with open(file=upload_file_path, mode="rb") as package_file: print( f"[Debug] Uploading {whl_distribution} as latest distribution to " f"container: {packages_container}, blob: {latest_package_blob}..." ) latest_package_blob_client.upload_blob(package_file, overwrite=True) # List the blobs and generate download sas urls sas_token = get_object_sas_token(storage_account, storage_key) print(f"Listing wheel packages with prefix {blob_prefix} in container...") blob_list = container_client.list_blobs(name_starts_with=f"{blob_prefix}/") distribution_blobs = [d for d in blob_list if wheel_pattern.match(d.name)] # Reverse the list so that the latest distribution is at the top distribution_blobs.reverse() packages_indexes = {} # {package_name: [distributions]} for blob in distribution_blobs: distribution_name = blob.name.split("/")[-1] package_name = package_name_based_blob_prefix(distribution_name.split("-")[0]) print(f"[Debug] Blob: {blob.name}. Package distribution: {distribution_name}. Package name: {package_name}") download_link = f"{account_url}/{blob.container}/{blob.name}?{sas_token}" index_item = f"<a href='{download_link}' rel='external'>{distribution_name}</a><br/>" if package_name in packages_indexes: packages_indexes[package_name].append(index_item) else: packages_indexes[package_name] = [index_item] # Update index.html in the top level blob prefix for the project project_index_file = "project_index.html" with open(project_index_file, "w", encoding="utf8") as index_file: index_file.write("<!DOCTYPE html>\n") index_file.write( "<html lang='en'><head><meta charset='utf-8'>" "<meta name='api-version' value='2'/>" "<title>Simple Index</title></head><body>\n" ) for package_name in packages_indexes: package_index_url = f"https://{pypi_endpoint}/{blob_prefix}/{package_name}" print(f"[Debug] Updated package_index_url: {package_index_url}") index_file.write(f"<a href='{package_index_url}'>{package_name}</a><br/>\n") index_file.write("</body></html>\n") project_index_blob = os.path.join(blob_prefix, "index.html") project_index_blob_client = blob_service_client.get_blob_client(container=index_container, blob=project_index_blob) content_settings = ContentSettings(content_type="text/html") with open(file=project_index_file, mode="rb") as index: print(f"Uploading {project_index_file} to container: {index_container}, blob: {project_index_blob}...") project_index_blob_client.upload_blob(index, overwrite=True, content_settings=content_settings) # Update index.html for the package distributions for package_name, distribution_indexes in packages_indexes.items(): package_index_file = f"{package_name}_index.html" if len(distribution_indexes) > 0: print(f"{len(distribution_indexes)} distributions found for package {package_name}. Updating index.html...") with open(package_index_file, "w", encoding="utf8") as index_file: index_file.write("<!DOCTYPE html>\n") index_file.write( f"<html lang='en'><head><meta charset='utf-8'><title>{package_name}</title></head><body>\n" ) for item in distribution_indexes: index_file.write(f"{item}\n") index_file.write("</body></html>\n") # Update the index.html to the blob with prefix: <blob_prefix>/<normalized package_name> index_blob = os.path.join(blob_prefix, package_name, "index.html") index_blob_client = blob_service_client.get_blob_client(container=index_container, blob=index_blob) content_settings = ContentSettings(content_type="text/html") with open(file=package_index_file, mode="rb") as index: print(f"Uploading {package_index_file} to container: {index_container}, blob: {index_blob}...") index_blob_client.upload_blob(index, overwrite=True, content_settings=content_settings) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--config", type=str) parser.add_argument("--src_folder_name", type=str) parser.add_argument("--package_dir_path", type=str) parser.add_argument("--storage_key", type=str) parser.add_argument("--upload_as_latest", type=str, default="False") parser.add_argument("--pypi_type", type=str, default="internal") # internal or public pypi parser.add_argument("--release_type", type=str, default="release") # release or test args = parser.parse_args() print("[Debug] Arguments:") print(f"[Debug] config: {args.config}") print(f"[Debug] src_folder_name: {args.src_folder_name}") print(f"[Debug] package_dir_path: {args.package_dir_path}") upload_as_latest = args.upload_as_latest.lower() == "true" print(f"[Debug] upload_as_latest: {args.upload_as_latest}. Boolean upload_as_latest: {upload_as_latest}") print(f"[Debug] pypi_type: {args.pypi_type}") print(f"[Debug] release_type: {args.release_type}") cwd = os.getcwd() print(f"Current working directory: {cwd}") with open(os.path.join(os.getcwd(), args.config), "r") as config_file: config_json = json.load(config_file) package_dir_path = os.path.join(cwd, args.package_dir_path) release_config = config_json["releases"][args.pypi_type][f"{args.src_folder_name}-{args.release_type}"] if args.pypi_type == "internal": publish_package_internal(package_dir_path, args.storage_key, release_config)
promptflow/scripts/distributing/publish_package.py/0
{ "file_path": "promptflow/scripts/distributing/publish_package.py", "repo_id": "promptflow", "token_count": 3675 }
23
<?xml version="1.0" encoding="utf-8"?> <Project ToolsVersion="4.0" DefaultTargets="Build" xmlns="http://schemas.microsoft.com/developer/msbuild/2003"> <!-- Project --> <PropertyGroup> <Configuration Condition=" '$(Configuration)' == '' ">Debug</Configuration> <Platform Condition=" '$(Platform)' == '' ">x86</Platform> <ProductVersion>3.10</ProductVersion> <ProjectGuid>04ff6707-750d-4474-89b3-7922c84721be</ProjectGuid> <SchemaVersion>2.0</SchemaVersion> <OutputName>promptflow-$(env.CLI_VERSION)</OutputName> <OutputType>Package</OutputType> <WixTargetsPath Condition=" '$(WixTargetsPath)' == '' AND '$(MSBuildExtensionsPath32)' != '' ">$(MSBuildExtensionsPath32)\Microsoft\WiX\v3.x\Wix.targets</WixTargetsPath> <WixTargetsPath Condition=" '$(WixTargetsPath)' == '' ">$(MSBuildExtensionsPath)\Microsoft\WiX\v3.x\Wix.targets</WixTargetsPath> </PropertyGroup> <!-- Local WiX --> <PropertyGroup> <LocalWixRoot>wix</LocalWixRoot> <WixToolPath>$(MSBuildThisFileDirectory)$(LocalWixRoot)</WixToolPath> <WixTargetsPath Condition="Exists('$(WixToolPath)\Wix.targets')">$(WixToolPath)\Wix.targets</WixTargetsPath> <WixTasksPath Condition="Exists('$(WixToolPath)\wixtasks.dll')">$(WixToolPath)\wixtasks.dll</WixTasksPath> <PromptflowSource>scripts\dist\promptflow</PromptflowSource> <LinkerAdditionalOptions>-fv</LinkerAdditionalOptions> </PropertyGroup> <PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Debug|x86' "> <OutputPath>out\$(Configuration)\</OutputPath> <IntermediateOutputPath>out\obj\$(Configuration)\</IntermediateOutputPath> <DefineConstants>Debug;PromptflowSource=$(PromptflowSource)</DefineConstants> </PropertyGroup> <PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Release|x86' "> <OutputPath>out\</OutputPath> <IntermediateOutputPath>out\obj\$(Configuration)\</IntermediateOutputPath> <DefineConstants>PromptflowSource=$(PromptflowSource)</DefineConstants> </PropertyGroup> <PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Debug|x64' "> <OutputPath>out\$(Configuration)\</OutputPath> <IntermediateOutputPath>out\obj\$(Configuration)\</IntermediateOutputPath> <DefineConstants>Debug;PromptflowSource=$(PromptflowSource)</DefineConstants> </PropertyGroup> <PropertyGroup Condition=" '$(Configuration)|$(Platform)' == 'Release|x64' "> <OutputPath>out\</OutputPath> <IntermediateOutputPath>out\obj\$(Configuration)\</IntermediateOutputPath> <DefineConstants>PromptflowSource=$(PromptflowSource)</DefineConstants> </PropertyGroup> <ItemGroup> <Compile Include="out\promptflow.wxs"> <Link>promptflow.wxs</Link> </Compile> <Compile Include="product.wxs" /> </ItemGroup> <ItemGroup> <None Include=".\resources\logo_pf.png" /> </ItemGroup> <!-- UI --> <ItemGroup> <WixExtension Include="WixUIExtension"> <HintPath>$(WixExtDir)\WixUIExtension.dll</HintPath> <Name>WixUIExtension</Name> </WixExtension> <WixExtension Include="WixUtilExtension"> <HintPath>$(WixExtDir)\WixUtilExtension.dll</HintPath> <Name>WixUtilExtension</Name> </WixExtension> </ItemGroup> <Import Project="$(WixTargetsPath)" Condition=" '$(WixTargetsPath)' != '' " /> <Import Project="$(MSBuildExtensionsPath32)\Microsoft\WiX\v3.x\wix.targets" Condition=" '$(WixTargetsPath)' == '' AND Exists('$(MSBuildExtensionsPath32)\Microsoft\WiX\v3.x\wix.targets') " /> <Target Name="EnsureWixToolsetInstalled" Condition=" '$(WixTargetsImported)' != 'true' "> <Error Text="The WiX Toolset v3.10 build tools must be installed to build this project. To download the WiX Toolset, see https://wixtoolset.org/releases/v3.10/stable" /> </Target> <Target Name="BeforeBuild"> <HeatDirectory Directory="$(PromptflowSource)" ToolPath="$(WixToolPath)" AutogenerateGuids="true" ComponentGroupName="PromptflowCliComponentGroup" SuppressRootDirectory="true" DirectoryRefId="APPLICATIONFOLDER" OutputFile="out\promptflow.wxs" PreprocessorVariable="var.PromptflowSource" /> </Target> </Project>
promptflow/scripts/installer/windows/promptflow.wixproj/0
{ "file_path": "promptflow/scripts/installer/windows/promptflow.wixproj", "repo_id": "promptflow", "token_count": 1537 }
24
import argparse from pathlib import Path from jinja2 import Environment, FileSystemLoader from ghactions_driver.readme_parse import readme_parser from ghactions_driver.readme_step import ReadmeStepsManage def write_readme_shell(readme_path: str, output_folder: str): full_text = readme_parser(readme_path) Path(ReadmeStepsManage.git_base_dir()) bash_script_path = ( Path(ReadmeStepsManage.git_base_dir()) / output_folder / "bash_script.sh" ) template_env = Environment( loader=FileSystemLoader( Path(ReadmeStepsManage.git_base_dir()) / "scripts/readme/ghactions_driver/bash_script" ) ) bash_script_template = template_env.get_template("bash_script.sh.jinja2") with open(bash_script_path, "w") as f: f.write(bash_script_template.render({"command": full_text})) if __name__ == "__main__": # setup argparse parser = argparse.ArgumentParser() parser.add_argument( "-f", "--readme-file", help="Input README.md example 'examples/flows/standard/basic/README.md'", ) parser.add_argument( "-o", "--output-folder", help="Output folder for bash_script.sh example 'examples/flows/standard/basic/'", ) args = parser.parse_args() write_readme_shell(args.readme_file, args.output_folder)
promptflow/scripts/readme/extract_steps_from_readme.py/0
{ "file_path": "promptflow/scripts/readme/extract_steps_from_readme.py", "repo_id": "promptflow", "token_count": 549 }
25
- name: {{ step_name }} working-directory: examples run: | if [[ -e requirements.txt ]]; then python -m pip install --upgrade pip pip install -r requirements.txt fi
promptflow/scripts/readme/ghactions_driver/workflow_steps/step_install_deps.yml.jinja2/0
{ "file_path": "promptflow/scripts/readme/ghactions_driver/workflow_steps/step_install_deps.yml.jinja2", "repo_id": "promptflow", "token_count": 67 }
26
from promptflow import ToolProvider, tool import urllib.request class {{ class_name }}(ToolProvider): def __init__(self, url: str): super().__init__() # Load content from url might be slow, so we do it in __init__ method to make sure it is loaded only once. self.content = urllib.request.urlopen(url).read() @tool def {{ function_name }}(self, query: str) -> str: # Replace with your tool code. return "Hello " + query
promptflow/scripts/tool/templates/tool2.py.j2/0
{ "file_path": "promptflow/scripts/tool/templates/tool2.py.j2", "repo_id": "promptflow", "token_count": 171 }
27
# Development Guide ## Prerequisites ```bash pip install -r requirements.txt pip install pytest pytest-mock ``` ## Run tests - Create connection config file by `cp connections.json.example connections.json`. - Fill in fields manually in `connections.json`. - `cd tests` and run `pytest -s -v` to run all tests. ## Run tests in CI Use this [workflow](https://github.com/microsoft/promptflow/actions/workflows/tools_secret_upload.yml) to upload secrets in key vault. The secrets you uploaded would be used in [tools tests](https://github.com/microsoft/promptflow/actions/workflows/tools_tests.yml). Note that you only need to upload the SECRETS. > [!NOTE] After triggering the workflow, kindly request approval from Promptflow Support before proceeding further. ## PR check-in criteria Here's a friendly heads-up! We've got some criteria for you to self-review your code changes. It's a great way to double-check your work and make sure everything is in order before you share it. Happy coding! ### Maintain code quality The code you submit in your pull request should adhere to the following guidelines: - **Maintain clean code**: The code should be clean, easy to understand, and well-structured to promote readability and maintainability. - **Comment on your code**: Use comments to explain the purpose of certain code segments, particularly complex or non-obvious ones. This assists other developers in understanding your work. - **Correct typos and grammatical errors**: Ensure that the code and file names are free from spelling mistakes and grammatical errors. This enhances the overall presentation and clarity of your code. - **Avoid hard-coded values**: It is best to avoid hard-coding values unless absolutely necessary. Instead, use variables, constants, or configuration files, which can be easily modified without changing the source code. - **Prevent code duplication**: Modify the original code to be more general instead of duplicating it. Code duplication can lead to longer, more complex code that is harder to maintain. - **Implement effective error handling**: Good error handling is critical for troubleshooting customer issues and analyzing key metrics. Follow the guidelines provided in the [Error Handling Guideline](https://msdata.visualstudio.com/Vienna/_git/PromptFlow?path=/docs/error_handling_guidance.md&_a=preview) and reference the [exception.py](https://github.com/microsoft/promptflow/blob/main/src/promptflow-tools/promptflow/tools/exception.py) file for examples. ### Ensure high test coverage Test coverage is crucial for maintaining code quality. Please adhere to the following guidelines: - **Comprehensive Testing**: Include unit tests and e2e tests for any new functionality introduced. - **Exception Testing**: Make sure to incorporate unit tests for all exceptions. These tests should verify error codes, error messages, and other important values. For reference, you can check out [TestHandleOpenAIError](https://github.com/microsoft/promptflow/blob/main/src/promptflow-tools/tests/test_handle_openai_error.py). - **VSCode Testing**: If you're adding a new built-in tool, make sure to test your tool within the VSCode environment prior to submitting your PR. For more guidance on this, refer to [Use your tool from VSCode Extension](https://github.com/microsoft/promptflow/blob/main/docs/how-to-guides/develop-a-tool/create-and-use-tool-package.md#use-your-tool-from-vscode-extension). ### Add documents Ensure to include documentation for your new built-in tool, following the guidelines below: - **Error-Free Content**: Rectify all typographical and grammatical errors in the documentation. This will ensure clarity and readability. - **Code Alignment**: The documentation should accurately reflect the current state of your code. Ensure that all described functionalities and behaviors match with your implemented code. - **Functional Links**: Verify that all embedded links within the documentation are functioning properly, leading to the correct resources or references.
promptflow/src/promptflow-tools/README.dev.md/0
{ "file_path": "promptflow/src/promptflow-tools/README.dev.md", "repo_id": "promptflow", "token_count": 991 }
28
promptflow.tools.aoai_gpt4v.AzureOpenAI.chat: name: Azure OpenAI GPT-4 Turbo with Vision description: Use Azure OpenAI GPT-4 Turbo with Vision to leverage AOAI vision ability. type: custom_llm module: promptflow.tools.aoai_gpt4v class_name: AzureOpenAI function: chat tool_state: preview icon: light:  dark:  default_prompt: | # system: As an AI assistant, your task involves interpreting images and responding to questions about the image. Remember to provide accurate answers based on the information present in the image. # user: Can you tell me what the image depicts? ![image]({{image_input}}) inputs: connection: type: - AzureOpenAIConnection deployment_name: type: - string temperature: default: 1 type: - double top_p: default: 1 type: - double max_tokens: default: 512 type: - int stop: default: "" type: - list presence_penalty: default: 0 type: - double frequency_penalty: default: 0 type: - double
promptflow/src/promptflow-tools/promptflow/tools/yamls/aoai_gpt4v.yaml/0
{ "file_path": "promptflow/src/promptflow-tools/promptflow/tools/yamls/aoai_gpt4v.yaml", "repo_id": "promptflow", "token_count": 1018 }
29
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import argparse import json import re import shutil from pathlib import Path from promptflow._cli._params import add_param_set_tool_extra_info, base_params from promptflow._cli._pf._init_entry_generators import ( InitGenerator, SetupGenerator, ToolPackageGenerator, ToolPackageUtilsGenerator, ToolReadmeGenerator, ) from promptflow._cli._utils import activate_action, exception_handler, list_of_dict_to_dict from promptflow._sdk._constants import DEFAULT_ENCODING from promptflow._sdk._pf_client import PFClient from promptflow._utils.logger_utils import get_cli_sdk_logger from promptflow.exceptions import UserErrorException logger = get_cli_sdk_logger() def add_tool_parser(subparsers): """Add flow parser to the pf subparsers.""" tool_parser = subparsers.add_parser( "tool", description="Manage tools for promptflow.", help="pf tool", ) subparsers = tool_parser.add_subparsers() add_parser_init_tool(subparsers) add_parser_list_tool(subparsers) add_parser_validate_tool(subparsers) tool_parser.set_defaults(action="tool") def add_parser_init_tool(subparsers): """Add tool init parser to the pf tool subparsers.""" epilog = """ Examples: # Creating a package tool from scratch: pf tool init --package package_tool --tool tool_name # Creating a package tool with extra info: pf tool init --package package_tool --tool tool_name --set icon=<icon-path> category=<category> # Creating a python tool from scratch: pf tool init --tool tool_name """ # noqa: E501 add_param_package = lambda parser: parser.add_argument( # noqa: E731 "--package", type=str, help="The package name to create." ) add_param_tool = lambda parser: parser.add_argument( # noqa: E731 "--tool", type=str, required=True, help="The tool name to create." ) add_params = [ add_param_package, add_param_tool, add_param_set_tool_extra_info, ] + base_params return activate_action( name="init", description="Creating a tool.", epilog=epilog, add_params=add_params, subparsers=subparsers, help_message="Initialize a tool directory.", action_param_name="sub_action", ) def add_parser_list_tool(subparsers): """Add tool list parser to the pf tool subparsers.""" epilog = """ Examples: # List all package tool in the environment: pf tool list # List all package tool and code tool in the flow: pf tool list --flow flow-path """ # noqa: E501 add_param_flow = lambda parser: parser.add_argument("--flow", type=str, help="the flow directory") # noqa: E731 add_params = [ add_param_flow, ] + base_params return activate_action( name="list", description="List tools.", epilog=epilog, add_params=add_params, subparsers=subparsers, help_message="List all tools in the environment.", action_param_name="sub_action", ) def add_parser_validate_tool(subparsers): """Add tool list parser to the pf tool subparsers.""" epilog = """ Examples: # Validate single function tool: pf tool validate -–source <package_name>.<module_name>.<tool_function> # Validate all tool in a package tool: pf tool validate -–source <package_name> # Validate tools in a python script: pf tool validate --source <path_to_tool_script> """ # noqa: E501 def add_param_source(parser): parser.add_argument("--source", type=str, help="The tool source to be used.", required=True) return activate_action( name="validate", description="Validate tool.", epilog=epilog, add_params=[ add_param_source, ], subparsers=subparsers, help_message="Validate tool. Will raise error if it is not valid.", action_param_name="sub_action", ) def dispatch_tool_commands(args: argparse.Namespace): if args.sub_action == "init": init_tool(args) elif args.sub_action == "list": list_tool(args) elif args.sub_action == "validate": validate_tool(args) @exception_handler("Tool init") def init_tool(args): # Validate package/tool name pattern = r"^[a-zA-Z_][a-zA-Z0-9_]*$" if args.package and not re.match(pattern, args.package): raise UserErrorException(f"The package name {args.package} is a invalid identifier.") if not re.match(pattern, args.tool): raise UserErrorException(f"The tool name {args.tool} is a invalid identifier.") print("Creating tool from scratch...") extra_info = list_of_dict_to_dict(args.extra_info) icon_path = extra_info.pop("icon", None) if icon_path and not Path(icon_path).exists(): raise UserErrorException(f"Cannot find the icon path {icon_path}.") if args.package: package_path = Path(args.package) package_name = package_path.stem script_code_path = package_path / package_name script_code_path.mkdir(parents=True, exist_ok=True) # Generate manifest file manifest_file = package_path / "MANIFEST.in" manifest_file.touch(exist_ok=True) with open(manifest_file, "r") as f: manifest_contents = [line.strip() for line in f.readlines()] if icon_path: package_icon_path = package_path / "icons" package_icon_path.mkdir(exist_ok=True) dst = shutil.copy2(icon_path, package_icon_path) icon_path = f'Path(__file__).parent.parent / "icons" / "{Path(dst).name}"' icon_manifest = f"include {package_name}/icons" if icon_manifest not in manifest_contents: manifest_contents.append(icon_manifest) with open(manifest_file, "w", encoding=DEFAULT_ENCODING) as f: f.writelines("\n".join(set(manifest_contents))) # Generate package setup.py SetupGenerator(package_name=package_name, tool_name=args.tool).generate_to_file(package_path / "setup.py") # Generate utils.py to list meta data of tools. ToolPackageUtilsGenerator(package_name=package_name).generate_to_file(script_code_path / "utils.py") ToolReadmeGenerator(package_name=package_name, tool_name=args.tool).generate_to_file(package_path / "README.md") else: script_code_path = Path(".") if icon_path: icon_path = f'"{Path(icon_path).as_posix()}"' # Generate tool script ToolPackageGenerator(tool_name=args.tool, icon=icon_path, extra_info=extra_info).generate_to_file( script_code_path / f"{args.tool}.py" ) InitGenerator().generate_to_file(script_code_path / "__init__.py") print(f'Done. Created the tool "{args.tool}" in {script_code_path.resolve()}.') @exception_handler("Tool list") def list_tool(args): pf_client = PFClient() package_tools = pf_client._tools.list(args.flow) print(json.dumps(package_tools, indent=4)) @exception_handler("Tool validate") def validate_tool(args): import importlib pf_client = PFClient() try: __import__(args.source) source = importlib.import_module(args.source) logger.debug(f"The source {args.source} is used as a package to validate.") except ImportError: try: module_name, func_name = args.source.rsplit(".", 1) module = importlib.import_module(module_name) source = getattr(module, func_name) logger.debug(f"The source {args.source} is used as a function to validate.") except Exception: if not Path(args.source).exists(): raise UserErrorException("Invalid source to validate tools.") logger.debug(f"The source {args.source} is used as a script to validate.") source = args.source validation_result = pf_client._tools.validate(source) print(repr(validation_result)) if not validation_result.passed: exit(1)
promptflow/src/promptflow/promptflow/_cli/_pf/_tool.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_cli/_pf/_tool.py", "repo_id": "promptflow", "token_count": 3192 }
30
$schema: https://azuremlschemas.azureedge.net/promptflow/latest/Flow.schema.json inputs: chat_history: type: list is_chat_history: true default: [] question: type: string is_chat_input: true outputs: answer: type: string reference: ${chat.output} is_chat_output: true nodes: - name: chat type: llm source: type: code path: chat.jinja2 inputs: deployment_name: {{ deployment }} max_tokens: '256' temperature: '0.7' chat_history: ${inputs.chat_history} question: ${inputs.question} api: chat connection: {{ connection }} environment: python_requirements_txt: requirements.txt
promptflow/src/promptflow/promptflow/_cli/data/chat_flow/template/flow.dag.yaml.jinja2/0
{ "file_path": "promptflow/src/promptflow/promptflow/_cli/data/chat_flow/template/flow.dag.yaml.jinja2", "repo_id": "promptflow", "token_count": 257 }
31
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import asyncio import functools import importlib import inspect import logging import os from datetime import datetime from importlib.metadata import version import openai from promptflow._core.operation_context import OperationContext from promptflow.contracts.trace import Trace, TraceType from .tracer import Tracer USER_AGENT_HEADER = "x-ms-useragent" PROMPTFLOW_PREFIX = "ms-azure-ai-promptflow-" IS_LEGACY_OPENAI = version("openai").startswith("0.") def inject_function_async(args_to_ignore=None, trace_type=TraceType.LLM): args_to_ignore = args_to_ignore or [] args_to_ignore = set(args_to_ignore) def wrapper(f): sig = inspect.signature(f).parameters @functools.wraps(f) async def wrapped_method(*args, **kwargs): if not Tracer.active(): return await f(*args, **kwargs) all_kwargs = {**{k: v for k, v in zip(sig.keys(), args)}, **kwargs} for key in args_to_ignore: all_kwargs.pop(key, None) name = f.__qualname__ if not f.__module__ else f.__module__ + "." + f.__qualname__ trace = Trace( name=name, type=trace_type, inputs=all_kwargs, start_time=datetime.utcnow().timestamp(), ) Tracer.push(trace) try: result = await f(*args, **kwargs) except Exception as ex: Tracer.pop(error=ex) raise else: result = Tracer.pop(result) return result return wrapped_method return wrapper def inject_function_sync(args_to_ignore=None, trace_type=TraceType.LLM): args_to_ignore = args_to_ignore or [] args_to_ignore = set(args_to_ignore) def wrapper(f): sig = inspect.signature(f).parameters @functools.wraps(f) def wrapped_method(*args, **kwargs): if not Tracer.active(): return f(*args, **kwargs) all_kwargs = {**{k: v for k, v in zip(sig.keys(), args)}, **kwargs} for key in args_to_ignore: all_kwargs.pop(key, None) name = f.__qualname__ if not f.__module__ else f.__module__ + "." + f.__qualname__ trace = Trace( name=name, type=trace_type, inputs=all_kwargs, start_time=datetime.utcnow().timestamp(), ) Tracer.push(trace) try: result = f(*args, **kwargs) except Exception as ex: Tracer.pop(error=ex) raise else: result = Tracer.pop(result) return result return wrapped_method return wrapper def get_aoai_telemetry_headers() -> dict: """Get the http headers for AOAI request. The header, whose name starts with "ms-azure-ai-" or "x-ms-", is used to track the request in AOAI. The value in this dict will be recorded as telemetry, so please do not put any sensitive information in it. Returns: A dictionary of http headers. """ # get promptflow info from operation context operation_context = OperationContext.get_instance() context_info = operation_context.get_context_dict() promptflow_info = {k.replace("_", "-"): v for k, v in context_info.items()} # init headers headers = {USER_AGENT_HEADER: operation_context.get_user_agent()} # update header with promptflow info headers.update({f"{PROMPTFLOW_PREFIX}{k}": str(v) if v is not None else "" for k, v in promptflow_info.items()}) return headers def inject_operation_headers(f): def inject_headers(kwargs): # Inject headers from operation context, overwrite injected header with headers from kwargs. injected_headers = get_aoai_telemetry_headers() original_headers = kwargs.get("headers" if IS_LEGACY_OPENAI else "extra_headers") if original_headers and isinstance(original_headers, dict): injected_headers.update(original_headers) kwargs["headers" if IS_LEGACY_OPENAI else "extra_headers"] = injected_headers if asyncio.iscoroutinefunction(f): @functools.wraps(f) async def wrapper(*args, **kwargs): inject_headers(kwargs) return await f(*args, **kwargs) else: @functools.wraps(f) def wrapper(*args, **kwargs): inject_headers(kwargs) return f(*args, **kwargs) return wrapper def inject_async(f): wrapper_fun = inject_operation_headers((inject_function_async(["api_key", "headers", "extra_headers"])(f))) wrapper_fun._original = f return wrapper_fun def inject_sync(f): wrapper_fun = inject_operation_headers((inject_function_sync(["api_key", "headers", "extra_headers"])(f))) wrapper_fun._original = f return wrapper_fun def _openai_api_list(): if IS_LEGACY_OPENAI: sync_apis = ( ("openai", "Completion", "create"), ("openai", "ChatCompletion", "create"), ("openai", "Embedding", "create"), ) async_apis = ( ("openai", "Completion", "acreate"), ("openai", "ChatCompletion", "acreate"), ("openai", "Embedding", "acreate"), ) else: sync_apis = ( ("openai.resources.chat", "Completions", "create"), ("openai.resources", "Completions", "create"), ("openai.resources", "Embeddings", "create"), ) async_apis = ( ("openai.resources.chat", "AsyncCompletions", "create"), ("openai.resources", "AsyncCompletions", "create"), ("openai.resources", "AsyncEmbeddings", "create"), ) yield sync_apis, inject_sync yield async_apis, inject_async def _generate_api_and_injector(apis): for apis, injector in apis: for module_name, class_name, method_name in apis: try: module = importlib.import_module(module_name) api = getattr(module, class_name) if hasattr(api, method_name): yield api, method_name, injector except AttributeError as e: # Log the attribute exception with the missing class information logging.warning( f"AttributeError: The module '{module_name}' does not have the class '{class_name}'. {str(e)}" ) except Exception as e: # Log other exceptions as a warning, as we're not sure what they might be logging.warning(f"An unexpected error occurred: {str(e)}") def available_openai_apis_and_injectors(): """ Generates a sequence of tuples containing OpenAI API classes, method names, and corresponding injector functions based on whether the legacy OpenAI interface is used. This function handles the discrepancy reported in https://github.com/openai/openai-python/issues/996, where async interfaces were not recognized as coroutines. It ensures that decorators are applied correctly to both synchronous and asynchronous methods. Yields: Tuples of (api_class, method_name, injector_function) """ yield from _generate_api_and_injector(_openai_api_list()) def inject_openai_api(): """This function: 1. Modifies the create methods of the OpenAI API classes to inject logic before calling the original methods. It stores the original methods as _original attributes of the create methods. 2. Updates the openai api configs from environment variables. """ for api, method, injector in available_openai_apis_and_injectors(): # Check if the create method of the openai_api class has already been modified if not hasattr(getattr(api, method), "_original"): setattr(api, method, injector(getattr(api, method))) if IS_LEGACY_OPENAI: # For the openai versions lower than 1.0.0, it reads api configs from environment variables only at # import time. So we need to update the openai api configs from environment variables here. # Please refer to this issue: https://github.com/openai/openai-python/issues/557. # The issue has been fixed in openai>=1.0.0. openai.api_key = os.environ.get("OPENAI_API_KEY", openai.api_key) openai.api_key_path = os.environ.get("OPENAI_API_KEY_PATH", openai.api_key_path) openai.organization = os.environ.get("OPENAI_ORGANIZATION", openai.organization) openai.api_base = os.environ.get("OPENAI_API_BASE", openai.api_base) openai.api_type = os.environ.get("OPENAI_API_TYPE", openai.api_type) openai.api_version = os.environ.get("OPENAI_API_VERSION", openai.api_version) def recover_openai_api(): """This function restores the original create methods of the OpenAI API classes by assigning them back from the _original attributes of the modified methods. """ for api, method, _ in available_openai_apis_and_injectors(): if hasattr(getattr(api, method), "_original"): setattr(api, method, getattr(getattr(api, method), "_original"))
promptflow/src/promptflow/promptflow/_core/openai_injector.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_core/openai_injector.py", "repo_id": "promptflow", "token_count": 3923 }
32
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- __path__ = __import__("pkgutil").extend_path(__path__, __name__) # type: ignore from promptflow._sdk._orm.run_info import RunInfo from .connection import Connection from .experiment import Experiment from .session import mgmt_db_session __all__ = [ "RunInfo", "Connection", "Experiment", "mgmt_db_session", ]
promptflow/src/promptflow/promptflow/_sdk/_orm/__init__.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/_orm/__init__.py", "repo_id": "promptflow", "token_count": 140 }
33
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import argparse import json import logging import os import sys import waitress from promptflow._cli._utils import _get_cli_activity_name from promptflow._constants import PF_NO_INTERACTIVE_LOGIN from promptflow._sdk._constants import LOGGER_NAME from promptflow._sdk._service.app import create_app from promptflow._sdk._service.utils.utils import ( get_port_from_config, get_started_service_info, is_port_in_use, kill_exist_service, ) from promptflow._sdk._telemetry import ActivityType, get_telemetry_logger, log_activity from promptflow._sdk._utils import get_promptflow_sdk_version, print_pf_version from promptflow.exceptions import UserErrorException def add_start_service_action(subparsers): """Add action to start pfs.""" start_pfs_parser = subparsers.add_parser( "start", description="Start promptflow service.", help="pfs start", ) start_pfs_parser.add_argument("-p", "--port", type=int, help="port of the promptflow service") start_pfs_parser.add_argument( "--force", action="store_true", help="If the port is used, the existing service will be terminated and restart a new service.", ) start_pfs_parser.set_defaults(action="start") def add_show_status_action(subparsers): """Add action to show pfs status.""" show_status_parser = subparsers.add_parser( "show-status", description="Display the started promptflow service info.", help="pfs show-status", ) show_status_parser.set_defaults(action="show-status") def start_service(args): port = args.port app, _ = create_app() if port and is_port_in_use(port): app.logger.warning(f"Service port {port} is used.") raise UserErrorException(f"Service port {port} is used.") if not port: port = get_port_from_config(create_if_not_exists=True) if is_port_in_use(port): if args.force: app.logger.warning(f"Force restart the service on the port {port}.") kill_exist_service(port) else: app.logger.warning(f"Service port {port} is used.") raise UserErrorException(f"Service port {port} is used.") # Set host to localhost, only allow request from localhost. app.logger.info(f"Start Prompt Flow Service on http://localhost:{port}, version: {get_promptflow_sdk_version()}") waitress.serve(app, host="127.0.0.1", port=port) def main(): command_args = sys.argv[1:] if len(command_args) == 1 and command_args[0] == "version": version_dict = {"promptflow": get_promptflow_sdk_version()} return json.dumps(version_dict, ensure_ascii=False, indent=2, sort_keys=True, separators=(",", ": ")) + "\n" if len(command_args) == 0: command_args.append("-h") # User Agent will be set based on header in request, so not set globally here. os.environ[PF_NO_INTERACTIVE_LOGIN] = "true" entry(command_args) def entry(command_args): parser = argparse.ArgumentParser( prog="pfs", formatter_class=argparse.RawDescriptionHelpFormatter, description="Prompt Flow Service", ) parser.add_argument( "-v", "--version", dest="version", action="store_true", help="show current PromptflowService version and exit" ) subparsers = parser.add_subparsers() add_start_service_action(subparsers) add_show_status_action(subparsers) args = parser.parse_args(command_args) activity_name = _get_cli_activity_name(cli=parser.prog, args=args) logger = get_telemetry_logger() with log_activity(logger, activity_name, activity_type=ActivityType.INTERNALCALL): run_command(args) def run_command(args): if args.version: print_pf_version() return elif args.action == "show-status": port = get_port_from_config() status = get_started_service_info(port) if status: print(status) return else: logger = logging.getLogger(LOGGER_NAME) logger.warning("Promptflow service is not started.") exit(1) elif args.action == "start": start_service(args) if __name__ == "__main__": main()
promptflow/src/promptflow/promptflow/_sdk/_service/entry.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/_service/entry.py", "repo_id": "promptflow", "token_count": 1683 }
34
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- from pathlib import Path from typing import Callable, Union from promptflow import PFClient from promptflow._constants import LINE_NUMBER_KEY from promptflow._sdk._load_functions import load_flow from promptflow._sdk._serving._errors import UnexpectedConnectionProviderReturn, UnsupportedConnectionProvider from promptflow._sdk._serving.flow_result import FlowResult from promptflow._sdk._serving.utils import validate_request_data from promptflow._sdk._utils import ( dump_flow_result, get_local_connections_from_executable, override_connection_config_with_environment_variable, resolve_connections_environment_variable_reference, update_environment_variables_with_connections, ) from promptflow._sdk.entities._connection import _Connection from promptflow._sdk.entities._flow import Flow from promptflow._sdk.operations._flow_operations import FlowOperations from promptflow._utils.logger_utils import LoggerFactory from promptflow._utils.multimedia_utils import convert_multimedia_data_to_base64, persist_multimedia_data from promptflow.contracts.flow import Flow as ExecutableFlow from promptflow.executor import FlowExecutor from promptflow.storage._run_storage import DefaultRunStorage class FlowInvoker: """ The invoker of a flow. :param flow: The path of the flow, or the flow loaded by load_flow(). :type flow: [str, ~promptflow._sdk.entities._flow.Flow] :param connection_provider: The connection provider, defaults to None :type connection_provider: [str, Callable], optional :param streaming: The function or bool to determine enable streaming or not, defaults to lambda: False :type streaming: Union[Callable[[], bool], bool], optional :param connections: Pre-resolved connections used when executing, defaults to None :type connections: dict, optional :param connections_name_overrides: The connection name overrides, defaults to None Example: ``{"aoai_connection": "azure_open_ai_connection"}`` The node with reference to connection 'aoai_connection' will be resolved to the actual connection 'azure_open_ai_connection'. # noqa: E501 :type connections_name_overrides: dict, optional :param raise_ex: Whether to raise exception when executing flow, defaults to True :type raise_ex: bool, optional """ def __init__( self, flow: [str, Flow], connection_provider: [str, Callable] = None, streaming: Union[Callable[[], bool], bool] = False, connections: dict = None, connections_name_overrides: dict = None, raise_ex: bool = True, **kwargs, ): self.logger = kwargs.get("logger", LoggerFactory.get_logger("flowinvoker")) self.flow_entity = flow if isinstance(flow, Flow) else load_flow(source=flow) self._executable_flow = ExecutableFlow._from_dict( flow_dag=self.flow_entity.dag, working_dir=self.flow_entity.code ) self.connections = connections or {} self.connections_name_overrides = connections_name_overrides or {} self.raise_ex = raise_ex self.storage = kwargs.get("storage", None) self.streaming = streaming if isinstance(streaming, Callable) else lambda: streaming # Pass dump_to path to dump flow result for extension. self._dump_to = kwargs.get("dump_to", None) # The credential is used as an option to override # DefaultAzureCredential when using workspace connection provider self._credential = kwargs.get("credential", None) self._init_connections(connection_provider) self._init_executor() self.flow = self.executor._flow self._dump_file_prefix = "chat" if self._is_chat_flow else "flow" def _init_connections(self, connection_provider): self._is_chat_flow, _, _ = FlowOperations._is_chat_flow(self._executable_flow) connection_provider = "local" if connection_provider is None else connection_provider if isinstance(connection_provider, str): self.logger.info(f"Getting connections from pf client with provider {connection_provider}...") connections_to_ignore = list(self.connections.keys()) connections_to_ignore.extend(self.connections_name_overrides.keys()) # Note: The connection here could be local or workspace, depends on the connection.provider in pf.yaml. connections = get_local_connections_from_executable( executable=self._executable_flow, client=PFClient(config={"connection.provider": connection_provider}, credential=self._credential), connections_to_ignore=connections_to_ignore, # fetch connections with name override connections_to_add=list(self.connections_name_overrides.values()), ) # use original name for connection with name override override_name_to_original_name_mapping = {v: k for k, v in self.connections_name_overrides.items()} for name, conn in connections.items(): if name in override_name_to_original_name_mapping: self.connections[override_name_to_original_name_mapping[name]] = conn else: self.connections[name] = conn elif isinstance(connection_provider, Callable): self.logger.info("Getting connections from custom connection provider...") connection_list = connection_provider() if not isinstance(connection_list, list): raise UnexpectedConnectionProviderReturn( f"Connection provider {connection_provider} should return a list of connections." ) if any(not isinstance(item, _Connection) for item in connection_list): raise UnexpectedConnectionProviderReturn( f"All items returned by {connection_provider} should be connection type, got {connection_list}." ) # TODO(2824058): support connection provider when executing function connections = {item.name: item.to_execution_connection_dict() for item in connection_list} self.connections.update(connections) else: raise UnsupportedConnectionProvider(connection_provider) override_connection_config_with_environment_variable(self.connections) resolve_connections_environment_variable_reference(self.connections) update_environment_variables_with_connections(self.connections) self.logger.info(f"Promptflow get connections successfully. keys: {self.connections.keys()}") def _init_executor(self): self.logger.info("Promptflow executor starts initializing...") storage = None if self._dump_to: storage = DefaultRunStorage(base_dir=self._dump_to, sub_dir=Path(".promptflow/intermediate")) else: storage = self.storage self.executor = FlowExecutor._create_from_flow( flow=self._executable_flow, working_dir=self.flow_entity.code, connections=self.connections, raise_ex=self.raise_ex, storage=storage, ) self.executor.enable_streaming_for_llm_flow(self.streaming) self.logger.info("Promptflow executor initiated successfully.") def _invoke(self, data: dict, run_id=None, disable_input_output_logging=False): """ Process a flow request in the runtime. :param data: The request data dict with flow input as keys, for example: {"question": "What is ChatGPT?"}. :type data: dict :param run_id: The run id of the flow request, defaults to None :type run_id: str, optional :return: The result of executor. :rtype: ~promptflow.executor._result.LineResult """ log_data = "<REDACTED>" if disable_input_output_logging else data self.logger.info(f"Validating flow input with data {log_data!r}") validate_request_data(self.flow, data) self.logger.info(f"Execute flow with data {log_data!r}") # Pass index 0 as extension require for dumped result. # TODO: Remove this index after extension remove this requirement. result = self.executor.exec_line(data, index=0, run_id=run_id, allow_generator_output=self.streaming()) if LINE_NUMBER_KEY in result.output: # Remove line number from output del result.output[LINE_NUMBER_KEY] return result def invoke(self, data: dict, run_id=None, disable_input_output_logging=False): """ Process a flow request in the runtime and return the output of the executor. :param data: The request data dict with flow input as keys, for example: {"question": "What is ChatGPT?"}. :type data: dict :return: The flow output dict, for example: {"answer": "ChatGPT is a chatbot."}. :rtype: dict """ result = self._invoke(data, run_id=run_id, disable_input_output_logging=disable_input_output_logging) # Get base64 for multi modal object resolved_outputs = self._convert_multimedia_data_to_base64(result) self._dump_invoke_result(result) log_outputs = "<REDACTED>" if disable_input_output_logging else result.output self.logger.info(f"Flow run result: {log_outputs}") if not self.raise_ex: # If raise_ex is False, we will return the trace flow & node run info. return FlowResult( output=resolved_outputs or {}, run_info=result.run_info, node_run_infos=result.node_run_infos, ) return resolved_outputs def _convert_multimedia_data_to_base64(self, invoke_result): resolved_outputs = { k: convert_multimedia_data_to_base64(v, with_type=True, dict_type=True) for k, v in invoke_result.output.items() } return resolved_outputs def _dump_invoke_result(self, invoke_result): if self._dump_to: invoke_result.output = persist_multimedia_data( invoke_result.output, base_dir=self._dump_to, sub_dir=Path(".promptflow/output") ) dump_flow_result(flow_folder=self._dump_to, flow_result=invoke_result, prefix=self._dump_file_prefix)
promptflow/src/promptflow/promptflow/_sdk/_serving/flow_invoker.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/_serving/flow_invoker.py", "repo_id": "promptflow", "token_count": 4000 }
35
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- # this file is a middle layer between the local SDK and executor, it'll have some similar logic with cloud PFS. import contextlib import os import re import tempfile import time from collections import defaultdict from os import PathLike from pathlib import Path from types import GeneratorType import pydash from dotenv import load_dotenv from pydash import objects from promptflow._sdk._constants import ( ALL_CONNECTION_TYPES, DEFAULT_VAR_ID, INPUTS, NODE, NODE_VARIANTS, NODES, SUPPORTED_CONNECTION_FIELDS, USE_VARIANTS, VARIANTS, ConnectionFields, ) from promptflow._sdk._errors import InvalidFlowError from promptflow._sdk._load_functions import load_flow from promptflow._sdk._utils import ( _get_additional_includes, _merge_local_code_and_additional_includes, get_local_connections_from_executable, get_used_connection_names_from_dict, update_dict_value_with_connections, ) from promptflow._sdk.entities._flow import Flow, ProtectedFlow from promptflow._utils.context_utils import _change_working_dir from promptflow._utils.flow_utils import dump_flow_dag, load_flow_dag from promptflow._utils.logger_utils import get_cli_sdk_logger from promptflow.contracts.flow import Flow as ExecutableFlow logger = get_cli_sdk_logger() def overwrite_variant(flow_dag: dict, tuning_node: str = None, variant: str = None, drop_node_variants: bool = False): # need to overwrite default variant if tuning node and variant not specified. # check tuning_node & variant node_name_2_node = {node["name"]: node for node in flow_dag[NODES]} if tuning_node and tuning_node not in node_name_2_node: raise InvalidFlowError(f"Node {tuning_node} not found in flow") if tuning_node and variant: try: flow_dag[NODE_VARIANTS][tuning_node][VARIANTS][variant] except KeyError as e: raise InvalidFlowError(f"Variant {variant} not found for node {tuning_node}") from e try: node_variants = flow_dag.pop(NODE_VARIANTS, {}) if drop_node_variants else flow_dag.get(NODE_VARIANTS, {}) updated_nodes = [] for node in flow_dag.get(NODES, []): if not node.get(USE_VARIANTS, False): updated_nodes.append(node) continue # update variant node_name = node["name"] if node_name not in node_variants: raise InvalidFlowError(f"No variant for the node {node_name}.") variants_cfg = node_variants[node_name] variant_id = variant if node_name == tuning_node else None if not variant_id: if DEFAULT_VAR_ID not in variants_cfg: raise InvalidFlowError(f"Default variant id is not specified for {node_name}.") variant_id = variants_cfg[DEFAULT_VAR_ID] if variant_id not in variants_cfg.get(VARIANTS, {}): raise InvalidFlowError(f"Cannot find the variant {variant_id} for {node_name}.") variant_cfg = variants_cfg[VARIANTS][variant_id][NODE] updated_nodes.append({"name": node_name, **variant_cfg}) flow_dag[NODES] = updated_nodes except KeyError as e: raise InvalidFlowError("Failed to overwrite tuning node with variant") from e def overwrite_connections(flow_dag: dict, connections: dict, working_dir: PathLike): if not connections: return if not isinstance(connections, dict): raise InvalidFlowError(f"Invalid connections overwrite format: {connections}, only list is supported.") # Load executable flow to check if connection is LLM connection executable_flow = ExecutableFlow._from_dict(flow_dag=flow_dag, working_dir=Path(working_dir)) node_name_2_node = {node["name"]: node for node in flow_dag[NODES]} for node_name, connection_dict in connections.items(): if node_name not in node_name_2_node: raise InvalidFlowError(f"Node {node_name} not found in flow") if not isinstance(connection_dict, dict): raise InvalidFlowError(f"Invalid connection overwrite format: {connection_dict}, only dict is supported.") node = node_name_2_node[node_name] executable_node = executable_flow.get_node(node_name=node_name) if executable_flow.is_llm_node(executable_node): unsupported_keys = connection_dict.keys() - SUPPORTED_CONNECTION_FIELDS if unsupported_keys: raise InvalidFlowError( f"Unsupported llm connection overwrite keys: {unsupported_keys}," f" only {SUPPORTED_CONNECTION_FIELDS} are supported." ) try: connection = connection_dict.get(ConnectionFields.CONNECTION) if connection: node[ConnectionFields.CONNECTION] = connection deploy_name = connection_dict.get(ConnectionFields.DEPLOYMENT_NAME) if deploy_name: node[INPUTS][ConnectionFields.DEPLOYMENT_NAME] = deploy_name except KeyError as e: raise InvalidFlowError( f"Failed to overwrite llm node {node_name} with connections {connections}" ) from e else: connection_inputs = executable_flow.get_connection_input_names_for_node(node_name=node_name) for c, v in connection_dict.items(): if c not in connection_inputs: raise InvalidFlowError(f"Connection with name {c} not found in node {node_name}'s inputs") node[INPUTS][c] = v def overwrite_flow(flow_dag: dict, params_overrides: dict): if not params_overrides: return # update flow dag & change nodes list to name: obj dict flow_dag[NODES] = {node["name"]: node for node in flow_dag[NODES]} # apply overrides on flow dag for param, val in params_overrides.items(): objects.set_(flow_dag, param, val) # revert nodes to list flow_dag[NODES] = list(flow_dag[NODES].values()) def remove_additional_includes(flow_path: Path): flow_path, flow_dag = load_flow_dag(flow_path=flow_path) flow_dag.pop("additional_includes", None) dump_flow_dag(flow_dag, flow_path) @contextlib.contextmanager def variant_overwrite_context( flow_path: Path, tuning_node: str = None, variant: str = None, connections: dict = None, *, overrides: dict = None, drop_node_variants: bool = False, ): """Override variant and connections in the flow.""" flow_dag_path, flow_dag = load_flow_dag(flow_path) flow_dir_path = flow_dag_path.parent if _get_additional_includes(flow_dag_path): # Merge the flow folder and additional includes to temp folder. with _merge_local_code_and_additional_includes(code_path=flow_path) as temp_dir: # always overwrite variant since we need to overwrite default variant if not specified. overwrite_variant(flow_dag, tuning_node, variant, drop_node_variants=drop_node_variants) overwrite_connections(flow_dag, connections, working_dir=flow_dir_path) overwrite_flow(flow_dag, overrides) flow_dag.pop("additional_includes", None) dump_flow_dag(flow_dag, Path(temp_dir)) flow = load_flow(temp_dir) yield flow else: # Generate a flow, the code path points to the original flow folder, # the dag path points to the temp dag file after overwriting variant. with tempfile.TemporaryDirectory() as temp_dir: overwrite_variant(flow_dag, tuning_node, variant, drop_node_variants=drop_node_variants) overwrite_connections(flow_dag, connections, working_dir=flow_dir_path) overwrite_flow(flow_dag, overrides) flow_path = dump_flow_dag(flow_dag, Path(temp_dir)) flow = ProtectedFlow(code=flow_dir_path, path=flow_path, dag=flow_dag) yield flow class SubmitterHelper: @classmethod def init_env(cls, environment_variables): # TODO: remove when executor supports env vars in request if isinstance(environment_variables, dict): os.environ.update(environment_variables) elif isinstance(environment_variables, (str, PathLike, Path)): load_dotenv(environment_variables) @staticmethod def resolve_connections(flow: Flow, client=None, connections_to_ignore=None) -> dict: # TODO 2856400: use resolve_used_connections instead of this function to avoid using executable in control-plane from promptflow._sdk.entities._eager_flow import EagerFlow from .._pf_client import PFClient if isinstance(flow, EagerFlow): # TODO(2898247): support prompt flow management connection for eager flow return {} client = client or PFClient() with _change_working_dir(flow.code): executable = ExecutableFlow.from_yaml(flow_file=flow.path, working_dir=flow.code) executable.name = str(Path(flow.code).stem) return get_local_connections_from_executable( executable=executable, client=client, connections_to_ignore=connections_to_ignore ) @staticmethod def resolve_used_connections(flow: ProtectedFlow, tools_meta: dict, client, connections_to_ignore=None) -> dict: from .._pf_client import PFClient client = client or PFClient() connection_names = SubmitterHelper.get_used_connection_names(tools_meta=tools_meta, flow_dag=flow.dag) connections_to_ignore = connections_to_ignore or [] result = {} for n in connection_names: if n not in connections_to_ignore: conn = client.connections.get(name=n, with_secrets=True) result[n] = conn._to_execution_connection_dict() return result @staticmethod def get_used_connection_names(tools_meta: dict, flow_dag: dict): # TODO: handle code tool meta for python connection_inputs = defaultdict(set) for package_id, package_meta in tools_meta.get("package", {}).items(): for tool_input_key, tool_input_meta in package_meta.get("inputs", {}).items(): if ALL_CONNECTION_TYPES.intersection(set(tool_input_meta.get("type"))): connection_inputs[package_id].add(tool_input_key) connection_names = set() # TODO: we assume that all variants are resolved here # TODO: only literal connection inputs are supported # TODO: check whether we should put this logic in executor as seems it's not possible to avoid touching # information for executable for node in flow_dag.get("nodes", []): package_id = pydash.get(node, "source.tool") if package_id in connection_inputs: for connection_input in connection_inputs[package_id]: connection_name = pydash.get(node, f"inputs.{connection_input}") if connection_name and not re.match(r"\${.*}", connection_name): connection_names.add(connection_name) return list(connection_names) @classmethod def load_and_resolve_environment_variables(cls, flow: Flow, environment_variables: dict, client=None): environment_variables = ExecutableFlow.load_env_variables( flow_file=flow.path, working_dir=flow.code, environment_variables_overrides=environment_variables ) cls.resolve_environment_variables(environment_variables, client) return environment_variables @classmethod def resolve_environment_variables(cls, environment_variables: dict, client=None): from .._pf_client import PFClient client = client or PFClient() if not environment_variables: return None connection_names = get_used_connection_names_from_dict(environment_variables) logger.debug("Used connection names: %s", connection_names) connections = cls.resolve_connection_names(connection_names=connection_names, client=client) update_dict_value_with_connections(built_connections=connections, connection_dict=environment_variables) @staticmethod def resolve_connection_names(connection_names, client, raise_error=False): result = {} for n in connection_names: try: conn = client.connections.get(name=n, with_secrets=True) result[n] = conn._to_execution_connection_dict() except Exception as e: if raise_error: raise e return result def show_node_log_and_output(node_run_infos, show_node_output, generator_record): """Show stdout and output of nodes.""" from colorama import Fore for node_name, node_result in node_run_infos.items(): # Prefix of node stdout is "%Y-%m-%dT%H:%M:%S%z" pattern = r"\[\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}\+\d{4}\] " if node_result.logs: node_logs = re.sub(pattern, "", node_result.logs["stdout"]) if node_logs: for log in node_logs.rstrip("\n").split("\n"): print(f"{Fore.LIGHTBLUE_EX}[{node_name}]:", end=" ") print(log) if show_node_output: print(f"{Fore.CYAN}{node_name}: ", end="") # TODO executor return a type string of generator node_output = node_result.output if isinstance(node_result.output, GeneratorType): node_output = "".join(get_result_output(node_output, generator_record)) print(f"{Fore.LIGHTWHITE_EX}{node_output}") def print_chat_output(output, generator_record): if isinstance(output, GeneratorType): for event in get_result_output(output, generator_record): print(event, end="") # For better animation effects time.sleep(0.01) # Print a new line at the end of the response print() else: print(output) def get_result_output(output, generator_record): if isinstance(output, GeneratorType): if output in generator_record: if hasattr(generator_record[output], "items"): output = iter(generator_record[output].items) else: output = iter(generator_record[output]) else: if hasattr(output.gi_frame.f_locals, "proxy"): proxy = output.gi_frame.f_locals["proxy"] generator_record[output] = proxy else: generator_record[output] = list(output) output = generator_record[output] return output def resolve_generator(flow_result, generator_record): # resolve generator in flow result for k, v in flow_result.run_info.output.items(): if isinstance(v, GeneratorType): flow_output = "".join(get_result_output(v, generator_record)) flow_result.run_info.output[k] = flow_output flow_result.run_info.result[k] = flow_output flow_result.output[k] = flow_output # resolve generator in node outputs for node_name, node in flow_result.node_run_infos.items(): if isinstance(node.output, GeneratorType): node_output = "".join(get_result_output(node.output, generator_record)) node.output = node_output node.result = node_output return flow_result
promptflow/src/promptflow/promptflow/_sdk/_submitter/utils.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/_submitter/utils.py", "repo_id": "promptflow", "token_count": 6479 }
36
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import abc import importlib import json import types from os import PathLike from pathlib import Path from typing import Dict, List, Union from promptflow._core.token_provider import AzureTokenProvider, TokenProviderABC from promptflow._sdk._constants import ( BASE_PATH_CONTEXT_KEY, PARAMS_OVERRIDE_KEY, SCHEMA_KEYS_CONTEXT_CONFIG_KEY, SCHEMA_KEYS_CONTEXT_SECRET_KEY, SCRUBBED_VALUE, SCRUBBED_VALUE_NO_CHANGE, SCRUBBED_VALUE_USER_INPUT, ConfigValueType, ConnectionType, CustomStrongTypeConnectionConfigs, ) from promptflow._sdk._errors import UnsecureConnectionError, SDKError from promptflow._sdk._orm.connection import Connection as ORMConnection from promptflow._sdk._utils import ( decrypt_secret_value, encrypt_secret_value, find_type_in_override, in_jupyter_notebook, print_yellow_warning, snake_to_camel, ) from promptflow._sdk.entities._yaml_translatable import YAMLTranslatableMixin from promptflow._sdk.schemas._connection import ( AzureContentSafetyConnectionSchema, AzureOpenAIConnectionSchema, CognitiveSearchConnectionSchema, CustomConnectionSchema, CustomStrongTypeConnectionSchema, FormRecognizerConnectionSchema, OpenAIConnectionSchema, QdrantConnectionSchema, SerpConnectionSchema, WeaviateConnectionSchema, ) from promptflow._utils.logger_utils import LoggerFactory from promptflow.contracts.types import Secret from promptflow.exceptions import ValidationException, UserErrorException logger = LoggerFactory.get_logger(name=__name__) PROMPTFLOW_CONNECTIONS = "promptflow.connections" class _Connection(YAMLTranslatableMixin): """A connection entity that stores the connection information. :param name: Connection name :type name: str :param type: Possible values include: "OpenAI", "AzureOpenAI", "Custom". :type type: str :param module: The module of connection class, used for execution. :type module: str :param configs: The configs kv pairs. :type configs: Dict[str, str] :param secrets: The secrets kv pairs. :type secrets: Dict[str, str] """ TYPE = ConnectionType._NOT_SET def __init__( self, name: str = "default_connection", module: str = "promptflow.connections", configs: Dict[str, str] = None, secrets: Dict[str, str] = None, **kwargs, ): self.name = name self.type = self.TYPE self.class_name = f"{self.TYPE.value}Connection" # The type in executor connection dict self.configs = configs or {} self.module = module # Note the connection secrets value behaviors: # -------------------------------------------------------------------------------- # | secret value | CLI create | CLI update | SDK create_or_update | # -------------------------------------------------------------------------------- # | empty or all "*" | prompt input | use existing values | use existing values | # | <no-change> | prompt input | use existing values | use existing values | # | <user-input> | prompt input | prompt input | raise error | # -------------------------------------------------------------------------------- self.secrets = secrets or {} self._secrets = {**self.secrets} # Un-scrubbed secrets self.expiry_time = kwargs.get("expiry_time", None) self.created_date = kwargs.get("created_date", None) self.last_modified_date = kwargs.get("last_modified_date", None) # Conditional assignment to prevent entity bloat when unused. print_as_yaml = kwargs.pop("print_as_yaml", in_jupyter_notebook()) if print_as_yaml: self.print_as_yaml = True @classmethod def _casting_type(cls, typ): type_dict = { "azure_open_ai": ConnectionType.AZURE_OPEN_AI.value, "open_ai": ConnectionType.OPEN_AI.value, } if typ in type_dict: return type_dict.get(typ) return snake_to_camel(typ) def keys(self) -> List: """Return keys of the connection properties.""" return list(self.configs.keys()) + list(self.secrets.keys()) def __getitem__(self, item): # Note: This is added to allow usage **connection(). if item in self.secrets: return self.secrets[item] if item in self.configs: return self.configs[item] # raise UserErrorException(error=KeyError(f"Key {item!r} not found in connection {self.name!r}.")) # Cant't raise UserErrorException due to the code exit(1) of promptflow._cli._utils.py line 368. raise KeyError(f"Key {item!r} not found in connection {self.name!r}.") @classmethod def _is_scrubbed_value(cls, value): """For scrubbed value, cli will get original for update, and prompt user to input for create.""" if value is None or not value: return True if all([v == "*" for v in value]): return True return value == SCRUBBED_VALUE_NO_CHANGE @classmethod def _is_user_input_value(cls, value): """The value will prompt user to input in cli for both create and update.""" return value == SCRUBBED_VALUE_USER_INPUT def _validate_and_encrypt_secrets(self): encrypt_secrets = {} invalid_secrets = [] for k, v in self.secrets.items(): # In sdk experience, if v is not scrubbed, use it. # If v is scrubbed, try to use the value in _secrets. # If v is <user-input>, raise error. if self._is_scrubbed_value(v): # Try to get the value not scrubbed. v = self._secrets.get(k) if self._is_scrubbed_value(v) or self._is_user_input_value(v): # Can't find the original value or is <user-input>, raise error. invalid_secrets.append(k) continue encrypt_secrets[k] = encrypt_secret_value(v) if invalid_secrets: raise ValidationException( f"Connection {self.name!r} secrets {invalid_secrets} value invalid, please fill them." ) return encrypt_secrets @classmethod def _load_from_dict(cls, data: Dict, context: Dict, additional_message: str = None, **kwargs): schema_cls = cls._get_schema_cls() try: loaded_data = schema_cls(context=context).load(data, **kwargs) except Exception as e: raise SDKError(f"Load connection failed with {str(e)}. f{(additional_message or '')}.") return cls(base_path=context[BASE_PATH_CONTEXT_KEY], **loaded_data) def _to_dict(self) -> Dict: schema_cls = self._get_schema_cls() return schema_cls(context={BASE_PATH_CONTEXT_KEY: "./"}).dump(self) @classmethod # pylint: disable=unused-argument def _resolve_cls_and_type(cls, data, params_override=None): type_in_override = find_type_in_override(params_override) type_str = type_in_override or data.get("type") if type_str is None: raise ValidationException("type is required for connection.") type_str = cls._casting_type(type_str) type_cls = _supported_types.get(type_str) if type_cls is None: raise ValidationException( f"connection_type {type_str!r} is not supported. Supported types are: {list(_supported_types.keys())}" ) return type_cls, type_str @abc.abstractmethod def _to_orm_object(self) -> ORMConnection: pass @classmethod def _from_mt_rest_object(cls, mt_rest_obj) -> "_Connection": type_cls, _ = cls._resolve_cls_and_type(data={"type": mt_rest_obj.connection_type}) obj = type_cls._from_mt_rest_object(mt_rest_obj) return obj @classmethod def _from_orm_object_with_secrets(cls, orm_object: ORMConnection): # !!! Attention !!!: Do not use this function to user facing api, use _from_orm_object to remove secrets. type_cls, _ = cls._resolve_cls_and_type(data={"type": orm_object.connectionType}) obj = type_cls._from_orm_object_with_secrets(orm_object) return obj @classmethod def _from_orm_object(cls, orm_object: ORMConnection): """This function will create a connection object then scrub secrets.""" type_cls, _ = cls._resolve_cls_and_type(data={"type": orm_object.connectionType}) obj = type_cls._from_orm_object_with_secrets(orm_object) # Note: we may can't get secret keys for custom connection from MT obj.secrets = {k: SCRUBBED_VALUE for k in obj.secrets} return obj @classmethod def _load( cls, data: Dict = None, yaml_path: Union[PathLike, str] = None, params_override: list = None, **kwargs, ) -> "_Connection": """Load a job object from a yaml file. :param cls: Indicates that this is a class method. :type cls: class :param data: Data Dictionary, defaults to None :type data: Dict, optional :param yaml_path: YAML Path, defaults to None :type yaml_path: Union[PathLike, str], optional :param params_override: Fields to overwrite on top of the yaml file. Format is [{"field1": "value1"}, {"field2": "value2"}], defaults to None :type params_override: List[Dict], optional :param kwargs: A dictionary of additional configuration parameters. :type kwargs: dict :raises Exception: An exception :return: Loaded job object. :rtype: Job """ data = data or {} params_override = params_override or [] context = { BASE_PATH_CONTEXT_KEY: Path(yaml_path).parent if yaml_path else Path("../../azure/_entities/"), PARAMS_OVERRIDE_KEY: params_override, } connection_type, type_str = cls._resolve_cls_and_type(data, params_override) connection = connection_type._load_from_dict( data=data, context=context, additional_message=f"If you are trying to configure a job that is not of type {type_str}, please specify " f"the correct connection type in the 'type' property.", **kwargs, ) return connection def _to_execution_connection_dict(self) -> dict: value = {**self.configs, **self.secrets} secret_keys = list(self.secrets.keys()) return { "type": self.class_name, # Required class name for connection in executor "module": self.module, "value": {k: v for k, v in value.items() if v is not None}, # Filter None value out "secret_keys": secret_keys, } @classmethod def _from_execution_connection_dict(cls, name, data) -> "_Connection": type_cls, _ = cls._resolve_cls_and_type(data={"type": data.get("type")[: -len("Connection")]}) value_dict = data.get("value", {}) if type_cls == CustomConnection: secrets = {k: v for k, v in value_dict.items() if k in data.get("secret_keys", [])} configs = {k: v for k, v in value_dict.items() if k not in secrets} return CustomConnection(name=name, configs=configs, secrets=secrets) return type_cls(name=name, **value_dict) def _get_scrubbed_secrets(self): """Return the scrubbed secrets of connection.""" return {key: val for key, val in self.secrets.items() if self._is_scrubbed_value(val)} class _StrongTypeConnection(_Connection): def _to_orm_object(self): # Both keys & secrets will be stored in configs for strong type connection. secrets = self._validate_and_encrypt_secrets() return ORMConnection( connectionName=self.name, connectionType=self.type.value, configs=json.dumps({**self.configs, **secrets}), customConfigs="{}", expiryTime=self.expiry_time, createdDate=self.created_date, lastModifiedDate=self.last_modified_date, ) @classmethod def _from_orm_object_with_secrets(cls, orm_object: ORMConnection): # !!! Attention !!!: Do not use this function to user facing api, use _from_orm_object to remove secrets. # Both keys & secrets will be stored in configs for strong type connection. type_cls, _ = cls._resolve_cls_and_type(data={"type": orm_object.connectionType}) obj = type_cls( name=orm_object.connectionName, expiry_time=orm_object.expiryTime, created_date=orm_object.createdDate, last_modified_date=orm_object.lastModifiedDate, **json.loads(orm_object.configs), ) obj.secrets = {k: decrypt_secret_value(obj.name, v) for k, v in obj.secrets.items()} obj._secrets = {**obj.secrets} return obj @classmethod def _from_mt_rest_object(cls, mt_rest_obj): type_cls, _ = cls._resolve_cls_and_type(data={"type": mt_rest_obj.connection_type}) configs = mt_rest_obj.configs or {} # For not ARM strong type connection, e.g. OpenAI, api_key will not be returned, but is required argument. # For ARM strong type connection, api_key will be None and missing when conn._to_dict(), so set a scrubbed one. configs.update({"api_key": SCRUBBED_VALUE}) obj = type_cls( name=mt_rest_obj.connection_name, expiry_time=mt_rest_obj.expiry_time, created_date=mt_rest_obj.created_date, last_modified_date=mt_rest_obj.last_modified_date, **configs, ) return obj @property def api_key(self): """Return the api key.""" return self.secrets.get("api_key", SCRUBBED_VALUE) @api_key.setter def api_key(self, value): """Set the api key.""" self.secrets["api_key"] = value class AzureOpenAIConnection(_StrongTypeConnection): """Azure Open AI connection. :param api_key: The api key. :type api_key: str :param api_base: The api base. :type api_base: str :param api_type: The api type, default "azure". :type api_type: str :param api_version: The api version, default "2023-07-01-preview". :type api_version: str :param token_provider: The token provider. :type token_provider: promptflow._core.token_provider.TokenProviderABC :param name: Connection name. :type name: str """ TYPE = ConnectionType.AZURE_OPEN_AI def __init__( self, api_key: str, api_base: str, api_type: str = "azure", api_version: str = "2023-07-01-preview", token_provider: TokenProviderABC = None, **kwargs, ): configs = {"api_base": api_base, "api_type": api_type, "api_version": api_version} secrets = {"api_key": api_key} self._token_provider = token_provider super().__init__(configs=configs, secrets=secrets, **kwargs) @classmethod def _get_schema_cls(cls): return AzureOpenAIConnectionSchema @property def api_base(self): """Return the connection api base.""" return self.configs.get("api_base") @api_base.setter def api_base(self, value): """Set the connection api base.""" self.configs["api_base"] = value @property def api_type(self): """Return the connection api type.""" return self.configs.get("api_type") @api_type.setter def api_type(self, value): """Set the connection api type.""" self.configs["api_type"] = value @property def api_version(self): """Return the connection api version.""" return self.configs.get("api_version") @api_version.setter def api_version(self, value): """Set the connection api version.""" self.configs["api_version"] = value def get_token(self): """Return the connection token.""" if not self._token_provider: self._token_provider = AzureTokenProvider() return self._token_provider.get_token() class OpenAIConnection(_StrongTypeConnection): """Open AI connection. :param api_key: The api key. :type api_key: str :param organization: Optional. The unique identifier for your organization which can be used in API requests. :type organization: str :param base_url: Optional. Specify when use customized api base, leave None to use open ai default api base. :type base_url: str :param name: Connection name. :type name: str """ TYPE = ConnectionType.OPEN_AI def __init__(self, api_key: str, organization: str = None, base_url=None, **kwargs): if base_url == "": # Keep empty as None to avoid disturbing openai pick the default api base. base_url = None configs = {"organization": organization, "base_url": base_url} secrets = {"api_key": api_key} super().__init__(configs=configs, secrets=secrets, **kwargs) @classmethod def _get_schema_cls(cls): return OpenAIConnectionSchema @property def organization(self): """Return the connection organization.""" return self.configs.get("organization") @organization.setter def organization(self, value): """Set the connection organization.""" self.configs["organization"] = value @property def base_url(self): """Return the connection api base.""" return self.configs.get("base_url") @base_url.setter def base_url(self, value): """Set the connection api base.""" self.configs["base_url"] = value class SerpConnection(_StrongTypeConnection): """Serp connection. :param api_key: The api key. :type api_key: str :param name: Connection name. :type name: str """ TYPE = ConnectionType.SERP def __init__(self, api_key: str, **kwargs): secrets = {"api_key": api_key} super().__init__(secrets=secrets, **kwargs) @classmethod def _get_schema_cls(cls): return SerpConnectionSchema class _EmbeddingStoreConnection(_StrongTypeConnection): TYPE = ConnectionType._NOT_SET def __init__(self, api_key: str, api_base: str, **kwargs): configs = {"api_base": api_base} secrets = {"api_key": api_key} super().__init__(module="promptflow_vectordb.connections", configs=configs, secrets=secrets, **kwargs) @property def api_base(self): return self.configs.get("api_base") @api_base.setter def api_base(self, value): self.configs["api_base"] = value class QdrantConnection(_EmbeddingStoreConnection): """Qdrant connection. :param api_key: The api key. :type api_key: str :param api_base: The api base. :type api_base: str :param name: Connection name. :type name: str """ TYPE = ConnectionType.QDRANT @classmethod def _get_schema_cls(cls): return QdrantConnectionSchema class WeaviateConnection(_EmbeddingStoreConnection): """Weaviate connection. :param api_key: The api key. :type api_key: str :param api_base: The api base. :type api_base: str :param name: Connection name. :type name: str """ TYPE = ConnectionType.WEAVIATE @classmethod def _get_schema_cls(cls): return WeaviateConnectionSchema class CognitiveSearchConnection(_StrongTypeConnection): """Cognitive Search connection. :param api_key: The api key. :type api_key: str :param api_base: The api base. :type api_base: str :param api_version: The api version, default "2023-07-01-Preview". :type api_version: str :param name: Connection name. :type name: str """ TYPE = ConnectionType.COGNITIVE_SEARCH def __init__(self, api_key: str, api_base: str, api_version: str = "2023-07-01-Preview", **kwargs): configs = {"api_base": api_base, "api_version": api_version} secrets = {"api_key": api_key} super().__init__(configs=configs, secrets=secrets, **kwargs) @classmethod def _get_schema_cls(cls): return CognitiveSearchConnectionSchema @property def api_base(self): """Return the connection api base.""" return self.configs.get("api_base") @api_base.setter def api_base(self, value): """Set the connection api base.""" self.configs["api_base"] = value @property def api_version(self): """Return the connection api version.""" return self.configs.get("api_version") @api_version.setter def api_version(self, value): """Set the connection api version.""" self.configs["api_version"] = value class AzureContentSafetyConnection(_StrongTypeConnection): """Azure Content Safety connection. :param api_key: The api key. :type api_key: str :param endpoint: The api endpoint. :type endpoint: str :param api_version: The api version, default "2023-04-30-preview". :type api_version: str :param api_type: The api type, default "Content Safety". :type api_type: str :param name: Connection name. :type name: str """ TYPE = ConnectionType.AZURE_CONTENT_SAFETY def __init__( self, api_key: str, endpoint: str, api_version: str = "2023-10-01", api_type: str = "Content Safety", **kwargs, ): configs = {"endpoint": endpoint, "api_version": api_version, "api_type": api_type} secrets = {"api_key": api_key} super().__init__(configs=configs, secrets=secrets, **kwargs) @classmethod def _get_schema_cls(cls): return AzureContentSafetyConnectionSchema @property def endpoint(self): """Return the connection endpoint.""" return self.configs.get("endpoint") @endpoint.setter def endpoint(self, value): """Set the connection endpoint.""" self.configs["endpoint"] = value @property def api_version(self): """Return the connection api version.""" return self.configs.get("api_version") @api_version.setter def api_version(self, value): """Set the connection api version.""" self.configs["api_version"] = value @property def api_type(self): """Return the connection api type.""" return self.configs.get("api_type") @api_type.setter def api_type(self, value): """Set the connection api type.""" self.configs["api_type"] = value class FormRecognizerConnection(AzureContentSafetyConnection): """Form Recognizer connection. :param api_key: The api key. :type api_key: str :param endpoint: The api endpoint. :type endpoint: str :param api_version: The api version, default "2023-07-31". :type api_version: str :param api_type: The api type, default "Form Recognizer". :type api_type: str :param name: Connection name. :type name: str """ # Note: FormRecognizer and ContentSafety are using CognitiveService type in ARM, so keys are the same. TYPE = ConnectionType.FORM_RECOGNIZER def __init__( self, api_key: str, endpoint: str, api_version: str = "2023-07-31", api_type: str = "Form Recognizer", **kwargs ): super().__init__(api_key=api_key, endpoint=endpoint, api_version=api_version, api_type=api_type, **kwargs) @classmethod def _get_schema_cls(cls): return FormRecognizerConnectionSchema class CustomStrongTypeConnection(_Connection): """Custom strong type connection. .. note:: This connection type should not be used directly. Below is an example of how to use CustomStrongTypeConnection: .. code-block:: python class MyCustomConnection(CustomStrongTypeConnection): api_key: Secret api_base: str :param configs: The configs kv pairs. :type configs: Dict[str, str] :param secrets: The secrets kv pairs. :type secrets: Dict[str, str] :param name: Connection name :type name: str """ def __init__( self, secrets: Dict[str, str], configs: Dict[str, str] = None, **kwargs, ): # There are two cases to init a Custom strong type connection: # 1. The connection is created through SDK PFClient, custom_type and custom_module are not in the kwargs. # 2. The connection is loaded from template file, custom_type and custom_module are in the kwargs. custom_type = kwargs.get(CustomStrongTypeConnectionConfigs.TYPE, None) custom_module = kwargs.get(CustomStrongTypeConnectionConfigs.MODULE, None) if custom_type: configs.update({CustomStrongTypeConnectionConfigs.PROMPTFLOW_TYPE_KEY: custom_type}) if custom_module: configs.update({CustomStrongTypeConnectionConfigs.PROMPTFLOW_MODULE_KEY: custom_module}) self.kwargs = kwargs super().__init__(configs=configs, secrets=secrets, **kwargs) self.module = kwargs.get("module", self.__class__.__module__) self.custom_type = custom_type or self.__class__.__name__ self.package = kwargs.get(CustomStrongTypeConnectionConfigs.PACKAGE, None) self.package_version = kwargs.get(CustomStrongTypeConnectionConfigs.PACKAGE_VERSION, None) def __getattribute__(self, item): # Note: The reason to overwrite __getattribute__ instead of __getattr__ is as follows: # Custom strong type connection is written this way: # class MyCustomConnection(CustomStrongTypeConnection): # api_key: Secret # api_base: str = "This is a default value" # api_base has a default value, my_custom_connection_instance.api_base would not trigger __getattr__. # The default value will be returned directly instead of the real value in configs. annotations = getattr(super().__getattribute__("__class__"), "__annotations__", {}) if item in annotations: if annotations[item] == Secret: return self.secrets[item] else: return self.configs[item] return super().__getattribute__(item) def __setattr__(self, key, value): annotations = getattr(super().__getattribute__("__class__"), "__annotations__", {}) if key in annotations: if annotations[key] == Secret: self.secrets[key] = value else: self.configs[key] = value return super().__setattr__(key, value) def _to_orm_object(self) -> ORMConnection: custom_connection = self._convert_to_custom() return custom_connection._to_orm_object() def _convert_to_custom(self): # update configs self.configs.update({CustomStrongTypeConnectionConfigs.PROMPTFLOW_TYPE_KEY: self.custom_type}) self.configs.update({CustomStrongTypeConnectionConfigs.PROMPTFLOW_MODULE_KEY: self.module}) if self.package and self.package_version: self.configs.update({CustomStrongTypeConnectionConfigs.PROMPTFLOW_PACKAGE_KEY: self.package}) self.configs.update( {CustomStrongTypeConnectionConfigs.PROMPTFLOW_PACKAGE_VERSION_KEY: self.package_version} ) custom_connection = CustomConnection(configs=self.configs, secrets=self.secrets, **self.kwargs) return custom_connection @classmethod def _get_custom_keys(cls, data: Dict): # The data could be either from yaml or from DB. # If from yaml, 'custom_type' and 'module' are outside the configs of data. # If from DB, 'custom_type' and 'module' are within the configs of data. if not data.get(CustomStrongTypeConnectionConfigs.TYPE) or not data.get( CustomStrongTypeConnectionConfigs.MODULE ): if ( not data["configs"][CustomStrongTypeConnectionConfigs.PROMPTFLOW_TYPE_KEY] or not data["configs"][CustomStrongTypeConnectionConfigs.PROMPTFLOW_MODULE_KEY] ): error = ValueError("custom_type and module are required for custom strong type connections.") raise UserErrorException(message=str(error), error=error) else: m = data["configs"][CustomStrongTypeConnectionConfigs.PROMPTFLOW_MODULE_KEY] custom_cls = data["configs"][CustomStrongTypeConnectionConfigs.PROMPTFLOW_TYPE_KEY] else: m = data[CustomStrongTypeConnectionConfigs.MODULE] custom_cls = data[CustomStrongTypeConnectionConfigs.TYPE] try: module = importlib.import_module(m) cls = getattr(module, custom_cls) except ImportError: error = ValueError( f"Can't find module {m} in current environment. Please check the module is correctly configured." ) raise UserErrorException(message=str(error), error=error) except AttributeError: error = ValueError( f"Can't find class {custom_cls} in module {m}. " f"Please check the custom_type is correctly configured." ) raise UserErrorException(message=str(error), error=error) schema_configs = {} schema_secrets = {} for k, v in cls.__annotations__.items(): if v == Secret: schema_secrets[k] = v else: schema_configs[k] = v return schema_configs, schema_secrets @classmethod def _get_schema_cls(cls): return CustomStrongTypeConnectionSchema @classmethod def _load_from_dict(cls, data: Dict, context: Dict, additional_message: str = None, **kwargs): schema_config_keys, schema_secret_keys = cls._get_custom_keys(data) context[SCHEMA_KEYS_CONTEXT_CONFIG_KEY] = schema_config_keys context[SCHEMA_KEYS_CONTEXT_SECRET_KEY] = schema_secret_keys return (super()._load_from_dict(data, context, additional_message, **kwargs))._convert_to_custom() class CustomConnection(_Connection): """Custom connection. :param configs: The configs kv pairs. :type configs: Dict[str, str] :param secrets: The secrets kv pairs. :type secrets: Dict[str, str] :param name: Connection name :type name: str """ TYPE = ConnectionType.CUSTOM def __init__( self, secrets: Dict[str, str], configs: Dict[str, str] = None, **kwargs, ): super().__init__(secrets=secrets, configs=configs, **kwargs) @classmethod def _get_schema_cls(cls): return CustomConnectionSchema @classmethod def _load_from_dict(cls, data: Dict, context: Dict, additional_message: str = None, **kwargs): # If context has params_override, it means the data would be updated by overridden values. # Provide CustomStrongTypeConnectionSchema if 'custom_type' in params_override, else CustomConnectionSchema. # For example: # If a user updates an existing connection by re-upserting a connection file, # the 'data' from DB is CustomConnection, # but 'params_override' would actually contain custom strong type connection data. is_custom_strong_type = data.get(CustomStrongTypeConnectionConfigs.TYPE) or any( CustomStrongTypeConnectionConfigs.TYPE in d for d in context.get(PARAMS_OVERRIDE_KEY, []) ) if is_custom_strong_type: return CustomStrongTypeConnection._load_from_dict(data, context, additional_message, **kwargs) return super()._load_from_dict(data, context, additional_message, **kwargs) def __getattr__(self, item): # Note: This is added for compatibility with promptflow.connections custom connection usage. if item == "secrets": # Usually obj.secrets will not reach here # This is added to handle copy.deepcopy loop issue return super().__getattribute__("secrets") if item == "configs": # Usually obj.configs will not reach here # This is added to handle copy.deepcopy loop issue return super().__getattribute__("configs") if item in self.secrets: logger.warning("Please use connection.secrets[key] to access secrets.") return self.secrets[item] if item in self.configs: logger.warning("Please use connection.configs[key] to access configs.") return self.configs[item] return super().__getattribute__(item) def is_secret(self, item): """Check if item is a secret.""" # Note: This is added for compatibility with promptflow.connections custom connection usage. return item in self.secrets def _to_orm_object(self): # Both keys & secrets will be set in custom configs with value type specified for custom connection. if not self.secrets: error = ValueError( "Secrets is required for custom connection, " "please use CustomConnection(configs={key1: val1}, secrets={key2: val2}) " "to initialize custom connection." ) raise UserErrorException(message=str(error), error=error) custom_configs = { k: {"configValueType": ConfigValueType.STRING.value, "value": v} for k, v in self.configs.items() } encrypted_secrets = self._validate_and_encrypt_secrets() custom_configs.update( {k: {"configValueType": ConfigValueType.SECRET.value, "value": v} for k, v in encrypted_secrets.items()} ) return ORMConnection( connectionName=self.name, connectionType=self.type.value, configs="{}", customConfigs=json.dumps(custom_configs), expiryTime=self.expiry_time, createdDate=self.created_date, lastModifiedDate=self.last_modified_date, ) @classmethod def _from_orm_object_with_secrets(cls, orm_object: ORMConnection): # !!! Attention !!!: Do not use this function to user facing api, use _from_orm_object to remove secrets. # Both keys & secrets will be set in custom configs with value type specified for custom connection. configs = { k: v["value"] for k, v in json.loads(orm_object.customConfigs).items() if v["configValueType"] == ConfigValueType.STRING.value } secrets = {} unsecure_connection = False custom_type = None for k, v in json.loads(orm_object.customConfigs).items(): if k == CustomStrongTypeConnectionConfigs.PROMPTFLOW_TYPE_KEY: custom_type = v["value"] continue if not v["configValueType"] == ConfigValueType.SECRET.value: continue try: secrets[k] = decrypt_secret_value(orm_object.connectionName, v["value"]) except UnsecureConnectionError: # This is to workaround old custom secrets that are not encrypted with Fernet. unsecure_connection = True secrets[k] = v["value"] if unsecure_connection: print_yellow_warning( f"Warning: Please delete and re-create connection {orm_object.connectionName} " "due to a security issue in the old sdk version." ) return cls( name=orm_object.connectionName, configs=configs, secrets=secrets, custom_type=custom_type, expiry_time=orm_object.expiryTime, created_date=orm_object.createdDate, last_modified_date=orm_object.lastModifiedDate, ) @classmethod def _from_mt_rest_object(cls, mt_rest_obj): type_cls, _ = cls._resolve_cls_and_type(data={"type": mt_rest_obj.connection_type}) if not mt_rest_obj.custom_configs: mt_rest_obj.custom_configs = {} configs = { k: v.value for k, v in mt_rest_obj.custom_configs.items() if v.config_value_type == ConfigValueType.STRING.value } secrets = { k: v.value for k, v in mt_rest_obj.custom_configs.items() if v.config_value_type == ConfigValueType.SECRET.value } return cls( name=mt_rest_obj.connection_name, configs=configs, secrets=secrets, expiry_time=mt_rest_obj.expiry_time, created_date=mt_rest_obj.created_date, last_modified_date=mt_rest_obj.last_modified_date, ) def _is_custom_strong_type(self): return ( CustomStrongTypeConnectionConfigs.PROMPTFLOW_TYPE_KEY in self.configs and self.configs[CustomStrongTypeConnectionConfigs.PROMPTFLOW_TYPE_KEY] ) def _convert_to_custom_strong_type(self, module=None, to_class=None) -> CustomStrongTypeConnection: # There are two scenarios to convert a custom connection to custom strong type connection: # 1. The connection is created from a custom strong type connection template file. # Custom type and module name are present in the configs. # 2. The connection is created through SDK PFClient or a custom connection template file. # Custom type and module name are not present in the configs. Module and class must be passed for conversion. if to_class == self.__class__.__name__: # No need to convert. return self import importlib if ( CustomStrongTypeConnectionConfigs.PROMPTFLOW_MODULE_KEY in self.configs and CustomStrongTypeConnectionConfigs.PROMPTFLOW_TYPE_KEY in self.configs ): module_name = self.configs.get(CustomStrongTypeConnectionConfigs.PROMPTFLOW_MODULE_KEY) module = importlib.import_module(module_name) custom_conn_name = self.configs.get(CustomStrongTypeConnectionConfigs.PROMPTFLOW_TYPE_KEY) elif isinstance(module, str) and isinstance(to_class, str): module_name = module module = importlib.import_module(module_name) custom_conn_name = to_class elif isinstance(module, types.ModuleType) and isinstance(to_class, str): custom_conn_name = to_class else: error = ValueError( f"Failed to convert to custom strong type connection because of " f"invalid module or class: {module}, {to_class}" ) raise UserErrorException(message=str(error), error=error) custom_defined_connection_class = getattr(module, custom_conn_name) connection_instance = custom_defined_connection_class(configs=self.configs, secrets=self.secrets) return connection_instance _supported_types = { v.TYPE.value: v for v in globals().values() if isinstance(v, type) and issubclass(v, _Connection) and not v.__name__.startswith("_") }
promptflow/src/promptflow/promptflow/_sdk/entities/_connection.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/entities/_connection.py", "repo_id": "promptflow", "token_count": 16239 }
37
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import copy import datetime import json import logging import shutil from dataclasses import asdict, dataclass from functools import partial from pathlib import Path from typing import Any, Dict, List, NewType, Optional, Tuple, Union from filelock import FileLock from promptflow import load_flow from promptflow._sdk._constants import ( HOME_PROMPT_FLOW_DIR, LINE_NUMBER, LOCAL_STORAGE_BATCH_SIZE, PROMPT_FLOW_DIR_NAME, LocalStorageFilenames, RunInfoSources, ) from promptflow._sdk._errors import BulkRunException, InvalidRunError from promptflow._sdk._utils import ( PromptflowIgnoreFile, generate_flow_tools_json, json_dump, json_load, pd_read_json, read_open, write_open, ) from promptflow._sdk.entities import Run from promptflow._sdk.entities._eager_flow import EagerFlow from promptflow._sdk.entities._flow import Flow from promptflow._utils.dataclass_serializer import serialize from promptflow._utils.exception_utils import PromptflowExceptionPresenter from promptflow._utils.logger_utils import LogContext, get_cli_sdk_logger from promptflow._utils.multimedia_utils import get_file_reference_encoder from promptflow._utils.yaml_utils import load_yaml from promptflow.batch._result import BatchResult from promptflow.contracts.multimedia import Image from promptflow.contracts.run_info import FlowRunInfo from promptflow.contracts.run_info import RunInfo as NodeRunInfo from promptflow.contracts.run_info import Status from promptflow.contracts.run_mode import RunMode from promptflow.exceptions import UserErrorException from promptflow.storage import AbstractRunStorage logger = get_cli_sdk_logger() RunInputs = NewType("RunInputs", Dict[str, List[Any]]) RunOutputs = NewType("RunOutputs", Dict[str, List[Any]]) RunMetrics = NewType("RunMetrics", Dict[str, Any]) @dataclass class LoggerOperations(LogContext): stream: bool = False @property def log_path(self) -> str: return str(self.file_path) def get_logs(self) -> str: with read_open(self.file_path) as f: return f.read() def _get_execute_loggers_list(cls) -> List[logging.Logger]: result = super()._get_execute_loggers_list() result.append(logger) return result def get_initializer(self): return partial( LoggerOperations, file_path=self.file_path, run_mode=self.run_mode, credential_list=self.credential_list, stream=self.stream, ) def __enter__(self): log_path = Path(self.log_path) log_path.parent.mkdir(parents=True, exist_ok=True) if self.run_mode == RunMode.Batch: log_path.touch(exist_ok=True) else: if log_path.exists(): # for non batch run, clean up previous log content try: with write_open(log_path) as file: file.truncate(0) except Exception as e: logger.warning(f"Failed to clean up the previous log content because {e}") else: log_path.touch() for _logger in self._get_execute_loggers_list(): for handler in _logger.handlers: if self.stream is False and isinstance(handler, logging.StreamHandler): handler.setLevel(logging.CRITICAL) super().__enter__() def __exit__(self, *args): super().__exit__(*args) for _logger in self._get_execute_loggers_list(): for handler in _logger.handlers: if self.stream is False and isinstance(handler, logging.StreamHandler): handler.setLevel(logging.CRITICAL) @dataclass class NodeRunRecord: NodeName: str line_number: int run_info: str start_time: datetime end_time: datetime status: str @staticmethod def from_run_info(node_run_info: NodeRunInfo) -> "NodeRunRecord": return NodeRunRecord( NodeName=node_run_info.node, line_number=node_run_info.index, run_info=serialize(node_run_info), start_time=node_run_info.start_time.isoformat(), end_time=node_run_info.end_time.isoformat(), status=node_run_info.status.value, ) def dump(self, path: Path, run_name: str) -> None: # for nodes in first line run and all reduce nodes, the target filename is 000000000.jsonl # so we need to handle concurrent write with file lock filename_need_lock = "0".zfill(LocalStorageOperations.LINE_NUMBER_WIDTH) + ".jsonl" if path.name == filename_need_lock: file_lock_path = (HOME_PROMPT_FLOW_DIR / f"{run_name}.{self.NodeName}.lock").resolve() lock = FileLock(file_lock_path) lock.acquire() try: json_dump(asdict(self), path) finally: lock.release() else: # for normal nodes in other line runs, directly write json_dump(asdict(self), path) @dataclass class LineRunRecord: line_number: int run_info: str start_time: datetime.datetime end_time: datetime.datetime name: str description: str status: str tags: str @staticmethod def from_flow_run_info(flow_run_info: FlowRunInfo) -> "LineRunRecord": return LineRunRecord( line_number=flow_run_info.index, run_info=serialize(flow_run_info), start_time=flow_run_info.start_time.isoformat(), end_time=flow_run_info.end_time.isoformat(), name=flow_run_info.name, description=flow_run_info.description, status=flow_run_info.status.value, tags=flow_run_info.tags, ) def dump(self, path: Path) -> None: json_dump(asdict(self), path) class LocalStorageOperations(AbstractRunStorage): """LocalStorageOperations.""" LINE_NUMBER_WIDTH = 9 def __init__(self, run: Run, stream=False, run_mode=RunMode.Test): self._run = run self.path = self._prepare_folder(self._run._output_path) self.logger = LoggerOperations( file_path=self.path / LocalStorageFilenames.LOG, stream=stream, run_mode=run_mode ) # snapshot self._snapshot_folder_path = self._prepare_folder(self.path / LocalStorageFilenames.SNAPSHOT_FOLDER) self._dag_path = self._snapshot_folder_path / LocalStorageFilenames.DAG self._flow_tools_json_path = ( self._snapshot_folder_path / PROMPT_FLOW_DIR_NAME / LocalStorageFilenames.FLOW_TOOLS_JSON ) self._inputs_path = self.path / LocalStorageFilenames.INPUTS # keep this for other usages # below inputs and outputs are dumped by SDK self._sdk_inputs_path = self._inputs_path self._sdk_output_path = self.path / LocalStorageFilenames.OUTPUTS # metrics self._metrics_path = self.path / LocalStorageFilenames.METRICS # legacy files: detail.json and outputs.jsonl(not the one in flow_outputs folder) self._detail_path = self.path / LocalStorageFilenames.DETAIL self._legacy_outputs_path = self.path / LocalStorageFilenames.OUTPUTS # for line run records, store per line # for normal node run records, store per node per line; # for reduce node run records, store centralized in 000000000.jsonl per node self.outputs_folder = self._prepare_folder(self.path / "flow_outputs") self._outputs_path = self.outputs_folder / "output.jsonl" # dumped by executor self._node_infos_folder = self._prepare_folder(self.path / "node_artifacts") self._run_infos_folder = self._prepare_folder(self.path / "flow_artifacts") self._data_path = Path(run.data) if run.data is not None else None self._meta_path = self.path / LocalStorageFilenames.META self._exception_path = self.path / LocalStorageFilenames.EXCEPTION self._dump_meta_file() self._eager_mode = self._calculate_eager_mode(run) @property def eager_mode(self) -> bool: return self._eager_mode @classmethod def _calculate_eager_mode(cls, run: Run) -> bool: if run._run_source == RunInfoSources.LOCAL: try: flow_obj = load_flow(source=run.flow) return isinstance(flow_obj, EagerFlow) except Exception as e: # For run with incomplete flow snapshot, ignore load flow error to make sure it can still show. logger.debug(f"Failed to load flow from {run.flow} due to {e}.") return False elif run._run_source in [RunInfoSources.INDEX_SERVICE, RunInfoSources.RUN_HISTORY]: return run._properties.get("azureml.promptflow.run_mode") == "Eager" # TODO(2901279): support eager mode for run created from run folder return False def delete(self) -> None: def on_rmtree_error(func, path, exc_info): raise InvalidRunError(f"Failed to delete run {self.path} due to {exc_info[1]}.") shutil.rmtree(path=self.path, onerror=on_rmtree_error) def _dump_meta_file(self) -> None: json_dump({"batch_size": LOCAL_STORAGE_BATCH_SIZE}, self._meta_path) def dump_snapshot(self, flow: Flow) -> None: """Dump flow directory to snapshot folder, input file will be dumped after the run.""" patterns = [pattern for pattern in PromptflowIgnoreFile.IGNORE_FILE] # ignore current output parent folder to avoid potential recursive copy patterns.append(self._run._output_path.parent.name) shutil.copytree( flow.code.as_posix(), self._snapshot_folder_path, ignore=shutil.ignore_patterns(*patterns), dirs_exist_ok=True, ) # replace DAG file with the overwrite one if not self._eager_mode: self._dag_path.unlink() shutil.copy(flow.path, self._dag_path) def load_dag_as_string(self) -> str: if self._eager_mode: return "" with read_open(self._dag_path) as f: return f.read() def load_flow_tools_json(self) -> dict: if self._eager_mode: # no tools json for eager mode return {} if not self._flow_tools_json_path.is_file(): return generate_flow_tools_json(self._snapshot_folder_path, dump=False) else: return json_load(self._flow_tools_json_path) def load_io_spec(self) -> Tuple[Dict[str, Dict[str, str]], Dict[str, Dict[str, str]]]: """Load input/output spec from DAG.""" # TODO(2898455): support eager mode with read_open(self._dag_path) as f: flow_dag = load_yaml(f) return flow_dag["inputs"], flow_dag["outputs"] def load_inputs(self) -> RunInputs: df = pd_read_json(self._inputs_path) return df.to_dict("list") def load_outputs(self) -> RunOutputs: # for legacy run, simply read the output file and return as list of dict if not self._outputs_path.is_file(): df = pd_read_json(self._legacy_outputs_path) return df.to_dict("list") df = pd_read_json(self._outputs_path) if len(df) > 0: df = df.set_index(LINE_NUMBER) return df.to_dict("list") def dump_inputs_and_outputs(self) -> None: inputs, outputs = self._collect_io_from_debug_info() with write_open(self._sdk_inputs_path) as f: inputs.to_json(f, orient="records", lines=True, force_ascii=False) with write_open(self._sdk_output_path) as f: outputs.to_json(f, orient="records", lines=True, force_ascii=False) def dump_metrics(self, metrics: Optional[RunMetrics]) -> None: metrics = metrics or dict() json_dump(metrics, self._metrics_path) def dump_exception(self, exception: Exception, batch_result: BatchResult) -> None: """Dump exception to local storage. :param exception: Exception raised during bulk run. :param batch_result: Bulk run outputs. If exception not raised, store line run error messages. """ # extract line run errors errors = [] if batch_result: for line_error in batch_result.error_summary.error_list: errors.append(line_error.to_dict()) # collect aggregation node error for node_name, aggr_error in batch_result.error_summary.aggr_error_dict.items(): errors.append({"error": aggr_error, "aggregation_node_name": node_name}) if errors: try: # use first line run error message as exception message if no exception raised error = errors[0] message = error["error"]["message"] except Exception: message = ( "Failed to extract error message from line runs. " f"Please check {self._outputs_path} for more info." ) elif exception and isinstance(exception, UserErrorException): # SystemError will be raised above and users can see it, so we don't need to dump it. message = str(exception) else: return if not isinstance(exception, BulkRunException): # If other errors raised, pass it into PromptflowException exception = BulkRunException( message=message, error=exception, failed_lines=batch_result.failed_lines if batch_result else "unknown", total_lines=batch_result.total_lines if batch_result else "unknown", errors={"errors": errors}, ) json_dump(PromptflowExceptionPresenter.create(exception).to_dict(include_debug_info=True), self._exception_path) def load_exception(self) -> Dict: try: return json_load(self._exception_path) except Exception: return {} def load_detail(self, parse_const_as_str: bool = False) -> Dict[str, list]: if self._detail_path.is_file(): # legacy run with local file detail.json, then directly load from the file return json_load(self._detail_path) else: # nan, inf and -inf are not JSON serializable # according to https://docs.python.org/3/library/json.html#json.loads # `parse_constant` will be called to handle these values # so if parse_const_as_str is True, we will parse these values as str with a lambda function json_loads = json.loads if not parse_const_as_str else partial(json.loads, parse_constant=lambda x: str(x)) # collect from local files and concat in the memory flow_runs, node_runs = [], [] for line_run_record_file in sorted(self._run_infos_folder.iterdir()): # In addition to the output jsonl files, there may be multimedia files in the output folder, # so we should skip them. if line_run_record_file.suffix.lower() != ".jsonl": continue with read_open(line_run_record_file) as f: new_runs = [json_loads(line)["run_info"] for line in list(f)] flow_runs += new_runs for node_folder in sorted(self._node_infos_folder.iterdir()): for node_run_record_file in sorted(node_folder.iterdir()): if node_run_record_file.suffix.lower() != ".jsonl": continue with read_open(node_run_record_file) as f: new_runs = [json_loads(line)["run_info"] for line in list(f)] node_runs += new_runs return {"flow_runs": flow_runs, "node_runs": node_runs} def load_metrics(self) -> Dict[str, Union[int, float, str]]: return json_load(self._metrics_path) def persist_node_run(self, run_info: NodeRunInfo) -> None: """Persist node run record to local storage.""" node_folder = self._prepare_folder(self._node_infos_folder / run_info.node) self._persist_run_multimedia(run_info, node_folder) node_run_record = NodeRunRecord.from_run_info(run_info) # for reduce nodes, the line_number is None, store the info in the 000000000.jsonl # align with AzureMLRunStorageV2, which is a storage contract with PFS line_number = 0 if node_run_record.line_number is None else node_run_record.line_number filename = f"{str(line_number).zfill(self.LINE_NUMBER_WIDTH)}.jsonl" node_run_record.dump(node_folder / filename, run_name=self._run.name) def persist_flow_run(self, run_info: FlowRunInfo) -> None: """Persist line run record to local storage.""" if not Status.is_terminated(run_info.status): logger.info("Line run is not terminated, skip persisting line run record.") return self._persist_run_multimedia(run_info, self._run_infos_folder) line_run_record = LineRunRecord.from_flow_run_info(run_info) # calculate filename according to the batch size # note that if batch_size > 1, need to well handle concurrent write scenario lower_bound = line_run_record.line_number // LOCAL_STORAGE_BATCH_SIZE * LOCAL_STORAGE_BATCH_SIZE upper_bound = lower_bound + LOCAL_STORAGE_BATCH_SIZE - 1 filename = ( f"{str(lower_bound).zfill(self.LINE_NUMBER_WIDTH)}_" f"{str(upper_bound).zfill(self.LINE_NUMBER_WIDTH)}.jsonl" ) line_run_record.dump(self._run_infos_folder / filename) def persist_result(self, result: Optional[BatchResult]) -> None: """Persist metrics from return of executor.""" if result is None: return self.dump_inputs_and_outputs() self.dump_metrics(result.metrics) def _persist_run_multimedia(self, run_info: Union[FlowRunInfo, NodeRunInfo], folder_path: Path): if run_info.inputs: run_info.inputs = self._serialize_multimedia(run_info.inputs, folder_path) if run_info.output: run_info.output = self._serialize_multimedia(run_info.output, folder_path) run_info.result = None if run_info.api_calls: run_info.api_calls = self._serialize_multimedia(run_info.api_calls, folder_path) def _serialize_multimedia(self, value, folder_path: Path, relative_path: Path = None): pfbytes_file_reference_encoder = get_file_reference_encoder(folder_path, relative_path, use_absolute_path=True) serialization_funcs = {Image: partial(Image.serialize, **{"encoder": pfbytes_file_reference_encoder})} return serialize(value, serialization_funcs=serialization_funcs) @staticmethod def _prepare_folder(path: Union[str, Path]) -> Path: path = Path(path) path.mkdir(parents=True, exist_ok=True) return path @staticmethod def _outputs_padding(df: "DataFrame", inputs_line_numbers: List[int]) -> "DataFrame": import pandas as pd if len(df) == len(inputs_line_numbers): return df missing_lines = [] lines_set = set(df[LINE_NUMBER].values) for i in inputs_line_numbers: if i not in lines_set: missing_lines.append({LINE_NUMBER: i}) df_to_append = pd.DataFrame(missing_lines) res = pd.concat([df, df_to_append], ignore_index=True) res = res.sort_values(by=LINE_NUMBER, ascending=True) return res def load_inputs_and_outputs(self) -> Tuple["DataFrame", "DataFrame"]: if not self._sdk_inputs_path.is_file() or not self._sdk_output_path.is_file(): inputs, outputs = self._collect_io_from_debug_info() else: inputs = pd_read_json(self._sdk_inputs_path) outputs = pd_read_json(self._sdk_output_path) # if all line runs are failed, no need to fill if len(outputs) > 0: outputs = self._outputs_padding(outputs, inputs[LINE_NUMBER].tolist()) outputs.fillna(value="(Failed)", inplace=True) # replace nan with explicit prompt outputs = outputs.set_index(LINE_NUMBER) return inputs, outputs def _collect_io_from_debug_info(self) -> Tuple["DataFrame", "DataFrame"]: import pandas as pd inputs, outputs = [], [] for line_run_record_file in sorted(self._run_infos_folder.iterdir()): if line_run_record_file.suffix.lower() != ".jsonl": continue with read_open(line_run_record_file) as f: datas = [json.loads(line) for line in list(f)] for data in datas: line_number: int = data[LINE_NUMBER] line_run_info: dict = data["run_info"] current_inputs = line_run_info.get("inputs") current_outputs = line_run_info.get("output") inputs.append(copy.deepcopy(current_inputs)) if current_outputs is not None: current_outputs[LINE_NUMBER] = line_number outputs.append(copy.deepcopy(current_outputs)) return pd.DataFrame(inputs), pd.DataFrame(outputs)
promptflow/src/promptflow/promptflow/_sdk/operations/_local_storage_operations.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/operations/_local_storage_operations.py", "repo_id": "promptflow", "token_count": 9375 }
38
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- from dataclasses import fields, is_dataclass from datetime import datetime from enum import Enum from typing import Any, Callable, Dict, List, Type, TypeVar from promptflow._core.generator_proxy import GeneratorProxy from promptflow.contracts.tool import ConnectionType T = TypeVar("T") def get_type(obj: type): if is_dataclass(obj): return obj if isinstance(obj, list): return List[get_type(obj[0])] if isinstance(obj, dict): return Dict[str, get_type(obj[list(obj.keys())[0]])] return obj def deserialize_dataclass(cls: Type[T], data: dict) -> T: if not is_dataclass(cls): raise ValueError(f"{cls} is not a dataclass") if not isinstance(data, dict): raise ValueError(f"{data} is not a dict") kwargs = {} for field in fields(cls): if field.name not in data: kwargs[field.name] = field.default continue field_type = get_type(field.type) kwargs[field.name] = deserialize_value(data[field.name], field_type) return cls(**kwargs) def deserialize_value(obj, field_type): if not isinstance(field_type, type): return obj if is_dataclass(field_type): return deserialize_dataclass(field_type, obj) if issubclass(field_type, Enum): return field_type(obj) if issubclass(field_type, datetime) and obj is not None: # Remove Z/z at the end of the string. if obj.endswith("Z") or obj.endswith("z"): return datetime.fromisoformat(obj[:-1]) return datetime.fromisoformat(obj) return obj def serialize(value: object, remove_null: bool = False, serialization_funcs: Dict[type, Callable] = None) -> dict: if serialization_funcs: for cls, f in serialization_funcs.items(): if isinstance(value, cls): return f(value) if isinstance(value, datetime): return value.isoformat() + "Z" if isinstance(value, Enum): return value.value if isinstance(value, list): return [serialize(v, remove_null, serialization_funcs) for v in value] if isinstance(value, GeneratorProxy): # TODO: The current implementation of the serialize function is not self-explanatory, as value.items is mutable # whereas the serialize function should deal with a fixed object. We should rename the function to # to_serializable to better reflect its purpose. return value.items # Note that custom connection check should before dict check if ConnectionType.is_connection_value(value): return ConnectionType.serialize_conn(value) if isinstance(value, dict): return {k: serialize(v, remove_null, serialization_funcs) for k, v in value.items()} if is_dataclass(value): if hasattr(value, "serialize"): result = value.serialize() else: result = { f.name: serialize(getattr(value, f.name), remove_null, serialization_funcs) for f in fields(value) } if not remove_null: return result null_keys = [k for k, v in result.items() if v is None] for k in null_keys: result.pop(k) return result try: from pydantic import BaseModel if isinstance(value, BaseModel): # Handle pydantic model, which is used in langchain return value.dict() except ImportError: # Ignore ImportError if pydantic is not installed pass return value def assertEqual(a: dict, b: dict, path: str = ""): if isinstance(a, dict): assert isinstance(b, dict), f"{path}: {type(a)} != {type(b)}" assert set(a.keys()) == set(b.keys()), f"{path}: {set(a.keys())} != {set(b.keys())}" for key in a.keys(): assertEqual(a[key], b[key], path + "." + key) elif isinstance(a, list): assert isinstance(b, list), f"{path}: {type(a)} != {type(b)}" assert len(a) == len(b), f"{path}: {len(a)} != {len(b)}" for i in range(len(a)): assertEqual(a[i], b[i], path + f"[{i}]") else: assert a == b, f"{path}: {a} != {b}" def convert_eager_flow_output_to_dict(value: Any): """ Convert the output of eager flow to a dict. Since the output of eager flow may not be a dict, we need to convert it to a dict in batch mode. Examples: 1. If the output is a dict, return it directly: value = {"output": 1} -> {"output": 1} 2. If the output is a dataclass, convert it to a dict: value = SampleDataClass(output=1) -> {"output": 1} 3. If the output is not a dict or dataclass, convert it to a dict by adding a key "output": value = 1 -> {"output": 1} """ if isinstance(value, dict): return value elif is_dataclass(value): return {f.name: getattr(value, f.name) for f in fields(value)} else: return {"output": value}
promptflow/src/promptflow/promptflow/_utils/dataclass_serializer.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_utils/dataclass_serializer.py", "repo_id": "promptflow", "token_count": 2062 }
39
# coding=utf-8 # -------------------------------------------------------------------------- # Code generated by Microsoft (R) AutoRest Code Generator (autorest: 3.8.0, generator: @autorest/[email protected]) # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import functools from typing import Any, Callable, Dict, Generic, Optional, TypeVar import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator_async import distributed_trace_async from ... import models as _models from ..._vendor import _convert_request from ...operations._flows_provider_operations import build_get_index_entity_by_id_request, build_get_updated_entity_ids_for_workspace_request T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class FlowsProviderOperations: """FlowsProviderOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~flow.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config @distributed_trace_async async def get_index_entity_by_id( self, subscription_id: str, resource_group_name: str, workspace_name: str, body: Optional["_models.UnversionedEntityRequestDto"] = None, **kwargs: Any ) -> "_models.UnversionedEntityResponseDto": """get_index_entity_by_id. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param body: :type body: ~flow.models.UnversionedEntityRequestDto :keyword callable cls: A custom type or function that will be passed the direct response :return: UnversionedEntityResponseDto, or the result of cls(response) :rtype: ~flow.models.UnversionedEntityResponseDto :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.UnversionedEntityResponseDto"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] if body is not None: _json = self._serialize.body(body, 'UnversionedEntityRequestDto') else: _json = None request = build_get_index_entity_by_id_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, content_type=content_type, json=_json, template_url=self.get_index_entity_by_id.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('UnversionedEntityResponseDto', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_index_entity_by_id.metadata = {'url': '/flow/v1.0/flows/getIndexEntities'} # type: ignore @distributed_trace_async async def get_updated_entity_ids_for_workspace( self, subscription_id: str, resource_group_name: str, workspace_name: str, body: Optional["_models.UnversionedRebuildIndexDto"] = None, **kwargs: Any ) -> "_models.UnversionedRebuildResponseDto": """get_updated_entity_ids_for_workspace. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param body: :type body: ~flow.models.UnversionedRebuildIndexDto :keyword callable cls: A custom type or function that will be passed the direct response :return: UnversionedRebuildResponseDto, or the result of cls(response) :rtype: ~flow.models.UnversionedRebuildResponseDto :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.UnversionedRebuildResponseDto"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] if body is not None: _json = self._serialize.body(body, 'UnversionedRebuildIndexDto') else: _json = None request = build_get_updated_entity_ids_for_workspace_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, content_type=content_type, json=_json, template_url=self.get_updated_entity_ids_for_workspace.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('UnversionedRebuildResponseDto', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_updated_entity_ids_for_workspace.metadata = {'url': '/flow/v1.0/flows/rebuildIndex'} # type: ignore
promptflow/src/promptflow/promptflow/azure/_restclient/flow/aio/operations/_flows_provider_operations.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/azure/_restclient/flow/aio/operations/_flows_provider_operations.py", "repo_id": "promptflow", "token_count": 2881 }
40
# coding=utf-8 # -------------------------------------------------------------------------- # Code generated by Microsoft (R) AutoRest Code Generator (autorest: 3.8.0, generator: @autorest/[email protected]) # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import functools from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from msrest import Serializer from .. import models as _models from .._vendor import _convert_request, _format_url_section if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Optional, TypeVar T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] _SERIALIZER = Serializer() _SERIALIZER.client_side_validation = False # fmt: off def build_get_index_entity_by_id_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest content_type = kwargs.pop('content_type', None) # type: Optional[str] accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/v1.0/flows/getIndexEntities') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] if content_type is not None: header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str') header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="POST", url=url, headers=header_parameters, **kwargs ) def build_get_updated_entity_ids_for_workspace_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest content_type = kwargs.pop('content_type', None) # type: Optional[str] accept = "application/json" # Construct URL url = kwargs.pop("template_url", '/flow/v1.0/flows/rebuildIndex') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] if content_type is not None: header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str') header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="POST", url=url, headers=header_parameters, **kwargs ) # fmt: on class FlowsProviderOperations(object): """FlowsProviderOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~flow.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config @distributed_trace def get_index_entity_by_id( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str body=None, # type: Optional["_models.UnversionedEntityRequestDto"] **kwargs # type: Any ): # type: (...) -> "_models.UnversionedEntityResponseDto" """get_index_entity_by_id. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param body: :type body: ~flow.models.UnversionedEntityRequestDto :keyword callable cls: A custom type or function that will be passed the direct response :return: UnversionedEntityResponseDto, or the result of cls(response) :rtype: ~flow.models.UnversionedEntityResponseDto :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.UnversionedEntityResponseDto"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] if body is not None: _json = self._serialize.body(body, 'UnversionedEntityRequestDto') else: _json = None request = build_get_index_entity_by_id_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, content_type=content_type, json=_json, template_url=self.get_index_entity_by_id.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('UnversionedEntityResponseDto', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_index_entity_by_id.metadata = {'url': '/flow/v1.0/flows/getIndexEntities'} # type: ignore @distributed_trace def get_updated_entity_ids_for_workspace( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str body=None, # type: Optional["_models.UnversionedRebuildIndexDto"] **kwargs # type: Any ): # type: (...) -> "_models.UnversionedRebuildResponseDto" """get_updated_entity_ids_for_workspace. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param body: :type body: ~flow.models.UnversionedRebuildIndexDto :keyword callable cls: A custom type or function that will be passed the direct response :return: UnversionedRebuildResponseDto, or the result of cls(response) :rtype: ~flow.models.UnversionedRebuildResponseDto :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.UnversionedRebuildResponseDto"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] if body is not None: _json = self._serialize.body(body, 'UnversionedRebuildIndexDto') else: _json = None request = build_get_updated_entity_ids_for_workspace_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, content_type=content_type, json=_json, template_url=self.get_updated_entity_ids_for_workspace.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('UnversionedRebuildResponseDto', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_updated_entity_ids_for_workspace.metadata = {'url': '/flow/v1.0/flows/rebuildIndex'} # type: ignore
promptflow/src/promptflow/promptflow/azure/_restclient/flow/operations/_flows_provider_operations.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/azure/_restclient/flow/operations/_flows_provider_operations.py", "repo_id": "promptflow", "token_count": 3934 }
41
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import os from collections import defaultdict from functools import cached_property from multiprocessing import Lock from pathlib import Path from typing import Any, Dict, Optional from azure.ai.ml._artifacts._fileshare_storage_helper import FileStorageClient from azure.ai.ml._utils._asset_utils import ( DirectoryUploadProgressBar, FileUploadProgressBar, IgnoreFile, get_directory_size, ) from azure.core.exceptions import ResourceExistsError from azure.storage.fileshare import DirectoryProperties, ShareDirectoryClient from promptflow._sdk._vendor import get_upload_files_from_folder from promptflow.azure._constants._flow import PROMPTFLOW_FILE_SHARE_DIR from promptflow.azure._utils.gerneral import get_user_alias_from_credential uploading_lock = defaultdict(Lock) class FlowFileStorageClient(FileStorageClient): def __init__(self, credential: str, file_share_name: str, account_url: str, azure_cred): super().__init__(credential=credential, file_share_name=file_share_name, account_url=account_url) try: user_alias = get_user_alias_from_credential(azure_cred) except Exception: # fall back to unknown user when failed to get credential. user_alias = "unknown_user" self._user_alias = user_alias # TODO: update this after we finalize the design for flow file storage client # create user folder if not exist for directory_path in ["Users", f"Users/{user_alias}", f"Users/{user_alias}/{PROMPTFLOW_FILE_SHARE_DIR}"]: self.directory_client = ShareDirectoryClient( account_url=account_url, credential=credential, share_name=file_share_name, directory_path=directory_path, ) # try to create user folder if not exist try: self.directory_client.create_directory() except ResourceExistsError: pass @cached_property def file_share_prefix(self) -> str: return f"Users/{self._user_alias}/{PROMPTFLOW_FILE_SHARE_DIR}" def upload( self, source: str, name: str, version: str, ignore_file: IgnoreFile = IgnoreFile(None), asset_hash: Optional[str] = None, show_progress: bool = True, ) -> Dict[str, str]: """Upload a file or directory to a path inside the file system.""" source_name = Path(source).name dest = asset_hash # truncate path longer than 50 chars for terminal display if show_progress and len(source_name) >= 50: formatted_path = "{:.47}".format(source_name) + "..." else: formatted_path = source_name msg = f"Uploading {formatted_path}" # lock to prevent concurrent uploading of the same file or directory with uploading_lock[self.directory_client.directory_path + "/" + dest]: # start upload if os.path.isdir(source): subdir = self.directory_client.get_subdirectory_client(dest) if not subdir.exists(): # directory is uploaded based on asset hash for now, so skip uploading if subdir exists self.upload_dir( source, dest, msg=msg, show_progress=show_progress, ignore_file=ignore_file, ) else: self.upload_file(source, dest=dest, msg=msg, show_progress=show_progress) artifact_info = {"remote path": dest, "name": name, "version": version} return artifact_info def upload_file( self, source: str, dest: str, show_progress: Optional[bool] = None, msg: Optional[str] = None, in_directory: bool = False, subdirectory_client: Optional[ShareDirectoryClient] = None, callback: Optional[Any] = None, ) -> None: """ " Upload a single file to a path inside the file system directory.""" validate_content = os.stat(source).st_size > 0 # don't do checksum for empty files # relative path from root relative_path = Path(subdirectory_client.directory_path).relative_to(self.directory_client.directory_path) dest = Path(dest).relative_to(relative_path).as_posix() if "/" in dest: # dest is a folder, need to switch subdirectory client dest_dir, dest = dest.rsplit("/", 1) subdirectory_client = subdirectory_client.get_subdirectory_client(dest_dir) with open(source, "rb") as data: if in_directory: file_name = dest.rsplit("/")[-1] if show_progress: subdirectory_client.upload_file( file_name=file_name, data=data, validate_content=validate_content, raw_response_hook=callback, ) else: subdirectory_client.upload_file( file_name=file_name, data=data, validate_content=validate_content, ) else: if show_progress: with FileUploadProgressBar(msg=msg) as progress_bar: self.directory_client.upload_file( file_name=dest, data=data, validate_content=validate_content, raw_response_hook=progress_bar.update_to, ) else: self.directory_client.upload_file(file_name=dest, data=data, validate_content=validate_content) self.uploaded_file_count = self.uploaded_file_count + 1 def upload_dir( self, source: str, dest: str, msg: str, show_progress: bool, ignore_file: IgnoreFile, ) -> None: """Upload a directory to a path inside the fileshare directory.""" subdir = self.directory_client.create_subdirectory(dest) source_path = Path(source).resolve() prefix = dest + "/" upload_paths = get_upload_files_from_folder( path=source_path, prefix=prefix, ignore_file=ignore_file, ) upload_paths = sorted(upload_paths) self.total_file_count = len(upload_paths) # travers all directories recursively and create them in the fileshare def travers_recursively(child_dir, source_dir): for item in os.listdir(source_dir): item_path = os.path.join(source_dir, item) if os.path.isdir(item_path): new_dir = child_dir.create_subdirectory(item) travers_recursively(new_dir, item_path) travers_recursively(child_dir=subdir, source_dir=source) if show_progress: with DirectoryUploadProgressBar(dir_size=get_directory_size(source_path), msg=msg) as progress_bar: for src, destination in upload_paths: self.upload_file( src, destination, in_directory=True, subdirectory_client=subdir, show_progress=show_progress, callback=progress_bar.update_to, ) else: for src, destination in upload_paths: self.upload_file( src, destination, in_directory=True, subdirectory_client=subdir, show_progress=show_progress, ) def _check_file_share_directory_exist(self, dest) -> bool: """Check if the file share directory exists.""" return self.directory_client.get_subdirectory_client(dest).exists() def _check_file_share_file_exist(self, dest) -> bool: """Check if the file share directory exists.""" if dest.startswith(self.file_share_prefix): dest = dest.replace(f"{self.file_share_prefix}/", "") file_client = self.directory_client.get_file_client(dest) try: file_client.get_file_properties() except Exception: return False return True def _delete_file_share_directory(self, dir_client) -> None: """Recursively delete a directory with content in the file share.""" for item in dir_client.list_directories_and_files(): if isinstance(item, DirectoryProperties): self._delete_file_share_directory(dir_client.get_subdirectory_client(item.name)) else: dir_client.delete_file(item.name) dir_client.delete_directory()
promptflow/src/promptflow/promptflow/azure/operations/_fileshare_storeage_helper.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/azure/operations/_fileshare_storeage_helper.py", "repo_id": "promptflow", "token_count": 4252 }
42
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import json import logging import sys from dataclasses import asdict, dataclass from enum import Enum from pathlib import Path from typing import Any, Dict, List, Optional from promptflow._utils.yaml_utils import load_yaml from promptflow.contracts._errors import FlowDefinitionError from promptflow.exceptions import ErrorTarget from .._constants import LANGUAGE_KEY, FlowLanguage from .._sdk._constants import DEFAULT_ENCODING from .._utils.dataclass_serializer import serialize from .._utils.utils import try_import from ._errors import FailedToImportModule from .tool import ConnectionType, Tool, ToolType, ValueType logger = logging.getLogger(__name__) class InputValueType(Enum): """The enum of input value type.""" LITERAL = "Literal" FLOW_INPUT = "FlowInput" NODE_REFERENCE = "NodeReference" FLOW_INPUT_PREFIX = "flow." FLOW_INPUT_PREFIXES = [FLOW_INPUT_PREFIX, "inputs."] # Use a list for backward compatibility @dataclass class InputAssignment: """This class represents the assignment of an input value. :param value: The value of the input assignment. :type value: Any :param value_type: The type of the input assignment. :type value_type: ~promptflow.contracts.flow.InputValueType :param section: The section of the input assignment, usually the output. :type section: str :param property: The property of the input assignment that exists in the section. :type property: str """ value: Any value_type: InputValueType = InputValueType.LITERAL section: str = "" property: str = "" def serialize(self): """Serialize the input assignment to a string.""" if self.value_type == InputValueType.FLOW_INPUT: return f"${{{FLOW_INPUT_PREFIX}{self.value}}}" elif self.value_type == InputValueType.NODE_REFERENCE: if self.property: return f"${{{self.value}.{self.section}.{self.property}}}" return f"${{{self.value}.{self.section}}}" elif ConnectionType.is_connection_value(self.value): return ConnectionType.serialize_conn(self.value) return self.value @staticmethod def deserialize(value: str) -> "InputAssignment": """Deserialize the input assignment from a string. :param value: The string to be deserialized. :type value: str :return: The input assignment constructed from the string. :rtype: ~promptflow.contracts.flow.InputAssignment """ literal_value = InputAssignment(value, InputValueType.LITERAL) if isinstance(value, str) and value.startswith("$") and len(value) > 2: value = value[1:] if value[0] != "{" or value[-1] != "}": return literal_value value = value[1:-1] return InputAssignment.deserialize_reference(value) return literal_value @staticmethod def deserialize_reference(value: str) -> "InputAssignment": """Deserialize the reference(including node/flow reference) part of an input assignment. :param value: The string to be deserialized. :type value: str :return: The input assignment of reference types. :rtype: ~promptflow.contracts.flow.InputAssignment """ if FlowInputAssignment.is_flow_input(value): return FlowInputAssignment.deserialize(value) return InputAssignment.deserialize_node_reference(value) @staticmethod def deserialize_node_reference(data: str) -> "InputAssignment": """Deserialize the node reference part of an input assignment. :param data: The string to be deserialized. :type data: str :return: Input assignment of node reference type. :rtype: ~promptflow.contracts.flow.InputAssignment """ value_type = InputValueType.NODE_REFERENCE if "." not in data: return InputAssignment(data, value_type, "output") node_name, port_name = data.split(".", 1) if "." not in port_name: return InputAssignment(node_name, value_type, port_name) section, property = port_name.split(".", 1) return InputAssignment(node_name, value_type, section, property) @dataclass class FlowInputAssignment(InputAssignment): """This class represents the assignment of a flow input value. :param prefix: The prefix of the flow input. :type prefix: str """ prefix: str = FLOW_INPUT_PREFIX @staticmethod def is_flow_input(input_value: str) -> bool: """Check whether the input value is a flow input. :param input_value: The input value to be checked. :type input_value: str :return: Whether the input value is a flow input. :rtype: bool """ for prefix in FLOW_INPUT_PREFIXES: if input_value.startswith(prefix): return True return False @staticmethod def deserialize(value: str) -> "FlowInputAssignment": """Deserialize the flow input assignment from a string. :param value: The string to be deserialized. :type value: str :return: The flow input assignment constructed from the string. :rtype: ~promptflow.contracts.flow.FlowInputAssignment """ for prefix in FLOW_INPUT_PREFIXES: if value.startswith(prefix): return FlowInputAssignment( value=value[len(prefix) :], value_type=InputValueType.FLOW_INPUT, prefix=prefix ) raise ValueError(f"Unexpected flow input value {value}") class ToolSourceType(str, Enum): """The enum of tool source type.""" Code = "code" Package = "package" PackageWithPrompt = "package_with_prompt" @dataclass class ToolSource: """This class represents the source of a tool. :param type: The type of the tool source. :type type: ~promptflow.contracts.flow.ToolSourceType :param tool: The tool of the tool source. :type tool: str :param path: The path of the tool source. :type path: str """ type: ToolSourceType = ToolSourceType.Code tool: Optional[str] = None path: Optional[str] = None @staticmethod def deserialize(data: dict) -> "ToolSource": """Deserialize the tool source from a dict. :param data: The dict to be deserialized. :type data: dict :return: The tool source constructed from the dict. :rtype: ~promptflow.contracts.flow.ToolSource """ result = ToolSource(data.get("type", ToolSourceType.Code.value)) if "tool" in data: result.tool = data["tool"] if "path" in data: result.path = data["path"] return result @dataclass class ActivateCondition: """This class represents the activate condition of a node. :param condition: The condition of the activate condition. :type condition: ~promptflow.contracts.flow.InputAssignment :param condition_value: The value of the condition. :type condition_value: Any """ condition: InputAssignment condition_value: Any @staticmethod def deserialize(data: dict, node_name: str = None) -> "ActivateCondition": """Deserialize the activate condition from a dict. :param data: The dict to be deserialized. :type data: dict :return: The activate condition constructed from the dict. :rtype: ~promptflow.contracts.flow.ActivateCondition """ node_name = node_name if node_name else "" if "when" in data and "is" in data: if data["when"] is None and data["is"] is None: logger.warning( f"The activate config for node {node_name} has empty 'when' and 'is'. " "Please check your flow yaml to ensure it aligns with your expectations." ) return ActivateCondition( condition=InputAssignment.deserialize(data["when"]), condition_value=data["is"], ) else: raise FlowDefinitionError( message_format=( "The definition of activate config for node {node_name} " "is incorrect. Please check your flow yaml and resubmit." ), node_name=node_name, ) @dataclass class Node: """This class represents a node in a flow. :param name: The name of the node. :type name: str :param tool: The tool of the node. :type tool: str :param inputs: The inputs of the node. :type inputs: Dict[str, InputAssignment] :param comment: The comment of the node. :type comment: str :param api: The api of the node. :type api: str :param provider: The provider of the node. :type provider: str :param module: The module of the node. :type module: str :param connection: The connection of the node. :type connection: str :param aggregation: Whether the node is an aggregation node. :type aggregation: bool :param enable_cache: Whether the node enable cache. :type enable_cache: bool :param use_variants: Whether the node use variants. :type use_variants: bool :param source: The source of the node. :type source: ~promptflow.contracts.flow.ToolSource :param type: The tool type of the node. :type type: ~promptflow.contracts.tool.ToolType :param activate: The activate condition of the node. :type activate: ~promptflow.contracts.flow.ActivateCondition """ name: str tool: str inputs: Dict[str, InputAssignment] comment: str = "" api: str = None provider: str = None module: str = None # The module of provider to import connection: str = None aggregation: bool = False enable_cache: bool = False use_variants: bool = False source: Optional[ToolSource] = None type: Optional[ToolType] = None activate: Optional[ActivateCondition] = None def serialize(self): """Serialize the node to a dict. :return: The dict of the node. :rtype: dict """ data = asdict(self, dict_factory=lambda x: {k: v for (k, v) in x if v}) self.inputs = self.inputs or {} data.update({"inputs": {name: i.serialize() for name, i in self.inputs.items()}}) if self.aggregation: data["aggregation"] = True data["reduce"] = True # TODO: Remove this fallback. if self.type: data["type"] = self.type.value return data @staticmethod def deserialize(data: dict) -> "Node": """Deserialize the node from a dict. :param data: The dict to be deserialized. :type data: dict :return: The node constructed from the dict. :rtype: ~promptflow.contracts.flow.Node """ node = Node( name=data.get("name"), tool=data.get("tool"), inputs={name: InputAssignment.deserialize(v) for name, v in (data.get("inputs") or {}).items()}, comment=data.get("comment", ""), api=data.get("api", None), provider=data.get("provider", None), module=data.get("module", None), connection=data.get("connection", None), aggregation=data.get("aggregation", False) or data.get("reduce", False), # TODO: Remove this fallback. enable_cache=data.get("enable_cache", False), use_variants=data.get("use_variants", False), ) if "source" in data: node.source = ToolSource.deserialize(data["source"]) if "type" in data: node.type = ToolType(data["type"]) if "activate" in data: node.activate = ActivateCondition.deserialize(data["activate"], node.name) return node @dataclass class FlowInputDefinition: """This class represents the definition of a flow input. :param type: The type of the flow input. :type type: ~promptflow.contracts.tool.ValueType :param default: The default value of the flow input. :type default: str :param description: The description of the flow input. :type description: str :param enum: The enum of the flow input. :type enum: List[str] :param is_chat_input: Whether the flow input is a chat input. :type is_chat_input: bool :param is_chat_history: Whether the flow input is a chat history. :type is_chat_history: bool """ type: ValueType default: str = None description: str = None enum: List[str] = None is_chat_input: bool = False is_chat_history: bool = None def serialize(self): """Serialize the flow input definition to a dict. :return: The dict of the flow input definition. :rtype: dict """ data = {} data["type"] = self.type.value if self.default: data["default"] = str(self.default) if self.description: data["description"] = self.description if self.enum: data["enum"] = self.enum if self.is_chat_input: data["is_chat_input"] = True if self.is_chat_history: data["is_chat_history"] = True return data @staticmethod def deserialize(data: dict) -> "FlowInputDefinition": """Deserialize the flow input definition from a dict. :param data: The dict to be deserialized. :type data: dict :return: The flow input definition constructed from the dict. :rtype: ~promptflow.contracts.flow.FlowInputDefinition """ return FlowInputDefinition( ValueType(data["type"]), data.get("default", None), data.get("description", ""), data.get("enum", []), data.get("is_chat_input", False), data.get("is_chat_history", None), ) @dataclass class FlowOutputDefinition: """This class represents the definition of a flow output. :param type: The type of the flow output. :type type: ~promptflow.contracts.tool.ValueType :param reference: The reference of the flow output. :type reference: ~promptflow.contracts.flow.InputAssignment :param description: The description of the flow output. :type description: str :param evaluation_only: Whether the flow output is for evaluation only. :type evaluation_only: bool :param is_chat_output: Whether the flow output is a chat output. :type is_chat_output: bool """ type: ValueType reference: InputAssignment description: str = "" evaluation_only: bool = False is_chat_output: bool = False def serialize(self): """Serialize the flow output definition to a dict. :return: The dict of the flow output definition. :rtype: dict """ data = {} data["type"] = self.type.value if self.reference: data["reference"] = self.reference.serialize() if self.description: data["description"] = self.description if self.evaluation_only: data["evaluation_only"] = True if self.is_chat_output: data["is_chat_output"] = True return data @staticmethod def deserialize(data: dict): """Deserialize the flow output definition from a dict. :param data: The dict to be deserialized. :type data: dict :return: The flow output definition constructed from the dict. :rtype: ~promptflow.contracts.flow.FlowOutputDefinition """ return FlowOutputDefinition( ValueType(data["type"]), InputAssignment.deserialize(data.get("reference", "")), data.get("description", ""), data.get("evaluation_only", False), data.get("is_chat_output", False), ) @dataclass class NodeVariant: """This class represents a node variant. :param node: The node of the node variant. :type node: ~promptflow.contracts.flow.Node :param description: The description of the node variant. :type description: str """ node: Node description: str = "" @staticmethod def deserialize(data: dict) -> "NodeVariant": """Deserialize the node variant from a dict. :param data: The dict to be deserialized. :type data: dict :return: The node variant constructed from the dict. :rtype: ~promptflow.contracts.flow.NodeVariant """ return NodeVariant( Node.deserialize(data["node"]), data.get("description", ""), ) @dataclass class NodeVariants: """This class represents the variants of a node. :param default_variant_id: The default variant id of the node. :type default_variant_id: str :param variants: The variants of the node. :type variants: Dict[str, NodeVariant] """ default_variant_id: str # The default variant id of the node variants: Dict[str, NodeVariant] # The variants of the node @staticmethod def deserialize(data: dict) -> "NodeVariants": """Deserialize the node variants from a dict. :param data: The dict to be deserialized. :type data: dict :return: The node variants constructed from the dict. :rtype: ~promptflow.contracts.flow.NodeVariants """ variants = {} for variant_id, node in data["variants"].items(): variants[variant_id] = NodeVariant.deserialize(node) return NodeVariants(default_variant_id=data.get("default_variant_id", ""), variants=variants) @dataclass class Flow: """This class represents a flow. :param id: The id of the flow. :type id: str :param name: The name of the flow. :type name: str :param nodes: The nodes of the flow. :type nodes: List[Node] :param inputs: The inputs of the flow. :type inputs: Dict[str, FlowInputDefinition] :param outputs: The outputs of the flow. :type outputs: Dict[str, FlowOutputDefinition] :param tools: The tools of the flow. :type tools: List[Tool] :param node_variants: The node variants of the flow. :type node_variants: Dict[str, NodeVariants] :param program_language: The program language of the flow. :type program_language: str :param environment_variables: The default environment variables of the flow. :type environment_variables: Dict[str, object] """ id: str name: str nodes: List[Node] inputs: Dict[str, FlowInputDefinition] outputs: Dict[str, FlowOutputDefinition] tools: List[Tool] node_variants: Dict[str, NodeVariants] = None program_language: str = FlowLanguage.Python environment_variables: Dict[str, object] = None def serialize(self): """Serialize the flow to a dict. :return: The dict of the flow. :rtype: dict """ data = { "id": self.id, "name": self.name, "nodes": [n.serialize() for n in self.nodes], "inputs": {name: i.serialize() for name, i in self.inputs.items()}, "outputs": {name: o.serialize() for name, o in self.outputs.items()}, "tools": [serialize(t) for t in self.tools], "language": self.program_language, } return data @staticmethod def _import_requisites(tools, nodes): """This function will import tools/nodes required modules to ensure type exists so flow can be executed.""" try: # Import tool modules to ensure register_builtins & registered_connections executed for tool in tools: if tool.module: try_import(tool.module, f"Import tool {tool.name!r} module {tool.module!r} failed.") # Import node provider to ensure register_apis executed so that provider & connection exists. for node in nodes: if node.module: try_import(node.module, f"Import node {node.name!r} provider module {node.module!r} failed.") except Exception as e: logger.warning("Failed to import modules...") raise FailedToImportModule( message=f"Failed to import modules with error: {str(e)}.", target=ErrorTarget.RUNTIME ) from e @staticmethod def deserialize(data: dict) -> "Flow": """Deserialize the flow from a dict. :param data: The dict to be deserialized. :type data: dict :return: The flow constructed from the dict. :rtype: ~promptflow.contracts.flow.Flow """ tools = [Tool.deserialize(t) for t in data.get("tools") or []] nodes = [Node.deserialize(n) for n in data.get("nodes") or []] Flow._import_requisites(tools, nodes) inputs = data.get("inputs") or {} outputs = data.get("outputs") or {} return Flow( # TODO: Remove this fallback. data.get("id", data.get("name", "default_flow_id")), data.get("name", "default_flow"), nodes, {name: FlowInputDefinition.deserialize(i) for name, i in inputs.items()}, {name: FlowOutputDefinition.deserialize(o) for name, o in outputs.items()}, tools=tools, node_variants={name: NodeVariants.deserialize(v) for name, v in (data.get("node_variants") or {}).items()}, program_language=data.get(LANGUAGE_KEY, FlowLanguage.Python), environment_variables=data.get("environment_variables") or {}, ) def _apply_default_node_variants(self: "Flow"): self.nodes = [ self._apply_default_node_variant(node, self.node_variants) if node.use_variants else node for node in self.nodes ] return self @staticmethod def _apply_default_node_variant(node: Node, node_variants: Dict[str, NodeVariants]) -> Node: if not node_variants: return node node_variant = node_variants.get(node.name) if not node_variant: return node default_variant = node_variant.variants.get(node_variant.default_variant_id) if not default_variant: return node default_variant.node.name = node.name return default_variant.node @classmethod def _resolve_working_dir(cls, flow_file: Path, working_dir=None) -> Path: working_dir = cls._parse_working_dir(flow_file, working_dir) cls._update_working_dir(working_dir) return working_dir @classmethod def _parse_working_dir(cls, flow_file: Path, working_dir=None) -> Path: if working_dir is None: working_dir = Path(flow_file).resolve().parent working_dir = Path(working_dir).absolute() return working_dir @classmethod def _update_working_dir(cls, working_dir: Path): sys.path.insert(0, str(working_dir)) @classmethod def from_yaml(cls, flow_file: Path, working_dir=None) -> "Flow": """Load flow from yaml file.""" working_dir = cls._parse_working_dir(flow_file, working_dir) with open(working_dir / flow_file, "r", encoding=DEFAULT_ENCODING) as fin: flow_dag = load_yaml(fin) return Flow._from_dict(flow_dag=flow_dag, working_dir=working_dir) @classmethod def _from_dict(cls, flow_dag: dict, working_dir: Path) -> "Flow": """Load flow from dict.""" cls._update_working_dir(working_dir) flow = Flow.deserialize(flow_dag) flow._set_tool_loader(working_dir) return flow @classmethod def load_env_variables( cls, flow_file: Path, working_dir=None, environment_variables_overrides: Dict[str, str] = None ) -> Dict[str, str]: """ Read flow_environment_variables from flow yaml. If environment_variables_overrides exists, override yaml level configuration. Returns the merged environment variables dict. """ if Path(flow_file).suffix.lower() != ".yaml": # The flow_file type of eager flow is .py return environment_variables_overrides or {} working_dir = cls._parse_working_dir(flow_file, working_dir) with open(working_dir / flow_file, "r", encoding=DEFAULT_ENCODING) as fin: flow_dag = load_yaml(fin) flow = Flow.deserialize(flow_dag) return flow.get_environment_variables_with_overrides( environment_variables_overrides=environment_variables_overrides ) def get_environment_variables_with_overrides( self, environment_variables_overrides: Dict[str, str] = None ) -> Dict[str, str]: environment_variables = { k: (json.dumps(v) if isinstance(v, (dict, list)) else str(v)) for k, v in self.environment_variables.items() } if environment_variables_overrides is not None: for k, v in environment_variables_overrides.items(): environment_variables[k] = v return environment_variables def _set_tool_loader(self, working_dir): package_tool_keys = [node.source.tool for node in self.nodes if node.source and node.source.tool] from promptflow._core.tools_manager import ToolLoader # TODO: consider refactor this. It will raise an error if promptflow-tools # is not installed even for csharp flow. self._tool_loader = ToolLoader(working_dir, package_tool_keys) def _apply_node_overrides(self, node_overrides): """Apply node overrides to update the nodes in the flow. Example: node_overrides = { "llm_node1.connection": "some_connection", "python_node1.some_key": "some_value", } We will update the connection field of llm_node1 and the input value of python_node1.some_key. """ if not node_overrides: return self # We don't do detailed error handling here, since it should never fail for key, value in node_overrides.items(): node_name, input_name = key.split(".") node = self.get_node(node_name) if node is None: raise ValueError(f"Cannot find node {node_name} in flow {self.name}") # For LLM node, here we override the connection field in node if node.connection and input_name == "connection": node.connection = value # Other scenarios we override the input value of the inputs else: node.inputs[input_name] = InputAssignment(value=value) return self def has_aggregation_node(self): """Return whether the flow has aggregation node.""" return any(n.aggregation for n in self.nodes) def get_node(self, node_name): """Return the node with the given name.""" return next((n for n in self.nodes if n.name == node_name), None) def get_tool(self, tool_name): """Return the tool with the given name.""" return next((t for t in self.tools if t.name == tool_name), None) def is_reduce_node(self, node_name): """Return whether the node is a reduce node.""" node = next((n for n in self.nodes if n.name == node_name), None) return node is not None and node.aggregation def is_normal_node(self, node_name): """Return whether the node is a normal node.""" node = next((n for n in self.nodes if n.name == node_name), None) return node is not None and not node.aggregation def is_llm_node(self, node): """Given a node, return whether it uses LLM tool.""" return node.type == ToolType.LLM def is_referenced_by_flow_output(self, node): """Given a node, return whether it is referenced by output.""" return any( output for output in self.outputs.values() if all( ( output.reference.value_type == InputValueType.NODE_REFERENCE, output.reference.value == node.name, ) ) ) def is_node_referenced_by(self, node: Node, other_node: Node): """Given two nodes, return whether the first node is referenced by the second node.""" return other_node.inputs and any( input for input in other_node.inputs.values() if input.value_type == InputValueType.NODE_REFERENCE and input.value == node.name ) def is_referenced_by_other_node(self, node): """Given a node, return whether it is referenced by other node.""" return any(flow_node for flow_node in self.nodes if self.is_node_referenced_by(node, flow_node)) def is_chat_flow(self): """Return whether the flow is a chat flow.""" chat_input_name = self.get_chat_input_name() return chat_input_name is not None def get_chat_input_name(self): """Return the name of the chat input.""" return next((name for name, i in self.inputs.items() if i.is_chat_input), None) def get_chat_output_name(self): """Return the name of the chat output.""" return next((name for name, o in self.outputs.items() if o.is_chat_output), None) def _get_connection_name_from_tool(self, tool: Tool, node: Node): connection_names = {} value_types = set({v.value for v in ValueType.__members__.values()}) for k, v in tool.inputs.items(): input_type = [typ.value if isinstance(typ, Enum) else typ for typ in v.type] if all(typ.lower() in value_types for typ in input_type): # All type is value type, the key is not a possible connection key. continue input_assignment = node.inputs.get(k) # Add literal node assignment values to results, skip node reference if isinstance(input_assignment, InputAssignment) and input_assignment.value_type == InputValueType.LITERAL: connection_names[k] = input_assignment.value return connection_names def get_connection_names(self): """Return connection names.""" connection_names = set({}) nodes = [ self._apply_default_node_variant(node, self.node_variants) if node.use_variants else node for node in self.nodes ] for node in nodes: if node.connection: connection_names.add(node.connection) continue if node.type == ToolType.PROMPT or node.type == ToolType.LLM: continue logger.debug(f"Try loading connection names for node {node.name}.") tool = self.get_tool(node.tool) or self._tool_loader.load_tool_for_node(node) if tool: node_connection_names = list(self._get_connection_name_from_tool(tool, node).values()) else: node_connection_names = [] if node_connection_names: logger.debug(f"Connection names of node {node.name}: {node_connection_names}") else: logger.debug(f"Node {node.name} doesn't reference any connection.") connection_names.update(node_connection_names) return set({item for item in connection_names if item}) def get_connection_input_names_for_node(self, node_name): """Return connection input names.""" node = self.get_node(node_name) if node and node.use_variants: node = self._apply_default_node_variant(node, self.node_variants) # Ignore Prompt node and LLM node, due to they do not have connection inputs. if not node or node.type == ToolType.PROMPT or node.type == ToolType.LLM: return [] tool = self.get_tool(node.tool) or self._tool_loader.load_tool_for_node(node) if tool: return list(self._get_connection_name_from_tool(tool, node).keys()) return [] def _replace_with_variant(self, variant_node: Node, variant_tools: list): for index, node in enumerate(self.nodes): if node.name == variant_node.name: self.nodes[index] = variant_node break self.tools = self.tools + variant_tools
promptflow/src/promptflow/promptflow/contracts/flow.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/contracts/flow.py", "repo_id": "promptflow", "token_count": 13223 }
43
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import re from promptflow._core._errors import NotSupported from promptflow.contracts.flow import InputAssignment, InputValueType from promptflow.executor._errors import ( InputNotFound, InputNotFoundFromAncestorNodeOutput, InvalidReferenceProperty, UnsupportedReference, ) def parse_value(i: InputAssignment, nodes_outputs: dict, flow_inputs: dict): if i.value_type == InputValueType.LITERAL: return i.value if i.value_type == InputValueType.FLOW_INPUT: if i.value not in flow_inputs: flow_input_keys = ", ".join(flow_inputs.keys()) if flow_inputs is not None else None raise InputNotFound( message_format=( "Flow execution failed. " "The input '{input_name}' is not found from flow inputs '{flow_input_keys}'. " "Please check the input name and try again." ), input_name=i.value, flow_input_keys=flow_input_keys, ) return flow_inputs[i.value] if i.value_type == InputValueType.NODE_REFERENCE: if i.section != "output": raise UnsupportedReference( message_format=( "Flow execution failed. " "The section '{reference_section}' of reference is currently unsupported. " "Please specify the output part of the node '{reference_node_name}'." ), reference_section=i.section, reference_node_name=i.value, ) if i.value not in nodes_outputs: node_output_keys = [output_keys for output_keys in nodes_outputs.keys() if nodes_outputs] raise InputNotFoundFromAncestorNodeOutput( message_format=( "Flow execution failed. " "The input '{input_name}' is not found from ancestor node outputs {node_output_keys}. " "Please check the node name and try again." ), input_name=i.value, node_output_keys=node_output_keys, ) return parse_node_property(i.value, nodes_outputs[i.value], i.property) raise NotSupported( message_format=( "Flow execution failed. " "The type '{input_type}' is currently unsupported. " "Please choose from available types: {supported_output_type} and try again." ), input_type=i.value_type.value if hasattr(i.value_type, "value") else i.value_type, supported_output_type=[value_type.value for value_type in InputValueType], ) property_pattern = r"(\w+)|(\['.*?'\])|(\[\d+\])" def parse_node_property(node_name, node_val, property=""): val = node_val property_parts = re.findall(property_pattern, property) try: for part in property_parts: part = [p for p in part if p][0] if part.startswith("[") and part.endswith("]"): index = part[1:-1] if index.startswith("'") and index.endswith("'") or index.startswith('"') and index.endswith('"'): index = index[1:-1] elif index.isdigit(): index = int(index) else: raise InvalidReferenceProperty( message_format=( "Flow execution failed. " "Invalid index '{index}' when accessing property '{property}' of the node '{node_name}'. " "Please check the index and try again." ), index=index, property=property, node_name=node_name, ) val = val[index] else: if isinstance(val, dict): val = val[part] else: val = getattr(val, part) except (KeyError, IndexError, AttributeError) as e: message_format = ( "Flow execution failed. " "Invalid property '{property}' when accessing the node '{node_name}'. " "Please check the property and try again." ) raise InvalidReferenceProperty(message_format=message_format, property=property, node_name=node_name) from e return val
promptflow/src/promptflow/promptflow/executor/_input_assignment_parser.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/executor/_input_assignment_parser.py", "repo_id": "promptflow", "token_count": 2155 }
44
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import json from dataclasses import asdict, dataclass from datetime import datetime from promptflow._utils.dataclass_serializer import serialize from promptflow.contracts.run_info import FlowRunInfo, RunInfo @dataclass class NodeRunRecord: """Dataclass for storing the run record of each node during single line execution on the flow :param str node_name: The name of the node :param int line_number: The line number in the source file :param str run_info: The information about the run :param datetime start_time: The time the node started running :param datetime end_time: The time the node finished running :param str status: The status of the node run """ node_name: str line_number: int run_info: str start_time: datetime end_time: datetime status: str @staticmethod def from_run_info(run_info: RunInfo) -> "NodeRunRecord": """Create a NodeRunRecord from a RunInfo object. :param RunInfo run_info: The run info to create the NodeRunRecord from :return: The created NodeRunRecord :rtype: NodeRunRecord """ return NodeRunRecord( node_name=run_info.node, line_number=run_info.index, run_info=serialize(run_info), start_time=run_info.start_time.isoformat(), end_time=run_info.end_time.isoformat(), status=run_info.status.value, ) def serialize(self) -> str: """Serialize the NodeRunRecord for storage in blob. :return: The serialized result :rtype: str """ return json.dumps(asdict(self)) @dataclass class LineRunRecord: """A dataclass for storing the run record of a single line execution on the flow. :param int line_number: The line number in the record :param str run_info: The information about the line run :param datetime start_time: The time the line started executing :param datetime end_time: The time the line finished executing :param str name: The name of the line run :param str description: The description of the line run :param str status: The status of the line execution :param str tags: The tags associated with the line run """ line_number: int run_info: str start_time: datetime end_time: datetime name: str description: str status: str tags: str @staticmethod def from_run_info(run_info: FlowRunInfo) -> "LineRunRecord": """Create a LineRunRecord from a FlowRunInfo object. :param FlowRunInfo run_info: The run info to create the LineRunRecord from :return: The created LineRunRecord :rtype: LineRunRecord """ return LineRunRecord( line_number=run_info.index, run_info=serialize(run_info), start_time=run_info.start_time.isoformat(), end_time=run_info.end_time.isoformat(), name=run_info.name, description=run_info.description, status=run_info.status.value, tags=run_info.tags, ) def serialize(self) -> str: """Serialize the LineRunRecord for storage in a blob. :return: The serialized result :rtype: str """ return json.dumps(asdict(self))
promptflow/src/promptflow/promptflow/storage/run_records.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/storage/run_records.py", "repo_id": "promptflow", "token_count": 1297 }
45
import logging import multiprocessing import os import re import shutil import sys from pathlib import Path from types import GeneratorType import pytest from promptflow.contracts.run_info import Status from promptflow.exceptions import UserErrorException from promptflow.executor import FlowExecutor from promptflow.executor._errors import ConnectionNotFound, InputTypeError, ResolveToolError from promptflow.executor.flow_executor import execute_flow from promptflow.storage._run_storage import DefaultRunStorage from ..utils import FLOW_ROOT, get_flow_folder, get_flow_sample_inputs, get_yaml_file, is_image_file SAMPLE_FLOW = "web_classification_no_variants" @pytest.mark.usefixtures("use_secrets_config_file", "dev_connections") @pytest.mark.e2etest class TestExecutor: def get_line_inputs(self, flow_folder=""): if flow_folder: inputs = self.get_bulk_inputs(flow_folder) return inputs[0] return { "url": "https://www.microsoft.com/en-us/windows/", "text": "some_text", } def get_bulk_inputs(self, nlinee=4, flow_folder="", sample_inputs_file="", return_dict=False): if flow_folder: if not sample_inputs_file: sample_inputs_file = "samples.json" inputs = get_flow_sample_inputs(flow_folder, sample_inputs_file=sample_inputs_file) if isinstance(inputs, list) and len(inputs) > 0: return inputs elif isinstance(inputs, dict): if return_dict: return inputs return [inputs] else: raise Exception(f"Invalid type of bulk input: {inputs}") return [self.get_line_inputs() for _ in range(nlinee)] def skip_serp(self, flow_folder, dev_connections): serp_required_flows = ["package_tools"] # Real key is usually more than 32 chars serp_key = dev_connections.get("serp_connection", {"value": {"api_key": ""}})["value"]["api_key"] if flow_folder in serp_required_flows and len(serp_key) < 32: pytest.skip("serp_connection is not prepared") @pytest.mark.parametrize( "flow_folder", [ SAMPLE_FLOW, "prompt_tools", "script_with___file__", "script_with_import", "package_tools", "connection_as_input", "async_tools", "async_tools_with_sync_tools", "tool_with_assistant_definition", ], ) def test_executor_exec_line(self, flow_folder, dev_connections): self.skip_serp(flow_folder, dev_connections) os.chdir(get_flow_folder(flow_folder)) executor = FlowExecutor.create(get_yaml_file(flow_folder), dev_connections) flow_result = executor.exec_line(self.get_line_inputs()) assert not executor._run_tracker._flow_runs, "Flow runs in run tracker should be empty." assert not executor._run_tracker._node_runs, "Node runs in run tracker should be empty." assert isinstance(flow_result.output, dict) assert flow_result.run_info.status == Status.Completed node_count = len(executor._flow.nodes) assert isinstance(flow_result.run_info.api_calls, list) and len(flow_result.run_info.api_calls) == 1 assert ( isinstance(flow_result.run_info.api_calls[0]["children"], list) and len(flow_result.run_info.api_calls[0]["children"]) == node_count ) assert len(flow_result.node_run_infos) == node_count for node, node_run_info in flow_result.node_run_infos.items(): assert node_run_info.status == Status.Completed assert node_run_info.node == node assert isinstance(node_run_info.api_calls, list) # api calls is set def test_long_running_log(self, dev_connections, capsys): # TODO: investigate why flow_logger does not output to stdout in test case from promptflow._utils.logger_utils import flow_logger flow_logger.addHandler(logging.StreamHandler(sys.stdout)) os.environ["PF_TASK_PEEKING_INTERVAL"] = "1" executor = FlowExecutor.create(get_yaml_file("async_tools"), dev_connections) executor.exec_line(self.get_line_inputs()) captured = capsys.readouterr() expected_long_running_str_1 = r".*.*Task async_passthrough has been running for 1 seconds, stacktrace:\n.*async_passthrough\.py.*in passthrough_str_and_wait\n.*await asyncio.sleep\(1\).*tasks\.py.*" # noqa E501 assert re.match( expected_long_running_str_1, captured.out, re.DOTALL ), "flow_logger should contain long running async tool log" expected_long_running_str_2 = r".*.*Task async_passthrough has been running for 2 seconds, stacktrace:\n.*async_passthrough\.py.*in passthrough_str_and_wait\n.*await asyncio.sleep\(1\).*tasks\.py.*" # noqa E501 assert re.match( expected_long_running_str_2, captured.out, re.DOTALL ), "flow_logger should contain long running async tool log" flow_logger.handlers.pop() os.environ.pop("PF_TASK_PEEKING_INTERVAL") @pytest.mark.parametrize( "flow_folder, node_name, flow_inputs, dependency_nodes_outputs", [ ("web_classification_no_variants", "summarize_text_content", {}, {"fetch_text_content_from_url": "Hello"}), ("prompt_tools", "summarize_text_content_prompt", {"text": "text"}, {}), ("script_with___file__", "node1", {"text": "text"}, None), ("script_with___file__", "node2", None, {"node1": "text"}), ("script_with___file__", "node3", None, None), ("package_tools", "search_by_text", {"text": "elon mask"}, None), # Skip since no api key in CI ("connection_as_input", "conn_node", None, None), ("simple_aggregation", "accuracy", {"text": "A"}, {"passthrough": "B"}), ("script_with_import", "node1", {"text": "text"}, None), ], ) def test_executor_exec_node(self, flow_folder, node_name, flow_inputs, dependency_nodes_outputs, dev_connections): self.skip_serp(flow_folder, dev_connections) yaml_file = get_yaml_file(flow_folder) run_info = FlowExecutor.load_and_exec_node( yaml_file, node_name, flow_inputs=flow_inputs, dependency_nodes_outputs=dependency_nodes_outputs, connections=dev_connections, raise_ex=True, ) assert run_info.output is not None assert run_info.status == Status.Completed assert isinstance(run_info.api_calls, list) assert run_info.node == node_name assert run_info.system_metrics["duration"] >= 0 def test_executor_exec_node_with_llm_node(self, dev_connections): # Run the test in a new process to ensure the openai api is injected correctly for the single node run context = multiprocessing.get_context("spawn") queue = context.Queue() process = context.Process( target=exec_node_within_process, args=(queue, "llm_tool", "joke", {"topic": "fruit"}, {}, dev_connections, True), ) process.start() process.join() if not queue.empty(): raise queue.get() def test_executor_node_overrides(self, dev_connections): inputs = self.get_line_inputs() executor = FlowExecutor.create( get_yaml_file(SAMPLE_FLOW), dev_connections, node_override={"classify_with_llm.deployment_name": "dummy_deployment"}, raise_ex=True, ) with pytest.raises(UserErrorException) as e: executor.exec_line(inputs) assert type(e.value).__name__ == "WrappedOpenAIError" assert "The API deployment for this resource does not exist." in str(e.value) with pytest.raises(ResolveToolError) as e: executor = FlowExecutor.create( get_yaml_file(SAMPLE_FLOW), dev_connections, node_override={"classify_with_llm.connection": "dummy_connection"}, raise_ex=True, ) assert isinstance(e.value.inner_exception, ConnectionNotFound) assert "Connection 'dummy_connection' not found" in str(e.value) @pytest.mark.parametrize( "flow_folder", [ "no_inputs_outputs", ], ) def test_flow_with_no_inputs_and_output(self, flow_folder, dev_connections): executor = FlowExecutor.create(get_yaml_file(flow_folder, FLOW_ROOT), dev_connections) flow_result = executor.exec_line({}) assert flow_result.output == {} assert flow_result.run_info.status == Status.Completed node_count = len(executor._flow.nodes) assert isinstance(flow_result.run_info.api_calls, list) and len(flow_result.run_info.api_calls) == node_count assert len(flow_result.node_run_infos) == node_count for node, node_run_info in flow_result.node_run_infos.items(): assert node_run_info.status == Status.Completed assert node_run_info.node == node assert isinstance(node_run_info.api_calls, list) # api calls is set @pytest.mark.parametrize( "flow_folder", [ "simple_flow_with_python_tool", ], ) def test_convert_flow_input_types(self, flow_folder, dev_connections) -> None: executor = FlowExecutor.create(get_yaml_file(flow_folder, FLOW_ROOT), dev_connections) ret = executor.convert_flow_input_types(inputs={"num": "11"}) assert ret == {"num": 11} ret = executor.convert_flow_input_types(inputs={"text": "12", "num": "11"}) assert ret == {"text": "12", "num": 11} with pytest.raises(InputTypeError): ret = executor.convert_flow_input_types(inputs={"num": "hello"}) executor.convert_flow_input_types(inputs={"num": "hello"}) def test_chat_flow_stream_mode(self, dev_connections) -> None: executor = FlowExecutor.create(get_yaml_file("python_stream_tools", FLOW_ROOT), dev_connections) # To run a flow with stream output, we need to set this flag to run tracker. # TODO: refine the interface inputs = {"text": "hello", "chat_history": []} line_result = executor.exec_line(inputs, allow_generator_output=True) # Assert there's only one output assert len(line_result.output) == 1 assert set(line_result.output.keys()) == {"output_echo"} # Assert the only output is a generator output_echo = line_result.output["output_echo"] assert isinstance(output_echo, GeneratorType) assert list(output_echo) == ["Echo: ", "hello "] # Assert the flow is completed and no errors are raised flow_run_info = line_result.run_info assert flow_run_info.status == Status.Completed assert flow_run_info.error is None @pytest.mark.parametrize( "flow_folder", [ "web_classification", ], ) def test_executor_creation_with_default_variants(self, flow_folder, dev_connections): executor = FlowExecutor.create(get_yaml_file(flow_folder), dev_connections) flow_result = executor.exec_line(self.get_line_inputs()) assert flow_result.run_info.status == Status.Completed def test_executor_creation_with_default_input(self): # Assert for single node run. default_input_value = "input value from default" yaml_file = get_yaml_file("default_input") executor = FlowExecutor.create(yaml_file, {}) node_result = executor.load_and_exec_node(yaml_file, "test_print_input") assert node_result.status == Status.Completed assert node_result.output == default_input_value # Assert for flow run. flow_result = executor.exec_line({}) assert flow_result.run_info.status == Status.Completed assert flow_result.output["output"] == default_input_value aggr_results = executor.exec_aggregation({}, aggregation_inputs={}) flow_aggregate_node = aggr_results.node_run_infos["aggregate_node"] assert flow_aggregate_node.status == Status.Completed assert flow_aggregate_node.output == [default_input_value] # Assert for exec exec_result = executor.exec({}) assert exec_result["output"] == default_input_value def test_executor_for_script_tool_with_init(self, dev_connections): executor = FlowExecutor.create(get_yaml_file("script_tool_with_init"), dev_connections) flow_result = executor.exec_line({"input": "World"}) assert flow_result.run_info.status == Status.Completed assert flow_result.output["output"] == "Hello World" @pytest.mark.parametrize( "output_dir_name, intermediate_dir_name, run_aggregation, expected_node_counts", [ ("output", "intermediate", True, 2), ("output_1", "intermediate_1", False, 1), ], ) def test_execute_flow( self, output_dir_name: str, intermediate_dir_name: str, run_aggregation: bool, expected_node_counts: int ): flow_folder = get_flow_folder("eval_flow_with_simple_image") # prepare output folder output_dir = flow_folder / output_dir_name intermediate_dir = flow_folder / intermediate_dir_name output_dir.mkdir(exist_ok=True) intermediate_dir.mkdir(exist_ok=True) storage = DefaultRunStorage(base_dir=flow_folder, sub_dir=Path(intermediate_dir_name)) line_result = execute_flow( flow_file=get_yaml_file(flow_folder), working_dir=flow_folder, output_dir=Path(output_dir_name), inputs={}, connections={}, run_aggregation=run_aggregation, storage=storage, ) assert line_result.run_info.status == Status.Completed assert len(line_result.node_run_infos) == expected_node_counts assert all(is_image_file(output_file) for output_file in output_dir.iterdir()) assert all(is_image_file(output_file) for output_file in intermediate_dir.iterdir()) # clean up output folder shutil.rmtree(output_dir) shutil.rmtree(intermediate_dir) def exec_node_within_process(queue, flow_file, node_name, flow_inputs, dependency_nodes_outputs, connections, raise_ex): try: result = FlowExecutor.load_and_exec_node( flow_file=get_yaml_file(flow_file), node_name=node_name, flow_inputs=flow_inputs, dependency_nodes_outputs=dependency_nodes_outputs, connections=connections, raise_ex=raise_ex, ) # Assert llm single node run contains openai traces # And the traces contains system metrics OPENAI_AGGREGATE_METRICS = ["prompt_tokens", "completion_tokens", "total_tokens"] assert len(result.api_calls) == 1 assert len(result.api_calls[0]["children"]) == 1 assert isinstance(result.api_calls[0]["children"][0]["system_metrics"], dict) for key in OPENAI_AGGREGATE_METRICS: assert key in result.api_calls[0]["children"][0]["system_metrics"] for key in OPENAI_AGGREGATE_METRICS: assert ( result.api_calls[0]["system_metrics"][key] == result.api_calls[0]["children"][0]["system_metrics"][key] ) except Exception as ex: queue.put(ex)
promptflow/src/promptflow/tests/executor/e2etests/test_executor_happypath.py/0
{ "file_path": "promptflow/src/promptflow/tests/executor/e2etests/test_executor_happypath.py", "repo_id": "promptflow", "token_count": 6745 }
46
import pytest from promptflow._core._errors import RunRecordNotFound from promptflow._core.generator_proxy import GeneratorProxy from promptflow._core.run_tracker import RunTracker from promptflow.connections import AzureOpenAIConnection from promptflow.contracts.run_info import Status class UnserializableClass: def __init__(self, data: str): self.data = data @pytest.mark.unittest class TestRunTracker: def test_run_tracker(self): # TODO: Refactor this test case, it's very confusing now. # Initialize run tracker with dummy run storage run_tracker = RunTracker.init_dummy() # Start flow run run_tracker.start_flow_run("test_flow_id", "test_root_run_id", "test_flow_run_id") assert len(run_tracker._flow_runs) == 1 assert run_tracker._current_run_id == "test_flow_run_id" flow_input = {"flow_input": "input_0"} run_tracker.set_inputs("test_flow_run_id", flow_input) # Start node runs run_info = run_tracker.start_node_run("node_0", "test_root_run_id", "test_flow_run_id", "run_id_0", index=0) run_info.index = 0 run_info = run_tracker.start_node_run("node_0", "test_root_run_id", "test_flow_run_id", "run_id_1", index=1) run_info.index = 1 run_tracker.start_node_run("node_aggr", "test_root_run_id", "test_flow_run_id", "run_id_aggr", index=None) assert len(run_tracker._node_runs) == 3 assert run_tracker._current_run_id == "run_id_aggr" # Test collect_all_run_infos_as_dicts run_tracker.allow_generator_types = True run_tracker.set_inputs( "run_id_0", {"input": "input_0", "connection": AzureOpenAIConnection("api_key", "api_base")} ) run_tracker.set_inputs( "run_id_1", {"input": "input_1", "generator": GeneratorProxy(item for item in range(10))} ) run_infos = run_tracker.collect_all_run_infos_as_dicts() assert len(run_infos["flow_runs"]) == 1 assert len(run_infos["node_runs"]) == 3 assert run_infos["node_runs"][0]["inputs"] == {"input": "input_0", "connection": "AzureOpenAIConnection"} assert run_infos["node_runs"][1]["inputs"] == {"input": "input_1", "generator": []} # Test end run with normal result result = {"result": "result"} run_info_0 = run_tracker.end_run(run_id="run_id_0", result=result) assert run_info_0.status == Status.Completed assert run_info_0.output == result # Test end run with unserializable result result = {"unserialized_value": UnserializableClass("test")} run_info_1 = run_tracker.end_run(run_id="run_id_1", result=result) assert run_info_1.status == Status.Completed assert run_info_1.output == str(result) # Test end run with invalid run id with pytest.raises(RunRecordNotFound): run_tracker.end_run(run_id="invalid_run_id") # Test end run with exception ex = Exception("Failed") run_info_aggr = run_tracker.end_run(run_id="run_id_aggr", ex=ex) assert run_info_aggr.status == Status.Failed assert run_info_aggr.error["message"] == "Failed" # Test end flow run with unserializable result result = {"unserialized_value": UnserializableClass("test")} run_info_flow = run_tracker.end_run(run_id="test_flow_run_id", result=result) assert run_info_flow.status == Status.Failed assert "The output 'unserialized_value' for flow is incorrect." in run_info_flow.error["message"] # Test _update_flow_run_info_with_node_runs run_info_0.api_calls, run_info_0.system_metrics = [{"name": "caht"}], {"total_tokens": 10} run_info_1.api_calls, run_info_1.system_metrics = [{"name": "completion"}], {"total_tokens": 20} run_info_aggr.api_calls, run_info_aggr.system_metrics = [ {"name": "caht"}, {"name": "completion"}], {"total_tokens": 30} run_tracker._update_flow_run_info_with_node_runs(run_info_flow) assert len(run_info_flow.api_calls) == 1, "There should be only one top level api call for flow run." assert run_info_flow.system_metrics["total_tokens"] == 60 assert run_info_flow.api_calls[0]["name"] == "flow" assert run_info_flow.api_calls[0]["node_name"] == "flow" assert run_info_flow.api_calls[0]["type"] == "Flow" assert run_info_flow.api_calls[0]["system_metrics"]["total_tokens"] == 60 assert isinstance(run_info_flow.api_calls[0]["start_time"], float) assert isinstance(run_info_flow.api_calls[0]["end_time"], float) assert len(run_info_flow.api_calls[0]["children"]) == 4, "There should be 4 children under root." # Test get_status_summary status_summary = run_tracker.get_status_summary("test_root_run_id") assert status_summary == { "__pf__.lines.completed": 0, "__pf__.lines.failed": 1, "__pf__.nodes.node_0.completed": 2, "__pf__.nodes.node_aggr.completed": 0, } def test_run_tracker_flow_run_without_node_run(self): """When line timeout, there will be flow run info without node run info.""" # Initialize run tracker with dummy run storage run_tracker = RunTracker.init_dummy() # Start flow run run_tracker.start_flow_run("test_flow_id", "test_root_run_id", "test_flow_run_id_0", index=0) run_tracker.end_run("test_flow_run_id_0", ex=Exception("Timeout")) run_tracker.start_flow_run("test_flow_id", "test_root_run_id", "test_flow_run_id_1", index=1) run_tracker.end_run("test_flow_run_id_1", result={"result": "result"}) assert len(run_tracker._flow_runs) == 2 # Start node runs run_tracker.start_node_run("node_0", "test_root_run_id", "test_flow_run_id_2", "test_node_run_id_1", index=0) run_tracker.end_run("test_node_run_id_1", result={"result": "result"}) assert len(run_tracker._node_runs) == 1 status_summary = run_tracker.get_status_summary("test_root_run_id") assert status_summary == { "__pf__.lines.completed": 1, "__pf__.lines.failed": 1, "__pf__.nodes.node_0.completed": 1, }
promptflow/src/promptflow/tests/executor/unittests/_core/test_run_tracker.py/0
{ "file_path": "promptflow/src/promptflow/tests/executor/unittests/_core/test_run_tracker.py", "repo_id": "promptflow", "token_count": 2794 }
47
import inspect from typing import Union import pytest from promptflow._core._errors import DuplicateToolMappingError from promptflow._utils.tool_utils import ( DynamicListError, ListFunctionResponseError, _find_deprecated_tools, append_workspace_triple_to_func_input_params, function_to_interface, load_function_from_function_path, param_to_definition, validate_dynamic_list_func_response_type, ) from promptflow.connections import AzureOpenAIConnection, CustomConnection from promptflow.contracts.tool import ValueType, Tool, ToolType # mock functions for dynamic list function testing def mock_dynamic_list_func1(): pass def mock_dynamic_list_func2(input1): pass def mock_dynamic_list_func3(input1, input2): pass def mock_dynamic_list_func4(input1, input2, **kwargs): pass def mock_dynamic_list_func5(input1, input2, subscription_id): pass def mock_dynamic_list_func6(input1, input2, subscription_id, resource_group_name, workspace_name): pass def mock_dynamic_list_func7(input1, input2, subscription_id, **kwargs): pass def mock_dynamic_list_func8(input1, input2, subscription_id, resource_group_name, workspace_name, **kwargs): pass @pytest.mark.unittest class TestToolUtils: def test_function_to_interface(self): def func(conn: [AzureOpenAIConnection, CustomConnection], input: [str, int]): pass input_defs, _, connection_types, _ = function_to_interface(func) assert len(input_defs) == 2 assert input_defs["conn"].type == ["AzureOpenAIConnection", "CustomConnection"] assert input_defs["input"].type == [ValueType.OBJECT] assert connection_types == [["AzureOpenAIConnection", "CustomConnection"]] def test_function_to_interface_with_invalid_initialize_inputs(self): def func(input_str: str): pass with pytest.raises(Exception) as exec_info: function_to_interface(func, {"input_str": "test"}) assert "Duplicate inputs found from" in exec_info.value.args[0] def test_function_to_interface_with_kwargs(self): def func(input_str: str, **kwargs): pass _, _, _, enable_kwargs = function_to_interface(func) assert enable_kwargs is True def func(input_str: str): pass _, _, _, enable_kwargs = function_to_interface(func) assert enable_kwargs is False def test_param_to_definition(self): from promptflow._sdk.entities import CustomStrongTypeConnection from promptflow.contracts.tool import Secret class MyFirstConnection(CustomStrongTypeConnection): api_key: Secret api_base: str class MySecondConnection(CustomStrongTypeConnection): api_key: Secret api_base: str def some_func( conn1: MyFirstConnection, conn2: Union[CustomConnection, MyFirstConnection], conn3: Union[MyFirstConnection, CustomConnection], conn4: Union[MyFirstConnection, MySecondConnection], conn5: CustomConnection, conn6: Union[CustomConnection, int], conn7: Union[MyFirstConnection, int], ): pass sig = inspect.signature(some_func) input_def, _ = param_to_definition(sig.parameters.get("conn1"), gen_custom_type_conn=True) assert input_def.type == ["CustomConnection"] assert input_def.custom_type == ["MyFirstConnection"] input_def, _ = param_to_definition(sig.parameters.get("conn2"), gen_custom_type_conn=True) assert input_def.type == ["CustomConnection"] assert input_def.custom_type == ["MyFirstConnection"] input_def, _ = param_to_definition(sig.parameters.get("conn3"), gen_custom_type_conn=True) assert input_def.type == ["CustomConnection"] assert input_def.custom_type == ["MyFirstConnection"] input_def, _ = param_to_definition(sig.parameters.get("conn4"), gen_custom_type_conn=True) assert input_def.type == ["CustomConnection"] assert input_def.custom_type == ["MyFirstConnection", "MySecondConnection"] input_def, _ = param_to_definition(sig.parameters.get("conn5"), gen_custom_type_conn=True) assert input_def.type == ["CustomConnection"] assert input_def.custom_type is None input_def, _ = param_to_definition(sig.parameters.get("conn6"), gen_custom_type_conn=True) assert input_def.type == [ValueType.OBJECT] assert input_def.custom_type is None input_def, _ = param_to_definition(sig.parameters.get("conn7"), gen_custom_type_conn=True) assert input_def.type == [ValueType.OBJECT] assert input_def.custom_type is None @pytest.mark.parametrize( "func, func_input_params_dict, use_ws_triple, expected_res", [ (mock_dynamic_list_func1, None, False, {}), (mock_dynamic_list_func2, {"input1": "value1"}, False, {"input1": "value1"}), ( mock_dynamic_list_func3, {"input1": "value1", "input2": "value2"}, False, {"input1": "value1", "input2": "value2"}, ), (mock_dynamic_list_func3, {"input1": "value1"}, False, {"input1": "value1"}), (mock_dynamic_list_func3, {"input1": "value1"}, True, {"input1": "value1"}), ( mock_dynamic_list_func4, {"input1": "value1"}, True, { "input1": "value1", "subscription_id": "mock_subscription_id", "resource_group_name": "mock_resource_group", "workspace_name": "mock_workspace_name", }, ), ( mock_dynamic_list_func5, {"input1": "value1"}, True, {"input1": "value1", "subscription_id": "mock_subscription_id"}, ), ( mock_dynamic_list_func5, {"input1": "value1", "subscription_id": "input_subscription_id"}, True, {"input1": "value1", "subscription_id": "input_subscription_id"}, ), ( mock_dynamic_list_func6, {"input1": "value1"}, True, { "input1": "value1", "subscription_id": "mock_subscription_id", "resource_group_name": "mock_resource_group", "workspace_name": "mock_workspace_name", }, ), ( mock_dynamic_list_func6, { "input1": "value1", "workspace_name": "input_workspace_name", }, True, { "input1": "value1", "workspace_name": "input_workspace_name", "subscription_id": "mock_subscription_id", "resource_group_name": "mock_resource_group", }, ), ( mock_dynamic_list_func7, {"input1": "value1"}, True, { "input1": "value1", "subscription_id": "mock_subscription_id", "resource_group_name": "mock_resource_group", "workspace_name": "mock_workspace_name", }, ), ( mock_dynamic_list_func7, {"input1": "value1", "subscription_id": "input_subscription_id"}, True, { "input1": "value1", "subscription_id": "input_subscription_id", "resource_group_name": "mock_resource_group", "workspace_name": "mock_workspace_name", }, ), ( mock_dynamic_list_func8, {"input1": "value1"}, True, { "input1": "value1", "subscription_id": "mock_subscription_id", "resource_group_name": "mock_resource_group", "workspace_name": "mock_workspace_name", }, ), ( mock_dynamic_list_func8, { "input1": "value1", "subscription_id": "input_subscription_id", "resource_group_name": "input_resource_group", "workspace_name": "input_workspace_name", }, True, { "input1": "value1", "subscription_id": "input_subscription_id", "resource_group_name": "input_resource_group", "workspace_name": "input_workspace_name", }, ), ], ) def test_append_workspace_triple_to_func_input_params( self, func, func_input_params_dict, use_ws_triple, expected_res, mocked_ws_triple ): ws_triple_dict = mocked_ws_triple._asdict() if use_ws_triple else None func_sig_params = inspect.signature(func).parameters actual_combined_inputs = append_workspace_triple_to_func_input_params( func_sig_params=func_sig_params, func_input_params_dict=func_input_params_dict, ws_triple_dict=ws_triple_dict, ) assert actual_combined_inputs == expected_res @pytest.mark.parametrize( "res", [ ( [ { "value": "fig0", "display_value": "My_fig0", "hyperlink": "https://www.bing.com/search?q=fig0", "description": "this is 0 item", }, { "value": "kiwi1", "display_value": "My_kiwi1", "hyperlink": "https://www.bing.com/search?q=kiwi1", "description": "this is 1 item", }, ] ), ([{"value": "fig0"}, {"value": "kiwi1"}]), ([{"value": "fig0", "display_value": "My_fig0"}, {"value": "kiwi1", "display_value": "My_kiwi1"}]), ( [ {"value": "fig0", "display_value": "My_fig0", "hyperlink": "https://www.bing.com/search?q=fig0"}, { "value": "kiwi1", "display_value": "My_kiwi1", "hyperlink": "https://www.bing.com/search?q=kiwi1", }, ] ), ([{"value": "fig0", "hyperlink": "https://www.bing.com/search?q=fig0"}]), ( [ {"value": "fig0", "display_value": "My_fig0", "description": "this is 0 item"}, { "value": "kiwi1", "display_value": "My_kiwi1", "hyperlink": "https://www.bing.com/search?q=kiwi1", "description": "this is 1 item", }, ] ), ], ) def test_validate_dynamic_list_func_response_type(self, res): validate_dynamic_list_func_response_type(response=res, f="mock_func") @pytest.mark.parametrize( "res, err_msg", [ (None, "mock_func response can not be empty."), ([], "mock_func response can not be empty."), (["a", "b"], "mock_func response must be a list of dict. a is not a dict."), ({"a": "b"}, "mock_func response must be a list."), ([{"a": "b"}], "mock_func response dict must have 'value' key."), ([{"value": 1 + 2j}], "mock_func response dict value \\(1\\+2j\\) is not json serializable."), ], ) def test_validate_dynamic_list_func_response_type_with_error(self, res, err_msg): error_message = ( f"Unable to display list of items due to '{err_msg}'. \nPlease contact the tool " f"author/support team for troubleshooting assistance." ) with pytest.raises(ListFunctionResponseError, match=error_message): validate_dynamic_list_func_response_type(response=res, f="mock_func") def test_load_function_from_function_path(self, mock_module_with_list_func): func_path = "my_tool_package.tools.tool_with_dynamic_list_input.my_list_func" load_function_from_function_path(func_path) def test_load_function_from_function_path_with_error(self, mock_module_with_list_func): func_path = "mock_func_path" with pytest.raises( DynamicListError, match="Unable to display list of items due to 'Failed to parse function from function path: " "'mock_func_path'. Expected format: format 'my_module.my_func'. Detailed error: not enough " "values to unpack \\(expected 2, got 1\\)'. \nPlease contact the tool author/support team for " "troubleshooting assistance.", ): load_function_from_function_path(func_path) func_path = "fake_tool_pkg.tools.tool_with_dynamic_list_input.my_list_func" with pytest.raises( DynamicListError, match="Unable to display list of items due to 'Failed to parse function from function path: " "'fake_tool_pkg.tools.tool_with_dynamic_list_input.my_list_func'. Expected format: format " "'my_module.my_func'. Detailed error: No module named 'fake_tool_pkg''. \nPlease contact the tool " "author/support team for troubleshooting assistance.", ): load_function_from_function_path(func_path) func_path = "my_tool_package.tools.tool_with_dynamic_list_input.my_field" with pytest.raises( DynamicListError, match="Unable to display list of items due to 'Failed to parse function from function path: " "'my_tool_package.tools.tool_with_dynamic_list_input.my_field'. Expected format: " "format 'my_module.my_func'. Detailed error: Unable to display list of items due to ''1' " "is not callable.'. \nPlease contact the tool author/support team for troubleshooting assistance.", ): load_function_from_function_path(func_path) def test_find_deprecated_tools(self): package_tools = { "new_tool_1": Tool( name="new tool 1", type=ToolType.PYTHON, inputs={}, deprecated_tools=["old_tool_1"]).serialize(), "new_tool_2": Tool( name="new tool 1", type=ToolType.PYTHON, inputs={}, deprecated_tools=["old_tool_1"]).serialize(), } with pytest.raises(DuplicateToolMappingError, match="secure operation"): _find_deprecated_tools(package_tools)
promptflow/src/promptflow/tests/executor/unittests/_utils/test_tool_utils.py/0
{ "file_path": "promptflow/src/promptflow/tests/executor/unittests/_utils/test_tool_utils.py", "repo_id": "promptflow", "token_count": 7564 }
48
import json from pathlib import Path from typing import Union, Dict from promptflow._utils.yaml_utils import load_yaml from promptflow.contracts.flow import Flow from promptflow.contracts.run_info import FlowRunInfo from promptflow.contracts.run_info import RunInfo as NodeRunInfo from promptflow.storage import AbstractRunStorage TEST_ROOT = Path(__file__).parent.parent DATA_ROOT = TEST_ROOT / "test_configs/datas" FLOW_ROOT = TEST_ROOT / "test_configs/flows" EAGER_FLOW_ROOT = TEST_ROOT / "test_configs/eager_flows" WRONG_FLOW_ROOT = TEST_ROOT / "test_configs/wrong_flows" EAGER_FLOWS_ROOT = TEST_ROOT / "test_configs/eager_flows" def get_flow_folder(folder_name, root: str = FLOW_ROOT): flow_folder_path = Path(root) / folder_name return flow_folder_path def get_yaml_file(folder_name, root: str = FLOW_ROOT, file_name: str = "flow.dag.yaml"): yaml_file = get_flow_folder(folder_name, root) / file_name return yaml_file def get_entry_file(folder_name, root: str = EAGER_FLOW_ROOT, file_name: str = "entry.py"): entry_file = get_flow_folder(folder_name, root) / file_name return entry_file def get_flow_from_folder(folder_name, root: str = FLOW_ROOT, file_name: str = "flow.dag.yaml"): flow_yaml = get_yaml_file(folder_name, root, file_name) with open(flow_yaml, "r") as fin: return Flow.deserialize(load_yaml(fin)) def get_flow_inputs_file(folder_name, root: str = FLOW_ROOT, file_name: str = "inputs.jsonl"): inputs_file = get_flow_folder(folder_name, root) / file_name return inputs_file def get_flow_inputs(folder_name, root: str = FLOW_ROOT, file_name: str = "inputs.json"): inputs = load_json(get_flow_inputs_file(folder_name, root, file_name)) return inputs[0] if isinstance(inputs, list) else inputs def get_bulk_inputs_from_jsonl(folder_name, root: str = FLOW_ROOT, file_name: str = "inputs.jsonl"): inputs = load_jsonl(get_flow_inputs_file(folder_name, root, file_name)) return inputs def get_bulk_inputs(folder_name, root: str = FLOW_ROOT, file_name: str = "inputs.json"): inputs = load_json(get_flow_inputs_file(folder_name, root=root, file_name=file_name)) return [inputs] if isinstance(inputs, dict) else inputs def get_flow_sample_inputs(folder_name, root: str = FLOW_ROOT, sample_inputs_file="samples.json"): samples_inputs = load_json(get_flow_folder(folder_name, root) / sample_inputs_file) return samples_inputs def get_flow_expected_metrics(folder_name): samples_inputs = load_json(get_flow_folder(folder_name) / "expected_metrics.json") return samples_inputs def get_flow_expected_status_summary(folder_name): samples_inputs = load_json(get_flow_folder(folder_name) / "expected_status_summary.json") return samples_inputs def get_flow_expected_result(folder_name): samples_inputs = load_json(get_flow_folder(folder_name) / "expected_result.json") return samples_inputs def get_flow_package_tool_definition(folder_name): return load_json(get_flow_folder(folder_name) / "package_tool_definition.json") def load_json(source: Union[str, Path]) -> dict: """Load json file to dict""" with open(source, "r") as f: loaded_data = json.load(f) return loaded_data def load_jsonl(source: Union[str, Path]) -> list: """Load jsonl file to list""" with open(source, "r") as f: loaded_data = [json.loads(line.strip()) for line in f] return loaded_data def load_content(source: Union[str, Path]) -> str: """Load file content to string""" return Path(source).read_text() def is_jsonl_file(file_path: Path): return file_path.suffix.lower() == ".jsonl" def is_image_file(file_path: Path): image_extensions = [".jpg", ".jpeg", ".png", ".gif", ".bmp", ".tiff"] file_extension = file_path.suffix.lower() return file_extension in image_extensions class MemoryRunStorage(AbstractRunStorage): def __init__(self): self._node_runs: Dict[str, NodeRunInfo] = {} self._flow_runs: Dict[str, FlowRunInfo] = {} def persist_flow_run(self, run_info: FlowRunInfo): self._flow_runs[run_info.run_id] = run_info def persist_node_run(self, run_info: NodeRunInfo): self._node_runs[run_info.run_id] = run_info
promptflow/src/promptflow/tests/executor/utils.py/0
{ "file_path": "promptflow/src/promptflow/tests/executor/utils.py", "repo_id": "promptflow", "token_count": 1627 }
49
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- from .bases import PFAzureIntegrationTestRecording from .constants import SanitizedValues from .utils import get_created_flow_name_from_flow_path, get_pf_client_for_replay, is_live, is_record, is_replay from .variable_recorder import VariableRecorder __all__ = [ "PFAzureIntegrationTestRecording", "SanitizedValues", "VariableRecorder", "get_created_flow_name_from_flow_path", "get_pf_client_for_replay", "is_live", "is_record", "is_replay", ]
promptflow/src/promptflow/tests/sdk_cli_azure_test/recording_utilities/__init__.py/0
{ "file_path": "promptflow/src/promptflow/tests/sdk_cli_azure_test/recording_utilities/__init__.py", "repo_id": "promptflow", "token_count": 208 }
50
import tempfile import pytest from pytest_mock import MockerFixture from promptflow.azure import PFClient from promptflow.exceptions import UserErrorException @pytest.mark.unittest class TestRunOperations: def test_download_run_with_invalid_workspace_datastore(self, pf: PFClient, mocker: MockerFixture): # test download with invalid workspace datastore mocker.patch.object(pf.runs, "_validate_for_run_download") mocker.patch.object(pf.runs, "_workspace_default_datastore", "test") with tempfile.TemporaryDirectory() as tmp_dir: with pytest.raises(UserErrorException, match="workspace default datastore is not supported"): pf.runs.download(run="fake_run_name", output=tmp_dir)
promptflow/src/promptflow/tests/sdk_cli_azure_test/unittests/test_run_operations.py/0
{ "file_path": "promptflow/src/promptflow/tests/sdk_cli_azure_test/unittests/test_run_operations.py", "repo_id": "promptflow", "token_count": 274 }
51
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import shutil from pathlib import Path from tempfile import TemporaryDirectory from types import GeneratorType import pytest from promptflow import load_flow from promptflow._sdk._errors import ConnectionNotFoundError, InvalidFlowError from promptflow._sdk.entities import CustomConnection from promptflow._sdk.operations._flow_context_resolver import FlowContextResolver from promptflow._utils.flow_utils import dump_flow_dag, load_flow_dag from promptflow.entities import FlowContext from promptflow.exceptions import UserErrorException FLOWS_DIR = "./tests/test_configs/flows" RUNS_DIR = "./tests/test_configs/runs" DATAS_DIR = "./tests/test_configs/datas" @pytest.mark.usefixtures( "use_secrets_config_file", "recording_injection", "setup_local_connection", "install_custom_tool_pkg" ) @pytest.mark.sdk_test @pytest.mark.e2etest class TestFlowAsFunc: def test_flow_as_a_func(self): f = load_flow(f"{FLOWS_DIR}/print_env_var") result = f(key="unknown") assert result["output"] is None assert "line_number" not in result def test_flow_as_a_func_with_connection_overwrite(self): from promptflow._sdk._errors import ConnectionNotFoundError f = load_flow(f"{FLOWS_DIR}/web_classification") f.context.connections = {"classify_with_llm": {"connection": "not_exist"}} with pytest.raises(ConnectionNotFoundError) as e: f(url="https://www.youtube.com/watch?v=o5ZQyXaAv1g") assert "Connection 'not_exist' is not found" in str(e.value) def test_flow_as_a_func_with_connection_obj(self): f = load_flow(f"{FLOWS_DIR}/flow_with_custom_connection") f.context.connections = {"hello_node": {"connection": CustomConnection(secrets={"k": "v"})}} result = f(text="hello") assert result["output"]["secrets"] == {"k": "v"} def test_overrides(self): f = load_flow(f"{FLOWS_DIR}/print_env_var") f.context = FlowContext( # node print_env will take "provided_key" instead of flow input overrides={"nodes.print_env.inputs.key": "provided_key"}, ) # the key="unknown" will not take effect result = f(key="unknown") assert result["output"] is None @pytest.mark.skip(reason="This experience has not finalized yet.") def test_flow_as_a_func_with_token_based_connection(self): class MyCustomConnection(CustomConnection): def get_token(self): return "fake_token" f = load_flow(f"{FLOWS_DIR}/flow_with_custom_connection") f.context.connections = {"hello_node": {"connection": MyCustomConnection(secrets={"k": "v"})}} result = f(text="hello") assert result == {} def test_exception_handle(self): f = load_flow(f"{FLOWS_DIR}/flow_with_invalid_import") with pytest.raises(UserErrorException) as e: f(text="hello") assert "Failed to load python module " in str(e.value) f = load_flow(f"{FLOWS_DIR}/print_env_var") with pytest.raises(UserErrorException) as e: f() assert "Required input fields ['key'] are missing" in str(e.value) def test_stream_output(self): f = load_flow(f"{FLOWS_DIR}/chat_flow_with_python_node_streaming_output") f.context.streaming = True result = f( chat_history=[ {"inputs": {"chat_input": "Hi"}, "outputs": {"chat_output": "Hello! How can I assist you today?"}} ], question="How are you?", ) assert isinstance(result["answer"], GeneratorType) @pytest.mark.skip(reason="This experience has not finalized yet.") def test_environment_variables(self): f = load_flow(f"{FLOWS_DIR}/print_env_var") f.context.environment_variables = {"key": "value"} result = f(key="key") assert result["output"] == "value" def test_flow_as_a_func_with_variant(self): flow_path = Path(f"{FLOWS_DIR}/flow_with_dict_input_with_variant").absolute() f = load_flow( flow_path, ) f.context.variant = "${print_val.variant1}" # variant1 will use a mock_custom_connection with pytest.raises(ConnectionNotFoundError) as e: f(key="a") assert "Connection 'mock_custom_connection' is not found." in str(e.value) # non-exist variant f.context.variant = "${print_val.variant_2}" with pytest.raises(InvalidFlowError) as e: f(key="a") assert "Variant variant_2 not found for node print_val" in str(e.value) def test_non_scrubbed_connection(self): f = load_flow(f"{FLOWS_DIR}/flow_with_custom_connection") f.context.connections = {"hello_node": {"connection": CustomConnection(secrets={"k": "*****"})}} with pytest.raises(UserErrorException) as e: f(text="hello") assert "please make sure connection has decrypted secrets to use in flow execution." in str(e) def test_local_connection_object(self, pf, azure_open_ai_connection): f = load_flow(f"{FLOWS_DIR}/flow_with_custom_connection") # local connection without secret will lead to error connection = pf.connections.get("azure_open_ai_connection", with_secrets=False) f.context.connections = {"hello_node": {"connection": connection}} with pytest.raises(UserErrorException) as e: f(text="hello") assert "please make sure connection has decrypted secrets to use in flow execution." in str(e) def test_non_secret_connection(self): f = load_flow(f"{FLOWS_DIR}/flow_with_custom_connection") # execute connection without secrets won't get error since the connection doesn't have scrubbed secrets # we only raise error when there are scrubbed secrets in connection f.context.connections = {"hello_node": {"connection": CustomConnection(secrets={})}} f(text="hello") def test_flow_context_cache(self): # same flow context has same hash assert hash(FlowContext()) == hash(FlowContext()) # getting executor for same flow will hit cache flow1 = load_flow(f"{FLOWS_DIR}/print_env_var") flow2 = load_flow(f"{FLOWS_DIR}/print_env_var") flow_executor1 = FlowContextResolver.resolve( flow=flow1, ) flow_executor2 = FlowContextResolver.resolve( flow=flow2, ) assert flow_executor1 is flow_executor2 # getting executor for same flow + context will hit cache flow1 = load_flow(f"{FLOWS_DIR}/flow_with_custom_connection") flow1.context = FlowContext(connections={"hello_node": {"connection": CustomConnection(secrets={"k": "v"})}}) flow2 = load_flow(f"{FLOWS_DIR}/flow_with_custom_connection") flow2.context = FlowContext(connections={"hello_node": {"connection": CustomConnection(secrets={"k": "v"})}}) flow_executor1 = FlowContextResolver.resolve( flow=flow1, ) flow_executor2 = FlowContextResolver.resolve( flow=flow2, ) assert flow_executor1 is flow_executor2 flow1 = load_flow(f"{FLOWS_DIR}/flow_with_dict_input_with_variant") flow1.context = FlowContext( variant="${print_val.variant1}", connections={"print_val": {"conn": CustomConnection(secrets={"k": "v"})}}, overrides={"nodes.print_val.inputs.key": "a"}, ) flow2 = load_flow(f"{FLOWS_DIR}/flow_with_dict_input_with_variant") flow2.context = FlowContext( variant="${print_val.variant1}", connections={"print_val": {"conn": CustomConnection(secrets={"k": "v"})}}, overrides={"nodes.print_val.inputs.key": "a"}, ) flow_executor1 = FlowContextResolver.resolve(flow=flow1) flow_executor2 = FlowContextResolver.resolve(flow=flow2) assert flow_executor1 is flow_executor2 def test_flow_cache_not_hit(self): with TemporaryDirectory() as tmp_dir: shutil.copytree(f"{FLOWS_DIR}/print_env_var", f"{tmp_dir}/print_env_var") flow_path = Path(f"{tmp_dir}/print_env_var") # load same file with different content will not hit cache flow1 = load_flow(flow_path) # update content _, flow_dag = load_flow_dag(flow_path) flow_dag["inputs"] = {"key": {"type": "string", "default": "key1"}} dump_flow_dag(flow_dag, flow_path) flow2 = load_flow(f"{tmp_dir}/print_env_var") flow_executor1 = FlowContextResolver.resolve( flow=flow1, ) flow_executor2 = FlowContextResolver.resolve( flow=flow2, ) assert flow_executor1 is not flow_executor2 def test_flow_context_cache_not_hit(self): flow1 = load_flow(f"{FLOWS_DIR}/flow_with_custom_connection") flow1.context = FlowContext(connections={"hello_node": {"connection": CustomConnection(secrets={"k": "v"})}}) flow2 = load_flow(f"{FLOWS_DIR}/flow_with_custom_connection") flow2.context = FlowContext(connections={"hello_node": {"connection": CustomConnection(secrets={"k2": "v"})}}) flow_executor1 = FlowContextResolver.resolve( flow=flow1, ) flow_executor2 = FlowContextResolver.resolve( flow=flow2, ) assert flow_executor1 is not flow_executor2 flow1 = load_flow(f"{FLOWS_DIR}/flow_with_dict_input_with_variant") flow1.context = FlowContext( variant="${print_val.variant1}", connections={"print_val": {"conn": CustomConnection(secrets={"k": "v"})}}, overrides={"nodes.print_val.inputs.key": "a"}, ) flow2 = load_flow(f"{FLOWS_DIR}/flow_with_dict_input_with_variant") flow2.context = FlowContext( variant="${print_val.variant1}", connections={"print_val": {"conn": CustomConnection(secrets={"k": "v"})}}, overrides={"nodes.print_val.inputs.key": "b"}, ) flow_executor1 = FlowContextResolver.resolve(flow=flow1) flow_executor2 = FlowContextResolver.resolve(flow=flow2) assert flow_executor1 is not flow_executor2 @pytest.mark.timeout(10) def test_flow_as_func_perf_test(self): # this test should not take long due to caching logic f = load_flow(f"{FLOWS_DIR}/print_env_var") for i in range(100): f(key="key")
promptflow/src/promptflow/tests/sdk_cli_test/e2etests/test_flow_as_func.py/0
{ "file_path": "promptflow/src/promptflow/tests/sdk_cli_test/e2etests/test_flow_as_func.py", "repo_id": "promptflow", "token_count": 4569 }
52