body_hash
stringlengths
64
64
body
stringlengths
23
109k
docstring
stringlengths
1
57k
path
stringlengths
4
198
name
stringlengths
1
115
repository_name
stringlengths
7
111
repository_stars
float64
0
191k
lang
stringclasses
1 value
body_without_docstring
stringlengths
14
108k
unified
stringlengths
45
133k
6bae0bcc6da8656c9a64ffedc916dbc4baddd38a911b3405e475aa329805c225
@property def standard_bias(self) -> int: '\n Offset in minutes from lBias during standard time. \n\n :return: The standard_bias of this MapiCalendarTimeZoneInfoDto.\n :rtype: int\n ' return self._standard_bias
Offset in minutes from lBias during standard time. :return: The standard_bias of this MapiCalendarTimeZoneInfoDto. :rtype: int
sdk/AsposeEmailCloudSdk/models/mapi_calendar_time_zone_info_dto.py
standard_bias
aspose-email-cloud/aspose-email-cloud-python
1
python
@property def standard_bias(self) -> int: '\n Offset in minutes from lBias during standard time. \n\n :return: The standard_bias of this MapiCalendarTimeZoneInfoDto.\n :rtype: int\n ' return self._standard_bias
@property def standard_bias(self) -> int: '\n Offset in minutes from lBias during standard time. \n\n :return: The standard_bias of this MapiCalendarTimeZoneInfoDto.\n :rtype: int\n ' return self._standard_bias<|docstring|>Offset in minutes from lBias during standard time. :return: The standard_bias of this MapiCalendarTimeZoneInfoDto. :rtype: int<|endoftext|>
4c510c33e812abb8a21974687e3cad9df8b038f6919a22edbe468da48c0644e9
@standard_bias.setter def standard_bias(self, standard_bias: int): '\n Offset in minutes from lBias during standard time. \n\n :param standard_bias: The standard_bias of this MapiCalendarTimeZoneInfoDto.\n :type: int\n ' if (standard_bias is None): raise ValueError('Invalid value for `standard_bias`, must not be `None`') self._standard_bias = standard_bias
Offset in minutes from lBias during standard time. :param standard_bias: The standard_bias of this MapiCalendarTimeZoneInfoDto. :type: int
sdk/AsposeEmailCloudSdk/models/mapi_calendar_time_zone_info_dto.py
standard_bias
aspose-email-cloud/aspose-email-cloud-python
1
python
@standard_bias.setter def standard_bias(self, standard_bias: int): '\n Offset in minutes from lBias during standard time. \n\n :param standard_bias: The standard_bias of this MapiCalendarTimeZoneInfoDto.\n :type: int\n ' if (standard_bias is None): raise ValueError('Invalid value for `standard_bias`, must not be `None`') self._standard_bias = standard_bias
@standard_bias.setter def standard_bias(self, standard_bias: int): '\n Offset in minutes from lBias during standard time. \n\n :param standard_bias: The standard_bias of this MapiCalendarTimeZoneInfoDto.\n :type: int\n ' if (standard_bias is None): raise ValueError('Invalid value for `standard_bias`, must not be `None`') self._standard_bias = standard_bias<|docstring|>Offset in minutes from lBias during standard time. :param standard_bias: The standard_bias of this MapiCalendarTimeZoneInfoDto. :type: int<|endoftext|>
a63342576d12189e4cf57fc71ddf4e4fd37fecebf7fcf4b82328eb12443940a6
@property def standard_date(self) -> MapiCalendarTimeZoneRuleDto: '\n Date and local time that indicate when to begin using the StandardBias. \n\n :return: The standard_date of this MapiCalendarTimeZoneInfoDto.\n :rtype: MapiCalendarTimeZoneRuleDto\n ' return self._standard_date
Date and local time that indicate when to begin using the StandardBias. :return: The standard_date of this MapiCalendarTimeZoneInfoDto. :rtype: MapiCalendarTimeZoneRuleDto
sdk/AsposeEmailCloudSdk/models/mapi_calendar_time_zone_info_dto.py
standard_date
aspose-email-cloud/aspose-email-cloud-python
1
python
@property def standard_date(self) -> MapiCalendarTimeZoneRuleDto: '\n Date and local time that indicate when to begin using the StandardBias. \n\n :return: The standard_date of this MapiCalendarTimeZoneInfoDto.\n :rtype: MapiCalendarTimeZoneRuleDto\n ' return self._standard_date
@property def standard_date(self) -> MapiCalendarTimeZoneRuleDto: '\n Date and local time that indicate when to begin using the StandardBias. \n\n :return: The standard_date of this MapiCalendarTimeZoneInfoDto.\n :rtype: MapiCalendarTimeZoneRuleDto\n ' return self._standard_date<|docstring|>Date and local time that indicate when to begin using the StandardBias. :return: The standard_date of this MapiCalendarTimeZoneInfoDto. :rtype: MapiCalendarTimeZoneRuleDto<|endoftext|>
28c40c46bca4f2ead1ec3bfa2fefea1446a4d3f7d87aacceef349ee1cc65ab96
@standard_date.setter def standard_date(self, standard_date: MapiCalendarTimeZoneRuleDto): '\n Date and local time that indicate when to begin using the StandardBias. \n\n :param standard_date: The standard_date of this MapiCalendarTimeZoneInfoDto.\n :type: MapiCalendarTimeZoneRuleDto\n ' self._standard_date = standard_date
Date and local time that indicate when to begin using the StandardBias. :param standard_date: The standard_date of this MapiCalendarTimeZoneInfoDto. :type: MapiCalendarTimeZoneRuleDto
sdk/AsposeEmailCloudSdk/models/mapi_calendar_time_zone_info_dto.py
standard_date
aspose-email-cloud/aspose-email-cloud-python
1
python
@standard_date.setter def standard_date(self, standard_date: MapiCalendarTimeZoneRuleDto): '\n Date and local time that indicate when to begin using the StandardBias. \n\n :param standard_date: The standard_date of this MapiCalendarTimeZoneInfoDto.\n :type: MapiCalendarTimeZoneRuleDto\n ' self._standard_date = standard_date
@standard_date.setter def standard_date(self, standard_date: MapiCalendarTimeZoneRuleDto): '\n Date and local time that indicate when to begin using the StandardBias. \n\n :param standard_date: The standard_date of this MapiCalendarTimeZoneInfoDto.\n :type: MapiCalendarTimeZoneRuleDto\n ' self._standard_date = standard_date<|docstring|>Date and local time that indicate when to begin using the StandardBias. :param standard_date: The standard_date of this MapiCalendarTimeZoneInfoDto. :type: MapiCalendarTimeZoneRuleDto<|endoftext|>
ebddf98cea11a0812f45c920854de6c10f2b00771ac9d94f366e84f1f7a0e731
@property def time_zone_flags(self) -> List[str]: '\n Individual bit flags that specify information about this TimeZoneRule. Items: Enumerates the individual bit flags that specify information about TimeZoneRule. Enum, available values: TzRuleFlagRecurCurrentTzReg, TzRuleFlagEffectiveTzReg\n\n :return: The time_zone_flags of this MapiCalendarTimeZoneInfoDto.\n :rtype: list[str]\n ' return self._time_zone_flags
Individual bit flags that specify information about this TimeZoneRule. Items: Enumerates the individual bit flags that specify information about TimeZoneRule. Enum, available values: TzRuleFlagRecurCurrentTzReg, TzRuleFlagEffectiveTzReg :return: The time_zone_flags of this MapiCalendarTimeZoneInfoDto. :rtype: list[str]
sdk/AsposeEmailCloudSdk/models/mapi_calendar_time_zone_info_dto.py
time_zone_flags
aspose-email-cloud/aspose-email-cloud-python
1
python
@property def time_zone_flags(self) -> List[str]: '\n Individual bit flags that specify information about this TimeZoneRule. Items: Enumerates the individual bit flags that specify information about TimeZoneRule. Enum, available values: TzRuleFlagRecurCurrentTzReg, TzRuleFlagEffectiveTzReg\n\n :return: The time_zone_flags of this MapiCalendarTimeZoneInfoDto.\n :rtype: list[str]\n ' return self._time_zone_flags
@property def time_zone_flags(self) -> List[str]: '\n Individual bit flags that specify information about this TimeZoneRule. Items: Enumerates the individual bit flags that specify information about TimeZoneRule. Enum, available values: TzRuleFlagRecurCurrentTzReg, TzRuleFlagEffectiveTzReg\n\n :return: The time_zone_flags of this MapiCalendarTimeZoneInfoDto.\n :rtype: list[str]\n ' return self._time_zone_flags<|docstring|>Individual bit flags that specify information about this TimeZoneRule. Items: Enumerates the individual bit flags that specify information about TimeZoneRule. Enum, available values: TzRuleFlagRecurCurrentTzReg, TzRuleFlagEffectiveTzReg :return: The time_zone_flags of this MapiCalendarTimeZoneInfoDto. :rtype: list[str]<|endoftext|>
e5baeb6c385d777182eec6b5d488c69694067de3af4523b838fd8bf2e1298826
@time_zone_flags.setter def time_zone_flags(self, time_zone_flags: List[str]): '\n Individual bit flags that specify information about this TimeZoneRule. Items: Enumerates the individual bit flags that specify information about TimeZoneRule. Enum, available values: TzRuleFlagRecurCurrentTzReg, TzRuleFlagEffectiveTzReg\n\n :param time_zone_flags: The time_zone_flags of this MapiCalendarTimeZoneInfoDto.\n :type: list[str]\n ' self._time_zone_flags = time_zone_flags
Individual bit flags that specify information about this TimeZoneRule. Items: Enumerates the individual bit flags that specify information about TimeZoneRule. Enum, available values: TzRuleFlagRecurCurrentTzReg, TzRuleFlagEffectiveTzReg :param time_zone_flags: The time_zone_flags of this MapiCalendarTimeZoneInfoDto. :type: list[str]
sdk/AsposeEmailCloudSdk/models/mapi_calendar_time_zone_info_dto.py
time_zone_flags
aspose-email-cloud/aspose-email-cloud-python
1
python
@time_zone_flags.setter def time_zone_flags(self, time_zone_flags: List[str]): '\n Individual bit flags that specify information about this TimeZoneRule. Items: Enumerates the individual bit flags that specify information about TimeZoneRule. Enum, available values: TzRuleFlagRecurCurrentTzReg, TzRuleFlagEffectiveTzReg\n\n :param time_zone_flags: The time_zone_flags of this MapiCalendarTimeZoneInfoDto.\n :type: list[str]\n ' self._time_zone_flags = time_zone_flags
@time_zone_flags.setter def time_zone_flags(self, time_zone_flags: List[str]): '\n Individual bit flags that specify information about this TimeZoneRule. Items: Enumerates the individual bit flags that specify information about TimeZoneRule. Enum, available values: TzRuleFlagRecurCurrentTzReg, TzRuleFlagEffectiveTzReg\n\n :param time_zone_flags: The time_zone_flags of this MapiCalendarTimeZoneInfoDto.\n :type: list[str]\n ' self._time_zone_flags = time_zone_flags<|docstring|>Individual bit flags that specify information about this TimeZoneRule. Items: Enumerates the individual bit flags that specify information about TimeZoneRule. Enum, available values: TzRuleFlagRecurCurrentTzReg, TzRuleFlagEffectiveTzReg :param time_zone_flags: The time_zone_flags of this MapiCalendarTimeZoneInfoDto. :type: list[str]<|endoftext|>
54ecca88f3b69ac7fbd23fbff276e66382635f46e58cd1e2221b21cae9e0518e
@property def year(self) -> int: '\n Year in which this rule is scheduled to take effect. \n\n :return: The year of this MapiCalendarTimeZoneInfoDto.\n :rtype: int\n ' return self._year
Year in which this rule is scheduled to take effect. :return: The year of this MapiCalendarTimeZoneInfoDto. :rtype: int
sdk/AsposeEmailCloudSdk/models/mapi_calendar_time_zone_info_dto.py
year
aspose-email-cloud/aspose-email-cloud-python
1
python
@property def year(self) -> int: '\n Year in which this rule is scheduled to take effect. \n\n :return: The year of this MapiCalendarTimeZoneInfoDto.\n :rtype: int\n ' return self._year
@property def year(self) -> int: '\n Year in which this rule is scheduled to take effect. \n\n :return: The year of this MapiCalendarTimeZoneInfoDto.\n :rtype: int\n ' return self._year<|docstring|>Year in which this rule is scheduled to take effect. :return: The year of this MapiCalendarTimeZoneInfoDto. :rtype: int<|endoftext|>
b8298b00a8b8d42c185ee6786bf19402ff7bc1606a598d278a763dc369ba5e92
@year.setter def year(self, year: int): '\n Year in which this rule is scheduled to take effect. \n\n :param year: The year of this MapiCalendarTimeZoneInfoDto.\n :type: int\n ' if (year is None): raise ValueError('Invalid value for `year`, must not be `None`') self._year = year
Year in which this rule is scheduled to take effect. :param year: The year of this MapiCalendarTimeZoneInfoDto. :type: int
sdk/AsposeEmailCloudSdk/models/mapi_calendar_time_zone_info_dto.py
year
aspose-email-cloud/aspose-email-cloud-python
1
python
@year.setter def year(self, year: int): '\n Year in which this rule is scheduled to take effect. \n\n :param year: The year of this MapiCalendarTimeZoneInfoDto.\n :type: int\n ' if (year is None): raise ValueError('Invalid value for `year`, must not be `None`') self._year = year
@year.setter def year(self, year: int): '\n Year in which this rule is scheduled to take effect. \n\n :param year: The year of this MapiCalendarTimeZoneInfoDto.\n :type: int\n ' if (year is None): raise ValueError('Invalid value for `year`, must not be `None`') self._year = year<|docstring|>Year in which this rule is scheduled to take effect. :param year: The year of this MapiCalendarTimeZoneInfoDto. :type: int<|endoftext|>
137ba0f026bd6074febc2e7ebe1fec840dba70990f936f32b47eaf0fb048bd4a
def to_dict(self): 'Returns the model properties as a dict' result = {} for (attr, _) in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map((lambda x: (x.to_dict() if hasattr(x, 'to_dict') else x)), value)) elif hasattr(value, 'to_dict'): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map((lambda item: ((item[0], item[1].to_dict()) if hasattr(item[1], 'to_dict') else item)), value.items())) else: result[attr] = value return result
Returns the model properties as a dict
sdk/AsposeEmailCloudSdk/models/mapi_calendar_time_zone_info_dto.py
to_dict
aspose-email-cloud/aspose-email-cloud-python
1
python
def to_dict(self): result = {} for (attr, _) in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map((lambda x: (x.to_dict() if hasattr(x, 'to_dict') else x)), value)) elif hasattr(value, 'to_dict'): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map((lambda item: ((item[0], item[1].to_dict()) if hasattr(item[1], 'to_dict') else item)), value.items())) else: result[attr] = value return result
def to_dict(self): result = {} for (attr, _) in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map((lambda x: (x.to_dict() if hasattr(x, 'to_dict') else x)), value)) elif hasattr(value, 'to_dict'): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map((lambda item: ((item[0], item[1].to_dict()) if hasattr(item[1], 'to_dict') else item)), value.items())) else: result[attr] = value return result<|docstring|>Returns the model properties as a dict<|endoftext|>
cbb19eaa2fc8a113d9e32f924ef280a7e97563f8915f94f65dab438997af2e99
def to_str(self): 'Returns the string representation of the model' return pprint.pformat(self.to_dict())
Returns the string representation of the model
sdk/AsposeEmailCloudSdk/models/mapi_calendar_time_zone_info_dto.py
to_str
aspose-email-cloud/aspose-email-cloud-python
1
python
def to_str(self): return pprint.pformat(self.to_dict())
def to_str(self): return pprint.pformat(self.to_dict())<|docstring|>Returns the string representation of the model<|endoftext|>
772243a2c2b3261a9b954d07aaf295e3c1242a579a495e2d6a5679c677861703
def __repr__(self): 'For `print` and `pprint`' return self.to_str()
For `print` and `pprint`
sdk/AsposeEmailCloudSdk/models/mapi_calendar_time_zone_info_dto.py
__repr__
aspose-email-cloud/aspose-email-cloud-python
1
python
def __repr__(self): return self.to_str()
def __repr__(self): return self.to_str()<|docstring|>For `print` and `pprint`<|endoftext|>
94e204bc24f28154a2b602c5c6760071dc3140bcc0c099607cbe3704c06aa551
def __eq__(self, other): 'Returns true if both objects are equal' if (not isinstance(other, MapiCalendarTimeZoneInfoDto)): return False return (self.__dict__ == other.__dict__)
Returns true if both objects are equal
sdk/AsposeEmailCloudSdk/models/mapi_calendar_time_zone_info_dto.py
__eq__
aspose-email-cloud/aspose-email-cloud-python
1
python
def __eq__(self, other): if (not isinstance(other, MapiCalendarTimeZoneInfoDto)): return False return (self.__dict__ == other.__dict__)
def __eq__(self, other): if (not isinstance(other, MapiCalendarTimeZoneInfoDto)): return False return (self.__dict__ == other.__dict__)<|docstring|>Returns true if both objects are equal<|endoftext|>
43dc6740163eb9fc1161d09cb2208a64c7ad0cc8d9c8637ac3264522d3ec7e42
def __ne__(self, other): 'Returns true if both objects are not equal' return (not (self == other))
Returns true if both objects are not equal
sdk/AsposeEmailCloudSdk/models/mapi_calendar_time_zone_info_dto.py
__ne__
aspose-email-cloud/aspose-email-cloud-python
1
python
def __ne__(self, other): return (not (self == other))
def __ne__(self, other): return (not (self == other))<|docstring|>Returns true if both objects are not equal<|endoftext|>
2e895bad81962fbe35450fb1fe098ac5b90ea8d0d7135f4b478969459902f677
def __init__(self, elasticsearch_follow, index, time_delta=60, processor=None): '\n :param elasticsearch_follow: The instance of ElasticsearchFollow to use for yielding new lines.\n :param index: The index to use to fetch data.\n :param time_delta: Denotes how many seconds to look into the past when fetching lines.\n :param processor: The log processor which should be used to process the lines before yielding them.\n ' self.elasticsearch_follow = elasticsearch_follow self.index = index self.time_delta = time_delta self.processor = processor
:param elasticsearch_follow: The instance of ElasticsearchFollow to use for yielding new lines. :param index: The index to use to fetch data. :param time_delta: Denotes how many seconds to look into the past when fetching lines. :param processor: The log processor which should be used to process the lines before yielding them.
elasticsearch_follow/follower.py
__init__
mdreem/elasticsearch_follow
1
python
def __init__(self, elasticsearch_follow, index, time_delta=60, processor=None): '\n :param elasticsearch_follow: The instance of ElasticsearchFollow to use for yielding new lines.\n :param index: The index to use to fetch data.\n :param time_delta: Denotes how many seconds to look into the past when fetching lines.\n :param processor: The log processor which should be used to process the lines before yielding them.\n ' self.elasticsearch_follow = elasticsearch_follow self.index = index self.time_delta = time_delta self.processor = processor
def __init__(self, elasticsearch_follow, index, time_delta=60, processor=None): '\n :param elasticsearch_follow: The instance of ElasticsearchFollow to use for yielding new lines.\n :param index: The index to use to fetch data.\n :param time_delta: Denotes how many seconds to look into the past when fetching lines.\n :param processor: The log processor which should be used to process the lines before yielding them.\n ' self.elasticsearch_follow = elasticsearch_follow self.index = index self.time_delta = time_delta self.processor = processor<|docstring|>:param elasticsearch_follow: The instance of ElasticsearchFollow to use for yielding new lines. :param index: The index to use to fetch data. :param time_delta: Denotes how many seconds to look into the past when fetching lines. :param processor: The log processor which should be used to process the lines before yielding them.<|endoftext|>
5f7c72d62a814046c98402ef1870abaaffcfff0298e1183b499106133eefeb70
def generator(self): '\n Creates a generator which will yield new lines until the most recent query has no more lines.\n :return: A generator.\n ' now = datetime.datetime.utcnow() now = now.replace(tzinfo=tz.UTC) delta = datetime.timedelta(seconds=self.time_delta) for line in self.elasticsearch_follow.get_new_lines(self.index, (now - delta)): self.elasticsearch_follow.prune_before((now - delta)) if self.processor: processed_line = self.processor.process_line(line) if processed_line: (yield processed_line) else: (yield line)
Creates a generator which will yield new lines until the most recent query has no more lines. :return: A generator.
elasticsearch_follow/follower.py
generator
mdreem/elasticsearch_follow
1
python
def generator(self): '\n Creates a generator which will yield new lines until the most recent query has no more lines.\n :return: A generator.\n ' now = datetime.datetime.utcnow() now = now.replace(tzinfo=tz.UTC) delta = datetime.timedelta(seconds=self.time_delta) for line in self.elasticsearch_follow.get_new_lines(self.index, (now - delta)): self.elasticsearch_follow.prune_before((now - delta)) if self.processor: processed_line = self.processor.process_line(line) if processed_line: (yield processed_line) else: (yield line)
def generator(self): '\n Creates a generator which will yield new lines until the most recent query has no more lines.\n :return: A generator.\n ' now = datetime.datetime.utcnow() now = now.replace(tzinfo=tz.UTC) delta = datetime.timedelta(seconds=self.time_delta) for line in self.elasticsearch_follow.get_new_lines(self.index, (now - delta)): self.elasticsearch_follow.prune_before((now - delta)) if self.processor: processed_line = self.processor.process_line(line) if processed_line: (yield processed_line) else: (yield line)<|docstring|>Creates a generator which will yield new lines until the most recent query has no more lines. :return: A generator.<|endoftext|>
463ecfe383bbc673fa3e9e6768ceae76f1bb3742e03161bff9d37e5db175e57b
def __init__(self, origin, vectors): 'Initializes the Axes2D object' self.origin = asarray(origin) self.vectors = asarray(vectors)
Initializes the Axes2D object
src/compas_plotters/core/helpers.py
__init__
tkmmark/compas
235
python
def __init__(self, origin, vectors): self.origin = asarray(origin) self.vectors = asarray(vectors)
def __init__(self, origin, vectors): self.origin = asarray(origin) self.vectors = asarray(vectors)<|docstring|>Initializes the Axes2D object<|endoftext|>
1ff61910685d3a2257265f32e332dcc79382f4b676dd2fcf71a078e49a931b27
def plot(self, axes): 'Plots the axes object\n\n Parameters\n ----------\n axes : object\n The matplotlib axes object.\n\n ' assert_axes_dimension(axes, 2) o = self.origin xy = self.vectors axes.plot([o[(0, 0)], (o[(0, 0)] + xy[(0, 0)])], [o[(0, 1)], (o[(0, 1)] + xy[(0, 1)])], 'r-') axes.plot([o[(0, 0)], (o[(0, 0)] + xy[(1, 0)])], [o[(0, 1)], (o[(0, 1)] + xy[(1, 1)])], 'g-')
Plots the axes object Parameters ---------- axes : object The matplotlib axes object.
src/compas_plotters/core/helpers.py
plot
tkmmark/compas
235
python
def plot(self, axes): 'Plots the axes object\n\n Parameters\n ----------\n axes : object\n The matplotlib axes object.\n\n ' assert_axes_dimension(axes, 2) o = self.origin xy = self.vectors axes.plot([o[(0, 0)], (o[(0, 0)] + xy[(0, 0)])], [o[(0, 1)], (o[(0, 1)] + xy[(0, 1)])], 'r-') axes.plot([o[(0, 0)], (o[(0, 0)] + xy[(1, 0)])], [o[(0, 1)], (o[(0, 1)] + xy[(1, 1)])], 'g-')
def plot(self, axes): 'Plots the axes object\n\n Parameters\n ----------\n axes : object\n The matplotlib axes object.\n\n ' assert_axes_dimension(axes, 2) o = self.origin xy = self.vectors axes.plot([o[(0, 0)], (o[(0, 0)] + xy[(0, 0)])], [o[(0, 1)], (o[(0, 1)] + xy[(0, 1)])], 'r-') axes.plot([o[(0, 0)], (o[(0, 0)] + xy[(1, 0)])], [o[(0, 1)], (o[(0, 1)] + xy[(1, 1)])], 'g-')<|docstring|>Plots the axes object Parameters ---------- axes : object The matplotlib axes object.<|endoftext|>
334e028a769c04d93c83996babeb855a5fe8346a255b9f2b86caec0a6a1812b1
def __init__(self, origin, vectors, colors=None): 'Initializes the Axes3D object' self.origin = asarray(origin) self.vectors = asarray(vectors) if (not colors): colors = ('r', 'g', 'b') self.colors = colors
Initializes the Axes3D object
src/compas_plotters/core/helpers.py
__init__
tkmmark/compas
235
python
def __init__(self, origin, vectors, colors=None): self.origin = asarray(origin) self.vectors = asarray(vectors) if (not colors): colors = ('r', 'g', 'b') self.colors = colors
def __init__(self, origin, vectors, colors=None): self.origin = asarray(origin) self.vectors = asarray(vectors) if (not colors): colors = ('r', 'g', 'b') self.colors = colors<|docstring|>Initializes the Axes3D object<|endoftext|>
8808f6249620f9eb851de3a9b6ab807d911f907b8c2d550ff75b80d814f4ebb8
def plot(self, axes): 'Plots the axes object\n\n Parameters\n ----------\n axes : object\n The matplotlib axes object.\n ' assert_axes_dimension(axes, 3) o = self.origin xyz = self.vectors axes.plot([o[(0, 0)], (o[(0, 0)] + xyz[(0, 0)])], [o[(0, 1)], (o[(0, 1)] + xyz[(0, 1)])], [o[(0, 2)], (o[(0, 2)] + xyz[(0, 2)])], '{0}-'.format(self.colors[0]), linewidth=3) axes.plot([o[(0, 0)], (o[(0, 0)] + xyz[(1, 0)])], [o[(0, 1)], (o[(0, 1)] + xyz[(1, 1)])], [o[(0, 2)], (o[(0, 2)] + xyz[(1, 2)])], '{0}-'.format(self.colors[1]), linewidth=3) axes.plot([o[(0, 0)], (o[(0, 0)] + xyz[(2, 0)])], [o[(0, 1)], (o[(0, 1)] + xyz[(2, 1)])], [o[(0, 2)], (o[(0, 2)] + xyz[(2, 2)])], '{0}-'.format(self.colors[2]), linewidth=3)
Plots the axes object Parameters ---------- axes : object The matplotlib axes object.
src/compas_plotters/core/helpers.py
plot
tkmmark/compas
235
python
def plot(self, axes): 'Plots the axes object\n\n Parameters\n ----------\n axes : object\n The matplotlib axes object.\n ' assert_axes_dimension(axes, 3) o = self.origin xyz = self.vectors axes.plot([o[(0, 0)], (o[(0, 0)] + xyz[(0, 0)])], [o[(0, 1)], (o[(0, 1)] + xyz[(0, 1)])], [o[(0, 2)], (o[(0, 2)] + xyz[(0, 2)])], '{0}-'.format(self.colors[0]), linewidth=3) axes.plot([o[(0, 0)], (o[(0, 0)] + xyz[(1, 0)])], [o[(0, 1)], (o[(0, 1)] + xyz[(1, 1)])], [o[(0, 2)], (o[(0, 2)] + xyz[(1, 2)])], '{0}-'.format(self.colors[1]), linewidth=3) axes.plot([o[(0, 0)], (o[(0, 0)] + xyz[(2, 0)])], [o[(0, 1)], (o[(0, 1)] + xyz[(2, 1)])], [o[(0, 2)], (o[(0, 2)] + xyz[(2, 2)])], '{0}-'.format(self.colors[2]), linewidth=3)
def plot(self, axes): 'Plots the axes object\n\n Parameters\n ----------\n axes : object\n The matplotlib axes object.\n ' assert_axes_dimension(axes, 3) o = self.origin xyz = self.vectors axes.plot([o[(0, 0)], (o[(0, 0)] + xyz[(0, 0)])], [o[(0, 1)], (o[(0, 1)] + xyz[(0, 1)])], [o[(0, 2)], (o[(0, 2)] + xyz[(0, 2)])], '{0}-'.format(self.colors[0]), linewidth=3) axes.plot([o[(0, 0)], (o[(0, 0)] + xyz[(1, 0)])], [o[(0, 1)], (o[(0, 1)] + xyz[(1, 1)])], [o[(0, 2)], (o[(0, 2)] + xyz[(1, 2)])], '{0}-'.format(self.colors[1]), linewidth=3) axes.plot([o[(0, 0)], (o[(0, 0)] + xyz[(2, 0)])], [o[(0, 1)], (o[(0, 1)] + xyz[(2, 1)])], [o[(0, 2)], (o[(0, 2)] + xyz[(2, 2)])], '{0}-'.format(self.colors[2]), linewidth=3)<|docstring|>Plots the axes object Parameters ---------- axes : object The matplotlib axes object.<|endoftext|>
36e725474990a2f4f99464da9c593ba7e2b5aff334440effc6212f4387ffd7e3
def longestCommonPrefix(self, strs): '\n :type strs: List[str]\n :rtype: str\n ' comStr = '' if (len(strs) == 0): return comStr firstStr = strs[0] for i in range(len(firstStr)): ch = firstStr[i:(i + 1)] for j in range(len(strs)): nowStr = strs[j] if (len(nowStr) < i): return comStr if (nowStr[i:(i + 1)] != ch): return comStr comStr += ch return comStr
:type strs: List[str] :rtype: str
leetcode/0014.py
longestCommonPrefix
mndream/MyOJ
1
python
def longestCommonPrefix(self, strs): '\n :type strs: List[str]\n :rtype: str\n ' comStr = if (len(strs) == 0): return comStr firstStr = strs[0] for i in range(len(firstStr)): ch = firstStr[i:(i + 1)] for j in range(len(strs)): nowStr = strs[j] if (len(nowStr) < i): return comStr if (nowStr[i:(i + 1)] != ch): return comStr comStr += ch return comStr
def longestCommonPrefix(self, strs): '\n :type strs: List[str]\n :rtype: str\n ' comStr = if (len(strs) == 0): return comStr firstStr = strs[0] for i in range(len(firstStr)): ch = firstStr[i:(i + 1)] for j in range(len(strs)): nowStr = strs[j] if (len(nowStr) < i): return comStr if (nowStr[i:(i + 1)] != ch): return comStr comStr += ch return comStr<|docstring|>:type strs: List[str] :rtype: str<|endoftext|>
4073adf1eeebac6871eb5ddf064cb233b3c42ac474f8297b1d8106c440673c65
def _fit(self, dm, binned, cells=None, noncovwarn=False): '\n Fit a GLM using scikit-learn implementation of PoissonRegressor. Uses a regularization\n strength parameter alpha, which is the strength of ridge regularization term.\n\n Parameters\n ----------\n dm : numpy.ndarray\n Design matrix, in which rows are observations and columns are regressor values. Should\n NOT contain a bias column for the intercept. Scikit-learn handles that.\n binned : numpy.ndarray\n Vector of observed spike counts which we seek to predict. Must be of the same length\n as dm.shape[0]\n alpha : float\n Regularization strength, applied as multiplicative constant on ridge regularization.\n cells : list\n List of cells labels for columns in binned. Will default to all cells in model if None\n is passed. Must be of the same length as columns in binned. By default None.\n ' if (cells is None): cells = self.clu_ids.flatten() if (cells.shape[0] != binned.shape[1]): raise ValueError('Length of cells does not match shape of binned') coefs = pd.Series(index=cells, name='coefficients', dtype=object) intercepts = pd.Series(index=cells, name='intercepts') nonconverged = [] for cell in tqdm(cells, 'Fitting units:', leave=False): cell_idx = np.argwhere((cells == cell))[(0, 0)] cellbinned = binned[(:, cell_idx)] with catch_warnings(record=True) as w: fitobj = PoissonRegressor(alpha=self.alpha, max_iter=300, fit_intercept=self.fit_intercept).fit(dm, cellbinned) if (len(w) != 0): nonconverged.append(cell) coefs.at[cell] = fitobj.coef_ if self.fit_intercept: intercepts.at[cell] = fitobj.intercept_ else: intercepts.at[cell] = 0 if noncovwarn: if (len(nonconverged) != 0): warn(f'Fitting did not converge for some units: {nonconverged}') return (coefs, intercepts)
Fit a GLM using scikit-learn implementation of PoissonRegressor. Uses a regularization strength parameter alpha, which is the strength of ridge regularization term. Parameters ---------- dm : numpy.ndarray Design matrix, in which rows are observations and columns are regressor values. Should NOT contain a bias column for the intercept. Scikit-learn handles that. binned : numpy.ndarray Vector of observed spike counts which we seek to predict. Must be of the same length as dm.shape[0] alpha : float Regularization strength, applied as multiplicative constant on ridge regularization. cells : list List of cells labels for columns in binned. Will default to all cells in model if None is passed. Must be of the same length as columns in binned. By default None.
brainbox/modeling/poisson.py
_fit
int-brain-lab/ibllib
38
python
def _fit(self, dm, binned, cells=None, noncovwarn=False): '\n Fit a GLM using scikit-learn implementation of PoissonRegressor. Uses a regularization\n strength parameter alpha, which is the strength of ridge regularization term.\n\n Parameters\n ----------\n dm : numpy.ndarray\n Design matrix, in which rows are observations and columns are regressor values. Should\n NOT contain a bias column for the intercept. Scikit-learn handles that.\n binned : numpy.ndarray\n Vector of observed spike counts which we seek to predict. Must be of the same length\n as dm.shape[0]\n alpha : float\n Regularization strength, applied as multiplicative constant on ridge regularization.\n cells : list\n List of cells labels for columns in binned. Will default to all cells in model if None\n is passed. Must be of the same length as columns in binned. By default None.\n ' if (cells is None): cells = self.clu_ids.flatten() if (cells.shape[0] != binned.shape[1]): raise ValueError('Length of cells does not match shape of binned') coefs = pd.Series(index=cells, name='coefficients', dtype=object) intercepts = pd.Series(index=cells, name='intercepts') nonconverged = [] for cell in tqdm(cells, 'Fitting units:', leave=False): cell_idx = np.argwhere((cells == cell))[(0, 0)] cellbinned = binned[(:, cell_idx)] with catch_warnings(record=True) as w: fitobj = PoissonRegressor(alpha=self.alpha, max_iter=300, fit_intercept=self.fit_intercept).fit(dm, cellbinned) if (len(w) != 0): nonconverged.append(cell) coefs.at[cell] = fitobj.coef_ if self.fit_intercept: intercepts.at[cell] = fitobj.intercept_ else: intercepts.at[cell] = 0 if noncovwarn: if (len(nonconverged) != 0): warn(f'Fitting did not converge for some units: {nonconverged}') return (coefs, intercepts)
def _fit(self, dm, binned, cells=None, noncovwarn=False): '\n Fit a GLM using scikit-learn implementation of PoissonRegressor. Uses a regularization\n strength parameter alpha, which is the strength of ridge regularization term.\n\n Parameters\n ----------\n dm : numpy.ndarray\n Design matrix, in which rows are observations and columns are regressor values. Should\n NOT contain a bias column for the intercept. Scikit-learn handles that.\n binned : numpy.ndarray\n Vector of observed spike counts which we seek to predict. Must be of the same length\n as dm.shape[0]\n alpha : float\n Regularization strength, applied as multiplicative constant on ridge regularization.\n cells : list\n List of cells labels for columns in binned. Will default to all cells in model if None\n is passed. Must be of the same length as columns in binned. By default None.\n ' if (cells is None): cells = self.clu_ids.flatten() if (cells.shape[0] != binned.shape[1]): raise ValueError('Length of cells does not match shape of binned') coefs = pd.Series(index=cells, name='coefficients', dtype=object) intercepts = pd.Series(index=cells, name='intercepts') nonconverged = [] for cell in tqdm(cells, 'Fitting units:', leave=False): cell_idx = np.argwhere((cells == cell))[(0, 0)] cellbinned = binned[(:, cell_idx)] with catch_warnings(record=True) as w: fitobj = PoissonRegressor(alpha=self.alpha, max_iter=300, fit_intercept=self.fit_intercept).fit(dm, cellbinned) if (len(w) != 0): nonconverged.append(cell) coefs.at[cell] = fitobj.coef_ if self.fit_intercept: intercepts.at[cell] = fitobj.intercept_ else: intercepts.at[cell] = 0 if noncovwarn: if (len(nonconverged) != 0): warn(f'Fitting did not converge for some units: {nonconverged}') return (coefs, intercepts)<|docstring|>Fit a GLM using scikit-learn implementation of PoissonRegressor. Uses a regularization strength parameter alpha, which is the strength of ridge regularization term. Parameters ---------- dm : numpy.ndarray Design matrix, in which rows are observations and columns are regressor values. Should NOT contain a bias column for the intercept. Scikit-learn handles that. binned : numpy.ndarray Vector of observed spike counts which we seek to predict. Must be of the same length as dm.shape[0] alpha : float Regularization strength, applied as multiplicative constant on ridge regularization. cells : list List of cells labels for columns in binned. Will default to all cells in model if None is passed. Must be of the same length as columns in binned. By default None.<|endoftext|>
42692e9b885c7b270db5798d4425b4dabb17778ff8f999b5441729794a866d6a
def score(self, metric='dsq', **kwargs): '\n Utility function for computing D^2 (pseudo R^2) on a given set of weights and\n intercepts. Is be used in both model subsetting and the mother score() function of the GLM.\n\n Parameters\n ----------\n weights : pd.Series\n Series in which entries are numpy arrays containing the weights for a given cell.\n Indices should be cluster ids.\n intercepts : pd.Series\n Series in which elements are the intercept fit to each cell. Indicies should match\n weights.\n dm : numpy.ndarray\n Design matrix. Should not contain the bias column. dm.shape[1] should be the same as\n the length of an element in weights.\n binned : numpy.ndarray\n nT x nCells array, in which each column is the binned spike train for a single unit.\n Should be the same number of rows as dm.\n\n Compute the squared deviance of the model, i.e. how much variance beyond the null model\n (a poisson process with the same mean, defined by the intercept, at every time step) the\n model which was fit explains.\n For a detailed explanation see https://bookdown.org/egarpor/PM-UC3M/glm-deviance.html`\n\n Returns\n -------\n pandas.Series\n A series in which the index are cluster IDs and each entry is the D^2 for the model fit\n to that cluster\n ' assert (metric in ['dsq', 'rsq', 'negLog']), 'metric must be dsq, rsq or negLog' assert ((len(kwargs) == 0) or (len(kwargs) == 4)), 'wrong input specification in score' if ((not hasattr(self, 'coefs')) or ('weights' not in kwargs.keys())): raise AttributeError('Fit was not run. Please run fit first.') if hasattr(self, 'submodel_scores'): return self.submodel_scores if (len(kwargs) == 4): (weights, intercepts, dm, binned) = (kwargs['weights'], kwargs['intercepts'], kwargs['dm'], kwargs['binned']) else: testmask = np.isin(self.trlabels, self.testinds).flatten() (weights, intercepts, dm, binned) = (self.coefs, self.intercepts, self.dm[(testmask, :)], self.binnedspikes[testmask]) scores = pd.Series(index=weights.index, name='scores') for cell in weights.index: cell_idx = np.argwhere((self.clu_ids == cell))[(0, 0)] wt = weights.loc[cell].reshape((- 1), 1) bias = intercepts.loc[cell] y = binned[(:, cell_idx)] scores.at[cell] = self._scorer(wt, bias, dm, y) return scores
Utility function for computing D^2 (pseudo R^2) on a given set of weights and intercepts. Is be used in both model subsetting and the mother score() function of the GLM. Parameters ---------- weights : pd.Series Series in which entries are numpy arrays containing the weights for a given cell. Indices should be cluster ids. intercepts : pd.Series Series in which elements are the intercept fit to each cell. Indicies should match weights. dm : numpy.ndarray Design matrix. Should not contain the bias column. dm.shape[1] should be the same as the length of an element in weights. binned : numpy.ndarray nT x nCells array, in which each column is the binned spike train for a single unit. Should be the same number of rows as dm. Compute the squared deviance of the model, i.e. how much variance beyond the null model (a poisson process with the same mean, defined by the intercept, at every time step) the model which was fit explains. For a detailed explanation see https://bookdown.org/egarpor/PM-UC3M/glm-deviance.html` Returns ------- pandas.Series A series in which the index are cluster IDs and each entry is the D^2 for the model fit to that cluster
brainbox/modeling/poisson.py
score
int-brain-lab/ibllib
38
python
def score(self, metric='dsq', **kwargs): '\n Utility function for computing D^2 (pseudo R^2) on a given set of weights and\n intercepts. Is be used in both model subsetting and the mother score() function of the GLM.\n\n Parameters\n ----------\n weights : pd.Series\n Series in which entries are numpy arrays containing the weights for a given cell.\n Indices should be cluster ids.\n intercepts : pd.Series\n Series in which elements are the intercept fit to each cell. Indicies should match\n weights.\n dm : numpy.ndarray\n Design matrix. Should not contain the bias column. dm.shape[1] should be the same as\n the length of an element in weights.\n binned : numpy.ndarray\n nT x nCells array, in which each column is the binned spike train for a single unit.\n Should be the same number of rows as dm.\n\n Compute the squared deviance of the model, i.e. how much variance beyond the null model\n (a poisson process with the same mean, defined by the intercept, at every time step) the\n model which was fit explains.\n For a detailed explanation see https://bookdown.org/egarpor/PM-UC3M/glm-deviance.html`\n\n Returns\n -------\n pandas.Series\n A series in which the index are cluster IDs and each entry is the D^2 for the model fit\n to that cluster\n ' assert (metric in ['dsq', 'rsq', 'negLog']), 'metric must be dsq, rsq or negLog' assert ((len(kwargs) == 0) or (len(kwargs) == 4)), 'wrong input specification in score' if ((not hasattr(self, 'coefs')) or ('weights' not in kwargs.keys())): raise AttributeError('Fit was not run. Please run fit first.') if hasattr(self, 'submodel_scores'): return self.submodel_scores if (len(kwargs) == 4): (weights, intercepts, dm, binned) = (kwargs['weights'], kwargs['intercepts'], kwargs['dm'], kwargs['binned']) else: testmask = np.isin(self.trlabels, self.testinds).flatten() (weights, intercepts, dm, binned) = (self.coefs, self.intercepts, self.dm[(testmask, :)], self.binnedspikes[testmask]) scores = pd.Series(index=weights.index, name='scores') for cell in weights.index: cell_idx = np.argwhere((self.clu_ids == cell))[(0, 0)] wt = weights.loc[cell].reshape((- 1), 1) bias = intercepts.loc[cell] y = binned[(:, cell_idx)] scores.at[cell] = self._scorer(wt, bias, dm, y) return scores
def score(self, metric='dsq', **kwargs): '\n Utility function for computing D^2 (pseudo R^2) on a given set of weights and\n intercepts. Is be used in both model subsetting and the mother score() function of the GLM.\n\n Parameters\n ----------\n weights : pd.Series\n Series in which entries are numpy arrays containing the weights for a given cell.\n Indices should be cluster ids.\n intercepts : pd.Series\n Series in which elements are the intercept fit to each cell. Indicies should match\n weights.\n dm : numpy.ndarray\n Design matrix. Should not contain the bias column. dm.shape[1] should be the same as\n the length of an element in weights.\n binned : numpy.ndarray\n nT x nCells array, in which each column is the binned spike train for a single unit.\n Should be the same number of rows as dm.\n\n Compute the squared deviance of the model, i.e. how much variance beyond the null model\n (a poisson process with the same mean, defined by the intercept, at every time step) the\n model which was fit explains.\n For a detailed explanation see https://bookdown.org/egarpor/PM-UC3M/glm-deviance.html`\n\n Returns\n -------\n pandas.Series\n A series in which the index are cluster IDs and each entry is the D^2 for the model fit\n to that cluster\n ' assert (metric in ['dsq', 'rsq', 'negLog']), 'metric must be dsq, rsq or negLog' assert ((len(kwargs) == 0) or (len(kwargs) == 4)), 'wrong input specification in score' if ((not hasattr(self, 'coefs')) or ('weights' not in kwargs.keys())): raise AttributeError('Fit was not run. Please run fit first.') if hasattr(self, 'submodel_scores'): return self.submodel_scores if (len(kwargs) == 4): (weights, intercepts, dm, binned) = (kwargs['weights'], kwargs['intercepts'], kwargs['dm'], kwargs['binned']) else: testmask = np.isin(self.trlabels, self.testinds).flatten() (weights, intercepts, dm, binned) = (self.coefs, self.intercepts, self.dm[(testmask, :)], self.binnedspikes[testmask]) scores = pd.Series(index=weights.index, name='scores') for cell in weights.index: cell_idx = np.argwhere((self.clu_ids == cell))[(0, 0)] wt = weights.loc[cell].reshape((- 1), 1) bias = intercepts.loc[cell] y = binned[(:, cell_idx)] scores.at[cell] = self._scorer(wt, bias, dm, y) return scores<|docstring|>Utility function for computing D^2 (pseudo R^2) on a given set of weights and intercepts. Is be used in both model subsetting and the mother score() function of the GLM. Parameters ---------- weights : pd.Series Series in which entries are numpy arrays containing the weights for a given cell. Indices should be cluster ids. intercepts : pd.Series Series in which elements are the intercept fit to each cell. Indicies should match weights. dm : numpy.ndarray Design matrix. Should not contain the bias column. dm.shape[1] should be the same as the length of an element in weights. binned : numpy.ndarray nT x nCells array, in which each column is the binned spike train for a single unit. Should be the same number of rows as dm. Compute the squared deviance of the model, i.e. how much variance beyond the null model (a poisson process with the same mean, defined by the intercept, at every time step) the model which was fit explains. For a detailed explanation see https://bookdown.org/egarpor/PM-UC3M/glm-deviance.html` Returns ------- pandas.Series A series in which the index are cluster IDs and each entry is the D^2 for the model fit to that cluster<|endoftext|>
6ef67707d19279ae74bfe9c59e8931afdfd27efea5afbcf77523df935bc358e8
def set_axes_equal(fignum): "\n Make axes of 3D plot have equal scale so that spheres appear as spheres,\n cubes as cubes, etc.. This is one possible solution to Matplotlib's\n ax.set_aspect('equal') and ax.axis('equal') not working for 3D.\n Input\n ax: a matplotlib axis, e.g., as output from plt.gca().\n " fig = plt.figure(fignum) ax = fig.gca(projection='3d') limits = np.array([ax.get_xlim3d(), ax.get_ylim3d(), ax.get_zlim3d()]) origin = np.mean(limits, axis=1) radius = (0.5 * np.max(np.abs((limits[(:, 1)] - limits[(:, 0)])))) ax.set_xlim3d([(origin[0] - radius), (origin[0] + radius)]) ax.set_ylim3d([(origin[1] - radius), (origin[1] + radius)]) ax.set_zlim3d([(origin[2] - radius), (origin[2] + radius)])
Make axes of 3D plot have equal scale so that spheres appear as spheres, cubes as cubes, etc.. This is one possible solution to Matplotlib's ax.set_aspect('equal') and ax.axis('equal') not working for 3D. Input ax: a matplotlib axis, e.g., as output from plt.gca().
cython/gtsam/utils/plot.py
set_axes_equal
berndpfrommer/gtsam
1
python
def set_axes_equal(fignum): "\n Make axes of 3D plot have equal scale so that spheres appear as spheres,\n cubes as cubes, etc.. This is one possible solution to Matplotlib's\n ax.set_aspect('equal') and ax.axis('equal') not working for 3D.\n Input\n ax: a matplotlib axis, e.g., as output from plt.gca().\n " fig = plt.figure(fignum) ax = fig.gca(projection='3d') limits = np.array([ax.get_xlim3d(), ax.get_ylim3d(), ax.get_zlim3d()]) origin = np.mean(limits, axis=1) radius = (0.5 * np.max(np.abs((limits[(:, 1)] - limits[(:, 0)])))) ax.set_xlim3d([(origin[0] - radius), (origin[0] + radius)]) ax.set_ylim3d([(origin[1] - radius), (origin[1] + radius)]) ax.set_zlim3d([(origin[2] - radius), (origin[2] + radius)])
def set_axes_equal(fignum): "\n Make axes of 3D plot have equal scale so that spheres appear as spheres,\n cubes as cubes, etc.. This is one possible solution to Matplotlib's\n ax.set_aspect('equal') and ax.axis('equal') not working for 3D.\n Input\n ax: a matplotlib axis, e.g., as output from plt.gca().\n " fig = plt.figure(fignum) ax = fig.gca(projection='3d') limits = np.array([ax.get_xlim3d(), ax.get_ylim3d(), ax.get_zlim3d()]) origin = np.mean(limits, axis=1) radius = (0.5 * np.max(np.abs((limits[(:, 1)] - limits[(:, 0)])))) ax.set_xlim3d([(origin[0] - radius), (origin[0] + radius)]) ax.set_ylim3d([(origin[1] - radius), (origin[1] + radius)]) ax.set_zlim3d([(origin[2] - radius), (origin[2] + radius)])<|docstring|>Make axes of 3D plot have equal scale so that spheres appear as spheres, cubes as cubes, etc.. This is one possible solution to Matplotlib's ax.set_aspect('equal') and ax.axis('equal') not working for 3D. Input ax: a matplotlib axis, e.g., as output from plt.gca().<|endoftext|>
029a4d0fca47c0ba2499aececf837e730e99b94a4b9bb3cc76f3ccdb63e39369
def ellipsoid(xc, yc, zc, rx, ry, rz, n): "Numpy equivalent of Matlab's ellipsoid function" u = np.linspace(0, (2 * np.pi), (n + 1)) v = np.linspace(0, np.pi, (n + 1)) x = ((- rx) * np.outer(np.cos(u), np.sin(v)).T) y = ((- ry) * np.outer(np.sin(u), np.sin(v)).T) z = ((- rz) * np.outer(np.ones_like(u), np.cos(v)).T) return (x, y, z)
Numpy equivalent of Matlab's ellipsoid function
cython/gtsam/utils/plot.py
ellipsoid
berndpfrommer/gtsam
1
python
def ellipsoid(xc, yc, zc, rx, ry, rz, n): u = np.linspace(0, (2 * np.pi), (n + 1)) v = np.linspace(0, np.pi, (n + 1)) x = ((- rx) * np.outer(np.cos(u), np.sin(v)).T) y = ((- ry) * np.outer(np.sin(u), np.sin(v)).T) z = ((- rz) * np.outer(np.ones_like(u), np.cos(v)).T) return (x, y, z)
def ellipsoid(xc, yc, zc, rx, ry, rz, n): u = np.linspace(0, (2 * np.pi), (n + 1)) v = np.linspace(0, np.pi, (n + 1)) x = ((- rx) * np.outer(np.cos(u), np.sin(v)).T) y = ((- ry) * np.outer(np.sin(u), np.sin(v)).T) z = ((- rz) * np.outer(np.ones_like(u), np.cos(v)).T) return (x, y, z)<|docstring|>Numpy equivalent of Matlab's ellipsoid function<|endoftext|>
88a72916de6ae5bd5a2d344843ae2376eeb802442dae53412345408c52d65785
def plot_covariance_ellipse_3d(axes, origin, P, scale=1, n=8, alpha=0.5): '\n Plots a Gaussian as an uncertainty ellipse\n\n Based on Maybeck Vol 1, page 366\n k=2.296 corresponds to 1 std, 68.26% of all probability\n k=11.82 corresponds to 3 std, 99.74% of all probability\n ' k = 11.82 (U, S, _) = np.linalg.svd(P) radii = (k * np.sqrt(S)) radii = (radii * scale) (rx, ry, rz) = radii (xc, yc, zc) = ellipsoid(0, 0, 0, rx, ry, rz, n) data = ((np.kron(U[(:, 0:1)], xc) + np.kron(U[(:, 1:2)], yc)) + np.kron(U[(:, 2:3)], zc)) n = data.shape[1] x = (data[(0:n, :)] + origin[0]) y = (data[(n:(2 * n), :)] + origin[1]) z = (data[((2 * n):, :)] + origin[2]) axes.plot_surface(x, y, z, alpha=alpha, cmap='hot')
Plots a Gaussian as an uncertainty ellipse Based on Maybeck Vol 1, page 366 k=2.296 corresponds to 1 std, 68.26% of all probability k=11.82 corresponds to 3 std, 99.74% of all probability
cython/gtsam/utils/plot.py
plot_covariance_ellipse_3d
berndpfrommer/gtsam
1
python
def plot_covariance_ellipse_3d(axes, origin, P, scale=1, n=8, alpha=0.5): '\n Plots a Gaussian as an uncertainty ellipse\n\n Based on Maybeck Vol 1, page 366\n k=2.296 corresponds to 1 std, 68.26% of all probability\n k=11.82 corresponds to 3 std, 99.74% of all probability\n ' k = 11.82 (U, S, _) = np.linalg.svd(P) radii = (k * np.sqrt(S)) radii = (radii * scale) (rx, ry, rz) = radii (xc, yc, zc) = ellipsoid(0, 0, 0, rx, ry, rz, n) data = ((np.kron(U[(:, 0:1)], xc) + np.kron(U[(:, 1:2)], yc)) + np.kron(U[(:, 2:3)], zc)) n = data.shape[1] x = (data[(0:n, :)] + origin[0]) y = (data[(n:(2 * n), :)] + origin[1]) z = (data[((2 * n):, :)] + origin[2]) axes.plot_surface(x, y, z, alpha=alpha, cmap='hot')
def plot_covariance_ellipse_3d(axes, origin, P, scale=1, n=8, alpha=0.5): '\n Plots a Gaussian as an uncertainty ellipse\n\n Based on Maybeck Vol 1, page 366\n k=2.296 corresponds to 1 std, 68.26% of all probability\n k=11.82 corresponds to 3 std, 99.74% of all probability\n ' k = 11.82 (U, S, _) = np.linalg.svd(P) radii = (k * np.sqrt(S)) radii = (radii * scale) (rx, ry, rz) = radii (xc, yc, zc) = ellipsoid(0, 0, 0, rx, ry, rz, n) data = ((np.kron(U[(:, 0:1)], xc) + np.kron(U[(:, 1:2)], yc)) + np.kron(U[(:, 2:3)], zc)) n = data.shape[1] x = (data[(0:n, :)] + origin[0]) y = (data[(n:(2 * n), :)] + origin[1]) z = (data[((2 * n):, :)] + origin[2]) axes.plot_surface(x, y, z, alpha=alpha, cmap='hot')<|docstring|>Plots a Gaussian as an uncertainty ellipse Based on Maybeck Vol 1, page 366 k=2.296 corresponds to 1 std, 68.26% of all probability k=11.82 corresponds to 3 std, 99.74% of all probability<|endoftext|>
4aefbb97782313c6fbbc25675bc031e3969120db0cd94f3669f60ebba45180a0
def plot_pose2_on_axes(axes, pose, axis_length=0.1, covariance=None): "Plot a 2D pose on given axis 'axes' with given 'axis_length'." gRp = pose.rotation().matrix() t = pose.translation() origin = np.array([t.x(), t.y()]) x_axis = (origin + (gRp[(:, 0)] * axis_length)) line = np.append(origin[np.newaxis], x_axis[np.newaxis], axis=0) axes.plot(line[(:, 0)], line[(:, 1)], 'r-') y_axis = (origin + (gRp[(:, 1)] * axis_length)) line = np.append(origin[np.newaxis], y_axis[np.newaxis], axis=0) axes.plot(line[(:, 0)], line[(:, 1)], 'g-') if (covariance is not None): pPp = covariance[(0:2, 0:2)] gPp = np.matmul(np.matmul(gRp, pPp), gRp.T) (w, v) = np.linalg.eig(gPp) k = 5.0 angle = np.arctan2(v[(1, 0)], v[(0, 0)]) e1 = patches.Ellipse(origin, np.sqrt((w[0] * k)), np.sqrt((w[1] * k)), np.rad2deg(angle), fill=False) axes.add_patch(e1)
Plot a 2D pose on given axis 'axes' with given 'axis_length'.
cython/gtsam/utils/plot.py
plot_pose2_on_axes
berndpfrommer/gtsam
1
python
def plot_pose2_on_axes(axes, pose, axis_length=0.1, covariance=None): gRp = pose.rotation().matrix() t = pose.translation() origin = np.array([t.x(), t.y()]) x_axis = (origin + (gRp[(:, 0)] * axis_length)) line = np.append(origin[np.newaxis], x_axis[np.newaxis], axis=0) axes.plot(line[(:, 0)], line[(:, 1)], 'r-') y_axis = (origin + (gRp[(:, 1)] * axis_length)) line = np.append(origin[np.newaxis], y_axis[np.newaxis], axis=0) axes.plot(line[(:, 0)], line[(:, 1)], 'g-') if (covariance is not None): pPp = covariance[(0:2, 0:2)] gPp = np.matmul(np.matmul(gRp, pPp), gRp.T) (w, v) = np.linalg.eig(gPp) k = 5.0 angle = np.arctan2(v[(1, 0)], v[(0, 0)]) e1 = patches.Ellipse(origin, np.sqrt((w[0] * k)), np.sqrt((w[1] * k)), np.rad2deg(angle), fill=False) axes.add_patch(e1)
def plot_pose2_on_axes(axes, pose, axis_length=0.1, covariance=None): gRp = pose.rotation().matrix() t = pose.translation() origin = np.array([t.x(), t.y()]) x_axis = (origin + (gRp[(:, 0)] * axis_length)) line = np.append(origin[np.newaxis], x_axis[np.newaxis], axis=0) axes.plot(line[(:, 0)], line[(:, 1)], 'r-') y_axis = (origin + (gRp[(:, 1)] * axis_length)) line = np.append(origin[np.newaxis], y_axis[np.newaxis], axis=0) axes.plot(line[(:, 0)], line[(:, 1)], 'g-') if (covariance is not None): pPp = covariance[(0:2, 0:2)] gPp = np.matmul(np.matmul(gRp, pPp), gRp.T) (w, v) = np.linalg.eig(gPp) k = 5.0 angle = np.arctan2(v[(1, 0)], v[(0, 0)]) e1 = patches.Ellipse(origin, np.sqrt((w[0] * k)), np.sqrt((w[1] * k)), np.rad2deg(angle), fill=False) axes.add_patch(e1)<|docstring|>Plot a 2D pose on given axis 'axes' with given 'axis_length'.<|endoftext|>
ffe45dc22eae8dc6c62f49afd5e1b4e9c6048477b7f0a0a16850055591085127
def plot_pose2(fignum, pose, axis_length=0.1, covariance=None): "Plot a 2D pose on given figure with given 'axis_length'." fig = plt.figure(fignum) axes = fig.gca() plot_pose2_on_axes(axes, pose, axis_length, covariance)
Plot a 2D pose on given figure with given 'axis_length'.
cython/gtsam/utils/plot.py
plot_pose2
berndpfrommer/gtsam
1
python
def plot_pose2(fignum, pose, axis_length=0.1, covariance=None): fig = plt.figure(fignum) axes = fig.gca() plot_pose2_on_axes(axes, pose, axis_length, covariance)
def plot_pose2(fignum, pose, axis_length=0.1, covariance=None): fig = plt.figure(fignum) axes = fig.gca() plot_pose2_on_axes(axes, pose, axis_length, covariance)<|docstring|>Plot a 2D pose on given figure with given 'axis_length'.<|endoftext|>
5165aa8b04a97eed7582110f266449596e2566401df6880f55b92cfb237ed170
def plot_point3_on_axes(axes, point, linespec, P=None): "Plot a 3D point on given axis 'axes' with given 'linespec'." axes.plot([point.x()], [point.y()], [point.z()], linespec) if (P is not None): plot_covariance_ellipse_3d(axes, point.vector(), P)
Plot a 3D point on given axis 'axes' with given 'linespec'.
cython/gtsam/utils/plot.py
plot_point3_on_axes
berndpfrommer/gtsam
1
python
def plot_point3_on_axes(axes, point, linespec, P=None): axes.plot([point.x()], [point.y()], [point.z()], linespec) if (P is not None): plot_covariance_ellipse_3d(axes, point.vector(), P)
def plot_point3_on_axes(axes, point, linespec, P=None): axes.plot([point.x()], [point.y()], [point.z()], linespec) if (P is not None): plot_covariance_ellipse_3d(axes, point.vector(), P)<|docstring|>Plot a 3D point on given axis 'axes' with given 'linespec'.<|endoftext|>
b53a0915a94b6c3dca4efb867067531ec71a5572460a0f855f7453186dd825fa
def plot_point3(fignum, point, linespec, P=None): "Plot a 3D point on given figure with given 'linespec'." fig = plt.figure(fignum) axes = fig.gca(projection='3d') plot_point3_on_axes(axes, point, linespec, P)
Plot a 3D point on given figure with given 'linespec'.
cython/gtsam/utils/plot.py
plot_point3
berndpfrommer/gtsam
1
python
def plot_point3(fignum, point, linespec, P=None): fig = plt.figure(fignum) axes = fig.gca(projection='3d') plot_point3_on_axes(axes, point, linespec, P)
def plot_point3(fignum, point, linespec, P=None): fig = plt.figure(fignum) axes = fig.gca(projection='3d') plot_point3_on_axes(axes, point, linespec, P)<|docstring|>Plot a 3D point on given figure with given 'linespec'.<|endoftext|>
bed2d9dbc86e3fd6c0e9657a589bf47a3820e1f923995fbdeac6457c86b720b6
def plot_3d_points(fignum, values, linespec='g*', marginals=None): "\n Plots the Point3s in 'values', with optional covariances.\n Finds all the Point3 objects in the given Values object and plots them.\n If a Marginals object is given, this function will also plot marginal\n covariance ellipses for each point.\n " keys = values.keys() for i in range(keys.size()): try: key = keys.at(i) point = values.atPoint3(key) if (marginals is not None): P = marginals.marginalCovariance(key) else: P = None plot_point3(fignum, point, linespec, P) except RuntimeError: continue
Plots the Point3s in 'values', with optional covariances. Finds all the Point3 objects in the given Values object and plots them. If a Marginals object is given, this function will also plot marginal covariance ellipses for each point.
cython/gtsam/utils/plot.py
plot_3d_points
berndpfrommer/gtsam
1
python
def plot_3d_points(fignum, values, linespec='g*', marginals=None): "\n Plots the Point3s in 'values', with optional covariances.\n Finds all the Point3 objects in the given Values object and plots them.\n If a Marginals object is given, this function will also plot marginal\n covariance ellipses for each point.\n " keys = values.keys() for i in range(keys.size()): try: key = keys.at(i) point = values.atPoint3(key) if (marginals is not None): P = marginals.marginalCovariance(key) else: P = None plot_point3(fignum, point, linespec, P) except RuntimeError: continue
def plot_3d_points(fignum, values, linespec='g*', marginals=None): "\n Plots the Point3s in 'values', with optional covariances.\n Finds all the Point3 objects in the given Values object and plots them.\n If a Marginals object is given, this function will also plot marginal\n covariance ellipses for each point.\n " keys = values.keys() for i in range(keys.size()): try: key = keys.at(i) point = values.atPoint3(key) if (marginals is not None): P = marginals.marginalCovariance(key) else: P = None plot_point3(fignum, point, linespec, P) except RuntimeError: continue<|docstring|>Plots the Point3s in 'values', with optional covariances. Finds all the Point3 objects in the given Values object and plots them. If a Marginals object is given, this function will also plot marginal covariance ellipses for each point.<|endoftext|>
24bdc00ba49fda296b4b5fc413179191297c9617824e1e7ccd46efe1c7fdb796
def plot_pose3_on_axes(axes, pose, axis_length=0.1, P=None, scale=1): "Plot a 3D pose on given axis 'axes' with given 'axis_length'." gRp = pose.rotation().matrix() origin = pose.translation().vector() x_axis = (origin + (gRp[(:, 0)] * axis_length)) line = np.append(origin[np.newaxis], x_axis[np.newaxis], axis=0) axes.plot(line[(:, 0)], line[(:, 1)], line[(:, 2)], 'r-') y_axis = (origin + (gRp[(:, 1)] * axis_length)) line = np.append(origin[np.newaxis], y_axis[np.newaxis], axis=0) axes.plot(line[(:, 0)], line[(:, 1)], line[(:, 2)], 'g-') z_axis = (origin + (gRp[(:, 2)] * axis_length)) line = np.append(origin[np.newaxis], z_axis[np.newaxis], axis=0) axes.plot(line[(:, 0)], line[(:, 1)], line[(:, 2)], 'b-') if (P is not None): pPp = P[(3:6, 3:6)] gPp = ((gRp @ pPp) @ gRp.T) plot_covariance_ellipse_3d(axes, origin, gPp)
Plot a 3D pose on given axis 'axes' with given 'axis_length'.
cython/gtsam/utils/plot.py
plot_pose3_on_axes
berndpfrommer/gtsam
1
python
def plot_pose3_on_axes(axes, pose, axis_length=0.1, P=None, scale=1): gRp = pose.rotation().matrix() origin = pose.translation().vector() x_axis = (origin + (gRp[(:, 0)] * axis_length)) line = np.append(origin[np.newaxis], x_axis[np.newaxis], axis=0) axes.plot(line[(:, 0)], line[(:, 1)], line[(:, 2)], 'r-') y_axis = (origin + (gRp[(:, 1)] * axis_length)) line = np.append(origin[np.newaxis], y_axis[np.newaxis], axis=0) axes.plot(line[(:, 0)], line[(:, 1)], line[(:, 2)], 'g-') z_axis = (origin + (gRp[(:, 2)] * axis_length)) line = np.append(origin[np.newaxis], z_axis[np.newaxis], axis=0) axes.plot(line[(:, 0)], line[(:, 1)], line[(:, 2)], 'b-') if (P is not None): pPp = P[(3:6, 3:6)] gPp = ((gRp @ pPp) @ gRp.T) plot_covariance_ellipse_3d(axes, origin, gPp)
def plot_pose3_on_axes(axes, pose, axis_length=0.1, P=None, scale=1): gRp = pose.rotation().matrix() origin = pose.translation().vector() x_axis = (origin + (gRp[(:, 0)] * axis_length)) line = np.append(origin[np.newaxis], x_axis[np.newaxis], axis=0) axes.plot(line[(:, 0)], line[(:, 1)], line[(:, 2)], 'r-') y_axis = (origin + (gRp[(:, 1)] * axis_length)) line = np.append(origin[np.newaxis], y_axis[np.newaxis], axis=0) axes.plot(line[(:, 0)], line[(:, 1)], line[(:, 2)], 'g-') z_axis = (origin + (gRp[(:, 2)] * axis_length)) line = np.append(origin[np.newaxis], z_axis[np.newaxis], axis=0) axes.plot(line[(:, 0)], line[(:, 1)], line[(:, 2)], 'b-') if (P is not None): pPp = P[(3:6, 3:6)] gPp = ((gRp @ pPp) @ gRp.T) plot_covariance_ellipse_3d(axes, origin, gPp)<|docstring|>Plot a 3D pose on given axis 'axes' with given 'axis_length'.<|endoftext|>
0b74907837bd24e4c158b060bac6208460039c0673de40b18ea676a0c6f3f5ae
def plot_pose3(fignum, pose, axis_length=0.1, P=None): "Plot a 3D pose on given figure with given 'axis_length'." fig = plt.figure(fignum) axes = fig.gca(projection='3d') plot_pose3_on_axes(axes, pose, P=P, axis_length=axis_length)
Plot a 3D pose on given figure with given 'axis_length'.
cython/gtsam/utils/plot.py
plot_pose3
berndpfrommer/gtsam
1
python
def plot_pose3(fignum, pose, axis_length=0.1, P=None): fig = plt.figure(fignum) axes = fig.gca(projection='3d') plot_pose3_on_axes(axes, pose, P=P, axis_length=axis_length)
def plot_pose3(fignum, pose, axis_length=0.1, P=None): fig = plt.figure(fignum) axes = fig.gca(projection='3d') plot_pose3_on_axes(axes, pose, P=P, axis_length=axis_length)<|docstring|>Plot a 3D pose on given figure with given 'axis_length'.<|endoftext|>
1cca7dddf03a2cd2592c27cf5b80e007f0275fddeca244cdc2403a0d7405d2e6
def _get_album_info(album_hash): '\n Will obtain and return the image hashes along wit the image file types by\n requesting with the Imgur API where the user tokens are found in a local\n .ini file.\n ' config = ConfigParser() config.read('imgur_api_info.ini') info = config['GENERAL'] url = 'https://api.imgur.com/3/album/{}/images'.format(album_hash) auth = 'Bearer {}'.format(info['access_token']) imgs = requests.get(url, headers={'Authorization': auth}) return [(i['link'][(i['link'].index('imgur.com/') + len('imgur.com/')):(- 4)], i['link'][(- 4):]) for i in imgs.json()['data']]
Will obtain and return the image hashes along wit the image file types by requesting with the Imgur API where the user tokens are found in a local .ini file.
scripts/checks.py
_get_album_info
crumpstrr33/imgur_album_downloader
0
python
def _get_album_info(album_hash): '\n Will obtain and return the image hashes along wit the image file types by\n requesting with the Imgur API where the user tokens are found in a local\n .ini file.\n ' config = ConfigParser() config.read('imgur_api_info.ini') info = config['GENERAL'] url = 'https://api.imgur.com/3/album/{}/images'.format(album_hash) auth = 'Bearer {}'.format(info['access_token']) imgs = requests.get(url, headers={'Authorization': auth}) return [(i['link'][(i['link'].index('imgur.com/') + len('imgur.com/')):(- 4)], i['link'][(- 4):]) for i in imgs.json()['data']]
def _get_album_info(album_hash): '\n Will obtain and return the image hashes along wit the image file types by\n requesting with the Imgur API where the user tokens are found in a local\n .ini file.\n ' config = ConfigParser() config.read('imgur_api_info.ini') info = config['GENERAL'] url = 'https://api.imgur.com/3/album/{}/images'.format(album_hash) auth = 'Bearer {}'.format(info['access_token']) imgs = requests.get(url, headers={'Authorization': auth}) return [(i['link'][(i['link'].index('imgur.com/') + len('imgur.com/')):(- 4)], i['link'][(- 4):]) for i in imgs.json()['data']]<|docstring|>Will obtain and return the image hashes along wit the image file types by requesting with the Imgur API where the user tokens are found in a local .ini file.<|endoftext|>
25cfd8259cb414c9b5a583774fd01a05dcc0689d9ba793bcce06753186f7c408
def check_info(new_dir, empty_dir, img_dir, album_hash): '\n Makes checks on the hash/options chosen/directories chosen, etc. Look at\n the docstring of check.py in app.py for more info.\n ' if (len(album_hash) > 7): return ('wrong_len_hash', None) if (requests.head(('https://imgur.com/a/' + album_hash)).status_code != 200): return ('dne_album', None) img_list = _get_album_info(album_hash) if (not len(img_list)): return ('zero_imgs', None) if (not os.path.isfile(os.path.join(os.getcwd(), 'imgur_api_info.ini'))): return ('dne_ini', None) if new_dir: try: os.makedirs(img_dir) except FileExistsError: return ('new_dir_exists', None) elif (not os.path.isdir(img_dir)): return ('dne_dir', None) elif (empty_dir and os.listdir(img_dir)): return ('nonempty_dir', None) return ('', img_list)
Makes checks on the hash/options chosen/directories chosen, etc. Look at the docstring of check.py in app.py for more info.
scripts/checks.py
check_info
crumpstrr33/imgur_album_downloader
0
python
def check_info(new_dir, empty_dir, img_dir, album_hash): '\n Makes checks on the hash/options chosen/directories chosen, etc. Look at\n the docstring of check.py in app.py for more info.\n ' if (len(album_hash) > 7): return ('wrong_len_hash', None) if (requests.head(('https://imgur.com/a/' + album_hash)).status_code != 200): return ('dne_album', None) img_list = _get_album_info(album_hash) if (not len(img_list)): return ('zero_imgs', None) if (not os.path.isfile(os.path.join(os.getcwd(), 'imgur_api_info.ini'))): return ('dne_ini', None) if new_dir: try: os.makedirs(img_dir) except FileExistsError: return ('new_dir_exists', None) elif (not os.path.isdir(img_dir)): return ('dne_dir', None) elif (empty_dir and os.listdir(img_dir)): return ('nonempty_dir', None) return (, img_list)
def check_info(new_dir, empty_dir, img_dir, album_hash): '\n Makes checks on the hash/options chosen/directories chosen, etc. Look at\n the docstring of check.py in app.py for more info.\n ' if (len(album_hash) > 7): return ('wrong_len_hash', None) if (requests.head(('https://imgur.com/a/' + album_hash)).status_code != 200): return ('dne_album', None) img_list = _get_album_info(album_hash) if (not len(img_list)): return ('zero_imgs', None) if (not os.path.isfile(os.path.join(os.getcwd(), 'imgur_api_info.ini'))): return ('dne_ini', None) if new_dir: try: os.makedirs(img_dir) except FileExistsError: return ('new_dir_exists', None) elif (not os.path.isdir(img_dir)): return ('dne_dir', None) elif (empty_dir and os.listdir(img_dir)): return ('nonempty_dir', None) return (, img_list)<|docstring|>Makes checks on the hash/options chosen/directories chosen, etc. Look at the docstring of check.py in app.py for more info.<|endoftext|>
b3f88abc2270eb7c4676ee40e2775918824450eb73ac80a44150969f4c5b8d86
@pytest.fixture def mock_publish(hass): 'Initialize components.' (yield hass.loop.run_until_complete(async_mock_mqtt_component(hass)))
Initialize components.
tests/components/vacuum/test_mqtt.py
mock_publish
stealthhacker/home-assistant
3
python
@pytest.fixture def mock_publish(hass): (yield hass.loop.run_until_complete(async_mock_mqtt_component(hass)))
@pytest.fixture def mock_publish(hass): (yield hass.loop.run_until_complete(async_mock_mqtt_component(hass)))<|docstring|>Initialize components.<|endoftext|>
8df6d3dfaed182408b246b0d6a25295751947d5202dc1dd32a387e35206f32cd
async def test_default_supported_features(hass, mock_publish): 'Test that the correct supported features.' assert (await async_setup_component(hass, vacuum.DOMAIN, {vacuum.DOMAIN: default_config})) entity = hass.states.get('vacuum.mqtttest') entity_features = entity.attributes.get(mqttvacuum.CONF_SUPPORTED_FEATURES, 0) assert (sorted(mqttvacuum.services_to_strings(entity_features)) == sorted(['turn_on', 'turn_off', 'stop', 'return_home', 'battery', 'status', 'clean_spot']))
Test that the correct supported features.
tests/components/vacuum/test_mqtt.py
test_default_supported_features
stealthhacker/home-assistant
3
python
async def test_default_supported_features(hass, mock_publish): assert (await async_setup_component(hass, vacuum.DOMAIN, {vacuum.DOMAIN: default_config})) entity = hass.states.get('vacuum.mqtttest') entity_features = entity.attributes.get(mqttvacuum.CONF_SUPPORTED_FEATURES, 0) assert (sorted(mqttvacuum.services_to_strings(entity_features)) == sorted(['turn_on', 'turn_off', 'stop', 'return_home', 'battery', 'status', 'clean_spot']))
async def test_default_supported_features(hass, mock_publish): assert (await async_setup_component(hass, vacuum.DOMAIN, {vacuum.DOMAIN: default_config})) entity = hass.states.get('vacuum.mqtttest') entity_features = entity.attributes.get(mqttvacuum.CONF_SUPPORTED_FEATURES, 0) assert (sorted(mqttvacuum.services_to_strings(entity_features)) == sorted(['turn_on', 'turn_off', 'stop', 'return_home', 'battery', 'status', 'clean_spot']))<|docstring|>Test that the correct supported features.<|endoftext|>
31168b65b22f8c6ed9723ce3742b6a66d12ea82f3997e77497564c377cd92aa8
async def test_all_commands(hass, mock_publish): 'Test simple commands to the vacuum.' default_config[mqttvacuum.CONF_SUPPORTED_FEATURES] = mqttvacuum.services_to_strings(mqttvacuum.ALL_SERVICES) assert (await async_setup_component(hass, vacuum.DOMAIN, {vacuum.DOMAIN: default_config})) common.turn_on(hass, 'vacuum.mqtttest') (await hass.async_block_till_done()) (await hass.async_block_till_done()) mock_publish.async_publish.assert_called_once_with('vacuum/command', 'turn_on', 0, False) mock_publish.async_publish.reset_mock() common.turn_off(hass, 'vacuum.mqtttest') (await hass.async_block_till_done()) (await hass.async_block_till_done()) mock_publish.async_publish.assert_called_once_with('vacuum/command', 'turn_off', 0, False) mock_publish.async_publish.reset_mock() common.stop(hass, 'vacuum.mqtttest') (await hass.async_block_till_done()) (await hass.async_block_till_done()) mock_publish.async_publish.assert_called_once_with('vacuum/command', 'stop', 0, False) mock_publish.async_publish.reset_mock() common.clean_spot(hass, 'vacuum.mqtttest') (await hass.async_block_till_done()) (await hass.async_block_till_done()) mock_publish.async_publish.assert_called_once_with('vacuum/command', 'clean_spot', 0, False) mock_publish.async_publish.reset_mock() common.locate(hass, 'vacuum.mqtttest') (await hass.async_block_till_done()) (await hass.async_block_till_done()) mock_publish.async_publish.assert_called_once_with('vacuum/command', 'locate', 0, False) mock_publish.async_publish.reset_mock() common.start_pause(hass, 'vacuum.mqtttest') (await hass.async_block_till_done()) (await hass.async_block_till_done()) mock_publish.async_publish.assert_called_once_with('vacuum/command', 'start_pause', 0, False) mock_publish.async_publish.reset_mock() common.return_to_base(hass, 'vacuum.mqtttest') (await hass.async_block_till_done()) (await hass.async_block_till_done()) mock_publish.async_publish.assert_called_once_with('vacuum/command', 'return_to_base', 0, False) mock_publish.async_publish.reset_mock() common.set_fan_speed(hass, 'high', 'vacuum.mqtttest') (await hass.async_block_till_done()) (await hass.async_block_till_done()) mock_publish.async_publish.assert_called_once_with('vacuum/set_fan_speed', 'high', 0, False) mock_publish.async_publish.reset_mock() common.send_command(hass, '44 FE 93', entity_id='vacuum.mqtttest') (await hass.async_block_till_done()) (await hass.async_block_till_done()) mock_publish.async_publish.assert_called_once_with('vacuum/send_command', '44 FE 93', 0, False)
Test simple commands to the vacuum.
tests/components/vacuum/test_mqtt.py
test_all_commands
stealthhacker/home-assistant
3
python
async def test_all_commands(hass, mock_publish): default_config[mqttvacuum.CONF_SUPPORTED_FEATURES] = mqttvacuum.services_to_strings(mqttvacuum.ALL_SERVICES) assert (await async_setup_component(hass, vacuum.DOMAIN, {vacuum.DOMAIN: default_config})) common.turn_on(hass, 'vacuum.mqtttest') (await hass.async_block_till_done()) (await hass.async_block_till_done()) mock_publish.async_publish.assert_called_once_with('vacuum/command', 'turn_on', 0, False) mock_publish.async_publish.reset_mock() common.turn_off(hass, 'vacuum.mqtttest') (await hass.async_block_till_done()) (await hass.async_block_till_done()) mock_publish.async_publish.assert_called_once_with('vacuum/command', 'turn_off', 0, False) mock_publish.async_publish.reset_mock() common.stop(hass, 'vacuum.mqtttest') (await hass.async_block_till_done()) (await hass.async_block_till_done()) mock_publish.async_publish.assert_called_once_with('vacuum/command', 'stop', 0, False) mock_publish.async_publish.reset_mock() common.clean_spot(hass, 'vacuum.mqtttest') (await hass.async_block_till_done()) (await hass.async_block_till_done()) mock_publish.async_publish.assert_called_once_with('vacuum/command', 'clean_spot', 0, False) mock_publish.async_publish.reset_mock() common.locate(hass, 'vacuum.mqtttest') (await hass.async_block_till_done()) (await hass.async_block_till_done()) mock_publish.async_publish.assert_called_once_with('vacuum/command', 'locate', 0, False) mock_publish.async_publish.reset_mock() common.start_pause(hass, 'vacuum.mqtttest') (await hass.async_block_till_done()) (await hass.async_block_till_done()) mock_publish.async_publish.assert_called_once_with('vacuum/command', 'start_pause', 0, False) mock_publish.async_publish.reset_mock() common.return_to_base(hass, 'vacuum.mqtttest') (await hass.async_block_till_done()) (await hass.async_block_till_done()) mock_publish.async_publish.assert_called_once_with('vacuum/command', 'return_to_base', 0, False) mock_publish.async_publish.reset_mock() common.set_fan_speed(hass, 'high', 'vacuum.mqtttest') (await hass.async_block_till_done()) (await hass.async_block_till_done()) mock_publish.async_publish.assert_called_once_with('vacuum/set_fan_speed', 'high', 0, False) mock_publish.async_publish.reset_mock() common.send_command(hass, '44 FE 93', entity_id='vacuum.mqtttest') (await hass.async_block_till_done()) (await hass.async_block_till_done()) mock_publish.async_publish.assert_called_once_with('vacuum/send_command', '44 FE 93', 0, False)
async def test_all_commands(hass, mock_publish): default_config[mqttvacuum.CONF_SUPPORTED_FEATURES] = mqttvacuum.services_to_strings(mqttvacuum.ALL_SERVICES) assert (await async_setup_component(hass, vacuum.DOMAIN, {vacuum.DOMAIN: default_config})) common.turn_on(hass, 'vacuum.mqtttest') (await hass.async_block_till_done()) (await hass.async_block_till_done()) mock_publish.async_publish.assert_called_once_with('vacuum/command', 'turn_on', 0, False) mock_publish.async_publish.reset_mock() common.turn_off(hass, 'vacuum.mqtttest') (await hass.async_block_till_done()) (await hass.async_block_till_done()) mock_publish.async_publish.assert_called_once_with('vacuum/command', 'turn_off', 0, False) mock_publish.async_publish.reset_mock() common.stop(hass, 'vacuum.mqtttest') (await hass.async_block_till_done()) (await hass.async_block_till_done()) mock_publish.async_publish.assert_called_once_with('vacuum/command', 'stop', 0, False) mock_publish.async_publish.reset_mock() common.clean_spot(hass, 'vacuum.mqtttest') (await hass.async_block_till_done()) (await hass.async_block_till_done()) mock_publish.async_publish.assert_called_once_with('vacuum/command', 'clean_spot', 0, False) mock_publish.async_publish.reset_mock() common.locate(hass, 'vacuum.mqtttest') (await hass.async_block_till_done()) (await hass.async_block_till_done()) mock_publish.async_publish.assert_called_once_with('vacuum/command', 'locate', 0, False) mock_publish.async_publish.reset_mock() common.start_pause(hass, 'vacuum.mqtttest') (await hass.async_block_till_done()) (await hass.async_block_till_done()) mock_publish.async_publish.assert_called_once_with('vacuum/command', 'start_pause', 0, False) mock_publish.async_publish.reset_mock() common.return_to_base(hass, 'vacuum.mqtttest') (await hass.async_block_till_done()) (await hass.async_block_till_done()) mock_publish.async_publish.assert_called_once_with('vacuum/command', 'return_to_base', 0, False) mock_publish.async_publish.reset_mock() common.set_fan_speed(hass, 'high', 'vacuum.mqtttest') (await hass.async_block_till_done()) (await hass.async_block_till_done()) mock_publish.async_publish.assert_called_once_with('vacuum/set_fan_speed', 'high', 0, False) mock_publish.async_publish.reset_mock() common.send_command(hass, '44 FE 93', entity_id='vacuum.mqtttest') (await hass.async_block_till_done()) (await hass.async_block_till_done()) mock_publish.async_publish.assert_called_once_with('vacuum/send_command', '44 FE 93', 0, False)<|docstring|>Test simple commands to the vacuum.<|endoftext|>
fcaf938661eaac51eeecf12d8d92cec365f8fc95dc8c0e6904cceb64c52c286c
async def test_status(hass, mock_publish): 'Test status updates from the vacuum.' default_config[mqttvacuum.CONF_SUPPORTED_FEATURES] = mqttvacuum.services_to_strings(mqttvacuum.ALL_SERVICES) assert (await async_setup_component(hass, vacuum.DOMAIN, {vacuum.DOMAIN: default_config})) message = '{\n "battery_level": 54,\n "cleaning": true,\n "docked": false,\n "charging": false,\n "fan_speed": "max"\n }' async_fire_mqtt_message(hass, 'vacuum/state', message) (await hass.async_block_till_done()) (await hass.async_block_till_done()) state = hass.states.get('vacuum.mqtttest') assert (STATE_ON == state.state) assert ('mdi:battery-50' == state.attributes.get(ATTR_BATTERY_ICON)) assert (54 == state.attributes.get(ATTR_BATTERY_LEVEL)) assert ('max' == state.attributes.get(ATTR_FAN_SPEED)) message = '{\n "battery_level": 61,\n "docked": true,\n "cleaning": false,\n "charging": true,\n "fan_speed": "min"\n }' async_fire_mqtt_message(hass, 'vacuum/state', message) (await hass.async_block_till_done()) (await hass.async_block_till_done()) state = hass.states.get('vacuum.mqtttest') assert (STATE_OFF == state.state) assert ('mdi:battery-charging-60' == state.attributes.get(ATTR_BATTERY_ICON)) assert (61 == state.attributes.get(ATTR_BATTERY_LEVEL)) assert ('min' == state.attributes.get(ATTR_FAN_SPEED))
Test status updates from the vacuum.
tests/components/vacuum/test_mqtt.py
test_status
stealthhacker/home-assistant
3
python
async def test_status(hass, mock_publish): default_config[mqttvacuum.CONF_SUPPORTED_FEATURES] = mqttvacuum.services_to_strings(mqttvacuum.ALL_SERVICES) assert (await async_setup_component(hass, vacuum.DOMAIN, {vacuum.DOMAIN: default_config})) message = '{\n "battery_level": 54,\n "cleaning": true,\n "docked": false,\n "charging": false,\n "fan_speed": "max"\n }' async_fire_mqtt_message(hass, 'vacuum/state', message) (await hass.async_block_till_done()) (await hass.async_block_till_done()) state = hass.states.get('vacuum.mqtttest') assert (STATE_ON == state.state) assert ('mdi:battery-50' == state.attributes.get(ATTR_BATTERY_ICON)) assert (54 == state.attributes.get(ATTR_BATTERY_LEVEL)) assert ('max' == state.attributes.get(ATTR_FAN_SPEED)) message = '{\n "battery_level": 61,\n "docked": true,\n "cleaning": false,\n "charging": true,\n "fan_speed": "min"\n }' async_fire_mqtt_message(hass, 'vacuum/state', message) (await hass.async_block_till_done()) (await hass.async_block_till_done()) state = hass.states.get('vacuum.mqtttest') assert (STATE_OFF == state.state) assert ('mdi:battery-charging-60' == state.attributes.get(ATTR_BATTERY_ICON)) assert (61 == state.attributes.get(ATTR_BATTERY_LEVEL)) assert ('min' == state.attributes.get(ATTR_FAN_SPEED))
async def test_status(hass, mock_publish): default_config[mqttvacuum.CONF_SUPPORTED_FEATURES] = mqttvacuum.services_to_strings(mqttvacuum.ALL_SERVICES) assert (await async_setup_component(hass, vacuum.DOMAIN, {vacuum.DOMAIN: default_config})) message = '{\n "battery_level": 54,\n "cleaning": true,\n "docked": false,\n "charging": false,\n "fan_speed": "max"\n }' async_fire_mqtt_message(hass, 'vacuum/state', message) (await hass.async_block_till_done()) (await hass.async_block_till_done()) state = hass.states.get('vacuum.mqtttest') assert (STATE_ON == state.state) assert ('mdi:battery-50' == state.attributes.get(ATTR_BATTERY_ICON)) assert (54 == state.attributes.get(ATTR_BATTERY_LEVEL)) assert ('max' == state.attributes.get(ATTR_FAN_SPEED)) message = '{\n "battery_level": 61,\n "docked": true,\n "cleaning": false,\n "charging": true,\n "fan_speed": "min"\n }' async_fire_mqtt_message(hass, 'vacuum/state', message) (await hass.async_block_till_done()) (await hass.async_block_till_done()) state = hass.states.get('vacuum.mqtttest') assert (STATE_OFF == state.state) assert ('mdi:battery-charging-60' == state.attributes.get(ATTR_BATTERY_ICON)) assert (61 == state.attributes.get(ATTR_BATTERY_LEVEL)) assert ('min' == state.attributes.get(ATTR_FAN_SPEED))<|docstring|>Test status updates from the vacuum.<|endoftext|>
76e1d7c804cf068f6fbf97ed58457c0905d1a81612cfc6c0c39291048527bd83
async def test_battery_template(hass, mock_publish): 'Test that you can use non-default templates for battery_level.' default_config.update({mqttvacuum.CONF_SUPPORTED_FEATURES: mqttvacuum.services_to_strings(mqttvacuum.ALL_SERVICES), mqttvacuum.CONF_BATTERY_LEVEL_TOPIC: 'retroroomba/battery_level', mqttvacuum.CONF_BATTERY_LEVEL_TEMPLATE: '{{ value }}'}) assert (await async_setup_component(hass, vacuum.DOMAIN, {vacuum.DOMAIN: default_config})) async_fire_mqtt_message(hass, 'retroroomba/battery_level', '54') (await hass.async_block_till_done()) state = hass.states.get('vacuum.mqtttest') assert (54 == state.attributes.get(ATTR_BATTERY_LEVEL)) assert (state.attributes.get(ATTR_BATTERY_ICON) == 'mdi:battery-50')
Test that you can use non-default templates for battery_level.
tests/components/vacuum/test_mqtt.py
test_battery_template
stealthhacker/home-assistant
3
python
async def test_battery_template(hass, mock_publish): default_config.update({mqttvacuum.CONF_SUPPORTED_FEATURES: mqttvacuum.services_to_strings(mqttvacuum.ALL_SERVICES), mqttvacuum.CONF_BATTERY_LEVEL_TOPIC: 'retroroomba/battery_level', mqttvacuum.CONF_BATTERY_LEVEL_TEMPLATE: '{{ value }}'}) assert (await async_setup_component(hass, vacuum.DOMAIN, {vacuum.DOMAIN: default_config})) async_fire_mqtt_message(hass, 'retroroomba/battery_level', '54') (await hass.async_block_till_done()) state = hass.states.get('vacuum.mqtttest') assert (54 == state.attributes.get(ATTR_BATTERY_LEVEL)) assert (state.attributes.get(ATTR_BATTERY_ICON) == 'mdi:battery-50')
async def test_battery_template(hass, mock_publish): default_config.update({mqttvacuum.CONF_SUPPORTED_FEATURES: mqttvacuum.services_to_strings(mqttvacuum.ALL_SERVICES), mqttvacuum.CONF_BATTERY_LEVEL_TOPIC: 'retroroomba/battery_level', mqttvacuum.CONF_BATTERY_LEVEL_TEMPLATE: '{{ value }}'}) assert (await async_setup_component(hass, vacuum.DOMAIN, {vacuum.DOMAIN: default_config})) async_fire_mqtt_message(hass, 'retroroomba/battery_level', '54') (await hass.async_block_till_done()) state = hass.states.get('vacuum.mqtttest') assert (54 == state.attributes.get(ATTR_BATTERY_LEVEL)) assert (state.attributes.get(ATTR_BATTERY_ICON) == 'mdi:battery-50')<|docstring|>Test that you can use non-default templates for battery_level.<|endoftext|>
d65092d71dd060814dbfdbd10da1e52abae138f7e2255005d496922fe0cc1f07
async def test_status_invalid_json(hass, mock_publish): 'Test to make sure nothing breaks if the vacuum sends bad JSON.' default_config[mqttvacuum.CONF_SUPPORTED_FEATURES] = mqttvacuum.services_to_strings(mqttvacuum.ALL_SERVICES) assert (await async_setup_component(hass, vacuum.DOMAIN, {vacuum.DOMAIN: default_config})) async_fire_mqtt_message(hass, 'vacuum/state', '{"asdfasas false}') (await hass.async_block_till_done()) state = hass.states.get('vacuum.mqtttest') assert (STATE_OFF == state.state) assert ('Stopped' == state.attributes.get(ATTR_STATUS))
Test to make sure nothing breaks if the vacuum sends bad JSON.
tests/components/vacuum/test_mqtt.py
test_status_invalid_json
stealthhacker/home-assistant
3
python
async def test_status_invalid_json(hass, mock_publish): default_config[mqttvacuum.CONF_SUPPORTED_FEATURES] = mqttvacuum.services_to_strings(mqttvacuum.ALL_SERVICES) assert (await async_setup_component(hass, vacuum.DOMAIN, {vacuum.DOMAIN: default_config})) async_fire_mqtt_message(hass, 'vacuum/state', '{"asdfasas false}') (await hass.async_block_till_done()) state = hass.states.get('vacuum.mqtttest') assert (STATE_OFF == state.state) assert ('Stopped' == state.attributes.get(ATTR_STATUS))
async def test_status_invalid_json(hass, mock_publish): default_config[mqttvacuum.CONF_SUPPORTED_FEATURES] = mqttvacuum.services_to_strings(mqttvacuum.ALL_SERVICES) assert (await async_setup_component(hass, vacuum.DOMAIN, {vacuum.DOMAIN: default_config})) async_fire_mqtt_message(hass, 'vacuum/state', '{"asdfasas false}') (await hass.async_block_till_done()) state = hass.states.get('vacuum.mqtttest') assert (STATE_OFF == state.state) assert ('Stopped' == state.attributes.get(ATTR_STATUS))<|docstring|>Test to make sure nothing breaks if the vacuum sends bad JSON.<|endoftext|>
9f63732cda4354a4e7a0ed6114d8ae7290c5078fa120ec6c237ab43d9fd97e9c
async def test_default_availability_payload(hass, mock_publish): 'Test availability by default payload with defined topic.' default_config.update({'availability_topic': 'availability-topic'}) assert (await async_setup_component(hass, vacuum.DOMAIN, {vacuum.DOMAIN: default_config})) state = hass.states.get('vacuum.mqtttest') assert (STATE_UNAVAILABLE == state.state) async_fire_mqtt_message(hass, 'availability-topic', 'online') (await hass.async_block_till_done()) (await hass.async_block_till_done()) state = hass.states.get('vacuum.mqtttest') assert (STATE_UNAVAILABLE != state.state) async_fire_mqtt_message(hass, 'availability-topic', 'offline') (await hass.async_block_till_done()) (await hass.async_block_till_done()) state = hass.states.get('vacuum.mqtttest') assert (STATE_UNAVAILABLE == state.state)
Test availability by default payload with defined topic.
tests/components/vacuum/test_mqtt.py
test_default_availability_payload
stealthhacker/home-assistant
3
python
async def test_default_availability_payload(hass, mock_publish): default_config.update({'availability_topic': 'availability-topic'}) assert (await async_setup_component(hass, vacuum.DOMAIN, {vacuum.DOMAIN: default_config})) state = hass.states.get('vacuum.mqtttest') assert (STATE_UNAVAILABLE == state.state) async_fire_mqtt_message(hass, 'availability-topic', 'online') (await hass.async_block_till_done()) (await hass.async_block_till_done()) state = hass.states.get('vacuum.mqtttest') assert (STATE_UNAVAILABLE != state.state) async_fire_mqtt_message(hass, 'availability-topic', 'offline') (await hass.async_block_till_done()) (await hass.async_block_till_done()) state = hass.states.get('vacuum.mqtttest') assert (STATE_UNAVAILABLE == state.state)
async def test_default_availability_payload(hass, mock_publish): default_config.update({'availability_topic': 'availability-topic'}) assert (await async_setup_component(hass, vacuum.DOMAIN, {vacuum.DOMAIN: default_config})) state = hass.states.get('vacuum.mqtttest') assert (STATE_UNAVAILABLE == state.state) async_fire_mqtt_message(hass, 'availability-topic', 'online') (await hass.async_block_till_done()) (await hass.async_block_till_done()) state = hass.states.get('vacuum.mqtttest') assert (STATE_UNAVAILABLE != state.state) async_fire_mqtt_message(hass, 'availability-topic', 'offline') (await hass.async_block_till_done()) (await hass.async_block_till_done()) state = hass.states.get('vacuum.mqtttest') assert (STATE_UNAVAILABLE == state.state)<|docstring|>Test availability by default payload with defined topic.<|endoftext|>
4f9ce7748c4c7b0e85298ad427b39f0bd2b9c710d1790156b39e666b9ff9f32a
async def test_custom_availability_payload(hass, mock_publish): 'Test availability by custom payload with defined topic.' default_config.update({'availability_topic': 'availability-topic', 'payload_available': 'good', 'payload_not_available': 'nogood'}) assert (await async_setup_component(hass, vacuum.DOMAIN, {vacuum.DOMAIN: default_config})) state = hass.states.get('vacuum.mqtttest') assert (STATE_UNAVAILABLE == state.state) async_fire_mqtt_message(hass, 'availability-topic', 'good') (await hass.async_block_till_done()) (await hass.async_block_till_done()) state = hass.states.get('vacuum.mqtttest') assert (STATE_UNAVAILABLE != state.state) async_fire_mqtt_message(hass, 'availability-topic', 'nogood') (await hass.async_block_till_done()) (await hass.async_block_till_done()) state = hass.states.get('vacuum.mqtttest') assert (STATE_UNAVAILABLE == state.state)
Test availability by custom payload with defined topic.
tests/components/vacuum/test_mqtt.py
test_custom_availability_payload
stealthhacker/home-assistant
3
python
async def test_custom_availability_payload(hass, mock_publish): default_config.update({'availability_topic': 'availability-topic', 'payload_available': 'good', 'payload_not_available': 'nogood'}) assert (await async_setup_component(hass, vacuum.DOMAIN, {vacuum.DOMAIN: default_config})) state = hass.states.get('vacuum.mqtttest') assert (STATE_UNAVAILABLE == state.state) async_fire_mqtt_message(hass, 'availability-topic', 'good') (await hass.async_block_till_done()) (await hass.async_block_till_done()) state = hass.states.get('vacuum.mqtttest') assert (STATE_UNAVAILABLE != state.state) async_fire_mqtt_message(hass, 'availability-topic', 'nogood') (await hass.async_block_till_done()) (await hass.async_block_till_done()) state = hass.states.get('vacuum.mqtttest') assert (STATE_UNAVAILABLE == state.state)
async def test_custom_availability_payload(hass, mock_publish): default_config.update({'availability_topic': 'availability-topic', 'payload_available': 'good', 'payload_not_available': 'nogood'}) assert (await async_setup_component(hass, vacuum.DOMAIN, {vacuum.DOMAIN: default_config})) state = hass.states.get('vacuum.mqtttest') assert (STATE_UNAVAILABLE == state.state) async_fire_mqtt_message(hass, 'availability-topic', 'good') (await hass.async_block_till_done()) (await hass.async_block_till_done()) state = hass.states.get('vacuum.mqtttest') assert (STATE_UNAVAILABLE != state.state) async_fire_mqtt_message(hass, 'availability-topic', 'nogood') (await hass.async_block_till_done()) (await hass.async_block_till_done()) state = hass.states.get('vacuum.mqtttest') assert (STATE_UNAVAILABLE == state.state)<|docstring|>Test availability by custom payload with defined topic.<|endoftext|>
1e72b20f46f6cac488bef5058ed78753aaaf8afaa8705a9407e3f2dbc994968e
async def test_discovery_removal_vacuum(hass, mock_publish): 'Test removal of discovered vacuum.' entry = MockConfigEntry(domain=mqtt.DOMAIN) (await async_start(hass, 'homeassistant', {}, entry)) data = '{ "name": "Beer", "command_topic": "test_topic" }' async_fire_mqtt_message(hass, 'homeassistant/vacuum/bla/config', data) (await hass.async_block_till_done()) (await hass.async_block_till_done()) state = hass.states.get('vacuum.beer') assert (state is not None) assert (state.name == 'Beer') async_fire_mqtt_message(hass, 'homeassistant/vacuum/bla/config', '') (await hass.async_block_till_done()) (await hass.async_block_till_done()) state = hass.states.get('vacuum.beer') assert (state is None)
Test removal of discovered vacuum.
tests/components/vacuum/test_mqtt.py
test_discovery_removal_vacuum
stealthhacker/home-assistant
3
python
async def test_discovery_removal_vacuum(hass, mock_publish): entry = MockConfigEntry(domain=mqtt.DOMAIN) (await async_start(hass, 'homeassistant', {}, entry)) data = '{ "name": "Beer", "command_topic": "test_topic" }' async_fire_mqtt_message(hass, 'homeassistant/vacuum/bla/config', data) (await hass.async_block_till_done()) (await hass.async_block_till_done()) state = hass.states.get('vacuum.beer') assert (state is not None) assert (state.name == 'Beer') async_fire_mqtt_message(hass, 'homeassistant/vacuum/bla/config', ) (await hass.async_block_till_done()) (await hass.async_block_till_done()) state = hass.states.get('vacuum.beer') assert (state is None)
async def test_discovery_removal_vacuum(hass, mock_publish): entry = MockConfigEntry(domain=mqtt.DOMAIN) (await async_start(hass, 'homeassistant', {}, entry)) data = '{ "name": "Beer", "command_topic": "test_topic" }' async_fire_mqtt_message(hass, 'homeassistant/vacuum/bla/config', data) (await hass.async_block_till_done()) (await hass.async_block_till_done()) state = hass.states.get('vacuum.beer') assert (state is not None) assert (state.name == 'Beer') async_fire_mqtt_message(hass, 'homeassistant/vacuum/bla/config', ) (await hass.async_block_till_done()) (await hass.async_block_till_done()) state = hass.states.get('vacuum.beer') assert (state is None)<|docstring|>Test removal of discovered vacuum.<|endoftext|>
b514c791659cfb5b66baa78a29967f9895925e0227da5e644a8c5017e232104c
async def test_discovery_update_vacuum(hass, mock_publish): 'Test update of discovered vacuum.' entry = MockConfigEntry(domain=mqtt.DOMAIN) (await async_start(hass, 'homeassistant', {}, entry)) data1 = '{ "name": "Beer", "command_topic": "test_topic" }' data2 = '{ "name": "Milk", "command_topic": "test_topic" }' async_fire_mqtt_message(hass, 'homeassistant/vacuum/bla/config', data1) (await hass.async_block_till_done()) state = hass.states.get('vacuum.beer') assert (state is not None) assert (state.name == 'Beer') async_fire_mqtt_message(hass, 'homeassistant/vacuum/bla/config', data2) (await hass.async_block_till_done()) (await hass.async_block_till_done()) state = hass.states.get('vacuum.beer') assert (state is not None) assert (state.name == 'Milk') state = hass.states.get('vacuum.milk') assert (state is None)
Test update of discovered vacuum.
tests/components/vacuum/test_mqtt.py
test_discovery_update_vacuum
stealthhacker/home-assistant
3
python
async def test_discovery_update_vacuum(hass, mock_publish): entry = MockConfigEntry(domain=mqtt.DOMAIN) (await async_start(hass, 'homeassistant', {}, entry)) data1 = '{ "name": "Beer", "command_topic": "test_topic" }' data2 = '{ "name": "Milk", "command_topic": "test_topic" }' async_fire_mqtt_message(hass, 'homeassistant/vacuum/bla/config', data1) (await hass.async_block_till_done()) state = hass.states.get('vacuum.beer') assert (state is not None) assert (state.name == 'Beer') async_fire_mqtt_message(hass, 'homeassistant/vacuum/bla/config', data2) (await hass.async_block_till_done()) (await hass.async_block_till_done()) state = hass.states.get('vacuum.beer') assert (state is not None) assert (state.name == 'Milk') state = hass.states.get('vacuum.milk') assert (state is None)
async def test_discovery_update_vacuum(hass, mock_publish): entry = MockConfigEntry(domain=mqtt.DOMAIN) (await async_start(hass, 'homeassistant', {}, entry)) data1 = '{ "name": "Beer", "command_topic": "test_topic" }' data2 = '{ "name": "Milk", "command_topic": "test_topic" }' async_fire_mqtt_message(hass, 'homeassistant/vacuum/bla/config', data1) (await hass.async_block_till_done()) state = hass.states.get('vacuum.beer') assert (state is not None) assert (state.name == 'Beer') async_fire_mqtt_message(hass, 'homeassistant/vacuum/bla/config', data2) (await hass.async_block_till_done()) (await hass.async_block_till_done()) state = hass.states.get('vacuum.beer') assert (state is not None) assert (state.name == 'Milk') state = hass.states.get('vacuum.milk') assert (state is None)<|docstring|>Test update of discovered vacuum.<|endoftext|>
ddacfa2c98ae55c89199cb518c1cd5431993a4609320e5ffce0a99e293892089
async def test_unique_id(hass, mock_publish): 'Test unique id option only creates one vacuum per unique_id.' (await async_mock_mqtt_component(hass)) assert (await async_setup_component(hass, vacuum.DOMAIN, {vacuum.DOMAIN: [{'platform': 'mqtt', 'name': 'Test 1', 'command_topic': 'command-topic', 'unique_id': 'TOTALLY_UNIQUE'}, {'platform': 'mqtt', 'name': 'Test 2', 'command_topic': 'command-topic', 'unique_id': 'TOTALLY_UNIQUE'}]})) async_fire_mqtt_message(hass, 'test-topic', 'payload') (await hass.async_block_till_done()) (await hass.async_block_till_done()) assert (len(hass.states.async_entity_ids()) == 2)
Test unique id option only creates one vacuum per unique_id.
tests/components/vacuum/test_mqtt.py
test_unique_id
stealthhacker/home-assistant
3
python
async def test_unique_id(hass, mock_publish): (await async_mock_mqtt_component(hass)) assert (await async_setup_component(hass, vacuum.DOMAIN, {vacuum.DOMAIN: [{'platform': 'mqtt', 'name': 'Test 1', 'command_topic': 'command-topic', 'unique_id': 'TOTALLY_UNIQUE'}, {'platform': 'mqtt', 'name': 'Test 2', 'command_topic': 'command-topic', 'unique_id': 'TOTALLY_UNIQUE'}]})) async_fire_mqtt_message(hass, 'test-topic', 'payload') (await hass.async_block_till_done()) (await hass.async_block_till_done()) assert (len(hass.states.async_entity_ids()) == 2)
async def test_unique_id(hass, mock_publish): (await async_mock_mqtt_component(hass)) assert (await async_setup_component(hass, vacuum.DOMAIN, {vacuum.DOMAIN: [{'platform': 'mqtt', 'name': 'Test 1', 'command_topic': 'command-topic', 'unique_id': 'TOTALLY_UNIQUE'}, {'platform': 'mqtt', 'name': 'Test 2', 'command_topic': 'command-topic', 'unique_id': 'TOTALLY_UNIQUE'}]})) async_fire_mqtt_message(hass, 'test-topic', 'payload') (await hass.async_block_till_done()) (await hass.async_block_till_done()) assert (len(hass.states.async_entity_ids()) == 2)<|docstring|>Test unique id option only creates one vacuum per unique_id.<|endoftext|>
4f2bcba99268b8d63fa094fde7a4a86714113bd0654a286f18915be4aefd112d
async def test_entity_device_info_with_identifier(hass, mock_publish): 'Test MQTT vacuum device registry integration.' entry = MockConfigEntry(domain=mqtt.DOMAIN) entry.add_to_hass(hass) (await async_start(hass, 'homeassistant', {}, entry)) registry = (await hass.helpers.device_registry.async_get_registry()) data = json.dumps({'platform': 'mqtt', 'name': 'Test 1', 'command_topic': 'test-command-topic', 'device': {'identifiers': ['helloworld'], 'connections': [['mac', '02:5b:26:a8:dc:12']], 'manufacturer': 'Whatever', 'name': 'Beer', 'model': 'Glass', 'sw_version': '0.1-beta'}, 'unique_id': 'veryunique'}) async_fire_mqtt_message(hass, 'homeassistant/vacuum/bla/config', data) (await hass.async_block_till_done()) (await hass.async_block_till_done()) device = registry.async_get_device({('mqtt', 'helloworld')}, set()) assert (device is not None) assert (device.identifiers == {('mqtt', 'helloworld')}) assert (device.connections == {('mac', '02:5b:26:a8:dc:12')}) assert (device.manufacturer == 'Whatever') assert (device.name == 'Beer') assert (device.model == 'Glass') assert (device.sw_version == '0.1-beta')
Test MQTT vacuum device registry integration.
tests/components/vacuum/test_mqtt.py
test_entity_device_info_with_identifier
stealthhacker/home-assistant
3
python
async def test_entity_device_info_with_identifier(hass, mock_publish): entry = MockConfigEntry(domain=mqtt.DOMAIN) entry.add_to_hass(hass) (await async_start(hass, 'homeassistant', {}, entry)) registry = (await hass.helpers.device_registry.async_get_registry()) data = json.dumps({'platform': 'mqtt', 'name': 'Test 1', 'command_topic': 'test-command-topic', 'device': {'identifiers': ['helloworld'], 'connections': [['mac', '02:5b:26:a8:dc:12']], 'manufacturer': 'Whatever', 'name': 'Beer', 'model': 'Glass', 'sw_version': '0.1-beta'}, 'unique_id': 'veryunique'}) async_fire_mqtt_message(hass, 'homeassistant/vacuum/bla/config', data) (await hass.async_block_till_done()) (await hass.async_block_till_done()) device = registry.async_get_device({('mqtt', 'helloworld')}, set()) assert (device is not None) assert (device.identifiers == {('mqtt', 'helloworld')}) assert (device.connections == {('mac', '02:5b:26:a8:dc:12')}) assert (device.manufacturer == 'Whatever') assert (device.name == 'Beer') assert (device.model == 'Glass') assert (device.sw_version == '0.1-beta')
async def test_entity_device_info_with_identifier(hass, mock_publish): entry = MockConfigEntry(domain=mqtt.DOMAIN) entry.add_to_hass(hass) (await async_start(hass, 'homeassistant', {}, entry)) registry = (await hass.helpers.device_registry.async_get_registry()) data = json.dumps({'platform': 'mqtt', 'name': 'Test 1', 'command_topic': 'test-command-topic', 'device': {'identifiers': ['helloworld'], 'connections': [['mac', '02:5b:26:a8:dc:12']], 'manufacturer': 'Whatever', 'name': 'Beer', 'model': 'Glass', 'sw_version': '0.1-beta'}, 'unique_id': 'veryunique'}) async_fire_mqtt_message(hass, 'homeassistant/vacuum/bla/config', data) (await hass.async_block_till_done()) (await hass.async_block_till_done()) device = registry.async_get_device({('mqtt', 'helloworld')}, set()) assert (device is not None) assert (device.identifiers == {('mqtt', 'helloworld')}) assert (device.connections == {('mac', '02:5b:26:a8:dc:12')}) assert (device.manufacturer == 'Whatever') assert (device.name == 'Beer') assert (device.model == 'Glass') assert (device.sw_version == '0.1-beta')<|docstring|>Test MQTT vacuum device registry integration.<|endoftext|>
08d60ce6138c1e3a1edd156d9ca5a8190e38097006ed3b7c865ef81c87493f21
def validate_schema(schema: GraphQLSchema) -> List[GraphQLError]: 'Validate a GraphQL schema.\n\n Implements the "Type Validation" sub-sections of the specification\'s "Type System"\n section.\n\n Validation runs synchronously, returning a list of encountered errors, or an empty\n list if no errors were encountered and the Schema is valid.\n ' assert_schema(schema) errors = schema._validation_errors if (errors is None): context = SchemaValidationContext(schema) context.validate_root_types() context.validate_directives() context.validate_types() errors = context.errors schema._validation_errors = errors return errors
Validate a GraphQL schema. Implements the "Type Validation" sub-sections of the specification's "Type System" section. Validation runs synchronously, returning a list of encountered errors, or an empty list if no errors were encountered and the Schema is valid.
src/graphql/type/validate.py
validate_schema
wuyuanyi135/graphql-core
1
python
def validate_schema(schema: GraphQLSchema) -> List[GraphQLError]: 'Validate a GraphQL schema.\n\n Implements the "Type Validation" sub-sections of the specification\'s "Type System"\n section.\n\n Validation runs synchronously, returning a list of encountered errors, or an empty\n list if no errors were encountered and the Schema is valid.\n ' assert_schema(schema) errors = schema._validation_errors if (errors is None): context = SchemaValidationContext(schema) context.validate_root_types() context.validate_directives() context.validate_types() errors = context.errors schema._validation_errors = errors return errors
def validate_schema(schema: GraphQLSchema) -> List[GraphQLError]: 'Validate a GraphQL schema.\n\n Implements the "Type Validation" sub-sections of the specification\'s "Type System"\n section.\n\n Validation runs synchronously, returning a list of encountered errors, or an empty\n list if no errors were encountered and the Schema is valid.\n ' assert_schema(schema) errors = schema._validation_errors if (errors is None): context = SchemaValidationContext(schema) context.validate_root_types() context.validate_directives() context.validate_types() errors = context.errors schema._validation_errors = errors return errors<|docstring|>Validate a GraphQL schema. Implements the "Type Validation" sub-sections of the specification's "Type System" section. Validation runs synchronously, returning a list of encountered errors, or an empty list if no errors were encountered and the Schema is valid.<|endoftext|>
bf09ac97ae745699479c34304ada6e37cd7a4a2ef9af5971e65910971c25319a
def assert_valid_schema(schema: GraphQLSchema) -> None: 'Utility function which asserts a schema is valid.\n\n Throws a TypeError if the schema is invalid.\n ' errors = validate_schema(schema) if errors: raise TypeError('\n\n'.join((error.message for error in errors)))
Utility function which asserts a schema is valid. Throws a TypeError if the schema is invalid.
src/graphql/type/validate.py
assert_valid_schema
wuyuanyi135/graphql-core
1
python
def assert_valid_schema(schema: GraphQLSchema) -> None: 'Utility function which asserts a schema is valid.\n\n Throws a TypeError if the schema is invalid.\n ' errors = validate_schema(schema) if errors: raise TypeError('\n\n'.join((error.message for error in errors)))
def assert_valid_schema(schema: GraphQLSchema) -> None: 'Utility function which asserts a schema is valid.\n\n Throws a TypeError if the schema is invalid.\n ' errors = validate_schema(schema) if errors: raise TypeError('\n\n'.join((error.message for error in errors)))<|docstring|>Utility function which asserts a schema is valid. Throws a TypeError if the schema is invalid.<|endoftext|>
a046009f8bf54be25bfdd2047430f3af3d62ecca96dc89febe7942cb99883623
def __call__(self, input_obj: GraphQLInputObjectType) -> None: 'Detect cycles recursively.' name = input_obj.name if (name in self.visited_types): return self.visited_types.add(name) self.field_path_index_by_type_name[name] = len(self.field_path) for (field_name, field) in input_obj.fields.items(): if (is_non_null_type(field.type) and is_input_object_type(field.type.of_type)): field_type = cast(GraphQLInputObjectType, field.type.of_type) cycle_index = self.field_path_index_by_type_name.get(field_type.name) self.field_path.append((field_name, field)) if (cycle_index is None): self(field_type) else: cycle_path = self.field_path[cycle_index:] field_names = map(itemgetter(0), cycle_path) self.context.report_error(f"Cannot reference Input Object '{field_type.name}' within itself through a series of non-null fields: '{'.'.join(field_names)}'.", cast(Collection[Node], map(attrgetter('ast_node'), map(itemgetter(1), cycle_path)))) self.field_path.pop() del self.field_path_index_by_type_name[name]
Detect cycles recursively.
src/graphql/type/validate.py
__call__
wuyuanyi135/graphql-core
1
python
def __call__(self, input_obj: GraphQLInputObjectType) -> None: name = input_obj.name if (name in self.visited_types): return self.visited_types.add(name) self.field_path_index_by_type_name[name] = len(self.field_path) for (field_name, field) in input_obj.fields.items(): if (is_non_null_type(field.type) and is_input_object_type(field.type.of_type)): field_type = cast(GraphQLInputObjectType, field.type.of_type) cycle_index = self.field_path_index_by_type_name.get(field_type.name) self.field_path.append((field_name, field)) if (cycle_index is None): self(field_type) else: cycle_path = self.field_path[cycle_index:] field_names = map(itemgetter(0), cycle_path) self.context.report_error(f"Cannot reference Input Object '{field_type.name}' within itself through a series of non-null fields: '{'.'.join(field_names)}'.", cast(Collection[Node], map(attrgetter('ast_node'), map(itemgetter(1), cycle_path)))) self.field_path.pop() del self.field_path_index_by_type_name[name]
def __call__(self, input_obj: GraphQLInputObjectType) -> None: name = input_obj.name if (name in self.visited_types): return self.visited_types.add(name) self.field_path_index_by_type_name[name] = len(self.field_path) for (field_name, field) in input_obj.fields.items(): if (is_non_null_type(field.type) and is_input_object_type(field.type.of_type)): field_type = cast(GraphQLInputObjectType, field.type.of_type) cycle_index = self.field_path_index_by_type_name.get(field_type.name) self.field_path.append((field_name, field)) if (cycle_index is None): self(field_type) else: cycle_path = self.field_path[cycle_index:] field_names = map(itemgetter(0), cycle_path) self.context.report_error(f"Cannot reference Input Object '{field_type.name}' within itself through a series of non-null fields: '{'.'.join(field_names)}'.", cast(Collection[Node], map(attrgetter('ast_node'), map(itemgetter(1), cycle_path)))) self.field_path.pop() del self.field_path_index_by_type_name[name]<|docstring|>Detect cycles recursively.<|endoftext|>
7987e3c6f87c3e3ebcdd74f69e0a03f9b459c70255fcd992e4740c496a3651d3
def dump_bins(df_bins: pd.DataFrame, contig_fasta: Path, operating_dir: Path): '\n Dump bins to a set of fasta files, each containing contigs of that bin.\n\n :param df_bins: Binning result dataset with BIN and CONTIG_NAME columns.\n :param contig_fasta: Contig file used for feature generation.\n :param operating_dir: Directory to dump bins.\n ' num_clusters: List[int] = df_bins['BIN'].unique() bin_assignments: Dict[(str, int)] = df_bins.set_index('CONTIG_NAME').T.to_dict('records')[0] bin_fasta_files = {i: open((operating_dir / f'bin_{i}.fasta'), 'w') for i in num_clusters} try: with open(contig_fasta, mode='r') as fr: for record in SeqIO.parse(fr, 'fasta'): identifier = str(record.id) if (identifier in bin_assignments): assigned_bin = bin_assignments[identifier] SeqIO.write(record, bin_fasta_files[assigned_bin], 'fasta') finally: for file in bin_fasta_files.values(): file.close()
Dump bins to a set of fasta files, each containing contigs of that bin. :param df_bins: Binning result dataset with BIN and CONTIG_NAME columns. :param contig_fasta: Contig file used for feature generation. :param operating_dir: Directory to dump bins.
ch_bin/core/clustering/dump_bins.py
dump_bins
kdsuneraavinash/CH-Bin
0
python
def dump_bins(df_bins: pd.DataFrame, contig_fasta: Path, operating_dir: Path): '\n Dump bins to a set of fasta files, each containing contigs of that bin.\n\n :param df_bins: Binning result dataset with BIN and CONTIG_NAME columns.\n :param contig_fasta: Contig file used for feature generation.\n :param operating_dir: Directory to dump bins.\n ' num_clusters: List[int] = df_bins['BIN'].unique() bin_assignments: Dict[(str, int)] = df_bins.set_index('CONTIG_NAME').T.to_dict('records')[0] bin_fasta_files = {i: open((operating_dir / f'bin_{i}.fasta'), 'w') for i in num_clusters} try: with open(contig_fasta, mode='r') as fr: for record in SeqIO.parse(fr, 'fasta'): identifier = str(record.id) if (identifier in bin_assignments): assigned_bin = bin_assignments[identifier] SeqIO.write(record, bin_fasta_files[assigned_bin], 'fasta') finally: for file in bin_fasta_files.values(): file.close()
def dump_bins(df_bins: pd.DataFrame, contig_fasta: Path, operating_dir: Path): '\n Dump bins to a set of fasta files, each containing contigs of that bin.\n\n :param df_bins: Binning result dataset with BIN and CONTIG_NAME columns.\n :param contig_fasta: Contig file used for feature generation.\n :param operating_dir: Directory to dump bins.\n ' num_clusters: List[int] = df_bins['BIN'].unique() bin_assignments: Dict[(str, int)] = df_bins.set_index('CONTIG_NAME').T.to_dict('records')[0] bin_fasta_files = {i: open((operating_dir / f'bin_{i}.fasta'), 'w') for i in num_clusters} try: with open(contig_fasta, mode='r') as fr: for record in SeqIO.parse(fr, 'fasta'): identifier = str(record.id) if (identifier in bin_assignments): assigned_bin = bin_assignments[identifier] SeqIO.write(record, bin_fasta_files[assigned_bin], 'fasta') finally: for file in bin_fasta_files.values(): file.close()<|docstring|>Dump bins to a set of fasta files, each containing contigs of that bin. :param df_bins: Binning result dataset with BIN and CONTIG_NAME columns. :param contig_fasta: Contig file used for feature generation. :param operating_dir: Directory to dump bins.<|endoftext|>
0e78e20e8e52c64ff802301c5fa749e2fe8e8ecffd26e20caba9bf1ecece7807
def check_1d(inp): "\n Check input to be a vector. Converts lists to np.ndarray.\n\n Parameters\n ----------\n inp : obj\n Input vector\n\n Returns\n -------\n numpy.ndarray or None\n Input vector or None\n\n Examples\n --------\n >>> check_1d([0, 1, 2, 3])\n [0, 1, 2, 3]\n\n >>> check_1d('test')\n None\n\n " if isinstance(inp, list): return check_1d(np.array(inp)) if isinstance(inp, np.ndarray): if (inp.ndim == 1): return inp
Check input to be a vector. Converts lists to np.ndarray. Parameters ---------- inp : obj Input vector Returns ------- numpy.ndarray or None Input vector or None Examples -------- >>> check_1d([0, 1, 2, 3]) [0, 1, 2, 3] >>> check_1d('test') None
netlsd/util.py
check_1d
xgfs/NetLSD
49
python
def check_1d(inp): "\n Check input to be a vector. Converts lists to np.ndarray.\n\n Parameters\n ----------\n inp : obj\n Input vector\n\n Returns\n -------\n numpy.ndarray or None\n Input vector or None\n\n Examples\n --------\n >>> check_1d([0, 1, 2, 3])\n [0, 1, 2, 3]\n\n >>> check_1d('test')\n None\n\n " if isinstance(inp, list): return check_1d(np.array(inp)) if isinstance(inp, np.ndarray): if (inp.ndim == 1): return inp
def check_1d(inp): "\n Check input to be a vector. Converts lists to np.ndarray.\n\n Parameters\n ----------\n inp : obj\n Input vector\n\n Returns\n -------\n numpy.ndarray or None\n Input vector or None\n\n Examples\n --------\n >>> check_1d([0, 1, 2, 3])\n [0, 1, 2, 3]\n\n >>> check_1d('test')\n None\n\n " if isinstance(inp, list): return check_1d(np.array(inp)) if isinstance(inp, np.ndarray): if (inp.ndim == 1): return inp<|docstring|>Check input to be a vector. Converts lists to np.ndarray. Parameters ---------- inp : obj Input vector Returns ------- numpy.ndarray or None Input vector or None Examples -------- >>> check_1d([0, 1, 2, 3]) [0, 1, 2, 3] >>> check_1d('test') None<|endoftext|>
13bc6472ed5c6705457a16f5403026680ebff23e2ce578955527fe7db4cde7d9
def check_2d(inp): "\n Check input to be a matrix. Converts lists of lists to np.ndarray.\n\n Also allows the input to be a scipy sparse matrix.\n \n Parameters\n ----------\n inp : obj\n Input matrix\n\n Returns\n -------\n numpy.ndarray, scipy.sparse or None\n Input matrix or None\n\n Examples\n --------\n >>> check_2d([[0, 1], [2, 3]])\n [[0, 1], [2, 3]]\n\n >>> check_2d('test')\n None\n\n " if isinstance(inp, list): return check_2d(np.array(inp)) if isinstance(inp, (np.ndarray, np.matrixlib.defmatrix.matrix)): if (inp.ndim == 2): return inp if sps.issparse(inp): if (inp.ndim == 2): return inp
Check input to be a matrix. Converts lists of lists to np.ndarray. Also allows the input to be a scipy sparse matrix. Parameters ---------- inp : obj Input matrix Returns ------- numpy.ndarray, scipy.sparse or None Input matrix or None Examples -------- >>> check_2d([[0, 1], [2, 3]]) [[0, 1], [2, 3]] >>> check_2d('test') None
netlsd/util.py
check_2d
xgfs/NetLSD
49
python
def check_2d(inp): "\n Check input to be a matrix. Converts lists of lists to np.ndarray.\n\n Also allows the input to be a scipy sparse matrix.\n \n Parameters\n ----------\n inp : obj\n Input matrix\n\n Returns\n -------\n numpy.ndarray, scipy.sparse or None\n Input matrix or None\n\n Examples\n --------\n >>> check_2d([[0, 1], [2, 3]])\n [[0, 1], [2, 3]]\n\n >>> check_2d('test')\n None\n\n " if isinstance(inp, list): return check_2d(np.array(inp)) if isinstance(inp, (np.ndarray, np.matrixlib.defmatrix.matrix)): if (inp.ndim == 2): return inp if sps.issparse(inp): if (inp.ndim == 2): return inp
def check_2d(inp): "\n Check input to be a matrix. Converts lists of lists to np.ndarray.\n\n Also allows the input to be a scipy sparse matrix.\n \n Parameters\n ----------\n inp : obj\n Input matrix\n\n Returns\n -------\n numpy.ndarray, scipy.sparse or None\n Input matrix or None\n\n Examples\n --------\n >>> check_2d([[0, 1], [2, 3]])\n [[0, 1], [2, 3]]\n\n >>> check_2d('test')\n None\n\n " if isinstance(inp, list): return check_2d(np.array(inp)) if isinstance(inp, (np.ndarray, np.matrixlib.defmatrix.matrix)): if (inp.ndim == 2): return inp if sps.issparse(inp): if (inp.ndim == 2): return inp<|docstring|>Check input to be a matrix. Converts lists of lists to np.ndarray. Also allows the input to be a scipy sparse matrix. Parameters ---------- inp : obj Input matrix Returns ------- numpy.ndarray, scipy.sparse or None Input matrix or None Examples -------- >>> check_2d([[0, 1], [2, 3]]) [[0, 1], [2, 3]] >>> check_2d('test') None<|endoftext|>
4074d598713bd23fb627fb5c8811c7f2dc083f17cabf01c5acd85e7dd9ac2ed3
def graph_to_laplacian(G, normalized=True): "\n Converts a graph from popular Python packages to Laplacian representation.\n\n Currently support NetworkX, graph_tool and igraph.\n \n Parameters\n ----------\n G : obj\n Input graph\n normalized : bool\n Whether to use normalized Laplacian.\n Normalized and unnormalized Laplacians capture different properties of graphs, e.g. normalized Laplacian spectrum can determine whether a graph is bipartite, but not the number of its edges. We recommend using normalized Laplacian.\n\n Returns\n -------\n scipy.sparse\n Laplacian matrix of the input graph\n\n Examples\n --------\n >>> graph_to_laplacian(nx.complete_graph(3), 'unnormalized').todense()\n [[ 2, -1, -1], [-1, 2, -1], [-1, -1, 2]]\n\n >>> graph_to_laplacian('test')\n None\n\n " try: import networkx as nx if isinstance(G, nx.Graph): if normalized: return nx.normalized_laplacian_matrix(G) else: return nx.laplacian_matrix(G) except ImportError: pass try: import graph_tool.all as gt if isinstance(G, gt.Graph): if normalized: return gt.laplacian_type(G, normalized=True) else: return gt.laplacian(G) except ImportError: pass try: import igraph as ig if isinstance(G, ig.Graph): if normalized: return np.array(G.laplacian(normalized=True)) else: return np.array(G.laplacian()) except ImportError: pass
Converts a graph from popular Python packages to Laplacian representation. Currently support NetworkX, graph_tool and igraph. Parameters ---------- G : obj Input graph normalized : bool Whether to use normalized Laplacian. Normalized and unnormalized Laplacians capture different properties of graphs, e.g. normalized Laplacian spectrum can determine whether a graph is bipartite, but not the number of its edges. We recommend using normalized Laplacian. Returns ------- scipy.sparse Laplacian matrix of the input graph Examples -------- >>> graph_to_laplacian(nx.complete_graph(3), 'unnormalized').todense() [[ 2, -1, -1], [-1, 2, -1], [-1, -1, 2]] >>> graph_to_laplacian('test') None
netlsd/util.py
graph_to_laplacian
xgfs/NetLSD
49
python
def graph_to_laplacian(G, normalized=True): "\n Converts a graph from popular Python packages to Laplacian representation.\n\n Currently support NetworkX, graph_tool and igraph.\n \n Parameters\n ----------\n G : obj\n Input graph\n normalized : bool\n Whether to use normalized Laplacian.\n Normalized and unnormalized Laplacians capture different properties of graphs, e.g. normalized Laplacian spectrum can determine whether a graph is bipartite, but not the number of its edges. We recommend using normalized Laplacian.\n\n Returns\n -------\n scipy.sparse\n Laplacian matrix of the input graph\n\n Examples\n --------\n >>> graph_to_laplacian(nx.complete_graph(3), 'unnormalized').todense()\n [[ 2, -1, -1], [-1, 2, -1], [-1, -1, 2]]\n\n >>> graph_to_laplacian('test')\n None\n\n " try: import networkx as nx if isinstance(G, nx.Graph): if normalized: return nx.normalized_laplacian_matrix(G) else: return nx.laplacian_matrix(G) except ImportError: pass try: import graph_tool.all as gt if isinstance(G, gt.Graph): if normalized: return gt.laplacian_type(G, normalized=True) else: return gt.laplacian(G) except ImportError: pass try: import igraph as ig if isinstance(G, ig.Graph): if normalized: return np.array(G.laplacian(normalized=True)) else: return np.array(G.laplacian()) except ImportError: pass
def graph_to_laplacian(G, normalized=True): "\n Converts a graph from popular Python packages to Laplacian representation.\n\n Currently support NetworkX, graph_tool and igraph.\n \n Parameters\n ----------\n G : obj\n Input graph\n normalized : bool\n Whether to use normalized Laplacian.\n Normalized and unnormalized Laplacians capture different properties of graphs, e.g. normalized Laplacian spectrum can determine whether a graph is bipartite, but not the number of its edges. We recommend using normalized Laplacian.\n\n Returns\n -------\n scipy.sparse\n Laplacian matrix of the input graph\n\n Examples\n --------\n >>> graph_to_laplacian(nx.complete_graph(3), 'unnormalized').todense()\n [[ 2, -1, -1], [-1, 2, -1], [-1, -1, 2]]\n\n >>> graph_to_laplacian('test')\n None\n\n " try: import networkx as nx if isinstance(G, nx.Graph): if normalized: return nx.normalized_laplacian_matrix(G) else: return nx.laplacian_matrix(G) except ImportError: pass try: import graph_tool.all as gt if isinstance(G, gt.Graph): if normalized: return gt.laplacian_type(G, normalized=True) else: return gt.laplacian(G) except ImportError: pass try: import igraph as ig if isinstance(G, ig.Graph): if normalized: return np.array(G.laplacian(normalized=True)) else: return np.array(G.laplacian()) except ImportError: pass<|docstring|>Converts a graph from popular Python packages to Laplacian representation. Currently support NetworkX, graph_tool and igraph. Parameters ---------- G : obj Input graph normalized : bool Whether to use normalized Laplacian. Normalized and unnormalized Laplacians capture different properties of graphs, e.g. normalized Laplacian spectrum can determine whether a graph is bipartite, but not the number of its edges. We recommend using normalized Laplacian. Returns ------- scipy.sparse Laplacian matrix of the input graph Examples -------- >>> graph_to_laplacian(nx.complete_graph(3), 'unnormalized').todense() [[ 2, -1, -1], [-1, 2, -1], [-1, -1, 2]] >>> graph_to_laplacian('test') None<|endoftext|>
afbff1da5738e10b001e264cb1f358e86cbc89b95965a085903be011f3dcb6a2
def mat_to_laplacian(mat, normalized): '\n Converts a sparse or dence adjacency matrix to Laplacian.\n \n Parameters\n ----------\n mat : obj\n Input adjacency matrix. If it is a Laplacian matrix already, return it.\n normalized : bool\n Whether to use normalized Laplacian.\n Normalized and unnormalized Laplacians capture different properties of graphs, e.g. normalized Laplacian spectrum can determine whether a graph is bipartite, but not the number of its edges. We recommend using normalized Laplacian.\n\n Returns\n -------\n obj\n Laplacian of the input adjacency matrix\n\n Examples\n --------\n >>> mat_to_laplacian(numpy.array([[0, 1, 1], [1, 0, 1], [1, 1, 0]]), False)\n [[ 2, -1, -1], [-1, 2, -1], [-1, -1, 2]]\n\n ' if sps.issparse(mat): if np.all((mat.diagonal() >= 0)): if np.all(((mat - sps.diags(mat.diagonal())).data <= 0)): return mat elif np.all((np.diag(mat) >= 0)): if np.all(((mat - np.diag(mat)) <= 0)): return mat deg = np.squeeze(np.asarray(mat.sum(axis=1))) if sps.issparse(mat): L = (sps.diags(deg) - mat) else: L = (np.diag(deg) - mat) if (not normalized): return L with np.errstate(divide='ignore'): sqrt_deg = (1.0 / np.sqrt(deg)) sqrt_deg[(sqrt_deg == np.inf)] = 0 if sps.issparse(mat): sqrt_deg_mat = sps.diags(sqrt_deg) else: sqrt_deg_mat = np.diag(sqrt_deg) return sqrt_deg_mat.dot(L).dot(sqrt_deg_mat)
Converts a sparse or dence adjacency matrix to Laplacian. Parameters ---------- mat : obj Input adjacency matrix. If it is a Laplacian matrix already, return it. normalized : bool Whether to use normalized Laplacian. Normalized and unnormalized Laplacians capture different properties of graphs, e.g. normalized Laplacian spectrum can determine whether a graph is bipartite, but not the number of its edges. We recommend using normalized Laplacian. Returns ------- obj Laplacian of the input adjacency matrix Examples -------- >>> mat_to_laplacian(numpy.array([[0, 1, 1], [1, 0, 1], [1, 1, 0]]), False) [[ 2, -1, -1], [-1, 2, -1], [-1, -1, 2]]
netlsd/util.py
mat_to_laplacian
xgfs/NetLSD
49
python
def mat_to_laplacian(mat, normalized): '\n Converts a sparse or dence adjacency matrix to Laplacian.\n \n Parameters\n ----------\n mat : obj\n Input adjacency matrix. If it is a Laplacian matrix already, return it.\n normalized : bool\n Whether to use normalized Laplacian.\n Normalized and unnormalized Laplacians capture different properties of graphs, e.g. normalized Laplacian spectrum can determine whether a graph is bipartite, but not the number of its edges. We recommend using normalized Laplacian.\n\n Returns\n -------\n obj\n Laplacian of the input adjacency matrix\n\n Examples\n --------\n >>> mat_to_laplacian(numpy.array([[0, 1, 1], [1, 0, 1], [1, 1, 0]]), False)\n [[ 2, -1, -1], [-1, 2, -1], [-1, -1, 2]]\n\n ' if sps.issparse(mat): if np.all((mat.diagonal() >= 0)): if np.all(((mat - sps.diags(mat.diagonal())).data <= 0)): return mat elif np.all((np.diag(mat) >= 0)): if np.all(((mat - np.diag(mat)) <= 0)): return mat deg = np.squeeze(np.asarray(mat.sum(axis=1))) if sps.issparse(mat): L = (sps.diags(deg) - mat) else: L = (np.diag(deg) - mat) if (not normalized): return L with np.errstate(divide='ignore'): sqrt_deg = (1.0 / np.sqrt(deg)) sqrt_deg[(sqrt_deg == np.inf)] = 0 if sps.issparse(mat): sqrt_deg_mat = sps.diags(sqrt_deg) else: sqrt_deg_mat = np.diag(sqrt_deg) return sqrt_deg_mat.dot(L).dot(sqrt_deg_mat)
def mat_to_laplacian(mat, normalized): '\n Converts a sparse or dence adjacency matrix to Laplacian.\n \n Parameters\n ----------\n mat : obj\n Input adjacency matrix. If it is a Laplacian matrix already, return it.\n normalized : bool\n Whether to use normalized Laplacian.\n Normalized and unnormalized Laplacians capture different properties of graphs, e.g. normalized Laplacian spectrum can determine whether a graph is bipartite, but not the number of its edges. We recommend using normalized Laplacian.\n\n Returns\n -------\n obj\n Laplacian of the input adjacency matrix\n\n Examples\n --------\n >>> mat_to_laplacian(numpy.array([[0, 1, 1], [1, 0, 1], [1, 1, 0]]), False)\n [[ 2, -1, -1], [-1, 2, -1], [-1, -1, 2]]\n\n ' if sps.issparse(mat): if np.all((mat.diagonal() >= 0)): if np.all(((mat - sps.diags(mat.diagonal())).data <= 0)): return mat elif np.all((np.diag(mat) >= 0)): if np.all(((mat - np.diag(mat)) <= 0)): return mat deg = np.squeeze(np.asarray(mat.sum(axis=1))) if sps.issparse(mat): L = (sps.diags(deg) - mat) else: L = (np.diag(deg) - mat) if (not normalized): return L with np.errstate(divide='ignore'): sqrt_deg = (1.0 / np.sqrt(deg)) sqrt_deg[(sqrt_deg == np.inf)] = 0 if sps.issparse(mat): sqrt_deg_mat = sps.diags(sqrt_deg) else: sqrt_deg_mat = np.diag(sqrt_deg) return sqrt_deg_mat.dot(L).dot(sqrt_deg_mat)<|docstring|>Converts a sparse or dence adjacency matrix to Laplacian. Parameters ---------- mat : obj Input adjacency matrix. If it is a Laplacian matrix already, return it. normalized : bool Whether to use normalized Laplacian. Normalized and unnormalized Laplacians capture different properties of graphs, e.g. normalized Laplacian spectrum can determine whether a graph is bipartite, but not the number of its edges. We recommend using normalized Laplacian. Returns ------- obj Laplacian of the input adjacency matrix Examples -------- >>> mat_to_laplacian(numpy.array([[0, 1, 1], [1, 0, 1], [1, 1, 0]]), False) [[ 2, -1, -1], [-1, 2, -1], [-1, -1, 2]]<|endoftext|>
b1a26a50a6d039862ff3b4a223a605abe99413a83e88bc5ebb2a0f4a03624046
def updown_linear_approx(eigvals_lower, eigvals_upper, nv): '\n Approximates Laplacian spectrum using upper and lower parts of the eigenspectrum.\n \n Parameters\n ----------\n eigvals_lower : numpy.ndarray\n Lower part of the spectrum, sorted\n eigvals_upper : numpy.ndarray\n Upper part of the spectrum, sorted\n nv : int\n Total number of nodes (eigenvalues) in the graph.\n\n Returns\n -------\n numpy.ndarray\n Vector of approximated eigenvalues\n\n Examples\n --------\n >>> updown_linear_approx([1, 2, 3], [7, 8, 9], 9)\n array([1, 2, 3, 4, 5, 6, 7, 8, 9])\n\n ' nal = len(eigvals_lower) nau = len(eigvals_upper) if (nv < (nal + nau)): raise ValueError('Number of supplied eigenvalues ({0} lower and {1} upper) is higher than number of nodes ({2})!'.format(nal, nau, nv)) ret = np.zeros(nv) ret[:nal] = eigvals_lower ret[(- nau):] = eigvals_upper ret[(nal - 1):((- nau) + 1)] = np.linspace(eigvals_lower[(- 1)], eigvals_upper[0], (((nv - nal) - nau) + 2)) return ret
Approximates Laplacian spectrum using upper and lower parts of the eigenspectrum. Parameters ---------- eigvals_lower : numpy.ndarray Lower part of the spectrum, sorted eigvals_upper : numpy.ndarray Upper part of the spectrum, sorted nv : int Total number of nodes (eigenvalues) in the graph. Returns ------- numpy.ndarray Vector of approximated eigenvalues Examples -------- >>> updown_linear_approx([1, 2, 3], [7, 8, 9], 9) array([1, 2, 3, 4, 5, 6, 7, 8, 9])
netlsd/util.py
updown_linear_approx
xgfs/NetLSD
49
python
def updown_linear_approx(eigvals_lower, eigvals_upper, nv): '\n Approximates Laplacian spectrum using upper and lower parts of the eigenspectrum.\n \n Parameters\n ----------\n eigvals_lower : numpy.ndarray\n Lower part of the spectrum, sorted\n eigvals_upper : numpy.ndarray\n Upper part of the spectrum, sorted\n nv : int\n Total number of nodes (eigenvalues) in the graph.\n\n Returns\n -------\n numpy.ndarray\n Vector of approximated eigenvalues\n\n Examples\n --------\n >>> updown_linear_approx([1, 2, 3], [7, 8, 9], 9)\n array([1, 2, 3, 4, 5, 6, 7, 8, 9])\n\n ' nal = len(eigvals_lower) nau = len(eigvals_upper) if (nv < (nal + nau)): raise ValueError('Number of supplied eigenvalues ({0} lower and {1} upper) is higher than number of nodes ({2})!'.format(nal, nau, nv)) ret = np.zeros(nv) ret[:nal] = eigvals_lower ret[(- nau):] = eigvals_upper ret[(nal - 1):((- nau) + 1)] = np.linspace(eigvals_lower[(- 1)], eigvals_upper[0], (((nv - nal) - nau) + 2)) return ret
def updown_linear_approx(eigvals_lower, eigvals_upper, nv): '\n Approximates Laplacian spectrum using upper and lower parts of the eigenspectrum.\n \n Parameters\n ----------\n eigvals_lower : numpy.ndarray\n Lower part of the spectrum, sorted\n eigvals_upper : numpy.ndarray\n Upper part of the spectrum, sorted\n nv : int\n Total number of nodes (eigenvalues) in the graph.\n\n Returns\n -------\n numpy.ndarray\n Vector of approximated eigenvalues\n\n Examples\n --------\n >>> updown_linear_approx([1, 2, 3], [7, 8, 9], 9)\n array([1, 2, 3, 4, 5, 6, 7, 8, 9])\n\n ' nal = len(eigvals_lower) nau = len(eigvals_upper) if (nv < (nal + nau)): raise ValueError('Number of supplied eigenvalues ({0} lower and {1} upper) is higher than number of nodes ({2})!'.format(nal, nau, nv)) ret = np.zeros(nv) ret[:nal] = eigvals_lower ret[(- nau):] = eigvals_upper ret[(nal - 1):((- nau) + 1)] = np.linspace(eigvals_lower[(- 1)], eigvals_upper[0], (((nv - nal) - nau) + 2)) return ret<|docstring|>Approximates Laplacian spectrum using upper and lower parts of the eigenspectrum. Parameters ---------- eigvals_lower : numpy.ndarray Lower part of the spectrum, sorted eigvals_upper : numpy.ndarray Upper part of the spectrum, sorted nv : int Total number of nodes (eigenvalues) in the graph. Returns ------- numpy.ndarray Vector of approximated eigenvalues Examples -------- >>> updown_linear_approx([1, 2, 3], [7, 8, 9], 9) array([1, 2, 3, 4, 5, 6, 7, 8, 9])<|endoftext|>
770b7ad7429d651f12d002729120e94a580856b9525f131d9f7782b100ed1a80
def eigenvalues_auto(mat, n_eivals='auto'): "\n Automatically computes the spectrum of a given Laplacian matrix.\n \n Parameters\n ----------\n mat : numpy.ndarray or scipy.sparse\n Laplacian matrix\n n_eivals : string or int or tuple\n Number of eigenvalues to compute / use for approximation.\n If string, we expect either 'full' or 'auto', otherwise error will be raised. 'auto' lets the program decide based on the faithful usage. 'full' computes all eigenvalues.\n If int, compute n_eivals eigenvalues from each side and approximate using linear growth approximation.\n If tuple, we expect two ints, first for lower part of approximation, and second for the upper part.\n\n Returns\n -------\n np.ndarray\n Vector of approximated eigenvalues\n\n Examples\n --------\n >>> eigenvalues_auto(numpy.array([[ 2, -1, -1], [-1, 2, -1], [-1, -1, 2]]), 'auto')\n array([0, 3, 3])\n\n " do_full = True n_lower = 150 n_upper = 150 nv = mat.shape[0] if (n_eivals == 'auto'): if (mat.shape[0] > 1024): do_full = False if (n_eivals == 'full'): do_full = True if isinstance(n_eivals, int): n_lower = n_upper = n_eivals do_full = False if isinstance(n_eivals, tuple): (n_lower, n_upper) = n_eivals do_full = False if (do_full and sps.issparse(mat)): mat = mat.todense() if sps.issparse(mat): if (n_lower == n_upper): tr_eivals = spsl.eigsh(mat, (2 * n_lower), which='BE', return_eigenvectors=False) return updown_linear_approx(tr_eivals[:n_upper], tr_eivals[n_upper:], nv) else: lo_eivals = spsl.eigsh(mat, n_lower, which='SM', return_eigenvectors=False)[::(- 1)] up_eivals = spsl.eigsh(mat, n_upper, which='LM', return_eigenvectors=False) return updown_linear_approx(lo_eivals, up_eivals, nv) elif do_full: return spl.eigvalsh(mat) else: lo_eivals = spl.eigvalsh(mat, eigvals=(0, (n_lower - 1))) up_eivals = spl.eigvalsh(mat, eigvals=(((nv - n_upper) - 1), (nv - 1))) return updown_linear_approx(lo_eivals, up_eivals, nv)
Automatically computes the spectrum of a given Laplacian matrix. Parameters ---------- mat : numpy.ndarray or scipy.sparse Laplacian matrix n_eivals : string or int or tuple Number of eigenvalues to compute / use for approximation. If string, we expect either 'full' or 'auto', otherwise error will be raised. 'auto' lets the program decide based on the faithful usage. 'full' computes all eigenvalues. If int, compute n_eivals eigenvalues from each side and approximate using linear growth approximation. If tuple, we expect two ints, first for lower part of approximation, and second for the upper part. Returns ------- np.ndarray Vector of approximated eigenvalues Examples -------- >>> eigenvalues_auto(numpy.array([[ 2, -1, -1], [-1, 2, -1], [-1, -1, 2]]), 'auto') array([0, 3, 3])
netlsd/util.py
eigenvalues_auto
xgfs/NetLSD
49
python
def eigenvalues_auto(mat, n_eivals='auto'): "\n Automatically computes the spectrum of a given Laplacian matrix.\n \n Parameters\n ----------\n mat : numpy.ndarray or scipy.sparse\n Laplacian matrix\n n_eivals : string or int or tuple\n Number of eigenvalues to compute / use for approximation.\n If string, we expect either 'full' or 'auto', otherwise error will be raised. 'auto' lets the program decide based on the faithful usage. 'full' computes all eigenvalues.\n If int, compute n_eivals eigenvalues from each side and approximate using linear growth approximation.\n If tuple, we expect two ints, first for lower part of approximation, and second for the upper part.\n\n Returns\n -------\n np.ndarray\n Vector of approximated eigenvalues\n\n Examples\n --------\n >>> eigenvalues_auto(numpy.array([[ 2, -1, -1], [-1, 2, -1], [-1, -1, 2]]), 'auto')\n array([0, 3, 3])\n\n " do_full = True n_lower = 150 n_upper = 150 nv = mat.shape[0] if (n_eivals == 'auto'): if (mat.shape[0] > 1024): do_full = False if (n_eivals == 'full'): do_full = True if isinstance(n_eivals, int): n_lower = n_upper = n_eivals do_full = False if isinstance(n_eivals, tuple): (n_lower, n_upper) = n_eivals do_full = False if (do_full and sps.issparse(mat)): mat = mat.todense() if sps.issparse(mat): if (n_lower == n_upper): tr_eivals = spsl.eigsh(mat, (2 * n_lower), which='BE', return_eigenvectors=False) return updown_linear_approx(tr_eivals[:n_upper], tr_eivals[n_upper:], nv) else: lo_eivals = spsl.eigsh(mat, n_lower, which='SM', return_eigenvectors=False)[::(- 1)] up_eivals = spsl.eigsh(mat, n_upper, which='LM', return_eigenvectors=False) return updown_linear_approx(lo_eivals, up_eivals, nv) elif do_full: return spl.eigvalsh(mat) else: lo_eivals = spl.eigvalsh(mat, eigvals=(0, (n_lower - 1))) up_eivals = spl.eigvalsh(mat, eigvals=(((nv - n_upper) - 1), (nv - 1))) return updown_linear_approx(lo_eivals, up_eivals, nv)
def eigenvalues_auto(mat, n_eivals='auto'): "\n Automatically computes the spectrum of a given Laplacian matrix.\n \n Parameters\n ----------\n mat : numpy.ndarray or scipy.sparse\n Laplacian matrix\n n_eivals : string or int or tuple\n Number of eigenvalues to compute / use for approximation.\n If string, we expect either 'full' or 'auto', otherwise error will be raised. 'auto' lets the program decide based on the faithful usage. 'full' computes all eigenvalues.\n If int, compute n_eivals eigenvalues from each side and approximate using linear growth approximation.\n If tuple, we expect two ints, first for lower part of approximation, and second for the upper part.\n\n Returns\n -------\n np.ndarray\n Vector of approximated eigenvalues\n\n Examples\n --------\n >>> eigenvalues_auto(numpy.array([[ 2, -1, -1], [-1, 2, -1], [-1, -1, 2]]), 'auto')\n array([0, 3, 3])\n\n " do_full = True n_lower = 150 n_upper = 150 nv = mat.shape[0] if (n_eivals == 'auto'): if (mat.shape[0] > 1024): do_full = False if (n_eivals == 'full'): do_full = True if isinstance(n_eivals, int): n_lower = n_upper = n_eivals do_full = False if isinstance(n_eivals, tuple): (n_lower, n_upper) = n_eivals do_full = False if (do_full and sps.issparse(mat)): mat = mat.todense() if sps.issparse(mat): if (n_lower == n_upper): tr_eivals = spsl.eigsh(mat, (2 * n_lower), which='BE', return_eigenvectors=False) return updown_linear_approx(tr_eivals[:n_upper], tr_eivals[n_upper:], nv) else: lo_eivals = spsl.eigsh(mat, n_lower, which='SM', return_eigenvectors=False)[::(- 1)] up_eivals = spsl.eigsh(mat, n_upper, which='LM', return_eigenvectors=False) return updown_linear_approx(lo_eivals, up_eivals, nv) elif do_full: return spl.eigvalsh(mat) else: lo_eivals = spl.eigvalsh(mat, eigvals=(0, (n_lower - 1))) up_eivals = spl.eigvalsh(mat, eigvals=(((nv - n_upper) - 1), (nv - 1))) return updown_linear_approx(lo_eivals, up_eivals, nv)<|docstring|>Automatically computes the spectrum of a given Laplacian matrix. Parameters ---------- mat : numpy.ndarray or scipy.sparse Laplacian matrix n_eivals : string or int or tuple Number of eigenvalues to compute / use for approximation. If string, we expect either 'full' or 'auto', otherwise error will be raised. 'auto' lets the program decide based on the faithful usage. 'full' computes all eigenvalues. If int, compute n_eivals eigenvalues from each side and approximate using linear growth approximation. If tuple, we expect two ints, first for lower part of approximation, and second for the upper part. Returns ------- np.ndarray Vector of approximated eigenvalues Examples -------- >>> eigenvalues_auto(numpy.array([[ 2, -1, -1], [-1, 2, -1], [-1, -1, 2]]), 'auto') array([0, 3, 3])<|endoftext|>
d58a85b4582622e5dd93d445e5def6c12a3e3f08fd094b58cab8f59ef14cead9
def setup(): '\n Setup.\n :return: None.\n ' pass
Setup. :return: None.
tests/pptc/test_triangulator.py
setup
schreck61/py-bbn
0
python
def setup(): '\n Setup.\n :return: None.\n ' pass
def setup(): '\n Setup.\n :return: None.\n ' pass<|docstring|>Setup. :return: None.<|endoftext|>
79222015af3d05cc58d65a83a5d85b017912be9c1680fef9d497761d0b77eadf
def teardown(): '\n Teardown.\n :return: None.\n ' pass
Teardown. :return: None.
tests/pptc/test_triangulator.py
teardown
schreck61/py-bbn
0
python
def teardown(): '\n Teardown.\n :return: None.\n ' pass
def teardown(): '\n Teardown.\n :return: None.\n ' pass<|docstring|>Teardown. :return: None.<|endoftext|>
6f946e2c68971a93371a3cce8e0368426b5eb467e1877dfdccdf651c6aed7a91
@with_setup(setup, teardown) def test_triangulator(): '\n Tests triangulation.\n :return: None.\n ' bbn = BbnUtil.get_huang_graph() PotentialInitializer.init(bbn) ug = Moralizer.moralize(bbn) cliques = Triangulator.triangulate(ug)
Tests triangulation. :return: None.
tests/pptc/test_triangulator.py
test_triangulator
schreck61/py-bbn
0
python
@with_setup(setup, teardown) def test_triangulator(): '\n Tests triangulation.\n :return: None.\n ' bbn = BbnUtil.get_huang_graph() PotentialInitializer.init(bbn) ug = Moralizer.moralize(bbn) cliques = Triangulator.triangulate(ug)
@with_setup(setup, teardown) def test_triangulator(): '\n Tests triangulation.\n :return: None.\n ' bbn = BbnUtil.get_huang_graph() PotentialInitializer.init(bbn) ug = Moralizer.moralize(bbn) cliques = Triangulator.triangulate(ug)<|docstring|>Tests triangulation. :return: None.<|endoftext|>
ed45e4014dbca4402501b242762eebdae69862668547c586f2c9c7687f438fb0
def maxProfit1(self, prices): '\n :type prices: List[int]\n :rtype: int\n ' (first_buy, first_sell, second_buy, second_sell) = ((- sys.maxsize), 0, (- sys.maxsize), 0) for price in prices: first_buy = max(first_buy, (- price)) first_sell = max(first_sell, (price + first_buy)) second_buy = max(second_buy, (first_sell - price)) second_sell = max(second_sell, (price + second_buy)) return second_sell
:type prices: List[int] :rtype: int
toTheMoon/leetcode_123_BestTimetoBuyandSellStockIII.py
maxProfit1
jercas/offer66-leetcode-newcode
0
python
def maxProfit1(self, prices): '\n :type prices: List[int]\n :rtype: int\n ' (first_buy, first_sell, second_buy, second_sell) = ((- sys.maxsize), 0, (- sys.maxsize), 0) for price in prices: first_buy = max(first_buy, (- price)) first_sell = max(first_sell, (price + first_buy)) second_buy = max(second_buy, (first_sell - price)) second_sell = max(second_sell, (price + second_buy)) return second_sell
def maxProfit1(self, prices): '\n :type prices: List[int]\n :rtype: int\n ' (first_buy, first_sell, second_buy, second_sell) = ((- sys.maxsize), 0, (- sys.maxsize), 0) for price in prices: first_buy = max(first_buy, (- price)) first_sell = max(first_sell, (price + first_buy)) second_buy = max(second_buy, (first_sell - price)) second_sell = max(second_sell, (price + second_buy)) return second_sell<|docstring|>:type prices: List[int] :rtype: int<|endoftext|>
113e0322f55ccf30243b2643137c9ec03a5ace7f8e7589d7ea1aef26e18ea038
def maxProfit2(self, prices): '\n :type prices: List[int]\n :rtype: int\n ' if (len(prices) <= 1): return 0 (left, right) = (np.zeros(len(prices)), np.zeros(len(prices))) (min_price, max_price) = (prices[0], prices[(- 1)]) for i in range(1, len(prices)): left[i] = max(left[(i - 1)], (prices[i] - min_price)) min_price = min(min_price, prices[i]) for j in range((len(prices) - 2), (- 1), (- 1)): right[j] = max(right[(j + 1)], (max_price - prices[j])) max_price = max(max_price, prices[j]) res = [(left[k] + right[k]) for k in range(len(prices))] return max(res)
:type prices: List[int] :rtype: int
toTheMoon/leetcode_123_BestTimetoBuyandSellStockIII.py
maxProfit2
jercas/offer66-leetcode-newcode
0
python
def maxProfit2(self, prices): '\n :type prices: List[int]\n :rtype: int\n ' if (len(prices) <= 1): return 0 (left, right) = (np.zeros(len(prices)), np.zeros(len(prices))) (min_price, max_price) = (prices[0], prices[(- 1)]) for i in range(1, len(prices)): left[i] = max(left[(i - 1)], (prices[i] - min_price)) min_price = min(min_price, prices[i]) for j in range((len(prices) - 2), (- 1), (- 1)): right[j] = max(right[(j + 1)], (max_price - prices[j])) max_price = max(max_price, prices[j]) res = [(left[k] + right[k]) for k in range(len(prices))] return max(res)
def maxProfit2(self, prices): '\n :type prices: List[int]\n :rtype: int\n ' if (len(prices) <= 1): return 0 (left, right) = (np.zeros(len(prices)), np.zeros(len(prices))) (min_price, max_price) = (prices[0], prices[(- 1)]) for i in range(1, len(prices)): left[i] = max(left[(i - 1)], (prices[i] - min_price)) min_price = min(min_price, prices[i]) for j in range((len(prices) - 2), (- 1), (- 1)): right[j] = max(right[(j + 1)], (max_price - prices[j])) max_price = max(max_price, prices[j]) res = [(left[k] + right[k]) for k in range(len(prices))] return max(res)<|docstring|>:type prices: List[int] :rtype: int<|endoftext|>
74ff21391d708bf52671e424e44e26a6782c4cc02fe53b22b7049f44f28f8d0e
def __init__(self, empty_size=334, **kwargs): ' Initialize the SparseCache\n 334 is the file size of a 256x256 transparent PNG\n ' self.empty_size = empty_size return Disk.__init__(self, **kwargs)
Initialize the SparseCache 334 is the file size of a 256x256 transparent PNG
stamen/__init__.py
__init__
stamen/tilestache-goodies
2
python
def __init__(self, empty_size=334, **kwargs): ' Initialize the SparseCache\n 334 is the file size of a 256x256 transparent PNG\n ' self.empty_size = empty_size return Disk.__init__(self, **kwargs)
def __init__(self, empty_size=334, **kwargs): ' Initialize the SparseCache\n 334 is the file size of a 256x256 transparent PNG\n ' self.empty_size = empty_size return Disk.__init__(self, **kwargs)<|docstring|>Initialize the SparseCache 334 is the file size of a 256x256 transparent PNG<|endoftext|>
5a1f58ede29dccdfabf21300bf85ab2842ed876e0ad14a3ea151f04edbd57f66
def read(self, layer, coord, format): ' Read a cached tile.\n ' fullpath = self._fullpath(layer, coord, format) if (not exists(fullpath)): return None if (os.stat(fullpath).st_size == self.empty_size): raise TheTileLeftANote(status_code=404, emit_content_type=False) return Disk.read(self, layer, coord, format)
Read a cached tile.
stamen/__init__.py
read
stamen/tilestache-goodies
2
python
def read(self, layer, coord, format): ' \n ' fullpath = self._fullpath(layer, coord, format) if (not exists(fullpath)): return None if (os.stat(fullpath).st_size == self.empty_size): raise TheTileLeftANote(status_code=404, emit_content_type=False) return Disk.read(self, layer, coord, format)
def read(self, layer, coord, format): ' \n ' fullpath = self._fullpath(layer, coord, format) if (not exists(fullpath)): return None if (os.stat(fullpath).st_size == self.empty_size): raise TheTileLeftANote(status_code=404, emit_content_type=False) return Disk.read(self, layer, coord, format)<|docstring|>Read a cached tile.<|endoftext|>
ccfa2cc670887b4873352fef724dacf6af38965b0990f0106e57362ec9696cce
def send_request(self, method=None, params={}, request=None, loop=None): 'Send request object and parse response.' if (loop is None): loop = self._loop if (not request): assert (method is not None), 'No method specified!' request = self._create_request(method, params) self.last_request = request response = self._send_and_recv_data(request, loop) for i in range(10000): if (response is None): self.logger.error('No data received.') return if self._check_response(json.loads(request), response): (error_flag, error_msg) = self._check_error(response) if (i > 0): self.logger.info('%d non-response messages skipped.', i) return self._parse_response(error_flag, error_msg, response) else: while self._loop.is_running(): pass response = loop.run_until_complete(self._recv_data()) self.logger.error('ID mismatch! Could not find response message.') return
Send request object and parse response.
cortex2/lib/WebsocketClient/websocket_client.py
send_request
lowenhere/emotiv-cortex2-python-client
10
python
def send_request(self, method=None, params={}, request=None, loop=None): if (loop is None): loop = self._loop if (not request): assert (method is not None), 'No method specified!' request = self._create_request(method, params) self.last_request = request response = self._send_and_recv_data(request, loop) for i in range(10000): if (response is None): self.logger.error('No data received.') return if self._check_response(json.loads(request), response): (error_flag, error_msg) = self._check_error(response) if (i > 0): self.logger.info('%d non-response messages skipped.', i) return self._parse_response(error_flag, error_msg, response) else: while self._loop.is_running(): pass response = loop.run_until_complete(self._recv_data()) self.logger.error('ID mismatch! Could not find response message.') return
def send_request(self, method=None, params={}, request=None, loop=None): if (loop is None): loop = self._loop if (not request): assert (method is not None), 'No method specified!' request = self._create_request(method, params) self.last_request = request response = self._send_and_recv_data(request, loop) for i in range(10000): if (response is None): self.logger.error('No data received.') return if self._check_response(json.loads(request), response): (error_flag, error_msg) = self._check_error(response) if (i > 0): self.logger.info('%d non-response messages skipped.', i) return self._parse_response(error_flag, error_msg, response) else: while self._loop.is_running(): pass response = loop.run_until_complete(self._recv_data()) self.logger.error('ID mismatch! Could not find response message.') return<|docstring|>Send request object and parse response.<|endoftext|>
679dbdb6b4325519819ac2acc4ac61558a8074186ab76a2e0cd371b56a79100c
async def _send_data(self, data): 'Send data to websocket.' try: (await asyncio.wait_for(self._websocket.send(data), timeout=self.timeout)) except asyncio.TimeoutError: self.logger.warning('Asyncio Timeout: Sending took too long!') except: self.logger.error('Websocket connection broke! Reconnecting...') websockets.connect(self._url, ssl=self._ssl_context) (await asyncio.sleep(1))
Send data to websocket.
cortex2/lib/WebsocketClient/websocket_client.py
_send_data
lowenhere/emotiv-cortex2-python-client
10
python
async def _send_data(self, data): try: (await asyncio.wait_for(self._websocket.send(data), timeout=self.timeout)) except asyncio.TimeoutError: self.logger.warning('Asyncio Timeout: Sending took too long!') except: self.logger.error('Websocket connection broke! Reconnecting...') websockets.connect(self._url, ssl=self._ssl_context) (await asyncio.sleep(1))
async def _send_data(self, data): try: (await asyncio.wait_for(self._websocket.send(data), timeout=self.timeout)) except asyncio.TimeoutError: self.logger.warning('Asyncio Timeout: Sending took too long!') except: self.logger.error('Websocket connection broke! Reconnecting...') websockets.connect(self._url, ssl=self._ssl_context) (await asyncio.sleep(1))<|docstring|>Send data to websocket.<|endoftext|>
020599afe0ed4b1f539ca8d85efe32e30205433b10ddf46a35479322e8dc7f6a
async def _recv_data(self): 'Receive data from websocket.' try: recv = (await asyncio.wait_for(self._websocket.recv(), timeout=self.timeout)) if (type(recv) is str): return json.loads(recv) else: return except asyncio.TimeoutError: self.logger.warning('Asyncio Timeout: Receiving took too long!') return except Exception as e: self.logger.error('Websocket connection broke! Reconnecting...') self.logger.info(str(e)) websockets.connect(self._url, ssl=self._ssl_context) (await asyncio.sleep(1))
Receive data from websocket.
cortex2/lib/WebsocketClient/websocket_client.py
_recv_data
lowenhere/emotiv-cortex2-python-client
10
python
async def _recv_data(self): try: recv = (await asyncio.wait_for(self._websocket.recv(), timeout=self.timeout)) if (type(recv) is str): return json.loads(recv) else: return except asyncio.TimeoutError: self.logger.warning('Asyncio Timeout: Receiving took too long!') return except Exception as e: self.logger.error('Websocket connection broke! Reconnecting...') self.logger.info(str(e)) websockets.connect(self._url, ssl=self._ssl_context) (await asyncio.sleep(1))
async def _recv_data(self): try: recv = (await asyncio.wait_for(self._websocket.recv(), timeout=self.timeout)) if (type(recv) is str): return json.loads(recv) else: return except asyncio.TimeoutError: self.logger.warning('Asyncio Timeout: Receiving took too long!') return except Exception as e: self.logger.error('Websocket connection broke! Reconnecting...') self.logger.info(str(e)) websockets.connect(self._url, ssl=self._ssl_context) (await asyncio.sleep(1))<|docstring|>Receive data from websocket.<|endoftext|>
b81dfb94b0a4fe2c8234a983366045cfecd1e333d3af4e0137ea81c531489eb8
def _send_and_recv_data(self, data, loop=None): 'Send and receive data to and from websocket.' if (loop is None): loop = self._loop while self._loop.is_running(): pass loop.run_until_complete(self._send_data(data)) return loop.run_until_complete(self._recv_data())
Send and receive data to and from websocket.
cortex2/lib/WebsocketClient/websocket_client.py
_send_and_recv_data
lowenhere/emotiv-cortex2-python-client
10
python
def _send_and_recv_data(self, data, loop=None): if (loop is None): loop = self._loop while self._loop.is_running(): pass loop.run_until_complete(self._send_data(data)) return loop.run_until_complete(self._recv_data())
def _send_and_recv_data(self, data, loop=None): if (loop is None): loop = self._loop while self._loop.is_running(): pass loop.run_until_complete(self._send_data(data)) return loop.run_until_complete(self._recv_data())<|docstring|>Send and receive data to and from websocket.<|endoftext|>
3e20c68a5dcb9b082cccaf708a83c385bd26e632cf300e35707bcf8bbcb2912c
def _generate_id(self, size=6, chars=(string.ascii_letters + string.digits)): 'Generate random ID.' return ''.join((secrets.choice(chars) for _ in range(size)))
Generate random ID.
cortex2/lib/WebsocketClient/websocket_client.py
_generate_id
lowenhere/emotiv-cortex2-python-client
10
python
def _generate_id(self, size=6, chars=(string.ascii_letters + string.digits)): return .join((secrets.choice(chars) for _ in range(size)))
def _generate_id(self, size=6, chars=(string.ascii_letters + string.digits)): return .join((secrets.choice(chars) for _ in range(size)))<|docstring|>Generate random ID.<|endoftext|>
ec6d9dd76532f846a649a90178957952481d3aae514275f413bea306eb6ff91f
def _check_response(self, send_dict, response): 'Check if response key matches.' if (not self.check_response): return True try: if (send_dict[self.response_key] == response[self.response_key]): return True else: return False except: return False
Check if response key matches.
cortex2/lib/WebsocketClient/websocket_client.py
_check_response
lowenhere/emotiv-cortex2-python-client
10
python
def _check_response(self, send_dict, response): if (not self.check_response): return True try: if (send_dict[self.response_key] == response[self.response_key]): return True else: return False except: return False
def _check_response(self, send_dict, response): if (not self.check_response): return True try: if (send_dict[self.response_key] == response[self.response_key]): return True else: return False except: return False<|docstring|>Check if response key matches.<|endoftext|>
96d690f9fcb4adc50cbe83e5f8d44b97e583d309e367138d7144b57f7619041c
def _parse_response(self, error_flag, error_msg, response): 'Return error message, result, or full result.' if error_flag: return error_msg elif ('result' in response): return response['result'] else: return response
Return error message, result, or full result.
cortex2/lib/WebsocketClient/websocket_client.py
_parse_response
lowenhere/emotiv-cortex2-python-client
10
python
def _parse_response(self, error_flag, error_msg, response): if error_flag: return error_msg elif ('result' in response): return response['result'] else: return response
def _parse_response(self, error_flag, error_msg, response): if error_flag: return error_msg elif ('result' in response): return response['result'] else: return response<|docstring|>Return error message, result, or full result.<|endoftext|>
9a75fa1c49443940f81850b18b326c5f104d8acad1bec8640138962d593b066a
def _create_request(self, method, params={}): 'Create request object.' if self.check_response: return json.dumps({'jsonrpc': '2.0', 'method': method, 'params': params, 'id': self._generate_id()}) else: return json.dumps({'jsonrpc': '2.0', 'method': method, 'params': params})
Create request object.
cortex2/lib/WebsocketClient/websocket_client.py
_create_request
lowenhere/emotiv-cortex2-python-client
10
python
def _create_request(self, method, params={}): if self.check_response: return json.dumps({'jsonrpc': '2.0', 'method': method, 'params': params, 'id': self._generate_id()}) else: return json.dumps({'jsonrpc': '2.0', 'method': method, 'params': params})
def _create_request(self, method, params={}): if self.check_response: return json.dumps({'jsonrpc': '2.0', 'method': method, 'params': params, 'id': self._generate_id()}) else: return json.dumps({'jsonrpc': '2.0', 'method': method, 'params': params})<|docstring|>Create request object.<|endoftext|>
80e7be21938f2253a0fd472a7cd1fad94acb6d1a2894b7e58d41f44a830b808c
def __init__(self, g): '\n Attributes intialised in __init__()\n base_url a string extracted from hydra.template\n parameters set of strings extracted from hydra.template\n variables set of strings extracted from hydra.variables\n defaults dictionary of required parameters and default values\n ' self.path_params = None self._parse_template(g) self._parse_parameters(g)
Attributes intialised in __init__() base_url a string extracted from hydra.template parameters set of strings extracted from hydra.template variables set of strings extracted from hydra.variables defaults dictionary of required parameters and default values
tools/check_webservice/webservice.py
__init__
sgrellet/EPOS-DCAT-AP
0
python
def __init__(self, g): '\n Attributes intialised in __init__()\n base_url a string extracted from hydra.template\n parameters set of strings extracted from hydra.template\n variables set of strings extracted from hydra.variables\n defaults dictionary of required parameters and default values\n ' self.path_params = None self._parse_template(g) self._parse_parameters(g)
def __init__(self, g): '\n Attributes intialised in __init__()\n base_url a string extracted from hydra.template\n parameters set of strings extracted from hydra.template\n variables set of strings extracted from hydra.variables\n defaults dictionary of required parameters and default values\n ' self.path_params = None self._parse_template(g) self._parse_parameters(g)<|docstring|>Attributes intialised in __init__() base_url a string extracted from hydra.template parameters set of strings extracted from hydra.template variables set of strings extracted from hydra.variables defaults dictionary of required parameters and default values<|endoftext|>
852cb52507db97377c78cf97a01cdb74d2fff4dd3a6bb8e8f3a0dd3e5d23f572
def fourier_coefficient(self, paramA, paramB): '\n Metoda ta tworzy słownik, gdzi kluczem jest wektor sieci odwrotnej, a wartością współczynnik Fouriera.\n :return: Słownik\n ' index0 = (self.vectors_count - 1) tab = ((paramA - paramB) * self.coefficient1d()) tab[index0] += paramB assert (tab[index0].imag == 0.0) return tab
Metoda ta tworzy słownik, gdzi kluczem jest wektor sieci odwrotnej, a wartością współczynnik Fouriera. :return: Słownik
src/eig_problem/LoadFFT.py
fourier_coefficient
szymag/ZFN
2
python
def fourier_coefficient(self, paramA, paramB): '\n Metoda ta tworzy słownik, gdzi kluczem jest wektor sieci odwrotnej, a wartością współczynnik Fouriera.\n :return: Słownik\n ' index0 = (self.vectors_count - 1) tab = ((paramA - paramB) * self.coefficient1d()) tab[index0] += paramB assert (tab[index0].imag == 0.0) return tab
def fourier_coefficient(self, paramA, paramB): '\n Metoda ta tworzy słownik, gdzi kluczem jest wektor sieci odwrotnej, a wartością współczynnik Fouriera.\n :return: Słownik\n ' index0 = (self.vectors_count - 1) tab = ((paramA - paramB) * self.coefficient1d()) tab[index0] += paramB assert (tab[index0].imag == 0.0) return tab<|docstring|>Metoda ta tworzy słownik, gdzi kluczem jest wektor sieci odwrotnej, a wartością współczynnik Fouriera. :return: Słownik<|endoftext|>
5becb7dc8238364d20a7770cc6c400a26f5fee915020a363440f32d2e2a3cfdc
def aitoff_galactic(RA, DEC, marker_size=3.5): '\n Input coordinates must be in the unit of degree.\n ' n = len(RA) c_icrs = SkyCoord(ra=(RA * u.degree), dec=(DEC * u.degree), frame='icrs') c_galactic = c_icrs.galactic l = c_galactic.l.rad for i in range(n): if (l[i] > math.pi): l[i] = (- ((2 * math.pi) - l[i])) b = c_galactic.b.rad fig = plt.figure('spec_view', figsize=(16, 10)) ax = fig.add_subplot(111, projection='aitoff') ax.set_title('Galactic projection') ax.grid(True) ax.plot(l, b, 'ro', markersize=marker_size)
Input coordinates must be in the unit of degree.
tools/projection.py
aitoff_galactic
yaoyuhan/starpy
0
python
def aitoff_galactic(RA, DEC, marker_size=3.5): '\n \n ' n = len(RA) c_icrs = SkyCoord(ra=(RA * u.degree), dec=(DEC * u.degree), frame='icrs') c_galactic = c_icrs.galactic l = c_galactic.l.rad for i in range(n): if (l[i] > math.pi): l[i] = (- ((2 * math.pi) - l[i])) b = c_galactic.b.rad fig = plt.figure('spec_view', figsize=(16, 10)) ax = fig.add_subplot(111, projection='aitoff') ax.set_title('Galactic projection') ax.grid(True) ax.plot(l, b, 'ro', markersize=marker_size)
def aitoff_galactic(RA, DEC, marker_size=3.5): '\n \n ' n = len(RA) c_icrs = SkyCoord(ra=(RA * u.degree), dec=(DEC * u.degree), frame='icrs') c_galactic = c_icrs.galactic l = c_galactic.l.rad for i in range(n): if (l[i] > math.pi): l[i] = (- ((2 * math.pi) - l[i])) b = c_galactic.b.rad fig = plt.figure('spec_view', figsize=(16, 10)) ax = fig.add_subplot(111, projection='aitoff') ax.set_title('Galactic projection') ax.grid(True) ax.plot(l, b, 'ro', markersize=marker_size)<|docstring|>Input coordinates must be in the unit of degree.<|endoftext|>
87c2ddd2193d54b957ba8be8eec9ec95a650dca033e81e86f6c90584292178d1
def diag(self): 'Diagonalise the operator\n\n Return eigenvalues and corresponding eigenvectors for this operator.\n\n Returns:\n (ndarray, ndarray) -- Eigenvalues and eigenvector matrix, as\n returned by numpy.linalg.eigh\n ' try: dd = self._diagdata if np.all((dd['matrix'] == self._matrix)): return dd['eigh'] except AttributeError: pass eigh = np.linalg.eigh(self._matrix) self._diagdata = {'matrix': self._matrix.copy(), 'eigh': eigh} return eigh
Diagonalise the operator Return eigenvalues and corresponding eigenvectors for this operator. Returns: (ndarray, ndarray) -- Eigenvalues and eigenvector matrix, as returned by numpy.linalg.eigh
muspinsim/spinop.py
diag
muon-spectroscopy-computational-project/muspinsim
2
python
def diag(self): 'Diagonalise the operator\n\n Return eigenvalues and corresponding eigenvectors for this operator.\n\n Returns:\n (ndarray, ndarray) -- Eigenvalues and eigenvector matrix, as\n returned by numpy.linalg.eigh\n ' try: dd = self._diagdata if np.all((dd['matrix'] == self._matrix)): return dd['eigh'] except AttributeError: pass eigh = np.linalg.eigh(self._matrix) self._diagdata = {'matrix': self._matrix.copy(), 'eigh': eigh} return eigh
def diag(self): 'Diagonalise the operator\n\n Return eigenvalues and corresponding eigenvectors for this operator.\n\n Returns:\n (ndarray, ndarray) -- Eigenvalues and eigenvector matrix, as\n returned by numpy.linalg.eigh\n ' try: dd = self._diagdata if np.all((dd['matrix'] == self._matrix)): return dd['eigh'] except AttributeError: pass eigh = np.linalg.eigh(self._matrix) self._diagdata = {'matrix': self._matrix.copy(), 'eigh': eigh} return eigh<|docstring|>Diagonalise the operator Return eigenvalues and corresponding eigenvectors for this operator. Returns: (ndarray, ndarray) -- Eigenvalues and eigenvector matrix, as returned by numpy.linalg.eigh<|endoftext|>
bf3694830d2cf35f93466ebc9d83eb382656c2adf6675b144377bee1295bf227
def __init__(self, matrix, dim=None, hermtol=1e-06): "Create a Operator object\n\n Create an object representing a spin operator. These can\n be manipulated by e.g. multiplying them by a scalar or among themselves\n (equivalent to a dot product), or adding and subtracting them.\n\n Arguments:\n matrix {ndarray} -- Matrix describing the operator (must be a\n square 2D array)\n\n Keyword Arguments:\n dim {(int,...)} -- Tuple of the dimensions of the operator. For example,\n (2,2) corresponds to two 1/2 spins and a 4x4 matrix.\n If not specified, it's taken from the size of\n the matrix (default: {None})\n hermtol {float} -- Tolerance used to check for hermitianity of the\n matrix (default: {1e-6})\n\n Raises:\n ValueError -- Any of the passed values are invalid\n " matrix = (np.array(matrix) + 0j) if (not (matrix.shape[0] == matrix.shape[1])): raise ValueError('Matrix passed to Operator must be square') if (dim is None): dim = (matrix.shape[0],) elif (np.prod(dim) != matrix.shape[0]): raise ValueError('Dimensions are not compatible with matrix') self._dim = tuple(dim) self._matrix = matrix self._htol = hermtol super(Operator, self).__init__()
Create a Operator object Create an object representing a spin operator. These can be manipulated by e.g. multiplying them by a scalar or among themselves (equivalent to a dot product), or adding and subtracting them. Arguments: matrix {ndarray} -- Matrix describing the operator (must be a square 2D array) Keyword Arguments: dim {(int,...)} -- Tuple of the dimensions of the operator. For example, (2,2) corresponds to two 1/2 spins and a 4x4 matrix. If not specified, it's taken from the size of the matrix (default: {None}) hermtol {float} -- Tolerance used to check for hermitianity of the matrix (default: {1e-6}) Raises: ValueError -- Any of the passed values are invalid
muspinsim/spinop.py
__init__
muon-spectroscopy-computational-project/muspinsim
2
python
def __init__(self, matrix, dim=None, hermtol=1e-06): "Create a Operator object\n\n Create an object representing a spin operator. These can\n be manipulated by e.g. multiplying them by a scalar or among themselves\n (equivalent to a dot product), or adding and subtracting them.\n\n Arguments:\n matrix {ndarray} -- Matrix describing the operator (must be a\n square 2D array)\n\n Keyword Arguments:\n dim {(int,...)} -- Tuple of the dimensions of the operator. For example,\n (2,2) corresponds to two 1/2 spins and a 4x4 matrix.\n If not specified, it's taken from the size of\n the matrix (default: {None})\n hermtol {float} -- Tolerance used to check for hermitianity of the\n matrix (default: {1e-6})\n\n Raises:\n ValueError -- Any of the passed values are invalid\n " matrix = (np.array(matrix) + 0j) if (not (matrix.shape[0] == matrix.shape[1])): raise ValueError('Matrix passed to Operator must be square') if (dim is None): dim = (matrix.shape[0],) elif (np.prod(dim) != matrix.shape[0]): raise ValueError('Dimensions are not compatible with matrix') self._dim = tuple(dim) self._matrix = matrix self._htol = hermtol super(Operator, self).__init__()
def __init__(self, matrix, dim=None, hermtol=1e-06): "Create a Operator object\n\n Create an object representing a spin operator. These can\n be manipulated by e.g. multiplying them by a scalar or among themselves\n (equivalent to a dot product), or adding and subtracting them.\n\n Arguments:\n matrix {ndarray} -- Matrix describing the operator (must be a\n square 2D array)\n\n Keyword Arguments:\n dim {(int,...)} -- Tuple of the dimensions of the operator. For example,\n (2,2) corresponds to two 1/2 spins and a 4x4 matrix.\n If not specified, it's taken from the size of\n the matrix (default: {None})\n hermtol {float} -- Tolerance used to check for hermitianity of the\n matrix (default: {1e-6})\n\n Raises:\n ValueError -- Any of the passed values are invalid\n " matrix = (np.array(matrix) + 0j) if (not (matrix.shape[0] == matrix.shape[1])): raise ValueError('Matrix passed to Operator must be square') if (dim is None): dim = (matrix.shape[0],) elif (np.prod(dim) != matrix.shape[0]): raise ValueError('Dimensions are not compatible with matrix') self._dim = tuple(dim) self._matrix = matrix self._htol = hermtol super(Operator, self).__init__()<|docstring|>Create a Operator object Create an object representing a spin operator. These can be manipulated by e.g. multiplying them by a scalar or among themselves (equivalent to a dot product), or adding and subtracting them. Arguments: matrix {ndarray} -- Matrix describing the operator (must be a square 2D array) Keyword Arguments: dim {(int,...)} -- Tuple of the dimensions of the operator. For example, (2,2) corresponds to two 1/2 spins and a 4x4 matrix. If not specified, it's taken from the size of the matrix (default: {None}) hermtol {float} -- Tolerance used to check for hermitianity of the matrix (default: {1e-6}) Raises: ValueError -- Any of the passed values are invalid<|endoftext|>
f09105b8559fa210e3ee488b2094c1f1c580b749c9d534b2810c8ce432e9ca0b
def dagger(self): 'Return the transpose conjugate of this Operator\n\n Return the transpose conjugate of this Operator\n\n Returns:\n Operator -- Transpose conjugate of this operator\n ' MyClass = self.__class__ ans = MyClass.__new__(MyClass) ans._dim = tuple(self._dim) ans._matrix = self.matrix.conj().T return ans
Return the transpose conjugate of this Operator Return the transpose conjugate of this Operator Returns: Operator -- Transpose conjugate of this operator
muspinsim/spinop.py
dagger
muon-spectroscopy-computational-project/muspinsim
2
python
def dagger(self): 'Return the transpose conjugate of this Operator\n\n Return the transpose conjugate of this Operator\n\n Returns:\n Operator -- Transpose conjugate of this operator\n ' MyClass = self.__class__ ans = MyClass.__new__(MyClass) ans._dim = tuple(self._dim) ans._matrix = self.matrix.conj().T return ans
def dagger(self): 'Return the transpose conjugate of this Operator\n\n Return the transpose conjugate of this Operator\n\n Returns:\n Operator -- Transpose conjugate of this operator\n ' MyClass = self.__class__ ans = MyClass.__new__(MyClass) ans._dim = tuple(self._dim) ans._matrix = self.matrix.conj().T return ans<|docstring|>Return the transpose conjugate of this Operator Return the transpose conjugate of this Operator Returns: Operator -- Transpose conjugate of this operator<|endoftext|>
efc28496fa98fcbc92083a024a7905c3971af8ad5e49f72c77f93ffa8fd695e8
def kron(self, x): 'Tensor product between this and another Operator\n\n Performs a tensor product between this and another Operator,\n raising the overall rank of the tensor they represent.\n\n Arguments:\n x {Operator} -- Other operator\n\n Returns:\n Operator -- Result\n\n Raises:\n ValueError -- Thrown if x is not the right type of object\n ' if (not isinstance(x, Operator)): raise ValueError('Can only perform Kronecker product with another Operator') ans = self.__class__.__new__(self.__class__) ans._dim = (self._dim + x._dim) ans._matrix = np.kron(self._matrix, x._matrix) return ans
Tensor product between this and another Operator Performs a tensor product between this and another Operator, raising the overall rank of the tensor they represent. Arguments: x {Operator} -- Other operator Returns: Operator -- Result Raises: ValueError -- Thrown if x is not the right type of object
muspinsim/spinop.py
kron
muon-spectroscopy-computational-project/muspinsim
2
python
def kron(self, x): 'Tensor product between this and another Operator\n\n Performs a tensor product between this and another Operator,\n raising the overall rank of the tensor they represent.\n\n Arguments:\n x {Operator} -- Other operator\n\n Returns:\n Operator -- Result\n\n Raises:\n ValueError -- Thrown if x is not the right type of object\n ' if (not isinstance(x, Operator)): raise ValueError('Can only perform Kronecker product with another Operator') ans = self.__class__.__new__(self.__class__) ans._dim = (self._dim + x._dim) ans._matrix = np.kron(self._matrix, x._matrix) return ans
def kron(self, x): 'Tensor product between this and another Operator\n\n Performs a tensor product between this and another Operator,\n raising the overall rank of the tensor they represent.\n\n Arguments:\n x {Operator} -- Other operator\n\n Returns:\n Operator -- Result\n\n Raises:\n ValueError -- Thrown if x is not the right type of object\n ' if (not isinstance(x, Operator)): raise ValueError('Can only perform Kronecker product with another Operator') ans = self.__class__.__new__(self.__class__) ans._dim = (self._dim + x._dim) ans._matrix = np.kron(self._matrix, x._matrix) return ans<|docstring|>Tensor product between this and another Operator Performs a tensor product between this and another Operator, raising the overall rank of the tensor they represent. Arguments: x {Operator} -- Other operator Returns: Operator -- Result Raises: ValueError -- Thrown if x is not the right type of object<|endoftext|>
9957656b8882d5c02f884b3cf3523fe0c615866582e30e85de10b34242d40655
def hilbert_schmidt(self, x): 'Hilbert-Schmidt product between this and another Operator\n\n\n Performs a Hilbert-Schmidt product between this and another Operator,\n that acts as an inner product.\n\n Arguments:\n x {Operator} -- Other operator\n\n Returns:\n number -- Result\n\n Raises:\n ValueError -- Thrown if x is not the right type of object\n ' if (not isinstance(x, Operator)): raise ValueError('Can only perform Hilbert-Schmidt product with another Operator') if (not (x.dimension == self.dimension)): raise ValueError('Operators must have the same dimension to perform Hilbert-Schmidt product') A = self.matrix B = x.matrix return np.trace(np.dot(A.conj().T, B))
Hilbert-Schmidt product between this and another Operator Performs a Hilbert-Schmidt product between this and another Operator, that acts as an inner product. Arguments: x {Operator} -- Other operator Returns: number -- Result Raises: ValueError -- Thrown if x is not the right type of object
muspinsim/spinop.py
hilbert_schmidt
muon-spectroscopy-computational-project/muspinsim
2
python
def hilbert_schmidt(self, x): 'Hilbert-Schmidt product between this and another Operator\n\n\n Performs a Hilbert-Schmidt product between this and another Operator,\n that acts as an inner product.\n\n Arguments:\n x {Operator} -- Other operator\n\n Returns:\n number -- Result\n\n Raises:\n ValueError -- Thrown if x is not the right type of object\n ' if (not isinstance(x, Operator)): raise ValueError('Can only perform Hilbert-Schmidt product with another Operator') if (not (x.dimension == self.dimension)): raise ValueError('Operators must have the same dimension to perform Hilbert-Schmidt product') A = self.matrix B = x.matrix return np.trace(np.dot(A.conj().T, B))
def hilbert_schmidt(self, x): 'Hilbert-Schmidt product between this and another Operator\n\n\n Performs a Hilbert-Schmidt product between this and another Operator,\n that acts as an inner product.\n\n Arguments:\n x {Operator} -- Other operator\n\n Returns:\n number -- Result\n\n Raises:\n ValueError -- Thrown if x is not the right type of object\n ' if (not isinstance(x, Operator)): raise ValueError('Can only perform Hilbert-Schmidt product with another Operator') if (not (x.dimension == self.dimension)): raise ValueError('Operators must have the same dimension to perform Hilbert-Schmidt product') A = self.matrix B = x.matrix return np.trace(np.dot(A.conj().T, B))<|docstring|>Hilbert-Schmidt product between this and another Operator Performs a Hilbert-Schmidt product between this and another Operator, that acts as an inner product. Arguments: x {Operator} -- Other operator Returns: number -- Result Raises: ValueError -- Thrown if x is not the right type of object<|endoftext|>
975aaaa05133e88793e45f00c399cd1e26ea2b85317c13fdfd72b4510c48786d
def basis_change(self, basis): 'Return a version of this Operator with different basis\n\n Transform this Operator to use a different basis. The basis\n must be a matrix of orthogonal vectors. Passing as basis\n the eigenvectors of the operator will diagonalise it.\n\n Arguments:\n basis {ndarray} -- Basis to transform the operator to.\n\n Returns:\n Operator -- Basis transformed version of this operator\n ' ans = self.clone() ans._matrix = np.linalg.multi_dot([basis.T.conj(), ans._matrix, basis]) return ans
Return a version of this Operator with different basis Transform this Operator to use a different basis. The basis must be a matrix of orthogonal vectors. Passing as basis the eigenvectors of the operator will diagonalise it. Arguments: basis {ndarray} -- Basis to transform the operator to. Returns: Operator -- Basis transformed version of this operator
muspinsim/spinop.py
basis_change
muon-spectroscopy-computational-project/muspinsim
2
python
def basis_change(self, basis): 'Return a version of this Operator with different basis\n\n Transform this Operator to use a different basis. The basis\n must be a matrix of orthogonal vectors. Passing as basis\n the eigenvectors of the operator will diagonalise it.\n\n Arguments:\n basis {ndarray} -- Basis to transform the operator to.\n\n Returns:\n Operator -- Basis transformed version of this operator\n ' ans = self.clone() ans._matrix = np.linalg.multi_dot([basis.T.conj(), ans._matrix, basis]) return ans
def basis_change(self, basis): 'Return a version of this Operator with different basis\n\n Transform this Operator to use a different basis. The basis\n must be a matrix of orthogonal vectors. Passing as basis\n the eigenvectors of the operator will diagonalise it.\n\n Arguments:\n basis {ndarray} -- Basis to transform the operator to.\n\n Returns:\n Operator -- Basis transformed version of this operator\n ' ans = self.clone() ans._matrix = np.linalg.multi_dot([basis.T.conj(), ans._matrix, basis]) return ans<|docstring|>Return a version of this Operator with different basis Transform this Operator to use a different basis. The basis must be a matrix of orthogonal vectors. Passing as basis the eigenvectors of the operator will diagonalise it. Arguments: basis {ndarray} -- Basis to transform the operator to. Returns: Operator -- Basis transformed version of this operator<|endoftext|>
06b5b74cb393425d206b3f4aad259d52ff2f2f91a541d266582e217da0f207bd
@classmethod def from_axes(self, Is=0.5, axes='x'): "Construct a SpinOperator from spins and axes\n\n Construct a SpinOperator from a list of spin values and directions. For\n example, Is=[0.5, 0.5] axes=['x', 'z'] will create a SxIz operator between\n two spin 1/2 particles.\n\n Keyword Arguments:\n Is {[number]} -- List of spins (must be half-integers). Can pass a\n number if it's only one value (default: {0.5})\n axes {[str]} -- List of axes, can pass a single character if it's\n only one value. Each value can be x, y, z, +, -,\n or 0 (for the identity operator) (default: {'x'})\n\n Returns:\n SpinOperator -- Operator built according to specifications\n\n Raises:\n ValueError -- Any of the values passed is invalid\n " if isinstance(Is, Number): Is = [Is] if ((len(Is) != len(axes)) or (len(Is) == 0)): raise ValueError('Arrays of moments and axes must have same length > 0') dim = tuple((int(((2 * I) + 1)) for I in Is)) matrices = [] for (I, axis) in zip(Is, axes): if ((I % 0.5) or (I < 0.5)): raise ValueError('{0} is not a valid spin value'.format(I)) if (not (axis in 'xyz+-0')): raise ValueError('{0} is not a valid spin axis'.format(axis)) mvals = _mvals(I) o = {'x': _Sx, 'y': _Sy, 'z': _Sz, '+': _Sp, '-': _Sm, '0': _S0}[axis](mvals) matrices.append(o) M = matrices[0] for m in matrices[1:]: M = np.kron(M, m) return self(M, dim=dim)
Construct a SpinOperator from spins and axes Construct a SpinOperator from a list of spin values and directions. For example, Is=[0.5, 0.5] axes=['x', 'z'] will create a SxIz operator between two spin 1/2 particles. Keyword Arguments: Is {[number]} -- List of spins (must be half-integers). Can pass a number if it's only one value (default: {0.5}) axes {[str]} -- List of axes, can pass a single character if it's only one value. Each value can be x, y, z, +, -, or 0 (for the identity operator) (default: {'x'}) Returns: SpinOperator -- Operator built according to specifications Raises: ValueError -- Any of the values passed is invalid
muspinsim/spinop.py
from_axes
muon-spectroscopy-computational-project/muspinsim
2
python
@classmethod def from_axes(self, Is=0.5, axes='x'): "Construct a SpinOperator from spins and axes\n\n Construct a SpinOperator from a list of spin values and directions. For\n example, Is=[0.5, 0.5] axes=['x', 'z'] will create a SxIz operator between\n two spin 1/2 particles.\n\n Keyword Arguments:\n Is {[number]} -- List of spins (must be half-integers). Can pass a\n number if it's only one value (default: {0.5})\n axes {[str]} -- List of axes, can pass a single character if it's\n only one value. Each value can be x, y, z, +, -,\n or 0 (for the identity operator) (default: {'x'})\n\n Returns:\n SpinOperator -- Operator built according to specifications\n\n Raises:\n ValueError -- Any of the values passed is invalid\n " if isinstance(Is, Number): Is = [Is] if ((len(Is) != len(axes)) or (len(Is) == 0)): raise ValueError('Arrays of moments and axes must have same length > 0') dim = tuple((int(((2 * I) + 1)) for I in Is)) matrices = [] for (I, axis) in zip(Is, axes): if ((I % 0.5) or (I < 0.5)): raise ValueError('{0} is not a valid spin value'.format(I)) if (not (axis in 'xyz+-0')): raise ValueError('{0} is not a valid spin axis'.format(axis)) mvals = _mvals(I) o = {'x': _Sx, 'y': _Sy, 'z': _Sz, '+': _Sp, '-': _Sm, '0': _S0}[axis](mvals) matrices.append(o) M = matrices[0] for m in matrices[1:]: M = np.kron(M, m) return self(M, dim=dim)
@classmethod def from_axes(self, Is=0.5, axes='x'): "Construct a SpinOperator from spins and axes\n\n Construct a SpinOperator from a list of spin values and directions. For\n example, Is=[0.5, 0.5] axes=['x', 'z'] will create a SxIz operator between\n two spin 1/2 particles.\n\n Keyword Arguments:\n Is {[number]} -- List of spins (must be half-integers). Can pass a\n number if it's only one value (default: {0.5})\n axes {[str]} -- List of axes, can pass a single character if it's\n only one value. Each value can be x, y, z, +, -,\n or 0 (for the identity operator) (default: {'x'})\n\n Returns:\n SpinOperator -- Operator built according to specifications\n\n Raises:\n ValueError -- Any of the values passed is invalid\n " if isinstance(Is, Number): Is = [Is] if ((len(Is) != len(axes)) or (len(Is) == 0)): raise ValueError('Arrays of moments and axes must have same length > 0') dim = tuple((int(((2 * I) + 1)) for I in Is)) matrices = [] for (I, axis) in zip(Is, axes): if ((I % 0.5) or (I < 0.5)): raise ValueError('{0} is not a valid spin value'.format(I)) if (not (axis in 'xyz+-0')): raise ValueError('{0} is not a valid spin axis'.format(axis)) mvals = _mvals(I) o = {'x': _Sx, 'y': _Sy, 'z': _Sz, '+': _Sp, '-': _Sm, '0': _S0}[axis](mvals) matrices.append(o) M = matrices[0] for m in matrices[1:]: M = np.kron(M, m) return self(M, dim=dim)<|docstring|>Construct a SpinOperator from spins and axes Construct a SpinOperator from a list of spin values and directions. For example, Is=[0.5, 0.5] axes=['x', 'z'] will create a SxIz operator between two spin 1/2 particles. Keyword Arguments: Is {[number]} -- List of spins (must be half-integers). Can pass a number if it's only one value (default: {0.5}) axes {[str]} -- List of axes, can pass a single character if it's only one value. Each value can be x, y, z, +, -, or 0 (for the identity operator) (default: {'x'}) Returns: SpinOperator -- Operator built according to specifications Raises: ValueError -- Any of the values passed is invalid<|endoftext|>
8db31ad294b86538af96a0e204fe4e73804aca0f64c0923415abaf20be011188
def __init__(self, matrix, dim=None): "Create a DensityOperator object\n\n Create an object representing a density operator. These can\n be manipulated by e.g. multiplying them by a scalar or among themselves\n (equivalent to a dot product), or adding and subtracting them.\n\n Arguments:\n matrix {ndarray} -- Matrix describing the operator (must be a\n square hermitian 2D array and have non-zero\n trace; will be normalised to have trace 1)\n\n Keyword Arguments:\n dim {(int,...)} -- Tuple of the dimensions of the operator. For example,\n (2,2) corresponds to two 1/2 spins and a 4x4 matrix.\n If not specified, it's taken from the size of\n the matrix (default: {None})\n\n Raises:\n ValueError -- Any of the passed values are invalid\n " super(DensityOperator, self).__init__(matrix, dim) tr = np.trace(self._matrix) if (tr == 0): raise ValueError('Can not define a DensityOperator with zero trace') else: self.normalize() if (not self.is_hermitian): raise ValueError('DensityOperator must be hermitian!')
Create a DensityOperator object Create an object representing a density operator. These can be manipulated by e.g. multiplying them by a scalar or among themselves (equivalent to a dot product), or adding and subtracting them. Arguments: matrix {ndarray} -- Matrix describing the operator (must be a square hermitian 2D array and have non-zero trace; will be normalised to have trace 1) Keyword Arguments: dim {(int,...)} -- Tuple of the dimensions of the operator. For example, (2,2) corresponds to two 1/2 spins and a 4x4 matrix. If not specified, it's taken from the size of the matrix (default: {None}) Raises: ValueError -- Any of the passed values are invalid
muspinsim/spinop.py
__init__
muon-spectroscopy-computational-project/muspinsim
2
python
def __init__(self, matrix, dim=None): "Create a DensityOperator object\n\n Create an object representing a density operator. These can\n be manipulated by e.g. multiplying them by a scalar or among themselves\n (equivalent to a dot product), or adding and subtracting them.\n\n Arguments:\n matrix {ndarray} -- Matrix describing the operator (must be a\n square hermitian 2D array and have non-zero\n trace; will be normalised to have trace 1)\n\n Keyword Arguments:\n dim {(int,...)} -- Tuple of the dimensions of the operator. For example,\n (2,2) corresponds to two 1/2 spins and a 4x4 matrix.\n If not specified, it's taken from the size of\n the matrix (default: {None})\n\n Raises:\n ValueError -- Any of the passed values are invalid\n " super(DensityOperator, self).__init__(matrix, dim) tr = np.trace(self._matrix) if (tr == 0): raise ValueError('Can not define a DensityOperator with zero trace') else: self.normalize() if (not self.is_hermitian): raise ValueError('DensityOperator must be hermitian!')
def __init__(self, matrix, dim=None): "Create a DensityOperator object\n\n Create an object representing a density operator. These can\n be manipulated by e.g. multiplying them by a scalar or among themselves\n (equivalent to a dot product), or adding and subtracting them.\n\n Arguments:\n matrix {ndarray} -- Matrix describing the operator (must be a\n square hermitian 2D array and have non-zero\n trace; will be normalised to have trace 1)\n\n Keyword Arguments:\n dim {(int,...)} -- Tuple of the dimensions of the operator. For example,\n (2,2) corresponds to two 1/2 spins and a 4x4 matrix.\n If not specified, it's taken from the size of\n the matrix (default: {None})\n\n Raises:\n ValueError -- Any of the passed values are invalid\n " super(DensityOperator, self).__init__(matrix, dim) tr = np.trace(self._matrix) if (tr == 0): raise ValueError('Can not define a DensityOperator with zero trace') else: self.normalize() if (not self.is_hermitian): raise ValueError('DensityOperator must be hermitian!')<|docstring|>Create a DensityOperator object Create an object representing a density operator. These can be manipulated by e.g. multiplying them by a scalar or among themselves (equivalent to a dot product), or adding and subtracting them. Arguments: matrix {ndarray} -- Matrix describing the operator (must be a square hermitian 2D array and have non-zero trace; will be normalised to have trace 1) Keyword Arguments: dim {(int,...)} -- Tuple of the dimensions of the operator. For example, (2,2) corresponds to two 1/2 spins and a 4x4 matrix. If not specified, it's taken from the size of the matrix (default: {None}) Raises: ValueError -- Any of the passed values are invalid<|endoftext|>
db43ae03e27c0b71057197e4d2318c003ac7627b9f230b5dcb0f59600c2cf1f8
@classmethod def from_vectors(self, Is=0.5, vectors=[0, 0, 1], gammas=0): "Construct a density matrix state from real space vectors\n\n Construct a density matrix state by specifying a number of spins and\n real space directions. The state is initialised as the tensor product\n of independent spin states each pointing in the specified direction.\n A parameter gamma can be used to include decoherence effects and thus\n dampen or zero out all off-diagonal elements.\n\n Keyword Arguments:\n Is {[number]} -- List of spins (must be half-integers). Can pass a\n number if it's only one value (default: {0.5})\n vectors {[ndarray]} -- List of vectors. Can pass a single 3D vector\n if it's only one value (default: {[0, 0, 1]})\n gammas {[number]} -- List of gamma factors. Can pass a single number\n if it's only one value. All off-diagonal\n elements for each corresponding density matrix\n will be multiplied by 1-gamma. (default: {0})\n\n Returns:\n DensityOperator -- The composite density operator\n\n Raises:\n ValueError -- Any of the passed values are invalid\n " if isinstance(Is, Number): Is = [Is] if (len(np.array(vectors).shape) == 1): vectors = [vectors] if isinstance(gammas, Number): gammas = [gammas] if ((len(Is) != len(vectors)) or (len(Is) != len(gammas)) or (len(Is) == 0)): raise ValueError('Arrays of moments, axes and gammas must have same length > 0') dim = tuple((int(((2 * I) + 1)) for I in Is)) matrices = [] for (I, vec, gamma) in zip(Is, vectors, gammas): if ((I % 0.5) or (I < 0.5)): raise ValueError('{0} is not a valid spin value'.format(I)) if (not (len(vec) == 3)): raise ValueError('{0} is not a valid 3D vector'.format(vec)) if ((gamma < 0) or (gamma > 1)): raise ValueError('{0} is not a valid gamma value'.format(gamma)) mvals = _mvals(I) S = [_Sx(mvals), _Sy(mvals), _Sz(mvals)] o = sum([(S[i] * vec[i]) for i in range(3)]) (evals, evecs) = np.linalg.eigh(o) psi = evecs[(:, np.argmax(evals))] m = (psi[(:, None)] * psi[(None, :)].conj()) m *= (((1 - gamma) * np.ones(m.shape)) + (gamma * np.eye(m.shape[0]))) matrices.append(m) M = matrices[0] for m in matrices[1:]: M = np.kron(M, m) return self(M, dim=dim)
Construct a density matrix state from real space vectors Construct a density matrix state by specifying a number of spins and real space directions. The state is initialised as the tensor product of independent spin states each pointing in the specified direction. A parameter gamma can be used to include decoherence effects and thus dampen or zero out all off-diagonal elements. Keyword Arguments: Is {[number]} -- List of spins (must be half-integers). Can pass a number if it's only one value (default: {0.5}) vectors {[ndarray]} -- List of vectors. Can pass a single 3D vector if it's only one value (default: {[0, 0, 1]}) gammas {[number]} -- List of gamma factors. Can pass a single number if it's only one value. All off-diagonal elements for each corresponding density matrix will be multiplied by 1-gamma. (default: {0}) Returns: DensityOperator -- The composite density operator Raises: ValueError -- Any of the passed values are invalid
muspinsim/spinop.py
from_vectors
muon-spectroscopy-computational-project/muspinsim
2
python
@classmethod def from_vectors(self, Is=0.5, vectors=[0, 0, 1], gammas=0): "Construct a density matrix state from real space vectors\n\n Construct a density matrix state by specifying a number of spins and\n real space directions. The state is initialised as the tensor product\n of independent spin states each pointing in the specified direction.\n A parameter gamma can be used to include decoherence effects and thus\n dampen or zero out all off-diagonal elements.\n\n Keyword Arguments:\n Is {[number]} -- List of spins (must be half-integers). Can pass a\n number if it's only one value (default: {0.5})\n vectors {[ndarray]} -- List of vectors. Can pass a single 3D vector\n if it's only one value (default: {[0, 0, 1]})\n gammas {[number]} -- List of gamma factors. Can pass a single number\n if it's only one value. All off-diagonal\n elements for each corresponding density matrix\n will be multiplied by 1-gamma. (default: {0})\n\n Returns:\n DensityOperator -- The composite density operator\n\n Raises:\n ValueError -- Any of the passed values are invalid\n " if isinstance(Is, Number): Is = [Is] if (len(np.array(vectors).shape) == 1): vectors = [vectors] if isinstance(gammas, Number): gammas = [gammas] if ((len(Is) != len(vectors)) or (len(Is) != len(gammas)) or (len(Is) == 0)): raise ValueError('Arrays of moments, axes and gammas must have same length > 0') dim = tuple((int(((2 * I) + 1)) for I in Is)) matrices = [] for (I, vec, gamma) in zip(Is, vectors, gammas): if ((I % 0.5) or (I < 0.5)): raise ValueError('{0} is not a valid spin value'.format(I)) if (not (len(vec) == 3)): raise ValueError('{0} is not a valid 3D vector'.format(vec)) if ((gamma < 0) or (gamma > 1)): raise ValueError('{0} is not a valid gamma value'.format(gamma)) mvals = _mvals(I) S = [_Sx(mvals), _Sy(mvals), _Sz(mvals)] o = sum([(S[i] * vec[i]) for i in range(3)]) (evals, evecs) = np.linalg.eigh(o) psi = evecs[(:, np.argmax(evals))] m = (psi[(:, None)] * psi[(None, :)].conj()) m *= (((1 - gamma) * np.ones(m.shape)) + (gamma * np.eye(m.shape[0]))) matrices.append(m) M = matrices[0] for m in matrices[1:]: M = np.kron(M, m) return self(M, dim=dim)
@classmethod def from_vectors(self, Is=0.5, vectors=[0, 0, 1], gammas=0): "Construct a density matrix state from real space vectors\n\n Construct a density matrix state by specifying a number of spins and\n real space directions. The state is initialised as the tensor product\n of independent spin states each pointing in the specified direction.\n A parameter gamma can be used to include decoherence effects and thus\n dampen or zero out all off-diagonal elements.\n\n Keyword Arguments:\n Is {[number]} -- List of spins (must be half-integers). Can pass a\n number if it's only one value (default: {0.5})\n vectors {[ndarray]} -- List of vectors. Can pass a single 3D vector\n if it's only one value (default: {[0, 0, 1]})\n gammas {[number]} -- List of gamma factors. Can pass a single number\n if it's only one value. All off-diagonal\n elements for each corresponding density matrix\n will be multiplied by 1-gamma. (default: {0})\n\n Returns:\n DensityOperator -- The composite density operator\n\n Raises:\n ValueError -- Any of the passed values are invalid\n " if isinstance(Is, Number): Is = [Is] if (len(np.array(vectors).shape) == 1): vectors = [vectors] if isinstance(gammas, Number): gammas = [gammas] if ((len(Is) != len(vectors)) or (len(Is) != len(gammas)) or (len(Is) == 0)): raise ValueError('Arrays of moments, axes and gammas must have same length > 0') dim = tuple((int(((2 * I) + 1)) for I in Is)) matrices = [] for (I, vec, gamma) in zip(Is, vectors, gammas): if ((I % 0.5) or (I < 0.5)): raise ValueError('{0} is not a valid spin value'.format(I)) if (not (len(vec) == 3)): raise ValueError('{0} is not a valid 3D vector'.format(vec)) if ((gamma < 0) or (gamma > 1)): raise ValueError('{0} is not a valid gamma value'.format(gamma)) mvals = _mvals(I) S = [_Sx(mvals), _Sy(mvals), _Sz(mvals)] o = sum([(S[i] * vec[i]) for i in range(3)]) (evals, evecs) = np.linalg.eigh(o) psi = evecs[(:, np.argmax(evals))] m = (psi[(:, None)] * psi[(None, :)].conj()) m *= (((1 - gamma) * np.ones(m.shape)) + (gamma * np.eye(m.shape[0]))) matrices.append(m) M = matrices[0] for m in matrices[1:]: M = np.kron(M, m) return self(M, dim=dim)<|docstring|>Construct a density matrix state from real space vectors Construct a density matrix state by specifying a number of spins and real space directions. The state is initialised as the tensor product of independent spin states each pointing in the specified direction. A parameter gamma can be used to include decoherence effects and thus dampen or zero out all off-diagonal elements. Keyword Arguments: Is {[number]} -- List of spins (must be half-integers). Can pass a number if it's only one value (default: {0.5}) vectors {[ndarray]} -- List of vectors. Can pass a single 3D vector if it's only one value (default: {[0, 0, 1]}) gammas {[number]} -- List of gamma factors. Can pass a single number if it's only one value. All off-diagonal elements for each corresponding density matrix will be multiplied by 1-gamma. (default: {0}) Returns: DensityOperator -- The composite density operator Raises: ValueError -- Any of the passed values are invalid<|endoftext|>
80b0c1bf304bbe975aca5772b0488c72fdd958e6a0bab6e465ce2db9938ef976
def normalize(self): 'Normalize this DensityOperator to have trace equal to one.' self._matrix /= self.trace
Normalize this DensityOperator to have trace equal to one.
muspinsim/spinop.py
normalize
muon-spectroscopy-computational-project/muspinsim
2
python
def normalize(self): self._matrix /= self.trace
def normalize(self): self._matrix /= self.trace<|docstring|>Normalize this DensityOperator to have trace equal to one.<|endoftext|>
cbe1a05ac9994d75199f0061bcaf8fbca134739f1fd816cd4c38d353536c8160
def partial_trace(self, tracedim=[]): 'Perform a partial trace operation\n\n Perform a partial trace over the specified dimensions and return the\n resulting DensityOperator.\n\n Keyword Arguments:\n tracedim {[int]} -- Indices of dimensions to perform the partial\n trace over (default: {[]})\n\n Returns:\n DensityOperator -- Operator with partial trace\n ' dim = list(self._dim) tdim = list(sorted(tracedim)) m = self._matrix.reshape((dim + dim)) while (len(tdim) > 0): td = tdim.pop((- 1)) m = np.trace(m, axis1=td, axis2=(td + len(dim))) dim.pop(td) return DensityOperator(m, dim)
Perform a partial trace operation Perform a partial trace over the specified dimensions and return the resulting DensityOperator. Keyword Arguments: tracedim {[int]} -- Indices of dimensions to perform the partial trace over (default: {[]}) Returns: DensityOperator -- Operator with partial trace
muspinsim/spinop.py
partial_trace
muon-spectroscopy-computational-project/muspinsim
2
python
def partial_trace(self, tracedim=[]): 'Perform a partial trace operation\n\n Perform a partial trace over the specified dimensions and return the\n resulting DensityOperator.\n\n Keyword Arguments:\n tracedim {[int]} -- Indices of dimensions to perform the partial\n trace over (default: {[]})\n\n Returns:\n DensityOperator -- Operator with partial trace\n ' dim = list(self._dim) tdim = list(sorted(tracedim)) m = self._matrix.reshape((dim + dim)) while (len(tdim) > 0): td = tdim.pop((- 1)) m = np.trace(m, axis1=td, axis2=(td + len(dim))) dim.pop(td) return DensityOperator(m, dim)
def partial_trace(self, tracedim=[]): 'Perform a partial trace operation\n\n Perform a partial trace over the specified dimensions and return the\n resulting DensityOperator.\n\n Keyword Arguments:\n tracedim {[int]} -- Indices of dimensions to perform the partial\n trace over (default: {[]})\n\n Returns:\n DensityOperator -- Operator with partial trace\n ' dim = list(self._dim) tdim = list(sorted(tracedim)) m = self._matrix.reshape((dim + dim)) while (len(tdim) > 0): td = tdim.pop((- 1)) m = np.trace(m, axis1=td, axis2=(td + len(dim))) dim.pop(td) return DensityOperator(m, dim)<|docstring|>Perform a partial trace operation Perform a partial trace over the specified dimensions and return the resulting DensityOperator. Keyword Arguments: tracedim {[int]} -- Indices of dimensions to perform the partial trace over (default: {[]}) Returns: DensityOperator -- Operator with partial trace<|endoftext|>
1e3eed146419593d1fb8ffffc91ebec97c8f3edcb16b3d93d347aec147168f09
def expectation(self, operator): "Compute expectation value of one operator\n\n Compute expectation value of an operator over the state defined by\n this DensityOperator.\n\n Arguments:\n operator {SpinOperator} -- Operator to compute the expectation\n value of\n\n Returns:\n number -- Expectation value\n\n Raises:\n TypeError -- The argument isn't a SpinOperator\n ValueError -- The operator isn't compatible with this one\n " if (not isinstance(operator, SpinOperator)): raise TypeError('Argument must be a SpinOperator') if (not (operator.dimension == self.dimension)): raise ValueError('SpinOperator and DensityOperator do not have compatible dimensions') return np.sum((operator.matrix * self.matrix.T))
Compute expectation value of one operator Compute expectation value of an operator over the state defined by this DensityOperator. Arguments: operator {SpinOperator} -- Operator to compute the expectation value of Returns: number -- Expectation value Raises: TypeError -- The argument isn't a SpinOperator ValueError -- The operator isn't compatible with this one
muspinsim/spinop.py
expectation
muon-spectroscopy-computational-project/muspinsim
2
python
def expectation(self, operator): "Compute expectation value of one operator\n\n Compute expectation value of an operator over the state defined by\n this DensityOperator.\n\n Arguments:\n operator {SpinOperator} -- Operator to compute the expectation\n value of\n\n Returns:\n number -- Expectation value\n\n Raises:\n TypeError -- The argument isn't a SpinOperator\n ValueError -- The operator isn't compatible with this one\n " if (not isinstance(operator, SpinOperator)): raise TypeError('Argument must be a SpinOperator') if (not (operator.dimension == self.dimension)): raise ValueError('SpinOperator and DensityOperator do not have compatible dimensions') return np.sum((operator.matrix * self.matrix.T))
def expectation(self, operator): "Compute expectation value of one operator\n\n Compute expectation value of an operator over the state defined by\n this DensityOperator.\n\n Arguments:\n operator {SpinOperator} -- Operator to compute the expectation\n value of\n\n Returns:\n number -- Expectation value\n\n Raises:\n TypeError -- The argument isn't a SpinOperator\n ValueError -- The operator isn't compatible with this one\n " if (not isinstance(operator, SpinOperator)): raise TypeError('Argument must be a SpinOperator') if (not (operator.dimension == self.dimension)): raise ValueError('SpinOperator and DensityOperator do not have compatible dimensions') return np.sum((operator.matrix * self.matrix.T))<|docstring|>Compute expectation value of one operator Compute expectation value of an operator over the state defined by this DensityOperator. Arguments: operator {SpinOperator} -- Operator to compute the expectation value of Returns: number -- Expectation value Raises: TypeError -- The argument isn't a SpinOperator ValueError -- The operator isn't compatible with this one<|endoftext|>
1a98bd73927181d5c77b31898208f3d99e5f208009cf54b354ecbcf12d8347cb
@classmethod def left_multiplier(self, operator): 'Create a SuperOperator that performs a left multiplication\n\n Create a superoperator L from an operator O such that\n\n L*rho = O*rho\n\n Arguments:\n operator {Operator} -- Operator O\n\n Returns:\n SuperOperator -- SuperOperator L\n ' m = operator.matrix d = operator.dimension M = np.kron(m, np.eye(m.shape[0])) return self(M, (d + d))
Create a SuperOperator that performs a left multiplication Create a superoperator L from an operator O such that L*rho = O*rho Arguments: operator {Operator} -- Operator O Returns: SuperOperator -- SuperOperator L
muspinsim/spinop.py
left_multiplier
muon-spectroscopy-computational-project/muspinsim
2
python
@classmethod def left_multiplier(self, operator): 'Create a SuperOperator that performs a left multiplication\n\n Create a superoperator L from an operator O such that\n\n L*rho = O*rho\n\n Arguments:\n operator {Operator} -- Operator O\n\n Returns:\n SuperOperator -- SuperOperator L\n ' m = operator.matrix d = operator.dimension M = np.kron(m, np.eye(m.shape[0])) return self(M, (d + d))
@classmethod def left_multiplier(self, operator): 'Create a SuperOperator that performs a left multiplication\n\n Create a superoperator L from an operator O such that\n\n L*rho = O*rho\n\n Arguments:\n operator {Operator} -- Operator O\n\n Returns:\n SuperOperator -- SuperOperator L\n ' m = operator.matrix d = operator.dimension M = np.kron(m, np.eye(m.shape[0])) return self(M, (d + d))<|docstring|>Create a SuperOperator that performs a left multiplication Create a superoperator L from an operator O such that L*rho = O*rho Arguments: operator {Operator} -- Operator O Returns: SuperOperator -- SuperOperator L<|endoftext|>
9766b65676e246b15a2db8d130e1ce0440d43aabbbecfdbee321b05f61c770e9
@classmethod def right_multiplier(self, operator): 'Create a SuperOperator that performs a right multiplication\n\n Create a superoperator L from an operator O such that\n\n L*rho = rho*O\n\n Arguments:\n operator {Operator} -- Operator O\n\n Returns:\n SuperOperator -- SuperOperator L\n ' m = operator.matrix d = operator.dimension M = np.kron(np.eye(m.shape[0]), m.T) return self(M, (d + d))
Create a SuperOperator that performs a right multiplication Create a superoperator L from an operator O such that L*rho = rho*O Arguments: operator {Operator} -- Operator O Returns: SuperOperator -- SuperOperator L
muspinsim/spinop.py
right_multiplier
muon-spectroscopy-computational-project/muspinsim
2
python
@classmethod def right_multiplier(self, operator): 'Create a SuperOperator that performs a right multiplication\n\n Create a superoperator L from an operator O such that\n\n L*rho = rho*O\n\n Arguments:\n operator {Operator} -- Operator O\n\n Returns:\n SuperOperator -- SuperOperator L\n ' m = operator.matrix d = operator.dimension M = np.kron(np.eye(m.shape[0]), m.T) return self(M, (d + d))
@classmethod def right_multiplier(self, operator): 'Create a SuperOperator that performs a right multiplication\n\n Create a superoperator L from an operator O such that\n\n L*rho = rho*O\n\n Arguments:\n operator {Operator} -- Operator O\n\n Returns:\n SuperOperator -- SuperOperator L\n ' m = operator.matrix d = operator.dimension M = np.kron(np.eye(m.shape[0]), m.T) return self(M, (d + d))<|docstring|>Create a SuperOperator that performs a right multiplication Create a superoperator L from an operator O such that L*rho = rho*O Arguments: operator {Operator} -- Operator O Returns: SuperOperator -- SuperOperator L<|endoftext|>
c77013f6dcde49cba074095f9e87954c7ee13a28db1d3765e85ee3fa67a2ac9c
@classmethod def commutator(self, operator): 'Create a SuperOperator that performs a commutation\n\n Create a superoperator L from an operator O such that\n\n L*rho = O*rho-rho*O\n\n Arguments:\n operator {Operator} -- Operator O\n\n Returns:\n SuperOperator -- SuperOperator L\n ' return (self.left_multiplier(operator) - self.right_multiplier(operator))
Create a SuperOperator that performs a commutation Create a superoperator L from an operator O such that L*rho = O*rho-rho*O Arguments: operator {Operator} -- Operator O Returns: SuperOperator -- SuperOperator L
muspinsim/spinop.py
commutator
muon-spectroscopy-computational-project/muspinsim
2
python
@classmethod def commutator(self, operator): 'Create a SuperOperator that performs a commutation\n\n Create a superoperator L from an operator O such that\n\n L*rho = O*rho-rho*O\n\n Arguments:\n operator {Operator} -- Operator O\n\n Returns:\n SuperOperator -- SuperOperator L\n ' return (self.left_multiplier(operator) - self.right_multiplier(operator))
@classmethod def commutator(self, operator): 'Create a SuperOperator that performs a commutation\n\n Create a superoperator L from an operator O such that\n\n L*rho = O*rho-rho*O\n\n Arguments:\n operator {Operator} -- Operator O\n\n Returns:\n SuperOperator -- SuperOperator L\n ' return (self.left_multiplier(operator) - self.right_multiplier(operator))<|docstring|>Create a SuperOperator that performs a commutation Create a superoperator L from an operator O such that L*rho = O*rho-rho*O Arguments: operator {Operator} -- Operator O Returns: SuperOperator -- SuperOperator L<|endoftext|>
cc8ade2e8a08870241754b9ee64735e33c56840653c227e339c86cb41ba158c9
@classmethod def anticommutator(self, operator): 'Create a SuperOperator that performs an anticommutation\n\n Create a superoperator L from an operator O such that\n\n L*rho = O*rho+rho*O\n\n Arguments:\n operator {Operator} -- Operator O\n\n Returns:\n SuperOperator -- SuperOperator L\n ' return (self.left_multiplier(operator) + self.right_multiplier(operator))
Create a SuperOperator that performs an anticommutation Create a superoperator L from an operator O such that L*rho = O*rho+rho*O Arguments: operator {Operator} -- Operator O Returns: SuperOperator -- SuperOperator L
muspinsim/spinop.py
anticommutator
muon-spectroscopy-computational-project/muspinsim
2
python
@classmethod def anticommutator(self, operator): 'Create a SuperOperator that performs an anticommutation\n\n Create a superoperator L from an operator O such that\n\n L*rho = O*rho+rho*O\n\n Arguments:\n operator {Operator} -- Operator O\n\n Returns:\n SuperOperator -- SuperOperator L\n ' return (self.left_multiplier(operator) + self.right_multiplier(operator))
@classmethod def anticommutator(self, operator): 'Create a SuperOperator that performs an anticommutation\n\n Create a superoperator L from an operator O such that\n\n L*rho = O*rho+rho*O\n\n Arguments:\n operator {Operator} -- Operator O\n\n Returns:\n SuperOperator -- SuperOperator L\n ' return (self.left_multiplier(operator) + self.right_multiplier(operator))<|docstring|>Create a SuperOperator that performs an anticommutation Create a superoperator L from an operator O such that L*rho = O*rho+rho*O Arguments: operator {Operator} -- Operator O Returns: SuperOperator -- SuperOperator L<|endoftext|>
8e7f604706912a98bd7be236af62fe19980c93a8ebe548590e678855619cec54
@classmethod def bracket(self, operator): 'Create a SuperOperator that performs a basis change\n\n Create a superoperator L from an operator O such that\n\n L*rho = O*rho*O^\n\n where O^ is the conjugate transpose of O.\n\n Arguments:\n operator {Operator} -- Operator O\n\n Returns:\n SuperOperator -- SuperOperator L\n ' m = operator.matrix d = operator.dimension M = np.kron(m, m.conj()) return self(M, (d + d))
Create a SuperOperator that performs a basis change Create a superoperator L from an operator O such that L*rho = O*rho*O^ where O^ is the conjugate transpose of O. Arguments: operator {Operator} -- Operator O Returns: SuperOperator -- SuperOperator L
muspinsim/spinop.py
bracket
muon-spectroscopy-computational-project/muspinsim
2
python
@classmethod def bracket(self, operator): 'Create a SuperOperator that performs a basis change\n\n Create a superoperator L from an operator O such that\n\n L*rho = O*rho*O^\n\n where O^ is the conjugate transpose of O.\n\n Arguments:\n operator {Operator} -- Operator O\n\n Returns:\n SuperOperator -- SuperOperator L\n ' m = operator.matrix d = operator.dimension M = np.kron(m, m.conj()) return self(M, (d + d))
@classmethod def bracket(self, operator): 'Create a SuperOperator that performs a basis change\n\n Create a superoperator L from an operator O such that\n\n L*rho = O*rho*O^\n\n where O^ is the conjugate transpose of O.\n\n Arguments:\n operator {Operator} -- Operator O\n\n Returns:\n SuperOperator -- SuperOperator L\n ' m = operator.matrix d = operator.dimension M = np.kron(m, m.conj()) return self(M, (d + d))<|docstring|>Create a SuperOperator that performs a basis change Create a superoperator L from an operator O such that L*rho = O*rho*O^ where O^ is the conjugate transpose of O. Arguments: operator {Operator} -- Operator O Returns: SuperOperator -- SuperOperator L<|endoftext|>
e6ed41e44eff132b9fd58964ffbaa0d3a64c3d52a47308408f8e430c28b5e2be
def atm_print(): 'Prints both English and Metric standard atmosphere tables.\n ' metric_filename = 'stdatmos_si.txt' with open(metric_filename, 'w') as output_handle: output_handle.write('Geometric Geopotential Speed of\n') output_handle.write('Altitude Altitude Temperature Pressure Density Sound \n') output_handle.write(' (m) (m) (K) (N/m**2) (kg/m**3) (m/s) \n') output_handle.write('-----------------------------------------------------------------------\n') for i in range(51): h = (i * 2000.0) (z, t, p, d) = statsi(h) a = np.sqrt(((1.4 * 287.0528) * t)) write_string = '{0:<10}{1:<13.5f}{2:<13.5f}{3:<14.5e}{4:<13.5e}{5:<8.4f}\n'.format(h, z, t, p, d, a) output_handle.write(write_string) english_filename = 'stdatmos_ee.txt' with open(english_filename, 'w') as output_handle: output_handle.write('Geometric Geopotential Speed of\n') output_handle.write('Altitude Altitude Temperature Pressure Density Sound \n') output_handle.write(' (ft) (ft) (R) (lbf/ft^2) (slugs/ft^3) (ft/s) \n') output_handle.write('------------------------------------------------------------------------\n') for i in range(51): h = (i * 5000.0) (z, t, p, d) = statee(h) a = (np.sqrt((((1.4 * 287.0528) * t) / 1.8)) / 0.3048) write_string = '{0:<10}{1:<13.5f}{2:<13.5f}{3:<14.5e}{4:<13.5e}{5:<8.4f}\n'.format(h, z, t, p, d, a) output_handle.write(write_string)
Prints both English and Metric standard atmosphere tables.
pylot/std_atmos.py
atm_print
luzpaz/Pylot
24
python
def atm_print(): '\n ' metric_filename = 'stdatmos_si.txt' with open(metric_filename, 'w') as output_handle: output_handle.write('Geometric Geopotential Speed of\n') output_handle.write('Altitude Altitude Temperature Pressure Density Sound \n') output_handle.write(' (m) (m) (K) (N/m**2) (kg/m**3) (m/s) \n') output_handle.write('-----------------------------------------------------------------------\n') for i in range(51): h = (i * 2000.0) (z, t, p, d) = statsi(h) a = np.sqrt(((1.4 * 287.0528) * t)) write_string = '{0:<10}{1:<13.5f}{2:<13.5f}{3:<14.5e}{4:<13.5e}{5:<8.4f}\n'.format(h, z, t, p, d, a) output_handle.write(write_string) english_filename = 'stdatmos_ee.txt' with open(english_filename, 'w') as output_handle: output_handle.write('Geometric Geopotential Speed of\n') output_handle.write('Altitude Altitude Temperature Pressure Density Sound \n') output_handle.write(' (ft) (ft) (R) (lbf/ft^2) (slugs/ft^3) (ft/s) \n') output_handle.write('------------------------------------------------------------------------\n') for i in range(51): h = (i * 5000.0) (z, t, p, d) = statee(h) a = (np.sqrt((((1.4 * 287.0528) * t) / 1.8)) / 0.3048) write_string = '{0:<10}{1:<13.5f}{2:<13.5f}{3:<14.5e}{4:<13.5e}{5:<8.4f}\n'.format(h, z, t, p, d, a) output_handle.write(write_string)
def atm_print(): '\n ' metric_filename = 'stdatmos_si.txt' with open(metric_filename, 'w') as output_handle: output_handle.write('Geometric Geopotential Speed of\n') output_handle.write('Altitude Altitude Temperature Pressure Density Sound \n') output_handle.write(' (m) (m) (K) (N/m**2) (kg/m**3) (m/s) \n') output_handle.write('-----------------------------------------------------------------------\n') for i in range(51): h = (i * 2000.0) (z, t, p, d) = statsi(h) a = np.sqrt(((1.4 * 287.0528) * t)) write_string = '{0:<10}{1:<13.5f}{2:<13.5f}{3:<14.5e}{4:<13.5e}{5:<8.4f}\n'.format(h, z, t, p, d, a) output_handle.write(write_string) english_filename = 'stdatmos_ee.txt' with open(english_filename, 'w') as output_handle: output_handle.write('Geometric Geopotential Speed of\n') output_handle.write('Altitude Altitude Temperature Pressure Density Sound \n') output_handle.write(' (ft) (ft) (R) (lbf/ft^2) (slugs/ft^3) (ft/s) \n') output_handle.write('------------------------------------------------------------------------\n') for i in range(51): h = (i * 5000.0) (z, t, p, d) = statee(h) a = (np.sqrt((((1.4 * 287.0528) * t) / 1.8)) / 0.3048) write_string = '{0:<10}{1:<13.5f}{2:<13.5f}{3:<14.5e}{4:<13.5e}{5:<8.4f}\n'.format(h, z, t, p, d, a) output_handle.write(write_string)<|docstring|>Prints both English and Metric standard atmosphere tables.<|endoftext|>
570b697187ff00e76e1b9333cfcff208cc9d8eabcbad0634bd98b1f51ced6fe2
def statsi(h): 'Calculates standard atmosphere data in SI units.\n\n Parameters\n ----------\n h : float\n geometric altitude in meters\n\n Returns\n -------\n z : float\n Geopotential altitude in meters.\n\n t : float\n Temperature in K.\n\n p : float\n Pressure in Pa.\n\n d : float\n Density in kg/m^3.\n ' zsa = np.array([0.0, 11000.0, 20000.0, 32000.0, 47000.0, 52000.0, 61000.0, 79000.0, 9.9e+20]) Tsa = np.array([288.15, 216.65, 216.65, 228.65, 270.65, 270.65, 252.65, 180.65, 180.65]) g = 9.80665 R = 287.0528 Re = 6346766.0 Psa = 101325.0 z = ((Re * h) / (Re + h)) for i in range(8): Lt = ((- (Tsa[(i + 1)] - Tsa[i])) / (zsa[(i + 1)] - zsa[i])) if (Lt == 0.0): if (z <= zsa[(i + 1)]): t = Tsa[i] p = (Psa * np.exp(((((- g) * (z - zsa[i])) / R) / Tsa[i]))) d = ((p / R) / t) break else: Psa *= np.exp(((((- g) * (zsa[(i + 1)] - zsa[i])) / R) / Tsa[i])) else: ex = ((g / R) / Lt) if (z <= zsa[(i + 1)]): t = (Tsa[i] - (Lt * (z - zsa[i]))) p = (Psa * ((t / Tsa[i]) ** ex)) d = ((p / R) / t) break else: Psa *= ((Tsa[(i + 1)] / Tsa[i]) ** ex) else: t = Tsa[(- 1)] p = 0.0 d = 0.0 return (z, t, p, d)
Calculates standard atmosphere data in SI units. Parameters ---------- h : float geometric altitude in meters Returns ------- z : float Geopotential altitude in meters. t : float Temperature in K. p : float Pressure in Pa. d : float Density in kg/m^3.
pylot/std_atmos.py
statsi
luzpaz/Pylot
24
python
def statsi(h): 'Calculates standard atmosphere data in SI units.\n\n Parameters\n ----------\n h : float\n geometric altitude in meters\n\n Returns\n -------\n z : float\n Geopotential altitude in meters.\n\n t : float\n Temperature in K.\n\n p : float\n Pressure in Pa.\n\n d : float\n Density in kg/m^3.\n ' zsa = np.array([0.0, 11000.0, 20000.0, 32000.0, 47000.0, 52000.0, 61000.0, 79000.0, 9.9e+20]) Tsa = np.array([288.15, 216.65, 216.65, 228.65, 270.65, 270.65, 252.65, 180.65, 180.65]) g = 9.80665 R = 287.0528 Re = 6346766.0 Psa = 101325.0 z = ((Re * h) / (Re + h)) for i in range(8): Lt = ((- (Tsa[(i + 1)] - Tsa[i])) / (zsa[(i + 1)] - zsa[i])) if (Lt == 0.0): if (z <= zsa[(i + 1)]): t = Tsa[i] p = (Psa * np.exp(((((- g) * (z - zsa[i])) / R) / Tsa[i]))) d = ((p / R) / t) break else: Psa *= np.exp(((((- g) * (zsa[(i + 1)] - zsa[i])) / R) / Tsa[i])) else: ex = ((g / R) / Lt) if (z <= zsa[(i + 1)]): t = (Tsa[i] - (Lt * (z - zsa[i]))) p = (Psa * ((t / Tsa[i]) ** ex)) d = ((p / R) / t) break else: Psa *= ((Tsa[(i + 1)] / Tsa[i]) ** ex) else: t = Tsa[(- 1)] p = 0.0 d = 0.0 return (z, t, p, d)
def statsi(h): 'Calculates standard atmosphere data in SI units.\n\n Parameters\n ----------\n h : float\n geometric altitude in meters\n\n Returns\n -------\n z : float\n Geopotential altitude in meters.\n\n t : float\n Temperature in K.\n\n p : float\n Pressure in Pa.\n\n d : float\n Density in kg/m^3.\n ' zsa = np.array([0.0, 11000.0, 20000.0, 32000.0, 47000.0, 52000.0, 61000.0, 79000.0, 9.9e+20]) Tsa = np.array([288.15, 216.65, 216.65, 228.65, 270.65, 270.65, 252.65, 180.65, 180.65]) g = 9.80665 R = 287.0528 Re = 6346766.0 Psa = 101325.0 z = ((Re * h) / (Re + h)) for i in range(8): Lt = ((- (Tsa[(i + 1)] - Tsa[i])) / (zsa[(i + 1)] - zsa[i])) if (Lt == 0.0): if (z <= zsa[(i + 1)]): t = Tsa[i] p = (Psa * np.exp(((((- g) * (z - zsa[i])) / R) / Tsa[i]))) d = ((p / R) / t) break else: Psa *= np.exp(((((- g) * (zsa[(i + 1)] - zsa[i])) / R) / Tsa[i])) else: ex = ((g / R) / Lt) if (z <= zsa[(i + 1)]): t = (Tsa[i] - (Lt * (z - zsa[i]))) p = (Psa * ((t / Tsa[i]) ** ex)) d = ((p / R) / t) break else: Psa *= ((Tsa[(i + 1)] / Tsa[i]) ** ex) else: t = Tsa[(- 1)] p = 0.0 d = 0.0 return (z, t, p, d)<|docstring|>Calculates standard atmosphere data in SI units. Parameters ---------- h : float geometric altitude in meters Returns ------- z : float Geopotential altitude in meters. t : float Temperature in K. p : float Pressure in Pa. d : float Density in kg/m^3.<|endoftext|>
bbc2656dc1d0078b58892487f3d38455ff34781ff98adbf13af814a27e252774
def statee(h): 'Calculates standard atmosphere data in English units.\n\n Parameters\n ----------\n h : float\n Geometric altitude in feet\n\n Returns\n -------\n z : float\n Geopotential altitude in feet.\n\n t : float\n Temperature in R.\n\n p : float\n Pressure in lbf/ft^2.\n\n d : float\n Density in slugs/ft^3.\n ' hsi = (h * 0.3048) (zsi, tsi, psi, dsi) = statsi(hsi) z = (zsi / 0.3048) t = (tsi * 1.8) p = (psi * 0.02088543) d = (dsi * 0.00194032) return (z, t, p, d)
Calculates standard atmosphere data in English units. Parameters ---------- h : float Geometric altitude in feet Returns ------- z : float Geopotential altitude in feet. t : float Temperature in R. p : float Pressure in lbf/ft^2. d : float Density in slugs/ft^3.
pylot/std_atmos.py
statee
luzpaz/Pylot
24
python
def statee(h): 'Calculates standard atmosphere data in English units.\n\n Parameters\n ----------\n h : float\n Geometric altitude in feet\n\n Returns\n -------\n z : float\n Geopotential altitude in feet.\n\n t : float\n Temperature in R.\n\n p : float\n Pressure in lbf/ft^2.\n\n d : float\n Density in slugs/ft^3.\n ' hsi = (h * 0.3048) (zsi, tsi, psi, dsi) = statsi(hsi) z = (zsi / 0.3048) t = (tsi * 1.8) p = (psi * 0.02088543) d = (dsi * 0.00194032) return (z, t, p, d)
def statee(h): 'Calculates standard atmosphere data in English units.\n\n Parameters\n ----------\n h : float\n Geometric altitude in feet\n\n Returns\n -------\n z : float\n Geopotential altitude in feet.\n\n t : float\n Temperature in R.\n\n p : float\n Pressure in lbf/ft^2.\n\n d : float\n Density in slugs/ft^3.\n ' hsi = (h * 0.3048) (zsi, tsi, psi, dsi) = statsi(hsi) z = (zsi / 0.3048) t = (tsi * 1.8) p = (psi * 0.02088543) d = (dsi * 0.00194032) return (z, t, p, d)<|docstring|>Calculates standard atmosphere data in English units. Parameters ---------- h : float Geometric altitude in feet Returns ------- z : float Geopotential altitude in feet. t : float Temperature in R. p : float Pressure in lbf/ft^2. d : float Density in slugs/ft^3.<|endoftext|>
e3bd0b6d56b8f01bf9d18c3c7db7f9aefebce8faa701187ed3d57b168471aebe
@supported_devices def test_unitary_gate(self, device): 'Test simulation with unitary gate circuit instructions.' backend = self.backend(device=device) circuits = ref_unitary_gate.unitary_gate_circuits_deterministic(final_measure=False) circuits = transpile(circuits, backend, optimization_level=1) result = backend.run(circuits, shots=1).result() targets = ref_unitary_gate.unitary_gate_unitary_deterministic() self.assertSuccess(result) self.compare_unitary(result, circuits, targets)
Test simulation with unitary gate circuit instructions.
test/terra/backends/aer_simulator/test_wrapper_unitary_simulator.py
test_unitary_gate
kevinsung/qiskit-aer
313
python
@supported_devices def test_unitary_gate(self, device): backend = self.backend(device=device) circuits = ref_unitary_gate.unitary_gate_circuits_deterministic(final_measure=False) circuits = transpile(circuits, backend, optimization_level=1) result = backend.run(circuits, shots=1).result() targets = ref_unitary_gate.unitary_gate_unitary_deterministic() self.assertSuccess(result) self.compare_unitary(result, circuits, targets)
@supported_devices def test_unitary_gate(self, device): backend = self.backend(device=device) circuits = ref_unitary_gate.unitary_gate_circuits_deterministic(final_measure=False) circuits = transpile(circuits, backend, optimization_level=1) result = backend.run(circuits, shots=1).result() targets = ref_unitary_gate.unitary_gate_unitary_deterministic() self.assertSuccess(result) self.compare_unitary(result, circuits, targets)<|docstring|>Test simulation with unitary gate circuit instructions.<|endoftext|>
0fc9c4d1b5599dc0df3cafad8a89cc967764f64af1168eee2aa461ad51de05f2
@supported_devices def test_unitary_gate_circuit_run(self, device): 'Test simulation with unitary gate circuit instructions.' backend = self.backend(device=device) circuits = ref_unitary_gate.unitary_gate_circuits_deterministic(final_measure=False) circuits = transpile(circuits, backend, optimization_level=1) result = backend.run(circuits, shots=1).result() targets = ref_unitary_gate.unitary_gate_unitary_deterministic() self.assertSuccess(result) self.compare_unitary(result, circuits, targets)
Test simulation with unitary gate circuit instructions.
test/terra/backends/aer_simulator/test_wrapper_unitary_simulator.py
test_unitary_gate_circuit_run
kevinsung/qiskit-aer
313
python
@supported_devices def test_unitary_gate_circuit_run(self, device): backend = self.backend(device=device) circuits = ref_unitary_gate.unitary_gate_circuits_deterministic(final_measure=False) circuits = transpile(circuits, backend, optimization_level=1) result = backend.run(circuits, shots=1).result() targets = ref_unitary_gate.unitary_gate_unitary_deterministic() self.assertSuccess(result) self.compare_unitary(result, circuits, targets)
@supported_devices def test_unitary_gate_circuit_run(self, device): backend = self.backend(device=device) circuits = ref_unitary_gate.unitary_gate_circuits_deterministic(final_measure=False) circuits = transpile(circuits, backend, optimization_level=1) result = backend.run(circuits, shots=1).result() targets = ref_unitary_gate.unitary_gate_unitary_deterministic() self.assertSuccess(result) self.compare_unitary(result, circuits, targets)<|docstring|>Test simulation with unitary gate circuit instructions.<|endoftext|>
7cfd7071898ce3540deb151ba33507f4cd693422d596a25251a8e0623fa428d4
@supported_devices def test_diagonal_gate(self, device): 'Test simulation with diagonal gate circuit instructions.' backend = self.backend(device=device) circuits = ref_diagonal_gate.diagonal_gate_circuits_deterministic(final_measure=False) circuits = transpile(circuits, backend, optimization_level=1) result = backend.run(circuits, shots=1).result() targets = ref_diagonal_gate.diagonal_gate_unitary_deterministic() self.assertSuccess(result) self.compare_unitary(result, circuits, targets)
Test simulation with diagonal gate circuit instructions.
test/terra/backends/aer_simulator/test_wrapper_unitary_simulator.py
test_diagonal_gate
kevinsung/qiskit-aer
313
python
@supported_devices def test_diagonal_gate(self, device): backend = self.backend(device=device) circuits = ref_diagonal_gate.diagonal_gate_circuits_deterministic(final_measure=False) circuits = transpile(circuits, backend, optimization_level=1) result = backend.run(circuits, shots=1).result() targets = ref_diagonal_gate.diagonal_gate_unitary_deterministic() self.assertSuccess(result) self.compare_unitary(result, circuits, targets)
@supported_devices def test_diagonal_gate(self, device): backend = self.backend(device=device) circuits = ref_diagonal_gate.diagonal_gate_circuits_deterministic(final_measure=False) circuits = transpile(circuits, backend, optimization_level=1) result = backend.run(circuits, shots=1).result() targets = ref_diagonal_gate.diagonal_gate_unitary_deterministic() self.assertSuccess(result) self.compare_unitary(result, circuits, targets)<|docstring|>Test simulation with diagonal gate circuit instructions.<|endoftext|>
ff66b973e07a3fad30ff6ca63797aae10b0e581a131055658f7f324ac2138d7c
@supported_devices def test_qobj_global_phase(self, device): 'Test qobj global phase.' backend = self.backend(device=device) circuits = ref_1q_clifford.h_gate_circuits_nondeterministic(final_measure=False) circuits = transpile(circuits, backend, optimization_level=1) result = backend.run(circuits, shots=1).result() targets = ref_1q_clifford.h_gate_unitary_nondeterministic() for (iter, circuit) in enumerate(circuits): global_phase = (((- 1) ** iter) * (pi / 4)) circuit.global_phase += global_phase targets[iter] = (exp((1j * global_phase)) * targets[iter]) circuits = transpile(circuits, backend, optimization_level=1) result = backend.run(circuits, shots=1).result() self.assertSuccess(result) self.compare_unitary(result, circuits, targets, ignore_phase=False)
Test qobj global phase.
test/terra/backends/aer_simulator/test_wrapper_unitary_simulator.py
test_qobj_global_phase
kevinsung/qiskit-aer
313
python
@supported_devices def test_qobj_global_phase(self, device): backend = self.backend(device=device) circuits = ref_1q_clifford.h_gate_circuits_nondeterministic(final_measure=False) circuits = transpile(circuits, backend, optimization_level=1) result = backend.run(circuits, shots=1).result() targets = ref_1q_clifford.h_gate_unitary_nondeterministic() for (iter, circuit) in enumerate(circuits): global_phase = (((- 1) ** iter) * (pi / 4)) circuit.global_phase += global_phase targets[iter] = (exp((1j * global_phase)) * targets[iter]) circuits = transpile(circuits, backend, optimization_level=1) result = backend.run(circuits, shots=1).result() self.assertSuccess(result) self.compare_unitary(result, circuits, targets, ignore_phase=False)
@supported_devices def test_qobj_global_phase(self, device): backend = self.backend(device=device) circuits = ref_1q_clifford.h_gate_circuits_nondeterministic(final_measure=False) circuits = transpile(circuits, backend, optimization_level=1) result = backend.run(circuits, shots=1).result() targets = ref_1q_clifford.h_gate_unitary_nondeterministic() for (iter, circuit) in enumerate(circuits): global_phase = (((- 1) ** iter) * (pi / 4)) circuit.global_phase += global_phase targets[iter] = (exp((1j * global_phase)) * targets[iter]) circuits = transpile(circuits, backend, optimization_level=1) result = backend.run(circuits, shots=1).result() self.assertSuccess(result) self.compare_unitary(result, circuits, targets, ignore_phase=False)<|docstring|>Test qobj global phase.<|endoftext|>
6925afaa21d2a5fb831788300ae5bbacd8744afaf3e7b2db33c32df86293dc32
@supported_devices def test_legacy_method(self, device): 'Test legacy device method options.' backend = self.backend() legacy_method = f'unitary_{device.lower()}' with self.assertWarns(DeprecationWarning): backend.set_options(method=legacy_method) self.assertEqual(backend.options.device, device)
Test legacy device method options.
test/terra/backends/aer_simulator/test_wrapper_unitary_simulator.py
test_legacy_method
kevinsung/qiskit-aer
313
python
@supported_devices def test_legacy_method(self, device): backend = self.backend() legacy_method = f'unitary_{device.lower()}' with self.assertWarns(DeprecationWarning): backend.set_options(method=legacy_method) self.assertEqual(backend.options.device, device)
@supported_devices def test_legacy_method(self, device): backend = self.backend() legacy_method = f'unitary_{device.lower()}' with self.assertWarns(DeprecationWarning): backend.set_options(method=legacy_method) self.assertEqual(backend.options.device, device)<|docstring|>Test legacy device method options.<|endoftext|>
a7e45a31f9502e85a3cfbf8882dc2f88a9b580c981559dd092e0121dc07fb33c
def test_unsupported_methods(self): 'Test unsupported AerSimulator method raises AerError.' backend = self.backend() with self.assertWarns(DeprecationWarning): self.assertRaises(AerError, backend.set_options, method='automatic')
Test unsupported AerSimulator method raises AerError.
test/terra/backends/aer_simulator/test_wrapper_unitary_simulator.py
test_unsupported_methods
kevinsung/qiskit-aer
313
python
def test_unsupported_methods(self): backend = self.backend() with self.assertWarns(DeprecationWarning): self.assertRaises(AerError, backend.set_options, method='automatic')
def test_unsupported_methods(self): backend = self.backend() with self.assertWarns(DeprecationWarning): self.assertRaises(AerError, backend.set_options, method='automatic')<|docstring|>Test unsupported AerSimulator method raises AerError.<|endoftext|>