body_hash
stringlengths
64
64
body
stringlengths
23
109k
docstring
stringlengths
1
57k
path
stringlengths
4
198
name
stringlengths
1
115
repository_name
stringlengths
7
111
repository_stars
float64
0
191k
lang
stringclasses
1 value
body_without_docstring
stringlengths
14
108k
unified
stringlengths
45
133k
a786b55e16fcfbd357863ec2c0be79aa3510912e7a5aab0d21a2087ba37141c8
@terminal_unit_air_outlet_node_name.setter def terminal_unit_air_outlet_node_name(self, value=None): 'Corresponds to IDD field `Terminal Unit Air Outlet Node Name`' self['Terminal Unit Air Outlet Node Name'] = value
Corresponds to IDD field `Terminal Unit Air Outlet Node Name`
pyidf/zone_hvac_forced_air_units.py
terminal_unit_air_outlet_node_name
marcelosalles/pyidf
19
python
@terminal_unit_air_outlet_node_name.setter def terminal_unit_air_outlet_node_name(self, value=None): self['Terminal Unit Air Outlet Node Name'] = value
@terminal_unit_air_outlet_node_name.setter def terminal_unit_air_outlet_node_name(self, value=None): self['Terminal Unit Air Outlet Node Name'] = value<|docstring|>Corresponds to IDD field `Terminal Unit Air Outlet Node Name`<|endoftext|>
d0227e7673c0812796657eaef9c5b2a698b3c7eb98bf5a9761b3bdc271ffe171
@property def cooling_supply_air_flow_rate(self): 'field `Cooling Supply Air Flow Rate`\n\n | Units: m3/s\n\n Args:\n value (float or "Autosize"): value for IDD Field `Cooling Supply Air Flow Rate`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n float or "Autosize": the value of `cooling_supply_air_flow_rate` or None if not set\n\n ' return self['Cooling Supply Air Flow Rate']
field `Cooling Supply Air Flow Rate` | Units: m3/s Args: value (float or "Autosize"): value for IDD Field `Cooling Supply Air Flow Rate` Raises: ValueError: if `value` is not a valid value Returns: float or "Autosize": the value of `cooling_supply_air_flow_rate` or None if not set
pyidf/zone_hvac_forced_air_units.py
cooling_supply_air_flow_rate
marcelosalles/pyidf
19
python
@property def cooling_supply_air_flow_rate(self): 'field `Cooling Supply Air Flow Rate`\n\n | Units: m3/s\n\n Args:\n value (float or "Autosize"): value for IDD Field `Cooling Supply Air Flow Rate`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n float or "Autosize": the value of `cooling_supply_air_flow_rate` or None if not set\n\n ' return self['Cooling Supply Air Flow Rate']
@property def cooling_supply_air_flow_rate(self): 'field `Cooling Supply Air Flow Rate`\n\n | Units: m3/s\n\n Args:\n value (float or "Autosize"): value for IDD Field `Cooling Supply Air Flow Rate`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n float or "Autosize": the value of `cooling_supply_air_flow_rate` or None if not set\n\n ' return self['Cooling Supply Air Flow Rate']<|docstring|>field `Cooling Supply Air Flow Rate` | Units: m3/s Args: value (float or "Autosize"): value for IDD Field `Cooling Supply Air Flow Rate` Raises: ValueError: if `value` is not a valid value Returns: float or "Autosize": the value of `cooling_supply_air_flow_rate` or None if not set<|endoftext|>
a4aebf58e628d38393fcbd6d5eccf477ed690a6e904118c854bb1841d0c351a3
@cooling_supply_air_flow_rate.setter def cooling_supply_air_flow_rate(self, value=None): 'Corresponds to IDD field `Cooling Supply Air Flow Rate`' self['Cooling Supply Air Flow Rate'] = value
Corresponds to IDD field `Cooling Supply Air Flow Rate`
pyidf/zone_hvac_forced_air_units.py
cooling_supply_air_flow_rate
marcelosalles/pyidf
19
python
@cooling_supply_air_flow_rate.setter def cooling_supply_air_flow_rate(self, value=None): self['Cooling Supply Air Flow Rate'] = value
@cooling_supply_air_flow_rate.setter def cooling_supply_air_flow_rate(self, value=None): self['Cooling Supply Air Flow Rate'] = value<|docstring|>Corresponds to IDD field `Cooling Supply Air Flow Rate`<|endoftext|>
1964d3eb5d37042be62afec57803d4f7044754440bef5d6b28efe660c71c0899
@property def no_cooling_supply_air_flow_rate(self): 'field `No Cooling Supply Air Flow Rate`\n\n | Units: m3/s\n\n Args:\n value (float or "Autosize"): value for IDD Field `No Cooling Supply Air Flow Rate`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n float or "Autosize": the value of `no_cooling_supply_air_flow_rate` or None if not set\n\n ' return self['No Cooling Supply Air Flow Rate']
field `No Cooling Supply Air Flow Rate` | Units: m3/s Args: value (float or "Autosize"): value for IDD Field `No Cooling Supply Air Flow Rate` Raises: ValueError: if `value` is not a valid value Returns: float or "Autosize": the value of `no_cooling_supply_air_flow_rate` or None if not set
pyidf/zone_hvac_forced_air_units.py
no_cooling_supply_air_flow_rate
marcelosalles/pyidf
19
python
@property def no_cooling_supply_air_flow_rate(self): 'field `No Cooling Supply Air Flow Rate`\n\n | Units: m3/s\n\n Args:\n value (float or "Autosize"): value for IDD Field `No Cooling Supply Air Flow Rate`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n float or "Autosize": the value of `no_cooling_supply_air_flow_rate` or None if not set\n\n ' return self['No Cooling Supply Air Flow Rate']
@property def no_cooling_supply_air_flow_rate(self): 'field `No Cooling Supply Air Flow Rate`\n\n | Units: m3/s\n\n Args:\n value (float or "Autosize"): value for IDD Field `No Cooling Supply Air Flow Rate`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n float or "Autosize": the value of `no_cooling_supply_air_flow_rate` or None if not set\n\n ' return self['No Cooling Supply Air Flow Rate']<|docstring|>field `No Cooling Supply Air Flow Rate` | Units: m3/s Args: value (float or "Autosize"): value for IDD Field `No Cooling Supply Air Flow Rate` Raises: ValueError: if `value` is not a valid value Returns: float or "Autosize": the value of `no_cooling_supply_air_flow_rate` or None if not set<|endoftext|>
02288d94ac18fdf3391e4d37403211ca16877b599802924fdab6cefef6645472
@no_cooling_supply_air_flow_rate.setter def no_cooling_supply_air_flow_rate(self, value=None): 'Corresponds to IDD field `No Cooling Supply Air Flow Rate`' self['No Cooling Supply Air Flow Rate'] = value
Corresponds to IDD field `No Cooling Supply Air Flow Rate`
pyidf/zone_hvac_forced_air_units.py
no_cooling_supply_air_flow_rate
marcelosalles/pyidf
19
python
@no_cooling_supply_air_flow_rate.setter def no_cooling_supply_air_flow_rate(self, value=None): self['No Cooling Supply Air Flow Rate'] = value
@no_cooling_supply_air_flow_rate.setter def no_cooling_supply_air_flow_rate(self, value=None): self['No Cooling Supply Air Flow Rate'] = value<|docstring|>Corresponds to IDD field `No Cooling Supply Air Flow Rate`<|endoftext|>
7a820d9d799050ebe1184a422612e7d91f8b5490babb65f709ecff07fb36d40f
@property def heating_supply_air_flow_rate(self): 'field `Heating Supply Air Flow Rate`\n\n | Units: m3/s\n\n Args:\n value (float or "Autosize"): value for IDD Field `Heating Supply Air Flow Rate`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n float or "Autosize": the value of `heating_supply_air_flow_rate` or None if not set\n\n ' return self['Heating Supply Air Flow Rate']
field `Heating Supply Air Flow Rate` | Units: m3/s Args: value (float or "Autosize"): value for IDD Field `Heating Supply Air Flow Rate` Raises: ValueError: if `value` is not a valid value Returns: float or "Autosize": the value of `heating_supply_air_flow_rate` or None if not set
pyidf/zone_hvac_forced_air_units.py
heating_supply_air_flow_rate
marcelosalles/pyidf
19
python
@property def heating_supply_air_flow_rate(self): 'field `Heating Supply Air Flow Rate`\n\n | Units: m3/s\n\n Args:\n value (float or "Autosize"): value for IDD Field `Heating Supply Air Flow Rate`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n float or "Autosize": the value of `heating_supply_air_flow_rate` or None if not set\n\n ' return self['Heating Supply Air Flow Rate']
@property def heating_supply_air_flow_rate(self): 'field `Heating Supply Air Flow Rate`\n\n | Units: m3/s\n\n Args:\n value (float or "Autosize"): value for IDD Field `Heating Supply Air Flow Rate`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n float or "Autosize": the value of `heating_supply_air_flow_rate` or None if not set\n\n ' return self['Heating Supply Air Flow Rate']<|docstring|>field `Heating Supply Air Flow Rate` | Units: m3/s Args: value (float or "Autosize"): value for IDD Field `Heating Supply Air Flow Rate` Raises: ValueError: if `value` is not a valid value Returns: float or "Autosize": the value of `heating_supply_air_flow_rate` or None if not set<|endoftext|>
c54a695ddd4655044a9b3de7a19e0e9645d0d28ff1fbcd3214301cdaa90ca148
@heating_supply_air_flow_rate.setter def heating_supply_air_flow_rate(self, value=None): 'Corresponds to IDD field `Heating Supply Air Flow Rate`' self['Heating Supply Air Flow Rate'] = value
Corresponds to IDD field `Heating Supply Air Flow Rate`
pyidf/zone_hvac_forced_air_units.py
heating_supply_air_flow_rate
marcelosalles/pyidf
19
python
@heating_supply_air_flow_rate.setter def heating_supply_air_flow_rate(self, value=None): self['Heating Supply Air Flow Rate'] = value
@heating_supply_air_flow_rate.setter def heating_supply_air_flow_rate(self, value=None): self['Heating Supply Air Flow Rate'] = value<|docstring|>Corresponds to IDD field `Heating Supply Air Flow Rate`<|endoftext|>
5e176cad650cb18ec7c24488768083f35c1dabfb2451d6788e9dd968d9e2e810
@property def no_heating_supply_air_flow_rate(self): 'field `No Heating Supply Air Flow Rate`\n\n | Units: m3/s\n\n Args:\n value (float or "Autosize"): value for IDD Field `No Heating Supply Air Flow Rate`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n float or "Autosize": the value of `no_heating_supply_air_flow_rate` or None if not set\n\n ' return self['No Heating Supply Air Flow Rate']
field `No Heating Supply Air Flow Rate` | Units: m3/s Args: value (float or "Autosize"): value for IDD Field `No Heating Supply Air Flow Rate` Raises: ValueError: if `value` is not a valid value Returns: float or "Autosize": the value of `no_heating_supply_air_flow_rate` or None if not set
pyidf/zone_hvac_forced_air_units.py
no_heating_supply_air_flow_rate
marcelosalles/pyidf
19
python
@property def no_heating_supply_air_flow_rate(self): 'field `No Heating Supply Air Flow Rate`\n\n | Units: m3/s\n\n Args:\n value (float or "Autosize"): value for IDD Field `No Heating Supply Air Flow Rate`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n float or "Autosize": the value of `no_heating_supply_air_flow_rate` or None if not set\n\n ' return self['No Heating Supply Air Flow Rate']
@property def no_heating_supply_air_flow_rate(self): 'field `No Heating Supply Air Flow Rate`\n\n | Units: m3/s\n\n Args:\n value (float or "Autosize"): value for IDD Field `No Heating Supply Air Flow Rate`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n float or "Autosize": the value of `no_heating_supply_air_flow_rate` or None if not set\n\n ' return self['No Heating Supply Air Flow Rate']<|docstring|>field `No Heating Supply Air Flow Rate` | Units: m3/s Args: value (float or "Autosize"): value for IDD Field `No Heating Supply Air Flow Rate` Raises: ValueError: if `value` is not a valid value Returns: float or "Autosize": the value of `no_heating_supply_air_flow_rate` or None if not set<|endoftext|>
02bfcf9999e3534bfacb0b21ae68d8173271dca01d159217f9994b706ea4ff94
@no_heating_supply_air_flow_rate.setter def no_heating_supply_air_flow_rate(self, value=None): 'Corresponds to IDD field `No Heating Supply Air Flow Rate`' self['No Heating Supply Air Flow Rate'] = value
Corresponds to IDD field `No Heating Supply Air Flow Rate`
pyidf/zone_hvac_forced_air_units.py
no_heating_supply_air_flow_rate
marcelosalles/pyidf
19
python
@no_heating_supply_air_flow_rate.setter def no_heating_supply_air_flow_rate(self, value=None): self['No Heating Supply Air Flow Rate'] = value
@no_heating_supply_air_flow_rate.setter def no_heating_supply_air_flow_rate(self, value=None): self['No Heating Supply Air Flow Rate'] = value<|docstring|>Corresponds to IDD field `No Heating Supply Air Flow Rate`<|endoftext|>
21873c6990eea1da449ec8fb855c22f2215c917cf2da9c1c498085377d738a01
@property def cooling_outdoor_air_flow_rate(self): 'field `Cooling Outdoor Air Flow Rate`\n\n | Units: m3/s\n\n Args:\n value (float or "Autosize"): value for IDD Field `Cooling Outdoor Air Flow Rate`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n float or "Autosize": the value of `cooling_outdoor_air_flow_rate` or None if not set\n\n ' return self['Cooling Outdoor Air Flow Rate']
field `Cooling Outdoor Air Flow Rate` | Units: m3/s Args: value (float or "Autosize"): value for IDD Field `Cooling Outdoor Air Flow Rate` Raises: ValueError: if `value` is not a valid value Returns: float or "Autosize": the value of `cooling_outdoor_air_flow_rate` or None if not set
pyidf/zone_hvac_forced_air_units.py
cooling_outdoor_air_flow_rate
marcelosalles/pyidf
19
python
@property def cooling_outdoor_air_flow_rate(self): 'field `Cooling Outdoor Air Flow Rate`\n\n | Units: m3/s\n\n Args:\n value (float or "Autosize"): value for IDD Field `Cooling Outdoor Air Flow Rate`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n float or "Autosize": the value of `cooling_outdoor_air_flow_rate` or None if not set\n\n ' return self['Cooling Outdoor Air Flow Rate']
@property def cooling_outdoor_air_flow_rate(self): 'field `Cooling Outdoor Air Flow Rate`\n\n | Units: m3/s\n\n Args:\n value (float or "Autosize"): value for IDD Field `Cooling Outdoor Air Flow Rate`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n float or "Autosize": the value of `cooling_outdoor_air_flow_rate` or None if not set\n\n ' return self['Cooling Outdoor Air Flow Rate']<|docstring|>field `Cooling Outdoor Air Flow Rate` | Units: m3/s Args: value (float or "Autosize"): value for IDD Field `Cooling Outdoor Air Flow Rate` Raises: ValueError: if `value` is not a valid value Returns: float or "Autosize": the value of `cooling_outdoor_air_flow_rate` or None if not set<|endoftext|>
1b41ca81a941adbc452df87f64dbfe4d134b455cb4415a505b9a1614e2c9618f
@cooling_outdoor_air_flow_rate.setter def cooling_outdoor_air_flow_rate(self, value=None): 'Corresponds to IDD field `Cooling Outdoor Air Flow Rate`' self['Cooling Outdoor Air Flow Rate'] = value
Corresponds to IDD field `Cooling Outdoor Air Flow Rate`
pyidf/zone_hvac_forced_air_units.py
cooling_outdoor_air_flow_rate
marcelosalles/pyidf
19
python
@cooling_outdoor_air_flow_rate.setter def cooling_outdoor_air_flow_rate(self, value=None): self['Cooling Outdoor Air Flow Rate'] = value
@cooling_outdoor_air_flow_rate.setter def cooling_outdoor_air_flow_rate(self, value=None): self['Cooling Outdoor Air Flow Rate'] = value<|docstring|>Corresponds to IDD field `Cooling Outdoor Air Flow Rate`<|endoftext|>
04e597071508ebc276369320d7bf7108f52a1859d3be6ab130b6b082afae1b53
@property def heating_outdoor_air_flow_rate(self): 'field `Heating Outdoor Air Flow Rate`\n\n | Units: m3/s\n\n Args:\n value (float or "Autosize"): value for IDD Field `Heating Outdoor Air Flow Rate`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n float or "Autosize": the value of `heating_outdoor_air_flow_rate` or None if not set\n\n ' return self['Heating Outdoor Air Flow Rate']
field `Heating Outdoor Air Flow Rate` | Units: m3/s Args: value (float or "Autosize"): value for IDD Field `Heating Outdoor Air Flow Rate` Raises: ValueError: if `value` is not a valid value Returns: float or "Autosize": the value of `heating_outdoor_air_flow_rate` or None if not set
pyidf/zone_hvac_forced_air_units.py
heating_outdoor_air_flow_rate
marcelosalles/pyidf
19
python
@property def heating_outdoor_air_flow_rate(self): 'field `Heating Outdoor Air Flow Rate`\n\n | Units: m3/s\n\n Args:\n value (float or "Autosize"): value for IDD Field `Heating Outdoor Air Flow Rate`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n float or "Autosize": the value of `heating_outdoor_air_flow_rate` or None if not set\n\n ' return self['Heating Outdoor Air Flow Rate']
@property def heating_outdoor_air_flow_rate(self): 'field `Heating Outdoor Air Flow Rate`\n\n | Units: m3/s\n\n Args:\n value (float or "Autosize"): value for IDD Field `Heating Outdoor Air Flow Rate`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n float or "Autosize": the value of `heating_outdoor_air_flow_rate` or None if not set\n\n ' return self['Heating Outdoor Air Flow Rate']<|docstring|>field `Heating Outdoor Air Flow Rate` | Units: m3/s Args: value (float or "Autosize"): value for IDD Field `Heating Outdoor Air Flow Rate` Raises: ValueError: if `value` is not a valid value Returns: float or "Autosize": the value of `heating_outdoor_air_flow_rate` or None if not set<|endoftext|>
59e5751915474a50827d6549106ce17267bf1fcccf8f99b789ff9260822c6311
@heating_outdoor_air_flow_rate.setter def heating_outdoor_air_flow_rate(self, value=None): 'Corresponds to IDD field `Heating Outdoor Air Flow Rate`' self['Heating Outdoor Air Flow Rate'] = value
Corresponds to IDD field `Heating Outdoor Air Flow Rate`
pyidf/zone_hvac_forced_air_units.py
heating_outdoor_air_flow_rate
marcelosalles/pyidf
19
python
@heating_outdoor_air_flow_rate.setter def heating_outdoor_air_flow_rate(self, value=None): self['Heating Outdoor Air Flow Rate'] = value
@heating_outdoor_air_flow_rate.setter def heating_outdoor_air_flow_rate(self, value=None): self['Heating Outdoor Air Flow Rate'] = value<|docstring|>Corresponds to IDD field `Heating Outdoor Air Flow Rate`<|endoftext|>
588e330d9150247b96c7ea270d01e7ae86bbb2d04f2acd993e00eec5af3cc2fd
@property def no_load_outdoor_air_flow_rate(self): 'field `No Load Outdoor Air Flow Rate`\n\n | Units: m3/s\n\n Args:\n value (float or "Autosize"): value for IDD Field `No Load Outdoor Air Flow Rate`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n float or "Autosize": the value of `no_load_outdoor_air_flow_rate` or None if not set\n\n ' return self['No Load Outdoor Air Flow Rate']
field `No Load Outdoor Air Flow Rate` | Units: m3/s Args: value (float or "Autosize"): value for IDD Field `No Load Outdoor Air Flow Rate` Raises: ValueError: if `value` is not a valid value Returns: float or "Autosize": the value of `no_load_outdoor_air_flow_rate` or None if not set
pyidf/zone_hvac_forced_air_units.py
no_load_outdoor_air_flow_rate
marcelosalles/pyidf
19
python
@property def no_load_outdoor_air_flow_rate(self): 'field `No Load Outdoor Air Flow Rate`\n\n | Units: m3/s\n\n Args:\n value (float or "Autosize"): value for IDD Field `No Load Outdoor Air Flow Rate`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n float or "Autosize": the value of `no_load_outdoor_air_flow_rate` or None if not set\n\n ' return self['No Load Outdoor Air Flow Rate']
@property def no_load_outdoor_air_flow_rate(self): 'field `No Load Outdoor Air Flow Rate`\n\n | Units: m3/s\n\n Args:\n value (float or "Autosize"): value for IDD Field `No Load Outdoor Air Flow Rate`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n float or "Autosize": the value of `no_load_outdoor_air_flow_rate` or None if not set\n\n ' return self['No Load Outdoor Air Flow Rate']<|docstring|>field `No Load Outdoor Air Flow Rate` | Units: m3/s Args: value (float or "Autosize"): value for IDD Field `No Load Outdoor Air Flow Rate` Raises: ValueError: if `value` is not a valid value Returns: float or "Autosize": the value of `no_load_outdoor_air_flow_rate` or None if not set<|endoftext|>
3166bfcb4b40e96f666cd8c40653f918f6d61b1de0b2d9de9175dab374284ab7
@no_load_outdoor_air_flow_rate.setter def no_load_outdoor_air_flow_rate(self, value=None): 'Corresponds to IDD field `No Load Outdoor Air Flow Rate`' self['No Load Outdoor Air Flow Rate'] = value
Corresponds to IDD field `No Load Outdoor Air Flow Rate`
pyidf/zone_hvac_forced_air_units.py
no_load_outdoor_air_flow_rate
marcelosalles/pyidf
19
python
@no_load_outdoor_air_flow_rate.setter def no_load_outdoor_air_flow_rate(self, value=None): self['No Load Outdoor Air Flow Rate'] = value
@no_load_outdoor_air_flow_rate.setter def no_load_outdoor_air_flow_rate(self, value=None): self['No Load Outdoor Air Flow Rate'] = value<|docstring|>Corresponds to IDD field `No Load Outdoor Air Flow Rate`<|endoftext|>
94dcfa62fa6703bb88e18a3692f4c23bafe7e6b43ef4178e2dd5fc8d66ae29f2
@property def supply_air_fan_operating_mode_schedule_name(self): 'field `Supply Air Fan Operating Mode Schedule Name`\n\n Args:\n value (str): value for IDD Field `Supply Air Fan Operating Mode Schedule Name`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n str: the value of `supply_air_fan_operating_mode_schedule_name` or None if not set\n\n ' return self['Supply Air Fan Operating Mode Schedule Name']
field `Supply Air Fan Operating Mode Schedule Name` Args: value (str): value for IDD Field `Supply Air Fan Operating Mode Schedule Name` Raises: ValueError: if `value` is not a valid value Returns: str: the value of `supply_air_fan_operating_mode_schedule_name` or None if not set
pyidf/zone_hvac_forced_air_units.py
supply_air_fan_operating_mode_schedule_name
marcelosalles/pyidf
19
python
@property def supply_air_fan_operating_mode_schedule_name(self): 'field `Supply Air Fan Operating Mode Schedule Name`\n\n Args:\n value (str): value for IDD Field `Supply Air Fan Operating Mode Schedule Name`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n str: the value of `supply_air_fan_operating_mode_schedule_name` or None if not set\n\n ' return self['Supply Air Fan Operating Mode Schedule Name']
@property def supply_air_fan_operating_mode_schedule_name(self): 'field `Supply Air Fan Operating Mode Schedule Name`\n\n Args:\n value (str): value for IDD Field `Supply Air Fan Operating Mode Schedule Name`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n str: the value of `supply_air_fan_operating_mode_schedule_name` or None if not set\n\n ' return self['Supply Air Fan Operating Mode Schedule Name']<|docstring|>field `Supply Air Fan Operating Mode Schedule Name` Args: value (str): value for IDD Field `Supply Air Fan Operating Mode Schedule Name` Raises: ValueError: if `value` is not a valid value Returns: str: the value of `supply_air_fan_operating_mode_schedule_name` or None if not set<|endoftext|>
f3a6dd9132f73d7963590301279b60da5d636dd5f69b40f1870b5a66c208de55
@supply_air_fan_operating_mode_schedule_name.setter def supply_air_fan_operating_mode_schedule_name(self, value=None): 'Corresponds to IDD field `Supply Air Fan Operating Mode Schedule\n Name`' self['Supply Air Fan Operating Mode Schedule Name'] = value
Corresponds to IDD field `Supply Air Fan Operating Mode Schedule Name`
pyidf/zone_hvac_forced_air_units.py
supply_air_fan_operating_mode_schedule_name
marcelosalles/pyidf
19
python
@supply_air_fan_operating_mode_schedule_name.setter def supply_air_fan_operating_mode_schedule_name(self, value=None): 'Corresponds to IDD field `Supply Air Fan Operating Mode Schedule\n Name`' self['Supply Air Fan Operating Mode Schedule Name'] = value
@supply_air_fan_operating_mode_schedule_name.setter def supply_air_fan_operating_mode_schedule_name(self, value=None): 'Corresponds to IDD field `Supply Air Fan Operating Mode Schedule\n Name`' self['Supply Air Fan Operating Mode Schedule Name'] = value<|docstring|>Corresponds to IDD field `Supply Air Fan Operating Mode Schedule Name`<|endoftext|>
81a8fa93fede114f8a4e7c459506b4e4fded15baa48f59d1c0c6e16e79345908
@property def supply_air_fan_placement(self): 'field `Supply Air Fan Placement`\n\n | Select fan placement as either blow through or draw through.\n | Default value: BlowThrough\n\n Args:\n value (str): value for IDD Field `Supply Air Fan Placement`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n str: the value of `supply_air_fan_placement` or None if not set\n\n ' return self['Supply Air Fan Placement']
field `Supply Air Fan Placement` | Select fan placement as either blow through or draw through. | Default value: BlowThrough Args: value (str): value for IDD Field `Supply Air Fan Placement` Raises: ValueError: if `value` is not a valid value Returns: str: the value of `supply_air_fan_placement` or None if not set
pyidf/zone_hvac_forced_air_units.py
supply_air_fan_placement
marcelosalles/pyidf
19
python
@property def supply_air_fan_placement(self): 'field `Supply Air Fan Placement`\n\n | Select fan placement as either blow through or draw through.\n | Default value: BlowThrough\n\n Args:\n value (str): value for IDD Field `Supply Air Fan Placement`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n str: the value of `supply_air_fan_placement` or None if not set\n\n ' return self['Supply Air Fan Placement']
@property def supply_air_fan_placement(self): 'field `Supply Air Fan Placement`\n\n | Select fan placement as either blow through or draw through.\n | Default value: BlowThrough\n\n Args:\n value (str): value for IDD Field `Supply Air Fan Placement`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n str: the value of `supply_air_fan_placement` or None if not set\n\n ' return self['Supply Air Fan Placement']<|docstring|>field `Supply Air Fan Placement` | Select fan placement as either blow through or draw through. | Default value: BlowThrough Args: value (str): value for IDD Field `Supply Air Fan Placement` Raises: ValueError: if `value` is not a valid value Returns: str: the value of `supply_air_fan_placement` or None if not set<|endoftext|>
b1c8c10112d5e3afd8849d69508de0ee5164a27bdd10659f0505a5901a9ab8e8
@supply_air_fan_placement.setter def supply_air_fan_placement(self, value='BlowThrough'): 'Corresponds to IDD field `Supply Air Fan Placement`' self['Supply Air Fan Placement'] = value
Corresponds to IDD field `Supply Air Fan Placement`
pyidf/zone_hvac_forced_air_units.py
supply_air_fan_placement
marcelosalles/pyidf
19
python
@supply_air_fan_placement.setter def supply_air_fan_placement(self, value='BlowThrough'): self['Supply Air Fan Placement'] = value
@supply_air_fan_placement.setter def supply_air_fan_placement(self, value='BlowThrough'): self['Supply Air Fan Placement'] = value<|docstring|>Corresponds to IDD field `Supply Air Fan Placement`<|endoftext|>
c9496355eec1319a99d21f8c313682e03917ffa67f28ec7be8d599e7943571a2
@property def supply_air_fan_object_type(self): 'field `Supply Air Fan Object Type`\n\n | Supply Air Fan Object Type must be\n | Fan:OnOff or Fan:ConstantVolume\n | if AirConditioner:VariableRefrigerantFlow\n | is used to model VRF outdoor unit\n | Supply Air Fan Object Type must be Fan:VariableVolume if\n | AirConditioner:VariableRefrigerantFlow:FluidTemperatureControl\n | is used to model VRF outdoor unit\n | Default value: Fan:ConstantVolume\n\n Args:\n value (str): value for IDD Field `Supply Air Fan Object Type`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n str: the value of `supply_air_fan_object_type` or None if not set\n\n ' return self['Supply Air Fan Object Type']
field `Supply Air Fan Object Type` | Supply Air Fan Object Type must be | Fan:OnOff or Fan:ConstantVolume | if AirConditioner:VariableRefrigerantFlow | is used to model VRF outdoor unit | Supply Air Fan Object Type must be Fan:VariableVolume if | AirConditioner:VariableRefrigerantFlow:FluidTemperatureControl | is used to model VRF outdoor unit | Default value: Fan:ConstantVolume Args: value (str): value for IDD Field `Supply Air Fan Object Type` Raises: ValueError: if `value` is not a valid value Returns: str: the value of `supply_air_fan_object_type` or None if not set
pyidf/zone_hvac_forced_air_units.py
supply_air_fan_object_type
marcelosalles/pyidf
19
python
@property def supply_air_fan_object_type(self): 'field `Supply Air Fan Object Type`\n\n | Supply Air Fan Object Type must be\n | Fan:OnOff or Fan:ConstantVolume\n | if AirConditioner:VariableRefrigerantFlow\n | is used to model VRF outdoor unit\n | Supply Air Fan Object Type must be Fan:VariableVolume if\n | AirConditioner:VariableRefrigerantFlow:FluidTemperatureControl\n | is used to model VRF outdoor unit\n | Default value: Fan:ConstantVolume\n\n Args:\n value (str): value for IDD Field `Supply Air Fan Object Type`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n str: the value of `supply_air_fan_object_type` or None if not set\n\n ' return self['Supply Air Fan Object Type']
@property def supply_air_fan_object_type(self): 'field `Supply Air Fan Object Type`\n\n | Supply Air Fan Object Type must be\n | Fan:OnOff or Fan:ConstantVolume\n | if AirConditioner:VariableRefrigerantFlow\n | is used to model VRF outdoor unit\n | Supply Air Fan Object Type must be Fan:VariableVolume if\n | AirConditioner:VariableRefrigerantFlow:FluidTemperatureControl\n | is used to model VRF outdoor unit\n | Default value: Fan:ConstantVolume\n\n Args:\n value (str): value for IDD Field `Supply Air Fan Object Type`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n str: the value of `supply_air_fan_object_type` or None if not set\n\n ' return self['Supply Air Fan Object Type']<|docstring|>field `Supply Air Fan Object Type` | Supply Air Fan Object Type must be | Fan:OnOff or Fan:ConstantVolume | if AirConditioner:VariableRefrigerantFlow | is used to model VRF outdoor unit | Supply Air Fan Object Type must be Fan:VariableVolume if | AirConditioner:VariableRefrigerantFlow:FluidTemperatureControl | is used to model VRF outdoor unit | Default value: Fan:ConstantVolume Args: value (str): value for IDD Field `Supply Air Fan Object Type` Raises: ValueError: if `value` is not a valid value Returns: str: the value of `supply_air_fan_object_type` or None if not set<|endoftext|>
438577a82e989931a07ac67e5acc874ead5e8f117654ed4b8a7754cb6d306e59
@supply_air_fan_object_type.setter def supply_air_fan_object_type(self, value='Fan:ConstantVolume'): 'Corresponds to IDD field `Supply Air Fan Object Type`' self['Supply Air Fan Object Type'] = value
Corresponds to IDD field `Supply Air Fan Object Type`
pyidf/zone_hvac_forced_air_units.py
supply_air_fan_object_type
marcelosalles/pyidf
19
python
@supply_air_fan_object_type.setter def supply_air_fan_object_type(self, value='Fan:ConstantVolume'): self['Supply Air Fan Object Type'] = value
@supply_air_fan_object_type.setter def supply_air_fan_object_type(self, value='Fan:ConstantVolume'): self['Supply Air Fan Object Type'] = value<|docstring|>Corresponds to IDD field `Supply Air Fan Object Type`<|endoftext|>
60212763db12cb39ee6ecda4c89ee991d7b9cc9679ea33e6fd1417a0f2b27fc6
@property def supply_air_fan_object_name(self): 'field `Supply Air Fan Object Name`\n\n Args:\n value (str): value for IDD Field `Supply Air Fan Object Name`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n str: the value of `supply_air_fan_object_name` or None if not set\n\n ' return self['Supply Air Fan Object Name']
field `Supply Air Fan Object Name` Args: value (str): value for IDD Field `Supply Air Fan Object Name` Raises: ValueError: if `value` is not a valid value Returns: str: the value of `supply_air_fan_object_name` or None if not set
pyidf/zone_hvac_forced_air_units.py
supply_air_fan_object_name
marcelosalles/pyidf
19
python
@property def supply_air_fan_object_name(self): 'field `Supply Air Fan Object Name`\n\n Args:\n value (str): value for IDD Field `Supply Air Fan Object Name`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n str: the value of `supply_air_fan_object_name` or None if not set\n\n ' return self['Supply Air Fan Object Name']
@property def supply_air_fan_object_name(self): 'field `Supply Air Fan Object Name`\n\n Args:\n value (str): value for IDD Field `Supply Air Fan Object Name`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n str: the value of `supply_air_fan_object_name` or None if not set\n\n ' return self['Supply Air Fan Object Name']<|docstring|>field `Supply Air Fan Object Name` Args: value (str): value for IDD Field `Supply Air Fan Object Name` Raises: ValueError: if `value` is not a valid value Returns: str: the value of `supply_air_fan_object_name` or None if not set<|endoftext|>
f41e7d9426fa4789fe0a714de29bc1ef4e3ea169b7946580f5239144cd79d6e5
@supply_air_fan_object_name.setter def supply_air_fan_object_name(self, value=None): 'Corresponds to IDD field `Supply Air Fan Object Name`' self['Supply Air Fan Object Name'] = value
Corresponds to IDD field `Supply Air Fan Object Name`
pyidf/zone_hvac_forced_air_units.py
supply_air_fan_object_name
marcelosalles/pyidf
19
python
@supply_air_fan_object_name.setter def supply_air_fan_object_name(self, value=None): self['Supply Air Fan Object Name'] = value
@supply_air_fan_object_name.setter def supply_air_fan_object_name(self, value=None): self['Supply Air Fan Object Name'] = value<|docstring|>Corresponds to IDD field `Supply Air Fan Object Name`<|endoftext|>
6fb173a039dadd9654e021d68f7458ef2bda21d38c46ab3880a0a89dce2028d0
@property def outside_air_mixer_object_type(self): 'field `Outside Air Mixer Object Type`\n\n | If this field is blank, and outside air mixer is not used.\n\n Args:\n value (str): value for IDD Field `Outside Air Mixer Object Type`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n str: the value of `outside_air_mixer_object_type` or None if not set\n\n ' return self['Outside Air Mixer Object Type']
field `Outside Air Mixer Object Type` | If this field is blank, and outside air mixer is not used. Args: value (str): value for IDD Field `Outside Air Mixer Object Type` Raises: ValueError: if `value` is not a valid value Returns: str: the value of `outside_air_mixer_object_type` or None if not set
pyidf/zone_hvac_forced_air_units.py
outside_air_mixer_object_type
marcelosalles/pyidf
19
python
@property def outside_air_mixer_object_type(self): 'field `Outside Air Mixer Object Type`\n\n | If this field is blank, and outside air mixer is not used.\n\n Args:\n value (str): value for IDD Field `Outside Air Mixer Object Type`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n str: the value of `outside_air_mixer_object_type` or None if not set\n\n ' return self['Outside Air Mixer Object Type']
@property def outside_air_mixer_object_type(self): 'field `Outside Air Mixer Object Type`\n\n | If this field is blank, and outside air mixer is not used.\n\n Args:\n value (str): value for IDD Field `Outside Air Mixer Object Type`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n str: the value of `outside_air_mixer_object_type` or None if not set\n\n ' return self['Outside Air Mixer Object Type']<|docstring|>field `Outside Air Mixer Object Type` | If this field is blank, and outside air mixer is not used. Args: value (str): value for IDD Field `Outside Air Mixer Object Type` Raises: ValueError: if `value` is not a valid value Returns: str: the value of `outside_air_mixer_object_type` or None if not set<|endoftext|>
db96e586633c2ef9ffd36954034c124aa785957ed5526a22bac7a8432a6ca2ff
@outside_air_mixer_object_type.setter def outside_air_mixer_object_type(self, value=None): 'Corresponds to IDD field `Outside Air Mixer Object Type`' self['Outside Air Mixer Object Type'] = value
Corresponds to IDD field `Outside Air Mixer Object Type`
pyidf/zone_hvac_forced_air_units.py
outside_air_mixer_object_type
marcelosalles/pyidf
19
python
@outside_air_mixer_object_type.setter def outside_air_mixer_object_type(self, value=None): self['Outside Air Mixer Object Type'] = value
@outside_air_mixer_object_type.setter def outside_air_mixer_object_type(self, value=None): self['Outside Air Mixer Object Type'] = value<|docstring|>Corresponds to IDD field `Outside Air Mixer Object Type`<|endoftext|>
ac93667e1be023f2e56085eb4ee451da3dc093cbfea44c8c7050ad9ffaa7b417
@property def outside_air_mixer_object_name(self): 'field `Outside Air Mixer Object Name`\n\n | If this field is blank, and outside air mixer is not used.\n\n Args:\n value (str): value for IDD Field `Outside Air Mixer Object Name`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n str: the value of `outside_air_mixer_object_name` or None if not set\n\n ' return self['Outside Air Mixer Object Name']
field `Outside Air Mixer Object Name` | If this field is blank, and outside air mixer is not used. Args: value (str): value for IDD Field `Outside Air Mixer Object Name` Raises: ValueError: if `value` is not a valid value Returns: str: the value of `outside_air_mixer_object_name` or None if not set
pyidf/zone_hvac_forced_air_units.py
outside_air_mixer_object_name
marcelosalles/pyidf
19
python
@property def outside_air_mixer_object_name(self): 'field `Outside Air Mixer Object Name`\n\n | If this field is blank, and outside air mixer is not used.\n\n Args:\n value (str): value for IDD Field `Outside Air Mixer Object Name`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n str: the value of `outside_air_mixer_object_name` or None if not set\n\n ' return self['Outside Air Mixer Object Name']
@property def outside_air_mixer_object_name(self): 'field `Outside Air Mixer Object Name`\n\n | If this field is blank, and outside air mixer is not used.\n\n Args:\n value (str): value for IDD Field `Outside Air Mixer Object Name`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n str: the value of `outside_air_mixer_object_name` or None if not set\n\n ' return self['Outside Air Mixer Object Name']<|docstring|>field `Outside Air Mixer Object Name` | If this field is blank, and outside air mixer is not used. Args: value (str): value for IDD Field `Outside Air Mixer Object Name` Raises: ValueError: if `value` is not a valid value Returns: str: the value of `outside_air_mixer_object_name` or None if not set<|endoftext|>
b27f45b5e931971e9a2dc5841457cacb64ab467ffeec9a872416693e100ddbf2
@outside_air_mixer_object_name.setter def outside_air_mixer_object_name(self, value=None): 'Corresponds to IDD field `Outside Air Mixer Object Name`' self['Outside Air Mixer Object Name'] = value
Corresponds to IDD field `Outside Air Mixer Object Name`
pyidf/zone_hvac_forced_air_units.py
outside_air_mixer_object_name
marcelosalles/pyidf
19
python
@outside_air_mixer_object_name.setter def outside_air_mixer_object_name(self, value=None): self['Outside Air Mixer Object Name'] = value
@outside_air_mixer_object_name.setter def outside_air_mixer_object_name(self, value=None): self['Outside Air Mixer Object Name'] = value<|docstring|>Corresponds to IDD field `Outside Air Mixer Object Name`<|endoftext|>
4e977f9c9be33bfc42c61380f83fb76444fb04b87e86ffbe45f2ad23b8e2acab
@property def cooling_coil_object_type(self): 'field `Cooling Coil Object Type`\n\n | Cooling Coil Type must be Coil:Cooling:DX:VariableRefrigerantFlow\n | if AirConditioner:VariableRefrigerantFlow is used\n | to model VRF outdoor unit\n | Cooling Coil Type must be\n | Coil:Cooling:DX:VariableRefrigerantFlow:FluidTemperatureControl\n | if AirConditioner:VariableRefrigerantFlow:FluidTemperatureControl\n | is used to model VRF outdoor unit\n | This field may be left blank if heating-only mode is used\n\n Args:\n value (str): value for IDD Field `Cooling Coil Object Type`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n str: the value of `cooling_coil_object_type` or None if not set\n\n ' return self['Cooling Coil Object Type']
field `Cooling Coil Object Type` | Cooling Coil Type must be Coil:Cooling:DX:VariableRefrigerantFlow | if AirConditioner:VariableRefrigerantFlow is used | to model VRF outdoor unit | Cooling Coil Type must be | Coil:Cooling:DX:VariableRefrigerantFlow:FluidTemperatureControl | if AirConditioner:VariableRefrigerantFlow:FluidTemperatureControl | is used to model VRF outdoor unit | This field may be left blank if heating-only mode is used Args: value (str): value for IDD Field `Cooling Coil Object Type` Raises: ValueError: if `value` is not a valid value Returns: str: the value of `cooling_coil_object_type` or None if not set
pyidf/zone_hvac_forced_air_units.py
cooling_coil_object_type
marcelosalles/pyidf
19
python
@property def cooling_coil_object_type(self): 'field `Cooling Coil Object Type`\n\n | Cooling Coil Type must be Coil:Cooling:DX:VariableRefrigerantFlow\n | if AirConditioner:VariableRefrigerantFlow is used\n | to model VRF outdoor unit\n | Cooling Coil Type must be\n | Coil:Cooling:DX:VariableRefrigerantFlow:FluidTemperatureControl\n | if AirConditioner:VariableRefrigerantFlow:FluidTemperatureControl\n | is used to model VRF outdoor unit\n | This field may be left blank if heating-only mode is used\n\n Args:\n value (str): value for IDD Field `Cooling Coil Object Type`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n str: the value of `cooling_coil_object_type` or None if not set\n\n ' return self['Cooling Coil Object Type']
@property def cooling_coil_object_type(self): 'field `Cooling Coil Object Type`\n\n | Cooling Coil Type must be Coil:Cooling:DX:VariableRefrigerantFlow\n | if AirConditioner:VariableRefrigerantFlow is used\n | to model VRF outdoor unit\n | Cooling Coil Type must be\n | Coil:Cooling:DX:VariableRefrigerantFlow:FluidTemperatureControl\n | if AirConditioner:VariableRefrigerantFlow:FluidTemperatureControl\n | is used to model VRF outdoor unit\n | This field may be left blank if heating-only mode is used\n\n Args:\n value (str): value for IDD Field `Cooling Coil Object Type`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n str: the value of `cooling_coil_object_type` or None if not set\n\n ' return self['Cooling Coil Object Type']<|docstring|>field `Cooling Coil Object Type` | Cooling Coil Type must be Coil:Cooling:DX:VariableRefrigerantFlow | if AirConditioner:VariableRefrigerantFlow is used | to model VRF outdoor unit | Cooling Coil Type must be | Coil:Cooling:DX:VariableRefrigerantFlow:FluidTemperatureControl | if AirConditioner:VariableRefrigerantFlow:FluidTemperatureControl | is used to model VRF outdoor unit | This field may be left blank if heating-only mode is used Args: value (str): value for IDD Field `Cooling Coil Object Type` Raises: ValueError: if `value` is not a valid value Returns: str: the value of `cooling_coil_object_type` or None if not set<|endoftext|>
e3ac5efa41b9efef5448e40e65ec3be3037a428925356f91b53877e2292c5305
@cooling_coil_object_type.setter def cooling_coil_object_type(self, value=None): 'Corresponds to IDD field `Cooling Coil Object Type`' self['Cooling Coil Object Type'] = value
Corresponds to IDD field `Cooling Coil Object Type`
pyidf/zone_hvac_forced_air_units.py
cooling_coil_object_type
marcelosalles/pyidf
19
python
@cooling_coil_object_type.setter def cooling_coil_object_type(self, value=None): self['Cooling Coil Object Type'] = value
@cooling_coil_object_type.setter def cooling_coil_object_type(self, value=None): self['Cooling Coil Object Type'] = value<|docstring|>Corresponds to IDD field `Cooling Coil Object Type`<|endoftext|>
6ad00b0f3efa61d75b3343ad3fe22c1ae0de26cd56a5cc7b13468c4fabb1923e
@property def cooling_coil_object_name(self): 'field `Cooling Coil Object Name`\n\n | Cooling Coil Type must be Coil:Cooling:DX:VariableRefrigerantFlow\n | This field may be left blank if heating-only mode is used\n\n Args:\n value (str): value for IDD Field `Cooling Coil Object Name`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n str: the value of `cooling_coil_object_name` or None if not set\n\n ' return self['Cooling Coil Object Name']
field `Cooling Coil Object Name` | Cooling Coil Type must be Coil:Cooling:DX:VariableRefrigerantFlow | This field may be left blank if heating-only mode is used Args: value (str): value for IDD Field `Cooling Coil Object Name` Raises: ValueError: if `value` is not a valid value Returns: str: the value of `cooling_coil_object_name` or None if not set
pyidf/zone_hvac_forced_air_units.py
cooling_coil_object_name
marcelosalles/pyidf
19
python
@property def cooling_coil_object_name(self): 'field `Cooling Coil Object Name`\n\n | Cooling Coil Type must be Coil:Cooling:DX:VariableRefrigerantFlow\n | This field may be left blank if heating-only mode is used\n\n Args:\n value (str): value for IDD Field `Cooling Coil Object Name`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n str: the value of `cooling_coil_object_name` or None if not set\n\n ' return self['Cooling Coil Object Name']
@property def cooling_coil_object_name(self): 'field `Cooling Coil Object Name`\n\n | Cooling Coil Type must be Coil:Cooling:DX:VariableRefrigerantFlow\n | This field may be left blank if heating-only mode is used\n\n Args:\n value (str): value for IDD Field `Cooling Coil Object Name`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n str: the value of `cooling_coil_object_name` or None if not set\n\n ' return self['Cooling Coil Object Name']<|docstring|>field `Cooling Coil Object Name` | Cooling Coil Type must be Coil:Cooling:DX:VariableRefrigerantFlow | This field may be left blank if heating-only mode is used Args: value (str): value for IDD Field `Cooling Coil Object Name` Raises: ValueError: if `value` is not a valid value Returns: str: the value of `cooling_coil_object_name` or None if not set<|endoftext|>
37c39de94597420878cba10356f0afa0573055181678c965ada18dc229add645
@cooling_coil_object_name.setter def cooling_coil_object_name(self, value=None): 'Corresponds to IDD field `Cooling Coil Object Name`' self['Cooling Coil Object Name'] = value
Corresponds to IDD field `Cooling Coil Object Name`
pyidf/zone_hvac_forced_air_units.py
cooling_coil_object_name
marcelosalles/pyidf
19
python
@cooling_coil_object_name.setter def cooling_coil_object_name(self, value=None): self['Cooling Coil Object Name'] = value
@cooling_coil_object_name.setter def cooling_coil_object_name(self, value=None): self['Cooling Coil Object Name'] = value<|docstring|>Corresponds to IDD field `Cooling Coil Object Name`<|endoftext|>
b6a315fd929664962ca765dee71cebb5f41b6ebc7e4f53d28255a3c8df138e1f
@property def heating_coil_object_type(self): 'field `Heating Coil Object Type`\n\n | Heating Coil Type must be Coil:Heating:DX:VariableRefrigerantFlow\n | if AirConditioner:VariableRefrigerantFlow is used\n | to model VRF outdoor unit\n | Heating Coil Type must be\n | Coil:Heating:DX:VariableRefrigerantFlow:FluidTemperatureControl\n | if AirConditioner:VariableRefrigerantFlow:FluidTemperatureControl\n | is used to model VRF outdoor unit\n | This field may be left blank if cooling-only mode is used\n\n Args:\n value (str): value for IDD Field `Heating Coil Object Type`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n str: the value of `heating_coil_object_type` or None if not set\n\n ' return self['Heating Coil Object Type']
field `Heating Coil Object Type` | Heating Coil Type must be Coil:Heating:DX:VariableRefrigerantFlow | if AirConditioner:VariableRefrigerantFlow is used | to model VRF outdoor unit | Heating Coil Type must be | Coil:Heating:DX:VariableRefrigerantFlow:FluidTemperatureControl | if AirConditioner:VariableRefrigerantFlow:FluidTemperatureControl | is used to model VRF outdoor unit | This field may be left blank if cooling-only mode is used Args: value (str): value for IDD Field `Heating Coil Object Type` Raises: ValueError: if `value` is not a valid value Returns: str: the value of `heating_coil_object_type` or None if not set
pyidf/zone_hvac_forced_air_units.py
heating_coil_object_type
marcelosalles/pyidf
19
python
@property def heating_coil_object_type(self): 'field `Heating Coil Object Type`\n\n | Heating Coil Type must be Coil:Heating:DX:VariableRefrigerantFlow\n | if AirConditioner:VariableRefrigerantFlow is used\n | to model VRF outdoor unit\n | Heating Coil Type must be\n | Coil:Heating:DX:VariableRefrigerantFlow:FluidTemperatureControl\n | if AirConditioner:VariableRefrigerantFlow:FluidTemperatureControl\n | is used to model VRF outdoor unit\n | This field may be left blank if cooling-only mode is used\n\n Args:\n value (str): value for IDD Field `Heating Coil Object Type`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n str: the value of `heating_coil_object_type` or None if not set\n\n ' return self['Heating Coil Object Type']
@property def heating_coil_object_type(self): 'field `Heating Coil Object Type`\n\n | Heating Coil Type must be Coil:Heating:DX:VariableRefrigerantFlow\n | if AirConditioner:VariableRefrigerantFlow is used\n | to model VRF outdoor unit\n | Heating Coil Type must be\n | Coil:Heating:DX:VariableRefrigerantFlow:FluidTemperatureControl\n | if AirConditioner:VariableRefrigerantFlow:FluidTemperatureControl\n | is used to model VRF outdoor unit\n | This field may be left blank if cooling-only mode is used\n\n Args:\n value (str): value for IDD Field `Heating Coil Object Type`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n str: the value of `heating_coil_object_type` or None if not set\n\n ' return self['Heating Coil Object Type']<|docstring|>field `Heating Coil Object Type` | Heating Coil Type must be Coil:Heating:DX:VariableRefrigerantFlow | if AirConditioner:VariableRefrigerantFlow is used | to model VRF outdoor unit | Heating Coil Type must be | Coil:Heating:DX:VariableRefrigerantFlow:FluidTemperatureControl | if AirConditioner:VariableRefrigerantFlow:FluidTemperatureControl | is used to model VRF outdoor unit | This field may be left blank if cooling-only mode is used Args: value (str): value for IDD Field `Heating Coil Object Type` Raises: ValueError: if `value` is not a valid value Returns: str: the value of `heating_coil_object_type` or None if not set<|endoftext|>
1c42f1a45c6d1dc3d7709b81a0c8ec0628351fbea7c349d7dd5740bdcbae1c17
@heating_coil_object_type.setter def heating_coil_object_type(self, value=None): 'Corresponds to IDD field `Heating Coil Object Type`' self['Heating Coil Object Type'] = value
Corresponds to IDD field `Heating Coil Object Type`
pyidf/zone_hvac_forced_air_units.py
heating_coil_object_type
marcelosalles/pyidf
19
python
@heating_coil_object_type.setter def heating_coil_object_type(self, value=None): self['Heating Coil Object Type'] = value
@heating_coil_object_type.setter def heating_coil_object_type(self, value=None): self['Heating Coil Object Type'] = value<|docstring|>Corresponds to IDD field `Heating Coil Object Type`<|endoftext|>
416dbe57ebf84be0431ee781a99ddadaea17f9642334491d898e4b798df8c916
@property def heating_coil_object_name(self): 'field `Heating Coil Object Name`\n\n | Heating Coil Type must be Coil:Heating:DX:VariableRefrigerantFlow\n | This field may be left blank if cooling-only mode is used\n\n Args:\n value (str): value for IDD Field `Heating Coil Object Name`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n str: the value of `heating_coil_object_name` or None if not set\n\n ' return self['Heating Coil Object Name']
field `Heating Coil Object Name` | Heating Coil Type must be Coil:Heating:DX:VariableRefrigerantFlow | This field may be left blank if cooling-only mode is used Args: value (str): value for IDD Field `Heating Coil Object Name` Raises: ValueError: if `value` is not a valid value Returns: str: the value of `heating_coil_object_name` or None if not set
pyidf/zone_hvac_forced_air_units.py
heating_coil_object_name
marcelosalles/pyidf
19
python
@property def heating_coil_object_name(self): 'field `Heating Coil Object Name`\n\n | Heating Coil Type must be Coil:Heating:DX:VariableRefrigerantFlow\n | This field may be left blank if cooling-only mode is used\n\n Args:\n value (str): value for IDD Field `Heating Coil Object Name`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n str: the value of `heating_coil_object_name` or None if not set\n\n ' return self['Heating Coil Object Name']
@property def heating_coil_object_name(self): 'field `Heating Coil Object Name`\n\n | Heating Coil Type must be Coil:Heating:DX:VariableRefrigerantFlow\n | This field may be left blank if cooling-only mode is used\n\n Args:\n value (str): value for IDD Field `Heating Coil Object Name`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n str: the value of `heating_coil_object_name` or None if not set\n\n ' return self['Heating Coil Object Name']<|docstring|>field `Heating Coil Object Name` | Heating Coil Type must be Coil:Heating:DX:VariableRefrigerantFlow | This field may be left blank if cooling-only mode is used Args: value (str): value for IDD Field `Heating Coil Object Name` Raises: ValueError: if `value` is not a valid value Returns: str: the value of `heating_coil_object_name` or None if not set<|endoftext|>
d6688fafbc67427bd86e5213a0853ec9c9005754f40c5c30c97e8ec9ab24589e
@heating_coil_object_name.setter def heating_coil_object_name(self, value=None): 'Corresponds to IDD field `Heating Coil Object Name`' self['Heating Coil Object Name'] = value
Corresponds to IDD field `Heating Coil Object Name`
pyidf/zone_hvac_forced_air_units.py
heating_coil_object_name
marcelosalles/pyidf
19
python
@heating_coil_object_name.setter def heating_coil_object_name(self, value=None): self['Heating Coil Object Name'] = value
@heating_coil_object_name.setter def heating_coil_object_name(self, value=None): self['Heating Coil Object Name'] = value<|docstring|>Corresponds to IDD field `Heating Coil Object Name`<|endoftext|>
6ff08f1cd529a635739de017107f18a2a61dc895aceade9d2fab37f37442f7c2
@property def zone_terminal_unit_on_parasitic_electric_energy_use(self): 'field `Zone Terminal Unit On Parasitic Electric Energy Use`\n\n | Units: W\n\n Args:\n value (float): value for IDD Field `Zone Terminal Unit On Parasitic Electric Energy Use`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n float: the value of `zone_terminal_unit_on_parasitic_electric_energy_use` or None if not set\n\n ' return self['Zone Terminal Unit On Parasitic Electric Energy Use']
field `Zone Terminal Unit On Parasitic Electric Energy Use` | Units: W Args: value (float): value for IDD Field `Zone Terminal Unit On Parasitic Electric Energy Use` Raises: ValueError: if `value` is not a valid value Returns: float: the value of `zone_terminal_unit_on_parasitic_electric_energy_use` or None if not set
pyidf/zone_hvac_forced_air_units.py
zone_terminal_unit_on_parasitic_electric_energy_use
marcelosalles/pyidf
19
python
@property def zone_terminal_unit_on_parasitic_electric_energy_use(self): 'field `Zone Terminal Unit On Parasitic Electric Energy Use`\n\n | Units: W\n\n Args:\n value (float): value for IDD Field `Zone Terminal Unit On Parasitic Electric Energy Use`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n float: the value of `zone_terminal_unit_on_parasitic_electric_energy_use` or None if not set\n\n ' return self['Zone Terminal Unit On Parasitic Electric Energy Use']
@property def zone_terminal_unit_on_parasitic_electric_energy_use(self): 'field `Zone Terminal Unit On Parasitic Electric Energy Use`\n\n | Units: W\n\n Args:\n value (float): value for IDD Field `Zone Terminal Unit On Parasitic Electric Energy Use`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n float: the value of `zone_terminal_unit_on_parasitic_electric_energy_use` or None if not set\n\n ' return self['Zone Terminal Unit On Parasitic Electric Energy Use']<|docstring|>field `Zone Terminal Unit On Parasitic Electric Energy Use` | Units: W Args: value (float): value for IDD Field `Zone Terminal Unit On Parasitic Electric Energy Use` Raises: ValueError: if `value` is not a valid value Returns: float: the value of `zone_terminal_unit_on_parasitic_electric_energy_use` or None if not set<|endoftext|>
c460c516159f22b959f975f3842924b0c9d186a059e332353f3827f58f45fdff
@zone_terminal_unit_on_parasitic_electric_energy_use.setter def zone_terminal_unit_on_parasitic_electric_energy_use(self, value=None): 'Corresponds to IDD field `Zone Terminal Unit On Parasitic Electric\n Energy Use`' self['Zone Terminal Unit On Parasitic Electric Energy Use'] = value
Corresponds to IDD field `Zone Terminal Unit On Parasitic Electric Energy Use`
pyidf/zone_hvac_forced_air_units.py
zone_terminal_unit_on_parasitic_electric_energy_use
marcelosalles/pyidf
19
python
@zone_terminal_unit_on_parasitic_electric_energy_use.setter def zone_terminal_unit_on_parasitic_electric_energy_use(self, value=None): 'Corresponds to IDD field `Zone Terminal Unit On Parasitic Electric\n Energy Use`' self['Zone Terminal Unit On Parasitic Electric Energy Use'] = value
@zone_terminal_unit_on_parasitic_electric_energy_use.setter def zone_terminal_unit_on_parasitic_electric_energy_use(self, value=None): 'Corresponds to IDD field `Zone Terminal Unit On Parasitic Electric\n Energy Use`' self['Zone Terminal Unit On Parasitic Electric Energy Use'] = value<|docstring|>Corresponds to IDD field `Zone Terminal Unit On Parasitic Electric Energy Use`<|endoftext|>
c3a0a7122229149784ca366856d4fd0675ad2bbf5c09a5d949dc9881562245a0
@property def zone_terminal_unit_off_parasitic_electric_energy_use(self): 'field `Zone Terminal Unit Off Parasitic Electric Energy Use`\n\n | Units: W\n\n Args:\n value (float): value for IDD Field `Zone Terminal Unit Off Parasitic Electric Energy Use`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n float: the value of `zone_terminal_unit_off_parasitic_electric_energy_use` or None if not set\n\n ' return self['Zone Terminal Unit Off Parasitic Electric Energy Use']
field `Zone Terminal Unit Off Parasitic Electric Energy Use` | Units: W Args: value (float): value for IDD Field `Zone Terminal Unit Off Parasitic Electric Energy Use` Raises: ValueError: if `value` is not a valid value Returns: float: the value of `zone_terminal_unit_off_parasitic_electric_energy_use` or None if not set
pyidf/zone_hvac_forced_air_units.py
zone_terminal_unit_off_parasitic_electric_energy_use
marcelosalles/pyidf
19
python
@property def zone_terminal_unit_off_parasitic_electric_energy_use(self): 'field `Zone Terminal Unit Off Parasitic Electric Energy Use`\n\n | Units: W\n\n Args:\n value (float): value for IDD Field `Zone Terminal Unit Off Parasitic Electric Energy Use`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n float: the value of `zone_terminal_unit_off_parasitic_electric_energy_use` or None if not set\n\n ' return self['Zone Terminal Unit Off Parasitic Electric Energy Use']
@property def zone_terminal_unit_off_parasitic_electric_energy_use(self): 'field `Zone Terminal Unit Off Parasitic Electric Energy Use`\n\n | Units: W\n\n Args:\n value (float): value for IDD Field `Zone Terminal Unit Off Parasitic Electric Energy Use`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n float: the value of `zone_terminal_unit_off_parasitic_electric_energy_use` or None if not set\n\n ' return self['Zone Terminal Unit Off Parasitic Electric Energy Use']<|docstring|>field `Zone Terminal Unit Off Parasitic Electric Energy Use` | Units: W Args: value (float): value for IDD Field `Zone Terminal Unit Off Parasitic Electric Energy Use` Raises: ValueError: if `value` is not a valid value Returns: float: the value of `zone_terminal_unit_off_parasitic_electric_energy_use` or None if not set<|endoftext|>
1c5e50444fcd743f654f7f18b84f123ca96c17703398a0066fd2fccd997c5cbb
@zone_terminal_unit_off_parasitic_electric_energy_use.setter def zone_terminal_unit_off_parasitic_electric_energy_use(self, value=None): 'Corresponds to IDD field `Zone Terminal Unit Off Parasitic Electric\n Energy Use`' self['Zone Terminal Unit Off Parasitic Electric Energy Use'] = value
Corresponds to IDD field `Zone Terminal Unit Off Parasitic Electric Energy Use`
pyidf/zone_hvac_forced_air_units.py
zone_terminal_unit_off_parasitic_electric_energy_use
marcelosalles/pyidf
19
python
@zone_terminal_unit_off_parasitic_electric_energy_use.setter def zone_terminal_unit_off_parasitic_electric_energy_use(self, value=None): 'Corresponds to IDD field `Zone Terminal Unit Off Parasitic Electric\n Energy Use`' self['Zone Terminal Unit Off Parasitic Electric Energy Use'] = value
@zone_terminal_unit_off_parasitic_electric_energy_use.setter def zone_terminal_unit_off_parasitic_electric_energy_use(self, value=None): 'Corresponds to IDD field `Zone Terminal Unit Off Parasitic Electric\n Energy Use`' self['Zone Terminal Unit Off Parasitic Electric Energy Use'] = value<|docstring|>Corresponds to IDD field `Zone Terminal Unit Off Parasitic Electric Energy Use`<|endoftext|>
fd2492a3923140c0d03bfad3186bc894bfd7ae6d383e7f6f8b65fd9cb8d7fe2d
@property def rated_heating_capacity_sizing_ratio(self): "field `Rated Heating Capacity Sizing Ratio`\n\n | If this terminal unit's heating coil is autosized, the heating capacity is sized\n | to be equal to the cooling capacity multiplied by this sizing ratio.\n | This input applies to the terminal unit heating coil and overrides the sizing\n | ratio entered in the AirConditioner:VariableRefrigerantFlow object.\n | Units: W/W\n | Default value: 1.0\n | value >= 1.0\n\n Args:\n value (float): value for IDD Field `Rated Heating Capacity Sizing Ratio`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n float: the value of `rated_heating_capacity_sizing_ratio` or None if not set\n\n " return self['Rated Heating Capacity Sizing Ratio']
field `Rated Heating Capacity Sizing Ratio` | If this terminal unit's heating coil is autosized, the heating capacity is sized | to be equal to the cooling capacity multiplied by this sizing ratio. | This input applies to the terminal unit heating coil and overrides the sizing | ratio entered in the AirConditioner:VariableRefrigerantFlow object. | Units: W/W | Default value: 1.0 | value >= 1.0 Args: value (float): value for IDD Field `Rated Heating Capacity Sizing Ratio` Raises: ValueError: if `value` is not a valid value Returns: float: the value of `rated_heating_capacity_sizing_ratio` or None if not set
pyidf/zone_hvac_forced_air_units.py
rated_heating_capacity_sizing_ratio
marcelosalles/pyidf
19
python
@property def rated_heating_capacity_sizing_ratio(self): "field `Rated Heating Capacity Sizing Ratio`\n\n | If this terminal unit's heating coil is autosized, the heating capacity is sized\n | to be equal to the cooling capacity multiplied by this sizing ratio.\n | This input applies to the terminal unit heating coil and overrides the sizing\n | ratio entered in the AirConditioner:VariableRefrigerantFlow object.\n | Units: W/W\n | Default value: 1.0\n | value >= 1.0\n\n Args:\n value (float): value for IDD Field `Rated Heating Capacity Sizing Ratio`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n float: the value of `rated_heating_capacity_sizing_ratio` or None if not set\n\n " return self['Rated Heating Capacity Sizing Ratio']
@property def rated_heating_capacity_sizing_ratio(self): "field `Rated Heating Capacity Sizing Ratio`\n\n | If this terminal unit's heating coil is autosized, the heating capacity is sized\n | to be equal to the cooling capacity multiplied by this sizing ratio.\n | This input applies to the terminal unit heating coil and overrides the sizing\n | ratio entered in the AirConditioner:VariableRefrigerantFlow object.\n | Units: W/W\n | Default value: 1.0\n | value >= 1.0\n\n Args:\n value (float): value for IDD Field `Rated Heating Capacity Sizing Ratio`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n float: the value of `rated_heating_capacity_sizing_ratio` or None if not set\n\n " return self['Rated Heating Capacity Sizing Ratio']<|docstring|>field `Rated Heating Capacity Sizing Ratio` | If this terminal unit's heating coil is autosized, the heating capacity is sized | to be equal to the cooling capacity multiplied by this sizing ratio. | This input applies to the terminal unit heating coil and overrides the sizing | ratio entered in the AirConditioner:VariableRefrigerantFlow object. | Units: W/W | Default value: 1.0 | value >= 1.0 Args: value (float): value for IDD Field `Rated Heating Capacity Sizing Ratio` Raises: ValueError: if `value` is not a valid value Returns: float: the value of `rated_heating_capacity_sizing_ratio` or None if not set<|endoftext|>
4da0110321f808f125067d4d56f8f98538bd18a713951655c64558db4fb0b149
@rated_heating_capacity_sizing_ratio.setter def rated_heating_capacity_sizing_ratio(self, value=1.0): 'Corresponds to IDD field `Rated Heating Capacity Sizing Ratio`' self['Rated Heating Capacity Sizing Ratio'] = value
Corresponds to IDD field `Rated Heating Capacity Sizing Ratio`
pyidf/zone_hvac_forced_air_units.py
rated_heating_capacity_sizing_ratio
marcelosalles/pyidf
19
python
@rated_heating_capacity_sizing_ratio.setter def rated_heating_capacity_sizing_ratio(self, value=1.0): self['Rated Heating Capacity Sizing Ratio'] = value
@rated_heating_capacity_sizing_ratio.setter def rated_heating_capacity_sizing_ratio(self, value=1.0): self['Rated Heating Capacity Sizing Ratio'] = value<|docstring|>Corresponds to IDD field `Rated Heating Capacity Sizing Ratio`<|endoftext|>
34a6536179864bd69e16dfb58123b60585d7e47147be939cb77f6d2a7aaf5089
@property def availability_manager_list_name(self): 'field `Availability Manager List Name`\n\n | Enter the name of an AvailabilityManagerAssignmentList object.\n\n Args:\n value (str): value for IDD Field `Availability Manager List Name`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n str: the value of `availability_manager_list_name` or None if not set\n\n ' return self['Availability Manager List Name']
field `Availability Manager List Name` | Enter the name of an AvailabilityManagerAssignmentList object. Args: value (str): value for IDD Field `Availability Manager List Name` Raises: ValueError: if `value` is not a valid value Returns: str: the value of `availability_manager_list_name` or None if not set
pyidf/zone_hvac_forced_air_units.py
availability_manager_list_name
marcelosalles/pyidf
19
python
@property def availability_manager_list_name(self): 'field `Availability Manager List Name`\n\n | Enter the name of an AvailabilityManagerAssignmentList object.\n\n Args:\n value (str): value for IDD Field `Availability Manager List Name`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n str: the value of `availability_manager_list_name` or None if not set\n\n ' return self['Availability Manager List Name']
@property def availability_manager_list_name(self): 'field `Availability Manager List Name`\n\n | Enter the name of an AvailabilityManagerAssignmentList object.\n\n Args:\n value (str): value for IDD Field `Availability Manager List Name`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n str: the value of `availability_manager_list_name` or None if not set\n\n ' return self['Availability Manager List Name']<|docstring|>field `Availability Manager List Name` | Enter the name of an AvailabilityManagerAssignmentList object. Args: value (str): value for IDD Field `Availability Manager List Name` Raises: ValueError: if `value` is not a valid value Returns: str: the value of `availability_manager_list_name` or None if not set<|endoftext|>
bc2db9236470a5671addc2a0b07d5fb679b2752715f4f954b1795de5078d1081
@availability_manager_list_name.setter def availability_manager_list_name(self, value=None): 'Corresponds to IDD field `Availability Manager List Name`' self['Availability Manager List Name'] = value
Corresponds to IDD field `Availability Manager List Name`
pyidf/zone_hvac_forced_air_units.py
availability_manager_list_name
marcelosalles/pyidf
19
python
@availability_manager_list_name.setter def availability_manager_list_name(self, value=None): self['Availability Manager List Name'] = value
@availability_manager_list_name.setter def availability_manager_list_name(self, value=None): self['Availability Manager List Name'] = value<|docstring|>Corresponds to IDD field `Availability Manager List Name`<|endoftext|>
e22dc2ca7581756faf160f37f87e17946e6823b64cba016312c2a5a35936fb33
@property def design_specification_zonehvac_sizing_object_name(self): 'field `Design Specification ZoneHVAC Sizing Object Name`\n\n | Enter the name of a DesignSpecificationZoneHVACSizing object.\n\n Args:\n value (str): value for IDD Field `Design Specification ZoneHVAC Sizing Object Name`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n str: the value of `design_specification_zonehvac_sizing_object_name` or None if not set\n\n ' return self['Design Specification ZoneHVAC Sizing Object Name']
field `Design Specification ZoneHVAC Sizing Object Name` | Enter the name of a DesignSpecificationZoneHVACSizing object. Args: value (str): value for IDD Field `Design Specification ZoneHVAC Sizing Object Name` Raises: ValueError: if `value` is not a valid value Returns: str: the value of `design_specification_zonehvac_sizing_object_name` or None if not set
pyidf/zone_hvac_forced_air_units.py
design_specification_zonehvac_sizing_object_name
marcelosalles/pyidf
19
python
@property def design_specification_zonehvac_sizing_object_name(self): 'field `Design Specification ZoneHVAC Sizing Object Name`\n\n | Enter the name of a DesignSpecificationZoneHVACSizing object.\n\n Args:\n value (str): value for IDD Field `Design Specification ZoneHVAC Sizing Object Name`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n str: the value of `design_specification_zonehvac_sizing_object_name` or None if not set\n\n ' return self['Design Specification ZoneHVAC Sizing Object Name']
@property def design_specification_zonehvac_sizing_object_name(self): 'field `Design Specification ZoneHVAC Sizing Object Name`\n\n | Enter the name of a DesignSpecificationZoneHVACSizing object.\n\n Args:\n value (str): value for IDD Field `Design Specification ZoneHVAC Sizing Object Name`\n\n Raises:\n ValueError: if `value` is not a valid value\n\n Returns:\n str: the value of `design_specification_zonehvac_sizing_object_name` or None if not set\n\n ' return self['Design Specification ZoneHVAC Sizing Object Name']<|docstring|>field `Design Specification ZoneHVAC Sizing Object Name` | Enter the name of a DesignSpecificationZoneHVACSizing object. Args: value (str): value for IDD Field `Design Specification ZoneHVAC Sizing Object Name` Raises: ValueError: if `value` is not a valid value Returns: str: the value of `design_specification_zonehvac_sizing_object_name` or None if not set<|endoftext|>
c4a5304706326768fb8ac75260fc557fa4d93624417102dac8ce5bc59056b944
@design_specification_zonehvac_sizing_object_name.setter def design_specification_zonehvac_sizing_object_name(self, value=None): 'Corresponds to IDD field `Design Specification ZoneHVAC Sizing\n Object Name`' self['Design Specification ZoneHVAC Sizing Object Name'] = value
Corresponds to IDD field `Design Specification ZoneHVAC Sizing Object Name`
pyidf/zone_hvac_forced_air_units.py
design_specification_zonehvac_sizing_object_name
marcelosalles/pyidf
19
python
@design_specification_zonehvac_sizing_object_name.setter def design_specification_zonehvac_sizing_object_name(self, value=None): 'Corresponds to IDD field `Design Specification ZoneHVAC Sizing\n Object Name`' self['Design Specification ZoneHVAC Sizing Object Name'] = value
@design_specification_zonehvac_sizing_object_name.setter def design_specification_zonehvac_sizing_object_name(self, value=None): 'Corresponds to IDD field `Design Specification ZoneHVAC Sizing\n Object Name`' self['Design Specification ZoneHVAC Sizing Object Name'] = value<|docstring|>Corresponds to IDD field `Design Specification ZoneHVAC Sizing Object Name`<|endoftext|>
1243a3d26a989ce7e0aa834cfd823d56c556479e0916f9d4f24db72e26c8bc64
def load_trained_model(self, weight_path, remove_module=False): ' another loader method for `model`\n\n It can recover changed model module from dumped `latest.pt` and load\n pre-trained weights.\n\n Args:\n weight_path (str): full path or short weight name to the dumped weight\n remove_module (bool)\n ' folder = self.get_checkpoint_dir() if (str(folder) not in weight_path): folder = Path(weight_path).parent ckpt = torch.load((folder / 'latest.pt')) full_model = ckpt['model'] if ('latest.pt' not in weight_path): state_dict = export_checkpoint_weight(weight_path, remove_module) full_model.load_state_dict(state_dict) return full_model
another loader method for `model` It can recover changed model module from dumped `latest.pt` and load pre-trained weights. Args: weight_path (str): full path or short weight name to the dumped weight remove_module (bool)
onegan/extension/checkpoint.py
load_trained_model
leVirve/OneGAN
6
python
def load_trained_model(self, weight_path, remove_module=False): ' another loader method for `model`\n\n It can recover changed model module from dumped `latest.pt` and load\n pre-trained weights.\n\n Args:\n weight_path (str): full path or short weight name to the dumped weight\n remove_module (bool)\n ' folder = self.get_checkpoint_dir() if (str(folder) not in weight_path): folder = Path(weight_path).parent ckpt = torch.load((folder / 'latest.pt')) full_model = ckpt['model'] if ('latest.pt' not in weight_path): state_dict = export_checkpoint_weight(weight_path, remove_module) full_model.load_state_dict(state_dict) return full_model
def load_trained_model(self, weight_path, remove_module=False): ' another loader method for `model`\n\n It can recover changed model module from dumped `latest.pt` and load\n pre-trained weights.\n\n Args:\n weight_path (str): full path or short weight name to the dumped weight\n remove_module (bool)\n ' folder = self.get_checkpoint_dir() if (str(folder) not in weight_path): folder = Path(weight_path).parent ckpt = torch.load((folder / 'latest.pt')) full_model = ckpt['model'] if ('latest.pt' not in weight_path): state_dict = export_checkpoint_weight(weight_path, remove_module) full_model.load_state_dict(state_dict) return full_model<|docstring|>another loader method for `model` It can recover changed model module from dumped `latest.pt` and load pre-trained weights. Args: weight_path (str): full path or short weight name to the dumped weight remove_module (bool)<|endoftext|>
6cd300a94f201ed40a5943341de1254cd75b634a4f8f60704b292089c1779626
def load(self, path=None, model=None, remove_module=False, resume=False): ' load method for `model` and `optimizer`\n\n If `resume` is True, full `model` and `optimizer` modules will be returned;\n or the loaded model will be returned.\n\n Args:\n path (str): full path to the dumped weight or full module\n model (nn.Module)\n remove_module (bool)\n resume (bool)\n\n Return:\n - dict() of dumped data inside `latest.pt`\n - OrderedDict() of `state_dict`\n - nn.Module of input model with loaded state_dict\n - nn.Module of dumped full module with loaded state_dict\n ' if resume: latest_ckpt = torch.load(path) return latest_ckpt try: state_dict = export_checkpoint_weight(path, remove_module) if (model is None): return state_dict model.load_state_dict(state_dict) return model except KeyError: self.logger.warn('Use fallback solution: load `latest.pt` as module') return self.load_trained_model(path, remove_module)
load method for `model` and `optimizer` If `resume` is True, full `model` and `optimizer` modules will be returned; or the loaded model will be returned. Args: path (str): full path to the dumped weight or full module model (nn.Module) remove_module (bool) resume (bool) Return: - dict() of dumped data inside `latest.pt` - OrderedDict() of `state_dict` - nn.Module of input model with loaded state_dict - nn.Module of dumped full module with loaded state_dict
onegan/extension/checkpoint.py
load
leVirve/OneGAN
6
python
def load(self, path=None, model=None, remove_module=False, resume=False): ' load method for `model` and `optimizer`\n\n If `resume` is True, full `model` and `optimizer` modules will be returned;\n or the loaded model will be returned.\n\n Args:\n path (str): full path to the dumped weight or full module\n model (nn.Module)\n remove_module (bool)\n resume (bool)\n\n Return:\n - dict() of dumped data inside `latest.pt`\n - OrderedDict() of `state_dict`\n - nn.Module of input model with loaded state_dict\n - nn.Module of dumped full module with loaded state_dict\n ' if resume: latest_ckpt = torch.load(path) return latest_ckpt try: state_dict = export_checkpoint_weight(path, remove_module) if (model is None): return state_dict model.load_state_dict(state_dict) return model except KeyError: self.logger.warn('Use fallback solution: load `latest.pt` as module') return self.load_trained_model(path, remove_module)
def load(self, path=None, model=None, remove_module=False, resume=False): ' load method for `model` and `optimizer`\n\n If `resume` is True, full `model` and `optimizer` modules will be returned;\n or the loaded model will be returned.\n\n Args:\n path (str): full path to the dumped weight or full module\n model (nn.Module)\n remove_module (bool)\n resume (bool)\n\n Return:\n - dict() of dumped data inside `latest.pt`\n - OrderedDict() of `state_dict`\n - nn.Module of input model with loaded state_dict\n - nn.Module of dumped full module with loaded state_dict\n ' if resume: latest_ckpt = torch.load(path) return latest_ckpt try: state_dict = export_checkpoint_weight(path, remove_module) if (model is None): return state_dict model.load_state_dict(state_dict) return model except KeyError: self.logger.warn('Use fallback solution: load `latest.pt` as module') return self.load_trained_model(path, remove_module)<|docstring|>load method for `model` and `optimizer` If `resume` is True, full `model` and `optimizer` modules will be returned; or the loaded model will be returned. Args: path (str): full path to the dumped weight or full module model (nn.Module) remove_module (bool) resume (bool) Return: - dict() of dumped data inside `latest.pt` - OrderedDict() of `state_dict` - nn.Module of input model with loaded state_dict - nn.Module of dumped full module with loaded state_dict<|endoftext|>
eecbc20ffb66f0cdc258879a54d66dd09564ffc1d410b6aa69cece775abbf62d
def save(self, model, optimizer=None, epoch=None): ' save method for `model` and `optimizer`\n\n Args:\n model (nn.Module)\n optimizer (nn.Module)\n epoch (int): epoch step of training\n ' if ((epoch + 1) % self.save_interval): return folder = self.get_checkpoint_dir(unique=True) torch.save({'weight': model.state_dict()}, (folder / f'net-{epoch}.pt')) torch.save({'model': model, 'optimizer': optimizer, 'epoch': (epoch + 1)}, (folder / 'latest.pt'))
save method for `model` and `optimizer` Args: model (nn.Module) optimizer (nn.Module) epoch (int): epoch step of training
onegan/extension/checkpoint.py
save
leVirve/OneGAN
6
python
def save(self, model, optimizer=None, epoch=None): ' save method for `model` and `optimizer`\n\n Args:\n model (nn.Module)\n optimizer (nn.Module)\n epoch (int): epoch step of training\n ' if ((epoch + 1) % self.save_interval): return folder = self.get_checkpoint_dir(unique=True) torch.save({'weight': model.state_dict()}, (folder / f'net-{epoch}.pt')) torch.save({'model': model, 'optimizer': optimizer, 'epoch': (epoch + 1)}, (folder / 'latest.pt'))
def save(self, model, optimizer=None, epoch=None): ' save method for `model` and `optimizer`\n\n Args:\n model (nn.Module)\n optimizer (nn.Module)\n epoch (int): epoch step of training\n ' if ((epoch + 1) % self.save_interval): return folder = self.get_checkpoint_dir(unique=True) torch.save({'weight': model.state_dict()}, (folder / f'net-{epoch}.pt')) torch.save({'model': model, 'optimizer': optimizer, 'epoch': (epoch + 1)}, (folder / 'latest.pt'))<|docstring|>save method for `model` and `optimizer` Args: model (nn.Module) optimizer (nn.Module) epoch (int): epoch step of training<|endoftext|>
83205b4726419b4c1e982db563124bc673d6af5a4eba60cb28f31f9de8fe2c01
def get_weights(self, weight_path, model=None, remove_module=False, path_only=False): ' model weights searcher\n\n Args:\n weight_path (str): the path to single weight file or the folder of weights\n model (nn.Module): if given, the model will be filled with state_dict\n remove_module (bool): remove the `module.` string from the keys of state_dict\n path_only (bool): if true, the return value will be only path to weights\n Returns:\n - payload, path: if model is given, payload will be loaded model else will be state_dict\n - path: the path to the weight\n ' weight_path = Path(weight_path) if weight_path.is_file(): path = str(weight_path) if path_only: (yield path) payload = self.load(path, model=model, remove_module=remove_module) return (payload, path) paths = list(weight_path.glob('*.pt')) if weight_path.is_dir(): assert len(paths), 'Weights folder contains nothing.' for path in paths: path = str(path) if ('latest.pt' in path): continue if path_only: (yield path) continue payload = self.load(path, model=model, remove_module=remove_module) model = payload (yield (payload, path))
model weights searcher Args: weight_path (str): the path to single weight file or the folder of weights model (nn.Module): if given, the model will be filled with state_dict remove_module (bool): remove the `module.` string from the keys of state_dict path_only (bool): if true, the return value will be only path to weights Returns: - payload, path: if model is given, payload will be loaded model else will be state_dict - path: the path to the weight
onegan/extension/checkpoint.py
get_weights
leVirve/OneGAN
6
python
def get_weights(self, weight_path, model=None, remove_module=False, path_only=False): ' model weights searcher\n\n Args:\n weight_path (str): the path to single weight file or the folder of weights\n model (nn.Module): if given, the model will be filled with state_dict\n remove_module (bool): remove the `module.` string from the keys of state_dict\n path_only (bool): if true, the return value will be only path to weights\n Returns:\n - payload, path: if model is given, payload will be loaded model else will be state_dict\n - path: the path to the weight\n ' weight_path = Path(weight_path) if weight_path.is_file(): path = str(weight_path) if path_only: (yield path) payload = self.load(path, model=model, remove_module=remove_module) return (payload, path) paths = list(weight_path.glob('*.pt')) if weight_path.is_dir(): assert len(paths), 'Weights folder contains nothing.' for path in paths: path = str(path) if ('latest.pt' in path): continue if path_only: (yield path) continue payload = self.load(path, model=model, remove_module=remove_module) model = payload (yield (payload, path))
def get_weights(self, weight_path, model=None, remove_module=False, path_only=False): ' model weights searcher\n\n Args:\n weight_path (str): the path to single weight file or the folder of weights\n model (nn.Module): if given, the model will be filled with state_dict\n remove_module (bool): remove the `module.` string from the keys of state_dict\n path_only (bool): if true, the return value will be only path to weights\n Returns:\n - payload, path: if model is given, payload will be loaded model else will be state_dict\n - path: the path to the weight\n ' weight_path = Path(weight_path) if weight_path.is_file(): path = str(weight_path) if path_only: (yield path) payload = self.load(path, model=model, remove_module=remove_module) return (payload, path) paths = list(weight_path.glob('*.pt')) if weight_path.is_dir(): assert len(paths), 'Weights folder contains nothing.' for path in paths: path = str(path) if ('latest.pt' in path): continue if path_only: (yield path) continue payload = self.load(path, model=model, remove_module=remove_module) model = payload (yield (payload, path))<|docstring|>model weights searcher Args: weight_path (str): the path to single weight file or the folder of weights model (nn.Module): if given, the model will be filled with state_dict remove_module (bool): remove the `module.` string from the keys of state_dict path_only (bool): if true, the return value will be only path to weights Returns: - payload, path: if model is given, payload will be loaded model else will be state_dict - path: the path to the weight<|endoftext|>
fa50664a80d4cd27a40f173a9f18e69952158714f15656875ca4b234435b92f5
def get_versions(self): "\n Return versions of framework and its plugins.\n\n As 'unittest' is a built-in framework, we return the python version.\n " import platform return ['unittest {}'.format(platform.python_version())]
Return versions of framework and its plugins. As 'unittest' is a built-in framework, we return the python version.
spyder_unittest/backend/unittestrunner.py
get_versions
jitseniesen/spyder-unittest
61
python
def get_versions(self): "\n Return versions of framework and its plugins.\n\n As 'unittest' is a built-in framework, we return the python version.\n " import platform return ['unittest {}'.format(platform.python_version())]
def get_versions(self): "\n Return versions of framework and its plugins.\n\n As 'unittest' is a built-in framework, we return the python version.\n " import platform return ['unittest {}'.format(platform.python_version())]<|docstring|>Return versions of framework and its plugins. As 'unittest' is a built-in framework, we return the python version.<|endoftext|>
2e26d4b8dd2d056c24471c4d64901dc2c32bbdeefa49415a74a38b13f97e51c4
def create_argument_list(self): 'Create argument list for testing process.' return ['-m', self.module, 'discover', '-v']
Create argument list for testing process.
spyder_unittest/backend/unittestrunner.py
create_argument_list
jitseniesen/spyder-unittest
61
python
def create_argument_list(self): return ['-m', self.module, 'discover', '-v']
def create_argument_list(self): return ['-m', self.module, 'discover', '-v']<|docstring|>Create argument list for testing process.<|endoftext|>
8aefcb16740f9015886b4026e2f55330ba30006b071f56892f1c897ed163be40
def finished(self): '\n Called when the unit test process has finished.\n\n This function reads the results and emits `sig_finished`.\n ' output = self.read_all_process_output() testresults = self.load_data(output) self.sig_finished.emit(testresults, output)
Called when the unit test process has finished. This function reads the results and emits `sig_finished`.
spyder_unittest/backend/unittestrunner.py
finished
jitseniesen/spyder-unittest
61
python
def finished(self): '\n Called when the unit test process has finished.\n\n This function reads the results and emits `sig_finished`.\n ' output = self.read_all_process_output() testresults = self.load_data(output) self.sig_finished.emit(testresults, output)
def finished(self): '\n Called when the unit test process has finished.\n\n This function reads the results and emits `sig_finished`.\n ' output = self.read_all_process_output() testresults = self.load_data(output) self.sig_finished.emit(testresults, output)<|docstring|>Called when the unit test process has finished. This function reads the results and emits `sig_finished`.<|endoftext|>
cb306ceba6f78324e633970416aa97d9907c537952383d391a7a98c07866f4dc
def load_data(self, output): '\n Read and parse output from unittest module.\n\n Any parsing errors are silently ignored.\n\n Returns\n -------\n list of TestResult\n Unit test results.\n ' res = [] lines = output.splitlines() line_index = 0 try: while lines[line_index]: data = self.try_parse_result(lines, line_index) if data: line_index = data[0] if (data[3] == 'ok'): cat = Category.OK elif ((data[3] == 'FAIL') or (data[3] == 'ERROR')): cat = Category.FAIL else: cat = Category.SKIP name = '{}.{}'.format(data[2], data[1]) tr = TestResult(category=cat, status=data[3], name=name, message=data[4]) res.append(tr) else: line_index += 1 line_index += 1 while (not (lines[line_index] and all(((c == '-') for c in lines[line_index])))): data = self.try_parse_exception_block(lines, line_index) if data: line_index = data[0] test_index = next((i for (i, tr) in enumerate(res) if (tr.name == '{}.{}'.format(data[2], data[1])))) res[test_index].extra_text = data[3] else: line_index += 1 except IndexError: pass return res
Read and parse output from unittest module. Any parsing errors are silently ignored. Returns ------- list of TestResult Unit test results.
spyder_unittest/backend/unittestrunner.py
load_data
jitseniesen/spyder-unittest
61
python
def load_data(self, output): '\n Read and parse output from unittest module.\n\n Any parsing errors are silently ignored.\n\n Returns\n -------\n list of TestResult\n Unit test results.\n ' res = [] lines = output.splitlines() line_index = 0 try: while lines[line_index]: data = self.try_parse_result(lines, line_index) if data: line_index = data[0] if (data[3] == 'ok'): cat = Category.OK elif ((data[3] == 'FAIL') or (data[3] == 'ERROR')): cat = Category.FAIL else: cat = Category.SKIP name = '{}.{}'.format(data[2], data[1]) tr = TestResult(category=cat, status=data[3], name=name, message=data[4]) res.append(tr) else: line_index += 1 line_index += 1 while (not (lines[line_index] and all(((c == '-') for c in lines[line_index])))): data = self.try_parse_exception_block(lines, line_index) if data: line_index = data[0] test_index = next((i for (i, tr) in enumerate(res) if (tr.name == '{}.{}'.format(data[2], data[1])))) res[test_index].extra_text = data[3] else: line_index += 1 except IndexError: pass return res
def load_data(self, output): '\n Read and parse output from unittest module.\n\n Any parsing errors are silently ignored.\n\n Returns\n -------\n list of TestResult\n Unit test results.\n ' res = [] lines = output.splitlines() line_index = 0 try: while lines[line_index]: data = self.try_parse_result(lines, line_index) if data: line_index = data[0] if (data[3] == 'ok'): cat = Category.OK elif ((data[3] == 'FAIL') or (data[3] == 'ERROR')): cat = Category.FAIL else: cat = Category.SKIP name = '{}.{}'.format(data[2], data[1]) tr = TestResult(category=cat, status=data[3], name=name, message=data[4]) res.append(tr) else: line_index += 1 line_index += 1 while (not (lines[line_index] and all(((c == '-') for c in lines[line_index])))): data = self.try_parse_exception_block(lines, line_index) if data: line_index = data[0] test_index = next((i for (i, tr) in enumerate(res) if (tr.name == '{}.{}'.format(data[2], data[1])))) res[test_index].extra_text = data[3] else: line_index += 1 except IndexError: pass return res<|docstring|>Read and parse output from unittest module. Any parsing errors are silently ignored. Returns ------- list of TestResult Unit test results.<|endoftext|>
1c9de0dd4a9f8b71adf3bf6d8224ead289c1ce77a2967b939aeafd3723f7bf81
def try_parse_result(self, lines, line_index): '\n Try to parse one or more lines of text as a test result.\n\n Returns\n -------\n (int, str, str, str, str) or None\n If a test result is parsed successfully then return a tuple with\n the line index of the first line after the test result, the name\n of the test function, the name of the test class, the test result,\n and the reason (if no reason is given, the fourth string is empty).\n Otherwise, return None.\n ' regexp = '([^\\d\\W]\\w*) \\(([^\\d\\W][\\w.]*)\\)' match = re.match(regexp, lines[line_index]) if match: function_name = match.group(1) class_name = match.group(2) else: return None while lines[line_index]: regexp = " \\.\\.\\. (ok|FAIL|ERROR|skipped|expected failure|unexpected success)( '([^']*)')?\\Z" match = re.search(regexp, lines[line_index]) if match: result = match.group(1) msg = (match.group(3) or '') return ((line_index + 1), function_name, class_name, result, msg) line_index += 1 return None
Try to parse one or more lines of text as a test result. Returns ------- (int, str, str, str, str) or None If a test result is parsed successfully then return a tuple with the line index of the first line after the test result, the name of the test function, the name of the test class, the test result, and the reason (if no reason is given, the fourth string is empty). Otherwise, return None.
spyder_unittest/backend/unittestrunner.py
try_parse_result
jitseniesen/spyder-unittest
61
python
def try_parse_result(self, lines, line_index): '\n Try to parse one or more lines of text as a test result.\n\n Returns\n -------\n (int, str, str, str, str) or None\n If a test result is parsed successfully then return a tuple with\n the line index of the first line after the test result, the name\n of the test function, the name of the test class, the test result,\n and the reason (if no reason is given, the fourth string is empty).\n Otherwise, return None.\n ' regexp = '([^\\d\\W]\\w*) \\(([^\\d\\W][\\w.]*)\\)' match = re.match(regexp, lines[line_index]) if match: function_name = match.group(1) class_name = match.group(2) else: return None while lines[line_index]: regexp = " \\.\\.\\. (ok|FAIL|ERROR|skipped|expected failure|unexpected success)( '([^']*)')?\\Z" match = re.search(regexp, lines[line_index]) if match: result = match.group(1) msg = (match.group(3) or ) return ((line_index + 1), function_name, class_name, result, msg) line_index += 1 return None
def try_parse_result(self, lines, line_index): '\n Try to parse one or more lines of text as a test result.\n\n Returns\n -------\n (int, str, str, str, str) or None\n If a test result is parsed successfully then return a tuple with\n the line index of the first line after the test result, the name\n of the test function, the name of the test class, the test result,\n and the reason (if no reason is given, the fourth string is empty).\n Otherwise, return None.\n ' regexp = '([^\\d\\W]\\w*) \\(([^\\d\\W][\\w.]*)\\)' match = re.match(regexp, lines[line_index]) if match: function_name = match.group(1) class_name = match.group(2) else: return None while lines[line_index]: regexp = " \\.\\.\\. (ok|FAIL|ERROR|skipped|expected failure|unexpected success)( '([^']*)')?\\Z" match = re.search(regexp, lines[line_index]) if match: result = match.group(1) msg = (match.group(3) or ) return ((line_index + 1), function_name, class_name, result, msg) line_index += 1 return None<|docstring|>Try to parse one or more lines of text as a test result. Returns ------- (int, str, str, str, str) or None If a test result is parsed successfully then return a tuple with the line index of the first line after the test result, the name of the test function, the name of the test class, the test result, and the reason (if no reason is given, the fourth string is empty). Otherwise, return None.<|endoftext|>
ff9a0b4d224012311dc1e021d4250748dee8ebb61fb99c9d6cf1eb400fb89843
def try_parse_exception_block(self, lines, line_index): '\n Try to parse a block detailing an exception in unittest output.\n\n Returns\n -------\n (int, str, str, list of str) or None\n If an exception block is parsed successfully, then return a tuple\n with the line index of the first line after the block, the name of\n the test function, the name of the test class, and the text of the\n exception. Otherwise, return None.\n ' if (not all(((char == '=') for char in lines[line_index]))): return None regexp = '\\w+: ([^\\d\\W]\\w*) \\(([^\\d\\W][\\w.]*)\\)\\Z' match = re.match(regexp, lines[(line_index + 1)]) if (not match): return None line_index += 1 while (not all(((char == '-') for char in lines[line_index]))): if (not lines[line_index]): return None line_index += 1 line_index += 1 exception_text = [] while lines[line_index]: exception_text.append(lines[line_index]) line_index += 1 return (line_index, match.group(1), match.group(2), exception_text)
Try to parse a block detailing an exception in unittest output. Returns ------- (int, str, str, list of str) or None If an exception block is parsed successfully, then return a tuple with the line index of the first line after the block, the name of the test function, the name of the test class, and the text of the exception. Otherwise, return None.
spyder_unittest/backend/unittestrunner.py
try_parse_exception_block
jitseniesen/spyder-unittest
61
python
def try_parse_exception_block(self, lines, line_index): '\n Try to parse a block detailing an exception in unittest output.\n\n Returns\n -------\n (int, str, str, list of str) or None\n If an exception block is parsed successfully, then return a tuple\n with the line index of the first line after the block, the name of\n the test function, the name of the test class, and the text of the\n exception. Otherwise, return None.\n ' if (not all(((char == '=') for char in lines[line_index]))): return None regexp = '\\w+: ([^\\d\\W]\\w*) \\(([^\\d\\W][\\w.]*)\\)\\Z' match = re.match(regexp, lines[(line_index + 1)]) if (not match): return None line_index += 1 while (not all(((char == '-') for char in lines[line_index]))): if (not lines[line_index]): return None line_index += 1 line_index += 1 exception_text = [] while lines[line_index]: exception_text.append(lines[line_index]) line_index += 1 return (line_index, match.group(1), match.group(2), exception_text)
def try_parse_exception_block(self, lines, line_index): '\n Try to parse a block detailing an exception in unittest output.\n\n Returns\n -------\n (int, str, str, list of str) or None\n If an exception block is parsed successfully, then return a tuple\n with the line index of the first line after the block, the name of\n the test function, the name of the test class, and the text of the\n exception. Otherwise, return None.\n ' if (not all(((char == '=') for char in lines[line_index]))): return None regexp = '\\w+: ([^\\d\\W]\\w*) \\(([^\\d\\W][\\w.]*)\\)\\Z' match = re.match(regexp, lines[(line_index + 1)]) if (not match): return None line_index += 1 while (not all(((char == '-') for char in lines[line_index]))): if (not lines[line_index]): return None line_index += 1 line_index += 1 exception_text = [] while lines[line_index]: exception_text.append(lines[line_index]) line_index += 1 return (line_index, match.group(1), match.group(2), exception_text)<|docstring|>Try to parse a block detailing an exception in unittest output. Returns ------- (int, str, str, list of str) or None If an exception block is parsed successfully, then return a tuple with the line index of the first line after the block, the name of the test function, the name of the test class, and the text of the exception. Otherwise, return None.<|endoftext|>
6e3f343e03e3b8f33538500643682f94ee9c1df46d9bb2126ee98c00e09bfcd2
def main(): 'Load addresses and count how many are have\n reflections outside of a bracketed sequence\n and no reflections within a bracketed sequence.\n ' addresses = load_addresses() print(sum([is_compatible(address) for address in addresses]))
Load addresses and count how many are have reflections outside of a bracketed sequence and no reflections within a bracketed sequence.
07/solve_1.py
main
machinelearningdeveloper/aoc_2016
0
python
def main(): 'Load addresses and count how many are have\n reflections outside of a bracketed sequence\n and no reflections within a bracketed sequence.\n ' addresses = load_addresses() print(sum([is_compatible(address) for address in addresses]))
def main(): 'Load addresses and count how many are have\n reflections outside of a bracketed sequence\n and no reflections within a bracketed sequence.\n ' addresses = load_addresses() print(sum([is_compatible(address) for address in addresses]))<|docstring|>Load addresses and count how many are have reflections outside of a bracketed sequence and no reflections within a bracketed sequence.<|endoftext|>
e80357ce2dc2dae167828b7b393ffad11be5a4f6fd307d067643f1b7eeba493d
def _decompose_(self, qubits): 'An adjacency-respecting decomposition.\n\n 0: ───p───@──────────────@───────@──────────@──────────\n │ │ │ │\n 1: ───p───X───@───p^-1───X───@───X──────@───X──────@───\n │ │ │ │\n 2: ───p───────X───p──────────X───p^-1───X───p^-1───X───\n\n where p = T**self._exponent\n ' (a, b, c) = qubits if hasattr(b, 'is_adjacent'): if (not b.is_adjacent(a)): (b, c) = (c, b) elif (not b.is_adjacent(c)): (a, b) = (b, a) p = (common_gates.T ** self._exponent) sweep_abc = [common_gates.CNOT(a, b), common_gates.CNOT(b, c)] (yield (p(a), p(b), p(c))) (yield sweep_abc) (yield ((p(b) ** (- 1)), p(c))) (yield sweep_abc) (yield (p(c) ** (- 1))) (yield sweep_abc) (yield (p(c) ** (- 1))) (yield sweep_abc)
An adjacency-respecting decomposition. 0: ───p───@──────────────@───────@──────────@────────── │ │ │ │ 1: ───p───X───@───p^-1───X───@───X──────@───X──────@─── │ │ │ │ 2: ───p───────X───p──────────X───p^-1───X───p^-1───X─── where p = T**self._exponent
cirq/ops/three_qubit_gates.py
_decompose_
mannurulz/Cirq
1
python
def _decompose_(self, qubits): 'An adjacency-respecting decomposition.\n\n 0: ───p───@──────────────@───────@──────────@──────────\n │ │ │ │\n 1: ───p───X───@───p^-1───X───@───X──────@───X──────@───\n │ │ │ │\n 2: ───p───────X───p──────────X───p^-1───X───p^-1───X───\n\n where p = T**self._exponent\n ' (a, b, c) = qubits if hasattr(b, 'is_adjacent'): if (not b.is_adjacent(a)): (b, c) = (c, b) elif (not b.is_adjacent(c)): (a, b) = (b, a) p = (common_gates.T ** self._exponent) sweep_abc = [common_gates.CNOT(a, b), common_gates.CNOT(b, c)] (yield (p(a), p(b), p(c))) (yield sweep_abc) (yield ((p(b) ** (- 1)), p(c))) (yield sweep_abc) (yield (p(c) ** (- 1))) (yield sweep_abc) (yield (p(c) ** (- 1))) (yield sweep_abc)
def _decompose_(self, qubits): 'An adjacency-respecting decomposition.\n\n 0: ───p───@──────────────@───────@──────────@──────────\n │ │ │ │\n 1: ───p───X───@───p^-1───X───@───X──────@───X──────@───\n │ │ │ │\n 2: ───p───────X───p──────────X───p^-1───X───p^-1───X───\n\n where p = T**self._exponent\n ' (a, b, c) = qubits if hasattr(b, 'is_adjacent'): if (not b.is_adjacent(a)): (b, c) = (c, b) elif (not b.is_adjacent(c)): (a, b) = (b, a) p = (common_gates.T ** self._exponent) sweep_abc = [common_gates.CNOT(a, b), common_gates.CNOT(b, c)] (yield (p(a), p(b), p(c))) (yield sweep_abc) (yield ((p(b) ** (- 1)), p(c))) (yield sweep_abc) (yield (p(c) ** (- 1))) (yield sweep_abc) (yield (p(c) ** (- 1))) (yield sweep_abc)<|docstring|>An adjacency-respecting decomposition. 0: ───p───@──────────────@───────@──────────@────────── │ │ │ │ 1: ───p───X───@───p^-1───X───@───X──────@───X──────@─── │ │ │ │ 2: ───p───────X───p──────────X───p^-1───X───p^-1───X─── where p = T**self._exponent<|endoftext|>
17acade2790467169f305bd22470a7023a48a27363c523552da5d6ccb1925c29
def _decompose_inside_control(self, target1: raw_types.QubitId, control: raw_types.QubitId, target2: raw_types.QubitId) -> op_tree.OP_TREE: 'A decomposition assuming the control separates the targets.\n\n target1: ─@─X───────T──────@────────@─────────X───@─────X^-0.5─\n │ │ │ │ │ │\n control: ─X─@─X─────@─T^-1─X─@─T────X─@─X^0.5─@─@─X─@──────────\n │ │ │ │ │ │\n target2: ─────@─H─T─X─T──────X─T^-1───X─T^-1────X───X─H─S^-1───\n ' (a, b, c) = (target1, control, target2) (yield common_gates.CNOT(a, b)) (yield common_gates.CNOT(b, a)) (yield common_gates.CNOT(c, b)) (yield common_gates.H(c)) (yield common_gates.T(c)) (yield common_gates.CNOT(b, c)) (yield common_gates.T(a)) (yield (common_gates.T(b) ** (- 1))) (yield common_gates.T(c)) (yield common_gates.CNOT(a, b)) (yield common_gates.CNOT(b, c)) (yield common_gates.T(b)) (yield (common_gates.T(c) ** (- 1))) (yield common_gates.CNOT(a, b)) (yield common_gates.CNOT(b, c)) (yield (common_gates.X(b) ** 0.5)) (yield (common_gates.T(c) ** (- 1))) (yield common_gates.CNOT(b, a)) (yield common_gates.CNOT(b, c)) (yield common_gates.CNOT(a, b)) (yield common_gates.CNOT(b, c)) (yield common_gates.H(c)) (yield (common_gates.S(c) ** (- 1))) (yield (common_gates.X(a) ** (- 0.5)))
A decomposition assuming the control separates the targets. target1: ─@─X───────T──────@────────@─────────X───@─────X^-0.5─ │ │ │ │ │ │ control: ─X─@─X─────@─T^-1─X─@─T────X─@─X^0.5─@─@─X─@────────── │ │ │ │ │ │ target2: ─────@─H─T─X─T──────X─T^-1───X─T^-1────X───X─H─S^-1───
cirq/ops/three_qubit_gates.py
_decompose_inside_control
mannurulz/Cirq
1
python
def _decompose_inside_control(self, target1: raw_types.QubitId, control: raw_types.QubitId, target2: raw_types.QubitId) -> op_tree.OP_TREE: 'A decomposition assuming the control separates the targets.\n\n target1: ─@─X───────T──────@────────@─────────X───@─────X^-0.5─\n │ │ │ │ │ │\n control: ─X─@─X─────@─T^-1─X─@─T────X─@─X^0.5─@─@─X─@──────────\n │ │ │ │ │ │\n target2: ─────@─H─T─X─T──────X─T^-1───X─T^-1────X───X─H─S^-1───\n ' (a, b, c) = (target1, control, target2) (yield common_gates.CNOT(a, b)) (yield common_gates.CNOT(b, a)) (yield common_gates.CNOT(c, b)) (yield common_gates.H(c)) (yield common_gates.T(c)) (yield common_gates.CNOT(b, c)) (yield common_gates.T(a)) (yield (common_gates.T(b) ** (- 1))) (yield common_gates.T(c)) (yield common_gates.CNOT(a, b)) (yield common_gates.CNOT(b, c)) (yield common_gates.T(b)) (yield (common_gates.T(c) ** (- 1))) (yield common_gates.CNOT(a, b)) (yield common_gates.CNOT(b, c)) (yield (common_gates.X(b) ** 0.5)) (yield (common_gates.T(c) ** (- 1))) (yield common_gates.CNOT(b, a)) (yield common_gates.CNOT(b, c)) (yield common_gates.CNOT(a, b)) (yield common_gates.CNOT(b, c)) (yield common_gates.H(c)) (yield (common_gates.S(c) ** (- 1))) (yield (common_gates.X(a) ** (- 0.5)))
def _decompose_inside_control(self, target1: raw_types.QubitId, control: raw_types.QubitId, target2: raw_types.QubitId) -> op_tree.OP_TREE: 'A decomposition assuming the control separates the targets.\n\n target1: ─@─X───────T──────@────────@─────────X───@─────X^-0.5─\n │ │ │ │ │ │\n control: ─X─@─X─────@─T^-1─X─@─T────X─@─X^0.5─@─@─X─@──────────\n │ │ │ │ │ │\n target2: ─────@─H─T─X─T──────X─T^-1───X─T^-1────X───X─H─S^-1───\n ' (a, b, c) = (target1, control, target2) (yield common_gates.CNOT(a, b)) (yield common_gates.CNOT(b, a)) (yield common_gates.CNOT(c, b)) (yield common_gates.H(c)) (yield common_gates.T(c)) (yield common_gates.CNOT(b, c)) (yield common_gates.T(a)) (yield (common_gates.T(b) ** (- 1))) (yield common_gates.T(c)) (yield common_gates.CNOT(a, b)) (yield common_gates.CNOT(b, c)) (yield common_gates.T(b)) (yield (common_gates.T(c) ** (- 1))) (yield common_gates.CNOT(a, b)) (yield common_gates.CNOT(b, c)) (yield (common_gates.X(b) ** 0.5)) (yield (common_gates.T(c) ** (- 1))) (yield common_gates.CNOT(b, a)) (yield common_gates.CNOT(b, c)) (yield common_gates.CNOT(a, b)) (yield common_gates.CNOT(b, c)) (yield common_gates.H(c)) (yield (common_gates.S(c) ** (- 1))) (yield (common_gates.X(a) ** (- 0.5)))<|docstring|>A decomposition assuming the control separates the targets. target1: ─@─X───────T──────@────────@─────────X───@─────X^-0.5─ │ │ │ │ │ │ control: ─X─@─X─────@─T^-1─X─@─T────X─@─X^0.5─@─@─X─@────────── │ │ │ │ │ │ target2: ─────@─H─T─X─T──────X─T^-1───X─T^-1────X───X─H─S^-1───<|endoftext|>
bc02b0d3f2531b53d71cde69161b05c8d90f016244a5b2a438110ec5e023f2fd
def _decompose_outside_control(self, control: raw_types.QubitId, near_target: raw_types.QubitId, far_target: raw_types.QubitId) -> op_tree.OP_TREE: 'A decomposition assuming one of the targets is in the middle.\n\n control: ───T──────@────────@───@────────────@────────────────\n │ │ │ │\n near: ─X─T──────X─@─T^-1─X─@─X────@─X^0.5─X─@─X^0.5────────\n │ │ │ │ │\n far: ─@─Y^-0.5─T─X─T──────X─T^-1─X─T^-1────X─S─────X^-0.5─\n ' (a, b, c) = (control, near_target, far_target) t = common_gates.T sweep_abc = [common_gates.CNOT(a, b), common_gates.CNOT(b, c)] (yield common_gates.CNOT(c, b)) (yield (common_gates.Y(c) ** (- 0.5))) (yield (t(a), t(b), t(c))) (yield sweep_abc) (yield ((t(b) ** (- 1)), t(c))) (yield sweep_abc) (yield (t(c) ** (- 1))) (yield sweep_abc) (yield (t(c) ** (- 1))) (yield (common_gates.X(b) ** 0.5)) (yield sweep_abc) (yield common_gates.S(c)) (yield (common_gates.X(b) ** 0.5)) (yield (common_gates.X(c) ** (- 0.5)))
A decomposition assuming one of the targets is in the middle. control: ───T──────@────────@───@────────────@──────────────── │ │ │ │ near: ─X─T──────X─@─T^-1─X─@─X────@─X^0.5─X─@─X^0.5──────── │ │ │ │ │ far: ─@─Y^-0.5─T─X─T──────X─T^-1─X─T^-1────X─S─────X^-0.5─
cirq/ops/three_qubit_gates.py
_decompose_outside_control
mannurulz/Cirq
1
python
def _decompose_outside_control(self, control: raw_types.QubitId, near_target: raw_types.QubitId, far_target: raw_types.QubitId) -> op_tree.OP_TREE: 'A decomposition assuming one of the targets is in the middle.\n\n control: ───T──────@────────@───@────────────@────────────────\n │ │ │ │\n near: ─X─T──────X─@─T^-1─X─@─X────@─X^0.5─X─@─X^0.5────────\n │ │ │ │ │\n far: ─@─Y^-0.5─T─X─T──────X─T^-1─X─T^-1────X─S─────X^-0.5─\n ' (a, b, c) = (control, near_target, far_target) t = common_gates.T sweep_abc = [common_gates.CNOT(a, b), common_gates.CNOT(b, c)] (yield common_gates.CNOT(c, b)) (yield (common_gates.Y(c) ** (- 0.5))) (yield (t(a), t(b), t(c))) (yield sweep_abc) (yield ((t(b) ** (- 1)), t(c))) (yield sweep_abc) (yield (t(c) ** (- 1))) (yield sweep_abc) (yield (t(c) ** (- 1))) (yield (common_gates.X(b) ** 0.5)) (yield sweep_abc) (yield common_gates.S(c)) (yield (common_gates.X(b) ** 0.5)) (yield (common_gates.X(c) ** (- 0.5)))
def _decompose_outside_control(self, control: raw_types.QubitId, near_target: raw_types.QubitId, far_target: raw_types.QubitId) -> op_tree.OP_TREE: 'A decomposition assuming one of the targets is in the middle.\n\n control: ───T──────@────────@───@────────────@────────────────\n │ │ │ │\n near: ─X─T──────X─@─T^-1─X─@─X────@─X^0.5─X─@─X^0.5────────\n │ │ │ │ │\n far: ─@─Y^-0.5─T─X─T──────X─T^-1─X─T^-1────X─S─────X^-0.5─\n ' (a, b, c) = (control, near_target, far_target) t = common_gates.T sweep_abc = [common_gates.CNOT(a, b), common_gates.CNOT(b, c)] (yield common_gates.CNOT(c, b)) (yield (common_gates.Y(c) ** (- 0.5))) (yield (t(a), t(b), t(c))) (yield sweep_abc) (yield ((t(b) ** (- 1)), t(c))) (yield sweep_abc) (yield (t(c) ** (- 1))) (yield sweep_abc) (yield (t(c) ** (- 1))) (yield (common_gates.X(b) ** 0.5)) (yield sweep_abc) (yield common_gates.S(c)) (yield (common_gates.X(b) ** 0.5)) (yield (common_gates.X(c) ** (- 0.5)))<|docstring|>A decomposition assuming one of the targets is in the middle. control: ───T──────@────────@───@────────────@──────────────── │ │ │ │ near: ─X─T──────X─@─T^-1─X─@─X────@─X^0.5─X─@─X^0.5──────── │ │ │ │ │ far: ─@─Y^-0.5─T─X─T──────X─T^-1─X─T^-1────X─S─────X^-0.5─<|endoftext|>
2346c3cae4142cc64f399ffc89de2211e87dc83024e6ed39c3c40accac6d46ab
def normalize_api_path(api_path): "\n Resolve paths with '..' to normalized paths, raising an error if the final\n result is outside root.\n " normalized = posixpath.normpath(api_path.strip('/')) if (normalized == '.'): normalized = '' elif normalized.startswith('..'): raise PathOutsideRoot(normalized) return normalized
Resolve paths with '..' to normalized paths, raising an error if the final result is outside root.
s3contents/hybridmanager.py
normalize_api_path
cailiang9/s3contents
0
python
def normalize_api_path(api_path): "\n Resolve paths with '..' to normalized paths, raising an error if the final\n result is outside root.\n " normalized = posixpath.normpath(api_path.strip('/')) if (normalized == '.'): normalized = elif normalized.startswith('..'): raise PathOutsideRoot(normalized) return normalized
def normalize_api_path(api_path): "\n Resolve paths with '..' to normalized paths, raising an error if the final\n result is outside root.\n " normalized = posixpath.normpath(api_path.strip('/')) if (normalized == '.'): normalized = elif normalized.startswith('..'): raise PathOutsideRoot(normalized) return normalized<|docstring|>Resolve paths with '..' to normalized paths, raising an error if the final result is outside root.<|endoftext|>
ec83c4753446603e903a186495d68bb627f98ad996e9fa42583445a7fba54f57
def outside_root_to_404(fn): '\n Decorator for converting PathOutsideRoot errors to 404s.\n ' @wraps(fn) def wrapped(*args, **kwargs): try: return fn(*args, **kwargs) except PathOutsideRoot as e: raise HTTPError(404, ('Path outside root: [%s]' % e.args[0])) return wrapped
Decorator for converting PathOutsideRoot errors to 404s.
s3contents/hybridmanager.py
outside_root_to_404
cailiang9/s3contents
0
python
def outside_root_to_404(fn): '\n \n ' @wraps(fn) def wrapped(*args, **kwargs): try: return fn(*args, **kwargs) except PathOutsideRoot as e: raise HTTPError(404, ('Path outside root: [%s]' % e.args[0])) return wrapped
def outside_root_to_404(fn): '\n \n ' @wraps(fn) def wrapped(*args, **kwargs): try: return fn(*args, **kwargs) except PathOutsideRoot as e: raise HTTPError(404, ('Path outside root: [%s]' % e.args[0])) return wrapped<|docstring|>Decorator for converting PathOutsideRoot errors to 404s.<|endoftext|>
5268587c51343d5e85cd65b62dd201f4c6329f2639d09cc992b2d92979ed3218
@outside_root_to_404 def _resolve_path(path, manager_dict): '\n Resolve a path based on a dictionary of manager prefixes.\n Returns a triple of (prefix, manager, manager_relative_path).\n ' path = normalize_api_path(path) parts = path.split('/') mgr = manager_dict.get(parts[0]) if (mgr is not None): return (parts[0], mgr, '/'.join(parts[1:])) mgr = manager_dict.get('') if (mgr is not None): return ('', mgr, path) raise HTTPError(404, "Couldn't resolve path [{path}] and no root manager supplied!".format(path=path))
Resolve a path based on a dictionary of manager prefixes. Returns a triple of (prefix, manager, manager_relative_path).
s3contents/hybridmanager.py
_resolve_path
cailiang9/s3contents
0
python
@outside_root_to_404 def _resolve_path(path, manager_dict): '\n Resolve a path based on a dictionary of manager prefixes.\n Returns a triple of (prefix, manager, manager_relative_path).\n ' path = normalize_api_path(path) parts = path.split('/') mgr = manager_dict.get(parts[0]) if (mgr is not None): return (parts[0], mgr, '/'.join(parts[1:])) mgr = manager_dict.get() if (mgr is not None): return (, mgr, path) raise HTTPError(404, "Couldn't resolve path [{path}] and no root manager supplied!".format(path=path))
@outside_root_to_404 def _resolve_path(path, manager_dict): '\n Resolve a path based on a dictionary of manager prefixes.\n Returns a triple of (prefix, manager, manager_relative_path).\n ' path = normalize_api_path(path) parts = path.split('/') mgr = manager_dict.get(parts[0]) if (mgr is not None): return (parts[0], mgr, '/'.join(parts[1:])) mgr = manager_dict.get() if (mgr is not None): return (, mgr, path) raise HTTPError(404, "Couldn't resolve path [{path}] and no root manager supplied!".format(path=path))<|docstring|>Resolve a path based on a dictionary of manager prefixes. Returns a triple of (prefix, manager, manager_relative_path).<|endoftext|>
7911cbcb425c5da8457777125f9f8a91ac61098994f161e4a7adfa4297a550ed
def _get_arg(argname, args, kwargs): '\n Get an argument, either from kwargs or from the first entry in args.\n Raises a TypeError if argname not in kwargs and len(args) == 0.\n Mutates kwargs in place if the value is found in kwargs.\n ' try: return (kwargs.pop(argname), args) except KeyError: pass try: return (args[0], args[1:]) except IndexError: raise TypeError(('No value passed for %s' % argname))
Get an argument, either from kwargs or from the first entry in args. Raises a TypeError if argname not in kwargs and len(args) == 0. Mutates kwargs in place if the value is found in kwargs.
s3contents/hybridmanager.py
_get_arg
cailiang9/s3contents
0
python
def _get_arg(argname, args, kwargs): '\n Get an argument, either from kwargs or from the first entry in args.\n Raises a TypeError if argname not in kwargs and len(args) == 0.\n Mutates kwargs in place if the value is found in kwargs.\n ' try: return (kwargs.pop(argname), args) except KeyError: pass try: return (args[0], args[1:]) except IndexError: raise TypeError(('No value passed for %s' % argname))
def _get_arg(argname, args, kwargs): '\n Get an argument, either from kwargs or from the first entry in args.\n Raises a TypeError if argname not in kwargs and len(args) == 0.\n Mutates kwargs in place if the value is found in kwargs.\n ' try: return (kwargs.pop(argname), args) except KeyError: pass try: return (args[0], args[1:]) except IndexError: raise TypeError(('No value passed for %s' % argname))<|docstring|>Get an argument, either from kwargs or from the first entry in args. Raises a TypeError if argname not in kwargs and len(args) == 0. Mutates kwargs in place if the value is found in kwargs.<|endoftext|>
e3f8dc2213d9085bf1bc4d3d7bbfcb3ac2e1839d7ab483fac4915cb13c65ee7a
def _apply_prefix(prefix, model): '\n Prefix all path entries in model with the given prefix.\n ' if (not isinstance(model, dict)): raise TypeError(('Expected dict for model, got %s' % type(model))) model['path'] = '/'.join((prefix, model['path'])).strip('/') if (model['type'] in ('notebook', 'file')): return model if (model['type'] != 'directory'): raise ValueError(('Unknown model type %s.' % type(model))) content = model.get('content', None) if (content is not None): for sub_model in content: _apply_prefix(prefix, sub_model) return model
Prefix all path entries in model with the given prefix.
s3contents/hybridmanager.py
_apply_prefix
cailiang9/s3contents
0
python
def _apply_prefix(prefix, model): '\n \n ' if (not isinstance(model, dict)): raise TypeError(('Expected dict for model, got %s' % type(model))) model['path'] = '/'.join((prefix, model['path'])).strip('/') if (model['type'] in ('notebook', 'file')): return model if (model['type'] != 'directory'): raise ValueError(('Unknown model type %s.' % type(model))) content = model.get('content', None) if (content is not None): for sub_model in content: _apply_prefix(prefix, sub_model) return model
def _apply_prefix(prefix, model): '\n \n ' if (not isinstance(model, dict)): raise TypeError(('Expected dict for model, got %s' % type(model))) model['path'] = '/'.join((prefix, model['path'])).strip('/') if (model['type'] in ('notebook', 'file')): return model if (model['type'] != 'directory'): raise ValueError(('Unknown model type %s.' % type(model))) content = model.get('content', None) if (content is not None): for sub_model in content: _apply_prefix(prefix, sub_model) return model<|docstring|>Prefix all path entries in model with the given prefix.<|endoftext|>
a06ac088acfdbcca046edadce5946d5c31e3d4008996524b9cb0922444049568
def path_dispatch1(mname, returns_model): '\n Decorator for methods that accept path as a first argument.\n ' def _wrapper(self, *args, **kwargs): (path, args) = _get_arg('path', args, kwargs) (prefix, mgr, mgr_path) = _resolve_path(path, self.managers) result = getattr(mgr, mname)(mgr_path, *args, **kwargs) if (returns_model and prefix): return _apply_prefix(prefix, result) else: return result return _wrapper
Decorator for methods that accept path as a first argument.
s3contents/hybridmanager.py
path_dispatch1
cailiang9/s3contents
0
python
def path_dispatch1(mname, returns_model): '\n \n ' def _wrapper(self, *args, **kwargs): (path, args) = _get_arg('path', args, kwargs) (prefix, mgr, mgr_path) = _resolve_path(path, self.managers) result = getattr(mgr, mname)(mgr_path, *args, **kwargs) if (returns_model and prefix): return _apply_prefix(prefix, result) else: return result return _wrapper
def path_dispatch1(mname, returns_model): '\n \n ' def _wrapper(self, *args, **kwargs): (path, args) = _get_arg('path', args, kwargs) (prefix, mgr, mgr_path) = _resolve_path(path, self.managers) result = getattr(mgr, mname)(mgr_path, *args, **kwargs) if (returns_model and prefix): return _apply_prefix(prefix, result) else: return result return _wrapper<|docstring|>Decorator for methods that accept path as a first argument.<|endoftext|>
67a5a826db4102879e0575d10573f676d0361e3fc6bc0d88e65ea837d4f4c305
def path_dispatch2(mname, first_argname, returns_model): '\n Decorator for methods that accept path as a second argument.\n ' def _wrapper(self, *args, **kwargs): (other, args) = _get_arg(first_argname, args, kwargs) (path, args) = _get_arg('path', args, kwargs) (prefix, mgr, mgr_path) = _resolve_path(path, self.managers) result = getattr(mgr, mname)(other, mgr_path, *args, **kwargs) if (returns_model and prefix): return _apply_prefix(prefix, result) else: return result return _wrapper
Decorator for methods that accept path as a second argument.
s3contents/hybridmanager.py
path_dispatch2
cailiang9/s3contents
0
python
def path_dispatch2(mname, first_argname, returns_model): '\n \n ' def _wrapper(self, *args, **kwargs): (other, args) = _get_arg(first_argname, args, kwargs) (path, args) = _get_arg('path', args, kwargs) (prefix, mgr, mgr_path) = _resolve_path(path, self.managers) result = getattr(mgr, mname)(other, mgr_path, *args, **kwargs) if (returns_model and prefix): return _apply_prefix(prefix, result) else: return result return _wrapper
def path_dispatch2(mname, first_argname, returns_model): '\n \n ' def _wrapper(self, *args, **kwargs): (other, args) = _get_arg(first_argname, args, kwargs) (path, args) = _get_arg('path', args, kwargs) (prefix, mgr, mgr_path) = _resolve_path(path, self.managers) result = getattr(mgr, mname)(other, mgr_path, *args, **kwargs) if (returns_model and prefix): return _apply_prefix(prefix, result) else: return result return _wrapper<|docstring|>Decorator for methods that accept path as a second argument.<|endoftext|>
31fa57fca2f64bcbd35dba6f22b785404506eed171b2803f1319498c92593e53
def path_dispatch_kwarg(mname, path_default, returns_model): '\n Parameterized decorator for methods that accept path as a second\n argument.\n ' def _wrapper(self, path=path_default, **kwargs): (prefix, mgr, mgr_path) = _resolve_path(path, self.managers) result = getattr(mgr, mname)(path=mgr_path, **kwargs) if (returns_model and prefix): return _apply_prefix(prefix, result) else: return result return _wrapper
Parameterized decorator for methods that accept path as a second argument.
s3contents/hybridmanager.py
path_dispatch_kwarg
cailiang9/s3contents
0
python
def path_dispatch_kwarg(mname, path_default, returns_model): '\n Parameterized decorator for methods that accept path as a second\n argument.\n ' def _wrapper(self, path=path_default, **kwargs): (prefix, mgr, mgr_path) = _resolve_path(path, self.managers) result = getattr(mgr, mname)(path=mgr_path, **kwargs) if (returns_model and prefix): return _apply_prefix(prefix, result) else: return result return _wrapper
def path_dispatch_kwarg(mname, path_default, returns_model): '\n Parameterized decorator for methods that accept path as a second\n argument.\n ' def _wrapper(self, path=path_default, **kwargs): (prefix, mgr, mgr_path) = _resolve_path(path, self.managers) result = getattr(mgr, mname)(path=mgr_path, **kwargs) if (returns_model and prefix): return _apply_prefix(prefix, result) else: return result return _wrapper<|docstring|>Parameterized decorator for methods that accept path as a second argument.<|endoftext|>
ab1ac0a6b2c259ec80c7c98479ce6106d875f82b8ad21145706f0988aff7489f
def path_dispatch_old_new(mname, returns_model): '\n Decorator for methods accepting old_path and new_path.\n ' def _wrapper(self, old_path, new_path, *args, **kwargs): (old_prefix, old_mgr, old_mgr_path) = _resolve_path(old_path, self.managers) (new_prefix, new_mgr, new_mgr_path) = _resolve_path(new_path, self.managers) if (old_mgr is not new_mgr): raise HTTPError(400, "Can't move files between backends ({old} -> {new})".format(old=old_path, new=new_path)) assert (new_prefix == old_prefix) result = getattr(new_mgr, mname)(old_mgr_path, new_mgr_path, *args, **kwargs) if (returns_model and new_prefix): return _apply_prefix(new_prefix, result) else: return result return _wrapper
Decorator for methods accepting old_path and new_path.
s3contents/hybridmanager.py
path_dispatch_old_new
cailiang9/s3contents
0
python
def path_dispatch_old_new(mname, returns_model): '\n \n ' def _wrapper(self, old_path, new_path, *args, **kwargs): (old_prefix, old_mgr, old_mgr_path) = _resolve_path(old_path, self.managers) (new_prefix, new_mgr, new_mgr_path) = _resolve_path(new_path, self.managers) if (old_mgr is not new_mgr): raise HTTPError(400, "Can't move files between backends ({old} -> {new})".format(old=old_path, new=new_path)) assert (new_prefix == old_prefix) result = getattr(new_mgr, mname)(old_mgr_path, new_mgr_path, *args, **kwargs) if (returns_model and new_prefix): return _apply_prefix(new_prefix, result) else: return result return _wrapper
def path_dispatch_old_new(mname, returns_model): '\n \n ' def _wrapper(self, old_path, new_path, *args, **kwargs): (old_prefix, old_mgr, old_mgr_path) = _resolve_path(old_path, self.managers) (new_prefix, new_mgr, new_mgr_path) = _resolve_path(new_path, self.managers) if (old_mgr is not new_mgr): raise HTTPError(400, "Can't move files between backends ({old} -> {new})".format(old=old_path, new=new_path)) assert (new_prefix == old_prefix) result = getattr(new_mgr, mname)(old_mgr_path, new_mgr_path, *args, **kwargs) if (returns_model and new_prefix): return _apply_prefix(new_prefix, result) else: return result return _wrapper<|docstring|>Decorator for methods accepting old_path and new_path.<|endoftext|>
d24287d8b4946b47dd04810c393fd23fe191fdf2bb23563eaa7489bf7744d2b8
def _managers_changed(self, name, old, new): '\n Strip slashes from directories before updating.\n ' for key in new: if ('/' in key): raise ValueError(('Expected directory names w/o slashes. Got [%s]' % key)) self.managers = {k.strip('/'): v for (k, v) in new.items()}
Strip slashes from directories before updating.
s3contents/hybridmanager.py
_managers_changed
cailiang9/s3contents
0
python
def _managers_changed(self, name, old, new): '\n \n ' for key in new: if ('/' in key): raise ValueError(('Expected directory names w/o slashes. Got [%s]' % key)) self.managers = {k.strip('/'): v for (k, v) in new.items()}
def _managers_changed(self, name, old, new): '\n \n ' for key in new: if ('/' in key): raise ValueError(('Expected directory names w/o slashes. Got [%s]' % key)) self.managers = {k.strip('/'): v for (k, v) in new.items()}<|docstring|>Strip slashes from directories before updating.<|endoftext|>
13d11972b1321d5d809574a292956767d0b242b4e74d3fdd5f438fab4b5fe5a3
@outside_root_to_404 def get(self, path, content=True, type=None, format=None): '\n Special case handling for listing root dir.\n ' path = normalize_api_path(path) if path: return self.__get(path, content=content, type=type, format=format) if (not content): return base_directory_model('') extra_content = self._extra_root_dirs() rm = self.root_manager if (rm is None): root_model = base_directory_model('') root_model.update(format='json', content=extra_content) else: root_model = rm.get(path, content=content, type=type, format=format) root_model['content'].extend(extra_content) return root_model
Special case handling for listing root dir.
s3contents/hybridmanager.py
get
cailiang9/s3contents
0
python
@outside_root_to_404 def get(self, path, content=True, type=None, format=None): '\n \n ' path = normalize_api_path(path) if path: return self.__get(path, content=content, type=type, format=format) if (not content): return base_directory_model() extra_content = self._extra_root_dirs() rm = self.root_manager if (rm is None): root_model = base_directory_model() root_model.update(format='json', content=extra_content) else: root_model = rm.get(path, content=content, type=type, format=format) root_model['content'].extend(extra_content) return root_model
@outside_root_to_404 def get(self, path, content=True, type=None, format=None): '\n \n ' path = normalize_api_path(path) if path: return self.__get(path, content=content, type=type, format=format) if (not content): return base_directory_model() extra_content = self._extra_root_dirs() rm = self.root_manager if (rm is None): root_model = base_directory_model() root_model.update(format='json', content=extra_content) else: root_model = rm.get(path, content=content, type=type, format=format) root_model['content'].extend(extra_content) return root_model<|docstring|>Special case handling for listing root dir.<|endoftext|>
798e32b976b536be5e7b08207fb4c090ddb9b3dc29885ece4b15f8b349fd2c53
@outside_root_to_404 def delete(self, path): "\n Ensure that roots of our managers can't be deleted. This should be\n enforced by https://github.com/ipython/ipython/pull/8168, but rogue\n implementations might override this behavior.\n " path = normalize_api_path(path) if (path in self.managers): raise HTTPError(400, ("Can't delete root of %s" % self.managers[path])) return self.__delete(path)
Ensure that roots of our managers can't be deleted. This should be enforced by https://github.com/ipython/ipython/pull/8168, but rogue implementations might override this behavior.
s3contents/hybridmanager.py
delete
cailiang9/s3contents
0
python
@outside_root_to_404 def delete(self, path): "\n Ensure that roots of our managers can't be deleted. This should be\n enforced by https://github.com/ipython/ipython/pull/8168, but rogue\n implementations might override this behavior.\n " path = normalize_api_path(path) if (path in self.managers): raise HTTPError(400, ("Can't delete root of %s" % self.managers[path])) return self.__delete(path)
@outside_root_to_404 def delete(self, path): "\n Ensure that roots of our managers can't be deleted. This should be\n enforced by https://github.com/ipython/ipython/pull/8168, but rogue\n implementations might override this behavior.\n " path = normalize_api_path(path) if (path in self.managers): raise HTTPError(400, ("Can't delete root of %s" % self.managers[path])) return self.__delete(path)<|docstring|>Ensure that roots of our managers can't be deleted. This should be enforced by https://github.com/ipython/ipython/pull/8168, but rogue implementations might override this behavior.<|endoftext|>
5921f4323854e4eb9f8569397861898bdaceba6a589b17f28f099bd7c3795015
def get_kernel_path(self, path, model=None): 'Return the initial API path of a kernel associated with a given notebook' if self.dir_exists(path): return path if ('/' in path): parent_dir = path.rsplit('/', 1)[0] else: parent_dir = '' return parent_dir
Return the initial API path of a kernel associated with a given notebook
s3contents/hybridmanager.py
get_kernel_path
cailiang9/s3contents
0
python
def get_kernel_path(self, path, model=None): if self.dir_exists(path): return path if ('/' in path): parent_dir = path.rsplit('/', 1)[0] else: parent_dir = return parent_dir
def get_kernel_path(self, path, model=None): if self.dir_exists(path): return path if ('/' in path): parent_dir = path.rsplit('/', 1)[0] else: parent_dir = return parent_dir<|docstring|>Return the initial API path of a kernel associated with a given notebook<|endoftext|>
a75d059e645995cb91d0da72207b23e8ab62caef41e54cf50e77524099775591
def __getitem__(self, item): '__getitem__: slow, copy full array. returns numpy.ndarray' d = object.__getattribute__(self, d) if d.has_key(item): return self.d[item] else: return object.__getattribute__(self, item)
__getitem__: slow, copy full array. returns numpy.ndarray
RTRBM/rtrbm/std/named_vec.py
__getitem__
liuzc188/Convolutional-LSTM-in-Tensorflow-master
1
python
def __getitem__(self, item): d = object.__getattribute__(self, d) if d.has_key(item): return self.d[item] else: return object.__getattribute__(self, item)
def __getitem__(self, item): d = object.__getattribute__(self, d) if d.has_key(item): return self.d[item] else: return object.__getattribute__(self, item)<|docstring|>__getitem__: slow, copy full array. returns numpy.ndarray<|endoftext|>
7b4ed2071472418689d2ae5612b95daa981a08c5130be32480f7f9893fd7f017
def __setitem__(self, item, val): '__getitem__: slow, copy full array. returns numpy.ndarray' self.d[item] = val
__getitem__: slow, copy full array. returns numpy.ndarray
RTRBM/rtrbm/std/named_vec.py
__setitem__
liuzc188/Convolutional-LSTM-in-Tensorflow-master
1
python
def __setitem__(self, item, val): self.d[item] = val
def __setitem__(self, item, val): self.d[item] = val<|docstring|>__getitem__: slow, copy full array. returns numpy.ndarray<|endoftext|>
b7fb90afb85a473619d712ae471f2891852cd774ead0153668bb9dde44bc8dd7
def T(self): 'same as transpose' a = self.soft_copy() a.TR = (not a.TR) return a
same as transpose
RTRBM/rtrbm/std/named_vec.py
T
liuzc188/Convolutional-LSTM-in-Tensorflow-master
1
python
def T(self): a = self.soft_copy() a.TR = (not a.TR) return a
def T(self): a = self.soft_copy() a.TR = (not a.TR) return a<|docstring|>same as transpose<|endoftext|>
3b714650f54d621ba1fa7ab17bdc0e7d7c1a10f5abf02c5e1af83398ce3d029e
def _as_type_list(dtypes): 'Convert dtypes to a list of types.' assert (dtypes is not None) if (not (isinstance(dtypes, list) or isinstance(dtypes, tuple))): return [dtypes] else: return list(dtypes)
Convert dtypes to a list of types.
tensorflow/python/ops/data_flow_ops.py
_as_type_list
habangar/tensorflow
73
python
def _as_type_list(dtypes): assert (dtypes is not None) if (not (isinstance(dtypes, list) or isinstance(dtypes, tuple))): return [dtypes] else: return list(dtypes)
def _as_type_list(dtypes): assert (dtypes is not None) if (not (isinstance(dtypes, list) or isinstance(dtypes, tuple))): return [dtypes] else: return list(dtypes)<|docstring|>Convert dtypes to a list of types.<|endoftext|>
13f0385e21077b4f87be31b0c6c9c2bbeaa3d398542cac8940e6ab3944cff333
def _as_shape_list(shapes, dtypes, unknown_dim_allowed=False, unknown_rank_allowed=False): 'Convert shapes to a list of tuples of int (or None).' if unknown_dim_allowed: if ((not isinstance(shapes, collections.Sequence)) or (not shapes) or any((((shape is None) or isinstance(shape, int)) for shape in shapes))): raise ValueError('When providing partial shapes, a list of shapes must be provided.') if (shapes is None): return None if isinstance(shapes, tensor_shape.TensorShape): shapes = [shapes] if (not isinstance(shapes, (tuple, list))): raise TypeError('shapes must be a TensorShape or a list or tuple of TensorShapes.') if all((((shape is None) or isinstance(shape, int)) for shape in shapes)): shapes = [shapes] shapes = [tensor_shape.as_shape(shape) for shape in shapes] if (not unknown_dim_allowed): if any([(not shape.is_fully_defined()) for shape in shapes]): raise ValueError(('All shapes must be fully defined: %s' % shapes)) if (not unknown_rank_allowed): if any([(shape.dims is None) for shape in shapes]): raise ValueError(('All shapes must have a defined rank: %s' % shapes)) return shapes
Convert shapes to a list of tuples of int (or None).
tensorflow/python/ops/data_flow_ops.py
_as_shape_list
habangar/tensorflow
73
python
def _as_shape_list(shapes, dtypes, unknown_dim_allowed=False, unknown_rank_allowed=False): if unknown_dim_allowed: if ((not isinstance(shapes, collections.Sequence)) or (not shapes) or any((((shape is None) or isinstance(shape, int)) for shape in shapes))): raise ValueError('When providing partial shapes, a list of shapes must be provided.') if (shapes is None): return None if isinstance(shapes, tensor_shape.TensorShape): shapes = [shapes] if (not isinstance(shapes, (tuple, list))): raise TypeError('shapes must be a TensorShape or a list or tuple of TensorShapes.') if all((((shape is None) or isinstance(shape, int)) for shape in shapes)): shapes = [shapes] shapes = [tensor_shape.as_shape(shape) for shape in shapes] if (not unknown_dim_allowed): if any([(not shape.is_fully_defined()) for shape in shapes]): raise ValueError(('All shapes must be fully defined: %s' % shapes)) if (not unknown_rank_allowed): if any([(shape.dims is None) for shape in shapes]): raise ValueError(('All shapes must have a defined rank: %s' % shapes)) return shapes
def _as_shape_list(shapes, dtypes, unknown_dim_allowed=False, unknown_rank_allowed=False): if unknown_dim_allowed: if ((not isinstance(shapes, collections.Sequence)) or (not shapes) or any((((shape is None) or isinstance(shape, int)) for shape in shapes))): raise ValueError('When providing partial shapes, a list of shapes must be provided.') if (shapes is None): return None if isinstance(shapes, tensor_shape.TensorShape): shapes = [shapes] if (not isinstance(shapes, (tuple, list))): raise TypeError('shapes must be a TensorShape or a list or tuple of TensorShapes.') if all((((shape is None) or isinstance(shape, int)) for shape in shapes)): shapes = [shapes] shapes = [tensor_shape.as_shape(shape) for shape in shapes] if (not unknown_dim_allowed): if any([(not shape.is_fully_defined()) for shape in shapes]): raise ValueError(('All shapes must be fully defined: %s' % shapes)) if (not unknown_rank_allowed): if any([(shape.dims is None) for shape in shapes]): raise ValueError(('All shapes must have a defined rank: %s' % shapes)) return shapes<|docstring|>Convert shapes to a list of tuples of int (or None).<|endoftext|>
f667776f50063cdf8ced997ebd44ebb0b8cc161a47237395c701459c8b847e86
def initialize_all_tables(name='init_all_tables'): 'Returns an Op that initializes all tables of the default graph.\n\n Args:\n name: Optional name for the initialization op.\n\n Returns:\n An Op that initializes all tables. Note that if there are\n not tables the returned Op is a NoOp.\n ' initializers = ops.get_collection(ops.GraphKeys.TABLE_INITIALIZERS) if initializers: return control_flow_ops.group(*initializers, name=name) return control_flow_ops.no_op(name=name)
Returns an Op that initializes all tables of the default graph. Args: name: Optional name for the initialization op. Returns: An Op that initializes all tables. Note that if there are not tables the returned Op is a NoOp.
tensorflow/python/ops/data_flow_ops.py
initialize_all_tables
habangar/tensorflow
73
python
def initialize_all_tables(name='init_all_tables'): 'Returns an Op that initializes all tables of the default graph.\n\n Args:\n name: Optional name for the initialization op.\n\n Returns:\n An Op that initializes all tables. Note that if there are\n not tables the returned Op is a NoOp.\n ' initializers = ops.get_collection(ops.GraphKeys.TABLE_INITIALIZERS) if initializers: return control_flow_ops.group(*initializers, name=name) return control_flow_ops.no_op(name=name)
def initialize_all_tables(name='init_all_tables'): 'Returns an Op that initializes all tables of the default graph.\n\n Args:\n name: Optional name for the initialization op.\n\n Returns:\n An Op that initializes all tables. Note that if there are\n not tables the returned Op is a NoOp.\n ' initializers = ops.get_collection(ops.GraphKeys.TABLE_INITIALIZERS) if initializers: return control_flow_ops.group(*initializers, name=name) return control_flow_ops.no_op(name=name)<|docstring|>Returns an Op that initializes all tables of the default graph. Args: name: Optional name for the initialization op. Returns: An Op that initializes all tables. Note that if there are not tables the returned Op is a NoOp.<|endoftext|>
2b3894d7469a3e6e98e88cd5ad3dd3ed6f9e8718a2232bc11be6105277c38d48
def _ScalarToVoidShape(op): 'Shape function for ops that take a scalar and produce no outputs.' op.inputs[0].get_shape().merge_with(tensor_shape.scalar()) return []
Shape function for ops that take a scalar and produce no outputs.
tensorflow/python/ops/data_flow_ops.py
_ScalarToVoidShape
habangar/tensorflow
73
python
def _ScalarToVoidShape(op): op.inputs[0].get_shape().merge_with(tensor_shape.scalar()) return []
def _ScalarToVoidShape(op): op.inputs[0].get_shape().merge_with(tensor_shape.scalar()) return []<|docstring|>Shape function for ops that take a scalar and produce no outputs.<|endoftext|>
eb7b32090c9fcd33504128d5091f6eaa2affa4f2914a77bfa0a7f55153408f51
@ops.RegisterShape('DynamicPartition') def _DynamicPartitionShape(op): 'Shape function for data_flow_ops.dynamic_partition.' data_shape = op.inputs[0].get_shape() partitions_shape = op.inputs[1].get_shape() mid = partitions_shape.ndims if (mid is None): result_shape = tensor_shape.unknown_shape() else: partitions_shape.assert_is_compatible_with(data_shape[:mid]) result_shape = tensor_shape.TensorShape([None]).concatenate(data_shape[mid:]) return ([result_shape] * op.get_attr('num_partitions'))
Shape function for data_flow_ops.dynamic_partition.
tensorflow/python/ops/data_flow_ops.py
_DynamicPartitionShape
habangar/tensorflow
73
python
@ops.RegisterShape('DynamicPartition') def _DynamicPartitionShape(op): data_shape = op.inputs[0].get_shape() partitions_shape = op.inputs[1].get_shape() mid = partitions_shape.ndims if (mid is None): result_shape = tensor_shape.unknown_shape() else: partitions_shape.assert_is_compatible_with(data_shape[:mid]) result_shape = tensor_shape.TensorShape([None]).concatenate(data_shape[mid:]) return ([result_shape] * op.get_attr('num_partitions'))
@ops.RegisterShape('DynamicPartition') def _DynamicPartitionShape(op): data_shape = op.inputs[0].get_shape() partitions_shape = op.inputs[1].get_shape() mid = partitions_shape.ndims if (mid is None): result_shape = tensor_shape.unknown_shape() else: partitions_shape.assert_is_compatible_with(data_shape[:mid]) result_shape = tensor_shape.TensorShape([None]).concatenate(data_shape[mid:]) return ([result_shape] * op.get_attr('num_partitions'))<|docstring|>Shape function for data_flow_ops.dynamic_partition.<|endoftext|>
1ce8efc838d8456e7c43b68ff4563ed4f020ddc8b28ca07b238efd06d9cd8da6
@ops.RegisterShape('DynamicStitch') def _DynamicStitchShape(op): 'Shape function for data_flow_ops.dynamic_stitch.' num_partitions = op.get_attr('N') indices_shapes = [t.get_shape() for t in op.inputs[0:num_partitions]] data_shapes = [t.get_shape() for t in op.inputs[num_partitions:]] output_shape = tensor_shape.unknown_shape() extra_shape = tensor_shape.TensorShape(None) for (indices_shape, data_shape) in zip(indices_shapes, data_shapes): indices_ndims = indices_shape.ndims if (indices_ndims is not None): indices_shape.merge_with(data_shape[:indices_ndims]) extra_shape = extra_shape.merge_with(data_shape[indices_ndims:]) return [tensor_shape.TensorShape([None]).concatenate(extra_shape)]
Shape function for data_flow_ops.dynamic_stitch.
tensorflow/python/ops/data_flow_ops.py
_DynamicStitchShape
habangar/tensorflow
73
python
@ops.RegisterShape('DynamicStitch') def _DynamicStitchShape(op): num_partitions = op.get_attr('N') indices_shapes = [t.get_shape() for t in op.inputs[0:num_partitions]] data_shapes = [t.get_shape() for t in op.inputs[num_partitions:]] output_shape = tensor_shape.unknown_shape() extra_shape = tensor_shape.TensorShape(None) for (indices_shape, data_shape) in zip(indices_shapes, data_shapes): indices_ndims = indices_shape.ndims if (indices_ndims is not None): indices_shape.merge_with(data_shape[:indices_ndims]) extra_shape = extra_shape.merge_with(data_shape[indices_ndims:]) return [tensor_shape.TensorShape([None]).concatenate(extra_shape)]
@ops.RegisterShape('DynamicStitch') def _DynamicStitchShape(op): num_partitions = op.get_attr('N') indices_shapes = [t.get_shape() for t in op.inputs[0:num_partitions]] data_shapes = [t.get_shape() for t in op.inputs[num_partitions:]] output_shape = tensor_shape.unknown_shape() extra_shape = tensor_shape.TensorShape(None) for (indices_shape, data_shape) in zip(indices_shapes, data_shapes): indices_ndims = indices_shape.ndims if (indices_ndims is not None): indices_shape.merge_with(data_shape[:indices_ndims]) extra_shape = extra_shape.merge_with(data_shape[indices_ndims:]) return [tensor_shape.TensorShape([None]).concatenate(extra_shape)]<|docstring|>Shape function for data_flow_ops.dynamic_stitch.<|endoftext|>
3153b1a790b7206b1f28658e8d357a2012328bf2e6cacfefbd903f2b2533b154
@ops.RegisterShape('LookupTableFind') def _LookupTableFindShape(op): 'Shape function for data_flow_ops._lookup_table_find.' op.inputs[0].get_shape().merge_with(tensor_shape.scalar()) shape_in = op.inputs[1].get_shape() return [shape_in]
Shape function for data_flow_ops._lookup_table_find.
tensorflow/python/ops/data_flow_ops.py
_LookupTableFindShape
habangar/tensorflow
73
python
@ops.RegisterShape('LookupTableFind') def _LookupTableFindShape(op): op.inputs[0].get_shape().merge_with(tensor_shape.scalar()) shape_in = op.inputs[1].get_shape() return [shape_in]
@ops.RegisterShape('LookupTableFind') def _LookupTableFindShape(op): op.inputs[0].get_shape().merge_with(tensor_shape.scalar()) shape_in = op.inputs[1].get_shape() return [shape_in]<|docstring|>Shape function for data_flow_ops._lookup_table_find.<|endoftext|>
9901d876717cb17b9b0a06722ad46ec45882cf997f94582d21fa4f1289e71136
@ops.RegisterShape('LookupTableSize') def _LookupTableSizeShape(op): 'Shape function for data_flow_ops._lookup_table_find.' op.inputs[0].get_shape().merge_with(tensor_shape.scalar()) return [tensor_shape.scalar()]
Shape function for data_flow_ops._lookup_table_find.
tensorflow/python/ops/data_flow_ops.py
_LookupTableSizeShape
habangar/tensorflow
73
python
@ops.RegisterShape('LookupTableSize') def _LookupTableSizeShape(op): op.inputs[0].get_shape().merge_with(tensor_shape.scalar()) return [tensor_shape.scalar()]
@ops.RegisterShape('LookupTableSize') def _LookupTableSizeShape(op): op.inputs[0].get_shape().merge_with(tensor_shape.scalar()) return [tensor_shape.scalar()]<|docstring|>Shape function for data_flow_ops._lookup_table_find.<|endoftext|>
ff7900aa70ee007bc6e32fa32a3cd292623ed6aa81c0d51bf8c2fc8f0669123a
@ops.RegisterShape('HashTable') def _HashTableShape(_): 'Shape function for data_flow_ops._hash_table.' return [tensor_shape.scalar()]
Shape function for data_flow_ops._hash_table.
tensorflow/python/ops/data_flow_ops.py
_HashTableShape
habangar/tensorflow
73
python
@ops.RegisterShape('HashTable') def _HashTableShape(_): return [tensor_shape.scalar()]
@ops.RegisterShape('HashTable') def _HashTableShape(_): return [tensor_shape.scalar()]<|docstring|>Shape function for data_flow_ops._hash_table.<|endoftext|>
c0e8bfb17029fa1a162f26aade33535897dc5fd29577dd655a10e6754da50a11
@ops.RegisterShape('InitializeTable') def _InitializeLookupTableShape(op): 'Shape function for data_flow_ops._initialize_table.' op.inputs[0].get_shape().merge_with(tensor_shape.scalar()) keys_shape = op.inputs[1].get_shape().with_rank(1) op.inputs[2].get_shape().merge_with(keys_shape) return []
Shape function for data_flow_ops._initialize_table.
tensorflow/python/ops/data_flow_ops.py
_InitializeLookupTableShape
habangar/tensorflow
73
python
@ops.RegisterShape('InitializeTable') def _InitializeLookupTableShape(op): op.inputs[0].get_shape().merge_with(tensor_shape.scalar()) keys_shape = op.inputs[1].get_shape().with_rank(1) op.inputs[2].get_shape().merge_with(keys_shape) return []
@ops.RegisterShape('InitializeTable') def _InitializeLookupTableShape(op): op.inputs[0].get_shape().merge_with(tensor_shape.scalar()) keys_shape = op.inputs[1].get_shape().with_rank(1) op.inputs[2].get_shape().merge_with(keys_shape) return []<|docstring|>Shape function for data_flow_ops._initialize_table.<|endoftext|>
95d33ba08c831e4f982d0d86c1e86b9836344024ad1cb1fb5b9c0fd5cc0aefb2
def __init__(self, dtypes, shapes, names, queue_ref): 'Constructs a queue object from a queue reference.\n\n The two optional lists, `shapes` and `names`, must be of the same length\n as `dtypes` if provided. The values at a given index `i` indicate the\n shape and name to use for the corresponding queue component in `dtypes`.\n\n Args:\n dtypes: A list of types. The length of dtypes must equal the number\n of tensors in each element.\n shapes: Constraints on the shapes of tensors in an element:\n A list of shape tuples or None. This list is the same length\n as dtypes. If the shape of any tensors in the element are constrained,\n all must be; shapes can be None if the shapes should not be constrained.\n names: Optional list of names. If provided, the `enqueue()` and\n `dequeue()` methods will use dictionaries with these names as keys.\n Must be None or a list or tuple of the same length as `dtypes`.\n queue_ref: The queue reference, i.e. the output of the queue op.\n\n Raises:\n ValueError: If one of the arguments is invalid.\n ' self._dtypes = dtypes if (shapes is not None): if (len(shapes) != len(dtypes)): raise ValueError('Queue shapes must have the same length as dtypes') self._shapes = [tensor_shape.TensorShape(s) for s in shapes] else: self._shapes = [tensor_shape.unknown_shape() for _ in self._dtypes] if (names is not None): if (len(names) != len(dtypes)): raise ValueError('Queue names must have the same length as dtypes') self._names = names else: self._names = None self._queue_ref = queue_ref self._name = self._queue_ref.op.name.split('/')[(- 1)]
Constructs a queue object from a queue reference. The two optional lists, `shapes` and `names`, must be of the same length as `dtypes` if provided. The values at a given index `i` indicate the shape and name to use for the corresponding queue component in `dtypes`. Args: dtypes: A list of types. The length of dtypes must equal the number of tensors in each element. shapes: Constraints on the shapes of tensors in an element: A list of shape tuples or None. This list is the same length as dtypes. If the shape of any tensors in the element are constrained, all must be; shapes can be None if the shapes should not be constrained. names: Optional list of names. If provided, the `enqueue()` and `dequeue()` methods will use dictionaries with these names as keys. Must be None or a list or tuple of the same length as `dtypes`. queue_ref: The queue reference, i.e. the output of the queue op. Raises: ValueError: If one of the arguments is invalid.
tensorflow/python/ops/data_flow_ops.py
__init__
habangar/tensorflow
73
python
def __init__(self, dtypes, shapes, names, queue_ref): 'Constructs a queue object from a queue reference.\n\n The two optional lists, `shapes` and `names`, must be of the same length\n as `dtypes` if provided. The values at a given index `i` indicate the\n shape and name to use for the corresponding queue component in `dtypes`.\n\n Args:\n dtypes: A list of types. The length of dtypes must equal the number\n of tensors in each element.\n shapes: Constraints on the shapes of tensors in an element:\n A list of shape tuples or None. This list is the same length\n as dtypes. If the shape of any tensors in the element are constrained,\n all must be; shapes can be None if the shapes should not be constrained.\n names: Optional list of names. If provided, the `enqueue()` and\n `dequeue()` methods will use dictionaries with these names as keys.\n Must be None or a list or tuple of the same length as `dtypes`.\n queue_ref: The queue reference, i.e. the output of the queue op.\n\n Raises:\n ValueError: If one of the arguments is invalid.\n ' self._dtypes = dtypes if (shapes is not None): if (len(shapes) != len(dtypes)): raise ValueError('Queue shapes must have the same length as dtypes') self._shapes = [tensor_shape.TensorShape(s) for s in shapes] else: self._shapes = [tensor_shape.unknown_shape() for _ in self._dtypes] if (names is not None): if (len(names) != len(dtypes)): raise ValueError('Queue names must have the same length as dtypes') self._names = names else: self._names = None self._queue_ref = queue_ref self._name = self._queue_ref.op.name.split('/')[(- 1)]
def __init__(self, dtypes, shapes, names, queue_ref): 'Constructs a queue object from a queue reference.\n\n The two optional lists, `shapes` and `names`, must be of the same length\n as `dtypes` if provided. The values at a given index `i` indicate the\n shape and name to use for the corresponding queue component in `dtypes`.\n\n Args:\n dtypes: A list of types. The length of dtypes must equal the number\n of tensors in each element.\n shapes: Constraints on the shapes of tensors in an element:\n A list of shape tuples or None. This list is the same length\n as dtypes. If the shape of any tensors in the element are constrained,\n all must be; shapes can be None if the shapes should not be constrained.\n names: Optional list of names. If provided, the `enqueue()` and\n `dequeue()` methods will use dictionaries with these names as keys.\n Must be None or a list or tuple of the same length as `dtypes`.\n queue_ref: The queue reference, i.e. the output of the queue op.\n\n Raises:\n ValueError: If one of the arguments is invalid.\n ' self._dtypes = dtypes if (shapes is not None): if (len(shapes) != len(dtypes)): raise ValueError('Queue shapes must have the same length as dtypes') self._shapes = [tensor_shape.TensorShape(s) for s in shapes] else: self._shapes = [tensor_shape.unknown_shape() for _ in self._dtypes] if (names is not None): if (len(names) != len(dtypes)): raise ValueError('Queue names must have the same length as dtypes') self._names = names else: self._names = None self._queue_ref = queue_ref self._name = self._queue_ref.op.name.split('/')[(- 1)]<|docstring|>Constructs a queue object from a queue reference. The two optional lists, `shapes` and `names`, must be of the same length as `dtypes` if provided. The values at a given index `i` indicate the shape and name to use for the corresponding queue component in `dtypes`. Args: dtypes: A list of types. The length of dtypes must equal the number of tensors in each element. shapes: Constraints on the shapes of tensors in an element: A list of shape tuples or None. This list is the same length as dtypes. If the shape of any tensors in the element are constrained, all must be; shapes can be None if the shapes should not be constrained. names: Optional list of names. If provided, the `enqueue()` and `dequeue()` methods will use dictionaries with these names as keys. Must be None or a list or tuple of the same length as `dtypes`. queue_ref: The queue reference, i.e. the output of the queue op. Raises: ValueError: If one of the arguments is invalid.<|endoftext|>
99f7f641fc6e1a01c876cbea5c8a1f1c5bbd935b1dd51571884dc9b421674cac
@staticmethod def from_list(index, queues): 'Create a queue using the queue reference from `queues[index]`.\n\n Args:\n index: An integer scalar tensor that determines the input that gets\n selected.\n queues: A list of `QueueBase` objects.\n\n Returns:\n A `QueueBase` object.\n\n Raises:\n TypeError: When `queues` is not a list of `QueueBase` objects,\n or when the data types of `queues` are not all the same.\n ' if ((not queues) or (not isinstance(queues, list)) or (not all((isinstance(x, QueueBase) for x in queues)))): raise TypeError('A list of queues expected') dtypes = queues[0].dtypes if (not all([(dtypes == q.dtypes) for q in queues[1:]])): raise TypeError('Queues do not have matching component dtypes.') names = queues[0].names if (not all([(names == q.names) for q in queues[1:]])): raise TypeError('Queues do not have matching component names.') queue_refs = [x.queue_ref for x in queues] selected_queue = control_flow_ops.ref_select(index, queue_refs) return QueueBase(dtypes=dtypes, shapes=None, names=names, queue_ref=selected_queue)
Create a queue using the queue reference from `queues[index]`. Args: index: An integer scalar tensor that determines the input that gets selected. queues: A list of `QueueBase` objects. Returns: A `QueueBase` object. Raises: TypeError: When `queues` is not a list of `QueueBase` objects, or when the data types of `queues` are not all the same.
tensorflow/python/ops/data_flow_ops.py
from_list
habangar/tensorflow
73
python
@staticmethod def from_list(index, queues): 'Create a queue using the queue reference from `queues[index]`.\n\n Args:\n index: An integer scalar tensor that determines the input that gets\n selected.\n queues: A list of `QueueBase` objects.\n\n Returns:\n A `QueueBase` object.\n\n Raises:\n TypeError: When `queues` is not a list of `QueueBase` objects,\n or when the data types of `queues` are not all the same.\n ' if ((not queues) or (not isinstance(queues, list)) or (not all((isinstance(x, QueueBase) for x in queues)))): raise TypeError('A list of queues expected') dtypes = queues[0].dtypes if (not all([(dtypes == q.dtypes) for q in queues[1:]])): raise TypeError('Queues do not have matching component dtypes.') names = queues[0].names if (not all([(names == q.names) for q in queues[1:]])): raise TypeError('Queues do not have matching component names.') queue_refs = [x.queue_ref for x in queues] selected_queue = control_flow_ops.ref_select(index, queue_refs) return QueueBase(dtypes=dtypes, shapes=None, names=names, queue_ref=selected_queue)
@staticmethod def from_list(index, queues): 'Create a queue using the queue reference from `queues[index]`.\n\n Args:\n index: An integer scalar tensor that determines the input that gets\n selected.\n queues: A list of `QueueBase` objects.\n\n Returns:\n A `QueueBase` object.\n\n Raises:\n TypeError: When `queues` is not a list of `QueueBase` objects,\n or when the data types of `queues` are not all the same.\n ' if ((not queues) or (not isinstance(queues, list)) or (not all((isinstance(x, QueueBase) for x in queues)))): raise TypeError('A list of queues expected') dtypes = queues[0].dtypes if (not all([(dtypes == q.dtypes) for q in queues[1:]])): raise TypeError('Queues do not have matching component dtypes.') names = queues[0].names if (not all([(names == q.names) for q in queues[1:]])): raise TypeError('Queues do not have matching component names.') queue_refs = [x.queue_ref for x in queues] selected_queue = control_flow_ops.ref_select(index, queue_refs) return QueueBase(dtypes=dtypes, shapes=None, names=names, queue_ref=selected_queue)<|docstring|>Create a queue using the queue reference from `queues[index]`. Args: index: An integer scalar tensor that determines the input that gets selected. queues: A list of `QueueBase` objects. Returns: A `QueueBase` object. Raises: TypeError: When `queues` is not a list of `QueueBase` objects, or when the data types of `queues` are not all the same.<|endoftext|>
1a7c5c9f83af8f9f158c21589019ecb03e155f256ed5d37721f4708c7b62d396
@property def queue_ref(self): 'The underlying queue reference.' return self._queue_ref
The underlying queue reference.
tensorflow/python/ops/data_flow_ops.py
queue_ref
habangar/tensorflow
73
python
@property def queue_ref(self): return self._queue_ref
@property def queue_ref(self): return self._queue_ref<|docstring|>The underlying queue reference.<|endoftext|>
463209841548d5c8cc3601e05c3c7b59ac0b4eba44b639b53fc672b5b2b50dd5
@property def name(self): 'The name of the underlying queue.' return self._queue_ref.op.name
The name of the underlying queue.
tensorflow/python/ops/data_flow_ops.py
name
habangar/tensorflow
73
python
@property def name(self): return self._queue_ref.op.name
@property def name(self): return self._queue_ref.op.name<|docstring|>The name of the underlying queue.<|endoftext|>
ff3fe1ef0cec34857a6a9e5094ab0e27ebca9c85300584b5f62cac0b5199ee43
@property def dtypes(self): 'The list of dtypes for each component of a queue element.' return self._dtypes
The list of dtypes for each component of a queue element.
tensorflow/python/ops/data_flow_ops.py
dtypes
habangar/tensorflow
73
python
@property def dtypes(self): return self._dtypes
@property def dtypes(self): return self._dtypes<|docstring|>The list of dtypes for each component of a queue element.<|endoftext|>
caf0e0211df488371e0035f3cfdff7281ba7f316b62bc06b6d1542c286864fdb
@property def names(self): 'The list of names for each component of a queue element.' return self._names
The list of names for each component of a queue element.
tensorflow/python/ops/data_flow_ops.py
names
habangar/tensorflow
73
python
@property def names(self): return self._names
@property def names(self): return self._names<|docstring|>The list of names for each component of a queue element.<|endoftext|>
943003c12f6bb4fea92d9037bd957e559d9a01d4351d447d8e45d76a75616b38
def _check_enqueue_dtypes(self, vals): 'Validate and convert `vals` to a list of `Tensor`s.\n\n The `vals` argument can be a Tensor, a list or tuple of tensors, or a\n dictionary with tensor values.\n\n If it is a dictionary, the queue must have been constructed with a\n `names` attribute and the dictionary keys must math the queue names.\n If the queue was constructed with a `names` attribute, `vals` must\n be a dictionary.\n\n Args:\n vals: A tensor, a list or tuple of tensors, or a dictionary..\n\n Returns:\n A list of `Tensor` objects.\n\n Raises:\n ValueError: If `vals` is invalid.\n ' if isinstance(vals, dict): if (not self._names): raise ValueError('Queue must have names to enqueue a dictionary') if (sorted(self._names) != sorted(vals.keys())): raise ValueError(('Keys in dictionary to enqueue do not match names of Queue. Dictionary: (%s), Queue: (%s)' % (sorted(vals.keys()), sorted(self._names)))) vals = [vals[k] for k in self._names] else: if self._names: raise ValueError('You must enqueue a dictionary in a Queue with names') if (not isinstance(vals, (list, tuple))): vals = [vals] tensors = [] for (i, (val, dtype)) in enumerate(zip(vals, self._dtypes)): tensors.append(ops.convert_to_tensor(val, dtype=dtype, name=('component_%d' % i))) return tensors
Validate and convert `vals` to a list of `Tensor`s. The `vals` argument can be a Tensor, a list or tuple of tensors, or a dictionary with tensor values. If it is a dictionary, the queue must have been constructed with a `names` attribute and the dictionary keys must math the queue names. If the queue was constructed with a `names` attribute, `vals` must be a dictionary. Args: vals: A tensor, a list or tuple of tensors, or a dictionary.. Returns: A list of `Tensor` objects. Raises: ValueError: If `vals` is invalid.
tensorflow/python/ops/data_flow_ops.py
_check_enqueue_dtypes
habangar/tensorflow
73
python
def _check_enqueue_dtypes(self, vals): 'Validate and convert `vals` to a list of `Tensor`s.\n\n The `vals` argument can be a Tensor, a list or tuple of tensors, or a\n dictionary with tensor values.\n\n If it is a dictionary, the queue must have been constructed with a\n `names` attribute and the dictionary keys must math the queue names.\n If the queue was constructed with a `names` attribute, `vals` must\n be a dictionary.\n\n Args:\n vals: A tensor, a list or tuple of tensors, or a dictionary..\n\n Returns:\n A list of `Tensor` objects.\n\n Raises:\n ValueError: If `vals` is invalid.\n ' if isinstance(vals, dict): if (not self._names): raise ValueError('Queue must have names to enqueue a dictionary') if (sorted(self._names) != sorted(vals.keys())): raise ValueError(('Keys in dictionary to enqueue do not match names of Queue. Dictionary: (%s), Queue: (%s)' % (sorted(vals.keys()), sorted(self._names)))) vals = [vals[k] for k in self._names] else: if self._names: raise ValueError('You must enqueue a dictionary in a Queue with names') if (not isinstance(vals, (list, tuple))): vals = [vals] tensors = [] for (i, (val, dtype)) in enumerate(zip(vals, self._dtypes)): tensors.append(ops.convert_to_tensor(val, dtype=dtype, name=('component_%d' % i))) return tensors
def _check_enqueue_dtypes(self, vals): 'Validate and convert `vals` to a list of `Tensor`s.\n\n The `vals` argument can be a Tensor, a list or tuple of tensors, or a\n dictionary with tensor values.\n\n If it is a dictionary, the queue must have been constructed with a\n `names` attribute and the dictionary keys must math the queue names.\n If the queue was constructed with a `names` attribute, `vals` must\n be a dictionary.\n\n Args:\n vals: A tensor, a list or tuple of tensors, or a dictionary..\n\n Returns:\n A list of `Tensor` objects.\n\n Raises:\n ValueError: If `vals` is invalid.\n ' if isinstance(vals, dict): if (not self._names): raise ValueError('Queue must have names to enqueue a dictionary') if (sorted(self._names) != sorted(vals.keys())): raise ValueError(('Keys in dictionary to enqueue do not match names of Queue. Dictionary: (%s), Queue: (%s)' % (sorted(vals.keys()), sorted(self._names)))) vals = [vals[k] for k in self._names] else: if self._names: raise ValueError('You must enqueue a dictionary in a Queue with names') if (not isinstance(vals, (list, tuple))): vals = [vals] tensors = [] for (i, (val, dtype)) in enumerate(zip(vals, self._dtypes)): tensors.append(ops.convert_to_tensor(val, dtype=dtype, name=('component_%d' % i))) return tensors<|docstring|>Validate and convert `vals` to a list of `Tensor`s. The `vals` argument can be a Tensor, a list or tuple of tensors, or a dictionary with tensor values. If it is a dictionary, the queue must have been constructed with a `names` attribute and the dictionary keys must math the queue names. If the queue was constructed with a `names` attribute, `vals` must be a dictionary. Args: vals: A tensor, a list or tuple of tensors, or a dictionary.. Returns: A list of `Tensor` objects. Raises: ValueError: If `vals` is invalid.<|endoftext|>
887bb5871479709a5d8d3645288ed8e498e1c49d9de5795006b6bc1ff68b7576
def _scope_vals(self, vals): 'Return a list of values to pass to `op_scope()`.\n\n Args:\n vals: A tensor, a list or tuple of tensors, or a dictionary.\n\n Returns:\n The values in vals as a list.\n ' if isinstance(vals, (list, tuple)): return vals elif isinstance(vals, dict): return vals.values() else: return [vals]
Return a list of values to pass to `op_scope()`. Args: vals: A tensor, a list or tuple of tensors, or a dictionary. Returns: The values in vals as a list.
tensorflow/python/ops/data_flow_ops.py
_scope_vals
habangar/tensorflow
73
python
def _scope_vals(self, vals): 'Return a list of values to pass to `op_scope()`.\n\n Args:\n vals: A tensor, a list or tuple of tensors, or a dictionary.\n\n Returns:\n The values in vals as a list.\n ' if isinstance(vals, (list, tuple)): return vals elif isinstance(vals, dict): return vals.values() else: return [vals]
def _scope_vals(self, vals): 'Return a list of values to pass to `op_scope()`.\n\n Args:\n vals: A tensor, a list or tuple of tensors, or a dictionary.\n\n Returns:\n The values in vals as a list.\n ' if isinstance(vals, (list, tuple)): return vals elif isinstance(vals, dict): return vals.values() else: return [vals]<|docstring|>Return a list of values to pass to `op_scope()`. Args: vals: A tensor, a list or tuple of tensors, or a dictionary. Returns: The values in vals as a list.<|endoftext|>
ecbc9404dc5cbf46100d141bae166f23da1ac328eae3b49836c9cc6bcdf06af8
def enqueue(self, vals, name=None): 'Enqueues one element to this queue.\n\n If the queue is full when this operation executes, it will block\n until the element has been enqueued.\n\n Args:\n vals: A tensor, a list or tuple of tensors, or a dictionary containing\n the values to enqueue.\n name: A name for the operation (optional).\n\n Returns:\n The operation that enqueues a new tuple of tensors to the queue.\n ' with ops.op_scope(self._scope_vals(vals), name, ('%s_enqueue' % self._name)) as scope: vals = self._check_enqueue_dtypes(vals) for (val, shape) in zip(vals, self._shapes): val.get_shape().assert_is_compatible_with(shape) return gen_data_flow_ops._queue_enqueue(self._queue_ref, vals, name=scope)
Enqueues one element to this queue. If the queue is full when this operation executes, it will block until the element has been enqueued. Args: vals: A tensor, a list or tuple of tensors, or a dictionary containing the values to enqueue. name: A name for the operation (optional). Returns: The operation that enqueues a new tuple of tensors to the queue.
tensorflow/python/ops/data_flow_ops.py
enqueue
habangar/tensorflow
73
python
def enqueue(self, vals, name=None): 'Enqueues one element to this queue.\n\n If the queue is full when this operation executes, it will block\n until the element has been enqueued.\n\n Args:\n vals: A tensor, a list or tuple of tensors, or a dictionary containing\n the values to enqueue.\n name: A name for the operation (optional).\n\n Returns:\n The operation that enqueues a new tuple of tensors to the queue.\n ' with ops.op_scope(self._scope_vals(vals), name, ('%s_enqueue' % self._name)) as scope: vals = self._check_enqueue_dtypes(vals) for (val, shape) in zip(vals, self._shapes): val.get_shape().assert_is_compatible_with(shape) return gen_data_flow_ops._queue_enqueue(self._queue_ref, vals, name=scope)
def enqueue(self, vals, name=None): 'Enqueues one element to this queue.\n\n If the queue is full when this operation executes, it will block\n until the element has been enqueued.\n\n Args:\n vals: A tensor, a list or tuple of tensors, or a dictionary containing\n the values to enqueue.\n name: A name for the operation (optional).\n\n Returns:\n The operation that enqueues a new tuple of tensors to the queue.\n ' with ops.op_scope(self._scope_vals(vals), name, ('%s_enqueue' % self._name)) as scope: vals = self._check_enqueue_dtypes(vals) for (val, shape) in zip(vals, self._shapes): val.get_shape().assert_is_compatible_with(shape) return gen_data_flow_ops._queue_enqueue(self._queue_ref, vals, name=scope)<|docstring|>Enqueues one element to this queue. If the queue is full when this operation executes, it will block until the element has been enqueued. Args: vals: A tensor, a list or tuple of tensors, or a dictionary containing the values to enqueue. name: A name for the operation (optional). Returns: The operation that enqueues a new tuple of tensors to the queue.<|endoftext|>
ec5a7b812c0d02ef9756b539186ded52fdc017576619bcc64952f4a6ce17b8a0
def enqueue_many(self, vals, name=None): 'Enqueues zero or more elements to this queue.\n\n This operation slices each component tensor along the 0th dimension to\n make multiple queue elements. All of the tensors in `vals` must have the\n same size in the 0th dimension.\n\n If the queue is full when this operation executes, it will block\n until all of the elements have been enqueued.\n\n Args:\n vals: A tensor, a list or tuple of tensors, or a dictionary\n from which the queue elements are taken.\n name: A name for the operation (optional).\n\n Returns:\n The operation that enqueues a batch of tuples of tensors to the queue.\n ' with ops.op_scope(self._scope_vals(vals), name, ('%s_EnqueueMany' % self._name)) as scope: vals = self._check_enqueue_dtypes(vals) batch_dim = vals[0].get_shape().with_rank_at_least(1)[0] for (val, shape) in zip(vals, self._shapes): batch_dim = batch_dim.merge_with(val.get_shape().with_rank_at_least(1)[0]) val.get_shape()[1:].assert_is_compatible_with(shape) return gen_data_flow_ops._queue_enqueue_many(self._queue_ref, vals, name=scope)
Enqueues zero or more elements to this queue. This operation slices each component tensor along the 0th dimension to make multiple queue elements. All of the tensors in `vals` must have the same size in the 0th dimension. If the queue is full when this operation executes, it will block until all of the elements have been enqueued. Args: vals: A tensor, a list or tuple of tensors, or a dictionary from which the queue elements are taken. name: A name for the operation (optional). Returns: The operation that enqueues a batch of tuples of tensors to the queue.
tensorflow/python/ops/data_flow_ops.py
enqueue_many
habangar/tensorflow
73
python
def enqueue_many(self, vals, name=None): 'Enqueues zero or more elements to this queue.\n\n This operation slices each component tensor along the 0th dimension to\n make multiple queue elements. All of the tensors in `vals` must have the\n same size in the 0th dimension.\n\n If the queue is full when this operation executes, it will block\n until all of the elements have been enqueued.\n\n Args:\n vals: A tensor, a list or tuple of tensors, or a dictionary\n from which the queue elements are taken.\n name: A name for the operation (optional).\n\n Returns:\n The operation that enqueues a batch of tuples of tensors to the queue.\n ' with ops.op_scope(self._scope_vals(vals), name, ('%s_EnqueueMany' % self._name)) as scope: vals = self._check_enqueue_dtypes(vals) batch_dim = vals[0].get_shape().with_rank_at_least(1)[0] for (val, shape) in zip(vals, self._shapes): batch_dim = batch_dim.merge_with(val.get_shape().with_rank_at_least(1)[0]) val.get_shape()[1:].assert_is_compatible_with(shape) return gen_data_flow_ops._queue_enqueue_many(self._queue_ref, vals, name=scope)
def enqueue_many(self, vals, name=None): 'Enqueues zero or more elements to this queue.\n\n This operation slices each component tensor along the 0th dimension to\n make multiple queue elements. All of the tensors in `vals` must have the\n same size in the 0th dimension.\n\n If the queue is full when this operation executes, it will block\n until all of the elements have been enqueued.\n\n Args:\n vals: A tensor, a list or tuple of tensors, or a dictionary\n from which the queue elements are taken.\n name: A name for the operation (optional).\n\n Returns:\n The operation that enqueues a batch of tuples of tensors to the queue.\n ' with ops.op_scope(self._scope_vals(vals), name, ('%s_EnqueueMany' % self._name)) as scope: vals = self._check_enqueue_dtypes(vals) batch_dim = vals[0].get_shape().with_rank_at_least(1)[0] for (val, shape) in zip(vals, self._shapes): batch_dim = batch_dim.merge_with(val.get_shape().with_rank_at_least(1)[0]) val.get_shape()[1:].assert_is_compatible_with(shape) return gen_data_flow_ops._queue_enqueue_many(self._queue_ref, vals, name=scope)<|docstring|>Enqueues zero or more elements to this queue. This operation slices each component tensor along the 0th dimension to make multiple queue elements. All of the tensors in `vals` must have the same size in the 0th dimension. If the queue is full when this operation executes, it will block until all of the elements have been enqueued. Args: vals: A tensor, a list or tuple of tensors, or a dictionary from which the queue elements are taken. name: A name for the operation (optional). Returns: The operation that enqueues a batch of tuples of tensors to the queue.<|endoftext|>
0453558f4d28cd7e0207754c777ebddd693c841decceb63334d5604e0ab33dd7
def _dequeue_return_value(self, tensors): 'Return the value to return from a dequeue op.\n\n If the queue has names, return a dictionary with the\n names as keys. Otherwise return either a single tensor\n or a list of tensors depending on the length of `tensors`.\n\n Args:\n tensors: List of tensors from the dequeue op.\n\n Returns:\n A single tensor, a list of tensors, or a dictionary\n of tensors.\n ' if self._names: return {n: tensors[i] for (i, n) in enumerate(self._names)} elif (len(tensors) == 1): return tensors[0] else: return tensors
Return the value to return from a dequeue op. If the queue has names, return a dictionary with the names as keys. Otherwise return either a single tensor or a list of tensors depending on the length of `tensors`. Args: tensors: List of tensors from the dequeue op. Returns: A single tensor, a list of tensors, or a dictionary of tensors.
tensorflow/python/ops/data_flow_ops.py
_dequeue_return_value
habangar/tensorflow
73
python
def _dequeue_return_value(self, tensors): 'Return the value to return from a dequeue op.\n\n If the queue has names, return a dictionary with the\n names as keys. Otherwise return either a single tensor\n or a list of tensors depending on the length of `tensors`.\n\n Args:\n tensors: List of tensors from the dequeue op.\n\n Returns:\n A single tensor, a list of tensors, or a dictionary\n of tensors.\n ' if self._names: return {n: tensors[i] for (i, n) in enumerate(self._names)} elif (len(tensors) == 1): return tensors[0] else: return tensors
def _dequeue_return_value(self, tensors): 'Return the value to return from a dequeue op.\n\n If the queue has names, return a dictionary with the\n names as keys. Otherwise return either a single tensor\n or a list of tensors depending on the length of `tensors`.\n\n Args:\n tensors: List of tensors from the dequeue op.\n\n Returns:\n A single tensor, a list of tensors, or a dictionary\n of tensors.\n ' if self._names: return {n: tensors[i] for (i, n) in enumerate(self._names)} elif (len(tensors) == 1): return tensors[0] else: return tensors<|docstring|>Return the value to return from a dequeue op. If the queue has names, return a dictionary with the names as keys. Otherwise return either a single tensor or a list of tensors depending on the length of `tensors`. Args: tensors: List of tensors from the dequeue op. Returns: A single tensor, a list of tensors, or a dictionary of tensors.<|endoftext|>
a4cd9c16a0ca431f9c4db0efc560b9321d44a86464cc5f005872c2440746526f
def dequeue(self, name=None): 'Dequeues one element from this queue.\n\n If the queue is empty when this operation executes, it will block\n until there is an element to dequeue.\n\n Args:\n name: A name for the operation (optional).\n\n Returns:\n The tuple of tensors that was dequeued.\n ' if (name is None): name = ('%s_Dequeue' % self._name) ret = gen_data_flow_ops._queue_dequeue(self._queue_ref, self._dtypes, name=name) op = ret[0].op for (output, shape) in zip(op.values(), self._shapes): output.set_shape(shape) return self._dequeue_return_value(ret)
Dequeues one element from this queue. If the queue is empty when this operation executes, it will block until there is an element to dequeue. Args: name: A name for the operation (optional). Returns: The tuple of tensors that was dequeued.
tensorflow/python/ops/data_flow_ops.py
dequeue
habangar/tensorflow
73
python
def dequeue(self, name=None): 'Dequeues one element from this queue.\n\n If the queue is empty when this operation executes, it will block\n until there is an element to dequeue.\n\n Args:\n name: A name for the operation (optional).\n\n Returns:\n The tuple of tensors that was dequeued.\n ' if (name is None): name = ('%s_Dequeue' % self._name) ret = gen_data_flow_ops._queue_dequeue(self._queue_ref, self._dtypes, name=name) op = ret[0].op for (output, shape) in zip(op.values(), self._shapes): output.set_shape(shape) return self._dequeue_return_value(ret)
def dequeue(self, name=None): 'Dequeues one element from this queue.\n\n If the queue is empty when this operation executes, it will block\n until there is an element to dequeue.\n\n Args:\n name: A name for the operation (optional).\n\n Returns:\n The tuple of tensors that was dequeued.\n ' if (name is None): name = ('%s_Dequeue' % self._name) ret = gen_data_flow_ops._queue_dequeue(self._queue_ref, self._dtypes, name=name) op = ret[0].op for (output, shape) in zip(op.values(), self._shapes): output.set_shape(shape) return self._dequeue_return_value(ret)<|docstring|>Dequeues one element from this queue. If the queue is empty when this operation executes, it will block until there is an element to dequeue. Args: name: A name for the operation (optional). Returns: The tuple of tensors that was dequeued.<|endoftext|>
8cee0b0be9401329e56003ad98f99fc867e00853f904b816c49e7934d634645f
def dequeue_many(self, n, name=None): 'Dequeues and concatenates `n` elements from this queue.\n\n This operation concatenates queue-element component tensors along\n the 0th dimension to make a single component tensor. All of the\n components in the dequeued tuple will have size `n` in the 0th dimension.\n\n If the queue is closed and there are less than `n` elements left, then an\n `OutOfRange` exception is raised.\n\n Args:\n n: A scalar `Tensor` containing the number of elements to dequeue.\n name: A name for the operation (optional).\n\n Returns:\n The tuple of concatenated tensors that was dequeued.\n ' if (name is None): name = ('%s_DequeueMany' % self._name) ret = gen_data_flow_ops._queue_dequeue_many(self._queue_ref, n=n, component_types=self._dtypes, name=name) op = ret[0].op batch_dim = tensor_shape.Dimension(tensor_util.constant_value(op.inputs[1])) for (output, shape) in zip(op.values(), self._shapes): output.set_shape(tensor_shape.TensorShape([batch_dim]).concatenate(shape)) return self._dequeue_return_value(ret)
Dequeues and concatenates `n` elements from this queue. This operation concatenates queue-element component tensors along the 0th dimension to make a single component tensor. All of the components in the dequeued tuple will have size `n` in the 0th dimension. If the queue is closed and there are less than `n` elements left, then an `OutOfRange` exception is raised. Args: n: A scalar `Tensor` containing the number of elements to dequeue. name: A name for the operation (optional). Returns: The tuple of concatenated tensors that was dequeued.
tensorflow/python/ops/data_flow_ops.py
dequeue_many
habangar/tensorflow
73
python
def dequeue_many(self, n, name=None): 'Dequeues and concatenates `n` elements from this queue.\n\n This operation concatenates queue-element component tensors along\n the 0th dimension to make a single component tensor. All of the\n components in the dequeued tuple will have size `n` in the 0th dimension.\n\n If the queue is closed and there are less than `n` elements left, then an\n `OutOfRange` exception is raised.\n\n Args:\n n: A scalar `Tensor` containing the number of elements to dequeue.\n name: A name for the operation (optional).\n\n Returns:\n The tuple of concatenated tensors that was dequeued.\n ' if (name is None): name = ('%s_DequeueMany' % self._name) ret = gen_data_flow_ops._queue_dequeue_many(self._queue_ref, n=n, component_types=self._dtypes, name=name) op = ret[0].op batch_dim = tensor_shape.Dimension(tensor_util.constant_value(op.inputs[1])) for (output, shape) in zip(op.values(), self._shapes): output.set_shape(tensor_shape.TensorShape([batch_dim]).concatenate(shape)) return self._dequeue_return_value(ret)
def dequeue_many(self, n, name=None): 'Dequeues and concatenates `n` elements from this queue.\n\n This operation concatenates queue-element component tensors along\n the 0th dimension to make a single component tensor. All of the\n components in the dequeued tuple will have size `n` in the 0th dimension.\n\n If the queue is closed and there are less than `n` elements left, then an\n `OutOfRange` exception is raised.\n\n Args:\n n: A scalar `Tensor` containing the number of elements to dequeue.\n name: A name for the operation (optional).\n\n Returns:\n The tuple of concatenated tensors that was dequeued.\n ' if (name is None): name = ('%s_DequeueMany' % self._name) ret = gen_data_flow_ops._queue_dequeue_many(self._queue_ref, n=n, component_types=self._dtypes, name=name) op = ret[0].op batch_dim = tensor_shape.Dimension(tensor_util.constant_value(op.inputs[1])) for (output, shape) in zip(op.values(), self._shapes): output.set_shape(tensor_shape.TensorShape([batch_dim]).concatenate(shape)) return self._dequeue_return_value(ret)<|docstring|>Dequeues and concatenates `n` elements from this queue. This operation concatenates queue-element component tensors along the 0th dimension to make a single component tensor. All of the components in the dequeued tuple will have size `n` in the 0th dimension. If the queue is closed and there are less than `n` elements left, then an `OutOfRange` exception is raised. Args: n: A scalar `Tensor` containing the number of elements to dequeue. name: A name for the operation (optional). Returns: The tuple of concatenated tensors that was dequeued.<|endoftext|>
ec83222ddbcc42dce823c9014a806c354c70c36eaef280f4551068b9a577289c
def dequeue_up_to(self, n, name=None): 'Dequeues and concatenates `n` elements from this queue.\n\n **Note** This operation is not supported by all queues. If a queue does not\n support DequeueUpTo, then an Unimplemented exception is raised.\n\n This operation concatenates queue-element component tensors along the\n 0th dimension to make a single component tensor. All of the components\n in the dequeued tuple will have size `n` in the 0th dimension.\n\n If the queue is closed and there are more than `0` but less than `n`\n elements remaining, then instead of raising an `OutOfRange` exception like\n `dequeue_many`, the remaining elements are returned immediately.\n If the queue is closed and there are `0` elements left in the queue, then\n an `OutOfRange` exception is raised just like in `dequeue_many`.\n Otherwise the behavior is identical to `dequeue_many`:\n\n Args:\n n: A scalar `Tensor` containing the number of elements to dequeue.\n name: A name for the operation (optional).\n\n Returns:\n The tuple of concatenated tensors that was dequeued.\n ' if (name is None): name = ('%s_DequeueUpTo' % self._name) ret = gen_data_flow_ops._queue_dequeue_up_to(self._queue_ref, n=n, component_types=self._dtypes, name=name) op = ret[0].op for (output, shape) in zip(op.values(), self._shapes): output.set_shape(tensor_shape.TensorShape([None]).concatenate(shape)) return self._dequeue_return_value(ret)
Dequeues and concatenates `n` elements from this queue. **Note** This operation is not supported by all queues. If a queue does not support DequeueUpTo, then an Unimplemented exception is raised. This operation concatenates queue-element component tensors along the 0th dimension to make a single component tensor. All of the components in the dequeued tuple will have size `n` in the 0th dimension. If the queue is closed and there are more than `0` but less than `n` elements remaining, then instead of raising an `OutOfRange` exception like `dequeue_many`, the remaining elements are returned immediately. If the queue is closed and there are `0` elements left in the queue, then an `OutOfRange` exception is raised just like in `dequeue_many`. Otherwise the behavior is identical to `dequeue_many`: Args: n: A scalar `Tensor` containing the number of elements to dequeue. name: A name for the operation (optional). Returns: The tuple of concatenated tensors that was dequeued.
tensorflow/python/ops/data_flow_ops.py
dequeue_up_to
habangar/tensorflow
73
python
def dequeue_up_to(self, n, name=None): 'Dequeues and concatenates `n` elements from this queue.\n\n **Note** This operation is not supported by all queues. If a queue does not\n support DequeueUpTo, then an Unimplemented exception is raised.\n\n This operation concatenates queue-element component tensors along the\n 0th dimension to make a single component tensor. All of the components\n in the dequeued tuple will have size `n` in the 0th dimension.\n\n If the queue is closed and there are more than `0` but less than `n`\n elements remaining, then instead of raising an `OutOfRange` exception like\n `dequeue_many`, the remaining elements are returned immediately.\n If the queue is closed and there are `0` elements left in the queue, then\n an `OutOfRange` exception is raised just like in `dequeue_many`.\n Otherwise the behavior is identical to `dequeue_many`:\n\n Args:\n n: A scalar `Tensor` containing the number of elements to dequeue.\n name: A name for the operation (optional).\n\n Returns:\n The tuple of concatenated tensors that was dequeued.\n ' if (name is None): name = ('%s_DequeueUpTo' % self._name) ret = gen_data_flow_ops._queue_dequeue_up_to(self._queue_ref, n=n, component_types=self._dtypes, name=name) op = ret[0].op for (output, shape) in zip(op.values(), self._shapes): output.set_shape(tensor_shape.TensorShape([None]).concatenate(shape)) return self._dequeue_return_value(ret)
def dequeue_up_to(self, n, name=None): 'Dequeues and concatenates `n` elements from this queue.\n\n **Note** This operation is not supported by all queues. If a queue does not\n support DequeueUpTo, then an Unimplemented exception is raised.\n\n This operation concatenates queue-element component tensors along the\n 0th dimension to make a single component tensor. All of the components\n in the dequeued tuple will have size `n` in the 0th dimension.\n\n If the queue is closed and there are more than `0` but less than `n`\n elements remaining, then instead of raising an `OutOfRange` exception like\n `dequeue_many`, the remaining elements are returned immediately.\n If the queue is closed and there are `0` elements left in the queue, then\n an `OutOfRange` exception is raised just like in `dequeue_many`.\n Otherwise the behavior is identical to `dequeue_many`:\n\n Args:\n n: A scalar `Tensor` containing the number of elements to dequeue.\n name: A name for the operation (optional).\n\n Returns:\n The tuple of concatenated tensors that was dequeued.\n ' if (name is None): name = ('%s_DequeueUpTo' % self._name) ret = gen_data_flow_ops._queue_dequeue_up_to(self._queue_ref, n=n, component_types=self._dtypes, name=name) op = ret[0].op for (output, shape) in zip(op.values(), self._shapes): output.set_shape(tensor_shape.TensorShape([None]).concatenate(shape)) return self._dequeue_return_value(ret)<|docstring|>Dequeues and concatenates `n` elements from this queue. **Note** This operation is not supported by all queues. If a queue does not support DequeueUpTo, then an Unimplemented exception is raised. This operation concatenates queue-element component tensors along the 0th dimension to make a single component tensor. All of the components in the dequeued tuple will have size `n` in the 0th dimension. If the queue is closed and there are more than `0` but less than `n` elements remaining, then instead of raising an `OutOfRange` exception like `dequeue_many`, the remaining elements are returned immediately. If the queue is closed and there are `0` elements left in the queue, then an `OutOfRange` exception is raised just like in `dequeue_many`. Otherwise the behavior is identical to `dequeue_many`: Args: n: A scalar `Tensor` containing the number of elements to dequeue. name: A name for the operation (optional). Returns: The tuple of concatenated tensors that was dequeued.<|endoftext|>
fdc57f7e098d25baf506e63b7a78fe9722c1f9e8df72eda3b72da3fd95fd6114
def close(self, cancel_pending_enqueues=False, name=None): 'Closes this queue.\n\n This operation signals that no more elements will be enqueued in\n the given queue. Subsequent `enqueue` and `enqueue_many`\n operations will fail. Subsequent `dequeue` and `dequeue_many`\n operations will continue to succeed if sufficient elements remain\n in the queue. Subsequent `dequeue` and `dequeue_many` operations\n that would block will fail immediately.\n\n If `cancel_pending_enqueues` is `True`, all pending requests will also\n be cancelled.\n\n Args:\n cancel_pending_enqueues: (Optional.) A boolean, defaulting to\n `False` (described above).\n name: A name for the operation (optional).\n\n Returns:\n The operation that closes the queue.\n ' if (name is None): name = ('%s_Close' % self._name) return gen_data_flow_ops._queue_close(self._queue_ref, cancel_pending_enqueues=cancel_pending_enqueues, name=name)
Closes this queue. This operation signals that no more elements will be enqueued in the given queue. Subsequent `enqueue` and `enqueue_many` operations will fail. Subsequent `dequeue` and `dequeue_many` operations will continue to succeed if sufficient elements remain in the queue. Subsequent `dequeue` and `dequeue_many` operations that would block will fail immediately. If `cancel_pending_enqueues` is `True`, all pending requests will also be cancelled. Args: cancel_pending_enqueues: (Optional.) A boolean, defaulting to `False` (described above). name: A name for the operation (optional). Returns: The operation that closes the queue.
tensorflow/python/ops/data_flow_ops.py
close
habangar/tensorflow
73
python
def close(self, cancel_pending_enqueues=False, name=None): 'Closes this queue.\n\n This operation signals that no more elements will be enqueued in\n the given queue. Subsequent `enqueue` and `enqueue_many`\n operations will fail. Subsequent `dequeue` and `dequeue_many`\n operations will continue to succeed if sufficient elements remain\n in the queue. Subsequent `dequeue` and `dequeue_many` operations\n that would block will fail immediately.\n\n If `cancel_pending_enqueues` is `True`, all pending requests will also\n be cancelled.\n\n Args:\n cancel_pending_enqueues: (Optional.) A boolean, defaulting to\n `False` (described above).\n name: A name for the operation (optional).\n\n Returns:\n The operation that closes the queue.\n ' if (name is None): name = ('%s_Close' % self._name) return gen_data_flow_ops._queue_close(self._queue_ref, cancel_pending_enqueues=cancel_pending_enqueues, name=name)
def close(self, cancel_pending_enqueues=False, name=None): 'Closes this queue.\n\n This operation signals that no more elements will be enqueued in\n the given queue. Subsequent `enqueue` and `enqueue_many`\n operations will fail. Subsequent `dequeue` and `dequeue_many`\n operations will continue to succeed if sufficient elements remain\n in the queue. Subsequent `dequeue` and `dequeue_many` operations\n that would block will fail immediately.\n\n If `cancel_pending_enqueues` is `True`, all pending requests will also\n be cancelled.\n\n Args:\n cancel_pending_enqueues: (Optional.) A boolean, defaulting to\n `False` (described above).\n name: A name for the operation (optional).\n\n Returns:\n The operation that closes the queue.\n ' if (name is None): name = ('%s_Close' % self._name) return gen_data_flow_ops._queue_close(self._queue_ref, cancel_pending_enqueues=cancel_pending_enqueues, name=name)<|docstring|>Closes this queue. This operation signals that no more elements will be enqueued in the given queue. Subsequent `enqueue` and `enqueue_many` operations will fail. Subsequent `dequeue` and `dequeue_many` operations will continue to succeed if sufficient elements remain in the queue. Subsequent `dequeue` and `dequeue_many` operations that would block will fail immediately. If `cancel_pending_enqueues` is `True`, all pending requests will also be cancelled. Args: cancel_pending_enqueues: (Optional.) A boolean, defaulting to `False` (described above). name: A name for the operation (optional). Returns: The operation that closes the queue.<|endoftext|>