body_hash
stringlengths
64
64
body
stringlengths
23
109k
docstring
stringlengths
1
57k
path
stringlengths
4
198
name
stringlengths
1
115
repository_name
stringlengths
7
111
repository_stars
float64
0
191k
lang
stringclasses
1 value
body_without_docstring
stringlengths
14
108k
unified
stringlengths
45
133k
7a339fc6311f8b392412a46f8e57b0a854195c8db17de5048b039b86d3862c54
def powerset(lst): 'returns the power set of the list - the set of all subsets of the list' if (lst == []): return [[]] lose_it = powerset(lst[1:]) use_it = map((lambda subset: ([lst[0]] + subset)), lose_it) return (lose_it + use_it)
returns the power set of the list - the set of all subsets of the list
use_it_or_lose_it.py
powerset
jschmidtnj/CS115
0
python
def powerset(lst): if (lst == []): return [[]] lose_it = powerset(lst[1:]) use_it = map((lambda subset: ([lst[0]] + subset)), lose_it) return (lose_it + use_it)
def powerset(lst): if (lst == []): return [[]] lose_it = powerset(lst[1:]) use_it = map((lambda subset: ([lst[0]] + subset)), lose_it) return (lose_it + use_it)<|docstring|>returns the power set of the list - the set of all subsets of the list<|endoftext|>
257b4f313c5f30370c50cf47a804da8fd504f7a0a4b473f22827338d1f938ca1
def subset(target, lst): 'determines whether or not it is possible to create target sum using the\n values in the list. Values in teh list can be positive, negative, or zero.' if (target == 0): return True if (lst == []): return False 'and and or are short-cut operators in python. THe second operand is not evaluated\n when the overall result can be deduced by evaluating the second operand' return (subset((target - lst[0]), lst[1:]) or subset(target, lst[1:]))
determines whether or not it is possible to create target sum using the values in the list. Values in teh list can be positive, negative, or zero.
use_it_or_lose_it.py
subset
jschmidtnj/CS115
0
python
def subset(target, lst): 'determines whether or not it is possible to create target sum using the\n values in the list. Values in teh list can be positive, negative, or zero.' if (target == 0): return True if (lst == []): return False 'and and or are short-cut operators in python. THe second operand is not evaluated\n when the overall result can be deduced by evaluating the second operand' return (subset((target - lst[0]), lst[1:]) or subset(target, lst[1:]))
def subset(target, lst): 'determines whether or not it is possible to create target sum using the\n values in the list. Values in teh list can be positive, negative, or zero.' if (target == 0): return True if (lst == []): return False 'and and or are short-cut operators in python. THe second operand is not evaluated\n when the overall result can be deduced by evaluating the second operand' return (subset((target - lst[0]), lst[1:]) or subset(target, lst[1:]))<|docstring|>determines whether or not it is possible to create target sum using the values in the list. Values in teh list can be positive, negative, or zero.<|endoftext|>
e5e49f26aec371324d72fd1089feb485b3addb2839d16eb174d981fbcf0e1500
def subset_with_values(target, lst): 'Determines whether or not it is possible to create the target sum using\n values in the list. Values in the list can be positive, negative, or zero.\n The function returns a tuple of exactly two items. The first is a boolean,\n that indicates true if the sum is possible and false if it is not. The second\n element in the tuple is a list of all values that add up to make the target sum.' if (target == 0): return (True, []) if (lst == []): return (False, []) use_it = subset_with_values((target - lst[0]), lst[1:]) if use_it[0]: return (True, ([lst[0]] + use_it[1])) return subset_with_values(target, lst[1:])
Determines whether or not it is possible to create the target sum using values in the list. Values in the list can be positive, negative, or zero. The function returns a tuple of exactly two items. The first is a boolean, that indicates true if the sum is possible and false if it is not. The second element in the tuple is a list of all values that add up to make the target sum.
use_it_or_lose_it.py
subset_with_values
jschmidtnj/CS115
0
python
def subset_with_values(target, lst): 'Determines whether or not it is possible to create the target sum using\n values in the list. Values in the list can be positive, negative, or zero.\n The function returns a tuple of exactly two items. The first is a boolean,\n that indicates true if the sum is possible and false if it is not. The second\n element in the tuple is a list of all values that add up to make the target sum.' if (target == 0): return (True, []) if (lst == []): return (False, []) use_it = subset_with_values((target - lst[0]), lst[1:]) if use_it[0]: return (True, ([lst[0]] + use_it[1])) return subset_with_values(target, lst[1:])
def subset_with_values(target, lst): 'Determines whether or not it is possible to create the target sum using\n values in the list. Values in the list can be positive, negative, or zero.\n The function returns a tuple of exactly two items. The first is a boolean,\n that indicates true if the sum is possible and false if it is not. The second\n element in the tuple is a list of all values that add up to make the target sum.' if (target == 0): return (True, []) if (lst == []): return (False, []) use_it = subset_with_values((target - lst[0]), lst[1:]) if use_it[0]: return (True, ([lst[0]] + use_it[1])) return subset_with_values(target, lst[1:])<|docstring|>Determines whether or not it is possible to create the target sum using values in the list. Values in the list can be positive, negative, or zero. The function returns a tuple of exactly two items. The first is a boolean, that indicates true if the sum is possible and false if it is not. The second element in the tuple is a list of all values that add up to make the target sum.<|endoftext|>
1180aef177e00a7195b28a252cbc0d5dfcf793d862a5056a21f57cfa9db9dce4
def LCSWithValues(S1, S2): 'returns the longest common string' if ((S1 == '') or (S2 == '')): return (0, '') if (S1[0] == S2[0]): result = LCSWithValues(S1[1:], S2[1:]) return ((1 + result[0]), (S1[0] + result[1])) useS1 = LCSWithValues(S1, S2[1:]) useS2 = LCSWithValues(S1[1:], S2) if (useS1[0] > useS2[0]): return useS1 return useS2
returns the longest common string
use_it_or_lose_it.py
LCSWithValues
jschmidtnj/CS115
0
python
def LCSWithValues(S1, S2): if ((S1 == ) or (S2 == )): return (0, ) if (S1[0] == S2[0]): result = LCSWithValues(S1[1:], S2[1:]) return ((1 + result[0]), (S1[0] + result[1])) useS1 = LCSWithValues(S1, S2[1:]) useS2 = LCSWithValues(S1[1:], S2) if (useS1[0] > useS2[0]): return useS1 return useS2
def LCSWithValues(S1, S2): if ((S1 == ) or (S2 == )): return (0, ) if (S1[0] == S2[0]): result = LCSWithValues(S1[1:], S2[1:]) return ((1 + result[0]), (S1[0] + result[1])) useS1 = LCSWithValues(S1, S2[1:]) useS2 = LCSWithValues(S1[1:], S2) if (useS1[0] > useS2[0]): return useS1 return useS2<|docstring|>returns the longest common string<|endoftext|>
a8cc646fceff27f6807c527fcc5de9e4cc0225b42d31a8472307206b12926af3
def _get_all_query_string(self, changelist): "\n If there's a default value set the all parameter needs to be provided\n however, if a default is not set the all parameter is not required.\n " if self.default_filter_value: return changelist.get_query_string({self.parameter_name: self.show_all_param_value}) return changelist.get_query_string(remove=[self.parameter_name])
If there's a default value set the all parameter needs to be provided however, if a default is not set the all parameter is not required.
djangocms_content_expiry/filters.py
_get_all_query_string
Aiky30/djangocms-content-expiry
0
python
def _get_all_query_string(self, changelist): "\n If there's a default value set the all parameter needs to be provided\n however, if a default is not set the all parameter is not required.\n " if self.default_filter_value: return changelist.get_query_string({self.parameter_name: self.show_all_param_value}) return changelist.get_query_string(remove=[self.parameter_name])
def _get_all_query_string(self, changelist): "\n If there's a default value set the all parameter needs to be provided\n however, if a default is not set the all parameter is not required.\n " if self.default_filter_value: return changelist.get_query_string({self.parameter_name: self.show_all_param_value}) return changelist.get_query_string(remove=[self.parameter_name])<|docstring|>If there's a default value set the all parameter needs to be provided however, if a default is not set the all parameter is not required.<|endoftext|>
c9a9b792051ccf98b58fe3e340309a60dddae0809d3298f406372c96fd4945d0
def beta_create_ImageAnnotator_server(servicer, pool=None, pool_size=None, default_timeout=None, maximum_timeout=None): 'The Beta API is deprecated for 0.15.0 and later.\n\n It is recommended to use the GA API (classes and functions in this\n file not marked beta) for all further purposes. This function was\n generated only to ease transition from grpcio<0.15.0 to grpcio>=0.15.0' request_deserializers = {('google.cloud.vision.v1p1beta1.ImageAnnotator', 'BatchAnnotateImages'): BatchAnnotateImagesRequest.FromString} response_serializers = {('google.cloud.vision.v1p1beta1.ImageAnnotator', 'BatchAnnotateImages'): BatchAnnotateImagesResponse.SerializeToString} method_implementations = {('google.cloud.vision.v1p1beta1.ImageAnnotator', 'BatchAnnotateImages'): face_utilities.unary_unary_inline(servicer.BatchAnnotateImages)} server_options = beta_implementations.server_options(request_deserializers=request_deserializers, response_serializers=response_serializers, thread_pool=pool, thread_pool_size=pool_size, default_timeout=default_timeout, maximum_timeout=maximum_timeout) return beta_implementations.server(method_implementations, options=server_options)
The Beta API is deprecated for 0.15.0 and later. It is recommended to use the GA API (classes and functions in this file not marked beta) for all further purposes. This function was generated only to ease transition from grpcio<0.15.0 to grpcio>=0.15.0
vision/google/cloud/vision_v1p1beta1/proto/image_annotator_pb2.py
beta_create_ImageAnnotator_server
maheshgurav/google-cloud-python
2
python
def beta_create_ImageAnnotator_server(servicer, pool=None, pool_size=None, default_timeout=None, maximum_timeout=None): 'The Beta API is deprecated for 0.15.0 and later.\n\n It is recommended to use the GA API (classes and functions in this\n file not marked beta) for all further purposes. This function was\n generated only to ease transition from grpcio<0.15.0 to grpcio>=0.15.0' request_deserializers = {('google.cloud.vision.v1p1beta1.ImageAnnotator', 'BatchAnnotateImages'): BatchAnnotateImagesRequest.FromString} response_serializers = {('google.cloud.vision.v1p1beta1.ImageAnnotator', 'BatchAnnotateImages'): BatchAnnotateImagesResponse.SerializeToString} method_implementations = {('google.cloud.vision.v1p1beta1.ImageAnnotator', 'BatchAnnotateImages'): face_utilities.unary_unary_inline(servicer.BatchAnnotateImages)} server_options = beta_implementations.server_options(request_deserializers=request_deserializers, response_serializers=response_serializers, thread_pool=pool, thread_pool_size=pool_size, default_timeout=default_timeout, maximum_timeout=maximum_timeout) return beta_implementations.server(method_implementations, options=server_options)
def beta_create_ImageAnnotator_server(servicer, pool=None, pool_size=None, default_timeout=None, maximum_timeout=None): 'The Beta API is deprecated for 0.15.0 and later.\n\n It is recommended to use the GA API (classes and functions in this\n file not marked beta) for all further purposes. This function was\n generated only to ease transition from grpcio<0.15.0 to grpcio>=0.15.0' request_deserializers = {('google.cloud.vision.v1p1beta1.ImageAnnotator', 'BatchAnnotateImages'): BatchAnnotateImagesRequest.FromString} response_serializers = {('google.cloud.vision.v1p1beta1.ImageAnnotator', 'BatchAnnotateImages'): BatchAnnotateImagesResponse.SerializeToString} method_implementations = {('google.cloud.vision.v1p1beta1.ImageAnnotator', 'BatchAnnotateImages'): face_utilities.unary_unary_inline(servicer.BatchAnnotateImages)} server_options = beta_implementations.server_options(request_deserializers=request_deserializers, response_serializers=response_serializers, thread_pool=pool, thread_pool_size=pool_size, default_timeout=default_timeout, maximum_timeout=maximum_timeout) return beta_implementations.server(method_implementations, options=server_options)<|docstring|>The Beta API is deprecated for 0.15.0 and later. It is recommended to use the GA API (classes and functions in this file not marked beta) for all further purposes. This function was generated only to ease transition from grpcio<0.15.0 to grpcio>=0.15.0<|endoftext|>
370c1936ef489eb7ee1b51965491fe537a9911ba2a33d3a3330134554a24997c
def beta_create_ImageAnnotator_stub(channel, host=None, metadata_transformer=None, pool=None, pool_size=None): 'The Beta API is deprecated for 0.15.0 and later.\n\n It is recommended to use the GA API (classes and functions in this\n file not marked beta) for all further purposes. This function was\n generated only to ease transition from grpcio<0.15.0 to grpcio>=0.15.0' request_serializers = {('google.cloud.vision.v1p1beta1.ImageAnnotator', 'BatchAnnotateImages'): BatchAnnotateImagesRequest.SerializeToString} response_deserializers = {('google.cloud.vision.v1p1beta1.ImageAnnotator', 'BatchAnnotateImages'): BatchAnnotateImagesResponse.FromString} cardinalities = {'BatchAnnotateImages': cardinality.Cardinality.UNARY_UNARY} stub_options = beta_implementations.stub_options(host=host, metadata_transformer=metadata_transformer, request_serializers=request_serializers, response_deserializers=response_deserializers, thread_pool=pool, thread_pool_size=pool_size) return beta_implementations.dynamic_stub(channel, 'google.cloud.vision.v1p1beta1.ImageAnnotator', cardinalities, options=stub_options)
The Beta API is deprecated for 0.15.0 and later. It is recommended to use the GA API (classes and functions in this file not marked beta) for all further purposes. This function was generated only to ease transition from grpcio<0.15.0 to grpcio>=0.15.0
vision/google/cloud/vision_v1p1beta1/proto/image_annotator_pb2.py
beta_create_ImageAnnotator_stub
maheshgurav/google-cloud-python
2
python
def beta_create_ImageAnnotator_stub(channel, host=None, metadata_transformer=None, pool=None, pool_size=None): 'The Beta API is deprecated for 0.15.0 and later.\n\n It is recommended to use the GA API (classes and functions in this\n file not marked beta) for all further purposes. This function was\n generated only to ease transition from grpcio<0.15.0 to grpcio>=0.15.0' request_serializers = {('google.cloud.vision.v1p1beta1.ImageAnnotator', 'BatchAnnotateImages'): BatchAnnotateImagesRequest.SerializeToString} response_deserializers = {('google.cloud.vision.v1p1beta1.ImageAnnotator', 'BatchAnnotateImages'): BatchAnnotateImagesResponse.FromString} cardinalities = {'BatchAnnotateImages': cardinality.Cardinality.UNARY_UNARY} stub_options = beta_implementations.stub_options(host=host, metadata_transformer=metadata_transformer, request_serializers=request_serializers, response_deserializers=response_deserializers, thread_pool=pool, thread_pool_size=pool_size) return beta_implementations.dynamic_stub(channel, 'google.cloud.vision.v1p1beta1.ImageAnnotator', cardinalities, options=stub_options)
def beta_create_ImageAnnotator_stub(channel, host=None, metadata_transformer=None, pool=None, pool_size=None): 'The Beta API is deprecated for 0.15.0 and later.\n\n It is recommended to use the GA API (classes and functions in this\n file not marked beta) for all further purposes. This function was\n generated only to ease transition from grpcio<0.15.0 to grpcio>=0.15.0' request_serializers = {('google.cloud.vision.v1p1beta1.ImageAnnotator', 'BatchAnnotateImages'): BatchAnnotateImagesRequest.SerializeToString} response_deserializers = {('google.cloud.vision.v1p1beta1.ImageAnnotator', 'BatchAnnotateImages'): BatchAnnotateImagesResponse.FromString} cardinalities = {'BatchAnnotateImages': cardinality.Cardinality.UNARY_UNARY} stub_options = beta_implementations.stub_options(host=host, metadata_transformer=metadata_transformer, request_serializers=request_serializers, response_deserializers=response_deserializers, thread_pool=pool, thread_pool_size=pool_size) return beta_implementations.dynamic_stub(channel, 'google.cloud.vision.v1p1beta1.ImageAnnotator', cardinalities, options=stub_options)<|docstring|>The Beta API is deprecated for 0.15.0 and later. It is recommended to use the GA API (classes and functions in this file not marked beta) for all further purposes. This function was generated only to ease transition from grpcio<0.15.0 to grpcio>=0.15.0<|endoftext|>
a2da290fda118c851c1d28cf948bc178738790ba0bc9027eda999f069bc99794
def __init__(self, channel): 'Constructor.\n\n Args:\n channel: A grpc.Channel.\n ' self.BatchAnnotateImages = channel.unary_unary('/google.cloud.vision.v1p1beta1.ImageAnnotator/BatchAnnotateImages', request_serializer=BatchAnnotateImagesRequest.SerializeToString, response_deserializer=BatchAnnotateImagesResponse.FromString)
Constructor. Args: channel: A grpc.Channel.
vision/google/cloud/vision_v1p1beta1/proto/image_annotator_pb2.py
__init__
maheshgurav/google-cloud-python
2
python
def __init__(self, channel): 'Constructor.\n\n Args:\n channel: A grpc.Channel.\n ' self.BatchAnnotateImages = channel.unary_unary('/google.cloud.vision.v1p1beta1.ImageAnnotator/BatchAnnotateImages', request_serializer=BatchAnnotateImagesRequest.SerializeToString, response_deserializer=BatchAnnotateImagesResponse.FromString)
def __init__(self, channel): 'Constructor.\n\n Args:\n channel: A grpc.Channel.\n ' self.BatchAnnotateImages = channel.unary_unary('/google.cloud.vision.v1p1beta1.ImageAnnotator/BatchAnnotateImages', request_serializer=BatchAnnotateImagesRequest.SerializeToString, response_deserializer=BatchAnnotateImagesResponse.FromString)<|docstring|>Constructor. Args: channel: A grpc.Channel.<|endoftext|>
687d56eb0494d3fc806bb634bc9463d25c10413281d39682fde3a365ef582b92
def BatchAnnotateImages(self, request, context): 'Run image detection and annotation for a batch of images.\n ' context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!')
Run image detection and annotation for a batch of images.
vision/google/cloud/vision_v1p1beta1/proto/image_annotator_pb2.py
BatchAnnotateImages
maheshgurav/google-cloud-python
2
python
def BatchAnnotateImages(self, request, context): '\n ' context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!')
def BatchAnnotateImages(self, request, context): '\n ' context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!')<|docstring|>Run image detection and annotation for a batch of images.<|endoftext|>
8e238283f42b7c6507b7c2685cd7fb595fe1bc5630818a592e0b3e85929974bb
def BatchAnnotateImages(self, request, context): 'Run image detection and annotation for a batch of images.\n ' context.code(beta_interfaces.StatusCode.UNIMPLEMENTED)
Run image detection and annotation for a batch of images.
vision/google/cloud/vision_v1p1beta1/proto/image_annotator_pb2.py
BatchAnnotateImages
maheshgurav/google-cloud-python
2
python
def BatchAnnotateImages(self, request, context): '\n ' context.code(beta_interfaces.StatusCode.UNIMPLEMENTED)
def BatchAnnotateImages(self, request, context): '\n ' context.code(beta_interfaces.StatusCode.UNIMPLEMENTED)<|docstring|>Run image detection and annotation for a batch of images.<|endoftext|>
28c1177cafbf93b16b8fb11a735ddc9c2b716213068ec5907cc4a138da2dc75d
def BatchAnnotateImages(self, request, timeout, metadata=None, with_call=False, protocol_options=None): 'Run image detection and annotation for a batch of images.\n ' raise NotImplementedError()
Run image detection and annotation for a batch of images.
vision/google/cloud/vision_v1p1beta1/proto/image_annotator_pb2.py
BatchAnnotateImages
maheshgurav/google-cloud-python
2
python
def BatchAnnotateImages(self, request, timeout, metadata=None, with_call=False, protocol_options=None): '\n ' raise NotImplementedError()
def BatchAnnotateImages(self, request, timeout, metadata=None, with_call=False, protocol_options=None): '\n ' raise NotImplementedError()<|docstring|>Run image detection and annotation for a batch of images.<|endoftext|>
0a6bd40143cf35e10584ddbc9dd4dfc514dd7cbb0320dac4de8b715ba26a52e1
def group_policies_gen(flat_policies, config): 'Filter policies using the following steps:\n 1. Apply prioritization among the policies that are sharing the same policy type and resource type\n 2. Remove redundant policies that may applicable across different types of resource\n 3. Filter policies based on type and return\n :param flat_policies: list of flat policies\n :return: Filtered policies\n ' filtered_policies = defaultdict(list) policy_name = [] policies = [x for x in flat_policies if x[list(x.keys())[0]]['type']] priority = config.get('policy_info', {}).get('prioritization_attributes', {}) aggregated_policies = dict() for plc in policies: attrs = [dot_notation(plc[list(plc.keys())[0]], dot_path) for key in priority.keys() for dot_path in priority[key]] attrs_list = [(x if isinstance(x, list) else [x]) for x in attrs] attributes = [(list_flatten(x) if isinstance(x, list) else x) for x in attrs_list] for y in itertools.product(*attributes): aggregated_policies.setdefault(y, []) aggregated_policies[y].append(plc) for key in aggregated_policies.keys(): prioritized_policy = aggregated_policies[key][0] if (list(prioritized_policy.keys())[0] not in policy_name): filtered_policies[prioritized_policy[list(prioritized_policy.keys())[0]]['type']].append(prioritized_policy) policy_name.append(list(prioritized_policy.keys())[0]) return filtered_policies
Filter policies using the following steps: 1. Apply prioritization among the policies that are sharing the same policy type and resource type 2. Remove redundant policies that may applicable across different types of resource 3. Filter policies based on type and return :param flat_policies: list of flat policies :return: Filtered policies
osdf/adapters/policy/utils.py
group_policies_gen
onap/optf-osdf
3
python
def group_policies_gen(flat_policies, config): 'Filter policies using the following steps:\n 1. Apply prioritization among the policies that are sharing the same policy type and resource type\n 2. Remove redundant policies that may applicable across different types of resource\n 3. Filter policies based on type and return\n :param flat_policies: list of flat policies\n :return: Filtered policies\n ' filtered_policies = defaultdict(list) policy_name = [] policies = [x for x in flat_policies if x[list(x.keys())[0]]['type']] priority = config.get('policy_info', {}).get('prioritization_attributes', {}) aggregated_policies = dict() for plc in policies: attrs = [dot_notation(plc[list(plc.keys())[0]], dot_path) for key in priority.keys() for dot_path in priority[key]] attrs_list = [(x if isinstance(x, list) else [x]) for x in attrs] attributes = [(list_flatten(x) if isinstance(x, list) else x) for x in attrs_list] for y in itertools.product(*attributes): aggregated_policies.setdefault(y, []) aggregated_policies[y].append(plc) for key in aggregated_policies.keys(): prioritized_policy = aggregated_policies[key][0] if (list(prioritized_policy.keys())[0] not in policy_name): filtered_policies[prioritized_policy[list(prioritized_policy.keys())[0]]['type']].append(prioritized_policy) policy_name.append(list(prioritized_policy.keys())[0]) return filtered_policies
def group_policies_gen(flat_policies, config): 'Filter policies using the following steps:\n 1. Apply prioritization among the policies that are sharing the same policy type and resource type\n 2. Remove redundant policies that may applicable across different types of resource\n 3. Filter policies based on type and return\n :param flat_policies: list of flat policies\n :return: Filtered policies\n ' filtered_policies = defaultdict(list) policy_name = [] policies = [x for x in flat_policies if x[list(x.keys())[0]]['type']] priority = config.get('policy_info', {}).get('prioritization_attributes', {}) aggregated_policies = dict() for plc in policies: attrs = [dot_notation(plc[list(plc.keys())[0]], dot_path) for key in priority.keys() for dot_path in priority[key]] attrs_list = [(x if isinstance(x, list) else [x]) for x in attrs] attributes = [(list_flatten(x) if isinstance(x, list) else x) for x in attrs_list] for y in itertools.product(*attributes): aggregated_policies.setdefault(y, []) aggregated_policies[y].append(plc) for key in aggregated_policies.keys(): prioritized_policy = aggregated_policies[key][0] if (list(prioritized_policy.keys())[0] not in policy_name): filtered_policies[prioritized_policy[list(prioritized_policy.keys())[0]]['type']].append(prioritized_policy) policy_name.append(list(prioritized_policy.keys())[0]) return filtered_policies<|docstring|>Filter policies using the following steps: 1. Apply prioritization among the policies that are sharing the same policy type and resource type 2. Remove redundant policies that may applicable across different types of resource 3. Filter policies based on type and return :param flat_policies: list of flat policies :return: Filtered policies<|endoftext|>
062d19282643ea28b229b8ee01f69b653f3f0df8a5fa9f5a87da2ab7e4b90f85
def policy_name_as_regex(policy_name): 'Get the correct policy name as a regex\n (e.g. OOF_HAS_vCPE.cloudAttributePolicy ends up in policy as OOF_HAS_vCPE.Config_MS_cloudAttributePolicy.1.xml\n So, for now, we query it as OOF_HAS_vCPE..*aicAttributePolicy.*)\n :param policy_name: Example: OOF_HAS_vCPE.aicAttributePolicy\n :return: regexp for policy: Example: OOF_HAS_vCPE..*aicAttributePolicy.*\n ' p = policy_name.partition('.') return ((((p[0] + p[1]) + '.*') + p[2]) + '.*')
Get the correct policy name as a regex (e.g. OOF_HAS_vCPE.cloudAttributePolicy ends up in policy as OOF_HAS_vCPE.Config_MS_cloudAttributePolicy.1.xml So, for now, we query it as OOF_HAS_vCPE..*aicAttributePolicy.*) :param policy_name: Example: OOF_HAS_vCPE.aicAttributePolicy :return: regexp for policy: Example: OOF_HAS_vCPE..*aicAttributePolicy.*
osdf/adapters/policy/utils.py
policy_name_as_regex
onap/optf-osdf
3
python
def policy_name_as_regex(policy_name): 'Get the correct policy name as a regex\n (e.g. OOF_HAS_vCPE.cloudAttributePolicy ends up in policy as OOF_HAS_vCPE.Config_MS_cloudAttributePolicy.1.xml\n So, for now, we query it as OOF_HAS_vCPE..*aicAttributePolicy.*)\n :param policy_name: Example: OOF_HAS_vCPE.aicAttributePolicy\n :return: regexp for policy: Example: OOF_HAS_vCPE..*aicAttributePolicy.*\n ' p = policy_name.partition('.') return ((((p[0] + p[1]) + '.*') + p[2]) + '.*')
def policy_name_as_regex(policy_name): 'Get the correct policy name as a regex\n (e.g. OOF_HAS_vCPE.cloudAttributePolicy ends up in policy as OOF_HAS_vCPE.Config_MS_cloudAttributePolicy.1.xml\n So, for now, we query it as OOF_HAS_vCPE..*aicAttributePolicy.*)\n :param policy_name: Example: OOF_HAS_vCPE.aicAttributePolicy\n :return: regexp for policy: Example: OOF_HAS_vCPE..*aicAttributePolicy.*\n ' p = policy_name.partition('.') return ((((p[0] + p[1]) + '.*') + p[2]) + '.*')<|docstring|>Get the correct policy name as a regex (e.g. OOF_HAS_vCPE.cloudAttributePolicy ends up in policy as OOF_HAS_vCPE.Config_MS_cloudAttributePolicy.1.xml So, for now, we query it as OOF_HAS_vCPE..*aicAttributePolicy.*) :param policy_name: Example: OOF_HAS_vCPE.aicAttributePolicy :return: regexp for policy: Example: OOF_HAS_vCPE..*aicAttributePolicy.*<|endoftext|>
bdf5bed08bce51cf67b9e5afdadec72394e895e47f85cf2789da6ec905b351bd
def retrieve_node(req_json, reference): '\n Get the child node(s) from the dot-notation [reference] and parent [req_json].\n For placement and other requests, there are encoded JSONs inside the request or policy,\n so we need to expand it and then do a search over the parent plus expanded JSON.\n ' req_json_copy = copy.deepcopy(req_json) info = dot_notation(req_json_copy, reference) return (list_flatten(info) if isinstance(info, list) else info)
Get the child node(s) from the dot-notation [reference] and parent [req_json]. For placement and other requests, there are encoded JSONs inside the request or policy, so we need to expand it and then do a search over the parent plus expanded JSON.
osdf/adapters/policy/utils.py
retrieve_node
onap/optf-osdf
3
python
def retrieve_node(req_json, reference): '\n Get the child node(s) from the dot-notation [reference] and parent [req_json].\n For placement and other requests, there are encoded JSONs inside the request or policy,\n so we need to expand it and then do a search over the parent plus expanded JSON.\n ' req_json_copy = copy.deepcopy(req_json) info = dot_notation(req_json_copy, reference) return (list_flatten(info) if isinstance(info, list) else info)
def retrieve_node(req_json, reference): '\n Get the child node(s) from the dot-notation [reference] and parent [req_json].\n For placement and other requests, there are encoded JSONs inside the request or policy,\n so we need to expand it and then do a search over the parent plus expanded JSON.\n ' req_json_copy = copy.deepcopy(req_json) info = dot_notation(req_json_copy, reference) return (list_flatten(info) if isinstance(info, list) else info)<|docstring|>Get the child node(s) from the dot-notation [reference] and parent [req_json]. For placement and other requests, there are encoded JSONs inside the request or policy, so we need to expand it and then do a search over the parent plus expanded JSON.<|endoftext|>
452e00bf3fad0eed21edb9818f1d1abb74fd449c0b15ae7f4948e630fca94431
def reroot(root: expression.Expression, source_path: path.Path) -> expression.Expression: 'Reroot to a new path, maintaining a input proto index.\n\n Similar to root.get_descendant_or_error(source_path): however, this\n method retains the ability to get a map to the original index.\n\n Args:\n root: the original root.\n source_path: the path to the new root.\n\n Returns:\n the new root.\n ' new_root = root for step in source_path.field_list: new_root = _RerootExpression(new_root, step) return new_root
Reroot to a new path, maintaining a input proto index. Similar to root.get_descendant_or_error(source_path): however, this method retains the ability to get a map to the original index. Args: root: the original root. source_path: the path to the new root. Returns: the new root.
struct2tensor/expression_impl/reroot.py
reroot
rtg0795/struct2tensor
30
python
def reroot(root: expression.Expression, source_path: path.Path) -> expression.Expression: 'Reroot to a new path, maintaining a input proto index.\n\n Similar to root.get_descendant_or_error(source_path): however, this\n method retains the ability to get a map to the original index.\n\n Args:\n root: the original root.\n source_path: the path to the new root.\n\n Returns:\n the new root.\n ' new_root = root for step in source_path.field_list: new_root = _RerootExpression(new_root, step) return new_root
def reroot(root: expression.Expression, source_path: path.Path) -> expression.Expression: 'Reroot to a new path, maintaining a input proto index.\n\n Similar to root.get_descendant_or_error(source_path): however, this\n method retains the ability to get a map to the original index.\n\n Args:\n root: the original root.\n source_path: the path to the new root.\n\n Returns:\n the new root.\n ' new_root = root for step in source_path.field_list: new_root = _RerootExpression(new_root, step) return new_root<|docstring|>Reroot to a new path, maintaining a input proto index. Similar to root.get_descendant_or_error(source_path): however, this method retains the ability to get a map to the original index. Args: root: the original root. source_path: the path to the new root. Returns: the new root.<|endoftext|>
60cc06c617833833ea0b4eb9eb5ed3abfaf66e6fe3d72959027696478e3cc3fb
def __init__(self, root: expression.Expression): 'Constructor for proto index expression.\n\n Args:\n root: an expression that must return a RootNodeTensor.\n ' super().__init__(is_repeated=False, my_type=tf.int64) self._root = root
Constructor for proto index expression. Args: root: an expression that must return a RootNodeTensor.
struct2tensor/expression_impl/reroot.py
__init__
rtg0795/struct2tensor
30
python
def __init__(self, root: expression.Expression): 'Constructor for proto index expression.\n\n Args:\n root: an expression that must return a RootNodeTensor.\n ' super().__init__(is_repeated=False, my_type=tf.int64) self._root = root
def __init__(self, root: expression.Expression): 'Constructor for proto index expression.\n\n Args:\n root: an expression that must return a RootNodeTensor.\n ' super().__init__(is_repeated=False, my_type=tf.int64) self._root = root<|docstring|>Constructor for proto index expression. Args: root: an expression that must return a RootNodeTensor.<|endoftext|>
ffa937f5db47b155553aeaea89fc591426c962d98036f068aeac9dd960177503
def _prediction_loop(self, dataloader: DataLoader, description: str, task_name: str, mode: str, prediction_loss_only: Optional[bool]=None) -> PredictionOutput: '\n Prediction/evaluation loop, shared by `evaluate()` and `predict()`.\n Works both with or without labels.\n ' prediction_loss_only = (prediction_loss_only if (prediction_loss_only is not None) else self.prediction_loss_only) model = self.model if (self.args.n_gpu > 1): model = torch.nn.DataParallel(model) else: model = self.model batch_size = dataloader.batch_size logger.info('***** Running %s *****', description) logger.info(' Num examples = %d', self.num_examples(dataloader)) logger.info(' Batch size = %d', batch_size) eval_losses: List[float] = [] preds: torch.Tensor = None label_ids: torch.Tensor = None model.eval() if is_tpu_available(): dataloader = pl.ParallelLoader(dataloader, [self.args.device]).per_device_loader(self.args.device) for inputs in tqdm(dataloader, desc=description): has_labels = any(((inputs.get(k) is not None) for k in ['labels', 'lm_labels', 'masked_lm_labels'])) for (k, v) in inputs.items(): inputs[k] = v.to(self.args.device) with torch.no_grad(): outputs = model(**inputs) if has_labels: (step_eval_loss, logits) = outputs[:2] eval_losses += [step_eval_loss.mean().item()] else: logits = outputs[0] if (not prediction_loss_only): if (preds is None): preds = logits.detach() else: preds = torch.cat((preds, logits.detach()), dim=0) if (inputs.get('labels') is not None): if (label_ids is None): label_ids = inputs['labels'].detach() else: label_ids = torch.cat((label_ids, inputs['labels'].detach()), dim=0) if (self.args.local_rank != (- 1)): if (preds is not None): preds = self.distributed_concat(preds, num_total_examples=self.num_examples(dataloader)) if (label_ids is not None): label_ids = self.distributed_concat(label_ids, num_total_examples=self.num_examples(dataloader)) elif is_tpu_available(): if (preds is not None): preds = xm.mesh_reduce('eval_preds', preds, torch.cat) if (label_ids is not None): label_ids = xm.mesh_reduce('eval_label_ids', label_ids, torch.cat) if (preds is not None): preds = preds.cpu().numpy() if (label_ids is not None): label_ids = label_ids.cpu().numpy() if ((self.compute_metrics is not None) and (preds is not None) and (label_ids is not None)): metrics = self.compute_metrics(EvalPrediction(predictions=preds, label_ids=label_ids)) else: metrics = {} if (len(eval_losses) > 0): metrics[f'{task_name}_{mode}_loss'] = np.mean(eval_losses) for key in list(metrics.keys()): if (not key.startswith(f'{task_name}_{mode}_')): metrics[f'{task_name}_{mode}_{key}'] = metrics.pop(key) return PredictionOutput(predictions=preds, label_ids=label_ids, metrics=metrics)
Prediction/evaluation loop, shared by `evaluate()` and `predict()`. Works both with or without labels.
src/mtl_trainer.py
_prediction_loop
Daupler/CA-MTL
0
python
def _prediction_loop(self, dataloader: DataLoader, description: str, task_name: str, mode: str, prediction_loss_only: Optional[bool]=None) -> PredictionOutput: '\n Prediction/evaluation loop, shared by `evaluate()` and `predict()`.\n Works both with or without labels.\n ' prediction_loss_only = (prediction_loss_only if (prediction_loss_only is not None) else self.prediction_loss_only) model = self.model if (self.args.n_gpu > 1): model = torch.nn.DataParallel(model) else: model = self.model batch_size = dataloader.batch_size logger.info('***** Running %s *****', description) logger.info(' Num examples = %d', self.num_examples(dataloader)) logger.info(' Batch size = %d', batch_size) eval_losses: List[float] = [] preds: torch.Tensor = None label_ids: torch.Tensor = None model.eval() if is_tpu_available(): dataloader = pl.ParallelLoader(dataloader, [self.args.device]).per_device_loader(self.args.device) for inputs in tqdm(dataloader, desc=description): has_labels = any(((inputs.get(k) is not None) for k in ['labels', 'lm_labels', 'masked_lm_labels'])) for (k, v) in inputs.items(): inputs[k] = v.to(self.args.device) with torch.no_grad(): outputs = model(**inputs) if has_labels: (step_eval_loss, logits) = outputs[:2] eval_losses += [step_eval_loss.mean().item()] else: logits = outputs[0] if (not prediction_loss_only): if (preds is None): preds = logits.detach() else: preds = torch.cat((preds, logits.detach()), dim=0) if (inputs.get('labels') is not None): if (label_ids is None): label_ids = inputs['labels'].detach() else: label_ids = torch.cat((label_ids, inputs['labels'].detach()), dim=0) if (self.args.local_rank != (- 1)): if (preds is not None): preds = self.distributed_concat(preds, num_total_examples=self.num_examples(dataloader)) if (label_ids is not None): label_ids = self.distributed_concat(label_ids, num_total_examples=self.num_examples(dataloader)) elif is_tpu_available(): if (preds is not None): preds = xm.mesh_reduce('eval_preds', preds, torch.cat) if (label_ids is not None): label_ids = xm.mesh_reduce('eval_label_ids', label_ids, torch.cat) if (preds is not None): preds = preds.cpu().numpy() if (label_ids is not None): label_ids = label_ids.cpu().numpy() if ((self.compute_metrics is not None) and (preds is not None) and (label_ids is not None)): metrics = self.compute_metrics(EvalPrediction(predictions=preds, label_ids=label_ids)) else: metrics = {} if (len(eval_losses) > 0): metrics[f'{task_name}_{mode}_loss'] = np.mean(eval_losses) for key in list(metrics.keys()): if (not key.startswith(f'{task_name}_{mode}_')): metrics[f'{task_name}_{mode}_{key}'] = metrics.pop(key) return PredictionOutput(predictions=preds, label_ids=label_ids, metrics=metrics)
def _prediction_loop(self, dataloader: DataLoader, description: str, task_name: str, mode: str, prediction_loss_only: Optional[bool]=None) -> PredictionOutput: '\n Prediction/evaluation loop, shared by `evaluate()` and `predict()`.\n Works both with or without labels.\n ' prediction_loss_only = (prediction_loss_only if (prediction_loss_only is not None) else self.prediction_loss_only) model = self.model if (self.args.n_gpu > 1): model = torch.nn.DataParallel(model) else: model = self.model batch_size = dataloader.batch_size logger.info('***** Running %s *****', description) logger.info(' Num examples = %d', self.num_examples(dataloader)) logger.info(' Batch size = %d', batch_size) eval_losses: List[float] = [] preds: torch.Tensor = None label_ids: torch.Tensor = None model.eval() if is_tpu_available(): dataloader = pl.ParallelLoader(dataloader, [self.args.device]).per_device_loader(self.args.device) for inputs in tqdm(dataloader, desc=description): has_labels = any(((inputs.get(k) is not None) for k in ['labels', 'lm_labels', 'masked_lm_labels'])) for (k, v) in inputs.items(): inputs[k] = v.to(self.args.device) with torch.no_grad(): outputs = model(**inputs) if has_labels: (step_eval_loss, logits) = outputs[:2] eval_losses += [step_eval_loss.mean().item()] else: logits = outputs[0] if (not prediction_loss_only): if (preds is None): preds = logits.detach() else: preds = torch.cat((preds, logits.detach()), dim=0) if (inputs.get('labels') is not None): if (label_ids is None): label_ids = inputs['labels'].detach() else: label_ids = torch.cat((label_ids, inputs['labels'].detach()), dim=0) if (self.args.local_rank != (- 1)): if (preds is not None): preds = self.distributed_concat(preds, num_total_examples=self.num_examples(dataloader)) if (label_ids is not None): label_ids = self.distributed_concat(label_ids, num_total_examples=self.num_examples(dataloader)) elif is_tpu_available(): if (preds is not None): preds = xm.mesh_reduce('eval_preds', preds, torch.cat) if (label_ids is not None): label_ids = xm.mesh_reduce('eval_label_ids', label_ids, torch.cat) if (preds is not None): preds = preds.cpu().numpy() if (label_ids is not None): label_ids = label_ids.cpu().numpy() if ((self.compute_metrics is not None) and (preds is not None) and (label_ids is not None)): metrics = self.compute_metrics(EvalPrediction(predictions=preds, label_ids=label_ids)) else: metrics = {} if (len(eval_losses) > 0): metrics[f'{task_name}_{mode}_loss'] = np.mean(eval_losses) for key in list(metrics.keys()): if (not key.startswith(f'{task_name}_{mode}_')): metrics[f'{task_name}_{mode}_{key}'] = metrics.pop(key) return PredictionOutput(predictions=preds, label_ids=label_ids, metrics=metrics)<|docstring|>Prediction/evaluation loop, shared by `evaluate()` and `predict()`. Works both with or without labels.<|endoftext|>
8d6780803731c1dfc1d2514dceff663cab2c40b380de5fe317f37d08577f0374
def fold_split(self, random_seed=None): '\n Splitting the folds.\n\n Args:\n random_seed: Random seed for reproducibility\n\n Returns:\n tensor containing indices for folds, where dim=0 is the fold number\n\n ' if (random_seed is not None): torch.manual_seed(random_seed) fold_idx = torch.randperm(self.dataset.__len__()) fold_idx = fold_idx[:self.folded_size].view((- 1), self.fold_size) return fold_idx
Splitting the folds. Args: random_seed: Random seed for reproducibility Returns: tensor containing indices for folds, where dim=0 is the fold number
pymatch/utils/KFold.py
fold_split
raharth/PyMatch
10
python
def fold_split(self, random_seed=None): '\n Splitting the folds.\n\n Args:\n random_seed: Random seed for reproducibility\n\n Returns:\n tensor containing indices for folds, where dim=0 is the fold number\n\n ' if (random_seed is not None): torch.manual_seed(random_seed) fold_idx = torch.randperm(self.dataset.__len__()) fold_idx = fold_idx[:self.folded_size].view((- 1), self.fold_size) return fold_idx
def fold_split(self, random_seed=None): '\n Splitting the folds.\n\n Args:\n random_seed: Random seed for reproducibility\n\n Returns:\n tensor containing indices for folds, where dim=0 is the fold number\n\n ' if (random_seed is not None): torch.manual_seed(random_seed) fold_idx = torch.randperm(self.dataset.__len__()) fold_idx = fold_idx[:self.folded_size].view((- 1), self.fold_size) return fold_idx<|docstring|>Splitting the folds. Args: random_seed: Random seed for reproducibility Returns: tensor containing indices for folds, where dim=0 is the fold number<|endoftext|>
7cd01ceaeeec303ca22d300b40f1d155861871c9b36368f9fb7c58bb4f4d5d86
def fold_loaders(self, fold=(- 1)): '\n Loading a specific fold as train and test data loader. If no fold number is provided it returns the next fold. It returns a randomly sampled subset of\n the original data set.\n\n Args:\n fold: fold number to return\n\n Returns:\n (train data loader, test data loader)\n\n ' if (fold == (- 1)): fold = self.fold test_fold_idx = self.fold_idx[fold] train_fold_idx = self.fold_idx[[i for i in range(self.n_fold) if (i != fold)]].view((- 1)) train_loader = torch.utils.data.DataLoader(self.dataset, batch_size=self.batch_size, num_workers=self.num_workers, pin_memory=self.pin_memory, sampler=torch.utils.data.SubsetRandomSampler(train_fold_idx)) test_loader = torch.utils.data.DataLoader(self.dataset, batch_size=self.batch_size, num_workers=self.num_workers, pin_memory=self.pin_memory, sampler=torch.utils.data.SubsetRandomSampler(test_fold_idx)) self.fold = ((self.fold + 1) % self.n_fold) return (train_loader, test_loader)
Loading a specific fold as train and test data loader. If no fold number is provided it returns the next fold. It returns a randomly sampled subset of the original data set. Args: fold: fold number to return Returns: (train data loader, test data loader)
pymatch/utils/KFold.py
fold_loaders
raharth/PyMatch
10
python
def fold_loaders(self, fold=(- 1)): '\n Loading a specific fold as train and test data loader. If no fold number is provided it returns the next fold. It returns a randomly sampled subset of\n the original data set.\n\n Args:\n fold: fold number to return\n\n Returns:\n (train data loader, test data loader)\n\n ' if (fold == (- 1)): fold = self.fold test_fold_idx = self.fold_idx[fold] train_fold_idx = self.fold_idx[[i for i in range(self.n_fold) if (i != fold)]].view((- 1)) train_loader = torch.utils.data.DataLoader(self.dataset, batch_size=self.batch_size, num_workers=self.num_workers, pin_memory=self.pin_memory, sampler=torch.utils.data.SubsetRandomSampler(train_fold_idx)) test_loader = torch.utils.data.DataLoader(self.dataset, batch_size=self.batch_size, num_workers=self.num_workers, pin_memory=self.pin_memory, sampler=torch.utils.data.SubsetRandomSampler(test_fold_idx)) self.fold = ((self.fold + 1) % self.n_fold) return (train_loader, test_loader)
def fold_loaders(self, fold=(- 1)): '\n Loading a specific fold as train and test data loader. If no fold number is provided it returns the next fold. It returns a randomly sampled subset of\n the original data set.\n\n Args:\n fold: fold number to return\n\n Returns:\n (train data loader, test data loader)\n\n ' if (fold == (- 1)): fold = self.fold test_fold_idx = self.fold_idx[fold] train_fold_idx = self.fold_idx[[i for i in range(self.n_fold) if (i != fold)]].view((- 1)) train_loader = torch.utils.data.DataLoader(self.dataset, batch_size=self.batch_size, num_workers=self.num_workers, pin_memory=self.pin_memory, sampler=torch.utils.data.SubsetRandomSampler(train_fold_idx)) test_loader = torch.utils.data.DataLoader(self.dataset, batch_size=self.batch_size, num_workers=self.num_workers, pin_memory=self.pin_memory, sampler=torch.utils.data.SubsetRandomSampler(test_fold_idx)) self.fold = ((self.fold + 1) % self.n_fold) return (train_loader, test_loader)<|docstring|>Loading a specific fold as train and test data loader. If no fold number is provided it returns the next fold. It returns a randomly sampled subset of the original data set. Args: fold: fold number to return Returns: (train data loader, test data loader)<|endoftext|>
2f860cad73f0910b2ad7d19c85cb15a4a0cfc03df20516a5404f1555108798fe
def __init__(self, mnemonic, numberOfChannels=4, numberOfRois=32, pv=None, dxpType='mca', responseTimeout=15, output='out'): ' Constructor\n responseTimeout : how much time to wait dxp answer\n ' super().__init__(mnemonic, NUMPOINTS, output, dxpType) self.acquiring = False self.rois = numberOfRois
Constructor responseTimeout : how much time to wait dxp answer
py4syn/epics/DxpFakeClass.py
__init__
gabrielpreviato/py4syn
12
python
def __init__(self, mnemonic, numberOfChannels=4, numberOfRois=32, pv=None, dxpType='mca', responseTimeout=15, output='out'): ' Constructor\n responseTimeout : how much time to wait dxp answer\n ' super().__init__(mnemonic, NUMPOINTS, output, dxpType) self.acquiring = False self.rois = numberOfRois
def __init__(self, mnemonic, numberOfChannels=4, numberOfRois=32, pv=None, dxpType='mca', responseTimeout=15, output='out'): ' Constructor\n responseTimeout : how much time to wait dxp answer\n ' super().__init__(mnemonic, NUMPOINTS, output, dxpType) self.acquiring = False self.rois = numberOfRois<|docstring|>Constructor responseTimeout : how much time to wait dxp answer<|endoftext|>
36079239ded266b6ee2793a61ddf976dfa3c42a7d9c03f900c2168c48f14f188
def statusChange(self, value, **kw): '\n Helper callback used to wait for the end of the acquisition.\n ' pass
Helper callback used to wait for the end of the acquisition.
py4syn/epics/DxpFakeClass.py
statusChange
gabrielpreviato/py4syn
12
python
def statusChange(self, value, **kw): '\n \n ' pass
def statusChange(self, value, **kw): '\n \n ' pass<|docstring|>Helper callback used to wait for the end of the acquisition.<|endoftext|>
33e6729f22113aa0c5351c0bb328a1d685eb81c3ac13305e250dbd84ef44cfe0
def setCountTime(self, time): '\n Method to set the count time of a scaler device.\n\n Parameters\n ----------\n time : `float`\n Count time to set to scaler device .\n\n Returns\n -------\n out : None\n ' pass
Method to set the count time of a scaler device. Parameters ---------- time : `float` Count time to set to scaler device . Returns ------- out : None
py4syn/epics/DxpFakeClass.py
setCountTime
gabrielpreviato/py4syn
12
python
def setCountTime(self, time): '\n Method to set the count time of a scaler device.\n\n Parameters\n ----------\n time : `float`\n Count time to set to scaler device .\n\n Returns\n -------\n out : None\n ' pass
def setCountTime(self, time): '\n Method to set the count time of a scaler device.\n\n Parameters\n ----------\n time : `float`\n Count time to set to scaler device .\n\n Returns\n -------\n out : None\n ' pass<|docstring|>Method to set the count time of a scaler device. Parameters ---------- time : `float` Count time to set to scaler device . Returns ------- out : None<|endoftext|>
213bfc08499a961ce84bf0fb42a6001aea6abbebbefa7052ac2d92e72a80fc7c
def getValueChannel(self, **kwargs): 'Return intensity\n channel is on format mcaC.Rr, where C is the channel and\n r is the ROI' channel = kwargs['channel'] c = (int(channel[CHANNELPOSITION]) - 1) if (len(channel) > ROIPOSITION): return np.random.rand() else: self.saveSpectrum(c, **kwargs) return 1.0
Return intensity channel is on format mcaC.Rr, where C is the channel and r is the ROI
py4syn/epics/DxpFakeClass.py
getValueChannel
gabrielpreviato/py4syn
12
python
def getValueChannel(self, **kwargs): 'Return intensity\n channel is on format mcaC.Rr, where C is the channel and\n r is the ROI' channel = kwargs['channel'] c = (int(channel[CHANNELPOSITION]) - 1) if (len(channel) > ROIPOSITION): return np.random.rand() else: self.saveSpectrum(c, **kwargs) return 1.0
def getValueChannel(self, **kwargs): 'Return intensity\n channel is on format mcaC.Rr, where C is the channel and\n r is the ROI' channel = kwargs['channel'] c = (int(channel[CHANNELPOSITION]) - 1) if (len(channel) > ROIPOSITION): return np.random.rand() else: self.saveSpectrum(c, **kwargs) return 1.0<|docstring|>Return intensity channel is on format mcaC.Rr, where C is the channel and r is the ROI<|endoftext|>
ddf7b05da17d94bb255653ea9a9f215ef063a2d7fff292247340fd369b9052c2
def wait(self): '\n Blocks until the acquisition completes.\n ' pass
Blocks until the acquisition completes.
py4syn/epics/DxpFakeClass.py
wait
gabrielpreviato/py4syn
12
python
def wait(self): '\n \n ' pass
def wait(self): '\n \n ' pass<|docstring|>Blocks until the acquisition completes.<|endoftext|>
8042b99321e5532535d4fc32314987b47c4b3a7d820da843c28475be105e5ea5
def canMonitor(self): ' Returns false indcating Dxp cannot be use as a counter monitor' return False
Returns false indcating Dxp cannot be use as a counter monitor
py4syn/epics/DxpFakeClass.py
canMonitor
gabrielpreviato/py4syn
12
python
def canMonitor(self): ' ' return False
def canMonitor(self): ' ' return False<|docstring|>Returns false indcating Dxp cannot be use as a counter monitor<|endoftext|>
248387e3b85e17985a1f7493ff7fef9ae680edf64a694b2c0ee395e1b11c4046
def canStopCount(self): '\n Returns true indicating that Dxp has a stop command.\n ' return True
Returns true indicating that Dxp has a stop command.
py4syn/epics/DxpFakeClass.py
canStopCount
gabrielpreviato/py4syn
12
python
def canStopCount(self): '\n \n ' return True
def canStopCount(self): '\n \n ' return True<|docstring|>Returns true indicating that Dxp has a stop command.<|endoftext|>
1ba1be472c1cc572f99d5733ce86ed30cb277172da5f0ac497592484c8b14596
def getValue(self, **kwargs): '\n This is a dummy method that always returns zero, which is part of the\n :class:`py4syn.epics.ICountable` interface. Dxp does not return\n a value while scanning. Instead, it stores a mca file with result .\n ' if kwargs: return self.getValueChannel(**kwargs) return self.getValueChannel()
This is a dummy method that always returns zero, which is part of the :class:`py4syn.epics.ICountable` interface. Dxp does not return a value while scanning. Instead, it stores a mca file with result .
py4syn/epics/DxpFakeClass.py
getValue
gabrielpreviato/py4syn
12
python
def getValue(self, **kwargs): '\n This is a dummy method that always returns zero, which is part of the\n :class:`py4syn.epics.ICountable` interface. Dxp does not return\n a value while scanning. Instead, it stores a mca file with result .\n ' if kwargs: return self.getValueChannel(**kwargs) return self.getValueChannel()
def getValue(self, **kwargs): '\n This is a dummy method that always returns zero, which is part of the\n :class:`py4syn.epics.ICountable` interface. Dxp does not return\n a value while scanning. Instead, it stores a mca file with result .\n ' if kwargs: return self.getValueChannel(**kwargs) return self.getValueChannel()<|docstring|>This is a dummy method that always returns zero, which is part of the :class:`py4syn.epics.ICountable` interface. Dxp does not return a value while scanning. Instead, it stores a mca file with result .<|endoftext|>
da3b1411332c1f386f993425f20da0f19dec6f29582fd6dffb7394ea9f5a2d10
def setPresetValue(self, channel, val): 'Dummy method' pass
Dummy method
py4syn/epics/DxpFakeClass.py
setPresetValue
gabrielpreviato/py4syn
12
python
def setPresetValue(self, channel, val): pass
def setPresetValue(self, channel, val): pass<|docstring|>Dummy method<|endoftext|>
411bce91c93d90a2d37f544e8465bfad6911eb21ed67377ad521617d65c6d9aa
def startCollectImage(self, rows=0, cols=0): 'Start to collect an image\n When collect an image, the points will be saved on a hdf file' super().startCollectImage('int32', rows, cols)
Start to collect an image When collect an image, the points will be saved on a hdf file
py4syn/epics/DxpFakeClass.py
startCollectImage
gabrielpreviato/py4syn
12
python
def startCollectImage(self, rows=0, cols=0): 'Start to collect an image\n When collect an image, the points will be saved on a hdf file' super().startCollectImage('int32', rows, cols)
def startCollectImage(self, rows=0, cols=0): 'Start to collect an image\n When collect an image, the points will be saved on a hdf file' super().startCollectImage('int32', rows, cols)<|docstring|>Start to collect an image When collect an image, the points will be saved on a hdf file<|endoftext|>
85255cc15290a9c0a64016787afdf19a2db3d83664171abf0328b54548d30123
def format_cfg(cfg): 'Format experiment config for friendly display' def list2str(cfg): for (key, value) in cfg.items(): if isinstance(value, dict): cfg[key] = list2str(value) elif isinstance(value, list): if ((len(value) == 0) or isinstance(value[0], (int, float))): cfg[key] = str(value) else: for (i, item) in enumerate(value): if isinstance(item, dict): value[i] = list2str(item) cfg[key] = value return cfg cfg = list2str(copy.deepcopy(cfg)) json_str = json.dumps(cfg, indent=2, ensure_ascii=False).split('\n') json_str = [re.sub('(\\"|(!\\],$)|\\s$)', '', line) for line in json_str] cfg_str = '\n'.join([line.rstrip() for line in json_str if line.strip()]) return cfg_str
Format experiment config for friendly display
up/utils/general/cfg_helper.py
format_cfg
ModelTC/EOD
196
python
def format_cfg(cfg): def list2str(cfg): for (key, value) in cfg.items(): if isinstance(value, dict): cfg[key] = list2str(value) elif isinstance(value, list): if ((len(value) == 0) or isinstance(value[0], (int, float))): cfg[key] = str(value) else: for (i, item) in enumerate(value): if isinstance(item, dict): value[i] = list2str(item) cfg[key] = value return cfg cfg = list2str(copy.deepcopy(cfg)) json_str = json.dumps(cfg, indent=2, ensure_ascii=False).split('\n') json_str = [re.sub('(\\"|(!\\],$)|\\s$)', , line) for line in json_str] cfg_str = '\n'.join([line.rstrip() for line in json_str if line.strip()]) return cfg_str
def format_cfg(cfg): def list2str(cfg): for (key, value) in cfg.items(): if isinstance(value, dict): cfg[key] = list2str(value) elif isinstance(value, list): if ((len(value) == 0) or isinstance(value[0], (int, float))): cfg[key] = str(value) else: for (i, item) in enumerate(value): if isinstance(item, dict): value[i] = list2str(item) cfg[key] = value return cfg cfg = list2str(copy.deepcopy(cfg)) json_str = json.dumps(cfg, indent=2, ensure_ascii=False).split('\n') json_str = [re.sub('(\\"|(!\\],$)|\\s$)', , line) for line in json_str] cfg_str = '\n'.join([line.rstrip() for line in json_str if line.strip()]) return cfg_str<|docstring|>Format experiment config for friendly display<|endoftext|>
39261bfd99da9ab2c70cb93b4e0a55465e722a2e06ab70e610691e0bb0429610
def try_decode(val): 'bool, int, float, or str' if (val.upper() == 'FALSE'): return False elif (val.upper() == 'TRUE'): return True if val.isdigit(): return int(val) if is_number(val): return float(val) return val
bool, int, float, or str
up/utils/general/cfg_helper.py
try_decode
ModelTC/EOD
196
python
def try_decode(val): if (val.upper() == 'FALSE'): return False elif (val.upper() == 'TRUE'): return True if val.isdigit(): return int(val) if is_number(val): return float(val) return val
def try_decode(val): if (val.upper() == 'FALSE'): return False elif (val.upper() == 'TRUE'): return True if val.isdigit(): return int(val) if is_number(val): return float(val) return val<|docstring|>bool, int, float, or str<|endoftext|>
8bf722e453297e58b39ab6a2f0dc0fdc915a8115512a20eb1d93a126811c079d
def daml_compile(name, srcs, version=_default_project_version, target=None, **kwargs): 'Build a DAML project, with a generated daml.yaml.' if (len(srcs) == 0): fail("daml_compile: Expected `srcs' to be non-empty.") daml_yaml = (name + '.yaml') _daml_configure(name=(name + '.configure'), project_name=name, project_version=version, daml_yaml=daml_yaml, target=target, **kwargs) _daml_build(name=(name + '.build'), daml_yaml=daml_yaml, srcs=srcs, dar_dict={}, dar=(name + '.dar'), **kwargs) _inspect_dar(base=name)
Build a DAML project, with a generated daml.yaml.
rules_daml/daml.bzl
daml_compile
FlashSheridan/daml
0
python
def daml_compile(name, srcs, version=_default_project_version, target=None, **kwargs): if (len(srcs) == 0): fail("daml_compile: Expected `srcs' to be non-empty.") daml_yaml = (name + '.yaml') _daml_configure(name=(name + '.configure'), project_name=name, project_version=version, daml_yaml=daml_yaml, target=target, **kwargs) _daml_build(name=(name + '.build'), daml_yaml=daml_yaml, srcs=srcs, dar_dict={}, dar=(name + '.dar'), **kwargs) _inspect_dar(base=name)
def daml_compile(name, srcs, version=_default_project_version, target=None, **kwargs): if (len(srcs) == 0): fail("daml_compile: Expected `srcs' to be non-empty.") daml_yaml = (name + '.yaml') _daml_configure(name=(name + '.configure'), project_name=name, project_version=version, daml_yaml=daml_yaml, target=target, **kwargs) _daml_build(name=(name + '.build'), daml_yaml=daml_yaml, srcs=srcs, dar_dict={}, dar=(name + '.dar'), **kwargs) _inspect_dar(base=name)<|docstring|>Build a DAML project, with a generated daml.yaml.<|endoftext|>
2c750a17a9a5a68593e45116511157fed3fd4cd2cfd3b0f6c80c382fd8e24032
def daml_compile_with_dalf(name, version=_default_project_version, **kwargs): 'Build a DAML project, with a generated daml.yaml, and extract the main DALF.' daml_compile(name=name, version=version, **kwargs) _extract_main_dalf(name=(name + '.extract'), project_name=name, project_version=version, dar=(name + '.dar'), dalf=(name + '.dalf'))
Build a DAML project, with a generated daml.yaml, and extract the main DALF.
rules_daml/daml.bzl
daml_compile_with_dalf
FlashSheridan/daml
0
python
def daml_compile_with_dalf(name, version=_default_project_version, **kwargs): daml_compile(name=name, version=version, **kwargs) _extract_main_dalf(name=(name + '.extract'), project_name=name, project_version=version, dar=(name + '.dar'), dalf=(name + '.dalf'))
def daml_compile_with_dalf(name, version=_default_project_version, **kwargs): daml_compile(name=name, version=version, **kwargs) _extract_main_dalf(name=(name + '.extract'), project_name=name, project_version=version, dar=(name + '.dar'), dalf=(name + '.dalf'))<|docstring|>Build a DAML project, with a generated daml.yaml, and extract the main DALF.<|endoftext|>
4ac30c42e0b73a1a1db7daf59fba30b14fdedf314d8b232c39bbbfd5e60664f6
def daml_build_test(name, project_dir, daml_config_basename='daml.yaml', daml_subdir_basename='daml', dar_dict={}, **kwargs): 'Build a DAML project and validate the resulting .dar file.' daml_yaml = ((project_dir + '/') + daml_config_basename) srcs = native.glob([(((project_dir + '/') + daml_subdir_basename) + '/**/*.daml')]) _daml_build(name=name, daml_yaml=daml_yaml, srcs=srcs, dar_dict=dar_dict, dar=(name + '.dar'), **kwargs) _daml_validate_test(name=(name + '.test'), dar=(name + '.dar'))
Build a DAML project and validate the resulting .dar file.
rules_daml/daml.bzl
daml_build_test
FlashSheridan/daml
0
python
def daml_build_test(name, project_dir, daml_config_basename='daml.yaml', daml_subdir_basename='daml', dar_dict={}, **kwargs): daml_yaml = ((project_dir + '/') + daml_config_basename) srcs = native.glob([(((project_dir + '/') + daml_subdir_basename) + '/**/*.daml')]) _daml_build(name=name, daml_yaml=daml_yaml, srcs=srcs, dar_dict=dar_dict, dar=(name + '.dar'), **kwargs) _daml_validate_test(name=(name + '.test'), dar=(name + '.dar'))
def daml_build_test(name, project_dir, daml_config_basename='daml.yaml', daml_subdir_basename='daml', dar_dict={}, **kwargs): daml_yaml = ((project_dir + '/') + daml_config_basename) srcs = native.glob([(((project_dir + '/') + daml_subdir_basename) + '/**/*.daml')]) _daml_build(name=name, daml_yaml=daml_yaml, srcs=srcs, dar_dict=dar_dict, dar=(name + '.dar'), **kwargs) _daml_validate_test(name=(name + '.test'), dar=(name + '.dar'))<|docstring|>Build a DAML project and validate the resulting .dar file.<|endoftext|>
8d4eba1abf56ff012c29b05113db4429cc4da91014b0add6e4df1f11c5529f5e
def convert(self): 'Perform the conversion from datapackage to destination format\n ' handle = self._header() logger.debug(self.default_values) for (name, df) in self.package.items(): logger.debug(name) if df.empty: columns = [x['name'] for x in df._metadata['schema']['fields']] df = pd.DataFrame(columns=columns) df = df.reset_index() if ('index' in df.columns): df = df.drop(columns='index') logger.debug('Number of columns: %s, %s', len(df.columns), df.columns) if (len(df.columns) > 1): default_value = self.default_values[name] self._write_parameter(df, name, handle, default=default_value) else: self._write_set(df, name, handle) self._footer(handle) handle.close()
Perform the conversion from datapackage to destination format
src/otoole/preprocess/narrow_to_datafile.py
convert
chrwm/otoole
0
python
def convert(self): '\n ' handle = self._header() logger.debug(self.default_values) for (name, df) in self.package.items(): logger.debug(name) if df.empty: columns = [x['name'] for x in df._metadata['schema']['fields']] df = pd.DataFrame(columns=columns) df = df.reset_index() if ('index' in df.columns): df = df.drop(columns='index') logger.debug('Number of columns: %s, %s', len(df.columns), df.columns) if (len(df.columns) > 1): default_value = self.default_values[name] self._write_parameter(df, name, handle, default=default_value) else: self._write_set(df, name, handle) self._footer(handle) handle.close()
def convert(self): '\n ' handle = self._header() logger.debug(self.default_values) for (name, df) in self.package.items(): logger.debug(name) if df.empty: columns = [x['name'] for x in df._metadata['schema']['fields']] df = pd.DataFrame(columns=columns) df = df.reset_index() if ('index' in df.columns): df = df.drop(columns='index') logger.debug('Number of columns: %s, %s', len(df.columns), df.columns) if (len(df.columns) > 1): default_value = self.default_values[name] self._write_parameter(df, name, handle, default=default_value) else: self._write_set(df, name, handle) self._footer(handle) handle.close()<|docstring|>Perform the conversion from datapackage to destination format<|endoftext|>
c3c29b3e0b0c30c409263fa9f7eb4e961d38eb5c1a971daa72ab759765c10b09
@abstractmethod def _write_parameter(self, df: pd.DataFrame, parameter_name: str, handle: TextIO, default: float) -> pd.DataFrame: 'Write parameter data' raise NotImplementedError()
Write parameter data
src/otoole/preprocess/narrow_to_datafile.py
_write_parameter
chrwm/otoole
0
python
@abstractmethod def _write_parameter(self, df: pd.DataFrame, parameter_name: str, handle: TextIO, default: float) -> pd.DataFrame: raise NotImplementedError()
@abstractmethod def _write_parameter(self, df: pd.DataFrame, parameter_name: str, handle: TextIO, default: float) -> pd.DataFrame: raise NotImplementedError()<|docstring|>Write parameter data<|endoftext|>
3061ea07aa5f3adbd772933102f916ed00101f2135a1ccf35080485944ee38aa
@abstractmethod def _write_set(self, df: pd.DataFrame, set_name, handle: TextIO) -> pd.DataFrame: 'Write set data' raise NotImplementedError()
Write set data
src/otoole/preprocess/narrow_to_datafile.py
_write_set
chrwm/otoole
0
python
@abstractmethod def _write_set(self, df: pd.DataFrame, set_name, handle: TextIO) -> pd.DataFrame: raise NotImplementedError()
@abstractmethod def _write_set(self, df: pd.DataFrame, set_name, handle: TextIO) -> pd.DataFrame: raise NotImplementedError()<|docstring|>Write set data<|endoftext|>
b2c852ce075b62ca80b575bdaf71fdca7bea99b026e9a6062285a8667b9039e1
def _write_parameter(self, df: pd.DataFrame, parameter_name: str, handle: TextIO, default: float): 'Write parameter data to a csv file, omitting data which matches the default value\n\n Arguments\n ---------\n filepath : StreamIO\n df : pandas.DataFrame\n parameter_name : str\n handle: TextIO\n default : int\n ' df = self._form_parameter(df, default) handle.write('param default {} : {} :=\n'.format(default, parameter_name)) df.to_csv(path_or_buf=handle, sep=' ', header=False, index=False) handle.write(';\n')
Write parameter data to a csv file, omitting data which matches the default value Arguments --------- filepath : StreamIO df : pandas.DataFrame parameter_name : str handle: TextIO default : int
src/otoole/preprocess/narrow_to_datafile.py
_write_parameter
chrwm/otoole
0
python
def _write_parameter(self, df: pd.DataFrame, parameter_name: str, handle: TextIO, default: float): 'Write parameter data to a csv file, omitting data which matches the default value\n\n Arguments\n ---------\n filepath : StreamIO\n df : pandas.DataFrame\n parameter_name : str\n handle: TextIO\n default : int\n ' df = self._form_parameter(df, default) handle.write('param default {} : {} :=\n'.format(default, parameter_name)) df.to_csv(path_or_buf=handle, sep=' ', header=False, index=False) handle.write(';\n')
def _write_parameter(self, df: pd.DataFrame, parameter_name: str, handle: TextIO, default: float): 'Write parameter data to a csv file, omitting data which matches the default value\n\n Arguments\n ---------\n filepath : StreamIO\n df : pandas.DataFrame\n parameter_name : str\n handle: TextIO\n default : int\n ' df = self._form_parameter(df, default) handle.write('param default {} : {} :=\n'.format(default, parameter_name)) df.to_csv(path_or_buf=handle, sep=' ', header=False, index=False) handle.write(';\n')<|docstring|>Write parameter data to a csv file, omitting data which matches the default value Arguments --------- filepath : StreamIO df : pandas.DataFrame parameter_name : str handle: TextIO default : int<|endoftext|>
209e49f6336df00933fde9a1756200afb546feecbb8c0def2c66a9f7e5b6f438
def _write_set(self, df: pd.DataFrame, set_name, handle: TextIO): '\n\n Arguments\n ---------\n df : pandas.DataFrame\n set_name : str\n handle: TextIO\n ' handle.write('set {} :=\n'.format(set_name)) df.to_csv(path_or_buf=handle, sep=' ', header=False, index=False) handle.write(';\n')
Arguments --------- df : pandas.DataFrame set_name : str handle: TextIO
src/otoole/preprocess/narrow_to_datafile.py
_write_set
chrwm/otoole
0
python
def _write_set(self, df: pd.DataFrame, set_name, handle: TextIO): '\n\n Arguments\n ---------\n df : pandas.DataFrame\n set_name : str\n handle: TextIO\n ' handle.write('set {} :=\n'.format(set_name)) df.to_csv(path_or_buf=handle, sep=' ', header=False, index=False) handle.write(';\n')
def _write_set(self, df: pd.DataFrame, set_name, handle: TextIO): '\n\n Arguments\n ---------\n df : pandas.DataFrame\n set_name : str\n handle: TextIO\n ' handle.write('set {} :=\n'.format(set_name)) df.to_csv(path_or_buf=handle, sep=' ', header=False, index=False) handle.write(';\n')<|docstring|>Arguments --------- df : pandas.DataFrame set_name : str handle: TextIO<|endoftext|>
bb3ed0469149fa92f7528787c3dd431cc3e882299a2057475ac9c83c81984a8c
def _form_parameter(self, df: pd.DataFrame, parameter_name: str, default: float) -> pd.DataFrame: 'Converts data into wide format\n\n Arguments\n ---------\n df: pd.DataFrame\n parameter_name: str\n default: float\n\n Returns\n -------\n pandas.DataFrame\n ' if (not df.empty): names = df.columns.to_list() if (len(names) > 2): logger.debug('More than 2 columns for {}: {}'.format(parameter_name, names)) rows = names[0:(- 2)] columns = names[(- 2)] values = names[(- 1)] logger.debug('Rows: {}; columns: {}; values: {}', rows, columns, values) logger.debug('dtypes: {}'.format(df.dtypes)) pivot = pd.pivot_table(df, index=rows, columns=columns, values=values, fill_value=default) elif (len(names) == 2): logger.debug('Two columns for {}: {}'.format(parameter_name, names)) values = names[(- 1)] rows = names[0:(- 2)] logger.debug('Rows: {}; values: {}', rows, values) pivot = pd.pivot_table(df, index=rows, values=values, fill_value=default) else: logger.debug('One column for {}: {}'.format(parameter_name, names)) pivot = df.copy() pivot = pivot.reset_index(drop=True) else: logger.debug('Dataframe {} is empty'.format(parameter_name)) pivot = df.copy() return pivot
Converts data into wide format Arguments --------- df: pd.DataFrame parameter_name: str default: float Returns ------- pandas.DataFrame
src/otoole/preprocess/narrow_to_datafile.py
_form_parameter
chrwm/otoole
0
python
def _form_parameter(self, df: pd.DataFrame, parameter_name: str, default: float) -> pd.DataFrame: 'Converts data into wide format\n\n Arguments\n ---------\n df: pd.DataFrame\n parameter_name: str\n default: float\n\n Returns\n -------\n pandas.DataFrame\n ' if (not df.empty): names = df.columns.to_list() if (len(names) > 2): logger.debug('More than 2 columns for {}: {}'.format(parameter_name, names)) rows = names[0:(- 2)] columns = names[(- 2)] values = names[(- 1)] logger.debug('Rows: {}; columns: {}; values: {}', rows, columns, values) logger.debug('dtypes: {}'.format(df.dtypes)) pivot = pd.pivot_table(df, index=rows, columns=columns, values=values, fill_value=default) elif (len(names) == 2): logger.debug('Two columns for {}: {}'.format(parameter_name, names)) values = names[(- 1)] rows = names[0:(- 2)] logger.debug('Rows: {}; values: {}', rows, values) pivot = pd.pivot_table(df, index=rows, values=values, fill_value=default) else: logger.debug('One column for {}: {}'.format(parameter_name, names)) pivot = df.copy() pivot = pivot.reset_index(drop=True) else: logger.debug('Dataframe {} is empty'.format(parameter_name)) pivot = df.copy() return pivot
def _form_parameter(self, df: pd.DataFrame, parameter_name: str, default: float) -> pd.DataFrame: 'Converts data into wide format\n\n Arguments\n ---------\n df: pd.DataFrame\n parameter_name: str\n default: float\n\n Returns\n -------\n pandas.DataFrame\n ' if (not df.empty): names = df.columns.to_list() if (len(names) > 2): logger.debug('More than 2 columns for {}: {}'.format(parameter_name, names)) rows = names[0:(- 2)] columns = names[(- 2)] values = names[(- 1)] logger.debug('Rows: {}; columns: {}; values: {}', rows, columns, values) logger.debug('dtypes: {}'.format(df.dtypes)) pivot = pd.pivot_table(df, index=rows, columns=columns, values=values, fill_value=default) elif (len(names) == 2): logger.debug('Two columns for {}: {}'.format(parameter_name, names)) values = names[(- 1)] rows = names[0:(- 2)] logger.debug('Rows: {}; values: {}', rows, values) pivot = pd.pivot_table(df, index=rows, values=values, fill_value=default) else: logger.debug('One column for {}: {}'.format(parameter_name, names)) pivot = df.copy() pivot = pivot.reset_index(drop=True) else: logger.debug('Dataframe {} is empty'.format(parameter_name)) pivot = df.copy() return pivot<|docstring|>Converts data into wide format Arguments --------- df: pd.DataFrame parameter_name: str default: float Returns ------- pandas.DataFrame<|endoftext|>
6b23e19f6a83498188e5ab1f64c5c4b5d450d30dddea586bbd8158e14d1d4c6f
def q_shift_variants(q_values_prediction, q_values_input, corrected_reflectivity, n_variants, scale=0.001): 'Create ``n_variants`` interpolated reflectivity curve variants with randomly distributed q shifts.' shift = np.random.normal(loc=0, size=n_variants, scale=scale).reshape(n_variants, 1) shifted_qs = (np.tile(q_values_input, (n_variants, 1)) + shift) interpolated_curves = np.zeros((n_variants, len(q_values_prediction))) for i in range(n_variants): interpolated_curves[i] = interp_reflectivity(q_values_prediction, shifted_qs[i], corrected_reflectivity) return (interpolated_curves, shift)
Create ``n_variants`` interpolated reflectivity curve variants with randomly distributed q shifts.
mlreflect/curve_fitter/minimizer.py
q_shift_variants
schreiber-lab/mlreflect
0
python
def q_shift_variants(q_values_prediction, q_values_input, corrected_reflectivity, n_variants, scale=0.001): shift = np.random.normal(loc=0, size=n_variants, scale=scale).reshape(n_variants, 1) shifted_qs = (np.tile(q_values_input, (n_variants, 1)) + shift) interpolated_curves = np.zeros((n_variants, len(q_values_prediction))) for i in range(n_variants): interpolated_curves[i] = interp_reflectivity(q_values_prediction, shifted_qs[i], corrected_reflectivity) return (interpolated_curves, shift)
def q_shift_variants(q_values_prediction, q_values_input, corrected_reflectivity, n_variants, scale=0.001): shift = np.random.normal(loc=0, size=n_variants, scale=scale).reshape(n_variants, 1) shifted_qs = (np.tile(q_values_input, (n_variants, 1)) + shift) interpolated_curves = np.zeros((n_variants, len(q_values_prediction))) for i in range(n_variants): interpolated_curves[i] = interp_reflectivity(q_values_prediction, shifted_qs[i], corrected_reflectivity) return (interpolated_curves, shift)<|docstring|>Create ``n_variants`` interpolated reflectivity curve variants with randomly distributed q shifts.<|endoftext|>
df7f6d0fcb3a08cf6d0128dc26b5f286bae3edf65fdf201c0812370a301e86f1
def curve_scaling_variants(corrected_reflectivity, n_variants, scale=0.1): 'Create ``n_variants`` reflectivity curve variants with randomly distributed scaling factors.' scalings = np.random.normal(loc=1, size=n_variants, scale=scale).reshape(n_variants, 1) scaled_curves = np.zeros((n_variants, len(corrected_reflectivity))) for i in range(n_variants): scaled_curves[i] = (corrected_reflectivity.copy() * scalings[i]) return (scaled_curves, scalings)
Create ``n_variants`` reflectivity curve variants with randomly distributed scaling factors.
mlreflect/curve_fitter/minimizer.py
curve_scaling_variants
schreiber-lab/mlreflect
0
python
def curve_scaling_variants(corrected_reflectivity, n_variants, scale=0.1): scalings = np.random.normal(loc=1, size=n_variants, scale=scale).reshape(n_variants, 1) scaled_curves = np.zeros((n_variants, len(corrected_reflectivity))) for i in range(n_variants): scaled_curves[i] = (corrected_reflectivity.copy() * scalings[i]) return (scaled_curves, scalings)
def curve_scaling_variants(corrected_reflectivity, n_variants, scale=0.1): scalings = np.random.normal(loc=1, size=n_variants, scale=scale).reshape(n_variants, 1) scaled_curves = np.zeros((n_variants, len(corrected_reflectivity))) for i in range(n_variants): scaled_curves[i] = (corrected_reflectivity.copy() * scalings[i]) return (scaled_curves, scalings)<|docstring|>Create ``n_variants`` reflectivity curve variants with randomly distributed scaling factors.<|endoftext|>
7807491f7361509fd05e6fb724a2b07d8ae604f44bb29924de39e09fe4f496f8
def curve_variant_log_mse(curve, variant_curves): 'Calculate the log MSE of a curve and a :class:`ndarray` of curves' errors = (np.log10(curve) - np.log10(variant_curves)) return np.mean((errors ** 2), axis=1)
Calculate the log MSE of a curve and a :class:`ndarray` of curves
mlreflect/curve_fitter/minimizer.py
curve_variant_log_mse
schreiber-lab/mlreflect
0
python
def curve_variant_log_mse(curve, variant_curves): errors = (np.log10(curve) - np.log10(variant_curves)) return np.mean((errors ** 2), axis=1)
def curve_variant_log_mse(curve, variant_curves): errors = (np.log10(curve) - np.log10(variant_curves)) return np.mean((errors ** 2), axis=1)<|docstring|>Calculate the log MSE of a curve and a :class:`ndarray` of curves<|endoftext|>
53458e5131541f826420031210711069c9c8c9fc3eb047547a7c1aa983f71421
def least_log_mean_squares_fit(q_values, data, predicted_labels, sample, output_preprocessor, fraction_bounds=(0.5, 0.5, 0.1)): 'Fits the data with a model curve with ``scipy.optimize.curve_fit`` using ``predicted_labels`` as start values.' prep_labels = output_preprocessor.apply_preprocessing(predicted_labels)[0] start_values = np.array(prep_labels)[0] bounds = ([(val - (bound * abs(val))) for (val, bound) in zip(start_values, fraction_bounds)], [(val + (bound * abs(val))) for (val, bound) in zip(start_values, fraction_bounds)]) fit_result = curve_fit(fitting_model(q_values, sample, output_preprocessor), q_values, np.log10(data), p0=start_values, bounds=bounds) return output_preprocessor.restore_labels(np.atleast_2d(fit_result[0]))
Fits the data with a model curve with ``scipy.optimize.curve_fit`` using ``predicted_labels`` as start values.
mlreflect/curve_fitter/minimizer.py
least_log_mean_squares_fit
schreiber-lab/mlreflect
0
python
def least_log_mean_squares_fit(q_values, data, predicted_labels, sample, output_preprocessor, fraction_bounds=(0.5, 0.5, 0.1)): prep_labels = output_preprocessor.apply_preprocessing(predicted_labels)[0] start_values = np.array(prep_labels)[0] bounds = ([(val - (bound * abs(val))) for (val, bound) in zip(start_values, fraction_bounds)], [(val + (bound * abs(val))) for (val, bound) in zip(start_values, fraction_bounds)]) fit_result = curve_fit(fitting_model(q_values, sample, output_preprocessor), q_values, np.log10(data), p0=start_values, bounds=bounds) return output_preprocessor.restore_labels(np.atleast_2d(fit_result[0]))
def least_log_mean_squares_fit(q_values, data, predicted_labels, sample, output_preprocessor, fraction_bounds=(0.5, 0.5, 0.1)): prep_labels = output_preprocessor.apply_preprocessing(predicted_labels)[0] start_values = np.array(prep_labels)[0] bounds = ([(val - (bound * abs(val))) for (val, bound) in zip(start_values, fraction_bounds)], [(val + (bound * abs(val))) for (val, bound) in zip(start_values, fraction_bounds)]) fit_result = curve_fit(fitting_model(q_values, sample, output_preprocessor), q_values, np.log10(data), p0=start_values, bounds=bounds) return output_preprocessor.restore_labels(np.atleast_2d(fit_result[0]))<|docstring|>Fits the data with a model curve with ``scipy.optimize.curve_fit`` using ``predicted_labels`` as start values.<|endoftext|>
4514244894552e762c7520148fb4cb38b3750fbc5e02b65903f7e0e88aae8088
def log_mse_loss(prep_labels, data, generator, output_preprocessor): 'MSE loss between a reflectivity curve and a model curve generated with the given normalized labels.' restored_labels = output_preprocessor.restore_labels(np.atleast_2d(prep_labels)) model = generator.simulate_reflectivity(restored_labels, progress_bar=False)[0] loss = mean_squared_error(np.log10(data), np.log10(model)) return loss
MSE loss between a reflectivity curve and a model curve generated with the given normalized labels.
mlreflect/curve_fitter/minimizer.py
log_mse_loss
schreiber-lab/mlreflect
0
python
def log_mse_loss(prep_labels, data, generator, output_preprocessor): restored_labels = output_preprocessor.restore_labels(np.atleast_2d(prep_labels)) model = generator.simulate_reflectivity(restored_labels, progress_bar=False)[0] loss = mean_squared_error(np.log10(data), np.log10(model)) return loss
def log_mse_loss(prep_labels, data, generator, output_preprocessor): restored_labels = output_preprocessor.restore_labels(np.atleast_2d(prep_labels)) model = generator.simulate_reflectivity(restored_labels, progress_bar=False)[0] loss = mean_squared_error(np.log10(data), np.log10(model)) return loss<|docstring|>MSE loss between a reflectivity curve and a model curve generated with the given normalized labels.<|endoftext|>
43000381cbc4350cc361004a69cd451365dce77e13f724550b8eb5a697dc2e45
def mean_squared_error(array1, array2): 'Returns element-wise mean squared error between two arrays.' if (len(array1) != len(array2)): raise ValueError(f'array1 and array2 must be of same length ({len(array1)} != {len(array2)})') else: error = (np.asarray(array1) - np.asarray(array2)) return np.mean(np.atleast_2d((error ** 2)), axis=1)
Returns element-wise mean squared error between two arrays.
mlreflect/curve_fitter/minimizer.py
mean_squared_error
schreiber-lab/mlreflect
0
python
def mean_squared_error(array1, array2): if (len(array1) != len(array2)): raise ValueError(f'array1 and array2 must be of same length ({len(array1)} != {len(array2)})') else: error = (np.asarray(array1) - np.asarray(array2)) return np.mean(np.atleast_2d((error ** 2)), axis=1)
def mean_squared_error(array1, array2): if (len(array1) != len(array2)): raise ValueError(f'array1 and array2 must be of same length ({len(array1)} != {len(array2)})') else: error = (np.asarray(array1) - np.asarray(array2)) return np.mean(np.atleast_2d((error ** 2)), axis=1)<|docstring|>Returns element-wise mean squared error between two arrays.<|endoftext|>
2fa46e64284c96ff50f403feb94abfddf7ce7bf1d3e1f814273bce0bb9b75c24
@bp_rack.route('/lists.html', methods=['GET', 'POST']) @login_required @permission_rack_section_search.require(http_exception=403) def lists(): '\n 货架列表\n :return:\n ' template_name = 'rack/lists.html' document_info = DOCUMENT_INFO.copy() document_info['TITLE'] = _('rack lists') form = RackSearchForm(request.form) form.warehouse_id.choices = get_warehouse_choices() search_condition = [(Rack.status_delete == STATUS_DEL_NO)] if (request.method == 'POST'): if (not form.validate_on_submit()): flash(_('Search Failure'), 'danger') if (hasattr(form, 'csrf_token') and getattr(form, 'csrf_token').errors): map((lambda x: flash(x, 'danger')), form.csrf_token.errors) else: if (form.warehouse_id.data != DEFAULT_SEARCH_CHOICES_INT_OPTION): search_condition.append((Rack.warehouse_id == form.warehouse_id.data)) if form.name.data: search_condition.append((Rack.name == form.name.data)) if (form.op.data == OPERATION_EXPORT): if (not permission_rack_section_export.can()): abort(403) column_names = Rack.__table__.columns.keys() query_sets = get_rack_rows(*search_condition) return excel.make_response_from_query_sets(query_sets=query_sets, column_names=column_names, file_type='csv', file_name=('%s.csv' % _('rack lists'))) if (form.op.data == OPERATION_DELETE): if (not permission_rack_section_del.can()): abort(403) rack_ids = request.form.getlist('rack_id') permitted = True for rack_id in rack_ids: if count_inventory(**{'rack_id': rack_id, 'status_delete': STATUS_DEL_NO}): ext_msg = _('Currently In Use') flash(_('Del Failure, %(ext_msg)s', ext_msg=ext_msg), 'danger') permitted = False break if permitted: result_total = True for rack_id in rack_ids: current_time = datetime.utcnow() rack_data = {'status_delete': STATUS_DEL_OK, 'delete_time': current_time, 'update_time': current_time} result = edit_rack(rack_id, rack_data) result_total = (result_total and result) if result_total: flash(_('Del Success'), 'success') else: flash(_('Del Failure'), 'danger') pagination = get_rack_pagination(form.page.data, PER_PAGE_BACKEND, *search_condition) return render_template(template_name, form=form, pagination=pagination, **document_info)
货架列表 :return:
app_backend/views/rack.py
lists
zhanghe06/bearing_project
1
python
@bp_rack.route('/lists.html', methods=['GET', 'POST']) @login_required @permission_rack_section_search.require(http_exception=403) def lists(): '\n 货架列表\n :return:\n ' template_name = 'rack/lists.html' document_info = DOCUMENT_INFO.copy() document_info['TITLE'] = _('rack lists') form = RackSearchForm(request.form) form.warehouse_id.choices = get_warehouse_choices() search_condition = [(Rack.status_delete == STATUS_DEL_NO)] if (request.method == 'POST'): if (not form.validate_on_submit()): flash(_('Search Failure'), 'danger') if (hasattr(form, 'csrf_token') and getattr(form, 'csrf_token').errors): map((lambda x: flash(x, 'danger')), form.csrf_token.errors) else: if (form.warehouse_id.data != DEFAULT_SEARCH_CHOICES_INT_OPTION): search_condition.append((Rack.warehouse_id == form.warehouse_id.data)) if form.name.data: search_condition.append((Rack.name == form.name.data)) if (form.op.data == OPERATION_EXPORT): if (not permission_rack_section_export.can()): abort(403) column_names = Rack.__table__.columns.keys() query_sets = get_rack_rows(*search_condition) return excel.make_response_from_query_sets(query_sets=query_sets, column_names=column_names, file_type='csv', file_name=('%s.csv' % _('rack lists'))) if (form.op.data == OPERATION_DELETE): if (not permission_rack_section_del.can()): abort(403) rack_ids = request.form.getlist('rack_id') permitted = True for rack_id in rack_ids: if count_inventory(**{'rack_id': rack_id, 'status_delete': STATUS_DEL_NO}): ext_msg = _('Currently In Use') flash(_('Del Failure, %(ext_msg)s', ext_msg=ext_msg), 'danger') permitted = False break if permitted: result_total = True for rack_id in rack_ids: current_time = datetime.utcnow() rack_data = {'status_delete': STATUS_DEL_OK, 'delete_time': current_time, 'update_time': current_time} result = edit_rack(rack_id, rack_data) result_total = (result_total and result) if result_total: flash(_('Del Success'), 'success') else: flash(_('Del Failure'), 'danger') pagination = get_rack_pagination(form.page.data, PER_PAGE_BACKEND, *search_condition) return render_template(template_name, form=form, pagination=pagination, **document_info)
@bp_rack.route('/lists.html', methods=['GET', 'POST']) @login_required @permission_rack_section_search.require(http_exception=403) def lists(): '\n 货架列表\n :return:\n ' template_name = 'rack/lists.html' document_info = DOCUMENT_INFO.copy() document_info['TITLE'] = _('rack lists') form = RackSearchForm(request.form) form.warehouse_id.choices = get_warehouse_choices() search_condition = [(Rack.status_delete == STATUS_DEL_NO)] if (request.method == 'POST'): if (not form.validate_on_submit()): flash(_('Search Failure'), 'danger') if (hasattr(form, 'csrf_token') and getattr(form, 'csrf_token').errors): map((lambda x: flash(x, 'danger')), form.csrf_token.errors) else: if (form.warehouse_id.data != DEFAULT_SEARCH_CHOICES_INT_OPTION): search_condition.append((Rack.warehouse_id == form.warehouse_id.data)) if form.name.data: search_condition.append((Rack.name == form.name.data)) if (form.op.data == OPERATION_EXPORT): if (not permission_rack_section_export.can()): abort(403) column_names = Rack.__table__.columns.keys() query_sets = get_rack_rows(*search_condition) return excel.make_response_from_query_sets(query_sets=query_sets, column_names=column_names, file_type='csv', file_name=('%s.csv' % _('rack lists'))) if (form.op.data == OPERATION_DELETE): if (not permission_rack_section_del.can()): abort(403) rack_ids = request.form.getlist('rack_id') permitted = True for rack_id in rack_ids: if count_inventory(**{'rack_id': rack_id, 'status_delete': STATUS_DEL_NO}): ext_msg = _('Currently In Use') flash(_('Del Failure, %(ext_msg)s', ext_msg=ext_msg), 'danger') permitted = False break if permitted: result_total = True for rack_id in rack_ids: current_time = datetime.utcnow() rack_data = {'status_delete': STATUS_DEL_OK, 'delete_time': current_time, 'update_time': current_time} result = edit_rack(rack_id, rack_data) result_total = (result_total and result) if result_total: flash(_('Del Success'), 'success') else: flash(_('Del Failure'), 'danger') pagination = get_rack_pagination(form.page.data, PER_PAGE_BACKEND, *search_condition) return render_template(template_name, form=form, pagination=pagination, **document_info)<|docstring|>货架列表 :return:<|endoftext|>
28b26d883b49c2619e777b051610ddf248e9e2e11d22cc239363ea57e519b4b5
@bp_rack.route('/<int:rack_id>/info.html') @login_required @permission_rack_section_get.require(http_exception=403) def info(rack_id): '\n 货架详情\n :param rack_id:\n :return:\n ' rack_info = get_rack_row_by_id(rack_id) if (not rack_info): abort(404) if (rack_info.status_delete == STATUS_DEL_OK): abort(410) document_info = DOCUMENT_INFO.copy() document_info['TITLE'] = _('rack info') return render_template('rack/info.html', rack_info=rack_info, **document_info)
货架详情 :param rack_id: :return:
app_backend/views/rack.py
info
zhanghe06/bearing_project
1
python
@bp_rack.route('/<int:rack_id>/info.html') @login_required @permission_rack_section_get.require(http_exception=403) def info(rack_id): '\n 货架详情\n :param rack_id:\n :return:\n ' rack_info = get_rack_row_by_id(rack_id) if (not rack_info): abort(404) if (rack_info.status_delete == STATUS_DEL_OK): abort(410) document_info = DOCUMENT_INFO.copy() document_info['TITLE'] = _('rack info') return render_template('rack/info.html', rack_info=rack_info, **document_info)
@bp_rack.route('/<int:rack_id>/info.html') @login_required @permission_rack_section_get.require(http_exception=403) def info(rack_id): '\n 货架详情\n :param rack_id:\n :return:\n ' rack_info = get_rack_row_by_id(rack_id) if (not rack_info): abort(404) if (rack_info.status_delete == STATUS_DEL_OK): abort(410) document_info = DOCUMENT_INFO.copy() document_info['TITLE'] = _('rack info') return render_template('rack/info.html', rack_info=rack_info, **document_info)<|docstring|>货架详情 :param rack_id: :return:<|endoftext|>
c2160a72c585d476d075353509b682c11624229baaca4a3f3c0cd4337fcbc075
@bp_rack.route('/add.html', methods=['GET', 'POST']) @login_required @permission_rack_section_add.require(http_exception=403) def add(): '\n 创建货架\n :return:\n ' template_name = 'rack/add.html' document_info = DOCUMENT_INFO.copy() document_info['TITLE'] = _('rack add') form = RackAddForm(request.form) form.warehouse_id.choices = get_warehouse_choices(option_type='create') if (request.method == 'GET'): return render_template(template_name, form=form, **document_info) if (request.method == 'POST'): if (not form.validate_on_submit()): flash(_('Add Failure'), 'danger') return render_template(template_name, form=form, **document_info) current_time = datetime.utcnow() rack_data = {'warehouse_id': form.warehouse_id.data, 'name': form.name.data, 'create_time': current_time, 'update_time': current_time} result = add_rack(rack_data) if result: flash(_('Add Success'), 'success') return redirect((request.args.get('next') or url_for('rack.lists'))) else: flash(_('Add Failure'), 'danger') return render_template(template_name, form=form, **document_info)
创建货架 :return:
app_backend/views/rack.py
add
zhanghe06/bearing_project
1
python
@bp_rack.route('/add.html', methods=['GET', 'POST']) @login_required @permission_rack_section_add.require(http_exception=403) def add(): '\n 创建货架\n :return:\n ' template_name = 'rack/add.html' document_info = DOCUMENT_INFO.copy() document_info['TITLE'] = _('rack add') form = RackAddForm(request.form) form.warehouse_id.choices = get_warehouse_choices(option_type='create') if (request.method == 'GET'): return render_template(template_name, form=form, **document_info) if (request.method == 'POST'): if (not form.validate_on_submit()): flash(_('Add Failure'), 'danger') return render_template(template_name, form=form, **document_info) current_time = datetime.utcnow() rack_data = {'warehouse_id': form.warehouse_id.data, 'name': form.name.data, 'create_time': current_time, 'update_time': current_time} result = add_rack(rack_data) if result: flash(_('Add Success'), 'success') return redirect((request.args.get('next') or url_for('rack.lists'))) else: flash(_('Add Failure'), 'danger') return render_template(template_name, form=form, **document_info)
@bp_rack.route('/add.html', methods=['GET', 'POST']) @login_required @permission_rack_section_add.require(http_exception=403) def add(): '\n 创建货架\n :return:\n ' template_name = 'rack/add.html' document_info = DOCUMENT_INFO.copy() document_info['TITLE'] = _('rack add') form = RackAddForm(request.form) form.warehouse_id.choices = get_warehouse_choices(option_type='create') if (request.method == 'GET'): return render_template(template_name, form=form, **document_info) if (request.method == 'POST'): if (not form.validate_on_submit()): flash(_('Add Failure'), 'danger') return render_template(template_name, form=form, **document_info) current_time = datetime.utcnow() rack_data = {'warehouse_id': form.warehouse_id.data, 'name': form.name.data, 'create_time': current_time, 'update_time': current_time} result = add_rack(rack_data) if result: flash(_('Add Success'), 'success') return redirect((request.args.get('next') or url_for('rack.lists'))) else: flash(_('Add Failure'), 'danger') return render_template(template_name, form=form, **document_info)<|docstring|>创建货架 :return:<|endoftext|>
3ba5cc860502d45d5c35222e90d257a6916de5604450aba1b3b55d95ce22ce86
@bp_rack.route('/<int:rack_id>/edit.html', methods=['GET', 'POST']) @login_required @permission_rack_section_edit.require(http_exception=403) def edit(rack_id): '\n 货架编辑\n ' rack_info = get_rack_row_by_id(rack_id) if (not rack_info): abort(404) if (rack_info.status_delete == STATUS_DEL_OK): abort(410) template_name = 'rack/edit.html' form = RackEditForm(request.form) form.warehouse_id.choices = get_warehouse_choices(option_type='update') document_info = DOCUMENT_INFO.copy() document_info['TITLE'] = _('rack edit') if (request.method == 'GET'): form.warehouse_id.data = rack_info.warehouse_id form.name.data = rack_info.name return render_template(template_name, rack_id=rack_id, form=form, **document_info) if (request.method == 'POST'): if (not form.validate_on_submit()): flash(_('Edit Failure'), 'danger') return render_template(template_name, rack_id=rack_id, form=form, **document_info) current_time = datetime.utcnow() rack_data = {'warehouse_id': form.warehouse_id.data, 'name': form.name.data, 'update_time': current_time} result = edit_rack(rack_id, rack_data) if result: flash(_('Edit Success'), 'success') return redirect((request.args.get('next') or url_for('rack.lists'))) else: flash(_('Edit Failure'), 'danger') return render_template(template_name, rack_id=rack_id, form=form, **document_info)
货架编辑
app_backend/views/rack.py
edit
zhanghe06/bearing_project
1
python
@bp_rack.route('/<int:rack_id>/edit.html', methods=['GET', 'POST']) @login_required @permission_rack_section_edit.require(http_exception=403) def edit(rack_id): '\n \n ' rack_info = get_rack_row_by_id(rack_id) if (not rack_info): abort(404) if (rack_info.status_delete == STATUS_DEL_OK): abort(410) template_name = 'rack/edit.html' form = RackEditForm(request.form) form.warehouse_id.choices = get_warehouse_choices(option_type='update') document_info = DOCUMENT_INFO.copy() document_info['TITLE'] = _('rack edit') if (request.method == 'GET'): form.warehouse_id.data = rack_info.warehouse_id form.name.data = rack_info.name return render_template(template_name, rack_id=rack_id, form=form, **document_info) if (request.method == 'POST'): if (not form.validate_on_submit()): flash(_('Edit Failure'), 'danger') return render_template(template_name, rack_id=rack_id, form=form, **document_info) current_time = datetime.utcnow() rack_data = {'warehouse_id': form.warehouse_id.data, 'name': form.name.data, 'update_time': current_time} result = edit_rack(rack_id, rack_data) if result: flash(_('Edit Success'), 'success') return redirect((request.args.get('next') or url_for('rack.lists'))) else: flash(_('Edit Failure'), 'danger') return render_template(template_name, rack_id=rack_id, form=form, **document_info)
@bp_rack.route('/<int:rack_id>/edit.html', methods=['GET', 'POST']) @login_required @permission_rack_section_edit.require(http_exception=403) def edit(rack_id): '\n \n ' rack_info = get_rack_row_by_id(rack_id) if (not rack_info): abort(404) if (rack_info.status_delete == STATUS_DEL_OK): abort(410) template_name = 'rack/edit.html' form = RackEditForm(request.form) form.warehouse_id.choices = get_warehouse_choices(option_type='update') document_info = DOCUMENT_INFO.copy() document_info['TITLE'] = _('rack edit') if (request.method == 'GET'): form.warehouse_id.data = rack_info.warehouse_id form.name.data = rack_info.name return render_template(template_name, rack_id=rack_id, form=form, **document_info) if (request.method == 'POST'): if (not form.validate_on_submit()): flash(_('Edit Failure'), 'danger') return render_template(template_name, rack_id=rack_id, form=form, **document_info) current_time = datetime.utcnow() rack_data = {'warehouse_id': form.warehouse_id.data, 'name': form.name.data, 'update_time': current_time} result = edit_rack(rack_id, rack_data) if result: flash(_('Edit Success'), 'success') return redirect((request.args.get('next') or url_for('rack.lists'))) else: flash(_('Edit Failure'), 'danger') return render_template(template_name, rack_id=rack_id, form=form, **document_info)<|docstring|>货架编辑<|endoftext|>
7bf8f0174c53cfc537a98e406ce4e40ca9a5159496160bc1195a3cba22c8877d
@bp_rack.route('/ajax/del', methods=['GET', 'POST']) @login_required def ajax_delete(): '\n 货架删除\n :return:\n ' ajax_success_msg = AJAX_SUCCESS_MSG.copy() ajax_failure_msg = AJAX_FAILURE_MSG.copy() if (not permission_rack_section_del.can()): ext_msg = _('Permission Denied') ajax_failure_msg['msg'] = _('Del Failure, %(ext_msg)s', ext_msg=ext_msg) return jsonify(ajax_failure_msg) if (not ((request.method == 'GET') and request.is_xhr)): ext_msg = _('Method Not Allowed') ajax_failure_msg['msg'] = _('Del Failure, %(ext_msg)s', ext_msg=ext_msg) return jsonify(ajax_failure_msg) rack_id = request.args.get('rack_id', 0, type=int) if (not rack_id): ext_msg = _('ID does not exist') ajax_failure_msg['msg'] = _('Del Failure, %(ext_msg)s', ext_msg=ext_msg) return jsonify(ajax_failure_msg) rack_info = get_rack_row_by_id(rack_id) if (not rack_info): ext_msg = _('ID does not exist') ajax_failure_msg['msg'] = _('Del Failure, %(ext_msg)s', ext_msg=ext_msg) return jsonify(ajax_failure_msg) if (rack_info.status_delete == STATUS_DEL_OK): ext_msg = _('Already deleted') ajax_failure_msg['msg'] = _('Del Failure, %(ext_msg)s', ext_msg=ext_msg) return jsonify(ajax_failure_msg) if count_inventory(**{'rack_id': rack_id, 'status_delete': STATUS_DEL_NO}): ext_msg = _('Currently In Use') ajax_failure_msg['msg'] = _('Del Failure, %(ext_msg)s', ext_msg=ext_msg) return jsonify(ajax_failure_msg) current_time = datetime.utcnow() rack_data = {'status_delete': STATUS_DEL_OK, 'delete_time': current_time, 'update_time': current_time} result = edit_rack(rack_id, rack_data) if result: ajax_success_msg['msg'] = _('Del Success') return jsonify(ajax_success_msg) else: ajax_failure_msg['msg'] = _('Del Failure') return jsonify(ajax_failure_msg)
货架删除 :return:
app_backend/views/rack.py
ajax_delete
zhanghe06/bearing_project
1
python
@bp_rack.route('/ajax/del', methods=['GET', 'POST']) @login_required def ajax_delete(): '\n 货架删除\n :return:\n ' ajax_success_msg = AJAX_SUCCESS_MSG.copy() ajax_failure_msg = AJAX_FAILURE_MSG.copy() if (not permission_rack_section_del.can()): ext_msg = _('Permission Denied') ajax_failure_msg['msg'] = _('Del Failure, %(ext_msg)s', ext_msg=ext_msg) return jsonify(ajax_failure_msg) if (not ((request.method == 'GET') and request.is_xhr)): ext_msg = _('Method Not Allowed') ajax_failure_msg['msg'] = _('Del Failure, %(ext_msg)s', ext_msg=ext_msg) return jsonify(ajax_failure_msg) rack_id = request.args.get('rack_id', 0, type=int) if (not rack_id): ext_msg = _('ID does not exist') ajax_failure_msg['msg'] = _('Del Failure, %(ext_msg)s', ext_msg=ext_msg) return jsonify(ajax_failure_msg) rack_info = get_rack_row_by_id(rack_id) if (not rack_info): ext_msg = _('ID does not exist') ajax_failure_msg['msg'] = _('Del Failure, %(ext_msg)s', ext_msg=ext_msg) return jsonify(ajax_failure_msg) if (rack_info.status_delete == STATUS_DEL_OK): ext_msg = _('Already deleted') ajax_failure_msg['msg'] = _('Del Failure, %(ext_msg)s', ext_msg=ext_msg) return jsonify(ajax_failure_msg) if count_inventory(**{'rack_id': rack_id, 'status_delete': STATUS_DEL_NO}): ext_msg = _('Currently In Use') ajax_failure_msg['msg'] = _('Del Failure, %(ext_msg)s', ext_msg=ext_msg) return jsonify(ajax_failure_msg) current_time = datetime.utcnow() rack_data = {'status_delete': STATUS_DEL_OK, 'delete_time': current_time, 'update_time': current_time} result = edit_rack(rack_id, rack_data) if result: ajax_success_msg['msg'] = _('Del Success') return jsonify(ajax_success_msg) else: ajax_failure_msg['msg'] = _('Del Failure') return jsonify(ajax_failure_msg)
@bp_rack.route('/ajax/del', methods=['GET', 'POST']) @login_required def ajax_delete(): '\n 货架删除\n :return:\n ' ajax_success_msg = AJAX_SUCCESS_MSG.copy() ajax_failure_msg = AJAX_FAILURE_MSG.copy() if (not permission_rack_section_del.can()): ext_msg = _('Permission Denied') ajax_failure_msg['msg'] = _('Del Failure, %(ext_msg)s', ext_msg=ext_msg) return jsonify(ajax_failure_msg) if (not ((request.method == 'GET') and request.is_xhr)): ext_msg = _('Method Not Allowed') ajax_failure_msg['msg'] = _('Del Failure, %(ext_msg)s', ext_msg=ext_msg) return jsonify(ajax_failure_msg) rack_id = request.args.get('rack_id', 0, type=int) if (not rack_id): ext_msg = _('ID does not exist') ajax_failure_msg['msg'] = _('Del Failure, %(ext_msg)s', ext_msg=ext_msg) return jsonify(ajax_failure_msg) rack_info = get_rack_row_by_id(rack_id) if (not rack_info): ext_msg = _('ID does not exist') ajax_failure_msg['msg'] = _('Del Failure, %(ext_msg)s', ext_msg=ext_msg) return jsonify(ajax_failure_msg) if (rack_info.status_delete == STATUS_DEL_OK): ext_msg = _('Already deleted') ajax_failure_msg['msg'] = _('Del Failure, %(ext_msg)s', ext_msg=ext_msg) return jsonify(ajax_failure_msg) if count_inventory(**{'rack_id': rack_id, 'status_delete': STATUS_DEL_NO}): ext_msg = _('Currently In Use') ajax_failure_msg['msg'] = _('Del Failure, %(ext_msg)s', ext_msg=ext_msg) return jsonify(ajax_failure_msg) current_time = datetime.utcnow() rack_data = {'status_delete': STATUS_DEL_OK, 'delete_time': current_time, 'update_time': current_time} result = edit_rack(rack_id, rack_data) if result: ajax_success_msg['msg'] = _('Del Success') return jsonify(ajax_success_msg) else: ajax_failure_msg['msg'] = _('Del Failure') return jsonify(ajax_failure_msg)<|docstring|>货架删除 :return:<|endoftext|>
be5992e7395bec46163f712c933a24b33bf924a8db2c1d5a9abe33ee80467c58
@bp_rack.route('/ajax/get_rack_choices', methods=['GET', 'POST']) @login_required def ajax_get_rack_choices(): '\n 货架选项\n :return:\n ' warehouse_id = request.args.get('warehouse_id', 0, type=int) rack_choices = get_rack_choices(warehouse_id) return jsonify(rack_choices)
货架选项 :return:
app_backend/views/rack.py
ajax_get_rack_choices
zhanghe06/bearing_project
1
python
@bp_rack.route('/ajax/get_rack_choices', methods=['GET', 'POST']) @login_required def ajax_get_rack_choices(): '\n 货架选项\n :return:\n ' warehouse_id = request.args.get('warehouse_id', 0, type=int) rack_choices = get_rack_choices(warehouse_id) return jsonify(rack_choices)
@bp_rack.route('/ajax/get_rack_choices', methods=['GET', 'POST']) @login_required def ajax_get_rack_choices(): '\n 货架选项\n :return:\n ' warehouse_id = request.args.get('warehouse_id', 0, type=int) rack_choices = get_rack_choices(warehouse_id) return jsonify(rack_choices)<|docstring|>货架选项 :return:<|endoftext|>
b7091bb3636ad3ac80800993c25a6133dc1247b4050d3ad5a75c7f00ecc93083
def channel_split_naive(r, channel_ranges): 'Slower but simpler implementation of straxen.split_channel_ranges' results = [] for (left, right) in channel_ranges: results.append(r[np.in1d(r['channel'], np.arange(left, (right + 1)))]) return results
Slower but simpler implementation of straxen.split_channel_ranges
tests/test_channel_split.py
channel_split_naive
zhut19/straxen
14
python
def channel_split_naive(r, channel_ranges): results = [] for (left, right) in channel_ranges: results.append(r[np.in1d(r['channel'], np.arange(left, (right + 1)))]) return results
def channel_split_naive(r, channel_ranges): results = [] for (left, right) in channel_ranges: results.append(r[np.in1d(r['channel'], np.arange(left, (right + 1)))]) return results<|docstring|>Slower but simpler implementation of straxen.split_channel_ranges<|endoftext|>
ff2dd90e5277c03c11843c2e0b3c64f7dd14952bd8369e669f154f1d40e2516a
def make_sqlx(conn, schema, tables): 'Make sqlx lookup function for given tables' table_func_map = {} for table in tables: ntRec = namedtuple(table, tables[table].columns.keys()) table_func_map[table] = SqlX(conn, table, schema, ntRec) def sqlx(expr) -> SqlX: obj = jmespath.search(expr, table_func_map) if (not obj): raise Exception('sqlx: Cannot find "{}"'.format(expr)) return obj return sqlx
Make sqlx lookup function for given tables
xutil/database/base.py
make_sqlx
flarco/n1slutil
1
python
def make_sqlx(conn, schema, tables): table_func_map = {} for table in tables: ntRec = namedtuple(table, tables[table].columns.keys()) table_func_map[table] = SqlX(conn, table, schema, ntRec) def sqlx(expr) -> SqlX: obj = jmespath.search(expr, table_func_map) if (not obj): raise Exception('sqlx: Cannot find "{}"'.format(expr)) return obj return sqlx
def make_sqlx(conn, schema, tables): table_func_map = {} for table in tables: ntRec = namedtuple(table, tables[table].columns.keys()) table_func_map[table] = SqlX(conn, table, schema, ntRec) def sqlx(expr) -> SqlX: obj = jmespath.search(expr, table_func_map) if (not obj): raise Exception('sqlx: Cannot find "{}"'.format(expr)) return obj return sqlx<|docstring|>Make sqlx lookup function for given tables<|endoftext|>
64c5377787ab0499d3ad00c2d6abe0c0a02cfa1a71106d94f62a3b2145d1a28d
def get_sql_sources(sql_text, echo=False): 'Obtain the source tables of a query\n ' import sqlparse sql_text = re.sub('as\\(', 'as (', sql_text, 0, (re.MULTILINE | re.IGNORECASE)) statements = sqlparse.parse(sql_text) cte_aliases = set() sql_sources = {} def get_sources(statement): sources_dict = {} last_kw_from = False last_kw_join = False cte_mode = False last_tok = None done = False while (not done): for tok in statement.tokens: if tok.is_group: if (cte_mode and isinstance(tok, sqlparse.sql.IdentifierList)): for tok2 in tok.tokens: if isinstance(tok2, sqlparse.sql.Identifier): for tok3 in tok2.tokens: if isinstance(tok3, sqlparse.sql.Parenthesis): cte_aliases.add(tok3.parent.normalized.lower()) sources_dict2 = get_sources(tok3) sources_dict = {**sources_dict, **sources_dict2} elif isinstance(tok, sqlparse.sql.Parenthesis): sources_dict2 = get_sources(tok) sources_dict = {**sources_dict, **sources_dict2} else: for tok2 in tok.tokens: if isinstance(tok2, sqlparse.sql.Parenthesis): cte_aliases.add(tok2.parent.normalized.lower()) sources_dict2 = get_sources(tok2) sources_dict = {**sources_dict, **sources_dict2} if ((last_kw_from or last_kw_join) and last_tok.is_whitespace): if isinstance(tok, sqlparse.sql.IdentifierList): for tok2 in tok.tokens: if (isinstance(tok2, sqlparse.sql.Identifier) and ('(' in tok2.value)): sources_dict2 = get_sources(tok2) sources_dict = {**sources_dict, **sources_dict2} elif (isinstance(tok2, sqlparse.sql.Identifier) and (tok2.normalized.lower() not in cte_aliases)): if echo: log(('+Table = ' + tok2.normalized.lower())) sources_dict[tok2.normalized.lower()] = tok.parent elif (isinstance(tok, sqlparse.sql.Identifier) and (tok.normalized.lower() not in cte_aliases)): if echo: log(('+Table = ' + tok.normalized.lower())) sources_dict[tok.normalized.lower()] = tok.parent last_kw_join = False if (tok.is_keyword and (tok.normalized == 'WITH')): cte_mode = True last_kw_from = False elif (tok.is_keyword and (tok.normalized == 'GROUP')): last_kw_join = False last_kw_from = False elif (tok.is_keyword and (tok.normalized == 'WHERE')): last_kw_join = False last_kw_from = False elif (tok.is_keyword and (tok.normalized == 'ORDER')): last_kw_join = False last_kw_from = False elif (tok.is_keyword and (tok.normalized == 'CREATE')): cte_mode = True last_kw_from = False elif (tok.is_keyword and (tok.normalized == 'SELECT')): cte_mode = False last_kw_from = False elif (tok.is_keyword and (tok.normalized == 'FROM')): last_kw_from = True elif (tok.is_keyword and ('JOIN' in tok.normalized)): last_kw_join = True last_tok = tok done = True return sources_dict for (s, statement) in enumerate(statements): has_from = False last_kw_create = False last_kw_create_table = False create_table = None for tok in statement.tokens: if (isinstance(tok, sqlparse.sql.Identifier) and last_kw_create_table): create_table = tok.normalized last_kw_create_table = False last_kw_create = False if echo: log(('-CREATE TABLE ' + create_table)) if (tok.is_keyword and (tok.normalized == 'TABLE') and last_kw_create): last_kw_create_table = True if (tok.is_keyword and (tok.normalized == 'CREATE')): last_kw_create = True if (tok.is_keyword and (tok.normalized == 'FROM')): has_from = True last_tok = tok if has_from: sources_dict = get_sources(statement) if create_table: sql_sources[create_table] = sorted(sources_dict) else: sql_sources[s] = sorted(sources_dict) return sql_sources
Obtain the source tables of a query
xutil/database/base.py
get_sql_sources
flarco/n1slutil
1
python
def get_sql_sources(sql_text, echo=False): '\n ' import sqlparse sql_text = re.sub('as\\(', 'as (', sql_text, 0, (re.MULTILINE | re.IGNORECASE)) statements = sqlparse.parse(sql_text) cte_aliases = set() sql_sources = {} def get_sources(statement): sources_dict = {} last_kw_from = False last_kw_join = False cte_mode = False last_tok = None done = False while (not done): for tok in statement.tokens: if tok.is_group: if (cte_mode and isinstance(tok, sqlparse.sql.IdentifierList)): for tok2 in tok.tokens: if isinstance(tok2, sqlparse.sql.Identifier): for tok3 in tok2.tokens: if isinstance(tok3, sqlparse.sql.Parenthesis): cte_aliases.add(tok3.parent.normalized.lower()) sources_dict2 = get_sources(tok3) sources_dict = {**sources_dict, **sources_dict2} elif isinstance(tok, sqlparse.sql.Parenthesis): sources_dict2 = get_sources(tok) sources_dict = {**sources_dict, **sources_dict2} else: for tok2 in tok.tokens: if isinstance(tok2, sqlparse.sql.Parenthesis): cte_aliases.add(tok2.parent.normalized.lower()) sources_dict2 = get_sources(tok2) sources_dict = {**sources_dict, **sources_dict2} if ((last_kw_from or last_kw_join) and last_tok.is_whitespace): if isinstance(tok, sqlparse.sql.IdentifierList): for tok2 in tok.tokens: if (isinstance(tok2, sqlparse.sql.Identifier) and ('(' in tok2.value)): sources_dict2 = get_sources(tok2) sources_dict = {**sources_dict, **sources_dict2} elif (isinstance(tok2, sqlparse.sql.Identifier) and (tok2.normalized.lower() not in cte_aliases)): if echo: log(('+Table = ' + tok2.normalized.lower())) sources_dict[tok2.normalized.lower()] = tok.parent elif (isinstance(tok, sqlparse.sql.Identifier) and (tok.normalized.lower() not in cte_aliases)): if echo: log(('+Table = ' + tok.normalized.lower())) sources_dict[tok.normalized.lower()] = tok.parent last_kw_join = False if (tok.is_keyword and (tok.normalized == 'WITH')): cte_mode = True last_kw_from = False elif (tok.is_keyword and (tok.normalized == 'GROUP')): last_kw_join = False last_kw_from = False elif (tok.is_keyword and (tok.normalized == 'WHERE')): last_kw_join = False last_kw_from = False elif (tok.is_keyword and (tok.normalized == 'ORDER')): last_kw_join = False last_kw_from = False elif (tok.is_keyword and (tok.normalized == 'CREATE')): cte_mode = True last_kw_from = False elif (tok.is_keyword and (tok.normalized == 'SELECT')): cte_mode = False last_kw_from = False elif (tok.is_keyword and (tok.normalized == 'FROM')): last_kw_from = True elif (tok.is_keyword and ('JOIN' in tok.normalized)): last_kw_join = True last_tok = tok done = True return sources_dict for (s, statement) in enumerate(statements): has_from = False last_kw_create = False last_kw_create_table = False create_table = None for tok in statement.tokens: if (isinstance(tok, sqlparse.sql.Identifier) and last_kw_create_table): create_table = tok.normalized last_kw_create_table = False last_kw_create = False if echo: log(('-CREATE TABLE ' + create_table)) if (tok.is_keyword and (tok.normalized == 'TABLE') and last_kw_create): last_kw_create_table = True if (tok.is_keyword and (tok.normalized == 'CREATE')): last_kw_create = True if (tok.is_keyword and (tok.normalized == 'FROM')): has_from = True last_tok = tok if has_from: sources_dict = get_sources(statement) if create_table: sql_sources[create_table] = sorted(sources_dict) else: sql_sources[s] = sorted(sources_dict) return sql_sources
def get_sql_sources(sql_text, echo=False): '\n ' import sqlparse sql_text = re.sub('as\\(', 'as (', sql_text, 0, (re.MULTILINE | re.IGNORECASE)) statements = sqlparse.parse(sql_text) cte_aliases = set() sql_sources = {} def get_sources(statement): sources_dict = {} last_kw_from = False last_kw_join = False cte_mode = False last_tok = None done = False while (not done): for tok in statement.tokens: if tok.is_group: if (cte_mode and isinstance(tok, sqlparse.sql.IdentifierList)): for tok2 in tok.tokens: if isinstance(tok2, sqlparse.sql.Identifier): for tok3 in tok2.tokens: if isinstance(tok3, sqlparse.sql.Parenthesis): cte_aliases.add(tok3.parent.normalized.lower()) sources_dict2 = get_sources(tok3) sources_dict = {**sources_dict, **sources_dict2} elif isinstance(tok, sqlparse.sql.Parenthesis): sources_dict2 = get_sources(tok) sources_dict = {**sources_dict, **sources_dict2} else: for tok2 in tok.tokens: if isinstance(tok2, sqlparse.sql.Parenthesis): cte_aliases.add(tok2.parent.normalized.lower()) sources_dict2 = get_sources(tok2) sources_dict = {**sources_dict, **sources_dict2} if ((last_kw_from or last_kw_join) and last_tok.is_whitespace): if isinstance(tok, sqlparse.sql.IdentifierList): for tok2 in tok.tokens: if (isinstance(tok2, sqlparse.sql.Identifier) and ('(' in tok2.value)): sources_dict2 = get_sources(tok2) sources_dict = {**sources_dict, **sources_dict2} elif (isinstance(tok2, sqlparse.sql.Identifier) and (tok2.normalized.lower() not in cte_aliases)): if echo: log(('+Table = ' + tok2.normalized.lower())) sources_dict[tok2.normalized.lower()] = tok.parent elif (isinstance(tok, sqlparse.sql.Identifier) and (tok.normalized.lower() not in cte_aliases)): if echo: log(('+Table = ' + tok.normalized.lower())) sources_dict[tok.normalized.lower()] = tok.parent last_kw_join = False if (tok.is_keyword and (tok.normalized == 'WITH')): cte_mode = True last_kw_from = False elif (tok.is_keyword and (tok.normalized == 'GROUP')): last_kw_join = False last_kw_from = False elif (tok.is_keyword and (tok.normalized == 'WHERE')): last_kw_join = False last_kw_from = False elif (tok.is_keyword and (tok.normalized == 'ORDER')): last_kw_join = False last_kw_from = False elif (tok.is_keyword and (tok.normalized == 'CREATE')): cte_mode = True last_kw_from = False elif (tok.is_keyword and (tok.normalized == 'SELECT')): cte_mode = False last_kw_from = False elif (tok.is_keyword and (tok.normalized == 'FROM')): last_kw_from = True elif (tok.is_keyword and ('JOIN' in tok.normalized)): last_kw_join = True last_tok = tok done = True return sources_dict for (s, statement) in enumerate(statements): has_from = False last_kw_create = False last_kw_create_table = False create_table = None for tok in statement.tokens: if (isinstance(tok, sqlparse.sql.Identifier) and last_kw_create_table): create_table = tok.normalized last_kw_create_table = False last_kw_create = False if echo: log(('-CREATE TABLE ' + create_table)) if (tok.is_keyword and (tok.normalized == 'TABLE') and last_kw_create): last_kw_create_table = True if (tok.is_keyword and (tok.normalized == 'CREATE')): last_kw_create = True if (tok.is_keyword and (tok.normalized == 'FROM')): has_from = True last_tok = tok if has_from: sources_dict = get_sources(statement) if create_table: sql_sources[create_table] = sorted(sources_dict) else: sql_sources[s] = sorted(sources_dict) return sql_sources<|docstring|>Obtain the source tables of a query<|endoftext|>
0ec58c5143beeaafd865bb0102e03a458921c49c87cc94e374e594a8551037e7
def __init__(self, conn_dict, profile=None, echo=False): 'Inititate connection' self._cred = struct(conn_dict) self._cred.kwargs = conn_dict.get('kwargs', {}) self.name = self._cred.get('name', None) self.username = self._cred.get('username', None) self.type = self._cred.type self.engine = None self._cursor_description = None self.profile = profile self.batch_size = 10000 self.fetch_size = 20000 self.echo = echo self.connect() self.last_connect = now() template_base_path = '{}/database/templates/base.yaml'.format(get_dir_path()) self.template_dict = read_yaml(template_base_path) template_path = '{}/database/templates/{}.yaml'.format(get_dir_path(), self.type) temp_dict = read_yaml(template_path) for key1 in temp_dict: if isinstance(temp_dict[key1], dict): if (key1 not in self.template_dict): self.template_dict[key1] = temp_dict[key1] for key2 in temp_dict[key1]: self.template_dict[key1][key2] = temp_dict[key1][key2] else: self.template_dict[key1] = temp_dict[key1] self.variables = self._template('variables') if os.getenv('PROFILE_YAML'): other_vars = get_variables() for key in other_vars: self.variables[key] = other_vars[key] self.tmp_folder = self.variables['tmp_folder'] self.set_variables() if echo: log('Connected to {} as {}'.format(self._cred.name, self._cred.user))
Inititate connection
xutil/database/base.py
__init__
flarco/n1slutil
1
python
def __init__(self, conn_dict, profile=None, echo=False): self._cred = struct(conn_dict) self._cred.kwargs = conn_dict.get('kwargs', {}) self.name = self._cred.get('name', None) self.username = self._cred.get('username', None) self.type = self._cred.type self.engine = None self._cursor_description = None self.profile = profile self.batch_size = 10000 self.fetch_size = 20000 self.echo = echo self.connect() self.last_connect = now() template_base_path = '{}/database/templates/base.yaml'.format(get_dir_path()) self.template_dict = read_yaml(template_base_path) template_path = '{}/database/templates/{}.yaml'.format(get_dir_path(), self.type) temp_dict = read_yaml(template_path) for key1 in temp_dict: if isinstance(temp_dict[key1], dict): if (key1 not in self.template_dict): self.template_dict[key1] = temp_dict[key1] for key2 in temp_dict[key1]: self.template_dict[key1][key2] = temp_dict[key1][key2] else: self.template_dict[key1] = temp_dict[key1] self.variables = self._template('variables') if os.getenv('PROFILE_YAML'): other_vars = get_variables() for key in other_vars: self.variables[key] = other_vars[key] self.tmp_folder = self.variables['tmp_folder'] self.set_variables() if echo: log('Connected to {} as {}'.format(self._cred.name, self._cred.user))
def __init__(self, conn_dict, profile=None, echo=False): self._cred = struct(conn_dict) self._cred.kwargs = conn_dict.get('kwargs', {}) self.name = self._cred.get('name', None) self.username = self._cred.get('username', None) self.type = self._cred.type self.engine = None self._cursor_description = None self.profile = profile self.batch_size = 10000 self.fetch_size = 20000 self.echo = echo self.connect() self.last_connect = now() template_base_path = '{}/database/templates/base.yaml'.format(get_dir_path()) self.template_dict = read_yaml(template_base_path) template_path = '{}/database/templates/{}.yaml'.format(get_dir_path(), self.type) temp_dict = read_yaml(template_path) for key1 in temp_dict: if isinstance(temp_dict[key1], dict): if (key1 not in self.template_dict): self.template_dict[key1] = temp_dict[key1] for key2 in temp_dict[key1]: self.template_dict[key1][key2] = temp_dict[key1][key2] else: self.template_dict[key1] = temp_dict[key1] self.variables = self._template('variables') if os.getenv('PROFILE_YAML'): other_vars = get_variables() for key in other_vars: self.variables[key] = other_vars[key] self.tmp_folder = self.variables['tmp_folder'] self.set_variables() if echo: log('Connected to {} as {}'.format(self._cred.name, self._cred.user))<|docstring|>Inititate connection<|endoftext|>
1128817e75719e6942d23199debded4d09051357656ec0ed36989dcc06ef0970
def connect(self): 'Connect to Database' self.engine = self.get_engine() self.connection = self.engine.connect()
Connect to Database
xutil/database/base.py
connect
flarco/n1slutil
1
python
def connect(self): self.engine = self.get_engine() self.connection = self.engine.connect()
def connect(self): self.engine = self.get_engine() self.connection = self.engine.connect()<|docstring|>Connect to Database<|endoftext|>
a6642b8380d2022398ea26c102b764eb7e61938824d686263802da8a4fdeb599
def close(self): 'Close database connection' self.conn.connection.close()
Close database connection
xutil/database/base.py
close
flarco/n1slutil
1
python
def close(self): self.conn.connection.close()
def close(self): self.conn.connection.close()<|docstring|>Close database connection<|endoftext|>
64fa3fd960a8a3a62275dd152299121d6cbb1c756a5b79f182ffe16f6b428ec5
def reconnect(self, min_tresh=0): 'Re-Connect to Database if minute threshold reached' if ((now() - self.last_connect).total_seconds() > (min_tresh * 60)): log('Reconnecting to {}...'.format(self.name)) self.connect() self.last_connect = now()
Re-Connect to Database if minute threshold reached
xutil/database/base.py
reconnect
flarco/n1slutil
1
python
def reconnect(self, min_tresh=0): if ((now() - self.last_connect).total_seconds() > (min_tresh * 60)): log('Reconnecting to {}...'.format(self.name)) self.connect() self.last_connect = now()
def reconnect(self, min_tresh=0): if ((now() - self.last_connect).total_seconds() > (min_tresh * 60)): log('Reconnecting to {}...'.format(self.name)) self.connect() self.last_connect = now()<|docstring|>Re-Connect to Database if minute threshold reached<|endoftext|>
1ad79b6097319a4d6e7d2a45677b12ae18e9ab1e02ca7d3d239ec7d70b0bce23
def set_variables(self): 'Set custom variables' raise Exception("Method 'set_variables' is not implemented!")
Set custom variables
xutil/database/base.py
set_variables
flarco/n1slutil
1
python
def set_variables(self): raise Exception("Method 'set_variables' is not implemented!")
def set_variables(self): raise Exception("Method 'set_variables' is not implemented!")<|docstring|>Set custom variables<|endoftext|>
b92600ce4820daadd26ce8d31fa79cb7faf57d3a58351cc5db9bcb4ff91167b1
def get_dialect(self, echo=False): 'SQLAlchemy dialect' raise Exception("Method 'get_dialect' is not implemented!")
SQLAlchemy dialect
xutil/database/base.py
get_dialect
flarco/n1slutil
1
python
def get_dialect(self, echo=False): raise Exception("Method 'get_dialect' is not implemented!")
def get_dialect(self, echo=False): raise Exception("Method 'get_dialect' is not implemented!")<|docstring|>SQLAlchemy dialect<|endoftext|>
92528a6f62fb091d56979b41b2e2a375a4a870f19e1b3345af7f0a76cca64f97
def check_pk(self, table, fields): 'Check Primary key to ensure there are not duplicates' if ('where' in fields.lower()): (fields, where_clause) = fields.lower().split('where') where_clause = ('where ' + where_clause) else: where_clause = '' sql = "\n select\n '{table}' as table,\n case when count(1) = count({fields}) then 'PASS' else 'FAIL' end as pk_result\n from {table}\n {where_clause}\n ".format(table=table, fields=fields, where_clause=where_clause) data = self.query(sql, echo=False) headers = self._fields print(ptable(headers, data)) if (data[0].pk_result == 'FAIL'): raise Exception('PK Text failed for table "{}" with fields "{}"'.format(table, fields))
Check Primary key to ensure there are not duplicates
xutil/database/base.py
check_pk
flarco/n1slutil
1
python
def check_pk(self, table, fields): if ('where' in fields.lower()): (fields, where_clause) = fields.lower().split('where') where_clause = ('where ' + where_clause) else: where_clause = sql = "\n select\n '{table}' as table,\n case when count(1) = count({fields}) then 'PASS' else 'FAIL' end as pk_result\n from {table}\n {where_clause}\n ".format(table=table, fields=fields, where_clause=where_clause) data = self.query(sql, echo=False) headers = self._fields print(ptable(headers, data)) if (data[0].pk_result == 'FAIL'): raise Exception('PK Text failed for table "{}" with fields "{}"'.format(table, fields))
def check_pk(self, table, fields): if ('where' in fields.lower()): (fields, where_clause) = fields.lower().split('where') where_clause = ('where ' + where_clause) else: where_clause = sql = "\n select\n '{table}' as table,\n case when count(1) = count({fields}) then 'PASS' else 'FAIL' end as pk_result\n from {table}\n {where_clause}\n ".format(table=table, fields=fields, where_clause=where_clause) data = self.query(sql, echo=False) headers = self._fields print(ptable(headers, data)) if (data[0].pk_result == 'FAIL'): raise Exception('PK Text failed for table "{}" with fields "{}"'.format(table, fields))<|docstring|>Check Primary key to ensure there are not duplicates<|endoftext|>
eea4807c757c78fc45421f3dc7f6921b0e4982a59fbea728639b2b6dfe4a4b5d
def execute_multi(self, sql, dtype='namedtuple', limit=None, echo=True, query_name='Record', log=log): "\n Execute multiple SQL statements separtated by ';'. Returns a generator.\n Example:\n for fields, rows in conn.execute(sql):\n print(fields)\n print(len(rows))\n " self.reconnect(min_tresh=10) data = None fields = None rows = [] message_mapping = {'drop ': 'Dropping {}.', 'truncate ': 'Truncating {}.', 'select ': 'Selecting {}.', 'create ': 'Creating {}.', 'insert ': 'Inserting {}.', 'alter ': 'Altering {}.', 'update ': 'Updating {}.', 'delete ': 'Deleting {}.', 'exec ': 'Calling Procedure {}.', 'grant ': 'Granting {}.'} sqls = sql.split(';') for sql in sqls: if (not sql.strip()): continue sql_ = sql.strip().lower() for (word, message) in message_mapping.items(): if sql_.startswith(word): if echo: log(message.format(' '.join(sql_.splitlines()[0].split()[1:3]).upper())) break if sql_.startswith('exec '): procedure = sql_[5:].split('(')[0] args = sql_[5:].split('(')[1][:(- 1)].replace("'", '').split(',') args = [a.strip() for a in args] cursor.callproc(procedure, args) continue try: self._fields = [] rows = self.query(sql, rec_name=query_name, dtype=dtype, limit=limit, echo=echo, log=log) fields = self._fields if (('-- pk_test:' in sql.lower()) and sql_.startswith('create')): sql_lines = sql_.splitlines() regexp = 'create\\s+table\\s+(\\S*)[\\sa-zA-Z\\d]+ as' table = re.findall(regexp, sql_lines[0])[0] line = [l for l in sql_lines if l.strip().lower().startswith('-- pk_test:')][0] fields = line.split(':')[(- 1)] self.check_pk(table, fields) except Exception as E: message = get_exception_message().lower() if (sql_.startswith('drop ') and (self.error_msg['table_not_exist'] in message)): log('WARNING: Table already dropped.') else: raise E if (not fields): fields = [] (yield (fields, rows))
Execute multiple SQL statements separtated by ';'. Returns a generator. Example: for fields, rows in conn.execute(sql): print(fields) print(len(rows))
xutil/database/base.py
execute_multi
flarco/n1slutil
1
python
def execute_multi(self, sql, dtype='namedtuple', limit=None, echo=True, query_name='Record', log=log): "\n Execute multiple SQL statements separtated by ';'. Returns a generator.\n Example:\n for fields, rows in conn.execute(sql):\n print(fields)\n print(len(rows))\n " self.reconnect(min_tresh=10) data = None fields = None rows = [] message_mapping = {'drop ': 'Dropping {}.', 'truncate ': 'Truncating {}.', 'select ': 'Selecting {}.', 'create ': 'Creating {}.', 'insert ': 'Inserting {}.', 'alter ': 'Altering {}.', 'update ': 'Updating {}.', 'delete ': 'Deleting {}.', 'exec ': 'Calling Procedure {}.', 'grant ': 'Granting {}.'} sqls = sql.split(';') for sql in sqls: if (not sql.strip()): continue sql_ = sql.strip().lower() for (word, message) in message_mapping.items(): if sql_.startswith(word): if echo: log(message.format(' '.join(sql_.splitlines()[0].split()[1:3]).upper())) break if sql_.startswith('exec '): procedure = sql_[5:].split('(')[0] args = sql_[5:].split('(')[1][:(- 1)].replace("'", ).split(',') args = [a.strip() for a in args] cursor.callproc(procedure, args) continue try: self._fields = [] rows = self.query(sql, rec_name=query_name, dtype=dtype, limit=limit, echo=echo, log=log) fields = self._fields if (('-- pk_test:' in sql.lower()) and sql_.startswith('create')): sql_lines = sql_.splitlines() regexp = 'create\\s+table\\s+(\\S*)[\\sa-zA-Z\\d]+ as' table = re.findall(regexp, sql_lines[0])[0] line = [l for l in sql_lines if l.strip().lower().startswith('-- pk_test:')][0] fields = line.split(':')[(- 1)] self.check_pk(table, fields) except Exception as E: message = get_exception_message().lower() if (sql_.startswith('drop ') and (self.error_msg['table_not_exist'] in message)): log('WARNING: Table already dropped.') else: raise E if (not fields): fields = [] (yield (fields, rows))
def execute_multi(self, sql, dtype='namedtuple', limit=None, echo=True, query_name='Record', log=log): "\n Execute multiple SQL statements separtated by ';'. Returns a generator.\n Example:\n for fields, rows in conn.execute(sql):\n print(fields)\n print(len(rows))\n " self.reconnect(min_tresh=10) data = None fields = None rows = [] message_mapping = {'drop ': 'Dropping {}.', 'truncate ': 'Truncating {}.', 'select ': 'Selecting {}.', 'create ': 'Creating {}.', 'insert ': 'Inserting {}.', 'alter ': 'Altering {}.', 'update ': 'Updating {}.', 'delete ': 'Deleting {}.', 'exec ': 'Calling Procedure {}.', 'grant ': 'Granting {}.'} sqls = sql.split(';') for sql in sqls: if (not sql.strip()): continue sql_ = sql.strip().lower() for (word, message) in message_mapping.items(): if sql_.startswith(word): if echo: log(message.format(' '.join(sql_.splitlines()[0].split()[1:3]).upper())) break if sql_.startswith('exec '): procedure = sql_[5:].split('(')[0] args = sql_[5:].split('(')[1][:(- 1)].replace("'", ).split(',') args = [a.strip() for a in args] cursor.callproc(procedure, args) continue try: self._fields = [] rows = self.query(sql, rec_name=query_name, dtype=dtype, limit=limit, echo=echo, log=log) fields = self._fields if (('-- pk_test:' in sql.lower()) and sql_.startswith('create')): sql_lines = sql_.splitlines() regexp = 'create\\s+table\\s+(\\S*)[\\sa-zA-Z\\d]+ as' table = re.findall(regexp, sql_lines[0])[0] line = [l for l in sql_lines if l.strip().lower().startswith('-- pk_test:')][0] fields = line.split(':')[(- 1)] self.check_pk(table, fields) except Exception as E: message = get_exception_message().lower() if (sql_.startswith('drop ') and (self.error_msg['table_not_exist'] in message)): log('WARNING: Table already dropped.') else: raise E if (not fields): fields = [] (yield (fields, rows))<|docstring|>Execute multiple SQL statements separtated by ';'. Returns a generator. Example: for fields, rows in conn.execute(sql): print(fields) print(len(rows))<|endoftext|>
ded5534da2e201c609a0021a59707a6a690e54d07b117a26622d3cd569fa243e
def execute(self, sql, dtype='tuple', limit=None, echo=True, query_name='Record', log=log): 'Execute SQL, return last result' self.reconnect(min_tresh=10) data = None fields = None rows = [] message_mapping = {'drop ': 'Dropping {}.', 'truncate ': 'Truncating {}.', 'select ': 'Selecting {}.', 'create ': 'Creating {}.', 'insert ': 'Inserting {}.', 'alter ': 'Altering {}.', 'update ': 'Updating {}.', 'delete ': 'Deleting {}.', 'exec ': 'Calling Procedure {}.', 'grant ': 'Granting {}.'} sql_ = sql.strip().lower() for (word, message) in message_mapping.items(): if sql_.startswith(word): if echo: log(message.format(' '.join(sql_.splitlines()[0].split()[1:3]).upper())) break if sql_.startswith('exec '): procedure = sql_[5:].split('(')[0] args = sql_[5:].split('(')[1][:(- 1)].replace("'", '').split(',') args = [a.strip() for a in args] connection = self.engine.raw_connection() try: cursor = connection.cursor() cursor.callproc(procedure, args) self._fields = self._get_cursor_fields(cursor_desc=cursor.description) rows = list(cursor.fetchall()) cursor.close() connection.commit() return (fields, rows) finally: connection.close() try: self._fields = [] rows = self.query(sql, rec_name=query_name, dtype=dtype, limit=limit, echo=echo, log=log) fields = self._fields if (('-- pk_test:' in sql.lower()) and sql_.startswith('create')): sql_lines = sql_.splitlines() regexp = 'create\\s+table\\s+(\\S*)[\\sa-zA-Z\\d]+ as' table = re.findall(regexp, sql_lines[0])[0] line = [l for l in sql_lines if l.strip().lower().startswith('-- pk_test:')][0] fields = line.split(':')[(- 1)] self.check_pk(table, fields) except Exception as E: message = get_exception_message().lower() if (sql_.startswith('drop ') and (self.error_msg['table_not_exist'] in message)): log('WARNING: Table already dropped.') else: raise E if (not fields): fields = [] return (fields, rows)
Execute SQL, return last result
xutil/database/base.py
execute
flarco/n1slutil
1
python
def execute(self, sql, dtype='tuple', limit=None, echo=True, query_name='Record', log=log): self.reconnect(min_tresh=10) data = None fields = None rows = [] message_mapping = {'drop ': 'Dropping {}.', 'truncate ': 'Truncating {}.', 'select ': 'Selecting {}.', 'create ': 'Creating {}.', 'insert ': 'Inserting {}.', 'alter ': 'Altering {}.', 'update ': 'Updating {}.', 'delete ': 'Deleting {}.', 'exec ': 'Calling Procedure {}.', 'grant ': 'Granting {}.'} sql_ = sql.strip().lower() for (word, message) in message_mapping.items(): if sql_.startswith(word): if echo: log(message.format(' '.join(sql_.splitlines()[0].split()[1:3]).upper())) break if sql_.startswith('exec '): procedure = sql_[5:].split('(')[0] args = sql_[5:].split('(')[1][:(- 1)].replace("'", ).split(',') args = [a.strip() for a in args] connection = self.engine.raw_connection() try: cursor = connection.cursor() cursor.callproc(procedure, args) self._fields = self._get_cursor_fields(cursor_desc=cursor.description) rows = list(cursor.fetchall()) cursor.close() connection.commit() return (fields, rows) finally: connection.close() try: self._fields = [] rows = self.query(sql, rec_name=query_name, dtype=dtype, limit=limit, echo=echo, log=log) fields = self._fields if (('-- pk_test:' in sql.lower()) and sql_.startswith('create')): sql_lines = sql_.splitlines() regexp = 'create\\s+table\\s+(\\S*)[\\sa-zA-Z\\d]+ as' table = re.findall(regexp, sql_lines[0])[0] line = [l for l in sql_lines if l.strip().lower().startswith('-- pk_test:')][0] fields = line.split(':')[(- 1)] self.check_pk(table, fields) except Exception as E: message = get_exception_message().lower() if (sql_.startswith('drop ') and (self.error_msg['table_not_exist'] in message)): log('WARNING: Table already dropped.') else: raise E if (not fields): fields = [] return (fields, rows)
def execute(self, sql, dtype='tuple', limit=None, echo=True, query_name='Record', log=log): self.reconnect(min_tresh=10) data = None fields = None rows = [] message_mapping = {'drop ': 'Dropping {}.', 'truncate ': 'Truncating {}.', 'select ': 'Selecting {}.', 'create ': 'Creating {}.', 'insert ': 'Inserting {}.', 'alter ': 'Altering {}.', 'update ': 'Updating {}.', 'delete ': 'Deleting {}.', 'exec ': 'Calling Procedure {}.', 'grant ': 'Granting {}.'} sql_ = sql.strip().lower() for (word, message) in message_mapping.items(): if sql_.startswith(word): if echo: log(message.format(' '.join(sql_.splitlines()[0].split()[1:3]).upper())) break if sql_.startswith('exec '): procedure = sql_[5:].split('(')[0] args = sql_[5:].split('(')[1][:(- 1)].replace("'", ).split(',') args = [a.strip() for a in args] connection = self.engine.raw_connection() try: cursor = connection.cursor() cursor.callproc(procedure, args) self._fields = self._get_cursor_fields(cursor_desc=cursor.description) rows = list(cursor.fetchall()) cursor.close() connection.commit() return (fields, rows) finally: connection.close() try: self._fields = [] rows = self.query(sql, rec_name=query_name, dtype=dtype, limit=limit, echo=echo, log=log) fields = self._fields if (('-- pk_test:' in sql.lower()) and sql_.startswith('create')): sql_lines = sql_.splitlines() regexp = 'create\\s+table\\s+(\\S*)[\\sa-zA-Z\\d]+ as' table = re.findall(regexp, sql_lines[0])[0] line = [l for l in sql_lines if l.strip().lower().startswith('-- pk_test:')][0] fields = line.split(':')[(- 1)] self.check_pk(table, fields) except Exception as E: message = get_exception_message().lower() if (sql_.startswith('drop ') and (self.error_msg['table_not_exist'] in message)): log('WARNING: Table already dropped.') else: raise E if (not fields): fields = [] return (fields, rows)<|docstring|>Execute SQL, return last result<|endoftext|>
991ccf259d42090a2fa899a6b949ca562fa3b6d8016742062d777f178eecdc53
def insert(self, table, data, echo=False): 'Insert records of namedtuple or dicts' raise Exception('insert not implemented')
Insert records of namedtuple or dicts
xutil/database/base.py
insert
flarco/n1slutil
1
python
def insert(self, table, data, echo=False): raise Exception('insert not implemented')
def insert(self, table, data, echo=False): raise Exception('insert not implemented')<|docstring|>Insert records of namedtuple or dicts<|endoftext|>
74d5d7ae69215fb12faeae182262b906bbabb712c3f63ab5f245499e477d6e13
def drop_table(self, table, log=log): 'Drop table' try: sql = self._template('core.drop_table').format(table) self._do_execute(sql) except Exception as E: message = get_exception_message().lower() if (self._template('error_filter.table_not_exist') in message): if self.echo: log('Table "{}" already dropped.'.format(table)) else: raise E
Drop table
xutil/database/base.py
drop_table
flarco/n1slutil
1
python
def drop_table(self, table, log=log): try: sql = self._template('core.drop_table').format(table) self._do_execute(sql) except Exception as E: message = get_exception_message().lower() if (self._template('error_filter.table_not_exist') in message): if self.echo: log('Table "{}" already dropped.'.format(table)) else: raise E
def drop_table(self, table, log=log): try: sql = self._template('core.drop_table').format(table) self._do_execute(sql) except Exception as E: message = get_exception_message().lower() if (self._template('error_filter.table_not_exist') in message): if self.echo: log('Table "{}" already dropped.'.format(table)) else: raise E<|docstring|>Drop table<|endoftext|>
11592db5d01eb56d78c4a9c5ab75c4d1d1e893d65dd5cd5afe7e6189e9ab667d
def create_table(self, table, field_types, drop=False, log=log): 'Create table' if drop: self.drop_table(table, log=log) new_ftypes = OrderedDict() for f in field_types: (ftype, max_len, dec_len) = field_types[f] if dec_len: suff = '({},{})'.format(max_len, dec_len) elif max_len: suff = '({})'.format(max_len) else: suff = '' new_ftypes[f] = self._template('general_type_map')[ftype].replace('()', suff) field_types_str = ', \n'.join([((self._fix_f_name(field) + ' ') + new_ftypes[field]) for field in new_ftypes]) sql = self._template('core.create_table').format(table=table, col_types=field_types_str) try: self._do_execute(sql) except Exception as e: raise e log('Created table "{}"'.format(table))
Create table
xutil/database/base.py
create_table
flarco/n1slutil
1
python
def create_table(self, table, field_types, drop=False, log=log): if drop: self.drop_table(table, log=log) new_ftypes = OrderedDict() for f in field_types: (ftype, max_len, dec_len) = field_types[f] if dec_len: suff = '({},{})'.format(max_len, dec_len) elif max_len: suff = '({})'.format(max_len) else: suff = new_ftypes[f] = self._template('general_type_map')[ftype].replace('()', suff) field_types_str = ', \n'.join([((self._fix_f_name(field) + ' ') + new_ftypes[field]) for field in new_ftypes]) sql = self._template('core.create_table').format(table=table, col_types=field_types_str) try: self._do_execute(sql) except Exception as e: raise e log('Created table "{}"'.format(table))
def create_table(self, table, field_types, drop=False, log=log): if drop: self.drop_table(table, log=log) new_ftypes = OrderedDict() for f in field_types: (ftype, max_len, dec_len) = field_types[f] if dec_len: suff = '({},{})'.format(max_len, dec_len) elif max_len: suff = '({})'.format(max_len) else: suff = new_ftypes[f] = self._template('general_type_map')[ftype].replace('()', suff) field_types_str = ', \n'.join([((self._fix_f_name(field) + ' ') + new_ftypes[field]) for field in new_ftypes]) sql = self._template('core.create_table').format(table=table, col_types=field_types_str) try: self._do_execute(sql) except Exception as e: raise e log('Created table "{}"'.format(table))<|docstring|>Create table<|endoftext|>
8552087d57da4d6950a288e8d18e8fce31d23a0c98b4df2a6b18c49675356ae9
def _get_cursor_fields(self, as_dict=False, native_type=True, cursor_desc=None): 'Get fields of active Select cursor' fields = OrderedDict() cursor_desc = (cursor_desc if cursor_desc else self._cursor_description) if (cursor_desc == None): return [] for f in cursor_desc: f_name = f[0].lower() if as_dict: if native_type: f_type = f[1] else: f_type = self.reverse_data_map[f[1]] if ('cx_Oracle.NUMBER' in str(f[1])): if (f[4] and (f[4] > 11)): f_type = 'long' if (f[5] and (f[5] > 0)): f_type = 'double' fields[f_name] = f_type else: fields[f_name] = None if as_dict: return fields else: return list(fields.keys())
Get fields of active Select cursor
xutil/database/base.py
_get_cursor_fields
flarco/n1slutil
1
python
def _get_cursor_fields(self, as_dict=False, native_type=True, cursor_desc=None): fields = OrderedDict() cursor_desc = (cursor_desc if cursor_desc else self._cursor_description) if (cursor_desc == None): return [] for f in cursor_desc: f_name = f[0].lower() if as_dict: if native_type: f_type = f[1] else: f_type = self.reverse_data_map[f[1]] if ('cx_Oracle.NUMBER' in str(f[1])): if (f[4] and (f[4] > 11)): f_type = 'long' if (f[5] and (f[5] > 0)): f_type = 'double' fields[f_name] = f_type else: fields[f_name] = None if as_dict: return fields else: return list(fields.keys())
def _get_cursor_fields(self, as_dict=False, native_type=True, cursor_desc=None): fields = OrderedDict() cursor_desc = (cursor_desc if cursor_desc else self._cursor_description) if (cursor_desc == None): return [] for f in cursor_desc: f_name = f[0].lower() if as_dict: if native_type: f_type = f[1] else: f_type = self.reverse_data_map[f[1]] if ('cx_Oracle.NUMBER' in str(f[1])): if (f[4] and (f[4] > 11)): f_type = 'long' if (f[5] and (f[5] > 0)): f_type = 'double' fields[f_name] = f_type else: fields[f_name] = None if as_dict: return fields else: return list(fields.keys())<|docstring|>Get fields of active Select cursor<|endoftext|>
e784c53226e41a4b36798921ca6b8fa97368dd50f2884affd7604e929b17fd4a
def stream(self, sql, rec_name='Record', dtype='namedtuple', yield_chuncks=False, chunk_size=None, limit=None, echo=True): 'Stream Select from SQL, yield records as they come in' self.reconnect(min_tresh=10) if echo: log("Streaming SQL for '{}'.".format(rec_name)) fetch_size = (limit if limit else self.fetch_size) fetch_size = (chunk_size if chunk_size else fetch_size) try: self._do_execute(sql) except Exception as e: raise e if (dtype == 'tuple'): make_rec = (lambda row: row) make_batch = (lambda rows: rows) elif (dtype == 'dataframe'): yield_chuncks = True make_batch = (lambda rows: pandas.DataFrame(rows, columns=self._fields)) else: Record = namedtuple(rec_name.replace(' ', '_').replace('.', '_'), self._fields) make_rec = (lambda row: Record(*row)) make_batch = (lambda rows: [make_rec(r) for r in rows]) self._stream_counter = 0 while True: if (not self._fields): break rows = self.result.fetchmany(fetch_size) if rows: if yield_chuncks: batch = make_batch(rows) self._stream_counter += len(batch) if len(batch): (yield batch) else: for row in rows: self._stream_counter += 1 (yield make_rec(row)) else: break if limit: break
Stream Select from SQL, yield records as they come in
xutil/database/base.py
stream
flarco/n1slutil
1
python
def stream(self, sql, rec_name='Record', dtype='namedtuple', yield_chuncks=False, chunk_size=None, limit=None, echo=True): self.reconnect(min_tresh=10) if echo: log("Streaming SQL for '{}'.".format(rec_name)) fetch_size = (limit if limit else self.fetch_size) fetch_size = (chunk_size if chunk_size else fetch_size) try: self._do_execute(sql) except Exception as e: raise e if (dtype == 'tuple'): make_rec = (lambda row: row) make_batch = (lambda rows: rows) elif (dtype == 'dataframe'): yield_chuncks = True make_batch = (lambda rows: pandas.DataFrame(rows, columns=self._fields)) else: Record = namedtuple(rec_name.replace(' ', '_').replace('.', '_'), self._fields) make_rec = (lambda row: Record(*row)) make_batch = (lambda rows: [make_rec(r) for r in rows]) self._stream_counter = 0 while True: if (not self._fields): break rows = self.result.fetchmany(fetch_size) if rows: if yield_chuncks: batch = make_batch(rows) self._stream_counter += len(batch) if len(batch): (yield batch) else: for row in rows: self._stream_counter += 1 (yield make_rec(row)) else: break if limit: break
def stream(self, sql, rec_name='Record', dtype='namedtuple', yield_chuncks=False, chunk_size=None, limit=None, echo=True): self.reconnect(min_tresh=10) if echo: log("Streaming SQL for '{}'.".format(rec_name)) fetch_size = (limit if limit else self.fetch_size) fetch_size = (chunk_size if chunk_size else fetch_size) try: self._do_execute(sql) except Exception as e: raise e if (dtype == 'tuple'): make_rec = (lambda row: row) make_batch = (lambda rows: rows) elif (dtype == 'dataframe'): yield_chuncks = True make_batch = (lambda rows: pandas.DataFrame(rows, columns=self._fields)) else: Record = namedtuple(rec_name.replace(' ', '_').replace('.', '_'), self._fields) make_rec = (lambda row: Record(*row)) make_batch = (lambda rows: [make_rec(r) for r in rows]) self._stream_counter = 0 while True: if (not self._fields): break rows = self.result.fetchmany(fetch_size) if rows: if yield_chuncks: batch = make_batch(rows) self._stream_counter += len(batch) if len(batch): (yield batch) else: for row in rows: self._stream_counter += 1 (yield make_rec(row)) else: break if limit: break<|docstring|>Stream Select from SQL, yield records as they come in<|endoftext|>
c4dac5cb0402429b4f38e1b3f11763a51bd6b4c63d4e032776a9dcec6e5a374b
def query(self, sql, rec_name='Record', dtype='namedtuple', limit=None, echo=True, retrying=False, log=log): 'Select from SQL, return list of namedtuples' self.reconnect(min_tresh=10) s_t = datetime.datetime.now() _data = list(self.stream(sql, dtype=dtype, echo=False, limit=limit)) if (not self.result.closed): self.result.close() fields = self._fields if (not fields): return [] if (dtype == 'namedtuple'): Record = namedtuple(rec_name.replace(' ', '_').replace('.', '_'), fields) if limit: data = [Record(*row) for row in _data] else: data = [Record(*row) for row in _data] elif (dtype == 'tuple'): if limit: data = [tuple(row) for row in _data] else: data = [tuple(row) for row in _data] elif (dtype == 'dataframe'): if limit: data = pandas.DataFrame([row for row in _data], columns=fields) else: data = pandas.DataFrame([row for row in _data], columns=fields) else: raise Exception('{} is not recongnized.'.format(dtype)) secs = (datetime.datetime.now() - s_t).total_seconds() rate = round((len(data) / secs), 1) if echo: log(' >>> Got {} rows in {} secs [{} r/s].'.format(len(data), secs, rate)) return data
Select from SQL, return list of namedtuples
xutil/database/base.py
query
flarco/n1slutil
1
python
def query(self, sql, rec_name='Record', dtype='namedtuple', limit=None, echo=True, retrying=False, log=log): self.reconnect(min_tresh=10) s_t = datetime.datetime.now() _data = list(self.stream(sql, dtype=dtype, echo=False, limit=limit)) if (not self.result.closed): self.result.close() fields = self._fields if (not fields): return [] if (dtype == 'namedtuple'): Record = namedtuple(rec_name.replace(' ', '_').replace('.', '_'), fields) if limit: data = [Record(*row) for row in _data] else: data = [Record(*row) for row in _data] elif (dtype == 'tuple'): if limit: data = [tuple(row) for row in _data] else: data = [tuple(row) for row in _data] elif (dtype == 'dataframe'): if limit: data = pandas.DataFrame([row for row in _data], columns=fields) else: data = pandas.DataFrame([row for row in _data], columns=fields) else: raise Exception('{} is not recongnized.'.format(dtype)) secs = (datetime.datetime.now() - s_t).total_seconds() rate = round((len(data) / secs), 1) if echo: log(' >>> Got {} rows in {} secs [{} r/s].'.format(len(data), secs, rate)) return data
def query(self, sql, rec_name='Record', dtype='namedtuple', limit=None, echo=True, retrying=False, log=log): self.reconnect(min_tresh=10) s_t = datetime.datetime.now() _data = list(self.stream(sql, dtype=dtype, echo=False, limit=limit)) if (not self.result.closed): self.result.close() fields = self._fields if (not fields): return [] if (dtype == 'namedtuple'): Record = namedtuple(rec_name.replace(' ', '_').replace('.', '_'), fields) if limit: data = [Record(*row) for row in _data] else: data = [Record(*row) for row in _data] elif (dtype == 'tuple'): if limit: data = [tuple(row) for row in _data] else: data = [tuple(row) for row in _data] elif (dtype == 'dataframe'): if limit: data = pandas.DataFrame([row for row in _data], columns=fields) else: data = pandas.DataFrame([row for row in _data], columns=fields) else: raise Exception('{} is not recongnized.'.format(dtype)) secs = (datetime.datetime.now() - s_t).total_seconds() rate = round((len(data) / secs), 1) if echo: log(' >>> Got {} rows in {} secs [{} r/s].'.format(len(data), secs, rate)) return data<|docstring|>Select from SQL, return list of namedtuples<|endoftext|>
98c610c71ed3352ebed2a9de5753d48e2ab6be08be1f9c58f034790b3453cabb
def get_schemas(self, echo=True): 'Get list of schemas.' Rec = namedtuple('Schemas', 'schema') self._fields = Rec._fields sql_tmpl = self._template('metadata.schemas') if sql_tmpl: schemas = [r[0] for r in self.query(sql_tmpl)] else: self.get_engine(echo=echo) schemas = self.engine_inspect.get_schema_names() rows = [Rec(s) for s in schemas] return rows
Get list of schemas.
xutil/database/base.py
get_schemas
flarco/n1slutil
1
python
def get_schemas(self, echo=True): Rec = namedtuple('Schemas', 'schema') self._fields = Rec._fields sql_tmpl = self._template('metadata.schemas') if sql_tmpl: schemas = [r[0] for r in self.query(sql_tmpl)] else: self.get_engine(echo=echo) schemas = self.engine_inspect.get_schema_names() rows = [Rec(s) for s in schemas] return rows
def get_schemas(self, echo=True): Rec = namedtuple('Schemas', 'schema') self._fields = Rec._fields sql_tmpl = self._template('metadata.schemas') if sql_tmpl: schemas = [r[0] for r in self.query(sql_tmpl)] else: self.get_engine(echo=echo) schemas = self.engine_inspect.get_schema_names() rows = [Rec(s) for s in schemas] return rows<|docstring|>Get list of schemas.<|endoftext|>
d4f2d411f364ed8b6bc70dba4314b92cacbbd69e20242a5a314522dbb48c8ad3
def get_objects(self, schema, object_type='all', echo=True): "Get metadata for objects. object_type in 'all', 'table', 'view'" Rec = namedtuple('Table', 'schema object_name object_type') self._fields = Rec._fields def get_rec(object_name, object_type): r_dict = dict(schema=schema, object_name=object_name, object_type=object_type) return Rec(**r_dict) if (object_type == 'all'): table_rows = self.get_tables(schema) rows = [get_rec(r.table, 'table') for r in sorted(table_rows)] view_rows = self.get_views(schema) rows += [get_rec(r.view, 'view') for r in sorted(view_rows)] elif (object_type == 'table'): table_rows = self.get_tables(schema) rows = [get_rec(r.table, 'table') for r in sorted(table_rows)] elif (object_type == 'view'): view_rows = self.get_views(schema) rows += [get_rec(r.view, 'view') for r in sorted(view_rows)] else: raise Exception('Object type "{}" not supported!'.format(object_type)) return rows
Get metadata for objects. object_type in 'all', 'table', 'view'
xutil/database/base.py
get_objects
flarco/n1slutil
1
python
def get_objects(self, schema, object_type='all', echo=True): Rec = namedtuple('Table', 'schema object_name object_type') self._fields = Rec._fields def get_rec(object_name, object_type): r_dict = dict(schema=schema, object_name=object_name, object_type=object_type) return Rec(**r_dict) if (object_type == 'all'): table_rows = self.get_tables(schema) rows = [get_rec(r.table, 'table') for r in sorted(table_rows)] view_rows = self.get_views(schema) rows += [get_rec(r.view, 'view') for r in sorted(view_rows)] elif (object_type == 'table'): table_rows = self.get_tables(schema) rows = [get_rec(r.table, 'table') for r in sorted(table_rows)] elif (object_type == 'view'): view_rows = self.get_views(schema) rows += [get_rec(r.view, 'view') for r in sorted(view_rows)] else: raise Exception('Object type "{}" not supported!'.format(object_type)) return rows
def get_objects(self, schema, object_type='all', echo=True): Rec = namedtuple('Table', 'schema object_name object_type') self._fields = Rec._fields def get_rec(object_name, object_type): r_dict = dict(schema=schema, object_name=object_name, object_type=object_type) return Rec(**r_dict) if (object_type == 'all'): table_rows = self.get_tables(schema) rows = [get_rec(r.table, 'table') for r in sorted(table_rows)] view_rows = self.get_views(schema) rows += [get_rec(r.view, 'view') for r in sorted(view_rows)] elif (object_type == 'table'): table_rows = self.get_tables(schema) rows = [get_rec(r.table, 'table') for r in sorted(table_rows)] elif (object_type == 'view'): view_rows = self.get_views(schema) rows += [get_rec(r.view, 'view') for r in sorted(view_rows)] else: raise Exception('Object type "{}" not supported!'.format(object_type)) return rows<|docstring|>Get metadata for objects. object_type in 'all', 'table', 'view'<|endoftext|>
baa2c1769bd5f16e7b518d6708472367f68cfcc2857cdfc7dd87d5a20e05171d
def get_tables(self, schema, echo=True): 'Get metadata for tables.' schemas = (schema if isinstance(schema, list) else [schema]) def get_tables_for(schema): def get_rec(table): self._fields = ['schema', 'table'] return tuple([schema, table]) Rec = namedtuple('Table', 'schema table') self._fields = Rec._fields r_dict = dict(schema=schema, table=table) return Rec(**r_dict) sql_tmpl = self._template('metadata.tables') if sql_tmpl: tables = self.query(sql_tmpl.format(schema=schema)) if hasattr(self, '_std_get_tables'): tables = self._std_get_tables(schema, tables) else: self.get_engine(echo=echo) tables = self.engine_inspect.get_table_names(schema) return [get_rec(v) for v in sorted(tables)] rows = [] for schema in schemas: for row in get_tables_for(schema): rows.append(row) return rows
Get metadata for tables.
xutil/database/base.py
get_tables
flarco/n1slutil
1
python
def get_tables(self, schema, echo=True): schemas = (schema if isinstance(schema, list) else [schema]) def get_tables_for(schema): def get_rec(table): self._fields = ['schema', 'table'] return tuple([schema, table]) Rec = namedtuple('Table', 'schema table') self._fields = Rec._fields r_dict = dict(schema=schema, table=table) return Rec(**r_dict) sql_tmpl = self._template('metadata.tables') if sql_tmpl: tables = self.query(sql_tmpl.format(schema=schema)) if hasattr(self, '_std_get_tables'): tables = self._std_get_tables(schema, tables) else: self.get_engine(echo=echo) tables = self.engine_inspect.get_table_names(schema) return [get_rec(v) for v in sorted(tables)] rows = [] for schema in schemas: for row in get_tables_for(schema): rows.append(row) return rows
def get_tables(self, schema, echo=True): schemas = (schema if isinstance(schema, list) else [schema]) def get_tables_for(schema): def get_rec(table): self._fields = ['schema', 'table'] return tuple([schema, table]) Rec = namedtuple('Table', 'schema table') self._fields = Rec._fields r_dict = dict(schema=schema, table=table) return Rec(**r_dict) sql_tmpl = self._template('metadata.tables') if sql_tmpl: tables = self.query(sql_tmpl.format(schema=schema)) if hasattr(self, '_std_get_tables'): tables = self._std_get_tables(schema, tables) else: self.get_engine(echo=echo) tables = self.engine_inspect.get_table_names(schema) return [get_rec(v) for v in sorted(tables)] rows = [] for schema in schemas: for row in get_tables_for(schema): rows.append(row) return rows<|docstring|>Get metadata for tables.<|endoftext|>
5dc0405053af132ade21aa57d849581cf706426ae3f9397f73046b45a1737eb0
def get_views(self, schema, echo=True): 'Get metadata for views.' schemas = (schema if isinstance(schema, list) else [schema]) def get_views_for(schema): def get_rec(view): self._fields = ['schema', 'view'] return tuple([schema, view]) Rec = namedtuple('View', 'schema view') self._fields = Rec._fields r_dict = dict(schema=schema, view=view) return Rec(**r_dict) sql_tmpl = self._template('metadata.views') if sql_tmpl: views = [r[0] for r in self.query(sql_tmpl.format(schema=schema))] else: self.get_engine(echo=echo) views = self.engine_inspect.get_view_names(schema) return [get_rec(v) for v in sorted(views)] rows = [] for schema in schemas: for row in get_views_for(schema): rows.append(row) return rows
Get metadata for views.
xutil/database/base.py
get_views
flarco/n1slutil
1
python
def get_views(self, schema, echo=True): schemas = (schema if isinstance(schema, list) else [schema]) def get_views_for(schema): def get_rec(view): self._fields = ['schema', 'view'] return tuple([schema, view]) Rec = namedtuple('View', 'schema view') self._fields = Rec._fields r_dict = dict(schema=schema, view=view) return Rec(**r_dict) sql_tmpl = self._template('metadata.views') if sql_tmpl: views = [r[0] for r in self.query(sql_tmpl.format(schema=schema))] else: self.get_engine(echo=echo) views = self.engine_inspect.get_view_names(schema) return [get_rec(v) for v in sorted(views)] rows = [] for schema in schemas: for row in get_views_for(schema): rows.append(row) return rows
def get_views(self, schema, echo=True): schemas = (schema if isinstance(schema, list) else [schema]) def get_views_for(schema): def get_rec(view): self._fields = ['schema', 'view'] return tuple([schema, view]) Rec = namedtuple('View', 'schema view') self._fields = Rec._fields r_dict = dict(schema=schema, view=view) return Rec(**r_dict) sql_tmpl = self._template('metadata.views') if sql_tmpl: views = [r[0] for r in self.query(sql_tmpl.format(schema=schema))] else: self.get_engine(echo=echo) views = self.engine_inspect.get_view_names(schema) return [get_rec(v) for v in sorted(views)] rows = [] for schema in schemas: for row in get_views_for(schema): rows.append(row) return rows<|docstring|>Get metadata for views.<|endoftext|>
3b807a9ecd936cfd89e933b388fbdc6dc286e05e4e401ddeaf25aad8f3827bcf
def get_columns(self, table_name, object_type=None, echo=False, include_schema_table=True, native_type=True): 'Get column metadata for table' if include_schema_table: headers = 'schema table id column_name type nullable default autoincrement' else: headers = 'id column_name type nullable default autoincrement' Rec = namedtuple('Columns', headers) self._fields = Rec._fields all_rows = [] table_names = (table_name if isinstance(table_name, list) else [table_name]) for table_name in table_names: (schema, table) = self._split_schema_table(table_name) def get_rec(r_dict, column_order): if include_schema_table: r_dict['schema'] = schema r_dict['table'] = table r_dict['column_name'] = r_dict['name'] r_dict['type'] = str(r_dict['type']) if (not native_type): r_dict['type'] = r_dict['type'].lower() r_dict['type'] = (r_dict['type'].split('(')[0] if ('(' in r_dict['type']) else r_dict['type']) native_type_map = self._template('native_type_map') if (not (r_dict['type'] in native_type_map)): raise Exception('Field type "{}" not in native_type_map for {}'.format(r_dict['type'], self.type)) r_dict['type'] = native_type_map[r_dict['type']] r_dict['id'] = column_order for k in list(r_dict): if (k not in headers.split()): del r_dict[k] if ('(' in r_dict['type']): r_dict['type'] = r_dict['type'].split('(')[0] return Rec(**r_dict) sql_tmpl = self._template('metadata.columns') if sql_tmpl: rows = self.query(sql_tmpl.format(table=table, schema=schema)) if hasattr(self, '_std_get_columns'): rows = self._std_get_columns(schema, table, rows) else: self.get_engine(echo=echo) rows = self.engine_inspect.get_columns(table, schema=schema) all_rows += [get_rec(r_dict, (i + 1)) for (i, r_dict) in enumerate(rows)] self._fields = Rec._fields return all_rows
Get column metadata for table
xutil/database/base.py
get_columns
flarco/n1slutil
1
python
def get_columns(self, table_name, object_type=None, echo=False, include_schema_table=True, native_type=True): if include_schema_table: headers = 'schema table id column_name type nullable default autoincrement' else: headers = 'id column_name type nullable default autoincrement' Rec = namedtuple('Columns', headers) self._fields = Rec._fields all_rows = [] table_names = (table_name if isinstance(table_name, list) else [table_name]) for table_name in table_names: (schema, table) = self._split_schema_table(table_name) def get_rec(r_dict, column_order): if include_schema_table: r_dict['schema'] = schema r_dict['table'] = table r_dict['column_name'] = r_dict['name'] r_dict['type'] = str(r_dict['type']) if (not native_type): r_dict['type'] = r_dict['type'].lower() r_dict['type'] = (r_dict['type'].split('(')[0] if ('(' in r_dict['type']) else r_dict['type']) native_type_map = self._template('native_type_map') if (not (r_dict['type'] in native_type_map)): raise Exception('Field type "{}" not in native_type_map for {}'.format(r_dict['type'], self.type)) r_dict['type'] = native_type_map[r_dict['type']] r_dict['id'] = column_order for k in list(r_dict): if (k not in headers.split()): del r_dict[k] if ('(' in r_dict['type']): r_dict['type'] = r_dict['type'].split('(')[0] return Rec(**r_dict) sql_tmpl = self._template('metadata.columns') if sql_tmpl: rows = self.query(sql_tmpl.format(table=table, schema=schema)) if hasattr(self, '_std_get_columns'): rows = self._std_get_columns(schema, table, rows) else: self.get_engine(echo=echo) rows = self.engine_inspect.get_columns(table, schema=schema) all_rows += [get_rec(r_dict, (i + 1)) for (i, r_dict) in enumerate(rows)] self._fields = Rec._fields return all_rows
def get_columns(self, table_name, object_type=None, echo=False, include_schema_table=True, native_type=True): if include_schema_table: headers = 'schema table id column_name type nullable default autoincrement' else: headers = 'id column_name type nullable default autoincrement' Rec = namedtuple('Columns', headers) self._fields = Rec._fields all_rows = [] table_names = (table_name if isinstance(table_name, list) else [table_name]) for table_name in table_names: (schema, table) = self._split_schema_table(table_name) def get_rec(r_dict, column_order): if include_schema_table: r_dict['schema'] = schema r_dict['table'] = table r_dict['column_name'] = r_dict['name'] r_dict['type'] = str(r_dict['type']) if (not native_type): r_dict['type'] = r_dict['type'].lower() r_dict['type'] = (r_dict['type'].split('(')[0] if ('(' in r_dict['type']) else r_dict['type']) native_type_map = self._template('native_type_map') if (not (r_dict['type'] in native_type_map)): raise Exception('Field type "{}" not in native_type_map for {}'.format(r_dict['type'], self.type)) r_dict['type'] = native_type_map[r_dict['type']] r_dict['id'] = column_order for k in list(r_dict): if (k not in headers.split()): del r_dict[k] if ('(' in r_dict['type']): r_dict['type'] = r_dict['type'].split('(')[0] return Rec(**r_dict) sql_tmpl = self._template('metadata.columns') if sql_tmpl: rows = self.query(sql_tmpl.format(table=table, schema=schema)) if hasattr(self, '_std_get_columns'): rows = self._std_get_columns(schema, table, rows) else: self.get_engine(echo=echo) rows = self.engine_inspect.get_columns(table, schema=schema) all_rows += [get_rec(r_dict, (i + 1)) for (i, r_dict) in enumerate(rows)] self._fields = Rec._fields return all_rows<|docstring|>Get column metadata for table<|endoftext|>
17bce1b78848abad11517ba21ea99047937c33033fc7fcf8c49b6f602ff544e0
def get_primary_keys(self, table_name, echo=False): 'Get PK metadata for table' Rec = namedtuple('PKs', 'schema table pk_name column_name column_order') self._fields = Rec._fields (schema, table) = self._split_schema_table(table_name) def get_rec(col, pk_name, column_order): r_dict = {} r_dict['schema'] = schema r_dict['table'] = table r_dict['pk_name'] = pk_name r_dict['column_name'] = col r_dict['column_order'] = column_order return Rec(**r_dict) sql_tmpl = self._template('metadata.primary_keys') if sql_tmpl: rows = self.query(sql_tmpl.format(table=table, schema=schema)) else: self.get_engine(echo=echo) r_dict = self.engine_inspect.get_pk_constraint(table, schema=schema) rows = [get_rec(col, r_dict['name'], (i + 1)) for (i, col) in enumerate(r_dict['constrained_columns'])] return rows
Get PK metadata for table
xutil/database/base.py
get_primary_keys
flarco/n1slutil
1
python
def get_primary_keys(self, table_name, echo=False): Rec = namedtuple('PKs', 'schema table pk_name column_name column_order') self._fields = Rec._fields (schema, table) = self._split_schema_table(table_name) def get_rec(col, pk_name, column_order): r_dict = {} r_dict['schema'] = schema r_dict['table'] = table r_dict['pk_name'] = pk_name r_dict['column_name'] = col r_dict['column_order'] = column_order return Rec(**r_dict) sql_tmpl = self._template('metadata.primary_keys') if sql_tmpl: rows = self.query(sql_tmpl.format(table=table, schema=schema)) else: self.get_engine(echo=echo) r_dict = self.engine_inspect.get_pk_constraint(table, schema=schema) rows = [get_rec(col, r_dict['name'], (i + 1)) for (i, col) in enumerate(r_dict['constrained_columns'])] return rows
def get_primary_keys(self, table_name, echo=False): Rec = namedtuple('PKs', 'schema table pk_name column_name column_order') self._fields = Rec._fields (schema, table) = self._split_schema_table(table_name) def get_rec(col, pk_name, column_order): r_dict = {} r_dict['schema'] = schema r_dict['table'] = table r_dict['pk_name'] = pk_name r_dict['column_name'] = col r_dict['column_order'] = column_order return Rec(**r_dict) sql_tmpl = self._template('metadata.primary_keys') if sql_tmpl: rows = self.query(sql_tmpl.format(table=table, schema=schema)) else: self.get_engine(echo=echo) r_dict = self.engine_inspect.get_pk_constraint(table, schema=schema) rows = [get_rec(col, r_dict['name'], (i + 1)) for (i, col) in enumerate(r_dict['constrained_columns'])] return rows<|docstring|>Get PK metadata for table<|endoftext|>
0d95e8c477a7ded1541044aba5fc36beeb11bc2d1a239db15b50350628a1509b
def get_indexes(self, table_name, echo=False): 'Get indexes metadata for table' Rec = namedtuple('Indexes', 'schema table index_name column_name column_order unique') self._fields = Rec._fields (schema, table) = self._split_schema_table(table_name) def get_rec(r_dict): r_dict['schema'] = schema r_dict['table'] = table r_dict['index_name'] = r_dict['name'] r_dict['unique'] = str(r_dict['unique']) del r_dict['name'] for (i, col) in enumerate(r_dict['column_names']): r_dict['column_name'] = col r_dict['column_order'] = (i + 1) (yield Rec(**r_dict)) sql_tmpl = self._template('metadata.indexes') if sql_tmpl: rows = self.query(sql_tmpl.format(table=table, schema=schema)) else: self.get_engine(echo=echo) rows = self.engine_inspect.get_indexes(table, schema=schema) rows = [get_rec(r_dict) for r_dict in rows] return rows
Get indexes metadata for table
xutil/database/base.py
get_indexes
flarco/n1slutil
1
python
def get_indexes(self, table_name, echo=False): Rec = namedtuple('Indexes', 'schema table index_name column_name column_order unique') self._fields = Rec._fields (schema, table) = self._split_schema_table(table_name) def get_rec(r_dict): r_dict['schema'] = schema r_dict['table'] = table r_dict['index_name'] = r_dict['name'] r_dict['unique'] = str(r_dict['unique']) del r_dict['name'] for (i, col) in enumerate(r_dict['column_names']): r_dict['column_name'] = col r_dict['column_order'] = (i + 1) (yield Rec(**r_dict)) sql_tmpl = self._template('metadata.indexes') if sql_tmpl: rows = self.query(sql_tmpl.format(table=table, schema=schema)) else: self.get_engine(echo=echo) rows = self.engine_inspect.get_indexes(table, schema=schema) rows = [get_rec(r_dict) for r_dict in rows] return rows
def get_indexes(self, table_name, echo=False): Rec = namedtuple('Indexes', 'schema table index_name column_name column_order unique') self._fields = Rec._fields (schema, table) = self._split_schema_table(table_name) def get_rec(r_dict): r_dict['schema'] = schema r_dict['table'] = table r_dict['index_name'] = r_dict['name'] r_dict['unique'] = str(r_dict['unique']) del r_dict['name'] for (i, col) in enumerate(r_dict['column_names']): r_dict['column_name'] = col r_dict['column_order'] = (i + 1) (yield Rec(**r_dict)) sql_tmpl = self._template('metadata.indexes') if sql_tmpl: rows = self.query(sql_tmpl.format(table=table, schema=schema)) else: self.get_engine(echo=echo) rows = self.engine_inspect.get_indexes(table, schema=schema) rows = [get_rec(r_dict) for r_dict in rows] return rows<|docstring|>Get indexes metadata for table<|endoftext|>
9a0ed2162f0d01cf8331ddc4f0d94850bee8d082bcbaebb469838fa23f64b0a3
def get_ddl(self, table_name, object_type=None, echo=True): 'Get ddl for table' Rec = namedtuple('DDL', 'ddl') self._fields = Rec._fields (schema, table) = self._split_schema_table(table_name) sql_tmpl = self._template('metadata.ddl') if sql_tmpl: rows = self.query(sql_tmpl.format(schema=schema, table=table, obj_type=object_type)) else: self.get_engine(echo=echo) ddl = self.engine_inspect.get_view_definition(table, schema=schema) rows = ([Rec(ddl)] if ddl else []) self._fields = Rec._fields return rows
Get ddl for table
xutil/database/base.py
get_ddl
flarco/n1slutil
1
python
def get_ddl(self, table_name, object_type=None, echo=True): Rec = namedtuple('DDL', 'ddl') self._fields = Rec._fields (schema, table) = self._split_schema_table(table_name) sql_tmpl = self._template('metadata.ddl') if sql_tmpl: rows = self.query(sql_tmpl.format(schema=schema, table=table, obj_type=object_type)) else: self.get_engine(echo=echo) ddl = self.engine_inspect.get_view_definition(table, schema=schema) rows = ([Rec(ddl)] if ddl else []) self._fields = Rec._fields return rows
def get_ddl(self, table_name, object_type=None, echo=True): Rec = namedtuple('DDL', 'ddl') self._fields = Rec._fields (schema, table) = self._split_schema_table(table_name) sql_tmpl = self._template('metadata.ddl') if sql_tmpl: rows = self.query(sql_tmpl.format(schema=schema, table=table, obj_type=object_type)) else: self.get_engine(echo=echo) ddl = self.engine_inspect.get_view_definition(table, schema=schema) rows = ([Rec(ddl)] if ddl else []) self._fields = Rec._fields return rows<|docstring|>Get ddl for table<|endoftext|>
e8c0beb21952202faabaa462699032b5930d50fd2c0b89a3a1921b582455fe6e
def get_all_columns(self): 'Get all columns for all tables / views' sql_tmpl = self._template('metadata.all_columns') if (not sql_tmpl): raise Exception('get_all_columns not implemented for {}'.format(self.type)) rows = self.query(sql_tmpl) return rows
Get all columns for all tables / views
xutil/database/base.py
get_all_columns
flarco/n1slutil
1
python
def get_all_columns(self): sql_tmpl = self._template('metadata.all_columns') if (not sql_tmpl): raise Exception('get_all_columns not implemented for {}'.format(self.type)) rows = self.query(sql_tmpl) return rows
def get_all_columns(self): sql_tmpl = self._template('metadata.all_columns') if (not sql_tmpl): raise Exception('get_all_columns not implemented for {}'.format(self.type)) rows = self.query(sql_tmpl) return rows<|docstring|>Get all columns for all tables / views<|endoftext|>
3de54e1433e8d5a6df6d14e4f53646ee88882ad2085a6fe30e0c5bb2b5a8928f
def get_all_tables(self, filter, as_sql=False): 'Get all tables / views' sql_tmpl = self._template('metadata.all_tables') if (not sql_tmpl): raise Exception('get_all_tables not implemented for {}'.format(self.type)) sql = sql_tmpl.format(filter=filter) return (sql if as_sql else self.query(sql, echo=False))
Get all tables / views
xutil/database/base.py
get_all_tables
flarco/n1slutil
1
python
def get_all_tables(self, filter, as_sql=False): sql_tmpl = self._template('metadata.all_tables') if (not sql_tmpl): raise Exception('get_all_tables not implemented for {}'.format(self.type)) sql = sql_tmpl.format(filter=filter) return (sql if as_sql else self.query(sql, echo=False))
def get_all_tables(self, filter, as_sql=False): sql_tmpl = self._template('metadata.all_tables') if (not sql_tmpl): raise Exception('get_all_tables not implemented for {}'.format(self.type)) sql = sql_tmpl.format(filter=filter) return (sql if as_sql else self.query(sql, echo=False))<|docstring|>Get all tables / views<|endoftext|>
f09b6282662a437fbcb281a37e77a5765bf00a20add3201c6fbc2f33cedfcaf1
def analyze_fields(self, analysis, table_name, fields=[], as_sql=False, union=True, expr_func_map={}, **kwargs): 'Base function for field level analysis\n expr_func_map: contains mapping for expression to SQL function to all fields\n ' if ('.' not in table_name): raise Exception("table_name must have schema and name in it with a '.'") if (analysis not in self.template_dict['analysis']): raise Exception("'{}' not found in template for '{}'.".format(analysis, self.type)) (schema, table) = self._split_schema_table(table_name) field_rows = self.get_columns(table_name) field_type = {r.column_name.lower(): r.type for r in field_rows} if (not fields): fields = [r.column_name for r in field_rows] for expr in list(expr_func_map): tmpl_path = ('function.' + expr_func_map[expr]) expr_func_map[expr] = ',\n'.join([self._template(tmpl_path).format(field=field) for field in [r.column_name for r in field_rows]]) sep = (' \nunion all\n' if union else ' \n ;\n') sql = sep.join([self._template(('analysis.' + analysis)).format(schema=schema, field=field, table=table, type=(field_type[field.lower()] if field else ''), **expr_func_map, **kwargs) for field in fields]) return (sql if as_sql else self.query(sql, analysis, echo=False))
Base function for field level analysis expr_func_map: contains mapping for expression to SQL function to all fields
xutil/database/base.py
analyze_fields
flarco/n1slutil
1
python
def analyze_fields(self, analysis, table_name, fields=[], as_sql=False, union=True, expr_func_map={}, **kwargs): 'Base function for field level analysis\n expr_func_map: contains mapping for expression to SQL function to all fields\n ' if ('.' not in table_name): raise Exception("table_name must have schema and name in it with a '.'") if (analysis not in self.template_dict['analysis']): raise Exception("'{}' not found in template for '{}'.".format(analysis, self.type)) (schema, table) = self._split_schema_table(table_name) field_rows = self.get_columns(table_name) field_type = {r.column_name.lower(): r.type for r in field_rows} if (not fields): fields = [r.column_name for r in field_rows] for expr in list(expr_func_map): tmpl_path = ('function.' + expr_func_map[expr]) expr_func_map[expr] = ',\n'.join([self._template(tmpl_path).format(field=field) for field in [r.column_name for r in field_rows]]) sep = (' \nunion all\n' if union else ' \n ;\n') sql = sep.join([self._template(('analysis.' + analysis)).format(schema=schema, field=field, table=table, type=(field_type[field.lower()] if field else ), **expr_func_map, **kwargs) for field in fields]) return (sql if as_sql else self.query(sql, analysis, echo=False))
def analyze_fields(self, analysis, table_name, fields=[], as_sql=False, union=True, expr_func_map={}, **kwargs): 'Base function for field level analysis\n expr_func_map: contains mapping for expression to SQL function to all fields\n ' if ('.' not in table_name): raise Exception("table_name must have schema and name in it with a '.'") if (analysis not in self.template_dict['analysis']): raise Exception("'{}' not found in template for '{}'.".format(analysis, self.type)) (schema, table) = self._split_schema_table(table_name) field_rows = self.get_columns(table_name) field_type = {r.column_name.lower(): r.type for r in field_rows} if (not fields): fields = [r.column_name for r in field_rows] for expr in list(expr_func_map): tmpl_path = ('function.' + expr_func_map[expr]) expr_func_map[expr] = ',\n'.join([self._template(tmpl_path).format(field=field) for field in [r.column_name for r in field_rows]]) sep = (' \nunion all\n' if union else ' \n ;\n') sql = sep.join([self._template(('analysis.' + analysis)).format(schema=schema, field=field, table=table, type=(field_type[field.lower()] if field else ), **expr_func_map, **kwargs) for field in fields]) return (sql if as_sql else self.query(sql, analysis, echo=False))<|docstring|>Base function for field level analysis expr_func_map: contains mapping for expression to SQL function to all fields<|endoftext|>
8317f34a3dbfb77308cd32ae8fde365408551b967d532b998dba93cf354577dc
def analyze_tables(self, analysis, tables=[], as_sql=False, **kwargs): 'Base function for table level analysis' if (analysis not in self.template_dict['analysis']): raise Exception("'{}' not found in template for '{}'.".format(analysis, self.type)) if ((not tables) and ('schema' in kwargs)): rows = self.get_schemas(kwargs['schema']) crt_obj = (lambda r: struct(dict(schema=r.schema, table=r.object_name))) objs = [crt_obj(r) for r in rows] else: crt_obj = (lambda schema, table: struct(dict(schema=schema, table=table))) objs = [crt_obj(*self._split_schema_table(t)) for t in tables] sql = ' \nunion all\n'.join([self._template(('analysis.' + analysis)).format(schema=obj.schema, table=obj.table, **kwargs) for obj in objs]) return (sql if as_sql else self.query(sql, analysis, echo=False))
Base function for table level analysis
xutil/database/base.py
analyze_tables
flarco/n1slutil
1
python
def analyze_tables(self, analysis, tables=[], as_sql=False, **kwargs): if (analysis not in self.template_dict['analysis']): raise Exception("'{}' not found in template for '{}'.".format(analysis, self.type)) if ((not tables) and ('schema' in kwargs)): rows = self.get_schemas(kwargs['schema']) crt_obj = (lambda r: struct(dict(schema=r.schema, table=r.object_name))) objs = [crt_obj(r) for r in rows] else: crt_obj = (lambda schema, table: struct(dict(schema=schema, table=table))) objs = [crt_obj(*self._split_schema_table(t)) for t in tables] sql = ' \nunion all\n'.join([self._template(('analysis.' + analysis)).format(schema=obj.schema, table=obj.table, **kwargs) for obj in objs]) return (sql if as_sql else self.query(sql, analysis, echo=False))
def analyze_tables(self, analysis, tables=[], as_sql=False, **kwargs): if (analysis not in self.template_dict['analysis']): raise Exception("'{}' not found in template for '{}'.".format(analysis, self.type)) if ((not tables) and ('schema' in kwargs)): rows = self.get_schemas(kwargs['schema']) crt_obj = (lambda r: struct(dict(schema=r.schema, table=r.object_name))) objs = [crt_obj(r) for r in rows] else: crt_obj = (lambda schema, table: struct(dict(schema=schema, table=table))) objs = [crt_obj(*self._split_schema_table(t)) for t in tables] sql = ' \nunion all\n'.join([self._template(('analysis.' + analysis)).format(schema=obj.schema, table=obj.table, **kwargs) for obj in objs]) return (sql if as_sql else self.query(sql, analysis, echo=False))<|docstring|>Base function for table level analysis<|endoftext|>
a260aa7a8739bdb61974c40199ebb8772a0a7d2fc5f930a0e28dbd3b861f8a20
def create_or_get_cache_dir(self, module=''): 'create (if not exists) or return cache dir path for module' cache_dir = '{}/{}'.format(self.__cache_dir, module) if (not os.path.exists(cache_dir)): os.makedirs(cache_dir) return cache_dir
create (if not exists) or return cache dir path for module
ods/ods.py
create_or_get_cache_dir
open-datastudio/ods
6
python
def create_or_get_cache_dir(self, module=): cache_dir = '{}/{}'.format(self.__cache_dir, module) if (not os.path.exists(cache_dir)): os.makedirs(cache_dir) return cache_dir
def create_or_get_cache_dir(self, module=): cache_dir = '{}/{}'.format(self.__cache_dir, module) if (not os.path.exists(cache_dir)): os.makedirs(cache_dir) return cache_dir<|docstring|>create (if not exists) or return cache dir path for module<|endoftext|>
d859c845eb6f19e9d2955cf014752105af3425ddbe86cf9dd1eaab726106e560
def __init__(self, backup_policy=None): 'SetBackupPolicyRequestBody - a model defined in huaweicloud sdk' self._backup_policy = None self.discriminator = None self.backup_policy = backup_policy
SetBackupPolicyRequestBody - a model defined in huaweicloud sdk
huaweicloud-sdk-dds/huaweicloudsdkdds/v3/model/set_backup_policy_request_body.py
__init__
githubmilesma/huaweicloud-sdk-python-v3
1
python
def __init__(self, backup_policy=None): self._backup_policy = None self.discriminator = None self.backup_policy = backup_policy
def __init__(self, backup_policy=None): self._backup_policy = None self.discriminator = None self.backup_policy = backup_policy<|docstring|>SetBackupPolicyRequestBody - a model defined in huaweicloud sdk<|endoftext|>
ffe91840b6c38b35603932e289c3a98ce26743f1bd0391f98e1df272b79afbcf
@property def backup_policy(self): 'Gets the backup_policy of this SetBackupPolicyRequestBody.\n\n\n :return: The backup_policy of this SetBackupPolicyRequestBody.\n :rtype: BackupPolicy\n ' return self._backup_policy
Gets the backup_policy of this SetBackupPolicyRequestBody. :return: The backup_policy of this SetBackupPolicyRequestBody. :rtype: BackupPolicy
huaweicloud-sdk-dds/huaweicloudsdkdds/v3/model/set_backup_policy_request_body.py
backup_policy
githubmilesma/huaweicloud-sdk-python-v3
1
python
@property def backup_policy(self): 'Gets the backup_policy of this SetBackupPolicyRequestBody.\n\n\n :return: The backup_policy of this SetBackupPolicyRequestBody.\n :rtype: BackupPolicy\n ' return self._backup_policy
@property def backup_policy(self): 'Gets the backup_policy of this SetBackupPolicyRequestBody.\n\n\n :return: The backup_policy of this SetBackupPolicyRequestBody.\n :rtype: BackupPolicy\n ' return self._backup_policy<|docstring|>Gets the backup_policy of this SetBackupPolicyRequestBody. :return: The backup_policy of this SetBackupPolicyRequestBody. :rtype: BackupPolicy<|endoftext|>
aed68daf82e9fb5f79e8e9543446f7f966de92a0609b77c9db45687446557ebd
@backup_policy.setter def backup_policy(self, backup_policy): 'Sets the backup_policy of this SetBackupPolicyRequestBody.\n\n\n :param backup_policy: The backup_policy of this SetBackupPolicyRequestBody.\n :type: BackupPolicy\n ' self._backup_policy = backup_policy
Sets the backup_policy of this SetBackupPolicyRequestBody. :param backup_policy: The backup_policy of this SetBackupPolicyRequestBody. :type: BackupPolicy
huaweicloud-sdk-dds/huaweicloudsdkdds/v3/model/set_backup_policy_request_body.py
backup_policy
githubmilesma/huaweicloud-sdk-python-v3
1
python
@backup_policy.setter def backup_policy(self, backup_policy): 'Sets the backup_policy of this SetBackupPolicyRequestBody.\n\n\n :param backup_policy: The backup_policy of this SetBackupPolicyRequestBody.\n :type: BackupPolicy\n ' self._backup_policy = backup_policy
@backup_policy.setter def backup_policy(self, backup_policy): 'Sets the backup_policy of this SetBackupPolicyRequestBody.\n\n\n :param backup_policy: The backup_policy of this SetBackupPolicyRequestBody.\n :type: BackupPolicy\n ' self._backup_policy = backup_policy<|docstring|>Sets the backup_policy of this SetBackupPolicyRequestBody. :param backup_policy: The backup_policy of this SetBackupPolicyRequestBody. :type: BackupPolicy<|endoftext|>
23795442a46e2cd10dec98fded44ed9172a29971e98983a30ad89baa6c9c0a03
def to_dict(self): 'Returns the model properties as a dict' result = {} for (attr, _) in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map((lambda x: (x.to_dict() if hasattr(x, 'to_dict') else x)), value)) elif hasattr(value, 'to_dict'): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map((lambda item: ((item[0], item[1].to_dict()) if hasattr(item[1], 'to_dict') else item)), value.items())) elif (attr in self.sensitive_list): result[attr] = '****' else: result[attr] = value return result
Returns the model properties as a dict
huaweicloud-sdk-dds/huaweicloudsdkdds/v3/model/set_backup_policy_request_body.py
to_dict
githubmilesma/huaweicloud-sdk-python-v3
1
python
def to_dict(self): result = {} for (attr, _) in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map((lambda x: (x.to_dict() if hasattr(x, 'to_dict') else x)), value)) elif hasattr(value, 'to_dict'): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map((lambda item: ((item[0], item[1].to_dict()) if hasattr(item[1], 'to_dict') else item)), value.items())) elif (attr in self.sensitive_list): result[attr] = '****' else: result[attr] = value return result
def to_dict(self): result = {} for (attr, _) in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map((lambda x: (x.to_dict() if hasattr(x, 'to_dict') else x)), value)) elif hasattr(value, 'to_dict'): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map((lambda item: ((item[0], item[1].to_dict()) if hasattr(item[1], 'to_dict') else item)), value.items())) elif (attr in self.sensitive_list): result[attr] = '****' else: result[attr] = value return result<|docstring|>Returns the model properties as a dict<|endoftext|>
cbb19eaa2fc8a113d9e32f924ef280a7e97563f8915f94f65dab438997af2e99
def to_str(self): 'Returns the string representation of the model' return pprint.pformat(self.to_dict())
Returns the string representation of the model
huaweicloud-sdk-dds/huaweicloudsdkdds/v3/model/set_backup_policy_request_body.py
to_str
githubmilesma/huaweicloud-sdk-python-v3
1
python
def to_str(self): return pprint.pformat(self.to_dict())
def to_str(self): return pprint.pformat(self.to_dict())<|docstring|>Returns the string representation of the model<|endoftext|>
772243a2c2b3261a9b954d07aaf295e3c1242a579a495e2d6a5679c677861703
def __repr__(self): 'For `print` and `pprint`' return self.to_str()
For `print` and `pprint`
huaweicloud-sdk-dds/huaweicloudsdkdds/v3/model/set_backup_policy_request_body.py
__repr__
githubmilesma/huaweicloud-sdk-python-v3
1
python
def __repr__(self): return self.to_str()
def __repr__(self): return self.to_str()<|docstring|>For `print` and `pprint`<|endoftext|>
9c5bb75197376d0792d8d84beb70ed61c4b1366198ca62bd2dcf4d79c52078b2
def __eq__(self, other): 'Returns true if both objects are equal' if (not isinstance(other, SetBackupPolicyRequestBody)): return False return (self.__dict__ == other.__dict__)
Returns true if both objects are equal
huaweicloud-sdk-dds/huaweicloudsdkdds/v3/model/set_backup_policy_request_body.py
__eq__
githubmilesma/huaweicloud-sdk-python-v3
1
python
def __eq__(self, other): if (not isinstance(other, SetBackupPolicyRequestBody)): return False return (self.__dict__ == other.__dict__)
def __eq__(self, other): if (not isinstance(other, SetBackupPolicyRequestBody)): return False return (self.__dict__ == other.__dict__)<|docstring|>Returns true if both objects are equal<|endoftext|>
43dc6740163eb9fc1161d09cb2208a64c7ad0cc8d9c8637ac3264522d3ec7e42
def __ne__(self, other): 'Returns true if both objects are not equal' return (not (self == other))
Returns true if both objects are not equal
huaweicloud-sdk-dds/huaweicloudsdkdds/v3/model/set_backup_policy_request_body.py
__ne__
githubmilesma/huaweicloud-sdk-python-v3
1
python
def __ne__(self, other): return (not (self == other))
def __ne__(self, other): return (not (self == other))<|docstring|>Returns true if both objects are not equal<|endoftext|>
9e07857f3269477dccc6c433756f9f9588b8241d31741ca2732848f7fa1a9212
def main() -> None: '\n Entry point of this test project.\n ' ap.Stage(background_color='#333', stage_width=1000, stage_height=500) sprite: ap.Sprite = ap.Sprite() sprite.graphics.line_style(color='#0af', round_dot_setting=ap.LineRoundDotSetting(round_size=10, space_size=10)) sprite.graphics.move_to(x=50, y=30) sprite.graphics.line_to(x=450, y=30) sprite.graphics.line_style(color='#0af', round_dot_setting=ap.LineRoundDotSetting(round_size=10, space_size=20)) sprite.graphics.move_to(x=50, y=60) sprite.graphics.line_to(x=450, y=60) sprite.graphics.line_style(color='#0af', round_dot_setting=ap.LineRoundDotSetting(round_size=20, space_size=0)) sprite.graphics.move_to(x=50, y=90) sprite.graphics.line_to(x=450, y=90) sprite.graphics.line_style(color='#0af', thickness=3) sprite.graphics.move_to(x=40, y=120) sprite.graphics.line_to(x=460, y=120) sprite.graphics.line_style(color='#0af', round_dot_setting=ap.LineRoundDotSetting(round_size=10, space_size=10)) polyline: ap.Polyline = sprite.graphics.move_to(x=50, y=150) sprite.graphics.line_to(x=450, y=150) sprite.graphics.line_to(x=700, y=250) sprite.graphics.line_to(x=700, y=150) polyline.click(on_polyline_click) ap.save_overall_html(dest_dir_path=_DEST_DIR_PATH)
Entry point of this test project.
test_projects/line_round_dot_setting/main.py
main
ynsnf/apysc
16
python
def main() -> None: '\n \n ' ap.Stage(background_color='#333', stage_width=1000, stage_height=500) sprite: ap.Sprite = ap.Sprite() sprite.graphics.line_style(color='#0af', round_dot_setting=ap.LineRoundDotSetting(round_size=10, space_size=10)) sprite.graphics.move_to(x=50, y=30) sprite.graphics.line_to(x=450, y=30) sprite.graphics.line_style(color='#0af', round_dot_setting=ap.LineRoundDotSetting(round_size=10, space_size=20)) sprite.graphics.move_to(x=50, y=60) sprite.graphics.line_to(x=450, y=60) sprite.graphics.line_style(color='#0af', round_dot_setting=ap.LineRoundDotSetting(round_size=20, space_size=0)) sprite.graphics.move_to(x=50, y=90) sprite.graphics.line_to(x=450, y=90) sprite.graphics.line_style(color='#0af', thickness=3) sprite.graphics.move_to(x=40, y=120) sprite.graphics.line_to(x=460, y=120) sprite.graphics.line_style(color='#0af', round_dot_setting=ap.LineRoundDotSetting(round_size=10, space_size=10)) polyline: ap.Polyline = sprite.graphics.move_to(x=50, y=150) sprite.graphics.line_to(x=450, y=150) sprite.graphics.line_to(x=700, y=250) sprite.graphics.line_to(x=700, y=150) polyline.click(on_polyline_click) ap.save_overall_html(dest_dir_path=_DEST_DIR_PATH)
def main() -> None: '\n \n ' ap.Stage(background_color='#333', stage_width=1000, stage_height=500) sprite: ap.Sprite = ap.Sprite() sprite.graphics.line_style(color='#0af', round_dot_setting=ap.LineRoundDotSetting(round_size=10, space_size=10)) sprite.graphics.move_to(x=50, y=30) sprite.graphics.line_to(x=450, y=30) sprite.graphics.line_style(color='#0af', round_dot_setting=ap.LineRoundDotSetting(round_size=10, space_size=20)) sprite.graphics.move_to(x=50, y=60) sprite.graphics.line_to(x=450, y=60) sprite.graphics.line_style(color='#0af', round_dot_setting=ap.LineRoundDotSetting(round_size=20, space_size=0)) sprite.graphics.move_to(x=50, y=90) sprite.graphics.line_to(x=450, y=90) sprite.graphics.line_style(color='#0af', thickness=3) sprite.graphics.move_to(x=40, y=120) sprite.graphics.line_to(x=460, y=120) sprite.graphics.line_style(color='#0af', round_dot_setting=ap.LineRoundDotSetting(round_size=10, space_size=10)) polyline: ap.Polyline = sprite.graphics.move_to(x=50, y=150) sprite.graphics.line_to(x=450, y=150) sprite.graphics.line_to(x=700, y=250) sprite.graphics.line_to(x=700, y=150) polyline.click(on_polyline_click) ap.save_overall_html(dest_dir_path=_DEST_DIR_PATH)<|docstring|>Entry point of this test project.<|endoftext|>
2c1b782605df9260aec00e1754eacee1e1948b56b27fd18d6d0b42eb26a22c3f
def on_polyline_click(e: ap.MouseEvent[ap.Polyline], options: dict) -> None: '\n Handler that called when polyline is clicked.\n\n Parameters\n ----------\n e : MouseEvent\n Created MouseEvent instance.\n options : dict\n Optional parameters.\n ' polyline: ap.Polyline = e.this polyline.line_round_dot_setting = None
Handler that called when polyline is clicked. Parameters ---------- e : MouseEvent Created MouseEvent instance. options : dict Optional parameters.
test_projects/line_round_dot_setting/main.py
on_polyline_click
ynsnf/apysc
16
python
def on_polyline_click(e: ap.MouseEvent[ap.Polyline], options: dict) -> None: '\n Handler that called when polyline is clicked.\n\n Parameters\n ----------\n e : MouseEvent\n Created MouseEvent instance.\n options : dict\n Optional parameters.\n ' polyline: ap.Polyline = e.this polyline.line_round_dot_setting = None
def on_polyline_click(e: ap.MouseEvent[ap.Polyline], options: dict) -> None: '\n Handler that called when polyline is clicked.\n\n Parameters\n ----------\n e : MouseEvent\n Created MouseEvent instance.\n options : dict\n Optional parameters.\n ' polyline: ap.Polyline = e.this polyline.line_round_dot_setting = None<|docstring|>Handler that called when polyline is clicked. Parameters ---------- e : MouseEvent Created MouseEvent instance. options : dict Optional parameters.<|endoftext|>
18e9fb5fe461d7abb0b2f9cf7cde507b46370644f7d1f078e422ef9435f136c3
def log(self, message): '\n Logs a message for analysis of model training.\n ' self._logger.log(message)
Logs a message for analysis of model training.
rafiki/model/log.py
log
Yirui-Wang/rafiki
1
python
def log(self, message): '\n \n ' self._logger.log(message)
def log(self, message): '\n \n ' self._logger.log(message)<|docstring|>Logs a message for analysis of model training.<|endoftext|>
e55efd90c01ca289ac0b9eedccb73a2908d9937c43c6f44f1c4ee030c9aeb67f
def define_loss_plot(self): '\n Convenience method of defining a plot of ``loss`` against ``epoch``.\n To be used with ``log_loss_metric()``.\n ' self.define_plot('Loss Over Epochs', ['loss'], x_axis='epoch')
Convenience method of defining a plot of ``loss`` against ``epoch``. To be used with ``log_loss_metric()``.
rafiki/model/log.py
define_loss_plot
Yirui-Wang/rafiki
1
python
def define_loss_plot(self): '\n Convenience method of defining a plot of ``loss`` against ``epoch``.\n To be used with ``log_loss_metric()``.\n ' self.define_plot('Loss Over Epochs', ['loss'], x_axis='epoch')
def define_loss_plot(self): '\n Convenience method of defining a plot of ``loss`` against ``epoch``.\n To be used with ``log_loss_metric()``.\n ' self.define_plot('Loss Over Epochs', ['loss'], x_axis='epoch')<|docstring|>Convenience method of defining a plot of ``loss`` against ``epoch``. To be used with ``log_loss_metric()``.<|endoftext|>
624a76a79ff7b38efccea6f1bd42b258cab3b0daf7d1b642bba07cdc635e389e
def log_loss_metric(self, loss, epoch): '\n Convenience method for logging `loss` against `epoch`.\n To be used with ``define_loss_plot()``.\n ' self.log_metrics(loss=loss, epoch=epoch)
Convenience method for logging `loss` against `epoch`. To be used with ``define_loss_plot()``.
rafiki/model/log.py
log_loss_metric
Yirui-Wang/rafiki
1
python
def log_loss_metric(self, loss, epoch): '\n Convenience method for logging `loss` against `epoch`.\n To be used with ``define_loss_plot()``.\n ' self.log_metrics(loss=loss, epoch=epoch)
def log_loss_metric(self, loss, epoch): '\n Convenience method for logging `loss` against `epoch`.\n To be used with ``define_loss_plot()``.\n ' self.log_metrics(loss=loss, epoch=epoch)<|docstring|>Convenience method for logging `loss` against `epoch`. To be used with ``define_loss_plot()``.<|endoftext|>
34b06862e88a7ff2d9a93a95375c875508ad3219f6e61d1e597928c7fbff9c90
def define_plot(self, title, metrics, x_axis=None): '\n Defines a plot for a set of metrics for analysis of model training.\n By default, metrics will be plotted against time.\n ' self._logger.define_plot(title, metrics, x_axis)
Defines a plot for a set of metrics for analysis of model training. By default, metrics will be plotted against time.
rafiki/model/log.py
define_plot
Yirui-Wang/rafiki
1
python
def define_plot(self, title, metrics, x_axis=None): '\n Defines a plot for a set of metrics for analysis of model training.\n By default, metrics will be plotted against time.\n ' self._logger.define_plot(title, metrics, x_axis)
def define_plot(self, title, metrics, x_axis=None): '\n Defines a plot for a set of metrics for analysis of model training.\n By default, metrics will be plotted against time.\n ' self._logger.define_plot(title, metrics, x_axis)<|docstring|>Defines a plot for a set of metrics for analysis of model training. By default, metrics will be plotted against time.<|endoftext|>
365392fcb18608671432af15e629a5e0a6ec4b5a2553527d04403090b5bfa5f9
def log_metrics(self, **kwargs): '\n Logs metrics for a single point in time { <metric>: <value> }.\n <value> should be a number.\n ' self._logger.log_metrics(**kwargs)
Logs metrics for a single point in time { <metric>: <value> }. <value> should be a number.
rafiki/model/log.py
log_metrics
Yirui-Wang/rafiki
1
python
def log_metrics(self, **kwargs): '\n Logs metrics for a single point in time { <metric>: <value> }.\n <value> should be a number.\n ' self._logger.log_metrics(**kwargs)
def log_metrics(self, **kwargs): '\n Logs metrics for a single point in time { <metric>: <value> }.\n <value> should be a number.\n ' self._logger.log_metrics(**kwargs)<|docstring|>Logs metrics for a single point in time { <metric>: <value> }. <value> should be a number.<|endoftext|>
aad6d434a880a23e02d1c825102d3b786f960dae1342bbd1686c303dd4391e95
def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): '\n This function prints and plots the confusion matrix.\n Normalization can be applied by setting `normalize=True`.\n ' plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) if normalize: cm = (cm.astype('float') / cm.sum(axis=1)[(:, np.newaxis)]) print('Normalized confusion matrix') else: print('Confusion matrix, without normalization') print(cm) thresh = (cm.max() / 2.0) for (i, j) in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, cm[(i, j)], horizontalalignment='center', color=('white' if (cm[(i, j)] > thresh) else 'black')) plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label')
This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`.
TrainValue/multiclass_svm.py
plot_confusion_matrix
xuanthuong/DOU-SI
0
python
def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): '\n This function prints and plots the confusion matrix.\n Normalization can be applied by setting `normalize=True`.\n ' plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) if normalize: cm = (cm.astype('float') / cm.sum(axis=1)[(:, np.newaxis)]) print('Normalized confusion matrix') else: print('Confusion matrix, without normalization') print(cm) thresh = (cm.max() / 2.0) for (i, j) in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, cm[(i, j)], horizontalalignment='center', color=('white' if (cm[(i, j)] > thresh) else 'black')) plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label')
def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): '\n This function prints and plots the confusion matrix.\n Normalization can be applied by setting `normalize=True`.\n ' plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) if normalize: cm = (cm.astype('float') / cm.sum(axis=1)[(:, np.newaxis)]) print('Normalized confusion matrix') else: print('Confusion matrix, without normalization') print(cm) thresh = (cm.max() / 2.0) for (i, j) in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, cm[(i, j)], horizontalalignment='center', color=('white' if (cm[(i, j)] > thresh) else 'black')) plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label')<|docstring|>This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`.<|endoftext|>
f9c04a07ca203621acf60f2b6d7fd185ff62290499797d71389366c347178b63
def GetHumanReadable(size, precision=2): 'Takes a byte sized input and computes the closest\n human readable format, e.g., in megabytes etc.' suffixes = ['B', 'KB', 'MB', 'GB', 'TB'] suffixIndex = 0 while ((size > 1024) and (suffixIndex < 4)): suffixIndex += 1 size = (size / 1024) return ('%.*f%s' % (precision, size, suffixes[suffixIndex]))
Takes a byte sized input and computes the closest human readable format, e.g., in megabytes etc.
exercise_05/exercise_code/networks/compute_network_size.py
GetHumanReadable
Sihifu/i2dl
0
python
def GetHumanReadable(size, precision=2): 'Takes a byte sized input and computes the closest\n human readable format, e.g., in megabytes etc.' suffixes = ['B', 'KB', 'MB', 'GB', 'TB'] suffixIndex = 0 while ((size > 1024) and (suffixIndex < 4)): suffixIndex += 1 size = (size / 1024) return ('%.*f%s' % (precision, size, suffixes[suffixIndex]))
def GetHumanReadable(size, precision=2): 'Takes a byte sized input and computes the closest\n human readable format, e.g., in megabytes etc.' suffixes = ['B', 'KB', 'MB', 'GB', 'TB'] suffixIndex = 0 while ((size > 1024) and (suffixIndex < 4)): suffixIndex += 1 size = (size / 1024) return ('%.*f%s' % (precision, size, suffixes[suffixIndex]))<|docstring|>Takes a byte sized input and computes the closest human readable format, e.g., in megabytes etc.<|endoftext|>